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Summary

Computation in Memory (CIM) is a groundbreaking concept that involves performing

computations directly within the memory itself, eliminating the need to transfer data back

and forth between the memory and Central Processing Unit (CPU). This approach devi-

ates from the traditional Von Neumann architecture, aiming to overcome its limitations

and bottlenecks, ultimately driving technological advancement.

Various CIM solutions leverage existing memory technologies, capitalising on physical

attributes, organisation, peripheral components, and control logic of the memory. These

paradigms enable logic and arithmetic operations within the memory, significantly re-

ducing latency and energy consumption by eliminating data transfers to the CPU. Fur-

thermore, they pave the way for enhanced parallelism through dense arrays of memory

elements that support computation.

The thesis explores the potential of memristive-basedmemories to redefine the integration

of logic and memory. The research delves into different LIM implementations, analysing

their advantages and disadvantages, with a particular focus on security considerations.

The primary objective is to efficiently synthesise a range of Boolean operations within

the LIM framework, from basic 2-bit operations to the Full Adder. Simultaneously, the

thesis introduces a Simulation and Analysis environment to support parallel simulations

and parametric sweep. The research work compares various LIM technologies in terms

of memory resource requirements and the number of operations needed to implement

fundamental Boolean functions. These preliminary findings highlight the potential of

memristive-based LIM technologies, but they also emphasise the importance of the re-

spect of electrical characteristics and operation times.

To gain a deeper understanding of LIM solutions, we developed a toolkit to easily analyse

electrical behaviour, generate netlist inputs, run Cadence simulations, and collect simula-



xiv Summary

tion data. Thanks to this automatic tool, we revealed someweaknesses of certain solutions,

particularly concerning deviations in output memristor resistance from ideal values. The

research explored therefore operations under non-ideal conditions, focusing on the role

of input memristor resistance in determining correct operation ranges. It highlights the

potential for incorrect results when chaining operations, especially from non-ideal inputs,

prompting the consideration of refresh cycles for stability.

The thesis finally explored security properties of such LIM solutions, by looking at side-

channel and fault analyses. The study revealed several vulnerabilities, mainly due to the

large resistive difference between LowResistive State (LRS) andHigh Resistive State (HRS),

and the lack of robustness when operations are performed under non-ideal conditions.

In summary, the research explores the exciting possibilities of memristive-based LIM, of-

fering insights into their potential, but also showing their limits and vulnerabilities.
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Sommaire

Le calcul en mémoire est un concept révolutionnaire qui consiste à effectuer des calculs

directement dans la mémoire elle-même, éliminant ainsi la nécessité de transférer des don-

nées entre la mémoire et l’unité centrale. Cette approche s’écarte de l’architecture Von

Neumann traditionnelle et vise à en surmonter les limites et les goulets d’étranglement,

pour finalement favoriser le progrès technologique.

Diverses solutions de calcul enmémoire exploitent les technologies demémoire existantes,

en capitalisant sur les attributs physiques, l’organisation, les composants périphériques et

la logique de contrôle de la mémoire. Ces paradigmes permettent d’effectuer des opéra-

tions logiques et arithmétiques au sein de la mémoire, ce qui réduit considérablement la

latence et la consommation d’énergie en éliminant les transferts de données vers l’unité

centrale de traitement. En outre, ils ouvrent la voie à un parallélisme accru grâce à des

réseaux denses d’éléments de mémoire qui prennent en charge le calcul.

La thèse explore le potentiel desmémoires à base dememristors pour redéfinir l’intégration

de la logique et de la mémoire. La recherche plonge dans différentes implémentations de

Logique en Mémoire (LIM), analysant leurs avantages et leurs inconvénients, en mettant

particulièrement l’accent sur les aspects de sécurité.

L’objectif principal est de synthétiser efficacement une gamme d’opérations booléennes.

Parallèlement, la thèse introduit un environnement de simulation et d’analyse pour per-

mettre les simulations parallèles et les balayages paramétriques. Le travail de recherche

compare diverses technologies LIM en termes de besoins en ressources mémoire et du

nombre d’opérations nécessaires pour mettre en œuvre des fonctions booléennes fonda-

mentales. Ces résultats préliminaires mettent en lumière le potentiel des technologies LIM

à base de memristors, tout en soulignant l’importance du respect des caractéristiques élec-

triques et des temps d’opération.
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Pourmieux comprendre les solutions LIM, nous avons développé une boîte à outils permet-

tant d’analyser facilement le comportement électrique, de générer des entrées de netlist,

d’exécuter des simulations Cadence et de recueillir des données de simulation. Grâce à

cet outil automatisé, nous avons révélé certaines faiblesses de certaines solutions, en par-

ticulier en ce qui concerne les écarts de résistance des memristors par rapport aux valeurs

idéales.

La recherche a donc exploré les opérations dans des conditions non idéales, en mettant

l’accent sur le rôle de la valeur de la résistance initiale du memristor dans la détermina-

tion des plages d’opération correctes. Elle met en évidence le risque d’obtenir des résultats

incorrects lors de l’enchainement d’opérations, en particulier à partir de valeurs initiaux

non idéaux des memristors, ce qui incite à envisager des cycles de rafraîchissement pour

la stabilité des opérations.

Finalement, la thèse a exploré les propriétés de sécurité de ces solutions LIM, en examinant

les analyses des canaux auxiliaires et des attaques en fautes. L’étude a révélé plusieurs vul-

nérabilités, principalement dues à la grande différence de résistance entre les états de faible

résistance (LRS) et les états de haute résistance (HRS), ainsi qu’au manque de robustesse

lorsque les opérations sont effectuées dans des conditions non idéales.

En résumé, la recherche explore les possibilités de la technologie LIM à base dememristors,

en offrant des perspectives sur leur potentiel, tout en montrant également leurs limites et

leurs vulnérabilités.
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Introduction

1.1 Background & Context
The progress in the semiconductor industry has stimulated numerous innovations and im-

provements in all of its domains, from devices to computing paradigms. The evolution

of transistors has been described by Gordon Moore, the co-founder of Intel and Fairchild

Semiconductors, stating in 1965 that the number of transistors on a microchip doubles

about every year (occupying the same area); hence, the cost of microchip is halved [4].

According to Moore, this operating principle and, at the same time, commitment, should

have gone on for at least ten years. Ten years later, in 1975, Moore revised the forecast

to grow double every almost two years [5]. Over time, this simple prediction became a

law, taking the name of its inventor: Moore’s law. This law has become a guideline for

the semiconductors industry to trace a path for the evolution of computers.

In 1974, Robert H. Dennard at IBM stated the so-called Dennard scaling [6], where, as the

size of Metal-Oxide-Semiconductor Field-Effect Transistor (MOS) transistors shrinks, the

power density remains constant, and therefore the power consumption will remain pro-

portional with the area. Furthermore, according to Dennard, each new process generation
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would lead to a 0.7x reduction of the Metal-Oxide-Semiconductor Field-Effect Transistor

(MOSFET) gate length and width, the power supply voltage, and the gate oxide. The end

of Dennard scaling arrived in 2003 when the introduction of multi-core processors guar-

anteed the continuity of Moore’s law. Presently, CMOS technology is close to its physical

limits and, therefore, it is harder to scale down the size and improve the performance: we

are witnessing the end of Moore law [7].

Figure 1.1: IRDS - 40 years of Microprocessor Trend Data. From [1].

In parallel to the MOSFETs, computer architectures evolved as well: since the appear-

ance of modern computers, the widely adopted computing architecture has been based on

the separation between the computing unit (or processor) and the memory, i.e., the Von

Neumann architecture [8]. This architecture implies that a single bus is connecting the

processor and the memory, meaning that the memory is accessed at least twice for every

instruction (fetch of the instruction, read/write of data). This problem is known as the Von

Neumann bottleneck [9].

The first solution that has been adopted to address the Von Neumann bottleneck is the
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Harvard architecture [10], where program and data are stored on separate memories that

are connected to the processor by two separate buses. However, this solution has lim-

ited efficiency, as in modern computers, the separation between processor and memory

has become an issue due to the uneven evolution of processing speed and memory access

times (also known as the memory wall) [11, 12]. This inability of the memory to match the

speed of processors has been an issue since the early ’70s and has first been addressed with

the introduction of the cache memory [13]: a faster memory used to store a subset of the

main memory content. The partitioning of the memory content between the cache (fast

and high cost) and main memory (slower and cheaper) is the best approach to guarantee

high performance and low cost.

However, with technological advancements, the memory wall continued to be an increas-

ingly important issue. This has led to the introduction of various levels of cache to compen-

sate for the speed disparity while maintaining low cost. The movement of data becomes

ubiquitous in CPU operations, where parts of data are moved from memory to proces-

sor, processed, and finally sent back. This data movement is currently costlier in terms of

power than the computation itself, e.g., a DRAM access consumes 200 times more energy

than a floating point operation [14].

Another important issue regarding the power efficiency is related to static power. Today,

the main memories are implemented in DRAM (compact and cheap), while caches are im-

plemented in SRAM (fast and expensive). These are both volatile memories, i.e., in order

to retain information, they need to be connected to a power supply, thus consuming en-

ergy even when the memory is not accessed. In fact, for small technology nodes (below

32 nm), static power consumption has become dominant over dynamic power consump-

tion. These power efficiency issues are known as the power wall [15]. A solution to the

static power problem could be to change the technology adopted and switch to the use

of Non-Volatile Memories (NVMs), which will significantly reduce the static power con-

sumption since the stored data are kept even in the absence of a power supply. However,

traditional flash memories are too slow to replace the DRAM as the main memory or the

SRAM as the cache memory. In this context, research has been conducted on different

materials and devices to identify NVM solutions with speed matching the requirements of
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the main memory or even low levels of cache. Among the best candidates, there are the so-

called emerging memories, which include Resistive RandomAccess Memory (RRAM) [16],

Phase Change Memory (PCM) [17], Spin-Transfer Torque Magnetic Random Access Mem-

ory (STT-MRAM)) [18] and Ferroelectric Field-Effect Transistor (FeFET) [19]. These are

all resistive-based memories, i.e., the information is stored as a resistance value and not

as a charge value, as is the case for conventional CMOS memories. The NVMs, already

tackling issues such as power consumption, also showed interesting physical capabilities.

Indeed, changing from charge-based (as SRAM or DRAM) to resistive-based memories

enables new scenarios where the physical capabilities of the memory can be exploited to

perform logic or arithmetic operations directly inside the memory array, therefore bypass-

ing the memory wall via the CIM paradigm. Emerging memory technologies, along with

new computation paradigms, can in fact provide a convenient way to mitigate the limita-

tions of traditional memories: moving the computation inside the memory tackles both

the memory and the power wall. In fact, having the possibility to perform operations

directly inside the memory means being able to avoid the data movement to and from

the CPU, saving time and energy. Among the existing CIM solutions, the ones based on

memristors are of particular interest, since these are the only devices, up to now, which

offer the possibility to perform computation and store the result within the memory ar-

ray without any need for external manipulation of data. In addition, the memristor (used

for RRAMs) has the advantage of having a very simple structure, being compatible with

the CMOS process, having low area occupancy and theoretical high switching speed, and

being non-volatile. Depending on the target application, two main CIM approaches exist:

(i) analog-CIMmostly developed for accelerating Multiply-Accumulate (MAC) operations,

and (ii) digital-CIM mostly used for performing Boolean operations. The focus of this the-

sis is on digital-CIM, more precisely on LIM.

The remainder of the chapter is organised as the following: an overview of the basic

computer architecture is presented, followed by a foreword to the main memory technolo-

gies, and an introduction on the different types of CIM solutions. Finally, we introduce

hardware security aspects.
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1.1.1 Computer Architecture
The fundamental components of a computer architecture (see figure 1.2) are the CPU,mem-

ory, and Input/Output (I/O). The system’s main component, the processor (CPU), is in

charge of executing instructions. Data and processor instructions are stored in memory.

I/O is in charge of transferring data from between the processor and external devices like a

printer or a keyboard. Additional parts of a computer system are the bus, which connects

the other parts of the architecture, and the instruction pipeline, which tracks the instruc-

tions that the processor is following. The CPU is responsible for executing instructions

and managing the operations of the system. For our scope, the most interesting part of

the computer architecture is the memory.

Figure 1.2: Fundamental components in a computer.

1.1.2 Computer Memory Technologies
This section presents the memory, its types, and their usage. It is followed by a brief

overview of the various memory technologies and how CIM can be enabled with them.

The goal is to highlight the differences and capabilities of the possible implementations,
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showing the issues and the limitations of eachmemory. There are several types of memory

present inside a computer:

• CPU registers,

• Read Only Memory (ROM),

• Cache memory,

• Primary / Main memory,

• Secondary memory / Mass storage.

The CPU registers are high-speed memories built in the processor to enable the fastest

data access. These are groups of flip-flops (latch-type circuit with two stable states, rep-

resenting logic 1 and 0) [20]. ROM, or permanent memory, is a non-volatile memory. It

is non-modifiable and it is used to perform the Power On Self Test (POST): the diagnostic

test done at the computer start-up. Finally, secondary memory, also known as external

memory, it is a memory that is not directly connected to the CPU and that can often be

attached and connected as the user wishes. Common types of secondary memories are Op-

tical Drive memories (CD-ROM, CD-RROM, DVD, etc.), Magnetic storage memories (Hard

Disk Drive (HDD), magnetic tape, floppy disk) and Solid-State Drive memories (Universal

Serial Bus (USB) memory memory stick or USB flash drive).

In the following, there is amore detailed explanation of certain of the above-mentioned

memories.

ROM

ROM (Read Only Memory), or permanent memory is a non-volatile memory that cannot

bemodified by the user. It is where the operating instructions of the system are stored. The

data that is stored inside these memories, as the name says, can only be read. It uses fuses

that can be set to store a certain piece of data. Therefore, the data are binary-formatted. It

is primarily used to store the Basic Input-Output System (BIOS) and other firmware that

are essential for a system to start and function properly. It is typically found in the BIOS

chip of a motherboard, which contains the instructions that the computer needs to boot

up. ROM memories can be divided into more types, introduced in the next paragraphs.
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Figure 1.3: Computer Memory types.

PROM Programmable Read-Only Memory (PROM) is a type of ROM that starts without

written data on it. It can be written and, therefore, used by means of a PROM programmer.

It is only programmable once, and it is typically used to create firmware for a chip.

EPROM Erasable Programmable Read-Only Memory (EPROM) is a type of ROM chip

that can be written onto (as the PROM), but it can as well be erased and therefore re-

programmed. The erase operation is done by means of Ultraviolet (UV) light exposing it

on a quartz crystal window at the top of the chip. The erase operation slightly damages

the memory, so there is a limited amount of erase and write operations, and it has to be

manually done, making it a time consuming operation.

EEPROM Electrically Erasable Programmable Read-Only Memory (EEPROM) is a type

of ROM chip whose goal is substituting the PROM and EPROM chips. It is also erasable,

but this time the erasing process is done by means of an electric field: it is quicker and

it does not damage the memory. In fact, the chip does not need to be removed from the

memory, whereas EPROM chips need to be removed from the computer to be erased.

RAM

Random-Access Memory (RAM) is a vital component of modern computing systems, serv-

ing as the primary means of temporary data storage and retrieval. It is a type of volatile
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memory, meaning that its contents are lost when power is removed from the system.

There are two main types of classic RAM: dynamic RAM (DRAM) and static RAM

(SRAM). DRAM is the most widely used type of RAM and is characterised by its ability to

be repeatedly written and read. It is also relatively inexpensive compared to SRAM. On

the other hand, SRAM is a type of RAM that is faster than DRAM and is primarily used in

high-performance systems such as servers and high-end computers.

SRAM is a type of memory that uses a combination of transistors and capacitors to

store data. On the other hand, DRAM is a type of memory that uses a capacitor to store

data. Unlike SRAM, DRAM needs to be refreshed periodically to retain data, which means

that it depends on a supply voltage and that it can preserve information without being

refreshed only for a short period of time. This makes DRAM less reliable than SRAM, as

it is more susceptible to data loss in the event of a power outage or other failure.

Other RAM types have been studied and developed, to improve performance and re-

duce costs, and these memories are called Emerging Memories, as introduced.

Among them are RRAM [16], PCM [17], and STT-MRAM) [18].

SRAM SRAM is a bistable circuit that exploits two crossed-coupled inverters to retain

an electric charge that represents the stored value. This value will be kept until the op-

posite value is written in the same cell. The circuit of a 6T SRAM is shown in figure 1.10.

It uses two access transistors that allow access to the cell to ensure data retention and

perform read and write operations. The SRAM cell is big: its size is more than 60 𝐹 2. As

a consequence, the cost of SRAM is high. When the size of the transistors is reduced, the

yield drops, and therefore the faster the cell, the more expensive its fabrication is. The

read and write access time of an SRAM cell is less than 3 ns. Being a volatile memory,

data is retained until the power is on. On the other hand, there is the static power con-

sumption to take into account. The endurance is greater than 1015 cycles. SRAM does not

need to be refreshed, which means that it can retain data indefinitely as long as power

is supplied. This makes SRAM faster and more reliable than DRAM, as it does not suffer

from the same performance degradation over time. Another advantage of SRAM is its low

power consumption. Because SRAM does not need to be refreshed, it uses less power than

DRAM, making it a popular choice for mobile devices such as laptops and smartphones.
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Figure 1.4: A six-transistor (6T) CMOS SRAM cell. From [2].

DRAM DRAMretains the charge thanks to a capacitorwhose access ismanaged through

a transistor, as shown in figure 1.10. The capacitor charge represents the value stored in

the memory. Although the dimensions of the DRAM circuit are smaller than the SRAM,

the access time is higher than the SRAM’s, and it suffers of leak currents because of the

capacitor, requiring then the value in the memory to be often refreshed (around 50 times

per second). The consequence is a slower access time.

The read and write access time of a DRAM cell is between 7 and 20 ns. Being a volatile

memory, the data is retained until the power is on. On the other hand, there is the static

power consumption to take into account. The endurance is higher than 1015 cycles. The

cell size is between 4 and 6 𝐹 2.

Despite its drawbacks, DRAM is still the most widely used type of memory in modern

computing systems. One of the main reasons for this is its low cost. DRAM is much

cheaper to produce than SRAM, which makes it a more cost-effective option for many

applications.

Another advantage of DRAM is its high storage capacity. Because DRAM uses a capac-

itor to store data, it can store more data in a smaller area than SRAM. This makes DRAM

a popular choice for use in main memory, where high storage capacity is more important

than speed.

In summary, SRAM and DRAM are both RAM types that are used for temporary data
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storage and retrieval. SRAM is faster and more reliable than DRAM, but it is also more

expensive and has lower storage capacity. DRAM is slower and less reliable than SRAM,

but is also cheaper and has larger storage capacity. The choice of SRAM or DRAM will

depend on the specific needs and requirements of the application. High-performance com-

puting applications such as servers and supercomputers will typically use SRAM, while

lower-performance applications such as desktops and laptops will use DRAM.

WL

BL

Vref

Storage

Capacitor

Access 

Transistor

Figure 1.5: DRAM cell.

NVRAM

In the ever-evolving landscape of data storage technologies, the demand for higher capac-

ities, faster access times, and improved energy efficiency has been a driving force behind

innovative solutions. Non-Volatile Random-Access Memory (NVRAM) [21] has emerged

as a promising class of memory technology that combines the benefits of non-volatility,

byte-addressability, and low-latency read/write operations. With the potential to revolu-

tionise data storage and computing systems, NVRAM holds great promise for enabling

next-generation persistent memory architectures. NVRAM provides the ability to retain

information even in the absence of power. This non-volatility makes NVRAM a desirable

option for a wide range of applications, including data centres, enterprise storage, em-

bedded systems, and mobile devices. By bridging the gap between storage and memory,
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NVRAM has the potential to overcome the limitations of existing technologies and open

up new avenues for data-centric computing.

NVRAM encompasses a variety of memory technologies, each with its own unique

characteristics and underlying principles.

Phase Change Memory (PCM): it uses the reversible phase transition of chalcogenide

materials between the amorphous and crystalline states. This technology offers fast read

and write access times, high endurance, and scalability, making it a promising candidate

for future memory systems.

Magnetic Random-Access Memory (MRAM): it uses the magnetic properties of fer-

romagnetic materials to store data. It offers non-volatility, high endurance, low power

consumption, and fast read and write speeds. MRAM has gained significant attention due

to its potential for integration with existing complementary metal-oxide-semiconductor

(CMOS) processes.

Resistive Random-Access Memory (RRAM): also known as resistive switching mem-

ory, it relies on the reversible modulation of resistance in thin film structures. It offers

fast switching speeds, low power consumption, and high endurance.

Ferroelectric Random-Access Memory (FeRAM): it utilises ferroelectric materials to

store data as polarisation states. It offers non-volatility, low power consumption, fast

write speeds, and high endurance. FeRAM holds promise for applications that require

frequent data updates and low-latency access.

The emergence of these new NVRAM paradigms presents interesting opportunities to

advance the field of persistent data storage. By combining the advantages of non-volatility,

byte-addressability, and low-latency access, NVRAMhas the potential to redefinememory

hierarchies, blur the lines between storage and memory, and fundamentally transform the

way data are stored, processed, and retrieved.

RRAM The RRAM element is a variable resistance, whose value represents the bit logic

value. It is a 3-layer device, made of two metal electrodes with a dielectric in between.

The dielectric is used to conduct by means of a conduction path formed applying a suf-

ficiently high voltage. This is made possible during the fabrication phase, where defects

are introduced in a controlled way in the dielectric. There are unipolar and bipolar RRAM:
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the unipolar switches depending on the amplitude of the voltage applied on the memory,

while the bipolar takes into account the voltage polarity as well. The switching, i.e., the

change of resistance, takes place with the creation or rupture of conductive filaments in-

side the dielectric. There are also non-filamentary RRAM devices that exploit different

physical systems, like charge trapping and de-trapping and redistribution of oxygen va-

cancies. Possible operations are set (fromHRS to LRS, from logic 0 to logic 1) or reset (from

LRS to HRS, from logic 1 to logic 0), which are done, respectively, by forming or breaking

the conductive path. A small voltage bias is applied to the cell for reading its data, i.e.,

to check the resistive state, to then compare the current with a Sense Amplifier (SA). The

read and write access time of an RRAM cell is less than 10 ns, with a data retention time

greater than 10 years. The endurance is about 1012 cycles. The write energy, expressed in

Joules per bit, is 0.1 pJ

The RRAM can be implemented via a memristive crossbar. RRAM has garnered interest

for its compatibility with CMOS processes and potential for high-density storage.

Figure 1.6: An RRAM device at LRS where the Conductive Filament (CF) comprises a large concentration of

defects for example oxygen vacancies in metal oxides or metallic ions injected from the electrodes. By the

application of appropriate voltage pulses, the defects can bemigrated back to the top electrode thus disconnecting

the CF and reaching a HRS. From [22].
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Figure 1.7: Schematic of the switching mechanism of conductive bridge RRAM. a) Pristine state of the RRAM

device. b,c) Oxidation of Ag and migration of Ag⁺ cations towards cathode and their reduction. d) Accumulation

of Ag atoms and Pt electrode leads to growth of highly conductive filament. e) Filament dissolution takes place

on applying voltage of opposite polarity. From [16, 23].

PCM The Phase Change Memory (PCM) [17, 24–26] device is, as the RRAM, a variable

resistance, and its resistance represents the logic value. It utilises the reversible phase

transition of chalcogenide materials between amorphous and crystalline states. It is made

by the phase change material, encapsulated inside two electrodes, as shown in figure 1.10.

To access the device, a transistor is usually implemented. Phase Change memories exploit

materials, typically compounds of Ge, Sb and Te, that can reversibly switch from amor-

phous and crystalline phases, both having different resistance values. The high resistive

state (logic 0) is achieved having the amorphous phase of the memory, while the low re-

sistive state (logic 1) is present during the crystalline phase. The difference between the

two states can be up to three or four orders of magnitude. This technology offers fast read

and write access times, high endurance, and scalability, making it a promising candidate

for future memory systems.

The set and reset operations are performed by applying current pulses through the

device. As a consequence, the device heats up. The reset happens once the current pulse

that makes the material melt, is stopped abruptly, since it causes the molten material to go
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into the amorphous phase. Themelting temperature is around 600 °C. The set occurs, being

the device in amorphous phase, applying a current pulse. This causes the crystallisation

of a part of the amorphous region. The crystallisation temperature corresponding the the

highest crystallisation rate is ≃ 400°C. Applying current pulses to a PCM device results in

significant heating due to Joule heating. The read happens similarly to the RRAM, applying

a small voltage that does not change the inner status of thememory and sensing its current.

