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Chapter 1

Introduction

Foreword

The nuclear spin of helium-3 atoms in a gas at room temperature is a very well isolated
quantum system with record coherence times of up to several days [1]. It is now used in
many applications, such as magnetometry [2], gyroscopes for navigation [3], as a target in
particle physics experiments [1], and even in medicine for magnetic resonance imaging of
the human respiratory system [4, 5]. In addition, helium-3 filled cells are used for precision
measurements in fundamental physics, i.e. in the search for anomalous forces [6] or violations
of fundamental symmetries in nature [7].

While the exceptional isolation of helium-3 nuclear spins is essential to obtain long co-
herence times, it makes its measurement and control difficult. Remarkably, nuclear spins
in noble gases can be optically pumped polarized via metastability exchange collisions or
alternatively via spin exchange collisions, exploiting collisions between atoms in different
states or of different species that transfer optically induced electron polarization to nuclei
[1, 8]. However, the role of quantum coherence, quantum noise, and quantum many-body
correlations in this process is only beginning to be studied [9, 10, 11]. Optical quantum
control of rare gas nuclear spin ensembles is still in its infancy, and key concepts in quantum
technology, such as the generation of nonclassical states for quantum metrology [12] or the
storage of quantum states of light [13], have not yet been demonstrated.

In this work, we propose a technique for the optical manipulation of helium-3 nuclear
spins in the quantum regime. Since the nuclear spin state cannot be manipulated directly
with light, our approach uses metastability exchange collisions to establish an effective cou-
pling between light and nuclear spin. Contrary to some ideas previously proposed [9, 10]
at the Laboratoire Kastler Brossel, where the theoretical work presented in this thesis was
carried out, the scheme considered here realizes a Faraday interaction [14] coupling the fluc-
tuations of light and nuclear spin. This interaction is nowadays commonly used as a powerful
and versatile spin-light quantum interface in experiments with alkali vapors [14, 15]. Because
our scheme does not require other atomic species as a mediator [11] and the metastability
exchange collision rates are comparatively high [1], it can operate at room temperature and
millibar pressures, as is the case in experiments with helium-3. Furthermore, the interac-
tion can be switched on and off, switching the weak electric discharge that populates the
metastable state, allowing for effective coupling between nuclear spin and light. Our scheme

3



4 CHAPTER 1. INTRODUCTION

will enable the development of quantum-enhanced technologies with helium-3, such as mea-
surement devices with sensitivity beyond the standard quantum limit [12]. This work gives
a detailed theoretical presentation of the squeezing mechanism and its limits as well as a
feasibility study taking into account experimentally accessible values of the parameters. Very
recently, similar ideas have been put forward in a different physical system, the alkali rare
gas mixture [11, 16].

This chapter introduces the main concepts and proposals on which the first part of
this thesis is based. The first section discusses the helium-3 atom and its nuclear spin
at the exceptional coherence time, it also addresses the question of optical pumping of an
ensemble of helium-3 atoms. This question is not unrelated to our work: on the one hand,
the experiment we plan requires that the atoms be initially polarized, on the other hand,
our proposal is a conversion of the optical pumping techniques in helium-3. Moreover, the
equations that were developed to describe the optical pumping of helium form the starting
point of our analytical study. In the following section, we present spin-squeezed states as well
as a metric for them with each other based on their metrological utility. Section 1.3 presents
the experimental scheme as we envision it. Finally, we end this introductory chapter with a
discussion around nondestructive quantum measurement, the technique by which we create
quantum correlations in the nuclear spin ensemble.

1.1 Helium-3: Physical Properties and Optical Pumping

Helium-3 is the second stable isotope of helium in terms of abundance. Its nucleus is com-
posed of two protons and one neutron, which gives it a non-zero nuclear spin I = 1/2.
Moreover, as a noble gas, the electronic layers of the atom are all complete in the ground
state and its electronic spin is then zero. Which makes a remarkable property: the total spin
of helium-3 is therefore purely nuclear in its ground state. As a consequence, these spins can
have very large coherence times in the cell. Thus, a coherence time T ∗

2 higher than 60 hours
has been measured in ultra-precise magnetometry devices [17], and seems to be limited only
by the longitudinal decay time T1 due to collisions with the walls. 1 These values make the
macroscopic nuclear spin of a gas at room temperature an ideal system for the production,
the study and the use of entangled states, and thus a competitor of cold atomic gases and
Bose-Einstein condensates in metrology and quantum information processing [12].

Optical pumping in helium and metastability exchange collisions By a well-
controlled indirect nuclear polarization technique of helium-3, one can routinely prepare
a giant collective nuclear spin, reaching a rate of 90%, with an extremely long lifetime. This
old technique is now called "metastability exchange collision". Historically, the standard di-
rect optical pumping for polarization could not be applied on 3He gases because no transition
was accessible to the atomic lamps of that time. Let us recall that the principle of optical
pumping consists in creating a situation of asymmetry between an excitation process (or
processes) of the atom on the one hand and a de-excitation process (such as spontaneous
emission) on the other hand in order to bring as many atoms as possible into a given Zeeman
sub-level. This requires the ability to interact optically with the excited states of the atom.
For the helium-3 atom, the first excited state is far away in the ultraviolet, around 20 eV

1Times T1 of several hundred hours can even be obtained [1].
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from the ground state, and even to this day, lasers accessing such transitions in experiments
are not standards. This problem of nuclear polarization of the helium atom was of great
importance in the post-war years because there was a large demand for polarized targets in
nuclear physics experiments [18]. The impossibility of creating such targets gave rise to many
alternative proposals, for example via polarization effects in solids such as the "Overhauser"
effect or in helium-3 liquids, but these methods proved insufficient. In 1960, the optical
method made a comeback with an article by Bouchiat, Carver and Varnum [19]. It consists
in an indirect optical pumping by considering a mixture of helium-3 and rubidium where
the transfer mechanism is a dipolar interaction. The authors reach only 0.01% polarization,
which is still insufficient for nuclear collision experiments. At the same time, the technique
of optical pumping of helium-3 atoms in a metastable state was being perfected [20]. The
most efficient polarization method was introduced in 1962 by Walters, Colegrove and Sc-
hearer [21] with a polarization of a few percent and rapidly improved to 40% polarization in
1963 [22]. It is based (i) on the use of the first excited state of the atom 23S1 that is called
"metastable" because its lifetime is of the order of 103 seconds [23] and (ii) on the collisions
between the atoms of the ground state and those in the metastable state. These collisions
have the astonishing property of being able to transfer the polarization from one atom to
another, i.e. the states of the electronic clouds are exchanged from one nucleus to another.
They were already known but it was not obvious to consider them as a mechanism capable of
transferring polarization2 because the ratio between the two populations, fundamental and
metastable, is extremely large so that atoms in the fundamental state do not often collide
with a metastable. However, as Walters, Colegrove and Schearer pointed out (i) metastables
collide with a ground state very quickly and even more quickly than they absorb photons
so the transfer rate is not marginal and (ii) it is sufficient that the relaxation rate of the
nuclear spin is lower than this transfer rate for nuclear polarization to occur. However, the
nuclear spin is naturally protected against optical relaxations. This opened the way to large
polarizations in noble gases which were explored in the following years. Among the remark-
able developments of which our work is a continuation, we can mention the articles of J.
Dupont-Roc, M. Leduc and F. Laloë [24] in the first half of the 1970’s where the equations
governing the dynamics of the spin variables of a helium mixture in the ground state and in
the metastable state in the presence of these metastability exchange collisions are formally
established. These equations are the starting point of our formalism.

1.2 Spin squeezing: concept and issue

By analogy with the squeezed states of light in quantum optics, a spin (here collective) I⃗ is
said to be in a squeezed state if, in a direction Oz orthogonal to that Ox of the mean spin,
it admits reduced fluctuations with respect to the standard quantum limit. The standard
quantum noise (or limit) corresponds to standard deviations ∆Ist

y = ∆Ist
z = (|⟨Ix⟩|/2)1/2 i.e.

to the case of equality with rotational symmetry of the fluctuations around the mean spin
in the Heisenberg inequality ∆Iy∆Iz ≥ |⟨Ix⟩|/2, our spins being dimensionless here. These
squeezed spin states are of great use in the context of quantum metrology. Indeed, high

2We can take as an example Colegrove and Franken (1960) [20] which we have already quoted, where
collisions are considered as an incoherent process that would destroy the electron spin "memory" of the
metastable atom.
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Figure 1.1: Overview of the set-up. (a) Centimeter glass cell filled with helium-3 gas at
room temperature and placed in an optical cavity of axis Oz (horizontal axis on the figure).
The Stokes spin of the light and the atomic spins (nuclear and metastable) are linearly
polarized along Ox (vertical axis on the figure). The Oy polarized cavity field mode, initially
empty, is populated by the Faraday effect due to the quantum fluctuations of the spin of
the metastables along Oz during its propagation in the gas. It is measured continuously
outside the cavity by one of the two following methods: (a) the photons leaving the cavity
polarized along Oy are separated from those polarized along Ox by a polarizer cube and
then detected in the photon counting regime; (b) a homodyne detection of a quadrature of
the Oy polarized outgoing field is performed, using the Ox polarized outgoing field as a local
oscillator (whose polarization has been rotated with a half-wave plate beforehand to bring
it along Oy).

precision measurements for physical quantities such as the strength or direction of a field
or a time interval translate into a phase accumulated in the spin of an atomic ensemble.
If one imagines such a fully polarized spin, rotating on the Bloch sphere, then the initial
variance of the spin component in the direction of rotation, crucial for any estimate of the
accumulated phase, is equal to N

4 with N the number of atoms in the ensemble. When
discussing squeezed states, it is therefore interesting to compare them with this "classical"
state. In the remainder of this section, when we consider the squeezed nuclear spin, we will
discuss the ratio of the variance of this state to that of the coherent state, which we will
express in decibels (10 log10(r) with r the ratio of variances and log10 the logarithm function
in the base 10). Further discussion shows that, in the considered scheme, the noise-to-signal
ratio in a precession frequency measurement is in fact proportional to ξ = (2I)1/2∆Iz/|⟨Ix⟩|
(this naturally brings out the fluctuations of the angle that gives the spin direction in the
xOz plane) rather than to the naively expected ∆Iz/∆Ist

z ratio [25]. We will then also use
this metric to gauge the interest of a spin squeezed state in the rest of this part.

1.3 Schematic diagram for the experimental set-up

The physical system considered is shown in figure 1.1. A cell filled with a polarized pure
gas of helium-3 atoms at a pressure of a few mbar is placed inside an optical cavity whose
axis is noted Oz. While the majority of the atoms remain in the fundamental singlet state
11S of helium, a weak discharge carries a tiny fraction of the atoms, usually ≃ 10−6, into
the metastable triplet state 23S. We represent on figure 1.2 the useful energy levels of
the helium-3 atom. We note I⃗ the spin associated to the ground state, which is a singlet
state. The metastable spin is a triplet state and we note K⃗ and J⃗ the spins associated
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to the hyperfine multiplicity F = 1/2 and F = 3/2 respectively. Using the polarization
techniques we previously introduced, we polarize the atomic sample in the Ox direction
by optical pumping. The coupling between these three subsystems, the total spin of the

Figure 1.2: Useful energy levels of the 3He atom (the Zeeman sublevels correspond to the
choice of Oz as the quantization axis, the atoms being polarized along Ox). The six sublevels
of the 23S1 metastable state are coupled to the two (purely nuclear) sublevels of the 11S0
ground state by the metastability exchange collisions.

atoms in the ground state, the total spin of the atoms in the metastable state and the
light mode of the cavity is done two by two. On the one hand, a laser beam propagating
along the cavity axis Oz and linearly polarized along the direction Ox is injected into the
cavity to excite the transition C8 between the F = 1/2 level of the metastable state 23S1
and the highest energy level F = 1/2 of the excited state 23P , with a negative frequency
detuning much larger in absolute value than the Doppler half-width of the excited state (of
the order of 1 GHz), so that the resonant velocity class with the laser is almost empty, but
much weaker than the 6.74 GHz hyperfine cleavage in the metastable state (and a fortiori
than the 29.6 GHz 23P1 − 23P0 fine cleavage in the excited state), so that the F = 3/2
metastable level is very little affected by the laser. 3 An effective Faraday-like coupling
between the optical cavity mode and the total spin of the metastable state is then obtained.
On the other hand, atoms in the metastable state 23S (of hyperfine electronic and nuclear
spin) are coupled to atoms in the ground state (of purely nuclear spin) by metastability
exchange collisions; remarkably, although each exchange collision is individually incoherent,
this leads to a well-defined macroscopic coupling between the corresponding collective spins
[24, 27]. As the Faraday interaction with the metastable atoms slightly rotates around the
Oz axis the polarization of the light initially directed along Ox, by an angle proportional
to the collective spin component of the metastables along Oz as we shall see, a continuous
destructive measurement of the polarization component according to Oy of the field leaving
the cavity (i) by photon counting as shown in figure 1.1(b) or (ii) by homodyne detection as
in figure 1.1(c), realizes in fine a continuous quantum nondemolition (QND) measurement

3The frequency spacing does not allow to largely satisfy these two constraints, and one cannot exclude
that the coupling of F = 3/2 to the field has a small effect on the squeezing dynamics; we neglect it here but
it could be taken into account with a more complete Hamiltonian than our minimal model (3.2), such as that
of reference [26]. We have furthermore verified, using this reference, that there is no "magic" laser frequency,
far from resonance that would cancel the contribution of the F = 3/2 level alignment tensor to the light shift
operator.
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of the collective nuclear spin according to Oz of the helium-3 atoms in the ground state.
This quantum nondemolition measurement, which we present in the next section, reduces
the quantum fluctuations associated with the measured observables and thus prepares a spin
squeezed state. We summarize by the following diagram the set of steps for the case of a
homodyne detection.

Metastability
exchange collisions

γm, γf
Faraday effect

Ω
κ

Homodyne
detection

Collective spin K⃗
in the metastable state

Collective spin I⃗
in the ground state

Continuous nondemolition
measurement of Iz

Reducing fluctuations
of Iz

Stokes Spin S⃗
cavity field

continuous measurement
of Sy component

1.4 Quantum nondemolition measurements

In quantum mechanics, we formalize the effect of a measurement on a system as the projection
of the state vector onto a certain subspace of the Hilbert space that corresponds to an
eigenvalue of the measured quantity. In the case of a perfect measurement, if we note |ψ⟩
the state vector, Â the measured observable and a the value obtained by the measurement,
eigenvalue of Â; then the state of the system just after the measurement is |a⟩, the eigenvector
of Â associated to the eigenvalue a, in the non-degenerate case. Note that the variance of Â
in the state just after the measurement is zero: the measurement has squeezed (infinitely)
the state of the system with respect to Â. As expected, the variance in the conjugate
operator is infinite (in order to respect the Heisenberg’s uncertainty principle between the
two operators). This is a situation well known from quantum physics textbooks: when the
projective measurement of the position of a particle gives the result x̄ , the wave function
in the position space is the Dirac distribution δ(x− x̄), of zero variance, the wave packet in
the momentum space is then uniform over the whole space. In an imperfect measurement, a
measurement whose result is compatible with several eigenvalues of the observable, the state
vector immediately after a measurement is not an eigenvector of the observable, but we should
expect the variance of Â in this superposition to be less than the initial one if during the
measurement we have indeed gained information on the state of the system. As an example,
let us consider the case of a particle of mass m in free space, whose motion is governed by
the Hamiltonian Ĥ = 1

2m P̂
2, with P̂ the momentum observable of the particle, conjugated

to the observable X̂ its position. At an instant t, we measure X̂ and we obtain the value x̄.
This is the same situation as before, except that in the case of an imperfect measurement,
we expect a wave function centered on x̄ and of non-zero width. Of course, in the case of the
free particle, the evolution induced by Ĥ will quickly destroy any correlations thus created
by the measurement. Moreover, the Heisenberg’s uncertainty principle between the position
and the momentum implies a very large variance in the momentum to compensate for the
squeezing in position. Therefore, the wave function will spread rapidly in space after the
measurement. Let us now consider the case of a measurement of the P̂ momentum at time t,
still on our free particle. From then on, it is in the momentum space where the wave function
immediately after t is centered and narrow but, unlike the measurement of the position, this
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observable is a constant of the motion! Indeed, [Ĥ, P̂ ] = 0. So not only is the mean of
the observable P̂ a constant of motion, but so is its variance! Therefore, the measurement
of the momentum of a free particle creates lasting correlations in the wave function. To
our knowledge, there is no such measurement of the momentum of a free particle but the
idea presented here is generic enough to be applied to any kind of quantum system. These
nondemolition measurements, due to the commutation of the measured observable with the
Hamiltonian are known and discussed since the dawn of quantum mechanics but it is only in
the course of the decade 1970 that V. B. Braginskii and Yu. I. Vorontsov proposed for the first
time a method based on this property to measure the number of excitations in a resonant
electromagnetic cavity without disturbing its energy [28, 29, 30]. At that time, physical
measurements became so precise that the quantum formalism was necessary to describe the
system and the measuring apparatus. In astrophysics, for example, it became crucial for
the then emerging field of gravitational waves detection to be able to measure the number
of excitations of a mechanical or electromagnetic oscillator in the quantum regime without
disturbing this number of excitations.4 Later, these techniques diffused into quantum optics
when the manipulation of the states of the field in a cavity or of the internal variables of atoms
in a cavity took off. In particular, the emergence of the production of "quantum noise" states,
i.e. states that saturate the Heisenberg’s uncertainty principle for two conjugate variables
(one can think of a coherent state of a light mode where ∆X = ∆P = ℏ/2), transformed
this fundamental limit into a technological obstacle to overcome.

