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Notations

· A↔ Ā: A is asymptotically equivalent to Ā

· ⟨x, y⟩: inner product of x, y ∈ Kn, which is x⊤y =
∑

i xiyi for K = R and x†y =∑
i x̄iyi for K = C.

· ⌊x⌋: largest n ∈ Z such that n ≤ x.

· x↓n := x(x− 1) . . . (x− n+ 1)

· x↑n := x(x+ 1) . . . (x+ n− 1)

· [n] := {1, . . . , n}

· N := {0, 1, 2, . . .} (set of natural numbers), N+ = {1, 2, . . .}.

· Dx: the diagonal matrix with diagonal elements given by the vector x



Résumé

La méthode des répliques est un outil préféré des physiciens pour étudier les grands
systèmes désordonnés. Le terme «réplique» vient du fait que la méthode implique des
copies indépendantes du système, autrement dit les «répliques». Bien qu’elle soit très
peu rigoureuse, la méthode des répliques peut résoudre des problèmes difficiles dans
divers domaines : théorie des matrices aléatoires, optimisation convexe, optimisation
combinatoire, inférence bayésienne, etc. La méthode a été utilisée avec succès pour
analyser des modèles théoriques en communication, traitement du signal et apprentissage
automatique.

L’équivalence asymptotique est omniprésente dans les systèmes de grand dimension.
L’un des exemples les plus simples de ce phénomène est qu’un vecteur choisi uniformé-
ment dans une sphère de grande dimension se comporte comme des variables aléatoires
gaussiennes indépendantes. Ce phénomène est également évident dans la méthode des
équivalents déterministes en théorie des matrices aléatoires, la méthode objective en op-
timisation combinatoire et le CGMT (Convex Gaussian min-max theorem en anglais) en
optimisation convexe aléatoire. Ces méthodes montrent que le système étudié se com-
porte asymptotiquement comme un système plus simple. En conséquence, de nombreux
calculs difficiles sur le système d’origine peuvent être effectués plus facilement sur le
système équivalent.

Dans cette thèse, nous montrons comment calculer l’équivalent asymptotique d’un
système désordonné avec les répliques. Ceci est différent de la méthode des répliques
habituelle, qui calcule une quantité à la fois. Après avoir développé un cadre théorique,
nous calculerons les équivalents déterministes de certaines matrices aléatoires, dériverons
formellement le CGMT et un nouveau résultat similaire pour les matrices orthogonales
aléatoires, et montrerons comment la symétrie des répliques implique que certains prob-
lèmes d’inférence en grande dimension se comportent comme des canaux gaussiens in-
dépendants. De plus, nous montrerons comment des structures de probabilité telles que
la distribution de Poisson-Dirichlet et la coalescente de Bolthausen-Sznitman émergent
directement de l’ansatz de Parisi.
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Abstract

Replica method is a favorite tool of physicists for studying large disordered systems. The
term ‘replica’ comes from the fact that the method involves independent copies of the
system, also referred to as ‘replicas’. Despite being highly non-rigorous, replica method
can solve difficult problems across various domains: random matrix theory, convex op-
timization, combinatorial optimization, Bayesian inference, etc. The method has been
successfully used to analyze theoretical models in communication, signal processing and
machine learning.

Asymptotic equivalence is ubiquitous in high dimensional systems. One of the sim-
plest examples of this phenomenon is that a vector chosen uniformly from a high dimen-
sional sphere behaves like independent Gaussian random variables. This phenomenon
is also evident in the method of deterministic equivalents in random matrix theory, the
objective method in combinatorial optimization, and the CGMT (convex Gaussian min-
max theorem) in random convex optimization. These methods shows that the system
under study behaves asymptotically like a simpler system. As a result, many difficult
computations on the original system can be done more easily on the equivalent system.

In this thesis, we show how to compute the asymptotic equivalent of a disordered
system with replicas. This is different from the usual replica method, which computes
one quantity at a time. After developing some theoretical framework, we will compute
the deterministic equivalents of some random matrices, formally derive the CGMT and
a similar new result for random orthogonal matrices, and show how replica symmetry
implies that some high dimensional inference problems behave like independent Gaussian
channels. Moreover, we will show how probability structures such as the Poisson-Dirichlet
distribution and the Bolthausen-Sznitman coalescent directly emerge from Parisi’s replica
symmetry breaking ansatz.

2



Chapter 1

Introduction

The phenomenon of asymptotic equivalence is illustrated by various examples in Section
1.1. The replica method will be presented in Section 1.3 after basic terminologies of
disordered systems being introduced in Section 1.2. The rest of the chapter presents the
structure and highlights the contributions of the thesis.

1.1 Asymptotic equivalence through examples

We give here examples of simple yet non-trivial problems that illustrate the asymptotic
equivalence phenomenon.

Example 1.1. (GOE matrix and spikes) Let X be a square matrix of size n with in-
dependent standard Gaussian entries and consider A = X+X⊤

√
2n

. The random matrix A

is said to be sampled from the Gaussian Orthogonal Ensemble (GOE). For large values
of n (∼ 103 for example), the distribution of the eigenvalues of A is very close to a
semi-circular shape described by the following density

µ(dx) =
1

2π

√
4− x21[−2,2](x)dx

Now let us consider matrix Y = A+λuu⊤, where u is an arbitrary unit vector and λ ≥ 0.
Plotting the eigenvalues of Y , we observe that as λ increases from 0 to 1, the spectral
density of Y remains the same, i.e. consisting of a single semi-circular bulk. However, as
soon as λ > 1, the largest eigenvalue λ̂ separates from the bulk with asymptotic position

λ̂→ λ+
1

λ
, n→∞.

Moreover, let û be the unit eigenvector associated with λ̂, then

⟨u, û⟩2 → 1− 1

λ2
.
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If we consider A as noises and u as an unknown signal to be estimated from observing
λuu⊤ + A, then the top eigenvector û gives an estimate that is correlated with u when
λ > 1.

In general, for a large random symmetric or Hermitian matrix M , we are mainly
interested in the following problems

· Computing the limiting spectral density of M , i.e. the deterministic shape that
emerges when plotting the distribution of its eigenvalues.

· Let us consider a spiked model M , i.e. a low-rank perturbation of some random
matrix model with known behavior. In most cases, its limiting spectral density
is the same as the non-perturbed model and there exists a phase transition in
which isolated eigenvalues appear. We are interested in the threshold of this phase
transition, the position of the spikes as well as the corresponding eigenvectors and
how they are related to the perturbation.

The key to answer these questions is the resolvent matrix

Q(z) = (M − zI)−1

where z ∈ C+. In many cases, Q(z) behaves like a deterministic matrix Q̄(z), called
the deterministic equivalent of Q(z). Computing Q̄(z) will be our main objective. The
method of deterministic equivalents, which goes beyond the classic Stieltjes transform,
is one of the main technical tools behind recent applications of random matrix theory in
communication [24] and machine learning [27]. From the deterministic equivalent of the
resolvent Q(z) we can study not only the limiting behaviors of the eigenvalues of M but
also its eigenvectors, which often contains information about the signal hidden behind
the data of matrix M .

Example 1.2. (A linear regression on linear model) Consider the following simple model
of linear regression studied in [38], [55], in which n data points (xi, yi)

n
i=1 are generated

by the model

yi = w⊤
⋆ xi + ξi

where xi are drawn independently fromN (0, Id), ξi are independent noises, each following
N (0, σ2). We want to estimate the hidden parameter w⋆, which is a unit vector in Rd,
by solving the following optimization problem

min
w∈Rd

n∑
i=1

ℓ(yi − w⊤xi) +R(w) (1.1)

in which the loss function ℓ is convex, reaching its minimum at zero and the regularization
function R is also convex. For example we can take ℓ(x) = x2 and R(w) = λ∥w∥1 for
some λ ≥ 0. The minimizer of the cost function, denoted as ŵ, is taken as an estimator
of w⋆. We consider the high dimensional limit where n, d → ∞ with a fixed sampling

4



ratio limn→∞ n/d = α ∈ (0,∞). It turns out that in this limit the minimum cost divided
by n as well as of the distance ∥ŵ−w⋆∥ converge to deterministic values. By computing
these values we can see how the quality of the estimator and the minimum cost depend
on the noise level σ, the sampling ratio α as well as the choice of regularization method.

This as well as many other problems in random convex optimization can be tack-
led by the Gaussian min-max theorem (CGMT) [105], which states that the following
optimization problem

min
x∈Kx

max
y∈Ky

x⊤Wy + f(x, y),

where Kx,Ky are compact subsets of Rm,Rn, W is a m × n matrix with independent
standard Gaussian entries, and f satisfies some convexity criteria, is equivalent in a
certain sense to the problem

min
x∈Kx

max
y∈Ky

f(x, y) + ∥x∥⟨h, y⟩+ ∥y∥⟨g, x⟩

in the limit m,n → ∞, where the vectors g and h are independent, following the nor-
mal distributions N (0, Im) and N (0, In) respectively. Combining this theorem with the
method of Lagrange multipliers, we can transform the initial problem into a simplified,
decoupled form that is amenable to theoretical analysis.

Example 1.3. (Rank-1 matrix factorization) We consider here the following model stud-
ied in [59]

Y =

√
λ

n
x0x0⊤ + Z (1.2)

where x0 ∈ Rn is an unknown signal with i.i.d. entries generated from a known probability
distribution PX with finite second moment and Z has independent, standard Gaussian
entries, representing the noises. We want to infer the vector x0 from the observation
Y . The fundamental object of our study is the posterior Px0|Y which contains all the
information about x0 that can be extracted from Y .

It turns out that Px0|Y behaves like the posterior law of x0 given

Ỹ =
√

2λq⋆x
0 + ξ, (1.3)

where ξ ∼ N (0, In) is independent of x0, and q⋆ is obtained from maximizing a certain
function. The value of q⋆ depends on the parameter λ. There exists a value λc such that
q⋆ = 0 if λ ≤ λc and q⋆ > 0 if λ > λc. When q⋆ = 0, the asymptotically equivalent
problem (1.3) means estimating x0 from pure noise, which is impossible. In other words,
λc is the threshold of the transition between unrecoverable and the recoverable phase.

Example 1.4. (Minimal matching) Consider the problem of assigning n jobs to n ma-
chines in a way that minimizes the total cost of doing the jobs. Suppose that the cost of

5



finishing job i on machine j is cij . In the simplest case, cij ’s are assumed to be indepen-
dent random variables with the uniform distribution on [0, 1]. The minimal cost is given
by

An = min
π

∑
ciπ(i)

where the minimum is taken over all permutations π of [n]. Using the replica method,
[67] obtained

lim
n→∞

An =
π2

6
(1.4)

This result is rigorously proved in [2]. The key insight is that matching on the bi-
partite graph is asymptotically equivalent in some sense to matching on a randomly
weighted infinite tree. The author then constructed the optimal matching on this equiv-
alent structure and obtained (1.4) along with many other results, giving a much more
detailed description of the minimal matching.

Example 1.5. (SK model) Sherrington-Kirkpatrick (SK) model is considered as the holy
grail of the physics of disordered systems. This model considers the following probability
distribution on {−1, 1}n

P (σ) ∝ e−βE(σ)

where β > 0, σ = (σi) ∈ {−1, 1}n and

E(σ) =
1√
n

∑
i<j

Jijσiσj (1.5)

and Jij are random parameters drawn independently from the law N (0, 1).
In contrast with the previous models, the SK model has a much more complex behav-

ior. When β is above a certain threshold, the measure PH asymptotically behaves like
a mixture of an infinite number of pure states, each corresponds to a probability mea-
sure in which the coordinates are asymptotically uncorrelated. The pure states can be
organized into a tree-like structure that has deep connections with various mathematical
objects such as the Poisson-Dirichlet distribution, the Ruelle probability cascade and the
Bolthausen-Sznitman coalescent. We refer curious readers to Parisi’s Nobel Lecture [83]
on this topic.

Despite coming from different fields, these examples can be put into the framework
of statistical physics, whose basic definitions and questions are presented in the next
section.

1.2 Statistical physics and disordered systems

Let (X , µ) be a measure space on which we define the following probability measure

PH(dx) ∝ eH(x)µ(dx). (1.6)

6



where H is a function from X to R such that
∫
µ(dx)eH(x) is finite. H is called the

Hamiltonian of the system defined by the Gibbs measure PH over the configuration
space X equipped with measure µ. The free energy of H is defined as

FH = log

∫
µ(dx)eH(x). (1.7)

This definition of Hamiltonian and free energy follows the mathematical convention and
does not match the usual physical meanings due to some differences in sign and scale.
However, this does not affect the mathematical meaning of our discussion.

If H1, H2 are Hamiltonians on measure spaces (X1, µ1) and (X2, µ2), then the Hamil-
tonianH1(x1)+H2(x2) on the measure space (X1×X2, µ1×µ2) has free energy FH1+FH2 .
This simple result will be useful for computing free energy of large systems consisting of
many independent components.

Note that for any constant c, FH+c = FH + c and PH+c = PH . While H uniquely
determines PH , the reverse is not true: there are many choices of Hamiltonian leading
to the same probability measure.

If H(x) is generated by a probability measure over functions, then it describes a
disordered system. By this definition, the system defined by a deterministic H is
technically a disordered system. We will use ⟨·⟩ for the expectation with respect to the
Gibbs measure and E[·] for the expectation with respect to the randomness of H. The
definition of H can be parametric, i.e. H(x) = H(x,Θ) for some random parameters Θ
or non-parametric, for example when H(x) is a Gaussian random field. We use the word
disorders to indicate the randomness of H. If we fix a randomly generated Hamiltonian
H, then X1, X2, . . . i.i.d. as PH are called replicas of the system.

We will be interested in the behavior of PH in the thermodynamic limit, or infi-
nite size limit, where the size n of the configuration space X goes to infinity. In most
cases X = Sn for some set S, however we will not write explicitly the dependence of
the model on n. Although we mainly focus on large systems, fixed-size systems are also
important for us as they are the building blocks of many large systems.

For a disordered system with Hamiltonian H, we are interested in the following
problems.

· To compute the leading term of FH in the infinite size limit. The free energy is
typically self averaged, meaning FH ≃ E[FH ], so the leading term is given by
E[FH ]. For some problems, it is also important to compute the the corrections of
the free energy beyond the leading term, which is not treated in this thesis.

· To describe the Gibbs measure PH , i.e. to find a tractable system P̄ that behaves
like PH . The system P̄ is called the asymptotic equivalent of PH . Asymptotic
equivalence is a broad concept that is difficult to capture in one definition. We
only give a rough description here. Two disordered systems P, P̄ are asymptotically
equivalent if

E
∫
m(x)P (dx) ≃ E

∫
m(x)P̄ (dx)
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for allm(x) in a class of functions wide enough to include many functions of interest.

The definition of asymptotic equivalence can be extended for Hamiltonians. Two Hamil-
tonians H and H̄ are asymptotically equivalent, or H ↔ H̄ in notation, if PH ↔ P H̄

and FH ≃ F H̄ . Since two different Hamiltonians can give rise to the same probability
measure, the second requirement is necessary.

While every probability measure can be written in the form of Gibbs measure, not
all of these writings are meaningful. We give here some examples of Gibbs measures.

Example 1.6. Let X = {−1, 1} with counting measure and H(x) = λx for some λ ∈ R.
Then FH = log(2 coshλ)

Example 1.7. Let X = N with counting measure and H(n) = −βn for some β > 0,
then FH = − log(1 − e−β) and PH corresponds to the geometric random variable with
parameter eβ .

Example 1.8. Let X = Rn with µ(dx) = (2π)−n/2dx1 . . . dxn and

H(x) = −1

2
x⊤Ax

where A is a symmetric positive definite matrix. Then

FH = −1

2
log detA

Example 1.9. Let X = Cn with

µ(dz) =

n∏
i=1

dRe(zi)d Im(zi)

π

and

H(x) = −x†Ax

where A is a positive Hermitian matrix. Then

FH = − log detA

The examples in Section 1.1 can be put into the framework of disordered systems.

· For the case of random matrices, if a large random real symmetric matrix A has
bounded norm, then the resolvent Q(z) = (A− zI)−1 is positive definite when z is
less than a certain number. We can define the following disordered system

P (dx) ∝ e−
1
2
x⊤(A−zI)xdx, x ∈ Rn,

in which A plays the role of disorders. Note that this is simply the Gaussian measure
N (0, Q(z)). It turns out that in high dimensional limit, P behaves like N (0, Q̄(z))
for some deterministic Q̄(z) that coincides with the deterministic equivalent of
Q(z). The deterministic equivalent of Q(z) when z ∈ C+ can be obtained by
analytic continuation.
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· In the case of random optimization over either continuous or discrete spaces, to
study the problem of maximizing a random function E(x) over some configuration
space X , we consider the disordered system with Hamiltonian H(x) = βE(x). As
β → ∞, PH will concentrate at the global maxima of H, and the maximum is
given by limβ→∞ FH/β.

· For Bayesian inference problems where the signal x0 is generated from a known
distribution PX , all the information about the signal that we can extract from the
observation Y is contained in the posterior distribution P (x|Y ). This posterior dis-
tribution can be seen as a disordered system with random parameters Y . Studying
this disordered systems brings insights into the inference problem.

1.3 Replica method

The replica method is based on the following identity

logZ = ∂r=0Z
r

This simple trick can be used to get rid of the logarithms in some difficult calculations,
at the expense of introducing a new variable r. The variable r is then treated as if it
were an integer. This makes the calculation easier but also makes it non-rigorous. In
some cases, this heuristic can be viewed as first obtaining a formula for r in N (or a
subset of N) and then analytically continuing the result to a real or complex domain.
However, this interpretation does not fit all replica computations. For example, in the
replica computation for the SK model, G. Parisi worked directly with r → 0 and did
not derive any result for any r ∈ N+. On this, M. Talagrand also had a similar remark,
saying that it is difficult to see Parisi’s calculation as an extrapolation of the case r ∈ N+.
In verbatim, in page 2 of [100] he wrote “. . . it seems very difficult to justify this value
as an extrapolation of the case a ∈ N∗”.

Let us consider a quick application of the replica trick. Suppose Z ∼ N (0, 1) and we
want to calculate E

[
logZ2

]
. We have

E
[
Z2r
]
=

(2r)!

2rr!

for r ∈ N, so we guess

E
[
Z2r
]
=

Γ(1 + 2r)

2rΓ(1 + r)

for r ∈ R+. By the replica trick, we have

E
[
logZ2

]
= ∂r=0E

[
Z2r
]
= ∂r=0

Γ(1 + 2r)

2rΓ(1 + r)
= −γ − log 2

where γ is the Euler constant. The last equality follows from Γ(1) = 1,Γ′(1) = −γ.
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The replica method is often used to compute free energies of large disordered systems.
The computation becomes more difficult than in the example above since it involves an
infinite-dimensional limit. For a disordered system with Hamiltonian H, let us recall
that the free energy is given by FH = logZ, where Z =

∫
eH(x)µ(dx). We assume that

FH is self-averaged, so its leading term is given by E[FH ]. By the replica trick we have

E[FH ] = E[logZ] = ∂r=0 logE[Zr]. (1.8)

Next, treating r as if it were an integer, we write

Zr =

∫
eH(x1)+···+H(xr)µ(dx1) . . . µ(dxr). (1.9)

From (1.8) and (1.9), by exchanging the integral with the expectation, we have

E[FH ] = ∂r=0 log

∫
EeH(x1)+···+H(xr)µ(dx1) . . . µ(dxr), (1.10)

The remaining task is to handle the integral in the last expression. When this is finished,
we obtain the leading term of the free energy.

The replica method can also be used to compute the quantities of the form E[⟨q(x)⟩]
for some function q. To do this we need the following trick:

⟨f(x)⟩ = ∂λ=0 log

∫
eH(x)+λf(x)µ(dx).

By exchanging E[·] with the derivative, we have

E[⟨q(x)⟩] = ∂λ=0E log

∫
eH(x)+λq(x)µ(dx)

and now we can use the replica method to compute then E log(·) term, which has almost
the same expression as the free energy, except for the perturbation term λf(x).

This way of using replicas allows us to compute various quantities related to the
system. From these quantities, with some keen observations we may be able reach the
ultimate insight that the system behaves like a simpler one, called the asymptotic equiv-
alent of the system. We will show in Chapter 4 how to directly find the asymptotic
equivalent with replicas. From this asymptotic equivalent, many important quantities
related to the system can be computed easily.

1.4 Structure of the thesis

Chapter 2 is based on the preprint [76] submitted to IEEE Transactions on Informa-
tion Theory. We will use the replica trick to compute higher derivatives of the mutual
information in Gaussian channels. The obtained result is remarkably similar to the
cumulant-moment formula, which can also be derived by the replica trick.
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Chapter 3, based on the preprint [77], will show that random exchangeable structures
such as the Polya urn model and the Chinese restaurant process can be constructed
from sets with real cardinalities, or formal sets. The usual calculations, which involves
induction, integrals and Jacobi determinants, now can be done with only combinatorial
arguments. The chapter will only be used later in Chapter 8. We decide to put this
chapter near the beginning because it is entirely elementary and we hope it will familiarize
readers with the way of thinking when doing replica computations.

Chapter 4 contains the main theoretical contribution of the thesis. We will start by
presenting Gibbs’ principle, a fundamental result in statistical physics. From this, we will
derive Result 4.2, which concerns systems with rather simple Hamiltonians. After this,
the replicas come into the scene as we define the replicated Hamiltonian and replica den-
sity. Result 4.2 is then formally applied to these formal objects to derive the asymptotic
equivalent of disordered systems.

The remaining chapters demonstrate the applications of the theoretical framework
developed in Chapter 4. Chapter 5 will apply the replica method to compute asymptotic
equivalents of some random matrices. We provide a detailed replica computation for
the GOE model, whereas the other replica computations in the thesis are more concise.
Chapter 6 will be about random convex optimization problems. Using replicas, we will
derive the CGMT and a similar result for isotropically orthonormal matrices. We will
also show that the CGMT holds greater power than previously believed through several
examples from classic to recent literature. Chapter 7 will study Bayes-optimal inference
problems with the replica method, with a focus on the asymptotic equivalence aspect
rather than the information theoretic aspect. A section of this chapter presents our
paper [78]. Based on Chapter 3, Chapter 8 will show how the tree-like structure that
organizes the pure states of the SK model can be derived directly from Parisi ansatz.

1.5 Contributions

We highlight here the contributions and novelties of the thesis in each chapter

· Chapter 2. A generalization of the I-MMSE formula to higher derivatives and a
new derivation the classic cumulant-moment formula using replicas. We discover a
form τ similar in properties to the joint cumulant κ.

· Chapter 3. The derivations from scratch, based on the formal set constructions,
of some important properties of the the Polya urn model, Dirichlet distribution,
Chinese restaurant process, Poisson-Dirichlet distribution and exchangeable nested
partitions related to Bolthausen-Sznitman coalescent. This perspective will serve
a greater purpose in translating Parisi ansatz into meaningful probability objects,
however, it is also interesting in its own right, as it shows how the usual calcula-
tions, which involves induction, integrals and Jacobian determinants, can be done
by enumerative combinatorics in a much simpler way. A portion of this chapter
(without the nested partitions) can be found in our preprint [77].
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· Chapter 4. The use of replicas to compute asymptotic equivalents of disordered
systems, which is the main theoretical contribution of the thesis. This is different
from the usual replica computations with compute one quantity related to the sys-
tem at a time. Result 4.2 is used for all replica computations in this manuscript. It
replaces the conventional way of using Dirac delta functions in replica computations
found in the literature.

· Chapter 5. A connection between replicas and deterministic equivalents in random
matrix theory. Replica method has long been used to compute Stieltjes transforms
and spectra of large random matrices. The deterministic equivalent, a more flexible
tool compared to the Stieltjes transform, appeared quite recently. Its connection
with the replica method was made in [19], although the formulation presented
there is more complicated. The chapter also contains some technical contributions,
specifically the ‘right’ choice of Hamiltonian in some examples (Section 5.3.2 and
5.3.3) that allows computations to be done elegantly.

· Chapter 6. A formal derivation of the CGMT from the replicas. This establishes
the connection between two seemingly unrelated techniques. A further contribution
is the observation, without proof, that the CGMT holds in a much more general
context than explicitly stated, enabling a more straightforward application than
typically seen in the literature. Especially, we derive Result 6.2 similar to the
CGMT, concerning isotropically random orthogonal matrices (IRO) matrices. This
result will be important for analyzing numerous random optimization problems
that involve IRO matrices, for example the signal recovering problems where the
measurement matrix is IRO instead of Gaussian.

· Chapter 7. The analysis of Bayes-optimal inference problem from the standpoint of
asymptotic equivalence instead of the conventional information-theoretic perspec-
tive. The chapter also presents our paper [78] published in AISTATS 2023.

· Chapter 8. A direct probabilistic translation of Parisi ansatz, which results in
the picture of pure states organized by a tree-like structure. In the literature,
this structure is known to be deeply connected to the Parisi ansatz in some way,
although no direct connection has been established.
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Chapter 2

An application of the replica trick:
derivatives of mutual information
in Gaussian channels

The I-MMSE formula connects two important quantities in information theory and es-
timation theory. It states that in a Gaussian channel, the derivative of the mutual
information is one-half of the minimum mean-squared error. Higher derivatives of the
mutual information is related to estimation errors of higher moments, however a gen-
eral formula is unknown. In this paper, we derive a general formula for the derivatives
of mutual information between inputs and outputs of multiple Gaussian channels with
respect to the signal-to-noise ratios. The obtained result is remarkably similar to the
classic cumulant-moment relation.

This chapter is based on the preprint [76].

2.1 Introduction

Consider the following Gaussian channel

Y =
√
λX + Z (2.1)

in which X,Y are respectively the input and the output, Z is a standard Gaussian noise
independent of X and λ is a non-negative parameter called the signal-to-noise ratio
(SNR). Let IX(λ) = I(X;Y ) be the mutual information between the input and output
of the channel. This quantity is linked to the minimum mean-squared error (MMSE) for
estimating X from Y by the fundamental I-MMSE formula [46]

I ′X(λ) =
1

2
MMSE(λ) (2.2)

where

MMSE(λ) = E[(X − E[X|Y ])2].
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Higher derivatives of IX(λ) are also given in [47]. The key idea is the incremental
channel approach, which reduces the calculation of I(k)X (λ) for any positive λ to that of
I
(k)
X (0). Then the derivatives I(k)X (0) are obtained by Taylor expansion. This method

can compute the k-th derivatives for any given k. However, a general formula for all k is
currently unknown.