The read access time of a Phase Change RAM (PCRAM) cell is less than 10 ns and the

write access is 50 ns. The data retention time is higher than 10 years. The endurance is

about 108 cycles. The write energy, expressed in Joules per bit, is 10 pJ

Figure 1.8: A mushroom-type PCM device at HRS where the amorphous phase blocks the bottom electrode. To

create this state, a RESET pulse is applied that can melt a significant portion of the phase change material. When

the pulse is stopped abruptly, the molten material quenches into the amorphous phase due to glass transition.

When a current pulse of lesser amplitude is applied to the PCM device at HRS, a part of the amorphous region

crystallises. By fully crystallising the phase change material, the LRS is obtained. From [22].

MRAM The MRAM data storage element is a variable resistance. The Magnetic Tun-

nelling Junction (MTJ) device is a tunnelling oxide barrier sandwiched in two ferromag-

netic layers. One ferromagnetic layer has a fixed magnetic orientation, while the other

has free magnetic rotation (free layer).

The conductance, and therefore the logic value, depend on the magnetisation of the layers:
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Parallel orientation is the High Conductance State, logic 0, while the Anti-parallel orien-

tation is the Low Conductance State, corresponding to the logic 1. This is the opposite

convention with respect to the one used in RRAM and PCM.

To reverse the magnetic orientation (perform write operations), the thermally acti-

vated magnetic is used: at finite temperature, there is a finite probability for the magneti-

sation reverse its direction (Néel-Brown theory). This is also a reliability risk: there is a

chance of spontaneous state reversal.

Among the different types of MRAM devices, STT-MRAM is widely used. It exploits a

spin-polarised current to flip the magnetisation direction of a ferromagnetic layer. When

a current passes through the fixed layer, it becomes spin polarised. Then, passing through

the oxide and entering the free layer, it changes the orientation of the polarity of the latter.

Writing a logic 0, a current flows from the fixed to the free layer, making the transition

from anti-parallel to parallel happen. Writing a logic 1, the current has to flow on the

other direction, i.e., from the free to the fixed layer, resulting in a transition from parallel

to anti-parallel relative magnetisation.

The read and write access time of a STT-MRAM cell is less than 10 ns. The data reten-

tion time is higher than 10 years. The endurance is about 1016 cycles. The write energy,

expressed in Joules per bit, is 0.1 pJ

1.1.3 Computing in Memory

CIM, as the name suggests, refers to the capability of performing computation directly

inside the memory, without therefore resorting to the CPU to have the results and then

to write them back to the memory. It represents a non-Von Neumann approach, since it

allows to compute in the memory itself. The main idea is to avoid moving data into a pro-

cessing unit and to therefore break the memory wall. To tackle the issues and bottlenecks

we have introduced, a wide variety of solutions exists which are based on existing memory

technologies, all of them relying on the physical attributes of the memory, its organisa-

tion, its periphery and the control logic. These paradigms enable logic and/or arithmetic

operations directly inside the memory boundaries. The operations are indeed performed

without the need of transferring data to and from the CPU, thus reducing latency and en-
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Figure 1.9: An STT-MRAM device with two ferromagnetic layers (pinned and free) separated by a tunnel oxide

layer. The magnetic polarisation of the free layer can be changed upon writing. Depending on whether the

ferromagnetic polarisations are parallel or anti-parallel, the device assumes a low or high resistance, respectively.

The transition to the parallel state takes place directly through conduction electrons, which are previously spin-

polarised by the pinned layer. Subsequently, the magnetic polarisation of the free layer is rotated using magnetic

momentum conservation. To switch to the anti-parallel state, an opposite voltage, and hence current direction,

is employed. From [22].

ergy consumption. Moreover, it lays the foundations for heavily increasing parallelism by

having dense arrays of memory elements enabling computation.

Generically, they exploit the physical characteristics of the memory and the insertion

of control and, if needed, computational elements in the peripheral logic (e.g., Write Driver

(WD) and SA). In fact, the various implementations can be more or less invasive for the

architecture and for the memory array: there are CIM solutions that work with any kind

of memory, volatile or non-volatile, or that work just with non-volatile memories.

The state of the art is mainly divided on levels of abstraction: (i) device level – to

identify the optimum material combination to achieve the desired device behaviour; (ii)

circuit level – to design logic gates, a.k.a., LIM [27–31], vector-matrix multiplications [32–

34], neuromorphic computing synapse and/or neurons [35–37]; (iii) system level – to map

applications on memory arrays, parallelise computations, design accelerators [38]. De-
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pending on the solution, CIM can be enabled on different memory technologies: among

them, there are the conventional non-volatile and emerging non-volatile memories.

The basic memory array is formed of rows and columns (2-D array) that are indepen-

dently controlled with memory cells (bit cells) in the cross-points. A simplified view can

be seen in figure 1.10. The bit cells contain the information associated to 1 bit of data and

the memory cells are connected by means of Wordlines (WLs) and Bitlines (BLs). The bit

cells can be connected together in various ways (also depending on the technology used),

i.e., there are different types of memory arrays that handle how to access and use the bit

cells. The most used types are the 1T1R and the crossbar.
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Figure 1.10: Memory array and memory cells.

A generic memory architecture can be described as shown in figure 1.10. A mem-

ory cell is selected by means of address decoders, it is written into by the WD and read

from with the help of the SA. The voltage levels required to enable the operations on the

memory cell are set by the voltage regulators. One memory array communicates with the

processor or other memory arrays by means of bus connections. In order to enable CIM,

several changes need to be implemented to the memory array or/and to its peripheral cir-

cuitry. In this context, the peripheral circuitry consists of standard memory periphery

(SA, WD, Address Decoder (AD), etc.) and any additional logic that might be required.
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Moreover, in some cases, additional logic is added to facilitate computation. Several pro-

posals exist in the literature enabling the computation in memory. Some implementations

are generic, and can be used with any memory technology, such as several Near Memory

Computing implementations [39]; some can be used with modified CMOS technology to

have Computation via Look-up Table (LUT), needing a different memory array; and finally

a subcategory of CIM implementations [30, 32, 40–47], modifying the memory periphery,

allow to “enhance” a standard memory core with computing capabilities. All the previ-

ously said implementations need more or less modifications to parts of the memory array

or the periphery, while others take advantage of device physics and are only suitable to

be implemented in a specific technology, such as emerging memory technologies.

(a) Classical (b) via LUT

(c) Near Memory (d) In Memory

R
A

M

RAMR
A

M

CAMKEY RES

Figure 1.11: (a) Classical Computing, (b) Computation via LUT, (c) Near Memory Computing, (d) CIM (here are

illustrated two different paradigms: the one exploiting the periphery and the LIM).

Depending on the way the inputs are stored (the memory content, or an electrical
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signal) and where the operations are performed (in the memory array, or in the periphery),

the existing solutions can be classified in three main categories:

• Computation via LUT

A LUT is used to store pre-calculated operations directly in the memory, to avoid

moving data to perform operations. This means storing the results of selected oper-

ations directly inside the memory, which will be an Application-Specific Integrated

Circuit (ASIC). This can be implemented with a CMOS technology. This method can

be useful in applications where the same operations are often executed; otherwise,

it would be unnecessary and expensive. The state of the art has many scientific

articles on this technique and these are the main implementations [48–55].

• Computation Near Memory

It is often referred to as Processing In Memory (PIM) [56]. The memory core is

placed as close as possible to the CPU. It still remains a Von Neumann architecture,

but it permits having a shorter bus and therefore decreasing the latency. This can be

done by exploiting every main memory technology, but is usually implemented in

DRAM technology. The Computation Near Memory reduces the slowdown due to

the bus communication speed, but not the speed of the memory itself: the memory

wall is therefore not mitigated. The state of the art has many articles and these are

the main implementations: [55, 57–63].

• CIM

CIM enables logic and/or arithmetic operations directly inside the memory bound-

aries. It allows performing operations without the need of transferring data to/from

the CPU, thus saving time and energy. This can be achieved by exploiting the physi-

cal characteristics of the memory and/or inserting computational elements into the

peripheral logic (SA).

This thesis work is focused on CIM and, more specifically, LIM, since it is the most

disruptive and promising solution.

To better explain how a memory can be used to perform CIM operations, in the fol-

lowing are described the operations of a classical memory array and the necessary modi-
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fications to make it compatible with CIM.

From the memory array, there are several circuits that enable memory functioning

and control.

The WD is in charge of write data on the memory cells, therefore handling the write-1

(SET) and write-0 (RESET) operations at the wanted address. The row and column de-

coders are used to select the cell corresponding to the wanted address.

The voltage regulator sets the voltages used to carrying out the operations and to assure

the correct functioning of the memory. The SAs are used to read the wanted data. Fi-

nally, the connection with the external circuitry is allowed by the bus connection, that is

composed by the row and column address buses, the data bus and the write/!read bit.

The classical memory needs to be modified to enable CIM, based on the technology

used and the implemented features. The circuitries that have to be modified (or added)

are:

• WD and voltage regulator, to have different voltages to enable CIM operations.

• Row decoder, to simultaneously activate more than one WD.

• SA, to enable logic operations inside it.

• Bus connection to add the operation bus to enable the control of logical operations.

1.1.4 Hardware Security
Hardware security is a vital aspect of computer security that involves protecting hardware

components from unauthorised access, tampering, and theft. Hardware security measures

are designed to ensure that the hardware devices and systems that we rely on every day

are secure and can withstand attacks from hackers and cybercriminals.

It is becoming increasingly important, nowadays being crucial for data security and

protection; this led to the evolution of hardware-based cryptography and more prominent

threats and hardware attacks.

Depending on the type of computing architecture, the cryptographic operations can

differ. In classical architectures (see figure 1.13a), data and cryptographic keys are stored
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Figure 1.12: Generic memory scheme.

in the main memory, and they are moved towards the processor to execute the crypto-

graphic functions. Therefore, confidential information will transit unencrypted from the

memory to the processor through the communication buses, and it could be susceptible

of information leakage. In the context of CIM, the encryption and decryption could be

performed without resorting to data transfer, therefore mitigating the risk of data leakage

and avoiding exposure to attacks. Nonetheless, not all CIM solutions are equal. The CIM

solution which works over all technologies, i.e., the Scouting Logic (figure 1.13b) is based

on the activation of multiple rows of the memory array to perform logic computation in

specially-designed SAs. The result of the computation (that will be an electrical signal, i.e.,

the output of the SA) will have to be written back to the memory retaining some vulnera-

bility to data leakage. To completely avoid data manipulation outside the memory array,

thus reducing observable information leakage, there are in-array computation solutions
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(a) Classical
(b) In-Periphery 
(e.g., scouting)

(c) In-Array 
(e.g., MAGIC)

RAMR
A

M

Information leakage

Figure 1.13: (a) Classical computing, (b) IMC In-Periphery, (c) IMC In-Array.

(figure 1.13c). These are the focus of this thesis.

Hardware security threats can take many forms, ranging from physical attacks to

software-based attacks. Physical attacks on hardware devices involve attempts to dam-

age or tamper with hardware components, such as memory chips, processors, and storage

devices. Physical attacks can include methods such as disassembling a device, exposing

it to extreme temperatures or electromagnetic radiation, or using brute force to gain ac-

cess to the device (among them there are the Fault Attacks (FAs), exploiting erroneous

behaviour). On the other hand, side-channel attacks are a type of software-based attack

that involves analysing the electromagnetic emissions or power consumption of a device

to extract sensitive information, such as cryptographic keys.

Side Channel Attacks

Side Channel Attacks leverage the nuances of physical leakage, exploiting variations in

power consumption, electromagnetic emanations, or timing discrepancies to extract sen-

sitive information. Among the Side Channel Attack methodologies there are the Power

Analysis Attacks (PAAs), the Electromagnetic Analysis Attacks, TimingAttacks andAcous-

tic Analysis Attacks.

PAA PAAs [64] constitute one of the most well-studied and impactful categories of side

channel attacks. These attacks are rooted in the variations in power consumption exhibited
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by a device during its operation. By monitoring the power consumption patterns during

cryptographic computations, adversaries can discern critical information, such as secret

keys. PAAs are further subdivided into Simple Power Analysis (SPA), Differential Power

Analysis (DPA), and Higher-Order Differential Power Analysis, each exploiting different

aspects of power consumption fluctuations.

SPA is based on the visual examination of graphs of the current used by the device

under exam over time. Variations in power consumption (and therefore in the leakage

current) occur as the device performs different operations.

DPA covers a spectrum of methodologies, each exploiting different aspects of power

consumption leakage to extract cryptographic secrets. These range from Simple Differen-

tial Power Analysis (SDPA) to more advanced approaches such as Higher-Order DPA and

Template Attacks. Moreover, the use of machine learning algorithms in DPA is often re-

ferred to as Machine Learning DPA and represents the intersection between cutting-edge

AI techniques and side channel attacks. SDPA is based on the statistical analysis of the

power consumption measured from a device. This attack is more resistant to noise that

would make SPA impossible to perform.

Electromagnetic Analysis (EMA) EMA [65, 66] attacks are based on the electromag-

netic emanations produced by computing devices during their operation. These emana-

tions, resulting from variations in current flow, can be captured and analysed to extract

sensitive information. EMA attacks encompass both electromagnetic radiation analysis

and electromagnetic fault injection, demonstrating the potential for adversaries to manip-

ulate hardware behaviour through controlled electromagnetic interference.

Timing Attacks Timing attacks [67] exploit variations in the execution time of cryp-

tographic operations. By meticulously measuring the time it takes a device to perform

certain operations, attackers can infer information about the underlying cryptographic

computations. Such attacks often exploit subtle timing differences that arise due to condi-

tional branches or memory access patterns.
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Acoustic analysis attacks Acoustic analysis attacks are a less explored approach and

work by analysing the acoustic emissions generated by a computing device during its

operation: this can allow adversaries to deduce information about internal computations.

Fault Attacks

FAs [68–71] are a class of attacks that exploit weaknesses in a system by introducing con-

trolled faults or errors in its operation. The goal of a FA is to cause the system to behave

in an unintended way, reveal sensitive information, or breach its security measures. In

hardware, FAs can be performed by manipulating the physical environment in which the

system operates, such as temperature, voltage, electromagnetic radiation, or clock sig-

nals. By doing so, an attacker can cause the system to skip or repeat certain operations,

change the values of internal variables, or induce hardware failures that can be used to

extract secret information. In software, FAs can be performed by injecting faults into the

program execution, for example, by modifying the program code, manipulating its input

or output data, or exploiting software vulnerabilities. FAs are commonly used to attack

cryptographic systems, where they can be used to bypass encryption or signature verifi-

cation, recover secret keys, or break authentication protocols. To prevent FAs, hardware

and software designers need to implement countermeasures that can detect and recover

from errors introduced by the attacker or that can make the system less vulnerable to fault

injection.

A Differential Fault Attack (DFA) [72, 73] is a type of FAs that is particularly effec-

tive against cryptographic systems. DFA exploits the differential behaviour of a system

under normal and faulty conditions to recover secret information. In a DFA, the attacker

injects a fault into two or more cryptographic computations and compares the results. By

analysing the differences between the faulty and correct outputs, the attacker can obtain

information about the internal state of the cryptographic algorithm, such as secret keys

or intermediate variables. DFA is a powerful attack because it does not require complete

knowledge of the system’s internal workings but only differential behaviour under faulty

conditions. Additionally, DFA can be performed on a single target without requiring mul-

tiple attempts or observations. To defend against DFA, cryptographic systems can employ

various countermeasures, such as error-correcting codes, redundancy, and randomisation
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of inputs and outputs. Hardware and software designers can also use techniques such

as duplication, triplication, and comparison of computations to detect and recover from

faults. Additionally, cryptographic algorithms can be designed to be resistant to DFA, such

as by avoiding branch operations, using constant-time implementations, or limiting the

number of computations per key.

Safe Error Attack (SEA) [74, 75] are a type of FA that targets hardware implementations

of cryptographic algorithms. In SEA, an attacker introduces faults into the computation

of an Error Correcting Code (ECC) algorithm, causing it to generate a ”safe error” that

has the effect of reducing the security of the system. The attacker then uses the safe

error to recover the private key used by the system. A safe error is a special type of

fault that does not cause the system to completely fail or produce incorrect results, but

instead introduces a small, intentional error that is difficult to detect. The safe error is

designed to bias the internal state of the system in a way that is favourable to the attacker,

allowing them to recover the private key more easily. To defend against SEA, hardware

designers can use techniques such as error-detection and correction codes, redundancy,

and fault tolerance. Additionally, cryptographic algorithms can be designed to be resistant

to SEA by avoiding branch operations, using constant-time implementations, or limiting

the number of computations per key. Overall, SEA is a relatively new and sophisticated

type of fault attack that requires a deep understanding of the internal workings of the

cryptographic system. As such, it is important for hardware and software designers to

remain vigilant and to implement strong countermeasures to protect against these types

of attacks.

1.2 Thesis contributions
As introduced, modern computer architectures have important bottlenecks and issues. The

first of them is the Von Neumann Bottleneck, together with the memory and power wall.

CIM promises to help solving these issues, and together with emerging non-volatile mem-

ories, the resulting technologies can tackle, or at least limit the power wall, together with

an increased security. The increased security would come from the whole process hap-
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pening in the memory instead of resorting to the bus to bring the information back and

forth to the CPU, and by having to use the CPU itself to perform the calculation, risking

therefore information leakage, hardware trojans and malwares that could sniff and/or ob-

serve the data. Therefore, the first choice has been targeting non-volatile memories, with

an interested eye on memristive devices. We therefore did a study of the possible CIM im-

plementations, being our goal to choose the most interesting for our use case. Memristive

LIM has been the most interesting implementation, for several reasons explained in this

manuscript, and we performed several studies on a chosen subset of implementations.

The main thesis contributions are as follows:

• A framework to synthesise Boolean operations on a computing memory array us-

ing the state of the art LIM solutions (we show all basic 2-bit operations and the

Full Adder) including an efficient and fast method to evaluate the area (number of

memristors) and latency (number of cycles and sub-operations needed) of every im-

plementation. This is described in chapter 2.

• Development of a Simulation and Analysis Environment based on an automatic tool

that handles parallel simulations to perform parametric sweeps. This is reported in

chapter 3.

• Electrical-level design and analysis of selected LIM operations assuming ideal mem-

ristors. This is presented in chapter 4.

• Electrical-level design and analysis of selected LIM operations assuming non-ideal

memristors and the demonstration, for the first time, of the difficulties and limita-

tions of concatenating logic operation in memory. Details are given in chapter 5.

• Demonstration of MAGIC vulnerabilities to side channel and fault attacks. This is

detailed in chapter 6.
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2
Logic In Memory (LIM)

This chapter presents an overview of the existing LIM solutions and the technologies en-

abling them. The chapter starts with a detailed description of the memristive device and its

operation. The second part of this chapter presents the state-of-the-art LIM solutions with

their descriptions, area and latency evaluation (in terms of required memristors and num-

ber of cycles to complete an operation) as well as a comprehensive comparison between

them.

2.1 Memristor
In the quest to push the boundaries of electronic memory and computing, researchers have

been exploring novel technologies that can overcome the limitations of traditional devices.

Among themost promising advancements in this pursuit is the discovery and development

of memristors, a fourth fundamental circuit element alongside resistors, capacitors, and

inductors. Memristors, short for memory resistors, exhibit unique properties that hold the

potential to revolutionise the fields of memory storage and computing systems.

First theorised by Leon Chua in 1971 [76, 77], it wasn’t until the early 2000s that mem-
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ristors were experimentally realised. As Chua pointed out, the fundamental two-terminal

circuit elements are historically three, and they are defined through a relationship between

two of the four fundamental circuit variables (the current i, the voltage v, the charge q and

the flux-linkage 𝜙). In fact, we have the resistor (linking the voltage and the current), the

inductor (linking the flux-linkage and the current), and the capacitor (linking the charge

and the voltage). Starting from this, Chua noticed that a fourth basic relationshipwasmiss-

ing: the relationship between the flux-linkage and the charge, being it the memristor. The

first practical implementation of the memristor from the HP labs [78, 79] with the first Ti-

tanium Dioxide (TiO₂)-based memristor increased the interest in the technology, thanks to

its theoretical switching speed, area occupation and non-volatility [80] (and therefore low

energy consumption). The research continued and as of today the main metal-oxyde mate-

rials employed to manufacture memristive devices are TiO₂ [81, 82], VO₂ [83], NiO [84, 85],

SiO₂ [86], Al₂O₃ [87] and Ta₂O₅ [88].

These nanoscale devices are characterised by their ability to change resistance based on

the magnitude and direction of the current flowing through them, while retaining this

resistance state even when the power is turned off. This inherent non-volatility sets

memristors apart from traditional memory technologies such as DRAM or Flash memory,

which require constant power supply to retain data. Applications of memristors can span

through many areas, from circuits to neuromorphing computing. They can be used to en-

able CIM [3, 22, 89–92]: the memristor’s physical property to change resistive value with

current passing through can be exploited to enable operations inside the memory. The

memristor-based CIM include Neuromorphing [35–37, 93–99] and Logic Computing [100].

A memristor (or a memristive device) [101] is a two-terminal device characterised by

a resistance that varies depending on the amount and direction of the current flowing

through it. More specifically, “a two-terminal black box is called a memristor if, and only

if, it exhibits a pinched histeresis loop for all bipolar periodic input current signals (resp.,

input voltage signals) which result in a periodic voltage (resp., current) response of the

same frequency, in the voltage-current (𝑣 − 𝑖) plane” [102]. This definition is in line with

the original memristor definition and the original definition of memristive device [103].

The memristor has a minimum and maximum resistive value (LRS and HRS, respec-
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Figure 2.1: Memristor’s symbol and convention. From [3].

tively). The write operation is done by applying electrical current to switch from one

state to the other. The read operation is done comparing the current flowing through the

memristor against a reference current.

Memristors combine non-volatility, low power consumption, high integration, fast

write time, and a high ratio between HRS (𝑅𝑂𝐹𝐹 ) and LRS (𝑅𝑂𝑁 ). These characteristics,

along with LIM capabilities, make them very interesting candidates as Non-Volatile Mem-

ories. They are typically inserted in memory crossbars to be used as memory arrays. Re-

sistive memory technologies can be split in three main categories: Electrostatic or Elec-

tronic Effect Memories, PCM, and Redox Memories. The first is based on electronics effect

(charge injection and trapping), the second exploits the thermal effect to change the resis-

tive state (by, for example, applying an electrical current that, by means of the Joule effect,

will form or disrupt a conduction path in an insulating material). The Redox switches

between state by exploiting reduction/oxidation (Redox) reactions. Due to the variety

of materials used in their fabrication, memristors can have different electric behaviours.

They can be controlled in voltage or current, and their resistance can exhibit a continu-

ous transition (from LRS to HRS) or their resistance can remain unchanged until a certain

threshold is reached. This last class of memristors is very useful for applications such as

data storage and CIM because it allows for non-destructive operations (with voltages or

currents below threshold).

In fact, the physical capabilities of the memristor can allow to perform internal com-

putation in memory arrays [104–108]. The various types of computation enabled by these
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devices are reported in the next chapter.

2.2 LIM Solutions
CIM, as show in the introduction (chapter 1), promises to solve major bottlenecks found

in modern architectures. Memristive devices, such as RRAM, PCM and MRAM, are partic-

ularly well suited for CIM, especially for LIM (LIM is part of the CIM techniques and it is

based on the execution of Boolean operations inside the memory).

In the traditional use of a memory array, a memory cell is selected by means of ad-

dress decoders, it is written into by the WD and read from with the help of the SA. The

voltage levels required to enable the operations on the memory cell are set by the voltage

regulators. One memory array communicates with the processor or other memory arrays

by means of bus connections. In order to enable the LIM operations, several changes need

to be implemented to the memory array or/and to its peripheral circuitry. In this context,

the peripheral circuitry consists of standard memory periphery (SA, WD, AD). Moreover,

in some instances, additional logic is added to enable computation.

Several LIM proposals exist in literature: some are general, and can be used with any

memory technology, others take advantage of the device physics and are only suitable

to be implemented in a specific technology. In addition, some of the existing LIM solu-

tions are designed to implement specific logic functions [27, 28, 31, 109–112] henceforth

called “primitive operations”, while others propose solutions for the implementation of

any Boolean function [30]. The existing LIM solutions can be classified depending on the

way the inputs are stored (the memory content, i.e., stateful logic, or an electrical signal,

i.e., non-stateful logic) and depending on where the operations are performed (in the mem-

ory array, or in the periphery). In this context, three main LIM classes can be distinguished

and their characteristics are summarised in table 2.1.

