
HAL Id: tel-04531954
https://theses.hal.science/tel-04531954v1

Submitted on 4 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic, Efficient, and Interactive Approach to Image
Processing with Applications in Mathematical

Morphology
Baptiste Esteban

To cite this version:
Baptiste Esteban. A Generic, Efficient, and Interactive Approach to Image Processing with Applica-
tions in Mathematical Morphology. Image Processing [eess.IV]. Sorbonne Université, 2023. English.
�NNT : 2023SORUS623�. �tel-04531954�

https://theses.hal.science/tel-04531954v1
https://hal.archives-ouvertes.fr

Thèse de Doctorat
Sorbonne Université

École Doctorale EDITE (ED130)

A Generic, Efficient, and Interactive Approach to
Image Processing with Applications in Mathematical

Morphology

Baptiste Esteban

Une approche générique, performante et interactive du traitement d’images
avec des applications en morphologie mathématique

Soutenue le Jeudi 21 Décembre 2023

Jury:

Président Pr. Olivier LEZORAY GREYC/Université de Caen
Rapporteur Pr. Pascal MONASSE LIGM/ENPC/Université Gustave Eiffel
Rapporteur Pr. Benjamin PERRET LIGM/ESIEE/Université Gustave Eiffel
Examinateur Dr. Frédéric PESCHANSKI LIP6/Sorbonne Université
Examinateur Dr. Deise SANTANA MAIA CRIStAL/Université de Lille
Directeur Pr. Didier VERNA LRE/EPITA
Encadrant Dr. Edwin CARLINET LRE/EPITA
Encadrant Dr. Guilaume TOCHON LRE/EPITA

Acknowledgments

The last five years at LRDE (now LRE) have been a rich experience, both
humanly and professionally. All the people I have met brought me wonderful
advices to succeed in my PhD.

How could I not start by thanking you, Guillaume. You made me dive
into the wonderful field of image processing, and more particularly hierarchical
representations of images, when I was looking for an internship at the end of
my third year at EPITA, and you accompanied me from the beginning of this
internship until the end of my PhD. You encouraged me to delve into this
adventure which is the preparation of a thesis and you suggested adding the
software aspect of my thesis in collaboration with Edwin as a second supervisor.
Thus, my second thank goes to you, Edwin. You greatly contributed improving
my knowledge about mathematical morphology and you mentored me on image
processing software development. Thanks to you, my C++ skills significantly
improved, which greatly helped me throughout this journey. Finally, for my
dear director, Didier, I want to thank you for the complementarity you brought
to this wonderful trio of supervisors. You made me have nightmares about
red pen traces on manuscripts for a long time but that brought me rigor when
writing and helped me improve my English skills. To the three of you, thank
you very much for always being there when I needed you.

I would like to thank Benjamin Perret and Pascal Monasse, who accepted to
review this thesis, Olivier Lézoray who agreed to be the president of the jury,
and Frédéric Peschanski and Deise Santana Maia to be part of this jury. Special
thanks go to Benjamin and Frédéric who gave me valuable advices during the
committees to succeed in this thesis.

The achievement of this thesis would not have been possible without the
people I met and worked with at EPITA. I first want to thank the other PhD
students who supported me during these three years. To Charles V., my
dear beer companion who has been one of my greatest support, Michaël, my

(partially) New Zealand companion, who has been impossible to convince
during all our political debates (and there was a lot), Caroline, my Brazilian
companion who learned French incredibly fast (and I hope not too much of
mine), Yizi, for our Sunday afternoon discussions about Paris historical map
segmentation at 2Bis, Florian, for your riddles coupled with jokes (I never found
an answer), Adam, for the parties at your home which were great moments of
relaxation, ZZ and Minh, who tried to initiate me to communism, Anissa, Giulio,
Glen, Antoine M., and Théo. I also must thank Valentine and Antoine B., who
shared the PhD student office and greatly contributed to its conviviality.

Then the permanent researchers at LRE. I am grateful toward the permanents
from the Image team, notably Élodie, Jonathan, Nicolas, Joseph, and Olivier.
With Guillaume and Edwin, you were my teachers and a large part of what I
know about Image Processing comes from your classes (for Jonathan, I still have
an insomnie folder in my computer just in case). The discussions I had with
you solved a lot of my issues during these last five years. Furthermore, you
introduced me to teaching, which turned out to be a wonderful experience. I
hope that, in the future, I will have opportunities to work with you again.

I want to thank all the members of the Automata team for their conviviality,
and particularly Amazigh for the large amount of jokes you taught me (and
I reuse them EVERY SINGLE DAY). I also want to thank Nida for our work
breaks, David for your conviviality, Daniela for your help with the whole
amount of administrative stuff I had to do during these last three years, and Theo
(the boss), who accepted me to pursue a PhD at LRDE and gave me useful advice
these last years. I also want to thank people who left the laboratory during my
PhD, and particularly Clément for your technical support and Étienne for our
morning talks.

Finally, this adventure would not have been possible without the constant
support of my friends and family. I particularly want to thank Charles V. (still
you), Charles G. (not the same), Henri, Thomas, and Sarah.

Image processing libraries play an important role in the researcher toolset and should respect
three criteria: genericity, performance, and interactivity. In short, genericity boosts code reuse
and algorithm flexibility for various data inputs, while performance speeds up experiments
and supports real-time applications. Additionally, interactivity allows software evolution and
maintenance without full recompilation, often through integration with dynamic languages like
Python or Julia. The first two criteria are not straightforward to reach with static languages
such as C++ or Rust which require knowing some information at compile-time to optimize
generated machine code related to the different input and output data types of an algorithm.
The latest criterion usually requires waiting until runtime to obtain type information and is
thus performed at the cost of runtime efficiency. The work presented in this thesis aims to go
beyond this limitation in the context of image processing algorithms. To do so, a methodology to
develop generic algorithms whose type information about its input and output data may be known
either at compile-time or at runtime is presented. This methodology is evaluated on different
image processing algorithmic schemes, and it is concluded that the performance gap between the
runtime and compile-time versions of the construction algorithm for hierarchical representations
of images is negligible. As an application, hierarchical representations are employed to expand
the applicability of grayscale noise level estimation to color images to enhance its genericity. That
raises the importance of studying the impact of such corruption in the hierarchies built on noisy
images to improve their efficiency in the presence of noise. It is demonstrated that the noise has an
impact on the tree structure, and this impact is related to some kinds of functional in the context
of energy optimization on hierarchies.

Les bibliothèques de traitement d’images jouent un rôle important dans la boîte à outils du
chercheur et devraient respecter trois critères : généricité, performance et interactivité. La
généricité favorise la réutilisation du code et la flexibilité des algorithmes pour diverses structures
de données en entrée, tandis que la performance accélère les expériences et permet l’utilisation
d’algorithmes dans le cas d’applications en temps réel. De plus, l’interactivité dans la chaîne
de traitement d’une image permet d’effectuer des expérimentations en échangeant des données
avec cette dernière. Ce dernier critère est généralement obtenu en ajoutant du dynamisme à la
bibliothèque, et plus particulièrement en interfaçant ses fonctionnalités à un langage dynamique.
Les deux premiers critères peuvent être atteints avec des langages statiques tels que C++ ou
Rust, qui exigent la connaissance de certaines informations au moment de la compilation pour
optimiser le code machine généré en fonction des différents types de données d’entrée et de sortie
d’un algorithme. Le dernier critère nécessite généralement d’attendre jusqu’à l’exécution pour
obtenir des informations sur le type, et est donc réalisé au détriment de la vitesse d’exécution.
Le travail présenté dans cette thèse vise à dépasser cette limitation dans le contexte d’algorithmes
de traitement d’images. Pour ce faire, une méthodologie visant à développer des algorithmes
génériques dont les informations sur les types d’entrée et de sortie peuvent être connues soit
au moment de la compilation, soit à l’exécution, est présentée. Cette méthode est évaluée
sur différents schémas algorithmiques de traitement d’images, et il est conclu que l’écart de
performance entre les versions où l’information de type est connu à la compilation et à l’exécution
de l’algorithme de construction pour les représentations hiérarchiques d’images est négligeable.
En tant qu’application, les représentations hiérarchiques sont utilisées pour étendre l’applicabilité
de l’estimation du niveau de bruit en niveaux de gris aux images en couleur afin d’améliorer
leur caractère générique. Cela soulève l’importance d’étudier l’impact d’une telle altération dans
les images à partir desquelles les représentations hiérarchiques sont construites pour améliorer
l’efficacité de leurs applications en présence de bruit. Il est démontré que le bruit a un impact sur
la structure arborescente, et cet impact est lié à certains types de fonctionnelles dans le cas où les
hiérarchies sont contraintes par une énergie.

Résumé long

1 Introduction

Le domaine du traitement d’images représente un champ de recherche exigeant
une vaste gamme d’outils pour concevoir et expérimenter de nouvelles
méthodologies. Ces outils englobent des utilitaires, des programmes intégrant
des fonctionnalités de traitement d’images, accessibles soit en ligne de
commande, comme c’est le cas d’ImageMagick [201], soit au sein d’interfaces
graphiques, à l’instar de Gimp [209]. De plus, ces outils incluent des
bibliothèques offrant diverses implémentations d’algorithmes utilisables dans
un ou plusieurs langages de programmation. Enfin, ils englobent également
des environnements de programmation tels que Matlab [95], Jupyter [168], ou
Pluto.jl [169], intégrant diverses fonctionnalités ergonomiques basées sur un
langage de programmation et se situant à l’intersection des utilitaires graphiques
et des bibliothèques.

Dans le cadre de cette thèse, l’objet d’étude concerne les bibliothèques de
traitement d’images. Elles occupent une position centrale parmi les autres
outils présentés du fait de leur utilisation pour la séparation des différentes
fonctionnalités fournies par les utilitaires, ou pour une utilisation au sein d’un
d’environnement de programmation. Ces bibliothèques de traitement d’images
devraient satisfaire trois critères fondamentaux pour permettre une utilisation
optimale : généricité, performance et interactivité. La généricité [146] représente
une méthodologie en programmation visant à améliorer la réutilisabilité d’un
algorithme sur différentes structures de données, à condition que celles-ci
respectent une interface prédéfinie, évitant ainsi de prendre en compte
l’implémentation spécifique de la structure. Ainsi, ce critère permet d’appliquer
un même algorithme à diverses images, en tenant compte des différentes
caractéristiques telles que le domaine de définition, l’espace des valeurs
d’un pixel ou l’implémentation, pouvant varier en fonction du contexte.

I

II RÉSUMÉ LONG

Listing 0.1: Exemple d’algorithme de traitement d’images générique C++

template <typename C> requires Container<C>
typename C::value_type sum(const C& cont) {

typename C::value_type res{}
for (auto it = cont.begin(); it != cont.end(); ++it)

res += it;
return res

}

La performance des fonctionnalités d’une bibliothèque de traitement d’images
permet son utilisation sur des images de grandes dimensions, ainsi que le
développement d’applications en temps réel lorsque les performances atteintes
le permettent. Enfin, le critère d’interactivité a une importance particulière dans
le processus de recherche, notamment dans le cadre des expérimentations. Il
permet au chercheur d’incorporer et d’acquérir des données tout au long des
expériences. Cette interaction est généralement facilitée par l’utilisation de
langages dynamiques tels que Python ou Julia, dotés d’écosystèmes scientifiques
étendus fournissant les ressources essentielles pour une conduite efficace du
processus expérimental.

La bibliothèque de traitement d’images Pylene, implémentée en C++
moderne (C++20), vise à atteindre au mieux ces trois critères. Cette objectif
constitue un défi complexe en raison de divers facteurs. Dans des langages tels
que C++ ou Rust, le critère de généricité est implémenté à travers l’utilisation
de paramètres et repose sur le mécanisme de monomorphisation. Ce processus
génère, pour chaque combinaison de paramètres, du code fortement spécialisé
et optimisé par le compilateur. Cela permet d’atteindre dans le même temps
le critère de performance. Cependant, le dynamisme sur lequel repose
généralement le critère d’interactivité est difficile à obtenir car la vérification
de type s’effectue à la compilation, nécessitant ainsi de connaître tous les
paramètres avant l’exécution.

Ainsi, l’objectif de cette thèse est le suivant : intégrer le critère d’interactivité
dans des algorithmes génériques en C++, tout en mesurant et en limitant la
perte de performance occasionnée par cette intégration. Nous nous concentrons
sur des algorithmes de morphologie mathématique, et plus particulièrement les
représentations hiérarchiques d’images, en adaptant l’implémentation de leur
construction à la généricité dans un contexte dynamique. Afin de montrer
l’utilité de ces adaptations dans un contexte de recherche en traitement d’images,
nous utilisons ces représentations hiérarchiques dans le cadre d’images bruitées,

2. généricité et traitement d’images III

notamment dans le contexte de l’estimation du niveau de bruit. Étant donné que
cette application met en évidence le manque de compréhension de l’impact du
bruit sur une représentation hiérarchique d’image, nous analysons l’évolution de
la structure de l’arbre qui la représente en fonction du niveau de bruit affectant
l’image sur laquelle l’arbre est construit. Ainsi, cette thèse se positionne à
l’intersection des domaines du génie logiciel et du traitement d’images.

2 Généricité et traitement d’images

La généricité [146] est une approche de programmation permettant la
réutilisation d’algorithmes sur différentes structures de données. Ces dernières
doivent satisfaire un concept [54], c’est-à-dire un ensemble d’opérations et
d’axiomes sur cette structure de données, de sorte que l’algorithme puisse lui
être appliqué. Par exemple, le Listing 0.1 présente un exemple d’algorithme
générique prenant en entrée n’importe quel conteneur dont le type est précisé
par le paramètre de template C respectant le concept Container, qui énumère
les opérations ainsi que les redéfinitions de type utilisées dans le cadre de
l’algorithme, et produisant en sortie une valeur représentant la somme de toutes
les valeurs du conteneur.

En traitement d’images, une image peut être définie par une fonction f tel
que

f : Ω→ V
avec Ω le domaine de définition de la fonction et V son ensemble de valeurs.
À partir de cette définition, il est possible de définir le concept d’image comme
étant une structure de données possédant des opérations similaires à celles d’une
fonction : accès au domaine de définition, à l’ensemble des valeurs et à la valeur
associée à un point du domaine. Le choix de l’implémentation d’une image peut
donc être multiple du fait que le concept ne dépend pas de l’implémentation
mais de l’interface. Par exemple, une image constante peut être implémentée
par une simple valeur, et l’accès à n’importe quel point du domaine retournera
la même valeur.

L’ensemble des valeurs de l’image peut changer en fonction du contexte : une
image pourra être définie comme ayant un ensemble d’entiers dont les valeurs
représentent l’intensité du gris dans l’image, ou comme un ensemble de triplets,
ces derniers représentant une couleur dans l’espace Rouge-Vert-Bleu (RVB). De
plus, le choix du domaine de définition ne se limite pas à un rectangle pour
des images en dimension 2, mais il est possible de définir une image sur un
hyperrectangle pour qu’elle soit de dimension n, ainsi que sur des graphes,
qu’ils soient pondérés sur les arêtes ou sur les sommets, ou bien encore sur

IV RÉSUMÉ LONG

(a) Une image 2D (b) Un graphe pondéré sur
les arrêtes

(c) Un maillage

(d) Ligne de partage des
eaux de (a)

(e) Ligne de partage des
eaux de (b)

(f) Ligne de partage des
eaux de (c)

Figure 1: Illustration de la généricité en traitement d’images [119]

des maillages triangulaires, très utilisés dans le domaine de la visualisation
3D. En ajoutant des caractéristiques à ces domaines de définition, telles que le
voisinage d’un point du domaine, il est possible d’appliquer divers algorithmes
de traitement d’images. La Figure 1 illustre cette notion de généricité en
traitement d’images, où l’algorithme de ligne de partage des eaux, largement
utilisé pour la segmentation d’image et relevant du domaine de la morphologie
mathématique, est appliqué sur différents types d’images [119].

Les représentations hiérarchiques d’images [24] se présentent sous la forme
de piles de partitions (partielles), où les régions s’agrandissent à mesure que
l’on progresse dans la hiérarchie. Trois des ces représentations sont illustrées
dans la Figure 2. Étant donné que la morphologie mathématique [188, 196, 153],
domaine auxquelles appartiennent ces représentations, implique des opérations
de nature générique, comme observé précédemment pour l’algorithme de ligne
de partage des eaux, il est envisageable de construire ces représentations pour
différents types d’images. Par exemple, une catégorie de hiérarchies de lignes de
partage des eaux [47] est élaborée à partir de graphes pondérés sur les arêtes, la
construction reposant sur la valeur de la pondération. Ce graphe peut être créé
à partir d’un ensemble de points en utilisant l’algorithme des k plus proches

3. la généricité statico-dynamique pour le traitement d’images V

A
B

C

D
E

F

5

4

3

2

1

0

(a) Une image

A

B

C

D

E

F

(b) Arbre min de (a)

A

B

C

D

E

F

(c) Arbre max de (a)

A

B

C D

E F

(d) Arbre des formes

Figure 2: Représentations hiérarchiques d’image

template <typename I,

typename O,

typename F>

void map(I, O, F)

map<image2d<uint8_t>,

image2d<double>,

inv>

map<mesh<uint8_t>,

mesh<rgb8>,

lut>

...

Figure 3: Illustration de l’explosion combinatoire

voisins, ou encore à partir de la relation de voisinage entre les triangles d’un
maillage ou les points d’une image. Ainsi, les représentations hiérarchiques,
du fait de leurs diverses applications telles que la segmentation d’image [163]
ou l’estimation du niveau de bruit [63] dans une image en niveaux de gris,
suscitent un intérêt particulier en tant que domaine d’application de la généricité
statico-dynamique proposée dans la section suivante.

3 La généricité statico-dynamique pour le traitement
d’images

Tel qu’expliqué précédemment, les langages statiques offrent peu de flexibilité
en raison de leur nature pour concevoir une bibliothèque de traitement
d’images respectant le critère d’interactivité. Le langage C++ dispose d’un
mécanisme de généricité statique basé sur la monomorphisation : pour chaque
combinaison de paramètres d’une fonction, du code machine est généré à la
compilation, permettant d’obtenir un algorithme particulièrement optimisé pour
cette combinaison de paramètres. Néanmoins, en raison du grand nombre
de structures d’image, il est difficile, voire impossible, de spécifier chaque
combinaison de paramètres à la compilation, ce qui entraîne une explosion

VI RÉSUMÉ LONG

template <class T>

struct buffer2d

{

T& operator()(point2d p);

rect2d domain() const;

T* data;

};

Interface

Détails
d’implémentation

(a) Valeurs typées statiquement

struct buffer2d_any

{

void* operator()(point2d p);

rect2d domain() const;

void* data;

size_t element_size;

};

Interface

Détails
d’implémentation

(b) Valeurs typées dynamiquement

Figure 4: Structures d’image avec différentes stratégies de typage des valeurs

combinatoire. Cela est illustré par la Figure 3, dans laquelle la fonction map
prend en entrée une image et applique une opération dont le résultat est stocké
dans une seconde image. Pour cette fonction, il existe une multitude de types
d’images d’entrée et de sortie possibles, ainsi que d’opérations réalisables sur les
valeurs d’une image. Ainsi, l’objectif est de supprimer le besoin de spécialiser
l’algorithme pour chacun de ces différents types tout en limitant la perte de
performance à l’exécution. De plus, il est avantageux de conserver la possibilité
d’avoir des algorithmes typés statiquement dans le cas où l’application ne
nécessite pas d’interactivité. Ainsi, dans cette section, le principe de généricité
statico-dynamique est présenté avec pour objectif de remplir ces deux critères.

3.1 Modèles d’image et d’algorithme pour la généricité
statico-dynamique

Comme précisé précédemment, il existe un très grand nombre d’images pouvant
être appliqué à un algorithme générique en raison de la combinatoire liée
au domaine de définition, à l’ensemble des valeurs et à l’implémentation
de l’image. Dans cette thèse, le domaine considéré pour une image est un
rectangle en 2 dimensions. Ainsi, les différents paramètres étudiés concernent
l’implémentation de l’image et son ensemble de valeurs.

En C++, diverses techniques sont disponibles pour introduire du dynamisme.
Parmi celles-ci, l’effacement de type est une technique largement utilisée
dans la Standard Template Library (STL) [198] pour des conteneurs tels que
std::any [53], qui stocke un objet dont le type n’est connu qu’à l’exécution et
effectue une conversion à l’utilisation, ou std::function, similaire à std::any
mais limitée aux objets appelables comme une fonction, se basant ainsi sur un
tableau virtuel pour l’appel des fonctions. L’effacement de type stocke ainsi un
objet dans un espace mémoire alloué à la taille de l’objet, mais ne nécessite pas
l’information de type à la compilation.

Ainsi, pour parvenir à un typage dynamique de l’implémentation d’une
image ou de ses valeurs, l’effacement de type est employé. En ce qui concerne

3. la généricité statico-dynamique pour le traitement d’images VII

Listing 0.2: Algorithme statico-dynamique C++

template <class I, class Op>
void generic_elementwise_op(I a, I b, I out, Op& op) {

for (auto p : a.domain())
op(a(p), b(p), out(p))

}

les valeurs de l’image, un tableau est alloué, dont la taille est le produit du
nombre de pixels d’une image et de la taille en octets de l’espace nécessaire pour
stocker une valeur. De plus, pour parcourir l’image, cette information est stockée
dans les détails de l’implémentation. Cette structure d’image est comparée à
une implémentation statique caractérisée par une liste de paramètre de template
dans la Figure 4. Dans cette figure, les structures de données représentant une
image implémentée comme un tableau contigu sont divisées en deux parties :
une interface commune aux deux images, avec une opération d’appel de fonction
prenant un point de l’image et retournant une valeur pour ce point, ainsi qu’une
opération permettant d’obtenir le domaine d’une image. La valeur pour un
point de l’image est soit celle du pixel, soit l’adresse le contenant. Les détails
de l’implémentation stockent les informations permettant de manipuler cette
image à partir de l’interface. L’extension au dynamisme de l’implémentation
d’une image est similaire à la méthode proposée pour les valeurs d’une image
: l’effacement de type est utilisé par le biais du conteneur std::function, qui
stocke l’implémentation à l’exécution et retourne une valeur pour un pixel donné
lors de son appel de fonction prenant un point de l’image en argument. Ainsi,
seuls les détails d’implémentation sont modifiés, l’interface restant inchangée.
Ce modèle est donc étendu aux valeurs statiquement et dynamiquement typées,
permettant l’utilisation de n’importe quelle implémentation d’une image et
augmentant ainsi la flexibilité de la structure au prix d’une indirection.

La programmation générique repose sur une interface commune entre
différentes structures de données, permettant à un algorithme d’être
réutilisable indépendamment de l’implémentation de la structure. Les quatre
modèles d’image présentés précédemment possèdent cette interface commune.
Cependant, la gestion du type des valeurs nécessite d’adapter les algorithmes
en fonction du caractère statique ou dynamique du type. Dans le premier
cas, une valeur est retournée, tandis que dans le second cas, un pointeur
vers la valeur est retourné au lieu de la valeur elle-même. Ainsi, la méthode
proposée s’inspire de la fonction qsort de la bibliothèque standard du langage
C, qui prend un tableau de valeurs non typées, des informations sur le tableau

VIII RÉSUMÉ LONG

24 25 26 27 28 29 210 211 212

10−6

10−5

10−4

10−3

10−2

10−1

Taille d’un coté (en pixels)

T
em

p
s
(e
n
se
co
n
d
es
)

indirect2d<T>
indirect2d_any
buffer2d<T>
buffer2d_any

(a) Maximum

24 25 26 27 28 29 210 211 212

10−5

10−4

10−3

10−2

10−1

100

Taille d’un coté (en pixels)

T
em

p
s
(e
n
se
co
n
d
es
)

indirect2d<T>
indirect2d_any
buffer2d<T>
buffer2d_any

(b) Dilatation

24 25 26 27 28 29 210 211 212

10−4

10−3

10−2

10−1

100

101

Taille d’un coté (en pixels)

T
em

p
s
(e
n
se
co
n
d
es
)

indirect2d<T>
indirect2d_any
buffer2d<T>
buffer2d_any

(c) Arbre max

Figure 5: Évaluation des structures d’image à trois schémas algorithmiques

et le type, ainsi qu’une fonction de comparaison, et trie le tableau. Ainsi,
il est possible d’implémenter des algorithmes génériques en spécifiant les
opérations nécéssaires en argument de la même manière que pour la fonction de
comparaison de qsort, tel qu’illustré par le Listing 0.2. Comme la fonction est
paramétrée, le type doit être spécifié à la compilation. Dans le cas d’un typage
de valeur dynamique, l’utilisation d’un std::function est valide pour effectuer
les conversions nécessaires pour manipuler les valeurs, mais cela nécessite
néanmoins une nouvelle indirection.

Trois algorithmes avec des schémas d’accès à la donnée différents sont
évalués et le résultat est affiché dans la Figure 5, Les buffer2d représentent des
implémentations intégrant directement dans leur structure un tableau contigu
de valeurs, tandis que les indirect2d stockent leur implémentation dans la
mémoire avec un type effacé. L’observation des courbes de performance permet
d’évaluer le coût des indirections en fonction du schéma algorithmique utilisé.
L’application de l’algorithme de construction de l’arbre max sur des images
effetuant des indirections, que ce soit sur ses valeurs ou son implémentation,
résulte en un écart plus faible avec son application sur une image sans
indirection par rapport aux autres schémas algorithmiques en raison de son
parcours dans la mémoire qui rend difficile des optimisations telles que la
vectorisation des instructions par le compilateur ou l’accès à la mémoire tampon
du processeur. Par conséquent, l’utilisation du dynamisme pour les valeurs
et les implémentations d’une image dans cet algorithme, et plus généralement
dans la construction d’une représentation hiérarchique d’image, revêt un intérêt
particulier en terme de performance.

3. la généricité statico-dynamique pour le traitement d’images IX

3.2 Application des concepts dans la construction de l’arbre
max

Les résultats de l’évaluation des performances de l’algorithme de construction
de l’arbre max montrent un écart de performance négligeable entre les structures
requérant une connaissance des informations de type à la compilation et
à l’exécution. En conséquence, une étude approfondie de l’algorithme de
Berger [16] est entreprise. Dans un premier temps, nous identifions que l’accès
aux valeurs d’une image, qu’il soit effectué directement ou indirectement,
avec ou sans la connaissance des informations de leur type, intervient à
deux moments précis de l’algorithme : lors du tri des valeurs et lors de
la canonicalisation de l’arbre. Cette dernière étape consiste à attribuer à
chaque nœud de l’arbre, correspondant à un pixel d’une composante, un nœud
représentatif à cette composante comme parent. Ainsi, la structure de l’union-find
au cœur de l’algorithme de construction n’exige en aucun cas de connaître ces
informations. Elle repose sur des objets créés à partir des informations de
domaine de l’image qui, dans ce manuscrit, sont limitées à des images 2D. Enfin,
une partie de ces objets est renvoyée par l’algorithme et est typée statiquement
car, dans le cas d’une image 2D, peu importe l’implémentation de l’image ou le
type des valeurs, celles-ci peuvent être connues à la compilation.

Les expérimentations menées pour étendre l’évaluation des performances
de l’algorithme de construction de l’arbre max utilisent les structures d’image
précédentes, tout en explorant de nouvelles approches pour les structures
d’image données en entrée de l’algorithme. La première approche repose sur
l’utilisation de projecteurs, qui sont des fonctions transformant une valeur de
l’image en un type différent. Ainsi, à chaque lecture de la valeur d’un pixel de
l’image, cette valeur est convertie dans un type donné. Cette projection peut être
réalisée de manière statique, où les informations de type en entrée et en sortie
du projecteur sont connues dès la compilation, ou de manière dynamique, où
seule l’information de type de sortie est connue à la compilation. Cette approche
permet de compiler l’algorithme une seule fois en connaissant statiquement les
types de valeurs, évaluant ainsi uniquement le coût de la conversion. La seconde
approche implique la conversion et la copie des valeurs de l’image dans une
nouvelle image, où les valeurs sont typées statiquement, offrant un accès direct
à l’implémentation. Ensuite, l’algorithme de construction est appliqué à cette
nouvelle image. Bien que cette approche n’accepte qu’un seul type d’image en
entrée de l’algorithme de construction, elle nécessite l’allocation d’une nouvelle
image et une copie complète de l’image originale.

Ces différentes approches sont évaluées de manière statique et dynamique
concernant le type des valeurs de l’image, ainsi que de manière directe et
indirecte par rapport à l’implémentation de cette image. À cet effet, toutes les

X RÉSUMÉ LONG

images d’entrée sont encodées sur 8 bits, et la projection ainsi que la conversion
transforment une valeur sur 8 bits en une valeur sur 64 bits. Les variations de
performance par rapport à la structure d’image statique sur les valeurs et l’accès
direct à l’implémentation indiquent que la projection présente un coût plus élevé
que les structures d’images précédemment étudiées. Cependant, ce coût est
considérablement plus faible dans le cas de la conversion, surtout lorsque les
images ont des dimensions comprises entre 64 × 64 et 512 × 512, où celui-ci
devient négatif.

4 Applications en morphologie mathématique dans
le contexte d’image bruitée

L’efficacité de l’utilisation des représentations hiérarchiques a été démontrée
dans diverses applications telles que la segmentation [83] ou la détection
d’objet [222]. Ainsi, pour illustrer la nécessité d’avoir leurs algorithmes de
construction dans un contexte interactif en utilisant un langage dynamique tel
que Python au sein d’un environnement dynamique tel que Jupyter pour le
prototypage de méthodes, deux applications ont été étudiées. La première vise
à étendre une méthode d’estimation du niveau de bruit pour les images en
niveaux de gris [63] aux images couleur dans le but de rendre la méthode plus
générique. La seconde application est l’étude de l’influence du bruit dans une
image sur la structure d’une représentation hiérarchique construite sur celle-ci.

4.1 L’estimation du niveau de bruit d’une image

Il existe différentes méthodes pour estimer le niveau de bruit dans une image.
Certaines dépendent d’hypothèses a priori sur la nature statistique du bruit [127,
147, 236], tandis que d’autres estiment d’abord la nature du bruit avant d’en
estimer les paramètres [11, 204]. Dans [63], nous avons proposé d’adapter
la méthode de [204] au contenu d’une image, cette méthode étant basée sur
des patches rectangulaires. L’objectif est d’estimer une fonction de niveau
de bruit (FNB) [127] définie sous la forme d’un polynôme de degré 2, où
chaque coefficient correspond au paramètre d’une distribution statistique du
bruit. Ainsi, estimer la FNB équivaut à estimer la nature du bruit corrompant
l’image et ses paramètres simultanément. De plus, une telle fonction permet de
représenter un bruit mixte tel que le bruit Poisson-Gaussien.

Le problème avec la méthode de [63] réside dans son application limitée
aux images en niveaux de gris. En effet, deux des éléments clés de cette
méthode, à savoir le coefficient de rang τ de Kendall et l’arbre des formes (une

4. applications en morphologie mathématique dans le contexte d’image

bruitée XI

{τk}4k=1 min
k

pk
H1

≶
H0

α (µ̂i, σ̂
2
i)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.01

0.02

Intensité x

V
ar
ia
n
ce

σ
2

Non homogène

Homogène

Figure 6: Méthode d’estimation de niveau de bruit multivarié

représentation hiérarchique de l’image basée sur la morphologie mathématique,
représentant l’inclusion des régions d’une image), se fondent sur le rang
des valeurs de l’image. Or, un tel rang n’est pas naturel pour des valeurs
multivariées représentant des couleurs. Ce problème est bien connu dans
le domaine de la morphologie mathématique [176] et a fait l’objet d’études
approfondies [5].

Pour pallier le problème du rang des valeurs dans une image, deux
outils sont introduits dans la méthode. Tout d’abord, l’utilisation de l’arbre
des formes multivarié [38] (AdFM) en remplacement de l’arbre des formes
classique. L’AdFM, applicable aux images couleur, notamment pour des tâches
de segmentation d’image en utilisant la fonctionnelle de Mumford-Shah [240],
qui aboutit à une partition optimale de l’image en fonction de cette fonctionnelle,
nécessite peu de modifications dans la partie segmentation de la méthode.
Ensuite, le calcul du coefficient de rang τ de Kendall n’est plus effectué
directement sur l’image, mais sur une carte de rang des valeurs multivariées
obtenue par l’apprentissage d’un treillis complet [124]. Ainsi, l’adaptation de
ces outils aux images couleur permet d’obtenir une estimation de la fonction de
niveau de bruit multivariée (FNBM), constituée d’une FNB pour chaque canal,
comme illustré par la Figure 6. Cette estimation vise à identifier les régions
homogènes de l’image, c’est-à-dire celles ne contenant que du bruit, afin de
calculer les moyennes et variances empiriques de chacune de ces régions. La
FNBM est ensuite estimée à partir de ces informations.

En plus de l’adaptation à la couleur, diverses optimisations ont été ajoutées
afin d’améliorer la précision de l’estimation. Pour évaluer cette précision, la
méthode par blocs de [204] a été étendue à la couleur, et la précision de
cette estimation a été comparée à celle obtenue en utilisant une erreur relative
moyenne (ERM) entre une FNBM résultant de l’estimation et une FNBM dont
les coefficients, connus à l’avance, sont utilisés pour ajouter du bruit à une
image. Les deux estimations ont été réalisées sur 150 images naturelles [42],

XII RÉSUMÉ LONG

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

ERM (estimation par régions)

E
R
M

(e
st
im

at
io
n
p
ar

b
lo
cs
)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

ERM (estimation par régions)

E
R
M

(e
st
im

at
io
n
p
ar

b
lo
cs
)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

ERM (estimation par régions)

E
R
M

(e
st
im

at
io
n
p
ar

b
lo
cs
)

Figure 7: Comparaison entre l’estimation par blocs et l’estimation par régions

et les ERM sont présentées dans la Figure 7. Ces résultats mettent en évidence
que l’adaptation au contenu de l’image résulte en une estimation plus précise
par rapport à l’utilisation de blocs, comme en témoigne un ERM plus faible pour
la méthode proposée sur chaque canal.

De plus, l’estimation en couleur a été étendue à toute la hiérarchie, plutôt
que de se limiter à un sous-ensemble de partitions. Du fait que les résultats
obtenus avec l’AdFM soient moins précis que ceux de la méthode précédemment
proposée, l’arbre ω [195], une hiérarchie de partitions calculée à partir d’une
dissimilarité locale (distance entre deux pixels voisins) couplée à un critère
global (taille de la diagonale de la boîte englobante de l’espace des valeurs d’une
région), est utilisé. Cette hiérarchie permet d’obtenir une similarité en termes
de précision avec la méthode précédemment proposée. L’utilisation d’une
hiérarchie complète n’améliorant pas les résultats de l’estimation, la question
suivante se pose : quel est l’impact du bruit présent dans une image sur la
structure d’une représentation hiérarchique ?

4.2 L’impact du bruit d’une image sur la structure de sa
hiérarchie

Dans la section précédente, l’estimation du niveau de bruit est réalisée en
utilisant toutes les régions d’une représentation hiérarchique d’image, visant
à obtenir des régions homogènes ne contenant que du bruit. Cependant,
cette approche ne conduit pas à une amélioration par rapport à la méthode
précédemment développée qui utilise seulement un sous-ensemble des régions
de la hiérarchie. Cela soulève des questions sur l’influence du bruit dans une
image sur la construction d’une représentation hiérarchique. Dans le cadre de
l’estimation du niveau de bruit d’une image, l’arbre ω est employé. Dans cette
partie, nous considérons l’arbre α pour étudier l’impact du bruit sur sa structure.
Cette hiérarchie est fondamentale pour la construction de l’arbre ω, ainsi que

4. applications en morphologie mathématique dans le contexte d’image

bruitée XIII

0 25 50 75 100 125 150 175 200
Profondeur

0

5000

10000

15000

20000

25000

30000

35000

No
m

br
e

de
 n

ud
s

20

40

60

80

100

120

140

Éc
ar

t-t
yp

e

(a) Évolution des histogrammes de
profondeur des nœuds de l’arbre construit
à partir d’une image constante bruitée

20 40 60 80 100 120 140

0

50

100

150

200

Écart-type σ

M
oy
en
n
e
M

M(σ) pour fσ
M(σ) pour fc,σ

(b) Évolution des moyennes de ces
histogrammes sur la base de 150

images [42]

Figure 8: Distribution des profondeurs des nœuds de l’arbre α en fonction du
niveau de bruit.

pour d’autres hiérarchies en raison de leurs liens [49].
Parmi les différentes possibilités pour étudier la structure de l’arbre, la

profondeur de chaque nœud de l’arbre est utilisée. La profondeur d’un nœud
correspond au nombre de nœuds sur le chemin entre le nœud courant et
la racine de l’arbre. Pour cette étude, la distribution de ces profondeurs,
calculée à partir d’un histogramme, est étudiée. Afin de mesurer l’impact
du bruit d’une image sur la structure de sa hiérarchie, les distributions de
profondeurs des nœuds d’un arbre α construit sur une image constante bruitée
avec différents niveaux de bruit (voir Fig. 8a) sont observées, puis leurs
moyennes sont comparées avec celles obtenues à partir d’arbres construits sur
150 images naturelles (voir Figure 8b). Ces observations montrent que pour
de faibles niveaux de bruit, le contenu de l’image prédomine par rapport au
bruit. À mesure que ce paramètre augmente, les moyennes des distributions
de profondeurs pour l’image constante bruitée et les images naturelles bruitées
évoluent de manière similaire jusqu’à atteindre un certain niveau. Au-delà de
ce seuil, cette évolution devient décroissante. Cette dernière observation est
liée au bornage des valeurs de l’image dans l’intervalle J0..255K, créant ainsi de
nouvelles composantes dans l’image.

De plus, l’impact du bruit sur l’évolution du nombre de nœuds non
persistants dans une hiérarchie [83] est évalué en fonction du niveau de bruit
de l’image. Ces nœuds représentent des régions qui n’appartiennent à aucune
partition optimale P∗, selon une énergie de la forme Eλ(P

∗) = D(P∗) + λC(P∗),
où D est un terme de fidélité aux données de l’image, C est un terme
de régularisation et λ est un paramètre de régularisation de cette énergie.
Pour cette évaluation, nous avons utilisé deux énergies : la fonctionnelle de

XIV RÉSUMÉ LONG

20 40 60 80 100 120 140

10

20

30

40

Écart-type σ

%
d
e
n
œ
u
d
s
n
o
n
p
er
si
st
a
n
ts

Pourcentage sur fσ
Pourcentage pour fc,σ
Moyenne

(a) Avec Eλ,ms

20 40 60 80 100 120 140

20

40

60

80

Écart-type σ

%
d
e
n
œ
u
d
s
n
o
n
p
er
si
st
a
n
ts

Pourcentage sur fσ
Pourcentage pour fc,σ
Moyenne

(b) Avec Eλ,cs

Figure 9: Évolution du nombre de nœuds de l’arbre non-persistants en fonction
du niveau de bruit

Mumford-Shah [142] (Eλ,ms) ainsi qu’une autre (Eλ,cs) dérivée de celle-ci en
remplaçant le terme de régularisation par la somme des valeurs aux contours
d’une région. Les évolutions sont affichées dans la Figure 9, où la courbe
bleue représente le pourcentage moyen de nœuds non persistants dans les
150 images, et la courbe rouge représente ce même pourcentage pour l’image
constante bruitée. Nous pouvons déduire de ces courbes que l’utilisation de
la fonctionnelle Eλ,cs est plus pertinente que Eλ,ms dans un contexte d’image
bruitée, car elle élimine un plus grand nombre de nœuds non robustes au bruit
dans la hiérarchie.

5 Conclusion et perspectives

Cette thèse présente une méthodologie permettant de fusionner la généricité
statique et dynamique au sein d’un même algorithme, visant ainsi à respecter
de manière optimale le critère d’interactivité pour une bibliothèque de
traitement d’images. Ensuite, la généricité statico-dynamique est appliquée
à un algorithme de représentation hiérarchique d’images appartenant à la
morphologie mathématique. Cela est motivé par le constat que la perte de
performances dans un contexte dynamique demeure négligeable par rapport
aux performances dans un contexte statique. Ainsi, afin de démontrer l’utilité
d’une bibliothèque performante intégrant ces trois critères dans le contexte
des représentations hiérarchiques d’images, une application est proposée
pour l’estimation du niveau de bruit. Cette application englobe notamment
l’extension d’une méthode, initialement conçue pour les images en niveaux de
gris, aux images couleur, dans le but d’améliorer les capacités génériques de

5. conclusion et perspectives XV

cette méthode, puis à une hiérarchie complète afin d’en améliorer la, ce qui ne fut
pas le cas, menant à l’étude de l’impact du bruit d’une image à la construction
d’une hiérarchie.

Ainsi, de nombreuses perspectives s’ouvrent à la suite de cette thèse. Dans
le cadre de la généricité statico-dynamique appliquée au traitement d’images,
seuls l’espace des valeurs et l’implémentation sont actuellement pris en compte,
le domaine étant limité à une grille rectangulaire en 2D. Cependant, comme
illustré par la Figure 0.1, le champ des possibilités en matière de domaine est
vaste. Celui-ci englobe les graphes, les maillages, ainsi que d’autres types de
domaines en 2D, tels qu’une grille hexagonale par exemple. Ainsi, dans un
premier temps, la généricité statico-dynamique pour le traitement d’images sera
étendue à différents types de domaines. Par ailleurs, dans le contexte de la
généricité statico-dynamique en nD, l’exploitation de la compilation à la volée
sera examinée pour réduire l’écart de performance entre les versions statiques
et dynamiques, en particulier pour générer du code machine vectorisé à
l’exécution. Enfin, dans le domaine des représentations hiérarchiques d’images,
la parallélisation de l’algorithme de construction à travers la division de l’image
en diverses sous-images, appelées tuiles, ainsi que le calcul de l’arbre sur chacune
de ces tuiles en vue de les fusionner en un seul arbre, seront étudiés afin de
minimiser les pertes de performance.

Dans la partie traitement d’images, l’estimation du niveau de bruit s’effectue
sans considérer la corrélation du bruit entre ces canaux due à la fusion des pixels
lors du démosaïquage pour former l’image en couleur. Ainsi, l’estimation de la
FNBM doit être adaptée pour prendre en compte cette problématique, de même
que son estimation. Par ailleurs, l’évaluation de cette estimation repose sur une
mesure d’erreur de précision, mais ses résultats ne sont pas analysés dans le
contexte d’une application pratique, comme le débruitage. Ainsi, la méthode
sera intégrée dans un algorithme de débruitage, et ses résultats seront comparés
à ceux obtenus avec une estimation par bloc. En ce qui concerne l’évaluation
de l’impact du bruit dans une image sur la construction d’une hiérarchie, les
résultats obtenus seront utilisés pour élaborer une mesure de similarité entre
deux hiérarchies, prenant en considération le contenu de l’image. Cette mesure
sera ensuite mise en relation avec le niveau de bruit de l’image. Par conséquent,
cela ouvre la voie à plusieurs applications utilisant les hiérarchies, telles que la
segmentation ou le débruitage, pouvant être réalisées en prenant en compte le
bruit affectant la structure de l’image, couplé à l’estimation du niveau de bruit
développée précédemment.