Computing the derivatives I(k)X (0) is a special case of the problem where we need to
compute H(Zλ) −H(Z), called the neg-entropy of Zλ, up to a certain error, where Zλ
converges in law to the standard normal random variable Z when λ→ 0. Some examples
of Zλ are

√
λX + Z,

√
λX +

√
1− λZ,

(X1 + · · ·+Xn)/
√
n.

where X is a random variable with zero mean and unit variance, X1, . . . , Xn are i.i.d as
X and λ = n−1/2 in the last example. Results of this type are used to approximate the
neg-entropy in Independent Component Analysis [22] [52] and to analyze the leakage of
a protected message in [91].

In this work, we consider multiple scalar Gaussian channels, each has its own SNR.
We derive a general formula for the derivatives of the input-output mutual information
with respect to the SNRs. We obtain a formula that is remarkably similar to the classic
cumulant-moment relation. Our work relies on two key components: the compression of
Gaussian channels and the non-rigorous replica method originated from the physics of
disordered systems [69].

In Section 2.2 we will state the main result and some of its consequences. After
presenting the main tools in Section 2.3, in Section 2.4 we will derive the results. We
also give a new derivation of the classic cumulant-moment formula in Section 2.5.

Notation. We will reserve the bold letters for vectors. A vector (x1, . . . , xn) will be
denoted as x. Other notations include

· [n] = {1, . . . , n}

· k ◦ x = (x, . . . , x) where x is repeated k times

· x⊙ y = (x1y1, . . . , xnyn)

· x↓k = x(x− 1) . . . (x− k + 1).

· 0 denotes both the number zero and the vector zero in any dimension.

·
√
λ = (

√
λ1, . . . ,

√
λn), where λ = (λ1, . . . , λn)
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2.2 Statement of results

Let X be a random variable in Rn with finite joint moments. The function IX from Rn+
to R is defined as

IX(λ) = I(X;
√
λ⊙X +Z) (2.3)

where Z is independent of X and follows the standard normal distribution in Rn. The
square root is applied element-wise. We will give a general formula for the derivatives of
IX .

Our result will be stated in terms of multisets and partitions. A multiset is a collection
of elements in which repetitions are allowed. A partition of a multiset is a way of
dividing it into parts, or blocks. A partition π consisting of blocks B1, . . . , Bk is written
as π = (B1, . . . , Bk). A partition is diverse if each of its blocks contains distinct elements.
For example, the partition ({1, 2} , {1, 2}) of the multiset {1, 1, 2, 2} is diverse while the
partition ({1, 1} , {2, 2}) is not.

For any random variables X1, . . . , Xn with n ≥ 1, define

τ(X1, . . . , Xn) =
∑
π

(−1)k−1(k − 2)!

2s(π)
E[XB1 ] . . .E[XBk

] (2.4)

where XB =
∏
i∈BXi. The sum is taken over all diverse partitions π = (B1, . . . , Bk) of

the multiset {1, 1, . . . , n, n} and s(π) is the number of pairs of identical blocks in π. For
example, if π = ({1, 2} , {1, 2}) then s(π) = 1.

The equation (2.4) resembles the classic cumulant-moment relation [97], which states
that

κ(X1, . . . , Xn) =
∑
π

(−1)k−1(k − 1)!E[XB1 ] . . .E[XBk
] (2.5)

in which the sum is over all partitions π = (B1, . . . , Bk) of [n] and κ(X1, . . . , Xn) is the
joint cumulant of the random variables X1, . . . , Xn and is defined as

κ(X1, . . . , Xn) = ∂λ1 . . . ∂λnψX(0)

where

ψX(λ) = logEe⟨λ,X⟩. (2.6)

The joint cumulant is multilinear and κ((Xi)i∈[n]) = 0 if [n] can be divided into two
non-empty sets I and J such that (Xi)i∈I and (Xj)j∈J are independent.

Like κ, the form τ does not depend on the order of its arguments. Beside this, the
properties of τ resemble that of κ, as stated in the following result:

Proposition 2.1.
a) τ is multiquadratic.
b) τ((Xi)i∈[n]) = 0 if [n] can be divided into two disjoint, non-empty sets I and J

such that (Xi)i∈I and (Xj)j∈J are independent.
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Here, a function f from a vector space V to R is quadratic if

f(λx) = λ2f(x),

2f(x) + 2f(y) = f(x− y) + f(x+ y),

for all λ ∈ R and x, y ∈ V . A multivariate function is said to be multiquadratic if it is
quadratic in each of its argument.

As the final piece of definition, we define τ( · |Y ), where Y is a random variable or an
event, by replacing the expectations E[ · ] in the definition of τ by E[ · |Y ]. We are now
ready to state the main result:

Theorem 2.1. For the function IX(λ) defined in (2.3):
a) The first order derivatives of the mutual information are given by

∂λiIX(λ) = E[(Xi − E[Xi|Y ])2]. (2.7)

b) For higher derivatives,

∂k1λ1 , . . . , ∂
kn
λn
IX(λ) = E[τ(k1 ◦X1, . . . , kn ◦Xn|Y )] (2.8)

= E[τ̄(k1 ◦ X̄1, . . . , kn ◦ X̄n|Y )] (2.9)

where X̄i = Xi − E[Xi|Y ] and the form τ̄ is defined by the same formula (2.4), except
that the sum is over all diverse partitions with blocks of size larger than one.

There is a convenient way to list the diverse partitions of {1, 1, . . . , n, n} in the ex-
pansion of τ or τ̄ , by drawing graphs. These partitions are in bijection with the graphs
that has no loop (edge that connects a vertex to itself), with n edges labeled by [n].
The bijection is as follows. Given a partition, we can construct a graph whose vertices
represent the blocks of the partition, by connecting two blocks by the edge i ∈ [n] if the
element i belongs to these blocks. For example, we obtain from the partition ({1, 2},
{3, 4}, {1, 2, 3, 4}) the following graph:

1

2

3

4

Conversely, given a graph, we can obtain the corresponding partition by looking at the
edges that connect to each vertex, thereby complete the bijection.
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We obtain the following expressions

τ̄(X1, X2) =−
1

2
E[X1X2]

2 (2.10)

τ̄(X1, X2, X3) =−
1

2
E[X1X2X3]

2 + E[X1X2]E[X2X3]E[X3X1] (2.11)

τ̄(X1, X2, X3, X4) =− 2(E[X1X2]E[X2X3]E[X3X4]E[X4X1] + two other terms)

− 1

2
(E[X1X2]

2E[X3X4]
2 + two other terms)

+ E[X1X2]E[X1X3X4]E[X2X3X4] + five other terms
+ E[X1X2X3X4]E[X1X2]E[X3X4] + two other terms

− 1

2
E[X1X2X3X4]

2 (2.12)

The lines in the last equation correspond to the following graphs:

Moreover, the terms in each of those lines correspond to different ways of labeling the
edges of the corresponding graph.

From equations (2.10-2.12), we recover the following results of [47] for the scalar
Gaussian channel (2.1):

I
(2)
X (λ) =

1

2
E
[
−M2

2

]
I
(3)
X (λ) =

1

2
E
[
2M3

2 −M2
3

]
I
(4)
X (λ) =

1

2
E
[
−15M4

2 + 12M2
3M2 + 6M4M

2
2 −M2

4

]
where

Mk = E[(X − E[X|Y ])k|Y ].

Moreover, from equations (2.10-2.12), we can compute any derivative up to the fourth
order of the function IX defined in (2.3). For example, when X has more than one
coordinate, we have

∂2λ1∂λ2IX(0) = τ(X1, X1, X2) = −
1

2
E[X2

1X2]
2 + E[X2

1 ]E[X1X2]
2

2.3 Tools

We present here the tools for deriving the results: the compression of Gaussian channels
and the replica method. The compression theorem implies that we can compute any
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derivative of IX if we know how to compute ∂λ1 . . . ∂λnIX(0). The replica method, on
the other hand, gives a combinatorial formula for ∂λ1 . . . ∂λnIX(0).

2.3.1 Compression of Gaussian channels

Proposition 2.2. A set of Gaussian channels with the same signal X and independent
noises is equivalent to a single Gaussian channel with signal X and SNR equal to the
sum of individual SNRs.

We say that two inference problems are the equivalent if they perform exactly the
same. More precisely, any performance metric (mutual information, MMSE) gives the
same result on these problems.

Proof. Suppose the channels are

Yi =
√
λiX + Zi, i = 1, . . . , n

We can check that S =
∑

i

√
λiYi is a sufficient statistics for estimating X from the

outputs. The proposition follows from the fact that S/
√
λ, where λ =

∑
i λi, can be

written as
√
λX + ξ, where ξ is independent of X and follows the standard normal

distribution.

2.3.2 Mutual information and replicas

Let X, Y be random variables with values in X and Y respectively. Suppose that X and
Y are equipped with measure µ and ν, called the underlying measure. Let pX , pY , pX,Y be
the density functions of the random variables X, Y , (X,Y ) with respect the underlying
measures µ, ν, µ⊗ν. Denote p(y|x) = pY |X(y|x) for simplicity. By definition, the mutual
information between X and Y is

I(X,Y ) = E log p(Y |X)− E log pY (Y ) (2.13)

It is important to note that the mutual information does not depend on the choice of
underlying measures.

Next, we have

E log pY (Y ) =

∫
ν(dy)pY (y) log pY (y)

= ∂r=1

∫
ν(dy) pY (y)

r

The integral in the last expression is difficult to evaluate when r is a real number. How-
ever, for r ∈ N,

pY (y)
r = E[p(y|X)]r = E[p(y|X1) . . . p(y|Xr)] (2.14)

where Xa for a ∈ [r] are independent and identically distributed as X. We call these
random variables replicas of X and call the indexes a ∈ [r] replica indexes. We will
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perform the calculations for r ∈ N and assume the same result applies for r ∈ R+,
before taking the derivative. In summary, we have the following replica representation
of I(X;Y )

E log p(Y |X)− ∂r=1E
∫
ν(dy)p(y|X1) . . . p(y|Xr) (2.15)

2.4 Proofs

Instead of using equation (2.4) as definition for τ , let us define

τ(X1, . . . , Xn) =

{
I ′X1

(λ1)− 1
2E[X

2
1 ], n = 1

∂λ1 . . . ∂λnIX(0), n ≥ 2
(2.16)

and recover the formula (2.4), along with other properties of τ .

Lemma 2.1. If X1, . . . , Xn are random variables and k1, . . . , kn are non-negative integers
whose sum is greater than 1, then

∂k1λ1 . . . ∂
kn
λn
IX(λ)|λ=0 = τ (k1 ◦X1, . . . , kn ◦Xn)

Proof. Without loss of generality, suppose that k1 ≥ 1 for all i. Let m =
∑

i ki. For
any λ ∈ Rm+ , let us divide its entries into consecutive blocks of sizes k1, . . . , kn and let
s1, . . . , sn be the sum of elements in each of these blocks. By the compression of Gaussian
channels, we have

IX1,...,Xn(s1, . . . , sn) = Ik1◦X1,...,kn◦Xn(λ1, . . . , λm),

The result is obtained by applying ∂λ1 . . . ∂λm on both sides of this equation at λ = 0.

Next, using the replica method, we obtain the following result

Lemma 2.2. For any random variable X1, . . . , Xn,

τ(X1, . . . , Xn) =
∑
π

(−1)k−1(k − 2)!

2s(π)
E[XB1 ] . . .E[XBk

] (2.17)

where XB =
∏
i∈BXi and the sum is over all diverse partitions π = (B1, . . . , Bk) of the

multiset {1, 1, . . . , n, n} and s(π) is the number of pairs of identical blocks in π. Moreover,
let τ̄ be defined in the same way as τ , except that the sum is over diverse partitions with
all blocks of size greater than one, then

τ(X1, . . . , Xn) = τ̄(X̄1, . . . , X̄n) (2.18)

where X̄i = Xi − E[Xi]
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Remark 2.1. Apply the lemma for n = 1 we have

τ(X) = −1

2
E[X]2

which implies I ′X(0) = Var(X)

Proof. For the Gaussian channels given by (2.3), we have X = Y = Rn. By choosing
the standard Gaussian measure as the underlying measure of Y and Lebesgue measure
as the underlying measure of X , we have

p(y|x) = exp
( n∑
i=1

√
λiyixi −

1

2
λix

2
i

)
From this and (2.15), we obtain the following replica representation of IX(λ)

1

2

n∑
i=1

λiE[X2
i ]− ∂r=1E exp

( n∑
i=1

λi
∑

1≤a<b≤r
Xa
i X

b
i

)
(2.19)

where X1, . . . ,Xr are i.i.d. as X. From this, we have as n ≥ 2

τ(X1, . . . , Xn) = −∂r=1E
[ n∏
i=1

∑
1≤a<b≤r

Xa
i X

b
i

]
.

By expanding the product and exchanging the sum with the expectation, we have

τ(X1, . . . , Xn) = −∂r=1

∑
a1<b1,...,an<bn

E[Xa1
1 Xb1

1 . . . Xan
n Xbn

n ]

Since two random variables with different replica indexes are independent,

E[Xa1
1 Xb1

1 . . . Xan
n Xbn

n ] = E[XB1 ] . . .E[XBk
],

where π = (B1, . . . , Bk) is the partition of the multiset {1, 1, . . . , n, n} such that i and j
are in the same block if and only if the corresponding replica indexes are equal. Since
ai < bi for all i ∈ [n], the partition π is diverse. On the other hand, each diverse partition
π with k blocks corresponds to 2−s(π)r↓k ways of choosing the replica indexes, where s(π)
is the number of pairs of identical blocks in π and r↓k is the number of ways of assigning
different replica indexes in [r] to k different blocks. The factor 2−s(π) accounts for the
fact that some of the blocks of π are identical. As a result,

τ(X1, . . . , Xn) = −∂r=1

∑
π

r↓k

2s(π)
E[XB1 ] . . .E[XBk

]

where the sum is over all diverse partitions π = (B1, . . . , Bk) of the multiset {1, 1, . . . , n, n}.
Consider Pr,k as a polynomial in real variable r, we have

∂r=1r
↓k = (−1)k(k − 2)!
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from which we obtain the combinatorial expansion of τ .
The equation (2.18) follows from the fact that mutual information is invariant by

invertible transformations, so

IX(λ) = IX−c(λ)

for any c ∈ Rn. The choice c = E[X] eliminates the partitions that contain blocks of
size one in the expansion of τ .

Proof of Theorem 2.1. We will prove the equation (2.8) of the theorem. The other
two equations can be obtained in the same way. Consider the Gaussian channels given
in (2.3). Suppose the following data is given in addition to Y ,

Y ′ =
√
δ ⊙X +Z ′

The noise Z ′ is standard Gaussian, independent of all other random variables. By the
compression of Gaussian channels, we have

I(X;Y ,Y ′) = IX(λ+ δ) (2.20)

Thus,

IX(λ+ δ)− IX(λ) = I(X;Y ,Y ′)− I(X;Y )

= I(X;Y ′|Y )

=

∫
PY (dy)I(X;Y ′|Y = y) (2.21)

Now taking the derivative ∂k1δ1 . . . ∂
kn
δn

at δ = 0 on both sides of this equation and exchange
the derivative with the integral, we obtain

∂k1λ1 . . . ∂
kn
λn
IX(λ) =

∫
PY (dy) ∂k1δ1 . . . ∂

kn
δn
I(X;Y ′|Y = y)|δ=0 (2.22)

Let Xy be the random variable X conditioned on the event Y = y. Since Z ′ is inde-
pendent of Y , we have

I(X;Y ′|Y = y) = I(Xy;
√
δ ⊙Xy +Z ′)

From this and (2.22), we have

∂k1λ1 . . . ∂
kn
λn
IX(λ) =

∫
PY (dy) ∂k1δ1 . . . ∂

kn
δn
I(Xy;

√
δ ⊙Xy +Z ′)|δ=0 (2.23)

Since Z ′ is independent of X and Y , it is also independent of Xy. By Lemma 2.1, we
have

∂k1δ1 . . . ∂
kn
δn
I(Xy;

√
δ ⊙Xy +Z ′)|δ=0 =τ(k1 ◦Xy

1 , . . . , kn ◦X
y
n )

=τ(k1 ◦X1, . . . , kn ◦Xn|Y = y)
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From this and (2.23) we obtain the equation (2.8) in the theorem.

Proof of Proposition 2.1. a) The claim is obvious when n = 1. For n ≥ 2, consider
the following channels

Yi =
√
λiXi + Zi,

for i = 2, . . . , n, and

Y1 =
√

2λ1X1 + Z1

Y ′
1 =

√
2λ1X

′
1 + Z ′

1.

Let Y ±
1 = (Y1 ± Y ′

1)/
√
2, then we have

Y ±
1 =

√
λ1(X1 ±X ′

1) + Z±
1

where Z+
1 , Z

−
1 are independent standard Gaussian variables. Since mutual information

is invariant by invertible transformations, we have

IX1,X′
1,X2,...,Xn

(2λ1, 2λ1, λ2, . . . , λn) = IX1+X′
1,X1−X′

1,X2,...,Xn
(λ1, λ1, λ2, . . . , λn)

Taking the derivative ∂λ1 . . . ∂λn at λ = 0 on both sides of the previous equation, we
obtain

2τ(X1, ·) + 2τ(X ′
1, ·) = τ(X1 +X ′

1, ·) + τ(X1 −X ′
1, ·)

where · = (X2, . . . , Xn), from which we conclude that τ is multiquadratic.
b) If [n] can be divided into two non-empty sets I and J such that (Xi)i∈I and

(Xj)j∈J are independent, then

IX(λ) = I(Xi)i∈I
((λi)i∈I) + I(Xj)j∈J

((λj)j∈J)

as the noises are independent. By taking the derivative ∂λ1 . . . ∂λn at λ = 0 on both sides
of the previous equation, we obtain

τ(X1, . . . , Xn) = 0

2.5 The cumulant-moment formula

The replica method also offers a quick derivation of the classic cumulant-moment relation
given in (2.5). For the function ψX given in (2.6), using the replica trick, we have

ψX(λ) = ∂r=0

[
E exp

(∑
i

λiXi

)]r

22



Let X1, . . . ,Xr be i.i.d. as X. We have

ψX(λ) = ∂r=0E exp
(∑

i

λi
∑
a

Xa
i

)
Applying ∂λ1 . . . ∂λn at λ = 0 on both side of this, we obtain

κ(X1, . . . , Xn) = ∂r=0E
∏
i

∑
a

Xa
i

Expand the product and exchange the expectation with the sum, we have

κ(X1, . . . , Xn) = ∂r=0

∑
a1,...,an

E[Xa1
1 Xa2

2 . . . Xan
n ]

Since Xai
i and Xaj

j are independent if ai ̸= aj , we have

E[Xa1
1 . . . Xan

n ] = E[XB1 ] . . .E[XBk
]

where (B1, . . . , Bk) is the partition of [n] such that i and j are in the same block if
ai = aj . On the other hand, each partition with k blocks corresponds to r↓k ways of
choosing (a1, . . . , an). Therefore

κ(X1, . . . , Xn) = ∂r=0

∑
π

r↓k E[XB1 ] . . .E[XBk
]

where the sum runs over all partitions π = (B1, . . . , Bk) of [n]. The cumulant-moment
formula follows from ∂r=0r

↓k = (−1)k−1(k − 1)!.

2.6 Conclusion

We derived a general formula for the derivatives with respect to the SNRs of the mutual
information between inputs and outputs of multiple Gaussian channels. The result can be
expressed by a form τ that is remarkably similar to the joint cumulant κ. The similarity
between κ and τ is summarized in the following table:

κ τ

multilinear multiquadratic
κ(X1, . . . , Xn) = ∂λ1 . . . ∂λnψX(λ)|λ=0 τ(X1, . . . , Xn) = ∂λ1 . . . ∂λnIX(λ)|λ=0

sum over partitions of {1, . . . , n} sum over diverse partitions of {1, 1, . . . , , n, n}
do not depend on the order of arguments

vanish if the arguments can be divided into two independent parts
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Chapter 3

Exchangeability and formal sets

In this chapter, we show that exchangeable structures such as Polya urn model and
Chinese restaurant process can be constructed from sets with a real number of elements.
From this construction, the exchangeability of these structures becomes obvious and
the calculations on them become extremely simple. Moreover, the usual calculations on
these structures, which involve induction, integrals and Jacobian determinants, now can
be done by simple combinatorial calculations. In this way, this chapter is similar to the
previous one, as it provides non-rigorous yet convenient representations of complicated
mathematical objects in order to simplify calculations and derive interesting results.

This chapter will not be used until Chapter 8. However, we decide to put it
near the beginning as we hope it will familiarize readers with the replica method.

This chapter is an extended version of the preprint [77].

3.1 Introduction

The cardinality of any set is a natural number. We will break this rule by considering a
general kind of sets, called formal sets, which have a real number of elements. We will
not try to make sense of the formal sets, instead we will treat them like usual sets and
build from them meaningful structures such as Polya urn model and Chinese restaurant
process. From this viewpoint, we can see through some non-trivial properties of these
structures and the related objects. One of these properties is exchangeability, satisfied
when a random structure has its law unchanged when a finite number of its elements
are permuted. The exchangeability, which comes as a surprise from the definition of
these structures, becomes obvious in the formal constructions. Moreover, the formal
construction greatly simplify calculations. The usual calculations on these structures,
which involve induction, integrals and Jacobian determinants, now can be done by simple
combinatorial calculations.

The Polya urn model and the Chinese restaurant process that we will build from
the formal sets are important probabilistic structures. The Polya urn model is a classic
example of infinite exchangeable sequences. It is closely related to Dirichlet distribu-
tion [62] frequently used in Bayesian statistics. The Chinese restaurant process is an
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exchangeable random partition of N. It gives rise to Ewens sampling formula [28] and
Poisson-Dirichlet distribution, which appears in various mathematical problems such as
random walk [30], Brownian motion [88], fragmentation and coalescent process [13] [14]
and prime factorization of large integers [15] [37]. The Polya urn model and the Chinese
restaurant process are members of a larger family of exchangeable structures widely used
in Bayesian topic model, as they provide a flexible and elegant framework for modeling
data without assuming a fixed number of clusters. Some notable members of this fam-
ily are Latent Dirichlet model [17] [90], Indian buffet process [44], hierarchical Dirichlet
process [102] and nested Chinese restaurant process [16] [43].

3.2 Exchangeability

A finite sequence (Y1, . . . , Yn) of random variables is exchangeable if

(Y1, . . . , Yn)
d
= (Yσ(1), . . . , Yσ(n)) (3.1)

for each permutation σ of [n]. An infinite sequence (Yi)
∞
i=1 is exchangeable if

(Y1, Y2, . . . )
d
= (Yσ(1), Yσ(2), . . . ) (3.2)

for each finite permutation of N+, i.e. permutations such that {i : σ(i) ̸= i} is finite.
Exchangeability arises naturally from sampling. Consider a set with m elements, each

with a label that is not necessarily unique. Then if we randomly draw n < m elements
from the set without replacement, the labels of these elements form an exchangeable
sequence. More generally, consider a random vector (X1, . . . , Xm). If we select n distinct
indices i1, . . . , in randomly from the set [m], the resulting sequence (Xi1 , . . . , Xin) is
exchangeable.

We can create an exchangeable sequence by picking a random probability measure and
draw an i.i.d. sequence from it. De Finetti’s theorem states that all infinite exchangeable
sequence can be constructed in this way. In other words,

Theorem 3.1. Every infinite exchangeable sequence is a mixture of i.i.d. sequences.

Consider an exchangeable sequence (Yi)
∞
i=1 where each Yi takes values in a discrete

set Y. By the law of large number and by de Finetti’s theorem, each element of Y has a
limiting proportion in (Yi)

∞
i=1. Moreover, these proportions vary for different realizations

of (Yi)∞i=1.

3.3 Polya urn model

3.3.1 The model

In this model, at the beginning we have a set containing elements labeled by 1, . . . , k.
Let αi ∈ N+ be the number of elements with label i. At each step, we choose uniformly
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randomly a element from the set, record its label, and put it back along with another
element of the same label. Let (Yi)

∞
i=1 be the sequence of the recorded labels. This

sequence is a stochastic process that satisfies

P (Y1 = i) =
αi

α1 + · · ·+ αk
(3.3)

and

P (Yn+1 = i|Y1, . . . , Yn) =
αi + ni

α1 + · · ·+ αk + n
, (3.4)

where ni is the number of occurrence of i in the sequence Y1, . . . , Yn. The equations (3.3)
and (3.4) uniquely determines a stochastic process for α1, . . . , αk that are not restricted
to N+, but rather extend to R+. We call such process Polya urn process with parameters
(α1, . . . , αk) ∈ Rk+.

The Polya urn process has the remarkable property of being exchangeable, which is
not at all trivial from the definition, since to prove it one has no other way than doing
explicit calculations. In the next section, this property can be explained elegantly with
no calculation.

3.3.2 Formal set construction

Imagine a set containing a total of −α1−· · ·−αk elements divided into k groups labeled
from 1 to k, each with sizes −α1, . . . ,−αk respectively, where α1, . . . , αk > 0. Forgetting
the fact that the cardinality of a set must be a non-negative integer, let us see what
happens when we sample without replacement from this set. The probability that the
first element has label i is

−αi
−α1 − · · · − αk

=
αi

α1 + · · ·+ αk
,

Suppose that after n steps, we have taken out ni elements with label i. In the set there
remains −αi−ni elements with label i. The probability of the (n+1)-th element having
label i is

−αi − ni
−α1 − n1 − · · · − αk − nk

=
αi + ni

α1 + · · ·+ αk + n
,

Although the underlying set is ill-defined, the probabilities arising from the sampling
process are well-defined and precisely match those of the Polya urn model. With formal
sets, the Polya urn model is described more concisely and its exchangeability becomes
trivial.

3.3.3 Joint probability

Let (y1, . . . , yn) be the sequence of labels in the first n samplings. Suppose that the label
i appears ni times in this sequence. From the formal set construction we have
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P (Y1 = y1, . . . , Yn = yn) =
(−α1)

↓n1 . . . (−αk)↓nk

(−α1 − · · · − αk)↓n

Here the denominator counts the sequences of n different elements from the formal set
and (−αi)↓ni counts the sequences of different ni elements with label i. From the formula
(−x)↓n = (−1)nx↑n, we obtain

P (Y1 = y1, . . . , Yn = yn) =
α↑n1
1 . . . α↑nk

k

(α1 + · · ·+ αk)↑n
(3.5)

Note that with the usual definition of Polya urn model, we prove (3.5) by induction
and then conclude that the sequence (Yi)

n
i=1 is exchangeable.

