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CHAPTER 1

Introduction

The Standard Model (SM) of particle physics has been remarkably successful in explaining the in-
teractions of the known elementary particles. The electroweak sector has been tested with exquisite
precision, while perturbative calculations, effective approaches and lattice results crowned QCD as
the description of the strong force. The Standard Model predicted the existence and the properties
of several particles, including most recently the Higgs boson, which was discovered at the Large
Hadron Collider in 2012.

Despite its successes, several observations and theoretical considerations call for an extension of
the Standard Model. Neutrino masses and oscillations, dark matter, and the asymmetry between
matter and antimatter are among the observations that require new physics. These unresolved
puzzles motivate the search for physics Beyond the Standard Model (BSM), which could shed light
on these fundamental questions and pave the way for a deeper understanding of nature.

Neutrino oscillations are a well-established experimental phenomenon that calls for beyond-
standard-model physics, as they break the lepton flavor symmetries of the Standard Model La-
grangian. A minimal way to extend the SM to agree with observations is by introducing light
right-handed chiral fermions to give neutrinos Dirac masses. However, this scenario is difficult to
test because it leads to extremely suppressed lepton flavor changing neutral currents.

New states and interactions are required if neutrinos are Majorana fermions and/or if neutrino
masses are connected to other open questions', leading to potentially observable processes that
change the flavour of charged leptons. This possibility has prompted a great experimental effort to
look for lepton flavor violating transitions, which are now among the best-measured processes in
particle physics and are expected to improve further in the near future. Lepton Flavour Violation
(LFV) is a promising smoking gun signal of new physics, which could shed light on the mechanism
behind the neutrino masses. Moreover, it is a powerful tool in directing the model-building of
generic new physics, since accidental symmetries of the SM are easily violated once new states and
interactions are introduced. Models that attempt to solve various puzzles are often constrained by
the requirement of agreeing with the experimental results on LFV.

The null-results obtained by the energy and intensity frontier experiments may suggest that
we are at the presence of a mass gap, with the new physics appearing at a largely separated scale
Anp > v. If this is the case, the Standard Model may be the renormalizable Lagrangian of an
Effective Field Theory where the heavy states have been removed. The effect of the heavy physics
at low-energies can be parametrized in terms of contact interactions among the light degrees of
freedom, suppressed by powers of the heavy scale according to the operator dimension. Observables
can be calculated in the effective theory as functions of operator coefficients, and experiments can
look for evidence of their presence.

!The generation of the Baryon Asymmetry from Leptogenesis is one notable example



2 Chapter 1. Introduction

In this thesis, we analyze the current and upcoming experimental results of LF'V searches in
the Standard Model Effective Field Theory (SMEFT). The goal is to obtain as much theoretical
guidance as possible on the viable landscape of LEV new physics.

EFT calculations can be envisaged from a top-down or a bottom-up perspective. In top-down,
the heavy degrees of freedom are removed from the theory and the UV couplings and masses
parametrise the size of the operator coefficients. Observables are calculated with the effective
operators and reproduce the model predictions within the truncation error of the EFT. In bottom-
up, observables are calculated in the most general effective theory that is consistent with the
symmetries, including every operator contribution that could be within reach of the experiments.
In doing so, we identify the region of coefficient space where beyond standard models should sit. In
both perspectives, with the exceptional improvement in the sensitivities that are expected for the
next generation of experiments (especially for 1 — e transitions), theoretical calculations should
follow the level precision of LF'V observables, potentially including often-neglected contributions in
the effective theory calculations. These may include higher-loop diagrams, as well as operators at
higher order in the EFT expansion. We aim to identify all the contributions that are within the
reach of future experiments to have a complete effective parametrisation of lepton flavour changing
transitions. We motivate and perform challenging SMEFT calculations, and use them to obtain
novel limits on LFV operator coefficients.

The thesis is organised as follows. In Chapter 2 we give a brief introduction to the Standard
Model, lay down the notation for the rest of the text and discuss the evidence and observations
that require going beyond the SM.

In Chapter 3 we give an overview on lepton flavour violation. We discuss models that explain
neutrino masses and consider other popular models that predict sizable and potentially observable
LFV signals. We also review the experimental status of LF'V searches and the improvements that
are expected in the upcoming years. Chapter 3 is largely based on the publication:

e [1]: M. Ardu and G. Pezzullo, Introduction to Charged Lepton Flavor Violation, Universe 8
(2022) 299

In Chapter 4 we give an introduction to effective field theories. We discuss general aspects of the
EFT machinery and provide examples of explicit calculations. Then, we present the effective theory
for LF'V that is extensively used in Chapter 5 and Chapter 6.

Chapter 5 and Chapter 6 are respectively based on the following publications:

e [2]: M. Ardu and S. Davidson, What is Leading Order for LFV in SMEFT?, JHEP 08 (2021)
002

e [3]: M. Ardu, S. Davidson and M. Gorbahn, Sensitivity of ;1 — e processes to 7 flavour
change, Phys. Rev. D 105 (2022) 096040

In Chapter 5 we organise the perturbative expansions in SMEFT in terms of small parameter A
to systematically estimate the contributions of the effective operators to LF'V processes. We argue
that a complete effective parametrisation of LE'V observables requires calculations that are currently
missing or are partially available in the literature.

In Chapter 6 we build on the result of Chapter 5 to show that u — e observables could be sen-
sitive to the product of 7 <+ u, 7 <> e flavour changing interactions beyond the reach of dedicated



7 LFV searches. We calculate at next-to-leading order in the SMEFT expansion to find new limits
on the product of 7 <> e(u) operators. Finally, in Chapter 7 we summarize the results and discuss
the prospects.

During my PhD I have also authored the following works that are not covered in this thesis:

e [4]: M. Ardu and F. Kirk, A viable L, — L, model with ;x — e violation, Eur. Phys. J. C
83(2023) 394

e [5]: M. Ardu, G. Isidori and M. Pesut, Semi-inclusive Lepton Flavor Universality ratio in
b — st~ transitions, Phys. Rev. D 106 (2022) 093008






CHAPTER 2

The Standard Model and Beyond

Contents
2.1 A brief hystory of the Standard Model . . ... ... ............. 5
2.2 The Standard Model Lagrangian . . ... ... ... .............. 7
2.3 The need for Beyond Standard Model Physics . . . . ... ... ....... 11
2.3.1 Neutrino masses and oscillations . . . . .. .. ... ... o oL 11
2.3.2 Dark Matter . . . . . . . . e 15
2.3.3 Baryogenesis . . . . ... ..o 15
2.3.4 Hints of New Physics . . . . . . . . . . . o 16

2.1 A brief hystory of the Standard Model

The SM of particle physics is the theoretical framework that describes the currently known particles
and their interactions. It successfully accounts for three of the fundamental forces of Nature: the
electromagnetic, weak and strong interactions.

After the breakthroughs of Quantum Electrodynamics (QED) [6], which followed from a sys-
tematic understanding of renormalization [7], physicists sought to develop a Quantum Field The-
ory (QFT) that could describe the other fundamental forces. Enrico Fermi proposed a four-fermion
interaction involving the neutron, proton, electron and (at the time) hypothetical neutrino that
accurately described the nuclear 8 decays [8|. Similar interactions with the same coupling constant
were successful in explaining various processes, including the muon decay and several semi-leptonic
transitions of strongly interacting particles. The electron neutrino emitted in 8 decays was discov-
ered in 1956 9], whereas the muonic neutrino involved in the muon decay was observed a few years
later [10].

While the Fermi theory was extremely useful at the leading order, it was found to be non-
renormalizable. The attempts to describe the weak interactions as mediated by a massive vector
coupled to a V' — A (vector minus axial) current, which was observed in experiments, encountered
similar unremovable infinities [11-15]. Weinberg was the first! to propose a renormalizable model of
the electro-weak interactions. The theory featured a local symmetry group SU(2) x U(1)y which
is spontaneously broken down into the QED gauge group U(1)ey, [16]. Upon the spontaneous
breaking of the gauge symmetry, the weak gauge bosons, namely the charged W* and the neutral
Z, acquire their mass from the Brout-Englert-Higgs mechanism [17, 18], leaving the photon ~

!Salam and Glashow proposed the same gauge group to describe the electroweak interactions. However, the weak
gauge bosons masses were added by hand, making the theory non-renormalizable
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massless. Neutral weak currents, although not yet observed, had been postulated long before
Weinberg’s model, but his theory predicted that semi-leptonic neutral current transitions would
occur at rates comparable to those of already known charged current processes. This prediction
was soon confirmed by experimental observations at CERN [19]. Weinberg’s model also predicted
the existence of a neutral scalar, which was not discovered until 40 years later.

Around the same time, physicists were searching for a theory of the strong interactions. The
first particles known to interact strongly were the constituents of nuclei: protons and neutrons.
Little was known in the 1930s, but Heisenberg introduced the concept of Isospin to explain the
observed symmetry of the nuclear interactions, which seemed identical between protons and neu-
trons. Neutrons and protons also have very similar masses, and were therefore regarded as the
components of a SU(2) isotopic spin doublet, which is an approximate symmetry of the strong
force. The charged pion was discovered by observing cosmic-ray tracks [20] and had the correct
mass to mediate Yukawa-like strong interactions at a range compatible with observations and it
was initially believed to be the mediator of the strong force. In the same year, the "strangely"
long-lived Kaon was discovered |21], and shortly thereafter the neutral pion was also observed [22].
This was followed by a plethora of newly discovered strongly interacting particles (hadrons), shad-
ing doubt on the fundamental nature of the observed "particle zoo". Certain particles (like the
Kaons) that decay electro-weakly were found to be more long-lived than others, and for this reason,
were dubbed "strange". Since strange particles appeared in pairs whenever they were produced by
strong processes, it was hypothesized that strangeness is a quantum number, conserved in strong
transitions but violated by weak interactions with a suppressed Fermi constant [23]. Gell-Mann
observed that the hadrons could be arranged in multiplets of a SU(3) symmetry, generalizing the
SU(2) isotopic spin to include strangeness. The SU(3) group was later understood to be acting
on three different flavours of the fundamental constituents of hadrons, the u (up),d (down) and
s (strange) quarks [24,25]. The suppression of strange particle decay rate was explained by Cabibbo
assuming the weak eigenstate d’ = cos 6.d +sin 6.s, which couples to the u flavour, to be a superpo-
sition of the flavour eigenstates d and s, suppressing processes that change s — w by sinf, ~ 0.22
but leaving approximately unaffected the d — u transitions [26].

In order to have the correct wave function symmetry for certain fermionic baryons (hadrons
composed of three quarks), it was understood that each flavour of quark should come in three
colors [27]. Evidence of the three colors was later collected from the decay of the neutral pion
and from the deep inelastic scattering e™e™ — hadrons. This led to the formulation of Quantum
Chromodynamics (QCD) as the underlying SU(3). gauge theory that describes the strong inter-
actions. Gross, Politzer and Wilczek demonstrated that the QCD gauge coupling becomes weaker
at high energies, allowing perturbative calculations to be used to test QCD in that regime [28,29].
The coupling’s behavior is reversed at low energies, resulting in strong interactions at a scale of
approximately Aqcp ~ 200 MeV. The Gell-Mann SU(3) was understood to be an approximate
symmetry of QCD when neglecting the u, d, s quark masses with respect to Aqcp, scoring another
major success for the theory.

Despite the progress in understanding the strong and electroweak interactions, the theory was
still incomplete. The oscillation between the neutral Kaons, K9 — K9, which changes strangeness
by two units (AS = 2), could occur by the exchange of pairs of W bosons at a higher rate
than what experimentally allowed. Glashow, Iliopoulos, and Maiani (GIM) proposed a solution to
this problem by introducing a fourth flavor of quark, the charm ¢, coupled to the weak eigenstate
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Field  SU@3). SUEQ), UQ)y

U/L 1

= 2 1

! (dL> - 0

u=ug 3 1 2

d=dg 3 1 -3

(= (”L> 1 2 -1
€r,

e =eR 1 1 -1

H 1 2 3

Table 2.1: Matter content of the Standard Model (one generation). We specify the representation
that each field fills under the SM gauge group SU(3). x SU(2)r, x U(1)y. Fermions are chiral and
written in the Dirac notation: ¢ x = Px, where Pp, g are the left-handed and right-handed chiral
projectors. The electric charge is conventionally defined as Q = T3 +Y, where Y is the hypercharge
and T3 the diagonal generator of SU(2)y,

s’ = —sinf.d+cos.s [30]. The latter is orthogonal to the d’ = cos 0.d + sin .s mixture introduced
by Cabibbo, and the charm contribution cancels against the diagram with a virtual «, up to terms
suppressed by the charm quark’s mass. The mass was estimated to be m. ~ 1.5 GeV to agree with
the observations, and a ¢c bound state (the J/v) with a mass ~ 2 x 1.5 GeV was discovered a few
years later [31,32].

The need for the charm quark also became apparent for the consistency of the gauge invariance
of the theory, as it was required to cancel the gauge anomalies [33]. At this stage, fundamental
particles were organized into two families or generations, each containing a set of fermions filling
anomaly-free representations under the gauge group SU(3). x SU(2)r, x U(1)y. The first generation
comprised the u and d quarks, the electron e, and the electron neutrino v.. The second family
included the ¢ and s quarks, the muon p, and its neutrino v,. With the discovery of the tau 7
lepton [34], the bottom quark b [35] and the top quark ¢ [36], a third generation of fermions was
added to the SM. Kobayashi and Maskawa expanded the quark mixing matrix first introduced by
Cabibbo to account for the third generation, and found a source of CP violation in the irreducible
phase of the resulting 3 x 3 matrix [37]. The GIM mechanism that prevented large contributions
to the K9 — KO mixing operates as a consequence of the unitarity of the quark mixing matrix,
complemented with a small mixing between the first and the heavy third generation.

The successes of the SM continued with the discovery of the W and Z bosons [38,39], and finally,
the Higgs boson predicted by Weinberg was detected in 2012 at the Large Hadron Collider [40,41],
providing the last missing piece.

2.2 The Standard Model Lagrangian

The Standard Model is a gauge theory based on the gauge group SU(3). x SU(2)z x U(1)y, with the
field content summarised in Table 2.1. The fermions are divided into three generations or flavours.
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The gauge interactions are flavour-blind and described by the kinetic Lagrangian
1

Lkin = _4

a 1 aq, a 1 leY «a fi
BY By = J W IWiy = 2GMPGh, + (D) (DaH) + Y fif (2.1
f

where Bag, Wig; Ggﬁ, with ¢ = 1,2,3 and b = 1,---8, are the tensor field strength of the gauge
group U(1)y,SU(2)r, and SU(3). respectively. The sum in the second term is over all fermions,
and the covariant derivative acting on the representation R ~ (3,2)y is defined as

b

. T LA
Dy =04 +ig'Y By + zg?Wg + ZQS?GZ (2.2)
where 7% are the Pauli matrices, and A’ the Gell-mann matrices.
The only flavour-defining couplings in the SM are the Yukawa interactions of the fermions with

the Higgs doublet
_EYuk = [Yu]annHum + [Yd]nmCYanm + [}/;]ijgiHej +h.c (23)

where H = eH*, with ¢ being the anti-symmetric and invariant SU(2), tensor, and Y;, 4, are 3 x 3
complex matrices. Any complex matrix can be diagonalised with a bi-unitary transformation

Y, = VoYV Ya=V, YoVl Y.=vivul (2.4)

where }A/f are diagonal matrices with non-negative entries. Since the quark doublet fields couple both
with the up and the down singlets, the up and down Yukawas are not simultaneously diagonalisable.
In a basis where the up Yukawa matrix is diagonal, the down Yukawa can be cast in the following
form

Yd = V;;L V;]de = VCKMYd (25)

where Vex is the Cabibbo-Kobayashi-Masukawa (CKM) unitary matrix. In this basis, the Yukawa
couplings are the following

_LYuk = [Yu]nannﬁun + [VCKMYd]ananm + [Yfe]zzngez +h.ec (26)

The kinetic terms respect a flavour symmetry that corresponds to independent rotations in flavour
space of each fermion field. This symmetry is broken by the Yukawa Lagrangian

U(3)g x UB)u x UB)a x UB)e x U3)e 2285 U(1)p x U(1)g, x U(1)g, x U(1)y, (2.7)

leaving accidentally unbroken a flavour-independent U(1)p phase rotation of the colored field ¢) —
e/3¢p, where ¥ = q;,u;,d; for every i, and a phase rotation U(1) 1, of each individual lepton
flavour i = e, u7, {; — €%l;, e; — e'®e;. The corresponding conserved charges associated with
these global symmetries are respectively the Baryon Number (B) and Lepton Flavour (LF). While
the former is compatible with the non-observation of proton decay [42], non-zero neutrino masses
require an extension of the Standard Model that necessarily breaks the lepton flavor symmetries
(see section 2.3.1). These classical symmetries are broken at the quantum level by the triangle
anomalies [43,44], such that the quantum Noether’s currents are not conserved
392

aajg, =3 X 8(1]2[2 = @EQ'BVanﬁW%. (28)
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Since the term 50‘576Wg[3 45 can be written as a total derivative [45], the anomalous effects are
absent in perturbative calculations, while they appear via non-perturbative topological solutions to
the gauge field equation of motion known as instantons [46]. As a consequence, the B/3+ L; charge
can be violated via non-perturbative effects?, while the difference B/3 — L; is strictly conserved in
the SM.

The spontaneous symmetry breaking of the electroweak symmetry SU(2)r x U(1l)y — U(1)em,
where U(1)em is the QED gauge group, is triggered by the Vacuum Expectation Value (VEV) of
the Higgs doublet. The Higgs potential

A
V(H) =~y (H'H) + “(H H)* (2.9)
is minimized when )
2
<HTH> — HH _ 2 (2.10)
AH

where v ~ 174 GeV. Defining the electric charge as Q = 72 + Y, the QED preserving vacuum
(H) = <0) (2.11)

v

is responsible for the mass of the weak gauge bosons
U2 2 / B« B
Dutt 5 % (B W) (4 1F) () + bW (212
where W+ = (W1 FiW?2)/y/2 are the charged W bosons, with a mass m2, = ¢%v%/2 ~ (80.4 GeV)?
W
[47]. The neutral gauge bosons mass matrix is diagonalised after the rotation

Ay [ costy  sinfy B, (2.13)
Zo) \—sinfy cosby ) \W3 '
where tanfy = g/g’, A, is the massless photon field and Z, has a mass m% = g?v?/(2cos? ) =

m%/V / cos? By Upon spontaneous symmetry breaking all fermions apart from the neutrinos acquire
a mass from the Yukawa interactions of Eq. (2.6)

—EM = mun@nPRun + [VCKM]nmmdenPRdm + meiéiPRei + h.C Where mfi = [Yf]“v
The down-type quark gauge (dr,) and mass (d} ) eigenstates are misaligned by a CKM rotation
1= Viemdr (2.14)

The neutral currents, that do not mix up-type and down-type fields, are unaffected by a unitary
flavour rotation, while the W¥ couplings are modified:

g _ _ .

Loauge = — \ﬁ [W;(un'ya Verm]nm Prd.,, + viy* Pre;) + h.c] —gsinby Ay S+

9

- 7. (J% < 2.1
2 cos Oy (JZL + JZR) (2.15)

“This has no consequence at zero temperature, as the sphalerons (electroweak instantons) transitions are not
effective at low energies. However, they could have important consequences in the Early Universe for the generation
of the baryon asymmetry, as we discuss in section 2.3.3
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where gsin Oy = ¢’ cos Oy = e is the QED coupling and
ng = Z foiyaf
f
JGL = Uny* Ppupn + 0y Pryv; — dny* Prdyn — €7 Pre;

Jgn = 2500 S Qs 1" Pr/, (2.16)
f

with @y being the electric charge of the fermion f. The unitarity of CKM not only prevents the
appearance of tree level Flavour Changing Neutral Currents (FCNC), but it is also responsible for
the GIM suppression ~ mi/mf/v of FCNC at the loop-level® [30]. The suppression of FCNC is in
excellent agreement with the experimental observations.

CKM can be parametrised in terms of three angles and one phase?. Introducing the short-hand
notation c;; = cost;;, s;; = sint;;, the canonical parametrisation reads

Vud Vus Vb 10 0 i3 0 size’ ciz2 sz 0
Vekm = [ Vea Ves Voo | = |0 o3 s23 | X 0 I 0 X | —s12 c12 0
Via Vis Vw 0 —s23 ca3 —s13¢ 0 ci3 0 0 1

(2.17)

The mixing angles in the CKM matrix exhibit a distinct hierarchy, where s13 < s93 < s19 < 1,
which can be best appreciated in the Wolfenstein parametrisation [48-50]. Introducing the small
parameter )\, we write

S12 = )\, §923 = A)\2 (2.18)
; AN3(p+in)V/1 — A2)\E
s13¢ = AN3(p + in) = (p + i) A (2.19)

V1= A1 — A2)4(p +i7))

having defined p, 7 such that the matrix written in terms of A, p, 7 is unitary to all orders in A.
The CKM matrix can be expanded up to A* order

1—A%/2 A AX3(p — i)
Vekm = —A 1—22/2 AN? +0(\Y) (2.20)
AN(1 —p—in) —AN? 1

with the following best-fit values for the parameters [50-52]

A = 0.22650 & 0.000048, A = 0.79070 013 (2.21)
p=0.159£0.010, 7= 0.348 £ 0.010 (2.22)

Since under CP the charged gauge bosons W are exchanged W+ oL W, it is clear from Eq. (2.15)
that a non-zero phase of the CKM matrix implies CP violation. Whether a matrix is real or complex
is a basis-dependent statement, while physical observables should depend on basis-invariants. If

3The top contribution to tightly constrained processes, such as K° — KO mixing, does not overshoot the rate
despite m; ~ v because of the small mixing between the first and third generation.

4A unitary 3 x 3 matrix can be parametrised with three angles and six phases. Out of the six phases, five can be
absorbed in field redefinitions, leaving a single physical one
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the up and down Yukawas were simultaneously diagonalizable, CKM would be the identity and no
CP violation would be present. It is thus natural to parametrise CP violation with the commutator
[y, Yq]. The determinant is invariant under flavour space rotations and reads

2

det([Yu, Ya]) = W(mt —me)(me — my)(me — my)(mp — mg)(mp — mg)(ms —mg) x J  (2.23)

where, writing Voxkm = V' to avoid cluttering, for any 4, j, k and [

Im(Viijl Z?V,;;) =J x Zgikmgjlw (2.24)

J parametrise the magnitude of CP violation and is known as Jarlskog invariant [53]. Considering
the best-fit values for the CKM elements reported above, its value is J = (3.081(13) x 107°.

2.3 The need for Beyond Standard Model Physics

Despite being an incredibly successful theory in explaining a wide variety of phenomena, the Stan-
dard Model is incomplete. Several experimental observations and theoretical conundrums call for
its extension. In this section, we discuss the evidence and hints of physics Beyond the Standard
Model.

2.3.1 Neutrino masses and oscillations

As we discussed in the previous section, the SM predicts massless neutrinos. Since the so-called
“solar neutrino problem” of the 1960s, a deficit [54-59] in the number of electron neutrinos compared
to the prediction of the standard solar model [60-62], neutrino oscillations have been confirmed by
many observations [63—67| firmly establishing non-zero masses for at least two neutrinos. Neutrino
oscillations are direct evidence of lepton flavour change, violating the SM symmetry of Eq. (2.7).
Some SM extensions that account for neutrino masses are discussed in Chapter 3. Regardless of
the model details, neutrino masses provide an additional flavour-choosing basis for the leptons and
thus the weak eigenstates vp; (i = e, u,7) are a superposition of the mass eigenstates vs, with
s=1,...,n(68,69]

Vi; = UisVs (225)

where U is 3 x n lepton mixing matrix, satisfying UU' = 13y3. As a consequence, lepton flavour
change appears in the charged weak lepton currents

%W;EMPLUZ-SVS +he (2.26)
If the massive neutrinos are n = 3, U is the lepton analogue of CKM and is known as the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix [70,71]. It can be parametrised similarly to CKM as

Lo D —

1 0 0 C13 0 31361'(S C12 S12 0
U=|0 C23 S23 | X 0 1 0 X | —S12 C12 O xP (2.27)
0 —S8923 (€23 —51367;6 0 C13 0 0 1
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where the matrix P is the identity if neutrinos have Dirac masses, while it contains two extra phases
for Majorana neutrinos P = diag (1 el w‘?) This is because, with self-conjugate left-handed
neutrinos, fewer relative field re-definitions can absorb the matrix phases.

Whenever a weak eigenstate is produced via the interactions of Eq. (2.26), the resulting state
is a U weighted superposition of the mass eigenstates

’VLi> = Ujs |Vs> . (228)

The state evolves as the neutrino travels a distance L, and if the mass eigenstates are assumed
~iEst|1(0))°, where t ~ L for relativistic neutrinos.
Then, the probability of producing a weak flavour eigenstate v7; with a charged current interaction

to be plane waves, the evolution is |vs(t)) = e

in the detector is

2

P(vr; — vr;) = |(vr;|lvei(t) ‘ U ge st <V1’VS>‘ ) (2.29)

We use the orthogonality condition (v|vs) = d;s, expand the energy in the relativistic limit Eg ~
ps+m2/(2E;) and assume that E ~ E, ~ p; for every s, to arrive at the oscillation probability [51]

2 .2 L
Plvgs = i) = 8ij — 4> Re(UjUaU;Uss) sin? <(m4ml>)

I<s E
2 .2 L
+2 Y Im(U;UU;sUf) sin (W) (2.30)
I<s

If the neutrinos travel through matter, the interactions with the particles in the medium can modify
the effective neutrino energy. Although the weak scattering cross sections are small, neutrinos can
scatter coherently with the medium constituents, giving rise to an effective mass that depends on
the medium density and composition [74]. These effects are particularly relevant when neutrinos
propagate in dense mediums, such as the Earth and the sun. Since the oscillation probability
is sensitive to the energy difference, only the charged current interactions are relevant for the
matter effects, while the neutral current interactions are flavour universal and do not give rise
to an observable phase difference in the neutrino evolution. Considering for instance a medium
composed of ordinary matter, the coherent scattering ev, — ev, modifies the effective Hamiltonian
of the electron neutrino by

Ve = V2Gpne, (2.31)

where n, is the electron number density and G the Fermi constant Gr = g?/(4v2m¥,) ~ 1.16 x
1075 (GeV)~2. Note that the effective potential for anti-neutrinos scattering off ordinary matter is
—Ve. The sign of the medium effective potential can be particularly important in determining the
sign of neutrino mass differences. The Sun produces electron-neutrinos in its core via thermonuclear
reactions. Solar neutrino oscillations exhibit distinct matter effects that require a resonant behavior

possible only for a positive difference Amsolar m3 —m? [75]. The squared mass difference Am2,,
which is Am2, =< ’Amatm} ~ ‘mg ‘ ~ ‘m3 , can be observed in the oscillation of

neutrinos coming from the decays of particles produced by cosmic rays interacting with Earth’s

5Several subtleties in the quantum mechanical derivation followed here are being overlooked for brevity. We refer
the reader to more detailed discussions in [72,73]
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atmosphere. The observations are compatible with either sign for Am2, ., leading to two possible

scenarios: mj < mg < ms or mg < mj < mg, respectively known as Normal Ordering (NO) and
Inverted Ordering (IO). In the 3v picture, the lepton matrix mixing angles, the mass squared

Normal Ordering (Best Fit)

Inverted Ordering (A 2 =2.6)

bip +1c 3c Range bfp +1¢ 3c Range
g sién 0.30475013 0.269 — 0.343 0.304 75012 0.269 — 0.343
§ O12/° 33447077 31.27 — 35.86 33.45°077 31.27 — 35.87
_‘:i sin® 0.57375018 0.405 — 0.620 0.57875017 0410 — 0.623
' 0y/° 492110 39.5 — 52.0 495119 39.8 — 52.1
S 2
S sin’fy 0.022201 000068 002034 — 0.02430  0.0223870950%0  0.02053 — 0.02434
t";; O13/° 85775013 8.20 — 8.97 8.607012 8.24 — 8.98
s} -
S Sep/° 194732 105 — 405 28743 192 — 361
B : .
Ay 7.421021 82— 8.0 7.42+021 82 = 8.0
T 424050 6.82 — 8.04 420050 6.82 — 8.04
Am?
3f 0.028 4 40 +0.028 4 /
o PRSISTms 42431 - 42599 2498700 2584 2413
Normal Ordering (Best Fit) Inverted Ordering (A 12 =7.0)
bfp +1c 3 range bfp +1¢ 30 range
sin® f1p 0.30475012 0.269 — 0.343 0.304 75013 0.269 — 0.343
E O12/° 33457077 31.27 — 35.87 33.457078 31.27 — 35.87
£ sinlfn 045075019 0.408 — 0.603 0.570750%8 0410 — 0.613
T /o 421700 39.7 — 50.9 49.0799 39.8 — 51.6
E sin%e; 002246700002 002060 — 0.02435  0.022417000078  (,02055 — 0.02457
B 03/° 8.6275013 8.25 — 8.98 8.617013 8.24 — 9.02
=
2 dep/° 230438 144 — 350 278122 194 — 345
Ay 7.421021 82 - 8.0 7.42+021 82 5 8.0
T 424050 6.82 — 8.04 420050 6.82 — 8.04
Am? ) )
ﬁ 1251079057 42430 —» +2593 249070936 2574 — 2410

Table 2.2: Best-fit values for the neutrino mixing parameters and mass difference [76]

differences (up to the atmospheric sign) and the Dirac phase § can be determined by fitting the
neutrino oscillation data [76,77]. The Dirac phase contributes to the CP violating difference in the
oscillation probability P(vr; — vr;) and P(¥r; — Ur;) [78-80]. The best-fit values for the neutrino
parameters are shown in Tab. 2.2.

If the neutrinos are Majorana fermions, the Majorana phases contribute as a source of CP
violation in processes that depend linearly on the neutrino masses, hence not in oscillation where
the dependence is quadratic. Whether neutrinos are Dirac or Majorana could be determined with
the observation of lepton number violating transitions. The most sensitive of such processes is the
neutrinoless double § decay (0v20)

(A, Z) = (A, Z +2) + 2¢. (2.32)

The corresponding Feynman diagram is shown in Fig. (2.1), where a Majorana mass insertion is
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Figure 2.1: Feynman diagram for the neutrinoless double 8 decay mediated by Majorana neutrinos
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Figure 2.2: Allowed values for the matrix element me. defined in Eq. (2.34) entering in the neu-
trinoless double beta decay rate. The red and blue regions correspond to NO and IO respectively.
Figure taken from [51], with ranges obtained projecting the results of the analysis in [83]

necessary to close the virtual neutrino line. The squared amplitude takes the following form

2
g msUZ,
S

where M,25 is the nuclear matrix element. The effective Majorana mass me. depends on the

’A0V25|2 ~ ’M0V25‘2 X mZe Mee = (233)

neutrino parameters, including the Majorana phases

Mee = |ClaCiamy + € ciysiyma + 61(0‘2_26)5%37”3‘ (2.34)

We show in Figure 2.2 the allowed ranges for mee for the two different ordering. Since in the
NO scenario mee can vanish for specific choices of the lightest neutrino mass m; and phases, the
non-observation of Ov2f3 cannot rule out the possibility of Majorana neutrinos, while a positive
signal may disprove the Dirac nature. On the other hand, inverted ordering could be ruled out by
0v20 searches, given that mgeo) > 0.016 eV. The most stringent bounds on the neutrinoless double
beta decay are given by the GERDA ("Ge) and KamLAND-Zen (13¢Xe) collaborations, respectively
setting the lower bounds on the half-lives Tlo/'/;ﬁ(m(}e) > 1.8x10%% yr and TP/V;B(BGXe) > 1.07x102%
yr [81,82].
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2.3.2 Dark Matter

The need for physics BSM is also supported by the observation of Dark Matter (DM). Cosmological
and astrophysical data are consistent with the standard model of cosmology (ACDM), which is
based on Einstein’s theory of general relativity and parametrises the Universe’s composition with
a cosmological constant A, the abundance of ordinary matter (baryonic and radiation), and of cold
dark matter. The presence of a non-baryonic and non-relativistic (cold) matter component has
been evident since 1933, when Zwicky calculated the total mass of galaxy clusters using the Virial
Theorem. He found that the mass was greater than the contribution of baryonic matter, which can
be estimated via its luminosity [84].

Evidence of dark matter also comes from the observed circular velocities of stars in spiral
galaxies. Under the effect of gravity, velocities should experience a Keplerian fall-off v, ~ r1/2
at large distances r from the galactic centre. Instead, the circular velocity plateaus to a roughly
constant value [85,86], which can be explained by an invisible halo of dark matter surrounding the
galaxy.

Another strong motivation for dark matter comes from measurements on the Cosmic Microwave
Background (CMB). The density fluctuations of baryonic matter observed from the CMB are too
small to account for the observed matter power spectrum, which is consistent with the presence of
a dominant cold dark matter component. Planck results are compatible with an abundance of DM
comprising ~ 84% of the total matter density, which accounts for 31.5% of the energy budget of
the Universe, with the cosmological constant accounting for the remaining 68.5% [87|. Despite the
gravitational effects of DM provide conclusive evidence of its existence, and many BSM theories
and production mechanisms have been proposed to account for the observed abundance, DM has
never been detected in a particle physics experiment [51].

2.3.3 Baryogenesis

Observations show that our Universe is primarily composed of ordinary matter, mainly protons and
neutrons, with a negligible presence of antimatter. The matter-antimatter asymmetry is measured
by the n parameter, defined as

n="0"" 6110710 (2.35)

Ny

where ny, ny and n, are the number densities of baryons, anti-baryons and photons respectively.
n can be measured via the CMB temperature fluctuations or via the abundance of light elements
that are produced during the Big Bang Nucleosynthesis (BBN) [87,88|.

The possibility of having a fine-tuned primordial excess of baryons over anti-baryons that would
give rise to the asymmetry is disfavored by inflation, as it tends to erase any initial condition.
To generate dynamically the Baryon Asymetry of the Universe (BAU), three conditions must be
satisfied [89]:

1. Baryon number is violated;
2. C and CP are violated;

3. Departure from thermal equilibrium.
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While these conditions are met in the Standard Model, they are still insufficient for successful
baryogenesis. The CP violation in the SM arising from the CKM matrix phase and parametrised
by the Jarlksog invariant of Eq. (2.24), is too small to account for the observed asymmetry [90-93].
Furthermore, the electroweak phase transition is shown to be a smooth cross-over [94-98] for a
Higgs mass mpy ~ 125 GeV [99,100], while electroweak baryogenesis would require a strong first-
order transition. Several extensions of the SM have been proposed to achieve baryogenesis [101].
The BAU can be connected to the neutrino mass problem if the baryon asymmetry is obtained
via Leptogenesis, where a lepton asymmetry is given by the out-of-equilibrium decay of a sterile
neutrino and transferred to the baryons via the electroweak sphalerons [102].

2.3.4 Hints of New Physics

Beyond the experimental evidence of New Physics (NP) that we discussed so far, many theoretical
considerations and puzzles can hint towards BSM physics. These include:

e The hierarchy problem

The Higgs boson in the SM is a fundamental scalar and its mass is potentially sensitive to
unknown UV physics. The hierarchy problem is not a problem of the SM, but it is of generic
models with heavy states that couple with the Higgs. Corrections to the Higgs mass can arise
via loops of heavy particles, having the schematic form

A2

om3; ~
where A is the mass scale of the UV physics. If A > v, observations would require that the
tree-level bare mass of the Higgs m%{ cancel almost exactly with the loop corrections, leaving
a remnant small mass close to the electroweak scale

(mP*)2 ~ m?2, + dm2 ~ 02 (2.37)

If the UV physics lies at the Planck scale A ~ Mp; = 1.9 x 10! GeV, the scale separation is
v/Mpy ~ 10717 and the fine-tuning required in the cancellation is extreme. Fermion masses
do not suffer from similar dangerous UV contributions because they are only logarithmically
sensitive to the UV physics, given that the chiral symmetry forces the loop corrections to be
proportional to the tree-level mass. Small fermion masses are therefore technical natural®.
The hierarchy problem motivates the expectation of finding NP close to the electroweak scale
and has led to a variety of proposals to protect the Higgs mass from UV physics contributions.
Most notably, Supersymmetry (SUSY) is a space-time symmetry that relates bosons and
fermions [104-108], making the bosons inherit the protection mechanism provided by the
chiral symmetry. Some supersymmetric extensions of the SM are discussed in Chapter 3. For
a more detailed discussion on the possible BSM directions to address the Hierarchy problem,
we refer the reader to [109] and references therein.

5We refer to technical naturalness as defined by t"Hooft [103], which states that a small parameter c is technically
natural whenever the limit ¢ — 0 enhances the symmetry of the theory.
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e Strong CP problem

The apparent absence of CP violation in strong interactions constitutes another puzzle. The
QCD gauge invariance allows for the following CP odd terms involving the gluon fields

3272 @
whose non-trivial effects are given at the non-perturbative level by the instanton solutions.
The 0 parameter is necessary for a gauge invariant definition of the QCD vacuum [110] and
the Lagrangian term of Eq. (2.38) is also a consequence of a building block of QFT, i.e the

5Gs (2.38)

cluster decomposition principle [111].

Imaginary mass terms are additional sources of CP violation”, and since a chiral transforma-
tion acting on a quark field ¢
q— e%q (2.41)

affect both the mass phase and the 6 term via the chiral anomaly, the physical basis-
independent parameter § is a combination of the QCD vacuum parameter and the mass
phases. In the SM, the invariant CP angle is equal to

0 = 6 + argdet(Y, Yy). (2.42)

The most sensitive observables to CP violation in the strong interactions is the electric dipole
moment of the neutron d,, which is yet to be observed d,, < 2.2 x 1072 ¢ cm (95 % CL)
[112]. The contribution to d,, sensitive to @ is calculated in Chiral Perturbation Theory to
be [113,114]

dp~6x1071% 0 ¢ cm (2.43)

requiring @ < 10719, Why should # be so small and potentially zero is the essence of the
Strong CP problem. Arguably, the most popular solution to the Strong CP problem is
the one proposed by Peccei and Quinn [115,116]. They showed that in the presence of an
extra chiral symmetry U(1)pq acting on some quark fields, CP would be conserved. It was
later realized by Weinberg and Wilczeck that the Peccei-Quinn solution would require the
spontaneous symmetry breaking of the U(1)pq to allow for massive quarks, predicting a light
pseudo-goldstone boson, dubbed ‘axion’ ® [117,118]. The axion solution relies on the QCD
anomaly of the U(1)pq chiral symmetry, which generates an axion-gluon-gluon coupling with
the same structure of the 6 term in Eq. (2.38), effectively promoting 6 to a dynamical field.
As a consequence of the Vafa-Witten theorem [119], the axion expectation value conserves
CP.

In the original Peccei-Quinn model, the breaking scale f, of U(1)pq coincided with the elec-
troweak scale, a possibility that was soon ruled out by experiments. The so-called invisible

"The mass Lagrangian
Mqqrqr + MqRAIL (2.39)

mg +m, mg —m,
<%) qq + ( ! 3 q) qvsq. (2.40)

The second term, non-zero only if mq —my # 0, is CP-odd.
8 After a brand of laundry detergent

can be written as
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CKM matrix PMNS matrix

Figure 2.3: Observed hierarchy in the fermion masses and the flavour mixing matrices in the SM
minimally extended to account for neutrino masses. In the CKM and PMNS elements, the color
shade represents the magnitude (darker colors correspond to larger values)

axion models [120-122], where f, > v, are still viable. Invisible axions are also excellent DM
candidates [123-125]. For a detailed theoretical and experimental review on invisible QCD
axion models, see [126].

Other solutions to the strong CP problem assume CP to be a symmetry in the UV, which is
spontaneously broken and communicated to the SM via messenger fields. The main difficulty
is in generating a large CKM angle while having a small 8 QCD, leading to involved model-
building. The first proposals in this direction were put forward by Nelson and Barr [127-129]

e Flavour Puzzle

The SM exhibits a highly non-generic pattern in the observed fermion masses and flavour
mixing matrices, as represented in Figure 2.3. The SM fermion masses span 12 orders of
magnitude, ranging from the neutrino mass scale m, < 0.1 eV to the top mass m; ~ 172 GeV,
displaying a distinct hierarchy between the generations. Quark flavour mixing is parametrised
by a nearly diagonal CKM, with a small mixing between heavy and light quarks. PMNS, which
parametrises the lepton mixing introduced by the neutrino masses, features a “democratic”
hierarchy, with mostly large angles except for 6;3.

The SM flavour structure may be the hint of an underlying flavour symmetry of BSM physics.
Froggatt and Nielsen famously proposed to explain the quark masses and CKM elements
hierarchies as being controlled by powers of the breaking parameter of a U(1)px flavour
symmetry [130]. The ‘flavon’ scalar field S acquire a VEV (S) that breaks spontaneously
the abelian flavour symmetry. The U(1)px breaking is communicated to the SM fermions
integrating out Froggatt-Nielsens states with a mass Mpy, contributing to the fermion masses
and mixing angles as ~ &", where ¢ = (S) /Mpn is taken to be close to the Cabibbo angle
€ ~ A~ 0.2 and n depends on the FN charges. Charge assignments that lead to realistic
quark (lepton) masses and mixing angles are for example discussed in [131].

The peculiar flavour structure of the SM is also responsible for the suppression of a variety
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of processes in excellent agreement with the observations, most notably regarding FCNC.
The experimental picture surrounding FCNC suggests that generic flavour structure for BSM
would require a scale of NP in some cases many orders of magnitude larger than the elec-
troweak scale, in contrast with the naturalness expectation motivated by the observed Higgs
mass. Inspired by this problem, the Minimal Flavour Violation (MFV) hypothesis postulates
that any flavour change of BSM physics must be linked to the known structure of the Yukawa
matrices [132]. Other models attempting to solve the flavour puzzle can be found in [133].

In addition to these theoretical puzzles, some yet not conclusive experimental observations provide

hints of new physics and have inspired several BSM proposals.