XVI RÉSUMÉ LONG

Table of Contents

1 Introduction 1

I Genericity and Image Processing 7

2 Generic Programming 9
2.1 From concreteness to genericity . 9

2.2 Generic programming features from C++ 12

2.3 Comparison with other languages 19

2.4 Concepts . 24

2.5 Conclusion . 27

3 Generic Image Processing and Its Application 29
3.1 Image representations . 29

3.2 Generic image processing . 36

3.3 Image processing libraries . 41

3.4 Conclusion . 49

4 Hierarchical Representations of Images 51
4.1 Representing images as hierarchies 51

4.2 Tree-based representations of hierarchies 53

4.3 An overview of hierarchical representations of images 57

4.4 Conclusion . 68

II A Static-Dynamic Approach to Image Processing 69

5 Static-Dynamic Genericity for Image Processing 71
5.1 Issues with static genericity for image processing 71

XVII

XVIII TABLE OF CONTENTS

5.2 Dynamism in C++ . 74

5.3 Static-dynamic genericity in C++ . 76

5.4 Extension to the Rust programming language 82

5.5 Experiments . 85

5.6 Conclusion . 89

6 Static-Dynamic Hierarchy Construction 91
6.1 Max-tree construction algorithms . 91

6.2 Overview of the Berger’s max-tree algorithm 92

6.3 Existing implementations of Berger’s max-tree 95

6.4 Static-dynamic implementation . 96

6.5 Evaluation . 100

6.6 Conclusion and perspectives . 102

III Applications in Image Processing 105

7 Noise Level Estimation using Hierarchical Representations 107
7.1 Context and motivation . 107

7.2 Grayscale noise level function estimation 109

7.3 Extension to color images . 114

7.4 Extension to the whole hierarchy . 122

7.5 Comparative results . 122

7.6 Conclusion . 126

8 Impact of the Noise on Hierarchical Representations 129
8.1 Motivations . 129

8.2 Structural study of the impact of the noise in the α-tree 131

8.3 Applicability of the study . 140

8.4 Conclusion and perspectives . 145

9 Conclusion and Perspectives 147
9.1 Genericity, efficiency and interactivity for an image processing

library . 147

9.2 Hierarchical representations of images in the presence of noise . . 149

Chapter 1
Introduction

Mathematical morphology [153, 188] is a widely studied field and is used
for several image processing tasks such as segmentation [19], filtering [189],
classification [232], and more. Hierarchical representations of images [24] belong
to mathematical morphology and allow the representation of an image as a tree.
Such a multiscale representation is interesting as objects of interest in an image
may be described by several regions, and the best fitting one depending on an
application may be selected for use.

On the other hand, machine learning has greatly improved the efficiency of
different image processing tasks in the past few years, notably through the use
of neural networks from the deep learning field [78]. Such advances, on the will
to associate artificial intelligence and mathematical morphology [22], have led
to the incorporation of morphological operations into deep neural networks by
building new network layers [4, 90, 132]. Recently, such associations have been
extended to hierarchical representations of images. For example, the max-tree is
used to create a new loss function based on some attributes computed on it for
filtering purposes [162]. This new loss function has been used to automatically
select markers for a segmentation procedure [67]. Furthermore, hierarchical
segmentations may also be learned by a neural network and predicted as is
the case in [116].

There exist numerous libraries to conceptualize and experiment with deep
neural networks. Among them, Tensorflow [1] and PyTorch [160] are two
well-known libraries to efficiently operate on tensors and thus build neural
networks. Tensorflow is a library implemented in C++ and provides an interface
to some other languages such as Python or Java. On the other hand, PyTorch is
implemented in Python but for performance purposes, some of its functionalities
are implemented in C++. Despite their differences, which are out of the scope
of this thesis, these libraries fit in very well in the Python ecosystem: for

1

2 Chapter 1. introduction

example, they provide interoperability functions with NumPy [85], a library
dedicated to the manipulation of arrays which is widely used in Python
for scientific programming and whose arrays serve as a usual representation
for n-dimensional images. Thus, performing image processing through deep
learning in Python is executed with ease.

The Python programming language is a popular choice for research
purposes. Its dynamic nature provides interactivity that facilitates the
conception and manipulation of an experimental pipeline. With static
programming languages, a modification such as a change of object type given
as input to a pipeline requires recompiling the program as type checking is
performed at compile-time. In Python, this is carried out at runtime such
that a program can be modified during execution. Jupyter notebooks [168]
enhance the ergonomy of such interactive capabilities by providing a
graphical and extendible environment facilitating the reproducibility of the
experiments. Furthermore, in addition to NumPy and the different deep
learning frameworks cited above, its ecosystem contains plenty of scientific
libraries for different application fields such as Scikit-Image [230] for image
processing or NetworkX [84] for graph manipulation, but also some others
which may be used whatever the field such as Scipy [227] which contains a
large set of scientific functionalities to be used in conjunction with NumPy, or
Matplotlib [92] for visualization purposes. However, the usual way to execute
Python code is the usage of CPython [68], which interprets a given program and
thus results in an overhead in terms of performance.

To avoid such a runtime overhead, several image processing libraries such
as OpenCV [27], Pink [45], and Vigra [110] are implemented in C++. This
language allows writing efficient implementations of algorithms because it
generates specialized code according to its input argument types. However, such
a process being performed at compile-time, dynamism is hard to reach without
impacting the performance of a given functionality. These libraries provide
Python interfaces but they have few generic capabilities: Vigra and OpenCV
are specialized to n-dimensional images and their functionalities are brought to
Python with a limited set of input types, particularly for the ones of the image
values. On the other hand, Higra [164] is specialized in either edge-weighted or
vertex-weighted graphs: images are required to be converted into those objects
before an algorithm is applied.

Pylene [208] is an image processing library, specialized in mathematical
morphology but not limited to, which aims to be generic, efficient, and
interactive. It is implemented in modern C++ (C++20) and makes use of the
language features to provide performant and generic implementations of image
processing algorithms. Furthermore, some of its functionalities are exposed to

3

a Python interface, but it still lacks of interactivity due to the nature of the
language. Thus, the objective of this thesis is the development of a methodology
that combines genericity and dynamism for static languages with the lowest loss
of performance in the context of image processing algorithms.

Contributions

We propose the concept of static-dynamic genericity for image processing, a
methodology that allows implementing algorithms such that they can be
applied on image structures that do not necessarily know some information at
compile-time. We evaluate the cost of the dynamism for such implementations,
and more specifically in the context of a hierarchical representation construction
algorithm. We thus propose to use our methodology for two applications. The
first one is an extension of a noise level estimation pipeline for grayscale images
to multivariate images using hierarchical representations. The second one is the
study of the evolution of the structure of such hierarchies when built on noisy
images according to their noise level.

Manuscript organization

This manuscript is divided into three parts which are themselves divided into
several chapters.
Part I: Genericity and Image Processing. The first part recalls the basic notions
used in our contributions but also highlights the links between them.

• Chapter 2: Generic Programming. This chapter introduces the basic
concepts of generic programming [146], a methodology that allows writing
an algorithm once and applying it to a wide range of data structures while
respecting a given set of constraints on their interface. Furthermore, a
comparison of the features provided by different programming languages
to perform generic programming is described, with particular attention on
the ones from C++ which is used throughout this thesis.

• Chapter 3: Generic Image Processing and Its Applications. In
this chapter, the mathematical definition of an image is recalled and
it is explained how generic programming can be applied in image
processing from this definition. To this aim, different image structures
are described, taking into account the fact that their value set, domain,
and implementation may vary without impacting the implementation of
generic algorithms. Finally, a comparison of the different image processing

4 Chapter 1. introduction

libraries providing mathematical morphology functionalities is provided
with particular attention on their generic, performant, and interactive
capabilities.

• Chapter 4: Hierarchical Representations of Images. This chapter reviews
hierarchical representations of images, which are multiscale tools from
mathematical morphology widely used for different image processing
tasks such as segmentation or object detection.

Part II: A Static-Dynamic Approach to Image Processing. The second part
is dedicated to combine at most genericity, performance, and interactivity for
image processing algorithms. It evaluates for several cases the cost of dynamism
required for interactivity, with particular attention on the max-tree construction,
a hierarchical representation of images.

• Chapter 5: Static-Dynamic Genericity for Image Processing. The notion
of static-dynamic genericity is described in this chapter for 2D images.
This methodology allows to write generic algorithms such that some
information about the input objects may be known either at compile-time
or at runtime. Then, different algorithmic schemes used in image
processing are implemented to compare the performance of different
image structures whose information are either static or dynamic and
evaluate the cost of dynamism for such algorithms.

• Chapter 6: Static-Dynamic Hierarchy Construction. From the results
obtained in the previous chapter, special attention is given to a max-tree
construction algorithm. More specifically, its adaptation to static-dynamic
genericity is studied. Furthermore, new image structures are proposed and
evaluated for such algorithms to be used dynamically.

Part III: Applications in Image Processing. The last part applies the concepts
developed in the previous one to applications using hierarchical representations
of images in the presence of noise.

• Chapter 7: Noise Level Estimation using Hierarchical Representations.
This chapter proposes the extension of a noise level estimation pipeline
for grayscale images to color images. This extension raises the issue
of the ordering relationship of multivariate values, which is not natural
and tackled by the use of two tools from mathematical morphology.
Furthermore, the initial estimation is improved to reach the best results
in terms of precision.

5

• Chapter 8: Noise Impact on Hierarchical Representations. This last
contribution consists of studying the impact of the noise in an image on
the structure of a hierarchical representation built from this noisy image,
in this chapter the α-tree. This is performed on a structural attribute, but
also in the context of an energy minimization process in order to obtain an
optimal hierarchy according to a given functional.

Chapter 9: Conclusion and Perspectives This last chapter, divided into two
parts concludes the work described all along this document and describes
several perspectives for each axis.

6 Chapter 1. introduction

Part I

Genericity and Image Processing

7

Chapter 2
Generic Programming

This chapter gives an overview of generic programming, a methodology
to divide a software library into several reusable components. To this
aim, this chapter is partitioned into several sections: the first one
defines generic programming by studying a concrete function, which
suffers from its lack of reusability, and refines its different elements to
obtain a generic version. The C++ features for generic programming
are then tackled, since it is the main language used throughout this
thesis. These features are then compared with the ones from other
programming languages supporting genericity. Finally, we discuss
concepts, which are families of types with the same interface and
respecting some axioms which establish a predefined behavior.

2.1 From concreteness to genericity

2.1.1 Algorithms and programming

Nowadays, computer programs form the basis of modern society. Whatever
the field, be it finance, medicine, science, or leisure, not being comfortable with
them may become a major issue. These programs are designed and created by
programmers, and their fundamental elements are algorithms.

Definition 1 [44] An algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of values, as output.

In the first volume of his famous series The Art of Computer Programming [108],
Knuth makes the analogy between algorithms and cooking recipes. The input

9

10 Chapter 2. generic programming

Listing 2.1: Concrete sum function C++

int sum(const std::vector<int>& vec) {
int res = 0;
for (int i = 0; i < vec.size(); i++)

res += e;
return res;

}

data are the ingredients of the recipe and the output data is the cooking dish.
Thus, the computational procedure is the ordered sequence of steps required to
obtain the dish.

The process of translating an algorithm into a given programming language
is called algorithm implementation. The resulting source code, which is part of
a program, is then transformed during the compilation process to result in
machine code directly understandable by the hardware during execution, or
interpreted by another program. An example of algorithm implementation
in the C++ language is given in Listing 2.1. This algorithm takes as input a
collection of elements and outputs the sum of all the elements. It is implemented
as a function, a programming language feature inspired by mathematical
functions, taking as an argument a vector of integer values and returning an
integer value.

An object is an entity manipulated by a program storing some values in
memory and a type represents an abstract set of objects [167]. Furthermore,
a type is endowed with a specific set of operations usable by the object. In
Listing 2.1, two types are used: the int type is the set of all the integer values
supported by the computer, and the std::vector<int> type is the set of all the
vectors containing objects of type int.

The main issue with the implementation of the sum function is its lack
of reusability: it can only be used with std::vector<int> objects. However,
this algorithm can be applied to any numeric value (integers encoded with
different amount of bits, floating-point numbers, user-defined implementations
of numeric values, ...), but also to any implementation of a collection (linked lists,
sets, ...), which is not the case with the current implementation. Thus to use this
algorithm on an object representing a set of floating-point values, it is necessary
to write a new function. Finally, when developing a library, such functionality
should be available for all types, whose amount is potentially infinite. This is not
feasible, and every new function may potentially introduce new programming
errors, making the library unmaintainable.

2.1. from concreteness to genericity 11

Listing 2.2: Generic sum function C++

template <typename Container>
typename Container::value_type sum(const Container& cont) {

typename Container::value_type res{};
for (auto it = cont.begin(); it != cont.end(); ++it)

res += *it;
return res;

}

2.1.2 Generic programming

The previously raised issues require a methodology such that an algorithm is
implemented only once and accepts objects belonging to a wide variety of types
as input data. Generic programming [146] fulfills these requirements.

Definition 2 Generic programming is a methodology abstracting algorithms and data
structures to design reusable components of a software or a library.

Writing generic algorithms requires defining a common interface for all kinds
of objects manipulated by them. This interface is composed of the operations
and the other elements abstract enough for the generic algorithm to not rely on
the implementation of the object. These are named concepts [54].

Definition 3 [54] A concept is the combination of a set of axioms satisfied by a data
type and a set of operations on it.

Musser et al. state that generic programming is requirements-oriented
programming [143]. After the development of numerous generic libraries in
different programming languages [145, 200], the Standard Template Library
(STL) [198] has been one of the most advanced generic libraries developed and
is still widely used nowadays. It is based on the idea that it is not only a set of
data structures or algorithms, but especially a set of requirements [144]. Thus,
requirements are at the basis of concepts.

As an example of a generic algorithm, the sum function from Listing 2.1 is
abstracted to result in its generic version in Listing 2.2. This function takes as
input any collection of elements respecting a given set of requirements, as for the
type of the objects stored in it. The traversal of the container itself is performed
in a generic way using iterators, inspired by pointers from the C programming
language [105], allowing to not rely on a specific access means. A more formal
description of these concepts is given later in this chapter.

12 Chapter 2. generic programming

Listing 2.3: Template parameter list C++

template <typename T, bool B, template <class> typename C> // (1)
template <typename... Ts> // (2)

2.2 Generic programming features from C++

Generic programming relies on a wide variety of features provided by
programming languages. In this section, features from the C++ language are
studied. This language is chosen as a basis since it is the main language used
in this thesis, but also because its generic abilities have been intensively studied
and used for various applications.

2.2.1 The C++ programming language

The C++ programming language [203] is widely used in both industry and
academia. It supports various programming paradigms including procedural
programming, functional programming, and object-oriented programming,
useful to perform generic programming. It is a compiled language: the
resulting applications are executed directly on the machine, making it ideal for
performance-oriented application. It is also a statically typed language: the type
of every expression must be known at compile time. All along this thesis, we
use the C++20 programming language standard [96].

2.2.2 Template parameter list

Generic programming in C++ relies on a language feature named template
parameter list.

Definition 4 A template parameter list is a list of types and constant values to be
processed at compile time by a compatible feature from the language. A feature endowed
with a template parameter list is called a template entity.

Template entities are families of entities: they behave as models. Their
mechanism is based on monomorphization: for each combination of parameters
used and known at compile time, a new version of the entity is generated by
the compiler. This version is highly optimized at compile time, enabling it to
reach the best performance for the given combination of parameters. However,
the downside of such a mechanism is the combinatorial expense when the
parameters depend on some runtime information: it requires anticipating all

2.2. generic programming features from c++ 13

Listing 2.4: Templated function C++

template <typename T, bool B>
T process_generic(T value) {

T res;
// Processing using value
return res;

}

the combinations of parameters and instantiating each template entities with
them, generating a large amount of machine code. This phenomenon is known
as code bloat.

Listing 2.3 shows two template parameter lists. They are preceded by the
keyword template and declared between angle brackets. In (1), the template has
three parameters. The first one is a type parameter, declared with the keyword
typename. It has to be noted that a type parameter may also be declared with
the keyword class, and that there is no difference between them in the context
of a template parameter list. The second parameter is a constant value, known
at compile time. Finally, the last parameter is a template template parameter,
taking as a parameter a templated type. The list (2) is a variadic list of template
parameters. There may have zero or more template parameters of the same kind
as the ones described previously.

2.2.3 Templated functions

Functions are the basis of algorithm implementation in C++.

Definition 5 A C++ function is composed of two main parts: a signature and a body.
The function signature is the set composed of the name of the function, its result type
and its argument list. A function endowed with a template parameter list is called a
templated function.

It has to be noted that this definition of a C++ function is simplified to only
rely on the necessary elements required to define a generic function and use it.
Thus, some C++ features are not discussed in this chapter such as the const or
volatile qualifiers for a function.

A mathematical analogy with a templated function is a parameterized
function defined by

∀T ∈ R, fT (x)

14 Chapter 2. generic programming

where fT is a family of mathematical functions. When T is set to a given value
belonging to a set R, fT behaves like a factory creating a new function being part
of this family. In this new one, T has been replaced by the value it has been set
to. Thus, fT is an abstract model of a function. Applied to C++, a templated
function behaves similarly: it is a family of functions, and its instantiation results
in a concrete function.

Listing 2.4 illustrates a templated function endowed with two template
parameters, a type parameter T and value parameter B. As it has been
noted previously, templated functions represent families of function, and their
instantiation results in a concrete function.

Important: All along this thesis, when working with functions, the two terms
argument and parameter are used to designate different elements. A function
argument is one of its inputs, which may be known at runtime, whereas a
function parameter is an element given as input to the template parameter list
and must be known at compile time.

Relationship with polymorphism - The templated function displayed in
Listing 2.4 relies on a language mechanism similar to polymorphism, and
more specifically parametric polymorphism. Polymorphism, as opposed to
monomorphism, is a mechanism allowing function arguments to have more than
one type. This term first appeared in a course given by Strachey in 1967 [202] and
is then refined by Cardelli et al. [30]. Polymorphism is divided into two major
categories, universal and ad-hoc polymorphism, each of them being divided into
two subcategories. Universal polymorphic functions accept as an argument a
possibly infinite amount of argument types whereas this amount is very limited
in the case of ad-hoc polymorphism. Parametric polymorphism belongs to
the category of universal polymorphism. However, templated functions are
not parametric polymorphic functions in the sense of the definition given by
Cardelli et al., stating that the executed code for universal polymorphic functions
is strictly the same whatever the input argument type, which is not the case for
templated functions, whose code is generated and highly optimized at compile
time, and thus differs depending on the input type argument. Furthermore,
in the context of generic programming, the code of a generic function may
vary according to its input type argument: for example, the sum function from
Listing 2.2 can take as an input different kinds of containers, each of them having
its own implementation, as noted by Musser et al. [143].

2.2.4 Templated data structures

Data structures are composed of objects used to represent complex data. In
C++, they are represented as structures or classes and may hold operations to

2.2. generic programming features from c++ 15

Listing 2.5: Templated data structure C++

template <typename T>
class vector {
// Interface
public:

// * Type aliases
using value_type = T;
using index_type = int;
// ...
// * Operations
vector();
value_type& operator[](index_type i);
// ...

// Implementation details
private:

T* data;
int size;
// ...

};

manipulate them.

Definition 6 A C++ class (or structure) is a set of objects and operations, respectively
named member variables and member operations, each of them having a given level of
visibility. It may also have type aliases and constant values known at compile time.
A class (or structure) endowed with a template parameter list is a templated class (or
structure).

Listing 2.5 illustrates a templated class. It is split into two components: the
interface and the implementation details. The interface is the set of information
visible to the user and required by the generic algorithm to run correctly. Its
visibility, in this code sample, is indicated by the public keyword. This interface
is composed of several elements such as function members or type aliases. A
type alias is the definition of a new name for a given type. It is either fixed or
depends on some information given by the parameters. In the listing, two types
are renamed through type aliases: the type of the index values is fixed to integer
and the type of the container element values depends on the type parameter.

In contrast with the interface, the implementation details are the hidden parts
of the data structure. They are declared non-visible using the private keyword,
such that they cannot be used outside the object. However, the implementation

16 Chapter 2. generic programming

Listing 2.6: Concept definition and its usage C++

template <typename C>
concept Container = requires(C c) {

typename C::iterator;
typename C::value_type;
{ c.begin() } -> std::same_as<typename C::iterator>;
{ c.end() } -> std::same_as<typename C::iterator>;

}
&& AdditiveMonoid<typename C::value_type>
&& ForwardIterator<typename C::iterator>;

template <typename C> requires Container<C>
typename C::value_type sum(const C& cont) { /* ... */ }

of the function members from the interface highly relies on them. In the case of
the vector structure in the listing, these details are the number of elements in the
vector and its implementation is a buffer of data.

2.2.5 Concepts and constraints

As mentioned above, generic algorithms rely on a set of requirements from the
input data to be processed. The C++ language does not force these requirements
to exist, as is the case for other languages. However, it provides numerous ways
to check them on templated functions or data structures, the preferred and more
modern practice being the usage of concepts presented in 2006 [80] and integrated
into the C++ standard in 2020. Note that this term is used for both the set of
requirements and the C++ feature and as it denotes related ideas, one theoretical
and another applicative, we use the same word for both.

Before the addition of C++ concepts to the standard, some hacks were
developed to simulate them [190, 191]. Another strategy to have a similar
mechanism is the Static C++ Object-Oriented Paradigm (SCOOP) [29, 74],
which combines generic programming with object-oriented programming to
create a static interface using the Curiously Recurring Template Pattern idiom
(CRTP) [43], enabling the advantages of object-oriented inheritance to have an
interface without the usual runtime overhead induced by the usage of C++
virtuals.

Definition 7 A C++ constraint is a list of requirements on a data structure. It is
composed of several language features such as type aliases or function members, but may

2.2. generic programming features from c++ 17

Listing 2.7: Template specialization example C++

struct unknown {};
struct fast {};
struct slow {};

template <typename T>
struct trait { using type = unknown; };

template <>
struct trait<uint8_t> { using type = fast; };

template <>
struct trait<double> { using type = slow; };

also be composed of some other constraints. A concept is a named constraint.

Listing 2.6 shows the definition and the usage of a standardized concept. It is
a template entity defined by way of the concept keyword, and it enumerates a set
of constraints specified using the requires keyword. Furthermore, this concept
also checks some requirements on its type aliases by using other concepts, as
is the case by respectively checking the value_type and iterator with the
AdditiveMonoid and ForwardIterator concepts. Finally, there are different
syntaxes in C++ to check if a template parameter respects a concept, such as
the use of a requires after the template parameter list declaration as illustrated
in the listing to check the container type.

2.2.6 Specialization and static dispatch

Static languages have the advantage of optimizing generated machine code at
compile time when enough information is known [77, 99]. This has the effect of
making algorithms run faster. Furthermore, using generic algorithms on some
data structures may have the effect of slowing down their execution. In this case,
it is better to have a specialized algorithm for a specific data structure to take
advantage of its properties.

C++ provides mechanisms to specialize template entities for a given set of
parameters: this is called template specialization. Template specialization may be
full when all parameters are set to a specific value, or partial when only a subset
of parameters is fixed. Thus, templated functions may be specialized for specific
types to provide an optimized implementation of an algorithm for a given data

18 Chapter 2. generic programming

Listing 2.8: Different possibilities to perform static dispatch C++

/* (1) Tag dispatching */
template <typename T>
void dispatch(T v, tag1) { /* ... */ }
template <typename T>
void dispatch(T v, tag2) { /* ... */ }
template <typename T>
void perform_dispatch(T v) { dispatch(v, choice_tag_t<T>{}); }

/* (2) Concepts */
template <typename T> requires Cond1<T>
void dispatch(T v) { /* ... */ }
template <typename T> requires Cond2<T>
void dispatch(T v) { /* ... */ }

structure, which may be different from the generic version. Another use case of
template specialization is illustrated in Listing 2.7, which is the specialization of
a data structure trait defining a type alias type according to a given template
parameter. Such a structure is a well-known tool for generic programming in
C++ called a type trait. Type traits define information about a type in a given
context. For example, in the C++ standard library, several type traits are defined
such as the numeric_limits providing constant values including the minimum
or the maximum values of a numeric type.

Finally, template entities may be specialized for a group of types and not
only one type. Furthermore, the choice of the correct algorithm may be decided
by a given set of attributes related to the input type. We name this choice static
dispatch. There are several ways to perform static dispatch in the context of
algorithms. Two of them are presented in Listing 2.8. The first one is called tag
dispatching. It consists of choosing the correct algorithm to execute using a tag
related to the input type as is the case in the listing with choice_tag_t, which
is a type alias to the tag contained in a type trait. It is based on overloading,
which is a kind of polymorphism where a function has a single name but
different implementations, and whose dispatch is performed according to the
type of its arguments. The second means of dispatch relies on C++ concepts and
constraints. In this case, the choice is performed by using the function whose
concept is the best fitting one related to the template parameters. The usage
of concepts is the simplest mean to perform static dispatch, but also the most
readable one. There exist other methods for static dispatch such as the usage
of the enable_if type trait, based on SFINAE (Substitution Failure Is Not An

2.3. comparison with other languages 19

Listing 2.9: Ocaml parametric function and its usage OCaml (REPL)

let first l = match l with (* Function declaration *)
| e::q -> e
| [] -> raise (invalid_arg "Empty list");;

val first : 'a list -> 'a = <fun> (* Function signature *)
let l1 = [1; 2; 3];; (* List declaration *)
val l1 : int list = [1; 2; 3]
first l1;; (* Application *)
- : int = 1

Error) [225], but its usage is more complicated than the two previous ones, and
it results in code difficult to read compared to the usage of concepts.

2.3 Comparison with other languages

In the previous section, generic features from the C++ programming language
were studied. However, there exists plenty of different means to achieve
genericity, depending on the programming language. In this section, some
other methods to write generic algorithms are presented and compared with
the features from the C++ language.

2.3.1 Parameterization

In C++, generic programming relies on template parameters. This language
is not the only one to use parameters. These parameters are either explicit,
meaning that they are explicitly declared in a list, as is the case for C++, Java [7],
Ada [10], C# [89], Swift [94], Rust [107], and many others, or implicit, signifying
that the parameters are not written explicitly but are deduced by the compiler
during the definition of an object and inferred at usage to have the correct
type. Implicit parameters are notably used in languages from the ML family
such as Standard ML [139] or OCaml [140]. Finally, some languages such as
Haskell [131] provide function parameters which are either implicit or explicit.

Explicit parameters are discussed widely in the previous section on the C++
languages with the template parameter lists. As for implicit ones, an illustration
is given in Listing 2.9. In this listing, a function first is defined in an OCaml
interpreter. It takes as input a list and returns the first element of this list. In
the signature, the input type is 'a list and the return type is 'a. The 'a type
is the implicit parameter and its type is deduced when the function is executed

20 Chapter 2. generic programming

using a mechanism named type inference [138], which determines the type of
an expression based on the type of its subexpressions. This is illustrated when
applying the function on the list of integer values l1. Type inference is also used
in C++ when using the auto keyword when declaring a function or a variable.

Dynamically typed languages perform type checking at runtime. However,
they can mix dynamic and static typing through for example gradual
typing [192, 193]. Gradual typing is based on type annotations, which are
indications about the type of expressions in the code that are checked at compile
time. Python provides type annotations, but they are only used for static
analysis and have no effect at compile time with classical interpreters such
as CPython [68]. In order to provide generic parameters, it relies on type
variables [177]. The Mypy [117] static type checker for Python programs is
inspired by gradual typing and is used along with Python type annotation.
Furthermore, type annotations are not limited to gradual typing but may be
used for different purposes. In Julia [20] or Common Lisp [217], they are used to
strictly check dynamic types. They may also be used in Common Lisp to remove
such a checking, resulting in efficient machine code with weak typing.

2.3.2 Generic modules

Modules originate from the Modula programming language [235]. A module
is a programming feature designed to organize functionalities developed in
software or libraries. It is a set of declarations of several features from a language
such as data structures, type aliases, or functions. It is usually divided into
different parts: an interface, which defines all the required declarations, and
their implementation. A module may be parameterized, thus improving its
flexibility and making them generic. It is similar to a C++ class by its definition,
however, unlike C++ classes, they cannot be instantiated.

A generic module in Ada, named a generic package, and its usage in a
function are displayed in Listing 2.10. In Ada, the interface of a module is named
the package signature and its implementation is the package body. For readability,
only the package signature is displayed. This package is parameterized by a
generic parameter T in a generic part declared with the generic keyword. Then
several elements are declared such as the provided type and operations. They
aim to create and manipulate an optional value that is an object which may not
have any value. The data structure Option storing this value is then declared
in the last part of the package. Its fields are not visible to the user due to the
private keyword preceding the declaration of the Option record, but the type
itself is still accessible as it is declared in the previous part of the package. This
package is used in the listing in a function by defining a new package and setting

2.3. comparison with other languages 21

Listing 2.10: Generic package signature Ada

-- Package signature
generic

type T is private;
package Optional is

type Option is limited private;

function Create_Empty return Option;
function Create_Value(E : T) return Option;

function Is_Empty(O : Option) return Boolean;
function Get(O : Option) return T;
procedure Set(O : in out Option; E: T);

private
type Option is record

Value : T;
Empty : Boolean;

end record;
end Optional;

-- Usage in a function
procedure SomeFunction is

package Optional_Int is new Optional(T => Integer);
value : Optional_Int.Option;

begin
value := Optional_Int.Create_Empty;
-- ...

end SomeFunction;

the parameter T to the Integer type. Then, the type and operations of this new
package are used to define a new variable and initialize it.

Ada’s packages are not the only kind of generic module. Languages from
the ML family provide an advanced module system [130, 218] composed of
module signatures, module structures, and functors. The last elements of these
components, the functors, are mappings from ML module structures to another
module structure used to define generic modules. The CLU language uses a
mechanism similar to the classes in C++ for its modules. These are named
clusters [126] and can be parameterized with a type. They are composed of a list
of operations that are visible or not, and an internal data representation that is
hidden from the user.

22 Chapter 2. generic programming

2.3.3 Requirements checking

Requirements checking is a language mechanism used to check if one or more
parameters respect a list of requirements. Such a mechanism is studied for C++
in section 2.2.5. C++ concepts check the behavior of a type according to a list of
requirements. Thus, type validity entirely depends on its structure, and any type
fulfilling these requirements is accepted as a valid type. Such a type system is
named a structural type system [167]. In addition to C++, several other languages
implement structural typing. The CLU language allows putting some constraint
in a where clause to restrain the type parameter to a specific set of operations.
Other examples of structural type checking are the usage of interfaces in Go [59]
or Ada constraints in the generic section of the package signature.

As opposed to structural type systems, nominal type systems [167] are based
on names and control the validity of a parameter by paying attention to the
names related to a given type. In Julia, types are organized as a hierarchy.
This hierarchy, represented as a tree, has the Any abstract type as a root and
concrete types as leaves. An abstract type is a category of type that cannot
be instantiated and has no field in its declaration. Such types represent internal
nodes in the hierarchy and are used to constrain the type parameter, which must
be a concrete type, to have as an ancestor a particular abstract type. Swift uses
a more sophisticated system called protocols, which is a list of required language
features related to a name that must be implemented in the object. The class
implementing these features must be related to this protocol and when writing
a generic function, the parameter must be bound to the protocol for its described
features to be used in the generic function. Similar mechanisms exist in Java and
C# under the name of interface, or in Rust as traits, illustrated in Listing 2.11.

This listing is divided into three parts, illustrating the usage of Rust traits
in the context of generic programming. The first part defines a trait with
the trait keyword, containing a function and a type alias. Indeed, this trait
originates from the Rust standard library to implement the + operator [219].
The second part of the listing is the implementation of the trait for a given
type, starting with the keyword impl. Compared to some languages such as
Java or C#, the implementation of traits is distinct from the implementation of
the types and of the other traits. This allows to extend existing data structures
from existing libraries with traits created by the user, and thus improves the
generic capabilities in terms of flexibility. Finally, the generic sum function from
Listing 2.2 is implemented in Rust. The parameter C and its type alias are
bounded to some traits in a where clause, ensuring the validity of the input
parameter by making it implement the required functionalities.

2.3. comparison with other languages 23

Listing 2.11: Trait bounds and their usage Rust

trait Add<Rhs = Self> {
type Output;
fn add(self, other: Rhs) -> Self::Output;

}

impl Add for SomeType {
type Output = SomeType;
fn add(self, other: Rhs) -> Self::Output { /* ... */ }

}

fn sum<C>(cont: C) -> C::Item
where

C: IntoIterator,
C::Item: Add<Output = C::Item> + Default,

{
let mut res = C::Item::default();
let mut it = cont.into_iter();
while let Some(e) = it.next() {

res = res + e;
}
return res;

}

2.3.4 Discussion

This section discusses generic features provided by other programming
languages. These have advantages, but also drawbacks when compared to
C++ generic features. Data abstraction is of prime importance in generic
programming. Modules and classes have different properties and represent
the main features to represent abstract data in this chapter. Depending on the
programming languages, modules and classes can be endowed with parameters,
this improving code reusability. Even if they are similar, they have major
differences: a class is intended to represent an entity with a given behavior
while a module is a set of different language features such as functions, data
structures, constants, etc... Thus, classes can be instantiated to result in objects
whereas modules cannot. Another difference between them is the fact that
classes come from object-oriented programming: they benefit from features such
as inheritance, which can be useful for many situations. For example, class
implementations in programming languages relying on monomorphization may

24 Chapter 2. generic programming

be divided into two classes: a base class that is not parameterized and then
inherits to another class that is parameterized. Thus, the code which does not
depends on any parameter is just compiled once.

Finally, requirements checking is divided into two categories: nominal and
structural. A structural type system checks if a type respects some requirements
whereas a nominal type system requires a type to belong to a named category. In
some languages, the nominal type system checks if all the operations related to
a name are implemented, and does not accept other operations to be used. This
is not the case for a structural type system, which just checks if some operations
exist, but does not restrict the usage of other ones. Thus, nominal type systems
are safer due to their restrictions but are not as flexible as structural type systems.

2.4 Concepts

In section 2.1.2, concepts are defined theoretically as a set of operations and
axioms on them. Such concepts are then applied to programming languages
in sections 2.2.5 and 2.3.3. However, they are not studied in depth in the
previous sections. So, in this section, we define some basic concepts, used in
a wide variety of applications. To this aim, we take as a baseline the named
requirements from the STL [198] and the concepts described in Elements of
Programming [199].

2.4.1 Basic concepts

In this part, some basic concepts are considered. They rely on a few operations.
Some of them are illustrated in Figure 2.1. These diagrams are similar to
UML diagrams. They describe the required interface and the list of axioms
for a type respecting a given concept. The name of the concept is endowed
with a type parameter, a similar notation for the C++ concepts. So the
concept Defaultable<T> means all type T respecting the requirements of the concept
Defaultable.

This Defaultable concept allows defining a default value for a type. It has
been used in the listings illustrating the sum function in C++ by the use of the
default constructor or in Rust with the Default trait. The second concept is the
Copyable one. It requires defining an operation such as the C++ copy constructor
that copies the value of an object stored in a given memory location into another
memory location. The Convertible one is an interesting concept in the sense
that it requires a conversion operation from one type into another one. This
conversion may be implicit, as it is the case for example in a function using
coercion polymorphism, or explicit, using a specific function.

2.4. concepts 25

Defaultable<T>

default() → T

Copyable<T>

copy(T) → T

Convertible<T, U>

to(T) → U

Equality<T>

operator=(T, T) → Boolean

operator ̸=(T, T) → Boolean

∀a, b ∈ T, a = b⇐⇒ b = a

∀a, b ∈ T, a ̸= b⇐⇒ a = b

Comparable<T>

Equality<T>

operator<(T, T) → Boolean

∀a, b, c ∈ T, a < b ∧ b < c =⇒ a < c

Figure 2.1: Basic concepts definitions

The two last concepts of Figure 2.1 are the only ones in this figure to define
some mathematical axioms. For ease of readability, only a subset of axioms is
illustrated as an example for these concepts. The first concept is the Equality
concept, defining two operations in the first part to denote if two elements are
the same or not, and two axioms, the first one being the symmetric property
of equality and the second one defining the inequality by a logical relationship.
The second concept is the Comparable one. It defines a total ordering by first
extending the Equality concept, then defining an operation stating if an object
is strictly lower than another of the same type, and finally defining a transitive
axiom.

There exists many useful concepts which are not described in depth. Among
them, a Predicate concept can be cited, defining an operation returning a boolean
value related to its input arguments. In a more general context, the Callable
concept is defined to check if a given type can be used as a function. Such
types respecting this concept in C++ are lambda functions, functors, or function
pointers. Argument types and result type may be defined inside this concept or
in another one.

2.4.2 Concept refinement

In the previous section, some basic concepts have been described. These
concepts usually define a few operations. By combining these concepts, it

26 Chapter 2. generic programming

AdditiveMonoid<T>

Defaultable<T>

Additive<T>

∀a ∈ T, e = T.default(), a+ e = a

Figure 2.2: Additive Monoid concept

becomes easier to write complex concepts. Thus, designing basic concepts is a
mean to increase their reusability. Concept refinement relies on the extension
of a concept. In some ways, it is similar to inheritance in object-oriented
programming: its aim is to extend a concept, by adding operations or axioms.

An example of concept refinement is illustrated in Figure 2.2. This concept is
used previously in this chapter as the concept modeling the family of accepted
types for the values of the elements stored in a container given as input to the sum
function, but it has not been yet clearly defined. It represents an additive monoid
(T, e,+) whose element set is all the possible values from a type T, e is the neutral
element, belonging to T, and it is endowed by the addition operator. To this aim,
this concept is composed of two basic concepts, the Defaultable, defined in the
previous section, and the Additive concepts, requiring the addition operation
and stating as an axiom its associativity. However, these concepts are not enough
to define completely an additive monoid: even though they bring all the required
operations, there is no guarantee the default value is a neutral element for any
type. To overcome this issue, the two previous concepts are refined with a new
axiom defining the identity element axioms.

2.4.3 Container-related concepts

Concepts refinement is a widely used methodology in practice. In the STL, it is
used in several entities and notably the containers. A container is a collection
of objects stored in a memory location managed by the container itself. In
modern C++ (C++11 and beyond), containers in the STL are divided into three
categories: sequence containers, associative containers, and unordered associative
containers. Sequence containers store their elements linearly unlike associative
containers storing their elements in ordered data structures, usually balanced
trees, or unordered associative containers which store their elements in hash
tables. In addition to these categories of containers, represented by a concept, an

2.5. conclusion 27

Defaultable Equality Copyable ...

Container

Sequence Contiguous Reversible Associative AllocatorAwareUnorderedAssociative

Figure 2.3: Container concept refinement hierarchy

STL container may fit different concepts, illustrated in Figure 2.3 as a hierarchy
of refinement. For example, a Sequence container can also be a Contiguous
container if its elements are stored contiguously in memory, as is the case for
std::vector from the STL.

Containers provide numerous means to traverse them according to their
use cases and implementations. For example, a vector uses integer-based
indexing, a linked list follows the link at each node or a map uses key-based
indexing. All these access mechanisms are specialized to one container and
restrict the possibilities to implement generic algorithms. Thus, there is a need
of abstracting the means to traverse a container. To this aim, iterators are generic
structures allowing to iterate on all the elements of a container whatever its
nature. Depending on the language, there may be different kinds of iterators
and refinements, but in most cases, iterators provide two main operations: a
read access to the value at a given position of the container and an iteration
to its next element. Iterators are used in the sum function in Listing 2.2. In
this example, an iterator on the first element is created using the begin function,
which is a requirement of the Container concept. It is traversed from one element
to the next one until it reaches a sentinel iterator obtained with the end function
using the increment operation and its value is accessed by dereferencing it using
*it.

2.5 Conclusion

In this chapter, we studied different notions about generic programming. We
started with the definition of a concrete algorithm, which is not flexible in terms
of input object type, and we refined this algorithm by solving the issues raised
by the concrete implementation to obtain a modular algorithm by the mean
of generic programming. We then used the C++ language as a basis to study

28 Chapter 2. generic programming

generic features in order to write such algorithms. Generic programming being a
methodology adopted by a large amount of programming languages nowadays,
we compared the generic features from the most used ones with the features
provided by the C++ language. Finally, some examples of concepts, which are
the basis of abstract modeling in generic programming, are studied.

The notions of this chapter have been widely used since this methodology
gained prominence. The examples of the STL and the generic Ada library
are the first well-defined generic standard libraries. Furthermore, languages
supporting genericity have, for most of them, such kind of generic standard
libraries. Moreover, generic libraries are not limited to standard libraries: one
can cite scientific computing, such as Eigen [82] a library for linear algebra,
graph manipulation with the Boost Graph Library [194], finite state machines
manipulation, using the VCSN library [55] or image processing, which is the
subject of the next chapter.

Chapter 3
Generic Image Processing and Its
Application

In this chapter, the link between generic programming and image
processing is established to obtain software tooling that fulfills all the
requirements for scientific or industrial research and applications. To
this aim, the notion of image is first defined, and several representations
are described. The notion of generic programming is then extended to
image processing such that algorithms can be applied on the various
image representations. Finally, a review of the various suitable tooling
is provided, with their advantages and disadvantages, with a special
focus on libraries.

3.1 Image representations

Image processing relies on a wide variety of image representations. To
manipulate these representations, it is required to define them properly.

Definition 8 An image f is defined as the function

f : Ω→ V (3.1)

where Ω is the definition domain of f and V is its set of values. Elements of Ω are called
points of the image and a pair (p, v) ∈ Ω× V is called a pixel of the image.

Based on this definition, a brief overview of the different image
representations is presented in this section.

29

30 Chapter 3. generic image processing and its application

7 4 5 3 4 1

4 3 0 6 2 8

(a) Grayscale image

136
86
148

(b) Color image

Figure 3.1: Image defined as a rectangular 2D buffer

3.1.1 N-dimensional images

Classical representations of images discussed in this section are images defined
as n-dimensional matrices. They are the most usual representation of images,
particularly in the case with n = 2. These images, named 2D images, are defined
on a rectangular domain Ω ⊂ Z2 and their points p = (p1, p2) are elements of
this set. Depending on their implementation, these coordinates may be either
the pair (x, y) of position x in the abscissa and y in the ordinate of a rectangular
domain or the pair (l, c) of position in a matrix representation of an image such
that l is the row and c is the column of the matrix element. Even the origin of
the domain may vary: it can be located at the top-left of the image, but some
implementations also locate it at the bottom left.

Image values vary according to the context they are acquired and
manipulated in. Figure 3.1 illustrates different values for 2D images. In the
image in Figure 3.1a, the values stored in the matrix are univariate: they are
represented by a single value. Such images are often named grayscale images
and their value at a given position represents the gray intensity of a pixel. It
is common that grayscale values are encoded as unsigned integers on 8 bits
such that V ⊆ J0 − 255K. However, image values may also be defined on a
larger set of values. For example, image labeling may require the ability to have
more than 256 possible label values. Furthermore, some applications such as
astronomical imaging necessitate floating point encoding to keep all the details
from the acquisition and avoid possible degradation due to the quantization that
would be performed for data transport.

The human perception is not gray, but based on colors. Colors provide more
detailed visual information and are thus widely used in image processing. Color

3.1. image representations 31

values are encoded as multivariate values, often with three components, but
not limited to. Figure 3.1b is an illustration of a color image whose values are
encoded as multivariate values. In this case, the RGB color space (standing for
Red Green Blue) is used. As indicated by its name, an RGB value encodes three
intensities, one for each color channel, and the resulting color is obtained by
additive mixing. In addition to RGB, there exists many color spaces, each of
them having interesting properties according to the application. For example,
the CIELAB color space [93] is designed to represent the colors as they are
perceived by humans. It is decomposed into three channels: the L∗ channel
encodes the lightness and the a∗ and b∗ channels encode the color. It is
particularly useful when computing the distance between two colors, which
is close to the human perceptual difference, and is performed by means of
the Euclidean distance. Other color spaces widely used, notably in image
and video compression, are the color spaces encoding the luminance and the
chrominance of a color such as YUV or YCbCr. They are notably used in a
subsampling process of the chrominance, the luminance handling most of the
values information.

By definition, n-dimensional images are not limited to 2D images, but can
have as many dimensions as required. In such cases, the domain is not restrained
to a rectangle but is generalized to a hyperrectangle. These kinds of images
are used in different contexts: for example, 1D images are used to represent
1D signals such as sound waves, 3D images may be used for medical imaging,
biology or to represent 2D+t images, where t is a temporal axis, 4D images can
be used to represent a 3D+t image, etc...

3.1.2 Graph-based images

Graphs are useful representations with several applications in image
processing [123]. Let G = (V,E) be a graph whose vertices are defined in the set
V and edges in the set E ⊆ V 2. The graph is either directed, such that for two
vertices u, v ∈ V , (u, v) ̸= (v, u), or undirected, with (u, v) = (v, u). Let wv and we

be two mappings defined by wv : V → Vv and we : E → Ve. These mappings wv

and we represent respectively the vertices weights and the edges weights of a graph.
Thus, (G,wv) is a vertex-weighted graph, (G,we) is an edge-weighted graph, and
(G,wv, we) is a weighted graph on vertices and edges.