As we have already discussed in section 1.2, one can define a "standard quantum limit"
for a certain quantity, which corresponds to the value of the variance of this quantity in
a coherent state that saturates the Heisenberg principle. A state whose variance on the
quantity of interest is lower than this limit is said to be squeezed. In the case of the collective
spin of a gas consisting ofN atoms polarized along a direction ⟨Sx⟩ = N

2 , i.e. ∆Sy∆Sz ≥ N/4,
the standard quantum limit on one of the directions perpendicular to the average spin is thus
equal to N/4.

4The ideas of V. B. Braginskii and Yu. I. Vorontsov had a bright future since their influence can be
found until today in the spectacular first direct observation of a gravitational wave by the LIGO/VIRGO
collaboration in 2015 [31], of which Braginskii is a member.
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Chapter 2

Metastability Exchange Collisions

Foreword

In this chapter, we will study the equations describing metastability exchange collisions in
helium-3 gases and show in particular that they can transfer quantum correlations from the
metastable state to the ground state. Known since the 1950s, these collisions exchange the
state of the electron cloud between the two atoms and profoundly affect the dynamics of the
internal variables of the gas, i.e. its different spin moments. They were first used in 1962 in
the context of optical pumping of the nuclear spin of helium-3, but a complete study of the
evolution of the one-body density matrix and the observables of the gas was not developed
until the early 1970s. These equations form the basis of the quantum description of our
system.

This chapter will therefore start with a review of the physical origin of these collisions
followed by a description of the effects they have on the internal variables of a gas under
the conditions of our study. This will lead us to recall the equations for the evolution of
the means of the observables of the system developed by J. Dupont-Roc, M. Leduc and F.
Laloë in 1973 [24]. These equations concern average values of atomic observables. In order
to study the effect of exchange on quantum correlations, we introduce a description in terms
of a master equation of the Lindblad form which we will use in the next chapters. Finally,
we close the chapter with a simplified model of the ground-state and metastable helium-3
atom, to illustrate how these collisions can transfer quantum correlations. The mathematical
developments necessary for this illustration will form an introduction to those we will present
in chapter 3.

2.1 Physical origins of metastability exchange collisions

Among the elastic collisions between two atoms of the same species, the case where one of
the two atoms is initially in a metastable excited state has given rise to a rich scientific
literature very early on. This history can be linked to the presence of this type of collision
in many energy transport phenomena in flames, explosions, or photochemistry [32]. These
collisions can be separated into two channels : one can speak of simple scattering when
X + X∗ → X + X∗ and exchange or transfer collision for the X + X∗ → X∗ + X process
where the electronic excitation of one is transferred to the other. For a given species with

11
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a given excited state, these exchange processes quickly become complicated to analyse. To
obtain total or differential cross sections, for example, the interaction potential of the X−X∗

dimer must be studied, the N-body Hamiltonian is then characterised by a multitude of
energy scales (Van der Walls, fine and hyper-fine interaction) and distance scales (nucleus 1
- nucleus 2, electron cloud 1 - nucleus 1, electron cloud 2 - nucleus 1, etc). Among all the
situations in which such processes appear, the case of helium stands out for its a priori unique
properties. Firstly, the He − He∗ → He∗ − He process, which is then called metastability
exchange collision, plays an important role in the dynamics of a ground-state/metastable
mixture and dominates the decoherence processes, even at room temperature. The collision
has important effects on the internal variables, since the state of the electron cloud can
be considered to be exchanged at the time of the collision. If the subsequent hyperfine
interaction is taken into account, then the nuclear spin of the metastable is polarised with
the electron spin. Thus, the electron spin of the metastable before the collision has been
transferred to the nuclear spin of the ground-state atom following the collision! It is possible
to observe these metastable exchange collisions in the case of other noble gases, such as neon
or xenon [33, 34], but they are accompanied by other depolarising collision channels that
dominate them1. Thus only helium seems to have a dynamic strongly driven by exchange
collisions. It would be tricky to give a full justification here but its full electronic layer which
protects against electronic recombination, even in the case where an electron is excited
combined with the low binding energy of the helium dimer (of the order of mK) as well as
an internuclear distance of the order of 60Å [37] are atomic properties which seem to favour
the exchange process [38].

From a theoretical point of view, some aspects of metastability exchange collisions in
helium are relatively simple to analyse. As J. Dupont-Roc points out in his thesis [27], it is
possible to treat independently the energetic aspect of the collision, i.e. the calculation of the
effective cross sections, and the internal aspect, i.e. the evolution of the spins of the atoms
under the effect of the collision. It is indeed possible to obtain the equations for the evolution
of the Zeeman sublevel and density matrix populations without ever having to specify the
form of the interaction potential. Only needed are considerations of symmetry, conservation
and selection rules during the collision. We will not reproduce these developments here, but
they can be found in the above mentioned thesis [27] and in reference [24]. In the following
section, we will present the internal variables of the atoms and the equations that govern
the evolution of the collective variables of a macroscopic mixture of atoms in the ground and
metastable states.

2.2 Evolution equations for the observables
In this section, we now consider a helium-3 gas and its collective observables. The situation is
similar to that of the diagram in figure 1.1(a) with respect to the cell and the atoms, putting
aside any reference to the optical cavity and to light : in the cell, the gas is at room temper-
ature and at a pressure of a few mbar. There are Ncell atoms in their ground state to which a
low intensity electric discharge is applied, which brings a small fraction of the atoms into the

1Let us also mention reference [35], where they try to polarise the nuclear spin of a xenon-129 via the
metastable state as for helium, without success. The authors mention possible additional decoherence channels
for ground state atoms. A nuclear polarization of a xenon-131 gas was nevertheless realized via metastable
exchange collisions in 1967 [36], but within an electron beam.
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metastable 23S1 state (and whose lifetime is finite because the atom de-excites by collision
with the cell walls). The discharge is maintained continuously during the experiment, which
allows us to consider the number of metastable ncell fixed. Metastability exchange collisions
are then the only processes affecting the atomic variables. In the remainder of this section,
after defining these variables, we discuss their evolution during a collision and then their
evolution at the macroscopic level, first by means of density matrices and then by collective
averages.

Definitions of observables The ground state of helium-3 is of configuration 11S0. In this
configuration, an atom has a nuclear spin of quantum number I = 1/2 while the spin of the
electron cloud is zero, we note I⃗atf the nuclear spin of an atom initially in such a state. In
the metastable state, the spin configuration is 23S1. In addition to the nuclear spin, which
is noted I⃗atm , the atom then has an electron spin of quantum number S = 1, which is noted
Σ⃗at
m. We also note J⃗atm and K⃗at

m the spins associated with the hyperfine multiplicities F = 3/2
and F = 1/2 of I⃗atm + Σ⃗at

m, the total spin of an atom in the metastable state. We should not
forget ⃗⃗Qatm the alignment tensor in F = 3/2, of Cartesian coordiantes Q(at)

αβ . The elements of
the alignment tensor can be written as

Q
(at)
αβ = 1

6

3
Σ(at)
α Σ(at)

β + Σ(at)
β Σ(at)

α

2 − S(S + 1)δαβ

 (2.1)

with α, β = x, y, z and δαβ the non-zero Kroenecker symbol equal to 1 only for α = β. Finally,
these two configurations have zero orbital angular momentum. The one-body collective
variables can be defined as the direct sum of the operator of this variable, over all atoms of a
population. Thus, we note I⃗ = ∑Ncell

i=1 I⃗atf (i) the collective nuclear spin of atoms in the ground
state, where i runs from 1 to Ncell and designates the atom i in the ground state. We can do
the same for Σ⃗m = ∑ncell

j=1 Σ⃗at
m(j), J⃗ = ∑ncell

j=1 J⃗
at
m (j), K⃗ = ∑ncell

j=1 K⃗
at
m (j) and ⃗⃗

Q = ∑ncell
j=1

⃗⃗
Qatm(j)

where this time the sum runs from 1 to ncell and designates an atom in the metastable state.

2.2.1 Observables during the collision

During a metastability exchange collision, no magnetic interaction plays a role in the collision:
indeed, the spin-orbit interactions are all zero because the two atoms are in an s configuration.
As for the hyperfine spin-spin couplings, the speed of the atoms at room temperature makes
them unable to affect the spins because the atoms only remain in proximity to each other for
an extremely short time (of the order of a few hundred femtoseconds). As the electrostatic
interaction dominates the interaction potential, we conclude that the spin operators commute
with the Hamiltonian, establishing a conservation of the different magnetic moments during
the collision. Thus, the electron spin is transferred without alteration, together with the
electron cloud during the metastability exchange collision. It is easy to understand how
these metastability exchanges allow the transfer of a spin polarisation: once the metastable
population is created by electric discharge in the gas and then optically pumped to the
23S−23P transition, the orientation is shared between the electronic and nuclear spin of the
metastable atoms. When a metastable atom polarized in this way undergoes an exchange
collision with an atom in the ground state, the electron clouds are exchanged between the
nuclei. The nucleus that belonged to the metastable population and whose spin is polarized
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Ground state Metastable
Before ρ

(1)
f ρ

(1)
m

After Tre ρ(1)
m ρ

(1)
f ⊗ Trn ρ(1)

m

Table 2.1: ρ(1)
f represents the density matrix of an atom in the ground state, ρ(1)

m that of an
atom in the metastable state and Trn, Tre the trace operations on the nuclear and electronic
variables respectively.

no longer has an electron spin and now participates in the collective spin of the ground state.
In the work presented in the article by J. Dupont-Roc, M. Leduc and F. Laloë of 1973 [24]
as well as in the thesis of J. Dupont-Roc [27], the evolution equations of the observables are
reconstructed without any cross-section calculation, simply by a careful study of the useful
elements of the collision scattering matrix from the physical and symmetry remarks that we
have just presented. We will limit ourselves here to recalling these equations without going
into the details of their construction.

2.2.2 The evolution of the macroscopic gas observables

Description in terms of density matrix Let us note ρ(1)
f the density matrix of an atom

in the ground state, ρ(1)
m that of an atom in the metastable state and Trn, Tre the trace

operations on the nuclear and electronic variables respectively, we also note Tr = Trn Tre =
Tre Trn the complete trace. We set Tr ρ(1)

m = 1 and Tr ρ(1)
f = 1. Table 2.1 represents the

exchange collsion from these matrices. We consider that there is no coherence between
the metastable and ground states before or after the collision. 2 The one-body density
operators for atoms in the ground state and metastable state are ρf and ρm respectively3.

2Let us note the conservation of the total spin of the two atoms by these collision rules: Indeed, noting Iz,
Sz, the spins of a nucleus and of the electron cloud respectively and Σtotal,z this total spin in the z direction
for example. We have

⟨Σtotal,z(before collision)⟩ = Trn

[
ρ

(1)
f Iz

]
+ Tr

[
ρ(1)

m (Iz + Sz)
]

(2.2)

and recall that the initial state of the metastable atom ρ
(1)
m runs on the nuclear and electronic variables. After

the collision, we can write

⟨Σtotal,z(after collision)⟩ = Trn

[
Tre ρ

(1)
m Iz

]
+ Tr

[
(ρ(1)

f ⊗ Trn ρ
(1)
m )(Iz + Sz)

]
(2.3)

= Tr
[
ρ(1)

m Iz

]
+ Trn

[
ρ

(1)
f (Iz + Sz)

]
+ Tre

[
(Trn ρ

(1)
m )(Iz + Sz)

]
(2.4)

= Tr
[
ρ(1)

m Iz

]
+ Trn

[
ρ

(1)
f Iz

]
+ Tr

[
ρ(1)

m (Iz + Sz)
]

(2.5)

where Trn

[
ρ

(1)
f Sz

]
= 0 and Tre

[
(Trn ρ

(1)
m )(Iz + Sz)

]
= Tr

[
ρ

(1)
m (Iz + Sz)

]
were used. We then find (2.2) and

so ⟨Σtotal,z(after collision)⟩ = ⟨Σtotal,z(before collision)⟩.
3The one-body density matrix describing the helium gas is then of the form

(
ρm 0
0 ρf

)
with ρm a matrix

of size 6 × 6 and ρf of size 2 × 2
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For independent atoms, we can write

ρf =
Ncell∑
i=1

ρ
(1)
f (i) and ρm =

ncell∑
j=1

ρ(1)
m (j) (2.6)

with ρ(1)
f (i), ρ(1)

m (j) the density matrices of atom number i and j respectively. By definition,
Tr ρf = Ncell and Tr ρm = ncell. We introduce the quantity dt

T which represents the fraction of
ground state atoms undergoing a metastability exchange collision during a time interval dt.
T−1 is therefore a metastability exchange collision rate for a ground state atom. Similarly, we
can define the ratio dt

τ representing the fraction of metastable atoms undergoing an exchange
collision in a time interval dt, with τ−1 being an exchange rate of metastables. Since an equal
number of ground-state atoms and metastable atoms have undergone an exchange collision,
we can write:

Ncell
T

= ncell
τ
. (2.7)

Thus the exchange rate ratio is equal to the population ratio τ
T = ncell

Ncell
. From these rates and

the 2.1 table, and considering only metastability exchange collisions, one can write evolution
equations for the previously defined one-body density matrices:

dρf = −dt
T
ρf + dt

τ
Tre ρm (2.8)

dρm = −dt
τ
ρm + dt

T
ρf ⊗ Trn ρm. (2.9)

From these evolution equations, it is possible to obtain those of the averages of the one-
body observables of the gas. The mean of the one-body operator Ô = ∑N

i=1Oi is defined
by ⟨Ô⟩ = Tr(Ôσ), replacing σ by ρf or ρm depending on the nuclear or metastable nature
of the observable. For its evolution, it is sufficient to consider the trace of one or other of
the evolution equations of the density matrices (2.8) and (2.9) multiplied by the observable
d
dt⟨Ô⟩ = Tr(O dσ

dt ). Finally, note that ⟨Ô⟩ = N ⟨O⟩at.

