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Titre : Structures arc-en-ciel dans les graphes proprement arétes-colorés et les systemes des

hypergraphes.

Mots clés : Problémes extrémes; systeme de k-graphes; appariement parfait arc-en-ciel; cycle

Hamiltonien arc-en-ciel.

Résumé : La combinatoire extrémal est l'une
des branches les plus vigoureuses des ma-
thématiques combinatoires au cours des der-
niéres décennies, et elle a été largement uti-
lisée en informatique, en conception de ré-
seaux et en conception de codage. Elle se
concentre sur la détermination de la taille maxi-
male ou minimale possible de certaines struc-
tures combinatoires, sous certaines conditions
ou contraintes. En particulier, la théorie des
graphes extrémaux est une branche impor-
tante de la combinatoire extrémale, qui traite
principalement de la maniére dont les proprié-
tés générales d'un graphe contrélent la struc-
ture locale du graphe.

Un systeme de k-graphes H = {H, };c[y est
une collection de k-graphes sur le méme en-
semble de sommets V. Pour un systeme de k-
graphes H = {H,};c|y, sur V, un graphe H sur
V est arc-en-ciel dans H s'il existe une injection
¢ : E(H) — [m] telle que e € E(H()) pour
chaque e € E(H).

Cette these produit une étude en trois par-
ties.

(1) Nous étudions l'existence de cycles Ha-
miltoniens arc-en-ciel dans les systemes de
k-graphes. Le théoréme de Dirac a de nom-
breuses variantes. Tout d'abord, il a été géné-
ralisé dans les systéemes de graphes. Deuxié-
mement, il a été généralisé dans les hyper-
graphes. Dans le méme esprit, nous voulons
trouver un cycle Hamiltonien arc-en-ciel dans
un systéme d’hypergraphes. Etant donné k >
3,7 > 0, un n-vertex k-systeme de k-graphes
H= {Hl}ze[n] avec 5k71(Hz> > (1/2 + 'y)n pour
chaque i € [n], alors il existe un cycle Hamil-
tonien H-arc-en-ciel. De plus, des chercheurs
se sont consacrés a caractériser la condition
de degré (k — 2) pour l'existence d'un cycle
Hamiltonien. Lang et Sanhueza-Matamala, Pol-
cyn, Reiher, Roédl et Schulke ont prouvé indé-
pendamment que pour tout v > 0, chaque n-
vertex k-graph avec 6;_o(H) > (5/9 + 7)(5)

contient un cycle Hamiltonien. Cependant, la
version arc-en-ciel de la conclusion ci-dessus
est beaucoup plus difficile. Gupta, Hamann,
Muyesser, Parczyk et Sgueglia ont mentionné
le probléme : étant donné un systéme de 3-
graphes H = {H,};c|, avec une condition de
degré minimum de chaque H;, est-ce que H
admet un cycle Hamiltonien arc-en-ciel? Nous
résolvons le probléme ci-dessus et tirons la
conclusion générale pour tout k£ > 3.

(2) Nous étudions l'existence d'une ap-
pariement parfaite arc-en-ciel dans les sys-
temes de k-graphes. Soit c; 4 le seuil mini-
mum de d-degré pour des appariements frac-
tionnaires parfaites dans les graphiques k, a
savoir, pour chaque ¢ > 0 et suffisamment
grand n € N, chaque n-sommet k-graphe H
avec 64(H) > (cpa +€)(}-%) contient une ap-
pariement fractionnaire parfaite. On sait que
tout k-graphe de n sommets H avec 64(H) >
(max{cg.q, 1/2} + 0(1))(}-%) a un appariement
parfait, et cette condition est asymptotique-
ment optimale. Nous démontrons que dans un
k-graphe, les conditions minimales de d-degré
pour un appariement parfait garantissent éga-
lement asymptotiquement la présence d'un ap-
pariement parfait rainbow dans le systéme du
k-graphes pour d € [k — 1]. Plus généralement,
un cadre général pour résoudre l'existence de
facteurs transversaux dans les systémes d’hy-
pergraphes peut également étre donné.

(3) Nous étudions I'existence de longs cycles
arc-en-ciel dans des graphes proprement
arétes-colorés. En 1989, Andersen a conjecturé
que chaque K, proprement arétes-colorés ad-
met un chemin arc-en-ciel qui omet un seul
sommet. Nous avons prouvé que chaque K, ,,
proprement arétes-colorés contient un cycle
arc-en-ciel d'au moins n — 28n3/4 pour n suffi-
samment grand. La limite ci-dessus est asymp-
totiqguement optimale car chaque classe de
couleurs pourrait étre un couplage parfait de
K, et seuls n couleurs apparaissent dans
E(Kyn).
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Abstract : Extremal Combinatorics is one of the
most vigorous branch of Combinatorial Mathe-
matics in recent decades and it has been wi-
dely used in Computer Science, Network De-
sign and Coding Design. It focuses on determi-
ning the maximum or minimum possible size
of certain combinatorial structures, subject to
certain conditions or constraints. In particular,
Extremal Graph Theory is a significant branch
of Extremal Combinatorics, which primarily ex-
plores how the overall properties of a graph in-
fluence its local structures.

A k-graph system H = {H;};c[n is a col-
lection of not necessarily distinct k-graphs on
the same vertex set V. For a k-graph system
H = {H,};cim)on 'V, agraph H on V is rainbow
in H if there exists an injection ¢ : E(H) — [m]
such thate € E(H,()) for each e € E(H).

This thesis presents a three-part study.

(1) We study the existence of rainbow Hamil-
ton cycle in k-graph systems. Dirac’s theorem
has many variants. Firstly, it was generalized in
graph systems. Secondly, it was generalized in
hypergraphs. Along the same idea, we want to
find a rainbow Hamilton cycle in a hypergraph
system. Given k£ > 3,y > 0, sufficiently large n
and an n-vertex k-graph system H = {H;};cpn,
if 5k_1(Hl) > (1/2 + ’7)71 for each ¢ € [n},
then there exists an H-rainbow Hamilton cycle.
Further, scholars devoted to characterizing the
(k — 2)-degree condition for the existence of a
Hamilton cycle. Lang and Sanhueza-Matamala,
Polcyn, Reiher, Rodl and Schilke independently
proved that for any v > 0, every n-vertex k-
graph with 6;_o(H) > (5/9 4+ v)(5) contains a
Hamilton cycle. However, the rainbow version

of the above conclusion is much more difficult.
Gupta, Hamann, Muyesser, Parczyk, and Sgue-
glia mentioned the following problem : Given
a 3-graph system H = {H;}c[,,) With minimum
vertex degree condition of each H;, does H ad-
mit a rainbow Hamilton cycle? We settle the
above problem, and draw the general conclu-
sion forany k > 3.

(2) We study the existence of rainbow per-
fect matching in k-graph systems. Let ¢ 4 be
the minimum d-degree threshold for perfect
fractional matchings in k-graphs, namely, for
every ¢ > 0 and sufficiently large n € N,
every n-vertex k-graph H with 6q(H) > (cpq +
¢)(7-%) contains a perfect fractional matching.
It is known that every n-vertex k-graph H with
Sa(H) > (max{cra,1/2} + o(1))(}-%) has a
perfect matching, and this condition is asymp-
totically best possible. We proved that a mini-
mum d-degree condition asymptotically forcing
a perfect matchingin a k-graph also forces rain-
bow perfect matchings in k-graph systems for
d € [k—1]. More generally, a general framework
for solving the existence of rainbow factors in
hypergraph systems can also be given.

(3) We study the existence of long rainbow
cycle in properly edge-colored graphs. In 1989,
Andersen conjectured that all proper edge-
colorings of K, admit a rainbow path which
omits only one vertex. We proved that every
properly edge-colored K, ,, contains a rainbow
cycle of length at least n — 28n%/* for suffi-
ciently large n. The bound above is asymptoti-
cally optimal as each color class could be a per-
fect matching of K, ,, and only n colors occur in
E(Knn).
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1 - Introduction

The paper written by Euler on the Seven Bridges of Kdnigsberg and pu-
blished in 1736 is regarded as the first paper in the history of graph theory
[16]. As it continued to develop, graph theory has many branches, including
graph coloring, extremal graph theory, algebraic graph theory, topological
graph theory, probabilistic graph theory and so on. Since graphs can be used
to model many types of relations and processes in physical, biological, social
and information systems, graph theory has wide applications in real-world
systems. Meanwhile, it also has applications in other areas of mathematics,
such as group theory and number theory.

In this thesis, we mainly study the rainbow spanning structures in pro-
perly edge-colored graphs and hypergraph systems. For the convenience of
the description of our research topic’s background, we first give some termi-
nology and notation in the first section of this chapter. Then we will describe
background in detail, including motivations, known results and so on.

1.1. Terminologies and tools

Graph

A graph G is an ordered pair (V(G), E(G)) with a nonempty set V(G) of
vertices and a set E(G) of edges, where E(G) is made up of some unordered
pairs of (not necessarily distinct) vertices. A graph is finite if both its vertex
set and edge set are finite. A graph G is simple if E(G) is a collection of some
distinct 2-subsets of V(G). Note that unless otherwise stated, all graphs consi-
dered in this thesis are finite and simple. The order of a graph G refers to the
cardinality of V(G), while the size refers to the cardinality of E(G). If there is
a path between any two vertices of G, then G is called a connected graph. A
complete graph K, is a simple graph on r vertices in which every pair of distinct
vertices is connected by a unique edge.
Adjacent and incident

Let G be a graph and u, v € V(G). We say that u, v are adjacent if the 2-set
{u,v} € E(G). Lete € E(G) with e = {u,v}. Then we say that u, v are two
ends of e and u, v are incident with e, respectively.
Degree

Let G be a graph and u,v € V(G). If u,v are adjacent, then u is called
a neighbor of v and vice versa. For any vertex v € V(G), we use Ng(v) to
denote the set of all neighbors of v and call N (v) the neighborhood of v. The
cardinality of Ng(v) is the degree of v, denoted by di(v), i.e. dg(v) = | Ng(v)].
Denote by 4(G) and A(G) the minimum degree and maximum degree of G,



respectively. Denote the average degree 3 .y dﬁf”) of G by d(G).
Subgraph

Let G, H be two graphs. We say H is a subgraph of G if V(H) C V(G)
and E(H) C E(G). Moreover, if H is a subgraph of G and H contains all the
edges {u,v} € E(G) with u,v € V(H), then H is an induced subgraph of G.
If H is a subgraph of G and V(H) = V(G), then H is a spanning subgraph of
G. We say G is F-free if G does not contain F' as a subgraph. Let H;, H, be
two subgraphs of G. If V(H;) NV (Hy) = 0, then we say H; and H, are vertex-
disjoint. If E(Hy) N E(H2) = 0, then we say H, and Hs are edge-disjoint. Let
V' C V(G) and E' C E(G). We use G — V' to denote the subgraph induced
by V(G)\ V' and use G\ E’ to denote the subgraph of G containing the same
vertices as G but with all the elements of E’ removed. In particular, if V! = {v},
then we write G — v for simplicity. If E' = {e}, then G \ {e} will be replaced
with G \ e.
Walk, Path and Cycle

Let G be an n-vertex graph. A walk in G is defined as a sequence of al-
ternating vertices and edges such as vy, ey, vy, ea, . . ., ek, vk, Where each e; =
{vi—1,v;}. The length of this walk is k. A walk is considered to be closed if the
starting vertex is the same as the ending vertex, that is vog = vi. A walk is
considered open otherwise. A path is defined as an open walk with no repea-
ted vertices. A cycle is defined as a closed walk where no other vertices are
repeated apart from the starting/ending vertex. We usually use Py, and Cj, to
denote a path of length of £ — 1 and a cycle of length k, respectively. A path
(cycle) is called a Hamilton path (Hamilton cycle) if it visits each vertex of GG
exactly once. A cycle of length of 3 is called a triangle.
Multipartite graph

Let k£ be a positive integer. A k-partite graph is a graph whose vertex set
can be partitioned into k different independent sets, which are called k parts
of the graph. When k = 2, these are the bipartite graphs. A k-partite graph is
balanced if the k parts have same cardinality. A complete k-partite graph is a
k-partite graph in which there is an edge between every pair of vertices from
different independent sets.
Power of a graph

Let G be a graph and k be an integer. The k-th power of GG, denoted by
G*, is defined as the graph on the same vertex set whose edges join distinct
vertices at distance at most k in G.
Factor

Let G be an n-vertex graph and H be an h-vertex graph. An H-tiling is a
collection of vertex-disjoint copies of H in G. An H-factor is an H-tiling which
covers all vertices of G. Note that n € hNis a necessary condition for GG contai-
ning an H-factor. When H is Cy, we call it k-factor of G for convenience. In
particular, a 1-factor of G is a perfect matching. A 2-factor of GG is a collection
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of vertex-disjoint cycles covering all vertices of G. A connected 2-factor is a
Hamilton cycle.
Vertex-coloring

Let k& be a positive integer. A k-coloring of a graph G is an assignment of
colors to the vertices of G such that no two adjacent vertices receive the same
color. The chromatic number of G, denoted by x(G), is the smallest value of k
possible to obtain a k-coloring.

Edge-coloring

An edge-coloring ¢ of a graph G is an assignment of colors to the edges
of G. A k-edge-coloring of G is an edge-coloring using k colors overall, while
a local k-edge-coloring of G is an edge-coloring using at most & colors at each
vertex of GG. An edge-coloring of G is proper if no two adjacent edges receive
the same color. An edge-colored graph is a graph with an edge-coloring (not
necessarily proper). Given an edge-colored graph G, we say G is monochro-
matic if all edges of G have the same color, and G is a rainbow graph if all the
edges receive pairwise different colors.

For every vertex v € V(G), the color degree of v, denoted by df,(v), is the
number of distinct colors appearing on the incident edges of v. The minimum
color degree of G, denoted by §¢(G), is the minimum df,(v) over all vertices
v € V(G). We say that color i is presented at vertex v if some edge incident
with v has color i. The color neighborhood C'N (v) is the set of different colors
that are presented at v.

Digraph

A digraph or directed graph D is an ordered pair (V (D), A(D)) consisting
of anonempty set V(D) of vertices and a set A(D) of arcs, where A(D) is made
up of some ordered pairs of (not necessarily distinct) vertices.

Outdegree and indegree

Let D be a digraph and u,v € V(D). If (u,v) € A(D), then we say that v
is an outneighbor of w and w is an inneighbor of v. For any vertex v € V(D),
let N}, (v) and Ny, (v) be its outneighborhood and inneighborhood, i.e. the set
of outneighbors and the set of inneighbors of v, respectively. Let d},(v) =
IN}(v)] and d (v) = |Np (v)| and call df;(v) and dj,(v) outdegree and indegree
of v, respectively. Denote by §*(D) and §— (D) the minimum outdegree and
minimum indegree, respectively. Let §(D) = min{6" (D), d~ (D)} and call 6(D)
the minimum semi-degree of D. Denote by A" (D) and A~ (D) the maximum
outdegree and maximum indegree, respectively.

Oriented graph

Let G be an n-vertex graph. If we give every edge of G a direction, then we
obtain a digraph and we call this digraph an oriented graph of G.
Hypergraphs

A k-uniform hypergraph (k-graph, hereafter) H = (V(H), E(H)) consists
of a vertex set V(H) and an edge set E(H) which is a family of k-element
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subsets of V(H), i.e. E(H) C (V(,CH)). For any S C V(H), the degree of S in
H, denoted by degy (S), is the number of edges containing S. For any integer
¢ > 0, define the minimum ¢-degree 6,(H ) to be min{deg;(S): S € (V(f))}.
Subgraph

Let G, H be two k-graphs. We say H is a subgraph of G if V(H) C V(G)
and E(H) C E(G). An induced subgraph H[V'] of a k-graph H is a k-graph
with vertex set V' and edge set E’ where each edge is precisely the edge of H
consisting of k vertices in V. We usually denote H[V’] by H. If H is a subgraph
of Gand V(H) = V(G), then H is a spanning subgraph of G. Let V' C V(G)
and E' C E(G).We use G — V' to denote the subgraph induced by V(G) \ V'
and use G \ E’ to denote the subgraph of G containing the same vertices
as G but with all the elements of E' removed. Let Hy, H> be two subgraphs
of H. If V(Hy) N V(Hz) = 0, then we say H; and Hs are vertex-disjoint. If
E(H,) N E(Hy) =0, then we say H; and H, are edge-disjoint.
k-partite k-graph

A k-graph H is k-partite if V(H) can be partitioned into k parts Vi, ..., Vi
such that every edge consists of exactly one vertex from each part.
Tight path and tight cycle

A tight path P is a k-graph whose vertices can be ordered in such a way
v1vg - - - vy that each edge consists of k£ consecutive vertices and two consecu-

tive edges intersectin exactly k—1 vertices. We say that P connects (vy, ..., vx_1)
and (vg, ..., v_ga2). (v1,...,05—1) and (v, ..., v_1o) are called the ends of
P.

A k-graph is called an /¢-cycle if its vertices can be ordered cyclically such
that each of its edges consists of k consecutive vertices and every two conse-
cutive edges (in the natural order of the edges) share exactly ¢ vertices. In
k-graphs, a (k — 1)-cycle is often called a tight cycle, a 1-cycle is often called a
loose cycle. We say that a k-graph contains a Hamilton (-cycle if it contains an
{-cycle as a spanning subgraph. Without special instruction, the tight cycle is
referred to as cycle for short.

Matching and fractional matching

Given a k-graph H, a matching in H is a collection of vertex-disjoint edges
of H. A perfect matching in H is a matching that covers all vertices of H. a frac-
tional matching is a function f : E(H) — [0, 1], subject to the requirement that
Y ewee f(e) < 1, for every v € V(H). Furthermore, if equality holds for every
v € V(H), then we call the fractional matching perfect. Denote the maximum
size of a fractional matching of H by v*(H) = max; Y.cp(m) f(€)-
k-graph systems

A k-graph system H = {H,};c|,,, is a@ family of not necessarily distinct -
graphs on the same n-vertex set V. where k > 2. Note that each H; can be
seen as the collection of edges with color ¢, and in this sense H can be regarded
as an edge-colored multi-k-graph. Moreover, a k-graph H on V' is rainbow in
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H if there is an injection ¢ : E(H) — [m] such thate € E(H,)) for each
e € E(H). Note that H can be also called H-rainbow.

For terminology and notation not mentioned here, we will give at the be-
ginning of the respective chapters or refer readers to [41].

The following well-known concentration results, i.e. Chernoff bounds, can
be found in [10, 75]. Denote a binomial random variable with parameters n
and p by Bi(n, p).

Lemma 1.1 (Chernoff Inequality for small deviation [10, 75]) IfX =>"" | X;
where X1, ..., X,, are mutually independent random variables, each X; has Ber-
noulli distribution with expectation p; and o < 3/2, then

ocQ
P[|X — E[X]| > aE[X]] < 2¢~ 5 EX],
In particular, when X ~ Bi(n,p) and X\ < 3np, then
P|X — np| > A] < e 20%/0W),

Lemma 1.2 (Chernoff Inequality for large deviation [10, 75]) IfX = Z?:l X;
where X1, ..., X,, are mutually independent random variables, each random va-
riable X; has Bernoulli distribution with expectation p; and x > 7TE[X], then

P[X > 1] < e @

We also need the Janson’s inequality to provide an exponential upper bound
for the lower tail of a sum of dependent zero-one random variables.

Lemma 1.3 (Theorem 8.7.2in [10]) Let T be a finite set and p; € [0,1] be a
real fori € I. Let I, be a random subset of I' such that the elements are chosen
independently with P[i € T',] = p; fori € I'. Let M be a family of subsets of T".
Forevery A; € M, let I, = 1if A; C I') and o otherwise. Let B; be the event
that A; C T'y. For A;, A; € M, we write i ~ j if B; and B; are not pairwise
independent, in other words, A; N A; # (. Define X = X ,enmla, N = E[X],
A= Z P[BZ A Bj], then
Cad)

P[X < (1 —7)A] < e 7" VRHAN]

Lemma 1.4 (Corollary 2.2, [62]) Let (UX]) be the set of r-subsets of {1,..., N}
and let h : (“X }) — R be given. Suppose that there exists o > 0 such that

[7(A) = h(A)| < @

forany A, A" € (W) with |An A’| = r — 1. Let C C [N] be a set of size r chosen
uniformly at random. Then

E[e")] = exp(E[h(C)] + a), (1.1)



where a is a real constant such that 0 < a < %2 min{r, N — r}. Furthermore, for
any realt > 0,

2t2
_ >t) < — . .
P((C) IO 2 8 < 2emp (o D) 2
Lemma 1.5 (McDiarmid's inequality [119]) Suppose X1, ..., X, areindepen-
dent Bernoulli random variables and b; € [0, B] for i € [m]. Suppose that X is
a real-valued random variable determined by X1, ..., X,, such that altering the
value of X; changes X by at most b; for i € [m]. For all A > 0, we have

P(|X —E[X]| > \) <2 2
< 2exp BE™ b, .

1.2 . Rainbow structures in properly edge-colored graphs

How global parameters of a graph, such as its edge density or chromatic
number, can influence its local substructures? How many edges, for instance,
dowe have to give a graph on n vertices to ensure that the graph will contain a
K, as asubgraph for some given r, no matter how these edges are arranged?
Will some sufficiently high average degree or chromatic number ensure that
some structure occurs? Questions of this type are among the most natural
ones in Graph Theory, and there is a host of deep and interesting results. Col-
lectively, these are known as Extremal Graph Theory. Extremal Graph Theory
lies at the intersection of Extremal Combinatorics and graph theory. In recent
years several classical results in Extremal Graph Theory have been improved
in a uniform way and their proofs have been simplified and streamlined.

The basic statement of Extremal Graph Theory is Mantel's theorem [117],
proved in 1907, which states that any graph on n vertices with no triangle
contains at most n? /4 edges. This is clearly best possible, as one may partition
the set of n vertices into two sets of size [n/2] and [n/2] and form the com-
plete bipartite graph between them. This graph has [n?/4] edges and does
not contain a triangle as a subgraph. The natural generalisation of this theo-
rem to cliques of size r is the following, proved by Turan [147], which states
that every n-vertex graph does not contain K,; as a subgraph has at most
(1— %)%2 edges. In 1946, Erd&s and Stone [51] generalized Turan’'s theorem
and bounded the number of edges in an H-free graph for a non-complete
graph H.

1.2.1. Extremal problems in properly edge-colored graphs
There has been much research on extremal problems in edge-colored
graphs. An example is the canonical Ramsey theorem, proved by Erdds and
Rado [48], a special case of which shows that any properly edge-colored K,
admits a rainbow K,,, provided n is large relative to m. Ramsey's theorem
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states that there exists a positive integer R(r, s) for which every blue-red edge-
colored complete graph on R(r, s) vertices contains a blue K, or ared K.

Moreover, the Turan-type problem has a generalization in edge-colored
graphs, called rainbow Turan problem. The systematic study of rainbow Turan
numbers was initiated in [85] by Keevash, Mubayi, Sudakov and Verstraéte. It
can be seen as a generalization of Turan-type problem in edge-colored graphs.
For a fixed graph H, the rainbow Turan problem refers to determine the maxi-
mum number of edges in a properly edge-colored graph on n vertices which
does not contain a rainbow H. This maximum is denoted by ex*(n, H) and
we refer to it as the rainbow Turan number of H. Recall that given a graph
H, the maximum number of edges in a graph on n vertices that contains no
copy of H is known as the Turan number of H, and is denoted by ex(n, H).
Clearly, ex*(n, H) > ex(n, H). They determined ex*(n, H) asymptotically for
any non-bipartite graph H, by showing that ez*(n, H) = (1 4+ o(1))ex(n, H).
For bipartite F' with a maximum degree of s in one of the parts, they pro-
ved ex*(n, F) = O(n'/*). This matches the upper bound for the (usual) Turan
numbers of such graphs. To quote [85], there are two questions that are the
most important among the several ones raised therein. The first one is to de-
termine ex*(n,C), where C is the class of all cycles. It is shown that ex*(n,C) =
Q(nlogn) in [85] and Das, Lee, and Sudakov [39] obtained an upper bound
O(ne(log”)l/2+o(l)). There have been some recent improvements upon the up-
per bound [76, 91, 144] and the current best one is O(n log® n) appeared in [91].
The second question in [85] concerns with ex*(n, Cai), where Cyy is the even
cycle of length 2k. In [85], a general lower bound ex*(n, Cay,) = Q(n't1/*) is
obtained, whereas the matching upper bounds were only verified for k = 2, 3.
This upper bound was subsequently improved by Das, Lee, and Sudakov [39]
to O(n!+(+ox))logk/ky and by Janzer [76] to O(n'*+1/*). While Janzer's bound
matches the lower bound given in [85], the implicit constant is exponential in
k. Recently, Kim, Lee, Liu and Tran [91] improved it to a polynomial one.

Some classic problems can be transferred into extremal problems in edge-
colored graphs. For example, finding directed cycles can be formulated as a
special case of finding properly colored cycles. To see this, consider the fol-
lowing construction which was first introduced by Li [107] and also studied in
[42]. Let D be an oriented graph of a graph G with V(G) = {vi,ve,...,v,}.
Define an edge-coloring 7 of G by coloring the edge v;v; with j for all arcs
(vi,v5) in D. The resulting edge-colored graph, denoted by (D, ), is called
the signature of D (see Figure 1.1 for an example). Then the following two pro-
perties hold : (i) For every vertex v € V(G), d?D,T)(”) = d},(v) if dj(v) = 0,
otherwise deJ)(v) = d},(v) + 1; (i) A cycle in G is a directed cycle in D if
and only if it is a properly colored cycle in (D, 7). Recall that the well-known
Caccetta-Haggkvist Conjecture [24] says that for all positive integers n, r with
n > r, every digraph D of order n with §*(D) > [n/r] contains a directed
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cycle of length at most r. Hence, the study of Caccetta-Haggkvist Conjecture
in some sense can be transferred into the study of properly colored cycles in
edge-colored graphs with minimum color degree constraints.

U1 V4 U1 4 o V4

v A
' 2 34
U3

V2 U3 U2 5
D (D,7)

Figure 1.1 - An illustration of the signature (D, 7) of an oriented graph D.

There is another interesting branch, called anti-Ramsey theory [58]. The
anti-Ramsey problem is stated as follows : given a positive integer n and a
graph H, the anti-Ramsey number ar(K,, H) is defined to be the minimum
number of colors k such that for any edge-coloring of K, with exactly k co-
lors, there exists a rainbow copy of H. The study of anti-Ramsey theory be-
gan with a paper by Erd6és, Simonovits, and Sés [50] in 1975 (note that related
ideas were studied even earlier in [49]). The anti-Ramsey number ar(K,,, H)
is closely related to the Turan number ex(n, H), which is the maximum num-
ber of edges in a graph on n vertices with no subgraph isomorphic to H. The
main result in [50] states that ar(K,, H) = ”—; (1 - ﬁ) (1 + o(1)), where
x = min{x(H \ e) : e € E(H)}. Instead of forcing rainbow copies of a given
graph H, one can consider forcing properly edge-colored copies of H by using
many colors, and study the threshold on the number of colors needed. This
is thoroughly studied by Manoussakis, Spyratos, Tuza and Voigt in [116].

Besides a number of applications in graph theory and algorithms, some
concepts and results in edge-colored graphs have also appeared in commu-

nication network [149], social science [31], biology [44, 45, 123] and so on. For
example, edge-colored graphs can be used to model homogeneous faults in
networks [149], study the order of chromosomes [44, 45] and DNA physical
mapping [123].

1.2.2 . Rainbow cycles in properly edge-colored complete graphs

In 1989, Andersen [13] conjectured that all proper edge-colorings of K,
admit a rainbow path which omits only one vertex.

Conjecture 1.1 (Andersen [13]) All proper edge-colorings of K,, admit a rain-
bow path of length n — 2.

It is best possible by a construction of Maamoun and Meyniel [115].

8



There are many variations of Andersen’s Conjecture. The following conjec-
ture was proposed by Hahn [66]. Every edge-colored K,, with at most n/2
edges of each color contains a rainbow Hamilton path. In light of the afore-
mentioned construction of Maamoun and Meyniel [115], Hahn and Thomas-
sen [67] suggested the following slightly weaker form of Hahn's Conjecture in
1986 : every edge-colored K, with less than n/2 edges of each color contains a
rainbow Hamilton path. However, even this weakening of Hahn's Conjecture is
false. Pokrovskiy and Sudakov [127] proved the existence of such edge-colored
K,, in which the longest rainbow path has length at most n — Inn/42.

Another direction is to find long rainbow paths or cycles in properly edge-
colored complete graphs. In recent years, this problem has been extensively
studied and a series of progresses have been made. We can greedily obtain
that a rainbow path of length n/2 — 1 in every properly edge-colored K,.

Akbari, Etesami, Mahini and Mahmoody [6] proved that every properly
edge-colored K, has a rainbow cycle of length at least n/2 — 1. Gyarfas and
Mhalla [64] proved that if the set of edges with every used color forms a per-
fect matching in K, then there exists a rainbow path of length (2n + 1)/3.
Gyarfas, Ruszinkd, Sarkdzy and Schelp [65] showed that every properly edge-
colored K, contains a rainbow cycle of length (4/7 — o(1))n. Gebauer and
Mousset [59] and Chen and Li [26], independently showed that every pro-
perly edge-colored K, contains a rainbow cycle of length (3/4 — o(1))n. Alon,
Pokrovskiy and Sudakov [9] proved that every properly edge-colored of K,
contains a rainbow cycle with length n — O(n3/4), and the error bound has
since been improved to O(y/n - logn) by Balogh and Molla [14].

Further support for Conjecture 5.1 and its variants was provided by Mont-
gomery, Pokrovskiy, and Sudakov [121] as well as Kim, Kihn, Kupavskii, and
Osthus [90], who considered the decompositions of rainbow spanning struc-
tures in properly edge-colored K.

1.3 . Dirac-type problems

Problems that relate the minimum degree (in general, minimum ¢-degree
in k-graphs where ¢ € [k — 1]) to the structure of the (hyper)graphs are often
referred to as Dirac-type problems. we concentrate on three such problems :
Hamilton cycles, perfect matchings and tilings.

Hamilton cycles

A classical theorem of Dirac [43] asserts that for any n > 3, every n-vertex
graph with minimum degree at least n/2 contains a Hamilton cycle. Note that
the lower bound n/2is best possible, as can be seen by the following example:
a complete bipartite graph with parts of sizes k£ and k£ — 1. The graph has
2k — 1 vertices and minimum degree k — 1, but there is no Hamilton cycle in
this graph. The problem of determining the best possible minimum (k — 1)-
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degree condition forcing Hamilton cycles in k-graphs, was initially researched
by Katona and Kierstead [79]. They proved that every n-vertex k-graph H with
Sk—1(H) > (1—55)n+4—k— 2 admits a Hamilton cycle. They also conjectured
that the bound on the minimum (k — 1)-degree can be reduced to roughly
n/2, which was confirmed asymptotically by Rddl, Rucinski and Szemerédi in
[135, 137]. The same authors gave the exact version for k£ = 3 in [139].

Theorem 1.1 ([137, 1) Letk > 3,7 > 0and H be an n-vertex k-graph, where
n is sufficiently large. If 61 (H) > (1/2+ ~)n, then H contains a Hamilton cycle.
Furthermore, when k = 3 it is enough to have 62(H) > |n/2].

More generally, We define the threshold 1Y(k, n) as the smallest integer m
such that every k-graph H on n vertices with §;(H) > m contains a Hamilton
{-cycle. As before, we may omit the subscript when d = k£ — 1. Let hfl(k) =
lim sup,,_,o h4(k,n)/(}~%). About this parameter, there are many results as
follows [70, 82, 971.

Theorem 1.2 ([70, 82, 97]1) Forany k > ¢ > 1, we have

J —
h(k) = { (ﬁ(llfm’ (k—0)tk.

Theorem 1.3 ([15, 23]) Forinteger k > 3 and any 1 < /¢ < k — 2, we have

1 2
0

hifz(k?) =1- (1 9

More generally, Kihn and Osthus [100] and Zhao [152] noted thatitis much
more difficult to determine the minimum d-degree condition for tight Hamil-
ton cycle for d € [k — 2]. Based on the results of Cooley and Mycroft [34], Gle-
bov, Person and Weps [60], Rodl and Rucinski [132] and R&dlI, Rucinski, Schacht
and Szemerédi [134], Reiher, Rddl, Rucinski, Schacht and Szemerédi [130] gave
that h’,j:%(k) = 5/9 when k = 3. Polcyn, Reiher, R&dl, Rucinski, Schacht, and
Schilke [128] gave that hﬁ:é(k) = 5/9when k = 4. The best bound for general
k was given by Lang and Sanhueza-Matamala [105], Polcyn, Reiher, R6dl and
Schulke [129] independently. They proved the following theorem.

Theorem 1.4 ([105, 129]) For any integer k > 3, hf—2(k) = 5/9.

Perfect matchings

Many open problems in combinatorics can be formulated as a problem of
finding perfect matchings in hypergraphs, e.g., Ryser conjectured that every
Latin square of odd order has a rainbow, and the existence of combinatorial
designs (recently solved by Keevash [80, 81]). A well-known result of Tutte [148]
characterized all the graphs with perfect matchings and there are efficient

10



algorithms (e.g., Edmond's algorithm [46]) that determine if a graph has a
perfect matching. However, deciding if a 3-partite 3-graph contains a perfect
matching is among the first 21 NP-complete problems given by Karp [78]. The-
refore it is natural to look for sufficient conditions that guarantee a perfect
matching.

Bollobas, Daykin and Erdés [17] first related the minimum (vertex) degree
to the existence of a large (but far from perfect) matching in k-graphs. Day-
kin and Haggkvist [40] extended this result by showing that every k-graph with
61(H) > (1-1/k)(7~;) contains a perfect matching. Given integersd < k < n
such that k divides n, define the minimum d-degree threshold m4(k, n) as the
smallest integer m such that every k-graph H on n vertices with 64(H) > m
contains a prefect matching. A simple greedy argument shows that m(2,n) =
n/2 for all n € 2N. Given k > 3, a result of Rodl, Rucinski and Szemerédi [1371]
on Hamilton cycles implies that my_1(k,n) < n/2 + o(n). Kihn and Osthus
[99] sharpened this bound to my_1(k,n) < n/2 + 3k*y/nlogn by reducing
the problem to the one for k-partite k-graphs. Rddl, Rucinski and Szemerédi
[136] improved it further to my_1(k,n) < n/2 + O(nlogn) by using the ab-
sorbing method. Rodl, Rucihski and Szemerédi [133] found a simple proof of
my—1(k,n) < n/2+k/4. Finally Rédl, Rucinski and Szemerédi[138] determined
mg—1(k,n) exactly for all £ > 3 and sufficiently large n (again by the absorbing
method). In order to state this and later results, we need the following extre-
mal configurations that are usually referred to as divisibility barrier.
Consruction Define Hex(n, k) to be the family of all k-graphs H = (V, E), in
which there is a partition of V' into two parts A, B and i € {0,1} such that
|A| #i|V|/k mod 2and |eN A] =4 mod 2 for all edges e € E.

It is easy to see that no hypergraph H € Hx(n, k) contains a perfect
matching. Indeed, suppose H contains a perfect matching M, then |A| =
Y ecar l€NA] = i|V|/k mod 2, contradicting the definition of H. Define §(n, k, d)
to be the maximum of the minimum d-degrees among all the hypergraphs in
Hext (1, k) and note that mg(k, n) > d(n, k,d). It is easy to see that

5 —k+2, if k/2iseven and n/kis odd,

Sk k—1) = 2 —k+3, ifkisoddand (n—1)/2is odd,
_k+1, ifkisoddand (n—1)/2is even,
5 —k+1, otherwise.

Ingeneral, d(n, k,d) = (1/2+0(1))(}~%) for any fixed k > d but the general
formula of d(n, k, d) is unknown-this is related to the open problem of finding
the minima of binary Krawtchouk polynomials. Nevertheless, Treglown and
Zhao [145] determined my(k, n) in terms of §(n, k, d) for all d > k/2.

Theorem 1.5 ([145]) For k > 3 and d > k/2, mq(k,n) = 6(n,k,d) + 1 for all
sufficiently large n.
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Another class of extremal constructions are known as space barrier.
Consruction Given s, k,n € N such that s < [n/k] (k may not divide n),
let HY(n, k) be the k-graph on n vertices whose vertex set is partitioned into
two parts A and B such that |A| = s — 1, and whose edge set consists of all
those edges with at least one vertex in A. When k divides n, let H%(n, k) :=
Hg/k(n, k).

Han, Person and Schacht [69] proved that mi(3,n) = (5/9 4+ o(1))n ~
§1(H(n, 3)) for sufficiently large n. Khan [88] and independently Kihn, Os-
thus and Treglown [101] obtained that m;(3,n) = &;(H%(n,3)) + 1 for suf-
ficiently large n. Khan [39] also proved that mq(4,n) = 6;(H"(n,4)) + 1 for
sufficiently large n. Alon, Frankl, Huang, RAdl, Rucinski and Sudakov [8] deter-
mined mgy(k, n) asymptotically for all d > k — 4, including the new cases when
(k,d) = (5,1),(5,2),(6,2) and (7,3). Very recently Treglown and Zhao [146]
determined m2(5,n) and m3(7,n) exactly for sufficiently large n. All these re-
sults point to the following conjecture.