Remark: In this thesis, if not specified, the graph is assumed to be undirected.
Illustrations of these graphs are depicted in Figure 3.2. In this figure, two

graphs are shown. The first one, in Figure 3.2a, is weighted on the vertices
with grayscale values. The second one, in Figure 3.2b, is weighted on the edges
with univariate values. In this figure, the color of the edges represents the edge

32 Chapter 3. generic image processing and its application

0

0

4

2
3

0

0
1

(a) Vertex weighted graph (b) Edge weighted graph (the color of
an edge represents its weight)

Figure 3.2: Weighted graph representations

(a) 4-adjacency graph (b) 8-adjacency graph (c) Khalimsky graph

Figure 3.3: Adjacency graphs for 2D images

weights and are mapped from blue to red.
Graphs can be used to represent some image properties such as the adjacency

relationship between two pixels. When working on vertices, two adjacent
vertices have a common edge linking them. Similarly, when working on edges,
an edge is adjacent to another one if they share a common vertex. Applied to
n-dimensional images, it is possible to define the neighborhood of a pixel from
an image by means of an adjacency graph. Three examples of adjacency graphs
are illustrated in Figure 3.3. The ones displayed in Figures 3.3a and 3.3b are
derived from the notion of 4-neighborhood and 8-neighborhood from digital
topology [109]. In these graphs, a vertex represents a pixel of the image and the
edge characterizes the adjacency relationship between two vertices. Similarly,
Figure 3.3c illustrates the adjacency relationship in a Khalimsky grid [106].

3.1. image representations 33

Figure 3.4: Region Adjacency Graph of a partition

An image can be divided into n disjoint regions Ri composed of connected
points of the domain Ω according to an adjacency relationship. A partition P
is defined as the set P = {Ri | i ∈ J0..n− 1K} of the disjoint regions of an image
such that ∪i<nRi = Ω. Thus, an image can be defined directly on the regions
of the partition instead of the elementwise pixels, and graphs may be used on
these regions to create an adjacency relationship between them. Such graphs
are called Region Adjacency Graphs (RAG) and an illustration is displayed in
Figure 3.4, where a RAG is built on a partition composed of 5 regions, each of
them being differentiated by a given color. Such graphs are used for different
applications such as segmentation [220] or image retrieval [41].

3.1.3 Simplicial complexes

Simplicial complexes are usually used to represent polygon meshes whose faces
are triangles, as illustrated in Figure 3.5a. A simplicial n-complex is a set of
simplices, which are themselves sets of points whose cardinality is between
1 and n + 1. A simplex (singular of simplices) with a cardinality i is called
a (i− 1)-simplex. The example in Figure 3.5b illustrates these definitions. It
represents a simplicial 2-complex composed of 0-simplices, which are points (in
red), 1-simplices, which are lines (in blue), and 2-simplices, which are triangles
(in green). It has to be noted that from these definitions, simplicial complexes
may be seen as a generalization of graphs. Indeed, a graph is a simplicial
1-complex: its vertices are the 0-simplices and its edges are 1-simplices.

The adjacency relationship between elements of a simplicial complex can
be retrieved by defining an adjacency graph using n-simplices as vertices and
(n− 1)-simplices as edges. Thus, if the simplicial complex is of dimension 1, that
is if it is a graph, the definition is the same as the one defined in section 3.1.2.

34 Chapter 3. generic image processing and its application

(a) A polygon mesh (b) A simplicial complex

Figure 3.5: A polygon mesh represented as a simplicial complex

...
strides[N]

(a) Buffer image (b) Constant image

f(■)

■

(c) View image

Figure 3.6: Different implementations of a 2D image

If it is a simplicial 2-complex, vertices are triangles and edges are the common
line between two triangles, as illustrated in Figure 3.5b with the graph whose
vertices are black points and edges are dashed black lines.

3.1.4 Implementations

A last important part of image representations is their implementation. In the
previous sections, the two main parts of an image given in Definition 8 were
discussed: its domain and its value set. To avoid memory space waste or
to increase the performance of memory access, an image may have different
implementations.

Three implementations are given as examples in Figure 3.6. All these
structures are represented in order to be used for 2D images but their usage
with weighted graphs or simplicial complexes is valid. The first way to store

3.1. image representations 35

values in an image is the usage of a buffer, which is a sequential structure that
can be accessed in constant time, as illustrated in Figure 3.6a. In this case, all
the values are stored in a buffer that may be contiguous, meaning that there is
no unused space between two elements of the buffer. This property makes the
sequential traversal of an image faster due to the caching of the processor, which
reduces the access time to the data. To access the values of images represented
by a buffer, two pieces of information are important: the coordinates encoding
a point p ∈ Ω and the strides s. A stride is a value encoding the number of
elements in the buffer to step over in order to access the next element for a
given dimension. In that way, a pixel value located at position p is accessed
by means of an offset from the beginning of the buffer computed by ⟨p, s⟩ with
⟨·, ·⟩ being the inner product. Therefore, this access mean is not limited to 2D
images and can be used to access a pixel value of any n-dimensional image. The
order in which the values are stored constiguously in the buffer may differ. A
buffer is considered C-contiguous when transitioning to the next element results
in a change in the last coordinate first. An F-contiguous buffer is the opposite
of a C-contiguous buffer, that means the first coordinate is first changed. This
ordering of values may be handled by the strides of a buffer.

However, this representation has the disadvantage to take |Ω| × sizeof(v)
bytes in memory for v ∈ V a pixel value and sizeof(v) the operation returning
the number of bytes encoding v. This is necessary in some situation such as
when the image is writable at any position or when all the elements differ too
much for optimization to be performed. When it is not necessary, different
implementations can be used. The first case is the situation where only one
element is stored. If the writable property of an image is not required, the
image can be stored as only one value, and this value is accessed at any point
of the image, as illustrated in Figure 3.6b. Another implementation when the
image contains a few elements different from a particular one is the combination
of a constant image with a sparse matrix, a data structure having different
implementations but whose objective is to only store values different from 0.

A last example of image implementation is the view [179], named from C++
views. Views are non-owning images: they point to an image but may modify
some of its properties. For example, the domain may be a subset D ⊆ Ω of
the image domain Ω. In that case, the view plays the role of the image with a
different domain, but the data are owned by the original image. Such view is
called a slicing view. Another example of view is a transform view: it performs a
lazy, on-demand transformation of the image. This is illustrated in Figure 3.6c,
in which the image is an RGB image, but at read access, the returned value
is the one from the green channel. In that case, the view may be seen as the
image composed of the green channel values. Another interesting property of

36 Chapter 3. generic image processing and its application

f : Ω→ V

Figure 3.7: Generic image representation

view images is their composability: a view may be composed of several views:
for example, if one wants the value of the green channel of an RGB image at a
particular region of interest, it can use the two previously explained views.

3.2 Generic image processing

In the previous section, an overview of different image representations was
given. These images share common properties allowing to write generic
algorithms for them. This section summarizes the idea behind a large amount
of work that has been performed about generic image processing [110, 118, 71,
178].

3.2.1 Image abstraction

Definition 8 states that an image can be represented as a function taking as input
a value from a domain Ω and returning a value from a set V . Based on such a
definition, it is desirable to use any structure as a domain and to value each of
its elements. This is illustrated in Figure 3.7. The domain may be composed of
any element of a simplicial complex such as a point, a line, or a triangle, but also
any kind of grid (rectangular, hexagonal, etc...). Values may also vary depending
on the use case of the application or the input format.

Applied to generic programming, it is necessary to define a concept to be
able to manipulate the images. A simplified, yet practicable, Image concept is
illustrated in Figure 3.8 which is similar to the concept presented in [122]. This
concept first defines three type aliases: a type for the points, which should be
the element type of the domain on which the image is defined, a type for the

3.2. generic image processing 37

Image<I>

type point type

type value type

type pixel type

domain() → range<point type>

values() → range<value type>

pixels() → range<pixel type>

operator()(point type) → value type

Figure 3.8: Image concept

values of the image, and a last type for the pairs (point, value). This last element
is very important when combining genericity and performance as demonstrated
in [121]. Then, four operations for these types: the domain, values, and pixels
result in a range containing respectively all the points, the values, and the pixels
of an image. Depending on the image implementation, they may take care of
the memory layout to perform an efficient traversal of the image. The fourth
operation represents a random access operation, which may not be available on
all kinds of image implementation, but fitting Definition 8 in terms of function
representation of an image. More detailed concepts for the image structure are
proposed in [180].

Image adjacency relationship is a requirement for a wide variety of
algorithms. In the previous section, it is represented as an adjacency graph
for the different image representations. However, this representation is too
restrictive for all its usage, and a more global definition is required to exploit all
its capabilities. To this aim, a window is defined as a function taking a point as an
argument and resulting in a set of points. It is used to represent the neighborhood
of a given point of a domain. Thus, it can represent a 4-adjacency relationship by
taking a given point as an argument and returning the range containing up to the
four neighboring points. Furthermore, such windows can be used to represent
structuring elements in mathematical morphology, but also convolutional kernels
when the points are weighted by a value. This representation is thus flexible
enough to be used by generic algorithms.

38 Chapter 3. generic image processing and its application

Figure 3.9: Illustration of the watershed segmentation principle (from [8])

3.2.2 Application to image processing algorithms

The usage of generic programming in an image processing framework has
been studied in several applications. In [61], a general framework to work
with generic mathematical morphology algorithms is proposed. In [119],
Levillain et al. apply these concepts to a generic image processing library and
give an example with a generic watershed algorithm [19, 137] applied to different
image domains. In this section, this example illustrates generic image processing
algorithms.

The watershed [19] is a marker-based segmentation algorithm considering
the image as a topographic relief. Starting from particular regions of the image,
which often are its regional minima, the segmentation process goes from pixels
with the lowest intensity adjacent to these regions to pixels with the highest
intensity. Thus, each marker defines a catchment basin and the watershed
algorithm simulates the filling of these basins until two of them meet. In this
case, a watershed line can be created at the meeting point. The principle of this
algorithm is illustrated in Figure 3.9.

From this definition, the watershed algorithm requires some properties on
the image structure and on its values. First, its domain should be endowed
with an adjacency relationship. In this case, a window can be used to express
the neighborhood. The advantage of using a window independently from the
image comes from the fact that a given image structure can define different
adjacency relationships, such as illustrated in Figure 3.3 in the case of 2D images.
Furthermore, image values need to be totally ordered, implying that V must be
a complete lattice, which is a set endowed with an order relationship. This
is a well-known requirement of mathematical morphology [176], the field the
watershed algorithm belongs to.

3.2. generic image processing 39

(a) 2D image (b) Vertex weighted graph

(c) Edge weighted graph (d) Simplicial complex

Figure 3.10: Watershed segmentation applied to different kinds of image

Figure 3.10 illustrates the watershed applied to different images respecting
the previously listed requirements. In Figure 3.10a, the watershed is computed
on the morphological gradient of the image displayed in Figure 3.1a, and
the adjacency used is the 8-adjacency relationship displayed in Figure 3.3b.
Furthermore, for readability, an opening by area is performed on the gradient
image. Figures 3.10b and 3.10c are the results of the watershed computation
performed directly on the vertex-weighted graph from Figure 3.2a and
the edge-weighted graph from Figure 3.2b using the adjacency relationship
described in section 3.1.2. Finally, Figure 3.10d is the result of the watershed
on the simplicial complex computed from the mesh in Figure 3.5a. The values
used on each triangle are their maximum curvature values [166, 181].

40 Chapter 3. generic image processing and its application

Listing 3.1: Generic morphological operation C++

template <typename A, typename I, typename SE>
I morphological_operation(I in, SE se) {

I out(in.domain());
for (auto p : in.domain()) {

A acc;
acc.take(in(p));
for (auto q : se(p)) {

if (in.domain().has(q)) {
acc.take(in(q));

}
}
out(p) = acc.to_result();

}
return out;

}

3.2.3 Algorithmic canvas

Generic image processing algorithms are used on different image structures
which can have generic value types. Thus, having one implementation for
one operation is useful to avoid code duplication. In image processing, some
algorithms differ only on a particular operation. In such cases, it is convenient
to implement the generic algorithm with generic images, but also generic
operations. Such algorithms are called algorithmic canvases [60, 75].

In Listing 3.1, an example of a generic algorithmic canvas is given as a C++
function for the basic morphological operators such as erosion or dilation [188].
The function takes two arguments: an image in and a structuring element
se. Furthermore, the first template parameter, denoted by A, is the type of an
operation to be performed in the canvas. In the context of this algorithm, the
operation takes the form of an accumulator, which is a generic object which
can be used to compute statistics in the same way as Boost in its Accumulators
library [155]. This morphological operator function creates an output image,
then traverses all the pixels of the image and for each of them, it performs an
operation on this pixel. This operation consists in consuming all the values at
the locations contained in the structuring element window if these points belong
to the domain using the take() method of the accumulator. Finally, the result of
the operation, obtained by the to_result() method of the accumulator, is set as
the value of the output image at the current location of the input image. Thus,

3.3. image processing libraries 41

erosion and dilation can be implemented using this canvas just by setting an
infimum accumulator (for erosion) or a supremum accumulator (for dilation).

In addition to this one, there exists a wide variety of canvases for
mathematical morphology: the union-find [207] canvas, usually used for
connected component labeling, can be exploited to implement morphological
connected operators [233], component trees [16] or watersheds [135]. Another
example of a canvas is the breadth-first thinning [120] from digital topology
which results in different outputs related to the constraints given as arguments.

3.3 Image processing libraries

In the previous section, we have discussed the notion of genericity in the
context of image processing, and we have given examples of generic algorithms
for mathematical morphology. In this section, we list the required criteria
an image processing library should follow, and we give an overview of some
available libraries. More specifically, we focus on the mathematical morphology
capabilities of these libraries, since it is the main field of image processing this
thesis is focused on, and we carefully observe how much they respect the listed
criteria.

3.3.1 Image processing tooling

Tooling in scientific research is of prime importance. In image processing,
there exist several kinds of tools, each of them having its use case. The first
category is the set of utilities and graphical tools. These tools do not require any
programming ability as they are compiled programs to be used as it. Among
them, ImageMagick [201] is a good example of a command line tool that enables
to perform basic manipulations of an image such as filtering, denoising, or
color space conversion. Furthermore, it is able to work with image storage by
extracting metadata such as the EXIF of an image, its compression algorithm, or
its file format. Graphical tools such as GIMP [209] and ImageJ [25] extend the
functionalities of command line tools by providing a graphical user interface
(GUI). They provide interactive and ergonomic usage by means of the GUI.
Furthermore, they usually allow extending their functionalities by means of an
API in order to implement some plugins.

The second category of tools is the programming environments. These
environments are usually composed of a text editor to program scripts to make
some image processing pipeline. Furthermore, they are endowed with some
convenient tools such as image viewers, format, and display functionalities
for data tables which are 2D tables containing data and whose columns

42 Chapter 3. generic image processing and its application

can have different data types, such as the ones provided by Pandas in
Python [134]. Application programming interfaces (API) may also be used to
extend programming environments and provide user interfaces at the top of
the developed scripts. Programming environments are available in different
forms: some are complete GUI applications, such as Matlab [95] or Spyder [197],
and others take the form of interactive notebooks, such as Pluto.jl [169] or
IPython/Jupyter [161, 168].

A third category is domain-specific languages (DSL) [69, 76]. Different DSL
have been designed for different purposes. For example, Halide [173] has for
objective to simplify the implementation of high-performance algorithms on
images and arrays. The language is embedded in C++ so it uses some C++
tools, but it builds an abstract syntax tree (AST) from the usage of constructor
and operator overloading and either uses JIT compilation at runtime or emits
machine code to be linked in a program. The Milena [122] library, which is
part of the Olena platform, also provides some kind of DSL built on top of
macros to simplify writing generic algorithms and make them more readable.
Functionalities provided by this DSL are, for example, generic image traversal,
or some aliases on generic traits, whose names, and so understanding, are
simplified by their usage.

The last category of tooling is the libraries. Libraries provide algorithms and
data structures to be manipulated by them. These libraries can either be specific
to one subfield of image processing, as is the case of the Morph-M [112] or
Higra [164] libraries, or a general purpose as is the case for Scikit-Image [230] or
OpenCV [27]. In this thesis, we focus on libraries since it is the most common
one and may be used along with the tools belonging to other categories.

3.3.2 Requirements of an image processing library

As stated above, libraries are the most popular tools for image processing. They
can take several forms: some are dynamic language packages while others
are compiled libraries. Some libraries mix these two forms to create some
hybrid packages: a compiled library in some static language such as C++ for
performance and a top-level layer implemented in a dynamic language for
ergonomic purposes using the functionalities of the compiled library. By doing
so, they attempt to reach three important criteria for image processing libraries:
genericity, performance, and interactivity.

Genericity - Generic programming has been widely explained since the
beginning of this document. Writing generic image processing algorithms is
of prime importance as library maintainers do not want to duplicate algorithms
implementations for different kinds of types in order to decrease the amount of

3.3. image processing libraries 43

code to be maintained. Furthermore, image processing is a field that requires
flexibility, meaning that it should be able to handle any new type at the lowest
cost. This flexibility is justified by the increasing amount of image value types,
but also to handle image implementation from other libraries. To this aim,
the generic image interface must be well-defined, as explained in the previous
section so that the cost to adapt any image implementation to this concept is
minimal to be applied to generic algorithms.

Performance - Performance is an important criterion when working with
large images. Some processing may take a long time when the image dimensions
and the quantization of the values are large. An example of such images is found
in the context of astronomy for the Naroo program [174], where the acquired
images are quantized on 16 bits with 2560× 2160 pixels. Furthermore, image
processing algorithms may be applied in the context of real-time applications,
and performance is crucial in this situation. Finally, image datasets have become
very large to process with the increasing usage of deep neural networks. For
example, the ImageNet dataset [56] contains more than 14 million images, and
the Celeba dataset [102] which contains 30000 images with a large resolution
(1024× 1024).

Interactivity - Interactivity is important when experimenting with
algorithms. It allows the development and manipulation of new algorithms
without having to recompile the whole pipeline. Furthermore, interactivity
is of prime importance in the context of image transport, whose value type
can be unknown at compile time. It is usually done by means of dynamic
languages such as Python, Julia, or Matlab. Nowadays, these languages
provide programming environments, which make them widely used for
scientific research. Different standards are used to ease the interoperability of
different tools: for example, Python users apply image processing algorithms to
n-dimensional images by means of Numpy ndarrays.

In practice, the three criteria are difficult to combine. For example, in C++,
genericity and performance can be used along with templates. Indeed, as a
static process, template mechanisms are performed at compile time so that
specialized algorithms are optimized for each input parameter. However, such
a combination is achieved at the cost of interactivity, which requires waiting
runtime to obtain some type information. On the other hand, the usage of
dynamic languages allows interactivity and genericity, but suffers in terms of
performance from actions made at runtime such as the type checking. This
overhead is even greater when the language is interpreted. In the context
of interpreted languages, this lack of performance is reduced by means of
Just-In-Time (JIT) compilation, but it has several drawbacks. For example, one
can cite in Python the PyPy [210] implementation of Python or Numba [115],

44 Chapter 3. generic image processing and its application

but they come with some limitations in terms of available features compared to
the CPython [68] reference implementation. Another example is the Julia [20]
programming language, which succeeds to associate these criteria, but at the
cost of a slow compilation when a complex parametric function is first used.

3.3.3 Review of image processing libraries

As mentioned above, the criteria for an image processing library are difficult
to reach without some compromise. Thus, in this part, an overview of
image processing libraries is given. Precisely, we focus on libraries providing
mathematical morphology procedures as it is the main subject of this thesis, and
we focus on the evaluation of the adherence to the three criteria listed above.

At first, the libraries for mathematical morphology are studied. These
include Mamba-Image [17], Smil [64] and Morph-M [112]. Mamba-Image is
a library for prototyping and educational purposes. It is designed in two
parts: a core library implemented in C and a top layer in Python. The core
library does not provide features, but the operations to implement them. These
operations are highly optimized thanks to SIMD (Single Instruction Multiple
Data) programming. They are brought to Python using the Swig generator [13],
which is widely used to generate interfaces in different scripting languages for
scientific libraries [12], and they are used to implement the features. On the
other hand, Morph-M is implemented in C++ and provides three layers for
mathematical morphology: a templated layer for generic processing, an interface
layer, where the functionalities of the templated layer are instantiated to be used
in a non-templated context, and an interpreted language layer, which use the
interface layer to provide functionalities in Python. Furthermore, this library
provides connections with other tools such as Numpy. Finally, the Smil library
combines the best of the two previous ones: it aims to provide a generic library
optimized by means of parallelized morphological algorithms to be used for
real-time application. It also provides an interface to several languages such as
Python or Java by means of Swig.

Pink [45] is a general-purpose library, but it has a special focus on
mathematical morphology and digital topology. It is implemented in C
and provides an interface in Python by means of Boost.Python [2] and C++
code encapsulating the Pink library features and data structures. It relies
on a type-erased image structure and dispatches a compatible algorithm
implementing a feature of the library to the correct type at runtime. This library
can also be seen as a platform: it provides numerous command line utilities,
either in C or in Python thanks to its interface.

The Scikit-Image library [230] is widely used by scientists for image

3.3. image processing libraries 45

processing prototyping. It is designed as an extension of Scipy [227], and uses
some of its functionalities. For example, the morphological operations such as
erosion and dilation in Scikit-Image are the ones used by the scipy.ndimage
module, with some improvements in terms of interface. For that reason, the
Scikit-Image library is discussed taking into account the Scipy module. Its
elementary features are implemented in C as extension modules, making this
library a hybrid package, but also using the Cython transpiler [14]. A transpiler
takes input source code and outputs another source code, either in the same
language or not. The Cython transpiler thus takes as input Cython source code,
which is a language at the intersection between Python and C, and outputs
source code in C containing a Python extension module implemented using the
CPython API. The image model of this library is based on Numpy, and genericity
is ensured for the value type of the image. Numpy has a C API and brings
some compatibility with Cython. Thus, it is well-suited for the development of
algorithms in these performance-oriented languages.

The OpenCV library [27] uses type-erased image. Images information such
that its dimensions or its value type are known at runtime, and its interface
uses dynamic dispatch to use a procedure whose value type is static and thus
optimized. More specifically, to reduce the amount of code generated by the
compiler when templated entities are specialized, the library holds templated
core features such as filters in the context of mathematical morphology which
are specialized at dispatch and then run. Its interactivity in Python is performed
by generating automatically C++ code for its functionalities and bridging them
using the CPython API. Furthermore, as OpenCV relies on a dynamic interface
when used in C++, its interface slightly differs from the one in C++, and it
accepts Numpy arrays as an image implementation.

Finally, a category of C++ libraries are fully templated libraries. Among them
are Vigra [110], Milena [122], Higra [164], and Pylene [208]. Vigra’s objective is
to provide a generic library for image processing following the design of the
STL [111]. It has many data structures such as images or graphs but also many
algorithms to apply to these data structures. It provides a dynamic interface in
Python by means of Boost.Python on specialized algorithms, but it restrains the
number of available image value types that can be used to limit the amount of
generated machine code, and it even extends Numpy array to handle semantics
on the values of the images. Milena, on the other hand, is designed as a
concept-oriented library [74] to apply algorithms on any kind of image as long
as they respect the required interface. Some attempts at designing a dynamic
interface for Milena are performed: the first one relies on the specialization of
algorithms and image data structure and exposes their functionalities in Python
by means of the Swig generator. The second attempt consists in using some JIT

Core language Generic values Generic domain Interface Interface bridge
OpenCV [27] • C++ ✓ ✗ Dynamic with

type erasure
• Python
• Java
• Javascript
• ...

Scikit-Image [230] • Python
• Cython

✓ ✗ N/A N/A

Pink [45] • C
• C++

✓ ✗ Static • Python

Smil [64] • C++ ✓ ✓ Static • Python
• Ruby
• Octave
• Java

Mamba-Image [17] • C
• Python

✓ ✗ Dynamic • Python

Vigra [110] • C++ ✓ ✓ Static • Python
• Matlab

Higra [164] • C++ ✓ ✓ Static • Python
Milena [122] • C++ ✓ ✓ Static • Python
Pylene [208] • C++ ✓ ✓ Static • Python

Table 3.1: Comparison of the state-of-the-art libraries

3.3. image processing libraries 47

Dynamic Interface Static Interface

Function

Grayscale Image

Color Image

Graph

Simplicial complex

Implementation

Implementation

Implementation

Implementation

(a) One function per implementation

Dynamic Interface Static Interface

Function Function

Implementation

Implementation

Implementation

Implementation

(b) One function per functionality

Dynamic Interface Static Interface

Function

Dynamic Image

Static Image

Implementation

Implementation

Implementation

Conversion

(c) Hybrid design for Pylena

Figure 3.11: Illustrations of the different interface bridge possibilities

compilation techniques in order to compile and bridge functionalities in C++
to the dynamic interface on demand, as explained in the perspectives of the
Levillain thesis [118].

Higra is a modern C++ library whose aim is to provide functionalities for

48 Chapter 3. generic image processing and its application

hierarchical representations construction and manipulation on graphs. It is
generic on values by means of templates in C++, but also on the domain as
the main manipulated objects are graphs, which can represent the adjacency
relationship of the domain of an image or a simplicial complex as explained in
sections 3.1.2 and 3.1.3. It is designed to differentiate the value and the domain.
As a consequence, the algorithms usually take as arguments at least two objects:
the graph and its weights, either on vertices or on edges. Using such a design has
one advantage when providing an interactive interface in Python, which is done
using the Pybind11 library [97]: the amount of generated code is reduced since
only the values are specialized. However, the semantic interpretation provided
by image processing libraries is lost since these tables do not make the difference
between edges and vertices weights.

Pylene is the successor of Milena. It is specialized in efficient and generic
mathematical morphology but is not limited to it. It uses modern C++ features
to solve the issue raised by the older standard of C++ (pre-C++11) in the context
of the development of the Milena library such as its complex internals or the
lack of ergonomy for the users induced by the language [72]. Its objective is to
meet the three criteria listed above as closely as possible. In terms of genericity,
it makes use of the C++20 concepts to model the image requirements but also to
make a hierarchy of refinement in order to handle a wide variety of images [179,
180]. It provides a dynamic interface in Python by means of the Pybind11 library
called Pylena, but it has the same limitation as the previously studied libraries.

These libraries are summarized in Table 3.1. For all of them, the language
chosen to implement the library is a performance-oriented language. Even
Scikit-Image uses the Cython transpiler to take advantage of the compiled nature
of the C language or implements some features by means of other libraries
such as Scipy or Numpy, which heavily use such languages. This illustrates the
significant role of the performance criterion. Furthermore, most of these libraries
use languages providing facilities for generic programming, such as C++ or
Python. In this context, all the libraries provide generic value capabilities in their
algorithms, either in a static way, with a dispatch performed at compile time,
or in a dynamic way, in which the correct functionality is chosen at runtime.
However, not all of them provide generic domain capabilities, and the libraries
succeeding the most to have generic domains by handling various structures are
Higra, Milena and Pylene.

The interactivity criterion is achieved by three means for the libraries. These
are illustrated in Figure 3.11. The first way to bring a static interface to a dynamic
interface, illustrated in Figure 3.11a, is to specialize each implementation of
functionality to different image types and let a utility such as Boost.Python
or Pybind11 perform the bridge and handle the dispatch to the correct

3.4. conclusion 49

implementation when the function is called from the dynamic interface, hiding
this part from the developer of the library. This is the most widespread way
of bridging static interface in C++ to a dynamic language, but it requires
generating a large amount of code due to monomorphization. Libraries doing
so include Higra and Vigra. The second method to make a bridge, illustrated in
Figure 3.11b, relies on the existing static interface: only one function is exposed
to a dynamic interface. This has several advantages such as the static and the
dynamic interface being quite similar or the fact that the dynamic interface can
be generated automatically, such as it is the case in OpenCV. However, this lets
the library developers handle the dispatch to the correct implementation if there
are several ones. Finally, Pylena, the dynamic interface of Pylene, uses an hybrid
solution displayed in Figure 3.11c. It has a single entrypoint from the dynamic
interface with a function taking a dynamic image obtained from Numpy arrays,
and then converts it to the correct static type to perform the dispatching on
instantiated templated functions. This solution has the advantage of having one
entrypoint per functions, but requires the developpers of the library to handle
the dispatch and it generates a large amount of code.

3.4 Conclusion

This chapter has introduced the notion of an image as a function and gives
an overview of different structures which comply with this definition, either
in terms of structure or value. Then, this relation was used to define a
generic image concept, and its usage was demonstrated by applying the notion
of a generic image to a generic image processing algorithm from the field
of mathematical morphology. Next, various libraries providing mathematical
morphology features were examined, with a specific focus on their adherence to
the criteria. In the next chapter, hierarchical representations of images will be
presented. These ones can be implemented as generic algorithms and used in
different applications.

50 Chapter 3. generic image processing and its application

Chapter 4
Hierarchical Representations of
Images

In this chapter, hierarchical representations of images are introduced.
To this aim, this chapter is decomposed into three parts: first, the notion
of hierarchical representation is explained by the usage of partitions
and partial partitions, which divide these representations into two
categories: inclusion hierarchies and partitioning hierarchies. Then,
the representation of hierarchies as trees is discussed, along with their
possible implementations. Furthermore, an overview of the different
hierarchies used in this document is given. Finally, the possibility to
build these hierarchies on different image domains is analysed and an
example is given with a hierarchical watershed.

4.1 Representing images as hierarchies

Hierarchical representations of images are widely used tools in image
processing. They are reviewed in [24], and divided into two categories: inclusion
hierarchies and partitioning hierarchies. Inclusion hierarchies are useful when
working with the regional extrema of an image while partitioning hierarchies
allow to describe complex images whose regions of interest are not extremal.
Thus, the choice of the hierarchy to be used depends on the application. In
this section, the basis of hierarchical representations is presented to explain the
division into these two categories.

As explained in the previous chapter, the image domain can be divided into
several regions R, which are sets of points from Ω such that for any two regions
Ri and Rj , Ri ∩ Rj = ∅. Let P \ = {Ri | i ∈ J0..n− 1K} be a partial partition. This

51

52 Chapter 4. hierarchical representations of images

λ0 λ1 λ2 λ3 λ4

Figure 4.1: Lattice of partial partitions (top) and partitions (bottom)

set of regions forms a partition P if ∪iRi = Ω. Let P = {P0, ..., Pn−1} be a set
of partitions (or partial partitions) of a domain Ω. Such sets forms a complete
lattice [175, 187] (P,≤) if for any two partitions (or partial partitions) Pi, Pj ∈ P,
Pi ≤ Pj ⇐⇒ ∀Ri ∈ Pi, ∃Rj ∈ Pj, Ri ⊆ Rj .

Figure 4.1 illustrates the notion of a lattice of partial partitions, in the top
row, and a lattice of partitions, in the bottom row. In this figure, partitions and
partial partitions are indexed by a value λi such that for all indices λi and λj ,
λi ≤ λj ⇐⇒ Pi ≤ Pj . In the figure, the values λi are sorted from left to right.
In its first row, regions belonging to each partial partition are colored in red.
From the partial partition indexed at λ0 to λ4, new regions appear, until the
whole domain is covered. In the case of partitions, the whole domain is covered,
but regions are merged to form coarser regions until the partition indexed at λ4

contains only one region R0 such that R0 = Ω.

Thus, with the notion of partitions, partial partitions, and their lattices, the
two categories of hierarchical representations are described:

• Inclusion hierarchies - Inclusion hierarchies are ordered stacks of partial
partitions such that the smallest part of the domain is covered by the partial
partition at the bottom of the hierarchy while the whole domain is covered
by the one at the top of the hierarchy.

• Partitioning hierarchies - Partitioning hierarchies are ordered stacks of
partitions such that fine regions are represented by the smallest partitions
while the partition at the top of the hierarchy contains only one region
covering the whole domain of the image.

4.2. tree-based representations of hierarchies 53

Tree T

Subtree T1 leaves(T)

root(T)

siblings(n4)

Parenthood
relationship

n3 - n7

0

1 2 3

4 5 6 7

Figure 4.2: Tree terminologies

4.2 Tree-based representations of hierarchies

Hierarchical representations are usually represented by trees encoding the
relation between the regions of a hierarchy. Let G = (V,E) be a graph. Let
the sequence π(v1, vn) = (v1, v2, ..., vn) with vi ∈ V be a path between two vertices
v1 and vn such that there exists an edge evi,vi+1

∈ E between any two consecutive
vertices vi and vi+1 of the sequence. A graph is said to be connected if there exists
a path between any pair of vertices of the graph, and the graph is acyclic if this
path is unique. A tree is defined as a connected acyclic graph. In the context
of hierarchical representations, rooted trees, which are trees with one vertex
designed as the root, are used. The terminology node for a tree is equivalent
to a vertex of a graph G. The parent of a node is its consecutive node in its
path to the root. Thus, the root of the tree is the only node that does not have
any parent. Conversely, a child of a node n is a node that has n as its parent.
The siblings of a node n which has np as its parent are the other nodes having

54 Chapter 4. hierarchical representations of images

(1, 1)

(1, 1)

(1, 1)

(1, 1) (2, 2)

(1, 1)

(1, 2)

(2, 2) (2, 2)

Parent

1

1

1

9 5

3

1

1 1

Area attribute

Sorted pixel points

(0, 2) (1, 2) (2, 0) (2, 1) (2, 2) (0, 0) (0, 1) (1, 0) (1, 1)

(a) Tree implementation in [16]

Node map

0 0 2

0 0 2

1 1 1

Parent

-1 0 1

Area attribute

9 5 3

(b) Tree implementation in Pylene [208]

parent

first child

last child

attribute = 9

pixels = · · ·

parent

first child

last child

attribute = 5

pixels = · · ·

parent

first child

last child

attribute = 3

pixels = · · ·

(c) Implementation of a tree as a linked list

Figure 4.3: Different implementations of a tree

np as their parent. The nodes without any child are the leaves of the tree. A
descendant of a node n is a node having n in its path to the root. Conversely, an
ascendant of a node n is a node having n as a descendant. The subtree rooted in
n is a tree whose nodes are composed of all the descendants of n and n itself,
and whose parenthood relationship is preserved except for n which is the root.
In the following, a tree is denoted by T , and this notation is subscripted when
using a particular hierarchical representation.

Tree terminologies are illustrated in Figure 4.2. The nodes of the tree are
indexed by the value displayed and denoted by ni for a node whose displayed
value is i. In this figure, the tree is rooted at n0, and the leaves are the nodes in
{n2, n4, n5, n6, n7}. The parenthood relationship is illustrated in the case of the
pair of nodes (n3, n7): n3 is the parent of n7 and n7 is its child. The siblings of
n4 are n5 and n6, the three nodes having the same parent n1. The node n1 is a
descendant of n0, as well as all the nodes of the tree except n0 itself since it is the
root of T , and the descendants of n1 are in the set {n4, n5, n6}.

To implement a hierarchical representation, two data structures can be used
to represent a tree, as discussed in [87]. The first data structure is the usage
of a mapping from a node to its parent node. Such mappings are usually

4.2. tree-based representations of hierarchies 55

implemented as tables and the nodes are represented as indices of a table. In the
context of the max-tree [16] or the tree of shapes [73] construction algorithms,
this mapping takes the form of an image: each position of the image is linked
to a representative point, corresponding to a node of the tree and mapping to
the representative point of the parent node. Using an image to represent the
parenthood relationship of a tree takes advantage of the nature of inclusion
hierarchies, which represent the merging of the components of an image until
the whole domain is covered, to know in advance the size of the structure and
to allocate it only once. This representation is illustrated in Figure 4.3a. In the
parent image, the representative points are circled in red and they map to their
parent representative point, except for the root of the tree which is mapped to
itself. The sorted pixel points define the topological order of the tree such that
it can be traversed from root to leaves or the other way around. Finally, the
attributes of the tree, which are information about the tree or the underlying
image such as the number of pixels in a component represented by a node of the
tree, are stored in similar images.

However, implementing partitioning hierarchies, which represent the
merging of two or more regions in the lattice of partitions, using the
representation of [16] is not possible as its size is not fixed. Thus, in this case,
the mapping used is a table [87, 152, 242], and is either allocated once with a too
large portion of memory or reallocated many times. The first strategy results in
a waste of allocated memory, while the second creates an overhead during the
hierarchy construction algorithms. A third strategy consists in estimating the
size of the tree before its construction, as it is performed for the α-tree [242] by
observing the histogram of the dissimilarity of the pixels. The implementation
of a tree in the Higra library [164] uses a table to represent the parenthood
relationship. The leaves of the tree, indexed from 0 to (n − 1), represent the n
pixels of an image (represented as the vertices of a graph) and the m regions
of a hierarchy are indexed from n to (m − 1). The Pylene library [208] mixes
the representation of a tree from Higra and Berger et al. [16], as illustrated in
Figure 4.3b. As in Higra, the parenthood relationship of the different nodes is
stored in a table. Each pixel of the image is linked to a node of the tree by the use
of a node map which has the same dimensions as the input image. The usage
of a table has several advantages compared with the previous representation
of the parenthood relationship based on images: in addition to being able to
represent partitioning hierarchies, the parent table is 1D and does not rely on
the input image whatever its number of dimensions. This holds true for the
attribute array as well. Thus, nodes are represented by indices and not by
n-dimensional points. Only the node map is dependent on the input image.
For a generic implementation of a hierarchy construction algorithm, only the

56 Chapter 4. hierarchical representations of images

λ0

λ1

λ2

λ3

λ4

C1

C2

(a) A tree T (b) Partition induced by C1 (c) Partition induced by C2

Figure 4.4: Tree representation of a hierarchy with cuts

number of dimensions of the node map has to be taken into account for the
combinatorial calculation.

The other data structure used to represent trees is the usage of a linked
list [86, 23]. It is composed of several inner data structures representing the
needed information for a node, and each of them is linked to another one to
represent the relationship between the nodes. Its usage has some advantages:
it allows more flexibility when adding and removing a node of the tree, each
link being represented by a pointer. When using tables, the deletion operation
may require shifting the nodes and updating their indices. However, it requires
more memory than tables due to the storage of pointers for the parenthood
relationship, but also for the storage of the attributes, which are difficult to store
in tables since a linked list node has no index. Furthermore, this implementation
needs to allocate dynamically each structure, which can lead to serious runtime
overhead. An example of a tree implemented as a linked list is illustrated in
Figure 4.3c.

These trees, when linked with hierarchical representations of images,
encode the relation between the regions of the different (partial) partitions.
Figure 4.4 illustrates the tree representation of a hierarchy, and more particularly,
Figure 4.4a is the tree representation of the hierarchy induced by the set of
partitions from Figure 4.1. Each node is related to a region, colored by the same
color as in Figure 4.1. Furthermore, each node is related to a value, which is the
scale of appearance of a region and corresponds to the index of the partition in
which it appears. A cut C is a (partial) partition composed of regions represented
by the nodes of the tree. This cut is said horizontal if all the regions of the cut
belong to the same (partial) partition of the hierarchy represented by the tree.
Two examples of cuts are illustrated in Figures 4.4b and 4.4c. The cut C1 is
horizontal: all its regions belong to the partition of the hierarchy indexed at λ1.
Conversely, the cut C2 is not horizontal: the bright blue region appears in the
partition indexed at λ3, while the two others are merged to form a new region

4.3. an overview of hierarchical representations of images 57

in the partition indexed at λ2. Thus, all the regions do not belong to the same
partition of the hierarchy.

4.3 An overview of hierarchical representations of
images

As mentioned above, hierarchical representations can be divided into two
categories [24]: inclusion hierarchies and partitioning hierarchies. Each category
has different representations with their own properties. In this section, an
overview of these representations is provided.

4.3.1 Inclusion hierarchies

In this part, inclusion hierarchies are studied. More specifically, three
representations are discussed: the max-tree [183] and its dual, the min-tree, and
the tree of shapes [141].

The max-tree and its dual: the min-tree

Let f : Ω → V be an image whose value set V is endowed with an order
relationship ≤. Let [f ≥ λ] = {p ∈ Ω|f(p) ≥ λ} be the upper thresholds set and
[f ≤ λ] = {p ∈ Ω|f(p) ≤ λ} be the lower thresholds set, with λ ∈ V . Let CC(X)
be the operator returning the set of connected component of a set X . The set
C≥ = ∪λ∈V{X|X ∈ CC([f ≥ λ])} denotes the set of upper connected components
and the set C≤ = ∪λ∈V{X|X ∈ CC([f ≤ λ])} denotes the set of lower connected
components. The max-tree T≥ and the min-tree T≤ respectively represents
the inclusion relationship of the connected component of C≥ and C≤ and are
illustrated in Figures 4.5c and 4.5d when built on the image displayed on
Figure 4.5a. In addition to the parenthood relationship, the nodes of the max-tree
and the min-tree usually handle a link to the components they represent in
addition to their value.

The max-tree has been proposed under the name of component tree by
Jones [100, 101] in order to filter and segment an image using some attribute,
and in [183] by Salembier et al. under the name max-tree. Filtering an image
using the max-tree or the min-tree is a three steps method: tree construction, tree
filtering, and image restitution. There exist numerous ways to build a tree from
an image, and the choice of the algorithm depends on the property of the image,
but also on the machine, as explained in [34]. In this article, the authors give a
review of the different max-tree construction algorithms and provide a decision

58 Chapter 4. hierarchical representations of images

A
B

C

D
E

F

5

4

3

2

1

0

(a) An image

A

B

C D

E F

(b) Tree of shapes T◦ of (a)

A

B

C

D

E

F

(c) Max-tree T≥ of (a)

A

B

C

D

E

F

(d) Min-tree T≤ of (a)

Figure 4.5: The three inclusion hierarchies presented in this chapter. Each node
represents a component of the image in Figure 4.5a

tree for that choice. Concerning the image restitution, there exist different ways
to output an image from the tree, but one of the most simple consists in giving
the value related to a node at all the pixels represented by this node.

The filtering of the max-tree and the min-tree relies on different kinds of
criteria. Among them, attributes computed on nodes are widely used, and their
usage for filtering operations on these trees results in connected operators by
attributes. These attributes can be increasing or not. Let A be an attribute
computed on every node of a tree T . An attribute A is increasing if for any
node n of T , except the root, A(n) < A(np), with np the parent node of n. Such
increasing attributes include the area of a region (its number of pixels) [226],
the dynamics [81], or the volume [224]. The filtering of a tree T based on an
increasing attribute is simple: given a threshold λ, all subtrees of T rooted in r
are removed if A(r) < λ.

Several situations require to use non-increasing attributes. For example,
the filtering of rectangular objects in an image is based on the rectangularity
attribute, which is the ratio between the area of a region and its bounding
box. In this case, the attribute value will be near 1 when the object is

4.3. an overview of hierarchical representations of images 59

rectangular, meaning that the region almost fills the bounding box. However,
when traversing the tree from the leaves to the root, the rectangular object will be
merged with the other element of the image, which creates a non linear variation
of the attribute along a branch of the tree. In this context, the filtering of the tree
is more complex.

In [183], four rules are proposed to perform tree filtering on a max-tree when
non-increasing attributes are used as a criterion. Furthermore, the subtractive
rule is introduced in [223]. These rules are described below using an attribute A
and a threshold λ:

• Direct: A node n is removed if A(n) < λ.

• Min: A node n is removed if A(n) < λ or if one of its ancestors is removed.

• Max: A node n is removed if A(n) < λ and all its descendant nodes are
removed as well.

• Viterbi: The removal of a node is based on an optimization problem based
on the paths from the leaves to the root. This rule is based on the Viterbi
algorithm [228] and is explained in details in [183].

• Subtractive: This rule is similar to the direct rule, except that the value
related to the nodes of the subtree rooted in n are lowered by the amount
of the value of the node n.

Filtering using the max-tree and the min-tree usage is presented above, but
they can be used for different purposes. In [16], the max-tree is used for
object detection in astronomical data, and in [183], video filtering is performed.
Furthermore, it is used in the context of image compression in [221]. Finally,
a last example of application is feature extraction [156] in order to create
correspondences between pairs of images using MSER [133].