Evolution of internal variables Therefore, the contribution of the metastability ex-
change collisions (MEC) between ground-state and metastable atoms can be deduced directly
from the master equation on the one-atom density operator of references [24, 27] by simply
multiplying or dividing by the total number of ground-states Ncell or metastables ncell in the
cell:

d⟨K⃗⟩
dt

∣∣∣∣∣
ECH

= − 7
9τ ⟨K⃗⟩ + 1

9τ ⟨J⃗⟩ − 1
9τ

ncell
Ncell

⟨I⃗⟩ − 4
3τ

1
Ncell

⟨ ⃗⃗Q⟩ · ⟨I⃗⟩ (2.10)

d⟨J⃗⟩
dt

∣∣∣∣∣
ECH

= − 4
9τ ⟨J⃗⟩ + 10

9τ ⟨K⃗⟩ + 10
9τ

ncell
Ncell

⟨I⃗⟩ + 4
3τ

1
Ncell

⟨ ⃗⃗Q⟩ · ⟨I⃗⟩ (2.11)

d⟨Qαβ⟩
dt

∣∣∣∣
ECH

= − 2
3τ ⟨Qαβ⟩ + 1

9τ
1

Ncell

(
3⟨Iα⟩⟨Σβ⟩ + ⟨Iβ⟩⟨Σα⟩

2 − δαβ⟨I⃗⟩ · ⟨Σ⃗⟩
)

(2.12)

d⟨I⃗⟩
dt

∣∣∣∣∣
ECH

= − 1
T

⟨I⃗⟩ + 1
3T

Ncell
ncell

(⟨J⃗⟩ − ⟨K⃗⟩) (2.13)
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where ⟨Σ⃗⟩ = 2
3

[
⟨J⃗⟩ + 2⟨K⃗⟩

]
is the average value of the electron spin in the metastable state.

Reference is made to equations (1.37b), (1.37a), (1.39) and (1.25) of reference [24] (taking into
account a deviation of a factor 6 on the definition of the alignment tensor), or to equations
(VIII.30), (VIII.29), (VIII.32) and (VIII.15) of reference [27] [adding a Kronecker factor δαβ
omitted in (VIII.32)]. Note that this description neglects the hyperfine correlations between
the F = 3/2 and F = 1/2 hyperfine levels of the metastable state. In general, collisions
create such coherences via the ρf ⊗ Trn ρm term in (2.9) but these evolve with a very large
natural frequency (of the order of GHz) compared to the 1/τ evolution rate (several MHz)
which allows to decouple the evolution of coherences and hyperfine populations and to ignore
the former (see part D of chapter VII of [27]).

2.3 Study of the two 1/2-spins simplified model

To illustrate the effect of metastability exchange collisions on the collective variables of the
gas, let us consider a simplified case where the ground state is characterised by a nuclear
spin I = 1/2 and the metastable state by an electron spin K = 1/2. This simple model will
reveal its physical interest when we adiabatically eliminate the fluctuations of the spin J⃗ as
well as the alignment tensor ⃗⃗

Q in chapter 3. Especially since the mathematical approaches
used are the same. To facilitate comparison with the discussions in this chapter 3, we note
N and n the numbers of atoms in the ground and metastable states respectively, N = Ncell,
n = ncell and γf = 1/T , γm = 1/τ the collision rates. We always have the relation γf

γm
= n

N
between rates and populations. In chapter 3, these quantities will correspond to the effective
numbers in the case where the spins are not fully polarised initially. For the rest of this
section, they represent only a change in notation.

2.3.1 Definitions and equations for quantum fluctuations

In the case of I = 1
2 and K = 1

2 the exchange collision has the only effect of exchanging the
two spins and it is possible to convince oneself that the collective averages in an α = x, y, z
direction reduce to

d
dt⟨Kα⟩ = −γm⟨Kα⟩ + γf ⟨Iα⟩ (2.14)

d
dt⟨Iα⟩ = −γf ⟨Iα⟩ + γm⟨Kα⟩. (2.15)

Let us consider a stationary solution of this system of equations :

⟨Kx⟩s = n

2 , ⟨Ix⟩s = N

2 , ⟨Ky,z⟩s = ⟨Iy,z⟩s = 0. (2.16)

This solution corresponds to a perfectly polarized gas along the Ox axis, both ground-state
and metastable atoms. The quantum fluctuation operators δKα = Kα − ⟨Kα⟩s and δIα =
Iα−⟨Iα⟩s are introduced for a spin component α orthogonal to the direction of polarisation.4
These fluctuations obey the Langevin equations linearised around the stationary state. For

4By definition, ⟨δKα⟩s = 0 and ⟨δK2
α⟩ = VarsKα and similarly for δIα
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example Oy, we have
d
dtδKy = −γmδKy + γfδIy + fKy (2.17)

d
dtδIy = −γfδIy + γmδKy + fIy . (2.18)

The operators fKy and fIy , Langevin forces, are zero mean and have a variance deduced to
correctly reproduce the variances of the spins in the steady state for a set of independent
atoms. If we note xi, xj two fluctuation operators (of zero means) with as evolution equation:

dxi
dt = Exi + fi (2.19)

where Exi is a "deterministic" evolution operator and fi a Langevin force, then we can
calculate the average of a second moment with the relation:

d
dt⟨xixj⟩ = ⟨xiExj ⟩ + ⟨Exixj⟩ +Dij (2.20)

with Dij = ⟨fifj⟩ an element of the scattering matrix which is calculated in the polarized
steady state (2.16) with the formula

Dij = −⟨xiExj ⟩s − ⟨Exixj⟩s. (2.21)

With respect to the elements of the scattering matrix defined by equations (2.17)-(2.18) :

DKα,Kα = DIα,Iα = −DKα,Iα = −DIα,Kα = 1
2γmn = 1

2γfN (2.22)

with α = y, z and where all other elements are null.

2.3.2 Dynamics of quantum correlations

From equations (2.17)-(2.18) one can describe the transfer of quantum correlations between
the ground state and the metastable state. Indeed, they allow to obtain a closed system of
equations for the variances of the spin fluctuations:

d
dt⟨δK

2
y ⟩ = −2γm⟨δK2

y ⟩ + γf ⟨{δKy, δIy}⟩ + nγm
2 (2.23)

d
dt⟨δI

2
y ⟩ = −2γf ⟨δI2

y ⟩ + γm⟨{δKy, δIy}⟩ + nγm
2 (2.24)

d
dt⟨{δKy, δIy}⟩ = −(γm + γf )⟨{δKy, δIy}⟩ + 2γm⟨δK2

y ⟩ + 2γf ⟨δI2
y ⟩ − nγm. (2.25)

System that can be solved without difficulty for any initial state. Consider the case of an
initial state where the nuclear spin is fully polarised in the Ox direction and the metastable
spin is polarised in the same direction but squeezed in the Oy direction:

⟨δK2
y ⟩(0) = n

4 e
−2r (2.26)

⟨δI2
y ⟩(0) = N

4 (2.27)

⟨{δKy, δIy}⟩(0) = 0 (2.28)
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with r a positive parameter. Integrating the differential equations (2.23)-(2.25) we obtain

 ⟨δK2
y ⟩

⟨δI2
y ⟩

⟨{δKy, δIy}⟩

 =


n
4

[
1 − γ2

f

γ2
m
C

]
N
4

[
1 − γf

γm
C
]

−n
2
γf

γm
C

− n

2Ce
−(γm+γf )t

γf/γm−1
1 − γf

γm

− n

4Ce
−2(γm+γf )t

 1
1

−2


(2.29)

with C = 1−e−2r

1+(
γf
γm

)2 . In the limit of a long time, this system admits a stationary state (which

is reached after a time of order (γm + γf )−1):

∆K2
y = n

4

[
1 −

(
γf
γm

)2 1 − e−2r

1 + ( γf

γm
)2

]
(2.30)

∆I2
y = N

4

[
1 − γf

γm

1 − e−2r

1 + ( γf

γm
)2

]
. (2.31)

We can notice that the initial squeezing of the metastable spin parametrized by r is partly
transferred to the nuclear spin because the term γf

γm

1−e−2r

1+(γf/γm)2 is greater than 0 and thus
∆I2

y <
N
4 . This transfer is fixed by the ratio of the populations γf/γm = n/N ∼ 10−6. Let

us introduce the two-body correlation functions CJ and CI in the metastable level and the
ground-state level respectively:

CJ ≡
∑
l ̸=k

⟨Kat
y (l)Kat

y (k)⟩ = 1
4(n− 1)

(
∆K2

y

n/4 − 1
)

(2.32)

CI ≡
∑
l ̸=k

⟨Iaty (l)Iaty (k)⟩ = 1
4(N − 1)

(
∆I2

y

N/4 − 1
)

(2.33)

where we sum over all atoms. We find an already known property of metastability exchange
collisions [10] which tend to equalise the correlation functions CJ and CI . Indeed, starting
from (2.30) and (2.31)

1 −
∆K2

y

n/4 =
(
γf
γm

)2 1 − e−2r

1 + ( γf

γm
)2 ≃

γf ≪γm

(
1 − e−2r

)( γf
γm

)2
(2.34)

1 −
∆I2

y

N/4 = γf
γm

1 − e−2r

1 + ( γf

γm
)2 ≃

γf ≪γm

(
1 − e−2r

) γf
γm

. (2.35)

Thus

1 −
∆K2

y

n/4 = γf
γm

(
1 −

∆I2
y

N/4

)
(2.36)

CJ
n− 1
n

= CI
N − 1
N

−→ CJ ≃ CI . (2.37)

This equalization of the correlation functions confirms that they do not reduce to an "incon-
sistent" exchange of polarizations by transferring excitations in the ground-state population,
they also transfer quantum correlations between the atoms of the gas. As an illustration,
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Figure 2.1: Quantity obtained from a Monte Carlo simulation of two collective spins,
metastable and ground-state, coupled by metastability exchange collisions. Averaged over
10,000 Monte Carlo trajectories. γf/γm = 1/3. Initially, both spins are polarised in the
Ox direction, the nuclear spin (in red) is in a coherent state while the metastable spin (in
blue) is squeezed in the Oy direction as defined by the equation (2.26) with r = 1/2. The
filled area represents the uncertainty on the Monte Carlo average. (a) As a solid line, the
variance of the Oy components of each spin normalized by their respective population. The
dotted lines indicate the long time limit. (b) Two-body correlation functions (by one factor)
defined by the equations (2.32)-(2.33). The red line represents (N − 1)γfCI and the blue
(n − 1)γmCJ . Recall that nγm = Nγf and that this quantity represents the number of
metastability exchange collisions per unit time.

we show in figure 2.1 the correlation functions as well as the variances in the Oy direction
of two collective spins, one of which is initially squeezed in this direction (parameter r non-
zero). We have taken γf

γm
= 1

3 and r = 0.5. 5 On these illustrations, the convergence of the
correlation functions under the effect of collisions is clearly visible as well as the partition of
the variances between the two spins in the course of time.

Let us conclude this discussion of the transfer of correlations with a final remark : al-
though equation (2.35) indicates that the squeezing of the nuclear spin is non-zero in the
asymptotic state, we can see the presence of a factor γf

γm
with respect to the normalized

squeezing initially present in the metastable (1 − e−2r). However, this factor is very small
in practice, of the order of 10−6. Thus the nuclear and metastable spins [the latter with an
additional factor γf

γm
in (2.34)] are only weakly squeezed. This is because even with a very

strong squeezing of the metastable population initially, the transferred excitations represent
only a small fraction of the atoms in the ground-state population. To create a significant
squeezing of the nuclear spin, we then need to continuously bring correlations into the system.
Therefore, we consider a continuous nondemolition quantum measurement as the source of
correlation. From then on, the factor γf

γm
will intervene in the characteristic squeezing time

and not in the asymptotic squeezing level, as we will see.

5Parameters disconnected from real experiments. In particular, these parameters imply that one third of
the atoms in the gas are in the metastable state. But there is an upper limit to the fraction of metastable
that can exist in the gas. Above a certain metastable density, the collisions He∗ +He∗, called Penning, ionise
the atoms and destroy the metastable populatio [39].
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2.3.3 Master equation for the metastability exchange collisions

To conclude this chapter, we introduce a master equation description of the collisional evo-
lution of metastability exchange. This description will prove very useful in the following
chapters. Under the assumption that metastability exchange collisions occur independently
for each atom in the gas, as one would describe for example out-of-phase collisions, their con-
tribution to the evolution of the density operator ρ describing the spin degrees of freedom
in the gas can be described by a Lindblad master equation:

d

dt
ρ =

ncell+Ncell∑
i

CiρC
†
i − 1

2(C†
iCiρ+ ρC†

iCi) (2.38)

where ncell +Ncell is the total number of atoms, and Ci a jump operator acting only on the
atom i :

C =

 0
√

1
T 1f√

1
τ 1m 0

 . (2.39)

where 1f and 1m denote the identity matrices in the subspaces describing an atom in the
ground state and in the metastable state, respectively. As an example, let us give some
indications that allow us to find equations (2.14)-(2.15) in the case of the simple model I = 1

2
and K = 1

2 , starting from (2.38). We sought, for a one-body observable Ô = ∑N
i Oi with

N = n+N and Oi an operator acting only on the atom i, the evolution equation of its mean
d
dt⟨Ô⟩ = Tr

[
Ô dρ

dt

]
= Tr

[∑
iC

†
i ÔCiρ− 1

2(C†
iCiÔ + ÔC†

iCi)ρ
]

with Ci an operator of the form
(2.39) acting only on the atom i. We will take as an example the metastable spin operator
in the direction Oy, Ky = ∑N

i Kat
y (i) with Kat

y (i) = i
2 (|m; +⟩⟨m; −| − |m; −⟩⟨m; +|) and

|m; +⟩, |m; −⟩ the two states composing the metastable spin 1/2, not to be confused with
|f ; +⟩, |f ; −⟩ the nuclear spin 1/2. Note that two operators acting on two different atoms
commute. Hence, we can write

d
dt⟨Ky⟩ = Tr

[∑
i

C†
iK

at
y (i)Ciρ− 1

2(C†
iCiK

at
y (i) +Kat

y (i)C†
iCi)ρ

]
. (2.40)

Thus each term of the sum relates to only one atom, which allows us to write

d
dt⟨Ky⟩ = Tr1

[
C†

1K
at
y (1)C1ρ

(1) − 1
2(C†

1C1K
at
y (1) +Kat

y (1)C†
1C1)ρ(1)

]
(2.41)

with Tr1 is the trace on the states of atom 1 and ρ(1) = N Tr2,3,4,...,Nρ. From an expression
of C1 in the base {|m; +⟩, |m; −⟩, |f ; +⟩, |f ; −⟩}, it only remains to calculate the products of
matrices C†

1K
at
y (1)C1, C†

1C1K
at
y (1) and Kat

y (1)C†
1C1 and then to recognise the expressions of

Kat
y (1) and Iaty (1) = i

2 (|f ; +⟩⟨f ; −| − |f ; −⟩⟨f ; +|). We then come back to (2.14) for α = y.



Chapter 3

Three-spin coupled model

Foreword

In this chapter we describe the equations of the complete cell and cavity system. The aim will
be to set up a quantum description of the system suitable for our problem from which we can
explore the dynamics when subjected to continuous quantum nondemolition measurement.
These measurements will not be discussed in this chapter, as they are covered in chapters 4
and 5. On the one hand we have the atoms, the coupling between the atoms in the ground
state and those in the metastable state, and on the other hand the light in the optical cavity
and its coupling with the metastable. To describe these different elements, this chapter
opens with a semiclassical approach, i.e. ignoring quantum fluctuations, where the evolution
equations are derived only for the averages of the observables. To the equations of section
2.2.2 of chapter 2 which describe in such a way the metastability exchange collisions, we will
have to add the macroscopic observables describing the light (a Stokes spin) and its coupling
with the metastable spin observables. After having described the stationary state of these
equations in which we initially place the system, which corresponds to a state where each of
the spins is polarised in the same direction, we describe in the next section the evolution of
the quantum fluctuation operators around this stationary state. These fluctuation operators
are only the spin operators in the directions perpendicular to the polarisation. But this
description allows us to adiabatically eliminate the metastable spin operators related to the
F = 3/2 multiplicity of the total metastable spin, namely the J⃗ spin and the ⃗⃗

Q alignment
tensor. This results in a description of the system reduced to three coupled spins. In the
section that closes the chapter, the model that will be considered during the rest of this
part is introduced. This model is that of three coupled bosonic modes, directly derived
from the three-spin model, where each of the modes is related to one of the three spins.
This transformation is done by the so-called Holstein-Primakoff approximation. For a very
large and polarised spin, this allows the spin operators perpendicular to the direction of
polarisation to be described as bosonic modes, via a normalisation of the operators. Following
this, the section concludes with a three-mode master equation, where the Hamiltonian part
corresponds to the light-metastable coupling and the jump operators to the metastability
exchange collisions rewritten in the framework of this Primakoff approximation.