Conjecture 1.2 ([146]) Let k,d € N such that d < k — 1. Then for sufficiently
large n € kN,

B n—d (1-1/kn—d+1
mg(k,n) = max{d(n, k,d), (k B d) - ( k—d > +1}.
When k > 3and 1 < d < k/2, Han, Person and Schacht [69] gave a general
bound : mg(k,n) < ((k—d)/k+o0(1))(}~%). This was improved by Markstrém
and Ruciriski [118] to mg(k, n) < ((k—d)/k—1/kF=%)+0(1))(}~%) and by Kiihn,
Osthus and Townsend [104] to

mathn) < (= o) (31 5)

Tilings

Tiling problems have been studied extensively for graphs. Finding suffi-
cient conditions for the existence of an F-factor is one of the central areas of
research in Extremal Graph Theory. The celebrated Hajnal-Szemerédi theo-
rem reads as follows.

Theorem 1.6 (Hajnal-Szemerédi [68], Corradi-Hajnal [35] for ¢t = 3) Everyn-
vertex graph G with n € tN and §(G) > (1 — })n has a K,-factor. Moreover, the
minimum degree condition is sharp.

The minimum degree threshold forcing an F-factor for arbitrary F' was ob-
tained by Kihn and Osthus [102, 103], improving earlier results of Alon and
Yuster [11] and Komlés, Sarkdzy and Szemerédi [95].

It is not surprising that tiling problems become harder in hypergraphs.
Other than the matching problems mentioned above, only a few tiling thre-
sholds are known. Given a k-graph F' of order f and an integer n divisible
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by f, we define the F-tiling threshold d4(n, F') as the smallest integer ¢ such
that every n-vertex k-graph H with 64(H) > t contains an F-factor. We simply
write (n, ) for §x_1(n, F). Let K} be the complete k-graph on ¢ vertices. The
first step towards a hypergraph is determining 6(n, K3). Czygrinow and Nagle
[38] showed that 6(n, K3) > 3n/5+ 0(n). Keevash and Sudakov observed that
§(n, K3) > 5n/8 + o(n). Pikhurko [124] proved 3n/4 — 2 < §(n, K3) < 0.861n.
Lo and Markstrom [108] showed that 6(n, K3) > 3n/4 + o(n) by the absor-
bing method. Independently and simultaneously Keevash and Mycroft [86]
determined §(n, K3) exactly.

Theorem 1.7 ([86]) For all sufficiently large n € 4N,

3n_ 9 ifn e 8N,
S, K = {

 — 1, otherwise.

When ¢ = k + 1, Lo and Markstrom [108] showed that §(n, K}, ;) < (1 —
1/2k)n for k > 3. Itis plausible that one can prove §(n, K,’jH) < kiﬂn + o(n)
by applying the approach of [86]. Unfortunately we do not know a matching
lower bound (it was shown in [108] that §(n, K,’jﬂ) > 2n/3 for even k). For
arbitrary ¢, it was shown in [108] that

2

- 193log(t — 1)
2 -3t+4

+o(1))n,

and §(n, KF) < (1— () +o(1))nfor k> 6and t > (3 + v5)k/2.
Given positive integers m; < --- < my, let Kﬁ“mk denote the complete

k-partite k-graph with parts of sizes my,...,my. In particular, let KF(m) =
K . Itis clear that 64(n, Kf(m)) > mqa(k,n), but it is possible to have
Sa(n, KF,  ..) < mq(k,n) for certain m1,...,my. Other than the matching

problems, perhaps the earliest result on hypergraph tiling was on Kil’z-tiling
(note that Kf”m is the unique 3-graph with four vertices and 2 triples). As a
corollary of their main result on loose Hamilton cycles, Kihn and Osthus [98]
proved that d(n, Kfm) = n/4+o0(n). Recently Czygrinow, DeBiasio and Nagle
[37] determined this threshold exactly for sufficiently large n.

Let us consider hypergraph tiling under vertex degree conditions. Very
little is known in addition to [114] used the Local Lemma to derive a general
upper bound for §;(n, F') for arbitrary k-graph F as follows.

Theorem 1.8 ([114]) Let F' be a t-vertex m-edge k-graph in which each edge in-

n—1
tersezct%slgt most d other edges. Then 6;(n, F) < (1 — m)(k_l), where
€ = 2. .

Given a k-graph F, let 74(n, F') denote the minimum integer ¢ such that every
k-graph H of order n with §;(H) > t has the property that every vertex of H
is covered in some copy of F. When F' is a graph, it is not hard to see that
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T1(n, F) = (1 — 1/(x(F) — 1) + o(1))n (see the concluding remarks of [71]).
Given a k-graph F, trivially exq(n, F') < 74(n, F) < 04(n, F'), where ex;4(n, F') is
the d-degree Turan number of F, defined as the smallest integer ¢ such that
every k-graph H of order n with §4(H) > ¢ + 1 contains a copy of F.

1.4 . Rainbow structures in (hyper)graph systems

Graph Systems

The most famous transversals are the ones of Latin squares considered
by Euler. In 1782, Euler [52] considered a Latin square of order n, which is an
n x n array filled with symbols 1,...,n, where every symbol appears exactly
once in each row and column. A transversal of a Latin square of order n is a
collection of cells such that every two cells share no row, column or symbol.

Figure 1.2 - Latin square.

Considering the rows and columns of the Latin square as a bipartite graph
K, », where each symbol in the Latin square represents a color and each cell
represents an edge in the graph, the Latin square naturally corresponds to
a properly edge-coloring of K, ,. Viewing this edge-colored graph as a set of
graphs {Gi};c[), where each G; is a graph formed by edges with color i, then
a rainbow matching corresponds to a transversal.

Figure 1.3 - A transversal of latin sqaure.

The following conjecture has become known as the Ryser-Brualdi-Stein
conjecture [141, 22, 142] and is the most significant problem on transversals in
Latin squares.

Conjecture 1.3 (Ryser-Brualdi-Stein Conjecture [141, 22, 142]) EveryLatins-
quare of order n has a transversal with n — 1 cells, and a transversal with n cells
if nis odd.
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Towards the above conjecture, Koksma [93] proved the existence of a
transversal of size 2n/3 before Brouwer, De Vries and Wieringa [21] and Wool-
bright [150] independently showed that every Latin square of order n has a
transversal with at least n — y/n cells. Hatami and Shor [73] showed that a
transversal with n — 111og? n cells exists in any Latin square of order n. This
bound stood until the breakthrough work of Keevash, Pokrovskiy, Sudakov
and Yepremyan [87] in 2022, which showed that every Latin square of order n
has a transversal with n — O(log n/ log log n) cells. Recently, Montgomery [131]
resolved the above conjecture.

More generally, Aharoni and Berger [1] made the following generalization
of the above conjecture.

Conjecture 1.4 (Aharoni-Berger Conjecture [1]) Let G be a properly edge- co-
lored bipartite multigraph with n colors having at least n + 1 edges of each color.
Then G has a rainbow matching of size n.

This conjecture attracted a lot of attention since it was made. Aharoni,
Charbit and Howard [2] proved that matchings of size |7n /4] are sufficient to
guarantee a rainbow matching of size n. Kotlar and Ziv [96] improved this to
|5n/3]. Clemens and Ehrenmidiller [32] showed that 3n/2 + o(n) is sufficient.
The best currently known bound is by Aharoni, Kotlar and Ziv [5] who showed
that having 3n/2 + 1 edges of each color in an n-edge-colored bipartite multi-
graph guarantees a rainbow matching of size n. Pokrovskiy [126] approximate
version of Conjecture 1.4.

This motivates the study about the existence of rainbow structures in a
collection of graphs. Indeed, various interesting results have been proved.

Aharoni, DeVos, Maza, Montejano and Samal [3] proved that there exists a
rainbow triangle in {G1, G2, G} ife(G;) > %ﬁrﬂ foreachi € [3], whichis a
Turdn type problem over graph systems. Surprisingly, this bound is best pos-
sible as %ﬁ is larger than 1/4 which we obtained from Mantel's theorem. It
is an interesting open problem to generalize this further by determining the
tight conditions on e(G;) for the existence of a {G1,.. .,G(;)}-rainbow iso-
morphic to K, with » > 3. In the same paper, they proposed the following
conjecture.

Conjecture 1.5 ([3]) For |V| = n > 3 and graph system G = {G};cn on 'V, if
0(Gi) = n/2 for each i € [n], then there exists a G-rainbow Hamilton cycle.

This was recently verified asymptotically by Cheng, Wang and Zhao [30],
and completely by Joos and Kim [77]. In [20], Bradshaw, Halasz and Stacho
strengthened the Joos-Kim result by showing that given an n-vertex graph
system G = {G}ic|n) With §(G;) > n/2 for i € [n], then G has exponentially
many rainbow Hamilton cycles. Similarly, Bradshaw [19] gave a degree condi-
tion for rainbow Hamilton cycle in bipartite graph systems, which generalized
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the result of Moon and Moser [122]. Moreover, Gupta, Hamann, Muyesser,
Parczyk and Sgueglia [63] recently proved that any collection of an n-vertex
graph system with at least rn graphs, each with minimum degree at least
(r/(r + 1) + o(1))n, contains a rainbow r-th power of a Hamilton cycle. This
can be viewed as a rainbow version of the Pdsa-Seymour conjecture, which
was proved by Komlds, Sarkézy, and Szemerédi [94]. Cheng and Staden [29]
developed a version of rainbow blow-up lemma (which can be used when the
number of colors is e-fraction more than the number of edges in H) and ob-
tained a result similar to [63] when the number of colors is e-fraction more
than the number of edges in the power of Hamilton cycle.

Generally, for each graph F, let § be the smallest real number § > 0 such
that, for each € > 0 there exists some ng such that, for every n > ng with |F|
dividing n, if an n-vertex graph G has minimum degree at least (§ + ¢)n, then
G contains an F-factor. Cheng, Han, Wang and Wang [27] proved that the
minimum degree bound Jx, is asymptotically sufficient for the existence of
rainbow K ,.-factorin graph systems. Montgomery, Muyesser and Pehova [120]
generalized the above conclusion for some F satisfying d > 1/2 or F has a
bridge.

All those graphs above, powers of Hamilton cycles, F-factors and trees,
have somewhat bounded maximum degree and have low connectivity. This
low connectivity can be captured by the following notion of bandwidth. A
graph H has a bandwidth at most b if there exists an ordering z1, ..., z, of
V(H) such that all edges z;z; € E(H) satisfies |i — j| < b. Indeed, the cele-
brated bandwidth theorem proved by Boéttcher, Schacht and Taraz [18] deter-
mines the asymptotically sharp minimum degree condition on G to find such
a graph H with bounded maximum degree and low bandwidth as a spanning
subgraph. More precisely, the bandwidth theorem states that if an n-vertex k-
chromatic graph H has bounded maximum degree and sublinear bandwidth,
then every n-vertex graph G with 6(G) > (1 — 1/k + o(1))n contains a copy
of H. Recently, Chakraborti, Im, Kim and Liu [25] made important progress in
this direction by proving a ‘rainbow bandwidth theorem'.

Theorem 1.9 ([25]) For every ¢ > 0 and positive integers A, k, there exist o > 0
and hg > 0 satisfying the following for every h > hy. Let H be an n-vertex graph
with h edges and bandwidth at most an such that A(H) < A and x(H) < k. If
G = {Gi}icjn Is a family of h graphs on the same vertex set of size n such that
0(Gi) > (1 = 1/k +e)n forall i € [h], then there exists a G-rainbow H.

Hypergraph systems

Itis also natural to investigate what can be guaranteed with a lower bound
on the minimum degree in hypergraphs. It turns out that even in this more
restrictive setting, there can be a discrepancy between the uncolored and the
rainbow versions of the problem.
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Definition 1.1 (Uncolored minimum degree threshold) Let F be an infinite
family of k-graphs. By 6 q we denote, if it exists, the smallest real number § such
that for all o« > 0 and for all but finitely many F € F the following holds. Let
n = |V (F)| and H be any n-vertex k-graph with 54(H) > (§ + o) (}~%). Then H
contains a copy of F.

For example, if F is the family of graphs consisting of a cycle on n vertices
for each n € N, then we have §r; = 1/2. Indeed, this follows from Dirac's
theorem which states that any graph with minimum degree at least n/2 has
a Hamilton cycle.

Definition 1.2 (Rainbow minimum degree threshold) Let F be an infinite fo-
mily of k-graphs. By 5§P 4 we denote, if it exists, the smallest real number ¢ such

that for all o > 0 and fc;r all but finitely many F € F the following holds. Let n =

|V (F)| and H = {H;},c( (r)) be any n-vertex k-graph and 5,(H;) > (5+a) (%)

foreach i € [|E(F)|]. Then there exists an H-rainbow F..

Note that 55%1 > 6rq. Indeed, if H contains no copy of F, the system
H consisting of |E(F')| copies of H does not contain a rainbow copy of F
either. However, Montgomery, Miyesser, and Pehova [120] made the follo-
wing observation which shows that 52‘3@ can be much larger than dr 4. Set
F ={kx (K23UCy) : k € N} where k x G denotes the graph obtained by ta-
king k vertex-disjoint copies of G. It follows from a result of Kihn and Osthus
[103] that 71 = 4/9. Consider the graph system G = {G1,...,G,,} on V ob-
tained in the following way. Partition V' into two almost equal vertex subsets,
say A and B, and suppose that G; = G = - - - = G,,,—1 are all disjoint unions
of a clique on A and a clique on B. Suppose that G,, is a complete bipartite
graph between A and B. Observe that each G; in this resulting graph system
has minimum degree ||V'|/2]. Further observe that if G contains a rainbow
copy of some F' € F, the edge of Ky 3 or (4 that gets copied to an edge of
G, would be a bridge (an edge whose removal disconnects the graph) of F.
However, neither K3 3 nor Cy contains a bridge. Hence, 553(1 >1/2.

On the other hand, there are many natural instances where 55]9@ = 0F.d-
When this equality holds, we say that the corresponding family F is d-color-
blind. For example, Joos and Kim [77] showed that the family F of Hamilton
cycles is 1-color-blind. There are many more families of color-blind hyper-
graphs. In particular, matchings [27, 113, 110, 109], Hamilton ¢-cycles [28, 143],
factors [27, 120] and spanning trees [120] have been extensively studied.

Recently, Gupta, Hamann, MUyesser, Parczyk and Sgueglia [63] gave a uni-
fied approach to this problem and proved the following result.

Theorem 1.10 ([63]) The following families of hypergraphs are all d-color-blind.

(A) The family of the r-th powers of Hamilton cycles for fixed » > 2 (and
d=1).
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(B) The family of k-uniform Hamilton (-cycles for the following ranges of k. ¢,
and d.
(B1) 1<{<k/2andd=Fk—2;
(B2) 1</<k/2orf=k—1landd=Fk—1;
(B3) {=k/2and k/2 < d < k — 1 with k even.

Other recent results include works on matchings. The largest size of a mat-
ching in a hypergraph H is denoted by v(H). A classical problem in Extremal
Graph Theory is to determine max e(H ) with v(H) fixed. Erd6s [47] made the
following conjecture : For positive integers k,n,t with n > kt, every k-graph
H on n vertices with v(H) < t satisfies e(H) < max{(}) — ("), (*. )}
This bound is tight for the complete k-graph on kt — 1 vertices and for the k-
graph on n vertices in which every edge intersects a fixed set of ¢t — 1 vertices.
There have been many results about this conjecture, but we mainly focus on
the rainbow version. Aharoni and Howard [4] made the following conjecture,
also see Huang, Loh, and Sudakov [74].

Conjecture 1.6 ([4, 74]) Let H = {H,};cy be an n-vertex k-graph system. If
e(H;) > max{(}) — ("I, (*.1)} for each i € [t], then there exists an H-
rainbow matching.

Huang, Loh, and Sudakov [74] proved that Conjecture 1.6 holds for n > 3k?t.
Recently, Frankl and Kupavskii [56] proved that Conjecture 1.6 holds when
n > 12ktlog(et), providing an almost linear bound. Lu, Wang and Yu [110]
improved it to n > 2kt and t is sufficiently large. More recently, Keevash, Lif-
shitz, Long and Minzer [83] independently proved a more general version with
n = Q(kt) using sharp threshold techniques developed in [84].

There are also Dirac-type conditions in hypergraph systems for rainbow
matchings. For 3-graph system H = {H;};c[,,/3), LU, Yu, and Yuan [113] proved
the following result.

Theorem 1.11 ([113]) For sufficiently large n with n = 0(mod 3) and a 3-graph
system H = {H, };c|n3), if 61(H;) > (";1) - (2"2/3) fori € [n/3], then there exists
an H-rainbow perfect matching.

This implies the result of Kiihn, Osthus, and Treglown [101] and Khan [88] on
perfect matchings in 3-graphs. In [109], Lu, Wang and Yu proved the following
result in 4-graph systems,

Theorem 1.12 ([109] ) Let n be a sufficiently large integer with n = 0(mod4). Let
H = {H;}ic[n/4) be an n-vertex k-graph system such that for each i € [n/4], if
51(H;) > ("3%) — (*"/*), then there exists an H-rainbow perfect matching.

This gives Khan's result [89] on perfect matchings in 4-graphs as a special case.

Besides, Lu, Wang and Yu [111] also give the co-degree threshold for rain-
bow perfect matchings in k-graph systems.
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Theorem 1.13 ([111]) Given integers k,d such thatk > 3 and k/2 < d <k —1
and n € kN, there exists ny € N such that the following holds. Suppose that
H = {H;}ic[n/x) Is an n-vertex k-graph system with n > ng satisfying 6y —1(H;) >
d(n,k,k—1)foreachi € [n/k|. Then there exists an H-rainbow perfect matching.

Recently, You [151] determined the minimum d-degree condition that gua-
rantees the existence of a rainbow perfect matching in k-graph systems for
delk/2,k—1].

1.5 . Contribution and outline of the thesis

In this section, we summarize main works and the organization of this
dissertation.

(1) Letcy, 4 be the minimum d-degree threshold for perfect fractional mat-
chings in k-graphs, namely, for every ¢ > 0 and sufficiently large n € N,
every n-vertex k-graph H with 6,(H) > (cx,q+¢) (Z:j) contains a perfect
fractional matching. It is known that [8] every n-vertex k-graph H with
Sa(H) > (max{cyq, 1/2} + o(1))(7-%) has a perfect matching, and this
condition is asymptotically best possible. In Chapter 2, we proved that
a minimum d-degree condition forcing a perfect matching in a k-graph
also forces rainbow perfect matchings in k-graph systems ford € [k—1].
The degree assumptions in the result is asymptotically best possible (al-
though the minimum d-degree condition forcing a perfect matching in
a k-graph is in general unknown). We also give a general framework to
prove the existence of rainbow factors in hypergraph systems. This is a
joint work with Y. Cheng, J. Han and G. Wang.

(2) A classical theorem of Dirac [43] asserts that for any n > 3, every n-
vertex graph with minimum degree at least n/2 contains a Hamilton
cycle. The problem of determining the best possible minimum (k — 1)-
degree condition forcing Hamilton cycles in k-graphs, was initially re-
searched by Katona and Kierstead [79]. They proved that every n-vertex
k-graph H with §,_1(H) > (1 — & )n + 4 — k — 5 admits a Hamilton
cycle. They also conjectured that the bound on the minimum (k — 1)-
degree can be reduced to roughly n/2, which was confirmed asympto-
tically by Rodl, Rucinski and Szemerédi in [135, ]. The same authors
gave the exact version for £ = 3 in [139]. In Chapter 3, we show that
given k > 3, > 0, sufficiently large n and an n-vertex k-graph system
H = {H;};cpn), if 0x—1(H;) > (1/2+)n for eachi € [n], then there exists
an H-rainbow Hamilton cycle, which is an extension of [137]. This is a
joint work with Y. Cheng, J. Han, G. Wang and D. Yang.

(3) Gupta, Hamann, Muyesser, Parczyk, and Sgueglia [63] mentioned the
following problem as “there is a well-known (uncolored) Dirac-type re-
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sult whose rainbow version is missing” and “it would be an interesting
challenge to obtain this result” : Given a 3-graph system H = {H,};c[,
with minimum vertex degree condition of each H;, does H admit a rain-
bow Hamilton cycle? In Chapter 4, we develop a sequentially Hamilton
framework, which is of independent interest, settling the above pro-
blem, and draw the general conclusion for any £ > 3. We show that
given v > 0, k > 3, sufficiently large n and an n-vertex k-graph system
H = {H;};cn . if 6p_2(H;) > (5/9+7)(3) fori € [n], then there exists an
H-rainbow Hamilton cycle. This result implies the conclusion in a single
graph, which was proved by Lang and Sanhueza-Matamala [105], Polcyn,
Reiher, Rodl and Schilke [129] independently. This is a joint work with Y.
Tang, G. Wang and G. Yan.

(4) In 1989, Andersen [13] conjectured that all proper edge-colorings of
K,, admit a rainbow path which omits only one vertex. It is best pos-
sible by a construction of Maamoun and Meyniel [115]. In Chapter 5, we
proved that every properly edge-colored K, , contains a rainbow cycle
of length at least n — 28n3/4 for sufficiently large n. The bound above is
asymptotically optimal as each color class could be a perfect matching
of K,,, and only n colors occur in E(K,, ;). This is a joint work with H.
Li and G. Wang.
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2 - Rainbow perfect matchings in hypergraph
systems with minimum d-degree

It is well-known that perfect matchings are closely related to its fractional
counterpart. Given a k-graph H, a fractional matching is a function f : E(H) —
[0, 1], subject to the requirement that > . .. f(e) < 1, for every v € V(H).
Furthermore, if equality holds for every v € V(H), then we call the fractional
matching perfect. Denote the maximum size of a fractional matching of H by
v (H) = maxy Xeepm) f(e).

Let ¢ q be the minimum d-degree threshold for perfect fractional mat-
chings in k-graphs, namely, for every £ > 0 and sufficiently large n € N, every
n-vertex k-graph H with 64(H) > (ckq + ¢€) (Z:g) contains a perfect fractio-
nal matching. It is known that [8] every n-vertex k-graph H with §4(H) >
(max{ck,q,1/2}+0(1)) (Z:Zzl) has a perfect matching, and this condition is asymp-
totically best possible. However, determining the parameter c; 4 is a major
open problem in this field and we refer to [56] for related results and discus-
sions.

Theorem 2.1 For every ¢ > 0 and integer d € [k — 1], there exists ny € N, such
that the following holds for all integers n > ng and n € kN. Every n-vertex k-
graph system G = { G }ic(n/x) With 54(G:) > (max{cyq,1/2} + €) (Z:g) for each
i contains a rainbow perfect matching.

2.1. Notation and preliminaries

Given a k-graph system G = {Gi }c[,/x) On vertex V and a subset V! C V.
Let G[V'] = {Gi[V']}icn i) b€ the induced k-graph system on V', If [V'| € kN
and there exists a rainbow perfect F-tiling inside G[V'] whose color setis C' C
[n/k], then we say that V' spans a rainbow F-tiling in G with color set C. Next,
we give some definition needed in this chapter.

Definition 2.1 (Rainbow F-absorber) Let G = {G;};c[n k) be a k-graph sys-
temon V. For every k-set B in V and every color C'in [n/k], A = AU Az is called
a rainbow edge-absorber for (B, C) if
« V(A) = BUL,
« Ay is a rainbow perfect matching L with color set Cy and Ay is a rainbow
perfect matching on B U L with color set Cy U C.

Definition 2.2 We call a hypergraph H a (1,b)-graph, if V(H) can be partitioned

into AU B and E(H) is a family of (1 + b)-sets each of which contains exactly one
vertex in A and b vertices in B.
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For a (1,b)-graph H with partition AUB, a (1,d)-subset D of V(H) is a
(d + 1)-tuple where |[D N A| = 1and |[D N B| = d. A (1,b)-graph H with
partition classes A, B is balanced if b|A| = |B|. We say thataset S C V(H) is
balanced if b|S N A| =[S N Bj.

Given an n-vertex k-graph system G = {G };¢c|,/x) ON V, we construct auxi-
liary (1, k)-graph Hg of G as follows.

Definition 2.3 Let Hg be an auxiliary (1,k)-graph of G with vertex set V' =
[n/k] UV and edge set {{i} Ue :i € [n/k],e € G;}.

For a hypergraph H, the 2-degree of a pair of vertices is the number of
edges containing this pair and As(H) denotes the maximum 2-degree in H.
Forrealsa,band ¢, wewritea = (1+b)cfor (1-b)c < a < (1+b)c. We need the
following result which was attributed to Pippenger [125](see Theorem 4.7.1in
[10]), following Frankl and R&dl. A cover in a hypergraph H is a set of edges
such that each vertex of H is in at least one edge of the set.

Lemma 2.1 ([125]) For every integer k > 2, r > 1 and a > 0, there exist v =
v(k,r,a) > 0 and dy = do(d,r,a) such that the following holds for every n € N
and D > dy. Every k-graph H = (V, E) on V of n vertices in which all vertices
have positive degrees and which satisfies the following conditions :

* For all vertices = € V' but at most yn of them, di(x) = (1 £ v)D.

« Forallz €V, dg(x) < rD.

° AQ(H) < ~D.
contains a cover of at most (1 + a)(n/k) edges.

2.2 . Rainbow absorption method

Given an n-vertex k-graph system G = {Gi }c[, on V with §4(G;) > (1/2+
e)(7=%) fori € [n/k],d € [k—1], wefirst constructa (1, k)-graph Hg with vertex
set [n/k] UV and edge set {{i} Ue : e € H;,i € [n/k|}. Next, we construct a
specific rainbow edge-absorber. For any k-setT = {v1,..., vt} in V and every
color¢; € [n/k], we give a rainbow absorber A = A;UA; for (T, ¢;) as follows.
« Ay = {Ms,..., My} is a set of k — 1 disjoint edges in Hg where ¢; €
M;(i € [2,k)).

« Thereis avertex u;(i € [2,k]) from each V (M;) such that {ua, ..., ug, v1,
Cl} € E(H(;) and (V(Mz) \ {ul}) U {7)2} € E(H(;) fori e [2, k] Let A; be
{uz, - ugvr, ex}, (VM) \ {uz}) U o}, .., (VM) {ur) U for} ).

For any k-set T in V' and every color ¢; € [n/k], we denote the family of
such rainbow edge-absorbers for (T, ¢1) by A(T, c1).

. _1\k
Claim 2.1 |A(T, ¢1)| > e~k 1 (71" 2,
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Proof. Fixcy € [n/kland T = {v1,...,ux} C V. Choose (cq,...,c) arbi-
trarily from [n/k] and there are at least (% — 1)--- (% — (k — 1)) > eF~lnh~1
choices. Fix such (ca,...,cr). Next, we construct Ms,..., M}, and note that
there are at most (k — 1)(}=5) < e(7~]) edges which contain c;,v; and v; for
some j € [2,k]. Due to the minimum degree assumption, there are at least

%(Zj) edges containing v; and ¢; but none of vg, . . ., vx.. We fix such one edge
{c1,v1,u9,...,ur} and set Uy = {ug, ..., ur}. Foreach i € [2, k] and each pair

{u;,v;}, suppose we succeed in choosing a set U; such that U; is disjoint with
Wi-1 = Uje;—1)U; UT and both U; U {u;, ¢;} and U; U {v;, c; } are edges in Hg,
then for a fixed i € [2, k], we call such a choice U; good.

Note that in each step i € [2, k], thereare k+ (i —1)(k—1) < k? vertices in
W;_1, thus the number of edges with color ¢; intersecting u; and at least one
other vertex in W;_1 is at most k2(~,). So the minimum degree assumption

implies that for each i € [2, k], there are at least 2¢(}_}) — 2k*(}23) > (771)

good choices for U; and in total we obtain e2¢—2p/~1 (Zj)k/Z rainbow absor-
bers for (T, c1). O

Foranyedgee € E(Hg),If A C V(Hg)and|A|isdivisibleby k+1,then A €
((kr;f')”) is an absorber for e if e C A, there is a perfect matching in Hg[A] and
there is a perfect matching in Hg[A \ €]. Let L(e) denote the set of absorbers
for ein Hg.

Lemma 2.2 (Rainbow Absorption Lemma) Let A? be a rainbow edge-absorber
as above. For every € > 0, there exist -y, v, and ng such that the following holds for
all integers n. > no. Suppose that G = {G}icjn k) IS an n-vertex k-graph system
onV and 6,(G;) > (1/2+¢)(}-%) and Hg is the auxiliary (1, k)-graph of G, then
there exists a matching M in Hg with size at most 2 (k — 1)n such that for every
balanced set U C ([n/k]U V) \ V(M) of size at most yin, V(M) U U spans a
matching in Hg.

Proof. Letl/n < 7 < a < v < € < e.Note thata matching of size k in Hg
corresponds to a rainbow edge-absorber in G. Choose a family F of matchings
of size k — 1 from Hg by including each matching of size k — 1 independently
at random with probability

p = ~/nE=D0+D-1

Note that |F|, |L(e) N F| are binomial random variables with expectations
E[|F]] < yn and
E[|L(e) N F|] > v&'n for any e € E(Hg).

The latter inequality holds since for any edge e of Hg, |£(e)| > &/n(k=D(++1) by
the minimum degree assumption and Claim 2.1. By Lemma 1.1, with probability
1 — o(1), the family F satisfies the following properties.
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1 |F| < 2E[|F]] < 29m,
2. [L(e) NF| > LE[|L(e) N F|] = 3ve'n for any e € E(Hg).

Moreover, we can also bound the expected number of pairs of intersecting
members of F by

p=DEED (k — 1)2(k 4 1)2p kD012 < éva’n-

Thus, by Markov's inequality, we derive that with probability at least 1/2, F
contains at most ive’n pairs of intersecting members of 7. Remove one mem-
ber from each of the intersecting pairs in F. Thus, the resulting family, say 7/,
consists of pairwise disjoint matchings of size m — 1 that satisfies

1. |F'| < 29n,
2. [L(e) NF| > ive'n — Lven > anfor any e € E(Hg).

Therefore, the union of members in ' is a matching in Hg of size at most
2v(k — 1)n and can (greedily) absorb a balanced set U of size at most vin
since v < a. O

2.3 . Rainbow matching cover

The goal of this section is to prove the following lemma, an important com-
ponent of the proof of Theorem 2.1.

Lemma 2.3 (Rainbow Almost Cover Lemma) for every ¢, ¢ > 0 and integer
d € [k — 1], the following holds for sufficiently large n € bN. Suppose that G =
{Gi}icin/k is an n-vertex k-graph system on V' such that §4(G;) > (cg.a+2)(}~%)
fori € [n/k], then G contains a rainbow matching covering all but at most ¢n

vertices.

For a k-graph H, a fractional cover is a function w : V(H) — [0, 1], subject
to the requirement ) . . w(v) > 1foreverye € E(H). Denote the minimum
fractional cover size by 7*(H) = min,, %,cy (gyw(v). The conclusion v*(H) =
7*(H) for any hypergraph follows from the LP-duality. For n-vertex k-graphs
we trivially have v*(H) = 7*(H) < %.

Given ann-vertex k-graph system G = {Gi };c|n k) ON V. Let Hg be the auxi-
liary (1, k)-graph of G. Let 61 1 (Hg) := min{degy_(S): Sisa (1, k—1)-subset
of V(Hg)} where degy,(S) denotes the number of edges in Hg containing S.

The proof of the following claim is by now a standard argument on frac-
tional matchings and covers.

Claim 2.2 [feach G; contains a perfect fractional matching for i € [%], then the
auxiliary (1, k)-graph Hg of G contains a perfect fractional matching.
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Proof. By the duality theorem, we transform the maximum fractional mat-
ching problem into the minimum fractional cover problem. Since 7*(Hg) =
v*(Hg) < %, it suffices to show that 7*(Hg) > 7 to obtain v*(Hg) = 7.
Let w be the minimum fractional cover of Hg and take i; € [n/k| such that
w(i1) = min;ep, /5 w(i). We may assume that w(i;) = 1 — z < 1, since other-
wise w([n/k]) > 7 and we are done. By definition we getw(e) > 1 —w(i1) =
fo(r)every e € Gy,. We define a new weight function w’ on V' by setting w/(v) =
w(v

== for every vertex v € V. Thus, ' is a fractional cover of G;, because for

T

eache € G;,, W'(e) = @ > 1. Recall that G, has a perfect fractional mat-

ching, and thus w'(V)) > 7*(G;,) > % which implies that w(V) > 2. There-
fore,

W(FUV) > Q-0+ =1,

Hence, 7*(Hg) = 7., i.e. Hg contains a perfect fractional matching. O

Given an n-vertex k-graph system G, we shall construct an auxiliary (1, b)-
graph Hg of G and a sequence of random subgraphs of Hg. Then, we use the
properties of them to get a “near regular” spanning subgraph for the sake of
applying Lemma 2.1.

The proof is based on a two-round randomization which is already used
in [8, 110, 27]. Since we work with balanced (1, k)-graphs, we need to make
sure that each random graph is balanced. In order to achieve this we modify
the randomization process by fixing an arbitrarily small and balanced set S C
V(Hg). This is done in Fact 2.1.

Let Hg be the auxiliary (1, k)-graph of G with partition classes A, B and
k|A| = |B| where A is the color setand B = V. Let S C V(Hg) be a set of
vertices such that [S N A| = n%%/band |S N B| = n®%. The desired subgraph
H" is obtained by two rounds of randomization. As a preparation to the first
round, we choose every vertex randomly and uniformly with probability p =
n~99 to get a random subset R of V(Hg). Take n''! independent copies of R
and denote them by R;, i € [n!!],i.e. each R, is chosen in the same way as
Rindependently. Define R;_ = R;y \ S fori € [n'1].

Fact 2.1 Letn, Hg, A, B, S and R;_, R;; be given as above. Then, with probabi-
lity 1 — o(1), there exist subgraphs R;,i € [n*!], such that R;_ C R; C R;, and
R; is balanced.

Proof. Recall that |A| = n/k,|B| = n,|SN Al =n%%/band |S N B| = n®%,
thus
Ef|Ris 1 AJ] = n%/k,

E[|R;y N AN S| =n"%/k,
E[|Ri+ N Bl = n"!,
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E[|R;+ N BN S| = n",
By Lemma 1.1, we have

nOAOG)

B|[Rir 1Al - n® /5] > n0%%] < =20,

0,07)
)

P[||Rir N AN S| —n®% /b > n008) < e
]P)[HR’H- M B| _ TLO'l’ > nO,DS] < e,Q(n0406)’
Pll|Rix N BN S| — n /p| > nO'OS] < o QUn07).

Thus, with probability 1 — o(1), for all i € [n!-1],
’Ri-i- N A| c [nO.l/k . n0.0S’nO.l/b + n0.0B]’

Rie AN S| = (14 0(1)n®/k,
‘RH- N B‘ c [nO.l o n0.087n0.1 + n0.08]7
|Riy NBNS| = (1+0(1))n"%.

Therefore, |b|Rix NA| — |Rix N B|| < (k+ 1)n%%® < min{|R;x N AN S|, | Ry N
BN S|}. Hence, with probability 1 — o(1), R; can be balanced fori € [n!1]. O

The following two lemmas together construct the desired sparse regular
k-graph we need.

Lemma 2.4 Given an n-vertex k-graph system G = {G};cn/i) 0NV, let Hg be
the auxiliary (1, k)-graph of G. For each X C V (Hg), let Yy = [{i : X C Rt }|
and Yx := |{i : X C R;}|. Then with probability at least 1 — o(1), we have

1. |Ril = (1/b+ 1+ o(1))n%! for alli € [n'1].

2. Yy = (L+0(1))n®2 for v € V(Hg) \ S and Yy,; < (1 + o(1))n"2 for

veS.
3. Yy < 2forall {u,v} C V(Hg).
4. Yo <1foralle € E(Hg).

5. Suppose that V(R;) = C; U'V;, we have 61 4(Hg[V (R;)]) > (cka + €/4)
(75227 = 1R 0 B S| (92051 > (e +e/8) (F57).

Proof. Note that E[|R;1|] = (1/k + V)n*L E[|R;_|] = (1/k + 1)n — (1/k +
Dn%9Mn=09 = (1/k + 1)n%! — (1/k + 1)n%%. By Lemma 1.1, we have

PH |Ri+’ _ no-l(l/k + 1) ‘2 n0‘095} < efg(no.og)7
Pl [Ri—| — ((1/k + 1)n0-1 —(1/k+ 1)n0‘09) > n0‘095] < o~ QUn0%)

Hence, with probability at least 1 — O(n!1)e=2("*) for the given sequence

R;in Fact 2.1, i € [n!1], satisfying R, C R; C R;,, we have |R;| = (1/k+ 1+
o(1))n%1L,
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For each X C V(Hg), let Yy = |{i : X C R4}/ and Yx = |{i :
X C R;}|. Note that the random variables Y} have binomial distributions
Bi(n'!, n=091X1) with expectations n'-1=0-91X] and Yx < Y. In particular, for
eachv € V(Hg), E| {U}] = n%2, by Lemma 1.1, we have

B [Yiiy| = %% 2 n®10) < 720",

Hence, with probability at least 1-O(n)e~*"""*), we have Yy, = (1+0(1))n®?
forv e V(Hg) \ Sand Yy, < (1+o0(1))n’2forv e S.
Let Zpq = |X € (Y9) . Y > gl. Then,

1.1
E[Zp,q] < <Z - n) <n >(n_0'9pq) < COnppt11a=09pq
p q

Hence, by Markov's inequality we have
P[Z273 = 0] =1- P[Zz,g Z 1] Z 1-— E{Zg’g] =1- 0(1),

PZ14k2=0]=1—-PZ1452 > 1] > 1 —-E[Z1442] =1 —o(1),

i.e. with probability at least 1 — o(1), every pair {u,v} C V(Hg) is contained
in at most two sets R;4, and every edge is contained in at most one set R;.
Thus, the conclusions also hold for R;.

