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Chapter 1

Introduction

The Standard Model (SM) of particle physics has been remarkably successful in explaining the in-

teractions of the known elementary particles. The electroweak sector has been tested with exquisite

precision, while perturbative calculations, e�ective approaches and lattice results crowned QCD as

the description of the strong force. The Standard Model predicted the existence and the properties

of several particles, including most recently the Higgs boson, which was discovered at the Large

Hadron Collider in 2012.

Despite its successes, several observations and theoretical considerations call for an extension of

the Standard Model. Neutrino masses and oscillations, dark matter, and the asymmetry between

matter and antimatter are among the observations that require new physics. These unresolved

puzzles motivate the search for physics Beyond the Standard Model (BSM), which could shed light

on these fundamental questions and pave the way for a deeper understanding of nature.

Neutrino oscillations are a well-established experimental phenomenon that calls for beyond-

standard-model physics, as they break the lepton �avor symmetries of the Standard Model La-

grangian. A minimal way to extend the SM to agree with observations is by introducing light

right-handed chiral fermions to give neutrinos Dirac masses. However, this scenario is di�cult to

test because it leads to extremely suppressed lepton �avor changing neutral currents.

New states and interactions are required if neutrinos are Majorana fermions and/or if neutrino

masses are connected to other open questions1, leading to potentially observable processes that

change the �avour of charged leptons. This possibility has prompted a great experimental e�ort to

look for lepton �avor violating transitions, which are now among the best-measured processes in

particle physics and are expected to improve further in the near future. Lepton Flavour Violation

(LFV) is a promising smoking gun signal of new physics, which could shed light on the mechanism

behind the neutrino masses. Moreover, it is a powerful tool in directing the model-building of

generic new physics, since accidental symmetries of the SM are easily violated once new states and

interactions are introduced. Models that attempt to solve various puzzles are often constrained by

the requirement of agreeing with the experimental results on LFV.

The null-results obtained by the energy and intensity frontier experiments may suggest that

we are at the presence of a mass gap, with the new physics appearing at a largely separated scale

ΛNP ≫ v. If this is the case, the Standard Model may be the renormalizable Lagrangian of an

E�ective Field Theory where the heavy states have been removed. The e�ect of the heavy physics

at low-energies can be parametrized in terms of contact interactions among the light degrees of

freedom, suppressed by powers of the heavy scale according to the operator dimension. Observables

can be calculated in the e�ective theory as functions of operator coe�cients, and experiments can

look for evidence of their presence.

1The generation of the Baryon Asymmetry from Leptogenesis is one notable example
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In this thesis, we analyze the current and upcoming experimental results of LFV searches in

the Standard Model E�ective Field Theory (SMEFT). The goal is to obtain as much theoretical

guidance as possible on the viable landscape of LFV new physics.

EFT calculations can be envisaged from a top-down or a bottom-up perspective. In top-down,

the heavy degrees of freedom are removed from the theory and the UV couplings and masses

parametrise the size of the operator coe�cients. Observables are calculated with the e�ective

operators and reproduce the model predictions within the truncation error of the EFT. In bottom-

up, observables are calculated in the most general e�ective theory that is consistent with the

symmetries, including every operator contribution that could be within reach of the experiments.

In doing so, we identify the region of coe�cient space where beyond standard models should sit. In

both perspectives, with the exceptional improvement in the sensitivities that are expected for the

next generation of experiments (especially for µ → e transitions), theoretical calculations should

follow the level precision of LFV observables, potentially including often-neglected contributions in

the e�ective theory calculations. These may include higher-loop diagrams, as well as operators at

higher order in the EFT expansion. We aim to identify all the contributions that are within the

reach of future experiments to have a complete e�ective parametrisation of lepton �avour changing

transitions. We motivate and perform challenging SMEFT calculations, and use them to obtain

novel limits on LFV operator coe�cients.

The thesis is organised as follows. In Chapter 2 we give a brief introduction to the Standard

Model, lay down the notation for the rest of the text and discuss the evidence and observations

that require going beyond the SM.

In Chapter 3 we give an overview on lepton �avour violation. We discuss models that explain

neutrino masses and consider other popular models that predict sizable and potentially observable

LFV signals. We also review the experimental status of LFV searches and the improvements that

are expected in the upcoming years. Chapter 3 is largely based on the publication:

� [1]: M. Ardu and G. Pezzullo, Introduction to Charged Lepton Flavor Violation, Universe 8

(2022) 299

In Chapter 4 we give an introduction to e�ective �eld theories. We discuss general aspects of the

EFT machinery and provide examples of explicit calculations. Then, we present the e�ective theory

for LFV that is extensively used in Chapter 5 and Chapter 6.

Chapter 5 and Chapter 6 are respectively based on the following publications:

� [2]: M. Ardu and S. Davidson, What is Leading Order for LFV in SMEFT?, JHEP 08 (2021)

002

� [3]: M. Ardu, S. Davidson and M. Gorbahn, Sensitivity of µ → e processes to τ �avour

change, Phys. Rev. D 105 (2022) 096040

In Chapter 5 we organise the perturbative expansions in SMEFT in terms of small parameter λ

to systematically estimate the contributions of the e�ective operators to LFV processes. We argue

that a complete e�ective parametrisation of LFV observables requires calculations that are currently

missing or are partially available in the literature.

In Chapter 6 we build on the result of Chapter 5 to show that µ→ e observables could be sen-

sitive to the product of τ ↔ µ, τ ↔ e �avour changing interactions beyond the reach of dedicated
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τ LFV searches. We calculate at next-to-leading order in the SMEFT expansion to �nd new limits

on the product of τ ↔ e(µ) operators. Finally, in Chapter 7 we summarize the results and discuss

the prospects.

During my PhD I have also authored the following works that are not covered in this thesis:

� [4]: M. Ardu and F. Kirk, A viable Le − Lµ model with µ → e violation, Eur. Phys. J. C

83(2023) 394

� [5]: M. Ardu, G. Isidori and M. Pesut, Semi-inclusive Lepton Flavor Universality ratio in

b→ sℓ+ℓ− transitions, Phys. Rev. D 106 (2022) 093008





Chapter 2

The Standard Model and Beyond

Contents

2.1 A brief hystory of the Standard Model . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Standard Model Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The need for Beyond Standard Model Physics . . . . . . . . . . . . . . . . . 11

2.3.1 Neutrino masses and oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Baryogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Hints of New Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 A brief hystory of the Standard Model

The SM of particle physics is the theoretical framework that describes the currently known particles

and their interactions. It successfully accounts for three of the fundamental forces of Nature: the

electromagnetic, weak and strong interactions.

After the breakthroughs of Quantum Electrodynamics (QED) [6], which followed from a sys-

tematic understanding of renormalization [7], physicists sought to develop a Quantum Field The-

ory (QFT) that could describe the other fundamental forces. Enrico Fermi proposed a four-fermion

interaction involving the neutron, proton, electron and (at the time) hypothetical neutrino that

accurately described the nuclear β decays [8]. Similar interactions with the same coupling constant

were successful in explaining various processes, including the muon decay and several semi-leptonic

transitions of strongly interacting particles. The electron neutrino emitted in β decays was discov-

ered in 1956 [9], whereas the muonic neutrino involved in the muon decay was observed a few years

later [10].

While the Fermi theory was extremely useful at the leading order, it was found to be non-

renormalizable. The attempts to describe the weak interactions as mediated by a massive vector

coupled to a V −A (vector minus axial) current, which was observed in experiments, encountered

similar unremovable in�nities [11�15]. Weinberg was the �rst1 to propose a renormalizable model of

the electro-weak interactions. The theory featured a local symmetry group SU(2)L ×U(1)Y which

is spontaneously broken down into the QED gauge group U(1)e.m [16]. Upon the spontaneous

breaking of the gauge symmetry, the weak gauge bosons, namely the charged W± and the neutral

Z, acquire their mass from the Brout-Englert-Higgs mechanism [17, 18], leaving the photon γ

1Salam and Glashow proposed the same gauge group to describe the electroweak interactions. However, the weak

gauge bosons masses were added by hand, making the theory non-renormalizable
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massless. Neutral weak currents, although not yet observed, had been postulated long before

Weinberg's model, but his theory predicted that semi-leptonic neutral current transitions would

occur at rates comparable to those of already known charged current processes. This prediction

was soon con�rmed by experimental observations at CERN [19]. Weinberg's model also predicted

the existence of a neutral scalar, which was not discovered until 40 years later.

Around the same time, physicists were searching for a theory of the strong interactions. The

�rst particles known to interact strongly were the constituents of nuclei: protons and neutrons.

Little was known in the 1930s, but Heisenberg introduced the concept of Isospin to explain the

observed symmetry of the nuclear interactions, which seemed identical between protons and neu-

trons. Neutrons and protons also have very similar masses, and were therefore regarded as the

components of a SU(2) isotopic spin doublet, which is an approximate symmetry of the strong

force. The charged pion was discovered by observing cosmic-ray tracks [20] and had the correct

mass to mediate Yukawa-like strong interactions at a range compatible with observations and it

was initially believed to be the mediator of the strong force. In the same year, the "strangely"

long-lived Kaon was discovered [21], and shortly thereafter the neutral pion was also observed [22].

This was followed by a plethora of newly discovered strongly interacting particles (hadrons), shad-

ing doubt on the fundamental nature of the observed "particle zoo". Certain particles (like the

Kaons) that decay electro-weakly were found to be more long-lived than others, and for this reason,

were dubbed "strange". Since strange particles appeared in pairs whenever they were produced by

strong processes, it was hypothesized that strangeness is a quantum number, conserved in strong

transitions but violated by weak interactions with a suppressed Fermi constant [23]. Gell-Mann

observed that the hadrons could be arranged in multiplets of a SU(3) symmetry, generalizing the

SU(2) isotopic spin to include strangeness. The SU(3) group was later understood to be acting

on three di�erent �avours of the fundamental constituents of hadrons, the u (up), d (down) and

s (strange) quarks [24,25]. The suppression of strange particle decay rate was explained by Cabibbo

assuming the weak eigenstate d′ = cos θcd+sin θcs, which couples to the u �avour, to be a superpo-

sition of the �avour eigenstates d and s, suppressing processes that change s→ u by sin θc ∼ 0.22

but leaving approximately una�ected the d→ u transitions [26].

In order to have the correct wave function symmetry for certain fermionic baryons (hadrons

composed of three quarks), it was understood that each �avour of quark should come in three

colors [27]. Evidence of the three colors was later collected from the decay of the neutral pion

and from the deep inelastic scattering e+e− → hadrons. This led to the formulation of Quantum

Chromodynamics (QCD) as the underlying SU(3)c gauge theory that describes the strong inter-

actions. Gross, Politzer and Wilczek demonstrated that the QCD gauge coupling becomes weaker

at high energies, allowing perturbative calculations to be used to test QCD in that regime [28,29].

The coupling's behavior is reversed at low energies, resulting in strong interactions at a scale of

approximately ΛQCD ∼ 200 MeV. The Gell-Mann SU(3) was understood to be an approximate

symmetry of QCD when neglecting the u, d, s quark masses with respect to ΛQCD, scoring another

major success for the theory.

Despite the progress in understanding the strong and electroweak interactions, the theory was

still incomplete. The oscillation between the neutral Kaons, K0 −K0, which changes strangeness

by two units (∆S = 2), could occur by the exchange of pairs of W bosons at a higher rate

than what experimentally allowed. Glashow, Iliopoulos, and Maiani (GIM) proposed a solution to

this problem by introducing a fourth �avor of quark, the charm c, coupled to the weak eigenstate
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Field SU(3)c SU(2)L U(1)Y

q =

(
uL
dL

)
3 2 1

6

u ≡ uR 3 1 2
3

d ≡ dR 3 1 −1
3

ℓ =

(
νL
eL

)
1 2 −1

2

e ≡ eR 1 1 −1

H 1 2 1
2

Table 2.1: Matter content of the Standard Model (one generation). We specify the representation

that each �eld �lls under the SM gauge group SU(3)c × SU(2)L × U(1)Y . Fermions are chiral and

written in the Dirac notation: ψX = PXψ, where PL,R are the left-handed and right-handed chiral

projectors. The electric charge is conventionally de�ned as Q = T 3+Y , where Y is the hypercharge

and T 3 the diagonal generator of SU(2)L

s′ = − sin θcd+cos θcs [30]. The latter is orthogonal to the d
′ = cos θcd+sin θcs mixture introduced

by Cabibbo, and the charm contribution cancels against the diagram with a virtual u, up to terms

suppressed by the charm quark's mass. The mass was estimated to be mc ∼ 1.5 GeV to agree with

the observations, and a c̄c bound state (the J/ψ) with a mass ∼ 2× 1.5 GeV was discovered a few

years later [31, 32].

The need for the charm quark also became apparent for the consistency of the gauge invariance

of the theory, as it was required to cancel the gauge anomalies [33]. At this stage, fundamental

particles were organized into two families or generations, each containing a set of fermions �lling

anomaly-free representations under the gauge group SU(3)c×SU(2)L×U(1)Y . The �rst generation

comprised the u and d quarks, the electron e, and the electron neutrino νe. The second family

included the c and s quarks, the muon µ, and its neutrino νµ. With the discovery of the tau τ

lepton [34], the bottom quark b [35] and the top quark t [36], a third generation of fermions was

added to the SM. Kobayashi and Maskawa expanded the quark mixing matrix �rst introduced by

Cabibbo to account for the third generation, and found a source of CP violation in the irreducible

phase of the resulting 3 × 3 matrix [37]. The GIM mechanism that prevented large contributions

to the K0 − K0 mixing operates as a consequence of the unitarity of the quark mixing matrix,

complemented with a small mixing between the �rst and the heavy third generation.

The successes of the SM continued with the discovery of theW and Z bosons [38,39], and �nally,

the Higgs boson predicted by Weinberg was detected in 2012 at the Large Hadron Collider [40,41],

providing the last missing piece.

2.2 The Standard Model Lagrangian

The Standard Model is a gauge theory based on the gauge group SU(3)c×SU(2)L×U(1)Y , with the

�eld content summarised in Table 2.1. The fermions are divided into three generations or �avours.
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The gauge interactions are �avour-blind and described by the kinetic Lagrangian

Lkin = −1

4
BαβBαβ −

1

4
W aαβW a

αβ −
1

4
GbαβGb

αβ + (DαH)†(DαH) +
∑

f

f̄ i /Df (2.1)

where Bαβ,W
a
αβ, G

b
αβ , with a = 1, 2, 3 and b = 1, · · · 8, are the tensor �eld strength of the gauge

group U(1)Y , SU(2)L, and SU(3)c respectively. The sum in the second term is over all fermions,

and the covariant derivative acting on the representation R ∼ (3, 2)Y is de�ned as

Dα = ∂α + ig′Y Bα + ig
τa

2
W a

α + igs
λb

2
Gb

α (2.2)

where τa are the Pauli matrices, and λb the Gell-mann matrices.

The only �avour-de�ning couplings in the SM are the Yukawa interactions of the fermions with

the Higgs doublet

−LYuk = [Yu]nmq̄nH̃um + [Yd]nmq̄nHdm + [Ye]ij ℓ̄iHej + h.c (2.3)

where H̃ ≡ εH∗, with ε being the anti-symmetric and invariant SU(2)L tensor, and Yu,d,e are 3× 3

complex matrices. Any complex matrix can be diagonalised with a bi-unitary transformation

Yu = Vqu ŶuV
†
u Yd = Vqd ŶdV

†
d Ye = VℓŶeV

†
e (2.4)

where Ŷf are diagonal matrices with non-negative entries. Since the quark doublet �elds couple both

with the up and the down singlets, the up and down Yukawas are not simultaneously diagonalisable.

In a basis where the up Yukawa matrix is diagonal, the down Yukawa can be cast in the following

form

Yd = V †
quVqd Ŷd ≡ VCKMŶd (2.5)

where VCKM is the Cabibbo-Kobayashi-Masukawa (CKM) unitary matrix. In this basis, the Yukawa

couplings are the following

−LYuk = [Ŷu]nnq̄nH̃un + [VCKMŶd]nmq̄nHdm + [Ŷe]iiℓ̄iHei + h.c (2.6)

The kinetic terms respect a �avour symmetry that corresponds to independent rotations in �avour

space of each fermion �eld. This symmetry is broken by the Yukawa Lagrangian

U(3)q ×U(3)u ×U(3)d ×U(3)ℓ ×U(3)e
LYuk−−−→ U(1)B ×U(1)Le ×U(1)Lµ ×U(1)Lτ (2.7)

leaving accidentally unbroken a �avour-independent U(1)B phase rotation of the colored �eld ψ →
eiα/3ψ, where ψ = qi, ui, di for every i, and a phase rotation U(1)Li of each individual lepton

�avour i = e, µ τ , ℓi → eiαiℓi, ei → eiαiei. The corresponding conserved charges associated with

these global symmetries are respectively the Baryon Number (B) and Lepton Flavour (LF). While

the former is compatible with the non-observation of proton decay [42], non-zero neutrino masses

require an extension of the Standard Model that necessarily breaks the lepton �avor symmetries

(see section 2.3.1). These classical symmetries are broken at the quantum level by the triangle

anomalies [43,44], such that the quantum Noether's currents are not conserved

∂αj
α
B = 3× ∂αjαLi

=
3g2

32π2
εαβγδW a

αβW
a
γδ. (2.8)
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Since the term εαβγδW a
αβW

a
γδ can be written as a total derivative [45], the anomalous e�ects are

absent in perturbative calculations, while they appear via non-perturbative topological solutions to

the gauge �eld equation of motion known as instantons [46]. As a consequence, the B/3+Li charge

can be violated via non-perturbative e�ects2, while the di�erence B/3−Li is strictly conserved in

the SM.

The spontaneous symmetry breaking of the electroweak symmetry SU(2)L × U(1)Y → U(1)e.m,

where U(1)e.m is the QED gauge group, is triggered by the Vacuum Expectation Value (VEV) of

the Higgs doublet. The Higgs potential

V (H) = −µ2H(H†H) +
λH
4

(H†H)2 (2.9)

is minimized when 〈
H†H

〉
=

2µ2H
λH
≡ v2 (2.10)

where v ∼ 174 GeV. De�ning the electric charge as Q = T 3 + Y , the QED preserving vacuum

⟨H⟩ =
(
0

v

)
(2.11)

is responsible for the mass of the weak gauge bosons

|DαH|2 ⊃
v2

4

(
Bα W 3

α

)(g′2 g′g

g′g g2

)(
Bα

W 3α

)
+m2

WW
+
α W

−α (2.12)

whereW± = (W 1∓iW 2)/
√
2 are the chargedW bosons, with a mass m2

W = g2v2/2 ∼ (80.4 GeV)2

[47]. The neutral gauge bosons mass matrix is diagonalised after the rotation
(
Aα

Zα

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Bα

W 3
α

)
(2.13)

where tan θW = g/g′, Aα is the massless photon �eld and Zα has a mass m2
Z = g2v2/(2 cos2 θW ) =

m2
W / cos

2 θW . Upon spontaneous symmetry breaking all fermions apart from the neutrinos acquire

a mass from the Yukawa interactions of Eq. (2.6)

−LM = mun ūnPRun + [VCKM]nmmdm d̄nPRdm +mei ēiPRei + h.c where mfi = [Ŷf ]iiv.

The down-type quark gauge (dL) and mass (d′L) eigenstates are misaligned by a CKM rotation

d′L = V †
CKMdL (2.14)

The neutral currents, that do not mix up-type and down-type �elds, are una�ected by a unitary

�avour rotation, while the W± couplings are modi�ed:

Lgauge =−
g√
2

[
W+

α (ūnγ
α[VCKM]nmPLd

′
m + ν̄iγ

αPLei) + h.c
]
− g sin θWAαJ

α
e.m+

− g

2 cos θW
Zα(J

α
ZL + Jα

ZR) (2.15)

2This has no consequence at zero temperature, as the sphalerons (electroweak instantons) transitions are not

e�ective at low energies. However, they could have important consequences in the Early Universe for the generation

of the baryon asymmetry, as we discuss in section 2.3.3
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where g sin θW = g′ cos θW ≡ e is the QED coupling and

Jα
e.m =

∑

f

Qf f̄γ
αf

Jα
ZL = ūnγ

αPLun + ν̄iγ
αPLνi − d̄nγαPLdn − ēiγαPLei

Jα
ZR = −2 sin2 θW

∑

f

Qf f̄γ
αPRf, (2.16)

with Qf being the electric charge of the fermion f . The unitarity of CKM not only prevents the

appearance of tree level Flavour Changing Neutral Currents (FCNC), but it is also responsible for

the GIM suppression ∼ m2
q/m

4
W of FCNC at the loop-level3 [30]. The suppression of FCNC is in

excellent agreement with the experimental observations.

CKM can be parametrised in terms of three angles and one phase4. Introducing the short-hand

notation cij = cos θij , sij = sin θij , the canonical parametrisation reads

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 =



1 0 0

0 c23 s23
0 −s23 c23


×




c13 0 s13e
iδ

0 1 0

−s13eiδ 0 c13


×



c12 s12 0

−s12 c12 0

0 0 1




(2.17)

The mixing angles in the CKM matrix exhibit a distinct hierarchy, where s13 ≪ s23 ≪ s12 ≪ 1,

which can be best appreciated in the Wolfenstein parametrisation [48�50]. Introducing the small

parameter λ, we write

s12 = λ, s23 = Aλ2 (2.18)

s13e
iδ = Aλ3(ρ+ iη) =

Aλ3(ρ̄+ iη̄)
√
1−A2λ4√

1− λ2(1−A2λ4(ρ̄+ iη̄))
(2.19)

having de�ned ρ̄, η̄ such that the matrix written in terms of A, ρ̄, η̄ is unitary to all orders in λ.

The CKM matrix can be expanded up to λ4 order

VCKM =




1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O

(
λ4
)

(2.20)

with the following best-�t values for the parameters [50�52]

λ = 0.22650± 0.000048, A = 0.790+0.018
−0.015 (2.21)

ρ̄ = 0.159± 0.010, η̄ = 0.348± 0.010 (2.22)

Since under CP the charged gauge bosonsW are exchangedW+ CP←→W−, it is clear from Eq. (2.15)

that a non-zero phase of the CKM matrix implies CP violation. Whether a matrix is real or complex

is a basis-dependent statement, while physical observables should depend on basis-invariants. If

3The top contribution to tightly constrained processes, such as K0 − K0 mixing, does not overshoot the rate

despite mt ∼ v because of the small mixing between the �rst and third generation.
4A unitary 3× 3 matrix can be parametrised with three angles and six phases. Out of the six phases, �ve can be

absorbed in �eld rede�nitions, leaving a single physical one
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the up and down Yukawas were simultaneously diagonalizable, CKM would be the identity and no

CP violation would be present. It is thus natural to parametrise CP violation with the commutator

[Yu, Yd]. The determinant is invariant under �avour space rotations and reads

det([Yu, Yd]) =
2i

v2
(mt −mc)(mt −mu)(mc −mu)(mb −ms)(mb −md)(ms −md)× J (2.23)

where, writing VCKM ≡ V to avoid cluttering, for any i, j, k and l

Im(VijVklV
∗
ilV

∗
kj) = J ×

∑

m,n

εikmεjln. (2.24)

J parametrise the magnitude of CP violation and is known as Jarlskog invariant [53]. Considering

the best-�t values for the CKM elements reported above, its value is J = (3.08+0.15
−0.13)× 10−5.

2.3 The need for Beyond Standard Model Physics

Despite being an incredibly successful theory in explaining a wide variety of phenomena, the Stan-

dard Model is incomplete. Several experimental observations and theoretical conundrums call for

its extension. In this section, we discuss the evidence and hints of physics Beyond the Standard

Model.

2.3.1 Neutrino masses and oscillations

As we discussed in the previous section, the SM predicts massless neutrinos. Since the so-called

�solar neutrino problem� of the 1960s, a de�cit [54�59] in the number of electron neutrinos compared

to the prediction of the standard solar model [60�62], neutrino oscillations have been con�rmed by

many observations [63�67] �rmly establishing non-zero masses for at least two neutrinos. Neutrino

oscillations are direct evidence of lepton �avour change, violating the SM symmetry of Eq. (2.7).

Some SM extensions that account for neutrino masses are discussed in Chapter 3. Regardless of

the model details, neutrino masses provide an additional �avour-choosing basis for the leptons and

thus the weak eigenstates νLi (i = e, µ, τ) are a superposition of the mass eigenstates νs, with

s = 1, . . . , n [68, 69]

νLi = Uisνs (2.25)

where U is 3 × n lepton mixing matrix, satisfying UU † = 13×3. As a consequence, lepton �avour

change appears in the charged weak lepton currents

LCC ⊃ −
g√
2
W−

α ēiγ
αPLUisνs + h.c (2.26)

If the massive neutrinos are n = 3, U is the lepton analogue of CKM and is known as the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix [70,71]. It can be parametrised similarly to CKM as

U =



1 0 0

0 c23 s23
0 −s23 c23


×




c13 0 s13e
iδ

0 1 0

−s13eiδ 0 c13


×



c12 s12 0

−s12 c12 0

0 0 1


× P (2.27)
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where the matrix P is the identity if neutrinos have Dirac masses, while it contains two extra phases

for Majorana neutrinos P = diag
(
1 eiα1 eiα2

)
. This is because, with self-conjugate left-handed

neutrinos, fewer relative �eld re-de�nitions can absorb the matrix phases.

Whenever a weak eigenstate is produced via the interactions of Eq. (2.26), the resulting state

is a U weighted superposition of the mass eigenstates

|νLi⟩ = Uis |νs⟩ . (2.28)

The state evolves as the neutrino travels a distance L, and if the mass eigenstates are assumed

to be plane waves, the evolution is |νs(t)⟩ = e−iEst |νs(0)⟩5, where t ∼ L for relativistic neutrinos.

Then, the probability of producing a weak �avour eigenstate νLj with a charged current interaction

in the detector is

P (νLi → νLj) = |⟨νLj |νLi(t)⟩|2 =
∣∣U∗

jlUise
−iEst ⟨νl|νs⟩

∣∣2. (2.29)

We use the orthogonality condition ⟨νl|νs⟩ = δls, expand the energy in the relativistic limit Es ∼
ps+m

2
s/(2Es) and assume that E ≃ Es ∼ ps for every s, to arrive at the oscillation probability [51]

P (νLi → νLj) = δij − 4
∑

l<s

Re(U∗
jlUilUjsU

∗
is) sin

2

(
(m2

s −m2
l )L

4E

)

+2
∑

l<s

Im(U∗
jlUilUjsU

∗
is) sin

(
(m2

s −m2
l )L

2E

)
. (2.30)

If the neutrinos travel through matter, the interactions with the particles in the medium can modify

the e�ective neutrino energy. Although the weak scattering cross sections are small, neutrinos can

scatter coherently with the medium constituents, giving rise to an e�ective mass that depends on

the medium density and composition [74]. These e�ects are particularly relevant when neutrinos

propagate in dense mediums, such as the Earth and the sun. Since the oscillation probability

is sensitive to the energy di�erence, only the charged current interactions are relevant for the

matter e�ects, while the neutral current interactions are �avour universal and do not give rise

to an observable phase di�erence in the neutrino evolution. Considering for instance a medium

composed of ordinary matter, the coherent scattering eνe → eνe modi�es the e�ective Hamiltonian

of the electron neutrino by

Ve =
√
2GFne, (2.31)

where ne is the electron number density and GF the Fermi constant GF = g2/(4
√
2m2

W ) ≃ 1.16×
10−5 (GeV)−2. Note that the e�ective potential for anti-neutrinos scattering o� ordinary matter is

−Ve. The sign of the medium e�ective potential can be particularly important in determining the

sign of neutrino mass di�erences. The Sun produces electron-neutrinos in its core via thermonuclear

reactions. Solar neutrino oscillations exhibit distinct matter e�ects that require a resonant behavior

possible only for a positive di�erence ∆m2
solar = m2

2−m2
1 [75]. The squared mass di�erence ∆m2

atm,

which is ∆m2
solar ≪

∣∣∆m2
atm

∣∣ ∼
∣∣m2

3 −m2
2

∣∣ ∼
∣∣m2

3 −m2
1

∣∣, can be observed in the oscillation of

neutrinos coming from the decays of particles produced by cosmic rays interacting with Earth's

5Several subtleties in the quantum mechanical derivation followed here are being overlooked for brevity. We refer

the reader to more detailed discussions in [72,73]
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atmosphere. The observations are compatible with either sign for ∆m2
atm, leading to two possible

scenarios: m1 < m2 < m3 or m3 < m1 < m2, respectively known as Normal Ordering (NO) and

Inverted Ordering (IO). In the 3ν picture, the lepton matrix mixing angles, the mass squared

Table 2.2: Best-�t values for the neutrino mixing parameters and mass di�erence [76]

di�erences (up to the atmospheric sign) and the Dirac phase δ can be determined by �tting the

neutrino oscillation data [76,77]. The Dirac phase contributes to the CP violating di�erence in the

oscillation probability P (νLi → νLj) and P (νLi → νLj) [78�80]. The best-�t values for the neutrino

parameters are shown in Tab. 2.2.

If the neutrinos are Majorana fermions, the Majorana phases contribute as a source of CP

violation in processes that depend linearly on the neutrino masses, hence not in oscillation where

the dependence is quadratic. Whether neutrinos are Dirac or Majorana could be determined with

the observation of lepton number violating transitions. The most sensitive of such processes is the

neutrinoless double β decay (0ν2β)

(A,Z)→ (A,Z + 2) + 2e−. (2.32)

The corresponding Feynman diagram is shown in Fig. (2.1), where a Majorana mass insertion is
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Figure 2.1: Feynman diagram for the neutrinoless double β decay mediated by Majorana neutrinos

Figure 2.2: Allowed values for the matrix element mee de�ned in Eq. (2.34) entering in the neu-

trinoless double beta decay rate. The red and blue regions correspond to NO and IO respectively.

Figure taken from [51], with ranges obtained projecting the results of the analysis in [83]

necessary to close the virtual neutrino line. The squared amplitude takes the following form

|A0ν2β|2 ∼ |M0ν2β|2 ×m2
ee mee =

∣∣∣∣∣
∑

s

msU
2
es

∣∣∣∣∣ (2.33)

where M0ν2β is the nuclear matrix element. The e�ective Majorana mass mee depends on the

neutrino parameters, including the Majorana phases

mee =
∣∣∣c213c212m1 + eiα1c213s

2
12m2 + ei(α2−2δ)s213m3

∣∣∣ (2.34)

We show in Figure 2.2 the allowed ranges for mee for the two di�erent ordering. Since in the

NO scenario mee can vanish for speci�c choices of the lightest neutrino mass m1 and phases, the

non-observation of 0ν2β cannot rule out the possibility of Majorana neutrinos, while a positive

signal may disprove the Dirac nature. On the other hand, inverted ordering could be ruled out by

0ν2β searches, given that m
(IO)
ee > 0.016 eV. The most stringent bounds on the neutrinoless double

beta decay are given by the GERDA (76Ge) and KamLAND-Zen (136Xe) collaborations, respectively

setting the lower bounds on the half-lives T 0ν2β
1/2 (76Ge) > 1.8×1026 yr and T 0ν2β

1/2 (136Xe) > 1.07×1026
yr [81,82].
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2.3.2 Dark Matter

The need for physics BSM is also supported by the observation of Dark Matter (DM). Cosmological

and astrophysical data are consistent with the standard model of cosmology (ΛCDM), which is

based on Einstein's theory of general relativity and parametrises the Universe's composition with

a cosmological constant Λ, the abundance of ordinary matter (baryonic and radiation), and of cold

dark matter. The presence of a non-baryonic and non-relativistic (cold) matter component has

been evident since 1933, when Zwicky calculated the total mass of galaxy clusters using the Virial

Theorem. He found that the mass was greater than the contribution of baryonic matter, which can

be estimated via its luminosity [84].

Evidence of dark matter also comes from the observed circular velocities of stars in spiral

galaxies. Under the e�ect of gravity, velocities should experience a Keplerian fall-o� vc ∼ r−1/2

at large distances r from the galactic centre. Instead, the circular velocity plateaus to a roughly

constant value [85,86], which can be explained by an invisible halo of dark matter surrounding the

galaxy.

Another strong motivation for dark matter comes from measurements on the Cosmic Microwave

Background (CMB). The density �uctuations of baryonic matter observed from the CMB are too

small to account for the observed matter power spectrum, which is consistent with the presence of

a dominant cold dark matter component. Planck results are compatible with an abundance of DM

comprising ∼ 84% of the total matter density, which accounts for 31.5% of the energy budget of

the Universe, with the cosmological constant accounting for the remaining 68.5% [87]. Despite the

gravitational e�ects of DM provide conclusive evidence of its existence, and many BSM theories

and production mechanisms have been proposed to account for the observed abundance, DM has

never been detected in a particle physics experiment [51].

2.3.3 Baryogenesis

Observations show that our Universe is primarily composed of ordinary matter, mainly protons and

neutrons, with a negligible presence of antimatter. The matter-antimatter asymmetry is measured

by the η parameter, de�ned as

η ≡ nb − nb̄
nγ

∼ 6.1× 10−10 (2.35)

where nb, nb̄ and nγ are the number densities of baryons, anti-baryons and photons respectively.

η can be measured via the CMB temperature �uctuations or via the abundance of light elements

that are produced during the Big Bang Nucleosynthesis (BBN) [87,88].

The possibility of having a �ne-tuned primordial excess of baryons over anti-baryons that would

give rise to the asymmetry is disfavored by in�ation, as it tends to erase any initial condition.

To generate dynamically the Baryon Asymetry of the Universe (BAU), three conditions must be

satis�ed [89]:

1. Baryon number is violated;

2. C and CP are violated;

3. Departure from thermal equilibrium.
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While these conditions are met in the Standard Model, they are still insu�cient for successful

baryogenesis. The CP violation in the SM arising from the CKM matrix phase and parametrised

by the Jarlksog invariant of Eq. (2.24), is too small to account for the observed asymmetry [90�93].

Furthermore, the electroweak phase transition is shown to be a smooth cross-over [94�98] for a

Higgs mass mH ∼ 125 GeV [99, 100], while electroweak baryogenesis would require a strong �rst-

order transition. Several extensions of the SM have been proposed to achieve baryogenesis [101].

The BAU can be connected to the neutrino mass problem if the baryon asymmetry is obtained

via Leptogenesis, where a lepton asymmetry is given by the out-of-equilibrium decay of a sterile

neutrino and transferred to the baryons via the electroweak sphalerons [102].

2.3.4 Hints of New Physics

Beyond the experimental evidence of New Physics (NP) that we discussed so far, many theoretical

considerations and puzzles can hint towards BSM physics. These include:

� The hierarchy problem

The Higgs boson in the SM is a fundamental scalar and its mass is potentially sensitive to

unknown UV physics. The hierarchy problem is not a problem of the SM, but it is of generic

models with heavy states that couple with the Higgs. Corrections to the Higgs mass can arise

via loops of heavy particles, having the schematic form

δm2
H ∼

Λ2

16π2
(2.36)

where Λ is the mass scale of the UV physics. If Λ ≫ v, observations would require that the

tree-level bare mass of the Higgs m2
H cancel almost exactly with the loop corrections, leaving

a remnant small mass close to the electroweak scale

(mobs
H )2 ∼ m2

H + δm2
H ∼ v2. (2.37)

If the UV physics lies at the Planck scale Λ ∼MPl = 1.9× 1019 GeV, the scale separation is

v/MPl ∼ 10−17 and the �ne-tuning required in the cancellation is extreme. Fermion masses

do not su�er from similar dangerous UV contributions because they are only logarithmically

sensitive to the UV physics, given that the chiral symmetry forces the loop corrections to be

proportional to the tree-level mass. Small fermion masses are therefore technical natural6.

The hierarchy problem motivates the expectation of �nding NP close to the electroweak scale

and has led to a variety of proposals to protect the Higgs mass from UV physics contributions.

Most notably, Supersymmetry (SUSY) is a space-time symmetry that relates bosons and

fermions [104�108], making the bosons inherit the protection mechanism provided by the

chiral symmetry. Some supersymmetric extensions of the SM are discussed in Chapter 3. For

a more detailed discussion on the possible BSM directions to address the Hierarchy problem,

we refer the reader to [109] and references therein.

6We refer to technical naturalness as de�ned by t'Hooft [103], which states that a small parameter c is technically

natural whenever the limit c → 0 enhances the symmetry of the theory.
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� Strong CP problem

The apparent absence of CP violation in strong interactions constitutes another puzzle. The

QCD gauge invariance allows for the following CP odd terms involving the gluon �elds

Lθ = θ
g2s

32π2
εαβγδGb

αβG
b
γδ (2.38)

whose non-trivial e�ects are given at the non-perturbative level by the instanton solutions.

The θ parameter is necessary for a gauge invariant de�nition of the QCD vacuum [110] and

the Lagrangian term of Eq. (2.38) is also a consequence of a building block of QFT, i.e the

cluster decomposition principle [111].

Imaginary mass terms are additional sources of CP violation7, and since a chiral transforma-

tion acting on a quark �eld q

q → eiαγ5q (2.41)

a�ect both the mass phase and the θ term via the chiral anomaly, the physical basis-

independent parameter θ̄ is a combination of the QCD vacuum parameter and the mass

phases. In the SM, the invariant CP angle is equal to

θ̄ = θ + arg det(YuYd). (2.42)

The most sensitive observables to CP violation in the strong interactions is the electric dipole

moment of the neutron dn, which is yet to be observed dn < 2.2 × 10−26 e cm (95 % CL)

[112]. The contribution to dn sensitive to θ̄ is calculated in Chiral Perturbation Theory to

be [113,114]

dn ∼ 6× 10−16 θ̄ e cm (2.43)

requiring θ̄ ≲ 10−10. Why should θ̄ be so small and potentially zero is the essence of the

Strong CP problem. Arguably, the most popular solution to the Strong CP problem is

the one proposed by Peccei and Quinn [115, 116]. They showed that in the presence of an

extra chiral symmetry U(1)PQ acting on some quark �elds, CP would be conserved. It was

later realized by Weinberg and Wilczeck that the Peccei-Quinn solution would require the

spontaneous symmetry breaking of the U(1)PQ to allow for massive quarks, predicting a light

pseudo-goldstone boson, dubbed `axion' 8 [117, 118]. The axion solution relies on the QCD

anomaly of the U(1)PQ chiral symmetry, which generates an axion-gluon-gluon coupling with

the same structure of the θ term in Eq. (2.38), e�ectively promoting θ to a dynamical �eld.

As a consequence of the Vafa-Witten theorem [119], the axion expectation value conserves

CP.

In the original Peccei-Quinn model, the breaking scale fa of U(1)PQ coincided with the elec-

troweak scale, a possibility that was soon ruled out by experiments. The so-called invisible

7The mass Lagrangian

mqqLqR +m∗
qqRqL (2.39)

can be written as (
mq +m∗

q

2

)
q̄q +

(
mq −m∗

q

2

)
q̄γ5q. (2.40)

The second term, non-zero only if mq −m∗
q ̸= 0, is CP-odd.

8After a brand of laundry detergent
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Figure 2.3: Observed hierarchy in the fermion masses and the �avour mixing matrices in the SM

minimally extended to account for neutrino masses. In the CKM and PMNS elements, the color

shade represents the magnitude (darker colors correspond to larger values)

axion models [120�122], where fa ≫ v, are still viable. Invisible axions are also excellent DM

candidates [123�125]. For a detailed theoretical and experimental review on invisible QCD

axion models, see [126].

Other solutions to the strong CP problem assume CP to be a symmetry in the UV, which is

spontaneously broken and communicated to the SM via messenger �elds. The main di�culty

is in generating a large CKM angle while having a small θ QCD, leading to involved model-

building. The �rst proposals in this direction were put forward by Nelson and Barr [127�129]

� Flavour Puzzle

The SM exhibits a highly non-generic pattern in the observed fermion masses and �avour

mixing matrices, as represented in Figure 2.3. The SM fermion masses span 12 orders of

magnitude, ranging from the neutrino mass scale mν ≲ 0.1 eV to the top mass mt ∼ 172 GeV,

displaying a distinct hierarchy between the generations. Quark �avour mixing is parametrised

by a nearly diagonal CKM, with a small mixing between heavy and light quarks. PMNS, which

parametrises the lepton mixing introduced by the neutrino masses, features a �democratic�

hierarchy, with mostly large angles except for θ13.

The SM �avour structure may be the hint of an underlying �avour symmetry of BSM physics.

Froggatt and Nielsen famously proposed to explain the quark masses and CKM elements

hierarchies as being controlled by powers of the breaking parameter of a U(1)FN �avour

symmetry [130]. The `�avon' scalar �eld S acquire a VEV ⟨S⟩ that breaks spontaneously
the abelian �avour symmetry. The U(1)FN breaking is communicated to the SM fermions

integrating out Froggatt-Nielsens states with a massMFN, contributing to the fermion masses

and mixing angles as ∼ εn, where ε = ⟨S⟩ /MFN is taken to be close to the Cabibbo angle

ε ∼ λ ∼ 0.2 and n depends on the FN charges. Charge assignments that lead to realistic

quark (lepton) masses and mixing angles are for example discussed in [131].

The peculiar �avour structure of the SM is also responsible for the suppression of a variety
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of processes in excellent agreement with the observations, most notably regarding FCNC.

The experimental picture surrounding FCNC suggests that generic �avour structure for BSM

would require a scale of NP in some cases many orders of magnitude larger than the elec-

troweak scale, in contrast with the naturalness expectation motivated by the observed Higgs

mass. Inspired by this problem, the Minimal Flavour Violation (MFV) hypothesis postulates

that any �avour change of BSM physics must be linked to the known structure of the Yukawa

matrices [132]. Other models attempting to solve the �avour puzzle can be found in [133].

In addition to these theoretical puzzles, some yet not conclusive experimental observations provide

hints of new physics and have inspired several BSM proposals.

� gµ − 2

A long-standing discrepancy is observed between the experimental value and the SM pre-

diction for the anomalous magnetic moment of the muon. The muon magnetic moment is

de�ned as

µ⃗µ = gµ

(
e

2mµ

)
S⃗µ (2.44)

where S⃗µ is the muon spin. Quantum e�ects correct the prediction gtreeµ = 2 given by the

tree-level Dirac equation, which are calculated in the SM to yield [134]

aSMµ ≡ 1

2
(gSMµ − 2) = 116591810(43)× 10−11. (2.45)

The muon magnetic moment has been recently measured at the Fermilab National Accelerator

Laboratory (FNAL) Muon g-2 Experiment [135], which, combined with the previous result

obtained at the Brookhaven National Laboratory [136], gives a 4.2σ discrepancy with the

theoretical prediction

aexpµ − aSMµ = (251± 59)× 10−11 (2.46)

Although an impressive number of new physics models have been proposed to explain the

discrepancy, the SM prediction is debated. The main source of uncertainty is the contribution

of the hadronic vacuum polarization aHPV
µ to the muon anomalous magnetic moment, which

can be extracted via σ(e+e− → hadrons) data and dispersive relations, but can also be

calculated on the lattice. The lattice results predict a milder deviation from the experimental

value [137�139].

� B meson anomalies

A series of deviations from the SM predictions have been observed in the semi-leptonic decays

of B mesons. These include discrepancies in the ratio of processes controlled by the underlying

charged-current quark transitions b→ cℓν,

RD(∗) =
Br(B → D(∗)τν)

Br(B → D(∗)lν)
(2.47)

where l can be e or µ. The SM prediction does not su�er from hadronic uncertainties because

they largely cancel in the ratio. Including the latest measurements, the observed discrepancy

in RD(∗) amount to a 3.1σ deviation [140]. Anomalies with a similar statistical signi�cance are
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observed in the neutral current transitions b→ sµµ, however, the theoretical predictions are

contaminated by the hadronic uncertainties. The ratios of neutral current transitions b→ sll

RK(∗) =
Br(B → K(∗)µµ)

Br(B → K(∗)ee)
, (2.48)

have also shown deviations from the lepton �avour universal prediction of the SM, but they

were not con�rmed by the latest results [141].
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3.1 Introduction

As we discussed in the previous chapter, the Standard Model de�ned with left-handed neutrinos

conserves the lepton �avour. The observation of neutrino oscillations provided clear evidence of

non-zero neutrino masses and mixing angles, demonstrating that lepton �avour is not a symmetry

of nature.

Charged Lepton Flavour Violation (CLFV) (or LFV), de�ned as a short-range interaction among

the charged leptons that change �avour, is therefore expected to occur but it is yet to be observed. If

neutrinos get Dirac masses via the renormalizable Yukawa interactions with the Higgs, the predicted

rates for CLFV are typically GIM suppressed G2
Fm

4
ν∼10−50 and are practically unobservable. A

detection of CLFV would thus be a clear signature of new physics that could shed a light on the

origin of neutrino masses.

Additionally, lepton �avor is an accidental symmetry of the SM that is respected by the most

general Lagrangian with gauge invariant renormalizable interactions. Thus, SM extensions that are

motivated independently from neutrino masses can easily introduce extra sources of lepton �avour

violation and lead to sizeable CLFV rates.

For these reasons, experimental searches of CLFV attract great interest and are a valuable tool

in identifying viable BSM scenarios. CLFV searches can pinpoint theories at energy scales currently

not directly accessible by the collider facilities. Null results from the current experiments signi�-

cantly constrain the parameter space of new physics models, and the improvements in sensitivity

by several orders of magnitude, especially in the µ→ e sector, will further probe BSM physics.
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In this chapter, we present an overview of the theoretical and experimental status of CLFV,

mostly based on [1]. Excellent reviews on the topic can be found in the literature [142�146]. In

Section 3.2, we discuss several SM extensions that could be potentially probed in the upcoming

CLFV experimental searches. We only review heavy new physics models, as this is the focus of

the original work discussed in this thesis. We discuss the LFV phenomenology of models that

generate neutrino masses at tree and loop level, and we present the CLFV signatures of di�erent

BSM scenarios, such as the two Higgs doublets model and the supersymmetric SM.

In Section 3.3, the state of the art and the upcoming experiments looking for CLFV processes

are discussed. A particular emphasis is given to those looking for rare muon CLFV decays. Several

facilities around the world (Fermilab, PSI and J-PARC) already started building or commissioning

new generation experiments with improved sensitivity on the muon CLFV searches (up to four

orders of magnitude). This is possible thanks to improvements in the acceleration techniques,

necessary to deliver beam with intensity ∼1010 µ/s, and novel detector technologies. The same

section also provides an overview of the current best limits achieved on the tau CLFV branching

ratios set by general-purpose experiments at e+e− and pp colliders. Also on the tau front, an

improved sensitivity on several searches is expected thanks to the unprecedented luminosity of the

Large Hadron Collider at CERN and the SuperKEKB collider at KEK laboratory

3.2 Theory review

3.2.1 CLFV in models that generate neutrino masses at Tree Level

If we assume the presence of three right-handed neutrinos νRi which are singlets of the SM gauge

group, gauge invariance allows for Yukawa couplings between the lepton and the Higgs doublets

that generate Dirac masses for neutrinos when electroweak symmetry is spontaneously broken

−Lν = [Yν ]ij ℓ̄iH̃νRj + h.c. (3.1)

To obtain neutrino masses that are compatible with cosmological constraints
∑
mν ≲ 0.12 eV [87],

neutrino Yukawa couplings must be Yν ≲ O
(
10−12

)
. Although small Yukawas are technically

natural, Dirac masses require a strong hierarchy between the charged and neutral lepton Yukawa

sector.

