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General Introduction

1 Context & Objectives of the thesis

In many applications, the knowledge of internal information of a system is required for a vari-

ety of reasons that includes modeling (identification), monitoring (fault detection), or driving

(control) the system. All those purposes are actually jointly required when aiming at keeping a

system under control. In general, it is obvious that one cannot use as many sensors as signals of

interest characterizing the system behavior due to cost, economical or technological constraints,

and so on. Especially since such signals can be numerous and of various types: they typically

include time-varying signals characterizing the system (state variables), constant signals (pa-

rameters), and unmeasured external signals (disturbances). Therefore, when one wants some

internal knowledge from external (directly available) measurements, the challenge of observer

design naturally emerges in a system approach. An observer is a dynamical system whose role

is to process the incomplete and imperfect information provided by the sensors to accurately

reconstruct the whole system or provide reliable estimate of all the system state variables. This

makes the reconstruction—or observer—problem the heart of a general control problem. In short,

an observer relies on a model, based on available measurements, and aiming at information re-

construction, i.e. it can be characterized as a model-based, measurement-based, closed-loop,

information reconstructor. The model is a state-space representation, and usually all pieces of

information to be reconstructed are driven by state variables. Based on the model, one can try

to design an explicit dynamical system whose state should give an estimate of the actual state

of the considered model. The considered model can be either continuous-time or discrete-time,

deterministic or stochastic, finite-dimensional or infinite-dimensional. However, in this thesis,

we will consider only finite-dimensional, deterministic continuous-time state space descriptions.

The role of an observer is to estimate in real-time the plant state based on the measurement

from the sensor. This means that this measured signal somehow contains enough information
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to determine uniquely the whole state of the system; namely the system is observable. Before

dealing with the observer design for the dynamical systems, we need firstly to analyze whether

the states of the studied dynamical system are observable or not. This property is named as

observability in the literature.

In general, observability, defining the possibility to estimate internal states of the studied

system via the available measurement and its derivatives Besançon [2007], has already been

widely studied for different types of dynamical systems. Using the elementary algebraic method

to analyze observability can be dated back to 1960s in the work of Kalman for linear dynamical

systems Kalman [1960]. However, the generalization of the similar theory to nonlinear dynamical

systems is not so trivial. Furthermore, the observability property is no longer a global property

for nonlinear systems since at some local points or sets the observability can be lost. Therefore,

we start with the classification of observation problems i.e. to study the different approaches to

analyze the observability of the systems and to study the dynamical systems that suffers from

observability defects. Observability defects can be defined as a point or set of points for which a

system loses its observability or becomes unobservable rendering the whole system unobservable

at those points. Since those observability defects hinder the application of designing an observer

for such systems therefore, a main concern is to provide some techniques that can avoid (e.g.

through state constraints which requires limiting convexity assumptions) or remove (by modifying

the system around singularity) those defects.

Note: The text is largely inspired by the works of Besançon [2007]; Khalil [2017]

and Bernard [2019].

The main subject of the thesis is to synthesize the observers for a class of nonlinear systems

i.e. nonlinear oscillators and the nonlinear systems perturbed by such oscillators that suffer

from observability defects. Nonlinear oscillators have attracted a remarkable research attention

in the past and current literature. The reason of this interest rely on several engineering ap-

plications where an effective and robust solution to this problem is crucial. The problem of

frequency estimation of a harmonic oscillator has gained notable scholarly interest since 1900s

Marino and Tomei [2002]; Ziarani and Karimi-Ghartemani [2005]. For example the problems of

harmonic disturbance compensation in automatic control, design of phase-looked loop circuits in

telecommunication, adaptive filtering in signal processing, etc. Another class of nonlinear oscil-

lators refered to as Hopf oscillators is also considered in this thesis. Examples of Hopf oscillators

can be found in applications as diverse as biological rhythms modeling Medvedev and Cisternas

[2004], epidemiology Hethcote et al. [1999], ecosystems Fussmann et al. [2000], chemical kinetics

Moehlis [2002], robotics Seo et al. [2010] and fluid mechanics Shen [1991]; Noack et al. [2003].

Nonlinear dynamical systems are often affected by periodic disturbances whose knowledge and

especially their frequency are of interest to control the system. In such a case, it is relevant to
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rebuild this information that can not be directly accessed. Many various systems can be con-

sidered: medical diagnosis Sadelli et al. [2015, 2016], medical microrobots Gangloff et al. [2006];

Fruchard et al. [2013], frequency hopping communications or phase locking loop systems Bodson

[2005] etc. However, these nonlinear oscillators suffer from observability defects such that the

systems becomes unobservable at certain points. Therefore, a study of nonlinear oscillators with

observability defects is presented that constitutes a main contribution of the thesis. Different

approaches have been studied before to avoid these defects, a few of those will be presented in

this work with their application to different systems for example biomedical microrobots and

fluid mechanics, that suffers from those observability defects. Providing a way to tackle those

observability defects will further lead to the second objective of the thesis i.e. propose an observer

for the nonlinear oscillators in the presence of those observability defects.

Observer theory for linear systems is well-understood and many observers have been designed

for both single and multi-output cases, most prominent being Luenberger observer Luenberger

[1971] and Kalman filter Kalman and Bucy [1961]. Observers for nonlinear systems however are

much more challenging to design and still suffer from a significant lack of generality. Nonlin-

ear observer research has received considerable attention since early 1980s Krener and Isidori

[1983]. In general for the nonlinear systems, many approaches can be found in the existing

literature, among which some are mentioned in here as follow: Filtering approach based on ex-

tending the Kalman filter to deterministic nonlinear systems (Extended Kalman Filter: EKF),

its convergence is guaranteed under some hypotheses for example, Baras et al. [1988] for local

asymptotic convergence in the case of control affine nonlinear systems, and Deza et al. [1992];

Boizot et al. [2010] for the global stability limited to a particular class of nonlinear systems.

Actually observer design may be more or less straightforward depending on the coordinates we

choose to express the system dynamics. For instance, dynamics which seems nonlinear at first

sight could turn out to be linear in other coordinates. Hence the importance of the choice of

the coordinates for observer design. In this approach, the most widespread method is the er-

ror linearization method Krener and Isidori [1983]; Krener and Respondek [1985]; Xia and Gao

[1989]; Phelps [1991]; Glumineau et al. [1996]; Respondek et al. [2004]; Zheng et al. [2007], which

consists of characterizing nonlinear systems that can be transformed via change of coordinates

and output variables into a linear system plus a nonlinear term depending only on the inputs

and outputs measurement. These systems can be observed using Luenberger observer. Another

approach for the error linearization problem has been proposed in Kazantzis and Kravaris [1998];

Kravaris et al. [2007]; Andrieu [2014]. Under some local observability hypothesis, the authors

propose a change of variables resulting from the resolution of a linear first order PDE. From

observability point of view, all the above mentioned classes of systems are similar to the class of

linear systems in the sense that the observability is not affected by inputs. An extension to these
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works is to characterize nonlinear systems which are observable independently on the inputs. For

single output systems Gauthier et al. [1992]; Gauthier and Kupka [1994], this characterization is

completely determined by a normal form of observability (in the local generic sense), and a high

gain observer can be designed. Some extensions to multi-output systems have been proposed in

literature Bornard and Hammouri [1991]; Ciccarella et al. [1993]; Gauthier and Kupka [1996];

Schaffner and Zeitz [1999]; Hammouri et al. [2002]; Shim et al. [2001]; Hammouri and Farza

[2003]; Hammouri et al. [2010]; Farza et al. [2011]; Oueder et al. [2012]. All the observers pro-

posed for nonlinear oscillators are generally based on a normal form of observability and the

design of such an observer requires an inverse transformation.

The first idea of normal form is due to Bestle and Zeitz [1983] for non-autonomous nonlinear

dynamical systems and Krener and Isidori [1983] for autonomous nonlinear dynamical systems

where the authors introduced the so-called observer canonical form with output injection with all

nonlinear terms being only function of the output. Then Krener and Respondek [1985] gave the

associated canonical form with output injection for multi-output nonlinear dynamical systems

without inputs, and the result for multi-output systems with inputs was studied in Xia and Gao

[1989]. Based on the above works many algorithms have been developed to generalize the existing

results, e.g. Phelps [1991]-algebrain approaches, Lynch and Bortoff [2001] geometric approaches.

It can be noted that the diffeomorphism required to obtain normal forms are generally local and

consequently less applicable for state estimation (only the trajectories that are in the domain

of the transformation can be estimated). This problem has been extensively addressed in the

control context in Gauthier and Kupka [1996]; Jouan and Gauthier [1996], and the details are

available in Gauthier and Kupka [2001].

Since the nonlinear observer synthesis for the nonlinear oscillators and nonlinear dynamical

systems disturbed by period oscillations requires a transformation of the original coordinates

into observability normal forms, it follows that the dynamics of the system and of the observer

are expressed in different coordinates and may even evolve in spaces of different dimensions. It

is therefore necessary to invert the transformation to deduce the estimate in the original system

coordinates. However, although the transformation for such nonlinear oscillators is generally well-

known, its inversion can be difficult in practice. When an explicit expression of a global inverse

is not available (that is the case for most of nonlinear systems), numerical inversion usually relies

on the resolution of a minimization problem with a heavy computational cost. To avoid such

inversion involving high computational time and cost, a lot of research has been done in this

direction. For example, in the case where the transformation is a diffeomorphism, one may hope

to avoid this minimization by expressing the observer dynamics in the system original coordinates

via jacobian inversion instead of inversion of the mapping for each state (e.g. Deza et al. [1992];

Maggiore and Passino [2003]; Astolfi and Praly [2013]; Menini et al. [2017]; Astolfi and Possieri
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[2019]).

Contrary to normal forms based on diffeomorphism transformations, the construction of an

observer based on immersion techniques is a difficult task. The reasons are many and varied: the

nonlinear elements of the dynamics of normal forms are generally unknown, the observer requires

an inversion procedure necessitating an optimization algorithm, thereby increasing calculation

times. Different solutions have been proposed regarding the solution of such issues e.g. a solution

proposed consists in modifying the observer dynamics to force its state to remain in diffeomor-

phism image by either adding a term in the dynamics Astolfi and Praly [2013] or using carefully

designed complex saturations Maggiore and Passino [2003]. However this must be done with care

since it can easily destroy the observer performances (in particular convergence): extra convexity

assumption are typically required on the diffeomorphism image to implement such methods. In

more general case where the transformation is not a diffeomorphism, but an injective immer-

sion, namely, the target space has a larger dimension that the system domain, some ideas have

been proposed such as using Newton-like or gradient algorithms to inverse the transformation

in Astolfi and Possieri [2019] and Menini et al. [2017], or continuation algorithms which “follow”

the “optimal” inverse image in Hammouri et al. [2018]. However, in those cases, the convergence

is only local and Hammouri et al. [2018] needs to verify a convexity assumption. A widely used

method for the harmonic oscillators was suggested by Andrieu et al. [2014]; Bernard et al. [2015,

2018] for the cases when observer dynamics are of greater dimension compared to the system

coordinates, where it allows to deduce the observer in system original coordinates by extending

the image of diffeomorphism. The final objective of this is therefore to provide a methodology

for the nonlinear oscillators for synthesizing the observer in original coordinates that are capable

of handling the observability defects.

The objectives of this thesis can be summarized as:

1. For a certain class of systems i.e. nonlinear oscillators and nonlinear systems disturbed by

harmonic oscillations, provide a detailed observability analysis and point out the observ-

ability defects.

2. Propose a methodology that can help to tackle those observability defects for the nonlinear

systems without changing the internal dynamics of these systems.

3. Synthesize different observers for the nonlinear oscillators that are capable of handling the

observability defects.

4. To get the observer back in system original coordinates, based on jacobian completion,

extend the mapping image to a global diffeomorphism and to get the inverse transformation

from target coordinates back to original system coordinates.
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5. Provide a nonlinear dynamical model for the microrobot system including the blood velocity

and pulse rate, study the observability of the system and based on the observability analysis,

propose an observer that can handle the observability defects of the microrobot system.

6. Present several wake flow dynamical models and analyze the observability of each model.

Then build observers for each model that can provide a way around observability singu-

larities existing in the system and provide a comparison for different designed observers

by simulating the system in several cases, e.g. observability defects avoidance and noise

measurement to check the robustness of the proposed observers.

2) Outline of the manuscript & contributions

The outline of the thesis is given as:

Chapter 1 By offering some insights on the ideas of observability, the first chapter gives a

broad overview of the observer and observation theory. The transformation methods are briefly

reviewed after that, with an emphasis on some well-known transformations that exist and are

widely used for designing nonlinear observers. Since the thesis only covers the observers with

global and tunable convergence, a recall on existing literature on the observers is presented. By

the end of the first chapter, a brief discussion of the techniques for inverting the transforma-

tion to bring the observer back to system original coordinates from target coordinates is provided.

Chapter 2 The second chapter highlights our main contributions of the dissertion i.e. the

observer synthesis of the nonlinear oscillators and nonlinear dynamical systems affected by

harmonic oscillations that suffer from observability defects. Such observability defects need to

be addressed since they make the system unobservable and thus the observer synthesis is no

longer possible for such systems. The chapter therefore recalls the methodology to avoid the

observability defects. The observability defects avoidance is presented and is further applied to

the nonlinear oscillators and nonlinear systems affected by harmonic oscillations. Another main

concern of study is the inversion of transformation in order to get the observer in the original

system’s coordinates. Based on previous analysis, singularities and immersion techniques, this

is not always an easy task. Also, the observability defects avoidance makes it harder to get the

observer in original coordinates since it increases the target coordinates dimension compared to

the system original coordinates. Therefore, we mainly address and provide a way of achieving

a global diffeomorphism for the particular cases by extending the image of diffeomorphism

through coordinate augmentation and jacobian completion. The provided methodology is then

applied to the three systems for which the target coordinate dimension is greater than the

6



General Introduction

system, and the effectiveness of the proposed technique is then studied. The chapter ends with

the general proposition for the observer in original coordinates irrespective of the system and

observer dimensions.

Chapter 3 There has been growing interest in the development of therapeutic microrobots

since such systems have the potential to revolutionize many aspects of medicine. Therefore, in

the third chapter, a nonlinear observer is developed for the application of microrobots. Based

on the position of microrobot inside the human body using the imager/sensor, the observer will

estimate the robot velocity as well as the blood velocity and the pulse rate. Another issue in

such systems is that they suffer from observability defects, therefore based on the methodology

studied in the previous chapter, an observer is proposed that is capable of providing a way

around the singularity. At the end of this chapter, simulations illustrate the performance and

effectiveness of the proposed observer in the presence of observability defects.

Chapter 4 The last chapter begins with the introduction of the wake flow dynamics, its

impact on the energy consideration, and the motivation behind estimating and further reducing

the drag force in order to minimize the energy consumption. In this work, we study four models

for the wake flow dynamics, where for each model, three observers are synthesized. Since each

model also suffers from observability defects, the designed observers are capable of avoiding

those observability defects in an effective manner. By the end of each section, simulations

are carried out for different cases, particularly to provide a comparison between the three

observers in the presence of observability defects and the measurement noise at high frequencies.

The chapter ends with the conclusion of already-done approaches and with some perspectives

regarding the experimental analysis of the wake flow dynamics.
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Chapter 1. Observability and Observer Design

1.1 Introduction

This chapter begins with a presentation of the state-space models and notations, then states the

observation issue before providing an overview of different existing observer design tools. Before

dealing with the observer design for dynamical systems, we need firstly to analyze whether the

states of the dynamical system are observable or not. This property is refered to as observability

in the literature. Therefore, this chapter aims at recalling the existing results on observability

analysis approaches and on observer synthesis techniques for dynamical systems. We start with

the classification of observation problems, the different approaches to analyze the observability

and the categories of observers. Thence, we recall several important definitions for the observ-

ability of nonlinear dynamical systems. For some nonlinear systems, there exist some points for

which the system remains no longer observable. The existence of such singular points makes the

system unobservable, leading to observability defects detailed in this chapter. Another major

concern for the nonlinear systems is that it is not always possible to design an observer in original

coordinates. We present some observer normal forms for which global observers already exist.

Some well-known observers are then summarized, including Luenberger observer, high gain ob-

server and so on. By the end of this chapter, some techniques to get the observer from normal

forms back to the original coordinates are briefly discussed.

Notation. To avoid repetitions, we present some notations that will be carried throughout the

thesis. We denote with R the set of real numbers, with Z the set of integers and Z>0 = {1, 2, . . .}.
Ii, or simply I, is an identity matrix of dimension i ∈ Z>0 and 0i,j is a zero matrix of dimension

i× j, with i, j ∈ Z>0. We denote a triplet in prime form (Ai, Bi, Ci) of dimension i ∈ Z>0, the

set of matrices of the form:

Ai =

(
0i−1,1 Ii−1

0 01,i−1

)
, Bi =

(
0i−1,1

1

)
, CTi =

(
1

0i−1,1

)
.

Lf denotes the Lie derivative of any function along the vector field f so the Lie derivative of a

function h along f is denoted as Lfh(x) = ∂h
∂xf(x, u).

1.2 Observation Statement and Observability

1.2.1 Model Under Consideration

We consider a general real system/process described by a finite-dimensional continuous-time

nonlinear dynamic model of the form:

Σx :

ẋ = f(x, u)

y = h(x),
(1.1)
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where x ∈ X ⊂ Rnx is a state vector, u ∈ U ⊂ Rnu is an input vector and y ∈ Rny is an output

vector of dimensions nx, nu and ny respectively. The state vector x0 ∈ X ⊂ Rnx and the input

vector u0 ∈ U ⊂ Rnu are confined into the sets X ,U respectively, such that any solution of (1.1)

initialized at x0, u0 are defined on [0,+∞) and remains in X and U at all positive times. The

functions f and h are assumed to be smooth, i.e., f ∈ C∞ and h ∈ C∞ with respect to their

arguments. The system (1.1) is said to be a single-output system if the integer ny is equal to 1,

and a multi-output system if ny ≥ 2.

Among the nonlinear systems, some specific forms of state space representations can be

distinguished:

• The autonomous systems: ẋ = f(x), y = h(x).

• The control-affine systems: ẋ = f(x) + g(x)u, y = h(x).

1.2.2 Observation statement

Given a system (1.1), there is a general need to know x(t) in order to act on or to monitor

the system. However in reality one has only access to the input u and the output y (through

sensors) of the system. Consequently, the observation issue can be formulated as follows:

Observation problem: For a given system described by a representation (1.1), find an

estimate x̂(t) of x(t) from the knowledge of u(t′), y(t′) for 0 ≤ t′ ≤ t.

In order to deal with the observation problem, a first naive approach is to look for a solution

in terms of optimization i.e. find the best estimate x̂(0) of x(0) that can explain the evolution

of y(t′) over [0, t] and by integrating (1.1) from x̂(0) and under u(t′), get an estimate x̂(t).

x̂(t) = argminx̂f

∫ t

0
|Y (t′, x̂f , u)− y(t′)|2dt′, (1.2)

where Y (t′, x̂f , u)− y(t′) denotes the output at time t′ of the solution to (1.1) going through x̂f
at time t.

In order to cope with disturbances, one should rather optimize the estimate of some initial

states over a moving horizon Zimmer [1994], i.e., to solve online at each iteration or rather with

a finite memory window:

x̂(t) = argminx̂f

∫ t

t−t̄
|Y (t′, x̂f , u)− y(t′)|2dt′. (1.3)

Some methods have been developed to solve this optimization problem online, in spite of its non-

convexity and the presence of local minima (e.g. Alamir [1999]; Michalska and Mayne [1995];
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Zimmer [1994] or see Alamir [2007] for a survey of existing algorithms). Such algorithms are often

denoted as finite horizon observers or moving horizon estimators and the theory is usually

developed in the discrete time context. It takes advantages of its systematic formulation, but

suffers from the usual drawbacks of nonlinear optimization (computational burden, local minima

...).

An alternative approach is based on the idea that if one knows the initial value x(0) through

the current value of the output y(t), one can get an estimate from x(t) by simply integrating

(1.1) from x(0). The feedback-based idea is that if x(0) is unknown, one can try to correct

online the integration x̂(t) of (1.1) from some erroneous x̂(t), according to the measurable error

h(x̂(t))− y(t), namely to look for an estimate x̂(t) of x(t) as the solution of a system:

˙̂x(t) = f(x̂(t), u(t)) + k(h(x̂(t))− y(t)). (1.4)

Such a dynamical system is refered to as an observer, and the above equation is the most

common form of an observer for a system (1.1) (In the case of linear systems, the reader can

refer to Kalman and Bucy [1961]; Luenberger [1966]).

More generally, an observer can be defined as follows:

Definition 1 (Observer Besançon [2007]) Considering a system described by the model

(1.1), an observer is given by a dynamical equation:

˙̂x(t) = F(x̂(t), u(t), y(t)) (1.5)

such that:

(i) x̂(0) = x(0)⇒ x̂(t) = x(t), ∀t ≥ 0;

(ii) ||x̂(t)− x(t)|| → 0 as t→∞;

• If (ii) holds for any x(0), x̂(0), the observer is global.

• If (ii) holds with exponential convergence, the observer is exponential.

• If (ii) holds with a convergence rate which can be tuned, the observer is tunable.

The difference ||x̂− x|| will be refered to as estimation error or observation error.

Therefore the observation problem becomes a problem of observer design. Typically, when

addressing the state observation problem for a dynamical system, we need to take into account

the following two important issues:

• Is it possible to reconstruct the internal information (state x) over a time interval with the

available information i.e. the output y, the input u and their successive derivatives?

13
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• How to design an observer that enables us to reconstruct the whole state x with the available

information?

The first issue is related to the concept of observability and is addressed in the following

section.

1.2.3 Nonlinear Observability

An observer is a dynamical system relying on the measurable variables (inputs and outputs)

to estimate the unmeasurable states of a dynamical system. This requires that the measurable

signals u(t) and y(t) in some way contain sufficient information to reconstruct the overall state

of the system x(t), in other words, the system has to be observable. Observability is an intrinsic

property of the system and a prerequisite towards the design of an observer. The purpose of

this section is to discuss some conditions required on the system for possible solutions to the

observer problem. Such conditions are usually called observability conditions. In short, they

must express that there indeed is a possibility that the purpose of the observer can be achieved,

namely that it might be possible to recover x(t) from the only knowledge of u and y up to time

t. At a first glance, this will be possible only if y(t) bears the information on the full state vector

when considered over some time interval. We define X(t, x0, u) as the solution of the dynamical

system (1.1) at time t with initial condition x0 and input u and Y (t, x0, u) = h(X(t, x0, u)) as

the associated (1.1) output.

We first briefly recall some notions of observability i.e. the necessary or sufficient conditions

that the model of the system must verify in order for an observer to exist.

In order to design an observer, a detectability property must be satisfied.

Definition 2 (Detectability) System (1.1) is detectable for any u in U and for any (x′0, x
′′
0)

in X × X such that

Y (t, x′0, u) = Y (t, x′′0, u) t ≥ 0,

if we have

lim
t→∞
||X(t, x′0, u)−X(t, x′′0, u)|| = 0.

In order to design a tunable observer, one must be able to reconstruct the state via the output

measured from the initial time, and more particularly to recover the corresponding initial value

of the state. Accordingly, the observability is characterized by the fact that, one must be able

to distinguish between various initial states from an output measurement, or equivalently, one

cannot admit indistinguishable states (following Hermann and Krener [1977]).
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Definition 3 (Indistinguishability) A pair (x′0, x
′′
0) ∈ X ×X is indistinguishable for a system

(1.1) if:

∀u ∈ U , ∀t ≥ 0, Y (t, x′0, u) = Y (t, x′′0, u). (1.6)

Based on the definition, we can deduce that if two solutions are not distinguishable from the

output, they necessarily converge to each other asymptotically. This ensures that, regardless of

the initial conditions, one still obtains an asymptotic estimate.

Using Taylor series expansion to express Y (t, x0, u) in terms of its derivatives at time 0, one

can see that distinguishability is linked to the upcoming differential definitions of observability.

So following Definition 3, we can now introduce different differential geometry based observability

definitions for the nonlinear dynamical system (1.1).

Definition 4 (Global Observability) A system (1.1) is globally observable if it does not admit

any indistinguishable pair in X ⊂ Rnx .

This definition is quite general (global), and even too general for practical use, since one might

be mainly interested in distinguishing states from their neighbors. This brings us to consider a

weaker notion of observability.

Definition 5 (Weak Observability) A system (1.1) is weakly observable at x if there exists

a neighborhood Ω of any x containing no indistinguishable state from x.

Definition 6 (Local Weak Observability) A system (1.1) is locally weakly observable if there

exists a neighborhood Ω of any x such that for any neighborhood V of x contained in Ω, there

is no indistinguishable state from x in V when considering time intervals for which trajectories

remain in V .

This notion of local weak observability requires that each state can be distinguished from its

neighbors without going too far i.e. in its neighborhood V ⊂ X . This notion is of great interest

in practice, and also presents the advantage of admitting some rank condition characterization

i.e. differential geometry characterization.

Such a condition relies on the notion of observation space which corresponds to the space of all

observable states:

Definition 7 (Observation Space) The observation space for a system (1.1) is defined as the

smallest real vector space (denoted by O) of C∞ functions containing the components of h and

closed under Lie derivative along fu := f(., u) for any constant u ∈ U ⊂ Rnu and for any vector

field T ∈ O, LfuT ∈ O.
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Definition 8 (Observability Rank Condition) A system (1.1) is said to satisfy the observ-

ability rank condition if:

∀x0 ∈ X , dim dO(x0) = nx (1.7)

where dO|x is the observability codistribution i.e., dO(x) = span(dT (x) : T ∈ O).

The involutive codistribution dO can be built iteratively:

• dO0=span dh

• dOi = dOi−1 + LfdOi−1, i ≥ 1

• if ∃ n∗ : dOn∗+r = dOn∗ ∀r > 0, then dO = dOn∗ .

Remark 1 Condition (1.7) is equivalent to the Kalman rank condition for linear time invariant

(LTI) dynamical systems.

Using the observability rank condition, we can then have the following theorem

Hermann and Krener [1977].

Theorem 1 Hermann and Krener [1977] A system (1.1) satisfying the observability rank con-

dition at x0 is locally weakly observable at x0.

The aforementioned theorem offers a constructive way of checking the observability of the

nonlinear dynamical system (1.1).

In practice, we usually consider the nonlinear dynamical system (1.1) without inputs i.e. the

autonomous system (1.8). Indeed the feedback control u in (1.1) is often a smooth function of

the state x. This leads to investigate the observability of the autonomous system:ẋ = f(x)

y = h(x),
(1.8)

where f and h are assumed to be smooth. We can define a mapping between the output and the

state by calculating higher order derivatives of y, which gives
y(t)

ẏ(t)
...

y(k)(t)

 =


L0
fh(x)

L1
fh(x)
...

Lkfh(x)

 = Ok(x), (1.9)

where Lkfh are the so called k-th Lie derivatives of h in the direction of the vector field f

which will be detailed in the subsequent section, y(k) represents the k-th time derivative
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of y and Ok is the observability map at order k. For a certain integer k ≥ n − 1, if Ok(x)

is a local diffeomorphism, then we can reconstruct the state x from the output and its derivatives.

Based on the observability rank condition 8 and Theorem 1, we briefly recall the definitions

of immersion and injective immersion.

Definition 9 (Immersion Gauthier and Kupka [2001]) An immersion T on an open set

X is a map such that ∂T
∂x (x) is full-rank for all x in X .

Definition 10 (Injective immersion Gauthier and Kupka [2001]) An injective immer-

sion T on an open set X is a map such that T is injective and ∂T
∂x (x) is full-rank for all x

in X .

The following definition of differential observability is based on the analysis of the output y

and its successive time-derivatives ẏ, ÿ, . . . , y(k), k ≥ n− 1.

Definition 11 (Differential observability Gauthier and Kupka [2001]) Consider an au-

tonomous system (1.8), there exists an integer nz ≥ nx such that the mapping

T : X ⊂ Rnx → Z ⊂ Rnz is defined by:

T (x) =


L0
fh(x)

L1
fh(x)
...

Lnz−1
f h(x)

 . (1.10)

• The system (1.8) is said to be weakly differentially observable if T (x) is injective on X for

all x ∈ X .

• The system (1.8) is said to be strongly differentially observable if T (x) is an injective

immersion on X for all x ∈ X .

However, in general, the observability rank condition is not enough for a possible observer

design owing to the fact that for the design of an asymptotic state observer for the nonlinear

dynamical system (1.1), the observability condition also depends on the inputs, namely it does

not prevent the existence of inputs for which the observability vanishes. This means that the

purpose of observer design requires a look at the inputs. Notions of universal inputs and

uniform observability and the corresponding propositions for systems (1.1) are introduced here

(as in G. Bornard and Gilles [1995] for instance):

Definition 12 (Universal Inputs) An input u is universal for a system (1.1) if ∀x0 6= x′0,

∃t′ ≥ 0 such that y(t′, x0, u)) 6= y(t′, x′0, u)).

An input u is a singular input if it is not universal.
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Proposition 1 An input u is a universal input on [0, t] for system (1.1) if and only if∫ t
0 ||y(t′, x0, u))− y(t′, x′0, u))||2dt′ > 0 for all x0 6= x′0.

In general, characterizing such singular inputs is not easy.

Definition 13 (Uniformly Observable Systems (resp. locally)) Gauthier and Bornard

[1980] A system is uniformly observable (UO) if every input is universal.

This property actually means that the observability is independent of the inputs and thus

can allow an observer design to be also independent of the inputs. For systems which are not

uniformly observable, observers will depend on the inputs, and not all inputs will be admissible.

In this work we will assume that all inputs are universal and the system is uniformly observable

and therefore maintain our focus on observers design for uniformly observable systems.

1.2.4 Observability Defects

We assume that the system under consideration is uniformly observable, and the inputs are uni-

versal. However it is sometimes the case that some state variables are structurally unobservable

and therefore it is impossible to observe such state variables that are structurally unobservable.

In such cases, if a proper observability analysis has to be carried out, the so-called observability

singularity set can be determined. The observability singularity set can be defined as a set

or a combination of points in the state space whereby the observability matrix is not full rank

meaning that we loose access to information about certain state variables.

Suppose that ∀x ∈ X , rank dOk(x) ≤ nx, so there may exist some subset S ⊂ X :

S = {x ∈ X ⊂ Rnx : s(x) = 0} : dim dO(x) < nx. (1.11)

where s : X 7→ Rnx .
The system (1.1) is observable ∀x ∈ X\S, but some states are no longer observable on S.
The following examples illustrate the procedure involved.

Example 1 Let us consider the following simple system:

ẋ1 = x2 + x2
2

ẋ2 = −x3
2 + 1

y = x1

(1.12)

By computing the Lie derivatives of the corresponding output of the system, we get the following

observability matrix

dO1(x) =

(
1 0

0 1 + 2x2

)
, (1.13)
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and the observability singularity set is consequently

S1 = {x ∈ X ⊂ R2 : x2 = −0.5}. (1.14)

Even though we have a singularity at x2 = −0.5, the system is observable because if we calculate

further Lie derivatives of the output, we get:

dO(x) = dO2(x) =


1 0

0 1 + 2x2

0 −8x3
2 − 3x2

2 + 2

 (1.15)

and there exists no longer any observability singularity for any x ∈ R2 so S = ∅.

Now we consider another system to understand why and how observability defects affect the

system.

Example 2 Consider the system given by the following set of equations:

ẋ1 = x1x2 − x3
1

ẋ2 = 0

y = x1.

(1.16)

Calculating the Lie derivatives of the output, we get the following observability matrix

dO1(x) =

(
1 0

x2 − 3x2
1 x1

)
. (1.17)

It is straightforward that the system is singular for x1 = 0, and the observability singularity set

is:

S1 = {x ∈ X ⊂ Rnx : x1 = 0}. (1.18)

The system (1.16) has an observability singularity for xs = (0 x2), meaning that one cannot

access to any information about the state variable x2 when x1 is null. Now if we compute the

further derivatives of the system, we still get the observability matrix where the singularity at

x1 = 0 remains so S = S1. Hence the system is only observable for x ∈ R2\{x1 = 0}.

It is clear that all the above systems seems to contain a singularity if considering onlyOk involving
the (n−1) first Lie derivatives of h along f . The system given by Example 1 is globally observable

considering O = O2, i.e., at the price of an observability map O : X ⊂ R2 → TxX ⊂ R3. The

situation is definitely different in Example 2 since dO is singular on S whatever the differentiation

order.

Based on the order of differentiating of the function f along vector h, we can define the

observability defects as:
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• S : dim dO(x) < nx, ∀x ∈ S: Observability defect

• Sk : dim dOk(x) < nx, ∀x ∈ Sk: Observability defect considering only y(i), i ≤ k.

The handling of observability defects and the method to tackle such defects is one of the

main contribution of this thesis and will be studied in detail in the next chapters.

1.3 Observer Normal Forms

From the design methodology point of view, there exist two different methods. The first method

tries to directly design an observer. The second method usually relies on the transformation

of the studied system into a simpler form (called as observer normal form) which enables us to

apply existing observers.

Indirect methods for designing nonlinear observers are based on coordinates transforma-

tion techniques. For instance, dynamics which seem nonlinear at first sight could turn out to

be linear in other coordinates (e.g. see Bestle and Zeitz [1983]; Guay [2002]; Hou and Pugh

[1999]; Krener and Isidori [1983]; Krener and Respondek [1985]) so that the nonlinearities are

dependent only on the measurable inputs and outputs of the system (Gauthier et al. [1992];

Bornard and Hammouri [1991]). Depending on the coordinates we use to describe the system

dynamics, the design of an observer for nonlinear systems might be less or more complicated.

The basic idea of the transformation techniques is to transform the original system into a canon-

ical form, via a change of coordinates (a diffeomorphism) for which observer designs have already

been proposed in the literature. By inverting the deduced diffeomorphism, we can obtain the

state estimation of the original system.

However, due to the lack of a generic design method for nonlinear systems, different method-

ologies (e.g. Zeitz [1984]; Kazantzis and Kravaris [1998]; Gauthier and Kupka [2001]; Yi et al.