Fix a (1,d)-subset D C V(Hg) and let Np(Hg) be the neighborhood of D
in Hg. Recall that R is obtained by choosing every vertex randomly and uni-
formly with probability p = n=%9, let DEG p be the number of edges { f|f € R
and f € Np(Hg)}. Therefore DEGp = 3~ ey, () Xf Where Xy = 1if fis
in R and o otherwise. We have

E[DEGD] = dig(D) x (n™"%) > (ciq +e) (Z B j) - 09(k—)

> (ck,a +€/3) [RNB|—d) _ Q(nO1k=d)y,
’ k—d
For two distinct intersecting edges f;, f; € Np(Hg) with |f; N f;| = ¢ for
¢ € [k — d — 1], the probability that both of them are in R is
PXy, =Xy, =1] = p2lh=d)—t

for any fixed ¢, we have

A= Y PIXj =Xy =1] <kzd:1 2e-ay-¢ (M= A (K =d) ([ n—k
fi =2 = kd 0 k—d—¢

finf; #0 =1

k—d—1
< Z 20k=D)—L O (2(k=D=t) — O(p012(k—d)=1)),
=1
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Applying Lemma 1.3 withI' = B, T, = RN B and M = Ny, (D)(a family of
(k — d)-sets), we have

P[DEGp < (1 — e/12)E[DEGp]] < e~ UEDPEGD)?/A) _ =0’

Therefore by the union bound, with probability 1 — o(1), for all (1, d)-subsets
D C V(Hg), we have

DEGp > (1 —¢/12)E[DEGD] > (cra+¢/4) <’R Bl - d).

k—d
Summarizing, with probability 1 — o(1), for the sequence R;,i € [n'!], satis-
fying R, C R; C R;4, all of the following hold.
1. Ry = (1/b+ 1+ 0(1))n’! for alli € [n'1].
2. Y3 = (14 0(1))n%* forv € V(Hg) \ S and Yy,; < (1 + o(1))n? for
veES.
3. Yy < 2forall {u,v} C V(Hg).
4. Yo < 1foralle e E(Hg).
5. DEG%) > (cpa + /4) (BB for all (1,d)-subsets of D C V(Hg)
andi € [n'1].
Thus, by property 5 above, we conclude that suppose V(R;") = C;" UV, and
V(R;) = C; UV, the following holds.

01,a(He[V(R)]) = (cra+e/4) <|Ri+k:m—Bal . d>.

After the modification, we still have

|Ri N B|—d |Ri+ﬂB]—d—1>

01.4(H6[V (Ry)]) > (Ck,d+€/4)< k_d >—|Rz‘+ﬂBﬁ5|< b d—1

R,NB|—d
Z(Ck,d+5/8)<‘ k—’d )

g

Lemma 2.5 Letn, Hg, S, R;, i € [n'!] be given as in Lemma 2.4 such that each
Hg[V (R;)] is a balanced (1, k)-graph and has a perfect fractional matching w;.
Then there exists a spanning subgraph H" of H* = U; Hg|V (R;)] such that

« dyn(v) < (1+o(1))n%2 forv e S,

e dgn(v) = (1 +0(1))n2 forallv € V(Hg) \ S,
o AQ(H//) < nO.I'
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The proofs follow the lines as in [&, 110, 27].
Proof. By the condition that each Hg[V(R;)] has a perfect fractional mat-
ching w;, we select a generalized binomial subgraph H” of H* by indepen-
dently choosing each edge e with probability w;_(e) where i, is the index i
such that e € Hg[V (R;)]. Recall that property 4 guarantees the uniqueness of
-

Forv e V(H"), letl, = {i : v € R}, E, = {e € H* : v € e} and
El = E, N Hg[V(Ry)], then E},i € I, forms a partition of E, and |I,| = Yj,.
Hence, forv € V(H"),

dir(v) =3 1=D ) Xe,

ec E, 1€ly e€E},

where X, is the Bernoulli random variable with X, = 1ife € F(H") and
X. = 0 otherwise. Thus its expectation is w;_(e). Therefore

Eldg» (v Z Z wi, (e) = ZlZY{v}.

€1y e€E} iel,

Hence, E[dy» (v)] = (1 + o(1))n®2 for v € V(Hg) \ S and E[dg~(v)] < (1 +
0(1))n®2 for v € S. Now by Chernoff's inequality, for v € V(Hg) \ S,

PHdH//(’U) _ n0~2| Z n0.15} S e—Q(TLO‘l)

)

andforv € S,
Pld g (v) — n02 > n0'15] < e~ 2n%")

Taking a union bound over all vertices, we conclude that with probability
1—o(1),dgr(v) = (140(1))n2forallv € V(Hg)\S and dg~ (v) < (140(1))n"2
forveS.

Next, note that for distinct u,v € V(Hg),

dgr({u,v})= DY 1= > > X,

e€EE,NE, i€lyNly e€ELNEY

and

Eldg» ({u,v})] Z Z wi(e) < [, N1, < 2.

i€luNIy e€ ELNE]
Thus, by Lemma 1.2,

0.1

P[dHH({u,’U}) > nO.l] <e " R

then by a union bound we have As(H") < n%! with probability 1 — o(1). O
Proof. [Proof of Lemma 2.3] By the definition of ¢ 4, Lemma 2.4 (5) and Claim
2.2, there exists a perfect fractional matching w; in every subgraph Hg[V (R;)],
i € [n*!].ByLemma 2.5, thereis a spanning subgraph H” of H* = U; Hg[V (R;)]
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such that dg(v) < (1 + o(1))n%2 for each v € S, dyr(v) = (1 + o(1))n°2
forallv € V(Hg) \ S and Ay(H") < n%!. Hence, by Lemma 2.1 (by setting

D = n%2), H" contains a cover of at most ”ff,ék(l + a) edges which implies

that H” contains a matching of size at least ”L”,ék(l —a(l+k—1)), wherea
is a constant satisfying 0 < a < ¢/(1 + k — 1). Hence Hg contains a matching
covering all but at most ¢(n + n/k) vertices. O
Proof. [The proof of Theorem 2.1] Suppose that % Kp<Lkn<KyKeKe
where ¢/, ~, 71 are defined in Lemma 2.2 and ¢, € in Lemma 2.3. Let Hg be the
auxiliary (1, k)-graph of G. By Lemma 2.2, we get a matching M in Hg of size
at most 2v(k — 1)n such that for every balanced set U C [n/k] UV \ V(M)
of size at most vin, V(M) U U spans a matching in Hg. Let G' = {G};cfn/x
be the induced k-graph system of G on V' where V' := V' \ V(M). Denote
the subsystem of G’ by G; = {G/}ic;, where I = [n/k]\V (M). We still have
34(GY) > (max{cya, 1/2}+5) (129 fori € I, since 2y(k—1)n(}—971) < 5(2-9).
Then, we construct the new auxiliary (1, k)-graph Hg, of G).

By Lemma 2.3, Hg containsa matching M covering all but at most ¢|V’| <
#(n + n/k) vertices. Suppose Wi = [n/k] UV \ (V(M) U V(M)), hence
(W1 < ¢(n +n/k) < yin and W is balanced. By Lemma 2.2, V(M) U W
spans a matching M, in Hg and therefore M; U Ms is a perfect matching in
Hg, which yields a rainbow perfect matching in G. 0

2.4 . Concluding remarks

Let F" be a k-graph with b vertices and f edges. We first define an absorber
without colors. Given a set B of b vertices, a k-graph A° = AU AY is called an
F-absorber for B if

« V(A% = BUL",

» AVis an F-factor on L and A§ is an F-factor on BU L.

Note that |V (AY)| is a constant. Naturally, we give the definition of rainbow
F-absorber as follows.

Definition 2.4 (Rainbow F-absorber) Let G = {G}ic|n /) be a k-graph sys-
tem on V and F be a k-graph with b vertices and f edges. For every b-set B in
V and every f-set Cin [nf /b, A = A1 U Ay is called a rainbow F-absorber for
(B,C) if
« V(A) = BUL,
« Ajisarainbow F-factor on L with color set Cy and A, is a rainbow F-factor
on B U L with color set C1 U C.

Now we introduce one of the main parameters ch;. Roughly speaking, itis the
minimum degree threshold such that all b-sets are contained in many rainbow
F-absorbers.

1. As usual, AUB denotes the disjoint union of 4 and B.
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Definition 2.5 (c?lf’; : Rainbow absorption threshold) Fixan F-absorber A° =
AYU A9 and let m be the number of vertex disjoint copies of F in A9. Let ¢, - 0 €
(0,1) be the infimum of reals ¢ > 0 such that for every e > 0 there exists &’ > 0
such that the following holds for sufficiently large n € N where d € [k — 1]. Let
G = {Gi}ticpns /e be an n-vertex k-graph system on V. If 54(G;) > (c +¢)(}~4)
fori € [nf/b], then for every b-set B in V and every f-set C in [nf/b] with the
form [(i — 1)f,if] for some i € [n/b], there are at least 'n(™~1®+1) rainbow
F-absorbers A with color set C(AY) U C whose underlying graph is isomorphic to
A% such that C(AY) = [(i1 — 1) f + 1,i1 f] U [(i2 — 1) f + 1,iaf] U+ U [(dm_1 —
1)f + 1,im—1f] wherei; € [n/b] for each j € [m — 1] and i, # i}, for distinct
Ji,J2 € [m —1]. Let cgf’; := inf ¢y g 40 Where the infimum is over all F-absorbers
A°,

We next define a threshold parameter for the rainbow almost F-factor in a
similar fashion. We use the following auxiliary b-graph Hr. Given a k-graph F
with b vertices and f edges, and an n-vertex k-graph system H = { H; } ;<[ on
V, let Hr be the b-graph with vertex set V(Hp) = V and edge set E(Hp) =
{V(F") : F'" is a rainbow copy of F with color set [f]}.

Definition 2.6 (¢} : Rainbow almost F-factor threshold) Let ¢’} € (0,1)
be the infimum of reals ¢ > 0 such that for every ¢ > 0, the following holds
for sufficiently large n € N. Let H = {H;};c(y) be an n-vertex k-graph system.
If 04(H;) > (c+¢) (Z:g) for every i € [f], then the b-graph Hp has a perfect
fractional matching.

Now we are ready to state our general result on rainbow F-factors. The
proof process is similar with Theorem 2.1 and we will omit the details.

Theorem 2.2 Let F' be a k-graph with b vertices and f edges. For any € > 0 and
integer d € [k — 1], the following holds for sufficiently large n € bN. Let G =
{Gi}icnys,p) be an n-vertex k-graph system on V. If §4(G;) > (max{cg]?;, cpt +
e)(7=%) fori € [nf/b), then there is a G-rainbow F-factor.
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3 - Rainbow Hamilton cycles in hypergraph sys-
tems with minimum (k£ — 1)-degree

The main goal of this chapter is to extend Theorem 1.1 to the rainbow
setting. For every £ > 3,7 > 0, we say that an n-vertex k-graph system
H = {H,}icpn is a (k,n,v)-graph system if 6;_1(H;) > (1/2 + v)n for each
i € [n].

Theorem 3.1 forevery k > 3,~v > 0 and sufficiently large n € N, every (k,n,~)-
graph system H = { H; }c(,,) admits an H-rainbow Hamilton cycle.

3.1. Notation and preliminaries

Given a k-graph H and a k-graph system H = {H, };c|,) on the same ver-
tex set with H, we define {i : F(H;) N E(H) # 0} as the color set of H, de-
noted by C(H). We call P = z; - - - 952 an H-rainbow path with color pattern
(Cl, ce ,Ck_l) If{.TZ, ce 7xi+k—1} S E(Hc,) fori e [k‘* 1] LetP = {Pl, ceey Pm}
be a family of vertex-disjoint paths. If each P;,i € [m], is an H-rainbow path
and C(P;)) N C(P;) = 0 for distinct 4,5 € [m], then we call this family an H-
rainbow family of paths. Denote ¢,y V(£5) by V(P). The size of P is the
number of paths in the family.

When we write o < 3, we mean that «, 8 are constants in (0, 1), and for
every 3 we have chosen, there exists oy = «(8) such that the subsequent
arguments hold for all &« < «ap. While multiple constants appear in a hierarchy,
they are chosen from right to left.

Besides, we require the following concentration inequalities.

In this section we give an outline of the proof of Theorem 3.1. Our proof
is under the framework of the absorption method, systematised by the work
of Rédl, Rucinski and Szemerédi [135, 1, which reduces the problem of fin-
ding a spanning subgraph to building an absorption structure and an almost
spanning structure. Tailored to our problem, the idea is to build a rainbow
absorbing cycle and a rainbow path cover. Moreover, the rainbow absorbing
cycle will be able to swallow an arbitrary leftover of vertices, a leftover of colors
as well as an H-rainbow family of paths so that we obtain a rainbow Hamil-
ton cycle. This motivates us to append the color information and the connec-
ting technique into the rainbow absorption method, which is our contribution
compared with the proofin [137].

Lemma 3.1 (Absorbing lemma) Given k > 3,~v > 0, there exists k > 0 such
that the following holds for sufficiently large n € N. Let H = {H;};c,, be a
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(k,n,~)-graph system on V. Then there exists an H-rainbow cycle A with at most
~n/2 vertices such that for any H-rainbow family of paths P and any vertex set U
in VAV (A) with |P|,|U| < kn, there exists an H-rainbow cycle A" with vertex set
V(A)UUUV(P)and C(A) C C(A).

We first define two versions of absorbers as follows .

Definition 3.1 Given a (k,n,~y)-graph system H, a vertex x and a color ¢, we say
that a path P is a rainbow absorber for (x, c) in an n-vertex k-graph system if the
following holds :

sz ¢ V(P);

* P =292 is an H-rainbow path with color pattern (c1,...,cp_1);

¢ X1+ XTp_1TTE - Tok—2 IS an H-rainbow path with color pattern (c, cy, . . .,
Ck—l)-

) I3

Figure 3.1 - Absorber for (z,c) when k =3

Definition 3.2 Given a (k,n,~)-graph system H, two disjoint (k — 1)-tuples of
verticesu = (uq,...,ux—1), v = (v1,...,v5—1) and a (k—1)-tuple (o1, ...,0k_1)
of colors, we say that a path P is a rainbow absorber for (u,v;o1,...,0r_1)Iinan
n-vertex k-graph system if the following holds :

« V(P)Nn {ul,. . .,uk,l,vl,...,kal} =0,

* P =uxy---x95_2is an H-rainbow path with color pattern (ci,...,cp_1);
¢ X1 Xp_qUL - Up_10Nd V1 V1T - - Tok_o are H-rainbow paths with
color patterns (cy,...,cx—1), (01,...,0k_1) respectively.

The second task is to connect the absorbers to a path. The following lemma
helps us to connect any two disjoint paths (by connecting their ends) and its
proof is in Section 3.4.

Lemma 3.2 (Connecting lemma) For every k > 3,~ > 0, there exists c € N
such that the following holds for sufficiently large n € N. Let H = {H,};c|,| be
a (k,n,~y)-graph system and u, v be two disjoint (k — 1)-tuples of vertices. Then,
there exists an H-rainbow path from u to v with at most ¢ + k — 1 vertices.
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U m

Figure 3.2 - Absorber for ((u1,u2), (v1,v2);01,02) when k = 3

Given a (k,n,v)-graph system H = {H,};c|,, we need to construct an H-
rainbow family of paths, covering almost all vertices of V\V(A) and almost
all colors of [n]\C'(A). To achieve this, we use the regularity lemma for hyper-
graphs and a trick of Ferber and Kwan [54].

Lemma 3.3 (Path cover lemma) Forevery k > 3,~, 6 > 0, there exists L > 0
such that the following holds for sufficiently large n € N. Every (k,n,~)-graph
system H = {H;}c,) on V' contains an H-rainbow family of paths P of size at
most L, covering at least (1 — §)n vertices of V.

Proof. [Proof of Theorem 3.1] For any £ > 3 and v > 0, we choose 1/n <
1/L,k < ~v,1/k, and fix H to be a (k,n,~)-graph systemon V.

Step 1. By Absorbing lemma, we obtain an H-rainbow cycle A with at most
~n/2 vertices such that the following property holds. For any H-rainbow family
of paths P and any vertex set U in V\V (A) with |P|,|U| < kn, there exists an
H-rainbow cycle A" with vertex set V(A) UU UV (P)and C(A) C C(A").
Step 2. Set H' = {H};cc» where C" = [n]\C(A), H] = H;[V\V(A)] fori e C".
Let n’ = n — |V(A)|. Note that H' is a (k,n’,~v/2)-graph system where n’ >
(1 — v/2)n. Applying path cover lemma to H' with § = «, we obtain an H'-
rainbow family of paths P = { Py, ..., P}, where p < L < kn, covering all but
at most kn' vertices of V\V(A). Denote the set of uncovered vertices by T
Thus, |T| < kn' < kn.

Step 3. Using property in Step 1, we obtain a rainbow cycle with vertex set
V(A)UT UV(P), which is actually an H-rainbow Hamilton cycle. O

3.2. Rainbow absorption method
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Given a vertex z € V and a color ¢ € [n], let L(z;c) be the family of rain-
bow absorbers for (z, ¢). Similarly, given two disjoint (k — 1)-tuples u and v of
Vand a (k — 1)-tuple (o1,...,05_1) Of [n], let L(u,V;01,...,05-1) be the set
of rainbow absorbers for (u,v;o1,...,0r_1). We need the following simple
result.

Fact 3.1 LetH = {H,};c| bea (k,n,v)-graphsystemonV, S be a (k—1)-subset
of V.and Vi C V\S. For any i € [n], we have

1
[Nei (S) N Vol = Vol = 5n +ym 4k — 1.

In particular, for two (k — 1)-subsets of vertices S; and So, we obtain that for any
i?j € [n]/
|N#, (S1) N Nu, (S2)| > 2yn 4 |10 Sal.

Proof. We have |Ny,(S)UVy| <n—Ek+ 1andthus
1
|Nw, (S)NVo| > Vol + [Nu, (S)] — (n+k—1) > |W| — §n+7n+k— 1.

For the second statement, we apply the first one with S = S; and
Npg,(S2) \ S1 and note that [Vo| > (5 +7)n — (k— 1 — [S1 N Sal).

Next we show lower bounds on the number of absorbers in a (k,n,~
graph system.

oo

~—

Proposition 3.1 forany k > 3,~ > 0, there exists ( > 0 such that the following
holds for all sufficiently large n € N. Suppose H = {H;};cpn) is a (k,n,v)-graph
system on V, then |L(z;c)| > ¢(n3F=3 for every vertex x € V and color ¢ € [n],
|L(w,v;01,...,0p_1)] > (n®=3 for every two disjoint (k — 1)-tuples u and v of
Vand a (k — 1)-tuple (o1, ...,0r_1) Of [n].

Proof.  Given k,~, we choose 1/n < ( < ~/k. Fixing vertex z € V and
color ¢ € [n], we construct a rainbow absorber P = zy - - - x9;_o with color
pattern (ci,...,cx—1) for (x,c). We choose (¢q, ..., cx_1) arbitrarily, so there
are (n—1)---(n—k+1) > 2=k nk=1 choices. Furthermore, 1, ..., z;_5 can
be chosen arbitrarily in (n — 1)---(n — k 4+ 2) > 227%p*=2 ways. For z;_1,
there are at least (3 + v)n choices such that {z1,...,24_1,2} € E(H,). By
Fact 3.1, there are at least 2yn + k — 2 choices for z;, j € [k, 2k — 2], such that
{xj—k-f—la RN xj}, {$j—k+2a - ,."L‘j,l'} S E(chflwl)‘ For j € [/{7 + 1,2k — 2], Tj
should be different from 1, ..., z;_;. Thus, the number of choices for each
zjisatleast2yn +k —2 — (j — k) > 2yn, j € [k, 2k — 2], yielding together
at least 21 =Fpk=122=Fpk=2(1 4 4)n(2yn)*=1 > (n3%=3 rainbow absorbers for
(z,c).

Givenu = (uq,...,up_1),Vv=(v1,...,vx_1)and (o1, ...,05_1), Wwe construct
arainbow absorber P = x; - - - x95_o with color pattern (cy, . . ., cx—1) for (u, v; o1,
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.., 0p_1). There are (n — k + 1)---(n — 2k + 2) > 2'=FpF=1 choices for
(c1,...,ck—1). There are at least (3 + v)n — (k — 1) > n choices for z;_;
such that {uq,...,up—1, 251} € E(H,, ,)and z,_; should be different from
U1,...,Up—1. FOr z;, @ € [k — 2], there are at least (3 + y)n — (2k — 3) > yn

choices such that {ug_;, ..., up—1,25—-1,...,2iy1,2;} € E(H,,), and it should
be different from vy, ..., vp_1, U1, ..., Up—1—;-
By Fact 3.1, there are atleast 2yn choices for 2 such that {z1, - - - , xx_1, zx }

€ E(He,), {vi, -+ ,vp—1, 21} € E(H,,)anditisdifferentfromuy, ..., ux_1.For
x;, 1 € [k+1,2k—2], the number of choices is atleast 2yn+k—2— (k—1+2(i—
k)) > ~n, such that {z;__1),...,z;} € E(Hci—(k—l))’ {Vic(h=1)s - > Vk—1, Tk,

..., x;} € E(H,,_,_, ) and it should be different from uy,..., up—1,21,. ..,
Ti_k,V1,...,Vi_g. Thus, there are at least 2! =Fnf=1(qyn)F=1(yn)k=1 > (n3k-3
rainbow absorbers for (u,v;o1,...,05_1). O

Now we show that we can construct a family of disjoint absorbers, with all
different colors.

Lemma 3.4 Forany k > 3 and a,( > 0, there exists 3 > 0 such that the fol-
lowing holds for all sufficiently large n € N. Let H = {H,};c|) be an n-vertex
k-graph system on V. If |L(x;c)| > (n®*=3 for every vertex x € V, ¢ € [n] and
|L(w,v;01,...,0p_1)] > ¢(n3*=3 for all disjoint (k — 1)-tuples w and v of V and
(k — 1)-tuple (o01,...,0k—1) Of [n], then there exists an H-rainbow family F' of
paths of length k — 1, satisfying

\F'| <an, [F'nL(z;c)| > pn, and

|.7:'ﬂ£(u,v;01,. . '7Ok—1)| > 5”7

for every vertex x € V, ¢ € [n], two disjoint (k — 1)-tuples w and v of V and

(01,...,0k_-1) Of [n].

Proof. Letl/n < B < e < «,(. Each H-rainbow path zyxs - - - £9;_o With co-
lor pattern (cy, ..., cx—1) can beviewed as a (3k—3)-tuple (x1, z2, . .., o2, c1,
..., ck—1). Choose a family F of (3k—3)-tuples from (5, ,) x (k[ﬁ]l) byincluding
each possible (3k — 3)-tuple independently at random with probability

(n— 2k =2)!-(n—(k—-1))! —(3k—4)

p=e (n—1)!n! 2 en ’

Note that | F|, |L(z,c) N F|, |[L(u,v;01,...,0k,_1) N F| are binomial random
variables with

n!-n!

(n— 2k =2)!- (n—(k-1))
E[|L(z,c) N Fl] = plL(x; )| = eln,

E[lFll =p

;= en,

E[|L(u,v;01,...,0k-1) N F|] = p|L(u,V;01,...,05-1)| > &ln,
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for every vertex x € V, ¢ € [n], two disjoint (k — 1)-tuples u and v of V' and
(01,...,0r—1) of [n]. By Lemma 1.1, with probability 1 — o(1), the family F sa-
tisfies the following properties

|F| < 2E[|F|] = 2en < an,

|L(x;¢) N F| > 27 E[|L(x;¢) N F|] > 27 eln,
’E(U,V; 01,... 7Ok,l) N .7:‘ > 2_1EH£(U,V; 01,..., 0k71>H > 2_15Cn,

for every vertex x € V, ¢ € [n], two disjoint (k — 1)-tuples u and v of V' and
(01,...,05-1) of [n]. We say that two (3k — 3)-tuples (z1, z2, ..., ZTo2k—2,C1,. - .,
ck—1) and (y1,v2, ..., Y262, f1,-.., fx—1) are intersecting if z; = y; for some
i,j € [2k — 2] or ¢, = fo for some m, ¢ € [k — 1]. We can bound the expected
number of pairs of (3k — 3)-tuples in F that are intersecting from above by

n!-n!
(n—2k—=2))(n—(k—-1))!

(n—1)!-n! 9
(n— (2k—2)- (n— (k — )Y

(3k — 3)?

= (3k — 3)%%n.

Thus, using Markov’s inequality, we derive that with probability at least 1/2, F
contains at most 2(3k — 3)2c?n intersecting pairs of (3k — 3)-tuples. Remove
one (3k — 3)-tuple from every intersecting pair in 7 and remove the (3k — 3)-
tuples that can not absorb any (z,¢) or (u,v,01,...,0x_1) Wherex € V, c €
[n], u and v are (k — 1)-tuples of V and (o1,...,05-1) is a (k — 1)-tuple of
[n]. Thus the resulting subfamily, say F, consists of pairwise disjoint (3k — 3)-
tuples, which satisfies

|L(x;¢) N F| > 27 eln — 2(3k — 3)%%n > fn,

foranyz € V, ¢ € [n], and a similar statement holds for |£(u,v; 01, ...,0,-1)N
F'| for any two disjoint (k — 1)-tuples u and v of V and a (k — 1)-tuple (oy, . . .,
ok—1) of [n]. Since each (3k — 3)-tuple in ' induces a rainbow absorber, 7' is
an H-rainbow family of paths, where each path is of length & — 1. O

Now we are ready to prove Lemma 3.1, assuming Lemma 3.2 holds.
Proof. [Proof of Lemma 3.1] Given 1/n < k < < a,( < 7v,1/k, let
H = {H;};c|n be a (k,n,)-graph system on V. By Proposition 3.1, we obtain
|L(x;c)| > ¢n3F—3foreveryvertexx € Vandc € [n],and |£(u,V;01,...,05_1)]
> (n3F3 for every two disjoint (k — 1)-tuples u and v of V and a (k — 1)-tuple
(01,...,05_1) Of [n]. By Lemma 3.4, there is an H-rainbow family of paths 7' =
{P1,..., Py}, whereq < aand|V(F)| = 2k—2fori € [gn], |[F'NL(x;c)| > fn
for every vertex x € V, ¢ € [n] and |F' N L(u,V;01,...,05-1)] > PBn for every
two disjoint (k — 1)-tuplesu and v of V and (oy, ..., 0x—1) of [n].

Next, we shall connect all the paths in 7’ into an H-rainbow cycle. Suppose
we have connected P, ..., P; into one path P, by using each time at most
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[8ky~2] — (2k — 2) vertices from outside V(F'). Let e = (uy,...,ux_1) be
anend of P and f = (v1,...,vx_1) be an end of P; . Let H] be the induced
subgraph of H; obtained by removing the vertices of V(F') U V(P) except e
and f. The number of vertices removed is at most

[V(FHYuV(P)| < (2k —2)gn + qiﬂ — (2k — 2)) (gn—1) < ﬁyls-‘ qn < %,
where the last inequality holds since o« < v and k > 3.

We get a (k,n’,v/2)-graph system H' = {H};cc where C = [n] \ (C(P)U
C(F')andn' = |V (H})|. Taking a ([8ky~%] — (k —1))-subset C’ of C, we apply
Lemma 3.2to {H|};ccr with € = (u_1,...,u1) and f = (vg_1, ..., v1), obtai-
ning an H-rainbow path P’ connecting e’ and f such that |V (P')| < [8kvy~2].
Thus, P U P’ U Pj; forms an H-rainbow path.

After connecting all paths in 7’ in a cyclic order, we obtain an H-rainbow
(k — 1)-cycle A with at most

(2k — 2)qn + qiﬂ — (2 — 2)) gn < %

vertices. Finally, fix any H-rainbow family of paths P and any vertex set U in
VAV (A) with |P|, |U| < kn. We may assume that U N V(P) = ) as otherwise
we just replace U be U \ V(P). Since the paths in P are vertex disjoint, and
V(P), U and V(A) are pairwise disjoint, we infer that the number of colors in
HnotusedinPor Aisatleastn—|V(A)|—(|[V(P)| — (k — 1)|P]) > n—|V(A)|-
(n—=|V(A)| = |U| - (k—=1)|P|) = |U| + (k — 1)[P|. Thus, by the property of
F' and the fact that k < f, there is an H-rainbow cycle A’ with vertex set
V(A)UUUV(P)and C(A) C C(4"). O

3.3 . Rainbow path cover lemma

In this section, we prove our path cover lemma, Lemma 3.3. A k-graph H
is k-partite if there is a partition V(H) = V1 U - - UV}, such that every edge of
H intersects each set V; in precisely one vertex for i € [k]. Given a k-partite k-
graph H on Vi U---UVy and subsets A; C V;, i € [k], we defineeg(A1,..., Ax)
to be the number of edges in H with one vertex in each A; and the density of
H with respect to (A, ..., Ag) as

dH(Al, ce ,Ak) = W

We say that a k-partite k-graph H is e-regular if for all A; C V; with |4;] >
elVil, i € [k], we have

’dH<A177Ak) _dH(Vh?V]C)‘ <e.

We give a straightforward generalization of the graph regularity lemma.
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Lemma 3.5 (Weak regularity lemma for hypergraphs [70]) Forany k > 2,
e > 0and ty € N, there exists Ty € N such that the following holds. For every
k-graph H on sufficiently large n € N vertices, there is, for some t € N with
to <t < Ty, apartition V(H) = Vo U Vi U--- UV, such that |Vy| < en, |V1| =
Vo| = --- = |Vi| and for all but at most et* sets {i1, ..., ix} € (1), the induced
k-partite k-graph H|V;,, ..., V;,] is e-regular.

The partition in Lemma 3.5 is called an e-regular partition of H. For an
e-regular partition of H and d > 0, we refer to the sets V;, i € [t] as clus-
ters and define the reduced hypergraph K = K (e,d) with vertex set [t] and
{i1,...,ix} € ([}?) being an edge if and only if (V;,,...,V;,) is e-regular and
d(Viy,..., Vi) > d. Next we provide a proof sketch of Lemma 3.3 and high-
light key ideas. We need the following definition.

Definition 3.3 A hypergraph H* is a (1, k)-graph ((1,k)-partite, in other words),
if there is a partition of V(H*) = V; U V, such that every edge contains exactly
one vertex of V, and k vertices of V5.

Given a partition of V(H*) = V1 U V3, a (1, k — 1)-subset S of V(H*) contains
one vertex in Vi and k — 1 vertices in V5. Let 6; 1 (H*) := min{degy-(S) :
Sisa(1,k— 1)-subset of V(H*)}.

Step 1. Construct an auxiliary (1, k)-graph. Given a (k, n,~y)-graph system
H = {H;};cn) on V, we construct the auxiliary hypergraph H* with vertex set
V(H*) = [nJUV and edge set E(H*) = {{i} Ue| e € E(H;),i € [n]}. By the
definition of (k, n,~y)-graph system, we have 6,1 (H;) > (1/2 4+ ~)n for each
i € [n]. Thus, H*is a (1, k)-graph with 1 1 (H*) > (1/2 4+ v)n.

Step 2. Obtain a reduced hypergraph K. With an initial partition [n] UV of
V(H*), we apply the Weak Regularity Lemma (Lemma 3.5) to H*, and obtain
apartition V(H*) = Vy UL U---UL, UWU---UW,, where I; C [n], W; CV,
|I;| = |W;| = mforeveryi € [ti],j € [t], [V5| < 2en. By moving at most
2en/m clusters to Vi and renaming as 1} if necessary, we may assume that
t1 = to, but |[Vo| < 4en, I; C [n] and W; C V for every i,j € [t]. Let K
be the reduced hypergraph for the partition with vertex set Z U W where
I ={L,....,;}and W = {W,,...,W;}. Note that K is a (1, k)-graph. We
will prove that K almost ‘inherits’ the (1, k — 1)-degree condition of H*.

Step 3. Obtain many matchings in K. We equally split Z into k parts Z; =
U(i—1yt/k+15 - - - Ligyi} for i € [k]. For each Z; U W, we randomly partition it
to balanced smaller pieces, namely, into parts of form Z' U W', where |Z'| =
Q/k and [W'| = Q. Denote the family of vertex-disjoint (1, k)-subgraphs of K
induced on all parts from the partition of Z; U W by F;,i € [k]. Note that the
size of F; is t/Q. We shall see in Section 3.3 that almost all members in F; are
‘nice’ in the sense that they inherit the (1, £ — 1)-degree condition of H*. For
each such memberin F;, i € [k], we use the following lemma, a combination
of Theorem 2.1 and Theorem 1.2 in [8], and obtain a perfect matching. This
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yields for each i € [k] a large matching (in K), say M;, by taking the union of
the resulting matchings over all members in F;.

Lemma 3.6 ([8, 27]) For every v > 0,k € N, the following holds for all suf-
ficiently large n € kN. every (1,k)-graph H on [n/k] UV with 6y ,—1(H) >
(1/2 + v)n admits a perfect matching, where |V'| = n.

Step 4. Embed the paths. Now back to the original (1, k)-graph H*, each
matching edge in Uie[k] M; can be blown up and we obtain an H-rainbow fa-
mily of paths. This is achieved in Lemma 3.8. However, note that distinct mat-
chings M;, M; may intersect on vertices in W. To overcome this, we build the
H-rainbow family of paths in H piece by piece by zooming in each matching
M; one by one. The following proposition shows that the reduced hypergraph
almost inherits the minimum degree property of the original hypergraph.

Proposition 3.2 Forany v > 0,k € N, there exists € > 0 such that the following
holds for sufficiently large t € N. Given a (1, k)-graph H* with 61 ,—1(H*) >
(1/2+~)n and an e-regular partition V(H*) = VyULU---ULUWL U---UW,,
let K := K (e,v/6) be the reduced hypergraph. The number of (1, k — 1)-subsets
S of V(K) violating deg; (S) > (1/2 4 ~v/4)t is at most k+/et*.

Proof. Let1/t,e < ~. Note that the reduced hypergraph K (e,~/6) can be
written as the intersection of two hypergraphs D := D(~/6) and R := R(¢)
both defined on the vertex set { Iy, ..., I;, W1,...,W;} where
* D consists of all sets {I;,, W;,,..., W;, } such thatd(L;,, W;,, ..., W;,) >
/6,
* R consists of all sets {I;,, W;,, ..., W;,} such that H*[I;,, W;,,..., W;,]
is e-regular.
For any (1,k — 1)-set S, assuming S = {I;, W1, Wa, ..., W;_1}, we first show
that

1
degp(S) = (2 + ;) t. (3.1)

Note that n/t > m := |W;| = |I;| for i, j € [t]. We now consider the number z
of edgesin H* which intersecteach of I;,, W;,, ..., W;, | inexactly one vertex.
If (3.1) does not hold, then from the condition on 6; ;1 (H*), we have

- (;g;) <k <(;+V)n_(k_1>m> <2 (32

1 k+1 Yo k+l
< (2+ 2) e

a contradiction.
Note that there are at most et**! edges in R (the complement of R). Let
S be the family of all (1, k — 1)-element subsets S for which degy(S) > /t.
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We have |S| < k+/et*. This, together with (3.1) and e < v, implies that all but
at most ky/zt* (1,k — 1)-sets S C V(K) satisfy degy (S) > degp(S) — /et >
G+ 0

Ferber and Kwan [55] showed that if we randomly partition the vertex set
of a k-graph H, then the subgraph of H induced on almost all parts inherits
the minimum degree of H. Here we need such a result for our (1, k)-graphs,
whose proof follows almost identical as that in [55]. We include a proof for
completeness.

Lemma 3.7 (Partition lemma) Suppose that k > 3, A\, > 0, there existn > 0
and @ € kN such that the following holds for t € QN. If H* is a (1, k)-graph
on [ UV with |V| = t where all but at most * (. |) of the (1, k — 1)-subsets of
V(H*) have degree at least (1/2+)(t— k+ 1), then there is a partition V (H*) =
S1 U+ USy g such that all but at most \t/Q) classes S; satisfy 611 (H*[S;]) >
(1/2 4+ ~v/2)(Q — k + 1) where each S; consists of a Q/k-subset of [t/k] and a

Q-subset of V.