The first class, the Stateful logic in Array, is very interesting because it requires (almost)

no modifications of the original memory architecture. The main changes are done in the

controller where the compute operation has to be added, besides the read and write, to

enable the LIM operations. In the implementations belonging to this class, the input(s)

and output logic values are encoded as resistive states and the operations are performed
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within the memory array. In the Stateful Logic in Array and its Periphery, the input(s)

logic value(s) are encoded inside the memory and the operations are performed in the

memory array and with modified logic inside the memory periphery (i.e., SA, WD and

AD); in this case the result will be available at the sense amplifier, and, if needed, it will

have to be written back to the memory. Finally, in the Non-Stateful Logic in Array and its

Periphery, the logic values are encoded as resistive states and operations are performed by

translating certain resistive states into voltage levels [113] – as shown in tables 2.1 and 2.2.

LIM Solution #mem pts Gate Remarks Technology Operations

LIM Array 
Stateful Logic

MAGIC
(NOR2)
FELIX

(NAND2, OR2,
XOR2)

3
input non-

destructive,
parallelizable

Memristive 
crossbar

(1R-RRAM)

1. Initialize Rout

2. Apply proper voltages to 

Rin, Rout

3. Obtain output in Rin_out

IMPLY
in1  in2out

2
input destructive,

parallelizable

Stateful
Three-Input 

Logic 
(ORNOR3)

3 input destructive

LIM Array + 
Periphery – Non  

Stateful Logic
(Hybrid inputs)

PLiM
(RMAJ3)

3
(1 in the 

array,
2 external)

input destructive,
requires input pre-

processing

Memristive 
crossbar

(1R-RRAM)

1. Read inputs Rin and 
convert to voltages

2. Apply the voltages to 

Rin_out

3. Obtain output in Rin_out

LIM Array + 
Periphery

Stateful Logic

Logic in 
Periphery

2

input non-
destructive,

additional step to 
store output in 

memory

SRAM
1T1R-RRAM
STT-MRAM

1. Apply voltage on multiple 
rows

2. Obtain output (via SA)
3. [Store output in memory]

Vw_in1

in3out

Vw_in2

V0

in1

V0

in2 out

VCOND

in1

VSET

in2out
RG WL

Vr

in1

Vr

in2

Iin

Iref

SA
Vout

WL

BL

V0

in1

V0

in2 in3out
RG

WL

WL

WL

Table 2.1: LIM Primitive logic gates. From [113]. Column 2 (CIM Solution) lists the LIM solutions considered

and the corresponding primitive operations. The number of memory cells needed to implement a 2-input (1-

bit) primitive operation is summarised in column 3 (#mem pts), while the schematic of the primitive operation

gate for each solution is illustrated in column 4 (Gate). Column 7 (Operations) lists the algorithm executed to

obtain the result of the primitive operation. The executed operation can be input-destructive or not (see column 5,

Remarks). An input-destructive operation is an operation that changes the value of the inputs after it is executed.

LIM Array, Stateful Logic The operations are performed within the memory array

and the data are coded as memory content. This solution is proposed only for memristive

crossbars (1R-RRAM); The input data is stored within the memory array, and the output

(computation result) is obtained as memory content within the memory array. In order to
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LIM Array

Stateful Logic

LIM Array + Periphery

Stateful Logic

LIM Array + Periphery

Non Stateful Logic

(Hybrid Inputs)

CIM Solution

and Primary

Function

MAGIC [27, 114] (NOT, NOR2)

Any 2-input function
PLiM [31, 115] (RMAJ3)

(AND2, OR2, IMPLY2, !IMPLY2)

FELIX [109, 110] (NAND2, OR2, XOR2)

IMPLY [28, 111, 116]

Stateful three-input logic [112] (ORNOR3)

Technology Memristive crossbar (1R-RRAM)

SRAM

1T1R-RRAM

STT-MRAM

Memristive crossbar (1R-RRAM)

Operations

1. Initialize 𝑅𝑜𝑢𝑡 if needed 1. Apply voltage on multiple rows 1. Read inputs 𝑅𝑖𝑛 and convert to voltages

2. Apply proper voltages to 𝑅𝑖𝑛 , 𝑅𝑜𝑢𝑡 2. Obtain output (via SA) 2. Apply the voltages to 𝑅𝑖𝑛_𝑜𝑢𝑡
3. Obtain output in 𝑅𝑖𝑛_𝑜𝑢𝑡 or 𝑅𝑜𝑢𝑡 3. [Store output in memory] 3. Obtain output in 𝑅𝑖𝑛_𝑜𝑢𝑡

Table 2.2: LIM implementations overview.

enable LIM operations within the memory array, several conditions need to be respected:

(1) the memory cells containing the input data and the memory cells to store the result of

the computation must share the same row (column); (2) access to multiple memory cells

should be enabled; (3) specific control voltages (different than the memory read/write volt-

ages) to be applied for the completion of logic operations . As a consequence, the WD, the

voltage regulator and the address decoders of standard memory array have to be modified

to enable LIM. Stateful Logic in Array solutions include IMPLY [28, 111, 116, 117] having

the Boolean implication as primitive operation, the Stateful Three-Input Logic [112] with

the primitive operation ORNOR3 (i.e., input1 OR (input2 NOR input3)), Memristor-Aided

Logic - MAGIC [27, 114], whose primitive operations are NOT and NOR, FELIX [109, 110]

whose primitive operations are OR, NAND and XOR, and SIXOR [118], enabling the XOR

operation. Some of the existing LIM solutions like IMPLY and ORNOR3 do not preserve

the content of all the input memristors after executing the operation (also called input-

destructive operation). On the other hand, MAGIC and FELIX promise non-input destruc-

tive operations, as classical computation paradigms, allowing therefore the re-use the in-

put data for several operations (and, in some cases, to allow parallelism and save time).

LIMArray + Periphery, Stateful Logic Theoperations are performedwithin themem-

ory array periphery or by means of additional logic and the input data are coded as mem-

ory content. This solution can be used with any technology (references). The input data
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is stored within the memory array, while the output (computation result) is obtained as

a voltage (or current) outside of the memory array. In order to enable LIM operations

within the periphery of the memory array, several conditions must be respected: (1) the

memory cells containing the input data must share the same column; (2) access to multiple

memory cells must be enabled; (3) the sense amplifiers should be modified so that different

references are allowed. As a consequence, the address decoders and the sense amplifiers

of the standard memory array have to be modified to enable LIM. We refer to this class

of solutions as Logic in Periphery. The MRIMA architecture [30] is based on the Logic In

Periphery: it exploits reconfigurable SAs to perform arithmetic and logic operations on

STT-MRAM. All Boolean functions can be implemented with this solution by resorting to

additional combinational gates. Other implementations are [40, 119, 120].

LIM Array + Periphery, Non Stateful Logic (Hybrid inputs) The operations are

performed within the memory array and by using additional logic, and the data are coded

partially as memory content and partially as voltage levels. This solution can be used with

resistive technology only. It uses two types of input data: (1) memory content, (2) volt-

age level, while the output (computation result) is obtained as memory content within the

memory array. In order to enable this type of LIM operations, several conditions must be

respected: (1) Specific control voltages (different from the memory read/write voltages)

to be applied for the completion of logic operations, (2) specific registers to store the in-

puts to be given as voltage levels. As a consequence, the WD, the voltage regulator and

the address decoders of standard memory array have to be modified to enable LIM. An

implementation of this solution is PLiM [31], which implements, as primitive operation, a

special case of majority voter, where one of the inputs is negated (a.k.a., Resistive majority).

The various solutions take inputs that can be resistive or voltages, and the executed

operation can be input-destructive or not. An input-destructive operation is an operation

that can change the value of the inputs after it is executed. This happens, for example,

in the IMPLY logic, explained below, where the result of the operation overwrites one of

the two inputs. The non-input-destructive operation makes use of an output memristor

to avoid overwriting one of the inputs. This is the case of the basic function of MAGIC,
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which makes use of three memristors, two inputs and one output. Depending on the

chosen solution, we see an impact on the algorithms and area occupancy and in some

cases input destructiveness can save area, while in other cases a copy operation might be

needed, increasing the latency. In the following, the introduced classifications are treated.

The following syntax will be used to show the number of steps (i-j) and the number of

memristors used for each operation:

LIM_Boolean - # of steps, # of memristors

𝑖 − 𝑗) LIM_Boolean (used memory cells)

2.2.1 LIM Array Stateful Logic
The LIM Array Stateful logic [121], as previously introduced, makes use of resistive inputs,

and it has a resistive output. The operations are enabled connecting together two or more

memristors, with specific voltages that permit to change the memristive state of the out-

put memristor in some specific cases. The solutions that we have taken into account are

MAGIC, IMPLY and their variations.

MAGIC

The intrinsic logic functions implemented by MAGIC - Memristor-Aided Logic [27, 114]

are the NOT and the NOR. Being part of the LIM paradigm, they allow to have the op-

erations directly in the memory array, with the result of the operation finally written

onto the output memristor. The NOT operation is executed on 2 memristors, where one

is the input (𝑖𝑛1) and the other the output (𝑜𝑢𝑡). The NOR2 operation is executed on 3

memristors, where 2 of them are the input values (𝑖𝑛1 and 𝑖𝑛2) and the third is where the

output will be written (𝑜𝑢𝑡). MAGIC makes use of strict voltage constraints to achieve

non-input-destructive operations.

The MAGIC NOR and MAGIC NOT operations consist of two steps: the output mem-

ristor initialisation and the execution of the logic operation. The logic operation (either

NOR or NOT) is carried out by first setting the memristor to 𝑅𝑂𝑁 (LRS), hence initialising

the memristor wit a SET operation, then providing a voltage 𝑉0 (step 2). The output mem-

ristor will switch to HRS if its voltage drop is large enough. The value of 𝑉0 for which
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the two operations are performed correctly is computed as in equation (2.1) for the NOT

operation and in equation (2.2) for the NOR operation.

2𝑉𝑇 ,𝑂𝐹𝐹 < 𝑉0 < 𝑅𝐻𝑅𝑆
𝑅𝐿𝑅𝑆

⋅ 𝑚𝑖𝑛 [𝑉𝑇 ,𝑂𝐹𝐹 , ||𝑉𝑇 ,𝑂𝑁 ||] (2.1)

2𝑉𝑇 ,𝑂𝐹𝐹 < 𝑉0 < 𝑚𝑖𝑛 [ 𝑅𝐻𝑅𝑆
2𝑅𝐿𝑅𝑆

𝑉𝑇 ,𝑂𝐹𝐹 , ||𝑉𝑇 ,𝑂𝑁 ||] (2.2)

where 𝑉𝑇 ,𝑂𝐹𝐹 and 𝑉𝑇 ,𝑂𝑁 are the memristive threshold voltages for switching from LRS to

HRS, and from HRS to LRS respectively.

The basic MAGIC NOR configuration is shown in table 2.1.

MAGIC NOT (𝑖𝑛1, 𝑜𝑢𝑡) – 2 steps, 2 memristors

1) Write1 (𝑜𝑢𝑡)
2) MAGIC NOT (𝑖𝑛1, 𝑜𝑢𝑡)

Table 2.3: MAGIC NOT basic steps. 𝑖𝑛1 represents the input memristor, while 𝑜𝑢𝑡 represents the output memris-

tor. Write1 represents the SET operation (that allows to have the output memristor at LRS). MAGIC NOT represents

the application of the control voltage 𝑉0 to the BL of the input memristor.

MAGIC NOR (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡) – 2 steps, 3 memristors

1) Write1 (𝑜𝑢𝑡)
2) MAGIC NOR (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡)

Table 2.4: MAGIC NOR basic steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, while 𝑜𝑢𝑡 represents the output

memristor. Write1 represents the SET operation (that allows to have the output memristor at LRS). MAGIC NOR

represents the application of the control voltage 𝑉0 to the BLs of the input memristors.

More in detail, the output state (set at logic 1), can only change to logic 0 if there

is enough voltage applied on it to generate a current flowing towards the ground. The

only case when there is not enough voltage on the output memristor happens by having

both the input transistors’ states at logic 0 (𝑅𝑂𝐹𝐹 , HRS), thus allowing the NOR operation

execution. In fact, having just as one input memristor with LRS (logic 0, 𝑅𝑂𝑁 ) would

allow enough current flowing in the output memristor to change its memristive value
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and therefore cover the cases 0-0, 0-1 and 1-0. The case of the NOT gate exploits a voltage

divider, and the output state will change from logic 1 to 0 only if the input is a logic 1. There

are other possible MAGIC gates (OR, AND, and NAND), but these can’t be implemented

in a crossbar and hence they are less interesting for our intended LIM applications.

Being the NOR a functionally complete Boolean operator, it can be used to express all

the logical operations, as we did in the next section, with the addition of the NOT logic

gates that speeds up the operations.

MAGIC has 2 interesting variations, FELIX and X-MAGIC. FELIX [110] adds some

basic logic primitive operations on top of the MAGIC ones, while X-MAGIC [109] enables

input-destructive operations: it allows to avoid the output memristor initialisation. As an

example, the NAND function takes 11 steps for MAGIC, and 2 for FELIX and X-MAGIC.

The speed-up of X-MAGICwith respect to FELIX can be seen for more complex operations.

The state on the art has many MAGIC-based implementations and studies, such as [122–

131]. The analysed functions, together with the number of steps taken and the number of

memory elements used, are shown in table 2.11.

FELIX

FELIX [110] is an extension of MAGIC: it adds primitive operations on top of the MAGIC

NOR, introducing NAND, OR and XOR (as concatenation of OR and NAND). Tables 2.5

to 2.7 summarise the basic steps of these operations. The FELIX NAND operation exploits

the same principle of MAGIC, but with a lower control voltage, which prevents the output

from switching when only one input is at LRS. In this case, 𝑉0 can be calculated as (where

|| represents the parallel resistance configuration):

𝑉𝑇 ,𝑂𝐹𝐹
𝑅𝐿𝑅𝑆

{𝑅𝐿𝑅𝑆 + (𝑅𝐻𝑅𝑆 ‖𝑅𝐿𝑅𝑆
3 )} < 𝑉0 < 𝑉𝑇 ,𝑂𝐹𝐹

𝑅𝐿𝑅𝑆
{𝑅𝐿𝑅𝑆 + (𝑅𝐻𝑅𝑆 ‖𝑅𝐿𝑅𝑆

2 )} (2.3)

To perform a FELIX OR operation, the output memristor is first reset to 𝑅𝑂𝐹𝐹 (HRS),

and then 𝑉0 is applied. The equation defining the control voltage amplitude is:
||𝑉𝑇 ,𝑂𝑁 ||
𝑅𝐻𝑅𝑆

{𝑅𝐻𝑅𝑆 + (𝑅𝐿𝑅𝑆 ‖𝑅𝐻𝑅𝑆)} < 𝑉0 <
||𝑉𝑇 ,𝑂𝑁 ||
𝑅𝐻 𝑅𝑆

3
2𝑅𝐻𝑅𝑆 (2.4)

The FELIX XOR operation is a three-cycle operation composed of a FELIX OR operation

followed by a FELIX NAND operation (without the output initialisation).
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FELIX NAND (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡) – 2 steps, 3 memristors

1) Write1 (𝑜𝑢𝑡)
2) FELIX NAND (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡)

Table 2.5: FELIX NAND basic steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, while 𝑜𝑢𝑡 represents the out-

put memristor. Write1 represents the SET operation (that allows to have the output memristor at LRS). FELIX

NAND represents the application of the control voltage 𝑉0 (under the FELIX NAND constraints, as described in

equation (2.3)) to the BLs of the input memristors.

FELIX OR (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡) – 2 steps, 3 memristors

1) Write0 (𝑜𝑢𝑡)
2) FELIX OR (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡)

Table 2.6: FELIX OR basic steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, while 𝑜𝑢𝑡 represents the output

memristor. Write0 represents the RESET operation (that allows to have the output memristor at HRS). FELIX

OR represents the application of the control voltage 𝑉0 (under the FELIX OR constraints, as described in equa-

tion (2.4)) to the BL of the output memristor.

FELIX XOR (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡) – 3 steps, 3 memristors

1 − 2) FELIX OR (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡)
3) FELIX NAND 𝑉0 (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡)

Table 2.7: FELIX XOR basic steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, while 𝑜𝑢𝑡 represents the output

memristor. FELIX OR represents the whole FELIX OR operation table 2.6. FELIX NAND 𝑉0 represents the applica-

tion of the NAND control voltage (equation (2.3)) to the BLs of the input memristors, while the BL of the output

memristor is connected to ground. The difference between a full FELIX OR followed by a full FELIX NAND and

the FELIX XOR steps is the missing initialisation of the output memristor before the FELIX NAND and it is what

enables the XOR operation.

IMPLY

The IMPLY [28, 111, 116, 117] solution enables the in-memory primitive of the implication

logic (IMPLY), 𝑖𝑛1 → 𝑖𝑛2, which is equivalent to ¬𝑖𝑛1 ∨ 𝑖𝑛2. Its inputs are, as in MAGIC,

represented by the memristors’ states. The operation is only executed on 2 memristors

(the inputs), and the output is stored by overwriting one of the inputs, i.e., it is an input-
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destructive logic. The IMPLY operation needs a resistor 𝑅𝑔 in series with the gate, to enable

the proper functioning of the logic.

IMPLY (𝑖𝑛1, 𝑖𝑛2𝑜𝑢𝑡) – 1 step, 2 memristors

1) IMPLY (𝑖𝑛1, 𝑖𝑛2𝑜𝑢𝑡)

Table 2.8: IMPLY basic steps. 𝑖𝑛1 represents the input memristor, while 𝑖𝑛2𝑜𝑢𝑡 represents the other input mem-

ristor that will be overwritten with the result of the operation (being therefore also the output memristor). IMPLY

represents the simultaneous application of the control voltages 𝑉𝐶𝑂𝑁 𝐷 and 𝑉𝑆𝐸𝑇 on, respectively, 𝑖𝑛1, and 𝑖𝑛2𝑜𝑢𝑡 .

The input/output memristor can only switch from logic 0 to logic 1, and this can hap-

pen (having both 𝑖𝑛1 and 𝑖𝑛2𝑜𝑢𝑡 at logic 0). Switching from logic 1 to logic 0 is not possible.

Therefore, to have a logically complete behaviour, the NOT (or FALSE) operation has to

be implemented.

The basic IMPLY configuration can be seen in table 2.1. To make the device switch

from the low resistive state (logic 1) to the high resistive state (logic 0), a positive voltage

higher than the threshold 𝑉𝑂𝑁 has to be applied. In the same way, applying a negative

voltage lower than 𝑉𝑂𝐹𝐹 will perform the opposite operation. To SET a device, i.e., write

a value of logic 1 (TRUE operation), a negative voltage 𝑉𝑆𝐸𝑇 , has to be applied. It must

be larger than 𝑉𝑂𝑁 , to compensate the voltage drop across 𝑅𝐺 . To clear a device (FALSE

operation), a positive voltage 𝑉𝑂𝐹𝐹 has to be applied. Finally, to execute the operation,

a negative voltage 𝑉𝐶𝑂𝑁 𝐷 is used, that has a magnitude smaller than 𝑉𝑆𝐸𝑇 , not able to

change the state of the devices that is driving. The voltages 𝑉𝐶𝑂𝑁 𝐷 and 𝑉𝑆𝐸𝑇 are applied

simultaneously on, respectively, 𝑖𝑛1 and 𝑖𝑛2𝑜𝑢𝑡 . The implementation in a memory array

is achieved with memristors, using RRAM. It is an input-destructive logic. The typical

implementation of the IMPLY logic gate is made through a memristor-based crossbar. To

enable this, a resistance must be added for each crossbar row. In the state of the art are

present many studies on IMPLY, such as [131–137] To guarantee the correct execution of

the IMPLY operation, the 𝑉𝑆𝐸𝑇 , 𝑉𝐶𝑂𝑁 𝐷 and 𝑅𝐺 and computed as follows:

𝑅𝑂𝑁
𝑉𝑆𝐸𝑇 − 𝑉𝑂𝑁

𝑉𝑂𝑁 − [𝑉𝑆𝐸𝑇 − 𝑉𝐶𝑂𝑁 𝐷] < 𝑅𝐺 < 𝑅𝑂𝐹𝐹
𝑉𝑆𝐸𝑇 − 𝑉𝑂𝑁

2𝑉𝑂𝑁 − [𝑉𝑆𝐸𝑇 − 𝑉𝐶𝑂𝑁 𝐷] (2.5)

𝑉𝑆𝐸𝑇
𝑉𝐶𝑂𝑁 𝐷

< 𝑅𝑂𝐹𝐹
𝑅𝑂𝑁

(2.6)
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There is another implementation based on the IMPLY logic, that uses three memristive

switches instead of two, and is more efficient with more complex operation: it is the State-

ful Three-Input Logic with Memristive Switches [112], that enables the primary function

ORNOR3, 𝑖𝑛1𝑜𝑢𝑡′ = 𝑖𝑛1𝑜𝑢𝑡 ∨¬(𝑖𝑛2 ∨𝑖𝑛3). The three memristors are inputs, and one of them

also acts as output. Also for this operation a resistance 𝑅𝐺 in series is necessary to ensure

the functioning of the logic. Another interesting application of IMPLY is shown in [138]

ORNOR3 (𝑖𝑛1𝑜𝑢𝑡 , 𝑖𝑛2, 𝑖𝑛3) – 1 step, 3 memristors

1) ORNOR3 (𝑖𝑛1𝑜𝑢𝑡 , 𝑖𝑛2, 𝑖𝑛3)

Table 2.9: ORNOR3 basic steps. 𝑖𝑛1𝑜𝑢𝑡 is the input memristor that will be overwritten with the result of the

operation. 𝑖𝑛2 and 𝑖𝑛3 represent the other 2 input memristors. ORNOR3 represents the application of the control

voltages 𝑉𝑆𝐸𝑇 on the 𝑖𝑛1𝑜𝑢𝑡 memristor and 𝑉𝐶𝑂𝑁 𝐷 on the other two memristors.

Its circuit is shown in table 2.1. The ORNOR3 primitive logic operation supports the

NOR2 operation fixing an input memristor, as well the IMPLY2 operation (performing the

operation on only two inputs instead of three). The differences can be seen in table 2.11.

2.2.2 LIM Array + Periphery, Stateful Logic
The LIMArray + Periphery, Stateful logic - also named Scouting Logic [32] - uses as inputs

the memory cells, while the output is made available at the end of the sensing. The Logic

in Periphery enables the computation outside of the memory array by modifying the SA

and adding combinational logic. Its primitive operation is achieved by modifying the way

how the memory is read, adding reference signals to be compared in order to execute the

operations. The modification is therefore performed on the SAs, and CMOS logic can be

added to enables more operations in the periphery. Since this technique affects the periph-

ery, the memory array can be of every memory technology previously shown. Moreover,

the logic operations are executed by reading the memory, without changing its state. This

has the consequence of reducing the stress on the memory, especially in the case of the

memristors, considering that these devices still suffer from endurance problems. There-

fore, moving the operations from the memristor to the SAs can improve the lifetime of

the device, still providing CIM capabilities. The operations that can be performed with
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the Logic in Periphery are OR, AND and XOR. Every operation performed is limited to a

single memory read operation. Then the current or the voltage drop are compared with a

reference signal. The XOR makes use of a NOR between the result of the OR and the AND.

To perform the logic operations, two different types of SAs can be implemented, current

or voltage based. The logic operations are executed by reading two memory cells at a time:

in the resistance-based memories, the current going to the SAwill therefore depend on the

parallel between the resistances of the read cells 𝑖𝑛1 and 𝑖𝑛2. The resulting value of 𝑖𝑛1‖𝑖𝑛2
can have three values: 𝑅𝑂𝑁 /2, 𝑅𝑂𝐹𝐹 /2 and 𝑅𝑂𝑁 ‖𝑅𝑂𝐹𝐹 ≃ 𝑅𝑂𝑁 . Depending on the resistance

value, the current (or voltage) sensed varies, and the logic operations can be performed

by properly setting the reference current(s), or voltage(s), depending on the chosen sense

amplifiers.

TheMRIMAarchitecture [30] is based on the Logic In Periphery: it exploits re-configurable

SAs to perform arithmetic and logic operations on STT-MRAM. It allows to perform:

• Fast Row Copy,

• NOT,

• Two-input memory logic - AND2/NAND2, OR2/NOR2, XOR2/XNOR2,

• Three-input memory logic - AND3/NAND3, OR3/NOR3, MAJ/MIN.