21
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3.1 Semi-classical description of the evolution of the system
Recall the notations for the observables already introduced in section 2.2: I⃗ the collective
nuclear spin in the ground state, J⃗ and K⃗ the collective spins associated with the hyperfine
multiplicities F = 3/2 and F = 1/2 in the metastable state and ⃗⃗

Q the collective alignment
tensor in F = 3/2. For light propagating along Oz, we introduce the Stokes spin [26]
constructed from the creation and annihilation operators of a photon in the linearly polarised
cavity modes along Ox and Oy1 :

Sx = 1
2
(
c†
xcx − c†

ycy
)
, Sy = 1

2
(
c†
xcy + c†

ycx
)
, Sz = 1

2i
(
c†
xcy − c†

ycx
)
. (3.1)

For simplicity we assume that the cell is uniformly illuminated by the cavity mode. In the
limit of large detuning and small saturation of the atomic transition by the field, the excited
state 23P can be eliminated adiabatically and the Hamiltonian interaction between the spin
of the metastable K⃗ and the Stokes spin S⃗ takes the Faraday form [26]:

H = ℏχKzSz (3.2)

which is none other than the light displacement operator of the Zeeman sublevels in the
metastable level F = 1/2, as can be clearly seen on the form of Sz in note 1.

3.1.1 Nonlinear semiclassical equations

In this subsection we describe the coupled nonlinear equations that govern the evolution
of mean spins. In addition to the evolution due to the Faraday Hamiltonian (3.2) and the
metastability exchange collisions, we need to include the contribution of the usual Liouvillian
terms in the master equation describing the injection of a Ox polarised coherent field into
the cavity and the losses due to the output mirror, the combined effect of which leads to
⟨Sx⟩s = nph/2 in the stationary state in the absence of atoms, where nph is the average
photon number in the Ox polarised mode. This leads to

d⟨S⃗⟩
dt = −κ

2

(
⟨S⃗⟩ − nph

2 u⃗x

)
+ χ⟨Kz⟩

(
⟨S⃗⟩ × u⃗z

)
(3.3)

d⟨K⃗⟩
dt = d⟨K⃗⟩

dt

∣∣∣∣∣
ECH

+ χ⟨Sz⟩
(
⟨K⃗⟩ × u⃗z

)
(3.4)

d⟨J⃗⟩
dt = d⟨J⃗⟩

dt

∣∣∣∣∣
ECH

,
d⟨Qαβ⟩

dt = d⟨Qαβ⟩
dt

∣∣∣∣
ECH

,
d⟨I⃗⟩
dt = d⟨I⃗⟩

dt

∣∣∣∣∣
ECH

(3.5)

with u⃗α=x,y,z the unit vector of axis Oα. We have performed the ⟨AB⟩ ≃ ⟨A⟩⟨B⟩ approx-
imation where A and B are two operators, known as semiclassical quantum optics. The
terms proportional to the loss rate κ of the cavity output mirror cause ⟨Sx⟩ to relax to its
stationary value ⟨Sx⟩s = nph/2 forced by the Ox line-polarised laser field injected into the
cavity, and the transverse averages ⟨Sy⟩ and ⟨Sz⟩ to zero. The terms denoted by “ECH” are
the metastability exchange terms described by (2.10)-(2.13) in Chapter 2.

1 Equivalently, one can construct the Stokes spin S⃗ using the annihilation operators in the circularly
polarised modes, c1 = 1√

2 (cx − icy), c2 = 1√
2 (cx + icy) [40], in which case Sz = 1

2

(
c†

1c1 − c†
2c2
)
.
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3.1.2 Partially polarised stationary solution

We now linearise these equations around a partially polarised stationary solution. The aim is
to adiabatically eliminate the fluctuations of the spin J⃗ and the collective alignment tensor in
F = 3/2. We believe that this non-mathematically controlled approximation is reasonable
for the proposed experiment, as spin J⃗ is not directly coupled to light and therefore not
directly affected by the continuous field measurement. On the other hand, eliminating the
fluctuations of the spin K⃗, directly coupled to the field, would lead to a non-negligible error
in the spin squeezing dynamics in the case of photon counting detection (i.e. omitting the
double jump Cd in the master equation (4.18) and the rate Γ0 in the average number of
counted photons (4.27), and thus strongly underestimating the number of photodetections
required to achieve a given squeezing level), but a negligible error in the case of homodyne
detection, as we have verified on the single-mode model in section 4.2.

If we look for a partially polarised steady state from a nuclear polarisation η ∈ [−1, 1],

⟨Ix⟩s = η
Ncell

2 , ⟨Iy⟩s = ⟨Iz⟩s = 0, ⟨Sx⟩s = nph
2 , ⟨Sy⟩s = ⟨Sz⟩s = 0, (3.6)

the rotational invariance of axis Ox of this polarisation and the system (3.3)-(3.5) forces the
mean spins in the metastable state to be aligned along Ox, and the mean alignment tensor
to be diagonal in the Cartesian basis, with equal eigenvalues along directions Oy and Oz.
The system (3.3)-(3.5) thus admits a stationary solution with the only non-zero means in
the metastable state:

⟨Kx⟩s = η

2
1 − η2

3 + η2ncell, ⟨Jx⟩s = η
5 + η2

3 + η2ncell, ⟨Σx⟩s = 4η
3 + η2ncell, (3.7)

⟨Qyy⟩s = ⟨Qzz⟩s = −1
2⟨Qxx⟩s = − η

12⟨Σx⟩s . (3.8)

3.2 Description of the quantum fluctuations

3.2.1 Linearised semiclassical equations

We now linearise the equations (3.3)-(3.5) in the classical fluctuations around the stationary
solution (3.6)-(3.8) by making the substitution ⟨A⟩ → ⟨A⟩s + δA and treating δA to first
order. By restricting ourselves to the subspace of the transverse fluctuations, i.e. to the
directions α = y, z orthogonal to the mean spins, we obtain a closed system:

d
dtδSα = −κ

2 δSα + χδαy⟨Sx⟩sδKz (3.9)
d
dtδKα = − 7

9τ δKα + 1
9τ δJα − 2η

3τ δQαx − 1
9T

(
1 + 12

ncell
⟨Qαα⟩s

)
δIα + χδαy⟨Kx⟩sδSz

(3.10)
d
dtδJα = − 4

9τ δJα + 10
9τ δKα + 2η

3τ δQαx + 10
9T

(
1 + 6

5ncell
⟨Qαα⟩

)
δIα (3.11)

d
dtδQαx = − 2

3τ δQαx + η

12τ δΣα + 1
6Tncell

⟨Σx⟩sδIα (3.12)

d
dtδIα = − 1

T
δIα + 1

3τ (δJα − δKα). (3.13)
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We recall the notations of chapter 2 where Ncell and ncell are the number of atoms in the
ground state and metastable state respectively while 1/T and 1/τ are the rate of exchange
collisions seen by the atoms in the ground state and metastable state respectively. 2

3.2.2 Reduction with three coupled collective spins

By positing d
dtδJα = 0 in equation (3.11) and d

dtδQαx = 0 in equation (3.12), we adiabatically
eliminate the fluctuations of the collective spin J⃗ and the collective alignment tensor whose
evolutions are governed by the metastability exchange only.

δJadiab
α =210 + η2

8 − η2 δKα + 12τ
T

5 + 2η2

(3 + η2)(8 − η2)δIα (3.14)

δQadiab
αx = 3η

8 − η2 δKα + τ

T

η(13 + η2)
(3 + η2)(8 − η2)δIα. (3.15)

Carrying over the adiabatic expressions (3.14)-(3.15) in equations (3.10) and (3.13) to δKα

and δIα leads to a reduced system coupling the three collective spins I⃗, K⃗ and S⃗. The
stationary mean values are redefined by :

⟨I⃗⟩s = N

2 u⃗x , ⟨K⃗⟩s = n

2 u⃗x , ⟨S⃗⟩s = nph
2 u⃗x . (3.16)

Here u⃗x is the unit vector according to Ox, N and n are the effective numbers of fundamental
and metastable atoms participating in the collective spin dynamics. They are renormalized
with respect to the true total numbers Ncell and ncell in the cell, by factors depending on the
nuclear polarization η3 :

N = η Ncell , n =
(

1 − η2

3 + η2

)
η ncell . (3.17)

The semiclassical equations on the fluctuations of the three collective spins are then written :
d
dtδSz = −κ

2 δSz ,
d
dtδSy = −κ

2 δSy + χ⟨Sx⟩sδKz (3.18)
d
dtδIz = −γfδIz + γmδKz ,

d
dtδIy = −γfδIy + γmδKy (3.19)

d
dtδKz = −γmδKz + γfδIz ,

d
dtδKy = −γmδKy + γfδIy + χ⟨Kx⟩sδSz . (3.20)

Recall that γm and γf are the effective rates of metastability exchange in the metastable
state and in the ground state. These depend on the nuclear polarisation as below and in
figure 3.1a, and are in the same ratio as the numbers of effective atoms N and n (3.17)
constituting the collective spins:

γf = 4 + η2

8 − η2
1 − η2

3 + η2
1
T
, γm = 4 + η2

8 − η2
1
τ
,

γm
γf

= N

n
≫ 1 . (3.21)

2Thus Ncell
T

dt = ncell
τ
dt and this quantity represents the number of atoms undergoing a metastability

exchange collision during an interval dt. This relation implies τ
T

= ncell
Ncell

.
3Note that n = 0 in the fully polarized case η = 1. Indeed, the entire population of the metastable state is

then in the extreme Zeeman sublevel mx = 3/2 of the hyperfine state F = 3/2 and the multiplicity F = 1/2
is empty. This is also the reason why we have considered a partially polarized state since the beginning of
this chapter.
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Figure 3.1: (a) Effective metastability exchange rates γf (bottom curve, red) and γm (top
curve, blue) from the equation (3.21) in the ground state and metastable as a function of
nuclear polarisation η, normalised by the rates of metastability exchange collisions 1/T and
1/τ experienced by a ground state and metastable atoms in the gas. (b) Nuclear polarisation
dependence of the Faraday pulsation Ωα entering the rate of excitation creation by Faraday
coupling in the hybrid nuclear bosonic mode (4.13) and in the spin compression rates (4.32)
and (5.51) in the γf ≪ γm limit; more precisely, we represent the factor f(η) = √

η 1−η2

3+η2 such
that Ωα ≃ Ω(γf/γm)1/2 = χ

√
nphncell

√
ncell
Ncell

f(η). When the polarisation varies between 0.3
and 0.5 (vertical dashed lines), f(η) deviates by 4% from its maximum ≃ 0.17 reached at
η = 0.42. It is therefore advantageous to place oneself close to this value of η in order to
reduce the temporal drift of Ωα due to a slight damping of the nuclear polarisation during the
spin compression (indeed, the optical pumping process is then interrupted and the lifetime
of the polarisation is reduced by the presence of the discharge, it becomes of the order of
γ−1
α , where γα is the reduced decoherence rate from section 5.4).

Note that the system of equations coupling the δIy and δKy fluctuations, ignoring the Fara-
day term in χ, is the one previously studied in section 2.3 describing the simple model of two
1/2-spins coupled by the metastability exchange collisions. In figure 3.1b, we also show the
nuclear polarisation dependence of the effective Ωα (4.5) Faraday coupling between light and
the metastable hybridised nuclear spin, which controls the spin squeezing rate as we shall
see.

3.3 Three bosonic mode models
The stationary, polarised state of the system we have just presented allows the implementa-
tion of the Holstein-Primakoff approximation, introducing a representation of the system via
three bosonic modes. In this section, the introduction of this approximation will be followed
by the writing of a master equation for such a system, taking into account the Faraday
coupling as well as the metastability exchange collisions.

3.3.1 Holstein-Primakoff approximation

Initially, the collective nuclear spin I⃗, the collective spin of the metastable K⃗ and the Stokes
spin S⃗ of the light are polarised according to Ox, and will remain so throughout the exper-
imental procedure. In the Holstein-Primakoff approximation, which assimilates the macro-
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scopic spin components according to Ox to classical variables, the remaining Oy and Oz com-
ponents, orthogonal to the mean spins, behave as the quadrature operators (hermitian and
antihermitian parts of annihilation operators and thus canonically conjugate, [X,P ] = i/2)
of three bosonic modes a, b, c : 4

Iy√
N

Primakoff≃ Xa = a+ a†

2 ,
Ky√
n

Primakoff≃ Xb = b+ b†

2 ,
Sy√
nph

Primakoff≃ Xc = c+ c†

2 ,

(3.22)
Iz√
N

Primakoff≃ Pa = a− a†

2i ,
Kz√
n

Primakoff≃ Pb = b− b†

2i ,
Sz√
nph

Primakoff≃ Pc = c− c†

2i .

(3.23)

We have taken into account the mean values (3.16) in the normalization. Let’s make the
link with the exact bosonic (3.1) representation of the Stokes spin by writing:

Sy√
nph

− i Sz√
nph

= 1
√
nph

c†
ycx

Primakoff≃ c†
y ,

Sy√
nph

+ i Sz√
nph

= 1
√
nph

c†
xcy

Primakoff≃ cy . (3.24)

This shows that the c† creation operator in (3.22)-(3.23), identified with c†
y in the Primakoff

approximation, transfers a photon from the cavity mode strongly populated by an Ox-
polarised coherent state into the initially empty Oy-polarised cavity mode. In the Primakoff
approximation, the Hamiltonian of the Faraday atom-field coupling (3.2) is written:

H = ℏΩPbPc with Ω = χ
√
nnph. (3.25)

Since χ does not depend on the field strength in the cavity, Ω2 is proportional to the field
strength.

Metrological gain due to squeezing Let us write in terms of Primakoff variables the
parameter ξ of reference [25] quantifying the level of spin squeezing usable in an interferom-
eter (the metrological gain is all the higher as ξ is lower) previously introduced in chapter 1,
Oz being the direction transverse to the average spin of highest squeezing and the collective
nuclear spin being of quantum number I = Ncell/2 :

ξ2 ≡ 2I Var(Iz)
⟨Ix⟩2 = 4 Var(Pa)

η
. (3.26)

The nuclear polarisation η being fixed, and a quantum nondemolition measurement being
carried out continuously on the nuclear spin, it is necessary to seek to minimise the variance
of Pa conditional on the measurement signal to be defined, by making it fall as far as possible
below its initial value 1/4. Note how partial polarization "works against us" in this respect
because it increases by a factor of η the value below which Var(Pa) must fall to obtain the
same gain as for a fully polarized spin.

4If we consider a large spin S⃗ polarized along Ox, we can approximate the spin component in this direction
by a classical variable, positing Ŝx ≃ ⟨Ŝx⟩ so that [Ŝy/

√
2⟨Ŝx⟩ , Ŝz/

√
2⟨Ŝx⟩] ≃ i/2.
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3.3.2 Three-mode master equation for metastability exchange

Let us consider in this subsection the evolution of the system due to metastability exchange
(χ = 0) alone. Unlike in section 2.3, we formulate the equations in terms of the bosonic
operators from the Primakoff approximation. In a quantum treatment, the classical equations
(3.19)-(3.20) become stochastic equations including quantum fluctuations. In the Primakoff
approximation, this gives for the X quadratures in the metastable and ground state:

dXa = −γfXadt+
√
γmγfXbdt+dXstoch

a , dXb = −γmXbdt+
√
γmγfXadt+dXstoch

b (3.27)

where the equality of the ratios between collision rates and populations of the two states
(3.21) has been used. The Langevin noises dXstoch

i , together with i ∈ {a, b}, have zero
mean, are independent random variables at different times and have equal time variances
and covariances that reproduce the variances of a set of independent atoms. They have
already been calculated in chapter 2, see equation (2.22) and the corresponding section in
general.