The tree of shapes

The tree of shapes [141], also known as the topographic map, is a hierarchical
representation combining the max-tree and the min-tree representations. A
shape C is a connected component of an image with its holes filled. Formally,
it belongs to the set of shapes C◦ = {Sat(X)|X ∈ C≤} ∪ {Sat(X)|X ∈ C≤} with
Sat(X) the operator filling the holes of a connected component X . The inclusion
relationship between the element of C◦ forms the tree of shapes T ◦. This tree
is illustrated in Figure 4.5b when built on the image Figure 4.5a. As for the
max-tree and the min-tree, each node of the tree of shapes is related to the value
of the connected component it is merged, but also with its pixels in the image.

60 Chapter 4. hierarchical representations of images

(a) Shapes topology in KΩ (b) A natural image (c) Level lines of (b)

Figure 4.6: Shapes related to level lines

The tree of shapes also encodes the inclusion relationship of the level lines
of the image. These level lines are indeed the borders of the shapes C ∈ C◦,
and are denoted by ∂C. In recent construction algorithms [32, 73], the authors
use a Khalimsky grid, noted KΩ, which is a cubical complex representation of
a hyperrectangular domain Ω in order to build the tree. Similarly to simplicial
complexes, this grid is composed of n-faces. Such a grid is illustrated in 2D
in Figure 4.6a. In this figure, the 0-faces are depicted by circles the 1-faces by
rectangles, and the 2-faces by squares. The 2-faces represent the pixel locations
in the original image while the 0-faces and 1-faces represent the interpixel ones.
Thus, they are used to represent both the shapes and the level lines of the image.
This figure thus illustrates two shapes, in blue and orange, each of them enclosed
by level lines in green. It has to be noted that two shapes do not share the same
pixel but can share the same border, as it is illustrated in that figure. Figure 4.6c
illustrates the level lines of the natural image in Figure 4.6b. The color of these
lines shows the depth of the node representing the level lines in the tree of
shapes, varying from purple (low depth) to red (deep depth).

Several applications use the tree of shapes. First, it is used for filtering [141]
in a similar manner as the max-tree. For example, it is possible to define a
grain filter by computing the area of each node, and then remove all the nodes
whose area does not meet a thresholding criterion. The case of non-increasing
criteria uses a more sophisticated methodology in the shape spaces [237, 239]
in which a min-tree T≤ is built on the tree of shapes seen as a vertex-weighted
graph and then filtered. In this case, the values related to each node of T≤ are
increasing, and the filtering is then simple to perform. A non-exhaustive list
of applications that can be performed with the tree of shapes includes object
detection [238], text detection [129], energy-based image simplification [240],
local feature detection [241], interactive segmentation [39], medical imaging [37]
and noise level estimation [63].

4.3. an overview of hierarchical representations of images 61

4.3.2 Partitioning hierarchies

In the previous section, inclusion hierarchies were investigated. As stated
above, these hierarchies represent stacks of partial partitions. In this section,
partitioning hierarchies, which represent stacks of partitions, are overviewed.

Binary partition trees

Binary partition trees [182] (BPT) represent the iterative merging of regions into
new regions of a partition. Each node has either two children, meaning that it
represents the merging of two neighboring regions, or none: the node is thus a
leaf and represents a region of the initial partition. Its construction is based on
a bottom-up process relying on two parameters: an initial partition of an image,
and a merging procedure. The first parameter, the initial partition, can be obtained
by different means such as the watershed algorithm [19] creating regions based
on markers, or the SLIC algorithm [3] which results in superpixels based on the
combination of spatial and colorimetric similarity.

The merging procedure itself relies on two parameters: a region model based
on some of its properties, and a merging criterion. A usual region model consists
in taking the average value of a region. Furthermore, in the case the image
defines values in the RGB space, a color space conversion can be performed. For
example, the CIELAB is defined to be near the human perception in terms of
distance between colors, which may be used as a merging criterion.

A particular BPT, coming from the framework of graph-based mathematical
morphology [151], and more specifically edge-weighted graphs, is the Binary
Partition Tree by Altitude Ordering [49] (BPTAO). Let G = (V,E) be a graph with
V its vertex set and E its edge set. Let we : E → Ve be a mapping from the edge
set E to a value set Ve endowed with an ordering relationship ≤. This mapping
weights the graph G such that (G,we) is an edge-weighted graph. Let ≺ be a
binary relation such that for any two edges ui, uj ∈ E, only one of the relations
ui ≺ uj , uj ≺ ui or ui = uj holds. The relation ≺ is an altitude ordering if for any
two ui, uj ∈ E, ui ≺ uj ⇔ we(ui) ≤ we(uj). Let k ∈ J1..|E|K and B0 = {{v} | v ∈
V }. The partial binary partition hierarchy Bk at rank k for an altitude ordering
≺ is defined by Bk = Bu≺

k
k−1 ∪ {CCvi(Bk−1) ∪ CCvj(Bk−1)} with u≺

k = {vi, vj} the kth

edge in the ordering relationship ≺, Bu≺
k

k−1 the set Bk−1 \ {CCvi(Bk−1), CCvj(Bk−1)}
and CCv(X) the operator returning the component of X containing v. The partial
binary partition hierarchy at rank |E| is called the binary partition hierarchy by
altitude ordering. The tree induced by this hierarchy is the binary partition tree by
altitude ordering for ≺, denoted by T≺. Each node of T≺represents the merging
of the regions CCvi(Bk−1) and CCvj(Bk−1) and is related to the edge u≺

k = {vi, vj}.
Thus, the value related to each node, called altitude, is we(u

≺
k).

62 Chapter 4. hierarchical representations of images

4 7 3 2

1 2 5 3

1 1 5 7

(a) An image

1 1 5 7

1 2 5 3

4 7 3 2

A B C D

E F G H

I J K L
0 4 2

0 1 0 4

1 3 2

3 5 2 1

3 4 1

(b) 4-adjacency graph of (a) with its MST

1 1 1 2 4 7 3 2 3 5 5 7

{E, I} {G,K}

{I, J}

{C,D}

{D,H}

{E,F} {C,G}

{K,L}

{A,B}

{A,E}

{F,G}

(c) BPTAO of (b)

Figure 4.7: BPTAO on a graph and its relation with the MST

Two partial binary partitions Bk−1 and Bk can be identical if the edge u≺
k

has its vertex already connected in Bk−1. Furthermore, from the definition of
an altitude ordering, there might exist several altitude orderings for one graph.
In [152], the altitude ordering is built from a minimum spanning tree (MST)
using the Kruskal algorithm. These are illustrated in Figure 4.7, which shows
the BPTAO built on the 4-adjacency graph of the image in Figure 4.7a. This
graph is weighted on its edges by a L1 distance, an index is given to each vertex
by the capital letter in blue, and the edges belonging to its MST are highlighted
in red. The order of the edges of the MST obtained during the construction of
the BPTAO results in the altitude ordering {E, I} ≺ {G,K} ≺ {I, J} ≺ {C,D} ≺
{D,H} ≺ {E,F} ≺ {C,G} ≺ {K,L} ≺ {A,B} ≺ {A,E} ≺ {F,G}. Due to the links
between the hierarchies proposed in [49], the BPTAO is related to numerous
hierarchies such as the α-tree or the hierarchy of minimum spanning forest
(MSF), which are studied in the following.

4.3. an overview of hierarchical representations of images 63

1 1 1 2 7 4 7 5 5 3 3 2

0

1

2

3

(a) The α-tree Tα of Figure 4.7a

1 1 5 7

1 2 5 3

4 7 3 2

(b) The 1-partition of Tα

Figure 4.8: The α-tree of Figure 4.7a and its 1-partition

The α-tree and constrained connectivity

The α-tree [157, 158], also known as the quasi-flat zones hierarchy [49, 148],
is the hierarchy representing the stack of partitions composed of α-connected
components [195]. Let π(p1, pn) be a path between two points p1, pn ∈ Ω. The
points p1 and pn are said to be α-connected if for every consecutive point pi and
pi+1, for i ∈ J1..n − 1K, we({pi, pi+1}) ≤ α. In this context, the image is seen as
an edge-weighted graph (G,we), and the domain Ω is defined on the vertices
of the graph. The edge weights we are used as a dissimilarity. An α-connected
component, denoted by α-CC, is a component composed of α-connected points.
An α-partition is a partition composed of α-connected components. The value α
is a scale parameter for the α-partitions: when it is increasing, the α-connected
components are merged to result in coarser α-connected components. This
relation of merging is represented by the parenthood relationship of the α-tree,
and the value related to each node is the scale α at which the α-connected
component appears in the hierarchy.

These concepts are illustrated in Figure 4.8. In Figure 4.8a, the α-tree,
represented as a dendrogram, is built on the image in Figure 4.7a. To this
aim, the 4-adjacency graph in Figure 4.7b is used, as well as its weights for
the dissimilarity. This tree illustrates the relation between several hierarchical
representations [49]: first, the α-tree is a simplified version of the BPTAO, in
which the consecutive nodes with the same altitude are merged to result in
only one node per altitude. Then, the α-tree is indeed the min-tree of the MST,
displayed in red in Figure 4.7b. Figure 4.8b illustrates a horizontal cut with
α = 1, which is the 1-partition of the hierarchy. In this partition, only the points
with a dissimilarity we({pi, pi+1}) ≤ 1 are connected.

In practice, the α-tree is not used directly in applications since it suffers
from a major issue often referred to as the leakage effect [159]. This leakage

64 Chapter 4. hierarchical representations of images

0 3 2

0 1 0 2

1 3 2

3 3 2 1

3 3 1

(a) Saliency map Ψ(Tα) (b) Saliency map Ψ(Tα) immersed in a
Khalimsky grid KΩ

Figure 4.9: A saliency map and its mean of visualization for 4-adjacency

merges regions in the hierarchy which are different in term of content but whose
similarity between two connected points is sufficient enough to be merged. To
tackle this issue, Soille [195] proposes to add a global constraint on the regions
of the α-tree. Let ϖ be a global constraint on a region. In practice, ϖ is often the
range of the value set of a region R in the case the image is univariate, such that
ϖ(R) = max{∥f(p)− f(q)∥1, ∀p, q ∈ R, p ̸= q}. An (α, ω)-connected component
is thus the largest α-connected component satisfying the global constraint G such
that (α, ω)-CC = max{αi-CC | αi ≤ α ∧ϖ(αi-CC) ≤ ω}. It is interesting to note
that α ≥ ω is equivalent to α = ω. This leads to the definition of an ω-connected
components such as ω-CC = max{αi-CC | ϖ(αi-CC) ≤ ω}. As for the α-tree, the
relation of merging of the ω-connected components results in the ω-tree, denoted
by Tω, and each node is related to the ω level at which the regions are merged to
form a new region.

From the beginning of this section, hierarchies are defined in terms of
regions, but can also be represented as a set of contours. Such representations
have already been studied in various contexts [6, 48, 83, 149] and are named
saliency maps (or ultrametric contour maps). Let G = (V,E) be a graph with V its
vertex set and E its edge set. Let Ψ(T) : E → Ve be a mapping from an edge
to a set of values on the edges. For an edge u = {vi, vj}, the value Ψ(T)(u)
is the value of the lowest node of the tree T such that vi and vj belong to the
same component. Figure 4.9 illustrates by two means the saliency map of the
α-tree Tα from Figure 4.8a. In the first illustration in Figure 4.9a, the mapping
is applied to all the edges of the graph and displayed. It has to be noted that
by thresholding and removing the edges lower than a given threshold α, an
α-partition is obtained. Figure 4.9b is the result of the immersion of Ψ(Tα) in a
Khalimsky grid KΩ. This representation is possible in 2D only if the graph is

4.3. an overview of hierarchical representations of images 65

a 4-adjacency graph, but it allows a visual representation of the saliency map,
and thus the hierarchy in terms of contours. To build this representation, the
2-faces are set to 0, the 1-faces are set to the edge value of the saliency map they
represent and the 0-faces are set to the maximum value of the adjacent 1-faces.
Note that for visualization purposes and in the following of this thesis, saliency
map values are inversed: the lowest values are bright and the greatest values
are dark. Finally, the tree representation of any hierarchy can be built from the
saliency map using the α-tree [48].

Hierarchical watersheds

Watershed segmentation [19] is the main tool for segmentation in mathematical
morphology. Several examples of watershed segmentations on different
structures are illustrated in the previous chapter to demonstrate its generic
capabilities. Its operation is straightforward: it floods regions called catchment
basins from predefined markers until two regions meet, creating a watershed
line at this meeting point. In practice, the watershed is not run directly on an
image, but on its gradient, allowing to use the local minima of this gradient as
markers. However, such a gradient usually has a great number of local minima,
and the resulting segmentation is oversegmented. Several improvements to
reduce this effect have been proposed such as the usage of user input markers,
gradient filtering, or the usage of hierarchies based on the watershed [18, 47,
136].

A particular class of hierarchical watershed belonging to the framework of
edge-weighted graphs is based on the minimum spanning forests [47], which are
stacks of watershed cuts [46]. These hierarchies are built by a bottom-up process
by ordering markers such as minima using a given criterion. The marker order
can be specified using the BPTAO [49, 152]. Furthermore, this criterion is usually
the extinction value [224] of an attribute such as the area or the dynamics [81],
the result being a hierarchical watershed (HWS) by attribute.

Saliency maps of hierarchical watersheds compared with the α-tree are given
in Figure 4.10. The first row of this figure illustrates the inputs to obtain
the hierarchies: Figure 4.10a is the input image from which the gradients in
Figures 4.10b and 4.10c are computed. The first gradient weights the edges of
the 4-adjacency graph of the image using an L2 distance between two adjacent
pixels values, while the second uses a gradient computed using an edge detector
based on the random forest framework and named Structured Edge Detection
(SED) [58]. The usage of a learned gradient usually produces better results in
terms of contour detection as noted in [163]. This is illustrated in the figure:
the contour of the top of the head of the dog is not retrieved when using a
L2 gradient, while it is the case using SED. The influence of the gradient is

66 Chapter 4. hierarchical representations of images

(a) An image (b) A gradient (L2 norm) (c) A gradient (SED)

(d) α-tree (e) HWS Area (f) HWS Dynamics

(g) α-tree (h) HWS area (i) HWS Dynamics

Figure 4.10: Saliency maps related to the gradient and the hierarchy. First row:
Image and two processed gradients. Second row: saliency maps obtained from
hierarchies computed on an L2 gradient. Third row: saliency maps obtained
from hierarchies computed on a SED gradient.

4.3. an overview of hierarchical representations of images 67

(a) On an edge-weighted graph (b) On a simplifical complex

Figure 4.11: Hierarchical watershed by area built on an edge-weighted graph
and on a simplicial complex

directly observable in the saliency maps, by comparing the second row (L2

gradient) and the third row (SED gradient). In the two cases, the α-tree produces
contours that are not clear and whose segmentation results would be difficult
to use in practice. Conversely, hierarchical watersheds produce thin contours.
Furthermore, when computed on the SED gradient, the hierarchies exhibit more
accurate contours in terms of object detection.

These hierarchies are evaluated for segmentation purposes [163], and it is
concluded that they have results close to the state of the art. Furthermore,
the usage of the BPTAO in concordance with saliency maps in the context
of hierarchical watersheds results in even more efficient hierarchies, by either
combining hierarchical watersheds computed with different attributes [50, 48,
186, 184] or by using the watersheding operator on any kind of hierarchy [185]
in order to transform it into a hierarchical watershed.

Except for the tree of shapes, the construction of the hierarchical
representations presented in this chapter may be implemented in a generic way
on different image domains. One of the parameters of the construction of a
hierarchy is the knowledge of the adjacency relationship of the elements of the
domain Ω. As explained in Chapter 3, this relationship may be represented
as a graph such that these hierarchies can be built on a graph either weighted
on vertices or edges. The Higra library [164] relies on such graphs to build
hierarchies. Figure 4.11 illustrates this concept by building a hierarchical
watershed on two adjacency graphs obtained from the domain of the given

68 Chapter 4. hierarchical representations of images

image and computing the saliency map of the hierarchy. In Figure 4.11a, this
graph is built on a set of points by the mean of the k-nearest neighbors algorithm
based on a distance L2 between two points. The edges are weighted with this
distance between two points. In Figure 4.11b, the graph is obtained from the
adjacency relationship of the triangles, and the edges are weighted using the
triangle curvatures [181].

4.4 Conclusion

This chapter concludes the first part of this document by presenting hierarchical
representations of images. First, the notion of hierarchical representation
was recalled, and its representation as a tree was introduced. The usage
of trees enables simple and efficient processing on these hierarchies. These
representations are at the heart of the contributions of the thesis, from their
implementation to their usage in the different applications.

Part II

A Static-Dynamic Approach to
Image Processing

69

Chapter 5
Static-Dynamic Genericity for Image
Processing

In this chapter, we focus on generic programming in C++ for image
processing, and more precisely we develop a methodology that allows
writing algorithms that are either static, meaning that input data types
are known at compile time, or dynamic, meaning that this knowledge
depends on runtime information. Furthermore, we demonstrate
that our methodology is extendable to other programming languages
relying on the monomorphization mechanism. Finally, we analyze
the performance of different image processing algorithm patterns, and
we show that some information is more important to be known at
compile-time depending on this pattern.

5.1 Issues with static genericity for image processing

Software libraries are sets of algorithms and data structures that aim to allow
the reusability of program components. In Chapter 3, the three criteria
for such libraries providing image processing functionalities were discussed:
genericity, performance, and interactivity. Generic programming allows to reuse
algorithms with different kinds of images, whatever their domain type, value
type, or implementation. On the other hand, performance makes algorithms
usable in real-time application, or reduce the execution speed for large image
datasets or big images in terms of amount of pixels. Finally, interactivity is
of prime importance when some information is only known at runtime, or
to bring algorithms and data structures in an interactive environment such as
Jupyter [168] or Pluto.jl [169].

71

72 Chapter 5. static-dynamic genericity for image processing

Listing 5.1: Dynamic dispatch of templated functions with variant C++

template <Image I>
void iota(I& img) { /* ... */ }

using image_t = std::variant<image2d<uint8_t>, image2d<rgb8>,
image3d<uint8_t>, graph<double>, simplicial_complex<uint8_t>>;↪→

void dispatch_iota(image_t& img) {
std::visit([](auto& img_s) { iota(img_s); }, img);

}

int main(void) {
image_t img = build_image();
dispatch_iota(img);

}

The C++ programming language is a performance-oriented language whose
programs are optimized at compile-time. It is one of the main languages used to
implement image processing libraries as observed in the survey in section 3.3.3.
As explained in Chapter 2, it provides generic capabilities using templates, a list
of types and compile-time values. As C++ is a statically typed language, the type
of all the expressions composing algorithm implementations must be known at
compile-time, as well as the parameters of the template entities. Furthermore,
templates rely on a monomorphization process: for every instantiation of a
template entity, machine code is generated for it, and the compiler optimizes the
corresponding machine code. Thus, the genericity and performance criteria are
naturally fulfilled. However, these characteristics make the interactivity criterion
not straightforward to reach.

There exist different means to perform dynamism in C++ for interactivity
purposes, and these are described in Section 5.2. To illustrate the issues of
interactivity for image processing in C++, the sample code in Listing 5.1 uses
a variant [154], which is a type-safe union introduced in the C++ 17 standard.
A union is a structure defining several objects with different types but storing
only one of these objects at a time. All the different types are specified in the
template parameter list. Then, a generic function named iota accepts any kind
of object while they respect the concept Image. As this function is templated,
its parameter has to be known at compile-time, but the objective of this sample
code is to add interactivity at runtime. Thus, the function dispatch_iota takes
as input an object whose type is the image variant type, which handles numerous

5.1. issues with static genericity for image processing 73

Listing 5.2: Dynamic dispatch of templated functions with any C++

template <Image I>
void iota(I& img) { /* ... */ }

void dispatch_iota(std::any& img) {
if (auto* img_s = std::any_cast<image2d<uint8_t>>(img))

iota(*img_s);
else if (auto* img_s = std::any_cast<graph<double>>(img))

iota(*img_s);
/* Other image structures ...*/
else

throw std::invalid_argument("Invalid image type");
}

int main(void) {
std::any img = build_image(); /* Return a valid image */
dispatch_iota(img);

std::any index = std::make_any<int>(10);
dispatch_iota(index); /* Raises an exception */

}

possible image types, and then dispatches to the correct type by means of the
std::visit function. The issue of the usage of this function is that for all
the image types defined in the variant, machine code for the iota function is
generated. Furthermore, the same is true for all the value type parameters of
the different image structures. Thus, the combinatorial of all the image types
must be known in advance in the variant list, which is unmaintainable due to
the uncountable amount of image types, as explained in Chapter 3.

Unlike variants, which are able to store objects whose types belong to a
limited set, the std::any container [53] stores any object whatever its type.
About type safety, std::variant is more restrictive since it checks that the object
belongs to the set of accepted type at compile-time. On the other hand, such
checks are performed at runtime with std::any, as illustrated by Listing 5.2.
In this listing, the same operation is performed as in Listing 5.1, but using the
std::any container. The function build_image creates a new image and stores
it in a std::any object. This function is used in the main function to create an
image which is given to the dispatch_iota function, which will get the object
stored in the container by returning a pointer to the object with the correct

74 Chapter 5. static-dynamic genericity for image processing

type by the means of the std::any_cast function. If the type parameter of this
function does not correspond to the type of the object stored in the container,
a nullptr is returned. The dispatch is thus performed at runtime by trying
to perform a conversion until the correct type is reached, or an exception is
raised if the underlying type is not handled. This is illustrated by the two cases
in the main function. The dispatch to the correct type requires to specify all
the valid types by writing all the branches of the dispatch, resulting in a lot of
boilerplate code to maintain. Such a dispatch can be factorized by the use of
C++ metaprogramming in conjonction with type lists, but still necessitates to
take into account the large majority of types such that it does not remove the
combinatorial explosion mentioned previously.

In this chapter, we present a new methodology that improves the interactivity
of generic image processing algorithms in C++ with the least modifications to
make in existing generic algorithms. We focus on the value type of the image,
but also their implementation. Then, we extend the concepts presented in the
C++ language into the Rust language, with a generic internal mechanism similar
to C++, but with other differences. Finally, we evaluate this new methodology
on different algorithmic schemes, and we show that the cost of the indirections
induced by the added dynamism is negligible for some classes of algorithms.

5.2 Dynamism in C++

Dynamism in C++ relies on the notions of inclusion polymorphism in the
context of object-oriented programming. In C++, a class may inherit from
one or more classes: it may access their operations and data based on certain
access specifiers. Furthermore, these classes may define operations that are not
implemented: in this case, the classes are abstract classes and the operations that
are not implemented are pure virtual functions. An abstract class defines the
interface its subclasses have to respect. In contrast with generic programming
in C++, abstract classes are comparable to concepts. However, the concrete type
does not require to be known at compile-time. Listing 5.3, defines an abstract
class Base that defines a pure virtual function process, and two classes deriving
from Base and implementing the function process. In the main function, the
knowledge of the type of the variable v depends on some runtime information
and is thus allocated dynamically as the size of the object cannot be known at
compile-time. The dispatch of the process function, when it is used, depends
on an internal mechanism called virtual tables, which may be seen as a table of
pointers to function initialized at the object creation.

The usage of inheritance has several drawbacks for dynamism in C++. First,
the pointer semantic is different from the value semantic: using pointers in

5.2. dynamism in c++ 75

Listing 5.3: Dynamism with abstract classes C++

struct Base {
virtual void process() = 0;

};

struct Derived1 : public Base {
void process() { /* ... */ }

};

struct Derived2 : public Base {
Derived2(int v) : attr(v) {}
void process() { /* ... */ }
int attr;

};

int main(int argc, char* argv[]) {
bool cond = parse_arguments(argc, argv);
std::unique_ptr<Base> v;
if (cond)

v = std::make_unique<Derived1>();
else

v = std::make_unique<Derived2>(/*...*/);
v->process();

}

conjonction with values is not straightforward in a generic functions when their
type is given as a template parameter. Furthermore, its usage requires dynamic
allocations, which have an impact on the runtime performance of a program.
For example, the usage of such a mechanism to define an image requires at least
three interfaces: one for the value set, one for the domain, and the last one for the
image implementation. Each of these elements would be dynamically allocated
as their nature is not known at compile-time, as well as pixel information such as
their positions or their values. In addition to this, the usage of a pointer induces
indirections since no inlining can be performed due to the dynamism. Finally,
adding a new type to the set of accepted types requires creating a new class
inheriting from the base class, which is not the case with concepts that check the
behavior of a given object type instead of its name.

Some of these issues may be solved by means of type erasure, which is a
pattern hiding the underlying type of an object. This pattern is heavily used

76 Chapter 5. static-dynamic genericity for image processing

template <class T>

struct buffer2d

{

T& operator()(point2d p);

rect2d domain() const;

T* data;

};

Interface

Implementation
details

(a) Statically typed image

struct buffer2d_any

{

void* operator()(point2d p);

rect2d domain() const;

void* data;

size_t element_size;

};

Interface

Implementation
details

(b) Dynamically typed image

Figure 5.1: Two implementations of an image encoded as a contiguous buffer

to perform runtime polymorphism, but without having to define a new class
inheriting from a given base class. Runtime polymorphism with type-erasure
is implemented in several libraries such as Boost.Typeerasure [231], Folly [66],
or Dyno [57], which is a library specialized for runtime polymorphism using
type-erasure and providing several mechanisms to optimize its usage depending
on the use case. In the same manner, this mechanism is used in the STL in
different cases. The std::function type can hold any callable object without
having to know its implementation at compile-time, and without having, for
such a callable, to inherit from a base class thanks to type-erasure. Finally,
the std::any container [53] uses type-erasure to store objects of any type and
performs type-safe conversion at runtime to use such an object.

The proposed approach to static-dynamic genericity is in fact inspired by
Java generics internal mechanism. Indeed, Java generics are only syntactic tools
that allow performing type checking at compile-time, but then transform the
code using type erasure to remove the usage of generics in order to be usable
by old versions of the Java Virtual Machine (JVM). Thus, in the next section,
we present our method that relies on type erasure to bring dynamism to C++
generic algorithms and convert at runtime the object values to the correct type
in order to be manipulated.

5.3 Static-dynamic genericity in C++

In this section, the solution to bring interactivity to image processing algorithms
based on type-erasure is presented. The objective is to handle different value sets
for a 2D image at runtime, but also different implementations of such images.
Thus, in this section, we present an adaptation of image structure and algorithms
to handle either static or dynamic genericity for image processing purposes.

5.3. static-dynamic genericity in c++ 77

template <class T>

struct indirect2d {

T& operator()(point2d p);

rect2d domain() const;

std::function<T&(point2d)>

m_access;

};

Interface

Implementation
details

(a) Statically typed image

struct indirect2d_any {

void* operator()(point2d p);

rect2d domain() const;

std::function<void*(point2d)>

m_access;

};

Interface

Implementation
details

(b) Dynamically typed image

Figure 5.2: Image structures with indirection on implementation

5.3.1 Image models

In Chapter 3, a classical implementation for a 2D image is defined as a buffer of
values. Such buffer may be a contiguous table: this increases the performance of
the image traversal by storing groups of successive pixel values in the memory
cache of the processor, which has a faster access speed compared to the memory
of the computer. Figure 5.1 illustrates two image data structures implemented as
a buffer of data. They have the same interface, and thus respect the same concept
in terms of generic programming: an access operator to the value of a pixel at a
given position is defined in addition to a function returning the domain of the
image. However, they differ in terms of implementation: the image structure
from Figure 5.1a statically handles the information about the pixel value type
using a C++ template. Thus, such an image model may only be used when the
input type is known before the usage of the compiled program and is limited in
the context of interactivity, as previously explained.

The second structure in Figure 5.1b uses a type-erase buffer to store the pixel
values. The information about the type of pixel values is stored at runtime
in the implementation details. In the listing, such information is represented
by the size in bytes of one pixel value in memory. Thus, the image can be
traversed taking into account this information for the computation of the strides.
Furthermore, thanks to type-erasure, the image is not templated: the type of the
image is thus defined at runtime, and this allows to generate machine code for
only one type of image. To this aim, the type of the buffer of value is void*,
meaning that the values stored are untyped.

The two structures presented previously implement a 2D image as a buffer of
data to store the information. However, in Chapter 3, different implementations
of an image are discussed: an image may be implemented as a constant image,
with a single value, a sparse matrix, or a view [179]. The buffers from Figure 5.1
can be replaced with any of those different implementations if it is known at
compile-time. However, there exist some cases in which the implementation
needs to be chosen at runtime depending on the data stored in an image file in
the same way the pixels value type may require to be selected dynamically.

78 Chapter 5. static-dynamic genericity for image processing

Image type Access policy Static value
type

f(p) return
type

buffer2d<T> Direct to the
buffer

✓ T&

indirect2d<T> Indirect ✓ T&
buffer2d_any Direct to the

buffer
✗ void*

indirect2d_any Indirect ✗ void*

Table 5.1: Summary of the different image structures and their properties

Figure 5.2 illustrates two implementations of image structure, similar to the
two image structures in Figure 5.1 in which the interface and the implementation
details represent the two parts of the image structure, but this implementation is
type-erased by the means of a std::function container. This container, briefly
discussed in section 5.2, stores any object respecting the Callable concept,
meaning that it can be called as a function with zero or more arguments and
may return a value as specified by its template parameters. This is performed
by the means of type-erasure such that the type of the callable can be known
at runtime. As it is able to handle any kind of callable, the case of a function
object is particularly interesting: such an object stores the implementation of the
image, and its function call operator accesses this implementation and returns
the value at a given position. This operation is performed when the accessor
to a pixel value at a given position, located in the interface of the image, is
called. Thus, accessing a pixel value of the image is performed at the cost of
an indirection. Finally, as for the image structures in Figure 5.1, the information
about the pixel values type can be static or dynamic, and it is handled by the
implementation.

These four image structures are summarized in Table 5.1. The different
access policies are important in terms of performance: when such access is
indirect, a jump to a new function is generated in the machine code, and this
downgrades the performance. This is due to the fact that the function is only
known at runtime, and thus cannot be optimized conversely to a direct access
which may be inlined. Furthermore, the knowledge of the type of the value
at compile-time is important since the compiler may generate vectorized SIMD
instructions, which enable several values to be computed in one instruction.
Such a compiler optimization is not possible for dynamic values since their type
is only known at runtime. Generating SIMD instructions would be achievable
when using a Just-In-Time compiler, which is not the case for C++ compilers.
Finally, for the same reasons as the value type knowledge, the return type of the

5.3. static-dynamic genericity in c++ 79

Listing 5.4: qsort function prototype and its usage C

// Prototype
void qsort(void* tab, size_t nmemb, size_t size,

int (*compare)(const void*, const void*))

// Comparison
int compare_uint16(const void* _a, const void* _b) {

const uint16_t a = *((uint16_t*)_a);
const uint16_t b = *((uint16_t*)_b);
if (a < b) return -1;
else if (a > b) return 1;
else return 0;

}

// Usage
int main(void) {

uint16_t tab[10] = /* ... */
qsort(tab, 10, sizeof(uint16_t), compare_uint16);

}

image pixel value access operator is either statically typed, so a reference to a
value is returned for read-write access, or dynamically typed such that a pointer
to the first pixel value byte is returned. For the second case, the pointer value
is required to be converted to the correct static type before being used. This is
studied in the following section about the design of static-dynamic algorithms
for image processing.

5.3.2 Application to algorithms

The application of the previously studied image structures on generic algorithms
requires some adaptations. The case of a statically typed image such as
buffer2d<T> and indirect2d<T> is relatively simple as the values are statically
typed: the information about the pixels value type is known at compile-time
and computations on these value are handled by the compiler in the machine
code generation. However, dynamically typed pixel values are required to be
converted in order to be manipulated: the value returned by the image pixel
value accessor is a pointer to the first byte of the value at a given position, and
pointers are not pixel values.

In the C programming language standard library, the qsort function, whose

80 Chapter 5. static-dynamic genericity for image processing

Listing 5.5: Generic algorithm applied to the different structures C++

// Generic algorithm
template <class I, class Op>
void generic_elementwise_op(I a, I b, I& out, Op& op) {

for (auto p : a.domain())
op(a(p), b(p), out(p))

}

// Statically typed values
template <class T, class Op>
requires (std::invocable<Op, T, T, T&>)
void elementwise_op(buffer2d<T> a, buffer2d<T> b, buffer2d<T>& out,

Op& op) {↪→

generic_elementwise_op(a, b, out, op);
}

// Dynamically typed values
void elementwise_op(buffer2d_any a, buffer2d_any b, buffer2d_any&

out, std::function<void(const void*, const void*, void*)> op)↪→

{
generic_elementwise_op(a, b, out, op);

}

prototype is displayed in Listing 5.4, is a routine that sorts the values of an array
according to an input function handling their ordering. The input array to be
sorted is type-erased: it is a pointer represented by a void*. Thus, any array,
whatever its value type, can be sorted with this function. Two attributes of the
array are required by the qsort function: the argument nmemb is the number of
elements in the table, and the argument size is the size in bytes of one element.
Thus, the product of these two arguments is the whole size in bytes of the array.
Furthermore, these give indications about how to traverse the array, and thus
how to retrieve the address of the first byte of a value. Finally, the comparison
function takes as arguments the pointers to two values and returns an integer
value related to the ordering relationship between these values. Such a function
is displayed in the listing under the name compare_uint16. This function first
requires converting the pointers to their static type and then accessing their
value to be able to compare two elements of the table. With all these elements,
the qsort function can be used to sort any table, as it is illustrated in the main
function.

5.3. static-dynamic genericity in c++ 81

To adapt the generic algorithms to either take statically or dynamically typed
images, the model proposed by the qsort function is extended to templated
functions. Since the information about the dynamically typed values is stored
directly in the image object, it is not required in the function prototype.
Furthermore, these are useless in the case statically typed values are used.
However, the operations on the image, similar to the qsort comparison function,
are required. Such a generic algorithm is displayed in Listing 5.5. It aims to
perform an elementwise operation op between two images a and b and to store
the result in an image out. This algorithm uses the interface of the previously
presented image structures and thus can be used with any of them whatever the
pixel value type is static or dynamic. Furthermore, the operation is performed
in-place: no value is returned. Thus, in the case of dynamically typed pixel
values, the different conversions to read and write a value are performed by the
function op in a similar manner as for the compare function.

In the second part of the listing, the generic function is specialized into
two functions, one for static value type and the other for dynamic value type.
These two functions only call the generic_elementwise_op function, but their
arguments differ in terms of types. In the first case, the function elementwise_op
is templated: the pixel value type along with the operation type must be known
at compile-time. In this case, the operation does not perform any conversion and
is likely to be inlined by the compiler if its code size is small enough. Thus, the
op function only specifies the operation to be performed in the algorithm. In the
second specialization, the function is not templated: all the information may be
known at runtime only. Due to this, the operation is stored in a std::function
container, and it has to perform the type conversion when performing the
operation and as this type is only known at runtime, this justifies the usage
of such a utility. Thus, using this algorithm on an image whose values are
dynamically typed adds an indirection for the operation since it cannot be
inlined by the compiler. Finally, it has to be noted that these specializations
are extendable to the image structures whose access to the implementation is
indirect in the same manner according to the dynamism of their pixel values.

Table 5.2 summarizes the different operations related to each image structure
and the impact on the performance they induce in terms of indirections. For
the templated structures, whose value type is handled statically, the operation
is templated and thus it is known at compile-time, so that it may be inlined. In
such a case, when the access is direct to the buffer, no indirections are made
since all the information is known at compile-time. For image structures whose
values are type-erased, the function is known at runtime and is represented as a
pointer to function. Thus, in the generic algorithm in Listing 5.5, an indirection
is performed for each operation on every pixel value. Thus, in the case the

82 Chapter 5. static-dynamic genericity for image processing

Image type Operation type # Indirections
buffer2d<T> void max<T>(T a, T b, T& out) 0

indirect2d<T> void max<T>(T a, T b, T& out) 1

buffer2d_any void (*max)(const void* a, const
void* b, void* out)

1

indirect2d_any void (*max)(const void* a, const
void* b, void* out)

2

Table 5.2: Summary of the different operations according to the image structures

trait ImageInterface {

type Value: ?Sized;

fn domain(&self) -> Rect2d;

fn at(&mut self, p: Point2d)

-> Option<&mut Self::Value>;

}

// Generic 2D buffer

struct Buffer2d<T> {

domain: Rect2d,

data: Vec<T>

}

// Type-erased 2D buffer

struct Buffer2dAny {

domain: Rect2d,

element_size: usize,

data: Vec<u8>

}

Interface Implementation details

Figure 5.3: Rust implementation of a 2D buffer

implementation and the pixel value type are known at runtime, the cost of a
pixel value access is 2.

5.4 Extension to the Rust programming language

In the previous section, the principle of static-dynamic genericity for image
processing algorithms implemented in C++ was presented. To demonstrate that
this approach is not limited to the C++ programming language, it is applied
in this section to the Rust programming language. The choice of this language
comes from the fact that it is a performance-oriented language with some generic
capabilities based on parameters as explained in Chapter 2. Furthermore, it
has some differences with C++ such as its nominal type system or its memory
management system, which aims to be safe unless specified in terms of the
memory ownership of an object.

Rust data structures are declared using the struct keyword and are similar
to the declaration of a C structure. To add some operations related to the data
structure, the usage of an impl block is required. Furthermore, as explained
in Chapter 2, Rust is a nominal language, meaning that its concept checking
is based on a name and not on a structure such that the common interface
of different data structures is defined by the means of a trait, and this trait is
implemented for the different structures.

5.4. extension to the rust programming language 83

Listing 5.6: Indirection on the implementation in Rust Rust

trait ImplementationAccess {
type Output: ?Sized;
fn at(&mut self, p: Point2d) -> Option<&mut Self::Output>;

}

struct Indirect2d<T> {
/* ... */
access: Box<dyn ImplementationAccess<Output = T>>

}

impl<T> ImageInterface for Indirect2d<T> {
/* ... */
fn at(&mut self, p: Point2d) -> Option<&mut Self::Output> {

self.access.at(p)
}

}

Thus, the implementation of a 2D buffer, with either dynamically or statically
typed values, relies on the separation of the interface and the implementation
details in the same way as their C++ version, and are displayed in Figure 5.3.
In this figure, the two data structures contain the fundamental information
described in the previous section, but the values are stored in a buffer of u8
values for the dynamically typed image. This has no impact on the dynamism
of the type, this value type being chosen as its element size in byte is 1 to
allow type-erasure. About the ImageInterface, the type of the values returned
by the pixel value accessor is not necessarily a type whose size is known at
compile-time: this allows for the dynamic image structure to return a value
whose size is dynamic. In practice, instead of returning a pointer, a reference
to a slice of u8 values is returned for dynamic images, this one containing the
pixel value at a given position. This is due to the fact that Rust pointers have a
different semantic than object, as in C++, and this makes them difficult to use in
the implementation of the trait.

The indirect access to the implementation of an image is based on the usage
of a trait object. Trait objects follow a similar idea as type erasure for runtime
polymorphism: the underlying type is known at runtime and it is valid if it has
a given interface, which is defined by a trait in Rust. Thus, the idea is similar to
the usage of the std::function in the C++ version of the indirect access of the
implementation. The Rust version of the indirect access to the implementation

84 Chapter 5. static-dynamic genericity for image processing

Listing 5.7: Elementwise operations algorithm in Rust Rust

// Statically typed version
fn static_elw_op<T, Op>(img1: &Buffer2d<T>, img2: &Buffer2d<T>,

out: &mut Buffer2d<T>, mut op: Op)
where:

T: Copy
Op: FnMut(&T, &T, &mut T)

{
generic_elementwise_op(img1, img2, out, op);

}

// Dynamically typed version
fn dyn_elw_op(img1: &Buffer2dAny, img2: &Buffer2dAny,

out: &mut Buffer2dAny,
op: Box<dyn FnMut(&[u8], &[u8], &mut [u8])>)

{
generic_elementwise_op(img1, img2, out, op)

}

of an image is illustrated in Listing 5.6 in the case of a statically typed image.
In this listing, the ImplementationAccess trait must be implemented by the
structure handling the implementation of the object or by the implementation
itself since in Rust, a trait can be implemented by any structure and thus does
not require any wrapper. Then, the image structure, named Indirect2d, has
a trait object named access. As a trait object is dynamically allocated, it is
stored in a Box object, which handles the memory at runtime. Finally, the
implementation of the ImageInterface trait for the image structure illustrates
the access to the underlying implementation of the call to the function at from
the ImplementationAccess trait implementation.

The usage of these image structures is similar to the C++ adaptation
of generic algorithms to the static-dynamic genericity methodology. Thus,
Listing 5.7 shows the usage of the Rust version of generic_elementwise_op
from Listing 5.5 in the context of statically or dynamically typed image pixel
values. The C++ version and the Rust version are very similar: in the static
version, the function is parameterized. In the dynamic version, no parameters
are used, and the operation is stored in a trait object such that it can be known at
runtime. A major difference with the C++ version for the dynamic elementwise
operation is the fact that the operation takes unsized slices of u8 values. To get
the correct type in order to perform the operation, pointers to the slice values

5.5. experiments 85

(a) Raster (b) Local (c) Ordered

Figure 5.4: Algorithmic patterns for the experiments

are obtained and then converted into the correct static type by the means of
the std::mem::transmute function for the operation to be performed . As the
validity of such a conversion cannot be checked at compile-time, the operation
is marked as unsafe, as well as any operation performed on pointers.

5.5 Experiments

In this section, the previous image models are compared when applied to
different algorithmic schemes. To be consistent with the previous section of
this chapter, these comparisons use algorithms and image models implemented
in C++, but also in Rust to validate static-dynamic genericity.

5.5.1 Experimental set-up

In order to evaluate the cost of the different image structures, three algorithmic
schemes are used. These are illustrated in Figure 5.4. The raster scheme
represents the traversal of the image in the same order the values are stored
in memory. In this evaluation, the pixels are stored contiguously row by row.
The local pattern traverses the image pixel by pixel in a similar manner as the
raster pattern, but for each pixel, neighboring pixels are read to perform an
operation. Finally, the ordered pattern uses a predefined order to pass through
all the pixels of the image, and in a large majority of cases does not traverse
them contiguously.

In practice, these patterns are implemented by means of three image
processing algorithms. The raster pattern is implemented through the
elementwise algorithm from Listing 5.5, and its operation is the maximum value
between the pixel values at the same position in two images. The local pattern is
implemented through a morphological dilation [188], and the neighborhood for

86 Chapter 5. static-dynamic genericity for image processing

24 25 26 27 28 29 210 211 212

10−6

10−5

10−4

10−3

10−2

10−1

Size of side (in pixels)

T
im

e(
in

se
co
n
d
s)

indirect2d<T>
indirect2d_any
buffer2d<T>
buffer2d_any

(a) Raster pattern

24 25 26 27 28 29 210 211 212

10−5

10−4

10−3

10−2

10−1

100

Size of side (in pixels)

T
im

e
(i
n
se
co
n
d
s)

indirect2d<T>
indirect2d_any
buffer2d<T>
buffer2d_any

(b) Local pattern

24 25 26 27 28 29 210 211 212

10−4

10−3

10−2

10−1

100

101

Size of side (in pixels)

T
im

e
(i
n
se
co
n
d
s)

indirect2d<T>
indirect2d_any
buffer2d<T>
buffer2d_any

(c) Ordered pattern

Figure 5.5: C++ benchmarks on the different algorithmic schemes

24 25 26 27 28 29 210 211 212
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Size of side (in pixels)

T
im

e
(i
n
se
co
n
d
s)

indirect2d<T>
indirect2d_any
buffer2d<T>
buffer2d_any

(a) Raster pattern

24 25 26 27 28 29 210 211 212

10−5

10−4

10−3

10−2

10−1

100

Size of side (in pixels)

T
im

e
(i
n
se
co
n
d
s)

indirect2d<T>
indirect2d_any
buffer2d<T>
buffer2d_any

(b) Local pattern

24 25 26 27 28 29 210 211 212
10−5

10−4

10−3

10−2

10−1

100

101

Size of side (in pixels)

T
im

e
(i
n
se
co
n
d
s)

indirect2d<T>
indirect2d_any
buffer2d<T>
buffer2d_any

(c) Ordered pattern

Figure 5.6: Rust benchmarks on the different algorithmic schemes

each pixel is represented by a square structuring element of size 1. Finally, the
ordered pattern is implemented through Berger’s max-tree algorithm [16], and
the predefined order of traversal is defined by the descending order of all the
pixel values.