3.3.4 Dirichlet distribution

Consider a Polya urn sequence (Yi)
n
i=1 with parameters (α1, . . . , αk). The probability of

having ni labels i in the sequence (Y1, . . . , Yn) is

p(n1, . . . , nk) =
n!

n1! . . . nk!
.

α↑n1
1 . . . α↑nk

k

(α1 + · · ·+ αk)↑n

Let xi = ni/n. Using the fact that

Γ(m+ r)

Γ(m+ s)
≃ mr−s, m→∞, (3.6)

we obtain the density of (x1, . . . , xk) as n tends to infinity:

f(x1, . . . , xk) =
Γ(α1 + · · ·+ αk)

Γ(α1) . . .Γ(αk)
xα1−1
1 . . . xαk−1

k 1∆k
(x1, . . . , xk)

where

∆k = {x1, . . . , xk ≥ 0 : x1 + · · ·+ xk = 1} .

This is the Dirichlet distribution Dir(α1, . . . , αn). In summary, the proportions of 1, . . . , k
in an infinite Polya urn sequence with parameters (α1, . . . , αk) follow the Dirichlet dis-
tribution with the same parameters.

From the formal set construction of Polya urn model, the following properties of the
Dirichlet distribution can be derived with very little effort.

Theorem 3.2. Consider a random vector (X1, . . . , Xn) following a Dirichlet distribution
with parameters (α1, . . . , αn). Then

1. (Aggregation) If [n] is partitioned into subsets B1, . . . , Bk, then( ∑
i∈B1

Xi, . . . ,
∑
i∈Bk

Xi

)
∼ Dir

( ∑
i∈B1

αi, . . . ,
∑
i∈Bk

αi

)
(3.7)
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2. (Neutrality) Let I be an ordered subset1 of [n], and X̃I = XI/
∑

i∈I Xi. Then X̃I

follows Dir(αI) and is independent of XIc .

Proof. (X1, . . . , Xn) can be viewed as the proportion of 1, . . . , n in a Polya urn sequence
Y = (Yi)

∞
i=1 with parameters (α1, . . . , αn). Consider the formal set construction of this

Polya urn model.
The property 1 can be easily proved by combining all the elements labeled by Bj in

the formal set into a new group for each j = 1, . . . , k.
To prove 2, imagine assigning a special label 0 to each element in the formal set that

already has a label from I. This new label temporarily conceals the original one. Next,
we sample without replacement from the formal set as usual. Finally, we remove the
labels 0 to reveal the original labels. The sequence of revealed labels forms a Polya urn
process with parameters αI . This sequence is independent of the observations before the
revealing, therefore independent of XIc .

Corollary 3.1. Let (X1, . . . , Xn) be a Dirichlet random vector with parameters α1, . . . , αn >
0. Then

1. (Marginal law)

PX1,...,Xk
(x1, . . . , xk) ∝ xα1−1

1 . . . xαk−1
k (1− x1 − · · · − xk)αk+1+···+αn−1

In particular

Xi ∼ Beta
(
αi,
∑
j ̸=i

αj

)
(3.8)

2. (Gamma construction) Let Zi ∼ Γ(αi, 1) be independent. Then

(X1, . . . , Xn)
d
=
( Zi
Z1 + · · ·+ Zn

)n
i=1

(3.9)

3. (Stick-breaking construction) Consider (X∗
1 , . . . , X

∗
n) constructed as follows

X∗
1 =W1

X∗
2 =W2(1−W1)

. . .

X∗
n−1 =Wn−1(1−Wn−2) . . . (1−W1)

and X∗
n = 1−X∗

1 − · · · −X∗
n, where Wi are independent with

Wi ∼ Beta(αi, αi+1 + · · ·+ αn)

Then

(X1, . . . , Xn)
d
= (X∗

1 , . . . , X
∗
n)

1An ordered set is simply a set with elements arranged in some order. For I = (i1, . . . , ik), denote
xI = (xi1 , . . . , xik ) .
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Proof. The claim 1 follows from

(X1, . . . , Xk, Xk+1 + · · ·+Xn) ∼ Dir(α1, . . . , αk, αk+1 + · · ·+ αn).

To prove the claim 2, consider

(V1, . . . , Vn, T ) ∼ Dir(α1, . . . , αn, t)

It is easy to check that

(tV1, . . . , tVn)
d−→ (Z1, . . . , Zn), t→∞

On the other hand, from Theorem 3.2, we have( tVi
tV1 + · · ·+ tVn

)n
i=1

d
= (X1, . . . , Xn)

By taking t→∞, we obtain the claim 2. Claim 3 follows from the neutrality of Dirichlet
distribution. First we have X1

d
= W1. Then the relative size of X2 in (X2, . . . , Xn) is

independent of X1 and has the same law as W2, so X2
d
=W2(1−W1). The claim can be

proved by repeating this argument.

3.4 Chinese restaurant process

3.4.1 The model

Let α, θ be parameters that satisfies either one of the following cases

1. α < 0 and θ = −kα for some k ∈ N+ or

2. 0 ≤ α ≤ 1 and θ > −α.

The Chinese restaurant process with parameters (α, θ) is defined as follows. Imagine a
restaurant with an infinite number of tables. At the beginning all tables are empty. The
first customer arrives and sits at any table. If the first n customers occupy m tables,
then the (n+ 1)-th customer will choose

· a table with t ≥ 1 customers with probability t−α
n+θ

· an empty table with probability mα+θ
n+θ

The first n customers form a partition of [n] in which tables represent blocks and cus-
tomers represent elements. By continuing this process infinitely we obtain a random
partition of N. This random partition has the remarkable property of exchangeability,
meaning that its law remains unchanged under finite permutations of N.
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3.4.2 Formal set construction

Consider a set of −θ elements divided into −θ/α groups, each containing α elements.
Let us see what happens when we sample without replacement from this set. Suppose
the first n sampled elements belong to m groups. After this, there are θ − n elements
remaining in the set. For a group with t sampled elements, there are α − t elements of
that group still in the set. Therefore, the probability of the (n + 1)-th element coming
from this group is:

α− t
−θ − n

=
t− α
n+ θ

.

Since all the probabilities add up to 1, the probability for the (n + 1)-th element to be
in a new group is

mα+ θ

n+ θ
.

These probabilities exactly match those of Chinese restaurant process. With formal sets,
the Chinese restaurant process can be described more concisely and it becomes trivial
that the resulting partition of N is exchangeable.

For the parameters (α, θ) in case 1, the formal set consists of k blocks of size α, where
k ∈ N+. Thus, the Chinese restaurant process is the same as the Polya urn process with
k labels and parameters (−α, . . . ,−α). The resulting random partition on N always has
k blocks. In contrast, for the parameters (α, θ) in case 2, we will see that the resulting
partition of N contains an infinite number of blocks almost surely.

3.4.3 Ewens-Pitman distribution

Theorem 3.3. (Ewens-Pitman distribution) Consider the Chinese restaurant process
with parameters (α, θ). Let Πn be the random partition of [n] formed by the first n
customers. Let π be a partition of [n] with block sizes n1, . . . , nk. Then

P (Πn = π) =
(θ/α)↑k

θ↑n

k∏
i=1

−(−α)↑ni (3.10)

This surely can be proved by induction, starting from the definition, although that
would be tedious. We give here a very short derivation using formal sets.

Proof. Recall that the Chinese restaurant process is equivalent to sampling without re-
placement from a formal set of −θ elements divided into −θ/α groups of size α. There
are (−θ)↓n ways of choosing a sequence of n different elements from the formal set. Next,
we will compute the number of such sequences that lead to the partition π. There are
(−θ/α)↓k ways of assigning groups of the formal set to k blocks of π. Afterwards, for
each block of size ni, there are α↓ni ways to select its elements. Therefore

P (Πn = π) =
(−θ/α)↓k

(−θ)↓n
k∏
i=1

α↓ni (3.11)
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From the fact that (−x)↓n = (−1)nx↑n, we obtain the result given by (3.10).

Remark 3.1. In Theorem 3.3, for α = 0, we have Ewens sampling formula

P (Πn = π) =
θk

θ↑n

k∏
i=1

(ni − 1)!

For θ = 0, we have

P (Πn = π) =
(k − 1)!

α(n− 1)!

k∏
i=1

−(−α)↑ni

These formulas can be obtained by setting α → 0 or θ → 0 in the Ewens-Pitman
distribution.

3.4.4 Block weights

Consider the random partition of N generated from the Chinese restaurant process with
parameters (α, θ). Let B1 be the block containing 1, B2 be the the block containing
the smallest element not in B1, B3 be the block containing the smallest element not in
B1, B2, and so on. For each i, the weight of Bi is defined as

Vi = lim
n→∞

|Bi ∩ [n]|
n

(3.12)

It is clear that
∑

i Vi = 1. We have the following result, called stick-breaking construction
of (Vi):

Theorem 3.4. The sequence (V1, V2, . . . ) in (3.12) is well-defined and has the same law
as (V ⋆

1 , V
⋆
2 , . . . ), where

V ⋆
1 =W1

V ⋆
2 =W2(1−W1)

. . .

V ⋆
k =Wk(1−Wk−1) . . . (1−W1)

. . .

for W1,W2, . . . independent and

Wj ∼ Beta(1− α, θ + jα)

for each j = 1, 2, . . . . As a consequence, the random partition has an infinite number of
blocks, each with a positive weight.
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Proof. Consider the formal set that gives rise to the Chinese restaurant process with
parameters (α, θ). Let us call x1 the first element drawn from the formal set. After x1 is
drawn, in the formal set there remain α − 1 elements within the same group as x1, and
−θ−α other elements. From our discussion on Polya urn model, in the infinite sequence
drawn from this remaining set, the proportion of elements of the same group as x1 is
W1 ∼ Beta(1− α, θ + α).

Now let us ignore the block containing x1 and consider the remaining sequence. The
blocks in this sequence have a total weight of 1−W1 and are generated from the drawing
on a formal set of −θ − α elements divided into groups of size α. Let x2 be the first
element of this sequence. By the same argument as in the previous paragraph, the block
containing x2 has relative size W2 ∼ Beta(1−α, θ+2α), therefore its size is W2(1−W1).

Ignoring blocks containing x1, x2, the rest has a total weight of (1 −W1)(1 −W2).
By repeating the same argument we obtain the result of the theorem.

By rearranging the sequence (Vi) in decreasing order, we obtain the sequence (Si).
These two sequences are reorderings of each other. Specifically, (Si) is the decreasing
reordering of (Vi), and Vi is referred to as the size-biased reordering of (Si).

The sequence S1 ≥ S2 ≥ . . . is a sample from the Poisson-Dirichlet distribution
with parameters (α, θ), which is a probability distribution on the set of non-increasing
sequences of positive numbers adding up to 1. Results on Poisson-Dirichlet distribution
can be found in [51] [85] [87] [88].

While the weights (Vi) are rather simple, as they can be described by the stick-
breaking process, the weights (Si) are much more complicated as the density of Si for a
fixed i can have singular points [31].

Correlation functions. The set {Si, i ∈ N} defines a point process in R. The k-
correlation function of a random point process {Xi} in R is defined as a function ρk
with variables x1, . . . , xk such that the probability of the process having one point in
each of the intervals [xi, xi+ dxi] for i = 1, . . . , k is ρk(x1, . . . , xk)dx1 . . . dxk as dxi → 0.
Equivalently, the k-correlation function ρk can be defined as the function such that

E
[ ∑
i1,...,ik( ̸=)

f(Xi1 , . . . , Xik)
]
=

∫
f(x1, . . . , xk)ρ(x1, . . . , xk)dx1 . . . dxk, (3.13)

for any non-negative measurable function f , where the sum is over k different indices.
Since f ≥ 0, the sum on the left hand side has always a limit in [0,∞]. It follows from
both definitions that ρk is invariant by permutations of its variables. Note that ρk is not
a probability density: if {Xi} has infinite points then the integral of ρk over x1, . . . , xk
is infinite.

Let us compute the correlation function of the point process {Si}. Imagine drawing
n elements from a the formal set with −θ elements divided into groups of size α. We
will compute the probability P (n1, . . . , nk) that there are blocks of sizes n1, . . . , nk in the
partition formed by these n elements, where n1, . . . , nk ∈ N+ such that n1+ · · ·+nk ≤ n.
There are
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·
(−θ/α

k

)
ways of choosing k groups in the formal set.

·
(
α
n1

)
. . .
(
α
nk

)
ways of choosing the elements for the blocks of sizes n1, . . . , nk.

·
( −θ−kα
n−n1−···−nk

)
ways of choosing other elements.

·
(−θ
n

)
ways of choosing n elements from the formal set.

P (n1, . . . , n1) is obtained as the product of the first three numbers divided by the fourth
number. Let xk = nk/n. As n tends to infinity, by using (3.6) and the formula(

−x
m

)
=

(−1)mΓ(x+m)

Γ(x)Γ(m+ 1)

we obtain the k-correlation function for the block weights [51]

ρk(x1, . . . , xk) = ck,α,θ x
−α−1
1 . . . x−α−1

k (1− x1 − · · · − xk)kα+θ−1 (3.14)

where

ck,α,θ =
Γ(θ/α+ k)Γ(θ)αk

Γ(θ + kα)Γ(θ/α)Γ(1− α)k
. (3.15)

For Poisson-Dirichlet process with parameters (α, 0), the coefficient ck,α,0 is computed
by taking the limit θ → 0. Using the fact that limθ→0

Γ(θ)
Γ(θ/α) = 1

α , we obtain the
correlation function for this process as

ρn(x1, . . . , xk) =
Γ(k)αk−1

Γ(kα)Γ(1− α)k
x−α−1
1 . . . x−α−1

k (1− x1 − · · · − xk)kα−1

In particular,

ρ1(x) =
x−α−1(1− x)α−1

Γ(α)Γ(1− α)

For Poisson-Dirichlet process with parameters (0, θ), the coefficient ck,α,θ converges
to θk when α→ 0, so the correlation function in this case is

ρk(x1, . . . , xk) = θkx−1
1 . . . x−1

k (1− x1 − · · · − xk)θ−1

In particular,

ρ(x) = θx−1(1− x)θ−1.
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3.5 Nested partition of N

We can extend the formal set construction for the Chinese restaurant process to obtain
random nested partitions of N. Let k ≥ 1 and 0 ≤ α0 < · · · < αk < 1. Consider a formal
set with α0 elements divided into groups of size α1, each being divided into groups of
size α2, and so on. Drawing from this formal set will lead to a nested partition of N, in
which the level-0 block N is divided into level-1 blocks, each contains level-2 blocks, and
so on. The following properties of this random nested partition follow immediately from
the formal set construction:

1. It is exchangeable, i.e. its law is invariant by finite permutations of N.

2. The nested partition of level ℓ+1 is obtained by partitioning each undivided block
of the nested partition of level ℓ according to the Chinese restaurant process with
parameters (αℓ+1,−αℓ). Consequently, The relative sizes of the (ℓ + 1)-th level
blocks contained in any ℓ-th level block are given by PD(αℓ+1,−αℓ).

3. The sizes of the ℓ-th level blocks are given by PD(αℓ,−α0).

When α0 = 0, this structure of nested partitions is the same as the partitions observed
at different times of the Bolthausen-Sznitman coalescent [86]. It will be important for
describing the Gibbs measure of the Sherrington-Kirkpatrick model in Chapter 8.
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Chapter 4

Gibbs principle, asymptotic
equivalence and replicas

One of the simplest examples of asymptotic equivalence is that the uniform distribution
on a high dimensional sphere behaves like independent Gaussian random variables. This
is an example of much more general result in statistical physics, Gibbs principle, also
known as the equivalence of ensembles. This principle states that calculations can be
done with either the microcanonical ensemble or the canonical ensemble, yielding identical
results. In this chapter, we will break down the meaning of this statement and explore its
mathematical consequences. From Gibbs principle, we will derive Result 4.2 that allows
us to compute the asymptotic equivalent of systems with rather simple Hamiltonian that
can be expressed in terms of simple macroscopic functions. Finally, we will describe how
to use replicas to compute the asymptotic equivalent of disordered systems, based on
Result 4.2 and the concepts of replicated Hamiltonian and replica density.

A rigorous treatment of Gibbs principle can be found in [109], especially Section V.

4.1 Microcanonical and canonical ensembles

We will use the vocabularies of statistical physics already introduced in Section 1.2. Let
us consider the configuration space X equipped with a measure µ. Let E be a function
from X to R called energy function. If X is discrete, the microcanonical ensemble is
defined as the uniform distribution (according to µ) on {E(x) = a} for some fixed a. If
X is continuous, the microcanonical ensemble is defined as the limit when δ → 0 of
the uniform distribution (also according to µ) on

{x : E(x) ∈ [a, a+ δ]}

for a fixed a. This ensemble is denoted by Ua, as we fix the energy function from the
beginning and don’t need to explicitly refer to it in each notation.
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Remark 4.1. When X = Rn with Lebesgue measure, the microcanonical ensemble Ua
is generally different from the uniform distribution1 on {x : E(x) = a}. While the latter
is intrinsic, i.e. the distribution only depends on the level set and does not depend on
the function E, the former is not: two different energy functions with the same level set
at a can give rise to different microcanonical ensembles. The two definitions coincide
when two level sets {x : E(x) = a} and {x : E(x) = a+ δ} are ‘parallel’ when δ → 0,
meaning that the norm of the gradient is constant for any point on the level set at a.
For example, the function E(x) = x21 + · · · + x2n on Rn and E(x) = x1 + · · · + xn on
Rn+ have this property (µ is chosen to be the Lebesgue measure), while the function
E(x) = xp1 + · · ·+ xpn on Rn with p > 0 and p /∈ {1, 2} does not.

Given a parameter λ, the canonical ensemble is defined as the following probability
measure

Pλ(dx) =
eλE(x)

Z(λ)
µ(dx) (4.1)

where

Z(λ) =

∫
µ(dx)eλE(x).

Compared to the microcanonical ensemble, the canonical ensemble is more easy to work
with. It turns out that the two ensembles are equivalent for a suitable choice of param-
eters, as we will see in the next section.

The Boltzmann entropy of the microcanonical ensemble Ua is defined as

S(a) = log
µ(E(x) ∈ da)

da
, (4.2)

while the Shannon entropy of Pλ is given by

Ent(λ) = −
∫
X
µ(dx)Pλ(x) logPλ(x). (4.3)

4.2 Gibbs principle

Gibbs principle is a very general and fundamental result in statistical physics. It en-
ables the study of some complicated microcanonical ensembles by replacing them with
equivalent and more manageable canonical ensembles. The principle is applicable to
most systems in statistical physics, except for some rather exotic ones such as the model
considered in [39].

With the setting of Section 4.1, let us make the important assumption that
the Boltzmann entropy S(a) is a concave function in a. Gibbs principle states

1The uniform distribution on a surface S ⊂ X of lower dimension in Rn is the limit when δ → 0 of
the uniform distribution on the set of points within a Euclidean distance δ from S.
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that, under this assumption, the microcanonical ensemble Ua and the canonical ensemble
Pλ are asymptotically equivalent if∫

E(x)Pλ(dx) = a. (4.4)

This condition is equivalent to

F ′(λ) = a, (4.5)

where

F (λ) = log

∫
µ(dx)eλE(x). (4.6)

This equation has a unique solution since F (λ) is strictly convex, which is easy to prove.
Gibbs principle can be generalized for vector-valued functions. Let E be a function

from X to Rk with k fixed, then the uniform distribution on

{x ∈ X : Ei(x) ∈ [ai, ai + δ] for i = 1, . . . , k} , δ → 0,

is asymptotically equivalent to the Gibbs measure

Pλ(dx) ∝ e⟨λ,E(x)⟩µ(dx)

where λ ∈ Rk is such that
∫
E(x)Pλ(dx) = a.

Remark 4.2. The concavity of S(a) is necessary, as there exist counterexamples of Gibbs
principle when S(a) is not concave [39].

4.3 Entropy equivalence

Always under the assumption that S(a) is concave, the equivalence of entropy states
that

Suppose that the microcanonical ensemble Ua is equivalent to the canonical en-
semble Pλ, then the Boltzmann entropy of Ua is equal to the Shannon entropy of
Pλ (up to the leading term).

Derivation. Suppose that microcanonical ensemble Ua⋆ is equivalent to the canonical
ensemble Pλ⋆ . The Shannon entropy of Pλ⋆ is given by

Ent(λ⋆) = −
∫
X
µ(dx)Pλ⋆(x) logPλ⋆(x)

= −
∫
X
µ(dx)Pλ⋆(x)(λ⋆E(x)− F (λ⋆))

= F (λ⋆)− λ⋆a⋆ (4.7)
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On the other hand, for any fixed λ, we have

F (λ) =

∫
µ(dx)eλE(x) (4.8)

= log

∫
µ(E(x) ∈ da)eλa

= log

∫
da eλa+S(a)

≃ max
a
{λa+ S(a)} (4.9)

where the last approximation is taken in the infinite size limit using the saddle point
approximation, or Laplace’s method. Note that we are considering a system with size
growing to infinity, so the integral involved in this approximation is exponentially large,
and the saddle point method is applicable. It follows from (4.8) and the concavity of
S(a) that F (λ) is the convex conjugate of −S(a). Therefore

S(a) = min
λ
{F (λ)− λa} . (4.10)

The minimum is achieved if F ′(λ) = a, which is exactly the condition for the equivalence
of Pλ and Ua. Therefore

S(a⋆) = F (λ⋆)− λ⋆a⋆. (4.11)

From (4.7) and (4.11) we conclude that S(a⋆) = Ent(λ⋆).

Remark 4.3. The entropy equivalence is useful in computing the cardinality or vol-
ume of an exponentially large set, up to the leading order. This type of problems can
be formulated as computing the Boltzmann entropy of a microcanonical ensemble. By
the equivalence of entropy, we can instead compute the entropy of the corresponding
canonical ensemble, which is simpler in many cases.

4.4 Applications

4.4.1 Uniform distribution on ℓ2 spheres

Consider the configuration space X = Rn equipped with the Lebesgue measure and en-
ergy functionE(x) = ∥x∥2. Gibbs principle implies that the random vector (X1, . . . , Xn) ∈
Rn sampled uniformly from the sphere

{
∥x∥2 = n

}
is asymptotically equivalent to (Z1, . . . , Zn),

where Zi
i.i.d∼ N (0, 1). This result also follows from the fact that

(X1, . . . , Xn)
d
=

√
n(Z1, . . . , Zn)

(Z2
1 + · · ·+ Z2

n)
1
2

≃ (Z1, . . . , Zn)

In more precise mathematical sense, for any fixed k, (X1, . . . , Xk) converge in law to
k independent standard Gaussian variables. Moreover, it is shown in [36] that for any
k = O(

√
n), the total variation distance from (X1, . . . , Xk) to N (0, 1)⊗k converge to zero.
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4.4.2 Uniform distribution on ℓ1-spheres

Consider the configuration space X = Rn+ equipped with the Lebesgue measure and en-
ergy functionE(x) = ∥x∥1. Gibbs principle implies that the random vector (X1, . . . , Xn) ∈
Rn+ sampled uniformly from {

x ∈ Rn+ : x1 + · · ·+ xn = n
}

is asymptotically equivalent to (V1, . . . , Vn), where Vi
i.i.d∼ Exp(1). On the other hand,

this result also follows from

(X1, . . . , Xn)
d
= nDir(1, . . . , 1) d

=
(V1, . . . , Vn)

V1 + · · ·+ Vn
≃ (V1, . . . , Vn)

4.4.3 ‘Uniform’ distribution on ℓp spheres

The fact that the uniform distribution on ℓ1-norm and ℓ2-norm unit spheres can be
generated from i.i.d. exponential and Gaussian random variables can be generalized to

Theorem 4.1. Let (X1, . . . , Xn) be sampled uniformly from

{(x1, . . . , xn) ∈ Rn : |x1|p + · · ·+ |xn|p = [1, 1 + δ]} , δ → 0. (4.12)

Then

1. X d
= V/∥V ∥p where V1, . . . , Vn are i.i.d random variables with density

PV (x) ∝ exp

(
−|v|

p

p

)

2. (|X1|p, . . . , |Xn|p) ∼ Dir
(
1
p , . . . ,

1
p

)
Proof. By symmetry it is sufficient to prove the results when the random variables are
restricted on Rn+. The marginal density of (X1, . . . , Xn−1) is

fX1:n−1(x1, . . . , xn−1) ∝ ∂a=1

∫ ∞

0
dxn1(x

p
1 + · · ·+ xpn ≤ a)

= ∂a=1(a− xp1 − · · · − x
p
n−1)

1
p

= (1− xp1 − · · · − x
p
n−1)

1
p
−1

Let Y = V/∥V ∥p. Since V p
i ∼ Γ

(
1
p ,

1
p

)
, we have

(Y p
1 , . . . , Y

p
n ) =

(V p
1 , . . . , V

p
n )

V p
1 + · · ·+ V p

n
∼ Dir

(
1

p
, . . . ,

1

p

)
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which implies that the joint density of U = (Y p
1 , . . . , Y

p
n−1) is

fU (u1, . . . , un−1) ∝ u
1
p
−1

1 . . . u
1
p
−1

n−1 (1− u1 − · · · − un−1)

from which we obtain the joint density of (Y1, . . . , Yn−1) as

fY1:n−1(y1, . . . , yn−1) ∝ (1− yp1 − · · · − y
p
n−1)

1
p
−1

which is the same as the density of fX1:n−1 .

It follows from Theorem 4.1 that for any p > 0, the uniform distribution on

{x ∈ Rn : |x1|p + · · ·+ |xn|p ∈ [n, n+ δ]} , δ → 0.

is asymptotically equivalent to µ⊗np , where µp is the probability measure such that

µp(dx) ∝ exp

(
−|x|

p

p

)
dx

which is the same conclusion reached by the Gibbs principle, by considering the space
Rn equipped with Lebesgue measure and energy function H =

∑
i |xi|p.

Remark 4.4. In [96], the density of V/∥V ∥p in Theorem 4.1 is called the uniform
distribution on the ℓp-norm unit sphere, although this distribution is truly uniform only
if p ∈ {1, 2} (Remark 4.1).

4.4.4 Random partition of large integers

A partition of a positive integer n is a way of writing it as sum of positive integers without
regard to orders. Denote p(n) be the number of partitions of n. For example, n = 4 has
five partitions

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

so p(4) = 5.
One way of represent a partition π of n is by letting nk be the number of k in π

and write π = (n1, n2, . . . ). For example, the partition 4 = 2 + 1 + 1 correspond to the
sequence (2, 1, 0, 0, . . . ).