⟨dXstoch
i dXstoch

j ⟩ = Dijdt with D = 1
2

(
γf −√

γmγf
−√

γmγf γm

)
. (3.28)

We have equations of the same form as (3.27) for the Pi quadratures, with other Langevin
noises dP stoch

i , of the same covariance matrix as equation (3.28) between them but of covari-
ance matrix with the dXstoch

i noises given by

⟨dXstoch
i dP stoch

j ⟩ = Dijdt with D = iD. (3.29)

For the computation of the mean values and variances of the atomic observables, this stochas-
tic formulation is equivalent to a master equation on the ρat atomic density operator of the
two bosonic modes a and b:

dρat
dt = CρatC

† − 1
2{C†C, ρat} with C =

√
2γfa−

√
2γmb. (3.30)

Indeed, the stochastic Langevin representation of the master equation (3.30) for any operator
A is written

dA = dt
2
{
C†[A,C] − [A,C†]C

}
+dAstoch where dAstoch = [C†, A]dB+dB†[A,C] (3.31)

and dB is a stochastic Markovian operator of zero mean, equal time covariance matrix

⟨dB dB†⟩ = dt , ⟨dB dB⟩ = ⟨dB†dB†⟩ = ⟨dB†dB⟩ = 0 . (3.32)

3.3.3 Complete three-mode master equation

The complete evolution, including the atom-field interaction of Hermitian Hamiltonian H
(3.25), metastability exchange and cavity losses, is described by the master equation. 5

dρ
dt = 1

iℏ [H, ρ] + κ

(
cρc† − 1

2{c†c, ρ}
)

+ CρC† − 1
2{C†C, ρ} (3.33)

5We neglect here the internal evolution of the atomic modes (spin precession) by assuming that the Zeeman
sublevels are degenerate in the ground state and in the metastable F = 1/2 level, thus the external magnetic
field is zero, B⃗ = 0⃗. This simplifying assumption calls for some comments which we develop in section 5.5.2.
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where C is the jump operator for the (3.30) metastability exchange, κ is the cavity loss rate,
γm and γf are the effective metastability exchange rates in the metastable and ground state.

In this thesis, we consider that the three modes are in the empty state corresponding to
a polarised coherent state for the three spins 6:

⟨Xa⟩(0) = ⟨Xb⟩(0) = ⟨Xc⟩(0) = 0 , ⟨X2
a⟩(0) = ⟨X2

b ⟩(0) = ⟨X2
c ⟩(0) = 1

4 (3.34)

and similarly for the quadratures P . For this initial state, the first moments of the quadra-
tures remain zero, and a closed system of second moment equations can be obtained. It is
found that the quadratures P remain with constant variances and zero covariances in all
three modes,

⟨P 2
a ⟩(t) = ⟨P 2

b ⟩(t) = ⟨P 2
c ⟩(t) = 1

4 , ⟨PaPb⟩(t) = ⟨PaPc⟩(t) = ⟨PbPc⟩(t) = 0 (3.35)

that the variance ⟨X2
c ⟩ remains bounded and the covariances ⟨XaXc⟩ and ⟨XbXc⟩ remain

zero, while the variances and covariance of the quadratures Xa and Xb, and thus the number
of excitations in the atomic modes, 7 diverge linearly in time, at least as long as the Primakoff
approximation is applicable. We give here explicitly only the behaviour at long times:

⟨X2
a⟩(t) =

t→+∞

γmγf
(γm + γf)2

Ω2t

4κ +O(1) (3.36)

⟨X2
b ⟩(t) =

t→+∞

γ2
f

(γm + γf)2
Ω2t

4κ +O(1) (3.37)

⟨XaXb⟩(t) =
t→+∞

γ
1/2
m γ

3/2
f

(γm + γf)2
Ω2t

4κ +O(1) (3.38)

⟨X2
c ⟩(t) − 1

4 =
t→+∞

( Ω
2κ

)2 (
1 − 2γm

κ+ 2(γm + γf)

)
. (3.39)

6We make here a new approximation which amounts to ignoring the fact that the polarisations of the
nuclear and metastable spins are only partials in the definition of the ground state. Indeed, in all rigour
⟨X2

a(0)⟩ = ⟨P 2
a (0)⟩ = 1

4η
and ⟨X2

b (0)⟩ = ⟨P 2
b (0)⟩ = 1

4p
with p = η 1−η2

3+η2 . The approximation therefore amounts
to neglecting part of the noise in the initial state. Here, our simplification allows us to consider an initial
Gaussian state, a property that will prove crucial in chapter 5. The question then becomes whether the
true coherent but non-Gaussian initial state is similarly affected by the measurement. In the literature, this
situation is not unknown. It arises in any attempt to compress a collective spin from a non-polarised state,
or in the presence of decoherence. The theoretical work undertaken by Baragiola, Chase and Geremia in
reference [41] for example seems to confirm our argument. In an extensive study of collective states of atomic
ensembles in standard quantum optics experimental procedures, the authors show that squeezed spin states
(in any case with reduced variances) can be constructed even from states that are not fully polarized or in
the presence of decoherence. In the experimental work, we can cite [15] where a squeezing of 2, 2 dB on a
spin of a set of atoms polarised at 98% is obtained by quantum nondemolition measurement via a Faraday
cavity interaction like the work presented here. Reference [11] also refers to correlations in the nuclear spin of
a noble gas by continuous measurement of the cavity light that has interacted with the atomic ensemble by
the Faraday effect, and discusses the fact that a partially polarised set of 1/2 spins is similar to a mixture of
two sets, one polarised and one unpolarised, which would only have the overall effect of reducing the coupling
strength between the light and the atoms. An alternative scheme in which one can achieve (at least in theory),
η = 1 and where such a problem disappears, is described as a perspective in section 5.5.1 at the end of this
part.

7For the initial state considered, one has at all times ⟨Xa⟩ = 0 and ⟨X2
a⟩ − 1

4 = ⟨a†a⟩, where ⟨a†a⟩ is
the average number of excitations in the nuclear spin mode, so that Var Xa = ⟨a†a⟩ + 1

4 ; in effect, one has
a†a+ 1/2 = X2

a + P 2
a . The same relations hold for the other two modes.



Chapter 4

Nuclear spin squeezing by photon
counting

Foreword

Having introduced the metastability exchange collisions (chapter 2), coupling the atoms of
the ground state to those of the metastable state, we added the coupling with the cavity
light (chapter 3) and developed an effective model of 3 coupled bosonic modes describing by
a master equation (3.33) the fluctuations of the spins around the stationary state in which
we initially place the system. For the scheme to be complete, and to induce a nuclear spin
squeezing, all that remains is the description of the quantum nondemolition measurement of
the light at the cavity exit and its effect on the state of the three-mode system. Indeed, the
quantum averages calculated in chapter 3, equations (3.36)-(3.39), correspond to ensemble
averages over an infinite number of realisations of the experiment. In the present and next
chapters, we study what we are really interested in, the evolution of the system in one or
more given realisations, conditional on the results of a continuous measurement on the Oy
polarised light coming out of the cavity. For this, we take advantage of the formulation in
terms of Monte Carlo wave functions where stochastic trajectories |ψ(t)⟩ corresponding to a
particular succession of quantum jumps reconstruct the density operator of the system con-
ditional on measurement results [42]. The precise form of the Monte Carlo jump operators,
which is not unique in the stochastic reformulation of a master equation, is then determined
by the particular measurements made. Here, the case of a photon counting measurement at
the cavity exit will be considered, with an analytical study in the one-mode model and a
numerical study in the full three-mode model. The first section of this chapter is dedicated
to the introduction of this Monte Carlo wavefunction formalism. Subsequently, we perform a
first analysis in a limit, which we call "one-mode", that allows us to describe the (slow) evolu-
tion of the nuclear spin during the experiment. This analysis is first limited to the quantum
averages and then in the following section 4.3, we introduce the cavity output measurement
and its effect on the system. We take it into account, with the same formalism introduced
in 4.1, by conditioning the mode states and the observable averages on the measurement
results. The last section thus proposes an analytical development in the framework of the
one-mode limit already introduced and then in the complete three-mode model, but only
numerically. These two analyses confirm that this counting scheme produces a collective nu-

29
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clear spin state with a narrower structure than the standard quantum limit, a priori allowing
a metrological gain.

4.1 Monte-Carlo wavefunction principle

In the Monte-Carlo wavefunction formalism [42, 43], the general master equation of the
Lindblad form [44]

dρ
dt = 1

iℏ [H, ρ] +
∑
m

C†
mρCm − 1

2{C†
mCm, ρ} (4.1)

is reinterpreted in terms of a corresponding Hilbert space vector that undergoes a stochastic
evolution. The Monte Carlo (MC) wave vector is considered to evolve according to a non-
Hermitian Hamiltonian HMC = H − iℏ

2
∑
mCmC

†
m, which is stochastically interrupted by

quantum jumps due to operators Cm such that |ϕ⟩ → Cm|ϕ⟩. Concretely, calculating the
evolution during δt of a Monte-Carlo wave vector |ϕ(t)⟩ can be done in two steps, assuming
δt sufficiently small: one defines beforehand the quantities δpm = δt⟨ϕ(t)|C†

mCm|ϕ(t)⟩ and
δp = ∑

m pm (these different quantities are assumed to be small compared to 1). We then
use δp as the probability that the MC wave vector undergoes a quantum jump. We draw
a number ϵ uniformly between 0 and 1, if this number is greater than δp then we take
as wave vector at t + δt the vector |ϕ(t)⟩ evolved under the action of HMC during δt :
|ϕ(t + δt)⟩ = N

(
1 − iδt

ℏ HMC

)
|ϕ(t)⟩ with N a constant to normalize the vector. If, on

the other hand, ϵ < δp then |ϕ(t + δt)⟩ = NCm|ϕ(t)⟩ where the jump operator Cm was
randomly drawn with probability law P (m) = δpm

δp . It can be shown that, for a sufficiently
small δt, the quantity |ϕ(t+ δt)⟩⟨ϕ(t+ δt)| averaged over the realisations and quantum jump
choices is exactly equivalent to ρ(t + δt) evolved according to the master equation (4.1).
Similarly, for an operator A, any quantity ⟨ϕ(t)|A|ϕ(t)⟩, similarly averaged, is equivalent to
Tr(Aρ). Finally, if we take care to take for Cm operators that have a physical meaning,1
i.e. that are related to real processes accessible in the experiment, it is possible to physically
interpret the trajectory of a Monte-Carlo wave vector. Consider a two-level atom coupled
to a coherent laser and the vacuum of the electromagnetic field. A Monte Carlo trajectory
of such an atom is simply interpreted as the Rabi oscillation sporadically returned to the
ground state by the production of a photon. By averaging over all possible trajectories, we
come back to the characteristic damped oscillation [42]. We can see how this approach makes
it possible to address the question of the impact of a measurement on a quantum system, via
an operator that represents the measurement over time, since we can calculate the averages
of the system’s operators by averaging them over the vectors of states conditional on a certain
measurement history. For example, one can imagine a cavity system, from which photons
escape and are counted, if one notes C the jump operator associated with the exit of a photon
from the cavity, one can imagine calculating the average of an operator A in the set of MC
wave vectors that have undergone n cavity jumps. One would then obtain an average of A
conditional on observing n photons at the cavity exit.

1The precise form of the jump operators is not unique in the stochastic reformulation of a master equation.
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4.2 Analysis of the one-mode limit
In this subsection, we establish a one-mode master equation describing the slow evolution of
the nuclear spin in the

Γex ≪ γf < γm and Γex ≪ κ (4.2)

limit where Γex is a rate of creation of excitations in the α hybrid nuclear bosonic mode
defined below (4.13) under the effect of Faraday coupling (it is sufficient to know here that
Γex ∝ Ω2 so that (4.2) is a weak Faraday coupling limit Ω → 0). For this purpose, the
bosonic annihilation operators have to be introduced in a cleverly rotated basis, by means
of the following linear combinations of the operators a and b:

α =
√

γm
γm + γf

a+
√

γf
γm + γf

b , β =
√

γm
γm + γf

b−
√

γf
γm + γf

a (4.3)

α and β correspond indeed to the eigenmodes of the metastability exchange part of the
three-mode master equation (3.33). 2 While the α mode undergoes a divergence in time of
its mean number of excitations (hence the possibility of defining a Γex rate), the β mode is
strongly damped and tends towards a stationary value,3 which will allow it to be eliminated
adiabatically, just like the cavity field. In this new basis, the three-mode master equation
(3.33) takes the form

dρ
dt = 1

iℏ [H, ρ] + κ

(
cρc† − 1

2{c†c, ρ}
)

+ γβ

(
βρβ† − 1

2{β†β, ρ}
)

(4.4)

where γβ ≡ 2(γm + γf) and

H = ℏ(ΩαPα + ΩβPβ)Pc with Ωα ≡ Ω
√

γf
γm + γf

and Ωβ≡Ω
√

γm
γm + γf

i. (4.5)

Reference [45] explains in general terms how to perform adiabatic elimination at the master
equation. Here we prefer to perform it, as in reference [46], in weak Faraday coupling
Ω → 0 in the Monte Carlo wave function formalism. We write the effective non-Hermitian
Hamiltonian that we will make act on the state vector |ψ(t)⟩ as

Heff = H − iℏ
2
(
κc†c+ γββ

†β
)

(4.6)

and the quantum jumps, randomly interrupting (discontinuous evolutions |ψ⟩ → C|ψ⟩) the
trajectory, of jump operators

Cc =
√
κc and Cβ = √

γββ. (4.7)

In the absence of the coherent coupling Ω in (4.5) the hybridized metastable mode and the
cavity mode remain in the initial empty state. At first order in Ω, this state is coupled to

2In practice, we have γm ≫ γf , see equation (3.21), so that the β mode corresponds to the spin of the
metastable slightly hybridised with the spin of the ground state, and α to the nuclear spin slightly hybridised
with the spin of the metastable

3See results (3.35)-(3.39), which show that ⟨P 2
β ⟩ = 1/4 and ⟨X2

β⟩ = O(1) where Xβ = (β + β†)/2 and
Pβ = (β − β†)/2i, we define similarly the quadratures Xα, Pα.
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one-excited states in the cavity (through the action of Pc) and zero or one-excited states in
the hybrid metastable mode (through the action of Pα or Pβ). We can then truncate the
Monte Carlo state vector |ψ⟩ in the Fock basis {|nα⟩fond|nβ⟩meta|nc⟩cav} as follows,

|ψ⟩ = |ψ00
α ⟩|0⟩|0⟩ + |ψ01

α ⟩|0⟩|1⟩ + |ψ11
α ⟩|1⟩|1⟩ (4.8)

with a norm error O(Ω2). Under the effect of the effective Hamiltonian (4.6) the fast compo-
nents |ψ01

α ⟩ and |ψ11
α ⟩ exponentially join a regime adiabatically following the slow component

|ψ00
α ⟩ with rates κ/2 or (κ+γβ)/2. Indeed, in the adiabatic following regime, the occupation

probabilities of the excited components are

⟨ψ11
α |ψ11

α ⟩adiab/⟨ψ|ψ⟩ = [Ω2
β/4(κ+ γβ)2]⟨ψ00

α |ψ00
α ⟩/⟨ψ|ψ⟩ (4.9)

⟨ψ01
α |ψ01

α ⟩adiab/⟨ψ|ψ⟩ = (Γex/κ)⟨ψ00
α |P 2

α|ψ00
α ⟩/⟨ψ|ψ⟩ (4.10)

where definitions (4.13) have been used in advance. In the (4.2) limit, it is easy to check
that they are ≪ 1, so that almost the whole population is in the |ψ00

α ⟩|0⟩|0⟩ component as
it should be, which will allow us in the following to replace ⟨ψ|ψ⟩ by ⟨ψ00

α |ψ00
α ⟩ and justifies

the adiabatic elimination of the excited components in this limit 4

|ψ11
α ⟩adiab ≃ iΩβ

2(κ+ γβ) |ψ00
α ⟩ and |ψ01

α ⟩adiab ≃ Ωα

κ
Pα|ψ00

α ⟩. (4.11)

The expressions for |ψ11
α ⟩adiab, |ψ01

α ⟩adiab into the Hamiltonian evolution equation of |ψ00
α ⟩ to

obtain
iℏ d

dt |ψ
00
α ⟩ = − iℏ

2
(
ΓexP

2
α + Γ0

)
|ψ00
α ⟩ ≡ H00

eff |ψ00
α ⟩ (4.12)

where we have introduced the rates

Γex = Ω2
α

κ
and Γ0 =

Ω2
β

4(κ+ γβ) . (4.13)

By studying the effect of the cavity jump operator Cc and the metastability exchange jump
operator Cβ on the state vector (4.8), we can interpret the effective Hamiltonian of equa-
tion (4.12).