N g#—2

A long-standing discrepancy is observed between the experimental value and the SM pre-
diction for the anomalous magnetic moment of the muon. The muon magnetic moment is

defined as

. e\ z
Hp = Gu <2mﬂ> Su (2.44)
where §M is the muon spin. Quantum effects correct the prediction gffee = 2 given by the
tree-level Dirac equation, which are calculated in the SM to yield [134]
1
aM = 5(gEM —2) = 116591810(43) x 1071, (2.45)

The muon magnetic moment has been recently measured at the Fermilab National Accelerator
Laboratory (FNAL) Muon g-2 Experiment [135]|, which, combined with the previous result
obtained at the Brookhaven National Laboratory [136], gives a 4.20 discrepancy with the
theoretical prediction

aSP — aSM = (251 + 59) x 107! (2.46)

Although an impressive number of new physics models have been proposed to explain the
discrepancy, the SM prediction is debated. The main source of uncertainty is the contribution
of the hadronic vacuum polarization aEPV to the muon anomalous magnetic moment, which
can be extracted via o(ete” — hadrons) data and dispersive relations, but can also be
calculated on the lattice. The lattice results predict a milder deviation from the experimental
value [137-139).

B meson anomalies

A geries of deviations from the SM predictions have been observed in the semi-leptonic decays
of B mesons. These include discrepancies in the ratio of processes controlled by the underlying
charged-current quark transitions b — cfv,

Br(B — D®Wrv)
Br(B — D®v)

Ry = (2.47)
where [ can be e or . The SM prediction does not suffer from hadronic uncertainties because
they largely cancel in the ratio. Including the latest measurements, the observed discrepancy
in R amount to a 3.1c deviation [140]. Anomalies with a similar statistical significance are
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observed in the neutral current transitions b — suu, however, the theoretical predictions are
contaminated by the hadronic uncertainties. The ratios of neutral current transitions b — sil

Br(B — K®pup)
Br(B — K®ee)’

Ry = (2.48)

have also shown deviations from the lepton flavour universal prediction of the SM, but they
were not confirmed by the latest results [141].
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3.1 Introduction

As we discussed in the previous chapter, the Standard Model defined with left-handed neutrinos
conserves the lepton flavour. The observation of neutrino oscillations provided clear evidence of
non-zero neutrino masses and mixing angles, demonstrating that lepton flavour is not a symmetry
of nature.

Charged Lepton Flavour Violation (CLFV) (or LFV), defined as a short-range interaction among
the charged leptons that change flavour, is therefore expected to occur but it is yet to be observed. If
neutrinos get Dirac masses via the renormalizable Yukawa interactions with the Higgs, the predicted
rates for CLFV are typically GIM suppressed G%m,‘fwlo_‘r’o and are practically unobservable. A
detection of CLFV would thus be a clear signature of new physics that could shed a light on the
origin of neutrino masses.

Additionally, lepton flavor is an accidental symmetry of the SM that is respected by the most
general Lagrangian with gauge invariant renormalizable interactions. Thus, SM extensions that are
motivated independently from neutrino masses can easily introduce extra sources of lepton flavour
violation and lead to sizeable CLFV rates.

For these reasons, experimental searches of CLFV attract great interest and are a valuable tool
in identifying viable BSM scenarios. CLFV searches can pinpoint theories at energy scales currently
not directly accessible by the collider facilities. Null results from the current experiments signifi-
cantly constrain the parameter space of new physics models, and the improvements in sensitivity
by several orders of magnitude, especially in the p — e sector, will further probe BSM physics.
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In this chapter, we present an overview of the theoretical and experimental status of CLFV,
mostly based on [1]. Excellent reviews on the topic can be found in the literature [142-146]. In
Section 3.2, we discuss several SM extensions that could be potentially probed in the upcoming
CLFV experimental searches. We only review heavy new physics models, as this is the focus of
the original work discussed in this thesis. We discuss the LFV phenomenology of models that
generate neutrino masses at tree and loop level, and we present the CLFV signatures of different
BSM scenarios, such as the two Higgs doublets model and the supersymmetric SM.

In Section 3.3, the state of the art and the upcoming experiments looking for CLF'V processes
are discussed. A particular emphasis is given to those looking for rare muon CLFV decays. Several
facilities around the world (Fermilab, PST and J-PARC) already started building or commissioning
new generation experiments with improved sensitivity on the muon CLFV searches (up to four
orders of magnitude). This is possible thanks to improvements in the acceleration techniques,
necessary to deliver beam with intensity ~10' /s, and novel detector technologies. The same
section also provides an overview of the current best limits achieved on the tau CLFV branching
ratios set by general-purpose experiments at ete™ and pp colliders. Also on the tau front, an
improved sensitivity on several searches is expected thanks to the unprecedented luminosity of the
Large Hadron Collider at CERN and the SuperKEKB collider at KEK laboratory

3.2 Theory review

3.2.1 CLFYV in models that generate neutrino masses at Tree Level

If we assume the presence of three right-handed neutrinos vg; which are singlets of the SM gauge
group, gauge invariance allows for Yukawa couplings between the lepton and the Higgs doublets
that generate Dirac masses for neutrinos when electroweak symmetry is spontaneously broken

—L, = [Yy]ijgiﬁl/}gj + h.c. (31)

To obtain neutrino masses that are compatible with cosmological constraints > m, < 0.12 eV [87],
neutrino Yukawa couplings must be Y, < 0(10_12). Although small Yukawas are technically
natural, Dirac masses require a strong hierarchy between the charged and neutral lepton Yukawa
sector.

Analogously to CKM, the PMNS matrix is the result of the misalignment between charged
lepton and neutrino mass basis, as the neutrino and charged lepton Yukawas cannot be simultane-
ously diagonalized respecting the electroweak gauge symmetry. Flavour violation is parameterized
by presence of the PMNS matrix in the charged lepton current

9

V2

Loc D — W;UijéiL’yaI/;-L +h.c (3.2)

where v} are the neutrino mass eigenstates. Charged lepton flavor violation is consequently medi-
ated by the flavor-changing interactions in Equation (3.2). In Figure 3.1, we show a representative
diagram for the decay p — ey. The amplitude of this process can be generically cast in the following
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form?:

M(p = ey) = Ge(pe) (mu(ARPR + ALPL)ioasq” + (BrPr + BLPL)qa+ (3.3)
+ (CrPr 4 CLPL)Ya)uu(pe + @)™ (q)
== MQE*Q(Q)

where Ax,Bx and Cx are complex numbers. As a consequence of QED gauge invariance, the
amplitude satisfies the Ward identity ¢®*M, = 0. On-shell spinors obey the equation of motion
(p — m)u(p) = 0, and the Ward identity requires

mu(CrPr + CLPL) — me(CrPr + CLPRr) + q2(BRPR +BrPr)=0 (3.4)

which, for on-shell photons ¢ = 0, has the unique solution Cr = Cf, = 0. The only relevant term
is a dipole transition

M — e) = Tie(pe) [z’gagqﬂmﬂ(ARPR + ALPL)] u(pe + 0)™(q) (3.5)

which is chirality-flipping and, thus, proportional to the muon mass (if we neglect the electron
mass). Equation (3.5) yields the following decay rate [142]:

_ mi 2 2
L(u—ey) = E(‘Aﬂ + |ARr|%) (3.6)

w w

U,:z ViL Uei
Figure 3.1: ;4 — ey mediated by massive neutrinos v;r.

In the diagram of Figure 3.1, the outgoing electrons are left-handed and only Ap is non-zero?.
The amplitude is proportional to the internal neutrino propagator, which can be expanded for small

neutrino masses as

UeiUpi ¢iUpi UiUui (m3 mg
= — ol —+ . 3.7
Zi:(k:?—m?) e T4 ) Ok (37)

We see that the leading term vanishes due to PMNS unitarity, and the amplitude is GIM
suppressed by the square of neutrino masses. Indeed, the process is analogous to a flavor-changing
neutral current in the quark sector, which features a similar GIM suppression by CKM unitarity.
The calculation is done in [148] in the R¢ gauge, where additional diagrams replacing W with the

!see, for instance, Chapter 6, Section 6.2 of [147]
2 Ay is zero in taking the limit m. — 0
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charged Goldstones must be included. All diagrams are finite and in the unitary gauge limit & — oc;
only the diagram of Figure 3.1 is non-zero. Dividing by the rate I'(u — evv) = G%mi/1927r3 of the
dominant LF conserving three-body decay, the resulting branching ratios for u — ey is [149-153]

9 2

o . m;
Br(p — ey) = 32; UeiUmM—; (3.8)
i
Rewriting the sum as

4 Am3 Am?

=ULU 2L L ULy, 31 (3.9)
Ui 2Vp2 o 3Yu3
Z el M2 e M2 e Mg‘/

and substituting the best-fit values of the mass differences and mixing parameters, the predicted
branching ratios for the LFV p — ey is Br(uy — ey) = 107 — 107%, which lie beyond any
foreseeable experimental reach. In models with Dirac neutrino masses, rates of other LF'V processes
are similarly GIM suppressed and, thus, too small to be observable.

The right-handed neutrinos are sterile, i.e., neutral under the SM gauge group, so SM gauge
invariance allows for a lepton number violating Majorana mass term

~ 1 _
—L, = [Yy]ijfiHVRj + i[MR]ijVCiRVjR + h.c. (310)

having defined v© = Cv”, where C is the Dirac charge conjugation matrix [154]. Majorana mass
matrices are symmetric because fermion fields are anti-commuting and the charge conjugation
matrix C' is antisymmetric. Upon electroweak symmetry breaking, the mass Lagrangian can be
cast in the following form (suppressing generation indices)

(3.11)

1
—L, = §NCMNN +h.c where My = ( 0 MD>

ML Mg

where N = (Vz I/R)T and Mp = vY,. If we assume that the Majorana masses My are much
larger than the Dirac masses (symbolically Mg > Mp), the matrix can be put in block diagonal
form that disentangles the light and heavy neutrinos [155]

WTMyW = <M” 0 ) : <VL> - W <”“9ht> (3.12)
VR Vheavy

0 Mheavy
where W is a unitary matrix. At leading MpMpg ! order, the mass matrices are
Mheavy = Mg M, = _MDMélMg (313)

Assuming ~ O(1) Yukawas, light neutrinos masses can be explained by Majorana masses close
to the grand unification scale Mp ~ 10 GeV. This is the celebrated seesaw mechanism [156],
specifically known as type I when the SM is extended with singlet right-handed fermions.
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A unitary U* diagonalizes the symmetric Majorana matrix M, with a congruence transformation
UTM,U* = M, = diag (m1 mo mg), but U is not the matrix that appears in the charged
currents. Defining U = U ® 1jeqy as acting on the light neutrinos subspace, gauge interaction and

mass basis are related by
<”E> —WuU* <”ﬁght> (3.14)
VR Vheavy

where the matrix W can be expanded at second order as [155]

1-1BB] B _ _
W= 2 L ith By = (Mp'MB)T = o(MzY,)T. 3.15
< _BI 1_%3131 w1 1= (Mg Mp) v(MR'Y,) ( )
The left-handed weak eigenstates are related to the light mass eigenstates via a non-unitary
matrix U’
vy = U'y (1 L g BT)*) Uy %y i o (3.16)
L — light — - S \P1Dg light — - 5 1v light .
2 2 M]T% Mz "

Lacking unitarity, the GIM suppression no longer operates substituting the U’ matrix in Equa-
tion (3.7), and the rate of ;1 — ey becomes [148,157|

2
T en) _ 3o [SiUHUF @) (3.17)
I'(u— ev) 327 (U'UN)ee(U'U) .

where x; = m?/M%, and F(z;) is a loop function that can be expanded for z; < 1 as F(z;) ~
10/3 — z;. CLFV processes can thus constrain departures from the unitarity of the PMNS matrix
[158]. Substituting the typical value y2 ~ m, Mg/v?, GIM suppression is replaced by the ratio
m,, /Mg, which for GUT scale sterile neutrinos predict rates that are nonetheless well below future
experimental sensitivity. Seesaw models can predict sizeable CLFV rates if the Majorana right-
handed masses are closer to the electroweak scale. In the non-supersymmetric seesaw, this is also
desirable to avoid large correction to the Higgs mass [159]. However, in a generic setup with TeV
scale Mp and unsuppressed CLFV rates, fine-tuned cancellations are required in Equation (3.13)
to explain neutrino masses. Fine-tuning is, of course, avoided if a symmetry principle forces the
neutrino mass to be small despite having large Yukawa couplings. Observe that neutrino masses are
a lepton number violating effect ~ Y, My 1YZ,T, while the non-unitary matrix that governs CLFV
rates is lepton number conserving ~ Y, M gQYVT . It is possible to suppress neutrino masses by
invoking a small breaking of lepton number conservation while keeping the masses of the sterile
neutrinos sufficiently close to the electroweak scale and with no need for small Yukawa couplings.
This is, for example, achieved in the inverse seesaw [160,161], naturally leading to quasi-degenerate
pairs of sterile neutrinos [162-164].

The seesaw formula can be understood as the result of integrating out the heavy neutrinos. A
more general discussion on Effective Field Theories can be found in Chapter 4. The relevant s and
t channel diagrams are shown in Figure 3.2 and match onto the dimension five Weinberg operator

1

~CY(GH)(5H) + hoc (3.18)

Li—s = 5
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with the coefficient C° = Y,,MleUT. When the Higgs doublet gets a VEV, neutrinos acquire
Majorana masses via the Weinberg operator M, = —v?C® = —MDMglMg, which agree with
Equation (3.13). Moreover, the following dimension six operator is generated

Lo = CH(LH)IPHTLy), (3.19)

with a coefficient Cg = Y, M g”MleVT , which corrects the light neutrinos kinetic terms. The
redefinition needed to canonically normalize the fields introduce a non-unitary matrix in the charged
currents [165]

2
v — (5ij + 1)20%)_1/2VL — Loc = —\%WQ_ Z <5ik — 1;0%) UkjéiL’YanL + h.c (3.20)

i=e,lu,T

§=1,2,3

which again agrees with Equation (3.16). The advantage of an effective field theory description
is that different seesaw scenarios can be described at low energy in a common framework. In
Figure 3.3, we show how extending the Standard Model with particles transforming in different
representations of the SM gauge group can generate Majorana neutrino masses via the Weinberg
operator. Recent effective field theory analysis of type I and type II seesaw models include the
complete one-loop matching onto effective operators [166,167|, providing useful resources to study
the low-energy CLFV signatures. For more complete reviews on the CLFV phenomenology of
seesaw models, we refer the reader to [165,168|.

Hyp Hy
\\‘\ /'//
Hy Hy IA
A A /A\
l; H—lﬂé% l; 4; l;

Figure 3.3: Seesaw Majorana neutrino masses generated by integrating out a heavy scalar triplet
A (type II) or a heavy fermion triplet ¥ (type III).
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3.2.2 CLFYV in models that generate neutrino masses at loop level

New physics not too far from the electroweak scale can account for small neutrino masses if they
are generated radiatively via loop diagrams. As a specific example, the so-called scotogenic model
[169] extends the SM with an additional scalar doublet n (with hypercharge Y;, = 1/2) and three
generations of sterile neutrinos N. The new particles are assumed to be odd under a discrete Z,
symmetry, which forbids Yukawa couplings with the SM Higgs between lepton doublets and the
sterile neutrinos, as well as constraining the possible interactions in the scalar potential. The Zs is
also respousible for keeping stable the lightest new particle, which, if neutral, provides a potential
dark matter candidate. Omitting the kinetic terms, the scotogenic Lagrangian reads 3

_ My ——
Lo = L + ([Yn]ijzmzvj - 2N N¢N; + h.c> —V(H,n) (3.21)

where the scalar potential is

A A
V(H,n) = myH'H +min'n + 5-(HUH)? + 2 (0'n)? + Xs(H'H) (n'n)

E(H ) ) + 50 [ 4 (ol EY). (3.2

To preserve the Zy symmetry when the electroweak symmetry is spontaneously broken, the
potential parameters must be such that the n field does not acquire a VEV. We also assume that
all parameters in the potential are real and CP is conserved. With this assumption, the real and
imaginary parts of the uncharged component 79 = (ng + inr)/v/2 do not mix. The mass splitting
between the two neutral scalars is proportional to Asv?, consequently nR,1 are approximately de-
generate in the limit A5 < 1. Note that the lepton number is conserved if A5 is zero so that small
values are technically natural.

The Zy symmetry prevents the appearance of tree-level Majorana masses for the left-handed
neutrinos, but it can generate them at the one-loop level via the A5 mixing of n with the SM Higgs
doublet, as shown in the diagram of Figure 3.4. The resulting neutrino mass matrix is calculable,
and, for A5 < 1 (mg = myy ~ my,), can be approximated as [169]

[M]‘.N2A5Ym’fym"“’2 My, My, log M, (3.23)
ST 1emMy, | mf— MR (mf— MR, )? mg || '

Contrary to the traditional seesaw scenario, the extra suppression ~ A5/(1672) can predict
small values of m, with TeV scale sterile neutrinos and unsuppressed Yukawa couplings. The
CLFV signature of the scotogenic model has been studied with particular attention to I; — [;y
processes [170-172|, while the phenomenology of l; — il and p — e conversion in nuclei have
also been discussed [173]. In Figure 3.5, we show a selection of diagrams giving contributions to
CLFYV processes at the one-loop level.

3it always possible to diagonalize the symmetric Majorana mass matrix of the sterile neutrinos with no loss of
generality
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Figure 3.4: Radiative neutrino mass in the scotogenic model. The loop and A5 suppression allow
for TeV —scale new physics and small neutrino masses.

N,
i i >
Nk \ /
_ g _ lj —>»———>—> 1, LW «
n PN ! _ - T -
" N vy Ay U "
/ N Y i <+ <« <]
l; »—;—JQ—LF l; J N, "
(Y)ik (Yn)jk f f

Figure 3.5: CLFV processes in the scotogenic model. From left-to-right: (a) Diagrams contributing
to the l; — [y rate. (b) Box diagrams contributing to the {; — 0,0, rate. (¢) Penguin diagrams
contributing to the l; — il rate and p — e conversion rate (f can be a quark or a lepton).

Part of the parameter space of the scotogenic model is excluded by the current experimental
LFV searches, while the viable region can give branching ratios within upcoming experimental
sensitivities and will be probed in the near future. It is often the case that I; — [;v is the most
constraining LFV channel because the dipole (Figure 3.5a) contribution to the photon penguin
(Figure 3.5¢) can dominate the amplitude of I; — I;f f, leading to the following relation [174]

. N 11
Br(l; — 31;) ~ gi (2 10g<ml’> - ) Br(l; = L) (3.24)
T

my; 4

However, the box contribution (Figure 3.5b) can be larger than the photon penguin diagram for
a mass of the lightest neutrino close to the cosmological upper limit ~ 0.1 eV (Figure 3.6) so that
upcoming p — 3e searches can constrain the model orthogonally to the MEG bound on p — ev. In
addition, the penguin diagram of Figure 3.5¢ mediates LF'V interactions with quarks, contributing
to the rate of 4 — e conversion in nuclei (we briefly review the u — e conversion rate calculation in
Appendix A). When the dipole dominates the penguin amplitude, 4 — e conversion experimental
reach is not competitive with u — ey searches?, given that

Br(p —e)

Br(uN(A, Z) — eN(A, Z)) f(A,2) x 107 (3.25)

where f(A, Z) is a nucleus dependent factor that is ~ O(1) for the targets used in experiments [142].
As shown in the right plot of Figure 3.6, the scaling of Equation (3.25) is satisfied for small my/m,,
ratios, while the non-dipole penguin amplitude can come to dominate for larger my/m,, values.

“although with the future branching ratios sensitivity Br(uA — eA) ~ 1075, 1 — e conversion might be able to
probe smaller dipole coefficients than MEG IT with Br(u — ey) ~ 6 x 107
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The upcoming p — e conversion searches will be a valuable probe for this region of parameter
space [175].

2 )
o s
1T |
3 =
- =4
m O
0 =
el [5)
1 1
2 B
& 3
10°° 107* 102 10° 10° 10* 10°
my [eV] &=(my/m u‘)z

Figure 3.6: The plots show some CLFV branching fractions in the scotogenic model: in the left plot
the prediction for Br(u — ev) and Br(u — 3e) for degenerate sterile neutrino masses my = 4 TeV
and m,+ = 1 TeV, varying the mass of the lightest neutrino (normal ordering); in the right figure
Br(u — ey) and Br(u — €) conversion as a function of (my/m,+)?. The dashed lines correspond
to the current experimental upper limit. Yukawas Y, compatible with neutrino parameters are
randomly generated (Figure from [173]).

Another popular model that can generate neutrino masses at loop level is the Zee-Babu Model
[176,177], where the SM is extended with two SU(2) singlet and charged scalars k*, kT and allow
for the Lagrangian terms

Lz D f;ﬁﬂ&‘]tjej‘]k—i_ + f{;+gi€j/€++, (3.26)

where ey is the anti-symmetric SU(2) tensor. Lepton number is not conserved and neutrino
masses are generated at the two-loop level, while the interactions also violate lepton flavor. The
CLFV phenomenology of the Zee-Babu model has been studied in [178-180|. For other models that
generate neutrino masses at the loop level and their CLFV signatures, we refer the reader to [181].

3.2.3 Two Higgs Doublet Model

One simple extension of the Standard Model features an additional scalar doublet Hs, which is
commonly known as the Two-Higgs Doublet Model (2HDM) (for a review see [182]). A second
Higgs is strongly motivated by supersymmetry, where one Higgs cannot give masses to all fermions
and the second Higgsino, the superpartner of the second doublet, is necessary to cancel the gauge
anomalies. Although supersymmetry imposes precise relations among the Higgs masses and cou-
plings, supersymmetry breaking terms lead to modifications, such that, at low energy, it is suitable
to describe the two Higgs with generic couplings. A general 2HDM (type IIT) predicts LFV cou-
plings that must be sufficiently suppressed to satisfy the current experimental constraint. Often,
additional symmetries are assumed to avoid the appearance of flavor-changing neutral current at
the tree level. In Type I 2HDM, the SM fermions only couple to one Higgs, while, in the type
11, the up quarks couple to a different Higgs than leptons and down quarks, which is the case for
supersymmetric SM.
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The 2HDM scalar Lagrangian is the following

—LoupMm = D/e]ijZiHlej + [Yu]nm@mﬁlum + [Yd]nmCYnHldm +h.c
+ [Ke]ijZiH2€j + [Ku]annf:IZUm + [Kd]annH2dm +h.c (327)
+ V(H1, Ha)

where the potential reads

A2

A
V(Hy, Hy) = m3 HI Hy + m3, H) Hy — m3, (H{ Hy + h.c) + 71(HIHl)2 + ?(H;LHQ)?

+ Aa(H{ Hy)(H3 Hy) + Ao (H] Hy)(H} Hy)

A
+ <25(H1TH2)2 + No(HY H1)(Hy HY) + Ar(H Hy) (H1 HY) + h.c> : (3.28)

In a region of the potential parameters, the Higgs can acquire a VEV that spontaneously breaks
the electroweak gauge symmetry, and it is always possible to rotate in a basis where only one has

a non-zero expectation value (Hy) = (0 v)", (Hz) = 0. The doublets are written as

G+ ¢+
H, = . Hy = . . 3.29
L v+ %(pl +iGO) 2 %(pg +iA) (3.29)
Once the Goldstones G are eaten by the gauge bosons, the scalar spectrum contains one ¢+

complex scalar, two CP even neutral scalar p; » and one CP odd scalar A. If the potential parameters
are real, only the two CP even scalars mix, and we identify two mass eigenstates h, H [183, 184]

h = sin(B — a)p1 + cos(B — a)p2 = Sgap1 + Cgap2 (3.30)
H = cos(f — a)p1 — sin(f — a)p2 = cgap1 — Sgap2 (3.31)

where 8 — « is the angle that diagonalizes the neutral scalar mass matrix, and h, H have masses
myp < mp, respectively. We identify the lighter scalar with the 125—GeV Higgs boson. In a basis
where the two doublets ®; both have VEVs v;, a rotation with angle o diagonalizes the neutral
scalar mass matrix, while the angle § such that tan 3 = vy /vy allows us to rotate into the H;
basis. In the Type III 2HDM, there is no unambiguous way to identify 5 and « because the two
doublets are not distinguishable. On the other hand, 5 — « is calculable in terms of the potential
parameters [184]

2/\6U2

(miy —mj)

cos(f —a)sin(f —a) = — (3.32)

In the fermion mass basis, the Yukawa matrices Yy are diagonalized, while the K couplings
with Hy are, in general, non-diagonal. The Yukawa interactions between the fermions and the
uncharged scalar sector read

—Ly = Efm <fUJS/3a + [Kf]ijcﬁa> fir+h.c
H - ([mylidi
v

\/i il
A - A
Z ZﬁfiL[Kf]ijij - ZﬁuiL[Ku]ijujR +h.c (3.33)

f=d,e

Cga — [Kf]ij85a> ij + h.c
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The LHC measures a h — 7777, u"pu~ rate compatible with the Standard Model prediction
[185,186], requiring sgo ~ 1. Substituting this approximation in Equation (3.32) gives

2 2 2 —2)\61}2
Cha 2 —2Xgv7 /(M —my) K1 — cgo 5 (3.34)
H

In the decoupling limit \;v? < m3, [187] that we have assumed to justify m3, > m?, the mass
splitting m%{ — m?4 ~ Asv? is small, and in the following, we consider M? ~ m%[ ~ m?q. The
off-diagonal interaction K.cg, can mediate LFV Higgs boson decay with a rate [188,189]

2 2
|Keli; + | Kelj;

F(h — lilj) = T6n CBaMh where lilj = l;'_l]_ -+ lz_l;_ (3.35)

Non-observation of LFV decay modes of the Higgs boson at LHC set the upper limits on the
branching fractions reported in Table 3.1 and directly constrain the size of flavor violating coupling.

Process Bound on Br

h— pe 6.1 x107° [190]
h—Tu 1.5 x 1073 [191]
h—Te 2.2x 1073 [191]

Table 3.1: Lepton flavor violating decay of the SM Higgs boson with the current experimental
bounds set by ATLAS and CMS.

Off-diagonal Yukawas are also indirectly bounded by other LF'V processes, as they can mediate
l; — 1y through the loop diagrams shown in Figure 3.7. The two-loop diagrams of Figure 3.7b,c are
relevant and can be numerically larger than one-loop contributions [192] because, in the former, the
Higgs line is attached to a heavy particle running in the loop and Yukawa suppression is avoided. In
the p — e sector, p — ey is the most sensitive process to LF'V Yukawas, which has been extensively
studied in the context of 2HDM [184,193-196|. For the 7 <> [ sector, the bound on the radiative
decay Br(t — ly) < few x 1078 — 1079 is less stringent and the Higgs LFV decays are sensitive
to smaller off-diagonal Yukawas. In a simplified scenario where only the SM Higgs is present,
the author of [197] computed several processes in terms of generic LE'V couplings hY;;ér;er;, and
Figure 3.8 shows the current bounds (sensitivity) set by LFV observables. In 2HDM, there are also
contributions from the heavy scalars, which are parametrically of similar size of light Higgs LFV;
while they do not suffer from the small mixing angle cgq ~ v?/M?, the propagator yields a similar
suppression ~ 1/M?2.
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Figure 3.7: Diagrams for [; — l;v in the 2HDM, where ¢ = h, H, A. Two-loop Bar-Zee diagrams
with a Z exchange also exist. From left-to-right: (a) One loop contribution to the ; — Iy
rate in the 2HDM with LFV Yukawa couplings. (b) Two loop Barr-Zee diagram with a top loop
contributing to l; — Iy in the 2HDM with LF'V Yukawa couplings. (¢) Two loop Barr-Zee diagram
with a W loop contributing to l; — [;v in the 2HDM with LFV Yukawa couplings.
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Figure 3.8: Left figure from [190]: constraint on LFV Yukawa couplings Y., Ye, from the limits
on Br(h — eu) (observed limit corresponds to the solid blue line, while the expected one is the
dashed red line). Shaded regions show the sensitivity of u — 3e, u — ey and p — e conversion on
the LFV Yukawas, from the calculations of [197]. Right figure from [191]: same plot for the 7 <> 1
sector. The diagonal line shows the natural limit |Y;;Yj;| < m;m;/2v? (note that for us v = 174
GeV, while in the plot v = 246 GeV) [198].

Contribution to [; — [;l;l; and l; — l;qq also appear at tree level in the 2HDM. The same
processes also receive relevant contributions attaching a I;l; (gg) current to the photon of the
diagrams in Figure 3.7.

3.2.4 CLFYV in Supersymmetry

Supersymmetry (SUSY) is a space-time symmetry that extends Poincare invariance by adding
fermionic generators that satisfy the anti-commutation relations of the supersymmetry algebra
[199-201]. SUSY is the largest space-time symmetry that the S—matrix can have given a set of
physical assumptions such as unitarity, locality and causality [202,203]. Since fermionic operators
Q@ are added to the algebra, irreducible SUSY representation (supermultiplets) contain particles
of different spin that are related by the action of ) on one-particle states. The simplest super-
symmetric extension of the Poincare group is N = 1 SUSY, i.e., with only one pair of conjugate
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Weyl spinor generators @, Q. In the Minimal Supersymmetric Standard Model (MSSM), for every
quark g and lepton ¢, there is a corresponding complex scalar in the same gauge representation,
commonly known as the squark ¢ and slepton £. Similarly, the gauginos B, W/, G® are the fermion
superpartner of the gauge bosons, which transforms in the adjoint of the gauge group, while the
higgsinos H,, H, are the spin-1 /2 particles that belong to the supermultiplets of the Higgs doublets.
As already discussed in the previous section, a supersymmetric version of the SM requires at least
two Higgs doublets.

Degenerate partners of the known SM particles with opposite statistics have never been ob-
served; therefore, SUSY, if realized at all, must be broken at some scale mg. To avoid the reappear-
ance of the hierarchy problem, mg should not be too far from the Higgs mass and explicit SUSY
breaking terms must be soft, i.e., have to contain only terms with strictly positive mass dimension.
The solution to the hierarchy problem is also preserved if SUSY is spontaneously broken by the ex-
pectation value ~ mg of some scalar field. In models of spontaneous breaking, soft breaking terms
appear in the low energy non-supersymmetric description. Null results from the LHC rule out
SUSY breaking scales below few x TeV |204-206], although the bounds on superpartners’ masses
are not completely model-independent.

In the MSSM, the SUSY breaking sector can be a source of lepton flavor violation. The soft
breaking terms contain masses for the sleptons and trilinear couplings with the Higgs

Loty D [MRijere; + [m3i010; +molAlij 0} Haé; (3.36)

that introduce LFV if the off-diagonal entries are non-zero in the lepton mass eigenstate basis. For
~ 100 GeV—-TeV soft terms, the current bounds on LFV, and more generally on flavor-changing
neutral current in the SM, call for a suppression mechanism of sfermions mass mixing. This is known
as the SUSY flavor problem. The spontaneous symmetry breaking of SUSY cannot be triggered
by the scalar fields in the MSSM supermultiplets, as this would lead to an unacceptable spectrum.
Supersymmetry breaking may occur in an hidden sector that have very small coupling with the
MSSM particle. This is know as the mediation paradigm. If SUSY breaking is communicated via
supergravity couplings of the hidden sector to matter, it results in universal and flavor conserving
soft terms at the Planck scale [207,208|. Nonetheless, this does not strictly forbid LF'V, since mass
mixing can still be radiatively generated. In the minimal SU(5) Grand Unified Theory (GUT), the
matter content of SM is reproduced by three generations of two fermion fields: one in the anti-
fundamental 5 of SU(5) (F), which contains the lepton doublet and the right-handed down-type
quark, and one that fills the 10 representation of SU(5) (T'), which contains the quark doublet, the
right-handed up-type quark and the right-handed charged lepton. They are coupled in the Yukawa
sector to two Higgs scalar fields transforming in the 5 and 5 representation.

—Lsu(s),yuk = Yuli TiHTj + [Yali FiHT) + hec (3.37)

In SUSY GUT, the above equation corresponds to the superpotential W, where T, F, H, H are
the superfields that contain the SM particles and the superpartners. Assuming gravity-mediated
SUSY breaking, the soft terms at Mp; are flavor blind and characterised by a common mass scale
mo

*'CSU(S),soft = m%(j—jj—; + ﬁjﬁz) + moao([Yu]i]’EHTj + [Yd]wﬁlﬁf + h. C) (338)
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The top Yukawa is large and loop correction to third generation masses can be sizeable. In
a basis where the up Yukawa matrix is diagonalized and neglecting first and second generation
couplings, the leading-log correction in the renormalization of the T3 mass is [142,209]

. 3 Mp
Amﬂﬁz—&ﬂuuéma&+mfﬂ%<M@H> (3.39)

where Mgur ~ 10'6 GéV is the GUT scale. The T fields contain the right-handed charged sleptons
that have a diagonal but non-universal mass matrix. In the mass eigenstate basis for the charged
leptons, the right-handed slepton mass matrix acquires non-diagonal entries

3

- . Mp
[Ampgli; ~ —@[Ve Jis[Veljs|Yaul35m8 (3 + laol?) 103;(

) with Y, = VY.V (3.40)
Mcgur

where Y, is the diagonal lepton Yukawa. In SU(5) GUT, the down and lepton Yukawa are unified
Y. = YdT, and V, correspond to the transpose CKM matrix. In the diagrams of Figure 3.9, we show
how slepton mass mixing can mediate [; — [;7y at loop level, that in most SUSY setups is the largest
LFV signal. Box diagrams exist for I; — [;l;l;, and [; — [;qq, but the processes are often dominated
by the penguin diagrams, where a flavor diagonal current is attached to an off-shell photon in
the diagrams of Figure 3.9. The rate of u — ey in minimal SU(5) GUT has been calculated
in [209,210]. A potentially detectable signal for the upcoming experiments is predicted, although
the values considered for the sparticles masses are in tension with more recent LHC data [211].

Figure 3.9: [; — ljv in SUSY through sleptons mass mixing. X correspond to charginos and
neutralinos (mass eigenstates of electroweak gauginos and higgsinos).

LFV can be sizeable in the context of GUT theories with right-handed sterile neutrinos, which
has been studied in [210,212-220]. In SO(10), right-handed neutrinos naturally appear in the 16
spinor representation that a SM generation fills, and neutrino masses can be explained with a
supersymmetric seesaw mechanism. Considering heavy right-handed neutrinos, the superpotential
in the lepton sector reads

_ _ 1
Wi = [Y’ehjLinEj + [Yy]ijLiHuNj + §[MR]Z'jNZ'Nj (3.41)
where the notation for the SM superfields is self-explanatory, and NV is the superfield that contains

sterile neutrinos. As in Equation (3.13), for large Majorana masses Mp, the light neutrino mass
matrix is

H
m, = =Y, Mz'Y, v?sin® 8 where tan g = iHui, v =174 GeV (3.42)
d
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The gravity-mediated soft breaking terms involving the sleptons are the following
_ﬁsoft = m%(gj@ + é;réz) + moao([Ye]ijngdéj + [Yy]ngHuNj + h.C) (3.43)
and the left-handed sleptons mass matrix is renormalized in the leading-log approximation as [212]

_ 1

- M
Ay = = gV Lm(3 + ol tog (31 (3.44)

Mpg

The typical size of I; — [;7 branching fraction is [215]

tan? B X B?”(lz' — ljl7jl/i) (3.45)

where mgygsy is the sparticles mass scale. In general, even knowing neutrino masses and mixing
angles, the neutrino Yukawa Y, is not uniquely defined [221]. In a basis where the Majorana masses
Mp, are diagonal, we can use the Casas-Ibarra parametrization [215] for Y,

Y, ~ (Uv/fn, Ry Mg)/(vsin 8)? (3.46)

where U is PMNS and R is an unknown orthogonal complex matrix. The matrix that controls the
slepton mixing is then

Y1Y, ~\/ MgRYm, R\/ Mg (3.47)

and depends on R. Assuming specific mass hierarchy and degenerate patterns for neutrinos, the
free parameters in R are reduced, and the predicted LF'V signals are studied when the parameters
are varied [222]. In SO(10) GUT, the neutrino and up Yukawa are unified at the GUT scale,
and different breaking scenarios can lead to lepton flavor change dominated by the CKM or PMNS
mixing with the third generation [216,217]. The PMNS angles are large and lead to an insufficiently
suppressed j — ey rate, larger than the current upper limit Br(u — ey) < 4.2 x 10713 [223]. In the
scenario where LFV amplitudes are proportional to CKM matrix elements, the rate is compatible
with the current experimental upper bound and part of the parameter space could be probed by
the upcoming searches Br(p — ey) ~ 6 x 107 [224]. The model predicts a correlation between
the branching ratios of 7 — Iy and p — ey which is

Va3 Vs |

mBT(M — e")/) X 1071 S 10710 (348)
13V23

Br(r — py) ~
where V is the CKM matrix. Assuming no detection from MEGII Br(u — ey) < 6 x 10714
an observation of Br(t — py) ~ 1079 at Belle IT [225] can disfavor the model. In the context
of sleptons mixing and LFV, several simplified SUSY scenarios have been more recently studied,
complemented with the bounds of the null results of the LHC [226].

The soft-breaking sector is not the only possible source of LF'V in supersymmetric SM. Gauge
and SUSY invariance allow for the following terms in the superpotential:

\ii B _ o
Wepy = TJkLiLjEk + N LiQ; Dy, + N3 Ui D; Dy, + piLiH,, (3.49)
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The )\’ term is baryon number violating and can lead to prompt proton decay. To avoid
this disastrous outcome, R—parity is often assumed. The R—parity of a particle is defined as
(—1)F = (=1)3(B=L)*28 where B, L are the baryon and lepton number, while S is the particle spin.
It follows that any SM particle is RP—even and the superpartners are RP—odd. RP—invariance
automatically forbids all terms in the superpotential of Equation (3.49), but other discrete symme-
tries such as baryon parity [227] can allow for lepton flavor violation while conserving the baryon
number. The first two terms in the superpotential leads to the Lagrangian terms [228]

Lrpy = )\z’jk(VcLieLjéJ}r{k + €RkVLi€r; + €rker;viL)

+)\;jk(‘/jmd_deLmﬁiL + VjmdgeVLidmr + V}‘mﬁLidLdeRk‘i‘
_JRkuLjéLi — JRkeLi'&Lj — ELiULjCi}L%) + h.c (3.50)

that can allow for several LE'V processes already at tree level. In Figure 3.10a, we show a diagram
for the LFV K© decay Kg — pe, whose branching fraction is constrained by the current upper
limit Br(K% — pe) < 4.7 x 10712 [229]. Assuming only one non-zero pair of R-parity violating
coupling A7z A%y, the bound implies (adapted from [230])

Uk

. 100 GeV\ 2 _ . _
| AT Ao | X <> <1.3x1077 — |\ fi oo S 1077 (3.51)

where we have assumed mg, ~ few x TeV. Similarly, Br(u — 3¢) < 10712 — 10716 [231,232] can
set the following constraint on the coupling products |An21A%;| (A is anti-symmetric in the first
two indices and n # 1) from the diagrams of Figure 3.10b:

100 GeV

Un,

2
[An21 A5pq| % < > <6.6x1077 (6.6 x 107?) (3.52)
AN diagram give tree-level contributions to p — e conversion, and at one loop l; — 1,7 is sensitive
to A\, XX couplings. For a more complete discussion on LFV in R-parity violating theories, we
refer the reader to [233-238].
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Figure 3.10: Examples of LFV tree-level diagrams in the supersymmetric SM with R-parity viola-
tion. (a) Diagrams contributing to the LFV meson decay K° — [;/;. (b) Diagrams contributing to
the I; — l;lil,, rate.

3.3 Experimental Searches

Searches for CLF'V signals span a broad range of experimental techniques thanks to the large variety

of processes one could be looking for, such as rare muon and tau decays (u™ — ety , u* — efe et ,
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™ = pty s ety 7= 31 ), rare mesons and bosons decays, and direct conversions of a lepton

in a nuclear field (41N — e" N, u~N — e™N’ ). Table 3.2 summarizes the current best limits on
the various channels. The CLFV searches based on muons have been performed with dedicated
experiments, usually highly tuned for a specific channel, which took advantage of the facilities
capable of delivering a high intensity muon beam (see next section). For all the other cases (tau,
mesons and bosons), with the only exception made for the Kaons, it is not possible to deliver
a dedicated beam; thus, general purpose detector systems have been used. As discussed in the
previous sections, the most stringent constraints on various BSM models are set by the direct
searches of CLFV decays of muons and taus decays. In the following sections, we describe the most
recent and the coming experimental efforts for these two categories: (i) searches using muons, (ii)
searches using taus. For each search, a discussion of the peculiarities of the signal topology and of
the various experimental challenges is provided.

3.3.1 CLFYV Searches Using Muons

In the history of CLFV experiments, muons have been, so far, the most popular. Historically,
the first experiment looking for CLF'V using muons was performed by Hinks and Pontecorvo using
atmospheric muons [261]. Since then, the advancements in the muon beam production/acceleration
technology at different facilities (PSI, TRIUMPH, LANL, etc.) made available high-intensity
muon beams at the level of 108(107)u™(u~)/s [144,262], enabling the possibility to search for
rare CLFV processes. Facilities under construction at Fermilab (USA) and J-PARC (Japan) [143],
or planned, like the High Intensity Muon Beam project at the PST (Switzerland) [263], have been

0'9 u/s. This planned intensity

designed to provide muon beams with an intensity of about 1
corresponds to 2-3 orders of magnitude improvement with respect to the current state-of-the-art
technology. The J-PARC and Fermilab muon experiments will use a novel method for creating the
muon beam. A prototype muon beamline, the Muon Science Innovative Channel (MuSIC), was
set up at the Research Center for Nuclear Physics (Osaka, Japan) to prove the conceptual idea.
The production of an intense muon beam relies on the efficient capture of pions (from proton-
target interactions), which subsequently decay to muons, using a novel superconducting solenoid
magnet system [264]. The current best limits on the muon-CLFV processes come from experi-
ments that performed dedicated searches for the following processes: put — ety | u*t — efe et |
N — e Nand u~N — et N’ . Table 3.2 summarizes these results. One thing to notice is that all
the searches, except the y”N — e"N and u~N — et N’ | were performed using ™ rather than pu~.
This choice is motivated by several advantages: (i) 4 cannot get captured in nuclei, while u~ can
undergo nuclear capture events, which produce protons, neutrons, photons and, thus, increase the
activity in the detector deteriorating its performance, (ii) the muon beam is obtained from charged
pions decay, which are produced in proton-target interactions where 7 production is larger; thus,
the resulting u beam intensity is higher. The following sections offer a more detailed description

of each of these experimental searches.