[2018]) have been developed to transform the original system Σx to a canonical or normal system,

further denoted as Σz. Each method corresponds to an observer design method for a specific

class of nonlinear systems. The application of some of these observation methods for a nonlin-

ear system requires putting the nonlinear dynamics in a linear (Luenberger [1967]) or nonlinear

(Besançon [2007]; Boutat et al. [2010]) canonical form of observability. To apply this technique,

three important issues need to be taken into account:

• First issue: The choice of the targeted normal form for which an observer can be easily

designed via existing results;

• Second issue: The deduction of the diffeomorphism which can transform the studied

system into the target normal form.
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• Third issue: The inversion to express the state estimation in the original system.

In this section, we will focus on the first issue and recall some normal forms of observability

for nonlinear systems. In the sequel, Σx is refered to as the system in original coordinates and

Σz is refered to as the the system in target coordinates for which we obtain the observer normal

form and on the basis of which the observer will be designed in the later sections.

1.3.1 Linearization By Output Injection

The problem of linearizing an autonomous nonlinear system was originally studied in

Krener and Isidori [1983], that was later extended to multi-input multi-output systems by

Krener and Respondek [1985]. In those papers, the authors looked for necessary and sufficient

conditions on the functions f and h for the existence of a local change of coordinates which

brings the system into a linear form, known as observer normal form. Among the literature

Fliess and Kupka [1983], the problem of immersion into a bilinear system is studied and in the

particular case of control affine systems, Bossane et al. [1989] gave conditions for the existence

of a local (and global) immersion.

In Jouan [2003] and Besancon and Ticlea [2006], the general problem of finding an immersion

(rather than a diffeomorphism) which transforms a nonlinear system into an observer normal form

is addressed. If such a transformation exists, the system is linearizable by output injection.

Theorem 2 Jouan [2003] A nonlinear system given by (1.1) is linearizable by output injection

if and only if there exists a transformation T : Rnx → Rnz , transforming the system into the

particular observer normal form

ż1 = z2 + ϕ1(u, z1)

...

żi = zi+1 + ϕi(u, z1)

...

żnz = ϕnz(u, z1)

y = Cnzz,

(1.19)

where ϕ : Rnu×Rny → Rnz is a continuous function containing the system (1.19) nonlinearities.

Thus, the linearization problem reduces to the existence of a transformation, for some integer

nz, a continuous function T : Rnx → Rnz verifying

∂T (x)

∂x
f(x, u) = AnzT (x) + ϕ(u, h(x)), ∀x ∈ X , u ∈ U , (1.20)

21



1.3. Observer Normal Forms

where the matrice Anz is in prime form and ϕ : Rnu × Rny → Rnz is a continuous function.

The existence of the transformation is difficult to check and involves quite tedious symbolic

calculations which do not always provide the transformation itself, and even when they do,

its validity is often only local and its injectivity on X is not guaranteed.. However if this

transformation is injective, then the system is necessarily uniformly observable.

1.3.2 Hurwitz Form

In Andrieu and Praly [2006], a research methodology has been presented for transforming an

autonomous nonlinear system into a Hurwitz autonomous form.

Theorem 3 An autonomous nonlinear system given by (1.8) can be transformed into the fol-

lowing Hurwitz form:

ż = Az + ϕ(y) (1.21)

if and only if there exists a continuous function T : Rnx → Rnz that is uniformly injective for all

x ∈ X . A is a Hurwitz matrix of dimension nz and ϕ(y) : Rny → Rnz , a continuous function.

This raises the question of finding, for some integer nz, a continuous function T : Rnx → Rnz

verifying

LfT (x) = AT (x) + ϕ(h(x)), ∀x ∈ X (1.22)

with A some Hurwitz matrix of dimension nz and ϕ : Rny → Rnz some continuous function. It

is required that T be uniformly injective on X to deduce an estimate of x from the estimate ẑ of

T (x) . In Andrieu and Praly [2006], the authors proved that the injectivity of T is achieved for

almost any 2× 2 block diagonal Hurwitz matrix A of dimension nz = 2(nx + 1)ny with z ∈ Rnz

and for any ϕ verifying some growth condition under the following assumption of backward

distinguishability.

Assumption 1 (Backward distinguishability) Assume there exists an open bounded set X0,

such that system (1.8) is backward X0 distinguishable on X , namely there exists t′ > 0 such that

for any trajectories x′ and x′′ of (1.8) and any t′ ≥ t such that (x′(t), x′′(t)) ∈ X × X and

x′(t) 6= x′′(t), there exists t̄ ∈ [t− t′, t] such that

h(x′(t̄)) 6= h(x′′(t̄)) (1.23)

and (x′(t̄), x′′(t̄)) ∈ X0 ×X0 for all t̄ ∈ [t− t′, t].

In other words, their respective outputs become different in backward finite time and before

leaving X0 or two different states in X can be distinguished in Xo from the past values of the

output.

The difficulty lies in the computation of the function T , let alone its inverse.
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1.3.3 Triangular Form

Triangular forms became of interest when Gauthier and Bornard [1980] related their structure

to uniformly observable systems, and when Zeitz [1984] introduced the phase variable form for

differentially observable systems.

Definition 14 A triangular form for the system given by (1.1) is the following:

ż1 = z2 + ϕ1(u, z1)

...

żi = zi+1 + ϕi(u, z1, . . . , zi)

...

żnz = ϕnz(u, z1, . . . , znz)

y = z1,

(1.24)

where z ∈ Z ⊂ Rnz and ϕi, i = 1, ..., nz are continuous functions.

• The system 1.24 is said to be in Lipschitz triangular form if the functions ϕi(u, .) are

globally Lipschitz on Rnz uniformly in u, i.e., there exists a constant L in R such that for

all u in U , all (z, z′) in (Rnz)2 and for all i in {1, . . . , nz}

|ϕi(u, z1, . . . , zi)− ϕi(u, z′1, . . . , z′i)| ≤ L
i∑

j=1

|zj − z′j |. (1.25)

• The system (1.24) is said to be in phase variable form if ϕi = 0 ∀i < nz and only ϕnz is

non-zero Zeitz [1984].

Theorem 4 Based on Definition 11, if an autonomous system (1.8) is weakly (strongly) differ-

ential observable and nz = nx then, the function T defined by the output and its (nz − 1) first

derivatives such that

T (x) = (h(x), Lfh(x), . . . , Lnz−1
f h(x))T , (1.26)

for a certain nz, transforms the autonomous system into

ż1 = z2

...

żi = zi+1

...

żnz = Lnzf h(x)

y = z1

. (1.27)
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This is a Lipschitz phase-variable form if and only if there exists a function ϕk Lipschitz on Rnz

such that

∀L ∈ X , Lnzf h(x) = ϕnz(T (x)). (1.28)

The nzth-derivative of the output can be expressed in a Lipschitz way in terms of its (nz − 1)

first derivatives. This is possible for example if X is bounded and T is an injective immersion.

1.3.4 Lipschitz Triangular Form For Multi-Output Systems

In the multi-output case y ∈ Rny with ny > 1 such that the system is given by the following

equations

Σx :
ẋ = f(x)

y = h(x)
(1.29)

with h(x) = (h1(x), . . . , hny(x))T , the approach can be generalized with a target system Σ′z in

phase variable form (see Hammouri et al. [2010] for a non phase variable form extension)

Theorem 5 The Lipschitz triangular form for the multioutput system (1.29) in phase variable

form is given by

Σ′z :

ż
′ = A′z′ + ϕ′(u, z′)

y = C ′z′
(1.30)

with z′ ∈ Z ⊂ Rnz :

zi = T i(x) =


hi(x)

Lfh
i(x)
...

Lnzi−1
f hi(x)

 ∀i = 1, 2, . . . , ny,

ny∑
i=1

nzi = nz. (1.31)

ϕ′ =
(
ϕnz1

. . . ϕnzp

)T
is a Lipschitz function. A′nzi and C

′
nzi

are block diagonal matrices:

A′ =


Anz1

. . .

Anzp

 , C ′ =


Cnz1

. . .

Cnzp

 . (1.32)

The mapping from original to target coordinates defined by

T (x) =


T 1(x)

T 2(x)
...

Tnz(x)

 (1.33)

is an injective immersion from X ⊂ Rnx to Z ⊂ Rnz .
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1.3.5 Gauthier-Kupka Canonical Form

Theorem 6 Gauthier and Kupka [2001] The system (1.1) admits a canonical Gauthier-Kupka

form if there exists a diffeomorphism T : x 7→ z = T (x) such that the system (1.1) can be put in

the following feedforward form:

ż1 = f̄1(z1, z2, u)

...

żnz−1 = f̄nz−1(z1, . . . , znz , u)

żnz = f̄nz(z1, . . . , znz , u)

y = h̄(z1)

(1.34)

with the maps h̄(z1) and f̄i(z1, . . . , zi+1, u) verifying:

∂h̄

∂z1
6= 0, and

∂f̄i
∂zi+1

6= 0 ∀i = 1, . . . , nz − 1. (1.35)

The condition ∂f̄i
∂zi+1

6= 0 is necessary for the system (1.34) to satisfy at any point the observability

rank condition.

We have presented some common observer normal forms for single and multi-output systems.

After having chosen the targeted normal form for the nonlinear dynamical system (1.1), the key

work is to seek for sufficient (and necessary if they exist) conditions such that there exists a

diffeomorphism which can transform the system (1.1) into the chosen targeted normal form.

1.4 Recall on Nonlinear Observers

Consider the nonlinear dynamical system (1.1):

Σx :

ẋ = f(x, u)

y = h(x)

where x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu , y ∈ Rny and the functions f and h are smooth, i.e., f ∈ C∞

and h ∈ C∞. It is assumed that system (1.1) is locally uniformly observable in the sense that

the observability rank condition (1.7) is satisfied for all x ∈ X and u ∈ U . The objective is to

reconstruct the state x(t) from the measured output y.

In this thesis, we are only interested in global and tunable observers with guaranteed conver-

gence. This excludes the Extended Kalman Filters (EKF), obtained by linearizing the dynamics

and the observation along the trajectory of the estimate Gelb et al. [1974]. Indeed, the conver-

gence is only local in the sense that the estimate converges to the true state if the initial error is

not too large and the linearization does not present any singularity Bonnabel and Slotine [2014]

and references therein.
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1.4.1 Luenberger Observer

In a seminal paper Luenberger [1964], the original Luenberger observer design is presented for

linear systems. It is shown that an observable system can be mapped to a stable linear map-

ping of the output by taking the output measurement as an input. The implementation of this

observer from any initial condition enables to recover the state estimation by inverting this map-

ping. A nice contribution to the extension of the Luenberger observer for nonlinear systems

by a linearization technique has been given by Zeitz [1987]. The algorithm proposed by Zeitz

[1987] which also uses time derivatives of the input, is easy to implement but it does not in gen-

eral guarantee the convergence of the observer. In Shoshitaishvili [1992]; Kazantzis and Kravaris

[1998], the same idea of Luenberger [1966] i.e., mapping the plant dynamics to a linear map-

ping of its output is progressively extended to more and more general classes of nonlinear sys-

tems. In Andrieu and Praly [2006], the authors investigated the possibility of transforming an

autonomous system into a Hurwitz autonomous form and designed an observer refered to as

Kazantzis Kravaris Luenberger (KKL) observer or nonlinear Luenberger observer, a similar ob-

server proposed by Kreisselmeier and Engel [2003].

Consider the non-autonomous system of the form (1.1) transformed into the Hurwitz form:

ż = Anzz + ϕ(u, y), y = Cnzz, (1.36)

where ϕ : Rnu ×Rny → Rnz is a continuous function. The following result presented in Bernard

[2019] is inspired from Luenberger [1964] observer.

Theorem 7 (Kazantzis-Kravaris Luenberger Observer) A nonlinear Luenberger ob-

server, also refered to as Kazantzis-Kravaris Luenberger Observer, for the system (1.36) is given

by
˙̂z = Anz ẑ + ϕ(u, y) +K(y − Cnz ẑ), x̂ = TT (ẑ), (1.37)

where T is a continuous left-inverse of T and T is solution of the following partial differential

equation:
∂T (x)

∂x
f(x, u) = AnzT (x) + ϕ(u, h(x)). (1.38)

and K = [k1, . . . , knz ]
T represents the observer gain matrix that can be chosen such that

(Anz −KCnz) is Hurwitz.

For nonlinear systems, the solution T (x) of equation (1.38) always exists for nz big enough

and injectivity property being relaxed by the assumption 1 of backward distinguishability. Some

sufficient conditions should be imposed for (1.1) (see Krener and Xiao [2002]). Moreover, it

is required that T be uniformly injective on X to deduce from the estimate of ẑ of T (x) an

estimate of x. Hence if T (x) is uniformly injective on X , then we can conclude that x̂ tends to

x asymptotically.
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1.4.2 High Gain Observer (HGO)

The literature places a special emphasis on high gain observers (HGO). In the late 1980s, these

observers became prevalent in the literature, since then, their simplicity in the structure and the

high performance in noise-free environments have attracted a large attention.

Two key papers, published in 1992, represent the beginning of research on high gain observers.

The work by Gauthier et al. [1992] started a line of work that is exemplified by Besançon [2003];

Busawon et al. [1998]; Deza et al. [1992]; Gauthier and Kupka [2001, 1994]; Hammouri et al.

[2002]; Viel et al. [1995]. This line of research covered a wide class of nonlinear systems and

obtained global results under global growth conditions. Teel and Praly [1994, 1995] built on the

ideas of Esfandiari and Khalil [1992] and the earlier work by Tornambè [1992] to prove the first

nonlinear separation principle and develop a set of tools for the semiglobal stabilization of nonlin-

ear systems. Their work drew attention to Esfandiari and Khalil [1992], and soon afterward many

nonlinear control researchers started using high gain observers e.g. Alvarez-Ramirez and Femat

[1999]; Andrieu et al. [2009]; Byrnes et al. [2005]; Gonzalez-Trejo et al. [1999]; Isidori [1997,

2000]; Jiang et al. [1998]; Lin and Saberi [1997]; Maggiore and Passino [2005]; Praly [2003];

Praly and Jiang [2004]; Shim et al. [2001]; Shim and Teel [2003]; Ye [2000]. These papers have

studied a wide range of nonlinear control problems including stabilization, regulation, and track-

ing. Many research publications have also addressed the high gain observer with adaptive pa-

rameter (for example see Praly [2003]; Oueder et al. [2012]; Ullah et al. [2019]; Andrieu et al.

[2009]; Prieur et al. [2012]; Zemouche et al. [2018] and references therein).

The high gain observer is developed for systems in triangular forms or systems that can be

mapped to such normal forms in which the error trajectories have an exponential decay rate.

In Gauthier et al. [1992], this triangular observable canonical form has been employed to design

a high gain observer for a single output uniformly observable control affine systems. The error

trajectory decay rate can be set arbitrarily fast by a design parameter in the observer structure,

usually called the high gain parameter, denoted by θ in the sequel Gauthier and Kupka [1994];

Farhangfar and Shor [2020].
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1.4.2.1 HGO: Single Output System

Consider the nonlinear model (1.1) with a single output (ny = 1), we can obtain the Lipschitz

triangular form given by:
ż1 = z2 + ϕ1(u, z1)

...

żi = zi+1 + ϕi(u, z1, . . . , zi)

...

żnz = ϕnz(u, z1, . . . , znz)

y = z1,

(1.39)

where z ∈ Z ⊂ Rnz and ϕi(u, z) are Lipschitz functions, globally in z and uniformly in u.

|ϕi(u, z1, . . . , zi)− ϕi(u, z′1, . . . , z′i)| ≤ L
i∑

j=1

|zj − z′j |. (1.40)

Theorem 8 (Gauthier et al. [1992]) A high gain observer for the system (1.39) is given by:

˙̂z1 = ẑ2 + ϕ1(u, ẑ1) + θk1(y − ẑ1)

...

˙̂zi = ẑi+1 + ϕi(u, ẑ1, . . . , ẑi) + θiki(y − ẑ1)

...

˙̂znz = ϕnz(u, ẑ1, . . . , ẑnz) + θnzknz(y − ẑ1)

(1.41)

where the high gain parameter θ is taken sufficiently large (i.e. θ ≥ θ∗ > 1 with θ∗; related to the

Lipschitz constant L) and ki represents the observer gains where ki’s should be chosen provided

that the matrix (Anz −KCnz) is Hurwitz i.e. all eigenvalues are on the left half complex plane.

Typically, the power of the high gain parameter increases up to nz ( i.e. θnz), where nz represents

the dimension of the observer state.

It has been proven that, for a large θ, the system (1.41) is an exponential observer for the system

(1.1). Since the gain is proportional to θnz , a large θ will yield a high gain, and this is the

reason why this kind of observer is named as high gain observer (HGO). Another great property

of HGO is the ability to tune their rate of convergence arbitrarily, which is the alternative for

output feedback stabilization.

Remark 2 (Peaking phenomenon) The advantage of the HGO methodology is that it always

guarantees the existence of an exponentially convergent observer, thanks to the tuning of a unique

28



Chapter 1. Observability and Observer Design

parameter, the high gain parameter θ. However when θ is chosen large or when the state di-

mension nz is high, difficulties arise during the numerical implementation. Most importantly,

the HGO exhibits the so-called peaking phenomenon during the transient phase, i.e. the esti-

mated state variables exhibit large peaks whose magnitude is proportional to θnx−1. The peaking

phenomenon was first pointed out by Esfandiari and Khalil [1992] as an important feature of

high gain observers. While this phenomenon was observed earlier in the literature Mita [1977];

Polotskii [1978], the work of Esfandiari and Khalil [1992] showed that the interaction of peaking

with nonlinearities could induce finite escape time.

Remark 3 (Measurement noise) Another serious challenge for the implementation of a high

gain observer is the measurement noise. The effect of measurement noise is more prominent for

high dimensional systems. The reason behind this issue is the dependence of the observer states

on the derivatives of the output since the HGO is developed for systems transformed into observer

normal forms. Therefore, if the output is corrupted by measurement noise, it is expected that the

noise will impact the accuracy of the estimates as well. Bounds on the observation error for the

HGO in the presence of measurement noise for the standard HGO have been studied, for instance,

in Vasiljevic and Khalil [2006]; Ahrens and Khalil [2009]; Ball and Khalil [2009], and different

techniques have been developed in order to improve noise rejection, mainly based on a gain adap-

tion or using a low pass filter (see, among others Boizot et al. [2010]; Sanfelice and Praly [2011];

Khalil and Priess [2016]).

1.4.2.2 HGO: Multi-Output Systems

The high gain observer design was further extended to multi-output systems by

Hammouri and Farza [2003]; Hammouri et al. [2010].

Consider an autonomous nonlinear system with multi-outputs which are equivalent by dif-

feomorphism to systems of the form (1.30):

ż′ = A′nzz
′ +B′nzϕ

′(z)

y = C ′nzz
′

where z′ ∈ Z ⊂ Rnz and y ∈ Rny with ny > 1. The continuous function ϕ′(z) and the matrices

A′nz , B
′
nz , C

′
nz are already defined in subsection 1.3.4.

Theorem 9 An observer for the multi-output autonomous nonlinear system (1.30) is given as:

˙̂z′ = A′nz ẑ
′ +B′nzϕ

′
s(ẑ) + ∆′K ′(y′ − C ′nz ẑ′) (1.42)

where ∆′ = (∆1, . . . ,∆ny) with ∆i = (θ, . . . , θnz) is the high gain matrix and the observer gain

matrixK = (K1, . . . ,Kny) withKi = (k1, . . . , knz)
T is chosen such that (A′nz−K ′C ′nz) is Hurwitz.

ϕ′s is the saturated version and Lipschitz extension of ϕ′ such that ϕ′s =
(
ϕ1s . . . ϕnys

)
.
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We have presented the high gain observer for the multi-output systems that are uniformly ob-

servable. However, since the observer dynamics for each zi is the same as for standard HGO for

the single output system, therefore it also suffers from the issues stated in Remark 2 and 3.

1.4.2.3 Adaptive High Gain Observer

For the special triangular form (1.24), high gain observers can use a time-varying gain. In Praly

[2003], an adaptive law has been proposed for triangular form (1.24) where the nonlinear function

ϕ(x1, . . . , xi) could be non-Lipschitz, but was assumed to satisfy the following similar inequality:

|ϕi(u, z1, z2, . . . , zi)− ϕ(u, z1, z
′
2, . . . , z

′
i)| ≤ γ(y)(|z2 − z′2|+ . . .+ |zi − z′i|). (1.43)

Based on this assumption, the following adaptive observer has been proposed in Praly [2003].

Theorem 10 (Adaptive HGO Praly [2003]) An adaptive high gain observer for the nonlin-

ear system in triangular form (1.24) is given by:

˙̂z1 = ẑ2 + ϕ1(u, ẑ1) + θk1(y − ẑ1)

...

˙̂zi = ẑi+1 + ϕi(u, ẑ1, . . . , ẑi) + θiki(y − ẑ1)

...

˙̂znz = ϕnz(u, ẑ1, . . . , ẑnz) + θnzknz(y − ẑ1)

θ̇ = l(θ, y)

y = z1.

(1.44)

The high gain parameter θ is an extra state to be updated, l is an (nz + 1) times continuously

differentiable function that satisfies:

l(θ, y) = −1

b
θ

(
a

3
(θ − 1)− 2(s− 1)√

q
γ(y)

)
(1.45)

such that
b > 0, bQ ≥ QD +DQ ≥ −bQ

D = diag(0, . . . , n− 1).
(1.46)

The parameters ki are chosen such that there exists strictly positive real numbers q and a, and a

symmetric matrix Q satisfying:

QP + P TQ ≤ −aQ
qI ≤ Q ≤ I,

(1.47)
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where

P =



0 0 . . . 0 −k1

1 0 . . . 0 −k2

...
...

. . .
...

...

0 0 . . . 0 −knz−1

0 0 . . . 1 −knz


. (1.48)

By properly choosing the function l, it has been proven in Praly [2003] that the observer state

asymptotically converge to system’s one (1.24) even if its nonlinearity does not satisfy the Lips-

chitz condition.

1.4.2.4 Limited High Gain Observer (LHGO)

The main drawback of the standard HGO is related to the increasing power (up to the order nz)

of the high gain parameter θ, which makes the practical numerical implementation a hard task

when nz or θ are very large. Motivated by these considerations, Astolfi and Marconi [2015] pro-

posed a new observer for the autonomous single output system (1.8) transformed into Lipschitz

triangular form given by (1.27). It preserves the same high gain feature of standard HGO but

substantially overtakes the implementation problems due to the high gain by employing some

relevant strategies i.e. reducing the power of the high gain parameter to the power of 2 instead

of target system dimension nz. The idea of the limited power of high gain parameter is refered

to as Limited high gain observer (LHGO) and was seminally proposed in Astolfi and Marconi

[2015] with a cascade of observers of dimension 2nz − 2.

The LHGO was proposed for the autonomous single output nonlinear system that can be

transformed into the Lipschitz phase variable triangular form:

ż = Anzz +Bnzϕ(z), y = Cnzz (1.49)

where z ∈ Z ⊂ Rnz and the matrices Anz ,Bnz and Cnz are all in their prime form.

Theorem 11 (Limited high gain observer Astolfi and Marconi [2015]) Let

ζ̇i = A2ζi +Nζi+1 + ∆2Kiei, i ≥ 1
...

ζ̇nz−1 = A2ζnz−1 +B2ϕs(ζ) + ∆2Knz−1enz−1

(1.50)

with ζi ∈ R2, ζ0,2 = y given by convention, ei = ζi−1,2 − ζi,1, ∆2 =

(
θ 0

0 θ2

)
, Ki =

(
ki1 ki2

)T
and N =

(
02,1 B2

)
, Ei =

(
−Ki CT2

)
, Qi =

(
02,1 Ki

)
.
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Choosing the high gain θ > θ∗ ≥ 1 as in Theorem 8 and gains Ki such that the matrix M

M =



E1 N 0 . . . . . . 0

Q2 E2 N
. . .

...

0
. . . . . . . . . . . .

...
...

. . . Qi Ei N
. . .

...
...

. . . . . . . . . . . . 0
...

. . . Qm−2 Em−2 N

0 . . . . . . 0 Qm−1 Em−1


(1.51)

is Hurwitz then

ζ̇ = Fζ(ζ, y) (1.52)

with Fζ given by (1.50) provides a low-power high gain observer for the system (1.49).

Remark 4 Despite this dimension increase, the low-power (∆2 =

(
θ 0

0 θ2

)
depends only on

θ, θ2) high gain observer advantage is twofold: the innovation term predominance is limited and

the sensitivity to output noise is consequently reduced, especially at high frequencies which is of

particular interest.

Remark 5 We can use either ẑ = Pζ or ẑ′ = P ′ζ with the block diagonal projectors P given by

I2 and (nz − 1) matrices BT
2 , and P

′ given by (nz − 1) matrices C2 and I2.

In Wang et al. [2017], the LHGO was shown to be effective for a much wider class of nonlinear

systems, such as systems possessing a non-strict feedback form. The new LHGO is effective in all

those frameworks where the standard HGO is typically used, such as output feedback stabilization

by nonlinear separation principle and output regulation Astolfi et al. [2017]. In another paper by

Morfin et al. [2020], an adaptive version of the LHGO was proposed for the nonlinear system in

lower triangular form (1.24) with input dependent Lipschitz constant i.e., the Lipschitz constant

of ϕ depends on the value of the input u living in a bounded but unknown compact set U for all

t ≥ 0.

1.4.2.5 Low Peaking Limited High Gain Observer

Although the limited high gain observer structure solves the problem of numerical implementa-

tion, the peaking phenomenon is still present. In Astolfi et al. [2016, 2018], the authors previous

work was refined by increasing the state dimension to 2nz − 1 and minimizing the peaking effect

through the addition of saturation functions in the cascade structure.
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Theorem 12 (Low peaking LHGO Astolfi et al. [2016]) Let satκi : R → R denote any

strictly increasing C1 function that satisfies:

satκi(s) := s, |s| ≤ κi, |satκi(s)| ≤ κi + ∆κi , s ∈ R, (1.53)

with

κi := max
z∈Z
|zi| i = 1, ..., nz.

Let the gain parameters α ∈ Rnz , β ∈ Rnz−1 be chosen so that Λi(s) is Hurwitz and αnz > 0 for

any s ∈ [0, 1]. The matrices Λi(s) ∈ R2i×2i are recursively defined as:

Λ1 := E1,

Λi(s) :=

(
Λi−1(1) sB2(i−1)B

T
2

KiB
T
2(i−1) Ei

)
, i = 2, ..., nz − 1,

Λnz :=

(
Λnz−1 0

αnzB
T
2(nz−1) −αnz

)

with Ki :=

(
αi

βi

)
and Ei := A2 −KiC2 for i = 1, ..., nz − 1.

Then, there exists a high gain parameter θ such that θ ≥ θ0 > 1 so that the system described

by the following equations  ˙̂z = Fz(ẑ, η, y)

η̇ = Fη(ẑ, η, y)
(1.54)

is a limited high gain observer for the system (1.8) with Fz,Fη given as:

Fz :

 ˙̂zi = ηi + αiθei, i < nz

˙̂znz = ϕs(ẑ) + αnzθenz

Fη :

 η̇i = satκi+2(ηi+1) + βiθ
2ei, i < nz − 1

η̇nz−1 = ϕs(ẑ) + βnz−1θ
2enz−1

(1.55)

with
e1 := y − ẑ1,

ei := satκi(ηi−1)− ẑi, i = 2, ..., nz.
(1.56)

ẑ ∈ Rnz , η ∈ Rnz−1 are the observer states with (ẑi, ηi) being the estimates of (zi, zi+1).

The redesigned observer has a 2nz − 1 dimension co-distributed into nz blocks, which imple-

ments gains proportional to θ and θ2. Since the ith and (i + 2)th derivatives of y, i.e. zi and

zi+2 are unknown, they are substituted in the redesigned observer by ηi−1 and ẑi+1 respectively,

which are the second and first components of the (i − 1)th and (i + 1)th blocks. The so-called

Low peaking LHGO is then designed by interconnecting the auxiliary variables ηi and estimated
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states ẑi. Since the relative degree between the output y and the estimate zi is r = i in the pro-

posed observer, hence the sensitivity with respect to measurement noise is reduced. In addition,

when the state z of a plant evolves in a known compact set K, the peaking phenomenon can be

reduced by interconnecting each block through appropriate saturation functions. Consequently,

the nz estimates ẑi provided by the proposed observer are peaking-free whereas additional nz−1

auxiliary variables ηi may attain values proportional to θ (rather than θnz−1 as in the standard

HGO) during the transient phase.

Remark 6 The low peaking LHGO solves the aforementioned problems of the standard HGO

(Remarks 2 and 3), however, the increased dimension of the observer is sometimes problematic

and it may increase the size of the tuning parameter. Alongside, it involves a different and

somewhat lengthy computational procedure selecting the gains which still remain difficult to find

like for the standard HGO.

1.4.2.6 High Gain Observer With Lower Tuning Parameter

To overcome the issues related to the high gain observer, another idea was proposed in

Zemouche et al. [2018] and further refined in Bouhadjra et al. [2020]. The standard HGO

methodology with the same state observer structure of dimension nz is considered. In

Zemouche et al. [2018], the authors proposed to decrease the tuning parameter θ∗ which in turn

decreases the gain power θ. A compromise index labeled as j0 was introduced, with 0 ≤ j0 ≤ nz.
Thence the power of the proposed high gain is limited to j0 but at an expense of solving 2j0

LMIs instead of one with the standard HGO. The designed observer is refered to as “HG/LMI

Observer”.

However, the scheme behind the observer design proposed in Bouhadjra et al. [2020] is also

to reduce the value of tuning parameter and the observer gain compared to the standard HGO

but without solving a set of LMIs. The idea is based on state augmentation that transforms the

original system of dimension nx into a new system whose dimension is nx + js, where the new

nonlinear function does not depend on js last components of the new state.

Theorem 13 (Bouhadjra et al. [2020]) For the considered system given by (1.1), assume

there exists a transformation given as:

T : Rnx → Rnx+js

x→ z = T (x)
(1.57)

that transforms the system into:
ż = Anzz +Bnzfz(z)

y = Cnzz
(1.58)
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where the matrices Anz , Bnz and Cnz are in prime form with dimension nz = nx + js and

fz(z) = fz(z1, . . . , znx)←→ ∂fz
∂zj

(z) = 0, ∀j > nx. (1.59)

Then an observer is given as:

ˆ̇z = Anz ẑ +Bnzfz(ẑ) + Lnz(y − Cnz ẑ), x̂ = T (ẑ) (1.60)

where Lnz = ∆(θ)Knz , with ∆(θ) = diag(θ, . . . , θnx+js) and T is the left-inverse of the mapping

T . If there exists P > 0, λ > 0, Y , and θ ≥ 1 such that:

AnzP + PAnz − CTnzY − Y TCnz + λI < 0,

Knz = P−1Y T

θ > θ0 =

(
2kfzλmax(P )

λ

) 1
1+js

,

(1.61)

then the estimation error x̃ = x− x̂ converges exponentially towards zero.

By employing the relevant strategy, the issues related to the high gain observer i.e., the peaking

phenomenon and the measurement noise can be successfully handled since the maximum value

for θ power in ∆ is now θ′0

(
nx+js
1+js

)
i.e., the power of θ is decreased by a factor of

(
1+ js

nx
1+js

)
.

1.5 Transformation From Observer Coordinates To Original Co-

ordinates

In the above section, it is shown that, under certain conditions, it is possible to build an observer

for a nonlinear system by transforming its dynamics into a favorable form for which a global

observer is known. It follows that the dynamics of the system and that of the observer are

not expressed in the same coordinates and we build the observer in Σz the target coordinates.

The dimension of the target coordinates Σz in which the observer is build is different and

often greater than the original coordinates Σx, nz > nx. In order to obtain the estimate for

the system state or even sometimes write the observer dynamics, it is necessary to invert the

transformation i.e. to find the left inverse T of the mapping T . This step can be difficult in

practice, mostly when an explicit expression for the inverse is not available. Indeed, in this case,

However such an optimization problem involves costly computations and might raise numerical

issues. Data driven alternatives have been adhered e.g. in Ramos et al. [2020].

An alternative way is to write the observer dynamics directly in the original coordinates as

suggested in Deza et al. [1992]; Farhangfar and Shor [2020] for the case when nz = nx.
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Proposition 2 Let ˙̂z = Fz(T (x̂), u, y), y = Cnzz be an asymptotic observer for Σz. If nz = nx

and T defines a diffeomorphism from an open set Xo ⊂ X to Z, then an observer for the system

Σx is given by:

˙̂x =

(
dT

dx
(x̂)

)−1

Fz(T (x̂), u, y). (1.62)

Remark 7 Even in the simple case where nz = nx, the presence of any observability defects in

the system may cause Jacobian singularities outside Xo, thereby making it not possible to get the

uniqueness of the estimate x̂ since (1.62) would no longer be well defined. Even if x remains

in a subset Xo of X such that T is a diffeomorphism, there is no guarantee that the estimate x̂

will remain in Xo, especially during the transient behaviors where peaking might occur, i.e. the

solutions t→ ẑ(t) may leave the image set T (Xo).

Remark 8 Generically nz > nx so T is not a diffeomorphism but only an injective immersion,

and has to be augmented into a diffeomorphism for Proposition 2 to be applied, with care about

the previous remark.

1.6 Conclusion

The goal of this chapter was to provide a general overview of the observer design strategies for

nonlinear systems. A particular attention was devoted to the notion of observability and the

tricky issue regarding the observability defect was pointed out.

The design of an observer usually requires a transformation of the original nonlinear dynamics

into an observability normal form, for which the design of observer with guaranteed convergence

is simplified. The pros and cons of the well-known high gain observer were discussed and some

recent enhanced high gain observers were presented.

