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This thesis is primarly written in English, but some of the content is also provided in French,
namely Section 1.1, Section 1.3 and Section 6.2 which are written in French in Appendix D.



Chapter 1

Introduction

The work presented in this manuscript combines ideas from multiple fields, going from engi-

neeringmathematics - specificially literature onmulti-object tracking and deep learning-based

object recognition - to novel approaches for sequential inference via variational methods. The

presented contributions are however motivated by an original application which was the im-

pulse for the PhD project: a collaboration with Surfrider Foundation Europe to study and

develop novel solutions for automated macrolitter counting in riverbanks. In the following

sections, we start by directly presenting this application (in non technical terms) and the com-

putational challenges it involves.

1.1 Amultifaceted practical application: automatedmon-
itoring of macrolitter river pollution from videos

Litter pollution concerns every part of the globe. Each year, almost ten thousand million

tons of plastic waste is generated, among which 80 ends up in landfills or in nature [GJL17a],

notably threatening all of the world’s oceans, seas and aquatic environments [Wel20; GS20].

Plastic pollution is known to already impact more than 3763 marine species worldwide (see

for example [PR23] for a detailed analysis) with risk of proliferation through the whole food

chain. This accumulation of waste is the endpoint of the largely misunderstood path of trash,

mainly coming from land-based sources [Roc+16], yet rivers have been identified as a major

pathway for the introduction of waste into marine environments [Jam+15]. Therefore, field

data on rivers and monitoring are strongly needed to assess the impact of measures that can

be taken. The analysis of such field data over time is pivotal to understand the efficiency of

the actions implemented such as choosing zero-waste alternatives to plastic, designing new

products to be long-lasting or reusable, introducing policies to reduce over-packing.

Different methods have already been tested to monitor waste in rivers: litter collection

and sorting on riverbanks [Bru+18], visual counting of drifting litter from bridges [Gon+21],

floating booms [Gas+14] and nets [Mor+14]. All are helpful to understand the origin and

typology of litter pollution yet hardly compatible with long termmonitoring at country scales.

Monitoring tools need to be reliable, easy to set up on various types of rivers, and should give

an overview of plastic pollution during peak discharge to help locate hotspots and provide

trends. Newer studies suggest that plastic debris transport could be better understood by

counting litter trapped on river banks, providing a good indication of the local macrolitter

9



10 CHAPTER 1. INTRODUCTION

pollution especially after increased river discharge [Emm+19; ES20].

1.1.1 Context
To this aim, Surfrider Foundation Europe created the Plastic Origins project, one objective of it
being the development of effective automated monitoring solutions for macroplastic counting

on riverbanks. The data captured as part of this project (which is presented more extensively

in Chapter 3) can be summarized as follows.

1. Several thousands of independent annotated litter images, more precisely pairs of litter

items photographed on river banks with their location and area in the image identified

with bounding boxes.

2. Dozens of non-annotated high-resolution videos of river banks containing litter, shot

from handheld cameras in moving boats, lasting from a few seconds to several minutes.

3. Several data gathering expeditions where volunteers are asked to provide visual esti-

mates of the number of litter items on some of the river sections covered by the video

footage desribed above.

In Figure 1.1, we show a few examples of the annotated dataset of static litter images,

where bounding boxes are drawn to visualize the annotations. In Figure 1.2, we show two sets

of frames from one of the videos (on two different sections of the associated river expedition).

Such examples illustrate typical characteristics of the setting imposed by the data.

• In both images and videos, objects thatmust be detected come in a large variety of shapes

and colours. They are captured from various angles and distances. The backgrounds,

lightning and visual cluttering of the scenes vary greatly.

• In videos, river banks are filmed from a camera which mostly shoots perpendicularly

to the direction of motion. The camera moves globally along the river, but motion can

be highly nonlinear, e.g. with variations in speed and non-trivial rotations. During

the shooting process, a given object will be visible for a various amount of time mostly

depending on occlusions and the speed of the camera. Multiple angles of the same object

can be visible as the camera moves, such that its visual aspect may slightly shift over

time.

1.1.2 Project specificities
At Surfrider, it was established early on that all data collection campaigns (annotated static

images and videos) would be pursued but that the most convenient solution for litter monitor-

ing was to work directly on video material, as filming river expeditions was the easiest option

to regularly gather on-site data throughout the year.

Therefore, the focus turned specifically to computational solutions which can automati-

cally predict a total number of items of interest visible in videos. This latter task, which we

refer to as video object counting in the rest of the document, lies at the intersection of the

fields of computer vision and temporal data analysis. Within the former, it is particular in the

following ways.
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Figure 1.1: 12 instances of the dataset of labeled images

1. For a given video, each object may be visible in multiple frames but must be counted

only once.

2. The location of the individual objects is not necessarily required in the final prediction.

The first aspect makes the task of counting in videos largely different than that of counting
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Figure 1.2: Two groups (one for each column) of 4 frames from one instance of the video

dataset
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in independent static images. Amongst existing literature, identifying objects across multiple

frames is already a central topic in video-based multi-object tracking research (MOT), which

aims at predicting the individual trajectories of objects of interest in video footage, i.e. detect-

ing and localizing these objects in each frame and assigning them a consistent identifier over

time.

The second point, however, progressively became a distinctive feature of this project. On

the one hand, the requested output is more restricted than for traditional MOT andmost video-

based applications, since accurate frame-by-frame predictions are not required. On the other

hand, the possible research directions are broader, because one may consider solutions that do

not rely explictly on framewise object detection as an intermediate quantity to produce global

video-wise counts. In the following paragraphs, we describe succintly some other important

aspects which are specific to the task at hand.

Annotation formats. The video content of the project does not come with any form of

dense annotation, i.e. one does not have access to examples of footage with objects located

and identified in each frame. The video data consists of either bare footagewith no annotations

or video segments where the ground truth is a global count for the segment. In video-based

computer vision, this is an example of tasks in the weakly annotated setting. On the con-

trary, the image dataset is densely annotated with precise object locations, but images are

independent and lack the temporal dependencies of the videos on which the end task must be

performed. Therefore, multiple forms of data are available, and it is not clear from the start

how to combine these to build an efficient solution that makes best use of each.
1

Computational resources. Another component of this project is the computational lim-

itations specified by the Surfrider Foundation. Early on, it was announced that a preferable

solution would be one easily portable to embedded setups with limited processing power, ide-

ally one that could directly run on smartphones used to capture the videos to avoid sending

the data to a secondary device. It was also suggested along the way that methods which could

process data on-the-fly would be preferable, as storing and processing all frames at once can

be cumbersome on embedded devices.
2

Ground-truth variability and reliability. Furthermore, among the global counts provided

with the videos, variability was observed when multiple people were asked to identify litter

items on the same river sections. Figure 1.3, illustrates this in a boxplot of the reported counts

by 20 volunteers on three distinct locations covered by videos of the dataset. This variability in

the ground truth estimates suggests that the automated macrolitter counting task may benefit

from uncertainty estimates together with the predicted counts. Such uncertainty estimates,

additionally, would make the end solution more reliable for pollution monitoring, e.g. by

1
In Chapter 3, we propose an algorithmwhich only requires supervision in the form of independent annotated

images to train an object detecto. In Chapters 4 and 5, we study generic methods for inference in sequential

models that are based on unsupervised optimization objectives.

2
In Chapter 3, an effort was put in choosing efficient solutions from computer vision and developing ap-

proximations which are known to scale well for the targeted task. Additionally, most of the computations in the

algorithm we propose can be performed online. In Chapter 4 we specifically propose an online algorithm to build

generic approximations in the variational context.
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allowing to discard bad predictions.
3
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Figure 1.3: Boxplots illustrating the variability of visual counting amongst 20 volunteers for

three river sections

High-dimensional observations. From the point of view of inference in sequential data,

the observations that make up the sequences of interest (the videos) are colored images in high

resolution. As such, the dimensionality of the data at each timestep is in the order of several

millions, which makes it impossible to apply classical methods of sequential inference directly

in the space of the original videos.
4

3
In Chapter 3, the tracking solution we propose naturally accounts for uncertainty in the motion of the video

to generate counts, while in Chapter 4 and Chapter 5, the Bayesian formalism of the solutions we study can

naturally be used to derive confidence intervals around the statistical estimates.

4
In Chapter 5 and 4, we extensively study variational solutions as alternative solution to solve the scaling

issues of classical approximations derived from e.g. Monte Carlo methods.
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1.2 Challenges in multi-target inference for video object
counting

All in all, the previous setting and challenges can be approached from many different angles.

When combining the specific goal of video object counting with the additional observations

and constraints presented in the previous paragraphs, some central motivations of this thesis

may be summarized as follows.

• Given limited annotations, can we build solutions to extract global information (i.e.

counts) from high-dimensional sequential data (i.e. videos) ?

• Would they scale well ?

• Are they easily amenable to uncertainty estimation ?

In this work, we attempted to improve our understanding of the theoretical and practical

challenges of the research problems involved behind these questions, and to extract elements

whichwould either be best suited for the final task or constituted core topics that would benefit

from further research. In this section, we reproduce this analysis roughly in the order it was

conducted.

1.2.1 From counting in images to multi-object tracking
Counting in images

While literature specifically targeting video object counting as an end goal is rather sparse,

a first way to approach the topic is to consider the simpler task of counting objects in in-

dividual still images. In that respect, and largely motivated by applications such as crowd

counting [Zha+15; Zha+16; SSB17], research has been very active. Driven by recent ad-

vances in computer vision, namely the strong performance of convolutional neural networks

(CNNs) [LB+95] and the recent availability of large datasets of annotated images [Den+09;

Lin+14], most research has undergone a general shift from handcrafted feature engineering

[Low99] and mathematical modeling of images [Bar12] to a wide adoption of learning-based

approaches, in particular supervised learning (see Appendix A.1.1 for an introduction). There-

fore, for the most part, improvements in image object counting have largely been fostered by

very active research topics such as image classification [Che+21], segmentation [Min+21] or

object detection [Zha+19], which are illustrated in Figure 1.4. That said, counting methods

have in general be divided into two categories.

The first (and most intuitive) approach to estimate the number of objects of interest in

an image is to localize each of them individually and enumerate them afterwards, a method-

ology referred to as counting-by-detection. In this setting, improvements in counting perfor-

mance can be mostly attributed to the development of ever more sophisticated object detectors

[Ren+15; Red+16; ZWK19; Car+20]. Nonetheless, as detection-based image counting solutions

eventually discard location information in their final output, a specific focus in the related ap-

proaches has often been put on object detection solutions that provide minimalistic outputs

and/or requiring weak forms of supervision [Bea+16; Lar+18], see e.g. Figure 1.5 for some

intuitive illustration. This has been motivated, additionally, by the lack of precisely anno-

tated datasets necessary to bring generic object detectors to desired levels of performance in
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Figure 1.4: Various computer vision predictions from still images

Figure 1.5: Full and weak forms of supervision for the task of semantic segmentation. Source

[Bea+16]

very specific settings. In the context of litter counting, for example, while few initiatives have

been conducted to assemble substancial amounts of trash images in hetereogeneous contexts

[PS20], most works that have tackled the task of counting litter via detection [Wol+20; Lie+20]

have required a dedicated data acquisition campaign.

Both to circumvent the previous issues and to improve counting performance in highly oc-

cluded settings where conventional object detection ultimately fails, another line of research

has focused on building fully differentiable deep learning-based solutions which directly frame

counting as a regression problem trained from image-level count supervision (i.e. datasets of

images annotated only with the number of objects visible in them). Starting with the semi-

nal work of [LZ10] most of these approaches format the output of a DNN into intermediate

so-called density maps, which are 2D predictions whose sum over the image space provides

count estimations, see e.g. Figure 1.6 for an intuitive illustration. As such, and while few other

approaches [Cha+17] depart from these intermediate structures, advances in these so-called

counting-by-regression approaches have largely been dictated by DNN architectures that pro-

duce better density maps [Zha+16], or with elaborate methodologies that additonally leverage

weak forms of location supervision and annotation uncertainty [ALZ16] to build more reliable

estimates.

Figure 1.6: An example of density map and associated count from [Pha+15].
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Deep learning approaches for video and temporal data

While some works from the previous research community attempt to leverage temporal re-

dundancy in videos to improve framewise counting performance [XSY17], extending the above

ideas to the more complex task of video-wise object counting is not direct.

In fact, in practice the latter task can hardly be framed as a well-defined subfield of com-

puter vision. As such, one may be tempted first to approach it from other video-related tasks,

such as video classification [Kar+14] or video action recognition [FPW17], which both pro-

duce video-level predictions from supervision related to entire portions of the footage. Here,

most advances have originally been enabled by extending image-related deep learning ar-

chitectures to the temporal dimension of videos, e.g. spatiotemporal convolutions [Tra+15;

Fei20], albeit at the expense of much larger networks. To mitigate the latter issue, many deep

learning approaches such as recurrent neural networks (RNNs) [HS97], and more recently

transformers [Vas+17], have succesfully been applied to temporally-structured data, such as

speech [GMH13] or language [Dev+19], with recent applications to video [Arn+21]. However,

directly using them for the task of counting is very challenging. First, in most cases, proper

training requires substantial amounts of annotated data. Second, most predictions that have

been tackled with these tools alone, such as assigning a label to portions of a video or retriev-

ing the language of an audio extract, can be intuitively linked with a global label summarizing

some semantic information spread across the sequential content. Object counts at the video

scale, comparatively, constitute a rather weak learning signal. Finally, while they do provide

strong computational solutions to assimilate high-dimensional temporal data such as videos,

they only provide deterministic predictions which are impossible to analyse or supplement

with uncertainty estimates, given their rather opaque internal components, e.g. state of an

RNN, intermediate layers of a transformer.

Multi-object tracking

Instead, another pragmatic approach to video object counting is to tackle the related problem

of multi-object tracking (MOT), which seeks to predict the trajectories (or tracks) that each

visible object takes in a video (i.e. its successive positions in each frame, as illustrated in Fig

1.7). Indeed, having achieved MOT, an estimate of object counts is immediatly obtained by

enumeration of the number of predicted tracks.

By itself, MOT is a vast domain which can be studied from many angles, involving both

concepts from computer vision and specific mathematical models to re-identify objects across

frames [Luo+21]. Indeed, the dominant methodology to tackle the tracking problem is to

divide it into two stages: an object detector first predicts the positions of objects in each frame,

which are then recombined into object tracks by assigning a consistent identifier to detections

that correspond to a common object. The first step is directly related to literature on object

detection in images as presented above. The second, however, is a central of topic of MOT

referred to as data association, which is often framed as an assignment problem between pairs

of detections associated with a given cost. In practice, solving the matching problem from

the costs is not challenging given the dimensions involved, i.e. optimal solutions from linear

programming [Kuh55] can be used as-is. However, the definition and computation of the costs

themselves is where lies most of MOT research.

In that respect, a decisive factor is the availability or not of track supervision, i.e. datasets
of videos where ground-truth trajectories have been annotated by hand. Mostly motivated
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Figure 1.7: An illustration of MOT: people are detecting in each frame and consecutive posi-

tions of the same person are associated to given tracks (one colour per track).

by highly demanding industrial applications such as autonomous driving [Cae+20], the re-

cent collection of substantially large such datasets have enabled the development of so-called

end-to-end multi-object tracking solutions, where both the detection and association stages are

combined into a common supervised learning problem given labels that specify both object lo-

cations and identities across frames. In this case, associations costs are largely abstracted into

advanced deep learning modules such as graph neural networks [Wu+20; LGJ20; BL20], or by

supplementing object detectors with additional outputs from which association can be per-

formed greedily [ZKK20; Wan+20; Zha+21]. While such methods generally show best overall

tracking performance, in most applications the very time-consuming collection of track an-

notations is not possible, as was the case in the context of the Plastic Origins project.

In this case, association cues are generally built by supplementing object detectors with ei-

ther motion or appearance models built separately to recognise objects across frames. In some

settings, simple linear assumptions on motion are sufficient to correctly predict positions of

already tracked object in subsequent frames [WBP17] and use this information for association.

In other works, unsupervised learning techniques [Che+20; He+20] allow to train a separate

network that produces embeddings of image content in metric spaces where distances can

quantify visual similarity between detections [Bew+16]. From there, varying degrees of so-

phistication can be added to improve the association performance, from precise estimation

of the nonlinear motion of pixels between images, which is known as optical flow prediction

[HS81; Dos+15], to proper management of uncertainty in the measurements via principled

methods from probabilistic inference.

While many works have successfully deployed MOT techniques to count objects in videos,

such as for fruit counting [Liu+18; He+22; Liu+19] and animal counting [Xu+20; Li+22; Tia+19;

Kim+22a], many challenges remain to improve the stability of the tracking solutions.

In particular, when strong motion, blurry frames or visually cluttered backgrounds are

present in the video footage (as was the case in many videos of the Plastic Origins dataset),

object detectors may fail to produce consistent streams of detections for the objects, which can

result in fragmented MOT predictions (e.g. two trajectories are predicted for the same object)
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Figure 1.8: The tracking-by-detection paradigm

and lead to overcounting. To solve this, one possibility is to improve the robustness of the data

association stage and build more sophisticated models that can recover from missing or false

detections. In that regard, a recurring topic in MOT is the search for a unifying formalism

that integrates multiple sources of information (e.g. detection confidence, motion, etc) into

a global mathematical formalism. While not particularly adressed in the deep learning com-

munity, major advances in literature on sensor fusion have been made regarding this problem

by relying on the formalism of point processes. In the seminal work [Mah03], the notion of

multi-target Bayes filtering introduces well-defined probabilistic models on sets of points at
each timestep, which avoids tracking objects separately and relying on a separatemethodology

for their interaction. More recent methods like [Reu+14; VVH17] further formalise the asso-

ciation stage by viewing track labels as random variables, while other works [Mor19] frame

MOT as a Bayesian nonparametric estimation problem. Still, given the tracking-by-detection
scheme, most of the information about the targeted content is essentially contracted at each

timestep in the form of point estimates. As a consequence, additional information about the

video (e.g. temporal evolution of the image content, detection uncertainty) must be translated

into this formalism, which in many cases leads to complex models with hetereogeneous inter-

connected components and interdependent hyperparameters (e.g. detection and associations

thresholds).

1.2.2 Challenges inhigh-dimensional sequential variational inference
From MOT to high-dimensional latent inference

To circumvent these MOT-specific technicalities, another direction to improve the reliability

of the results - notably the coherency of the predictions with respect to the temporal evolution

of the observations - is to introduce the important dependencies of the data in the feature ex-

traction stages of the detection networks, where relevant information on the image content is

compressed into compact representations prior to the final prediction stage. For example, some

works like [Zhu+17] temporally constrain the framewise feature maps of the object detectors

with deterministic estimates of pixel motion, see Figure 1.9 for an intuitive illustration. More

recently, such methodology has been further motivated by major advances in unsupervised

latent representation learning in videos [Loc+20; Gre+19; Kab+21; Els+22; SWA22; Kip+22]

which pushes this idea further and focus entirely on producing embeddings of the images

that are naturally constrained given known structure of the data and the desired predictions.
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Figure 1.9: In [Zhu+17], a vector field which estimates the motion of pixels accross frames is

used to combine object detection features from multiple frames. Here "heatmaps" (maps of

the probability in [0, 1] of object presence at each pixel) show improvement in the capability

of the detector to extract relevant information in the frame at t by leveraging content in the

neighboring frames.

Based on broad ideas of cognitive science [KTG92] and recent trends in representation learn-

ing [BCV13], they assume the existance of underlying representations of the images which

naturally decompose into individual components, each related to distinct visual elements in

the scene, e.g. separate objects. In general, it is expected that these so-called "object-centric

representations" can be estimated without additional supervision by leveraging statistical de-

pendencies in the data, which can be evaluated by considering the improvements they bring

in MOT predictions [Wei+21].

To frame these assumptions into generic estimation problems, a common technique is to

rely on latent data models and define a generative model via the joint distribution of the obser-

vations (Y0, . . . , Yt) and additional unobserved random variables (X0, . . . , Xt), called latent or
hidden variables. From there, recovery of the latent representations behind the data is directly

cast as a Bayesian inference problem, i.e. statistical estimation under the posterior distribu-

tion of (X0, . . . , Xt) given (Y0, . . . , Yt). To this aim, most methods leverage recent advances

in approximate Bayesian inference, such as variational autoencoders [KW14] which directly

parameterize posterior distributions with neural networks whose parameters can be learnt

without supervision via principled approaches, e.g. stochastic gradient descent and proxies of

maximum likelihood estimation (MLE) based on divergence minimization. In any case, when

the observations are images and the latent variables are features, a challenging aspect of these

models is the high-dimensionality of both the data and the hidden variables.
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From Monte Carlo methods to variational inference

In more general literature on sequential data, it turns out that the previous estimation prob-

lems have been extensively studied from the point of view of hidden Markov models (HMM)

[CMR05], where latent recovery is generally referred to as state inference, and the distribution
of the sequence of latents given the observations is called the smoothing distribution. For sim-

ple data models where observation processes and dependencies are only specified via linear

mappings and Gaussian noise, optimal algorithms based on analytical recursions have been

derived very early on [Kal60]. For more general models, however, most computations are in-

tractable, which has led to an abundant literature dedicated to approximations [Sär13; DMS14].

Here, most approaches are either based on coarse simplifications of the data model itself, e.g.

via linearization or Gaussian assumptions [WV00], or Monte Carlo estimation, in particular

sequential Monte Carlo (SMC) methods known to be consistent [CP+20]. While the former

strategy generally fails in complex settings, SMC methods have been successfully applied for

practical problems with complex models containing strong nonlinearities and non-Gaussian

noise (see e.g. [DFG13, part IV]), and are built on solid theoretical grounds [DG01].

Nonetheless, it is generally accepted that SMC approaches perform poorly in higher dimen-

sions [BBL08], which has limited their applicability for estimation problems involving large

latent spaces, such as those presented in the previous sections where hidden variables are ab-

stract representations of the data comprised of many components. To cope with these limita-

tions, many works of the associated literature [HH20; Häl+21a] have turned to variational in-

ference (VI), where approximations of the posteriors are based on optimization of user-chosen

families of distributions. While known to scale well comparatively to Monte Carlo solutions,

VI methods often rely on simple parametric distributions, and typical choices of approximat-

ing families (e.g. products of multivariate Gaussians undermean-field assumptions) are largely

inadapted in the context of sequential data. Indeed, from a modeling perspective, they can-

not capture the actual dependencies of the true smoothing distributions of latent variables

(X0, . . . , Xt) given observations (Y0, . . . , Yt), which greatly hinders their use in applications

as described in the previous subsection (where correctly leveraging the statistical properties

of the posteriors is crucial). For the same reasons, they do not leverage known decompositions

of the latter distributions which have proven central in building scalable approximations for

HMMs.

To cope with these limitations, a recent line of work, broadly referred to as sequential vari-
ational inference (SVI), defines parametric families of approximate joint distributions which

reintroduce dependencies between the latent states and the observations, either via exponen-

tially conjugated graphical models [Joh+16; LKH18] or by direct specification of Markovian

decompositions mimicking those of the true smoothing distributions [Kim+20; Arc+15; KSS15;

KSS17; Fra+16]. Here, most works leverage the approximating power of deep neural networks

to avoid relying on simplistic assumptions or coarse approximations of the underlying data

model. In particular, starting with [Chu+15] a common practice has been to use DNN archi-

tures specifically tailored for sequential data (i.e. those mentioned in Section 1.2.1 such as

RNNs), whose outputs are used to directly parameterize individual terms in the variational

decompositions. From there, inference is transferred into an optimization problem on the

parameters of these networks, which is based on minimization of a divergence against the

targeted distributions.
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Errors bounds for sequential variational inference

By relying on optimization and amortized inference with DNNs, SVI has emerged as a promis-

ing alternativemethodology in applicationswhere the curse of dimensionality of sample-based

approaches is a limiting factor. However, up to now, their wide adoption as generic methods

in the SSM community is still limited compared to SMC. Indeed, as the latter are based on

principled ideas from Monte Carlo simulation, they are known to converge to true solutions

in the limit of infinite samples, and their theoretical analysis has been largely approached via

well-established tools from asymptotic and non asymptotic statistics. As such, most SMC algo-

rithms have been systematically accompanied with convergence results [DG01; DL13; LSV20;

AD03; DDS10b] which generally provide clear indications of which quantities need to be prop-

erly controlled to obtain good overall approximations. In general, such works derive precise

bounds that directly link performance with the number of samples. As such, they have been

safely adopted as internal components for more complicated tasks, such as parameter estima-

tion in hidden Markov models, where the impact of the approximations they introduce is well

understood [Kan+09]. On the other hand, SVI initiatives have been largely developed empir-

ically, sometimes from the point of view of specific applied fields of ML like reinforcement

learning [SG20; Web+15] or computational neuroscience [ZP20]. As such, many questions

remain to understand the type of solutions that they can provide from a theoretical point of

view, as well a general guidelines for their implementation. As refinements of classical VI,

SVI methods are expected to only provide biased solutions [BKM17], but precise analysis of

this bias requires clear understanding on the behaviour of the variational family through the

optimization process, which is intricately linked with the chosen implementations (especially

in the presence of DNNs).

Instead, a common theoretical analysis in the sequential context is to derive quantitative

bounds that characterize the error induced by computing smoothing expectations of the form

E [h(X0, . . . , Xt)|Y0, . . . , Yt]with an approximation instead of the true posterior. In particular,

a central question is the dependency of such error w.r.t the length of the sequences considered,

because approximations with supralinear behaviours in that regard cannot be used in realistic

scenarios. A particular class of smoothing expectations of interest are those where h decom-

poses into sums of functions each depending on subsets of the states, referred to as additive
state functionals. Indeed, those are ubiquitous in HMM literature, because most tasks such as

state inference, MLE with the Expectation-Maximization algorithm [DLR77] or recursive MLE

[LM97] can be formulated as smoothing expectations of additive state functionals. In the case

of SMC, linear bounds have been repeatedly obtained (e.g. as part of the theoretical works

mentioned above). While recent results have also been obtained for extensions of classical

SMC which introduce biased quantities in the sampling process [GLO22], similar theoretical

properties for SVI methods have never been derived. In practice, such results are of great prac-

tical importance, as they pave the way to understanding how to control the estimation errors

of variational families based on the error made for individual timesteps.

Online approaches and backward variational inference

Another central topic in SVI, which is the practical pendant of the previous considerations, is

their scalability when used with sequences Y0, . . . , Yt for t large. Indeed, having introduced

temporal decompositions of the variational families, the SVI works mentioned above still rely

on the original formulation of the minimization objective of classical VI. While classical meth-
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ods allow principled minibatch subsampling for large datasets, i.e. stochastic optimization

which is theoretically motivated under independant observations [Hof+13], the dependencies

in SVI families constrain optimization to be performed on the joint latent space ofX0, . . . , Xt,

which can become prohibitive for large sequences and defeat the purpose of resorting to vari-

ational inference in the first place. As such, a major challenge is the derivation of online SVI
methods, i.e. whose parameters can be learnt by processing observations recursively.

To this aim, a fewworks [MCY18; ZP20; DZP23] leave out some of the dependencies or tar-

get simpler distributions, e.g. those of individual statesXt given past observations Y0, . . . , Yt,
known as the filtering distributions. However, the resulting online procedures are built via

intermediate minimization objectives derived from additional assumptions on the variational

approximations at each timestep, and these can hardly be verified in practice. Recently, to cir-

cumvent this, [Cam+21] proposed backward variational inference, a SVI approach which lever-
ages a known factorization of the smoothing distribution via the so-called backward Markov

kernels of the reverse process (Xt−s)s≤t given (Y0, . . . , Yt). Under this decomposition, the

joint objective can be expressed via recursions on the observations, and as such allows to de-

rive an online procedure that is still based on the principled minimization objective of classical

VI. Conveniently, in this setting, the latter objective is itself an additive state functional, such

that the optimization problem may be analyzed via the theoretical bounds described above.

That said, a hidden technicality in the recursions derived from the backward factorization

is the presence of nested conditional expectations whose cost of evaluation grows linearly with

time. As such, the resulting online algorithms are impractical without further approximations

that ensure a constant computational cost at each timestep. In SMC literature, similar decom-

positions have already been introduced [DDS10a] and theoretically studied [DDS10c] that

derive algorithms for recursive smoothing of additive state functionals. Here, the conditional

expectations are approximated via evaluation on the discrete support of the empirical distri-

butions obtained as part of the sampling process, which defines statistics that can be updated

sequentially in constant time. More recently, [OW+17; AA22] have derived computationally

efficient refinements from these ideas by leveraging known properties of the backward kernels.

In the context of backward variational inference, such properties have not been leveraged, yet

the simplicity of the associated algorithms is appealing to derive efficient online algorithms

that do not rely on complex functional approximations at each timestep.

1.3 Presentation of the contributions

Given the previous overview of both practical challenges directly linked with object count-

ing, and more general approaches in sequential variational inference that can be leveraged to

derive more generic solutions, the work of thesis is divided into two corresponding sets of

contributions.

• A technical contribution which directly tackles video object counting for macrolitter

data.

• Twomethodological contributions related to backward variational inferencewhich lever-

age ideas from SMC to derive a theoretical understanding of existing methods and im-

prove their computational properties.
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Macrolitter video counting on riverbanks using state space models and moving cam-
eras, Mathis Chagneux, Sylvain Le Corff, Pierre Gloaguen, Charles Ollion, Océane Lepâtre,
and Antoine Bruge. Published (with source code) in Computo, 2023.

In Chapter 3, we present a new method to count macrolitter items in video of riverbanks

filmed from boat-embedded cameras. Here, we rely on multi-object tracking (MOT) but focus

on the key pitfalls of false and redundant counts which arise in typical scenarios of poor de-

tection performance. Our system only requires supervision at the image level and performs

Bayesian filtering via a state-space model based on optical flow. We present the new open

image dataset gathered through a crowdsourced campaign and used to train an object detec-

tor that is particularly suited for the task at hand. As part of this work, the realistic video

footage assembled by water monitoring experts has been annotated and used for evaluation.

Improvements in count quality are demonstrated against systems built from state-of-the-art

multi-object trackers sharing the same detection capabilities. A precise error decomposition

allows clear analysis and highlights the remaining challenges. This first contribution was con-

ducted in close collaboration with Surfrider Foundation Europe, and provides an initial tool

which has since been thoroughly implemented as part of the Plastic Origins project, receives

support and is incrementally updated.

A backward sampling approach for online variational additive smoothing, Mathis
Chagneux, Pierre Gloaguen, Sylvain Le Corff, Jimmy Olsson. Submitted for publication in the
Transactions on Machine Learning Research (TMLR), 2023.

In Chapter 4, we leverage ideas from recursive smoothing approaches developed in the

SMC community to derive a computationally efficient online algorithm in the context of back-

ward variational inference. Here, we propose a specific decomposition of the variational ker-

nels which resembles that of the true backward kernels and allows to reproduce known ap-

proximations schemes of the conditional expectations involved in the recursions. In turn, this

removes the need for additional functional approximations previously necessary for recur-

sive computation of smoothing expectations of additive state functionals under variational

approximations. Then, we propose a new decomposition of the gradient of the variational op-

timization objective based on the score-function estimator, which allows recursive learning of

the variational parameters. Numerically, the quality of the derived gradients is demonstrated

against batch estimates, and the relevance and computational efficiency of the proposed ap-

proach is illustrated on long sequences of observations.

Additive smoothing error in backward variational inference for general state-space
models, Mathis Chagneux, Élisabeth Gassiat, Pierre Gloaguen, Sylvain Le Corff. In Major
revision for publication in the Journal of Machine Learning Research (JMLR), 2023.

In Chapter 5, we study the theoretical properties of the backward variational decompo-

sition, where we establish under mixing assumptions that the variational approximation of

expectations of additive state functionals induces an error which grows at most linearly in the

number of observations. This guarantee is consistent with the known upper bounds for the

approximation of smoothing distributions using standard Monte Carlo methods. We illustrate

our theoretical result with state-of-the art variational solutions based both on the backward

parameterization and on alternatives using forward decompositions. This numerical study

proposes guidelines for variational inference based on neural networks in state-space models.



Chapter 2

Technical background in sequential
Bayesian inference

We now introduce in a more rigorous setting the important takeaways from the field of se-

quential Bayesian inference, in particular the notions that intervene in the methodological

contributions. We first present known results and decompositions that intervene in classical

HMM literature. Then, we recall the main approximations schemes which stem from these

fundamental recursions, in particular in the context of sequential Monte carlo methods. Fi-

nally, we recall the main ideas behind the variational inference methodology, and detail the

main approaches that have been developed to extend it to the sequential setting and the ex-

isting links with classical methods.

Notations. In all that follows, we assume an underlying probability space (Ω,F ,P). We use

formulations such as "a random variableX onX" to refer to a measurable functionX : Ω→ X,
where X is a set implicitly equipped with a σ-algebra X on X.

• Whenever the distribution P ◦X−1
of a Rd

-valued random variableX admits a density

p w.r.t the Lebesgue measure on (Rd,B(Rd)), we may use the notation p(x) both to re-

fer to the distribution of X and the latter density, with x both used as an argument for

the density and an identifier of which distribution we refer to (via the lower/uppercase

relationship). This will be clear from the context. We use this notation without further

warnings whenever the previous requirements are satisfied or whenever such consider-

ations can be abstracted to simplify the reasoning (e.g. more rigorous notation is possible

to express the same content but is not more insightful).

• We may use the loose notation (x, y) 7→ p(x|y) to refer to the conditional distribution

of X given Y .

• For any measure ν on a measurable space (X,X ) and any measurable function h on X,
taking values on some set H, we write νh =

∫
h(x)ν(dx).

• For any measurable spaces (X,X ) and (Y,Y), any measure ν on (X,X ), any kernel

K : (X,Y) → R+ and any measurable function h on X × Y taking values on some set

H, we denote Kh : x 7→
∫
h(x, y)K(x, dy) and νKh =

∫
h(x, y)ν(dx)K(x, dy).

• If for all x ∈ X, K(x, ·) has a density k(x, ·) with respect to a reference measure ν, we
write kh : x 7→

∫
h(x, y)K(x, dy) =

∫
h(x, y)k(x, y)ν(dy).

25
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• We denote with 1 the constant function which equals 1 on its input space.

• Indices of sequences are implicitly in N and (us)0≤s≤t will be shortened into (us)s≤t.

• For any (s1, s2) ∈ N2
, we denote us1:s2 the collection (us1 , . . . , us2).

• We use the notation {yk}k≤K to refer to collections of independent observations, as

opposed to sequences y0:t of temporally dependent observations. In some cases, each

observation will be a sequence, which we denote yk = (yk0 , . . . y
k
t ) for k ≤ K .

• In general, we will use the letter "s" to index quantities relatively to a final index "t".

In the next paragraphs, we start by recalling (using loose notations) some basic elements

of Bayesian inference in latent data models and the setting we place ourselves in for the rest

of the chapter.

Latent models and Bayesian inference. We consider probabilistic models of the data

where observations are viewed as random variables Y ∈ Y with unknown distribution p(y),
Y being the observation space. Taking the point of view of latent data models, we assume the

existence of another non-observed random variable X ∈ X which is used to specify the data

model via p(y) =
∫
x∈X p(x, y)dx, where p(x, y) is the joint distribution of (X, Y ) in X × Y.

From p(x, y) = p(x)p(y|x), the model is fully defined via the following quantities.

• The conditional distribution p(y|x), which is usually understood as specifying the mea-

surement process of the observations from underlying causes.

• The distribution p(x), which is usually referred to as the prior and can be used to contrain
the statistical problem (e.g. with known structure or internal dependencies in the data).

In this context, Bayesian inference frames prediction tasks as posterior estimates, i.e. quan-

tities derived from the posterior distribution

p(x|y) = p(x, y)

p(y)
.

In this work, we focus on estimates formulated as expectations under the posterior distri-
bution (as opposed to maximum a posteri estimates).

Parametric models and maximum likelihood estimation. We only consider paramet-

ric latent data models, i.e. given a parameter space Θ, data models fully specified given θ ∈ Θ
because the prior and observation models are parameterized by θ. We use the notation pθ(x)
to indicate that a random variableX has a distribution depending on all or a subset of θ. In this
context, given a dataset of observations {yk}k≤K , empirical parametric maximum likelihood

estimation (MLE) aims at recovering

θ∗ = argmax
θ∈Θ

log pθ(y1, . . . , yK) .

In this work, we do not focus specifically on this estimation problem, but links between infer-

ence and MLE will be discussed whenever relevant, especially when the computations involve

in MLE are related to inference problems.
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2.1 State-space models
In latent sequential models, observations are viewed as realisations of a stochastic process

(Yt)t≥0 in Y whose law is unknown but derived from that of a joint process (Xt, Yt)t≥0. For

parametric models, the finite-dimensional distributions of the joint sequences {(X0:t, Y0:t)}t≥0

are entirely defined given θ ∈ Θ and characterize the generative model of the data. In this

setting, a popular class ofmodels are hiddenMarkovmodels or state-spacemodels (SSM), which

satisfy the two following conditions.