Let π = (N1, N2, . . . ) be a partition chosen uniformly randomly from the set of all
partitions of a large positive integer n. In other words, (N1, N2, . . . ) follows the the
uniform distribution on the finite set{

(n1, n2, . . . ) ∈ Nn :
∑
k≥1

knk = n
}
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This can be seen as the microcanonical ensemble at energy level n, where the energy of
the configuration (n1, n2, . . . ) ∈ Nn is given by

∑
k knk. Instead of working directly with

this microcanonical ensemble, it is more convenient to work with the canonical ensemble

Pλ(n1, n2, . . . ) ∝ eλ
∑

k≥1 knk (4.13)

for some parameter λ < 0. The free energy is simply

F (λ) =
n∑
k=1

− log(1− eλk)

To find the value λ⋆ at which the two ensembles are equivalent, we need to solve F ′(λ) =
n. As n → ∞, we expect that λ⋆ → 0, since N1 should go to infinity under Pλ⋆ and
Pλ⋆(N1 = m) ∝ eλ⋆m. Therefore, the free energy can be approximated by an integral as

F (λ) ≃ 1

λ

∫ ∞

0
log(1− e−x) dx

This integral can be computed by performing the Taylor expansion for − log(1− t) where
t = e−x and exchanging the sum with the integral, leading the the Euler sum

∑
n≥1

1
n2 .

We obtain ∫ ∞

0
− log(1− e−x) dx =

π2

6
,

so

F (λ) ≃ −π
2

6λ
. (4.14)

Solving F ′(λ) = n, we obtain λ⋆ ≃ −π/
√
6n. By (4.11) we have S(n) = F (λ⋆)− λ⋆n ≃

π
√

2n/3. Therefore

log p(n) = S(n) ≃ π
√

2n

3
,

which gives the exponential term in the Hardy-Ramanujan formula

p(n) ≃ 1

4n
√
3
exp

(
π

√
2n

3

)
.

Moreover, from the expression of the canonical ensemble, N1, N2, . . . are asymptotically
independent with

P (Nk = m) ∝ exp
(
− kπm√

6n

)
(4.15)

In other words, πkNk/
√
6n for k = 1, 2, . . . behave like independent exponential random

variables with parameter 1. The precise mathematical meaning and rigorous proof of
this statement can be found in Theorem 2.1 and 2.2 of [40].
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4.4.5 Exponential tilting

So far we have only considered spaces (X , µ) where µ is Lebesgue measure or counting
measure. We now take µ to be a probability measure. Then the microcanonical en-
semble with energy function E(x) =

∑
i xi and energy level na is the probability law of

X1, . . . , Xn
i.i.d∼ µ conditioned on the event that

∑
iXi = na. Let the conditional random

variables be X̃1, . . . , X̃n.
By Gibbs principle, as n tends to infinity, X̃i’s behave like independent random

variables generated from the probability density µ̃ such that

µ̃λ(dx) ∝ µ(dx)eλx (4.16)

where λ satisfies ∫
µ̃λ(dx)x = a.

For example, if Xi ∼ N (0, 1) then X̃i ∼ N (a, 1).
The conditioning event is (exponentially) ‘rare’ when a ̸= E[Xi] and is ‘typical’ when

a = E[Xi]. If the conditioning event is rare then µ̃ ̸= µ, otherwise µ̃ = µ. The measure
µ̃ is known as exponential tilting of µ, which is often used for rare-event simulations.

4.4.6 Intersection of ℓ1- and ℓ2-spheres

In [21], the author considered a random vector X = (X1, . . . , Xn) following the uniform
distribution on

K :=
{
x = (x1, . . . , xn) ∈ Rn+ :

∑
i

xi = n,
∑
i

x2i = nb
}

By Gibbs principle, as n→∞, (X1, . . . , Xn) is asymptotically equivalent to (Z1, . . . , Zn),
where Zi are independent random variables following the density

Pr,s(dx) ∝ e−rx
2−sxdx

where r > 0 and s satisfies
∫
xPr,s(dx) = 1 and

∫
x2Pr,s(dx) = b. These equations has a

solution for 1 < b ≤ 2, in which case the paper showed that for any fixed k, the random
vector X1:k converges in law to Z1:k as n → ∞. Moreover, all joint moments of X1:k

converges to the corresponding moments of Z1:k.
The paper also discussed the case b > 2 where Gibbs principle is not applicable.

In this case, it is showed that if Z1, . . . , Zn are independent random variables following
Exp(1), then X1:k converges in law to Z1:k, but the convergence in moments does not
hold.
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4.5 A useful result

Gibbs principle and the free energy-entropy relation can be combined into the following
result

Result 4.1. Consider a measure space (X , µ). Let E be a function from X to R such
that S(a) defined in (4.2) is concave. Then microcanonical ensemble U({E(x) ∈ da}) is
asymptotically equivalent to a system with Hamiltonian of the following form

H = λ(E(x)− a)

for some λ ∈ R. The equivalence is achieved at

λ(a) = argmin
λ
ψ(λ, a)

where ψ(λ, a) be the free energy of the H. Moreover, the entropy function S(a) defined
in (4.2) satisfies

S(a) = min
λ
ψ(λ, a)

The following result, obtained from Result 4.1, will be used by all replica computa-
tions in this thesis.

Result 4.2. Consider the Hamiltonian H = H(x, q(x)) on a measure space (X , µ),
where q(x) is a function from X to Rk that satisfies a certain condition that will
be stated later in Remark 4.6. The coordinates of q(x) are called macroscopic
functions. Define the following parametrized Hamiltonian associated with q(x),

H̄ = H(x, a) + ⟨λ, q(x)− a⟩, λ, a ∈ Rk.

where a and λ are respectively called constraint parameters and multipliers.
Let F (λ, a) be the free energy of H̄, called free energy function. Consider all
solutions (λα, aα) of

max
a

min
λ
F (λ, a).

These solutions are called dominant extremal points of the free energy func-
tion. Let Hα be the Hamiltonian H̄ with parameters (λ, a) = (λα, aα) and Pα be
the probability measure associated with Hα. Then PH in the infinite size limit is
equivalent to a mixture of Pα’s. The measures Pα’s are called pure states. More-
over, in each pure state, q(x) is concentrated at aα. If there is a finite number of
pure states, the free energy of the system is equal to the free energy of each pure
state.
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Derivation. PH can be viewed as a mixture of the following probability measures

Pa(dx) ∝ eH(x,a)1q(x)∈da µ(dx)

where a range over all possible values of q(x). The weight of Pa in this mixture is given
by

w(a)da =

∫
eH(x,a)1q(x)∈da µ(dx).

Note that weights do not necessarily adds up to one.
Each Pa can be seen as a microcanonical ensemble {q(x) ∈ da} over the measure

space (X , µa), where µa(dx) = eH(x,a)µ(dx). Using the result of 4.1, Pa is equivalent to
the following Hamiltonian on (X , µ)

H(x, a) + ⟨λ(a), q(x)− a⟩

where

λ(a) = argmin
λ
F (λ, a)

The weight of Pa in the mixture satisfies

logw(a) = min
λ
F (λ, a)

In the infinite size limit, the mixture will concentrates on values of a that maximize
logw(a). This leads to the conclusion that PH behaves like a mixture of Pα as stated in
the result.

Remark 4.5. If the free energy function has only one dominant extremal point (λ⋆, a⋆),
then

· The macroscopic functions concentrate at the extremal value of the constraint
parameters, i.e. q(x) concentrates at a⋆.

· The free energy of the system is given by F (λ⋆, a⋆).

· H is asymptotically equivalent to H̄(x, λ⋆, a⋆)

Remark 4.6. From Remark 4.2, in order for Result 4.2 to hold, we need to make the
assumption that the function

a→ log
µc({q(x) ∈ da})

da

is concave for any measure µc(dx) defined as µc(dx) = eH(x,c)µ(dx). For the Hamiltonians
of the form H(q(x)), this assumption simply means that the function

a→ log
µ({q(x) ∈ da})

da

is concave. ♢
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4.5.1 Application: random field Ising model

We now take a look at an application of Result 4.2. Consider X = {1,−1}n with counting
measure and the following Hamiltonian

H(σ) =
β

n

∑
i<j

σiσj + β
∑
i

hiσi

where β > 0 and the parameters hi are i.i.d. as h. This is called the random field Ising
model, in which (hi) represents the random field and (σi) represents the spins, each of
which can take the direction up (σi = +1) or down (σi = −1). The Curie-Weiss model
corresponds the the case where h is constant. This example can be found in [56], where
it is solved by the replica method. However, since the Hamiltonian can be expressed in
terms of simple macroscopic functions, there is no need for replica method.

Define the following macroscopic functions m(σ) = n−1
∑

i σi, called the magnetiza-
tion, and q(σ) = n−1

∑
i hiσi. The Hamiltonian H can be written as

H(σ) ≃ βn(1
2
m(σ)2 + q(σ)),

in which we ignore the terms of order o(n). By Result 4.2, the parametrized Hamiltonian
associated with these macroscopic functions is:

H̄ = βn(
1

2
m2 + q) + m̂

(∑
i

σi − nm
)
+ q̂
(∑

i

hiσi − nq
)

where m, q are constraint parameters and m̂, q̂ are multipliers. The free energy of H̄ is
the sum of the free energies of Hi(σi) := (m̂+ q̂hi)σi with the terms that does not depend
on σ. We obtain F H̄ = nf(m, q, m̂, q̂), where

f(m, q, m̂, q̂) =
1

2
βm2 + βq −mm̂− qq̂ + n−1

∑
i

log 2 cosh(m̂+ q̂hi)

≃ 1

2
βm2 + βq −mm̂− qq̂ + Eh log 2 cosh(m̂+ hq̂),

where the second approximation comes from the law of large numbers. Differentiating f
by m, q, we obtain m̂ = βm, q̂ = β. Plugging these into f , we get

−1

2
βm2 + Eh log 2 cosh(β(m+ h)).

Differentiate this function by m, we obtain

m = E tanhβ(m+ h). (4.17)

If this equation has a unique equation m⋆, then in the infinite size limit,

· σi’s behave like independent spins generated from P (σi) ∝ eβ(m⋆+hi)σi .
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· m(σ) concentrates at m⋆.

Consider the case h = 0. At high temperature (β < 1), the equation (4.17) has unique
solution m⋆ = 0. The system has zero magnetization and σi’s behave like independent
spins with no preferential direction. At low temperature (β > 1), by symmetry, (4.17)
has two solutions ±m⋆ and PH behaves like a mixture of two probability measures P+

and P− with equal weights, where P±(σi) ∝ e±βm⋆σi . Moreover, the magnetization takes
one of the two values ±m⋆, each with probability 1/2. ♢

4.6 Computing asymptotic equivalents with replicas

4.6.1 Replicated Hamiltonian and replica density

Consider a disordered system with random Hamiltonian H on a configuration space X
with underlying measure µ. Recall that the probability measure associated with H is
given by

PH(dx) =
eH(x)

Z
µ(dx) (4.18)

where Z =
∫
µ(dx)eH(x). We define the following formal object called the replicated

Hamiltonian

Hrep(x1, . . . , xr) = logEeH(x1)+···+H(xr), r → 0.

In other words, Hrep is a formal function with an infinitesimal number of arguments
taking values in X . We will not try to make sense of this crazy object. Instead, we will
see that this object provides a convenient representation of the system under study and
we will manipulate this object to obtain meaningful results at the end.

The corresponding probability measure PHrep , called the replica density and de-
noted by P rep for short, is given by

P rep(x1, . . . , xr) = EeH(x1)+···+H(xr), r → 0. (4.19)

Remark 4.7. P rep as given in the equation (4.19) is formally a probability density,
since

∫
dx1, . . . , dxrP rep(x1, . . . , xr) = E[Zr] → 1 as r → 0. This explains why we use

the equality sign instead of the proportional sign in (4.19). This also explains why r is
sent to zero instead of other values.

Remark 4.8. The replica density P rep encodes information about the replicas of the
system. Indeed, for any k ∈ N+, we can formally write the marginal law of k of its
coordinates as

P rep
k (x1, . . . , xk) =

∫
µ(dxk+1) . . . µ(dxr)P rep(x1, . . . , xr),
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which can be understood by first taking r larger than k then analytically continuing the
formula to r → 0. Next, we have

P rep
k (x1, . . . , xk) =

∫
µ(dxk+1) . . . µ(dxr)E[eH(x1)+···+H(xr)]

= E
∫
µ(dxk+1) . . . µ(dxr)eH(x1)+···+H(xr)

= E[eH(x1)+···+H(xk)Zr−k]

→ E[eH(x1)+···+H(xk)Z−k], r → 0

= E[PH(x1) . . . PH(xr)],

where the last expression is the density of the replicas X1, . . . , Xk i.i.d∼ PH . Since k can
be any positive integer, we conclude that P rep encodes information about the replicas of
the system.

4.6.2 Three main steps

The replica computation of the asymptotic equivalent of a disordered system P can be
summarized in the following diagram

P → P rep → P̄ rep → P̄

which represents a process with three steps

1. (Replication) Compute the replica density P rep.

2. (Simplification) Compute the asymptotic equivalent of P rep, denoted by P̄ rep, which
is also a replica density.

3. (Dereplication) Translate P̄ rep back to its corresponding disordered system P̄ . We
conclude that the asymptotic equivalent of PH is P̄ .

In the so-called replica symmetric case, we can work directly with the Hamiltonian
through a similar process

H → Hrep → H̄rep → H̄

with the end result being H ↔ H̄. Since FH ≃ F H̄ and PH ↔ P H̄ , we achieve
simultaneously the computation of free energy and the description of the measure PH .
For a Hamiltonian H consisting of a deterministic part H0 and a stochastic part H1, we
only need to compute the asymptotic equivalent of H1 since H̄ = H0 + H̄1.

We now discuss in more details the three steps. The calculation in the replication
step do not need to be exact, as we only need to keep the dominant part and throw away
the rest. If this step produces a replicated Hamiltonian that depends on a few simple
macroscopic functions, then the problem is likely to be solved with replicas. In the
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simplification step, Result 4.2 will be applied formally. This leads to the extremization
of a ‘formal’ free energy function F with a real number of variables. We then assume
that the dominating extremal point of F has a certain form called the replica ansatz,
which encodes in a generic and compact way the asymptotic behavior of the system.
Moreover, with the replica ansatz, the function F now becomes a ‘usual’ function with a
natural number of variables, allowing us to perform the extremization. The end result of
this step is a simpler replica density P̄ rep that is asymptotically equivalent to P rep. The
dereplication step is the reverse of the replication step. If P rep (Hrep) is the replication
of P (H) then the dereplication of P rep (Hrep) is P (H). The following examples will be
useful for the replication and dereplication steps.

Example 4.1. If H does not contains any random parameters, then its replication is
simply

Hrep = H(x1) + · · ·+H(xr)

In particular, the dereplication of rA, where A is a constant, is A.

Example 4.2. If Hrep = f(r) for some differentiable function f such that f(0) = 0,
then H = f ′(0). This follows from the fact that H ≃ rf ′(0) as r → 0.

Example 4.3. Let X be a random variable with value in X and corresponding proba-
bility measure PX . Consider the measure space (X , PX). Let ϕ be a function from X to
Rk. The following replicated Hamiltonian

Hrep =
∑

1≤a<b≤r
⟨ϕ(xa), ϕ(xb)⟩

corresponds to the following Hamiltonian with random parameters Z ∼ N (0, Ik)

H = ⟨Z, ϕ(x)⟩ − 1

2
∥ϕ(x)∥2

Example 4.4. This example will be used both for replication and dereplication in the
replica analysis of inference problems in Bayes optimal setting (Chapter 7). With the
same measure space considered in the previous example, consider

Hrep =
∑

0≤a<b≤r
⟨ϕ(xa), ϕ(xb)⟩

where x0 is a fixed vector. Using the previous example, this replicated Hamiltonian
corresponds to the following Hamiltonian

H = ⟨ϕ(x0) + Z, ϕ(x)⟩ − 1

2
∥ϕ(x)∥2

PH is exactly the posterior of X given Y in the following Gaussian channel

Y = ϕ(x0) + Z, (4.20)

where x0 is an unknown signal generated from the probability law PX and Z is a standard
Gaussian vector independent of X.
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Remark 4.9. The dereplication step implicitly requires that each replica density corre-
sponds to a unique disordered system. This can be ‘proved’ by the fact that the replica
density encodes information about the replicas of the system (Remark 4.8), and that
a disordered system is uniquely determined by its infinite sequence of replicas, by de
Finetti theorem (Theorem 3.1).

The replica method can be seen as consisting of two parts: the qualitative part,
which involves selecting a replica ansatz that describes the generic asymptotic behavior
of the system, and the quantitative part, which involves the remaining computations.
The qualitative part is straightforward for some problems in random matrix theory,
random convex optimization, and Bayesian inference, where the replica symmetric ansatz
gives the correct results. However, for the SK model, it presents the main challenge of
the problem. In this case, the replica symmetric ansatz yields incorrect results at low
temperature. The correct answer is given by the intriguing Parisi ansatz. Replica method
will produce the correct answer if the assumptions encoded in the replica ansatz is correct.

The Parisi ansatz also describes the behaviors many other disordered systems such as
generalized random energy model [32], p-spin spherical model [29] and notably the sphere
packing problem [20]. Models that can be described by the Parisi ansatz are said to be
in the same universal class. In some cases, we need to modify the Parisi ansatz to obtain
the correct result [33]. In other cases, there is no known replica ansatz that corresponds
to the qualitative behavior of the system [18]. One may wonder if it is possible to classify
all universal behaviors for disordered systems, and whether each of these behavior can
be encoded in some replica ansatz.
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Chapter 5

Random matrix theory

Random matrix theory (RMT) has been successfully applied to wireless communication
[24] and machine learning [27]. One of the main technical tools behind these applica-
tions is the method of deterministic equivalents, which goes beyond the classic Stieltjes
transform. The crucial idea behind this tool is that, in order to study a random sym-
metric matrix M , instead of computing the limit of Tr(M − zI)−1, which is the Stieltjes
transform of the spectral measure of M , the method computes a deterministic matrix
that behaves like the resolvent (M − zI)−1. From this we can study not only the lim-
iting behaviors of the eigenvalues of M but also the eigenvectors, which often contains
information about the signal hidden behind the data of matrix M .

In this chapter, we will show that deterministic equivalents can be computed by
the replica method. While the standard techniques such as Gaussian method and Bai-
Silverstein heuristic tend to probe the intricate dependencies between matrix entries, the
replica method takes a global view as it deals with macroscopic variables. The two kind
of methods thus complement each other. Moreover, the vast literature on random matrix
theory could serve as an excellent testing ground for practicing replica computation, and
replica method could be a useful tool to try when the standard computations is too
complicated.

In section 5.1, we will present basic tools and concepts in the resolvent approach to
random matrix theory. In section 5.2, we will show how the replica method can be used
to study resolvents of large random matrices. Section 5.3 shows several applications of
the replica method to different random matrix models.

5.1 Basic tools and concepts

The resolvent of a symmetric matrix M ∈ Rn×n is defined as

QM (z) = (M − zI)−1

for z ∈ C+. This matrix contains both information about the eigenvalues and the eigen-
vectors of M and will be the central object of our study. It turns out that the resolvent of

50



a large random matrices often behaves like a deterministic matrix, called the determinis-
tic equivalent. Rigorously speaking, the deterministic equivalent of a symmetric random
matrix Q ∈ Rn×n is a deterministic matrix Q̄ ∈ Rn×n such that for any deterministic
matrix A with unit operator norm,

1

n
TrA(Q− Q̄)→ 0,

and for any vectors a, b with unit Euclidean norm

a⊤(Q− Q̄)b→ 0 (5.1)

as n→∞, where the convergence is almost sure or in probability.
Given a matrix M , the first thing we are interested in is its eigenvalues (λi)ni=1, which

uniquely correspond to the spectral measure of M , defined as

µM (dx) =
1

n

n∑
i=1

δλi(dx) (5.2)

For a random matrix M ∈ Rn×n, we are interested in its limiting spectral density (LSD),
i.e. the limiting shape that emerges from plotting its eigenvalues as n→∞. This can be
defined as the weak limit of the sequence of spectral measures µM as n→∞. In general,
a sequence of measure (µn) converges weakly to the measure µ if

lim
n→∞

∫
f(x)µn(dx) =

∫
f(x)µ(dx) (5.3)

for any continuous f with compact support. The LSD µ of a random matrix can be
cleverly computed by first computing a function gµ(z) called Stieltjes transform of µ and
then recover µ from this function. In general, the Stieltjes transform of a measure µ with
compact support supp(µ) is defined as

gµ(z) =

∫
R

µ(dλ)

λ− z
, z ∈ C\ supp(µ). (5.4)

For a matrix M with real eigenvalues, we define Stieltjes transform of M as gM (z) =
gµM (z). In particular, if the eigenvalues of M are λ1, . . . , λn ∈ R, then

gM (z) =
1

n

n∑
i=1

1

λi − z
=

1

n
TrQM (z)

A measure can be recovered from its Stieltjes transform by the following result

Theorem 5.1. Let gµ(z) be the Stieltjes transform of a measure µ with compact support.
If µ admits a density at x, then

µ(x) =
1

π
lim
y↓0

Im gµ(x+ iy) (5.5)

Otherwise, if µ has an isolated mass at x, then

µ({x}) = lim
y↓0
−iygµ(x+ iy) (5.6)
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Now the question is how to compute the Stieltjes transform of the LSD. This is
where the resolvent and deterministic equivalent come into the scene. The properties of
deterministic equivalent implies that

lim
n→∞

1

n
Tr(Q(z)− Q̄(z)) = 0,

from which we obtain gµ(z) = limn→∞
1
n Tr Q̄(z). This limit can be computed easily

since Q̄(z) is deterministic.
For many random matrix models, g(z) is characterized as the solution of some fixed

point equations. To compute the LSD, we need to compute g(z) for complex values of z
near the real axis. The fixed point equations might have several solutions. To determine
which solution corresponds to the correct g(z), we use the fact that g(z) ≃ −1

z as z →∞.
The details of how to recover a measure µ from the fixed point equations that define its
Stieltjes transform can be found in any textbook on RMT. Most of our discussions will
reach their final point when the fixed point equations is obtained.

The deterministic equivalent is also useful for studying spiked models. Suppose M is
a random matrix with spectrum consisting of continuous bulks and isolated eigenvalues.
When z is outside the bulks, Q(z) and Q̄(z) are asymptotically equivalent, so we expect
that they have asymptotically the same singular points1 in this region. These singular
points are no other than the isolated eigenvalues of M . On the other hand, for any
deterministic vector u, exploiting the fact that u⊤Q(z)u ≃ u⊤Q̄(z)u, we can compute
the correlation between u and the eigenvectors corresponding to the isolated eigenvalues.

The remaining question is how to compute the deterministic equivalent of resolvents.
This can be done by standard techniques such as Gaussian method and Bai-Silverstein
heuristic (Chapter 2 of [27]). In the next section we will show how to do this with the
replica method.

5.2 Deterministic equivalent and replicas

To compute the deterministic equivalent of a random matrix, the general strategy is to
consider a quadratic Hamiltonian that is related in some way to this random matrix. Let
us consider the problem of computing the deterministic equivalent of Q = (M − zI)−1

for some symmetric random matrix M ∈ Rn×n. We can consider the Hamiltonian

H =
1

2
z ∥x∥2 − 1

2
x⊤Mx,

on the measure space (Rn, µ), where µ(dx) = (2π)−n/2dx. The measure µ is for removing
the constant term in the calculations of free energy (Example 1.8). Suppose by replica
computations we obtain H ↔ H̄ = −1

2x
⊤Q̄x. Since PH ∼ N (0, Q) and P H̄ ∼ N (0, Q̄),

we conclude that Q asymptotically equivalent to Q̄.
1Singular points of a meromorphic function are values at which the function blows up.
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Let us consider another problem where we want to compute the deterministic equiv-
alents of (MM⊤− zI)−1 and (M⊤M − zI)−1 for some large random matrix M ∈ Rn×n.
This can be obtained by studying the Hamiltonian

H(x, y) = −1

2
t(∥x∥2 + ∥y∥2)− x⊤My

on the measure space (Rn, µ), where µ(dx) = (2π)−n/2dx. The marginal laws of x and y
of PH is given by

PHx ∼ N (0, (tI − t−1MM⊤)−1)

PHy ∼ N (0, (tI − t−1M⊤M)−1)

Therefore, if we can show that H is asymptotic equivalent to a certain deterministic
H̄, then by computing x- and y-margins of P H̄ we obtain the deterministic equivalents
of PHx and PHy , which implies the deterministic equivalents of (tI − t−1MM⊤)−1 and
(tI − t−1M⊤M)−1. The equivalents for the resolvents can be easily deduced from this
by a simple change of variable.

The behavior of a large random matrix is generally insensitive to the specific law
governing its entries. For example, the results for the GOE matrix hold more generally
for entries with mean zero and variance n−1. To simplify the calculations, all the examples
we provide in the next section will involve Gaussian matrices, although the results hold
for more general assumptions.