Analogously to CKM, the PMNS matrix is the result of the misalignment between charged

lepton and neutrino mass basis, as the neutrino and charged lepton Yukawas cannot be simultane-

ously diagonalized respecting the electroweak gauge symmetry. Flavour violation is parameterized

by presence of the PMNS matrix in the charged lepton current

LCC ⊃ −
g√
2
W−

α Uij ēiLγ
αν ′jL + h.c (3.2)

where ν ′L are the neutrino mass eigenstates. Charged lepton �avor violation is consequently medi-

ated by the �avor-changing interactions in Equation (3.2). In Figure 3.1, we show a representative

diagram for the decay µ→ eγ. The amplitude of this process can be generically cast in the following
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form1:

M(µ→ eγ) = ūe(pe)(mµ(ARPR +ALPL)iσαβq
β + (BRPR +BLPL)qα+ (3.3)

+ (CRPR + CLPL)γα)uµ(pe + q)ε∗α(q)

=Mαε
∗α(q)

where AX , BX and CX are complex numbers. As a consequence of QED gauge invariance, the

amplitude satis�es the Ward identity qαMα = 0. On-shell spinors obey the equation of motion

(/p−m)u(p) = 0, and the Ward identity requires

mµ(CRPR + CLPL)−me(CRPL + CLPR) + q2(BRPR +BLPL) = 0 (3.4)

which, for on-shell photons q2 = 0, has the unique solution CR = CL = 0. The only relevant term

is a dipole transition

M(µ→ eγ) = ūe(pe)
[
iσαβq

βmµ(ARPR +ALPL)
]
uµ(pe + q)ε∗α(q) (3.5)

which is chirality-�ipping and, thus, proportional to the muon mass (if we neglect the electron

mass). Equation (3.5) yields the following decay rate [142]:

Γ(µ→ eγ) =
m5

µ

16π
(|AL|2 + |AR|2) (3.6)

µ
U∗
µi Uei

e

γ

νiL

W W

Figure 3.1: µ→ eγ mediated by massive neutrinos νiL.

In the diagram of Figure 3.1, the outgoing electrons are left-handed and only AR is non-zero2.

The amplitude is proportional to the internal neutrino propagator, which can be expanded for small

neutrino masses as

∑

i

U∗
eiUµi

(k2 −m2
i )

=
∑

i

U∗
eiUµi

k2
+
∑

i

U∗
eiUµi

k2

(
m2

i

k2

)
+O

(
m4

i

k4

)
. (3.7)

We see that the leading term vanishes due to PMNS unitarity, and the amplitude is GIM

suppressed by the square of neutrino masses. Indeed, the process is analogous to a �avor-changing

neutral current in the quark sector, which features a similar GIM suppression by CKM unitarity.

The calculation is done in [148] in the Rξ gauge, where additional diagrams replacing W with the

1see, for instance, Chapter 6, Section 6.2 of [147]
2AL is zero in taking the limit me → 0
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charged Goldstones must be included. All diagrams are �nite and in the unitary gauge limit ξ →∞;

only the diagram of Figure 3.1 is non-zero. Dividing by the rate Γ(µ→ eνν̄) = G2
Fm

5
µ/192π

3 of the

dominant LF conserving three-body decay, the resulting branching ratios for µ→ eγ is [149�153]

Br(µ→ eγ) =
3αe

32π

∣∣∣∣∣
∑

i

U∗
eiUµi

m2
i

M2
W

∣∣∣∣∣

2

. (3.8)

Rewriting the sum as

∑

i

U∗
eiUµi

m2
i

M2
W

= U∗
e2Uµ2

∆m2
21

M2
W

+ U∗
e3Uµ3

∆m2
31

M2
W

(3.9)

and substituting the best-�t values of the mass di�erences and mixing parameters, the predicted

branching ratios for the LFV µ → eγ is Br(µ → eγ) = 10−54 − 10−55, which lie beyond any

foreseeable experimental reach. In models with Dirac neutrino masses, rates of other LFV processes

are similarly GIM suppressed and, thus, too small to be observable.

The right-handed neutrinos are sterile, i.e., neutral under the SM gauge group, so SM gauge

invariance allows for a lepton number violating Majorana mass term

−Lν = [Yν ]ij ℓ̄iH̃νRj +
1

2
[MR]ijνciRνjR + h.c. (3.10)

having de�ned νc = Cν̄T , where C is the Dirac charge conjugation matrix [154]. Majorana mass

matrices are symmetric because fermion �elds are anti-commuting and the charge conjugation

matrix C is antisymmetric. Upon electroweak symmetry breaking, the mass Lagrangian can be

cast in the following form (suppressing generation indices)

−Lν =
1

2
N cMNN + h.c where MN =

(
0 MD

MT
D MR

)
(3.11)

where N =
(
νcL νR

)T
and MD = vYν . If we assume that the Majorana masses MR are much

larger than the Dirac masses (symbolically MR ≫ MD), the matrix can be put in block diagonal

form that disentangles the light and heavy neutrinos [155]

W TMNW =

(
Mν 0

0 Mheavy

)
,

(
νcL
νR

)
=W

(
νclight
νheavy

)
(3.12)

where W is a unitary matrix. At leading MDM
−1
R order, the mass matrices are

Mheavy =MR Mν = −MDM
−1
R MT

D (3.13)

Assuming ∼ O(1) Yukawas, light neutrinos masses can be explained by Majorana masses close

to the grand uni�cation scale MR ∼ 1015 GeV. This is the celebrated seesaw mechanism [156],

speci�cally known as type I when the SM is extended with singlet right-handed fermions.



3.2. Theory review 27

A unitary U∗ diagonalizes the symmetric Majorana matrixMν with a congruence transformation

U∗TMνU
∗ = M̂ν = diag

(
m1 m2 m3

)
, but U is not the matrix that appears in the charged

currents. De�ning U ≡ U ⊗ 1heavy as acting on the light neutrinos subspace, gauge interaction and

mass basis are related by (
νcL
νR

)
=WU∗

(
νclight
νheavy

)
, (3.14)

where the matrix W can be expanded at second order as [155]

W =

(
1− 1

2B1B
†
1 B1

−B†
1 1− 1

2B
†
1B1

)
with B1 = (M−1

R MT
D)

† = v(M−1
R Y T

ν )†. (3.15)

The left-handed weak eigenstates are related to the light mass eigenstates via a non-unitary

matrix U ′

νL = U ′νlight =

(
1− 1

2
(B1B

†
1)

∗
)
Uνlight =

(
1− v2

2
Yν

1

M †
RMR

Y †
ν

)
Uνlight (3.16)

Lacking unitarity, the GIM suppression no longer operates substituting the U ′ matrix in Equa-

tion (3.7), and the rate of µ→ eγ becomes [148,157]

Γ(µ→ eγ)

Γ(µ→ eνν̄)
=

3αe

32π

∣∣∣
∑

i U
′∗
eiU

′
µiF (xi)

∣∣∣
2

(U ′U ′†)ee(U ′U ′†)µµ
(3.17)

where xi = m2
i /M

2
W and F (xi) is a loop function that can be expanded for xi ≪ 1 as F (xi) ≃

10/3− xi. CLFV processes can thus constrain departures from the unitarity of the PMNS matrix

[158]. Substituting the typical value y2ν ≃ mνMR/v
2, GIM suppression is replaced by the ratio

mν/MR, which for GUT scale sterile neutrinos predict rates that are nonetheless well below future

experimental sensitivity. Seesaw models can predict sizeable CLFV rates if the Majorana right-

handed masses are closer to the electroweak scale. In the non-supersymmetric seesaw, this is also

desirable to avoid large correction to the Higgs mass [159]. However, in a generic setup with TeV

scale MR and unsuppressed CLFV rates, �ne-tuned cancellations are required in Equation (3.13)

to explain neutrino masses. Fine-tuning is, of course, avoided if a symmetry principle forces the

neutrino mass to be small despite having large Yukawa couplings. Observe that neutrino masses are

a lepton number violating e�ect ∼ YνM
−1
R Y T

ν , while the non-unitary matrix that governs CLFV

rates is lepton number conserving ∼ YνM
−2
R Y †

ν . It is possible to suppress neutrino masses by

invoking a small breaking of lepton number conservation while keeping the masses of the sterile

neutrinos su�ciently close to the electroweak scale and with no need for small Yukawa couplings.

This is, for example, achieved in the inverse seesaw [160,161], naturally leading to quasi-degenerate

pairs of sterile neutrinos [162�164].

The seesaw formula can be understood as the result of integrating out the heavy neutrinos. A

more general discussion on E�ective Field Theories can be found in Chapter 4. The relevant s and

t channel diagrams are shown in Figure 3.2 and match onto the dimension �ve Weinberg operator

Ld=5 =
1

2
C5
ij(ℓ̄iH̃)(ℓcjH̃) + h.c (3.18)
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with the coe�cient C5 = YνM
−1
R Y T

ν . When the Higgs doublet gets a VEV, neutrinos acquire

Majorana masses via the Weinberg operator Mν ≡ −v2C5 = −MDM
−1
R MT

D, which agree with

Equation (3.13). Moreover, the following dimension six operator is generated

Ld=6 = C6
ij(ℓ̄iH̃)i/∂(H̃†ℓj), (3.19)

with a coe�cient C6 = YνM
−1†
R M−1

R Y †
ν , which corrects the light neutrinos kinetic terms. The

rede�nition needed to canonically normalize the �elds introduce a non-unitary matrix in the charged

currents [165]

νL → (δij + v2C6
ij)

−1/2νL → LCC = − g√
2
W−

α

∑

i=e,µ,τ
j=1,2,3

(
δik −

v2

2
C6
ik

)
Ukj ēiLγ

ανjL + h.c (3.20)

which again agrees with Equation (3.16). The advantage of an e�ective �eld theory description

is that di�erent seesaw scenarios can be described at low energy in a common framework. In

Figure 3.3, we show how extending the Standard Model with particles transforming in di�erent

representations of the SM gauge group can generate Majorana neutrino masses via the Weinberg

operator. Recent e�ective �eld theory analysis of type I and type II seesaw models include the

complete one-loop matching onto e�ective operators [166,167], providing useful resources to study

the low-energy CLFV signatures. For more complete reviews on the CLFV phenomenology of

seesaw models, we refer the reader to [165,168].

ℓi

HI HJ

ℓj
νR

ℓi HJ

HI ℓj

νR

Figure 3.2: Matching contributions to the Weinberg operator in type I seesaw.

ℓi

HI HJ

ℓj
Σ

HI HJ

ℓi ℓj

∆

Figure 3.3: Seesaw Majorana neutrino masses generated by integrating out a heavy scalar triplet

∆ (type II) or a heavy fermion triplet Σ (type III).
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3.2.2 CLFV in models that generate neutrino masses at loop level

New physics not too far from the electroweak scale can account for small neutrino masses if they

are generated radiatively via loop diagrams. As a speci�c example, the so-called scotogenic model

[169] extends the SM with an additional scalar doublet η (with hypercharge Yη = 1/2) and three

generations of sterile neutrinos N . The new particles are assumed to be odd under a discrete Z2

symmetry, which forbids Yukawa couplings with the SM Higgs between lepton doublets and the

sterile neutrinos, as well as constraining the possible interactions in the scalar potential. The Z2 is

also responsible for keeping stable the lightest new particle, which, if neutral, provides a potential

dark matter candidate. Omitting the kinetic terms, the scotogenic Lagrangian reads 3

Lsc = LSM +

(
[Yη]ij ℓ̄iη̃Nj −

MNi

2
N c

iNi + h.c

)
− V (H, η) (3.21)

where the scalar potential is

V (H, η) = m2
hH

†H +m2
ηη

†η +
λ1
2
(H†H)2 +

λ2
2
(η†η)2 + λ3(H

†H)(η†η)

+ λ4(H
†η)(η†H) +

λ5
2

[
(H†η)2 + (η†H)2

]
. (3.22)

To preserve the Z2 symmetry when the electroweak symmetry is spontaneously broken, the

potential parameters must be such that the η �eld does not acquire a VEV. We also assume that

all parameters in the potential are real and CP is conserved. With this assumption, the real and

imaginary parts of the uncharged component η0 = (ηR + iηI)/
√
2 do not mix. The mass splitting

between the two neutral scalars is proportional to λ5v
2, consequently ηR,I are approximately de-

generate in the limit λ5 ≪ 1. Note that the lepton number is conserved if λ5 is zero so that small

values are technically natural.

The Z2 symmetry prevents the appearance of tree-level Majorana masses for the left-handed

neutrinos, but it can generate them at the one-loop level via the λ5 mixing of η with the SM Higgs

doublet, as shown in the diagram of Figure 3.4. The resulting neutrino mass matrix is calculable,

and, for λ5 ≪ 1 (m0 = mηR ∼ mηI ), can be approximated as [169]

[Mν ]ij ≃
2λ5YηikYηjkv

2

16π2MNi

[
M2

Nk

m2
0 −M2

Nk

+
M4

Nk

(m2
0 −M2

Nk
)2

log

(
M2

Nk

m2
0

)]
. (3.23)

Contrary to the traditional seesaw scenario, the extra suppression ∼ λ5/(16π
2) can predict

small values of mν with TeV scale sterile neutrinos and unsuppressed Yukawa couplings. The

CLFV signature of the scotogenic model has been studied with particular attention to li → ljγ

processes [170�172], while the phenomenology of li → ljlklm and µ → e conversion in nuclei have

also been discussed [173]. In Figure 3.5, we show a selection of diagrams giving contributions to

CLFV processes at the one-loop level.

3it always possible to diagonalize the symmetric Majorana mass matrix of the sterile neutrinos with no loss of

generality
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ℓi
λ5

ℓj

HIHJ

N

η η

Figure 3.4: Radiative neutrino mass in the scotogenic model. The loop and λ5 suppression allow

for TeV−scale new physics and small neutrino masses.
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η− η−
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η− η−
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Figure 3.5: CLFV processes in the scotogenic model. From left-to-right: (a) Diagrams contributing

to the li → ljγ rate. (b) Box diagrams contributing to the li → lmlnlj rate. (c) Penguin diagrams

contributing to the li → ljlklk rate and µ→ e conversion rate (f can be a quark or a lepton).

Part of the parameter space of the scotogenic model is excluded by the current experimental

LFV searches, while the viable region can give branching ratios within upcoming experimental

sensitivities and will be probed in the near future. It is often the case that li → ljγ is the most

constraining LFV channel because the dipole (Figure 3.5a) contribution to the photon penguin

(Figure 3.5c) can dominate the amplitude of li → lj f̄f , leading to the following relation [174]

Br(li → 3lj) ∼
αe

3π

(
2 log

(
mli

mlj

)
− 11

4

)
Br(li → ljγ) (3.24)

However, the box contribution (Figure 3.5b) can be larger than the photon penguin diagram for

a mass of the lightest neutrino close to the cosmological upper limit ∼ 0.1 eV (Figure 3.6) so that

upcoming µ→ 3e searches can constrain the model orthogonally to the MEG bound on µ→ eγ. In

addition, the penguin diagram of Figure 3.5c mediates LFV interactions with quarks, contributing

to the rate of µ→ e conversion in nuclei (we brie�y review the µ→ e conversion rate calculation in

Appendix A). When the dipole dominates the penguin amplitude, µ → e conversion experimental

reach is not competitive with µ→ eγ searches4, given that

Br(µ→ eγ)

Br(µN(A,Z)→ eN(A,Z))
∼ f(A,Z)× 102 (3.25)

where f(A,Z) is a nucleus dependent factor that is ∼ O(1) for the targets used in experiments [142].

As shown in the right plot of Figure 3.6, the scaling of Equation (3.25) is satis�ed for small mN/mη

ratios, while the non-dipole penguin amplitude can come to dominate for larger mN/mη values.

4although with the future branching ratios sensitivity Br(µA → eA) ∼ 10−16, µ → e conversion might be able to

probe smaller dipole coe�cients than MEG II with Br(µ → eγ) ∼ 6× 10−14
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The upcoming µ → e conversion searches will be a valuable probe for this region of parameter

space [175].

Figure 3.6: The plots show some CLFV branching fractions in the scotogenic model: in the left plot

the prediction for Br(µ→ eγ) and Br(µ→ 3e) for degenerate sterile neutrino masses mN = 4 TeV

and mη+ = 1 TeV, varying the mass of the lightest neutrino (normal ordering); in the right �gure

Br(µ→ eγ) and Br(µ→ e) conversion as a function of (mN/mη+)
2. The dashed lines correspond

to the current experimental upper limit. Yukawas Yη compatible with neutrino parameters are

randomly generated (Figure from [173]).

Another popular model that can generate neutrino masses at loop level is the Zee-Babu Model

[176,177], where the SM is extended with two SU(2) singlet and charged scalars k+, k++ and allow

for the Lagrangian terms

LZB ⊃ f+ij ℓciIεIJℓjJk+ + f++
ij eciejk

++, (3.26)

where εIJ is the anti-symmetric SU(2) tensor. Lepton number is not conserved and neutrino

masses are generated at the two-loop level, while the interactions also violate lepton �avor. The

CLFV phenomenology of the Zee-Babu model has been studied in [178�180]. For other models that

generate neutrino masses at the loop level and their CLFV signatures, we refer the reader to [181].

3.2.3 Two Higgs Doublet Model

One simple extension of the Standard Model features an additional scalar doublet H2, which is

commonly known as the Two-Higgs Doublet Model (2HDM) (for a review see [182]). A second

Higgs is strongly motivated by supersymmetry, where one Higgs cannot give masses to all fermions

and the second Higgsino, the superpartner of the second doublet, is necessary to cancel the gauge

anomalies. Although supersymmetry imposes precise relations among the Higgs masses and cou-

plings, supersymmetry breaking terms lead to modi�cations, such that, at low energy, it is suitable

to describe the two Higgs with generic couplings. A general 2HDM (type III) predicts LFV cou-

plings that must be su�ciently suppressed to satisfy the current experimental constraint. Often,

additional symmetries are assumed to avoid the appearance of �avor-changing neutral current at

the tree level. In Type I 2HDM, the SM fermions only couple to one Higgs, while, in the type

II, the up quarks couple to a di�erent Higgs than leptons and down quarks, which is the case for

supersymmetric SM.
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The 2HDM scalar Lagrangian is the following

−L2HDM = [Ye]ij ℓ̄iH1ej + [Yu]nmq̄nH̃1um + [Yd]nmq̄nH1dm + h.c

+ [Ke]ij ℓ̄iH2ej + [Ku]nmq̄nH̃2um + [Kd]nmq̄nH2dm + h.c (3.27)

+ V (H1, H2)

where the potential reads

V (H1, H2) = m2
11H

†
1H1 +m2

22H
†
2H2 −m2

21(H
†
1H2 + h.c) +

λ1
2
(H†

1H1)
2 +

λ2
2
(H†

2H2)
2

+ λ3(H
†
1H1)(H

†
2H2) + λ4(H

†
1H2)(H

†
2H1)

+

(
λ5
2
(H†

1H2)
2 + λ6(H

†
1H1)(H1H

†
2) + λ7(H

†
2H2)(H1H

†
2) + h.c

)
. (3.28)

In a region of the potential parameters, the Higgs can acquire a VEV that spontaneously breaks

the electroweak gauge symmetry, and it is always possible to rotate in a basis where only one has

a non-zero expectation value ⟨H1⟩ =
(
0 v

)T
, ⟨H2⟩ = 0. The doublets are written as

H1 =

(
G+

v + 1√
2
(ρ1 + iG0)

)
H2 =

(
ϕ+

1√
2
(ρ2 + iA)

)
. (3.29)

Once the Goldstones G are eaten by the gauge bosons, the scalar spectrum contains one ϕ+

complex scalar, two CP even neutral scalar ρ1,2 and one CP odd scalarA. If the potential parameters

are real, only the two CP even scalars mix, and we identify two mass eigenstates h,H [183,184]

h = sin(β − α)ρ1 + cos(β − α)ρ2 ≡ sβαρ1 + cβαρ2 (3.30)

H = cos(β − α)ρ1 − sin(β − α)ρ2 ≡ cβαρ1 − sβαρ2 (3.31)

where β − α is the angle that diagonalizes the neutral scalar mass matrix, and h, H have masses

mh < mH , respectively. We identify the lighter scalar with the 125−GeV Higgs boson. In a basis

where the two doublets Φi both have VEVs vi, a rotation with angle α diagonalizes the neutral

scalar mass matrix, while the angle β such that tanβ ≡ v1/v2 allows us to rotate into the Hi

basis. In the Type III 2HDM, there is no unambiguous way to identify β and α because the two

doublets are not distinguishable. On the other hand, β − α is calculable in terms of the potential

parameters [184]

cos(β − α) sin(β − α) = − 2λ6v
2

(m2
H −m2

h)
(3.32)

In the fermion mass basis, the Yukawa matrices Yf are diagonalized, while the Kf couplings

with H2 are, in general, non-diagonal. The Yukawa interactions between the fermions and the

uncharged scalar sector read

−LY =
h√
2
f̄iL

(
[mf ]iδij

v
sβα + [Kf ]ijcβα

)
fjR + h.c

H√
2
f̄iL

(
[mf ]iδij

v
cβα − [Kf ]ijsβα

)
fjR + h.c

∑

f=d,e

i
A√
2
f̄iL[Kf ]ijfjR − i

A√
2
ūiL[Ku]ijujR + h.c (3.33)
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The LHC measures a h → τ+τ−, µ+µ− rate compatible with the Standard Model prediction

[185,186], requiring sβα ∼ 1. Substituting this approximation in Equation (3.32) gives

cβα ≃ −2λ6v2/(m2
H −m2

h)≪ 1 → cβα ≃
−2λ6v2
m2

H

. (3.34)

In the decoupling limit λiv
2 ≪ m2

22 [187] that we have assumed to justify m2
H ≫ m2

h, the mass

splitting m2
H − m2

A ∼ λ5v
2 is small, and in the following, we consider M2 ∼ m2

H ∼ m2
A. The

o�-diagonal interaction Kecβα can mediate LFV Higgs boson decay with a rate [188,189]

Γ(h→ lilj) =
|Ke|2ij + |Ke|2ji

16π
c2βαmh where lilj = l+i l

−
j + l−i l

+
j (3.35)

Non-observation of LFV decay modes of the Higgs boson at LHC set the upper limits on the

branching fractions reported in Table 3.1 and directly constrain the size of �avor violating coupling.

Process Bound on Br

h→ µe 6.1× 10−5 [190]

h→ τµ 1.5× 10−3 [191]

h→ τe 2.2× 10−3 [191]

Table 3.1: Lepton �avor violating decay of the SM Higgs boson with the current experimental

bounds set by ATLAS and CMS.

O�-diagonal Yukawas are also indirectly bounded by other LFV processes, as they can mediate

li → ljγ through the loop diagrams shown in Figure 3.7. The two-loop diagrams of Figure 3.7b,c are

relevant and can be numerically larger than one-loop contributions [192] because, in the former, the

Higgs line is attached to a heavy particle running in the loop and Yukawa suppression is avoided. In

the µ→ e sector, µ→ eγ is the most sensitive process to LFV Yukawas, which has been extensively

studied in the context of 2HDM [184, 193�196]. For the τ ↔ l sector, the bound on the radiative

decay Br(τ → lγ) < few × 10−8 → 10−9 is less stringent and the Higgs LFV decays are sensitive

to smaller o�-diagonal Yukawas. In a simpli�ed scenario where only the SM Higgs is present,

the author of [197] computed several processes in terms of generic LFV couplings hYij ēLieRj , and

Figure 3.8 shows the current bounds (sensitivity) set by LFV observables. In 2HDM, there are also

contributions from the heavy scalars, which are parametrically of similar size of light Higgs LFV;

while they do not su�er from the small mixing angle cβα ∼ v2/M2, the propagator yields a similar

suppression ∼ 1/M2.
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li lj

γ
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γ
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t
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γ
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W
γ ϕ

Figure 3.7: Diagrams for li → ljγ in the 2HDM, where ϕ = h,H,A. Two-loop Bar-Zee diagrams

with a Z exchange also exist. From left-to-right: (a) One loop contribution to the li → ljγ

rate in the 2HDM with LFV Yukawa couplings. (b) Two loop Barr-Zee diagram with a top loop

contributing to li → ljγ in the 2HDM with LFV Yukawa couplings. (c) Two loop Barr-Zee diagram

with a W loop contributing to li → ljγ in the 2HDM with LFV Yukawa couplings.

Figure 3.8: Left �gure from [190]: constraint on LFV Yukawa couplings Yµe, Yeµ from the limits

on Br(h → eµ) (observed limit corresponds to the solid blue line, while the expected one is the

dashed red line). Shaded regions show the sensitivity of µ→ 3e, µ→ eγ and µ→ e conversion on

the LFV Yukawas, from the calculations of [197]. Right �gure from [191]: same plot for the τ ↔ µ

sector. The diagonal line shows the natural limit |YijYji| < mimj/2v
2 (note that for us v = 174

GeV, while in the plot v = 246 GeV) [198].

Contribution to li → ljlklk and li → ljqq also appear at tree level in the 2HDM. The same

processes also receive relevant contributions attaching a ljlj (qq) current to the photon of the

diagrams in Figure 3.7.

3.2.4 CLFV in Supersymmetry

Supersymmetry (SUSY) is a space-time symmetry that extends Poincare invariance by adding

fermionic generators that satisfy the anti-commutation relations of the supersymmetry algebra

[199�201]. SUSY is the largest space-time symmetry that the S−matrix can have given a set of

physical assumptions such as unitarity, locality and causality [202, 203]. Since fermionic operators

Q are added to the algebra, irreducible SUSY representation (supermultiplets) contain particles

of di�erent spin that are related by the action of Q on one-particle states. The simplest super-

symmetric extension of the Poincare group is N = 1 SUSY, i.e., with only one pair of conjugate
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Weyl spinor generators Q, Q̄. In the Minimal Supersymmetric Standard Model (MSSM), for every

quark q and lepton ℓ, there is a corresponding complex scalar in the same gauge representation,

commonly known as the squark q̃ and slepton ℓ̃. Similarly, the gauginos B̃, W̃ I , G̃a are the fermion

superpartner of the gauge bosons, which transforms in the adjoint of the gauge group, while the

higgsinos H̃u, H̃d are the spin-1/2 particles that belong to the supermultiplets of the Higgs doublets.

As already discussed in the previous section, a supersymmetric version of the SM requires at least

two Higgs doublets.

Degenerate partners of the known SM particles with opposite statistics have never been ob-

served; therefore, SUSY, if realized at all, must be broken at some scale m0. To avoid the reappear-

ance of the hierarchy problem, m0 should not be too far from the Higgs mass and explicit SUSY

breaking terms must be soft, i.e., have to contain only terms with strictly positive mass dimension.

The solution to the hierarchy problem is also preserved if SUSY is spontaneously broken by the ex-

pectation value ∼ m0 of some scalar �eld. In models of spontaneous breaking, soft breaking terms

appear in the low energy non-supersymmetric description. Null results from the LHC rule out

SUSY breaking scales below few × TeV [204�206], although the bounds on superpartners' masses

are not completely model-independent.

In the MSSM, the SUSY breaking sector can be a source of lepton �avor violation. The soft

breaking terms contain masses for the sleptons and trilinear couplings with the Higgs

−Lsoft ⊃ [m̃2
R]ij ẽ

†
i ẽj + [m̃2

L]ij ℓ̃
†
i ℓ̃j +m0[A]ij ℓ̃

†
iHdẽj (3.36)

that introduce LFV if the o�-diagonal entries are non-zero in the lepton mass eigenstate basis. For

∼ 100 GeV−TeV soft terms, the current bounds on LFV, and more generally on �avor-changing

neutral current in the SM, call for a suppression mechanism of sfermions mass mixing. This is known

as the SUSY �avor problem. The spontaneous symmetry breaking of SUSY cannot be triggered

by the scalar �elds in the MSSM supermultiplets, as this would lead to an unacceptable spectrum.

Supersymmetry breaking may occur in an hidden sector that have very small coupling with the

MSSM particle. This is know as the mediation paradigm. If SUSY breaking is communicated via

supergravity couplings of the hidden sector to matter, it results in universal and �avor conserving

soft terms at the Planck scale [207,208]. Nonetheless, this does not strictly forbid LFV, since mass

mixing can still be radiatively generated. In the minimal SU(5) Grand Uni�ed Theory (GUT), the

matter content of SM is reproduced by three generations of two fermion �elds: one in the anti-

fundamental 5̄ of SU(5) (F̄ ), which contains the lepton doublet and the right-handed down-type

quark, and one that �lls the 10 representation of SU(5) (T ), which contains the quark doublet, the

right-handed up-type quark and the right-handed charged lepton. They are coupled in the Yukawa

sector to two Higgs scalar �elds transforming in the 5̄ and 5 representation.

−LSU(5),Yuk = [Yu]ijTiHTj + [Yd]ijF̄iH̄Tj + h.c (3.37)

In SUSY GUT, the above equation corresponds to the superpotential W , where T, F̄ ,H, H̄ are

the super�elds that contain the SM particles and the superpartners. Assuming gravity-mediated

SUSY breaking, the soft terms at MPl are �avor blind and characterised by a common mass scale

m0

−LSU(5),soft = m2
0(T̃

†
i T̃i +

˜̄F †
i
˜̄Fi) +m0a0([Yu]ij T̃iHT̃j + [Yd]ij

˜̄FiH̄T̃j + h.c) (3.38)
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The top Yukawa is large and loop correction to third generation masses can be sizeable. In

a basis where the up Yukawa matrix is diagonalized and neglecting �rst and second generation

couplings, the leading-log correction in the renormalization of the T̃3 mass is [142,209]

∆m̃T,33 ≃ −
3

8π2
|Yu|233m2

0(3 + |a0|2) log
(

MPl

MGUT

)
(3.39)

whereMGUT ∼ 1016 GeV is the GUT scale. The T̃ �elds contain the right-handed charged sleptons

that have a diagonal but non-universal mass matrix. In the mass eigenstate basis for the charged

leptons, the right-handed slepton mass matrix acquires non-diagonal entries

[∆m̃R]ij ≃ −
3

8π2
[V ∗

e ]i3[Ve]j3|Yu|233m2
0(3 + |a0|2) log

(
MPl

MGUT

)
with Ye = VℓŶeV

†
e (3.40)

where Ŷe is the diagonal lepton Yukawa. In SU(5) GUT, the down and lepton Yukawa are uni�ed

Ye = Y T
d , and Ve correspond to the transpose CKM matrix. In the diagrams of Figure 3.9, we show

how slepton mass mixing can mediate li → ljγ at loop level, that in most SUSY setups is the largest

LFV signal. Box diagrams exist for li → ljlklk and li → ljqq, but the processes are often dominated

by the penguin diagrams, where a �avor diagonal current is attached to an o�-shell photon in

the diagrams of Figure 3.9. The rate of µ → eγ in minimal SU(5) GUT has been calculated

in [209, 210]. A potentially detectable signal for the upcoming experiments is predicted, although

the values considered for the sparticles masses are in tension with more recent LHC data [211].

li lj
m̃2

ji

γ
χ̃

l̃jl̃i

Figure 3.9: li → ljγ in SUSY through sleptons mass mixing. χ̃ correspond to charginos and

neutralinos (mass eigenstates of electroweak gauginos and higgsinos).

LFV can be sizeable in the context of GUT theories with right-handed sterile neutrinos, which

has been studied in [210, 212�220]. In SO(10), right-handed neutrinos naturally appear in the 16

spinor representation that a SM generation �lls, and neutrino masses can be explained with a

supersymmetric seesaw mechanism. Considering heavy right-handed neutrinos, the superpotential

in the lepton sector reads

WL = [Ye]ijL̄iHdEj + [Yν ]ijL̄iHuNj +
1

2
[MR]ijNiNj (3.41)

where the notation for the SM super�elds is self-explanatory, and N is the super�eld that contains

sterile neutrinos. As in Equation (3.13), for large Majorana masses MR, the light neutrino mass

matrix is

mν = −YνM−1
R Y T

ν v
2 sin2 β where tanβ =

⟨Hu⟩
⟨Hd⟩

, v = 174 GeV (3.42)
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The gravity-mediated soft breaking terms involving the sleptons are the following

−Lsoft = m2
0(ℓ̃

†
i ℓ̃i + ˜̄e†i ẽi) +m0a0([Ye]ij ℓ̃

†
iHdẽj + [Yν ]ij ℓ̃

†
iHuÑj + h.c) (3.43)

and the left-handed sleptons mass matrix is renormalized in the leading-log approximation as [212]

[∆m̃2
L]ij = −

1

8π2
[Y †

ν Yν ]ijm
2
0(3 + |a0|2) log

(
MPl

MR

)
(3.44)

The typical size of li → ljγ branching fraction is [215]

Br(li → ljγ) ∼
α3
em

G2
F

∣∣∣∆m̃2
Lji

∣∣∣
2

m8
SUSY

tan2 β ×Br(li → lj ν̄jνi) (3.45)

where mSUSY is the sparticles mass scale. In general, even knowing neutrino masses and mixing

angles, the neutrino Yukawa Yν is not uniquely de�ned [221]. In a basis where the Majorana masses

M̂R are diagonal, we can use the Casas-Ibarra parametrization [215] for Yν

Yν ∼ (U
√
m̂νR

√
M̂R)/(v sinβ)

2 (3.46)

where U is PMNS and R is an unknown orthogonal complex matrix. The matrix that controls the

slepton mixing is then

Y †
ν Yν ∼

√
M̂RR

†m̂νR

√
M̂R (3.47)

and depends on R. Assuming speci�c mass hierarchy and degenerate patterns for neutrinos, the

free parameters in R are reduced, and the predicted LFV signals are studied when the parameters

are varied [222]. In SO(10) GUT, the neutrino and up Yukawa are uni�ed at the GUT scale,

and di�erent breaking scenarios can lead to lepton �avor change dominated by the CKM or PMNS

mixing with the third generation [216,217]. The PMNS angles are large and lead to an insu�ciently

suppressed µ→ eγ rate, larger than the current upper limit Br(µ→ eγ) < 4.2×10−13 [223]. In the

scenario where LFV amplitudes are proportional to CKM matrix elements, the rate is compatible

with the current experimental upper bound and part of the parameter space could be probed by

the upcoming searches Br(µ → eγ) ∼ 6 × 10−14 [224]. The model predicts a correlation between

the branching ratios of τ → lγ and µ→ eγ which is

Br(τ → µγ) ∼ |V33V23|
2

|V13V23|2
Br(µ→ eγ)× 10−1 ≲ 10−10 (3.48)

where V is the CKM matrix. Assuming no detection from MEGII Br(µ → eγ) < 6 × 10−14,

an observation of Br(τ → µγ) ∼ 10−9 at Belle II [225] can disfavor the model. In the context

of sleptons mixing and LFV, several simpli�ed SUSY scenarios have been more recently studied,

complemented with the bounds of the null results of the LHC [226].

The soft-breaking sector is not the only possible source of LFV in supersymmetric SM. Gauge

and SUSY invariance allow for the following terms in the superpotential:

WRPV =
λijk
2
LiLjĒk + λ′ijkLiQjD̄k + λ′′ijkŪiD̄jD̄k + µiLiHu (3.49)
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The λ′′ term is baryon number violating and can lead to prompt proton decay. To avoid

this disastrous outcome, R−parity is often assumed. The R−parity of a particle is de�ned as

(−1)R ≡ (−1)3(B−L)+2S , where B,L are the baryon and lepton number, while S is the particle spin.

It follows that any SM particle is RP−even and the superpartners are RP−odd. RP−invariance
automatically forbids all terms in the superpotential of Equation (3.49), but other discrete symme-

tries such as baryon parity [227] can allow for lepton �avor violation while conserving the baryon

number. The �rst two terms in the superpotential leads to the Lagrangian terms [228]

LRPV = λijk(νcLieLj ẽ
†
Rk + ēRkνLiẽLj + ēRkeLj ν̃iL)

+λ′ijk(Vjmd̄RkdLmν̃iL + Vjmd̄RkνLid̃mL + VjmνcLidLmd̃
†
Rk+

−d̄RkuLj ẽLi − d̄RkeLiũLj − ecLiuLj d̃†Rk) + h.c (3.50)

that can allow for several LFV processes already at tree level. In Figure 3.10a, we show a diagram

for the LFV K0 decay K0
L → µe, whose branching fraction is constrained by the current upper

limit Br(K0
L → µe) < 4.7 × 10−12 [229]. Assuming only one non-zero pair of R-parity violating

coupling λ′∗ik1λ
′
jk2, the bound implies (adapted from [230])

∣∣λ′∗1k1λ′2k2
∣∣×
(
100 GeV

mũk

)2

< 1.3× 10−7 →
∣∣λ′∗1k1λ′2k2

∣∣ ≲ 10−4 (3.51)

where we have assumed mũk
∼ few× TeV. Similarly, Br(µ→ 3e) < 10−12 → 10−16 [231,232] can

set the following constraint on the coupling products |λn21λ∗n11| (λ is anti-symmetric in the �rst

two indices and n ̸= 1) from the diagrams of Figure 3.10b:

|λn21λ∗n11| ×
(
100 GeV

mν̃n

)2

< 6.6× 10−7 (6.6× 10−9) (3.52)

λλ′ diagram give tree-level contributions to µ→ e conversion, and at one loop li → ljγ is sensitive

to λλ, λ′λ′ couplings. For a more complete discussion on LFV in R-parity violating theories, we

refer the reader to [233�238].

d li

s̄ lj

λ′∗ik1

λ′jk2

ũk li

lj

lk

lm

λnij

λ∗nmk

ν̃n

Figure 3.10: Examples of LFV tree-level diagrams in the supersymmetric SM with R-parity viola-

tion. (a) Diagrams contributing to the LFV meson decay K0 → lilj . (b) Diagrams contributing to

the li → ljlklm rate.

3.3 Experimental Searches

Searches for CLFV signals span a broad range of experimental techniques thanks to the large variety

of processes one could be looking for, such as rare muon and tau decays (µ+ → e+γ , µ± → e±e−e+ ,
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τ± → µ±γ , τ± → e±γ , τ → 3l ), rare mesons and bosons decays, and direct conversions of a lepton

in a nuclear �eld (µ−N→ e−N , µ−N→ e+N′ ). Table 3.2 summarizes the current best limits on

the various channels. The CLFV searches based on muons have been performed with dedicated

experiments, usually highly tuned for a speci�c channel, which took advantage of the facilities

capable of delivering a high intensity muon beam (see next section). For all the other cases (tau,

mesons and bosons), with the only exception made for the Kaons, it is not possible to deliver

a dedicated beam; thus, general purpose detector systems have been used. As discussed in the

previous sections, the most stringent constraints on various BSM models are set by the direct

searches of CLFV decays of muons and taus decays. In the following sections, we describe the most

recent and the coming experimental e�orts for these two categories: (i) searches using muons, (ii)

searches using taus. For each search, a discussion of the peculiarities of the signal topology and of

the various experimental challenges is provided.

3.3.1 CLFV Searches Using Muons

In the history of CLFV experiments, muons have been, so far, the most popular. Historically,

the �rst experiment looking for CLFV using muons was performed by Hinks and Pontecorvo using

atmospheric muons [261]. Since then, the advancements in the muon beam production/acceleration

technology at di�erent facilities (PSI, TRIUMPH, LANL, etc.) made available high-intensity

muon beams at the level of 108(107)µ+(µ−)/s [144, 262], enabling the possibility to search for

rare CLFV processes. Facilities under construction at Fermilab (USA) and J-PARC (Japan) [143],

or planned, like the High Intensity Muon Beam project at the PSI (Switzerland) [263], have been

designed to provide muon beams with an intensity of about 1010 µ/s. This planned intensity

corresponds to 2�3 orders of magnitude improvement with respect to the current state-of-the-art

technology. The J-PARC and Fermilab muon experiments will use a novel method for creating the

muon beam. A prototype muon beamline, the Muon Science Innovative Channel (MuSIC), was

set up at the Research Center for Nuclear Physics (Osaka, Japan) to prove the conceptual idea.

The production of an intense muon beam relies on the e�cient capture of pions (from proton-

target interactions), which subsequently decay to muons, using a novel superconducting solenoid

magnet system [264]. The current best limits on the muon-CLFV processes come from experi-

ments that performed dedicated searches for the following processes: µ+ → e+γ , µ± → e±e−e+ ,

µ−N→ e−N and µ−N→ e+N′ . Table 3.2 summarizes these results. One thing to notice is that all

the searches, except the µ−N→ e−N and µ−N→ e+N′ , were performed using µ+ rather than µ−.

This choice is motivated by several advantages: (i) µ+ cannot get captured in nuclei, while µ− can

undergo nuclear capture events, which produce protons, neutrons, photons and, thus, increase the

activity in the detector deteriorating its performance, (ii) the muon beam is obtained from charged

pions decay, which are produced in proton-target interactions where π+ production is larger; thus,

the resulting µ+ beam intensity is higher. The following sections o�er a more detailed description

of each of these experimental searches.

3.3.1.1 µ+ → e+γ

In the µ+ → e+γ decay, the �nal state consists of a back-to-back positron and photon with an

energy of 52.8 MeV. The background sources for this search can be factorized into two main
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Table 3.2: Current experimental upper limits on the branching ratios of CLFV processes for muons,

taus, mesons (π, J/ψ, B, K) and bosons (Z0, h).

Process Experiment Limit C.L.

µ+ → e+γ MEG 4.2× 10−13 [223] 90%

µ+ → e+e−e+ SINDRUM 1.0× 10−12 [239] 90%

µ−N→ e−N SINDRUM-II 6.1(7.1)× 10−13 Ti (Au) [240,241] 90%

µ−N→ e+N′ SINDRUM-II 5.7× 10−13 [242] 90%

τ± → e±γ BaBar 3.3× 10−8 [243] 90%

τ± → µ±γ BaBar 4.4× 10−8 [243] 90%

τ → eee Belle 2.7× 10−8 [244] 90%

τ → µµµ Belle 2.1× 10−8 [244] 90%

τ → µee Belle 1.8× 10−8 [244] 90%

τ → eµµ Belle 2.7× 10−8 [244] 90%

τ → π0e Belle 8.0× 10−8 [245] 90%

τ → π0µ BaBar 1.1× 10−7 [246] 90%

τ → ηe Belle 9.2× 10−8 [245] 90%

τ → ηµ Belle 6.5× 10−8 [245] 90%

τ → ρ0e Belle 1.8× 10−8 [247] 90%

τ → ρ0µ Belle 1.2× 10−8 [247] 90%

π0 → µe kTeV 3.6× 10−10 [248] 90%

K0
L → π0µ+e− kTeV 7.6× 10−11 [248] 90%

K0
L → µe BNL E871 4.7× 10−12 [229] 90%

K+ → π+µ+e− BNL E865 1.3× 10−11 [249] 90%

J/ψ → µe BESIII 1.5× 10−7 [250] 90%

J/ψ → τe BESIII 7.5× 10−8 [251] 90%

J/ψ → τµ BESII 2.6× 10−6 [252] 90%

B0 → µe LHCb 2.8× 10−9 [253] 95%

B0 → τe BaBar 2.8× 10−5 [254] 90%

B0 → τµ LHCb 1.4× 10−5 [255] 95%

B → Kµe BaBar 3.8× 10−8 [256] 90%

B → K∗µe BaBar 5.1× 10−7 [256] 90%

B+ → K+τe BaBar 4.8× 10−5 [257] 90%

B+ → K+τµ BaBar 3.0× 10−5 [257] 90%

B0
s → µe LHCb 1.1× 10−8 [253] 90%

B0
s → τµ LHCb 4.2× 10−5 [255] 95%

Z0 → µe ATLAS 7.5× 10−7 [258] 95%

Z0 → τe OPAL 9.8× 10−6 [259] 95%

Z0 → τµ DELPHI 1.2× 10−5 [260] 95%

h→ µe ATLAS 6.1× 10−5 [190] 95%

h→ τe CMS 2.2× 10−3 [191] 95%

h→ τµ CMS 1.5× 10−3 [191] 95%
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categories: (i) an intrinsic physics background from the Radiative Muon Decay (RMD) process

µ+ → e+γνeν̄µ, where the neutrinos carry o� small momenta, and (ii) an �accidental� background

where a positron from the Michel decay µ+ → e+νeν̄µ, together with a photon from an RMD event

or an electron-positron annihilation in �ight or an e−N nucleus scattering, recreate the topology of

the µ+ → e+γ decay. While signal and RMD rates are proportional to the muon stopping rate Rµ,

the accidental background rate is proportional to R2
µ because both particles come from the beam;

the accidental background is, therefore, the dominant enemy of this search. Thus, a continuous

muon beam is better suited than a pulsed beam to avoid stripping particles in short bunches, and Rµ

must be carefully chosen to optimize the sensitivity. The µ+ → e+γ searches from the last decades

con�rmed that the accidental background is dominant, while the intrinsic background accounts for

about 10% of the total background budget. Two di�erent strategies have been applied for designing

the experimental apparatus for the µ+ → e+γ search: (i) a tracking-only system equipped with a

converter to convert the photon in an e+e− pair, or (ii) a tracker combined with a calorimeter for

the photon detection. The tracking-only solution has a much better resolution but a cost of a loss

in acceptance because converting the photon requires material that spoils the resolution (due to

energy loss and multiple scattering) but too little limits the size of the data sample.

One of the �rst experiments to adopt the calorimetric solution for the photon detection was the

Crystal Box experiment at Los Alamos Meson Physics Facility (LAMPF) [265]. The experiment,

shown in Figure 3.11, used a surface muon beam at LAMPF with an average intensity of 300 kHz.

The detector consists of a cylindrical drift chamber surrounded by 396 NaI(Tl) crystals. A layer

of scintillation counters in front of the crystals provided a timing measurement for the electrons

and a veto for photons. The energy resolution for electrons and photons was ∼6% (FWHM). The

position resolution of the drift chamber was 350 µm, while the time resolution was ∼400 ps for the
scintillators and ∼ 1 ns for the crystals.

Figure 3.11: Schematic of the Crystal Box experiment (Figure from [265]).

A total of 3 × 1012 muon were stopped in a thin polystyrene stopping target. A maximum

likelihood analysis established a 90% C.L. upper limit of 4.9× 10−11 [265].

The next-generation experiment, MEGA [266], was also performed at LAMPF. The MEGA ex-

perimental apparatus, shown in Figure 3.12, used a surface muon beam at the stopped muon channel
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at LAMPF that was stopped in a 76 µm Mylar foil centered in the 1.5 T magnetic �eld of a super-

conducting solenoid. The MEGA detector consisted of a magnetic spectrometer for the positron

and three spectrometers for the photon, therefore sacri�cing the signal acceptance and e�ciency

for a better resolution and background rejection. In total, 1.2 × 1014 muons were stopped during

the life of the experiment, and the overall e�ciency for the observation of the µ+ → e+γ event was

∼3.9 × 10−3. The small e�ciency was due to the photon conversion probability (∼2.5%) and to

the reduced capability of reconstructing the positron tracks in the solenoidal �eld compared to the

design value. For these reasons, the �nal sensitivity reached by the MEGA experiment, 1.2×10−11

@ 90% C.L. [266], was ∼35 times worse than the design value, proving how challenging it is to

deliver progress in this type of search.

The current best limit for the µ+ → e+γ branching ratio, 4.2× 10−13 @ 90% C.L., comes from

the MEG experiment [223]. The detector system, shown in Figure 3.13, covers ∼10% of the solid

angle and surrounds a 205 µm-thick polyethylene muon stopping target. The apparatus consists of

a positron spectrometer and a liquid-xenon (LXe) calorimeter.