• The latent process (Xt)t≥0 is a Markov chain, i.e. for all t ≥ 0, the distribution of Xt

givenX0:t−1 is independant ofX0:t−2. In this context, we denote with χ
θ
the distribution

ofX0, and for all t > 0,M θ
t is theMarkov kernel such thatM θ

t (Xt−1, ·) is the conditional
distribution of Xt given Xt−1. In general, the kernels (M θ

t )t≥0 are called the transition
kernels. In this work, we also denote withM θ

0:t the joint distribution of the latent process

defined as

M θ
0:t(dx0:t) = χθ(dx0)

t∏
s=1

M θ
t (xs−1, dxs) .

• Observations are independant conditionally on the latent variables: for all s ≥ 0, and
s1 ≤ s ≤ s2, the distribution of Ys givenXs1:s2 depends only onXs, and we denote with

Gθ(Xs, ·) the conditional distribution of Ys givenXs, sometimes referred to as emission
distribution.

A common class of SSMs are those whose transition kernels and emission distributions

can be described via equations of the form

Xt = Fθ
t (Xt−1) + ηθt ,

Yt = Gθ
t (Xt) + ϵθt ,

where (ηθt , ϵ
θ
t )t≥1 are typically a sequence of zero-mean random variables understood as nois-

ing processes, and (Fθ
t ,G

θ
t )t≥1 are deterministic functions. However, note that general state-

space models are in no way restricted to this class. Other typical situations include (Xt)t≥0

being governed by a stochastical differential equation, or involving non-addtive observation

noise.

In all that follows, we consider the setting of fully dominated SSMs, i.e. the initial distribu-

tion and all transition kernels admit densities (mθ
t )t≥0 w.r.t to a referencemeasure onX (where,

by convention, x0 7→ mθ
0(x0) is the density of χθ

), and for all x ∈ X, Gθ(x, ·) admits a density

gθ(x, ·) w.r.t to a reference measure on Y. Let y0:t be a sequence of t + 1 observations from

the process (Yt)t≥0, we adopt a common notational convention of SSM literature and hide the

dependency on the observations by introducing measurable functions gθs : xs 7→ gθ(xs, ys) for
all s ≤ t. In this context, denote ℓθ0 : x0 7→ mθ

0(x0)g
θ
0(x0) and for all 1 ≤ s ≤ t the functions

ℓθs : (xs−1, xs) 7→ mθ
s(xs−1, xs)g

θ
s(xs) ,

which are densities of kernels on X. Finally, define

ℓθ0:t : x0:t 7→
t∏

s=0

ℓθs(xs−1, xs) .
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In SSMs, the joint process (Xt, Yt)t≥0 is also aMarkov process onX×Y. Under the previous
assumption, the distribution of (X0:t, Y0:t) at all t ≥ 0 has a density defined as

pθ0:t : (x0:t, y0:t) 7→ ℓθ0:t(x0:t) .

In this context, inference tasks are formulated as statistical estimates under the posterior

distributions of the states given observations, but various denominations are used depending

on the sequence of latents involved and the conditionning on the data. For any 0 ≤ s1 ≤ s2 ≤ t
the joint smoothing distribution ϕθ

s1:s2|t is the conditional law of Xs1:s2 given Y0:t.

• When not indicated, the smoothing distribution refers to the special case s1 = 0, s2 = t,
i.e. the posterior distribution ϕθ

0:t|t of the entire latent sequence X0:t given Y0:t, which

we may abbreviate as ϕθ
0:t to shorten notations.

• When s1 = s2 = s, ϕθ
s|t is the marginal smoothing of Xs given Y0:t.

• In the latter case with s = t, the marginal ϕθ
t|t is the filtering distribution at t, which we

may simply abbreviate with ϕθ
t .

In SSMs, estimation of such distributions is similarly referred to as smoothing, marginal

smoothing and filtering, respectively. Following Bayes formula, the joint smoothing distribu-

tion is defined, for any measurable function h on Xt+1
, as

ϕθ
0:th =

ℓθ0:th

ℓθ0:t1Xt+1

∝ ℓθ0:th

which reveals a recursion

ϕθ
0:th ∝ ϕθ

0:t−1ℓ
θ
th , (2.1)

between the smoothing distributions at succesive timesteps. This property, which results from

the particular dependencies of SSMs, is at the core of most mathematical decompositions that

allow to perform inference in a sequential manner.

Additionally, the likelihood is the function denoted as Lθt whose evaluation on y0:t is pre-
cisely the normalizing constant of the smoothing distribution at t, i.e. Lθt (y0:t) = ℓθ0:t1Xt+1 . As

in general Bayesian inference, the log of this function evaluated at y0:t, denoted

lθt = log Lθt (y0:t) ,

is a central quantity in parameter estimation under the methodology of maximum likelihood

estimation.

2.1.1 Joint backward smoothing in state-space problems
In literature on SSMs, a common practice is to leverage decompositions of the targeted distri-

butions to derive efficient inference algorithms. In this work, we are mainly interested with

the joint smoothing distributions ϕθ
0:t, and as such we focus on known decompositions of lat-

ter. While intermediate quantities, such as marginal smoothing or filtering distributions, are

relevant on their own and have been the central focus of many estimation problems, we only

discuss these when relevant with respect to the joint smoothing problem.
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The backward factorization

Given the recursive construction of the smoothing distributions via the unnormalized ker-

nels (ℓθs)s≤t as described above, a first approach which comes to mind to derive a recursive

algorithm is to renormalize (2.1) at each timestep, i.e. for any functional h

ϕθ
0:th =

ϕθ
0:t−1ℓ

θ
th

ϕθ
0:t−1ℓ

θ
t1Xt+1

. (2.2)

However, computing this recursion or building approximations from it is seldom done, be-

cause the normalization steps involve integrals on increasingly large supports over time. In-

stead, another approach is to analyse the dependencies induced by SSMs and leverage other

decompositions of the smoothing distributions. In that regard, a known property of SSMs

is that the reverse process (Xt−s)s≤t is also a Markov chain conditionally on Y0:t, such that

the joint smoothing distribution ϕθ
0:t can be decomposed via the following so-called backward

factorization

ϕθ
0:t(dx0:t) = ϕθ

t (dxt)
t∏

s=1

Bθ
s−1|s(xs, dxs−1) , (2.3)

where (Bθ
s−1|s)1≤s≤t is a sequence of inhomogeneous Markov kernels known as the backward

kernels, such that, at s, Bθ
s−1|s(Xs, ·) is the conditional distribution of Xs−1 given Xs and Y0:t.

While approaching the smoothing problem from the point of view of the reverse chain

may seem conceptually unnatural, a known result (which can be derived from the conditional

independence properties of SSMs) is that, for all 1 ≤ s ≤ t, the previous conditional distri-
butions are independent of observations (Ys)s≥t, and as such the backward kernel Bs−1|s only

depends on observations up to s − 1. Consequently, the factorization (2.3) decomposes the

smoothing distribution in terms of normalized quantities which only depend on the current

set of observations, and can form the basis for recursive algorithms. In particular, the back-

ward kernels are directly related to the filtering distributions at intermediate timesteps. In

the particular case of fully-dominated SSMs, the smoothing distribution and all its marginals

admit densities and we will keep the previous notations to refer to both the densities and the

distributions. In this context, for all 1 ≤ s ≤ t, the backward kernels have density defined as

bθs−1|s : (xs, xs−1) 7→
ϕθ
s−1(xs−1)m

θ
s(xs−1, xs)∫

X
ϕθ
s−1(xs−1)mθ

s(xs−1, xs)dxs−1

. (2.4)

Conveniently, the sequence of backward kernels is therefore obtained as a byproduct of the

filtering distributions (ϕθ
s)s≤t, whose recursive estimation becomes a central component to

build the joint smoothing distribution ϕθ
0:t.

The filtering recursions

Marginalizing (2.1) overX0:t−2 yields a simple relationship between the filtering distributions:

for any measurable function h : X→ H,

ϕθ
th =

ϕθ
t−1ℓ

θ
th

ϕθ
t−1ℓ

θ
t1X

. (2.5)

While (2.5) can form the basis to approximate the filtering distributions recursively, in general

the computations are rather understood as divided into two distinct steps. At t, first compute
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the predictive distribution of ϕθ
t|t−1 of Xt given Y0:t−1, denoted as ϕ̄θ

t , and obtained from the

previous filtering distribution, for any measurable function h : X→ H, via

ϕ̄θ
th = ϕθ

t−1m
θ
th , (2.6)

then compute the new filtering distribution given by

ϕθ
th =

ϕ̄θ
tg

θ
t h

ϕ̄θ
tg

θ
t1X

. (2.7)

In general, (2.6) is called the predict step while (2.7) is the update step. The main idea behind

this two-step procedure is to first propagate the previous distribution at the current timestep

given the dynamics of the model, then introduce the new observation. Moreover, as its name

suggests, the predictive distribution is the main mathematical object to reason about the state

at t given information up to t− 1, and is therefore crucial on its own. In general, the process

of repeatedly computing the previous equations over time is usually referred to as forward
filtering.

2.1.2 Smoothed expectations of additive state functionals
As in general Bayesian inference, probabilistic estimates from SSMs are expressed as statistics

under the posterior distributions. In the context of joint smoothing, this means that smoothing
expectations of the form

ϕθ
0:th = E [h(X0:t)|Y0:t] =

∫
Xt+1

h(x0:t)ϕ
θ
0:t(dx0:t)

are the quantities of interest, where themeasurable function h onXt+1
depends on the targeted

quantity. In the context of state-space models, a particular class of functions are additive state
functionals h0:t : Xt+1 → H which decompose into

h0:t : x0:t 7→
t∑

s=1

h̃s(xs−1, xs) , (2.8)

where h̃s : X×X→ H. Here, the term "functional" is usually used in place of function because

h0:t is sometimes viewed as a higher-order function on the space of probability measures h0:t :
P(Xt+1) → H whose evaluation on ν ∈ P(Xt+1) is a statistic. In the rest of this manuscript,

we rather view them as measurable functions but keep the frequently used terminology of

referring to them as state functionals.

In SSMs, many inference tasks can be expressed as expectations of additive state function-

als under the joint smoothing distributions. For instance, a bayesian estimator of the smooth-

ing marginal ϕθ
s′|t state for some timestep s′ ≤ t is given via

X̂s′ = E [Xs′ |Y0:t] ,

which corresponds to ϕθ
0:th

(s′)
0:t where h

(s′)
0:t =

∑t
s=1 h̃

(s′)
s with components

h̃(s
′)

s : (xs−1, xs) = xs1s=s′ ,
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for all s ≤ t. Furthermore, when θ is unknown, MLE can be obtained via maximization of func-

tions which also correspond to additive state functionals. In the Expectation-Maximization

algorithm, the central quantity at each timestep is the function θ 7→ Q(θ, θ′) defined, for all
(θ, θ′) ∈ Θ2

as

Q(θ, θ′) = Eθ′

[
t∑

s=1

log ℓθs(Xs−1, Xs)

∣∣∣∣∣Y0:t
]
= ϕθ′

0:th
EM
0:t ,

where hEM0:t is the additive state functional with components h̃EMs (xs−1, xs) = log ℓθs(xs−1, xs).
Similarly, gradient-based MLE involves computation of

∇θ log L
θ
t = Eθ

[
t∑

s=1

∇θ log ℓ
θ
s(Xs−1, Xs)

∣∣∣∣∣Y0:t
]
= ϕθ

0:th
MLE
0:t . (2.9)

wherehMLE
0:t is the additive state functionalwith components h̃s(xs−1, xs) = ∇θ log ℓ

θ
s(xs−1, xs).

All in all, most predictions in SSMs can be formulated as smoothing expectations of addi-

tive state functionals, and the computation of such quantities is often referred to as additive
smoothing.

Recursive additive smoothing

Under the backward factorization (2.3), a very convenient aspect of additive smoothing is

that it can be computed recursively. This can be seen when applying the tower property of

expectations to the joint smoothing distribution: for all s ≤ t, one has

ϕθ
0:th0:t = Eϕθ

t

[
Hθ

t (Xt)
]
, (2.10)

where, for all s ≤ t,

Hθ
s (Xs) = Eϕθ

0:s
[h0:s(X0:s)|Xs] .

In the context of additive state functionals, the conditional expectations of the previous form

can be linked via functional recursions using the sequence of backward kernels (Bθ
s−1|s)1≤s≤t.

By applying the tower property again and using the conditional independance properties of

the reverse chain, for all s ≤ t,

Hθ
s (xs) = EBθ

s−1|s(xs,·)

[
Hθ

s−1(Xs−1) + h̃s(Xs−1, xs)
]
. (2.11)

While the use of such recursions in SSMs literature is rather recent, those have been ubiqui-

tous in other fields such as stochastic control [BS96] where they correspond to special cases of

dynamic programming in discrete Markov processes. Conveniently for the task of smoothing,

since, at s, the backward kernel Bθ
s−1|s only depends on observations up to s − 1, the com-

putation of Hθ
s does not involve observations for timesteps s′ > s. In turn, the sequence of

smoothing expectations (ϕθ
0:sh0:s)s≤t can be obtained at any timestep by sequentially applying

(2.11) and (2.10), a procedure which is usually referred to as recursive additive smoothing or

"forward-only smoothing". Additionally, since the backward kernels can be defined in terms of

the filtering distributions (ϕθ
s)s≤t, all of the previous operations can be performed concurrently

with the previously mentioned filtering recursions.
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Notes on recursive maximum likelihood estimation

As already mentioned, additive smoothing is a central component in MLE methods, which

relies on quantities that can be expressed as additive state functionals. We now briefly present

how elements of the previous subsection can be used to enable online learning of the model pa-

rameter θ in the context of gradient-based MLEmethods, a topic known as recursive maximum
likelihood estimation (RMLE) which involves derivations relevant to understand the work of

this thesis.

In batch (offline) gradient-based MLE, a sequence of fixed length Y0:t is provided, and up-

dates on the parameter θ are of the form

θk+1 = θk + γt+1 ∇θ log L
θ
t (Y0:t)

∣∣
θk
,

which involves recomputing the gradient of lθt = log Lθt (Y0:t) at every update. For very large

observation sequences Y0:t, or in streaming scenarios where observations {Yt}t≥0 are only

available progressively, RMLE methods consider instead the incremental log-likelihood rθt =
logP θ

Yt|Y0:t−1
(Yt), where P

θ
Yt|Y0:t−1

is the density of Yt given Y0:t−1. Indeed, the relationship

lθt =
t∑

s=1

rθs ,

which is simply obtained via conditionning, suggests that the sequence (rθt )t≥0 may be used

to extended the standard methodology of stochastic gradient method to the sequential setting

via updates of the form

θt+1 = θt + γt+1 ∇θr
θ
t

∣∣
θt
,

which are performed at every timestep t ≥ 0. From there, estimation of (∇θr
θ
t )t≥0 becomes

the central challenge in RMLE methods, which can be tackled via two different approaches.

1. A first possibility is simply to write that, at t ≥ 0

∇θr
θ
t

∣∣
θt
= ∇θ

(
lθt − lθt−1

)∣∣
θt
≈ ∇θl

θ
t

∣∣
θt
− ∇θl

θ
t−1

∣∣
θt−1

.

Then, computation of ∇θl
θ
t

∣∣
θt

can be performed via the additive decomposition (2.9)

and the recursive additive smoothing techniques described above, further assuming that

ϕθ
s ≈ ϕθs

s and Bθ
s−1|s ≈ B

θs−1

s−1|s for all s < t, such that updates of the form (2.11) can be

carried without recomputation of the previous quantities.

2. Another approach is to remark that rθt = log ϕ̄θ
tg

θ
t and derive, via simple differentiation

rules, another form of the gradient of the incremental log-likelihood

∇θr
θ
t =

ϕ̄θ
t

((
∇θϕ̄

θ
t

)
gθt −∇θg

θ
t

)
ϕ̄θ
tg

θ
t

which involves expectations ϕ̄θ
th = E [h(Xt)|Y0:t−1 = y0:t−1] under the predictive distri-

bution, as well as the quantity ηθt = ∇θϕ̄
θ
t which is a signed measure sometimes referred

to as the tangent filter. In practice, the latter can also be computed recursively via the

methodology of additive smoothing.
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2.1.3 Exact inference and Kalman-based extensions
For most SSMs, almost none of the computations developed in the previous section can be

computed exactly (because the integrals involved are intractable) and it is therefore necessary

to resort to approximations. However, a well-known result for inference in SSMs is that when-

ever χθ
is a Gaussian distribution and for all s ≥ 1, both mθ

s and g
θ
s are linear and Gaussian

kernels, then for any 0 ≤ s1 ≤ s2 ≤ t, ϕθ
s1:s2|t is Gaussian, and the parameters can be analyti-

cally computed given θ and y0:t. This observation, which is based on fundamental properties

of Gaussian vectors (i.e. stability under conditionning and marginalisation) leads to the well-

known Kalman filtering and smoothing algorithms which are fundamental in SSM literature

(see e.g. [CMR05, section 4.2]). In brief, in such linear and Gaussian setting, all of the compu-

tations described previously translate into analytical recursions on Gaussian parameters.

• The filtering distributions are Gaussian: for all s ≤ t,

ϕθ
s = N (µs,Σs)

and the parameters (µs,Σs)s≤t can be obtained recursively on the observations {ys}s≤t

via analytical predict and update steps from Section 2.1.1.

• The backward kernels are linear and Gaussian kernels: for all 1 ≤ s ≤ t and xs ∈ X,

Bθ
s−1|s(xs, ·) ∼ N ( ⃗As−1|sxs + ⃗as−1|s, ⃗Σs−1|s)

and the parameters can be computed analyically from (µs−1,Σs−1) and those of mθ
s

because (2.4) admits a closed-form expression.

• For s′ ≤ t, any smoothing marginal is a Gaussian a ϕθ
s′|t ∼ N (µs′|t,Σs′|t) and its param-

eters can by analytically derived from (µt,Σt) and ( ⃗As, ⃗as, ⃗Σs)s′≤s≤t because marginal-

ization of (2.3) admits a closed-form solution.

While linear and Gaussian models can be sufficient in simple settings, many real world

observations can only be realistically described with nonlinear mappings or via more compli-

cated measurement noise, e.g. via equations derived from domain-specific knowledge on the

data. Nonetheless, when the departure from nonlinearity and non-gaussianity is mild, a com-

mon technique is to retain the practicality of the analytical Kalman recursions via additional

simplifications.

Extended Kalman filter. Whenever the transition and emission models still involve Gaus-

sian noises (ηθ, ϵθ) but contain nonlinear mappinps, e.g. for all t ≥ 0, Xt = Fθ(Xt−1) + ηθ

and Yt = Gθ(Xt) + ϵθ where (Fθ,Gθ) are nonlinear, one technique, commonly referred to as

extended Kalman filtering, is to propagate parameters using the Kalman filtering recursions

on a Taylor expansion of model around the current set of parameters, e.g. for the transition

model, one may assume

Xt ≈ Fθ(µt−1) + (Xt−1 − µt−1)
(
∂XF

θ
)
(µt−1) + ηθ

and similarly for the observation model around the parameters of the predictive distribution

ϕθ
t|t−1. Other extensions of the Kalman filter have been proposed, for instance to avoid using

linearization techniques, see for instance the unscented Kalman filter [WV00].
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While, under a linear and Gaussian SSM, the Kalman filtering and smoothing recursions

yield optimal estimates of the smoothing marginal distributions, the above deterministic ap-

proximations are biased. While they can be sufficient in simple settings, such bias can become

prohibitive whenever the underlying model comprises highly nonlinear dynamics or measure-

ment models.

2.2 Sequential Monte Carlo

In complex settings where the previous approximations fail, another approach consists in ap-

proximating all quantities of the previous section using Monte Carlo methods and replace

intractable distributions π with weighted measures on discrete supports, of the form

π̂N =
N∑
i=1

ω̄iδξi , (2.12)

where

∑N
i=1 ω̄

i = 1 and {ξi}i≤N are random samples. In such methods, the computation of

the weights and particles {ω̄i, ξi}i≤N is the main challenge, as all estimates are readily derived

from them (e.g. expectations).

2.2.1 Elements of importance sampling

Given a probability distribution π ∈ P(X) and a measurable function h : X→ H, the original
idea behind Monte Carlo methods is that πh can be estimated by N−1

∑N
i=1 f(ξ

i) given i.i.d

samples (ξi)i≤N from π. From there, π̂N = N−1
∑N

i=1 δξi may be used as an approximation

to the original distribution π. This estimator is unbiased and consistant, however the error

decreases in N−1/2
, and in practice, the variance can be large.

In many situations, it is either impossible to sample directly from π, or the slow decrease

in the approximation error is prohibitive. Whenever one has access to another distribution

q ∈ P(X) which is absolutely continuous w.r.t π, then the Radon-Nikodym theorem allows to

consider

π̂N,IS
q =

1

N

N∑
i=1

(
dπ

dq

)(
ξi
)
δξi

as another possible approximation of π given i.i.d samples (ξi)i≤N from q, and idea formally

referred to as importance sampling (IS). In practice, π̂N,IS
q converges in distribution to π asN →

∞ [RCC99]. In literature on importance sampling, the distribution q is called the importance
distribution or the proposal, and choosing this distribution is the main challenge. When both

π and q admit densities fπ and fq w.r.t to some dominiting measure π, then dπ/dq = fπ/fq
and the values ωi = fπ(ξ

i)/fq(ξ
i) for all i ≤ N are called the importance weights.

When considering only expectations w.r.t to a particular measurable function h0 and when
π has density fπ w.r.t to the Lebesgue measure, it can be shown that the optimal proposal q∗

has density fq∗ ∝ |h0|fπ, [Owe13] such that most methods will focus on building proposals

that concentrate mass on regions of Xwhere both h0 takes larges values and where π has large

mass.
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Nonetheless, in most situations of interest, the target distribution cannot be evaluated

because it is only known up to normalization, i.e. for all h : X→ H,

πh =
1

Zπ

∫
X

h(x)π̃(dx) ,

where π̃ is some unnormalizedmeasure onX andZπ is unknown. Given a proposal q, denoting
fπ̃ and fq the densities of π̃ and q, respectively, self-normalized importance sampling (SNIS)

considers

π̂N,SNIS
q =

N∑
i=1

ωi∑N
j=1 ω

j
δξi , (2.13)

where for all i ≤ N , ωi = fπ̃(ξ
i)/fq(ξ

i) and the quantities ω̄i = ωi/
∑N

j=1 ω
j
are such that∑N

i=1 ω̄
i = 1, hence called the normalized weights.

While originally used to reduce the number of samples in Monte Carlo estimation [KM53],

both IS and SNIS have recently arised as key components of many estimation problems, e.g

[BGS15; Bak+19], and most importantly they play an essential role in sampled-based approx-

imate inference for SSMs, as shown in next section. Contrary to the unnormalized version,

SNIS is biased [Aga+17], however the associated empirical distribution π̂N,SNIS
q still converges

to π in distribution.

The performances of IS and SNIS are strongly tied given the bias-variance tradeoff (and as

such SNIS may sometimes be used even when π can be evaluated to trade variance for bias).

In any case, the performance of importance sampling is generally measured by quantifying

the variance of the importance weights. When several functions need to be measured against

π, it is often understood that a good proposal q is one close to π in the statistical sense, while

staying absolutely continuous w.r.t the latter. To this aim, many newer solutions in importance

sampling consider adaptive proposals [EM21], i.e. ones explicitly tuned to target regions of

high probability mass under π via with optimization.

While it is generally understood that the dimension of the sampling space impacts the

performance of both IS and SNIS, scalability with dimension strongly varies with the choice of

proposal q. Recently [Aga+17] showed that the secondmoment of the weightsEq [dπ/dq(X
2)]

is a key quantity in importance sampling which can be considered as an "intrinsic" dimension

for the related estimators, i.e. the number of samples necessary to obtain good approximations

π̂N,IS
q and π̂N,SNIS

q is essentially governed by this quantity rather than directly by the state and

data dimensions.

2.2.2 Backward particle smoothing

In the specific case of SSMs, we consider as before the joint smoothing distribution ϕθ
0:t. Re-

calling that ϕθ
0:th ∝ ℓθ0:th, one possiblity to obtain a sampled-based approximation would

be to consider some importance distribution q0:t on Xt+1
and a SNIS estimate with weights

ω̄i
0:t ∝

(
ℓθ0:t/q0:t

)
(ξi0:t). However, this conceptually simple approach fails in practice, notably

because the effective sampling space is Xt+1
and therefore very high-dimensional for long

sequences and/or p large. As such, building a good proposal q0:t is near impossible without

further leveraging structural properties of the data.

When the targeted density admits a temporal factorization, sequential importance sampling
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(SIS) introduces proposals of the form

q0:t = q0

t∏
s=1

qs|s−1 ,

with q0 ∈ P(X) and (qs|s−1)1≤s≤t Markov kernels in X × X. In this case, both the samples

ξi0:t ∼ q0:t and the importance weights can be obtained sequentially. While not restricted to

SSMs, these methods are particularly suited in this case because they leverage the temporal

structure of the generative model. For the joint smoothing distribution, with samples ξi0 ∼ q0
and for all 1 ≤ s ≤ t, ξit ∼ qs|s−1(ξ

i
s−1, ·), the importance weights indeed become

ω̄i
0:t ∝

(
ℓθ0
∏t

s=1 ℓ
θ
s

q0
∏t

s=1 qs|s−1

)(
ξi0:t
)
,

which can be rewritten into ω̄i
0:t ∝ ωi

0

∏t
s=1 ω

i
s|s−1 with ω

i
0 = ℓθ0(ξ

i
0)/q0(ξ

i
0) and

ωi
s|s−1 =

ℓθs(ξ
i
s−1, ξ

i
s)

qs|s−1(ξis−1, ξ
i
s)
.

In the context of SSMs, SIS therefore fits well with the recursive nature of the smoothing distri-

bution given by (2.1), and allows previous samples to be re-used across timesteps. Given a set

{ω̄i
0:t, ξ

i
0:t}i≤N approximating ϕθ

0:t, the joint distribution at the next timestep ϕθ
0:t+1|t+1 can be

readily approximated by propagating particles {ξit}i≤N , computing the new terms {ωi
t+1|t}i≤N

and updating the normalizing constant, i.e. new samples are ξit+1 ∼ qt+1|t(ξ
i
t, ·) and the new

set of normalized weights is

ω̄i
0:t+1 =

ωi
t+1|tω

i
0:t∑N

j=1 ω
j
t+1|tω

j
0:t

.

Unfortunately, SIS alone does not solve the curse of dimensionality and the intractability

of importance sampling in Xt+1
, which manifests itself in the increasing degeneracy of the

weights {ω̄i
0:t}i≤N over time (intuitively, a single trajectorywill concentrate themajority of the

mass in the joint space and this worsens as t grows). As such, the previousmethodology cannot

be used in itself to solve the joint smoothing problem. The dominant approach, instead, is to

take the same path than developed in the previous section by considering, first, approximations

of the filtering distributions (ϕθ
s)s≤t, from which the backward kernels are also approximated.

Particle filtering

As marginal distributions, the filtering distributions are given for free in the previous scheme,

i.e. by discarding at every timestep s the particles {ξi0:s−1}i≤N and considering the estimation∑N
i=1 ω̄

i
0:sδξis of ϕθ

s, yet in this case the resulting approximation inherits the degeneracy of

the weights. Nonetheless, a major advantage of the filtering problem is that it is possible to

adopt the previous methodology while breaking the degeneracy by resampling the particles

at every timestep. Formally, at s, the weighted approximation

∑N
i=1 ω̄

i
0:sδξis can be replaced

by N−1
∑

i∈I(ω̄0:s)
δξis where I(ω̄s) = {ik}k≤N with ik ∼ Cat({ω̄i

0:s}i≤N) for all 1 ≤ k ≤
N , i.e. the probability to be resampled is given by the importance weights. The process of
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adding this resampling step to the previously described methodology is known as sequential
importance resampling and is a fundamental building block of particle filtering, which consists

in sequentially

1. propagating the particles,

2. computing the importance weights,

3. resampling particles according to the importance weights.

A key consequence of the resampling process is that particle paths - which were previ-

ously generated independently under q0:t - now interact, in the sense that, at s, a particle ξjs−1

may be considered the ancestor of several resampled particles in (ξis)i∈I(ω̄0:s). For this reason,

theoretical aspects behind SMC methods are often approached from the point of view of in-

teracting particle systems [Del04], which is generally more involved than classical analysis

of Monte Carlo approximations. Since, through the resampling process, the weights which

are sequentially obtained are only related to the filtering distributions, we denote them by

{ω̄i
t}i≤N .

Backward particle approximations

To approximate the backward kernels, one possibility is to leverage their direct relation-

ship with the filtering laws (2.4), and use the sequence of normalized weights and samples

{ω̄i
s, ξ

i
s}s≤t approximating (ϕθ

s)s≤t to similarly build empirical versions of the backward ker-

nels. At s, the backward kernel Bθ
s−1|s may be approached by considering

B̂θ
s−1|s(xs, dxs−1) =

N∑
j=1

w̄θ,j
t−1|t(xs)δξjt−1

(dxs−1) , (2.14)

where for all x ∈ X and j ≤ N ,

w̄θ,j
t−1|t(x) =

ω̄j
s−1m

θ
s(ξ

j
s−1, x)∑N

k=1 ω̄
k
s−1m

θ
s(ξ

j
s−1, xs)

, (2.15)

are called the backward weights.

Forward filtering / backward simulation

Given the previous elements, the joint smoothing distribution ϕθ
0:t may be readily approximted

as

ϕ̂θ
0:t(dx0:t) = ϕ̂θ

t (dxt)

{
N∏
s=1

B̂θ
s−1|s(xs, dxs−1)

}
, (2.16)

which has support {ξi0:t}i≤N . In itself, this already allows to approximate smoothing expec-

tations of measurable functions h : Xt+1 → H. However, the cardinality of the support of

ϕθ
0:t grows with t, such the number of operations necessary to compute ϕ̂θ

0:th quickly becomes

intractable for realistically long sequences.
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Backward sampling. To copewith this limitation, an idea is to consider instead the forward
filtering / backward simulation approach (FFBSi) [Dou+11], which consists in approximating

expectations under ϕθ
0:t by sampling backward trajectories { ⃗ξ

i

0:t}i≤N using the approximate

terminal distribution ϕ̂θ
t and the approximate Markov kernels (B̂θ

s−1|s)1≤s≤t. For i ≤ N , this

sampling process can be broadly described as follows.

1. At t, ⃗ξ
i

t = ξitt where it ∼ Cat
({
ω̄j
t

}
j≤N

)
.

2. For all s ≤ t, ⃗ξ
i

s−1 = ξ
is−1

s−1 with is−1 ∼ Cat

({
w̄θ,j

s−1|s(
⃗ξ
i

s)
}

j≤N

)
.

Given a set of such trajectories { ⃗ξ
i

0:t}i≤N , smoothing expectatons can be estimated with plain

i.i.d Monte Carlo estimation, i.e. for any h : Xt+1 → H,

ϕθ
0:th ≈

1

N

N∑
i=1

h( ⃗ξ
i

0:t) (2.17)

and a good approximation of ϕθ
0:t is given by the uniformly weighted empirical measure built

from the backward trajectories { ⃗ξ
i

0:t}i≤N . For a detailed introduction to this approach, see for

example [DMS14].

While the previous scheme is a convenient approach to reduce the computational com-

plexity with respect to the length t + 1 of the observation sequences, the normalization of

the backward weights induces an O(N2) complexity at each timestep which can become pro-

hibitive when the number of samples is large. To reduce the computational burden, an idea

introduced in [OW+17] is to avoid the computation of the normalizing constant (2.15) by not-

ing that, for all xs ∈ X,

Bθ
s−1|s(xs, dxs−1) ∝ ϕθ

s−1(dxs−1)m
θ
s(xs−1, xs) , (2.18)

and therefore a more efficient version to the FFBSi approach can be obtained by sampling

backward indices according to unnormalizing distributions on the index space. At s, given
ξit ∈ X, the probability ⃗ps(i, j) of sampling j ∈ {1, . . . , N} is such that

⃗ps(i, j) ∝ ω̄j
s−1m

θ
s(ξ

j
s−1, ξ

i
s) .

In practice, this allows to carry the backward sampling process without computing the

backward weights, e.g. by leveraging accept-reject methods on the index space. Recently,

a detailed theoretical analysis and extensions with MCMC sampling of these methods was

proposed in [DC23].

2.2.3 Particle-based additive smoothing and online methods

When the targeted measurable functions are additive state functionals, plugging the previous

particle approximations of the filtering distributions and backward kernels into the recursions

of Equation (2.11) directly enables online computation of smoothing expectations. Indeed, at

s, an approximation of Ĥθ
s of Hθ

s is readily available as
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Ĥθ
s (xs) =

N∑
j=1

w̄θ,j
s−1|s(xs)

(
Hθ

s−1(ξ
j
s−1) + h̃s(ξ

j
s−1, xs)

)
.

Given this, recent recursive particle smoothing methods such as [DDS10a; OW+17; AA22]

propagate approximations of the functions (Hθ
s )s≤t on the support of the empirical filtering

distributions. For all i ≤ N , s ≤ t, Ĥ i
s ≈ Hθ

s (ξ
i
s) is defined recursively as

Ĥ i
s =

N∑
j=1

w̄θ,j
s−1|s

(
Ĥj

s−1 + h̃s(ξ
j
s−1, ξ

i
s)
)
, (2.19)

which allows to compute ϕ0:sh0:s at each timestep by considering the Monte Carlo estimate

N−1
∑N

i=1 Ĥ
i
s. However, computation of equations of the form (2.19) may become prohibitive

wheneverN is large. Since the set of approximations {Ĥ i
t}i≤N are only defined on the support

of the filtering distributions {ξis}i≤N , another approach is consider, for all 1 ≤ s ≤ t and i ≤
N , approximations of Hθ

t (ξ
i
t) obtained by resampling in {ξjs−1}j≤N using backward sampling

procedures similar to the previous subsection, i.e. to consider

Ĥθ
t (ξ

i
s) =

1

M

∑
j∈J i

s

Ĥj
t + h̃s(ξ

j
s−1, ξ

i
s) , (2.20)

where J i
s is a set of M indices drawn from {1, . . . , N} with probabilities {w̄θ,j

s−1|s(ξ
i
s)}j≤N .

As previously, it is possible to reduce the computational burden by considering resampling

schemes which leverage the construction w̄θ,j
s−1|s(ξ

i
s) ∝ ω̄j

s−1m
θ
s(ξ

j
s−1, ξ

i
s) of the backward

weights.

2.2.4 Limitations
A known caveat of SMC methods is that the number of particles necessary to obtain good

approximations typically scales exponentially with the model dimensions. In practice, the

weights of the particle filter can be experimentally observed to "collapse" (a single sample is

given nearly all the mass) in higher dimensions [BBL08; DJ09]. As particle smoothers rely on

filtering approximations, the smoothing performance also degrades significantly.

Theoretically, the scaling issues of SMC are not completely understood, notably because

model dimensions typically do not appear explicitly in the general error bounds for particle

filters [Rv15]. In particular, it is not entirely clear which dimensions of the models really affect

the filtering performance. While it is generally understood that the dimension of the state

space plays a key role (as the sampling space), some works [Sny+08] have been conducted

to gain further insights into this problem. Ultimately, as particle methods internally rely on

importance sampling, the choice of proposal q0:t plays a key role as for any IS and SNIS estima-

tion, and the scalability issues of the latter are inherited in SMC. In SSMs, a popular and readily

available proposal is q0:t = mθ
0:t, i.e. samples are drawn from the prior dynamics, irrespective

of the observations. In this case, the incremental importance weights correspond, at each

timestep, to the observation likelihood ωi
s|s−1 = gθs(ξ

i
s), a setting known as bootstrap. For the

latter, [Sny+08] show that the number of particles must grow exponentially with the variance

of the log-likelihood of the observations to obtain good filtering approximations. To improve

on this behaviour, a large body of research focuses on deriving better proposals for the filtering
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problem, notably by relying on the observations in the sampling mechanism [PS99; CMO08].

In fact, the optimal proposal for filtering is known and obtained when qs|s−1(Xs−1, ·) is the
distribution of Xs given Xs−1 and Ys. While this distribution is generally intractable in the

first place, some works [Sny11; SBM15; GJL17b] suggest that even in the case of this optimal

proposal, the weight degeneracy is inevitable when the model dimensions are very large.