4in a similar way. We also check that another condition for the validity of the adiabatic elimination,
namely the slowness of the evolution of the hybridized nuclear spin α with respect to the fast variables, which
is written here Γex,Γ0 ≪ κ, κ+γβ , is satisfied. These considerations do not, however, show that the condition
Γex ≪ γf is necessary (unless κ ≪ γβ). To see this in all generality, we push to order Ω4 the computation
of the effective Hamiltonian H00

eff = PHeffP + PHQ(zQ − QHeffQ)−1QHP in the subspace nβ = nc = 0 on
which P projects (here Q = 1 −P and z = O(Ω2)). Qualitatively, at this order, by action of Hα and then Hβ

on |ψ00
α ⟩|0⟩|0⟩ (with the obvious notation H = Hα +Hβ), we virtually create an excitation β alone, relaxing

at the rate γβ/2, hence the additional adiabaticity condition Γ0 ≪ γβ ; joined to Γ0 ≪ κ and γf < γm, it
implies Γex ≪ γf since Γex/γf = (Γ0/κ + Γ0/γβ)(4γβ/γm) < 16(Γ0/κ + Γ0/γβ). Quantitatively, we find a
correction to the coefficient of P 2

α in H00
eff of type HαG0HβG0HβG0Hα (G0 is the resolvent of Heff for Ω = 0)

of the form ℏΓexΩ2
β/γβκ, which must be negligible, which imposes Ω2

β/γβκ ≪ 1, i.e. Γex ≪ γf given γf < γm.
The corrections to the scalar term are negligible as soon as Γ0 ≪ γβ , κ, and the new term in P 4

α that appears
is negligible in front of ℏΓexP

2
α for Pα = O(1) if Γex ≪ κ.



4.2. ANALYSIS OF THE ONE-MODE LIMIT 33

(i) Consider first the effect of a cavity jump, which occurs at time t with a rate κ(⟨ψ11
α |ψ11

α ⟩+
⟨ψ01

α |ψ01
α ⟩)adiab/⟨ψ00

α |ψ00
α ⟩. Immediately after the jump, the state vector, initially in the

adiabatic following regime, becomes

|ψ(t+)⟩ = Cc|ψ(t−)⟩adiab ∝ |ψ01
α (t−)⟩adiab|0⟩|0⟩ + |ψ11

α (t−)⟩adiab|1⟩|0⟩. (4.14)

This is the superposition of an unstable component |1⟩|0⟩ and a stable component |0⟩|0⟩.
With probability ⟨ψ11

α |ψ11
α ⟩adiab/(⟨ψ01

α |ψ01
α ⟩+ ⟨ψ11

α |ψ11
α ⟩)adiab the cavity jump is then followed

by a metastability exchange jump before the state vector of the system has time to reach its
adiabatic value. In this case we have a "double jump", which ultimately does not affect the
|ψ00
α (t−)⟩ component since

CβCc|ψ(t−)⟩adiab ∝ |ψ00
α (t−)⟩|0⟩|0⟩ (4.15)

This process contributes to the scalar term (proportional to the identity) in the effective
Hamiltonian of equation (4.12). With the complementary probability ⟨ψ01

α |ψ01
α ⟩adiab/(⟨ψ01

α |ψ01
α ⟩+

⟨ψ11
α |ψ11

α ⟩)adiab the state vector joins its adiabatic value before any further jumps occur, and
is slaved to |ψ(01)

α (t−)⟩adiab ∝Pα|ψ00
α (t−)⟩, i.e. the slow component |ψ00

α (t−)⟩ has effectively
undergone a single quantum jump with a jump operator proportional to Pα. This process
corresponds to the first term, proportional to P 2

α, in the effective Hamiltonian of equa-
tion (4.12).

(ii) Next assume that the jump at time t is a metastability exchange jump, which occurs
with a rate γβ⟨ψ11

α |ψ11
α ⟩adiab/⟨ψ00

α |ψ00
α ⟩. We verify in this case that the state vector after

the jump, Cβ|ψ(t−)⟩ , is fully unstable and almost immediately undergoes a second jump, a
cavity jump. The total effect again corresponds to a double jump and the action of a scalar
operator on the slow component. From this discussion we derive the following single and
double jump rates:

Γs =κ(⟨ψ11
α |ψ11

α ⟩ + ⟨ψ01
α |ψ01

α ⟩)adiab
⟨ψ00

α |ψ00
α ⟩

⟨ψ01
α |ψ01

α ⟩adiab
(⟨ψ01

α |ψ01
α ⟩ + ⟨ψ11

α |ψ11
α ⟩)adiab

= Γex
⟨ψ00

α |P 2
α|ψ00

α ⟩
⟨ψ00

α |ψ00
α ⟩

≡ Γex⟨P 2
α⟩

(4.16)

Γd =κ(⟨ψ11
α |ψ11

α ⟩ + ⟨ψ01
α |ψ01

α ⟩)adiab
⟨ψ00

α |ψ00
α ⟩

⟨ψ11
α |ψ11

α ⟩adiab
(⟨ψ01

α |ψ01
α ⟩ + ⟨ψ11

α |ψ11
α ⟩)adiab

+ γβ⟨ψ11
α |ψ11

α ⟩adiab
⟨ψ00

α |ψ00
α ⟩

= Γ0 .

(4.17)

Finally, we obtain the one-mode master equation describing the slow evolution of the ρα
density operator of the α bosonic mode (hybridised but almost purely nuclear spin):

dρα
dt = CsραC

†
s − 1

2{C†
sCs, ρα} + CdραC

†
d − 1

2{C†
dCd, ρα} (4.18)

in terms of two quantum jumps, the single (cavity-only) Cs jump and the double (cavity and
metastability exchange in this or the other order) Cd jump:

Cs =
√

ΓexPα , Cd =
√

Γ01 . (4.19)

From the integrated (4.18) equation for the initial empty state of α, we derive:

⟨X2
α⟩ = 1

4(1 + Γext) , ⟨P 2
α⟩ = 1

4 (4.20)
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which effectively designates Γex as an excitations creation rate in the α mode. Returning to
the initial (unrotated) atomic basis and restricting the (4.8) state vector to its first term, we
find the (3.35)-(3.38) results of the three-mode model, yet valid at any Ω Faraday coupling,
not necessarily infinitesimal. Finally, the average number of Oy polarised photons leaving
the cavity per unit time, given in the one-mode model by Γ0 + Γex/4 as will be shown by
equation (4.27), agrees with the exact value κ⟨c†c⟩s where the stationary average number of
Oy polarised photons in the cavity ⟨c†c⟩s = ⟨X2

c ⟩s − 1/4 is the result (3.39). 5

4.3 Dynamics conditional on counting result
Suppose that one counts continuously and directly (by photodetection) the number of Oy
polarized photons exiting the cavity (see Figure 1.1b), as proposed in reference [47]. The
jump operator associated with this measurement is

√
κc, so the three-mode master equa-

tion (3.33) is already in the right form to analyse the evolution of the state vector |ψ(t)⟩
conditional on the measurement. Let us start by studying the situation of a weak Faraday
coupling, the Ω → 0 limit, which leads to the one-mode model of the 4.2 section. This will be
followed by a numerical verification of these analytical predictions in the three-mode model.

4.3.1 One-mode analytical results

Since the jump operators Cd and Cs of the master equation (4.18) both correspond to the
cavity loss of a polarised photon according to Oy (recall that Cd results from a cavity jump
immediately followed or preceded by a metastability exchange jump, and Cs a single cav-
ity jump), the measurement cannot distinguish between the two, and the density operator
conditional on a given number n of detected photons is obtained by averaging over realiza-
tions having this same total n number of jumps. An unnormalized Monte Carlo state vector
having undergone these n jumps for the duration t is written

|ψ(t)⟩ = e− i
ℏH

00
eff(t−tn)Cϵn e− i

ℏH
00
eff(tn−tn−1)Cϵn−1 . . . Cϵ1 e− i

ℏH
00
efft1 |ψ(0)⟩ (4.21)

where ϵk ∈ {s, d} and tk are the type and time of the krd jump, H00
eff is the effective Hamilto-

nian (4.12) and we denote the state vector of the single-mode model |ψ⟩ rather than |ψ00
α ⟩ for

the sake of simplicity. The quantum average of an observable O is obtained by averaging over
all possible trajectories, thus summing over the number and type of jumps and integrating
over their times:

⟨O⟩(t) =
∑
n

∫
0<t1<t2...<tn<t

dt1 dt2 . . . dtn
∑

(ϵk)1≤k≤n∈{s,d}n

⟨ψ(t)|O|ψ(t)⟩ (4.22)

where the squared norm of each unnormalized state vector |ψ(t)⟩ automatically gives its
probability density [48]. Taking O = 1, we derive the probability that n jumps occurred in
the time interval [0, t]:

Πn(t) =
∫

0<t1<t2...<tn<t
dt1 dt2 . . . dtn

∑
(ϵk)1≤k≤n∈{s,d}n

⟨ψ(t)|ψ(t)⟩. (4.23)

5In contrast, the value of ⟨c†c⟩adiab in the adiabatic form (4.11) of the state vector does not represent
this number. The solution to the paradox lies in the existence of the de-excitation pathway (ii), that of the
first-jump annihilation of the nβ = 1 excitation in the metastable mode immediately followed by the loss of a
cavity photon. The true exit rate of polarised photons according to Oy is therefore κ⟨c†c⟩adiab +γβ⟨β†β⟩adiab.
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To evaluate (4.23), we take advantage of the fact that all jump operators in (4.21) and their
Hermitian conjugates commute with each other and with H00

eff . 6 Using the identities

∑
ϵn=s,d

. . .
∑
ϵ1=s,d

(
C†
ϵnCϵn . . . C

†
ϵ1Cϵ1

)
=

 ∑
ϵn=s,d

C†
ϵnCϵn

 . . .
 ∑
ϵn=s,d

C†
ϵ1Cϵ1

 =
(
ΓexP

2
α + Γ01

)n
(4.24)

and injecting a closure relation into the eigenbasis of Pα such that Pα|pα⟩ = pα|pα⟩, after
integrating over times tk as allowed by the telescopic product of the evolution operators, we
obtain

Πn(t) = tn

n!

∫ +∞

−∞
dpα

(
Γexp

2
α + Γ0

)n
e−Γexp2

αte−Γ0tΠ(pα, 0) (4.25)

=
(

2n
n

)
(Γext/8)n e−Γ0t

(1 + Γext/2)n+1/2 Φ
(

−n, 1
2 − n; Γ0t+ 2Γ0

Γex

)
(4.26)

where Π(pα, 0) is the initial probability distribution of pα (a Gaussian of mean zero and
variance 1/4) and Φ is the confluent hypergeometric Kummer function 1F1. Note that (4.26)
is in fact a Gaussian mean over pα of a Poisson distribution of parameter λ = (Γexp

2
α + Γ0)t.

We deduce the mean and the variance of the number of photodetections during the time t:

⟨n⟩ =
(

Γ0 + 1
4Γex

)
t , Varn = ⟨n⟩ + (Γext)2

8 . (4.27)

Still using equation (4.26), we access the probability distribution of pα knowing that n
photons have been detected in the time interval [0, t]:

Πt(pα|n) = 1
Πn(t)

tn

n!
(
Γexp

2
α + Γ0

)n
e−Γexp2

αte−Γ0tΠ(pα, 0). (4.28)

As expected, this is an even function of pα, as photodetection only gives access to the
polarized outgoing field intensity according to Oy and cannot distinguish between opposite
values ±pα of the Pα quadrature of the hybridized nuclear spin according to Oz. This
results in a squeezing of the fluctuations of P 2

α rather than Pα, which we characterise by the
conditional mean and variance of P 2

α given that n photons were detected during t, deduced
from (4.28):

⟨P 2
α⟩n = (n+ 1)

Γext

Πn+1(t)
Πn(t) − Γ0

Γex
(4.29)

Varn(P 2
α) ≡ ⟨P 4

α⟩n − ⟨P 2
α⟩2
n = (n+ 1)2

(Γext)2

[
(n+ 2)Πn+2(t)
(n+ 1)Πn(t) −

Π2
n+1(t)
Π2
n(t)

]
. (4.30)

Finally, using equation (4.28), we find that for Γext → +∞, the probability distribution
of p2

α conditional on the number n of photodetections is pitted around a value p2
0 with a

6For this reason, keeping the information on the jump times does not allow, by post-selection, to increase
the efficiency of the spin squeezing. Indeed, the density operator ρα(t)|t1,...,tn knowing that n jumps occurred
at times t1, . . . , tn leads to the same probability distribution of Pα as the density operator ρα(t)|n knowing
only that there were n jumps during [0, t].
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conditional variance tending to zero: 7

p2
0 − 1

4 = n− ⟨n⟩
Γext

hence ⟨P 2
α⟩n ∼

Γext→+∞
p2

0 ; Varn(P 2
α) ∼

Γext→+∞

n

(Γext)2 → 0.

(4.31)
Replacing in this expression n by its mean value and taking into account the value 1/8 of
the variance of P 2

α in the initial state, we end up with the nuclear spin squeezing rate by
photon counting:

Γsq = Γ2
ex

8(Γ0 + 1
4Γex)

. (4.32)

Similarly, the conditional probability distribution of pα has two peaks at ±p0 as can be seen
in the Wigner function of figure 4.2b, obtained by numerical simulation of the conditional
evolution of the system at long times in the one-mode model (4.18). This shows that, in a
given run of the experiment, continuous photodetection of the Oy-polarized photons exiting
the cavity makes the value of P 2

α, and thus to a large extent of I2
z , the square of the Oz

component of the collective nuclear spin, increasingly certain, as seen by linking in the
Ω → 0 limit the conditional moments of P 2

a , i.e., of I2
z , to those of P 2

α:

⟨P 2
a ⟩n = γm

γf + γm
⟨P 2

α⟩n + γf/4
γf + γm

(4.33)

Varn(P 2
a ) = γ2

m
(γf + γm)2 Varn(P 2

α) + γfγm
(γf + γm)2 ⟨P 2

α⟩n + γ2
f /8

(γf + γm)2 . (4.34)

Since the squeezing is on P 2
a rather than Pa, the conditional angular distribution of the

collective nuclear spin is bimodal (it has, like that of Pα, two well-separated peaks provided
that γf/γm ≪ (2p0)2); these narrower structures than the standard quantum limit still allow
for more accurate angular pointing than with an unsqueezed state. We therefore redefine the
metrological gain (3.26) by replacing in the third member of this equation the conditional
variance of Pa by the square of the half-width δPa of the peaks centred in ±Pa,0 of the
conditional probability distribution of Pa, and then equating the centre P 2

a,0 and width
δ(P 2

a ) of the distribution of P 2
a with the conditional mean and standard deviation of P 2

a :

ξ2 = 4(δPa)2

η
= (2Pa,0δPa)2

ηP 2
a,0

= [δ(P 2
a )]2

ηP 2
a,0

= Varn(P 2
a )

η⟨P 2
a ⟩n

. (4.35)

Note that this expression is not deduced from the method of moments outlined in Section
II. B.6 of reference [12] by taking P 2

a as an estimator, because the effect of the unitary
transformation exp(2iθXa) (in practice, a precession of the nuclear spin around a magnetic
field according to Oy) is not to shift the peak in the distribution of P 2

a but to split it into
two peaks centred in (Pa,0 ± θ)2.
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Figure 4.1: Squeezing of P 2
a by photon counting at short times, Γext = 15, where Γex is

the rate of excitation creation in the α hybrid nuclear bosonic mode. (a) Conditional mean
and standard deviation of the nuclear spin squared P 2

a given n photodetections in the time
interval [0, t], as a function of this number n. The standard deviation is represented as a
confidence interval. The unconditional mean ⟨P 2

a ⟩ = 1/4 is independent of time, see equation
(3.35). Black dots and error bars : numerical simulation of the three-mode model with 3000
realisations; green line and coloured area: analytical predictions from equations (4.26), (4.29),
(4.30) and (4.33), (4.34) of the one-mode model. In practice, the black points are obtained
after averaging over classes of n values centred on these points (within a given class, the
trajectories have close photodetection numbers but independent histories for metastability
exchange jumps to which the experimentalist has no access). Parameters of the three-mode
model : Ω/κ = 1/3, γm/κ = 1/10, γf/κ = 1/1000 (so that Γex/κ = 1/909), nmax

a =
64, nmax

b = nmax
c = 8. This corresponds to Γ0/Γex = 12 500/601 ≃ 20, 8 and Γsq/Γex =

601/101 202 ≃ 1/168 where Γsq is the squeezing rate (4.32). (b) For the class centred on
n = ⟨n(t)⟩, histogram of conditional values of P 2

α. Blue bars: numerical simulation of the
three-mode model; orange bars: analytical predictions from the equation (4.28) of the one-
mode model.