MEG opted for no converter for the photon detection, the opposite of MEGA. This choice avoids

the pileup problem in the pattern recognition that limited MEGA but, at the same time, limits

the geometrical acceptance. Table 3.3 summarizes the detector performance measured during the

MEG operation [224]. A key feature of MEG is the magnetic �eld design. MEG adopted a graded

solenoidal �eld, set at ∼1.1 T near the center of the apparatus, that sweeps out the positrons

emitted at ∼90 deg and provides a constant bending radius for the signal positron essentially

independent of the angle of emission. This feature helps in achieving a uniform and e�cient

signal track reconstruction. Another technological breakthrough from the MEG experiment is the

development of the liquid Xe (LXe) calorimeter. The MEG LXe calorimeter is the �rst application

of a large volume of LXe for particle detection and, so far, it proved to have the best performance

for the electromagnetic calorimetry detection in the energy range below 100 MeV [267].

Figure 3.12: Schematic of the MEGA experiment (Figure from [266]).
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Figure 3.13: Schematic of the MEG experiment (Figure from [223]).

Table 3.3: Summary of detector performance for the MEG and MEG-II experiments [224]. σX
indicates the resolution of the observable X, εX the detection e�ciency for the particle X. For the

case of the photon energy resolution σEγ , the two values refer to the shallow (<2 cm)/deep (>2

cm) events. σte+γ
is the time resolution on the e+ − γ time residual. The reported values for the

MEG-II case refer to the updated results from the engineering runs reported in [224].

σ
p
+
e

σ
θ
+
e

σEγ σxγ σt
e+γ

εe+ εγ

MEG 380 keV/c 9.4 mrad 2.4%/1.7% 5 mm 122 ps 30% 63%

MEG-II 100 keV/c 6.7 mrad 1.7%/1.7% 2.4 mm 70 ps 65% 69%

Recently, the MEG collaboration worked on the upgrade of the experiment (MEG II), which

aims to reach a sensitivity of 6×10−14 90% C.L. [224]. Various improvements on the detector were

delivered. The positron spectrometer was replaced with a low-mass single-volume cylindrical drift

chamber with high rate capability. This increased the acceptance of the spectrometer with respect

to the MEG con�guration by more than a factor of 2. The LXe calorimeter was also upgraded by

replacing the MEG photomultiplier tubes (PMTs) with smaller vacuum-ultraviolet sensitive silicon

photomultipliers (SiPMs). A novel timing detector for an active suppression of the accidental

background was also introduced. The results of the engineering runs showed a fast degradation

of the wires of the drift chamber and of the SiPMs [224]. Table 3.3 compares the new detector

performance with the previous ones reported for the MEG detector. The MEG-II collaboration

plans to build a new chamber to replace the existing one, and they will take advantage of the

coming engineering runs to study more carefully the degradation of the SiPMs. Preliminary results

show that they can adjust the operation conditions to achieve the desired level of sensitivity [224].

3.3.1.2 µ± → e±e−e+

In the µ± → e±e−e+ decay, the �nal state consists of two positrons and one electron emerging

from the same vertex with an invariant mass that matches the muon rest mass. In a three-body

decay, the energy associated to each product is not a �xed amount. Simple relativistic kinematics

consideration show that the maximum energy of one of the decay products is about mµ/2 and that
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the decay can be described by two independent variables. The energy distribution of each daughter

particle depends on the exact dynamics of the underlying unknown physics. In general, the highest

energy particle is expected to have a momentum larger than 35 MeV/c, while the distribution of

the lowest energy particle peaks near zero and decreases quickly as its energy tends to its upper

limit so that only about one half have an energy larger than 15 MeV [144]. The background sources

for this search can be factorized in two main categories: a physical background coming from the

µ+ → e+ν̄µνee
−e+ process, and an uncorrelated component coming from the accidental coincidence

of a positron from a Michel decay and a positron-electron pair produced by the interactions of other

positrons or muon with the target or the detector material. The accidental background component

scales quadratically with the muon beam intensity. As in the µ+ → e+γ case, it is more convenient

to design an experimental apparatus that uses positive muons.

The current best limit on µ± → e±e−e+ , 1.0 × 10−12 [239] at 90% C.L., was set by the SIN-

DRUM experiment at PSI [239] based on ∼106 stopped µ+. The SINDRUM apparatus, shown

in Figure 3.14, consisted of a double cone-shaped stopping target in the middle of �ve concentric

multi-wire proportional chambers surrounded by an array of plastic scintillator counters inside a

solenoidal magnetic �eld. For a 50 MeV electron/positron, the detector apparatus had a momentum

resolution at the level of ∼1 MeV/c, a timing resolution ≤ 1 ns and a vertex resolution of ∼1 cm.

The data reduction was achieved with a multiple stage trigger, taking advantage of track and charge

pre-�lters that were requiring at least one negatively and two positively charged tracks within a

time window of 7 ns. Then, a track-correlator was used to limit the total transverse momentum

of the e+e−e+ triplet below 17 MeV/c. In the statistical analysis, the event candidates were de-

termined from the two-dimensional distribution of
∑
Ei vs. p̂

2, where p̂ = (pL/σL)
2 + (pT /σT )

2

(L and T denote the longitudinal and transverse components with respect to the beam axis). This

parametrization is particularly convenient because the signal candidates satisfy
∑
Ei = mµ and p̂2

is expected to peak near 0. A new e�ort to improve the sensitivity on µ± → e±e−e+ search is un-

derway at PSI by the Mu3e collaboration [231]. The Mu3e experiment aims for a 10−16 single-event

sensitivity, which would correspond to an improvement by four orders of magnitude compared to

the limit set by the SINDRUM experiment. Such a leap in sensitivity is enabled by: (i) the avail-

ability of high-intensity muon beams, (ii) the use of silicon pixel detectors instead of multi-wire

proportional chambers to track the decay products, and (iii) a modern data-acquisition system able

to handle the vast amount of data produced by the detector. A �rst phase of the experiment is

currently under construction at the πE5 beamline at PSI, where the intense DC surface muon beam

of 108µ+/s will be exploited to achieve a single event sensitivity of 2× 10−15 in about 300 days of

data taking [232]. The Mu3e experimental setup is shown in Figure 3.15. It is designed to track the

two positrons and one electron from the positive muon decaying at rest with a light-weight tracker

placed inside a 1 T magnetic �eld, thereby reconstructing the decay vertex and invariant mass.
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Figure 3.14: Schematic of the SINDRUM experiment. B, muon beam; S, focussing solenoid; T,

target; C, �ve cylindrical multi-wire proportional chambers; H, hodoscope of 64 scintillators; L,

light guides for the hodoscope; P, 128 photomultipliers; A, preampli�ers for the cathode strips and

ampli�er/discriminators for the anode wires; M, normal conducting coil of the magnet. Figure and

caption from [268].

Figure 3.15: Schematic of the Mu3e experiment (Figure from [232]).

The muon beam is stopped in a hollow double-cone target placed at the center of the Mu3e

solenoid. This allows for the spread out of the decay vertices in z and minimizes the amount

of target material traversed by the decay particles. The target is surrounded by the cylindrical

central tracker, which consists of an inner silicon pixel detector, a scintillating �ber tracker for time

measurements, and an outer silicon pixel detector. A momentum resolution of better than 1 MeV/c

at @ 50 MeV/c is achieved by letting the positrons (electrons) re-curl in the magnetic �eld, either

crossing the central tracker again or hitting the outer tracking stations surrounding the upstream

and downstream beam pipe. These stations consist of a silicon pixel tracker and a scintillating tile
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detector mounted on the inside of the pixel tracker. The 5 mm thick tiles enable a time resolution

for the tracks reaching these outer stations of better than 100 ps. The material budget, which must

be minimized to reduce the multiple scattering and thus deliver the required momentum resolution,

was minimized by means of custom High-Voltage Monolithic Active Pixel Sensor (HV-MAPS) [269]

based on a commercial 180 nm HV-CMOS process. Together with its support structure, the entire

silicon tracking module has a thickness of ∼0.12% radiation lengths, with a single-hit e�ciency

> 99% and a time resolution of O(10 ns). A gaseous helium cooling system allows the experiment

to dissipate 250 mW/cm2 of power generated by the MAPS modules. A time resolution of about

10 ns is insu�cient to determine the direction and thus the charge of the decay particles. A

scintillating �ber detector is, therefore, placed between the inner and outer layer of the central

silicon-pixel tracker, consisting of a dozen 30 cm long ribbons made from three staggered layers

of 250 µm diameter multi-clad round �bers, read out by Silicon Photomultipliers (SiPM) arrays

on both sides. Located at the very end of the re-curling particle trajectories hitting the upstream

or downstream tracker, where the constraints on the material budget are less stringent, the tile

detector provides the needed precise timing information of the particle tracks, in conjunction with

the �ber detector, signi�cantly reducing the accidental background. Each tile is read out by a

single SiPM. For the tile and �ber detector, a time resolution of <50 ps and <400 ps is achieved,

respectively. Mu3e had a successful integration run campaign from May to July 2021 with a reduced

detector: 2 pixel layers + �ber detector.

3.3.1.3 µ−N→ e−N

µ−N→ e−N conversion is the process where a muon converts into an electron in the �eld of a

nucleus without producing neutrinos in the �nal state. This process has the same dynamic of a

two-body decay and, therefore, results with a monochromatic electron with an energy Eµe:

Eµe = mµ − Eb −
E2

µ

2mN
,

where mµ is the muon mass, Eb ∼ Z2α2mµ/2 is the muonic binding energy and the last term is

from nuclear recoil energy up to terms of order 1/m2
N , neglecting variations of the weak-interaction

matrix element with energy [143], where Eµ = mµ − Eb and mN is the atomic mass. In the

case of Al, which is the selected material for the current experiments under construction, Eµe ∼
104.96 MeV. In muon conversion experiments, the quantity

Rµe =
Γ(µ−N→ e−N )

Γ(µ− +N → all − capture)

is measured. The normalization to captures simpli�es calculations as many details of the nuclear

wavefunction cancel in the ratio [270]. The coherent conversion leaves the nucleus intact, and there

is only one detectable particle in the �nal state. As we will see, the resulting electron energy

stands out from the background, hence muon-electron conversion does not su�er from accidental

background, and extremely high rates can be used. Negative muons stopped in the stopping target

can undergo a nuclear capture. Particles generated in the muon capture (n, p and γ) may reach the

detector system and create extra activity that can either obscure a conversion electron (CE) track

or create spurious hits. As a result, some speci�c shielding is required to reduce this background.
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Electrons from the high momentum tail of the muon decay-in-orbit (DIO) represent the intrinsic

background source for the µ−N→ e−N search. Figure 3.16 shows the energy spectrum of DIO

electrons [271].

The main features of the DIO energy spectrum can be summarized as follows:

� the endpoint of the spectrum corresponds to the energy of the electrons from µ−N→ e−N

conversion (CE);

� the overall spectrum is falling as (Eµ − E)5, where E is the DIO energy;

� about 10−17 of the spectrum is within the last MeV from the endpoint.

Therefore, to reach a high sensitivity at the level O(10−17), the detector resolution is crucial. As the

muon beam is generated from charged pions, another relevant background comes from the radiative

pion capture (RPC) process π−N → γN∗, followed by the electron-positron pair conversion of the

photon. Unfortunately, not all pions decay in the transport line, and, consequently, the muon

beam is contaminated by pions. This source of background is reduced by taking advantage of the

di�erence between the pion and the muonic atom lifetimes. The pion has a decay constant τ <

few tens of ns, while the bound muon has a τ of the order of several hundreds of ns (depending

on the Z of the material). Therefore, using a pulsed beam structure, it is possible to set a live

gate delayed with respect to the beam arrival, reducing the RPC contribution to the desired level.

Other beam-related sources of background are: remnant electrons in the beam that scatter in the

stopping target, muon decays in �ight and antiprotons interacting in the apparatus. Atmospheric

muons can also represent a signi�cant source of background because these particles can interact

in the apparatus and eventually generate a signature very similar to the CE. An active shielding

is thus required to detect the incoming cosmic muons crossing the apparatus and veto the event

candidates on time. Moreover, the detector system has to provide particle identi�cation (PID)

capabilities to reject un-vetoed muons that can mimic the CE due to a mis-reconstruction.

Figure 3.16: Energy spectrum of the DIO electrons (solid line) �tted to TWIST data (dots ) [272].

Figure from [271].
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The current best limit on the µ−N→ e−N measurement comes from the SINDRUM-II experi-

ment at PSI [241]. In SINDRUM-II, a high intensity muon beam was stopped in a target that was

surrounded by the detector elements housed in a superconducting solenoid. Figure 3.17 shows a

sketch of the SINDRUM-II apparatus. The detector consisted of two drift chambers, to reconstruct

the trajectories of the charged particles, and Cerenkov hodoscopes, to measure the timing of the

reconstructed tracks and for providing PID capabilities.

Figure 3.17: The SINDRUM-II experimental setup. Figure from [241].

With a total of ∼1014 stopped muons, SINDRUM-II reached a sensitivity at the level of ∼10−13

on the µ−N→ e−N process using di�erent target materials [241].

New experimental concepts have been proposed and are currently under construction at Fer-

milab (USA) and J-PARC (Japan) to search for µ−N→ e−N with unprecedented sensitivity at

the level of ∼10−17. The Mu2e experiment at Fermilab had its genesis back in the 1980s, behind

the Iron Curtain. In a way, Mu2e was born in the Soviet Union. In 1989, the Soviet Journal of

Nuclear Physics published a letter to the editor from physicists Vladimir Lobashev and Rashid

Djilkibaev, where they proposed an experiment that would perform the most thorough search yet

for muon-to-electron �avor violation. In 1992, they proposed the MELC experiment at the Moscow

Meson Factory [273], but in 1995, due to the political and economic crisis, the experiment shut

down. The same overall scheme was subsequently adopted in the Brookhaven National Laboratory

MECO proposal in 1997 [274] and then in the Mu2e and COMET experiments.

The Mu2e apparatus [275], shown in Figure 3.18, consists of three main superconducting

solenoids. The �rst two, named production and transport solenoid in Figure 3.18, are used to

generate a high-intensity, low-momentum muon beam starting from a 8 GeV proton beam. The

third solenoid, named ”Detector Solenoid” in Figure 3.18, contains an Al stopping target, where

the muons are stopped to generate the muonic atoms, and downstream to it, we have a low-mass

straw-tube tracker [276], followed by a pure-CsI crystal calorimeter [277]. Both detectors are left

un-instrumented in the inner 38 cm to avoid any interaction with the largest majority (>99%) of
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the low momenta electrons coming from the muon DIO processes in the stopping target. In Mu2e,

the stopping target is not placed in the middle of the tracker as it was done in SINDRUM-II to

limit the �ux of protons, photons and neutrons (from the muon nuclear captures) in the detector.

A graded magnetic �eld around the stopping target increases the detector geometrical acceptance

by re�ecting the electrons that initially were emitted in the direction opposite to the detector. The

whole detector solenoid and half of the transport solenoid are covered with a cosmic ray veto system

designed to detect atmospheric muons with an e�ciency ≥99.99%.

Figure 3.18: Schematic of the Mu2e experiment.

The design of the COMET experiment at J-PARC, shown in Figure 3.19, is based on a similar

concept. A 8 GeV pulsed proton beam is used to produce pions, which are then captured and

transported by a series of superconducting solenoids. The pions decay into muons as they travel

along the muon transport channel. The toroidal �eld of the muon transport channel selects muons

with negative charge and momentum less than 75 MeV/c. The major di�erence with respect to

the Mu2e design is that a second transport line is installed between the muon stopping target and

the detector regions to select charged particles of momentum centered around 100 MeV/c. The

detector system consists of a straw-tube tracker followed by a LYSO crystal calorimeter [278].

COMET plans to operate in two stages: Phase-I and Phase-II. Phase-I will allow the experiment

to characterize the beam and the key backgrounds as well as provide enough statistic to reach a

90% C.L. sensitivity at the level of 7 × 10−15 [278]. During Phase-I, COMET will operate with a

smaller apparatus that consists of half of the �rst C-shaped muon transport line directly connected

to a solenoid that houses the muon stopping target surrounded by the detector system. For Phase-I,

the detector consists of a cylindrical drift chamber and a set of trigger hodoscope counters.

Another experiment, named DeeMe [279], aims to search for the µ−N→ e−N process with

a single event sensitivity of 1 × 10−13 using a graphite target. The experiment is conducted at

the Materials and Life Science Experimental Facility (MLF) of the J-PARC. Muonic atoms are

produced in a primary-proton target itself, which is hit by pulsed proton beams from the Rapid

Cycling Synchrotron (RCS) of J-PARC. To detect the electron and measure its momentum, a

magnetic spectrometer, consisting of a dipole magnet and four sets of multi-wire proportional

chambers (MWPCs) [280], is employed. The spectrometer is expected to reach a resolution of

σp < 0.5 MeV/c at 100 MeV/c. The resolution is needed to reject the DIO background, which

is the dominant source of high energy electrons for this search. The number of charged particles

hitting the detectors is estimated with Monte Carlo simulation to be approximately 108 particles

per proton-bunch with an RCS power of 1 MW. The construction of the secondary beamline for

DeeMe, the H Line, is now in progress. Meanwhile, the collaboration measured the momentum
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spectrum of the DIO electrons in the momentum region 48�62 MeV/c at the D2 area at MLF.

This measurement will be important for validating the theoretical models used to model the DIO

background and characterize the detector performance. Three sets of measurements were performed

between the year 2017 and 2019 [279], and the analysis is now underway.

Figure 3.19: Schematic layout of COMET Phase-II (Figure from [278]).

3.3.1.4 µ−N→ e+N′

µ−N→ e+N′ conversion is the process where a muon converts into an positron in the �eld of a

nucleus that undergoes a nuclear transition. This process violates the lepton number (∆L = 2) and

the lepton �avor conservation. The experiments looking for the µ−N→ e−N process can typically

search for the µ−N→ e+N′ as well. The current best limit on the µ−N→ e+N′ process comes

from the SINDRUM-II experiment [242] that set a limit at 5.7 × 10−13 at 90% C.L. The major

background source is the radiative muon capture, where the photon can generate (via asymmetric

conversion) a positron with an energy close to the signal region.

The search for the µ−N→ e+N′ complements the 0νββ decay searches and is sensitive to

potential �avor e�ects in the neutrino mass-generation mechanism. We refer the reader to [281] for

additional information about the current status and future prospects o�ered by the COMET and

Mu2e experiments.

3.3.2 CLFV Searches Using Taus

The tau lepton is, in principle, a very promising source of CLFV decays. Thanks to the large

tau mass (mτ ≈ 1.777 GeV), many CLFV channels can be investigated: τ± → µ±γ , τ± → e±γ ,

τ → 3l , τ → l + h , ... (l = e, µ and h is a light hadron). Table 3.2 lists the current best limits

on the tau CLFV searches, and Figure 3.20 shows the individual results from the BaBar [282],

Belle [283] and the LHCb [284] experiments, together with their combination.
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From the experimental point of view, however, a di�culty immediately arises: the tau is an

unstable particle, with a very short lifetime (τ = 2.91 × 10−13 s). As a result, tau beams cannot

be realized, and large tau samples must be obtained in intense electron or proton accelerators,

operating in an energy range where the tau production cross section is large.

At e+e− and pp collider machines, the majority of the tau particles are not produced at rest,

which means that, unlike the muon searches discussed before, here we need to deal with decays-

in-�ight. Thanks to the boost, the decay products could get energy values up to several GeV,

which experimentally poses the challenge to deliver wide-range calibrations for the detectors (from

a few hundreds of MeV to several GeV). For all these searches, events contain a pair of taus in

which one tau undergoes SM decay (tag side), while the signal side is selected on the basis of the

appropriate topology of each individual channel. The tagging side accepts the leptonic (τ → lνν̄)

and 1-prong hadronic decays, while on the signal side, CLFV candidates are selected on the basis

of the appropriate topology of each individual channel.
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Figure 3.20: Tau lepton-�avor-violating branching fraction upper limits combinations summary

plot. For each channel, we report the HFLAV combined limit and the experimental published limits.

In some cases, the combined limit is weaker than the limit published by a single experiment. This

arises since the CLs method used in the combination can be more conservative compared to other

legitimate methods, especially when the number of observed events �uctuates below the expected

background [285].

The following paragraphs discuss the current best limits for some of these experimental searches

from experiments at B-factories and pp colliders.

3.3.2.1 τ → lγ

The τ → lγ decay, where l is a light lepton (e, µ), has been one of the most popular CLFV tau

channels. The signal is characterized by a l± − γ pair with an invariant mass and total energy
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in the center-of-mass (CM) frame (ECM) close to mτ = 1.777 GeV and
√
s/2, respectively. The

dominant irreducible background comes from τ -pair events containing hard photon radiation and

one of the τ leptons decaying to a charged lepton. The remaining backgrounds arise from the

relevant radiative processes, e+e− → e+e−γ and e+e− → µ+µ−γ and from hadronic τ decays

where a pion is misidenti�ed as an electron or muon. For this decay channel, the current best

limits comes from the BaBar and the Belle collaborations. BaBar collected (963±7)×106 τ decays

near the Υ(4S), Υ(3S) andΥ(2S) resonances. In the BaBar detector [282], charged particles are

reconstructed as tracks with a 5-layer silicon vertex tracker and a 40-layer drift chamber inside a

1.5 T solenoidal magnet. A CsI(Tl) electromagnetic calorimeter is used to identify electrons and

photons. A ring-imaging Cherenkov detector is used to identify charged pions and kaons. The

�ux return of the solenoid, instrumented with resistive plate chambers and limited streamer tubes,

is used to identify muons. Signal decays are identi�ed by two kinematic variables: the energy

di�erence ∆E = ECM −
√
s/2 and the beam energy constrained τ mass obtained from a kinematic

�t after requiring the CM τ energy to be
√
s/2 and after assigning the origin of the γ candidate to

the point of closest approach of the signal lepton track to the e+e− collision axis (mBC). Figure 3.21

shows the distributions of the events for the two decay channels in mBC vs. ∆E. The red dots are

experimental points, the black ellipses are the 2σ signal contours and the yellow and green regions

contain 90% and 50% of MC signal events.

Figure 3.21: The Grand Signal Box and the 2σ ellipse for τ± → e±γ (left) and τ± → µ±γ (right)

decays in the mBC vs. ∆E plane. Data are shown as dots, and contours containing 90% (50%) of

signal MC events are shown as light-shaded (dark-shaded) regions (Figure and caption from [243]).

The searches yield no evidence of signals, and the experiment set upper limits on the branching

fractions of B(τ± → e±γ) < 3.3 × 10−8 and B(τ± → µ±γ) < 4.4 × 10−8 at 90% con�dence

level [243].

The Belle experiment [283] reported comparable limits using a data analysis based on 988 fb−1

and a strategy similar to that of BaBar. Kinematical selections on missing momentum and open-

ing angle between particles are used to clean the sample. Figure 3.22 shows the two-dimensional

distribution of∆E/
√
s vs. mBC . The signal events have mBC ∼ mτ and ∆E/

√
s ∼ 0. The most

dominant background in the τ± → µ±γ (τ± → e±γ ) search arises from τ+τ− events decaying to



3.3. Experimental Searches 53

τ± → µ±νµντ (τ± → e±νeντ ) with a photon coming from initial-state radiation or beam back-

ground. The µ+µ−γ and e+e−γ events are subdominant, with their contributions falling below 5%.

Other backgrounds such as two-photon and e+e− → qq̄ (q = u, d, s, c) are negligible in the signal

region.

Figure 3.22: Two-dimensional distributions of ∆E/
√
s vs. MBC for τ± → µ±γ (left) and τ± →

e±γ) (right) events. Black points are data, blue squares are τ± → l±γ signal MC events, and

magenta ellipses show the ±2σ signal regions used in this analysis (Figure and caption from [286]).

No signi�cant excess over background predictions from the Standard Model is observed, and

the 90% C.L. upper limits on the branching fractions are set at B(τ± → µ±γ) ≤ 4.2 × 10−8 and

B(τ± → e±γ) ≤ 5.6× 10−8 [286]. With the full dataset expected for the Belle II experiment [287]

(the upgrade of Belle), 50 ab−1, the upper limit for the branching fraction of LFV decays τ will be

reduced by two orders of magnitude.

3.3.2.2 τ → 3l

The signature for τ → 3l (l = e, µ) is a set of three charged particles, each identi�ed as either an

e or a µ, with an invariant mass and energy equal to that of the parent τ lepton.

In the BaBar [288] and Belle [244] analyses, all the six di�erent combinations were explored.

Events are preselected requiring four reconstructed tracks and zero net charge, selecting only tracks

pointing toward a common region consistent with τ+τ− production and decay. The polar angles

of all four tracks in the laboratory frame are required to be within the calorimeter acceptance

range, to ensure good particle identi�cation. The search strategy consists of forming all possible

triplets of charged leptons with the required total charge and of looking at the distribution of

events in the (mBC , ∆E) plane (mBC and ∆E are de�ned as in the previous section). The

backgrounds contaminating the sample can be divided in three broad categories: low multiplicity

e+e− → qq̄ (q = u, d, s, c) events, QED events (Bhabha or µ+µ− depending on the speci�c

channel) and SM τ+τ− events. These background classes have distinctive distributions in the

(mBC , ∆E) plane. The e
+e− → qq̄ (q = u, d, s, c) events tend to populate the plane uniformly,

while QED backgrounds fall in a narrow band at positive values of ∆E, and τ+τ− backgrounds are

restricted to negative values of both ∆E and mBC due to the presence of at least one undetected



54 Chapter 3. Charged Lepton Flavour Violation

neutrino. Figure 3.20 shows the resulting limit for all the combinations to be at the level of a few

10−8 for both collaborations.

Even if the results are not yet competitive to those from B-factories, it is interesting to note that

experiments at the LHC have also been looking for the τ → 3µ decay. The ATLAS experiment [289]

performed a search for the neutrinoless decay τ− → µ−µ+µ− using a sample ofW− → τ−ν̄τ decays

from a dataset corresponding to an integrated luminosity of 20.3 fb−1 collected in 2012 at a center-

of-mass energy of 8 TeV. The LHCb experiment [290] performed the same search using a sample

of tau from b and c-hadron decays from a dataset corresponding to an integrated luminosity of

3.0 fb−1 collected by the LHCb detector in 2011 and 2012 at center-of-mass energies of 7 and 8

TeV, respectively. The CMS experiment [291] recently delivered the results for the same search

using a sample of τ leptons produced in both W boson and heavy-�avor hadron decays from a

dataset cooresponding to an integrated luminosity of 33.2 fb−1 recorded by the CMS experiment

in 2016 [291]. ATLAS, CMS and LHCb reported a 90% C.L. upper limit on the branching ratio of

3.76× 10−7, 8.0× 10−8 and 4.6× 10−8, respectively. The Belle-II collaboration studied prospects

for the expected sensitivity on this search. This channel has a purely leptonic �nal state, thus it is

expected to be free of background. This allows to scale the experimental uncertainties linearly with

the luminosity, which means that at least an improvement of a factor ×50 is expected for Belle-II

after accumulating a luminosity of 50 ab−1 [225].
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4.1 Introduction to E�ective Field Theories

E�ective theories are based on the idea that speci�c phenomena can be accurately described without

knowing all the details of the potentially unknown fundamental theory. This occurs whenever the

physical observables of the problem being described are well approximated by a limit in the wider

range of validity of the full theory. For instance, although special relativity is a more fundamental

description of reality, slow-moving objects follow to great precision the laws of Newtonian mechanics.

The success of Newtonian mechanics arises from the fact that it is a limit of special relativity for

small velocities, i.e., v ≪ 1. Similarly, when describing the electromagnetic �eld of a charge and

current distribution at far distances r, the small distance details of the distribution may not be

important, and an expansion in the small parameter r/L ≪ 1, where L is the typical size of the

charged object, can be performed. This approach lies at the heart of the multipole expansion in

classical electrodynamics. E�ective descriptions are central to the progress of physics because they

enable to remove unnecessary complications from the problem at hand.

In QFT what we consider relevant is determined by the energy scale of the processes we wish

to describe. The Fermi Theory of the weak interactions

−2
√
2GF (νµγPLµ)(ēγPLνe) (4.1)

is successful in describing the muon decay because the relevant scale of the process E ∼ mµ is much

smaller than the mass of the W . More concretely, in the SM the tree-level muon decay amplitude

is (in the Feynman gauge)

iM = −
(
g2

2

) −igαβ
p2 −m2

W

(νµγ
αPLµ)(ēγ

βPLνe) (4.2)
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Figure 4.1: Integrating out the W in the SM muon decay to obtain the contact interaction of the

Fermi theory.

which can be expanded for small p2/m2
W ≪ 1 as

iM = −i
(

g2

2m2
W

)
(νµγ

αPLµ)(ēγαPLνe) +O
(
p2

m2
W

)
. (4.3)

By identifying the Fermi constant GF = g2/(4
√
2m2

W ) in terms of SM parameters, we can see

that the four-fermion interaction of Eq. (4.2) reproduces the leading order term of the propagator

expansion (see Fig. 4.1). The W boson, whose mass lies well above the scale of the transitions, is

integrated out, and GF = g2/(4
√
2m2

W ) is an example of a matching condition between the full

theory and the e�ective one. Corrections to the leading order can be systematically computed by

expanding the propagator in higher powers of the small parameter δ ≡ p2/m2
W , which results in

a tower of higher-dimensional operators. This process of removing heavy degrees of freedom in

the low-energy theory is quite general and relies on the Appelquist-Carrazone theorem [292], which

proves that the e�ects of the integrated-out heavy �elds can be parameterized by local operators

suppressed by the heavy mass scale. Note that the resulting theory is non-renormalizable in the

usual sense, but this is not a problem as long as we want to compute the amplitude at a given

accuracy (at �xed order in δ).

EFTs are not only useful to integrate out heavy �elds from perturbative models, but can also

describe unknown non-perturbative dynamics. At low energy, the QCD coupling grows and quarks

and gluons are con�ned in hadrons. Although the underlying QCD dynamics is non-perturbative,

the lightest hadrons can be described by means of Chiral Perturbation Theory (χPT), which is an

EFT derived by the symmetry properties of QCD. The π,K, η of the pseudoscalar meson octet are

understood to be the pseudo-Goldstone bosons of the spontaneously broken chiral symmetry and

their interactions are derived from global symmetry considerations as a systematic expansion in

powers of p/Λχ, where p is the meson momentum and Λχ ∼ 1 GeV. Other examples of e�ective

�eld theories that approximate the QCD behaviour include the Heavy Quark E�ective Field Theory

(HQEFT) and Soft-Collinear E�ective Theory (SCET). HQEFT describes the dynamics of hadrons

that contain heavy quarks by performing an expansion in powers of ΛQCD/mQ, with mQ being the

heavy quark mass. The SCET describes QCD processes where the center-of-mass energy of the

collision is much larger than the �nal state invariant mass, which is the case for jet production at

colliders. In general, we can summarise the main ingredients of an EFT as follows:

1. Degrees of freedom

The �rst step is to identify the relevant degrees of freedom for the physics we wish to describe.

At energies below the W mass, the muon decay is described by an interaction between the
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electron, the muon and their respective neutrinos. In χPT, the dynamical �elds are the light

hadrons.

2. Power counting

Secondly, we identify the small parameter in which we perform the expansion. This can be

the ratio of light and heavy masses, a small velocity or the ratio between separated energy

scales.

3. Simmetries

It is also important to understand the symmetries of the problem in question, as this can

constrain the interactions of e�ective theories. These can be gauge or global symmetries, and

may also arise as approximate symmetries of the limit we study with the EFT.

4.2 Generalities on E�ective Field Theories

In most of the following discussion, we will have in mind an e�ective �eld theory following the

removal of heavy degrees of freedom from a weakly coupled theory. The exposition is largely

in�uenced by the EFT introductions presented in [293�297]. An EFT Lagrangian takes the following

general form

LEFT = Ld≤4 +
∑

n>4

CnOn

Λn−4
(4.4)

where Ld≤4 contains the renormalizable terms and the sum runs over the tower of dimension n

operators On compatible with the symmetries of the theory, suppressed by increasing power of

the heavy physics scale Λ. The coe�cient Cn of the non-renormalizable operators are known as

Wilson Coe�cient (WC) and are functions of the UV parameters. The factorization of the dynamic

into UV-dependent coe�cient multiplying local operators constructed out of light �elds lies at the

heart of the EFT parametrisation. The reason why the factorization holds is due to the analytical

properties of the Green functions in the full theory. Amplitudes are functions of complexi�ed

kinematical variables that can contain singularities in the real axis that are simple poles or branch

cuts associated with the virtual particles going on-shell. When the energy scale E of the processes

is well below the heavy particle mass, the amplitude is analytic in the variable E/Λ, while it is in

general non-analytic in the IR parameters (light-masses, momenta, etc.). The non-analytic behavior

in the low-energy parameter is reproduced by the EFT, while the UV dependence can be absorbed

in the Wilson coe�cients de�nition when matching the two theories.

Amplitudes computed with multiple insertions of higher dimensional operators contribute to

processes as1

∑

n

δA(n)

A (4.5)

where the term δA(n)/A correspond to ki insertions of ni dimensional operators such that
∑

i(ni−
4)× ki = n

δA(n)

A ∼
(
E

Λ

)∑
i(ni−4)×ki

=

(
E

Λ

)n

(4.6)

1We factorize the renormalizable amplitude A to obtain a dimensionless quantity
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Figure 4.2: Renormalization of the ϕ4 quartic coupling from the insertion of the higher dimensional

operator ϕ6.

If we want to compute the amplitude at a given accuracy δ = (E/Λ)n, we should keep only the

operator with dimensions d ≤ n+4. Note that this holds even when considering loops in the EFT,

as long as we properly regularize the divergent diagrams. Naively, one may worry that the EFT

expansion breaks down in the high-momentum region of the loop integral. For instance, we can

consider the following EFT with a real scalar �eld ϕ

LEFT =
1

2
(∂µϕ∂

µϕ−m2ϕ2)− λ

4!
ϕ4 +

C6

Λ2
ϕ6 +O

(
1

Λ4

)
. (4.7)

The loop diagram of Figure 4.2 with the insertion of the C6 operator gives a ϕ
4 amplitude

iA = i
C6

2Λ2

∫
d4k

(2π)4
i

k2 −m2
(4.8)

If we regulate the divergence with a cut-o�, k < Λc, the integral gives (neglecting the terms involving

the light mass m)

iA ∼ i C6

32π2
Λ2
c

Λ2
(4.9)

Taking the cut-o� scale to be around the UV scale Λc ∼ Λ, we manifestly violate the power counting

of the EFT expansion. However, this is not a problem of the EFT, but rather of the bad regulator

that we chose. In addition to violating gauge and chiral symmetries, hard cuto�s break the EFT

expansion and are not used in the EFT context. Instead, in mass-independent regularizations, such

as Dimensional Regularization (DR), the power divergences are absent and all divergences are local

functions of the low-energy theory parameters (masses, momenta, couplings), which can then be

removed via counterterms that respect the power counting. The integral of Eq. (4.8) in D = 4−2ε

space-time dimensions is the following (see Appendix B)

iA = iµ4ε
C6

2Λ2

∫
dDk

(2π)D
i

k2 −m2
= µ4ε

C6

Λ

mD−2

2D+1πD/2
Γ

(
1− D

2

)

= −µ2ε C6

32π2
m2

Λ2

[
1

ε
− γE + log

(
µ2

m2

)
+ log 4π + 1 +O(ε)

]
(4.10)

where we have factorized the power of the renormalization scale µ4ε to have C6 dimensionless

in 4 − 2ε space-time dimensions. We can conveniently de�ne the MS renormalization scale µ →
µ(4π)−1/2eγE/2 to absorb the constant factors that are paired with the 1/ε poles

iA = −µ2ε C6

32π2
m2

Λ2

[
1

ε
+ log

(
µ2

m2

)
+ 1 +O(ε)

]
(4.11)
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The 1/ε pole can be removed by a local counterterm proportional to ϕ4, and the contribution of the

dimension six operators is suppressed by m2/Λ2, respecting the power counting. Since in DR the

cut-o� scale cannot appear in the numerator and the renormalization scale is only in logs, the EFT

expansion is respected at any loop order. If we then truncate the higher-dimensional operators

to a certain order in the 1/Λ expansion, the divergences can be renormalized with the surviving

operators. The renormalization of e�ective operators will be discussed in section 4.2.2 and plays a

crucial role in the EFT calculations.

4.2.1 Matching

E�ective theories should reproduce the result of the full theory in their range of validity. The

weakest possible requirement is that observables calculated in the UV model and the EFT should

be the same up to the truncation error of the EFT expansion. We may require that all S matrix

elements involving external light particles are reproduced in the e�ective theory

⟨q1 . . . qm|SUV |p1 . . . pk⟩ = ⟨q1 . . . qm|SEFT |p1 . . . pk⟩+O(δn) (4.12)

where δ is the expansion parameter. Most of the time we deal with a stronger requirement that

automatically implies the one above, that is to impose the equality of the Green functions with

external light particles in the two theories. It follows that the scattering amplitudes are the same,

as they are calculated from the green functions putting the external legs on their mass shell. In

a QFT the correlation functions are obtained from the derivative of the functional integral with

respect to the �eld source

ZUV[J ] ≡
∫
[dΦUV]e

iSUV[ΦUV]+i
∫
d4xJ(x)F [Φlight

UV (x)] (4.13)

ZEFT[J ] ≡
∫

[dΦEFT]e
iSEFT[ΦEFT]+i

∫
d4xJ(x)F [ΦEFT(x)] (4.14)

where F [Φlight
UV ] and F [ΦEFT] are the �elds that excite the light degrees of freedom in the UV and

the EFT respectively. The matching requirement is hence

ZUV[J ] = ZEFT[J ] +O(δn) (4.15)

The simplest case is the one that we will mostly interested in: the light degrees of freedom are

the same in the EFT and the full theory, while the heavy �elds are integrated out from the path

integral ∫
[dΦheavy

UV ] exp
(
iSUV[Φ

light
UV ,Φheavy

UV ]
)
≡ exp

(
iSEFT[Φ

light
EFT]

)
(4.16)

The functional approach is more complicated in cases like QCD and χPT, since the UV theory

contains quarks and gluons while the degrees of freedom of the e�ective Lagrangian are the pions.

We will not discuss this issue further as this does not apply to the results of this thesis. In most cases

the matching is performed diagrammatically: diagrams with light external �elds are calculated in

the UV model and the EFT. If we relax the assumption that the external legs are on-shell, we get

the equality for the Green functions.
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4.2.1.1 Equation of Motion and �eld rede�nitions

We should stress that the correlation functions change under �eld rede�nitions while scattering

amplitudes with on-shell particles do not. S-matrix elements are computed with any interpolating

�eld that excites the correct one-particle state out of the vacuum (see [298] for a detailed discussion).

We thus have a basis ambiguity when we equate the Green functions. A �eld rede�nition in an

EFT can be a generic functional of the �eld

Φ→ Φ = F [Φ′] (4.17)

and does not need to be restricted to linear transformation (which is the case if we want to keep a

renormalizable model at dimension ≤ four). We could for instance have a scalar �eld ϕ rede�ned

as

ϕ = ϕ′ +
1

Λ
ϕ′2 (4.18)

Since the EFT Lagrangian is written as a sum of terms with increasing dimensionality

LEFT = Ld≤4 + Ld=5 + Ld=6 + . . . (4.19)

a �eld rede�nition Φ = Φ′ + δΦ′ changes the Lagrangian as2

LEFT(Φ′, ∂Φ′) = Ld≤4(Φ′, ∂Φ′)

+ Ld=5(Φ′, ∂Φ′) +

(
δLd≤4

δΦ′ − ∂µ
δLd≤4

δ(∂µΦ′)

)
δΦ′

+ δLd=5 + Ld=6 + . . . (4.20)

up to total derivatives. If the �eld rede�nition is the one of Eq. (4.18), the second line of the above

equation is the dimension �ve Lagrangian in the new basis. We see that we can always remove

operators that are proportional to the renormalizable Equation of Motion (EOM). For instance, in

the following EFT for a real scalar �eld ϕ

LEFT =
1

2
(∂µϕ∂

µϕ−m2ϕ2)− µ

3!
ϕ3 − λ

4!
ϕ4 +

C5

Λ
ϕ5 +

C ′
5

Λ
ϕ2□ϕ+O

(
1

Λ2

)
(4.21)

the renormalizable EOM reads
(
□+m2 +

µ

2
ϕ+

λ

3!
ϕ2
)
ϕ = 0. (4.22)

The operator ϕ2□ϕ is equivalent to

ϕ2□ϕ↔ −m2ϕ3 − µ

2
ϕ4 − λ

3!
ϕ5 (4.23)

given that their di�erence is proportional to the classical EOM and can be removed with a �eld

rede�nition. The operator ϕ2□ϕ is said to be redundant because the physics can be equivalently

described when it is removed from the Lagrangian. Note that it may be convenient in some cases

2If the �eld rede�nition involves chiral fermions, the path integral measure may also change, giving rise to

anomalous contributions
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Figure 4.3: Tree-level leading order matching of the SM decay b→ cūd onto the operator O1 de�ned

in the text.

to work with a redundant basis at intermediate steps of matching calculations or when computing

the operator's renormalization. It is also interesting to point out that a �eld rede�nition aimed

at removing a redundant operator at a certain dimension a�ects the higher orders in the EFT

expansion. This is not a problem when we identify the physical non-redundant basis at a given

mass dimension, but can have a consequence when we compute amplitudes at higher orders. We

review this case in section 6.2.4 of Chapter 6.

4.2.1.2 A matching example: b→ cūd

As an illustrative example, we discuss here the matching of the SM onto the Four-Fermi theory for

the quark transitions b → cūd. We remind that the Fermi theory results from integrating out the

W boson from the SM.

Tree-level matching

The tree-level amplitude, given by the diagram of Figure 4.3, is analogous to the one calculated in

the �rst section for the muon decay

iAtree = −
(
g2

2

) −igαβ
p2 −m2

W

(Vcbcγ
αPLb)(V

∗
udd̄γ

βPLu) (4.24)

where the color indices are contracted in the fermion bilinears. Expanding the propagator for

p2 ≪ m2
W , the leading order term is reproduced by the higher dimensional operator

O1 = (cγαPLb)(d̄γ
βPLu) (4.25)

with a coe�cient

C1 = −2
√
2GFVcbV

⋆
ud (4.26)

where we recall that the Fermi constant is identi�ed in terms of SM parameters asGF =
√
2g2/(8m2

W ).

One-loop (QCD) matching

Suppose that we want to include the QCD corrections to the b → cūd transitions and match

onto an e�ective theory where the W is removed. The diagrams that decorate the W exchange

with a gluon loop are shown in Figure 4.4. Given that we want to impose the equality of the Green

functions in the two theories, we will keep the external legs o�-shell and pick a convenient kinemat-

ical point where all external momenta vanish. This may introduce IR divergences that would be
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Figure 4.4: One-loop QCD correction to the SM decay b → cūd. It is su�cient to calculate only

the one-light-particle irreducible diagrams (1LPI: graphs that remain connected when cutting one

light particle line) to obtain the equality for all Green functions

otherwise regulated, but since the EFT reproduce the full theory IR behavior, they should cancel

in matching. We calculate in the Feynman Gauge for both the W and gluon propagator, while to

shorten the notation we de�ne

G̃F ≡ 2
√
2GFV

⋆
udVcb (4.27)

More details on the DR regularized integrals and spinor identities that are later used can be found

in Appendix B. The �rst diagram amplitude is

iAa =
(
m2

W G̃F

)
g2sµ

2ε

∫
dDk

(2π)D
−i
k2

−i
k2 −m2

W

(
c̄γνT a i/k

k2
γµPLb

)(
d̄γνT

a i/k

k2
γµPLu

)
(4.28)

where the T a are the color SU(3)c generators in the fundamental representation, satisfying the

identity

T a
ijT

a
kl =

1

2

(
δilδkj −

1

3
δijδkl

)
(4.29)

When color indices are not speci�ed they are understood to be contracted implicitly in the fermion

bilinear. Due to Lorentz invariance the product kαkβ can be replaced by gαβk2/D under the

integral sign, leading to

=
(
m2

W G̃F

) g2s
D
µ2ε
∫

dDk

(2π)D
1

k4(k2 −m2
W )

(c̄γνT
aγαγµPLb)

(
d̄γνT aγαγµPLu

)
(4.30)

Similarly, the second to fourth diagrams give

iAb = iAa (4.31)

iAc = iAd = −
(
m2

W G̃F

) g2s
D
µ2ε
∫

dDk

(2π)D
1

k4(k2 −m2
W )

(c̄γνT
aγαγµPLb)

(
d̄γµT aγαγνPLu

)
(4.32)
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The integral is UV �nite but has an IR divergence that would be regulated by an external momentum

or a quark mass. Since there is no UV divergence, we can compute the diagram non-ambiguously

in DR taking εIR < 0. In the MS scheme, we �nd

g2s
D
µ2ε
∫

dDk

(2π)D
1

k4(k2 −m2
W )

=
ig2s

64π2m2
W

(
1

εIR
+ log

µ2

m2
W

+
3

2

)
(4.33)

while Eq. (4.29) and the Fierz identities (see Appendix B) give

(c̄γνT
aγαγµPLb)

(
d̄γνT aγαγµPLu

)
= 4 (c̄γνT

aγαγµPLb)
(
d̄γµT aγαγνPLu

)
(4.34)

= 8

[
(c̄γµPLu)

(
d̄γµPLb

)
− 1

3
(c̄γµPLb)

(
d̄γµPLu

)]
(4.35)

Combining the results, the sum of the �rst four diagrams is thus

i(Aa +Ab +Ac +Ad) = G̃F
3iαs

4π

(
1

εIR
+ log

µ2

m2
W

+
3

2

)
× (4.36)

[
(c̄γµPLu)

(
d̄γµPLb

)
− 1

3
(c̄γµPLb)

(
d̄γµPLu

)]
(4.37)

The last two diagrams contain scaleless integrals that vanish in DR

∫
dDk

(2π)D
1

(k2)2
= 0 (4.38)

We may explicitly split the IR and UV divergences by writing the integral as

∫
dDk

(2π)D
1

(k2)2
=

∫
dDk

(2π)D

[
1

k2(k2 −m2)
− m2

k4(k2 −m2)

]
(4.39)

where we have introduced a �ctitious massm to have terms that are separately UV and IR divergent.

Each of them can be respectively computed taking εUV > 0 and εIR < 0, and we �nd

∫
dDk

(2π)D
1

(k2)2
=

i

16π2

(
1

εUV
− 1

εIR

)
(4.40)

The analytic continuation would require ε = εUV = εIR which is why in DR the integral vanishes.

The UV poles are cancelled by the theory counterterms, leading to

iAe + c.t = iAf + c.t = −G̃FCF
αs

4π

i

εIR
(c̄γµPLb)

(
d̄γµPLu

)
(4.41)

where CF = 4/3 is the Casimir coe�cient T aT a = CF × 13×3 of SU(3). The full theory result,

including the tree-level diagram, is thus

iAtot + iAc.t = −iG̃F

[
1− αs

4π

(
11

3

1

εIR
+ log

µ2

m2
W

+
3

2

)]
(c̄γµPLb)

(
d̄γµPLu

)

−iG̃F
3αs

4π

(
1

εIR
+ log

µ2

m2
W

+
3

2

)
(c̄γµPLu)

(
d̄γµPLb

)
(4.42)
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Figure 4.5: One-loop QCD correction to the e�ective interactions mediating the decay b → cūd.