Another issue which prevents the wide adoptation of SMC methods in modern marchine

learning settings is that the resampling steps are non-differentiable. As such, newers algo-

rithms which relying on stochastic optimization (e.g. for MLE) cannot directly use particle

methods as an internal component. While new mechanisms have been developed [JRB18;

Cor+21] to retrieve differentiability in the resampling steps, they are often obtained at the

cost of biased gradients, additional hyperparameters or intricate implementations [Sin+23].
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2.3 Variational inference for sequential data
In parallel to the previous methods which directly build approximations of the fundamental

recursions of SSMs, a new category of approximations has started to arise and show promis-

ing results for inference in sequential latent data models with high-dimensional state spaces.

Rooted in optimization, these methods adapt the methodology of variational to the sequential

setting.

2.3.1 General background on variational inference

Consider a spaceX and an intractable distribution π ∈ P(X). Given a family of probability dis-

tributionsQ ⊂ P(X), VI aims at finding an approximation of π inQ by explicitly minimizing

a statistical divergence d : P(X)× P(X)→ R+, i.e. to find

q∗ = argmin
q∈Q

d(π, q) . (2.21)

While any probabilistic approximation can technically be cast into this setting, the term VI

is commonly reserved to methods which explicitly frame approximation as an optimization

problem on spaces of probability distributions. As such, most of the important questions in

the field are related to (i) the choices for d (ii) the choice of Q and (iii) efficient minimization

of d(π, ·) over Q.
In the Bayesian setting presented in the preamble of this chapter where p(x, y) is the

joint distribution of some latent data model, VI typically targets the posterior distributions

π = p(·|y), such that the solutions also depend on y, which we denote q∗y . A common prac-

tice in VI literature, however, is to remove this dependency in the notation, notably to avoid

viewing variational solutions as the posterior distributions "q(x|y)" of some underlying model

distinct from p(x, y). In practice, the dependency of the final solution on the observations

may result only from the optimization process, or there may be a direct mapping between the

observations and e.g. the parameters of q, as explained before.

Reverse KL divergence and the Evidence Lower Bound

In probability theory, quantifying the discrepancy between distributionsmay be approached in

many ways, each leading to multiple definitions of statistical distances [LV06]. In variational

inference, a popular choice is the Kullback-Leibler divergence defined, for all (π, q) ∈ P(X)×
P(X) with q absolutely continuous w.r.t π, as

DKL(q, π) = q

(
− log

dπ

dq

)
= −

∫
X

log
fπ(x)

fq(x)
fq(x)dx , (2.22)

where the last equality is valid whenever both π and q admit densities fπ and fq w.r.t the

Lebesgue measure. In the following, we consider that this is always the case and mix notations

on density and distributions. DKL being non-symetric, considering DKL(q, π) or DKL(π, q)
leads to different computation problems. The main approach in VI literature is to fix the target

distribution π and to consider only the reverse KL divergence

←−
D π

KL : q 7→ DKL(q, π). One

major practical advantage of the reverse KL is that it is expressed as an expected value under

its input, and the approximating family Q may be chosen to allow easy computation of such
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expectations (as opposed to expectations w.r.t π, the latter being specified by the data model

and intractable in the first place).

However,

←−
D π

KL still requires evaluation of the density of π, which in most cases is not

available. In the Bayesian setting where the target distribution is p(·|y), a common approach

is to consider to following derivations

←−
D p(·|y)

KL (q) = −
∫
X

log

(
p(x, y)

p(y)q(x)

)
q(x)dx = −

∫
X

log

(
p(x, y)

q(x)

)
q(x)dx+ log p(y) ,

to conclude that

∫
X
log
(

p(x,y)
q(x)

)
q(x)dx ≤ log p(y) since

←−
D p(·|y)

KL (q) ≥ 0. As a lower bound of

log p(y), the quantity

Lq(y) =

∫
X

log

(
p(x, y)

q(x)

)
q(x)dx (2.23)

is referred to as the Evidence Lower Bound Objective (ELBO), and we denote

q∗y = argmax
q∈Q

Lq(y).

In VI, the ELBO has been massively used as the main optimization objective in all works

that rely on the reverse KL for scalability concerns. Additionally, newer works [CA18; Che19]

suggest that the ELBO may be used for model selection, i.e. instead of log pθ(y) which may

be intractable, given a variational familyQ one may use Lq∗y(y) to select the best parameter θ

given observations y (in practice the gap is exactly

←−
D p(·|y)

KL (q∗y)). Similarly, a common practice

in parametric latent data models is to optimize both the models parameters θ ∈ Θ and the

variational distribution q ∈ Q with Lq as a common objective. In fact, a more formal view on

this alternating scheme consists in recognising the ELBO as the free-energy functional [Csi84]

associated with DKL, which is a key quantity already minimized in popular inference methods

and MLE algorithms [NH98].

Parametric variational inference and mean-field assumptions

Given this optimization problem, a popular approach is to resort to restricted probability fam-

ilies for Q in order to allow both (i) efficient optimization of the ELBO and (ii) scalable com-

putation of posterior estimates using q∗y instead of p(·|y). In that respect, a common choice

is to choose a parametric family of distributions QΛ where Λ is a parameter space, such that

maximization inQλ is performed directly inΛ (where a notion of gradient is readily available),

i.e. one seeks

λ∗y = argmax
λ∈Λ

Lλ(y), (2.24)

where Lλ = Lqλ with qλ the distribution in QΛ with parameter λ. In general, the idea is to

consider families QΛ whose elements can be easily sampled from and evaluated (e.g. Gaus-

sian), such that unbiased Monte Carlo estimates ofLλ(y) are obtained given i.i.d from samples

(ξi)i≤N from qλ as

L̂λ(y) =
1

N

N∑
i=1

log
p(ξi, y)

qλ(ξi)
.
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Then, another cornerstone of VI is the so-called mean field assumption: when the target π is

a joint distribution X = (X1, . . . , Xn), the parametric variational approximations qλ(dx0:n)
is factorized into

qλ(dx0:n) =
n∏

k=1

qλk (dxk) , (2.25)

i.e. the internal dependencies between the components of π are not captured by the varia-

tional distribution, with covariates assumed independant under the variational model. In this

methodology, individual distributions {qk}k≤n will often be referred to as the variational fac-
tors.

Amortization

In the previous formulation, a new optimization problem needs to be solved for every observa-

tion y ∈ Y and each observation is associated with an optimal parameter λ∗y. When inference

needs to be performed for a large number of observations (yk)k≤K , running such process for

all 1 ≤ k ≤ K can be prohibitive, preventing the use of VI for very large datasets [BKM17].

A popular alternative is to instead learn directly an approximation of the function f : y →
λ∗y via a parametric space of functions {fγ : Y → Λ}γ∈Γ - typically DNNs with Γ the space of

network parameters - where it is assumed that there exists γ∗ ∈ γ such that fγ∗(y) ≈ λ∗y for
all y ∈ Y. In general, given a dataset {yi}i≤N of observations, γ∗ will be obtained as

γ∗ = argmax
γ∈γ

1

K

K∑
k=1

Lfγ(yk)(yk) .

In variational inference literature, this methodology is usually referred to as amortized infer-
ence. While "amortization" is a loosely defined notion, a justification of such denomination is

that the parameter vector γ and the associated mappings fγ are effectively shared (or re-used)
to perform inference on multiple observations. Additionally, once trained with the above ob-

jective, a common practice is perform inference on new observations using the mapping fγ∗

as-is, therefore replacing the need for further optimization altogether.

In new VI methods, such techniques are ubiquitous and are the core component behind

the recent success of so-called variational autoencoders [KW14], where the function fγ will

typically be referred to as the encoder, the "amortized networks" or the "recognition network"

[Zha+18] because upon optimization it provides a deterministic mapping to encoder observa-

tions into quantities related to the posterior. In practice, the quality of the variational solutions

leveraging this amortized setting strongly depends on the choice of this mapping. In general,

amortized variational solutions are expected to perform worse than the traditional setting

[CLD18; KLH18] albeit at a much reduced computational cost. Observing that amortized in-

ference consists essentially on "learning to predict the solution of an optimization problem",

some works [MYM18] have explored amortized VI from the angle of meta-learning [And+16]

to build principled approaches that perform iterative refinements of the predictions given by

amortizing networks.

In this thesis, most of the implementatedmethods rely on amortized inference, but most of-

ten we abstract it from the notations by considering distributions and functions that depend on

some parameter λ ∈ Λ - which may either be the parameter of an encoder as presented above

or directly the parameter of the distributions. Additionally, we remove the dependency of the
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observations in the notation of the ELBO, as the exact optimization problems involved may

either correspond to the amortized objective above involving multiple observations {yk}k≤K

or to the traditional one with a single observation y. For simplicity, the previous sections are

written in the latter setting.

Computing the gradient of the ELBO

To solve the maximization problem (2.24), a common approach is to resort to gradient-based

optimization and consider gradient-ascent in λ of the ELBO, i.e. updates of the form

λk+1 = λk + γk+1 ∇λLλ
∣∣
λk

,

which requires computing gradients of the ELBO Lλ
.

Reparameterization. A popular setting is to choose QΛ such that its elements can be

expressed as image measures qλ = q0 ◦ (xλ)−1
where xλ is continuous in λ and q0 is a p.d.f.

not depending on λ, but known and easy to sample from. Indeed, in this case, for any q ∈ QΛ

and any function h : X → H, ∇λ

{
qλh
}

= ∇λ

{
q0(h ◦ xλ)

}
, such that the gradient of the

ELBO may be expressed and approximated as

∇λLλ = Eq0

[
∇λ

{
log

p(xλ(X0), y)

q0(xλ(X0))

}]
≈ 1

N

N∑
i=1

∇λ

{
log

p(xλ(ξiq0), y)

q0(xλ(ξiq0))

}
,

where {ξiq0}i≤N are i.i.d samples from q0. The gradients in this case are sometimes referred to

as reparameterized or pathwise gradients.

Score-function. When the previous setting cannot be satisfied but it is still possible to sam-

ple and evaluate elements ofQΛ, another approach is to consider the score-function estimator

of the gradient which states that

∇λEqλ
[
hλ
]
= Eqλ

[
∇λ log q

λ × hλ +∇λh
λ
]
,

and apply it to the ELBO with h = log p(·, y)/qλ. Noticing that

Eqλ [∇λh(X)] = −Eqλ
[
∇λ log q

λ(X)
]
= 0 ,

another Monte Carlo estimate of the gradient can then be built via

∇λLλ ≈ 1

N

N∑
i=1

∇λ

{
log qλ(ξi)

}
× log

p(ξi, y)

qλ(ξi)
,

with (ξi)i≤N i.i.d samples from qλ. One may refer to this specific setting as "black-box varia-

tional inference" as named in [RGB14] and the associated gradients as score gradients.
While both methods yield unbiased gradients, score gradients typically provide much

higher variance estimates than reparameerized gradients and often require variance reduc-

tion techniques to allow efficient optimization (see e.g. [Moh+20] for a detailed analysis of the

performance of various Monte Carlo gradient estimates).
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2.3.2 Sequential variational inference
While elements of the previous section are relevant for any target distribution π, we now fo-

cus on works which rely on specialized variational families leveraging known structure in π
to improve inference. While such methods - sometimes grouped under the umbrella term of

structured VI - have attracted much attention for a wide variety of generative models, (e.g.

probabilistic graphical models [HB15; RTB16]), we specifically consider the sequential setting

of section 2.1, i.e. the case where π = ϕθ
0:t is the joint smoothing distribution of some para-

metric SSM given an observed sequence y0:t. In this case, the variational approximations are

elements of P(Xt+1) denoted qλ0:t in the parametric case. Consequently, the ELBO becomes an

expectation under qλ0:t, denoted with Lλ,θ
t and defined as

Lλ,θ
t = Eqλ0:t

[
log

ℓθ0:t
qλ0:t

(X0:t)

]
, (2.26)

which we may refer in the following as the joint ELBO to distinguish it from the traditional

setting. In the rest of this section, for any 0 ≤ s1 ≤ s2 ≤ t, we denote with qλs1:s2 the marginal

distribution of Xs1:s2 under the variational law qλ0:t.
In this setting, whenever Lλ,θ

t can be optimized to provide a solution λ∗, inference can

then be performed assuming that qλ
∗

0:t is a sufficiently good approximation of ϕθ
0:t, i.e. by using

qλ
∗

0:t instead of the true smoothing distribution to derive statistical estimations. In particular,

smoothing functionals of the form ϕθ
0:th0:t may be replaced with expectations qλ0:th0:t under

the variational approximations, where one can ensure that plain Monte Carlo estimates are

available via specific choices of variational families.

Popular decompositions of the variational distributions

In sequential variational inference, a central idea is to decompose the variational joint dis-

tribution qλ0:t into individual factors in order to obtain expressive variational solutions which

take into account the temporal dependencies of the data, while breaking inference and op-

timization of the ELBO into individual steps. With respect to the latter goal, a first option

is to consider a simple mean-field assumption (as in Equation (2.25)) across timesteps, e.g.

qλ0:t(dx0:t) =
∏t

s=1 q
λ
s (dxs). In this case

Lλ,θ
t =

t∑
s=1

Eqλs−1:s

[
log

ℓθs(Xs−1, Xs)

qλs (Xs)

]
+ Eqλ0

[
log

χθ(X0)g
θ
0(X0)

qλ0 (X0)

]
,

where the bivariate marginal distributions qλs−1:s = qλs−1 × qλs are readily available at every

timestep when the distributions (qλs )s≤t are all known and easy to sample from. However, in

the context of smoothing, this "fully-factorized" decomposition (i.e. each term only depends

on a single latent state) effectively doesn’t model the latent dependencies in ϕθ
0:t. In particular

(i) the Markov property of the conditional distribution of X0:t given Y0:t is ignored and (ii)

correlations between the latent states cannot be captured because the marginal distributions

are assumed to be independent. Recently, [Bay+21] suggest that such misspecification of the

dependencies has detrimental effects on inference. Additionally, a mean-field assumption for

temporal data a priori forces each factor to depend on the entire sequence of observations y0:t,
and as such the variational laws do not inherit the convenient recursive properties of the true

smoothing distributions described in the previous sections.
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To improve on this, many works reintroduce some of the properties of ϕθ
0:t directly into the

variational model. To this aim, a common departure from the mean-field assumption consists

in defining variational factors which depend on several latent states and possibly on only a

subset of observations, either via unnormalized functions, proper Markov kernels, or a combi-

nation of both, as described next. In general, most of the resulting models can be understood

as specifying some form of probabilistic graphical model (PGM) in which inference is easier

than under the true model (e.g. easy computation of marginal distributions or normalizing

constants and exact sampling), but whose parameters are learnt without any approximation

of the original model via optimization of the joint ELBO. Here, a recurring objective is to lever-

age the approximating power of deep neural networks. Given the temporal setting, a common

feature of SVI methods is to extend the idea of amortized inference 2.3.1 by relying on map-

pings which are shared across timesteps and used to produce relevant parameters for each of

them. As such, many implementation choices are transferred into the parameterization of

these networks and the correct ways to include their outputs into a variational model. In that

regard, most of the existing methods can generally be understood as falling into several broad

categories, which we describe next.

Variational decompositions with conjugate factors. In one line of research [Joh+16;

LKH18; Häl+21a], the joint smoothing distribution is not directly specified with a Markovian

factorization but instead provided implicitly via a factor graph on which computations can

be performed analytically with techniques from inference in probabilistic graphical models

[WBJ05; BN06]. In the latter approaches, a common underlying idea is to assimilate obser-

vations {ys}s≤t one-by-one with a single DNN-based mapping whose output can be analyti-

cally conjugated with other terms that specify underlying dynamics between the latent states.

As a result, the joint approximation qλ0:t can capture complex dependencies on the observa-

tions and correlations between the latent states, but the modeling is broken down into simple

and easy-to-implement individual components, which are combined with efficient approaches

from belief propagation [Min01] or so-called "message-passing" techniques.

While such methods are rather rooted in literature on PGMs, most often the graphs im-

plemented in the latter are motivated by some existing decomposition of the joint smoothing

distribution in terms of unnormalized components. For instance, in [Joh+16; LKH18], the den-

sity of the joint variational distribution is decomposed as

qλ0:t(x0:t) ∝ fλ
0 (x0)

t∏
s=1

fλ
s (xs−1, xs)

t∏
s=0

ψλ(xs, ys) , (2.27)

where the functions (fλ
s )s≤t are independent of the observations. For the true joint smoothing

decomposition, one may observe, using loose notations, that

ϕ0:t(x0:t) ∝ mθ
0(x0)

t∏
s=1

mθ
s(xs−1, xs)

t∏
s=0

pθXs|ys(xs)

pθXs
(xs)

,

where pθXs|ys denotes the density of Xs given Ys = ys and p
θ
Xs

that of Xs. In practice, such

decomposition is not traditionally used in SSMs literature, notably because the previous den-

sities are not always defined and hard to estimate in practice, however it motivates (2.27) as a

decomposition of the variational joint distribution. Additionally, in these variational methods,
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the functions (fλ
s )s≤t are such that fλ

0:t = fλ
0

∏t
s=1 f

λ
s is a density on Xt+1

, and the associated

joint distribution is sometimes seen a variational "prior" playing a role similar tomθ
0:t from the

true model. The shared mapping ψλ
, on the other hand, is generally implemented similarly as

traditional encoders from amortized variational inference, but its output is formatted to allow

conjugation with the rest of the graph.

All in all, this category of approaches provides a practical way to integrate existing map-

pings from VAE literature into a sequential setting without resorting to more complex DNN

architectures. As conjugacy plays a key role in the tractability of these methods, some works

[KL17] have since focused on generalizing the latter to more general factor graphs which are

reduced to conjugate ones with additional mechanisms.

Forward variational factorization. Distinct to the previous methods, another line of

research attempts to directly reproduce the Markovian factorizations of ϕ0:t inside the varia-

tional family by explicitly defining Markov kernels whose dependencies on the observations

are provided from outputs of DNNs encoded in their parameters. Up to now, most works

[Kim+20; Arc+15; KSS15; KSS17; Fra+16] have considered a forward-type of factorization,

which is known in SSM literature but relatively unused in practical settings (see Appendix

A.2.1 for other factorizations of the smoothing distributions). They factorize the variational

joint density as

qλ0:t(x0:t) = qλ0 (x0)
t∏

s=1

qλs|s−1(xs−1, xs) ,

where qλ0 is a distribution, (qλs|s−1)s≤t is a sequence of Markov kernels, and all of the latter are

made dependent on the entire sequence of observations y0:t. In these works, optimization is

performed via Monte Carlo approximations of the ELBO gradients which are readily avail-

able when the terms in the previous factorization belong to parametric families that can be

evaluated and sampled from (i.e. samples from qλ0:t are obtained sequentially using qλ0 and the

forward kernels qλs|s−1). Here, a central idea for implementation is to rely on recurrent neu-

ral networks which assimilate the observations sequentially and whose outputs parameterize

the variational Markov kernels. In [KSS17], for instance, sequences y0:t are encoded using a

bidirectinal RNN which produces vectors (⃗as)s≤t and ( ⃗as)s≤t of fixed length. For all s ≤ t,

a⃗s = A⃗λ(ys, a⃗s−1) and ⃗as = ⃗A
λ
(ys, ⃗as+1) ,

where A⃗λ
and

⃗A
λ
are distinct DNNs. Then, for all 1 ≤ s ≤ t, the parameters of the variational

kernels are such that for all xs−1 ∈ X,

qλs|s−1(xs−1, ·) ∼ N (µλ
s|s−1,Σ

λ
s|s−1) ,

distinct where

µλ
s|s−1 = fλ(xs−1, a⃗s, ⃗as) and Σλ

s|s−1 = gλ(xs−1, a⃗s, ⃗as) ,

with fλ
and gλ nonlinear mappings. Under such Gaussian assumptions, the joint distribution

qλ0:t can be easily sampled from and evaluated, and complex dependencies between the latent

states and the observations are captured in themappings ( ⃗A
λ
, A⃗λ, fλ, gλ)when optimizing the

joint ELBO. In SVI literature, such approaches have attracted a lot of attention, notably because
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they provide solid ground to combine the flexibility of deep learning-based architectures for

temporal data with known probabilistic inference. Nonetheless, by relying on the forward

factorization of ϕθ
0:t, they effectively inherit from the limitations of the latter. In particular, the

dependency of each variational term on the entire sequence of observations implies that they

cannot be used in online settings where observations arrive sequentially, which essentially

prevents their use for long sequences and therefore limits their scalability.

Variational filtering. In view of the previous remarks, a distinct line of research [MCY18;

ZP20; DZP23] chooses to trade smoothing for filtering by targeting the marginal distributions

(ϕθ
s)s≤t at each timestep with variational distributions qλs (dxs) that depend only on the ob-

servations up to s. In general, these solutions depart from the original objective defined by

Equation (2.26) and formulate intermediate optimization problems at each timestep by deriv-

ing a "single step ELBO" from

←−
D ϕs

KL(q
λ
s ). To derive such ELBOs, a defining trait of these works

is the additional assumption that, at s, qλs−1 is a good approximation of ϕθ
s−1, which in practice

can hardly be verified especially under Gaussian variational families. For example, for all s ≤ t
the quantity

Eqλs

[
log

qλs
gθs
− Eϕθ

s−1

[
mθ

s

]]
is a lower bound of incremental log-likelihood rθs derived from

←−
D ϕθ

s
KL(q

λ
s ), and in [DZP23] au-

thors replace the intractable ϕθ
s−1 with an approximation obtained at the previous timestep.

Additionally, while they do provide solutions to process the observations sequentially, such

methods a priori only provide mean-field approximations of the joint smoothing distributions

by considering qλ0:t =
∏t

s=0 q
λ
s (where each qλs only depends on observations up to s). There-

fore, even in the event that qλs ≈ ϕθ
s for all s ≤ t, principled approaches to approximate ϕθ

0:t

given these variational filtering approximations are not available, and as such the associated

works only produce joint distributions with misspecified dependencies as in traditional mean-

field VI.

Backward variational smoothing

To solve the computational limitations of the previous methods (i.e. dependency of each vari-

ational factors on all the observations), another option, first introduced in [Cam+21], is to

reproduce the backward factorization of (2.3) in the variational model by introducing the fol-

lowing decomposition

qλ0:t(x0:t) = qλt (xt)
t∏

s=1

qλs−1|s(xs, xs−1) , (2.28)

where the terminal quantity qλt is a density in X and, for all 1 ≤ s ≤ t, qλs−1|s is are densities

of Markov kernels in X× X.

The backward variational ELBO. In this context, the joint ELBO becomes

Lλ,θ
t = Eqλ0:t

[
log

∏t
s=1 ℓ

θ
s(Xs−1, Xs)

qλt (Xt)
∏t

s=1 q
λ
s−1|s(Xs, Xs−1)

]
,
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which may identified as

Lλ,θ
t = Eqλ0:t

[
hλ,θ0:t (X0:t)− log qλt

]
,

with hλ,θ0:t the additive state functional having components (h̃λ,θs )s≤t, defined as,

h̃λ,θs : (xs−1, xs) 7→ log
ℓθs(xs−1, xs)

qλs−1|s(xs, xs−1)
, (2.29)

for all s < t.

Backward variational additive smoothing recursions. Given this decomposition, it be-

comes possible to apply similar derivations than for additive smoothing with ϕθ
0:t (as described

in 2.1.2) by writing the ELBO as

Lλ,θ
t = Eqλt

[
Hλ

t (Xt)
]
− Eqλt

[
log qλt

]
,

where Hλ
t : xt 7→ Eqλ0:t

[h0:t(X0:t) | Xt = xt] is part of a sequence of functions (H
λ
s )s≤t which

can be defined recursively from expectations under the variational kernels (qλs−1|s)s≤t, i.e. for

all s ≤ t,

Hλ
s : xs 7→ Eqλ

s−1|s(xs,·)

[
Hλ

s−1(Xs−1) + h̃s(Xs−1, xs)
]
.

Implementations of the backward factorization amenable to online learning. To

implement in practice the decomposition (2.28), i.e. setting parametric forms to each of its

terms, multiple options can be considered (e.g. recurrent neural networks which encode the

parameters of the kernels sequentially as in the previous subsection). However, while it is

possible to use the backward decomposition in the offline setting (e.g. given a sequence y0:t of
fixed-length t + 1), the original motivation behind its introduction is that it allows to obtain

a variational joint approximation qλ0:t for all timesteps t ≥ 0 without having to recompute all

factors when updating them. To this aim, one may simply define:

• A flow of distributions (qλt )t≥0 available at all t ≥ 0.

• A flow of kernels (qλt−1|t)t≥1 available at all t ≥ 1 which respect the same dependencies

on the observations than for the true backward kernels Bθ
t−1|t, i.e. for all t ≥ 1, the

parameters of qλt−1|t only depend on y0:t−1.

In this case, successive joint variational distributions can be constructed recursively by con-

sidering

qλ0:t+1 =
qλt q

λ
t−1|t

qλt−1

qλ0:t ,

where qλ0:t respects the backward decomposition (2.28) at all timesteps t ≥ 0. 1

Given all this, the variational backward factorization is a strong candidate because it paves

the paw to recursive additive smoothing, given that Hλ
t is defined for all t ≥ 0 and only

depends on observations y0:t−1.

1
In practice, this relationship also allows to define the ELBO in compact form as the smoothed expectation

of the additive state functional with components h̃λ,θ
t =

ℓθt q
λ
t−1

qλt q
λ
t−1|t

, but in this work we rather rely on the other

definition of the components.
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Chapter 3

Macrolitter video counting on
riverbanks using state-space models and
moving cameras

This chapter is based on the article "Macrolitter video counting on riverbanks using state-space
models and moving cameras" published in 2023 in Computo, the journal of the French statistical
society, [Cha+23]. All the codes to generate the images and run our algorithm is available online.

This contribution can be summarized as follows.

1. We provide a novel open-source image dataset of macro litter, which includes various

objects seen from different rivers and different contexts. This dataset was produced with

a new open-sourced platform for data gathering and annotation developed in conjunc-

tion with Surfrider Foundation Europe, continuously growing with more data.

2. We propose a new algorithm specifically tailored to count in videos with fast camera

movements. In a nutshell, DNN-based object detection is paired with a robust state

space movement model which uses optical flow to perform Bayesian filtering, while

confidence regions built on posterior predictive distributions are used for data associ-

ation. This framework does not require video annotations at training time: the multi-

object tracking module does not require supervision, only the DNN-based object detec-

tion does require annotated images. It also fully leverages optical flow estimates and

the uncertainty provided by Bayesian predictions to recover object identities even when

detection recall is low. Contrary to existing MOT solutions, this method ensures that

tracks are stable enough to avoid repeated counting of the same object.

3. We provide a set of video sequences where litter counts are known and depicted in real

conditions. For these videos only, litter positions are manually annotated at every frame

in order to carefully analyze performance. This allows us to build new informative count

metrics. We compare the count performance of our method against other MOT-based

alternatives.

A first visual illustration of the second claim is presented in Figure 3.1: on three selected

frames, we present a typical scenario where our strategy can avoid overcounting the same

object (we depict internal workings of our solution against the end result of the competitors).

51
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Figure 3.1: Our method: one object (red dot) is correctly detected at every frame and given a

consistent identity throughout the sequence with low location uncertainty (red ellipse). Next

to it, a false positive detection is generated at the first frame (brown dot) but immediatly lost

in the following frames: the associated uncertainty grows fast (brown ellipse). In our solution,

this type of track will not be counted. A third correctly detected object (pink) appears in the

third frame and begins a new track.

Figure 3.2: SORT: the resulting count is also 2, but both counts arise from tracks generated by

the same object, the latter not re-associated at all in the second frame. Additionally, the third

object is discarded (in post-processing) by their strategy.
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3.1 Datasets for training and evaluation
Our main dataset of annotated images is used to train the object detector. Then, only for eval-

uation purposes, we provide videos with annotated object positions and known global counts.

Our motivation is to avoid relying on training data on videos, that requires this resource-

consuming process.

3.1.1 Images

Data collection. With help from volunteers, we compile photographs of litter stranded on

river banks after increased river discharge, shot directly from kayaks navigating at varying

distances from the shore. Images span multiple rivers with various levels of water current,

on different seasons, mostly in southwestern France. The resulting pictures depict trash items

under the same conditions as the video footage we wish to count on, while spanning a wide

variety of backgrounds, light conditions, viewing angles and picture quality.

Bounding box annotation. For object detection applications, the images are annotated

using a custom online platform where each object is located using a bounding box. In this

work, we focus only on litter counting without classification, however the annotated objects

are already classified into specific categories which could be used in future works.

3.1.2 Video sequences

Data collection. For evaluation, an on-field study was conducted with 20 volunteers to

manually count litter along three different riverbank sections in April 2021, on the Gave

d’Oloron near Auterrive (Pyrénées-Atlantiques, France), using kayaks. The river sections,

each 500 meters long, were precisely defined for their differences in background, vegetation,

river current, light conditions and accessibility (see B.2 for aerial views of the shooting site

and details on the river sections). In total, the three videos amount to 20 minutes of footage at

24 frames per second (fps) and a resolution of 1920x1080 pixels.

Track annotation. On video footage, we manually recovered all visible object trajectories

on each river section using an online video annotation tool (more details in B.2 for the precise

methodology). From that, we obtained a collection of distinct object tracks spanning the entire

footage.

3.2 Optical flow-based counting via Bayesianfiltering and
confidence regions

Our counting method is divided into several interacting blocks. First, a detector outputs a

set of predicted positions for objects in the current frame. The second block is a tracking

module designing consistent trajectories of potential objects within the video. At each frame,

a third block links the successive detections together using confidence regions provided by the

tracking module, proposing distinct tracks for each object. A final postprocessing step only

keeps the best tracks which are enumerated to yield the final count.
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3.2.1 Detector

Center-based anchor-free detection. In most benchmarks, the prediction quality of ob-

ject attributes like bounding boxes is often used to improve tracking. For counting, however,

point detection is theoretically enough and advantageous in many ways. First, to build large

datasets, a method which only requires the lightest annotation format may benefit from more

data due to annotation ease. Second, contrary to previous popular methods [Ren+15] involv-

ing intricate mechanisms for bounding box prediction, center-based and anchor-free detectors

[ZWK19] only use additional regression heads which can simply be removed for point detec-

tion. Adding to all this, [Zha+21] highlight conceptual and experimental reasons to favor

anchor-free detection in tracking-related tasks.

For these reasons, we use a stripped version of CenterNet [ZWK19] where offset and

bounding box regression heads are discarded to output bare estimates of center positions on a

coarse grid. An encoder-decoder network takes an input image I ∈ [0, 1]w×h×3
(an RGB image

of width w and height h), and produces a heatmap Ĥ ∈ [0, 1]⌊w/p⌋×⌊h/p⌋
such that Ĥij is the

probability that (i, j) is the center of an object (p being a stride coefficient). At inference, peak

detection and thresholding are applied to Ĥ , yielding the set of detections. The bulk of this

detector relies on the DLA34 architecture [Yu+18]. In a video, for each frame It ∈ [0, 1]w×h×3

(where t indexes the frame number), the detector outputs a set Dt = {ukt }1≤k≤Dt where each

ukt = (xkt , y
k
t ) specifies the coordinates of one of the Dt detected objects.

Training. For every image, the corresponding set B = {(cwk , chk, wk, hk)}1≤k≤B of B anno-

tated bounding boxes – i.e. a center (cwk , c
h
k), a width wk and a height hk– is rendered into a

ground truth heatmap H ∈ [0, 1]⌊w/p⌋×⌊h/p⌋
by applying kernels at the bounding box centers

and taking element-wise maximum. For all 1 ≤ i ≤ w/p, 1 ≤ j ≤ h/p, the ground truth at

(i, j) is

Hij = max
1≤k≤B

(
exp

{
−(i− cwk )2 + (j − chk)2

2σ2
k

})
,

where σk is a parameter depending on the size of the object. Training the detector is done by

minimizing a penalty-reduced weighted focal loss

L(Ĥ,H) = −
∑
i,j

γβij (1− p̂ij)
α log (p̂ij) ,

where α, β are hyperparameters and

(p̂ij, γij) =

{
(Ĥij, 1) if Hij = 1,

(1− Ĥij, 1−Hij) otherwise.

3.2.2 Bayesian tracking with optical flow

Optical flow. Between two timesteps t−1 and t, the optical flow∆t is a mapping satisfying

the following consistency constraint:

Ĩt[u] = Ĩt−1[u+∆t(u)] ,
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where, in our case, Ĩt denotes the frame t downsampled to dimensions ⌊w/p⌋ × ⌊h/p⌋
and u = (i, j) is a coordinate on that grid. To estimate ∆t, we choose a simple unsuper-

vised Gunner-Farneback algorithm which does not require further annotations, see [Far03]

for details.

State space model. Using optical flow as a building block, we posit a state space model

where estimates of ∆t are used as a time and state-dependent offset for the state transition.

Let (Xt)t≥1 and (Yt)t≥1 be the true (but hidden) and observed (detected) positions of a

target object in R2
, respectively.

Considering the optical flow value associated withXt−1 on the discrete grid of dimensions

⌊w/p⌋ × ⌊h/p⌋, write
Xt = Xt−1 +∆t(⌊Xt−1⌋) + ηt (3.1)

and

Yt = Xt + εt ,

where (ηt)t≥1 are i.i.d. centered Gaussian random variables with covariance matrix Q inde-

pendent of (εt)t≥1 i.i.d. centered Gaussian random variables with covariance matrix R. In the

following, Q and R are assumed to be diagonal, and are hyperparameters set to values given

in Appendix B.3.

Approximations of the filtering distributions. In our setting, we find that a linearisa-

tion of the model (3.1) yields an approximation which is computationally cheap and as robust

on our data:

Xt = Xt−1 +∆t(⌊µt−1⌋) + ∂X∆t(⌊µt−1⌋)(Xt−1 − µt−1) + ηt .

where ∂X is the derivative operator with respect to the 2-dimensional spatial input X .

This allows the implementation of Kalman updates on the linearised model, a technique

named extended Kalman filtering (EKF). On the currently available data, we find that the op-

tical flow estimates are very informative and accurate, making this approximation sufficient.

For completeness, we present in Appendix B.3 a SMC-based solution and discuss the empirical

differences and use-cases where the latter might be a more relevant choice.

In any case, the state space model naturally accounts for missing observations, as the con-

tribution of∆t in every transition ensures that each filter can cope with arbitrary inter-frame

motion to keep track of its target.

3.2.3 Generating potential object tracks

The full MOT algorithm consists of a set of single-object trackers followingstate space mod-

elstate space model the previous model, but each provided with distinct observations at every

frame. These separate filters provide track proposals for every object detected in the video.

Data association using confidence regions

Throughout the video, depending on various conditions on the incoming detections, existing

trackers must be updated (with or without a new observation) and others might need to be



56 CHAPTER 3. MOT-BASED MACROLITTER COUNTING

created. This setup requires a third party data association block to link the incoming detections

with the correct filters.

At the frame t, a set of Lt Bayesian filters track previously seen objects and a new set of

detections Dt is provided by the detector. Denote by 1 ≤ ℓ ≤ Lt the index of each filter at

time t, and by convention write Y ℓ
1:t−1 the previous observed positions associated with index

ℓ (even if no observation is available at some past times for that object). Let ρ ∈ (0, 1) be a
confidence level.

1. For every detected object ukt ∈ Dt and every filter ℓ, compute P (k, ℓ) = P(Y ℓ
t ∈ Vδ(ukt ) |

Y ℓ
1:t−1) where Vδ(u) is the neighborhood of u defined as the squared area of width 2δ

centered on u (see Appendix B.3 for exact computations).

2. Using the Hungarian algorithm ([Kuh55]), compute the assignment between detections

and filters with P as cost function, but discarding associations (k, ℓ) having P (k, ℓ) < ρ.
Formally, ρ represents the level of a confidence region centered on detections and we

use ρ = 0.5. Denote aρ the resulting assignment map defined as aρ(k) = ℓ if ukt was

associated with the ℓ-th filter, and aρ(k) = 0 if ukt was not associated with any filter.

3. For 1 ≤ k ≤ Dt, if aρ(k) = ℓ, use ukt as a new observation to update the ℓ-th filter. If

aρ(k) = 0, create a new filter initialized from the prior distribution, i.e. sample the true

location as a Gaussian random variable with mean ukt and variance R.

4. For all filters ℓ′ which were not provided a new observation, update only the predictive

law of Xℓ′
t given Y ℓ′

1:t−1.

In other words, we seek to associate filters and detections by maximising a global cost built

from the predictive distributions of the available filters, but an association is only valid if

its corresponding predictive probability is high enough. Though the Hungarian algorithm is a

very popular algorithm inMOT, it is often used with the Euclidean distance or an Intersection-

over-Union (IoU) criterion. Using confidence regions for the distributions of Yt given Y1:(t−1)

instead allows to naturally include uncertainty in the decision process. Note that we deactivate

filters whose posterior mean estimates lie outside the image subspace in R2
.

Note that this way of combining a set of Bayesian filters with a data association step that

resorts on the most likely hypothesis is a form of Global Nearest Neighbor (GNN) tracking.