5.3 Applications

5.3.1 GOE

Let A be a GOE matrix. We are interested in computing the deterministic equivalent of
the resolvent matrix Q(z) = (A − zI)−1. To do this we will study the system with the
following Hamiltonian

H =
1

2
z∥x∥2 − 1

2
x⊤Ax

on the measure space (Rn, µ), where µ(dx) = (2π)−n/2dx. This Hamiltonian is related
to the resolvent Q(z) by the fact that PH ∼ N (0, Q(z)). The Hamiltonian H can
be written as the sum of the deterministic part H0 = 1

2z ∥x∥
2 and the stochastic part

H1 = −1
2x

TAx. The replication of H1 is

Hrep
1 =

1

4n

∑
a,b

⟨xa, xb⟩2

Next, we will compute the asymptotic equivalent of Hrep
1 . By formally applying Result

4.2 for the configuration space (Rn)r with macroscopic functions ⟨xa, xb⟩/n with 1 ≤
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a ≤ b ≤ r, also called the overlaps, the parametrized Hamiltonian Hrep
1 has the following

form

H̄rep
1 =

n

4

∑
a,b

(Qab)2 +
∑
a≤b

Q̂ab(⟨xa, xb⟩ − nQab)

where Qab’s are the constraint parameters and Q̂ab’s are the multipliers. Assuming that
the free energy function has a unique dominant extremal point (Q⋆, Q̂⋆). This uniqueness
implies that the extremal point must be invariant by permutations of replica indexes,
otherwise the points obtained from (Q⋆, Q̂⋆) by these permutations are also dominant
extremal points (note that the free energy function is invariant by replica permutations).
Therefore, the Qab⋆ has the following form, called replica symmetric ansatz

Qaa⋆ = q, Qab⋆ = s,

Q̂aa⋆ = q̂, Q̂ab⋆ = ŝ,

On the other hand, under the replica density P rep, for any a, b ∈ [r], the overlap ⟨xa, xb⟩/n
concentrates at Qab⋆ (Remark 4.5). With the replica symmetric ansatz, ⟨xa, xb⟩/n con-
centrates at q if a = b and at s if a ̸= b. This implies that for any two replicas
X1, X2 of the system, ∥X1∥2/n ≃ q and ⟨X1, X2⟩/n ≃ s (recall that the replica
density encodes information about the replicas of the system, see Remark 4.8). Since
⟨X1, X2⟩/n ≃ E[⟨X1, X2⟩/n] = 0, we have s = 0 and the ansatz for Q can be narrowed
down to

Qab = δabq

Moreover, for a ̸= b, Q̂ab must be 0, otherwise the overlaps between the two different
replicas is nonzero. So the ansatz for Q̂ is narrowed down to

Q̂ab =
1

2
δabq̂

Here we add the factor of 1/2 to make later computations more convenient. With this
ansatz, we have

H̄rep =
∑
a

1

4
nq2 +

1

2
q̂(∥xa∥2 − nq)

Dereplicating H̄rep
1 (Example 4.1), we obtain

H̄1 =
1

4
nq2 +

q̂

2
(∥x∥2 − nq)

Since H̄ = H0 + H̄1, we have

H̄ =
1

2
(q̂ + z) ∥x∥2 + 1

4
nq2 − 1

2
nqq̂
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We thus obtain the free energy of H̄ as nf(q, q̂), where

f(q, q̂) = −1

2
log(−q̂ − z) + 1

4
q2 − 1

2
qq̂

The saddle point of f(q, q̂) satisfies

q̂ = q

q =
1

−q̂ − z
,

from which we have

q2 + zq + 1 = 0

From the expression for H̄, the deterministic equivalent of Q(z) is

Q̄(z) = −(q̂ + z)−1I = qI

from which we obtain the limiting Stieltjes transform g(z) = q(z). From this we can
obtain the limiting spectral density

µ(dx) =
1

2π

√
4− x21x∈[−2,2] dx.

Remark 5.1. In the general replica symmetric computations, the following assumptions
are equivalent:

· The uniqueness of the dominant extremal point

· The replica symmetric ansatz

· The concentration of the overlaps

5.3.2 A model in wireless communication

We give here a more complicated example that is studied in the paper [25] and presented
in a more pedagogical way in Chapter 6 of the book [24]. Consider the following random
matrix

B =

K∑
k=1

MkM
⊤
k

where

Mk = R
1
2
kXkT

1
2
k

with the following hypothesis for k = 1, . . . ,K:
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1. Xk ∈ Rn×nk are matrices with independent entries following N (0, n−1
k ). Note that

in the original paper, the entries of Xk are complex Gaussian. To have a clean
presentation we consider the real Gaussian entries instead.

2. n, nk →∞, limn→∞ n/nk = ck. This hypothesis is weaker than that in the original
paper, so that the presentation is clearer.

3. Rk ∈ Rn×n, Tk ∈ Rnk×nk are deterministic positive definite matrices, satisfying
some tightness condition as n→∞.

Our purpose is to find the deterministic equivalent of Q(z) = (zI − B)−1. For z ∈ R
such that zI −B is positive definite, consider the following Hamiltonian

H(x, y1, . . . , yk) = −
1

2
z∥x∥2 − 1

2

K∑
k=1

∥yk∥2 +
K∑
k=1

x⊤Mkyk, x ∈ Rn, y ∈ Rnk

which is related to the studied model by the fact that PHx ∼ N (0, Q(z). H can be divided
into the deterministic part H0 and stochastic part H1 as

H0 = −
1

2
z∥x∥2 − 1

2

K∑
k=1

∥yk∥2

H1 =
K∑
k=1

x⊤Mkyk

The replication of H1 can be easily computed as

Hrep
1 =

∑
a,b;k

1

nk

(
xa⊤Rkx

b
)(

ya⊤k Tky
b
k

)
Define the following macroscopic functions

Qabxk =
xa⊤Rkx

b

n
Qabyk =

ya⊤k Tky
b
k

nk

The Hamiltonian associated with this change of variable is

H̄rep
1 =

∑
a,b,k

nQabxkQ
ab
yk +

∑
a≤b;k

Q̂abxk(x
a⊤Rkx

b − nQabx ) + Q̂abyk(y
a⊤
k Tky

b
k − nkQabyk)

With the following replica symmetric ansatz

Qabxk = δabqxk Q̂abxk =
1

2
δabq̂xk

Qabyk = δabqyk Q̂abyk =
1

2
δabq̂yk
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we have

H̄rep
1 =

∑
a;k

nqxkqyk +
1

2
q̂xk(x

a⊤Rkx
a − nqxk) +

1

2
q̂yk(y

a⊤
k Tky

a
k − nkqyk)

Dereplicate H̄rep
1 , we obtain

H̄1 =
∑
k

nqxkqyk +
1

2
q̂xk(x

⊤Rkx− nqxk) +
1

2
q̂yk(y

⊤
k Tkyk − nkqyk)

Since H̄ = H0 + H̄1, we have

H̄ = −1

2
x⊤
(
zI −

∑
k

q̂xkRk

)
x− 1

2

∑
k

y⊤k (I − q̂ykTk)yk +
n

2

∑
k

qxkqyk − qxkq̂xk − qykq̂yk

The free energy of H̄ is

−1

2
log det

(
zI −

∑
k

q̂xkRk

)
− 1

2

∑
k

log det(I − q̂ykTk) +
n

2

∑
k

qxkqyk − qxkq̂xk − qykq̂yk

Differentiate by qxk, qyk, we obtain q̂xk = qyk, q̂yk = ckqxk, from which we have the fixed
point equations

qxk =
1

n
TrRk

(∑
k′

qyk′Rk′ − zI
)−1

qyk =
1

nk
TrTk(ckqxkTk − I)−1

Also from the form of H̄, we obtain the following deterministic equivalent for the resolvent

(zI −B)−1 ↔
(
zI −

∑
k

qykRk

)−1

It is easy to check that this is the same result given in [25].

5.3.3 A model with variance profile

In this section, we will use the replica method to analyze a random matrix model with a
variance profile introduced in [49]. In this case, there are two natural choices of macro-
scopic functions, leading to different systems of fixed point equations. One choice recovers
known results, while the other leads to a system of equations that is easier to solve for
low-rank variance profiles, especially those generated by a profile function of class C1. In
hindsight, these two solutions can be proven to be equivalent through straightforward
algebraic manipulations. However, in the literature, the latter is only established for a
variance profile of rank one.

Let A ∈ Rm×n be a deterministic matrix whose columns and rows are uniformly
bounded in the Euclidean norm. Let Y be a m × n matrix with independent entries
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Yij ∼ N (0, Vij/n), where the variance profile V = (Vij) is a bounded sequence of positive
numbers. Let Σ = A + Y . We want to find deterministic equivalent of the following
matrices

Q(z) = (ΣΣ⊤ − zI)−1, Q̃(z) = (Σ⊤Σ− zI)−1

in the limit where m/n→ c ∈ (0,∞).
For t > 0, consider the following Hamiltonian

H(x, y) = −1

2
t(∥x∥2 + ∥y∥2)− x⊤Σy

As shown in Section 5.2, the deterministic equivalents for the resolvents of ΣΣ⊤ and Σ⊤Σ
can be computed from H. At first step, we write H as the sum of the deterministic part
H0 and the stochastic random part H1,

H0 = −
1

2
t(∥x∥2 + ∥y∥2)− x⊤Ay

H1 = −x⊤Y y.

The replication of H1 is

Hrep
1 =

1

2

∑
i,j

σ2ij
∑
a,b

xai y
a
j x

b
iy
b
j

for which there are two natural choices of macroscopic functions.

macroscopic functions based directly on the entries of the variance profile

We consider here a choice of parameters for the replicated Hamiltonian Hrep
1 that will

lead to the results given in [49]. We have

Hrep
1 =

1

2

∑
a,b

∑
j

yaj y
b
j

∑
i

σ2ijx
a
i x

b
i

=
1

2

∑
a,b

∑
j

yaj y
b
jx
a⊤Djx

b

where Dj = diag(σ2ij , i = 1, . . . ,m). Similarly,

Hrep
1 =

1

2

∑
a,b

∑
i

xai x
b
iy
a⊤D̃iy

b

where D̃i = diag(σ2ij , j = 1, . . . , n). Therefore Hrep
1 can be written in this symmetrical

form

Hrep
1 =

1

4

∑
a,b

∑
i

xai x
b
iy
a⊤D̃iy

b

+
1

4

∑
a,b

∑
j

yaj y
b
jx
a⊤Djx

b
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Define the following macroscopic functions

Qabxj =
1

n
xa⊤Djx

b Qabyi =
1

n
ya⊤D̃iy

b

With this change of variables, the equivalent of Hrep
1 has the following form

H̄rep
1 =

∑
i,a,b

n

4
Qabyix

a
i x

b
i +

∑
j;a≤b

Q̂abxj

(
xa⊤Djx

b − nQabxj
)

+
∑
j;a,b

n

4
Qabxjy

a
j y

b
j +

∑
j;a≤b

Q̂abyi

(
ya⊤D̃iy

b − nQabyi
)

With the replica symmetric ansatz

Qabxj = δabqxj Q̂abxj =
1

2
δabq̂xj

Qabyi = δabqyi Q̂abyi =
1

2
δabq̂yi,

H̄rep
1 can be simplified to

H̄rep
1 =

∑
a,i

n

4
qyi(x

a
i )

2 +
∑
a,j

1

2
q̂xj(x

a⊤Djx
a − nqxj)

+
∑
a,j

n

4
qxj(y

a
j )

2 +
∑
a,i

1

2
q̂yi(y

a⊤D̃iy
a − nqyi).

Dereplicate H̄rep
1 , we obtain

H̄1 =
∑
i

1

4
qyix

2
i +

∑
j

1

2
q̂xj(x

⊤Djx− nqxj)

+
∑
j

1

4
qxjy

2
j +

∑
i

1

2
q̂yi(y

⊤D̃iy − nqyi).

Since H̄ = H0 + H̄1, we have

H̄ = −1

2
x⊤Dψxx−

1

2
y⊤Dψyy − x⊤Ay −

n

2
⟨qx, q̂x⟩ −

n

2
⟨qy, q̂y⟩

where ψx, ψy are such that

Dψx = tI − 1

2
Dqy −

∑
j

q̂xjDj

Dψy = tI − 1

2
Dqx −

∑
i

q̂yiD̃i
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The free energy density of H̄ is

f = − 1

2n
log det

(
Dψx A
A⊤ Dψy

)
− 1

2
⟨qx, q̂x⟩ −

1

2
⟨qy, q̂y⟩

We will use the following identities for computing the derivatives of f :

det

(
Dψx A
A⊤ Dψy

)
= det(Dψx −AD−1

ψy
A⊤) detDψy

= det(Dψy −A⊤D−1
ψx
A) detDψx

Differentiating f by qxj , q̂xj , qyi, q̂yi, we obtain the fixed point equations

q̂xj = (1/2n) Tr(Dψy −A⊤D−1
ψx
A)−1Ej (5.7)

qxj = (1/n) Tr(Dψx −AD−1
ψy
A⊤)−1Dj (5.8)

q̂yi = (1/2n) Tr(Dψx −AD−1
ψy
A⊤)−1Ei (5.9)

qyi = (1/n) Tr(Dψy −A⊤D−1
ψx
A)−1D̃i (5.10)

where the matrix Ei is defined as having a value of one at (i, i) and zero elsewhere.
Compare (5.7) with (5.10), (5.8) with (5.9), we have

Dqy = 2
∑
j

q̂xjDj Dqx = 2
∑
i

q̂yiD̃i

Plugging these equations into the definition of Dψx , Dψy , we have

Dψx = tI −Dqy Dψy = tI −Dqx

From these and (5.8), (5.10), we obtain

t− ψyj = (1/n) Tr(Dψx −AD−1
ψy
A⊤)−1Dj

t− ψxi = (1/n) Tr(Dψy −A⊤D−1
ψx
A)−1D̃i

By computing the marginals of x and y in P H̄ , we have

(tI − t−1Σ⊤Σ)−1 ↔ (Dψx −AD−1
ψy
A⊤)−1

(tI − t−1ΣΣ⊤)−1 ↔ (Dψy −A⊤D−1
ψx
A)−1

From this we can obtain the result of [49] by simple changes of variables.

Ordered parameters based on SVD of the variance profile

Suppose that variance profile V = (σ2ij)i,j can be written as V =
∑K

k=1 ukv
⊤
k where uk, uk

are vectors in Rm and Rn. This can be obtained from the singular value decomposition
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of V =
∑

k λkũkṽ
⊤
k with unit vectors ũk, ṽk by setting uk =

√
λkuk, vk =

√
λkvk. The

Hamiltonian Hrep
1 can be written as

Hrep
1 =

1

2n

K∑
k=1

(xa⊤Dukx
b)(ya⊤Dvky

b)

With the following choice of macroscopic functions

Qabxk =
1

n
xa⊤Dukx

b Qabyk =
1

n
ya⊤Dvky

b

the replica computation (whose details are very similar to the previous computation)
gives

(tI − t−1ΣΣ⊤)−1 ↔ (Dψx −AD−1
ψy
A⊤)−1

(tI − t−1Σ⊤Σ)−1 ↔ (Dψy −A⊤D−1
ψx
A)−1

where ψx, ψy are vectors such that

Dψx = tI −
∑
k

qykDuk

Dψy = tI −
∑
k

qxkDvk

and qxk, qyk for k ∈ [K] is the solution of the following system of 2K equations

qxk = (1/n) TrDuk

(
Dψx −AD−1

ψy
A⊤
)−1

qyk = (1/n) TrDvk

(
Dψy −A⊤D−1

ψx
A
)−1

If the variance profile is given by σ2ij = f(i/m, j/n) for some function f ∈ C1([0, 1]2),
then it can be well approximated by a matrix with rank K = o(n). In this case, the fixed
point equations based on the SVD of the variance profile is much easier to solve.

5.3.4 A spiked model

Having computed the deterministic equivalents for various random matrix models, now
we show how spiked models can be studied from such results. We consider here a spiked
model presented in Theorem 2.13 and 2.14 of [27] and originally studied in [6]. Our pre-
sentation is quite different in the way that it is solely based on deterministic equivalents
with no further tricks. In this model, we consider a p × n matrix Z with independent
entries following N (0, 1/n). Let

M = (I + P )
1
2ZZ⊤(I + P )

1
2 ,
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where the matrix P is symmetric, low-rank with the spectral decomposition

P =

k∑
i=1

ℓiuiu
⊤
i

with unit vectors u1, . . . , uk and ℓ1 ≥ · · · ≥ ℓk >
√
c. The matrix M is a low-rank

perturbed version of the Marchenko-Pastur model. We are interested in the isolated
eigenvalues λ1 ≥ · · · ≥ λk of M as well as how the corresponding unit eigenvectors
v1, . . . , vk are related to u1, . . . , uk. We consider the setting where p, n→∞ and p/n→
c ∈ (0,∞) while k is fixed.

Define Q(z) = (M − zI)−1. Let C = I + P . It can be shown that (by the replica
method or any other tools)

Q(z)↔ Q̄(z) = −1

z
(I +m(z)C)−1,

where m is the solution of

z +
1

m
=

1

n
Tr(I +mC)−1C (5.11)

We will not provide the derivation of this result, as it can be done similarly to previous
examples.

The spectrum of C consists mainly of eigenvalue 1 with no more than k eigenvalues
that are different from 1. As n→∞, since the trace only depends on the eigenvalues of
a matrix, we can replace C by I in (5.11) and get

z +
1

m(z)
=

c

m(z) + 1
(5.12)

Recall that the isolated eigenvalues are also the singular points of Q̄(z), which are are
values zi such that 1 +m(zi) +m(zi)ℓi = 0. From this we obtain m(zi) = −1/(ℓi + 1).
From (5.12), we have zi = (ℓi+c)(ℓi+1)/ℓi. Since ℓi >

√
c, zi form a decreasing sequence,

so zi = λi, In summary,

λi =
(ℓi + c)(ℓi + 1)

ℓi
. (5.13)

As z → λi, we have

Q(z) ∼ viv
⊤
i

λi − z
, Q̄(z) ∼ uiu

⊤
i

−z(1 +m(z) +m(z)ℓi)
.

From u⊤i Qui ≃ u⊤i Q̄ui, we obtain

|u⊤i vi|2

λi − z
∼ 1

−z(1 +m(z) +m(z)ℓi)
, z → λi.
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Therefore

|u⊤i vi|−2 = lim
z→λi

z(1 +m(z) +m(z)ℓi)

z − λi
= λi(1 + ℓi)m

′(λi) (5.14)

where the second equality follows from 1 +m(λi) +m(λi)ℓi = 0. Differentiating (5.12)
by z, we obtain

m′(z) =
( 1

m(z)2
− c

(m(z) + 1)2

)−1

From this and m(λi) = −1/(ℓi + 1), we can compute m′(λi) in (5.14) and obtain

|u⊤i vi|2 =
ℓ2i − c
ℓ2i + cℓi

.

Bibliographical notes

We refer readers to [66] and [101] for textbooks on RMT with a theoretical flavor, focusing
on the joint density and microstructure of eigenvalues. More applied textbooks include
[110] and [24] for wireless communication, [4] for statistics, and [27] for machine learning.

The idea of computing the deterministic equivalent from the replica method is not
new and can be found in [19] and [89], where E[M ] is defined as the asymptotic equivalent
of M . The replica method also works for Haar matrices; in [89], many results from free
probability are derived using the replica method. Asymptotic equivalents for models
with Haar matrices can also be computed using tools from free probability [98] [111].

Spiked models have found various applications in classification in machine learning.
Recent literature includes [57] in the context of online learning, and [112] and [23] for
kernel puncturing. These papers aim to reduce the cost of classification with a small loss
in performance. In a different type of spiked model, [11] obtained a very general and
elegant result, using only elementary linear algebra, with some additional assumptions
on the low-rank perturbation.

It is interesting that non-linear models of random matrices can be written as a
weighted sum of a GOE matrix and a Marchenko-Pastur matrix, independent of each
other, as shown in [94], which generalizes the results of [84] and [12].

In this manuscript, we only consider the expansion up to O(r), where r is the number
of replicas. Higher-order terms can be used to compute the fluctuations of free energy,
as shown in [74] and [75] for the case of random matrices. It would be great if we could
integrate the fluctuation calculations into the framework of the deterministic equivalent.
On the other hand, using techniques from RMT, it is possible to compute free energy
fluctuations [48] [50], as well as fluctuations of the spikes [26].
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Chapter 6

Random convex optimization

Section 6.1 will introduce the Convex Gaussian min-max theorem (CGMT), a powerful
tool to study random convex optimization problems in high dimension. We will see that
although the theorem is stated and proved for min-max optimization problems, it holds
for much relaxed condition. Section 6.2 will give some applications of the CGMT. Section
6.3 we will derive the CGMT from the replica method. From this it is possible to derive
other CGMT-like results where the Gaussian matrix is replaced by other types of random
matrices.

6.1 Convex Gaussian min-max theorem

Convex Gaussian min-max theorem states that the following optimization problem

min
x

max
y

x⊤Wy + f(x, y) (6.1)

where x ∈ Rm, y ∈ Rn and W ∈ Rm×n with i.i.d. standard normal variables and f is a
real function that satisfies certain convexity conditions, is asymptotically equivalent as
m,n→∞ to the following problem

min
x

max
y
∥x∥⟨ξy, y⟩+ ∥y∥⟨ξx, x⟩+ f(x, y) (6.2)

where ξx ∼ N (0, Im) and ξy ∼ N (0, In) are independent. The independence is in the
sense that the optimized value and the statistical properties of the optimizers in the two
problems are asymptotically the same.

It turns out that the CGMT can be applied with much relaxed condition and still gives
correct result. Firstly it applies to not just min-max problems but also any extremization
problems that are not too crazy, i.e. having exponentially many extremal points achieving
roughly the same extremal values. Secondly, the domain over x, y does not need to be a
product of two compact space, it can also be any compact set in Rm × Rn.
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6.2 Some applications

6.2.1 Operator norm of a random matrix

Let A be a m × n matrix with independent standard Gaussian entries. The operator
norm of A is defined as

∥A∥ = max
x:∥x∥=1

∥Ax∥,

or equivalently

∥A∥ = max
∥x∥=1,∥y∥=1

x⊤Ay (6.3)

By CGMT, this problem is equivalent to

max
∥x∥=1,∥y∥=1

⟨ξx, x⟩+ ⟨ξy, y⟩ (6.4)

which has the maximum ∥ξx∥+ ∥ξy∥ ≃
√
m+

√
n. We thus obtain ∥A∥ ≃

√
m+

√
n.

6.2.2 Spiked GOE

We want to study the maximum eigenvalue and the corresponding eigenvector of

W + λuu⊤ (6.5)

where W is a GOE matrix of size n and u is a unit vector in Rn. These correspond to
the solution of the following optimization problem

max
∥x∥=1

x⊤Wx+ λ⟨u, x⟩2 (6.6)

Result 6.1. Let G be a Gaussian matrix with independent standard Gaussian entries.
If the following optimization problem has a unique extremal point

extr
x
x⊤Gx+ f(x), (6.7)

then it is equivalent to the following problem

extr
x

√
2⟨g, x⟩+ f(x)

where g ∼ N (0, In), in the limit n→∞.

Proof. The problem can be written as

extr
x=y

x⊤Gy + f(x)

and the result is obtained by applying the CGMT.
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As a consequence of this result and the fact that W d
= G+G⊤

√
2n

, the problem (6.6) is
equivalent to

max
∥x∥=1

2⟨ξ, x⟩+ λ⟨u, x⟩2 (6.8)

where ξ ∼ N (0, n−1In). By introducing Lagrange multipliers, we need to extremize

L(x, q, α, β) = 2⟨ξ, x⟩+ λq2 − α(∥x∥2 − 1) + β(⟨u, x⟩ − q)

Differentiating by x, we obtain

x̂ =
βu+ 2g

2α
(6.9)

and

extr
x
L = λq2 + α+ βq +

∥βu+ 2g∥2

4α

≃ λq2 + α+ βq +
4 + β2

4α

in which the last expression follows from ⟨g, u⟩ ≃ 0, ∥g∥ ≃ 1 and ∥u∥ = 1. Differentiating
the previous equation by q, α, we obtain

4α2 = 4 + β2

q =
β

2λ

and we obtain

extr
x,q,α
L =

√
β2 + 4− β2

4λ
(6.10)

so we need to extremize (in fact maximize) this function in β.
If λ < 1, then (6.10) has a unique minimum at β = 0. Equation (6.9) now becomes

x̂ = ξ, so the eigenvector x̂ behaves like a Gaussian noise uncorrelated to the signal u.
If λ > 1, the maximum is λ + 1

λ , achieved at β = 2
√
λ2 − 1. We thus obtain α = λ

and the eigenvector x̂ is related to the signal u with the relation

x̂ =

√
1− 1

λ2
u+

1

λ
ξ

As λ→∞ the signal part in this equation dominates and x̂ get closer to u. In particular,

lim
n→∞

⟨x̂, u⟩ =
√
1− 1

λ2
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6.2.3 Regression on Gaussian mixture

In this example we will recover the main result in [63]. Contrary to the statement that
CGMT is not powerful enough to deal with the model in this paper, the main result
can be derived by a straightforward application of CGMT. In the paper’s setting, we
want to classify the data that consists of N points in RD that comes from K Gaussian
clusters. The cluster k has Nk data points, centered at an unknown vector µk ∈ RD,
with covariance matrix Ck. In other words, if xki is the i-th data point in the cluster k,
then

xki = µk + C
1/2
k Zki (6.11)

where Zki ∼ N (0, ID) for all k, i. We consider the setting where Nk/N → ρk and
N/D → α. The classification is done by solving the following convex optimization
problem

min
w,b

∑
k∈[K], i∈[Nk]

ℓ
(
w⊤xki + b, ek

)
+R(w) (6.12)

where w ∈ RD, b ∈ R, ℓ is a loss function and R is for regularization. For simplicity we
assume e1, . . . , eK are real numbers instead of being multi-dimensional vectors as in the
original paper.

Analysis of the model with CGMT Plugging (6.11) into (6.12), we have

min
w,b

∑
k,i

ℓ
(
w⊤(µk + C

1/2
k Zik) + b, ek

)
+R(w)

It is more convenient to consider a more general problem of extremizing

min
w
L(µ⊤1 w, . . . , µ

⊤
k w,G1C

1/2
1 w, . . . , GkC

1/2
k w) +R(w)

where G1, . . . , Gk independent Gaussian matrices. Let yk = GkC
1
2
k w and mk = µ⊤k w. By

introducing the Lagrange multipliers, we need to extremize the following function

L(m1, . . . ,mk, y1, . . . , yk) +
∑
k

m̂k(µ
⊤
k w −mk)

+
∑
k

v⊤k (GkC
1
2
k w − yk)

By the CGMT, this problem is equivalent to extremizing

L(m1, . . . ,mk, y1, . . . , yk) +
∑
k

m̂k(µ
⊤
k w −mk)− v⊤k yk

+
∑
k

∥vk∥g⊤k C
1
2
k w + ∥C

1
2
k w∥h

⊤
k vk
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where gk, hk are standard Gaussian vectors. Let Q̂k = ∥vk∥2, Qk = ∥C
1
2
k w∥

2 = w⊤Ckw.
By introducing the Lagrange multipliers, we need to extremize the following function

L(m1, . . . ,mk, y1, . . . , yk) +
∑
k

m̂k(µ
⊤
k w −mk)− v⊤k yk

+
∑
k

√
Q̂k g

⊤
k C

1
2
k w +

√
Qkh

⊤
k vk

+
∑
k

1

2
V̂k(w

⊤Ckw −Qk)−
1

2
Vk(∥vk∥2 − Q̂k)

This is a quadratic function in each vk. Extremize over all vk and rearrange the terms,
we obtain the equivalent form

ψL(m,Q, V ) + ψR(m̂, Q̂, V̂ ) +
∑
k

1

2
VkQ̂k −

1

2
V̂kQk −mkm̂k (6.13)

where

ψL = extr
y
L(m1, . . . ,mK , y1, . . . , yK) +

∑
k

∥∥yk −√Qkhk∥∥2
2Vk

ψR = extr
w

R(w) + b⊤w +
1

2
w⊤Aw

and

b =
∑
k

m̂kµk +
√
Q̂kg

⊤
k C

1
2
k

A =
∑
k

V̂kCk

The equation (6.13) is the replica symmetric free energy obtain in equation the (168)
of [63]. In summary, we need to find the extremal point of (6.13), then substitute the
value of m̂, Q̂, V̂ into ψR. Then the minimizer of the original problem behaves like the
minimizer of ψR.