4.3.2 Numerical results with three modes

Finally, let us perform a numerical verification of these analytical predictions in the three-
mode model. In Figure 4.1a, we plot the conditional mean of the P 2

a square of the nuclear spin
quadrature knowing that n photodetections occurred in the [0, t] time interval, with Γext = 15
(black dots), as a function of this number n. The set of realizations is divided into 5 classes
corresponding to a number of photodetections falling in a given interval, and the black dots
are obtained by averaging over the realizations in the same class. The numerical results are
close to the analytical predictions derived from (4.33) and (4.34) and shown in green, except
in the extreme classes where the number of realisations is too small. On the other hand, the
asymptotic analytical predictions (4.31), not shown, would disagree with the simulations of
the two models because the time t = 15/Γex is not long enough, it is much less than the
squeezing time 1/Γsq. In Figure 4.1b we show the conditional probability distribution of
P 2
α corresponding to the middle class of Figure 4.1a; there is also good agreement between

one-mode analytical and three-mode numerical predictions.
7According to equation (4.27), the second member of the first equation (4.31) is asymptotically of the

order of unity for a typical photodetection sequence. This equation actually only makes sense for p2
0 positive

so n > Γ0t; then the (4.31) equivalents apply when the gap between the two peaks in Πt(pα|n) is much greater
than their width, which imposes 2p2

0 ≫ n1/2/Γext = (Γ0 +Γexp
2
0)1/2/Γext

1/2. To obtain them, we pose n = γt
with γ > Γ0, then write (4.28) in the form exp[−tS(pα)]Π(pα, 0) and quadratize S(pα) around its minima.
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Figure 4.2: Squeezing of P 2
α by counting photons at long times in the one-mode model (4.18).

(a) Conditional mean and standard deviation of P 2
α given that the number of photodetections

n falls within a given class of values, similar to Figure 4.1a but for Γext = 1000 and 2000
realisations (this long time would make it difficult to simulate in the three-mode model).
(b) Wigner distribution of the hybridised nuclear bosonic mode in the quadrature space
(Xα, Pα) at Γext = 1000, obtained by averaging the dyads |ψ(t)⟩⟨ψ(t)| whose number of
photodetections falls into the third class of (a) (302 trajectories out of 5000 realisations). It
has two lines of peaks but no interference fringes.

In Figure 4.2, we explore the long times in the one-mode model, with Γext = 1000 i.e.
Γsqt ≃ 5, 94. Figure 4.2a, which is the equivalent of Figure 4.1a, shows that ⟨P 2

α⟩n is then
related to the number of photodetections n as in the analytical prediction (4.31), i.e. along
the first bisector in the units of the figure, with a conditional standard deviation in (4.31)
that is approximately constant ≃ (Γ0t)1/2/Γext ≃ 1/(Γsqt)1/2 because Γ0 is here ≫ Γex. The
absence of fringes shows that a statistical mixture rather than a coherent superposition of
two states squeezed into the Pα quadrature has been prepared. In figure 4.2b, we find from
equation (4.22) that

⟨p0|ρn(t)| − p0⟩/⟨p0|ρn(t)|p0⟩ = [(Γ0 − Γexp
2
0)/(Γ0 + Γexp

2
0)]n ≃ exp(−2Γextp

2
0) ≪ 1 (4.36)

ρn(t) is the conditional density operator. The Laplace method gives at long times the
conditional Wigner distribution

Wt(xα, pα|n) ∼ πΠt(pα|n) exp[−2x2
α/Γexts(pα)]/

√
πΓexts(pα)/2 (4.37)

with s(pα) = [1+(Γ0 +Γexp
2
0)/(Γ0 +Γexp

2
α)]/2. We notice that s(±p0) = 1 and s(pα) ≃ 1 for

Γ0 ≫ Γex. While Wt(0, 0|n) is crushed exponentially in time (in the limit Γex ≪ Γ0, there
comes Wt(0, 0|n) ∼ (Γex/Γ0)1/2p0 exp(2p2

0) exp(−4p4
0Γsqt)), we also have Wt(0, 0|n) = ⟨2ε⟩n

where ε = ±1 is the parity of the Monte Carlo wave function ψ(pα, t). In a numerical
simulation, we therefore only have a slow decay ⟨ε⟩n ≈ 1/

√
Nn where Nn is the number

of trajectories that have undergone n jumps during t; this leads to unphysical fringes with
negative values in the Wigner distribution near the Oxα axis. To minimise this effect and
make it imperceptible at a not too high pα resolution (dpα = 0, 044 in figure 4.2b), the Monte
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Carlo simulation is stopped at a stage where there are exactly the same number Nn/2 of even
and odd wave functions. To obtain a coherent superposition of squeezed states, one would
have to perform an additional post-selection, restricting oneself to Monte Carlo realisations
of wavefunction ψ(pα, t) of fixed parity ε (having undergone an even number of single jumps
if ε = 1, an odd number otherwise, the jump operator Cs changing the parity). In the
corresponding conditional density operator, we then have ⟨p0|ρn,ε(t)| − p0⟩/⟨p0|ρn,ε(t)|p0⟩ =
ψ(−p0, t)ψ(p0, t)

n,ε
/ψ(p0, t)ψ(p0, t)

n,ε = ε without the two-peak structure of the distribution
of Pα being affected at long times because Πt(pα|n, ε)/Πt(pα|n) ∝ 1 + ε[(Γ0 − Γexp

2
α)/(Γ0 +

Γexp
2
α)]n → 1 when n → +∞ to pα non-zero fixed. The Wigner distribution Wt(xα, pα|n, ε)

now has positive and negative fringes of maximum amplitude 2 on the pα = 0 axis. This
filtering technique also overcomes the decoherence mechanisms of section 5.4 because the
Monte Carlo wave functions remain of well-defined parity after action of the corresponding
jump operator γ1/2

α α. 8

8This idea of controlling decoherence through parity measurements is well known in cavity quantum
electrodynamics [49].
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Chapter 5

Nuclear spin squeezing by
homodyne detection

Foreword

We now assume that the photons leaving the cavity polarised along Oy are measured con-
tinuously by homodyne detection [50], as in figure 1.1c, i.e. from the measurement of one
of the quadratures of the field at the cavity exit. In this situation, we are able to calculate,
analytically, the evolution of the variance of the Oz direction of the nuclear spin over time
in the one-mode model and in the full three-mode model, with the explicit expression of
squeezing rates in terms of the system rates. We will push the analysis to solve, with the
same analytical method, the case of a decoherence in the metastable population1, whether
in the one-mode or three-mode model, finally obtaining the expression of the squeezing rate
modified by this atom loss. To do this, we first need to find the right stochastic equations
giving the evolution of the state vector of the system conditional on the homodyne detection,
since the jump operators appearing naturally in the (4.4) or (4.18) writing of the three-mode
or one-mode master equation are inadequate. In order to obtain these results, we used the
fact that, for the empty initial state considered here, the conditional state vector is given
exactly at all times by a Gaussian ansatz [51], whatever the number of modes in the model,
in the presence or absence of decoherence. The results show that this configuration allows
us to obtain a deterministic equation giving the reduction of the variance of a transverse
component of the nuclear spin, although the results are a priori conditional on the results
of the homodyne measurement. Several arguments lead us to consider this configuration as
more suitable for a real experimental realisation in the framework of the construction of a
metrological state going beyond the standard quantum limit. Firstly, as we have seen in the
previous chapter, the rate of squeezing of the nuclear spin by photon counting is propor-
tional to the rate of excitation in the nuclear mode Γex, related to the "single jump" process
where a photon leaves the cavity correlated to an excitation created in the nuclear spin, and
inversely proportional to that of the "double jump" rate Γ0, which corresponds to a photon
leaving the cavity with no excitation created. As the photons from these two processes are

1The only decoherence process having a significant impact on the system, it corresponds to the collision of
the metastable atoms on the cell walls, which brings them back to the ground state while losing all information
of the electronic cloud.

41
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indistinguishable, the photons from the "double jump" pollute the measurement and reduce
the accessible spin squeezing. As we will see in this chapter, the advantage of homodyne
detection is that it suppresses the contribution of these double jumps to the nuclear spin
dynamics, thus accelerating the squeezing rate. Another advantage is that the conditional
probability distribution of Iz obtained is no longer bimodal as in chapter 4, i.e. it converges
well to a value of Iz and not I2

z . This ensures that the nature of the spin state at the end of
the procedure is indeed that of a standard squeezed spin state, as understood in quantum
metrology work. Therefore, to conclude this chapter and this section, we use this homodyne
detection configuration to propose a proff-of-concept experiment. Values are given for the
parameters defining the configuration, which are realistic in the literature today, and it is
shown that based on the analytical results of this chapter, we can expect a squeezing of a
few decibels with respect to the standard quantum limit of a fully polarised state, as well as
a metrological gain of ξ2 < 1. 2

5.1 Adjusted stochastic formulation of the master equation
A general master equation of the Lindblad form [44]

dρ
dt = 1

iℏ [H, ρ] +
∑
m

CmρC
†
m − 1

2{C†
mCm, ρ} (5.1)

with H the Hermitian part of the Hamiltonian and Cm the jump operators, can be rewritten
in an equivalent way by adding an arbitrary constant to the jump operators and/or mixing
them by some unitary linear combination. In order to take into account a homodyne detection
on the outgoing field, we form, from a jump operator Cm corresponding to a photodetection,
the two "homodyne" jump operators Dm,± [42]

Dm,+ = µ1 + Cm√
2

, Dm,− = µ1 − Cm√
2

(5.2)

where µ2 has the dimensions of a momentum. Measuring the difference in jump rates
D†

+D+ − D†
−D− then gives access to a quadrature of Cm. Thus, for µ real and Cm cor-

responding to the cavity jump operator Cc, see equation (4.7), the difference between the
numbers of photons N± detected during the short time interval ∆t in the two output channels
of figure 1.1c, which by definition constitutes the homodyne signal,

N+ = (D†
c,+Dc,+) ∆t , N− = (D†

c,−Dc,−) ∆t , N+ −N−
2µ = c+ c†

2
√
κ∆t (5.3)

gives access to Xc ; it is indeed the quadrature of the field conjugated to Pc and thus
translated by an amount proportional to Pb and time under the action of the Hamiltonian H
(3.25), which gives information on Pa through the metastability exchange collisions. In the
case of the three-mode master equation (4.4), we must apply the splitting procedure (5.2)

2Recall that the squeezing of the nuclear spin in the Oz direction is defined by the relation ∆Iz
N/4 , which is

less than 1 if the variance in this direction is less than that of the fully polarised coherent state, this squeezing
will be expressed in decibels. The metrological gain is defined by the relation ξ2 = (2I)1/2∆Iz/|Iz|, which is
less than 1 if the nuclear spin state is more sensitive to the magnetic field than the fully polarised coherent
state. We borrow this measurement from reference [25].
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a priori only to the cavity jump operator. In practice, we will also apply it to the jump
operator Cβ, i.e. we will split by "homodyning" all the jump operators Cm, in order to avoid
the discomfort of a mixed representation mixing discrete quantum jumps and continuous
stochastic evolution, see the upcoming equation (5.4). In the case of the one-mode master
equation (4.18), the two jump operators Cs and Cd must be "homodyned" anyway, since each
is accompanied by the loss of a photon in cavity, as explained in section 4.2.

In the limit of a large-amplitude local oscillator µ, one can pretend that ∆t is infinitesimal
3 and represent the evolution of the Monte Carlo wavefunction, this time normalized to unity,
by a continuous nonlinear stochastic equation without quantum jumps [42, 52, 53] in Ito’s
point of view :

d|ϕ(t)⟩ = − i
ℏ
H|ϕ(t)⟩dt

− 1
2
∑
m

(
C†
mCm − ⟨ϕ(t)|Cm + C†

m|ϕ(t)⟩Cm + 1
4⟨ϕ(t)|Cm + C†

m|ϕ(t)⟩2
)

|ϕ(t)⟩dt

+
∑
m

(
Cm − 1

2⟨ϕ(t)|Cm + C†
m|ϕ(t)⟩

)
|ϕ(t)⟩ dζm(t)

(5.4)
where, to each jump operator Cm in the initial writing of the master equation, we associate
a real-valued Gaussian continuous-time stochastic process dζm(t), of zero-mean and variance
dt, statistically independent of the other processes and memory-free. At the same level of
approximation, the homodyne signal operator (5.3) is replaced by the sum of its mean and
a classical noise representing its fluctuations, which is no other than the corresponding dζm
[42]:

N+ −N−
2µ =

√
κ⟨ϕ|c+ c†|ϕ⟩

2 dt+ 1
2dζc. (5.5)

In practice, more than the homodyning history, i.e. the detailed time dependence of the
homodyne detection signal, it is its temporal average over a time interval [0, t] that is easily
accessible in an experiment (and allows a post-selection of the states i.e. the experimental
realizations) over a non-negligible set of statistical weights. We therefore introduce the
integrated signal having the dimension of the root of a momentum,

σ(t) ≡
N tot

+ −N tot
−

2µt = 1
t

∫ t

0
dt′
[√

κ⟨ϕ(t′)|Xc|ϕ(t′)⟩ + 1
2

dζc(t′)
dt′

]
(5.6)

and in the following we will calculate the mean and variance of the Pa quadrature of the
nuclear spin conditioned on σ. Recall that the mean and variance of an observable (here
Pa) in a single realisation |ϕ(t)⟩ of the stochastic equation, hence of the experiment, do
not in general have any physical meaning, because there is no possible measurement of the
mean value of an observable in a single realisation, one has instead to average over a large
number of realisations of the experiment that have evolved during t from the same pure
case or initial density operator. A counter-example is the case where one can, by continuous
measurements, trace the time dependence of all the stochastic processes dζm; this is the case

3This approximation is valid for a time resolution, i.e. a time step ∆t, such as µ−2 ≪ ∆t ≪ κ−1, where κ
is in practice the fastest rate of evolution of the system in the experiment.
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of the one-mode model subjected to homodyne detection, the time dependence of the signal
(5.5) fixing that of the single stochastic process dζc. This would then allow, in principle, to
select, among a large number of realisations of the experiment, those leading to the chosen
state |ϕ(t)⟩, and to deduce the averages of observables in |ϕ(t)⟩; in practice, this would be
unrealistic, given the infinitesimal statistical weight of the realisations to keep.

5.2 Analytic solutions in the one-mode model
Let us explicitly write the stochastic equation (5.4) for the one-mode model (4.18) :

d|ϕ(t)⟩ = −dt
2 Γex[Pα − P̄α(t)]2|ϕ(t)⟩ +

√
Γexdζs(t)[Pα − P̄α(t)]|ϕ(t)⟩ (5.7)

with P̄α(t) ≡ ⟨ϕ(t)|Pα|ϕ(t)⟩. The striking fact is that the jumps associated with the identity-
proportional operator Cd, which added noise to the photon-counting detection of section 4.3,
do not contribute, as the operator Cd disappears from the conditional evolution equation in
the homodyne case. Indeed, the photons emitted during these jumps come from the |1⟩|1⟩
component of the (4.8) state vector containing an β excitation, which makes them optically
incoherent with the light field injected into the cavity, i.e. with the |0⟩|0⟩ component of
(4.8), in the sense that |1⟩|1⟩ contributes to ⟨c†c⟩ but not to ⟨c + c†⟩. This leaves only the
stochastic process dζs associated with the jump operator Cs. This process merges with the
process dζc appearing in the homodyne detection signal (5.5), dζs ≡ dζc, a fact admitted
here but which will be established by returning to the three-mode model in section 5.3.