Another possibility is to perform multi-target filtering by including the data association step

directly into the probabilistic model, as in [Mah03]. A generalisation of single-target recursive

Bayesian filtering, this class of methods is grounded in the point process literature and well

motivated theoretically. In case of strong false positive detection rates, close and/or reappear-

ing objects, practical benefits may be obtained from these solutions. Finally, note that another

well-motivated choice for P (k, ℓ) could be to use the marginal likelihood P(Y ℓ
t ∈ Vδ(u

k
t )),

which is standard in modern MOT.

Counting

At the end of the video, the previous process returns a set of candidate tracks. For count-

ing purposes, we find that simple heuristics can be further applied to filter out tracks that

do not follow actual objects. More precisely, we observe that tracks of real objects usu-

ally contain more (i) observations and (ii) streams of uninterrupted observations. Denote by
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Tℓ =
{
t ∈ N | ∃u ∈ Dt, Y

ℓ
t = u

}
all timesteps where the ℓ-th object is observed. To discard

false counts according to (i) and (ii), we compute the moving average Mκ
ℓ of 1Tℓ

using win-

dows of size κ, i.e. the sequence defined by Mκ
ℓ [t] = 1

κ

∑
s∈[[t−κ,t+κ]] 1Tℓ

[s]. We then build

T κ
ℓ = {t ∈ Tℓ |Mκ

ℓ [t] > ν}, and defining N = {ℓ | |T κ
ℓ | > τ}, the final object count is |N |.

We choose ν = 0.6 while κ, τ are optimized for best count performance (see Appendix B.3 for

a more comprehensive study).

3.2.4 Metrics for MOT-based counting

Counting in videos using embedded moving cameras is not a common task, and as such it re-

quires a specific evaluation protocol to understand and compare the performance of competing

methods. First, not all MOT metrics are relevant, even if some do provide insights to assist

evaluation of count performance. Second, considering only raw counts on long videos gives

little information on which of the final counts effectively arise from well detected objects.

Count-related MOT metrics

Popular MOT benchmarks usually report several sets of metrics such as ClearMOT ([BS08])

or IDF1 ([Ris+16]) which can account for different components of tracking performance. Re-

cently, [Lui+21] built the so-called HOTA metrics that allow separate evaluation of detection

and association using the Jaccard index. The following components of their work are relevant

to our task (we provide equation numbers in the original paper for formal definitions).

Detection First, when considering all frames independently, traditional detection recall (DetRe)
and precision (DetPr) can be computed to assess the capabilities of the object detector. Denot-

ingwithTPn, FPn, FNn the number of true positive, false positive and false negative detections

at frame n, respectively, we define TP =
∑

t TPt, FP =
∑

t FPt and FN =
∑

t FNt, then:

DetRe =
TP

TP+ FN
,

DetPr =
TP

TP+ FP
.

In classical object detection, those metrics are the main target. In our context, as the first

step of the system, this framewise performance impacts the difficulty of counting. However,

we must keep in mind that these metrics are computed framewise and might not guarantee

anything at a video scale. The next points illustrate that remark.

1. If bothDetRe andDetPr are very high, objects are detected at nearly all frames and most

detections come from actual objects. Therefore, robustness to missing observations is high,

but even in this context computing associations may fail if camera movements are nontriv-

ial. 2. For an ideal tracking algorithm which never counts individual objects twice and does

not confuse separate objects in a video, a detector capturing each object for only one frame

could theoretically be used. Thus, low DetRe could theoretically be compensated with robust

tracking. 3. If our approach can rule out faulty tracks which do not follow actual objects, then

good counts can still be obtained using a detector generating many false positives. Again, this

suggests that low DetPr may allow decent counting performance.
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Association. HOTA association metrics are built to measure tracking performance irre-

spective of the detection capabilities, by comparing predicted tracks against true object tra-

jectories. In our experiments, we compute the Association Recall (AssRe) and the Association
Precision (AssPr). Several intermediate quantities are necessary to introduce these final met-

rics. Following [Lui+21], we denote with prID the ID of a predicted track and gtID the ID of

a ground truth track. Given C all couples of prID − gtID found among the true positive de-

tections, and c ∈ C one of these couples, TPA(c) is the number of frames where prID is also

associated with gtID, FPA(c) is the number of frames where prID is associated with another

ground truth ID or with no ground truth ID, and FNA(c) is the number of frames where gtID
is associated with another predicted ID or with no predicted ID. Then:

AssPr =
1

TP

∑
c∈C

TPA(c)

TPA(c) + FPA(c)
,

AssRe =
1

TP

∑
c∈C

TPA(c)

TPA(c) + FNA(c)
.

See [Lui+21] (fig. 2) for a clear illustration of these quantities.

In brief, a low AssPr implies that several objects are often mingled into only one track,

resulting in undercount. A low AssRe implies that single objects are often associated with

multiple tracks. If no method is used to discard redundant tracks this results in overcount.

Conversely, association precision (AssPr) measures how exclusive tracks are to each object

(it decreases whenever a track covers multiple objects). Again, it is useful to reconsider and

illustrate the meaning of these metrics in the context of MOT-based counting. Litter items

are typically well separated on river banks, thus predicted tracks are not expected to interfere

much. This suggests that reaching high AssPr on our footage is not challenging. Contrarily,

AssRe is a direct measurement of the capability of the tracker to avoid producing multiple

tracks despite missing detections and challenging motion. A high AssRe therefore typically

avoids multiple counts for the same object, which is a key aspect of our work.

Nonetheless, association metrics are only computed for predicted tracks which can effec-

tively be matched with ground truth tracks. Consequently, AssRe does not account for tracks
predicted from streams of false positive detections generated by the detector (e.g. arising from

rocks, water reflections, etc). Since such tracks induce false counts, a tracker which produces

the fewest is better, but MOT metrics do not measure it.

Count metrics

Denoting by N̂ and N the respective predicted and ground truth counts for the validation

material, the error N̂ − N is misleading as no information is provided on the quality of the

predicted counts. Additionally, results on the original validation footage do not measure the

statistical variability of the proposed estimators.

Count decomposition. Define i ∈ [[1,N]] and j ∈ [[1, N̂]] the labels of the annotated ground
truth tracks and the predicted tracks, respectively. At evaluation, we assign each predicted

track to either none or at most one ground truth track, writing j → ∅ or j → i for the
corresponding assignments. The association is made whenever a predicted track i overlaps
with a ground truth track j at any frame, i.e. for a given frame a detection in i is within a
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threshold α of an object in j. We compute metrics for 20 values of α ∈ [0.05αmax, 0.95αmax],
with αmax = 0.1

√
w2 + h2, then average the results, which is the default method in HOTA

to combine results at different thresholds. We keep this default solution, in particular because

our results are very consistent accross different thresholds in that range (we only observe a

slight decrease in performance for α = αmax, where occasional false detections probably start

to lie below the threshold).

Denote Ai = {j ∈ [[1, N̂]] | j → i} the set of predicted tracks assigned to the i-th ground

truth track. We define:

1. N̂true =
∑N

i=1 1|Ai|>0 the number of ground truth objects successfully counted.

2. N̂red =
∑N

i=1 |Ai| − N̂true the number of redundant counts per ground truth object.

3. N̂mis = N− N̂true the number of ground truth objects that are never effectively counted.

4. N̂false =
∑N̂

j=1 1j→∅ the number of counts which cannot be associated with any ground

truth object and are therefore considered as false counts.

Using these metrics provides a much better understanding of N̂ as

N̂ = N̂true + N̂red + N̂false ,

while N̂mis completely summarises the number of undetected objects.

Conveniently, the quantities can be used to define the count precision (CountPR) and count
recall (CountRe) as follows:

CountPR =
N̂true

N̂true + N̂red + N̂false

,

CountRe =
N̂true

N̂true + N̂mis

,

which provide good summaries for the overall count quality, letting aside the tracking perfor-

mance.

Note that these metrics and the associated decomposition are only defined if the previous

assignment between predicted and ground truth tracks can be obtained. In our case, predicted

tracks never overlap with several ground truth tracks (because true objects are well separated),

and therefore this assignment is straightforward. More involved metrics have been studied at

the trajectory level (see for example [GRS20] and the references therein), though not specifi-

cally tailored to the restricted task of counting. For more complicated data, an adaptation of

such contributions into proper counting metrics could be valuable.

Statistics. Since the original validation set comprises only a few unequally long videos,

only absolute results are available. Splitting the original sequences into shorter independent

sequences of equal length allows to compute basic statistics. For any quantity N̂• defined

above, we provide σ̂N̂•
the associated empirical standard deviations computed on the set of

short sequences.
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Footage DetRe* DetPr*

S1 37.2 60.7

S2 29.4 38.2

S3 35.1 53.6

All 35.5 55.1

Table 3.1: Detection results

3.3 Experiments

We denote by S1, S2 and S3 the three river sections of the evaluation material and split the

associated footage into independent segments of 30 seconds. We further divide this material

into two distinct validation (6min30) and test (7min) splits.

To demonstrate the benefits of our work, we select two multi-object trackers and build

competing counting systems from them. Our first choice is SORT [Bew+16], which relies on

Kalman filtering with velocity updated using the latest past estimates of object positions. Sim-

ilar to our system, it only relies on image supervision for training, and though DeepSORT

[WBP17] is a more recent alternative with better performance, the associated deep appear-

ance network cannot be used without additional video annotations. FairMOT [Zha+21], a

more recent alternative, is similarly intended for use with video supervision but allows self-

supervised training using only an image dataset. Built as a new baseline for MOT, it combines

linear constant-velocity Kalman filtering with visual features computed by an additional net-

work branch and extracted at the position of the estimated object centers, as introduced in

CenterTrack [ZKK20]. We choose FairMOT to compare our method to a solution based on

deep visual feature extraction.

Similar to our work, FairMOT uses CenterNet for the detection part and the latter is there-

fore trained as in Section 3.2.1. We train it using hyperparameters from the original paper.

The detection outputs are then shared between all counting methods, allowing fair compar-

ison of counting performance given a fixed object detector. We run all experiments at 12fps,

an intermediate framerate to capture all objects while reducing the computational burden.

3.3.1 Detection

In the following section, we present the performance of the trained detector. Having annotated

all frames of the evaluation videos, we directly compute DetRe and DetPr on those instead

of a test split of the image dataset used for training. This allows realistic assessment of the

detection quality of our system on true videos that may include blurry frames or artifacts

caused by strong motion. We observe low DetRe, suggesting that objects are only captured

on a fraction of the frames they appear on. To better focus on count performance in the next

sections, we remove segments that do not generate any correct detection: performance on the

remaining footage is increased and given by DetRe∗ and DetPr∗.

3.3.2 Counts

To fairly compare the three solutions, we calibrate the hyperparameters of our postprocessing

block on the validation split and keep the values that minimize the overall count error N̂ for
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each of them separately (see Appendix B.3 for more information). All methods are found

to work optimally at κ = 7, but our solution requires τ = 8 instead of τ = 9 for other

solutions: this lower level of thresholding suggests that raw output of our tracking system is

more reliable.

We report results using the count-related tracking metrics and count decompositions de-

fined in the previous section. To provide a clear but thorough summary of the performance,

we report AssRe, CountRe and CountPR as tabled values (the first gives a simple overview of

the quality of the predicted tacks while the latter two concisely summarise the count perfor-

mance). For a more detailed visualisation of the different types of errors, we plot the count

error decomposition for all sequences in a separate graph. Note that across all videos and

all methods, we find AssPr between 98.6 and 99.2 which shows that this application context is

unconcerned with tracks spanning multiple ground truth objects, therefore we do not conduct

a more detailed interpretation of AssPr values.
First, the higher values of AssRe confirm the robustness of our solution in assigning consis-

tent tracks to individual objects. This is directly reflected into the count precision performance

- with an overall value of CountPR 17.6 points higher than the next best method (SORT) - or

even more so in the complete disappearance of orange (redundant) counts in the graph. A key

aspect is that these improvements are not counteracted by a lower CountRe: on the contrary,

our tracker, which is more stable, also captures more object (albeit still missing most of them,

with a CountRe below 50

Footage Method AssRe CountRe σ(CountRe) CountPr σ(CountPr)
FairMOT 62.0 31.2 25.6 52.6 24.6

Segment 1 Sort 65.6 43.8 26.4 53.8 20.2

Ours 79.5 50.0 27.9 64.0 23.8

Footage Method AssRe CountRe σ(CountRe) CountPr σ(CountPr)
FairMOT 8.7 12.5 35.4 50.0 0.0

Segment 2 Sort 20.7 12.5 35.4 33.3 0.0

Ours 72.7 50.0 0.0 100.0 0.0

Footage Method AssRe CountRe σ(CountRe) CountPr σ(CountPr)
FairMOT 17.4 25.0 47.1 50.0 50.0

Segment 3 Sort 19.6 25.0 47.1 40.0 50.9

Ours 24.6 37.5 41.7 60.0 47.9

Footage Method AssRe CountRe σ(CountRe) CountPr σ(CountPr)
FairMOT 56.7 27.1 31.6 52.0 30.2

Combined Sort 59.8 35.4 32.7 50.0 30.2

Ours 76.0 47.9 28.8 67.6 32.0

Table 3.2: Count-related evaluation metrics

3.4 Practical impact and future goals
We successfully tackled video object counting on river banks, in particular issues which could

be addressed independently of detection quality. Moreover the methodology developed to as-

sess count quality enables us to precisely highlight the challenges that pertain to video object
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Figure 3.3: Counting results

counting on river banks. Conducted in coordination with Surfrider Foundation Europe, an

NGO specialized on water preservation, our work marks an important milestone in a broader

campaign for macrolitter monitoring and is already being used in a production version of a

monitoring system. That said, large amounts of litter items are still not detected. Solving

this problem is largely a question of augmenting the object detector training dataset through

crowdsourced images. A specific annotation platform is online, thus the amount of annotated

images is expected to continuously increase, while training is provided to volunteers collecting

data on the field to ensure data quality. Finally, several expeditions on different rivers are al-

ready underway and new video footage is expected to be annotated in the near future for better

evaluation. All data is made freely available. Future goals include downsizing the algorithm,

a possibility given the architectural simplicity of anchor-free detection and the relatively low

computational complexity of EKF. In a citizen science perspective, a fully embedded version

for portable devices will allow a larger deployment. The resulting field data will help better

understand litter origin, allowing to model and predict litter density in non surveyed areas.

Correlations between macro litter density and environmental parameters will be studied (e.g.,

population density, catchment size, land use and hydromorphology). Finally, our work natu-

rally benefits any extension of macrolitter monitoring in other areas (urban, coastal, etc) that

may rely on a similar setup of moving cameras.



Chapter 4

A backward sampling approach for
online variational additive smoothing

This chapter is based on the article "A backward sampling approach for online variational additive
smoothing" submitted for publication in TMLR, the Transactions of Machine Learning Research,
[Cha+].

Notations. In this contribution, no final index is a priori defined, as we focus on variational

methods that can accomodate continuous streams of observations {yt}t≥0. Therefore, the let-

ter t does not correspond to a terminal index but rather to any timestep (with s used for indices
prior to t). In practice we do consider fixed-length sequences in the experimental section, and

here we use T for the final index.

4.1 Introduction
In this contribution, we consider the problem of computing variational approximations of

smoothing expectations of the formEqλ0:t
[h0:t(X0:t)] recursively on the observations, where h0:t

is an additive state functional as defined in (2.8). More specifically, we focus on the challenges

that arise in online variational smoothing, where the goal is to obtain an approximation qλ0:t ≈
ϕθ
0:t of the smoothing distribution for every timestep t ≥ 0 via updates having a computational

cost independent of t. In that regard, we presented in Section 2.3.2 the advantages of the

backward variational decomposition defined in Equation (2.28) as

qλ0:t(dx0:t) = qλt (dxt)
t∏

s=1

qλs−1|s(xs, dxs−1) .

Indeed, in this setting, recall that additive smoothing derivations from classical SSM literature

apply, i.e.

Eqλ0:t
[h0:t(X0:t)] = Eqλt

[
Hλ

t (Xt)
]
, (4.1)

where

Hλ
t (Xt) = Eqλ0:t

[h0:t(X0:t) | Xt] . (4.2)

This statistic admits the following functional recursion: for all xt ∈ X,

Hλ
t (xt) = Eqλ

t−1|t(xt,·)

[
Hλ

t−1(Xt−1) + h̃t(Xt−1, xt)
]
. (4.3)

63
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When relying on SMCmethods, we explained in Section 2.2.3 how recursions of the same form

are readily approximated with a fixed computational cost via particle-based empirical approx-

imations of the true backward kernels, which are used to build discrete approximations of the

functions {Hλ
t }t≥0 on the finite supports of the approximate filtering distributions {ϕ̂θ

t}t≥0.

This central ingredient allows to deploy online methods for both additive smoothing under

ϕθ
0:t and parameter learning via derivations from recursive MLE (see Section 2.1.2). In back-

ward variational approaches, the availability of same recursions suggests that similar methods

could be applied to allow online variational smoothing. However, the quantities involved in

variational approaches are very different, which raises several challenges that we briefly de-

scribe below.

Deriving tractable approximations of variational backward expectations. First, at t,
compared to the discretely supported approximation ϕ̂θ

t =
∑N

i=1 ω̄
i
tδξit of the filtering distri-

bution ϕθ
t provided in SMC algorithms, the marginal qλt is a parametric distribution defined

on the entirety of X. Suppose that we still want to build a Monte Carlo approximation of (4.1)

via N draws ξit ∼ qλt , 1 ≤ i ≤ N , the latter distribution being chosen at implementation, it

is typically easy to sample from it. In this case, the estimator N−1
∑N

i=1H
λ
t (ξ

i
t) requires the

evaluation ofHλ
t , which itself is an expectation under qλt−1|t. Again, the variational kernels be-

long to a chosen family of distributions, and therefore it is easy to obtain samples from them.

Given ξit andM i.i.d samples ξijt−1|t ∼ qλt−1|t(ξ
i
t, ·), one may therefore consider to approximate

Hλ
t (ξ

i
t) byM

−1
∑M

j=1H
λ
t−1(ξ

ij
t−1|t) + h̃t(ξ

ij
t−1|t, ξ

i
t). Unfortunately, the cost of such an approx-

imation scheme grows with t, because the evaluation of the function Hλ
t−1 on a new sample

involves recomputation of all previous conditional expectations (Hλ
s )s<t−1. Additionally, the

backward samples {ξijt−1|t}j≤M depend on the draw ξit which is only known at t, and therefore

it is not possible to store evaluations {Hλ
t−1(ξ

ij
t−1|t)}j≤M at the previous step. In particle-based

recursive smoothing, this problem does not appear because at t, for any xt ∈ X, the approx-
imate backward distribution B̂θ

t−1|t(xt, ·) is defined on the support {ξjt−1}j≤N of the previous

particle approximation of ϕθ
t−1, which is obtained via particle filtering methods described in

Section 2.2.2.

To circumvent this, one solution proposed in [Cam+21] is to replace the true conditional

expectations with functional approximations that can be evaluated in O(1) at each timestep.

DenotingF = {f : X→ F,Eqt [∥f(Xt)∥2] <∞},Hλ
t satisfies, by definition of the conditional

expectation,

Hλ
t = argmin

f∈F
Eqλt−1:t(Xt−1,Xt)

[∥∥∥f(Xt)−
[
Hλ

t−1(Xt−1) + h̃t(Xt−1, Xt)
]∥∥∥

2

]
.

which provides a regression objective to learn an approximation of Hλ
t . In practice authors

restrict the minimization problem to a subset of F , a parametric family of functions (typically,

a neural network) parameterized by γ, belonging to Γ ⊂ Rdγ
, and learn this by approximating

the expectation with a Monte Carlo method. Namely, the authors propose to estimate Hλ
t by

Hλ
γ̂t
where

γ̂t = argmin
γ∈Γ

1

N

N∑
k=1

∥∥∥Hλ
γ (ξ

k
t )−

[
Hλ

γ̂t−1
(ξkt−1) + h̃t(ξ

k
t−1, ξ

k
t )
]∥∥∥

2
,
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where

{
(ξit−1, ξ

i
t)
}
i=1,...,N

is an i.i.d. sample under the variational joint distribution of (Xt−1, Xt)

which has density qλt−1:t = qλt q
λ
t−1|t. Upon convergence, Hλ

γ̂t
is plugged into the final expecta-

tion of (4.1).

While this removes the need to compute expectations under qλt−1|t altogether, a major

drawback of this solution is that it requires running an inner optimization on γ ∈ Γ until

convergence at every iteration t, which may be very costly if the parameter space Γ is large.

Additionally, the parametric approximations of the conditional expectations introduce a bias

which is difficult to analyse and control, especially w.r.t its dependency on t.

Deriving recursions of the ELBO gradient. As mentioned in Section 2.3.2, a convenient

aspect of backward variational inference is that the optimization objective (the ELBO) is itself

a smoothing expectation:

Lλ,θ
t = Eqλ0:t

[
hλ,θ0:t

]
− Eqλt

[
log qλt

]
, (4.4)

with hλ,θ0:t : x0:t 7→ log ℓθ0:t(x0:t)− log qλ0:t(x0:t) being an additive state functional with compo-

nents (h̃λ,θs )s≤t defined in Equation (2.29). As such, approximations of the backward expec-

tations as previously described can enable recursive computation of the ELBO. However, in

online sequential variational inference, the main goal is to obtain recursive approximations of

the ELBO gradients w.r.t the variational parameters (∇λLλ,θ
t )t≥0 to enable stochastic gradient

algorithms that update λ at each timestep with a constant computational cost. Unfortunately,

since the ELBO involves expectations under distributions that depend on λ, one cannot in-

terchange the integral and derivative operators, and more involved derivations are necessary

to relate its gradients with known quantites on which additive smoothing techniques can be

applied.

Summary of the contribution. Given the previous challenges, this contribution can be

summarized as follows

• We propose a specific definition of the variational backward kernels which allows to

defined sample-based approximations of conditional backward expectations similar to

those in SMC, but with the conveniency of i.i.d sample under the variational model. This

removes the need for costly functional approximations defined in [Cam+21] and allows

efficient computation of variational smoothing expectations of additive state function-

als. In practice, our approximationsrely self-normalized importance sampling, and as

such their bias can easily be related with the number of samples used. Finally, while

our approach is still very general, we provide a possible implementation that involves

exponential conjugation for fast computation of the variational backward parameters.

• We present a new derivation of the gradient of the ELBO which reduces to multiple

additive smoothing problems that can be approximated concurrently via the previous

algorithm, therefore allowing online optimization of the ELBO with a fixed computa-

tional complexity w.r.t t. Our approach does not rely on reparameterization but natu-

rally comes with a built-in variance reduction technique which allows to obtain high

quality gradient estimates.
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• We evaluate empirically the quality of our approximations against offline estimates, and

demonstrate the reliability of the gradients by introducing our gradients in stochastic

gradient algorithms that update the parameter λ at each timestep given streams of ob-

servations {yt}t≥0. We compare the computational times and approximation errors with

the approach proposed by [Cam+21].

4.2 A computationally effective approach to online vari-
ational additive smoothing

In all that follows, we suppose that we have access to a sequence (qλt )t≥0 of distributions on

X whose parameters are obtained recursively in time, and which can be both easily evaluated

and sampled from. We consider variational distributions qλ0:t under the backward factorization
given by Equation (2.28), where qλt is the marginal of qλ0:t for all t ≥ 0.

4.2.1 Implicit definition of variational backward kernels using for-
ward potentials

To cope with the aforementioned challenges of computing backward expectations, we propose

to introduce additional structure in the backward variational kernels via functions ψλ
t : X ×

X → R which explicitly relate them to the distributions (qλt )t≥0. Specifically, we prescribe

that, for all t ≥ 1,

qλt−1|t(xt, xt−1) ∝ qλt−1(xt−1)ψ
λ
t (xt−1, xt) . (4.5)

The functionsψλ
t can bemade arbitrarily complex, such that, for all t, the backward variational

kernel qλt−1|t has arbitrarily complex dependencies w.r.t xt. Under this decomposition, given a

set {ξjt−1}j≤N ofN i.i.d samples drawn from qλt−1 and a measurable function f : X×X→ Rdf
,

expectations of f(·, x) under qλt−1|1(x, ·) for any x ∈ X can be expressed as

qλt−1|t(x, ·)[f(·, x)] =
∫
qλt−1(xt−1)ψ

λ
t (xt−1, x)f(xt−1, x)dxt−1∫

qλt−1(xt−1)ψλ
t (xt−1, x)dxt−1

,

and approximated by

∑N
j=0 w̄

λ,j
t−1|t(x)f(ξ

j
t−1, x) where, for all 1 ≤ j ≤ N

w̄λ,j
t−1|t(x) =

ψλ
t (ξ

j
t−1, x)∑N

k=1 ψ
λ
t (ξ

k
t−1, x)

. (4.6)

The vector of normalized weights (w̄λ,j
t−1|t(x))j≤N is s referred to as the backward weights con-

ditionally to x.

4.2.2 Recursive approximations of variational backward conditional
expectations

We consider some additive state functional
1 h0:t with components (h̃s)s≤t and aim at comput-

ing expectations such as the ones given in equations (4.1)-(4.3). Given elements of the previous

1
The typical situation of interest being the functional hλ,θ

0:t associated to the ELBO Lλ,θ
t of Equation (4.4)
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section, at t, for any x ∈ X, the conditional expectation Hλ
t :

Hλ
t (x) = Eqλ

t−1|t(x,·)

[
Hλ

t−1(Xt−1) + h̃t(Xt−1, x)
]
,

can be estimated by

∑N
j=1 w̄

λ,j
t−1|t(x){Hλ

t−1(ξ
j
t−1) + h̃t(ξ

j
t−1, x)}, where {ξ

j
t−1}i≤N are i.i.d sam-

ples from qλt−1 and the weights w̄λ,j
t−1|t(x) are the backward weights as previously defined.

Nesting these approximations over time allows to recursively obtain Monte Carlo estimates

{Ĥ i
t}

i≤N
t≥0 of the conditional expectations (Hλ

t )t≥0 on samples of (qλt )t≥0, i.e. for all t ≥ 0,

i ≤ N , Ĥ i
t approximates Hλ

t (ξ
i
t) with ξ

i
t
i.i.d.∼ qλt and

Ĥ i
t =

N∑
j=1

w̄λ,i,j
t−1|t{Ĥ

j
t−1 + h̃t(ξ

j
t−1, ξ

i
t)} , (4.7)

where w̄λ,i,j
t−1|t = w̄λ,j

t−1|t(ξ
i
t) are the backward weights conditionally to the new samples from

the variational distribution. Then, a Monte Carlo estimate of Lλ
t = Eqλt

[Ht(Xt)] is available
in the form of

L̂λ
t =

1

N

N∑
i=1

Ĥ i
t .

Crucially, the update of Equation (4.7) only requires having stored the previous set of sam-

ples and approximations {ξjt−1, Ĥ
j
t−1}j≤N , such that the memory and computational cost of

computing L̂λ
t is independant of t.

Relationship with SMC smoothing. Recall from Section 4.2.1 that the true backward

kernel is itself such that bθt−1|t(xt, xt−1) ∝ ϕθ
t−1(xt−1)m

θ
t (xt−1, xt). In particle methods, the fil-

tering distributions (ϕθ
t )t≥0 are recursively approximated using empirical weighted measures.

At t, ϕθ
t is estimated by

∑N
i=1w

i
tδξit with

∑N
i=1w

i
t = 1. As a consequence, backward expecta-

tions are approximated with the following backward weights

w̄θ,i,j
t−1|t =

wj
t−1m

θ
t (ξ

j
t−1, ξ

i
t)∑N

k=1w
k
t−1m

θ
t (ξ

k
t−1, ξ

i
t)
.

By introducing the structure (4.5), we therefore effectively allow ideas from SMC litterature

to be used in the variational context. Nonetheless, the quantities involved and the process to

obtain them differ in the following points

• Our samples {ξit}i≤N are obtained by i.i.d sampling from qλt (whose parameters are de-

terministically derived) and qλt is directly approximated with the uniformly weighted

measure N−1
∑N

i=1 δξit . In contrast, particle methods produce new samples by propa-

gating a selection of the previous ones with a proposal kernel (the produced samples are

therefore not independant), and ϕθ
t is approximated with an empirical measure using

importance weights.

• In particle smoothing, (xt−1, xt) 7→ mθ
t (xt−1, xt) is a kernel in xt. In contrast, one may

choose ψλ
t such that

∫
ψλ
t (xt−1, xt)dxt ̸= 1 in the variational counterpart. Therefore,

the latter functions may rather be seen as variational forward potentials than as kernel

densities.
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Backward resampling. The cost of computing the weights {w̄λ,i,j
t−1|t}1≤i,j≤N - and therefore

the update (4.7) - is O(N2) due to the normalizing constant in Equation (4.6). When consid-

ering high dimensional state spaces, increasing the number of samples N may be required to

compute the targeted expectations. In this case, the quadratic complexity may be prohibitive.

One solution, introduced by [OW+17] in the context of particle smoothing, is to resample, at t,
given ξit , an index j ∈ {1, . . . , N} from themultinomial distributionwithweights {w̄λ,i,j

t−1|t}j≤N .

Crucially, noting that

w̄λ,i,j
t−1|t ∝j ψ

λ
t (ξ

j
t−1, ξ

i
t) ,

this resampling step can be done via accept-reject methods without having to compute the

normalizing constant of the weights. Given a new sample ξit from qλt , an adaptation of the

update of Equation (4.7) can be made by adopting backward resampling, i.e. to perform the

two following steps:

1. Using accept-reject sampling, draw a set of indicesJ i
t from the multinomial distribution

with weights proportional to {ψλ
t (ξ

j
t−1, ξ

i
t)}j≤N .

2. Compute

Ĥ i
t =

1

M

∑
j∈J i

t

{
Ĥj

t−1 + h̃t−1(ξ
j
t−1, ξ

i
t)
}
.

In this case,M = |J i
t | is generally chosen asM ≪ N , such that the cost of an update is greatly

reduced. In a recent review on the performance of algorithms of this class, [DC23] propose

to replace the accept-reject methodology with only a few MCMC steps (typically only M )

targetting the distribution with backward weights, and starting from the ancestor particles.

This methodology is also possible in our case, however a ξit does not have a predefined notion
of ancestor in {ξjt−1}j≤N because of the i.i.d sampling scheme. Algorithm 1 provides a first

pseudo-code of this recursive smoothing procedure.

Conjugate potentials for fast inference. One aspect - not visible in the above updates -

must be dealt with whenever it is also required to evaluate the p.d.f. of the backward kernels

(qλt−1|t)t≥0. Indeed, recall from Section 4.2.1 that qλt−1|t(x, ·) is only defined up to a normaliz-

ing constant ct(x) given x ∈ X. For a generic choice of forward potentials ψλ
t , the associated

integral is intractable and must be approximated to evaluate qλt−1|t(x, y) on a given y ∈ X. For

the most practical functional hλ,θ0:t of the ELBO, the p.d.f of the backward kernels are part of

the components h̃λ,θt , such that the recursive smoothing algorithm proposed above requires

evaluation of these functions on all couples (ξjt−1, ξ
i
t)1≤i,j≤N of samples from qλt−1 and q

λ
t , at

each timestep. One simple approximation for the corresponding normalizing constants is to

choose N/
∑N

j=1 ψ
λ
t (ξ

j
t−1, ξ

i
t). However other estimators may be preferred to lower the bias

in estimating the components. An attractive approach is to choose the forward potentials in

a class of functions such that the normalizing constants can be computed analytically. Con-

sidering the definition of the backward kernels qλt−1|t by Equation (4.5), a practical solution is

to choose ψλ
t such that, given ψλ

t (·, x) belongs to the probabilistic family of qλt−1. When the

chosen distributions qλt belong to the exponential family
2
, one class of potentials can be built

2
i.e. when their p.d.f. can be written in the form qλt (xt) ∝ exp (ηλt · T (xt)) where η

λ
t is a natural parameter

vector and T (x) is a vector of sufficient statistics.
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using ideas from [Joh+16], prescribing that

ψλ
t (xt−1, xt) = exp (η̄λt (xt) · T (xt−1)) , (4.8)

where, for all x ∈ X, η̄λt (x) is a vector of natural parameters for the same parametric family

(i.e. x 7→ η̄λt is a mapping from elements of X to the natural parameter space). As a classical

conjugation result, given x ∈ X, the distribution qλt−1|t(x, ·) belongs to the same parametric

family as qλt (xt), and its natural parameter vector ηλt−1|t(x) is simply obtained by:

ηλt−1|t(x) = ηλt−1 + η̄λt (x) .

In this convenient setting, the backward kernels qλt−1|t can have arbitrarily complex depen-

dencies in Xt while their p.d.f is analytically derived from the potentials, which effectively

removes the need to compute the normalizing constants ct without reducing the latter kernels
to simple transformations / linearisations (e.g. linear-Gaussian kernels).

Algorithm 1 One iteration of our online variational smoothing algorithm

Require: {ξit−1, Ĥ
i
t−1}i≤N .

Ensure: {ξit, Ĥ i
t}i≤N .

Compute the parameters of qλt
Sample {ξit}Ni=1 i.i.d. with distribution qλt .
for i = 1 to i = N do

for j = 1 to j =M do
Sample J i,j

t in {1, . . . , N} with probabilities proportional to ψλ
t (ξ

ℓ
t−1, ξ

i
t), 1 ≤ ℓ ≤

M , using accept-reject or MCMC.

end for
Compute

Ĥ i
t =

1

M

M∑
j=1

{
Ĥ

Ji,j
t

t−1 + h̃t(ξ
Ji,j
t

t−1 , ξ
i
t)
}
.

end for
Compute

L̂λ
t =

1

N

N∑
i=1

Ĥ i
t .

4.3 Recursive gradient approximations
We now consider the problem of extending the solutions presented above to the computation

of the sequence of gradients (∇λEqλ0:t
[h0:t])t≥0 recursively to allow online gradient-based op-

timization in λ. Again, this admits as particular and most interesting case the ELBO Lλ,θ
t with

components h̃λ,θt .

The first option that comes to mind - when distributions (qλt )t≥0 are continuous in their

parameters - is to leverage the reparameterization trick. If E is a base distribution independent
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of λ and ϵ 7→ xλt (ϵ) is the function such that xλt (ϵ) ∼ qλt whenever ϵ ∼ E , then one can write

∇λLλ
t = Eϵt∼E

[(
∇λH

λ
t

)
(xλt (ϵt))

]
. Then, noting that all steps in the Equation (4.7) are differ-

entiable, it is tempting to apply a similar reparameterization to the approximated updateswhen

considering the gradient of the reparameterized conditional expectation ϵ 7→
(
∇λH

λ
t

)
(xλt (ϵ)).

However, this approach is flawed because the approximation of Equation (4.7) is biased due

the normalized weights
3
. Building gradients via autodifferentiation of a biased estimator can

lead to unexpected behaviour, especially in the case of ELBO maximization which is based on

an upper bound. Typically, the autodifferentiation will lead to the parameters that maximize

the bias of our approximation. Another issue with this scheme is that it is not compatible with

backward resampling steps, which reduce the computational cost of the algorithm, but are not

differentiable. In the next sections, we present a methodology which circumvents these issues

and allows recursive updates of the gradients without reparameterization.

4.3.1 Gradient recursions based on the score-function estimator
An alternative approach to reparameterization in our context is to first derive new recursions

for the gradients of the conditional expectations, then to use the approximations proposed in

the previous section on the derived quantities. To this aim, one may use the so-called score-
function estimator (using terminology from [Moh+20] and as presented in Section 2.3.1). Given

a distribution pλ and a function fλ
both on X and depending on a common parameter λ, under

regularity constraints necessary to invert the integral and derivative operators, one can write

∇λEpλ
[
fλ(X)

]
= Epλ

[{
∇λ log p

λ × fλ
}
(X) +∇λf

λ(X)
]
.

For functionals hλ0:t, this allows the following decomposition of the gradient of the correspond-

ing smoothed expectations:

∇λLλ
t = ∇λEqλt

[
Hλ

t (Xt)
]

= Eqλt

[
{∇λ log q

λ
t ×Hλ

t }(Xt) +∇λH
λ
t (Xt)

]
. (4.9)

The first term of the integrand can be readily computed given approximations from section 4.2

i.e. by considering {Ĥ i
t}i≤N to approximateHλ

t on a set of samples {ξit}i≤N from qλt . Recalling
the definition ofHλ

t given by Equation (4.2), denoting Ft = ∇λH
λ
t and using again the score-

function estimator, the second term follows:

F λ
t (xt) = ∇λEqλ

0:t−1|t(xt,·)
[
hλ0:t(X0:t−1, xt)

]
= Eqλ

0:t−1|t(xt,·)
[
∇λ log q

λ
0:t−1|t(xt, X0:t−1)× hλ0:t(X0:t−1, xt) +∇λh

λ
0:t(X0:t−1, xt)

]
.