The MRIMA accelerator can be used for CNN and data encryption applications: it has

an in-memory bit-wise adder and an in-memory bit-wise convolver. To perform the ad-

dition, the MRIMA authors propose a parallel in-memory adder: it exploits the 2- and

3-input operations to be faster. In fact, 𝐶𝑂𝑈 𝑇 can be calculated via the majority function,

and it can be temporarily stored in a carry latch. At the same time, the Sum can be cal-

culated via a XOR gate. The one-bit addition is therefore performed in 2 cycles, each one

composed of 4 steps (S1, S2, C1 and C2). The basic idea of MRIMA is to have an indepen-

dent high-performance and energy-efficient accelerator. From the programmer point of

view, it can be seen as a third party accelerator. Therefore, to be integrated in the system,

MRIMA needs system-level libraries, and a Virtual Machine together with an Instruction

Set Architecture (ISA) to be used.
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Other LIM in array and periphery that work with a similar concept are [33, 40–47, 50,

52]

2.2.3 LIM Array + Periphery, Non Stateful Logic
The intrinsic logic function that PLiM [31, 115] implements is the Resistive Majority. This

is the majority voter, with one of the inputs that is negated.

𝑅𝑀𝐴𝐽 = 𝑀𝐴𝐽 (𝑖𝑛1, ¬𝑖𝑛2, 𝑖𝑛3)

This operation has hybrid inputs: it is executed on the memristor 𝑖𝑛1𝑜𝑢𝑡 that acts as input
and output and the two other inputs are the two voltages 𝑉𝑖𝑛1 and 𝑉𝑖𝑛2 . The operation

is performed applying these voltages to the top and bottom electrodes of the memristor.

This implementation also takes into account the memory controller, a lightweight unit

managing the operations performed on the memory array. Possible primary functions

that can be performed are the AND2 and OR2, achieved by fixing one input voltage. The

primitive operations can be found in table 2.11.

2.3 State of the art solutions and comparison
In recent years, the number of research papers dealing with memristive LIM on different

abstraction levels has significantly increased. In this context, research is mainly focused

on the design of LIM architectures, the development of LIM-compatible instruction sets,

the methods for system integration, and development of the programming model for LIM

integration in computing systems. Nevertheless, the actual status of the research is frag-

mented and the reproduction of the reported results, alongwith the choice of an implemen-

tation to be adopted, are not trivial. For instance, [22] presents a review on in-Memory

Computing, focusing on the memories enabling it and on its applications, [90] offers a

classification of CIM solutions, while [122] describes several adder implementations. In

addition to fragmentation, the use of existing electrical models and their parameters is not

always supported by physical measurements on real devices. While these comparative

surveys show the characteristics of existing solutions, a thorough analysis of the imple-

mentations of Boolean functions is still missing. Therefore, in this chapter is presented a
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study of the existing LIM implementations in order to perform a fair comparison in terms

of resources and efficiency. More in particular, a thorough study of simple Boolean func-

tions implemented in memory is shown, resulting in a comprehensive comparison of LIM

solutions in terms of required number of memristors and number of operations.

The purpose of this preliminary study is to provide a comprehensive comparison of

existing LIM solutions and understand their implementation complexity. The analysis has

been performed on basic Boolean functions, in order to be as generic as possible and to

provide the designer an indication of the implementation complexity and cost of each

LIM solution. In addition, this study can give an indication of which LIM solution is more

suitable for a target application, depending on the most used Boolean functions.

In order to achieve a fair comparison among all solutions, we mapped all the 0-input

logic functions (TRUE and FALSE), 1-input logic functions (COPY, NOT), 2-input logic

functions (NOR, OR, NAND, AND, XNOR, XOR, NIMPLY, IMPLY) and the Full Adder as

3-input logic function, by using the primitive operations of MAGIC (and its extensions),

IMPLY (and ORNOR3) and PLiM solutions. The full adder has as inputs 𝐴, 𝐵 and 𝐶𝐼 𝑁 while

the outputs are 𝑆 and 𝐶𝑂𝑈 𝑇 .

𝐶𝑂𝑈 𝑇 = ((𝐴 + 𝐵)′ + (𝐵 + 𝐶)′ + (𝐶 + 𝐴)′)′ (2.7)

𝑆 = (((𝐴′ + 𝐵′ + 𝐶′)′ + ((𝐴 + 𝐵 + 𝐶)′ + 𝐶𝑂𝑈 𝑇 )′)′)′ (2.8)

Tables 2.10 and 2.11 summarise the results of this study. Table 2.11 shows the mapping of

all considered Boolean functions on LIM primitive operations. For each LIM implementa-

tion, the primitive operations are written in blue. Each row contains the mapping of the

Boolean function defined in the first column

For clarity, the same unique syntax used in section 2.2 is also used for all cells of

table 2.11:

LIM_Boolean (used memory cells)

𝑖 − 𝑗) LIM_Boolean (used memory cells)

where the first line defines the name of the Boolean function implemented in a spe-

cific LIM, together with the used memory cells for inputs and outputs; the following lines
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describe the algorithm used to map that function on primitive operations, underlying the

number of steps required for its execution (𝑖-𝑗). In the case of a majority voter requiring

additional registers, the algorithm contains additional read operations marked as 𝑟𝑖 . For

each function, a number of memristors are used to store the input (𝑖𝑛𝑖), the output (𝑜𝑢𝑡),
and intermediate results (𝑓𝑖). The intermediate results are used to solve complex mapping

algorithm where several operations are executed in sequence, and they are stored in so-

called functional memristors. In case of destructive operations (i.e., IMPLY), the content

of one of the input memristors is overwritten by the output (noted as 𝑖𝑛𝑖𝑜𝑢𝑡 in the table).

Input #memristors #steps
0 0 1 1
0 1 0 1

TRUE (write 1) 1 1 1 1 0 1 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 1 1 1 1 1
FALSE (write 0) 0 0 0 0 0 1 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 + 0 1 1 1 1 1 1
in1 (COPY) 0 0 1 1 1 1 2 + 1 2 + 1 2 + 1 2 + 1 2 + 1 2 + 0 4 3 4 4 4 2 + 1
NOT in1 1 1 0 0 1 1 2 + 0 2 + 0 2 + 0 2 + 0 2 + 0 2 + 0 2 2 2 2 2 2 + 1
in1  NOR in2 1 0 0 0 2 1 3 + 0 3 + 0 3 + 1 3 + 0 3 + 0 3 + 1 2 2 9 5 2 6 + 4
in1  OR in2 0 1 1 1 2 1 3 + 1 3 + 0 3 + 1 2 + 1 3 + 1 3 + 1 4 2 7 3 4 4 + 3
in1  NAND in2 1 1 1 0 2 1 3 + 2 3 + 0 3 + 0 3 + 0 3 + 0 3 + 1 8 2 3 3 3 6 + 5
in1  AND in2 0 0 0 1 2 1 3 + 2 3 + 1 3 + 1 3 + 1 3 + 1 3 + 1 6 4 5 5 5 4 + 3
in2  IMP in1 1 0 1 1 2 1 3 + 1 3 + 1 3 + 1 2 + 0 2 + 0 3 + 0 6 4 5 1 1 2 + 2
in2 NIMP in1 0 1 0 0 2 1 3 + 1 3 + 1 3 + 1 3 + 0 3 + 0 3 + 1 4 4 7 3 3 4 + 3
in1  XOR in2 0 1 1 0 2 1 3 + 2 3 + 0 3 + 2 3 + 2 3 + 2 3 + 1 10 3 13 13 10 7 + 4
in1  EQUAL in2 (XNOR) 1 0 0 1 2 1 3 + 2 3 + 1 3 + 2 3 + 2 3 + 2 3 + 1 12 5 15 15 12 9 + 5

Input
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Output
FA (sum) 0 1 1 0 1 0 0 1
FA (c_out) 0 0 0 1 0 1 1 1
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3 bit

3 2 5 + 4 5 + 1 49+37 24 9 + 85 + 2 5+5 5 + 1 36 12 49+37

Table 2.10: Number of memristors and number of operations per Boolean function.

To validate the solutions, we have developed a script that checks the correctness of

each Boolean function mapped on LIM primitive operations. Table 2.10 summarises, for

each Boolean function:

• its truth table (column 2),

• number of inputs and outputs of the function (columns 3 and 4),

• for each LIM solution: number of used memristors, in the form #(input and output)

+ #functional (columns from 5 to 10),

• for each LIM solution: number of operations needed to perform the computation

(columns from 11 to 16). For the PLiM implementation the steps are indicated as the

memory cycles + the reading operations.
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This extensive study has the goal of analysing the most prominent LIM solutions and

providing a comparison in terms of required memory resources (i.e., number of memris-

tors) and number of operations to implement basic Boolean functions. The results obtained

show large discrepancies among the LIM solutions in the number of steps required to per-

form the operations. For instance, the XOR requires manymore steps if implemented with

IMPLY logic compared to FELIX logic. This had given us some hints on which could be

the lightest and fastest solution, but it was just a first exploration. In fact, it is important

to remark that these results reflect the complexity of each operation but do not directly

translate into an estimation of the actual execution time. This is due to the fact that, due

to the physical and electrical characteristics of the memristive devices, the timing of each

operation can vary significantly. This analysis gave us a first feedback on how the studied

implementations work (and also gave us the configuration that we could use in the future

to execute different operations). Indeed, this preliminary analysis has been followed by a

more in-depth analysis, as discussed in the next chapters.
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3
Simulation Environment

Today, there is a trend towards sharing information and enabling reproducible science.

Unfortunately, when it comes to electrical simulations, the use of proprietary Computer-

Aided Design (CAD) tools (which differ from provider to provider) and foundry-licensed

device model libraries makes reproducible science almost impossible. This is mainly due to

the fact that even having the full description of an electronic circuit, performing paramet-

ric or statistical electrical simulations requires CAD tool-specific configurations, which, if

not set exactly, might lead to different results than originally reported. This can hinder

the repeatability of experiments, as scientists are not able to exactly repeat experiments

if they are not provided with all the files and settings of the initial research. This led us

to create a framework to address these issues and allow users to create configurations for

projects that can easily be shared between different teams and modified to scale up the

number of components by exploiting the facility of manipulating text files (Spice netlists).

This also makes our framework usable with ease in conjunction with any CAD tool and

the underlying electrical simulator. For a similar reason, we created a State Observer, a ver-

ilogA component that allows convenient export of measurements from the circuit under

study.
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More in detail the simulation and analysis environment has been manually set up

to allow maximum automation, by reducing the possible human errors. The main used

tools have been Cadence Virtuoso to run the simulations, the Voltage ThrEshold Adaptive

Memristor (VTEAM) verilogA memristor model, the verilogA State Observer and three

Python3 programs handling the simulation parameters and the start of the simulations,

the analysis of the results and the plot of the analysed data.

We started from the netlist of the circuits we wanted to simulate. We used Cadence

Virtuoso to design, test and run the circuits, and we prepared the simulation environments

we wanted to run. The resulting netlists have been different according to the simulations

we ran, and will be treated in their respective chapters of this thesis.

3.1 VTEAM
In order to run memristive LIM simulations, the first approach has been to find a suit-

able memristor implementation to use. We started from the state of the art, noticing that

we needed a voltage threshold memristor: the resistive value will start changing after a

certain voltage threshold is reached. The memristor behaviour is simulated using the Volt-

age ThrEshold Adaptive Memristor (VTEAM) model [139], with the parameters shown in

table 3.1. More in detail, its High Resistive State (HRS) is of 300 kΩ and LRS is of 1 kΩ,

representing, respectively, logic 0 and logic 1.

The VTEAM model proposes to describe the behaviour of voltage-controlled mem-

ristors. This model extends the (TEAM) one [140], a general, flexible model which de-

scribes current-controlled memristors. The VTEAM model integrates the TEAM model

with voltage-controlled memristors. Voltage controlled memristors allow the MAGIC and

FELIX operations by enabling the full switching of the output memristor during the op-

erations. The equations to describe a voltage-controlled time-invariant memristive device

are the following:

𝑑𝑤
𝑑𝑡 = 𝑓 (𝑤,𝑣) (3.1)

𝑖 (𝑡) = 𝐺 (𝑤,𝑣) ⋅ 𝑣 (𝑡) (3.2)



3.1 VTEAM

3

49

Name Description Value

model Memristor model - VTEAM 4

window_type window function - no window 0

dt [s] numeric simulation time step (for Cadence Virtuoso) 1E-12

init_state [0:1] The initial state of the state variable 0

Roff [Ω] Memristor’s maximum resistance 300000

Ron [Ω] Memristor’s minimum resistance 1000

D [m] Physical width of the memristor 3E-09

w_multiplied A normalization for the state variable (for Cadence Virtuoso) 1E+08

p_coeff The value of p in the window functions 2

p_window_noise A small noise to avoid boundary problems in window functions (for Cadence Virtuoso) 1E-18

x_c [m] Normalized length for Simmons tunnel barrier 1.07E-10

a_on [m] Upper bound of undoped region (Simmons tunnel barrier) 2E-09

a_off [m] Lower bound of undoped region (Simmons tunnel barrier) 1.2E-09

K_on [m/s] kon in Voltage ThrEshold Adaptive Memristor (TEAM) -216.2

K_off [m/s] koff in TEAM 0.091

Alpha_on Nonlinearity power coefficient for TEAM 4

Alpha_off Nonlinearity power coefficient for TEAM 4

v_on [V] Threshold voltage in VTEAM -1.5

v_off [V] Threshold voltage in VTEAM 0.3

x_on [m] Lower bound of undoped region (TEAM) 0

x_off [m] Upper bound of undoped region (TEAM) 3E-09

Table 3.1: VTEAM model parameters.

Where 𝑤 is an internal state variable, 𝑣 is the voltage across the memristor, 𝑖 is the

current passing thought it, 𝐺 is the conductance and 𝑡 is the time. The equation (3.1) is

developed as following for the VTEAM model:

𝑑𝑤(𝑡)
𝑑𝑡 =

⎧⎪⎪
⎨⎪⎪
⎩

𝑘𝑜𝑓 𝑓 ⋅ 𝑣(𝑡)
𝑣𝑜𝑓 𝑓

𝛼

𝑜𝑓 𝑓
⋅ 𝑓𝑜𝑓 𝑓 (𝑤) 0 < 𝑣𝑜𝑓 𝑓 < 𝑣

0 𝑣𝑜𝑛 < 𝑣 < 𝑣𝑜𝑓 𝑓

𝑘𝑜𝑛 ⋅ 𝑣(𝑡)
𝑣𝑜𝑛−1

𝛼

𝑜𝑓 𝑓
⋅ 𝑓𝑜𝑛 (𝑤) 𝑣 < 𝑣𝑜𝑛 < 0

(3.3)

Where 𝑘𝑜𝑛 (negative value), 𝑘𝑜𝑓 𝑓 (negative value), 𝛼𝑜𝑛 and 𝛼𝑜𝑓 𝑓 are constants; 𝑣𝑜𝑛 and

𝑣𝑜𝑓 𝑓 are threshold voltages. The functions 𝑓𝑜𝑛(𝑤) and 𝑓𝑜𝑓 𝑓 (𝑤) correlate the derivative of

the state variable with the state variable 𝑤 . These are window functions that constrain

the state variable within [𝑤𝑂𝑁 , 𝑤𝑂𝐹𝐹 ].
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The current–voltage relationship is the following:

𝑖 (𝑡) = [𝑅𝑂𝑁 + 𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁
𝑤𝑂𝐹𝐹 − 𝑤𝑂𝑁

⋅ (𝑤 − 𝑤𝑂𝑁 )]
−1

⋅ 𝑣 (𝑡) (3.4)

where 𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 are the memristor’s minimum (LRS) and maximum resistance

(HRS) when the state is, respectively, 𝑤𝑂𝑁 and 𝑤𝑂𝐹𝐹 .

3.2 LIM Instruction Set
Once we had the memristor model to simulate, we moved on to the circuit netlist. The first

goal was to simulate the memristor model, to then simulate a basic memory operation,

e.g., the MAGIC NOR. The most basic netlist for a complete MAGIC NOR operation has to

contain at least three memristors; for each memristor we put a voltage generator able to

provide the correct voltage to the BLs to perform the SET operation, and another one to

supply the control voltage enabling the MAGIC NOR operation, and finally some switches

able to properly direct the current to therefore have the NOR gate configuration, but as

well to enable the SET operation. Finally, with a slightly increased complexity, we could

enable the RESET operation as well.

The second step to have the netlist ready to be simulated has been to provide the correct

control sequence to control the switches and to enable the operations. As we mentioned

before, the operation must be run with a voltage (described by the equations presented in

chapter 2) for a certain amount of time. This meant being able to have the correct timings

of the wanted operations and the needed voltage values.

Once the netlist setup is complete, the step 0) for any operation is to have the input

value(s) on the input memristor(s), as shown in section 2.2.1. Then, as in the steps shown

in the previous chapter, we need to SET the output memristor, then connect it to the

ground, and, having the NOR gate configuration (as shown in table 2.1), we have to apply

the control voltage 𝑉0) on the two input memristors.

The controls managing the operations are complicated to be manually handled, con-

sidering that for each memristor we would need two voltage generators, one to control

the switch (that can leave the memristor floating, connected to ground or to a voltage gen-

erator), and the other one handling the voltage applied to the memristor (in case this one
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is connected to it). And on top of that, we needed an additional voltage generator han-

dling the WL switch (connecting the WL to ground or leaving it floating) and the other

one for a possible voltage input. Moreover, using the visual interface of Cadence Virtuoso

(running on a server and being tunnelled through Secure Shell Protocol (SSH) or by using

Virtual Network Computing (VNC)), the speed and reliability of the connection was mak-

ing the setup of the basic complicated and it would have made any change to the setup

complicated as well.

To manage this complexity in a more standard way, easier to handle, and more scal-

able (and to reduce human errors), we developed an Instruction Set of the LIM operations

we targeted: this is a Python3 class that generates text files containing the needed voltage

inputs that can be fed to the Cadence Virtuoso simulation. Furthermore, we had two gen-

erations of voltage generators: the first voltage generators we implemented were voltage

generators that could take any voltage value from the text input, and they would provide

the given voltage for a chosen amount of time. Afterwards we changed the implementa-

tion by putting a voltage generator for each voltage input we could have in the circuit;

this allowed the circuit to better represent a real implementation and therefore be able to

better study the consumption and the electromagnetic traces of the circuit. After several

versions, implementations and tests, we reached a final version of the basic netlist. A basic

netlist that can perform operations that require up to 3 memristors (such as the MAGIC

NOR section 2.2.1) is shown in figure 3.1. As can be seen, there are 3 memristors (𝑖𝑛1, 𝑖𝑛2,

and 𝑜𝑢𝑡 : the first two are the input memristors, and the last one is the output memris-

tor. The switches we use are ideal switches with an open switch resistance of 1TΩ and a

closed switch resistance of 1 Ω. Each switch is driven by a voltage generator that provides

a 𝑉𝑠𝑤𝑖𝑡𝑐ℎ, 𝑜𝑓 𝑓 or a 𝑉𝑠𝑤𝑖𝑡𝑐ℎ, 𝑜𝑛 depending if we want the switch to be open or closed.

The Instruction Set can support the following operations:

• LD,

• NOP,

• MAGIC NOT,

• MAGIC NOR,
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in1 in2 out

Vreset+
V0+

Vset+

Figure 3.1: Basic netlist for operations with up to 3 memristors.

• FELIX NAND,

• FELIX OR,

• FELIX XOR,

• IMPLY.

The Instruction Set can be used in two ways: it can be used directly within a Python3

code or by using a pseudo-code approach, similar to writing an assembly code. In fact, the

pseudo-code can be useful when we want to fast develop and test one or more operations

one after the other. To do more in-depth simulation and analysis, the Python approach is

more methodical and useful, i.e., we used it to perform several parametric sweeps.

3.2.1 Code examples
In the following are presented a few code examples showing how the LIM Instruction Set

works. All the operations work by setting the various switches by allowing the wanted

circuit. Every time that there is a new operation (or just a new step, even just a NOP) a

transition time is inserted to avoid an abrupt voltage change.
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The first example is the most needed operation: the LD operation (source code 3.1).

1 def f_ld(self, args, t_duration=t_write):

2 self.current_time += self.t_transition # allow a transtion time to avoid changing the voltage

abruptly and not to have a rectangular waveform, that would not be realistic↪

3 new_list_set = [False] * self.n_BLs # SET voltage controller

4 new_list_reset = [False] * self.n_BLs # RESET voltage controller

5

6 # Enable or disable SET or RESET for each memristor in the circuit

7 for i in range(int(len(args) / 2)):

8 new_list_set[args[0::2][i] - 1] = args[1::2][i] == 1

9 new_list_reset[args[0::2][i] - 1] = args[1::2][i] == 0

10

11 # Enable or disable the switches

12 self.switches_control(

13 t_duration, # operation duration

14 new_list_set, # SET voltage

15 new_list_reset, # RESET voltage

16 [False] * self.n_BLs, # control voltage

17 [False] * self.n_BLs, # control_2 voltage

18 [False] * self.n_BLs, # control_3 voltage

19 [False] * self.n_BLs, # gnd

20 True) # WL switch enabled

21

22 self.current_time += t_duration

Source code 3.1: LD operation snippet.

The second operation presented is the MAGIC NOT. Operations are always divided

into two functions: the first handles the output memristor value, and then handles the

actual application of the control voltage, as can be seen in source code 3.2.

1 def f_magic_not(self, operation_args):

2 self.f_ld([operation_args[1], 1])

3 self.f_not(operation_args[0], operation_args[1])

4

5 def f_not(self, source_mem_1, dest_mem):

6 self.current_time += self.t_transition

7

8 self.switches_control(

9 self.t_not, # operation duration

10 [False] * self.n_BLs, # SET voltage

11 [False] * self.n_BLs, # RESET voltage
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12 [col + 1 == int(source_mem_1) for col in range(self.n_BLs)], # control voltage

13 [False] * self.n_BLs, # control_2 voltage

14 [False] * self.n_BLs, # control_3 voltage

15 [col + 1 == int(dest_mem) for col in range(self.n_BLs)], # gnd

16 False) # WL switch enabled

17

18 self.current_time += self.t_not

Source code 3.2: MAGIC NOT snippet.

3.2.2 Supported operations

In this part we will show how the gates are enabled inside the circuit to execute the LIM

operations.

LD

The load operation is used to perform a SET or a RESET operation. As these operations

are used in the following operations, they are directly shown afterwards.

NOP

The NOP operation consists in leaving the memristive circuit floating.

in1 in2 out

Vreset+
V0+

Vset+

Figure 3.2: NOP operation on a 3-memristor circuit.
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MAGIC NOT

in1 in2 out

Vreset+
V0+

Vset+

(a) Step 1: SET the output memristor.

in1 in2 out

Vreset+
V0+

Vset+

(b) Step 2: Apply the control voltage 𝑉0.

Figure 3.3: MAGIC NOT operation on a 3-memristor circuit.

MAGIC NOR and FELIX NAND

The MAGIC NOR and FELIX NAND operations have identical functioning, except for the

applied voltage and the duration of the operation.

in1 in2 out

Vreset+
V0+

Vset+

(a) Step 1: SET the output memristor.

in1 in2 out

Vreset+
V0+

Vset+

(b) Step 2: Apply the control voltage 𝑉0.

Figure 3.4: MAGIC NOR and FELIX NAND operations on a 3-memristor circuit.
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FELIX OR

in1 in2 out

Vreset+
V0+

Vset+

(a) Step 1: RESET the output memristor.

in1 in2 out

Vreset+
V0+

Vset+

(b) Step 2: Apply the control voltage 𝑉0.

Figure 3.5: FELIX OR operation on a 3-memristor circuit.
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FELIX XOR

in1 in2 out

Vreset+
V0+

Vset+

(a) Step 1: RESET the output memristor.

in1 in2 out

Vreset+
V0+

Vset+

(b) Step 2: Apply the control voltage 𝑉0,𝑂𝑅 .

in1 in2 out

Vreset+
V0+

Vset+

(c) Step 3: Apply the control voltage 𝑉0,𝑁 𝐴𝑁 𝐷 .

Figure 3.6: FELIX XOR operation on a 3-memristor circuit.
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IMPLY

in1 M2

in2out

Vset
+ Vreset+

Vcond
+

RG

Figure 3.7: IMPLY operation on a 3-memristor circuit. 𝑉𝑆𝐸𝑇 and 𝑉𝐶𝑂𝑁 𝐷 are in the opposite direction to the

previous cases because the IMPLY gates has the memristors in the opposite direction to the other solutions.

3.3 State Observer
The state observer [141] is designed for Spice- and VerilogA-based simulators. It is a sub-

circuit that is placed in the schematic and is connected to the components in need of

measurements.