The evaluation is performed on square images of dimension s × s with
s ∈ {2n|n ∈ J4..12K} randomly generated. The values are encoded as unsigned
integers on 8 bits. The experiments have been performed on a Linux Debian
11 machine equipped with a processor Intel i7-3770, 3.40GHz. The C++
benchmarks have been run using the Google Benchmark [79] library from
binary compiled with GCC 10.2.1 using the optimization flags -03, -ftree-vectorize,
-mavx, and -unroll-loops. The Rust benchmarks have been compiled with
the Rustc compiler using the third optimization level (-C opt-level=3) and the
measurements have been performed using the Criterion.rs library [51].

5.5.2 Evaluation

The results of the different benchmarks on the algorithm implementations in
C++ and Rust are respectively displayed in Figures 5.5 and 5.6. For all the

5.5. experiments 87

Statically Typed Yes No
Direct Access Yes No Yes No

C++
Raster +0% +176% +183% +367%
Local +0% +208% +174% +283%

Ordered +0% +30% +31% +38%

Rust
Raster +0% +388% +251% +574%
Local +0% +61% -14% +66%

Ordered +0% +9% +6% +15%

Table 5.3: Execution time overhead (in percentage) of the algorithmic schemes
compared to the statically-typed with direct access image of side size of 4096

benchmarks, except for the dilation implemented in Rust (Figure 5.6b), the image
structure with direct access to the implementation whose values are statically
typed is the fastest. This is particularly true for the raster algorithmic pattern:
in fact, it benefits from the fact that the different values are read in the same
order as they are stored in memory, and thus chunks of values are kept in the
memory cache of the processor, such that it allows a faster access compared with
the access to the computer memory. Conversely, the ordered algorithmic scheme
does not traverse the image in such order, except in the case the given ordering
of the value is the raster order, which never happens for natural images, and
thus for a large amount of access operation, cache misses, which are accesses to
a value which is not stored in the processor memory cache, are very likely to
happen.

Furthermore, in addition to the importance of the algorithmic scheme in the
choice of the image structure to use, the difference in performance between
the different image structures when applied to these algorithmic schemes is
explained by the fact that some compiler optimizations cannot be performed
due to the lack of knowledge at compile-time. First of all, in the context that the
values or the implementation of the image are stored dynamically, the operations
given as input arguments for the different algorithms are only known at runtime,
and thus inlining cannot be performed. This results in indirections at runtime,
as summarized in Table 5.2, and thus impacts the execution speed. In addition
to such consequences to the dynamism, when the value type is unknown at
compile-time, the compiler is unable to generate SIMD instructions. For the
raster pattern, these are widely used for the statically typed buffer since the
algorithmic scheme is convenient for such operations on contiguous values,
which is not the case for the ordered pattern since the values are not read in
raster order.

Table 5.3 shows the percentage of the overhead of the different algorithms

88 Chapter 5. static-dynamic genericity for image processing

2 4 6 8 10

5

10

15

20

25

30

Number of handled types

S
iz
e
(i
n
K
b
)

Static
Dynamic

Figure 5.7: Evolution of the generated machine code amount related to the
max-tree algorithm for statically and dynamically typed values

applied to the different image structures compared with the usage of a statically
typed buffer of value with direct access to the implementation. To this aim,
a large image is used (4096 × 4096) in order to have significant results. The
values highlighted in red are the lowest overhead for an image model for each
language. Whether in C++ or in Rust, the overhead of the ordered algorithmic
scheme, and thus for the max-tree algorithm, is negligible compared with the
other algorithmic schemes, except for the dilation in Rust. So for the max-tree
algorithm, the knowledge of some static information is not of prime importance
and it may be interesting to use dynamism to allow interactivity with a low
impact on the performance of the construction algorithm.

Finally, a last experiment measures the amount of generated machine code
depending on the number of handled types for one algorithm. C++ and Rust are
languages whose genericity mechanism relies on a monomorphization process,
such that for each combination of type parameters, specialized machine code is
generated. The measurements are performed on the max-tree algorithm for the
buffer image structure whose access is direct with statically and dynamically
typed values. To this aim, the Bloaty [21] profiler is used, and the results
are displayed in Figure 5.7. Both versions exhibit a linear increase with the
addition of new image types. However, the quantity of new code generated in
the dynamic version (100b/type) is 26 times lower than in the static version
(2.6Kb/type) where a new full algorithm is instantiated. Therefore, the dynamic
version prevents code bloat.

5.6. conclusion 89

5.6 Conclusion

In this chapter, an approach to handle both static and dynamic genericity is
presented for generic image processing algorithms. To this aim, four image
structures are presented, with either static or dynamic information for the image
pixel values type or the underlying implementation of the image. This approach
is first presented in C++ and then extended to the Rust programming language.
It is evaluated using different algorithmic schemes by the means of image
processing algorithms implemented in C++ and Rust, and the results show that
the importance of the knowledge of the type and implementation information
depends on the algorithmic scheme.

From the results presented in this chapter, the loss of performance
for the max-tree construction algorithm is negligible compared with the
other algorithms. Thus, the knowledge at compile-time of the type and
implementation information is not important. From this conclusion, in the next
chapter, this construction algorithm for the max-tree representation is studied
in depth, and its performance in the case of static or dynamic value types is
compared with different existing implementations.

The pixel value type and the implementation of an image are either static
or dynamic in this chapter. However, this is not the case for the domain of
the image: it is only valid for a 2D image. The extension to nD images is not
straightforward: the list of values for the coordinates can easily be extended
to be dynamic, as well as the domain dimensions. Furthermore, to improve
the runtime performance of such a process, a simple optimization, called Small
Buffer Optimization (SBO), can be performed to allow the use of the stack for
a small number of dimensions, or allocate on the heap for larger values. In
practice, nD images whose number of dimensions n is larger than 4 (3D+t) are
very rare such that dynamic allocations may be performed with n > 4. Finally,
a unique representation for indexing will be studied to extend the image model
to any image domain.

90 Chapter 5. static-dynamic genericity for image processing

Chapter 6
Static-Dynamic Hierarchy
Construction

In the previous chapter, an approach for the implementation of generic
image processing algorithms is proposed with the particularity that
the image pixel value types and its implementations may be either
known at compile-time or runtime without the necessity to rewrite the
whole algorithm. It is then evaluated on several algorithmic schemes,
and we concluded that the gap between the knowledge at runtime
or compile-time of the type information is negligible for the max-tree
construction. We propose here an in-depth study of the implementation
of this algorithm, and we compare this approach with other existing
implementations.

6.1 Max-tree construction algorithms

Max-tree construction algorithms are widely studied in [34]. Their different
algorithmic patterns are examined and their runtime speed are compared to
result in a decision tree about the choice of the algorithm to use according to
the nature of the environment and the quantization of the input image. In this
section, these different algorithmic schemes are briefly reminded, and the choice
of the construction algorithm used along this chapter is explained.

Max-tree construction algorithms may be divided into three categories:
flooding, immersion, and merge-based algorithms, the latest category building
several max-trees using either a flooding or an immersion algorithm, and then
merging these different trees to obtain the whole max-tree. The flooding
algorithm category is a two steps method consisting of first obtaining the pixel

91

92 Chapter 6. static-dynamic hierarchy construction

with the lowest value, used as the root of the tree, and then performing a
flooding propagation to obtain the max-tree. Such an algorithm is first proposed
by Salembier et al. [183], and later improved in [91] to remove the recursive call to
the flooding procedure. Finally, Wilkinson [234] removed the constraint imposed
by the hierarchical queue limiting the quantization of the image pixel values by
replacing it with a priority queue and thus improving the generic capabilities of
such max-tree algorithms.

Immersion algorithms are interesting for our purposes. From the decision
tree in [34], they are recommended in different situations concerning the
memory limitation of the system and the quantization of the image. They
are based on the union-find algorithm [207] to obtain the upper connected
components and model their inclusion relationship as a tree by a leaves to
root construction. The first max-tree algorithm using this structure is proposed
in [150] and is later improved by Berger et al. in [16]. The latest is the algorithm
studied in this chapter since the union-find data structure is at the basis of
several other tree construction algorithms, such as the α-tree or the hierarchical
watersheds which can be built using the Kruskal algorithm [152].

6.2 Overview of the Berger’s max-tree algorithm

As explained previously, the max-tree construction algorithm proposed by
Berger et al. [16] relies on a union-find data structure Q. This data structure
represents a set of disjoint sets and is endowed with three operations:

• make-set(Q, p): this operation creates a new set containing the element p.

• find(Q, p): this operation returns the representative element of the set
containing p.

• union(Q, p, q): this operation merges the two sets represented by p and q.

There exists several ways to represent the set of disjoint sets, and a common
means to do that is the use of a forest, which is a set of trees. Each tree represents
a set: its leaves are singleton such that they represent a set composed of one
element, and each internal node of a tree represents the merging (or union) of
two sets to create a new set. The root node of a tree contains the representative
element of a set and this value is returned by the find operation.

These concepts are illustrated in Figure 6.1. In this figure, the set of sets
is illustrated by the forest containing two trees in Figure 6.1a. The make-set
operation in Figure 6.1b creates a new tree in the internal forest structure,
composed of only one canonical element. The find operation in Figure 6.1c

6.2. overview of the berger’s max-tree algorithm 93

0

1 2

3

4

(a) Internal structure

0

1 2

3

4 5

(b) make-set(Q, 5) operation

0

1 2

3

4

(c) find(Q, 1) operation

0

1 2

3

4

(d) union(Q, 0, 3)

Figure 6.1: Union-find operations

returns the representative element of the set a given element belongs to. This
element is the root of the tree in the figure. Thus, if the element given as
an argument is a leaf, the whole tree has to be traversed until the root. An
optimization, named path compression, reduces the complexity of this operation
and is discussed later in this chapter. Finally, the union operation in Figure 6.1d
merges two trees to form a new tree. In the figure, the root node of one of the
two trees becomes the root node of the new tree forming the new set.

Berger’s algorithm uses this structure to compute the max-tree. First of all, it
sorts decreasingly the image pixels by their value. Then, it traverses these sorted
pixels and creates a new node of the tree for each of them (make-set operation).
The adjacent pixels are then looked at, and if some of them are in a set of the
union-find structure and not in the same set as the current pixel, then the two
sets are merged (union operation). When all the image pixels are processed,
the resulting forest is composed of one tree which is the max-tree. This tree is
simplified by a post-processing operation called canonicalization resulting in one
representative node per component.

This algorithm is illustrated in Figure 6.2. In this figure, the max-tree is built
on the image in Figure 6.2a in which the blue numbers denote the coordinates
(row, column), the red numbers are the rank of an image pixel after the sorting
operation and the black numbers are the pixel intensities. To build the max-tree,
a 4-adjacency relationship is used. In Figure 6.2b, a step from the max-tree
construction algorithm is displayed. The current pixel at this step is enclosed by
a red dashed circle in Figure 6.2a, and the pixels circled in green are the pixels

94 Chapter 6. static-dynamic hierarchy construction

2 1 3

3 2 10

1

0 1 2
6

5

4

3

2

1

(a) An image

(1, 2) (0, 0)

(1, 0)

(0, 1)

3 3

2

2

(b) Tree construction step

(1, 2) (0, 0)

(1, 0)

(0, 1)

(1, 1)

(0, 2)

3 3

2

2

1

1

(c) Max-tree (before canonicalization)

(1, 2) (0, 0)

(1, 0)

(0, 1)

(1, 1)

(0, 2)

3 3

2

1

(d) Max-tree (canonized)

Figure 6.2: Max-tree construction

that are already visited, and thus already in the internal forest of the union-find
structure. In this construction step, the current pixel is merged with an existing
set. The resulting tree from the traversal of the sorted pixels is displayed in
Figure 6.2c. In this tree, some consecutive nodes in their path to the root belong
to the same upper connected component. In that case, the tree is less simple
to manipulate. The canonicalization removes such consecutive nodes such that
only one node per level is representative in its path to the root, as illustrated in
Figure 6.2d, the other node at the same level just pointing to the pixels of the
component represented by such a representative node.

The max-tree algorithm is displayed formally in Algorithm 6.1. In
this algorithm, the union-find operations are highlighted and labeled. The
union-find internal forest structure is represented as a function named zpar
which is implemented as an image. However, this function does not represent
the max-tree structure due to the path compression optimization, which flattens
the trees in the forest in order to have fast access to the representative element

6.3. existing implementations of berger’s max-tree 95

of a set. To this aim, the value of zpar at each node of the forest is updated
to the root node of the corresponding tree when necessary during the find
operation, implemented in the find_root function in Algorithm 6.1. Thus,
another function is required to encode the whole max-tree, and it corresponds
to the parent function in the algorithm.

6.3 Existing implementations of Berger’s max-tree

There exist several implementations of the max-tree construction using Berger’s
algorithm. In this section, we study some of them and we provide a comparison
between all of them. The first max-tree construction is the one provided by
the authors of [16] which is implemented in the Milena library [122]. As
it is the reference implementation, it strictly follows the algorithm given in
Algorithm 6.1. It is implemented in C++ and is highly generic: it accepts any
kind of image, whatever its value set or its domain, and builds its max-tree.

The second implementation is provided by the trees-lib library [23], which
contains the implementations of several hierarchical representations of images
by the use of the OpenCV library [27] and is used as a reference implementation
for [24]. The max-tree algorithm is implemented as proposed in [16]. However,
in this library, an inclusion tree is represented by a linked list whose nodes
are dynamically allocated and linked to each other according to the parenthood
relationship. Such a data structure is costly in terms of runtime performance
as each node is allocated one by one compared to the parent mapping
which requires only one memory allocation. Furthermore, this mapping is
implemented for the need of the max-tree construction algorithm as a vector
of vectors. Consequently, the elements are not contiguous in memory and an
allocation is performed for each line of the parent mapping in addition to one
allocation of the vector storing all the lines. Finally, an overhead is added by the
conversion from the parent mapping to the linked list representation.

The max-tree construction is implemented in Scikit-Image [230] using the
Cython transpiler [14] which transforms code implemented in Cython, a
language mixing Python and C functionalities, into an implementation in C
and makes it available in Python by means of the CPython API. Unlike the
proposed algorithm in [16] and the previously discussed implementations,
the construction provided by Scikit-Image does not make use of the path
compression optimization. This is justified in the source code comments by the
fact that the recursion performed by the find_root function adds an overhead
in terms of performance which is not the case with an iterative version despite its
higher complexity. The provided max-tree construction function takes as input
any image defined on a hyperrectangle, implemented as a NumPy array [85],

96 Chapter 6. static-dynamic hierarchy construction

and returns the parent mapping as well as the list of ordered pixel positions.
The latest implementation discussed in this section is the one provided by the

Higra [164] library. The function constructs the max-tree of any vertex-weighted
graph. As in [16], this implementation uses path compression as an optimization
for the find operation but also uses a union-by-rank, which avoids the creation
of a degenerated tree and guaranties an O(n log n) complexity for the union-find
when used along path compression. As graphs may be used to represent the
adjacency relationship between the image pixels, such an implementation can
be used on rectangular images, but also on simplicial complexes as discussed in
Chapter 3.

Scikit-Image and Higra provide a Python interface to their functionalities.
They make their respective max-tree construction usable with a limited set of
types (real numeric value types with a quantization lower than or equal to 64

bits), but this one covers a whole majority of cases when the image is univariate.
To this aim, Higra specializes its templated functions building the max-tree
and Scikit-Image uses fused types in Cython which are set of accepted types
for a function used for generic programming in Cython. The latter generates
specialized C code for each type. On the other hand, trees-lib is based on the
OpenCV C++ API and does not provide any interface in a dynamic language but
allows some interactivity due to the image structure with dynamically typed
values provided by OpenCV. However, with the default max-tree construction
function being specialized with a comparison of integer values, floating points
are difficult to handle without using the templated version on the comparator.
Finally, Milena is fully static, with a templated implementation of the max-tree,
and does not provide any dynamic version of its construction.

6.4 Static-dynamic implementation

In this section, the implementation of the max-tree using the methodology
explained in the previous chapter is described. In Algorithm 6.1, the parts
of the algorithm requiring the knowledge of the image pixel value type are
highlighted in red. Precisely, these two parts are the sorting of the pixels and
the canonicalization of the tree. These two steps from the max-tree construction
algorithm require knowing the ordering relationship between the image pixel
values. Conversely, the union-find operations do not require manipulating
the values of the image, and thus their implementation can be fully static,
meaning that the type of every expression is known at compile time, and
underlying optimizations can be performed by the compiler. Finally, some
other information, not related to the value type of an image, may be known
either at runtime or at compile-time. This is for example the case for the

6.4. static-dynamic implementation 97

Listing 6.1: Max-tree function prototypes C++

// Generic version
template <class I, class N, class C>
std::pair<buffer2d<point2d>, std::vector<point2d>>
maxtree(I img, N nbh, C comp);

// Interfaces
template <class T, class N, class C>
std::pair<buffer2d<point2d>, std::vector<point2d>>
maxtree_static(buffer2d<T> img, N nbh, C comp);

std::pair<buffer2d<point2d>, std::vector<point2d>>
maxtree_dynamic(buffer2d_any img, c4c8_t nbh,

std::function<int(const void*, const void*)> comp);

adjacency relationship of the image pixels whose usage is highlighted in blue in
Algorithm 6.1: for 2D images, this latest is not unique, as explained in Chapter 3,
and the number of neighbors may varies depending on the chosen one.

The identification of the steps of the algorithm that require knowing the pixel
value type of the image enables to implement the max-tree construction with
the static-dynamic genericity methodology. In order to enable the max-tree to be
implemented, we consider a 2D image as input for the algorithm. However, the
case the image may have different implementations is handled. The prototypes
of the max-tree functions are displayed in Listing 6.1. The maxtree function
is a templated entity, but it only affects the arguments of the function. These
three arguments are the following: the input image, the adjacency relationship
of the image pixels implemented as a window as explained in Chapter 3,
and a comparison operation. Indeed, this comparison function is a three-way
comparison defined for two values a and b by:

C(a, b) =

−1 if a < b

0 if a = b

1 otherwise

The two interfaces displayed below the generic maxtree function handle
the different cases of typing for the image pixel values and call the generic
max-tree construction function. Furthermore, it takes into account the fact
that the knowledge of the adjacency relationship is known at compile-time or
runtime: the window stores a set of offsets that are applied to a given point and

98 Chapter 6. static-dynamic hierarchy construction

returns the set of adjacent points. When this information is known at runtime,
the window is endowed with additional dynamic information indicating which
kind of adjacency is used. For example, the c4c8_t type in the dynamic version
of the max-tree stores in an array the offsets of the 8-adjacency relationship such
that the first four offsets are the horizontal and vertical ones and the last four
ones are the diagonal offsets. Then, if the dynamic information are related to
the 4-adjacency relationship, only the first four offsets are applied to the current
point. Finally, some operations may be performed before the usage of the generic
version and are described in the following.

Using a three-way operator for the max-tree algorithm allows using it both
for the sorting step and the canonicalization step, which requires checking
the equality of two image pixel values to simplify the tree. This operation is
known at compile-time in the case the image pixel values are statically typed,
or at runtime by means of a std::function in the case the type of the pixel
values is dynamic. The resulting output type of the max-tree construction
function corresponds to the sorted pixel sequence and the parent image from
Algorithm 6.1. Indeed, these are not templated: they do not depend on the
input image implementation or values type.

In the previous chapter, four image structures are presented for
static-dynamic genericity. By taking into account the knowledge acquired
previously, two strategies based on the previous models are presented in this
chapter. These rely on the necessity to go from dynamic typing to static typing to
reduce the gap between the different structures while keeping generic abilities.
Furthermore, due to the design of generic algorithms presented in the previous
chapter, their adaptation requires few modifications of the max-tree construction
implementation.

The first strategy is based on projections. From the C++ 20 standard [96], a
projection is a transformation that an algorithm applies before inspecting the values
of the elements of a container. Such operations are widely used with range
algorithms in C++, which may apply such a transformation before the operation
is performed on a value. It has to be noted that the default projection is
the identity transformation that, for an element value, returns the same value.
Applied to the max-tree, projections are added in two parts of the max-tree
construction algorithm: the sorting step and the canonicalization. For these two
parts, the projection is applied on the image pixel values in order to convert
the values from type-erased ones to statically typed ones before performing
the three-way comparison operation. In this case, the conversion has not to
be performed in the comparison operation but in a dedicated operation such
that the argument types of the comparison may be known at compile-time.

The second strategy consists in creating a new image with a new pixel

6.4. static-dynamic implementation 99

Value type Access policy Strategy # Indirection

Static Type

Direct
0

Projection 0

Conversion 0

Indirect
2

Projection 2

Conversion 1

Dynamic Type

Direct
2

Projection 2

Conversion 1

Indirect
4

Projection 4

Conversion 2

Table 6.1: Indirection amount for each image model

value type, eventually with a quantization large enough to handle several value
types, and then copying all the elements of the current image in this new
one, performing a conversion of the pixel values if required. This strategy
has several advantages, but also some drawbacks: first, the pixel value type
and implementation of the image given as input to the max-tree construction
algorithm are known at compile-time, allowing optimizations to be performed
by the compiler. Then, only one version of the templated function is generated
as it takes only one kind of image encompassing a large majority of value types.
However, it requires allocating a new image and copying all of its values so that
this process involves a complete traversal of the input image. Consequently,
this adds an overhead in terms of runtime speed and memory. This memory
overhead may be reduced by applying a merge-based algorithm in conjunction
with Berger’s construction on blocks of image whose size is fixed.

To summarize the different strategies to build the max-tree with the
knowledge of some information either at runtime or compile-time, Table 6.1 lists
the number of indirections according to the image model. These are counted
such that an indirection is required if an operation cannot be inlined by the
compiler, with a std::function object for example, and the fact that the sorting
and the canonicalization steps require to look for the image pixel values is
taken into account. First of all, it has to be reminded that the access to the
implementation when unknown at compile-time requires one indirection per
pixel value access, and another one when this value has its type only known at
runtime. Furthermore, in the max-tree construction algorithm, each pixel value
is looked at twice. For the conversion strategy, as the image is copied in a new

100 Chapter 6. static-dynamic hierarchy construction

one with a static value type and direct access to the buffer, there is no indirection
in the max-tree construction algorithm, but these are counted for the convert and
copy procedure, which traverses the image once. The projection strategy has the
same amount of indirection as the strategies studied in Chapter 5: the access
to the implementation of the image does not change, and instead of handling
the pixel value type in the operation, this is performed in the projection, which
cannot be known at compile-time in the case of dynamically typed pixel values.

6.5 Evaluation

To perform the different experiments, the experimental protocol is the same
as in Chapter 5. Images have a square domain of dimensions s × s with
s ∈ {2n|n ∈ J4..12K}. The values are randomly generated and are encoded as
unsigned integers on 8 bits such that V ⊆ J0..255K. Except when using the
Scikit-Image [230] library, the different benchmarks are performed with binaries
compiled using GCC 10.2.1 with the following flags -03, -ftree-vectorize, -mavx,
and -unroll-loops. To perform the measurements, the Google Benchmark [79] is
used. Finally, the experiments have been run on a Linux Debian 11 machine
equipped with a processor Intel i7-3770, 3.40GHz. The benchmarks of the
Scikit-Image’s max-tree construction were performed within the CPython 3.9.2
interpreter with Scikit-Image 0.19.2. To this aim, the time module is used.

We have implemented the Berger’s max-tree construction algorithm in C++
as a templated function and we provide interface to the correct image structure
in the same way as in Listing 6.1. It has to be noted that our implementation
of the max-tree construction utilizes a union-by-rank [207] in addition to the
path compression used by Berger et al. [16] in the union-find data structure as it
guaranties an O(n log n) complexity.

First, the results from Table 6.2 correspond to the overhead of max-tree
construction when applied to the different structures compared with the
application of this algorithm on the buffer2d<T> image structure for each side
size (2n×2n) of the image. When using the projection and the conversion strategies,
the values are transformed into unsigned values encoded on 64 bits. Thus, in
the case the image values are typed-erased, they are first converted into their
static type and then projected into the type used by these two strategies. The
first part of the table describes the overhead obtained by the use of the image
structures defined in Chapter 5. The second part displays the results of the
usage of the projection strategy. We can observe in this table that this strategy
has a greater overhead than the usage of the conversion in the comparison
operation except in the case where the image value type and implementation
are statically known. This is because the projections perform two conversions in

6.5. evaluation 101

n 4 5 6 7 8 9 10 11 12

buffer2d<T> 0 0 0 0 0 0 0 0 0

indirect2d<T> 48 33 24 22 22 15 24 23 30

buffer2d_any 52 32 27 27 27 20 27 25 31

indirect2d_any 60 40 36 36 37 30 35 33 38

buffer2d<T>

Projection

24 7 2 -3 -4 -19 3 3 3

indirect2d<T> 58 40 31 29 29 20 29 28 34

buffer2d_any 63 46 38 36 37 29 35 36 40

indirect2d_any 68 51 45 43 44 39 42 40 45

buffer2d<T>

Conversion

5 1 -6 -10 -9 -15 6 6 9

indirect2d<T> 10 -1 -6 -10 -8 -14 7 7 9

buffer2d_any 18 2 -1 -7 -6 -17 8 8 10

indirect2d_any 12 3 -2 -6 -6 -13 10 8 10

Table 6.2: Overhead (in percentage) of each image structure of dimension 2n×2n

applied to the max-tree computation algorithm compared with the statically
typed buffer with direct access.

our experiments at each call that are difficult to optimize in the case the image
value type is dynamically known as the projector is stored in a std::function
object. Furthermore, the usage of this projection in a dynamic context results in
an indirection. Finally, the conversion strategy has a low overhead compared
to the other strategies and for the image side sizes ranging from 64 to 512,
this overhead is negative. These negative overheads have been investigated but
there were no causes that explained this issue. Further investigations will be
conducted on the analysis of the assembly code, profiling, and caching in the
CPU. Finally, the benchmarks will be run on different computer configurations
to observe if it has an impact on the results.

Figure 6.3 illustrates the outcome of the comparison of our implementation
with the existing ones described in Section 6.3. As observed in Table 6.2,
the application of the different image structures proposed in Chapter 5 to
our max-tree implementation produces similar results. Furthermore, these
performance are likewise akin to the ones from Higra. This is explained by the
fact that the implementations are similar: they both use path compression and
union-by-rank. On the other hand, the construction algorithm is implemented
in trees-lib without union-by-rank and its tree structure is represented as a
linked list, which requires an allocation for each node. These two factors are
the underlying cause of the runtime performance overhead compared with our
implementation. Finally, the implementation of the construction in Scikit-Image

102 Chapter 6. static-dynamic hierarchy construction

24 25 26 27 28 29 210 211 212

10−5

10−4

10−3

10−2

10−1

100

101

102

Size of side (in pixels)

T
im

e
(i
n
se
co
n
d
s)

Higra
trees-lib
Scikit-Image
buffer2d<T>
indirect2d<T>
buffer2d_any
indirect2d_any

Figure 6.3: Benchmark on different max-tree implementations

uses none of the union-find optimizations cited previously such that it results in
the worst outcomes in terms of runtime speed.

6.6 Conclusion and perspectives

In this chapter, we studied different possibilities to implement the max-tree
algorithm using static-dynamic genericity. We used the results obtained in the
previous chapter to analyze and extend our methodology in order to efficiently
build the max-tree. We thus evaluated the cost of indirections for this particular
case. Furthermore, we proposed to use two new strategies based on the image
structures studied in the previous chapter relying on the coercion of the image
pixel values, and we show that one of them reduces the cost of the dynamism.
In order to improve the efficiency and reduce the gap between the application
of this algorithm on the static and dynamic image structures. To this aim, it
would be interesting to parallelize the algorithm, and more particularly to use a
merging-based construction based on an immersion algorithm.

We studied an immersion-based max-tree algorithm relying on the
union-find data structure. However, the max-tree algorithm is not the
only hierarchical representation based on such an algorithmic pattern. For
example, the α-tree or hierarchical watersheds may be built using the Kruskal

6.6. conclusion and perspectives 103

algorithm [152], which is also based on union-find and has a similar pattern, but
performs its computation on edges from undirected graphs instead of the pixel
values. Indeed, the max-tree is linked with those hierarchies [49] as the α-tree
is the max-tree of the minimum spanning tree (MST) of a graph. As a result,
the same conclusion holds for the MST computation as well as other hierarchies
based on the union-find algorithm.

104 Chapter 6. static-dynamic hierarchy construction

Algorithm 6.1 Berger’s max-tree algorithm
function find_root(x, zpar)

r ← x
while zpar(r) ̸= r do

r ← zpar(r)
end while
while zpar(x) ̸= x do

t← x
x← zpar(x)
zpar(t)← r

end while
return r

end function

function canonize(f, parent,R)
for p ∈ R (reverse order) do

q ← parent(p)
if f(parent(q)) = f(q) then

parent(p)← parent(q)
end if

end for
end function

function compute_maxtree(f)
for p ∈ Ω do

zpar(p)← undef
end for
R← reverse_sort(f) ▷ Requires image value type
for p ∈ R do

parent(p)← p ▷ make-set
zpar(p)← p
for n ∈ N (p) such that zpar(n) ̸= undef do ▷ Requires adjacency knowledge

r ← find_root(n, zpar) ▷ find
if r ̸= p then

parent(r)← p ▷ union
zpar(r)← p

end if
end for

end for
parent← canonize(f, parent,R) ▷ Requires image value type
return R, parent

end function

Part III

Applications in Image Processing

105

Chapter 7
Noise Level Estimation using
Hierarchical Representations

In this chapter, hierarchical representations are used to estimate the
noise level function of an image, in order to detect the statistical nature
of the noise and estimate the parameters of such noise. In the past, we
proposed to use the tree of shapes to adapt to the content of an image
a method using square patches statistics to estimate this function.
However, this method is limited to grayscale images due to the tools
it uses. In this chapter, we propose to extend this method to color
images, and secondly, we propose some modifications to improve its
results. The results demonstrate that some modifications improve the
whole pipeline while others, such as the use of the whole hierarchy, are
similar in terms of the precision of the estimation.

7.1 Context and motivation

Noise level estimation is an important step of several image processing pipelines.
The knowledge of the noise parameters as well as its statistical nature improves
the efficiency of the treatments of an image. Denoising is the most obvious
process requiring such information and is a crucial step in several applications
such as the image acquisition step [98]. Denoising algorithms can be divided
into two categories: non-blind denoising algorithms, in which the noise level is
assumed to be known, and blind denoising algorithms, in which this parameter
is unknown. In the case of blind denoising, the noise level is usually estimated
first, and given as information to a non-blind denoising algorithm.

107

108Chapter 7. noise level estimation using hierarchical representations

In [128], the authors first estimate the noise and then provide the results of
the estimation to the BM3D denoising algorithm [52]. Sutour et al. [204] propose
a similar methodology using the non-local means algorithm [28] (NL-means),
but unlike the method proposed in [128], they take into account the fact that the
noise may be dependent to the image content. The usage of convolutional neural
networks (CNN) also relies on such pipelines, as is the case for FFDNet [244], a
non-blind denoising network, which results in better denoised images in terms
of PSNR when a noise level estimation method [236] is used beforehand.

Denoising is not the only application whose performance is improved by the
knowledge of the noise level. In [127], the authors use the noise level information
to design an adaptive Canny edge detector. In [62], the noise information is
used to obtain a denoising method that preserves the edges of the image for
segmentation purposes. In [70], it is required as a parameter in a Markov
network used for super-resolution. Finally, in [229], the noise parameters are
used in a compression-denoising process.

With that number of applications, many noise level estimation methods were
proposed. While some estimation methods are based on several images [88],
estimating the noise level from a single image remains a difficult problem.
In [128], the authors propose to estimate the noise level in an image from noisy
patches. Variance stabilization, which approximates a Gaussian distribution
from a Poisson distribution, is used in [147] to estimate a Poissonian-Gaussian
noise model. Finally, the method described in [236] uses a CNN to separate the
noise from the image content in order to estimate the noise parameters.

The previously listed noise estimation methods suffer from two major
drawbacks: they have a strong hypothesis on the statistical nature of the noise,
and they consider the noise parameters are constant all over the image, even
when the noise is signal dependent. In [127], the authors propose to model
the noise level as a function related to the pixel intensities from an image. A
similar model is used in [65] to a signal-dependent noise (Poisson noise) with
a signal-independent noise (Gaussian noise). Deep learning-based noise level
estimation methods have also been developed for signal-dependent noise by
setting the noise level map values to pixelwise parameters [206, 243] instead of
using only one value [236]. Furthermore, Beaurepaire et al. first identify the
statistical nature of the noise by analyzing statistics on patches of the image
before estimating its parameters. However, their method is not able to represent
a mixed noise. Sutour et al. [204] combine these two advantages: they estimate
the noise level as a quadratic function, in which each coefficient is related to
the noise parameter of a particular noise statistic, and thus allows to represent a
mixed noise, but also allowing to identify its nature. Finally, Esteban et al. [63]
extend their method to take into account the content of an image, the method

7.2. grayscale noise level function estimation 109

from [204] being based on squared patches.
The latter two methods to estimate the noise level fulfill the need to identify

the nature of the noise and to represent correctly signal-dependent noise
simultaneously. Furthermore, they allow to represent a mixed noise due to the
use of a quadratic function as a noise level function. However, they have a
major drawback: they are limited to grayscale images because of the rank-based
correlation coefficient and the tree of shapes that rely on the rank of the pixel
values, which is not natural where these are multivariate, which is a major issue
in terms of genericity. Thus, in this chapter, the cause of these constraints is
identified, and an extension to color image is presented.

7.2 Grayscale noise level function estimation

In this section, the noise level estimation procedure we proposed in [63] is
recalled. As a reminder, this noise level estimation adapts the method proposed
in [204] to the content of an image.

7.2.1 The noise level function

To model the noise in an image, the estimation is relying on a function, called the
noise level function (NLF) [127]. The application of such function to any pixel
value of the image returns the variance of the noise corrupting this pixel, such
that σ2 = NLF(x), for x ∈ V a pixel value in the image, and σ2 the associated
noise variance. From the state of the art provided in the previous section, the
NLF must provide two major pieces of information: the statistical nature of the
noise, and the parameters associated with this distribution. The NLF provided
by Sutour et al. [204] fulfills these requirements but also enables the modelization
of a mixed noise. It is defined as a quadratic function by:

σ2 = NLF(a,b,c)(x) = ax2 + bx+ c (7.1)

with (a, b, c) ∈ R3 being three parameters modeling different statistical
distributions of the noise, and x ∈ V a pixel value. In this function, the
parameters a, b and c are respectively related to the multiplicative noise, the
Poisson noise, and the additive white Gaussian noise. Thus, this function
represents an additive white Gaussian noise with (a, b) = (0, 0), a Poisson noise
with (a, c) = (0, 0), or a multiplicative noise with (b, c) = (0, 0). Furthermore,
it can also represent a mixed noise such as the Poisson-Gaussian noise with
a = 0 and (b, c) ̸= (0, 0). The objective of the noise level estimation is thus the
estimation of the three parameters a, b and c.

110Chapter 7. noise level estimation using hierarchical representations

7.2.2 Mumford-Shah minimization using the tree of shapes

The adaptation to the content of the image of the method presented in [204]
consists in replacing the square patches with some regions of the noisy image.
In Chapter 4, different hierarchical representations of images are proposed for
different purposes. Among them, the tree of shapes, which encodes the inclusion
relationship of the connected components of an image, and by definition the
inclusion relationship of its level lines, is a contrast invariant representation. This
representation is used for segmentation in our noise level estimation pipeline.

Many segmentation algorithms rely on an energy minimization procedure.
An energy that is well-established for segmentation purposes is the
Mumford-Shah functional [142]. This energy is used in accordance with various
hierarchical representations for segmentation purposes. In [83], it serves as a
criterion to obtain optimal cuts from partitioning hierarchies according to the
energy, and a new partitioning hierarchy, called persistent hierarchy, is defined
as the stack of the different optimal cuts. In [9], the minimization procedure is
applied to the tree of shapes in an iterative procedure but requires to compute
the shapes that are removed in the current iteration as well as the shapes that are
candidate for the next one. In [240], Xu et al. propose an efficient algorithm based
on the work of [9] to select meaningful level lines from the tree of shapes. This
algorithm is the one used to select regions of interest in the noise level estimation
process since its authors demonstrate its robustness to noise in addition to its
efficient execution speed.

Since it is hard to minimize the classical Mumford-Shah functional, the
methods used in [83, 9, 240] are based on a simplified version of this functional,
the piecewise-constant Mumford-Shah functional. Applied on the tree of shapes,
it is defined by:

E(T ′

◦) =
∑
Ci∈T ′

◦

∑
p∈C

p/∈Children(C)

∥f(p)− f̃(p)∥22 + λ|∂Ci| (7.2)

with T ′
◦ the tree of shapes constrained by the functional, f̃ a piecewise constant

function resulting in the mean value of the pixels from the region containing a
point p, |∂Ci| is the length of the level lines surrounding a shape Ci, and λ is a
parameter of this functional.

The algorithm proposed in [240] follows the following steps which are
repeated until no shapes are removed: first, it sorts the shapes of the tree in
ascending order of the average gradient of their contours, then it traverses these
sorted shapes and removes the shapes whose variational criterion is invalidated.
Let RCi be the connected component represented by a shape Ci from T ′

◦ without
its holes filled, par(Ci) be the parent of Ci in T ′

◦ , and ξ(R) =
∑

p∈R ∥f(p)− f̃∥22.

7.2. grayscale noise level function estimation 111

A

B ∪ C

C D

E F

(a) Simplification T ′
◦ of T◦

A
B ∪ C

C

D
E

F

(b) Reconstruction of T ′
◦

Figure 7.1: Simplification of the ToS T◦ from Figure 4.5b

(a) An image (b) λ = 500 (c) λ = 5000

Figure 7.2: Simplifications on a natural image with different parameter values

The variational criterion is defined for a shape Ci by:

ξ(RCi) + ξ(Rpar(Ci))− ξ(RCi ∪Rpar(Ci))− λ|∂Ci| ≥ 0 (7.3)

The case where the variational criterion is invalidated means that the removal
of a shape decreases the value of the functional on the whole tree. In practice,
one iteration is sufficient. This process is illustrated in Figure 7.1, in which the
component C is removed, thus the components B and C form a new component
as the union of both.

Finally, the illustrations in Figure 7.2 display the application of the
simplification procedure on a tree built from a natural image using different
values of the parameter λ. In the first simplification in Figure 7.2b, the
parameter value is small: the image is simplified a little, compared to the image
in Figure 7.2c, in which most of the texture of the image has disappeared. Thus,
it has to be noted that the parameter λ controls the level of simplification: the
greater its value, the most simplified the tree and thus its reconstruction.

112Chapter 7. noise level estimation using hierarchical representations

7.2.3 The Kendall’s τ correlation coefficient

In [204], authors propose a detector of noisy patches by the mean of a statistical
test. To this aim, two hypotheses are stated: the null hypothesis H0 is related to
the fact that the content of an image patch does not vary and is only composed
of noise, and the alternative hypothesis H1 states that the patch content exhibits
variation due to the presence of texture. As the image is noisy, this statistical
test is based on the correlation of two random variables X and Y , and if these
are not correlated, so Corr(x, y) = 0, then the image content is constant and the
image patch is only composed of noise.

The correlation coefficient used for the statistical test is the Kendall’s τ . It is
a rank correlation coefficient, which means its computation is not based on the
values of the observation of X and Y , respectively denoted by x and y, but on
their rank. The choice of using the rank instead of the values relies on the fact
that the estimation aims at detecting the statistical nature of the noise, and such
statistic parameters are required to use a value-based correlation coefficient.

The Kendall’s τ rank correlation coefficient is based on the notion of
concordant pairs and discordant pairs. Let x and y be two sequences of observations
of size n of the two random variables X and Y . Let xi, xj ∈ x and yi, yj ∈ y with
i ∈ J0..n − 1K. Two pairs (xi, yi) and (xj, yj) are said to be concordant if xi < xj

and yi < yj (or xi > xj and yi > yj). They are discordant if xi < xj and yi > yj
(or xi > xj and yi < yj).

With these definitions, the Kendall’s τ rank correlation for two sequences of
n pixels values x and y is defined by [103]:

τ(x, y) =
1

n(n− 1)

n−1∑
i=0

n−1∑
j=i+1

sign(xi − xj)sign(yi − yj) (7.4)

The two sequences are perfectly correlated if there are only discordant or
concordant pairs. However, it does not take into account the case of tied pairs,
which are pairs being neither concordant nor discordant, with xi = xj or yi = yj .
Such pairs can exist in image processing applications since two pixels can have
the same value. Thus, the Kendall’s τ considering tied pairs is defined by [104]:

τ(x, y) =
nc − nd√

(n− nx)(n− ny)
(7.5)

with nc the number of concordant pairs, nd the number of discordant pairs, nx

the number of tied pairs in x and ny the number of tied pairs in y. This version
of the Kendall’s τ is thus used in the following.

7.2. grayscale noise level function estimation 113

7.2.4 NLF estimation for grayscale images

This section describes the noise level function estimation using the previously
introduced tools. The estimation process is divided into three main steps: the
segmentation, the detection of the homogeneous regions from the simplifications
of the image minimizing the Mumford-Shah functional, and the estimation of the
NLF from those homogeneous regions.

The segmentation process relies on the tree of shapes. First, the image is
blurred with a Gaussian kernel. This filtering is performed to remove the
level lines introduced by the noise, thus providing clear level lines for the
segmentation. Then, a tree of shapes T◦ is built on this blurred image. The tree
T◦ is then simplified into several trees T ′λ

◦ , with λ the Mumford-Shah functional
parameter used for the simplification. Then, all these trees are reconstructed,
providing partitions whose regions are used for the statistical test. This creates
different partitions, whose regions have different levels of coarseness according
to the value given to λ. The variation of this parameter allows to have a set of
regions with different morphologies.

The second step of the estimation is the statistical test on the regions of
the simplified images but with the values of the original image. To ensure the
statistical test is significant, a restriction on the size of the regions is imposed,
and all regions having a size smaller than this threshold (set to 250 pixels
in practice) are not tested, and thus considered non-homogeneous. Then, a
statistical test associated to the Kendall’s τ rank correlation coefficient, presented
in the previous subsection, is performed. Several sequences of observations of
X and Y are obtained from random divisions of a region into two sequences
of pixel values of size n, and for each pair of sequences x and y, the p-value
p = P(τ(X, Y) > τ(x, y|H0)) is computed. Among all the p-values computed,
the second smallest is compared to a predefined level of detection αd, and if
this p-value is greater, the region is considered as homogeneous. In practice, ten
divisions are performed.

Finally, the NLF is estimated from all the homogeneous regions. First, the
first and second order statistics, denoted respectively by µ̂ and σ̂2, are computed
from all the homogeneous regions. From Equation (7.1), the NLF for a given
image intensity results in the variance of noise. Thus, estimating the NLF is
performed by minimizing the residual error between the empirical variance σ̂2

i

and the variance predicted by NLF(a,b,c)(µ̂i) for all homogeneous regions such
that:

̂(a, b, c) = argmin
(a,b,c)∈(R+)3

∥NLF(a,b,c)(µ̂i)− σ̂2
i ∥1 (7.6)

The minimization of this problem is performed using the primal-dual algorithm
of Chambolle-Pock [40], relying on an L1 minimization since it is more robust to

114Chapter 7. noise level estimation using hierarchical representations

pk(2)
H1

≶
H0

αd

0 0.2 0.4 0.6 0.8 1

0.008

0.01

0.012

0.014

(µ, σ2)

0 0.2 0.4 0.6 0.8 1

0.008

0.01

0.012

0.014

(µ, σ2)

NLF ̂(a,b,c)
(x)

Noisy image Filtered image Tree of Shapes Simplifications

Homogeneous regions(Mean, Variance)NLF Non homogeneous

Segmentations

DetectionEstimation

Figure 7.3: NLF estimation for grayscale images

outliers than an L2 minimization.
The estimation process is summarized in Figure 7.3. For the results of the

evaluation of this method, either in terms of the precision of the estimation or
for the quality of the identification of the statistical nature of the noise, the reader
is referred to [63].