In the next chapter, we will deal with the observer design for a special class of nonlinear

systems, the nonlinear oscillators. This class comprises as well as Hopf oscillators and the

nonlinear systems affected by harmonic disturbances of unknown frequency. The challenge of

the observer design will be to take into consideration the observability defects, disturbances and

measurement noises, and to develop a method that allows the observer obtained in normal form

to get back to the original coordinates for implementation purposes.
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2.1. Introduction

2.1 Introduction

In the first chapter, we recalled some notions of observability, the existing transformation of non-

linear systems into observability normal forms and some global tunable observer design strategies

with guaranteed convergence. The second chapter mainly addresses the observer synthesis for

nonlinear oscillators that includes the harmonic oscillator and the Hopf oscillator and nonlin-

ear systems affected by periodic disturbances. The chapter begins with a brief introduction of

nonlinear oscillators and further continues with the modeling and observability analysis for the

three classes of nonlinear oscillator systems. Since the three systems suffer from observability de-

fects, a methodology to avoid such observability defects is addressed in detail and further applied

to the these systems. For each system, inversion is required to obtain the observer in original

coordinates back from the target coordinates for some observer dimension bigger than that of

the original system’s. Therefore an inversion method based on the Jacobian completion through

coordinate augmentation is recalled that extends the image of the mapping to a global diffeo-

morphism. The suggested technique is then applied on the three systems with complete proof

given alongside. The chapter ends with the proposition for the observer in original coordinates

with observability defects avoidance using a global diffeomorphic mapping.

2.2 Nonlinear Oscillators

Nonlinear oscillators are very important modeling tools in biological and physical sciences, and

these models have received particular attention in many engineering fields over the last few

decades. In our work, we will design the observers for different nonlinear oscillators i.e., harmonic

oscillators, hopf-type oscillators and for a certain class nonlinear systems that are usually affected

by the harmonic oscillations of unknown frequencies.

Observability is a necessary condition and a prerequisite towards an observer design and

therefore all theoretical and applied contributions require the system to be observable. We have

presented in the previous chapter some notions of observability and a way to get observable

normal forms for nonlinear dynamical systems. For studying the observability of the nonlinear

oscillators, we will focus on the observability rank condition and differential observability given

by Definitions 8 and 11 respectively.

An issue regarding designing the observers for nonlinear oscillators is the presence of observ-

ability defects. These observability singularities may prohibit the straight forward use of some of

the standard tools, like feedback linearization Krener and Isidori [1983]; Krener and Respondek

[1985], Luenberger observers Andrieu and Praly [2006], high gain observers Gauthier et al.

[1992], etc. A way to bypass such limitations relies on immersion based observers synthe-

38



Chapter 2. Observer design for Nonlinear Oscillators

sis. Immersion based observers are based on projection of the system onto a target system

which is expected to satisfy some desired properties. Sometimes, it is necessary to target

a system whose dimension is higher than the initial system dimension in order to get a tar-

get system that is linear Levine and Marino [1986], linear and stable Andrieu and Praly [2004];

Praly et al. [2006]; Marconi et al. [2007], or to obtain a nonlinear target system under normal

form Andrieu and Praly [2006]; Back and Seo [2006]. Observer synthesis in the target coordi-

nates is thus easier, but there are issues when trying to get back to the initial coordinates of the

system because of the difficulty to get the inverse expression and because of the dimension gap

as well.

2.2.1 Harmonic Oscillators

Harmonic oscillators with unknown frequency are considered in this section. The problem of

frequency estimation of a harmonic oscillator has attracted a remarkable research attention in

the past and current literature (see Marino and Tomei [2002]; Ziarani and Karimi-Ghartemani

[2005]). The reasons of this interest rely on several engineering applications where an effective

and robust solution to the problem considered is crucial. For example, the problems of har-

monic disturbance compensation in automatic control, design of phase-looked loop circuits in

telecommunications, adaptive filtering in signal processing, etc. In Hsu et al. [1999], the authors

propose an adaptive notch filter for global estimation of the frequency of a sinusoidal signal.

The problem can also be addressed by means of classical adaptive control techniques as e.g. in

Obregon-Pulido et al. [2002]; Marino and Tomei [2002]; Xia [2002]; Narendra and Annaswamy

[2012]. This is motivated by the fact that a signal consisting of a finite sum of sinusoids with

unknown frequencies can be thought as generated by the output of a linear system with uncertain

parameters. In this framework, the problem of estimation of frequencies can be set as a problem

of parameter estimation and, as expected, the theory of adaptive observers can be successfully

proposed as a tool. In Hou [2005], a global dynamic estimator of frequency and amplitude of a

single sinusoidal signal has been presented. As shown by the author, the proposed solution can

be cast in terms of adaptive observers. However, it is potentially very sensitive to measurement

noise and cannot be cast as a subsystem disturbance model affecting a more generic system.

Since every single periodic signal can be modeled by a Fourier series, hence a truncated

Fourier series of order 1 is given by:

x1 = Asin(ωt+ φ), (2.1)

where the amplitude A 6= 0, ω is the frequency and φ represents the phase of the periodic signal.
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2.2. Nonlinear Oscillators

Differentiating x1 we get:
ẋ1 = ωAcos(ωt+ φ)

ẍ1 = −ω2Asin(ωt+ φ).
(2.2)

Since the frequency of the harmonically disturbed signal is assumed to be constant but unknown,

therefore we can consider it as a state variable x3 = ω2 and estimate it:

Σx :


ẋ1 = x2

ẋ2 = −x1x3

ẋ3 = 0

(2.3)

where x ∈ X ⊂ R3 and y = x1 is the output.

Proposition 3 (Observability of Harmonic oscillators) The system given by (2.3) is (dif-

ferentially) observable on x ∈ X\Sε with Sε = {x ∈ X ⊂ R3 : x2
1 + x2

2 ≤ ε} for any ε > 0.

Proof 1 The proof consists in two steps: first the system is shown to be weakly observable, i.

e. T defines an immersion, and then T is proven to be injective on X\Sε. The observation

set O is the smallest vector space that includes hi and is closed under the Lie derivative Lf .
The observability co-distribution at point x is {dO(x) = dT (x), T ∈ O}, where d denotes the

differential.

Computing the successive Lie derivatives using (2.3) yields

dL0
fh(x)T =


1

0

0

 , dL1
fh(x)T =


0

1

0



dL2
fh(x)T =


−x3

0

−x1

 , dL3
fh(x)T =


0

−x3

−x2

 .

(2.4)

Higher order differentiation will still lead to expressions where x1, x2 are a factor. Hence dO(x)

is full column rank if and only if:

x2
1 + x2

2 6= 0. (2.5)

So it is straightforward that

dim dO3(x) = 3, x ∈ X ⊂ R3\Sε. (2.6)

Hence there is an observability singularity for xs =
(

0 0 x3

)T
since dim dO(xs) = 2, namely

state x3 is unobservable.
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Chapter 2. Observer design for Nonlinear Oscillators

To prove the injectivity, we have

z = T (x) =


T1

T2

T3

T4

 =


x1

x2

−x1x3

−x2x3

 . (2.7)

For all xa, xb ∈ X\Sε:

Ta(xa) = Tb(xb) =⇒ xai = xbi, for any i ≤ 2. (2.8)

Then it is straightforward that −x1T3−x2T4 ⇒ (x2
1 +x2

2)(x3a−x3b) = 0 and therefore x3a = x3b.

Hence T is injective on X\Sε. Since its Jacobian is full column rank from (2.4), then system

(2.3) is strongly differentially observable on X\Sε.

2.2.2 Hopf-type oscillator

The study of nonlinear oscillators has aroused a great interest for many applications involv-

ing limit cycles bifurcations. In this section, we address a certain class of nonlinear systems

refered as Hopf oscillators exhibiting bifurcations between the existence and disappearance of

periodic orbits. Examples of Hopf oscillators can be found in applications as diverse as biological

rhythms modeling Medvedev and Cisternas [2004], epidemiology Hethcote et al. [1999], ecosys-

tems Fussmann et al. [2000], chemical kinetics Moehlis [2002], robotics Seo et al. [2010] and fluid

mechanics Shen [1991]; Noack et al. [2003].

Amongst them, most works pertain to biological rhythm instabilities modeling and fluid

mechanics. For example, Hopf oscillators are used to model the spike and relaxation modeling

of neurons FitzHugh [1961] and coupled Andronov-Hopf systems are used to study the neuronal

network synchronization dynamics Panteley et al. [2015]. They are also involved in electrical

heart arrhythmogenesis Karagueuzian et al. [2013], or through coupling in hormonal secretion

concurrent electrical and chemical mechanisms Clément and Françoise [2007].

In the context of wake control for ground or aerial vehicles, Hopf oscillators are also well-

adapted to capture the periodic dynamical behavior of the fluid flow behind stationary or dynamic

obstacle and subject to turbulences Noack et al. [2003]; Ahmed et al. [2020]. In Chapter 4, a

detailed analysis and different observers design for the wake flow model based on Hopf oscillators

will be presented.

Here we consider a general multi-output Andronov-Hopf oscillator described by the nonlinear

system written as:(
ẋ1

ẋ2

)
=

(
σ −ζ
ζ σ

)(
x1

x2

)
− γχ

λ
g(x2

1 + x2
2)

(
x1

x2

)
, y =

(
x1

x2

)
, (2.9)
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2.2. Nonlinear Oscillators

where g is a continuous function and (ζ, γ, χ, λ) are parameters. σ is the oscillator growth rate

parameter and oscillator bifurcation parameter, whose measurement or a priori knowledge is

hardly accessible. In order to estimate this parameter, we add a state variable i.e., x4 = σ whose

derivative is null because σ is assumed to be unknown but constant. The internal dynamics is

contained in variable x3. Therefore the system (2.9) can be rewritten as:
ẋ1

ẋ2

ẋ3

ẋ4

 =


0 −ζ 0 0

ζ 0 0 0

0 0 −λ 0

0 0 0 0

x+


x1(x4 − γx3)

x2(x4 − γx3)

χg(x2
1 + x2

2)

0

 , (2.10)

where x ∈ X ⊂ R4 and y ∈ R2.

Proposition 4 (Observability of Hopf oscillators) System (2.10) is (differentially) observ-

able on x ∈ X\Sε with Sε = {x ∈ R4 : x2
1 + x2

2 ≤ ε2} for any ε > 0.

Proof 2 Following the same procedure and notations as proof of Proposition 3, the system is

shown to be weakly observable, i. e. T defines an immersion, and then T is proven to be injective

on X\Sε.
We begin by computing the successive Lie derivatives using (2.10):

dL0
fh

1(x)T =


1

0

0

0

 ,dL1
fh

1(x)T =


∆

−ζ
−γx1

x1

 ,

dL2
fh

1(x)T =


−ζ2 + λγx3 + ∆2 − γχg(x2

1 + x2
2)− 2γχx2

1g
′(x2

1 + x2
2)

−2ζ∆− 2γχx1x2g
′(x2

1 + x2
2)

λγx1 + 2ζγx2 − 2γx1∆

−2ζx2 + 2x1∆

 ,

dL0
fh

2(x)T =


0

1

0

0

 ,dL1
fh

2(x)T =


ζ

∆

−γx2

x2

 ,

dL2
fh

2(x)T =


−2ζ∆− 2γχx1x2g

′(x2
1 + x2

2)

−ζ2 + λγx3 + ∆2 − γχg(x2
1 + x2

2)− 2γχx2
2g
′(x2

1 + x2
2)

λγx2 − 2ζγx1 − 2γx2∆

2ζx1 + 2x2∆

 ,

(2.11)

42



Chapter 2. Observer design for Nonlinear Oscillators

where ∆ = (x4 − γx3) and g′(s) is the derivative of g(s). Higher order differentiation will still

lead to expressions where x1, x2 can factorize the two last components of dLifh
i Due to the block

triangular structure of dO(x), dO(x) is full column rank if and only if:

λ2γ2(4ζ2 + 1)(x2
1 + x2

2)2 6= 0. (2.12)

So it is straightforward that

dim dO(x) = 4, ∀x ∈ X ⊂ R4\Sε. (2.13)

However there is an observability singularity for xs = (0 0 x3 x4)T since dim dO(xs) = 2 i.e., it

is impossible to recover x3 nor x4 from the output and its derivatives at any order.

For convenience, let define T upto some permutation P to get:

T : x 7→ z = P

(
T 1

T 2

)
, (2.14)

where P = (e1, e3, e5, e2, e4, e6) with ei being the ith canonical vector of R6, so:

z =



z1
1

z2
1

z1
2

z2
2

z1
3

z2
3


=



T 1
1

T 2
1

T 1
2

T 2
2

T 1
3

T 2
3


(x) =



x1

x2

−ζx2 + x1∆

ζx1 + x2∆

−ζ2x1 + x1∆2 − 2ζx2∆ + γλx1x3 − γχx1g(x2
1 + x2

2)

−ζ2x2 + x2∆2 + 2ζx1∆ + γλx2x3 − γχx2g(x2
1 + x2

2)


(2.15)

For all xa, xb ∈ X\Sε:

Ta(xa) = Tb(xb) =⇒ xai = xbi, for any i ≤ 2 (2.16)

Then, from (2.15) third and fourth equations, computing x1T
1
2 + x2T

2
2 using the fact that

x2
1 + x2

2 6= 0 on X\Sε, it follows that:

(x2
1 + x2

2)(∆a −∆b) = 0 so ∆a = ∆b on X\Sε.

Finally using ∆a = ∆b in (2.15) two last equations to get (x1T
1
3 +x2T

2
3 ) thus results in xai = xbi

for i = 3, 4 i. e. in T injectivity on X\Sε. Since its Jacobian is full column rank from (2.13),

then system (2.10) is strongly differentially observable on X\Sε.
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2.2. Nonlinear Oscillators

2.2.3 Nonlinear system affected by harmonic oscillations

Nonlinear dynamical systems are often affected by periodic disturbances whose knowledge and

especially their frequency are of interest to control the system. In such a case, it is relevant to

rebuild this information that can not be directly accessed. Many various systems can be con-

sidered: medical diagnosis Sadelli et al. [2015, 2016], medical microrobots Gangloff et al. [2006];

Fruchard et al. [2013], frequency hopping communications or phase locking loop systems Bodson

[2005] etc. It also occurs in some applications where there is an interest in compensating the

disturbance using the control inputs of the system, e.g. to avoid induced vibrations in satel-

lites, planes or helicopters Bittanti and Moiraghi [1994], or to lower the energy consumption of

a vehicle.

Let consider a nonlinear dynamical model disturbed by an harmonic signal whose frequency

is unknown. To access to all the information, we can synthesize an observer for the extended

system composed of two subsystems: the nonlinear dynamical model denoted by Σ1, and the

periodic disturbance auxiliary model, denoted by Σ2.

First we consider the class of nonlinear systems under phase variable form given by a set of

differential equation as Σ1:

Σ1 : ẋ′ =


x′2
...

x′n

f(x′, d1)

 , y = x′1 (2.17)

where x′ ∈ Xa ⊂ Rn, y ∈ R and f(x′, d1) is the nonlinear function that is perturbed due to some

periodic oscillations d1.

Since every single periodic disturbance can be modeled by Fourier series as given in (2.3) at

order 1, this signal is the solution of an auxiliary system Σ2 modeling the disturbance dynamics

with d ∈ Xb ⊂ R3:

Σ2 : ḋ =


d2

−d1d3

0

 . (2.18)
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Chapter 2. Observer design for Nonlinear Oscillators

The extended system Σe is composed of two subsystems combined together as one system:

Σe 7→
(

Σ1

Σ2

)
: ẋ =



x2

...

xn

f(x1, . . . , xn+1)

xn+2

−xn+1xn+3

0


(2.19)

where state vector x =

(
x′

d

)
∈ X is of dimension Rn+3 and y ∈ R is the output of the nonlinear

dynamical model. Using the sole output y = x1, the aim is to synthesize an observer for the

extended system.

The first step is to study the observability of the extended system (2.19).

Proposition 5 (Observability of the extended system) The extended system given by

(2.19) is (differentially) observable on x ∈ X\Sε with Sε = {x ∈ X ⊂ Rn+3 : x2
n+1 + x2

n+2 ≤ ε}
for any ε > 0, provided that ∂fn

∂xn+1
(x) 6= 0, ∀x ∈ X .

Proof 3 The proof is similar to the proof of Proposition 3 and 4.

Let x̄i = (x1, . . . , xi)
T and the successive Lie derivatives of the output y = x1:

L0
fh = x1

L1
fh = x2

...

Lifh = xi+1

...

Ln−1
f h = xn

Lnfh = f(xn+1)

Ln+1
f h = g(xn+1) + fn+1xn+2

Ln+2
f h = H(xn+2)− fn+1xn+1xn+3

Ln+3
f h =

n−1∑
i=1

(Hi − fn+1,ixn+1xn+3)xi+1 + (Hn − fn+1,nxn+1xn+3)f+

= (Hn+1 − fn+1,n−1xn+1xn+3 − fn+1xn+3)xn+2−
= (H1 + 2H2xn+2)xn+1xn+3

(2.20)
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2.2. Nonlinear Oscillators

where fi = ∂f
∂xi

and fi,j = ∂2f
∂xj∂xi

g(xn+1) =

n−1∑
i=1

fixi+1 + fnf,

H(xn+2) = H0(xn+1) +H1(xn+1)xn+2 +H2(xn+1)x2
n+2

with H0(xn+1) =
n−1∑
i=1

gixi+1 + gnf , H1(xn+1) =
n−1∑
i=1

fn+1,ixi+1 + fn+1,nf + gn+1 and

H2(xn+1) = fn+1,n+1.

By computing the (n− 1) first Lie derivatives, it is obvious that

d


L0
fh

L1
fh
...

Ln−1
f h

 = In (2.21)

such that it is full rank and the differentials of higher order derivatives (i.e. from dLnf to dLn+3
f )

can be written as:

dLnfh =
[
∗ fn−1 fnfn+1 0 0

]
dLn+1

f h =
[
∗ ∗ gn + fn+1,nxn+2gn+1 + fn+1,n+1xn+2 fn+1 0

]
dLn+2

f h =
[
∗ ∗ ∗ H1 + 2H2xn+2 −fn+1xn+1

]
dLn+3

f h =

[
∗ ∗ ∗ ∗ −xn+1(

n−1∑
i=1

fn+1,ixn+1xi+1 − fn+1,nf + fn+1,n+1xn+2 +H1 + 2H2xn+2)− fn+1xn+2

]
(2.22)

Computing further derivatives will still lead to expressions where either xn+1 or xn+2 can factorize

the last column. Therefore, from the above expressions, it can be concluded that

dim dO(x) = n+ 3, ∀x ∈ X ⊂ Rn+3\Sε, (2.23)

i.e. the observability matrix is full rank provided that x2
n+1 + x2

n+2 6= 0. However there is an

observability singularity for xs =
(
x1 . . . xn 0 0 xn+3

)T
since dim dO(xs) = n+ 2.

The second part of the proof shows that the system is injective on X\Sε. To do so, we

can use the transformation (2.20), however since taking zi = Lifh(x) can give quite complicated

expression, we use a simpler transformation z = T (x) such that:

z = T (x) :


zi = xi, ∀i ≤ n+ 2

zn+3 = −xn+1xn+3

zn+4 = −xn+2xn+3

=


Ti

Tn+3

Tn+4

 (2.24)
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For all xa, xb ∈ X\Sε:

Ta(xa) = Tb(xb) =⇒ xia = xib, for any i ≤ n+ 2 (2.25)

Then it is straightforward that −xn+1Tn+3 − xn+2Tn+4 ⇒ (x2
n+1 + x2

n+2)(xn+3a − xn+3b) = 0.

Hence T is injective on X\Sε. Since its Jacobian is full column rank from (2.22), then system

(2.19) is strongly differentially observable on X\Sε.

2.3 Observability Defects Avoidance

Owing to the fact that designing nonlinear high gain observer consists in transforming the orig-

inal system into some observable normal form, even if the observer design is done using these

approaches, the problem introduced by the observability defects stays persistent and is not

overcomed. Observability defects (also refered to as observability singularities) cause a loss of

information that is required to fully reconstruct the system state, hindering the ability to access

to some unmeasured states xi, i ∈ Ino ⊂ {1, . . . , nx}. We have also pointed out the observability

defects in section 1.2.4 i.e., there exists some point(s) or set of state variables s(x) = 0 ∈ Rns ,
where the system tends to loose its observability property.

The observability singularity set based on the rank condition is defined as:

S = {x ∈ X ⊂ Rnx : s(x) = 0Rns} : dim dO(x) < nx.

Since the rank condition is one of the sufficient condition for system (1.8) local weak ob-

servability Hermann and Krener [1977] and transformation into ϕ variable normal form Zeitz

[1984], different methods have been proposed in order to fulfill such condition and to remove

the observability singularities from the system. Two examples have been provided where each

system suffers from observability singularity when considering only (nx − 1) first output deriva-

tives. For Example 1, a solution based on the immersion of the system is provided that can

help in removing the singularity1 however, such a method is not globally applicable to all the

systems as can be seen in Example 2. In this section, we discuss the solution that can be used

to avoid such observability defects based on the use of fictitious measurements to guarantee that

dim d(x) = nx.

1Then using T (x1, x2) 7→ z =


x1

x1 + x2
2

−x2 − 2x2
2

, we have z in Lipschitz phase variable form with nz = 3 > nx = 2

and an observer synthesis is given by ˙̂z = Anz ẑ +


0

0

ϕ3

 + K∆(y − ẑ1) with ϕ3 : z 7→ z2 − 3z3 = x2 + 4x2
2. We

can get observer in natural coordinates using x̂ = T (ẑ), where the left-inverse is given as T : z 7→

(
z1

2z2 + z3

)
.
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2.3. Observability Defects Avoidance

2.3.1 Observability defects avoidance through fictitious outputs

A method to tackle observability defects for a system with single or multiple singularities has

been proposed by Andrieu et al. [2014]; Bernard et al. [2015, 2018], where the essence of the

method was conceptualized as the creation of “fictitious measurements” denoted in our work as

yf ∈ Rnf . These fictitious outputs can be extracted by a proper selection of a function:

ρ : x→ max(0, ε2 − sT s)2, (2.26)

for some ε > 0. Let s : ∂s
∂xi

= 0, ∀i ∈ Ino, then yfi = ρxi provides fictitious access to the

information for the unmeasured state variables only when the system is singular. Thus it allows

the modified system to remain observable i.e., fulfill the rank condition (1.7) and the observer to

be well-defined for all x ∈ X ⊂ Rnx .
The use of fictitious outputs to remove the singularity from the observer was applied on

harmonic oscillators in Bernard et al. [2018] and is given by the following proposition.

Proposition 6 (Observability defects avoidance for Harmonic oscillators) To circum-

vent the singularities of the extended system given by (2.3) defined in Proposition 3, introduce a

C2 mapping ρ for some ε > 0 as:

ρ : x→ max(0, ε2 − (x2
1 + x2

2))2. (2.27)

and define the fictitious outputs yf ∈ R as:

yf1 = ρx3. (2.28)

The addition of the fictitious outputs results into an extension of the mapping T into Te such

that:
R3 → Rnz × R

Te : x 7→
(
T (x)

yf (x)

)
(2.29)

where Te is an immersion of system from R4 → Rnz × R.

Proof 4 The Jacobian of the mapping Te defined by (2.29) is given by:

∂Te
∂x

(x) =

(
∂T
∂x
∂yf
∂x

)
=


1 0 0

0 1 0

03,1 J1 J2

 (2.30)

with the matrices J1, J2 given as:

J1 =


−x3 0

0 −x3

ρ1x3 ρ2x3

 , J2 =


−x1

−x2

ρ

 . (2.31)
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ρi is the partial derivatives of ρ w.r.t x1 and x2 i.e. ρi = ∂ρ
∂xi

(x). Due to the structure of Jacobian

(2.30), the Te Jacobian matrix is full rank provided that J2 is also full rank. Since by construction,

ρ and x2
1 +x2

2 cannot be null simultaneously, it follows that J2 and in turn the jacobian of Te are

full rank matrices for any x ∈ Rnx .

Remark 9 • The number of fictitious outputs yf ∈ Rnf depends on the particular system or

the states affected by the singularity.

• It is worth mentioning that the dynamics associated with the fictitious outputs are null for

the system living on x ∈ Rnx\Sε. The fictitious outputs will be activated only when the

system enters Sε i.e. gets close to the observability singularity xs ∈ Sε.

• Addition of the fictitious outputs increase the cardinality of the observer state greater than

that of the system i.e. nz + nf > nx.

The method suggested in Andrieu et al. [2014]; Bernard et al. [2018] allows to bypass the observ-

ability defects for harmonic oscillators. In the same spirit, we apply the methodology on Hopf

oscillator (2.10) and on the extended system (2.19) since they suffer from an observability defect

too.

2.3.2 Observability defects avoidance for Hopf oscillators

In the case of Hopf oscillators, the system suffers from observability defects such that when

x2
1 + x2

2 = 0, the other two state variables x3 and x4 become unobservable. Therefore in this

case, we will introduce two fictitious outputs, each corresponding to its particular state variable.

Proposition 7 To circumvent the singularities of the system (2.10) defined in Proposition 4,

we introduce a C2 mapping ρ as:

ρ : x→ max(0, ε2 − (x2
1 + x2

2))2, (2.32)

so as to define fictitious outputs yf ∈ R2 as:

yf =

(
yf1

yf2

)
= ρ

(
γx3

x4

)
∀γ > 0. (2.33)

The mapping T defined by (2.14)-(2.15) is then extended as:

R4 → Rnz × Rnf

Te : x 7→
(
T (x)

yf (x)

)
(2.34)

which defines an injective immersion.
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Proof 5 The Jacobian of the mapping Te defined by (2.34) is given by:

∂Te
∂x

(x) =

 ∂T
∂x

∂yf
∂x

 =

(
I2 02

J1 J2

)
(2.35)

with the matrices J1, J2:

J1 =



∆ −ζ
ζ ∆

a1 b1

a2 b2

γρ1x3 γρ2x3

ρ1x4 ρ2x4


, J2 =



−γx1 x1

−γx2 x2

c1 d1

c2 d2

γρ 0

0 ρ


(2.36)

with ∆ = x4 − γx3 and

a1 =− ζ2 + λγx3 + ∆2 − γχg(x2
1 + x2

2)− 2γχx2
1g
′(x2

1 + x2
2)

a2 =− 2ζ∆− 2γχx1x2g
′(x2

1 + x2
2)

b1 =− 2ζ∆− 2γχx1x2g
′(x2

1 + x2
2)

b2 =− ζ2 + λγx3 + ∆2 − γχg(x2
1 + x2

2)− 2γχx2
2g
′(x2

1 + x2
2)

c1 =λγx1 + 2ζγx2 − 2γx1∆

c2 =λγx2 − 2ζγx1 − 2γx2∆

d1 =− 2ζx2 + 2x1∆

d2 =2ζx1 + 2x2∆

where ρ1, ρ2 denote the partial derivatives of ρ w.r.t x1 and x2 respectively, i. e. ρi = ∂ρ
∂xi

(x) and

∆ = (x4 − γx3).

Due to the block triangular structure of the Jacobian (2.35), the Te Jacobian matrix is full

rank provided that J2 is also full rank. One has:∣∣∣∣∣c1 d1

c2 d2

∣∣∣∣∣ = 2γζλ(x2
1 + x2

2), and

∣∣∣∣∣γρ 0

0 ρ

∣∣∣∣∣ = γρ2, ∀(γ, ζ, λ) > 0. (2.37)

Since by construction, ρ and x2
1 +x2

2 cannot be null simultaneously, it follows that J2 and in turn

the jacobian of Te are full rank matrices for any x ∈ R4. Besides, the injectivity of Te is inherited

from Proposition 4, hence Te is an injective immersion on R4.

2.3.3 Observability defects avoidance for Extended system

The observability defect in the case of extended system is similar to harmonic oscillator such that

the last state variable xn+3 becomes unobservable when x2
n+1 +xn+2 = 0. In such a case we will
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introduce a single fictitious output that will provide a way to provide some fictitious knowledge

about the state variable xn+3 during singularity.

Proposition 8 To circumvent the singularities of the extended system given by (2.19) defined

in Proposition 5, we introduce a C2 mapping ρ for some ε > 0 as:

ρ : x→ max(0, ε2 − (x2
n+1 + x2

n+2))2. (2.38)

and define the fictitious output yf ∈ R as:

yf1 = ρxn+3. (2.39)

The addition of the fictitious output results into an extension of the mapping T given by (2.24)

into an injective immersion Te:

Rn+3 → Rnz × R

Te : x 7→
(
T (x)

yf (x)

)
.

(2.40)

Proof 6 The Jacobian of the mapping Te defined by (2.40) is given by:

∂Te
∂x

(x) =

(
∂T
∂x
∂yf
∂x

)
=

(
In+2 0n+2,1

03,n J1 J2

)
(2.41)

with the matrices J1, and J2 given as:

J1 =


−xn+3 0

0 −xn+3

ρn+1xn+3 ρn+2xn+3

 , J2 =


−xn+1

−xn+2

ρ

 (2.42)

where ρi is the partial derivatives of ρ w.r.t xn+1 and xn+2 i.e. ρi = ∂ρ
∂xi

(x). Due to the structure

of Jacobian (2.41), the Te Jacobian matrix is full rank provided that J2 is also full rank. Since

by construction, ρ and x2
n+1 + x2

n+2 cannot be null simultaneously, it follows that J2 and in turn

the jacobian of Te are full rank matrices for any x ∈ Rn+3 and injectivity is straightforward.

2.4 Transformation back to original coordinates

In order to deduce an estimate of x̂ of x from ẑ = T (x) i.e., to write the observer dynamics in

original coordinates the left inversion of T (denoted by T ) is required. As stated before in the

last section 1.5 of Chapter 1, the computation of T done through elimination technique x̂ = T (ẑ)

is quite problematic and the explicit analytical expression of T is rarely available. The inversion

51



2.4. Transformation back to original coordinates

typically relies on the resolution of a minimization problem that involves costly computations

and might raise numerical issues.

Another proposed method was to get the estimate in original coordinates as recalled in

Proposition 2 but it is based on a strict condition that the mapping T is a diffeomorphism. Even

for the case where the transformation is a diffeomorphism T : X → Z, the observer must be

treated carefully, since while the true state is known to stay in the domain of X , there is no

guarantee that its estimate will stay in Z, in particular during the transient behavior where

peaking can occur (since we are dealing with the HGO, peaking phenomenon should not be

ignored). In that case, the estimate may encounter Jacobian singularities, thus leading to non-

converging non-complete solutions as pointed out in Bernard et al. [2018].

Different solutions have been proposed regarding the solution of such issues e.g. a solution

proposed consists in modifying the observer dynamics to force its state to remain in the dif-

feomorphism image by either adding a term in the dynamics Astolfi and Praly [2013], through

constrained optimization Astolfi et al. [2021], where the states are set to remain in a given convex

set for all times or using carefully complex saturations Maggiore and Passino [2003]. However

this must be done with care since it can easily destroy the observer performances (in particu-

lar convergence): extra convexity assumption is typically required on the diffeomorphism image

to implement such methods. When the transformation is not a diffeomorphism, but an injec-

tive immersion, namely, the target space Z has a larger dimension than the system domain X ,
some ideas have been proposed such as using Newton-like or gradient algorithms to inverse the

transformation in Astolfi and Possieri [2019] and Menini et al. [2017], or continuation algorithms

which “follow” the “optimal” inverse image in Hammouri et al. [2018]. However, in those cases,

the convergence is only local and a convexity assumption also needs to be verified.

2.4.1 Augmentation of the mapping into global diffeomorphism

For immersion based observers, we cannot use Proposition 2 since the target space has a greater

dimension than the observer i.e. nz > nx. Even when no immersion is required i.e. nz = nx, using

fictitious outputs increases the dimension of the target space greater than that of the observer

i.e. (nz +nf ) > nx and it results into an extension of the mapping T into Te : Rnx → Rnz ×Rnf .
Therefore, the use of Proposition 2 in its original form is no longer valid for such systems. Our

work in this thesis relies on the ideas proposed in Andrieu et al. [2014] and Bernard et al. [2015,

2018] for the case where nz > nx. The main idea is to extend the injective immersion into a

diffeomorphism through the coordinate augmentation and the jacobian completion. With the

new mapping, we can implement the observer in the original coordinates using the extended

version of Proposition 2. The diffeomorphism denoted by Ta can be achieved, atleast locally, if

we are able to find the nz − nx columns for jacobian completion or in other words if we can find
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Ψ that satisfies:

det

(
∂Te
∂x

(x) Ψ(x)

)
6= 0, ∀x ∈ X ⊂ Rnx . (2.43)

The approach considered here consists in extending the image of Te to get a global diffeo-

morphism Ta through coordinate augmentation from x ∈ Rnx to xa ∈ Rnz+nf by adding some

fictitious states τ ∈ Rnz+nf−nx , so a pre-image will always exist and will be uniquely defined to

get the observer back in original coordinates.

Proposition 9 (Global diffeomorphism) Let us define the two new state vectors xa and za:

xa =

(
x

τ

)
(2.44)

za = Ta(xa) = Te(xa) + Ψ(xa)τ (2.45)

where τ ∈ Rnz+nf−nx are the exogenous variables added to the augmented state vector with the

augmented mapping Ta : Rnx 7→ Rnz+nf . The matrix Ψ(x) ∈ R(nz+nf )×(nz+nf−nx) is chosen such

that it satisfies:

det

(
∂Te
∂xa

(xa) Ψ(xa)

)
6= 0, ∀xa ∈ X ⊂ Rnx . (2.46)

and the Ψ(x) columns only depends on the state variables that remains observable i.e., xi, i /∈ Ino
for any x ∈ Rnx , then Ta defines a global diffeomorphism.

Remark 10 For the cases, when Ψ(x) contains the states that are structurally unobservable and

becomes observable only due to presence of fictitious measurements triggered during singularity,

we can only achieve local diffeomorphism. If Ψ depends only on the state variables that are

structurally observable, then Ta defines a global diffeomorphism.

2.4.2 Jacobian completion

The diffeomorphism Ta can be achieved if we are able to find the nz − nx columns for jacobian

completion or in other words if we can find Ψ that satisfies (2.46). However, finding Ψ columns

that ensures their continuity with respect to x is quite difficult and can be quite problematic.

This problem is very old and related to topological question Wazewski [1935]; Eckmann [2006]. In

Andrieu et al. [2014] and Bernard et al. [2018], the problem was addressed with detailed analysis.