For transient simulations, the state observer will write the state measured every time

step to a Comma-Separated Values (CSV) file, so that it can be easily loaded into any

conventional software to analyse and extract information. For this reason, the simulation

parameter STEP_SIZE found in the simulation environment is particularly important: it

allows running the state analyser with the desired granularity. Moreover, as shown in

source code 3.3, the state observer can be modified to save the wanted data only in certain

cases, to allow a lighter and more application-specific log.

The idea of being able to externally save results in a user-defined file comes also useful

in case we want to modify the parameters for the next simulations according to the results

just obtained. As an example, we could increase or decrease the step size of parameters

depending if we are close or not to the expected working behaviour.

Most of the commercially available software allows exporting simulation results into

external files. This process is nevertheless carried out most of the time through a graphical

user interface, which slows down the simulation iteration cycle, or the supported file types



3.3 State Observer

3

59

are not the desired ones.

in1 in2 f1 f2 out

Vreset+
V0+

Vset+

Figure 3.8: State Observer (on the right top corner), represented by an oscilloscope connected to a 5-memristor

netlist.

In the practical case of our simulations and in the particular example of source code 3.3,

we used it to save the state of twomemristors in the execution of LIM operations. The goal

of the simulation was to sweep over the control voltage(s) and the duration of the LIM op-

erations to find the best working settings [142]. Hence, for this code, we concatenated the

automatic generation of parameters with the state observer. We automatically generated

the inputs and parameters to run the simulations and saved the simulation times at which

each LIM operation is concluded. We also saved the input value(s), the expected output

value and selected parameters, including the control voltage(s) and the duration of the op-

eration. During the operation, the resulting file is read by the State Observer and is used to

choose the simulation times at which it will save the desired states. Finally, the resulting

CSV generated by the state observer will have all the fields coming from the builder and

the read values:

• Provided by the builder (our main program)

– Input value(s),

– Expected output value,

– Duration of the operation,

– Control voltage,
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– Timestamp for save action execution;

• Added by the state observer

– Read value(s).

This allows to have all the information about the executed operation in the same CSV

and it supports directly performing data analysis from the collected data to assess the

correct behaviour of the studied operations.

Since the state observer is defined in a VerilogA file, it can also be integrated with

the builder in order to automatically generate the correct number of signals depending on

the user-defined configuration. This simplifies the sweep of the input parameters, as the

schematic itself will be rendered according to the configuration and the values generated

for each iteration.

1 `include ”constants.vams”

2 `include ”disciplines.vams”

3

4 // define meter units for w parameter

5 nature distance

6 access = Metr;

7 units = ”m”;

8 abstol = 0.01n;

9 endnature

10

11 discipline Distance

12 potential distance;

13 enddiscipline

14

15 // define resistance units for res_value parameter

16 nature resistance

17 access = Ohm;

18 units = ”ohm”;

19 abstol = 0.01;

20 endnature

21

22 discipline Resistance

23 potential resistance;

24 enddiscipline

25

26 // State Observer Module
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27 module state_observer(w_pos_1, w_pos_2, r_1, r_2);

28 // inputs

29 input w_pos_1, w_pos_2, r_1, r_2;

30 // types definition

31 Distance w_pos_1, w_pos_2;

32 Resistance r_1, r_2;

33

34 // internal variables

35 // time at which to save

36 real save_time;

37 // output file descriptor

38 integer fp_tt;

39 // input file descriptor (having the times at which

40 // to save and the expected results)

41 integer fp_tt_time;

42 //

43 string save_data;

44

45 // Analog behavior

46 analog begin

47 // initial Step

48 @(initial_step) begin

49 fp_tt_time=$fopen(expected_output,”r”);

50 fp_tt=$fopen(output_file”,”a”);

51

52 $fscanf(fp_tt_time, ”%s”, save_data);

53 $fscanf(fp_tt_time, ”%g,%s”, save_time, save_data);

54 end

55

56 // every time the state observer is executed

57 if($abstime > save_time && $abstime < save_time + 1.1 * STEP_SIZE) begin

58 $fwrite(fp_tt,”%.10g,%s,%.10g,%g,%g,%g,%g\n”, save_time, save_data, $abstime, Ohm(r_1),

Ohm(r_2), Metr(w_pos_1), Metr(w_pos_2));↪

59 if ($feof(fp_tt_time)) begin

60 $finish(0);

61 end

62 else begin

63 $fscanf(fp_tt_time, ”%g,%s”, save_time, save_data);

64 end

65 end

66

67 // final Step

68 @(final_step) begin

69 $fclose(fp_tt_time);

70 $fclose(fp_tt);
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71 end

72 end

73 endmodule

Source code 3.3: Verilog-A source code to measure the resistance and threshold of 2 memristors.

3.4 Parametric Sweep using Cadence Virtuoso
Finally, having the entire set-up and the LIM Instruction Set ready with the possibility

to be used in Python scripts, we prepared a program to perform parametric sweeps to

assess the behaviour of the LIM implementations with the memristive devices we have

chosen. Therefore, we designed a tool that is capable of sweeping various voltage ranges

and duration of the voltage input. The idea was to check all the input combinations with

respect to the expected output. In addition to this, by using the State Observer (section 3.3)

and providing to it the expected result at a certain time, we have been able to obtain all

the information needed to assess the proper functioning of the simulated operations. By

doing so, we have been able to have a framework allowing us to run and test the different

operations to then study the results.

3.5 Results extraction and plots
Having the results in a CSV file, we wanted to automate the extraction of the results, with

some plots showing in a graphical way the effectiveness of the operations.

Since we could run different types of simulation and we had run bulky simulations

having more than one operation in a single output file, we had to first treat and clean the

data we wanted to work on, and then analyse it. Moreover, we wanted more than just one

plot to fit them all, henceforth, we created three different programs able to split and take

the desired lines from the CSVs.

The resulting set of Python scripts allows to analyse the results of the Cadence simu-

lations run on the server. It takes as input one or more CSV files in the format given by

our state observer.

There are three main files, to be used in order (or, if the state of the files is already
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clean, the first ones may not be used).

1. Split CSV by operation type,

2. Split CSV by the values of the input memristors,

3. Analyse and plot from CSV.

An additional script, Convert to PowerPoint, can be used to automatically convert the

output of the final script to a PowerPoint presentation to provide an easier interface than

simple images and better present the results.

Split CSV by operation type This script allows to split the file(s) according to the op-

eration type (e.g., NOR, OR, NAND, XOR, IMPLY, etc...). It does not take into account

the different inputs (i.e., if they are at the nominal value or at a non-ideal value): before

continuing the analysis it is necessary to split again the output files or take into account

in the analysis code.

Split CSV by the values of the input memristors This code allows to split the files

containing just an operation type. The output is a file for each operation and for each

input couple. It generates temporary files to complete the operation.

Analyse and plot from CSV This script allows to analyse a CSV file that contains the

results of the Cadence simulation. The CSV file must have:

• only one operation type,

• only one input couple (e.g., 1 kΩ-300 kΩ or 1.025 kΩ-299.5 kΩ).

The resulting plots are many, but the most significant and interesting ones are the

following:

• scatter plot with boundaries

– a scatter plot showing the points where the operation had worked with the

strictest threshold,
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– several boundaries with different colours showing the areas where the opera-

tion had for each threshold,

– plot legend explaining the colours (optional);

• scatter plot with a colour scale

– a scatter plot showing the points where the operation had worked with se-

lected thresholds, each one being shown with a different colour,

– the points that were not included in the loosest threshold are represented in

white: according to the chosen background colour we can show them or not;

• histogram showing the distribution of the points shown in the scatter plot explained

above; the x axis indicate the Δ𝑅, also called diff : the distance between the expected

value (i.e., the correct result of the operation) and the read value.

To consider an operation as working, the results must be the same as the expected

ones, for all the input combinations. Moreover, we wanted to know if some operation had

changed the value of the input memristors, because it could have been a problem concate-

nating operations. To have a deeper understanding of how the operations behave, we have

plotted the aforementioned plots, but with a finer-grain approach: we could select each

input couple separately, or all together, taking therefore the worst-case scenario among

them. Furthermore, we could select Δ𝑅 (i.e., the distance between the expected value and

the read value, called diff ) on the input memristors only, on the output memristor only,

or on both. Figure 3.9 provides a schema of it.

The script has many, easy to modify options that allow to plot different features of the

analysis.



3.6 Final framework and capabilities

3

65

0 - 0

1 - 0

0 - 1

1 - 1

All inputs 
combinations

Inputs only
(overwriting)

Output only

Inputs and output

Figure 3.9: Schema showing the possible input choices for the plots. On the left side there are the possible inputs

couples that can be chosen: 0-0, 0-1, 1-0 and 1-1. On the right side are shown the Δ𝑅 (i.e., the distance between

the expected value and the read value) on the inputs only (showing therefore if and how the inputs changed after

the operation), the output only (showing the efficacy of the operation) and finally both (showing the worst case

scenario of all).

3.6 Final framework and capabilities
Finally, the complete framework we obtained is able to do the following:

• Read pseudo assembly code and generate the input for the netlist,

• Run Cadence simulation,

• Save Output,

• Save Expected Output (save_state):

– Command given,

– Input(s) given,

– Expected output;

• Generate a “truth table” input for the given function that, for all the possible input

combinations:
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1. Loads the inputs,

2. Performs the given functions on the inputs,

3. Saves the state,

4. Executes a NOP;

• Additional script that enables to perform the same operations several times explor-

ing the variation of the duration and the voltage of the input:

1. Instantiate the class,

2. Loop functions, voltages and function times.

• Take the results and plot with user-defined thresholds and colours.
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4
Electrical Simulation of Boolean

Operations with Ideal Memristive

Elements

This chapter contains an in depth study of different LIM solutions based on electrical simu-

lations and assuming ideal memristors. Only the LIM solutions considered best suited for

use within a cryptocore were studied. Indeed some of the LIM solutions do not preserve

the content of the input memristors after executing the operation (i.e., input-destructive

operations); while others, like MAGIC and FELIX promise non-input destructive opera-

tions, as classical computation paradigms, allowing therefore the re-use of data for several

operations. This chapter is dedicated to the second class of LIM solutions as they are better

suited for our target application. While their ability preserve input data has been shown

in the literature for ideal operating condition, this work is showing that in reality their

behaviour is far from ideal when the operation condition vary. We analysed the electrical

behaviour of some significant LIM implementations (MAGIC NOT, MAGIC NOR, FELIX

OR and FELIX NAND) under various operating conditions to see how they performed
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under several aspects, e.g., precision and speed. Our results show that it is not trivial to

guarantee non-input destructive operations (e.g., in the case of FELIX NAND) and there

is a real difficulty in concatenating several operations due to non-ideal intermediate re-

sults. Among the studied implementations, MAGIC NOR and FELIX NAND functions are

functionally complete, i.e., each one of them can be used to implement all logic functions

in one or more steps. Therefore, these functions are the most interesting among the ones

studied. The contributions presented in this chapter are:

• The in-depth analysis of the operating conditions of MAGIC NOT, MAGIC NOR, FE-

LIX OR, FELIX NAND, FELIX XOR and IMPLY with the identification of the ranges

in which the operations are performed correctly, highlighting the values of control

signals which lead to input-destructive operations;

• An introduction of the possible XOR implementations using the solutions under

analysis;

• The demonstration that while the operation is performed correctly, the resistance

of the output memristor does not always reach its ideal value (either low or high).

4.1 Motivation
The LIM operations introduced in section 2.2.1 have the control voltage range that is de-

scribed by means of equations giving a working range. We evaluated such values and

they are represented in figure 4.2. While these equations give a range of theoretical val-

ues for the control voltage amplitude, the duration of the control voltage strongly depends

on the dynamics of the memristor, but it is not trivial to derive its analytical expression.

Furthermore, memristors exhibit an adjustable resistive range extending from LRS to HRS.

Although it is straightforward to employ their digital properties for assessing logic 1 and

0, leveraging their analog capabilities becomes imperative for LIM operations. This analog

utilisation substantially reduces the margin of error, enhancing the precision of such pro-

cesses. Therefore, to identify combinations of control voltage amplitude and duration for

which the operation is performed successfully, we have resorted to electrical simulations.

When performing the electrical simulations, we have identified 4 scenarios:
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1. the operation has been performed correctly without any effect on the input;

2. the operation has been performed correctly but the information on the input was

lost;

3. the operation has been performed correctly but the resistive state of the output

memristor did not reach the nominal HRS or LRS, as shown in figure 4.1;

4. the operation has failed.

The third scenario has led us to the assumption that concatenating operations in which

the output of the first operation (which did not reach the nominal HRS or LRS) is used

as input for the next operation could lead to a wrong result. We proved this assumption

right as explained later in this chapter and in chapter 5.
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Figure 4.1: Waveform of a FELIX NAND operation, where the final resistive state does not reach the nominal

LRS. LD is the load operation on a memristor (SET if LD 1, RESET if LD 0). At the end of the NAND operation,

the final resistive value of the output memristor (memristor 3) is not 1 kΩ as expected, but 5 kΩ. The vertical red

lines indicate the start of the next operation.
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4.2 Simulation environment and preliminary analysis
The basic simulation environment is explained in chapter 3. Theoretical values for 𝑉0
(calculated with equation (2.2) range between 0.60V and 1.50V for the NOR operation,

and between 0.40V and 0.45V for the NAND operation (calculated with equation (2.3)),

and 0.5V and 2.5V for the OR operation. To perform the in-depth analysis, the input

voltage has been swept from 0.20V to 2V with a step of 0.1V. Based on published results

about the duration, we considered all durations ranging from 0.25 ns to 20 ns with a step

of 0.25 ns. Actual ranges depend on the operation. In the case of the IMPLY operation, the

load resistance 𝑅𝐺 has been analysed in the range between 500 Ω and 60 kΩ, with a 500 Ω
step.

MAGIC NOR

MAGIC NOT

FELIX NAND

FELIX OR

VT,OFF = 0.3V; VT,ON = -1.5V; RHRS = 300kΩ; RLRS = 1kΩ 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
V0 𝑉

Figure 4.2: Theoretical ranges of the control voltages 𝑉0 that allow a correct operation for MAGIC NOT and

NOR, and FELIX NAND and OR operations.

For each control voltage setup (i.e., couple of amplitudes and duration), we have simu-

lated the execution of MAGIC NOT, MAGIC NOR, FELIX NAND and FELIX OR functions

applying all input combinations (i.e., 0,1 for MAGIC NOT and 00, 01, 10, 11 for the other

operations) and the final states of the three memristors (the two inputs and the output)

have been stored and analysed. We performed a preliminary analysis (with much larger

sweep steps) on the MAGIC NOR operation, the results of which are shown in figure 4.3.

For each combination of voltage amplitude and duration, we have plotted the outcome of

the operation using the following colour scheme:

1. Dark green, when the operation has been performed correctly for all (2 or 4) input

combinations, and the inputmemristor did not lose their state (non-input-destructive

operation);

2. Light green, when the operation has been performed correctly for all (2 or 4) input
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combinations but at least one of the input memristor lost its state for at least one

input combination (input-destructive operation);

3. White, the output is wrong for at least one input combination.

Figure 4.3: Results of the preliminary simulation of the NOR Operation.

In dark green is represented where the operation performed correctly, in light green where the operation per-

formed correctly for all 4 input combinations but at least one of the input memristor lost its state for at least one

input combination (input-destructive operation) and in white the operation did not work correctly.

Results in figure 4.3 are in agreement with the theoretical analysis. Indeed, we ob-

served correct operations when the voltage amplitude ranges between 0.7V and 1.55V.

The slight difference is due to the parameters of the memristive model that we used. After

the MAGIC NOR, we performed a similar analysis on the FELIX NAND operation, where

no combinations of amplitude and duration generated the correct results. This can be due

to the fact that the theoretical voltage range for correct operation is very narrow and to

a non-optimal setup of the memristive model. Another possibility could be that the step

we had used for the initial sweep (0.05V) was too big to find a working couple of voltage

and duration.
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4.3 Introduction of non-ideal values and thresholds
In the previous section, we have used a coarse-grained approach to the simulation and

we have considered as correct results only the cases where the output memristor reaches

exactly the nominal values of HRS or the LRS. This explains why all the simulated NAND

operations were considered flawed and why the range of control voltages for correct NOR

operations is narrower than the theoretical one. Nevertheless, on a closer analysis, we

have observed that combinations of amplitude and duration exist for which the output

memristor reaches resistive values close to the nominal HRS or LRS (close enough so that

they can be read as correct logic values). We have defined these states that cannot reach

the nominal value but can reach close enough to it as non-ideal HRS and non-ideal

LRS. Due to this observation, we updated the conditions for an operation to be consid-

ered correct, i.e., an operation is correct if the resistive value of the updated memristor is

between the non-ideal HRS and nominal HRS when a logic 0 is expected and between nom-

inal LRS and the non-ideal LRS when a logic 1 is expected. Figures 4.4 and 4.5 show the

colour-coded space of control voltages for the FELIXNAND operation, under two different

groups of non-ideal values: in figure 4.4 non-ideal LRS=1.3 kΩ and non-ideal HRS=290 kΩ,

while in figure 4.5 non-ideal LRS=50 kΩ and non-ideal HRS=150 kΩ. It is worth noticing

that the higher the distance between nominal and non-ideal state, the larger is the control

voltage range where the LIM operation is considered correct. This knowledge can lessen

the restrictions on the voltage regulators (to generate the control voltages).

From this we have noticed that there were operations able to change the value of the

output memristor, but we didn’t know if it was sufficient to have results stable enough.

This point will be discussed in chapter 5.
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Figure 4.4: Results of the preliminary simulation of the NAND operation with non-ideal LRS=1.3 kΩ and non-

ideal HRS=290 kΩ for reading the output value. The colour code is explained in section 4.2.

Figure 4.5: Results of the preliminary simulation of the NAND operation with non-ideal LRS=50 kΩ and non-

ideal HRS=150 kΩ for reading the output value. The colour code is explained in section 4.2.
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4.4 Concatenation of operations
One of the major advantages of the Stateful Logic in Array paradigm is that operations

could be concatenated (i.e., using the output of one operation as input for the next one)

or that one or more inputs of an operation could be used for more operations. This can

first of all bring a significant speed up of the operations execution. As we introduced in

table 2.11, most of the operations that we could do need more than just one step of a prim-

itive operation. For example the AND operation would need 6 steps being implemented

by MAGIC, 4 steps with FELIX, 5 with IMPLY and 4 (plus 3 reads) with RMAJ. As we ex-

plained in chapter 2, we already know the range of voltage values where the operations

could work, but we don’t know the time the various operations need to reach the nominal

value to be considered correct. At the end of this chapter (section 4.5) we show the study

we did to assess when the operations are working, and as a consequence we have been

able to calculate the duration for each operation and to discuss even further about their

usability.

MAGIC-based AND (𝑖𝑛1, 𝑖𝑛2, 𝑓1, 𝑓2, 𝑜𝑢𝑡) – 6 steps, 5 memristors

1 − 2) MAGIC NOT(𝑖𝑛1, 𝑓1)

3 − 4) MAGIC NOT(𝑖𝑛2, 𝑓2)

5 − 6) MAGIC NOR (𝑓1, 𝑓2, 𝑜𝑢𝑡)

Table 4.1: MAGIC-based AND basic steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, 𝑓1 and 𝑓2 represent func-

tional memristors, i.e., the memristors used to store intermediate results of the operation, while 𝑜𝑢𝑡 represents

the output memristor. MAGIC NOT and MAGIC NOR represent the whole operations, i.e., the SET of the output

memristor (the last on between the parenthesis) and the application of the control voltages 𝑉0, 𝑀𝐴𝐺𝐼 𝐶 𝑁 𝑂𝑇 and

𝑉0, 𝑀𝐴𝐺𝐼 𝐶 𝑁 𝑂𝑅 , respectively to the BLs of the input memristors.

All encryption algorithms are based on the XOR operation. It is fundamental in al-

gorithms such as Data Encryption Standard (DES) [143], Advanced Encryption Standard

(AES) [144, 145], and PRESENT [146], where the plaintext is XORed with the secret key.

We have chosen an XOR gate as target circuit for our analysis, starting from the assump-

tion that if this operation is not secure, the whole algorithm is not secure either. Therefore,

having prepared the basic operations, we built XOR operations with selected implemen-
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FELIX-based AND (𝑖𝑛1, 𝑖𝑛2, 𝑓1, 𝑜𝑢𝑡) – 4 steps, 4 memristors

1 − 2) FELIX NAND (𝑖𝑛1, 𝑖𝑛2, 𝑓1)

3 − 4) MAGIC NOT(𝑓1, 𝑜𝑢𝑡)

Table 4.2: FELIX-based AND basic steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, 𝑓1 represents a functional

memristor, i.e., a memristor used to store intermediate results of the operation, while 𝑜𝑢𝑡 represents the output

memristor. MAGIC NOT and FELIX NAND represent the whole operations, i.e., the SET of the output memristor (the

last on between the parenthesis) and the application of the control voltages 𝑉0, 𝑀𝐴𝐺𝐼 𝐶 𝑁 𝑂𝑇 and 𝑉0, 𝐹𝐸𝐿𝐼 𝑋 𝑁 𝐴𝑁 𝐷 ,

respectively, to the BLs of the input memristors.

IMPLY-based AND (𝑖𝑛1, 𝑖𝑛2, 𝑓1, 𝑜𝑢𝑡) – 5 steps, 4 memristors

1 − 2) IMPLY NOT (𝑖𝑛1, 𝑓1)

3) IMPLY (𝑖𝑛1, 𝑓1)

4 − 5) IMPLY NOT (𝑓1, 𝑜𝑢𝑡)

Table 4.3: IMPLY-based AND basic steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, 𝑓1 represents a functional

memristor, i.e., a memristor used to store intermediate results of the operation, while 𝑜𝑢𝑡 represents the output

memristor. IMPLY represents the application of the control voltage 𝑉0 to the BLs of the input memristors. IMPLY

NOT is already a composite operation.

tations. The analysis we showed in section 2.3 indicated that the FELIX solution, on the

paper, would require a much lower number of memristors and steps to achieve the XOR

operation and the full adder than the MAGIC solutions. Therefore, we had to test it and

assess it using our simulations.

The XOR operations use from three to five memristors (𝑖𝑛1, 𝑖𝑛2, 𝑓1, 𝑓2 and 𝑜𝑢𝑡): the

first two are the input memristors, the third and the fourth are functional memristors, i.e.,

memristors used to store intermediate values of the operation, and finally the last one is

the output memristor. FELIX XOR does not need functional memristors.
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RMAJ-based AND (𝑖𝑛1, 𝑖𝑛2, 𝑓1, 𝑜𝑢𝑡) – 4 + 3R steps, 4 memristors

1) Write 0 (𝑜𝑢𝑡)
2 − 3, 𝑟1) RMAJ NOT (𝑖𝑛2, 𝑓1)

𝑟2 − 𝑟3) Read (𝑖𝑛1, 𝑓1)

4) RMAJ (𝑖𝑛1, 𝑓1, 𝑜𝑢𝑡)

Table 4.4: RMAJ-based AND basic steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, 𝑓1 represents a functional

memristor, i.e., a memristor used to store intermediate results of the operation, while 𝑜𝑢𝑡 represents the output

memristor. Write 0 represents the RESET operation (that allows to have the output memristor at HRS). RMAJ

represents the application of the control voltage 𝑉0 to the BLs of the input memristors. RMAJ NOT is already a

composite operation.

4.4.1 MAGIC-based XOR
In order to implement XOR operation with MAGIC, it is necessary to concatenate multiple

NOR and NOT operations as shown in table 4.5.

MAGIC-based XOR (𝑖𝑛1, 𝑖𝑛2, 𝑓1, 𝑓2, 𝑜𝑢𝑡) – 10 steps, 5 memristors

1 − 2) MAGIC NOT (𝑖𝑛1, 𝑓1)

3 − 4) MAGIC NOT (𝑖𝑛2, 𝑜𝑢𝑡)
5 − 6) MAGIC NOR (𝑓1, 𝑜𝑢𝑡 , 𝑓2)

7 − 8) MAGIC NOR (𝑖𝑛1, 𝑖𝑛2, 𝑓1)

9 − 10) MAGIC NOR (𝑓1, 𝑓2, 𝑜𝑢𝑡)

Table 4.5: MAGIC-based XOR steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, 𝑓1 and 𝑓2 represent functional

memristors, i.e., the memristors used to store intermediate results of the operation, while 𝑜𝑢𝑡 represents the

output memristor. MAGIC NOT and MAGIC NOR represent, respectively, the whole MAGIC NOT and MAGIC NOR

operations, i.e., the SET of the output memristor (the last in parentheses) and the application of the control

voltages 𝑉0, 𝑀𝐴𝐺𝐼 𝐶 𝑁 𝑂𝑇 and 𝑉0, 𝑀𝐴𝐺𝐼 𝐶 𝑁 𝑂𝑅 , respectively, to the BLs of the input memristors.
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Inputs
Step 1

𝑓1 = NOT(𝑖𝑛1)

Step 2

out = NOT(𝑖𝑛2)

Step 3

𝑓2 = NOR(𝑜𝑢𝑡 ,𝑓1)

Step 4

𝑓1 = NOR(𝑖𝑛1,𝑖𝑛2)

Step 5

out = NOR(𝑓1,𝑓2)

00 1 1 0 1 0

01 1 0 0 0 1

10 0 1 0 0 1

11 0 0 1 0 0

Table 4.6: MAGIC-based XOR steps and values. Under the steps are the resulting values of each operation.