7.3 Extension to color images

In this section, the extension of the NLF estimation to color images is presented.

7.3.1 Issues with multivariate values

The grayscale noise level estimation presented previously is based on the tree
of shapes to get the set of regions to be submitted to the statistical test, itself
relying on the Kendall’s τ correlation coefficient. The tree of shapes relies on the
order of its input image values and requires the set of values V to be endowed
with an ordering relationship ≤ such that (V ,≤) forms a complete lattice [176].
Furthermore, the Kendall’s τ correlation coefficient is based on the rank of its
input sequences values and also requires them to be ordered. Thus, the extension

7.3. extension to color images 115

to color images is not straightforward since color values are multivariate and are
not endowed with a natural ordering relationship.

Research on multivariate mathematical morphology has been intensively
performed, and reviews can be found in [5, 124]. The principle to handle
multivariate values for mathematical morphology consists in endowing the set
of image values with an ordering relationship such that it forms a complete
lattice. Let a, b, c ∈ V be three values of an image and ≤ be a binary relation on
V . This binary relation is

• reflexive if a ≤ a

• antisymmetric if a ≤ b and b ≤ a⇒ a = b

• transitive if a ≤ b and b ≤ c⇒ a ≤ c

• total if a ≤ b or b ≤ a

The binary relation ≤ is a pre-ordering if it is reflexive and transitive. It is a partial
ordering if it is an antisymmetric pre-ordering. It is a total ordering if it is a total
partial ordering.

In [125], the authors propose a convenient representation to process
multivariate images whose value set is endowed with a total ordering
relationship based on the rank of these values. Let m be the number of
multivariate values in the image value set V ⊂ Rn such that m = |V|. A rank
transform R is a bijective mapping R : V → J1..mK such that it returns the rank
of a value according to a total ordering relationship ≤. Applied on all the values
of an image f , the rank transform results in a rank map Rf : Ω → J1..mK such
that at every position of the image, the rank of the value is returned. Thus, for
morphological operations, instead of processing the pixel values, the rank map
is used. As R is bijective, the multivariate values can be easily retrieved from
their rank.

7.3.2 Complete lattice learning

To obtain a rank map Rf , the set of image values V requires to be endowed
with a total ordering relationship ≤. Since multivariate values have no
natural total ordering relationship, one has to be imposed artificially. In [124],
Lezoray proposes an unsupervised method named complete lattice learning based
on machine learning to obtain such total ordering from the framework of
h-ordering. A h-ordering ≤h is an ordering relying on a projection h such that
for a, b ∈ V ,

a ≤h b⇐⇒ h(a) ≤ h(b) (7.7)

116Chapter 7. noise level estimation using hierarchical representations

The objective of the complete lattice learning is to learn the projection h by the
mean of the Laplacian Eigenmaps [15].

The complete lattice learning is a three steps process. First, a dictionary D of
p ≪ m elements of V is built by a vector quantization algorithm. For the noise
level estimation, the vector quantization is performed by using the K-means
clustering algorithm. This step is necessary to reduce the amount of sample
to be given to the Laplacian Eigenmaps as its complexity is quadratic with the
number of input samples.

The Laplacian Eigenmaps [15] is a manifold learning algorithm based on the
Laplacian matrix of the pairwise similarity graph of the element of a set. In
this case, this similarity graph is built on the elements of D and results in an
adjacency matrix SD which encodes the similarity between two values such that

(SD)ij = exp
(
−∥xi − xj∥22

s

)
(7.8)

with xi and xj respectively the ith and jth element ofD and s being the maximum
distance between two elements xi and xj such that s = max

xi,xj∈D
∥xi − xj∥22. From

this matrix, the diagonal degree matrix (DD)ii =
∑

j(SD)ij . The Laplacian
matrix is then defined by LD = DD − SD. The projection hD used to compute
the h-ordering, is obtained by computing the eigenvectors of the normalized
Laplacian matrix defined as:

LD = D
− 1

2
D LDD

− 1
2

D (7.9)

The projection hD is defined by hD(xi) = (ϕ1
D(xi), ..., ϕ

p
D(xi)) where xi is the ith

element of D and ϕj
D is the jth eigenvector of LD, with ϕj

D(xi) its ith value.
This projection hD being computed on the dictionary D, it is only valid for

the values of D. Thus, the projection hD has to be extended to all the values
contained in the set of image values V . This operation is performed by the use
of the Nyström extension [205]. Let ΦD the matrix of eigenvectors of LD, ΦV
the matrix of eigenvectors for the image values set V , ΛD the diagonal matrix
of eigenvalues obtained by the eigen-decomposition of LD, and DV the diagonal
degree matrix computed from the values of V . The Nyström extension is defined
by

ΦV = D
− 1

2
V ST

DD
− 1

2
D ΦDΛ

−1
D (7.10)

The projection h is thus defined by the eigenvectors contained in the matrix
ΦV such that for v ∈ V , h(v) = (ϕ1

V(v), ..., ϕ
p
V(v)) with ϕj

V(v) the jth extrapolated
eigenvector of the normalized Laplacian matrix for all the values in V . The
vectors returned by the projection h are ordered lexicographically so that the
h-ordering is well-defined.

7.3. extension to color images 117

(a) An image f : Ω→ V ⊂ R3 (b) Projection hD for the values in
the dictionary D

(c) Projection h for the values of f (d) The associated rank map Rf

Figure 7.4: Illustration of the complete lattice learning framework

Figure 7.4 illustrates the complete lattice learning framework. In Figure 7.4a,
a color image f is given as input. It is quantized and the Laplacian Eigenmaps
are applied to the dictionary D of values, resulting in the projection hD
in Figure 7.4b. The projection hD is then extended to all the values of V ,
resulting in the projection h displayed in Figure 7.4c. Finally, the rank transform
is applied to the image f by using the projection h, resulting in the rank map Rf

in Figure 7.4d.

7.3.3 The multivariate tree of shapes

The extension of the tree of shapes to color images has been studied and different
solutions were proposed. In [35], a first attempt to build a tree of shapes on color
images is presented. The authors propose to build one tree per channel and to

118Chapter 7. noise level estimation using hierarchical representations

T ◦
r

T ◦
g

T ◦
b

GoS Computation

0

1

2 2

1

3

MToS Computation from GoS

Figure 7.5: MToS computation process

merge them by computing a map using the area attribute obtained from the
channelwise trees, and then compute a tree of shapes from this map. In [36],
the authors explore three approaches: building the tree using a total ordering
imposed on the image value set, using a distance between the level lines of
the tree to build it with an algorithm similar to the one proposed in [73] and
build a graph of shapes representing the inclusion relationship between the
different shapes from the different channels, this latest not building a tree. The
graph-based approach has the best results in terms of PSNR for color image
denoising purposes using filtering. Finally, in [33], the authors build a tree from
the graph of shapes, resulting in the Multivariate Tree of Shapes (MToS) [38].
Thus, this tree relies on the inclusion relationship of the shapes instead of the
ordering relationship of the color values.

The different elements for the MToS computation are discussed. This
construction process is illustrated in Figure 7.5. For more details about the
algorithms used to obtain the different components, the reader is referred to [31].

7.3. extension to color images 119

(a) An image (b) λ = 1000 (c) λ = 10000

Figure 7.6: Illustrations of the Mumford-Shah simplification on the MToS

The MTos computation is divided into two steps: the computation of the graph
of shapes (GoS), and the retrieval of the MToS from the information embedded
by the GoS. In the first step, the channelwise trees of shapes T c

◦ are constructed
from each channel fc of the image. Then, these trees are merged into one graph
G = (VG, EG) which is the GoS. Each vertex of VG represents a node of a ToS T c

◦ ,
and the edges from EG encode the inclusion of the shapes in one channel, but
also the inclusion between the shapes of the channelwise ToSs. The roots of the
channelwise ToSs represent a unique vertex in the GoS, which is considered as
its root. Thus, the GoS is a directed acyclic graph. Finally, for the set of shapes
C = ∪cCc

◦, (C,⊆) forms the cover of G.
The second step of the MToS computation is the extraction of the MToS from

G. To this aim, the depth of each node of G is computed. Let vr ∈ VG be the root
of G. For any node v ∈ VG, the depth ρ(v) is defined by

ρ(v) = max
π(vr,v)

|π(vr, v)| (7.11)

This depth attribute is thus the longest path from a node v to the root vr. From
the depth attribute related to each vertex of the graph, a distance map m : Ω→ N
is computed, such that for all p ∈ Ω, the value m(p) is the maximum value ρ(v)
such that p is contained in the shape represented by v. Finally, a max-tree is
built on the depth map, ensuring that the components of set of upper connected
components C≥ are valid shapes by applying the hole-filling operator. This
max-tree is thus called hole-filled max-tree and its construction on the depth map
m results in the MToS.

Finally, the simplification of the MToS by minimizing the Mumford-Shah
functional is demonstrated in [38], and illustrated in Figure 7.6, where an image
is simplified using two different Mumford-Shah parameters.

120Chapter 7. noise level estimation using hierarchical representations

(a) Random (b) Horizontal (c) Vertical (d) Diagonal 1 (e) Diagonal 2

Figure 7.7: Division schemes for two sequences x and y

7.3.4 Multivariate NLF estimation

The complete lattice learning and the MToS are two tools that allow to extend the
NLF estimation to color images. However, the NLF formulated in Equation 7.1
is valid only for grayscale images and thus requires to be adapted. In this
document, the Gaussian, Poisson, and multiplicative noise are still the three
main statistical natures of the noise, and the correlation between the channels
is not taken into account. This leads to a simple extension of the NLF, called
the Multivariate Noise Level Function (MNLF), defined for a multivariate image
with n channels by:

MNLF(a,b,c)(x) =

a1x

2
1 + b1x1 + c1

a2x
2
2 + b2x2 + c2
· · ·

anx
2
n + bnxn + cn

 (7.12)

with a,b, c ∈ Rn, ai, bi and ci being respectively the ith element of a, b and c,
and x ∈ V being a pixel value of the image whose ith element is xi. Thus, the
objective of the extension to color images is to estimate this MNLF.

The MNLF estimation is quite similar to the NLF estimation: it still has
its three main parts (segmentation, detection of homogeneous regions, and
estimation). However, the main differences are the tools used to perform these
steps. First, the segmentation step is almost the same as for the grayscale
parameters estimation: the image is blurred using a Gaussian filter to reduce the
number of level lines in the image, and the MToS is built on this filtered image.
This tree is simplified several times with different values for the parameter λ of
the Mumford-Shah functional, resulting in different segmentations of the image.

The homogeneous region detection step is the part of the estimation that
changes the most. First, instead of using the values of the original image for the
computation of the Kendall’s τ correlation coefficient and its associated p-value,
the rank map, obtained from the application of the rank transform on the image
using the h-ordering whose projection h is the result of the complete lattice

7.4. extension to the whole hierarchy 121

{τk}4k=1 min
k

pk
H1

≶
H0

α (µ̂i, σ̂
2
i)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.01

0.02

Intensity x

V
ar
ia
n
ce

σ
2

Non homogeneous

Homogeneous

Figure 7.8: Summary of the multivariate estimation

λ0

λ1

λ2

λ3

λ4

Figure 7.9: Homogeneous nodes detection

learning, is used instead. Since the Kendall’s τ relies on the ranks instead of
the values of the pixels, this representation is well-fitted for its computation
and allows a fast correspondence between the points of the regions obtained
from the segmentation and the associated rank. The second difference is the
division of a given region into two sequences of rank values. In [63], a random
division is performed. However, using an adjacency-based division, as it is
performed by Sutour et al. [204], increases the efficiency of the estimation. These
different division schemes are illustrated in Figure 7.7. Figure 7.7a shows the
division used for the grayscale estimation, and Figures 7.7b to 7.7e display the
divisions used for the multivariate estimation. Thus, instead of using the second
smallest p-value for the detection of the region, the smallest p-value is compared
to detection level αd, and if it is greater, the region is considered homogeneous.

Finally, the estimation process is the same as for the grayscale estimation but
performs the estimation channelwise, each NLF obtained resulting in the MNLF.
The multivariate estimation pipeline is summarized in Figure 7.8.

122Chapter 7. noise level estimation using hierarchical representations

7.4 Extension to the whole hierarchy

The minimization process to obtain a partition from the tree of shapes
simplification used in the previous section has several disadvantages. First,
only a subset of regions are tested for the homogeneous region detection:
some regions may be homogeneous and provide new statistical sample for the
estimation but are not tested since they do not belong to the segmentation.
Then, the same region may appear in two segmentations and be detected as
homogeneous, leading to the same statistical sample appearing twice for the
minimization of Equation 7.6. If this region is a false positive, meaning that it is
detected as homogeneous whereas it is not, this increases the number of outliers
and affects the precision of the estimation. The issue of recurrent regions could
be solved by computing the similarity of the detected regions using for example
the Dice score to perform an unification of the tested regions, but such a process
would have a significant impact on the speed of the estimation.

These issues are solved by using all the nodes of the hierarchy whose size
is greater in terms of area than a given threshold. In practice, the hierarchy is
first filtered. Thus, as each node of the filtered hierarchy represents a region, the
statistical test is applied to all of them as for the regions from the segmentation
and the resulting homogeneous regions are qualified by the term homogeneous
nodes due to their relation with the tree. This is illustrated in Figure 7.9. In this
figure, the homogeneous nodes are displayed in green and non-homogeneous
nodes are in red, with their relation with their respective partition for two
horizontal cuts. This demonstrates the resolution of the two previously cited
issues: as the nodes are used instead of the regions from each segmentation,
they are tested only once. Furthermore, all the regions are tested. Thus, the
detection of homogeneous regions is performed by a simple tree traversal.

7.5 Comparative results

In this section, the different approaches presented in this chapter are evaluated.

7.5.1 Experimental set-up

To compare the different estimation processes, the whole image database of
Laurent Condat [42] is used. This database is composed of 150 natural images
whose dimension is either 720 × 540 or 540 × 720. In those high-definition
images, the acquisition noise can be neglected, and thus this dataset is ideal
for experimentation on noise estimation tasks. These images are corrupted by

7.5. comparative results 123

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Adjacency-based division MRE

R
a
n
d
o
m

d
iv
is
io
n
M
R
E

0 0.2 0.4 0.6
0

0.2

0.4

0.6

Adjacency-based division MRE

R
an

d
om

d
iv
is
io
n
M
R
E

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Adjacency-based division MRE

R
a
n
d
om

d
iv
is
io
n
M
R
E

Figure 7.10: Comparison between random division and the adjacent division

a mixed noise with a given MNLF whose coefficient elements in (a,b, c) are
randomly picked from a standard normal law N (0.01, 0.003).

Following what has been done in [63] and [204], the different MNLF are
compared channelwise using the mean relative error (MRE) measure between
two NLF. Let NLF(ai,bi,ci) be a reference NLF and NLF ̂(ai,bi,ci)

be the NLF resulting
from a noise level estimation. The MRE is defined by:

MRE(̂(ai, bi, ci)) =
1

|Vi|
∑
v∈Vi

|NLF(ai,bi,ci)(v)−NLF ̂(ai,bi,ci)
(v)|

NLF(ai,bi,ci)(v)
(7.13)

with Vi the set of unique value of the ith channel. From this mathematical
definition, the lower the MRE, the more efficient the estimation.

The different estimations are parameterized as follows. First, the level of
detection αd is set to 0.4 and the minimum size for a region to be tested is 250.
For the region-based estimation, the Mumford-Shah parameter λ is set to 200,
500 and 700, leading to three segmentations for the estimation.

For the different evaluations, the evaluation protocol consists in adding noise
to an image, running the different estimations on the noisy image, and then
computing the MRE. This process is performed 20 times and the mean MRE
is computed. For the visualization of the results, three plots are displayed by
comparison, one for each channel, and the two axes correspond to the mean
MRE for an estimation. Thus, for each image, a point is drawn on the plot. A
line is drawn following the identity function, and a point above the line means
the estimation related to the x-axis MRE is more efficient than the estimation
related to the y-axis MRE.

7.5.2 Region division schemes comparison

Figure 7.10 displays the comparison of the random division scheme used in [63]
with the usage of an adjacent division scheme such as the one used for square

124Chapter 7. noise level estimation using hierarchical representations

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Shape-based estimation MRE

B
lo
ck
-b
as
ed

es
ti
m
at
io
n
M
R
E

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Shape-based estimation MRE

B
lo
ck
-b
as
ed

es
ti
m
at
io
n
M
R
E

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Shape-based estimation MRE

B
lo
ck
-b
as
ed

es
ti
m
at
io
n
M
R
E

Figure 7.11: Comparison between shape-based and block-based estimations

patches in [204] but adapted to the irregular morphology of the regions. A
large majority of the estimation for the adjacency-based division has a lower
MRE than the usage of a random division. Thus, the adjacency-based division is
more efficient in the red, green, and blue channels for respectively 146, 149, and
147 images out of the 150 images of the database. This experiment validates the
usage of an adjacency-based division instead of a random division.

7.5.3 Precision of content adaptation

To evaluate the precision of the extension of the grayscale estimation to color
images, to be concordant with the experiments run in [63] and [204], the
block-based and the region-based estimation are compared. To this aim, the
block-based estimation is extended to color images, but instead of using the
rank map to order the color, the statistical test is achieved channelwise, and the
p-value is compared to a detection level lowered to αd/3. The usage of such
statistical tests comes from the fact that it is more efficient than the usage of
the rank map for block-based color estimation, which is not the case for the
region-based estimation. Furthermore, the image is divided into square blocks
whose initial side size is set to 16. This size is iteratively decreased by 2 until a
repartition criterion on the valuespace of the image is respected or if a minimum
side size, set to 4, is reached.

The results of the comparison are displayed in Figure 7.11. These plots show
that the extension of the estimation to color images yields better results in terms
of precision for the region-based estimation than the block-based one. In fact,
for the red, green, and blue channels, the amount of images with better results
using the region-based estimation is respectively 147, 137, and 139 images. The
results obtained in [63] for grayscale images are thus validated for color images.

To analyze the results obtained previously, block-based and region-based
estimations are performed on the same noisy image and displayed in Figure 7.12.

7.5. comparative results 125

(a) Square patches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Mean µ

V
ar
ia
n
ce

σ
2

(b) Square patches MNLF

(c) Regions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.01

0.015

0.02

0.025

0.03

0.035

Mean µ

V
ar
ia
n
ce

σ
2

(d) Regions MNLF

Figure 7.12: Visual comparison of the patch selection

Figures 7.12a and 7.12c show respectively the homogeneous blocks and regions
from the estimations, and Figures 7.12b and 7.12d show their respective resulting
MNLF. In Figures 7.12b and 7.12d, dashed plots represent the known MNLF
of the image, and plain ones show the estimated MNLF. From those figures,
many blocks are detected as homogeneous in areas of the image where no
homogeneous regions are detected. Furthermore, there is a larger amount of
homogeneous blocks, conversely to homogeneous regions. However, several
homogeneous blocks result in several outliers for the pairs (µ̂, σ̂2). Thus, the
block-based estimation results in a large number of homogeneous blocks, but
the region-based estimation has qualitative homogeneous regions, leading to a
better MRE despite its amount.

7.5.4 Comparison with the whole hierarchy

In this part, the extension of the estimation to the whole hierarchical structure
of the tree is investigated. To this aim, two hierarchical representations are used:
the MToS, which is used for the extension of the grayscale estimation, and the
ω-tree, which belongs to the partitioning hierarchies and has shown robustness
to the noise when used for attribute profiles construction [113]. As a constrained
criterion ω for the construction of the tree, the length of the bounding box

126Chapter 7. noise level estimation using hierarchical representations

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Shape-based estimation MRE

M
T
oS

-b
as
ed

es
ti
m
at
io
n
M
R
E

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Shape-based estimation MRE

M
T
oS

-b
as
ed

es
ti
m
at
io
n
M
R
E

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Shape-based estimation MRE

M
T
oS

-b
as
ed

es
ti
m
at
io
n
M
R
E

Figure 7.13: Comparison between shape-based and MToS-based estimation MRE

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Shape-based estimation MRE

ω
-t
re
e-
b
as
ed

es
ti
m
at
io
n
M
R
E

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Shape-based estimation MRE

ω
-t
re
e-
b
as
ed

es
ti
m
at
io
n
M
R
E

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Shape-based estimation MRE

ω
-t
re
e-
b
as
ed

es
ti
m
at
io
n
M
R
E

Figure 7.14: Comparison between shape-based and ω-tree-based estimation MRE

diagonal from the three-dimensional space of the color values distribution of
a region is used.

The resulting MRE for the estimation using the MToS and the ω-tree are
displayed respectively in Figures 7.13 and 7.14. In the first case, the usage of
a subset of shapes using the simplified tree outperforms the results when the
whole MToS is used. Thus, even though all the regions from the MToS are
tested to detect homogeneous regions, the precision of the estimation is greatly
impacted compared to the usage of a subset obtained from the minimization of
the Mumford-Shah functional. In the second case, a different hierarchy is used as
it belongs to partitioning hierarchies. This hierarchy, based on a global constraint
in addition to the usage of a local dissimilarity, results in no improvement when
used for the estimation of the MNLF. In fact, the shapes-based estimation is
better than the ω-tree-based estimation for the red, green, and blue channels for
respectively 78, 73, and 77 images.

7.6 Conclusion

To conclude this chapter, the noise level estimation using the tree of shapes
was first extended to multivariate images, improving the genericity of the

7.6. conclusion 127

method in [63] on the values of an image. In terms of noise level estimation,
the results demonstrated by the region-based method validated the previous
results for grayscale images compared to the block-based estimation. However,
this method does not handle the inter-channel correlation that usually results
from the demosaicking when this one is performed before the denoising in the
image acquisition pipeline [98]. Taking into account such parameters would
not modify a lot the estimation pipeline since the segmentation is performed
using the MToS, which is one representation of the whole multivariate image.
Furthermore, the multivariate values for the statistical test are transformed into a
single value by means of the complete lattice learning. This work would require
a new MNLF and adapting the estimation pipeline. Future works include the
modelization of a noise level function taking into account such a correlation and
thus an adaptation to the current estimation to be able to estimate this parameter.

In the second part of the contribution presented in this chapter, the estimation
was extended to the whole hierarchy and not only a subset of its regions.
However, this does not improves the results, and leads to a new issue: what
is the behavior of a hierarchical representation when built on a noisy image?
This question is investigated in the next chapter.

128Chapter 7. noise level estimation using hierarchical representations

Chapter 8
Impact of the Noise on Hierarchical
Representations

In the previous chapter, hierarchical representations of images were
investigated in order to estimate the noise level function of an image.
They were used to get a set of regions on which a statistical test was
applied to obtain homogeneous regions, whose texture information is
negligible enough to only have noise. However, using all the regions of
the hierarchy did not improve the result of the estimation compared to
the usage of a subset of regions, which raised an interrogation about the
impact of the noise in an image on its hierarchical representation. Thus,
in this chapter, such an impact is examined. More specifically, the
structure variation of the hierarchical representation is studied related
to different noise levels. This study is then extended to the case where
the hierarchy is constrained by an energy, and it is shown that the
choice of the energy influences the variation of the structure in the
presence of noise.

8.1 Motivations

In the previous chapter, hierarchical representations were used to provide a set
of regions to be tested in order to obtain image segments only containing noise.
However, the results were similar in terms of precision to the method only using
a subset of regions from the hierarchy. This led to the questioning about the
impact of the noise in an image when such a hierarchical representation is built
from this noisy image. This chapter focuses on the α-tree [157] due to its relation
with several hierarchical representations [49]. In Figure 8.1, an α-tree is built

129

130 Chapter 8. impact of the noise on hierarchical representations

(a) An image (b) Noisy image (σ = 5) (c) Noisy image (σ = 50)

(d) (10)-partition of (a) (e) 10-partition of (b) (f) 10-partition of (c)

Figure 8.1: Different horizontal cuts from an α-tree built from noisy images

from the images in Figures 8.1a, 8.1b, and 8.1c and their (α = 10)-partition is
displayed respectively in Figures 8.1d, 8.1e, and 8.1f. The last two images are
corrupted with an additive Gaussian noise with a low noise level (σ = 5) and a
high noise level (σ = 50). By comparing the different partitions at the same level
α, we can observe that the noise has an impact on the α-tree: the partition from
the tree built on the clean image has 62305 regions while this amount increases
with the noise level (74473 for σ = 5 and 290803 for σ = 50). Furthermore, the
content is still retrievable when the noise parameter is small, but the partition
obtained from the tree built on a highly noisy image is entirely corrupted by the
noise.

Partitioning hierarchies have been evaluated in the context of segmentation
many times. To this aim, different measures [170], either based on regions or
on boundaries, were used to compare one or several partitions of the hierarchies
with a ground-truth segmentation. In [6], a binary partition tree built from
different contour detector outputs is evaluated by such measures on regions and
boundaries by combining the results of these measures on different partitions
of the hierarchy. In [171, 172], authors propose an algorithm that selects the
best partition from a partitioning hierarchy according to a given measure and a
ground truth. Thus, the resulting partition is the best segmentation according
to the measure the hierarchy can provide. In [163], the authors extend the
previous evaluation procedures for hierarchical segmentation and apply them to
hierarchical watersheds. This methodology also serves to evaluate combinations

8.2. structural study of the impact of the noise in the α-tree 131

of hierarchical watersheds [186]. However, among all these evaluation methods
and experiments, the case where a noisy image is used as an input is not taken
into account.

The impact of the noise in hierarchical representations has been little
investigated. In the context of the tree of shapes [26], the stability of the
tree of shapes is observed on a toy image by means of different measures
on the tree. These measures are either geometrical, topological, or spectral.
In [113], a comparison of the impact of the noise is performed for attribute
profile construction on inclusion and partitioning hierarchies, and it resulted in
greater performance for the ω-tree than the others in terms of noise robustness.
However, this work is limited to attribute profiles, while the objective of this
chapter is to evaluate the impact of the noise on the whole hierarchy.

Thus, in this chapter, the impact of the noise in an image on the α-tree built
on this image is studied. More specifically, we look for a relationship between
the noise level and an attribute measured on the tree. To this aim, we observe the
variation of two measures computed on the tree structure: the distribution of the
depth attribute for each node of the tree, and the amount of non-persistent nodes
when the tree is constrained to an energy. Furthermore, in order to provide a
consistent evaluation, natural images with various textures in their content and
a constant image, which contains only noise when corrupted, are compared. We
then use the knowledge acquired in the structural study of the tree to design a
dissimilarity measure between two trees based on the geometry of their regions
to measure the impact of the noise by comparing two hierarchies built on a clean
and a noisy image.

8.2 Structural study of the impact of the noise in the
α-tree

8.2.1 Study set-up

Let f : Ω → V ⊆ J0..255K be a grayscale image whose values are encoded as
unsigned values on 8 bits. A special case of this image is the constant image
fc with c ∈ J0..255K such that ∀p ∈ Ω, fc(p) = c. For those images, their noisy
versions are denoted by fσ and fc,σ for respectively a noisy image and a noisy
constant image, which means an image that only contains noise. Noisy images
are defined by fσ = f + nσ with nσ a sample of values drawn from a normal law
N (0, σ2) and defined on the domain Ω. When artificially corrupted, the values of
fσ not belonging to V are clipped to the nearest value between 0 and 255. Finally,
the α-tree Tα is built on such noisy images using an L1 dissimilarity between the

132 Chapter 8. impact of the noise on hierarchical representations

α0

α1

α2

α3 0

1 1

2 2

3 3 2 1 2 3 3 3

Figure 8.2: Illustration of the depth PTα on a tree Tα

pixels with the 4-adjacency relationship.
To study the structure of the tree, the depth of every node is used, and their

distribution is observed. This attribute is the number of nodes on the path from
the current node to the root, the latter being excluded from the count. The depth
PTα(n) for a node n representing a region Rα ∈ Tα is defined by

PTα(n) =

{
0 if n = root(Tα)
PTα(parent(n)) + 1 else

(8.1)

The depth attribute is illustrated in Figure 8.2. The numbers in blue correspond
to the depth values of each node of the α-tree Tα. This attribute relies entirely
on the structure of the tree and not on its regional properties.

This attribute is studied by means of several histograms
h(d) = |{n ∈ Tα|PTα(n) = d}|. When computed on a tree built from a noisy
image fσ (respectively a noisy constant image fc,σ), these histograms are
denoted by hσ (respectively hc,σ). The average depth µ(h) and the mode of the
distribution m(h) are computed from these histograms such that

µ(h) =
1

|h|
∑

d∈PTα

d× h(d) (8.2)

and

m(h) = argmax
d∈h

h(d) (8.3)

with |h| the total number of element in h. These statistics on the histograms
are used in the following to analyze the distribution and investigate a potential
relationship between the noise level σ and the structure of the tree.

8.2. structural study of the impact of the noise in the α-tree 133

0 25 50 75 100 125 150 175 200
Depth

0

5000

10000

15000

20000

25000

30000

35000

Am
ou

nt
 o

f n
od

es

20

40

60

80

100

120

140

St
an

da
rd

 d
ev

ia
tio

n

Figure 8.3: Depth histograms hc,σ obtained from the α-trees built on fc,σ.

8.2.2 Impact of the noise on the tree structure

To study the impact of the noise corrupting the image on which Tα is built, the
noisy constant image fc,σ is used. In practice, the value c is set to 127, which
is the median value of its value space. This image has one advantage: as it is
constant, no texture is merged with the noise, and thus the α-tree is built on a
pure noise realization. This process enables the comparison of noise impact on
diverse natural images, each with varying content.

First of all, the impact of the noise in the constant image from which the
α-tree is built is observed. To this aim, several fc,σ are used, with a noise level
σ varying from 1 to 150. The histograms of the depth obtained from the trees
built on these images are computed and displayed in 8.3. By observing the
histograms, a common behavior is observed: the depth distribution tends to
become a tailed distribution when σ increases. The tail is composed of nodes
with a low depth, which are small components, usually of size 1, which have an
intensity significantly different from their surrounding pixel values. Secondly,
the mode of the distributions increases while the noise level increases, until
a given high noise level, after which it then decreases. This comes from the
clipping of the values during the corruption process of the image, in which
new flat zones appear due to the saturation. Furthermore, the variance of the
histograms increases while the noise level increases. It may be concluded from
these observations that there indeed exists a strong relationship between the
noise level σ and the structure of the tree, and particularly the distribution of
the depth obtained from the tree nodes, but until a certain level in which case
the image becomes largely saturated.

134 Chapter 8. impact of the noise on hierarchical representations

(a) Low brightness image

0 50 100 150 200 250
Depth

0

5000

10000

15000

20000

25000

Am
ou

nt
 o

f n
od

es

20

40

60

80

100

120

140

St
an

da
rd

 d
ev

ia
tio

n

(b) Depth histogram of (a)

(c) Textured image

0 50 100 150 200 250
Depth

0

5000

10000

15000

20000

Am
ou

nt
 o

f n
od

es

20

40

60

80

100

120

140

St
an

da
rd

 d
ev

ia
tio

n

(d) Depth histogram of (c)

Figure 8.4: Depth histograms hσ obtained from α-trees computed on noisy
natural images fσ

From the previous conclusion, the impact of the noise is evaluated on trees
built from natural images fσ corrupted by Gaussian noise. Depth distributions
of the α-tree built on two natural images from the Laurent Condat image
database [42] are displayed in Figure 8.4. These two images are chosen due
to their particular characteristics such as a low brightness (Figure 8.4a) or a high
texture (Figure 8.4c). Their depth distributions are respectively displayed in
Figures 8.4b and 8.4d.

From these distributions hσ, it is observed that they have a similar behavior
as hc,σ: their mode increases up to some noise level, and then decreases slowly.
Moreover, the variance of each distribution increases proportionally with the
noise level, similar to the case of the noisy constant image. However, there
are some differences between the distributions hc,σ and hσ: at low noise levels
(σ ≤ 20), the modes of the distributions hσ are closer to each other than the
modes of the distributions hc,σ: this is due to the fact that the natural images
are textured, and thus impact the α-tree structure, unlike constant images which
only have one region covering the single partition of the hierarchy when there
is no noise. Furthermore, there are differences between the distributions from
the two natural images: the variance is larger for the low-brightness image than

8.2. structural study of the impact of the noise in the α-tree 135

20 40 60 80 100 120 140

0

50

100

150

200

Standard deviation σ

M
ea

n
M

M(σ) for fσ
M(σ) for fc,σ

Figure 8.5: Comparison between the evolution of the average mean M(σ) from
α-trees built on all the 150 natural images and the constant image

for the textured image, and the mode of the distributions in Figure 8.4b has a
greater interval than for the textured image. Thus, even if the distributions hσ

are similar to the distributions hc,σ, they differ according to the content of the
image they are built upon.

Finally, these observations of the distributions are extended to the whole 150

images. To this aim, each image of the database is corrupted several times,
and for each fσ, a depth distribution is computed. The average mean of the
distributionM(σ) at a given noise level σ is calculated such that

M(σ) =
1

N

N∑
i=1

µ(hi) (8.4)

with N the number of times each image is corrupted and hi the distribution
computed for the ith noisy image. For the evolution of M(σ) displayed
in Figure 8.5, N is fixed to 20 in order to have enough samples to give robust
results. In addition to using all the natural images, M(σ) is also computed
for the constant noisy images fc,σ to provide a comparison between the depth
distribution computed from natural images and pure noise.

The averageM(σ) is lower for fc,σ at low noise levels, and this is almost true
for all the levels σ. Furthermore, it is observed that, at low noise levels, the
average mean depth is higher but their distribution over the 150 images of the
database is also wide, the majority ranging from 50 to 100. This comes from

136 Chapter 8. impact of the noise on hierarchical representations

the fact that the content of the image is still prevailing over the noise for the
construction of the tree. However, while the noise level increases, the average
mean plots become narrower. Meanwhile, the average means increase up to a
certain noise level, which varies depending on the image, after which they all
start to decrease. This may come from the clipping of the values at high noise
levels, as it has been observed previously. Finally, it can be concluded from these
plots that the noise in an image impacts the structure of the tree starting from
a given noise level (ranging between 20 and 50 for all the images): M(σ) has a
similar evolution for fσ and fc,σ, meaning that the noise takes precedence over
the image content.

8.2.3 Extension to the context of persistent hierarchies

In this part, the previous study is extended to persistent hierarchies. More
precisely, the amount of non-persistent nodes according to a given energy is
studied. Thus, we first start by recalling the notion of persistent hierarchy
according to an energy.

Persistent hierarchy

As explained in Chapter 4, each node n of a partitioning hierarchy is associated
with a given index. This index is the value related to the lowest partition P
to which a region R represented by n in the tree belongs, and this index is
named the scale of appearance. In the case of the α-tree, the value associated with
each node is the value α of its component. In a similar manner, each node is
associated with a scale of disappearance, which is the lowest value associated
with the partition to which R does not belong anymore. Thus, the set of values
for a region to belong to a partition of the hierarchy is continuous and it defines
the interval of persistence, denoted by [λ+(R), λ−(R)[for a region R with λ+(R)
the scale of appearance and λ−(R) the scale of disappearance. The root node of
the tree, representing the region covering the whole domain Ω of the image is a
special case where λ−(Ω) = +∞.

Several image processing tasks such as segmentation rely on an
energy minimization procedure, and these work efficiently with hierarchical
representations of images. An application using the Mumford-Shah functional
on the tree of shapes, an inclusion hierarchy, is demonstrated in Chapter 7 for
segmentation purposes. On partitioning hierarchies, Guigues et al. [83] propose
to use such energy to obtain optimal cuts C∗ according to this energy. They a

8.2. structural study of the impact of the noise in the α-tree 137

0

1

2

3

12 11 10 9 8 7 6 5 4

3 2

1

0

[0− λ1[[0− λ1[[0− λ3[[0− λ3[[0− λ3[[0− λ3[[0− λ2[[0− λ2[[0− λ2[

[λ1 − λ3[[λ2 − λ3[

[λ4 − λ3[

[λ3 −∞[

(a) Persistence interval on a tree

0

λ1

λ2

λ3

12 11 10 9 8 7 6 5 4

3

2

0

(b) Persistence hierarchy of (a)

Figure 8.6: Tree to persistent hierarchy process

separable energy of the form:

Eλ(C
∗) =

∑
Ri∈C∗

D(Ri) + λ
∑

Ri∈C∗

C(Ri) (8.5)

with D(Ri) a data-fidelity term to Ri, C(Ri) a regularization term and λ
a parameter of this energy. Such energies include the piecewise-constant
Mumford-Shah functional [142] used in the previous chapter. When the
parameter λ varies from low values to high values, the optimal cut C∗ evolves
from partitions with fine regions to partitions with coarse regions. Thus, this
parameter acts as a scale parameter. By the means of a functional dynamic
problem [83], the scale of appearance λ+(R∗) and the scale of disappearance
λ−(R∗) for all regions R∗ in all the optimal cuts C∗

λ of a hierarchy constrained
by a separable energy Eλ can be computed. Some regions R of the hierarchy do
not belong to any optimal cut C∗

λ, with thus λ+(R) > λ−(R). These regions are
said to be non-persistent and are removed from the hierarchy. Finally, the filtered
hierarchy whose regions are related to the scale of appearance according to Eλ is
named the persistent hierarchy according to Eλ and is the hierarchy of optimal
cut according to Eλ.

An example of the computation of a persistent hierarchy is displayed in
Figure 8.6. In Figure 8.6a, the persistence interval according to some given
separable energy is computed. The scale values are ordered such that 0 <
λ1 < λ2 < λ3 < λ4 < +∞. Thus, the node 1 is non-persistent due to the
fact that λ+(R1) > λ−(R1). It is removed from the hierarchy when the latter is
transformed into a persistent hierarchy in Figure 8.6b.

Evolution of the amount of non-persistent nodes

To observe the impact of the noise on the amount of non-persistent nodes, two
energies are considered. These energies use two major informations about a

138 Chapter 8. impact of the noise on hierarchical representations

Figure 8.7: Representation of a region R with its contour

region R: its pixel values, and its contours information. This is illustrated in
Figure 8.7, in which a region R is displayed by taking into account the inter-pixel
space. It has to be noted that this illustration is valid in the context of this chapter
as the α-trees are built using a 4-adjacency relationship. In this illustration,
the pixels of the region are displayed as blue squares and their contour as red
rectangle. The values of the region are denoted by f as they from the image
pixel values, and the values of the contours are denoted by ∂f . In this chapter,
the value associated to ∂f is the L1 distance between two adjacent pixels.

The first energy that we consider is the piecewise-constant Mumford-Shah
functional [142], defined on each region Rα of the tree Tα by

Ems,λ(Rα) =
∑
p∈Rα

∥f(p)− f̃∥22 + λ|∂Rα| (8.6)

with f̃ the mean value of the region Rα, λ the parameter of the functional and
∂Rα the contours of the region Rα. For the second functional, we propose
to adapt the Mumford-Shah functional such that it takes into account the
dissimilarity on the contours of a region. This new functional is defined by

Ecs,λ(Rα) =
∑
p∈Rα

∥f(p)− f̃∥22 + λ
∑

p∈∂Rα

∂f(p) (8.7)

with ∂f the set of gradient values of two adjacent pixels of the image forming
the contours of the regions of the α-tree. This change of regularization term is
proposed because a region with a small variance and a high gradient along its
contours is most likely to be constrasted relatively to its adjacent regions, and

8.2. structural study of the impact of the noise in the α-tree 139

20 40 60 80 100 120 140

10

20

30

40

50

60

70

80

Standard-deviation σ

%
o
f
n
o
n
-p
er
si
st
en
t
n
o
d
es

Percentage of non-persistent nodes with Ems,λ

Percentage of non-persistent nodes with Ecs,λ

Figure 8.8: Comparison of the percentage of non-persistent nodes in the image
displayed on Figure 8.4c

therefore prone to be less affected by the noise in the image on which the α-tree
is built.

Figure 8.8 provides a comparison of the impact of these two functionals on an
α-tree built on a noisy version of the image displayed in Figure 8.4c according to
different noise levels. These two plots display the percentage of non-persistent
nodes in the α-tree such that they are removed when the persistent hierarchy
is computed according to a given energy. They have a similar behavior: the
percentage of non-persistent nodes increases with the noise level σ. Additionally,
this amount is greater when Ecs,λ is used as an energy criterion than Ems,λ, and
this difference is twice larger for Ecs,λ at high noise levels.

This comparison is then extended to all 150 images from the Laurent Condat
dataset in a similar manner to the previous part, but instead of using the average
mean, the average percentage of non-persistent nodes is computed. The results
are displayed in Figure 8.9. In this figure, the two energies Ems,λ and Ecs,λ are
used respectively in Figures 8.9a and 8.9b. All individual images are plotted in
dashed lines, and their average is the blue line. Furthermore, the evolution in the
case of a pure noise image is also observed (red plot). For the two energies, the
percentage of non-persistent nodes is increasing similarly for the natural images.
Furthermore, this percentage is evolving similarly for the pure noise, except in
the case σ = 1 for Ecs,λ, in which more than 80% of the nodes are removed while
it is close to 0% for Ems,λ. However, the amount of removed nodes is not the
same for the two plots: at high noise levels, the average percentage is around

140 Chapter 8. impact of the noise on hierarchical representations

20 40 60 80 100 120 140

10

20

30

40

Standard deviation σ

%
of

no
n

pe
rs

ist
en

t
no

de
s

Percentage on fσ
Percentage on fc,σ
Average percentage

(a) Percentage of non-persistent nodes for
Ems,λ

20 40 60 80 100 120 140

20

40

60

80

Standard deviation σ

%
of

no
n

pe
rs

ist
en

t
no

de
s

Percentage on fσ
Percentage on fc,σ
Average percentage

(b) Percentage of non-persistent nodes for
Ecs,λ

Figure 8.9: Evolution of the percentage of non-persistent nodes under Ems,λ and
Ecs,λ related to the noise level σ

30% for Ems,λ while it is almost 60% for Ecs,λ. Finally, this average percentage is
closer to the one of non-persistent nodes from the tree built on fc,σ when Ecs,λ

constrains the hierarchy compared with the usage of Ems,λ. These observations
suggest that using Ecs,λ in the presence of noise is more relevant than using
Ems,λ: a large amount of regions that are not robust to the noise according to the
definition of the proposed functional is removed from the persistent hierarchy
such that only robust regions are kept.

8.3 Applicability of the study

In the previous section, a structural study of the noise was performed and it
resulted in some information such as the fact that the choice of the functional
is important in terms of non-persistent nodes. In this section, the knowledge
acquired previously is used to design a pipeline to compute a dissimilarity
measure between two trees from their geometry. This measure is then used
to look for a relation between the noise level of an image and the dissimilarity
between a tree built on a clean image and a tree built on a noisy image. It has to
be noted that this section describes the preliminary results of a work in progress.

8.3.1 Tree dissimilarity

Designing a measure of dissimilarity between two hierarchical representations
is challenging as several parameters may be taken into account. First, the
structure of the trees differs depending on the image content they originate.

8.3. applicability of the study 141

T1

0

1

2

3 4

T2

0

1

2

3 54

Figure 8.10: Pairing nodes of the tree with invalid pairing

The previous section takes into account this structure to study the evolution of
a tree related to the noise level. Another property of the tree is the geometrical
information provided by each node as they represent a region from a partition
of the hierarchy in the context of partitioning hierarchies.