Each diagram contains the insertion of the operators O1,O2 de�ned in the text

The e�ective operators that are needed to reproduce the amplitude are the following

O1 = (cγαPLb)(d̄γ
βPLu) O2 = (cγαPLu)(d̄γ

βPLb) (4.43)

and we conventionally add them to the Lagrangian as

LEFT ⊃ −
∑

i

CiOi (4.44)

The corresponding diagrams in the low energy e�ective theory decorated by gluon loops are shown

in Figure 4.5. Every diagram contains the insertion of both operators in Eq. (4.43). All EFT loop

integrals are scaleless, while the fermion and color structure can be read o� from the equivalent full

theory diagram. The result, which can be easily computed from the above calculations, is

iAEFT
tot = i

[
−C1 +

αs

4π

(
1

εUV
− 1

εIR

)(
3C2 −

11

3
C1

)]
(cγαPLb)(d̄γ

βPLu)

+i

[
−C2 +

αs

4π

(
1

εUV
− 1

εIR

)(
3C1 −

11

3
C2

)]
(cγαPLu)(d̄γ

βPLb) (4.45)

The UV divergences are cancelled via counterterms proportional to O1 and O2 as

iAEFT
c.t = −αs

4π

i

εUV

(
3C2 −

11

3
C1

)
(cγαPLb)(d̄γ

βPLu)−
αs

4π

i

εUV

(
3C1 −

11

3
C2

)
(cγαPLb)(d̄γ

βPLu)

(4.46)

Note that the UV divergences of the EFT are di�erent from the one of the full theory, but they are

closely related to the model IR behaviour. The reason is quite general. If we expand the integrands

of the full theory in powers of the IR parameters (masses, external momenta, etc.), the expansion

coe�cients take the following general form

iAfull =
A

εUV
+

B

εIR
+ C (4.47)

where C is �nite, the IR divergences are a consequence of the expansion and the A poles are canceled

by the full theory counterterms. Performing the same expansion in the EFT, the loop integrals are
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all scaleless and vanish in DR, which means that, separating the IR and UV poles, the amplitude

is

iAEFT = −BEFT

(
1

εUV
− 1

εIR

)
. (4.48)

Since the EFT must reproduce the IR behavior of the full theory we have that BEFT = B, which

connects the UV divergences that are renormalized in the EFT to the IR of the full theory. After

the UV poles are separately removed, we �nd that the loop matching contribution amount to the

�nite part of the full theory diagram expanded out in the low-energy parameters. Indeed, including

the counterterms, the total EFT amplitude of our example is

iAEFT
tot + iAEFT

c.t = −αs

4π

i

εIR

(
3C2 −

11

3
C1

)
(cγαPLb)(d̄γ

βPLu)

−αs

4π

i

εIR

(
3C1 −

11

3
C2

)
(cγαPLu)(d̄γ

βPLb) (4.49)

which reproduces the theory result if the Wilson coe�cients are

C1(µ) = G̃F

[
1− αs

4π

(
log

µ2

m2
W

+
3

2

)]
, C2(µ) = G̃F

[
3αs

4π

(
log

µ2

m2
W

+
3

2

)]
(4.50)

A check for the correctness of the calculations is given by the cancellation of the IR poles. An

important observation is in order. The matching conditions contain logs of the ratio between the

renormalization scale and the mass of the heavy particle, in this case, mW . If the energy scales are

largely separated, the logs can become dangerously large, invalidating perturbation theory despite

having a small QCD coupling

µ≪ mW →
(
αs

4π
log

m2
W

µ2

)
∼ 1 (4.51)

Large logs can be avoided in matching by choosing a renormalization scale as close as possible to

the heavy scale µ ∼ mW . However, the EFT calculation with on-shell quarks will contain logs

of the ratio between the renormalization scale and the low energy masses or external momenta,

which suggests that the EFT result is reliable for µ ∼ mb, potentially reintroducing the large logs

problem. The EFT UV behavior saves the day. The EFT counterterms de�ne a renormalization

group evolution for the Wilson coe�cient that can be solved to re-sum these large logs. This is one

of the reasons why the EFT is so useful even when the full theory is known: converting the IR logs

of the fundamental theory into UV logs of the EFT allows for their resummation by integrating

the renormalization group equations.

4.2.2 Renormalization Group Evolution

We argued in the �rst section that an EFT is as renormalizable as any QFT if we are happy

with a �nite accuracy in the calculation. Loops with single insertions of dimension d operators

O(d)
i yield amplitudes that are proportional to 1/Λd−4 and can be renormalized by dimension d

counterterms. In general, the counterterms can be proportional to dimension d operators di�erent

from the inserted ones, giving rise to operator mixing

LEFT ⊃
1

Λd−4
C

(d)
i Z

(d→d)
ij O(d)

j (4.52)
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where the contact interactions Oj contain the renormalized �elds. A dimension d counter term

may be necessary to renormalize the divergence of a loop diagram with multiple insertions of lower

dimension operators having mass dimensions that satisfy [
∑

i(di − 4)] ≡ d − 4. For example, the

double insertion of a dimension �ve operator gives a dimension six amplitude (1/Λ)×(1/Λ) = 1/Λ2.

We thus expect in the renormalized Lagrangian terms like

LEFT ⊃
1

Λd−4
C

(d1)
i1
× · · · × C(dk)

ik
Z

(d1···dk→d)
i1···ik,j O(d)

j

[∑

i

(di − 4)

]
≡ d− 4 (4.53)

Moreover, if the EFT has dimensionful parameters in the renormalizable Lagrangian, an operator

of dimension d′ = d + n can mix into one of dimension d with n insertion of a mass. This is

for instance the case for the loop diagram calculated in Eq. (4.11), where the ϕ6 operator mixes

with the renormalizable quartic coupling via two powers of the scalar mass m2. Therefore, the

renormalized Lagrangian may also contain

LEFT ⊃
mn

EFT

Λd+n−4
C

(d+n)
i Z

(d+n→d)
ij O(d)

j (4.54)

where mEFT is a mass parameter of the d < 4 Lagrangian.

To illustrate the renormalization group evolution of the Wilson coe�cients we focus on the �rst

case, that is the mixing between operators of the same dimension. The second case will be the main

subject of Chapter 6. The Renormalization Group Equations (RGEs) follow from the independence

of the bare Lagrangian from the renormalization scale µ. We drop the dimension upper indices to

avoid cluttering and write

LEFT ⊃ CiZijOj (4.55)

The operators constructed out bare �elds Oj,bare = ZOjOj are µ independent, hence we factorize

the �eld renormalization constant ZOj to have

0 = µ
d

dµ

(
Ci

Zij

ZOj

Oj,bare

)
= µ

d

dµ

(
Ci

Zij

ZOj

)
. (4.56)

De�ning

Z̃ij ≡
Zij

ZOj

(4.57)

we arrive at

µ
d

dµ
Ci = Cjγji where γ = − dZ̃

d logµ
Z̃−1 ≡ −d log Z̃

d logµ
. (4.58)

The matrix γ is known as the anomalous dimension matrix and it parametrises how the dimension

d operators scale and mix in the renormalization group evolution. To connect to the b → cūd

example, let us suppose that we are interested in the QCD loop corrections. At n-loops, we expand

the anomalous dimension matrix in powers of the QCD coupling constant

γ =

n−1∑

k=0

(αs

4π

)k+1
γ(k) +O

((αs

4π

)n+1
)

(4.59)



4.2. Generalities on E�ective Field Theories 69

while the renormalization constants Z̃ contain increasingly singular ε poles

Z̃ = 1 +

n∑

k=1

1

εk
Zk(α3) (4.60)

The anomalous dimension matrix de�nition implies the equality

γ

(
1 +

1

ε
Z1 +O

(
1

ε2

))
= −1

ε

dZ1

d logµ
+O

(
1

ε2

)
(4.61)

and the renormalized QCD coupling beta function in 4− 2ε space-time dimension is the following

β(αs, ε) ≡
dαs(µ)

d logµ
= −2εαs + β(αs) (4.62)

where β(αs) is

β(αs) = −2αs

[
n−1∑

k=0

(αs

4π

)k+1
βk +O

((αs

4π

)n+1
)]

(4.63)

Applying the chain rule to the right-hand side of Eq. (4.61) and substituting the QCD beta function

γ

(
1 +

1

ε
Z1 +O

(
1

ε2

))
= −1

ε

dZ1

dαs
(−2εαs + β(αs)) +O

(
1

ε2

)
(4.64)

we �nd that the anomalous dimension matrix is obtained by the single 1/ε poles of the counterterms

γ = 2αs
dZ1

dαs
(4.65)

4.2.2.1 Solving the RGEs in b→ cūd

In the example of the previous section we computed the QCD one-loop corrections to the e�ective

operators relevant for the quark transitions b → cūd. We have found that the UV divergences are

cancelled by the counterterms

Lc.t = −
αs

4π

1

ε

(
3C2 −

11

3
C1

)
O1 −

αs

4π

1

ε

(
3C1 −

11

3
C2

)
O2 (4.66)

which can be absorbed in the renormalization constants Z

LEFT ⊃ −CiZijOj with Z = 12×2 +
αs

4πε

(−11/3 3

3 −11/3

)
(4.67)

The wave function renormalization (in Feynman gauge) of the two operators is the same and equal

to ZO1,2 = 1 − αs/(3πε) and can be subtracted to obtain Z̃ as de�ned in Eq. (4.57). Applying

Eq. (4.65), we �nd the one-loop anomalous dimension matrix

µ
dCi

dµ
= Cjγji with γ =

αs

2π

(−1 3

3 −1

)
(4.68)
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The RGEs can be easily solved in a basis where the anomalous dimension matrix is diagonal. The

matrix is diagonalised by the linear combinations

C± = C1 ± C2 µ
dC±
dµ

= C±γ± (4.69)

where

γ+ =
αs

π
γ− = −2αs

π
(4.70)

In the diagonal basis, the RGEs are readily integrated

C±(µf ) = C±(µi) exp

{∫ αs(µf )

αs(µi)
dα
γ±(α)

β(α)

}
(4.71)

where β(α) is the QCD beta function of Eq. (4.63). With nf = 5, the one-loop coe�cient is

β0 = 11− 2/3nf = 23/3 and the solution reads

C+(µf ) = C+(µi)

(
α3(µf )

α3(µi)

)−6/23

C−(µf ) = C−(µi)

(
α3(µf )

α3(µi)

)12/23

(4.72)

We can substitute the tree-level matching values, which to avoid large logs should be taken at

µ ∼ mW , and run down to the scale of the b→ cūd transitions µ ∼ mb. We �nd

C+(mb) ∼ 0.85C+(mW ) = 0.85G̃F C−(mb) ∼ 1.38C−(mW ) = 1.38G̃F (4.73)

Even though we started with a vanishing C2(mW ), the renormalization group evolution sizably

generates it at low energy C2(mb) ∼ −0.27G̃F . The e�ects of the large logs are relevant and

have been re-summed in integrating the RGEs. Note that if we run with the one-loop anomalous

dimension matrix, it would be inconsistent with the order of the calculation to include the O(αs)

correction in matching. In Leading Order (LO) calculations where we match at O
(
α0
s

)
and run at

O(αs), we resum terms like

LO :
∑

n

(
αs

4π
log

mW

mb

)n

(4.74)

If we includeO(αs) terms in matching, the one-loop running will be contaminated with αs
4π

∑
n

(
αs
4π log mW

mb

)n

terms that are of the same order of the O
(
α0
s

)
two-loop running. A consistent treatment of Next-

to-Leading-Order (NLO) would thus require the two-loop RGEs. More generally, in a NmLO

calculation we resum

NmLO :
(αs

4π

)m∑

n

(
αs

4π
log

mW

mb

)n

(4.75)

by computing the matching at m loops and running at m+ 1 loops.

4.3 The Standard Model E�ective Field Theory

In Chapter 2, we discussed the evidence and observations that suggest an extension of the Standard

Model is necessary. If we assume that the physics responsible for these observations is much heavier
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than the electroweak scale, we can describe it using an e�ective �eld theory. We can view the SM

as the renormalizable Lagrangian of an e�ective theory in which the heavy particles have been

integrated out. We can include higher-dimensional operators constructed from the SM �elds that

respect the standard model gauge symmetry, and investigate the distinct signals predicted by these

novel operators. By including every possible operator that is not forbidden by symmetries and

searching for evidence of their presence in experiments, we can probe a wide range of di�erent

models with the sole assumption that the new states are heavy. This e�ective �eld theory is known

as the Standard Model E�ective Field Theory or SMEFT, and the Lagrangian has the following

schematic form

LSMEFT = LSM +
∑

d=5

1

Λd−4

nd∑

i=1

C
(d)
i O

(d)
i , (4.76)

where nd is the number of independent operators at dimension d. If we assume that no right-

handed neutrino is present at low energy, we have solid evidence for a non-zero Weinberg operator

at dimension �ve3 [299]:

L5 =
1

2Λ
Cij
W(ℓ̄iH̃)(ℓcjH̃) + h.c (4.77)

which breaks the lepton number symmetry and gives Majorana neutrino masses when the elec-

troweak symmetry is spontaneously broken by the Higgs VEV

mν = CW
v2

Λ
(4.78)

where
〈
H0
〉
= v. For an O(1) Weinberg operator coe�cient, the upper limit on neutrino masses

suggest a new physics scale Λ ≳ 1015 GeV. We already discussed models in Chapter 3 that suf-

�ciently suppress the dimension �ve coe�cient to allow for new physics closer to the electroweak

scale.

The leading order contributions to a wide variety of BSM processes appear at dimension six.

Not accounting for the di�erent �avours, there are 84 independent (non-redundant) operators at

dimension six. Redundancies can appear whenever two operators di�er by a total derivative or by

an operator proportional to the renormalizable equation of motion, which can always be removed

with a �eld rede�nition and do not contribute to observables (see section 4.2.1.1). The Hilbert

series method provides an elegant way to count the number of independent operators for each mass

dimension [300�303]. Part of the dimension six SMEFT Lagrangian appeared in the 80s [304], and

was later completed in what is commonly known as the Warsaw basis [305]. We reproduce the

dimension six operator basis in Table 4.1. Although numerous potentially interesting BSM signa-

tures are expected when we include the dimension six operators in the Lagrangian, experimental

data are yet to show a clear deviation that suggests the presence of a non-zero operator. So far,

observations are compatible with the predictions of the renormalizable SMEFT Lagrangian, and

can be used to infer upper limits on the size of the operator coe�cients.

Complete basis for the operators of dimensions seven and eight have also been classi�ed [306�309]

3The Weinberg operator is the only non-zero operator at dimension �ve that respects the SM gauge symmetry.
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Table 4.1: Dimension six operators in the Warsaw Basis [305]. The subscripts p, r, s, t label the

�avour indices. The lepton doublet is indicated with l rather than ℓ as in the rest of the text. For

non-Hermitian operators, one should include the h.c.

4.3.1 Low Energy E�ective Field Theory (LEFT)

The SMEFT is the appropriate e�ective theory to use when the energy scale of the process we want

to describe is above the electroweak scale. It is the EFT we should match onto when we integrate
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out the heavy particles of a new physics model. However, the precisely measured processes aimed

at probing NP contributions often occur at energy scales much smaller than v, as is the case for

most LFV processes. Calculations of low-energy transitions are best parameterized by an EFT in

which the heavy particles of the SM, including the W , the Z, the top quark t, and the Higgs boson

h, are removed, and the electroweak symmetry is spontaneously broken. The resulting contact

interactions should respect the surviving gauge symmetries, i.e. QED and QCD.

Low-energy calculations are connected to high-energy SMEFT coe�cients, which are functions

of the UV parameters at the NP scale, via the renormalization group evolution. In a top-down

perspective, a new physics model is matched onto the SMEFT, and the RGE evolution down to

the low-energy scale yields observables in terms of the parameters of the model, which are then

compared with experimental results. A bottom-up calculation proceeds in the opposite direction,

starting with the observables calculated with low-energy coe�cients that respect the experimental

constraints and running them up in energy scale. This maps a low-energy experimental bound

onto a combination of high-energy coe�cients that can be used to identify the region of coe�cient

space where BSM physics should reside. Since the bottom-up perspective does not consider any

particular model, the calculations should, in principle, contain every operator that could be within

experimental sensitivity. The e�ort may be repaid by the fact that any model could be checked

against a properly organized bottom-up treatment, which only needs to be updated when new

experimental results appear (which is not very often).

Both in top-down and bottom-up calculations, when the electroweak scale is crossed in the

running, we should match the low energy and the SM EFT. The matching conditions for dimension

six operators have been calculated at one loop [310,311], while the complete tree-level matching up

to 1/Λ4 order has also been computed [312].

SMEFT and LEFT operators running is known up to 1/Λ2 order, which include the running

of dimension �ve and six operators, as well as the mixing of two dimension �ve operators with

a dimension six one [313�317]. Anomalous dimensions at 1/Λ4 order are only partially known

[318�321], and in Chapter 6 we present previously unknown renormalization group equations for a

subset of dimension eight operators.

4.3.2 E�ective Field Theory for µ→ e LFV

In this section, we present an e�ective analysis of µ → e processes that are otherwise �avour

diagonal, i.e µ → eγ(γ), µ → 3e and µ → e conversion in nuclei but not processes like K → eµ.

As we have discussed in Chapter 3, these constitute the best-constrained processes and expect the

most signi�cant sensitivity improvements in the upcoming years.

Below the electroweak scale, the operators relevant for µ→ e transitions are a subset of the QCD

and QED invariant contact interactions of the low energy e�ective theory. These include operators

of dimensions �ve to eight that have three and four external legs. We follow the conventions of [322]

and add the operators to the Lagrangian as

Lµ→e
EFT = LQCD×QED +

1

v2

∑

ζ,Lor

Cζ
LorO

ζ
Lor (4.79)

where ζ represent the �avour indices, while �Lor� indicates the chirality and Lorentz structure of

the operator. The observables we want to describe, µ → eγ(γ), µ → 3e and µ → e conversion in
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nuclei, are sensitive to the operators of Table 4.2.

2l operators

OD,Y mµ(ēσ
αβPY µ)Fαβ

OXX,Y
1
v (ēPY µ)XαβX

αβ

OXX̃,Y
1
v (ēPY µ)XαβX̃

αβ

OXXV,Y
1
v2
(ēγσPY µ)Xαβ∂

βXασ

OXX̃V,Y
1
v2
(ēγσPY µ)Xαβ∂

βX̃ασ

2l2q operators

Oqq
V,Y Z (ēγαPY µ)(q̄γαPZq)

Oqq
S,Y Z (ēPY µ)(q̄PZq)

Oqq
T,Y Y (ēσαβPY µ)(q̄σαβPY q)

4l operators

Oll
V,Y Z (ēγαPY µ)(l̄γαPZ l)

Oll
S,Y Y (ēPY µ)(l̄PY l)

Oττ
S,Y Ȳ

(ēPY µ)(τ̄PY τ)

Oττ
T,Y Y (ēσαβPY µ)(τ̄σαβPY τ)

Table 4.2: Low-energy QCD⊗QED invariant EFT for µ → eγ(γ), µ → 3e and µ → e conversion

in nuclei, in the notation of [322]. The experiments can be sensitive to three, four-point functions

that correspond to operators of dimensions �ve to eight. Xαβ = Fαβ, Gαβ are the �eld tensors of

photon and gluons respectively. The chiral projector PY,Z can be Y,Z ∈ {L,R}, L = R,R = L,

while q ∈ {u, d, s, b, c} and l ∈ {e, µ, τ}

Let us consider µ → eγ as an illustrative example. We can compute at the tree-level in the

EFT the branching ratio [142]

Br(µ→ eγ) = 384π2(|CD,L|2 + |CD,R|2) < 4.2× 10−13 → |CD,Y | < 1.05× 10−8 (4.80)

where the dipole operator coe�cient CD,Y (mµ) are at mµ to avoid large logs. If we assume that

the dipole coe�cient is ∼ 1/16π2 if normalized at the new physics scale, Equation (4.80) implies

ΛNP ∼ 1.3× 103 TeV. The bound can be satis�ed with lighter UV physics if the dipole coe�cient

appears at higher loops and/or is suppressed by a small coupling.

To use the bound on EFT operator coe�cients to constrain generic BSM heavy physics, we

should determine the upper limit on coe�cients at the new physics scale, where the heavy degrees

of freedom are integrated out. This is done by solving the renormalization group equations of the

Wilson coe�cients, which requires dressing the operator basis with QED and QCD loops. The

one-loop RGEs can be written as

µ
dC⃗

dµ
=
αs(µ)

4π
C⃗Γs +

αe(µ)

4π
C⃗Γe (4.81)

having aligned the Wilson coe�cient in the row vector C⃗. The QCD renormalization matrix Γs is

diagonal, while QED (Γe) can mix operators with di�erent legs and Lorentz structure. We would

like to resum the numerically relevant QCD e�ects and expand the QED loop e�ects in powers of

αe, neglecting its running. The formal solution of the matrix equation dU/dt = HU is a t ordered



4.3. The Standard Model E�ective Field Theory 75

exponential U(t) = (T exp
∫ t
t0
dt′H(t))U(t0)

4, which in our case can be expanded at O(αe) to be

CI(µf ) = CI(µi)δIJ

(
αs(µf )

αs(µi)

)−aJ
[
δJK +

αe

4π
fJKΓe

JK(µf ) log

(
µf
µi

)]
+O(αe)

2 (4.82)

where aJ = Γs
JJ/2β0 parametrises the QCD running of two-lepton two-quark operators. Vector

operators do not run aV = 0, while the scalar and tensor coe�cients are respectively aS = 12/23

and aT = −4/23. De�ning λ ≡ (αs(µf )/αs(µi)), the coe�cients fJK read

fJK =
1

1− λ
1− λaJ−aK−ad+1

aJ − aK − ad + 1
(4.83)

with ad parametrising, if present, the running of QCD parameters in the QED anomalous dimension

(for instance, the tensor to dipole mixing for two-lepton two-quark tensors is proportional to the

mass of the virtual quark in the loop). QED renormalization, although not as numerically relevant

as the QCD coe�cient rescaling, plays a crucial role because it mixes operators. Operator mixing

allows probing an operator coe�cient which is di�cult to detect via its mixing with a tightly

constrained one. For instance, the tensor operator Oττ
T,Y = (ēσαβPY µ)(τ̄σαβPY τ) mixes into the

dipole by closing the tau legs in a loop and attaching a photon. The contribution to the dipole

coe�cient is one-loop suppressed (and log enhanced), but, to close the loop, a chirality �ip is

necessary, and a τ mass insertion enhances the mixing by mτ/mµ. Complemented with a large

anomalous dimension, the mixing is ∼ O(1). The (sensitivity) bound that µ → eγ sets on the

tensor coe�cient at mW is then [322]

Cττ
T,Y (mW ) ≲ 1.07× 10−8 (4.84)

We should stress that this is not an exclusion bound, but rather an experimental sensitivity. In

coe�cient space, µ→ eγ constrains one direction that corresponds to the dipole coe�cient at the

experimental scale mµ. The RGEs can tell us how this direction rotates in the coe�cient space at

higher energies, but the experiment still imposes a bound in one direction only. In other words, the

bound will apply to a single combination of operator coe�cients at the high scale; namely, solving

the RGEs up to mW ,

|CD,Y |(mµ) =
∣∣0.938CD,Y (mW ) + 0.981Cττ

T,Y (mW ) + . . .
∣∣ < 1.05× 10−8. (4.85)

The upper limit in Equation (4.84) corresponds to the case where only Cττ
T,Y (mW ) is non-zero

and is commonly known as one-operator-at-a-time bound or sensitivity. A sensitivity corresponds

to the smallest absolute value which is experimentally detectable, but larger values are possible if

cancellations with other contributions occur. Indeed, we can see that if the dipole and the tensor

are of similar size and opposite sign, an accidental cancellation can occur in Equation (4.85). This

is an example of a �at direction in coe�cient space. Flat directions are a general feature of bottom-

up EFT analyses of LFV, because the operator basis contains more operators than observables,

and the few operators constrained by experiments mix with the rest in the RGEs. Nonetheless,

identifying operator coe�cients to which observables are most sensitive is a useful guide for model

building. The sensitivities of µ → 3e, µ → eγ and µN → eN to Wilson coe�cients at mW in

the low energy EFT has been extensively studied [322�326]. Spin-dependent µ → e conversion in

4This is the solution for time evolution operator in Quantum Mechanics.
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nuclei [324,325,327,328], although less constraining than the spin-independent searches, allows to

probe di�erent combinations of coe�cients and, thus, reduce the number of �at directions.

Leptonic and semi-leptonic rare meson decays such asK0
L → µe, K+ → π+µe are systematically

studied in the EFT by adding to the operator basis quark �avor-changing operators, and the

sensitivities to Wilson coe�cient can be similarly determined [329]. Concerning τ ↔ l processes,

EFT analysis can be found in [322,330].

To extend the bottom-up analysis above the electroweak scale, one should solve the RGEs of

SMEFT lepton-�avour-changing operators and identify all the contributions to which observables

could be sensitive. As we explore in Chapter 5, is not obvious what one should include, and we

argue that some challenging calculations are required to fully parametrise LFV in the SMEFT.







Chapter 5

What is leading order for LFV in

SMEFT?

5.1 Introduction

Perturbation theory is a widely used tool in the Standard Model, New Physics models and many

other areas. In a given perturbative expansion, the �rst non-vanishing term, sometimes called the

leading order contribution, is often simple to compute. However, when a calculation simultaneously

involves many perturbative expansions, it can be more challenging to identify the �leading� or

dominant contribution.

In this chapter, we study perturbative expansions in the lepton �avour changing part of the

Lagrangian of the Standard Model E�ective Field Theory. We restrict to LFV operators for two

reasons ; �rstly, they must exist because the observations of neutrino oscillations demonstrate that

leptons change �avour, as we discussed in Chapter 3. And secondly, LFV operators are simpler than

generic operators, because SM loop e�ects, included via renormalisation group equations, cannot

change lepton �avour, so the �avour of at least two legs of each operator remains �xed.

There are many perturbative expansions in SMEFT: the EFT expansion in the ratio of weak to

New Physics scales v2/Λ2
NP , as well as the SM expansions in loops, in the O(1) gauge and Higgs

self-couplings and in the exceptionally hierarchical Yukawa couplings, and also in mixing angles.

So it is not obvious to �nd the leading e�ects. For example, it was noticed long ago by Bjorken

and Weinberg [192], in the SM extended with a second Higgs H with LFV couplings Yµeℓ̄µHPRe,

that the one-loop amplitude for µ → eγ is suppressed by two lepton Yukawas, so is smaller than

two-loop �Barr-Zee� contribution:

A1−loop ∝
eyµY

∗
µµYµe

16π2M2
H

, A2−loop ∝
eytg

3Yµe
(16π2)2M2

H

.

However, this leading (although two-loop) contribution was missed in part of the subsequent liter-

ature.

Various powercounting schemes have been introduced to organise perturbative calculations in

�avour physics. For instance, in the quark �avour sector below the weak scale, the Wolfenstein

parametrisation of the CKM matrix [48] in powers of Cabibbo's λ ∼ 0.22, allows to guess the

order of diagrams [294, 297]. And above the weak scale, there are schemes such as Frogatt-Nielsen

charges [130] and Minimal Flavour Violation [132] (see also the more general framework introduced

in [331] for B-anomalies). Below the weak scale, a powercounting recipe for �avour is su�cient

to organise a calculation, because the mass scales for the EFT are known, and the remaining

couplings are few: in the RGEs for four-quark operators, QED e�ects can be included at appropriate

subleading order in the expansion in αe log [294, 332]. For LFV below the weak scale, the �leading
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order� operators and RGEs have been assembled: observables can be parametrised with three and

four-point functions, which correspond to operators of dimensions �ve to eight (see section 4.3.2),

and the �leading order� RGEs, which include two-loop vector to dipole mixing, are given in [323].

However, above the weak scale, the situation is complicated by the dynamical Higgs and SU(2)

gauge bosons, which introduce more particle mixing in the RGEs, and also by our ignorance of the

mass scale of new particles, ΛNP.

In this chapter, we suppose that New Physics is �beyond the LHC�, which is taken to mean

ΛNP > 4 TeV, and introduce in Section 5.2 a generalisation of the Wolfenstein counting that

parametrises the expansions in all the SM parameters of SMEFT, as well as the scale ratio v/ΛNP,

in terms of a single power-counting parameter λ ∼ 0.2. For any operator, this scheme allows

to identify the �leading� contribution to a given process among those that could arise at di�erent

orders in the multiple perturbative expansions. It also allows to classify the contributions of various

operators to a process according to the order in λ, and estimate when a process can have sensitivity

to an operator. So in section 5.3, the power-counting scheme is used to address four questions:

1. Are dimension six operators su�cient to parametrise LFV, or can observables be sensitive to

dimension eight operators?

2. Does one need two-loop anomalous dimensions in the RGEs?

3. Are LFV observables sensitive to the e�ects of CKM angles in the RGEs, or can the quark

Yukawa matrices be approximated as diagonal?

4. If the dimension six operator H†HℓHe is present, it contributes to the charged lepton mass

matrix when the Higgs has a vev, so the lepton mass eigenstates are not the eigenstates of

the lepton Yukawa matrix Ye that appears in the RGEs. How should this be accounted for?

The results are summarised in section 5.4. The powercounting suggests that in the µ↔ e sector,

upcoming data could be sensitive to some dimension eight operators, and some O(log /(16π2)2)
e�ects, for ΛNP <∼ 50 → 100 TeV (see the estimates 1 in tables 5.5 and 5.6). The relevant

dimension eight operators are listed in Appendix C, and their (tree-level) matching onto the EFT

below mW is given in Appendix C.2. For ΛNP >∼ 50(→ 100) TeV in the µ ↔ e sector, and for all

considered scales in the τ ↔ ℓ sector (ΛNP >∼ 4 TeV), the powercounting suggests that the one-loop

RGEs for dimension six operators are su�cient

5.2 Power-counting

We want to connect low-energy LFV processes with the operator coe�cients in the SMEFT. In

a top-down sense, this means we want to estimate the �leading� or largest contribution of each

operator coe�cient to each observable, or equivalently from a bottom-up perspective, the best

sensitivity of each observable to each operator.

1Only a few µ → e operators involving t̄t, such as H†H(µσPRe)(qtσPRt), could contribute up to ΛNP <∼ 100 TeV.
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5.2.1 Notation

We write the SM Lagrangian in the notation of Chapter 2. Operators that change lepton �avour

(but not number) arise at dimension ≥ 6 in SMEFT, and are added to the Lagrangian in the basis

of [304,305], with coe�cients written as a dimensionless C divided by appropriate factors of a mass

scale Λ:

LSMEFT = LSM +
{ 1

Λ2

∑

I

Cζ
IO

ζ
I +

1

Λ4

∑

K

(8)C ζ
KO

(8) ζ
K + h.c.+ ...

}
(5.1)

where Λ is v = 174 GeV in the experimental constraints on coe�cients (1/v2 = 2
√
2GF ), but it is

sometimes convenient in the powercounting to take Λ to be the scale ΛNP of New LFV Physics. So

for Λ = v, the powers of v2/Λ2
NP are included the coe�cients C. The coe�cient subscripts label

the gauge structure, and the superscript ζ is the �avour of the fermions composing the operator

in order of appearance(sometimes the LFV indices are suppressed when they are obvious). The

dimension six and eight operators are respectively labelled and normalised as in [305]2 and [308].

The operators {OI} represent LFV contact interactions among SM particles. Loop corrections to

the operators generically diverge, so after renormalisation in MS, the operator coe�cients depend

on the renormalisation scale µ and satisfy the RGEs. These can be written for dimension six

operators as

µ
∂

∂µ
C⃗ =

1

16π2
C⃗Γ̃ + ... (5.2)

where the operator coe�cients are lined up in the row vector C⃗, and the matrix elements of Γ̃ are

the anomalous dimensions multiplied by SM couplings, currently known at one-loop. The matrix

Γ̃ can be improved by including higher-loop contributions to the anomalous dimensions, and the

equation can be extended by adding higher-dimensional operators (which changes its structure

[333]). Eqn(5.2) can be solved numerically, or solved analytically as a �scale-ordered� exponential,

or approximated by neglecting the running of SM couplings and exponentiating Γ̃:

C⃗(µ2) ≃ C⃗(µ1) + C⃗(µ1)
Γ̃

16π2
ln

(
µ2
µ1

)
+ ... (5.3)

This last approximation can be improved by including the running of some SM couplings, and

selected O(ln2 /(16π2)2) terms. The power-counting scheme introduced below is diagrammatic, so

makes estimates in the spirit of an improved eqn (5.3), and aims to assist in determining which

improvements should be included in the RGEs.

5.2.2 The power-counting scheme

The aim here is to construct a power-counting scheme allowing to organise the perturbative expan-

sions that arise in Renormalisation Group running in the SMEFT above mW . The input to this

power-counting scheme should be the experimental sensitivities of one or several observables, and

a list of operator coe�cients. But since one of the expansion parameters, v2/Λ2
NP, is unknown, we

only bound it from above, and quantify the order of a coe�cients contribution to an observable, as

the scale up to which an O(1) coe�cient could be probed.

2The hermitian operators are here de�ned with a 1/2, since the hermitian conjugates are included in eqn 5.1.
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We introduce a small parameter

λ ≃ 0.2 (5.4)

by analogy to the λ parameter of the CKM matrix. The numerical value of powers λk is given in

table 5.1. The various dimensionless expansion parameters that occur in SMEFT can be associated

to powers of λ as discussed below (the recipe is summarised in table 5.2).

k = 1 3 4 5 6 7 8 10 12

λk = .2 .008 1.6× 10−3 3.2× 10−4 6.4× 10−5 1.28× 10−5 2.56× 10−6 1.02× 10−7 4× 10−9

ΛNP(TeV) 4.3 22 109 540 2700

Table 5.1: The second line gives the numerical value of λk, for λ = 0.2 and k from the �rst line.

The third line gives the value of ΛNP, in TeV, such that (v/ΛNP)
2 = λk (where v = 174 GeV).

1. the gauge couplings gs, g and g′ (of respectively QCD, SU(2) and hypercharge) are counted

∼ O(1), and sometimes retained in the estimates (because e3 ∼ λ2).

2. With a Lagrangian normalised as eqn (5.1) with Λ = v = 174 GeV, the ratio vn−4/Λn−4
NP is

absorbed into the coe�cients (where n is the operator dimension). In discussing dimension

eight operators, we assume a New Physics scale beyond the reach of the LHC:

ΛNP >∼ 4 TeV ⇒ v2

Λ2
NP

<∼ λ4

however we leave ΛNP > v undetermined in estimating the relevance of two-loop or CKM

e�ects.

3. to each loop is attributed a factor

1

16π2
∼ λ3 ,

log

16π2
∼ λ2

where the loops that appear in the RGEs are accompanied by a log, so counted with one less

power. (For reference, ln mW
mµ,τ

≃ 6.7, 3.85, and ln 4TeV
mW

≃ 3.91.)

4. anomalous dimensions are counted as O(1), despite that some can be large (this may some-

times compensate for counting gauge couplings ∼ 1).

5. In the lepton sector, we work in the mass eigenstate basis for charged leptons. This would be

the eigenbasis of Ye in the SM, but can di�er in the presence of non-renormalisable operators

[334]. For instance, the operator [CeH ]ij/Λ2
NP H†Hℓ̄iHej contributes to the charged lepton

mass matrix

[me]
ij = [Ye]

ijv − [CeH ]ij
v3

Λ2
NP

. (5.5)

However, there is a factor of 3 in the Feynman rule of OeH , such that the coupling of leptons

to the SM Higgs is

[Ỹ ]ij =
1√
2v

(
[m]ij − 2[CeH ]ij

v3

Λ2
NP

)
(5.6)
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so in the charged lepton mass basis, �avour-changing higgs decays probe the o�-diagonal

coe�cients of CeH .

The LHC measures the yukawas of the τ and the µ to be consistent with SM expectations

[185, 186, 335, 336], and constrains the τ → ℓ �avour-changing interactions of the 125-GeV

Higgs [337,338]:

v2

Λ2
NP

√∣∣Cµτ
eH

∣∣2 +
∣∣Cτµ

eH

∣∣2 < 1.00× 10−3 ,
v2

Λ2
NP

√∣∣Ceτ
eH

∣∣2 +
∣∣Cτe

eH

∣∣2 < 1.60× 10−3 . (5.7)

For µ → e �avour change, the MEG bound [223] on BR(µ → eγ) could probe couplings as

small as [322]
v2

Λ2
NP

Cµe
eH ,

v2

Λ2
NP

Ceµ
eH ∼ 7.5× 10−7 (5.8)

(larger values could be allowed if they cancel against other contributions). These bounds

imply that in the charged lepton mass eigenstate basis, the o�-diagonal elements of Ye are

small (they are comparable to the the LFV coe�cients Cij
eHv

2/Λ2
NP �see eqn 6.87), so the

two largest eigenvalues of Ye can approximately be obtained from mτ and mµ. Assuming

that the magnitude of the electron Yukawa is ≤ ye|max = me/v, one obtains that in the mass

eigenstate basis,

[Ye] =



≤ 2.9× 10−6 < 10−6 < 10−3

< 10−6 6.0× 10−4 < 10−3

< 10−3 < 10−3 1.0× 10−2


 ≈



λ8 λ9 λ4

λ9 2λ5 λ4

λ4 λ4 λ3


 (5.9)

6. In the quark �avour sector, the mass and Yukawa matrices select eigenbases when they are

diagonalised in the generation spaces of the SM fermions. Since this chapter is focussed on

LFV, operators such as H†Hq̄Hd or H†Hq̄H̃u are not considered, and the quark masses are

assumed to arise from Yukawa couplings. So the eigenvalues of Yd and Yu, evaluated at mW ,

are taken as:

(yb, ys, yd) ≈ (1.7× 10−2, 3.5× 10−4, 1.7× 10−5) ≈ (λ2/2, λ5, λ7) (5.10)

(yt, yc, yu) ≈ (1.0, 4.0× 10−3, 6.7× 10−6) ≈ (1, λ3/2, λ7/2) .

where yf ≡ mf (mW )/v, with mf (mW ) obtained from one-loop RGEs � eg for quarks:

m(mW ) = m(µ)

[
αs(mW )

αs(µ)

]4/β

with β = (33− 2Nf )/3 ≃ 8, and m(µ) is from the PDB [47] with µ = mb,mc for the b, c and

2 GeV otherwise3.

The CKM matrix is approximated in terms of λ in usual way:

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 =




0.974 0.224 −0.004
−0.22 0.99± 0.02 0.042

0.008 −0.04 1.0


 ≃




1 λ λ3/2

−λ 1 λ2

λ3/2 −λ2 1




3At mW , this gives mb = 3.0 GeV, mc = 0.7 GeV, ms = 62 MeV, md = 3.0 MeV, mu = 1.2 MeV.
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We will always work in the mass eigenstate bases of the singlet quarks, and the u-type

components of the doublet quarks. So in the RGEs, the up Yukawa is a diagonal matrix

Du, and Yd = VCKMDd. We choose the {uL} basis for quark doublets above mW for two

reasons. First, �avour change in the RGEs is therefore suppressed by CKM and the small

d-type Yukawas. Secondly, at dimension six in SMEFT, there is only a tensor operator for us

(Oℓequ(3)), so this basis diagonalises the large mixing of this tensor to the dipole operator.

The CKMmatrix is included also in matching atmW , when the low-energy operators involving

d-type quarks are expressed as SMEFT operators.

The above power-counting scheme is summarised in table 5.2, and should allow to estimate the

contribution of any operator coe�cient to any observable. The accuracy of the scheme is discussed

at the end of the next subsection, by comparing to the solutions of the RGEs.

loop 1
16π2 λ3

loop*log log
16π2 λ2

lepton yukawas yτ , yµ, ye λ3, 2λ5, λ8

ℓ �avour change see eqn 5.9

d-quark yukawas yb, ys, yd λ2/2, λ5, λ7

u-quark yukawas yt, yc, yu 1, λ3/2, λ7/2

q �avour change see eqn 5.11

Table 5.2: power-counting scheme for the perturbative expansion of the SMEFT

5.2.3 Examples

This section gives explicit examples of how the powercounting estimates are made, and compares

them to the solutions of the RGEs.

We �rst consider µ → e processes because the most restrictive experimental constraints on

LFV arise in this sector, and upcoming experiments aim to improve the sensitivities by several

orders of magnitude (see table 5.3; indeed, there plans to reach a conversion ratio <∼ 10−18 for

µA → eA [342]). The Branching Ratios can be expressed (see eg [142, 322, 329]) in terms of the

coe�cients, evaluated at the experimental scale, of operators which contribute at tree level. For

instance, the low-energy operators

δL = 2
√
2GF (CD,Lmµeσ · FPLµ+ CD,Rmµeσ · FPRµ) (5.11)

contribute to µ→ eγ as

BR(µ→ eγ) = 384π2(|CD,R|2 + |CD,L|2) < 4.2× 10−13 (5.12)

which gives the experimental bounds, translated into our power counting parameter (Λ ∼ v in eqn

(5.1)

|CD,R|, |CD,L| < 1.05× 10−8 ∼ λ11 . (5.13)
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process bound on BR sensitivity to C

µ→ eγ < 4.2× 10−13 [223] → 6× 10−14 [224] CD ∼ λ11 → λ12

µ→ eēe < 1.0× 10−12 [239] → 10−16 [231] CS ∼ λ8 → λ11

CV ∼ λ8.5 → λ11.5

µA→ eA < 7× 10−13 [339] → 10−16 [275,340] CV,D ∼ λ9.5 → λ12

CS ∼ λ10.5 → λ14

K0
L → µē < 4.7× 10−12 CP ∼ λ11.5

CA ∼ λ9.5
B0

d → µ±e∓ < 1× 10−9 CP ∼ λ7.5
B+

d → π+µ̄e < 1.7× 10−7 CV ∼ λ7
B0

s → µ±e∓ < 5.4× 10−9 CP ∼ λ7.5
B+ → K+µ̄e < 9.1× 10−8 CV ∼ λ6.5
D0 → µ±e∓ < 1.3× 10−8 CP ∼ λ6
D+ → π+µ̄e < 1.7× 10−7 CV ∼ λ4
τ → ℓγ < 3.3× 10−8 [243] CD ∼ λ7.5
τ → ℓℓ̄ℓ <∼ 2× 10−8 [244] →<∼ 10−9 [341] CV ∼ λ5 → λ5.5

CS ∼ λ4.5 → λ5

τ → ℓπ0 < 8.0× 10−8 [245] CS ∼ λ4.5
τ → ℓη < 6.5× 10−8 [245] CS ∼ λ4.5
τ → ℓρ < 1.2× 10−8 [247] CV ∼ λ4.5
B0

d → eτ < 2.8× 10−5 [47] CP ∼ λ5
CA ∼ λ4.5

Table 5.3: Some current and upcoming experimental bounds on LFV Branching Ratios (τ ↔ µ

results are similar to τ ↔ e). The third column gives the order of magnitude of dimension six

operator coe�cients that reproduce the experimental numbers, in powers of λ ≃ 1/5. The listed

coe�cients CLor contribute to the process at tree level, are labelled by the operator's Lorentz

structure, and are normalised to a scale Λ = v = 174 GeV in eqn (5.1). The meson decay bounds

are from [47], the coe�cient sensitivities from [322,329].

The dipole is a special case, because the operators contain not only �elds, but also a built-in

parametric suppression factor mµ. This is the usual operator de�nition, and makes sense because

in SMEFT the operator has a Higgs leg which frequently attaches to the muon line. However,

in some loop diagrams (for instance Barr-Zee) the Higgs is attached to a heavier particle in a

loop, so such diagrams would gain a factor 1/(2λ5) in our power-counting scheme. For a di�erent

normalisation of the dipole operator, the power-counting sensitivity would change. For instance,

δL = 2
√
2GF (CD,Lveσ · FPLµ+ CD,Rveσ · FPRµ) (5.14)

gives |CD,R|, |CD,L| <∼ λ16.
The sensitivity of µ → eγ to other operators can be estimated in our power-counting scheme

by drawing diagrams. For instance, tensor operators mix to the dipole via the left diagram of Fig.

5.1. Below the electroweak scale and normalizing as in eq. (5.11), the contribution to the dipole
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Figure 5.1: On the left, a diagram mixing the tensor operator to the dipole (the Higgs leg is

replaced by a mass insertion in the EFT below mW ). On the right, one of the diagrams mixing

tensor operators to scalars (the gauge boson can attach to any two legs not belonging to the same

bilinear).

Figure 5.2: Representative diagrams allowing two-loop mixing of vector operators to the dipole.

coe�cient is of order

∆CD
mµ

v2
∼ e log

16π2
Cff
T

mf

Λ2
NP

⇒ ∆CD ∼ eλ2Cff
T

yf
yµ

v2

Λ2
NP

(5.15)

where f = u, d, s, c, b, e, µ, τ , and the estimate in our power-counting scheme can be obtained using

table 5.2.

Scalar and vector operators can contribute to the dipole via two-loop diagrams, that arise either

as one-loop mixing into the tensor, or direct mixing to the dipole at two-loop. Below the weak

scale, the scalar to tensor mixing is via diagrams like the right �gure 5.1, where the gauge boson is

a photon, which gives

∆CD ∼ e3
log2

(16π2)2
Cff
S

yf
yµ

v2

Λ2
NP

(5.16)

where now f = u, d, s, c, b, τ . The vector to dipole mixing is via diagrams such as �gure 5.2. We

estimate the diagrams on the left and right as

∆CD ∼ e3
log

(16π2)2
CV

(
v

ΛNP

)2

×
{

1
yd
yµ

(5.17)

so there is sensitivity to vector coe�cients for scales below 10 TeV (which is consistent with the

bound in [322,323]).

Approximating physical predictions in terms of powers of some parameter is always somewhat

arbitrary and erroneous (Indeed, although we count in λ, we allow for
√
λ in table 5.3). In order to
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f Power Counting Running

e ∼ 20 TeV ∼ 13 TeV

µ ∼ 300 TeV ∼ 190 TeV

τ ∼ 103 TeV ∼ 1.1× 103 TeV

u ∼ 50 TeV ∼ 71 TeV

d ∼ 50 TeV ∼ 73 TeV

s ∼ 200 TeV ∼ 330 TeV

c ∼ 103 TeV ∼ 1.7× 103 TeV

b ∼ 2× 103 TeV ∼ 2× 103 TeV

Table 5.4: Powercounting estimates of the mixing from tensor to dipole operators below mW ,

compared to the solutions of the RGEs [322,323].

test our recipe, in table 5.4 we compare our power-counting estimates to the solutions of the RGEs;

this estimate is obtained in the EFT below mW , for which the solution of the �leading order� RGEs

is given in [322,323]. The table shows that our estimate of the scale ΛNP where Cff
T would be ∼ 1,

(obtained by combining eqn (5.15) with column three of table 5.3), di�ers by at most
√
3 from the

solution of the RGEs (this corresponds to a factor ≤ 3 for C, so less than an order of magnitude in

the rate). For the second-order/two-loop mixing of eqns (5.16,5.17) we �nd that the powercounting

can mis-estimate ΛNP by a factor 2-3.

5.3 Questions

This section uses the power-counting proposal of the previous section to study what physics should

be included at �leading order�, in the SMEFT RGEs for LFV operators. In the �rst sections, the

focus is on µ↔ e �avour change, due to the sensitivity of current and upcoming experiments; the

importance of dimension eight operators and two-loop anomalous dimensions for τ -LFV is brie�y

discussed in section 5.3.5.

5.3.1 Dimension eight operators

This section explores when which dimension eight operators are required, and whether their RGEs

are required.

We suppose that the New Physics responsable for LFV is beyond the reach of the LHC, so ΛNP >∼
4 TeV. In the normalisation convention of table 5.3, this implies that coe�cients of dimension eight

operators at are suppressed by ∼ λ8:

f(gNP , ...)