Complementing a nz × nx full-rank matrix into an invertible one is equivalent to finding

nz − nx independent vectors orthogonal to that matrix. Precisely, the existence of Ψ satisfying

(2.46) is equivalent to the existence of a C1 function Ψ, the values of which are full-rank matrices

satisfying

Ψ(x)T
∂Te
∂x

(x) = 0, ∀x ∈ Rnx . (2.47)
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Indeed, satisfying (2.47) is equivalent to satisfy (2.46) since the following matrices are invertible:(
∂Te
∂x (x)T

Ψ(x)T

)(
∂Te
∂x (x) Ψ(x)

)
=

(
∂Te
∂x (x)T ∂Te∂x (x) 0

0 Ψ(x)TΨ(x)

)
. (2.48)

Another universal completion method based on Schur complement was also proposed in

Bernard et al. [2018] for the cases when an explicit construction of Ψ is not possible. This

method relies on increasing the observer state dimension to nz + nx and introducing a new

mapping Ta such that Ta : X → Rnz × Rnx as:

Ta(x) = (Te(x), 0, . . . , 0︸ ︷︷ ︸
nxtimes

). (2.49)

In other words, adding nx components equal to zero to Te and correspondingly adding nx ex-

ponentially converging dynamics τ in observer dynamics Fz(ẑ, y) will result in the Ta being

completed into a diffeomorphism. Based on the Schur complement, the jacobian of the new

mapping
∂Ta
∂x

(x) =

(
∂Te
∂x (x)

0nx×nx

)
(2.50)

can be complemented by
∂Ψ

∂x
(x) =

(
−Inz×nx
∂Te
∂x (x)T

)
. (2.51)

Hence the injective immersion Te can always be extended into a local diffeomorphism Ta.

2.4.3 Global diffeomorphism: Harmonic oscillators

Proposition 10 With notations of Proposition 6, we define an augmented mapping Ta as:

Rnz+nf → Rnz+nf

Ta : xa =

(
x

τ

)
7→ za = Te(x) + Ψ(x)τ,

(2.52)

where τ ∈ R2 and Ψ ∈ C1(Rnx ,Rnz+nf−nx) is defined by

Ψ : x 7→
(

02,2

JΨ

)
, JΨ =


1 0

0 1

x1 x2

 (2.53)

then Ta defines a global diffeomorphism on R5 satisfying

Ta(x, 0) =

(
T (x)

0nf ,1

)
, ∀x ∈ R3\Sε. (2.54)
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Proof 7 The Jacobian of the new augmented mapping Ta can be found as:

∂Ta
∂xa

(xa) =

(
I2 02,1 02,2

J1 J2 JΨ

)
(2.55)

with the matrices J1, J2 and JΨ as:

J1 =


−x3 0

0 −x3

ρ1x3 ρ2x3

 , J2 =


−x1

−x2

ρ

 , JΨ =


1 0

0 1

x1 x2

 (2.56)

such that the determinant of the Jacobian of Ta can be calculated as:∣∣∣∣∂Ta∂xa

∣∣∣∣ = ρ+ x2
1 + x2

2 6= 0. (2.57)

Since Ψ columns depends only on (x1, x2) /∈ Ino and are observable for all x ∈ X , so Ta is a

global immersion. We now provide the injectivity proof of Ta.

za = Ta(x, τ) =



x1

x2

−x1x3 + τ1

−x2x3 + τ2

ρx3 + x4τ1 + x5τ2


(2.58)

From the above equation, it is quite straightforward that:

Ta(xa, τa) = Ta(xb, τb) =⇒ xia = xib, ∀1 ≤ i ≤ 2

ρa(x1, x2) = ρb(x1, x2) =⇒ ρ′ = ρ
(2.59)

and
−x1x3a + τ1a = −x1x3b + τ1b

−x2x3a + τ2a = −x2x3b + τ2b

ρx3a + x1τ1a + x2τ2a = ρx3b + x1τ1b + x2τ2b

(2.60)

Using x̃i = xia − xib in (2.60):
τ̃1 = x1x̃3

τ̃2 = x2x̃3

x1τ̃1 + x2τ̃2 = −ρx̃3

(2.61)

Simplifying (2.61), we get:

x2
1x̃3 + x2

2x̃3 + ρx̃3 = 0 =⇒ x̃3(ρ+ x2
1 + x2

2) = 0 (2.62)

Since by definition, ρ given by (2.27) gives (ρ + x2
1 + x2

2) 6= 0, therefore x̃3 = 0 i.e. x3a = x3b.

Using the expression in (2.61), we can find that τ̃i = 0, so τia = τib for i = 1, 2. Hence Ta is

injective. Since we have already proved that Ta is a global immersion therefore Ta is an injective

immersion on Ta : X ⊂ Rnx → Z ⊂ Rnz .
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2.4.4 Global diffeomorphism: Hopf oscillators

Proposition 11 With notations and definitions of Proposition 7, let τ ∈ R4 and define an

augmented mapping Ta as:

Rnz+nf → Rnz+nf

Ta : xa =

(
x

τ

)
7→ za = Te(x) + Ψ(x)τ.

(2.63)

where Ψ ∈ C1(Rnx ,Rnz+nf−nx) is defined by

Ψ : x 7→


02 02

02 δI2

I2 02

JΨ 02

 , JΨ =

(
−x1

λ −x2
λ

x2
2ζ − x1

λ −x1
2ζ − x2

λ

)
. (2.64)

So Ta defines a global diffeomorphism on R8 satisfying

Ta(x, 0) =

(
T (x)

0nz+nf−nx,1

)
, ∀x ∈ R4\Sε. (2.65)

Proof 8 It is obvious from definition (2.32), (2.33) and (2.63) that (2.65) is fulfilled. Using

(2.35), (2.36) and (2.64) results in∣∣∣∣∂Ta∂xa

∣∣∣∣ = γδ2(ρ2 + (x2
1 + x2

2))2 6= 0, ∀(γ, δ) > 0. (2.66)

So Ta is a global immersion. The global injectivity proof given hereinafter completes the proof.

Ta is defined as:

Ta :

(
x

τ

)
7→ za =

(
z

yf

)
+ Ψ(x1, x2)τ =



(
z11

z21

)
(
z12

z22

)
(
z13

z23

)
(
ρx3

ρx4

)


+



02 02

02 I2

I2 02

−x1 −x2 01,2

x2 − x1 −x1 − x2 01,2




τ1

τ2

τ3

τ4

 .

(2.67)

Let Ta(xa) = Tb(xb) where zij is given by (2.14), then denoting ∆̃ = ∆a −∆b, x̃i = xai − xbi
and τ̃ = τa − τb, we get: x1a = x1b = x1

x2a = x2b = x2

(2.68a)
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−ζx2 + x1∆a + τ3a = −ζx2 + x1∆b + τ3b

ζx1 + x2∆a + τ4a = ζx1 + x2∆b + τ4b

(2.68b)

−2ζx2∆̃ + x1(∆2
a −∆2

b) + γλx1x̃3 = −τ̃1

2ζx1∆̃ + x2(∆2
a −∆2

b) + γλx2x̃3 = −τ̃2

(2.68c)


ργx̃3 = −x1

λ
τ̃1 −

x2

λ
τ̃2

ρx̃4 =

(
x1

λ
− x2

2ζ

)
τ̃1 −

(
x1

2ζ
+
x2

λ

)
τ̃2

(2.68d)

From (2.68b) and (2.68d), it is straightforward that:

x1∆̃ = −τ̃3

x2∆̃ = −τ̃4

ρ∆̃ = −x2

2ζ
τ̃1 +

x1

2ζ
τ̃2

(2.69)

Further multiplying (2.69) by x1, x2 and ρ respectively, one obtains:

(ρ2 + x2
1 + x2

2)∆̃ = −x1τ̃3 − x2τ̃4 −
ρx2

2ζ
τ̃1 +

ρx1

2ζ
τ̃2 (2.70)

Multiplying the equations of (2.68c) by x2 and x1 respectively and subtracting the equations, we

get:

2ζ(x2
1 + x2

2)∆̃ = −x1τ̃2 + x2τ̃1 (2.71)

Adding 2ζ times the last equation of (2.69) to (2.71) and simplifying yields:

2ζ((x2
1 + x2

2) + ρ)∆̃ = −x1τ̃2 + x2τ̃1 + x1τ̃2 − x2τ̃1 = 0, (2.72)

Since from Proposition 7, we know that (x2
1 + x2

2) + ρ 6= 0,∀x ∈ R4, therefore ∆̃ = 0, so

∆2
a −∆2

b = 0. One can then simplify (2.69) and obtain:

τ̃3 = τ̃4 = 0. (2.73)

Using (2.73), equations (2.68c) and (2.68d) can be reduced to:

γλx1x̃3 = τ̃1 (2.74a)

γλx2x̃3 = τ̃2 (2.74b)

ργx̃3 = −x1

λ
τ̃1 −

x2

λ
τ̃2 (2.74c)

ρx̃4 =

(
x1

λ
− x2

2ζ

)
τ̃1 −

(
x1

2ζ
+
x2

λ

)
τ̃2 (2.74d)
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Further multiplying the Equations (2.74a), (2.74b) by x1 and x2 respectively and adding the

resulting equations to (2.74c), we can get a single equation such that:

λγ(ρ+ x2
1 + x2

2)x̃3 = x1τ̃1 + x2τ̃2 − x1τ̃1 − x2τ̃2 = 0 =⇒ x̃3 = 0. (2.75)

It follows that τ̃1 = τ̃2 = 0 and therefore x̃4 = 0. This proves that Ta is globally injective and

since Ψ columns depends only on (x1, x2) /∈ Ino and are observable for all x ∈ X , thus Ta defines

a global diffeomorphism.

2.4.5 Global diffeomorphism: Extended system

Proposition 12 With notations of Proposition 8, we define an augmented mapping Ta as:

Rnz+nf → Rnz+nf

Ta : xa =

(
x

τ

)
7→ za = Te(x) + Ψ(x)τ.

(2.76)

where Ψ ∈ C1(Rnx ,Rnz−nx) is defined by

Ψ : x 7→
(

0n+2,2

JΨ

)
, JΨ =


1 0

0 1

xn+1 xn+2

 . (2.77)

Hence Ta defines a global diffeomorphism on Rnz+nf satisfying

Ta(x, 0) =

(
T (x)

0nf ,1

)
, ∀x ∈ Rn+3\Sε. (2.78)

Proof 9 The Jacobian of the new augmented mapping Ta is:

∂Ta
∂xa

(xa) =

(
In+2 0n+2,1 0n+2,2

03,n J1 J2 JΨ

)
(2.79)

with the matrices J1, J2 and JΨ:

J1 =


−xn+3 0

0 −xn+3

ρn+1xn+3 ρn+2xn+3

 , J2 =


−xn+1

−xn+2

ρ

 , JΨ =


1 0

0 1

xn+1 xn+2

 (2.80)

so the determinant of the Jacobian of Ta is:∣∣∣∣∂Ta∂xa

∣∣∣∣ = ρ+ x2
n+1 + x2

n+2 6= 0. (2.81)
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So Ta is a global immersion. We now provide the Ta injectivity proof.

za = Ta(x, τ) =



x1

...

xn+2

−xn+1xn+3 + τ1

−xn+2xn+3 + τ2

ρxn+3 + xn+1τ1 + xn+2τ2


(2.82)

From the above equation, it is quite straightforward that:

Ta(xa, τa) = Ta(xb, τb) =⇒ xia = xib, ∀1 ≤ i ≤ n+ 2

ρa(xn+1, xn+2) = ρb(xn+1, xn+2) =⇒ ρ′ = ρ
(2.83)

and
−xn+1xn+3a + τ1a = −xn+1xn+3b + τ1b

−xn+2xn+3a + τ2a = −xn+2xn+3b + τ2b

ρxn+3a + xn+1τ1a + xn+2τ2a = ρxn+3b + xn+1τ1b + xn+2τ2b

(2.84)

Using x̃i = xia − xib in (2.84):

τ̃1 = xn+1x̃n+3

τ̃2 = xn+2x̃n+3

xn+1τ̃1 + xn+2τ̃2 = −ρx̃n+3

(2.85)

Simplifying (2.85), we get:

x2
n+1x̃n+3 + x2

n+2x̃n+3 + ρx̃n+3 = 0 =⇒ x̃n+3(ρ+ x2
n+1 + x2

n+2) = 0 (2.86)

Since (ρ + x2
n+1 + x2

n+2) 6= 0, it follows that x̃n+3 = 0 and hence xn+3a = xn+3b. Using then

(2.85), one gets τ̃i = 0 so τia = τib for i = 1, 2. Hence Ta is a global diffeomorphism.

2.5 Observer in original coordinates

Proposition 13 The dynamic system

˙̂xa =

(
∂Ta
∂xa

(x̂a)

)−1
(
Fz(Ta(x̂a), η, y)

−KnfTnf (x̂a)

)
(2.87)

is an arbitrarily fast converging observer for systems (2.3),(2.10) and (2.19) in their natural

coordinates on any bounded subset of Rnz+nf , where Fz, is defined e.g. in Propositions 8-12

and Ta by Propositions 6-12. Knf is a positive definite diagonal matrix of dimension nf . The

notation Tnf stands for the last nf components of Ta representing the dynamics associated with

the fictitious outputs.
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Proof 10 By continuity T−1
a is C1, hence it is L-Lipschitz on any compact of Rnz+nf . It follows

that, using z∗a = Ta(x, 0) = Te(x):

‖x(t)− x̂(t)‖+ ‖τ(t)‖ ≤
√

2

∥∥∥∥∥x− x̂τ
∥∥∥∥∥

≤
√

2

∥∥∥∥∥
(
x

0

)
−
(
x̂

τ

)∥∥∥∥∥
≤
√

2‖T−1
a (z∗a)− T−1

a (ẑa)‖
≤ L

√
2‖z∗a − ẑa|

≤ L
√

2‖Te(x)− Ta(x̂, τ)‖.

(2.88)

Since Te is injective and Fz,Fη defines a converging observer from Propositions 8-12, it follows

that

lim
t→∞
‖x(t)− x̂(t)‖+ ‖τ(t)‖ = 0. (2.89)

The augmentation and the extension can be done without modifying the observer dynamics,

while maintaining the convergence.

2.6 Conclusion

In this chapter, we have studied the two nonlinear oscillators: the harmonic oscillator and the

Hopf oscillator. We also studied the class of phase variable nonlinear systems affected by har-

monic oscillations of unknown frequency. For each system, a model has been presented and a

detailed observability analysis has been done. From the observability analysis, it has been con-

cluded that each system suffers from some observability defects, and therefore a method suggested

by Andrieu et al. [2014]; Bernard et al. [2018] has been recalled and applied to the three systems

in order to avoid the observability defects. Inversion of the mapping was not possible using the

Proposition 2 given in the previous chapter due to the dimension gap between the target coordi-

nates and the system original coordinates, as well as the addition of fictitious outputs to remove

the observability defects. Therefore, a method previously suggested by Andrieu et al. [2014] has

been applied to extend the image of the mapping to a global diffeomorphism through coordinate

augmentation and jacobian completion. The method has been applied to the three models, where

the augmentation and the extension have been done without modifying the observer dynamics

while maintaining the convergence. Detailed proofs for the global diffeomorphism of each model

have also been provided. The chapter ends with a proposition for obtaining the observer in

original coordinates with no observability singularities.

The next two chapters are devoted to the applications of the results provided in this chapter.

Each chapter will provide an application of the observer design based on the nonlinear oscillators,
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where it will utilize the strategies proposed in this chapter to avoid the observability defects and

to extend the image into a global diffeomorphism. The effectiveness of the proposed techniques

will be evaluated with the help of simulations and experimental results.
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3.1. Context and Motivation

This chapter addresses the observer synthesis for the application of medical microrobots. We

begin with a brief literature review on the microrobots. It is then followed by the modeling of the

forces acting on the microrobot system where the microrobot system is affected by the unknown

blood velocity. Hence a nonlinear dynamical system that combines the microrobot model as well

as the blood velocity dynamics is given afterwards. An observability analysis is then provided,

which takes into account the observability defects present in the nonlinear extended model of

the microrobots, similar to Proposition 5. To avoid such observability defects, we propose to

modify the system as in Proposition 8. Since the resulting mapping to a normal form is an

immersion and also due to the addition of fictitious outputs, the observer dimension becomes

greater compared to the system’s original dimension, therefore an extension of this mapping to

a global diffeomorphism is suggested for the extended model. Finally, the low peaking limited

high gain observer is proposed for the microrobot system in the original coordinates. Simulations

then illustrate the proposed approach proving the efficiency of the designed observer, followed

by a brief conclusion.

3.1 Context and Motivation

There has been a growing interest in the development of therapeutic microrobots and nanorobots

for some years Nelson et al. [2010]. Such systems have the potential to revolutionize many

aspects of medicine i.e., to perform complex surgical procedures or diagnosis, reach remote

places with lessened medical side effects, and shorten the patient convalescence Kristo et al.

[2003]; Kosa et al. [2007]; Handbook et al. [2007]; Zhang et al. [2009]; Ergeneman et al. [2008].

Miniaturize systems magnetically propelled by remote actuation can achieve swimming through

the blood vessels network in order to provide targeted therapy, even for hard-to-reach human

organs such as the pancreas or brain. In comparison to existing tethered medical devices, such

as flexible endoscopes and catheters, these mobile microrobots could access complex and small

regions of the human body such as gastrointestinal Than et al. [2012], brain Purdy et al. [2005],

spinal cord Roy et al. [2006], blood capillaries Miloro et al. [2012] and inside the eye Ullrich et al.

[2013] without damaging the blood or lymphatic vessels. Furthermore, many internal locations of

the body are either inaccessible or hard to reach in a tethered way. Although designing functional

medical microrobots is challenging from an engineering perspective, the potential rewards are

vast.

The first studies in untethered robots are by using principles that would later become micro-

robot actuation principles, such as a magnetic stereotaxis system Meeker et al. [1996] to guide

a tiny permanent magnet inside the human body and a magnetically driven screw which moved

through tissues Ishiyama et al. [2001]. Micro-Electro-Mechanical systems were developed in the
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1990s as a result of scientific and technical advancements, allowing microrobots size to be reduced

by several orders of magnitude. The feasibility of the actuation of these microrobots was studied

by Quate et al. [1991] in superparamagnetic particles and by Gillies et al. [1994] on magnetic

particles. As medical carriers, these micro or nanorobotic systems provide deep access to the

human body or sensitive areas for diagnosis or therapeutic purposes.

Until the 2000s, the majority of research focused on the viability of such carriers. Even

though the research in this field is very active, the field still suffers from a lack of modeling,

control and observation tools that are adapted to this context. The blood system is particularly

complex with its branches and bifurcations: without control, a microrobot would be quickly

dragged by the flow from its target. It is, therefore, necessary not only to have a faithful image

of this network thanks to the medical imagers but also to know the physical laws that dominate

the robot dynamics in this environment.

Among the numerous prototypes that have been developed, those possessing a deported

actuation are the most promising. Indeed these robots do not embed any energy source thus

inducing smaller sizes. The kind of deported actuators required to control such robots depends

on the propulsion strategy. A variable magnetic field is necessary for robots with elastic flagellum

Lagomarsino et al. [2003]; Evans and Lauga [2010] or helical flagella Dreyfus et al. [2005]. The

control of bead-pulled robots or swarm of robots Abbott et al. [2009]; Mathieu et al. [2006];

Martel and Mohammadi [2010] is provided by the magnetic field gradients of either magnetic

resonance imaging (MRI) devices or magnetic setups and is thus better suited for present medical

applications.

Whatever the proposed design, these systems are subject to different forces whose modeling

is necessary in order to estimate and control their dynamic behaviors in a fluidic environment

Arcese et al. [2011]; Vartholomeos and Mavroidis [2012]. Fluid flow in the microrobot environ-

ment presents a significant design challenge. We consider a microrobot designed to work in the

circulatory system. In addition to dealing with varying blood vessels diameter, the microrobot

must compete against the pulsating flow of blood, which is significant to a small, untethered

device and even is prominent with respect to other involved forces. In the literature, the blood

velocity is assumed to be known or set to a constant mean value, while it is a key nonlinear param-

eter of the drag force that prevails at a small scale. Since these untethered robots are actuated by

the magnetic fields or magnetic gradients and their localization is ensured by a medical imager,

the measurement of the blood velocity is a difficult task that is often assigned to other sensors

e.g. ultrasonic sensors, at least in vessels close to the sensor. For example we can use a sensor

which is based on the Doppler effect Ponzini et al. [2010]; Holloway Jr and Watkins [1977], or an

MRI (magnetic resonance imaging) Gatehouse et al. [2005], however the major drawback of these

two methods is that the temporal and spatial resolutions are not precise enough for estimating
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the drag force or other robot forces. Hence the measurement is not usable when controlling

the navigation of microrobots in blood vessels. Another solution relies on a priori knowledge

of the blood velocity. Works related to the numerical resolution of the velocity profiles using

Computational Fluid Dynamics software had been reported in the literature Kim et al. [2006];

Yong et al. [2008]. However, these studies cannot be used for real-time purposes because they

are based on Navier Stokes equations whose resolution is computationally time consuming. In

Arcese et al. [2011], the authors proposed analytical expressions of the blood velocity profiles.

These expressions are valid in the neighborhood of a bifurcation but require an excellent knowl-

edge of the vessel geometry. The blood velocity could also be considered as a disturbance and be

rejected in the control low, like in Gangloff et al. [2006] for breathing compensation or considered

as an unknown input. However, the knowledge of blood velocity is relevant for the navigation

since the main force depends on it. Finally, online estimation of the blood velocity seems to

be an interesting approach to avoid the drawbacks of the aforementioned methods, whilst also

providing a diagnostic tool for the medical staff. For the online estimation of the blood velocity,

a solution is to model the speed of the blood in the form of a state representation, the latter will

be combined with that of the dynamics of the microrobot in order to synthesize an observer who

will replace the physical sensors, using the only microrobot position measurement given by an

imager.

Since an imager is already necessary to localize the robot and thus provides an output of the

system, one can exploit an extended model of the system to reconstruct its unmeasured states.

Observers of robot velocity have already been studied in Arcese et al. [2013]. We propose to

extend this approach as done before in Fruchard et al. [2013], in order to estimate the blood

velocity behavior. Another issue to be taken into consideration is the pulse rate of the blood,

always considered as a constant Fruchard et al. [2013]; Sadelli et al. [2016]. However, the pulse

rate varies depending on the state in which the patient is, for example at rest or stressed. To

accede to it, one can either consider the pulse as a system output using a pulse sensor, or rather

rebuild it using an observer.

3.2 Modeling

Microrobots navigating in blood vessels are subjected to various forces that affect

their dynamics. Many works have been conducted on modeling these forces: electro-

static force Matsuyama and Yamamoto [1998], contact force Gilardi and Sharf [2002], van

der Waals force Iimura et al. [2009], steric force Decuzzi et al. [2005], magnetic force

Vartholomeos and Mavroidis [2012], see e.g. Arcese et al. [2011] for a review.

In our study, we focus only on the dominant forces. One of the most disturbing force applying
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Coils of a magnetic device

Microrobot

Blood Vessels

Reference

Trajectory

Blood
Pulsatile

Velocity

~Fw

−~vf (x, t)
~v

~vr

~Fd

~Fm

on the microrobot is the hydrodynamic force, which is exerted by the blood flow. The magnetic

motive force produces a net thrust in a magnetic robot to propel it. The microrobot is also

subject to its apparent weight, which is the contribution of gravity and buoyancy. Other forces

such as electrostatic, van der waals, contact forces etc can be neglected as long as the microrobot

navigates along the vessel centerline. We now detail the dominant forces acting on the microrobot

and their analytical expressions.

3.2.1 Hydrodynamic drag force

The nature of the fluid flow is characterized by its Reynolds number Re, a dimensionless number

equal to the ratio of inertial over viscous forces:

Re =
ρf ||−→v r||L

βµ
, (3.1)

where ρf , µ are the density and dynamic viscosity of the fluid, respectively, −→v r is the relative

velocity of the microrobot (v) with respect to the blood (vf (x, t)) such that −→v r = −→v −−→v f (x, t)

and L = 2r is the characteristic dimension, with r denoting the radius of the microrobot. β is a

dimensionless ratio related to the wall effect caused by the vessel occlusion by the microrobot of

radius r Kehlenbeck and Felice [1999].

The drag force exerted by the fluid on the microrobot is empirically given by

−→
F d = −1

2
ACdρf

( ||−→v r||
β

)2 −→v r
||−→v r||

, (3.2)
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where A is the frontal area of the body relative to the flow. Cd is the drag coefficient, a di-

mensionless number quantifying the resistance of a body in a moving fluid; it depends on the

microrobot’s geometry and surface state and is given by Nguyen and Schulze [2003]:

Cd =
24

Re
+

6

1 +
√
Re

+ 0.4. (3.3)

The drag force thus depends -in general nonlinearly- on the fluid relative velocity in the robot’s

frame.

Replacing the drag coefficient Cd and considering the surface area A = πr2 in (3.2), we obtain

a simplified expression for the nonlinear drag force:

Fd = −
(
a|vr|+ bv2

r + c
v2
r

1 + d
√
|vr|

) −→vr
−−→‖vr‖

(3.4)

with the parameters (a, b, c, d) defined as:

a =
6πµr

β
b =

0.2ρfπr
2

β2

c =
3ρfπr

2

β2
d =

√
2rρf
βµ

.

(3.5)

In particular case, when the microrobots navigate in capillaries, or venules, where the blood flow

is very slow and the size of the robot has to decrease as the vessels radius decreases, the Reynolds

number is low such that Re << 1, hence the Stokes flow approximation is valid. As a result,

drag force is linear such that b = c = 0.

3.2.2 Magnetic Motive Force

Magnetic coils, classically paired as Helmholtz, Maxwell or Golay coils, are used to design mag-

netic devices and produce magnetic fields and gradients. Magnetic fields and gradients are a

source of energy for the microrobot propulsion in the cardiovascular system Dario et al. [1998];

Kosa et al. [2007]; Nelson et al. [2010]. Indeed these fields and gradients can in turn induce

magnetic motive forces and torques on magnetic dipoles. Since we focus here on spheric bead

pulling, torques are useless and the magnetic motive force is given by:

−→
F m = τmV (

−→
M.
−→∇)
−→
B, (3.6)

where V is the microrobot volume,
−→
B is the magnetic field,

−→
M is the magnetization of the

microrobot, and τm = Vm
V is the ferromagnetic volume.
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3.2.3 Apparent Weight

Any body immersed in a fluid experiences a force called apparent weight, which is the contribution

of the force of gravity and buoyancy:

−→
F w = V (ρµ − ρf )−→g , (3.7)

where ρµ, ρf are the microrobot and the fluid densities respectively. V is the volume of the

body and g is the gravity acceleration. The density of the microrobot is composed of a magnetic

material density ρm and the non-magnetic material density ρc, and is given by:

ρµ = τmρm + (1− τm)ρc, (3.8)

where τm is the magnetic volume ratio, equal to the ratio of the total volume to the volume of

magnetic material in the microrobot.

3.2.4 Blood Velocity Model

The blood circulating through the vascular structure of the human body is a viscous fluid and

its characteristics and physical values vary depending on the type of blood vessel in which it is

circulating , e.g. it behaves like a newtonian or non-newtonian fluid owing to large variations in its

viscosity (from simple to fifty-folds) for the same person. As previously said, the blood velocity

measurement by the means of ultrasonic sensors or its computation through discretization of

the Navier-Stokes equation is not usable for real-time control purposes. A solution for such

problem is then to take inspiration from the Wormersley model Womersley [1955]; the fluid

speed is therefore given as vf (x, t) = vs(x)ξ1, where vs(x) is a form factor which characterizes

the pulsatile blood flow profile e.g. a parabolic profile of the blood is a newtonian fluid in the

considered blood vessel and ξ1 represents the temporal speed, solution of a system of autonomous

differential equations.

We assume that the pulsatile blood velocity ξ1 is modeled by a truncated Fourier series of

order 1:

ξ1 = A0 +A1cos(ωt+ ϕ), (3.9)

where A0 and A1 are respectively the mean value and the amplitude of the blood velocity ξ1,

and ω, ϕ, the heartbeat and phase shift respectively. By differentiating ξ1, we get

ξ2 = ξ̇1 = −ωA1sin(ωt+ ϕ). (3.10)

Since the heartbeat depends on the patient condition and health and therefore can vary with

time, it is here considered as an uncertain state variable. By deriving the signal (3.9) with respect
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to time, ξ ∈ Kξ ⊂ R4 is solution of the following nonlinear system:

Σξ =


ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = −ξ2ξ4

ξ̇4 = 0,

(3.11)

where ξ4 = ω2 represents the pulse rate to be estimated.

3.2.5 State-Space Representation

Let p1 and p2 denote, respectively, the microrobot position and its velocity, u as the control

input, and ξ1 the blood velocity, the system derived from (3.4), (3.6) and (3.7) is:

Σ1 =


ṗ1 = p2

ṗ2 = fd(p2 − ξ1) +
τmM

ρ
u

y = p1

(3.12)

where the output y is the position of the microrobot, measured by the imager. The expression

of the function f(p2, ξ1) is given by:

fd(p2 − ξ1) =

[
−σ(p2 − ξ1)

(
a|p2 − ξ1|+ b(p2 − ξ1)2 + c

(p2 − ξ1)2

1 + d
√
|p2 − ξ1|

)
+ V (ρf − ρµ)g

]
1

m
,

(3.13)

where the sign function σ is defined by

σ(s) =


−1, if s < 0

0, if s = 0

1, if s > 0.

(3.14)

Since the measurement is limited only to the position of the microrobot, i.e. y = x1, and the

blood velocity ξ1 intervenes in the reduced system, the control of this reduced system requires

either a good robustness to the uncertainty on ξ1, or to compensate for this term, which requires

its estimation. To this end, we present the state representation of an extended system combining

the dynamics of the reduced microrobot system (3.13) and the blood flow dynamics (3.11):

Σ2 =

ẋ = f(x) + gu

y = h(x)
(3.15)
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where g =
[
0 τmM

ρ 01×4

]T
and the function f(x) is given as:

f(x) =



x2

fd(x2 − x3)

x4

x5

−x4x6

0


, (3.16)

where the state vector x = [pT , ξT ]T ∈ X ⊂ R6 and output y = x1. So from the state space

representation of extended system, we perceive the non-linearities emanating from the microrobot

dynamics as well as the blood velocity model.

3.3 Observability Analysis

In order to build an observer, a first prerequisite is to study the conditions guaranteeing the

observability of the sytem.

Proposition 14 System (3.15) is observable on any connected subset of X\Sµrobots where

Sµrobots = {x ∈ X ⊂ R6 : x2
4 + x2

5 ≤ ε} for any ε > 0.

Proof 11 Let the observation set O denote the smallest vector space that contains h and closed

under the Lie derivative Lf , i.e. such that ∀σ ∈ O, LT (σ) ∈ O. dO = Span{dT, T ∈ O} is

the observability co-distribution where d denote the differential. A system is weakly observable if

dim dO(x) = dimX .
Using the output y = x1 in (4.5), we compute the successive Lie derivatives

L0
fh(x) =x1,

L1
fh(x) =x2,

L2
fh(x) =fd(x2 − x3),

L3
fh(x) =f ′d(fd − x4),

L4
fh(x) =(i− f ′′d x4)(fd − x4)− f ′dx5,

L5
fh(x) =(j + kx4 + f ′′′d x

2
4 − f ′′d x5)(fd − x4) + (2f ′′d x4 − i− fdf ′′d )x5 + f ′dx4x6,

L6
fh(x) =l(x̄5) + f ′dx5x6 + x4x6(−3f ′′d x4 + i+ 2fdf

′′
d ),

(3.17)
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where i = f ′′d fd + f ′2d , j = i′fd + if ′d and k = −fdf ′′′d − i′ − f ′df ′′d . Therefore, we get

dLifh =



1 0 0 0 0 0

0 1 0 0 0 0

0 fd −f ′d 0 0 0

0 ∗ ∗ −f ′d 0 0

0 ∗ ∗ ∗ −f ′d 0

0 ∗ ∗ ∗ ∗ v1

0 ∗ ∗ ∗ ∗ v2


, (3.18)

where

v =

∂L5
f

∂x6
∂L6

f

∂x6

 =

(
f ′dx4

f ′dx5 + x4(−3f ′′d x4 + i+ 2fdf
′′
d )

)
. (3.19)

It has been proven in Fruchard et al. [2013] that∣∣∣∣∂fd∂x3

∣∣∣∣ ∈ [α1, α2], 0 < α1 < α2 <∞, ∀x ∈ X ,

where X is a compact subset of R6.

Since f ′d 6= 0 from Fruchard et al. [2013], then vT v = 0 ⇔ x2
4 + x2

5 = 0. We conclude that

dim dO(x) = 6 on any connected subset out of Sµrobots = {x ∈ R6 : |x2
4 + x2

5| < ε}, for any

ε > 0. However there is a singularity of the system observability for xs = (x1 x2 x3 0 0 x6)T

since dim dO(xs) = 5.

Consequently the system (3.15) is not observable on

S = {x ∈ X ⊂ R6 : x2
4 + x2

5 = 0}. (3.20)

Physically, this singularity is related to the fact that one can not access to any information about

the pulse state x6 when x2
4 +x2

5 = 0. Note that this is physically impossible since, due to system

(3.11), x4 and x5 cannot vanish simultaneously, however, one can get x2
4 + x2

5 = 0, especially

during the transient phase, unless some mechanism prevent the estimation to leave X\Sµrobots.

3.4 Nonlinear observer synthesis

While dealing with the microrobots, our extended system has a higher dimension and a very high

lipshcitz constant therefore using the standard HGO can be quite problematic since the power

of the high gain parameter increases with the dimension increase. Therefore, in this work, we

are interested particularly in the low peaking limited high gain observer design, since it is well-

adapted for the estimation of the nonlinear systems and ought to provide a fast error convergence
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by tuning the high gain parameter. Alongside, the power of the high gain parameter is limited to

2 irrespective of the system dimension therefore it is quite suitable for this application. However,

in order to design the observer, we need to map the system in a form for which this observer can

be designed. Using z = T (x) defined by (1.27) for nz = nx + 1, system (3.15) can be mapped to

a phase variable form, however since the microrobot system is partially in feedback therefore for

the sake of simplicity we transform the system using a simplified mapping such that:

zi = xi, ∀i = 1, ..., 5 and

z6 = −x4x6

z7 = −x5x6.

(3.21)

Using (3.21) we get the system in Gauthier Kupka form, where z ∈ Z ⊂ R7 is the state vector

in target coordinates and y = z1 is the measured output.