Several measures exist to evaluate the quality of object detection or image
segmentation tasks [170]. Among them, the Jaccard index, which is a similarity
measure for two regions R1 and R2 from two segmentations, is defined by

J(R1, R2) =
|R1 ∩R2|
|R1 ∪R2|

(8.8)

and its formulation as a distance is defined by

dJ(R1, R2) = 1− J(R1, R2) (8.9)

Such a distance may be used to compute the pairwise dissimilarity between each
region of two trees T1 and T2 that results in a matrix D such that:

(D)i,j = dJ(R
i
1, R

j
2) (8.10)

for two regions Ri
1 and Rj

2 respectively represented by nodes in the trees T1 and
T2. The pairing of a region related to a node of the tree T1 to a region related to
a node of the tree T2 may be performed by selecting the lowest distance for each
line of the dissimilarity matrix. This is illustrated in Figure 8.10 where the nodes
from T1 are paired with nodes from T2. To compute a dissimilarity between two
trees, this pairing may be unique such that the relation between a region R1 ∈ T1
and a region R2 ∈ T2 is bijective. Thus, the dissimilarity measure is not biased by
the pairing of two regions from Ri

1, R
j
1 ∈ T1 with the same regions R2 ∈ T2 such

142 Chapter 8. impact of the noise on hierarchical representations

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

α-tree 2

α
-t
re
e
1

(a) Dissimilarity matrix

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

α-tree 2

α
-t
re
e
1

(b) LSAP

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

α-tree 2

α
-t
re
e
1

(c) Filtering

Figure 8.11: Pairing selection methodology

that the difference |Ri
1| − |R2

1| is too small to be significant. This is illustrated
by the red dashed link in Figure 8.10. Such a case may include the merging of
a region with a unique pixel in the context of the study of the noise impact in
partitioning hierarchies.

To avoid the case where several nodes from T1 are paired with the same node
in T2, a linear sum assigment problem (LSAP) is used. It is formulated by:

min
i,j

∑
i

∑
j

(D)i,j (8.11)

such that i and j are the indices of respectively a region of T1 and T2, and
their relation in the pairing is bijective. This problem is solved by the usage
of the Hungarian algorithm [114]. This is illustrated in Figure 8.11 where the
dissimilarity matrix from Figure 8.11a, whose values go from yellow ((D)i,j = 0)
to purple ((D)i,j = 1), is given as input to the Hungarian algorithm such that the
red square in Figure 8.11b are the selected dissimilarity measures for the bijective
pair of nodes from two trees. Finally, it may be observed in Figure 8.11b that
some nodes are paired with a dissimilarity of 1, meaning that |Ri

1 ∩ Rj
2| = 0. To

avoid that these pairs add a bias to the dissimilarity measure, these are filtered
out from the set of pairs, resulting in the paired values in the dissimilarity matrix
in Figure 8.11c.

From the set of pairs obtained by the pairing process, a dissimilarity value
can be computed. There exist several means to combine the Jaccard distances
into one value. First of all, the sum of the dissimilarity values from all the pairs
results in a measure where the number of pairs is not taken into account. On
the other hand, to compute the dissimilarity D(T1, T2) between two trees, the
empirical mean is used instead. It has to be noted that the root node of a tree is
never taken into account in the computation of the mean since the root node of
T1 is always paired with the root node of T2, whatever the content of the image
due to the fact that it represents a region covering the image domain Ω.

8.3. applicability of the study 143

(a) An image

10 20 30 40 50 60 70

0.4

0.5

0.6

0.7

Noise Level σ

D
is
si
m
il
a
ri
ty

D
(T

c
,T

n
)

(b) Relationship between the noise level
and our dissimilarity D(Tc, Tn)

Figure 8.12: Impact of the noise on the geometrical information of the tree

In terms of computationability, the cost of performing such a process is
expensive. Furthermore, if the input tree is binary, it has been proven that such
a process is computationally unfeasible [172]. To this aim, two pre-processing
steps are performed: first, the input tree is filtered with an area criterion [165]
whose threshold is usually set to 200. Thus, only significant regions for many
image processing applications are kept. Then, from the knowledge acquired in
the previous section, the non-persistent nodes from the tree according to the
energy Ecs,λ are removed, allowing to only keep the nodes that are robust to the
noise. The computation of D(T1, T2) is performed on this filtered tree.

8.3.2 Observation and preliminary results

In this section, the process computing D(T1, T2) is evaluated. In order to compute
this measure, the image on Figure 8.12a is corrupted by a Gaussian noise whose
standard deviation σ goes from 0 to 80. Two α-trees, denoted by Tc and Tn,
are respectively built on the clean and noisy versions of the image. Then, the
distance D(Tc, Tn) is computed on these two trees. Figure 8.12b displays the
value D(Tc, Tn) according to the noise level σ of the noisy image. The plot may
be divided two parts: first, the value D(Tc, Tn) is increasing when σ ranges from
0 to 20. This part of the plot, when put in relation with section 8.2, may be
compared with the results from Figure 8.5, where the average mean values of
the depth distributions of an image are not correlated from the ones of the pure
noise for the same noise level range. As concluded in section 8.2.2, the content
of the image still prevails for this range of noise levels, but the impact of the
noise is growing up in the image and this is justified by the evolution of the plot.
The second part of the plot varies with a behavior which does not permit to find

144 Chapter 8. impact of the noise on hierarchical representations

(a) Selected pairs from the
dissimilarity matrix

0 0.2 0.4 0.6 0.8 1
0

10

20

30

Jaccard distance

(b) Histogram of dissimilarity values

Figure 8.13: Observation of the dissimilarity computation process on the image
in Figure 8.12a corrupted with σ = 20

any relationship between the noise level and the geometrical dissimilarity. This
correspond to the part of the plots in Figure 8.5 in which the evolution of the
average means of the depth distributions computed from the natural images and
the pure noise is similar.

To analyze the plot obtained previously, the results of the pairing process
in the computation of D(Tc, Tn) are displayed in Figure 8.13. These elements of
the dissimilarity computation are obtained with a noisy version of the image
displayed in Figure 8.12a whose noise level is set to 20. The selected pairs of
regions have a dissimilarity located, for most of them, on the diagonal of the
matrix, as illustrated in Figure 8.13a. However, the distribution of the Jaccard
distance values, displayed in Figure 8.13b, informs us that the first quartile is
located at 0.527, indicating that only 25% of the values fall below this threshold,
and only 2.5% of the these values are below 0.2. Thus, the majority of the paired
regions have a large distance between them such that the noise impacts the
geometry of the regions and reduces the amount of similar regions from the
trees built on the clean and noisy images.

Finally, we observe two selected pairs in Figure 8.13a. They are chosen to
analyze the cases the Jaccard distance is low and high. In Figures 8.14 and 8.15,
the selected regions are highlighted in yellow. Regions Rc and Rn respectively
belongs to Tc and Tn. The first pair, displayed in Figure 8.14, is selected with
dJ(Rc, Rn) = 0.1015. These regions are similar in terms of distance, but we can
also observe that they have the same shape. However, the contour of Rn in
Figure 8.14b has irregularities compared with the one of Rc in Figure 8.14b. The
second pair displayed in Figure 8.15 is composed of two regions with different
shapes: that explains the fact that the Jaccard distance dJ(Rc, Rn) = 0.9496. This

8.4. conclusion and perspectives 145

(a) Region Rc from clean image (b) Region Rn from noisy image

Figure 8.14: Paired regions with a low Jaccard distance (dJ(Rc, Rn) = 0.1015)

(a) Region Rc from clean image (b) Region Rn from noisy image

Figure 8.15: Paired regions with a high Jaccard distance (dJ(Rc, Rn) = 0.9496)

illustrates the main default of our method: it takes into account pairs which have
a single pixel in common.

8.4 Conclusion and perspectives

In this chapter, we performed a study of the impact of the noise in an image
on the hierarchy built on it. We looked for a relationship between the noise
level of an image and some attributes computed from the tree, using either some
information from its structure or taking into account the geometry of the regions
represented by the hierarchy. In the first part, we made some observations on the
distribution of the depth attribute of every node, and we showed that the content
of an image prevailed until a given noise level for the tree structure. Then, we
extended our study to the context of persistent hierarchies according to a given
energy. We proposed to extend the Mumford-Shah functional by taking into

146 Chapter 8. impact of the noise on hierarchical representations

account the contour values of a region and we compared both when the noise
level of an image varies. We observed that the usage of this new functional
removed more nodes in the hierarchy that are not robust to the noise according
to our definition than the Mumford-Shah functional. Finally, we applied the
knowledge from the structural study to design a dissimilarity measure between
two trees by the use of the geometrical information of each node. We used
this measure to compute the geometrical difference for a wide range of noise
parameter between the nodes from a tree built from a clean image and another
tree from a noisy one.

This study is still a work in progress but some preliminary results were
obtained. First, we observed a correlation between the resulting relationship and
the study of the depth distributions of the whole database: when the evolution
of the empirical means of the depth distributions obtained from the natural
images is different from the ones of the pure noise, the dissimilarity is increasing.
However, such an observation has only been performed on one image. As a next
step, the dissimilarity computation will be applied on the whole image database
and further observations will be performed. Furthermore, we observed two
cases in which regions were paired. In the first case, the Jaccard distance between
the two regions was low, and the regions were similar. In the second case, the
regions had different shapes. An interesting improvement for the computation
of the dissimilarity matrix would be to insert the contour information in the
computation of its values.

Chapter 9
Conclusion and Perspectives

This thesis investigated three criteria that an image processing library should
respect (genericity, performance, and interactivity), and more specifically the
different solutions to succeed at most their combination in a library specialized
in Mathematical Morphology. Such a library is then used to build hierarchical
representations from images corrupted by noise for two applications. In this
chapter, we briefly recall the conclusion from these two contribution axes and
we study their perspectives.

9.1 Genericity, efficiency and interactivity for an
image processing library

The combination of genericity, performance, and interactivity for data structures
and algorithms in an image processing library is a challenging issue. In
Chapter 5, a methodology is presented to perform static-dynamic genericity
in static languages for image processing such that an algorithm may be
implemented to handle any kind of 2D images, whatever their value type
and implementation are known at compile-time or runtime. This method,
first presented in C++, is then compared to the Rust programming language,
the latter having some facilities for this purpose such as boxing for runtime
polymorphism. Finally, the different image structures proposed are applied
to different algorithmic schemes, implemented by means of static-dynamic
genericity, and compared in terms of performance. From these comparisons, we
concluded that the knowledge of type information at compile-time is important
when the algorithmic pattern follows the order in memory in which the values of
an image are stored due to some compiler optimization, but it is negligible when
this order is not known in advance, as is the case for the max-tree construction.

147

148 Chapter 9. conclusion and perspectives

A max-tree construction algorithm is then studied and its implementation
following the static-dynamic genericity methodology is then described in
Chapter 6. Three strategies are described for the image structures to be used
in the max-tree algorithm implementation: the structures from Chapter 5,
the projection, and the conversion. These have advantages and drawbacks:
for example, the conversion creates a new image whose value type and
implementation information are known at compile-time and then copies the
values from the input image to the new one, but requires allocating a new
image, resulting in an overhead in the runtime speed and memory. Finally, these
different strategies are compared with other implementations of the max-tree
construction algorithm and result in similar performance as the max-tree
construction implementation from the Higra library.

Various perspectives may be considered for this first axis:
Extension to various domains - The work presented in this chapter is limited
to n-dimensional images defined on hyperrectangles. However, as explained in
Chapter 3, various domains may be considered such as the edge set or vertex
set of a graph, or the triangle set of a 2-simplicial complex. An efficient and
generic way to represent the elements of an image domain is the usage of a
univariate index value so that only one type of point may be taken into account
for n-dimensional points but also to locate edges, vertices, or triangles. In that
case, some optimization such as small buffer optimization (SBO), which would
dynamically allocate the table storing the coordinates of each point of a domain
for a large number of dimensions, becomes useless and can be avoided by the
index representation coordinates.
Parallelization - Static-dynamic genericity has an overhead for every algorithm
studied in Chapter 5 but it is more or less important depending on the
underlying pattern. For all of them, it is possible to divide the computation
into several blocks and perform the operations on each of these blocks. Such
a methodology is called tiling. Merge-based max-tree construction algorithms
rely on tiling to build one max-tree per block and then merge them to obtain
the max-tree of the whole image. The usage of tiling may be used on
dynamic images, and thus provide highly performant implementations of image
processing algorithms while keeping interactivity and genericity.
External modules and Just-In-Time (JIT) compilation - Static-dynamic
genericity relies on operations performed on the image values which may be
selected either at runtime or at compile-time depending on the knowledge of
type information. These still require to be defined and implemented before
the usage of an algorithm, and thus to be compiled. Two solutions may be
investigated to reduce the amount of operations contained in the main library:
external modules and Just-In-Time (JIT) compilation. External modules are

9.2. hierarchical representations of images in the presence of noise 149

compiled libraries, independent of the main library, containing the operations
covering a large set of type combinations for each operation. Such libraries
may be linked to the main one on demand when an operation is not available.
Furthermore, these modules may not be contained in the package of the
library, and thus downloaded when needed. The second solution is the usage
of JIT compilation requiring the library to embed a compiler and generate
the machine code for each operation when it is necessary. Thus, compared
with external modules, operations are not required to be defined but use the
dynamic type information to be generated. These two solutions have several
advantages: they result in a lightweight main library, but may also provide
some optimized operations with SIMD instructions, difficult for the compiler to
generate when the type information of the pixel values is dynamic. Furthermore,
the usage of JIT compilation to obtain vectorized machine code is a benefit since
SIMD instructions are usually platform-dependent and add a parameter to the
combinatorial of an operation.
Construction of hierarchical representations of images - In Chapter 6, a
max-tree construction algorithm based on the union-find data structure is
studied as an application of static-dynamic genericity. The union-find data
structure is used for different construction algorithms such as the Kruskal
minimum spanning tree, which may be adapted to build the α-tree or the
hierarchical watersheds of an image. Compared with the max-tree construction,
which uses the pixel values to build the hierarchy, the Kruskal algorithm is based
on an edge-weighted graph obtained from the adjacency graph of an image
whose edges are weighted using the gradient of an image. Thus, in conjunction
with the extension of static-dynamic genericity to different domains, it may be
interesting to study the construction of other hierarchies with this methodology.

9.2 Hierarchical representations of images in the
presence of noise

As an application, hierarchical representations are used for noise level
estimation, and more specifically for segmentation purposes to obtain
homogeneous regions from which the noise can be estimated. In Chapter 7,
a method to estimate the noise level function of a grayscale image, returning
the noise variance according to the intensity of an image pixel, is extended to
multivariate images by incorporating two tools from mathematical morphology:
the multivariate tree of shapes and a rank map obtained from a complete lattice
learning. This estimation is then compared to a block-based estimation, and
the precision of the estimation using such a content-adapted estimation shows

150 Chapter 9. conclusion and perspectives

better results than using blocks. However, this method only uses a subset of
regions from the hierarchy by computing an optimal segmentation according to
the Mumford-Shah functional, so it is extended to the whole set of regions of
this hierarchy. The resulting estimation does not result in any improvements,
such that the impact of the noise contained in an image on which a hierarchy is
built is questioned.

To this aim, the evolution of the structure of the α-tree is observed by the
mean of the depth attribute of each node, which is the number of nodes on
the path from the current one to the root of the tree. By varying the noise
level corrupting an image, different distributions of the depth computed as
histograms are compared, and the impact of the noise contained in an image
on the structure of the tree is highlighted by comparing the empirical means of
each distribution with the ones obtained from pure noise without any content.
Furthermore, this impact is studied in the context of an optimal hierarchy
according to a given energy, and it is concluded that the energy chosen influences
the amount of non-persistent nodes, which are nodes that are not in an optimal
cut of the tree.

For this axis, several open problems may be tackled:
Improvements and applicability of the noise level estimation - The noise level
estimation presented in Chapter 7 is performed channelwise, meaning that
the correlation between the channels is not taken into account. In practice,
the demosaicking step of the image acquisition pipeline may mix the noise
information in the different channels such that a noise correlation between the
channels of an image may exist. In that case, the MNLF should take into account
such information and the estimation has to be adapted to this improved MNLF.
Furthermore, the choice of the usage of a noise level estimation on multivariate
images or grayscale images depends on the well-known problem of the choice of
the processing order for demosaicking and denoising in the acquisition pipeline.
Thus, the estimation will be integrated into a denoising method and the two
cases considered previously will be tested to assess the best use case of our
estimation.
Trees dissimilarity in the presence of noise - The study of the impact of the
noise contained in an image on the structure a hierarchy has interesting results
but may not be exploitable directly to improve the performance of an application
such as segmentation or denoising using hierarchical representations of images.
In Chapter 8, a sketch of a method to compute the dissimilarity between
two hierarchies built from images in the presence of noise is presented. The
computation of this dissimilarity measure selects nodes using the information
acquired from the study on the structure of the tree as the usage of all the
nodes for pairwise dissimilarity makes the computation unfeasible. Indeed,

9.2. hierarchical representations of images in the presence of noise 151

the objective of this dissimilarity is to create a new measure that highlights the
relationship between the noise level of an image and its influence on a hierarchy.
To this aim, this measure may be computed from two trees, one built from a
clean image and another one from a noisy version of this image. In that way,
further investigations will be performed to improve this dissimilarity measure
and propose different applications relying on it.
Applications of the trees dissimilarity - The usage of such a measure may be
useful for different applications. First of all, the diverse use cases relying on
hierarchical representations of images such as segmentation, object detection,
or filtering may be improved by taking into account the noise impact on the
hierarchy. Furthermore, new applications may be developed: denoising has been
little investigated when performed using these representations. Furthermore,
the development of new loss functions for neural networks leads to the
questioning about the usefulness of the hierarchies in the presence of noise.
Recently, the max-tree has been used to create a new loss function based on
attribute values and it has been applied for image filtering purposes. Thus, a
new denoising method should be investigated using the dissimilarity measure
between the two trees with the condition that the relationship ensuing from this
measure between the hierarchies of the clean and noisy versions of an image is
differentiable.

152 Chapter 9. conclusion and perspectives

List of publications

International conferences

• Baptiste Esteban, Guillaume Tochon, Edwin Carlinet, and Didier Verna.
“Estimation of the noise level function for color images using mathematical
morphology and non-parametric statistics”. In: 2022 26th International
Conference on Pattern Recognition (ICPR). 2022, pp. 428–434. doi: 10.1109/
ICPR56361.2022.9956218

• Baptiste Esteban, Edwin Carlinet, Guillaume Tochon, and Didier Verna.
“The Cost of Dynamism in Static Languages for Image Processing”. In:
Proceedings of the 21st International Conference on Generative Programming:
Concepts & Experiences (GPCE 2022). Auckland, New Zealand, Dec. 2022.
doi: 10.1145/3564719.3568693

• Baptiste Esteban, Guillaume Tochon, Edwin Carlinet, and Didier Verna.
“Structural Analysis of the Additive Noise Impact on the α-tree”. In:
Proceedings of the 20th International Conference on Computer Analysis of Images
and Patterns (CAIP 2023). Vol. 14185. Lecture Notes in Computer Science
Series. To Appear. Limassol, Cyprus: Springer, Sept. 2023

National conferences

• Baptiste Esteban, Guillaume Tochon, Edwin Carlinet, and Didier Verna.
“Estimation de la fonction de niveau de bruit pour des images couleurs en
utilisant la morphologie mathématique”. In: 28e Colloque sur le traitement
du signal et des images. Nancy, France: GRETSI - Groupe de Recherche en
Traitement du Signal et des Images, Sept. 2022, pp. 953–956

153

https://doi.org/10.1109/ICPR56361.2022.9956218
https://doi.org/10.1109/ICPR56361.2022.9956218
https://doi.org/10.1145/3564719.3568693

154 LIST OF PUBLICATIONS

• Baptiste Esteban, Edwin Carlinet, Guillaume Tochon, and Didier Verna.
“Généricité dynamique pour des algorithmes morphologiques”. In: 28e
Colloque sur le traitement du signal et des images. Nancy, France: GRETSI -
Groupe de Recherche en Traitement du Signal et des Images, Sept. 2022,
pp. 477–480

• Baptiste Esteban, Guillaume Tochon, Edwin Carlinet, and Didier Verna.
“Analyse structurelle de l’influence du bruit sur l’arbre alpha”. In: 29e
Colloque sur le traitement du signal et des images. Grenoble, France: GRETSI -
Groupe de Recherche en Traitement du Signal et des Images, Aug. 2023

Bibliography

[1] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015. url:
https://www.tensorflow.org/ (visited on 10/13/2023).

[2] David Abrahams and Stefan Seefeld. Boost.Python. url: http: / /www .
boost.org/libs/python/ (visited on 12/06/2023).

[3] Radhakrishna Achanta et al. Slic superpixels. Tech. rep. 2010.

[4] Theodore Aouad and Hugues Talbot. “Binary Morphological Neural
Network”. In: 2022 IEEE International Conference on Image Processing (ICIP).
2022, pp. 3276–3280. doi: 10.1109/ICIP46576.2022.9897474.

[5] E. Aptoula and S. Lefèvre. “A comparative study on multivariate
mathematical morphology”. In: Pattern Recognition 40.11 (2007),
pp. 2914–2929. doi: 10.1016/j.patcog.2007.02.004.

[6] Pablo Arbeláez, Michael Maire, Charless Fowlkes, and Jitendra Malik.
“Contour Detection and Hierarchical Image Segmentation”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 33.5 (2011),
pp. 898–916. doi: 10.1109/TPAMI.2010.161.

[7] Ken Arnold, James Gosling, and David Holmes. The Java programming
language. Addison Wesley Professional, 2005.

[8] Asra Aslam, Ekram Khan, Mohammad Samar Ansari, and M. M. Sufyan
Beg. A Novel Falling-Ball Algorithm for Image Segmentation. 2021. doi: 10.
48550/arXiv.2105.02615.

[9] Coloma Ballester, Vicent Caselles, Laura Igual, and Luis Garrido. “Level
Lines Selection with Variational Models for Segmentation and Encoding”.
In: Journal of Mathematical Imaging and Vision 27.1 (2007), pp. 5–27. issn:
1573-7683. doi: 10.1007/s10851-006-7252-0.

155

https://www.tensorflow.org/
http://www.boost.org/libs/python/
http://www.boost.org/libs/python/
https://doi.org/10.1109/ICIP46576.2022.9897474
https://doi.org/10.1016/j.patcog.2007.02.004
https://doi.org/10.1109/TPAMI.2010.161
https://doi.org/10.48550/arXiv.2105.02615
https://doi.org/10.48550/arXiv.2105.02615
https://doi.org/10.1007/s10851-006-7252-0

156 BIBLIOGRAPHY

[10] John Barnes. Programming in Ada 2012 with a Preview of Ada 2022. 2nd ed.
Cambridge University Press, 2022. doi: 10.1017/9781009181358.

[11] L. Beaurepaire, K. Chehdi, and B. Vozel. “Identification of the nature
of noise and estimation of its statistical parameters by analysis of local
histograms”. In: 1997 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Vol. 4. 1997, 2805–2808 vol.4. doi: 10.1109/ICASSP.
1997.595372.

[12] David M Beazley. “Automated scientific software scripting with SWIG”.
In: Future Generation Computer Systems 19.5 (2003), pp. 599–609. doi: 10.
1016/S0167-739X(02)00171-1.

[13] David M Beazley et al. “SWIG: An Easy to Use Tool for Integrating
Scripting Languages with C and C++.” In: Tcl/Tk Workshop. Vol. 43. 1996,
p. 74.

[14] Stefan Behnel et al. “Cython: The Best of Both Worlds”. In: Computing in
Science & Engineering 13.2 (2011), pp. 31–39. doi: 10.1109/MCSE.2010.118.

[15] Mikhail Belkin and Partha Niyogi. “Laplacian Eigenmaps
for Dimensionality Reduction and Data Representation”. In:
Neural Computation 15.6 (2003), pp. 1373–1396. doi: 10 . 1162 /
089976603321780317.

[16] Ch. Berger et al. “Effective Component Tree Computation with
Application to Pattern Recognition in Astronomical Imaging”. In: IEEE
International Conference on Image Processing. Vol. 4. 2007, pp. IV –41–IV
–44. doi: 10.1109/ICIP.2007.4379949.

[17] Nicolas Beucher and Serge Beucher. “Mamba Image User Manual”. In:
Mamba library website (2017).

[18] Serge Beucher. “Watershed, Hierarchical Segmentation and Waterfall
Algorithm”. In: Mathematical Morphology and Its Applications to Image
Processing. Ed. by Jean Serra and Pierre Soille. Dordrecht: Springer
Netherlands, 1994, pp. 69–76. isbn: 978-94-011-1040-2. doi: 10.1007/978-
94-011-1040-2_10.

[19] Serge Beucher and Fernand Meyer. “The morphological approach
to segmentation: the watershed transformation”. In: Mathematical
morphology in image processing 34.1993 (1993), p. 49.

[20] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. “Julia:
A fresh approach to numerical computing”. In: SIAM review 59.1 (2017),
pp. 65–98. doi: 10.1137/141000671.

https://doi.org/10.1017/9781009181358
https://doi.org/10.1109/ICASSP.1997.595372
https://doi.org/10.1109/ICASSP.1997.595372
https://doi.org/10.1016/S0167-739X(02)00171-1
https://doi.org/10.1016/S0167-739X(02)00171-1
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1109/ICIP.2007.4379949
https://doi.org/10.1007/978-94-011-1040-2_10
https://doi.org/10.1007/978-94-011-1040-2_10
https://doi.org/10.1137/141000671

BIBLIOGRAPHY 157

[21] Bloaty: a size profiler for binaries. url: https://github.com/google/bloaty
(visited on 09/06/2023).

[22] Isabelle Bloch et al. “On Some Associations Between Mathematical
Morphology and Artificial Intelligence”. In: Discrete Geometry and
Mathematical Morphology. Ed. by Joakim Lindblad, Filip Malmberg,
and Nataša Sladoje. Cham: Springer International Publishing, 2021,
pp. 457–469. isbn: 978-3-030-76657-3. doi: 10.1007/978-3-030-76657-
3_33.

[23] Petra Bosilj. trees-lib. url: https://github.com/pbosilj/trees- lib
(visited on 09/11/2023).

[24] Petra Bosilj, Ewa Kijak, and Sébastien Lefèvre. “Partition and inclusion
hierarchies of images: A comprehensive survey”. In: Journal of Imaging 4.2
(2018), p. 33.

[25] Roger Bourne. “ImageJ”. In: Fundamentals of Digital Imaging in Medicine.
London: Springer London, 2010, pp. 185–188. isbn: 978-1-84882-087-6.
doi: 10.1007/978-1-84882-087-6_9.

[26] Nicolas Boutry and Guillaume Tochon. “Stability of the Tree of Shapes
to Additive Noise”. In: Lecture Notes in Computer Science. Springer
International Publishing, 2021, pp. 365–377. doi: 10.1007/978-3-030-
76657-3_26.

[27] Gary Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

[28] A. Buades, B. Coll, and J. M. Morel. “A Review of Image Denoising
Algorithms, with a New One”. In: Multiscale Modeling & Simulation 4.2
(2005), pp. 490–530. doi: 10.1137/040616024.

[29] Nicolas Burrus et al. “A static C++ object-oriented programming
(SCOOP) paradigm mixing benefits of traditional OOP and generic
programming”. In: Proceedings of the Workshop on Multiple Paradigm with
Object-Oriented Languages (MPOOL). Anaheim, CA, USA, Oct. 2003.

[30] Luca Cardelli and Peter Wegner. “On Understanding Types, Data
Abstraction, and Polymorphism”. In: ACM Comput. Surv. 17.4 (1985),
pp. 471–523. issn: 0360-0300. doi: 10.1145/6041.6042.

[31] Edwin Carlinet. “A Tree of shapes for multivariate images”. PhD thesis.
Université Paris-Est, Nov. 2015.

https://github.com/google/bloaty
https://doi.org/10.1007/978-3-030-76657-3_33
https://doi.org/10.1007/978-3-030-76657-3_33
https://github.com/pbosilj/trees-lib
https://doi.org/10.1007/978-1-84882-087-6_9
https://doi.org/10.1007/978-3-030-76657-3_26
https://doi.org/10.1007/978-3-030-76657-3_26
https://doi.org/10.1137/040616024
https://doi.org/10.1145/6041.6042

158 BIBLIOGRAPHY

[32] Edwin Carlinet, Sébastien Crozet, and Thierry Géraud. “The Tree
of Shapes Turned into a Max-Tree: A Simple and Efficient Linear
Algorithm”. In: 2018 25th IEEE International Conference on Image Processing
(ICIP). 2018, pp. 1488–1492. doi: 10.1109/ICIP.2018.8451180.

[33] Edwin Carlinet and Thierry Géraud. “A Color Tree of Shapes
with Illustrations on Filtering, Simplification, and Segmentation”. In:
Mathematical Morphology and Its Applications to Signal and Image Processing.
Ed. by Jón Atli Benediktsson, Jocelyn Chanussot, Laurent Najman,
and Hugues Talbot. Cham: Springer International Publishing, 2015,
pp. 363–374. isbn: 978-3-319-18720-4. doi: 10.1007/978-3-319-18720-
4_31.

[34] Edwin Carlinet and Thierry Géraud. “A comparative review of
component tree computation algorithms”. In: IEEE Transactions on Image
Processing 23.9 (2014), pp. 3885–3895. doi: 10.1109/TIP.2014.2336551.

[35] Edwin Carlinet and Thierry Geraud. “A Morphological Tree of Shapes
for Color Images”. In: 2014 22nd International Conference on Pattern
Recognition. IEEE, 2014. doi: 10.1109/icpr.2014.204.

[36] Edwin Carlinet and Thierry Geraud. “Getting a morphological tree of
shapes for multivariate images: Paths, traps, and pitfalls”. In: 2014 IEEE
International Conference on Image Processing (ICIP). IEEE, 2014. doi: 10.
1109/icip.2014.7025123.

[37] Edwin Carlinet and Thierry Géraud. “Intervertebral Disc Segmentation
Using Mathematical Morphology—A CNN-Free Approach”. In:
Computational Methods and Clinical Applications for Spine Imaging.
Ed. by Guoyan Zheng, Daniel Belavy, Yunliang Cai, and Shuo Li.
Cham: Springer International Publishing, 2019, pp. 105–118. isbn:
978-3-030-13736-6. doi: 10.1007/978-3-030-13736-6_9.

[38] Edwin Carlinet and Thierry Geraud. “MToS: A Tree of Shapes for
Multivariate Images”. In: IEEE Transactions on Image Processing 24.12

(2015), pp. 5330–5342. doi: 10.1109/tip.2015.2480599.

[39] Edwin Carlinet and Thierry Géraud. “Morphological object picking based
on the color tree of shapes”. In: 2015 International Conference on Image
Processing Theory, Tools and Applications (IPTA). 2015, pp. 125–130. doi:
10.1109/IPTA.2015.7367111.

[40] Antonin Chambolle and Thomas Pock. “A First-Order Primal-Dual
Algorithm for Convex Problems with Applications to Imaging”. In:
Journal of Mathematical Imaging and Vision 40.1 (2010), pp. 120–145. doi:
10.1007/s10851-010-0251-1.

https://doi.org/10.1109/ICIP.2018.8451180
https://doi.org/10.1007/978-3-319-18720-4_31
https://doi.org/10.1007/978-3-319-18720-4_31
https://doi.org/10.1109/TIP.2014.2336551
https://doi.org/10.1109/icpr.2014.204
https://doi.org/10.1109/icip.2014.7025123
https://doi.org/10.1109/icip.2014.7025123
https://doi.org/10.1007/978-3-030-13736-6_9
https://doi.org/10.1109/tip.2015.2480599
https://doi.org/10.1109/IPTA.2015.7367111
https://doi.org/10.1007/s10851-010-0251-1

BIBLIOGRAPHY 159

[41] Ruey-Feng Chang, Chii-Jen Chen, and Chen-Hao Liao. “Region-based
image retrieval using edgeflow segmentation and region adjacency
graph”. In: 2004 IEEE International Conference on Multimedia and Expo
(ICME). Vol. 3. 2004, 1883–1886 Vol.3. doi: 10.1109/ICME.2004.1394626.

[42] Laurent Condat. Laurent Condat’s Image base. url: https : / / lcondat .
github.io/imagebase.html.

[43] James O Coplien. “Curiously recurring template patterns”. In: C++ gems.
1996, pp. 135–144.

[44] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, Third Edition. 3rd. The MIT Press, 2009.
isbn: 0262033844.

[45] Michel Couprie, Laszlo Marak, Hugues Talbot, et al. “Pink image
processing library”. In: Poster European Python Scientific Conference. 2011.

[46] Jean Cousty, Gilles Bertrand, Laurent Najman, and Michel Couprie.
“Watershed Cuts: Minimum Spanning Forests and the Drop of
Water Principle”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 31.8 (2009), pp. 1362–1374. doi: 10.1109/TPAMI.2008.173.

[47] Jean Cousty and Laurent Najman. “Incremental Algorithm for
Hierarchical Minimum Spanning Forests and Saliency of Watershed
Cuts”. In: Mathematical Morphology and Its Applications to Image
and Signal Processing. Ed. by Pierre Soille, Martino Pesaresi, and
Georgios K. Ouzounis. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 272–283. isbn: 978-3-642-21569-8. doi: 10.1007/978- 3- 642-
21569-8_24.

[48] Jean Cousty, Laurent Najman, Yukiko Kenmochi, and Silvio Guimarães.
“Hierarchical Segmentations with Graphs: Quasi-flat Zones, Minimum
Spanning Trees, and Saliency Maps”. In: Journal of Mathematical Imaging
and Vision 60.4 (2018), pp. 479–502. issn: 1573-7683. doi: 10.1007/s10851-
017-0768-7.

[49] Jean Cousty, Laurent Najman, and Benjamin Perret. “Constructive Links
between Some Morphological Hierarchies on Edge-Weighted Graphs”.
In: Mathematical Morphology and Its Applications to Signal and Image
Processing. Ed. by Cris L. Luengo Hendriks, Gunilla Borgefors, and
Robin Strand. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 86–97. isbn: 978-3-642-38294-9. doi: 10.1007/978-3-642-38294-9_8.

[50] Jean Cousty, Laurent Najman, and Jean Serra. “Raising in watershed
lattices”. In: 2008 15th IEEE International Conference on Image Processing.
2008, pp. 2196–2199. doi: 10.1109/ICIP.2008.4712225.

https://doi.org/10.1109/ICME.2004.1394626
https://lcondat.github.io/imagebase.html
https://lcondat.github.io/imagebase.html
https://doi.org/10.1109/TPAMI.2008.173
https://doi.org/10.1007/978-3-642-21569-8_24
https://doi.org/10.1007/978-3-642-21569-8_24
https://doi.org/10.1007/s10851-017-0768-7
https://doi.org/10.1007/s10851-017-0768-7
https://doi.org/10.1007/978-3-642-38294-9_8
https://doi.org/10.1109/ICIP.2008.4712225

160 BIBLIOGRAPHY

[51] Criterion.rs. url: https://bheisler.github.io/criterion.rs/book/
index.html (visited on 09/06/2023).

[52] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen
Egiazarian. “Image Denoising by Sparse 3-D Transform-Domain
Collaborative Filtering”. In: IEEE Transactions on Image Processing 16.8
(2007), pp. 2080–2095. doi: 10.1109/TIP.2007.901238.

[53] Beman Dawes and Alisdair Meredith. Adopt Library Fundamentals V1 TS
Components for C++17 (P0220R1). 2016. url: https://www.open- std.
org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html (visited on
03/09/2023).

[54] James C. Dehnert and Alexander Stepanov. “Fundamentals of Generic
Programming”. In: Generic Programming. Ed. by Mehdi Jazayeri, Rüdiger
G. K. Loos, and David R. Musser. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 1–11. isbn: 978-3-540-39953-7. doi: 10.1007/3-540-
39953-4_1.

[55] Akim Demaille, Alexandre Duret-Lutz, Sylvain Lombardy, and Jacques
Sakarovitch. “Implementation Concepts in Vaucanson 2”. In: Proceedings
of Implementation and Application of Automata, 18th International Conference
(CIAA’13). Ed. by Stavros Konstantinidis. Vol. 7982. Lecture Notes in
Computer Science. Halifax, NS, Canada: Springer, July 2013, pp. 122–133.
isbn: 978-3-642-39274-0. doi: 10.1007/978-3-642-39274-0_12.

[56] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”.
In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009,
pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[57] Louis Dionne. Dyno: Runtime polymorphism done right. url: https : / /
github.com/ldionne/dyno (visited on 03/09/2023).

[58] Piotr Dollar and C. L. Zitnick. “Structured Forests for Fast Edge
Detection”. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV). 2013.

[59] Alan AA Donovan and Brian W Kernighan. The Go programming language.
Addison-Wesley Professional, 2015.

[60] Marcos Cordeiro d’Ornellas. “Algorithmic Patterns for Morphological
Image Processing”. PhD thesis. Universiteit van Amsterdam, 2001.

[61] Marcos Cordeiro d’Ornellas and Rein Van Den Boomgaard. “The state of
art and future development of morphological software towards generic
algorithms”. In: International Journal of Pattern Recognition and Artificial
Intelligence 17.02 (2003), pp. 231–255. doi: 10.1142/S0218001403002344.

https://bheisler.github.io/criterion.rs/book/index.html
https://bheisler.github.io/criterion.rs/book/index.html
https://doi.org/10.1109/TIP.2007.901238
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0220r1.html
https://doi.org/10.1007/3-540-39953-4_1
https://doi.org/10.1007/3-540-39953-4_1
https://doi.org/10.1007/978-3-642-39274-0_12
https://doi.org/10.1109/CVPR.2009.5206848
https://github.com/ldionne/dyno
https://github.com/ldionne/dyno
https://doi.org/10.1142/S0218001403002344

BIBLIOGRAPHY 161

[62] Marc Droske and Martin Rumpf. “Multiscale Joint Segmentation and
Registration of Image Morphology”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 29.12 (2007), pp. 2181–2194. doi: 10 .
1109/TPAMI.2007.1120.

[63] Baptiste Esteban, Guillaume Tochon, and Thierry Géraud. “Estimating
the Noise Level Function with the Tree of Shapes and Non-parametric
Statistics”. In: Computer Analysis of Images and Patterns. Ed. by Mario Vento
and Gennaro Percannella. Cham: Springer International Publishing, 2019,
pp. 377–388. isbn: 978-3-030-29891-3. doi: 10.1007/978-3-030-29891-
3_33.

[64] Matthieu Faessel and Michel Bilodeau. “SMIL: Simple morphological
image library”. In: Séminaire Performance et Généricité, LRDE (2014).

[65] Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and Karen
Egiazarian. “Practical Poissonian-Gaussian Noise Modeling and Fitting
for Single-Image Raw-Data”. In: IEEE Transactions on Image Processing
17.10 (2008), pp. 1737–1754. doi: 10.1109/TIP.2008.2001399.

[66] Folly: Facebook Open-source Library. url: https://github.com/facebook/
folly (visited on 04/09/2023).

[67] Gabriel Barbosa da Fonseca et al. “New hierarchy-based segmentation
layer: towards automatic marker proposal”. In: 2021 34th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI). 2021, pp. 354–361.
doi: 10.1109/SIBGRAPI54419.2021.00055.

[68] Python Software Foundation. CPython. url: https : / / github . com /
python/cpython (visited on 06/07/2023).

[69] Martin Fowler. Domain-Specific Languages. Upper Saddle River, NJ:
Addison-Wesley, 2010. isbn: 978-0-321-71294-3.

[70] W.T. Freeman, T.R. Jones, and E.C. Pasztor. “Example-based
super-resolution”. In: IEEE Computer Graphics and Applications 22.2
(2002), pp. 56–65. doi: 10.1109/38.988747.

[71] Thierry Géraud. “Outil logiciel pour le traitement d’images: Bibliothèque,
paradigmes, types et algorithmes”. In French. Habilitation Thesis.
Université Paris-Est, June 2012.

[72] Thierry Géraud and Edwin Carlinet. A Modern C++ Library for Generic and
Efficient Image Processing. Journée du Groupe de Travail sur la Géometrie
Discrète et la Morphologie Mathématique. June 2018.

https://doi.org/10.1109/TPAMI.2007.1120
https://doi.org/10.1109/TPAMI.2007.1120
https://doi.org/10.1007/978-3-030-29891-3_33
https://doi.org/10.1007/978-3-030-29891-3_33
https://doi.org/10.1109/TIP.2008.2001399
https://github.com/facebook/folly
https://github.com/facebook/folly
https://doi.org/10.1109/SIBGRAPI54419.2021.00055
https://github.com/python/cpython
https://github.com/python/cpython
https://doi.org/10.1109/38.988747

162 BIBLIOGRAPHY

[73] Thierry Géraud, Edwin Carlinet, Sébastien Crozet, and Laurent Najman.
“A quasi-linear algorithm to compute the tree of shapes of n-D images”.
In: International symposium on mathematical morphology and its applications to
signal and image processing. Springer. 2013, pp. 98–110. doi: 10.1007/978-
3-642-38294-9_9.

[74] Thierry Géraud and Roland Levillain. “Semantics-Driven Genericity:
A Sequel to the Static C++ Object-Oriented Programming Paradigm
(SCOOP 2)”. In: Proceedings of the 6th International Workshop on
Multiparadigm Programming with Object-Oriented Languages (MPOOL).
Paphos, Cyprus, July 2008.

[75] Thierry Géraud, Hugues Talbot, and Marc Van Droogenbroeck.
“Algorithms for Mathematical Morphology”. In: Mathematical
Morphology—From Theory to Applications. Ed. by Laurent Najman
and Hugues Talbot. Wiley-ISTE, July 2010, pp. 323–353. isbn:
978-1-84821-215-2. doi: https://doi.org/10.1002/9781118600788.ch12.

[76] Debasish Ghosh. DSLs in Action. 1st. USA: Manning Publications Co.,
2010. isbn: 9781935182450. doi: 10.5555/1965333.

[77] Robert Glück, Ryo Nakashige, and Robert Zöchling. “Binding-time
analysis applied to mathematical algorithms”. In: System Modelling and
Optimization: Proceedings of the Seventeenth IFIP TC7 Conference on System
Modelling and Optimization, 1995. Ed. by Jaroslav Doležal and Jiří Fidler.
Boston, MA: Springer US, 1996, pp. 137–146. doi: 10.1007/978-0-387-
34897-1_14.

[78] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[79] Google Benchmark. url: https://github.com/google/benchmark (visited
on 09/06/2023).

[80] Douglas Gregor et al. “Concepts: Linguistic support for generic
programming in C++”. In: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, languages, and
applications. 2006, pp. 291–310. doi: 10.1145/1167515.1167499.

[81] Michel Grimaud. “New measure of contrast: the dynamics”. In: Optics
& Photonics. 1992. url: https://api.semanticscholar.org/CorpusID:
64320621.

[82] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org. 2010.

https://doi.org/10.1007/978-3-642-38294-9_9
https://doi.org/10.1007/978-3-642-38294-9_9
https://doi.org/https://doi.org/10.1002/9781118600788.ch12
https://doi.org/10.5555/1965333
https://doi.org/10.1007/978-0-387-34897-1_14
https://doi.org/10.1007/978-0-387-34897-1_14
https://github.com/google/benchmark
https://doi.org/10.1145/1167515.1167499
https://api.semanticscholar.org/CorpusID:64320621
https://api.semanticscholar.org/CorpusID:64320621

BIBLIOGRAPHY 163

[83] Laurent Guigues, Jean Pierre Cocquerez, and Hervé Le Men. “Scale-Sets
Image Analysis”. In: International Journal of Computer Vision 68.3 (2006),
pp. 289–317. issn: 1573-1405. doi: 10.1007/s11263-005-6299-0.

[84] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring
Network Structure, Dynamics, and Function using NetworkX”. In:
Proceedings of the 7th Python in Science Conference. Ed. by Gaël Varoquaux,
Travis Vaught, and Jarrod Millman. Pasadena, CA USA, 2008, pp. 11 –15.

[85] Charles R Harris et al. “Array programming with NumPy”. In: Nature
585.7825 (2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

[86] Jiří Havel, François Merciol, and Sébastien Lefèvre. “Efficient schemes for
computing α-tree representations”. In: Mathematical Morphology and Its
Applications to Signal and Image Processing: 11th International Symposium,
ISMM 2013, Uppsala, Sweden, May 27-29, 2013. Proceedings 11. Springer.
2013, pp. 111–122. doi: 10.1007/978-3-642-38294-9_10.

[87] Jiří Havel, François Merciol, and Sébastien Lefèvre. “Efficient tree
construction for multiscale image representation and processing”. In:
Journal of Real-Time Image Processing 16.4 (2019), pp. 1129–1146. issn:
1861-8219. doi: 10.1007/s11554-016-0604-0.