(4 TeV)4
O(8) =

(8)C

v4
O(8) ⇒ (8)C <∼

v4

(4 TeV)4
≃ λ8 (5.18)

Comparing to the tree-level sensitivities given in table 5.3, one sees that kaon and muon decays are

generically sensitive to dimension eight operators induced by new particles in the interesting mass

range just beyond the reach of the LHC. Pushing the New Physics scale above 20 TeV would give
(8)C <∼ λ12, making most dimension eight operators irrelevant.
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There are thousands of LFV dimension eight operators [308, 309], so it would be attractive to

include only some of them in a �rst approximation. Indeed, in a bottom-up perspective, only the

dimension eight operators to which observables are sensitive are required. So we reject derivative

operators such as

Dα(eγβµ)Dα(fγ
βf)

because their contribution to low-energy S-matrix elements should be suppressed by {s, t, u}/v2,
suggesting that K and µ processes have no sensitivity to dimension eight derivative operators.

We also neglect operators with more than four legs after electroweak symmetry-breaking, on the

assumption that they do not contribute (at tree level) to our low-energy observables.

There remain about four dozen µ↔ e operators (given in Appendix C in the notation of [308]):

1. four-particle operators which are forbidden at dimension 6 due to gauge invariance.

2. dimension six SMEFT operators with an additional H and H†, such as (HH†)ℓ̄HσαβeFαβ

or (ℓ̄eHσ
αβµ)(q̄iH̃σαβuj). It may seem unlikely that the dimension eight contribution could

be relevant given the possibility of a dimension six term4; however, being agnostic could be

appropriate in EFT, and dimension eight operators are considered, for instance, in studies of

Non-Standard neutrino Interactions [343].

These operators are schematically listed in tables 5.5 and 5.6, along with the scale below they

could contribute to observables with a coe�cient C <∼ 1. So they should be considered in the EFT

parametrisation of any model constructed below this scale.

The e�ects of these operators can be partially accounted for by matching the model onto them

at ΛNP, and then including them in the matching at the weak scale onto the low energy EFT. These

matching conditions for LFV operators are given in appendix C.2 (at tree level).

Many of these operators contribute to observables via loops, so including them in RGEs is

relevant. Since they match at mW onto low-energy four-particle interactions, the Renormalisation

Group running below mW is known and will occur automatically once they are included in the

matching.

The RG running in SMEFT is missing. Above mW , the Higgs andW bosons can mix operators

di�erently from the gluon and photon, for instance by modifying the SU(2) contractions (see eg the

RGEs for a subset of dimension eight operators in [318]). Dimension eight four-fermion operators

involving two tops pose a particular problem, because their leading contribution to low energy

LFV is likely to arise from the unknown RG running in SMEFT. Fortunately, many of these top

operators are dimension six operators with an extra H† and H (only the operator ∼ (ePRµ)(tPLt)

arises �rst at dimension eight), so one could hope that models dominantly generate dimension six

operators. Alternatively, one could envisage to add the coe�cients of dimension eight top operators

to the dimension six coe�cients at ΛNP, and evolve them with the SMEFT RGEs at dimenson six,

which will include a subset of the loops. We leave calculating the anomalous dimensions for a later

project.

4The dimension six coe�cient could perhaps be suppressed by additional loops or small couplings with respect

to dimension eight.
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operator ΛNP (in TeV) process

(ℓeHeµ)(qdHdd) 55 µA→ eA

(ℓeHeµ)(uuH̃
†qu) 55 µA→ eA

(ℓeHeµ)(qsHds) 26 µA→ eA

(ℓeHσeµ)(qdHσdd) 25 µA→ eA

(ℓeHσeµ)(qbHσdb) 25 µA→ eA

(ℓeHeµ)GG 20 µA→ eA

(ℓeHσeµ)(ℓτHσeτ ) 20 µ→ eγ

(ℓeHeµ)(ℓeHee) 15 µ→ eēe

(ℓeHeµ)(ucH̃
†qc) 15 µA→ eA

(ℓeHσeµ)(qsHσds) 15 µA→ eA

(ℓeHeµ)(utH̃
†qt) 10 µ→ eγ

(ℓeHeµ)(qbHdb) 10 µA→ eA

(ℓeHeµ)(ℓµHeµ) 8 µ→ eγ

(ℓeHeµ)FF 3 µA→ eA

Table 5.5: Dimension eight operators which induce at low energy four-particle contact interactions

that do not arise at dimension six. The operators are represented schematically in the �rst column,

and the second column gives the scale ΛNP up to which the process of the third column (with

upcoming sensitivity) could probe coe�cients <∼ 1. (The estimate for (ℓeHeµ)FF is from [326].) .

5.3.2 2-loop anomalous dimensions?

This section aims to identify relevant mixing that could arise from the two-loop RGEs of SMEFT,

so we are looking for two-loop diagrams that would not be generated at second order in the one-loop

RGEs.

One can see why these could be interesting, by considering the QED×QCD-invariant EFT below

mW , where at one-loop, vector operators mix among themselves, and the dipoles+scalars+tensors

mix among themselves, but there are no divergent one-loop diagrams mixing vectors and non-

vectors. Therefore, to all orders in the one-loop RGEs, the vectors evolve separately from the

others. However, vector to dipole mixing occurs at two-loop, and is encoded in the the two-loop

RGEs [344]; a few diagrams are given in �gure 5.2. So we are looking for two-loop diagrams that

allow operator O to mediate process P, when O cannot mediate P via the one-loop RGEs.

Figure 5.3: Vector mixing to the tensor via Higgs exchange.
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operator ΛNP (in TeV) process

(H†H)(ℓeσeµ)(qtσut) 100 µ→ eγ

(HH†)(ℓ̄eeµ)(d̄dqd) 55 µA→ eA

(HH†)(ℓ̄eeµ)ε(q̄uuu) 55 µA→ eA

(HH†)(ℓ̄eeµ)(d̄sqs) 25 µA→ eA

(HH†)(ℓ̄eγ
αℓµ)(q̄uγαqu) 22 µA→ eA

(HH†)(ℓ̄eγ
αℓµ)(ūuγαuu) 22 µA→ eA

(HH†)(ℓ̄eγ
αℓµ)(q̄dγαqd) 22 µA→ eA

(HH†)(ℓ̄eγ
αℓµ)(d̄dγαdd) 22 µA→ eA

(HH†)ℓ̄eHσ
αβeµFαβ 20 µ→ eγ

(HH†)(ℓ̄eγ
αℓµ)(ℓ̄eγαℓe) 18 µ→ eēe

(HH†)(ℓ̄eγ
αℓµ)(ēeγαee) 18 µ→ eēe

(HH†)(ēeγ
αeµ)(ēeγαee) 18 µ→ eēe

(HH†)(ℓ̄eeµ)ε(q̄cuc) 15 µA→ eA

(HH†)(ℓ̄eeµ)(d̄bqb) 10 µA→ eA

Table 5.6: Dimension eight operators which induce low energy contact interactions that do arise at

dimension six. In the �rst column the operators are represented schematically(other distributions of

the Higgses, or triplet constractions, could be possible), and the second column gives the scale ΛNP

up to which the process of the third column (with upcoming sensitivity) could probe coe�cients
<∼ 1. .

In SMEFT, there can be 1-loop vector to tensor mixing by exchanging an Higgs, as illustrated

in Fig.5.3. Closing the quark legs gives a contribution to the dipole. For instance, considering the

vector O(1)
ℓq we �nd

∆CD ∼ e
(

log

16π2

)2

C
(1)eµnm
ℓq [YuY

†
u ]nm

v2

Λ2
NP

∼ eλ4C(1)eµnm
ℓq [YuY

†
u ]nm

v2

Λ2
NP

(5.19)

which results in a sensitivity to C
(1)eµtt
ℓq up to ΛNP ∼ 50 TeV. Estimates similar to eqn (5.19) hold

for all vector operators which can mix to the u-type tensor.

Vector operators also can mix directly to the dipole in the 2-loop RGEs through gauge interac-

tions, as illustrated by the diagram on the left of �gure 5.2. The powercounting estimate for these

diagrams

∆CD ∼ e3
log

(16π2)2
CV

v2

Λ2
NP

(5.20)

suggests that there is sensitivity to vector coe�cients for scales below 10 TeV �which is larger

than the vector→tensor→ dipole contribution for all operators not involving a top quark, see table

5.7.

There could also be two-loop mixing of the OLEDQ scalar to the dipoles. For comparaison, at

one loop the u quark scalar operator OLEQU mixes to the tensor, which mixes to the dipole, and due

to Yukawa enhancement and large anomalous dimensions, this second-order process in the one-loop

RGEs is important. In the d-quark sector, there is no dimension six tensor, so no equivalent process
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occurs; however the diagrams are there, and OLEDQ can be Fierzed to the vector −1
2(ℓγαq)(dγαe)

which mixes at two-loop to the dipole [344]. The powercounting estimate is

∆CD ∼ eg2λ5Cij
ℓedq[Yd]ij

v2

Λ2
NP

(5.21)

which suggests that µ → eγ could be sensitive to coe�cients <∼ 1 up to the scales given in table

5.7.

operator 2loop V→ D(ΛNP in TeV) V→T→D(ΛNP in TeV)

O(1)eµtt
ℓq 10 50

Oeµff
V 10

Oeµdd
ℓedq 5 �

Oeµss
ℓedq 20 �

Oeµbb
ℓedq 100 �

Table 5.7: Operators which contribute to µ → eγ via two-loop mixing in the RGEs, and in the

second column, our powercounting estimate for the scale ΛNP up to which coe�cients <∼ 1 could be

probed. The third column gives the estimated sensitivity obtainable via the one-loop RGEs. Oeµff
V

schematically refers to all the dimension six vector four-fermion operators with f ̸= t. .

These results show that the two-loop vector to dipole mixing can be relevant, and often domi-

nates over the mixing involving a Higgs loop, which occurs at second-order in the one-loop RGEs.

It would be desirable to include these two-loop anomalous dimensions. However, although they are

known in QCD and QED [323, 344, 345], a complete computation in SMEFT is currently missing

in the literature [346].

5.3.3 CKM

CKM mixing angles can appear in various places in SMEFT: in matching of the higher scale theory

onto SMEFT, in the RG running of operator coe�cients and of SM couplings, and in matching

the SMEFT operators at mW onto the QED×QCD-invariant low energy theory. Including CKM

in matching at mW is straightforward, but it could be conceptually simpler to set VCKM = 1 in

the RGEs for the operator coe�cients. This section explores the errors that could arise from this

approximation, by allowing one non-zero operator at a time at ΛNP, and estimating the magnitude

of low-energy coe�cients that it generates at one-loop ∝ [VCKM]ij , i ̸= j. If no experiment has

sensitivity to the contributions proportional to CKM mixing angles, then one can conclude that

VCKM = 1 is an acceptable approximation in the RGEs.

The CKM matrix also appears in the RGEs of the renormalisable SM couplings, where it causes

the eigenbases of YdY
†
d and YuY

†
u to rotate with scale. This is due to wavefunction corrections.

Since wavefunction diagrams also decorate the operators, we assume this is a �universal� e�ect,

automatically included by working in the rotating YuY
†
u eigenbasis, and do not powercount the

associated diagrams 5.

5For instance, an o�-diagonal [Yu]
ct ∼ 3 log /(32π2)Vcby

2
bVtbyt is generated by a Higgs loop on the qL line. Inside

the loop mixing OLEQU,3 → OD, this could give sensitivity to Oeµct
LEQU,3, in an unrotating basis for qL.
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Recall that we work in the Yd eigenbasis for the {dR}, and the Yu eigenbasis for the {uR} and
{qL}. So VCKM only appears in Higgs loops, at vertices ∝ Yd = VCKMDd. It therefore enters the

one-loop RGEs of OLQ1,OLQ3, OLD, OED OEQ and OLEDQ.

Consider �rst operators at ΛNP with a doublet quark bilinear (qiγαqj), where i, j ∈ {u, c, t}.
Higgs exchange between the quark legs can dress this quark bilinear to generate

(qiγαqj)→ V ip
CKMydpV

jr
CKMydr

log

16π2
(dpγαdr) (5.22)

where the approximate magnitude of V ip
CKMydpV

jr
CKMydr , for all possible �avours of the doublet

and singlet lines, is given in table 5.8. If the CKM matrix is approximated as the identity, then

only the diagonal components of the table would remain.

ij\pr bb bs bd ss sd dd

tt λ5 λ9.5 λ13 λ14 λ17.5 λ21

tc λ7 λ7.5 λ10.5 λ12 λ15 λ18.5

tu λ8.5 λ8.5 λ9.5 λ13 λ14 λ17.5

cc λ9 λ9.5 λ12.5 λ10 λ13 λ16

cu λ10.5 λ10.5 λ11.5 λ11 λ12 λ15

uu λ12 λ12 λ13 λ12 λ13 λ14

Table 5.8: Estimates for the Yukawa and CKM suppression (≃ V ip
CKMydpV

jr
CKMydr) of the mixing

between operators containing (qiγαqj) into operators containing (dpγαdr). The indices ij are given

in the left column, and pr in the top line.

From the table 5.8, one sees that mixing induced by non-vanishing CKM angles is suppressed by

< λ7+2v2/Λ2
NP (where the additional λ2 is for the log /16π2 loop suppression). Such contributions

are clearly negligeable in the RGEs for τ → ℓ operators; to determine whether they should be

included in the RGEs for µ↔ e operators, we compare to the sensitivity of upcoming experiments.

In the case of p = r but i ̸= j, the best sensitivity is from µ→ e conversion. We estimate that

µA → eA could be sensitive to the mixing from (qtγαqc) → (bγαPRb) for an experimental reach

BR(µA → eA) <∼ 10−16 v4

Λ4
NP

, and to the cu → ss, dd mixing for BR(µA → eA) <∼ 10−20 v4

Λ4
NP

. This

suggests that the RGE-mixing of operators involving (qiγαqj), into operators involving (dpγαdp),

for i ̸= j and p = q, is negligeable in the forseeable future. In the converse case, of RGE-mixing of

�avour-diagonal operators (qiγαqi), into quark �avour non-diagonal operators (dpγαdr), table 5.8

indicates that the least suppressed mixings are tt, cc → bs ∝ λ9.5 v2

Λ2
NP

, and cc, uu → sd ∝ λ13 v2

Λ2
NP

,

which is beyond the sensitivity of the meson decay searches listed in table 5.3.

The CKM angles can also enter in the mixing of the singlet quark current (dpγαdp) into doublets

(qiγαqj). Similarly to the doublet to singlet mixing discussed above, the e�ects of CKM are beyond

upcoming experimental sensitivities. A novel feature in this case is that approximating the CKM

angles to vanish can generate �avour change when there is none. For example, the sR leg of

an operator could transform under RG running into a left-handed doublet quark (due to Higgs

exchange), which in the SM would be in the sL direction. But in our approximation where YdY
†
d is

diagonal in the YuY
†
u eigenbasis, it is in the cL direction, so matches at mW onto

∑
p V

cp
CKMdLp.
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Finally, there are diagrams with one Higgs vertex on the quark line and one on a lepton line,

which eg mix vector and scalar operators. The mixing from scalar into vector operators, such as

OLEDQ → {O(1)
LQ,OEQ} can be neglected because the lepton Yukawas are smaller than that of the

b, so any quark-�avour-changing contribution is more suppressed than the (dpγαdp) ↔ (qiγαqj)

mixing discussed above. It is also the case that quark-�avour-changing mixing from vectors to

scalars is below the sensitivity of upcoming experiments, despite that the experimental sensitivity

to scalar operators can be better than to vectors (see table 5.3). In the case of µ↔ e searches, this

is because the mixing is suppressed by yµ ∼ λ5, and for τ ↔ ℓ searches, the experiments are less

sensitive.

So we conclude that CKM angles can be neglected in the SMEFT RGEs for LFV operators,

provided that one runs in the YuY
†
u eigenbasis for the {qL}, and that CKM mixing is retained in

matching at mW .

5.3.4 LFV Yukawa couplings

In the SM, the Yukawa matrix of the charged leptons is the only basis-choosing interaction in the

leptonic sector � the gauge interactions are �universal�, that is, proportional to the identity matrix

in generation space, so the eigenvectors do not choose directions. In the real world (not described

by the SM), the neutrino mass matrix provides another eigenbasis, but the magnitude of neutrino

masses is so small that their direct GIM-suppressed contribution to LFV is irrelevant (instead, they

provide motivation to search for LFV).

LFV operators that are added to the Lagrangian below the weak scale are inevitably written in

the mass eigenstate basis of the charged leptons. Above the weak scale in SMEFT, there are two

possibilities: the mass eigenstate basis, or the Yukawa eigenstate basis � which may be di�erent

in the presence of the operator OeH . The physics, of course, cannot depend on a basis choice, but

the calculation may be more intuitive and simple in somes bases than in others. So which is the

best choice?

Suppose one thinks top-down; then at ΛNP, the New Physics model is matched to the SM

+operators. The obvious basis in this case for SMEFT is the De-basis where the lepton Yukawa

matrix is diagonal : Ye = De = diag{ye, yµ, yτ}. This choice is motivated by LFV being a NP e�ect,

and ensures that the SMEFT RGEs, which describe SM dynamics, cannot change the �avours of

lepton legs.

However, when the Higgs gets a vev in the presence of the OeH operator, the De basis may

no longer be the mass eigenstate basis, due to additional o�-diagonal contributions of OeH to the

mass matrix. So a basis rotation during the matching at mW would be required, from the De basis

to the mass eigenstate basis in which the restrictive low-energy constraints are expressed. Current

constraints/sensitivities on the o�-diagonal elements of OeH imply that the angles of this rotation

are small: estimating θij ∼ Cij
eHv

3/(Λ2
NPmax{mi,mj}) for i ̸= j gives

θℓτ , θτℓ <∼ λ , θeµ, θµe <∼ λ4 (5.23)

where ℓ ∈ {e, µ}.
If the New Physics scale is su�ciently high that only dimension six operators are relevant, one

might hope to neglect this rotation in matching, because the angles are ∝ Cv2/Λ2
NP, so any e�ect

on a NP operator would be O(1/Λ4
NP). (Below mW , there are also contact interactions induced by
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the W,Z, h, which could becomes �avour-changing under a basis rotation. However, the W and Z

interactions are �universal�, so unconcerned by basis rotations, and the higgs-mediated operators

are suppressed by SM Yukawas, so the dimension six �avour-changing operators induced by the

rotation are unobservable.) However, as previously discussed, LFV data can have sensitivity to

operators suppressed by O(1/Λ4
NP), and the mixing angles of eqn (5.23) are also enhanced by

inverse Yukawas. The power-counting rules suggest that �avour-diagonal coe�cients at ΛNP ∼ 4

TeV could be rotated into τ ↔ ℓ operators suppressed by λ5, and into µ ↔ e suppressed by λ8.

This is within current experimental sensitivities.

We advocate not making the transformation from the mass to Yukawa eigenstate basis at mW .

This is because the rotation is unknown, and the angles are insu�ciently suppressed (see Eq. 5.23).

Instead, we remain in the mass eigenstate basis above the weak scale; this is consistent with our

bottom-up perspective, because it is the basis where the constraints apply. The lepton Yukawa

matrix can be o�-diagonal in this basis(see eqn 5.9), but the o�-diagonals ∼ θijyj are much smaller

than the θijs of eqn (5.23) because they are suppressed also by small lepton Yukawas. The power-

counting suggests that they can be neglected in the RGEs, for instance

[Ye]µe
log

16π2
v2

Λ2
NP

<∼ λ15 .

So in practise, we work in the mass eigenstate basis at all scales, but treat the lepton Yukawa

matrix as diagonal in the RGEs of SMEFT. The inconvenience of this choice is that in matching

a model onto the operators, one must identify the mass eigenstate basis in the model, and obtain

operator coe�cients in that basis.

5.3.5 LFV with τs

This section brie�y discusses the ingredients required for a �leading order� SMEFT study of LFV

involving τs.

For the majority of τ LFV processes listed in Table 5.3 there is sensitivity to Wilson coe�cients

that are >∼ λ5. Since a loop costs a factor λ2, loop e�ects in the τ sector could be relevant for

(v2/Λ2
NP) ≥ λ3, but this implies a New Physics scale within the LHC reach.

In the case of the more sensitive τ → e(µ)γ searches, the corresponding diagrams can be power

counted as for µ→ eγ, replacing the muon leg with a tau leg. Since the constraints concern dipole

coe�cients de�ned with a built-in yukawa of the heavier lepton, we encounter two possibilities in

the diagrams:

� either one Higgs leg is attached to the decaying lepton line and the power counting estimate

is the same,

� or no Higgs-heavy lepton vertex is present and the diagrams are suppressed by a factor

yµ/yτ = 2λ2 with respect to the corresponding µ→ eγ one.

In both cases, given the lesser sensitivity in the τ sector, we can conclude that any approximation

that we justify through power counting for µ-s is also valid for τ LFV processes.

As a result, two-loop anomalous dimensions should be irrelevant in τ ↔ ℓ processes, due to

the estimated suppression ∼ λ5 of two-loop diagrams. This should remain true even in the case of

τ → e(µ)γ.
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Furthermore, the requirement of eq. (5.18) on 8-dimensional operator coe�cients for ΛNP >∼ 4

TeV
(8)C <∼ λ8

is su�cient to argue that any τ LFV observable is not sensitive to dimension eight operators.

5.4 Summary

E�ective Field Theory can be envisaged from a bottom-up or top-down perspective. In bottom-up

EFT for lepton �avour change, the aim is to map experimental constraints onto the correct sum

of operator coe�cients at the New Physics scale ΛNP, in order to identify the area in coe�cient

space where BSM models must sit. From a top-down perspective, one can map a LFV model onto

operator coe�cients at ΛNP, calculate observables using EFT, and this should correctly reproduce

model predictions to within a calculable uncertainty. In both perspectives, the EFT calculation

must include correctly every operator coe�cient that could contribute to an observable, irrespective

of its dimension or of the order in the loop or coupling expansions.

To ensure that we use SMEFT correctly for describing LFV, we introduced a power-counting

scheme, that allows to organise all the SMEFT perturbative expansions � in loops, couplings,

mixing angles and the ratio of the weak scale to the New Physics v/ΛNP �in terms of a small

�Cabibbo-Wolfenstein-like� parameter λ ≈ 0.2. This power-counting scheme is described in section

5.2.2, and summarised in table 5.2. The future reach of various experiments can be expressed

in powers of λ (see table 5.3) � so for instance, the upcoming MEGII experiment searching for

µ → eγ could probe dipole coe�cients up to O(λ12). Then one can draw diagrams, arising at

various orders in the di�erent perturbative expansions, and do two things; �rst, compare di�erent

contributions of an operator to an observable, to identify the leading one, (see eg section 5.2.3 and

5.3.2). And secondly, one can determine which operators can a�ect which observables by comparing

the power-counting estimates to the future experimental sensitivity. Some examples are given in

Section 5.2.3.

For LFV operators, the SMEFT expansion in operator dimension can be written as an expansion

in v2/Λ2
NP, where the New Physics scale ΛNP plays two roles in our manuscript. On one hand, it is

the unknown mass of the lightest lepton �avour changing new particle (see the Lagrangian of eqn

(5.1)), which we take �beyond the reach of the LHC�: ΛNP >∼ 4 TeV (so v2/Λ2
NP

<∼ O(λ4) in the

powercounting scheme). However, since ΛNP is unknown, we simultaneously count the order of an

operators contribution by the scale it could probe with a coe�cient of O(1/Λ2n
NP).

In the SMEFT, there are already many operators at dimension six, and their RGEs are only

known at one-loop. So in section 5.3, we use the powercounting scheme to explore whether dimen-

sion six operators and one-loop RGEs are su�cient to describe LFV at the sensitivity of experiments

under construction. Section 5.3.2 suggests that some two-loop anomalous dimensions are required

for µ ↔ e �avour change, when ΛNP <∼ 20 TeV. The calculation of these anomalous dimensions is

in progress [346].

Section 5.3.1 �nds that upcoming µ ↔ e data can be sensitive to dimension eight SMEFT

operators, about four dozen of them for ΛNP >∼ 4 TeV, but none at scales ΛNP >∼ 100 TeV. The

relevant dimension eight operators match onto three-or four-point interactions below the weak scale,

and can be divided into two sets: those which are the lowest-dimension SMEFT operator inducing a
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given contact interaction below mW , and a second set that induces low-energy contact interactions

already present at dimension six. The scale ΛNP up to which the operators can be relevant is given

in tables 5.5 and 5.6. These dimension eight operators are listed in Appendix C, and are included

in the matching onto operators below mW in Appendix C.2.

The power counting scheme can also be used to simplify and streamline calculations with the

existing SMEFT operators and RGEs, for instance by neglecting �avour-changing SM interactions.

We perform two such exercises; section 5.3.3 checks that CKM mixing can be neglected in the

RGEs for LFV operators, provided that it is included in matching, and that the SMEFT RGEs

run in the YuY
†
u eigenbasis for the {qL}. Section 5.3.4 explores the case where operators of the

form Cij(H†H)nℓiHej , with i ̸= j, are allowed to contribute to the charged lepton mass matrix.

This implies that in the charged lepton mass eigenstate basis (where all experimental constraints

are given), the charged lepton Yukawa Ye has unknown o�-diagonal elements. The power-counting

suggests that if these �avour-changing Yukawas are below current experimental sensitivities, they

can be neglected in the SMEFT RGEs.

In this chapter, we estimated lower bounds on the scale ΛNP , such that the predictions of lepton

�avour changing New Physics models from beyond ΛNP can be obtained with the dimension six

operators of SMEFT and their one-loop RGEs. These results could be used to motivate, or justify,

SMEFT studies of LFV.







Chapter 6

The sensitivity of µ→ e to τ �avour

change

6.1 Introduction

Process Current bound on BR Future Sensitivity

µ→ eγ < 4.2× 10−13 [223] 10−14 [224]

µ→ ēee < 1.0× 10−12 [239] 10−16 [231]

µA→ eA < 7× 10−13 [339] 10−16 [275,340]

τ → lγ < 3.3× 10−8 [243] 3× 10−9(e), 10−9(µ)

τ → eēe < 2.7× 10−8 [244] 5× 10−9 [341]

τ → µµ̄µ < 2.1× 10−8 [244] 4× 10−9 [341]

τ → µēe, eµ̄µ < 1.8, 2.7× 10−8 [244] 3, 5× 10−9 [341]

... ... ...

τ → ℓπ0 < 8.0× 10−8 [245] 4× 10−9 [341]

τ → ℓη < 6.5× 10−8 [245] 7× 10−9 [341]

τ → ℓρ < 1.2× 10−8 [247] 10−9 [341]

h→ e±µ∓ < 6.1× 10−5 [190] 2.1× 10−5 [347]

h→ e±τ∓ < 2.2× 10−3 [191] 2.4× 10−4 [347]

h→ τ±µ∓ < 1.5× 10−3 [191] 2.3× 10−4 [347]

Table 6.1: Some µ ↔ e and τ ↔ l processes (l ∈ {e, µ}), with the current experimental bound on

the branching ratios. The last column lists the future sensitivities used in our projections, which

correspond to the expected reach of upcoming or planned experiments (except for µ → eγ, where

the MEGII experiment at PSI, which starts taking data in 2022, aims to reach BR ∼ 6 × 10−14).

Additional τ ↔ l processes involving b quarks are listed in table D.1.

As discussed in Chapter 3, the current limits on µ→ e �avour change are more retrictive than

those on τ → l, where l ∈ {e, µ}, due to the possibility of making intense muon beams. A signi�cant

gain in sensitivity is expected at upcoming µ→ e experiments (see table 6.1), sometimes allowing:

Br(µ→ e . . . ) <∼ Br(τ → e . . . )Br(τ → µ . . . ) (6.1)

Improving the sensitivity to τ ↔ l processes by producing the τ in the �nal state has been explored

at the future Electron Ion Collider [348] and electron-positron machines [349]. Instead, we focus
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on the relation among the three ∆F = 1 lepton �avour changes:

τ

↗ ↘
e −→ µ

If two lepton �avours are unconserved, then no symmetry forbids the third to happen, so it could

be generated from the �rst two at some order in the perturbative expansion. Eq. (6.1) tells us that

µ→ e searches are potentially sensitive to the product of µ→ τ and τ → e interactions respecting

τ LFV constraints. So the aim of this chapter, is to explore what can be learned about τ ↔ l

interactions, using µ → e observables. We are interested in the model-independent aspects of this

question, so we assume that the NP responsable for LFV is heavy, and use EFTs to parametrise

low energy LFV.

We will suppose a New Physics scale ΛNP ≥ 4 TeV (�beyond the LHC�), describe τ → l

interactions via dimension six operators, and calculate the log-enhanced contributions to dimension

eight µ→ e operator coe�cients, which appear in their Renormalization Group evolution between

ΛNP and mW . These contributions arise from the insertion in loop diagrams of both a µ → τ

and a τ → e operator, and can be reliably computed in EFT � although they may not be the

dominant contributions to µ→ e processes coming from τ ↔ l interactions (see section 6.2.1). We

will �nd that upcoming µ ↔ e searches could be sensitive to τ ↔ ℓ interactions beyond the reach

of upcoming τ experiments.

The chapter is organized as follows. In Section 6.2 we introduce the formalism for the EFT

calculation (notation and operators), and we make several estimates to focus the calculations on

contributions within future µ→ e experimental sensitivity. Our results are illustrated in Section 6.3,

where the Renormalization Group Equations (RGEs) for dimension eight operators are reviewed,

we discuss examples of anomalous dimensions calculated from double insertions of dimension six

operators, and give the weak scale matching of µ → τ × τ → e onto low energy µ → e operators.

The complete results for (dimension 6)2 → dimension 8 mixing can be found in appendix D.2. In

Section 6.4 we discuss some phenomenological implications : µ → e observables are sensitive to

products of τ ↔ l operator coe�cients and we compare this sensitivity to the limits coming from

searches for τ ↔ l processes.

6.2 EFT, operators and notation

In this section, we start by comparing our calculation to the expectations of a few models in

subsection 6.2.1, then review the EFT framework in sections 6.2.2 to 6.2.4. Finally in subsection

6.2.5, we estimate which (µ → τ) × (τ → e) loop diagrams could be accessible to future µ → e

experiments, making them interesting to calculate.

6.2.1 A few models

In this subsection, we discuss two models�one being the SM� in order to illustrate the rela-

tionships between τ ↔ l and µ ↔ e observables, and to compare our EFT calculation with the

expectations of UV complete models.
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Figure 6.1: The GIM mechanism in K − K̄ mixing: in the SM box calculation of �gure (a), the

mass-independent dimension six contribution cancels in the �avour sum because of CKM unitarity.

Then at O(G2
F ), the top contribution is not dominant due to small mixing with the down quark,

whereas the dimension eight term ∼ G2
Fm

2
c is relevant. It can be calculated in the low-energy EFT

(Fermi theory) as the loop contribution with two dimension six operators inserted, as illustrated in

(b)

First, consider a model where two heavy bosons, M ≫ mW , are added to the SM, with �avour

diagonal, and respectively τ ↔ µ and τ ↔ e renormalizable interactions. A �rst source of µ ↔ e

�avour change could be additional renormalizable µ ↔ e interactions of the heavy bosons � not

forbidden by symmetry � but these do not interest us, because their magnitude depends on the

model and is independent of the τ ↔ l interactions. We are interested in µ → e processes which

occur due to diagrams involving both the µ → τ and τ → e interactions. The part of these

amplitudes which is reproduced by our EFT calculation, can be identi�ed by matching the model

onto EFT at the heavy boson mass scale M . The model generates τ ↔ l four-fermion amplitudes

at tree level, and could induce µ ↔ e amplitudes at one loop. These all are expected to match

onto dimension six operators in the EFT, with coe�cients of O(λτl/M2) and O( λ∗
µτλτe

16π2M2 ). Our EFT

calculation cannot reproduce these model dependent coe�cients. Instead, the EFT below the heavy

boson scale allows to combine the dimension six τ ↔ e and τ ↔ µ operators into a dimension eight

µ ↔ e operator, giving a contribution to the µ ↔ e amplitude <∼ O(
λ∗
µτλτev2

16π2M4 ) (v is the vacuum

expectation value of the SM Higgs). By power-counting, this is subdominant compared to the

model-dependent matching contribution discussed above. So this model illustrates that τ ↔ e and

τ ↔ µ interactions could generically combine into larger µ ↔ e rates than the EFT allows to

compute.

As a second example, consider K − K̄ mixing in the SM, where the dominant contribu-

tion is computable in the EFT (Fermi theory). The box diagram in the full SM is illustrated

in �gure 6.1 (a); evaluated with only massless u quarks in the loop, it gives an amplitude

∝ (V ∗
usVud)

2/(16π2m2
W ), where V is the CKM matrix. This would match at mW onto a dimension

six ∆F = 2 operator in the low-energy theory Fermi theory. However, due to CKM unitarity,

this O( 1
16π2m2

W
) amplitude vanishes when summing over all up-type quark �avours and neglecting

their masses. Instead, the amplitude in the full SM has a GIM dependence on the quark masses

∝ (V ∗
csVcd)

2m2
c/16π

2m4
W + (V ∗

tsVtd)
2m2

t /16π
2m4

W . In matching this to the low-energy EFT, the

m2
t /16π

2m4
W piece would match onto a dimension six operator, but is negligeable due to the small

mixing between the third and �rst generation. And the log-enhanced part of the amplitude ∝ m2
c is

reproduced in the EFT by calculating the diagram with two insertions of dimension six operators,



102 Chapter 6. The sensitivity of µ→ e to τ �avour change

illustrated in Figure 6.1 (b). So in the Standard Model, our calculation can sometimes reproduce

the observed �avour changing rates.

6.2.2 EFT for LFV

We parametrise the lepton �avour changing interaction in the EFT (see section 4.3.2). Above the

weak scale, we use the Lagrangian of the SMEFT, and since we are interested in LFV operators of

dimension 6 or 8, we write

LSMEFT = LSM +


∑

A,ζ

C
[6]ζ
A O

[6]ζ
A

v2
+
∑

B,ξ

C
[8]ξ
B O

[8]ξ
B

v4
+ h.c


 (6.2)

where v = 174 GeV, the operator subscripts indicate the gauge structure and particle content,

and the superscripts contain the operator dimension in brackets [suppressed when unneccessary],

additional information about the operator structure in parentheses (see section 6.2.3 for examples),

and the �avour indices. The LFV operators of interest here are listed in section 6.2.3. In the

�avour sums of Eq. (6.2), each index runs over all three generations. The doublet and singlet lepton

generations are the charged lepton mass eigenstates {e, µ, τ}, the singlet quarks are also labelled

by their �avour, and the quark doublets are in the u-type mass basis, with generation indices that

run 1→ 3.

The SM Lagrangian is in the notation of Chapter 2. At all scales, the doublet and singlet

leptons are in the low energy mass eigenstate basis, so the lepton Yukawa matrix [ye] can have

o�-diagonal entries, in the presence of the operator OeH (see equations 6.17 and 6.87). We follow

the results of Chapter 5 in choosing this basis, because it de�nes lepton �avour in the presence of

LFV, so it simpli�es our calculations(as mentioned at the end of section 6.2.4). The Yukawa matrix

eigenvalue of fermion f is written yf .

The dimension six operators in Eq. (6.2) are in the �on-shell� basis of [304] as pruned in [305],

where �on-shell� means that the equations of motion were used to reduce the basis. Complete bases

of on-shell dimension eight operators have appeared recently [308, 309], and our dimension eight

operators are in these lists. However in reality, we are only interested in the subset of dimension eight

µ ↔ e operators to which experiments could be sensitive, which was given in Chapter 5. Finally,

some operators in Eq. (6.2) are hermitian in �avour space (ie [Oījk̄l
A ]† = Oj̄il̄k

A ); we include these

operators multiplied by an extra 1/2, as the Hermitian conjugate is included in (6.2) and summing

over �avour indices would otherwise lead to double counting with respect to the conventions of [315].

We assume LFV heavy particles are beyond the reach of the LHC in the next decade, because

we are interested in combining observables from upcoming experiments at low-energy. Concretely,

this means that the operator coe�cients, or Wilson coe�cients (WCs), satisfy

C
[n]ζ
A ≤

(
v

ΛNP

)n−4

, ΛNP = 4 TeV , (v = 174 GeV)

and that we calculate Renormalisation Group running of LFV operators in SMEFT from ΛNP →
mW . Should new particles with LFV interactions and masses mW < MNP < 4 TeV induce larger

coe�cients, our results would still apply, but might be incomplete because additional operators and

diagrams could contribute.
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The WCs {C [n]ζ
A } function as coupling constants for LFV interactions. Their numerical value

can be obtained by matching the EFT onto a model, for instance by equating the Greens functions

of the model and the EFT at the new particle mass scale ∼ ΛNP. The Renormalisation the

Group Equations (RGEs) govern the scale dependence of the WCs below ΛNP. The solution of

these equations resums the logarithms that are generated by the light particle, which propagate

as dynamical particles in the EFT. So in SMEFT, the one-loop RGEs of dimension six SMEFT

operators arise from decorating a dimension six operator with a loop involving renormalisable

interactions [315�317], and from loops involving two dimension 5 operators [314]. The mixing

of a product of dimension �ve and six operators into dimension seven has also been calculated in

SMEFT [350], as have some anomalous dimensions for some operators of dimension eight [318�320].

Upon reaching a particle mass scale, the high scale EFT can be matched onto another EFT,

where the now-heavy particles are removed. For instance, in crossing the electroweak scale,

SMEFT Greens functions are calculated in the broken SM, with the Higgs doublet written

H =

(
G+

v + 1√
2
(h+ iG0)

)
(6.3)

where the Gs are the Goldstones and h is the SM Higgs boson. These Greens functions are then

matched to those of a QED and QCD invariant EFT (we refer to it as low energy EFT) in which

the non-renormalisable operators are built out of SM �elds lighter than the W boson [311].

The running and matching continues from the weak scale down to the experimental scale, where

rates can be calculated in terms of the WCs and matrix elements of the operators. For three or

four-legged µ→ e processes which are otherwise �avour diagonal (ie µ→ eγ and µ→ eγγ, but not

including K → µ±e∓), the �leading� evolution between the experimental scale and the weak scale

has been obtained [323]. This includes the one-loop RGEs for dimension �ve and six operators,

and some large two-loop anomalous dimensions where the one loop mixing vanishes [344]. Several

branching ratio calculations in the low energy EFT are given in the µ → e review [142], and

µA→ eA conversion rates can be calculated from [351]. These results can be combined to calculate

the current and upcoming sensitivity of µ ↔ e experiments to WCs at the weak scale, and also

extrapolated to give the sensitivities to the τ ↔ l WCs considered in this manuscript [352].

The aim of this chapter is to calculate the contributions to µ → e observables that arise from

combining τ → e and µ → τ operators. This could occur in SMEFT running, in matching at the

weak scale, and in running below the weak scale. In SMEFT, loop diagrams containing pairs of

dimension six operators renormalize the Wilson coe�cients of dimension eight operators, such that

the RGEs for the latter take the schematic form [333]

(16π2)
dC⃗

[8]
A

d logM
= C⃗

[8]
B γBA + C⃗

[6]
X γ̂XY,AC⃗

[6]
Y , (6.4)

having aligned the operator coe�cients in the row vectors C⃗ [8], C⃗ [6], and where γ is the anomalous

dimension matrix of dimension eight coe�cients while γ̂ mixes pairs of dimension six into dimension

eight. The RGEs of dimension eight operators are currently unknown and only partial calculations

have been performed [318, 320]. This work �ts into this ongoing e�ort. We calculate at leading-

log, i.e we compute the one-loop RGEs and match at tree-level onto the low energy EFT. This
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consistency between the running and matching orders frees the calculation from scheme-dependent

contributions.

We de�ne the anomalous dimensions with a 1/(16π2) prefactor, while we unconventionally do

not factor out SM couplings. Two insertion of dimension six operators renormalize the dimension

eight coe�cients as

∆C⃗
[8]
A = C⃗

[6]
X ẐXY,AC⃗

[6]
Y , (6.5)

where Ẑ is the divergent renormalization factor and may contain renormalizable couplings. In

dimensional regularization, the independence of bare Wilson coe�cients from the arbitrary renor-

malization scale gives the anomalous dimension matrix of Eq. (6.4), which at one-loop and with

our conventions takes the following form

γ̂ ∝ 16π2εẐ. (6.6)

Note that Ẑ ∝ 1/ε and the product above is �nite as expected. A more detailed derivation of γ̂

can be found in section 6.3.1.

Pairs of τ ↔ l operators also contribute to µ→ e amplitudes in matching SMEFT onto the low

energy EFT at mW . In �integrating out� the heavy bosons h, Z and replacing the Higgs doublet

with its vacuum expectation value, it is possible to draw diagrams built out of τ ↔ l operators

that match onto three or four-legged µ → e operators in the low energy EFT. We calculate these

matching conditions, which are meant to complete the tree-level O
(
v4/Λ4

NP

)
matching performed

in the Appendix of Chapter 5.

Finally, combining two τ ↔ l operators contributes to the RGEs of Wilson coe�cients in the

EFT below mW . We neglect these running contributions because they carry a suppression factor

with respect to dimension six anomalous dimensions which is ≲ m2
b/Λ

2
NP, given that the bottom

quark is the heaviest dynamical particle in the EFT. Such suppression is absent in SMEFT, where

the top quark, the Higgs and gauge bosons are present, allowing Higgs legs to be attached with

order one couplings to heavier particles running in loops. SMEFT has also the advantage of having

two-fermion �penguin" operators that are e�ciently generated in mixing and which match onto

vector operators in the low energy EFT. For the above reasons we focus on SMEFT RGEs and

matching, while we neglect the running below mW .

Equation (6.4) has a straightforward solution if the anomalous dimension matrices are constant,

which occurs when the running of all-but-one of the SM renormalisable couplings can be neglected.

We take all SM couplings constant between mW → ΛNP = 4 TeV, in solving Eq. (6.4). It is

augmented by the RGEs of dimension six coe�cients:

dC⃗ [6]

dt
= −C⃗ [6]γ̃ (6.7)

where t = log(ΛNP/M)/(16π2) and M is the sliding renormalization scale. The solution is

C⃗ [6](t) = C⃗ [6](0) exp(−γ̃t) (6.8)

C⃗ [8](t) =

[
C⃗ [8](0)−

∫ t

0
dτC⃗ [6](0) exp(−γ̃τ)γ̂×

× exp
(
−γ̃T τ

)
C⃗ [6](0) exp(γτ)

]
exp(−γt). (6.9)
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Expanding the exponential at leading log, the dimension eight coe�cients at the electroweak scale

take the following form

C⃗ [8](mW ) = C⃗ [8](ΛNP)
(
1− γ

16π2
log

(
ΛNP

mW

))

−C⃗ [6](ΛNP)
γ̂

16π2
C⃗ [6](ΛNP) log

(
ΛNP

mW

)
+ . . . . (6.10)

6.2.3 Operators

This subsection lists the operators included in the SMEFT Lagrangian of Eq. (6.2). They are

classi�ed into subgroups (D6, 4f6...), in order to facilitate the estimates of section 6.2.5.

The SMEFT dimension six operators that are τ → e or µ→ τ �avour changing are the following,

where the indices ij take the values eτ or τµ (except for the 4l6 operators).

� Dipole operators ≡ D6:

Oij
eB = yτ (ℓ̄iHσ

αβej)Bαβ

Oij
eW = yτ (ℓ̄iτ

aHσαβej)W
a
αβ (6.11)

The Hermitian conjugates with exchanged i↔ j match onto the dipole operator with opposite

chirality.

� Penguin operators ≡ P6:

Oij
He = i(ēiγ

αej)(H
†↔DαH) (6.12)

Oij
Hℓ(1) = i(ℓ̄iγ

αℓj)(H
†↔DαH) (6.13)

Oij
Hℓ(3) = i(ℓ̄iτ

aγαℓj)(H
†
↔
Da

αH) (6.14)

where we have de�ned

iH†↔DµH ≡ iH†(DµH)− i(DµH
†)H (6.15)

iH†
↔
Da

µH ≡ iH†τa(DµH)− i(DµH
†)τaH. (6.16)

� Yukawa operators ≡ Y6:

Oij
eH = (ℓ̄iHej)(H

†H) (6.17)

and their Hermitian conjugates.

� Four lepton operators ≡ 4l6:

Oijkl
ee = (ēiγ

αej)(ēkγαel) (6.18)

Oijkl
ℓe = (ℓ̄iγ

αℓj)(ēkγαel) (6.19)

Oijkl
ℓℓ = (ℓ̄iγ

αℓj)(ℓ̄kγαℓl) (6.20)

where the pairs ij, kl, kj, il can be eτ or τµ, while the remaining pair is diagonal and can be

{e, µ, τ}.
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� Two-lepton two-quark operators ≡ 4f6:

O(1)ijnm
ℓq = (ℓ̄iγ

αℓj)(q̄nγαqm) (6.21)

O(3)ijnm
lq = (ℓ̄iτ

aγαℓj)(q̄nτ
aγαqm) (6.22)

Oijnm
ℓu = (ℓ̄iγ

αℓj)(ūnγµum) (6.23)

Oijnm
ℓd = (ℓ̄iγ

αℓj)(d̄nγαdm) (6.24)

Oijnm
eq = (ēiγ

αej)(q̄nγαqm) (6.25)

Oijnm
eu = (ēiγ

αej)(ūnγαum) (6.26)

Oijnm
ed = (ēiγ

αej)(d̄nγαdm) (6.27)

Oijnm
ℓedq = (ℓ̄iej)(d̄nqm) (6.28)

Oijnm
ℓequ = (ℓ̄iej)ε(q̄num) (6.29)

with n,m ∈ {1, 2, 3} running over the three quark families.

At dimension eight, there are thousands of operators, but here are listed only the subset rele-

vant for our calculations, where relevant means that their contribution could be detectable in the

upcoming µ→ e experimental searches, assuming a NP scale ΛNP ≳ 4 TeV. A list of such operators

was identi�ed in Chapter 5, and is given below.