Proof. Letn < 1/Q < \,~.Partition [t/k]intot/Qsets I, ..., I;;o randomly
such that |[;| = Q/k fori € [t/Q]. We randomly order V' as vy,..., v and let
Vi ={vi-1)0+1,- - -, vig} fori € [t/Q]. Let S; = I; U V; fori € [t/Q)]. Note that
each V; is arandom subset of V. Let M* be the collection of (1, £ — 1)-subsets
with degree less than (1/2+7)(t —k+1) in H*. Then [M*| < Z(, ' ). We will
prove that for i € [t/Q] and every (1,k — 1)-subset S of .S;,

1
P [degm[si](s) < (2 + ;) Q—Fk+ 1)] <pre A (33

First note that the probability of the event S € M*, is at most 7. Now let
Ag be the event that S is not in M*. The set V;\S is equivalent to a uniformly
random set of size Q@ — (k — 1) in V\S. Let A denote the event that a vertex v
in V;\\S such that SU {v} € E(H*). Note that

G+n-k+ D) 1

P[A|Ag]| > =_ 47,
[ ’ S] (Q - (k - 1))(5__((];__11))) 2 !

then we have

E [degyr-(5)(9)|As] > (3 +)(Q —k+1).

Exchanging any element with an element outside V;\S affects deg+(s,)(5) by
at most 1. Fixing i, we apply Lemma 1.4 with S ¢ M*, the probability that S
has degree less than (1/2 4+ v/2)(Q — k + 1) in H*[S,] is at most

9 exp <_2 (3(Q—k+ 1))2> _ o 202Q)

(Q—-—k+1)
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Thus, (3.3) is proved.

We say that S; is poor if some (1, k—1)-set in the induced graph H*[S;] has
degree less than (1/2 +7/2)(Q — k + 1). By (3.3), P[S; is poor]< £(,9)) (1 +
e~20*Q)) for i € [t/Q)]. Let X be the number of poor classes in our partition,
then E[X] < %(kc_zl)(n + 679(“’2(“?)). By Markov's inequality, we obtain

P [X > )\;] < S€<I£ 1) (n+e00%).

By the choice of n < 1/Q < A, 7, it follows that

2,2 ) (o) <

and thus P[X > A§] < 1. Therefore, there is a partition V/(H*) = S; U --- U
Sy/q.where S; = I; U'Vj, such that at least (1 — \)t/Q classes of them satisfy
oL k-1 (H*[Si]) = (1/2+7/2)(Q — k +1). O
Given a (k + 1)-partite (k + 1)-graph H on Vb U Vi U --- U V, we call that a
(k —1)-subset S of V(H) is legal if |SNV;| < 1fori e [k]and [SN 1| = 0. An
expanded path P of length ¢t in H is a (k+1)-graph with vertex set {cy, ..., ¢ U
{v1,...,ve1k—1} where {c1,..., ¢} T Vo, {v1,..., 0041} C VI U---UVj and
edgeset{eq,...,e; }suchthate; = {c¢;,v;,...,viyr—1}. Notethat |V (P)NV;| =
| =L | or [HE=L] for j € [k].

Figure 3.3 - An expanded path in a 4-partite 4-graph (the vertices with the
same color are from the same part)

Lemma 3.8 Given c,m > 0and k > 2, every (k + 1)-partite (k + 1)-graph H on
Vo U Vi U--- UV, with at most m vertices in each part and with at least cm*+1
edges contains an expanded path of at least cm//k vertices.

Proof. There are at most k-m*~! legal (k — 1)-subsets of V' (H). We proceed
the following process iteratively. If there is a legal (k — 1)-subset S, which is
contained in less than cm?/k edges in the current hypergraph, then we delete
all the edges containing S. The process terminates at a nonempty hypergraph
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Hy since less than km*~!(cm?/k) = cm**+! edges have been deleted in total.
In Hy, every legal (k — 1)-subset has degree either zero or at least em? /.

Let P be a longest expanded path in Hy with vertex set {cj,..., ¢} U
{v1,..., 451} forsomeintegert. We have |V (P)NVy| = tand |V(P)NV;| <t
since each edge contains exactly one vertex of V; for each i € [k]. Consider
St = {vi+1,. .., ve4x—1}, Which is a legal (k — 1)-subset of V(H). Furthermore,
degp, (S¢) > em? /k since S; has positive degree. All the edges containing S;
must intersect (V(P) N Vp) U (V(P) N'V;) by the maximality of P, where the
index j > 0 such that S; N V; = . Thus, we have

ch

o S V)N Vol - [Vil + [V(P)n Vi - [Vol < 2tm, (3.4)
which implies ¢ > em/(2k). Note that |V (P)| = t+t+k—1and thus |V (P)| >
em/k. O

The next result enables us to find a family of long vertex-disjoint expanded
paths which covers almost all vertices in Vj in an e-regular (k + 1)-partite (k +
1)-graph.

Lemma 3.9 Foranya > 0,k € N, there exists € > 0such that the following holds
for sufficiently large m € N. Suppose H is an e-regular (k + 1)-partite (k + 1)-
graph with density at least o and V(H) = Vo U Vi U --- U Vi, where |Vp| = m,
m/k < |Vi| < mfori € [k]. Then we obtain that H contains a family P of vertex-
disjoint expanded paths such that for each P € P, |V(P)| > e(a — e)m/k and
Y opep |lV(P)N V| > (1 — 2ke)m.

Proof. Letl/m < e < a,1/k. We call an expanded path P good if |V (P)| >
(o —e)m/k.Let P = {P,..., P,} be alargest family of good, vertex-disjoint
expanded paths and |V (P;) N Vy| = t; for i € [p]. Note that |V(F;) NVj| =
| Litk=L | or [tHE=1] for i € [p] and j € [k]. Suppose to the contrary that P
covers less than (1 — 2ke)m vertices of Vo and thus >, ti < (1 —2ke)m. Let
W =V (H)—Upep V(P) be the set of vertices uncovered by P. Then we have
[W N Vp| > 2kem. Hence, by the observation that [V (P;) N V;| < [Lt=1] <
L 4 2foreachi € [p], j € [k] and the fact that p = [P| < (k + 1)m/(e(a —
eym/k) = k(k + 1)(e(a — €))%, we have that

t; 1-—2k
WAV = Vil ViV (P)] = -3 (k +z) > M 220 o> em,
i€[p]
Let W; CWnNV;,ie{0,1,...,k} besuchthat
Wol = [Wi| = = [Wy| =em > e|Vi|.

Finally, let A be the subhypergraph of H induced on the vertex set Wy U W; U
-+ U Wyg. Since H is e-regular, we have

dg(Wo, W1,..., W) >dg(Vo,V1,..., V&) —e > a —¢,

44



or equivalently,
[E(H)| = (o= &)(em)",

and then Lemma 3.8 implies that there is an expanded path in A on at least
e(a — )m/k vertices, contrary to the maximality of P. O
Proof. [Proof of Lemma 3.3] We choose the following parameters

1/n<1/Ty e 1/tg < 1/Q < A< d,7,1/k.

Given a (k,n,~)-graph system H = { H;};c,) on V, we construct a (1, k)-graph
H* with vertex set [n] UV and edge set {{i} Ue : e € E(H;),i € [n]}. With
an initial partition [n] UV of V/(H*), we apply Lemma 3.5 to H*, and obtain a
partiton V(H*) =V UL U--- UL, UW; U---UW,, where tyg <y, ty < Tp,
|I;| = |W;| =mfori e [ti)and j € [ta], |V{f| < 2en. By moving at most 2en/m
clusters to V; and renaming if necessary, we obtain a partition V(H*) = Vp U
LU---ULUWU---UW,;, wheret = min{ty,t2}, |Vo| < 4en, I; C [n] and
W; C V foreveryi,j € [t]. Let L = [5(3%35) .

Let K := K(e,v/6) be the (1, k)-partite reduced hypergraph on Z U W
where Z = {I;,...,;} and W = {Wy,...,W;}. We get a family of (1, k)-
graphs F = {F1,..., Fi.} where F; = K[{I;_1)/kt15 - - -» Ligyr y UW] fori € [k].

For each i € [k], applying Proposition 3.2 and Lemma 3.7 to F; with n =
k+/e, we obtain a partition V (F;) = S; 1U- - ‘US; 1/ such thateach S; ; consists
of Q/k vertices in Z and @ vertices in W, and all but at most A\t/Q classes S; ;
satisfy 01 p—1(Fi[Si;]) > (1/2+~/2)(Q — k + 1) where j € [t/Q]. We call such
classes S; ; nice. Denote by S; the set of indices j such that S; ; is nice. Then
|Si| > (1 — A\)t/Q. Applying Lemma 3.6 to each F;[S; | fori € [k], £ € S;, we
obtain a perfect matching M; ;. Let M; = e s, Mie and M = {J;cpyy M. Note
that each M; is a matching in F;. For each W; € W, let p; be the number of
edgesin M thatcontain W, j € [t]. Then 3=y p; > k-(1-0)§5-Q = (1-N\)kt.
Next, we proceed the following process.

Path Embedding Process:

Given H*,Z = {I1,..., I}, W = {Wh,...,W,}, My, ..., My, we initialize
Wi = W;forjet]andi:= 1.

Step 1. For each e € M;, let H, be the subgraph of H* induced on the corres-
ponding clusters constituting the edge e, we denote by I, W;‘l(e), ceey W;k(e)
where I, € 7.

Step 2. Applying Lemma 3.9 to each H, e € M; with « = /6, we obtain a
family P, of vertex-disjoint expanded paths that covers all but at most 2kem
vertices in I, and for each P € P, |V(P)| > e(v/6 — e)m/k.

Step 3. Let P; = Ujgi UeeMj Pe and update W by deleting the vertices used
inP; for j € [t]

Step 4. Update i := i+ 1 and if i < k, go to Step 1; otherwise terminate the
process.
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After the process, we obtain P := Py. It follows from the definition of p;
that the size of uncovered vertices of each W; is

1—-2keym+Ek—1

(1 —2ke)m
k < —

k

Wil=m— Y [PenW;| <m—p;|
W;ee,ee M

Recall that 3y p; = (1 — A)kt. We obtain that P covers all but

Vol + W51 < dent 3 (= ™) <t e Ay < b
Jelt] Jelt]

vertices of V. Moreover, since |V (P)| > E(%,;E) |2] for each path P € P and

t < Ty, we have |P| < 2n/(€(%,;€) |2]) < L. Finally, observe that P gives rise
to an H-rainbow family of paths which completes the proof. O

(ITTIITIITY

F (the black dotted lines represent nice classes) F1[S1,1](with a perfect matching)
k
1 1 1
k k k
Pe

Figure 3.4 - The proof sketch of Lemma 3.3

3.4 . The connecting lemma

In this section, we prove Lemma 3.2. The idea of the proof is to grow tree-
like structures (called cascades) from both designated ends e; and e until
they meet, forming the H-rainbow path as desired. Our proof follows almost
identical as thatin [106, 137]. Before we describe the cascades, it is convenient
to introduce the following notation. For two sequences of vertices

w1 = (U1, Uy Wi, .., ws) and wo = (W1, ..., W, UL, ..., U)
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wherer,t > 1,s > 0and all vertices are distinct, we define their concatenation
as
WiwWo = (V1 v ey Upy Wy e e vy Wy ULy« ey Us).

This operation can be iterated. For instance, if w; = (wy,...,wg_2), we =
(wa, ..., wk_1)and ws = (ws, ..., wy) where all w; are distinct, then wjwows =
(w1, ..., wg). We could write wjwowy, instead of wjwaws. Leteyg = (v1, ..., vp_1)
be a given (k — 1)-tuple of vertices. We will define the rainbow eg-cascade as
an auxiliary sequence of bipartite graphs G;,j = 1,2,..., with bipartitions
(Aj_1,A;), whose vertices are (k—2)-tuples of the vertices of H and the edges
correspond to some (k — 1)-tuples of the vertices of H. Each node f € A; be-
longs to two graphs G; and Gj41. Its neighbors in G; belongs to A;_;, while
its neighbors in G4, belongs to A;;. For a node f = (v1,...,v,_2) of the
rainbow cascade, the vertex vy is called the prefiz, while v,_o is called the
suf fix of f.

We define the rainbow cascade recursively as follows. Let eg = (vy,...,
vg—1), fo = (va,...,vp—1) and Ay = {fo}. For every vertex v ¢ eg, we include
the node g = (vs,...,vk_1,v) in the set Ay if and only if vy fog = egv € H,, for
c1 € [¢]. The graph G is the star with center fp and the arms leading to all the
nodes g € A;.

Further, let Ay be the set of all (k — 2)-tuples h such that for some node
g € A; we have fogh € H., where c2 # ¢; and ¢z € [¢]. Note that each h € A,
is obtained from a node g € A; by dropping the prefix of g and adding a new
suffix u, we denote such node by g,,. The graph G2 consists of all edges {g, h}
whereg € Ay, h € Az and fogh € H,,, itis equal to say G consists of all edges
{9, 9u} where fogu € H,.

Forj=3,...,k— 2, wesimilarly define

Aj={h:3fe€Ajo,9€ Aj 1suchthat {f,g} € Gj_1, fgh € H., where
¢; # cg forl € [j — 1]}

and G; as the bipartite graph with bipartition (4;_1, A;) and the edge set

{{g,h} 3 f € Aj_gsuch that {f,g} € Gj_1 and fgh € H,;, where c; # c;
for ¢ € [j —1]}.
In other words, A; and G; correspond to the sets of (k — 2)-tuples and
(k — 1)-tuples of the vertices of V which can be reached from e in j steps by
an H-rainbow path.
First refinement. Having defined A; and G for j < k, beginning with

j = k — 1 we change the recursive mechanism by getting rid of the nodes in
Aj with too small degree in G;. We define auxiliary

w1 =1{h:3 f € Ap_3,9 € Ax_o such that {f, g} € Gx_2, fgh € H., |, where
ck—1 # cpfor b € [k —2]}
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and G, as the bipartite graph with bipartition (A;_2, A, ) and the edge

set

{{g,h} :3 f € Ap_zsuch that {f,g} € Gr_2 and fgh € H,, , where c;_1 # c¢
for ¢ € [k — 2]}.

Then let Aj,_; be the subsetof A}, consisting of all nodes h with deggr (h) >
vnandset Gy = G}_[Ar—2 U Ap_1].

Second refinement. For j > k, to form an edge {g, h} of G; we will now
require not one but many nodes f € A;_, to fulfil the above definition.

Setm = [n'/4]. Havingdefined G;_y,let A = {h:3 f1,..., fm € Aj 2,9 €
Aj_q such that forall i € [m],{fi,9} € Gj-1 and figh € H.; where c; #
cofor £ € [j — 1]} and let G be the bipartite graph with bipartition (A;_1, A7)
andtheedgeset{{g,h} : 3f1,..., fm € Aj_asuch that for alli € [m],{f;, g} €
Gj_1and figh € H., where c; # co for £ € [j — 1]}.

Finally, let A; be the subset of A’; consisting of all nodes h with degG; (h) >
vnandlet G; = G)[A;-1UAj]. The sequence (Gj),j = 1,2,. .., will be called
the rainbow eg-cascade.

Claim 3.1 ([137]) For every j > k — 1 and every edge {g,h} of G; where g =
(wi,...,wk—2) € Aj_1,h = (wa,...,wx_1) € Ajand (g Uh)Ney = 0 and
for every set of vertices W C V \ (g U h U eg) such that j + |W| < nl'/4,
there is an H-rainbow path P of length j which connects (wy_1,...,w;) with
eo = (v1,...,v05_1)and V(P)NW = ().

Degrees. Recall that G;. =Gjforj <k—2 Foranodegec Aj;, we set

d*(g) = degg (9) and d”(g) = degg, (9)

for the forward and backward degree of g in the cascade. Note that in the
definition of d*(g) we consider the forward degree before some small degree
vertices of A%, are removed. The reason is that we have no control over the
effects of the removal on individual forward degrees. On the other hand, for
all f € Aj, degg, (f) = degGg_(f), so the backward degree is unaffected unless
the node is removed. It is trivial that d=(g),d" (g) < n — k + 2. Observe that
G1U---UGi_gisatree thus,d (g) =1forallge A;,5=1,...,k — 2. Recall
that for j > k — 1 the graph Gj is obtained from G’; by removing nodes g with
degG;_ (g) < +/n. Hence our construction guarantees that for all g € A;,j >
k — 1, we have d(g) > v/n.
Forallj <k—2andallg € A,

1
d*(g) = (2 + ’y) n, (3.5)

since there are at least (% + 7)n vertices u such that fgu € H., , where fis
the neighbor of g in A;_. Each such vertex u corresponds to a neighbor g,, of
g in Aj+1-
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For j > k, the second refinement affects and no lower bound on d*(g)
is obvious. However, the lower bound d~(g) > +/n introduced by the first
refinement maintains.

Growth. By inequality (3.5), for each j € [k — 2], we have

1 i
G5l =14yl = (5+7) . 6)
1 k—1
|Gr-1| > <2 +7> nt1, (3.7)

Callanode f € Aj smallif d~(f) < in and denote by S; the subset of 4;
consisting of the small nodes. Assume for simplicity that 1/£? is an integer.

Claim 3.2 ([137]) There exists an index jo, k — 1 < jo < k— 1+ (k —1)/~? such
that for all j € [jo, jo + k — 2] we have |S;| < 2yn*2

Claim 3.3 ([137]) Let
227’6

ky <27k

and let jo be as in Claim 3.2. Then |Aj 4 x—2\Sjo+k—2| > (n—k+2— A2 k=2,

n)
Proof. [The proof of Lemma 3.2] Let g satisfy the condition in Claim 3.3, i.e.
Yo := v and ko < 27F. Given two disjoint (k — 1)-tuples of vertices e; and
ea, We build the rainbow e;-cascade and the rainbow ez-cascade, with the sets
of nodes denoted by A; and B;.

Let j1 = jo + k — 2, where j is the index guaranteed by Claim 3.2 for the
rainbow ej-cascade. Then by Claim 3.3, with sufficiently large n, using Ber-
noulli inequality, we have

’Ajl\Sjl‘ > (n - 270n)k_2 > (1 - 2k'70)nk_2-

On the other hand by inequality (3.6) for j = k—2, we have | B_y| > 22 FnF~2,

Bia N (A;\83)| > (227 — 2k 2 > ()77,

Hence, there is a not small node g = (u1,...,ux—2) € Aj, suchthatgn (e; U
62) = ( and g’ = (uk_g, ce ,Ul) € Bi_s.
Let ea = (wi,...,wg—1), S = {u1,...,up—2,wp_1} and V, be the set of

prefixes v of the neighbors f € A; _; of g. Since ¢’ = (ug_2,...,u1) € Bj_2,
we obtainthatw; - - - wg_1ug_o - - - w1 is an H-rainbow path. By Fact 3.1, we have
|NHle (S) N Vp| > yn, and thus, there is at least one vertex vy ¢ ey such that
{vo,u1, ..., up_9,wx_1} € H, .

Let P, =e; - -vouy - - - up_o be an H-rainbow path of length j; which avoids
the vertices of es. The existence of P, follows from Claim 3.1 with W = e5. The
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path P obtained from P; by adding the segment (wg_1, - .
up” edge {vg, u1, ..

as desired.

., w1 ) and the “hook-

., Ug—2,wk_1}, is the H-rainbow path connecting e; and e

By the bound on jj established in Claim 3.2 and since v < 1/2,

[V(P)=hn+2k—1)=jo+3k—4<

72

2k
+4k-5< =5,
Y

]

i

L

Ua

U—3

W1

Figure 3.5 - An H-rainbow path connecting two (k — 1)-tuples e; and e

3.5. Concluding remarks

Inspired by a series of recent successes on rainbow settings of matchings [
1, we suspect the threshold for rainbow

Hamilton cycle in a k-graph system is the same with the threshold for Hamil-
ton cycle in a single k-graph.

’ I

Conjecture 3.1 Suppose H = {H,}cy) Is an n-vertex k-graph system on V, n >
k+1 > 4, such that 6,1 (H;) > |(n — k + 3)/2], then there is an H-rainbow

Hamilton cycle.

] and Hamilton cycles [
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On the other hand, the problem of giving the sufficient condition for the
rainbow Hamilton ¢-cycles, ¢ € [k — 2], is still open.
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4 - Rainbow Hamilton cycles in hypergraph sys-
tems with minimum (k — 2)-degree

Lang and Sanhueza-Matamala [105], Polcyn, Reiher, R6dl and Schulke [129]
independently proved that for any v > 0 and sufficiently large n € N, every n-
vertex k-graph with 6;_o(H) > (5/9+)(3) contains a Hamilton cycle. Gupta,
Hamann, Muyesser, Parczyk, and Sgueglia [63] mentioned the following pro-
blem as “there is a well-known (uncolored) Dirac-type result whose rainbow
version is missing” and “it would be an interesting challenge to obtain this
result” : Given a 3-graph system H = {H;};c[,) with minimum vertex degree
condition of each H;, does H admit a rainbow Hamilton cycle? In this chap-
ter, we develop the sequentially Hamilton framework, which generalized the
Hamilton framework in [105], and give a general result as follows.

Theorem 4.1 Forevery k > 3,~v > 0, there exists ng such that the following holds
forn > ny. Given a k-graph system H = {H;}c (), if Op—2(H;) > (5/9+7)(3) for
i € [n], then there exists an H-rainbow Hamilton cycle.

4.1. Notation and preliminaries

We call a hypergraph H a (1, k)-graph if V(H) can be partitioned into V;
and V3 such that every edge contains exactly one vertex of V; and k vertices of
Va. Given a partition V(H) = V3 U V3, a (1,d)-subset S of V(H) contains one
vertex in Vi and d vertices in V5. Let §; ¢(H) := min{degy(S) : Sisa (1,d)-
subset of V(H)} for d € [k — 1]. The relative degree deg(S) to be deg(S)/(}~9).
The minimum relative (1,d)-degree of a (1, k)-graph H, written by &, 4(H), is
the minimum of deg(S) over all (1, d)-subsets S of V (H).

A k-graph H is k-partite if V(H) can be partitioned into k parts Vi, ..., Vi
such that every edge consists of exactly one vertex from each class. Given a
(k+1)-partite (k+1)-graph H with V(H) = VpuViU- - -UV,. A (k+1)-uniform
sequential path P of length t in H is a (k + 1)-graph with vertex set V(P) =
C(P) U I(P) where C(P) = {c1,...,¢ct—p+1} € Vo, I(P) = {v1,...,u} C
Vi1 U--- UV, and edge set {e1,...,e;_ i1} such thate; = {c;,viy ..., Vi0k-1}
fori € [t — k + 1]. Denote the length of P by ¢(P). We call ¢1,...,c1—k41
the colors of P and vy, ..., v the points of P. Furthermore, if (v1,...,v;) is a
cyclically ordered set, then we call this sequential path a sequential cycle. A
(k + 1)-uniform sequential walk is an ordered set of points with an ordered
set of colors such that the set of the i, k consecutive points along with the
i, color forms an edge. In particular, if the order is cyclical, then we call it
sequentially closed walk. Note that the points, edges and colors in a sequential
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walk are allowed to be repeated. The length of a sequential walk is its number
of points.

Before we give the proof of Theorem 4.1, we use the following similar de-
finitions with [105].

Definition 4.1 (Sequentially Hamilton cycle threshold) The minimum (1, k—
2)-degree threshold for sequentially Hamilton cycles, denoted by thcy—o(k), is the
smallest number § > 0 such that, for every € > 0, there exists an no € N such that
every (1,k)-graph H on [n] UV with minimum degree 6, _o(H) > (6 + €)(5)
contains a sequentially Hamilton cycle where |V| = n > n.

Definition 4.2 (Sequentially tight connectivity) A subgraph H' of a (1,k)-
graph H is sequentially tightly connected, if any two edges of H' can be connected
by a sequential walk. A sequentially tight component of H is an edge maximal
sequentially tightly connected subgraph.

Given b : V(H) — [0, 1], we define the b-fractional matching to be a func-
tionw: E(H) — [0,1]suchthat) . . w(e) < b(v)foreveryvertexv € V(H).
Moreover, if the equality holds, then we call w perfect. Denote the maximum
size of a b-fractional matching by v(H, b) = maxw > .c ;) W(e) Where wis a
b-fractional matching. It is well-known that perfect matchings are closely rela-
ted to its fractional counterpart. In particular, when b(v) = 1 for every vertex
v € V(H), the b-fractional matching is called fractional matching. The density
of a b-fractional matching is 3. gy W(e)/|V (H)|. Besides, we require the
following characterization. Given a k-graph H, we say that H is y-robustly mat-
chable if the following holds. For every vertex weight b : V(H) — [1 — v,1],
there is an edge weightw: E(H) — [0,1]with > . - w(e) = b(v)/(k —1) for
every vertex v € V(H). Note that a y-robustly matchable k-graph H admits
a b-fractional matching of size 3 /() b(v) /k(k — 1) for every vertex weigh-
tingb: V(H) — [1 — 7, 1]. The following definition plays an important role in
our proof.

Definition 4.3 (Link graph) Given ¢ € [0,k — 1], a (1,k)-graph H on V(H) =
[n] UV where |V| = n and a set S of (1,¢)-subset of V(H), we define the link
(k — £)-graph of S in H as the graph Ly (S) with vertex set V and edge set { X :
X US e E(H)} If His clear, then we simply write L(S).

Let H = (V, E) be a k-graph, V' C V, an induced subgraph H[V] of a k-
graph H is a k-graph with vertex set V' and edge set E’ where each edge is
precisely the edge of H consisting of k vertices in V'. We usually denote H’
by H[V'].

Definition 4.4 (Sequentially Hamilton framework) Let«,~, § be positive co-
nstants. Suppose R is a (1, k)-graph on [t| UV where |V | = t, we call a subgraph
H of R an («,, d)-sequentially Hamilton framework, if H has the following pro-
perties.

54



(F1) H, := H[{i} U V]is sequentially tightly connected fori € t],

(F2) H; contains a sequentially closed walk of length 1 mod k for i € [t],

(F3) Hw, :== H[[t(i — 1)/k + 1,ti/k] U V] is v-robustly matchable for i € [k],

(F4) For every color i € [t], there are at least (1 — )t points v € V such that
{i,v} has relative (1,1)-degree at least 1 — § + ~,

(F5) Ly ({i}) and Ly ({j}) intersect in an edge for each i, j € [t].

We write z < y to mean that for any y € (0, 1], there exists an zy € (0, 1) such
that for all x < z, the subsequent statements hold. Hierarchies with more
constants are defined similarly to be read from right to left.

Definition 4.5 (Sequentially Hamilton framework threshold) The minimum
(1, k — 2)-degree threshold for (1, k)-uniform sequentially Hamilton framework,
denoted by rhfi_s(k), is the smallest value of § such that the following holds.

Suppose e, c,y,u > 0andt € Nwith 1/t < e K a < v < p. If Risa
(1, k)-graph on [t] UV where |V | = t, with minimum relative (1, k — 2)-degree at
least 0 + and a set I C E(R) of at most et(,i) perturbed edges, then R contains
an («, 7, 6)-sequentially Hamilton framework H that avoids the edges of I.

We transform the problem of bounding the sequentially Hamilton cycle
threshold to bound the sequentially Hamilton framework threshold.

Theorem 4.2 (Framework Theorem) fork > 3, we have they_o(k) < rhfir_o(k).

For any j € [k|, let the shadow graph 0;(H) of (1, k)-graph H at level j be
the (1, 7)-graph on [n] UV whose edges are (1, j)-sets contained in the edges
of H.

Definition 4.6 (Vicinity) Given a (1, k)-graph R on [t] UV, we say that C; =
{Cs C L(S) : S € Ox—2(R)and i € S} foreachi € [t] is a (k — 2)-vicinity. We
define the (1, k)-graph Hc, generated by C; as the subgraph of R with vertex set
V(H) = {i} UV and edge set

E(H) = J {Aus:4decsh
Z‘ES,SEak,Q(R)

Besides, we need the following structures.

Definition 4.7 (Switcher) Aswitcherin a graph G is an edge ab such that a and
b shares a common neighbor in G.

Note that a switcher together with its common neighbor generates a tri-
angle.

Definition 4.8 (Arc) Let R; be a (1, k)-graph on {i} UV with (k — 2)-vicinity
Ci={Cs:S € 0x_2(R;)}. Wesay that a (1,k + 1)-tuple (i,v1,...,v541) IS an
arc for C; if the following holds.
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. {i, Vlyew- ,’Uk,Q} € 8k,2(Ri) with {kal, ’Uk} € C{i,vh...,vk_z}'
* {i, v, 051} € Op—2(Ri) with {vg, vii1} € Cfjg, o1}

Definition 4.9 (Sequentially Hamilton vicinity) Let v,5 > 0. Suppose that
Ris a (1,k)-graph on [t] UV, let R; := R[{i} U V]. We say that a family C =
{C; : i € [t]} of (k — 2)-vicinities where C; = {Cs : S € Oy_2(R;i)} is (v,9)-
sequentially Hamilton if for any S, S" € O,_2(R;) and T' € Ox_2(R;) where i # j,
the followings hold,

(V1) Cg is tightly connected,

(V2) Cg and Cg intersect in an edge,

(V3) Cs has a switcher and the vicinity C; has an arc for i € [t],

(V4) Cs has a fractional matching of density (1 + 1/k)(1/(k+ 1) + ),

(V5) Cs has edge density at least 1 — § + ~,

(V6) Cs and Cr intersect in an edge.

Definition 4.10 (Perturbed degree) Let o,§ > 0. We say that a (1, k)-graph
R has a-perturbed minimum relative (1, k — 2)-degree at least ¢ if the followings
hold for j € [k — 2].

(P1) every edge of 0;(R) has relative degree at least ¢ in R,

(P2) 0;(R) has edge density at most o, where 0;(R) denotes the complement

of 9;(R),
(P3) each (1, j — 1)-tuple of 0;_1(R) has relative degree less than o in 0;(R).

Definition 4.11 (Sequentially Hamilton vicinity threshold) The minimum (1,
k — 2)-degree threshold for (1, k)-uniform sequentially Hamilton vicinities, deno-
ted by rhvi_o(k), is the smallest value 6 > 0 such that the following holds. Let
a,v,0>0,t € Nwith1/t < a« < v < pand R be a (1,k)-graph on [t] U V.
If each R; := R[{i} U V] has a-perturbed minimum relative (1,k — 2)-degree
at least § + p for i € [t], then R admits a family of (v, d)-sequentially Hamilton
(k — 2)-vicinities.

Theorem 4.3 (Vicinity Theorem) For k > 3, rhfi_o(k) < rhvg_o(k).

Combining Theorem 4.3 with Theorem 4.2, we just need to prove the fol-
lowing theorem, and we can obtain Theorem 4.1.

Theorem 4.4 Fork > 3, rhvy_o(k) < 5/9.

We use the following concentration inequalities.

A hypergraph H = (V, E) is a complex if its edge set is down-closed, mea-
ning that whenever e € F and ¢/ C e, we have ¢/ € E. A k-complex is a
complex where all edges have size at most k. Given a complex H, we use H(?)
to denote the i-graph obtained by taking all vertices of H# and edges of size i.
Denote the number of edges of size i in H by e;(H).
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Let P partition a vertex set V into parts Vi,...,Vs. Then we say that a
subset S C V is P-partite if |S N V;| < 1 for every i € [s]. Similarly, we say
that hypergraph H is P-partite if all of its edges are P-partite. In this case we
refer to the parts of P as the vertex class of H. We say that a hypergraph H
is s-partite if there is some partition P of V(H) into s parts for which H is
‘P-partite.

Let H be a P-partite complex. Then forany A C [s] we write V4 for (J,c 4 Vi.
The index of a P-partite set S C Visi(S) := {i € [s] : |[SNV;| = 1}. We write
‘H 4 to denote the collection of edges in ‘H with index A, that is, H 4 can be
regarded as an |A|-partite | A|-graph on vertex set V4. Similarly, if X is a j-set
of indexes of vertex classes of H we write H x for the j-partite j-uniform sub-
graph of H) induced by |,y V;. We write H x - for the j-partite hypergraph
with vertex set (., Vi and edge set U/ x Hx'-

Let H; be any i-partite i-graph and H;_; be any i-partite (i — 1)-graph
on a common vertex set V partitioned into : common vertex classes. Denote
K;(H;—1) by the i-partite i-graph on VV whose edges are all i-sets which are
supported on H;_(i.e. induce a copy of complete (i — 1)-graph K! ' on i
vertices in H;_1). The density of H; with respect to H;_ is defined to be

|Ki(Hi—1> N Hl|
) = e )

if |K;(H;—1)| > 0. For convenience, we take d(H;|H;—1) := 0if |K;(H;—1)| =
0. When H;_; is clear from the context, we simply refer d(H;|H;—1) as the
relative density of H;. More generally, if Q := (Q1,...,Q,) is a collection of r
not necessarily disjoint subgraphs of H;_;, we define

Ki(Q) == | Ki(Qy)
j=1

e 1K,(Q) 1 5
T A(]

if |K;(Q)| > 0. Similarly, we take d(H;|Q) := 0 if | K;(Q)| = 0. We say that H;
is (d;, e, r)-regular with respect to H;_; if we have d(H;|Q) = d; + ¢ for every
r-set Q of subgraphs of H;_; such that |K;(Q)| > ¢|K;(H;—1)|. We refer to
(d;, e, 1)-regularity simply as (d;, €)-regularity. We say that H; is (g, r)-regular
with respect to H;_; to mean that there exists some d; for which H; is (d;, e, r)-
regular with respect to H;_,. Given an i-graph G whose vertex set contains
that of H;_;, we saythat Gis (d;, e, r)-regular with respect to H;_, if the i-partite
subgraph of G induced by the vertex classes of H;_; is (d;, e, r)-regular with
respect to H;_ 1. Similarly, when H;_ is clear from the context, we refer to
the relative density of this i-partite subgraph of G with respect to H;_; as the
relative density of G.
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Now let H be an s-partite k-complex on vertex classes V1, ..., Vs, where
s > k > 3.Since H is a complex, if e € H for some i € [2,k], then the
vertices of e induce a copy of Kf‘l in #(=1. This means that for any index
A € (1)), the density d(HO[V4]|H~D[V4]) can be regarded as the propor-
tion of ‘possible edges’ of #(?[V4] which are indeed edges. We say that A is
(do, ... ,dy, e, e,r)-regular if
1. fori € [2,k — 1] and A € (&), the induced subgraph #[V4] is (d;, )-
regular with respect to H(~1[V4] and
2. forany A e (1)), the induced subgraph #®[V,4] is (dy, ey, 7)-regular
with respect to HF—D[Vy].

The Regular Slice Lemma says that any k-graph G admits a regular slice.
Informally speaking, a regular slice of G is a partite (k — 1)-complex J whose
vertex classes have equal size, whose subgraphs 72, ..., 71 satisfy cer-
tain regularity properties and which moreover has the property that GG is regu-
lar with respect to 71 The first two of these conditions are formalised in
the following definition : we say that a (k—1)-complex J is (to, t1, € )-equitable,
if it has the following properties.

1. J is P-partite for a P which partitions V(7)) into ¢ parts of equal size,
where ty <t < t1. We refer to P as the ground partition of 7, and to the
parts of P as the clusters of J.

2. There exists a density vector d = (da, .. .,dy—1) such thatfori € [2,k —1]
we have d; > 1/t; and 1/d; € Nand foreach A C P of size i, the i-graph
J@[V4] induced on V4 is (d;, €)-regular with respect to 7D [V,].

If 7 has density vector d = (ds, . ..,dr_1), then we will say that 7 is (da,. ..,
dk_1,¢)-regular, or (d, e)-regular, for short. For any k-set X of clusters of 7,
we write Jx for the k-partite (k —1)-graph j)((kgl). Given a (to, t1,£)-equitable
(k—1)-complex J, a k-set X of clusters of J and a k-graph G on V(J ), we say
that G is (d, e, r)-regular with respect to X if G is (d, e, r)-regular with respect
to Jx. We will also say that G is (e, r)-regular with respect to X if there exists
a d such that G is (d, ey, r)-regular with respect to X. We write d’; ,(X) for
the relative density of G with respect to Jx, or simply d*(X) if 7 and G are
clear from the context, which will always be the case in applications.
We now give the key definition of the Regular Slice Lemma.

Definition 4.12 (Regular slice) Givene,c;, > 0, r,t9,t1 € N, a k-graph G and
a (k —1)-complex J on V(G), we call J a (to, t1,¢, ek, r)-regular slice for G if 7
is (to, t1,¢)-equitable and G is (e, r)-regular with respect to all but at most =y, (})
of the k-sets of clusters of J, where t is the number of clusters of 7.

It will sometimes be convenient not to specify all parameters, we may
write that J is (-, -, ¢)-equitable or is a (-,-,¢,¢ex, r)-slice for G, if we do not
wish to specify ¢y and ¢;.
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Given a regular slice J for a k-graph G, it will be important to know the
relative densities d*(X) for k-sets X of clusters of 7. To keep track of these
we make the following definition.

Definition 4.13 (Weighted reduced k-graph) Let G be a (1, k)-graph and let
J be a (to,t1,e,ex41,7)-regular slice for G. We define the weighted reduced
(1, k)-graph of G, denoted by R(G), to be the complete weighted (1, k)-graph
whose vertices are the clusters of J and where each edge X is given weight d* (X).

Similarly, for dj.1 > 0, we define the dy1-reduced (1, k)-graph Rg, , ,(G) to
be the (unweighted) (1, k)-graph whose vertices are the clusters of J and whose
edges are all (1, k)-sets X of clusters of J such that G is (j+1,7)-regular with
respectto X and d*(X) > dy41.