Since it is possible to estimate the full-state vector of the extended system (3.15) using the

sole output accessible to measurement, observer for the system (3.15) can be designed.

3.4.1 Low Peaking Limited High Gain Observer

The low peaking limited high gain observer covers the essential feature of limited high gain

observer (i.e. limited power of the high gain parameter θ upto the power of 2) and provides

even more reliable results related to the peaking effect compared to HGO and LHGO. Based on

Theorem 12, we can design the LPLHGO for the microrobot system.

Proposition 15 (LPLHGO for microrobots) The low peaking limited high gain observer for

the system (3.21) is given as:
˙̂z = Fz(ẑ, η, y)

η̇ = Fη(ẑ, η, y)
(3.22)

with Fz and Fη given as:

Fz :



˙̂z1 = η1 + α1θ(y − ẑ1)

...

˙̂zi = ηi + αiθ(satκi(ηi−1)− ẑi)
...

˙̂z7 = ϕ7s(ẑ) + α7θ(satκ7(η6)− ẑ7)

Fη :



η̇1 = satκ3(η2) + β1θ
2(y − ẑ1)

...

η̇i = satκi+2(ηi+1) + βiθ
2(satκi(ηi−1)− ẑi)

...

η̇6 = ϕ7s(ẑ) + β6θ
2(satκ6(η5)− ẑ6)

(3.23)

such that ẑ ∈ R7, η ∈ R6 are the observer states and with

κi := max
z∈Z
|zi| i = 1, ..., nz.
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We can get the observer in original coordinates using the inversion of T : x̂ = T (ẑ):

T (ẑ) =


z1

...

z5

−
(
z4z6+z5z7
z2
4+z2

5

)

 (3.24)

From the left-inverse, it is clear that the system is singular when z2
4 +z2

5 = 0 and the inversion

is no longer possible in such a case.

Another method to get the observer in natural coordinates is by using Proposition (2) pro-

vided that the mapping T is a diffeomorphism:

˙̂x =

(
∂T

∂x
(x̂)

)−1
˙̂z. (3.25)

The Jacobian of the mapping T is given as

∂T

∂x
(x) =

(
I5 05,1

J1(x) J2(x)

)
with

J1(x) =
(

02,3 −x6I2

)
, J2(x) =

(
−x4

−x5

) (3.26)

where the matrix J2 depends on x4 and x5, meaning that in such a case when x4 = x5 = 0, the

jacobian will loose its rank and there will be singularity in the system and therefore it will not be

possible to get any information about the variable x6. The presence of the structural singularity

in J2 thereby causes an obstruction during the invertibility of the jacobian matrix.

Therefore, a need to achieve diffeomorphism and to remove this observability singularity is

necessary to get the observer in original coordinates.

3.4.2 Main Results

3.4.2.1 Observability defects avoidance

Observability defects in the system 3.15 cause a loss of information for the state variable x6

that is required to fully reconstruct the system state. Technically this observability singularity

undermine the immersion and injectivity property of T , so the observer in Proposition 15 is no

more well defined and encounter singularity. To solve this issue, we use the technique introduced

before in section 2.3.1 of Chapter 2 by adding a fictitious output to the current state vector.

The presence of this output provides fictitious access to the information for the state variable x6,

when the system is singular, allowing the modified system to remain observable and the observer

to be well-defined.
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Proposition 16 (Observability defects avoidance) To circumvent the singularity of the

system 3.15 defined in Proposition 14, we introduce a C2 mapping ρ as:

ρ : x→ max(0, ε2 − (x2
4 + x2

5))2, (3.27)

so as to define a fictitious output yf ∈ Rnf as:

yf = ρx6. (3.28)

Extending the mapping T defined by (3.21) as:

Te :

R6 → Rnz × Rnf

x 7→
(
T (x)

yf (x)

)
(3.29)

then defines an injective immersion from R6 to R8.

Proof 12 The Jacobian of the mapping Te defined by (3.29) is given by:

∂Te
∂x

(x) =

 ∂T
∂x

∂yf
∂x

 =

(
I5 05,1

J̄1 J̄2

)
(3.30)

with matrices J̄1, J̄2:

J̄1 =


01,3 −x6 0

01,3 0 −x6

01,3 ρ4x6 ρ5x6

 , J̄2 =


−x4

−x5

ρ

 , (3.31)

where ρ4, ρ5 denote the partial derivatives of ρ w.r.t x4 and x5 respectively, i. e. ρi = ∂ρ
∂xi

(x).

Due to the block triangular structure of the Jacobian (3.30), the Te Jacobian matrix is full

rank provided that J̄2 is also full rank.

Since by construction, ρ and x2
4 + x2

5 cannot be null simultaneously, it follows that J̄2 and

in turn the jacobian of Te are full rank matrices for any x ∈ Rnx . Besides, injectivity of Te is

inherited from Proposition 14, hence Te is an injective immersion on R6.

Remark 11 The number of fictitious outputs nf depends on the particular system or the states

affected by the singularity. Since in our case, only one states x6 become unobservable in a

neighbourhood Sµrobots of xs, it is sufficient to set the number of fictitious output to one.

Remark 12 It is worth mentioning that the dynamics associated with the fictitious output is

null for the system living on x ∈ X ⊂ R6\Sµrobots. The fictitious outputs will be activated only

when the system enters Sµrobots i.e. gets close to the observability singularity xs ∈ Sµrobots.
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3.4.2.2 Augmentation of Te into a global diffeomorphism

Recalling the approach defined in Chapter 2, we extend the image of Te to get a global diffeo-

morphism Ta through coordinate augmentation from x ∈ R6 to xa ∈ R8 by adding two fictitious

states τ ∈ R2, so a pre-image will always exist and will be uniquely defined.

Proposition 17 With notations of Proposition 16, let τ ∈ R2 and define an augmented mapping

Ta as:

Ta :

R8 → R8

xa =

(
x

τ

)
7→ za = Te(x) + Ψ(x)τ,

(3.32)

where Ψ(x) is a (8× 2) matrix chosen as

Ψ(xa) =


05,2

I2

x4 x5

 . (3.33)

Then, Ta defines a global diffeomorphism on R8 satisfying

Ta(x, 0) =

(
T (x)

0

)
, ∀x ∈ X ⊂ R6\Sµrobots. (3.34)

Proof 13 The jacobian matrix of Ta given by (3.32) is:

∂Ta
∂xa

(xa) =

(
I5 05,1 05,2

¯̄J1(xa) J̄2(xa) JΨ(xa)

)
(3.35)

where the matrices ¯̄J1(xa) = J̄1(xa) + ∂Ψ
∂x τ and J̄2(xa) is given by (3.31) and the jacobian is

completed by the Ψ columns (see (3.33)) given by:

JΨ(xa) =


1 0

0 1

x4 x5

 (3.36)

It is straightforward that ∣∣∣∣∂Taxa
∣∣∣∣ = (ρ+ x2

4 + x2
5)2 > 0, ∀x ∈ X . (3.37)

∂Ta
∂xa

is invertible on any bounded subset of R6, and the observer (15) is thus well defined on any

bounded subset of R8.
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To check the injectivity of Ta we provide the following proof:

za = Ta(x, τ) =



x1

x2

x3

x4

x5

−x4x6 + τ1

−x5x6 + τ2

ρ(x4, x5)x6 + x4τ1 + x5τ2


(3.38)

Ta(x
′, τ ′) = Ta(x, τ) =⇒ x′i = xi, ∀i ≤ 5 so ρ′ = ρ (3.39)

and
−x4x

′
6 + τ ′1 = −x4x6 + τ1

−x5x
′
6 + τ ′2 = −x5x6 + τ2

ρx′6 + x4τ
′
1 + x5τ

′
2 = ρx6 + x4τ1 + x5τ2

(3.40)

Using x̃i = x′i − xi in (3.40):

τ̃1 = x4x̃6

τ̃2 = x5x̃6

x4τ̃1 + x5τ̃2 = −ρx̃6

(3.41)

Combining (3.41), we get:

x2
4x̃6 + x2

5x̃6 + ρx̃6 = 0 =⇒ x̃6(ρ+ x2
4 + x2

5) = 0 (3.42)

Since by definition (ρ + x2
4 + x2

5) 6= 0, therefore x̃6 = 0 so x′6 = x6. Using the expression in

(3.41), we then find that τ̃i = 0 so τ ′i = τ . Hence Ta is a global diffeomorphism.

Proposition 18 (Singularity-free LPLHGO for microrobots) The dynamic system
˙̂xa =

(
∂Ta
∂xa

(x̂a)

)−1
(
Fz(Ta(x̂a), η, y)

−KnfTnf (x̂a)

)
η̇ = Fη(Ta(x̂a), η, y)

(3.43)

is an arbitrarily fast converging observer for system (3.15) in its original coordinates on any

bounded subset of Rnz+nf . Fz,Fη are defined in Proposition 15. Ta is defined by Proposition 17,

Knf > 0 is the gain related to the fictitious output and the notation Tnf stands for the last com-

ponents of Ta representing the dynamics associated with the fictitious output. By continuity T−1
a
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is C1, hence it is L-Lipschitz on any compact of R8. It follows that, using z∗a = Ta(x, 0) = Te(x):

‖x(t)− x̂(t)‖+ ‖τ(t)‖ ≤
√

2

∥∥∥∥∥x− x̂τ
∥∥∥∥∥

≤
√

2

∥∥∥∥∥
(
x

0

)
−
(
x̂

τ

)∥∥∥∥∥
≤
√

2‖T−1
a (z∗a)− T−1

a (ẑa)‖
≤ L

√
2‖z∗a − ẑa|

≤ L
√

2‖Te(x)− Ta(x̂, τ)‖.

(3.44)

Since Te is injective immersion and defines a converging observer from Proposition 15-17, it

follows that

lim
t→∞
‖x(t)− x̂(t)‖+ ‖τ(t)‖ = 0. (3.45)

A0 0.1

A1 0.033

ω 2π

ϕ 74π
180

M 1.23× 106

τm 0.75

ρ 2000

x0

(
0 0 A0 +A1cos(ωt+ ϕ) −ωA1(ωt+ ϕ) −ω2A1cos(ωt+ ϕ) ω2

)(
α1 α2 α3 α4 α5 α6 α7

) (
110 110 110 110 110 110 101

)(
β1 β2 β3 β4 β5 β6

) (
13363.6 118.3 2842.3 1036.7 802.2 320.8

)
k1 2

k2 4

k8 1

θ 8.5

ε 0.005

Table 3.1: Initial conditions and gains for the system and observers

3.4.3 Simulation Results

Simulations have been led for the proposed low peaking limited high gain observer for the micro-

robot system in the original coordinates for two scenarios: the nominal case and the singularity

avoidance case. The initial conditions, physical, controller and observer parameters are given in
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Table 3.1, where the observer gains are chosen quite high for the fast convergence. For the sake

of simplicity, i.e. to avoid computing an optimal reference trajectory to be stabilized along, the

controller is here designed to keep the microrobot at a fixed point using backstepping control

law and the gains ki Arcese et al. [2013].

3.4.3.1 Nominal case

The first case is the nominal one where x̂4 and x̂5 are initialized close to the initial conditions of

x4 and x5, so it is unlikely that the system experience any singularity. Figures 3.1 illustrate the

estimation error between the simulated and estimated microrobot position and velocity as well as

the error for the blood velocity and the pulse rate ω. The effect of saturation functions in reducing

the peaking effect can be seen in the simulations since the estimated states quickly converges

to the system states within the first 0.05 second with a very little peaking, as can be seen in

Figures 3.1(a) and 3.1(b). Similarly for the blood velocity, the peaking effect is negligible and

the estimated states converge to the real states in less than 0.1 second. However, in figure 3.1(e),

the peaking is quite obvious while estimating the pulse rate, and it takes around 3-4 seconds for

the estimated pulse rate to converge to its nominal value (Figure 3.1(f)) The fictitious output

in this case remains inactivated throughout the simulation since there is no singularity in the

system, hence it is not illustrated here.

3.4.3.2 Singularity Avoidance

In the second case, to check the effectiveness of the observer during observability defects, we

initialized the observer with the states x̂4 and x̂5 being null. The effect of singularity is visible

on the pulse rate estimation in Figures 3.2(c) and 3.2(d), where during the initial time period,

the peaking is increased due to activated fictitious output. The last two figures 3.2(e) and 3.2(f)

represents the τ states and yf where the fictitious output is activated briefly before returning to

zero while the τ states require some time to converge to zero. The activated fictitious output has

no impact on the estimation of microrobot position and velocity which are the same as Figures

3.1(a) and 3.1(b).
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(a) Microrobot position and velocity estimation error
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(b) Simulated & estimated microrobot position and velocity
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(c) Blood velocity estimation error

0 102 4 6 81 3 5 7 9

0

−0.1

0.1

−0.15

−0.05

0.05

0.15

Time (s)

S
im

u
la

te
d

 a
n

d
 e

s
ti
m

a
te

d
 b

lo
o

d
 v

e
lo

c
it
y

0 0.10.02 0.04 0.06 0.080.01 0.03 0.05 0.07 0.09

0

−0.1

0.1

−0.05

0.05

0.15

Time (s)

S
im

u
la

te
d
 a

n
d
 e

s
ti
m

a
te

d
 b

lo
o
d
 v

e
lo

c
it
y

(d) Simulated and estimated blood velocity
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(e) Pulse rate estimation error
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(f) Simulated and estimated pulse rate

Figure 3.1: Case A from (a) to (f): simulation for nominal case. Figure (a) represents the

estimation error of microrobot position and velocity in black and green lines respectively, Figure

(c) represents blood velocity error and Figure (e) represents the pulse rate estimation error.

Figures (b) represents the states and estimated microrobot position and velocity states, such

that simulated states are in black and green lines while the estimated states x̂ are in red and

yellow lines respectively, Figures (d) and (f) represents the simulated states in black lines and

estimated states in green lines for blood velocity and pulse rate respectively.
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(a) Blood velocity estimation error
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(b) Simulated and estimated blood velocity
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(c) Pulse rate estimation error
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(d) Simulated and estimated pulse rate
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(e) fictitious output

0 102 4 6 81 3 5 7 9

0

−0.004

−0.002

0.002

0.004

0.006

Time (s)

T
a

u

(f) Tau states

Figure 3.2: Case A from (a) to (f): simulation for singularity avoidance case. Figure (a) represents

blood velocity error and Figure (c) represents the pulse rate estimation error. Figures (b) and (d)

represents the states and estimated states, such that states are in black lines while the estimated

states x̂ are in green lines respectively for blood velocity and pulse rate. The last two figures (e)

and (f) shows the activated fictitious output in black and tau states in black and green lines.
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3.5 Conclusion

The core idea of this chapter was to estimate the microrobot position and velocity as well as

the velocity of the blood in which a microrobot is immersed using the sole measurement of the

microrobot position, given by an imager. An additional factor that needed to be taken into

account was the blood pulse rate which in this case was also estimated as a state variable using

an observer. We first provided a global overview of the forces acting on microrobot navigating in

the blood vessels, and then we have presented a dynamic system based on the dominant forces

acting on these microrobot. Since our goal was to also estimate the blood velocity and its pulse

rate, we gave a state space representation for the blood speed and then we presented an extended

dynamical system, which combined the dynamical model of the microrobot with the blood speed

model.

The proposed extended model observability was then studied, revealing the presence of some

observability defects. Therefore, we applied the methodology introduced in Chapter 2 to bypass

the observability singularity. Due to addition of the fictitious outputs in the target state space and

also because of the dimension gap between the target coordinates and the original coordinates,

an extension of the mapping to a global diffeomorphism has been done.

Finally an observer capable of handling the observability defects was proposed in order to

estimate the full-state vector required to implement the control law. The state observer was

combined with a control law based on backstepping technique and the efficiency of the proposed

approach has been illustrated by simulation results.
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Chapter 4. Application to Wake Flow Dynamics

The first section of this chapter comprises the introduction and a brief literature review on

wake flow dynamics. The second section introduces the modeling of the wake flow dynamics

based on different schemes, and we will introduce four different models of increasing complex-

ity: Minimal model, SPOD model, Multi-output model and Hybrid model. For each model, a

brief introduction followed by the observability analysis is provided. Based on the observability

analysis, then for each system we will design the three observers namely: the classical high gain

observer, the limited high gain observer and the low peaking limited high gain observer. For

each observer, two designs will be presented: first the standard form of these observers for each

model, and afterwards a second design addressing the observability defects avoidance. By the

end of each section, we will present the simulation and experimental results for each model in

order to check the effectiveness of each observer under different scenarios. The simulation results

are then followed by a brief discussion for each scenario to compare the performances of these

observers under different conditions.

4.1 Context and Motivation

The analysis of wake flow and its impact on the energy consumption in the transportation sector

becomes an increasingly important issue for these structures dynamics are responsible for an

increased drag, and in turn of undue energy. Vehicles, especially road vehicles or boats which are

not streamlined are considered as bluff bodies where the flow is massively separated in the near

wake. This separated area, called the wake is described by very small velocity magnitudes and

flow moving in the upstream direction. Ground transportation in a globalizing world accounts for

15− 20% of the total greenhouse gas emissions, where the wake dynamics is generally admitted

to contribute one-third of the total vehicle drag Hucho et al. [1998] and reducing them therefore

appears as a remarkable action Palmer [2007]; Dekker et al. [2012]; Baude et al. [2017]. The

turbulent wakes downstream the bluff body can be very complex, exhibiting coherent structures

with different scales. Predicting the flow inside the wake is a challenging issue and has a profound

impact on our capability in controlling such flows. For instance, in the case of vehicles at cruising

speeds, a decrease of 2% in the drag coefficient can result in 1% energy consumption for road

vehicles. This ratio becomes even closer to unity for naval and aircraft applications.

The strongly intermittent behavior of the flow depends on the Reynolds number: an essential

non-dimensional parameter in fluid dynamics as the ratio of inertial forces to viscous forces (see

Equation (3.1) of section 3.2.1). At high Reynolds numbers, vortex shedding occurs in the wake,

leading to a significant pressure drop on the rear surface of the body. This phenomenon gives

rise to structural vibrations, acoustic noise and also increases the unstationary drag force. The

control of vortex shedding is then of major interest for engineering applications. Active control
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in fluid mechanics is a promising and challenging research area. Promising because lower energy

consumption and better performances are expected by decreasing the drag force. Challenging

because observation and control require both real-time tractable and robust models with respect

to dynamic changes in the wake flow Ma et al. [2000]; Östh et al. [2014]. However, the estimation

of the drag force on a vehicle remains a challenge Sovran [2012]. Thus far, methods to determine

the drag of a bluff body relies on dense measurements of pressure to ensure minimum errors for

the calculation of the resulting forces exerted by the pressure and skin friction. In the case of

bluff body flows, the latter often plays a minor role and methods that can be used in real time

for the observation of the drag coefficient from sparse pressure measurements and eventually the

feedback control of such flows are of major scientific and industrial interest Cooper [1993].

The main challenge in mathematical and physical modeling and the prediction of wake dy-

namics resides in the number of states, or modes, necessary to describe the physics and how

these modes contribute to drag force. Some of these modes seem to be necessary to accurately

capture the broad range of unstable frequencies in a turbulent flow Ma et al. [2000]; Volpe et al.

[2015]; Thacker et al. [2013]; Östh et al. [2014]. These modes can be organized in a spectrum

that counts several types of strongly amplified, self-excited, or intermittent modes which need

to either be represented or filtered to capture and model the wake dynamics. Unless the number

of modes or states used to represent the dynamics is kept small, a dynamical system cannot be

used in real time in a data-assimilation-type scheme where the sensors output can be used to

predict in real time. In addition, the unstable character of the wake prevents the use of linear

models which grow unbounded in time and therefore do not capture the finite amplitude dynam-

ics Sipp et al. [2010]; Rowley and Dawson [2017].

Since linear models are unable to recover instabilities characterizing the wake flows, hence forth

a need to construct nonlinear model is required. Recent methods have allowed for constructing

nonlinear reduced order models solely based on sparse time-resolved measurements Brunton et al.

[2016]; Loiseau and Brunton [2018]. In this framework, the wake flow behind a cylinder is a well

documented flow where the primary instability is a Hopf-type bifurcation which, in the laminar

regime, is known to reach a finite amplitude and saturate to a limit cycle. The saturation process

was highlighted in Ma et al. [2000]; Stuart [1958]; Deane et al. [1991]; Noack et al. [2003] by the

interaction between the vortex shedding mode and the steady state, which induces a shift to

the flow, also known as shift mode Mantič-Lugo et al. [2014]; Passaggia and Ehrenstein [2018].

While the vortex shedding modes are characterized by a growth rate and a frequency mode, the

shift mode only possesses a decay rate which varies with the growth rate and both are strongly

coupled. In the case of a cylinder, the shift mode is associated with a shortening recirculation re-

gion and is directly related to the magnitude of the vortex shedding , the latter being dependent

on the Reynolds number. While this process is now well understood in the case of the laminar
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flow, this model scenario yet has to be tested for turbulent flow conditions at high Reynolds

number. In particular, we are interested in the capacity of this empirical Galerkin model to

capture the wake dynamics and the instantaneous evolution of the drag coefficient. In order to

eventually implement a control law, it is of major importance to design an observer that can

separate the turbulent dynamics from the vortex shedding mode and evaluate the pertinence of

a simplistic dynamical model for representing the drag on a bluff body.

4.2 Modeling

The evolution of fluid flow is governed by the well-known Navier-Stokes (NS) equations, a set of

an incompressibility condition and a nonlinear partial differential equation. The NS equations

are characterized by strong nonlinearities, high dimensionality and time-delays making fluid flow

control a challenging area, especially if real applications are targeted. In the past fifteen years,

reduced-order model (ROM) approaches have been extensively developed in the literature to

cope with the aforementioned difficulties. The objective is to obtain a low-order ODE model

from the NS equation. The most popular ways of obtaining ROMs are the Proper Orthogonal

Decomposition (POD) Berkooz et al. [1993], more recently the Dynamic Mode Decomposition

Rowley et al. [2009]; Schmid [2010] and the Optimal Mode Decomposition Wynn et al. [2013].

Among ROMs, low-dimensional Galerkin models showed promising results for feedback control

design Sipp and Schmid [2016].

Most of the energy present in the wake dynamics of the flow along time can be modeled by

the mean flow and coherent structures (modes), neglecting the incoherent structures in a first

approximation. Therefore, in this study, a Galerkin model (GM) based on a Karhunen-Loève

expansion around the unstable steady NS solution umean is used. The flow u(s, t) is then described

by the orthonormal Galerkin approximation u[N ], where the velocity u(s, t) is expressed as a

function of space and time i.e.

u(s, t) ≈ u[N ] = umean +

N∑
i=1

ami(t)ui(s), (4.1)

with N, the order of truncation. The velocity in the flow field is decomposed into mean flow

umean and various velocity terms where ui(s) denote the orthonormal spatial modes and ami(t)

are the temporal mode amplitudes. For time periodic flows, structures are described by pairs

of modes, acting as modal oscillators. One mode plays a crucial role to robustify the low order

Galerkin model with respect to Reynolds range and transient dynamics Noack et al. [2003];

Lehmann et al. [2007]: it’s the shift mode, denoted by a∆. The shift mode represents the

energy exchange between the mean flow and vortex shedding. Considering that the fundamental

mode captures more than 80% of the energy exchange, the expression of velocity can be limited
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to first three modes and higher harmonics can be neglected at first. The Galerkin approximation

of order three is then written as follows

u(s, t) ≈ umean + am1(t)u1(s) + am2(t)u2(s) + a∆(t)u∆(s). (4.2)

It is refered to as Minimal Galerkin representation Noack et al. [2003] using the dominant von

karman modes am1, am2 and the shift mode a∆. In the later section, a more refined Galerkin

representation is presented that includes higher modes and is refered to as Hybrid model in our

studies, following Luchtenburg et al. [2009] to represent energy exchanges between concurrent

structures dynamics.

4.3 Minimal Model

The Galerkin projection of (4.2) onto the NS equation leads to a low-order dimensional nonlinear

model where the amplitudes ami vary as a function of time similarly to a nonlinear oscillator

system. Finally the dynamical equations of the temporal coefficients Noack et al. [2003] are given

by:
˙

am1

am2

a∆

 =


µ −1 −am1

1 µ −am2

am1 am2 −1



am1

am2

a∆

 (4.3)

where µ > 0 is a growth rate parameter. Considering the oscillating amplitude

Amp =
√
a2
m1 + a2

m2, the above model (4.3) can be re-written as:(
˙Amp

˙a∆

)
=

(
(µ− a∆)Amp

A2
mp − a∆

)
. (4.4)

Since the growth rate µ is a key parameter but usually difficult to identify, therefore, we

consider it as a constant and estimate it as a state variable x3. In the sequel, we denote the state

vector x =
(
Amp a∆ µ

)
∈ X ⊂ R3 and consider the dynamical nonlinear minimal model:

ẋ = f(x) =


x1(x3 − x2)

x2
1 − x2

0


y = h(x) = x1,

(4.5)

where y is the measured output.

4.3.1 System Equilibria

Theorem 14 ∀µ ∈ R∗+, system (4.5) equilibria are given by:
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• x∗ = (0 0 µ)T is an unstable equilibrium ;

• x∗∗ = (
√
µ µ µ)T is a locally stable equilibrium;

• x∗∗∗ = (−√µ µ µ)T is a locally stable equilibrium.

Proof 14 A first order analysis is sufficient to state on the stability of the equilibria. It is

straightforward that f(x) = 0 if and only if x ∈ {x∗, x∗∗, x∗∗∗} and we have

∂f

∂x
(x) =


x3 − x2 −x1 x1

2x1 −1 0

0 0 0

 . (4.6)

The eigenvalues of ∂f
∂x lie in the set

{0, (x3 − x2 − 1)±
√

(x3 − x2)2 + 2(x3 − x2) + 1− 8x2
1

2
}. (4.7)

The null eigenvalue is linked to the marginal stability of x3, inherited from the last line of ∂f
∂x

and simply expresses that x3 is a constant.

• The eigenvalues of ∂f
∂x (x∗) lie in {0,−1, µ} so x∗ is a saddle point for µ > 0 and is an

unstable equilibrium.

• The eigenvalues of ∂f
∂x (x∗∗) lie in {0, −1±

√
1−8µ

2 } so x∗∗ is a stable equilibrium whose basin

of attraction is {x ∈ R∗+ × R2}.

• The eigenvalues of ∂f∂x (x∗∗∗) lie in {0, −1±
√

1−8µ
2 } so x∗∗∗ is a stable equilibrium whose basin

of attraction is {x ∈ R∗− × R2}.

These local results can be checked using V = (x − xe)T ∂f∂x (xe)(x − xe) as a Lyapunov candidate

function for xe ∈ {x∗, x∗∗, x∗∗∗}. In practice, this bistability {x∗∗, x∗∗∗} means that the system

jumps from one equilibrium to another (up and bottom or left and right), where the control

objective would be to keep it centered (i.e., unstable equilibrium x∗), what turbulence induced

disturbances prevent from occuring in real life.

4.3.2 Observability Analysis

Rebuilding the unmeasured states is mandatory to i) understand the macro-physics at work

in the wake, i.e. the dominant structure dynamics, and ii) synthesize control laws aiming at

stabilizing the wake around some desired trajectory. A first prerequisite is to study the conditions

guaranteeing the observability of the sytem.
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Theorem 15 System (4.5) is observable on any bounded connected subset of X\Sε where

Sε = {x ∈ X ⊂ R3 : |x1| ≤ ε} for any ε > 0.

Proof 15 Using the output y in (4.5) and using the notations of Chapter 2, we compute the

successive Lie derivatives

L0
fh(x) = h(x) = x1

L1
fh(x) = x1(x3 − x2)

L2
fh(x) = x1[(x3 − x2)2 − x2

1 + x2]

L3
fh(x) = x1[(x3 − x2)3 + (x3 − x2)(3x2 − 5x2

1) + x2
1 − x2]

(4.8)

Differentiation at higher orders will still lead to expressions of Lifh(x) where x1 is a factor. We

get

dL0
fh(x)T =


1

0

0

 , dL1
fh(x)T =


x3 − x2

−x1

x1


dL2

fh(x)T =


(x3 − x2)2 − 3x2

1 + x2

x1(1− 2(x3 − x2))

2x1(x3 − x2)

 .

(4.9)

It is obvious that dim dO(x) = 3 on any connected subset of X\Sε, for any ε > 0. However

there is a singularity of the system observability for xs = (0 x2 x3)T since dim dO(xs) = 1.

We can give the observability singularity set for the minimal model as:

S = {x ∈ X ⊂ R3 : x1 = 0}. (4.10)

Physically, this singularity is related to the fact that one can not access to any information about

state x2 or x3 when x1 is null. This event rarely occurs on an uncontrolled system; yet, since

the control objective will aim at stabilizing the system around x∗, the study and the avoidance

of the observability singularity become decisive for the flow estimation.

4.3.3 Nonlinear Observer Synthesis for Minimal Systems

We have a nonlinear system therefore we map the system (4.5) into a phase variable form (1.27):

z = T (x) =


x1

x1(x3 − x2)

x1[(x3 − x2)2 − x2
1 + x2]

 , y = z1 (4.11)

where z ∈ Z ⊂ R3 and measured output y ∈ R.
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In the next sections, we will synthesize three observers for the minimal wake flow model

namely: the standard HGO, Limited HGO and the Low peaking LHGO. However, since from

Theorem 15, the system suffers from observability defects, hence we will also propose the standard

HGO, Limited HGO and Low peaking LHGO in original coordinates that are capable of avoiding

the observability defects.

4.3.3.1 HGO for Minimal Model

Based on Theorem 8, we can design the high gain observer for the minimal model.

Proposition 19 (Standard HGO for minimal model) The standard high gain observer for

the system (4.11) is given as:

˙̂z = Anzz +Bnzϕs(z) + ∆K(y − ẑ1) (4.12)

where ϕs is the saturated version of ϕ on X such that:

ϕ3(x̂) = x̂1[(x̂3 − x̂2)3 + (x̂3 − x̂2)(3x̂2 − 5x̂2
1) + x̂2

1 − x̂2]. (4.13)

The high gain matrix ∆ is a diagonal matrix formed in ascending powers of a gain

θ > θ∗ > 1 whose choice is related to the Lipschitz constant of ϕ and the observer gain vec-

tor K =
(
k1 k2 k3

)T
is chosen to have the matrix (Anz −KCnz) Hurwitz.

We can get the observer in original coordinates using the inversion of T : x̂ = T (ẑ), but we

rather use the approach stated in Proposition (2) to get the observer in original coordinates:

˙̂x =
∂T

∂x
(x̂)−1 ˙̂z. (4.14)

In our study, it is obvious that hte mapping T is a diffeomorphism only on

O−ε = {x ∈ X : x1 < −ε} or on O+
ε = {x ∈ X : x1 > ε} due to the observability singular-

ity (4.10).

Remark 13 This standard high gain observer is not defined at the observability singularity since

T is by construction singular for x̂1 = 0.

∂T

∂x
(x) =


1 0 0

x3 − x2 −x1 x1

(x3 − x2)2 − 3x2
1 + x2 x1(1− 2(x3 − x2)) 2x1(x3 − x2)

 (4.15)

The observability singularity at x1 = 0 stated in Theorem 15 means that there is no access

to any information about states x2 and x3 when x1 = 0. Therefore we use the method suggested

previously in Proposition 2.3.1 of Chapter 2 and add some fictitious outputs yf ∈ Rnf in our
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system, allowing for an access to the last two states. However, completing the z state by these

fictitious outputs make the cardinality of the extended target state space greater than the car-

dinality of the original x state space i.e. Te : Rnx → Rnz+nf . It follows that the mapping T is

no more surjective. We thus use the Proposition 9 to augment Te into a global diffeomorphism

Ta using a dynamic extension and a jacobian matrix completion.

Proposition 20 (Singularity-free HGO for minimal model) Let

ρ : x 7→ max(0, ε2 − x2
1)2 (4.16)

for some ε > 0. Consider the fictitious output yf ∈ R2 such that:

yf (x) =

(
ρ(x)x2

ρ(x)x3

)
, (4.17)

and under the assumptions and notations of Proposition 19, we define two new state vectors xa
and za such as

xa =

(
x

τ

)
and za = Ta(xa) =

(
z

yf

)
+ Ψ(x)τ (4.18)

where τ ∈ R2 are the exogenous variables added to the original state vector and

Ψ : x 7→



0 0

ρ(x) 0

0 −ρ(x)

x1 x1

0 x1


. (4.19)

Then a high gain observer for system (4.5) on any bounded subset Xa ∈ R5 avoiding the singu-

larity is given by
˙̂xa =

∂Ta
∂xa

(x̂a)
−1Fz(x̂a, y) (4.20)

where

Fz : (x̂a, y) 7→


AnzTa(x̂a) +Bnzϕs(x̂) + ∆K(y − Cnz x̂a)

−k4Ta4(x̂a)

−k5Ta5(x̂a)

 (4.21)

with Tai denoting the i-th component of Ta given in (4.18) , k4, k5 > 0 and K, ∆ given by

Theorem 19.

Proof 16 To circumvent the observability singularity, we modify the system outside

Oε = {xa ∈ X ⊂ R3 : |x1| > ε} by adding the fictitious output yf given by (4.17). It is worth

noticing that this fictitious output is null on Oε so the system is not affected when living on Oε,
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except for the time of convergence of the τ to be zero. Defining a new mapping Te : x 7→ (z, yf ),

whose jacobian matrix is
∂Te
∂x

(x) =

(
1 01,2

J1(x) J2(x)

)
(4.22)

with 01,2 denoting the null matrix having 1× 2 entries and matrices

J1(x) =


x3 − x2

(x3 − x2)2 − 3x2
1 + x2

ρ1x2

ρ1x3

, J2(x) =


−x1 x1

x1 − 2x1(x3 − x2) 2x1(x3 − x2)

ρ 0

0 ρ

 (4.23)

where ρ1 denote the partial derivative of ρ with respect to x1, i.e. ρ1 = ∂ρ
∂x1

(x).

The jacobian matrix of Te is thus full rank provided that J2 is also full rank. The determinant

of the first two lines of J2 is (−x2
1) whilst the determinant of its last two lines is ρ2. By definition

(4.16), ρ and x1 cannot be simultaneously null and it follows that J2(x) is full rank on R3. The

fictitious outputs thus enable to get around the observability singularity.