These include dipole operators ≡ D8

O(1)eµ
ℓeWH3 = yµ(ℓ̄eτ

aHσαβeµ)W
a
αβ(H

†H)

O(2)eµ
ℓeWH3 = yµ(ℓ̄eHσ

αβeµ)W
a
αβ(H

†τaH)

Oeµ
ℓeBH3 = yµ(ℓ̄eHσ

αβeµ)Bαβ(H
†H) (6.30)

and their Hermitian conjugates with the lepton indices exchanged. Two-lepton two-quark vector

≡ 4f8

O(1)eµnn
ℓ2q2H2 = (ℓ̄eγ

αℓµ)(q̄nγαqn)(H
†H) (6.31)

O(2)eµnn
ℓ2q2H2 = (ℓ̄eτ

aγαℓµ)(q̄nγαqn)(H
†τaH) (6.32)

O(3)eµnn
ℓ2q2H2 = (ℓ̄eτ

aγαℓµ)(q̄nτ
aγαqn)(H

†H) (6.33)

O(4)eµnn
ℓ2q2H2 = (ℓ̄eγ

µℓµ)(q̄nτ
aγµqn)(H

†τaH) (6.34)

O(1)eµnn
ℓ2u2H2 = (ℓ̄eγ

αℓµ)(ūnγµun)(H
†H) (6.35)

O(2)eµnn
ℓ2u2H2 = (ℓ̄eτ

aγαℓµ)(ūnγαun)(H
†τaH) (6.36)

O(1)eµnn
ℓ2d2H2 = (ℓ̄eγ

αℓµ)(d̄nγαdn)(H
†H) (6.37)

O(2)eµnn
ℓ2d2H2 = (ℓ̄eτ

aγαℓµ)(d̄nγαdn)(H
†τaH) (6.38)

O(1)eµnn
e2q2H2 = (ēeγ

αeµ)(q̄nγαqn)(H
†H) (6.39)

O(2)eµnn
e2q2H2 = (ēeγ

αeµ)(q̄nτ
aγαqn)(H

†τaH) (6.40)

Oeµnn
e2u2H2 = (ēeγ

αeµ)(ūnγαun)(H
†H) (6.41)

Oeµnn
e2d2H2 = (ēeγ

αeµ)(d̄nγαdn)(H
†H) (6.42)
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with in most cases n = u, d belonging to the �rst generation quarks. There are also penguin

operators ≡ P8

O(1)eµ
ℓ2H4D

= i(ℓ̄eγ
αℓµ)(H

†↔DαH)(H†H)

O(2)eµ
ℓ2H4D

= i(ℓ̄eτ
aγαℓµ)[(H

†
↔
Da

αH)(H†H) + (H†↔DαH)(H†τaH)]

Oeµ
e2H4D

= i(ēeγ
αeµ)(H

†↔DαH)(H†H). (6.43)

Furthermore, the following two-fermion two-lepton scalar and tensor operators are also relevant

O(1)eµnn
ℓedqH2 = (ℓ̄eeµ)(d̄nqn)(H

†H) (6.44)

O(2)eµnn
ℓedqH2 = (ℓ̄eeµ)τ

a(d̄nqn)(H
†τaH) (6.45)

O(1)eµnn
ℓequH2 = (ℓ̄eeµ)ε(q̄nun)(H

†H) (6.46)

O(2)eµnn
ℓequH2 = (ℓ̄eeµ)τ

aε(q̄nun)(H
†τaH) (6.47)

O(3)eµnn
ℓequH2 = (ℓ̄eσ

αβeµ)ε(q̄nσαβun)(H
†H) (6.48)

O(4)eµnn
ℓequH2 = (ℓ̄eσ

αβej)τ
aε(q̄nσαβun)(H

†τaH) (6.49)

O(3)eµnn
ℓedqH2 = (ℓ̄eHeµ)(q̄nHdn) (6.50)

O(4)eµnn
ℓedqH2 = (ℓ̄eσ

αβHeµ)(q̄nσαβHdn) (6.51)

O(5)eµnn
ℓequH2 = (ℓ̄eHeµ)(ūnH̃

†qn), (6.52)

with n = u, c, t, d, s, b running over all quark �avours. Finally the four-lepton operators ≡ 4l8 read

O(4)eµττ
ℓ2e2H2 = (ℓ̄eHσ

αβeµ)(ℓ̄τHσαβeτ ) (6.53)

O(3)eµee
ℓ2e2H2 = (ℓ̄eHeµ)(ℓ̄eHee) (6.54)

O(1)eµee
ℓ4H2 = (ℓ̄eγ

αℓµ)(ℓ̄eγαℓe)(H
†H) (6.55)

O(2)eµee
ℓ4H2 = (ℓ̄eγ

αℓµ)(ℓ̄eτ
aγαℓe)(H

†τaH) (6.56)

O(1)eµee
ℓ2e2H2 = (ℓ̄eγ

αℓµ)(ēeγαee)(H
†H) (6.57)

O(2)eµee
ℓ2e2H2 = (ℓ̄eτ

aγαℓµ)(ēeγαee)(H
†τaH) (6.58)

Oeµee
e4H2 = (ēeγ

αeµ)(ēeγαee)(H
†H). (6.59)

Note that in the Lagrangian of Eq. (6.2) we sum over all possible generation indices, and more

�avour structures are relevant for low energy LFV interactions. For instance, Oeµee
ℓ4H2 ,Oeeeµ

ℓ4H2 match

onto the same vector operator in the EFT below mW . Similarly, in the case of eµττ tensor

operator, the permutations ττeµ, τµeτ, eττµ must be considered.

6.2.4 Equations of Motion

In this section, we discuss some of the technical subtleties that occur when two dimension six

operators mix into dimension eight operators. In our calculations of anomalous dimensions we
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`µ
CµτHl

H H

`τ ∝ C
(1)µτ
Hl

16π2ε i(
¯̀
µ /D`τ )(H†H)

(a)

`τyτ

CτµHl

H

µ ∝ C
(1)τµ
Hl

16π2ε (D2 ¯̀
τHµ)

(b)

Figure 6.2: One-loop diagrams with the penguin operators of Eq. (6.12). Matching the divergences

o�-shell, the redundant operators i(ℓ̄µ /Dℓτ )(H
†H), (D2ℓ̄τHµ) are generated.

consider two di�erent approaches: we can systematically apply the equations of motions onto the

amplitudes of our loop calculations in order to arrive at expressions that are proportional to tree-

level amplitudes of the on-shell, or �physical� operators. Alternatively, we could use a complete set

of o�-shell operators and project our loop amplitudes onto the on-shell operator basis. The situation

is slightly complicated by the facts that the dimension six operators will contribute themselves to

the equations of motion, and that there are a huge number of dimension eight operators. In the

following we will show how both approaches are equivalent in our calculation, where we determine

the mixing into the subset of dimension eight operators that contribute to LFV at low energy

experiments.

Working with a on-shell (or physical) operator basis implies the choice of a set of operators that

vanish when the Equation of Motions (EOM) are satis�ed. Take two operators O1, O2 which di�er

by an operator OEOM that is EOM vanishing, i.e

O1 −O2 = OEOM ∝
δS

δϕ
(6.60)

where S is the action and ϕ labels a generic �eld. OEOM can be dropped in physical processes

because it leads to vanishing S−matrix elements, so that the operators O1, O2 are physically

equivalent and only one of them is retained in the basis (see section 4.2.1.1 of Chapter 4)

For instance, at dimension six, the operators

i(ℓ̄µ /Dℓτ )(H
†H) , (D2ℓ̄τHµ) (6.61)

can be generated at one-loop from a penguin operator (see Figure 6.2). The �rst is relevant here,

because it is on-shell equivalent to (ℓ̄µHeτ )(H
†H) by means of the dimension four EOM of the

lepton �eld i( /Dℓτ ) = yτHeτ . (The second operator will be relevant for the CHl ×CHe mixing into

dipoles, which is discussed in section 6.3.1.1.)

Therefore, we can project an amplitude that is proportional to the left hand side of the previous

equation of motion

i(ℓ̄µ /Dℓτ )(H
†H)→[i(ℓ̄µ /Dℓτ )(H

†H)− yτ (ℓ̄µHeτ )(H†H)]

+yτ (ℓ̄µHeτ )(H
†H) (6.62)
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`µeτ
yτ

∝ /q

H HH

q

`τ

Figure 6.3: The diagram shows that the operator i(ℓ̄µ /Dℓτ )(H
†H) leads to the same S−matrix

elements as yτ (ℓ̄µHee)(H
†H). The non-local momentum dependence of the internal line propagator

cancels with the inverse propagator present in the Equation of Motion.

onto physical and EOM vanishing � in brackets � operators. In Figure 6.3 we show how the

equivalence can be understood diagrammatically: the /D operator Feynman rule is proportional

to the /q momentum of the virtual ℓτ line coming out of a renormalizable Yukawa coupling; the

momentum dependence cancels with the ℓτ propagator, yielding an S−matrix element reproduced

by the local operator yτ (ℓ̄µHeτ )(H
†H).

Once a reduced physical basis is identi�ed, the theory can be consistently renormalized among

on-shell operators, as redundant counterterms AO2/ε are equivalent to A(O1−OEOM )/ε and EOM

vanishing operators mix exclusively among themselves in the RGEs [353]1.

However, in order to consistently renormalize an EFT in a given basis up to dimension eight

(1/Λ4
NP), the dimension six (1/Λ2

NP) terms in the EOM must be included when removing redun-

dant operators. Concretely, if a divergent contribution to a redundant dimension six operator,

O[6]
2 /(Λ

2
NPε) is generated via loops, then it can be rewritten

A

Λ2
NPε

(
O[6]

1 +
O[8]

Λ2
NP

−OEOM

)
(6.63)

where O
[6]
1 is equivalent to O

[6]
2 via the renormalizable EOM δSd=4/δϕ = 0 of Eq. (6.60), and the

dimension eight O[8] is generated by the dimension six corrections δSd=6/δϕ. The dimension eight

contribution is proportional to the product of two dimension six operator coe�cients, which is the

kind of contribution that we are interested in.

As an example of the impact of dimension six terms in the EOM, suppose that the only τ ↔ e

operator at dimension six is Oeτnm
ℓedq = (ℓ̄τee)(d̄nqm), and that the operator i(ℓ̄µ /Dℓτ )(H

†H) is

generated via loop corrections. Then Eq. (6.62), up to dimension 8, becomes

i(ℓ̄µ /Dℓτ )(H
†H)→

[
i(ℓ̄µ /Dℓτ )(H

†H)− yτ (ℓ̄µHeτ )(H†H)+

+
Cτenm
ℓedq

Λ2
NP

(ℓ̄µee)(d̄nqm)(H†H)

]

+yτ (ℓ̄µHeτ )(H
†H)−

Cτenm
ℓedq

Λ2
NP

(ℓ̄µee)(d̄nqm)(H†H) (6.64)

where the EOM vanishing operator in square brackets now contains the dimension eight O(1)iknm
ℓedqH2 =

(ℓ̄µee)(d̄nqm)(H†H). Similarly to the renormalizable case, the on-shell equivalence is apparent

1Gauge �xing and ghost terms that appear in the EOM are found to have no physical e�ects in operator mixing

and S−matrix elements [353].
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`µee
Cτenmledq

∝ /p

H H

qm dn

p

`τ

Figure 6.4: Correction to the Equation of Motion due to dimension six operators. At 1/Λ4
NP order,

the operator i(ℓ̄µ /Dℓτ )(H
†H) is on-shell equivalent to a combination of dimension six and dimension

eight operators. The dimension eight contribution can be understood by attaching dimension six

interactions to the operator, where the internal line propagator cancels against the vertex Feynman

rule. The diagram shows an example with the insertion Oτenm
ledq = (ℓ̄τee)(d̄nqm), which reproduces

the EOM reduction of Eq. (6.64).

diagrammatically, by dressing the redundant operator with dimension six contact interactions as

shown in Figure 6.4. Once again the inverse propagator that is present in the EOM, and appears in

the operator Feynman rule, cancels the momentum dependence of the internal line, such that the

amplitude is local and equivalent to a dimension eight operator. Its coe�cient will be proportional

to the product of two dimension six WC.

For instance, i(ℓ̄µ /Dℓτ )(H
†H) is generated in matching o�-shell the divergence of the one-loop

diagram of Figure 6.2 that involves the penguin operators of eq (6.12). Eq. (6.64) allows to

project the divergence onto the on-shell basis, giving a contribution to the renormalisation of the

dimension eight µ↔ e operatorO(1)µenm
ℓedqH2 = (ℓ̄µee)(d̄nqm)(H†H) from the productO(1)

Hℓ×Oℓedq. This

contribution from the EOM projection must be included in calculating the mixing from (dimension

6)2 → dimension 8, together with one particle irreducible (1PI) diagrams ∝ C(1)
Hℓ ×Cℓedq. (Indeed,

the anomalous dimension is only gauge invariant if one includes both the IP1 vertex and the non-1PI

�wavefunction� contributions.)

The EOM contribution can be reproduced by calculating non-1PI divergent diagrams, as shown

in �gure 6.4. In working with a subspace of dimension eight operators (as we do here), proceed-

ing diagrammatically can be particularly convenient. Our subspace is phenomenologically selected

to contribute to the low energy µ → e processes. When using the EOM to project the o�-shell

divergences, the redundant terms must be written in terms of operators in the full basis (which

can include operators outside the subspace) and the EOM vanishing operators that the basis choice

implies. In the end, only the interesting operators in the subspace are retained but it required work-

ing with the full basis as an intermediate step. On the other hand, in the approach of calculating

one-particle -reducible diagrams, it is often easier to restrict to diagrams that directly give dimen-

sion eight operators of the subspace. In this manuscript, we calculate the one-particle-reducible

diagrams that generate the relevant dimension eight operators. We cross-checked our diagrammatic

results by calculating the dimension eight LFV operators obtained from the list of EOM-vanishing

operators in [305], by using Equations of Motion up to dimension six.

Finally, recall that we work in the low-energy mass eigenstate basis of the leptons, where the
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lepton mass matrix is:

meiδij = v
(
[ye]ij − Cij

eH

)
. (6.65)

So in the above diagrammatic and EOM-based arguments, the Yukawa matrix element yτ is replaced

by the matrix element of the parenthese on the right side of (6.65), which is also �avour-diagonal2.

Therefore we do not include non-1PI diagrams involving a loop on the external leg of Oij
eH .

6.2.5 Estimates

The goal of this section is to better identify the dimension eight contributions that are interesting

to calculate in the context of µ → e LFV, that is, those that will be within the reach of future

experiments. The Wilson coe�cients of the dimension eight operators presented in the previous

section were estimated in Chapter 5 to be within upcoming experimental sensitivity if they have

values ≳ v4/Λ4, for Λ ≳ 4 TeV. We estimate in this section the additional loop and small couplings

suppression that could be encountered in generating these coe�cients in running and matching.

This will allow to narrow-down the list of diagrams that should be calculated.

In estimating diagrams built out of µ → τ × τ → e operators, we take into account the

constraints on τ ↔ l processes coming from the bounds reported in the lower part of Table 6.1.

Employing the acronyms introduced in the previous section for sets of τ LFV operators, current

and upcoming one-at-a-time-limits on their coe�cients are written in Table 6.2. These estimates

assume that the Branching Ratio sensitivities on τ decays will improve of an order of magnitude

at BelleII [341], and use the future sensitivities to h→ τ±l∓ decays at the ILC [347]. In the case

where the operators are not (or are only loosely) bounded, we assume

C [6]lτ... <∼ (v/4 TeV)2 ∼ 2× 10−3 (6.66)

corresponding to an O(1) coe�cient at a New Physics scale of 4 TeV.

Operator coe�cient Current sensitivity Future sensitivity Process

C lτ
D6

≲ 7× 10−6 ≲ 2× 10−6 τ → lγ

C lτ
Y6

≲ 10−3 ≲ 3× 10−4 h→ lτ

C lτ
P6

≲ 4× 10−4 ≲ 10−4 τ → l̄ll

C lτ ll
4l6

≲ 3× 10−4 ≲ 10−4 τ → l̄ll

C lτqq
4f6

≲ 3× 10−4 ≲ 10−4 τ → lπ(η)

Table 6.2: Sensitivities to τ ↔ l dimension six operator coe�cients, normalized as in Eq. (6.2).

Current limits come from the Branching ratio bounds of Table 6.1, while the third column assumes

that the experimental sensitivity to τ ↔ l decays will improve by an order of magnitude.

Diagrams that can generate the dimension eight µ↔ e operators of section 6.2.3, in matching

or in running, are drawn with a pair of τ ↔ l operators. The contribution to the coe�cients are

estimated as

∆C [8]eµ ≃ C [6]eτ
1 C

[6]τµ
2

(
1

16π2

)n

×
{
yk gl λm . . .

}
× log (6.67)

2However, in this basis, the h retains LFV interactions � see Eq. (6.88).
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Operator coe�cient Current sensitivity Future sensitivity Process

Ceµ
D8

≲ 10−8 ≲ 1.5× 10−9 µ→ eγ

Ceµtt
4f8,T

≲ 3× 10−11 ≲ 5× 10−12 µ→ eγ

Ceµττ
4l8,T

, Ceµcc
4f8,T

≲ 10−8 ≲ 1.5× 10−9 µ→ eγ

Ceµbb
4f8,T

≲ 8× 10−9 ≲ 10−9 µ→ eγ

Ceµ
P8

≲ 10−7 ≲ 10−9 µA→ eA

Ceµee
4l8

≲ 8× 10−7 ≲ 8× 10−9 µ→ ēee

Ceµuu,eµdd
4f8,S

≲ 10−8 ≲ 10−10 µA→ eA

Table 6.3: Sensitivities to µ→ e dimension eight operator coe�cients, normalized as in Eq. (6.2).

Current and future limits correspond to the experimental sensitivities of Table 6.1. T, S label the

Lorentz structure of the operator for tensor and scalar respectively. For instance, Ceµtt
4f8,T

is the

coe�cient of the dimension eight tensor in Eq. (6.49) with top quarks.

H

µ e

H

H

Hτ

Figure 6.5: Mixing to the dimension eight µ→ e penguin operator from double insertion of dimen-

sion six Yukawas Y6 × Y6 → P8.

where n is the number of loops, SM couplings are factored out into the curly brackets, and the

log(4 TeV/mW ) factor is present in running, while absent in matching. In running, we restrict the

number of loops to n = 1, while up to two loop diagrams contribute in �tree-level�(in the low-energy

EFT) matching.

An example of a diagram contributing to the RGEs is shown in the diagram of Figure 6.5, where

two Yukawa operators Oeτ
eH × O

τµ
eH ∼ Y6 × Y6 mix into dimension eight µ → e penguin operators

Oeµ
e2H2D

, Oeµ
l2H2D

∼ P8 by exchanging the τ and closing the loop with a Higgs line. The estimated

contribution to the penguin coe�cients is then

∆CP8 ∼ (CY6)
2 log(4 TeV/mW )

16π2
∼ 3× 10−9. (6.68)

Future µA → eA experiments will be sensitive to penguin coe�cients larger than ∼ 10−9, hence

our estimate lies within experimental reach and Y6 × Y6 → P8 mixing is calculated in section 6.3.

As another example, τ ↔ l dipoles D6 are de�ned with a built-in τ Yukawa suppression � see

Eq. (6.11)� so yτ ∼ 10−2 multiplies any dipole insertion. For instance, if D6 × O6 mix into a

dimension eight operator O8, its coe�cient is estimated to be

∆C8 ∼ yτCD6C6
log(4 TeV/mW )

16π2
≲ 10−12, (6.69)
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where we took C6 <∼ v2/Λ2, for Λ ∼ 4 TeV. Equation (6.69) is smaller than any future µ → e

sensitivity to operator coe�cients, so we disregard mixing that involves τ dipoles in our calculations.

The results of our estimates are summarized in Tables 6.4 and 6.5, referring respectively to

RGEs and matching contributions. There, we report the potentially detectable dimension eight

operators generated by a given pair of dimension six operators.

P6 Y6 4l6 4f6
P6 D8 ≡ 0 D8 ≡ 0 × 4f8
Y6 D8 ≡ 0 P8 × ×
4l6 × × × ×
4f6 4f8 × × 4f8

Table 6.4: We present the dimension eight operators that we estimate to be generated within

experimental sensitivity through (dimension six)2 mixing in the RGEs. The × means that the

contributions is too small or that there is no one-loop diagram that can generate the desired

dimension eight operators with the given pair. P6×P6 → D8, Y6×P6 → D8 mixing diagrams exist

and appear to be interesting, however we �nd that the anomalous dimension vanishes (see section

6.3.1.1).

P6 Y6 4l6 4f6
P6 × D8 × ×
Y6 × D8, 4l8 × ×
4l6 × × × ×
4f6 × × × ×

Table 6.5: We present the dimension eight operators that we estimate to be generated within

experimental sensitivity through (dimension six)2 in matching. The×means that the contributions

is too small or that there is no tree-level matching that can generate the desired dimension eight

operators with the given pair.

6.3 Calculation

The contributions that were estimated in the previous section to be within experimental sensitivity

are calculated here. Section 6.3.1 determines the divergences of the relevant one-loop diagrams and

relates them to the anomalous dimensions of the dimension eight Wilson coe�cients in SMEFT,

and in Section 6.3.2, pairs of τ ↔ l dimension six operators are tree-level-matched at mW onto the

low energy µ→ e EFT.

6.3.1 SMEFT Running

In this section, we outline the calculation of the anomalous dimension matrix γ̂XY,A, that mixes

the dimension six τ ↔ l operators O[6]
X ,O

[6]
Y into the µ → e dimension eight O[8]

A . We work in
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dimensional regularization in 4− 2ε dimensions and renormalize in the MS scheme, where we label

the renormalization scale with M (rather than the usual µ). Double insertions of dimension six

operators renormalize dimension eight coe�cients as

∆C⃗
[8]
A = C⃗

[6]
X ẐXY,AC⃗

[6]
Y , (6.70)

where the Wilson coe�cients of dimension eight and six are respectively aligned in the row vectors

C⃗ [8], C⃗ [6], dimension eight and six operator labels are respectively capitals from the beginning and

end of the alphabet, and �avour indices are suppressed. The bare dimension eight coe�cients can

be written as

C⃗
[8]
A,bare =MaAε(C⃗

[8]
B ZBA + C⃗

[6]
X ẐXY,AC⃗

[6]
Y ) (6.71)

where we have factored out the sliding scale power MaAε to assure that the renormalized WC

stay dimensionless in d = 4 − 2ε space-time dimensions. The RGEs can be obtained from the

independence of the bare Lagrangian from the arbitrary renormalization scale M

(16π2)
dC⃗

[8]
A,bare

d logM
= 0, (6.72)

which implies the following di�erential equation for the renormalized Wilson coe�cients

(16π2)
dC⃗

[8]
A

d logM
= (16π2)

[
− aAε(C⃗ [8]

A + C⃗
[6]
X C⃗

[6]
Y ẐXY,BZ

−1
BA)

−C⃗ [8]
B

dZBC

d logM
Z−1
CA +− dC⃗

[6]
X

d logM
ẐXY,BC⃗

[6]
Y Z−1

BA+

−C⃗ [6]
X ẐXY,B

dC⃗
[6]
Y

d logM
Z−1
BA − C⃗

[6]
X

dẐXY,B

d logM
C⃗

[6]
Y Z−1

BA

]
. (6.73)

The RGEs of dimension six Wilson coe�cients are the following

(16π2)
dC⃗

[6]
X

d logM
= −(16π2)aXεC⃗ [6]

X + C⃗
[6]
Y γ̃Y X + . . . (6.74)

where aXε is the mass dimension of the bare coe�cient of OX and γ̃ is the anomalous dimension

matrix for dimension six operators. In the limit ε→ 0, the term proportional to ε is irrelevant for

the dimension six renormalization, while it plays a crucial role in (dimension6)2 to dimension eight

mixing. Upon substitution, Eq. (6.73) becomes

(16π2)
dC⃗

[8]
A

d logM
= (16π2)

[
− aAεC⃗ [8]

A + C⃗
[8]
B γBA

−(aA − aX − aY )ε(C⃗ [6]
X C⃗

[6]
Y ẐXY,BZ

−1
BA)

−C⃗ [6]
X

dẐXY,B

d logM
C⃗

[6]
Y Z−1

BA

]

−C⃗ [6]
W γ̃WX ẐXY,BC⃗

[6]
Y Z−1

BA − C⃗
[6]
X ẐXY,BC⃗

[6]
W γ̃WY Z

−1
BA
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having de�ned γBA ≡ −(16π2) dZBC
d logMZ−1

CA, which is the anomalous dimension matrix of dimension

eight operators. At one-loop we can replace Z with the identity and neglect the second line of the

above equation, since γ̃ and Ẑ both appear at one loop at leading order. The product εẐ is �nite,

and the RGEs in d = 4 dimensions read

(16π2)
dC⃗

[8]
A

d logM
= C⃗

[8]
B γBA

−(16π2)(aA − aX − aY )C⃗ [6]
X C⃗

[6]
Y εẐXY,A

− (16π2)C⃗
[6]
X

dẐXY,A

d logM
C⃗

[6]
Y

≡ C⃗ [8]
B γBA + C⃗

[6]
X γ̂XY,AC⃗

[6]
Y (6.75)

The one-loop γ̂ anomalous dimension matrix that mixes two dimension six operators into dimension

eight is �nally

γ̂XY,A = (16π2)

[
(aX + aY − aA)εẐXY,A −

dẐXY,A

d logM

]
. (6.76)

The second term contribute to the mixing when renormalizable couplings appear in Ẑ, which carry

an implicit dependence on the renormalization scale M . The beta functions of renormalized SM

couplings for ε > 0 take the form βε({g, g′, y}) = −ε{g, g′, y}+ β({g, g′, y}) and at one-loop

−dẐXY,A

d logM
= − dẐXY,A

d{g, g′, y}βε({g, g
′, y})

= ε
dẐXY,A

d{g, g′, y} × {g, g
′, y}+ higher loops. (6.77)

6.3.1.1 µ→ τ × τ → e in SMEFT

We calculate the divergent part of one-loop diagrams with the product of µ→ τ × τ → e operator

insertions, which, according to the estimates summarized in Table 6.4, give potentially detectable

contributions to µ→ e observables in the dimension eight running. We work in SMEFT and unbro-

ken SU(2), where all SM particles are taken massless, including the Higgs doublet. The diagrams

have been drawn by hand and were also generated with a code based on FeynArts [354] and Feyn-

Rules [355]. In most cases3, the dimension eight operators to which µ→ e observables are sensitive

do not contain τ external legs, so we here consider diagrams with a virtual τ line connecting two

dimension six SMEFT operators. We are interested in one-particle-irreducible divergent diagrams

(which restrict the number of internal propagators) that can generate the dimension eight operators

of section 6.2.2 (which constrain the external legs), and also in some one-particle-reducible divergent

diagrams that reproduce the contribution of the dimension six correction in the EOM, as discussed

in section 6.2.4. Yukawa couplings smaller than yτ ∼ 10−2 are neglected, because they lead to

µ→ e coe�cients below experimental sensitivity, assuming dimension six WC C [6] ≲ v2/Λ2
NP and

ΛNP = 4 TeV. However, the estimates of section 6.2.5 select diagrams that only involve top Yukawas

yt and single insertions of yτ , while the bottom and charm Yukawas yb,yc do not appear.

3The exception is the µeττ tensors, but the leading contribution to these is from tree-level matching onto the low

energy EFT, which is discussed the next section.
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(f) 4f6 × 4f6 → 4f8

Figure 6.6: Classes of divergent diagrams that give observable contributions to µ→ e processes, as

identi�ed in Table 6.4.

In Figure 6.6 we show the �classes" of diagrams listed in Table 6.4, that were estimated to

be within µ → e experimental sensitivity. Each class is described below. The divergences were

calculated both by hand and with an in-house developed Mathematica program, making use of the

Feynman Rules listed in Appendix D.1.

� Figure 6.6a: Y6 × P6 → D8

The penguin operators of Eq.s (6.12)-(6.14) can be combined with the Yukawa operators of

Eq. (6.17). The chirality �ips on the lepton line, so attaching a gauge boson potentially

generates the µ→ e dipoles of Eq. (6.30). The gauge bosons can be inserted on the internal

Higgs and lepton lines or can come out of penguin operators, while the three external Higgs

can be permuted in several ways among the dimension six vertices. Also, in the diagram
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depicted, the Yukawa operator is µ → τ and the penguin is τ → e, but the two vertices can

be exchanged: for instance, in the case of external left-handed electrons, the possible operator

combinations are: Oτµ
He × Oeτ

eH , O
τµ
eH × O

(1)eτ
Hl , Oτµ

eH × O
(3)eτ
Hl . We �nd that these anomalous

dimensions vanish. This is consistent with the dimension six version of this calculation, where

neither penguin operators dressed with renormalizable Yukawa couplings, nor OeH dressed

with a gauge loop, mix into the dimension six dipoles [356]. Note that in broken SU(2)

and unitary gauge, dimension six penguins and Yukawas give Feynman rules that look like

SM renormalisable interactions. By analogy with the SM, we expect them to not generate

divergent non-renormalisable dipoles. The same argument applies to the P6 × P6 → D8

mixing discussed in the next paragraph

� Figure 6.6b: P6 × P6 → D8

The diagrams feature double insertions of penguin operators - see Eq.s (6.12)-(6.14). The two

vertices couple to vector currents of leptons, so to mix into the µ → e dipoles, the chirality

�ip is achieved by attaching a Higgs to the τ virtual line. The contribution is estimated to lie

within experimental sensitivity, because the generated µ→ e dipole coe�cient is enhanced by

the ratio yτ/yµ due to the Yukawa couplings in the dipole operator de�nitions in Eq. (6.30).

The gauge bosons can be attached to the Higgs and τ in the loop, or can belong to one of the

penguin vertices. Furthermore, all possible permutations of the external Higgses are taken

into account. The operator pairs are OHe ×O(1),(3)
Hℓ , where the τ → e LFV can be mediated

by either right-handed or left-handed penguins, depending on the chirality of the external

legs. As the previous case, the mixing into the µ→ e dipole is found to vanish.

In addition to the 1PI diagrams of Figure 6.6b, dimension six terms in the EOM contribute

to the mixing. Loop diagrams where the Higgs leg of a penguin operator closes into the τ line

via a Yukawa interaction renormalize the redundant operator (D2ℓ̄τ )Hei (see Figure 6.2b).

When the divergence is projected onto the on-shell basis, the penguin correction to the EOM

gives additional P6 × P6 → D8 mixing. However, the combination of SMEFT µ→ e dipoles

that is generated is orthogonal to the γ dipole and does not contribute to low energy µ→ e

observables. This is also apparent in considering non-1PI diagrams (see section 6.2.4) where

a penguin operator is inserted in the τ line of D2ℓ̄τHei; the amplitude is local and reproduces

the EOM result when the external gauge boson belongs to the penguin vertex. In broken

SU(2), penguins give �avour changing (and correct the �avour diagonal) couplings with the

Z, but leave QED interactions untarnished.

� Figure 6.6c: Y6 × Y6 → P8

In this class of diagrams the loop is closed with Higgs exchange between two Yukawa operators.

The super�cial degree of divergence is 1, and the divergence is linear in momentum. With

four external Higgses, it mixes into the dimension eight µ → e penguin operators of Eq.

(6.43). For right-handed leptons the inserted operators are Oτµ
eH × O∗τe

eH , while O∗µτ
eH × Oeτ

eH

gives mixing into left-handed penguins.

� Figure 6.6d: 4f6 × P6 → 4f8
Two-lepton two-quark τ → l operators can mix into µ → e dimension eight four fermion

operators by inserting a penguin in the tau line and closing the loop with a gauge boson. Only
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two-lepton two quark operators are considered because they contribute to µ → e conversion

(while tensors with heavy quarks contribute to µ → eγ), which is the process with the

best upcoming sensitivity to operator coe�cients. The gauge boson is attached to the other

fermion lines in every possible way, and the diagram shows just one example. As discussed in

section 6.2.4, we also include dimension six corrections to the EOM or, equivalently, non-1PI

diagrams where the loop of Figure 6.2 dresses one of the lepton lines. These diagrams are

analogous to fermion wave function renormalization and are pure-gauge, i.e ∝ ξ in the Rξ

gauge; to avoid calculating wave function-like diagrams, the calculation is done for ξ = 0,

commonly known as Landau gauge. In Table 6.7 we summarize the µ → e dimension eight

operators generated by the product of τ → l penguins with four fermion operators.

� Figure 6.6e-6.6f: 4f6 × 4f6 → 4f8 In the last two diagrams, pairs of two-lepton two-quark

dimension six operators are connected through a fermion loop, where two Higgs legs are

inserted. With the exception of dimension eight tensor with tops, µ → e observables are

sensitive to the resulting dimension eight coe�cients only if the Higgs are attached to a top

internal line. In the case of tensors with tops, the better sensitivity allows for the topology of

Figure 6.6f, where a τ Yukawa is present. In Table 6.6 we list the dimension eight operators

that are generated for every pair of dimension six four fermion operators.

The complete anomalous dimensions for the above classes of diagrams can be found in Appendix

D.2.

We discuss the example of a pair of dimension six τ ↔ l Yukawa operators mixing into the µ→ e

dimension eight penguins, depicted in the representative diagram of Figure 6.6c. The counterterms

that renormalize the divergences are the following

(
Cτµ
eHẐC

∗τe
eH

)eµ
e2H4D

= −C
τµ
eHC

∗τe
eH

32π2ε(
Cτµ
eHẐC

∗τe
eH

)eµ
ve2H4D

= −3Cτµ
eHC

∗τe
eH

32π2ε
(
C∗µτ
eH ẐCeτ

eH

)(1)eµ
ℓ2H4D

=
C∗µτ
eH Ceτ

eH

64π2ε
(
C∗µτ
eH ẐCeτ

eH

)(1)eµ
vℓ2H4D

= −C
∗µτ
eH Ceτ

eH

64π2ε
(
C∗µτ
eH ẐCeτ

eH

)(2)eµ
ℓ2H4D

=
C∗µτ
eH Ceτ

eH

128π2ε
(
C∗µτ
eH ẐCeτ

eH

)(2)eµ
vℓ2H4D

= −C
∗µτ
eH Ceτ

eH

16π2ε
(
C∗µτ
eH ẐCeτ

eH

)(4)eµ
ℓ2H4D

=
C∗µτ
eH Ceτ

eH

128π2ε
(6.78)

where the subscript of the parentheses label the corresponding dimension eight operators. The

operator

O(4)eµ
ℓ2H4D

= εIJK(ℓ̄eτ
Iγαℓµ)(H

†τJH)Dα(H
†τKH) is not in the list of section 6.2.2 because it does

not contribute to low energy µ→ e observables, although it appears as a counterterm. Furthermore,
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C
(1)
ℓq C

(3)
ℓq Cℓu Ceq Ceu Cℓedq, C

∗
ℓedq C

(1)
ℓequ, C

∗(1)
ℓequ C

(3)
ℓequ, C

∗(3)
ℓequ

C
(1)
ℓq C

(1),(4)
ℓ2q2H2 C

(2),(3),(5)
ℓ2q2H2 × × C

(3),(4)
ℓequH2

C
(1),(2)
ℓedqH2

C
∗(1),(2)
ℓedqH2

C
(1),(2),(3),(4)
ℓequH2

C
∗(1),(2),(3),(4)
ℓequH2

C
(1),(2),(3),(4)
ℓequH2

C
∗(1),(2),(3),(4)
ℓequH2

C
(3)
ℓq C

(1),(2)
ℓ2q2H2 × × C

(3),(4)
ℓequH2

C
(1),(2)
ℓedqH2

C
∗(1),(2)
ℓedqH2

C
(1),(2),(3),(4)
ℓequH2

C
∗(1),(2),(3),(4)
ℓequH2

C
(1),(2),(3),(4)
ℓequH2

C
∗(1),(2),(3),(4)
ℓequH2

Cℓu C
(1)
ℓ2u2H2 C

(3),(4)
ℓequH2 × ×

C
(1),(3)
ℓequH2

C
∗(1),(3)
ℓequH2

C
(1),(3)
ℓequH2

C
∗(1),(3)
ℓequH2

Ceq C
(1),(2)
e2q2H2 ×

C
(1),(2)
ℓedqH2

C
∗(1),(2)
ℓedqH2

C
(1),(2),(3),(4)
ℓequH2

C
∗(1),(2),(3),(4)
ℓequH2

C
(1),(2),(3),(4)
ℓequH2

C
∗(1),(2),(3),(4)
ℓequH2

Ceu Ce2u2H2 ×
C

(1),(3)
ℓequH2

C
∗(1),(3)
ℓequH2

C
(1),(3)
ℓequH2

C
∗(1),(3)
ℓequH2

Cℓedq, C
∗
ℓedq

Ce2d2H2

C
(1),(2)
ℓ2d2H2

× ×

C
(1)
ℓequ, C

∗(1)
ℓequ

Ce2u2H2

C
(1)
e2q2H2

C
(1),(2)
ℓ2u2H2

C
(1),(3)
ℓ2q2H2

Ce2u2H2

C
(1)
e2q2H2

C
(1),(2)
ℓ2u2H2

C
(1),(3)
ℓ2q2H2

C
(3)
ℓequ, C

∗(3)
ℓequ

Ce2u2H2

C
(1)
e2q2H2

C
(1),(2)
ℓ2u2H2

C
(1),(3)
ℓ2q2H2

Table 6.6: Dimension eight operators generated through the diagrams of Figure 6.6e and 6.6f

with pairs of two-lepton two-quark operators, 4f6 × 4f6. Most of dimension eight coe�cients are

proportional to y2t , with the exception of Oℓu × Oeq, Oℓq × Oeu mixing into the tensors O(3),(4)
ℓequH2 ,

where the Yukawa couplings yτyt multiply the coe�cient.

the following redundant operators are radiatively generated in our o�-shell calculation

Oeµ
ve2H4D

= i(ē
↔
/Dµ)(H†H)2

≡ i(ē /Dµ)(H†H)2 − i( /Dēµ)(H†H)2 (6.79)

O(1)eµ
vℓ2H4D

= i(ℓ̄e
↔
/Dℓµ)(H

†H)2 (6.80)

O(2)eµ
vℓ2H4D

= i(ℓ̄eI
↔
/DℓµJ)(HIH

†
J)(H

†H). (6.81)

These are related to the physical/on-shell basis as follows

Oeµ
ve2H4D

= Oeµ
v + [y∗e ]iµO∗ie

leH5 + [ye]ieOiµ
leH5 (6.82)

O(1)eµ
vℓ2H4D

= O(1)eµ
v + [ye]µiOei

leH5 + [y∗e ]eiO∗µi
leH5 (6.83)

O(2)eµ
vℓ2H4D

= O(2)eµ
v + [ye]µiOei

leH5 + [y∗e ]eiO∗µi
leH5 (6.84)
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C
∗(2),(3),(4)
ℓequH2

C
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Ceq Ceu Ced Cℓedq, C
∗
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ℓequ, C
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ℓequ C

(3)
ℓequ, C

∗(3)
ℓequ

CHe C
(1),(2)
e2q2H2 Ce2u2H2 Ce2d2H2

C
(1),(2)
ℓedqH2

C
∗(1),(2)
ℓedqH2

C
(1),(2),(3),(4)
ℓequH2

C
∗(1),(2),(3),(4)
ℓequH2

C
(1),(2),(3),(4)
ℓequH2

C
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ℓequH2

Table 6.7: Dimension eight operators generated via the diagrams of Figure 6.6d with pairs of two-

lepton two-quark 4f6 and penguins P6

where Oij
ℓeH5 = (ℓ̄iHej)(H

†H)2, and each of Oeµ
v , O(1)eµ

v , O(2)eµ
v vanishes, when the renormalizable

EOM on singlet and doublet leptons i( /Dµ) − [y∗e ]iµ(H
†ℓi) = 0 , i( /Dℓµ) − [ye]µi(Hei) = 0 are

satis�ed. The o�-shell counterterms are on-shell equivalent to [y∗e ]iµO∗ie
ℓeH5 + [ye]ieOiµ

ℓeH5 , which is

beyond µ → e experimental reach. The resulting RGEs are obtained from Eq. (6.78) and (6.75),

and read

16π2Ċeµ
e2H4D

= −Cτµ
eHC

∗τe
eH (6.85)

16π2Ċ
(1)eµ
ℓ2H4D

=
1

2
C∗µτ
eH Ceτ

eH 16π2Ċ
(2)eµ
ℓ2H4D

=
1

4
C∗µτ
eH Ceτ

eH (6.86)

where the dot on the dimension eight coe�cients corresponds to d/d logM .

6.3.2 Matching SMEFT onto the low energy EFT

In Table 6.5 of Section 6.2.3, we identi�ed the relevant matching contributions to low energy µ↔ e

interactions from the double insertion of µ→ τ × τ → e dimension six SMEFT operators. At the

matching scale mW , the electroweak symmetry is spontaneously broken by the Higgs VEV, and the

h, Z,W and t are removed from the low energy EFT. The matching is performed by identifying the

matrix elements of a µ→ e process calculated in the theories above and below the matching scale,

with the electroweak symmetry broken in both theories. As a result, products of τ ↔ l SMEFT

operators can match onto µ → e three and four point functions. The interesting diagrams are

illustrated in Figure 6.7. When the Higgs doublet acquires a VEV, Yukawa operators contribute to

the mass matrix

meiδij = v
(
[ye]ij − Cij

eH

)
(6.87)



6.3. Calculation 121

µ

τ

e

τ

Z

(a)

µ

τ

e

τ

h

(b)

µ e

γ

τ

t

Z h

(c)

µ e

γ

τ

W

Z h

(d)

Figure 6.7: Diagrams matching pairs of dimension six τ → l SMEFT operators onto low energy

µ→ e operators.

and the h couplings

− h√
2
ēiPRej

(
[ye]ij − 3Cij

eH

)
+ h.c =

= − h√
2
ēiPRej

(
meiδij
v
− 2Cij

eH

)
+ h.c (6.88)

of charged leptons with a di�erent prefactor, such that h acquires LFV couplings in the lepton mass

eigenstate basis.

The two-loop Barr-Zee diagrams (Figure 6.7c-6.7d) match to the dipole at tree level in the

low energy EFT and correspond to a dimension 10 dipole in SMEFT. Therefore, the matching

contribution should be independent of the renormalisation scheme in both EFTs, because (dim6)2

terms in the RGEs cannot generate a dimension 10 operator, and tree-level is scheme-independent.

The lepton line is connected via Z and h exchange to a top orW loop, where the Z and h respectively

couple to the lepton line via a penguin and an o�-diagonal Yukawa operator. Such diagrams can

be signi�cant [357] (despite the two-loop suppression), because they are not suppressed by small

Yukawa couplings. We estimate these diagrams from the results of [195], who calculated the Barr-

Zee diagrams in the two Higgs Doublet Model (2HDM) with LFV couplings, where they provide

the leading contribution to µ → eγ (because the diagrams are not suppressed by yµ). In the

2HDM results of [195], the Z-diagrams are suppressed (relative to γ diagrams) because the C-even

dipole moment only couples the Z to the vector current of leptons, so there is a suppression of

(1 − 4 sin2 θW ) <∼ 0.03. However in our case, the Z-lepton vertex is a penguin operator with a

�avour-changing coe�cient that we wish to constrain, and so does not su�er from such SM factors.
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The estimated contributions to the dipole coe�cients are [358] :

CD,R ≃
9eαe

64π3
v

mµ

[
Cτµ
HeC

eτ
eH +

(
C

(1)eτ
Hℓ + C

(3)eτ
Hℓ

)
Cτµ
eH

]

CD,L ≃
9eαe

64π3
v

mµ

[
C∗τe
eH

(
C

(1)τµ
Hℓ + C

(3)τµ
Hℓ

)
+ C∗µτ

eH Ceτ
He

]
(6.89)

A dipole is also generated at one-loop with a pair of penguin operators, which look like the �avor

changing version of the electroweak correction to (g − 2)µ with a Z exchange. However, assuming

the future limits on penguin coe�cients shown in Table 6.2, the contribution is below µ → eγ

upcoming experimental sensitivity.

Four lepton eµττ operators get matching contribution from tree-level diagrams with a Z, h

exchange between penguin vertices or LFV Higgs boson couplings, as illustrated in the diagrams of

Figure 6.7a and 6.7b. SMEFT τ−LFV penguins and Yukawa corrections are matched at mW onto

low energy four lepton operator coe�cients as follows

Ceµττ
T,RR = −1

4
Ceτ
eHC

τµ
eH

v2

m2
h

(6.90)

Ceµττ
T,LL = −1

4
C∗τe
eH C∗µτ

eH

v2

m2
h

(6.91)

Ceµττ
S,RR = −Ceτ

eHC
τµ
eH

v2

m2
h

(6.92)

Ceµττ
S,LL = −C∗τe

eH C∗µτ
eH

v2

m2
h

(6.93)

Ceµττ
S,RL =

2g2

cos2 θW

(
Cτµ
HeC

(1)eτ
Hℓ + Cτµ

HeC
(3)eτ
Hℓ

) v2

M2
Z

(6.94)

Ceµττ
S,LR =

2g2

cos2 θW

(
Ceτ
HeC

(1)τµ
Hl + Ceτ

HeC
(3)τµ
Hℓ

) v2

M2
Z

(6.95)

Ceµττ
V,LL = − g2

cos2 θW

(
C

(1)eτ
Hℓ C

(1)τµ
Hℓ + C

(3)eτ
Hℓ C

(3)τµ
Hℓ +

+ C
(1)eτ
Hℓ C

(3)τµ
Hℓ + C

(1)τµ
Hℓ C

(3)eτ
Hℓ

)
v2

M2
Z

(6.96)

Ceµττ
V,RR = − g2

cos2 θW
Ceτ
HeC

τµ
He

v2

M2
Z

(6.97)

where the low energy EFT basis is in the notation of [322] (see section 4.3.2 of Chapter 4). We report

for completeness the matching conditions for eµττ vector coe�cients, although µ→ e observables

are not sensitive to them.

6.4 Phenomenological implications

This section gives limits on pairs of τ ↔ l coe�cients from their contribution to µ→ e processes, and

we discuss some examples where the upcoming sensitivity of µ→ e observables is complementary to

the future direct limits from τ → l processes. Section 6.4.1 considers µ ↔ e amplitudes generated
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by the �sh diagrams of Figure 6.6e-6.6f, and compares with the limits arising from B → τ LFV

decays (summarised in Appendix D.3). An example of µ ↔ e from matching out the Higgs is

given in Section 6.4.2, where we compare the sensitivity of µ → e processes to h → τ±l∓ decays.

Appendix D.4 gives results for the cases where the µ↔ e sensitivity is marginal or uninteresting.

The limits we quote apply to pairs of τ ↔ l coe�cients at a New Physics scale ΛNP = 4 TeV.

The NP scale is relevant because it appears in the logarithms of the RG running. We assume that

dimension six τ ↔ l operators are generated at ΛNP = 4 TeV and contribute to µ→ e observables

in two ways: �rst, as discussed in section 6.3.1, via Renormalisation Group mixing into dimension

eight µ → e operators in SMEFT between ΛNP and mW , and second via the matching at mW of

combined dimension six τ ↔ l operators onto µ → e operators as calculated in section 6.3.2. The

running is described with the solution of the RGEs given in Eq. (6.10), then the dimension eight

µ→ e operators are matched onto the low energy EFT as given in Appendix C.2. The sensitivity

of current µ ↔ e experiments to coe�cients at mW is tabulated in [322]; we extrapolate these

limits to the future experimental reaches given in table 6.1, in order to determine the experimental

sensitivities of µ → e processes to the product of τ → l operator coe�cients. In most cases,

we just rescale the sensitivities of [322]. But for the limits from µA → eA on vector operators

with quarks, we recalculate the sensitivities on an Aluminium target, as will be used by upcoming

experiments. The current bounds are from Gold targets, which have more neutrons than protons,

whereas Aluminium contains equal numbers of protons and neutrons (u and d quarks). So Gold

has comparable sensitivity to (ēγµ)(ūγu + d̄γd) and (ēγµ)(ūγu − d̄γd), whereas the sensitivity of

Aluminium to (ēγµ)(ūγu− d̄γd) is suppressed by a loop.

Note that we distinguish sensitivities from constraints or bounds. But we use limits to mean

either. A constraint identi�es the region of parameter space where the coe�cients must sit, while a

sensitivity represents the smallest absolute value that can be experimentally detected. The notion

of sensitivity is particularly useful when the number of parameters is larger than the number of

observables, so that exclusion bounds on single coe�cients cannot be inferred. A coe�cient smaller

than the sensitivity escapes experimental detection but larger values can also escape detection if

accidental cancellations occur. In practise, in this manuscript we obtain sensitivities, because we

consider one non-zero pair of τ ↔ l operators at a time and compute the contribution to µ → e

observables.