Given a (1,k)-graph G on [n] UV, a vertex v € V and a color ¢ € [n],
recall that degq(c,v) is the number of edges of G containing ¢ and v and
degi(c,v) = degg(c,v)/(}21) is the relative degree of {c,v} in G. Given a
(to,t1,€)-equitable (k — 1)-complex J with V(J) C V(G), the rooted degree
of (¢,v) supported by J, written by degq((c,v), J), is defined as the number
of (k — 1)-sets T in J%*~1 such that T' U {c,v} forms an edge in G. Then
the relative degree degq((c,v); J) of (¢,v) in G supported by J is defined as

@G((67 v); J) = dega((c,v); j)/e(j(kfl)).

Definition 4.14 (Representative rooted degree) Let n > 0, G be a (1,k)-
graph on [n) UV and J be a (to,t1,€,er+1)-regular slice for G. We say that .7
is n-rooted-degree-representative if for any vertex v € V and any color ¢ € [n), we
have

’T%G((C’U);j) _TegG(C>v)| <n.

Definition 4.15 (Regular setup) Let k,m,r,t € Nand ¢,e41,da, ..., dgi1 >
0. We say that (G,G7,J,P,R)is a (k,m,t,e,ex1,7,d2,...,dxy1)-regular se-
tup, if
(RS1) Gisa (1,k)-graph on [n]UV where |V| =nand G; C G,
(RS2) TJisa(-,- e, exs1,r)-regularslice for G with density vectord = (da, . . .,
dk.),
(RS3) P is the ground partition of J with initial partition of [n] UV and 2t
clusters, each of size m,
(RS4) Ris asubgraph of Ry, ., (G),
(RS5) foreach X € E(R), G7is (dg+1,ex+1,7)-regular with respect to X.
We further say that (G, G 7,7, P, R) is representative if
(RS6) J is ei.11-rooted-degree-representative.

The Regular Slice Lemma of [7] ensures that every sufficiently large k-
graph has a representative regular slice. Given the existence of a regular slice,
itis easy to derive the existence of a regular setup. In [105], itis stated directly
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in terms of regular setups. And it is an easy corollary of giving a sufficiently
large (1, k)-graph.

Lemma 4.1 (Regular Setup Lemma [7]) Let k,ty be positive integers, 0, i, v,
€k+1,dx+1 be positive and r : N — Nand ¢ : N — (0, 1] be functions. Suppose
that

k>3 epr1 < a,dp1 < p.

Then there exists t; and mg such that the following holds for all n > 2t;m,. Let
G be a (1, k)-graph on [n] UV where |V| = n and suppose that G has minimum
relative (1, k —2)-degree 81 —2(G) > 6+ p. There exists d = (da, ..., dr+1) and a
representative (k,m,2t,e(t1), exq1,7(t1), d)-regular setup (G,G7,J,P, Ry, ,)
with t € [to,t1], mo < mand n < (1 + «)mt. Moreover, there is a (1, k)-graph I
on P of edge density at most €1 such that R = Rg, ., U I has minimum relative
(1,k — 2)-degree at least § + /2.

Let G be a P-partite k-complex and X7,..., X5 € P(possibly with repetition),
and let H be a k-complex on vertices [s]. We say that an embedding of # in G
is partition-respecting, if i is embedded in X; for i € [s]. Note that this notion
depends on the labeling of V' (#) and the clusters X3, ..., X, but these will
be clear in the paper. Denote the set of labelled partition-respecting copies
of Hin G by Hg[J;cq Xi]. When X1, ..., X, are clear, we denote it by Hg for
short. Recall that e;(H) denotes the number of edges of size i in H.

The following lemma states that the number of copies of a given small
k-graph inside a regular slice is roughly what we expect if the edges inside
a regular slice were chosen randomly. There are many different versions in
[7, 33, 61, 140] and we use the following version in [33].

Lemma 4.2 (Counting Lemma [33]) Let k,s,r,m be positive integers and let
B,da, ..., dy, e, e be positive constants such that 1/d; € N fori € [2,k — 1] and
such that

1/m < 1/7“,8 K ep,do, ..., di_1,

ex < B,dg,1/s.

Let H be a k-graph on [s] and let H be the k-complex generated by the down-
closure of H. Letd = (dg,--- ,dy), let (G,G7,J,P,R) bea (k,m,- e e, d)-
regular setup and G = J U G 7. Suppose X1, ..., X are such that i — X, is a
homomorphism from H into R, then the number of labelled partition-respecting
copies of H in G satisfies

k
Hg| = (1+ B) <H d?‘“”) me.
1=2

The following tool allows us to extend small subgraphs into a regular slice.
It was given by Cooley, Fountoulakis, Kihn and Osthus [33].
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Lemma 4.3 (Extension Lemma [33]) Letk, s, s, r, m be positive integers, where
s’ < sandlet B,dy,...,dy, e, be positive constants such that 1/d; € N for
i € [2,k — 1] and such that

1/m < 1/re € eg,da, ..., dg_1,

ex < B,dy, 1/s.

Suppose H is a k-graph on [s]. Let H be the k-complex generated by the down-
closure of H and H' be an induced subcomplex of H on s’ vertices. Let d =
(do,...,dx)and (G,G7,J,P,R)bea (k,m,- e ek d)-regular setup and G =
J UG g. Suppose X1, ..., X are such that i — X; is a homomorphism from H
into R. Then all but at most 3|Hg| labelled partition-respecting copies of H' in G

extend to
1:|:B (H dez el(H ) s—s’

labelled partition-respecting copies of H in G.

In some certain situation, we look for structures whose edges lie entirely in
the (k—1)-complex J of a regular setup. We can no longer use the above lem-
mas whose input is a regular setup rather than an equitable complex. Also,
the above lemmas requires r to be large enough with respect to ¢ while the
(k — 1)-th level of 7 will only need to be (dj_1, ¢)-regular with respect to the
lower level. We can use a Dense Counting Lemma as proved by Kohayakawa,
Rddl and Skokan [92]. We state the following version given by Cooley, Foun-
toulakis, Kihn and Osthus [33].

Lemma 4.4 (Dense Counting Lemma [33]) Letk, s, m be positive integers and
g,do, ..., di_1, [ be positive constants such that

I/m<e<<p<dy...,dg1,1/s.

Suppose H is a (k — 1)-graph on [s] and H is the (k — 1)-complex generated by
the down-closure of H. Letd = (da,...,dx_1) and J be a (d,e)-regular (k — 1)-
complex with ground partition P, each size of whose vertex classism. If X1, ..., X,
€ P, then

k—1

Hal = (1+6) [T d?

=2
The following lemma gives the number of edges in each layer of a regular
slice.

Lemma 4.5 ([7]) Suppose that 1/m < ¢ < < da,...,d_1,1/k and that
J is a (-,-,e)-equitable (k — 1)-complex with density vector (ds, .. .,d,_1) and
clusters of size m. Let X be a set of at most k — 1 clusters of J. Then

X (1)

|Tx| = (1£5) Hd mHX
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Analogously, we have a dense version of Extension Lemma [33].

Lemma 4.6 (Dense Extension Lemma [33]) Letk, s, s’, m be positive integers,
where s’ < sand e, 3,ds, ..., d,_1 be positive constants such that 1/m < ¢ <
B < da,...,dx_1,1/s.Let H bea (k—1)-graphon [s]. Let H be the (k—1)-complex
generated by the down-closure of H and H' be an induced subcomplex of H on s’
vertices. Letd = (da, ...,di—1) and let 7 be a (d,e)-regular (k — 1)-complex, with
ground partition ‘P with vertex classes of size m each. If X1,..., Xs € P, then all
but at most 3|H’;| labelled partition-respecting copies of H' in J extend to

k—1
=2

labelled partition-respecting copies of H in J.

The restriction of a regular complex to a large subset of its vertex is also
a regular complex, with slightly altered constants.

Lemma 4.7 (Regular Restriction Lemma [7]) Let k,r,m, s be integers and o,
g,ex,da, ..., dy be positive constants such that 1/d; € N for € [2, k] and

I/m < e L epyda, ... di_1,

and
e K .

Let G be an s-partite k-complex on vertex classes V1, ..., Vs, each of size m and
which is (d, ey, e, r)-regular where d = (da, ..., d;). Choose any V; C V; with
\V/| > am fori € [s]. Then the induced subcomplex G[V{U---UV[]is (d, \/ex, Ve,
r)-regular.

The chapter is organised as follows. In Section 4.2, we show the minimum
degree condition guarantees a sequentially Hamilton vicinity. In Section 4.3,
we show that how a sequentially Hamilton vicinity deduce a sequentially Ha-
milton framework. In Section 4.4, we show that how a sequentially Hamilton
framework deduce a sequentially Hamilton cycle. The sequentially Hamilton
cyclein a (1, k)-graph is a rainbow Hamilton cycle in a k-graph system, as de-
sired.

4.2 . Obtaining sequentially Hamilton vicinity with degree condi-
tion

In this section, we determine the (k —2)-vicinity threshold of (1, k)-graphs.
Lovasz's formulation of the Kruskal-Katona theorem states that, forany z > 0,
if G is a k-graph with e(G) > (i) edges, then ¢;(G) > (j) for every j € [k]
(Theorem 2.14 in [57]). By approximating the binomial coefficients, they [105]
deduce the following variant.
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Lemma 4.8 (Kruskal-Katona theorem [105]) Let 1/t < e < 1/k and G be a
graph on t vertices and edge density 6, then 9(G) has at least (6'/% — ¢)t vertices.

Proposition 4.1 Lett € Nand~,d,5 > 0with1/t < e < §and §+6/% > 1+e.
Let R; bea (1, k)-graph on {i}UV where |V'| = t with a subgraph that is generated
by a (k — 2)-vicinity C;. Suppose that each Cs € C; has edge density at least § + p,
then C; admits an arc.

Proof. Consider an arbitrary set S = {i,v1,...,v5_2} € Jx_2(R;). By ave-
raging, there is a vertex v;_1 with relative vertex degree at least § in Cg. Set
S" = {i,ve,...,vp_1}, we have S’ € Oy_o(R;). Thus, Csr — {v1} has edge den-
sity atleast §+/2. By Lemma 4.8, 9(Csr —{v1 }) has at least (6/2—¢)t vertices.

By the choice of v;_; and the pigeonhole principle, 9(Cs: — {v1}) and

L({i,v1,..., vg—1}) must share a common vertex v. Since v;, € 9(Cg —
{v1}), there is another vertex vy such that {vg,vx11} € Cs — {v1}. Thus,
{i,v1,...,vk41} is an arc. O

We use the following result of [105].

Lemma 4.9 ([105]) Let 1/t < v < p, suppose that Ly and Lo are graphs on a
common vertex set of size t such that Ly, Ly has edge density at least 5/9 + p. For
i € [2], let C; be a tight component of L; with a maximum number of edges. We
have

(i) Cy and Cs has an edge in common,

(i) C; has a switcher for i € [2],

(iii) C; has a fractional matching of density 1/3 + ~ fori € [2],

(iv) C; has edge density at least 4/9 + ~ for i € [2].

Proof. [The proof of Theorem 4.4] Let «, v, u > 0 with
l/t<a<gdkpukb/9.

Consider a (1, k)-graph R on [t] UV where |V| = t and each R; := R[{i} U
V] has a-perturbed minimum relative (1, k — 2)-degree at least 5/9 + u. For
every S € O,p_2(R), let Cg be a tight component of L(.S) with a maximum
number of edges and C; = {Cs : S € Jy_2(R) and i € S}. By the choice of
Cs, (V1) holds obviously. By Lemma 4.9, C; satisfies (V2), (V4), (V5) and (V6).
Every C's € C; contains a switcher. By Proposition 4.1, C; contains an arc since
4/9 + (4/9)'12 =1+1/9, thus C = {C; : i € [t]} satisfies (V3), as desired. [

4.3 . From sequentially Hamilton vicinity to sequentially Hamil-
ton framework

Our goal is to prove Theorem 4.3 in this part. We need the followings lem-
mas.
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Lemma 4.10 Let R; be a (1,k)-graph on {i} UV with a (k — 2)-vicinity C; =
{Cs : S € Ox_o(R;)} fori € [t]. For every S, S’ € O_o(R;), if the vicinity C; has
anarcfori € [t|, Cs and Cs intersect, Cg is tightly connected and has a switcher,
then the vertex spanning subgraph He, of R; generated by C; is sequentially tightly
connected and contains a sequentially closed walk of length 1 mod k.

Lemma 4.11 Let v,«a,d > 0 such that 1/t < «,y < 1/k. Let R be a (1,k)-
graph on [t] UV where |V| = t and each R; has a-perturbed minimum relative
(1,k — 2)-degree at least 6. Let C = {C; : i € [t]} be a family of (k — 2)-vicinities
where C; = {Cg : S € Ox_o(R;)}. If for every S € 0r_2(R), Cs has a fractional
matching of density (1+1/k)(1/(k+1)+), then the graph He,, C R generated
by Cw, :={C; : j € [t(i—1)/k+1,ti/k]} is y-robustly matchable for each i € [k].

Lemma 4.12 Lett,k € N,i € [tjand §,a,e > Owith 1/t < ¢ € o < §,1/k.
Let R; be a (1,k)-graph on {i} UV with minimum relative (1, k — 2)-degree at
least § where |V'| = t. Let I be a subgraph of R; with edge density at most ¢, there
exists a vertex spanning subgraph R, C R; — I of a-perturbed minimum relative
(1,k — 2)-degree at least § — a.

Proof. [Proof of Theorem 4.3] Let 6 = rhug_o(k) and €, , v > 0 such that
t<egagd <y<p<d,1/k.

Moreover,the constants ¢, ¢, o, p are compatible with the constant hierarchy
given by Definition 4.11, t, ¢, 2a, u satisfy the conditions of Lemma 4.11 and
t, e, a, 0 satisfy the conditions of Lemma 4.12.

Given a (1, k)-graph R; on {i} UV with minimum relative (1, k — 2)-degree
atleastd+2p and aset I of at most 5(2) perturbed edges. We start by selecting
asubgraph of R;. By Lemma 4.12, we obtain a vertex spanning subgraph R, C
R; — I of a-perturbed minimum relative (1, k — 2)-degree at least § + p.

By the definition of 4.11, R’ := Uier R! has a family of (2v, §)-sequentially
Hamilton (k — 2)-vicinities C = {C; : i € [t]} where C; = {Cs : S € Or_2(R})}.
Each C; generates a (1, k)-graph G;. Let H = Uie[t] G;. Note that G; does not
contain the edges of I and V(G;) = V(R!). By Lemma 4.10 and 4.1, H also
satisfies (F1)-(F3). For k > 4, by repeatedly applying Definition 4.10, we deduce
that for all but at most at (1,1)-sets of V(R]) is contained in at least (1 —
20)F=3(V121) > (1—2(k = 3)a) (Y 151) many (1, k — 2)-sets in 9;_»(R}). Note
that 9x_2(R}) = Jx—2(G;). This implies that for all but at most ot (1, 1)-sets of
V(G;) has relative degree at least 1 — 2(k — 3)« in Ox_2(G;). Moreover, every
(1,k — 2)-setin Op_2(G;) has relative degree at least 1 — 0 + 2 in Gj, since G;
is generated from (2, d)-sequentially Hamilton (k — 2)-vicinity and Definition
4.9. Thus, we obtain that for each color i € [¢], there are at least (1 — «)t points
v € V suchthat {i,v} has relative (1, 1)-degree at least 1 — 4+, which implies
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(F4) for k > 4. While for k = 3, by Definition 4.9, we have every (1, 1)-set has
relative degree at least 1 — § + 2 in G;, which implies (F4) for k = 3.
Besides, itis obvious that (V6) implies (F5), we obtain an («, v, §)-framework,

as desired. O
We define a directed edge in a k-graph to be a k-tuple whose vertices cor-
respond to an underlying edge. Note that the directed edges (a, b, ¢), (b, ¢, a)
corresponds to the same underlying edge {a, b, c}. Given a k-graph system
H = {H,};c}n ONn vertex set V, we consider the hypergraph H with vertex set
[n]UV and edge set {{i}Ue: e € E(H;),i € [n]}. Define a directed edge to be
a (1, k)-tuple (i,v1, ..., vx) with k points corresponding to an underlying edge
{v1,...,ux} in H;. Given a k-tuple S = (v1,...,v;), abbreviated as vy - - - vy,
we use g C V to mean that the corresponding k-set of S is a subset of V.
Similarly, given a family F' of k-sets and a k-tuple S, we use S € F'to denote

that the corresponding k-set of S is an element of F. Let ? = (v1,..-,Vk),
S\ {u;}isthe (k—1)-tuple (v1, ..., i1, Vit1,. .. op) fori € [k], {v!}U S \ {v;}
is the k—tuple (Ul, ey Vi1, U;, Vidtly. - Uk).

Definition 4.16 (Strong connectivity) A hypergraph is called strongly connec-
ted, if every two directed edges lie on a sequential walk.

Claim 4.1 If G is a tightly connected graph, then G is strongly connected.

Proof. Let ab be a switcher in G, by Definition 4.7, we obtain that ¢ and b
share a neighbor c. If we can prove that (a,b) and (b,a) are on a walk W,
then we can obtain that G is strongly connected. Since we consider any two
directed edges D, and D, of G, there are walks Wy and W, starting from D1
and D, respectively and ending with {a, b}, W1 W W5 is a tight walk starting
from Dy and ending with D,. While it is easy to see that abcaba is a tight walk
from (a,b) to (b, a) containing a closed walk of length 3, as desired. O
Next, we want to show that switchers can control the length of sequential
walks. Note that a triangle is a closed walk of odd length in a tightly connected
graph containing a switcher and we obtain the following proposition.

Proposition 4.2 If G is a tightly connected graph containing a switcher, then G
has a closed walk of odd length.

Proposition 4.3 Let R be a (1, k)-graph with a subgraph H¢, which is generated
%/Ci. Suppose that C; satisfies the conditions of Lemma 4.10, for any (1, k—2)-tuple
€ Ox—2(Hg,) and two directed edges D, Dy € Cz, there exists a sequential

walk W of length o mod k in He, starting from ?Dl and ending with ?Dg.
Proof. LetC;={Cz:S € »(R)andie S}yand s = {i}US" where §”

is a (k — 2)-tuple. By Proposition 4.2, there is a closed walk W of odd length
in C?. By Claim 4.1, there is a tight walk W starting from Dy, ending with D-
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and containing W; as a subwalk. Let ¢(WW3) = p. We obtain W3 from Wy by
replacing W, with the concatenation of p + 1 mod 2 copies of W;. Hence, W3
is a tight walk of even length in C starting from D; and ending with D.
Suppose that W3 = (a1,az2...,a2y,), We have D1 = (aj,az) and Dy =
(a2m—1, a2 ). Note that (i. . .1, ?’alag%’agm -+ 8'agm_1a9y,) is a sequential
walk in H¢,. Moreover, it has length o mod k, as desired. O

Proposition 4.4 Let Rbea (1, k)-graph with a subgraph He, that is generated by
C;. Suppose C; satisfies the conditions of Lemma 4.10, we consider directed edges
?, € Ox—2(Hc,) and Dy € Cg, Dy € C. If S and T differ in exactly one
coordinate, then there is sequential walk of length o mod k in He, starting from
?Dl and ending with ?Dg.

Proof. Let S = (t,v1...0;...v5-2) and T = (4,v1...ui...v5—2) Where
u; # wv;. By Definition 4.9, there is a directed edge D3 in ng N C?, thus
(1, K \ {i}Dg? \ {7}) is a sequential walk in H¢,. By Proposition 4.3, there
is a sequential walk W7 of length o0 mod k starting from S D; and ending
with ?D:g, Wy of length 0 mod k starting from ?Dg and ending with ?DZ,
(C(Wh)C(Wa), I(W1)I(Ws)) is the desired walk.

O

Proposition 4.5 Let Rbea (1, k)-graph with a subgraph He, that is generated by
C;. Suppose C; satisfies the conditions of Lemma 4.10, we consider directed edges
?, € Ok—2(Hc,) and Dy € Cg, Dy € C:. There is a sequential walk of length

o0 mod k in He, starting from ?Dl and ending with ?Dg.

Proof. Letr € [k — 2] be the number of indices where S and T differ. If
r = 1, the result follows from Proposition 4.4. Suppose the result is known for
r — 1. By Definition 4.9, there exists an edge pg in Cz N C=.

Suppose that the ith coordinate vertex of ? and 7 are different, which
are replaced with p, we obtain ?’ and ?’. Note that ?’,?’ € Ok—2(Hg,).
Choose D] € C3,. By Proposition 4.4, there is a sequential walk W, of length

omod k from ?Dl to ?’D’, similarly, there is a sequential walk W3 of length o
mod k from ?’D’Q to T' Dy where D; € C,. By induction, there is a sequential

walk W5 from ?’D’l to ?’Dé of length o mod k. Thus, (C(W;)C(W2)C(W3),
I(W1)I(Wo)I(W3)) is the desired walk. O
Proof. [The proof of Lemma 4.10] Consider any two edges X and Y of Hg,.
let X =SudandY =T U Bwhere A € Cgand B € Cp. The desired walk
can be obtained from Proposition 4.5.

Next, we need to show that He, contains a closed walk of length 1 mod k.

Since C; admits an arc {i, v1,...,vg11}, by Proposition 4.5, there is a sequen-
tial walk W of length o mod & from {é,va,...,vx41} to {i,v1,...,vx}. Thus,
(C(W)i, I(W)vg4q) is a closed walk of length 1 mod k. O
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The following claim can be seen in [105], we use a corollary of the claim in this
paper.

Claim 4.2 ([105]) Let H be a k-graph and b : V(H) — [0, 1]. Suppose that there
existsm < 3 cy gy b(v)/k such that for everyv € V(H), the link graph Ly ({v})
has a b-fractional matching of size m, then H has a b-fractional matching of size
m.

Corollary 4.1 Let H bea k-graph, a € [0,1)and b : V(H) — [0, 1]. Suppose that
there exists m < >,y ) b(v)/k such that for all but at most o|V (H)| isolated
vertices v, the link graph L ({v}) has a b-fractional matching of size m, then H
has a b-fractional matching of size m.

Proof.  We first delete the isolated vertices of H and obtain a subgraph H’
of H. Thus, Ly ({v}) has a b-fractional matching of size m. By Claim 4.1, we
obtain that H' has a b-fractional matching w of size m. Assign a weight b’ (u) €
[0, 1] to each isolated vertex u of H, and b’(v) = b(v) for each non-isolated
vertex v of H, it is obvious that H has a b'-fractional matching w of size m
since > .., W(e) = 0 for any isolated vertex w and E(H') = E(H). O

Proposition 4.6 Let Rbea (1,k)-graphon [n/k|UV where |V|=n,v>0,a €
[0,1), b : [n/k]JUV — [1—7,1]. Suppose that there existsm < 3~ cy gy b(v)/(k+
1) such that given c € [n/k|, for all but at most an vertices v € V, the link graph
Lr({c,v}) has a b-fractional matching of size m, then R has a b-fractional mat-
ching of size m/k.

Proof. By Corollary 4.1 with H being Lr({c}) for ¢ € [n/k|, we obtain that
Lr({c}) has a b-fractional matching of size m for ¢ € [n/k].

Next, we want to construct a b-fractional matching of size m/k for R.
Let we : E(Lgr({c})) — [0,1] such that }° . .cr. () We(e) < b(v) where
D ecLa(fey) Wele) = m. Let w(f) = Lw.(e) fore € Lr({c}) and f = e U {c},
¢ € [n/k]. Thus, we have 3¢ pmy W) = X ecp/m Deern(e)) nWele) = T
It is easy to see that 3. W(f) = Yocp, ey sWele) = 2 < ¢ < b(e).
ANd 3 W) = Y/ Cveecerne)) nWel(€) < Peepum nb(®) = b(v)
forv € V. As desired. O
We use the following results of [105] directly.

Proposition 4.7 ([105]) Let H be a k-graph and m < v(H)/k. If for every vertex
vof V(H), Ly({v}) has a fractional matching of size m, then H has a fractional
matching of size m.

Proposition 4.8 Letd € [k —2] and a,v,0 > 0,k > 3 such that o,y < 1/k. Let
Rbea (1, k)-graph on [t|UV with a-perturbed minimum (1, k—2)-degree § where
|V| = t. Ifforevery S € 04(R), the link graph L(S) contains a fractional matching
of size at least (14 1/k)(1/(k + 1) +~)t, then for every edge S’ € 01(R), the link
graph L(S") contains a fractional matching of size at least (1+1/k)(1/(k+1)+~)t.
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Proof. ~We prove it by induction on d. Note that the base case when d = 1
is obvious. Suppose that given d € [2,k — 2], we obtain the conclusion for
d < d LetS C V(R)bea(1,d — 1)-setin 9;-1(R). Consider any vertex s’
in 01(Lg(S)), SU{s'} is an edge in 94(R). By assumption, Lr(S U {s'}) has
a fractional matching of size at least (1 + 1/k)(1/(k + 1) 4+ v)t, thus, we have
L ({s'}) contains a fractional matching of size at least (14+1/k)(1/(k+1)+~)t
for any vertex s’ of V- where R’ is the subgraph of Lz(S) induced on the non-
isolated vertices of Lg(.5).

By Definition 4.10, S has at most at neighbors in 94(R). It follows that
v(R') =01(Lr(S)) > (1—a)tand (1+1/k)(1/(k+1)+v)t <v(R')/(k—d+1)
since a, ¥ < 1/k. By Proposition 4.7 with the condition that L/ ({s'}) contains
a fractional matching of size at least (1 + 1/k)(1/(k + 1) + ~)t for any vertex
s of V, we obtain R'(and thus Lr(S)) contains a fractional matching of size
(14 1/k)(1/(k 4+ 1) + ~)t. Since S is arbitrary, for any S € 9;_1(R), Lg(S)
contains a fractional matching of size (1+1/k)(1/(k+ 1) +y)t. Hence, we are
done by the induction hypothesis.

O
Proof. [The proof of Lemma 4.11] Suppose that V(H) = [t/k] U V' where
|V'| = t.By assumption, C's contains a fractional matching of size (1+1/k)(1/(k
+1)+~)tforevery S € dx_o(H) and Cyg is a subgraph of Ly (S). By Proposition
4.8, we have Ly ({i,v}) contains a fractional matching of size (1+1/k)(1/(k+
1) 4+ ~)t for every {i,v} € 01(H).

We want to show that H is y-robustly matchable. Given a vertex weight
b:[t/k] UV’ — [1 —~,1], we have to find a b-fractional matching w such
that > o, w(e) = b(v)/k for any vertex v € V(H). That is, we need to find a
b-fractional matching with size 3 ;) b(v)/k(k + 1). Given i € [t/k], there
are at most at isolated (1, 1)-tuples by Definition 4.10. For any non-isolated
(1,1)-tuple (i,v) of V(H), let x be a fractional matching in Ly ({i,v}) of size
atleast (1+1/k)(1/(k+ 1) +~)tandletw' = (1 — v)x, since 1 — v < b(v)
forany v € V(H), thus w' is a b-fractional matching in Ly ({i,v}). Moreover
w’ has size atleast (1 —v)(1 + 1/k)(1/(k+ 1) +v)t > 1+ 1/k)t/(k+1) >
> vevi B(v)/(k + 1) since 1/t < v < 1/k. We can assume that w' has size
exactly -,y gy b(v)/(k + 1). By Proposition 4.6, we obtain that H has a b-
fractional matching of size 3, .y b(v)/k(k + 1), as desired. O
We use the following claim directly, which can be seen in [105].

Claim 4.3 ([105]) Let t,d, k be integers with d € [k — 1] and J,e,a > 0 with
1/t « e € a < 6,1/k. Let R be a k-graph on t vertices with minimum relative
d-degree 54(R) > 6. Let I be a subgraph of R of edge density at most e. Then there
exists a vertex spanning subgraph R’ C R — I of a-perturbed minimum relative

d-degree at least § — .

The (1, k)-graph R; on {i} UV with minimum relative (1, kK — 2)-degree at
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least d is equivalent to a k-graph R, on V with minimum relative (k—2)-degree
at least 4. Thus, by Claim 4.3, we obtain Lemma 4.12.

4.4 . From sequentially Hamilton framework to sequentially Ha-
milton cycle

In this section, we use the following absorption lemma and almost cover
lemma to prove Theorem 4.2. The proof of these two lemmas will be found in
Section 8 and g. Before we give these two lemmas, we need some definition.

Definition 4.17 (Extensible paths) Let(G,G 7, J,P,R)bea (k,m,2t,e, 11,
r,d)-regular setup, G be a (1, k)-graph on [n]| UV where |V| = n and ¢,v > 0.
A (k — 1)-tuple A in V*=1 s said to be (c,v)-extensible rightwards to an ordered
edge Y = (Yo, Y1,...,Y%) in R if there exists a connection S C [n] UV and a
targetsetT C Jy,, .. v,) With the following properties.

T = v|T vy, i)

7

« forevery (v, ...,uvy) € T, there are at least cm3 ! many (3k + 1)-tuples
(61,... y Coky W1,y .. .wk,vl) withvi € SNY, w; € SNY; Cdej €Yy for
i € [k]and j € [2k] such that (cy . .. cox, Awy ... w1 . . . vy) IS a Sequential
path in G.

Given a sequential path Pina (1, k)-graph G and an ordered edge X in R,
we say that P is (c, v)-extensible rightwards to X if the (k — 1)-tuple correspon-
ding P's last k — 1 vertices is (¢, v)-extensible rightwards to X. We call X as
the right extension. We can define leftwards path extensions for (k — 1)-tuples
and for sequential paths in an analogous way (this time corresponding to the
first k — 1 vertices of P). A connection set of a sequential path is the union of
the connection set of the initial (k—1)-tuple and the connection set of the end
(k — 1)-tuple.

Given that X = (a,b,c) and Y = (a,c,b), there is no guarantee that H
contains a walk from X to Y. While if Y is a cyclic shift of X, that is, (b, ¢, a)
or (¢,a,b), then a walk from X to Y does exist. More generally, a cyclic shift
of a k-tuple (vy,...,vx) is any k-tuple of the form (v;, ..., v, v1,...,v;—1) for
i € [k].

An orientation of a (1, k)-graph G on [n] U V is a family of ordered (1, k)-
tuples {€ € [n] x V¥ : e € E(G)}. We say that a family g of ordered (1, k)-
tuples is an oriented (1, k)-graph if there exists a (1, k)-graph G such that G =
{€ e [n] x V¥ : e € E(G)}. Given an oriented (1, k)-graph R, we say that
(G,G7,J,P, R) is an oriented (k,m,2t,e, 11,7, d)-regular setup if ﬁ is an
orientation of Rand (G, G7,J,P, R)isa (k,m,2t,e, 11,7, d)-regular setup.
Consider a (1, k)-graph G with an orientation ¢ and vertex set [n] U V. Given
an ordered k-tuple Y of distinct vertices in V and ¢ € [n], we say that {c} UY
is consistent with G if there exists an oriented edge {¢} U € e G such that
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@ is a cyclic shift of Y. We say that an extensible path is consistent with G if
its left and right extensions are consistent with 8 Finally, when considering
multiple paths, we refer to the union of their connection sets as their joint
connection set.

Let &' be an orientation of a (1, k)-graph G. A sequential walk W in G is
said to be compatible with G if each oriented edge of G appears at least once
in W as a sequence of k consecutive vertices.

Let G bea (1,k)-graph on [n]UV where |[V| =n,and S C V,0 C [n],|0O| =
|S| = k, P be a sequential path. Recall that (C(P), I(P)) is used to denote a
sequential path where C'(P) is the color set of P and I(P) is the point set of
P.We say that Pis (S, O)-absorbing in G if there exits a sequential path P’ in
G with the same initial (k — 1)-tuple and the same terminal (k — 1)-tuple with
P,I(P")=I(P)uSandC(P')=C(P)UO.We say that P is n-absorbing in G
if itis (S, 0)-absorbing in G for every S of size at most nn divisible by k, any
O of size |S|,and SNI(P) =0,0NC(P) = 0.

Lemma 4.13 (Absorption lemma) Let k,r,m,t € Nand da, ..., dgi1,¢€, €541,
n, 1, 9, a, ¢, v, A be such that

1/m <« 1/rie € 1/t c,e41,da, ..., dg,
cLdy,...,d,
1/t < eppr < dipy1,v < 1/k,
L e K aLKNKAKL Y L <K 0,1/k.

Letd = (da,...,dky1) and let & = (G,G7,T, P, ﬁ) be an oriented represen-
tative (k,m,2t,e,ex1,r, d)-regular setup. Let G be (1, k)-graph on [n] U V with
minimum relative (1, 1)-degree being at least 6 + u where |V| =n, n < (1+a)mt.
Suppose that there exists a sequentially closed walk which is compatible with the
orientation H of H and
(F1) H; is sequentially tightly connected,
(F4) For every color i € [t], there are at least (1 — «)t points v € V such that
{i,v} has relative (1, 1)-degree at least 1 — 6 + .
Then there exists a sequential path P in G such that the following holds.
(1) P is (c,v)-extensible and consistent with ﬁ
(2) V(P)is A-sparsein’P and V(P)NS = (), where S denotes the connection
set of P,
(3) P isn-absorbing in G.

Lemma 4.14 (Almost cover lemma) Let k,r,m,t € N, do,...,dgi1,€,E541,
a, 7, ¢, v, A be such that

1/m < 1/rie < 1/t,c,e41,da,. .., dg,

cLdy,...,d,
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l/t L1 K korlvVvaS 1/ka
AL NKAKLY L.

Letd = (da,...,dgy1) and let & = (G,G 7, T, P, ﬁ) be an oriented (k,m,2t, ¢,
€k+1,T, d)-regular setup. Suppose that G is a (1, k)-graph on [n]UV where |V| =n
andn < (1+ «)mt, His a (1,k)-graph on [t] U V' where |V'| = t and
(F1) H; is sequentially tightly connected,
(F2) H; contains a sequentially closed walk W compatible with ﬁ whose length
is1modk,
(F3) Hy, is y-robustly matchable for i € [k|,
(F5) Ly ({i}) and Ly ({j}) intersect in an edge for each i, j € [t].
Suppose that P is a sequential path in G such that
(1) P is (c,v)-extensible and consistent with ﬁ
(2) V(P)is A\-sparse in P and V(P) NS = () where S is the connection set of
P,
then there exists a sequential cycle C of length at least (1 — n)n which contains
P as a subpath. Moreover, the number of uncovered points of V' is divisible by k
and the number of uncovered colors of [n]| has the same size with the number of
uncovered points.

Proof. [The proof of Theorem 4.2] Let 6 = rhfi_o(k), > 0 and
Er1 K e KN K AKLK Yy K v <L p,

1/t) < epq1 K diy1 < .

We apply Lemma 4.1 with input 41, 1/to, , & to obtain ¢;, mg. Choose ¢ <
1/tyand 1/ng < 1/t1,1/mo,c,1/r,e. Let G be a (1, k)-graph on [n] UV where
V| =nand2n > ng vertices with §1 ;_»(G) > 6+u. Our goal is to prove that G
contains a sequentially Hamilton cycle. By Lemma 4.1, there exists a represen-
tative (k,m, 2t,,ex41,7,d2, . .., dp11)-regular setup (G, Gz, J, P, Ry, ., ) with
to <t < tyandn < (14 a)mt. Moreover, there is a (1, k)-graph I of edge
density at most e, 1 such that R = Ry, ., U I has minimum relative (1, k —2)-
degree at least § + p1/2. By Definition 4.5 and 6 = rhf;_2(k), we obtain that
R contains an (a, v, §)-sequentially Hamilton framework H that avoids edges
of I.Thus, H C Ry, , ,.

Next, we want to fix an orientation H and a compatible walk W. Since
H is an («, 7, d)-sequentially Hamilton framework, H; is sequentially tightly
connected and has a sequentially closed walk of length 1 mod &, Ly ({i}) and
Lu({j}) intersectinan edge for each i, j € [t]. We obtain a sequentially closed
walk of length 1 mod & visiting all edges of H. Define an orientation ﬁ = {? €
V(H)* : e € H} by choosing for every edge e of H, a k-tuple (or subpath) &
in W which contains the vertices of e. Note that W is compatible with H.
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Firstly, we select a sequentially absorbing path P. Note that 1/t; < da, ...,
dy, since J is a (to, t1)-equitable complex. Since H is an («, 7y, d)-sequentially
Hamilton framework, it follows that there exists a sequential path P in G by
Lemma 4.13 such that

1. Pis (c,v)-extensible and consistent with ﬁ

2. V(P)is A-sparsein P and V(P) NT = (), where T denotes the connec-
tion set of P,

3. Pisn-absorbingin G.

Next, by Lemma 4.14, there is a sequential cycle A of length atleast (1—n)n
which contains P as a subpath. Moreover, the number of uncovered points
|[V'\ I(A)| is divisible by k& and the number of uncovered colors is of size |[n] \
C(A)| = [V\ I(A)].

Finally, we absorb the uncovered points and colors into A. Note that |V \
I(A)| < nn.Thus, there is a sequential path P’ with pointset I(P)U (V' \ I(A))
and color set C(P) U ([n] \ C(A)), which has the same endpoints as P, as
desired. O
Embedding sequential paths Given sequential walks W and W’ with the pro-
perty that the terminal (k — 1)-tuple of W is identical to the initial (k—1)-tuple
of W', we may concatenate W and W' to form a new sequential walk with color
set C(W) + C(W'), which we denote W + W".