4.4.2 FELIX-based XOR
The FELIX XOR solution is made of a FELIX OR operation followed by a FELIX NAND op-

eration, both executed on the same memristors, reusing the input memristors and without

initialising the output memristor. In this case, if the FELIX OR performed similarly to the

FELIX NAND, we would have a case of a concatenated operation having both non-ideal

inputs and output, and it could cause issues.

FELIX-based XOR (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡) – 3 steps, 3 memristors

1 − 2) FELIX OR (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡)
3) FELIX NAND (𝑖𝑛1, 𝑖𝑛2, 𝑜𝑢𝑡)

Table 4.7: FELIX-based XOR steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, while 𝑜𝑢𝑡 represents the output

memristor. FELIX OR represents the whole operation, i.e. the RESET of the output memristor (the last in between

the parentheses) and the application of the control voltages 𝑉0, 𝐹𝐸𝐿𝐼 𝑋 𝑂𝑅 to the BLs of the input memristors. FELIX

NAND is, in this case, just the application of the control voltage 𝑉0, 𝐹𝐸𝐿𝐼 𝑋 𝑁 𝐴𝑁 𝐷 to the BLs of the input memristors.

Applying the control voltage 𝑉0, 𝐹𝐸𝐿𝐼 𝑋 𝑁 𝐴𝑁 𝐷 on the output without initialising it is what allows to use the result

of the FELIX OR operation and to make the XOR operation possible.
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Inputs
Step 1

out = 0

Step 2

out = OR(𝑖𝑛1, 𝑖𝑛2)

Step 3

out = NAND_𝑉0(𝑖𝑛1, 𝑖𝑛2)

00 0 0 0

01 0 1 1

10 0 1 1

11 0 1 0

Table 4.8: FELIX-based XOR steps and values. In this case the first operation (i.e., the FELIX OR operation) is

split into its steps: 1) Write 0 and 2) the application of the control voltage 𝑉0. The FELIX NAND operation is

only partially executed: the way to have the correct result is by running a FELIX NAND after a FELIX ORwithout

preparing the output memristor, in order to exploit the result of the previous operation.

4.4.3 IMPLY-based XOR
The IMPLY XOR solution is made by several steps, as shown in tables 4.9 and 4.10. What

makes this operation so long is the fact that IMPLY uses as input and output the same

memristor: in the case of an XOR, where reusing the inputs can speed up the operation,

the IMPLY operation is forced to copy the value of the inputs to use it, therefore increasing

the duration of the operation.

IMPLY-based XOR (𝑖𝑛1, 𝑖𝑛2, 𝑓1, 𝑓2, 𝑜𝑢𝑡) – 13 steps, 5 memristors

1 − 4) IMPLY COPY (𝑖𝑛1, 𝑓2, 𝑓1)

5) IMPLY (𝑖𝑛2, 𝑓1)

6 − 7) IMPLY NOT (𝑓1, 𝑜𝑢𝑡)
8 − 11) IMPLY COPY (𝑖𝑛2, 𝑓1, 𝑓2)

12) IMPLY (𝑖𝑛1, 𝑓2)

13) IMPLY (𝑓2, 𝑜𝑢𝑡)

Table 4.9: IMPLY-based XOR steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, 𝑓1 and 𝑓2 represent functional

memristors, i.e., memristors used to store intermediate results of the operation, while 𝑜𝑢𝑡 represents the output

memristor. IMPLY represents the application of the control voltage 𝑉0 to the BLs of the input memristors. IMPLY

COPY and IMPLY NOT are composite operations. To see the full steps unfolded, see table 4.10.
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We investigated the XOR-based IMPLY operation and determined it could to be too

lengthy to be worth implementing. Therefore, we decided to let the performance of the

IMPLY operation dictate the choice.

IMPLY-based XOR (𝑖𝑛1, 𝑖𝑛2, 𝑓1, 𝑓2, 𝑜𝑢𝑡) – 13 steps, 5 memristors

1-4) IMPLY COPY(𝑖𝑛1,𝑓2,𝑓1)

1-2) IMPLY NOT(𝑖𝑛1,𝑓2)
1) Write 0(𝑓2)

2) IMPLY(𝑖𝑛1,𝑓2)

3-4) IMPLY NOT(𝑓2,𝑓1)
3) Write 0(𝑓1)

4) IMPLY(𝑓2,𝑓1)

5) IMPLY(𝑖𝑛1,𝑓1) 5) IMPLY(𝑖𝑛1,𝑓1)

6-7) IMPLY NOT(𝑓1,out)
6) Write 0(out)

7) IMPLY(𝑓1,out)

8-11) IMPLY COPY(𝑖𝑛2,𝑓1,𝑓2)

8-9) IMPLY NOT(𝑖𝑛2,𝑓1)
8) Write 0(𝑓1)

9) IMPLY(𝑖𝑛2,𝑓1)

10-11) IMPLY NOT(𝑓1,𝑓2)
10) Write 0(𝑓2)

11) IMPLY(𝑓1,𝑓2)

12) IMPLY(𝑖𝑛2,𝑓2) 12) IMPLY(𝑖𝑛2,𝑓2)

13) IMPLY(𝑓2,out) 13) IMPLY(𝑓2,out)

Table 4.10: IMPLY-based XOR steps. 𝑖𝑛1 and 𝑖𝑛2 represent the input memristors, 𝑓1 and 𝑓2 represent functional

memristors, i.e., memristors used to store intermediate results of the operation, while 𝑜𝑢𝑡 represents the output

memristor. IMPLY represents the application of the control voltage 𝑉0 to the bitlines of the input memristors.

IMPLY COPY and IMPLY NOT are composite operations, and are therefore immediately unfolded and described in

the table.
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4.5 Parametric Sweep
After having analysed the results of the coarse-grained simulation section 4.2, we noticed

that a finer-grained analysis could have given us more insight in cases where it seemed

there was no working solutions, e.g., the FELIX NAND operation. Therefore, we used the

simulation environment of chapter 3 and for each control voltage setup (i.e., couple of

amplitude and duration) and for each load resistance (for the IMPLY operation) we have

simulated the execution of the LIM functions applying all input combinations (i.e. 0, 1 or

00, 01, 10, 11) saving the final state of the used memristors. Among the data extracted from

the analysis of the results, there are: 1) the input correctness, i.e., the values of the inputs

remained the ones that have been written before executing the operation, 2) the output

correctness, i.e., the output state is the expected one, 3) the difference from the expected

value for each memristive value, calculated doing:

𝑑𝑖𝑓 𝑓 = ||𝑜𝑢𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑜𝑢𝑡𝑟𝑒𝑎𝑑 || (4.1)

We calculated the maximum diff (that we have previously mentioned as Δ𝑅 as well) for

each set of amplitude and duration of the control voltage (and also load resistance, for

IMPLY): this allows us to take the worst case scenario for all the input combinations. These

cumulative data allowed us to pinpoint the settings that are the most suitable for each

operation. Using these data, we plotted graphs indicating for which settings an operation

wasworking and, if so, how close the readmemristive values were to the nominal expected

values. To do so, five different colours (see figure 4.6) have been used in the following

graphs to indicate five thresholds, based on the diff explained in equation (4.1):

• Purple: the read values are the expected nominal resistive values (with a tolerance

of 50 Ω);

• Dark blue: diff is less than 5 kΩ;

• Light blue: diff is less than 10 kΩ;

• Green: diff is less than 50 kΩ;

• Yellow: diff is less than 149.5 kΩ.
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The blank part in the scatter plots is where the operation did not work: diff is greater

than (𝐻𝑅𝑆 − 𝐿𝑅𝑆)/2, thus not allowing a clear distinction between the two states.

𝑑𝑖𝑓𝑓 = 𝑣𝑎𝑙𝑢𝑒𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑣𝑎𝑙𝑢𝑒𝑟𝑒𝑎𝑑

Figure 4.6: Key for the plots.

These operations we simulated use two or three memristors: 𝑖𝑛1, (𝑖𝑛2), and 𝑜𝑢𝑡 or, in

the case of IMPLY, 𝑖𝑛1 and 𝑖𝑛2𝑜𝑢𝑡 . 𝑖𝑛1 and 𝑖𝑛2 are the input memristors, 𝑖𝑛2𝑜𝑢𝑡 is the

input/output memristor used by the IMPLY operation, and 𝑜𝑢𝑡 is the output memristor.

4.5.1 MAGIC NOT and NOR
The behaviour of the MAGIC NOT (figure 4.7) and MAGIC NOR (figure 4.8) operations

is coherent with the theoretical analysis. Indeed, for the NOR operation we observed

correct operations when the voltage amplitude ranges between 0.7V and 1.55V. The slight

difference is due to the parameters of the memristive model we used. The two operations

have very similar behaviour because the main difference between them is the number of

input memristors: the operation is the same in terms of where the voltage is applied and

the initial value of the output memristor. In fact, they behave in a similar manner and they

have very similar working areas.
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HRS = 300k, LRS = 1k

(a) (b)

Figure 4.7: Results of the simulation of the MAGIC NOT operation. (a) Plot showing the couples of control

voltage 𝑉0 and duration of the pulse (coloured) that provide working operations. (b) Histogram showing the

frequency and the values of diff (the max distance from the expected value in the two memristors). This plot is

in logarithmic scale.

The colour code is explained in figure 4.6.

HRS = 300k, LRS = 1k

(a) (b)

Figure 4.8: Results of the simulation of the MAGIC NOR operation. (a) Plot showing the couples of control

voltage 𝑉0 and duration of the pulse (coloured) that provide working operations. (b) Histogram showing the

frequency and the values of diff (the max distance from the expected value in the two memristors). This plot is

in logarithmic scale.

The colour code is explained in figure 4.6.
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4.5.2 FELIX NAND
The behaviour of the FELIX NAND (figure 4.9) operation did not behave as well as the

MAGIC counterpart. Indeed, no combination of amplitude and duration has generated a

result within the nominal expected values. This can be due to the fact that the theoreti-

cal voltage range for correct operation is very narrow, and to a non-optimal setup of the

memristive model. Since the best obtained result is around 20 Ω from the expected value,

(it has been obtained with a control voltage of 0.66V and a pulse duration of 18 ns), we

chose to allow a tolerance up to 50 Ω for the strictest threshold. The plot therefore shows

a small area where we have a correct operation. The NAND operation, as explained in

chapter 2, is set up as the MAGIC NOR operation but with a lower operating voltage, not

allowing the output memristor to change its state from 1 to 0, for the 01 and 10 inputs cou-

ple cases. This makes the control voltage boundaries very strict compared to the MAGIC

NOR limits, and, indeed, this can be observed comparing figure 4.8 and figure 4.9. From

the same pictures it can also be observed that the working values of the NAND operation

are just below the ones of the NOR operation, as expected. Similarly to the MAGIC NOR

operation, there is a slight difference with the theoretical values for the control voltage

that we calculated, due to the parameters of the memristive model we used.
HRS = 300k, LRS = 1k

(a) (b)

Figure 4.9: Results of the simulation of the FELIX NAND operation. (a) Plot showing the couples of control

voltage 𝑉0 and duration of the pulse (coloured) that provide working operations. (b) Histogram showing the

frequency and the values of diff (the max distance from the expected value in the two memristors). This plot is

in logarithmic scale.

The colour code is explained in figure 4.6.
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4.5.3 FELIX OR
Our simulations of the FELIX OR (figure 4.10) operation have shown that there is no con-

trol combination for which the operation generates a result having the nominal resistive

state for inputs and outputs. Moreover, the FELIX OR easily changes the resistive value

of the input: the control voltage is high enough that, during the operation, when the out-

put memristor gets close to the nominal LRS, there is enough current flowing through the

input memristors that is able to modify the resistive value of the inputs. The best results

that we obtained resulted having the diff value for the output memristor around 2.7 kΩ,

with a change in the inputs of 334 Ω, and it has been obtained with a control voltage of

2.03V and a duration of 1.75 ns.

HRS = 300k, LRS = 1k

(a) (b)

Figure 4.10: Results of the simulation of the FELIX OR operation. (a) Plot showing the couples of control voltage

𝑉0 and duration of the pulse (coloured) that provide working operations. (b) Histogram showing the frequency

and the values of diff (the max distance from the expected value in the two memristors). This plot is in linear

scale.

The colour code is explained in figure 4.6.
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4.5.4 FELIX XOR
Considering that the FELIX OR operation is the first step of the FELIX XOR two-cycle

operation and that the next step (FELIX NAND) does not initialise the output memristor,

we had serious doubts about finding awideworking area, or even finding aworking area at

all, even before actually simulating the operation. Moreover, we had seen that the FELIX

NAND operation already has a very limited set of control voltages and pulse durations

that allow an operation whose results are close to the ideal ones. Taking into account

these initial considerations, we were not expecting a good and ideal behaviour of the XOR

operation. In fact, the FELIX XOR operation behaviour (as seen in figure 4.11), is far away

from the ideal one: the only threshold that highlights some results is the least strict, and

the diff values, as can be seen from the histogram (b) in the figure, are all above 140 kΩ.

This behaviour is due to the FELIX OR results being too far from the nominal ones to allow

the proper functioning of the subsequent FELIX NAND operation. This operation would

be really difficult to implement and it would be impossible to enable the concatenation of

operations after this one.

The best result obtained for the nominal inputs is around 144 kΩ from the expected

value (for the output memristor; the diff value of the input memristor is negligible) and it

has been obtained with a control voltage 𝑉𝑂𝑅 of 1.94V and a pulse duration of 3.75 ns for

the FELIX OR operation, and a control voltage 𝑉𝑁 𝐴𝑁 𝐷 of 0.61V and a pulse duration of

17 ns for the FELIX NAND operation.

As can be noted, the FELIX XOR operation works at its best with voltage values and

durations of the operations that are different from those used for the FELIX NAND and

FELIX OR operations. This implies that the voltage regulator will need to take care of

these additional voltages, and it will not be possible to treat the XOR operation as just a

concatenation of the FELIX NAND and OR, but it would be a whole new operation that, on

top of it, does not show results interesting enough. Therefore, the FELIX XOR operation

would be very difficult to implement and use in a concatenated manner: the very strict

input voltage constraints and the final resistive values of the output, which would surely

need a refresh, would not make it interesting enough for our application.
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HRS = 300k, LRS = 1k

(a) (b)

Figure 4.11: Results of the simulation of the FELIX XOR operation. In this case, only the plot for the FELIX

NAND operation is shown (being it the second step of the FELIX XOR operation): the best couple of voltage and

duration of the FELIX OR operation that brought to the case shown here has already been calculated. (a) Plot

showing the control voltage 𝑉0 and the duration of the pulse couples (coloured) that grant working operations.

In this particular case, having the resulting diff only between 140 kΩ and 149.5 kΩ, the yellow points have been

contoured with a black circle, to enable to properly see the plots. (b) Histogram showing the frequency and the

diff values (the maximum distance from the expected value in the two memristors). This plot is in linear scale.

The colour code is explained in figure 4.6.

Being the FELIX XOR an operation made of the consecutive execution of two operations, the plot shows only

the voltage and duration of the second operation, i.e., the FELIX NAND operation. A preliminary study has been

done on all the control voltages and duration of the pulse for the FELIX OR operation run beforehand, and the

chosen one (that was giving us the best results is with 𝑉0=1.94V and the duration of the pulse is 3.75 ns.
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4.5.5 IMPLY
The final state of the IMPLY operation (figure 4.12) does not reach the nominal values,

but it is working having the value diff < 5 kΩ. The executed simulations showed that the

lower the resistance and the higher the absolute values of 𝑉𝑆𝐸𝑇 and 𝑉𝐶𝑂𝑁 𝐷 , the lower

the value of diff will be. The parameters of the IMPLY simulation have been the load

resistance 𝑅𝐺 and the two control voltages 𝑉𝑆𝐸𝑇 and 𝑉𝐶𝑂𝑁 𝐷 . We ran a coarse-grained

simulation to find the most suitable 𝑅𝐺 and 𝑉𝑆𝐸𝑇 . Finally, the chosen settings are the load

resistance 𝑅𝐺 of 500 Ω, the voltage 𝑉𝑆𝐸𝑇 of −2V and the voltage 𝑉𝐶𝑂𝑁 𝐷 between −1.4V

and −1.275V. The best result obtained in the simulation with nominal values is with the

output memristor around 625 Ω from the expected value (it has been obtained with the

control voltages 𝑉𝐶𝑂𝑁 𝐷 of −1.35V and 𝑉𝑆𝐸𝑇 of −2V, a pulse duration of 20 ns, and a load

resistance of 500 Ω).

HRS = 295k, LRS = 1.5k

(a) (b)

Figure 4.12: Results of the simulation of the IMPLY operation. (a) Plot showing the couples of control voltage 𝑉0
and duration of the pulse (coloured) that provide working operations. (b) Histogram showing the frequency and

the values of diff (the max distance from the expected value in the two memristors). This plot is in logarithmic

scale.

The colour code is explained in figure 4.6.

Having the IMPLY operation two different control voltages and load resistance, to properly show the graphs we

performed several coarse grain simulations and, once we found the most promising load resistance (500 Ω) and

𝑉𝑆𝐸𝑇 (−2V), we plotted the graphs showing the behaviour of 𝑉𝐶𝑂𝑁 𝐷 .
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4.6 Conclusion
In this chapter we have analysed the electrical behaviour of some significant LIM imple-

mentations under various operating conditions, with ideal nominal resistive values. Our

results showed that:

• While operations are performed correctly from a logic point of view, the resistance

of the output memristor does not always reach its ideal value;

• The higher the distance between nominal and non-ideal state still considered an

accepted value, the larger the control voltage range where the LIM operation is con-

sidered correct. This knowledge can lessen the restrictions on the voltage regulators

(to generate the control voltages);

• Certain operations (e.g., FELIX XOR and IMPLY) may not exhibit a level of reliabil-

ity that instills confidence. This potential lack of reliability might raise concerns

about the effectiveness and consistency of these operations and its usage in multi-

operations (consecutive among them without rewriting the input and output val-

ues). It could be worth further exploring and evaluating these processes to deter-

mine whether enhancements are needed to ensure a more robust and dependable

outcome.
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5
Electrical Analysis of Boolean

Operations with Non-Ideal

Memristive Elements

This chapter contains an in depth study of the MAGIC and FELIX LIM solutions based

on electrical simulations and assuming non-ideal memristors. Indeed, in the previous

chapter, we have shown that, under certain conditions, there are operations for which the

output memristor does not reach the ideal resistance value. This observation has raised

the following question: what happens when the output of one operation needs to be used

as input for an other (i.e., when operations are concatenated). Indeed, LIM solutions such

as MAGIC and FELIX have been shown to perform complex logic by concatenating basic

operations without the need of storing intermediate results outside the memory array. In

this chapter, we show how a non-ideal output of one operation can impact the correctness

of the following operation. Indeed, to achieve a seamless cascade of operations as the

LIM promises to grant, wherein the outputs of preceding processes serve as inputs for

successive ones, it becomes imperative to ascertain the viability of each operation under
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non-ideal conditions. Non-ideal conditions that are represented by non-ideal values, i.e.,

resistive values in one (or more) memristor used to perform the operation that are only

close to the nominal one but it does not reach it. In fact, the FELIX NAND operation

showed us that we can have both an output value that doesn’t reach the expected value

(we will refer to it as non-ideal output) and, on top of it, there are cases where the input

values could be slightly degraded (we will refer to them as non-ideal inputs).

Moreover, the FELIX XOR solution is made of a FELIX OR operation followed by a FELIX

NAND operation, both executed on the same memristors, reusing the input memristors

and the output memristor (without reinitialising it inside the FELIX NAND operation).

Before having the results of the simulation of the FELIX XOR (presented in section 4.5),

we had supposed that if the FELIX OR had performed similarly to the FELIX NAND, we

would have a case of a concatenated operation risking to have both non-ideal inputs and

output. And we did not know how the operation could have behaved. However, the FELIX

XOR is a particular case because its output memristor, being not initialised, behaves as a

third input for the operation (a non-ideal input, as we have demonstrated). In conclusion,

we found that it is important to study how the input values can affect the operations and,

as a consequence, what are the acceptable resistive values to consider an operation as

correct. And to consider an operation correct, we need to distinguish the resistive values

thresholds for which the LIM operations under study can be concatenated.

The contributions presented in this chapter are:

• The in-depth analysis of the operating conditions of MAGIC NOT, MAGIC NOR, FE-

LIX OR, FELIX NAND, FELIX XOR and IMPLY with the identification of the ranges

in which the operations are performed correctly, highlighting the values of control

signals which lead to input-destructive operations, by having these operation fed

with non-ideal input values;

• The demonstration that concatenating operations (i.e., using the output of one op-

eration as input of the next operation) starting from non-ideal resistive values can

lead to wrong results.
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5.1 Simulation environment and preliminary analysis
After the operation is executed, the resistive values of the inputs can be partially overwrit-

ten (and therefore be further from the ideal value, or even not correct anymore), and the

output value could not reach the wanted value, or reach a non-ideal one.

We analysed the effect of a non-ideal state as input in both NOR and NAND operations.

We repeated the preliminary simulations done to study the operations but considering non-

ideal states in the input memristors. We have considered two cases: (i) non-ideal states

have been chosen from the output resistive values obtained during the NAND operation

shown in figure 4.4; (ii) the non-ideal LRS has been chosen from the output resistive values

obtained during the NAND operation shown in figure 4.5, while the HRS has been kept

in the nominal resistive value. In the first case, non-ideal HRS is equal to 297.5 kΩ and

non-ideal LRS is equal to 1225 Ω. In the second case, non-ideal LRS is equal to 5 kΩ.

For the first case, simulations have been performed with non-ideal states in both input

memristors and have shown that the operations still work. The NOR and NAND opera-

tions can be seen in figures 5.2 and 5.3, respectively. While for the NOR operation there are

no remarkable differences, in the case of the NAND operation the working conditions are

different from the case where both inputs are initialised with the nominal values. More in

particular, the dark green regions in figures 4.5 and 5.3 only partially overlap. This knowl-

edge hardens the restrictions on the voltage regulators (to generate the control voltages),

since it reduces the range of voltages for which the operations are correctly executed when

considering concatenation.

For the second case, we considered the inputs initialised to the non-ideal LRS of 5 kΩ
and nominal HRS. This case is illustrated in the waveform of figure 5.1. In this case, the

NOR operation did not work for any combination of voltage amplitude and duration, as

seen in figure 5.4. However, the NAND operation worked, with a larger range of voltages,

as shown in figure 5.5. Nevertheless, there are no common values of control signals for

which the NAND operation is performed correctly when considering nominal and non-

ideal states. As a consequence, the operation cannot work.

In this preliminary analysis we have studied the electrical behaviour of the most signif-

icant LIM implementations among the ones we selected (MAGIC NOR and FELIX NAND)
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Figure 5.1: Waveform of a FELIX NAND operation having the input memristors with non-ideal LRS=5 kΩ. The

vertical red lines indicate the start of the next operation. As it can be seen, instead of the expected logic 1

(300 kΩ), it is obtained as a result a logic 0 (1 kΩ): the memristor cannot change its resistive value due to the too

high resistive value of the inputs. The NAND operation is therefore failed.
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Figure 5.2: Results of the preliminary simulation of the NOR operation with non-ideal state inputs (1225 Ω,

297.5 kΩ) and with non-ideal LRS=1.3 kΩ and non-ideal HRS=290 kΩ for reading the output value. The colour

code is explained in section 4.2.

under various operating conditions. Our results showed that concatenating operations

(i.e., using the output of one operation as input of the next operation) starting from non-

ideal resistive values can lead to wrong results. To overcome this problem, refresh cycles

should be added at the end of every logic operation to restore the resistive state to its

nominal value (either HRS or LRS) to guarantee the correct result of complex calculations.
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Figure 5.3: Results of the preliminary simulation of the NAND operation with non-ideal state inputs (1225 Ω,

297.5 kΩ) and with non-ideal LRS=1.3 kΩ and non-ideal HRS=290 kΩ for reading the output value. The colour

code is explained in section 4.2.