Since the mapping Te is an injective immersion from R3 in R5, a way to get a one-to-one

mapping is to extend it into a global diffeomorphism Ta. To do so, we propose a dynamic extension

by augmenting the original state x with τ =
(
τ1 τ2

)T
as given by (4.18)-(4.19). The resulting

jacobian matrix of Ta is
∂Ta
∂xa

(xa) =

(
1 01,4

J̄1(xa) J̄2(xa)

)
(4.24)

where the matrices J̄1(xa) and J̄2(xa), completed by the Ψ columns (see (4.19)), and J̄1(xa) are

given by

J̄1(xa) = J1(xa) +


ρ1τ1

−ρ1τ2

τ1 + τ2

τ2

 ,

J̄2(xa) =


−x1 x1 ρ 0

x1 − 2x1(x3 − x2) 2x1(x3 − x2) 0 −ρ
ρ 0 x1 x1

0 ρ 0 x1

 .

(4.25)

It is straightforward that det J̄2(xa) = −(ρ2 + x2
1)2 < 0, so ∂Ta

∂xa
is invertible on any bounded

subset of R3 × R2, and the observer (4.20) is thus well defined on any bounded subset of R5.

To ensure that we have

lim
t→∞
‖x(t)− x̂(t)‖+ ‖τ̂(t)‖ = 0 (4.26)
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along the solutions (x, x̂, τ̂)(t) of (4.5) and (4.20)-(4.21), one can notice that the inverse mapping

T−1
a : za 7→ xa is given by

T−1
a (za) =



z1

−z2
1α

2−z1ρβ(z2
1+ρ2)+γ(z2

1+ρ2)2

(z2
1+ρ2)3

−z2
1α

2−z1ρβ(z2
1+ρ2)+(γ+α)(z2

1+ρ2)2

(z2
1+ρ2)3

β
z2
1+ρ2

z1ρα(α−(z2
1+ρ2))

(z2
1+ρ2)3 + δ

z2
1+ρ2


(4.27)

with
α(z) = z1z2 + ρ(z5 − z4)

β(z) = ρz2 − z1(z5 − z4)

γ(z) = z1z3 + z4
1 + ρz4

δ(z) = z1z5 − ρ(z3
1 + z3).

(4.28)

So T−1
a ∈ C1(R5) and it follows that it is a L-Lipschitz mapping on any bounded subset of R5.

Besides, from (4.18)-(4.19), we have Ta(x, 0) = Te, so it is straightforward that for za = Ta(x, 0):

‖T−1
a (za)− T−1

a (ẑa)‖ ≤ L‖za − ẑa‖∥∥∥∥∥
(
x

02,1

)
−
(
x̂

τ̂

)∥∥∥∥∥ ≤ L‖Te(x)− Ta(x̂, τ̂)‖.
(4.29)

Since we have proven in Proposition 19 that the first three lines of (4.21) define a converging

observer of (4.11), it follows from (4.29) that (4.26) holds. The dynamics of the last two states za
in (4.21) are arbitrarily set by any strictly positive gains k4 and k5 in order to make the fictitious

outputs go back to zero.

4.3.3.2 LHGO for Minimal Model

Based on Theorem 11, we can design the limited high gain observer for the minimal model given

by (4.5).

Proposition 21 (LHGO for the minimal model) The Limited high gain observer for the

system (4.11) is given as:

ζ̇ = Fζ(ζ, x̂, y) =


ζ12 + θk11(y − ζ11)

ζ22 + θ2k21(y − ζ11)

ζ22 + θk21(ζ12 − ζ21)

ϕ3s + θ2k22(ζ12 − ζ21)

 (4.30)
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and we can therefore get the LHGO in target coordinates using either ẑ = Pζ or z′ = P ′ζ ′. Based

on Proposition 2, we can get the observer in original coordinates since we can use either x̂ = Px̂

or x̂′ = P ′x̂′. This observer also faces the problem linked with the observability singularity at

x̂1 = 0.

Since the LHGO underlies a mapping T from x ∈ X ⊂ Rnx to ζ ∈ Rnζ with nζ = 2nz − 1 > nx,

the mapping is not surjective. An additional step in such a case for the observer synthesis is

to augment the mapping into a diffeomorphism by augmenting the mapping domain. Since the

state of the observer of Theorem 11 is redundant in the form (using ẑ = Pζ and z′ = P ′ζ ′), we

can define

ζ =



ζ1

ζ2

...

ζn−2

ζn−1



=



(
ζ1 1

ζ1 2

)
(
ζ2 1

ζ2 2

)
...(

ζnx−2 1

ζnx−2 2

)
(
ζnx−1 1

ζnx−1 2

)



=



(
ẑ1

ẑ2

)
(
ẑ3

)
...(

ẑnx−1

)
(
ẑnx

)



=



(
ẑ′1
)

(
ẑ′2
)

...(
ẑ′nx−2

)
(
ẑ′nx−1

ẑ′n

)



, (4.31)

an original way of addressing a diffeomorphism augmentation is to merge the two states ẑ and ẑ′

defining a new augmented state ˆ̄z =
(
ẑ1 ẑ2 ẑ′2 ẑ3 . . . ẑ′n−1 ẑn

)T
associated with a original

coordinate augmented state x̄ =
(
x1 x2 x′2 x3 . . . x′n−1 xn

)T
∈ Rnζ .

Proposition 22 For minimal model, defining the original coordinate augmented state x̄ and T̄

as

T̄ : x̄ =


x1

x2

x′2

x3

 7→ z̄ =


x1

x1(x3 − x2)

x1(x3 − x′2)

x1((x3 − x2)2 − x2
1 + x2)

 (4.32)

T̄ is a diffeomorphism on Ōε = {x̄ ∈ X ⊂ R4 : |x1| > ε}.

Proof 17 The jacobian of the mapping T̄ is given as:

∂T̄

∂x̄
(x̄) =

(
1 01,nζ−1

∗ J

)
. (4.33)
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and differentiating T̄ leads to

J =


−x1 0 x1

0 −x1 x1

x1(1− 2(x3 − x2)) 0 2x1(x3 − x2)

 (4.34)

so we have ∣∣∣∣∂T̄∂x̄ (x̄)

∣∣∣∣ = −x3
1

and T̄ is a diffeomorphism on Ōε.

Invertibility of the jacobian matrix of T̄ is now possible as long as the estimated augmented state

remains away from the observability singularity. Yet there is no guarantee that the estimated

state stays in this set.

To avoid loosing any access to some unmeasured states because of the observability rank loss

pinpointed in Theorem 15, for instance the loss of information about x2 and x3 when x1 = 0 for

system, a way to get around the observability singularity is to follow Proposition 2.3.1 and add

some fictitious outputs aiming at getting information about these states around the singularity.

Proposition 23 (Singularity-free LHGO for minimal model) For system (4.32), adding

respectively fictitious outputs yf ∈ Rnf

yf (x) =


ρ(x)x2

ρ(x)x′2

ρ(x)x3

 (4.35)

where ρ is the differentiable function given by (4.16).

We define two new state vectors xa and za such as:

xa =

(
x̄

τ

)
and za = Ta(xa) =

(
z̄

yf

)
+ Ψ(x)τ (4.36)

where τ ∈ R3 are the exogenous variables added to the augmented state vector x̄ and

Ψ(x̄) =



0 0 0

1 0 −1

0 1 −1

0 0 1

x1 0 0

0 x1 0

0 0 x1


. (4.37)
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Then a limited high gain observer for system (4.5) avoiding the singularity is given by

˙̂xa =
∂Ta
∂xa

(x̂a)
−1F(ζ, x̂a, y), (4.38)

where

F : (ζ, x̂a, y) 7→
(
Fζ(ζ, x̂a, y)

−K3Ta3(x̂a))

)
, (4.39)

Fζ is given by Proposition 21, K3 is a positive definite diagonal matrix of dimension 3. The

notation Ta3 stands for the last 3 components of Ta representing the dynamics associated with

the fictitious outputs.

Proof 18 Adding the fictitious outputs to the state z̄ results in an extended state ze =

(
z̄

yf

)
. Ex-

tending the transformation Te mapping x̄ ∈ Rnζ to ze ∈ Rnζ+nf results in an injective immersion

on the domain Rnζ . The Jacobian of the new mapping is given as:

∂Te
∂xa

(xa) =


1 01,nζ−1

∗ J

∗ Jf

 (4.40)

where J is given by (4.34) and Jf = ρI3. Since by construction 2x2
1 + ρ(x) > 0, it is straight-

forward that ∂Te
∂xe

(xe) has a constant rank for any x̄ ∈ Rnζ . The observability singularity has

been solved, but using Proposition 2 requires a diffeomorphism to get an observer in original

coordinates.

The proof for this part consists in augmenting the immersion Te defined on the full domain

Rnζ to Rnζ+nf into a global diffeomorphism Ta on Rnζ+nf , which requires an augmentation of the

original coordinates x̄ ∈ Rnζ to xa =

(
x̄

τ

)
∈ Rnζ+nf . Since Ψ depends only on x1, differentiating

Ta using (4.40) leads to the resulting jacobian matrix of Ta as

∂Ta
∂xa

(xa) =


1 01,q−1

∗ J

∗ Jf

Ψ(x1)

 (4.41)

Due to expressions (4.37), it follows that∣∣∣∣∂Ta∂xa
(xa)

∣∣∣∣ = −(ρ+ x2
1)3. (4.42)

By construction of function ρ, the Jacobian determinant is strictly negative for all xa ∈ Rnζ ,
thus Ta defines a global diffeomorphism.
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It can be checked that T−1
a ∈ C1, hence it is L-Lipschitz on any compact of Rnζ+nf . It follows

that, using z∗a = Ta(x̄, 0) = Te(x̄):

‖x̄(t)− ˆ̄x(t)‖+ ‖τ(t)‖ ≤
√

2

∥∥∥∥∥x̄− ˆ̄x

τ

∥∥∥∥∥
≤
√

2

∥∥∥∥∥
(
x̄

0

)
−
(

ˆ̄x

τ

)∥∥∥∥∥
≤
√

2‖T−1
a (z∗a)− T−1

a (ẑa)‖
≤ L

√
2‖z∗a − ẑa‖

≤ L
√

2‖Te(x̄)− Ta(ˆ̄x, τ)‖.

(4.43)

Since Te is injective and (4.38) defines a converging observer from Proposition 23, it follows that

lim
t→∞
‖x̄(t)− ˆ̄x(t)‖+ ‖τ̂(t)‖ = 0. (4.44)

4.3.3.3 LPLHGO for Minimal Model

Based on Theorem 12, we can design the low peaking LHGO for the minimal model.

Proposition 24 (LPLHGO for minimal models) The low peaking limited high gain ob-

server for the system (4.11) is given as:

˙̂z = Fz(ẑ, η, y)

η̇ = Fη(ẑ, η, y)
(4.45)

with Fz and Fη given as:

Fz :


˙̂z1 = η1 + α1θ(y − ẑ1)

˙̂z2 = η2 + α2θ(satκ2(η1)− ẑ2)

˙̂z3 = ϕ3s(ẑ) + α3θ(satκ3(η2)− ẑ3)

Fη :

η̇1 = satκ3(η2) + β1θ
2(y − ẑ1)

η̇2 = ϕ3s(ẑ) + β2θ
2(satκ2(η1)− ẑ2)

(4.46)

such that ẑ ∈ R3, η ∈ R2 are the observer states, and with the saturation function and gains

αi, βi satisfying the strong stability requirements in Theorem 12.

Since nz = nx, therefore we can obtain the observer in original coordinates by using Proposition

2 such that: 
˙̂x =

(
∂T

∂x
(x̂)

)−1

Fz(T (x̂), η, y)

η̇ = Fη(T (x̂), η, y)

(4.47)
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Moreover note that, based on the observability analysis done for the minimal models in

Theorem 15, T is diffeomorphism only on O−ε or on O+
ε due to the observability singularity. The

Jacobian of T is given as:

∂T

∂x
(x) =


1 0 0

x3 − x2 −x1 x1

(x3 − x2)2 − 3x2
1 + x2 x1(1− 2(x3 − x2)) 2x1(x3 − x2)

 , (4.48)

and its determinant can be found as: ∣∣∣∣∂T∂x
∣∣∣∣ = x2

1. (4.49)

It concludes that the LPLHGO is not defined at the observability singularity.

In order to get rid of this singularity, we add some fictitious outputs to the state vector

z. By following the same procedure as done before in the case of HGO and LHGO before in

Propositions 20 and 23, we can get the new LPLHGO that is capable of avoiding the singularity

with the new mapping Ta that is globally diffeomorphic. Since the computations and proof for

the LPLHGO are clearly related to what has been done for HGO so in order to avoid repetition,

we can directly write the LPLHGO in original coordinates in the next Proposition, where the

expressions for the new mapping Ta and its determinant are the same as given in Proposition 20.

Proposition 25 (Singularity-free LPLHGO for minimal models) The dynamic system
˙̂xa =

(
∂Ta
∂xa

(x̂a)

)−1
(
Fz(Ta(x̂a), η, y)

−K2Ta2(x̂a)

)
η̇ = Fη(Ta(x̂a), η, y)

(4.50)

is an arbitrarily fast converging observer for system (4.5) in its original coordinates on any

bounded subset of Rnz+nf . Fz,Fη are defined in Proposition 24 and, Ta is defined by Proposition

20, K2 is a positive definite diagonal matrix of dimension 2. The notation Ta2 stands for the last

2 components of Ta representing the dynamics associated with the fictitious outputs.

4.3.4 Simulation Results

Simulations are performed for the high gain observer, the limited high gain observer and the low

peaking limited high gain observer in original coordinates as proposed in Propositions 20, 23

and 25 respectively for different scenarios. The initial conditions and parameter values are given

in Table 4.1. The results are obtained for different high gains to obtain a similar convergence

rate for all the observers for a fair comparison. The performance comparison is led through

three cases: case A is the nominal one, where no observability defects nor any disturbance is

considered; case B illustrates the observability defects avoidance; robustness to output noise is

then addressed in the last case C.
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x0

(
0.4 0.4 0.02

)
x̂0

(
0 0.2 0.01

)
KHGO

(
1.8 1.07 0.51

)T
KLHGO

((
k11

k12

) (
k21

k22

))T
=

((
1.8

0.1

) (
1.8

0.02

))T

KLPLHGO

(α1 α2 α3

)(
β1 β2

) T

=

(1.8 1.8 1.8
)(

0.1 0.02
) T

Knf I2

θHGO 5

θLHGO 5

θLPLHGO 8

ε 0.01

Table 4.1: Initial conditions and gains for the system and observers

4.3.4.1 Case A: Nominal Case

In order to avoid any observability singularity yet with no guarantee, the initial conditions for

the observers are chosen fairly near to the system’s initial condition i.e., x̂0 =
(

0.2 0.2 0.01
)

so as to illustrate the difference between the three observers given by Propositions 19,21 and

24 without concern about the singularity avoidance. Figure 4.1(a) illustrates that the high gain

observer exhibits a significant peaking during the transient phase despite an observer initialization

quite close to the system state, for the limited HGO the peaking is reduced (Figure 4.1(c)) in

comparison to standard HGO due to the fact that observer high gain is limited to the power of

2 instead of system dimension, however, it still accounts for an observer with high peaking and

finally, the low peaking limited HGO is successful in reducing the peaking phenomenon by far,

as can be noticed on Figure 4.1(e), thus proving the usefulness of using the saturations in the

observer synthesis.

4.3.4.2 Case B: Observability Defects Avoidance

To investigate the influence of singularity avoidance on the observer dynamics, the observers are

initialized at x̂10 = 0 in the second set of simulations as can be seen in Figures 4.2,4.3 and 4.4.

The singularity-free observer’s efficiency in avoiding the singularity is demonstrated by the fact

that the fictitious outputs were triggered during the initial time periods, as depicted in Figures

4.2(c),4.3(c) and 4.4(c). The effect of these outputs vanishes when |x1| > ε; then it follows that
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the last ẑa state of the target system converges to zero, thus inducing the extra coordinates τ

to be stabilized at the origin (see Fig. 4.2(d),4.3(d) and 4.4(d)). Thence the standard HGO,

LHGO and LPLHGO observers estimation errors converge asymptotically to zero as illustrated

by Figures 4.2(a),4.3(a) and 4.4(a). However, the increase in the peaking is quite evident in the

case of HGO and limited HGO particularly during the fictitious output activation time, whilst

the presence of the saturations shows the effectiveness of LPLHGO in handling the peaking effect

quite nicely in this case as well.

4.3.4.3 Case C: Output Noise

In fluid mechanics, measurements are always affected by high frequency noises due to turbulence

imparted by the incoherent structures. So special attention has to be paid to robustness to such

noises when observing the system. Therefore, a measurement noise on the output in included

in the last case C, illustrated in Figures 4.5, 4.6 and 4.7, i.e. a white gaussian noise of variance

1 followed by a high pass filter with a cutoff frequency set to 1000 Hz. In such a case, only

practical stability is guaranteed in a ball of radius proportional to the noise amplitude.

The simulations show that the addition of output noise has quite an impact in the case of

HGO. In comparison, it is clear that LHGO and LPLHGO outperforms the high gain observer

in this regard since the noise-induced errors are significantly smaller as can be seen from Figures

4.5(a), 4.6(a) and 4.7(a).
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(a) HGO estimation error
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(b) HGO states and estimated states

0 102 4 6 81 3 5 7 9

0

−1

1

−0.5

0.5

Time (s)

E
s
ti
m

a
ti
o

n
 e

rr
o

r

(c) LHGO estimation error
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(d) LHGO states and estimated states
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(e) LPLHGO estimation error
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(f) LPLHGO states and estimated states

Figure 4.1: Minimal model: Case A from (a) to (f): simulation for nominal case. Figures (a) and

(e) depicts the estimation error x̃1, x̃2, x̃3 by black, green and red lines for HGO and LPLHGO

respectively, while Figure (c) represents the estimation error x̃1, x̃2, x̃3 and x̃4 by black, green, red

and yellow lines respectively for LHGO. Figures (b) and (e) represents the states and estimated

states, such that states x are in solid while the estimated states x̂ are in dotted black, green and

red lines respectively for HGO and LPLHGO and Figure (d) depicts the states and estimated

states, such that states are in solid while the estimated states x̂ are in dotted black, green, red

and yellow lines respectively for LHGO.
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(a) HGO estimation error
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(b) HGO states and estimated states
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(c) HGO fictitious outputs yf
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Figure 4.2: Minimal model: Case B: HGO with observability defects avoidance. Figure (a)

depicts the estimation error x̃ = x− x̂ in black, green and red respectively, figure (b) represents

the states x in solid while the estimated states in dotted black, green and red lines respectively.

Figures (c) and (d) shows the activated fictitious outputs yf and τ in black and green lines

respectively.

4.3.5 Experimental Setup and Results
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(a) LHGO estimation error
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(b) LHGO states and estimated states
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(c) LHGO fictitious outputs yf

0 102 4 6 81 3 5 7 9

0e00

2e−05

4e−05

6e−05

1e−05

3e−05

5e−05

7e−05

Time (s)

T
a

u

(d) LHGO τ states

Figure 4.3: Minimal model: Case B: LHGO with observability defects avoidance. Figure (a)

depicts the estimation error x̃ = x − x̂ in black, green, red and yellow respectively, figure (b)

represents the states x in solid while the estimated states x̂ in dotted black, green, red and yellow

respectively. Figures (c) and (d) shows the activated fictitious outputs yf and τ in black, green

and red lines respectively.

4.3.5.1 Experimental Setup

Experiments were led in the 40× 40 cm2 test section of an open wind tunnel. The speed of the

incoming flow U∞, ranging between 5 and 10 m/s, is used to generate the flow around a cubic

obstacle of height H = 0.1m. The cylinder is equipped with 9 pressure taps located on the sides

and on the back of the object as shown in Fig. 4.8. While the confinement is not an issue, it

should be noted that the blockage ratio is 1/4 in the test section which has an influence on the

characteristics of the vortex shedding compared to the unconfined flow. The Reynolds number

Re = U∞H/ν, where ν = 1.8 10−5 m2/s is the kinematic viscosity of the air, was in the range of

[2.7; 5.5]× 104. A second non-dimensional number of importance is the frequency of the vortex

shedding f = StU∞/H, where the Strouhal number St = 0.14 in the case of the square cylinder.

The side pressure sensors were used to measure the amplitude of vortex shedding while

seven pressure sensors positioned on the back of the cylinder were used to measure the pressure
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(a) LPLHGO estimation error
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(b) LPLHGO states and estimated states
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(c) LPLHGO fictitious outputs yf
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Figure 4.4: Minimal model: Case B: LPLHGO with observability defects avoidance. Figure (a)

depicts the estimation error x̃ = x− x̂ in black, green and red respectively, figure (b) represents

the states x in solid while the estimated states in dotted black, green and red lines respectively.

Figures (c) and (d) shows the activated fictitious outputs yf and τ in black and green lines

respectively.

component of the drag force onto the bluff body. The variables are nondimensionalized as follows:

x̄ = x̄∗/H, u = u∗/U∞, and p = 2p∗/(ρU2
∞), (4.51)

where the starred quantities are the dimensional quantities. Pressures were considered as the

pressure coefficient Cp = 2(p− p∞)/(ρU2
∞) measured at each position on the cylinder. The side

faces contribute only to the lift coefficient CL whereas the drag coefficient CD corresponds to the

projection of the pressure coefficient onto the front and back surfaces. Total drag is defined as

the sum of pressure and friction drags: CD = Cp +Cf . Numerical simulations and experimental

measurements report mean values of CD ≈ 2.2 Iaccarino et al. [2003]; Meliga et al. [2016] from

Reynolds Averaged Navier-Stokes (RANS) simulations and CD ≈ 2.19 Trias et al. [2015] from

Direct Numerical Simulations (DNS) and mean CL = 0 for very similar Reynolds numbers. In the

present experiment, these mean values are found to be [CD,exp, CL,exp] ≈ [1.97, 0.05] which is in

good agreement. In addition, Iaccarino et al. [2003] and Meliga et al. [2016] found using RANS
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(b) HGO states and estimated states
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Figure 4.5: Minimal model: Case C: HGO with observability defects avoidance and additional

output noise. Figure (a) depicts the estimation error x̃ = x − x̂ in black, green and red respec-

tively, figure (b) represents the states x in solid while the estimated states in dotted black, green

and red lines respectively. Figures (c) and (d) shows the activated fictitious outputs yf and τ in

black and green lines respectively.

simulations that the drag coefficient of the steady state is CD,steady ≈ 1.71 for a similar Reynolds

number, which is directly related to the shift mode x2, that is ∆CD,exp(t) = CD,exp(t)−CD,steady.
Fluctuations can also be used to compare DNS results Trias et al. [2015] with the present

experiments. In particular, the fluctuations of the lift coefficient provide another mean to com-

pare the amplitude of the oscillations from the pressure taps located on the sides of the square

cylinder where Trias et al. [2015] report rms(CL(t)) ≈ 1.71. This coefficient can only be inferred

from two pressure taps (see Fig. 4.8) and provide an estimation rms(CL,exp(t)) ≈ 0.54 which

is well below the value found in the literature. This difference may be attributed to the sparse

measurements on these faces of the square cylinder.

In the case of a bluff body, drag is more conveniently controlled by modifying the size of the

recirculation region, which in turn, is slaved to the amplitude of the vortex shedding, at least

in the laminar case. It is however less clear that the dominant vortex shedding mode alone is
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(a) LHGO estimation error
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(c) LHGO fictitious outputs yf
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Figure 4.6: Minimal model: Case C: LHGO with observability defects avoidance and additional

output noise. Figure (a) depicts the estimation error x̃ = x − x̂ in black, green, red and yellow

respectively, figure (b) represents the states x in solid while the estimated states x̂ in dotted

black, green, red and yellow respectively. Figures (c) and (d) shows the activated fictitious

outputs yf and τ in black, green and red lines respectively.

enough to predict the modification of the shift mode in the turbulent case and the prediction

of the pressure at the base from a minimum number of sensors remains an open question. The

interest of the present experiment is also to relate the amplitude of the shift mode through the

amplitude of the vortex shedding which can be evaluated using sensors located on both sides of

the bluff body. As shown in Stuart [1958]; Deane et al. [1991], the velocity on opposite sides of

the bluff body is shifted by a phase of π/2. However, using pressure measurements (p1, p2), the

signal obtained from similar locations are shifted with a phase of π Kurtulus et al. [2007]. To

overcome this problem, we define p̄1 = (p1− p2)/2 and p̄2 the temporal derivative of the former.

The amplitude of the vortex shedding can be written as:

Amp(t) =
√
p̄2

1(t) + p̄2
2(t), (4.52)

illustrated in Fig. 4.9(a). Fig. 4.9(c) shows that the mean pressure at the base and thus
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(a) LPLHGO estimation error
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(b) LPLHGO states and estimated states
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(c) LPLHGO fictitious outputs yf
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Figure 4.7: Minimal model: Case C: LPLHGO with observability defects avoidance and addi-

tional output noise. Figure (a) depicts the estimation error x̃ = x − x̂ in black, green and red

respectively, figure (b) represents the states x in solid while the estimated states in dotted black,

green and red lines respectively. Figures (c) and (d) shows the activated fictitious outputs yf
and τ in black and green lines respectively.

the drag coefficient deviation from the steady state ∆CD,exp(t) is essentially insensitive to the

intermittency of the vortex shedding amplitude. The small oscillation of ∆CD,exp(t) are magnified

in 4.9(b) together with a low-pass filter computed over 20 periods of vortex shedding where

the slow dynamics appear to be well correlated with the variations of the amplitude Amp. As

proposed by Sharma et al. [2011] a brief time-scale analysis shows that the shear-time scale

ts ∼ H/StU∞ ∼ O(10−1) akin to vortex shedding is much shorter than the turbulent time scale

tnl ∼ H/Stu′ ∼ O(100) where u′ is the amplitude of the turbulent fluctuations, typically of the

order O(U∞/10). This nonlinear time scale is visible for instance in Fig. 4.9 and Fig. 4.10 and

modulates the amplitude of the vortex shedding in time, resulting in the intermittent amplitude

Amp(t).
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Figure 4.8: Sketch of the open wind tunnel and the square cylinder experiment. The thick red

lines show the pressure taps while the pressure transducer is located inside the bluff body. The

double arrow in blue shows the recirculation area while the vortex shedding is shown with dotted

line.

4.3.5.2 Experimental Results

We apply the high gain observer proposed in Proposition 20 to the experimental data. Since we

have no access to the shift mode nor to the growth rate, we provide theoretical values based on

the experimental equilibrium x∗∗∗: (0.3974, 0.1210, 0.1210)T . The observer is initialized with

x̂(0) =
(

1 1 1
)T

and τ(0) = 02,1. Gains are chosen as K =
(

0.31 0.07 0.05
)T

and the high

gain as θ = 1.1 to filter the signal high frequencies. After a 6s long transient phase, the observer

converges both to the measured amplitude and to the theoretical values of the shift mode and

growth rate (Fig. 4.10). The filtering effect of the observer drastically reduces the noise impact

on the estimated states. Statistical analysis is given in Table 4.2. Despite a very simple model,

it seems that the proposed approach is able to catch the dynamics of the mode. However, since

many modes are implied for this large Reynolds number, it will be of great interest to compare

the theoretical and estimated values to their true values, and to estimate the contribution of the

other modes dynamics.

Variable Mean value Standard deviation

y = x1 0.3479 0.1486

x̂1 0.3430 0.0377

x̂2 0.1191 0.0255

x̂3 0.1138 0.0498

Table 4.2: Statistical values for experiments
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Figure 4.9: (a) Temporal evolution of the mean pressure p̄ = (p1 − p2) (blue) where p1 and p2

are the pressures measured on the sides of the square cylinder respectively, parallel to the flow

and the temporal derivative (red). (b) Estimated lift coefficient C̃L,exp(t) (black) compared with

fluctuations of the pressure on the back ∆C̃D,exp(t) magnified by a factor 200. The (˜ ) denotes

that the mean was subtracted. (c) Temporal evolution of the lift coefficient CL,exp and the shift

of the drag coefficient ∆CD,exp(t) with respect to the steady state.

4.4 SPOD Model

The estimation of coherent structures from experimental or numerical data is an important

step in the identification of a nonlinear reduced-order model (ROM). This mainly includes the

construction of coherent structures (modes) that inherit most of the energy present in the flow

along the time. There are different methods of estimating coherent structures, like DMD, POD,

etc. Spectral proper orthogonal decomposition (SPOD) has been used to estimate the coherent

structures that are physically meaningful as it evolves with a clear separation of phenomena
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Figure 4.10: Minimal model: Experimental estimated states. The black solid line represents the

measured output y = x1 on the system, the purple dotted line is the theoretical shift mode and

growth ratio at the equilibrium, computed as 〈y〉2. Estimated states x̂1, x̂2 and x̂3 are depicted

by blue, green and red solid lines respectively.

occurring at multiple frequencies and energies, and these modes oscillate in their frequency.

The coherent structures are estimated by SPOD which characterizes these modes both in

time and spatial coordinates, which is an advantage over POD modes. Time-varying mode am-

plitudes of these coherent structures are then estimated, and filtered through a Sgolay filter. The

identification of the dynamics is carried out with the Galerkin projection from the wind tunnel

measurement at Reynolds number 1000, that contains only the attractor dynamics. Identifica-

tion from this type of flow date requires enforcement of physical constraints in these regimes that

confirm their presence.

d

dt


am1

am2

a∆ + c

 =


µ −St −γam1

St µ −γam2

χam1 χam2 −λ



am1

am2

a∆ + c

 (4.53)

with c > 0, the identification of the unknown parameters is carried out by solving the optimization

problem to minimize the cost function, as given in Table 4.3.

Using the oscillating amplitude Amp =
√
a2
m1 + a2

m2; we derive our state space model

x ∈ X ⊂ R3 with x1 being the oscillating amplitude and x2 as the new shift mode a∆ + c,

representing the energy exchange between the mean flow and oscillatory perturbation and finally
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4.4. SPOD Model

Polynomial dam1
dt

dam2
dt

da∆
dt

1 - - 0.7417(c)

am1 0.0164(µ) 0.221(St) -

am2 0.221(St) 0.0164(µ) -

am1a∆ 0.0221 (γ) - -

am2a∆ - −0.0221 (γ) -

a∆ - - −0.0248(λ)

a2
m1 + a2

m2 - - 0.7343 (χ)

Table 4.3: Identified modeling Parameters for system SPOD

x3 a constant growth rate parameter µ. Therefore, it can be rewritten as:

ẋ = f(x) =


x1(x3 − γx2)

χx2
1 − λx2

0

 , y = h(x) = Cx = x1, (4.54)

where y is the measured output of the system with C = (1 0 0).

Proposition 26 Based on Theorem 15, system (4.54) is observable on

Oε = {x ∈ X ⊂ R3 : |x1| > ε} for any ε > 0 and the observability singularity set for

the identified minimal SPOD model:

S = {x ∈ X ⊂ R3 : x1 = 0}. (4.55)

The proof of Proposition 26 for observability analysis of SPOD model is quite similar to the proof

of Theorem 15, hence it is avoided here for the sake of compactness and to avoid repetitions.

4.4.1 Nonlinear Observer synthesis for SPOD model

We have a nonlinear system therefore, we begin by transforming the minimal nonlinear system

into observability normal form:

z = T (x) =


x1

x1(x3 − γx2)

x1[(x3 − γx2)2 − γχx2
1 + γλx2]

 , y = z1, (4.56)

where z ∈ Z ⊂ R3 and measured output y ∈ R.
Since the SPOD model also suffers from observability defects, hence in this section we will

design the nonlinear observer for SPOD model with singularity avoidance. In the sequel, we

will present the design of standard HGO, LHGO and LPLHGO in original coordinates that are

capable of avoiding observability defects.
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4.4.1.1 HGO for SPOD model

Based on Theorem 8, we can design the high gain observer for the SPOD model.

Proposition 27 (Standard HGO for SPOD model) The standard high gain observer for

the system (4.56) is given as:

˙̂z = Anzz +Bnzϕs(z) + ∆K(y − ẑ1), (4.57)

where ϕs is the Lipschitz extension of ϕ given by:

ϕ3(x̂) = x̂1[(x̂3 − γx̂2)3 + (x̂3 − γx̂2)(3γλx̂2 − 5γχx̂2
1) + γλχx̂2

1 − γλ2x̂2]. (4.58)

The high gain matrix ∆ is a diagonal matrix formed in ascending powers of a gain θ > θ∗ > 1

and the observer gain matrix K =
(
k1 k2 k3

)T
is chosen so as to have (Anz−KCnz) Hurwitz.

Remark 14 This standard high gain observer is not defined at the observability singularity since

T is by construction singular for x̂1 = 0.

∂T

∂x
(x) =


1 0 0

x3 − γx2 −γx1 x1

(x3 − γx2)2 − 3γχx2
1 + γδx2 γx1(λ− 2(x3 − γx2)) 2x1(x3 − γx2)

 . (4.59)

The observability singularity at x1 = 0 stated in Proposition 26 means that there is no access

to any information about state x2 nor x3 when x1 = 0. We use the same procedure as done

before for the observability defects avoidance for the minimal model and get the observer in

original coordinates.

Proposition 28 (Singularity-free HGO for SPOD model) Let

ρ : x 7→ max(0, ε2 − x2
1)2 (4.60)

for some ε > 0. Consider the fictitious output yf ∈ R2 such that:

yf (x) =

(
γρ(x)x2

ρ(x)x3

)
, (4.61)

and under the assumptions and notations of Proposition 19, we define two new state vectors xa
and za such as

xa =

(
x

τ

)
and za = Ta(xa) =

(
z

yf

)
+ Ψ(x)τ, (4.62)
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where τ ∈ R2 are the exogenous variables added to the original state vector and Ψ is given as:

Ψ : x 7→



0 0

ρ(x) 0

0 −λρ(x)

x1 x1

0 x1


. (4.63)

The determinant of the new mapping Ta comes out to be:∣∣∣∣∂Ta∂xa
(xa)

∣∣∣∣ = −γλ(x2
1 + ρ2)2, ∀(γ, λ > 0). (4.64)

Then a high gain observer for system (4.5) on any bounded subset X ∈ R3 avoiding the

singularity is given by
˙̂xa =

∂Ta
∂xa

(x̂a)
−1Fz(x̂a, y), (4.65)

where

Fz : (x̂a, y) 7→


AnzTa(x̂a) +Bnzϕs(x̂) + ∆K(y − Cnz x̂a)

−k4Ta4(x̂a)

−k5Ta5(x̂a)

 (4.66)

with Tai denoting the i-th component of Ta given in (4.62) , k4, k5 > 0 and K, ∆ given by

Theorem 19.