Lemma 4.15 Let k,r,ng,t, B be positive integers and v, ds, . .. ,dg11,€, 11,V
be positive constants such that 1/d; € N for i € [2, k| and such that 1/ny < 1/t

, € 15 s ey
TL’B r k+1, 42, k>

1
€k+1 < 1/}7 dk‘+17 v, %

Then the following holds for all integers n > ny.

Let G be a (1,k)-graph on [n] UV where |V| = n, J be a (-,-,&,&41,7)-
regular slice for G on [t] UV’ where |V'| = t with density vector d = (da, .. ., dy).
Let Jw, be the induced subcomplex of J on [t(i—1)/k+1,ti/k]UV’ fori € [k]. We
call [t] the family of color clusters and V' the family of point clusters. Let Ry, :=
R[[t(i —1)/k +1,ti/k] U V'] be the induced subgraph of R := Ry, (G). Let
Ryy, be sequentially tightly connected for i € [k] and w; be a fractional matching of
size p; = ZeeE(RWi) w;(e) fori € [k] and p;i(Z) = ZZEe’eeE(RWZ_) wie) <1/k
for each cluster Z. Also, let X and Y be (k — 1)-tuples of point clusters, Sx and
Sy be the subsets of Jx and Jy of sizes at least v|Tx| and v|Jy | respectively.
Finally, let W be a sequential walk from X to Y of length at most t***1 in Ry,
and denote ((W) by p. For i € k], we have
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(i) for any ¢ divisible by k with 4k < ¢ < (1 — v)u;kn/t, there is a sequential
path P in G of length ¢ —1+4¢(W)(k + 1) whose initial (k —1)-tuple belongs
to Sx and whose terminal (k — 1)-tuple belongs to Sy,

(i) P uses at most u;(Z)n/t + B vertices from any point cluster Z € V' and at
most ku;(C)n/t+ B vertices from any color cluster C € [t(i—1)/k+1,ti/k]
where 11;(Z') = 3 z1cc ceryy, Wile) for any cluster Z'.

Proof. Leta =1t /5and = 1/200. When using Lemma 4.3, we require that
e < ¢? and choose my to be large enough so that m > amy is acceptable for
all these applications. Given t, let

200k% 8k% 10k(k + 1)t2F+1
"o/’ o

We write G for the (k + 1)-complex obtained from Jyy, by adding all edges

of G supported on jv(‘]fi) as the ‘(k + 1)th level’ of G. So for any edge X =

(Xo, X1, Xi) € Bw;, G[Ujepo ) Xilisa(da, . .., di, d*(X), €, ep41,7)-regular

(k + 1)-partite (k + 1)-complex with d*(X) > dj41.

Since J is a regular slice for G, for any (1, k)-set of clusters X = { Xy, X1,
-, Xi}in Jw;,, the (k+1)-partite k-complex Jw, [U;epo,1 X1 is (d, €)-regular.
By adding all (k + 1)-sets supported on jf%X as the ‘(k + 1)th level’, we may
obtaina(ds,...,dg,1,¢,e541,7)-regular (k+1)-partite (k+1)-complex, whose
vertex clusters are subsets Y; C X for j € [0,k] of size |Yi| = --- = |Y}| =
am/k and [Yo| = am. Yy can be seen as [J;c () Yo where [Yo;| = am/k for
i € [k] and we obtain a (da, ..., dy, 1, /€, \/Ekt1, 7)-regular by Lemma 4.7. We
conclude by Lemma 4.5 that for any subset Y}, i € [k — 1] of distinct clusters
of J, each of size am/k, we have

)- (4.1)

ng = t - max(mo,

G(Y1, ..., Vi) > em™ (4.2)
The following claim plays an important role in Lemma 4.15.

Claim 4.4 Let {X¢, X1,..., Xy} be an edge of R and choose any Y; C X; for
each j € [0, k| so that |Yy| = k|Y1| = --- = k|Yx| = am. Let P be a collection
of at least 3|G(Y1, ..., Yy_1)| sequential paths in G(not necessarily contained in
Ujep Y3/ each of length at most 3k and whose terminal (k — 1)-tuples are distinct
members of G(Y1,...,Yi_1). Then for each o € {0, 1} there is a path P € P and
a collection P’ of %e(g (Yoi1,...,Y,1k-1)) Sequential paths in G, each of length
2k —1+o, all of whose initial (k—1)-tuples are the same (terminal (k—1)-tuple of
P). Furthermore, the terminal (k — 1)-tuples of paths in P’ are distinct members
of G(Yoi1,...,Your_1). If j < k —1, then the jth vertex x of each path in P’ lies
inY;, if j > k, then x is not contained in P, and k new colors are not contained in
P.
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Proof. Leto € {0,1} be fixed, we take  to be the (k+1)-complex generated
by the down-closure of a sequential path of length 2k — 1 + o with vertex
set {c1,...,Chro} U{v1,..., 02514} and consider its (k + 1)-partition Vj U
ViU---UViwhere {ci,...,cr1o} C Vy and the ith vertex of the path lies in
the vertex class V; with j = i mod k. We take ' to be the subcomplex of H
induced by {v1,...,Vk—1,Vk+140, - - -, V2k—1+0 }- CONsider the pair (e, f), where
e is an ordered (k — 1)-tuple of G(Y1,...,Yx_1) and f is an ordered (k — 1)-
tuple of G(Yy41,...,Ys4k—1). For any such ordered (k — 1)-tuple e, there are
at most km* =2 such ordered (k — 1)-tuples f which intersect e, thus there
are at most 1/200-proportion of the pairs (e, f) are not disjoint. On the other
hand, if e and f are disjoint, then the down-closure of the pair (e, f) forms a
labelled copy of H' in G[Ujeqox Yl so by Lemma 4.3 with s = 3k + 20 — 1 and
s’ = 2k — 2, for all but at most 1/200-proportion of the disjoint pairs (e, f),
there are at least c(am/k)*+20+1 > | /e(aum /k)F+27+1 extensions to copies of
H in Q[Uje[o,k] Y;]. Each such copy of #H corresponds to a sequential path in
G of length 2k — 1 + o with all vertices in the desired clusters. We conclude
that at least 99/100-proportion of all pairs (e, f) of ordered (k — 1)-tuples are
disjoint and are linked by at least \/z(am/k)*+2+1 sequential paths in G of
length 2k — 1 + o, where ¢; € V; for i € [k + o] and v, € V; with j = ¢ mod k.
We call these pairs extensible.

We call an ordered (k — 1)-tuple e € G(Y1,...,Y,_1) good if at most 1/20
of the ordered edges f € G(Yy41, ..., Yo1k—1) do not make an extensible pair
with e. Then at most 1/5 of the ordered (k—1)-tuplesin G(Y1, ..., Yx_1) arenot
good. Thus, there exists a path P € P whose terminal (k — 1)-tuple is a good
ordered (k — 1)-tuple e. Fix such a P and e, and any ordered (k — 1)-tuple
finG(Yoq1,...,Ys1k—1) Which is disjoint from P, suppose that (e, f) is an
extensible pair, there are at least \/c(am/k)*+2+1 sequential paths in G from
e to f. We claim that at least one of these paths has the further property that
if j > k, then the jth vertex is not contained in P and the k+ o new colors are
not contained in P, we can therefore put it in P’. Indeed as f is disjoint from
P, if o = 0, then it suffices to show that one of these paths has the property
thatvg € Y3 \V(P)and¢; € Yy\V(P)fori € [k]. Thisis true because there are
only at most (2k + 1)(am)® + k(2k + 1) (am/k)* < \/e(am/k)**! paths which
do not have this property by (4.1). If o = 1, then we need a path whose kth and
(k + 1)st vertices are not in V(P) and ¢; € Yy \ V(P) for i € [k + 1], which is
possible since 2(2k+1)(am/k) 2+ (k+1)(2k+1)(am/k)**2 < \/e(am/k)k+3
by (4.1).

Finally, considering the ordered (k —1)-tuple f € G(Yo41,..., Yoik—1), We
have 20|V (P)|(k — 1)(am/k)*2 < em* 1 < e(G(You1,..., Yoin_1)) Dy (4.7)
and (4.2), at most 1/20 of these (k — 1)-tuples f intersect P and by the choice
of e, at most 1/20 of these (k—1)-tuples f are such that (e, f) is not extensible.
This leaves at least 9/10 of (k—1)-tuples f remaining, and choose a sequential
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path for each such f as described above gives the desired set P’. O

Let X = (X1,...,Xk-1), Y = (Y1,...,Y,_1), X} be the cluster following
X in W and Y}, be the cluster preceding Y in W. Without loss of generality, we
may assume that { X, X1, ..., Xx} is an edge of Ry and {Yp, Y1,..., Y} isan
edge of Ry. By the condition, we have Sx constitutes at least a v proportion of
G(Xy,...,X,_1)and Sy constitutes at least a v proportion of G(Y1, ..., Y _1).
Given any subsets X C Xj of size am/k for j € [k] and X; C X of size
am, we say that a (k — 1)-tuple e € G(X1,..., Xx_1) is well-connected to
(X1,...,X._,) via X; and X if for at least 9/10 of the (k — 1)-tuples f in
Gg(X1,...,X},_,) there exist distinct k-subsets {c1, ..., e}, {f1, ..., fr} of X,
and distinct u,v € X}, such that (¢; - - cg, e(u)f) and (f1 - fr, e(v)f) are se-
quential paths in G of length 2k — 1.

Claim 4.5 for any subsets X C X; of size am/k, Z; C X; of size am/k for
j € [k] and X C Xo, Zo C Xo of size am such that each X7 is disjoint from Z;,
the following statements hold.
(1) Atleast9/10 of the (k — 1)-tuples e in G(Z1, ..., Zy_1) are well-connected
to (Zy,...,Z,_1) via Zy and Zy.
(2) Atleast9/10 of the (k—1)-tuplesein G(Zi, ..., Zy_1) are well-connected
to (X1,..., X, ) via X; and X|,.
(3) Atleast9/10 of the (k—1)-tuplesein G(X1, ..., X, _,) arewell-connected
to (Zi,...,Zx_1) via X; and X,
Proof.  Fromthe proof of Claim 4.4, we know that all but at most 1/100-proportion
of pairs (e, f), wheree, f € G(Z1,...,Zr_1), aredisjoint and are linked by at least
Ve(am/k)ETY sequentially tight paths in G of length 2k — 1. It is obvious that at
least9/10-proportion (k—1)-tuples of G(Z1, . .., Zx—1) can be extended to at least
9/10-proportion (k — 1)-tuples of G(Z1, ..., Zx_1) by at least \/e(am/k) ! se-
quential paths. To prove (2), we apply Lemma 4.6 with H being the (k+1)-complex
generated by the down-closure of a sequential path of length 2k — 1 and H' being
the subcomplex induced by its initial and terminal (k — 1)-tuples. We regard ‘H
as a (2k)-partite (k + 1)-complex with k colors in the color cluster and one point
in each point cluster. The role of G in Lemma 4.3 is the (2k)-partite subcomplex
of G with vertex classes X, Z1,. .., Zx—1, X}, X1, ..., X}_y, the colors of H are
embedded in X, the first point H is to be embedded in Z,, the second one in Zs,
and so forth. By Lemmas 4.7 and 4.3, the proportion of pairs (e, f) for which there
is no path as in (2) is at most 1/200, and the remainder of the argument can be
followed in (1). (3) can be proved similarly. O

We are ready to construct our path. Arbitrarily choose a subset Xéo) C Xy,
Zy C Yy of size am and X](O) C X;, Z; CYj of size am/Fk for j € [k]. By Theo-
rem 4.2, Theorem 4.3, Theorem 4.5, there are atleast | Sx | |g(X1(O), ceey X,Si)l)|/2
pairs (e, f), where e € Sx and f € Q(Xfo),...,X,g(l)l), can be extended to
Ve(am/k)**! sequential paths whose remaining point lies in X,EO) and colors
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lie in Xéo). Thus, we choose a (k — 1)-tuple P(9) of Sy such that the following
holds, there is a set P(©) of sequential paths of the form (c; - - - ¢, P (v) f)
forv € X,go), Cly...,CL € X(()O) and f € Q(X£O)7 e ,X,go_)l) for which the termi-
nal (k — 1)-tuples of paths in P() are all distinct and constitute at least half
of the ordered (k — 1)-tuples of Q(Xfo), . ,X,io_)l). Similarly, we can choose
e € Sy such that for at least half the members ¢’ of G(Z1, ..., Z;_1), there is
a sequential path of length 2k — 1 in G from €’ to e whose remaining point lies
in Z;, and colors lie in Z.

We now construct the desired path. Since Hyy, is sequentially tightly connec-
ted, we can obtain W = e; - - - e; passing all edges of Hyy,. For each i € [s], let
n; be any integer with 0 < n; < (1 — 3a)w(e;)m. Set the initial state to be
filling the edge e, we proceed for j > 1 as follows,

* The terminal (k — 1)-tuple of the path family PU) constitute at least
half of the ordered (k — 1)-tuples G(X\, ..., x) ).

Suppose that our current state is ‘filling the edge e;’' for some i, if we have
previously completed n; steps in this state, then we do nothing and change the
state to ‘position 1in traversing the walk W'. Otherwise, since % holds for j—1,
we apply Claim 4.4 with o = 0 to obtain a path P € PU~Y and a collection P(?)
of %e(g(X§]_1), . ,X,i{_ll))) sequential paths of length 2k — 1, all of whose
initial (k — 1)-tuples are the same (the terminal (k — 1)-tuple of P) and whose

terminal (k — 1)-tuples are distinct numbers of g(ijfl), e ,X,gj_*ll)) and are

disjoint from V(P), whose colors lie in Xéjfl) \ C(P), and whose remaining
vertex lies in X ™Y\ V(P). We define PU) to be the concatenation PU~1 4 P
with color classes C(PU=D) U C(P). For p € [0,k], we generate X\ from
X571 by removing the vertices of P in X and replacing them by vertices
from the same cluster which do not lie in Z or in P\4), We will prove that this
is possible in Claim 4.6.

Now suppose that our current state is ‘position ¢ in traversing the walk
W'. Since % holds for j —1, applying Claim 4.4 with ¢ = 1 to obtain a path P €
PU-D and a collection P of 2e(G(XV ™" ... xU"V)) sequential paths
of length 2k, all of whose initial (k — 1)-tuples are the same (the terminal
(k — 1)-tuple of P) and whose terminal (k — 1)-tuples are distinct numbers
of Q(Xz(jfl), e ,X,gjfl)) and are disjoint from V(P), and whose two remai-
ning vertices lie in X,ij_l) \ V(P) and X}j_l) \ V(P) respectively with colors
in X7V \ C(P). Exactly as before we define PU) to be the concatenation
PU-D 4 P. We generate ngj) from Xéﬂr_ll) for p € [0,k — 1] by removing the
vertices of PU—1) in X;j;l” and replacing them by vertices from the same clus-
ter do not lie in Z or P9, If we have not reached the end of I/, we choose X /)
to be a subset of the cluster at position ¢ + & in the sequence of W such that
Xlgj) is disjoint from P() U Z. In this case, we change our state to ‘position ¢+1
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in traversing W'. Alternatively, if we have reached the end of W, meaning that
the (k — 1)-tuple of clusters containing ij), . ,X,Ej_)l is (Y1...,Y,_1), then
we choose X,Ej) to be a subset of Y, which has size am/k and is disjoint from
PUUZ. We may choose a path P € PU—1 such that the terminal (k—1)-tuple
fe G(ij), e ,X,ijjl) of P is well-connected to (71, ..., Z;_1) via Zy and Zj.
This implies that we may choose a (k—1)-tuplee’ inG(Zy, ..., Zx_1),v,v"in Zj
with new colors C*, C** in Zy with |C*| = |C**| = k such that (C*, f(v')€) is a
sequential path Q" and (C**, ¢’ (v)e) is a sequential path Q. Return PU)+Q'+Q
as the output sequential path in G. Note that an edge may appear multiple
times. When it first appears in the walk, the process executes ‘filling the edge’.
When it appears later, ‘filling the edge’ is no longer needed. Again we prove
Claim 4.6 that these choices are all possible.

Claim 4.6 The algorithm described above is well-defined(that is, it is always pos-
sible to construct the sets XISJ ) ), maintains Y and returns a sequential path of
length

Ak =1+ [ Y omi | -k+eW)- (k+1).

1€[s]

Proof.

We prove that % is maintained, recall that e(g(Xl(j), e ,X,Ej_)l)) > embt
for each j. Fixing some j, for either A, := X,ijl) or A, := Xéﬂgl), we ob-
tainsets Ay, ..., Ax_1, each with size am such that the terminal (k — 1)-tuples
of PU) constitute at least 9/10 of the ordered edges of G(Ay, ..., A;_1) and
foreachi € [k — 1], Xi(j) is formed from A; by removing at most two ver-
tices and replacing them with the same number of vertices. Since each ver-
tex is in at most m*~2 ordered (k — 1)-tuples of either G(Ay, ..., Ax_1) or
Q(ij), . ,Xlijjl), we conclude that the fraction of ordered (k — 1)-tuples of
g(x¥ ..., xY ) which are the terminal (k — 1)-tuples of paths in PU) is at
least

%e(g(Al, o Ap)) = 2(k — 1)mF2
e(G(x?,.... x)
Se@(x ), X)) = 20k = mk2) = 2k — 1)m*-2
e(G(xY, ... x9)

9  4(k—1)mk2
> - N /7
~ 10 emk—1

(4.3)

1
>77
-2

where the last equality holds since m > mgy > 16(k — 1) /e. Thus, we obtain %.

To prove that we can always construct the set X9 observe that it is en-
ough to check that at termination every cluster still have at least 2aim vertices
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not in PU), as then there are at least am vertices outside Z. In each walk-
traversing step, each path in PU) contains precisely k + 1 new points and
k + 1 new colors and the total number of walk-traversing steps is precisely
£(W). Recall that this number is at most t2*71, we have (k + 1)t?#+1 < an
and (k + 1)%t2F1 < 2 by (4.1). When we are in the state ‘filling the edge e;/,
we have n; steps and in each step, each path in PU) contains k new points,
one from each cluster of e; \ C(e;) and k new colors from C/(e;). So for any
color cluster C, the number of whose vertices which are added to PU) is at
MOSt > cce, kNi < D icee, (1 — 3a)kw(e;)m < (1 — 3a)m. And for any point
cluster X, the number of whose vertices which are added to P\ is at most
dixee, Wi < Dixee, (1 = 3)w(e;)m < (1 — 3a)m/k. Together with e and
the k vertices of the chosen path in P(©), we conclude that there are at most
(1 — 2a)m vertices of any color cluster and at most (1 — 2a)m/k vertices of
any point cluster contained in P\9) at termination.

Finally, the length of the path is equal to the number of points. Recall that
P contains k — 1 points. Next, k points and k colors are added from P to
form P(). Each of the 3, n; edge-filling steps resulted in k new points and
k new colors being added to P\Y) and each of the ¢(W) walk-traversing steps
resulted in k + 1 new points and k + 1 new colors being added to PU). When
completing the path, we need 2k points which are not in the final paths P()
(v,v', e and ¢€’). Thus, the final path has length

(E=1+k+ Y n| -k+eW)-(k+1)+ 2k

1€[s]

U

We obtain the shortest sequential path by never entering the state ‘filling

an edge’, in which case we can obtain a sequential path of length 4k — 1 +

(W) (k + 1). On the other hand, by extending I to include all edges of Ryy,,

we take n; to be (1 — ¢)w(e;)m for each i € [s]. We can obtain a sequential

path of length at least (1—1)u;kn/t, with using at most kpu;(C)n/t+ B vertices

from any color cluster C' in Ry, and at most p;(X)n/t + B where 1;(Z) =

ZZEe,eeRWI_ w;(e) fori € [k] and B = B(t, k). By choosing n; appropriately,

we can obtain tight cycles of certain length between two extremes. 0
Similarly with Lemma 4.15, we can obtain the following lemma.

Lemma 4.16 Let k,r, no,t, B be positive integers and ¢, da, . .. ,dg41,€, €41,V
be positive constants such that 1/d; € N for i € [2, k| and such that 1/ny < 1/t

1 1 1 1
— KL - <K =<K -, eKLEpy1,da, ..., dg,
ng t B T

1
Ek1 K Y, dgy1, v, T
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Then the following holds for all integers n > ny.

LetG bea (1, k)-graphon [n|UV where |V | =n, J bea (-,-,e,ext1,7)-regular
slice for G on [t]U V' where |V'| = t with density vector d = (da, . .., dy). Let T,
be the induced subcomplex of 7 on [t(i—1)/k+1,ti/k]UV’ fori € [k]. Let Ry, :=
RI[t(i —1)/k +1,ti/k] U V'] be the induced subgraph of R := Ry, (G). Let
Ry, be sequentially tightly connected for i € [k] and w; be a fractional matching
of size i = 3 ccp(ry, ) Wile) fori € [k] with p;(Z) < 1/k for each cluster Z and
i € [k]. Also, let X and Y be (k — 1)-tuples of point clusters, Sx and Sy be the
subsets of Jx and Jy of sizes at least v|Jx| and v|Jy | respectively. Finally, let
W be a sequential walk traversing all edges of each Hyy, from X to Y of length at
most t2**1 and denote ¢(W) by p. For i € [k], we have

1. for any £ divisible by k with 4k < ¢ < (1 — ) >, wikn/t, there is a
sequential path P in G of length ¢ — 1+ ¢(W)(k + 1) whose initial (k — 1)-
tuple belongs to Sx and whose terminal (k — 1)-tuple belongs to Sy,

2. Pusesatmost ),y wi(Z)n/t + B vertices from any point cluster Z € Vv’
and at most ku;(C)n/t + B vertices from any color cluster C' € [t] where

1i(Z') = 3 grce.ce ry. Wile) for any cluster Z'.

Connecting Let us begin with the existence of extensible paths. The following
proposition states that most tuples in the complex induced by an edge of the
reduced graph of a regular slice also extend to that edge.

Proposition 4.9 Let k,m,t,r € Nand e, e;1,da,...,di1, 5, c, v be such that
I/m<1/rie € ¢ < egy1,da, ..., dg,

€yl K B <L dpy1, .

Letd = (da,...,dg+1)andlet (G,G 7, T, P, R)bea (k,m,2t,e, 11,7, d)-regular
setup. Let Y = (Yy,Y1,...,Yx) be an ordered edge in R, then all but at most

ﬂ’&ybn.’ykil)‘ manytuples (v1,...,vk_1) € JT(¥i,..Y,_,) Ore (¢, v)-extensible both
left and rightwards to Y.
Proof. LetP = (¢1,...,Cok,01,--.,03,—1) be a sequential path. Partition its

vertex set in k + 1 clusters Xy, X1,..., X} such that Xy = {c1,...,co}, and
X; ={vj : j =imod k} for i € [k]. Thus, P is a (k + 1)-partite (k + 1)-graph.

Let H be the down-closure of the path P, whichis a (k + 1)-partite (k+1)-
complex. Let Vi = {v1,...,vp_1} and Vo = {vog11,...,v3k_1}. Let H' be the
induced subcomplex of # on V; U V5. Thus, H' is a k-partite (k — 1)-complex
on 2k — 2 points. LetG = J UG 7.

Let H;; be the set of labelled partition-respecting copies of #' in G. It fol-
lows that

Mgl = 1+ eps)| T, vi ) (4.4)
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where the error term accounts for the fact that we do not count the intersec-
ting pairs of (k — 1)-tuples in Jy, ... v,_,)- Since Y is an edge of R, any func-
tion ¢ : V(P) — V(R) such that ¢(X;) C Y; is a homomorphism. By Lemma
4.3 with 32 playing the role of 8, we deduce that all but at most 3%/ of
labelled partition-respecting copies of H’ in G extend to at least cm?**! la-
belled partition-respecting copies of H in G, since ¢ < ds, ..., d;_1. For each
e € Jivi,...ve_1) let T(e) be the number of tuples ¢’ in Jiy; ..y, ,) such that
e U ¢’ can be extended to at least cm?**! copies of H in G, We have

Yoo T(e) = (1-28%)Tm, vl (4.5)

Let S C Jvi,..v._,) be the set of (k — 1)-tuples e which is not (c,v)-
extensible leftwards to Y, thatis T'(e) < v|J(y;,...v,_,)|- Combining with (4.5)
and 8 < v, we have

Yo TS| vy, vl + (T vl = 1D T,y

furthermore, we have

232

S| < L
1S1< 71—,

\Tvi,ve )] < g\j(yl,u.,yk,lﬂ-
A symmetric fact shows that all but at most g‘j(yhm’ykil)’ (k — 1)-tuples in
Jvi,..ve_,) are not (c,v)-extensible rightwards to Y. Thus, all but at most
BlTvi,..vi_1)l PAIrsin Ty, |y, ) are not (¢, v)-extensible both left and right-
wardsto Y. 0
In Proposition 4.9, we know that most tuples in the complex induced by
an edge of the reduced graph of a regular slice also extend to that edge. The
following lemma allows us to connect up two extensible paths using either
very few or quite a lot of vertices.

Lemma 4.17 Letk,r,m,t € N, and da, ... ,dg+1,€, €41, ¢, v, A be such that
1/m<1/re € c <K egy1,day ..., dg,

AL v L 1/k,
Epr1 <L dpg1.

Letd = (da,...,dx+1) and let & = (G,G7,TJ,P,H) bea (k,m,2t, e, ex11,7,d)-
regular setup where ‘P has an initial partition of [n] UV and H is a (1, k)-graph
on [t]UV'. Suppose that Hy, = H[[t(i—1)/k,ti/k]UV'] and Hyy, is sequentially
tightly connected for i € [k]. Let P;, P, C G be (c,v)-extensible paths such that
Py extends rightwards to X and P» extends leftwards to Y. Suppose that P, and
P, are either identical or disjoint, let W be a sequential walk traversing each Hyy,
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of length at most t**+1 that starts from X and ends with Y. Let T be the joint
connection set of P, and P». Suppose that T and S C V (G) are A-sparse in P,
V(P)UV(P) CSandT NS =0, then

(1) there is a sequential path Q) of length 4k — 1+ ({(W)+2)(k+1) in G[V (P)]
suchthat P;Q P, is a sequential path, containing no vertices of S and exactly 6k—+2
vertices of T,

(2) consider vy with .1 < 1, let w be a fractional matching of size jn = Zie[k]
ZBGE(Hwi) w;(e) > 5/m such that ZZee’eeHwi w;(e) < (1 — 2X)/k for each
Z € P. There is a sequential path Q) of length {(W) + 1 mod k in G[V (P)] such
that PQP, is a sequential path, containing no vertices of S and exactly 6k + 2
vertices of T. Moreover, there is a set U C V(P) of size at most y»mt such that
U U V(Q) has exactly [ ;cn ZZGe’eeHWi w;(e)m] + B vertices in each point
cluster Z.

Proof. Let X = (Xo,X1,...,Xx), since P; extends rightwards to X, thus
there exists a target set Ty C J(x,, .. x,) of size |[T1| > v|J(x,,... x,)| such that
for every (va,...,vx) € Ti, there are at least cm®*+! many (3k + 1)-tuples
(cl,...,czk,wl,...,wk,vl) with¢; € TN Xy fori € [2]6], w; € T NX; for
1 € [k] and v; € T N X; such that ((Cl, - ,czk),Pl(wl, vy W, V1, .. ,’Uk)) is
a sequential path. Let Y = (Y, Y1,...,Y%), P> extends leftwards to Y with
targetset 75 C Jiv,,..v;)-

Foreach Z e P,let Z' C Z\ (SUT) of sizem’ = (1 —2X\)m since Sand T
are \-sparse.Let P’ = {Z'} zep, G’ = GIV(P")]and J' = J[V(P')]. By lemma
4.7,6" = (G, G";,J', P H)is a (k,m',2t,\/¢, \/ex11, 7, d)-regular setup.

For (2), let 4/ = u/(1 — 2X) be the scaled size of w and B € N such that
1/B < 1/r,e. Let £ be the largest integer divisible by k with 4k < ¢ < (1 —
¥/4)'m’k. Note that such an £ exists since (1 —1/4)u'm’ > 4, where the latter
inequality follows from p > 5/m. Applying Lemma 4.16 with G, 7/, W, ¢, w, i/
and Ti, T,, we obtain a sequential path Q" whose initial (k — 1)-tuple belongs
to T; and whose terminal (k — 1)-tuple belongs to T5. Furthermore, @' has
length £ — 1+ ¢(W)(k + 1) and uses at most >, i(Z)m + B vertices from
any point cluster Z where (1;(2) = >_ ¢, cer,, Wile) and B < yumk. Note
that ¢ > (1 — ¢ /4)ukm — k, it follows that Z

YD m(Zym =Y V()N Z|

ZeV'ielk] zZev’!

< pkm — (1 — %)Mk:m—}-k-i- 1—t(W)(k+1)
Y

< Z,ukm—l—k-kl

iy :

L= 20)tm +k+1< Omt.

Hence, there is a set U C V(P) of size at most ¢ymt such that U U V(Q’) has
[ ie #i(Z)m] + B vertices from any point cluster Z € V"
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For (1), we can choose a path @’ in the same way. The only difference is
that in this case w is a single edge of weight 1 and ¢ = 4k. Hence, Q' is a path
of length 4k — 1 4+ ¢(W)(k + 1).

Finally, we use the above extensible paths to choose ¢y, ..., cky1, w1, .. .,
wg,v1 and fi,..., fit1, v), W, ..., w) in T such that for

Q = ((Cla .. 'ack-i-l)C(Q/)(fl, . 'afk-‘rl)a (wla cee 7wk7U1>Q/(U;€7w/17 s 7w;<3))’

the concatenation PiQP; is a sequential path and @ is disjoint from S, since
V(S)NT =0TnNV(Q") = 0. Itis obvious that the length of Q in (1) is 4k — 1 +
(L(W) +2)(k + 1) and the length of Q in (2) is (W) + 1 mod k.

O

Proposition 4.10 Let W be asequentialwalkina (1, k)-graph H on [t]|UV' which
starts from (1, k)-tuple X and ends with (1, k)-tuple Y where |V'| = t. There exists
a sequential walk W' of length at most kt*+1, which starts from X and ends with
Y. Moreover, {(W') = £(W) mod k.

Proof. Suppose that (W) = j mod k fora j € [0,k — 1]. Let W’ be a vertex-
minimal sequentially tightly walk from X to Y of size j mod k. Our goal is to
show that every (1, k)-tuple repeats at most k times in W,

Assume that W’ contains k + 1 copies of the same (1, k)-tuple Z and de-
note by n; the position in W/ where the jth repetition Z begins. It is obvious
that n; —n; # 0 mod k, otherwise it is contrary to the minimal of W’. By the
pigeonhole principle, there exist two indices j, j' such that n; — n; = njy —m
mod k for 1 < j < j' < k+ 1. Thatis, n; — njy = 0 mod k. We can also
reduce the length of W’ by deleting the vertices between n; and n; — 1, a
contradiction. O

Proposition 4.11 Let j, k,t € Nwith j € [k]. Let W be a sequentially closed walk
that is compatible with respect to an orientation H of a (1, k)-graph H on [t]UV’
where |V'| = t. Let X1 and X5 be consistent with ﬁ There exists a sequential walk
W' of length at most kt**+1, which starts from X and ends with X,. Moreover, if
W has length 1 mod k, then W' has length j mod k.

Proof.  For the first part, by Proposition 4.10, it suffices to show that there is
a sequential walk starting from X; and ending with X5. Since X is consistent
with ﬁ there is a sequential path Wx, of length at most £ — 1 from X; to
X! in H where X7 is an oriented edge in H which is a cyclic shift of X;. Simi-
larly, there is a sequential path W, of length at most £ —1 from X5 to X/ in H
where X/, is an oriented edge in H which is a cyclic shift of X5. Since W is com-
patible with respect to an orientation H, there is a subwalk W, y; € W star-
ting from Xj and ending with X3, hence (C(X1)C(Wx,)C(Wx:x;)C(Wx,)
C(Xa), I(X1)I(Wx, ) I (Wx1 x;) I (Wx,)I(X2)) is the desired W".
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Note that we choose W x, such that W’ has length j mod k by extending
W x; along the same (1, k)-tuple with copies of W, for an appropriate num-
ber of times. This is possible since any number coprime to & is a generator for
the finite cyclic group Z/kZ. O

Lemma 4.18 (Connecting lemma) Letk,m,r,t € N da,...,dg+1,€,€k41, D5 Vs
A, C be such that

1/m < 1/T7€<< 1/t7<7€k+17d27"'7dk7

(KpKds,...,d,
1/t € epy1 < dgar,v < 1/k,
AL v <L 1/E.

Letd = (da,...,dgs1)andlet (G,G 7, T, P,H)bea (k,m,2t e, 1, r,d)-regular
setup with H being sequentially tightly connected. Let H be an orientation of H
with a compatible closed walk W. Suppose that C is a collection of pairwise disjoint
(p, v)-extensible paths consistent with H and with joint connection set T'. Assume
that
(1) |C] < ¢m,
(2) V(C) is A\-sparse in P,
() VIC)NT = .
Consider any two elements Py, P> of C, there is a sequential path P in G such that
(a) P connects every path of C,
(b) P starts from Py and ends with P,
(€ V(P)\V(C) CV(P),
(d) V(P)\ V(C) intersects in at most 10k%Cz + t2*+3%+2 vertices with each
cluster Z € P, where Cy denotes the number of paths of C intersecting with
Z.

Proof. Choose a set 7" from V(G) by including each vertex of V(P) inde-
pendently at random with probability p. By Lemma 1.1 and the union bound,
we obtain that the set 7" is (2p)-sparse with probability 1 — 2t exp(—(m)). By
Lemma 1.5, we obtain that the set 7" is a connection set of a fixed (p®**2/2, v)-
extensible path in C with probability 1 — 2m*~! exp(—Q(m)). Since |C| < ¢m,
with positive probability, we get a set T” satisfying all these properties.

Initiate S = V/(C). While there are two paths Q1,Q2 € C such that the
extension to the right of Q1 equals to the left of @2, apply Lemma 4.17 (1) with
(W) = kp**+*/2 to obtain a path @ of length 10k? which avoids S and has
exactly 6k + 2 vertices in 77. Add V(Q) to S, replace @1, Q2 with Q in C and
delete the 6k + 2 vertices used by @ in T”. Denote the set of paths after the
procedure by C’.

83



Note that the size of S grows by at most 10k2|C| < 10k*¢m < Am, we
delete at most (6k + 2)|C| < (6k + 2)¢m < p3*+2m /4 vertices from T throu-
ghout this process since ( < p. This implies that every path of C remains
(p*F*2 /4, v)-extensible with connection set T”. Hence the conditions of Lemma
4.17 (1) are satisfied in every step and C’ is well-defined.

Note that when the procedure ends, C’ has size at most t?*. Moreover, the
paths of C’ inherit the property of being consistent with H. We continue by
connecting up the paths of C’ to the desired path P along the orientation. As
the paths of C’ are consistent with ﬁ the left and right extensions of each
path in C" are contained in the walk W. Since W is compatible with ﬁ we
can apply Proposition 4.1 to obtain a sequential walk in H of length of at
most t?**1 between the left and right end of each path in C’. Use Lemma 4.7
and Lemma 4.17 (1), we can connect up the paths of C’ using at most ¢2¢+3k+2
further vertices of V(P).

Thus, P contains every path in C as a subpath and V(P) \ V(C) C V(P).
Moreover, note that V(C’) \ C intersects in at most 10k2C vertices for each
7 € P, where Cz denotes the number of paths of C that intersects with Z. It
is obvious that P can start and end with any two paths of C. O
Proof. [Proof of Lemma 4.14] Let P, = P. Suppose that P; extends right-
wards to X and leftwards to Y, there exists a path P, of length k£ — 1 which
(c,v)-extends both leftwards and rightwards to Y by Proposition 4.9. Moreo-
ver, we can assume that V() is disjoint from V (P») and T, where T is the
connection set of P. By Lemma 1.1 and Lemma 1.5, we can choose a A-sparse
vertex set 7" such that Py, P, are (¢3*+2/2, v)-extensible paths with connec-
tion set 7".

Firstly, let S; = V(P,) UV (P,), and we choose « such that A < k < . For
each Z € P, we can select a subset Z’ of Z of size m’ = km suchthat ZnS; C
Z'since Sy is 2X\-sparse, 1/m < 1/t < a < Aand 2\ < k. Let P’ = {Z'} z¢p,
V(P') =Ugep 2, G' = GIV(P")], G';) = G7[V(P')] be the corresponding in-
duced subgraphs and 7' = J[V(P’)] be the induced subcomplex. By Lemma
4.7,6" = (GG, J',\ P H)is a (k,m/, 2t,\/e, \/er11,7,d2, . .., dr11)-regular
setup.