Our results are interesting, because they show that upcoming µ ↔ e experiments could be

sensitive to τ ↔ l coe�cients beyond the reach of τ ↔ l searches. We obtain experimental

sensitivities Bµ↔e to the product of coe�cients
∣∣∣C [6]τµC [6]eτ

∣∣∣ ≲ Bµ↔e. (6.98)

The same coe�cients C [6]τµ, C [6]eτ might contribute to constrained τ ↔ l processes and be respec-

tively subjected to the sensitivity �limits" Bτ→µ, Bτ→e imposed by direct τLFV searches. In the

C [6]τµ − C [6]eτ plane, this identi�es an ellipse

∣∣C [6]τµ
∣∣2

B2
τ↔µ

+

∣∣C [6]eτ
∣∣2

B2
τ↔e

≲ 1 (6.99)

that encloses the coe�cient space to which τ ↔ l observables are not sensitive. On the other hand,

µ→ e searches can detect coe�cients in the region bounded by the hyperbola in Eq. (6.98). If the
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Figure 6.8: The plot shows the parameter space probed by direct τ ↔ l searches and by µ → e

observables, in the Cτµ − Cτe plane. The direct searches can probe the region outside the ellipse

of Eq. (6.99) (which correspond to the red circle when the Wilson coe�cients are normalized by

the sensitivities Bτ↔l of the τ ↔ l processes), while µ → e is sensitive to the area above the

hyperbolae, as de�ned in Eq. (6.98). The blue dashed hyperbolae correspond to the boundary

condition Bµ↔e/(Bτ↔eBτ↔µ) = 1/2, while the black ones satis�es Bµ↔e/(Bτ↔eBτ↔µ) < 1/2. In

this second case µ→ e searches are able to probe parameter space missed by τ ↔ l observables.



6.4. Phenomenological implications 125

q1

Cτµ13eq Cµτ3ulequ(3)

µ

H H†

u

`e

t

τ

Figure 6.9: The operators Ceτ31
eq , C

(3)eτ31
ℓequ are inserted in the left diagram and mix into the dimension

eight µ→ e scalar/tensor operators O(1),(2),(3),(4)
ℓequH2 of Eq.s (6.47)-(6.49).

following inequality is satis�ed

Bµ↔e <
Bτ↔eBτ↔µ

2
(6.100)

the hyperbola enters the ellipse and µ→ e processes are able to probe a region of parameter space

that eludes the direct τ ↔ l searches. This is illustrated in Figure 6.8. In the subsequent sections we

discuss examples where Eq. (6.100) is satis�ed considering the upcoming experimental sensitivities

on µ→ e and τ → l processes.

6.4.1 Fish diagrams with internal top quarks

In this section, we discuss some examples where the sensitivity of µ→ e conversion to some τ ↔ l

coe�cients is complementary to B decays. The ��sh" diagrams that mix four fermion τ ↔ l

interactions into dimension eight µ → e operators are illustrated in Figure 6.6e-6.6f of section

6.3.1. In these diagrams, one or two Higgs are attached to a heavy top internal line, so the τ ↔ l

operators that our calculation can probe contain one quark doublet or up-type singlet in the third

generation. In the former case, the operator can contribute to the LFV decays of the B mesons

with a τ (ντ ) in the �nal state. Recall that the quark doublets are in the u−basis, so these

operators also match via CKM mixing onto low energy contact interactions with d−type quarks

of the �rst and second generations. For the operators considered here, we checked that the limits

on their coe�cients arising from CKM-suppressed contributions to τ LFV processes with d and s

quarks, such as K± → l±ν and τ hadron decays, are not competitive with the limits inferred from

B decays.

The following subsections are organized by the di�erent µ → e interactions that the τ ↔ l

operators mix into.

6.4.1.1 µ→ e scalars

Consider, for example, the operators Oτµ13
eq = (τ̄ γµ)(q̄1γq3) and O(3)eτ31

ℓequ = (ℓ̄eστ)(q̄3σu), which

mix into the µ→ e scalar and tensor dimension eight operators O(1),(2),(3),(4)
ℓequH2 of Eq.s (6.47)-(6.49)

(with up quarks) via the diagram of Figure 6.9. These match at mW onto scalar and tensor
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ℓequ plane. The blue line correspond to the current experimental reach, while in the black one we

assume Br(µAl → eAl) ∼ 10−16. In both cases, the µ→ e hyperbole enter the ellipse beyond the reach of

B decays.
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(b) Similar to Figure 6.10a, in the C
(1)eτ13
ℓq − C(1)τµ3u

ℓequ plane. For this pair of operators, µ → e will have a

better sensitivity to the coe�cient product than B decays with the upcoming experimental improvement.

Figure 6.10

operators in the low energy EFT, with the following coe�cients4

Cuu
S,RR(mW ) =

3

2π2
m2

t

v2
Cτµ13
eq C

(3)eτ3u
ℓequ log

(
mW

ΛNP

)
(6.101)

Cuu
T,RR(mW ) =

3

8π2
m2

t

v2
Cτµ13
eq C

(3)eτ3u
ℓequ log

(
mW

ΛNP

)
(6.102)

where mt ∼ v is the top quark mass and the SMEFT operator coe�cients are at ΛNP.

4 This simple solution does not include the QCD running of tensors and scalars from ΛNP → mW . Since QCD does

not renormalize vector coe�cients, this QCD running is analogous to the rescaling of QED tensor↔scalar mixing

below mW [322],and can be estimated to be a ≲ 10% e�ect. It is therefore neglected.
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Scalar operators with up quarks contribute at tree-level to µ → e conversion in nuclei (see

eg [351]), where a muon is stopped in a target, captured by a nucleus, and converts into an electron

in the presence of LFV interaction with nucleons. Scalar interactions of �rst generation quarks

match onto nucleon operators with large matching coe�cients, and the rate for spin-independent

conversion is enhanced by the atomic number of the target, giving a good current sensitivity to

scalar coe�cients Cuu
S
<∼ 10−8 [322]. Including the impressive improvement in sensitivity promised

by upcoming experiments, Br(µAu→ eAu) <∼ 10−12 → Br(µAl→ eAl) ∼ 10−16, µ→ e conversion

will be able to probe scalar coe�cients as small as Cuu
S ∼ 10−10.

Tensors with light-quarks contribute to the spin-independent rate via their QED mixing into

scalars, which introduces a ∼ 1/10 suppression. For this reason, the tensor of Eq. (6.102) contribute

to the µ → e conversion rate as CT ∼ CS/40 and is therefore neglected. So the upcoming µ → e

conversion experiments can set the following limit (sensitivity) on the product of the coe�cients at

ΛNP = 4 TeV

Cτµ13
eq × C(3)eτ31

ℓequ ≲ 1.5× 10−10 (6.103)

The two τ ↔ l operators could also induce the leptonic decays of B mesons B0
d → µ±τ∓ and

B+ → τν. The current 95%C.L. experimental constraints on these processes lead to the following

limits on the coe�cients

Br(B0
d → µ±τ∓) < 1.4× 10−5 → Cτµ13

eq ≲ 1.4× 10−3

Br(B+ → τν) = 1.6× 10−4 → C
(3)eτ31
lequ ≲ 2.2× 10−3. (6.104)

These limits were obtained with the public code Flavio [360] and analytically, and are discussed

in more detail in Appendix D.3, which reviews the sensitivity of B decays to interesting operator

coe�cients.

In order to compare future B decay sensitivities to the future reach of µ → e conversion, we

suppose that Belle II could improve the sensitivities to B decays by an order of magnitude, so the

limits of Eq. (6.104) on the Wilson coe�cients will get ∼
√
10 better. Comparing the product of

the upcoming B sensitivities with the limit in Eq. (6.103) that arise from future µ→ e conversion

gives (the (f) superscript stands for �future")

B(f)
µ↔e = (B(f)

τ↔eB
(f)
τ↔µ)× (5× 10−4) (6.105)

which satis�es the condition of Eq. (6.100). We fall in the scenario depicted in Figure 6.10a,

where µ → e probes a region inside the ellipse, beyond the reach of B → τ direct searches.

Notice that the hyperbola of the current µ → e conversion results already enters the ellipse of

the B → τ LFV decays (with the current sensitivities B
(c)
µ↔e/(B

(c)
τ↔eB

(c)
τ↔µ) ∼ 5 × 10−3). This is

because tensors contribute to the B decays rate via the one-loop QED mixing to scalars, while the

(dimension six)2 → (dimension eight) mixing bene�ts from a large anomalous dimension.

The pair of τ ↔ l dimension six operators C
(1)eτ13
ℓq C

(1)τµ3u
ℓequ similarly mixes into the dimension

eight µ → e scalars with a singlet u. In this case, B decays are currently more sensitive than

µ → e processes to the product of the coe�cients (B
(c)
µ↔e/(B

(c)
τ↔eB

(c)
τ↔µ) ∼ 2). However, in the

next generation of experiments, the sensitivity ratio will be reduced by one order of magnitude

to B
(f)
µ↔e/(B

(f)
τ↔eB

(f)
τ↔µ) ∼ 0.2, allowing the µ → e conversion hyperbola to enter the ellipse of the

direct τ ↔ l searches (see Figure 6.10b).
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In Tables 6.8 and 6.9, we compare the sensitivities of τ ↔ l and µ→ e processes to the product

of several operators that mix into scalars with �rst generation quarks, via diagrams similar to Figure

6.9. Note that the pairs in the table feature an electron doublet and a singlet muon, but opposite

chiralities are also possible. For instance, Cτµ13
eq C

(1)eτ3u
ℓequ mix into C

(1),(2)eµ1u
ℓequH2 while Ceτ31

eq C
∗(1)µτ3u
ℓequ

contributes to the RGEs of C
∗(1),(2)µe1u
ℓequH2 . Although the anomalous dimensions are the same (and

so are the µ → e sensitivities), the dimension six operator that was τ ↔ e is now τ ↔ µ and

vice-versa, which might lead to slightly di�erent direct limits on the τ ↔ l interactions. In the

above-example, the branching ratios sensitivities of the B0
d decay into τe, τµ di�er by a factor ∼ 3,

and as a result the limits on the vector coe�cients Ceτ13
eq , Cτµ31

eq is ∼
√
3 di�erent. We do not

present the tables for the pairs with exchanged µ↔ e, as the marginally di�erent numbers do not

modify our conclusions.

coe�cients B
(c)
τ↔eB

(c)
τ↔µ B

(f)
µ→e

Ceτtu
ℓu C

(1)τµ1t
ℓequ �×� 2× 10−9

Ceτtu
ℓu C

(3)τµ1t
ℓequ �×� 1.5× 10−10

Cτµ13
eq C

(1)eτ3u
ℓequ 1.5× 10−3(c)× 4.3× 10−4(c) 2× 10−9

Cτµ13
eq C

(3)eτ3u
ℓequ 1.5× 10−3(c)× 2.4× 10−3(c) 1.5× 10−10

Cτµtu
eu C

(1)eτ1t
ℓequ �× � 2× 10−9

Cτµtu
eu C

(3)eτ1t
ℓequ �× � 1.5× 10−10

C
(1)eτ13
ℓq C

(1)τµ3u
ℓequ 2.3× 10−3(c)× 4.3× 10−5(c) 2× 10−9

C
(3)eτ13
ℓq C

(1)τµ3u
ℓequ 2.3× 10−3(c)× 4.3× 10−5(c) 2× 10−9

C
(1)eτ13
ℓq C

(3)τµ3u
ℓequ 2.3× 10−3(c)× 1.8× 10−4(c) 1.5× 10−10

C
(3)eτ13
ℓq C

(3)τµ3u
ℓequ 2.3× 10−3(c)× 1.8× 10−4(c) 1.5× 10−10

Table 6.8: The product of current (c) direct limits B
(c)
τ↔eB

(c)
τ↔µ on pairs of coe�cients that mix to a

µ→ e dimension eight scalar operator with a singlet u quark (see Eq. (6.47)), upon which applies

the limit B
(f)
µ→e arising from future µ→e conversion (Br(µAl→ eAl) ∼ 10−16). The �limits� are on

coe�cients at ΛNP ∼ 4 TeV. Details on the limits that apply to operators with permuted indices

are given in the text below Eq. (6.105). To compare B
(f)
µ→e with the future sensitivity of direct

τ ↔ l searches, the product B
(c)
τ↔eB

(c)
τ↔µ should be divided by 10: B

(f)
τ↔eB

(f)
τ↔µ ∼ B(c)

τ↔eB
(c)
τ↔µ/10.

coe�cients B
(c)
τ↔eB

(c)
τ↔µ B

(f)
µ→e

C
(3)eτ31
ℓq Cτµd3

ℓedq 2.3× 10−3(c)× 2.2× 10−4(c) 1× 10−9

C
(3)τµ13
ℓq (Cτed3

ℓedq )
∗ 1.5× 10−3(c)× 3.4× 10−4(c) 1× 10−9

Table 6.9: Similar to table 6.8, for dimension eight scalar µ → e operators involving a singlet d

quark (see Eq. (6.45)). The limit B
(f)
µ→e arises from µ→e conversion (Br(µAl→ eAl) ∼ 10−16).
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Figure 6.11: The plot shows the parameter space probed by B LFV decays and by future µ→ eγ,

in the C
(3)eτ3c
ℓequ − Cτµ23

eq plane. The ellipse is centered to the best-�t value of C
(3)eτ3c
ℓequ that can

explain the RD∗ anomaly (see text for details). Non-observation of µ → eγ can give a limit on

Cτµ23
eq (assuming only this pair to be non-zero). The dashed line correspond to the current MEG

upper bound Br(µ→ eγ) < 4× 10−13.

6.4.1.2 µ→ e tensors with heavy quarks

The �sh diagrams that generated scalar and tensor µ → e operators on u quarks, arise also with

external c quarks. Although the sensitivity of µ→ e conversion to charm scalars is insu�cient for

our purposes, µ→ eγ has interesting sensitivity to the charm tensors, because their mixing to the

dipole is enhanced ∝ mc/mµ. The pairs of τ ↔ l operators that mix to µ↔ e tensors with external

charms, and the sensitivities of B decays and Br(µ→ eγ) < 10−14 are summarized in Table 6.10.

Leptonic and semi-leptonic B decays have recently attracted attention due to several anomalies

with respect to SM expectations, see e.g. Ref. [361]. Our LFV operators could potentially address

the anomalies in �charged current" b transitions (such as B+ → τ+ν), when the discrepancy require

a enhanced rates (because LFV operator cannot interfere destructively with the SM). An example

is the SM expectation for RSM
D∗τ/l ≡ Br(B → D∗τ ν̄)/Br(B → D∗lν̄) ∼ 0.24 [360] which is smaller

than the observed value Rexp
D∗τ/l ∼ 0.3 [362]. We can �t the di�erence by enhancing the branching

fraction in the numerator with the tensor operator C
(3)lτ3c
ℓequ . The latter can be paired with the vector

Cτµ23
eq to mix into a dimension eight tensor with external charms, to which Br(µ→ eγ) ∼ 10−14 has

the sensitivity Bµ→e reported in Table 6.10. In the C
(3)eτ3c
ℓequ −Cτµ23

eq plane, the ellipse is now shifted

to the right and centered on the best-�t value of C
(3)eτ3c
ℓequ (see Figure 6.11). In the simpli�ed scenario

where the discrepancy
∣∣∣RSM

D∗τ/e −R
exp
D∗τ/e

∣∣∣ is fully explained by the presence of the τ ↔ e tensor,

non-observation µ→ eγ signal in future experiments would make it unlikely for the coe�cients to

occupy the portion of the red ellipse overlaping the blue region.

Table 6.11 summarises the case of µ ↔ e operator with external top quarks. The mixing of

tensors with a top bilinear into the dipole is enhanced by the ratio mt/mµ, so the upcoming µ→ eγ

experiments can probe dimension 6 coe�cients C
[6]eµtt
T ≳ 5× 10−12. We suppose that the SMEFT
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mixing of dimension eight tensors into the dimension eight dipoles is comparable to the dimension

six mixing [356]. This impressive sensitivity explains why the diagrams of Figure 6.6f with external

top legs are interesting regardless of the yτ Yukawa suppression.

The SMEFT τ ↔ l operators that are inserted in those diagrams contain a �avour diagonal

quark pair in the third generation. Vectors with tops contribute to the rate of τ → 3l via one-loop

penguin diagrams, while the dimension six tensors contribute to τ → lγ via the above-discussed

mixing into the τ ↔ l dipole. Tensors are not considered in our tables, because τ → lγ has already

an excellent sensitivity to the operator coe�cients. In Table 6.11 the direct �limits" on the product

of τ ↔ l dimension six vectors arising from τ → 3l searches are compared with the sensitivity of

Br(µ→ eγ) < 10−14.

coe�cients B
(c)
τ↔eB

(c)
τ↔µ B

(f)
µ→e

Ceτtc
ℓu C

(1)τµ2t
ℓequ �×� 1.2× 10−7

Ceτtc
ℓu C

(3)τµ2t
ℓequ �×� 1× 10−8

Cτµ23
eq C

(1)eτ3c
ℓequ 2.3× 10−3(c)× 1.0× 10−2(c) 1.2× 10−7

Cτµ23
eq C

(3)eτ3c
ℓequ 2.3× 10−3(c)× 5.0× 10−3(c) 1× 10−8

Cτµtc
eu C

(1)eτ2t
ℓequ �× � 1.2× 10−7

Cτµtc
eu C

(3)eτ2t
ℓequ �× � 1× 10−8

C
(1)eτ23
ℓq C

(1)τµ3c
ℓequ 2.3× 10−3(c)× 9.0× 10−3(c) 1.2× 10−7

C
(3)eτ23
ℓq C

(1)τµ3c
ℓequ 2.3× 10−3(c)× 9.0× 10−3(c) 1× 10−7

C
(1)eτ23
ℓq C

(3)τµ3c
ℓequ 2.3× 10−3(c)× 6.4× 10−3(c) 1.2× 10−7

C
(3)eτ23
ℓq C

(3)τµ3c
ℓequ 2.3× 10−3(c)× 6.4× 10−3(c) 1× 10−9

Table 6.10: Similar to table 6.8, for µ → e dimension eight tensor operators (see Eq. (6.49)) with

a c quark bilinear. The sensitivity B
(f)
µ→e arises from µ→ eγ with a branching ratio Br(µ→ eγ) ∼

10−14. The �limits� are on coe�cients at ΛNP ∼ 4 TeV.

coe�cients B
(c)
τ↔eB

(c)
τ↔µ B

(f)
µ→e

Ceτtt
ℓu Cτµ33

eq 1.0× 10−2(c)× 2.0× 10−2(c) 1.0× 10−6

C
(3)eτ33
ℓq Cτµtt

eu 4.5× 10−3(c)× 1.0× 10−2(c) 1.0× 10−6

C
(1)eτ33
ℓq Cτµtt

eu 4.0× 10−2(c)× 1.0× 10−2(c) 1.0× 10−6

Table 6.11: Similar to table 8, with the product of (current) direct limits B
(c)
τ↔eB

(c)
τ↔µ on pairs of

τ ↔ l coe�cients that mix to a µ → e dimension eight tensor operator (see Eq. (6.49)) with two

top quarks, upon which applies the limit Bµ→e. All the limits apply to the coe�cients at ΛNP ∼ 4

TeV. The limit B
(f)
µ→e arises from µ → eγ (Br(µ → eγ) < 10−14), due to the large mixing of the

top-tensor to the dipole, while the limits B
(c)
τ↔l are from the current upper limits on Br(τ → 3l)

given in Table 6.1. Future limits B
(f)
τ↔eB

(f)
τ↔µ are ∼ B(c)

τ↔eB
(c)
τ↔µ/10.
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6.4.1.3 µ→ e vectors

The remaining �sh diagrams give mixing of two dimension six τ ↔ l SMEFT operators into dimen-

sion eight µ→ e vectors with �rst generation quarks. The sensitivities of µ→ e conversion and B

decays on the product of the operator coe�cients are summarized in Table 6.12 for lepton singlets

and in Table 6.13 for lepton doublets. (The µ → e conversion estimates assume an Aluminium

target � see the beginning of Section 6.4.)

coe�cients B
(c)
τ↔eB

(c)
τ↔µ B

(f)
µ→e

Ceτ31
eq Cτµ13

eq 2.3× 10−3(c)× 1.5× 10−3(c) 2.5× 10−9

Ceτ13
eq Cτµ31

eq 2.3× 10−3(c)× 1.5× 10−3(c) 1× 10−8

Ceτtu
eu Cτµut

eu �×� 2.5× 10−9

Ceτut
eu Cτµtu

eu �×� 2.5× 10−9

(Cτed3
ℓedq )

∗Cτµd3
ℓedq 3.4× 10−4(c)× 2.2× 10−4(c) 4× 10−8

(C
(1)τe1t
ℓequ )∗C

(1)τµ1t
ℓequ �×� 2× 10−8

(C
(1)τe3u
ℓequ )∗C

(1)τµ3u
ℓequ 5.8× 10−5(c)× 4.3× 10−5(c) 4× 10−8

(C
(3)τe1t
ℓequ )∗C

(3)τµ1t
ℓequ �×� 1× 10−10

(C
(3)τe3u
ℓequ )∗C

(3)τµ3u
ℓequ 2.4× 10−4(c)× 2.4× 10−4(c) 2.5× 10−10

(C
(1)τe1t
ℓequ )∗C

(3)τµ1t
ℓequ �×� 2× 10−9

(C
(3)τe1t
ℓequ )∗C

(1)τµ1t
ℓequ �×� 2× 10−9

(C
(1)τe3u
ℓequ )∗C

(3)τµ3u
ℓequ 5.8× 10−5(c)× 2.4× 10−4(c) 4× 10−9

(C
(3)τe3u
ℓequ )∗C

(1)τµ3u
ℓequ 2.4× 10−4(c)× 4.3× 10−5(c) 4× 10−9

Table 6.12: Similar to tables 6.8, for dimension eight µ → e vector operators with SU(2) singlet

leptons (see Eq.s (6.40)-(6.42)). .
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coe�cients B
(c)
τ↔eB

(c)
τ↔µ B

(f)
µ→e

C
(1)eτ31
ℓq C

(1)τµ13
ℓq 2.3× 10−3(c)× 1.5× 10−3(c) 1× 10−8

C
(1)eτ13
ℓq C

(1)τµ31
ℓq 2.3× 10−3(c)× 1.5× 10−3(c) 2.5× 10−9

C
(3)eτ31
ℓq C

(3)τµ13
ℓq 2.3× 10−3(c)× 1.5× 10−3(c) 2× 10−9

C
(3)eτ13
ℓq C

(3)τµ31
ℓq 2.3× 10−3(c)× 1.5× 10−3(c) 2.5× 10−9

C
(3)eτ13
ℓq C

(1)τµ31
ℓq 2.3× 10−3(c)× 1.5× 10−3(c) 2.5× 10−9

C
(1)eτ13
ℓq C

(3)τµ31
ℓq 2.3× 10−3(c)× 1.5× 10−3(c) 2.5× 10−9

C
(3)eτ31
ℓq C

(1)τµ13
ℓq 2.3× 10−3(c)× 1.5× 10−3(c) 1× 10−8

C
(1)eτ31
ℓq C

(3)τµ13
ℓq 2.3× 10−3(c)× 1.5× 10−3(c) 1× 10−8

Ceτut
ℓu Cτµtu

ℓu �×� 1× 10−8

Ceτtu
ℓu Cτµut

ℓu �×� 2.5× 10−9

(C
(1)eτ3u
ℓequ )∗C

(1)µτ3u
ℓequ 4.5× 10−4(c)× 4.5× 10−4(c) 4× 10−8

(C
(1)eτ1t
ℓequ )∗C

(1)µτ1t
ℓequ �×� 4× 10−8

(C
(3)eτ3u
ℓequ )∗C

(3)µτ3u
ℓequ 1.8× 10−3(c)× 1.8× 10−3(c) 1.25× 10−10

(C
(3)eτ1t
ℓequ )∗C

(3)µτ1t
ℓequ �×� 1.25× 10−10

(C
(1)eτ1t
ℓequ )∗C

(3)µτ1t
ℓequ �×� 3× 10−9

(C
(1)eτ3u
ℓequ )∗C

(3)µτ3u
ℓequ 4.5× 10−5(c)× 1.8× 10−3(c) 1.6× 10−9

(C
(3)eτ1t
ℓequ )∗C

(1)µτ1t
ℓequ �×� 3× 10−9

(C
(3)eτ3u
ℓequ )∗C

(1)µτ3u
ℓequ 1.8× 10−3(c)× 4.5× 10−5(c) 1.6× 10−9

Table 6.13: Similar to tables 6.8, to generate µ→ e vector operators with a doublet lepton bilinear

(see Eq.s (6.32)-(6.38)).
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6.4.2 Higgs LFV couplings

In this section we discuss the sensitivities of µ→ e observables to dimension six Yukawa operators

OeH (Eq. (6.17)), and compare them with the upcoming direct limits imposed by h → τ l decays.

Pairs of Yukawa τ ↔ l operators contribute to various µ→ e interactions at dimension eight. They

mix into penguins via the divergent diagrams of Figure 6.6c, which match onto the vector operators

involved at tree-level in the µ→ e conversion and µ→ ēee rates. In addition, dimension six Yukawas

are inserted in the diagrams of Figures 6.7b and 6.7c-6.7d, that give matching contributions to the

µeττ tensor and dipole respectively. The matching conditions are written in Eq.s (6.89) and (6.90)-

(6.91). µ → eγ is marginally more sensitive to the µeττ tensor than on the dipole; this is due to

the large tensor-to-dipole mixing and the built-in yµ Yukawa suppression in the dipole de�nition,

which lead to the already discussed enhancement mτ/mµ. As a result, µ→ eγ is the most sensitive

process, and an upcoming experimental reach of Br(µ→ eγ) ≲ 10−14 gives :

∣∣Ceτ
eHC

τµ
eH

∣∣,
∣∣Cτe

eHC
µτ
eH

∣∣ ≲ 3× 10−9. (6.106)

In the charged lepton mass-eigenstate basis, the dimension six Yukawas induce �avour-changing

interactions of 125 GeV-Higgs (see Eq. 6.88), so h → τ l decays probe the o�-diagonal coe�cients

Cτl,lτ
eH . The most stringent upper limits on the rates are currently set by CMS [363], and ILC

is expected to improve them by one order of magnitude [347]. The projected sensitivities to the

branching ratios Br(h → τe) < 2.3 × 10−4, Br(h → τµ) < 2.4 × 10−4 respectively lead to the

bounds
√∣∣Ceτ

eH

∣∣2 +
∣∣Cτe

eH

∣∣2 < 3.2× 10−4

√∣∣Cτµ
eH

∣∣2 +
∣∣Cµτ

eH

∣∣2 < 3× 10−4. (6.107)

The product of the direct limits is larger than 2× the sensitivity of Eq. (6.106), so that µ → e

probe a region of parameter space that is beyond the reach of future LFV Higgs decays (see Figure

6.8).

6.5 Summary

The µ → e experiments under construction are expected to improve the current branching ratio

sensitivities by several orders of magnitude. In some cases the improvement is such that the

upcoming experiments will be able to probe products µ → τ and τ → e interactions beyond the

reach of direct τ ↔ l searches (where l ∈ {e, µ}). However, the relationship between τ ↔ l and

µ ↔ e observables is generically model-dependent, as we discussed in Section 6.2.1. The goal of

this paper is to retain the model-independent contributions to µ→ e processes from τ ↔ l lepton

�avour change, although these may be subdominant. To do so, we assume that the New Physics

responsible for τ ↔ l LFV is heavy (ΛNP ≳ 4 TeV) and we parameterise it with τ ↔ l dimension

six operators in the �on-shell� operator basis of SMEFT. We brie�y introduce our EFT formalism

in section 6.2.2.

We insert µ → τ and τ → e dimension six interactions O
(
1/Λ2

NP

)
in diagrams that generates

µ → e amplitudes at dimension eight O
(
1/Λ4

NP

)
. We only compute the contributions that are
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phenomenologically relevant, i.e within the reach of future experiments. Firstly, we focus on a

subspace of dimension eight operators to which µ → e observables are sensitive, as given in [2]

and presented in Section 6.2.3. Secondly, in Section 6.2.5 we draw and estimate diagrams with two

τ ↔ l dimension six interactions generating the above-mentioned dimension eight operators, and

we disregard the contributions smaller than the upcoming experimental sensitivity.

Log-enhanced corrections to µ→ e dimension eight coe�cients are the result of the (dimension 6)2 →
(dimension 8) mixing which appear in the Renormalization Group evolution, that we review in Sec-

tion 6.2.2. Calculating this mixing present some technical challenges. The �on-shell" operator bases

we use at dimension six and eight are reduced using the Equation of Motion (EOM), i.e do not

contain operators that are related by applying the classical EOM on some �eld. In order to include

the dimension 8 contributions that arise from using the EOM up to dimension 6 in reducing to the

on-shell basis at dimension 6, we include some not-1PI diagrams in our calculations. This is more

carefully discussed in Section 6.2.4.

In Section 6.3 we describe the calculation of the interesting contributions to µ→ e processes from

τ ↔ l interactions, depicted in the diagrams of Figure 6.6 and Figure 6.7. Pairs of τ ↔ l operators

are assumed to be generated at a New Physics scale ΛNP = 4 TeV and mix into dimension eight

µ → e interactions when evolved down to the experimental scale of µ → e observables. Between

ΛNP and mW , the running is perfomed in SMEFT as described in section 6.3.1 and employing the

RGEs solution of Eq. (6.10). The complete list of the (dimension 6)2 → (dimension 8) anomalous

dimensions that we obtained is given in Appendix D.2.

The dimension eight SMEFT operators that are generated in running are matched onto low

energy interactions at mW as described in Appendix C.2. We also include the contribution from

pairs of τ ↔ l operators which generate µ ↔ e operators at tree level in matching, as discussed

in section 6.3.2. Between mW and the experimental scale Λexp, the running of low energy Wilson

Coe�cients is taken from [322], while we �nd that µ→ τ × τ → e RGEs mixing is negligible in the

EFT below mW , as discussed at the end of section 6.2.2.

We thus determined the sensitivity of µ→ e processes to products of τ ↔ l operator coe�cients.

Sensitivities represent the smallest absolute value that is experimentally detectable and are obtained

by considering one non-zero pair of τ ↔ l operators at a time. They give a hyperbola in the C [6]τµ-

C [6]eτ plane of the dimension six coe�cients (see Figure 6.8), outside which µ→ e observables can

probe. In the same plane, direct τ ↔ l searches are sensitive to the region outside an ellipse. In

Section 6.4 we discuss two examples where the hyperbola passes inside the ellipse: Section 6.4.1

shows that the contributions of �sh diagrams (see Figure 6.6e-6.6f) to µ → e observables allow to

probe products of τ ↔ l coe�cients involving third generation quarks. These same interactions

contribute to the rate of LFV B → τ(ντ ) meson decays, which can directly probe the size of the

Wilson Coe�cients (The �limits" arising from the upper bounds on B → τ(ντ )+. . . are summarized

in Appendix D.3). In most cases, we �nd that upcoming µ → e experiments are sensitive to

coe�cients beyond the reach of future B → τ(ντ )+. . . searches. In Section 6.4.2, we study the

sensitivity of upcoming µ → e searches to products of LFV Higgs couplings, which overcomes the

projected reach of the ILC to h→ τ±l∓.

In summary, we computed in SMEFT the contributions to µ → e observables arising from

(µ → τ) × (τ → e) interactions. This required calculating a subset of the RGEs for dimension

eight operators, so far missing in the literature. As a result, we obtained limits on products of

τ ↔ l SMEFT coe�cients assuming non-observation of µ → e in future experiments. This can
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give model-independent relations among µ↔ e, τ ↔ e and τ ↔ µ LFV: in the event of a detected

τ ↔ µ signal, the non-observation of µ ↔ e would suggest that some τ ↔ e interactions are

unlikely(if they occur, additional µ ↔ e interactions are required to obtain a cancellation in the

µ↔ e amplitude). This could provide theoretical guidance on where to search, or not, for τ ↔ e.

We �nd that µ→ e processes have a good sensitivity to products of τ ↔ l operators that involve

b quarks. These mediate leptonic �avour changing B decays, which are a promising avenue for New

Physics in light of the recent anomalies. The RD∗ anomaly, where the experimental value is larger

than the SM prediction and, as discussed in Section 6.4.1.2 (see Figure 6.11), can be �tted by

increasing the rate of B → D∗τν with τ ↔ e operators. This is an example of the above-discussed

relations that we can extrapolate from our calculation; the non-observation of µ→ e processes can

identify values where τ ↔ µ is unlikely to be seen.
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Conclusions and prospects

In this thesis, we assumed that new physics is heavy and parametrized its e�ects with the Standard

Model E�ective Field Theory. We focused on the operators that change the �avour of charged

leptons because neutrino masses provide conclusive evidence that lepton �avour is not conserved,

and because LFV processes expect a signi�cant improvement in the already excellent experimental

sensitivities.

We argued that the increasing precision of LFV experiments compels us to include extra contri-

butions in the e�ective theory calculations. To reach this conclusion, in Chapter 5 we introduced a

power counting scheme aimed at organising the (multiple) perturbative expansions in SMEFT and

at identifying all the relevant contributions within the reach of future experiments. We express the

loop, couplings and EFT expansion in terms of powers of a small parameter λ ∼ 0.2 à la Wolfen-

stein. The state-of-the-art SMEFT calculations that are currently available include the complete

one-loop running of dimension six operators, and partial results for the leading-order running of

the dimension eight operators. We use our power counting scheme to assess if that is su�cient to

fully parametrize LFV in the SMEFT. We �nd that the upcoming µ → e data can be sensitive

to some two-loop anomalous dimension (for NP scales up to ΛNP ∼ 100 TeV) and to a subset of

dimension eight operators of SMEFT (for NP scales ΛNP ≲ 20 TeV). To partially account for the

dimension eight amplitudes, in Appendix C.2 we calculate the matching of the relevant dimension

eight subset onto the low energy µ→ e contact interactions.

The results of Chapter 5 can be used to motivate improved SMEFT calculations, such as some

two-loop anomalous dimensions, which may be the subject of a future project.

The sensitivity of µ→ e experiments to dimension eight contributions is used to impose novel

limits on dimension six operators that change the τ �avour. Diagrams with µ → τ and τ → e

vertices can contribute to µ → e amplitudes. In some cases, the upcoming µ → e experiment will

be able to probe products of µ → τ and τ → e interactions beyond the reach of dedicated τ ↔ l

searches. We explore this in the SMEFT by calculating the renormalization group mixing of the

product of two dimension six µ → τ and τ → e operators into a µ → e operator of the dimension

eight subset identi�ed in Chapter 5. The calculations are described in Chapter 6 and more details

can be found in Appendix D. The running of the dimension eight operators is only partially known,

and we computed a subset of dimension eight renormalization group equations for the �rst time.

We use the results to impose limits on the product of τ �avour changing operator coe�cients

that are stricter than the ones imposed by τ LFV searches. We show that this allows to probe

region of parameter space that elude τ ↔ l direct searches, providing complementary information

on τ �avour change using µ→ e observables. We show explicit examples on how this can be used

to relate the lepton �avour transitions: an observation of a τ ↔ e process and a null result from

µ→ e can give information on the size of the τ ↔ µ couplings.



138 Chapter 7. Conclusions and prospects

The complete e�ective parametrization of LFV advocated in this thesis can be used to study

BSM models from a bottom-up perspective. A bottom-up calculation maps the experimental data

at low energy into a combination of operator coe�cients at the heavy physics scale and identi�es the

region of coe�cient space where models should sit. It would be interesting to investigate whether

a bottom-up analysis can give additional insight into how di�erent models could be distinguished.

This is a question that has been explored extensively with top-down calculations: LFV rates are

calculated in terms of model parameters and the parameter space is scanned, with the hope of

extrapolating correlations among LFV observables that could be checked against the experimental

results. Unfortunately, scans are dependent on the adopted measure, and may not fully capture

what models, which correspond to points in parameter space, can do.

A bottom-up analysis could provide a di�erent and interesting perspective. Being agnostic on

the speci�c value of the model parameters, and matching di�erent models to the experimentally

allowed space at the high scale, we could try to identify the correlation among observables that

models cannot predict. Finding regions of the coe�cient space that the model cannot reach may be

a better-posed problem that does not rely on probable (but potentially unknowable) correlations,

and that can assist in distinguishing models with LFV, as a detection in the forbidden regions can

exclude them.



Chapter 8

Résumé en Français

Le Modèle Standard de la physique des particules a remarquablement réussi à expliquer les in-

teractions des particules élémentaires découvertes. Le secteur électrofaible a été testé avec une

très grande précision, tandis que les calculs perturbatifs, les approches e�ectives et les résultats de

réseau ont fait de la QCD la description de la force forte. Le modèle standard a prédit l'existence

et les propriétés de plusieurs particules, dont plus récemment le boson de Higgs, qui a été découvert

au Large Hadron Collider en 2012.

Malgré ses succès, plusieurs constats et considérations théoriques appellent à une extension

du Modèle Standard. Les masses et les oscillations des neutrinos, la matière noire et l'asymétrie

entre la matière et l'antimatière, font partie des observations qui nécessitent une nouvelle physique.

Ces énigmes non résolues motivent la recherche de la physique au-delà du Modèle Standard, qui

pourrait éclairer ces questions fondamentales et ouvrir la voie à une compréhension plus profonde

de la nature.

Les oscillations des neutrinos sont un phénomène expérimental bien établi qui nécessite une

physique au-delà du modèle standard, car elles brisent les symétries de saveur des leptons du

lagrangien du modèle standard. Une façon minimale d'étendre le MS pour s'accorder avec les

observations consiste à introduire un fermion chiral droit léger pour donner aux neutrinos des

masses de Dirac. Cependant, ce scénario est di�cile à tester car il conduit à des courants neutres

changeant la saveur des leptons extrêmement faibles.

De nouveaux états lourds ainsi que de nouvelles interactions sont nécessaires si les neutrinos

sont des fermions de Majorana et/ou si le problème de masse des neutrinos est lié à d'autres

questions ouvertes, conduisant à de potentielles processus observables qui changent la saveur des

leptons chargés. Cette possibilité a suscité un grand e�ort expérimental pour rechercher des tran-

sitions violant la saveur des leptons, qui sont maintenant parmi les processus les mieux mesurés en

physique des particules et devraient encore s'améliorer dans un avenir proche. La violation de la

saveur des leptons (LFV) serait un signal prometteur de la nouvelle physique, qui pourrait faire

la lumière sur le mécanisme expliquant les masses de neutrinos. De plus, c'est un outil puissant

pour diriger la construction de modèles introduisant une nouvelle physique générique, puisque les

symétries accidentelles du MS sont facilement violées une fois que de nouveaux états et interactions

sont introduits. Les modèles qui tentent de résoudre diverses énigmes sont souvent contraints par

l'exigence d'accord avec les résultats expérimentaux portant sur la LFV.

Les résultats inconcluants des expériences peuvent suggérer que nous sommes en présence d'un

écart de masse, avec une nouvelle physique à apparaitrait à une échelle largement plus grande

ΛNP ≫ v. Si tel est le cas, le modèle standard peut être considéré comme le lagrangien renormalis-

able d'une théorie des champs e�ective où les états lourds ont été supprimés. L'e�et de la physique

lourde aux basses énergies peut être paramétré en termes d'interactions de contact entre les degrés

de liberté légers, supprimées par les puissances de l'échelle lourde selon la dimension de l'opérateur.
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Les observables peuvent être calculés dans la théorie e�ective en tant que fonctions des coe�cients

d'opérateur, et les expériences peuvent rechercher des preuves de leur présence.

Dans cette thèse, nous analysons les résultats expérimentaux actuels et à venir des recherches

LFV dans la théorie du champ e�ectif du modèle standard (SMEFT). L'objectif est d'obtenir

autant d'orientations théoriques que possible sur le paysage viable du LFV au-delà de la physique

du modèle standard.

Les calculs EFT peuvent être envisagés dans une perspective descendante ou ascendante. Dans

la perspective descendante, les degrés de liberté lourds sont supprimés de la théorie et les cou-

plages et masses UV paramétrisent la taille des coe�cients des opérateurs. Les observables sont

calculés avec les opérateurs e�ectifs et reproduisent les prédictions du modèle au sein de l'erreur

de troncature de l'EFT. Dans la perspective ascendante, les observables sont calculées dans la

théorie e�ective la plus générale qui est cohérente avec les symétries, y compris chaque contribution

d'opérateur qui pourrait être à la portée des expériences. Ce faisant, nous identi�ons la région de

l'espace des coe�cients où les modèles au-delà du MS devraient se tenir, ce qui pourrait donner

un aperçu de la physique LFV. Dans les deux perspectives, avec l'amélioration exceptionnelle des

sensibilités attendues pour la prochaine génération d'expériences (en particulier pour les transitions

µ→ e), les calculs théoriques devraient suivre le niveau de précision des observables LFV, incluant

potentiellement des contributions souvent négligées dans les calculs théoriques e�ectifs. Ceux-ci

peuvent inclure des diagrammes de boucle supérieure, ainsi que des opérateurs d'ordre supérieur

dans l'expansion EFT.

Tout d'abord, nous introduisons un petit paramètre de comptage de puissance à la Wolfenstein

pour évaluer si les calculs SMEFT de pointe, qui incluent les opérateurs de dimension six et leurs

équations de groupe de renormalisation à une boucle, sont su�sants pour avoir une description ef-

�cace complète des observables LFV. Nous constatons que les recherches à venir de µ→ e peuvent

être sensibles à quelques dizaines d'opérateurs de dimension huit, et à certains e�ets de dimensions

anormales à deux boucles, pour les nouvelles échelles de physique inférieures à 20-100 TeV.

Nous nous appuyons sur ces résultats et explorons la sensibilité des recherches µ → e aux inter-

actions de changement de saveur τ ↔ e(µ). Nous décrivons les interactions τ ↔ e(µ) comme des

opérateurs de dimension six dans le SM EFT, nous identi�ons des paires d'entre eux apportant des

contributions intéressantes aux processus µ→ e, et obtenons les dimensions anormales mélangeant

ces paires vers des opérateurs µ → e de dimension huit. La renormalisation de l'opérateur de

dimension huit est quasiment inconnue, et nous avons calculé un sous-ensemble d'équations de

groupe de renormalisation pour la première fois. Nous montrons que les prochaines expériences

µ→ e pourraient permettre de sonder l'espace des paramètres au-delà de la portée des recherches

actuelles et futures portant sur les transitions τ → e(µ), incluant les désintégration LFV du Higgs,

du τ et des mésons B.
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Appendix A

µ→ e conversion in nuclei

A muon, when stopped in a material, can form a muonic atom with a nucleus of the target. While

in a bound state, the muon can undergo two SM processes: decay in orbit, where an electron and

an (anti-)neutrino are emitted, or muon capture, given by

µ− N(A,Z)→ νµ N
′(A,Z − 1) (A.1)

where A,Z are, respectively, the mass and atomic number of the nucleus N . In the presence of

LFV interactions that change muons to electrons, a muon can be captured by the nucleus without

the emission of a neutrino

µ− N(A,Z)→ e− N(A,Z). (A.2)

in a processes known as µ → e conversion in nuclei. After cascading down in energy levels,

the ground state of the muonic atom is a 1s orbital with a binding energy Eb, and in the �nal

state a monochromatic electron with energy ∼ mµ − Eb is emitted while the nucleus recoils. The

SINDRUMII collaboration sets the upper limit Γ(µN → eN)/Γcapt < 7 × 10−13 [241] on the rate

of µ→ e conversion with respect to the �avour conserving muon capture.

The state-of-the-art calculations for the conversion rate can be found in [142,270]. In their no-

tation, we describe coherent and spin-independent µ→ e conversion with LFV contact interactions

among leptons and light quark currents

−Lconv = 2
√
2GFmµ(ALēσ

αβPLµFαβ +ARēσ
αβPRµFαβ)

+
GF√
2

∑

q=u,d,s

[
(gLS(q)ēPLµ+ gRS(q)ēPRµ)q̄q

(gLV (q)ēγαPLµ+ gRV (q)ēγαPRµ)q̄γ
αq

]
+ h.c

where Fαβ is the photon �eld tensor. Contributions that depend on the spin-state of the nucleus

arise from contact interactions involving axial-vector, pseudo-scalar and tensor quark currents. The

spin-independent rate is dominant because it is enhanced by the coherent sum over all nucleons.

The e�ective Lagrangian at the quark-level can be match onto interactions involving nucleons via

the following matrix elements

⟨N |q̄ΓKq|N⟩ = G
(p,q)
K p̄ΓKp ⟨N |q̄ΓKq|N⟩ = G

(n,q)
K n̄ΓKn

where ΓS = 1,ΓV = γα and p, n label protons and neutrons, respectively. The vector coe�cients are

obtained by the quark content of the nucleon G
(p,u)
V = G

(n,d)
V = 2, G

(p,d)
V = G

(n,u)
V = 1, G

p(n),s
V = 0

while the scalar charges GS are extrapolated with dispersive relations and lattice results [364,365].

The wave function for the muon bound state is calculated by solving the Dirac equation in the
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presence of the electric �eld of the nucleus, and is averaged over the proton and neutron densities.

De�ning g̃
(p)
XK =

∑
q G

(p,q)
K gXK(q) and g̃

(n)
XK =

∑
q G

(n,q)
K gXK(q), the conversion rate reads

ΓµN→eN = 2G2
F

∣∣∣ALD + g̃
(p)
LSS

(p) + g̃
(n)
LSS

(n) + g̃
(p)
LV V

(p) + g̃
(n)
LV V

(n)
∣∣∣
2
+ L↔ R

where D,S, V are the overlap integrals in Equations (19)�(23) of [270], that involve proton/neutron

densities and muon/electron wave functions. All the overlap integral scale with the atomic num-

ber ∼ Z, giving the anticipated coherence factor Z2 that enhances the spin-independent µ → e

conversion rate over the muon capture rate.
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Calculation details

B.1 Integrals in Dimensional Regularization

We list here the D−dimensional integrals and identities used in the calculations presented in the

text. The integral over Feynman parameters

1

A1 . . . An
=

∫ 1

0
dx1 . . . dxnδ

(∑

i

xi − 1

)
(n− 1)!