3.3.1.1 put — ety

In the pu™ — eT decay, the final state consists of a back-to-back positron and photon with an
energy of 52.8 MeV. The background sources for this search can be factorized into two main
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Table 3.2: Current experimental upper limits on the branching ratios of CLFV processes for muons,

taus, mesons (7, J/v, B, K) and bosons (Z°, h).

Process Experiment Limit C.L.
pt — ety MEG 4.2 x 10713 [223] 90%
pt — eteet SINDRUM 1.0 x 10712 [239] 90%
p~N—=e N SINDRUM-II 6.1(7.1) x 1073 Ti (Au) [240,241] 90%
N —etN' SINDRUM-IT 5.7 x 10713 [242] 90%
7t = ety BaBar 3.3 x 1078 [243] 90%
Tt = pty BaBar 4.4 x 1078 [243] 90%
T — eee Belle 2.7 x 1078 [244] 90%

T — [LfLf Belle 2.1 x 1078 [244] 90%

T — pee Belle 1.8 x 1078 [244] 90%

T — et Belle 2.7 x 1078 [244] 90%

7 — 7l Belle 8.0 x 1078 [245] 90%

7 — mu BaBar 1.1 x 1077 [246] 90%

T = ne Belle 9.2 x 1078 [245] 90%

T = N Belle 6.5 x 1078 [245] 90%

7 — ple Belle 1.8 x 1078 [247] 90%
7= Belle 1.2 x 1078 [247] 90%
70 = pe kTeV 3.6 x 10719 [248] 90%
K9 — nOute” kTeV 7.6 x 10711 [248] 90%
KY — pe BNL E871 4.7 x 10712 [229] 90%
K+t — ntute™  BNL ES865 1.3 x 1071 [249] 90%
T/ — pe BESIII 1.5 x 1077 [250] 90%
J/p — Te BESIIT 7.5 x 1078 [251] 90%
J/y— T BESII 2.6 x 1076 [252] 90%
B — pe LHCb 2.8 x 1079 [253] 95%
BY — re BaBar 2.8 x 1077 [254] 90%
BY — 1 LHCb 1.4 x 107° [255] 95%
B — Kpue BaBar 3.8 x 1078 [256] 90%
B — K*pue BaBar 5.1 x 1077 [256] 90%
Bt — K're BaBar 4.8 x 1077 [257] 90%
Bt — K*rpu BaBar 3.0 x 1079 [257] 90%
BY — pe LHCb 1.1 x 1078 [253] 90%
BY = Ty LHCb 4.2 x 1077 [255] 95%
7% = pne ATLAS 7.5 x 1077 [258] 95%
70 — re OPAL 9.8 x 1079 [259] 95%
AR DELPHI 1.2 x 1072 [260] 95%

h — e ATLAS 6.1 x 107° [190] 95%

h — Te CMS 2.2 x 1073 [191] 95%
h— T CMS 1.5 x 1073 [191] 95%
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categories: (i) an intrinsic physics background from the Radiative Muon Decay (RMD) process
wt — et yvew,, where the neutrinos carry off small momenta, and (ii) an “accidental” background
where a positron from the Michel decay ™ — e, together with a photon from an RMD event
or an electron-positron annihilation in flight or an e — N nucleus scattering, recreate the topology of
the p™ — ety decay. While signal and RMD rates are proportional to the muon stopping rate R,
the accidental background rate is proportional to Ri because both particles come from the beam;
the accidental background is, therefore, the dominant enemy of this search. Thus, a continuous
muon beam is better suited than a pulsed beam to avoid stripping particles in short bunches, and Rz,
must be carefully chosen to optimize the sensitivity. The u+ — e~ searches from the last decades
confirmed that the accidental background is dominant, while the intrinsic background accounts for
about 10% of the total background budget. Two different strategies have been applied for designing
the experimental apparatus for the u* — ety search: (i) a tracking-only system equipped with a
converter to convert the photon in an ete™ pair, or (ii) a tracker combined with a calorimeter for
the photon detection. The tracking-only solution has a much better resolution but a cost of a loss
in acceptance because converting the photon requires material that spoils the resolution (due to
energy loss and multiple scattering) but too little limits the size of the data sample.

One of the first experiments to adopt the calorimetric solution for the photon detection was the
Crystal Box experiment at Los Alamos Meson Physics Facility (LAMPF) [265]. The experiment,
shown in Figure 3.11, used a surface muon beam at LAMPF with an average intensity of 300 kHz.
The detector consists of a cylindrical drift chamber surrounded by 396 Nal(T1) crystals. A layer
of scintillation counters in front of the crystals provided a timing measurement for the electrons
and a veto for photons. The energy resolution for electrons and photons was ~6% (FWHM). The
position resolution of the drift chamber was 350 pm, while the time resolution was ~400 ps for the
scintillators and ~ 1 ns for the crystals.
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Figure 3.11: Schematic of the Crystal Box experiment (Figure from [265]).

A total of 3 x 10'? muon were stopped in a thin polystyrene stopping target. A maximum
likelihood analysis established a 90% C.L. upper limit of 4.9 x 10711 [265].

The next-generation experiment, MEGA [266|, was also performed at LAMPF. The MEGA ex-
perimental apparatus, shown in Figure 3.12; used a surface muon beam at the stopped muon channel
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at LAMPF that was stopped in a 76 pm Mylar foil centered in the 1.5 T magnetic field of a super-
conducting solenoid. The MEGA detector consisted of a magnetic spectrometer for the positron
and three spectrometers for the photon, therefore sacrificing the signal acceptance and efficiency
for a better resolution and background rejection. In total, 1.2 x 10'* muons were stopped during
the life of the experiment, and the overall efficiency for the observation of the u™ — et~ event was
~3.9 x 1073. The small efficiency was due to the photon conversion probability (~2.5%) and to
the reduced capability of reconstructing the positron tracks in the solenoidal field compared to the
design value. For these reasons, the final sensitivity reached by the MEGA experiment, 1.2 x 10~
@ 90% C.L. [266], was ~35 times worse than the design value, proving how challenging it is to
deliver progress in this type of search.

The current best limit for the * — et branching ratio, 4.2 x 10713 @ 90% C.L., comes from
the MEG experiment [223]. The detector system, shown in Figure 3.13, covers ~10% of the solid
angle and surrounds a 205 pm-thick polyethylene muon stopping target. The apparatus consists of
a positron spectrometer and a liquid-xenon (L.Xe) calorimeter.

MEG opted for no converter for the photon detection, the opposite of MEGA. This choice avoids
the pileup problem in the pattern recognition that limited MEGA but, at the same time, limits
the geometrical acceptance. Table 3.3 summarizes the detector performance measured during the
MEG operation [224]. A key feature of MEG is the magnetic field design. MEG adopted a graded
solenoidal field, set at ~1.1 T near the center of the apparatus, that sweeps out the positrons
emitted at ~90 deg and provides a constant bending radius for the signal positron essentially
independent of the angle of emission. This feature helps in achieving a uniform and efficient
signal track reconstruction. Another technological breakthrough from the MEG experiment is the
development of the liquid Xe (LXe) calorimeter. The MEG LXe calorimeter is the first application
of a large volume of LXe for particle detection and, so far, it proved to have the best performance
for the electromagnetic calorimetry detection in the energy range below 100 MeV [267].
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Figure 3.12: Schematic of the MEGA experiment (Figure from [266]).
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Figure 3.13: Schematic of the MEG experiment (Figure from [223]).

Table 3.3: Summary of detector performance for the MEG and MEG-II experiments [224]. ox
indicates the resolution of the observable X, ex the detection efficiency for the particle X. For the
case of the photon energy resolution o, the two values refer to the shallow (<2 cm)/deep (>2
cm) events. oy +y is the time resolution on the et — + time residual. The reported values for the
MEG-II case refer to the updated results from the engineering runs reported in |[224].

g _+ O,+ OE (o % Ot [op e
Pe 6. ¥ ¥ et~ = Y
MEG 380 keV/c 94 mrad 24%/1.7% 5mm 122ps 30% 63%
MEG-II 100 keV/c 6.7 mrad 1.7%/1.7% 24 mm 70ps 65% 69%

Recently, the MEG collaboration worked on the upgrade of the experiment (MEG II), which
aims to reach a sensitivity of 6 x 10714 90% C.L. [224]. Various improvements on the detector were
delivered. The positron spectrometer was replaced with a low-mass single-volume cylindrical drift
chamber with high rate capability. This increased the acceptance of the spectrometer with respect
to the MEG configuration by more than a factor of 2. The LXe calorimeter was also upgraded by
replacing the MEG photomultiplier tubes (PMTs) with smaller vacuum-ultraviolet sensitive silicon
photomultipliers (SiPMs). A novel timing detector for an active suppression of the accidental
background was also introduced. The results of the engineering runs showed a fast degradation
of the wires of the drift chamber and of the SiPMs [224]. Table 3.3 compares the new detector
performance with the previous ones reported for the MEG detector. The MEG-II collaboration
plans to build a new chamber to replace the existing one, and they will take advantage of the
coming engineering runs to study more carefully the degradation of the SiPMs. Preliminary results
show that they can adjust the operation conditions to achieve the desired level of sensitivity [224].

3.3.1.2 put = efe et

In the u* — efe~et decay, the final state consists of two positrons and one electron emerging
from the same vertex with an invariant mass that matches the muon rest mass. In a three-body
decay, the energy associated to each product is not a fixed amount. Simple relativistic kinematics
consideration show that the maximum energy of one of the decay products is about m,, /2 and that
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the decay can be described by two independent variables. The energy distribution of each daughter
particle depends on the exact dynamics of the underlying unknown physics. In general, the highest
energy particle is expected to have a momentum larger than 35 MeV /c, while the distribution of
the lowest energy particle peaks near zero and decreases quickly as its energy tends to its upper
limit so that only about one half have an energy larger than 15 MeV [144]. The background sources
for this search can be factorized in two main categories: a physical background coming from the
pt — etv,vee” et process, and an uncorrelated component coming from the accidental coincidence
of a positron from a Michel decay and a positron-electron pair produced by the interactions of other
positrons or muon with the target or the detector material. The accidental background component
scales quadratically with the muon beam intensity. Asin the u* — et case, it is more convenient
to design an experimental apparatus that uses positive muons.

The current best limit on pu* — eTe~et | 1.0 x 10712 [239] at 90% C.L., was set by the SIN-
DRUM experiment at PST [239] based on ~10° stopped p*. The SINDRUM apparatus, shown
in Figure 3.14, consisted of a double cone-shaped stopping target in the middle of five concentric
multi-wire proportional chambers surrounded by an array of plastic scintillator counters inside a
solenoidal magnetic field. For a 50 MeV electron/positron, the detector apparatus had a momentum
resolution at the level of ~1 MeV /c, a timing resolution < 1 ns and a vertex resolution of ~1 cm.
The data reduction was achieved with a multiple stage trigger, taking advantage of track and charge
pre-filters that were requiring at least one negatively and two positively charged tracks within a
time window of 7 ns. Then, a track-correlator was used to limit the total transverse momentum
of the eTe~e™ triplet below 17 MeV/c. In the statistical analysis, the event candidates were de-
termined from the two-dimensional distribution of " E; vs. p2, where p = (pr./o1)* + (pr/or)?
(L and T denote the longitudinal and transverse components with respect to the beam axis). This
parametrization is particularly convenient because the signal candidates satisfy Y E; = m, and P>
is expected to peak near 0. A new effort to improve the sensitivity on u* — eTe~e™ search is un-
derway at PSI by the Mu3e collaboration [231]. The Mu3e experiment aims for a 10710 single-event
sensitivity, which would correspond to an improvement by four orders of magnitude compared to
the limit set by the SINDRUM experiment. Such a leap in sensitivity is enabled by: (i) the avail-
ability of high-intensity muon beams, (ii) the use of silicon pixel detectors instead of multi-wire
proportional chambers to track the decay products, and (iii) a modern data-acquisition system able
to handle the vast amount of data produced by the detector. A first phase of the experiment is
currently under construction at the 7E5 beamline at PSI, where the intense DC surface muon beam
of 108 /s will be exploited to achieve a single event sensitivity of 2 x 1071 in about 300 days of
data taking [232]. The Mu3e experimental setup is shown in Figure 3.15. It is designed to track the
two positrons and one electron from the positive muon decaying at rest with a light-weight tracker
placed inside a 1 T magnetic field, thereby reconstructing the decay vertex and invariant mass.
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Figure 3.14: Schematic of the SINDRUM experiment. B, muon beam; S, focussing solenoid; T,
target; C, five cylindrical multi-wire proportional chambers; H, hodoscope of 64 scintillators; L,
light guides for the hodoscope; P, 128 photomultipliers; A, preamplifiers for the cathode strips and
amplifier /discriminators for the anode wires; M, normal conducting coil of the magnet. Figure and
caption from [268].
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Figure 3.15: Schematic of the Mu3e experiment (Figure from [232]).

The muon beam is stopped in a hollow double-cone target placed at the center of the Mu3e
solenoid. This allows for the spread out of the decay vertices in z and minimizes the amount
of target material traversed by the decay particles. The target is surrounded by the cylindrical
central tracker, which consists of an inner silicon pixel detector, a scintillating fiber tracker for time
measurements, and an outer silicon pixel detector. A momentum resolution of better than 1 MeV /c
at @ 50 MeV /c is achieved by letting the positrons (electrons) re-curl in the magnetic field, either
crossing the central tracker again or hitting the outer tracking stations surrounding the upstream
and downstream beam pipe. These stations consist of a silicon pixel tracker and a scintillating tile
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detector mounted on the inside of the pixel tracker. The 5 mm thick tiles enable a time resolution
for the tracks reaching these outer stations of better than 100 ps. The material budget, which must
be minimized to reduce the multiple scattering and thus deliver the required momentum resolution,
was minimized by means of custom High-Voltage Monolithic Active Pixel Sensor (HV-MAPS) [269]
based on a commercial 180 nm HV-CMOS process. Together with its support structure, the entire
silicon tracking module has a thickness of ~0.12% radiation lengths, with a single-hit efficiency
> 99% and a time resolution of O(10 ns). A gaseous helium cooling system allows the experiment
to dissipate 250 mW /cm? of power generated by the MAPS modules. A time resolution of about
10 ns is insufficient to determine the direction and thus the charge of the decay particles. A
scintillating fiber detector is, therefore, placed between the inner and outer layer of the central
silicon-pixel tracker, consisting of a dozen 30 c¢cm long ribbons made from three staggered layers
of 250 nm diameter multi-clad round fibers, read out by Silicon Photomultipliers (SiPM) arrays
on both sides. Located at the very end of the re-curling particle trajectories hitting the upstream
or downstream tracker, where the constraints on the material budget are less stringent, the tile
detector provides the needed precise timing information of the particle tracks, in conjunction with
the fiber detector, significantly reducing the accidental background. Each tile is read out by a
single SiPM. For the tile and fiber detector, a time resolution of <50 ps and <400 ps is achieved,
respectively. Mu3e had a successful integration run campaign from May to July 2021 with a reduced
detector: 2 pixel layers + fiber detector.

3.313 pu N—e N

"N — e~ N conversion is the process where a muon converts into an electron in the field of a
nucleus without producing neutrinos in the final state. This process has the same dynamic of a
two-body decay and, therefore, results with a monochromatic electron with an energy F,.:

2
EL

2mpy’

Eue =my, — Ep —

where m,, is the muon mass, Ej ~ 22a2mﬂ /2 is the muonic binding energy and the last term is
from nuclear recoil energy up to terms of order 1/m%;, neglecting variations of the weak-interaction
matrix element with energy [143], where E,, = m, — E, and my is the atomic mass. In the
case of Al, which is the selected material for the current experiments under construction, E,. ~
104.96 MeV. In muon conversion experiments, the quantity

I'(u”N—e™N)
I'(u= + N — all — capture)

R, =

is measured. The normalization to captures simplifies calculations as many details of the nuclear
wavefunction cancel in the ratio [270]. The coherent conversion leaves the nucleus intact, and there
is only one detectable particle in the final state. As we will see, the resulting electron energy
stands out from the background, hence muon-electron conversion does not suffer from accidental
background, and extremely high rates can be used. Negative muons stopped in the stopping target
can undergo a nuclear capture. Particles generated in the muon capture (n, p and ) may reach the
detector system and create extra activity that can either obscure a conversion electron (CE) track
or create spurious hits. As a result, some specific shielding is required to reduce this background.
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Electrons from the high momentum tail of the muon decay-in-orbit (DIO) represent the intrinsic
background source for the uy~N — e N search. Figure 3.16 shows the energy spectrum of DIO
electrons [271].

The main features of the DIO energy spectrum can be summarized as follows:

e the endpoint of the spectrum corresponds to the energy of the electrons from y~N — e™N
conversion (CE);

e the overall spectrum is falling as (E, — E)°, where F is the DIO energy;
e about 1077 of the spectrum is within the last MeV from the endpoint.

Therefore, to reach a high sensitivity at the level O(10717), the detector resolution is crucial. As the
muon beam is generated from charged pions, another relevant background comes from the radiative
pion capture (RPC) process 7~ N — yN*, followed by the electron-positron pair conversion of the
photon. Unfortunately, not all pions decay in the transport line, and, consequently, the muon
beam is contaminated by pions. This source of background is reduced by taking advantage of the
difference between the pion and the muonic atom lifetimes. The pion has a decay constant 7 <
few tens of ns, while the bound muon has a 7 of the order of several hundreds of ns (depending
on the Z of the material). Therefore, using a pulsed beam structure, it is possible to set a live
gate delayed with respect to the beam arrival, reducing the RPC contribution to the desired level.
Other beam-related sources of background are: remnant electrons in the beam that scatter in the
stopping target, muon decays in flight and antiprotons interacting in the apparatus. Atmospheric
muons can also represent a significant source of background because these particles can interact
in the apparatus and eventually generate a signature very similar to the CE. An active shielding
is thus required to detect the incoming cosmic muons crossing the apparatus and veto the event
candidates on time. Moreover, the detector system has to provide particle identification (PID)
capabilities to reject un-vetoed muons that can mimic the CE due to a mis-reconstruction.
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Figure 3.16: Energy spectrum of the DIO electrons (solid line) fitted to TWIST data (dots ) [272].
Figure from [271].
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The current best limit on the g~ N — e™N measurement comes from the SINDRUM-II experi-
ment at PSI [241]. In SINDRUM-II, a high intensity muon beam was stopped in a target that was
surrounded by the detector elements housed in a superconducting solenoid. Figure 3.17 shows a
sketch of the SINDRUM-ITI apparatus. The detector consisted of two drift chambers, to reconstruct
the trajectories of the charged particles, and Cerenkov hodoscopes, to measure the timing of the
reconstructed tracks and for providing PID capabilities.

I
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R 11—
B gold target G outer drift chamber |
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D scintillator hodoscope | helium bath @
E Cerenkov hodoscope J magnet yoke
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Figure 3.17: The SINDRUM-II experimental setup. Figure from [241].

With a total of ~10' stopped muons, SINDRUM-II reached a sensitivity at the level of ~10~13
on the p~N — e N process using different target materials [241].

New experimental concepts have been proposed and are currently under construction at Fer-
milab (USA) and J-PARC (Japan) to search for uy~N — e N with unprecedented sensitivity at
the level of ~1077. The Mu2e experiment at Fermilab had its genesis back in the 1980s, behind
the Iron Curtain. In a way, Mu2e was born in the Soviet Union. In 1989, the Soviet Journal of
Nuclear Physics published a letter to the editor from physicists Vladimir Lobashev and Rashid
Djilkibaev, where they proposed an experiment that would perform the most thorough search yet
for muon-to-electron flavor violation. In 1992, they proposed the MELC experiment at the Moscow
Meson Factory [273], but in 1995, due to the political and economic crisis, the experiment shut
down. The same overall scheme was subsequently adopted in the Brookhaven National Laboratory
MECO proposal in 1997 [274] and then in the Mu2e and COMET experiments.

The Mu2e apparatus [275], shown in Figure 3.18, consists of three main superconducting
solenoids. The first two, named production and transport solenoid in Figure 3.18, are used to
generate a high-intensity, low-momentum muon beam starting from a 8 GeV proton beam. The
third solenoid, named ”Detector Solenoid” in Figure 3.18, contains an Al stopping target, where
the muons are stopped to generate the muonic atoms, and downstream to it, we have a low-mass
straw-tube tracker [276], followed by a pure-Csl crystal calorimeter [277]. Both detectors are left
un-instrumented in the inner 38 cm to avoid any interaction with the largest majority (>99%) of



3.3. Experimental Searches 49

the low momenta electrons coming from the muon DIO processes in the stopping target. In MuZ2e,
the stopping target is not placed in the middle of the tracker as it was done in SINDRUM-II to
limit the flux of protons, photons and neutrons (from the muon nuclear captures) in the detector.
A graded magnetic field around the stopping target increases the detector geometrical acceptance
by reflecting the electrons that initially were emitted in the direction opposite to the detector. The
whole detector solenoid and half of the transport solenoid are covered with a cosmic ray veto system
designed to detect atmospheric muons with an efficiency >99.99%.

Detector Solenoid

\ \
| \ \
: calorimeter ﬁ

- - itracker
. stopping U
: targets

Figure 3.18: Schematic of the Mu2e experiment.

The design of the COMET experiment at J-PARC, shown in Figure 3.19, is based on a similar
concept. A 8 GeV pulsed proton beam is used to produce pions, which are then captured and
transported by a series of superconducting solenoids. The pions decay into muons as they travel
along the muon transport channel. The toroidal field of the muon transport channel selects muons
with negative charge and momentum less than 75 MeV /c. The major difference with respect to
the MuZ2e design is that a second transport line is installed between the muon stopping target and
the detector regions to select charged particles of momentum centered around 100 MeV /c. The
detector system consists of a straw-tube tracker followed by a LYSO crystal calorimeter [278].

COMET plans to operate in two stages: Phase-1 and Phase-I1. Phase-1 will allow the experiment
to characterize the beam and the key backgrounds as well as provide enough statistic to reach a
90% C.L. sensitivity at the level of 7 x 1071% [278]. During Phase-I, COMET will operate with a
smaller apparatus that consists of half of the first C-shaped muon transport line directly connected
to a solenoid that houses the muon stopping target surrounded by the detector system. For Phase-1,
the detector consists of a cylindrical drift chamber and a set of trigger hodoscope counters.

Another experiment, named DeeMe [279], aims to search for the u~N — e¢”N process with
a single event sensitivity of 1 x 107! using a graphite target. The experiment is conducted at
the Materials and Life Science Experimental Facility (MLF) of the J-PARC. Muonic atoms are
produced in a primary-proton target itself, which is hit by pulsed proton beams from the Rapid
Cycling Synchrotron (RCS) of J-PARC. To detect the electron and measure its momentum, a
magnetic spectrometer, consisting of a dipole magnet and four sets of multi-wire proportional
chambers (MWPCs) [280], is employed. The spectrometer is expected to reach a resolution of
op < 0.5 MeV/c at 100 MeV/c. The resolution is needed to reject the DIO background, which
is the dominant source of high energy electrons for this search. The number of charged particles
hitting the detectors is estimated with Monte Carlo simulation to be approximately 10® particles
per proton-bunch with an RCS power of 1 MW. The construction of the secondary beamline for
DeeMe, the H Line, is now in progress. Meanwhile, the collaboration measured the momentum
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spectrum of the DIO electrons in the momentum region 48-62 MeV /c at the D2 area at MLF.
This measurement will be important for validating the theoretical models used to model the DIO
background and characterize the detector performance. Three sets of measurements were performed
between the year 2017 and 2019 [279], and the analysis is now underway.
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Figure 3.19: Schematic layout of COMET Phase-II (Figure from [278]).

3.3.1.4 u N —etN

1w~ N — eTN’ conversion is the process where a muon converts into an positron in the field of a
nucleus that undergoes a nuclear transition. This process violates the lepton number (AL = 2) and
the lepton flavor conservation. The experiments looking for the u~N — e”N process can typically
search for the u~”N — e™N’ as well. The current best limit on the u~N — e¢™N’ process comes
from the SINDRUM-II experiment [242] that set a limit at 5.7 x 107 at 90% C.L. The major
background source is the radiative muon capture, where the photon can generate (via asymmetric
conversion) a positron with an energy close to the signal region.

The search for the =N — etN’ complements the Ov33 decay searches and is sensitive to
potential flavor effects in the neutrino mass-generation mechanism. We refer the reader to [281] for
additional information about the current status and future prospects offered by the COMET and
MuZ2e experiments.

3.3.2 CLFYV Searches Using Taus

The tau lepton is, in principle, a very promising source of CLFV decays. Thanks to the large
tau mass (m, ~ 1.777 GeV), many CLFV channels can be investigated: 7% — pFvy | 75 — ety |
T—=3l,7=1l+h,.. (Il=-e, pand his a light hadron). Table 3.2 lists the current best limits
on the tau CLFV searches, and Figure 3.20 shows the individual results from the BaBar [282],
Belle [283] and the LHCD [284] experiments, together with their combination.
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From the experimental point of view, however, a difficulty immediately arises: the tau is an
unstable particle, with a very short lifetime (7 = 2.91 x 10713 s). As a result, tau beams cannot
be realized, and large tau samples must be obtained in intense electron or proton accelerators,
operating in an energy range where the tau production cross section is large.

At eTe™ and pp collider machines, the majority of the tau particles are not produced at rest,
which means that, unlike the muon searches discussed before, here we need to deal with decays-
in-flight. Thanks to the boost, the decay products could get energy values up to several GeV,
which experimentally poses the challenge to deliver wide-range calibrations for the detectors (from
a few hundreds of MeV to several GeV). For all these searches, events contain a pair of taus in
which one tau undergoes SM decay (tag side), while the signal side is selected on the basis of the
appropriate topology of each individual channel. The tagging side accepts the leptonic (7 — lvD)
and 1-prong hadronic decays, while on the signal side, CLF'V candidates are selected on the basis
of the appropriate topology of each individual channel.
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Figure 3.20: Tau lepton-flavor-violating branching fraction upper limits combinations summary
plot. For each channel, we report the HFLAV combined limit and the experimental published limits.
In some cases, the combined limit is weaker than the limit published by a single experiment. This
arises since the CLs method used in the combination can be more conservative compared to other
legitimate methods, especially when the number of observed events fluctuates below the expected
background [285].

The following paragraphs discuss the current best limits for some of these experimental searches
from experiments at B-factories and pp colliders.
3.3.21 17—y

The 7 — Iy decay, where [ is a light lepton (e, u), has been one of the most popular CLFV tau
channels. The signal is characterized by a [T — ~ pair with an invariant mass and total energy
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in the center-of-mass (CM) frame (Ecy) close to m,; = 1.777 GeV and +/s/2, respectively. The
dominant irreducible background comes from 7-pair events containing hard photon radiation and
one of the 7 leptons decaying to a charged lepton. The remaining backgrounds arise from the
relevant radiative processes, eTe” — ete vy and eTe” — uTp Ty and from hadronic 7 decays
where a pion is misidentified as an electron or muon. For this decay channel, the current best
limits comes from the BaBar and the Belle collaborations. BaBar collected (9634 7) x 105 7 decays
near the T(4S), Y(3S) andY(2S5) resonances. In the BaBar detector [282], charged particles are
reconstructed as tracks with a 5-layer silicon vertex tracker and a 40-layer drift chamber inside a
1.5 T solenoidal magnet. A CsI(Tl) electromagnetic calorimeter is used to identify electrons and
photons. A ring-imaging Cherenkov detector is used to identify charged pions and kaons. The
flux return of the solenoid, instrumented with resistive plate chambers and limited streamer tubes,
is used to identify muons. Signal decays are identified by two kinematic variables: the energy
difference AE = Ecar —+/s/2 and the beam energy constrained 7 mass obtained from a kinematic
fit after requiring the CM 7 energy to be /s/2 and after assigning the origin of the 7 candidate to
the point of closest approach of the signal lepton track to the ete™ collision axis (mp¢). Figure 3.21
shows the distributions of the events for the two decay channels in mpc vs. AE. The red dots are
experimental points, the black ellipses are the 20 signal contours and the yellow and green regions
contain 90% and 50% of MC signal events.
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Figure 3.21: The Grand Signal Box and the 20 ellipse for 75 — e (left) and 7* — u*v (right)
decays in the mpe vs. AE plane. Data are shown as dots, and contours containing 90% (50%) of
signal MC events are shown as light-shaded (dark-shaded) regions (Figure and caption from [243]).

The searches yield no evidence of signals, and the experiment set upper limits on the branching
fractions of B(7T — etv) < 3.3 x 107% and B(r* — pty) < 4.4 x 1078 at 90% confidence
level [243].

The Belle experiment [283] reported comparable limits using a data analysis based on 988 bt
and a strategy similar to that of BaBar. Kinematical selections on missing momentum and open-
ing angle between particles are used to clean the sample. Figure 3.22 shows the two-dimensional
distribution of AE/y/s vs. mpc. The signal events have mpo ~ m, and AE/+/s ~ 0. The most
dominant background in the 7+ — pty (7+ — ey ) search arises from 777~ events decaying to
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™ = pFue, (15 = e

ground. The u™ =+ and ete™ events are subdominant, with their contributions falling below 5%.
Other backgrounds such as two-photon and ete™ — qq (¢ = u, d, s, c) are negligible in the signal

+ +

vevr) with a photon coming from initial-state radiation or beam back-
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Figure 3.22: Two-dimensional distributions of AFE/\/s vs. Mpc for 75 — p*vy (left) and 7+ —
ey) (right) events. Black points are data, blue squares are 7+ — [T+ signal MC events, and

magenta ellipses show the £20 signal regions used in this analysis (Figure and caption from [286]).

No significant excess over background predictions from the Standard Model is observed, and
the 90% C.L. upper limits on the branching fractions are set at B(tT — p*v) < 4.2 x 1078 and
B(t* — ety) < 5.6 x 1078 [286]. With the full dataset expected for the Belle IT experiment [287]
(the upgrade of Belle), 50 ab—!, the upper limit for the branching fraction of LFV decays 7 will be
reduced by two orders of magnitude.

3.3.2.2 7—3l

The signature for 7 — 31 (I = e, p) is a set of three charged particles, each identified as either an
e or a i, with an invariant mass and energy equal to that of the parent 7 lepton.

In the BaBar |288] and Belle [244] analyses, all the six different combinations were explored.
Events are preselected requiring four reconstructed tracks and zero net charge, selecting only tracks
pointing toward a common region consistent with 77~ production and decay. The polar angles
of all four tracks in the laboratory frame are required to be within the calorimeter acceptance
range, to ensure good particle identification. The search strategy consists of forming all possible
triplets of charged leptons with the required total charge and of looking at the distribution of
events in the (mpc , AF) plane (mpc and AE are defined as in the previous section). The
backgrounds contaminating the sample can be divided in three broad categories: low multiplicity
ete™ — q7 (¢ = u, d, s, ¢) events, QED events (Bhabha or u™u~ depending on the specific
channel) and SM 777~ events. These background classes have distinctive distributions in the
(mpc, AE) plane. The ete™ — q7 (¢ = u, d, s, c) events tend to populate the plane uniformly,
while QED backgrounds fall in a narrow band at positive values of AE, and 77~ backgrounds are
restricted to negative values of both AFE and mpc due to the presence of at least one undetected
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neutrino. Figure 3.20 shows the resulting limit for all the combinations to be at the level of a few
1078 for both collaborations.

Even if the results are not yet competitive to those from B-factories, it is interesting to note that
experiments at the LHC have also been looking for the 7 — 3 decay. The ATLAS experiment [289)]
performed a search for the neutrinoless decay 7= — p~ptp™ using a sample of W~ — 77, decays
from a dataset corresponding to an integrated luminosity of 20.3 fb~! collected in 2012 at a center-
of-mass energy of 8 TeV. The LHCb experiment [290] performed the same search using a sample
of tau from b and c-hadron decays from a dataset corresponding to an integrated luminosity of
3.0 fb~! collected by the LHCb detector in 2011 and 2012 at center-of-mass energies of 7 and 8
TeV, respectively. The CMS experiment [291] recently delivered the results for the same search
using a sample of 7 leptons produced in both W boson and heavy-flavor hadron decays from a
dataset cooresponding to an integrated luminosity of 33.2 fb~! recorded by the CMS experiment
in 2016 [291]. ATLAS, CMS and LHCb reported a 90% C.L. upper limit on the branching ratio of
3.76 x 1077, 8.0 x 1078 and 4.6 x 1078, respectively. The Belle-II collaboration studied prospects
for the expected sensitivity on this search. This channel has a purely leptonic final state, thus it is
expected to be free of background. This allows to scale the experimental uncertainties linearly with
the luminosity, which means that at least an improvement of a factor x50 is expected for Belle-11
after accumulating a luminosity of 50 ab™! [225].
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4.1 Introduction to Effective Field Theories

Effective theories are based on the idea that specific phenomena can be accurately described without
knowing all the details of the potentially unknown fundamental theory. This occurs whenever the
physical observables of the problem being described are well approximated by a limit in the wider
range of validity of the full theory. For instance, although special relativity is a more fundamental
description of reality, slow-moving objects follow to great precision the laws of Newtonian mechanics.
The success of Newtonian mechanics arises from the fact that it is a limit of special relativity for
small velocities, i.e., v < 1. Similarly, when describing the electromagnetic field of a charge and
current distribution at far distances r, the small distance details of the distribution may not be
important, and an expansion in the small parameter /L < 1, where L is the typical size of the
charged object, can be performed. This approach lies at the heart of the multipole expansion in
classical electrodynamics. Effective descriptions are central to the progress of physics because they
enable to remove unnecessary complications from the problem at hand.

In QFT what we consider relevant is determined by the energy scale of the processes we wish
to describe. The Fermi Theory of the weak interactions

—2v2G (v PLp)(evPLve) (4.1)

is successtul in describing the muon decay because the relevant scale of the process 2 ~ m,, is much
smaller than the mass of the W. More concretely, in the SM the tree-level muon decay amplitude
is (in the Feynman gauge)

2

. g —i9aB _
M= (2) mwv“&u)(evﬁﬂw) (4.2)
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Figure 4.1: Integrating out the W in the SM muon decay to obtain the contact interaction of the
Fermi theory.

which can be expanded for small p?/ m%[, < 1as
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By identifying the Fermi constant Gp = ¢2/(4v2m3,) in terms of SM parameters, we can see
that the four-fermion interaction of Eq. (4.2) reproduces the leading order term of the propagator
expansion (see Fig. 4.1). The W boson, whose mass lies well above the scale of the transitions, is
integrated out, and Gr = g?/(4v2m¥,) is an example of a matching condition between the full
theory and the effective one. Corrections to the leading order can be systematically computed by
expanding the propagator in higher powers of the small parameter § = p?/ m%v, which results in
a tower of higher-dimensional operators. This process of removing heavy degrees of freedom in
the low-energy theory is quite general and relies on the Appelquist-Carrazone theorem [292], which
proves that the effects of the integrated-out heavy fields can be parameterized by local operators
suppressed by the heavy mass scale. Note that the resulting theory is non-renormalizable in the
usual sense, but this is not a problem as long as we want to compute the amplitude at a given
accuracy (at fixed order in 9).

EFTs are not only useful to integrate out heavy fields from perturbative models, but can also
describe unknown non-perturbative dynamics. At low energy, the QCD coupling grows and quarks
and gluons are confined in hadrons. Although the underlying QCD dynamics is non-perturbative,
the lightest hadrons can be described by means of Chiral Perturbation Theory (yPT), which is an
EFT derived by the symmetry properties of QCD. The 7, K, 7 of the pseudoscalar meson octet are
understood to be the pseudo-Goldstone bosons of the spontaneously broken chiral symmetry and
their interactions are derived from global symmetry considerations as a systematic expansion in
powers of p/A,, where p is the meson momentum and A, ~ 1 GeV. Other examples of effective
field theories that approximate the QCD behaviour include the Heavy Quark Effective Field Theory
(HQEFT) and Soft-Collinear Effective Theory (SCET). HQEFT describes the dynamics of hadrons
that contain heavy quarks by performing an expansion in powers of Aqcp/mg, with mg being the
heavy quark mass. The SCET describes QCD processes where the center-of-mass energy of the
collision is much larger than the final state invariant mass, which is the case for jet production at
colliders. In general, we can summarise the main ingredients of an EFT as follows:

1. Degrees of freedom
The first step is to identify the relevant degrees of freedom for the physics we wish to describe.
At energies below the W mass, the muon decay is described by an interaction between the
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electron, the muon and their respective neutrinos. In yPT, the dynamical fields are the light
hadrons.

2. Power counting
Secondly, we identify the small parameter in which we perform the expansion. This can be
the ratio of light and heavy masses, a small velocity or the ratio between separated energy
scales.

3. Simmetries
It is also important to understand the symmetries of the problem in question, as this can
constrain the interactions of effective theories. These can be gauge or global symmetries, and
may also arise as approximate symmetries of the limit we study with the EFT.

4.2 Generalities on Effective Field Theories

In most of the following discussion, we will have in mind an effective field theory following the
removal of heavy degrees of freedom from a weakly coupled theory. The exposition is largely
influenced by the EFT introductions presented in [293-297]. An EFT Lagrangian takes the following
general form

Cn On
An —4

Lerr = Lg<a + 2

n>4

(4.4)

where Lj<4 contains the renormalizable terms and the sum runs over the tower of dimension n
operators O, compatible with the symmetries of the theory, suppressed by increasing power of
the heavy physics scale A. The coefficient C,, of the non-renormalizable operators are known as
Wilson Coefficient (WC) and are functions of the UV parameters. The factorization of the dynamic
into UV-dependent coefficient multiplying local operators constructed out of light fields lies at the
heart of the EFT parametrisation. The reason why the factorization holds is due to the analytical
properties of the Green functions in the full theory. Amplitudes are functions of complexified
kinematical variables that can contain singularities in the real axis that are simple poles or branch
cuts associated with the virtual particles going on-shell. When the energy scale E of the processes
is well below the heavy particle mass, the amplitude is analytic in the variable E/A, while it is in
general non-analytic in the IR parameters (light-masses, momenta, etc.). The non-analytic behavior
in the low-energy parameter is reproduced by the EFT, while the UV dependence can be absorbed
in the Wilson coefficients definition when matching the two theories.

Amplitudes computed with multiple insertions of higher dimensional operators contribute to

processes asl

5AM)
A

(4.5)

n

where the term 0. A™ /A correspond to k; insertions of n; dimensional operators such that 37, (n; —

4) X k‘z =n
5A(n) E > oi(ni—4)xk; E\"
- (5) -(%) 4o

!We factorize the renormalizable amplitude .4 to obtain a dimensionless quantity
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¢ ¢
Figure 4.2: Renormalization of the ¢* quartic coupling from the insertion of the higher dimensional
operator ¢°.

If we want to compute the amplitude at a given accuracy § = (E/A)", we should keep only the
operator with dimensions d < n+4. Note that this holds even when considering loops in the EFT,
as long as we properly regularize the divergent diagrams. Naively, one may worry that the EFT
expansion breaks down in the high-momentum region of the loop integral. For instance, we can
consider the following EFT with a real scalar field ¢

1 A Co « 1
LMT:%@w%—m%%—M&+A%M4(NJ. (4.7)

The loop diagram of Figure 4.2 with the insertion of the Cg operator gives a ¢* amplitude

id =il /(d4k ! (4.8)

o)A k2 — m2

If we regulate the divergence with a cut-off, k < A, the integral gives (neglecting the terms involving
the light mass m)

Ce A?
3272 A2
Taking the cut-off scale to be around the UV scale A, ~ A, we manifestly violate the power counting
of the EFT expansion. However, this is not a problem of the EFT, but rather of the bad regulator
that we chose. In addition to violating gauge and chiral symmetries, hard cutoffs break the EFT
expansion and are not used in the EFT context. Instead, in mass-independent regularizations, such

1A~

(4.9)

as Dimensional Regularization (DR), the power divergences are absent and all divergences are local
functions of the low-energy theory parameters (masses, momenta, couplings), which can then be
removed via counterterms that respect the power counting. The integral of Eq. (4.8) in D =4 —2¢
space-time dimensions is the following (see Appendix B)

D . D—2
A = iple C d”k ! :M4E@m7p 1D
2A2 | (2m)D k2 — m2 A 2D+17D/2 2
Ce m?[1 2
_ 2e 6 - /’1’
=M s L VE + 10g<m2> +logdm +1+ O(s)] (4.10)

where we have factorized the power of the renormalization scale p** to have Cg dimensionless
in 4 — 2¢ space-time dimensions. We can conveniently define the MS renormalization scale pu —
p(4m)~1/2e72/2 to absorb the constant factors that are paired with the 1/e poles

. Cs m? [1 ,u2
Tt A =
tA=—p 3972 A2 [5 —Hog( 5 +1+4+0(e) (4.11)
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The 1/¢ pole can be removed by a local counterterm proportional to ¢*, and the contribution of the
dimension six operators is suppressed by m?/A?, respecting the power counting. Since in DR the
cut-off scale cannot appear in the numerator and the renormalization scale is only in logs, the EFT
expansion is respected at any loop order. If we then truncate the higher-dimensional operators
to a certain order in the 1/A expansion, the divergences can be renormalized with the surviving
operators. The renormalization of effective operators will be discussed in section 4.2.2 and plays a
crucial role in the EFT calculations.