Now we define a fractional matching that complements the discrepancy of
Sy in the clusters of P. Consider b; € RV (Hw:) by setting b;(Z') = | Z'\ S1|/|Z'|
forevery Z € V(Hy,). Recall that |S1 N Z| < 2Mm, |Z/| = km and A < k,7. It
follows that

2
1_731_731_!%

<b; <1
K Viiahae

Since Hyy, is y-robustly matchable, there is a fractional matching w; such that
> Zeecemy Wile) =b;(Z')/k for every cluster Z' € P’ of Hy, where i € [k].
Consider wz > 0 with g1 < ¥ < q, there exists a sequential path Q1 in G’
such that P,Q; P, is a sequential path in G which contains no vertices of S;
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and 4k + 2 vertices of T’ by Lemma 4.17. Moreover, thereisaset U C V(P) of
size at most ¢mt such that U UV (Q1) has [3 ;i ZZee,eeHwi w;(e)km] + B
vertices in each point cluster Z. In other words, V(P>Q1P;) UU has km + B
vertices in each point cluster of V(H) and uses (km + B)(1 — «a)t vertices of
Vsince |V(Lg(i))| > (1 — a)t fori € [t].

We now choose the second path Q.. Note that P, P; has right extension
X and left extension Y, which are consistent with H. Since W is compatible
with ﬁ we can apply Proposition 4.11 to obtain a sequential walk W’ in H of
length p < t?#+1 starting from X and ending with Y. Moreover, since W has
length coprime to k, we can choose W’ such that

p+1=[V(G)\V(PQ1P)| mod k.

Let Sy = V(P,Q1P1) and T” = T"\ S,. Define ¢; € RV (W) by setting ¢;(Z) =
(m—1ZNSs|)/mforevery Z € V(Hw,).Notethat1 —y <1—-k—1 <¢; < 1.
Since Hyy, is robustly matchable, there is a fractional matching z; such that
ZZee,eEHWZ. z;(e) = ¢;(Z)/k for every Z € P of Hy,. By Lemma 4.17, there
exists a sequential path Q2 in G of length p + 1 mod &k which contains no
vertices of Sy and 4k + 2 vertices of 7" such that P,Q, P1Q- is a sequential
cycle. Besides, there is a set U’ C V(P) of size at most yymt such that U" U
V(Q2) has [X e 2o zeeceny, Zile)m] + B vertices in each point cluster Z.
Thus, U' UV (Qs) uses at least (1 — k)m — B + B) (1—a)t = (1—x)m(1 —a)t
vertices of V. Denote the set of uncovered vertices in all clusters of P by M.

Note that P,QP1Q- contains all vertices of V(G) but M, U and U’. We
know that |[M| < amt, |[U| < ¢mt, |U’| < ¢mt. Thus P,Q1 P1Q2 covers all but
at most amt + 2¢¥mt < 3an < nn vertices. Since the length of Q2 is p+ 1 mod
k, it follows that |V \ V(P2Q1P1Q2)| is divisible by k. O
Absorption Next, we will give the proof of Lemma 4.13. The method can be
sketched as follows. We define absorbing gadget to absorb a set T" of k vertices
and a set O of k colors. For each (T, O), the absorbing gadgets are numerous.
Based on the above properties, we can choose a small family of vertex-disjoint
gadgets such that for every (T, O), there are many absorbing gadgets. Such a
family is obtained by probabilistic method. Connecting all these gadgets yields
the desired absorbing path.

In this part, we will obtain some results to help us attach vertices to regular
complexes. Let H be a (1, k)-graph with vertex set [n]UV, J be a regular slice
with cluster set P. Given a (0, k — 1)-subset X C P, Jx is an | X |-partite | X|-
graph containing all edges of | X|-level of J. Foranyv € V,§ > 0 and any
color cluster C, let

N7((v,C),0) ={X CP:|X|=k—1,forany c € C,|Ng((v,c); Ix)| > §|TIx|}
Lemma 4.19 Letk,r,m,t € Nand ds,...,dxi1,€,€k11, 1, 0 be such that

1/m<< 1/T7€<<€k+17d27"'7dk7
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Ehp1 L dpy1 < 1/k,

and
Err1 K p K 0.

Letd = (da,...,dy+1) and let (H,Hyz,J,P, R) be a representative (k,m,2t, ¢,
ex+1, 7, d) -regular setup. Suppose that H has minimum relative (1,1)-degree at
least 6 + p with vertex set [n] UV. Then for any v € V and any color cluster C, we
have

o pize+ (1),

For any c € [n] and any point cluster Z, we have

Nate. 2.z 6+ (1)

Proof. Letv € V and c € C be arbitrary. The minimum relative degree condition
implies that degy (v,c) > § + p. Since the regular setup is representative and
ery1 < p1, we have |degy (v, ¢) — degy (v, ¢); J)| < ery1 and

2
degyr((v,¢), T*D) 2 (34 p = )l TE D] 2 3+ )| T4V,

For any (0,k — 1)-subset X of P, Jx corresponds to the (k — 1)-edges of
k

-1

J* =1 which are X-partite. Define dx = [[¥=, dg ) By Lemma 4.5, we have
|Tx| = (1 % eq1)dxmF~L. By summing over all the (0, k — 1)-subsets of P, we
have

|j(k_1)| > (1— €k+1)<k i 1)dxmk_1.

Moreover, let X range over all (0, k — 1)-subsets of P, we have

2
>INk (0,00 Tx)| = degpr((v,¢); T*7Y) > (0 + 5)[ TV,
X

Finally, we obtain

)| T E=D)]
<Y INm(wepaols Y Wxl+ > Elax
X

XeN7((v,6),1/3) XEN7((v,e),1/3)

[GVIN V)

[Ng((v,¢), u/3)] + % ((k f 1) — |Nj((v,c),u/3)\>> (1 + eppr)dxm*!

14 e |TEY)

(
< (( —§)|Nj((v7c)7u/3)|+g(kil)) L—epi1 (1)
(

(k-1)
Vot + 5 (L)) e o

(650)
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Thus, for any v € V and ¢ € C, we have

N7 (0, 0), 1/3)| > (6 + 5

(")

and by definition, the following holds for any v € V and color cluster C,

(:50)

Similarly, we can obtain the following result holds for any ¢ € [n] and point
cluster Z,

)

IN7 (v, C)uf3)] 2 (0 + 7

Voo 2wl = 6+ (, 1)

Lemma 4.20 Letk,r,m,t e Nand ds, ..., dk11,€, €511, 4, A be such that
1/m<< 1/T>6<<5k+17d27"'7dk7

e L dp1 < 1/E,

and
Epr1 K A K .

Letd = (da,...,dg+1)andlet (H, H7,J,P,R) bea (k,m,2t e, 41,7, d)-regular
setup. Let T C V(H) such that |Zy NT| = |ZaNT| < Am for every Zy,Z> € P.
Let Z' = Z\T foreach Z € P, and let 7' = J[J Z'] be the induced subcomplex.
For every v € V and color cluster C, we have

INg((v,C),20)| < [Ng((v,C), ),

and for every ¢ € [n] and point cluster Z, we have
INg((¢; 2),2n)| < [Ng (¢, Z), p)l;

Proof. Foranyw € V, color cluster C'anda (0,k—1)-set X € N7((v,C),2u).
By the definition, we have |Ng((v,¢); Ix)| > 2u|Jx| foranyc € C. Let X =
{X1,..., X1} and X' = {X],...,X],_,} be the corresponding clusters in
the complex J'. Our goal is to prove that X’ € N ((v,C), p).

k-1

Llete < f K ey and dy = Hf;zl dz( i ). By Lemma 4.5, we have
|Tx| = (14 B)dxm"!

and
INu((v,¢); Ix)| > 2ulTx| > 2u(1 — B)dxm"™ 1.
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Let m’ = | X1 \ T|, we have |Z’| = m/ for each Z € P, note that m’ >
(1 — \)m. By Lemma 4.7, 7' is a (-, -, /&, \/Zk+1,7)-regular slice. By Lemma
4.5, we have

(14 B)dx (m')* 1 > | Tl = (1= B)dx (m!)* " > (1= B)(1 — \)F Ly,
Since B K 11 < A < p, we have

[Nt ((v,0); Tx0)| = [Nu((v,0); Tx)| = (1Tx] = |Tx])
> (1= B)2pn— (1= (1= N ))dxm*!
> p(1+ B)dxm*' > p|Tx|.

Thus, we obtain that X € N/ ((v,C), u).
Similarly, for every ¢ € [n] and point cluster Z, we have

‘NJ«c’ Z)72:UJ)| < ‘Nj'((c7 Z)?M)‘

O

Ina (k+1)-uniform sequential cycle, the link graph of a point corresponds

to a k-uniform sequential path. Thus, we will look for sequential paths in the

neighbors of vertices inside a regular complex. The following lemma states

that by looking at a p-fraction of (1, k — 1)-edges of a regular complex, we will
find lots of sequential paths.

Lemma 4.21 let 1/m < ¢ < do,...,d,1/k,uand k > 3. Suppose that J
is a (-,-,e)-equitable complex with density vector d = (da,...,d;) and ground
partition P, the size of each vertex class is m. Let W = {Wy, W1,..., Wr_1} C P.
Let S C Jw be with size at least | Jw| and Q be a k-uniform sequential path
(c1-+-c,v1 -+ - vogp—o) With vertex classes { Xo, X1, ..., Xx_1} suchthatv;, v;1p_1
€ X;foriek—1]andc; € X, for j € [k]. Let Q be the down-closed k-complex
generated by QQ and Qg C Q 7 be the copies of Q whose edges in the k-th level
arein S. We have

1Qs| > (i)kﬂ Q|-

Proof. The proof consists of three steps. Firstly, we use the dense version
of the counting and extension lemma to count the number of various hyper-
graphs in J. Secondly, we remove some (1, k — 1)-tuples without good pro-
perties. Finally, we use an iterative procedure to return sequential paths using
good (1, k — 1)-tuples, as desired.

Firstly, let 8 be such thate < § < ds, ..., dk, 1/k, u. Define



Let W/ = W \ {Wp, Wi_1}. By Lemmas 4.4 and 4.5, we have
\Tw| = (1 £ B)dadym”, (4.6)

| T | = (1 £ B)dgm*2,
Q7| = (1% B)dadym™ 2.
Since S C Jw with |S| > u|Jw |, with (4.6), we have

1S| > (1 — B)pdadym”.

Let By C Jw- be the (k — 2)-edges which are not extensible to (1 & 3)dym?
copies of a k-edge in Jy. By Lemma 4.6, we have

| By < B|Tw|.

Secondly, we delete from S the edges which contain a (k — 2)-set from
By to obtain 57, the number of edges deleted is at most

|By|m? < B|Fwr|m? < B(1 4 B)d.m* <|5|/3,

since f < p,da,...,dg. Thus, we have |S’| > 2|S|/3. Furthermore, if there is
any partite (k — 2)-set T'in J which lies in less than udym?/(4k) edges of S/,
then we delete all edges in S’ containing T to obtain S” and iterate this until
no further deletions are possible. Note that the number of partite (k — 2)-
sets supported in the clusters of W\ {Wy} is (k — 1)(1 + 8)d,m*~2. Thus the
number of edges deleted is at most

dym? dodym” S
(k= 1)(1 + B)dymb-219m" o (1 4 gyPdadom” _|S]
4k 4 3
Thus, |S”| > |S|/3. Each partite (k —2)-setin Wy, ..., Wj_ is either contained
in zero edges of S” or in at least udym?/(4k) edges in S”.
Finally, we use the properties of S” to construct many labelled partition-

respecting paths in Qg.

Step 1. Select T' = {z1,...,zx,—2} € Jw which is contained in at least
udym? /4 edges in S”.

Step 2. Choose (c¢1, xi_1) suchthat {c1,x1, 22, ..., 251} € S” and ¢1, 1
arenotinT.

Step 3. Fori € [k, 2k—2], choose (¢;_12,2;) suchthat {¢;_xi2, Ti—k12,. ..,
x;} € 8" and ¢;_g10,x; are not used before.

This constructs a sequential path Qg on 3k — 2 vertices such that each
edge in the k-th level is in S”, thus in S. Next, we count the size of Qg.

In Step 1, let G C Jy be the set of (k — 2)-sets which are contained in less
than udym? /4 edges in S”, we have

Blc 1972 37 dewsu(r) < 1612 dym? + (7] ~ 1GDdym®(1 4 ),

TETy:
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it gives that |G| < (1 — B)(1 — u/12)d,m*~2, thus, the choices for T is at least

\Tw| — |G| > p/13d,m*~2. In Step 2, we have at least udym?/4 choices for

(c1,25—1). In Step 3, {zi—k+t2,...,2;—1} is @ (k — 2)-set contained in S”, by

the construction of 7, there are at least udym?/(4k) choices for (¢;_pio,2;),

furthermore, at least ud,m?/(8k) are different from the previous choices.
Thus, the number of paths in Qg is at least

I =2\ (K, 2\ [ MK 2\ k-1 Bokt1 ;o gk 3k—2 < 1, B\t
= = = > (2 > (2
(13d“m ) <4dbm ) (Skdbm ) = (gg)" " dadym™ " 2 5 ()™ 1Qal,

since f < p, 1/k. g

Lemma 4.22 let 1/m < ¢ < da,...,dg,1/k,nand k > 3. Suppose that J
is a (-,-,e)-equitable complex with density vector d = (da,...,d;) and ground
partition P, the size of each vertex class is m. Let W = {Wq, ..., Wi_1, Wy} C
P. Let S C Jw be with size at least u|Jw| and Q be a k-uniform tight path
Vlyeony Uk—1,b, Vg, ..., vop_o With vertex classes { X1, ..., X;_1, Xy} such that v,
Viyk—1 € X, fori € [k — 1] and b € X}. Let Q be the down-closed k-complex
generated by Q and Qg C Q 7 be the copies of Q whose edges in the k-th level
arein S. We have

|Qs| > % (8%)]%1 Q7]

Proof. The proof consists of three steps. Firstly, we use the dense version
of the counting and extension lemma to count the number of various hyper-
graphsin J.Secondly, we remove some k-tuples without good properties. Fi-
nally, we use an iterative procedure to return a tight path using good k-tuples,
as desired.
Firstly, let 8 be such thate < § < da, ..., dk, 1/k, u. Define
k=1 xa k k—1
di( i )7db — Hdz‘(i_l)'

=2

1

dg =

-
[|
N

Let W/ = W \ {W}}. By Lemma 4.4 and 4.5, we have
|Tw| = (14 B)dadym”, 4.7)
| T = (1 £ B)dam® ",
Q] = (1% B)dadym™ .
Since S C Jw with |S| > u|Jw|, with (4.7), we have
S| > (1 — B)udadym”.

Let By C Jw- be the (k — 1)-edges which are not extensible to (1 £+ 8)dym
copies of a k-edge in Jy. By Lemma 4.6, we have

|Bw| < B|Tw|-
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Secondly, we delete from S the edges which contain a (k — 1)-set from
By to obtain S/, the number of edges deleted is at most

|By|m < BT m < B(1+ B)d,m" < |S|/3,

since f < p,da, ..., d;. Thus, we have |S’| > 2|S|/3. Furthermore, if there is
any partite (k — 1)-set T in J which lies in less than udym/(4k) edges of 5/,
then we delete all edges in S’ containing T to obtain S” and iterate this until
no further deletions are possible. Note that the number of partite (k — 1)-sets
supported in the clusters of W is k(1 + 3)d,m*~!. Thus the number of edges
deleted is at most

k(1 + B)dgm*~

Thus, |S”| > |S|/3. Each partite (k — 1)-setin W1, ..., W} is either contained
in zero edges of S” or in at least udym/(4k) edgesin S”.

Finally, we use the properties of S” to construct many labelled partition-
respecting paths in Qg.

Step 1. Select T' = {x1,...,z,_1} € Jw which is contained in at least
pdym/4 edges in S”.

Step 2. Choose b such that {z1,x2,...,2;_1,0} € S”and b ¢ T.

Step 3. Fori € [k, 2k — 2], choose x; such that {z;_r192,...,Zk_1,b0, 2k, . ..,
x;} € §” and z; is not used before.

This constructs a sequential path Qg on 2k — 1 vertices such that each
edge in the k-th level is in S”, thus in S. Next, we count the size of Qg.

In Step 1, let G C Jy be the set of (kK — 1)-sets which are contained in less
than udym/4 edges in S”, we have

Blc 1972 57 aewsn(r) < 1612 dym + (] ~ 1Gdym(1 + ),
TETy

it gives that |G| < (1 — B)(1 — u/12)d,m*~1, thus, the choices for T is at least
|\Tw| — |G| > 1/13d,mF~1. In Step 2, we have at least udym /4 choices for b. In
Step 3, {Ti—k+2s -+, Tk—1,b, Tk, ..., xi—1}isa (k—1)-set containedin S”, by the
construction of S”, there are at least udym/(4k) choices for x;, furthermore,
at least udym/(8k) are different from the previous choices.

Thus, the number of paths in Qg is at least

(13d m*" 1) (%db@ <8kd m)k_l 2 (zsl;f)kﬂd dym* ™ 2 ;(Sl;s)kﬂygf”

since 8 < p, 1/k. O
Before we build the absorbing path, we need to define absorbing gadget,
which is useful to absorb a particular set T of k vertices and a particular set
O of k colors.
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Definition 4.18 (Absorbing gadget) Let T' = {t1,...,t;} be a k-set of points
of Gand O = {o1,...,0x} be a k-set of colors of G. We say that F C G is an
absorbing gadget for (T,0) if F = Fy, U F, where F} = AUBUE U Ule(Pi U
Q) uculr  Crand B, =AUB' UE U (Plu@)uc'ulJr, ¢ such
that

(1) A,B,E,P;,Qu,..., P, QrA" B E', P,Q1, ..., P},Q, are pairwise dis-
joint and also disjoint from T. C,C4,...,Cy,C",C1,...,C}. are pairwise
disjoint and also disjoint from O,

2) C;, = (Ci,la . ,Ci7k_1) and Cz/ = (ngl, ey c;kfl)fori € [k‘],

(3) A,B,E, A’ B’ E' are k-tuples of points of G, C and C" are (k + 1)-tuples
of colors of G, (C, AE), (C',A'E") and (C'(c1,1,...,cx1), A B'E’) are se-
quential paths,

(4) for B = (by,...,by), each of P;,Q; has k — 1 vertices for i € [k|, both
(Ci, PibiQ;) and ({0;} U C; \ {ci1}, PibiQ;) are sequential paths of length
2k — 1 fori € [k,

(5) for B = (b,...,b},), each of P!, Q; has k — 1 vertices for i € [k|, both
(CL, P/b.Q%) and (C}, P/t;Q%) are sequential paths of length 2k — 1 for i €
[k].

by by bs v, b b

Ay AN Ay A

O P Q2 ¢y Py Q)

Figure 4.1 - Before the Absorption (k = 3), the paths (C, AE),(C', A'E"),
(017 P1b1Q1)7 (Civ PllbllQll)a (027 P2b2Q2)7 (Céa Pé IQQIQ)a (037 P3b3Q3)7 (Cév P?ibé
Q)5) are sequential paths, the black dots represent the points while other
dots with the same color come from the same color set.

Note that an absorbing gadget F' spans 4k +2k points together with 22+
2k 4 2 colors.

Definition 4.19 (5-gadget) Suppose F' = F; U F; is an absorbing gadget where
FL=AUBUEUU (RuQ)uculUr Crand F, = A UB UE'U
Uf:l(Pi/ U Q;) uc'u U?:l Cllf with A = (al, .. ,ak), B = (bl, .. .,bk), FE =
(61, - ,ek), C = (Cl, ceey Ck+1), CZ = (Ci,la ceey Ci,k)/ F)z = (pi,h . ;pi,kfl) and
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P,
{H\ } 2 {(}3} QQ {03} tl t2 t}
UGt \ {e11} UCs \ {31}

pll

Figure 4.2 - After the Absorption (k = 3), the paths ({01} UC1 \ {c1,1}, Pib1Q1),
({o2} U C2 \ {c21}, Poba@Q2), ({03} U C3 \ {e31}, P3b3Qs3), (C1, P[t1QY),
(CY, PytaQh),(Ch, PitsQy), (C, AE), (C'(c11,¢21,¢31), A'B'E’) are sequential
paths.

Qi = (Qi,lv .. ,qu_l) fOI" 1 € [k‘}, A = (a’l, A ,CL;C), B = (bll, .. ,b;c), E =
(e1,.--,ep), C' = (c],..., ¢ ), Cf = (0;71, .. ,c;k), P = (pgyl, . ’p;,k—l) and
Qi = (gi1,---+ ;) fori € [k]. Suppose that e, ek 41,dz, . .., dgi1,¢,v > 0.
Letd = (do,...,dgs+1) and suppose that 6 = (G,G7,J,P, ﬁ) is an oriented
(k+1,m,2t,e,ex41,r,d)-regular setup. We say that F' is an &-gadget if

(G1) there exists an oriented edge Y' = (Yy,Z1,...,7Z) € ﬁgand a color
cluster Zy, such that C UC’ U Uie[k] C; C Y, Uie[k} Cl C Zo, ai, b, e; € Z;
fori € [k|,

(G2) there exists an oriented edge Y = (Yy,Yy,...,Yx) € H) such that a;, b,
e; €Y forie (k]

(G3) there exists an ordered k-tuple of clusters W; = (W 1,...,W; 1) such
that W;U{Yy, Z;} isanedgein H and (Yo, W; 1, ..., W, k_1, Z;) is consistent
with ﬁ, Pij» Qi € W@j fOfi € [k‘},j € [k‘ — 1],

(G4) there exists an ordered k-tuple of clusters W} = (W} ,..., W/, ) such
that W]U{Z,,Y;} isan edgein H and (Z, Wi”l, ce Wick,_l, Y;) is consistent
with H, p, ;. ¢}, € W/, fori € [K],j € [k — 1],

(G5) F'C Gy,

We will further say that F is (c,v)-extensible if the following also holds :

(G6) The path (C, AE) is (c,v)-extensible both left- and rightwards to the
ordered tuple Y' = (Yo, Z1,...,Zy) and the path (C;, P;b;Q;) is (c,v)-
extensible leftwards to (Yo, Wi 1, ..., Wi r_1, Z;) and rightwards to (Yo, Z;,
Wi,la ey Wi7k_1)f0fi S [k]

(G7) Thepath (C', A’E")is (¢, v)-extensible both left- and rightwards to the or-
deredtupleY = (Yo,Y1,...,Y)) andthe path (C., P/b,Q}) is (c, v)-extensible
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leftwards to (Zo, W y,...,W;,_,,Yi) and rightwards to (Zo, Yi, W}y, ...,
Wiy y) fori € [K].

Definition 4.20 (Reduced gadget) Areducedgadgetisa (1,k)-graph L consis-
tingof YUWL U---UWR, UZyUZ1U...UZ, UWjU---UW/ whereY =
{Yb, Yi,... ,Yk}, W; = {Wz‘,la e ,Wi,k_l}fori S [k], Wi/ = {Wi/,17 ey VVZ'/,kfl}
fori € [k] and 2(k + 1) edges given by Y,Y' = {Yy, Z1, ..., Zx}, W; U{Y0, Z;}
fori € [k] and W] U {Zy,Y;} fori € [k]. We referto Y and Y’ as the core edges
of L and W;, W/, i € [k]| as the peripheral sets of L.

Wi W : Wi, :

(o o o o

Z1 Z Z, Yo

lo) [e) o)
Y1

Zoy Y, Yi
WO ﬂ/Q VVIQO

1

Figure 4.3 - Reduced Gadget

Given an oriented (1, k)-graph ﬂz a reduced gadget in ﬁ is a copy of L such
that Y coincides with the orientation of that edge in H and such that (Zo, Wi,
..., Wi ,—1,Y;) is consistent with that edge in ﬁ

Let & = (G, Gj,j,P,ﬁ) be an oriented regular setup. Letc,v > 0, T =
{t1,...,tx} beak-setof V.and O = {o1,...,0} be a k-set of [n], and L be a
reduced gadget in ﬁ We define the following sets :

1. Denote the set of all reduced gadgets in ﬁ by £,

2. Denote the set of G-gadgets which use precisely the clusters of L as in
Definition 4.20 by §7,

3. Denote the set of G-gadgets in §1, which are (¢, v, V(G))-extensible by
37
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4. Denote the set of all &-gadgets by §,
5. Denote the set of all (¢, v, V(G))-extensible G-gadgets by ' C §,

6. For any k-subset T' of V and any k-subset O of [n], let S0y € § bethe
set of absorbing G-gadgets for (7', 0),

7. Denote the set of &-gadgets absorbing (7, O) which are (¢, v)-extensible
by 50y = Siro) NF.

Lemma 4.23 Letk,r,m,t € Nand ds,...,dgi1,€,€x11,¢, v, B be such that

1/m<< 1/7‘,€<< 1/t,C,€k+1,d2,...,dk,

cKds,...,dg,
1/t < g1 < By dpy1 < 1/k,
Eptr1 K< V.

Letd = (da,...,dxy1) and let & = (G,G 7, T, P, ﬁ) be an oriented (k,m,2t, ¢,
Ek+1,7, d)-regular setup and L € L+; be a reduced gadget in H. Let F be the (k+
1)-complex corresponding to the down-closure of (1, k)-graph F' as in Definition

4.19. Then
E+1

Tl = (1+5) <H dfi(f)) m6k2+4k+27 (4.8)
i=2

132\ F7 < BI3Ll-

Proof. LetY = (Yo, Y1,....Y3),Y' = (Yo, Z1,...,Z) € ﬁ be the ordered
core edge of L and W; = {Wi1,... Wi}, W] = {Wi”l,...,WZfﬁk_l} for
i € [k], be the peripheral sets, ordered such that (Yo, Wi 1, ..., W;k_1, Z;) and
(Zo, Wiy,..., W/, _,,Y;) are consistent with H.Note that |V(F)| = 6k?+4k+
2. The bounds on |§| are given by Lemma 4.2 directly.

Let Y* = (Y1,...,Y,x_1) and denote the ordered tuples in the (k — 1)-th

k—1
level of J in the clusters {Y3,...,Yx_1} by Jy~. Let dy+ = Hf;; dl.( : ). By
Lemma 4.5 we have

’jy* = (1 + B)dy*mk_l.

Let 51 be such thate;1 < 51 < 3, dk, di+1,1/k. Let By C Jy~ be the set
of (k — 1)-tuples which are not (¢, v)-extensible leftwards to (Yp, Y1,...,Y%).
By Proposition 4.9 with 81 playing the role of 5, we deduce that

|Bi| < Bi|Ty+|.

Let 5y be such that e < fo < egy1,da,...,dg_1. Let ¢ : V(F) — L be
the homomorphism and Z C V/(F') corresponds to the first £ — 1 points
{a1,...,ax_1} of path AE. Let ¥~ be the (k — 1)-complex generated by remo-
ving the (k+1)-stand k-th layer from the down-closure F of F. Let Z = F~[Z]
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be the induced subcomplex of 7~ in Z. Note that ¢(a;) = Y; fori € [k — 1].
Thus the labelled partition-respecting copies of Z in J correspond exactly to
Jyv+. Define

k—1
d]_‘f\z — H dfi(}—i)_ei(z)'
=2
Let By C Jy~ be the set of (k — 1)-tuples which are not extensible to (1 +
Bg)dff\gm6k2+3’“+3 labelled partition-respecting copies of 7~ in 7. By Lemma
4.6 with 3, playing the role of 3, we have

|Ba| < Ba| Ty

By (4.8), we have

|3'L| — (1 + B)dzlf:ll(]:)dzk(]:)d}'—\zdy*m6k2+4k+2

LetG = JUG . Say that a labelled partition-respecting copy of F in G is nice if
the vertices of {a1,...,a;_1} arenotin By U By. Forevery Z € Jy+, let N*(Z)
be the number of labelled partition-respecting copies of F in G which extend
Z.We have

Y N(Z)= > NY(2)+ > N2

Z€B1UB> ZeBl\B2 Z€Bs
< [IB1|(1 + Bo)dy- 5 + | Ba|JmOF +3k+3
< [Bu(L+ B2)dr-\z + ﬁ2]|jyl|m6k2+3k+3
< 351df—\z|jy* 6k2+3k+3
< 3ﬁ1(1 + B)df—\zdy*m6k2+4k+2

3p1(1+P) il
ki1 (F) en(F) 7 L
< B
~ 4k +4

since0 < N*(Z) < mS¥+3%+3 and B; < B, dy, djs1, 1/kand o < da, ..., dj_1,
Ek+1-

The same analysis shows that we define nice tuples for any (k — 1)-set of
vertices of F', the number of copies of F' which are not nice with respect to
that (k — 1)-set is at most 3|FL|/(4k + 4). Note that F' € §, is extensible if
and only if paths (C, AE), (C', A'E"), (C;, P;b;Q;) and (C!, P/b.Q.) for i € [k]
contained in F are extensible with certain edges of the reduced graph. This
means that 4(k 4+ 1) many (k — 1)-tuples are extensible with certain edges of
the reduced graph. Thus, F € §1, \ ¢ implies that F is not nice with one of

4k 4+ 4 many (k — 1)-sets. Thus,

m

<

| FLl,

B
4k + 4

T2\ F7 < (4k +4) |\ Fr| = BIFLl.
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Lemma 4.24 Letk,r,m,t € Nandds,...,dxi1,€,¢x11,¢,v, B, 1 be such that

1/m<< 1/T7€<< 1/t767€k‘+17d27"'7dk;7

cdy,...,dg,
1/t € epq1 < Bydiy1 < 1/k,
k1 KV, U,
o <L .

Letd = (da,...,dxy1) and let 6 = (G,G7, T, P, ﬁ) be an oriented (k,m,2t, ¢,
ek+1,T, d)-regular setup. Suppose that for each color cluster C, there are at least
(1 — a)t point clusters Z such that {C, Z} has relative (1, 1)-degree at least p in
H, then

p?;ﬂ (2)2(/{ i 1>2kt(t— 1) <|eq] < <Z>2<k i 1>2kt(t_ N

Let F be the (k+1)-complex corresponding to the down-closure of the (1, k)-graph
F. For each reduced gadget L € £4 in H, we have

RN .
‘gi:pt’ 1 :I:B (H dez( )) 6k=+4k+2

=2

and
k+1

’gext| _ 1 :|:,8 (H dez >m6k2+4k+2|2ﬁ|.

Proof. Thelowerbound of £-; canbe done asfollows. LetY = (Y, Y1,...,Y}),
Y' = (Yo, Z1, .. Zk € ﬁ be the ordered core edge of Land W; = {W;1,...,
Wik—1}t, W/ = { .., Wi} fori € [k], be the peripheral sets, ordered
such that (Zy, Wl Lreee Wlk 1 Yi)and (Yo, Wiq, ..., W, x—1, Z;) are consistent
with H. We first choose Yy, Zy arbitrarily, there are at least ¢(¢ — 1) choices.
For (Y1,...,Y}), there are at least u(};) — at(,",) > u(})/2 choices. Similarly,
for (Z1,...,Z), there are at least u(})/2 choices. Furthermore, W/ and W;
for i € [k] can be chosen in at least u(,*,) ways for i € [k], but we need to
delete the possible choices of intersecting reduced gadgets, whose number
is at most t(t — 1)(2k2)22%° 2 < (2k2)2£2F*, We have

2k+2 2 2k
Iz t t 212,22
> —1) =
1£5] > 1 <k> (k B 1) t(t—1) — (2k%)“t

2k+2 2 2k
w t t
> —1

97




since 1/t < p,1/k.

While the upper bound is obvious.

We choose 3’ suchthatey 1 < 8/ < 8, dg, dk+1,1/k. By Lemma 4.23 (with
B in place of 3), we obtain that

k+1 F , k+1 X
- B) (H dfi( )) Ok +dk+2 <H dez > o OF+4k+2
i=2
< (1= 88l < 18T,

k+1
X i 9
I <18l < 1+ 3) (Hde )mﬁk +4k42

E+1
1 —i—ﬁ (H d ) m6k2+4k+2_

Note that

and the union is disjoint, the bounds of |F***| are easy to see. O

Lemma 4.25 Letk,r,m,t € Nand ds,...,dgi1,€,€k11,¢, v, 0, 1 be such that

1/m< 1/rie < 1/t,¢,e41,da, ..., dg,
cLdo,. .., dg,
1/t < eppq < dipy1 < 1/k,
e K v <Ll << 1/k.

Letd = (da,...,dxy1) and let & = (G,G 7, T, P, ﬁ) be an oriented (k,m,2t, ¢,
ex+1, 1, d)-regular setup. Suppose that for each color cluster C, there are at least
(1 — a)t point clusters Z such that {C, Z} has relative (1,1)-degree at least p in
H. For any point v of G, color cluster C, there are at least (1 — «)t point clusters
Z € Psuchthat Nz ((v,C), ))NNu(Z,C)| > pu(,.",). And for every c € [n], color
cluster C, there are at least (1—«)t point clusters Z € P suchthat |N 7 ((¢, Z), )N
Nu(C,Z)| > pu(,",). Let T C V be a k-set and O C [n] be a k-set, we have

‘ ext ‘>0|gext‘

Given a k-subset T' = {t1,...,tx} of V and a k-subset O = (o4, ...,0;) of [n],
the family £ and p > 0, we define £ (TO)u of reduced ((T, O), u)-absorbers

asthesetof (T, O)-absorbers YUW, U- - -UW,UZoUZ, U. . UZ,UW{U- - -UW/,
where W; C Ny ((¢i, Zi), n) and W/ C Ny ((t;, Zo), ) for i € [K].
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Claim 4.7 Letk,r,m,t € Nand da,...,dgs1,€, k41, ¢, v, 0, u be such that
1/m<1/rie < 1/t,¢,e41,da, ..., dg,
c<Ldo,. .. dgs1,
1/t € epy1 < diy1 < 1/k,
Eppl KV KO L < 1/k,
a < .
Letd = (da,...,dxy1) and let 6 = (G,G 7, T, P, ﬁ) be an oriented (k,m,2t, ¢,
ex+1, 1, d)-regular setup. Suppose that for each color cluster C, there are at least
(1 — a)t point clusters Z such that {C, Z} has relative (1,1)-degree at least p in
H. For any point v of G, color cluster C, there are at least (1 — «)t point clusters
Z € Psuchthat [Nz ((v,C), ))NNu(Z,C)| > n(,,",). And for every ¢ € [n], color
cluster C, there are at least (1—«)t point clusters Z € P suchthat |N 7 ((¢, Z), )N
Nu(C,Z)| > u(,!,). Let T C V be a k-set and O C [n] be a k-set, we have

15 .0yl 2 0151

Proof. LetT = {t1,...,tx} and O = (o1,...,0%). Since H has minimum
relative (1, 1)-degree at least s, there are at least uit(;) — tat(,",) > ut(;)/2
choices for Y. Besides, there are at least ¢t — 1 choices for Z,. For (Z1, ..., Zx),
there are atleast 1u(}) /2 — k%(,." ) > n(;)/3 choices. Each W; is chosen from
Nis((0i, Zi), ) N Nu (Yo, Z;) for i € [k], thus, W; can be chosen in at least
p(h) — (k=16 —1)(k—1) +2k)(,.",) > n(,,)/2ways fori € [K], since
thereareatmost (k—1)((i—1)(k—1)+2k) (,;2) choices for W; which intersects
with Y\{Y()},Zl,...,Zk,Wl,.. .,VVi_l.

And each W/ is chosen from N ((ti, Zo), ) N Nu(Y;, Zo) for i € [k]. Si-
milarly, there are at least (u/2) (kfl) possible choices for each W/ for i € [k].
Thus, the number of reduced ((T, O), u)-absorbers is at least

0 o () e

since 6 < p. O
Claim 4.8 Letk,r,m,t € Nand da,...,dg+1,€, k41, ¢, v, 0, u be such that
1/m<1/rie < 1/t,¢,e41,da, ..., dg,
cKdy,...,dg,
1/t < epr1 < dip1 < 1/k,
Eppl KV L0 L < 1/k.