(
∑

i xiAi)
n (B.1)

allows to reduce the loop integrals to

∫
dDk

(2π)D
1

(k2 −∆)n
=

(−1)ni
(4π)D/2

Γ
(
n− D

2

)

Γ(n)
∆D/2−n (B.2)

∫
dDk

(2π)D
k2

(k2 −∆)n
=

(−1)n−1i

(4π)D/2

D

2

Γ
(
n− D

2 − 1
)

Γ(n)
∆D/2−n+1 (B.3)

∫
dDk

(2π)D
(k2)2

(k2 −∆)n
=

(−1)ni
(4π)D/2

D(D + 2)

4

Γ
(
n− D

2 − 2
)

Γ(n)
∆D/2−n+2 (B.4)

Taking D = 4− 2ε space-time dimensions, we encounter 1/ε poles from the Γ function. The Γ(x)

function can be expanded around zero for x > 0 as

Γ(x) =
1

x
− γE +O(x) (B.5)

where γE ∼ 0.578 is the Euler-Mascheroni constant. We often encounter the following product

µ2ε
Γ(2−D/2)
(4π)D/2

M2(D/2−2) (B.6)

which can be expanded for small ε

µ2ε
Γ(2−D/2)
(4π)D/2

M2(D/2−2) =
1

(4π)2

(
1

ε
+ log

(
µ2

M2

)
− γ + log 4π +O(ε)

)
. (B.7)

In the modi�ed subtraction scheme MS, the renormalization scale is conveniently rede�ned µ =

µeγE/2/(4π)1/2 to absorb the constant factors paired with the 1/ε pole

1

(4π)2

(
1

ε
+ log

(
µ2

M2

)
− γ + log 4π +O(ε)

)
=

1

(4π)2

(
1

ε
+ log

(
µ2

M2

)
+O(ε)

)
(B.8)
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B.2 Fierz Identities

The space of matrices with two spinor indices in four space-time dimensions is 16-dimensional and

is spanned by the basis

A = {PL, PR, γ
µPL, γ

µPR, σ
µν} (B.9)

where PL,R = (1 ± γ5)/2 are the chiral projectors and σµν = i/2[γµ, γν ]. A generic spinor matrix

Mαβ can be decomposed as a linear combination of the basis elements, and the coe�cients can be

identi�ed by acting with the scalar product

1

2
Tr(X ·M) for X ∈ A. (B.10)

Acting on the basis elements, it is easy to show that

1

2
Tr(PXPY ) = δXY

1

2
Tr(PXγµPY ) = 0

1

2
Tr(γνPXγµPY ) = δνµδXY

1

2
Tr(PXσ

µν) = 0
1

2
Tr(γαPXσ

µν) = 0
1

2
Tr(σαβσ

µν) = 2(δµαδ
ν
β − δµβδνα) (B.11)

The results in Eq. (B.11) can be used to derive the Fierz identities for four-fermion products. For

instance, considering

(ψ1γ
µPLψ2)(ψ3γµPRψ4) (B.12)

we can isolate the two index spinor matrix

M = γµPLψ2ψ3γµPR. (B.13)

Acting with the scalar product, the only non-zero trace is given by 1/2Tr(PRM):

1

2
Tr
(
PRγ

µPLψ2ψ3γµPR

)
= −1

2
(ψ3γ

µγµPLψ2) = −2(ψ3PLψ2) (B.14)

with the − sign arising from the anti-commutation of the Grassmann numbers ψ2, ψ3. As a result,

M is

M = −2(ψ3PLψ2)PR (B.15)

which substituted back in Eq. (B.12) gives

(ψ1γ
µPLψ2)(ψ3γµPRψ4) = −2(ψ1PRψ4)(ψ3PLψ2) (B.16)

One can similarly prove the following identities

(ψ1γ
µPXψ2)(ψ3γµPXψ4) = (ψ1γ

µPXψ4)(ψ3γµPXψ2) (B.17)

(ψ1PXψ2)(ψ3PXψ4) = −
1

2
(ψ1PXψ4)(ψ3PXψ2)−

1

8
(ψ1σ

µνPXψ4)(ψ3σµνPXψ2) (B.18)

(ψ1σ
µνPXψ2)(ψ3σµνPXψ4) =

1

2
(ψ1σ

µνPXψ4)(ψ3σµνPXψ2)− 6(ψ1PXψ4)(ψ3PXψ2) (B.19)

We can use this technique to reduce fermion bilinears with multiple insertion of γ matrices. In the

calculation of section 4.2.1, we encountered the four-fermion product

(ψ1γ
µγαγνPLψ2)(ψ3γµγαγνPLψ4). (B.20)
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Since

PLψ2ψ3PR = −1

2
(ψ3γρPLψ2)γ

ρPL, (B.21)

we �nd

(ψ1γ
µγαγνPLψ2)(ψ3γµγαγνPLψ4) = −

1

2
(ψ3γρPLψ2)(ψ1γ

µγαγνγργµγαγνPLψ4)

= (ψ3γρPLψ2)(ψ1γ
ργνγαγαγνPLψ4)

= 16(ψ3γρPLψ2)(ψ1γ
ρPLψ4)

= 16(ψ1γρPLψ2)(ψ3γ
ρPLψ4) (B.22)

where in the second line we have used the contraction of gamma matrices γµγαγνγργµ = −2γργνγα.
Likewise, we �nd

(ψ1γ
µγαγνPLψ2)(ψ3γνγαγµPLψ4) = −

1

2
(ψ3γρPLψ2)(ψ1γ

µγαγνγργνγαγµPLψ4)

= 4(ψ3γρPLψ2)(ψ1γ
ρPLψ4)

= 4(ψ1γρPLψ2)(ψ3γ
ρPLψ4) (B.23)

having used the identity γαγµγ
α = −2γµ thrice.
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Appendix for Chapter 5

C.1 Some LFV Operators of dimension eight

Section 5.3.1 showed that µ↔ e processes can be sensitive to some SMEFT operators of dimension

eight, if these have O(1) coe�cients at ΛNP >∼ 4 TeV. This appendix lists the relevant operators,

following the notation of [308].

The LFV operators given here are required to match onto low energy operators involved in the

processes of Table 5.3, so derivative operators, and those involving more than four particles at low

energy, are neglected. In addition, operators of the form µ2H× dimension six, where µ2H is the Higgs

mass2 term in the Lagrangian, are neglected because in matching onto operators below mW , the

potential minimisation condition relates µ2H to H†H. Furthermore, we restrict our list to operators

that are µ ↔ e �avour changing but �avour diagonal in the two other fermion legs, as the low

energy observables constrain operator with this �avour structure.

The four-fermion operators of dimension eight can be obtained by adding two Higgs �elds

to dimension six four-fermion operators, or by multiplying two renormalizable Lagrangian terms.

Dimension six operators can be multiplied by the singlet product (H†H), but the Higgses can

also contract with speci�c doublets; when the Higgs gets a vev, this feature induces a low-energy

operator involving only some SU(2) partners. For instance, the dimension eight operator

(ℓαH̃γρH̃
†ℓβ)(qγ

ρq)→ (ναγρνβ)(uγ
ρu+ dγρd) .

This operator induces �Non-Standard neutrino Interactions� [343], which can be searched for at

neutrino experiments, without inducing tree-level �avour-change among charged leptons. Exploit-

ing SU(2) identities, these operators can be expressed as linear combinations of dim6×(H†H) and

the following operator

(ℓατ
Iγρℓβ)(qγ

ρq)(H†τ IH).

Adopting the convention of [308], we retain the triplet contractions in the operator basis. Since we

are interested in the contribution of dimension eight operators to LFV observables, we organize the

operator list according to whether a dimension six version exists or does not exist.

We display operators with �standard� �avour indices and we don't include the permutations

that will be matched to the same low energy interaction, as discussed in Appendix C.2.

C.1.1 Dimension eight not present at dimension six

C.1.1.1 Four-fermion

SU(2) invariance and its chiral nature forbid SMEFT dimension six counterparts of some four-

fermion contact interaction of the QCD∗QED invariant Lagrangian, forcing their appearance at
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dimension eight. In the case of four-fermion operators with four-lepton legs these are the tensor

operators

O(4)eµkk
L2E2H2 = (l̄eHσ

αβeµ)(l̄kHσαβek)

where k ∈ {e, µ, τ}. They can be related to the scalars O(3)ijkl
L2E2H2 = (l̄iHej)(l̄kHel) of the basis [308]

thanks to the following Fierz identity

O(4)eµkk
L2E2H2 = −8O(3)ekkµ

L2E2H2 − 4O(3)eµkk
L2E2H2 .

Given that the tensors mix with the dipole, we retain both operators in the matching conditions of

Appendix C.2, keeping in mind that we can remove the redundancy by means of the above identity.

For four-fermion interaction involving two-lepton and two-quark legs, the dimension eight op-

erators that do not arise at dimension six are

O(3)eµnn
LEDQH2 = (ℓ̄eHeµ)(q̄nHdn) O(4)eµnn

LEDQH2 = (ℓ̄eσ
αβHeµ)(q̄nσαβHdn)

O(5)eµnn
LEQUH2 = (ℓ̄eHeµ)(ūnH̃

†qn).

where n is a quark generation index. In this case, the scalar and tensor operator for down-type

quarks are independent and cannot be related by means of Fierz identities.

C.1.1.2 Two-lepton operators

Two-lepton and two-gauge boson operators �rstly appear at dimension eight

O(1)eµ
LEG2H

= (ℓ̄eHeµ)G
A
αβG

Aαβ O(2)eµ
LEG2H

= (ℓ̄eHeµ)G
A
αβG̃

Aαβ

O(1)eµ
LEW 2H

= (ℓ̄eHeµ)W
I
αβW

Iαβ O(2)eµ
LEW 2H

= (ℓ̄eHeµ)W
I
αβW̃

Iαβ

O(1)eµ
LEB2H

= (ℓ̄eHeµ)BαβB
αβ O(2)eµ

LEB2H
= (ℓ̄eHeµ)BαβB̃

αβ

O(1)eµ
LEWBH = (ℓ̄eτ

IHeµ)B
αβW I

αβ O(2)eµ
LEWBH = (ℓ̄eτ

IHeµ)BαβW̃
Iαβ

and provide the leading order matching contribution to the dimension seven two-photon OFF,Y =

(ēPY µ)FαβF
αβ ,OFF̃ ,Y = (ēPY µ)FαβF̃

αβ and two-gluon OGG,Y = (ēPY µ)G
A
αβG

Aαβ , OGG̃,Y =

(ēPY µ)G
A
αβG̃

Aαβ operators of the low energy Lagrangian, whose coe�cients are constrained by

searches of µ→ e conversion in nuclei.

C.1.2 Dimension eight operators present at dimension six

C.1.2.1 Four-fermion

The four-fermion operators with four lepton legs that also appear at dimension six are

O(1)eµkk
L4H2 = (ℓ̄eγ

αℓµ)(ℓ̄kγαℓk)(H
†H) O(2)eµkk

L4H2 = (ℓ̄eγ
αℓµ)(ℓ̄kτ

Iγαℓk)(H
†τ IH)

O(1)eµkk
L2E2H2 = (ℓ̄eγ

αℓµ)(ēkγαek)(H
†H) O(2)eµkk

L2E2H2 = (ℓ̄eτ
Iγαℓµ)(ēkγαek)(H

†τ IH)

Oeµkk
E4H2 = (ēeγ

αeµ)(ēkγαek)(H
†H),
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where k = e, µ, τ .

In addition, the four-fermion operators containing two-lepton and two-quark legs are:

O(1)eµnn
L2Q2H2 = (ℓ̄eγ

αℓµ)(q̄nγαqn)(H
†H) O(2)eµnn

L2Q2H2 = (ℓ̄eτ
Iγαℓµ)(q̄nγαqn)(H

†τ IH)

O(3)eµnn
L2Q2H2 = (ℓ̄eτ

Iγαℓµ)(q̄nτ
Iγαqn)(H

†H) O(4)eµnn
L2Q2H2 = (ℓ̄eγ

µℓµ)(q̄nτ
Iγµqn)(H

†τ IH)

O(5)eµnn
L2Q2H2 = εIJK(ℓ̄eτ

Iγµℓµ)(q̄nτ
Jγµqn)(H

†τKH) O(1)eµnn
L2U2H2 = (ℓ̄eγ

αℓµ)(ūnγµun)(H
†H)

O(2)eµnn
L2U2H2 = (ℓ̄eτ

Iγαℓµ)(ūkγαul)(H
†τ IH) O(1)eµnn

L2D2H2 = (ℓ̄eγ
αℓµ)(d̄kγαdl)(H

†H)

O(2)eµnn
L2D2H2 = (ℓ̄eτ

Iγαℓµ)(d̄nγαdn)(H
†τ IH) O(1)eµnn

E2Q2H2 = (ēeγ
αeµ)(q̄nγαqn)(H

†H)

O(2)eµnn
E2Q2H2 = (ēeγ

αeµ)(q̄nτ
Iγαqn)(H

†τ IH) Oeµnn
E2U2H2 = (ēeγ

αeµ)(ūnγαun)(H
†H)

Oeµnn
E2D2H2 = (ēeγ

αeµ)(d̄nγαdn)(H
†H) O(1)eµnn

LEDQH2 = (ℓ̄eeµ)(d̄nqn)(H
†H)

O(2)eµnn
LEDQH2 = (ℓ̄eeµ)τ

I(d̄nqn)(H
†τ IH) O(1)eµnn

LEQUH2 = (ℓ̄eeµ)ε(q̄nun)(H
†H)

O(2)eµnn
LEQUH2 = (ℓ̄eeµ)τ

Iε(q̄nun)(H
†τ IH) O(3)eµnn

LEQUH2 = (ℓ̄eσ
αβeµ)ε(q̄nσαβun)(H

†H)

O(4)eµnn
LEQUH2 = (ℓ̄eσ

αβej)τ
Iε(q̄nσαβun)(H

†τ IH)

where n = 1, 2, 3 runs over the quark generation space.

C.1.2.2 Two-lepton operators

Two-lepton operators include the eight dimensional dipoles

O(1)eµ
LEWH3 = (ℓ̄eτ

IHσαβeµ)W
I
αβ(H

†H)

O(2)eµ
LEWH3 = (ℓ̄eHσ

αβeµ)W
I
αβ(H

†τ IH)

Oeµ
LEBH3 = (ℓ̄iHσ

αβej)Bαβ(H
†H)

and the following operators

O(1)eµ
L2H4D

= i(ℓ̄eγ
αℓµ)(H

†↔DαH)(H†H) O(2)eµ
L2H4D

= i(ℓ̄eτ
Iγαℓµ)[(H

†
↔
DI

αH)(H†H) + (H†↔DαH)(H†τ IH)]

Oeµ
E2H4D

= i(ēeγ
αeµ)(H

†↔DαH)(H†H) Oeµ
LEH5 = (ℓ̄eHeµ)(H

†H)2,

where

iH†↔DµH ≡ iH†(DµH)− i(DµH
†)H

iH†
↔
DI

µH ≡ iH†τ I(DµH)− i(DµH
†)τ IH.

Following Electroweak Spontaneous Symmetry Breaking, the second set of operators are matched

onto four fermion contact interactions at low energy, after integrating out the heavy Z, h bosons

at mW .
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C.2 Tree matching at mW with LFV operators to dimension eight

This section presents the tree level matching conditions at mW of µ↔ e �avour-changing SMEFT

operators, including the dimension eight operators listed in the previous section, but neglecting

double-insertions of dimension six operators. The operator basis below mW is given in the notation

of [322], and reproduced in section 4.3.2.

C.2.1 Dipoles and two-photon(gluon)

Below mW , there are the dipole operators of two chiralities, and operators with two photons or two

gluons. Above mW , there is a dimension six dipole operator for hypercharge, and another one for

SU(2).

Since the photon is the combination Aµ = cos θWBµ + sin θWW
3
µ ≡ cWBµ + sWW

3
µ , the low

energy dipole coe�cient (on the left) is matched onto the dimension six and eight SMEFT dipoles

(on the right) as

Ceµ
D,R = cW

(
Ceµ
EB +

v2

yµΛ2
NP

Ceµ
LEBH3

)
− sW

[
Ceµ
EW +

v2

yµΛ2
NP

(
Ceµ
LEWH3(1)

+ Ceµ
LEWH3(2)

)]

Ceµ
D,L = cW

(
Cµe∗
EB +

v2

yµΛ2
NP

Cµe∗
LEBH3

)
− sW

[
Cµe∗
EW +

v2

yµΛ2
NP

(
Cµe∗
LEWH3(1)

+ Cµe∗
LEWH3(2)

)]

where the − sign is due to the τ3 matrix. In addition, since matching �at tree level� mean tree-level

in the low-energy theory, loop diagrams in the theory above mW composed of heavy particles can

be included. We follow [352], and retain the two-loop Barr-Zee diagrams, in which a Higgs leg

connects a W or t loop with the neutral Higgs �avour changing vertex of eq. (5.6), and the one

loop Z−exchange diagram where one Z vertex is �avour changing. The former give the matching

condition

∆Ceµ
D,L(mW ) ≃ −Cµe∗

EH(mW )

[
eα

16π3yµ

(
Q2

tNcY
2
t −

7

2

)]
≃ Cµe∗

EH(mW )

[
eα

8π3yµ

]
, (C.1)

while the latter give

∆Ceµ
D,L(mW ) ≃ e

16π2
geLC

eµ
HE(mW )

∆Ceµ
D,R(mW ) ≃ e

16π2
geR

(
Ceµ
HL(1)(mW ) + Ceµ

HL(3)(mW )
)
, (C.2)

where geL, g
e
R are de�ned in the Feynman rule for Z couplings to leptons −i g

2cW
(geLPL + geRPR) as

geR = 2s2W , and geL = −1 + 2s2W .
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For the two-photon and two-gluon operators the matching conditions are

Ceµ
FF,R =

v

ΛNP

(
c2WC

eµ
LEB2H(1)

− sW cWCeµ
LEWBH(1) + s2WC

eµ
LEW 2H(1)

)
(C.3)

Ceµ
FF,L =

v

ΛNP

(
c2WC

µe∗
LEB2H(1)

− sW cWCµe∗
LEWBH(1) + s2WC

µe∗
LEW 2H(1)

)
(C.4)

Ceµ

F F̃ ,R
=

v

ΛNP

(
c2WC

eµ
LEB2H(2)

− sW cWCeµ
LEWBH(2) + s2WC

eµ
LEW 2H(2)

)
(C.5)

Ceµ

F F̃ ,L
=

v

ΛNP

(
c2WC

µe∗
LEB2H(2)

− sW cWCµe∗
LEWBH(2) + s2WC

µe∗
LEW 2H(2)

)
(C.6)

Ceµ
GG,R =

v

ΛNP
Ceµ
LEG2H(1)

Ceµ
GG,L =

v

ΛNP
Cµe∗
LEG2H(1)

(C.7)

Ceµ

GG̃,R
=

v

ΛNP
Ceµ
LEG2H(2)

Ceµ

GG̃,L
=

v

ΛNP
Cµe∗
LEG2H(2)

(C.8)

C.2.2 Four-Lepton

SMEFT operators with four-fermion legs are matched onto four-fermion contact interactions in the

low-energy e�ective theory as Electroweak symmetry is spontaneously broken and the Higgs doublet

is replaced by its vacuum expectation value. In addition, given that the interesting LFV operators

are µ ↔ e �avour changing but otherwise �avour diagonal, two-lepton µ ↔ e operators can be

connected to a renormalizable vertex exchanging an h or a Z, generating an e�ective four-fermion

interaction when the heavy SM bosons are integrated out at the Electroweak scale.

As discussed in the text, a �avour changing vertex with the h Higgs boson appears as the

SMEFT operators OEH and OLEH5 contribute to the leptons mass

[me]
ij = v

(
[Ye]

ij − Cij
EH

v2

Λ2
NP

− Cij
LEH5

v4

Λ4
NP

)
, (C.9)

so that in the charged leptons mass basis the Yukawa coupling is o�-diagonal

h√
2
ēiPRe

j

(
[Ye]

ij − 3Cij
EH

v2

Λ2
NP

− 5Cij
LEH5

v4

Λ4
NP

)
=

h√
2
ēiPRe

j

(
[me]

ij − 2Cij
EH

v2

Λ2
NP

− 4Cij
LEH5

v4

Λ4
NP

)

(C.10)

and the LFV Feynman rule with the neutral Higgs reads

−i
√
2ēiPRe

j

(
Cij
EH

v2

Λ2
NP

+ 2Cij
LEH5

v4

Λ4
NP

)
(C.11)

In SMEFT there are more distinct �avour structures which are matched into the same low energy

operators: for exampleOeµff
LL , Offeµ

LL , Ofµef
LL andOeffµ

LL all match onto the below-mW LFV operator

Oeµff
LL . In the following, we suppress these permutations for brevity, and write

Ceµff
low energy = Ceµff

SMEFT + perm.

to indicate that these di�erent �avour structures are to be summed on the right side of the matching
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conditions. These are:

Ceµℓℓ
V,RR = Ceµℓℓ

EE + Ceµ
HEg

e
R +

v2

Λ2
NP

(
Ceµℓℓ
E4H2 + Ceµ

E2H4D
geR

)
+ perm. (C.12)

Ceµℓℓ
V,LR = Ceµℓℓ

LE + (Ceµ
HL,3 + Ceµ

HL,1)g
e
R +

v2

Λ2
NP

[
Ceµll
L2E2H2(1)

+ Ceµll
L2E2H2(2)

+
(
Ceµ
L2H4D(1)

+ 2Ceµ
L2H4D(2)

)
geR

]

Ceµℓℓ
V,RL = Cℓℓeµ

LE + Ceµ
HEg

e
L +

v2

Λ2
NP

[
Cℓℓeµ
L2E2H2(1)

+ Cℓℓeµ
L2E2H2(2)

+ Ceµ
E2H4D

geL

]
(C.13)

Ceµℓℓ
V,LL = Ceµℓℓ

LL + (Ceµ
HL,3 + Ceµ

HL,1)g
e
L +

v2

Λ2
NP

[
Ceµℓℓ
L4H2(1)

+ Ceµℓℓ
L4H2(2)

+
(
Ceµ
L2H4D(1)

+ Ceµ
L2H4D(2)

)
geL

]
+ perm.

Ceµℓℓ
S,RR = −mℓC

eµ
EHv

m2
h

+
v2

Λ2
NP

(
Ceµℓℓ
L2E2H2(3)

− 2
mℓC

eµ
LEH5v

m2
h

)
+ perm. (C.14)

Ceµττ
S,LR = −2Cτµeτ

LE − mτC
µe∗
EHv

m2
h

− v2

Λ2
NP

[
2
(
Cτµeτ
L2E2H2(1)

+ Cτµeτ
L2E2H2(2)

)
+ 2

mτC
µe∗
LEH5v

m2
h

]
(C.15)

Ceµττ
S,RL = −2Ceττµ

LE − mτC
eµ
EHv

m2
h

− v2

Λ2
NP

[
2
(
Ceττµ
L2E2H2(1)

+ Ceττµ
L2E2H2(2)

)
+ 2

mτC
eµ
LEH5v

m2
h

]
(C.16)

Ceµℓℓ
S,LL = −mℓC

µe∗
EHv

m2
h

+
v2

Λ2
NP

(
Cµeℓℓ∗
L2E2H2(3)

− 2
mℓC

µe∗
LEH5v

m2
h

)
+ perm. (C.17)

Ceµττ
T,RR =

v2

Λ2
NP

Ceµττ
L2E2H2(4)

(C.18)

Ceµττ
T,LL =

v2

Λ2
NP

Cµeττ∗
L2E2H2(4)

(C.19)

where ℓ ∈ {e, µ, τ}. We see that lepton tensors are matched at tree level only at dimension eight, and

also that dimension eight operators could be signi�cant for LL or RR scalars, where the dimension

six contribution is Yukawa-suppressed.

C.2.3 Two-lepton two-quark

Given that the low energy constraints are expressed in the quark mass eigenstate basis, in the

�bottom up� approach adopted here, the CKM matrix will act on SMEFT operator coe�cients

in the matching conditions. As we work in the uL−basis, a CKM weighted sum will appear in

matching dL operators.(The CKM matrix is here written as V , rather than the previously used

VCKM .)

Tree-level matching SMEFT dimension six and eight coe�cients (on the right) onto low energy
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coe�cients (on the left) results in:

Ceµunun

LL = Ceµnn
LQ(1) − C

eµnn
LQ(3) + guL(C

eµ
HL(1) + Ceµ

HL(3))

+
v2

Λ2
NP

[
Ceµnn
L2Q2H2(1)

+ Ceµnn
L2Q2H2(2)

− Ceµnn
L2Q2H2(3)

− Ceµnn
L2Q2H2(4)

+
(
Ceµ
L2H4D(1)

+ 2Ceµ
L2H4D(2)

)
guL

]

Ceµdndn
LL =

∑

jk

VjnV
∗
kn(C

eµjk
LQ(1) + Ceµjk

LQ(3)) + gdL(C
eµ
HL(1) + Ceµ

HL(3))

+
v2

Λ2
NP

[∑

jk

VjnV
∗
kn

(
Ceµjk
L2Q2H2(1)

+ Ceµjk
L2Q2H2(2)

+ Ceµjk
L2Q2H2(3)

+ Ceµjk
L2Q2H2(4)

)

+
(
Ceµ
L2H4D(1)

+ 2Ceµ
L2H4D(2)

)
gdL

]
(C.20)

Ceµunun

RR = Ceµnn
EU + guRC

eµ
HE +

v2

Λ2
NP

(
Ceµnn
E2U2H2 + Ceµ

E2H4D
guR
)

(C.21)

Ceµdndn
RR = Ceµnn

ED + gdRC
eµ
HE +

v2

Λ2
NP

(
Ceµnn
E2D2H2 + Ceµ

E2H4D
gdR

)
(C.22)

Ceµunun

LR = Ceµnn
LU + guR(C

eµ
HL(1) + Ceµ

HL(3))

+
v2

Λ2
NP

[
Ceµnn
L2U2H2(1)

+ Ceµnn
L2U2H2(2)

+
(
Ceµ
L2H4D(1)

+ 2Ceµ
L2H4D(2)

)
guR

]
(C.23)

Ceµdndn
LR = Ceµnn

LD + gdR(C
eµ
HL(1) + Ceµ

HL(3))

+
v2

Λ2
NP

[
Ceµnn
L2D2H2(1)

+ Ceµnn
L2D2H2(2)

+
(
Ceµ
L2H4D(1)

+ 2Ceµ
L2H4D(2)

)
gdR

]
(C.24)

Ceµunun

RL = Ceµnn
EQ + guLC

eµ
HE +

v2

Λ2
NP

[
Ceµnn
E2Q2(1)

− Ceµnn
E2Q2(2)

+ Ceµ
E2H4D

guL

]
(C.25)

Ceµdndn
RL =

∑

jk

VjnV
∗
knC

eµjk
EQ + gdLC

eµ
HE +

v2

Λ2
NP


∑

jk

VjnV
∗
kn

(
Ceµjk
E2Q2(1)

+ Ceµjk
E2Q2(2)

)
+ Ceµ

E2H4D
gdL


 (C.26)
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Ceµunun

S,LL = −C∗µenn
LEQU −

munv

m2
h

Cµe∗
EH −

v2

Λ2
NP

(
Cµenn∗
LEQUH2(1)

+ Cµenn∗
LEQUH2(2)

+ 2
munv

m2
h

Cµe∗
LEH5

)
(C.27)

Ceµdndn
S,LL = −mdnv

m2
h

Cµe∗
EH +

v2

Λ2
NP


∑

j

V ∗
jnC

µejn∗
LEQDH2(3)

− 2
mdnv

m2
h

Cµe∗
LEH5


 (C.28)

Ceµunun

S,RR = −Ceµnn
LEQU −

munv

m2
h

Ceµ
EH −

v2

Λ2
NP

(
Ceµnn
LEQUH2(1)

+ Ceµnn
LEQUH2(2)

+ 2
munv

m2
h

Ceµ
LEH5

)
(C.29)

Ceµdndn
S,RR = −mdnv

m2
h

Ceµ
EH +

v2

Λ2
NP


∑

j

VjnC
eµjn
LEQDH2(3)

− 2
mdnv

m2
h

Ceµ
LEH5


 (C.30)

Ceµunun

S,LR = −munv

m2
h

Cµe∗
EH −

v2

Λ2
NP

(
2
munv

m2
h

Cµe∗
LEH5 − Cµenn∗

LEQUH2(5)

)
(C.31)

Ceµdndn
S,LR =

∑

j

VjnC
∗µenj
LEDQ −

mdnv

m2
h

Cµe∗
EH +

v2

Λ2
NP


∑

j

Vjn

(
Cµenj∗
LEQDH2(1)

+ Cµenj∗
LEQDH2(2)

)
− 2

mdnv

m2
h

Cµe∗
LEH5




Ceµunun

S,RL = −munv

m2
h

Ceµ
EH −

v2

Λ2
NP

(
2
munv

m2
h

Ceµ
LEH5 − Ceµnn

LEQUH2(5)

)
(C.32)

Ceµdndn
S,RL =

∑

j

V ∗
jnC

eµnj
LEDQ −

mdnv

m2
h

Ceµ
EH +

v2

Λ2
NP


∑

j

V ∗
jn

(
Ceµnj
LEQDH2(1)

+ Ceµnj
LEQDH2(2)

)
− 2

mdnv

m2
h

Ceµ
LEH5




Ceµunun

T,LL = −C∗µenn
T,LEQU −

v2

Λ2
NP

(
Cµenn∗
LEQUH2(3)

+ Cµenn∗
LEQUH2(4)

)
(C.33)

Ceµunun

T,RR = −Ceµnn
T,LEQU −

v2

Λ2
NP

(
Ceµnn
LEQUH2(3)

+ Ceµnn
LEQUH2(4)

)
(C.34)

Ceµdndn
T,RR =

v2

Λ2
NP

∑

j

VjnC
eµjn
LEQDH2(5)

(C.35)

Ceµdndn
T,LL =

v2

Λ2
NP

∑

j

V ∗
jnC

µejn∗
LEQDH2(5)

(C.36)

where V is the CKM matrix, un ∈ {u, c}, dn ∈ {d, s, b}, and

guL = 1− 4

3
s2W , guR = −4

3
s2W , gdL = −1 + 2

3
s2W , gdR =

2

3
s2W . (C.37)

As anticipated, the low energy LFV tensors involving d−type quarks are matched at tree level onto

the SMEFT eight dimensional tensors. Dimension eight operators could also be relevant for LL,

RR scalars with d quarks and RL, LR scalars with u quarks, as the dimension six contributions are

suppressed by Yukawa couplings.







Appendix D

Appendix for Chapter 6

D.1 Feynman Rules

In this section we list the Feynman Rules for the interactions involved in the diagrams of section

6.3.1. Capital letters I, J, L,K . . . are used to label SU(2) indices, while lower-case letters i, j, l, k

are generation indices. τa are the Pauli matrices and ε12 = −ε21 = 1, ε11 = ε22 = 0 is the anti-

symmetric SU(2) tensor. The Feynman rules are obtained calculating by hand the iM amplitude

of the tree-level processes.

Figure D.1: Feynman rules for the dimension four interaction. The Higgs momenta follow the

hypercharge arrow.
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Figure D.2: Feynman rules for the dimension six SMEFT four-fermion interaction 4f6 of section

6.2.3. In the product Γ1 ⊗ Γ2 the left matrix Γ1 multiplies the lepton bilinear. Scalar and tensor

with opposite chiralities have the same Feynman rules with conjugate coe�cients and exchanged

�avour indices within lepton and quark bilinears.
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Figure D.3: Feynman rules for the dimension six SMEFT two fermion operators Y6, P6 of section

6.2.3. The Higgs momenta follow the hypercharge arrows.
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Figure D.4: Feynman rules for the dimension eight SMEFT two fermion operators D8, P8 of section

6.2.3. The Higgs momenta directions follow the hypercharge arrow, while the bosons momentum q

is outgoing



D.1. Feynman Rules 163

Figure D.5: Feynman rules for the dimension eight SMEFT four-fermion interactions 4f8 of section

6.2.3. We consider only the dimension eight operators involved in the diagrams of section 6.3.1.1.

In the product Γ1 ⊗ Γ2 the left matrix Γ1 multiplies the lepton bilinear. Scalar and tensor with

opposite chiralities have the same Feynman rules with conjugate coe�cients and exchanged �avour

indices within lepton and quark bilinears.
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D.2 Anomalous Dimensions

In this section we write the renormalization group equations for the mixing of a µ→ τ dimension

six operator, multiplied by a τ → e dimension six operator, into a dimension eight µ→ e operator.

These anomalous dimensions are generated by the diagrams of section 6.3.1.1. We conveniently

present the RGEs divided in the �classes" introduced in the same section. The operator de�nitions

can be found in section 6.2.3. The upper dot Ċ on the Wilson coe�cient indicate the logarithmic

derivative with respect to the renormalization scale M . The anomalous dimensions are written

for the dimension eight operators of Section 6.2.3, which are relevant for µ → e processes that

are otherwise �avour diagonal, although more general �avour structures can be obtained with the

appropriate substitutions. For non-Hermitian operators such as O(1)
ℓequH2 , we write the RGEs for

the µ → e operators O(1)eµii
ℓequH2 ,O∗(1)µeii

ℓequH2 . This is to more explicitly show the τ ↔ l operator pairs

upon which we obtain limits in section 6.4.

D.2.1 4f6 × 4f6 → 4f8

Figure 6.6f shows the mixing ∝ ytyτ of pairs of dimension six τ → l operators into the dimension

eight µ → e tensor with top legs. We align τ ↔ e, τ ↔ µ Wilson coe�cients respectively in row

and column vectors to write the following anomalous dimensions, relevant for the Bµ→e sensitivity

of Table 6.11.

16π2Ċ
(3)eµ3t
ℓequH2 =

(
Ceτtt
ℓu C

(1)eτ33
ℓq C

(3)eτ33
ℓq C

(1)eτ3t
ℓequ C

(3)eτ3t
ℓequ

)




yτyt 0 0 0

0 −yτyt 0 0

0 yτyt 0 0

0 0 0 3yτyt
0 0 3yτyt −8yτyt







Cτµ33
eq

Cτµtt
eu

C
(1)τµ3t
ℓequ

C
(3)τµ3t
ℓequ


 (D.1)

16π2Ċ
∗(3)µe3t
ℓequH2 =

(
Cτµtt
ℓu C

(1)τµ33
ℓq C

(3)τµ33
ℓq C

∗(1)µτ3t
ℓequ C

∗(3)µτ3t
ℓequ

)




yτyt 0 0 0

0 −yτyt 0 0

0 yτyt 0 0

0 0 0 3yτyt
0 0 3yτyt −8yτyt







Ceτ33
eq

Ceτtt
eu

C
∗(1)τe3t
ℓequ

C
∗(3)τe3t
ℓequ


 (D.2)

16π2Ċ
(4)eµ3t
ℓequH2 =

(
Ceτtt
ℓu C

(1)eτ33
ℓq C

(3)eτ33
ℓq C

(1)eτ3t
ℓequ C

(3)eτ3t
ℓequ

)




yτyt 0 0 0

0 −yτyt 0 0

0 −yτyt 0 0

0 0 0 yτyt
0 0 yτyt 8yτyt







Cτµ33
eq

Cτµtt
eu

C
(1)τµ3t
ℓequ

C
(3)τµ3t
ℓequ


 (D.3)
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16π2Ċ
∗(4)µe3t
ℓequH2 =

(
Cτµtt
ℓu C

(1)τµ33
ℓq C

(3)τµ33
ℓq C

∗(1)µτ3t
ℓequ C

∗(3)µτ3t
ℓequ

)




yτyt 0 0 0

0 −yτyt 0 0

0 −yτyt 0 0

0 0 0 yτyt
0 0 yτyt 8yτyt







Ceτ33
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Ceτtt
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C
∗(1)τe3t
ℓequ

C
∗(3)τe3t
ℓequ


 (D.4)

In Figure 6.6e we show a representative diagram with the double insertion of two-lepton two-quark

τ → l operators of dimension six, which renormalizes the coe�cient of µ→ e dimension eight four

fermion operators. The mixing is proportional to the square of the top Yukawa y2t . The RGEs for

scalar and tensor with a up-singlet quark (the sensitivities of µ→ e processes that we obtain from

this mixing are summarized in Tables 6.8 and 6.10) read

16π2Ċ
(1)eµii
ℓequH2 =

(
Ceτti
ℓu C

(1)eτti
ℓequ C

(3)eτ3i
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
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(D.5)
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(D.6)
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For scalars with a singlet down-quark (sensitivities in Table 6.9), the mixing is
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(1)eµii
ℓedqH2 =

(
C

(1)eτi3
ℓq C

(3)eτi3
ℓq Ceτi3

ledq

)



−y2t 0

−3y2t 0

0 y2t



(
Cτµi3
ℓedq

Cτµ3i
eq

)
(D.13)

16π2Ċ
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The anomalous dimensions for the mixing into µ → e vectors with SU(2) lepton singlets are

(sensitivities in Table 6.12)
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while for vectors with lepton doublets (sensitivities in Table 6.13) these are
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D.2.2 P6 × 4f6 → 4f8

Dimension six τ → l four fermion interactions renormalise µ → e dimension eight operators via

gauge loops where one vertex is a �avour changing penguin (Eq. (6.12)-(6.14)), as depicted in

Figure 6.6d. One-particle-irreducible vertex corrections and �wavefunction-like" contributions (see

section 6.2.4 for a discussion) give the following gauge invariant anomalous dimensions, where we

align four-fermion interactions and penguins respectively in row and column vectors:
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(2)eµii
ℓedqH2 =

(
Ceτii
ℓedq Cτµii

ℓedq

)

(−3g2 0

0 6g′2

)(
Cτµ
He

C
(3)eτ
Hℓ

)
(D.38)

16π2Ċ
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(3)eτii
ℓq C

(1)τµii
ℓq C

(3)τµii
ℓq

)




3g2 0 0 0

0 g′2 0 0

0 0 3g2 0

0 0 0 g′2







C
(1)τµ
Hℓ

C
(3)τµ
Hℓ

C
(1)eτ
Hℓ

C
(3)eτ
Hℓ



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16π2Ċeµii
e2u2H2 =

(
Ceτii
eu Cτµii

eu

)

(
4g′2 0

0 4g′2

)(
Cτµ
He

Ceτ
He

)
(D.44)

16π2Ċeµii
e2d2H2 =

(
Ceτii
ed Cτµii

ed

)

(−2g′2 0

0 −2g′2
)(

Cτµ
He

Ceτ
He

)
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16π2Ċ
(1)eµii
e2q2H2 =

(
Ceτii
eq Cτµii

eq

)

(−g′2 0

0 −g′2
)(

Cτµ
He

Ceτ
He

)
(D.46)
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16π2Ċ
(2)eµii
e2q2H2 =

(
Ceτii
eq Cτµii

eq

)

(−3g2 0

0 −3g2
)(

Cτµ
He

Ceτ
He

)
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16π2Ċ
(1)eµii
ℓ2u2H2 =

(
Ceτii
ℓu Cτµii

ℓu

)

(−4g′2 0

0 −4g′2
)(

C
(1)τµ
Hℓ

C
(1)eτ
Hℓ

)
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16π2Ċ
(2)eµii
ℓ2u2H2 =

(
Ceτii
ℓu Cτµii

ℓu

)

(−4g′2 0

0 −4g′2
)(

C
(3)τµ
Hℓ

C
(3)eτ
Hℓ

)
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16π2Ċ
(1)eµii
ℓ2d2H2 =

(
Ceτii
ℓd Cτµii

ℓd

)

(
2g′2 0

0 2g′2

)(
C

(1)τµ
Hℓ

C
(1)eτ
Hℓ

)
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16π2Ċ
(2)eµii
ℓ2d2H2 =

(
Ceτii
ℓd Cτµii

ℓd

)

(
2g′2 0

0 2g′2

)(
C

(3)τµ
Hℓ

C
(3)eτ
Hℓ

)
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D.2.3 Y6 × Y6 → P8

We here write the RGEs for the mixing of two dimension six τ → l Yukawa (Eq. (6.17)) into the

the dimension eight µ → e penguins (Eq. (6.43)). More details can be found in section 6.3.1.1 of

the text.

16π2Ċeµ
e2H4D

= −Cτµ
eHC

∗τe
eH (D.52)

16π2Ċ
(1)eµ
ℓ2H4D

=
1

2
C∗µτ
eH Ceτ

eH 16π2Ċ
(2)eµ
ℓ2H4D

=
1

4
C∗µτ
eH Ceτ

eH (D.53)

D.3 Limits from B Decays

In the body of the paper, we saw that µ↔ e processes have a good sensitivity to products of τ ↔ l

coe�cients which both involve a top quark, via the �sh diagram of Figure 6.6 e). When the top

quark is in an doublet, these same τ ↔ l coe�cients mediate B decays, which is discussed in this

section.
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We set limits on the τ ↔ l coe�cients from their contributions to leptonic and semi-leptonic

B decays. They can induce �neutral current� processes, such as Bd → τ±l∓, which are absent

in the SM, and also contribute to �charged current� decays such as B+ → τ̄ ν, to which the SM

does contribute but with a di�erent-�avoured neutrino. Since our coe�cients are lepton-�avour-

changing, they cannot interfere with the Standard Model, so neccessarily increase the Branching

Ratios with respect to their SM expectation. This makes it di�cult to �t the current B anomalies

with LFV operators, because many of the anomalies are experimental de�cits with respect to the

SM predictions.

The list of decays that are included is given in table D.1, along with the value of the Branching

Ratio(BR) which we use to extract limits (A coe�cient at its upper limit gives this BR). For

processes where the SM contribution is negligeable, this value is the the experimental 95% C.L.

upper bound on the BR. In the case of SM processes where prediction ≈ observation, this value

is the SM prediction + theory uncertainty + 2σ experimental uncertainty. This de�nition is used

because we would like to remove the SM part and require that the �avour-changing interactions

contribute less than the remainder. However, it can occur that the SM prediction exceeds the

experimental observation (as in some �B anomalies�).

To extrapolate the limits we obtain from current experimental constraints into the future, we

suppose a factor of 10 improvement in the experimental sensitivity (and in the theoretical precision),

such that the future limits will be a factor of ∼ 3 better.

Our limits are obtained using Flavio [360]. The limits obtained from two-body leptonic decays

were checked analytically, using the well-known formula for the rate as a function of operator

coe�cients at the experimental scale mb:

Γ(B0 → τ̄µ) =
E2

µf
2
B

16πv4

{
(|Cdbµτ

V,LX |2 + |C
dbµτ
V,RX |2)(Eτ −Eµ) + (|Cdbµτ

S,RX |2 + |C
dbµτ
S,LX |2)

m2
B

m2
b

(Eτ+Eµ) + ...
}

(D.54)

where �...� are cross-terms and mµ is neglected. A numerical limit can be obtained by, for instance,

comparing to the experimental rate for B+ → τ̄ ν.

The coe�cients are run from mb → ΛNP = 4 TeV with the one-loop RGEs of QCD (which

shrinks scalar coe�cients by a factor ∼ 3/5), with tree-level matching to SMEFT operators when

passing mW . Electroweak running is neglected, except in the case of tensor to scalar mixing in

SMEFT1 (where CS(mW ) ∼ 0.3CT (ΛNP)), which for instance, mixes single-top tensors O(3)τe3u
ℓequ

into scalars that induce B+ → ēν.

1The tensor to scalar mixing below mW in QED is negligeable for �charged-current� tensors involving a b and a

ν.
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coe�cient limit process BR

Ceτ32
eq ,C

(1)eτ32
ℓq + C

(3)eτ32
ℓq 2.3× 10−3(c) B+ → K + τ±e∓ < 4.4× 10−5 [366]

Ceτ31
eq ,C

(1)eτ31
ℓq + C

(3)eτ31
ℓq 2.3× 10−3(c) B0

d → τ±e∓ < 3.0× 10−5 [367]

Cµτ32
eq ,C

(1)µτ32
ℓq + C

(3)µτ32
ℓq 2.3× 10−3(c) B0

s → τ±µ∓ < 4.3× 10−5 [368]

Cµτ31
eq ,C

(1)µτ31
ℓq + C

(3)µτ31
ℓq 1.5× 10−3(c) B0

d → τ±µ∓ < 1.2× 10−5 [368]

Ceτd3
ℓedq , C

τed3
ℓedq 3.4× 10−4(c) B0

d → e±τ∓ < 3.0× 10−5 [367]

Cµτd3
ℓedq , C

τµd3
ℓedq 2.2× 10−4(c) B0

d → µ±τ∓ < 1.2× 10−5 [368]

Cµτs3
ℓedq , C

τµs3
ℓedq 3.3× 10−4(c) B0

s → µ±τ∓ < 4.3× 10−5 [368]

C
(1)lτ3u
ℓequ 4.5× 10−4(c) B− → τ ν̄ 1.4× 10−4 [360,369]

C
(1)τe3u
ℓequ 5.8× 10−5(c) B− → eν̄ ≤ 1.2× 10−6 [370]

C
(1)τµ3u
ℓequ 4.3× 10−5(c) B− → µν̄ ≤ 1.0× 10−6 [371]

C
(1)lτ3c
ℓequ 1.0× 10−2(c) B−

c → τ ν̄ 0.1 [360]

C
(1)τe3c
ℓequ 9.0× 10−3(c) B0

d → Deν̄ ≤ 3.0× 10−2 [360]

C
(1)τµ3c
ℓequ 9.0× 10−3(c) B0

d → Dµν̄ ≤ 3.1× 10−2 [360]

C
(3)lτ3u
ℓequ 1.8× 10−3(c) B− → τ ν̄ 1.4× 10−4 [360,369]

C
(3)τe3u
ℓequ 2.4× 10−4(c) B− → eν̄ ≤ 1.2× 10−6 [370]

C
(3)τµ3u
ℓequ 1.8× 10−4(c) B− → µν̄ ≤ 1.0× 10−6 [371]

C
(3)lτ3c
ℓequ 5.0× 10−3(c) Rτ/l(B → D∗lν̄) 0.28 [360]

C
(3)τe3c
ℓequ 5.3× 10−3(c) B0

d → D∗eν̄ ≤ 7.3× 10−2 [360]

C
(3)τµ3c
ℓequ 6.4× 10−3(c) B0

d → D∗µν̄ ≤ 7.7× 10−2 [360]

Table D.1: Current limits (c) on τ ↔ e and τ ↔ µ coe�cients of SMEFT operators, at 4 TeV,

arising from the B decays given in the third column. The limits saturate the Branching Ratio given

in the last column (which may not be the cited experimental limit, see discussion in Appendix D.3).

Limits on vector coe�cients apply for permuted lepton and quark �avour indices, scalars apply as

given.
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D.4 Table of Sensitivities

coe�cients B
(f)
τ↔eB

(f)
τ↔µ B

(f)
µ→e

C
(1)eτ1u
ℓequ Cτµ

He 8.3× 10−5(f)× 1.2× 10−4(f) 5× 10−9

C
(3)eτ1u
ℓequ Cτµ

He 7.7× 10−5(f)× 1.2× 10−4(f) 2× 10−9

(C
(1)τe1u
ℓequ )∗Cτµ

Hℓ(1) 8.3× 10−5(f)× 1.0× 10−4(f) 1× 10−8

(C
(3)τe1u
ℓequ )∗Cτµ

Hℓ(1) 7.7× 10−5(f)× 1.0× 10−4(f) 2× 10−9

(C
(1)τe1u
ℓequ )∗Cτµ

Hℓ(3) 8.3× 10−5(f)× 1.0× 10−4(f) 1× 10−8

(C
(3)τe1u
ℓequ )∗Cτµ

Hℓ(3) 7.7× 10−5(f)× 1.0× 10−4(f) 3× 10−10

Ceτd1
ℓedq C

τµ
He 8.3× 10−5(f)× 1.2× 10−4(f) 5× 10−9

(Cτed1
ℓedq )

∗Cτµ
Hℓ(1) 8.3× 10−5(f)× 1.0× 10−4(f) 1× 10−8

(Cτed1
ℓedq )

∗Cτµ
Hℓ(3) 8.3× 10−5(f)× 1.0× 10−4(f) 1× 10−8

Table D.2: Pair of τ ↔ l penguin and four fermion dimension six operators that generate µ → e

scalar/tensor dimension eight operators with a singlet u and d quark. The future (f) �limits" B
(f)
τ↔l

on τ ↔ l vectors and scalars are from the upper bounds on the LFV decays τ → lρ(η) and τ → πl

respectively (adapted from [322]). The limits on penguins follow from their contribution to four-

lepton vector interactions τ → 3l. The same bound applies to the dimension six operators with

µ ↔ e interchanged. The sensitivities B
(f)
µ→e arise from future µ → e conversion. Bolded pairs

indicate that the sensitivity of µ→ e is better than the one arising from direct τ ↔ l searches (see

Eq. (6.100)).

coe�cients B
(f)
τ↔eB

(f)
τ↔µ B

(f)
µ→e

Ceτuu
eu Cτµ

He 2.4× 10−4(f)× 1.1× 10−4(f) 4.6× 10−8

Ceτdd
ed Cτµ

He 2.4× 10−4(f)× 1.1× 10−4(f) 8.2× 10−8

C
(1)eτ11
ℓq Cτµ

Hℓ(1) 7.0× 10−4(f)× 1.× 10−4(f) 1× 10−7

C
(1)eτ11
ℓq Cτµ

Hℓ(3) 7.0× 10−4(f)× 1.× 10−4(f) 8.5× 10−8

C
(3)eτ11
ℓq Cτµ

Hℓ(1) 1.2× 10−4(f)× 1.× 10−4(f) 1× 10−8

C
(3)eτ11
ℓq Cτµ

Hℓ(3) 1.2× 10−4(f)× 1.× 10−4(f) 3.2× 10−9

Table D.3: Similar to Table D.2 but with product of penguin and four-fermion dimension six

operators that mix into µ→ e vectors at dimension eight.
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