Figure 5.4: Results of the preliminary simulation of the NOR operation with non-ideal state inputs (5 kΩ, 300 kΩ)

and with non-ideal LRS=50 kΩ and non-ideal HRS=150 kΩ for reading the output value. The colour code is

explained in section 4.2.
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Figure 5.5: Results of the preliminary simulation of the NAND operation with non-ideal state inputs (5 kΩ,

300 kΩ) and with non-ideal LRS=10 kΩ and non-ideal HRS=290 kΩ. for reading the output value. The colour

code is explained in section 4.2.
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5.2 Parametric Sweep
As for the study of the operations with ideal memristive elements, after analysing the

findings of the coarse-grained simulation with non-ideal inputs, we decided that a finer-

grained analysis could have provided us with additional insights, even more in circum-

stances where there appeared to be no working solutions. As a result, we once again used

the simulation environment of chapter 3 and simulated the execution of the LIM functions

using all input combinations (i.e., 00, 01, 10, 11) saving the final state of the used memris-

tors for each control voltage setup (i.e., couple of amplitude and duration) and for each

load resistance (for the IMPLY operation).

We use several thresholds to show how far the final state of the memristors is from

the expected one, starting from a minimum distance equal to the half of the HRS - LRS

value. We analysed the effect of a non-ideal state as input in all the operations studied.

To achieve it, we performed the simulations with the same settings for the nominal input

values and on sets of non-ideal inputs. We have considered as inputs three non-ideal cases

taken from the final state of the input memristors that we obtained from the simulation

of NAND operations:

a) HRS = 299.5 kΩ, LRS = 1025 Ω,

b) HRS = 297.5 kΩ, LRS = 1225 Ω,

c) HRS = 295 kΩ, LRS = 1500 Ω.

These values have been used for the input memristors (𝑖𝑛1 for MAGIC NOT, 𝑖𝑛1 and

𝑖𝑛2 for MAGIC NOR, FELIX NAND, OR and XOR and 𝑖𝑛1 and 𝑖𝑛2𝑜𝑢𝑡 for IMPLY).

For each control voltage setup (i.e., couple of amplitude and duration) and for each

load resistance (for the IMPLY operation), we have simulated the execution of the LIM

functions applying all input combinations (i.e., 00, 01, 10, 11) and saving the final state of

the used memristors. Among the data extracted from the analysis of the results there are

1) the inputs correctness, i.e., the inputs remained the ones that have been written before

executing the operation, 2) the output correctness, i.e., the output state is the expected one,
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3) the difference from the expected value for each memristive value, calculated doing:

𝑑𝑖𝑓 𝑓 = ||𝑜𝑢𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑜𝑢𝑡𝑟𝑒𝑎𝑑 || (5.1)

We calculated the maximum diff for each set of amplitude and duration of the control volt-

age (and also load resistance, for IMPLY): this allows us to take the worst case scenario for

all the input combinations. These cumulative data allowed us to pinpoint the settings that

were the most suitable for each operation. Using these data, we plotted graphs indicating

for which settings an operation was working, and, if so, how close the read memristive

values were to the nominal expected values. To do so, five different colours (see figure 5.6)

have been used in the following graphs to indicate five thresholds, based on the diff ex-

plained in equation (5.1):

• Purple: the read values are the expected nominal resistive values (with a tolerance

of 50 Ω),

• Dark blue: diff is less than 5 kΩ,

• Light blue: diff is less than 10 kΩ,

• Green: diff is less than 50 kΩ,

• Yellow: diff is less than 149.5 kΩ.

The blank part in the scatter plots is where the operation didn’t work: diff is greater

than (𝐻𝑅𝑆 − 𝐿𝑅𝑆)/2, thus not allowing a clear distinction between the two states.

𝑑𝑖𝑓𝑓 = 𝑣𝑎𝑙𝑢𝑒𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑣𝑎𝑙𝑢𝑒𝑟𝑒𝑎𝑑

Figure 5.6: Key for the plots.

These operations we simulated use two or three memristors: 𝑖𝑛1, (𝑖𝑛2), and 𝑜𝑢𝑡 or, in

the case of IMPLY, 𝑖𝑛1 and 𝑖𝑛2𝑜𝑢𝑡 . 𝑖𝑛1 and 𝑖𝑛2 are the input memristors, 𝑖𝑛2𝑜𝑢𝑡 is the

input/output memristor used by the IMPLY operation, and 𝑜𝑢𝑡 is the output memristor.
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5.2.1 MAGIC NOT and NOR
In the cases with non-ideal inputs, we can observe a minor and gradual reduction of the

working area made of the couples of control voltage and spike duration for both the oper-

ations, that gets smaller together with the increase of the non-ideality of the inputs. More

in detail, there is a slight increase of the voltage needed to have the operation working.

In fact, the higher resistive value of the LRS increases the lower voltage bound, while the

lower resistive value of the HRS decreases the upper bound (this is the case where 𝑖𝑛1 =

0 for NOT and 𝑖𝑛1 = 𝑖𝑛2 = 0 for NOR), because it allows to change the resistive value of

the inputs. Concluding, the two operations could be used in an implementation that takes

advantage of consecutive operations. The vast working area and the ability to reach the

expected values even with non-ideal inputs, makes of them robust choices for LIM.
HRS = 299.5k, LRS = 1.025k

(a) (b)

Figure 5.7: Results of the simulation of the MAGIC NOT operation with non-ideal input values (HRS = 299.5 kΩ,

LRS = 1025 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that

provide working operations. (b) Histogram showing the frequency and the diff values (the maximum distance

from the expected value in the two memristors). This plot is in logarithmic scale.

The colour code is explained in figure 4.6.
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HRS = 299.5k, LRS = 1.025k

(a) (b)

Figure 5.8: Results of the simulation of the MAGIC NOR operation with non-ideal input values (HRS = 299.5 kΩ,

LRS = 1025 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that

provide working operations. (b) Histogram showing the frequency and the values of diff (the max distance from

the expected value in the two memristors). This plot is in logarithmic scale.

The colour code is explained in figure 4.6.

HRS = 297.5k, LRS = 1.225k

(a) (b)

Figure 5.9: Results of the simulation of the MAGIC NOT operation with non-ideal input values (HRS = 299.5 kΩ,

LRS = 1025 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that

provide working operations. (b) Histogram showing the frequency and the diff values (the maximum distance

from the expected value in the two memristors). This plot is in logarithmic scale.

The colour code is explained in figure 4.6.
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HRS = 297.5k, LRS = 1.225k

(a) (b)

Figure 5.10: Results of the simulation of the MAGIC NOR operation with non-ideal input values (HRS = 299.5 kΩ,

LRS = 1025 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that

provide working operations. (b) Histogram showing the frequency and the values of diff (the max distance from

the expected value in the two memristors). This plot is in logarithmic scale.

The colour code is explained in figure 4.6.

HRS = 295k, LRS = 1.5k

(a) (b)

Figure 5.11: Results of the simulation of the MAGIC NOT operation with non-ideal input values (HRS = 299.5 kΩ,

LRS = 1025 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that provide

working operations. (b) Histogram showing the frequency and the diff values (the maximum distance from the

expected value in the two memristors). This plot is in logarithmic scale.

The colour code is explained in figure 4.6.
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HRS = 295k, LRS = 1.5k

(a) (b)

Figure 5.12: Results of the simulation of the MAGIC NOR operation with non-ideal input values (HRS = 299.5 kΩ,

LRS = 1025 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that

provide working operations. (b) Histogram showing the frequency and the values of diff (the max distance from

the expected value in the two memristors). This plot is in logarithmic scale.

The colour code is explained in figure 4.6.
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5.2.2 FELIX NAND
With lesser ideal input values, the needed voltage slightly increases (for the same reasons

of the MAGIC NOR and NOT operations), but, on the other hand, the upper bound in-

creases, allowing a greater overall working area. However, the overlap of the areas with

ideal results of each input case figures 4.9 and 5.13 to 5.15 (plots a) is null. In fact, the

overlap of the input cases figures 4.9, 5.13 and 5.14 gives only 6 purple points that are com-

mon in the three plots. This hardens the restrictions on the voltage regulators (to generate

the control voltages allowing a correct operation), since it reduces even more the range of

voltages for which the operations are correctly executed when considering concatenation.

By accepting non-ideal result values, there is a wider area, but it would compromise the

concatenation of the operation. The FELIX NAND operation, assuming that the control

voltage could be precise enough to enable the operation, could be used with consecutive

operations under strict input constraints.
HRS = 299.5k, LRS = 1.025k

(a) (b)

Figure 5.13: Results of the simulation of the FELIX NAND operation with non-ideal input values (HRS = 299.5 kΩ,

LRS = 1025 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that

provide working operations. (b) Histogram showing the frequency and the values of diff (the max distance from

the expected value in the two memristors). This plot is in logarithmic scale.

The colour code is explained in figure 4.6.



5.2 Parametric Sweep

5

105
HRS = 297.5k, LRS = 1.225k

(a) (b)

Figure 5.14: Results of the simulation of the FELIX NAND operation. (a) Plot showing the couples of control

voltage 𝑉0 and duration of the pulse (coloured) that provide working operations. (b) Histogram showing the

frequency and the values of diff (the max distance from the expected value in the two memristors). This plot is

in logarithmic scale.

The colour code is explained in figure 4.6.

HRS = 295k, LRS = 1.5k

(a) (b)

Figure 5.15: Results of the simulation of the FELIX NAND operation. (a) Plot showing the couples of control

voltage 𝑉0 and duration of the pulse (coloured) that provide working operations. (b) Histogram showing the

frequency and the values of diff (the max distance from the expected value in the two memristors). This plot is

in logarithmic scale.

The colour code is explained in figure 4.6.
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5.2.3 FELIX OR
The behaviour of the operation for non-ideal input cases worsens with respect to the case

with nominal inputs: the working area from the combination of the voltage and the oper-

ation duration gets smaller and the values reached are less close to the nominal values. As

it can be seen in the histograms in figures 4.10 and 5.16 to 5.18 (cases b), the best diff values

reached are lower and lower, having only few results in the case with diff < 5 kΩ. While

the FELIX OR is resistant enough to correctly perform the operation with the non-ideal

inputs we used, the result would not be enough close to the nominal value to be used as

input for other operations. To allow a proper concatenation with the FELIX OR, we would

need a refresh of at least the output memristor, being it the one showing the highest drift

from the nominal expected value.
HRS = 299.5k, LRS = 1.025k

(a) (b)

Figure 5.16: Results of the simulation of the FELIX OR operation with non-ideal input values (HRS = 299.5 kΩ,

LRS = 1025 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that

provide working operations. (b) Histogram showing the frequency and the values of diff (the max distance from

the expected value in the two memristors). This plot is in linear scale.

The colour code is explained in figure 4.6.
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HRS = 297.5k, LRS = 1.225k

(a) (b)

Figure 5.17: Results of the simulation of the FELIX OR operation with non-ideal input values (HRS = 297.5 kΩ,

LRS = 1225 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that

provide working operations. (b) Histogram showing the frequency and the values of diff (the max distance from

the expected value in the two memristors). This plot is in linear scale.

The colour code is explained in figure 4.6.

HRS = 295k, LRS = 1.5k

(a) (b)

Figure 5.18: Results of the simulation of the FELIX OR operation with non-ideal input values (HRS = 295 kΩ, LRS

= 1500 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that provide

working operations. (b) Histogram showing the frequency and the values of diff (the max distance from the

expected value in the two memristors). This plot is in linear scale.

The colour code is explained in figure 4.6.
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5.2.4 FELIX XOR
Starting from the considerations on the FELIX XOR operations we treated in the last chap-

ter, this is an operation that we do not consider actually usable with the use constraints

that we have put. We performed anyway the simulations to see how it could have behaved

with non ideal cases. The results are similar to the ones with ideal nominal input values.

The diff is slightly higher, but there are common values between the 4 input cases, show-

ing us that it can tolerate less ideal cases. But the diff value is too high, and therefore, as

assessed before, the FELIX XOR operation would be very difficult to implement and to use

in a concatenated manner: the very strict input voltage constraints and the final resistive

values of the output, which would surely need a refresh represent a huge obstacle.
HRS = 299.5k, LRS = 1.025k

(a) (b)

Figure 5.19: Results of the simulation of the FELIX XOR operation with non-ideal input values (HRS = 299.5 kΩ,

LRS = 1025 Ω). In this case, only the plot for the FELIX NAND operation is shown (being it the second step of

the FELIX XOR operation): the best couple of voltage and duration of the FELIX OR operation that brought to

the case shown here has already been calculated. (a) Plot showing the control voltage 𝑉0 and the duration of

the pulse couples (coloured) that grant working operations. In this particular case, having the resulting diff only

between 140 kΩ and 149.5 kΩ, the yellow points have been contoured with a black circle, to enable to properly

see the plots. (b) Histogram showing the frequency and the diff values (the maximum distance from the expected

value in the two memristors). This plot is in linear scale.

The colour code is explained in figure 4.6.

Being the FELIX XOR an operation made of the consecutive execution of two operations, the plot shows only

the voltage and duration of the second operation, i.e., the FELIX NAND operation. A preliminary study has been

done on all the control voltages and duration of the pulse for the FELIX OR operation run beforehand, and the

chosen one (that was giving us the best results is with 𝑉0=1.94V and the duration of the pulse is 3.75 ns.
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HRS = 297.5k, LRS = 1.225k

(a) (b)

Figure 5.20: Results of the simulation of the FELIX XOR operation with non-ideal input values (HRS = 297.5 kΩ,

LRS = 1225 Ω). In this case, only the plot for the FELIX NAND operation is shown (being it the second step of

the FELIX XOR operation): the best couple of voltage and duration of the FELIX OR operation that brought to

the case shown here has already been calculated. (a) Plot showing the control voltage 𝑉0 and the duration of

the pulse couples (coloured) that grant working operations. In this particular case, having the resulting diff only

between 140 kΩ and 149.5 kΩ, the yellow points have been contoured with a black circle, to enable to properly

see the plots. (b) Histogram showing the frequency and the diff values (the maximum distance from the expected

value in the two memristors). This plot is in linear scale.

The colour code is explained in figure 4.6.

Being the FELIX XOR an operation made of the consecutive execution of two operations, the plot shows only

the voltage and duration of the second operation, i.e., the FELIX NAND operation. A preliminary study has been

done on all the control voltages and duration of the pulse for the FELIX OR operation run beforehand, and the

chosen one (that was giving us the best results is with 𝑉0=1.94V and the duration of the pulse is 3.75 ns.
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HRS = 295k, LRS = 1.5k

(a) (b)

Figure 5.21: Results of the simulation of the FELIX XOR operation with non-ideal input values (HRS = 295 kΩ,

LRS = 1500 Ω). In this case, only the plot for the FELIX NAND operation is shown (being it the second step of

the FELIX XOR operation): the best couple of voltage and duration of the FELIX OR operation that brought to

the case shown here has already been calculated. (a) Plot showing the control voltage 𝑉0 and the duration of

the pulse couples (coloured) that grant working operations. In this particular case, having the resulting diff only

between 140 kΩ and 149.5 kΩ, the yellow points have been contoured with a black circle, to enable to properly

see the plots. (b) Histogram showing the frequency and the diff values (the maximum distance from the expected

value in the two memristors). This plot is in linear scale.

The colour code is explained in figure 4.6.

Being the FELIX XOR an operation made of the consecutive execution of two operations, the plot shows only

the voltage and duration of the second operation, i.e., the FELIX NAND operation. A preliminary study has been

done on all the control voltages and duration of the pulse for the FELIX OR operation run beforehand, and the

chosen one (that was giving us the best results is with 𝑉0=1.94V and the duration of the pulse is 3.75 ns.
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5.2.5 IMPLY
The behaviour of the IMPLY operation under non-ideal input condition worsens with re-

spect to the one we found with nominal input values: as it can be seen by the histograms

in figures 4.12 and 5.22 to 5.24, the further the input values are from the nominal ones, the

further is the final state of the memristors from the expected one. There is a common area

between the four input cases, having the diff value in the worst case between 10 kΩ and

50 kΩ. The behaviour of the IMPLY operation is not close to what we are looking for in

terms of functioning and reliability, therefore we chose it would not be able to be used for

our application and we excluded it.
HRS = 299.5k, LRS = 1.025k

(a) (b)

Figure 5.22: Results of the simulation of the IMPLY operation with non-ideal input values (HRS = 299.5 kΩ, LRS

= 1025 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that provide

working operations. (b) Histogram showing the frequency and the values of diff (the max distance from the

expected value in the two memristors). This plot is in logarithmic scale.

The colour code is explained in figure 4.6.

Having the IMPLY operation two different control voltages and load resistance, to properly show the graphs we

performed several coarse grain simulations and, once we found the most promising load resistance (500 Ω) and

𝑉𝑆𝐸𝑇 (−2V), we plotted the graphs showing the behaviour of 𝑉𝐶𝑂𝑁 𝐷 .
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HRS = 297.5k, LRS = 1.225k

(a) (b)

Figure 5.23: Results of the simulation of the IMPLY operation with non-ideal input values (HRS = 297.5 kΩ, LRS

= 1225 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that provide

working operations. (b) Histogram showing the frequency and the values of diff (the max distance from the

expected value in the two memristors). This plot is in logarithmic scale.

The colour code is explained in figure 4.6.

Having the IMPLY operation two different control voltages and load resistance, to properly show the graphs we

performed several coarse grain simulations and, once we found the most promising load resistance (500 Ω) and

𝑉𝑆𝐸𝑇 (−2V), we plotted the graphs showing the behaviour of 𝑉𝐶𝑂𝑁 𝐷 .
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HRS = 295k, LRS = 1.5k

(a) (b)

Figure 5.24: Results of the simulation of the IMPLY operation with non-ideal input values (HRS = 295 kΩ, LRS

= 1500 Ω). (a) Plot showing the couples of control voltage 𝑉0 and duration of the pulse (coloured) that provide

working operations. (b) Histogram showing the frequency and the values of diff (the max distance from the

expected value in the two memristors). This plot is in logarithmic scale.

The colour code is explained in figure 4.6.

Having the IMPLY operation two different control voltages and load resistance, to properly show the graphs we

performed several coarse grain simulations and, once we found the most promising load resistance (500 Ω) and

𝑉𝑆𝐸𝑇 (−2V), we plotted the graphs showing the behaviour of 𝑉𝐶𝑂𝑁 𝐷 .
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5.3 Discussion and Conclusion
In the previous and this chapter, we have simulated and analysed the electrical behaviour

of selected LIM solutions (MAGIC NOT, MAGIC NOR, FELIX NAND, FELIX OR, FELIX

XOR and IMPLY), under both ideal and non-ideal input conditions. We have shown that

there are several differences between them.

5.3.1 Comparison among XOR implementations
This section aims to discuss the main aspects of the implementations of the XOR operation

using the different LIM solutions. The XOR operation is the main step to perform the

most common security operations, such as encryption and decryption operations. We

focus therefore to compare the different implementation-based XOR operations according

to several considerations described below.

Area We will consider the area occupation as the number of memristors needed to per-

form the XOR operation. As can be seen in tables 4.5, 4.7 and 4.9, the solution that takes

the least number of memristors is the FELIX XOR, since it only requires the two input and

the output memristors. The others require two additional functional memristor to enable

intermediate operations that allow the operation to reach the result.

Speed Regarding the speed, in table 5.1 are presented the minimum durations of the

selected operations, with the strictest threshold (diff < 50 Ω) to consider them as correct.

As can be seen, the FELIX NAND and IMPLY operations take more than 15 ns, while the

MAGIC NOT and NOR operations are able to work correctly in 0.5 ns. Therefore, the

MAGIC-based XOR operation, even if it has more steps than the FELIX XOR, is the fastest.

Robustness of the operation We consider an operation as robust if it does not have

a non-negligible effect on the inputs and it allows to reach a nominal value in the output.

According to the simulations performed, the MAGIC-based XOR is again the most robust

XOR operation.
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Operation Voltage(s) [V] t (control voltage pulse) [ns] t (chosen) [ns] t (full operation) [ns] diff [Ω] Chosen voltage(s) [V]

Write 2.3 / -1.5 0.25+ 0.25 0.25 0 2.3 / -1.5

IMPLY 1.35 / 2 0.25+ 20 20.25 627 1.35 / 2

MAGIC NOT 1.36 ÷ 1.54 0.5+ 0.25 0.5 0 1.36 ÷ 1.54

MAGIC NOR 1.2 ÷ 1.53 0.25+ 0.25 0.5 0 1.2 ÷ 1.53

FELIX NAND 0.66, 0.67 16 ÷ 19 16 16.25 38 0.67

FELIX OR 2.03 1.75 ÷ 2.5 1.75 2 2753 2.03

FELIX XOR 1.94 / 0.61 3.75 / 17 20.75 21 144.5k -

MAGIC XOR - - 2.5 0

IMPLY XOR - - 162 -

Table 5.1: Table showing the operation time, the possible input ranges and the chosen inputs for the analysed

operations.

Operation range Among the operations that we analysed, the ones with the widest

operating range are the MAGIC NOT and NOR operations. This wide range allows to be

realistically implemented from the voltage regulators and the architectural aspects.

5.3.2 Conclusion
The main conclusions of this chapter are:

• The resistive value of the input memristor has an impact on the ranges in which the

operations are performed correctly;

• As a consequence from the last point, concatenating operations (i.e., using the out-

put of the previous operation as input of the new operation) starting from non-ideal

values can lead to wrong results. To overcome this issue, refresh cycles should be

added at the end of every operation that does not allow to reach nominal values in

the output memristor. This would allow to have again the nominal values (HRS or

LRS) and allow the correct execution of the successive operations;

• Complex operations such as the XOR operation can be more interesting when ex-

ecuted taking into account its robustness and speed instead of a reduced area and

a lower number of steps. The MAGIC-based XOR operation results faster (even if

composed of 10 steps) and more robust (it allows to have nominal results avoiding

a change in the input memristors) than the other alternatives we explored.
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The main lesson learnt is that some operations are not able to guarantee correct func-

tioning when run consecutively. As a way to mitigate this problem, we would need to

read and rewrite (refresh) the memristor’s values. This could be done when needed, by

developing a current sensor that checks the correct value of the memristor and, in case

it is needed, refreshes the value. Other operations (like the NAND operation) are more

resilient to the non-ideal values, and they could avoid this problem. Another option could

be to have the compiler handling the issue: we are able to know which are the operations

that are delicate, and scheduling changes, together with aimed refreshes could be a better

solution.

Variability is another important issue that has to be taken into account: it could al-

low similar non-ideal values as we showed in this chapter, changing the behaviour of the

operations. More studies are needed on variability and maturity of technology.
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6
Security Aspects of LIM Solutions

Besides the need for power efficiency and computation speed, the need for security has

also become increasingly important. This has led to the development of hardware compo-

nents and Intellectual Properties (IPs) for cryptography, but it has also created new types

of threats and hardware attacks, such as: side-channel attacks, which exploit information

leaked through a device’s physical characteristics, such as power consumption or electro-

magnetic emissions; fault injection attacks, which aim to introduce faults into a device’s

hardware in order to disrupt its normal operation or extract sensitive information. In

classical architectures, data and cryptographic keys are stored in the main memory and

transferred to the processor to execute the cryptographic functions. Therefore, confiden-

tial information transits unencrypted via the communication buses, being susceptible to

information leakage. On the contrary, with CIM, secure operations can be performed

without resorting to data transfer, therefore mitigating the risk of data leakage and avoid-

ing exposure to attacks. Among the many CIM solutions, considering the previous work

introduced in the previous chapter of this thesis, we focus on LIM based on MAGIC [27]

which is able to perform any logic operation within the memory array.

In this chapter we show that:
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• MAGIC-based operations used to perform the MAGIC-based XOR operation have

a power consumption profile which is data-dependent, thus enabling side-channel

attacks;

• Memristive memory arrays are very sensitive to variations of electrical operation

conditions, and thus prone to fault attacks.

With respect to the state of the art, side-channel analysis has already been used to

reverse-engineer the functional structure of IPs implementedwithMAGIC in amemristive

array [147], whereas [148] performs side-channel and differential power analyses on an-

other type of LIM implementation, i.e., Complementary Resistive Switching (CRS). More-

over, [149] takes advantage of side-channel attacks on STT-MRAM-based cache, being it

an interesting application on emerging memories.