[88] G.E. Healey and R. Kondepudy. “Radiometric CCD camera calibration
and noise estimation”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 16.3 (1994), pp. 267–276. doi: 10.1109/34.276126.

[89] Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and Peter Golde.
The C# Programming Language. 3rd. Addison-Wesley Professional, 2008.
isbn: 0321562992. doi: 10.5555/1502323.

[90] Romain Hermary et al. “Learning Grayscale Mathematical Morphology
with Smooth Morphological Layers”. In: Journal of Mathematical Imaging
and Vision 64.7 (2022), pp. 736–753. issn: 1573-7683. doi: 10.1007/s10851-
022-01091-1.

[91] Wim H. Hesselink. “Salembier’s Min-tree algorithm turned into breadth
first search”. In: Information Processing Letters 88.5 (2003), pp. 225–229.
issn: 0020-0190. doi: 10.1016/j.ipl.2003.08.003.

[92] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[93] International Organization for Standardization / International
Commission on Illumination. Colorimetry - Part 4: CIE 1976 L*a*b*
colour space. ISO/CIE 11664-4:2019. 2019.

https://doi.org/10.1007/s11263-005-6299-0
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/978-3-642-38294-9_10
https://doi.org/10.1007/s11554-016-0604-0
https://doi.org/10.1109/34.276126
https://doi.org/10.5555/1502323
https://doi.org/10.1007/s10851-022-01091-1
https://doi.org/10.1007/s10851-022-01091-1
https://doi.org/10.1016/j.ipl.2003.08.003
https://doi.org/10.1109/MCSE.2007.55

164 BIBLIOGRAPHY

[94] Apple Inc. The Swift Programming Language. 2014. url: https://docs.
swift . org / swift - book / documentation / the - swift - programming -
language/ (visited on 06/06/2023).

[95] The MathWorks Inc. MATLAB version: 9.13.0 (R2022b). Natick,
Massachusetts, United States, 2022. url: https://www.mathworks.com.

[96] ISO. ISO/IEC 14882:2020: Programming languages — C++. Geneva,
Switzerland: International Organization for Standardization, 2020,
p. 1853. url: https://www.iso.org/standard/79358.html.

[97] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 –
Seamless operability between C++11 and Python. 2017. url: https://github.
com/pybind/pybind11 (visited on 12/06/2023).

[98] Qiyu Jin, Gabriele Facciolo, and Jean-Michel Morel. “A Review of an Old
Dilemma: Demosaicking First, or Denoising First?” In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
2020, pp. 2169–2179. doi: 10.1109/CVPRW50498.2020.00265.

[99] Neil D. Jones. “An Introduction to Partial Evaluation”. In: ACM Comput.
Surv. 28.3 (1996), 480–503. issn: 0360-0300. doi: 10.1145/243439.243447.

[100] Ronald Jones. “Component trees for image filtering and segmentation”.
In: IEEE Workshop on Nonlinear Signal and Image Processing. Vol. 9.
Mackinac Island. 1997.

[101] Ronald Jones. “Connected Filtering and Segmentation Using Component
Trees”. In: Computer Vision and Image Understanding 75.3 (1999),
pp. 215–228. issn: 1077-3142. doi: 10.1006/cviu.1999.0777.

[102] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. “Progressive
Growing of GANs for Improved Quality, Stability, and Variation”. In:
CoRR abs/1710.10196 (2017). url: http://arxiv.org/abs/1710.10196.

[103] M. G. Kendall. “A New Measure of Rank Correlation”. In: Biometrika
30.1/2 (1938), p. 81. doi: 10.2307/2332226.

[104] M. G. Kendall. “The Treatment Of Ties In Ranking Problems”. In:
Biometrika 33.3 (1945), pp. 239–251. doi: 10.1093/biomet/33.3.239.

[105] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. 2nd. Prentice Hall Professional Technical Reference, 1988. isbn:
0-13-110370-9. doi: 10.5555/576122.

[106] Efim Khalimsky, Ralph Kopperman, and Paul R Meyer. “Computer
graphics and connected topologies on finite ordered sets”. In: Topology and
its Applications 36.1 (1990), pp. 1–17. doi: 10.1016/0166-8641(90)90031-
V.

https://docs.swift.org/swift-book/documentation/the-swift-programming-language/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/
https://docs.swift.org/swift-book/documentation/the-swift-programming-language/
https://www.mathworks.com
https://www.iso.org/standard/79358.html
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://doi.org/10.1109/CVPRW50498.2020.00265
https://doi.org/10.1145/243439.243447
https://doi.org/10.1006/cviu.1999.0777
http://arxiv.org/abs/1710.10196
https://doi.org/10.2307/2332226
https://doi.org/10.1093/biomet/33.3.239
https://doi.org/10.5555/576122
https://doi.org/10.1016/0166-8641(90)90031-V
https://doi.org/10.1016/0166-8641(90)90031-V

BIBLIOGRAPHY 165

[107] Steve Klabnik and Carol Nichols. The Rust Programming Language. USA:
No Starch Press, 2018. isbn: 1593278284. doi: 10 . 5555 / 3271463. url:
https://doc.rust-lang.org/book/.

[108] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. USA: Addison Wesley Longman Publishing Co.,
Inc., 1997. isbn: 0201896834.

[109] T Yung Kong and Azriel Rosenfeld. “Digital topology: Introduction and
survey”. In: Computer Vision, Graphics, and Image Processing 48.3 (1989),
pp. 357–393. doi: 10.1016/0734-189X(89)90147-3.

[110] Ullrich Köthe. “Reusable software in computer vision”. In: Handbook of
computer vision and applications 3 (1999), pp. 103–132.

[111] Ullrich Köthe and Karsten Weihe. “The STL model in the geometric
domain”. In: Generic Programming. Springer. 2000, pp. 232–248.

[112] Serge Koudoro, Matthieu Faessel, and Michel Bilodeau. “Morph-M:
Image Processing Library Specialized in Mathematical Morphology”. In:
IPOL. Meeting on Image Processing Libraries (2012).

[113] Ssafak Güner Koç et al. “A comparative noise robustness study of tree
representations for attribute profile construction”. In: 2017 25th Signal
Processing and Communications Applications Conference (SIU). 2017, pp. 1–4.
doi: 10.1109/SIU.2017.7960159.

[114] H. W. Kuhn. “The Hungarian method for the assignment problem”. In:
Naval Research Logistics Quarterly 2.1-2 (1955), pp. 83–97. doi: 10.1002/
nav.3800020109.

[115] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A
LLVM-Based Python JIT Compiler”. In: Proceedings of the Second Workshop
on the LLVM Compiler Infrastructure in HPC. LLVM ’15. Austin, Texas:
Association for Computing Machinery, 2015. isbn: 9781450340052. doi:
10.1145/2833157.2833162.

[116] Raphael Lapertot, Giovanni Chierchia, and Benjamin Perret. “Supervised
Learning of Hierarchical Image Segmentation”. working paper or
preprint. July 2023. url: https://hal.science/hal-04205711.

[117] Jukka Lehtosalo. Mypy: Static Typing for Python. url: https : / / mypy -
lang.org/ (visited on 09/26/2023).

[118] Roland Levillain. “Towards a software architecture for generic image
processing”. PhD thesis. Université Paris-Est, 2011.

https://doi.org/10.5555/3271463
https://doc.rust-lang.org/book/
https://doi.org/10.1016/0734-189X(89)90147-3
https://doi.org/10.1109/SIU.2017.7960159
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1145/2833157.2833162
https://hal.science/hal-04205711
https://mypy-lang.org/
https://mypy-lang.org/

166 BIBLIOGRAPHY

[119] Roland Levillain, Thierry Géraud, and Laurent Najman. “Milena: Write
Generic Morphological Algorithms Once, Run on Many Kinds of
Images”. In: Mathematical Morphology and Its Application to Signal and Image
Processing. Ed. by Michael H. F. Wilkinson and Jos B. T. M. Roerdink.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 295–306. isbn:
978-3-642-03613-2. doi: 10.1007/978-3-642-03613-2_27.

[120] Roland Levillain, Thierry Géraud, and Laurent Najman. “Writing
Reusable Digital Topology Algorithms in a Generic Image Processing
Framework”. In: Applications of Discrete Geometry and Mathematical
Morphology. Ed. by Ullrich Köthe, Annick Montanvert, and Pierre Soille.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 140–153. isbn:
978-3-642-32313-3. doi: 10.1007/978-3-642-32313-3_10.

[121] Roland Levillain, Thierry Géraud, Laurent Najman, and Edwin Carlinet.
“Practical Genericity: Writing Image Processing Algorithms Both
Reusable and Efficient”. In: Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications. Vol. 8827. Lecture Notes in Computer
Science. Bayro-Corrochano, Eduardo and Hancock, Edwin. Puerto
Vallarta, Mexico: Springer, Nov. 2014, pp. 70 –79. doi: 10.1007/978-
3-319-12568-8_9. url: https://hal.science/hal-01082349.

[122] Roland Levillain, Thierry Géraud, and Laurent Najman. “Why and howto
design a generic and efficient image processing framework: The case
of the Milena library”. In: 2010 IEEE International Conference on Image
Processing. 2010, pp. 1941–1944. doi: 10.1109/ICIP.2010.5649620.

[123] O. Lezoray and L. Grady. Image Processing and Analysis with Graphs:
Theory and Practice. Digital Imaging and Computer Vision. CRC Press,
2017. isbn: 9781439855089. url: https://books.google.fr/books?id=
NoPRBQAAQBAJ.

[124] Olivier Lézoray. “Complete lattice learning for multivariate mathematical
morphology”. In: Journal of Visual Communication and Image Representation
35 (2016), pp. 220–235. doi: 10.1016/j.jvcir.2015.12.017.

[125] Olivier Lezoray, Christophe Charrier, and Abderrahim Elmoataz. “Rank
transformation and manifold learning for multivariate mathematical
morphology”. In: 2009 17th European Signal Processing Conference. 2009,
pp. 35–39.

[126] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert.
“Abstraction Mechanisms in CLU”. In: Commun. ACM 20.8 (1977),
564–576. issn: 0001-0782. doi: 10.1145/359763.359789.

https://doi.org/10.1007/978-3-642-03613-2_27
https://doi.org/10.1007/978-3-642-32313-3_10
https://doi.org/10.1007/978-3-319-12568-8_9
https://doi.org/10.1007/978-3-319-12568-8_9
https://hal.science/hal-01082349
https://doi.org/10.1109/ICIP.2010.5649620
https://books.google.fr/books?id=NoPRBQAAQBAJ
https://books.google.fr/books?id=NoPRBQAAQBAJ
https://doi.org/10.1016/j.jvcir.2015.12.017
https://doi.org/10.1145/359763.359789

BIBLIOGRAPHY 167

[127] Ce Liu, W.T. Freeman, R. Szeliski, and Sing Bing Kang. “Noise Estimation
from a Single Image”. In: 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06). Vol. 1. 2006,
pp. 901–908. doi: 10.1109/CVPR.2006.207.

[128] Xinhao Liu, Masayuki Tanaka, and Masatoshi Okutomi. “Single-Image
Noise Level Estimation for Blind Denoising”. In: IEEE Transactions on
Image Processing 22.12 (2013), pp. 5226–5237. doi: 10.1109/TIP.2013.
2283400.

[129] Le Duy Lê Duy Huỳnh, Yongchao Xu, and Thierry Géraud.
“Morphology-based hierarchical representation with application to text
segmentation in natural images”. In: 2016 23rd International Conference on
Pattern Recognition (ICPR). 2016, pp. 4029–4034. doi: 10.1109/ICPR.2016.
7900264.

[130] David MacQueen. “Modules for Standard ML”. In: Proceedings of the 1984
ACM Symposium on LISP and Functional Programming. LFP ’84. Austin,
Texas, USA: Association for Computing Machinery, 1984, 198–207. isbn:
0897911423. doi: 10.1145/800055.802036. url: https://doi.org/10.
1145/800055.802036.

[131] Simon Marlow et al. “Haskell 2010 language report”. In: (2010).

[132] Jonathan Masci, Jesús Angulo, and Jürgen Schmidhuber. “A Learning
Framework for Morphological Operators Using Counter–Harmonic
Mean”. In: Mathematical Morphology and Its Applications to Signal and
Image Processing. Ed. by Cris L. Luengo Hendriks, Gunilla Borgefors,
and Robin Strand. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 329–340. isbn: 978-3-642-38294-9. doi: 10.1007/978-3-642-38294-
9_28.

[133] J Matas, O Chum, M Urban, and T Pajdla. “Robust wide-baseline stereo
from maximally stable extremal regions”. In: Image and Vision Computing
22.10 (2004). British Machine Vision Computing 2002, pp. 761–767. issn:
0262-8856. doi: 10.1016/j.imavis.2004.02.006.

[134] Wes McKinney. Python for data analysis: Data wrangling with Pandas,
NumPy, and IPython. O’Reilly Media, Inc., 2012.

[135] Arnold Meijster and Jos B. T. M. Roerdink. “A disjoint set algorithm for
the watershed transform”. In: 9th European Signal Processing Conference
(EUSIPCO 1998). 1998, pp. 1–4.

[136] Fernand Meyer. “Stochastic watershed hierarchies”. In: 2015 Eighth
International Conference on Advances in Pattern Recognition (ICAPR). 2015,
pp. 1–8. doi: 10.1109/ICAPR.2015.7050646.

https://doi.org/10.1109/CVPR.2006.207
https://doi.org/10.1109/TIP.2013.2283400
https://doi.org/10.1109/TIP.2013.2283400
https://doi.org/10.1109/ICPR.2016.7900264
https://doi.org/10.1109/ICPR.2016.7900264
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/800055.802036
https://doi.org/10.1145/800055.802036
https://doi.org/10.1007/978-3-642-38294-9_28
https://doi.org/10.1007/978-3-642-38294-9_28
https://doi.org/10.1016/j.imavis.2004.02.006
https://doi.org/10.1109/ICAPR.2015.7050646

168 BIBLIOGRAPHY

[137] Fernand Meyer. “Un algorithme optimal de ligne de partage des eaux”.
In: Actes du 8e congrès reconnaissance des formes et intelligence artificielle 2

(1991), pp. 847–859.

[138] Robin Milner. “A theory of type polymorphism in programming”. In:
Journal of Computer and System Sciences 17.3 (1978), pp. 348–375. doi: 10.
1016/0022-0000(78)90014-4.

[139] Robin Milner and Mads Tofte. Commentary on Standard ML. Cambridge,
MA, USA: MIT Press, 1991. isbn: 0262631377. doi: 10.5555/103021.

[140] Yaron Minsky, Anil Madhavapeddy, and Jason Hickey. Real World OCaml:
Functional programming for the masses. " O’Reilly Media, Inc.", 2013.

[141] Pascal Monasse and Frederic Guichard. “Fast computation of a
contrast-invariant image representation”. In: IEEE transactions on image
processing 9.5 (2000), pp. 860–872. doi: 10.1109/83.841532.

[142] David Mumford and Jayant Shah. “Optimal approximations by
piecewise smooth functions and associated variational problems”. In:
Communications on Pure and Applied Mathematics 42.5 (1989), pp. 577–685.
doi: 10.1002/cpa.3160420503.

[143] David Musser, Sibylle Schupp, and Rüdiger Loos. “Requirement
Oriented Programming”. In: Generic Programming. Ed. by Mehdi Jazayeri,
Rüdiger G. K. Loos, and David R. Musser. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1998, pp. 12–24. isbn: 978-3-540-39953-7. doi: 10.1007/
3-540-39953-4_2.

[144] David R Musser, Gilmer J Derge, and Atul Saini. STL tutorial and reference
guide: C++ programming with the standard template library. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[145] David R. Musser and Alexander A. Stepanov. “A Library of Generic
Algorithms in Ada”. In: Proceedings of the 1987 Annual ACM SIGAda
International Conference on Ada. SIGAda ’87. Boston, Massachusetts, USA:
Association for Computing Machinery, 1987, 216–225. isbn: 0897912438.
doi: 10.1145/317500.317529.

[146] David R Musser and Alexander A Stepanov. “Generic programming”.
In: International Symposium on Symbolic and Algebraic Computation (ISSAC).
Springer, 1988, pp. 13–25. doi: 10.1007/3-540-51084-2_2.

[147] Markku Mäkitalo and Alessandro Foi. “Noise Parameter Mismatch
in Variance Stabilization, With an Application to Poisson–Gaussian
Noise Estimation”. In: IEEE Transactions on Image Processing 23.12 (2014),
pp. 5348–5359. doi: 10.1109/TIP.2014.2363735.

https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.5555/103021
https://doi.org/10.1109/83.841532
https://doi.org/10.1002/cpa.3160420503
https://doi.org/10.1007/3-540-39953-4_2
https://doi.org/10.1007/3-540-39953-4_2
https://doi.org/10.1145/317500.317529
https://doi.org/10.1007/3-540-51084-2_2
https://doi.org/10.1109/TIP.2014.2363735

BIBLIOGRAPHY 169

[148] Makoto Nagao, Takashi Matsuyama, and Yoshio Ikeda. “Region
extraction and shape analysis in aerial photographs”. In: Computer
Graphics and Image Processing 10.3 (1979), pp. 195–223. issn: 0146-664X.
doi: 10.1016/0146-664X(79)90001-7.

[149] L. Najman and M. Schmitt. “Geodesic saliency of watershed contours and
hierarchical segmentation”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 18.12 (1996), pp. 1163–1173. doi: 10.1109/34.546254.

[150] Laurent Najman and Michel Couprie. “Building the component tree in
quasi-linear time”. In: IEEE Transactions on image processing 15.11 (2006),
pp. 3531–3539. doi: 10.1109/TIP.2006.877518.

[151] Laurent Najman and Jean Cousty. “A graph-based mathematical
morphology reader”. In: Pattern Recognition Letters 47 (2014), pp. 3–17.

[152] Laurent Najman, Jean Cousty, and Benjamin Perret. “Playing with
kruskal: algorithms for morphological trees in edge-weighted graphs”. In:
Mathematical Morphology and Its Applications to Signal and Image Processing:
11th International Symposium, ISMM 2013, Uppsala, Sweden, May 27-29,
2013. Proceedings 11. Springer. 2013, pp. 135–146. doi: 10.1007/978-3-
642-38294-9_12.

[153] Laurent Najman and Hugues Talbot. Mathematical Morphology: from theory
to applications. Ed. by Najman Laurent and Talbot Hugues. ISTE-Wiley,
June 2010, p. 507. doi: 10.1002/9781118600788.

[154] Axel Naumann. Variant: a type-safe union for C++17 (PR0088R3). 2016. url:
https://www.open- std.org/jtc1/sc22/wg21/docs/papers/2016/
p0088r3.html (visited on 03/09/2023).

[155] Eric Niebler. Boost Accumulators. 2005. url: https://www.boost.org/doc/
libs/1_82_0/doc/html/accumulators.html (visited on 11/06/2023).

[156] David Nistér and Henrik Stewénius. “Linear Time Maximally Stable
Extremal Regions”. In: Computer Vision – ECCV 2008. Ed. by David
Forsyth, Philip Torr, and Andrew Zisserman. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 183–196. isbn: 978-3-540-88688-4. doi: 10.
1007/978-3-540-88688-4_14.

[157] Georgios K. Ouzounis and Pierre Soille. “Pattern Spectra from
Partition Pyramids and Hierarchies”. In: Mathematical Morphology and
Its Applications to Image and Signal Processing. Ed. by Pierre Soille,
Martino Pesaresi, and Georgios K. Ouzounis. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 108–119. isbn: 978-3-642-21569-8. doi: 10.
1007/978-3-642-21569-8_10.

https://doi.org/10.1016/0146-664X(79)90001-7
https://doi.org/10.1109/34.546254
https://doi.org/10.1109/TIP.2006.877518
https://doi.org/10.1007/978-3-642-38294-9_12
https://doi.org/10.1007/978-3-642-38294-9_12
https://doi.org/10.1002/9781118600788
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0088r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0088r3.html
https://www.boost.org/doc/libs/1_82_0/doc/html/accumulators.html
https://www.boost.org/doc/libs/1_82_0/doc/html/accumulators.html
https://doi.org/10.1007/978-3-540-88688-4_14
https://doi.org/10.1007/978-3-540-88688-4_14
https://doi.org/10.1007/978-3-642-21569-8_10
https://doi.org/10.1007/978-3-642-21569-8_10

170 BIBLIOGRAPHY

[158] Georgios K Ouzounis and Pierre Soille. The alpha-tree algorithm. Tech. rep.
2012.

[159] Georgios K. Ouzounis and Michael H.F. Wilkinson. “Partition-induced
connections and operators for pattern analysis”. In: Pattern Recognition
43.10 (2010), pp. 3193–3207. issn: 0031-3203. doi: 10.1016/j.patcog.
2009.10.002.

[160] Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017).

[161] Fernando Perez and Brian E. Granger. “IPython: A System for Interactive
Scientific Computing”. In: Computing in Science & Engineering 9.3 (2007),
pp. 21–29. doi: 10.1109/MCSE.2007.53.

[162] Benjamin Perret and Jean Cousty. “Component Tree Loss Function:
Definition and Optimization”. In: Discrete Geometry and Mathematical
Morphology. Ed. by Étienne Baudrier, Benoît Naegel, Adrien Krähenbühl,
and Mohamed Tajine. Cham: Springer International Publishing, 2022,
pp. 248–260. isbn: 978-3-031-19897-7. doi: 10.1007/978-3-031-19897-
7_20.

[163] Benjamin Perret, Jean Cousty, Silvio Jamil F. Guimarães, and Deise S.
Maia. “Evaluation of Hierarchical Watersheds”. In: IEEE Transactions on
Image Processing 27.4 (2018), pp. 1676–1688. doi: 10.1109/TIP.2017.
2779604.

[164] Benjamin Perret et al. “Higra: Hierarchical graph analysis”. In: SoftwareX
10 (2019), p. 100335.

[165] Benjamin Perret et al. “Removing non-significant regions in hierarchical
clustering and segmentation”. In: Pattern Recognition Letters 128 (2019),
pp. 433–439. doi: 10.1016/j.patrec.2019.10.008.

[166] Sylvie Philipp-Foliguet, Michel Jordan, Laurent Najman, and Jean
Cousty. “Artwork 3D model database indexing and classification”. In:
Pattern Recognition 44.3 (2011), pp. 588–597. doi: 10.1016/j.patcog.
2010.09.016.

[167] Benjamin C. Pierce. Types and Programming Languages. 1st. The MIT Press,
2002. isbn: 0262162091. doi: 10.5555/509043.

[168] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and
Juliana Freire. “A Large-Scale Study About Quality and Reproducibility
of Jupyter Notebooks”. In: 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). 2019, pp. 507–517. doi: 10.1109/MSR.
2019.00077.

https://doi.org/10.1016/j.patcog.2009.10.002
https://doi.org/10.1016/j.patcog.2009.10.002
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1007/978-3-031-19897-7_20
https://doi.org/10.1007/978-3-031-19897-7_20
https://doi.org/10.1109/TIP.2017.2779604
https://doi.org/10.1109/TIP.2017.2779604
https://doi.org/10.1016/j.patrec.2019.10.008
https://doi.org/10.1016/j.patcog.2010.09.016
https://doi.org/10.1016/j.patcog.2010.09.016
https://doi.org/10.5555/509043
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1109/MSR.2019.00077

BIBLIOGRAPHY 171

[169] Fons van der Plas and Mikołaj Bochenski. Pluto.jl. url: https://plutojl.
org/ (visited on 05/07/2023).

[170] Jordi Pont-Tuset and Ferran Marques. “Measures and Meta-Measures
for the Supervised Evaluation of Image Segmentation”. In: 2013 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2013. doi:
10.1109/cvpr.2013.277.

[171] Jordi Pont-Tuset and Ferran Marques. “Supervised Assessment of
Segmentation Hierarchies”. In: Computer Vision – ECCV 2012. Springer
Berlin Heidelberg, 2012, pp. 814–827. doi: 10.1007/978-3-642-33765-
9_58.

[172] Jordi Pont-Tuset and Ferran Marques. “Upper-bound assessment of the
spatial accuracy of hierarchical region-based image representations”. In:
2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2012. doi: 10.1109/icassp.2012.6288021.

[173] Jonathan Ragan-Kelley et al. “Halide: A Language and Compiler for
Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines”. In: Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’13. Seattle,
Washington, USA: Association for Computing Machinery, 2013, 519–530.
isbn: 9781450320146. doi: 10.1145/2491956.2462176.

[174] V Robert et al. “The NAROO digitization center-Overview and scientific
program”. In: Astronomy & Astrophysics 652 (2021), A3. doi: 10.1051/
0004-6361/202140472.

[175] Christian Ronse. “Partial Partitions, Partial Connections and Connective
Segmentation”. In: Journal of Mathematical Imaging and Vision 32.2 (2008),
pp. 97–125. issn: 1573-7683. doi: 10.1007/s10851-008-0090-5.

[176] Christian Ronse. “Why mathematical morphology needs complete
lattices”. In: Signal processing 21.2 (1990), pp. 129–154.

[177] Guido van Rossum, Jukka Lehtosalo, and Lukasz Langa. PEP 484 – Type
Hints. url: https://peps.python.org/pep-0484/.

[178] Michaël Roynard. “Generic programming in modern C++ for Image
Processing”. PhD thesis. Sorbonne université, 2022.

[179] Michaël Roynard, Edwin Carlinet, and Thierry Géraud. “A Modern C++
Point of View of Programming in Image Processing”. In: Proceedings of the
21st ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences. 2022, pp. 164–171.

https://plutojl.org/
https://plutojl.org/
https://doi.org/10.1109/cvpr.2013.277
https://doi.org/10.1007/978-3-642-33765-9_58
https://doi.org/10.1007/978-3-642-33765-9_58
https://doi.org/10.1109/icassp.2012.6288021
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1051/0004-6361/202140472
https://doi.org/10.1051/0004-6361/202140472
https://doi.org/10.1007/s10851-008-0090-5
https://peps.python.org/pep-0484/

172 BIBLIOGRAPHY

[180] Michaël Roynard, Edwin Carlinet, and Thierry Géraud. “An Image
Processing Library in Modern C++: Getting Simplicity and Efficiency
with Generic Programming”. In: Reproducible Research in Pattern
Recognition. Ed. by Bertrand Kerautret et al. Cham: Springer International
Publishing, 2018, pp. 121–137. isbn: 978-3-030-23987-9.

[181] Szymon Rusinkiewicz. “Estimating curvatures and their derivatives on
triangle meshes”. In: 2nd International Symposium on 3D Data Processing,
Visualization and Transmission (3DPVT). IEEE. 2004, pp. 486–493. doi: 10.
1109/TDPVT.2004.1335277.

[182] P. Salembier and L. Garrido. “Binary partition tree as an efficient
representation for image processing, segmentation, and information
retrieval”. In: IEEE Transactions on Image Processing 9.4 (2000), pp. 561–576.
doi: 10.1109/83.841934.

[183] P. Salembier, A. Oliveras, and L. Garrido. “Antiextensive connected
operators for image and sequence processing”. In: IEEE Transactions on
Image Processing 7.4 (1998), pp. 555–570. doi: 10.1109/83.663500.

[184] Deise Santana Maia, Jean Cousty, Laurent Najman, and Benjamin Perret.
“Properties of combinations of hierarchical watersheds”. In: Pattern
Recognition Letters 128 (2019), pp. 513–520. issn: 0167-8655. doi: 10.1016/
j.patrec.2019.10.009.

[185] Deise Santana Maia, Jean Cousty, Laurent Najman, and Benjamin
Perret. “Watersheding Hierarchies”. In: Mathematical Morphology and Its
Applications to Signal and Image Processing. Ed. by Bernhard Burgeth
et al. Cham: Springer International Publishing, 2019, pp. 124–136. isbn:
978-3-030-20867-7. doi: 10.1007/978-3-030-20867-7_10.

[186] Deise Santana Maia et al. “Evaluation of Combinations of Watershed
Hierarchies”. In: Mathematical Morphology and Its Applications to Signal
and Image Processing. Ed. by Jesús Angulo, Santiago Velasco-Forero,
and Fernand Meyer. Cham: Springer International Publishing, 2017,
pp. 133–145. isbn: 978-3-319-57240-6. doi: 10.1007/978-3-319-57240-
6_11.

[187] Jean Serra. “A lattice approach to image segmentation”. In: Journal of
Mathematical Imaging and Vision 24 (2006), pp. 83–130. doi: 10 . 1007 /
s10851-005-3616-0.

[188] Jean Serra. Image Analysis and Mathematical Morphology. Image
Analysis and Mathematical Morphology. Academic Press, 1982. isbn:
9780126372410.

https://doi.org/10.1109/TDPVT.2004.1335277
https://doi.org/10.1109/TDPVT.2004.1335277
https://doi.org/10.1109/83.841934
https://doi.org/10.1109/83.663500
https://doi.org/10.1016/j.patrec.2019.10.009
https://doi.org/10.1016/j.patrec.2019.10.009
https://doi.org/10.1007/978-3-030-20867-7_10
https://doi.org/10.1007/978-3-319-57240-6_11
https://doi.org/10.1007/978-3-319-57240-6_11
https://doi.org/10.1007/s10851-005-3616-0
https://doi.org/10.1007/s10851-005-3616-0

BIBLIOGRAPHY 173

[189] Jean Serra. “Morphological filtering: An overview”. In: Signal Processing
38.1 (1994). Mathematical Morphology and its Applications to Signal
Processing, pp. 3–11. issn: 0165-1684. doi: 10 . 1016 / 0165 - 1684(94)
90052-3.

[190] Jeremy Siek and Andrew Lumsdaine. Boost Concept Checking Library
(BCCL). 2000. url: https : / / www . boost . org / libs / concept _ check /
concept_check.htm (visited on 02/06/2023).

[191] Jeremy Siek and Andrew Lumsdaine. “Concept checking: Binding
parametric polymorphism in C++”. In: First Workshop on C++ Template
Programming. 2000, p. 71.

[192] Jeremy Siek and Walid Taha. “Gradual typing for objects”. In: European
Conference on Object-Oriented Programming. Springer. 2007, pp. 2–27. doi:
10.1007/978-3-540-73589-2_2.

[193] Jeremy G. Siek and Walid Taha. “Gradual Typing for Functional
Languages”. In: Scheme and Functional Programming Workshop. 2006,
pp. 81–92.

[194] J.G. Siek, L.Q. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide
and Reference Manual, The. C++ In-Depth Series. Pearson Education, 2001.
isbn: 9780321601612.

[195] Pierre Soille. “Constrained connectivity for hierarchical image
partitioning and simplification”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 30.7 (2008), pp. 1132–1145. doi:
10.1109/TPAMI.2007.70817.

[196] Pierre Soille. Morphological Image Analysis. Springer Berlin Heidelberg,
1999. doi: 10.1007/978-3-662-03939-7. url: https://doi.org/10.
1007%2F978-3-662-03939-7.

[197] Spyder: The Scientific Python Development Environment. url: https://www.
spyder-ide.org/ (visited on 05/07/2023).

[198] Alexander Stepanov and Meng Lee. The standard template library.
Vol. 1501. Hewlett Packard Laboratories 1501 Page Mill Road, Palo Alto,
CA 94304, 1995.

[199] Alexander Stepanov and Paul McJones. Elements of Programming. 1st.
Addison-Wesley Professional, 2009. isbn: 032163537X. doi: 10 . 5555 /
1614221.

[200] Alexander A Stepanov, Aaron Kershenbaum, and David R Musser. Higher
order programming. 1987.

[201] Michael Still. The definitive guide to ImageMagick. Apress, 2006.

https://doi.org/10.1016/0165-1684(94)90052-3
https://doi.org/10.1016/0165-1684(94)90052-3
https://www.boost.org/libs/concept_check/concept_check.htm
https://www.boost.org/libs/concept_check/concept_check.htm
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1109/TPAMI.2007.70817
https://doi.org/10.1007/978-3-662-03939-7
https://doi.org/10.1007%2F978-3-662-03939-7
https://doi.org/10.1007%2F978-3-662-03939-7
https://www.spyder-ide.org/
https://www.spyder-ide.org/
https://doi.org/10.5555/1614221
https://doi.org/10.5555/1614221

174 BIBLIOGRAPHY

[202] Christopher Strachey. “Fundamental Concepts in Programming
Languages”. In: Higher-Order and Symbolic Computation 13.1 (2000),
pp. 11–49. issn: 1573-0557. doi: 10.1023/A:1010000313106.

[203] Bjarne Stroustrup. The C++ programming language. en. 4th ed. Boston, MA:
Addison-Wesley Educational, Jan. 2013.

[204] Camille Sutour, Charles-Alban Deledalle, and Jean-François Aujol.
“Estimation of the Noise Level Function Based on a Nonparametric
Detection of Homogeneous Image Regions”. In: SIAM Journal on Imaging
Sciences 8.4 (2015), pp. 2622–2661. doi: 10.1137/15M1012682.

[205] Ameet Talwalkar, Sanjiv Kumar, Mehryar Mohri, and Henry Rowley.
“Large-scale SVD and Manifold Learning”. In: Journal of Machine Learning
Research 14.96 (2013), pp. 3129–3152.

[206] Hanlin Tan et al. “Pixelwise Estimation of Signal-Dependent Image
Noise Using Deep Residual Learning”. In: Computational Intelligence and
Neuroscience 2019 (2019), p. 4970508. issn: 1687-5265. doi: 10.1155/2019/
4970508.

[207] Robert Endre Tarjan. “Efficiency of a Good But Not Linear Set Union
Algorithm”. In: 22.2 (1975), pp. 215–225. issn: 0004-5411. doi: 10.1145/
321879.321884.

[208] EPITA Research Laboratory Image Team. Pylene: A Generic and Efficient
Image Processing Library. url: https://gitlab.lre.epita.fr/olena/
pylene (visited on 04/07/2023).

[209] GIMP Development Team. GNU Image Manipulation Program (GIMP). url:
https://www.gimp.org (visited on 05/07/2023).

[210] The PyPy Team. PyPy: A fast, compliant alternative implementation of Python.
url: https://www.pypy.org (visited on 06/07/2023).

[217] Ansi. American National Standard: Programming Language – Common Lisp.
ANSI X3.226:1994 (R1999). 1994.

[218] Mads Tofte. “Essentials of Standard ML Modules”. In: Advanced
Functional Programming. Ed. by John Launchbury, Erik Meijer, and
Tim Sheard. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996,
pp. 208–229. doi: 10.1007/3-540-61628-4_8.

[219] Trait std::ops::Add. url: https://doc.rust-lang.org/std/ops/trait.
Add.html (visited on 08/06/2023).

[220] Alain Trémeau and Philippe Colantoni. “Regions adjacency graph
applied to color image segmentation”. In: IEEE Transactions on image
processing 9.4 (2000), pp. 735–744. doi: 10.1109/83.841950.

https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1137/15M1012682
https://doi.org/10.1155/2019/4970508
https://doi.org/10.1155/2019/4970508
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
https://gitlab.lre.epita.fr/olena/pylene
https://gitlab.lre.epita.fr/olena/pylene
https://www.gimp.org
https://www.pypy.org
https://doi.org/10.1007/3-540-61628-4_8
https://doc.rust-lang.org/std/ops/trait.Add.html
https://doc.rust-lang.org/std/ops/trait.Add.html
https://doi.org/10.1109/83.841950

BIBLIOGRAPHY 175

[221] Florence Tushabe and MHF Wilkinson. “Image preprocessing for
compression: Attribute filtering”. In: Proceedings of the World Congress on
Engineering and Computer Science (WCECS). 2007.

[222] Erik R. Urbach. “Intelligent Object Detection Using Trees”. In: Lecture
Notes in Computer Science. Springer International Publishing, 2015,
pp. 289–300. doi: 10.1007/978-3-319-18720-4_25.

[223] Erik R Urbach and Michael HF Wilkinson. “Shape-only granulometries
and grey-scale shape filters”. In: Proceedings of the International Symposum
on Mathematical Morphology (ISMM). Vol. 2002. 2002, pp. 305–314.

[224] Corinne Vachier and Fernand Meyer. “Extinction value: a new
measurement of persistence”. In: IEEE Workshop on nonlinear signal and
image processing. Vol. 1. Neos Marmaras Greece. 1995, pp. 254–257.

[225] D. Vandevoorde and N.M. Josuttis. C++ Templates: The Complete Guide.
Pearson Education, 2002. isbn: 9780672334054.

[226] Luc Vincent. “Grayscale area openings and closings, their efficient
implementation and applications”. In: First Workshop on Mathematical
Morphology and its Applications to Signal Processing. 1993, pp. 22–27.

[227] Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific
computing in Python”. In: Nature methods 17.3 (2020), pp. 261–272. doi:
10.1038/s41592-019-0686-2.

[228] Andrew J. Viterbi and James K. Omura. Principles of Digital Communication
and Coding. 1st. USA: McGraw-Hill, Inc., 1979. isbn: 0070675163. doi: 10.
5555/578474.

[229] James S. Walker. “Combined image compressor and denoiser based
on tree-adapted wavelet shrinkage”. In: Optical Engineering 41.7 (2002),
pp. 1520 –1527. doi: 10.1117/1.1483086.

[230] Stéfan van der Walt et al. “scikit-image: image processing in Python”. In:
PeerJ 2 (June 2014), e453. issn: 2167-8359. doi: 10.7717/peerj.453. url:
https://doi.org/10.7717/peerj.453.

[231] Steven Watanabe. Boost.TypeErasure. url: https : / / www . boost . org /
doc / libs / 1 _ 83 _ 0 / doc / html / boost _ typeerasure . html (visited on
03/09/2023).

[232] A.I. Watson. “A new method of classification for Landsat data using
the ‘watershed’ algorithm”. In: Pattern Recognition Letters 6.1 (1987),
pp. 15–19. doi: 10.1016/0167-8655(87)90044-4.

https://doi.org/10.1007/978-3-319-18720-4_25
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5555/578474
https://doi.org/10.5555/578474
https://doi.org/10.1117/1.1483086
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.453
https://www.boost.org/doc/libs/1_83_0/doc/html/boost_typeerasure.html
https://www.boost.org/doc/libs/1_83_0/doc/html/boost_typeerasure.html
https://doi.org/10.1016/0167-8655(87)90044-4

176 BIBLIOGRAPHY

[233] Michael H. F. Wilkinson and Jos B. T. M. Roerdink. “Fast Morphological
Attribute Operations Using Tarjan’s Union-Find Algorithm”. In:
Mathematical Morphology and its Applications to Image and Signal Processing.
Ed. by John Goutsias, Luc Vincent, and Dan S. Bloomberg. Boston, MA:
Springer US, 2000, pp. 311–320. isbn: 978-0-306-47025-7. doi: 10.1007/0-
306-47025-X_34.

[234] Michael H.F. Wilkinson. “A fast component-tree algorithm for high
dynamic-range images and second generation connectivity”. In: 2011 18th
IEEE International Conference on Image Processing. IEEE, 2011. doi: 10 .
1109/icip.2011.6115597.

[235] Niklaus Wirth. “Modula: A language for modular multiprogramming”.
In: Software: Practice and Experience 7.1 (1977), pp. 1–35.

[236] Shaoping Xu et al. “A fast yet reliable noise level estimation algorithm
using shallow CNN-based noise separator and BP network”. In: Signal,
Image and Video Processing 14.4 (2020), pp. 763–770. issn: 1863-1711. doi:
10.1007/s11760-019-01608-z.

[237] Yongchao Xu, Thierry Géraud, and Laurent Najman. “Connected
Filtering on Tree-Based Shape-Spaces”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 38.6 (2016), pp. 1126–1140. doi: 10.1109/
TPAMI.2015.2441070.

[238] Yongchao Xu, Thierry Géraud, and Laurent Najman. “Context-based
energy estimator: Application to object segmentation on the tree of
shapes”. In: 2012 19th IEEE International Conference on Image Processing.
2012, pp. 1577–1580. doi: 10.1109/ICIP.2012.6467175.

[239] Yongchao Xu, Thierry Géraud, and Laurent Najman. “Morphological
filtering in shape spaces: Applications using tree-based image
representations”. In: Proceedings of the 21st International Conference on
Pattern Recognition (ICPR2012). 2012, pp. 485–488.

[240] Yongchao Xu, Thierry Géraud, and Laurent Najman. “Salient level lines
selection using the Mumford-Shah functional”. In: 2013 IEEE International
Conference on Image Processing. 2013, pp. 1227–1231. doi: 10.1109/ICIP.
2013.6738253.

[241] Yongchao Xu, Pascal Monasse, Thierry Géraud, and Laurent Najman.
“Tree-Based Morse Regions: A Topological Approach to Local Feature
Detection”. In: IEEE Transactions on Image Processing 23.12 (2014),
pp. 5612–5625. doi: 10.1109/TIP.2014.2364127.

https://doi.org/10.1007/0-306-47025-X_34
https://doi.org/10.1007/0-306-47025-X_34
https://doi.org/10.1109/icip.2011.6115597
https://doi.org/10.1109/icip.2011.6115597
https://doi.org/10.1007/s11760-019-01608-z
https://doi.org/10.1109/TPAMI.2015.2441070
https://doi.org/10.1109/TPAMI.2015.2441070
https://doi.org/10.1109/ICIP.2012.6467175
https://doi.org/10.1109/ICIP.2013.6738253
https://doi.org/10.1109/ICIP.2013.6738253
https://doi.org/10.1109/TIP.2014.2364127

BIBLIOGRAPHY 177

[242] Jiwoo You, Scott C Trager, and Michael HF Wilkinson. “A fast,
memory-efficient alpha-tree algorithm using flooding and tree size
estimation”. In: International Symposium on Mathematical Morphology and
Its Applications to Signal and Image Processing. Springer. 2019, pp. 256–267.
doi: 10.1007/978-3-030-20867-7_20.

[243] Zongsheng Yue et al. “Variational Denoising Network: Toward Blind
Noise Modeling and Removal”. In: Advances in Neural Information
Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates,
Inc., 2019.

[244] Kai Zhang, Wangmeng Zuo, and Lei Zhang. “FFDNet: Toward a Fast and
Flexible Solution for CNN-Based Image Denoising”. In: IEEE Transactions
on Image Processing 27.9 (2018), pp. 4608–4622. doi: 10.1109/TIP.2018.
2839891.

https://doi.org/10.1007/978-3-030-20867-7_20
https://doi.org/10.1109/TIP.2018.2839891
https://doi.org/10.1109/TIP.2018.2839891

	Introduction
	Généricité et traitement d'images
	La généricité statico-dynamique pour le traitement d'images
	Applications en morphologie mathématique dans le contexte d'image bruitée
	Conclusion et perspectives
	Introduction
	I Genericity and Image Processing
	Generic Programming
	From concreteness to genericity
	Generic programming features from C++
	Comparison with other languages
	Concepts
	Conclusion

	Generic Image Processing and Its Application
	Image representations
	Generic image processing
	Image processing libraries
	Conclusion

	Hierarchical Representations of Images
	Representing images as hierarchies
	Tree-based representations of hierarchies
	An overview of hierarchical representations of images
	Conclusion

	II A Static-Dynamic Approach to Image Processing
	Static-Dynamic Genericity for Image Processing
	Issues with static genericity for image processing
	Dynamism in C++
	Static-dynamic genericity in C++
	Extension to the Rust programming language
	Experiments
	Conclusion

	Static-Dynamic Hierarchy Construction
	Max-tree construction algorithms
	Overview of the Berger's max-tree algorithm
	Existing implementations of Berger's max-tree
	Static-dynamic implementation
	Evaluation
	Conclusion and perspectives

	III Applications in Image Processing
	Noise Level Estimation using Hierarchical Representations
	Context and motivation
	Grayscale noise level function estimation
	Extension to color images
	Extension to the whole hierarchy
	Comparative results
	Conclusion

	Impact of the Noise on Hierarchical Representations
	Motivations
	Structural study of the impact of the noise in the -tree
	Applicability of the study
	Conclusion and perspectives

	Conclusion and Perspectives
	Genericity, efficiency and interactivity for an image processing library
	Hierarchical representations of images in the presence of noise