4.2.1 Matching

Effective theories should reproduce the result of the full theory in their range of validity. The
weakest possible requirement is that observables calculated in the UV model and the EFT should
be the same up to the truncation error of the EFT expansion. We may require that all S matrix
elements involving external light particles are reproduced in the effective theory

(@1 am|Suvpi...ok) ={q1-. - qm| SeFT [P1 .. .DK) + O(5") (4.12)

where § is the expansion parameter. Most of the time we deal with a stronger requirement that
automatically implies the one above, that is to impose the equality of the Green functions with
external light particles in the two theories. It follows that the scattering amplitudes are the same,
as they are calculated from the green functions putting the external legs on their mass shell. In
a QFT the correlation functions are obtained from the derivative of the functional integral with
respect to the field source

Zuv|J] = /[ch>UV]el’SUV[q)Uv]'*‘ifd496J(ﬂﬁ)]'—[q’lpiyg\]/ﬂt )] (4.13)

ZrprlJ) = / [d®gpr)eSerriPerrlti [ dlz (@) Feerr (@) (4.14)

where F [@%g{?t] and F[®gpr| are the fields that excite the light degrees of freedom in the UV and
the EFT respectively. The matching requirement is hence

Zuyv[J] = Zrrr[J] + O(0") (4.15)

The simplest case is the one that we will mostly interested in: the light degrees of freedom are
the same in the EFT and the full theory, while the heavy fields are integrated out from the path
integral

/ 40 exp (iSuv @, O17]) = exp(iSerrl@p (4.16)

The functional approach is more complicated in cases like QCD and xPT, since the UV theory
contains quarks and gluons while the degrees of freedom of the effective Lagrangian are the pions.
We will not discuss this issue further as this does not apply to the results of this thesis. In most cases
the matching is performed diagrammatically: diagrams with light external fields are calculated in
the UV model and the EFT. If we relax the assumption that the external legs are on-shell, we get
the equality for the Green functions.
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4.2.1.1 Equation of Motion and field redefinitions

We should stress that the correlation functions change under field redefinitions while scattering
amplitudes with on-shell particles do not. S-matrix elements are computed with any interpolating
field that excites the correct one-particle state out of the vacuum (see [298] for a detailed discussion).
We thus have a basis ambiguity when we equate the Green functions. A field redefinition in an
EFT can be a generic functional of the field

®— &= F[P] (4.17)

and does not need to be restricted to linear transformation (which is the case if we want to keep a
renormalizable model at dimension < four). We could for instance have a scalar field ¢ redefined
as

1
o= + 10" (4.18)
Since the EFT Lagrangian is written as a sum of terms with increasing dimensionality
Lepy = LI+ L9754 £+ (4.19)

a field redefinition ® = ® + §®’ changes the Lagrangian as?

Lppr(P,09) = L4954, 09)

_ §L= sL=
d=5 / / _ /
+L (<I>,8<I>)+< 5 a“a(a@/))‘sq)

+0L975 4 L0704 (4.20)

up to total derivatives. If the field redefinition is the one of Eq. (4.18), the second line of the above
equation is the dimension five Lagrangian in the new basis. We see that we can always remove
operators that are proportional to the renormalizable Equation of Motion (EOM). For instance, in
the following EFT for a real scalar field ¢

1 A C C! 1
LEFT = 5((9“@%)8“@1) —m2¢?) — %qb?’ — aqﬁ‘l + X"’qﬁ + X5¢2D¢ + 0(A2> (4.21)

the renormalizable EOM reads

<D Fm?y ngﬁ + :?!‘bQ) ¢ = 0. (4.22)
The operator ¢20¢ is equivalent to

$*0¢ > —m?¢° — %¢4 - %w’) (4.23)
given that their difference is proportional to the classical EOM and can be removed with a field

redefinition. The operator ¢?(0¢ is said to be redundant because the physics can be equivalently
described when it is removed from the Lagrangian. Note that it may be convenient in some cases

2If the field redefinition involves chiral fermions, the path integral measure may also change, giving rise to
anomalous contributions
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Figure 4.3: Tree-level leading order matching of the SM decay b — ctid onto the operator O defined
in the text.

to work with a redundant basis at intermediate steps of matching calculations or when computing
the operator’s renormalization. It is also interesting to point out that a field redefinition aimed
at removing a redundant operator at a certain dimension affects the higher orders in the EFT
expansion. This is not a problem when we identify the physical non-redundant basis at a given
mass dimension, but can have a consequence when we compute amplitudes at higher orders. We
review this case in section 6.2.4 of Chapter 6.

4.2.1.2 A matching example: b — cud

As an illustrative example, we discuss here the matching of the SM onto the Four-Fermi theory for
the quark transitions b — ctid. We remind that the Fermi theory results from integrating out the
W boson from the SM.

Tree-level matching

The tree-level amplitude, given by the diagram of Figure 4.3, is analogous to the one calculated in
the first section for the muon decay
2 .
. g —1g — * 7
idiree = = ( 5 ) g (Vasey” PLb) (Viigdy” Pru) (4.24)
2 ) p*—my,
where the color indices are contracted in the fermion bilinears. Expanding the propagator for
P’ < m%v, the leading order term is reproduced by the higher dimensional operator

O1 = (ey* Pb)(dy’ Pru) (4.25)
with a coefficient
C1 = —2V2GrVa Vi, (4.26)

where we recall that the Fermi constant is identified in terms of SM parameters as Gr = v/2¢%/(8m?%,).
One-loop (QCD) matching

Suppose that we want to include the QCD corrections to the b — cud transitions and match
onto an effective theory where the W is removed. The diagrams that decorate the W exchange
with a gluon loop are shown in Figure 4.4. Given that we want to impose the equality of the Green
functions in the two theories, we will keep the external legs off-shell and pick a convenient kinemat-
ical point where all external momenta vanish. This may introduce IR divergences that would be
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c u c u c u c u
b d b d b d b d
(a) (b) () ()

c u c U
b d b d
(e) (f)

Figure 4.4: One-loop QCD correction to the SM decay b — cud. It is sufficient to calculate only
the one-light-particle irreducible diagrams (1LPI: graphs that remain connected when cutting one
light particle line) to obtain the equality for all Green functions

otherwise regulated, but since the EFT reproduce the full theory IR behavior, they should cancel
in matching. We calculate in the Feynman Gauge for both the W and gluon propagator, while to

shorten the notation we define
GF = QﬁGFVJdVCb (4.27)

More details on the DR regularized integrals and spinor identities that are later used can be found
in Appendix B. The first diagram amplitude is

A, = (m3yGr) g2u* %k —i i e ® i) (e p (4.28)
1A = |\MyGFE ) g b (27T)D k2 2 _m‘g/v cy k27 L Tv kg')/,u Lu .
where the T are the color SU(3). generators in the fundamental representation, satisfying the

identity

1 1
TZ-C;-T,gl = 5 <5il5kj — 36U5M> (4.29)

When color indices are not specified they are understood to be contracted implicitly in the fermion
bilinear. Due to Lorentz invariance the product k®k? can be replaced by ¢®°k?/D under the
integral sign, leading to

D
= (m2 éF) g‘gM%/ 7k ! (T Yoy Prb) (dy" T+ Pru) (4.30)
w (2m)P k4 (k2 — m%,) .

D
Similarly, the second to fourth diagrams give
1Ay = 1A, (4.31)
dPk 1

2
. . . 2 A 95 92¢ _ a 7 a. oV
iAe = iAg = — (mWGF> S / 2P A — ) (@0 T Yo PrLb) (dy"T*y" Pru) (4.32)
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The integral is UV finite but has an IR divergence that would be regulated by an external momentum
or a quark mass. Since there is no UV divergence, we can compute the diagram non-ambiguously
in DR taking e;g < 0. In the MS scheme, we find

2 D ;2 2
9s 25/ d”k 1 t9s ( 1 K 3)
9s - g 4?2 4.33
D" (2m)D kA(k2 — m3,)  64m%m3, \em 8 my, 2 (4.33)

while Eq. (4.29) and the Fierz identities (see Appendix B) give
(T Yoy Prb) (J’y”T“yav“PLu) =4 (7T vavuPrb) (Jy“T“vav”PLu) (4.34)

=8 [(Eﬂy“PLu) (dy*PLb) — % (ey* Ppb) (Jw“PLu)] (4.35)

Combining the results, the sum of the first four diagrams is thus

. s Bia (1 w3
i(Ag + Ap+ A+ Ag) = G i (5IR + log m%/v + 2) X (4.36)
|:(C’y‘uPLu) (dy*Prb) — % (ey" Ppb) (d’y“PLu)] (4.37)

The last two diagrams contain scaleless integrals that vanish in DR

dPk 1
— 55 =0 4.38
| e 439
We may explicitly split the IR and UV divergences by writing the integral as
/ Pk 1 _/ dPk 1 o om? (4.39)
2m)P (k22 | (2n)D | k2(k2 —m?)  ki(k?2 —m2) '

where we have introduced a fictitious mass m to have terms that are separately UV and IR divergent.
Each of them can be respectively computed taking eyy > 0 and g < 0, and we find

de‘ 1 7 1 1
/ 2m)D (k2)2 ~ 1672 <5UV - em) (4.40)

The analytic continuation would require € = eyy = e which is why in DR the integral vanishes.

The UV poles are cancelled by the theory counterterms, leading to
iAo+ ot =iAs+ct = —GFCF%L (ey*Ppb) (dy" Pru) (4.41)
T EIR

where Cp = 4/3 is the Casimir coefficient T*T* = Cr X 13«3 of SU(3). The full theory result,
including the tree-level diagram, is thus

~ s (11 1 2 3 _
Z.-Atot + iAc.t = *iGF |:1 - 047 < + 10g mL + 2) :| (E’YuPLb) (d’y“PLu)

4 3 €IR 12/1/
~ das 1 u? 3\ _ -

- — +log —— + = kP, dy* Prb 4.42
iGp o (EIR + log -y + 2) (ev* Pru) (dy*Ppb) (4.42)



66 Chapter 4. Effective Field Theories
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Figure 4.5: One-loop QCD correction to the effective interactions mediating the decay b — cud.

Each diagram contains the insertion of the operators O, Oy defined in the text

The effective operators that are needed to reproduce the amplitude are the following
O = (& Ppb)(dyPPru) Oy = (&Y Pru)(dy’ PLb) (4.43)
and we conventionally add them to the Lagrangian as

Lgrr D — Z GiO; (4.44)

The corresponding diagrams in the low energy effective theory decorated by gluon loops are shown
in Figure 4.5. Every diagram contains the insertion of both operators in Eq. (4.43). All EFT loop
integrals are scaleless, while the fermion and color structure can be read off from the equivalent full
theory diagram. The result, which can be easily computed from the above calculations, is

Z.AE)I:,T _ |: Cl 4 == <1 — 1> (302 - ]:;-Cl>:| (E’yO‘PLb)(CZ’Y’BPLU)

4w \euv  €IR
. Qg 1 1 11 o« 7 8
+i|-Co+——— — 3C, — —Cy (C’y PLu)(d’y PLb) (4.45)
47 EUV IR 3

The UV divergences are cancelled via counterterms proportional to O and O as

O[ ) as — 7
iAPFT = 0 <302 — C'1> (ey*Ppb)(dy® Pru) — —= — <301 - Cz> (ey* Pb)(d~" Pru)
TEUV 4m eyv
(4.46)

Note that the UV divergences of the EFT are different from the one of the full theory, but they are
closely related to the model IR behaviour. The reason is quite general. If we expand the integrands
of the full theory in powers of the IR parameters (masses, external momenta, etc.), the expansion
coefficients take the following general form

. A B
iAp = — + — +C (4.47)

€UV IR
where C is finite, the IR divergences are a consequence of the expansion and the A poles are canceled
by the full theory counterterms. Performing the same expansion in the EFT, the loop integrals are
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all scaleless and vanish in DR, which means that, separating the IR and UV poles, the amplitude
is

. 1 1

iAgpT = —Bprr | — — — | - (4.48)

Euv €IR

Since the EFT must reproduce the IR behavior of the full theory we have that Bgrr = B, which
connects the UV divergences that are renormalized in the EFT to the IR of the full theory. After
the UV poles are separately removed, we find that the loop matching contribution amount to the
finite part of the full theory diagram expanded out in the low-energy parameters. Indeed, including
the counterterms, the total EFT amplitude of our example is

s 1 11 _
GAPET 4 APFT _%é (302 - 301> (@y* PLb)(dy? Pru)
Qg 1 11 -
_=s N e B
P (301 3 C'2> (¢y* Pru)(dy” PLb) (4.49)

which reproduces the theory result if the Wilson coefficients are

- s 2 3 -~ [3as 2 3
Cr(p) = Gr [1— = (log L+ 2) |, Colp) = G |22 (log L + = (4.50)
47 miy 2 4 my, 2

A check for the correctness of the calculations is given by the cancellation of the IR poles. An
important observation is in order. The matching conditions contain logs of the ratio between the
renormalization scale and the mass of the heavy particle, in this case, myy. If the energy scales are
largely separated, the logs can become dangerously large, invalidating perturbation theory despite
having a small QCD coupling

2
Q, m
p <L my — <;log /g) ~1 (4.51)

Large logs can be avoided in matching by choosing a renormalization scale as close as possible to
the heavy scale u ~ my,. However, the EFT calculation with on-shell quarks will contain logs
of the ratio between the renormalization scale and the low energy masses or external momenta,
which suggests that the EFT result is reliable for u ~ my, potentially reintroducing the large logs
problem. The EFT UV behavior saves the day. The EFT counterterms define a renormalization
group evolution for the Wilson coefficient that can be solved to re-sum these large logs. This is one
of the reasons why the EFT is so useful even when the full theory is known: converting the IR logs
of the fundamental theory into UV logs of the EFT allows for their resummation by integrating
the renormalization group equations.

4.2.2 Renormalization Group Evolution

We argued in the first section that an EFT is as renormalizable as any QFT if we are happy
with a finite accuracy in the calculation. Loops with single insertions of dimension d operators
(’)Ed) yield amplitudes that are proportional to 1 /Ad*4 and can be renormalized by dimension d
counterterms. In general, the counterterms can be proportional to dimension d operators different
from the inserted ones, giving rise to operator mixing

1
Lerr D 130" 2 P 0) (4.52)
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where the contact interactions O; contain the renormalized fields. A dimension d counter term
may be necessary to renormalize the divergence of a loop diagram with multiple insertions of lower
dimension operators having mass dimensions that satisfy [>,(d; —4)] = d — 4. For example, the
double insertion of a dimension five operator gives a dimension six amplitude (1/A) x (1/A) = 1/A2.
We thus expect in the renormalized Lagrangian terms like

1
Lepr O Wqﬁdl) X e x O (B d) o @ [Z(di - 4)] —d—4  (4.53)

7

Moreover, if the EFT has dimensionful parameters in the renormalizable Lagrangian, an operator
of dimension d’ = d + n can mix into one of dimension d with n insertion of a mass. This is
for instance the case for the loop diagram calculated in Eq. (4.11), where the ¢5 operator mixes
with the renormalizable quartic coupling via two powers of the scalar mass m?. Therefore, the
renormalized Lagrangian may also contain

m%FT C'(d'f'”) Z£f+n—>d) O(d) (454)

LerT O 3720 i

J
where mpgpr is a mass parameter of the d < 4 Lagrangian.

To illustrate the renormalization group evolution of the Wilson coefficients we focus on the first
case, that is the mixing between operators of the same dimension. The second case will be the main
subject of Chapter 6. The Renormalization Group Equations (RGEs) follow from the independence
of the bare Lagrangian from the renormalization scale p. We drop the dimension upper indices to
avoid cluttering and write

LErFT D CiZijOj (4.55)

The operators constructed out bare fields O;pare = Z0,;0; are p independent, hence we factorize
the field renormalization constant Zo, to have

d Zis d Zis
0=p— (C;=2L0; are): (CZ- ”). 4.56
Mdu( Zo, P o Zo, (4.56)
Defining g

we arrive at

dz P _dlogZ

d
,U@Ci = Cjvji where v = — (4.58)

dlog ~ dlogp’
The matrix v is known as the anomalous dimension matrix and it parametrises how the dimension
d operators scale and mix in the renormalization group evolution. To connect to the b — cud
example, let us suppose that we are interested in the QCD loop corrections. At n-loops, we expand
the anomalous dimension matrix in powers of the QCD coupling constant

= o))
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while the renormalization constants Z contain increasingly singular e poles
Z7=1+Y 2 Zy(os) (4.60)
ok

The anomalous dimension matrix definition implies the equality

1 1 1 dz; 1
1+-Z7 — = —— — 4.61
”( e 1+O<52>> sdlogum(s?) (460

and the renormalized QCD coupling beta function in 4 — 2¢ space-time dimension is the following

Blas,e) = C;Oléégjz = —2ea; + [(ay) (4.62)

where B(as) is o e o
Bos) = =20 Lg (E) B + O((Zlﬂ_) >] (4.63)

Applying the chain rule to the right-hand side of Eq. (4.61) and substituting the QCD beta function

1 1 1dz; 1
we find that the anomalous dimension matrix is obtained by the single 1/ poles of the counterterms
A
=2 4.
,}/ aS das ( 65)

4.2.2.1 Solving the RGEs in b — cud

In the example of the previous section we computed the QCD one-loop corrections to the effective
operators relevant for the quark transitions b — cud. We have found that the UV divergences are
cancelled by the counterterms

ag 1 11 ag 1 11
ct = ——— - — - —= - — 4.
Lt 1n e (302 3 C’1> 01 Tre (301 3 Cg) 0o (4.66)

which can be absorbed in the renormalization constants Z

) as (—11/3 3
—CiZ;;0; th Z=1 — 4.
Lerr O —C; Z]Oj wl 2%92 + Ire < 3 11/3) ( 67)
The wave function renormalization (in Feynman gauge) of the two operators is the same and equal
to Zo,, = 1 — as/(3me) and can be subtracted to obtain Z as defined in Eq. (4.57). Applying
Eq. (4.65), we find the one-loop anomalous dimension matrix

dci _ : as (-1 3
W = G with 7 = o~ < 3 _1) (4.68)
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The RGEs can be easily solved in a basis where the anomalous dimension matrix is diagonal. The
matrix is diagonalised by the linear combinations

dc
Oy =C1 £ 0 ud—; = Cayse (4.69)
where o N
Yy=— y-=-2= (4.70)
T v

In the diagonal basis, the RGEs are readily integrated

as(py) o
Cap) = ciw)exp{ / o da”;(;;} (.71)

where ((c) is the QCD beta function of Eq. (4.63). With ny = 5, the one-loop coefficient is
Bo =11 —2/3ny = 23/3 and the solution reads

o —6/23 a 12/23
() = Ca ) (2221 C-(up) = C- () (2220 (4.72)

We can substitute the tree-level matching values, which to avoid large logs should be taken at
w ~ my, and run down to the scale of the b — cud transitions pu ~ my. We find

Co(mp) ~ 0.85C, (mw) = 0.85Gr  C_(my) ~ 1.38C_(mw) = 1.38Gr (4.73)

Even though we started with a vanishing Cy(my ), the renormalization group evolution sizably
generates it at low energy Ca(my) ~ —0.27Gp. The effects of the large logs are relevant and
have been re-summed in integrating the RGEs. Note that if we run with the one-loop anomalous
dimension matrix, it would be inconsistent with the order of the calculation to include the O(ay)
correction in matching. In Leading Order (LO) calculations where we match at O(ag) and run at

Qg mw \ "
LO: — log —— 4.74
0 ;(477 ©8 mb> (4.74)

n
If we include O(a) terms in matching, the one-loop running will be contaminated with §= %" (Z‘—; log %—‘2’)

O(as), we resum terms like

terms that are of the same order of the O(ag) two-loop running. A consistent treatment of Next-
to-Leading-Order (NLO) would thus require the two-loop RGEs. More generally, in a N™LO

calculation we resum .
g\ ™ o myy
N™LO : (7) %s 1og W 475
47 ; 47 8 my ( )
by computing the matching at m loops and running at m + 1 loops.

4.3 The Standard Model Effective Field Theory

In Chapter 2, we discussed the evidence and observations that suggest an extension of the Standard
Model is necessary. If we assume that the physics responsible for these observations is much heavier
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than the electroweak scale, we can describe it using an effective field theory. We can view the SM
as the renormalizable Lagrangian of an effective theory in which the heavy particles have been
integrated out. We can include higher-dimensional operators constructed from the SM fields that
respect the standard model gauge symmetry, and investigate the distinct signals predicted by these
novel operators. By including every possible operator that is not forbidden by symmetries and
searching for evidence of their presence in experiments, we can probe a wide range of different
models with the sole assumption that the new states are heavy. This effective field theory is known
as the Standard Model Effective Field Theory or SMEFT, and the Lagrangian has the following
schematic form

1 &
Lovprr = Lsv + Y = > col?, (4.76)
d=5 =1

where ng is the number of independent operators at dimension d. If we assume that no right-
handed neutrino is present at low energy, we have solid evidence for a non-zero Weinberg operator
at dimension five? [299]:

1 .. _ -

L5 = ﬂC\Z]{,(&H) (KEH) +h.c (477)
which breaks the lepton number symmetry and gives Majorana neutrino masses when the elec-
troweak symmetry is spontaneously broken by the Higgs VEV

my = CW (4.78)

> S

where <H 0> = v. For an O(1) Weinberg operator coefficient, the upper limit on neutrino masses
suggest a new physics scale A > 10> GeV. We already discussed models in Chapter 3 that suf-
ficiently suppress the dimension five coefficient to allow for new physics closer to the electroweak
scale.

The leading order contributions to a wide variety of BSM processes appear at dimension six.
Not accounting for the different flavours, there are 84 independent (non-redundant) operators at
dimension six. Redundancies can appear whenever two operators differ by a total derivative or by
an operator proportional to the renormalizable equation of motion, which can always be removed
with a field redefinition and do not contribute to observables (see section 4.2.1.1). The Hilbert
series method provides an elegant way to count the number of independent operators for each mass
dimension [300-303|. Part of the dimension six SMEFT Lagrangian appeared in the 80s [304], and
was later completed in what is commonly known as the Warsaw basis [305]. We reproduce the
dimension six operator basis in Table 4.1. Although numerous potentially interesting BSM signa-
tures are expected when we include the dimension six operators in the Lagrangian, experimental
data are yet to show a clear deviation that suggests the presence of a non-zero operator. So far,
observations are compatible with the predictions of the renormalizable SMEFT Lagrangian, and
can be used to infer upper limits on the size of the operator coefficients.

Complete basis for the operators of dimensions seven and eight have also been classified [306-309]

3The Weinberg operator is the only non-zero operator at dimension five that respects the SM gauge symmetry.
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1:Xx3 2: HS 3: H*D? 5 :2H? + h.c.
Q¢ | Arearahradr  Qu | (HTH)  Quo (HTH)O(HTH) Qerr | (HYH)(Ipe, H)
Qa | FAECCGErGSH Qup | (H'D*H) (H'D,H) Quu | (H'H)(gyu,H)
Qw | MEWIwIrw e Qan | (HH)(gpd, H)

TIK g TvyrrsJd K
Qﬁ,—. € WM WVPWP ®

4: X2H? 6:92XH + h.c. 7:¢?H?D
Que | HHGLGY™  Quw | (Lo e)r HW], M (H'iD 1) (,1,)
Qua | HHHGAG™  Qup | (l,o"e)HBu @ (H' DLH) w1,
Quw | HHHWLW™ Qg | (g0 T4u,)H G, Que (H"fﬁ WH) (@7
Quiv | HHHWLW  Quy | (g u,)r B W], Q) YD 1) (g",)
Qup | H'HBLB"  Qup | (4" w)H By, Q) (H'fri BLH) (g a)
Qui | HHBLB"  Quc | (G0 TAd)H G, Qrru (H'f-f%’ ) (m,7"u,)
Quwe | HIWHWLB»  Quy | (gotd,)yr' HW], Qua 1D 1) (dyd,)
Quivp | HIWTHWLBY  Qup | (g0 d,)H By, Qrua + hee. | W(HID,H) (@, d,)
8: (LL)(LL) 8: (RR)(RR) 8:(LL)(RR)
Qu | GEl) Qe | (@fen)(@ue) Qe | (") (e
Wl @) @) Que | (Y ) () Qu | Gy ) (aeyu)
| @ rle) @' e) Q| (@) (divdy) Qu | Gyl (dayuds)
Q| G @owe) Qe | (Ete) (u; Yyut) Qe | (@) Esmer)
QY| Gy @' Qe | (@en)(diyuds) Qi (m#qr)(mw)
QY (¥ ur N dsypdy) S (@ TAg) (e T )
QW | @ Thu)(dey, T4 QL | (@ e (o)
Q| (@ TAq.) (T dy)
8 : (LR)(RL) + h.c. 8:(LR)(LR) + h.c. 8:(B)+ h.c
Quedg | ([Ber) (digy;) Q,(Iib)qd (@ur)ejp (g5 dys) Qauq f-m?aﬁj.l;(dgcuf)(qgn‘ﬂc‘!f)
Qs | @TAu)ein(@T4d)  Quuue | Canyir(dhCal”) (ulCey)
Q[f‘qu (EGT')KJA’(‘L.W) Qagal | Copyemntik (Q"m(wqgﬁ)(st?CI?)
szu (Bower)en(@ o u)  Quuue €apy(dyC u?)(ud Cey)

Table 4.1: Dimension six operators in the Warsaw Basis [305]. The subscripts p,r, s, ¢ label the
flavour indices. The lepton doublet is indicated with [ rather than £ as in the rest of the text. For
non-Hermitian operators, one should include the h.c.

4.3.1 Low Energy Effective Field Theory (LEFT)

The SMEFT is the appropriate effective theory to use when the energy scale of the process we want
to describe is above the electroweak scale. It is the EFT we should match onto when we integrate
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out the heavy particles of a new physics model. However, the precisely measured processes aimed
at probing NP contributions often occur at energy scales much smaller than v, as is the case for
most LE'V processes. Calculations of low-energy transitions are best parameterized by an EFT in
which the heavy particles of the SM, including the W, the Z, the top quark ¢, and the Higgs boson
h, are removed, and the electroweak symmetry is spontaneously broken. The resulting contact
interactions should respect the surviving gauge symmetries, i.e. QED and QCD.

Low-energy calculations are connected to high-energy SMEFT coefficients, which are functions
of the UV parameters at the NP scale, via the renormalization group evolution. In a top-down
perspective, a new physics model is matched onto the SMEFT, and the RGE evolution down to
the low-energy scale yields observables in terms of the parameters of the model, which are then
compared with experimental results. A bottom-up calculation proceeds in the opposite direction,
starting with the observables calculated with low-energy coefficients that respect the experimental
constraints and running them up in energy scale. This maps a low-energy experimental bound
onto a combination of high-energy coefficients that can be used to identify the region of coefficient
space where BSM physics should reside. Since the bottom-up perspective does not consider any
particular model, the calculations should, in principle, contain every operator that could be within
experimental sengitivity. The effort may be repaid by the fact that any model could be checked
against a properly organized bottom-up treatment, which only needs to be updated when new
experimental results appear (which is not very often).

Both in top-down and bottom-up calculations, when the electroweak scale is crossed in the
running, we should match the low energy and the SM EFT. The matching conditions for dimension
six operators have been calculated at one loop [310,311], while the complete tree-level matching up
to 1/A* order has also been computed [312].

SMEFT and LEFT operators running is known up to 1/A? order, which include the running
of dimension five and six operators, as well as the mixing of two dimension five operators with
a dimension six one [313-317]. Anomalous dimensions at 1/A* order are only partially known
[318-321], and in Chapter 6 we present previously unknown renormalization group equations for a
subset of dimension eight operators.

4.3.2 Effective Field Theory for y — ¢ LFV

In this section, we present an effective analysis of 4 — e processes that are otherwise flavour
diagonal, i.e p — ey(7y), p — 3e and p — e conversion in nuclei but not processes like K — ep.
As we have discussed in Chapter 3, these constitute the best-constrained processes and expect the
most significant sensitivity improvements in the upcoming years.

Below the electroweak scale, the operators relevant for ;1 — e transitions are a subset of the QCD
and QED invariant contact interactions of the low energy effective theory. These include operators
of dimensions five to eight that have three and four external legs. We follow the conventions of [322]
and add the operators to the Lagrangian as

1
Lt = Laopxqep + —5 Y Cio Oy (4.79)
¢,Lor

where ( represent the flavour indices, while “Lor” indicates the chirality and Lorentz structure of
the operator. The observables we want to describe, u — ey(y), 4 — 3e and p — e conversion in
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nuclei, are sensitive to the operators of Table 4.2.

212q operators

Oy, (e Pru)(@vaPzq)

2l operators _ _
£ Oqs?yz (ePyp)(qPzq)

Opy m,,(ec®? Py ) F, ) )
O <(p )X fof Oflyy (€07 Pypi)(a0asPrq)
o v aﬁ~ 4] operators
Oxxy L(ePy p) XopX P

O@,YZ (ev*Py p)(lvaPzl)

Oxxvy (@ Prin) Xapd’ XO7 Olyy  (ePru)(IPyl)
O L (670 Py 1) X o 30° X ’
xxvy 2 (@ebyi)Xas e (ePy p)(TPy)

OFyy (€0’ Pyp)(ToasPyT)

Table 4.2: Low-energy QCD®QED invariant EFT for u — ey(y), ¢ — 3e and p — e conversion
in nuclei, in the notation of [322]. The experiments can be sensitive to three, four-point functions
that correspond to operators of dimensions five to eight. X,3 = F,3,G,g are the field tensors of
photon and gluons respectively. The chiral projector Py z can be Y,Z € {L, R}, L=RR=1L,
while ¢ € {u,d, s,b,c} and | € {e, u, 7}

Let us consider 4 — ey as an illustrative example. We can compute at the tree-level in the
EFT the branching ratio [142]

Br(p — ey) = 3847%(|Cp.r|* + |Cp.r?) < 42 x 1071 = |Cpy| < 1.05 x 1078 (4.80)

where the dipole operator coefficient Cp y(m,) are at m, to avoid large logs. If we assume that
the dipole coefficient is ~ 1/1672 if normalized at the new physics scale, Equation (4.80) implies
Anp ~ 1.3 x 10® TeV. The bound can be satisfied with lighter UV physics if the dipole coefficient
appears at higher loops and/or is suppressed by a small coupling.

To use the bound on EFT operator coefficients to constrain generic BSM heavy physics, we
should determine the upper limit on coefficients at the new physics scale, where the heavy degrees
of freedom are integrated out. This is done by solving the renormalization group equations of the
Wilson coefficients, which requires dressing the operator basis with QED and QCD loops. The
one-loop RGEs can be written as

dC as(p) ~
LAC_a (1) &
du 47 4

cre (4.81)

having aligned the Wilson coefficient in the row vector C. The QCD renormalization matrix I'® is
diagonal, while QED (T'.) can mix operators with different legs and Lorentz structure. We would
like to resum the numerically relevant QCD effects and expand the QED loop effects in powers of
e, neglecting its running. The formal solution of the matrix equation dU/dt = HU is a t ordered
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exponential U(t) = (T exp fti) dt'H(t))U (to) 4, which in our case can be expanded at O(a.) to be

Cr(ps) = Cr(pi)dry (ZZ((Z{)) ) - |:5JK + %fJKrgK(Nf) 10%(”5)} +O(ae)’ (4.82)

where a; = I' ; /25y parametrises the QCD running of two-lepton two-quark operators. Vector
operators do not run ay = 0, while the scalar and tensor coefficients are respectively ag = 12/23
and ar = —4/23. Defining A\ = (as(us)/ (i), the coefficients fjx read

1 1= )\es—ex—aq+l

Jik = (4.83)

1—Xayj—ag —aqg+1
with a4 parametrising, if present, the running of QCD parameters in the QED anomalous dimension
(for instance, the tensor to dipole mixing for two-lepton two-quark tensors is proportional to the
mass of the virtual quark in the loop). QED renormalization, although not as numerically relevant
as the QCD coeflicient rescaling, plays a crucial role because it mixes operators. Operator mixing
allows probing an operator coefficient which is difficult to detect via its mixing with a tightly
constrained one. For instance, the tensor operator O’y = (éaaﬂPyu)(fJagPyT) mixes into the
dipole by closing the tau legs in a loop and attaching a photon. The contribution to the dipole
coefficient is one-loop suppressed (and log enhanced), but, to close the loop, a chirality flip is
necessary, and a 7 mass insertion enhances the mixing by m,/m,. Complemented with a large
anomalous dimension, the mixing is ~ O(1). The (sensitivity) bound that yu — ey sets on the
tensor coefficient at myy is then [322]

Cry (mw) $1.07 x 107° (4.84)

We should stress that this is not an exclusion bound, but rather an experimental sensitivity. In
coefficient space, y — ey constrains one direction that corresponds to the dipole coefficient at the
experimental scale m,,. The RGEs can tell us how this direction rotates in the coefficient space at
higher energies, but the experiment still imposes a bound in one direction only. In other words, the
bound will apply to a single combination of operator coefficients at the high scale; namely, solving
the RGEs up to myy,

|Cp,y|(my) = [0.938Cp,y (mw) + 0.981CF5 (mw) + ...| < 1.05 x 1075, (4.85)

The upper limit in Equation (4.84) corresponds to the case where only C77y(myy) is non-zero
and is commonly known as one-operator-at-a-time bound or sensitivity. A sensitivity corresponds
to the smallest absolute value which is experimentally detectable, but larger values are possible if
cancellations with other contributions occur. Indeed, we can see that if the dipole and the tensor
are of similar size and opposite sign, an accidental cancellation can occur in Equation (4.85). This
is an example of a flat direction in coeflicient space. Flat directions are a general feature of bottom-
up EFT analyses of LFV, because the operator basis contains more operators than observables,
and the few operators constrained by experiments mix with the rest in the RGEs. Nonetheless,
identifying operator coefficients to which observables are most sensitive is a useful guide for model
building. The sensitivities of u© — 3e,u — ey and ulN — eN to Wilson coefficients at my in
the low energy EFT has been extensively studied [322-326]. Spin-dependent p — e conversion in

4This is the solution for time evolution operator in Quantum Mechanics.
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nuclei [324,325,327,328], although less constraining than the spin-independent searches, allows to
probe different combinations of coefficients and, thus, reduce the number of flat directions.

Leptonic and semi-leptonic rare meson decays such as K — ue, K™ — 7t pe are systematically
studied in the EFT by adding to the operator basis quark flavor-changing operators, and the
sensitivities to Wilson coefficient can be similarly determined [329]. Concerning 7 <+ [ processes,
EFT analysis can be found in [322,330].

To extend the bottom-up analysis above the electroweak scale, one should solve the RGEs of
SMEFT lepton-flavour-changing operators and identify all the contributions to which observables
could be sensitive. As we explore in Chapter 5, is not obvious what one should include, and we
argue that some challenging calculations are required to fully parametrise LFV in the SMEFT.









CHAPTER 5

What is leading order for LFV in
SMEFT?

5.1 Introduction

Perturbation theory is a widely used tool in the Standard Model, New Physics models and many
other areas. In a given perturbative expansion, the first non-vanishing term, sometimes called the
leading order contribution, is often simple to compute. However, when a calculation simultaneously
involves many perturbative expansions, it can be more challenging to identify the “leading” or
dominant contribution.

In this chapter, we study perturbative expansions in the lepton flavour changing part of the
Lagrangian of the Standard Model Effective Field Theory. We restrict to LF'V operators for two
reasons ; firstly, they must exist because the observations of neutrino oscillations demonstrate that
leptons change flavour, as we discussed in Chapter 3. And secondly, LF'V operators are simpler than
generic operators, because SM loop effects, included via renormalisation group equations, cannot
change lepton flavour, so the flavour of at least two legs of each operator remains fixed.

There are many perturbative expansions in SMEFT: the EFT expansion in the ratio of weak to
New Physics scales UQ/A?VP7 as well as the SM expansions in loops, in the O(1) gauge and Higgs
self-couplings and in the exceptionally hierarchical Yukawa couplings, and also in mixing angles.
So it is not obvious to find the leading effects. For example, it was noticed long ago by Bjorken
and Weinberg [192], in the SM extended with a second Higgs H with LFV couplings Y./, H Pre,
that the one-loop amplitude for y — e~ is suppressed by two lepton Yukawas, so is smaller than
two-loop “Barr-Zee” contribution:

eyuY i Ype
16m2M%

eytggy,ue

Alfloo X A _O\O AT
P (1672)2M%

A27loop X
However, this leading (although two-loop) contribution was missed in part of the subsequent liter-
ature.

Various powercounting schemes have been introduced to organise perturbative calculations in
flavour physics. For instance, in the quark flavour sector below the weak scale, the Wolfenstein
parametrisation of the CKM matrix [48] in powers of Cabibbo’s A ~ 0.22, allows to guess the
order of diagrams [294,297]. And above the weak scale, there are schemes such as Frogatt-Nielsen
charges [130] and Minimal Flavour Violation [132] (see also the more general framework introduced
in [331] for B-anomalies). Below the weak scale, a powercounting recipe for flavour is sufficient
to organise a calculation, because the mass scales for the EFT are known, and the remaining
couplings are few: in the RGEs for four-quark operators, QED effects can be included at appropriate
subleading order in the expansion in «, log [294,332]. For LFV below the weak scale, the “leading
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order” operators and RGEs have been assembled: observables can be parametrised with three and
four-point functions, which correspond to operators of dimensions five to eight (see section 4.3.2),
and the “leading order” RGEs, which include two-loop vector to dipole mixing, are given in [323].
However, above the weak scale, the situation is complicated by the dynamical Higgs and SU(2)
gauge bosons, which introduce more particle mixing in the RGEs, and also by our ignorance of the
mass scale of new particles, Axp.

In this chapter, we suppose that New Physics is “beyond the LHC”, which is taken to mean
Axp > 4 TeV, and introduce in Section 5.2 a generalisation of the Wolfenstein counting that
parametrises the expansions in all the SM parameters of SMEFT, as well as the scale ratio v/Anp,
in terms of a single power-counting parameter A ~ 0.2. For any operator, this scheme allows
to identify the “leading” contribution to a given process among those that could arise at different
orders in the multiple perturbative expansions. It also allows to classify the contributions of various
operators to a process according to the order in A, and estimate when a process can have sensitivity
to an operator. So in section 5.3, the power-counting scheme is used to address four questions:

1. Are dimension six operators sufficient to parametrise LFV, or can observables be sensitive to
dimension eight operators?

2. Does one need two-loop anomalous dimensions in the RGEs?

3. Are LFV observables sensitive to the effects of CKM angles in the RGEs, or can the quark
Yukawa matrices be approximated as diagonal?

4. If the dimension six operator HT H¢He is present, it contributes to the charged lepton mass
matrix when the Higgs has a vev, so the lepton mass eigenstates are not the eigenstates of
the lepton Yukawa matrix Y, that appears in the RGEs. How should this be accounted for?

The results are summarised in section 5.4. The powercounting suggests that in the y <+ e sector,
upcoming data could be sensitive to some dimension eight operators, and some O(log /(167%)2)
effects, for Axp < 50 — 100 TeV (see the estimates 1'in tables 5.5 and 5.6). The relevant
dimension eight operators are listed in Appendix C, and their (tree-level) matching onto the EFT
below myy is given in Appendix C.2. For Axp 2 50(— 100) TeV in the p <> e sector, and for all
considered scales in the 7 <> £ sector (Axp = 4 TeV), the powercounting suggests that the one-loop
RGEs for dimension six operators are sufficient

5.2 Power-counting

We want to connect low-energy LFV processes with the operator coefficients in the SMEFT. In
a top-down sense, this means we want to estimate the “leading” or largest contribution of each
operator coefficient to each observable, or equivalently from a bottom-up perspective, the best
sensitivity of each observable to each operator.

'Only a few p — e operators involving #t, such as H' H (fio Pre)(g,o Prt), could contribute up to Axp < 100 TeV.
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5.2.1 Notation

We write the SM Lagrangian in the notation of Chapter 2. Operators that change lepton flavour
(but not number) arise at dimension > 6 in SMEFT, and are added to the Lagrangian in the basis
of [304,305], with coefficients written as a dimensionless C' divided by appropriate factors of a mass

scale A:
1

5> OCfoR Cthet .} (5.1)
K

Lsverr = Lsy + {% Z 505 +
I
where A is v = 174 GeV in the experimental constraints on coefficients (1/v? = 2v/2GF), but it is
sometimes convenient in the powercounting to take A to be the scale Axp of New LFV Physics. So
for A = v, the powers of v2/A%p are included the coefficients C. The coefficient subscripts label
the gauge structure, and the superscript ¢ is the flavour of the fermions composing the operator
in order of appearance(sometimes the LFV indices are suppressed when they are obvious). The
dimension six and eight operators are respectively labelled and normalised as in [305]? and [308].
The operators {Or} represent LF'V contact interactions among SM particles. Loop corrections to
the operators generically diverge, so after renormalisation in MS, the operator coefficients depend
on the renormalisation scale p and satisfy the RGEs. These can be written for dimension six
operators as

G L, (5.2)

where the operator coefficients are lined up in the row vector c , and the matrix elements of T are
the anomalous dimensions multiplied by SM couplings, currently known at one-loop. The matrix
I can be improved by including higher-loop contributions to the anomalous dimensions, and the
equation can be extended by adding higher-dimensional operators (which changes its structure
[333]). Eqn(5.2) can be solved numerically, or solved analytically as a “scale-ordered” exponential,
or approximated by neglecting the running of SM couplings and exponentiating I:

Clu) ~ C(u1) + C(p) 16; In (/’ﬁ) + ... (5.3)

This last approximation can be improved by including the running of some SM couplings, and
selected O(In? /(1672)?) terms. The power-counting scheme introduced below is diagrammatic, so
makes estimates in the spirit of an improved eqn (5.3), and aims to assist in determining which
improvements should be included in the RGEs.

5.2.2 The power-counting scheme

The aim here is to construct a power-counting scheme allowing to organise the perturbative expan-
sions that arise in Renormalisation Group running in the SMEFT above my . The input to this
power-counting scheme should be the experimental sensitivities of one or several observables, and
a list of operator coefficients. But since one of the expansion parameters, v> / A%\IP, is unknown, we
only bound it from above, and quantify the order of a coeflicients contribution to an observable, as
the scale up to which an O(1) coefficient could be probed.

2The hermitian operators are here defined with a 1/2, since the hermitian conjugates are included in eqn 5.1.



82

Chapter 5. What is leading order for LFV in SMEFT?

We introduce a small parameter

A~0.2

(5.4)

by analogy to the \ parameter of the CKM matrix. The numerical value of powers A\* is given in

table 5.1. The various dimensionless expansion parameters that occur in SMEFT can be associated

to powers of \ as discussed below (the recipe is summarised in table 5.2).

k= 1| 3 4 5 6 7 8 10 12
N = 21 .008[1.6x102[32x10%[64x10°[1.28x107°[256x10%[1.02x10"7| 4x107?
Anp(TeV) 4.3 22 109 540 2700

Table 5.1: The second line gives the numerical value of \¥, for A = 0.2 and k from the first line.
The third line gives the value of Axp, in TeV, such that (v/Axp)? = A* (where v = 174 GeV).

. the gauge couplings g5, g and ¢’ (of respectively QCD, SU(2) and hypercharge) are counted

~ O(1), and sometimes retained in the estimates (because €3 ~ \2).

. With a Lagrangian normalised as eqn (5.1) with A = v = 174 GeV, the ratio v"*/ALL" is

absorbed into the coefficients (where n is the operator dimension). In discussing dimension
eight operators, we assume a New Physics scale beyond the reach of the LHC:

Axp 24 TeV = -2 <\

however we leave Axp > v undetermined in estimating the relevance of two-loop or CKM
effects.