6.3 CGMT and replicas

In this section we will derive the CGMT for the case where extrx,y = maxx,y from the
replica method. Consider the following problem

max
(x,y)∈K

x⊤Wy + f(x, y)

where W is a m by n matrix with independent standard Gaussian entries. Consider the
following Hamiltonian

H(x, y) = βx⊤Wy + βf(x, y), (x, y) ∈ K,β > 0.
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H can be written as the sum of the deterministic part H0 = βf(x, y) and H1 = βxTWy.
We have

Hrep
1 =

β2

2

∑
a,b

⟨xa, xb⟩⟨ya, yb⟩

We make the following change of variables

Qabx = ⟨xa, xb⟩, Qaby = ⟨ya, yb⟩

The Hamiltonian that corresponds to this change of variables is

H̄rep
1 =

β2

2

∑
a,b

Qabx Q
ab
y +

∑
1≤a≤b≤r

Q̂abx (⟨xa, xb⟩ −Qab) + Q̂aby (⟨ya, yb⟩ −Qaby )

With the following replica symmetry ansatz

Qabx =

{
mx, a = b

qx, a ̸= b
, Q̂abx =

{
m̂x, a = b

q̂x, a ̸= b

and a similar y-ansatz, we have

H̄rep
1 =

β2

2
(rmxmy + r(r − 1)qxqy) +

∑
a

m̂x(∥xa∥2 −mx) + m̂y(∥ya∥2 −my)

+
∑
a<b

q̂x(⟨xa, xb⟩ − qx) + q̂y(⟨ya, yb⟩ − qy)

Dereplicate H̄rep
1 , we obtain

H̄1 =
β2

2
(mxmy − qxqy)−mxm̂x −mym̂y +

1

2
qxq̂x +

1

2
qy q̂y

+
√
q̂x⟨ξx, x⟩+

(
m̂x −

q̂x
2

)
∥x∥2 +

√
q̂y⟨ξy, y⟩+

(
m̂y −

q̂y
2

)
∥y∥2

where ξx, ξy are standard Gaussian vectors. Next we make the following rescaling

(qx,mx)→ (qx, qx + 2δx/β)

(q̂x, m̂x)→ (β2q̂x,
1

2
β2q̂x + βδ̂x)

and similarly for the y-parameters. The reason for this rescaling is that, as β approaches
infinity is that for x1, x2 i.i.d∼ PH , we expect that the Euclidean distance ∥x1 − x2∥ is of
order β−1/2, leading to mx − qx = O(β−1). On the other hand, the rescaling of (q̂x, m̂x)
ensures that the coefficients for the variable x in H̄1 are of order O(β).

Making these substitutions and using the fact that H̄ = H0 + H̄1, we have

β−1H ≃ f(x, y) + qxδy + qyδx − q̂xδx − qxδ̂x − q̂yδy − qy δ̂y
+
√
q̂x⟨ξx, x⟩+ δ̂x∥x∥2 +

√
q̂y⟨ξy, y⟩+ δ̂y∥y∥2 (6.14)
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as β → ∞. So the original problem is equivalent to extremizing (6.14). Differentiating
(6.14) by δx, δy, we obtain qx = q̂y and qy = q̂x, so we need to extremize

f(x, y) +
√
qy⟨ξx, x⟩+

√
qx⟨ξy, y⟩+ δ̂x(∥x∥2 − qx) + δ̂y(∥y∥2 − qy)

which is the same problem of extremizing

f(x, y) + ∥x∥ ⟨ξy, y⟩+ ∥y∥ ⟨ξx, x⟩.

Remark 6.1. Although the CGMT can be derived from the replica method, in the lit-
erature, for the same problem, the two methods obtain the results in drastically different
ways. The reason is that there are several ways of preparing a problem before doing the
calculations, which has a great impact on how the calculations is done afterwards. To
better illustrate this, let us take for example the following optimization problem

min
x∈Rn

L(Wx)

where W is a m×n Gaussian matrix (m < n) and L is a convex function. With the way
the CGMT and the replica method are normally used in the literature, one would have
rewritten the problem as

min
x

max
y

y⊤Wx− L̂(y)

where L̂ is the convex dual of L, before applying the CGMT, and would have considered
the distribution with density

P (x) ∝ e−βL(Wx),

before doing the replica calculations.
If we prepare the problem differently, by rewriting it as

extr
x,y,λ

L(y) + λ⊤(Wx− y)

before applying the CGMT, and by considering the joint density

P (x, y) ∝ e−βL(y)δ(y −Wx)

before doing the replica calculations, the two methods become very similar, leading the
to realization that the replica method can derive the CGMT as has been shown.

6.4 Random optimization with IRO matrices

With the replica method, we obtain a result similar to the CGMT for isotropically or-
thogonal random (IRO) matrices. In the same way that the CGMT is used to analyze
optimization problems involving Gaussian matrices, this result will allow us to study
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numerous optimization problems that involves IRO matrices, especially signal recovering
problems using IRO matrices for measurements. Certain random optimization problems
with IRO matrices can also be analyzed by the CGMT [103] with some trick that only
works for quadratic loss.

In this section, we will first state the main result and test it against a spiked model
involving square IRO matrices. Then we will develop some spherical integral identity
which allow us to derive the main result using replicas.

6.4.1 Result and consequences

Definition 6.1. The matrix O ∈ Rm×n with m ≤ n is isotropically random orthog-
onal (IRO) if it is sampled uniformly from the manifold OO⊤ = Im.

Remark 6.2. The IRO matrix O can be sampled by (GG⊤)−1/2G where G is a random
m × n Gaussian matrix with m ≤ n. When m = n, O is said to be sampled from the
Haar measure of the orthogonal group.

Remark 6.3. The IRO matrix is invariant in law by left and right multiplications by
orthogonal matrices.

Result 6.2. Let O ∈ Rm×n with m ≤ n be an IRO matrix. Then the following optimiza-
tion problem

extr
x,y

x⊤Oy + f(x, y)

where (x, y) is in some domain of Rm+n, is equivalent to the following problem when
n→∞

extr f(x, y) +

√
δ̂x⟨ξx, x⟩+

√
δ̂y⟨ξy, y⟩+

δx∥y∥2 + δy∥x∥2

1 +
√

1 + 4δxδy
− n

2
(δxδ̂x + δy δ̂y) (6.15)

where ξx, ξy are standard Gaussian vectors and the saddle point is computed for all vari-
ables in the expression.

Remark 6.4. If the term 4δxδy colored in red is removed, we recover the CGMT.

Remark 6.5. If the function f(x, y) is separable, meaning it can be expressed as the
sum of terms, each depending on only one coordinate, then the problem (6.15) is easy to
analyze, since it can be reduced to optimization problems in one variable. If f(x, y) can
be expressed in terms of separable functions, then we can reduce (6.15) to a separable
problem by using Lagrange multipliers.

When O is a square matrix, by setting the domain in Result 6.2 to {x = y}, we have

Result 6.3. Let O ∈ Rn×n an IRO matrix. The following problem

extr
x
x⊤Ox+ f(x)
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is asymptotically equivalent to

extr
x,δ,δ̂

f(x) +
√
δ̂⟨ξ, x⟩+ δ∥x∥2

1 +
√
1 + δ2

− n

4
δδ̂ (6.16)

Next, we will test Result 6.2, in particular Result 6.3, on the following spiked model.
Let O ∈ Rn×n be an IRO matrix. We consider the random matrix M = O+O⊤ + λuu⊤

where λ > 0 and u is a unit vector in Rn. Let λmax and umax be the maximum eigenvalue
of M and the corresponding unit eigenvalue. We will derive the following result

lim
n→∞

λmax =
√
λ2 + 4

lim
n→∞

(u⊤maxu)
2 =

λ√
λ2 + 4

First, note that λmax and umax are the maximum and maximizer of the following
optimization problem

max
∥x∥=1

λ⟨u, x⟩2 + 2x⊤Ox.

We have

max
∥x∥=1

λ⟨u, x⟩2 + 2x⊤Ox

↔ extr
δ,δ̂,∥x∥=1

λ⟨u, x⟩2 + 2
√
δ̂⟨ξ, x⟩+ 2δ

1 +
√
1 + δ2

− n

2
δδ̂, by Result 6.3

↔ extr
δ,δ̂,∥x∥=1

λ⟨u, x⟩2 + 2
√
δ̂⟨ξ, x⟩+ 2δ

1 +
√
1 + δ2

− 1

2
δδ̂ (a)

↔ extrλq2 + 2
√
δ̂⟨ξ, x⟩+ 2δ

1 +
√
1 + δ2

− 1

2
δδ̂ + q̂(⟨u, x⟩ − q)− µ(∥x∥2 − 1) (b)

↔ extrλq2 +
2δ

1 +
√
1 + δ2

− 1

2
δδ̂ − qq̂ + µ+

4δ̂ + q̂2

4µ
(c)

↔ extrλq2 +
2δ

1 +
√
1 + δ2

− qq̂ + 2

δ
+

1

8
δq̂2 (d)

↔ extrλq2 +
2
√
δ2 + 1

δ
− 2q2

δ
(e)

=
√
λ2 + 4

Explanations:

(a) By rescaling ξ ← ξ/
√
n and δ̂ ← nδ̂. Note that ξ now follows the law N (0, I/n).

(b) By Lagrange multipliers. Here we decouple the problem at the expense of adding
the variables µ, q, q̂ to the arguments of extremization.
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(c) By extremizing over x, we have x = 2
√
δ̂ξ+q̂u
2µ . The terms involving x becomes

∥2
√
δ̂ξ+q̂u∥2
4µ ≃ 4δ̂+q̂2

4µ since ∥ξ∥2 ≃ 1, ⟨ξ, u⟩ ≃ 0.

(d) By extremizing over δ̂, we obtain the equation δµ = 2. The terms involving δ̂
becomes 0.

(e) By simplifying the expression involving δ and by extremizing over q, we obtain the
equation q̂ = 4q

δ . The terms involving q becomes −2q2

δ .

In the last step, by differentiating (e) by δ we obtain q2 = 1√
1+δ2

. From (d) we have

δ = 2/λ, so q2 = λ/
√
λ2 + 4. Since q is the constraint parameter for u⊤maxu, we conclude

that

lim
n→∞

(u⊤maxu)
2 =

λ√
λ2 + 4

.

Remark 6.6. The limiting spectral density of O +O⊤ is given by

µ(dx) =
dx√
4− x2

, |x| < 2.

This can be proved from the fact that the limiting spectral density of O is uniform on
the unit circle and O⊤ = O−1. In contrast to the spiked GOE model, in this case there
is no phase transition: the top eigenvalue of the matrix O + O⊤ + λuu⊤ is isolated as
soon as λ > 0.

6.4.2 Derivation of the result

A Spherical integrals

We give here some results on spherical integrals that will be useful when dealing with
IRO matrices.

Lemma 6.1. Let u, v be independent uniform vector in
√
nSn−1. Define

S(t) := lim
n→∞

1

n
Eetu

⊤v = extr
λ
λ− 1− 1

2
log(λ2 − t2)

=
−1 +

√
1 + 4t2

2
− 1

2
log

(
1 +
√
1 + 4t2

2

)

Proof. We have S(t) = Z(t)/Z(0), where

Z(t) =

∫
Rn×Rn

dudv etu
⊤vδ(u⊤u− n)δ(v⊤v − n)
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Using the Fourier representation of Dirac delta function and stationary point method,
we obtain

Z(t) ∼ C(n, t)enI(t)

where C(n, t) is bounded by a polynomial in n and

I(t) =
1

2
extr
λ,µ

λ+ µ− log(λµ− t2)

From the asymptotic formula of Z(t), we have S(t) = I(t) − I(0), leading to the result
stated in the lemma.

Corollary 6.1. Let O ∈ Rm×n with m ≤ n be an IRO matrix and A is a matrix with
rank r ≤ m and singular values σ1, . . . , σr > 0. Then

lim
n→∞

1

n
logEenTrAO =

r∑
a=1

S(σa) (6.17)

where S is defined in Lemma 6.1. Note that the result does not depend on m.

Proof. Since the law ofO is invariant in law by left and right multiplications by orthogonal
matrices, the left hand side of (6.17) only depends on the singular values of A. Without
loss of generality, we can assume that A is a n×m matrix with entries σ1, . . . , σr on the
first r entries of the diagonal and zero elsewhere. The left hand side of (6.17) is therefore

lim
n→∞

1

n
log eσ1O11+···+σrOrr = lim

n→∞

1

n
log eσ1e

⊤
1 u1+...σre

⊤
r ur

where ea is the vector with 1 and the a-th position and zero elsewhere and u1, . . . , ur is
the first r rows of the matrix O. From this we can see why the left hand side of (6.17)
does not depend on m. Indeed, the law of the first r rows of O does not depends on m
as they can be generated from r independent standard Gaussian vectors in Rn.

The right hand side of the previous equation is unchanged if the vectors e1, . . . , er are
replaced by any set of r orthonormal vectors. Therefore it is unchanged if (e1, . . . , er) is
replaced by uniformly random orthonormal vectors v1, . . . , vr independent of u1, . . . , ur.
We thus conclude that the left hand side of (6.17) is equal to

lim
n→∞

1

n
logEeσ1u

⊤
1 v1+···+σru⊤r vr

where (u1, . . . , ur) and (v1, . . . , vr) are independent uniformly random sets of orthonormal
vectors in Rn. Using the same method of Lemma 6.1, we can obtained the result given
by the lemma.
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B A useful result on the singular values

We will need the following result for our replica computations in the next section.

Lemma 6.2. Let x1, . . . , xr ∈ Rm, y1, . . . , yr ∈ Rn and r ≤ min(m,n). Then the positive
singular values of

r∑
a=1

yaxa⊤

are the square roots of the eigenvalues of the matrix QxQy, where Qx =
{
⟨xa, xb⟩

}r
a,b=1

and Qy =
{
⟨ya, yb⟩

}r
a,b=1

Proof. Consider the matrices X,Y with columns (x1, . . . , xr) and (y1, . . . , yr). Then
y1x

⊤
1 + · · · + yrx

⊤
r = Y X⊤. The singular values of Y X⊤ are square root of the the

eigenvalues of Y X⊤XY ⊤, which has the same eigenvalues as X⊤XY ⊤Y = QxQy.

C Replica computation

Now we are ready to perform replica computations that derive Result 6.2. Let O ∈ Rm×n

with m ≤ n and IRO matrix. Consider the following optimization problem

max
x,y

x⊤Oy + f(x, y)

where f is a function such that this problem is not too crazy, avoiding scenarios in
which exponentially many local maxima achieve roughly the same local maximum. In
such case the replica symmetric ansatz can give the correct result. Here we provide the
calculations for the maximization problem but the result turns out to be valid for general
extremization problem. To study this problem, we consider the following Hamiltonian

H = βx⊤Oy + βf(x, y)

which can be separated into the deterministic part H0 and stochastic part H1 as

H0 = βf(x, y) H1 = βx⊤Oy

The replication of H1 is given by

Hrep
1 = logEeβnTr(AO)

where

A =
∑
a

yaxa⊤/n

Since the rank of A cannot be larger than r and S(0) = 0, by Lemma 6.1, we have

Hrep
1 ≃ n

∑
a

S(βσa) (6.18)
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where σ1, . . . , σr are the r largest singular values of A. By Lemma 6.2, these singular
values are square roots of the eigenvalues of the matrix QxQy, where

Qabx = ⟨xa, xb⟩/n, Qaby = ⟨ya, yb⟩/n (6.19)

We can write Hrep
1 = h({Qabx , Qaby }) for some function h. The Hamiltonian associated

with the macroscopic functions Qx, Qy is H̄rep
1 = (⋆) + (⋆⋆), where

(⋆) = h({Qabx , Qaby })

(⋆⋆) =
∑
a≤b

Q̂abx (⟨xa, xb⟩ − nQabx ) + Q̂aby (⟨ya, yb⟩ − nQaby )

with constraint parameters Qx, Qy and multipliers Q̂x, Q̂y. Here we abuse the notations
by using the same symbol for a macroscopic function and its corresponding constraint
parameters. We consider the following replica symmetric ansatz for the dominating
extremal point

Qabx =

{
mx, a = b

qx, a ̸= b
, Q̂abx =

{
m̂x, a = b

q̂x, a ̸= b

and a similar y-ansatz. With this ansatz, the term (⋆⋆) becomes∑
a

m̂x(∥xa∥2 − nmx) +
∑
a<b

q̂x(⟨xa, xb⟩ − nqx)

+
∑
a

m̂y(∥ya∥2 − nmy) +
∑
a<b

q̂y(⟨ya, yb⟩ − nqy)

The dereplication of (⋆⋆) is

dereplicate(⋆⋆) =
√
q̂x⟨ξx, x⟩+

(
m̂x −

q̂x
2

)
∥x∥2 +

√
q̂y⟨ξy, y⟩+

(
m̂y −

q̂y
2

)
∥y∥2

+ n
(1
2
qxq̂x +

1

2
qy q̂y −mxm̂x −mym̂y

)
We now consider the term (⋆) under the replica symmetric ansatz. We have

QxQy =
(
qx11

⊤ + (mx − qx)I
)(
qy11

⊤ + (my − qy)I
)
,

which is a polynomial of the matrix 11⊤. Since 11⊤ has eigenvalues r, 0(r−1) (here 0(r−1)

means 0 repeated r times), the singular values σa’s are√
(mx + (r − 1)qx)(my + (r − 1)qy),

√
(mx − qx)(my − qy)

(r−1)

From this and (6.18), we have

(⋆) = nS

(
β
√
(mx + (r − 1)qx)(my + (r − 1)qy)

)
+ n(r − 1)S

(
β
√

(mx − qx)(my − qy)
)
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By dereplicating (⋆), in this case taking ∂r=0, we have

dereplicate(⋆) = nβS′
(
β
√
(mx − qx)(my − qy)

)
qx(my − qy) + qy(mx − qx)
2
√
(mx − qx)(my − qy)

+ nS

(
β
√

(mx − qx)(my − qy)
)

Next we make the following rescaling

(qx,mx)→ (qx, qx + 2δx/β)

(q̂x, m̂x)→ (β2q̂x,
1

2
β2q̂x + βδ̂x)

and similarly for the y-parameters. The reason for this rescaling is that, as β approaches
infinity is that for x1, x2 i.i.d∼ PH , we expect that the Euclidean distance ∥x1 − x2∥ is
of order β−1/2, leading to mx − qx = O(β−1). On the other hand, the rescaling of
(q̂x, m̂x) ensures that the coefficients for the variable x in H̄1 are of order O(β). From
this rescaling, as β →∞, we have

β−1dereplicate(⋆) ≃ 2n(qxδy + qyδx)

1 +
√
1 + 16δxδy

β−1dereplicate(⋆⋆) =
√
q̂x⟨ξx, x⟩+ δ̂x∥x∥2 +

√
q̂y⟨ξy, y⟩+ δ̂y∥y∥2

− n(q̂xδx + qxδ̂x + q̂yδy + qy δ̂y)

From this and the fact that H̄ = H0 + H̄1, we have

β−1H̄ ≃ f(x, y) + 2n(qxδy + qyδx)

1 +
√

1 + 16δxδy
+
√
q̂x⟨ξx, x⟩+ δ̂x∥x∥2 +

√
q̂y⟨ξy, y⟩+ δ̂y∥y∥2

− n(q̂xδx + qxδ̂x + q̂yδy + qy δ̂y) (I)

As β → ∞, H̄ is the Hamiltonian for extremizing the expression given by (I), which is
equivalent to the problem of extremizing

f(x, y) +
√
q̂x⟨ξx, x⟩+

√
q̂y⟨ξy, y⟩+

2(δx∥y∥2 + δy∥x∥2)
1 +

√
1 + 16δxδy

− n(δxq̂x + δy q̂y) (II)

Indeed, by introducing the constraint parameters qx, qy and multipliers q̂x, q̂y for the
functions ∥x∥2, ∥y∥2 in (II) we obtain (I). By the following rescaling δx, δy ← 2δx, 2δy
and change of notation δ̂x, δ̂y ← q̂x, q̂y, we obtain the Result 6.2.

Bibliographical notes

CGMT has been used in hundreds of papers that analyze optimization-based algorithms,
such as PhaseMax [35] [93] and compressed sensing [104], just to name a few. It is also
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used to study theoretical models in machine learning with Gaussian data [71] [106] [54].
Models with slightly more realistic data [34] can be transformed into an equivalent form
ready to be analyzed by CGMT, thanks to the Gaussian equivalence principle [42] [41].

Techniques from RMT can be also applied to analyze random convex optimization
problems. For instance, this approach has been used to study problems in semi-supervised
learning [64] [65] and multitask learning [108], [107].
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Chapter 7

Bayes-optimal inference

In this chapter, we will study inference problems in Bayes-optimal setting. We will
first derive some elementary results on Gaussian channels which will be important for
studying inference problems in high dimension. One of the simplest such problem is the
factorization of a rank-1 symmetric matrix corrupted by noise. This problem is then
solved by the replica and cavity method, offering two complementing points of view.
The ideas involved in this simple problem can be applied to a more complicated model
of multitask learning on Gaussian mixtures, which is studied in details with simulations.

7.1 Bayes-optimal setting

In this chapter, we will be interested in inference problems in the so-called Bayes op-
timal setting. In this setting, we want to estimate a signal X from an observation Y ,
given the probability law PX that is used to generate X and the conditional law PY |X . It
makes sense in this setting to ask what the best estimator is, according to certain mea-
sure of performance. Some commonly used performance metrics include the probability
of exact recovery and the (normalized) mean squared error. The conditional law of X
given Y is called the posterior law, given by

P (x|Y ) =
PX(x)P (Y |x)

P (Y )
∝ PX(x)P (Y |x)

In the Bayes-optimal setting, the posterior law contains all the information that we can
extract from X given Y . If the posterior depends only on the variable x via some function
S(Y ), meaning that knowing S(Y ) provides full information about the posterior, then
we can estimate X from S(Y ) without any loss of information. For this reason, S(Y ) is
called the sufficient statistics for estimating X from Y .

7.2 Gaussian channels

Due to special properties of the Gaussian distribution, Gaussian channels are at the
meeting point of estimation theory, statistical physics, and information theory. More-
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over, they will be important to the study of some high-dimensional Bayesian inference
problems.

7.2.1 Overlaps, free energy and mutual information

Consider the following Gaussian channels

Yi =
√
λiXi + Zi, i = 1, . . . , n (7.1)

with inputs Xi, outputs Yi and SNRs λi. The vector X = (X1, . . . , Xn) is generated
from a known distribution PX and Zi are independent standard Gaussian noises. Let
X̂ = E[X|Y ]. The overlap of the signal Xi is defined as

OX,i(λ) := E[X̂iXi] = E[X̂2
i ] (7.2)

On the other hand, the posterior density of X given Y is given by

P (x|Y ) ∝ PX(x)eH(x,Y ) (7.3)

where

H(x,Y ) =
∑
i

√
λiYixi −

1

2
λix

2
i

In other words, P (dx|Y ) is the probability measure associated with the Hamiltonian
H(x,Y ) in which Y plays the role of random parameters, over the space Rn with under-
lying measure PX . Let FX(λ) = E[FH ] where FH is the free energy of the Hamiltonian
H. Abusing the terminology, we call FX(λ) the free energy of the Gaussian channels
(7.1). The free energy FX(λ) is related to the mutual information IX(λ) = I(X;Y ) by
the following formula (Remark 7.1)

IX(λ) + FX(λ) =
1

2

n∑
i=1

λiE[X2
i ] (7.4)

Recall that the I-MMSE formula states that

∂λiIX(λ) =
1

2
E[(Xi − X̂i)

2] (7.5)

From (7.4) and (7.5), we obtain the following relation between the overlaps and the free
energy

∂λiFX(λ) =
1

2
OX,i(λ) (7.6)

Remark 7.1. The formula (7.4) can be proved as follows. From (7.3), we have P (x|Y ) =

PX(x)eH(x,Y )−FH . From the definition I(X;Y ) = E log P (X|Y )
PX(X) , we obtain

I(X;Y ) = E[H(X,Y )]− E[FH ].

The term E[H(X,Y )], in which H denotes the Hamiltonian, not entropy, is exactly the
right hand side of (7.4). This proves the result.

Next we will consider some particular examples of Gaussian channels.
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7.2.2 Rademacher signal

Consider the Gaussian channel given by

Y =
√
λX + Z, (7.7)

where the Rademacher signal X takes values of 1 and −1 with equal probabilities and
the standard Gaussian noise Z is independent of X. We have

P (x|Y ) ∝ e
√
λY x, (7.8)

from which we obtain the posterior distribution as

P (x|Y ) =
e
√
λY x

2 cosh(
√
λY )

(7.9)

and the MMSE estimator X̂MMSE = E[X|Y ] as

X̂ =
∑
x=±1

xP (x|Y ) = tanh(
√
λY ). (7.10)

The overlap between the MMSE estimator and the signal is therefore

E[XX̂MMSE] = E[X tanh(
√
λ(
√
λX + Z)]

=
1

2
E[tanh(λ+

√
λZ)]− 1

2
E[tanh(−λ+

√
λZ)]

=
1

2
E[tanh(λ+

√
λZ)]− 1

2
E[tanh(−λ−

√
λZ)]

= E[tanh(
√
λZ + λ)] (7.11)

Next, the error P(X̂ ̸= X) for any estimator X̂ of X is minimized by the maximum-
likelihood estimator:

X̂ML = argmax
x=±1

P (x, Y )

= argmax
x=±1

e
√
λY x (7.12)

This gives us the maximum-likelihood estimator as:

X̂ML = sgn(Y ). (7.13)

The Bayes risk is therefore

P(X ̸= X̂ML) =
1

2
P(X = 1, X̂ML = −1) + 1

2
P(X = −1, X̂ML = 1)

=
1

2
P(X = 1, Y < 0) +

1

2
P(X = −1, Y > 0)

= P(X = −1, Y > 0)

= P(Z >
√
λ).
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7.2.3 Correlated Gaussian signals

Consider T Gaussian channels, where the signals X1, . . . , XT have a joint distribution
of N (0,M) and are independent of Gaussian noises Z1, . . . , ZT that are independently
distributed as N (0, 1). Specifically, we have:

Yt =
√
λtXt + Zt, t = 1, . . . , T.