The proof of this proposition is similar to the proof given for HGO for minimal model (i.e., Proof

16), therefore it is omitted here to avoid repetition.

4.4.1.2 LHGO for SPOD model

Based on Theorem 11, we can design the limited high gain observer for the SPOD model given

by (4.54).

Proposition 29 (LHGO for SPOD model) The limited high gain observer for the system

(4.56) is given as:

ζ̇ = Fζ(ζ, x̂, y) =


ζ12 + θk11(y − ζ11)

ζ22 + θ2k21(y − ζ11)

ζ22 + θk21(ζ12 − ζ21)

ϕ3s + θ2k22(ζ12 − ζ21)

 , (4.67)

and we can therefore get the LHGO in target coordinates using either ẑ = Pζ or z′ = P ′ζ ′. Based

on Proposition 2, we can get the observer in original coordinates since we can use either x̂ = Px̂

or x̂′ = P ′x̂′. This observer also faces the problem linked with the observability singularity at

x̂1 = 0.
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The mapping T is an immersion from x ∈ X ⊂ Rnx to ζ ∈ Rnζ such that nζ = 2nz − 1 > nx,

therefore we augment the mapping domain into diffeomorphism using the same methology as

done previously for the minimal model.

Proposition 30 For the SPOD model, defining the original coordinate augmented state x̄ and

T̄ as

T̄ : x̄ =


x1

x2

x′2

x3

 7→ z̄ =


x1

x1(x3 − γx2)

x1(x3 − γx′2)

x1((x3 − γx2)2 − γχx1 + γλx2)

 . (4.68)

T̄ is a diffeomorphism on S̄ε = {x̄ ∈ X ⊂ R4 : |x1| > ε}.

Proof 19 The jacobian of the mapping T̄ is given as:

∂T̄

∂x̄
(x̄) =

(
1 01,nζ−1

∗ J

)
(4.69)

with

J =


−γx1 0 x1

0 −γx1 x1

γx1(λ− 2(x3 − γx2)) 0 2x1(x3 − γx2)

 , (4.70)

leads to the determinant of T̄ : ∣∣∣∣∂T̄∂x̄ (x̄)

∣∣∣∣ = −γλx3
1, ∀(γ, λ > 0).

This proves T̄ is a diffeomorphism on S̄ε.

To avoid the observability defects pinpointed in Proposition 26, we add some fictitious outputs

aiming at getting information about x2, x
′
2 and x3 around the singularity.

Proposition 31 (Singularity-free LHGO for SPOD model) For system (4.68), adding

respectively fictitious outputs yf ∈ Rnf

yf (x) =


γρ(x)x2

γρ(x)x′2

ρ(x)x3

 , (4.71)

where ρ is given in (4.16). We define two new state vectos, xa and za, which are as follows:

xa =

(
x̄

τ

)
and za = Ta(xa) =

(
z̄

yf

)
+ Ψ(x̄)τ, (4.72)
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where τ ∈ R3 are the exogenous variables added to the augmented state vector x̄ and

Ψ(x̄) =



0 0 0

1 0 −1

0 1 −λ
0 0 λ

x1 0 0

0 x1 0

0 0 x1


. (4.73)

The determinant of Ta comes out to be:∣∣∣∣∂Ta∂xa
(xa)

∣∣∣∣ = −γ2λ(ρ+ x2
1)3, ∀(γ, λ > 0). (4.74)

Then a Limited high gain observer for system (4.5) avoiding the singularity is given by

˙̂xa =
∂Ta
∂xa

(x̂a)
−1F(ζ, x̂a, y), (4.75)

where

F : (ζ, x̂a, y) 7→
(
Fζ(ζ, x̂a, y)

−K3Ta3(x̂a))

)
(4.76)

Fζ is given by Proposition 29 and K3 is a positive definite diagonal matrix of dimension 3. The

notation Ta3 stands for the last 3 components of Ta representing the dynamics associated with

the fictitious outputs.

The proof of this proposition is akin to Proof 18.

4.4.1.3 LPLHGO for SPOD model

Based on Theorem 12, we can design the low peaking LHGO for the SPOD model.

Proposition 32 (LPLHGO for SPOD model) The low peaking limited high gain observer

for the system (4.56) is given as:
˙̂z = Fz(ẑ, η, y)

η̇ = Fη(ẑ, η, y)
(4.77)

with Fz and Fη given in Proposition 24.

Since nz = nx, therefore we can obtain the observer in original coordinates by using Proposition

2. However, based on the observability analysis done for the SPOD model in Proposition 26, T

is diffeomorphism only on Sε due to the observability singularity. The Jacobian of T is given as:

∂T

∂x
(x) =


1 0 0

x3 − γx2 −γx1 x1

(x3 − γx2)2 − 3γχx2
1 + γλx2 γx1(λ− 2(x3 − γx2)) 2x1(x3 − x2)

 (4.78)
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and its determinant can be found as: ∣∣∣∣∂T∂x
∣∣∣∣ = −γλx2

1 (4.79)

so the LPLHGO is not defined at the observability singularity. By following the same procedure

as done before in the case of HGO and LHGO in Propositions 20 and 23, we can get the

new LPLHGO that is capable of avoiding the singularity. The observer synthesis procedure of

LPLHGO for the SPOD model is same as that of minimal model, therefore we save the space

and directly write the LPLHGO in original coordinates in the next Proposition.

Proposition 33 (Singularity-free LPLHGO for SPOD model) The dynamic system
˙̂xa =

(
∂Ta
∂xa

(x̂a)

)−1
(
Fz(Ta(x̂a), η, y)

−K2Ta2(x̂a)

)
η̇ = Fη(Ta(x̂a), η, y)

(4.80)

is an arbitrarily fast converging observer for system (4.54) in its original coordinates on any

bounded subset of Rnz+nf . Fz,Fη are defined in Proposition 24 and, Ta is defined by Proposition

20, K2 is a positive definite diagonal matrix of dimension 2. The notation Ta2 stands for the last

2 components of Ta representing the dynamics associated with the fictitious outputs.

4.4.2 Simulation Results for SPOD Model

x0

(
0.2 0.75 0.0164

)
x̂0

(
0 0.6 0.02

)
KHGO

(
0.33 0.036 0.0018

)T
KLHGO

((
k11

k12

) (
k21

k22

))T
=

((
0.18

0.01

) (
0.18

0.002

))T

KLPLHGO

(α1 α2 α3

)(
β1 β2

) T

=

(0.18 0.18 0.18
)(

0.01 0.002
) T

Knf 10I2

θHGO 3.5

θLHGO 3

θLPLHGO 5

ε 0.01

Table 4.4: Initial conditions and gains for the system and observers for SPOD model
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The high gain observer, limited high gain observer, and low peaking limited high gain ob-

server in original coordinates proposed in Propositions 28, 31, and 33, respectively are simulated

for different scenarios. Table 4.4 provides the initial conditions and observer gains, while the

parameter values for the system are given in Table 4.3. The results are provided for different

high gains to obtain a similar convergence rate for all the observers. Similar to what was done

before in the case of the minimal model, the performance comparison is guided through three

cases: case A is the nominal one, where no observability defect or disurbance is considered; case

B illustrates the observability defects avoidance; and finally in case C, the robustness to output

noise is addressed.

4.4.2.1 Case A: Nominal Case

The initial condition for the state variable x̂1 is chosen non-null i.e., x̂1 = 0.21 to try avoiding

any observability defect and study the different observer behaviors under nominal conditions.

The first figure 4.11(a) presents a high peaking due to the fact that high gain observer increases

the power of the high gain parameter. In comparison to HGO, the effect of peaking is reduced in

the case of LHGO due to high gain power limited to two (Figure 4.11(c)). The peaking is infact

further reduced for LPLHGO owing to the saturations present between the interconnections as

can be seen in 4.11(e).

4.4.2.2 Case B: Observability Defects Avoidance

The three observers are initialized at zero in the second set of simulations, as can be seen

in Figures 4.12,4.13 and 4.14 to examine the impact of singularity avoidance on the observer

dynamics. The fact that fictitious outputs were activated during the initial few seconds can

be seen in Figures 4.12(c),4.13(c) and 4.14(c), and the estimation error converges to zero as

soon as x goes back to Oε, showing that the three observers were efficient enough in handling the

singularity. The activation of fictitious outputs in this scenario is the reason behind the increased

peaking, and each observer’s response to dealing with the peaking effect is comparable to that

in nominal case.

4.4.2.3 Case C: Output Noise

Since the measurements are affected by high frequency noises, therefore while observing the

system, particular emphasis must be paid to robustness to such noises. As a result, the final

case C includes studying the system with the white gaussian measurement noise with a cutoff

frequency set to 1000 Hz followed by a variance 1 on the output. Only practical stability is ensured

in such a scenario as can be seen in Figures 4.15, 4.16 and 4.17. The simulations demonstrate that
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in the case of HGO, the inclusion of the output noise has a significant influence. Compared to the

HGO, it is evident that LHGO and LPLHGO perform better in this regard as the noise-induced

errors are significantly smaller as can be seen from Figures 4.15(a), 4.16(a) and 4.17(a).
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(a) HGO estimation error
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(c) LHGO estimation error
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(d) LHGO states and estimated states
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(e) LPLHGO estimation error
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(f) LPLHGO states and estimated states

Figure 4.11: SPOD: Case A from (a) to (f): simulation for nominal case. Figures (a) and

(e) depicts the estimation error x̃1, x̃2, x̃3 by black, green and red lines for HGO and LPLHGO

respectively, while Figure (c) represents the estimation error x̃1, x̃2, x̃3 and x̃4 by black, green, red

and yellow lines respectively for LHGO. Figures (b) and (e) represents the states and estimated

states, such that states x are in solid while the estimated states x̂ are in dotted black, green and

red lines respectively for HGO and LPLHGO and Figure (d) depicts the states and estimated

states, such that states are in solid while the estimated states x̂ are in dotted black, green, red

and yellow lines respectively for LHGO.
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(a) HGO estimation error
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(b) HGO states and estimated states
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Figure 4.12: SPOD: Case B: HGO with observability defects avoidance. Figure (a) depicts the

estimation error x̃ = x− x̂ in black, green and red respectively, figure (b) represents the states x

in solid while the estimated states in dotted black, green and red lines respectively. Figures (c)

and (d) shows the activated fictitious outputs yf and τ in black and green lines respectively.

4.5 Multi-Output Wake Flow Model

The Galerkin projection of (4.2) onto the Navier-Stokes equation leads to a low-order dimensional

nonlinear model where the amplitudes ami(t) vary as a function of time similarly to a nonlinear

oscillator system. The dynamical equations of the temporal coefficients Noack et al. [2003] are

given by : 
ȧm1

ȧm2

˙a∆ + c

 =


µ −St −γam1

St µ −γam2

χam1 χam2 −λ




am1

am2

a∆ + c

 . (4.81)

with c>0. The parameters (µ, St, γ, λ, χ) are specific to fluid mechanics and are identified using

SPOD as discussed in the previous section.

We derive the state space model x ∈ X ⊂ R4 with x1 = am1 and x2 = am2 being the

oscillating amplitude that are accessible to measurement thanks to particle image velocimetry

sensors attached on both the sides of the cylinder. x3 = a∆ + c is the shifted mode, representing
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(b) LHGO states and estimated states
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(c) LHGO fictitious outputs yf
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Figure 4.13: SPOD: Case B: LHGO with observability defects avoidance. Figure (a) depicts the

estimation error x̃ = x− x̂ in black, green, red and yellow respectively, figure (b) represents the

states x in solid while the estimated states x̂ in dotted black, green, red and yellow respectively.

Figures (c) and (d) shows the activated fictitious outputs yf and τ in black, green and red lines

respectively.

the energy exchange between the mean flow and the oscillatory perturbation. The growth rate

parameter µ is a key parameter but usually difficult to identify since it infact may depend on

other modes: we consider it as a constant and estimate it as x4.

Therefore, (4.81) can be rewritten as:

ẋ =


ẋ1

ẋ2

ẋ3

ẋ4

 =


−Stx2 + x1(x4 − γx3)

Stx1 + x2(x4 − γx3)

−λx3 + χ(x2
1 + x2

2)

0

 , x =


am1

am2

a∆ + c

µ

 ∈ X ⊂ R4, y =

(
x1

x2

)
∈ R2,

(4.82)

where we now have access to both x1 = am1 and x2 = am2.
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(a) LPLHGO estimation error
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(b) LPLHGO states and estimated states
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(c) LPLHGO fictitious outputs yf
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Figure 4.14: SPOD: Case B: LPLHGO with observability defects avoidance. Figure (a) depicts

the estimation error x̃ = x−x̂ in black, green and red respectively, figure (b) represents the states

x in solid while the estimated states in dotted black, green and red lines respectively. Figures

(c) and (d) shows the activated fictitious outputs yf and τ in black and green lines respectively.

4.5.1 Observability Analysis for Multi-output Wake flow Model

Proposition 34 (Observability of the system) Based on Theorem 15, system (4.82) is (dif-

ferentially) observable on Oε = {x ∈ X ⊂ R4 : x2
1 + x2

2 > ε2} for any ε > 0.

Proof 20 The observation set O is the smallest vector space that includes hi and is closed under

the Lie derivative Lf , and dO(x) = {dT (x), T ∈ O} is the observability co-distribution at point

x, where d denotes the differential. The system (4.82) is weakly observable if dim dO(x) = 4.

Computing the successive Lie derivatives using h1(x) = x1 and h2(x) = x2 yields
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(a) HGO estimation error
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(b) HGO states and estimated states
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(c) HGO fictitious outputs yf
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Figure 4.15: SPOD: Case C: HGO with observability defects avoidance and additional output

noise. Figure (a) depicts the estimation error x̃ = x − x̂ in black, green and red respectively,

figure (b) represents the states x in solid while the estimated states in dotted black, green and

red lines respectively. Figures (c) and (d) shows the activated fictitious outputs yf and τ in black

and green lines respectively.

dL0
fh

1(x)T =


1

0

0

0

 , dL1
fh

1(x)T =


q1

−St
−γx1

x1

 , dL2
fh

1(x)T =


a11

b11

c11

d11



dL0
fh

2(x)T =


0

1

0

0

 , dL1
fh

2(x)T =


St

q1

−γx2

x2

 , dL2
fh

2(x)T =


a21

b21

c21

d21

 ,

(4.83)
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(a) LHGO estimation error
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(b) LHGO states and estimated states
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(c) LHGO fictitious outputs yf

0 2010 302 4 6 8 12 14 16 18 22 24 26 28

0

0.02

0.04

0.06

0.08

Time (s)

T
a

u

(d) LHGO τ states

Figure 4.16: SPOD: Case B: LHGO with observability defects avoidance and additional output

noise. Figure (a) depicts the estimation error x̃ = x− x̂ in black, green, red and yellow respec-

tively, figure (b) represents the states x in solid while the estimated states x̂ in dotted black,

green, red and yellow respectively. Figures (c) and (d) shows the activated fictitious outputs yf
and τ in black, green and red lines respectively.

where q1 = (x4 − γx3) and the expression for the dLfh
i(x) components are given as:

a11 = −S2
t + γλx3 + q2

1 − γχ(3x2
1 + x2

2) a21 = 2Stq1 − 2γχx1x2

b11 = −2Stq1 − 2γχx1x2 b21 = −S2
t + γλx3 + q2

1 − γχ(x2
1 + 3x2

2)

c11 = γλx1 + 2Stγx2 − 2γx1q1 c21 = γλx2 − 2γStx1 − 2γx2q1

d11 = −2Stx2 + 2x1q1 d21 = 2Stx1 + 2x2q1.

(4.84)

Higher order differentiation will still lead to expressions where x1, x2 are a factor.

Due to the block triangular structure of dO(x), dO(x) is full column rank if and only if:

λ2γ2(4S2
t + 1)(x2

1 + x2
2)2 6= 0. (4.85)

So it is straightforward that

dim dO(x) = 4, ∀x ∈ Oε. (4.86)
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(a) LPLHGO estimation error
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(b) LPLHGO states and estimated states
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(c) LPLHGO fictitious outputs yf
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Figure 4.17: SPOD: Case C: LPLHGO with observability defects avoidance and additional output

noise. Figure (a) depicts the estimation error x̃ = x − x̂ in black, green and red respectively,

figure (b) represents the states x in solid while the estimated states in dotted black, green and

red lines respectively. Figures (c) and (d) shows the activated fictitious outputs yf and τ in black

and green lines respectively.

However there is an observability singularity for xs = (0 0 x3 x4)T since dim{dO}(xs) = 2 and

x3 nor x4 can be recovered in this set.

The observability singularity set for the multi-output wake flow model is thus:

S = {x ∈ X ⊂ R4 : x2
1 + x2

2 = 0}. (4.87)

For convenience, let define T as in (1.33) to get the observable normal form (as previously done

in Section 1.3.4) upto some permutation P̄ to get:

T : x 7→ z = P̄

(
T 1

T 2

)
, (4.88)
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where P̄ = (e1, e3, e5, e2, e4, e6) with ei being the ith canonical vector of R6, so:

z =



z1
1

z2
1

z1
2

z2
2

z1
3

z2
3


=



T 1
1

T 2
1

T 1
2

T 2
2

T 1
3

T 2
3


(x) =



x1

x2

−Stx2 + x1q1

Stx1 + x2q1

−S2
t x1 + x1q

2
1 − 2Stx2q1 + γλx1x3 − γχx1(x2

1 + x2
2)

−S2
t x2 + x2q

2
1 + 2Stx1q1 + γλx2x3 − γχx2(x2

1 + x2
2)


(4.89)

For all xa, xb ∈ X\Sε where Sε = {x ∈ X : x2
1 + x2

2 ≤ ε2}:

Ta(xa) = Tb(xb) =⇒ xai = xbi, for any i ≤ 2. (4.90)

Then, from (4.89) third and fourth equations, computing x1T
1
2 + x2T

2
2 using the fact that

x2
1 + x2

2 6= 0 on X\Sε, it follows that:

(x2
1 + x2

2)(q1a − q1b) = 0 so q1a = q1b on X\Sε.

Finally using q1a = q1b in (4.89) two last equations to get (x1T
1
3 +x2T

2
3 ) thus results in xai = xbi

for i = 3, 4 i. e. in T injectivity on X\Sε. Since its Jacobian is full column rank from (4.86),

then system (4.82) is strongly differentially observable on X\Sε.

4.5.2 Nonlinear Observer Synthesis

Since the system suffers from observability defects at x2
1 + x2

2 = 0, HGO, LHGO and LPLHGO

observers will be synthesized so as to ensure this singularity.

4.5.2.1 HGO for Multi-output Wake Flow Model

Based on Theorem 9, we can design the high gain observer for the multi-output wake flow model

given by (4.88).

Proposition 35 (Standard HGO for multi-output wake flow model) The multi-output

high gain observer for the system (4.88) is given as:

˙̂z′ = Fz(ẑ′, y) (4.91)

such that

Fz = A′z′ +B′ϕs(z
′) + ∆′K ′(y − C ′z′), (4.92)
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where the observer state vector z′ =
(
z1 z2

)T
and the measured output y =

(
y1 y2

)T
respec-

tively and the matrices

A′ =

(
A3 0

0 A3

)
, B′ =

(
B3 0

0 B3

)
, C ′ =

(
C3 0

0 C3

)
, (4.93)

where Ai, Bi, Ci are all in their prime form and ϕ′s is the saturated version of ϕ′ =

(
ϕ1

ϕ2

)
∈ R2

where last components are given below:

ϕ1 = S3
t x2 − γλ2x1x3 + γλχx1(x2

1 + x2
2) + 2Stχx2(x2

1 + x2
2) + x1q

3
1 − 2γχx1q1(x2

1 + x2
2)

= −3γχx3
1q1 + γχStx

3
2 − 3S2

t x1q1 − 3γλStx2x3 + 3γλx1x3q1 − 3Stx2q
2
1 + γχStx

2
1x2 − 3γχx1x

2
2q1

ϕ2 = −S3
t x1 − γλ2x2x3 + γλχx2(x2

1 + x2
2)− 2Stχx1(x2

1 + x2
2) + x2q

3
1 − 2γχx2q1(x2

1 + x2
2)

= −3γχx3
2q1 − γχStx3

1 − 3S2
t x2q1 + 3γλStx1x3 + 3γλx2x3q1 + 3Stx1q

2
1 − γχStx1x

2
2 − 3γχx2

1x2q1

(4.94)

∆′ =

(
∆1 0

0 ∆2

)
with each ∆i being a diagonal high gain matrix of dimension 3 and

K ′ = (K1 K2) is the observer gain matrix that is chosen to get (A′ −K ′C ′) Hurwitz.

Since the observer suffers from observability defects for x2
1 +x2

2 = 0, therefore we proceed towards

building a singularity-free high gain observer for system (4.88).

Proposition 36 (Singularity-free HGO for Multi-output wake flow model) Let

ρ : x 7→ max(0, ε2 − (x2
1 + x2

2))2 (4.95)

for some ε > 0. Consider the fictitious output yf ∈ R2 such that:

yf (x) =

(
γρ(x)x3

ρ(x)x4

)
. (4.96)

Extending the mapping T defined by (4.88) as:

Te :

R4 → R6 × R2

x 7→
(
T (x)

yf (x)

)
.

(4.97)

With notations and definitions of Proposition 35, let τ ∈ R4 and define an augmented mapping

Ta as:

Ta :

R8 → R8

xa =

(
x

τ

)
7→ za = Te(x) + Ψ(x)τ,

(4.98)
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where Ψ ∈ C1(Rnx ,Rnz−nx) is defined by

Ψ : x 7→


02 02

02 cI2

I2 02

JΨ 02

 , JΨ =

(
−x1

λ −x2
λ

x2
2St
− x1

λ − x1
2St
− x2

λ

)
; λ, c > 0. (4.99)

Then Ta defines a global diffeomorphism on R8.

A singularity-free high gain observer for the multi-output wake flow model is given by:

˙̂x =

(
∂Ta
∂xa

(xa)

)−1

F(x̂a, y) (4.100)

with

F(x̂a, y) =

(
Fz(x̂a, y)

K4Ta4(x̂a)

)
, (4.101)

where K4 and Ta4 represents the last four components of the observer gain and mapping Ta
respectively, associated with the fictitious outputs, and Fz given in Proposition 35.

Proof 21 The Jacobian of the mapping Te defined by (4.97) is given by:

∂Te
∂x

(x) =

 ∂T
∂x

∂yf
∂x

 =

(
I2 02

J1 J2

)
(4.102)

with matrices J1, J2:

J1 =



q1 −St
St q1

a11(x) b11(x)

a21(x) b21(x)

γρ1x3 γρ2x3

ρ1x4 ρ2x4


, J2 =



−γx1 x1

−γx2 x2

c11(x) d11(x)

c21(x) d21(x)

γρ 0

0 ρ


, (4.103)

where the expression for the coefficients are given before in (4.84) and ρ1, ρ2 denote the partial

derivatives of ρ w.r.t x1 and x2 respectively, i. e. ρi = ∂ρ
∂xi

(x).

Due to the block triangular structure of the Jacobian (4.102), the Te Jacobian matrix is full

rank provided that J2 is also full rank. One has:∣∣∣∣∣c11 d11

c21 d21

∣∣∣∣∣ = 2γStλ(x2
1 + x2

2), and

∣∣∣∣∣γρ 0

0 ρ

∣∣∣∣∣ = γρ2. (4.104)

Since by construction, ρ and x2
1 + x2

2 cannot be null simultaneously, it follows that J2 and in

turn the jacobian of Te are full rank matrices for any x ∈ R4. However, Te is an immersion from
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R4 to R6, therefore we extend it into a global diffeomorphism Ta by augmenting the original state

x with τ =
(
τ1 τ2 τ3 τ4

)
.

Using (4.102), (4.103) and (4.99) results in∣∣∣∣∂Ta∂xa

∣∣∣∣ = γc2(ρ2 + (x2
1 + x2

2))2 6= 0, ∀(γ, c > 0). (4.105)

So Ta is a global diffeomorphism. The global injectivity proof is given as follows:

Ta :

(
x

τ

)
7→ za =

(
z

yf

)
+ Ψ(x1, x2)τ =



(
z11

z21

)
(
z12

z22

)
(
z13

z23

)
(
ρx3

ρx4

)


+



02 02

02 I2

I2 02

−x1 −x2 01,2

x2 − x1 −x1 − x2 01,2




τ1

τ2

τ3

τ4

 .

(4.106)

Let Ta(xa) = Tb(xb) where zij is given by (4.88), then denoting q̃1 = q1a − q1b, x̃i = xai − xbi
and τ̃ = τa − τb, we get: x1a = x1b = x1

x2a = x2b = x2

(4.107a)

−Stx2 + x1q1a + τ3a = −Stx2 + x1q1b + τ3b

Stx1 + x2q1a + τ4a = Stx1 + x2q1b + τ4b

(4.107b)

−2Stx2q̃1 + x1(q2
1a − q2

1b) + γλx1x̃3 = −τ̃1

2Stx1q̃1 + x2(q2
1a − q2

1b) + γλx2x̃3 = −τ̃2

(4.107c)


ργx̃3 = −x1

λ
τ̃1 −

x2

λ
τ̃2

ρx̃4 =

(
x1

λ
− x2

2St

)
τ̃1 −

(
x1

2St
+
x2

λ

)
τ̃2

(4.107d)

From (4.107b) and (4.107d), it is straightforward that:

x1q̃1 = −τ̃3

x2q̃1 = −τ̃4

ρq̃1 = − x2

2St
τ̃1 +

x1

2St
τ̃2

(4.108)

Further multiplying (4.108) by x1, x2 and ρ respectively, one obtains:

(ρ2 + x2
1 + x2

2)q̃1 = −x1τ̃3 − x2τ̃4 −
ρx2

2St
τ̃1 +

ρx1

2St
τ̃2 (4.109)
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Multiplying the equations of (4.107c) by x2 and x1 respectively and subtracting the equations, we

get:

2St(x
2
1 + x2

2)q̃1 = −x1τ̃2 + x2τ̃1 (4.110)

Adding 2St times the last equation of (4.108) to (4.110) and simplifying yields:

2St((x
2
1 + x2

2) + ρ)q̃1 = −x1τ̃2 + x2τ̃1 + x1τ̃2 − x2τ̃1 = 0, (4.111)

Since (x2
1 + x2

2) + ρ 6= 0,∀x ∈ R4, it follows that q̃1 = 0, so q2
1a − q2

1b = 0. One can then simplify

(4.108) and obtain:

τ̃3 = τ̃4 = 0. (4.112)

Using (4.112), equations (4.107c) and (4.107d) can be reduced to:

γλx1x̃3 = τ̃1 (4.113a)

γλx2x̃3 = τ̃2 (4.113b)

ργx̃3 = −x1

λ
τ̃1 −

x2

λ
τ̃2 (4.113c)

ρx̃4 =

(
x1

λ
− x2

2St

)
τ̃1 −

(
x1

2St
+
x2

λ

)
τ̃2 (4.113d)

Further multiplying the equations (4.113a), (4.113b) by x1 and x2 respectively and adding the

resulting equations to (4.113c), we can get

λγ(ρ+ x2
1 + x2

2)x̃3 = x1τ̃1 + x2τ̃2 − x1τ̃1 − x2τ̃2 = 0 =⇒ x̃3 = 0. (4.114)

It follows that τ̃1 = τ̃2 = 0 and therefore x̃4 = 0. Hence T̄ is globally injective.

By continuity T−1
a is C1, hence it is L-Lipschitz on any compact of R8. It follows that, using

z∗a = Ta(x, 0) = Te(x) similar to the proof given before in the minimal model. Since Te is injective

and defines a converging observer from Proposition 36, it follows that

lim
t→∞
‖x(t)− x̂(t)‖+ ‖τ(t)‖ = 0. (4.115)

4.5.2.2 LPLHGO for Multi-output Wake Flow Model

For the multi-output case, we directly synthesize the LPLHGO for it recovers the main advantages

of the LHGO whilst also reducing the peaking.

Proposition 37 (LPLHGO for multi-output wake flow model) The low peaking LHGO

for the system (4.88) is given by:
˙̂z′ = Fz(ẑ′, η, y)

η̇ = Fη(ẑ′, η, y)
(4.116)
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with

˙̂z1
1 = η1

1 + α1θ(y1 − ẑ1
1) ˙̂z2

1 = η2
1 + α1θ(y2 − ẑ2

1)

˙̂z1
2 = η1

2 + α2θ(satr2(η1
1)− ẑ1

2) ˙̂z2
2 = η2

2 + α2θ(satr2(η2
1)− ẑ2

2)

˙̂z1
3 = φ1

s(ẑ) + α3θ(satr3(η1
2)− ẑ1

3) ˙̂z2
3 = φ2

s(ẑ) + α3θ(satr3(η2
2)− ẑ2

3)

η̇1
1 = satr3(η1

2) + β1θ
2(y1 − ẑ1

1) η̇2
1 = satr3(η2

2) + β1θ
2(y2 − ẑ2

1)

η̇1
2 = φ1

s(ẑ) + β2θ
2(satr2(η1

1)− ẑ1
2) η̇2

2 = φ2
s(ẑ) + β2θ

2(satr2(η2
1)− ẑ2

2)

(4.117)

where ϕ′s is the saturated version of ϕ′ and the expression for its last components ϕis is given in

(4.94) and the observer gains αi, βi are chosen so as to satisfy the strong stability requirements

as discussed before in Theorem 12

Since the system suffers from observability defects, therefore in the next Proposition we propose

the singularity-free low peaking LHGO for the multi-output wake flow model.

Proposition 38 (Singularity-free LPLHGO for multi-output wake flow model) To

avoid singularity, we add the fictitious outputs yf given by (4.96) and the function ρ is given by

(4.95). Let τ ∈ R4 and define an augmented mapping Ta as (4.98) where Ψ ∈ C1(Rnx ,Rnz−nx)

is defined by (4.99), so Ta is a global diffeomorphism.

The dynamic system 
˙̂xa =

(
∂Ta
∂xa

(x̂a)

)−1
(
Fz(Ta(x̂a), η, y)

−K4T4(x̂a)

)
η̇ = Fη(Ta(x̂a), η, y)

(4.118)

is an arbitrarily fast converging observer for system (4.82) in its original coordinates on any

bounded subset of Rnz+nf . Fz,Fη are defined in Proposition 37 and, K4 is a positive definite diag-

onal matrix of dimension 4. The notation Ta4 stands for the last 4 components of Ta representing

the dynamics associated with the fictitious outputs.

The proof for singularity-free LPLHGO is similar to the proof for Proposition 36 for singularity-

free HGO for multi-output wake flow model and is therefore avoided here. With c and λ some

positive gains, the jacobian of Ta can be found out as:∣∣∣∣∂Ta∂xa

∣∣∣∣ = γc2(ρ2 + (x2
1 + x2

2))2 6= 0, (4.119)

4.5.3 Simulation Results for Multi-output wake flow model

Based on the initial conditions and observer gains given in Table 4.5, simulations have been

performed for the high gain observer and low peaking limited high gain observers in natural
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x0

(
0.1 0.1 0.1 0.164

)
x̂0

(
0 0 0.2 0.2

)
KHGO

(
0.18 1.07 0.51

)T
KLPLHGO

(α1 α2 α3

)(
β1 β2

) T

=

(1.8 1.8 1.8
)(

0.01 0.002
) T

Knf 10I2

θHGO 5

θLPLHGO 5

ε
√

0.1

Table 4.5: Initial conditions and gains for the system and observers

coordinates proposed in Propositions 36 and 38 respectively. case A is the nominal one, where

no observability defects nor any disturbance is considered; case B illustrates the handling of

observability defects; robustness to output noise is then addressed in the last case C.

4.5.3.1 Case A: Nominal Case

The initial conditions for both observers are chosen to be the same and fairly near the system’s

initial condition so one can expect the observer to stay away from Sε. The behavior of both

observers in terms of peaking is similar to what has been observed in the minimal and SPOD

models. The high peaking effect in case of HGO accounts for the increasing high gain power as

the dimension increases, whereas in the case of LPLHGO, the peaking is reduced to a significantly

smaller values due to limited high gain and the presence of saturations in the cascaded structure

of the observer. The convergence of the estimation errors for HGO and LPLHGO to zero for both

observers is around 10–12 seconds, as can be seen in Figures 4.18(a) and 4.18(c) respectively.

4.5.3.2 Case B: Observability Defects Avoidance

In the second case, both observers are initialized at zero as can be seen in Figures 4.19 and 4.20.

Fictitious outputs are activated that leads to an increase in the peaking effect particularly for

the HGO while for LPLHGO, the peaking is only slightly increased as depicted in Figures 4.19(c)

and 4.20(c). The effect of these outputs vanishes when |x̂2
1 + x̂2

2| > ε2; then it follows that the

last ẑa state of the target system converges to zero, thus inducing the extra coordinates τ to be

stabilized at the origin. Thence the standard HGO and LPLHGO observers estimation errors

converge asymptotically to zero as illustrated by Figures 4.19(a) and 4.20(a).
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4.5.3.3 Case C: Output Noise

In the last case, a measurement noise is added to the dynamics of the observer to investigate the

effect of turbulence due to high frequency noises. The noise is chosen to be white gaussian noise

with variance equal to 1 and a high pass filter with cutoff frequency chosen to be 1000 Hz. The

simulations results from Figures 4.21(a) and 4.22(a), illustrates that only practical stability can

be achieved for HGO and LPLHGO. In the case of LPLHGO, the noise induced errors are one

order of magnitude smaller, thus proving better suited for fluid mechanics applications.
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Figure 4.18: Multi-output: Case A from (a) to (d): simulation in nominal case. Figures (a) and

(c) depicts the estimation error x̃1, x̃2, x̃3, x̃4 by black, green, red and yellow lines for HGO and

LPLHGO respectively. Figures (b) and (d) represents the states and estimated states, such that

states x ∈ R4 are in solid while the estimated states x̂ ∈ R4 are in dashed black, green, red and

yellow lines respectively for HGO and LPLHGO.
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Figure 4.19: Multi-output: Case B: HGO with observability defects avoidance: Figure (a) depicts

the estimation error x̃ = x− x̂ in black, green, red and yellow respectively, figure (b) represents

the states x in solid while the estimated states in dotted black, green, red and yellow lines

respectively. The last two figures (c) and (d) represents the activated fictitious outputs in black,

green lines and τ states in black, green, red and yellow lines respectively.