. to each loop is attributed a factor

1Og )\2
1672 ’

1672

where the loops that appear in the RGEs are accompanied by a log, so counted with one less
power. (For reference, In % ~ 6.7,3.85, and In % ~ 3.91.)

. anomalous dimensions are counted as O(1), despite that some can be large (this may some-

times compensate for counting gauge couplings ~ 1).

. In the lepton sector, we work in the mass eigenstate basis for charged leptons. This would be

the eigenbasis of Y, in the SM, but can differ in the presence of non-renormalisable operators
[334]. For instance, the operator [Cey]¥/A%p HTH(;He; contributes to the charged lepton

mass matrix

’U3

5 -
ANP

However, there is a factor of 3 in the Feynman rule of O.p, such that the coupling of leptons

to the SM Higgs is
.. .. 1;3
]~ 20Cenl? )
(

[me]? = [Ye]7v = [Cen]” (5.5)

i _ 1
[Y] _\/il}

(5.6)
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so in the charged lepton mass basis, flavour-changing higgs decays probe the off-diagonal
coefficients of C.p.

The LHC measures the yukawas of the 7 and the u to be consistent with SM expectations
[185, 186,335,336, and constrains the 7 — ¢ flavour-changing interactions of the 125-GeV
Higgs [337,338]:

2 2
L ler P (T <100 x 107, ey /|oep P+ |omg P < 160 x 1070 . (5.7)
Axp Axp
For ;o — e flavour change, the MEG bound [223] on BR(¢ — e7) could probe couplings as
small as [322]
v? v?
ARp ARp

(larger values could be allowed if they cancel against other contributions). These bounds

cr Co ~T75x 107" (5.8)

imply that in the charged lepton mass eigenstate basis, the off-diagonal elements of Y. are
small (they are comparable to the the LFV coefficients C2%;v?/A%p —see eqn 6.87), so the
two largest eigenvalues of Y, can approximately be obtained from m, and m,. Assuming
that the magnitude of the electron Yukawa is < ye|maz = me/v, one obtains that in the mass
eigenstate basis,

<29x10% <1076 <1073 A8 N\
[Ye] = <10°¢ 6.0x107% <1073 |~ | A2 2A° M (5.9)
<1073 <1073  1.0x 1072 Ao N8

6. In the quark flavour sector, the mass and Yukawa matrices select eigenbases when they are
diagonalised in the generation spaces of the SM fermions. Since this chapter is focussed on
LFV, operators such as HT HgHd or H' HgHu are not considered, and the quark masses are
assumed to arise from Yukawa couplings. So the eigenvalues of Yy and Y,,, evaluated at myy,
are taken as:

(Yorys:ya) =~ (L7 x1072,3.5 x 1074, 1.7 x 107°) & (A*/2, X%, A7) (5.10)
(yta Ye, yu) ~ (10, 4.0 x 10_3, 6.7 x 10_6) ~ (1, )\3/2’ )\7/2)

where y¢ = my¢(mw)/v, with m¢(mw ) obtained from one-loop RGEs — eg for quarks:

as(my)
as (i)

with 8 = (33 —2Ny)/3 ~ 8, and m(u) is from the PDB [47]| with pu = my, m. for the b, c and
2 GeV otherwise?.

() = m(s) | ]W

The CKM matrix is approximated in terms of X in usual way:

Vid Vs Vb 0.974 0.224 —0.004 1 A A3)2
Vekm = | Vg Ves Va | = | =022 09940.02 0042 | ~| —-Xx 1 )\
Via Vis Vi 0.008 —0.04 1.0 N2 =X 1

3 At myy, this gives m, = 3.0 GeV, m. = 0.7 GeV, m, = 62 MeV, mq = 3.0 MeV, m,, = 1.2 MeV.
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We will always work in the mass eigenstate bases of the singlet quarks, and the w-type
components of the doublet quarks. So in the RGEs, the up Yukawa is a diagonal matrix
D,, and Yy = VoxmDg. We choose the {ur} basis for quark doublets above myy for two
reasons. First, flavour change in the RGEs is therefore suppressed by CKM and the small
d-type Yukawas. Secondly, at dimension six in SMEFT, there is only a tensor operator for us
(Olequ(s)), so this basis diagonalises the large mixing of this tensor to the dipole operator.

The CKM matrix is included also in matching at my, when the low-energy operators involving
d-type quarks are expressed as SMEFT operators.

The above power-counting scheme is summarised in table 5.2, and should allow to estimate the
contribution of any operator coefficient to any observable. The accuracy of the scheme is discussed
at the end of the next subsection, by comparing to the solutions of the RGEs.

loop 16% A3

loop*log 116°§2 A2

lepton yukawas Yrs Yus Ye 3,205 28

¢ flavour change | see eqn 5.9

d-quark yukawas | yp, Ys, Yd A2/2, X5 N7
u-quark yukawas | v, Ye, Yu 1,A3/2,\7/2
q flavour change | see eqn 5.11

Table 5.2: power-counting scheme for the perturbative expansion of the SMEFT

5.2.3 Examples

This section gives explicit examples of how the powercounting estimates are made, and compares
them to the solutions of the RGEs.

We first consider 1 — e processes because the most restrictive experimental constraints on
LFV arise in this sector, and upcoming experiments aim to improve the sensitivities by several
orders of magnitude (see table 5.3; indeed, there plans to reach a conversion ratio < 1078 for
uA — eA [342]). The Branching Ratios can be expressed (see eg [142,322,329]) in terms of the
coeflicients, evaluated at the experimental scale, of operators which contribute at tree level. For
instance, the low-energy operators

oL = QﬁGF(CDVLm#EU-FPL/L—‘y-CD,Rm#éU-FPRIU,) (5.11)
contribute to p — ey as
BR(j — ey) = 384n*(|Cp r|* +|Cp.1|?) < 4.2 x 10713 (5.12)

which gives the experimental bounds, translated into our power counting parameter (A ~ v in eqn
(5.1)
‘CD,RL |CD,L| <1.05x 1078 ~ AL (5.13)
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process bound on BR sensitivity to C
1 ey <4.2x 1071 [223] — 6 x 10714 [224] | Cp ~ A — A2
1 — eée < 1.0 x 10712 [239] — 10716 [231] Cg ~ A® = A
CV ~ )\8.5 N )\11.5
pA — eA <7 x 10713 [339] — 10716 [275,340] | Cy.p ~ A9 — A2
CS ~ )\10‘5 — )\14
K) — pe <4.7x 10712 Cp ~ AL
Cyp ~ N\
BY — preF | <1x107? Cp ~ A5
Bl —7tjie | <1.7x1077 Cy ~ A7
BY — pFet | <54 x 1079 Cp ~ AT
Bt — Ktpe | <9.1x1078 Cy ~ A6
DY — pFet | <1.3x1078 Cp~ M\
Dt = atjhe | <1.7x1077 Cy ~
T — by < 3.3 x 1078 [243] Cp ~ A5
T — 00 <2 x 1078 [244] —< 1079 [341] Cy ~ A5 — )5
Cs ~ )\4'5 — )\5
T — 0 < 8.0 x 1078 [245] Cg ~ \*P
T — I < 6.5 x 1078 [245] Cg ~ \*P
T —lp < 1.2 x 1078 [247] Cy ~ 1P
BY — er < 2.8 x 107° [47] Cp~ N
Cy ~ N5

Table 5.3: Some current and upcoming experimental bounds on LFV Branching Ratios (7 < u
results are similar to 7 <> e). The third column gives the order of magnitude of dimension six
operator coefficients that reproduce the experimental numbers, in powers of A ~ 1/5. The listed
coefficients C'L,, contribute to the process at tree level, are labelled by the operator’s Lorentz
structure, and are normalised to a scale A = v = 174 GeV in eqn (5.1). The meson decay bounds
are from [47], the coefficient sensitivities from [322,329].

The dipole is a special case, because the operators contain not only fields, but also a built-in
parametric suppression factor m,. This is the usual operator definition, and makes sense because
in SMEFT the operator has a Higgs leg which frequently attaches to the muon line. However,
in some loop diagrams (for instance Barr-Zee) the Higgs is attached to a heavier particle in a
loop, so such diagrams would gain a factor 1/(2)\°) in our power-counting scheme. For a different
normalisation of the dipole operator, the power-counting sensitivity would change. For instance,

oL = 2\/§GF(CD7LUEU - FPru+ Cp rveo - FPrpu) (5.14)

< ALS.

The sensitivity of 4 — ey to other operators can be estimated in our power-counting scheme

gives |Cp g, |Cb,L

by drawing diagrams. For instance, tensor operators mix to the dipole via the left diagram of Fig.
5.1. Below the electroweak scale and normalizing as in eq. (5.11), the contribution to the dipole
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Figure 5.1: On the left, a diagram mixing the tensor operator to the dipole (the Higgs leg is
replaced by a mass insertion in the EFT below my). On the right, one of the diagrams mixing
tensor operators to scalars (the gauge boson can attach to any two legs not belonging to the same
bilinear).

Figure 5.2: Representative diagrams allowing two-loop mixing of vector operators to the dipole.

coefficient is of order

my log rr my 2 frYf VP
ACD o2 6167TQCT AQNP = ACD e\ CT Ui A12\IP (5.15)

where f =u,d, s, c,b, e, u, 7, and the estimate in our power-counting scheme can be obtained using
table 5.2.

Scalar and vector operators can contribute to the dipole via two-loop diagrams, that arise either
as one-loop mixing into the tensor, or direct mixing to the dipole at two-loop. Below the weak
scale, the scalar to tensor mixing is via diagrams like the right figure 5.1, where the gauge boson is
a photon, which gives

log? yr v?
ACp ~ ¢® clf L~ 5.16
P ern)? TS g, A2, (5.16)

where now f = u,d,s,c,b, 7. The vector to dipole mixing is via diagrams such as figure 5.2. We
estimate the diagrams on the left and right as

log v )2 1
ACp ~ ¢ 1
o~ e (1) { " 10

so there is sensitivity to vector coefficients for scales below 10 TeV (which is consistent with the
bound in [322,323]).

Approximating physical predictions in terms of powers of some parameter is always somewhat
arbitrary and erroneous (Indeed, although we count in A, we allow for v/X in table 5.3). In order to
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f  Power Counting Running

e ~ 20 TeV ~ 13 TeV

L ~ 300 TeV ~ 190 TeV

T ~ 103 TeV ~ 1.1 x 103 TeV
U ~ 50 TeV ~ 71 TeV

d ~ 50 TeV ~ 73 TeV

s ~ 200 TeV ~ 330 TeV

c ~ 103 TeV ~ 1.7 x 103 TeV
b ~2x10°TeV  ~2x10° TeV

Table 5.4: Powercounting estimates of the mixing from tensor to dipole operators below myy,
compared to the solutions of the RGEs [322,323|.

test our recipe, in table 5.4 we compare our power-counting estimates to the solutions of the RGEs;
this estimate is obtained in the EF'T below myy, for which the solution of the “leading order” RGEs
is given in [322,323|. The table shows that our estimate of the scale Axp where C’%f would be ~ 1,
(obtained by combining eqn (5.15) with column three of table 5.3), differs by at most v/3 from the
solution of the RGEs (this corresponds to a factor < 3 for C, so less than an order of magnitude in
the rate). For the second-order/two-loop mixing of eqns (5.16,5.17) we find that the powercounting
can mis-estimate Axp by a factor 2-3.

5.3 Questions

This section uses the power-counting proposal of the previous section to study what physics should
be included at “leading order”, in the SMEFT RGEs for LFV operators. In the first sections, the
focus is on p <+ e flavour change, due to the sensitivity of current and upcoming experiments; the
importance of dimension eight operators and two-loop anomalous dimensions for 7-LF'V is briefly
discussed in section 5.3.5.

5.3.1 Dimension eight operators

This section explores when which dimension eight operators are required, and whether their RGEs
are required.

We suppose that the New Physics responsable for LFV is beyond the reach of the LHC, so Axp 2
4 TeV. In the normalisation convention of table 5.3, this implies that coefficients of dimension eight
operators at are suppressed by ~ A3

(8) 4
flgnp, ) e _ V0, Ol P (5.18)

(4 TeV)4 o (4 TeV)4 —
Comparing to the tree-level sensitivities given in table 5.3, one sees that kaon and muon decays are
generically sensitive to dimension eight operators induced by new particles in the interesting mass
range just beyond the reach of the LHC. Pushing the New Physics scale above 20 TeV would give
®)C < A'2, making most dimension eight operators irrelevant.
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There are thousands of LF'V dimension eight operators [308,309], so it would be attractive to
include only some of them in a first approximation. Indeed, in a bottom-up perspective, only the
dimension eight operators to which observables are sensitive are required. So we reject derivative
operators such as

D*(&vs1)Du(fA )

because their contribution to low-energy S-matrix elements should be suppressed by {s,t,u}/v?,
suggesting that K and p processes have no sensitivity to dimension eight derivative operators.
We also neglect operators with more than four legs after electroweak symmetry-breaking, on the
assumption that they do not contribute (at tree level) to our low-energy observables.

There remain about four dozen p <> e operators (given in Appendix C in the notation of [308]):

1. four-particle operators which are forbidden at dimension 6 due to gauge invariance.

2. dimension six SMEFT operators with an additional H and HT, such as (HHT){Ho%eF,5
or (LeHo®Pp)(GiHoguy). Tt may seem unlikely that the dimension eight contribution could
be relevant given the possibility of a dimension six term?®; however, being agnostic could be
appropriate in EFT, and dimension eight operators are considered, for instance, in studies of
Non-Standard neutrino Interactions [343].

These operators are schematically listed in tables 5.5 and 5.6, along with the scale below they
could contribute to observables with a coefficient C' < 1. So they should be considered in the EFT
parametrisation of any model constructed below this scale.

The effects of these operators can be partially accounted for by matching the model onto them
at Axp, and then including them in the matching at the weak scale onto the low energy EFT. These
matching conditions for LFV operators are given in appendix C.2 (at tree level).

Many of these operators contribute to observables via loops, so including them in RGEs is
relevant. Since they match at my onto low-energy four-particle interactions, the Renormalisation
Group running below my is known and will occur automatically once they are included in the
matching.

The RG running in SMEFT is missing. Above myy , the Higgs and W bosons can mix operators
differently from the gluon and photon, for instance by modifying the SU(2) contractions (see eg the
RGE:s for a subset of dimension eight operators in [318]). Dimension eight four-fermion operators
involving two tops pose a particular problem, because their leading contribution to low energy
LFV is likely to arise from the unknown RG running in SMEFT. Fortunately, many of these top
operators are dimension six operators with an extra H' and H (only the operator ~ (€Pgru)(tPpt)
arises first at dimension eight), so one could hope that models dominantly generate dimension six
operators. Alternatively, one could envisage to add the coefficients of dimension eight top operators
to the dimension six coeflicients at Axp, and evolve them with the SMEFT RGEs at dimenson six,
which will include a subset of the loops. We leave calculating the anomalous dimensions for a later
project.

4The dimension six coefficient could perhaps be suppressed by additional loops or small couplings with respect
to dimension eight.
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operator Axp (in TeV) | process
l(.He,)(q,Hdy, 55 A—eA
( u)( d ) K
l.He,)(u,Hq, 55 A—eA
( u)( q u
(teHe,)(q,Hds) 26 HA — eA
l.Hoe,) (G, Hody 25 A—eA
( u)( d ) 12
l.Hoe,) (G Hody, 25 A—eA
( /)( b ) 12

(. He,)GG 20 A—eA
(leHey, m
(EeHJeMZ(ZTHJeT) 20 w— ey
loHe,)(lc.He, 15 — eee
(LeHey)( u
l.He,)(u.Hq, 15 A—eA
(leHey, q [
l.Hoe,)(q,Hod, 15 A — eA
( M)( S ) 2
({eHe#)(ﬂtHth) 10 = ey
L.He,)(q,Hdy, 10 A — eA
( u)( b ) K
@eHe;t)@uHeu) 8 pn— ey
(.He,)FF 3 HA — eA
(leHey,

Table 5.5: Dimension eight operators which induce at low energy four-particle contact interactions
that do not arise at dimension six. The operators are represented schematically in the first column,
and the second column gives the scale Axp up to which the process of the third column (with
upcoming sensitivity) could probe coefficients < 1. (The estimate for (¢.He,)FF is from [326].) .

5.3.2 2-loop anomalous dimensions?

This section aims to identify relevant mixing that could arise from the two-loop RGEs of SMEFT,
so we are looking for two-loop diagrams that would not be generated at second order in the one-loop
RGEs.

One can see why these could be interesting, by considering the QED x QCD-invariant EF'T below
myy, where at one-loop, vector operators mix among themselves, and the dipoles+scalars+tensors
mix among themselves, but there are no divergent one-loop diagrams mixing vectors and non-
vectors. Therefore, to all orders in the one-loop RGEs, the vectors evolve separately from the
others. However, vector to dipole mixing occurs at two-loop, and is encoded in the the two-loop
RGEs [344]; a few diagrams are given in figure 5.2. So we are looking for two-loop diagrams that
allow operator O to mediate process P, when O cannot mediate P via the one-loop RGEs.

qr €,

UR HR

Figure 5.3: Vector mixing to the tensor via Higgs exchange.
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operator Axp (in TeV) | process
(HTH)(Ceoey) (qour) 100 ey
(HH")(Leep)(daga) 55 1A = eA
(HHT)(ie M)E((juuu) 55 MA —eA
(HH")(Lee,)(dsgs) 25 UA = eA
(HH) (£ey™ ) (quYaGu) 22 1A = eA
(HHT)(ieﬁyagu)(uu’)’auu) 22 A — eA
(HH")(Ley* ) (Gavada) 22 pA — eA
(HH) o7 6) (daacda) 22 A = eA
(HHNY.Ho"Pe, F,p 20 1 ey
(HHT)(EJ}/QE;L)(E@”Y(XE@) 18 u — eee
(HHT)(fev“fu)(ée%ee) 18 i — eee
(HHT)(eer"ep) (Eevace) 18 [ — eée
(HHT)(Z66M>€<QCUC) 15 MA —eA
(HH)(Ceey)(dpgs) 10 pA — eA

Table 5.6: Dimension eight operators which induce low energy contact interactions that do arise at
dimension six. In the first column the operators are represented schematically(other distributions of
the Higgses, or triplet constractions, could be possible), and the second column gives the scale Axp

up to which the process of the third column (with upcoming sensitivity) could probe coefficients
Sl

In SMEFT, there can be 1-loop vector to tensor mixing by exchanging an Higgs, as illustrated
in Fig.5.3. Closing the quark legs gives a contribution to the dipole. For instance, considering the
vector (’)g) we find

’U2

2
ANP

~ e Y Y (5.19)

log (1)epnm + v?
ACp ~ ¢ <16W2> T R

which results in a sensitivity to Clg;)e“tt up to Axp ~ 50 TeV. Estimates similar to eqn (5.19) hold
for all vector operators which can mix to the u-type tensor.

Vector operators also can mix directly to the dipole in the 2-loop RGEs through gauge interac-
tions, as illustrated by the diagram on the left of figure 5.2. The powercounting estimate for these
diagrams
log v?
(1672)2 A2,

ACp ~€° (5.20)
suggests that there is sensitivity to vector coefficients for scales below 10 TeV —which is larger
than the vector—tensor— dipole contribution for all operators not involving a top quark, see table
5.7.

There could also be two-loop mixing of the Opgpg scalar to the dipoles. For comparaison, at
one loop the u quark scalar operator O, ggu mixes to the tensor, which mixes to the dipole, and due
to Yukawa enhancement and large anomalous dimensions, this second-order process in the one-loop
RGEs is important. In the d-quark sector, there is no dimension six tensor, so no equivalent process
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occurs; however the diagrams are there, and Orgpg can be Fierzed to the vector —%(Zvaq)(ayae)
which mixes at two-loop to the dipole [344|. The powercounting estimate is
2

v
i (5.21)
"M

ACp ~ eg? \°Cyl , [Vi]

which suggests that u — ey could be sensitive to coefficients < 1 up to the scales given in table
5.7.

operator | 2loop V— D(Axp in TeV) | V>T—D(Anp in TeV)
oL 10 50

O;ﬂff 10

o ; -

(’)ZZZ{ 20 —

ot 100 —

Table 5.7: Operators which contribute to u — ey via two-loop mixing in the RGEs, and in the
second column, our powercounting estimate for the scale Axp up to which coefficients < 1 could be
probed. The third column gives the estimated sensitivity obtainable via the one-loop RGEs. Of}‘ 2
schematically refers to all the dimension six vector four-fermion operators with f #t¢. .

These results show that the two-loop vector to dipole mixing can be relevant, and often domi-
nates over the mixing involving a Higgs loop, which occurs at second-order in the one-loop RGEs.
It would be desirable to include these two-loop anomalous dimensions. However, although they are
known in QCD and QED [323, 344, 345], a complete computation in SMEFT is currently missing
in the literature [346].

5.3.3 CKM

CKM mixing angles can appear in various places in SMEFT: in matching of the higher scale theory
onto SMEFT, in the RG running of operator coefficients and of SM couplings, and in matching
the SMEFT operators at myy onto the QED xQCD-invariant low energy theory. Including CKM
in matching at myy is straightforward, but it could be conceptually simpler to set Vogyr = 1 in
the RGEs for the operator coefficients. This section explores the errors that could arise from this
approximation, by allowing one non-zero operator at a time at Axp, and estimating the magnitude
of low-energy coefficients that it generates at one-loop o [Vokwmlij, @ # j. If no experiment has
sensitivity to the contributions proportional to CKM mixing angles, then one can conclude that
Vexkm = 1 is an acceptable approximation in the RGEs.

The CKM matrix also appears in the RGEs of the renormalisable SM couplings, where it causes
the eigenbases of YdeT and YuYuT to rotate with scale. This is due to wavefunction corrections.
Since wavefunction diagrams also decorate the operators, we assume this is a “universal” effect,
automatically included by working in the rotating YuYuT eigenbasis, and do not powercount the

associated diagrams °.

®For instance, an off-diagonal [Y,,] ~ 3log /(3272)V.py2 Visy: is generated by a Higgs loop on the ¢, line. Inside
the loop mixing Orequ,s — Op, this could give sensitivity to OEHECéU,C’W in an unrotating basis for ¢r..



92 Chapter 5. What is leading order for LFV in SMEFT?

Recall that we work in the Yy eigenbasis for the {dgr}, and the Y, eigenbasis for the {ur} and
{qr}. So Vg only appears in Higgs loops, at vertices o< Yy = VexmDg- It therefore enters the
one-loop RGEs of 011,093, Orp, Orp Opg and Orepg-

Consider first operators at Axp with a doublet quark bilinear (g;v,¢q;), where i,j € {u,c,t}.
Higgs exchange between the quark legs can dress this quark bilinear to generate

log —
@(dp%édr) (5.22)

(@7a5) = Vel ¥, Vo v,
where the approximate magnitude of Vg}(Mydeg;(MydT, for all possible flavours of the doublet
and singlet lines, is given in table 5.8. If the CKM matrix is approximated as the identity, then
only the diagonal components of the table would remain.

ij\pr | bb bs bd SS sd dd
tt )\5 )\9.5 )\13 )\14 )\17.5 )\21
te )\7 )\7.5 )\10.5 )\12 )\15 )\18.5
tu /\8.5 )\8.5 )\9.5 )\13 )\14 )\17.5
cc )\9 )\9.5 )\12.5 )\10 )\13 )\16
cu A10'5 )\10.5 )\11.5 )\11 )\12 )\15
uu )\12 )\12 )\13 )\12 )\13 )\14

Table 5.8: Estimates for the Yukawa and CKM suppression (~~ Vé’}( MYd, Vé% aYd,) of the mixing

between operators containing (¢;7¢;) into operators containing (dpyad,). The indices ij are given
in the left column, and pr in the top line.

From the table 5.8, one sees that mixing induced by non-vanishing CKM angles is suppressed by
< A™292 /A%, (where the additional A? is for the log /1672 loop suppression). Such contributions
are clearly negligeable in the RGEs for 7 — ¢ operators; to determine whether they should be
included in the RGEs for i <> e operators, we compare to the sensitivity of upcoming experiments.
In the case of p = r but i # j, the best sensitivity is from p — e conversion. We estimate that
puA — eA could be sensitive to the mixing from (g,74q.) — (byaPgrb) for an experimental reach
BR(uA — eA) < 10716 v’ and to the cu — ss, dd mixing for BR(pA — eA) S 107202 This

4 > 4
ANP ANP

suggests that the RGE-mixing of operators involving (g;7¢;), into operators involving (ap'yadp),
for i # j and p = ¢, is negligeable in the forseeable future. In the converse case, of RGE-mixing of

flavour-diagonal operators (g;7.¢:), into quark flavour non—diagona; operators (d,vad,), table 5.8
which is beyond the sensitivity of the meson decay searches listed in table 5.3.

The CKM angles can also enter in the mixing of the singlet quark current (d,v,d,) into doublets
(G;7aq;)- Similarly to the doublet to singlet mixing discussed above, the effects of CKM are beyond
upcoming experimental sensitivities. A novel feature in this case is that approximating the CKM
angles to vanish can generate flavour change when there is none. For example, the sr leg of
an operator could transform under RG running into a left-handed doublet quark (due to Higgs

exchange), which in the SM would be in the sy, direction. But in our approximation where YdeT is

< 2
, and cc,uu — sd )\BA“T,
NP

indicates that the least suppressed mixings are tt,cc — bs oc A9?

diagonal in the Y, Y eigenbasis, it is in the ¢z, direction, so matches at my onto 3 Vel
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Finally, there are diagrams with one Higgs vertex on the quark line and one on a lepton line,
which eg mix vector and scalar operators. The mixing from scalar into vector operators, such as
OrLepg — {O(Llc)gv Ogq} can be neglected because the lepton Yukawas are smaller than that of the

b, so any quark-flavour-changing contribution is more suppressed than the (dpvadp) < (@;7a4;))
mixing discussed above. It is also the case that quark-flavour-changing mixing from vectors to
scalars is below the sensitivity of upcoming experiments, despite that the experimental sensitivity
to scalar operators can be better than to vectors (see table 5.3). In the case of p <> e searches, this
is because the mixing is suppressed by y,, ~ A5, and for 7 > ¢ searches, the experiments are less
sensitive.

So we conclude that CKM angles can be neglected in the SMEFT RGEs for LFV operators,
provided that one runs in the Y, Y eigenbasis for the {¢r}, and that CKM mixing is retained in
matching at myy.

5.3.4 LFV Yukawa couplings

In the SM, the Yukawa matrix of the charged leptons is the only basis-choosing interaction in the
leptonic sector — the gauge interactions are “universal”, that is, proportional to the identity matrix
in generation space, so the eigenvectors do not choose directions. In the real world (not described
by the SM), the neutrino mass matrix provides another eigenbasis, but the magnitude of neutrino
masses is so small that their direct GIM-suppressed contribution to LFV is irrelevant (instead, they
provide motivation to search for LFV).

LFV operators that are added to the Lagrangian below the weak scale are inevitably written in
the mass eigenstate basis of the charged leptons. Above the weak scale in SMEFT, there are two
possibilities: the mass eigenstate basis, or the Yukawa eigenstate basis — which may be different
in the presence of the operator O.p. The physics, of course, cannot depend on a basis choice, but
the calculation may be more intuitive and simple in somes bases than in others. So which is the
best choice?

Suppose one thinks top-down; then at Anp, the New Physics model is matched to the SM
+operators. The obvious basis in this case for SMEFT is the D.-basis where the lepton Yukawa
matrix is diagonal : Y, = D, = diag{ye, ¥, y-}. This choice is motivated by LFV being a NP effect,
and ensures that the SMEFT RGEs, which describe SM dynamics, cannot change the flavours of
lepton legs.

However, when the Higgs gets a vev in the presence of the O,y operator, the D, basis may
no longer be the mass eigenstate basis, due to additional off-diagonal contributions of O, to the
mass matrix. So a basis rotation during the matching at myy would be required, from the D, basis
to the mass eigenstate basis in which the restrictive low-energy constraints are expressed. Current
constraints/sensitivities on the off-diagonal elements of O,y imply that the angles of this rotation

are small: estimating 6;; ~ 2‘%1}3/(A12\1Pmax{mi,mj}) for i # j gives

927’7 HTE S A 5 96},67 eue S )\4 (523)

where ¢ € {e, u}.

If the New Physics scale is sufficiently high that only dimension six operators are relevant, one
might hope to neglect this rotation in matching, because the angles are o Cv?/A%p, so any effect
on a NP operator would be O(1/Ap). (Below myy, there are also contact interactions induced by
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the W, Z, h, which could becomes flavour-changing under a basis rotation. However, the W and Z
interactions are “universal”, so unconcerned by basis rotations, and the higgs-mediated operators
are suppressed by SM Yukawas, so the dimension six flavour-changing operators induced by the
rotation are unobservable.) However, as previously discussed, LFV data can have sensitivity to
operators suppressed by O(1/A%p), and the mixing angles of eqn (5.23) are also enhanced by
inverse Yukawas. The power-counting rules suggest that flavour-diagonal coefficients at Axp ~ 4
TeV could be rotated into 7 <+ £ operators suppressed by A°, and into p ¢ e suppressed by A&
This is within current experimental sensitivities.

We advocate not making the transformation from the mass to Yukawa eigenstate basis at myy.
This is because the rotation is unknown, and the angles are insufficiently suppressed (see Eq. 5.23).
Instead, we remain in the mass eigenstate basis above the weak scale; this is consistent with our
bottom-up perspective, because it is the basis where the constraints apply. The lepton Yukawa
matrix can be off-diagonal in this basis(see eqn 5.9), but the off-diagonals ~ 6;;y; are much smaller
than the 60;;s of eqn (5.23) because they are suppressed also by small lepton Yukawas. The power-
counting suggests that they can be neglected in the RGEs, for instance

log v?
H16m2 A

Dfe} S )\15

So in practise, we work in the mass eigenstate basis at all scales, but treat the lepton Yukawa
matrix as diagonal in the RGEs of SMEFT. The inconvenience of this choice is that in matching
a model onto the operators, one must identify the mass eigenstate basis in the model, and obtain
operator coefficients in that basis.

5.3.5 LFV with 7s

This section briefly discusses the ingredients required for a “leading order” SMEFT study of LFV
involving T7s.

For the majority of 7 LF'V processes listed in Table 5.3 there is sensitivity to Wilson coefficients
that are & A\5. Since a loop costs a factor A2, loop effects in the 7 sector could be relevant for
(v?/A%p) > A3, but this implies a New Physics scale within the LHC reach.

In the case of the more sensitive 7 — e(u)7y searches, the corresponding diagrams can be power
counted as for g — ey, replacing the muon leg with a tau leg. Since the constraints concern dipole
coefficients defined with a built-in yukawa of the heavier lepton, we encounter two possibilities in
the diagrams:

e cither one Higgs leg is attached to the decaying lepton line and the power counting estimate
is the same,

e or no Higgs-heavy lepton vertex is present and the diagrams are suppressed by a factor
Yu/yr = 2A? with respect to the corresponding 1 — ey one.

In both cases, given the lesser sensitivity in the 7 sector, we can conclude that any approximation
that we justify through power counting for u-s is also valid for 7 LE'V processes.

As a result, two-loop anomalous dimensions should be irrelevant in 7 <> £ processes, due to
the estimated suppression ~ A% of two-loop diagrams. This should remain true even in the case of

T = e(p)y-
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Furthermore, the requirement of eq. (5.18) on 8-dimensional operator coefficients for Axp = 4
TeV
B < A8

is sufficient to argue that any 7 LF'V observable is not sensitive to dimension eight operators.

5.4 Summary

Effective Field Theory can be envisaged from a bottom-up or top-down perspective. In bottom-up
EFT for lepton flavour change, the aim is to map experimental constraints onto the correct sum
of operator coefficients at the New Physics scale Axp, in order to identify the area in coefficient
space where BSM models must sit. From a top-down perspective, one can map a LFV model onto
operator coefficients at Anp, calculate observables using EFT, and this should correctly reproduce
model predictions to within a calculable uncertainty. In both perspectives, the EFT calculation
must include correctly every operator coefficient that could contribute to an observable, irrespective
of its dimension or of the order in the loop or coupling expansions.

To ensure that we use SMEFT correctly for describing LFV, we introduced a power-counting
scheme, that allows to organise all the SMEFT perturbative expansions — in loops, couplings,
mixing angles and the ratio of the weak scale to the New Physics v/Axp —in terms of a small
“Cabibbo-Wolfenstein-like” parameter A &~ 0.2. This power-counting scheme is described in section
5.2.2, and summarised in table 5.2. The future reach of various experiments can be expressed
in powers of A (see table 5.3) — so for instance, the upcoming MEGII experiment searching for
p — ey could probe dipole coefficients up to O(A'?). Then one can draw diagrams, arising at
various orders in the different perturbative expansions, and do two things; first, compare different
contributions of an operator to an observable, to identify the leading one, (see eg section 5.2.3 and
5.3.2). And secondly, one can determine which operators can affect which observables by comparing
the power-counting estimates to the future experimental sensitivity. Some examples are given in
Section 5.2.3.

For LFV operators, the SMEFT expansion in operator dimension can be written as an expansion
in v2/A%p, where the New Physics scale Axp plays two roles in our manuscript. On one hand, it is
the unknown mass of the lightest lepton flavour changing new particle (see the Lagrangian of eqn
(5.1)), which we take “beyond the reach of the LHC™ Axp 2 4 TeV (so v?/A%p < O(A?) in the
powercounting scheme). However, since Axp is unknown, we simultaneously count the order of an
operators contribution by the scale it could probe with a coefficient of O(1/AZ%,).

In the SMEFT, there are already many operators at dimension six, and their RGEs are only
known at one-loop. So in section 5.3, we use the powercounting scheme to explore whether dimen-
sion six operators and one-loop RGEs are sufficient to describe LE'V at the sensitivity of experiments
under construction. Section 5.3.2 suggests that some two-loop anomalous dimensions are required
for <> e flavour change, when Axp < 20 TeV. The calculation of these anomalous dimensions is
in progress [346].

Section 5.3.1 finds that upcoming p <> e data can be sensitive to dimension eight SMEFT
operators, about four dozen of them for Axp 2 4 TeV, but none at scales Axp < 100 TeV. The
relevant dimension eight operators match onto three-or four-point interactions below the weak scale,
and can be divided into two sets: those which are the lowest-dimension SMEFT operator inducing a
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given contact interaction below myy, and a second set that induces low-energy contact interactions
already present at dimension six. The scale Axp up to which the operators can be relevant is given
in tables 5.5 and 5.6. These dimension eight operators are listed in Appendix C, and are included
in the matching onto operators below myy in Appendix C.2.

The power counting scheme can also be used to simplify and streamline calculations with the
existing SMEFT operators and RGEs, for instance by neglecting flavour-changing SM interactions.
We perform two such exercises; section 5.3.3 checks that CKM mixing can be neglected in the
RGEs for LFV operators, provided that it is included in matching, and that the SMEFT RGEs
run in the YuYuJr eigenbasis for the {qr}. Section 5.3.4 explores the case where operators of the
form C% (HTH)"ZiHej, with ¢ # j, are allowed to contribute to the charged lepton mass matrix.
This implies that in the charged lepton mass eigenstate basis (where all experimental constraints
are given), the charged lepton Yukawa Y. has unknown off-diagonal elements. The power-counting
suggests that if these flavour-changing Yukawas are below current experimental sensitivities, they
can be neglected in the SMEFT RGEs.

In this chapter, we estimated lower bounds on the scale Ay p, such that the predictions of lepton
flavour changing New Physics models from beyond Ayp can be obtained with the dimension six
operators of SMEFT and their one-loop RGEs. These results could be used to motivate, or justify,
SMEFT studies of LFV.









CHAPTER 6
The sensitivity of 1 — e to 7 flavour
change

6.1 Introduction

Process Current bound on BR | Future Sensitivity
p— ey < 4.2 x 10713 [223] 10714 [224]

[ — eee < 1.0 x 10712 [239] 10716 [231]

pA — eA <7 x 10713 [339) 10716 [275,340]

T =1y < 3.3 x 1078 [243] 3x107%(e), 1079 ()
T — eée < 2.7 x 1078 [244] 5x 1079 [341]

T — pjip < 2.1 x 1078 [244] 4 x 1079 [341]

T — pee, el

< 1.8,2.7 x 1078 [244]

3,5 x 1079 [341]

T — Ir0 < 8.0 x 1078 [245] 4 x 1079 [341]
T —In < 6.5 x 1078 [245] 7 x 1079 [341]
T —lp < 1.2 x 1078 [247] 1079 [341]

h — e*ut < 6.1 x 107° [190] 2.1 x 107° [347]
h — efrT < 2.2 x 1073 [191] 2.4 x 107 [347]
h — 7EuF < 1.5 x 1073 [191] 2.3 x 107% [347]

Table 6.1: Some p <> e and 7 <> [ processes (I € {e,u}), with the current experimental bound on
the branching ratios. The last column lists the future sensitivities used in our projections, which
correspond to the expected reach of upcoming or planned experiments (except for p — evy, where
the MEGII experiment at PSI, which starts taking data in 2022, aims to reach BR ~ 6 x 107'4).
Additional 7 4> [ processes involving b quarks are listed in table D.1.

As discussed in Chapter 3, the current limits on p — e flavour change are more retrictive than
those on 7 — [, where [ € {e, 1}, due to the possibility of making intense muon beams. A significant
gain in sensitivity is expected at upcoming u — e experiments (see table 6.1), sometimes allowing:

Br(p—e...)SBr(r—e...)Br(tr = pu...) (6.1)

Improving the sensitivity to 7 <> [ processes by producing the 7 in the final state has been explored
at the future Electron Ion Collider [348] and electron-positron machines [349]. Instead, we focus
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on the relation among the three AF = 1 lepton flavour changes:

T

7N

e — U

If two lepton flavours are unconserved, then no symmetry forbids the third to happen, so it could
be generated from the first two at some order in the perturbative expansion. Eq. (6.1) tells us that
1 — e searches are potentially sensitive to the product of 4 — 7 and 7 — e interactions respecting
7 LFV constraints. So the aim of this chapter, is to explore what can be learned about 7 <> [
interactions, using p — e observables. We are interested in the model-independent aspects of this
question, so we assume that the NP responsable for LFV is heavy, and use EFTs to parametrise
low energy LFV.

We will suppose a New Physics scale Axp > 4 TeV (“beyond the LHC”), describe 7 — [
interactions via dimension six operators, and calculate the log-enhanced contributions to dimension
eight © — e operator coefficients, which appear in their Renormalization Group evolution between
Axp and myy. These contributions arise from the insertion in loop diagrams of both a u — 7
and a 7 — e operator, and can be reliably computed in EFT — although they may not be the
dominant contributions to u — e processes coming from 7 < [ interactions (see section 6.2.1). We
will find that upcoming p <> e searches could be sensitive to 7 <+ ¢ interactions beyond the reach
of upcoming 7 experiments.

The chapter is organized as follows. In Section 6.2 we introduce the formalism for the EFT
calculation (notation and operators), and we make several estimates to focus the calculations on
contributions within future yu — e experimental sensitivity. Our results are illustrated in Section 6.3,
where the Renormalization Group Equations (RGEs) for dimension eight operators are reviewed,
we discuss examples of anomalous dimensions calculated from double insertions of dimension six
operators, and give the weak scale matching of 4 — 7 X 7 — e onto low energy u — e operators.
The complete results for (dimension 6)? — dimension 8 mixing can be found in appendix D.2. In
Section 6.4 we discuss some phenomenological implications : p — e observables are sensitive to
products of 7 <> [ operator coefficients and we compare this sensitivity to the limits coming from
searches for 7 <> [ processes.

6.2 EFT, operators and notation

In this section, we start by comparing our calculation to the expectations of a few models in
subsection 6.2.1, then review the EFT framework in sections 6.2.2 to 6.2.4. Finally in subsection
6.2.5, we estimate which (x — 7) X (7 — e) loop diagrams could be accessible to future p — e
experiments, making them interesting to calculate.

6.2.1 A few models

In this subsection, we discuss two models—one being the SM— in order to illustrate the rela-
tionships between 7 <+ [ and u <> e observables, and to compare our EFT calculation with the
expectations of UV complete models.
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5 d
d > s
> W§ % W
i=u,c,t g P d d » 5
(a) (b)

Figure 6.1: The GIM mechanism in K — K mixing: in the SM box calculation of figure (a), the
mass-independent dimension six contribution cancels in the flavour sum because of CKM unitarity.
Then at O(G%), the top contribution is not dominant due to small mixing with the down quark,
whereas the dimension eight term ~ G%m? is relevant. It can be calculated in the low-energy EFT
(Fermi theory) as the loop contribution with two dimension six operators inserted, as illustrated in

(b)

First, consider a model where two heavy bosons, M > myy, are added to the SM, with flavour
diagonal, and respectively 7 <> p and 7 <> e renormalizable interactions. A first source of u < ¢
flavour change could be additional renormalizable p <+ e interactions of the heavy bosons — not
forbidden by symmetry — but these do not interest us, because their magnitude depends on the
model and is independent of the 7 <+ [ interactions. We are interested in p — e processes which
occur due to diagrams involving both the y — 7 and 7 — e interactions. The part of these
amplitudes which is reproduced by our EFT calculation, can be identified by matching the model
onto EFT at the heavy boson mass scale M. The model generates 7 <> [ four-fermion amplitudes
at tree level, and could induce p <> e amplitudes at one loop. These all are expected to match
onto dimension six operators in the EFT, with coefficients of O(\;;/M?) and O( 1)‘6‘*;:2)}&62 ). Our EFT
calculation cannot reproduce these model dependent coefficients. Instead, the EFT below the heavy
boson scale allows to combine the dimension six 7 <+ e and 7 <> p operators into a dimension eight
[ <> e operator, giving a contribution to the p <> e amplitude < O(%
expectation value of the SM Higgs). By power-counting, this is subdominant compared to the
model-dependent matching contribution discussed above. So this model illustrates that 7 <> e and

T ¢ W interactions could generically combine into larger p <> e rates than the EFT allows to

) (v is the vacuum

compute.