Let X̂t = E [X|Y ] be the MMSE estimator forXt. Since (Xt, Y1, . . . , YT ) is a Gaussian
vector, X̂t is a linear combination of Y1, . . . , YT . Therefore

MMSEt := E[(Xt − X̂t)
2]

= min
βt∈RT

E
[
(Xt − ⟨βt,Y ⟩)2

]
.

This can be written as a quadratic optimization problem

MMSEt = min
βt∈RT

{
Mtt − 2aTt βt + βTt Aβt

}
with

at = (E [XtYs])
T
s=1 =

(√
λtMts

)T
s=1

= D
1/2
λ Met

A = (E [YsYs′ ])
T
s,s′=1 =

(√
λsλs′Mss′ + δss′

)T
s,s′=1

= I +D
1/2
λ MD

1/2
λ .

This optimization problem admits a unique minimizer βt = A−1at, from which we obtain

X̂ = MD
1/2
λ (I +D

1/2
λ MD

1/2
λ )−1Y (7.14)

MMSEt = [M(I +DλM)−1]tt (7.15)

E[XtX̂t] = [M −M(I +DλM)−1]tt. (7.16)

7.3 Rank-1 matrix factorization

In this section we will study with replicas the problem of factorizing a rank-1 symmetrical
matrix corrupted by noise. We consider here the following model

Y =

√
λ

n
x0x0⊤ + Z (7.17)

where x0 ∈ Rn is an unknown signal with i.i.d entries generated from the a known prob-
ability distribution PX with finite second moment and the noise Z is standard Gaussian,
independent of the signal x0. We want to infer the vector x0 from the observation Y .
The fundamental object of our study is the posterior P (x|Y ) which contains all the
information about x0 that can be extracted from Y .
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Consider the measure space (Rn, P⊗n
X ). Using the result from Example 4.4 with

ϕ(x) =
√

λ
nxx

⊤, since ⟨ϕ(x), ϕ(y)⟩ = λ
n⟨x, y⟩

2 the posterior P (x|Y ) has the following
replicated Hamiltonian

Hrep =
λ

n

∑
0≤a<b≤r

⟨xa, xb⟩2

Note that Hrep is a Hamiltonian in variables x1, . . . , xr, not including x0. The Hamilto-
nian corresponding to the macroscopic functions ⟨xa, xb⟩/n, 0 ≤ a < b ≤ r is

H̄rep = λn
∑

0≤a<b≤r
Q2
ab +

∑
0≤a<b≤r

Q̂ab(⟨xa, xb⟩ − nQab)

with the constraint parameters Qab’s and multipliers Q̂ab’s. In the replica symmetric
ansatz, Qab = q and Q̂ab = q̂ for all 0 ≤ a < b ≤ r. This ansatz encodes the assumption
that if x1, x2 are replicas of the system, then ⟨x0, x1⟩ ≃ ⟨x1, x2⟩, which basically says
that these inner products concentrates, as the equality of their concentrated values follows
from the fact that E[⟨x0, x1⟩] = E[⟨x1, x2⟩]. With the replica symmetric ansatz, we have

H̄rep = λn
r(r + 1)

2
q2 +

∑
0≤a<b≤r

q̂(⟨xa, xb⟩ − nq)

Again, with Example 4.4, we can dereplicate H̄rep and obtain

H̄ =
nλq2

2
− nqq̂

2
+ ⟨q̂x0 +

√
q̂ξ, x⟩ − 1

2
q̂ ∥x∥2 (7.18)

where ξ ∼ N (0, In). The free energy of H̄ is given by nf(q, q̂), where

f(q, q̂) ≃ 1

2
λq2 − 1

2
qq̂ + FX(q̂)

where FX(q̂) is the free energy of the Gaussian channel with signal X ∼ PX and SNR q̂.
The stationary point (q⋆, q̂⋆) of F satisfies the following equations

q̂ = 2λq

q = 2F ′
X(q̂) = OX(q̂)

where OX(q̂) is the overlap of the Gaussian channel with signal X ∼ PX and SNR q̂.
We conclude,

· from (7.18), that the posterior law P (x|Y ) is asymptotically equivalent to the
posterior law of the following Gaussian channel

Y =
√
2λq⋆x

0 + ξ

where ξ ∼ N (0, In) is independent of x0. In particular, if q⋆ = 0, the problem is
equivalent to estimating the signal x0 from pure noise, so the signal is unrecoverable.

· If x1 is drawn from from the posterior P (x|Y ), then

⟨x0, x1⟩/n ≃ q⋆.
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7.4 Cavity argument

We present here a useful lemma inspired by the cavity method in statistical physics.
This result will be used to analyze the matrix factorization problem in Section 7.3 from
another perspective. It will also be used to analyze the problem of multitask learning on
Gaussian mixture model in Section 7.5. First, we need some definitions:

Definition 7.1. The inference of X ∈ RD from the data Y satisfies the replica sym-
metric property with overlap q if in the limit D →∞,

⟨X,X1⟩, ⟨X1,X2⟩, ⟨X, X̂⟩, ∥X̂∥2 (7.19)

all converge to the same limit q, where X1,X2 are sampled independently from the
posterior of X given Y , and X̂ = E[X|Y ].

Remark 7.2. The replica symmetric property basically says that the quantities in (7.19)
concentrate around their means. The fact that their concentration values are the same
follows from

E⟨X,X1⟩ = E⟨X1,X2⟩ = E⟨X, X̂⟩ = E∥X̂∥2.

The main result of this section is the following.

Lemma 7.1. Suppose we want to estimate the signal X ∈ R generated by PX from the
data Y that can be split into two parts as follows. The first part, denoted by Y x, consists
of the following observation on X,

Y x = XU +Z, (7.20)

where

· U ∈ RD is unknown with prior PU ,

· Z ∼ N (0, ID),

· X, U and Z are independent.

The second dataset, denoted by Y u, is independent of X. Suppose that the law U |Y u

has the replica symmetric property with overlap q. Then in the limit D →∞,
i) The posterior of X given Y is asymptotically equivalent to the law P̄ defined as

P̄ (dx|Y )

PX(dx)
∝ exp

(
x⟨Y x, Û⟩ − 1

2
qx2
)

(7.21)

where Û = E[U |Y ]. As a consequence, the statistics S = ⟨Y x, Û⟩ is asymptotically
sufficient for estimating X from Y .

ii) S/√q converges in law to √qX + ξ, where ξ follows standard normal distribution
and is independent of X. As a result, estimating X from Y is asymptotically equivalent
to estimating X from the output of a Gaussian channel with SNR q.
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Proof. Since X is independent of U and Y u, we have

P (dx|Y )

PX(dx)
=

∫
P (du|Y u)P (x|u,Y x)

∝
∫
P (du|Y u) exp

(
x⟨Y x,u⟩ − 1

2
x2∥u∥2

)
:= A

Define

B = exp
(
x⟨Y x, Û⟩ − 1

2
qx2
)

(7.22)

To prove (i), we will show that E[(A−B)2]→ 0 in the high-dimensional limit D →∞ for
any value of x. To do this, it is sufficient to show that E[A2], E[B2] and E[AB] converge
to the same limit, using the replica symmetric property of U |Y u. Indeed, E[A2] can be
written as

E exp
( 2∑
a=1

x⟨Y x,Ua⟩ − 1

2
x2∥Ua∥2

)
where U1,U2 are sampled independently from U |Y u. Substituting Y x = XU +Z into
the previous expression, we obtain

E exp
( 2∑
a=1

xX⟨U ,Ua⟩+ x⟨Z,Ua⟩ − 1

2
x2∥Ua∥2

)
Taking the expectation over Z and using the fact that E[e⟨a,Z⟩] = e

1
2
∥a∥2 , we have

E[A2] = E exp
( 2∑
a=1

xX⟨U ,Ua⟩+ x2⟨U1,U2⟩
)

It follows from replica symmetric property of U |Y u that

lim
D→∞

E[A2] = E exp
(
2qXx+ qx2

)
(7.23)

To calculate the limits of E[AB] and E[B2], we follow exactly the same procedure, which
involves substituting the definition of Y x, taking the expectation over Z, and using the
replica symmetric property. This leads us to the same limit as (7.23), thereby proving
(i).

It follows immediately from the asymptotic equivalence between P (x|Y ) and P̄ (x|Y )
that the statistics ⟨Y x, Û⟩ is asymptotically sufficient for estimating X from Y . This
means that all of the relevant information aboutX can be extracted from ⟨Y x, Û⟩ instead
of from Y , without any loss of information in high dimensional limit.
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Now we have

⟨Y x, Û⟩ = ⟨XU +Z, Û⟩ = X⟨U , Û⟩+ ⟨Z, Û⟩.

Given that ⟨Z, Û⟩ ∼ N (0, ∥Û∥2) and Z is independent of X, in the limit D →∞, this
inner product converges in distribution to √qξ, where ξ is a standard normal random
variable independent of X. Therefore

⟨Y x, Û⟩
√
q

d−→ √qX + ξ, D →∞,

which proves (ii) since the left hand side of the last expression is also a sufficient statistics
of X given Y .

Next we will use Lemma 7.1 to give another analysis of the matrix factorization
problem in Section 7.3. We rewrite the model here as

Y =

√
λ

n
XX⊤ +Z (7.24)

where X,Y ,Z replace x0, Y, Z in the previous notation. The reason for this change of
notations is that, with the cavity method we will need to look into the coordinates, so it
becomes necessary to distinguish between vectors and scalars.

We assume that the estimation of n−1/2X given Y satisfies the replica symmetry
property with overlap q. This is the same assumption made by the replica symmetric
ansatz. We will use Lemma 7.1 to derive the fixed point equation for q

Let i ∈ [n] be fixed. The cavity method involves dividing the data Y into two parts.
The first part, denoted as Y 1, includes the observations related to Xi, which can be
compressed into √

2λ

n
XiX−i + Z̃i (7.25)

where X−i = (Xj)j ̸=i and Z̃i is a standard Gaussian vector. The SNR λ is multiplied by
2 because each XiXj with j ̸= i appear in two channels (Proposition 2.2). We ignore the
channel with X2

i since it contains an insignificant amount of information related to Xi.
The second part consists of the remaining data Y 2 = Y \Y 1. Since the dataset Y 1 only
contains an insignificant amount of information relevant to X−i, estimating X−i from Y
is essentially the same as estimating it from Y 2. Therefore, n−1/2X−i|Y 2 also satisfies
the replica symmetric property with overlap q. It is easy to check that the Lemma 7.1
is applicable for this model, with Xi and

√
2λ/nX−i respectively playing the role of X

and U in the lemma. As a result, estimating Xi from Y is asymptotically equivalent to
estimating it from the output of a Gaussian channel with SNR 2λq.

For distinct i, k ∈ [n], it can be shown that Z̃i and Z̃k are independent. Therefore,
the noises ξi, ξk of the equivalent Gaussian channels associated with Xi, Xk are indepen-
dent (see the proof of Lemma 7.1-ii). Therefore X̂i, which depends on ξi and Xi, are
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asymptotically independent for all i. By the law of large number

q = lim
n→∞

1

n

n∑
i=1

X̂2
i = OX(2λq) (7.26)

which is exactly the same fixed point equation obtained by the replica method. Note that
fixed point equations may not uniquely determine overlaps, as they can have multiple
solutions. However, rigorous methods ([8]) demonstrate that overlaps can be uniquely
determined as the minimax point of a certain function.

7.5 Multitask learning on Gaussian mixtures

In this section based on our paper [78], we will study in details a simple model of multitask
learning. Although the main results can be derived by replica computations similar to
the example given in Section 7.3, we will give a more rigorous derivation of these results
based on the cavity method.

Multitask learning (MTL) is a machine learning method in which multiple tasks are
learned simultaneously. It can facilitate knowledge transfer between tasks and can lead
to more informative data representation [92]. Although learning from related tasks can
help disseminate useful information learned from one task to other tasks, the presence of
unrelated tasks can also be beneficial. With the prior knowledge that two given tasks are
unrelated, the algorithm can learn to ignore irrelevant features of the data distribution,
resulting in better data representation [80].

We will propose a simple model of MTL based on Gaussian mixtures that focuses on
capturing the transfer of knowledge between tasks, leaving out the data representation
aspect. This model extends the semi-supervised learning model studied in [58], which
examines the added value of unlabeled data in a one-task classification. We consider
here instead multiple classification tasks, for which the data in each task are partially
labeled and come from two classes. Thanks to the simplicity of our model, we can
define the correlation between two tasks as a number in [−1, 1]. We are interested in
the performance gain when correlated tasks are learned together versus when they are
learned separately, assuming the best algorithm is used. This leads to the concept of
Bayes risk, defined as the smallest possible probability of misclassifying a new data point
not from the training dataset. Despite the randomness of data, in the limit where both
the quantity and the dimensionality of the data are large with a fixed ratio, the Bayes
risk converges towards a deterministic value.

We will derive an exact formula for the asymptotic Bayesian risk, from which we will
analyze the role of task correlations and how they interact with other elements of the
model, such as the proportion of labeled data in each task. It is well known that unsu-
pervised learning on a single task with Gaussian mixture data leads to a phase transition
that separates the high and low noise regimes. We demonstrate that phase transition
persists to the case of multitask and study how it is affected by task correlations. In the
context of source task - target task, we identify the conditions in which the source task is

87



most beneficial to the target task. Finally, we will derive a simple algorithm that achieves
the optimal performance for supervised multitask learning on Gaussian mixtures.

7.5.1 Model

We consider T classification tasks, where task t consists of Nt data points in RD. The
i-th data point in task t, denoted by Y ti, is given by

Y ti = VtiU t + σtZti (7.27)

where σt > 0. The random variables V ,U ,Z are independent, with

Vti
i.i.d∼ U({−1, 1}),

Zti
i.i.d∼ N (0, ID),

and U1, . . . ,UT are chosen uniformly randomly on the unit sphere SD−1, conditioned
on the event

⟨U t,U t′⟩ = Ctt′ , t ̸= t′.

The matrix C = (⟨U t,U t′⟩)Tt,t′=1 is called the task-correlation matrix. It follows from
the definition that C is a positive definite matrix with diagonal entries all equal to 1.

In other words, the data in task t comes from two classes corresponding to two
Gaussian distributions centered at ±U t with the same covariance σ2t ID. The positions of
the centers are not known and can only be estimated from the data. The class of a data
point Y ti is indicated by Vti, so each data point has probability 1/2 of belonging to each
class. A data point is said to be labeled if we know which class it belongs to, otherwise
it is unlabeled. Independently of all other random variables, each data point in task t
is labeled with probability ηt. The cases ηt = 1 and ηt = 0 correspond to supervised
and unsupervised learning. Ctt′ measures the correlation between tasks t and t′. The
parameters λt = 1/σ2t are called the signal to noise ratio (SNR). As the SNR increases,
the two classes separate and classification is easier. We study the model in the setting
where the dimension and the amount of data in each task tends to infinity at a fixed rate
αt = limD→∞Nt/D, called the sampling ratio. Note that the model for semi-supervised
learning studied in [58] corresponds to the case T = 1.

We assume to have access to the dataset Y = (Y ti), the labels as well as model
parameters (σt), (ηt), (αt) and C1. Our job is to use that available information to classify
a new data point Y new in any given task t

Y new = VnewU t + σtZnew (7.28)

We are interested in the minimal classification error, i.e. the Bayes risk

inf
V̂

P(V̂ ̸= Vnew) (7.29)

where the infimum is taken over all estimators of Vnew.
1In fact, σ and C can be estimated with vanishing errors as D → ∞, given that a positive fraction

of labeled data is available in each task (Section F) .
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7.5.2 Main result

We make the following assumption for our model:

Assumption. σ−1
t U t|Y and N−1/2

t V t|Y satisfies the replica symmetric property for all
t ∈ [T ] with the overlaps denoted by qut and qvt respectively.

Our main result is as follows.

Result 7.1. i) Under the setting of the model, as D →∞, the Bayes risk converges to

1− Φ (
√
qut) ,

where Φ(t) = 1√
2π

∫ t
−∞ e−x

2
dx

ii) The overlaps qut, qvt satisfies the following equations

qut = [M −M(I +DM)−1]tt (7.30a)
qvt = ηt + (1− ηt)E[tanh(

√
qutZ + qut)] (7.30b)

where Z ∼ N (0, 1) and

M = {Ctt′/σtσt′}Tt,t′=1

D = diag{αtqvt}Tt=1

Remark 7.3. When qut = 0, the Bayes risk of task t is equal to 0.5, which corresponds
to the level of classification error of a random guess. In this case, we say that the
classification of task t is impossible. On the other hand, if qut is positive, the classification
of task t is said to be possible.

Remark 7.4. The fixed point equations (7.30a) and (7.30b) may not uniquely determine
the overlaps. Specifically, for unsupervised learning with high SNR, two solutions exist:
the zero solution is unstable while the non-zero solution is stable, and the stable solution
is naturally chosen as overlaps. In other cases, there is only one solution.

We can perform a sanity check of the result by considering the following special cases:
if the similarity between any two tasks is zero, the result implies that MTL has the same
asymptotic Bayes risks as learning task separately, which is obvious since the data from
different tasks are independent, while if σt = σ and Ctt′ = 1 for all t, t′, i.e. the data
distributions are identical for all tasks, the asymptotic Bayes risks of all tasks are equal
to that of a single task with parameters α =

∑
t αt and αη =

∑
t αtηt.

7.5.3 Consequences

We present in this section some implications of the main result.
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A Supervised learning.

For supervised learning with only one task, the minimal classification error of a new
data point Y new is achieved by the estimator V̂new = sgn(⟨Y new, Ȳ ⟩), where Ȳ =
N−1

∑
i ViY i [58]. In the multitask case, if Y new is a new data point in task t, the

following algorithm achieves the optimal performance:

1. Compute

Ȳ t =
1

Nt

Nt∑
i=1

VtiY ti

2. Compute

Ỹ t =
T∑
s=1

atsȲ s

where A = (ats)
T
t,s=1 = MDα(I +MDα)

−1.

3. The asymptotic Bayes risk is achieved by

V̂new = sgn(⟨Y , Ỹ t⟩). (7.31)

We can see that the optimal estimator for multiple tasks modifies the optimal estimators
for separated tasks Ȳ t by taking into account the correlations between tasks as well as
their levels of difficulty and the relative sizes, measured by C, (σt) and (αt) respectively.
Interestingly, this optimal algorithm coincides with the method proposed in [?] using a
different approach.
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Figure 7.1: Bayes risk vs performance of the asymptotic optimal algorithm. α1 = α2 = 1,
σ1 = 1, σ2 = 0.5, D = 1000.
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B Unsupervised learning and phase transition.

A particularly interesting behavior that only occurs in the case of unsupervised learning is
phase transition. One of the most well-known example of this phenomenon is BBP phase
transition [5] which concerns a single learning task with limD→∞N/D = 1. When λ =
1/σ2 ≤ 1, no estimator can achieve a smaller classification error than 0.5. In other words,
the classification is objectively impossible since the two classes are statistically identical.
On the other hand, we say that a task is possible if one can obtain a classification error
smaller than 0.5. It turns out that phase transition persists to the case of multitask.
Fig. 7.2 shows the performance of task 1 in terms of SNRs in the case of two tasks with
N1 = N2 = D and correlation c = 0.7. The classification is impossible in the region
delimited by the black curve.
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Figure 7.2: Bayes risk of Task 1 in terms of SNR of each task. Two tasks are unsupervised,
with N1 = N2 = D and correlation c = 0.7. The classification is impossible in the region
delimited by the black curve. The impossible region is identical for two tasks.

The simulation also shows that the impossible regions are identical for both tasks. In
other words, two correlated tasks are either possible or impossible. This observation can
be explained by the following result:

Result 7.2. If the tasks are connected, meaning that for any two tasks t and t′, there
is a sequence of tasks t1, . . . , tk with k ≥ 0 such that Ctt1 , Ct1t2 . . . Ctkt′ ̸= 0, then they
are either all possible or all impossible.

Note that phase transition disappears as soon as a positive proportion of labeled
data is available, since supervised learning restricted on labeled data already produces a
non-trivial performance.

In the case of two tasks with N1 = N2 = D, the region of impossible classification is
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given by {
(λ1, λ2) ∈ [0, 1]2 : (1− λ21)(1− λ22) ≥ c4λ21λ22

}
(7.32)

as shown in Figure 7.3. As the task correlation c increases from 0 to 1, this region shrinks
from the unit square [0, 1]2 to a quarter of a disk.
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Figure 7.3: The region of impossible classification shrinks as the task correlation in-
creases. When two tasks are uncorrelated (c = 0), the region of impossible classification
is the whole square [0, 1]2. As c increases from 0 to 1, the impossible region shrinks from
the unit square [0, 1]2 to a quarter of a disk.

Another special case where an explicit formula for the impossible region can be ob-
tained is when there are T tasks with N1 = · · · = NT = D, with correlation c > 0
between any two of them, and λt = λ for all t. It can be shown that the classification is
impossible whenever

λ ≤ 1√
1 + (T − 1)c2

. (7.33)

C Semi-supervised learning.

To reduce the number of model parameters in the simulation, we here focus on a specific
setting consisting of one source task and one target task. The source task is comparatively
easy: it can be fully labeled, have a high SNR, or have a larger dataset. We want to see
how the target task benefits from the source task.

Figure 7.4 illustrates the effect of task correlation. The task correlation c ranges
from 0 to 1. Note that the correlations c and −c are essentially the same, since one
can be transformed to another by switching labels in one task. The first task (target
task) is composed of a small dataset (α1 = 0.1) without label (η1 = 0), while the second
task (source task) consists of a fully labeled dataset (η2 = 1) with twice as much data
(α2 = 0.2). If two tasks are highly correlated (c ≳ 0.5), the performance of the target
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task can be significantly improved. When c is near zero, the decrease in Bayes risk is
slow, in order of O(c2). Note that two tasks have the same SNR (λ1 = λ2 = 4), so
when c = 1 they have the same data distribution and can be combined into a single task,
yielding a identical performance.
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Figure 7.4: Two-task setting: Bayes risks as a function of the task correlation c, with
proportions of labeled data η1 = 0, η2 = 1, oversampling ratios α1 = 0.1, α2 = 0.2 and
SNRs λ1 = λ2 = 4. When two tasks are highly correlated (c ≳ 0.5), the performance of
task 1 is significantly improved.

In Figure 7.5, we compute the rate of error reduction in the target task as a result
of transferring information from the source task. We found that MTL is most effective
when the SNR of the target task is near the phase transition and is smaller than that of
the source task, while the proportion of labeled data is low.

Intuitively, there are three reasons for this. Firstly, the labeled data from the target
task is more valuable than that of source task, even in this case where two tasks are
highly correlated (c = 0.8). This leads to lower gain when the proportion of labeled data
in the target task is high. Secondly, if the source task is more difficult than the target
task, i.e. the SNR is higher in the target task, then the source task is not very useful.
Finally, near the phase transition where the target task struggles, labeled data from the
source task can offer valuable help.

7.5.4 Derivation of the results

A Reformulation as a tensor model

Let Ũ t =
√
DU t, it can be shown (Remark 7.5) that in the limit D → ∞, Ũtj are

asymptotically Gaussian with covariance

E[ŨtjŨt′j′ ] = Ctt′δjj′ (7.34)
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Figure 7.5: Percentage of reduction of Bayes risk in term of SNR and proportion of labeled
data of the target task, with parameters c = 0.8, N1 = N2 = D, λ1 = 2, 0 ≤ λ2 ≤ 3,
η1 = 1, 0 ≤ η2 ≤ 1.

Let W t =
√
DU t/σt, the original model can be written as a collection of one-dimensional

Gaussian channels

Yijt =
1√
D
VtiWtj + Ztij (7.35)

for 1 ≤ t ≤ T, 1 ≤ i ≤ Nt, 1 ≤ j ≤ D. As D → ∞, the random variables Wtj are
asymptotically Gaussian with covariance

E[WtjWt′j′ ] =Mtt′δjj′ (7.36)

where Mtt′ = Ctt′/(σtσt′).
Next, the information conveyed by the labels can be absorbed into the prior distri-

bution of V . Specifically, if the value of Vti is unknown, then its prior remains uniform
over {−1, 1}. Otherwise, if it is known that Vti = 1, then the prior of Vti is given by the
density δ(v − 1). Note that in this case, the posterior coincides with the prior.

The replica symmetric property of σ−2
t U t|Y implies that D−1/2W t|Y also has the

replica symmetric property with overlap qut.
In summary, the problem can be cast as a tensor model, whereby the objective is to

estimate the signals V t and W t based on prior information regarding these vectors and
noisy observations of the tensor products V t ⊗W t.

Remark 7.5. The claim that Ũ t’s are asymptotically Gaussian vectors with correlation
(7.34) can be seen as a direct consequence of Gibbs principle presented in Chapter 4.
Another way to see this is from how the vectors U t’s are generated. To generate these
vectors according to the prior distribution specified in the model, we follow these steps:
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1. Generate Z1, . . . ,ZT
i.i.d∼ N (0, ID).

2. Orthonormalize Z1, . . . ,ZT using Gram-Schmidt process, we obtain orthonormal
vectors S1, . . . ,ST

3. (U1, . . . ,UT ) = (S1, . . . ,ST )C
1/2, where (U1, . . . ,UT ) denotes the D× T matrix

with columns U1, . . . ,UT .

In the high dimensional limit, the vectors Z1, . . . ,ZT are asymptotically orthogonal,
each with norm ≃

√
D. Therefore, the orthonormalizing step produces approximately

D−1/2(Z1, . . . ,ZT ). The claim follows from this and step 3.