The previous equation can be rewritten as

F λ
t (xt) = Gλ

t (xt) + Eqλ
0:t−1|t(xt,·)

[
∇λh

λ
0:t(X0:t−1, xt)

]
,

where

Gλ
t : xt 7→ Eqλ

0:t−1|t(xt,·)
[(
∇λ log q

λ
0:t−1|t × hλ0:t

)
(X0:t−1, xt)

]
.

The rightmost conditional expectation inFt may be dealt with using similar approximations as

forHλ
t , since the functional∇λh

λ
0:t is also additive: we denote with {R̂i

t}i≤N the corresponding

3
As it is the case in standard self normalized importance sampling.
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approximated terms
4
. Obtaining recursive approximations for Gλ

t (xt) is not straightforward,
though. Indeed, under the backward factorization,∇λ log q

λ
0:t−1|t =

∑t
s=1∇λ log q

λ
s−1|s is itself

an additive functional with components ∇λ log q
λ
s−1|s, however the product of functionals in

definition of Gλ
t is not. Still, a recursion exists in the form of

Gλ
t (xt) = Eqλ

t−1|t(xt)

[
Gλ

t−1(Xt−1) +∇λ log q
λ
t−1|t(xt, Xt−1)×

(
Hλ

t−1(Xt−1) + h̃λt (Xt−1, xt)
)]

.

(4.10)

Conveniently, this is again an expectation under the backward kernel, such that the methods

proposed in the previous section may be applied to derive a running approximation {Ĝi
t}i≤N

of Gλ
t updated recursively, i.e.

Ĝi
t =

N∑
i=1

w̄λ,i,j
t−1|t

{
Ĝj

t−1 +∇λ log q
λ
t−1|t(ξ

i
t, ξ

j
t−1)×

(
Ĥj

t−1 + h̃λt (ξ
j
t−1, ξ

i
t)
)}

. (4.11)

Then, plugging these expressions into Equation (4.9), we obtain an approximation of∇λLλ
t as

∇λLλ
t ≈

1

N

N∑
i=1

{F̂ i
t +∇λ log q

λ
t (ξ

i
t)× Ĥ i

t} , (4.12)

where F̂ i
t = Ĝi

t + R̂i
t. In the specific case of the ELBO, since ∇λh

λ
0:t = −∇λ log q

λ
0:t, it follows

that Eqλ0:t

[
∇λh

λ
0:t

]
= −Eqλ0:t

[
∇λ log q

λ
0:t(X0:t)

]
= 0. Therefore the term {R̂i

t}i≤N vanishes

when measured against qλt .
It is worth noting that the updates of Ĝi

t involve the same backward weights as the ones

needed to update Ĥ i
t in Algorithm 1. Therefore, this new algorithm only requires additional

computation of ∇λ log q
λ
t−1|t(ξ

i
t, ξ

j
t−1), which is typically obtained by autodifferentiation. Ad-

ditionally, the backward resampling step is now possible for these gradient recursions because

the weights are not differentiated.

4.3.2 Baseline variance reduction
As studied in [Moh+20], direct Monte Carlo estimator the score-function

∇λEpλ [f ] = Epλ
[
∇λ log p

λ × f
]
,

for some functional f , yields high variance and should typically not be used without a proper

variance reduction technique. A classical technique to reduce this variance is to design a

control variate. Recalling that Epλ
[
∇λ log p

λ
]
= 0, we remark that

∇λEpλ [f ] = Epλ
[
∇λ log p

λ ×
(
f − Epλ [f ]

)]
.

Therefore, by plugging an estimate of Epλ [f ] (this estimate is called a baseline in machine

learning literature) into a classical Monte Carlo approximation of the right-hand side expec-

tation, one can obtain an alternative Monte Carlo estimate which could
5
be better in practice.

Conveniently, in our setting, baselines for the apprixmation of scores are readily available with

the {Ĥ i
t}i≤N , computed by Algorithm 1 i.e.

4
This recursive approximation can be obtained in a way completely analogous to that of Equation (4.7), where

the h̃t(·, ·) are replaced by their gradients.

5
This is actually not ensured when using this direct and naïve approach, see [Moh+20] for a detailled discus-

sion.
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• For the expectation of Equation (4.10) and its Monte Carlo approximation (4.11), Ĥ i
t

is a baseline to approximate Eqλ
t−1|t(ξ

i
t)

[
Hλ

t−1(Xt−1) + h̃λt (Xt−1, ξ
i
t)
]
, and therefore, no

additional computation is needed to implement the control variate method.

• Similarly, for the expectation of Equation (4.9) and its Monte Carlo approximation (4.12)

1
N

∑N
i=1 Ĥ

i
t is a readily avalaible baseline for variance reduction.

Therefore, our methodology comes built-in with variance reduction without having to re-

compute additional quantities. Algorithm 2 provides the pseudo-code of online optimization

algorithm of some objective Eqλ0:t
[h0:t], which includes as particular case the ELBO with com-

ponents h̃λ,θt .

Algorithm 2 One iteration of the online gradient ascent algorithm

Require: {Ĝi
t−1, Ĥ

i
t−1}Ni=1, λt−1, γt.

Ensure: {Ĝi
t, Ĥ

i
t}Ni=1, λt.

Compute the parameters of q
λt−1

t and sample {ξit}Ni=1 i.i.d. with distribution q
λt−1

t .

for i = 1 to i = N do
for j = 1 to j =M do

Sample J i,j
t in {1, . . . , N}with probabilities proportional to ψ

λt−1

t (ξℓt−1, ξ
i
t), 1 ≤ ℓ ≤

M .

end for
Compute

Ĥ i
t =

1

M

M∑
j=1

{
Ĥ

Ji,j
t

t−1 + h̃
λt−1

t (ξ
Ji,j
t

t−1 , ξ
i
t)
}
,

Ĝi
t =

1

M

M∑
j=1

{
Ĝ

Ji,j
t

t−1 + s̃
λt−1

t (ξ
Ji,j
t

t−1 , ξ
i
t)
(
Ĥ

Ji,j
t

t−1 + h̃
λt−1

t (ξ
Ji,j
t

t−1 , ξ
i
t)− Ĥ i

t

)}
.

end for

λt = λt−1 +
γt
N

N∑
i=1

Gi
t + (∇λ log qt)

λt−1 (ξit)

(
Ĥ i

t −
1

N

N∑
i=1

Ĥ i
t

)
.

4.4 Experiments
In all this section, the states are p-dimensional real-valued random variables, and the obser-

vations are q-dimensional random variables, i.e. we consider state-spaces with X = Rp
and

Y = Rq
.

4.4.1 Linear-Gaussian HMM
We first evaluate our solution on data for which the smoothing recursions are analytical in θ,
such that optimal smoothing is available. This is the case whenever the generative model is
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the following Linear-Gaussian HMM with Xt ∈ X, Yt ∈ Y following

X0 ∼ N (µθ
0, Q

θ
0), Xt = AθXt−1 + η , t ≥ 1 ,

Yt = BθXt + ϵ , t ≥ 0 ,

where µθ
0 is any vector in X, Qθ

0 is a p-dimensional symetric positive-definite matrix, Aθ
is a

p-dimensional square matrix with eigenvalues in ] − 1, 1[, Bθ
any p × q-dimensional matrix,

η ∼ N (0, Qθ) and ϵ ∼ N (0, Rθ), with Qθ, Rθ
respectively p and q-dimensional symmetric

positive-definite matrices. In this case the Kalman smoothing recursions yield the best
6
pos-

sible estimate of the distribution ϕθ
0:t.

For this experiment, it is possible to choose a variational model parameterizd by λ which gets

arbitrarily close to the true posterior by prescribing that qλ0:t is also the smoothing distribution

of a Linear-Gaussian HMM. This is a special case of our general setting from Section 4.2.1

where we define a model in λ similar to the true model in θ with parameters

λ =
{
µλ
0 , Q

λ
0 , A

λ, Bλ, Qλ, Rλ
}
,

such that the (qλt )t≥0 derive from Kalman recursions under this model and ψλ
t (xt−1, xt) ∝

qλ(xt|xt−1) where the latter term is the p.d.f of the distribution of Xt given Xt−1 under this

model. In this case, the ELBO can also be computed recursively in closed-form because the

induced variational backward kernels are linear-Gaussian kernels and the conditional expec-

tations (Hλ
t )t≥0 are quadratic forms.

Learning in an offline setting. We first evaluate our algorithm on a sequence of fixed-

length T to evaluate whether the proposed framework indeed enables to perform a gradient

ascent algorithm. As an oracle baseline, we can compute the closed-form ELBO and its asso-

ciated gradient via the reparameterization trick. In all that follows, we call "pathwise" such

gradients obtained from reparameterization, following [Moh+20]. In this case where we have

access to all observations at once, it is also possible to compute an unbiased Monte Carlo ap-

proximation ofLλ,θ
T withLλ,θ

T ≈ 1/N
∑N

i=1 h
λ,θ
0:T (ξ

i
0:T )where (ξ

i
0:T )i≤N are i.i.d sequences from

qλ0:T sampled via backward sampling starting from qλT then (qλt−1|t)t≤T . The associated pathwise

gradient yields an unbiased Monte Carlo gradient to which we can also compare. Our solution

doesn’t sample from the same sequences of distributions as the latter, yet in this setting both

share a common base measure N (0, 1), so, for fair comparison, we prescribe a fixed overall

sampling budget of N samples per timestep for the two methods.

To compare the three methods at hand, we evaluate our ability to perform gradient-ascent

to optimize the ELBO with respect to λ. Figure 4.1 displays the evolution of the ELBO using

gradients approximated via all approaches.

For the Monte Carlo approaches, we also plot the evolution of the analytical ELBO computed

on the running parameter. In Table 4.1, we report the marginal smoothing root-mean-squared

distance with the optimum, averaged over time and dimension, i.e. the distance between the

t-th marginal of ϕθ
0:T obtained with Kalman smoothing on θ and that of qλ0:T at the end of

optimization, given by

1

T

T∑
t=1

√√√√1

p

p∑
d=1

(
Eϕθ

0:T

[
X

(d)
t

]
− Eqλ0:T

[
X

(d)
t

])2
.

6
In the sense of quadratic loss.



74 CHAPTER 4. ONLINE VARIATIONAL ADDITIVE SMOOTHING

50 75 100 125 150 175 200 225 250
Epoch

3.0

3.5

4.0

4.5

5.0

EL
BO

 v
al

ue

Gradients
Pathwise, analytical recursions
Pathwise, backward trajectory sampling
Score-based, approximate recursions

ELBO
Analytical
Approximate (same method than gradients)

Figure 4.1: Evolution of
1
T
Lλ,θ

T computedwith three differentsmethods andwith three different

types of gradients

We run the experiment 10 times and report variability and best run at evaluation (Figure 4.1

only depicts one run for readability). Finally, we provide the computational times per gradient

step averaged over all runs. In this experiment, we chose p = q = 10, T = 500 and N = 2 for
the Monte Carlo methods.

As expected, the analytical gradients lead to a faster optimization of the ELBO than the

Monte Carlo counterparts, which is reflected at evaluation with marginal estimates closest to

the optimum. Next, the pathwise trajectory gradients provide accurate estimateswith very few

samples, the unbiasedness in both ELBO and its gradients is visible with the blue and orange

(both dotted and full line) following a similar path inΛ. Using our sample-based approximation

of the backward expectations, the bias in the ELBO evaluation is visible with the dotted green

line not centered around the full green line, and the biased score-based gradients lead to a

slightly poorer convergence.

However, overall, the optimum reached using our solution is very close to the optimum from

backward trajectory sampling, which is a benchmarkmethod not amenable to online recursive

learning at all. In particular, the best runs of the two methods lead to identical evaluation

results. Furthermore, the computational time of our method is in the same order of magnitude,

despite the added computational load of propagating gradients via the update of Equation

(4.10).

Online learning from streaming data. In a second setting, we keep the same generative

and variational models and dimensionality but generate a large sequence of T = 100000
observations and simulate the optimization of the joint ELBO Lλ,θ

T . The purpose here is to

update the variational parameters online, i.e. by discarding already seen data at each step. In

the context of stochastic optimization, since Lλ,θ
T =

∑T
t=0 L

λ,θ
t − L

λ,θ
t−1 (with the convention

Lλ,θ
−1 = 0), the right quantity to optimize becomes ∇λ{Lλ,θ

t − L
λ,θ
t−1}. In practice we update
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Gradients Marginal smoothing RMSE Avg. time per grad. step

Pathwise, analytical recursions 0.003 ± 0.002 (best 0.001) 37.1 ms

Pathwise, backward trajectory sampling 0.005 ± 0.002 (best 0.004) 50.5 ms

Score-based, approximate recursions 0.007 ± 0.002 (best 0.004) 89.5 ms

Table 4.1: Marginal errors for the linear models trained on a batch of T = 500 observations,

against the optimal ones, averaged across dimensions

Gradients Marginal smoothing RMSE Avg. time per grad. step

Ours 0.004 ± 0.001 (best 0.002) 13.1 ms

Table 4.2: Smoothing performance when qλ0:t is trained on streaming data

λt+1 by setting:

λt+1 = λt + γt+1

(
∇λLλ,θ

t

∣∣∣
λt

− ∇λLλ,θ
t−1

∣∣∣
λt−1

)
, (4.13)

in order to avoid recomputing the previous gradient
7
. This experiment is performed 10 times

and we report in Table 4.2 the marginal smoothing errors on the 100000 observations.

4.4.2 Chaotic recurrent neural network.
We now consider the setting first introduced in [Zha+22] and used in [Cam+21] which models

latent chaotic dynamics combined with heavy-tailed observation noise as follows:

X0 ∼ N (0, Q), Xt = Xt−1 +
∆

τ
(γW tanh (Xt−1)−Xt−1) + η, t ≥ 1

Yt = Xt + ϵ, t ≥ 0 ,

where η ∼ N (0, Q) is an isotropic Gaussian distribution and ϵ is a Student-t distribution,
these two distributions being mutually independent and time-homogeneous. In practice, we

choose the same hyperparameters than [Cam+21] with ∆ = 0.001, τ = 0.025, γ = 2.5, 2
degrees of freedom and a scale of 0.1 for the Student-t distribution, and defineQ as a diagonal

matrix with entries equal to 0.001.

Learning in an offline setting. Again, we start by evaluating the performance of our

gradients against the backward trajectory sampling approach run on the same model, for a

sequence of fixed length T = 500 with state and observation dimension equal to p = q = 5.
For the variational family, we build a special case of our general framework and rely on the idea

of conjugacy as used in [Joh+16] to encode the observations and combine this with the idea of

conjugate potentials. Formally, we stay in the Gaussian family, define a linear-Gaussian kernel

qλ(xt|xt−1) and prescribe that ψ
λ
t (xt−1, xt) ∝ qλ(xt|xt−1) as in the previous section. Then, we

define an encoder network eλ such that eλ(yt) is a natural parameter for the Gaussian family.

We denote ηt|t−1 the natural parameter of the distribution with p.d.f xt 7→ Eqλt−1
[q(xt|Xt−1)].

The sequence of natural parameters (ηλt )t≥0 of the distributions (q
λ
t )t≥0 is then prescribed by

the recursion

ηλt = ηλt|t−1 + eλ(yt) .

7
This approximation is typically made in traditional recursive maximum likelihood methods
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Gradients Marginal smoothing RMSE Avg. time per grad. step

Score-based, approximate recursions 0.135 ± 0.007 (best 0.122) 173 ms

Pathwise, backward trajectory sampling 0.119 ± 0.004 (best 0.114) 17 ms

Table 4.3: RMSE between the true states x∗t and the predicted marginal means Eqλ0:T
[Xt]

The use of a linear-Gaussian kernel for qλ(xt|xt−1) makes the computation of the natural

parameter ηλt|t−1 analytical, similar to a Kalman predict step. We run gradient-ascent on λ by

performing gradient steps using the quantity
1
T
∇λLλ,θ

T approximated via backward trajectory

sampling and via our score-based method. As before, we use the same hyperparameters and

optimization schemes for both methods. Table 4.3 reports the performance against the true

states, averaged over dimensions, i.e. the quantity

1

T

T∑
t=1

√√√√1

p

p∑
d=1

(
x
∗(d)
t − Eqλ0:T

[
X

(d)
t

])2
.

Recursive gradients for faster convergence in the offline setting. Even when we

have access to an entire sequence of observations y0:T , it can still be beneficial to use the

recursive gradients approach for faster convergence. Indeed, when gradients are only available

after processing the whole batch8, the best we can do at optimization given a fixed number of

observations T is to update the parameter with

λ(k+1) = λ(k) + γk+1 ∇λLλ,θ
T

∣∣∣
λ(k)

, (4.14)

where one such update is usually referred to as an "epoch" (one iterate processes the whole

set of observations), and λ(k) is the value of estimated parameter afer k epochs. Using the

recursive gradients, one may perform T intermediate updates within an epoch using

λ
(k)
t+1 = λ

(k)
t + γ

(k)
t+1

{
∇λLλ,θ

t+1

∣∣∣
λ
(k)
t

− ∇λLλ,θ
t

∣∣∣
λ
(k)
t−1

}
, (4.15)

and

λ
(k+1)
0 = λ

(k)
T ,

i.e. inside one epoch we optimize λ recursively on the observations. We compare the two op-

tions by optimizing on 10 different sequences of T = 500 observations, performing 10 epochs
on each, using updates of the form (4.14) for the backward trajectory sampling approach and

using updates of the form (4.15) with our score-based approach. Figure 4.2, displays the epoch-

wise training curves for each method with p = q = 5, where we observe that optimizing with

intermediate updates of Equation (4.15) converges faster overall.

Comparison with [Cam+21]. As discussed in Section 4.1, the proposed method of this

paper mainly differs from [Cam+21] in the way we approximate the backward statisticsHλ
t by

using a recursive sampling approach rather than a regression approach. In order to compare

8
i.e. the whole set of observation
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Figure 4.2: Evolution of
1
T
Lλ,θ

T for λ = λ(k) when performing with temporal updates inside an

epoch (via recursive gradients) or without (via offline pathwise gradients), k ∈ {0, . . . , 10}.

the two approaches, we reproduce the experiment of appendix B.2 of [Cam+21], where the au-

thors evaluate their ability to predict the hidden state one step backward (therefore performing

1-step smoothing).

Specifically, we aim at evaluating the quality of our approach to estimate the conditional

law of Xt−1 given Y0:t and of Xt−1 given Y0:t by evaluating Eqλt−1:t

[
X

(d)
t−1

]
and Eqλt

[
X

(d)
t

]
,

where λ is learnt using the same setting as [Cam+21]. In their setting, there is no amortization,

which means, in this context, that the parameters of qλt−1:t are given by a set λt wich is not

related to the parameters λt+1. Therefore, one can see λ as of a large set {λ0, . . . , λT} whose
components can be optimized separately. This framework leads to a large parameter set but

has the advantage of allowing to optimize each λs separately, which is viable when we do

not seek to jointly optimize the parameter λ on a large sequence but rather want the best

parameter for the current timestep. To compare our approachwith this non-amortized version,

we build a non-amortized family where, at t, we directly optimize the parameter λt = (µt,Σt)

of the distribution qλt ∼ N (µt,Σt) and the parameter λt−1|t of the function ψ
λt−1|t
t , such that

(λt, λt−1|t) is the quantity optimized at the t-th timestep. For this latter function, we match the

number of parameters by defining ψλ
t (x, y) = exp (η̄λt (y) · T (x)) with η̄λt (y) = (η̄λt,1(y), η̄t,2)

where y 7→ η̄λt,1(y) is a multi-layer perceptron with 100 neurons from X to X, and η̄t,2 is a

negative definite matrix. We use the same optimization schedules as [Cam+21] withK = 500
gradient steps per timestep t.

Table 4.4, reports the average 1-step smoothing errors and filtering errors, i.e. the quanti-

ties

1

T − 1

T−1∑
t=1

√√√√1

p

p∑
d=1

(
Eqλt−1:t

[
X

(d)
t−1

]
− x∗(d)t−1

)2
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Method 1-step smoothing RMSE Filtering RMSE Avg time per grad. step

Ours 0.089 (± 0.002) 0.103 (± 0.002) 1 ms

[Cam+21] 0.092 (± 0.002) 0.103 (± 0.002) 4.8 ms

Table 4.4: RMSE between the true states x∗t and (i) the 1-step smoothing estimates

Eqλt−1:t

[
X

(d)
t−1

]
and (ii) the filtering estimates Eqλt

[
X

(d)
t

]
and

1

T

T∑
t=1

√√√√1

p

p∑
d=1

(
Eqλt

[
X

(d)
t

]
− x∗(d)t

)2
when training our method in these two settings with p = q = 5. We also report the errors the

computational times for the two methods averaged over 10 runs using 10 different values of θ
(hence 10 different sequences).

One can see that for comparable results, our approach based onMonte Carlo for estimating

the backward expectation is about 5 times faster thant the regression approach.

Learning on streaming data. Finally, we evaluate the performance in the true online

setting when training on a sequence of T = 300, 000 observations using parameter updates

of the form of (4.13). We choose p = q = 10 and N = 200 particles. To parameterize qλ0:t
we use the amortized model presented at the beginning of this section. Table 4.5 provides the

smoothing and filtering RMSE against the true states at the end of optimization. We also show

the inference performance on new sequences generated under the same parameter θ than the

training sequence but with different random seeds. The results clearly highlight that the fitted

λ is relevant for new sequences, which makes this scenario particularly appealing when one

wants to train a single inference model on a long stream of incoming data, then re-use it for

e.g. offline inference on new sequences of arbitrary length.

Sequence Smoothing RMSE Filtering RMSE

Training 0.281 0.311

Eval 0.278 (± 0.01) 0.305 (± 0.014)

Table 4.5: Smoothing and filtering RMSE values for the training sequence and other sequences

drawn from the same θ, when λ is learnt online.

4.5 Conclusion

4.5.1 Summary

In this work, we have presented an efficient variational approximation of conditional back-

ward expectations for additive smoothing, and new gradient computations which are based

on the latter to enable online learning of variational parameters. At the core of these algo-

rithms, we proposed a decomposition of variational backward kernels which enables to use

known ideas from recursive particle-based smoothing. Consequently, the resulting algorithms
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are conceptually simpler than previous approaches based on functional approximations, and

also more efficient by leveraging recent advances from SMC literature. Despite this, our back-

ward approximation is very flexible and retains the generality of the backward factorization

introduced in [Cam+21]. Finally, the averaged statistics of the approximated quantities at any

timestep provide straightfoward control variates that can drastically reduce the variance of

the gradients, hence competing with reparameterization-based gradients despite the score-

function estimator.

To demonstrate the performance of our estimators, we have experimentally compared

the convergence of the joint variational objective (the ELBO) against oracles for both Linear-

Gaussian and nonlinear non-Gaussian generative models in the offline setting, where we have

observed that our biased gradients lead to similar optima than unbiased counterparts (which

are not amenable to online learning). Additionally, we have also illustrated the relevance of

recursive gradients to accelerate convergence in the batch setting. Finally, and most impor-

tantly, we have conducted experiments in the context of true streaming data, where we have

demonstrated the stability of our online learning methodology on very long sequences gen-

erated with nonlinear models, which had was previously not possible. All in all, we believe

that this work is promising to efficiently use the backward variational factorization in online

scenarios.

4.5.2 Perspectives
For future research, we identify two directions that could benefit from further investigation.

First, we have only implemented the versions of our algorithm that rely on exponentially

conjugated potentials, and as such more general parameterizations need to be evaluated. In

practice, when the forward potentials (ψλ
t )t≥0 are arbitrarily parameterized functions, it is ex-

pected that more flexible joint variational approximations can be obtained, and hence better

results under complex nonlinear models. Nonetheless, in this case, as mentioned in Section

4.2.2, the normalization constant in the p.d.f. of the variational kernels needs to be estimated,

and it remains to understand the impact of this additional approximation on the overall per-

formance.

Then, a more thorough analysis could be conducted to study the proper stepwise objective
to optimize in situations where parameter updates are performed at every timestep. Indeed,

in the context of recursive MLE, we presented in Section 2.1.2 the various decompositions of

the log-likelihood can be used in this setting, in particular via the incremental log-likelihood.

In this work, we have relied on the decomposition Lλ,θ
t =

∑t
s=1 Lλ,θ

s −L
λ,θ
s−1 as a justification

to solve the optimization problem in λ via online stochastic gradient updates which maximize

the ELBO over time. However, while the global objective Lλ,θ
t is a lower bound of the log-

likelihood lθt at any timestep t ≥ 0, the differences {Lλ,θ
t − L

λ,θ
t−1}t≥1 are a priori not lower

bounds. In particular they are not lower bounds of the incremental log-likelihood rθt = lθt −
lθt−1. As such, perfoming multiple parameter updates in the direction of ∇λ{Lλ,θ

t − L
λ,θ
t−1}

at each timestep is not guaranteed to be stable. As an alternative, [DZP23] have recently

explored online variational optimization by deriving explicit lower bounds on rθt , albeit not in
the context of smoothing and without relying on the backward factorization, which requires

additional assumptions.



80 CHAPTER 4. ONLINE VARIATIONAL ADDITIVE SMOOTHING



Chapter 5

Additive smoothing error in backward
variational inference for general
state-space models

This chapter is based on the article "Additive smoothing error in backward variational inference
for general state-spacemodels" under revision in JMLR, the Journal ofMachine Learning Research,
[Cha+22].

In this contribution, we establish upper bounds for the error of the variational approxima-

tion of additive smoothing in state-space-models (see in particular Proposition 1 and Propo-

sition 3), when the target expectations are approximated by expectations under a variational

distribution satisfying the backward factorization of [Cam+21]. The backward factorization of

the variational posterior allows the decomposition of the global error into a sum of terms that

can be controlled. To the best of our knowledge, these are the first theoretical results providing

upper bounds on the state estimation error when using the latter, or in fact any variational

posterior approximation (mean field or involving dependencies) in state-space models. This

result is obtained in the context of a fixed sized sequence of observations, but leads to open

questions in the context of online learning.

These theoretical results are empirically validated with various numerical experiments

which also explore several choices of variational kernels. We consider linear and Gaussian

state spaces to illustrate the linear growth as the ground truth can be computed in this case.

We also use the backward variational approach in the case of nonlinear emission densities and

compare it to sequential Monte Carlo smoothers and other state-of-the-art variational estima-

tors. We finally explore the impact of the backward parametrization with nonlinear hidden

dynamics and non-Gaussian observation noise in the framework proposed by [Zha+22].

81
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5.1 A control on backward variational additive smoothing
Notations In the following, we consider the state space models as introduced in Section 2.1.

The notations for the true model
1
remains the same. The notations for variational quantities

remains the same as in Section 2.3.2. As a minor modification, in all this contribution, indices

for quantities that depend on time are different that in the rest of this thesis. Here, we use "n"
for the final time index given sequences y0:n of length n + 1, and "k" for all other timesteps.

Other than this the previous notations hold.

5.1.1 Assumption and main result
For all xk ∈ Rd

and θ ∈ Θ, define Lθ
k(xk, ·) the kernel with density ℓθk(xk, ·) with respect to

the Lebesgue measure µ(·):

Lθ
k(xk, dxk+1) = mθ

k(xk, xk+1)g
θ
k+1(xk+1, Yk+1)µ(dxk+1) .

For additive functionals as in (2.8), the error between the target expectation ϕθ
0:nh0:n and its

approximation qλ0:nh0:n can be upper bounded by controlling the bias in the estimation of Lθ
k

by the approximated model, see for instance [GLO22]. In the context of this paper, as the

true model is defined by the forward distributions of Xk given Xk−1, and the variational ap-

proximation is defined by the backward distributions of Xk−1 given Xk, we reformulate the

discrepancy between the true model and the variational one as follows.

For all sequences of probability densities {q̃k}0≤k≤n−1 with respect to µ, with the condition

q̃n = qλn with q
λ
n defined in (2.28), let ν̃

λ
k−1:k and ϕ̃

θ
k−1:k be the distributions on (Rd×Rd,B(Rd×

Rd)) defined, for all bounded measurable functions h on Rd × Rd
, by

ν̃λk−1:kh = q̃kq
λ
k−1|kh =

∫
q̃k(xk)q

λ
k−1|k(xk, xk−1)h(xk−1, xk)µ(dxk−1, dxk) ,

ϕ̃θ
k−1:kh =

q̃k−1L
θ
k−1h

q̃k−1Lθ
k−11

=

∫
q̃k−1(xk−1)ℓ

θ
k−1(xk−1, xk)h(xk−1, xk)∫

q̃k−1(uk−1)ℓθk−1(uk−1, uk)µ(duk−1, duk)
µ(dxk−1, dxk) .

The discrepancy between these sequences of joint distributions is then defined with:

c̃0(θ) =
∥∥q̃0 − ϕθ

0

∥∥
tv
, and for all k ≥ 1 c̃k(θ, λ) =

∥∥∥ϕ̃θ
k−1:k − ν̃λk−1:k

∥∥∥
tv
, (5.1)

where ∥·∥tv is the total variation norm, and for all bounded measurable function h,

ϕθ
0h = χθgθ0h/χ

θgθ01 .

Note that for k ≥ 1, c̃k(θ, λ) depends on both q̃k and q̃k+1.

H1 There exist constants 0 < σ− < σ+ < ∞ such that for all k ∈ N, θ ∈ Θ, λ ∈ Λ and

(xk, xk+1) ∈ Rd × Rd
,

σ− ≤ ℓθk(xk, xk+1) ≤ σ+

and

σ− ≤ qλk|k+1(xk+1, xk) ≤ σ+.

1
For instance, the smoothing distribution ϕθ

0:n, the transition kernelmθ
k , the observation density gθk+1, etc. . .
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Proposition 1 Assume that H1 holds. Then, for all n ∈ N, θ ∈ Θ, λ ∈ Λ, and all additive
functionals h0:n as in (2.8), and all probability densities q̃k, 0 ≤ k ≤ n − 1, with the condition
q̃n = qλn,

∣∣qλ0:nh0:n − ϕθ
0:nh0:n

∣∣ ≤ 2
σ+
σ−

n−1∑
k=0

∥∥∥h̃k∥∥∥
∞

×

(
c̃0(θ) +

k∑
m=1

ρk−m+1c̃m(θ, λ) + c̃k+1(θ, λ) +
n∑

m=k+2

ρm−k−1c̃m(θ, λ)

)
,

with ρ = 1 − σ−/σ+, where σ− and σ+ are defined in H1, and c̃0(θ) and c̃m(θ, λ), 1 ≤ m ≤ n
are defined in (5.1).

Proof The proof is postponed to Appendix C.1.

Marginal smoothing distributions are also of utmost importance as they appear in many

applications for state estimation problems. These marginal smoothing expectations can be

obtained as special cases of expectations of additive functionals, i.e. cases where h̃j = 0 for

all j ̸= k⋆, for some 0 ≤ k⋆ ≤ n− 1. For this special cas, we have the following corollary.

Corollary 2 Assume that H1 holds. Then, for all n ∈ N, 1 ≤ k⋆ ≤ n − 1, θ ∈ Θ, λ ∈ Λ, all
bounded measurable functions h̃k⋆ on Rd × Rd, and all probability densities q̃k, 0 ≤ k ≤ n− 1,
with the condition q̃n = qλn,

∣∣qλ0:nh̄k⋆ − ϕθ
0:nh̄k⋆

∣∣ ≤ 2
σ+
σ−

∥∥∥h̃k⋆∥∥∥
∞
×

(
c̃0(θ) +

k∑
m=1

ρk−m+1c̃m(θ, λ)

+c̃k+1(θ, λ) +
n∑

m=k+2

ρm−k−1c̃m(θ, λ)

)
,

with h̄k⋆ : x0:n 7→ h̃k⋆(xk⋆ , xk⋆+1), ρ = 1 − σ−/σ+, where σ− and σ+ are defined in H1, and
c̃0(θ) and c̃m(θ, λ), 1 ≤ m ≤ n are defined in (5.1).

Note that if there exists c+ such that for all θ ∈ Θ, λ ∈ Λ, 0 ≤ m ≤ n, c̃m(θ, λ) ≤ c+(θ, λ), by
Corollary 2 ∣∣qλ0:nh̄k⋆ − ϕθ

0:nh̄k⋆
∣∣ ≤ 4

σ+
σ−

∥∥∥h̃k⋆∥∥∥
∞
c+(θ, λ)

(
1 +

ρ

1− ρ

)
,

so that the marginal smoothing errors are uniformly bounded in time.

Proof The proof is postponed to Appendix C.1.

For all 1 ≤ k ≤ n, let bθk−1|k be the backward kernel at time k, defined for all bounded

measurable functions h on Rd
and all xk ∈ Rd

, by

bθk−1|kh(xk) =

∫
mθ

k−1(xk−1, xk)ϕ
θ
k−1(xk−1)h(xk−1)µ(dxk−1)∫

mθ
k−1(x, xk)ϕ

θ
k−1(x)µ(dx)

.

When the backward variational kernel is a sharp approximation of the true backward kernel,

Proposition 3 provides an explicit control of the smoothing error.
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Proposition 3 Assume that H1 holds. Let n ∈ N, θ ∈ Θ, λ ∈ Λ. Assume that there exists ε > 0

such that
∥∥qλn − ϕθ

n

∥∥
tv
≤ ε and for all 1 ≤ k ≤ n, xk ∈ Rd,

∥∥∥qλk−1|k(xk, ·)− bθk−1|k(xk, ·)
∥∥∥
tv
≤ ε.

Then, for all additive functionals h0:n as in (2.8),

∣∣qλ0:nh0:n − ϕθ
0:nh0:n

∣∣ ≤ 4
σ+
σ−

(
1 + 2

ρ

1− ρ

) n−1∑
k=0

∥∥∥h̃k∥∥∥
∞
ε ,

where ρ = 1 − σ−/σ+, with σ− and σ+ defined in H1. Therefore, in the case where there exists
an upper boundM such that sup0≤k≤n−1∥h̃k∥∞ ≤M , then, there exists c ≥ 0 such that∣∣qλ0:nh0:n − ϕθ

0:nh0:n
∣∣ ≤ cnε .

Proof The proof amounts to applying Proposition 1 with for all 0 ≤ k ≤ n− 1, q̃k = ϕθ
k.

• c̃0(θ) =
∥∥q̃0 − ϕθ

0

∥∥
tv
= 0, as q̃0 = ϕθ

0.

• For all 1 ≤ m ≤ n− 1,

c̃m(θ, λ) =
∥∥∥ϕ̃θ

m−1:m − ν̃λm−1:m

∥∥∥
tv
,

=

∥∥∥∥ q̃m−1L
θ
m−1

q̃m−1Lθ
m−11

− q̃mqλm−1|m

∥∥∥∥
tv

,

≤
∥∥∥∥ ϕθ

m−1L
θ
m−1

ϕθ
m−1L

θ
m−11

− ϕθ
mb

θ
m−1|m

∥∥∥∥
tv

+
∥∥ϕθ

mb
θ
m−1|m − ϕθ

mq
λ
m−1|m

∥∥
tv
≤ ε ,

where the first term in last inequality is zero as ϕθ
m−1L

θ
m−1/ϕ

θ
m−1L

θ
m−11 and ϕθ

mb
θ
m−1|m

are both equal to the probability density of (Xm−1, Xm) given Y0:m under the law of the

state-space model parameterized by θ.

• The last term is upper-bounded as follows:

c̃n(θ, λ) =
∥∥∥ϕ̃θ

n−1:n − ν̃λn−1:n

∥∥∥
tv
,

=

∥∥∥∥ q̃n−1L
θ
n−1

q̃n−1Lθ
n−11

− qλnqλn−1|n

∥∥∥∥
tv

,

≤
∥∥∥∥ ϕθ

n−1L
θ
n−1

ϕθ
n−1L

θ
n−11

− ϕθ
nb

θ
n−1|n

∥∥∥∥
tv

+
∥∥ϕθ

nb
θ
n−1|n − ϕθ

nq
λ
n−1|n

∥∥
tv

+
∥∥ϕθ

nq
λ
n−1|n − qλnqλn−1|n

∥∥
tv
≤ 2ε ,

where the first term in last inequality is zero as ϕθ
n−1L

θ
n−1/ϕ

θ
n−1L

θ
n−11 and ϕθ

nb
θ
n−1|n

are both equal to the probability density of (Xn−1, Xn) given Y0:n under the law of the

state-space model parameterized by θ.
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Remark 4 By Proposition 1, if there exist h∞ and c+ such that for all 0 ≤ k ≤ n− 1, ∥h̃k∥∞ ≤
h∞ and for all θ ∈ Θ, λ ∈ Λ, 0 ≤ m ≤ n, c̃m(θ, λ) ≤ c+(θ, λ) then∣∣qλ0:nh0:n − ϕθ

0:nh0:n
∣∣ ≤ 4

σ+
σ−

(
1 +

ρ

1− ρ

)
c+(θ, λ)h∞n . (5.2)

Remark 5 Proposition 1 provides a criterion for assessing the sharpness of a variational approx-
imation for ϕθ

0:n. Indeed, for such approximation, write

cinf(λ, θ) = inf
(q̃k)0≤k≤n

n−1∑
k=0

(
c̃0(θ) +

k∑
m=1

ρk−m+1c̃m(θ, λ) + c̃k+1(θ, λ) +
n∑

m=k+2

ρm−k−1c̃m(θ, λ)

)
.