Letd = (da,...,dxy1) and let 6 = (G,G7, T, P, ﬁ) be an oriented (k,m,2t, ¢,
er+1,7, d)-regular setup. Let T"C V and O C [n] be k-sets and let L € £ be a

reduced ((T',0O), u)-gadget in H. We have
1S NS0yl > 0I5Ll
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Proof. LetT = {tl,...,tk} and O = {01,...,0k},L =YuUuWwW,u---uWw,u
Z()UZlU...UZkUW{U”-UWéWheI’eWi = {Wi,l,...,W@k,l}and WZ»/ =
{Wi’J, ce Wi,,k—l}' Choose P;,Q; in W;and P/, Q’ in W/, let Qz, w, be the set
of k-uniform tight paths (b;, v1, ..., var—2) such that b; € Z;, vp, veyr—1 € Wiy
fori,j € [k], £ € [k — 1] and its down-closure isin J. Let Q,, (. w,) € Qz.w,
be the set of those paths whose edges in the k-th level are in Ng(o;). Note
that F is the absorbing gadget for (7, 0). Let F be the down-closure of F.
Since Lis areduced (T, 1)-gadget, we have W; € Ny (Yo, Z;) NNz ((0i, Zi), 11),
thus |Na((0i, Zi), Jw;)| > p|Jw,|. By Lemma 4.22 with S being the set of k-
sets where each k-set consists of k — 1 points from N¢((0i, Z;), Jw,) and one
point from Z;, we have

1/ p\k+1
|Q0i7(Zi,Wi)| > 5 (@) ‘QZ«“WZ’

Let Qz, w be the set of k-uniform sequential paths (¢}, ..., ¢, v1, ..., v o)
such that ¢ € Zo, vj, vy, € Wi, forid,j € [k], £ € [k — 1] and its down-
closure is in J. Let Qi zow!) € Lzow be the set of those paths whose
edges in the k-th level are in N¢(t;). Since L is a reduced ((T, O), u)-gadget,
we have Wi/ S NH(Z(), Y;) N NJ((tZ‘, Z()), ,u), thus ‘Ng((ti, Z()), sz/)’ > ,u‘jwﬂ
By Lemma 4.21 with S being the set of k-sets where each k-set consists k — 1
points from N¢((t:, Zo), Jw;) and one color from Zy, we have

1 I k+1
‘Qtiv(ZO»W{)’ Z 9 (87@) |QZO,W;\-

Let ¢ : V(F') — V(L) be the homomorphism which labels the copies of F
inFr.SetZ = {br,..., by UU (V(P) UV(Q:)) WU, (CIUV (P UV Q).
Thus, | Z| = 5k*—3k. Let Z = F[Z] be the induced subcomplex of F in Z. Note
that Z consists of k vertex-disjoint k-uniform tight paths of length 2k —1 where
thei-th pathliesin Q,, (7, w,) and k vertex-disjoint k-uniform sequential paths
of length 2k — 2 where the i-th path lies in Qi (zow)) LetG = T UGy and
Zg be the set of labelled partition-respecting copies of Z in G. Let 5, be such
thate < 1 < da,...,dg,ex+1 and define dz = ]_[f:2 df"(z). By Lemma 4.4,
we have

k
26| = [T 1Qz.w.1Qzow;| = (1% Br)dzm™ .
=1
Let Z(7.0),¢ C Zg be the labelled partition-respecting copies of Z absor-
bing (T, O), thus we have

i 1 k\ 2k E

1Zr.016] = [ 1QonzawollQtizown)| = (2 (@) ) [1122.w.1192w]

i1 i1
> 30| Zg|,

since § < p,1/k.
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Let 8y be suchthatey < 82 < 0, dj11,1/kanddr_z = [} deF)—el®)

=2 "1
Let I C Zg be the set of labelled partition-respecting copies of Z which are
not extensible to (1 + Bg)d;,gmk2+7k+2 labelled partition-respecting copies
of Fin G. By Lemma 4.3, we have

1] < Ba2|Zg| < 6|2¢],
since f2 < A. By Lemma 4.23, we have
130] = (1 £ Bo)dr_zdzmOF +4+2,

since ex41 K Bo < 0, di+1, 1//6.
Note that a labelled partition-respecting copy of F in G containinga Z €
Z(1,0),¢ Yields exactly one gadget in §1 N §(7,0), we have

§L N S(r0) > 121,006 \ 1|1 = B2)dr_zmh TTE+2
> (12,0161 = N1 = Ba)dr_zm*+TH+
> 20| Z6|(1 — Ba)dp—zm® T2
> 20(1 — Bo)(1 — Br)dzm™ 3 dy_zmh HTh2

> 20(1 . 252)d2d]:72m6k2+4k+2

1—28
> 26
22095, K74
Z 9’3L|)
since By < 6. O

Proof. [Proof of Lemma 4.25] Let §# < ¢’ < u. By Claim 4.8 with ', we have
for every reduced ((7',0), n)-gadget L € £,

1L NS0yl = 0'I5Ll-

Let 8 be such that e441 < 8 < dg41,0, by Lemma 4.23 with ¢/, we have
5.\ 3 < BIFL| < 0'|FL|/2. Thus,

9/
\ %t,o) Nl > BN o)l — 1B\ 3 > I3Ll-

By Claim 4.7 with ¢’ and Lemma 4.24, we have [£4 (T.0) u| > 0'|€5| and

ex ex o' ex
‘%’(TEO)‘ > Z ‘%’(TEO) QSL| > E Z ‘$L| > 9|S t|'

Lely 1.0y Lely 1.0y
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Lemma 4.26 Let k,r,m,t € Nand ds,...,dgi1,€,€k11,¢,,0, 1, a, ¢ be such
that

1/m<1/rie < 1/t,(,ep41,da, ..., dg,
(<K eds,. .. dy,

1/t < g1 < dpy1,v < 1/k,
cL e KoL L 1/k.

Letd = (dg,...,dx11)and let S = (G,G7,J, P, ﬁ) be an oriented (k,m,2t, ¢,
€k+1,T, d)-regular setup. Suppose that V (G) = [n|UV where |V| = n < (14a)mt
and V(H) = [t]U V' where |V'| = t. Suppose that for each color cluster C, there
are at least (1 — a)t point clusters Z such that {C, Z} has relative (1, 1)-degree at
least win H. For any point v of G, color cluster C, there are at least (1 — «)t point
clusters Z € P such that [N ((v,C), ) N Ny (Z,0)| > pu(,",). And for every
¢ € [n), color cluster C, there are at least (1 — «)t point clusters Z € P such that
IN7((c, Z), ) N Ny (C, Z)| > p(,",)- Then there exists a family §" of pairwise
disjoint &-gadgets which are (c, v)-extensible with the following properties.

1) 13" < ¢m,

2) |5 N 3?;;?0)] > (Om for any k-subset T of V and k-subset O of [n),

) V(§")is (2(k + 1)(/t)-sparse in P.

Proof. Let 3 > 0 be suchthategi < § < dgy1. Let F be the (1, k)-graph
as in Definition 4.19 and let F be the (k + 1)-complex generated by its down-
closure. Let dp = Hfjgl df"(f). By Lemma 4.24, we have

2 2k
1G] < (1 + B)dpmOk: +4k+2 <IZ> (k t 1) Kt — 1) < dpmSFH k2,26 42

|Sext‘ > /‘Lk—H (1 o ,B)d 6k2+4k+2 t ? t 2kt(t _ 1)
=3 Fm k) \k—1

k+1
I d 6k2+4k+2t2k2+2

=z QR F2)o2k (f; — 1)2K2 F
> 691/2dFm6k2+4k+2t2k2+2

since 1/t € g1 < f < dpy1 < 1/kand 0 < p,1/k. By Lemma 4.24, for
each reduced gadget L € £ in H, we have

|S%£Bt’ < QdFm6k2+4k+2.
By Lemma 4.25 with §'/2, for any k-set T' C V and any k-set O C [n], we have

’g‘(s%(’fO)‘ > 01/2‘Sext’ > GHdFm6k2+4k+2t2k2+2.

Choose a family § from % by including each G-gadget independently at
random with probability

(m

P o mOR Ak 22k e
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Note that |§|, |§'N ?}tO)] are binomial random variables, for any k-set T C V

and any k-set O C [n], we have

E[I§') = ol < <

)

E[IF' N3iF o)l = pI8H o) > 36¢m.

For each Z € P, note that Z exists in at most ¢2*° 1 reduced gadgets, thus,
there are at most 2dymS+*+4k+22F*+1 &_gadgets with vertices in Z. Note that
each &-gadget contains at most k? + 2k + 2 vertices in a cluster. Hence, for
each cluster Z € P, we have

k2 + 2k + 2)¢m

E[’V(gl) N ZH < 2(]{72 + 2k + Q)dFm6k2+4k+2t2k2+lp — ( p

By Lemma 1.1, with probability 1 — o(1), the family § satisfies the following
properties.

3] < 2E[|3"]] < ¢m,
3" NS o)l = 20¢m,

2(k* + k + 1)¢m
t

for any k-set T C V, k-set O C [n] and cluster Z € P. We say that two
G-gadgets are intersecting if they share at least one vertex. Note that there
at most (2k2 + 2)2t4%°+3 pairs of intersecting reduced gadgets. Hence, there
are at most (6k2 + 4k + 2)2m!2F*+8k+1 (912 4 9)244k*+3 pairs of intersecting
G-gadgets. We can bound the expected number of pairs of intersecting &-
gadgets by

V(@) N 2| <

(6k2 +4k+2)2m12k2+8k+3(2k2 +2)2t4k2+3p2
C2(6k% + 4k + 2)2(2k%2 +2)’m _ (Om

= <

B 4d%t - 27

since ( < da,...,dy+1,0,1/k. Using Markov's inequality, we derive that with
probability at least 1/2, §’ contains at most (fm pairs intersecting G-gadgets.
Remove one gadget from each intersecting pair in such a family and remove
gadgets that are not absorbing for any (7,0) where " C V, O C [n] and
|T| = |O|. We obtain a subfamily §”, satisfying the following properties.

(1) [§"] < ¢m,

) "N %f%fo)l > 6¢m,

(3) V(§")is (2(k* + k + 1)(/t)-sparse in P,
as desired. O
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Proof. [The proof of Lemma 4.13] Since G has minimum relative (1, 1)-degree
at least § + 1 and G is a representative setup. For any v € V and any color
cluster C, we have

oo pize+ (1),

For any ¢ € [n] and any point cluster Z, we have

Nate. 2.z 6+ (1)

by Lemma 4.19. Let { > O with 1/r,e < ( < candletf > O withn < 6 <
u, 1/k and M := [nt/(6¢)]. Firstly, we need the following claim.

Claim 4.9 For each j € [0,M], and any S C V of size at most j0(n/t divisible
by k and any O C [n] of size | S|, there is a sequential path P; C G such that the
following holds.
(i) Pjis (S,0)-absorbing in G,
(i) Pjis (c,v)-extensible and consistent with ﬁ
(iii) 'V (P;) is (100k3j¢/t)-sparse in P and V (P;) N'T; = (), where T} denotes
the connection set of P;.

Proof. [Proof of the claim] Take P to be the empty path and P; satisfy the
above conditions for j € [0, M).

Selectasubset Z’ C Z\V (P;) of sizem’ = (1—A)m, this can be done since
100K35¢/t < (2nt/(¢0))(100k3¢ /t) < X which follows from ( < ¢ < n < A, 6.
Also, since n < (1 + a)mt, we have m’ > n/(2t). Let P! = {Z'}zep, T =
JV(P")]and G';, = G7[V(P')] . By lemma 4.7, &' := (G',G';,, J', P, H) is
a (k,m',2t,\/e, \/ex+1, r,d)-regular setup.

By Lemma 4.20, for every v € V and color cluster C, we have

(N7 ((v,C), 1/6)] = [Ng((v,C), p1/3)| = (6 + p/4) (k i 1>’

and for every o € [n] and point cluster Z, we have

No(l0,2),/0) = o (G020 /30 = 6+ /0, )

Thus, we obtain that for every v € V, o € [n], color cluster C, there are at least
(1 — )t point clusters Z € P, we have

Na(0.C o) 1 Na(z O 2 (1),

and

N7 (0, 2), 1/6) O Nu(C, Z)| > §<k ! 1).

By Lemma 4.26 with 4c¢ instead of ¢, 2¢ instead of ¢, we obtain a set A’ of
pairwise-disjoint &’-gadgets which are (4c, v)-extensible and such that
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(1) |4 < 2¢m,

) |A' N0yl > 2¢om’ for any k-subset of V,

(3) V(A')is (4(k? + k + 1)¢/t)-sparse in P'.

Next, we would connect all paths of absorbing gadgets in .A’ and P; to obtain
P;j ;1. By Definition 4.19, there are 2(k+ 1) pairwise disjoint sequential paths in
each &’-gadget in A’ which are (4c, v)-extensible in &'. Let A be the union of
all such sequential paths of all gadgets of A’ and P;. Set T, 11 = V(G) \ V(A),
it is obvious that A is a set of pairwise disjoint sequential paths in G such that

(1) |A] < 4(k+1)¢m/ +1,

(2) V(A)is (100k35¢/t+4(k*+k+1)¢/t)-sparsein P and V (A)NTj1 = 0,

(3) every pathin A\ {P;} is (2¢,v, Tj;1)-extensible in & and consistent
with H. P; is (c,v,T;1)-extensible in & and consistent with .

Note that (1) follows from (1) and the addition of P;. (2') follows from (iii), (3)
and the definition of T} ;. (3) follows from (ii) and (3) since 4(k2+E4+1)Cm/t <
2cm. In particular, P; is (¢, v)-extensible by (ii) while all other paths go from
(4e,v)-extensible in &' to (2¢,v)-extensible in &. The consistency with H is
given by the consistency of P; and the definition of &’-gadgets.

By Lemma 4.18, we obtain a sequential path P;; with the following pro-
perties.

(A) Pj41 contains every path of A,

(B) Pj41 starts and ends with two paths different from F;,

(Q V(Pr1) \V(A) C V(P),

(D) V(Pj41) \ V(A) intersects in at most 10k2Az + t23%+2 vertices with
each cluster Z € P, where A, denotes the number of paths of A that
intersect with Z.

We claim that P; satisfies (i)-(iii). First, we prove (iii). Note that for every
cluster Z € P, the number of paths of A that intersect with Z is bounded
by 4(k + 1)¢m/t + 1. (D) implies that V(Pj11) \ V(A) intersects in at most
100k3¢m /t vertices with each cluster Z € P. Together with (iii), it follows that
Ais (100k>(j + 1)¢/t)-sparse in P.

Next, we want to prove (i), V(Pj+1)\V (A) intersects in at most 100k3¢(m /t <
cm /4 vertices with each cluster Z € P, since ( < c. Also, we have V(A4) N
Tj+1 = 0. Hence, we obtain (i) after deleting the vertices of P;; from T} ;.
After the deletion, we go from (2¢, v)-extensible in (3') to (¢, v)-extensible. It is
crucial that P; 1 starts and ends with two paths different from P; by (B).

Finally, we claim that P;1; is (S, O)-absorbing in G for any S C V of size
divisible by k£ and at most (j + 1)¢fn/t and any O C [n] of size |S|. Partition
S into two sets S; and S; such that both |S1], |S2| are divisible by k£ and S; is
maximal such that |S1| < j¢On/t. Partition O into two sets O; and O3 such
that |O1] = |S1] and |Oz| = |Sa|. Since P is (S’, 0')-absorbing in G for any set
S C V of size at most (j¢0n/t) and |O'| = |S', there exists a path P; with the
same endpoints as P; such that I(P}) = S1 U I(P;) and C(P}) = O1 UC(F;),
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besides, P; is a subpath of P;;. So it remains to absorb S,. By the choice of
Sy, we have |Sy| < ¢On/t + k < 2¢n/t < 2(1 + a)Pm < 5¢3m/2. Therefore,
we can partition Sy and Oy into £ < 5¢3m/(2k) < 2¢Om’ sets of size k each,
let Dy,...,Dyand Ry, ..., R, be those sets. By (2), we have [§(p, r,) NA'| > ¢.
Thus, we can associate each (D;, R;) with a different gadget F; € A’ for each
i € [¢]. Each F; yields a collection of 2(k +1) sequential paths P; 1, ..., P a(x+41)
and we can replace those paths with a collection of different paths with the
same endpoints. Since P; and each P, ,,, i € [¢],u € [2(k+ 1)], are subpaths of
Pj11, the sequential path P}, has the same endpoints with Pj;1. Also, P/,
is exactly (C(Pj+1) uo, I(PjJrl) U S) ]
To finish, note that Py, and Cjs has the desired properties. By the choice of
M = [nt/(¢O)], we have MO/t > n, so Py with Cyy is n- absorbing in G.
Moreover, since M (100k3(/t) < 200k*n/0 < XA and n < A, V(Py) is A-sparse
inP. O
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5 - Long rainbow cycles in complete bipartite
graphs

In 1989, Andersen [13] conjectured that all proper edge-colorings of K,
admit a rainbow path which omits only one vertex.

Conjecture 5.1 (Andersen [13]) All proper edge-colorings of K, admit a rain-
bow path of length n — 2.

It is best possible by a construction of Maamoun and Meyniel [115]. Akbari,
Etesami, Mahini and Mahmoody [6] proved that every properly edge-colored
K,, has a rainbow cycle of length at least n/2 — 1. Gyarfas and Mhalla [64]
proved that if the set of edges with every used color forms a perfect matching
in K, then there exists a rainbow path of length (2n+-1) /3. Gyarfas, Ruszinko,
Sarkdzy and Schelp [65] showed that every properly colored K, contains a
rainbow cycle of length (4/7 — o(1))n. Gebauer and Mousset [59] and Chen
and Li [26], independently showed that every properly colored K,, contains a
rainbow cycle of length (3/4—o0(1))n. Alon, Pokrovskiy and Sudakov [9] proved
that every properly edge-colored of K,, contains a rainbow path with length
n — O(n®*), and the error bound has since been improved to O(y/n - logn)
by Balogh and Molla [14].

In this chapter, we show that every properly edge-colored K, , contains
a long rainbow cycle as follows.

Theorem 5.1 Every properly edge-colored K,, ,, contains a rainbow cycle of length
at least n — 28n°/* for sufficiently large n.

The bound above is asymptotically optimal as each color class could be a
perfect matching of K, ;, and only n colors occur in E (K, ).

5.1. Notation and preliminaries

For a bipartite graph G on vertex set X UY and (not necessarily distinct)
vertex sets A C X, B C Y, we define Eg(A,B) = {ab : a € A)b € B,ab €
E(G)}. We often simply write E(A, B) when G is clear from the context. Let
ecq(A, B) = |Eg(A, B)|. A path forest P is a family of vertex-disjoint paths in a
graph. Given a pathforest? = {P,..., P}, letV(P) = V(P,)U- - -UV(P;) and
E(P)=E(P)U---UE(P,). Given an edge-colored graph G and a subgraph
H of G, let C(H) be the set of colors appeared in E(H). Furthermore, given a
path forest P = {P,..., P,} in an edge-colored graph, if each P, is a rainbow
path and C(P;) N C(P;) = 0 for any {i, j} € (3), then we call P a rainbow path
forest. For a natural number n € N, we define [n] = {1,2,...,n}. We write
a = (1 £ b)cto mean that the inequality (1 — b)c < a < (1 + b)c holds.
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Lemma 5.1 for every ¢ > 0, there exists a constant C' such that the following
holds. Given a proper edge-coloring of a balanced bipartite graph H of 2n ver-
tices on vertex set X UY such that 6(H) > (1 — n)n for some n = n(n), let
G be the subgraph obtained by choosing every color class randomly and inde-
pendently with probability p. Then, with high probability, every vertex v in G has
degree (1 — ¢)p - dg(v) and for every two disjoint subsets A C X, B C Y with
|A] = Clogn/p,|B| = C(logn/p)? ec(A, B) = (1 - €)p|A||B|.

Lemma 5.2 For all v,,n with § > ~ and 36§ — +2/2 > 2/n the following holds.
Let G be a properly edge-colored bipartite graph with 2n vertices which is balanced
and 6(G) > (1 — d)n. Then G contains a rainbow path forest P with at most yn
paths and |E(P)| > (1 — 49)n.

Lemma 5.3 For any b,m,r > 0 with 2mr < b, the following holds. Let P =
{P1,..., P} bearainbow path forest in a properly edge-colored bipartite graph
G on vertex set X UY. Let H be a subgraph of G sharing no colors with P with
0(H) > 3band |Eg(A, B)| > b+ 1 for any two sets of vertices A C X,B CY
of size b. Then either |P;| > |V (P)| — 4b or there are two edges e1,e2 € H and a
rainbow path forest P’ = {Pj,..., P/} such that E(P’') C E(P) + e1 + e2 and
P} = |Pi| +m.

Proof. [The proof of Theorem 5.1] Let H be the subgraph of K, ,, obtained
by choosing every color class randomly and independently with probability
p = 4.5b/n where b = n3/4. By Lemma 5.1, with high probability, all vertices in
H has degree 4b < (1 —o(1))pn < 5band eg (A, B) > (1 —o(1))pb? > 4.4n'/?b
for any two disjoint sets A C X, B C Y of size b. We choose such an H.

Let G = K,,,, \ H, then §(G) > n—5b = (1 —5n~/*)n. By Lemma 5.2 with
parameters § = 5n~ /4y = n=3/4, we obtain a rainbow path forest P in G
with n!/4 paths and |E(P)| > n — 20n3/4,

Apply Lemma 5.3in H repeatedly 2n!/2 times with parameters b = n3/4 r =
n'/*, m = n'/2 /2. At each iteration, we delete all edges sharing a color with ¢;
or e to get a subgraph H'. We obtain that after i iterations, §(H') > §(H) —
2i > 3band forany A C X, B C Y of size b, |[Ey/(A, B)| > 4.4n'/2b — 2ib >
b+ 1. We either increase the length of P, by m or |P1| > |V(P)| — 4b at each
iteration. Since 2n'/2m = n > n — 4b, |P| > |V (P)| — 4b must occur at some
step during the iterations. Thus, we obtain a rainbow path P of length at least
[V (P)| —4b > |E(P)| — 4b > n — 24n3/*. Let S, T be the first 2b and the last 2b
vertices of P respectivelyand S’ = SN A, T = T'N B. Then the sizes of S’ and
T"are band ey/(S’,T") > b+ 1. There must be edge between S" and 7". We
add this edge to get a rainbow cycle of length at least | P| — 4b > n — 28n%/%. [

We also need the following proposition and lemma.

Given a proper edge-coloring of K, , on vertex set X UY’, we call a pair
(A, B) of disjoint subsets A C X, B C Y nearly-rainbow if the number of
colors of edges between A and B is at least (1 — o(1))|Al|B|.
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Lemma 5.4 Foranye > 0, there exists a constant C' such that the following holds.
Given a proper edge-coloring of K, ,, on vertex set X UY, let G be a subgraph
of K, obtained by choosing every color class with probability p. Then, with high
probability, all nearly rainbow pairs (A, B) with |A| = |B] = y > Clogn/p,
AC X,B CY satisfy eq(A, B) > (1 —¢)py>.

Proof.  For any y, we choose ¢ such that every nearly-rainbow pair (A, B) has
at least (1 — ¢/2)|A||B| colors and C = 40/¢2. Let (A, B) be a nearly-rainbow
pair with |A| = |B| = y, then the number of colors m between A and B in
K., is at least (1 — £/2)y?. Thus, the number of colors between A and B in
G is binomially distributed with parameters (m, p) where m > (1 —¢/2)y?. By
Lemma 1.1, we have

Pleg(4, B) < (1 —e)py?] < e =7 /14,

The result follows by taking a union bound over all (Z)2 pairs of sets of size y
since g2y > 40logn/p. O

Lemma 5.5 Forevery e > 0, there exists C such that the following holds. Given a
proper edge-coloring of K,, , on vertex set X UY, let A C X, B C Y be two sets
of sizes a and b respectively with a < b, b > Cy>. Then there are partitions of A
and B into sets {A;} and {B;} of size y where y | a and y | b such that all but an
e-fraction of pairs (A;, B;) are nearly-rainbow.

Proof. For any e > 0, we choose C > 1/£2. Let E, be the set of edges
between A and B with color c. Note that ) |E.| = |E(A,B)| = ab and
|E.| < min{a,b} = a since the edge-coloring of K,, ,, is proper.

Let S and T be selected uniformly at random from (‘;) and (5) respecti-
vely. Thus, for any two disjointedges e, ¢’ € E(A, B),wehavePle € E(S,T)] =

Z—Z andPle,e’ € E(S,T)] = % By the inclusion-exclusion formula, we

have
Plcis present in B(S,T)] > > Ple€ E(S,T)]— Y Ple,f € E(S,T)]

ecl, {e,f}G(b;C)
Y Yy —1>  [(IE]

= abEc|_ab(a—1)(b—1)< 2 )

s (y —1*(|E - 1)

_%‘Ecl(l_ 2(@—1)(()—1) )
y? (y—1)>* _ v

> %‘Ec’(l T o0 1)) 2 £\Ec|(1 —&?).

v < & < €% Let Z be the number

The last inequality holds since S{;ﬂj <

<
b
of colors in E(S,T'). Thus, E[Z] = ) _P[cis present in E(S,T)] > >, Z—z|EC]
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(1 —¢?) =4%(1 —&?). Since y? = e(S,T) > Z, we have y? — Z is non-negative
with expectation at most £2y2. By Markov's inequality, we have P[y? — Z >
ey?] < e, which implies that with high probability, (S, T') is nearly rainbow.
Let {A;} and {B;} be random partitions of A and B into sets of size y. Let
Y denote the number of pairs (4;, Bj) which are not nearly rainbow, then we
have E[Y] = Z—QIP’[(AZ', B;j) is not nearly rainbow| < Z—gs. By Markov's inequality,
we have P[Y > EZ—S] < /&, which implies that with high probability, there
exists a partition satisfying the lemma. O

5.2 . Obtaining long rainbow cycles

Proof. [The proof of Lemma 5.1] Foranye > 0, lete’ = ¢/3, C' > 1/¢ and
C = 6C"/e. Lety = [C'logn/p], |A| > Clogn/p,|B| > CC"?(logn/p)?. As-
sume that §(H) > (1 — n)n > CIOIgJ”, let G be the subgraph of H obtained
by choosing every color class with probability p. The degree of vertex v in

G is binomially distributed with (dg(v),p). By Lemma 1.1, for each vertex v,

e2p-dg(v)

Plldg(v) —p-du(v)| > ep-du(v)] <2e”— 3 < 2/n.Bythe union bound,
with high probability, all vertices of G have degree (1 — e)p - dg(v).
By Lemma 4.11 with ¢’ and C’, we obtain that with high probability,

eq(S,T) > (1 —¢€')y?, (5.1)

for every nearly rainbow pair (S,T") of sets of size y. Let b be the smallest
integer larger that C’y? that is divisible by y and A’ C A, B’ C B be subsets
of sizes y and b respectively. By Lemma 4.12 with ¢’ and C’, we can obtain
that there exists a partition {B’} of B’ into parts of size y such that all but
at most ¢'-fraction of pairs (A’, B}) are nearly rainbow. If we let J = {j :
(A’, B}) is nearly rainbow}, then [J| > (1 — £')b/y. Therefore, we have

(1—£b

, (1—€)y? > (1 —2)by.

eG(Alv B/) > Z eG(A,> B;) >
jeJ
Note thate’|A| > yand /| B| > bsince e’ = 2C'/C. Therefore, there exists
a collection of at least (1 — &’)| A| /y disjoint subsets of A, each of size of y and
a collection of at least (1 — ¢’)| B|/b disjoint subsets of B, each of size of b.
Then, with high probability,

A B
eq(A,B) > (1— s’)’y‘(l - E/)‘b|(1 —2e")yb > (1 —¢)|A||B].

U
Proof. [The proof of Lemma 5.2] Let P = {P,..., Py} be a rainbow path
forest and |E(P)] is as large as possible. Suppose that |[E(P)| < (1 — 40)n.
Note that |V(P)| < |E(P)|+~vn < n—~n. Thus, we can obtain yn non-empty
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paths. Since otherwise we can replace the empty path by a vertex outside
V(P).Let P; = v;1---v;p, fori € [yn]. For simplicity, we denote c(v; j—1v; ;)
by c(v; ;) and v; j_1v; j by e(v; ;). Let Cy be the set of colors not used on E(P)
and Cj = {c(x) : @ € Ne,_, (vi, )NV (P)\Ujepyn {vs1 1 yUCi-1 fori € [yn]. Note
thatforeach ¢ € C;\ C;_1, thereis avertexz € V(P) such that ¢(v; 1z) € Ci—4
and ¢(z) = c. Firstly, we need to prove the following claim.

Claim 5.1 NCi_l(Ui,l) - V(P) \ ]ZZ-Jrl{’l)j’l}fOI’i S [’yn]

Proof.  Suppose that there is an edge v; 1v;,1 with color from C;_; for some
J € [i + 1,vn]. The case when there is an edge v; 1z for some =z ¢ V(P) is
identical. We proceed the following process.

Step1 Letig =1 and Ty = Vj1.
Step2 We maintain that if i, > 1, then ¢(v;, 12¢) € Cj,—1.
Step3 Let ¢, = c¢(v;,_,17¢+-1). Notethatc, € Cj,_,—1,t > 1.

Step4 Let i; be the smallest number such that ¢; € C;,. Note that ¢; €
Cit \Cit—l fort > 1.

Steps Fort > 1,ifi; > 0, then let z; be the vertex of V(P) with ¢(z;) = ¢.
Since ¢; € C;, \ C;,—1, by the definition, there is a vertex z; € V(P) such
that c(v;, 12¢) € Ci—1 and ¢(xt) = ¢4

Step6 The iteration stopsifis = 0.

Note that iy > i1 > --- > is. Since ¢; € C;, ,—1 and i is the smallest number
such that ¢; € C;,, we have i1 — 1 > ;. We also have z; # zy for ¢t # . Since
c(zy) = ¢ € Cj, \ Ci—1 and c(wy) = ¢y € C;, \ Gy, 1, the case c(xy) = c(ay)
occurs onlywheni; = iy, thatis, ¢t = t/. Our next goalis to find a larger rainbow
path forest.

Claim 5.2 P = PU---U P'yn U {Uio’ll‘o, Vi 121, - - - ,’L)Z'57171£L‘s,1} \ {6(.%‘1), ceey
e(xs—1)} is a rainbow path forest.

Proof. Our proof is divided into three steps, we prove that P’ is rainbow in
the first step, P’ is a forest in the second step and P’ is a path forest in the
last step.

Note that c(z;) = ¢/ = c(vi,_, 120-1), ¢s = c(vi,_,xs-1) € C;, = C for
¢ € [s—2]and Co N C(P) = 0, thus P’ is rainbow.

Suppose that there is a cycle. Let v;, 1,2, u1, u2, . .., ug, v;,,1 be the cycle
sequence. Since z, € V(P), we may assume that z, = v;; for some ¢ and
j. Since e(x;) is absent in P/, we have that u; = v, j1;. Let r be the smallest
index for which w, # v j1,. By the definition of 7/, we have that u,_ju, must
be the form of zy vy ; for some ¢ # ¢ with u,_1 = z¢ and u, = vy ;. However,
e(xp) = ur—ou,—1 is absentin P’, a contradiction.
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Note that P’ has maximum degree 2. Since the degrees of vertices xg, vj, 1,
..., Vi, .1 increase from 1 to 2 and the degrees of other vertices do not in-

crease from P to P’. Thus, P’ is a path forest. O
From the above claim, we obtain a larger rainbow path forest P/, contradicting
the maximality of P. O

Let m; = |C;] — |Co| for i € [s]. Note that |C(G)| = |Co| + e(P) and e(P) <
(1 — 40)n. We have [N, (v)| = [N (v)| = (|IC(G)] = |Ci]) = (1 = 6)n — (|Col +
e(P)) + (|Co| + mi) > 3dn + m, for any vertex v.

From the definition of C;, we have |C;| > |Co| + |N¢,_, (vi1) N {vjr : k>
2,j € [yn]}|. From Claim 5.1, we have |N¢, , (vi1) N{vjr : k> 2,5 € [yn]}| >
|INc, ,(vi1)| —i. Thus, |Ci| > |Co| + mi—1 + 3dn —iand m; > m;_1 + 30n — i.
Iterating it, we obtain m; > 3idn — (;) Let i = n, we have 2n > 3yén® —
(yn)? /2, which contradicts with 3v§ — 4%/2 > 2/n. O
Proof. [The proof of Lemma 5.3] Suppose that |P;| < |[V(P)| — 4b, let P, =
v1vg - - - v and let U be the set of vertices of these paths P, .. ., P, which have
length at least 2m. Assume that v; € X without loss of generality. Notice that
there are at most 2mr vertices of paths P, ..., P, which have length at most
2m. Thus, |U| > |V(P)| — |P1| — 2mr > 3b. Note that [|[UNX|—-|UNY]|| <
r < b. Thus, we can choose U’ C U NY with |U’| = band U C U N X with
|U°| = b.

Suppose that there is an edge of H from v; to a vertex x € U’ on some
path P; of length at least 2m. Let e; = ez = vy. Partition P; into P! and P?,
we may assume that the length of P! is at least m without loss of generality.
Let P{ = P + e + P}, P/ = P? and P} = P; for all other j.

Suppose that [Ny (v1) N Pi| > b. Let W C Ny (vy) N Py with size b. W+ =
{vie1 : v; € W} Note that W C Y and W C X. Since [WT[,|U'| = b,
we have |[Eg(W*,U’)| > b+ 1. There exists a vertex v; € W such that
|Ng(vj) NU’| > 2. Thus, there exists some vertex z € Ny (v;) N U’ such that
c(v1vj41) # c(vjz). Denote viv;41 by e; and v;x by eo. We may assume that
x € P; and the length of P; is at least 2m. Similarly, we can also partition P;
into P! and P?. Without loss of generality, we may assume that the length of
Plisatleastm.Let P = Py +e1 + €2 — vjuj1 + P}, P/ = P? and P} = P; for
all other j.

Suppose that | Ny (v1) N Pi| < b and there is no edge from v; to U’. Since
Npg(v1) > 3band there are at most 2mr < b vertices from v; to the vertices of
paths P; of length at most 2r, thereisaset T' C Ngy(v1) \ V(P) of size b and
T CY.Since |U°,|T| > b, there is an edge tz in H wheret € T and x € U°.
Since H is properly edge-colored, we have c¢(v1t) # c(tz). Note that the vertex
x is on some path P; of length at least 2m. Denote vt by e; and tx by es.
Similarly, we can also partition P; into PZ.1 and Pf. Without loss of generality,
we may assume that the length of P! is at least m. Let P| = P; + e +e2+ P},
P/ = P? and P} = P; for all other j. O
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5.3 . Concluding remarks

The Andersen conjecture has not yet been proved, so the relevant conclu-
sions about it can be further improved.
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6 - Concluding remarks

6.1. Rainbow Hamilton cycles in hypergraphs systems

Inspired by a series of very recent successes on rainbow matchings [110,
, 112, 113], rainbow Hamilton cycles [28, 30, 77] and rainbow factors [27,
, 120], we suspect the threshold for a rainbow spanning subgraph in (hy-
per)graph system is asymptotically same with the threshold for a spanning
subgraph in a (hyper)graph.
Let1 < d,¢ < k—1.Forn € (k— )N, define hf;(k,n) to be the smallest
integer h such that every n-vertex k-graph H satisfying §4(H) > h contains a
Hamilton ¢-cycle. Han and Zhao [72] gave the result that

[t/2] 1¢/2] n
WYk, n) > (1 - (Lt;%) /2] (iti/fif 1) —|—0(1)> (t) (6.1)

whered € [k—1]and ¢ = k—d. In particular, b5~ (k,n) > (5/9+0(1))(3), (5/8+
o(1))(3) for k —d = 2,3. Lang and Sanhueza-Matamala [105] conjectured that
the minimum d-degree threshold for k-uniform tight Hamilton cycles coin-
cides with the lower bounds in (6.1). This leads to the following conjecture.

Conjecture 6.1 for every k > 4, > 0, there exists ng such that the following
holds for n > no. Given a k-graph system G = {Gi}icn), if 6-3(Gi) > (5/8 +
1) (%) for i € [n), then there is a G-rainbow Hamilton cycle.

Furthermore, we believe the following holds.

Conjecture 6.2 Foreveryk,d, i > 0, there exists ny such that the following holds
for n > ny. Given a k-graph system G = {Gi }icjny, if 6a(Gs) = hE~ (k,n) + (%)
fori € [n], then there is a G-rainbow Hamilton cycle.

6.2 . Exact results and the stability in graph and hypergraph
systems

For rainbow Hamilton cycles in graph systems, the exact minimum degree
threshold is known [77]. It is natural to ask whether exact results also hold for
other structures in the rainbow setup, for example,

Question 6.1 Given a graph system G = {G}icpn), if 6(Gi) > rn/(r 4 1), does
there exist a G-rainbow K .-factor?

In the non-rainbow setup, exact results can typically be obtained by consi-
dering an extremal and non-extremal case separately, where the latter often
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gives stability, that is, even a smaller minimum degree condition is sufficient
if the graph is far from any extremal construction. For graphs there are also
more arguments that also work in the rainbow setup, for example, [111], thus,
we can consider the stability in graph and hypergraph systems.

6.3 . Rainbow structures in random graph systems

Ferber, Han and Mao [53] gave the following results in random graph sys-
tems.

Theorem 6.1 ([53]) For any ¢ > 0, p = w(logn/n) and a random graph sys-
tem G = {G}icn 2 On 'V where n is even, if each G; is independent sample of
G(n,p) on the same vertex set [n], then the following holds with high probability.
For every spanning subgraphs H; of G; with §(H;) > (1/2 + €)np, then there is
an {H;}icpn/2)-rainbow perfect matching.

Theorem 6.2 ([53]) For any e > 0, p = w(logn/n) and a random graph sys-
tem G = {G}icn) On V where n is even, if each G; is independent sample of
G(n,p) on the same vertex set [n], then the following holds with high probability.
For every spanning subgraphs H; of G; with 6(H;) > (1/2 + )np, then there is
an {H;} e 2-rainbow Hamilton cycle.

Later, Anastos and Chakraborti [12] determined the threshold for the exis-
tence of a rainbow Hamilton cycle in a collection of random subgraphs of Di-
rac graphs in various settings.

Theorem 6.3 ([12]) There exits a constant c such that the following holds. Sup-
pose G = {G};c|y) is an n-vertex graph system and for every i € [n], 6(G;) > n/2,
where p = w(logn/n). Then with high probability, there exist a G N G(n,p)-
rainbow Hamilton cycle.

Theorem 6.4 ([12]) There exits a constant ¢ such that the following holds. Sup-
pose G is and n-vertex graph with 5(G) > n/2, p = w(logn/n), G = {Gi}icp) is
an n-vertex random graph system, where each G; is independently distributed as
G, for i € [n]. Then with high probability, there is a G-rainbow Hamilton cycle.

Based on these results, we can consider the rainbow factors, rainbow
trees in random graph system.
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