B Fixed point equations

To obtain the fixed point equations, we follow the same approach as the example pre-
sented in Section 7.4. We assume that the proportion of unlabeled data is positive in
any task. By taking the limit of these proportions to zero, we can derive the result for
the supervised case. Fix t ∈ [T ] and i ∈ [Nt] such that Vti is unknown. We divide the
data Y into two parts: Y 1 consisting of the observations concerning Vti, namely

Y ti =
1√
D
VtiW t +Zti

and the remaining data Y 2 = Y \Y 1. Since the dataset Y 1 only contains an insignificant
amount of information relevant to W t, estimating W t from Y is essentially the same
as estimating W t from Y 2. Therefore, D−1/2W t|Y 2 also satisfies the replica symmetric
property with overlap qu. It is easy to check that the Lemma 7.1 is applicable, with
Vti and D−1/2W t respectively playing the role of X and U in the lemma. As a result,
estimating Vti from Y is asymptotically equivalent to estimating the signal Vti from the
output of the Gaussian channel with SNR qut. For distinct i, k ∈ [Nt], since Zti and
Ztk are independent, it can be seen from the proof of Lemma 7.1-ii that the noises ξi
and ξk of the equivalent Gaussian channels associated with Vti, Vtk are also independent.
Therefore Vti, which depends on ξi and Vti, are asymptotically independent for all i such
that Vti is unlabeled. By the law of large number,

rvt := lim
Nt→∞

1

(1− ηt)Nt

∑
i

V̂ 2
ti

= Ov(qut) (7.37)

where the sum is over all i ∈ [Nt] such that Vti is unlabeled and Ov is the overlap function
of the Gaussian channel with Rademacher signal. From 7.2.2,

Ov(q) = E[tanh(
√
qZ + q)], Z ∼ N (0, 1). (7.38)

On the other hand, from the definition of rvt, we have

qvt = ηt + (1− ηt)rvt (7.39)
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The fixed point equation (7.30b) follows from (7.37), (7.38) and (7.39).
Following exactly the same cavity argument, the estimation of Wtj given Y is asymp-

totically equivalent the the estimation of the signal Wtj from the output of the Gaussian
channel with SNR αtqvt. Moreover, the noises corresponding to the signals Wtj and Wt′j′

are asymptotically independent for (t, j) ̸= (t′, j′). When j ̸= j′, the signals Wtj and
Wt′j′ are independent. As a result, the inference on the equivalent Gaussian channels
can be performed independently on groups of T scalar Gaussian channels (Wtj)

T
t=1. By

the law of large number,

qut = lim
D→∞

1

D

D∑
j=1

Ŵ 2
tj = Ow,t({αtqvt}

T
t=1) (7.40)

where Ow,t are overlap functions of the Gaussian channel with signal N (0,M). The
explicit formula for Ow,t are computed in Section 7.2.3, which gives the fixed point
equation (7.30a).

C Bayes risk and optimal algorithm

Suppose we want to classify a new data point Y new in task t

Y new = VnewU t + σtZnew (7.41)

It is easy to check that Lemma 7.1 can be applied to this problem, with Vnew,U t playing
the role of X,U in the lemma, as the posterior σ−1

t U t|Y satisfies the replica symmetric
property with overlap qut. As a result, in high dimensional limit, estimating Vnew given
Y ,Y new is essentially the same as estimating the signal Vnew from the output of the
Gaussian channel with SNR qut. This implies that the minimal classification error of
Vnew is given by that of the Gaussian channel with Rademacher signal and SNR qut,
which is (Section 7.2.2)

1− Φ (
√
qut) ,

According to Lemma 7.1, S = ⟨Y new, Û t⟩/
√
qut is sufficient for estimating Vnew. More-

over, S converges in law to the output of the Gaussian channel with signal Vnew and SNR
qut. The estimator that minimizes the Bayes risk for this channel is simply sgn(S), which
leads to the optimal estimator of Vnew as sgn(⟨Y new, Û t⟩). The next step is to determine
the value of Û t. We will take advantage of the fact that the vectors U t are asymptoti-
cally Gaussian, so our subsequent argument will rely on the reformulation (7.34) of the
model. We will need the following result

Lemma 7.2. The following collection of Gaussian channels

Yi = ciX + Zi, i = 1, . . . , n (7.42)

with input X, outputs Yi, SNR c2i and independent standard Gaussian noises Zi, is equiv-
alent to a single Gaussian channel with signal X, output ⟨c,Y ⟩/∥c∥ and SNR

∑n
i=1 c

2
i .

Moreover,
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Proof. It is straightforward to verify that the statistics S := ⟨c,Y ⟩/∥c∥ is sufficient for
estimating X from Y . Moreover, S = ∥c∥X + ξ where ξ = ∥c∥−1 ⟨c,Z⟩ is standard
Gaussian and independent of X. This proves the claim of the lemma.

Remark 7.6. From the proof of Lemma 7.2 we can also see that the noise ξ of the
simplified channel comes from the noises of the original channels.

The Lemma 7.2 implies that, for each (t, j) fixed, the following Gaussian channels

Ytij =
1√
D
VtiWtj + Ztij , i = 1, . . . , Nt

which share the same signal Wtj , can be simplified into a single Gaussian channel with
output

√
NtȲtj and SNR Nt/D ≃ αt, where Ȳtj is the j-th coordinate of the vector Ȳ t

in the algorithm.
For (t, j) ̸= (t′, j′), the noises of the simplified Gaussian channels associated with Wtj

and Wt′j′ are independent, as a consequence of Remark 7.6. Additionally, the signals Wtj

and Wt′j′ are independent if j ̸= j′. Therefore, the inference on the simplified Gaussian
channels can be carried out independently on each group of T channels with signals
(Wtj)

T
t=1. The MMSE estimator on each of these groups can be computed explicitly as

(Ŵtj)
T
t=1 = B(

√
NtȲtj)

T
t=1

where

B = MD
1/2
α (I +D

1/2
α MD

1/2
α )−1

(7.2.3). Equivalently,

Ŵ t =
∑
s

Bts
√
NsȲ s

Dividing both sides by
√
D and using Nt/D ≃ αt, we have

Ỹ t := σ−1
t Û t ≃

∑
s

AtsȲ s (7.43)

where Ats = Bts
√
αs. Therefore,

A = MDα(I +MDα)
−1

as given in the optimal algorithm. The optimal estimator for Vnew is sgn(⟨Y new, Û t⟩) =
sgn(⟨Y new, Ỹ t⟩).
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D Region of impossible recovery

In the unsupervised case, the fixed point equations are

qut = [M −M(I +DM)−1]tt (7.44a)
qvt = F (qut) (7.44b)

where

F (q) = E[tanh(
√
qZ + q)],

These equations always admits (qu, qv) = (0,0) as solution. The classification is im-
possible if and only if this solution is stable (Remark 7.4). To analyze the stability of
(7.44) around zero, let qut, qvt = O(h) where h → 0. For vectors A and B of the same
dimension, we denote A ≃ B if |A−B| ≃ O(h2), where | . | denotes the Euclidean norm.
Using the Taylor expansion tanh(x) = x− x3/3 + o(x3), we get

qvt = F (qut) ≃ qut

On the other hand,

qut = [M −M(I +DM)−1]tt

≃ [M −M(I −DM)]tt

= [MDM ]tt

=

T∑
s=1

M2
tsαsqvs

Let

P = (M2
tsαs)

T
s,t=1 =

( C2
ts

σ2t σ
2
s

αs

)T
s,t=1

= (λsλtC
2
stαs)

T
s,t=1 (7.45)

In a small neighborhood of (0,0), the system of equations can be approximated up to
an error of O(h2) by

qv = qu (7.46)
qu = Pqv (7.47)

Therefore the fixed point (0,0) is stable if and only if the module of each eigenvalue of
P is not larger than 1. Using the property that AB and BA has the same eigenvalues
for general square matrices A,B, the matrix P has the same eigenvalues as the following
symmetric matrix

R = (
√
αsαtλsλtC

2
st)

T
s,t=1 (7.48)
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Note that R is a positive semidefinite (p.s.d) matrix, since it can be written as Hadamard
product of p.s.d. matrices. Therefore, the classification is impossible if and only if all
eigenvalues of R are not greater than 1.

When Ctt′ = c for all t ̸= t′ and λt = λ, αt = 1 for all t, we have

R = λ2(c211T + (1− c2)I) (7.49)

Note that the matrix 11T has eigenvalues 0, . . . , 0, T , so the largest eigenvalue of R is
λ2(1 + (T − 1)c2), from with we obtain the condition for impossible classification

λ2(1 + (T − 1)c2) ≤ 1 (7.50)

which becomes λ ≤ 1 for the special case T = 1.
When T = 2 with task correlation c and α1 = α2 = 1, we have

R =

(
λ21 c2λ1λ2

c2λ1λ2 λ22

)
(7.51)

It is clear that the (λ1, λ2)-domain of impossible classification is a subset of [0, 1]2, oth-
erwise at least one task is achievable. All eigenvalues of R are less than 1 if and only
if Tr(I − R) ≥ 0 and det(I − R) ≥ 0. The first condition is already satisfied for
(λ1, λ2) ∈ [0, 1]2 while the second condition is equivalent to

(1− λ21)(1− λ22) ≥ c4λ21λ22 (7.52)

E Connected tasks are either all possible or all impossible

We will prove that if tasks are connected, then they are either all possible or all impossible,
as stated in Result 7.2. As a reminder, for any task t, the value of qut is always non-
negative. If qut = 0, then the task t is impossible; otherwise, it is possible.

Consider T Gaussian channels with outputs (Yt)
T
t=1, signals (Xt)

T
t=1 having joint

distribution N (0,M) and independent standard Gaussian noises. The SNRs for each
channel are (αtqvt)

T
t=1. Then the right-hand side of (7.44a) corresponds to the overlap

between the signal Xt and its MMSE estimator (Section 7.2.3).
Suppose by contradiction that the tasks can be split into non-empty sets such S and

S′ such that qut = 0 for all t ∈ S while qut > 0 for all t ∈ S′. Since the tasks are
connected, there exists correlated tasks t, t′ such that t ∈ S, t′ ∈ S′. Therefore, there
exists t, t′ such that qut = 0, qut′ > 0 and Ctt′ ̸= 0.

Since E[XtXt′ ] = Mtt′ = Ctt′/(σtσt′) ̸= 0, Xt is correlated with Xt′ . Moreover, as
qvt′ = F (qut′) and qut′ > 0, we have qvt′ > 0. This implies that Xt is not independent of
Y =

{√
αsqvsXs + Zs

}T
s=1

, leading to qut = E[XtE[Xt|Y ]] > 0, a contradiction.

F Estimating model parameters from data

Although it is assumed that the model parameters C and (σt) are available for the
analysis, we show here that they can indeed be estimated with vanishing errors as D →
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∞, given that a positive fraction of labeled data is available in each task, i.e. ηt > 0 for
all t. First consider the supervised learning case. Let

Ȳ t =
1

Nt

Nt∑
i=1

VtiY ti (7.53)

Then we have

Ȳ t = U t +

√
σ2t
Nt

Z̄t (7.54)

where

Z̄t =
1√
Nt

Nt∑
i=1

VtiZti (7.55)

It is clear that Z̄t
i.i.d∼ N (0, ID) for t = 1, . . . , T . We consider the following estimator of

Ctt′ for t ̸= t′:

Ĉtt′ = ⟨Ȳ t, Ȳ t′⟩ (7.56)

Insert (7.54) into the definition of Ĉtt′ and use the fact that ⟨Z̄t, Z̄t′⟩ = O(
√
D),

⟨Ū t, Z̄t′⟩ = O(1), which are direct consequences of Central Limit Theorem, we obtain
Ĉtt′ = Ctt′ +O(D−1/2). Moreover

∥Ȳ t∥2 = 1 +
σ2t
αt

+O(D−1/2), (7.57)

from which σt can also be estimated.
In the case where the proportion of labeled data is positive for all tasks, we can

restrict the above estimators on the labeled data and obtain the approximate values of
C and (σt) with errors converging to zero when D →∞.

Bibliographical notes

We refer readers to [60], [61], [9], [53], [59], and [72] for various tensor models. An-
other important model in Bayes-optimal setting is the generalized linear model [7] which
generalizes many preexisting models in compressed sensing, statistical learning and com-
munication. A review of statistical methods for inference problems can be found in [113].
It is interesting that in some cases, the optimization-based methods can nearly reach or
achieve the optimal performance [65, 106, 71, 63, 3].

100



Chapter 8

SK model

In this chapter, we consider the Sherrington-Kirkpatrick (SK), a disordered system de-
fined by the Hamiltonian

H(σ) =
β√
n

∑
i<j

Jijσiσj (8.1)

in which β > 0, σ = (σi) ∈ {−1, 1}n and the parameters Jij are independent standard
Gaussian random variables. In contrast with previously considered models, the SK model
has much more complex and interesting behavior.

Let us study the SK model with replicas. The replicated Hamiltonian is

Hrep(σ1, . . . , σr) =
β2

2n

∑
a<b

⟨σa, σb⟩2 + nβ2r

4
(8.2)

Applying Result 4.2 with the macroscopic functions ⟨σa, σb⟩/n for 1 ≤ a < b ≤ r, the
parametrized Hamiltonian is

H̄rep =
nβ2

2

∑
a<b

Q2
ab +

∑
a<b

Q̂ab(⟨σa, σb⟩ − nQab) + nβ2r

4

where Qab’s are constraint parameters and Q̂ab are multipliers. The free energy of H̄rep

is
nβ2

2

∑
a<b

Q2
ab +Ψ({Q̂ab})− n

∑
a<b

QabQ̂ab +
nβ2r

4

where Ψ({Q̂ab}) is the free energy of the Hamiltonian
∑

a<b Q̂
ab⟨σa, σb⟩. Differentiate

with respect to Qab, we have

Q̂ab = β2Qab (8.3)

and we obtain

H̄rep = −nβ
2

2

∑
a<b

Q2
ab +

∑
a<b

β2Qab⟨σa, σb⟩+ nβ2r

4
(8.4)
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8.1 Replica symmetric ansatz

In the replica symmetric ansatz, we assume that the dominant extremal point of the free
energy function is achieved at

Qab = q

for all a < b. With this ansatz, we have

H̄rep = −β
2

2

r(r − 1)

2
nq2 + β2q

∑
a<b

⟨σa, σb⟩+ nβ2r

4

Dereplicating H̄rep, we obtain

H̄ =
nβ2q2

4
+ ⟨β√qξ, σ⟩ − nβ2q

2
+
nβ2

4
(8.5)

where ξ is a standard Gaussian vector. The free energy of H̄ is given by nf(q), where

f(q) =
β2(1− q)2

4
+ E log 2 cosh(β

√
qZ), Z ∼ N (0, 1).

The stationary point of f(q) satisfies

q = E[tanh2(β
√
qZ)]. (8.6)

From (8.5), we conclude that the replica symmetric solution corresponds the description
that σi are asymptotically independent under PH , with marginal law

P (σi) ∝ eβhiσi

where hi are independent random variables drawn from N (0, q) and q solves the fixed
point equation (8.6).

It turns out that the replica symmetric solution is only correct when β is below a
certain threshold βc. When β > βc, the correct form of the dominant extremal point is
given by Parisi ansatz. The idea is to divide [r] into groups of equal size, and impose
that the value of Qab depends on whether a, b belong to the same or different group.
This is called 1-step replica symmetry breaking (1RSB). This procedure is then applied
repeatedly, with each group being divided into subgroups of equal size, and so on. This
results in k-step RSB for k = 1, 2, . . . . The k-step RSB ansatz provides increasingly
accurate descriptions of the SK model as k increases. However, to obtain the correct
result for any value of β > βc, no finite k-step RSB suffices, and we need full RSB where
k →∞.

In the following, we will present the Parisi ansatz and clarify the probabilistic struc-
tures they correspond to, drawing from the discussion in Chapter 3.
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8.2 Replica symmetry breaking

Consider the following sequences

0 < x1 < · · · < xk < 1

0 < q0 < q1 < · · · < qk < 1

Denote x = (x1, . . . , xk) and q = (q0, . . . , qk). We need to always keep in mind that
r → 0. Let Πx be the collection of all nested partitions of the set [r] into r/x1 groups of
size x1, each of them divided into x1/x2 groups of size x2, and so on. We assign the level
0 to [r] and levels 1, . . . , k to the groups that appear in the subsequent divisions. For any
a, b ∈ [r], consider the group with highest level that contains both of them, and define
their similarity s(a, b) as the level of this group. For any π ∈ Πx, define the following
r × r matrix:

Qabπ = qℓ, if s(a, b) = ℓ.

for different a, b in [r].
The k-RSB ansatz proposes that a dominant extremal point of the free energy function

has the form Qπ for some π ∈ Πx. Since the free energy function is symmetric by
permutation of replicas, Qπ is a dominant extremal point for any π ∈ Πx. Also by
symmetry and Result 4.2, the equivalent measure P̄ rep is a mixture of P̄ rep

π for all π ∈ Πx,
each with an equal weight, where P̄ rep

π is the probability measure associated with the
Hamiltonian H̄rep(·, Qπ) given by (8.4). P̄ rep

π can be written more simply as

P̄ rep
π (σ1, . . . , σr) ∝ exp

(∑
a<b

β2Qabπ ⟨σa, σb⟩
)

Under P̄ rep
π , σ1, . . . , σr are conditionally independent given ξ = (ξa), with the condi-

tional law

P (σa|ξ) ∝ exp (β⟨ξa, σa⟩) (8.7)

where ξ1, . . . , ξr are centered Gaussian vectors in Rn such that ξa d
= h⊗na , where

E[h2a] = qk,

E[hahb] = Qabπ , a ̸= b. (8.8)

The replica density P̄ rep uniquely encodes a disordered system P̄ that is asymptoti-
cally equivalent to PH . We will describe P̄ through the infinite exchangeable sequence
of replicas derived from it. This is the same sequence that is derived from P̄ rep by
marginalization. Since P̄ rep is a uniform mixture of P̄ rep

π for all π ∈ Πx, this sequence
is the same as (σa1 , σak , . . . ), where a1, a2, . . . is a random sequence drawn from [r] and
(σ1, . . . , σr) ∼ P̄ rep

π for some fixed π ∈ Πx. Since σ1, . . . , σr is conditionally independent
given ξ1, . . . , ξr, this sequence can be generated by first generate the Gaussian vectors
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ξa1 , ξa2 . . . then generate σa1 , σa2 . . . independently according to (8.7). We call that these
Gaussian vectors are attached to the sequence a1, a2, . . .

The infinite sequence a1, a2, . . . generates a nested partition of N, where i, j inherit
the relation between ai, aj . This nested partition of N can be represented by an infinite
tree with k + 1 levels (not including the root): the root is N, each node different from
the leaves has an infinite number of children representing the blocks of next level. Each
leaf is labeled by a sequence (n1, . . . , nk+1) ∈ Nk+1. We say that the root is at level 0,
its children are at level 1, and so on. The leaves are at level (k + 1). For two leaves α
and γ, their similarity s(α, γ) is defined as the level of their youngest common ancestor.

The correlations between ξ1, . . . , ξr given by (8.8) imply that the Gaussian vector
attached to the leaf α has law G⊗n

α , where

E[G2
α] = qk,

E[GαGγ ] = qs(α,γ).

These correlations between the Gα’s can be implemented by generating independent
standard Gaussian random variables g∅, (gn), (gn1,n2), . . . and let

Gα =
√
q0g∅ +

√
q1 − q0gn1 + · · ·+

√
qk − qk−1gn1,...,nk

(8.9)

for α = (n1, . . . , nk+1). Note that Gα are the same for all leaves coming from the same
parent.

We have thus translated the k-step RSB assumption into a description of the infinite
exchangeable sequence derived from the asymptotic equivalent P̄ of the SK model. In
summary, this sequence can be generated by the following steps

· Generate a random nested partition of N with parameters (α0, . . . , αk) = (0, x1, . . . , xk)
as described in Section 3.5.

· Construct the tree of k + 1 levels associated with this nested partition.

· Assign each leaf α = (n1, . . . , nk+1) with a Gaussian vector ξα d
= G⊗n

α , where Gα
are described by (8.9).

· For each leaf α, generate the random variables σα independently from

P (σα) ∝ exp (β⟨ξα, σα⟩) .

The sequence (σα) for all leaves α corresponds to the exchangeable sequence derived from
P̄ .

Note that for all leaves α’s from the same parent, σα’s are generated from the same
law, under which the coordinates are independent. This law is referred to as a pure state.
Consequently, the system behaves like a mixture of pure states, each with asymptotically
independent coordinates. We can check that this description is consistent with the one
given by [68].

104



It is difficult to compute the free energy function F (x, q) from this description. The
best way to do this is going back to the replica formalism. The calculation can be found
in [82]. It turns out that we need to minimizing this function to obtain the values of the
parameters x, q.

The full RSB is obtained by taking the limit where k →∞, in which the sequence x
and q can be encoded in an increasing function q(x) from [0, 1] to [0, 1].

8.3 Bibliographical notes

The SK model was initially studied using the replica method in [95]. However, the replica
symmetry ansatz used in the paper made incorrect predictions at low temperatures. In
1979, Parisi proposed a replica ansatz that led to a ’less wrong’ solution [81], known
today as the one-step replica symmetry breaking (RSB) ansatz. In a subsequent paper,
he proposed the full RSB scheme that provided the correct solution [82], a fact that we
know today. It took several years for Parisi and his collaborators to fully understand
the implications of the RSB ansatz, as presented in [68] [70], and later in the book
[69], which compiled the developments on the subject. A reference on the SK model for
non-physicists is provided by [73].

Parisi’s formula for the free energy of the SK model was rigorously proven by Ta-
lagrand [99], building upon a breakthrough by Guerra [45]. However, the proof only
confirmed the formula for the free energy and did not prove Parisi’s predictions regard-
ing the structure of the Gibbs measure, especially the ultrametricity, i.e. the fact that
the pure states can be organized into a tree-like structure. The ultrametricity conjecture
was finally proved by Panchenko in [79].
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Perspectives

Combinatorial optimization. Although the subject of combinatorial optimization is
mentioned in the introduction, it is not presented in this manuscript. I am still unable
to connect the replica method with Aldous’ objective method [1]. This seems to be a
difficult question.

Formal construction of other exchangeable structures. Exchangeable structures
such that Polya urn model and Chinese restaurant process have remarkably succinct
descriptions by formal sets. The advantage of these constructions is that they greatly
simplify calculations and make the exchangeability appear in a natural way. Examples
of random exchangeable structures are abundant in the literature, especially in Bayesian
topic model. It is interesting to know if, besides the examples in Chapter 3, there are
other formal constructions of exchangeable structures.

Hermitian matrices. We have only considered real symmetric matrices. However, the
replica method can also be applied to Hermitian matrices. A random Hermitian matrix
A can be studied with the following Hamiltonian

H = −w†Aw, w ∈ Cn. (8.10)

For convenience, we choose the underlying measure of Cn as

µ(dw) =
∏
i

dRe(wi)d Im(wi)

π

With this underlying measure, the free energy of the Hamiltonian H is − log detA.
Similarly to the Gaussian measures on Rn, in this case we have E[ww†] = A−1 if

w ∼ PH . If we can find a deterministic matrix Ā such that the following probability
measure

P̄ (dw) ∝ exp
(
− w†Āw

)
is asymptotically equivalent to A, then we can conclude that Ā−1 ↔ A−1.

In this case the integration over the disorders also has an explicit form, so the repli-
cated Hamiltonian can be computed quite easily. However, the macroscopic functions
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have complex values, so if we want to reduce this to the case of real values, we have to
double the number of macroscopic functions by splitting each of them into the real and
imaginary part. The calculations are still doable but ugly. I wonder if there is a more
elegant way to handle this.

Free probability. It will be beneficial to see the free probability in the point of view of
the replica method. With the replica method, R- and S-transform as well as many other
transforms can be seen as the extremizer of some potential functions. From this point
of view, it is likely that some surprising connections in free probability, such as the ones
described in [10], can be explained in simple way. Recovering results in free probability
with the replica method could bring new insights and ideas. Another questions is whether
the free cumulant can arise from replica computations, in the same way that classical
cumulant-moment formula can be derived by replicas.

Gaussian equivalence in random matrix theory. Many non-linear random matrix
models behave like the weighted sum of a GOE matrix and a Marchenko Pastur matrix
that are independent of each other. For example, let W,Z be large random matrices with
independent standard Gaussian entries, B is a Bernoulli mask with density ρ. Then the
following three models

(ZZ⊤)⊙B, f(ZZ⊤)0, f(WX)f(WX)⊤

all have this behavior. Here f is a non-linear function that is applied pointwise. For the
matrix in the middle, the subindex zero means the diagonal is set to zero. For the first
matrix, its spectrum remains the same if B is replaced by a matrix with independent
Gaussian entries with mean p and variance p(1 − p). The rigorous proofs of these facts
often rely on complicated arguments, deriving the Stieltjes transform for the limiting
spectral density and realizing their behaviors mentioned above. The question is whether
there is a simple explanation for this behavior. This might be connected to the fact that
in the replica computation, we only care about the leading term of a logarithm, which is
insensitive to the details of the random variables.

Dynamics of disordered system. This thesis only concerns about the Gibbs measure
of disordered system, which describes the system at equilibrium. The dynamics aspect
of disordered system is an interesting and challenging topic to learn.

Fluctuation of the free energy. This thesis only deals with the leading term of the
free energy. It would be interesting to learn how to compute the fluctuations around the
leading term.
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Appendix A

Gaussian integrals

The following results are needed for Gaussian random matrix models.

Lemma A.1. For A ∈ Rn×n symmetric positive definite and b ∈ Cn,∫
Rn

exp

(
−1

2
x⊤Ax+ b⊤x

)
dx =

√
(2π)n

detA
exp

(
1

2
b⊤A−1b

)
Proof. For the case n = 1, we have∫

R
exp

(
−1

2
ax2 + bx

)
dx =

∫
R
exp

(
−1

2
a
(
x− b

a

)2
+
b2

2a

)
=

√
2π

a
exp

(
b2

2a

)
If A is diagonal, the integral is a product of one-dimensional integrals and the result
follows immediately. For the general case, suppose A = O⊤ÃO where Ã is diagonal and
OO⊤ = I. Let x̃ = Ox and b̃ = Ob, then dx̃ = dx and∫

Rn

exp

(
−1

2
x⊤Ax+ b⊤x

)
dx =

∫
Rn

exp

(
−1

2
x̃⊤Ãx̃+ b̃⊤x̃

)
dx̃

=

√
(2π)n

det Ã
exp

(
1

2
b̃T Ã−1b̃

)
=

√
(2π)n

detA
exp

(
1

2
bTA−1b

)

Lemma A.2. Let A be a positive definite Hermitian matrix and u, v ∈ Cn, then∫
Cn

dz e−z
†Az+u†z+z†v =

πn

detA
eu

†A−1v (A.1)

where dz =
∏n
i=1 d(Re zi)d(Im zi)
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Proof. With the same argument in the proof of Lemma A.1, it is sufficient to prove the
result for n = 1. For a > 0 and u, v ∈ Z, we have∫

C
exp

(
−a|z|2 + ūz + z̄v

)
dz =

∫
R2

exp
(
−a(x2 + y2) + x(ū+ v) + iy(ū− v)

)
dxdy

=
π

a
exp

( ūv
a

)
in which the second equality follows from Lemma A.1.
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