Then, if there exist h∞ that for all 0 ≤ k ≤ n− 1, ∥h̃k∥∞ ≤ h∞, by Proposition 1, we have:∣∣qλ0:nh0:n − ϕθ
0:nh0:n

∣∣ ≤ 2
σ+
σ−
cinf(θ, λ)h∞. (5.3)

Although difficult to compute in practice, this criterion might be the focus of future research. An
open question here is whether the optimal sequence (q̃k)0≤k≤n is given by the sequence of true
marginal smoothing distributions.

5.1.2 Comments on Proposition 1 and H1
Proposition 1 provides an upper-bound for the smoothing error for additive functionals which

is linear in the number of observations. The sharpness of this bound depends on our ability to

find a sequence of distributions (q̃k)0≤k≤n−1, so that each ck(θ, λ), i.e., the total variation dis-

tance between (xk−1, xk) 7→ q̃k(xk)q
λ
k−1|k(xk, xk−1) and the probability density proportional

to (xk−1, xk) 7→ q̃k−1(xk−1)ℓ
θ
k−1(xk−1, xk), is small.

First, it is worth noting that if qλn is the true filtering distribution at time n and (qλk−1|k)k≥1 are

the true backward distributions, then the unique sequence (q̃k)k≥1 that achieves c̃k(θ, λ) = 0
for all k is the sequence of true filtering distributions.

However, in generic cases (i.e. non linear gaussian cases), this joint minimization over this

sequence of distributions appears to be an open challenge. In Section 5.2.2, we discuss empir-

ically how the backward qλk−1|k(xk, xk−1) can be parameterized by the user, depending on the

form of ℓθk−1(xk−1, xk) (see the experiments related to the results of Figure 5.2).

Obtaining theoretical guarantees on the variational approximations remains of course an

open problem but we believe that Proposition 1 provides a first result in this direction.

About H1. This assumption is rather strong, but typically satisfied in models where the

state space is compact. This assumption is classic in the SMC literature in order to obtain

quantitative bounds for errors or variance of estimators in the context of smoothing, (see

[Dou+11; DL13; OW+17; GLO22]. It is worth noting that in the context of approximating the

filtering distributions, weaker assumptions exist (see [CL04; Dou+09]), but the extension of

these results to the smoothing context remains an open challenge.

5.2 Numerical experiments
We now present some practical examples of implementations of the backward variational fac-

torization on which we validate our theoretical results.



86 CHAPTER 5. AN ERROR BOUND FOR BACKWARD SVI

5.2.1 Linear Gaussian SSMs

A first interesting case is when the variational family contains the true model. This is in par-

ticular possible when the latter is a linear and Gaussian SSM, i.e. when χθ
(resp. mθ

k(Xk, ·)
and gθk(Xk, ·)) are densities of Gaussian distributions with mean A0 (resp. AXk and BXk)

and variance Q0 (resp. Q and R), such that θ = (A0, Q0, A,Q,B,R). If we define a similar

"mirror" model described with another set of parameters λ = (Ā0, Q̄0, Ā, Q̄, B̄, R̄), we can

choose qλn ∼ N (µn,Σn) where (µn,Σn) are provided by the Kalman filtering recursions, and

qλk−1|k(xk, xk−1) ∼ N (Ak−1|kxk + bk−1|k,Σk−1|k) where (Ak−1|k, bk−1|k,Σk−1|k) are obtained

through Kalman smoothing steps. In this case, qλ0:n is of the same form as ϕθ
0:n and qλ0:n = ϕθ

0:t

when λ = θ.

When the latter case is reached, Section 5.1.2 shows that ck(θ, λ) = 0 for all k, suggesting
that the additive error vanishes. In this section, we study the case where the parameter θ is
known, d = 5 and λ is trained on a set of sequences of n = 50 observations. The evolution of

the ELBO is given in Figure 5.1a. In Figure 5.1b, we depict the controlled term of Proposition

1 in the case of state estimation, i.e. for h0:n : x0:n 7→
∑n

k=0 xk. This evaluation is performed

on J = 50 evaluation sequences (Y j
0:n)1≤j≤J of length n = 500 sampled from the generative

model. Each plot clearly illustrates the linear dependency on the number of observations.

We also find that the error rates can vary greatly between parameters λ1 ̸= λ2, even when

|L(θ, λ1)−L(θ, λ2)| is small. This is observed by computing the errors for different stopping

points of the optimization. Additionally, for a given λ, slopes vary across sequences, which

highlights the dependency of (ck(θ, λ))0≤k≤n on the observations.

Appendix C.2.2 provides more implementation details, as well as additional figures for the

errors on the marginal distributions.

5.2.2 Nonlinear SSMs

The primary motivation to use variational inference is when ϕθ
0:n cannot be computed ana-

lytically, which generally happens when the generative model contains nonlinearities and/or

non-Gaussian noises. In this case - contrary to the previous section - there is no obvious

choice for the form of the kernels in qλ0:n and many options exist to balance the amount of

approximation with the computational complexity. In the next subsections, we revisit some

of the literature on sequential variational inference in the backward context to illustrate our

theoretical result.

Nonlinearity in the emission distribution

We first consider a generative model where the prior distribution and transition kernels are

still linear, but gθk(Xk, ·) is the Gaussian probability density with mean dθ(Xk) and varianceR,
dθ being a nonlinear mapping commonly referred to as the decoder. In this setting, [Häl+21b]

showed for the first time that no assumptions are required on dθ for identifiable state estima-

tion. In particular dθ need not to be an injective mapping and therefore we use an uncon-

strained and arbitrary multi layer perceptron (MLP).

In this context, [Häl+21b] obtained promising results via a parameterization of the fac-

tors in qλ0:n which relies entirely on Gaussian conjugation and can be analytically marginal-

ized, therefore allowing fast inference. A central element of their approximation is the idea
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for h̃k(xk, xk+1) = xk. The solid lines display the mean over the 50 inde-

pendent replicates, the transparent filling is the standard deviation, shaded lines are the all sequences.

Values are normalized by the state-space dimension.

Figure 5.1: ELBO during the training of λ (left). Additive smoothing error for a linear Gaussian

variational model at successive stopping points of the optimization on 50 different sequences
(right)
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from [Joh+16], which consists in mapping each observation yk to a set of valid natural pa-

rameters (κk,Πk) for some Gaussian distribution, using an encoder network rλ such that

(κk,Πk) = rλ(yk). By defining (as in Section 5.2.1) some additional parameters (Ā0, Q̄0, Ā, Q̄)
for kernels χλ

0 ,m
λ
k (i.e. similar to the generative model but parameterized by λ) the authors

design qλ0:n using forward-backward recursions (see [CMR05, section 3.2.1]) where the forward

and backward variables are updated analytically by Gaussian conjugation with the exponen-

tial factors xk 7→ e⟨rλ(yk),tN (xk)⟩
, tN (xk) = (xk, xkx

⊤
k ) being the set of sufficient statistics

for a Gaussian distribution in xk. This algorithm is a special form of two-filter smoothing,

which is rather rooted in the alternate forward decomposition of the joint smoothing distribu-

tion, that is qλ0:n(x0:n) = qλ0 (x0)
∏n−1

k=1 q
λ
k|k−1(xk−1, xk)where each factor depends on the entire

sequence of observations y0:n and is built using the so-called backward variables (which are

non-normalized quantities distinct to the backward kernels). However, the core idea can be

reframed under the backward factorisation very easily by defining a sequence of distributions

(qλk )k≤n which are updated from qλk−1 to q
λ
k via:

• q̄λk (xk) = Eqλk−1

[
mλ

k(·, xk)
]
similarly to a Kalman predict step

• ηk = rλ(yk) + η̄λk where ηk and η̄k are the natural parameters of qλk and q̄λk , respectively.

and by defining the backward kernels with qλk−1|k(xk, xk−1) ∝ qλk−1(xk−1)m
λ
k(xk−1, xk), such

that their parameters are derived analytically at each time step from ηk−1 and the parameters

ofmλ
k . We refer to the models of [Joh+16] as the Conjugate Forward variational model and to

the backward adaptation as the Conjugate Backward model.

These solutions are computationally very efficient because they allow closed-form updates

of the factors with DNN-predicted encodings which are already Gaussian parameters. Under

the backward factorization, more general implementations are possible that still allow analyt-

ical marginalisation by keeping the factors in (2.28) conjugated. For example, one may use a

recurrent neural network which updates an internal state (sk)k≤n from which the backward

kernels and the terminal distribution and built analytically via an intermediate linear-Gaussian

kernelmλ
k as before, e.g.

• sk = RNNλ(sk−1, yk) and q
λ
k ∼ N (µk,Σk) where (µk,Σk) = MLPλ(sk)

• qλk−1|k(xk, xk−1) ∝ qλk−1(xk−1)m
λ
k(xk−1, xk) fromwhich parameters of qλk−1|k are derived

analytically.

We implement such version with a Gated Recurrent Unit (GRU) for the RNN, and refer to

it as the GRU Backward implementation.

In the nonlinear setting, since the true smoothing distribution ϕθ
0:n has no analytic form, we

use the particle-based Forward Filtering Backward Simulation (FFBSi) algorithm
2
as a surro-

gate for this ground truth. The FFBSi outputs trajectories approximately sampled from the true

target smoothing distributions using sequential importance sampling and resampling steps.

This algorithm is also based on a forward-backward decomposition of the smoothing distribu-

tions (see [DMS14], Chapter 11, for details). We choose the case d = 10, where a high number

of particles for the FFBSi (10000 for the bootstrap filtering, 2000 for the backward smoothing)

to consider it as a proper ground truth.

2
Described in Section 2.2.2.
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We compare the additive error with respect to the FFBSi (i.e. the left hand term of equation

(5.2)) for h0:n : x0:n 7→
∑n

k=0 xk). In appendix, we report the quality of the FFBSi estimator in

the form of the sample mean and variance of its error against the true states, which establishes

the error made by the oracle reference estimator considered as ground truth.

In Figure 5.2, we plot the evolution of the additive error against this oracle. As predicted

by our theoretical result, all backward methods have a linear dependency in the number of

observations n. Interestingly, we observe that the Conjugate Forward model also shares this

property, which suggests that our main theoretical result is also valid for other factorizations.

However, while the two-filter formulation brings similar results using the same amount of

parameters, it is much less convenient computationally because it requires to compute the

entire sequence of backward variables for any new observation.

One hidden aspect of the fully conjugate models is that the natural parameters given by

rλ(yk) implicitly model the distribution of xk given yk (unconditionnally on the dynamics),

yet this distribution is likely to admit several modes (especially if dθ is strongly injective on

some portions of the support). We observe a slight performance gain for the GRU Backward
model in this context. In this model, the parameters of the intermediate distributions qλk are

updated without any intermediate Gaussian approximation which might explain the better

performance.

In Figure 5.3, we provide the marginal errors over time in the same setting. The results

coincide with the time-uniform bound presented in Corollary 2.
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Figure 5.2: Smoothing errors

∣∣qλ0:nh0:n−ϕθ
0:nh0:n

∣∣
for h̃k(xk, xk+1) = xk, for the different mod-

els with a 10-dimensional latent state in the setting of section 5.2.2 All values are normalized

by the dimension of the state space. Experiments were produced on 10 independent sequences.

The thick solid lines display the mean over the 10 independent replicates for both approaches,

shaded lines are single sequences.
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Figure 5.3: Marginal errors

(∣∣qλ0:nhm0:n − ϕθ
0:nh

m
0:n

∣∣)
m≤n

, i.e. for h̃mk (xk, xk+1) = xk1k=m, in the

setting of section 5.2.2 where ϕθ
0:n is obtained by the FFBSi algorithm. All values are normalized

by the dimension of the state space. Experiments are produced on 10 independent sequences.

The thick solid lines display the mean over the 10 independent replicates for both approaches,

the filling is the standard deviation

Nonlinear hidden dynamics with a non-Gaussian observation noise

We now consider a model introduced in [Zha+22], wheremθ
k(xk−1, ·) is the density of

N (xk−1 + δ [γW tanh(xk−1)− xk−1] /τ,Q)

and gθk is the density of a Student-t distributionwithmean xk, ν degrees of freedom and scaleR.
We start by reproducing this chaotic recurrent neural network setting as in [Cam+21], Section

5.2. That is, we fit the parameter λ on a given sequence y0:n and we evaluate the performance

on the same sequence. To assess the variability of the performance, we train and evaluate on

J = 50 sequences (y
(j)
0:n)1≤j≤J , each drawn from a different model with parameter θ(j), on

which we learn a different variational parameter λ(j). In Figure 5.5, we plot the evolution of

the error with d = 5 and n = 500 for both the Conjugate Forward and Conjugate Backward

models together with the state-of-the-art online backward smoother of [Cam+21]. Once again,

all models show a linear dependency on the observations, which supports our main theoretical

claim. In Figure 5.4, we provide a more thorough analysis of the additive smoothing perfor-

mance on other moments for the Conjugate Backward model by generating more sequences

under a single θ and training for more epochs. Again, in this case, the estimates obtain using

the FFBSi considered are considered as ground truth. For all moments, we observe the lin-

earity of the additive smoothing error and the uniform bound on the marginal error. We also

observe the dependency of ||hk||∞ through the increased slopes and higher error values for

the additive and marginal errors, respectively.

This experiment also highlights an interesting aspect on the impact of the parameteriza-



5.2. NUMERICAL EXPERIMENTS 91

Figure 5.4: Additive (top) and marginal (bottom) errors against FFBSi estimates on the chaotic

data with the Conjugate Backward model on three types of functionals, from left to right: (i)

h̃k(xk−1, xk) = ||xk||1 (ii) h̃k(xk−1, xk) = xTk xk (iii) h̃k(xk−1, xk) = xTk−1xk.
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tion choices. In the previous sections, training was performed on multiple sequences of fixed

length, therefore multiple learning signals are available to learn the terminal distribution qλn
(i.e. terminal observations of the sequences in the training set). In the setting of this section,

on the contrary, only one data point is available at n. For the offline setting, we therefore do

not expect the distributions qλk to be good terminal laws of the subsequences (y0:k)k<n under

(2.28). Indeed, except for k = n, the parameters of these distributions only appear indirectly

during optimization (via their relationship with the backward kernels) when optimization of

the joint ELBO is performed at a fixed length n. In contrast, the solution of [Cam+21] ex-

plicitly performs gradient-descent on a new set of parameters λk at each timestep such that

qλk = qλk
k is always a good terminal law for y0:k. Interestingly, the results for the Conjugate

Forward and Conjugate Backward models - which do not have such regularisation - are only

slightly worse than the state-of-the-art, albeit at a much lighter computational cost. Indeed,

in practice, Figure 5.5 is obtained simply by using the distributions qλk as terminal laws for

k ≤ n. This suggests that the associated parameterizations may provide good variational fil-
tering distributions through the laws qλk as a byproduct of the smoothing objective qλ0:n with

no additional regularisation. In section 5.3.3, we discuss more extensively the link between

our theoretical results and the choice of parameterizations for the variational kernels.
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Figure 5.5:

∣∣qλ0:nh0:n − ϕθ
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for h̃k(xk, xk+1) = xk in the setting of section 5.2.2. The solid

lines display the mean over the 5 independent replicates which are shown in shaded lines.

On the contrary, the GRU Backward model has a different behaviour. In Figure 5.6, the dot-

ted blue curve shows that a good approximation of qλ0:n is obtained by fitting on y0:n, however
the associated parameter λ does not provide a good approximation of (qλ0:k)k<n. If we instead

learn λ by computing the gradient of the ELBO for increasingly large subsequences (y0:k)k≤n -

i.e. mimicking the training scheme of [Cam+21] - we obtain a different type of approximation,

which is suitable for k < n, even though this additional constraint results in slightly worse
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performance for k = n. In this case, the results are comparable with those of [Cam+21].
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for h̃k(xk, xk+1) = xk when training the GRU Backward model

in two different ways, alongside the solution of [Cam+21]

5.3 Discussion

We have provided the first bound on the additive smoothing error in the context of sequential

variational inference using a backward factorization. We have empirically presented cases

to illustrate these results. We have also shown that some existing ideas from litterature on

message passing or conjugate graphical models can be reframed to be used under the backward

factorization. We believe that our theoretical result sheds light on important properties of

sequential variational methods and provides perspectives for future research which we detail

in this section.

5.3.1 Assumptions

The proposed strong mixing assumptions are classical to obtain theoretical guarantees in non-

linear smoothing problems. Weaker assumptions have been proposed in the literature to con-

trol filtering distributions. Although these results cannot be extended to smoothing distribu-

tions easily, obtaining similar upper bounds as in our contribution with weaker assumptions

is an interesting perspective for future works. Our numerical experiments do not restrict to

models satisfying these assumptions, suggesting that some relaxations of these classical hy-

pothesis should be investigated.
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5.3.2 Additional theoretical guarantees
• Recently, [TY21] proposed a general theoretical framework for analyzing the excess risk

associated with empirical Bayes variational Auto Encoders, covering both parametric

and nonparametric cases. The authors study the statistical properties of the VAE estima-

tor usingM-estimation theory. In our context of time series, extending theM-estimation

theory requires to first analyze the asymptotic behavior of the ELBO. We believe this is

another appealing property of the backward decomposition of the variational family, as

in this case thee ELBO writes

1

n
Ln(θ, φ) =

1

n
ℓn(θ) +

1

n
Eqλ0:n

[
log

ϕθ,n(Xn)

qλn(Xn)

]
+

1

n

n∑
s=1

Eqλ0:n

[
log

bθ,s−1|s(Xs−1, Xs)

qλs−1|s(Xs−1, Xs)

]
,

where ϕθ,n is the filtering distribution at time n, (bθ,s−1|s)1≤s≤n are the backward kernels

of the true model and ℓn(θ) is the loglikelihood of the observations. Using this decom-

position and additional assumptions, the limiting behavior of the ELBO can be derived

to extend the results of [TY21] to state-space models. However, this requires to obtain

the asymptotic behavior of various terms which relies on many technicalities and this

is therefore left for future work.

In addition, the backward factorization offers a suitable framework (combined with

strongmixing assumptions and regularity conditions on the state-spacemodel) to satisfy

Condition A of [TY21]. In an offline learning setting, with fixed n, this provides an inter-
esting perspective to control the total variation distance between the true distribution

of the observations and

y0:n 7→
∫ (

1

N

N∑
i=1

qλ0:n(x0:n)

)
n∏

k=1

gθk(xk, yk)dx0:n ,

where yi0:n, 1 ≤ i ≤ N , are i.i.d. sequences with distribution parameterized by θ. These
extensions are the focus on the ongoing work [GL23].

• The linear growth with the number of observations matches the results obtained when

the true smoothing distributions are replaced by "skewed" or Monte Carlo estimators.

Indeed, using for instance [GLO22, Theorem 4.10], we can show that even if the smooth-

ing expectation is computed under the true model but not with the true parameter, the

estimation error of the smoothing expectation grows linearly in the number of observa-

tions: ∣∣ϕθ′

0:nh0:n − ϕθ
0:nh0:n

∣∣ ≤ c(θ′, θ)n .

Therefore, even if the variational family contains the true model, if the minimization of

the ELBO does not recover the true parameter, we recover the upper bound linear in the

number of observations.

• Obtaining lower bounds for the estimation error of joint smoothing expectation is an

open problem, especially in a variational inference framework. This is also an open

problem in variational inference for state-space models. We believe that it also relies

on important theoretical results which have not been developed yet for the analysis of

variational inference of state space models.
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5.3.3 Variational kernels parameterization
We do not provide constructive assumptions on the variational model, i.e. further works may

providemore explicitly the form of the optimal variational factors when the variational kernels

belong to a parametric family. Obtaining specific conditions on the variational kernels to

optimize the upper bound in Proposition 3 is also an open problem. This leaves a lot of room

for implementation choices, even when restricted to the backward factorization. As we did

however explore several implementations, we now discuss qualitatively their possible impact

on performance and the link with our theoretical results.

Amortization In Section 5.1, we deliberately do not specify explicitly what λ is. In the

offline setting with sequences of fixed length n, our results hold in these two cases.

• λ = (λ0, . . . , λn) is directly the set of all parameters of the kernels, where λk denotes

the parameters of the variational terms involved at k (e.g the parameters for the k-th
backward kernel, and for k = n, the parameters of the terminal distribution qλn). This
corresponds to non-amortized inference.

• λ is the global (temporally-shared) parameter of a function fλ
which itself outputs

the (local) parameters of the variational kernels from observations, i.e. fλ(y0:n) =
(λ1, . . . , λn). This is usually referred to as amortized inference.

One example of non-amortized setting is the implementation of [Cam+21], while both

the Conjugate Backward, Conjugate Forward, GRU Backward are amortized implementations.

While experiments all show the linear behaviour of the additive error, some elements may be

discussed with respect to the assumptions involved in the theoretical results. In particular,

in Proposition 3, the sharpness of the bound on the additive error is linear in ε, where ε is
an upper bound for the error between the variational kernels and their counterparts under

the true model. As such, minimizing these local distances with a small ε is key to obtaining

a low additive error. In the non-amortized scenario, the parameters of the kernels can be

individually tuned during minimization of the joint ELBO and independently of each other.

Intuitively, this leaves the highest flexibility to minimize local distances ∥qλn
n − ϕθ

n∥tv and

∥qλk

k−1|k(xk, ·) − bθk−1|k(xk, ·)∥tv for all k ≤ n, xk ∈ Rd
, under chosen parameteric families

for these kernels. One perspective of this work that remains is to analyse quantitatively how

these two types of implementation differ in terms of the local distances recalled above, which

is not direct since such distances are not readily available explicitely.

Recursions for parameters of the variational kernels Under the true model, recursions

exist that relate the filtering distributions and the backward kernels explicitly, and approximat-

ing these recursions is at the core of sequential Bayesian inference algorithms. One question

that remains in our study of backward variational methods is whether reproducing similar re-

cursions to build the variational kernels leads to better practical solutions. Again, our results

hold irrespective of the dependencies between the parameters of the variational kernels, but

experimentally we explored many scenarios. In that respect, experiments of Section 5.2.2 are

somehow informative. Indeed, we observe, for example, that the Conjugate Backward exhibits

the linear additive behaviour for any k ≤ n when using the (qλk )k≤n to build the terminal dis-

tributions, even when trained on a sequence of fixed length n. Contrarily, the GRU Backward
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does not. In the former implementation, denoting ψλ
k : xk 7→ e⟨rλ(yk),tN (xk)⟩

, one has, for

all k ≤ n, qλk ∝ ψλ
k

∫
mλ

kq
λ
k−1 and q

λ
k−1|k ∝ mλ

kq
λ
k−1, which is similar to the true model where

ϕθ
k(·) ∝ gθk(·)

∫
mθ

k(xk−1, ·)ϕθ
k−1(dxk−1) and b

θ
k−1|k(xk, ·) ∝ ϕθ

k−1(·)mθ
k(·, xk). On the contrary,

for the GRU Backward, no such link can be made.

This discussion is tightly linked to the practical existence and meaning of distributions qλk
for k < n in the offline setting that we studied. Indeed, the theoretical study only prescribes

implementing explicitly a term for k = n. The proof of Proposition 3 suggests that when this

terminal distribution qλn is the last term of a sequence (qλk )k≤n where qλk = ϕθ
k for k < n, then

it only remains to have the variational backward kernels closest to the true ones to reduce

the additive smoothing error. However it is unclear whether this is the optimal scenario in the

sense of Proposition 1, i.e. the discrepancies c̃k may be lower for some sequence (q̃k)k≤n which

is not an approximation of the sequence of true filtering distributions, and an implementation

of this optimum might not yield - as is the case for some of our models - good approximations

of the latter as a byproduct.



Chapter 6

Conclusion and perspectives

In Chapter 3, a very pragmatic take on video object counting has been proposed via a robust

dynamical model combined with an association stage that takes into account uncertainty in

both the motion estimates and the detections. Then, we took a step back and studied some

methodological aspects behind the promising backward decomposition in sequential varia-

tional inference, developing in Chapter 4 a simplified and efficient algorithm to deploy it in

recursive settings, and bringing in Chapter 5 new theoretical guarantees that further justify

its use as a principled approximation method for high dimensional sequential data. In this

chapter, we conclude by presenting what we view as the most promising directions of re-

search from these methodological works in sequential variational inference. In Section 6.1,

we discuss some remaining topics that could be explored to strengthen the foundations of

backward sequential variational inference. In Section 6.2, we discuss how properly specified

dependencies and theoretical guarantees of backward SVI methods could play a key role in

novel representation learning solutions when applied to real-world sequential data, in partic-

ular regarding the original motivations of this thesis with video object counting.

6.1 Further research in backward SVI
In the context of SVI, we have derived theoretical guidelines that apply to any SVI method that

respects the backward factorization, and the online algorithm we propose only requires an

unconstrained decomposition of the variational backward kernels. As such, our propositions

are rather general. As hinted in Section 5.3.3, however, many important questions remain to

further justify theoretically some precise implementations in the backward SVI methodology.

6.1.1 Relating the variational factors to the generative model

Since the backward variational decomposition is directly inspired by the Markov factoriza-

tion of the true smoothing distributions, an important question that remains is whether all

implementations (e.g. amortized, non-amortized, etc) and optimization schemes (e.g. online /

offline, etc) lead to variational solutions whose individual factors coincide with the true ones.

As optimization is performed in the joint space, it is not clear, for example, whether minimiza-

tion of the ELBO leads to variational parameters for which the variational backward kernel

qλt−1|t is a good approximation of the true backward kernel Bθ
t−1|t for any t ≥ 1. Additionally,

while in the online setting, minimization of Lλ
t at all t ≥ 0 will necesarily enforce the suc-
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cessive marginals of qλ0:t to approximate ϕθ
t , it is not clear how to derive sequences (qλs )s≤t of

distributions such that qλs ≈ ϕθ
s for all s ≤ t in the offline setting. Additionally, recent works

like [DZP23] (which originally only consider filtering objectives and do not target smoothing

distributions) raise many questions regarding the possibility of building variational models

which explicitly make use of the true transition kernels. Indeed, to derive simple online al-

gorithms that yield sequences (qλt )t≥0 of variational filtering approximations, they introduce

"hybrid" versions of the predictive distributions (ϕ̄θ
t )t≥0 at each timestep in the form of

q̄λ,θt = Eqλt−1

[
mθ

t (Xt−1, ·)
]
,

which is simply obtained by plugging qλt−1 in place of ϕθ
t−1 in the definition of the true predic-

tive distribution. As such, they explicitly rely on the true dynamics of the generative model

(mθ
t )t≥1 to propagate the variational distributions. As mentionned in Section 2.3.2, filtering

objectives derived in this manner are not guaranteed to be stable from an optimization point

of view, however, one may imagine variational backward kernels defined as

qλ,θt−1|t(xt, xt−1) ∝ qλt−1(xt−1)m
θ
t (xt−1, xt) ,

in which case the normalizing constant is precisely q̄λ,θt (xt) as defined above. In this case,

updates of the expectations (Hλ
t )t≥0 associated with the joint ELBO would become

Hλ
t (xt) = Eq̄λ,θ

t−1|t

[
Hλ

t−1(Xt−1) +
gθt (xt)q̄

λ,θ
t (xt)

qλt−1(Xt−1)

]
.

Since such definition of the backward kernels still falls in the decomposition (4.5), approxi-

mating these recursively would still be possible with the algorithms we proposed. However,

with θ known, this methodology would only require parameterizing the flow of distributions

(qλt )t≥0, hence removing the need to manually define potentials (ψλ
t )t≥0.

6.1.2 Exploring larger variational objectives and families
Thenmany other directions could be explored to include the backwardmethodology intomore

elaborate variational formulations. Indeed, in this work we have only considered the most

popular divergenceminimization problems related to the reverse KL and the ELBO that derives

from it, yet many works have been suggested in VI to derive more expressive variational

approximations.

A first observation often made is that the reverse KL typically leads to solutions that un-

derestimate the variance of the targeted distribution by concentrating on its modes. This be-

haviour, sometimes referred to as the mode-seeking property of

←−
D π

KL, is opposed the so-called

mass-coverage behaviour of the forward KL defined as

−→
D π

KL : q 7→ DKL(π, q). Figure 6.1,

illustrates these differences, showing typical solutions under a Gaussian family for a unidi-

mensional target distribution π whose mass is increaglingly spread out into several modes.

Observing this, some works like [NLB20; ZBN22; Kim+22b] focus on building new scalable

methods to perform VI using forward KL despite the untractable expectation under the target

distribution π. A typical consequence of approaching the minimization problem with

−→
D π

KL

is that intricate sampling schemes need to be reintroduced in order to sample from π, e.g.
MCMC and Hamiltonian Monte Carlo [Nea+11; HG+14]. In the same vein, some works tackle
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Figure 6.1: Full line: target distribution π, increasingly multimodal from left to right. Dotted

line:

−→
D π

KL(q). Dashed line:

←−
D π

KL(q).

the underestimation of variance by using other divergences, e.g. the Chi divergence [Die+17],

or by building optimization schemes specifically for minimization of classes of distances like

α-divergences [LT16] or f -divergences [DDP21; DDR23], which are generalizations of DKL.

In parallel to these adjustements, another class of research focuses on non-parametric fam-

ilies of variational distributions, both to improve flexibility of the solutions in recovering π
and to avoid having to choose specific family of distributions based on computational aspects

alone. A popular example in recent years [LW16] where the variational distributions are in-

teracting systems of uniformly weighted particles optimized by considering gradients defined

directly in P(X). Such approaches have recently attracted wide interest, notably by recast-

ing sampling algorithms as gradient flows of some underlying distance in probability spaces

[KLJ23; Kor+21], which notably introduces strong links between Monte Carlo algorithms and

variational inference.

In fact, most of our work attempts to bridge the gap between variational methods and

known decompositions or approximations schemes in SSM literature (e.g. SMC), but it is still

unclear how far the links between the two literatures go. In that respect, many works [GGT15;

NLB20; Nae+18; Zha+22] in SMC propose solutions that somewhat unify the two approaches

by viewing VI and minimization of DKL over the joint space as a principled methodology to

learn sampling proposals which are directly tuned for the smoothing problem. As such, they

are conceptually closer to the field of adaptive SMC [CMO08], or in the context of smoothing,

to elaboratemethods that learn globally optimal proposals at each timestep [Hen+17; Law+18],

see also [NLS+19, chapter 3] for a general introduction. While such works are insightful to

introduce the powerful aspects of amortized inference into SMC, in most cases the discussion

on SVI implementations are largely directed by evaluating the quality of the resulting particle

approximations that they enable. As such, they do not directly provide theoretical insight for

the methods described in this thesis, which aim at replacing particle approximtions altogether.

Still, an interesting perspectivewould be to evaluate the relevance of backward SVI approaches

when used as proposals for SMC to mitigate the curse of dimensionality.

6.2 A unifying framework for sequence-wise prediction
tasks in videos

Asmentioned in Section 1.2.2, a strongmotivation behind the study of novel solutions for high-

dimensional latent estimation is the recent surge of unsupervised approaches which focus

on learning expressive representations of the data from which most predictions tasks can be

easily derived. In most of these works, it is generally assumed that latent variables fromwhich

observations originate factorize into individual components that are statistically independent,
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and that capturing this so-called "disentangled" property of latent representations [Hig+18]

is key to facilitate downstream applications. In Figure 6.2, for example, we provide a visual

illustration of some powerful aspects of these latents in the context of multi-object discovery.

Figure 6.2: Some results from [Kip+22]. An image contains multiple objects, and the goal is to

retrieve a latent representation where each component accounts for one of them only. Top-

left: reconstruction of an original image from all coordinates of the predicted latent. Other

images: reconstruction by isolating a single component of the predicted latent. The role of

the illustration is to demonstrate that individual coordinates of the posterior effectively cor-

respond to different objects in the image.

However, up to now, most works have required to enforce the desired structure of the

recovered latents, i.e. by explictly introducing additional constraints in the definition of the

posteriors [Loc+20; Gre+19; Kab+21; Els+22; SWA22], adding regularisation terms in the MLE

objectives [Hig+17], or relying on auxiliary observed data [Kip+22] which further constrains

the inference problems. In parallel, the problem of retrieving statistically independent sources

of variation from the data has been largely formalized from the point of view of independent

component analysis (ICA) [HO00]. Here, a recurring topic is to determine in which settings

a set of independent latent variables can be recovered uniquely without supervision in the

limit of infinite data. In that regard, theoretical results [HP98] and recent empirical studies

[Loc+19] essentially characterize latent estimation in nonlinear data models as ill-posed in the

context of independent observations, which largely hinders representation learning for realis-

tic generative models (e.g. containing complex mappings such as DNNs) when only datasets of

separate images are available. Conversely, newer results [GLL20; Khe+20] prove identifiability

properties in the context of dependant data, and in particular temporal data (which includes

videos). From there, recent analyses [HKM23] suggest that recovering independent latents in

high-dimensional data can be achieved without any supervision, provided that the statistical
dependencies of the posterior approximations are well specified.

In practice, most works that have attempted to tackle structured data based on these results

[HH20; Häl+21a] have heavily relied on sequential variational approximations, but mostly

via decompositions similar to those in Section 2.3.2, which lack the theoretical guarantees

developed in this thesis and can hardly be used for long sequences. Consequently, an important

perspective of this thesis would be to derive similar solutions using backward decompositions

instead. In the context of video object counting, or more generally when targeting global

quantities related to entire sequences of observations y0:t, the identifiability properties of the

sequential setting are especially appealing, because they suggest that formulating prediction

in videos as statistical estimates under the smoothing distributions could be a theoretically

justified approach to avoid relying on specialized intermediate predictions (such as the point

estimates of MOT). For example, given the reliability of backward SVI approximations for

additive smoothing, one may imagine a streamlined counting solution which estimates an



6.2. A UNIFYING FRAMEWORK FOR SEQUENCE-WISE PREDICTION TASKS IN VIDEOS 101

object count N̂ in a video via

N̂ = Eqλ0:t
[h0:t(X0:t)] ≈ Eϕθ

0:t
[h0:t(X0:t)] ,

for some additive state functional h0:t that can extract relevant count information from the

recovered latents. Relying on such formalism would be very appealing because it essentially

separates the problem into two distinct steps:

1. A generic learning stage to build qλ0:t solely from ELBO optimization, where dependen-

cies in the data are captured without any annotation and irrespective of the targeted

task.

2. The specification of h0:t depending on the task at hand, and the computation of qλ0:th0:t
with λ fixed.

In practice, such framework has several advantages. First, compared to e.g. fully supervised

MOT methods which require additional tracking annotations to introduce temporal informa-

tion in the learning process, the first step is fully unsupervised and only requires correct spec-

ification of the dependencies in the posterior. Then, and most importantly, the separation of

the representation learning stage from the final prediction stage may allow to rely on much

weaker annotations than in common supervised learning settings. Indeed, just as location in-

formation is discarded in detection-based object counting in still images, the predicted object

locations in MOT-based video object counting are used for temporal association between de-

tections across frames but discarded in the final count. In the previous setting, the temporal

coherency of the predictions is expected to be already enforced given that predictions are for-

mulated as expectations under qλ0:t, and one may therefore derive a "counting" functional h0:t
which extracts counts from the smoothed latents, given only count supervision.

As an example, suppose that we can annotate, for all timesteps s ≤ t in a video y0:t, the num-

ber of objects N+
s appearing in the video at s, but not present for s′ < s. Then, assuming that

an object cannot be visible again after it has left the camera field (e.g. the camera does not

move backwards), the total object count in the video is simply given by N =
∑t

s=0N
+
s . In

practice, such annotations are easy to obtain, because they only require watching the video

and marking frames with entering objects (all other frames receiveN+
s = 0), which is consid-

erably less involved than annotating all object locations at all frames. Given this, a counting

algorithm may be developed by defining functionals whose components are mappings aimed

at estimating (N+
s )s≤t from the pairwise latent representations of consecutive frames, given

the entire video. Formally, one may define

hγ0:t : x0:t 7→
t∑

s=1

h̃γ(xs−1, xs) ,

where h̃γ is a DNN from X×X toN parameterized by γ ∈ Γ, where Γ is a parameter space. To

learn γ, one may derive a count penalty function Cγ : N × N → R (e.g. Poisson regression),

and consider the global penalty

∑t
s=0 Cγ(N̂+

s , N
+
s ) on the video, where

N̂+
s = Eqλs−1:s

[h̃γ(Xs−1, Xs)] ,
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for all s ≤ t. 1
Upon convergence, an estimate of the global count N would be given by

N̂ = Eqλ0:t
[hγ0:t]. As such, this methodology is very appealing because it does not require ano-

tation of object locations, includes knowledge from all frames through qλ0:t, but still provides
a learning signal at individual timesteps (and not only a global count). Regarding this latter

point, many other options would be possible to strengthen the "local" supervision, i.e. by defin-

ing components which predict the (possibly negative) variation in number of visible objects

between s−1 and s, or simply predicting the total number of objectsNs visible at any timestep

s ≤ t and consideringN =
∑t

s=1 max(0, Ns−Ns−1) as an alternative definition of the global

count
2
. Conversely, the flexility of this setting would also allow, after this first training stage,

to finetune γ given global count supervision, i.e. directly using Cγ(N̂ ,N)with N̂ = Eqλ0:t
[hγ0:t].