As a second example, consider K — K mixing in the SM, where the dominant contribu-
tion is computable in the EFT (Fermi theory). The box diagram in the full SM is illustrated
in figure 6.1 (a); evaluated with only massless u quarks in the loop, it gives an amplitude
o< (Vi Vua)?/(1672m3;), where V is the CKM matrix. This would match at my onto a dimension
six AF = 2 operator in the low-energy theory Fermi theory. However, due to CKM unitarity,
this O(W) amplitude vanishes when summing over all up-type quark flavours and neglecting
their masses.WInstead, the amplitude in the full SM has a GIM dependence on the quark masses
o (ViVea)?m?2 /1672 mey, + (ViiVia)>m?/1672my;,. In matching this to the low-energy EFT, the

m?/ 167r2m%V piece would match onto a dimension six operator, but is negligeable due to the small

2

mixing between the third and first generation. And the log-enhanced part of the amplitude o< m; is

reproduced in the EFT by calculating the diagram with two insertions of dimension six operators,
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illustrated in Figure 6.1 (b). So in the Standard Model, our calculation can sometimes reproduce
the observed flavour changing rates.

6.2.2 EFT for LFV

We parametrise the lepton flavour changing interaction in the EFT (see section 4.3.2). Above the
weak scale, we use the Lagrangian of the SMEFT, and since we are interested in LF'V operators of
dimension 6 or 8, we write

T T N
Lsmert = Lsm + 27‘41}2 4 +273 T

A B¢

h. 6.2
” + h.c (6.2)

where v = 174 GeV, the operator subscripts indicate the gauge structure and particle content,
and the superscripts contain the operator dimension in brackets [suppressed when unneccessary]|,
additional information about the operator structure in parentheses (see section 6.2.3 for examples),
and the flavour indices. The LFV operators of interest here are listed in section 6.2.3. In the
flavour sums of Eq. (6.2), each index runs over all three generations. The doublet and singlet lepton
generations are the charged lepton mass eigenstates {e, u, 7}, the singlet quarks are also labelled
by their flavour, and the quark doublets are in the u-type mass basis, with generation indices that
run 1 — 3.

The SM Lagrangian is in the notation of Chapter 2. At all scales, the doublet and singlet
leptons are in the low energy mass eigenstate basis, so the lepton Yukawa matrix [y.] can have
off-diagonal entries, in the presence of the operator O,y (see equations 6.17 and 6.87). We follow
the results of Chapter 5 in choosing this basis, because it defines lepton flavour in the presence of
LFV, so it simplifies our calculations(as mentioned at the end of section 6.2.4). The Yukawa matrix
eigenvalue of fermion f is written yy.

The dimension six operators in Eq. (6.2) are in the “on-shell” basis of [304] as pruned in [305],
where “on-shell” means that the equations of motion were used to reduce the basis. Complete bases
of on-shell dimension eight operators have appeared recently [308,309], and our dimension eight
operators are in these lists. However in reality, we are only interested in the subset of dimension eight
1 <> e operators to which experiments could be sensitive, which was given in Chapter 5. Finally,
some operators in Eq. (6.2) are hermitian in flavour space (ie [(9f§l<”l]T = (’)%lk); we include these
operators multiplied by an extra 1/2, as the Hermitian conjugate is included in (6.2) and summing
over flavour indices would otherwise lead to double counting with respect to the conventions of [315].

We assume LFV heavy particles are beyond the reach of the LHC in the next decade, because
we are interested in combining observables from upcoming experiments at low-energy. Concretely,
this means that the operator coefficients, or Wilson coefficients (WCs), satisfy

n—4
CKL]C§< v > . Axp =4 TeV (v =174 GeV)
Anp

and that we calculate Renormalisation Group running of LFV operators in SMEFT from Axp —
myy. Should new particles with LFV interactions and masses my < Myp < 4 TeV induce larger
coefficients, our results would still apply, but might be incomplete because additional operators and
diagrams could contribute.
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The WCs {CI[ZLK} function as coupling constants for LFV interactions. Their numerical value
can be obtained by matching the EFT onto a model, for instance by equating the Greens functions
of the model and the EFT at the new particle mass scale ~ Axp. The Renormalisation the
Group Equations (RGEs) govern the scale dependence of the WCs below Axp. The solution of
these equations resums the logarithms that are generated by the light particle, which propagate
as dynamical particles in the EFT. So in SMEFT, the one-loop RGEs of dimension six SMEFT
operators arise from decorating a dimension six operator with a loop involving renormalisable
interactions [315-317], and from loops involving two dimension 5 operators [314]. The mixing
of a product of dimension five and six operators into dimension seven has also been calculated in
SMEFT [350], as have some anomalous dimensions for some operators of dimension eight [318-320].

Upon reaching a particle mass scale, the high scale EFT can be matched onto another EFT,
where the now-heavy particles are removed. For instance, in crossing the electroweak scale,
SMEFT Greens functions are calculated in the broken SM, with the Higgs doublet written

G-l-
H = (v + 5(h+ iGO)> (6.3)

where the Gs are the Goldstones and h is the SM Higgs boson. These Greens functions are then
matched to those of a QED and QCD invariant EFT (we refer to it as low energy EFT) in which
the non-renormalisable operators are built out of SM fields lighter than the W boson [311].

The running and matching continues from the weak scale down to the experimental scale, where
rates can be calculated in terms of the WCs and matrix elements of the operators. For three or
four-legged p — e processes which are otherwise flavour diagonal (ie u — ey and p — ey, but not
including K — pFeT), the “leading” evolution between the experimental scale and the weak scale
has been obtained [323]|. This includes the one-loop RGEs for dimension five and six operators,
and some large two-loop anomalous dimensions where the one loop mixing vanishes [344]. Several
branching ratio calculations in the low energy EFT are given in the p — e review [142], and
wA — eA conversion rates can be calculated from [351]. These results can be combined to calculate
the current and upcoming sensitivity of p <> e experiments to WCs at the weak scale, and also
extrapolated to give the sensitivities to the 7 <> [ WCs considered in this manuscript [352].

The aim of this chapter is to calculate the contributions to u — e observables that arise from
combining 7 — e and p — 7 operators. This could occur in SMEFT running, in matching at the
weak scale, and in running below the weak scale. In SMEFT, loop diagrams containing pairs of
dimension six operators renormalize the Wilson coefficients of dimension eight operators, such that
the RGEs for the latter take the schematic form [333]

acth e i
(167T2>d10gAM = O vpa + Oy xvaly, (6.4)

having aligned the operator coefficients in the row vectors c 8], c 6] and where ~ is the anomalous
dimension matrix of dimension eight coefficients while 4 mixes pairs of dimension six into dimension
eight. The RGEs of dimension eight operators are currently unknown and only partial calculations
have been performed [318,320]. This work fits into this ongoing effort. We calculate at leading-
log, i.e we compute the one-loop RGEs and match at tree-level onto the low energy EFT. This
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consistency between the running and matching orders frees the calculation from scheme-dependent
contributions.

We define the anomalous dimensions with a 1/(1672) prefactor, while we unconventionally do
not factor out SM couplings. Two insertion of dimension six operators renormalize the dimension
eight coefficients as

ACH Z Gz, Ao (65)

where Z is the divergent renormalization factor and may contain renormalizable couplings. In
dimensional regularization, the independence of bare Wilson coefficients from the arbitrary renor-
malization scale gives the anomalous dimension matrix of Eq. (6.4), which at one-loop and with
our conventions takes the following form

5 o 1672 2. (6.6)

Note that Z o 1 /e and the product above is finite as expected. A more detailed derivation of 4
can be found in section 6.3.1.

Pairs of 7 <+ [ operators also contribute to u — e amplitudes in matching SMEFT onto the low
energy EFT at my . In “integrating out” the heavy bosons h, Z and replacing the Higgs doublet
with its vacuum expectation value, it is possible to draw diagrams built out of 7 <> [ operators
that match onto three or four-legged u — e operators in the low energy EFT. We calculate these
matching conditions, which are meant to complete the tree-level (’)(v4 / Aﬁp) matching performed
in the Appendix of Chapter 5.

Finally, combining two 7 <+ [ operators contributes to the RGEs of Wilson coefficients in the
EFT below myy. We neglect these running contributions because they carry a suppression factor
with respect to dimension six anomalous dimensions which is < mg /A%p, given that the bottom
quark is the heaviest dynamical particle in the EFT. Such suppression is absent in SMEFT, where
the top quark, the Higgs and gauge bosons are present, allowing Higgs legs to be attached with
order one couplings to heavier particles running in loops. SMEFT has also the advantage of having
two-fermion “penguin" operators that are efficiently generated in mixing and which match onto
vector operators in the low energy EFT. For the above reasons we focus on SMEFT RGEs and
matching, while we neglect the running below myy.

Equation (6.4) has a straightforward solution if the anomalous dimension matrices are constant,
which occurs when the running of all-but-one of the SM renormalisable couplings can be neglected.
We take all SM couplings constant between my — Axp = 4 TeV, in solving Eq. (6.4). It is
augmented by the RGEs of dimension six coefficients:

dc'el -
= -Cll5 6.7
7 7 (6.7)
where t = log(Axp/M)/(1672) and M is the sliding renormalization scale. The solution is
Cl(t) = C1%(0) exp(—4t) (6.8)

10 = [0~ [ arC0)expl—7)3%
0

X exp(—’?TT)C_"[G] (0) exp(y7) ] exp(—nt). (6.9)
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Expanding the exponential at leading log, the dimension eight coefficients at the electroweak scale
take the following form

B . A
B (my) = G (Axp) (1 - 1(;2 1og<mN;>)

. - A
C[GJ(ANP)ZTC[Gl(ANp)log<mNP> T (6.10)

6.2.3 Operators

This subsection lists the operators included in the SMEFT Lagrangian of Eq. (6.2). They are
classified into subgroups (Dg, 4 fs...), in order to facilitate the estimates of section 6.2.5.

The SMEFT dimension six operators that are 7 — e or u — 7 flavour changing are the following,
where the indices ij take the values er or Tu (except for the 4lg operators).

e Dipole operators = Dg:
Ogg = yT([Z-HUO‘Bej)Baﬁ
Oy = yr (LT HoPe;) W, (6.11)
The Hermitian conjugates with exchanged ¢ <+ j match onto the dipole operator with opposite

chirality.

e Penguin operators = Fs:

O} = i(en"e;)(H' Do ) (6.12)
Oy = z’(&»yaej)(HTBaH) (6.13)
Oy = i(fr 0, (HT DA H) (6.14)
where we have defined
iHTBuH =iH"(D,H) —i(D,H)H (6.15)
iHY DHZH = iH'"t"(D,H) —i(D,H")7"H. (6.16)
e Yukawa operators = Yg:
0%, = ((;He;)(H'H) (6.17)
and their Hermitian conjugates.
e Four lepton operators = 4lg:
OZF = (e ej) (Eryacr) (6.18)
O = (tv"t;) (exvact) (6.19)
O™ = (L7 6;) (Urvaly) (6.20)

where the pairs ¢j, kl, kj, ¢l can be er or Tu, while the remaining pair is diagonal and can be
{e,n, 7}



106 Chapter 6. The sensitivity of 4 — e to 7 flavour change

e Two-lepton two-quark operators = 4 fg:

O™ = (17°4) (@ Yam) (6.21)
ORI = (LY ;) (Gn ™ Yo Im) (6.22)
O™ = (v €5) (thn Yyt (6.23)
O™ = (L) (dnyadm) (6.24)
O™ = (€7 ¢;)(@nVatm) (6.25)
O™ — (e5e;) (i) (6.26)
OL™ = (€7 e;) (dnYadm) (6.27)
O = (Gie;) (dngm) (6.28)
Opto’ = (Lie;)(@nttm) (6.29)

with n,m € {1,2,3} running over the three quark families.

At dimension eight, there are thousands of operators, but here are listed only the subset rele-
vant for our calculations, where relevant means that their contribution could be detectable in the
upcoming p — e experimental searches, assuming a NP scale Axp 2 4 TeV. A list of such operators
was identified in Chapter 5, and is given below.

These include dipole operators = Dg

Ofettyrn = vuller Ho e, )Wy (H'H)
2)e 0 « a a
Ot = yn(LHo™ e, )W (HT r H)
Oytis = Yu(leH o e,) Bog (H' H) (6.30)

and their Hermitian conjugates with the lepton indices exchanged. Two-lepton two-quark vector
= 4f8

p S = (L )(qwaqanTH) (6.31)
52 S = o™y 0) (@ Yatn) (H T H) (6.32)
52 i‘;}é" = (LY L) (qn T Vo) (HTH) (6.33)
p S = (0er™0,) (G Yyuqn) (H V7O H) (6.34)
Ol = (L™ L) (it yn) (H T H) (6.35)
ORI = (e ) (Anyorun) (H 70 H) (6.36)
Oé%di’;}? (0ey*0)(dnyadn) (HTH) (6.37)
62 Ikt — (e 0,) (dnyady) (H T H) (6.38)
62 st = (ey*€) (GnYadn) (HH) (6.39)
OGS = (e e) (@nT Yatn) (H'T°H) (6.40)
Obrapge = (e ep) (@ 'vaun>(HTH) (6.41)
O e = (v ) (dnyady) (HTH) (6.42)
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with in most cases n = u,d belonging to the first generation quarks. There are also penguin
operators = Py

OWen 7 op DL H) (HTH
2H4AD i(Ley ™l )( oH)( )

O@en  _ (7 ranap it De Y (HTH) + (Do HY(H 0l
epap = 1(Lemy ) [(H'DGH)(H'H) + (H'Do H)(H'm°H)]

o i(6ey®e, ) (H Do H)(HVH). (6.43)

e2H4D —

Furthermore, the following two-fermion two-lepton scalar and tensor operators are also relevant

OfL i = (Loey)(dngn) (H'H) (6.44)
OPIH = (Toe, )7 (duan) (H 7 H) (6.45)
OfL i = (Loep)e(@uun) (H' H) (6.46)
Oty = (Lee >r £(Guun) (HI 7 H) (6.47)
O = (To0*Pe,)e(@uoapun) (HH) (6.18)
O = (oo™ )T (G apun) (H T H) (6.49)
OpNH = (I.Hey) (@ Hdy) (6.50)
Opirhis’ = (L™ Hey)(@uoasHdy,) (6.51)
ORI = (TeHey) (in H ), (6.52)

with n = u, ¢, t,d, s,b running over all quark flavours. Finally the four-lepton operators = 4lg read

Oty = (LHoe,) (I Hoager) (6.53)
ORlhs = (LHey) (T He,) (6.54)
O™ = (r™€,) (Teryale) (HH) (6.55)
OB = (™€) (Ter vale) (H'7" H) (6.56)
Oplhts = (v ) (Ecvaee) (HTH) (6.57)
ODehes — (1790, (Cevace) (H' T H) (6.58)

( (6.59)

Y
[
9
S
2
Q
\./ @

OcHee

A g2 p) (e ’YaQE)(HTH)

Note that in the Lagrangian of Eq. (6.2) we sum over all possible generation indices, and more
flavour structures are relevant for low energy LFV interactions. For instance, (’)Zf 262, (’)ng‘2 match
onto the same vector operator in the EFT below my,.  Similarly, in the case of eur7 tensor

operator, the permutations 77epu, Tuer, erTu must be considered.

6.2.4 Equations of Motion

In this section, we discuss some of the technical subtleties that occur when two dimension six
operators mix into dimension eight operators. In our calculations of anomalous dimensions we
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Cllf;l— (Dpr  _
- b o Sui(0,¢,)(H H)

PR

Figure 6.2: One-loop diagrams with the penguin operators of Eq. (6.12). Matching the divergences
off-shell, the redundant operators i(£, ¢, )(HTH), (D?{, Hy) are generated.

consider two different approaches: we can systematically apply the equations of motions onto the
amplitudes of our loop calculations in order to arrive at expressions that are proportional to tree-
level amplitudes of the on-shell, or “physical” operators. Alternatively, we could use a complete set
of off-shell operators and project our loop amplitudes onto the on-shell operator bagis. The situation
is slightly complicated by the facts that the dimension six operators will contribute themselves to
the equations of motion, and that there are a huge number of dimension eight operators. In the
following we will show how both approaches are equivalent in our calculation, where we determine
the mixing into the subset of dimension eight operators that contribute to LFV at low energy
experiments.

Working with a on-shell (or physical) operator basis implies the choice of a set of operators that
vanish when the Equation of Motions (EOM) are satisfied. Take two operators Op, Oy which differ
by an operator Ogops that is EOM vanishing, i.e

08
01 - 02 = OEOM X — (6.60)
0¢
where S is the action and ¢ labels a generic field. Ogopr can be dropped in physical processes
because it leads to vanishing S—matrix elements, so that the operators Op, O are physically
equivalent and only one of them is retained in the basis (see section 4.2.1.1 of Chapter 4)

For instance, at dimension six, the operators
i(0,00,)(H'H) , (D*L-Hp) (6.61)

can be generated at one-loop from a penguin operator (see Figure 6.2). The first is relevant here,
because it is on-shell equivalent to (¢, He,)(HTH) by means of the dimension four EOM of the
lepton field i(IP4,) = y, He,. (The second operator will be relevant for the C; x C mixing into
dipoles, which is discussed in section 6.3.1.1.)

Therefore, we can project an amplitude that is proportional to the left hand side of the previous
equation of motion

i(gung‘r)(HTH)%[Z'(Z/L”&')(HTH) - yT(ZMHeT)(HTH)]
+y, (£, He, ) (H'H) (6.62)
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Figure 6.3: The diagram shows that the operator i(¢, /)¢, )(HTH) leads to the same S—matrix
elements as y, (£, He.)(HTH). The non-local momentum dependence of the internal line propagator
cancels with the inverse propagator present in the Equation of Motion.

onto physical and EOM vanishing — in brackets — operators. In Figure 6.3 we show how the
equivalence can be understood diagrammatically: the I) operator Feynman rule is proportional
to the ¢ momentum of the virtual ¢; line coming out of a renormalizable Yukawa coupling; the
momentum dependence cancels with the £, propagator, yielding an S—matrix element reproduced
by the local operator y. (¢, He,)(HTH).

Once a reduced physical basis is identified, the theory can be consistently renormalized among
on-shell operators, as redundant counterterms AQs /e are equivalent to A(O1—Ogonr)/e and EOM
vanishing operators mix exclusively among themselves in the RGEs [353]!.

However, in order to consistently renormalize an EFT in a given basis up to dimension eight
(1/A%p), the dimension six (1/A%p) terms in the EOM must be included when removing redun-
dant operators. Concretely, if a divergent contribution to a redundant dimension six operator,
Ogﬁ] /(A%pe) is generated via loops, then it can be rewritten

A (e, OF
@) — -0 6.63
A%pe ( v Akp oM (663

where 0[16} is equivalent to Ogs] via the renormalizable EOM §S%=*/6¢ = 0 of Eq. (6.60), and the
dimension eight O is generated by the dimension six corrections §S%=6/3¢4. The dimension eight
contribution is proportional to the product of two dimension six operator coefficients, which is the
kind of contribution that we are interested in.

As an example of the impact of dimension six terms in the EOM, suppose that the only 7 <> e
operator at dimension six is OFp" = (€ree)(dngm), and that the operator (¢, ¢, )(HTH) is
generated via loop corrections. Then Eq. (6.62), up to dimension 8, becomes

(0,100, )(HTH) — |i(0, 00, ) (H'H) — y, (€, Her)(H H)+

CTeenm B _
+ D7 60) (dngm) (HTH)
ANP

TENM

yr (L Her) (HH) — — G (Lyee) (dngm) (HH) (6.64)

NP

(1)iknm
- - ledqH? —
(Cpee)(dngm)(HTH). Similarly to the renormalizable case, the on-shell equivalence is apparent

where the EOM vanishing operator in square brackets now contains the dimension eight O

!Gauge fixing and ghost terms that appear in the EOM are found to have no physical effects in operator mixing
and S—matrix elements [353].
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Figure 6.4: Correction to the Equation of Motion due to dimension six operators. At 1/ Aﬁp order,
the operator i(,, [0¢,)(H'H) is on-shell equivalent to a combination of dimension six and dimension
eight operators. The dimension eight contribution can be understood by attaching dimension six
interactions to the operator, where the internal line propagator cancels against the vertex Feynman
rule. The diagram shows an example with the insertion Oj™ = (¢re¢)(dngm), which reproduces
the EOM reduction of Eq. (6.64).

diagrammatically, by dressing the redundant operator with dimension six contact interactions as
shown in Figure 6.4. Once again the inverse propagator that is present in the EOM, and appears in
the operator Feynman rule, cancels the momentum dependence of the internal line, such that the
amplitude is local and equivalent to a dimension eight operator. Its coefficient will be proportional
to the product of two dimension six WC.

For instance, (£, Ip¢;)(HTH) is generated in matching off-shell the divergence of the one-loop
diagram of Figure 6.2 that involves the penguin operators of eq (6.12). Eq. (6.64) allows to
project the divergence onto the on-shell basis, giving a contribution to the renormalisation of the
dimension eight p <> e operator Oéiiﬁ;ﬁm = ({ye¢)(dngm)(HTH) from the product ngx(%edq. This
contribution from the EOM projection must be included in calculating the mixing from (dimension
6)? — dimension 8, together with one particle irreducible (1PI) diagrams o ng X Cledq- (Indeed,
the anomalous dimension is only gauge invariant if one includes both the IP1 vertex and the non-1PI

“wavefunction” contributions.)

The EOM contribution can be reproduced by calculating non-1PI divergent diagrams, as shown
in figure 6.4. In working with a subspace of dimension eight operators (as we do here), proceed-
ing diagrammatically can be particularly convenient. Our subspace is phenomenologically selected
to contribute to the low energy pu — e processes. When using the EOM to project the off-shell
divergences, the redundant terms must be written in terms of operators in the full basis (which
can include operators outside the subspace) and the EOM vanishing operators that the basis choice
implies. In the end, only the interesting operators in the subspace are retained but it required work-
ing with the full basis as an intermediate step. On the other hand, in the approach of calculating
one-particle -reducible diagrams, it is often easier to restrict to diagrams that directly give dimen-
sion eight operators of the subspace. In this manuscript, we calculate the one-particle-reducible
diagrams that generate the relevant dimension eight operators. We cross-checked our diagrammatic
results by calculating the dimension eight LFV operators obtained from the list of EOM-vanishing
operators in [305], by using Equations of Motion up to dimension six.

Finally, recall that we work in the low-energy mass eigenstate basis of the leptons, where the
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lepton mass matrix is:
Me,0ij = v ([ye}ij - C;ﬁ)
So in the above diagrammatic and EOM-based arguments, the Yukawa matrix element g is replaced

by the matrix element of the parenthese on the right side of (6.65), which is also ﬂavour—diagonalQ.
Therefore we do not include non-1PI diagrams involving a loop on the external leg of O,.

(6.65)

6.2.5 Estimates

The goal of this section is to better identify the dimension eight contributions that are interesting
to calculate in the context of u — e LFV, that is, those that will be within the reach of future
experiments. The Wilson coeflicients of the dimension eight operators presented in the previous
section were estimated in Chapter 5 to be within upcoming experimental sensitivity if they have
values > v /A%, for A > 4 TeV. We estimate in this section the additional loop and small couplings
suppression that could be encountered in generating these coefficients in running and matching.
This will allow to narrow-down the list of diagrams that should be calculated.

In estimating diagrams built out of p — 7 X 7 — e operators, we take into account the
constraints on 7 <> [ processes coming from the bounds reported in the lower part of Table 6.1.
Employing the acronyms introduced in the previous section for sets of 7 LFV operators, current
and upcoming one-at-a-time-limits on their coefficients are written in Table 6.2. These estimates
assume that the Branching Ratio sensitivities on 7 decays will improve of an order of magnitude
at Bellell [341], and use the future sensitivities to h — 75T decays at the ILC [347]. In the case

where the operators are not (or are only loosely) bounded, we assume
Clolim < (v/4 TeV)? ~ 2 x 1073 (6.66)

corresponding to an O(1) coefficient at a New Physics scale of 4 TeV.

Operator coefficient | Current sensitivity | Future sensitivity | Process
CH, <7x1076 <2x107° T =1y
Cir <1073 <3x1074 h— It
Ch, <4x107* <1074 T =1l
cit <3x1074 <1074 T — 1l
C <3x1074 <1074 T — In(n)

Table 6.2: Sensitivities to 7 <> [ dimension six operator coefficients, normalized as in Eq. (6.2).
Current limits come from the Branching ratio bounds of Table 6.1, while the third column assumes
that the experimental sensitivity to 7 <> [ decays will improve by an order of magnitude.

Diagrams that can generate the dimension eight u <+ e operators of section 6.2.3, in matching
or in running, are drawn with a pair of 7 <> [ operators. The contribution to the coefficients are
estimated as

ACBlen o cler ool <1612> x {yh g A xlog (6.67)
T

*However, in this basis, the h retains LFV interactions — see Eq. (6.88).
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Operator coefficient | Current sensitivity | Future sensitivity | Process
Ch. <1078 <1.5x107Y = ey
Cirty <3 x 1071 <5x 10712 [ — ey
Ciier Ciler <1078 <15x107° p— ey
C <8x 1079 <1079 = ey
C';;Z <1077 <107? HA — eA
Cue <8x 1077 <8x107? W — éee
Cygendd <1078 <1010 pA — eA

Table 6.3: Sensitivities to ;. — e dimension eight operator coefficients, normalized as in Eq. (6.2).
Current and future limits correspond to the experimental sensitivities of Table 6.1. T, .S label the
Lorentz structure of the operator for tensor and scalar respectively. For instance, Cz};ttT is the

coefficient of the dimension eight tensor in Eq. (6.49) with top quarks.

H P RN H
N . N ’
/ 7/
\\ / \\ hi
PGS e
7
/’ \\
7/ N\
H > H

Figure 6.5: Mixing to the dimension eight y — e penguin operator from double insertion of dimen-
sion six Yukawas Yg x Y — Fs.

where n is the number of loops, SM couplings are factored out into the curly brackets, and the
log(4 TeV /my ) factor is present in running, while absent in matching. In running, we restrict the
number of loops to n = 1, while up to two loop diagrams contribute in “tree-level”(in the low-energy
EFT) matching.

An example of a diagram contributing to the RGEs is shown in the diagram of Figure 6.5, where
two Yukawa operators OS], x O7F; ~ Y5 x Yg mix into dimension eight 4 — e penguin operators
(9:5 2D Olef 2p ~ P8 by exchanging the 7 and closing the loop with a Higgs line. The estimated
contribution to the penguin coefficients is then

olog(4 TeV/my)

~3x1077. (6.68)

Future uA — eA experiments will be sensitive to penguin coefficients larger than ~ 1079, hence
our estimate lies within experimental reach and Yg x Y3 — Ps mixing is calculated in section 6.3.

As another example, 7 <> [ dipoles Dg are defined with a built-in 7 Yukawa suppression — see
Eq. (6.11)— so y, ~ 1072 multiplies any dipole insertion. For instance, if Dg x Og mix into a
dimension eight operator Og, its coefficient is estimated to be

log(4 TeV/mw)
1672

ACy ~ yTCDGCG S 107127 (669)
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where we took Cg < v2/A%, for A ~ 4 TeV. Equation (6.69) is smaller than any future y — e
sensitivity to operator coefficients, so we disregard mixing that involves 7 dipoles in our calculations.

The results of our estimates are summarized in Tables 6.4 and 6.5, referring respectively to
RGEs and matching contributions. There, we report the potentially detectable dimension eight

operators generated by a given pair of dimension six operators.

Ps Ys Als | 4fs
Ps | Dg=0| Dg=0| X |4fs
Yo | Dg=0 B X X
4lg X X X | x
4fe | 4fs X X | 4fs

Table 6.4: We present the dimension eight operators that we estimate to be generated within
experimental sensitivity through (dimension six)? mixing in the RGEs. The X means that the
contributions is too small or that there is no one-loop diagram that can generate the desired
dimension eight operators with the given pair. Ps x Ps — Dg, Y5 x Ps — Dg mixing diagrams exist
and appear to be interesting, however we find that the anomalous dimension vanishes (see section

6.3.1.1).

Ps Ys 4lg | 4f6
Py | X Dg X X
Ys X Dg, 4lg X X
4lg | X X X X
4fe | X X X X

Table 6.5: We present the dimension eight operators that we estimate to be generated within
experimental sensitivity through (dimension six)2 in matching. The X means that the contributions
is too small or that there is no tree-level matching that can generate the desired dimension eight
operators with the given pair.

6.3 Calculation

The contributions that were estimated in the previous section to be within experimental sensitivity
are calculated here. Section 6.3.1 determines the divergences of the relevant one-loop diagrams and
relates them to the anomalous dimensions of the dimension eight Wilson coefficients in SMEFT,
and in Section 6.3.2, pairs of 7 <> [ dimension six operators are tree-level-matched at my onto the
low energy u — e EFT.

6.3.1 SMEFT Running

In this section, we outline the calculation of the anomalous dimension matrix yxy 4, that mixes

the dimension six 7 <> [ operators Og‘ﬁ],o[ﬁ] into the p — e dimension eight Of}. We work in
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dimensional regularization in 4 — 2¢ dimensions and renormalize in the MS scheme, where we label
the renormalization scale with M (rather than the usual u). Double insertions of dimension six
operators renormalize dimension eight coefficients as

ACH — G970y 4 (670

where the Wilson coefficients of dimension eight and six are respectively aligned in the row vectors
c 8], c 6] dimension eight and six operator labels are respectively capitals from the beginning and
end of the alphabet, and flavour indices are suppressed. The bare dimension eight coefficients can
be written as

C_:I[i]bare = MaAE(ég] ZBpa + C@? ZAXY,AC_;}[?]) (6.71)

where we have factored out the sliding scale power M?4° to assure that the renormalized WC
stay dimensionless in d = 4 — 2¢ space-time dimensions. The RGEs can be obtained from the
independence of the bare Lagrangian from the arbitrary renormalization scale M
4
167%) ——=22 =0 6.72

which implies the following differential equation for the renormalized Wilson coeflicients

e L8l =6l 6] 5
(165%) oA = (165%)| — aae(C) + CYCY 2y}
S8 dZBc acy

IxvC8 7L+

B dlogM AT dlog M

_'[6} ~
A6, o dCY 0 Al61d2xvB A6,
— — . 6.73
XEXNE Jlog MTBAT T X dlog M Y TBA (6.73)
The RGEs of dimension six Wilson coefficients are the following
2 déﬁ?] 2 s[6] | Al6] -
(167 )dlogM = —(16m%)axeCy +Cy ' vx + ... (6.74)

where axe is the mass dimension of the bare coefficient of Ox and 7 is the anomalous dimension
matrix for dimension six operators. In the limit € — 0, the term proportional to ¢ is irrelevant for
the dimension six renormalization, while it plays a crucial role in (dimension6)2 to dimension eight
mixing. Upon substitution, Eq. (6.73) becomes

= (167r2) — aAsc_"f] + ég]VBA

—(aa — ax — ay)e(CECE Zyy p 251

_ Al6] dZxy,p 216] —1
C(X legMCY BA

_ét[/g'?WXZAXY,Bég] Zgh — C@?} ZXY,BG§;WWYZ§L
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having defined yp4 = —(16%2)%Z5i‘, which is the anomalous dimension matrix of dimension
eight operators. At one-loop we can replace Z with the identity and neglect the second line of the
above equation, since 4 and Z both appear at one loop at leading order. The product eZ is finite,
and the RGEs in d = 4 dimensions read
2 déf] ~[8
(167 )dlogM = CPlvpa
—(1671'2)(G,A —ax — ay)éﬁ]@@eryﬁ

B o\ A16] A4 XxY,A 6]
(167°)C 7dlogMCY

=[8 =[6] + =[6
= C8lypa + C4xy uCY (6.75)
The one-loop 4 anomalous dimension matrix that mixes two dimension six operators into dimension
eight is finally

dZxy A
dlog M |~

’AYXY,A = (167T2) (aX +ay — aA)é‘ZXy,A — (6.76)
The second term contribute to the mixing when renormalizable couplings appear in Z , which carry
an implicit dependence on the renormalization scale M. The beta functions of renormalized SM
couplings for € > 0 take the form B.({g,¢,y}) = —{g,¢,y} + B({9,9’,y}) and at one-loop

dZxya  dZxya /
Tlog M — d{g’g,’y}ﬁe({g,g 2y}
dZxy,a , .
=e—>"— x{g,¢,y} + higher loops. 6.77
d{g,9',y} t )+ hig (6.77)

6.3.1.1 p—7x7—>ein SMEFT

We calculate the divergent part of one-loop diagrams with the product of u — 7 X 7 — e operator
insertions, which, according to the estimates summarized in Table 6.4, give potentially detectable
contributions to p — e observables in the dimension eight running. We work in SMEFT and unbro-
ken SU(2), where all SM particles are taken massless, including the Higgs doublet. The diagrams
have been drawn by hand and were also generated with a code based on FeynArts [354] and Feyn-
Rules [355]. In most cases?, the dimension eight operators to which p — e observables are sensitive
do not contain 7 external legs, so we here consider diagrams with a virtual 7 line connecting two
dimension six SMEFT operators. We are interested in one-particle-irreducible divergent diagrams
(which restrict the number of internal propagators) that can generate the dimension eight operators
of section 6.2.2 (which constrain the external legs), and also in some one-particle-reducible divergent
diagrams that reproduce the contribution of the dimension six correction in the EOM, as discussed
in section 6.2.4. Yukawa couplings smaller than 3, ~ 1072 are neglected, because they lead to
1 — e coefficients below experimental sensitivity, assuming dimension six WC Cl0 < 42/ A%p and
Axp = 4 TeV. However, the estimates of section 6.2.5 select diagrams that only involve top Yukawas
y¢ and single insertions of y,, while the bottom and charm Yukawas y3,y. do not appear.

3The exception is the pgerT tensors, but the leading contribution to these is from tree-level matching onto the low
energy EFT, which is discussed the next section.
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Figure 6.6: Classes of divergent diagrams that give observable contributions to u — e processes, as
identified in Table 6.4.

In Figure 6.6 we show the “classes" of diagrams listed in Table 6.4, that were estimated to
be within © — e experimental sensitivity. Each class is described below. The divergences were
calculated both by hand and with an in-house developed Mathematica program, making use of the
Feynman Rules listed in Appendix D.1.

° Figure 6.6a: Y6 X P6 — Dg
The penguin operators of Eq.s (6.12)-(6.14) can be combined with the Yukawa operators of
Eq. (6.17). The chirality flips on the lepton line, so attaching a gauge boson potentially
generates the u — e dipoles of Eq. (6.30). The gauge bosons can be inserted on the internal
Higgs and lepton lines or can come out of penguin operators, while the three external Higgs
can be permuted in several ways among the dimension six vertices. Also, in the diagram
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depicted, the Yukawa operator is ¢ — 7 and the penguin is 7 — e, but the two vertices can
be exchanged: for instance, in the case of external left-handed electrons, the possible operator
combinations are: O x O, O} x Ogl)”, O x (’)Sl)w. We find that these anomalous
dimensions vanish. This is consistent with the dimension six version of this calculation, where
neither penguin operators dressed with renormalizable Yukawa couplings, nor O,y dressed
with a gauge loop, mix into the dimension six dipoles [356]. Note that in broken SU(2)
and unitary gauge, dimension six penguins and Yukawas give Feynman rules that look like
SM renormalisable interactions. By analogy with the SM, we expect them to not generate
divergent non-renormalisable dipoles. = The same argument applies to the Ps x Pg — Dg

mixing discussed in the next paragraph

e Figure 6.6b: F5 x Ps — Dg

The diagrams feature double insertions of penguin operators - see Eq.s (6.12)-(6.14). The two
vertices couple to vector currents of leptons, so to mix into the y — e dipoles, the chirality
flip is achieved by attaching a Higgs to the 7 virtual line. The contribution is estimated to lie
within experimental sensitivity, because the generated u — e dipole coefficient is enhanced by
the ratio y./y, due to the Yukawa couplings in the dipole operator definitions in Eq. (6.30).
The gauge bosons can be attached to the Higgs and 7 in the loop, or can belong to one of the
penguin vertices. Furthermore, all possible permutations of the external Higgses are taken
into account. The operator pairs are O X OEZ’B) , where the 7 — e LFV can be mediated
by either right-handed or left-handed penguins, depending on the chirality of the external
legs. As the previous case, the mixing into the y — e dipole is found to vanish.

In addition to the 1PI diagrams of Figure 6.6b, dimension six terms in the EOM contribute
to the mixing. Loop diagrams where the Higgs leg of a penguin operator closes into the 7 line
via a Yukawa interaction renormalize the redundant operator (D?(,)He; (see Figure 6.2b).
When the divergence is projected onto the on-shell basis, the penguin correction to the EOM
gives additional Ps x Ps — Dg mixing. However, the combination of SMEFT p — e dipoles
that is generated is orthogonal to the v dipole and does not contribute to low energy pu — e
observables. This is also apparent in considering non-1PI diagrams (see section 6.2.4) where
a penguin operator is inserted in the 7 line of D?¢, He;; the amplitude is local and reproduces
the EOM result when the external gauge boson belongs to the penguin vertex. In broken
SU(2), penguins give flavour changing (and correct the flavour diagonal) couplings with the
Z, but leave QED interactions untarnished.

e Figure 6.6c: Yg x Y5 — I}
In this class of diagrams the loop is closed with Higgs exchange between two Yukawa operators.
The superficial degree of divergence is 1, and the divergence is linear in momentum. With
four external Higgses, it mixes into the dimension eight 4 — e penguin operators of Eq.
(6.43). For right-handed leptons the inserted operators are Ol x OX7f, while OF x O
gives mixing into left-handed penguins.

e Figure 6.6d: 4fs x Ps — 4fs
Two-lepton two-quark 7 — [ operators can mix into 4 — e dimension eight four fermion
operators by inserting a penguin in the tau line and closing the loop with a gauge boson. Only
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two-lepton two quark operators are considered because they contribute to u — e conversion
(while tensors with heavy quarks contribute to u — e7y), which is the process with the
best upcoming sensitivity to operator coefficients. The gauge boson is attached to the other
fermion lines in every possible way, and the diagram shows just one example. As discussed in
section 6.2.4, we also include dimension six corrections to the EOM or, equivalently, non-1P1
diagrams where the loop of Figure 6.2 dresses one of the lepton lines. These diagrams are
analogous to fermion wave function renormalization and are pure-gauge, i.e oc £ in the R
gauge; to avoid calculating wave function-like diagrams, the calculation is done for £ = O,
commonly known as Landau gauge. In Table 6.7 we summarize the ;4 — e dimension eight
operators generated by the product of 7 — [ penguins with four fermion operators.

Figure 6.6e-6.6f: 4fg x 4fs — 4fs In the last two diagrams, pairs of two-lepton two-quark
dimension six operators are connected through a fermion loop, where two Higgs legs are
inserted. With the exception of dimension eight tensor with tops, © — e observables are
sensitive to the resulting dimension eight coefficients only if the Higgs are attached to a top
internal line. In the case of tensors with tops, the better sensitivity allows for the topology of
Figure 6.6f, where a 7 Yukawa is present. In Table 6.6 we list the dimension eight operators
that are generated for every pair of dimension six four fermion operators.

The complete anomalous dimensions for the above classes of diagrams can be found in Appendix

D.2.

We discuss the example of a pair of dimension six 7 <+ [ Yukawa operators mixing into the u — e

dimension eight penguins, depicted in the representative diagram of Figure 6.6c. The counterterms

that renormalize the divergences are the following

. e C‘W *TEe
C™t7 *Te) _ _“eH~eH
( eH™ el ] opap 3272¢
R e 3CTM *Te
oA *Te) - _ eH " eH
( eH cH ve? H4D 327m2¢
(C*’”ZAC”)(I)W _ G G
el “Hel ) pap 647m2e
(C*’”Z or )(l)eu _ _CGI/;T o
el “~el ) pip 6472e
(C*HTZAOGT ) (2)6;“ _ Cel/»fl‘l' 6@};{
el “el Jppgap T 12872
*
<C*”TZ or >(2)eu _ 70@}/}7 er
el eH ) 2mip 1672¢
. (4)ep CrETOer
C*’”ZC”) — e Zell 6.78
( eH el )y pap 12872¢ (6.78)

where the subscript of the parentheses label the corresponding dimension eight operators. The
operator

Oég};ﬁ‘l) = el B (Leriye,)(H 7/ H)Do(HTT5 H) is not in the list of section 6.2.2 because it does
not contribute to low energy p — e observables, although it appears as a counterterm. Furthermore,
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Table 6.6: Dimension eight operators generated through the diagrams of Figure 6.6e and 6.6f
with pairs of two-lepton two-quark operators, 4fg x 4fg. Most of dimension eight coefficients are

proportional to y?, with the exception of Oy, x Oeq, Opg X Ogy mixing into the tensors

where the Yukawa couplings y,y; multiply the coefficient.

(3),(4)
Ofeqqu ’

the following redundant operators are radiatively generated in our off-shell calculation

<~

Ot ap = i(ePp)(H H)?
i(ePu)(HTH)? — i(Pep)(H H)?

e

Ok = i(0Ipe,)(HTH)?

0(2)6M

e
ot = i(Ler PU,g) (H HY) (HH).

These are related to the physical/on-shell basis as follows

O,[e]'ZQHALD = Ogﬂ + [y:]zﬂ Zkei;ifs + [ye]ieOlZZHs

O(l)eu _ O(l)eu ‘Oei * AO*/“A
v2HAD — Yo + [ye]uz leH® + [ye]ez leH®

2 i * J
ijz%?]lD = 07(J2)eu + [YeluiOtens + [ye]eio;:l%

(6.79)

(6.80)

(6.81)

(6.82)

(6.83)

(6.84)
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1 3 * 1 *(1 3 *(3
Clgq) Clgq) CEu ng CZ@dQ’ Cﬂedq Clge;u’ Cﬂe(qu)L Cée;u’ Cée(qz)L
@) (0,3),9) (0,(2),3),(4)
o oW @66 A0 40 Creagrz Crequrz  Crequi?
He(1) 2q2H? 2¢2H? 2u2H? 2d2H? o+ o1 )(3) @ o*1,2).6).4)
LedqH? lequH? LequH?
oo SOBA - 2.E
C C(z)»(3) 0(1)7(4),(5) 0(2) 0(2) LedqH? lequH? LequH?
H{(3) 2q2H2 2q2H? 2y2H? 2d2H? o2 o2 ) 3)4)  *(1),(2),03),(4)
ledqH? lequH? lequH?
* 1 *(1 3 *(3
‘ Ceq Ceu Ced Cg@dQ’ Cfedq Olge;u’ Cée(qz)L Olge;u’ Cée(qz)L
o) c1):(2),3),(4) C(l) (2),(3),(9)
C C(l)’(z) C C ledqH? LequH? lequH?
He e2q2 H? e?u?H? e?d®H? o1 2) *(1),(2),(3),(4) C*(l) (2),(3),(4)
ledqH? LequH? lequH?