4.6 Hybrid Model

A more refined Galerkin representation including higher damped (µ′ > 0) modes (am3, am4)

interacting with the first two ones through the shift mode is considered in this section. The

model is refered to as a hybrid model Noack et al. [2003]; Luchtenburg et al. [2009] between the

empirical Galerkin model (4.3) and higher dimensional invariant-manifold model. It is expected

to be more precise as it captures more energy of the system, and also explain the emergence

of other structures (hence the second mode (am3, am4)) when killing the first one. The hybrid

model behaves as a double oscillator, where one mode dies and the other one rises. The new
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(c) LPLHGO fictitious outputs yf
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Figure 4.20: Multi-output: Case B: LPLHGO with observability defects avoidance: Figure (a)

depicts the estimation error x̃ = x − x̂ in black, green, red and yellow respectively, figure (b)

represents the states x in solid while the estimated states in dotted black, green, red and yellow

lines respectively. The last two figures (c) and (d) represents the activated fictitious outputs in

black, green lines and τ states in black, green, red and yellow lines respectively.

system can be written as:

˙

am1

am2

am3

am4

a∆

µ


=



(µ− a∆)a1 − a2

(µ− a∆)a2 + a1

(−µ′ − a∆)a3 − a4

(−µ′ − a∆)a4 + a3

a2
1 + a2

2 + a2
3 + a2

4 − a∆

0


(4.120)

Considering the oscillation amplitudes Ai = a2
2i−1 + a2

2i, the above model becomes a system

of order 4, thereby using the state vector xhyb =
(
A1 A2 a∆ µ

)
∈ X ⊂ R4, system (4.120)

becomes
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(c) HGO fictitious outputs yf
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Figure 4.21: Multi-output: Case C: HGO with observability defects avoidance and output noise:

Figure (a) depicts the estimation error x̃ = x − x̂ in black, green, red and yellow respectively,

figure (b) represents the states x in solid while the estimated states in dotted black, green, red

and yellow lines respectively. The last two figures (c) and (d) represents the activated fictitious

outputs in black, green lines and τ states in black, green, red and yellow lines respectively.

ẋhyb = f(x) =


2x1(x4 − x3)

2x2(−µ′ − x3)

x1 + x2 − x3

0

 , y = x1. (4.121)

4.6.1 Observability Analysis

A first prerequisite is to study the conditions guaranteeing the observability of the sytem.

Proposition 39 (Observability of hybrid model) System given by (4.121) is observable on

any connected subset of Oε = {x ∈ X ⊂ R4 : |x1| > ε, |x2 + x3 + µ′| > ε′} for any ε, ε′ > 0,

respectively.
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Figure 4.22: Multi-output: Case C: LPLHGO with observability defects avoidance and output

noise: Figure (a) depicts the estimation error x̃ = x − x̂ in black, green, red and yellow re-

spectively, figure (b) represents the states x in solid while the estimated states in dotted black,

green, red and yellow lines respectively. The last two figures (c) and (d) represents the acti-

vated fictitious outputs in black, green lines and τ states in black, green, red and yellow lines

respectively.

Proof 22 Let O denote the smallest vector space containing h and closed under the Lie derivative

Lf . A system is said weakly observable if dim dO(x) = dimX where dO = {dT, T ∈ O} is the

observability co-distribution.

Computing the differentials of the successive Lie derivatives of the output y = h(x) along the

system vector field f leads to the observability co-distribution dOhyb for system (4.121), whose

determinant is:

|dOhyb| = −16x3
1(x2 + x3 + µ′). (4.122)

In particular, an observability singularity appears in particular when x1 = 0, whereas the control

aims at forcing the oscillation amplitude to zero. The designed observer should be able to handle

this singularity in order to synthesize control laws based on the estimated states.
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4.6.2 Nonlinear Observer Synthesis

We begin by designing a high gain observer given by Theorem 8 for the hybrid system given by

(4.121). But before designing we need to transform the system (4.121) into observable normal

form, such that using z = T (x) we obtain:

z =



x1

2x1(x4 − x3)

4x1(x4 − x3)2 − 2x1(x1 + x2 − x3)

2x1

(
4(x4 − x3)3 + (x1 + x2 − x3)− 2x2(−µ′ − x3)

−2(x4 − x3)(4x1 + 3x2 − 3x3)

)


. (4.123)

4.6.2.1 HGO for Hybrid Model

Based on Theorem 8, we design a HGO for the system given by (4.123)

Proposition 40 (HGO for hybrid systems) The standard high gain observer for the system

in target coordinates (4.123) is given by:

˙̂z = Anzz +Bnzϕ(ẑ) + ∆K(y − Cnzx), (4.124)

where z ∈ Z ⊂ R4 and ∆ is the diagonal matrix of dimension 4, and the observer gain matrix

K =
(
k1 k2 k3 k4

)T
is chosen so as to get Anz −KCnz Hurwitz.

The jacobian of the mapping T is given as:

∂T

∂x
(x) =

(
1 01,q−1

∗ J

)
(4.125)

with

J = 2x1


0 −1 1

−1 1− 4q1 4q1

q2 q3 q4

 , (4.126)

where
q1 = x4 − x3

q2 = 1− 6q1 + 2(µ′ + x3)

q3 = 12q2
1 − 8x1 − 6x2 + 6x3

q4 = −12q2
1 + 6q1 + 8x1 + 8x2 − 6x3 − 1

(4.127)

and the determinant is given by∣∣∣∣∂T∂x
∣∣∣∣ (x) = −16x3

1(x2 + x3 + µ′). (4.128)
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T is diffeomorphism on Oε = {x ∈ R4 : |x1| > ε, |x2 + x3 + µ′| > ε′}.
In order to avoid the observability defects and to achieve global diffeomorphism, we build a

singularity-free high gain observer in the next Proposition.

Proposition 41 (Singularity-free HGO for hybrid model) Let ρ be defined as in (4.16)

and F : d + F ′(d) 6= 0,∀d where d = x2 + x3 + µ′. For system (4.123), consider the fictitious

outputs:

yf =


ρ(x1)d2

ρ(x1)(x3 − x2)

ρ(x1)(x4 − x3)

F (d)

 . (4.129)

We define the two new state vectors xa and za such as:

xa =

(
x

τ

)
, and za = Ta(xa) =

(
z

yf

)
+ Ψ(x)τ, (4.130)

where z is given by (4.123) and τ ∈ R4 are the exogenous variables added to the state vector x

and completion by Ψ ∈ R8×4:

Ψ(x) =



0 0 0 0

0 1 −1 0

1 0 −1 0

0 0 −1 −2x1

x1 0 0 −2ρ

−x1 x1 0 0

0 −x1 x1 0

0 0 0 1


. (4.131)

Then Ta defines a global diffeomorphism.

A singularity-free high gain observer for the hybrid model is given by:

˙̂x =

(
∂Ta
∂xa

(xa)

)−1

F(x̂a, y) (4.132)

with Fz given in Proposition 40 and

F(x̂a, y) =

(
Fz(x̂a, y)

K4Ta4(x̂a)

)
, (4.133)

where K4 and Ta4 represent the last four components of the observer gain and mapping Ta re-

spectively, associated with the fictitious outputs.
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Proof 23 Defining a new mapping Te : x 7→ (z, yf ), whose jacobian matrix is

∂Te
∂x

(x) =



1 0 0 0

∗ J

ρ′d2 2dρ 2dρ 0

ρ′(x3 − x2) −ρ ρ 0

ρ′(x4 − x3) 0 −ρ ρ

0 F ′ F ′ 0


, (4.134)

where ρ′i denote the partial derivative of ρ with respect to xi, i.e. ρ′i = ∂ρ′

∂xi
(x).

Since the mapping Te is an immersion from R4 in R8, a way to get a one-to-one mapping is

to extend it into a global diffeomorphism Ta.

The determinant of the new mapping Ta comes out to be:∣∣∣∣∂Ta∂xa
(xa)

∣∣∣∣ = −4(ρ+ x2
1)(ρ+ 2x2

1)2(d+ F ′), (4.135)

where F : d+ F ′ 6= 0, so Ta is a global diffeomorphism.

Now we present the proof of injectivity, where from proposition 41, Ta is given as:

Ta :

(
x

τ

)
7→ za =

(
z

yf

)
+ Ψ(x1)τ =



z1

z2

z3

z4

ρ(x1)d2

ρ(x1)(x3 − x2)

ρ(x1)(x4 − x3)

F (d)


+ Ψ(x)


τ1

τ2

τ3

τ4

 (4.136)

with Ψ given by (4.131).

Let Ta(xa) = Tb(xb) and denoting x̃i = xia − xib, q̃1 = q1a − q1b and τ̃i = τia − τib, we get:

x1a = x1b = x1 (4.137a)

2x1q̃1 + τ̃2 − τ̃3 = 0 (4.137b)

4x1q̃
2
1 − 2x1(x̃2 − x̃3) + τ̃1 − τ̃3 = 0 (4.137c)

2x1[4q̃1
3+x̃2−x̃3+2µ′x̃2+2(x2ax3a−x2x3)−2q̃1(4x1)−6q1a(x2a−x3a)+6q1b(x2b−x3b)−τ̃4]−τ̃3 = 0

(4.137d)

ρ(d̃2) + x1τ̃1 − 2ρτ̃4 = 0 (4.137e)

ρ(x̃3 − x̃2)− x1τ̃1 + x1τ̃2 = 0 (4.137f)
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ρ(x̃4 − x̃3)− x1τ̃2 + x1τ̃3 = 0 (4.137g)

F (da)− F (d) + τ̃4 = 0 (4.137h)

Multiplying (4.137b) by x1 and adding to (4.137g):

(2x2
1 + ρ)q̃1 = 0⇒ x̃3 = x̃4 (4.138)

Equations (4.137b) and (4.137c) are reduced to

τ̃2 = τ̃3, i.e., q̃1 = 0⇒ q1a = q1b

−2x1(x̃2 − x̃3) + τ̃1 − τ̃3 = 0
(4.139)

Now multiplying (4.139) by x1 and adding to (4.137f), we get:

(2x2
1 + ρ)(x̃3 − x̃2) = 0⇒ x̃2 = x̃3 = x̃4 and τ̃1 = τ̃2 = τ̃3 (4.140)

and we are left with

2x1(2µ′x̃2 + 2(x2ax3a − x2bx3b)− τ̃4)− τ̃3 = 0 (4.141a)

ρ(d2
a − d2

b) + x1τ̃1 − 2ρτ̃4 = 0 (4.141b)

Simplifying the expressions, we can get:

d2
a − d2

b = (da − db)(da + db) = 2x̃2(x2a + x2b + x3a + x3b + 2µ′)

= 2x̃2(2(x2 + x3a + µ′))

= 4x̃2(x2 + x3a + µ′)

2µ′x̃2 + 2(x2ax3a − x2bx3b) = 2x̃2(x2 + x3a + µ′)

(4.142)

Multiplying (4.137d) by x1 and adding to (4.137e):

4(x2
1 + ρ)x̃2(x2 + x3a + µ′)− 2(x2

1 + ρ)τ̃4 = 0

i.e., 2(x2
1 + ρ)(−τ̃4 + 2x̃2(x2 + x3a + µ′)) = 0

further reduced to 2(x2
1 + ρ)(−τ̃4 +

1

2
(d2
a − d2

b)) = 0

(4.143)

Using (4.137h) in (4.143):

2(x2
1 + ρ)(F (da)− F (db) +

1

2
(d2
a − d2

b)) = 0 (4.144)

yet since F : d+ ∂F
∂d > 0 for instance, its antiderivative is strictly increasing so[

d2

2
+ F + k

]db
da

= F (da)− F (db) +
1

2
d2
a −

1

2
d2
b = 0⇒ da = db i.e.,d̃ = 0 (4.145)

yet d̃ = x̃2 + x̃3, so together with x̃2 = x̃3, we get x̃2 = 0. Similarly from (4.138) we have

x̃3 = x̃4 ⇒ x̃3 = x̃4 = 0. Therefore Ta is injective.
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4.6.2.2 LHGO for Hybrid Model

Based on Theorem 11, we can synthesize the limited high gain observer for the minimal system

given by (4.121).

Proposition 42 (LHGO for hybrid model) The Limited high gain observer for the system

(4.123) is given as:

ζ̇ = Fζ(ζ, x̂, y) =



ζ12 + θk11(y − ζ11)

ζ22 + θ2k21(y − ζ11)

ζ22 + θk12(ζ12 − ζ21)

ζ32 + θ2k22(ζ12 − ζ21)

ζ32 + θk31(ζ22 − ζ31)

ϕ4s + θ2k32(ζ22 − ζ31)


(4.146)

and we can therefore get the LHGO in target coordinates using either ẑ = Pζ or z′ = P ′ζ ′. Based

on Proposition 2, we can get the observer in original coordinates since we can use either x̂ = Px̂

or x̂′ = P ′x̂′.

Following the augmentation given before for minimal system, we get the following Proposition:

Proposition 43 For the hybrid system, defining the original coordinate augmented state x̄ and

T̄ : x̄ =
(
x1 x2 x′2 x3 x′3 x4

)T
as

x̄ =



x1

2x1(x4 − x3)

2x1(x4 − x′3)

4x1(x4 − x3)2 − 2x1(x1 + x2 − x3)

4x1(x4 − x3)2 − 2x1(x1 + x′2 − x3)

2x1

(
4(x4 − x3)3 + (x1 + x2 − x3)− 2x2(−µ′ − x3)

−2(x4 − x3)(4x1 + 3x2 − 3x3)

)


. (4.147)

T̄ is a diffeomorphism on Ōε = {x̄ ∈ R6 : |x1| > ε, |x2 + x3 + µ′| > ε′}.

Proof 24 The jacobian of the mapping T̄ is given as:

∂T̄

∂x̄
(x̄) =

(
1 01,nζ−1

∗ J

)
(4.148)

with

J = 2x1



0 0 −1 0 1

0 0 0 −1 1

−1 0 1− 4q1 0 4q1

0 −1 1− 4q1 0 4q1

q2 0 q3 0 q4


, (4.149)
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where q1 = x4 − x3, q2 = 1 − 6q1 + 2(µ′ + x3), q3 = 12q2
1 − 8x1 − 6x2 + 6x3 and

q4 = −12q2
1 + 6q1 + 8x1 + 8x2 − 6x3 − 1. The determinant is given by∣∣∣∣∂T̄∂x̄ (x̄)

∣∣∣∣ = −16x3
1(x2 + x3 + µ′),

so T̄ is a diffeomorphism on Ōε.

To avoid the observability defects pinpointed in Proposition 39, we add some fictitious outputs

aiming at getting information around the singularity.

Proposition 44 (Singularity-free LHGO for hybrid model) For system (4.68), defining

an augmented state vector xa and mapping Ta as:

xa =

(
x̄

τ

)
and za = Ta(xa) =

(
z̄

yf

)
+ Ψ(x̄)τ (4.150)

with the fictitious outputs given as:

yf =



ρ(x1)x2

ρ(x1)x′2
...

ρ(x1)x4

F (d)


, (4.151)

where ρ and F are given in Proposition 41. τ ∈ R6 are the exogenous variables added to the

augmented state vector x̄ and

Ψ(x̄) =



01,4 0

H 04,1

−BT
5 −2x1

x1I5 05,1

01,4 1


with H =

(
02 I2 −12,1

I2 02 −12,1

)
. (4.152)

Then Ta defines a diffeomorphism and the determinant of Ta comes out to be:∣∣∣∣∂Ta∂xa
(xa)

∣∣∣∣ = −(ρ+ 2x4
1)4(2x2

1(F ′ + 2(x2 + x3 + µ′)) + ρ). (4.153)

A limited high gain observer for system (4.121) avoiding the singularity is given by

˙̂xa =
∂Ta
∂xa

(x̂a)
−1F(ζ, x̂a, y) (4.154)

where Fζ is given by Proposition 42 and

F : (ζ, x̂a, y) 7→
(
Fζ(ζ, x̂a, y)

−K6Ta6(x̂a))

)
. (4.155)

K6 is a positive definite diagonal matrix of dimension 6. The notation Ta6 stands for the last 6

components of Ta representing the dynamics associated with the fictitious outputs.
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4.6.2.3 LPLHGO for Hybrid Model

Based on Theorem 12, we can synthesize a low peaking LHGO for the hybrid model.

Proposition 45 (LPLHGO for hybrid model) The low peaking limited high gain observer

for the system (4.123) is given as:
˙̂z = Fz(ẑ, η, y)

η̇ = Fη(ẑ, η, y)
(4.156)

with Fz and Fη given as:

Fz :



˙̂z1 = η1 + α1θ(y − ẑ1)

˙̂z2 = η2 + α2θ(satκ2(η1)− ẑ2)

˙̂z3 = η3 + α3θ(satκ3(η2)− ẑ3)

˙̂z4 = ϕ4s(ẑ) + α4θ(satκ4(η3)− ẑ4)

Fη :


η̇1 = satκ3(η2) + β1θ

2(y − ẑ1)

η̇2 = satκ4(η3) + β2θ
2(satκ2(η1)− ẑ2)

η̇3 = ϕ4s(ẑ) + β3θ
2(satκ3(η2)− 3̂2)

(4.157)

such that ẑ ∈ R4, η ∈ R3 are the observer states and αi, βi, κi given in Theorem 12.

Since nz = nx, we can obtain the observer in original coordinates by using Proposition 2.

However, based on the observability analysis done for the hybrid model in Proposition 39, T

is diffeomorphism only on Oε and LPLHGO is not defined at the observability singularity. By

following the same procedure as done before in the case of HGO and LHGO before in Propositions

41 and 44, we can get the new LPLHGO that is capable of avoiding the singularity. The observer

synthesis procedure of LPLHGO for the hybrid system is same as that of minimal systems,

therefore we save the space and directly write the LPLHGO in original coordinates in the next

Proposition.

Proposition 46 (Singularity-free LPLHGO for hybrid model) The dynamic system
˙̂xa =

(
∂Ta
∂xa

(x̂a)

)−1
(
Fz(Ta(x̂a), η, y)

−K4Ta4(x̂a)

)
η̇ = Fη(Ta(x̂a), η, y)

(4.158)

is an arbitrarily fast converging observer for system (4.121) in its original coordinates on any

bounded subset of Rnz+nf . Fz,Fη are defined in Proposition 45 and, Ta is defined by Proposition

41, K4 is a positive definite diagonal matrix of dimension 4. The notation Ta4 stands for the last

4 components of Ta representing the dynamics associated with the fictitious outputs.

4.6.3 Simulation Results

Simulations are performed for the three observers given by propositions 41, 44 and 46 in original

coordinates for three different scenarios. Initial conditions and other parametric values are given
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x0

(
0.6 0.5 0.8 1

)
x̂0

(
0 0.8 0.2 0.2

)
KHGO

(
2 1.5 1.5 0.0625

)T
KLHGO

((
k11

k12

) (
k21

k22

) (
k31

k32

))T
=

((
0.45

0.25

) (
0.6

0.1

) (
0.5

0.025

))T

KLPLHGO

(α1 α2 α3 α4

)(
β1 β2 β3

) T

=

(1.5 1.5 1.5 1.5
)(

0.1 0.01 0.002
) T

Knf 0.5I4

θHGO 4.5

θLHGO 4.5

θLPLHGO 8

ε 0.5

Table 4.6: Initial conditions and gains for the system and observers

in Table 4.6. The performance comparison is led through nominal case, singularity avoidance

case and the last case to study the effect of the noise and give insight about robustness to noise

for each observer.

4.6.3.1 Case A: Nominal Case

For the first case we chose the initial condition of x10 = 0.21 i.e. fairly near to the system. Even

though the high gain parameter is chosen quite small, the peaking effect is quite significant in

the case of HGO (Fig. 4.23(a)) and is a reduced a little bit for LHGO (Fig. 4.23(c)). However,

in the case of LPLHGO (Fig. 4.23(e)), the peaking effect is rather small despite choosing a high

gain value greater than for HGO and LHGO. The convergence time for HGO and LPLHGO is

almost the same, while for LHGO, the convergence is bit slower.

4.6.3.2 Case B: Singularity avoidance case

Handling with the singularity avoidance is analyzed for each observer, taking a singular initial

condition for x̂0. The fictitious outputs are activated during the initial time period but quickly

returned to zero for HGO (Fig. 4.24(c)) and LPLHGO (Fig. 4.25(c)). However, for LHGO, the

fictitious outputs are triggered twice i.e. during t[0− 1]s and then again during t[2− 3]s as can

be seen in Figure 4.26(c). An increase in peaking effect can be seen for the three observers that

accounts for the activation of fictitious outputs and in turn the τ states. The increase in peaking
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for HGO (Fig. 4.24(a)) and LHGO (Fig. 4.25(a)) is large compared to LPLHGO (Fig. 4.26(a))

owing to the effectiveness of the saturations inside the cascade structure of the observer.

4.6.3.3 Case C: Output noise

Finally, we add some measurement noise in the system whereas the cutoff frequency is chosen

as 1000Hz in this case in addition to observability defects to see the overall performance of the

three observers. Since the gains and high gain parameter are chosen small for the simulations, the

effect of measurement noise on the system dynamics is also quite insignificant, still the presence

of the noise can be seen in the zoomed out figures of the observed states. Overall, the three

observers have been proven to be quite successful in avoiding the singularity and robust in the

presence of high frequency noise in the system as can be seen in Figures 4.27,4.28 and 4.29.
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(f) LPLHGO states and estimated states

Figure 4.23: Hybrid Model: Case A from (a) to (f): simulation for nominal case. Figures (a) and

(e) depicts the estimation error x̃1, x̃2, x̃3 and x̃4 by black, green, red and yellow lines for HGO

and LPLHGO respectively and by black, green, red, yellow, blue and purple lines for LHGO

in Figure (c). Figures (b), (d) and (e) represents the states and estimated states, such that

states are in solid while the estimated states x̂ are in dotted black, green, red and yellow lines

respectively for HGO, LHGO and LPLHGO.
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(c) HGO fictitious outputs yf
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Figure 4.24: Hybrid Model: Case B: HGO with observability defects avoidance. Figure (a)

depicts the estimation error x̃ = x − x̂ in black, green, red and yellow respectively, figure (b)

represents the states in solid and the estimated states in dotted black, green, red and yellow lines

respectively. figures (c) and (d) shows the activated fictitious outputs yf and τ in black, green,

red and yellow lines respectively.

4.7 Conclusion and Perspectives

The goal of this chapter is to study the wake flow dynamics and to estimate it in order to minimize

the energy consumption. A brief literature review along with the modeling of wake flow dynamics

is provided. A first contribution comprises in studying four different models for the dynamics

of wake flow based on ROM i.e., the minimal model, the Spod model, multi-output wake flow

dynamics and the hybrid model. For each model, observability analysis is given where it has been

shown that all the models suffer from the observability defects. Three different observers namely

the high gain observer, the limited high gain observer and finally low peaking limited high gain

observer have been designed for each model. However, since the models suffer from observability

defects, we provide a method that can help to bypass those singularities using fictitious outputs

to modify the system around singularity and further augmentation to a diffeomorphism. Finally

the three observers for each model is presented in original coordinates where they are capable of
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(c) LHGO fictitious outputs yf
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Figure 4.25: Hybrid Model: Case B: LHGO with observability defects avoidance. Figure (a)

depicts the estimation error x̃ = x− x̂ in black, green, red, yellow, blue and purple lines respec-

tively, figure (b) represents the states in solid and the estimated states in dotted black, green,

red and yellow lines respectively. Figures (c) and (d) shows the activated fictitious outputs yf
and τ in black, green, red, yellow, blue and dark blue lines respectively.

avoiding those observability defects.

In the last section of all models, simulation results are provided accompanied by a brief

discussion for three different scenarios. A detail study is provided for a performance comparison

for the three observers with care about peaking and robustness to noise. In the case of minimal

systems, experimental results have also been provided along with the comments on test bench

where it proves that even a simplistic model is able to capture the wake flow dynamics in a very

good manner atleast at a given Reynolds number.

The on-going works are on one hand, the experimental validation of the observer in real

conditions where the experimental setup is being fully equipped by sensors and actuators to

get a better knowledge of physical phenomenon and, on the other hand, the design of feedback

laws based on the estimated state to control the flow in order to reduce the drag force. Both

perspectives are of great interest for applications in fluid mechanics.
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(b) LPLHGO states and estimated states
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(c) LPLHGO fictitious outputs yf
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Figure 4.26: Hybrid Model: Case B: LPLHGO with observability defects avoidance. Figure (a)

depicts the estimation error x̃ = x − x̂ in black, green, red and yellow respectively, figure (b)

represents the states in solid and the estimated states in dotted black, green, red and yellow lines

respectively. figures (c) and (d) shows the activated fictitious outputs yf and τ in black, green,

red and yellow lines respectively.
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Figure 4.27: Hybrid Model: Case C: HGO with observability defects avoidance and additional

output noise. Figure (a) depicts the estimation error x̃ = x − x̂ in black, green, red and yellow

respectively, figure (b) represents the states in solid and the estimated states in dotted black,

green, red and yellow lines respectively. figures (c) and (d) shows the activated fictitious outputs

yf and τ in black, green, red and yellow lines respectively.
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Figure 4.28: Hybrid Model: Case C: LHGO with observability defects avoidance and additional

output noise. Figure (a) depicts the estimation error x̃ = x− x̂ in black, green, red, yellow, blue

and purple lines respectively, figure (b) represents the states in solid and the estimated states in

dotted black, green, red and yellow lines respectively. Figures (c) and (d) shows the activated

fictitious outputs yf and τ in black, green, red, yellow, blue and dark blue lines respectively.
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Figure 4.29: Hybrid Model: Case C: LPLHGO with observability defects avoidance and addi-

tional output noise. Figure (a) depicts the estimation error x̃ = x − x̂ in black, green, red and

yellow respectively, figure (b) represents the states in solid and the estimated states in dotted

black, green, red and yellow lines respectively. figures (c) and (d) shows the activated fictitious

outputs yf and τ in black, green, red and yellow lines respectively.
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Contributions

In this thesis, we addressed the design of nonlinear observers for nonlinear systems in phase

variable form affected by oscillating disturbances whose dynamics are either linear or not. Such

systems exhibit observability singularities that may prevent from using the standard mappings to

normal forms. Hence, a first contribution was to provide a methodology to tackle the observability

defects.

The method used in our work is based on Bernard et al. [2018] and employed some ficti-

tious knowledge by adding some fictitious states to modify the system in a neighborhood of the

singularities so as to remove them. This procedure thus caused the cardinality of the targeted

normal form to be greater than the cardinality of the original system. Besides, a special attention

was paid to systems whose observability analysis requires differentiating the output more than

(n− 1) times so the mapping to normal form is no more a diffeomorphism yet only an injective

immersion outside the observability singularities set. In order to estimate the state in the orig-

inal coordinates whilst avoiding the mapping inversion, a method for extending the immersion

into a global diffeomorphism was then proposed through coordinates augmentation and Jacobian

completion.

Nonlinear systems augmented by the disturbance modeling result in an increased dimension

that amplifies the major drawbacks of the high gain observer, such as the peaking phenomenon,

the sensitivity to measurement noise, and the innovation term overdomination due to the high

gain parameter power increase. Recently proposed enhancements of the high gain paradigm

Astolfi and Marconi [2015]; Astolfi et al. [2016] consequently have been considered to develop

their singularity-free enhancements.

The proposed methodology was further applied to nonlinear oscillators and nonlinear systems

perturbed by periodic disturbances through two different applications, both related to fluid me-
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chanics. Chapter 3 is devoted to the application of the proposed methodology to a therapeutic

magnetic microrobot swimming in the blood vessels. Despite often considered as known or even

constant in the literature, the periodic blood velocity is both hardly accessible to measurement

and nonlinearly impacts severely the microrobot dynamics; the estimation of its unknown ampli-

tude and pulse are decisive for both stabilization and diagnosis purposes. An application to wake

flow dynamics was then considered in Chapter 4: for bluff bodies, the flow separation induces

vortex shedding structures pumping energy, thus causing both an increase and oscillations in

the drag force responsible for energy overconsumption and vibrations. Extended Hopf oscillators

have proved to be able to capture the rise and evolution of these structures, but the measure-

ment of the system state in real conditions proved difficult. Besides such systems are affected

by observability singularities precisely at the control objective. Observers have been developed

to address the estimation of the wake flow state, even around the singularity. Experiments and

simulation results illustrated the effectiveness of the proposed observers and were encouraging

for diagnosis purposes and advanced control laws in the future.

Perspectives

A methodology to remove the observability defects for a certain class of nonlinear system has

been provided in this thesis. The approach proposed in this work makes use of fictitious access to

unobservable states, thus providing some fake knowledge while the system becomes unobservable.

These results can be extended to singularity-free observation of nonlinear systems affected by any

periodic signal, considered as a Fourier series decomposition, and by multi-frequencies signals,

with the goal of rebuilding the disturbance. For example, biological, medical, mechanical systems

as well as cryptography can benefit from such an approach. However, contrary to the single

harmonic disturbance considered in the Chapter 2, in such a case the singularity avoidance

requires using fictitious outputs and Jacobian completion depending on states whose observability

is jeopardized by observability singularities, so the resulting global diffeomorphim objective is

relaxed to a local result. In such a case, alternative solutions such as local observers Menini et al.

[2017]; Astolfi and Possieri [2019] can be considered.

The present work focused on observation but Lyapunov stabilizing output feedbacks synthesis

is the next step. The proposed methodology allows for rebuilding the state anywhere, but the

system is modified around the singularity, so the estimate is not reliable. In some cases, where the

singularity is far away from the control objective as for instance in the microrobotic application

of Chapter 3, this is not really an issue since the singularity is even not admissible for the system,

meaning that the physical system always remains far from the singularity. However it is far more

challenging when the control objective is to stabilize the system at a point where the system is
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no more observable and a possible approach would be to guarantee practical stability using a

priori known bounds on the estimation at singularity.
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Javeria Ahmed
Prise en compte des singularités d’observabilité dans

la synthèse d’observateurs non linéaires
Résumé :
Dans ce travail de thèse, nous nous intéressons à la synthèse d’observateurs pour une classe particulière
de systèmes non linéaires, à savoir les systèmes triangulaires affectés par des perturbations périodiques,
modélisées par exemple par des oscillateurs harmoniques ou non linéaires. Ces systèmes rencontrent
des pertes d’observabilité en certains points appelés défauts ou singularités d’observabilité. Ces pertes
d’observabilité peuvent advenir dans ou hors de la région où évolue le système; cependant, la synthèse
d’observateurs non linéaires requiert génériquement une transformation vers une forme normale, dont
l’inversion est problématique en cas de singularité. La méthodologie adoptée dans ce travail repose
sur l’ajout d’états fictifs au vecteur d’état de l’observateur pour gérer ces singularités d’observabilité
en modifiant le système dans leur voisinage. Nous avons ensuite proposé une modification de récents
observateurs non linéaires de type grand gain, sans peaking, avec une sensibilité réduite aux bruits de
mesure et une réduction des gains en dépit de l’augmentation de la dimension de l’observateur. Afin
d’appliquer cet observateur sur le système original, nous avons garanti que la transformation du sys-
tème original en un système sous forme normale, était un difféomorphisme global, prévenant ainsi les
défauts d’observabilité. La méthodologie proposée est ensuite appliquée aux oscillateurs non linéaires
et aux systèmes non linéaires perturbés périodiquement à travers deux applications différentes, liées à
la mécanique des fluides. La première application traite de l’observation et contrôle d’un microrobot
thérapeutique naviguant dans le système sanguin et soumis à la force de traînée causée par la vitesse
du sang, considérée comme inconnue. La seconde application traite de l’évolution des structures
principales dans l’écoulement à l’arrière d’un corps non profilé, responsables d’une part importante de
la surconsommation des véhicules, et de la reconstruction de leur état. Les résultats expérimentaux
et de simulation illustrent l’efficacité des observateurs proposés et sont encourageants pour envisager
des lois de commandes avancées dans ces deux domaines applicatifs.
Mots clés : observateurs non linéaires, oscillateurs non linéaires, défauts d’observabilité, microrobo-
tique, dynamique des lâchers tourbillonnaires dans le sillage

Nonlinear observers handling observability singularities
Abstract :
The main subject of the thesis is to synthesize observers for a class of nonlinear systems, namely
systems in phase variable form affected by oscillating disturbances, modeled e.g. by harmonic or
nonlinear oscillators. This class of system suffers from a loss of observability on some sets, refered to
as observability defects or observability singularities. These defects may arise either inside or outside
the region of interest. Since mappings to normal forms are often required to synthesize nonlinear
observers, such singularities have to be addressed. This work proposes a methodology to handle such
singularities by adding some fictitious states to the observer state vector, thus modifying the system
around singularities to avoid them. Providing a way to tackle those observability defects further leads
to the second objective of the thesis i.e. propose observers synthesis for nonlinear oscillators in the
presence of those observability defects. The proposed observers rely on recent enhancements of high
gain observers removing the peaking phenomenon, and reducing sensitivity to noise as well as the
high gain parameter impact.The proposed methodology is further applied to nonlinear oscillators and
nonlinear systems perturbed by periodic disturbances through two different applications related to
fluid mechanics. The first application considers the navigation of a magnetic therapeutic microrobot
in blood vessels for targeted drug delivery, where the unknown blood velocity affects the microrobot’s
dynamics. The second application concerns the wake flow dynamics at the rear of a bluff body to
investigate the dynamics of the main structures in flow which are responsible for the drag force and in
turn for vibrations and energy overconsumption. The experimental and simulation results illustrate the
effectiveness of the proposed observers and are encouraging for advanced control law and diagnosis
purposes in the future.
Keywords : nonlinear observers, nonlinear oscillators, observability defects, microrobotics, wake flow
dynamics
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