Finally, one may also consider retraining λ with γ fixed, using the count penalty to finetune

the latent representation for best count performance given a count functional. Conveniently,

using Chapter 4, all of these operations could be performed online.

All in all, the expected advantages of this new methodology provide clear answers to the

limitations of thework conducted in Chapter 3. Indeed, in the latter contribution, themain axis

of improvement was to increase the performance of the object detector via larger datasets of

individual images, which requires continuous effort from Surfrider Foundation. Furthermore,

as mentioned in introduction, developing a more stable counting solution in the framework of

MOT would have required more sophisticated tracking mechanisms, with many aspects not

directly related to the final counting task, and with additional steps of hyperparameter tuning.

Comparatively, the research conducted in Chapters 4 and 5 paves the way to the development

of more streamlined counting solutions. Additionally, they would also be arguably easier to

supplement with uncertainty estimates, e.g. by considering confidence intervals based on the

variance of the posterior qλ0:t. While not part of thismanuscrit, experiments on synthetic videos

of moving objects (see Figure 6.3) are underway to evaluate the relevance of these ideas on

real image-based content where clean ground truth data can be obtained, and varying degrees

of complexity can be generated.

As a final note, because the learning of qλ0:t is agnostic to the choice of functional used for

the final prediction, the previous framework is highly modular: one may for example learn

qλ0:t as a prior stage, then perform various predictions using different functionals, keeping the

same λ. To illustrate the potential relevance of this aspect, we can consider someminor portion

of the observed data of the Plastic Origins project, which exposed the limitations of framing

macrolitter pollution monitoring simply as a counting task. For example, situations such as

illustrated in Figure 6.4 suggested that approaches which could provide additional forms of

predictions (e.g. the surface of the river bank covered by litter) depending on the situations

present would be an interesting perspective of research.

1
Recalling that qλs−1:s is the joint marginal distribution of qλ0:t at s− 1 and s.

2
Actually, the number of objects visible in any frames can be obtained simply by annotating, on top of N+

s ,

the number of objects N−
s leaving the video at all s.
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(a) N+
0 = 2, N−

0 = 0, N0 = 2 (b) N+
1 = 1, N−

1 = 1, N1 = 2 (c) N+
2 = 1, N−

2 = 0, N2 = 3

(d) N+
3 = 0, N−

3 = 0, N3 = 3 (e) N+
4 = 0, N−

4 = 1, N4 = 2 (f) N+
5 = 1, N−

5 = 0, N5 = 3

Figure 6.3: An example of synthetic video with objects entering and leaving the camera frame

with varying speeds.

Figure 6.4: One example of high-density litter accumulation. Here, individually enumerating

objects seems unadapted to measure the level of pollution, e.g. one may rather estimate the

surface of the bank that is covered by plastic.
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Appendix A

Further technical background

A.1 Additional elements on deep learning, computer vi-
sion and MOT

We consider videos as sequences of T digital images V = (It)t≤T , where each image is an

element of I = [0, 1]W×H×C
, W and H being integers respectively for the width and height

of the image in number of pixels and C the number of color channels (with C = 3 in RGB

images). As such, the first two dimensions are specifically referred to as the spatial dimensions.

In practice, the range of possible values per pixel is fixed, such that the segment [0, 1] is further
discretized (e.g. 256 values for 8-bit images). We use the notation I(x, y, c) to denote an

individual component of an image at a given position (i.e. a pixel) and simply I(x, y) when
the operations involved can be understood independently on the channel dimension.

A.1.1 Prediction and feature extraction on images with DNNs

In modern computer vision methods, the most common approach to build algorithms for pre-

diction in images is supervised learning. In short, given a space Y of high-level attributes in

the images, a datasetD = {(Ik, Yk)}k≤K of elements in I×Y is assembled and a differentiable

parametric function Fγ : I → Z is defined, where Z is referred to as the prediction space.

Given a penalty function L : Z ×Y → R differentiable w.r.t its left input, the main challenge

is to find

γ∗ = argmax
γ∈Γ

1

K

K∑
k=1

L (Fγ(Ik), Yk)

where Γ is the parameter space. In general, the optimization problem is solved via stochas-

tic gradient descent and autodifferentiation. In this context, some central questions to build

efficient computer vision algorithms are the following:

• Which labels are best suited for a given task ?

• Which classes of functions {Fγ}γ∈Γ are best suited for image data ?

Some examples of popular tasks on images and the possible labels associated to them are

the following:
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• Object detection and localization with labels as coordinates Y = {(xi, yi, wi, hi)}i≤I

for the rectangular areas covered by the objects of interest, known as bounding-box

supervision

• Classification, where Y = {Ci}i≤I is a set of possible attributes to describe the content

of an image

• Segmentation, e.g. Y = {0, 1}W×H
such that Y (x, y) = 1 if the pixel at (x, y) is covered

by an object of interest, 0 otherwise.

Network architectures and image features In classical computer vision methodology,

most algorithms first transform input images into a set of informative descriptions, called

images features, then perform the prediction from these features (which usually involves some

form of thresholding). For example, a basic ad-hoc solution to object segmentation is to predict

the convex hull of the coordinates of object contours of input images. To obtain these contours,

one may extract discrete gradients ∇x,yI w.r.t the spatial dimensions (features), then return

the coordinates having the highest values (thresholding).

One of the most important elements in the shift towards learning-based methods for com-

puter vision is the developement of network architectures that define classes of functions Fγ

in a similar way. Indeed, in most deep learning-based methods, the latter mapping can usually

be understood as performing the following operations

• From a raw image I ∈ I , a first mapping Fγb : I → H produces a compact representa-

tion Ĥ = Fγb(I) via a sequence of operations built from inductive biases on images.

• A generic layer fγh : H → Z - usually a fully-connected DNN - converts these features

into a valid prediction for the required task.

In computer vision, the first step is often referred to as feature extraction, and the function
Fγb is called the backbone, while the function fγh may be described as the head.

While many options are possible for the feature extraction step, convolutional neural net-

works (CNNs) have shown to be particularly suited for images by exploiting translational

invariance to produce compact representations with fewer weights. To define the mappings

Fγb , the core component of CNNs are parameterized spatial convolutions followed by non-

linarities, i.e. given H ∈ Rw×h×c
and ω ∈ R(2δx+1)×(2δy+1)×c

, transformations of the form

σ(ω ∗H) where σ is a nonlinear function (e.g. a sigmoid activation function) and

(ω ∗H)(x, y, c) =
δx∑

u=−δx

δy∑
v=−δy

c∑
w=0

ω(u, v, w)H(i− u, j − v, k − w)

A distinctive element of these transformations is the notion of weight-sharing, i.e. in the

previous equation all components of the output involve the entire weight ω distributed across

all dimensions of the input. Though many variants exist, CNNs then additionally involve spa-

tial subsampling: the result of the previous operation is reshaped by keeping only the maximal

components amongst subgroups of values. Repeatedly performing these operations with mul-

tiple weights per step yields a sequence of complex transformations (Hk)k≤K from an input

image I = F0 to a set of featuresH = HK (where the layers (Hk)k<K are called activations). In
deep learning, the precise organization of the previous transformations is usually referred to
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as an architecture, and building efficient CNN architectures is a very active area of research, as

the latter often concentrate the main computational load in image-based prediction tasks. In

many popular architectures built for maximum flexibility like [SZ15; He+16], the total number

of parameters |γb| of the backbones is in the order of several millions, while some works like

[How+17; TPL20] specifially focus on computational efficiency with clever implementations

andweight distribution. Nonetheless, one aspect making all CNNs particularly appealing com-

putationally - and which essentially enabled their massive use in most image-based tasks - is

the easy parallelization of the operations involved. In Figure A.1, we provide a visual illustra-

tion of a deep learning architecture involving a CNN, and in Figure A.2 we show one popular

architecture used as a backbone layer for various prediction tasks. In these illustrations, ReLU

stands for the function x 7→ max(0, x) applied unitwise to components of the outputs, which

is another popular choice of nonlinear activation function.

Figure A.1: Overview of a CNN-based architecture for classification

Figure A.2: The VGG16 architecture

In most predictions tasks, the parameters of the backbone layers and the prediction head

are trained jointly by gradient descent w.r.t to γ = [γb, γf ] and the composite function Fγ =
fγh ◦ Fγb . During this process, all layers of the DNN will be tuned for a specific task given

the supervision. However, a common practise in computer vision is to view the output of the

backbone layers Fγb(I) as a representation of the input image I ∈ I which may be relevant
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for several tasks if the original training procedure targeted a sufficiently high-level prediction

problem. As a consequence, a popular procedure is pre-training. First, a set of parameters γb is
learnt via an intermediate task (e.g. classification) and associated head on a very large dataset.

Then, a new head fγh and labels are chosen for a more specific task, and parameters are tuned

by considering derivatives ∇γhF instead of ∇γF , keeping the parameters γb fixed. This last
step is known as finetuning.

In computer vision with deep learning methods, a central topic is that of finding the most

efficient training procedures to yield strong image features which can be used in a variety of

tasks, as any improvement in this regard benefits multiple applications at once.

A.1.2 Recurrent Neural Networks
A Recurrent Neural Network (RNN) is a type of artificial neural network designed for sequen-

tial data processing and time-series prediction. It is a class of deep learning models that can

capture patterns and dependencies in sequences of data. Unlike feedforward neural networks,

RNNs have a feedback loop that allows information to persist and be passed from one step in

the sequence to the next. This enables RNNs to maintain a memory of previous inputs, making

them capable of handling sequences of varying lengths.

The basic building block of an RNN is called a "cell" which can be thought of as a small

neural network that takes an observation and hidden state and produces a new hidden state.

The hidden state is like the memory of the cell, and it gets updated at each time step in the

sequence. This hidden state allows RNNs to capture information from previous time steps and

use it to influence the predictions at the current time step. Formally, one may define a RNN as

a mapping Aγ : A× Y → A where A is the space of hidden states, Y is the observation space,

and γ is a parameter in a parameter space Γ. In this context, given a sequence of observations

y0, . . . , yt and an initial state a−1 (which can be a learnable parameter), RNNs propgate the

hidden state as ∈ A for s ≤ t via updates of the form

as = Aγ(as−1, ys) .

A.1.3 Additional topics in multi-object tracking
In this Appendix, we describe in more detail some new state-of-the-art MOT methods briefly

mentioned in introduction.

GNN-based assignments

In MOT, many efforts are made to design models which take into account as much informa-

tion as possible from the videos. However complex these models may be, a choice has to be

made to select which quantity can be derived from them to define a cost (e.g. maximum a

posteriori estimates in probabilistic models, similarity values for appearance models, etc). To

avoid choosing these costs from heuristics, another class of models further abstracts the asso-

ciation problem by using graphical neural networks which are trained to derive optimal cost

values from track supervision. In Figure A.3, we show an illustration from [LGJ20] where sep-

arate estimates from motion and appearance models are fed into separate graphical models

which generate corresponding costs that are combined in final cost matrix for the assigne-

ments. Some work, like [BL20], even push this idea further and directly provide CNN features
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extracted from images as input for the graph neural networks, then perform the association as

a binary classification task on the edges of the graphs, were positive predictions correspond

to matchings. We illustrate this in Figure A.4.

Figure A.3: Tracking architecture from [LGJ20] to illustrate the GNN approach to tracking-

by-detection MOT

Figure A.4: Architecture from [BL20] where the association procedure is formulated as binary

classification on edges of a GNN

In all these methods, dense datasets of annotated videos with corresponding tracks are

required to train the networks involved.

Model-free and single network methods

In an attempt to streamline the previous approaches and simplify MOT predictions, newmeth-

ods have appeared that blur the distinction between the detection and association stages.

Estimating tracking associations simultaneouslywith detections In a first line ofwork,

new methods supplement detection networks with additional outputs that provide auxilary

predictions which are used specifically for tracking. In [ZKK20], illustrated in Figure A.5, a
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single network is provided with consecutive pairs of frames and the existing set of tracked

objects at the corresponding timesteps, and new detections are greedily associated using an

prediction on the displacement of the previous detections. In [Wan+20] appearance features

for the detected objects are directly output along with the positions of the objects, and in

[Zha+21], a single network infers from each image the set of object positions and bounding-

boxes, predicted motion of their centers and the corresponding appearance features, which

further facilitates the greedy association process.

Figure A.5: The single network approach from [ZKK20]

Figure A.6: The single network approach from [Zha+21], where a single network predicts both

the location, spatial extent, predicted motion and appearance features of the detected objects

in each frames

Attention-based approaches Following advances in transformer-basedmethods, someworks

directly tackle the MOT task by formulating it as a set prediction approach on the space of spa-

tial coordinates and labels. At each frame, the set of features of the previous detections and

their assigned labels are fed into a transformer networkwhich leverages attentionmechanisms

to associate the new detections with the previous tracks. This is illustrated in Fig A.7.

A.2 Additional topics on state-space models

A.2.1 Alternate smoothing decompositions
The forward-backward algorithm One of the earliest methods for inference on SSMs

[Rab89], which targets only the marginal distributions (ϕθ
s|t)s≤t, is the forward-backward al-

gorithm. In the latter, the marginals are expressed in the following way
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Figure A.7: Tracking by attention

ϕθ
s|th ∝

∫
X

h(xs)α
θ
s(dxs)β

θ
s|t(xs)

where

• (αγ
s )s≤t is a sequence on un-normalized measures such that each αθ

s only depends on

y0:s.

• (βθ
s|t)s≤t is a sequence of functions such that βθ

s|t only depends on ys+1:t.

in practice, the computation of the measures (αθ
s)s≤t (referred to as the forward measures) is

similar to the forward filtering recursions described in 2.1.1. More precisely,

ϕθ
t|th =

αθ
sh

αθ
s1X

i.e. the forward measures are un-normalized versions of the filtering distributions. The back-

ward functions, however, cannot be related to existing distributions. With the convention

βθ
t|t = 1X, they are defined as

βθ
s|t : xs 7→

∫
X

mθ
s+1(xs, dxs+1)g

θ
s+1(xs+1)βs+1|t(xs+1)

which is not a normalized quantity in xs. When further defining

β̄θ
s|t =

αθ
s1

θ
X

αθ
sβ

θ
s|t
βθ
s|t

the marginal smoothing distribution at s can be expressed directly as

ϕθ
s|th =

∫
X

ϕθ
t|tβ̄

θ
s|th (A.1)

It turns out that separate recursions can be found for the quantities (β̄θ
s|t)s≤t without explicitly

involving the forward measures. In this case, the normalized forward-backward algorithm

consists in
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1. Running the forward filtering recursions up to s.

2. Computing the backward recursion for the β̄θ
s|t from t down to s.

Then, marginal smoothing estimates are simply given from A.1. Intuitively, the forward-

backward algorithm aggregates information from past and future observations (around a cen-

tral timestep s) which are combined in a final step. In discrete SSMs (i.e. those where the

state space X is discrete), the forward measures correspond to vectors of probabilities cor-

responding to P(Y0 = y0, . . . , Ys = ys, Xs = xs), and the backward functions are viewed

as the conditional probabilities P(Ys+1 = ys, . . . , Yt = yt|Xs = xs). Note finally that the

methodology behind the forward-backward algorithm is rooted in message-passing / belief

propagation approaches, which are not specifically bound to SSMs but can be extended to any

data viewed as a factor graph. Finally, in some works, the forward-backward algorithm is re-

ferred to as the two-filter algorithm, as the backward variables are re-defined to correspond

to filtering distributions obtained by considering the reverse sequence of observations yt:s+1.

In SSM literature, the use of the forward-backward algorithm is mostly restricted to situa-

tions where only the marginal smoothing estimates are required, but in practice the bi-variate

marginal distributions of (Xs−1, Xs) given Y0:t are also easily derived from the forward and

backward quantities. While this algorithm does not play a central role in the contributions

of this thesis, many related works that we will mention tackle inference on structured data

via similar "message-passing" routines, i.e. by aggregating information all observations into

un-normalized quantities updated using the factor graph defined by the model.

Forward factorization We present here another possible factorization of the joint smooth-

ing distribution, which is based on the Markov property of the forward process (Xs)s≥0 given

Y0:t = y0:t. For 1 ≤ s ≤ t, we denote F θ
s|t the corresponding Markov transition kernel such

that F θ
s|t(Xs−1, ·) is the conditional distribution of Xs given (Xs−1, Y0:t). In this setting, the

forward factorization of the joint smoothing distribution is then given, for any measurable

function h : Xt+1 → H, as

ϕθ
0:t|th =

∫
Xt+1

h(x0:t)

{
ϕθ
0|t(dx0)

t∏
s=1

F θ
s|t(xs−1, dxs)

}
(A.2)

Considering the dependency graph of SSMs, one may observe that the distribution ofXs given

(Xs−1, Y0:t) does not depend on Y0:s−1 for 1 ≤ s ≤ t. As such, the previous Markov kernels

are in practice only parameterized given future observations, and in fact their definition is best

understood using the backward variables introduced in the forward-backward algorithm. For

1 ≤ s ≤ t, any xs−1 ∈ X and any measurable function h : X→ H,

Fs|t(xs−1, ·)h =
ℓθs(xs−1, ·)

(
βθ
s|t × h

)
βθ
s−1|t(xs−1)

While the existence of factorization A.2 plays a central role in proving ergodic properties of

the conditional process (Xs)s≥0 given on Y0:t = y0:t, its practical use for joint smoothing infer-

ence is not very much explored in classical SSM literature, notably because the corresponding

implementations require to complete passes through the data: a reverse pass to build the back-

ward functions (βθ
s|t)s≤t and a forward pass to build theMarkov kernels (F θ

s|t)s≤t. Nonetheless,
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a convenient aspect of the forward factorization is the direct availability of joint smoothing

distributions that go beyond the observed timesteps, i.e. for t′ > t and any measurable func-

tion h : Xt′+1 → H, ϕθ
0:t′|th can be obtained by extending decomposition A.2 by defining the

kernels F θ
s|t = mθ

s for t < s ≤ t′ without any additional renormalization step.

A.2.2 Detailed Kalman filtering and smoothing computations
With X = Rp

and Y = Rq
, denote χθ ∼ N (µ0, Q0) and for all 1 ≤ s ≤ t,

mθ
s(Xs−1, ·) ∼ N (AsXs−1 + as, Qs), g

θ
s(Xs, ·) ∼ N (BsXs + bs, Rs)

where As ∈ Rp×p
, Bs ∈ Rp×q

and Qs, Rs are positive definite matrices in Rp×p
and Rq×q

,

respectively. At s, suppose that ϕθ
s−1 ∼ N (µθ

s−1,Σ
θ
s−1), we briefly present the analytical com-

putations that correspond to the Kalman versions of the forward filtering recursions and the

construction of the backward kernels.

• The Kalman predict step (which corresponds to 2.6) computes ϕ̄θ
s ∼ N (µ̄θ

s, Σ̄
θ
s) with

µ̄θ
s = Asµ

θ
s−1 + as, Σ̄

θ
s = AsΣ

θ
s−1A

T
s +Qs

• The Kalman update step (which corresponds to 2.7) computes ϕθ
s ∼ N (µθ

s,Σ
θ
s) with

µθ
s = µ̄θ

s +Kθ
s

[
ys −

(
Bsµ̄

θ
s + bs

)]
, Σθ

s =
(
I −Kθ

sBs

)
Σ̄θ

s

with Ks = Σ̄θ
sB

T
s

(
BsΣ̄

θ
sB

T
s +Rs

)−1

Given that Bθ
s−1(Xs, ·) ∝ ϕθ

s−1m
θ
s(·, Xs), B

θ
s−1 is a linear and Gaussina kernel such that

Bθ
s−1(Xs, ·) ∼ N ( ⃗A

θ

s−1Xs + ⃗aθs, ⃗Σ
θ

s), with

⃗A
θ

s−1 = ⃗K
θ

s−1, ⃗aθs−1 = ⃗Cs−1µ
θ
s−1 − ⃗K

θ

sas,
⃗Σ
θ

s−1 = ⃗C
θ

s−1Σ
θ
s−1

where
⃗K
θ

s−1 = Σθ
s−1A

T
s

(
AsΣ

θ
s−1A

T
s +Qs

)−1
and

⃗C
θ

s−1 = I − ⃗K
θ

s−1As
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Appendix B

Appendix for Chapter 3

B.1 Categories

In this work, we do not seek to precisely predict the proportions of the different types of

counted litter. However, we build our dataset to allow classification tasks. Though litter clas-

sifications built by experts already exist, most are based on semantic rather than visual features

and do not particularly consider the problem of class imbalance, which makes statistical learn-

ing more delicate. In conjunction with water pollution experts, we therefore define a custom

macrolitter taxonomy which balances annotation ease and pragmatic decisions for computer

vision applications. This classification, depicted in Figure B.1 can be understood as follows.

1. We define a set of frequently observed classes that annotateors can choose from, divided

into:

• Classes for rigid and easily recognisable items which are often observed and have

definite shapes

• Classes for fragmented objects which are often found along river banks but whose

aspects are more varied

2. We define two supplementary categories used whenever the annotater cannot classify

the item they are observing in an image using classes given in 1.

• A first category is used whenever the item is clearly identifiable but its class is not

proposed. This will ensure that our classification can be improved in the future, as

images with items in this category will be checked regularly to decide whether a

new class needs to be created.

• Another category is used whenever the annotater does not understand the item

they are seeing. Images containing items denoted as such will not be used for

applications involving classification.

131
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Figure B.1: Trash categories defined to facilitate porting to a counting system that allows trash

identification

B.2 Details on the evaluation videos

B.2.1 River segments
In this section, we provide further details on the evaluation material. Figure B.2 shows the

setup and positioning of the three river segments S1, S2 and S3 used to evaluate the methods.

The segments differ in the following aspects.

• Segment 1: Medium current, high and dense vegetation not obstructing vision of the

right riverbank from watercrafts, extra objects installed before the field experiment.

• Segment 2: High current, low and dense vegetation obstructing vision of the right river-

bank from watercrafts.

• Segment 3: Medium current, high and little vegetation not obstructing vision of the left

riverbank from watercrafts.

B.2.2 Track annotation protocol
To annotate tracks on the evaluation sequences, we used the online tool "CVAT" which allows

to locate bounding boxes on video frames and propagate them in time. The following items

provide further details on the exact annotation process.

• Object tracks start whenever a litter item becomes fully visible and identifiable by the

naked eye.

• Positions and sizes of objects are given at nearly every second of the video with auto-

matic interpolation for frames in-between: this yields clean tracks with precise positions

at 24fps.

• We do not provide inferred locations when an object is fully occluded, but tracks restart

with the same identity whenever the object becomes visible again.

• Tracks stop whenever an object becomes indistinguishable and will not reappear again.
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Figure B.2: Aerial view of the three river segments of the evaluation material

B.3 Implementation details for the tracking module

Covariancematrices for state and observation noises In our state space model,Qmod-

els the noise associated with the movement model we posit in 3.2.2 involving optical flow

estimates, while R models the noise associated with the observation of the true position via

our object detector. An attempt to estimate the diagonal values of these matrices was the

following.

• To estimate R, we computed a mean L2 error between the known positions of objects

and the associated predictions by the object detector, for images in our training dataset.

• To estimate Q, we built a small synthetic dataset of consecutive frames taken from

videos, where positions of objects in two consecutive frames are known.

We computed a mean L2 error between the known positions in the second frame and the

positions estimated by shifting the positions in the first frame with the estimated optical flow

values.

This led to R00 = R11 = 1.1, Q00 = 4.7 and Q11 = 0.9, for grids of dimensions ⌊w/p⌋ ×
⌊h/p⌋ = 480× 270. All other coefficients were not estimated and supposed to be 0.

An important remark is that thoughwe use these values in practice, we found that tracking

results are largely unaffected by small variations ofR andQ. As long as values are meaningful

relative to the image dimensions and the size of the objects, most noise levels show relatively

similar performance.

Influence of τ and κ An understanding of κ, τ and ν can be stated as follows. For any

track, given a value for κ and ν, an observation at time n is only kept if there are also ν · κ
observations in the temporal window of size κ that surrounds n (windows are centered around
n except at the start and end of the track). The track is only counted if the remaining number

of observations is strictly higher than τ . At a given ν > 0.5, κ and τ should ideally be chosen
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to jointly decrease N̂false and N̂red as much as possible without increasing N̂mis (true objects

become uncounted if tracks are discarded too easily).

In Figure B.3, we plot the error decomposition of the counts for several values of κ and τ
with ν = 0.6 for the outputs of the three different trackers. We choose ν = 0.7 and compute

the optimal point as the one which minimizes the overall count error N̂(= N̂mis+N̂red+N̂false).

Bayesian filtering Considering a state space model with (Yt, Xt)t≥0 the random processes

for the states and observations, respectively, the filtering recursions are given by:

• The predict step: p(xt+1|y1:t) =
∫
p(xt+1|xt)p(yt|x1:t)dxt.

• The update step: p(xt+1|y1:t+1) ∝ p(yt+1|xt+1)p(xt+1|y1:t).

The recursions are intractable in most cases, but when the model is linear and Gaussian,

i.e. such that:

Xt = AtXt−1 + at + ηt

Yt = BtXt + bt + ϵt

with ηt ∼ N (0, Qt) and ϵt ∼ N (0, Rt), then the distribution ofXt given Z1:t is a Gaussian

N (µt,Σt) following:

• µt|t−1 = Atµt−1 + at and Σt|t−1 = AtΣt−1A
T
t +Qt (Kalman predict step),

• µt = µt|t−1 + Kt

[
Zt − (Btµt|t−1 + bt)

]
and Σt = (I − KtBt)Σt|t−1 (Kalman update

step),

where Kt = Σt|t−1B
T
t (BtΣt|t−1B

T
t +Rt)

−1
.

In the case of the linearized model in 3.2.2, EKF consists in applying these updates with:

At = I + ∂X∆t(⌊µt−1⌋),

at = ∆t(⌊µt−1⌋)− ∂X∆t(⌊µt−1⌋)µt−1,

Qt = Q,Rt = R,

Bt = I, bt = 0.

Computing the confidence regions In words, P (i, ℓ) is the mass in Vδ(y
i
t) ⊂ R2

of the

probability distribution of Y ℓ
t given Y ℓ

1:n−1. It is related to the filtering distribution at the

previous timestep via

p(yt|y1:t−1) =

∫ ∫
p(yt|xt)p(xt|xt−1)p(xt−1|y1:t−1)dxtdxt−1

When using EKF, this distribution is a multivariate Gaussian whose moments can be analyt-

ically obtained from the filtering mean and variance and the parameters of the linear model,

i.e.

E
[
Y ℓ
t |Y ℓ

1:t−1

]
= Bt(Atµt−1 + at) + bt
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Figure B.3: Calibration of κ and τ for the three competing methods. From top to bottom:

FairMOT (best κ = 7, τ = 9), SORT (best κ = 7, τ = 9), Ours (best κ = 7, τ = 8)
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and

V
[
Y ℓ
t |Y ℓ

1:t−1

]
= Bt(AtΣtA

T
t +Qt)B

T
t +Rt

following the previously introduced notation. Note that given the values of At, Bt, at, bt in
our model these equations are simplified in practice, e.g. Bt = I, bt = 0 and Atµt−1 + at =
µt−1 +∆t(⌊µt−1⌋). In R2

, values of the cumulative distribution function (cdf) of a multivari-

ate Gaussian distribution are easy to compute. Denote with F ℓ
t the cdf of Lℓ

t . If Vδ(u) is a
squared neighborhood of size δ and centered on u = (x, y) ∈ R2

, then, denoting with Lℓ
t the

distribution of Y ℓ
t given Y ℓ

1:t−1:

Lℓ
t(Vδ(u)) = F ℓ

t (x+ δ, y + δ) + F ℓ
t (x− δ, y − δ)−

[
F ℓ
t (x+ δ, y − δ) + F ℓ

t (x− δ, y + δ)
]

This allows easy computation of P (k, ℓ) = Lℓ
t(Vδ(u

i
t)).

Impact of the filtering algorithm An advantage of the data association method proposed

in 3.2.3 is that it is very generic and does not constrain the tracking solution to any partic-

ular choice of filtering algorithm. As for EKF, UKF implementations are already available to

compute the distribution of Yt given Y1:t−1 and the corresponding confidence regions (see B.3

above). We propose a solution to compute this distribution when SMC is used, and perfor-

mance comparisons between the EKF, UKF and SMC versions of our trackers are discussed.

SMC-based tracking Denote ϕt the filtering distribution (ie. that of Xt given Y1:t) for the
HMM (Xt, Yt)t≥1 (omitting the dependency on the observations for notation ease). Using a

set of samples {ξit}1≤i≤N and importance weights {ω̄i
t}1≤i≤N , SMC methods build an approx-

imation of the following form:

ϕ̂SMC
t (dxt) =

N∑
i=1

ω̄i
tδξit(dxt) .

Contrary to EKF and UKF, the distribution Lt of Yt given Y1:t−1 is not directly available but

can be obtained via an additional Monte Carlo sampling step. Marginalizing over (Xt−1, Xt)
and using the conditional independence properties of HMMs, we decompose Lt using the

conditional state transitionMt(x, dx
′) and the likelihood of Yt givenXt, denoted byGt(x, dy):

Lt(dyt) =

∫ ∫
Gt(xt, dyt)Mt(xt−1, dxt)ϕt−1(dxt−1) .

Replacing ϕt−1 with ϕ̂
SMC
t−1 into the previous equation yields

L̂SMC
t (dyk) =

N∑
i=1

ω̄i
t−1

∫
Gt(xt, dyk)Mt(ξ

i
t−1, dxt) .

In our model, the state transition is Gaussian and therefore easy to sample from. Thus an

approximated predictive distribution L̂t can be obtained using Monte Carlo estimates built

from random samples {ξi,jt }
1≤j≤M
1≤i≤N drawn from Mt(ξ

i
t−1, dxk). This leads to

L̂t(dyt) =
N∑
i=1

M∑
j=1

ω̄i
t−1Gt(ξ

i,j
t , dyt) .
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Performance comparison In theory, sampling-basedmethods like UKF and SMC are better

suited for nonlinear state space models like the one we propose in ??. However, we observe
very few differences in count results when upgrading from EKF to UKF to SMC. In practise,

there is no difference at all between our EKF and UKF implementations, which show strictly

identical values for N̂true, N̂false and N̂red. For the SMC version, values for N̂false and N̂red improve

by a very small amount (2 and 1, respectively), but N̂mis is slightly worse (one more object

missed), and these results depend loosely on the number of samples used to approximate the

filtering distributions and the number of samples for the Monte Carlo scheme. Therefore, our

motion estimates via the optical flow ∆n prove very reliable in our application context, so

much that EKF, though suboptimal, brings equivalent results. This comforts us into keeping

it as a faster and computationally simpler option. That said, this conclusion might not hold in

scenarios where camera motion is even stronger, which was our main motivation to develop

a flexible tracking solution and to provide implementations of UKF and SMC versions. This

allows easier extension of our work to more challenging data.
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Appendix C

Appendix for Chapter 5

C.1 Proofs of the main results

C.1.1 Proof of Proposition 1
Following [GLO22], write

qλ0:nhn − ϕθ
0:nhn =

n−1∑
k=0

(
qλ0:nh̄k|n − ϕθ

0:nh̄k|n
)
, (C.1)

where, for each k ∈ {0, n− 1}, h̄k|n is defined on (Rd)n+1
by

h̄k|n : x0:n 7→ h̃k(xk, xk+1) . (C.2)

Define, for each n ∈ N andm ∈ {0, n}, the kernel

Lθ
m,n(x

′
0:m, dx0:n) := δx′

0:m
(dx0:m)

n−1∏
ℓ=m

Lθ
ℓ(xℓ, dxℓ+1) (C.3)

on (Rd)n+1 × B((Rd)n+1), with the convention

∏n−1
ℓ=n f(ℓ) = 1 . We have the following de-

composition:

qλ0:nh̄k|n − ϕθ
0:nh̄k|n =

n∑
m=1

(
q̃0:mL

θ
m,nh̄k|n

q̃0:mLθ
m,n1

−
q̃0:m−1L

θ
m−1,nh̄k|n

q̃0:m−1Lθ
m−1,n1

)

+
q̃0L

θ
0,nh̄k|n

q̃0Lθ
0,n1

−
χθgθ0L

θ
0,nh̄k|n

χθgθ0L
θ
0,n1

,

where for all 1 ≤ m ≤ n, q̃0:m = q̃m
∏m

k=1 q
λ
k−1|k, q̃0:0 = q̃0, and sinceχ

θgθ0L
θ
0,nh̄k|n/χ

θgθ0L
θ
0,n1 =

ϕθ
0:nh̄k|n. For each n ∈ N, define Lλ,θ

0,n(x
′
0, dx0:n) := δx′

0
(dx0)

∏n−1
ℓ=0 L

θ
ℓ(xℓ, dxℓ+1) and for

m ∈ {1, n},

Lλ,θ
m,n(x

′
m, dx0:n) := δx′

m
(dxm)

m−1∏
ℓ=0

qλk|k+1(xℓ+1, dxℓ)
n−1∏
ℓ=m

Lθ
ℓ(xℓ, dxℓ+1), (C.4)
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onRd×B((Rd)n+1). As for allm ∈ {1, n} and measurable function h, q̃0:mL
θ
m,nh = q̃mLλ,θ

m,nh,

q̃0:mL
θ
m,nh̄k|n

q̃0:mLθ
m,n1

−
q̃0:m−1L

θ
m−1,nh̄k|n

q̃0:m−1Lθ
m−1,n1

=
q̃mLλ,θ

m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

.

Therefore,

qλ0:nh̄k|n − ϕθ
0:nh̄k|n =

n∑
m=1

(
q̃mLλ,θ

m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

)

+
q̃0L

θ
0,nh̄k|n

q̃0Lθ
0,n1

−
χθgθ0L

θ
0,nh̄k|n

χθgθ0L
θ
0,n1

. (C.5)

By Lemma 6, ∣∣∣∣∣ q̃0Lθ
0,nh̄k|n

q̃0Lθ
0,n1

−
ϕθ
0L

θ
0,nh̄k|n

ϕθ
0L

θ
0,n1

∣∣∣∣∣ ≤ 2
∥∥q̃0 − ϕθ

0

∥∥
tv

σ+
σ−
∥h̃k∥∞ .

Consider now the error term at timem > 0 in (C.5). Define the kernel

L̃λ,θ
m,n(x

′
m−1, x

′
m, dx0:n) := δx′

m−1
(dxm−1)

m−2∏
ℓ=0

qλℓ|ℓ+1(xℓ+1, dxℓ)δx′
m
(dxm)

n−1∏
ℓ=m

Lθ
ℓ(xℓ, dxℓ+1),

(C.6)

on (Rd)2 × B((Rd)n+1) so that for all xm−1, xm ∈ Rd
,

L̃λ,θ
m,nh̄k|n(xm−1, xm) =


qλm−2|m−1 . . . q

λ
k|k+1h̃k(xm−1)L

θ
m,n1(xm) if k ≤ m− 2 ,

h̃k(xm−1, xm)L
θ
m,n1(xm) if k = m− 1 ,

Lθ
m,nh̃k(xm) if k ≥ m.

Then, write

q̃mLλ,θ
m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

=
q̃mq

λ
m−1|mL̃λ,θ

m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1L

θ
m−1L̃λ,θ

m,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

.