Table 6.7: Dimension eight operators generated via the diagrams of Figure 6.6d with pairs of two-
lepton two-quark 4fg and penguins Py

where (’)EJ s = (LiHej)(H TH)2, and each of O, oHen , o vanishes, when the renormalizable
EOM on singlet and doublet leptons i(Du) — [yi]i (H'6:) = 0, i(1D€,) — [yelui(He;) = 0 are
satisfied. The off-shell counterterms are on-shell equivalent to [y;f]sz‘g%a [ye]ieOzg 175, Which is
beyond pu — e experimental reach. The resulting RGEs are obtained from Eq. (6.78) and (6.75),

and read

167°C = —CLECHF (6.85)
16 2Cé2}{4D - 70:1%[7 H 167 20§21)LI4D = *C:}LIT CH (6.86)

where the dot on the dimension eight coefficients corresponds to d/dlog M.

6.3.2 Matching SMEFT onto the low energy EFT

In Table 6.5 of Section 6.2.3, we identified the relevant matching contributions to low energy pu <> e
interactions from the double insertion of u — 7 X 7 — e dimension six SMEFT operators. At the
matching scale myy, the electroweak symietry is spontaneously broken by the Higgs VEV, and the
h, Z,W and t are removed from the low energy EFT. The matching is performed by identifying the
matrix elements of a u — e process calculated in the theories above and below the matching scale,
with the electroweak symmetry broken in both theories. As a result, products of 7 <» [ SMEFT
operators can match onto u — e three and four point functions. The interesting diagrams are
illustrated in Figure 6.7. When the Higgs doublet acquires a VEV, Yukawa operators contribute to
the mass matrix

Me,0ij = ([ye]ij - cg;[) (6.87)



6.3. Calculation 121

Figure 6.7: Diagrams matching pairs of dimension six 7 — [ SMEFT operators onto low energy
u — € operators.

and the h couplings

h L
——eiPre; ([yeli — 3Ci ) +he =

V2
h

= _ﬁé’LPRGJ (

meiéz-j

~ 2035) +he (6.883)

of charged leptons with a different prefactor, such that h acquires LF'V couplings in the lepton mass
eigenstate basis.

The two-loop Barr-Zee diagrams (Figure 6.7¢-6.7d) match to the dipole at tree level in the
low energy EFT and correspond to a dimension 10 dipole in SMEFT. Therefore, the matching
contribution should be independent of the renormalisation scheme in both EFTs, because (dim6)?
terms in the RGEs cannot generate a dimension 10 operator, and tree-level is scheme-independent.
The lepton line is connected via Z and h exchange to a top or W loop, where the Z and h respectively
couple to the lepton line via a penguin and an off-diagonal Yukawa operator. Such diagrams can
be significant [357] (despite the two-loop suppression), because they are not suppressed by small
Yukawa couplings. We estimate these diagrams from the results of [195]|, who calculated the Barr-
Zee diagrams in the two Higgs Doublet Model (2HDM) with LFV couplings, where they provide
the leading contribution to p — ey (because the diagrams are not suppressed by y,). In the
2HDM results of [195], the Z-diagrams are suppressed (relative to v diagrams) because the C-even
dipole moment only couples the Z to the vector current of leptons, so there is a suppression of
(1 — 4sin?fy) < 0.03. However in our case, the Z-lepton vertex is a penguin operator with a
flavour-changing coefficient that we wish to constrain, and so does not suffer from such SM factors.



122 Chapter 6. The sensitivity of 4 — e to 7 flavour change

The estimated contributions to the dipole coefficients are [358] :

Con = oot - [Cgtcei+ (cliy + ci) et
Cpr =~ 22:3 mi [c:;f (cggw + C}j”g”‘) + C*Wc;fe} (6.89)

A dipole is also generated at one-loop with a pair of penguin operators, which look like the flavor
changing version of the electroweak correction to (g — 2), with a Z exchange. However, assuming
the future limits on penguin coefficients shown in Table 6.2, the contribution is below u — ey
upcoming experimental sensitivity.

Four lepton eurt operators get matching contribution from tree-level diagrams with a Z,h
exchange between penguin vertices or LF'V Higgs boson couplings, as illustrated in the diagrams of
Figure 6.7a and 6.7b. SMEFT 7—LFV penguins and Yukawa corrections are matched at my, onto
low energy four lepton operator coefficients as follows

o L oer crn 0 (6.90)
r.rR = ~ g VeH H 7 .
euTT *Te *M’T v?

CTlfLL = C -~ (6.91)

my,
2
Corr=—CinCly 2 (6.92)
mj,
euTT *Te AYRIUT v?

CSl,LLL = —CiCoy 2 (6.93)

my,

corr _ 2 (C poller 4 om0 )”) o (6.94)
SRL ™ o052 Oy HY Hi Z :

2¢° (1) @) v
cHr = CH.Cri ™+ CH.Cr) ™) — 6.95
Yih = g (CH.Chi ) (6.95)
2
eUTT g 1l)er 1)r 3)er 3)T
CitTE = — g (B O™ + ool
2
Vet ~(3)Ti (V7 ~B)er | Y
+C Oy "+ Cy " Chyg >MQ (6.96)
Z
2 2

cerrr — 9 cer g VU 6.97

V.RR cos2 GW He“YHe M% ( )

where the low energy EFT basis is in the notation of [322] (see section 4.3.2 of Chapter 4). We report
for completeness the matching conditions for eurr vector coefficients, although p — e observables
are not sensitive to them.

6.4 Phenomenological implications

This section gives limits on pairs of 7 <> [ coefficients from their contribution to ;1 — e processes, and
we discuss some examples where the upcoming sensitivity of 4 — e observables is complementary to
the future direct limits from 7 — [ processes. Section 6.4.1 considers p <> e amplitudes generated
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by the fish diagrams of Figure 6.6e-6.6f, and compares with the limits arising from B — 7 LFV
decays (summarised in Appendix D.3). An example of p <> e from matching out the Higgs is
given in Section 6.4.2, where we compare the sensitivity of y — e processes to h — 75T decays.
Appendix D.4 gives results for the cases where the u <> e sensitivity is marginal or uninteresting.

The limits we quote apply to pairs of 7 <> [ coefficients at a New Physics scale Ayp = 4 TeV.
The NP scale is relevant because it appears in the logarithms of the RG running. We assume that
dimension six 7 <> [ operators are generated at Axyp = 4 TeV and contribute to 1 — e observables
in two ways: first, as discussed in section 6.3.1, via Renormalisation Group mixing into dimension
eight 1 — e operators in SMEFT between Axp and myy, and second via the matching at my of
combined dimension six 7 <> [ operators onto u — e operators as calculated in section 6.3.2. The
running is described with the solution of the RGEs given in Eq. (6.10), then the dimension eight
1 — e operators are matched onto the low energy EFT as given in Appendix C.2. The sensitivity
of current p <> e experiments to coefficients at myy is tabulated in [322]; we extrapolate these
limits to the future experimental reaches given in table 6.1, in order to determine the experimental
sensitivities of u — e processes to the product of 7 — [ operator coefficients. In most cases,
we just rescale the sensitivities of [322]. But for the limits from pA — eA on vector operators
with quarks, we recalculate the sensitivities on an Aluminium target, as will be used by upcoming
experiments. The current bounds are from Gold targets, which have more neutrons than protons,
whereas Aluminium contains equal numbers of protons and neutrons (v and d quarks). So Gold
has comparable sensitivity to (eyu)(@yu + dyd) and (eyp)(uyu — dyd), whereas the sensitivity of
Aluminium to (éyu)(ayu — dyd) is suppressed by a loop.

Note that we distinguish sensitivities from constraints or bounds. But we use limits to mean
either. A constraint identifies the region of parameter space where the coefficients must sit, while a
sensitivity represents the smallest absolute value that can be experimentally detected. The notion
of sensitivity is particularly useful when the number of parameters is larger than the number of
observables, so that exclusion bounds on single coefficients cannot be inferred. A coefficient smaller
than the sensitivity escapes experimental detection but larger values can also escape detection if
accidental cancellations occur. In practise, in this manuscript we obtain sensitivities, because we
consider one non-zero pair of 7 <> [ operators at a time and compute the contribution to u — e
observables.

Our results are interesting, because they show that upcoming p <> e experiments could be
sensitive to 7 <> [ coefficients beyond the reach of 7 <« [ searches. We obtain experimental
sensitivities By« to the product of coefficients

’CWWC[G}” < Biose. (6.98)

The same coefficients Cl67# Cl6ler might contribute to constrained 7 <> [ processes and be respec-
tively subjected to the sensitivity “limits" B._,,, Br_. imposed by direct TLFV searches. In the
Cllte _ Cl6leT plane, this identifies an ellipse

‘C[ﬁ}ruf ‘0[6]67‘2 -
1 6.99
B2, B © (699

that encloses the coeflicient space to which 7 <+ [ observables are not sensitive. On the other hand,
u — e searches can detect coefficients in the region bounded by the hyperbola in Eq. (6.98). If the



124 Chapter 6. The sensitivity of 4 — e to 7 flavour change

o 16— AU RN
N — NS
A - AN
o - AV
14— NN
~ ~ NN
T2 _ AN
3) _ AR
R0
2 N
- Ry
1= XY
o~
0.6 - N
N NN
RN N
oaf
A
A et NN
0.2 RS0 > NN
7
— 4
| s
0 1 I 1 1 147 1 1 1 1 I 1 1 1 I 1
-15 -1 ~05 15
T Pr>p

Figure 6.8: The plot shows the parameter space probed by direct 7 <> [ searches and by u — e
observables, in the C;, — C7¢ plane. The direct searches can probe the region outside the ellipse
of Eq. (6.99) (which correspond to the red circle when the Wilson coefficients are normalized by
the sensitivities B,y of the 7 <> [ processes), while 4 — e is sensitive to the area above the
hyperbolae, as defined in Eq. (6.98). The blue dashed hyperbolae correspond to the boundary
condition Byee/(BroeBroy) = 1/2, while the black ones satisfies Bue/(BroeBroy) < 1/2. In
this second case p — e searches are able to probe parameter space missed by 7 <> [ observables.
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T 3u
Clequ(?))

Figure 6.9: The operators Cgy sL.C (9e731 4 re inserted in the left diagram and mix into the dimension

Lequ

eight p — e scalar/tensor operators Oéi;’u(?}é(?’)’w of Eq.s (6.47)-(6.49).

following inequality is satisfied
B:4.B
Blcse < 7”%2 R (6.100)
the hyperbola enters the ellipse and @ — e processes are able to probe a region of parameter space
that eludes the direct 7 <> [ searches. This is illustrated in Figure 6.8. In the subsequent sections we
discuss examples where Eq. (6.100) is satisfied considering the upcoming experimental sensitivities
on u — e and 7 — [ processes.

6.4.1 Fish diagrams with internal top quarks

In this section, we discuss some examples where the sensitivity of ;1 — e conversion to some 7 <> [
coefficients is complementary to B decays. The “fish" diagrams that mix four fermion 7 > [
interactions into dimension eight u — e operators are illustrated in Figure 6.6e-6.6f of section
6.3.1. In these diagrams, one or two Higgs are attached to a heavy top internal line, so the 7 < [
operators that our calculation can probe contain one quark doublet or up-type singlet in the third
generation. In the former case, the operator can contribute to the LFV decays of the B mesons
with a 7 (v;) in the final state. ~ Recall that the quark doublets are in the u—basis, so these
operators also match via CKM mixing onto low energy contact interactions with d—type quarks
of the first and second generations. For the operators considered here, we checked that the limits
on their coefficients arising from CKM-suppressed contributions to 7 LFV processes with d and s
quarks, such as K* — [*v and 7 hadron decays, are not competitive with the limits inferred from
B decays.

The following subsections are organized by the different © — e interactions that the 7 <> [
operators mix into.

6.4.1.1 p — e scalars

Consider, for example, the operators 02,5“3 = (Tyu)(q1ygs) and Oéi)]euﬂl = (leoT)(g30ou), which

mix into the p — e scalar and tensor dimension eight operators Oéégi2§(3)’(4) of Eq.s (6.47)-(6.49)

(with up quarks) via the diagram of Figure 6.9.  These match at my onto scalar and tensor
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[

S
7 %
i
IR

107

107
107

10° =

10° NN
10° 10* 10° 10?2 100 1 10 102 10° _10° 10°
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CZ’;ZT?’U plane. The blue line correspond to the current experimental reach, while in the black one we
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(b) Similar to Figure 6.10a, in the C’é;)eﬂs - éi;;“?’u plane. For this pair of operators, u — e will have a

better sensitivity to the coefficient product than B decays with the upcoming experimental improvement.

Figure 6.10

operators in the low energy EFT, with the following coefficients?

3 MF 13 ~(3)ersu my

Cgf%R(mW) = 272 12 C;é‘ Céequ log E (6-101)
3 m? 13 ~(3)er3u mw

C%:LLRR(mW) = 872 02 C;—; C@equ log TNP (6102)

where m; ~ v is the top quark mass and the SMEFT operator coefficients are at Anp.

4 This simple solution does not include the QCD running of tensors and scalars from Axp — myw . Since QCD does
not renormalize vector coefficients, this QCD running is analogous to the rescaling of QED tensor<»scalar mixing
below mw [322],and can be estimated to be a < 10% effect. It is therefore neglected.
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Scalar operators with up quarks contribute at tree-level to u — e conversion in nuclei (see
eg [351]), where a muon is stopped in a target, captured by a nucleus, and converts into an electron
in the presence of LFV interaction with nucleons. Scalar interactions of first generation quarks
match onto nucleon operators with large matching coefficients, and the rate for spin-independent
conversion is enhanced by the atomic number of the target, giving a good current sensitivity to
scalar coefficients Cg" < 1078 [322]. Including the impressive improvement in sensitivity promised
by upcoming experiments, Br(uAu — eAu) < 10712 — Br(uAl — eAl) ~ 10716 4 — e conversion
will be able to probe scalar coefficients as small as Cg" ~ 10710,

Tensors with light-quarks contribute to the spin-independent rate via their QED mixing into
scalars, which introduces a ~ 1/10 suppression. For this reason, the tensor of Eq. (6.102) contribute
to the u — e conversion rate as Cp ~ Cg/40 and is therefore neglected. So the upcoming p — e
conversion experiments can set the following limit (sensitivity) on the product of the coefficients at
Anp =4 TeV

CTi3 % O < 1.5 % 10710 (6.103)

The two 7 < [ operators could also induce the leptonic decays of B mesons Bg — pt7rT and

BT — Tv. The current 95%C.L. experimental constraints on these processes lead to the following
limits on the coefficients

Br(By — p*r7) <14 x107° — O <14 x107°

Br(B* —7v)=16x 1071 - ¢ <2.2x 1072, (6.104)

These limits were obtained with the public code Flavio [360] and analytically, and are discussed
in more detail in Appendix D.3, which reviews the sensitivity of B decays to interesting operator
coefficients.

In order to compare future B decay sensitivities to the future reach of  — e conversion, we
suppose that Belle II could improve the sensitivities to B decays by an order of magnitude, so the
limits of Eq. (6.104) on the Wilson coefficients will get ~ /10 better. Comparing the product of
the upcoming B sensitivities with the limit in Eq. (6.103) that arise from future p — e conversion
gives (the (f) superscript stands for “future")

B, = BY),BY) ) x (5x107%) (6.105)

Qe Tre TN

which satisfies the condition of Eq. (6.100). We fall in the scenario depicted in Figure 6.10a,
where © — e probes a region inside the ellipse, beyond the reach of B — 7 direct searches.
Notice that the hyperbola of the current u — e conversion results already enters the ellipse of
the B — 7 LFV decays (with the current sensitivities B,(fl,e/(BgfLe ﬁflw) ~ 5 x 1073). This is
because tensors contribute to the B decays rate via the one-loop QED mixing to scalars, while the
(dimension six)? — (dimension eight) mixing benefits from a large anomalous dimension.

(1)er13 ~(1)Tp3u
Cﬁq C’Eequ
eight 4 — e scalars with a singlet u. In this case, B decays are currently more sensitive than

i — e processes to the product of the coefficients (Bffg,e/(Bgiengu) ~ 2). However, in the
next generation of experiments, the sensitivity ratio will be reduced by one order of magnitude
to B,(LQE/(BQZEB&QM) ~ 0.2, allowing the 1 — e conversion hyperbola to enter the ellipse of the
direct 7 <> [ searches (see Figure 6.10Db).

The pair of 7 <> | dimension six operators similarly mixes into the dimension
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In Tables 6.8 and 6.9, we compare the sensitivities of 7 <> [ and p — e processes to the product
of several operators that mix into scalars with first generation quarks, via diagrams similar to Figure

6.9. Note that the pairs in the table feature an electron doublet and a singlet muon, but opposite

Dersu pix into O erle whie 055310*(1)“73“

chiralities are also possible. For instance, Cef' gCé e teau > tequ

contributes to the RGEs of CZS)}%)”EM
qu

so are the u — e sensitivities), the dimension six operator that was 7 <> e is now 7 <> u and
vice-versa, which might lead to slightly different direct limits on the 7 <+ [ interactions. In the
above-example, the branching ratios sensitivities of the Bg decay into Te, T differ by a factor ~ 3,
and as a result the limits on the vector coeflicients 066513, C;f 3Lig ~ /3 different. We do not
present the tables for the pairs with exchanged p <> e, as the marginally different numbers do not

. Although the anomalous dimensions are the same (and

modify our conclusions.

(@ pl) )

coefficients BreBrdy B,
CtCitt —x— 2 x 1079
Cortncy —x— 1.5 % 10-10
Crp3oersn 1 55 1073(c) x 4.3 x 1074(c) | 2 x 107
CaBCer™ 115 % 1073(c) x 2.4 x 1073(c) | 1.5 x 10710
ct —x — 2 % 10~
et —x — 1.5 x 1010
CITEOT | 2.3 % 1073(¢) x 4.3 x 1075(c) | 2% 1079
COTBON | 9.3 % 1073(e) x 43 x 1075(¢) | 2% 1079
CDeTIBET | 935 1073 (e) x 1.8 x 1074(c) | 1.5 x 10710
C ORI | 2.3 x 1073 (e) x 1.8 x 1074(¢) | 1.5 x 10710

Table 6.8: The product of current (c¢) direct limits Bg%eBgflm on pairs of coefficients that mix to a
1 — e dimension eight scalar operator with a singlet u quark (see Eq. (6.47)), upon which applies
the limit B&Qe arising from future p— e conversion (Br(uAl — eAl) ~ 10716). The “limits” are on
coefficients at Anxp ~ 4 TeV. Details on the limits that apply to operators with permuted indices
are given in the text below Eq. (6.105). To compare B,(f_))e with the future sensitivity of direct
T <> [ searches, the product Bgfl)eBglw should be divided by 10: B£Q6 i{lu ~ B&ieBglm /10.

coefficients Bﬁfl . Bgi)m B ;SQ .
C O 1 2.3 % 1073(c) x 2.2 x 1074(c) | 1% 107
Cl Oy | 15 % 1073(c) x 3.4 x 1074(c) | 1% 107

Table 6.9: Similar to table 6.8, for dimension eight scalar y — e operators involving a singlet d
quark (see Eq. (6.45)). The limit B,(Af_)w arises from p— e conversion (Br(uAl — eAl) ~ 10716).
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Figure 6.11: The plot shows the parameter space probed by B LFV decays and by future p — e,

in the ¢emse _ o 2 plane. The ellipse is centered to the best-fit value of Cég;jgc

that can

Lequ
explain the Rp+ anomaly (see text for details). Non-observation of 1 — ey can give a limit on
Ced! 23 (assuming only this pair to be non-zero). The dashed line correspond to the current MEG

upper bound Br(pu — ey) < 4 x 10713,

6.4.1.2 pu — e tensors with heavy quarks

The fish diagrams that generated scalar and tensor u — e operators on u quarks, arise also with
external ¢ quarks. Although the sensitivity of ;1 — e conversion to charm scalars is insufficient for
our purposes, i — ey has interesting sensitivity to the charm tensors, because their mixing to the
dipole is enhanced oc m./m,,. The pairs of 7 <+ | operators that mix to y <+ e tensors with external
charms, and the sensitivities of B decays and Br(y — ey) < 1071* are summarized in Table 6.10.

Leptonic and semi-leptonic B decays have recently attracted attention due to several anomalies
with respect to SM expectations, see e.g. Ref. [361]. Our LFV operators could potentially address
the anomalies in “charged current" b transitions (such as BT — 71v), when the discrepancy require
a enhanced rates (because LFV operator cannot interfere destructively with the SM). An example
is the SM expectation for RSl\fT/l = Br(B — D*rv)/Br(B — D*lv) ~ 0.24 [360] which is smaller

erp

than the observed value R, ) ~ 0.3 [362]. We can fit the difference by enhancing the branching

fraction in the numerator with the tensor operator C (3)ir3e

lequ - The latter can be paired with the vector

6’;5‘23 to mix into a dimension eight tensor with external charms, to which Br(u — evy) ~ 1074 has

the sensitivity B, reported in Table 6.10. In the Céi;zﬂc — C713 plane, the ellipse is now shifted

to the right and centered on the best-fit value of C' (8)er3e

tequ  (see Figure 6.11). In the simplified scenario

where the discrepancy |RPY e ™ RYY. Je| is fully explained by the presence of the 7 < e tensor,

non-observation p — ey signal in future experiments would make it unlikely for the coefficients to
occupy the portion of the red ellipse overlaping the blue region.

Table 6.11 summarises the case of u > e operator with external top quarks. The mixing of
tensors with a top bilinear into the dipole is enhanced by the ratio m;/m,,, so the upcoming p — ey

experiments can probe dimension 6 coefficients C’j[?}e“tt > 5 x 10712, We suppose that the SMEFT
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mixing of dimension eight tensors into the dimension eight dipoles is comparable to the dimension
six mixing [356]. This impressive sensitivity explains why the diagrams of Figure 6.6f with external
top legs are interesting regardless of the y, Yukawa suppression.

The SMEFT 7 < [ operators that are inserted in those diagrams contain a flavour diagonal
quark pair in the third generation. Vectors with tops contribute to the rate of 7 — 3l via one-loop
penguin diagrams, while the dimension six tensors contribute to 7 — [ via the above-discussed
mixing into the 7 <+ [ dipole. Tensors are not considered in our tables, because 7 — [l has already
an excellent sensitivity to the operator coefficients. In Table 6.11 the direct “limits" on the product
of 7 <+ [ dimension six vectors arising from 7 — 3l searches are compared with the sensitivity of
Br(u — ey) < 10714

coefficients B, B, i B;(LQ .

Cortecht® —x— 1.2 x 107
Cortecp R 1% 1078
crBolerse 1935 1073(¢) x 1.0 x 1072(c) | 1.2 x 1077
CHPoPD™ 1 23%1073(c) x 5.0 x 107%(c) | 1x 1078
crtecy —x — 1.2 % 1077
Cat O™ X 1 x 108
Cé;)eﬂ?,céel)zusc 2.3 % 1073(¢) x 9.0 x 1073(¢) | 1.2 x 107
CTBCI | 2.3 % 1073(e) x 9.0 x 1073(c) | 1x 1077
CDerBemiEe | 935 1073(c) x 6.4 x 1073(c) | 1.2 x 107
O RO | 2.3 % 1073(c) x 6.4 x 1073(c) | 1x 1077

Table 6.10: Similar to table 6.8, for u — e dimension eight tensor operators (see Eq. (6.49)) with

a ¢ quark bilinear. The sensitivity B,(fze arises from p — ey with a branching ratio Br(u — ey) ~

1074, The “limits” are on coefficients at Axp ~ 4 TeV.

coefficients BﬁileBﬁilM BL(Lf—)NB

CertCT® 11,0 x 1072(¢) x 2.0 x 1072(c) | 1.0 x 1076
COTRCTM | 4.5 % 1073(c) x 1.0 x 1072(c) | 1.0 x 107
Ol TP | 4.0 x 1072(c) x 1.0 x 1072(c) | 1.0 x 10

Table 6.11: Similar to table 8, with the product of (current) direct limits BSLQBSQW on pairs of
7 <> [ coefficients that mix to a u — e dimension eight tensor operator (see Eq. (6.49)) with two
top quarks, upon which applies the limit B, ... All the limits apply to the coefficients at Axp ~ 4

TeV. The limit Bffle arises from p — ey (Br(p — ey) < 10714), due to the large mixing of the
(0)

T

given in Table 6.1. Future limits Bgi;)e ﬁQu are ~ ngeBgfL#/lO.

top-tensor to the dipole, while the limits B are from the current upper limits on Br(r — 31)
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6.4.1.3 p — e vectors

The remaining fish diagrams give mixing of two dimension six 7 <+ [ SMEFT operators into dimen-
sion eight pu — e vectors with first generation quarks. The sensitivities of © — e conversion and B
decays on the product of the operator coefficients are summarized in Table 6.12 for lepton singlets
and in Table 6.13 for lepton doublets. (The u — e conversion estimates assume an Aluminium
target — see the beginning of Section 6.4.)

B gl ()

coeflicients BréeBrdiy B, e
certog ™ 2.3 x1073(c) x 1.5 x 1073(¢) | 2.5 x 1079
067130”‘31 2.3x1073(¢) x 1.5 x 1073(c) | 1x 1078
certugrit —x— 2.5 x 1079
cerut ot —x— 2.5 x 1079
(Credsy-cyhts 34x107%(c) x 22 x 107%(c) | 4x 1078
(Chegu ) Che™ —x— 2% 1078
(Crame = ORI | 5.8 x 1073(c) x 4.3 x 1075(c) | 4 x 1078
(Cham it —x— 1x 10710
(CmeB = O | 9.4 5 1074 (c) x 2.4 x 1074(c) | 2.5 x 10710
(1)relt 3)Tplt —
crettyx o) —x— 2 x 1079
Teltyx Céel Thlt —x— 2 x 109

equ

Oy O™ | 2.4 x 1074(c) x 4.3 x 1075(c) | 4% 1077

3
(Uresuys oBImuse | 5 8 % 1075(c) x 24 x 1074(¢) | 4 x 1079
(3

(€
(Cr,
(c
(

Table 6.12: Similar to tables 6.8, for dimension eight u — e vector operators with SU(2) singlet
leptons (see Eq.s (6.40)-(6.42)). .
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coefficients B, B, " B;(/ie

CTICITFE 123 %1073 (e) x L5 x 1073(c) | 1x 1078
ciTom 2.3 x 1073(c) x 1.5 x 10-3(¢) | 2.5 x 10~°

COTCP™E 23 % 1073(e) x 15 x 1073(¢) | 2% 107
COTEC™ | 23 % 1073(e) x 15 x 1073(c) | 2.5 x 107

CPBeIT 93 51073(c) x 15 x 1073(c) | 2.5 x 1077
Cé;)6T13Clg§)Tﬂ31 23 % 10_3(6) % 15 X 10—3(0) 25 % 10—9
COTOTE 23 %1073 (e) x 15 x 1073(¢) | 1x 1078
CTSOI™E 23 %1073 (e) x 1.5 x 1073(¢) | 1x 1078
Cir o™ e 1x10°8
Certep™ X 2.5 x 1079

(Cemsne BT | 4 5 5 1074 (c) x 4.5 x 1074(c) | 4 x 1078

e
eTlt « urlt _3
(Crequ ) Clogu —X— 4% 10

(CB)emduyxoBnTsu | g5 1073(c) x 1.8 x 1073(c) | 1.25 x 10-10

Lequ Lequ
(Ciertty=ortt - 1.25 x 1010
(Chaga i —x— 3 % 107
cl! 273“)*C§§q>573“ 45x1075(c) x 1.8 x 1073(¢) | 1.6 x 1079
(ChoTyCpnm X 3% 1079
(CEer g™ | 1.8 x 1073(c) x 4.5 x 1075(c) | 1.6 x 1077

Table 6.13: Similar to tables 6.8, to generate u — e vector operators with a doublet lepton bilinear
(see Eq.s (6.32)-(6.38)).
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6.4.2 Higgs LFV couplings

In this section we discuss the sensitivities of u — e observables to dimension six Yukawa operators
Ocr (Eq. (6.17)), and compare them with the upcoming direct limits imposed by h — 7l decays.
Pairs of Yukawa 7 <> [ operators contribute to various p — e interactions at dimension eight. They
mix into penguins via the divergent diagrams of Figure 6.6c, which match onto the vector operators
involved at tree-level in the  — e conversion and p — éee rates. In addition, dimension six Yukawas
are inserted in the diagrams of Figures 6.7b and 6.7c-6.7d, that give matching contributions to the
petT tensor and dipole respectively. The matching conditions are written in Eq.s (6.89) and (6.90)-
(6.91). u — ev is marginally more sensitive to the puerr tensor than on the dipole; this is due to
the large tensor-to-dipole mixing and the built-in y, Yukawa suppression in the dipole definition,
which lead to the already discussed enhancement m,/m,. As aresult, u — ey is the most sensitive
process, and an upcoming experimental reach of Br(u — ey) < 1071 gives :

eT T
‘ BHCeH ’

THOML <3 x 1077 (6.106)

In the charged lepton mass-eigenstate basis, the dimension six Yukawas induce flavour-changing
interactions of 125 GeV-Higgs (see Eq. 6.88), so h — 7l decays probe the off-diagonal coefficients
C;lfT. The most stringent upper limits on the rates are currently set by CMS [363], and ILC
is expected to improve them by one order of magnitude [347]. The projected sensitivities to the
branching ratios Br(h — 7e) < 2.3 x 1074, Br(h — 7u) < 2.4 x 10~ respectively lead to the
bounds

\/\ng\2 +|cre ] <32 x 107

\/}Cg;; rlem P <3x 107t (6.107)

The product of the direct limits is larger than 2x the sensitivity of Eq. (6.106), so that u — e
probe a region of parameter space that is beyond the reach of future LE'V Higgs decays (see Figure
6.8).

6.5 Summary

The p — e experiments under construction are expected to improve the current branching ratio
sensitivities by several orders of magnitude. In some cases the improvement is such that the
upcoming experiments will be able to probe products © — 7 and 7 — e interactions beyond the
reach of direct 7 < [ searches (where [ € {e, u}). However, the relationship between 7 <+ [ and
1 <> e observables is generically model-dependent, as we discussed in Section 6.2.1. The goal of
this paper is to retain the model-independent contributions to 1 — e processes from 7 < [ lepton
flavour change, although these may be subdominant. To do so, we assume that the New Physics
responsible for 7 <» [ LFV is heavy (Axp 2 4 TeV) and we parameterise it with 7 <> [ dimension
six operators in the “on-shell” operator basis of SMEFT. We briefly introduce our EFT formalism
in section 6.2.2.

We insert © — 7 and 7 — e dimension six interactions (’)(1 / A12\IP) in diagrams that generates
u — e amplitudes at dimension eight O(l/A4NP). We only compute the contributions that are
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phenomenologically relevant, i.e within the reach of future experiments. Firstly, we focus on a
subspace of dimension eight operators to which y — e observables are sensitive, as given in [2]
and presented in Section 6.2.3. Secondly, in Section 6.2.5 we draw and estimate diagrams with two
T <> | dimension six interactions generating the above-mentioned dimension eight operators, and
we disregard the contributions smaller than the upcoming experimental sensitivity.

Log-enhanced corrections to u — e dimension eight coefficients are the result of the (dimension 6)2 —
(dimension 8) mixing which appear in the Renormalization Group evolution, that we review in Sec-
tion 6.2.2. Calculating this mixing present some technical challenges. The “on-shell" operator bases
we use at dimension six and eight are reduced using the Equation of Motion (EOM), i.e do not
contain operators that are related by applying the classical EOM on some field. In order to include
the dimension 8 contributions that arise from using the EOM up to dimension 6 in reducing to the
on-shell basis at dimension 6, we include some not-1PI diagrams in our calculations. This is more
carefully discussed in Section 6.2.4.

In Section 6.3 we describe the calculation of the interesting contributions to 4 — e processes from
T 4> [ interactions, depicted in the diagrams of Figure 6.6 and Figure 6.7. Pairs of 7 <> [ operators
are assumed to be generated at a New Physics scale Axp = 4 TeV and mix into dimension eight
1 — e interactions when evolved down to the experimental scale of u — e observables. Between
Anxp and myy, the running is perfomed in SMEFT as described in section 6.3.1 and employing the
RGEs solution of Eq. (6.10). The complete list of the (dimension 6)* — (dimension 8) anomalous
dimensions that we obtained is given in Appendix D.2.

The dimension eight SMEFT operators that are generated in running are matched onto low
energy interactions at myy as described in Appendix C.2. We also include the contribution from
pairs of 7 <> [ operators which generate y <> e operators at tree level in matching, as discussed
in section 6.3.2. Between my and the experimental scale A¢zp, the running of low energy Wilson
Coefficients is taken from [322], while we find that u — 7 x 7 — e RGEs mixing is negligible in the
EFT below myy, as discussed at the end of section 6.2.2.

We thus determined the sensitivity of 1 — e processes to products of 7 <+ [ operator coefficients.
Sensgitivities represent the smallest absolute value that is experimentally detectable and are obtained
by considering one non-zero pair of 7 <+ [ operators at a time. They give a hyperbola in the C (6]7p
Cl6le7 plane of the dimension six coefficients (see Figure 6.8), outside which y — e observables can
probe. In the same plane, direct 7 <> [ searches are sensitive to the region outside an ellipse. In
Section 6.4 we discuss two examples where the hyperbola passes inside the ellipse: Section 6.4.1
shows that the contributions of fish diagrams (see Figure 6.6e-6.6f) to ;1 — e observables allow to
probe products of 7 <> [ coefficients involving third generation quarks. These same interactions
contribute to the rate of LFV B — 7(v;) meson decays, which can directly probe the size of the
Wilson Coefficients (The “limits" arising from the upper bounds on B — 7(v;)+. .. are summarized
in Appendix D.3). In most cases, we find that upcoming p — e experiments are sensitive to
coefficients beyond the reach of future B — 7(v;)+...searches. In Section 6.4.2, we study the
sensitivity of upcoming u — e searches to products of LE'V Higgs couplings, which overcomes the
projected reach of the ILC to h — 7HIF.

In summary, we computed in SMEFT the contributions to u — e observables arising from
(b — 7) X (1 — e) interactions. This required calculating a subset of the RGEs for dimension
eight operators, so far missing in the literature. As a result, we obtained limits on products of
7 <> | SMEFT coefficients assuming non-observation of 1 — e in future experiments. This can
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give model-independent relations among p <> e, 7 <> e and 7 <> p LFV: in the event of a detected
T <> p signal, the non-observation of p < e would suggest that some 7 <> e interactions are
unlikely(if they occur, additional u <+ e interactions are required to obtain a cancellation in the
i <+ e amplitude). This could provide theoretical guidance on where to search, or not, for 7 < e.

We find that p — e processes have a good sensitivity to products of 7 <+ [ operators that involve
b quarks. These mediate leptonic flavour changing B decays, which are a promising avenue for New
Physics in light of the recent anomalies. The Rp~ anomaly, where the experimental value is larger
than the SM prediction and, as discussed in Section 6.4.1.2 (see Figure 6.11), can be fitted by
increasing the rate of B — D*7v with 7 <> e operators. This is an example of the above-discussed
relations that we can extrapolate from our calculation; the non-observation of y — e processes can
identify values where 7 <+ p is unlikely to be seen.






CHAPTER 7

Conclusions and prospects

In this thesis, we assumed that new physics is heavy and parametrized its effects with the Standard
Model Effective Field Theory. We focused on the operators that change the flavour of charged
leptons because neutrino masses provide conclusive evidence that lepton flavour is not conserved,
and because LFV processes expect a significant improvement in the already excellent experimental
sensitivities.

We argued that the increasing precision of LF'V experiments compels us to include extra contri-
butions in the effective theory calculations. To reach this conclusion, in Chapter 5 we introduced a
power counting scheme aimed at organising the (multiple) perturbative expansions in SMEFT and
at identifying all the relevant contributions within the reach of future experiments. We express the
loop, couplings and EFT expansion in terms of powers of a small parameter A ~ 0.2 & la Wolfen-
stein. The state-of-the-art SMEFT calculations that are currently available include the complete
one-loop running of dimension six operators, and partial results for the leading-order running of
the dimension eight operators. We use our power counting scheme to assess if that is sufficient to
fully parametrize LFV in the SMEFT. We find that the upcoming pu — e data can be sensitive
to some two-loop anomalous dimension (for NP scales up to Axp ~ 100 TeV) and to a subset of
dimension eight operators of SMEFT (for NP scales Axp < 20 TeV). To partially account for the
dimension eight amplitudes, in Appendix C.2 we calculate the matching of the relevant dimension
eight subset onto the low energy pu — e contact interactions.

The results of Chapter 5 can be used to motivate improved SMEFT calculations, such as some
two-loop anomalous dimensions, which may be the subject of a future project.

The sensitivity of u — e experiments to dimension eight contributions is used to impose novel
limits on dimension six operators that change the 7 flavour. Diagrams with y — 7 and 7 — e
vertices can contribute to 4 — e amplitudes. In some cases, the upcoming p — e experiment will
be able to probe products of 4 — 7 and 7 — e interactions beyond the reach of dedicated 7 < [
searches. We explore this in the SMEFT by calculating the renormalization group mixing of the
product of two dimension six p — 7 and 7 — e operators into a u — e operator of the dimension
eight subset identified in Chapter 5. The calculations are described in Chapter 6 and more details
can be found in Appendix D. The running of the dimension eight operators is only partially known,
and we computed a subset of dimension eight renormalization group equations for the first time.

We use the results to impose limits on the product of 7 flavour changing operator coefficients
that are stricter than the ones imposed by 7 LFV searches. We show that this allows to probe
region of parameter space that elude 7 <> [ direct searches, providing complementary information
on 7 flavour change using 1 — e observables. We show explicit examples on how this can be used
to relate the lepton flavour transitions: an observation of a 7 <> e process and a null result from
1 — e can give information on the size of the 7 <+ u couplings.
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The complete effective parametrization of LF'V advocated in this thesis can be used to study
BSM models from a bottom-up perspective. A bottom-up calculation maps the experimental data
at low energy into a combination of operator coefficients at the heavy physics scale and identifies the
region of coefficient space where models should sit. It would be interesting to investigate whether
a bottom-up analysis can give additional insight into how different models could be distinguished.
This is a question that has been explored extensively with top-down calculations: LFV rates are
calculated in terms of model parameters and the parameter space is scanned, with the hope of
extrapolating correlations among LFV observables that could be checked against the experimental
results. Unfortunately, scans are dependent on the adopted measure, and may not fully capture
what models, which correspond to points in parameter space, can do.

A bottom-up analysis could provide a different and interesting perspective. Being agnostic on
the specific value of the model parameters, and matching different models to the experimentally
allowed space at the high scale, we could try to identify the correlation among observables that
models cannot predict. Finding regions of the coefficient space that the model cannot reach may bhe
a better-posed problem that does not rely on probable (but potentially unknowable) correlations,
and that can assist in distinguishing models with LE'V, as a detection in the forbidden regions can
exclude them.



CHAPTER 8

Résumé en Francais

Le Modeéle Standard de la physique des particules a remarquablement réussi & expliquer les in-
teractions des particules élémentaires découvertes. Le secteur électrofaible a été testé avec une
trés grande précision, tandis que les calculs perturbatifs, les approches effectives et les résultats de
réseau ont fait de la QCD la description de la force forte. Le modeéle standard a prédit 'existence
et les propriétés de plusieurs particules, dont plus récemment le boson de Higgs, qui a été découvert
au Large Hadron Collider en 2012.

Malgré ses succés, plusieurs constats et considérations théoriques appellent & une extension
du Modéle Standard. Les masses et les oscillations des neutrinos, la matiére noire et I’asymétrie
entre la matiére et 'antimatiére, font partie des observations qui nécessitent une nouvelle physique.
Ces énigmes non résolues motivent la recherche de la physique au-deld du Modéle Standard, qui
pourrait éclairer ces questions fondamentales et ouvrir la voie & une compréhension plus profonde
de la nature.

Les oscillations des neutrinos sont un phénomeéne expérimental bien établi qui nécessite une
physique au-deld du modéle standard, car elles brisent les symétries de saveur des leptons du
lagrangien du modéle standard. Une facon minimale d’étendre le MS pour s’accorder avec les
observations consiste & introduire un fermion chiral droit léger pour donner aux neutrinos des
masses de Dirac. Cependant, ce scénario est difficile & tester car il conduit & des courants neutres
changeant la saveur des leptons extrémement faibles.

De nouveaux états lourds ainsi que de nouvelles interactions sont nécessaires si les neutrinos
sont des fermions de Majorana et/ou si le probléme de masse des neutrinos est lié & d’autres
questions ouvertes, conduisant & de potentielles processus observables qui changent la saveur des
leptons chargés. Cette possibilité a suscité un grand effort expérimental pour rechercher des tran-
sitions violant la saveur des leptons, qui sont maintenant parmi les processus les mieux mesurés en
physique des particules et devraient encore s’améliorer dans un avenir proche. La violation de la
saveur des leptons (LFV) serait un signal prometteur de la nouvelle physique, qui pourrait faire
la lumiére sur le mécanisme expliquant les masses de neutrinos. De plus, c’est un outil puissant
pour diriger la construction de modéles introduisant une nouvelle physique générique, puisque les
symétries accidentelles du MS sont facilement violées une fois que de nouveaux états et interactions
sont introduits. Les modeéles qui tentent de résoudre diverses énigmes sont souvent contraints par
I'exigence d’accord avec les résultats expérimentaux portant sur la LFV.

Les résultats inconcluants des expériences peuvent suggérer que nous sommes en présence d’un
écart de masse, avec une nouvelle physique a apparaitrait a une échelle largement plus grande
Anp > v. Si tel est le cas, le modéle standard peut étre considéré comme le lagrangien renormalis-
able d’une théorie des champs effective ol les états lourds ont été supprimés. L’effet de la physique
lourde aux basses énergies peut étre paramétré en termes d’interactions de contact entre les degrés
de liberté 1égers, supprimées par les puissances de 1’échelle lourde selon la dimension de 'opérateur.
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Les observables peuvent étre calculés dans la théorie effective en tant que fonctions des coefficients
d’opérateur, et les expériences peuvent rechercher des preuves de leur présence.