6.1 MAGIC-based XOR
There are different LIM solutions described in the literature, such as MAGIC [27], FE-

LIX [110], and IMPLY [28], which implement some basic logic functions: NOT and NOR

for MAGIC; NAND and OR for FELIX and implication for IMPLY. The IMPLY solution has

the disadvantage of being input-destructive (i.e., the inputs are not preserved after the op-

eration is executed), making the reuse of data difficult. The FELIX is not a robust solution,

as demonstrated in the previous chapters. In contrast, MAGIC solution is robust and non-

input destructive, therefore suitable for the implementation of complex logic. Moreover,

MAGIC (i.e. NOT and NOR operations) is not sensitive to dynamic and static memristive

variability (cycle-to-cycle and device-to-device), while it is sensitive to variations in con-

trol signals, as shown in chapter 5. The MAGIC NOR operation requires three memristors:

two in parallel as input values (𝑖𝑛1 and 𝑖𝑛2) and the third, in series, for the output (𝑜𝑢𝑡).
The logic operations are carried out by first setting the output memristor to logic 1 (LRS),

then providing a voltage 𝑉0 to the resistive structure. The output memristor will switch

to logic 0 (HRS) if its voltage drop is large enough, which depends on the input values.

This switch occurs when at least one of the input memristors is at logic 1, thus performing

a NOR operation. The MAGIC NOT operates in the same way, but only with one input
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memristor. The analysis we performed in this chapter is based on simulation, with the

simulation environment explained in chapter 3. Parameters, duration and control voltage

values for the MAGIC NOT and NOR have been selected according to the previous results:

𝑅𝑂𝐹𝐹 (HRS, logic 0) = 300 kΩ; 𝑅𝑂𝑁 (LRS, logic 1) = 1 kΩ; a cycle time of 0.25 ns; a control

voltage 𝑉0 of 1.4V.

The goal of this study is the analysis of the sensitiveness to side-channel and fault in-

jections on MAGIC-based LIM implementations in the context of secure applications. The

most significant logic operation for cryptography is the XOR operation (commonly used in

all encryption algorithms, including DES [143], AES [145], and PRESENT [146]), which se-

cures the plaintext by combining it with the secret key. Therefore, we have chosen to focus

our analysis on the XOR gate, as we believe that if this operation is not secure, the overall

algorithm is not secure either. In order to implement XOR with MAGIC, it is necessary

to concatenate multiple NOR and NOT operations by obtaining a sequence of five steps

(as fully described in section 4.4.1): 1) MAGIC NOT (𝑖𝑛1, 𝑓1), 2) MAGIC NOT(𝑖𝑛2, 𝑜𝑢𝑡),
3) MAGIC NOR(𝑓1, 𝑜𝑢𝑡 , 𝑓2), 4) MAGIC NOR(𝑖𝑛1, 𝑖𝑛2, 𝑓1) and 5) MAGIC NOR(𝑓1, 𝑓2, 𝑜𝑢𝑡).
These steps involve the use of five memristors: 𝑖𝑛1 and 𝑖𝑛2 as input memristors, 𝑓1 and 𝑓2
as functional memristors used to store temporary results, and 𝑜𝑢𝑡 as the output memris-

tor where the final result of the operation is written. Figure 6.1 shows the schematic we

implemented to perform our simulations. 𝑉𝑠𝑒𝑡 and 𝑉𝑟𝑒𝑠𝑒𝑡 are used to initialise memristors

to the desired logic value, and 𝑉0 is used to perform the NOR and NOT logic operations.

in1 in2 f1 f2 out

Vreset+
V0+

Vset+

Figure 6.1: MAGIC-based XOR netlist.
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Inputs
Step 1

𝑓1 = NOT(𝑖𝑛1)

Step 2

out = NOT(𝑖𝑛2)

Step 3

𝑓2 = NOR(𝑜𝑢𝑡 ,𝑓1)

Step 4

𝑓1 = NOR(𝑖𝑛1,𝑖𝑛2)

Step 5

out = NOR(𝑓1,𝑓2)

00 1 1 0 1 0

01 1 0 0 0 1

10 0 1 0 0 1

11 0 0 1 0 0

Table 6.1: MAGIC-based XOR steps and values. Under the steps are the resulting values of each operation.

6.2 Side Channel Attacks on MAGIC-based XOR

Side-Channel Attacks exploit the fact that secure devices leak physical information during

data processing. This physical leakage (e.g., power dissipation, electromagnetic emanation,

timing information) can be measured externally and used for compromising confidential

data, such as the secret key of a cryptographic system. Side-channel attacks such as SPA

and DPA have become popular since, without proper countermeasures, they require the

knowledge of the algorithm, a model correlating the physical measurements and the pro-

cessed data, but not the physical implementation of the target device. On classical CMOS-

based circuits, DPA exploits the fact that transitions (from 0 to 1 or from 1 to 0) of the

logic gates require energy (which can be measured via an oscilloscope). On the other side,

without transitions, the gate’s transistors only have static power consumption. Therefore,

by measuring the current consumed by the circuit, it is possible to create a correlation

with internal circuit’s transitions. The most common information leakage models are the

hamming distance and hamming weight. The Hamming distance model assumes that the

power consumption of a device is correlated with the number of bits that change between

two input states. The Hamming weight model assumes that the power consumption of a

device is correlated with the number of bits set to 1 in the input data. On the contrary, in

resistive-based circuits, we observe large variations in currents consumed by the circuit,

with or without state transitions. In this thesis, we investigate how side-channel analysis

can be performed based on this principle.
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6.2.1 Current consumption of MAGIC-based XOR

In order to create a proper information leakagemodel for the memristive-based LIM opera-

tions, we simulated the MAGIC-based XOR operation while measuring the corresponding

current profile, for all input combinations, as shown in figure 6.2. It should be noticed that

the XOR is obtained by concatenating the 5 operations (as shown in table 6.1) and each

operation is performed in two steps, i.e., the SET of the output memristor, followed by the

actual NOR (or NOT) operation involving the inputs. Some particularities of the current

behaviour should be noticed:

• A current spike is observed every time the output memristor changes its state from

the preset value (i.e., switches from 1 to 0). The positions of the current spikes reflect

the truth tables in table 6.1. In addition, the spike amplitude is at least 3 orders of

magnitude larger than what would be observed in a classical CMOS gate.

• The energy consumed during the SET operation depends on the initial state of the

memristor. Indeed, if the initial state is LRS, the SET operation does not change the

state of the memristor, but has high energy consumption. If the initial state is HRS,

the SET operation changes the state of the memristor but its energy consumption

its very low before the switch happens. In operations 1, 2 and 3, the initial states

of memristors 𝑓1, 𝑓2, and 𝑜𝑢𝑡 are assumed unknown (and in any case not related to

the input values – for simplicity, in the simulation we assumed their initial state to

HRS), while in operations 4 and 5, the initial states of memristors 𝑓1 and 𝑜𝑢𝑡 depend
on the input values. Indeed, before the SET of 𝑓1 in operation 4, the state of 𝑓1 is the

result of operation 1, i.e., 𝑛𝑜𝑡(𝑖𝑛1), while before the SET of out in operation 5, the

state of out is the result of operation 2, i.e., 𝑛𝑜𝑡(𝑖𝑛2). For the case 0 ⊕ 0, the energy

consumption during the last two operations is therefore very high, while for the

case 1 ⊕ 1 is very low in comparison. For the cases 0 ⊕ 1 and 1 ⊕ 0, the energy has an

intermediate value.
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Figure 6.2: MAGIC-based XOR current curves.

6.2.2 DPA on MAGIC-based XOR
In the execution of the DPA, the supply current measurements of a large number of en-

cryption steps are divided over two sets by means of a selection function based on the

information leakage model (which is data-dependent) and a guess on the secret key. The

difference between the averages of the two sets will approach zero for a wrong key guess,

but has noticeable peaks if the correct secret key has been predicted.

In order to prove that the MAGIC-based XOR operation can be attacked via DPA, we

have created a circuit able to perform eight 2-bit XOR operations at the same time. We

have fixed one of the two inputs (to emulate the presence of a secret key) and we have
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applied exhaustively all possible input combinations (i.e., 256). Based on observation of

figure 6.2, we have created our selection function in such a way that 0⊕0 operations belong

to the first set (the one contributing to the energy consumption), 1⊕1 belong to the second

set, while 0⊕1 and 1⊕0 are ignored. We used the tool in [150] to perform the DPA. The

result of the attack is shown in figure 6.3, where each line represents the DPA result for

each key guess. The line of maximum amplitude corresponds to the correct key guess,

thus showing the success of the attack. These results have been obtained by including

process variability (5% standard deviation of the resistive values) and noise on the control

signals (white noise with a maximum of 10% variation) in the simulation. However, the

results are not affected at all by these effects, since the large difference between 𝑅𝑂𝑁 and

𝑅𝑂𝐹𝐹 overtakes them.
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Figure 6.3: DPA result on eight 2-bit XOR operations. The red line corresponds to the correct key guess.

This finding is noteworthy as we are dealing with a system that uses resistors with

two vastly different resistance values, and the currents involved in the computation are

on the order of mA when the resistance is low or on the order of µA when the resistance

is high. Therefore, there is a significant correlation with the processed data, which can be

exploited by side-channel analysis. Moreover, this outcome can be extended to any type

of CIM where the values of resistances (or currents) differ substantially between the two

logical states.
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6.3 Fault Analysis on MAGIC-based XOR
Fault attacks [68] are a class of attacks that exploit weaknesses in a system by introducing

controlled faults or errors in its operation. The goal of a fault attack is to cause the system

to behave in an unintended way, reveal sensitive information, or break its security mea-

sures. Fault attacks can be performed by manipulating the physical environment in which

the system operates, such as temperature, voltage, electromagnetic radiation, or clock sig-

nals. DFAs and SEAs are especially potent against cryptographic systems. A DFA exploits

the differences in the behaviour of a system when operating normally versus under faulty

conditions to obtain secret information. On the other hand, a SEA induces transient faults

to cause a single-bit information leak, depending on whether the targeted algorithm pro-

duces an error or not. Since the most significant logic operation for cryptography is the

XOR, we show the effects of voltage manipulation on the behaviour of the MAGIC-based

XOR, to demonstrate the feasibility of DFA and SEA on MAGIC-based cryptography. As

shown in table 6.1, the MAGIC-based XOR operation is a concatenation of several NOR

(and NOT) operations. If one of these is not performed correctly, the result of the XOR is

not correct either.

6.3.1 Fault Analysis of MAGIC-based XOR
In this study, we assume an attacker is able to manipulate the voltage of the system to

change the behaviour of NOR and NOT operations, thus affecting the result of the XOR.

Under these conditions, three scenarios are possible:

1. The attacker manipulates only the SET voltage (𝑉𝑆𝐸𝑇 );

2. The attacker manipulates only the control voltage 𝑉0;

3. The attackermanipulates themain power supply, thus affecting both the SET voltage

(𝑉𝑆𝐸𝑇 ) and the control voltage 𝑉0 in one or multiple cycles.

To understand the effect of this attack on the full XOR gate, we have first analysed its

effect on the basic NOR/NOT operations. The following effects have been observed:
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1. If 𝑉𝑆𝐸𝑇 is below the threshold voltage of the SET operation, the memristor cannot be

initialised at logic 1, which is the first step in performing any NOR/NOT operation.

This will not affect the correctness of the operation if the memristor is already at

logic 1. However, if the memristor is at logic 0, the correctness of the operation

depends on the input values, as shown in table 6.2, column “Low 𝑉𝑆𝐸𝑇 ”. The ‘X ’

value is shown when the result of the operation depends on the initial state of the

memristor, which might be unknown.

2. If 𝑉0 is low, the voltage drop on the outputmemristormight not be enough to change

its state from logic 1 to logic 0, when at least one of the inputs is at logic 1 (as per

MAGIC-operation principle described in section 2.2.1). This situation is illustrated

in table 6.2, in the column “Low 𝑉0”.

3. If both 𝑉𝑆𝐸𝑇 and 𝑉0 are low, the two effects described before are combined, and the

output memristor is not able to change its initial state, as shown in table 6.2, column

“Low 𝑉𝑆𝐸𝑇 and 𝑉0”.

Inputs
Initial output 

state
Expected Low  VSET Low V0

Low 
VSET and V0

NOT

0
0

1
0

X 1
0

X
1 1 1

1
0

0
0

0 1
0

X
1 0 1

NOR

00
0

1
0

X 1
0

X
1 1 1

01
0

0
0

0 1
0

X
1 0 1

10
0

0
0

0 1
0

X
1 0 1

11
0

0
0

0 1
0

X
1 0 1

Table 6.2: MAGIC NOT and NOR behaviour for control voltages affected by external perturbations.

MAGIC XOR is built as the concatenation of 5 NOT/NOR steps. We have considered
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several Attack Scenarios (ASs), based on the instant and duration of the perturbation: (AS1)

only the 𝑉𝑆𝐸𝑇 in one of the 5 steps; (AS2) only the 𝑉0 in one of the 5 steps; (AS3) both 𝑉𝑆𝐸𝑇
and 𝑉0 in one or multiple consecutive steps. These attacks can be realised with expensive

means (AS1 and AS2, which require very precise time resolution, such as EM injection)

or with more affordable means for the attack AS3 (voltage or power glitching). Table 6.3

shows the expected outputs of the XOR operation when affected by the aforementioned

attacks.

AS1 AS2 AS3 (Low VSET and V0)

Low VSET Low V0 1 step 2 steps 3 steps 4 steps 5 steps

Step 1 (S1) 0X10 0111 0X1X

Step 2 (S2) 01X0 0111 01XX 0XXX (S1+S2)

Step 3 (S3) 011X 0000 0XXX 0XXX (S2+S3) 0XXX (S1+S2+S3)

Step 4 (S4) 0110 0000 0010 00XX (S3+S4) 00XX (S2+S3+S4) XXXX (S1+S2+S3+S4)

Step 5 (S5) 0010 1111 1010 1010 (S4+S5) 1010 (S3+S4+S5) XXXX (S2+S3+S4+S5) XXXX (all steps)

Table 6.3: Results of the attack on the XOR gate for the three proposed attack scenarios. The four bits in each

cell represent the result of the XOR for the four input combinations 00, 01, 10, 11. The expected value is “0110’’.

In table 6.3, cells are filled with different colours, based on the exploitability of the

attack:

• Green cell: the attack has no effect on the result of the operation;

• Yellow cells: the effect of the attack depends on the initial state of the memristors 𝑓1,

𝑓2 and out before the execution of the XOR operation. This state might be unknown

to the attacker, and therefore the exploitation of this attack is not guaranteed;

• Red cells: the effect of the attack can be predicted and exploited, no matter the initial

states of the memristors.

Based on the results in table 6.3, we can conclude that an attack targeting a perturba-

tion of 𝑉0 in one cycle, will always succeed in altering the output of the XOR computation.

If the attack is performed with lower resolution (i.e., targeting both 𝑉𝑆𝐸𝑇 and 𝑉0 over one

or multiple cycles), the probability of a successful attack is reduced.
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6.4 Conclusion
CIM holds great potential for tackling the obstacles encountered by conventional comput-

ing architectures, including the memory wall and the energy expenditure of data transfer.

Moreover, this approach could enhance security measures, as limited data movement de-

creases the likelihood of information leakage through communication buses. In this chap-

ter, we have presented the results of side-channel and fault analyses on the MAGIC so-

lution, which is representative of in-array memristive-based logic computation. We have

shown that the MAGIC-based XOR operations are sensitive to both side-channel analysis

and fault attacks. More in particular, we have demonstrated that the significant corre-

lation with processed data resulting from the utilisation of resistors with vastly different

resistance, highlights the potential for side-channel analysis. We have also shown that per-

turbation of voltage sources is an efficient means of inflicting fault attacks. To conclude,

even under the assumption supported by CIM that there is no data movement, it is still

crucial to implement countermeasures to safeguard sensitive data and ensure the integrity

of the computation. Regarding countermeasures, the classical ones used for CMOS-based

architectures, such as hiding [151] or masking [152], could represent a first approach to

reduce information leakage: the key idea is to mask the connection between the leakage of

the device and the operations being processed. However, [148] indicates that hiding could

be not as effective as for CMOS, and suggests to carefully assess such countermeasures for

memristive applications, showing the need for new methods to protect memristive LIM

implementation from Side Channel Attacks.
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7
Concluding Remarks and Future

Directions

In the world of microelectronics, there has been a longstanding quest to merge logic and

memory, aiming to move away from the conventional von Neumann architecture with its

ever-increasing limitations, such as the power and memory wall. This endeavour seeks to

go beyond the constraints and bottlenecks inherent in traditional designs and achieve a

significant technological advancement.

The chapters of this thesis have shown the versatility of NVRAMs: resistive switching

properties, computing capabilities, and the potential to redefine the boundaries of logic

and memory integration. We have navigated through the possible LIM implementations,

analysing and pondering the pros and cons of each one with a focus on security imple-

mentations.

The objective has been to explore the synthesis of Boolean operations within the LIM

framework and to embark on a security study that looks for and analyses the vulnerabili-

ties of these novel architectures. The thesis work commenced with the mission of devising

a method capable of synthesising a repertoire of Boolean operations, from the most basic



7

130 7 Concluding Remarks and Future Directions

2-bit operations to the Full Adder, all while being efficient in terms of occupied area and op-

erational cycles. In parallel, we designed a Simulation and Analysis environment capable

of handling parallel simulations, paving the way for parametric sweep. These foundational

contributions set the stage for the chapters that followed.

Firstly, we have created a framework that has allowed a comprehensive analysis of the

existing LIM solutions and a subsequent comparative study in terms of memory resource

requirements and number of operations needed to implement fundamental Boolean func-

tions. The results showed a varied outlook, where the number of steps required for oper-

ations varied significantly among solutions. Yet, this was but a preliminary glance since

the execution time of these operations remained deeply dependent on the electrical char-

acteristics of the memristor model and on the actual time it needs to change its logic value

instead of relying just on the number of steps. This chapter began our exploration and

simulation, giving us a first idea of the potential of memristive-based LIM technologies.

To comprehend the electrical behaviour of the solutions we targeted, we enriched our

toolbox with a framework enabling us to read pseudo-assembly code, generate netlist in-

puts (test benchs), run Cadence simulations, and harvest the simulation data. It is a toolkit

that gave us a way to explore and understand the behaviour of LIM operations under dif-

ferent conditions.

The first application for the toolkit has been to delve into the electrical analysis of fun-

damental Boolean operations under ideal operating conditions. It enabled us to uncover

the first vulnerabilities of some solutions, as we had to deal with the definition of correct

operation: in some cases the resistance of output memristors often deviated from their

ideal (expected) values. As the value of the memristors is treated as a logic value, it can

have a high threshold to distinguish the logic 1 to the logic 0 for the conversion from

analog to digital. But this can create many issues once we want to perform computations,

and we use a non-ideal value as input for another operation. This was the first sign of

the vulnerabilities underlying memristive-based LIM, and it gave us insights into voltage

regulation, reliability, and the potential need for enhancements.

As a consequence, we focused on operations executed under non-ideal conditions, to

delve deeper into what we had experienced in the previous simulations. We discovered
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that the resistive value of the input memristors played a central role in determining the

ranges within which operation was executed correctly. The concatenation of operations,

particularly when initiated from non-ideal values, introduced the spectre of incorrect re-

sults. This highlighted the importance of exploring the robustness and efficiency of com-

plex memristive operations, introducing the possibility of refresh cycles in case it was

impossible to obtain operations stable enough. Moreover, we were able to perform a com-

parison on XOR implementations, being the XOR operation the core operation in security-

based primitives (crypto-cores). This, added with the information on the behaviour of the

single Boolean operations, allowed us to choose the most interesting implementation: the

MAGIC-based XOR.

Having chosen the key operation to analyse, we explored the security-related issues.

Side channel and fault analyses have been our main tools to highlight the vulnerabilities of

the MAGIC-based XOR, showing an immature technology with many issues. In fact, the

large resistive difference between LRS and HRS results in high voltage and current needed

to make the operations work and makes it an easy target for side channel attacks. The lack

in robustness allows to easily manipulate the operations, also due to the immaturity of the

technology. This therefore permits to easily perform fault attacks.

This PhD journey leavesmany open questions about the technology, the security issues

and the possible countermeasures that could be put in place. Possible points to explore

are:

• LIM Synthesis Methods that could not only improve the behaviour of the LIM solu-

tions (e.g., by optimising the number of memristors and the execution time): there

could be the option to mask the ongoing operations by possible side channel analy-

ses.

• Real Time reactivity: implementing real-time adaptation mechanisms that can en-

sure reliability and correctness during consecutive operations (e.g., by inserting re-

fresh cycles to make operations behave correctly).

• Variability and Maturity: these memristive technologies are still at a low stage of

maturity. A higher technology maturity shall be vital to enhance the predictability
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and robustness of LIM systems. The variability, that has been only marginally con-

sidered in this thesis, represents a very important variable in the correct behaviour

of the LIM operations, and it needs to be further studied.

• Countermeasures to the attacks: the security challenges shown in the last chapter

of the thesis showed the need of countermeasures tailored to memristive LIM archi-

tectures, safeguarding data and computation.

Concluding, the memristive-based LIM represents a very interesting and innovating

paradigm, but at the same time it is too immature to be considered as a basis to perform

secure operations and it will need more technological advancements and the implementa-

tion of security countermeasures.
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Participation in Local and

International Activities

International Activities
• PhD forum presentation at IEEE ETS 2022.

• PhD forum presentation at IEEE ETS 2021.

• Aid in the organisation of the IEEE ETS 2021 and the associated Spring School TSS

2021.

• Aid in the organisation of two editions of the Global Test Community Quiz, that

have been held in the 2021 editions of IEEE ETS and IEEE ITC.

• Peer-reviewer and TPC member for the 2022 DAC Conference (San Francisco, USA).

• Participationwith a published article at the 16th International Conference onDesign

Technology of Integrated Systems in Nanoscale Era (DTIS), 2021.

• Participation with a published article at SMACD / PRIME 2021: International Con-

ference on SMACD and 16th Conference on PRIME.

Local Activities
• TIMA Scientific day - Hardware Security, 2023.

• TIMA PhD day, 2022.

• Junior Scientist & Industry annual meeting, 2022.

• TIMA Scientific day - Emerging Technologies, 2021.

• TIMA & RFIC PhD day, 2021.

• First scientific day of the PEM department - Doctoral schools EEATS, I-MAP² and

Physics, 2021.
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Glossary

AD Address Decoder.

AES Advanced Encryption Standard.

AS Attack Scenario.

ASIC Application-Specific Integrated Circuit.

BIOS Basic Input-Output System.

BL Bitline.

CAD Computer-Aided Design.

CF Conductive Filament.

CIM Computation in Memory.

CMOS Complementary Metal-Oxide-Semiconductor Field-Effect Transistor.

CPU Central Processing Unit.

CRS Complementary Resistive Switching.

CSV Comma-Separated Values.

DES Data Encryption Standard.

DFA Differential Fault Attack.

DPA Differential Power Analysis.

DRAM Dynamic Random-Access Memory.
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ECC Error Correcting Code.

EEPROM Electrically Erasable Programmable Read-Only Memory.

EMA Electromagnetic Analysis.

EPROM Erasable Programmable Read-Only Memory.

FA Fault Attack.

FeFET Ferroelectric Field-Effect Transistor.

FeRAM Ferroelectric Random-Access Memory.

HDD Hard Disk Drive.

HRS High Resistive State.

I/O Input/Output.

IP Intellectual Property.

ISA Instruction Set Architecture.

LIM Logic-In-Memory.

LRS Low Resistive State.

LUT Look-up Table.

MAC Multiply-Accumulate.

MOS Metal-Oxide-Semiconductor Field-Effect Transistor.

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor.

MRAM Magnetic Random-Access Memory.

MTJ Magnetic Tunnelling Junction.
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NVM Non-Volatile Memory.

NVRAM Non-Volatile Random-Access Memory.

PAA Power Analysis Attack.

PCM Phase Change Memory.

PCRAM Phase Change RAM.

PIM Processing In Memory.

POST Power On Self Test.

PROM Programmable Read-Only Memory.

RAM Random-Access Memory.

ROM Read Only Memory.

RRAM Resistive Random Access Memory.

SA Sense Amplifier.

SDPA Simple Differential Power Analysis.

SEA Safe Error Attack.

SPA Simple Power Analysis.

SRAM Static Random-Access Memory.

SSH Secure Shell Protocol.

STT-MRAM Spin-Transfer Torque Magnetic Random Access Memory.

TEAM Voltage ThrEshold Adaptive Memristor.

USB Universal Serial Bus.
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UV Ultraviolet.

VNC Virtual Network Computing.

VTEAM Voltage ThrEshold Adaptive Memristor.

WD Write Driver.

WL Wordline.