Let 1 ≤ m ≤ n and x∗m−1 and x
∗
m be arbitrary elements in Rd

. For k ̸= m− 1, define

L∗,λ,θ
m,n h̄k|n(xm−1, xm) =

L̃λ,θ
m,nh̄k|n(xm−1, xm)

L̃λ,θ
m,n1(xm−1, xm)

−
L̃λ,θ

m,nh̄k|n(x
∗
m−1, x

∗
m)

L̃λ,θ
m,n1(x∗m−1, x

∗
m)

, (C.7)

=
L̃λ,θ

m,nh̄k|n(xm−1, xm)

Lθ
m,n1(xm)

−
L̃λ,θ

m,nh̄k|n(x
∗
m−1, x

∗
m)

Lθ
m,n1(x

∗
m)

and for k = m− 1, L∗,λ,θ
m,n h̄k|n(xm−1, xm) = h̃k(xm−1, xm). By Lemma 7,

∥∥L∗,λ,θ
m,n h̄k|n

∥∥
∞ can be

upper bounded and note that

q̃mLλ,θ
m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

=
q̃mq

λ
m−1|m

{
L∗,λ,θ

m,n h̄k|nL̃λ,θ
m,n1

}
q̃mLλ,θ

m,n1
−
q̃m−1L

θ
m−1

{
L∗,λ,θ

m,n h̄k|nL̃λ,θ
m,n1

}
q̃m−1Lλ,θ

m−1,n1
.
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By definition of the normalized measure ϕ̃θ
m−1:m,

q̃mLλ,θ
m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

=
q̃mq

λ
m−1|m

{
L∗,λ,θ

m,n h̄k|nL̃λ,θ
m,n1

}
q̃mLλ,θ

m,n1
−
ϕ̃θ
m−1:m

{
L∗,λ,θ

m,n h̄k|nL̃λ,θ
m,n1

}
ϕ̃θ
m−1:mL̃

λ,θ
m,n1

=
q̃mq

λ
m−1|m

{
L∗,λ,θ

m,n h̄k|nL̃λ,θ
m,n1

}
− ϕ̃θ

m−1:m

{
L∗,λ,θ

m,n h̄k|nL̃λ,θ
m,n1

}
ϕ̃θ
m−1:mL̃

λ,θ
m,n1

+
q̃mq

λ
m−1|m

{
L∗,λ,θ

m,n h̄k|nL̃λ,θ
m,n1

}
q̃mLλ,θ

m,n1

(
ϕ̃θ
m−1:mL̃λ,θ

m,n1− q̃mLλ,θ
m,n1

ϕ̃θ
m−1:mL̃

λ,θ
m,n1

)
.
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and the fact that ν̃λm−1:m = q̃mq
λ
m−1|m,∣∣∣∣∣ ϕ̃θ

m−1:mL̃λ,θ
m,n1 − q̃mLλ,θ

m,n1

ϕ̃θ
m−1:mL̃

λ,θ
m,n1

∣∣∣∣∣ ≤ ∥∥∥ϕ̃θ
m−1:m − ν̃λm−1:m

∥∥∥
tv

∥∥∥L̃λ,θ
m,n1

∥∥∥
∞

ϕ̃θ
m−1:mL̃

λ,θ
m,n1

,

and∣∣∣∣∣∣
q̃mq

λ
m−1|m

{
L∗,λ,θ

m,n h̄k|nL̃λ,θ
m,n1

}
− ϕ̃θ

m−1:m

{
L∗,λ,θ

m,n h̄k|nL̃λ,θ
m,n1

}
ϕ̃θ
m−1:mL̃

λ,θ
m,n1

∣∣∣∣∣∣
≤
∥∥∥ϕ̃θ

m−1:m − ν̃λm−1:m

∥∥∥
tv

∥∥L∗,λ,θ
m,n h̄k|n

∥∥
∞

∥∥∥L̃λ,θ
m,n1

∥∥∥
∞

ϕ̃θ
m−1:mL̃

λ,θ
m,n1

,

yields∣∣∣∣∣ q̃mLλ,θ
m,nh̄k|n

q̃mLλ,θ
m,n1

−
q̃m−1Lλ,θ

m−1,nh̄k|n

q̃m−1Lλ,θ
m−1,n1

∣∣∣∣∣ ≤ 2
∥∥∥ϕ̃θ

m−1:m − ν̃λm−1:m

∥∥∥
tv

∥∥L∗,λ,θ
m,n h̄k|n

∥∥
∞

∥∥∥L̃λ,θ
m,n1

∥∥∥
∞

ϕ̃λ
mL̃

λ,θ
m,n1

.

Note also that by H1,
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The proof is completed using Lemma 7.
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C.1.2 Proof of Corollary 2
It is enough to introduce the same decomposition as the one used in Proposition 1:
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Each term is then controlled similarly as in the proof of Proposition 1. By Lemma 6,∣∣∣∣∣ q̃0Lθ
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On the other hand, the error term at timem > 0 is upper bounded by∣∣∣∣∣ q̃mLλ,θ
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The proof is completed using Lemma 7.

C.2 Technical results
Lemma 6 Assume that H1 holds. Then for all, θ ∈ Θ, λ ∈ Λ, n ≥ 1, k ∈ {0, n − 1}, bounded
and measurable function h̃k,∣∣∣∣∣ q̃0Lθ
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where h̄k|n is defined in (C.2).

Proof Consider the following decomposition of the first term:
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where ϕθ
0 the filtering distribution at time 0, i.e the law defined as ϕθ
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and, using that ϕθ
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Lemma 7 Assume that H1 holds. Then for all n ∈ N, θ ∈ Θ, λ ∈ Λ,m ∈ {1, n}, k ∈ {0, n−1},
xm−1, xm, x
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Proof The proof is adapted from [GLO22, Lemma D.3] and given here for completeness.
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In the case where k = m− 1,
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which concludes the proof.

C.2.1 Hardware configuration
We ran all experiments on a machine with the following specifications.

• CPUs: 4x Intel(R) Xeon(R) Gold 6154 (total 72 cores, 144 threads).

• RAM: 260 Go.

No GPU was used.

C.2.2 Linear Gaussian models
We provide here additional figures for the experiments of Section 5.2.1. Figure C.1 shows

the accuracy of the optimal Kalman smoothing (with true parameters γ) w.r.t the true states,
as well as the numerical values for the smoothing errors at the three stopping points of the

optimization. We also provide examples of smoothed states for the fully fitted models against

the ground truth Kalman smoother which uses the true parameters γ.
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Figure C.1: Smoothing errors

∣∣qλ0:nh0:n − ϕθ
0:nh0:n

∣∣
for h̃k(xk, xk+1) = xk at n = 500, when

ϕθ
0:n is given via Kalman smoothing with the true parameters γ and qλ0:n is given via Kalman

smoothing with parameters λ selected at epochs 110,140 and 170. Each plot is generated from

the J = 50 sequences (Y j
0:n)1≤j≤J drawn from pγ
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Figure C.2: Example of smoothed states when the dimension of the state space is 5 and the

observations is 5. Left column: component-wise (from top to bottom) smoothed states with

true parameters γ. Right column: same thing with learnt parameters λ. The dashed fillings

are the 95% confidence intervals. The horizontal axis is the time axis.
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Figure C.3: Smoothing errors

∣∣h0:n(x∗0:n) − ϕθ
0:nh0:n

∣∣
for h̃k(xk, xk+1) = xk, where x

∗
0:n is the

true sequence of hidden states and ϕθ
0:n is obtained by the FFBsi algorithm. All values are

normalized by the dimension of the state space. Experiments are produced on 10 independent

sequences. The thick solid lines display the mean over the 10 independent replicates for both

approaches, shaded lines are single sequences.

C.2.3 Nonlinear models
Here we provide additional details on the experiments of section 5.2.2.

• For the nonlinear emission function dθ of the data model, we used a single-layer percep-

tron with a ReLU activation function (which induces non-injectivty on some portions of

the support).

• For the Conjugate Forward and Conjugate Backward methods, the encoder rλ is a multi-

layer perceptron (MLP) and a tanh activation function. The activation function is not

applied to the output layer to ensure that the values can exceed values outside the range

[−1, 1], being natural parameters of Gaussian distributions. The output of the network

is split into two natural parameters η1 and η2, the latter being constrained to strictly

negative values by applying the softplus function x 7→ − log(1 + ex). We use Xavier

initialization for the matrix parameters, and random normal initialisation for the bias

parameters.

• For GRU Backward model,Hλ
is a Deep GRU as implemented in the Haiku library from

the JAX ecosystem.

For the experiments of section 5.2.2, we use small networks with two hidden layers of size

8 (both for rλ and the GRU in the corresponding models). For the experiments of section 5.2.2,

we use configurations similar to that of [Cam+21] for fair comparison, i.e. neural networks

with a single hidden layer of size 100.
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In Figure C.3, we plot the evolution of the additive error of the FFBSi oracle against the

true states.



Appendix D

Contexte, contributions et perspectives
en français

D.1 Comptage automatique de macrodéchets à partir de
vidéos

Les travaux présentés dans ce manuscrit combinent des idées issues de multiples domaines,

allant de l’ingénierie mathématique, en particulier la littérature sur le suivi de multiples ob-

jets et la reconnaissance d’objets basée sur l’apprentissage profond, à de nouvelles approches

d’inférence séquentielle via des méthodes variationnelles. Les contributions présentées sont

cependant motivées par une application spécifique qui a été à l’origine du projet de thèse : une

collaboration avec Surfrider Foundation Europe pour étudier et développer de nouvelles solu-

tions de comptage automatisé des macrodéchets déposés sur les berges des rivières françaises.

Nous présentons ici directement cette application (en termes non techniques), les problèmes

méthodologiques qu’elle sous-tend et comment elle a motivé les directions de recherche de

cette thèse.

La pollution par les déchets concerne toutes les régions du globe. Chaque année, près de dix

milliards de tonnes de déchets plastiques sont produites, dont 80 échouent dans les décharges

ou dans la nature [GJL17a], menaçant notamment tous les océans, mers et environnements

aquatiques du monde [Wel20; GS20]. On sait que la pollution plastique impacte déjà plus de

3763 espèces marines dans le monde (voir par exemple [PR23] pour une analyse détaillée) avec

un risque de prolifération tout au long de la chaîne alimentaire. Cette accumulation de déchets

est le point final du cheminement largement mal compris des déchets, provenant principale-

ment de sources terrestres [Roc+16], cependant les rivières ont été identifiées comme une voie

majeure d’introduction de déchets dans les environnements marins [Jam+15]. Par conséquent,

des données de terrain sur les rivières et une surveillance sont absolument nécessaires pour

évaluer l’impact des mesures pouvant être prises. L’analyse de ces données de terrain au fil

du temps est essentielle pour comprendre l’efficacité des actions mises en œuvre telles que le

choix d’alternatives zéro déchet au plastique, la conception de nouveaux produits durables ou

réutilisables, l’introduction de politiques visant à réduire le suremballage.

Différentes méthodes ont déjà été testées pour surveiller les déchets dans les rivières :

collecte et tri des déchets sur les berges [Bru+18], comptage visuel des déchets dérivants à

partir de ponts [Gon+21], barrages flottants [Gas+14] et filets [Mor+14]. Toutes sont utiles

pour comprendre l’origine et la typologie de la pollution par les déchets, mais sont difficilement

149
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compatibles avec une surveillance à long terme à l’échelle nationale. Les outils de surveillance

doivent être fiables, faciles à mettre en place sur différents types de rivières et doivent donner

un aperçu de la pollution plastique lors des pics de débit pour aider à localiser les points clés et

à fournir des tendances aux décideurs. Des études plus récentes suggèrent que le transport des

débris plastiques pourrait être mieux compris en comptant les déchets piégés sur les berges

des rivières, fournissant ainsi une bonne indication de la pollution locale par les macrodéchets,

en particulier après l’augmentation du débit de la rivière [Emm+19; ES20].

D.1.1 Contexte

Dans ce contexte, Surfrider Foundation Europe a créé le projet Plastic Origins dont l’un des ob-
jectifs est de développer des solutions efficaces de suivi automatisé du comptage desmacroplas-

tiques sur les berges des rivières. Les données obtenues dans le cadre de ce projet (qui sont

présentées plus en détail dans le chapitre 3) peuvent être résumées de la façon suivante.

1. Plusieurs milliers d’images de déchets annotées indépendantes, plus précisément des

déchets photographiés sur les berges des rivières avec leur position et leur étendue dans

l’image identifiés par des boites rectangulaires.

2. Des dizaines de vidéos haute résolution non annotées de berges de rivières contenant des

déchets, filmées à partir de caméras portables dans des bateaux en mouvement, d’une

durée de quelques secondes à plusieurs minutes.

3. Plusieurs expéditions de collecte de données où les bénévoles sont invités à fournir des

estimations visuelles du nombre de déchets sur certaines des sections de rivière cou-

vertes par les séquences vidéo décrites ci-dessus.

Dans la FigureD.1, nousmontrons quelques exemples d’ensembles de données annotés d’images

de déchets statiques, où des boites englobantes sont superposées pour visualiser les annota-

tions. Dans la figure D.2, nous montrons deux ensembles d’images provenant d’une des vidéos

(sur deux sections différentes de l’expédition fluviale associée). De tels exemples illustrent les

caractéristiques typiques du cadre imposé par les données.

• Dans les images comme dans les vidéos, les objets à détecter se présentent sous une

grande variété de formes et de couleurs. Ils sont capturés sous différents angles et dis-

tances. Les arrière-plans, l’éclairage et l’encombrement visuel des scènes varient con-

sidérablement.

• Dans les vidéos, les berges des rivières sont filmées à partir d’une caméra qui filme prin-

cipalement perpendiculairement à la direction du mouvement. La caméra se déplace

globalement le long de la rivière, mais le mouvement peut être très non linéaire, par ex-

emple avec des variations de vitesse et des rotations non triviales. Pendant le processus

de prise de vue, un objet donné sera visible pendant une durée variable, principalement

en fonction des occultations et de la vitesse de la caméra. Plusieurs angles du même

objet peuvent être visibles lorsque la caméra se déplace, de sorte que son aspect visuel

peut légèrement changer avec le temps.
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Figure D.1: 12 exemples du jeu de données d’images annotées

D.1.2 Spécificités du projet

Chez Surfrider, il a été établi très tôt que toutes les campagnes de collecte de données (images

statiques annotées et vidéos) seraient menées mais que la solution la plus pratique pour le

suivi des déchets était de travailler directement sur dumatériel vidéo, car filmer les expéditions

fluviales est la solution la plus simple pour suivre régulièrement les déchets et recueillir des
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Figure D.2: Deux groupes (un par colonne) de 4 images d’une vidéo



D.1. COMPTAGE AUTOMATIQUE DE MACRODÉCHETS 153

données sur place tout au long de l’année.

Par conséquent, l’accent a été mis sur les solutions capables de prédire automatiquement

un nombre total d’éléments d’intérêt visibles dans les vidéos. Cette dernière tâche, que nous

appellons comptage d’objets vidéo dans le document, se situe à l’intersection des domaines de

la vision par ordinateur et de l’analyse de données temporelles. Cette tâche est particulière pour
différentes raisons.

1. Pour une vidéo donnée, chaque objet peut être visible dans plusieurs images mais ne

doit être compté qu’une seule fois.

2. L’emplacement des objets individuels n’est pas nécessairement requis dans la prédiction

finale.

Le premier aspect rend la tâche de comptage dans des vidéos très différente de celle de comp-

tage dans des images statiques indépendantes. Dans la littérature existante, la réidentification

d’objets sur plusieurs images est un sujet central dans la recherche sur le suivi multi-objets
(en anglais multi-object tracking MOT ), qui vise à prédire les trajectoires individuelles des ob-
jets d’intérêt dans les séquences vidéo, c’est-à-dire détecter et localiser ces objets dans chaque

image et en leur attribuant un identifiant cohérent dans le temps.

Mais le deuxième point est progressivement devenu une particularité de ce projet. D’une

part, le résultat demandé est plus restreint que pour le MOT traditionnel et la plupart des ap-

plications vidéo, car des prédictions précises image par image ne sont pas requises. D’un autre

côté, les directions de recherche possibles sont plus larges, car on peut envisager des solutions

qui ne s’appuient pas explicitement sur la détection d’objets par image comme quantité in-

termédiaire pour produire des décomptes vidéo globaux. Dans le paragraphe suivant, nous

décrivons succinctement certains autres aspects importants et spécifiques à la tâche à accom-

plir.

Formats d’annotation. Le contenu vidéo du projet ne comporte aucune forme d’annotation

détaillée sur les vidéos, c’est-à-dire que l’on n’a pas accès à des exemples de séquences vidéo

avec des objets localisés et identifiés dans chaque image. Les données vidéo sont soit des

séquences simples sans annotations, soit des segments vidéo où la vérité terrain est un dé-

compte global pour le segment. En vision par ordinateur basée sur la vidéo, ceci est un exemple

de données faiblement annotées. Au contraire, l’ensemble de données d’images est densément

annoté avec des emplacements d’objets précis, mais les images sont acquises de manière in-

dépendante et ne présentent donc pas les dépendances temporelles des vidéos sur lesquelles la

tâche finale doit être effectuée. Par conséquent, plusieurs formes de données sont disponibles,

et il n’est pas clair comment les combiner pour créer une solution efficace qui utilise au mieux

chacune d’entre elles.
1

Ressources informatiques. Un autre élément de ce projet concerne les limitations infor-

matiques spécifiées par Surfrider Foundation. Dès le début, il a été annoncé qu’une solution

facilement portable serait préférable pour des configurations embarquées avec une puissance

de traitement limitée, idéalement une solution qui pourrait fonctionner directement sur les

1
Dans le chapitre 3, nous proposons un algorithme qui ne nécessite qu’une supervision sous forme d’images

annotées indépendantes pour entraîner un détecteur d’objet. Dans les chapitres 4 et 5, nous étudions des méth-

odes génériques d’inférence dans des modèles séquentiels basés sur des objectifs d’optimisation non supervisés.
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smartphones utilisés pour filmer les vidéos afin d’éviter d’envoyer les données vers un ap-

pareil secondaire. Il a également été suggéré en cours de route que les méthodes permettant

de traiter les données à la volée seraient préférables, car le stockage et le traitement de toutes

les images simultanément peuvent être fastidieux sur des appareils embarqués.
2

Variabilité et fiabilité de la vérité terrain. Parmi les décomptes globaux fournis avec les

vidéos, une variabilité a été observée lorsqu’il a été demandé à plusieurs personnes d’identifier

les déchets sur les mêmes sections de rivière. La figure 1.3 illustre cela à l’aide des décomptes

rapportés par 20 bénévoles sur trois emplacements distincts couverts par des vidéos de l’ensemble

de données. Cette variabilité dans les estimations de la vérité terrain suggère que la tâche au-

tomatisée de comptage des macrodéchets pourrait bénéficier d’estimations d’incertitude ainsi

que des décomptes prédits. De telles estimations d’incertitude rendraient en outre la solution

finale plus fiable pour la surveillance de la pollution, par exemple en permettant d’écarter les

mauvaises prédictions.
3
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Figure D.3: Variabilité du comptage visuel parmi 20 bénévoles pour trois sections de rivière

Observations en grande dimension. Du point de vue de l’inférence pour les données

séquentielles, les observations qui composent les séquences d’intérêt (les vidéos) sont des im-

2
Dans le chapitre 3, un effort a été mis pour choisir des solutions efficaces issues de la vision par ordinateur

et développer des approximations connues pour bien s’adapter à la tâche ciblée. De plus, la plupart des calculs de

l’algorithme que nous proposons peuvent être effectués en ligne. Dans le chapitre 4 nous proposons spécifique-

ment un algorithme en ligne pour construire des approximations génériques dans le contexte variationnel.

3
Dans le chapitre 3, la solution de suivi que nous proposons tient naturellement compte de l’incertitude dans

le mouvement de la vidéo pour générer des décomptes, tandis que dans les chapitres 4 et 5, le formalisme bayésien

des solutions que nous étudions peut naturellement être utilisé pour obtenir des intervalles de crédibilité autour

des estimations statistiques.
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ages en haute résolution. Ainsi, la dimensionnalité des données à chaque pas de temps est

de l’ordre de plusieurs millions, ce qui rend impossible l’application des méthodes classiques

d’inférence séquentielle directement dans l’espace des vidéos originales.
4

D.2 Présentation des contributions

Compte tenu des défis pratiques liés au comptage d’objets, et des approches plus générales

en inférence variationnelle séquentielle, le travail de thèse est divisé en deux ensembles de

contributions.

• Une contribution technique qui aborde directement le comptage d’objets dans des videos

contenant des macrodéchets.

• Deux contributions méthodologiques liées à l’inférence variationnelle qui exploitent des

idées de SMC pour développer une compréhension théorique des méthodes existantes

et améliorer leurs propriétés computationelles.

Comptage vidéo demacrodéchets sur les rives des rivières à l’aide demodèles d’espace
d’état et de caméras mobiles, Mathis Chagneux, Sylvain Le Corff, Pierre Gloaguen, Charles
Ollion, Océane Lepâtre, et Antoine Bruge. Publié (avec le code source) dans Computo, 2023.

Dans le chapitre 3, nous présentons une nouvelle méthode pour compter les macrodéchets

dans des vidéos des berges des rivières filmées depuis des caméras embarquées sur des bateaux.

Ici, nous nous appuyons sur le suivi multi-objets (MOT) mais nous nous concentrons sur les

problèmes clés liés aux comptages erronés et redondants qui surviennent dans les scénarios de

faibles performances de détection. Notre système ne nécessite qu’une supervision préalable

sous forme d’images indépendantes, et effectue une filtrage bayésien via un modèle d’espace

d’état basé sur le flot optique. Nous présentons un nouvel ensemble de données d’images

recueillies grâce à une campagne de crowdsourcing et utilisées pour entrainer un détecteur

d’objets particulièrement adapté à la tâche de comptage. Dans le cadre de ce travail, des vidéos

réalistes capturées par des experts en surveillance de l’eau ont été annotées et utilisées pour

l’évaluation. Des améliorations de la qualité du comptage sont démontrées par rapport aux

systèmes construits à partir des suiveursmulti-objets de pointe partageant lesmêmes capacités

de détection. Une décomposition précise des erreurs permet une analyse claire et met en

évidence les questions restant ouvertes. Cette première contribution a été menée en étroite

collaboration avec Surfrider Foundation Europe, et fournit un outil initial qui a depuis été

largement mis en production dans le cadre du projet Plastic Origins, bénéficiant d’un soutien

régulier et mis à jour de manière incrémentielle.

Une approche d’échantillonnage backward pour le lissage additif variationnel en ligne,
Mathis Chagneux, Pierre Gloaguen, Sylvain Le Corff, Jimmy Olsson. Soumis pour publication

dans Transactions on Machine Learning Research (TMLR), 2023.

4
Dans les chapitres 5 et 4, nous étudions en profondeur les solutions variationnelles comme solution alterna-

tive pour résoudre les problèmes de passage à l’échelle des approximations classiques telles que les Méthodes de

Monte Carlo.
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Dans le chapitre 4, nous exploitons des idées issues des approches de lissage récursif

développées dans la littérature SMC pour obtenir un algorithme en ligne efficace dans le con-

texte de l’inférence variationnelle backward. Dans ce travail, nous proposons une décompo-

sition spécifique des distributions variationnelles qui mime celle de la loi a posteriori ciblée
et permet de reproduire des schémas d’approximation connus des espérances conditionnelles

impliquées dans les récursions. En conséquence, cela élimine le besoin d’approximations fonc-

tionnelles précédemment nécessaires pour le calcul récursif des espérances de lissage de fonc-

tionnelles d’état additives sous des approximations variationnelles. Ensuite, nous proposons

une nouvelle décomposition du gradient de la fonction objectif de l’optimisation variation-

nelle basée sur l’estimateur de la fonction score, ce qui permet l’apprentissage récursif des

paramètres variationnels. Numériquement, la qualité des gradients est démontrée par rapport

à d’autres estimateurs hors ligne, et la pertinence et l’efficacité de l’approche proposée sont

illustrées sur de longues séquences d’observations.

Erreur de lissage additif dans l’inférence variationnelle inverse backward pour les
modèles d’espace d’état généraux, Mathis Chagneux, Élisabeth Gassiat, Pierre Gloaguen,
Sylvain Le Corff. En révision majeure en vue d’une publication dans Journal of Machine Learning
Research (JMLR), 2023.

Dans le chapitre 5, nous étudions les propriétés théoriques de la décomposition varia-

tionnelle backward (ou inverse), où nous établissons sous des hypothèses de mélange que

l’approximation variationnelle des espérances de fonctionnelles d’état additives induit une er-

reur qui croît au plus linéairement avec le nombre d’observations. Cette garantie est cohérente

avec les bornes supérieures connues pour l’approximation des distributions de lissage en util-

isant des méthodes de Monte Carlo standard. Nous illustrons notre résultat théorique avec

des solutions variationnelles de pointe basées à la fois sur la paramétrisation inverse et sur

des alternatives utilisant d’autres décompositions. Cette étude numérique propose des lignes

directrices pour l’inférence variationnelle basée sur les réseaux de neurones dans les modèles

à espace d’état.

D.3 Perspective: un cadre unificateur pour la prédiction
séquentielle dans les vidéos

Comme mentionné dans la Section 1.2.2, l’une des principales motivations de l’étude de nou-

velles solutions pour l’estimation latente en grande dimension est la récente popularité d’approches

non supervisées qui se concentrent sur l’apprentissage de représentations expressives des don-

nées, à partir desquelles la plupart des tâches de prédiction peuvent être facilement obtenues.

Dans la plupart de ces travaux, on suppose généralement que les variables latentes à par-

tir desquelles les observations proviennent se factorisent en composants statistiquement in-

dépendants, et que la capture de cette propriété dite de "désentrelacement" des représentations

latentes [Hig+18] est essentielle pour faciliter les applications ultérieures. Sur la Figure 6.2,

par exemple, nous présentons une illustration visuelle de certains aspects utiles de ces espaces

latents dans le contexte de la découverte multi-objet.

Cependant, jusqu’à présent, la plupart des travaux ont nécessité d’imposer la structure

souhaitée, par exemple en introduisant explicitement des contraintes supplémentaires dans la

définition des lois a posteriori [Loc+20; Gre+19; Kab+21; Els+22], en ajoutant des termes de
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régularisation dans les objectifs MLE [Hig+17], ou en s’appuyant sur des données observées

auxiliaires [Kip+22] qui contraignent davantage les problèmes d’inférence. Parallèlement, le

problème non supervisé d’identification de signaux indépendants à partir des données à dépen-

dances complexes a largement été formalisé du point de vue de l’analyse en composantes in-

dépendantes (ICA) [HO00]. Dans ce cadre, un thème récurrent est de déterminer dans quelles

conditions un ensemble de variables latentes indépendantes peut être récupéré de manière

unique sans supervision dans la limite d’une infinité de données. À cet égard, les résultats

théoriques [HP98] et les études empiriques récentes [Loc+19] caractérisent essentiellement le

problème d’estimation latente dans les modèles de données non linéaires commemal posé dans

le contexte d’observations indépendantes, ce qui entrave considérablement l’apprentissage de

représentations pour les modèles génératifs réalistes (par exemple, contenant des fonctions

complexes tels que les réseaux de neurones profonds) lorsque seuls des ensembles de don-

nées d’images indépendantes sont disponibles. À l’inverse, de nouveaux résultats [GLL20;

Khe+20] prouvent des propriétés d’identifiabilité dans le contexte de données dépendantes, et
en particulier de données temporelles (ce qui inclut les vidéos). À partir de ces résultats, des

analyses récentes [HKM23] suggèrent que la récupération d’états latents indépendants dans

des données non indépendantes en grande dimension peut être réalisée sans aucune super-

vision, à condition que les dépendances statistiques des approximations des lois a posteriori

soient bien spécifiées.

En pratique, la plupart des travaux qui ont tenté de traiter des données structurées sur la

base de ces résultats [HH20; Häl+21a] se sont fortement appuyés sur des approximations vari-

ationnelles séquentielles, mais principalement via des décompositions similaires à celles de la

Section 2.3.2, qui manquent de garanties théoriques développées dans cette thèse et qui peu-

vent difficilement être utilisées pour de longues séquences. Par conséquent, une perspective

importante de cette thèse serait de d’obtenir des solutions similaires en utilisant les décompo-

sitions "backward". Dans le contexte du comptage d’objets dans des vidéos, ou plus générale-

ment lorsque l’on vise des quantités globales liées à des séquences entières d’observations y0:t,
les propriétés d’identifiabilité du cadre séquentiel sont particulièrement attrayantes, car elles

suggèrent que la formulation de tâches de prédiction dans les vidéos en tant qu’estimations

de statistiques sous les distributions de lissage pourrait être une approche théoriquement jus-

tifiée pour éviter de s’appuyer sur des prédictions intermédiaires spécialisées (telles que les

estimations ponctuelles de MOT).

Par exemple, étant donné la fiabilité des approximations SVI "backward" pour le lissage

additif, on peut imaginer une solution qui estime un décompte d’objets N̂ dans une vidéo via

N̂ = Eqλ0:t
[h0:t(X0:t)] ≈ Eϕθ

0:t
[h0:t(X0:t)] ,

pour une certaine fonctionnelle d’état additiveh0:t qui peut extraire des informations de compte

pertinentes à partir des états latents récupérés. S’appuyer sur un tel formalisme serait très in-

téressant car il sépare essentiellement le problème en deux étapes distinctes.

1. Une étape d’apprentissage générique pour construire qλ0:t uniquement à partir de l’optimisation

de l’ELBO, où les dépendances dans les données sont capturées sans aucune annotation

et indépendamment de la tâche ciblée.

2. La spécification de h0:t en fonction de la tâche en cours et le calcul de qλ0:th0:t avec λ fixé.

En pratique, un tel cadre présente plusieurs avantages. Tout d’abord, par rapport auxméthodes

de MOT entièrement supervisées, qui nécessitent des annotations de suivi supplémentaires
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pour introduire des informations temporelles dans le processus d’apprentissage, la première

étape est entièrement non supervisée et ne nécessite que la spécification correcte des dépen-

dances dans la loi a posteriori. Ensuite, et surtout, la séparation de l’étape d’apprentissage de la

représentation de l’étape de prédiction finale peut permettre de s’appuyer sur des annotations

beaucoup moins lourdes que dans les configurations d’apprentissage supervisé classiques. En

effet, tout comme l’information de localisation est ignorée dans le comptage d’objets basé sur

la détection dans les images fixes, les emplacements d’objets prédits dans le comptage d’objets

vidéo basé sur le MOT sont utilisés pour l’association temporelle des détections entre images,

mais sont ignorés dans le comptage final. Dans le cadre précédent, la cohérence temporelle des

prédictions devrait déjà être imposée étant donné que les prédictions sont formulées comme

des espérances sous qλ0:t, et l’on peut donc obtenir une fonctionnelle de "comptage" h0:t qui
extrait les comptes à partir des états latents lissés, nécessitant uniquement une supervision de

comptage.

À titre d’exemple, supposons que nous puissions annoter, pour tous les pas de temps s ≤ t
dans une vidéo y0:t, le nombre d’objets N+

s apparaissant dans la vidéo à s, mais absents pour

s′ < s. Ensuite, en supposant qu’un objet ne puisse plus être visible après avoir quitté le

champ de la caméra (par exemple, la caméra ne recule pas), le nombre total d’objets dans

la vidéo est simplement donné par N =
∑t

s=0N
+
s . En pratique, de telles annotations sont

faciles à obtenir, car elles nécessitent seulement de regarder la vidéo et de marquer les images

ayant des objets entrants (toutes les autres images reçoivent N+
s = 0), ce qui est beaucoup

moins contraignant que d’annoter les emplacements de tous les objets à toutes les images. Un

algorithme de comptage peut alors être développé en définissant des fonctionnelles dont les

composantes sont des fonctions visant à estimer (N+
s )s≤t à partir des représentations latentes

de paires d’images consécutives, étant donné l’ensemble de la vidéo. Formellement, on peut

définir

hγ0:t : x0:t 7→
t∑

s=1

h̃γ(xs−1, xs) ,

où h̃γ est un réseau de neurones de X × X à N paramétré par γ ∈ Γ, où Γ est un espace

de paramètres. Pour apprendre γ, on peut choisir une fonction de pénalisation de comptage

Cγ : N × N → R (par exemple, régression de Poisson), et considérer la pénalisation globale∑t
s=0 Cγ(N̂+

s , N
+
s ) sur la vidéo, où

N̂+
s = Eqλs−1:s

[h̃γ(Xs−1, Xs)] ,

pour tous les s ≤ t. 5
À convergence, une estimation du compte global N serait donnée par

N̂ = Eqλ0:t
[hγ0:t].

En tant que tel, cette méthodologie est très attrayante car elle ne nécessite pas d’annoter la

localisation des objets, inclut des connaissances de toutes les images grâce à qλ0:t, mais fournit

toujours un signal d’apprentissage aux pas de temps individuels (et non seulement un compte

global). En ce qui concerne ce dernier point, de nombreuses autres options seraient possi-

bles pour renforcer la supervision "locale", par exemple en définissant des composantes qui

prédisent la variation (éventuellement négative) du nombre d’objets visibles entre s − 1 et

s, ou en prédisant simplement le nombre total d’objets Ns visibles à tout instant s ≤ t et
en considérant N =

∑t
s=1max(0, Ns − Ns−1) comme une définition alternative du compte

5
Rappelons que qλs−1:s est la distribution marginale conjointe de qλ0:t à s− 1 et s.
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global
6
. À l’inverse, la flexibilité de ce cadre permettrait également, après cette première étape

d’entraînement, d’affiner γ avec une annotation de comptage global, c’est-à-dire en utilisant

directement Cγ(N̂ ,N) avec N̂ = Eqλ0:t
[hγ0:t]. Enfin, on peut également envisager de réentraîner

λ avec γ fixé, en utilisant la pénalisation de comptage pour affiner la représentation latente en

vue d’une meilleure performance. En pratique, en utilisant le Chapitre 4, toutes ces opérations

pourraient être effectuées en ligne.

Dans l’ensemble, les avantages attendus de cette nouvelle méthodologie apportent des

réponses claires aux limitations du travail mené dans le Chapitre 3. En effet, dans cette con-

tribution, l’axe principal d’amélioration consistait à augmenter les performances du détecteur

d’objets grâce à des ensembles de données plus importants d’images individuelles, ce qui né-

cessite un effort continu de la part de la Fondation Surfrider. De plus, comme mentionné dans

l’introduction, le développement d’une solution de comptage plus stable dans le cadre duMOT

aurait nécessité des mécanismes de suivi plus sophistiqués, avec de nombreux aspects non di-

rectement liés à la tâche de comptage final, et avec des étapes supplémentaires d’ajustement

des hyperparamètres. Comparativement, le travail mené dans les Chapitres 4 et 5 ouvre la voie

au développement de solutions de comptage plus simples. De plus, elles seraient également

plus facilement complétées par des estimations d’incertitude, par exemple en considérant des

intervalles de confiance basés sur la variance de la loi a posteriori qλ0:t. Bien que cela ne fasse

pas partie de ce manuscrit, des expériences sur des vidéos synthétiques d’objets enmouvement

(voir Figure D.4) sont en cours pour évaluer la pertinence de ces idées sur des contenus réels

à base d’images où une vérité terrain peut être obtenue facilement, et où différents degrés de

complexité peuvent être générés.

Enfin, il convient de noter que, étant donné que l’apprentissage de qλ0:t est indépendant
du choix de la fonctionnelle utilisée pour la prédiction finale, le cadre décrit plus haut est très

modulaire: on peut par exemple apprendre qλ0:t dans une étape préalable, puis effectuer diverses
prédictions en utilisant différentes fonctionnelles, à λ fixé. Pour illustrer la pertinence de cet

aspect, on peut s’intéresser à une petite partie des données observées dans le cadre du projet

Plastic Origins, qui a révélé les limites de la modélisation de la surveillance de la pollution

par les macrodéchets simplement comme une tâche de comptage. Par exemple, des situations

comme celles illustrées dans la Figure D.5 suggèrent que des approches capables de fournir

des prédictions sous d’autres formes (par exemple, la surface de la berge de la rivière couverte

de déchets) en fonction des situations présentes sur le terrain constitueraient une perspective

de recherche intéressante.

6
En pratique, le nombre d’objets visibles dans n’importe quelle image peut être obtenu simplement en anno-

tant, en plus de N+
s , le nombre d’objets N−

s quittant la vidéo à tous les s.
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(a) N+
0 = 2, N−

0 = 0, N0 = 2 (b) N+
0 = 1, N−

0 = 1, N0 = 2 (c) N+
0 = 1, N−

0 = 0, N0 = 3

(d) N+
0 = 0, N−

0 = 0, N0 = 3 (e) N+
0 = 0, N−

0 = 1, N0 = 2 (f) N+
0 = 1, N−

0 = 0, N0 = 3

Figure D.4: Un exemple de vidéo synthétique avec des objets entrant et sortant du champ de

la caméra à des vitesses variables.

Figure D.5: Un exemple de situation présentant une très grande densité de déchets. Dans ce

contexte, énumérer individuellement les objets semble inadapté pour mesurer le niveau de

pollution, par exemple, on peut plutôt estimer la surface de la berge couverte de plastique.
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modèles à espace d’état.
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grande dimension, en s’intéressant particulièrement
aux cas de données faiblement annotées et à la
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adoption en tant qu’estimateurs génériques pour la
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