Dans cette thése, nous analysons les résultats expérimentaux actuels et & venir des recherches
LFV dans la théorie du champ effectif du modeéle standard (SMEFT). L’objectif est d’obtenir
autant d’orientations théoriques que possible sur le paysage viable du LFV au-dela de la physique
du modéle standard.

Les calculs EFT peuvent étre envisagés dans une perspective descendante ou ascendante. Dans
la perspective descendante, les degrés de liberté lourds sont supprimés de la théorie et les cou-
plages et masses UV paramétrisent la taille des coefficients des opérateurs. Les observables sont
calculés avec les opérateurs effectifs et reproduisent les prédictions du modeéle au sein de Ierreur
de troncature de ’EFT. Dans la perspective ascendante, les observables sont calculées dans la
théorie effective la plus générale qui est cohérente avec les symétries, y compris chaque contribution
d’opérateur qui pourrait étre & la portée des expériences. Ce faisant, nous identifions la région de
I’espace des coefficients ot les modeéles au-deld du MS devraient se tenir, ce qui pourrait donner
un apercu de la physique LF'V. Dans les deux perspectives, avec ’amélioration exceptionnelle des
sensibilités attendues pour la prochaine génération d’expériences (en particulier pour les transitions
u — €), les calculs théoriques devraient suivre le niveau de précision des observables LEV | incluant
potentiellement des contributions souvent négligées dans les calculs théoriques effectifs. Ceux-ci
peuvent inclure des diagrammes de boucle supérieure, ainsi que des opérateurs d’ordre supérieur
dans ’expansion EFT.

Tout d’abord, nous introduisons un petit parameétre de comptage de puissance a la Wolfenstein

pour évaluer si les calculs SMEFT de pointe, qui incluent les opérateurs de dimension six et leurs
équations de groupe de renormalisation & une boucle, sont suffisants pour avoir une description ef-
ficace compléte des observables LEFV. Nous constatons que les recherches a venir de p — e peuvent
étre sensibles a quelques dizaines d’opérateurs de dimension huit, et a certains effets de dimensions
anormales & deux boucles, pour les nouvelles échelles de physique inférieures & 20-100 TeV.
Nous nous appuyons sur ces résultats et explorons la sensibilité des recherches y — e aux inter-
actions de changement de saveur 7 <> e(u). Nous décrivons les interactions 7 <> e(u) comme des
opérateurs de dimension six dans le SM EFT, nous identifions des paires d’entre eux apportant des
contributions intéressantes aux processus p — €, et obtenons les dimensions anormales mélangeant
ces paires vers des opérateurs i — e de dimension huit. La renormalisation de l'opérateur de
dimension huit est quasiment inconnue, et nous avons calculé un sous-ensemble d’équations de
groupe de renormalisation pour la premiére fois. Nous montrons que les prochaines expériences
1 — e pourraient permettre de sonder I'espace des paramétres au-deld de la portée des recherches
actuelles et futures portant sur les transitions 7 — e(p), incluant les désintégration LFV du Higgs,
du 7 et des mésons B.
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APPENDIX A

[t — e conversion in nuclei

A muon, when stopped in a material, can form a muonic atom with a nucleus of the target. While
in a bound state, the muon can undergo two SM processes: decay in orbit, where an electron and
an (anti-)neutrino are emitted, or muon capture, given by

pw~ N(A,Z)—= v, N'(A,Z-1) (A.1)

where A, Z are, respectively, the mass and atomic number of the nucleus N. In the presence of
LFV interactions that change muons to electrons, a muon can be captured by the nucleus without
the emission of a neutrino

1~ N(A,Z) = e~ N(A, Z). (A.2)

in a processes known as g — e conversion in nuclei. After cascading down in energy levels,
the ground state of the muonic atom is a 1s orbital with a binding energy Ej, and in the final
state a monochromatic electron with energy ~ m, — Ej is emitted while the nucleus recoils. The
SINDRUMII collaboration sets the upper limit T'(uN — eN)/Teapt < 7 x 10713 [241] on the rate
of 4 — e conversion with respect to the flavour conserving muon capture.

The state-of-the-art calculations for the conversion rate can be found in [142,270]. In their no-
tation, we describe coherent and spin-independent u — e conversion with LFV contact interactions
among leptons and light quark currents

—Leonw = ZﬂGpm,L(ALéUO‘BPLuFaﬁ + ARéaa’BPR,U,Fag)

Gr _ _ _
+-= ) [(QLS(q)GPLH + 9rs(q)€PrIAq
ﬂ q=u,d,s

(9Lv ()€Y PLit + grv (q)€Va PrRIVTY | + hoc

where F*P is the photon field tensor. Contributions that depend on the spin-state of the nucleus
arise from contact interactions involving axial-vector, pseudo-scalar and tensor quark currents. The
spin-independent rate is dominant because it is enhanced by the coherent sum over all nucleons.
The effective Lagrangian at the quark-level can be match onto interactions involving nucleons via
the following matrix elements

(N|qTrq|N) = GPYpTxp  (N|alkq|N) = GO alien

where I'g = 1, 'y = v® and p, n label protons and neutrons, respectively. The vector coefficients are
obtained by the quark content of the nucleon Gg)’u) = Gg/n’d) =2, G%f’d) = G&f’u) =1, G]‘)/(n)’s =0
while the scalar charges Gg are extrapolated with dispersive relations and lattice results [364,365].
The wave function for the muon bound state is calculated by solving the Dirac equation in the
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presence of the electrlc ﬁeld of the nucleus and is averaged over the proton and neutron densities.
Defining gXK = Z GK 9xK(q) and gXK = Z GK 9XK(q); the conversion rate reads

2
Tun—sen = 2G5 |ALD + gFhs® + gds®™ 4+ ghv® 4 v 4 L« R

where D, S,V are the overlap integrals in Equations (19)-(23) of [270], that involve proton/neutron
densities and muon/electron wave functions. All the overlap integral scale with the atomic num-
ber ~ Z, giving the anticipated coherence factor Z? that enhances the spin-independent p — e
conversion rate over the muon capture rate.
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Calculation details

B.1 Integrals in Dimensional Regularization

We list here the D—dimensional integrals and identities used in the calculations presented in the
text. The integral over Feynman parameters

ML :/Oldzl...d:vn (Z;cz _ 1) 5;2)71 (B.1)
allows to reduce the loop integrals to
/ (;l:)kD (kZ—lA)n N ((zm)aﬂ/zzr(r(n) 2 popaes (B2)
/ (g;k;? (k2 fzA)n - (@?)D_/lzzgr - ;f) ~ pjaonn (B.3)
/ (;i:)’fD - 2(1<r_2)2)n _ ((4;);;2 D(D4+ 2)T (n ;(E) —2) \Dj2-n+2 (B.4)

Taking D = 4 — 2¢ space-time dimensions, we encounter 1/¢ poles from the I' function. The I'(z)
function can be expanded around zero for z > 0 as

D) = - — 5 +O(a) (B.5)

where vg ~ 0.578 is the Euler-Mascheroni constant. We often encounter the following product

L'(2-D/2) 2(D/2—-2
which can be expanded for small
'(2—D/2) 1 1 u?
12 W)D//2M (D/2-2) _ (i) <5 + log<w> — v + logdm + (’)(5)) . (B.7)

In the modified subtraction scheme MS, the renormalization scale is conveniently redefined pu =
7ie2/2 /(4m)1/2 to absorb the constant factors paired with the 1/e pole

(4;)2 (i + 1og<]\‘52> oyt logdr 4+ O(a)) _ (4;)2 <i + 1og<]\*52> + O(s)) (B.8)
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B.2 Fierz Identities

The space of matrices with two spinor indices in four space-time dimensions is 16-dimensional and
is spanned by the basis
A: {PL7PR77NPL77MPR70-NV} (Bg)

where Pr p = (1 £ 75)/2 are the chiral projectors and 0" = i/2[y*,+"]. A generic spinor matrix
M, p can be decomposed as a linear combination of the basis elements, and the coefficients can be
identified by acting with the scalar product

%Tr(X M) for X € A (B.10)

Acting on the basis elements, it is easy to show that

1 1 1
5 TY(PXpy) = 5XY 5 TI“(PX’)/HPy) = 0 5 Tr(fy"PXfyuPy) = 5Z5XY

1 1 1
B Tr(Pxo) =0 3 Tr(voPxot”) =0 3 Tr(oaga”) = 2(6405 — (5’5(5;) (B.11)

The results in Eq. (B.11) can be used to derive the Fierz identities for four-fermion products. For
instance, considering

(V17" Ppia) (Y37, Pripa) (B.12)

we can isolate the two index spinor matrix
M = W’LPLwQ%W#PR. (B.13)
Acting with the scalar product, the only non-zero trace is given by 1/2 Tr(PgrM):
1 — 1 — _
3 Tr (Ppy" Prabatsy,Pr) = —5(1#37“7“1%1/12) = —2(3Pr2) (B.14)

with the — sign arising from the anti-commutation of the Grassmann numbers 19, 93. As a result,
M is

M = —2(J5 Pris) P (B.15)
which substituted back in Eq. (B.12) gives
(V1" Ppio) (Y37, Pripa) = —2(p1 Pripa) (Y3 Prapa) (B.16)

One can similarly prove the following identities

(V1" Pxaba) (Y3v, Pxaba) = (017" Pxva) (37, Pxb2) (B.17)
(V1 Px2) (Y3 Pxipa) = —%(EPXW)(%PXW) - é(%awpxw)(%awpxw) (B.18)

(V10" Px1po) (V300 Pxtps) = 5(1/)10“”PX¢4)(1/}30WPXT/12) — 6(11Pxvs) (V3 Px1)2) (B.19)

We can use this technique to reduce fermion bilinears with multiple insertion of v matrices. In the
calculation of section 4.2.1, we encountered the four-fermion product

(EV‘LVQVVPLTZJZ)(%’YM’Va'VVPL@M)- (B.QO)
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Since .
Priop3 Pr = _§(w37pPL¢2)7pPL7 (B.21)
we find
- - 1 -
(W17 "y Pribo) (amuramPriva) = =5 (a7, PLiv) (D1v" "y v e Priba)
= (37, PLb2) (017" Y Yoy PLta)
= 16(¢37,Prib2) (Y17’ Pria)
= 16(¢Y17, Pr2) (¥37° Pris) (B.22)
where in the second line we have used the contraction of gamma matrices yHy*y Py, = =2y vV,

Likewise, we find

_ — 1 — -
(DY Prab2) (Y31 Ve v Pria) = _§(@Z}z%PL?/)z)(¢17“7a7y7p7u7a7uPL¢4)

= 4(¢Y37,Prip2) (V17" Praps)
= 4(17,Prip2) (V3v" Praps) (B.23)

having used the identity ~v,7,7* = —2, thrice.






APPENDIX C

Appendix for Chapter 5

C.1 Some LFV Operators of dimension eight

Section 5.3.1 showed that pu <> e processes can be sensitive to some SMEFT operators of dimension
eight, if these have O(1) coefficients at Axp = 4 TeV. This appendix lists the relevant operators,
following the notation of [308].

The LFV operators given here are required to match onto low energy operators involved in the
processes of Table 5.3, so derivative operators, and those involving more than four particles at low
energy, are neglected. In addition, operators of the form ,u%lx dimension six, where u%{ is the Higgs
mass? term in the Lagrangian, are neglected because in matching onto operators below myy, the
potential minimisation condition relates u%{ to H'H. Furthermore, we restrict our list to operators
that are pu < e flavour changing but flavour diagonal in the two other fermion legs, as the low
energy observables constrain operator with this flavour structure.

The four-fermion operators of dimension eight can be obtained by adding two Higgs fields
to dimension six four-fermion operators, or by multiplying two renormalizable Lagrangian terms.
Dimension six operators can be multiplied by the singlet product (HTH), but the Higgses can
also contract with specific doublets; when the Higgs gets a vev, this feature induces a low-energy
operator involving only some SU(2) partners. For instance, the dimension eight operator

(Lo Hr,H5) (@ q) — (Tav,vp) (@Y u + dyPd)

This operator induces “Non-Standard neutrino Interactions” [343|, which can be searched for at
neutrino experiments, without inducing tree-level flavour-change among charged leptons. Exploit-
ing SU(2) identities, these operators can be expressed as linear combinations of dim6x (HTH) and
the following operator

(Cat'7plp) (@ q) (H T H).

Adopting the convention of [308], we retain the triplet contractions in the operator basis. Since we
are interested in the contribution of dimension eight operators to LE'V observables, we organize the
operator list according to whether a dimension six version exists or does not exist.

We display operators with “standard” flavour indices and we don’t include the permutations
that will be matched to the same low energy interaction, as discussed in Appendix C.2.

C.1.1 Dimension eight not present at dimension six

C.1.1.1 Four-fermion

SU(2) invariance and its chiral nature forbid SMEFT dimension six counterparts of some four-
fermion contact interaction of the QCD+QED invariant Lagrangian, forcing their appearance at
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dimension eight. In the case of four-fermion operators with four-lepton legs these are the tensor
operators

Otk — (. HoCe,)(ly Hoager,)

where k € {e, u, 7}. They can be related to the scalars O(LQ)gf;ﬁ = (liHe;)(IxHe;) of the basis [308]

thanks to the following Fierz identity

4)eukk 3)ekk kk
O = =80 My — 1015,
Given that the tensors mix with the dipole, we retain both operators in the matching conditions of
Appendix C.2, keeping in mind that we can remove the redundancy by means of the above identity.
For four-fermion interaction involving two-lepton and two-quark legs, the dimension eight op-
erators that do not arise at dimension six are
3 7 = 4 / 7
O i = (LeHey) (@ Hdy) — OLFDE, = (0™ Hey)(@u0asHdn)
5 _ -
(92%%322 = (CeHe,) (i, H'qp).
where n is a quark generation index. In this case, the scalar and tensor operator for down-type
quarks are independent and cannot be related by means of Fierz identities.

C.1.1.2 Two-lepton operators

Two-lepton and two-gauge boson operators firstly appear at dimension eight

O, . = (LHe)GAGAP  OP)h, = (I.He,)GA,G
O(L%EV!IL/?H = ( H eﬂ) 5WIQB O(Lgev?/? H— (f H eu)WIﬁWIaﬁ
Opnbey = (EH > 5B OPKh = (€eHe,)Bag B
O(LII’ZT%L/BH = (Ler"He,) B Wig O(LQ%%BH = (bem!He,) BogW'e?

and provide the leading order matching contribution to the dimension seven two-photon Oppy =
(éPyu)Fa/sl*j“ﬁ,OFp,y = (ePyp)F,pF*® and two-gluon Oggy = (éPy,u)GﬁﬁGAaﬁ, Oy =
(éPyu)GéBGAO‘B operators of the low energy Lagrangian, whose coeflicients are constrained by
searches of © — e conversion in nuclei.

C.1.2 Dimension eight operators present at dimension six
C.1.2.1 Four-fermion

The four-fermion operators with four lepton legs that also appear at dimension six are

OWEF — (07 0,) Oyal) (HTH) O — (070,) (O va ) (HT 7L H)
OWbM, — (L0, @vaer)(HTH) OB — (r1720,) (Ervaer) (H T/ H)

02‘2’?52 = (€e7"en) (Exvacr) (HTH)7
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where k =e, u, T
In addition, the four-fermion operators containing two-lepton and two-quark legs are:

0212)8571?2 = (Ee’)/az,u) (GnYaqn) (HTH) 0222)857;_?2 = (EeTI'YO%u) (@nYaln) (HTT[H)
Ovggssgs = (Eer Y ) (@' voan) (HUH) OGN = (1) @'y (H ' H)

L2Q2H? — L2Q2H? —
ORI = “K(eeT V) G Vuan)(HITEH) OB — (04%0,) () (HTH)
O, = (Lm0 (o) (HITTH) O, = (140,) (dyyady) (HTH)
O = (Lm0 (dnyadn) (HITTH) O, = (20v%€,) (GnYatn) (HTH)
Ol = (e e,»(an "Yagn) (HITH) OB, 0 = (€ey™ey) (nyawn) (HH)
O e = (€7 ep) (dnYadn ) (HVH)  OL)BE0 = (Tee,)(dngn) (HH)
O hotzs = (Leey)7! (dngn)(HIT H)  OUFET, = (Teey)e(Guun) (HH)
O bty = (Lee )T Te(Guun)(H'TTH) — OF)bER ) = (Te0®%e,)e(Gnoapun) (HTH)
O ht s = (Lo ;)T e(qnoapun) (H T H)

where n = 1,2, 3 runs over the quark generation space.

C.1.2.2 Two-lepton operators

Two-lepton operators include the eight dimensional dipoles

l)e i o
O(LéIfIL/H?’ = (ber"Ho"Pe,\W/ 5 (H H)
OR)r = (LeHoPe, )Wl s(H ' H)
OZMEBH3 = (Ziﬂgaﬁea‘)Baﬂ(HTH)

and the following operators

<>
O il 0, ) (HI Do HYHTH)  OX% = i(fr ) [(H DLH)(HH) + (H Do H) (H'+' H)]

L2HAD L2HAD
<
Ofsyap = (€ en)(H Do H)(HH) O s = ((He,)(H'H)?,
where

<~
iH'D,H =iH"(D,H) —i(D,H"YH
<~
iH'D!H = iH'r!(D,H) —i(D,H")r"H.

Following Electroweak Spontaneous Symmetry Breaking, the second set of operators are matched
onto four fermion contact interactions at low energy, after integrating out the heavy Z, h bosons
at mwyy .
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C.2 Tree matching at myy with LFV operators to dimension eight

This section presents the tree level matching conditions at my of u <> e flavour-changing SMEFT
operators, including the dimension eight operators listed in the previous section, but neglecting
double-insertions of dimension six operators. The operator basis below myy is given in the notation
of [322], and reproduced in section 4.3.2.

C.2.1 Dipoles and two-photon(gluon)

Below myy, there are the dipole operators of two chiralities, and operators with two photons or two
gluons. Above myy, there is a dimension six dipole operator for hypercharge, and another one for
SU(2).

Since the photon is the combination A, = cosfy B, + sin GWWS = cwB, + sWWS, the low
energy dipole coefficient (on the left) is matched onto the dimension six and eight SMEFT dipoles
(on the right) as

€ € 2 € el /UQ € €
CDM,R =w (CEHB U2, CL%BH5> —SwW [CEIW s yhZp (CLI;EWH‘( 1) CL%WH3(2))}

2 2
T s pex e ek ek
Cprp=cw <C + yﬂAQNP CLEBH3> —Sw {C 7 U2 (CLEWH3(1) + CLEWH3(2))]

where the — sign is due to the 72 matrix. In addition, since matching “at tree level” mean tree-level
in the low-energy theory, loop diagrams in the theory above my, composed of heavy particles can
be included. We follow [352], and retain the two-loop Barr-Zee diagrams, in which a Higgs leg
connects a W or ¢ loop with the neutral Higgs flavour changing vertex of eq. (5.6), and the one
loop Z—exchange diagram where one Z vertex is flavour changing. The former give the matching

condition
ACH (my) = —Che (myy) [1663 (szv Y2 - ;)} ~ CH (myy) [8;;} , (C.1)
while the latter give
ACH:(mw) = 55 Cif(mw)
ACH plmw) = =gk (Cilh ) (mw) + Cif g (mu)) (C2)

where g% L, 9% are defined in the Feynman rule for Z couplings to leptons —22 (97 Pr + 9 Pr) as
95 = 2SW, and g7 = -1+ 28W
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For the two-photon and two-gluon operators the matching conditions are

v

C;/},R = K ( Cr LEB2H(1) SWCWCZ%WBH(U + s, C LEWQH ) (C.3)
Cipr = ANP ( MeE*BQH SWCWCfgWBH(l) + 53 C LEW?H ) (C4)
Copn = ANP ( tesee) ~ SWwCrmwane + SWCmwan ) (C.5)
C;/%,L = ( “E*B?H —swewClpwpme) T siv CrLew2m ) (C.6)
CE;#G,R = ANP CLEGQH(l) Cgé;L = rcfgcmu) (C.7)
Coc R ALNP LEG?H(2) CZ’G L ANP LEG2H(2) (C.8)

C.2.2 Four-Lepton

SMEFT operators with four-fermion legs are matched onto four-fermion contact interactions in the
low-energy effective theory as Electroweak symmetry is spontaneously broken and the Higgs doublet
is replaced by its vacuum expectation value. In addition, given that the interesting LF'V operators
are p <> e flavour changing but otherwise flavour diagonal, two-lepton p <+ e operators can be
connected to a renormalizable vertex exchanging an h or a Z, generating an effective four-fermion
interaction when the heavy SM bosons are integrated out at the Electroweak scale.

As discussed in the text, a flavour changing vertex with the h Higgs boson appears as the
SMEFT operators O and O gys contribute to the leptons mass

ij i _ i Y ij vt
[me]” = v | [Ye]” - CEHAT - CLEH5AT ) (C.9)
NP NP
so that in the charged leptons mass basis the Yukawa coupling is off-diagonal

h ip i iy v v h ip ij v ot
ﬁe Pred [ [Yo]7 — 3CEHA2 —5CY LEHS A4 = ﬁe Pre’ ( [me]” 2CEHAQ 4CLEH5 AL
(C. 10)
and the LFV Feynman rule with the neutral Higgs reads

2 v4
—iv/2' Pre’ (CEH A+ 20 s AL ) (C.11)
NP

In SMEFT there are more distinct flavour structures which are matched into the same low energy
operators: for example Oe"ff (’)ffe“ Of“ef and (’)eff“ all match onto the below-my, LFV operator
Oi‘zf 7. In the following, we suppress these permutations for brevity, and write

epf f — enff
Clow energy ~ —~ SMEFT + perm.

to indicate that these different flavour structures are to be summed on the right side of the matching
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conditions. These are:

C\e/{l]g% = CGMM + C gR + A2 <Cgfllfp + CE2H4DgR> + perm. (0.12)
Ceuéé _ Ceuéé Ce; Ot e Ceull Ce,u,ll el 206 e
viie = Crp +(Chps+Chpi)dr+ A2NP r2ezme() T Crepznee) T\ Cremip) T 202 mp (o)
4 4 {4 1
Ot = Ol 4 Citgs + A2 [Cﬁfgzm( y + Clsbornm + cgsmgz} (C.13)
Ceu(ﬂ o Ceuéf ot Cet Ce;wf Ceuﬂé eu Ot e
V,LL — ( HL,3 + HL, 1) A2 L4H2(1) + L4H2(2) + L2H4D(1) + L2H4D(2) gr, -+ perm.
cone mzCEHU N v2 centt 2mgCE‘]‘3H50 N (C.14)
S,RR m% AIQ\IP L2E2H2(3) m% perm. i
pex 2 oHe
epuTT THET mTCEHU v THeT THeT mrUT ppsV
CS,LR = —2Cp - m2 T A2 2 (CL2E2H2( 1) +C 2E2H2(2)) + QT (C.15)
h NP h
m;Coyv  v? m,CH v
euTT eTTu m-Cpg eTTi eTT T~ LEH®
Cor, = —20 m2  Alp [2 (CL2E2H2(1) T CL2E2H2(2)) + 2771’21] (C.16)
mgC’“e*v U2 00 mgC“e* 5V
Ceuéﬁ _ EH + Crettx _9 LEH + . C17
S,LL mi A2NP L2E2H2(3) 7771}21 perm ( )
euTT v? euTT
CT,RR - A2 CL2E2H2(4) (C.18)
NP
U2
CiiL = 73 Cleipe) (C.19)

AZ, L2E2H2(4)

where ¢ € {e, u, 7}. We see that lepton tensors are matched at tree level only at dimension eight, and
also that dimension eight operators could be significant for LL or RR scalars, where the dimension
six contribution is Yukawa-suppressed.

C.2.3 Two-lepton two-quark

Given that the low energy constraints are expressed in the quark mass eigenstate basis, in the
“bottom up” approach adopted here, the CKM matrix will act on SMEFT operator coefficients
in the matching conditions. As we work in the uyp—basis, a CKM weighted sum will appear in
matching dy operators.(The CKM matrix is here written as V, rather than the previously used
Vorum:)

Tree-level matching SMEFT dimension six and eight coefficients (on the right) onto low energy
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coefficients (on the left) results in:

EUUR Un,
CLL

eudndn,
CLL

Ceuunun

eudndn,
CRR

eln Un
CLR

epdndn
CLR

eln Un
C’RL

epdndn
CRL

Crom — Crom T 91(Chray + Crnm)
2
Ce nn + C@ nn C@Mnn
AQNP |: L2Q2H2(1) L2Q2H2( ) LQQQHQ( )

— Ot + (Cohmapy + 20 e ) 9]

Z VinVin(CL0) + Cidts) + 9L(Cifay + Cifnga)

e ik
(S

(Ce2H4D(1) - 2CL2H4D(2)> gL]

2

(%
e,unn eunn
C + RC AQ (C’E?UQH2
2
eunn d ~ep eunn
Cpp +9rChp + A2, (C 2D2 2

Ce,unn +g (Ce,u
2
L2U

A2, [FreozE)

v eunn eunn € € U

HL() T CHL(3))

Ce“””+ gr(CH ()+CHL(3))

2

AZ, L712D2H2() L2D2H2(2)
Ceunn+gLC U2 |:Ceunn o
202
A2NP E2Q%(1)

Z VinVin CE ewk +97CHE

v |:Ce,unn + Qernn

L2Q2H2(

+ CE%H‘ng}L%)

+ Ce 2H4DgR)

Cennn

epjk epjk
+C 2)+C’L2Q2H2(3)

epjk
E2Q2(1)

1+ Cerak

+ (CZ‘;H4D(1) + 2CL2H4D(2)) ]

e
E2Q2(2) + CE2H4D9}I£|

Az | 2 ViVin (€
ik

eujk
+ Cpigeg)

L2Q2H2(4))

) + CE2H4DgL

(C.20)
(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)
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Cdrr™ = —Cpar — mnzg C — A; (CZ%"SZW(U+CZ%"£ZH2(2>+ mnzg ngkm)
Cii™ = ik 5 | 2 ViClibm — 2l
NP j h
Cgf%ﬁun = = E%U mnzg CEH Azg . (CZ’E"SUHQ() CE’E"SUHM +2m7,ul% CLEH5>
Cg’/fg?%dn = _m:é Cw AQN b Z‘GnCZ’%DHz(s) _ani% CZ%HO
o = Do - o (2TYop,. - 052"55H2(5>)
CRE" = D VinCilibo ~ " O+ g | 2 Vin (Chiaba + Cibabiee) ~2
o = -Tetog - o (2”;1;; Cltr - cz‘g"gUm(s>)
Céfﬁzd" = Z Z’“E%Q Tr:;%:} Z ( Z?éDHz(1)+CZ%n5DH2(2)> _217:7(,22};}
Oz = it — o (Ol + Ol (.39
O = ~CitiRas - 7= (Clitomny * Chiumme) c1)
C;;fg%dn = A2NPZVM Z%SDHQ() (C.35)
J
T e DAL (©:30)
J
where V is the CKM matrix, u,, € {u,c}, d,, € {d, s, b}, and
=13t . gh=—gst . gh=—ltish , gh=gsh . (C3D

As anticipated, the low energy LF'V tensors involving d—type quarks are matched at tree level onto
the SMEFT eight dimensional tensors. Dimension eight operators could also be relevant for LL,
RR scalars with d quarks and RL, LR scalars with u quarks, as the dimension six contributions are
suppressed by Yukawa couplings.

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)

pex
LEH®

(C.32)

ep
LEH®









APPENDIX D

Appendix for Chapter 6

D.1 Feynman Rules

In this section we list the Feynman Rules for the interactions involved in the diagrams of section
6.3.1. Capital letters I, J, L, K ... are used to label SU(2) indices, while lower-case letters i, j,1, k
are generation indices. 7% are the Pauli matrices and €19 = —e91 = 1,611 = €99 = 0 is the anti-
symmetric SU(2) tensor. The Feynman rules are obtained calculating by hand the ¢M amplitude
of the tree-level processes.

B we B
—ig'Y ()61 ;4" Py —:ig%'y“}’l, —ig'Y (e)y*Pr
lig tir lig Eir €; i
B we B
—ig' Y (q)8rsv™ Pr —ig%ﬁf“}h —ig'Y (u)y™ Pr
qi7 i1 qiJ qil Ui Ui
B Hy H;
1 :
Y A
I
—ig'Y (d)y* Pr /\\ —e; 015 Pr /\\ —iyu, €15 PR
d; d; €; bir u; qi1
B we
-1 % L TEy
A —ig' Y (H)dr:(pa, +pH, )a S —ig=5* (pr, + pi,)a
/', \‘\ /'/ \‘\
H; Hy H; Hr

Figure D.1: Feynman rules for the dimension four interaction. The Higgs momenta follow the
hypercharge arrow.
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€; €; € €;
X iCH 6L kY* PR @ va PrL >< iCH Yy Pr @ vo PR
Gk K qir U im
€ ei s lir
.Cijlk‘,\al_) o P GUIA(S AH}J ~o P
Gy v Fr @ va PR iCy  015v" PL @ Yo PR
dy d; Up uy
25, lir E_,‘[ iy
o (1)ijlk
gl ap . i(Cyy " Orr0k LA+
1CL 011y PL ® ya Pr Qv
fd ¥ 1 (8)iglk _a _a ap )
+qu T )Y PL @ vaPL
d. d; QrK aqir
€5 ﬁg'] €5 ET.I
L (1)iflE
il > > z(cﬁm er. Pr @ Pr+
1C 7 6 Pr @ Pr 3)iglk 8
tedq (3)ig af p >
+Cequ €1L0°7 Pr ® 0apPR)
Qe K d; U qiL

Figure D.2: Feynman rules for the dimension six SMEFT four-fermion interaction 4 fg of section
6.2.3. In the product I'y ® I'y the left matrix I'y multiplies the lepton bilinear. Scalar and tensor
with opposite chiralities have the same Feynman rules with conjugate coefficients and exchanged
flavour indices within lepton and quark bilinears.
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—i29'Y (H)(C'j 1,010+

iCeg (07170 + 01x0L7) P, i a
200K 1x007)Pr +C§g(3)T?JTfK]’Y'PL

ich(SLK (;éHK + ;éHL )Pr

. i(cgp(l}(SIJ(SLK
+ng(;;)T?ITEI&')(¢HK + erL )Pr.

125, lir

Figure D.3: Feynman rules for the dimension six SMEFT two fermion operators Yg, Pg of section
6.2.3. The Higgs momenta follow the hypercharge arrows.
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Figure D.4: Feynman rules for the dimension eight SMEFT two fermion operators Dg, Py of section
6.2.3. The Higgs momenta directions follow the hypercharge arrow, while the bosons momentum ¢

is outgoing



D.1. Feynman Rules 163

e; e €j €
- iglk oL Ly
Hy - » -1 %C‘;iquzéL:«}'*Pa @ YaPr Hy -» > - Hy, ?«CzidszéLK‘}QPH @ YaPr
Up, uy di. di
{:‘j.f [-"1.1 {‘31 ﬁ“
1yijlk 1)igik
((ﬁfa)gﬂzél‘léLKﬁf (Cﬁz;?frlal"é“"+
Hy -+ 3 - H | )il o p p Hic - > 3 >~ H | (2iji ap P
+C 3 2T Tk )Y P @ vaPr +Cpoy3 2 1 TEK )Y Pr @ Ya Pr
U u di di
Lir Cir
(1)ijik th
?((_‘;-z ?Hzélfél.[\ SN + (_}z ?HJ; yTaNOL K+

Hy -» > - Hy (3)iglk

! ] J (4)ijlk o ,
sz e TLITLIcOMN + Ffz 22 TLIK ,1-1,'v5!-1)’}' PrL @ yaPL
kK qgir

€j 61,1

(1yijlk (2)ijlk
Hy -+ E»-Huy ?(pfequzéll\ dun + f_'ped e TikTin)Pr ® Pr

QLK d;

J ("'H

1)iglk 2yijlk
[(Cge;:szfu\ dnrv + (_'Ee;sz (7" €)ixThn )Pr & Pr+

Hy - - Hy

3)ijlk 4)ijlk
+(('p(eq:ngFu\ dun + (_'( :J (T2 1k TiN )07 Pr ® 00p P

U qir

Figure D.5: Feynman rules for the dimension eight SMEFT four-fermion interactions 4 fg of section
6.2.3. We consider only the dimension eight operators involved in the diagrams of section 6.3.1.1.
In the product I'1 ® I'y the left matrix 'y multiplies the lepton bilinear. Scalar and tensor with
opposite chiralities have the same Feynman rules with conjugate coefficients and exchanged flavour
indices within lepton and quark bilinears.
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D.2 Anomalous Dimensions

In this section we write the renormalization group equations for the mixing of a p — 7 dimension
six operator, multiplied by a 7 — e dimension six operator, into a dimension eight © — e operator.
These anomalous dimensions are generated by the diagrams of section 6.3.1.1. We conveniently
present the RGEs divided in the “classes" introduced in the same section. The operator definitions
can be found in section 6.2.3. The upper dot C on the Wilson coefficient indicate the logarithmic
derivative with respect to the renormalization scale M. The anomalous dimensions are written
for the dimension eight operators of Section 6.2.3, which are relevant for 4 — e processes that
are otherwise flavour diagonal, although more general flavour structures can be obtained with the

appropriate substitutions. For non-Hermitian operators such as o'V we write the RGEs for

lequH?’
1)epii 1) peii o .. .
ge();‘;}g, (’)Ze(qi’ﬁ?. This is to more explicitly show the 7 <> [ operator pairs

upon which we obtain limits in section 6.4.

the u — e operators O

D.2.1 4f6 X 4f6 — 4f8

Figure 6.6f shows the mixing o< yy, of pairs of dimension six 7 — [ operators into the dimension
eight u — e tensor with top legs. We align 7 < e, 7 <> u Wilson coefficients respectively in row
and column vectors to write the following anomalous dimensions, relevant for the B, . sensitivity

of Table 6.11.
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In Figure 6.6e we show a representative diagram with the double insertion of two-lepton two-quark
7 — [ operators of dimension six, which renormalizes the coefficient of © — e dimension eight four
fermion operators. The mixing is proportional to the square of the top Yukawa y7. The RGEs for
scalar and tensor with a up-singlet quark (the sensitivities of u — e processes that we obtain from
this mixing are summarized in Tables 6.8 and 6.10) read
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For scalars with a singlet down-quark (sensitivities in Table 6.9), the mixing is
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The anomalous dimensions for the mixing into u — e vectors with SU(2) lepton singlets are
(sensitivities in Table 6.12)
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while for vectors with lepton doublets (sensitivities in Table 6.13) these are
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D.2.2 F;x 4f6 — 4f8

Dimension six 7 — [ four fermion interactions renormalise u — e dimension eight operators via
gauge loops where one vertex is a flavour changing penguin (Eq. (6.12)-(6.14)), as depicted in
Figure 6.6d. One-particle-irreducible vertex corrections and “wavefunction-like" contributions (see
section 6.2.4 for a discussion) give the following gauge invariant anomalous dimensions, where we
align four-fermion interactions and penguins respectively in row and column vectors:
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We here write the RGEs for the mixing of two dimension six 7 — [ Yukawa (Eq. (6.17)) into the
the dimension eight ;4 — e penguins (Eq. (6.43)). More details can be found in section 6.3.1.1 of
the text.
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D.3 Limits from B Decays

In the body of the paper, we saw that p <> e processes have a good sengitivity to products of 7 < [
coefficients which both involve a top quark, via the fish diagram of Figure 6.6 ¢). When the top
quark is in an doublet, these same 7 <> [ coefficients mediate B decays, which is discussed in this
section.
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We set limits on the 7 <> [ coefficients from their contributions to leptonic and semi-leptonic
B decays. They can induce “neutral current” processes, such as By — 7FIT, which are absent
in the SM, and also contribute to “charged current” decays such as BT — 7v, to which the SM
does contribute but with a different-flavoured neutrino. Since our coefficients are lepton-flavour-
changing, they cannot interfere with the Standard Model, so neccessarily increase the Branching
Ratios with respect to their SM expectation. This makes it difficult to fit the current B anomalies
with LFV operators, because many of the anomalies are experimental deficits with respect to the
SM predictions.

The list of decays that are included is given in table D.1, along with the value of the Branching
Ratio(BR) which we use to extract limits (A coefficient at its upper limit gives this BR). For
processes where the SM contribution is negligeable, this value is the the experimental 95% C.L.
upper bound on the BR. In the case of SM processes where prediction & observation, this value
is the SM prediction + theory uncertainty + 20 experimental uncertainty. This definition is used
because we would like to remove the SM part and require that the flavour-changing interactions
contribute less than the remainder. However, it can occur that the SM prediction exceeds the
experimental observation (as in some “B anomalies”).

To extrapolate the limits we obtain from current experimental constraints into the future, we
suppose a factor of 10 improvement in the experimental sensitivity (and in the theoretical precision),
such that the future limits will be a factor of ~ 3 better.

Our limits are obtained using Flavio [360]. The limits obtained from two-body leptonic decays
were checked analytically, using the well-known formula for the rate as a function of operator
coefficients at the experimental scale my:

— E2 f% db, db, db, db, m2
D(Bo — 71) = =B { (CVI% P + O ) (Br — B,) + (CERX P + 1CE1% ) (BB + -
(D.54)
where “...” are cross-terms and m,, is neglected. A numerical limit can be obtained by, for instance,

comparing to the experimental rate for BT — 7v.

The coefficients are run from my, — Axp = 4 TeV with the one-loop RGEs of QCD (which
shrinks scalar coefficients by a factor ~ 3/5), with tree-level matching to SMEFT operators when
passing myy. Electroweak running is neglected, except in the case of tensor to scalar mixing in
SMEFT! (where Cg(my) ~ 0.3Cr(Anp)), which for instance, mixes single-top tensors (9221;63“
into scalars that induce Bt — ev.

!The tensor to scalar mixing below myw in QED is negligeable for “charged-current” tensors involving a b and a
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coeflicient limit process BR

CaR O TR 1 23%1073(c) | BY — K + 56T | < 4.4 x 1077 [366]
Cer3l o 4 o | 2.3 % 1073(c) | By — TET < 3.0 x 1077 [367]
chr 32,05;)“732 + CE?“T” 2.3 x 1073(c) | BO — 7H,7 < 4.3 x 1075 [368]
Clr oM+ oM | 15 x 1073(c) | BY - mEuT < 1.2 x 1075 [368]
Ciide Crcda 34x107%(c) | B} — eFr7 < 3.0 x 107 [367]
Cpd ol 2.2 x 1074(c) | BY — p*r¥ < 1.2 x 107° [368]
Cho Crle 3.3x1074(c) | BY — p*rT < 4.3 x 1075 [368]
c{ i 45%x10°%c) | B~ =10 1.4 x 10~* [360, 369]
oymes 5.8 % 1075(c) | B~ — ep < 1.2 x 1076 [370]
cflrusu 43 x107%(c) | B~ = up < 1.0 x 1076 [371]
climse 1.0 x 1072(c) | By — 7o 0.1 [360]

Cylmese 9.0 x 10-3(c) | BY — Dew < 3.0 x 102 [360]
oy bmhse 9.0 x 10-3(c) | BY — Dup < 3.1 % 1072 [360]
CB)irsu 1.8 % 1073(c) | B~ — 10 1.4 x 10~* [360, 369]
ores 24%1074(c) | B~ = ep < 1.2 x 1076 [370]
CB)rusu 1.8 x 1074(c) | B~ — uw < 1.0 x 1075 [371]
C)irse 5.0 x 1073(c) | R,;(B — D*Ip) | 0.28 [360]

CIrede 5.3 x 1073(c) | By — D*en < 7.3 % 1072 [360]
i 6.4 x 1073(c) | BY — D*uw < 7.7 x 1072 [360]

Table D.1: Current limits (c) on 7 <> e and 7 <> p coefficients of SMEFT operators, at 4 TeV,
arising from the B decays given in the third column. The limits saturate the Branching Ratio given
in the last column (which may not be the cited experimental limit, see discussion in Appendix D.3).
Limits on vector coefficients apply for permuted lepton and quark flavour indices, scalars apply as
given.
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D.4 Table of Sensitivities

coefficients BY) BWY) i ,L(LQ .

oot 8.3 x 1075(f) x 1.2 x 10~%(f) | 5 x 1079
Cg’)Z”“CT“ 7.7 x1075(f) x 1.2 x 1074(f) | 2x 1079
(Cparet™ys Chiy | 83x1075() x 1.0 x 1074(f) | 1x 1078
(Clom™™) Cilyay | TT X 1075(F) x LOx 1074(f) | 2109
(Clr™) Citty | 83X 1079() x 1.0 x 1074(f) | 1x 1078
(Clogu ™) iy | 77 ¥ 1075(£) x 1.0 x 1074(f) | 3x 1010
Corl Cife 83x1075(f) x1.2x107°4(f) | 5x 1079
(Cedh) C;;;(l) 83 x107°(f) x 1.0 x 1074(f) | 1 x 1078
(Creid ) Chys) 8.3 x 1075(f) x 1.0 x 1074(f) | 1 x 108

Table D.2: Pair of 7 <+ [ penguin and four fermion dimension six operators that generate p — ¢

scalar/tensor dimension eight operators with a singlet v and d quark. The future (f)

“hmltS” B(f)

T

on T <+ [ vectors and scalars are from the upper bounds on the LFV decays 7 — lp(n) and 7 — 7l
respectively (adapted from [322]). The limits on penguins follow from their contribution to four-

lepton vector interactions 7 — 3l.

The same bound applies to the dimension six operators with

1 <> e interchanged. The sensitivities B,S_)>e arise from future p — e conversion. Bolded pairs
indicate that the sensitivity of ;1 — e is better than the one arising from direct 7 <> [ searches (see

Eq. (6.100)).

coefficients BY)_BY) i B,SQ .

ceruuCl 2.4 x 1074(f) x 1.1 x 1074(f) | 4.6 x 1078
cerddorl 2.4 x 1074(f) x 1.1 x 107%(f) | 8.2 x 1078
CTCH | 70X 107 (f) x 1Lox 1074(f) | 1x 1077
Cl O | TOX 1074 (f) x 1 x 1074(f) | 8.5 x 1078
CRTCH | 12X 107 () x 1ox 1074(f) | 1x 1078
02)”11032(3) 1.2 x 1074(f) x 1. x 1074(f) | 3.2 x 107°

Table D.3: Similar to Table D.2 but with product of penguin and four-fermion dimension six

operators that mix into p — e vectors at dimension eight.
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