The stochastic equation (5.7) has a linear noise term and a deterministic quadratic term
in the Pα operator, which are real in Fourier space. For the initial state considered here,
it is therefore solved exactly by a Gaussian ansatz on the wave function in momentum
representation, real and correctly normalised to the [Xα, Pα] = i/2:

⟨pα|ϕ(t)⟩ = [2πu(t)]1/4 exp{−u(t)[pα − P̄α(t)]2}. (5.8)

In contrast, gaussianity is lost in the photodetection squeezing of section 4.3. Using Ito
calculus,4 we find that u follows a deterministic evolution equation, to be integrated with
the initial condition u(0) = 1:

du(t) = Γexdt hence u(t) = 1 + Γext and VarϕPα(t) ≡ 1
4u(t) = 1

4
1

1 + Γext
(5.9)

where we have also given the variance of Pα in the |ϕ⟩ state. In contrast, the equation on
the mean value of Pα in |ϕ⟩ is purely stochastic, with a time-dependent diffusion coefficient
D(t) and the initial condition P̄α(0) = 0:

dP̄α(t) = [2D(t)]1/2dζs(t) with D(t) = Γex
8u(t)2 = Γex

8(1 + Γext)2 . (5.10)

Since D(t) is of finite integral, P̄α(t) stabilises asymptotically (at long times) at a fixed value
on a single realisation, as seen in figure 5.1, with a variance in the quantum state VarϕPα
tending towards 0. This phenomenon of "stochastic convergence" towards an eigenstate

4Keeping only the linear terms in dt or in the noise, and systematically replacing the quadratic terms dζ2
s

by their mean dt.
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Figure 5.1: In the case of squeezing by continuous homodyne detection, random walk (5.10) in
the one-mode model performed by the quantum average value of the nuclear spin quadrature
Pα in a given realisation of the experiment. (a) Mean value as a function of true time t scaled
by the rate (4.13) of excitation creation for three realisations of the experiment; this is a
stretched Brownian motion converging at long times to a fixed but unpredictable value. (b)
Idem but as a function of the compact renormalized time θ (5.11); this time it is an ordinary
Brownian motion but limited to θ ≤ 1/8.

of the measured observable (in this case Pα) is expected in the description of a quantum
measurement by a diffusion equation of the state vector [52, 53, 54]. To show this here, we
introduce a renormalized time θ with respect to which P̄α performs an ordinary Brownian
motion with a unit diffusion coefficient, and we notice that this time is bounded:

θ =
∫ t

0
dt′D(t′) = Γext

8(1 + Γext)
→

t→+∞
θ∞ = 1

8 . (5.11)

At the renormalized time θ∞, P̄α follows a Gaussian distribution of mean zero and variance
1/4 : P̄α thus has the same asymptotic probability distribution (t → +∞) as that of the
observable Pα in the initial quantum state of the nuclear spin.

Let us now turn to the mean and variance of Pα conditional on the value S of the time-
integrated homodyne signal σ (5.6). Remarkably, we find that the conditional mean is always
proportional to the signal, with a time-dependent proportionality coefficient, and that the
conditional variance is time-dependent but not signal-dependent :

⟨Pα⟩σ=S = m(t) S√
Γex

; Varσ=S(Pα) = V(t)

where m(t) = Γext

1 + Γext
and V(t) = 1

4(1 + Γext)
.

(5.12)

These expressions designate Γex as the nuclear spin squeezing rate by homodyning in the
one-mode model and thus with weak Faraday coupling :

Γsq ∼
Ω→0

Γex = Ω2

κ

γf
γm + γf

. (5.13)

In figure 5.2a, we plot m(t) and V(t) as a function of the reduced time Γext. Like the quantum
variance on a realization VarϕPα, with which it actually coincides, the conditional variance
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tends asymptotically to zero as the inverse of time. In the conditional mean, the coefficient
m(t) tends towards 1 at long times. To understand this, let us relate the integrated signal
(5.6) to P̄α using the adiabatic expressions (4.11) in the truncated state vector (4.8) :

σ(t) = 1
t

∫ t

0
dt′
[√

ΓexP̄α(t′) + 1
2

dζs(t′)
dt′

]
. (5.14)

Since P̄α(t) stabilizes asymptotically on a single realization, and the time-averaged noise dζs
tends to zero as 1/t1/2 almost surely, σ(+∞) directly yields the value of P̄α(+∞) to within
a constant factor

√
Γex.

To establish the results (5.12), let us first relate the conditional variance of the operator
Pα to that of its quantum average over a realization P̄α as follows:

Varσ=S(Pα) ≡ ⟨ ⟨ϕ|P 2
α|ϕ⟩ ⟩σ=S − ⟨ ⟨ϕ|Pα|ϕ⟩ ⟩2

σ=S (5.15)
= ⟨ ⟨ϕ|P 2

α|ϕ⟩ − ⟨ϕ|Pα|ϕ⟩2 ⟩σ=S + ⟨P̄ 2
α⟩σ=S − ⟨P̄α⟩2

σ=S

= ⟨VarϕPα⟩σ=S + Varσ=S(P̄α)

= 1
4

1
1 + Γext

+ Varσ=S(P̄α) (5.16)

where we have used the expression (5.9) for the quantum variance of Pα in the |ϕ⟩ state. It
therefore remains to determine the conditional probability distribution of P̄α knowing that
σ = S,

P (P̄α = pα|σ = S) ≡ P (P̄α = pα, σ = S)
P (σ = S) . (5.17)

Now, the random variable P̄α(t), resulting from a Brownian motion (5.10), has a Gaussian
probability distribution; the same is true for the time integral of P̄α and the noise dζs, and
therefore of the signal σ (5.14) which is the sum of them. As the variables P̄α and σ have
zero means, their joint probability distribution is characterised by their covariance matrix,
or more directly by its inverse matrix, so that

P (P̄α = pα|σ = S) =
1

2π
√

⟨P̄ 2
α⟩stoch⟨σ2⟩stoch−⟨σP̄α⟩2

stoch
exp

(
−1

2
p2

α⟨σ2⟩stoch+S2⟨P̄ 2
α⟩stoch−2pαS⟨σP̄α⟩stoch

⟨P̄ 2
α⟩stoch⟨σ2⟩stoch−⟨σP̄α⟩2

stoch

)
1√

2π⟨σ2⟩stoch
exp

(
− S2

2⟨σ2⟩stoch

)
(5.18)

P (P̄α = pα|σ = S) = 1√
2π
[
⟨P̄ 2

α⟩stoch − ⟨σP̄α⟩2
stoch/⟨σ2⟩stoch

] exp

−1
2

(
pα − S⟨σP̄α⟩stoch/⟨σ2⟩stoch

)2

⟨P̄ 2
α⟩stoch − ⟨σP̄α⟩2

stoch/⟨σ2⟩stoch


(5.19)

where ⟨. . .⟩stoch at time t is the mean taken over all realisations of the stochastic process
dζs(t′) over the time interval [0, t]. From this, it can be deduced that in equations (5.12),

m(t) =
√

Γex
⟨σ(t)P̄α(t)⟩stoch

⟨σ2(t)⟩stoch
(5.20)

V(t) = 1
4(1 + Γext)

+ ⟨P̄ 2
α(t)⟩stoch − ⟨σ(t)P̄α(t)⟩2

stoch
⟨σ2(t)⟩stoch

. (5.21)
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In order to determine their variances and covariance, σ(t) and P̄α(t) are written as linear
functionals of the stochastic process dζs and the fact that the Langevin forces dζs(t)/dt and
dζs(t′)/dt′ have a Dirac correlation function δ(t− t′) is used. Let us give the example of the
first contribution to σ(t):∫ t

0
dt′′P̄α(t′′) =

∫ t

0
dt′′

∫ t′′

0
dt′[2D(t′)]1/2 dζs(t′)

dt′

=
∫ t

0
dt′
∫ t

t′
dt′′[2D(t′)]1/2 dζs(t′)

dt′

=
∫ t

0
dt′(t− t′)[2D(t′)]1/2 dζs(t′)

dt′ (5.22)

where we have changed the order of integration on t′ and t′′ and then integrated explicitly
on t′′. This leads to the searched expressions (5.12), whose simplicity follows from the fact
that, on a realization of the experiment, we always have

σ(t) =
√

Γex
1 + Γext

Γext
P̄α(t). (5.23)

Remarkably, the knowledge of the only integrated signal σ(t) in a realization of the experi-
ment of duration t is enough to prepare the nuclear spin in a well-defined pure Gaussian case
(5.8), with a parameter u given by the equation (5.9) and a mean quadrature P̄α related to
the signal by the equation (5.23).

Finally, let us return to the Pa quadrature of the unhybridized nuclear spin, which is the
one actually usable in the experiment once the discharge is turned off in the cell, as shown
by the (3.26) expression for the metrological gain in a precession measurement. Leaving the
rotated basis by reversing the (4.3) transformation and restricting the (4.8) equation to its
first term (to the leading order in Ω), it comes

⟨Pa⟩σ=S =
(

γm
γf + γm

)1/2
⟨Pα⟩σ=S (5.24)

Varσ=S(Pa) = γf
4(γf + γm) + γm

γf + γm
Varσ=S(Pα) . (5.25)

The conditional variance of Pa at long times tends to a non-zero value, although small in
practice : this is the intrinsic limit of this nuclear spin squeezing scheme, which uses the
metastable 3He state as an intermediate.

5.3 Analytical solutions in the three-mode model
The study of spin squeezing in the framework of the one-mode model is limited to the (4.2)
regime where the squeezing rate Γsq ∼ Γex corresponds to the longest time scale of the
system. However, it is crucial for applications to see how far the squeezing process can be
accelerated by increasing Γex so, for example, the Faraday Ω coupling of metastable atoms
to the cavity field. To this end, we obtain the analytical solution of the three-mode model by
using the Gaussian character of the state vector which results, as for the one-mode model,
from the initial state considered (vacuum), the linearity of the jump operators Cm and the
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Figure 5.2: Nuclear spin squeezing by continuous homodyne measurement. (a) In the one-
mode model, mean (black) and variance (multiplied by 4, red) of the quadrature Pα of the
hybridised nuclear spin conditional on the integrated homodyning signal σ, as a function of
the integration time t. Solid lines: analytical expressions (5.12). Dashed lines: expressions
(5.60) in the presence of decoherence by de-excitation of the metastables on the cell walls
(long dashed line: ϵ = 1/100, short dashed line: ϵ = 1/10, with ϵ = γα/Γex and γα the deco-
herence rate brought back to (5.56)). (b) In the three-mode model, for Γext = 5, mean and
standard deviation of the nuclear spin quadrature Pa conditional on the σ signal belonging
to a C class, the interval of σ values having been divided into 10 classes of equal width (the
S values of σ are in units of Γ1/2

ex on the x-axis). The standard deviation is represented as a
confidence interval. In black: numerical simulation of the stochastic equation (5.4) with 1079
realisations. Green dashed line and coloured area: exact results from the (5.38) and (5.39)
relationships, and from the analytical expression of the conditional probability distribution
of P̄a in terms of the variances and covariance (5.46)-(5.48) on the model of the equation
(5.19). The discrepancy between numerical and analytical in the extreme classes is due to the
small number of realisations falling into these classes. Values of the parameters: Ω/κ = 1/10,
γm/κ = 1/10, γf/κ = 1/100, Γex/κ = 1/1000. (c) In the limit Γex → 0 to Γex/2γf fixed of the
three-mode model, conditional mean and variance of Pa (5.50) as a function of the reduced
time γft, for different values of the rate r = 2Γex/γf (increasing curves: mean, decreasing
curves: variance).

quadraticity of the Hamiltonian H in the quadratures of the modes. The stochastic equation
(5.4) thus admits as an exact solution the Gaussian ansatz generalising that of the equation
(5.8),

⟨pα, pβ, xc|ϕ(t)⟩ = ϕ(q, t) = [8π detu(t)]1/4 exp
{

−[q − q̄(t)] ·u(t) [q − q̄(t)]
}

≡ e−S

(5.26)
where u is a real symmetric 3×3 matrix, q̄ is a real three-component vector, the coordinates
qα = pα and qβ = pβ are in Fourier space (eigenbasis of the P quadrature) and the qc = xc
coordinate is in "positions" space (eigenbasis of the X quadrature). The only trick here was
to choose as the metastability exchange jump operator Cβ = √

γβ iβ; this phase choice, which
of course does not change the master equation (4.4), remains legitimate for the evolution
conditional on the homodyne detection of the field because metastability jumps are not
measured. In the mixed representation of the wave function (5.26), the Hamiltonian H is
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then pure imaginary and the jump operators are real, hence the real ansatz (5.26). 5

To obtain the equations of motion on u and q̄, we calculate the relative variation
dϕ(q, t)/ϕ(q, t) of the wave function in two different ways, on the one hand by relating
it to the variation dS of the quantity S in (5.26), separated into a deterministic part dSd and
a noise part dSb, and on the other hand by carrying over the ansatz (5.26) into the stochastic
equation (5.4). By identifying the deterministic and noisy parts of the two resulting forms,
we obtain

−dSb = γ
1/2
β

(1
2∂qβ

S − qβ + q̄β

)
dζβ − κ1/2

(1
2∂qcS − qc + q̄c

)
dζc (5.27)

−dSd + 1
2(dSb)2 =(Ωαqα + Ωβqβ)dt

2 ∂qcS (5.28)

− γβdt
2

{
q2
β − 1

2 + 1
4

[
∂2
qβ
S −

(
∂qβ

S
)2
]

+ q̄β
(
∂qβ

S − 2qβ
)

+ q̄2
β

}
− κdt

2

{
q2
c − 1

2 + 1
4
[
∂2
qc
S − (∂qcS)2

]
+ q̄c (∂qcS − 2qc) + q̄2

c

}
.

It remains to transfer the expression of dSb from (5.27) into (5.28), applying Ito’s rule of
replacing the squares of the noises by their mean, and then to identify the terms of degree 2
in q − q̄ to obtain the purely deterministic linear equation on u: 6

duαα = −Ωαdt uαc duαβ = −dt
2 (γβuαβ + Ωβuαc + Ωαuβc)

duββ = −Ωβdt uβc + γβdt(1 − uββ) duαc = −dt
2 (κuαc + Ωαucc)

ducc = κdt(1 − ucc) duβc = −dt
2 [(γβ + κ)uβc + Ωβucc]

(5.29)

and the terms of degree 1 in q − q̄ to obtain the stochastic linear equation on q̄:

dq̄ = 1
2

 0 0 0
0 −γβ 0

Ωα Ωβ −κ

dt q̄ + 1
2[1 − c(t)]

 0
γ

1/2
β dζβ(t)

−κ1/2dζc(t)

 . (5.30)

It is necessary to specify that q̄ is the vector of the quantum means of the variables q in the
state vector (5.26)7; moreover, the notation c has been introduced for the inverse matrix of u,
which is none other than the quantum covariance matrix of the qs, except for one numerical
factor. Thus we have:

⟨ϕ(t)|qi|ϕ(t)⟩ = q̄i(t) and ⟨ϕ(t)|qiqj |ϕ(t)⟩ = q̄i(t)q̄j(t) + 1
4cij(t) (5.31)

∀i, j ∈ {α, β, c} with c(t) = [u(t)]−1.

5For example, iβ = i(Xβ + iPβ) is represented in momentum by the real operator −∂pβ/2 − pβ , and β†β

by −∂2
pβ
/4 + p2

β − 1/2.
6Note that the quadratic terms in u in the second member of (5.28) compensate for those in (dSb)2/2 in

the first member.
7We can therefore recover equation (5.30) from the stochastic equation deduced from (5.4) on the mean

of an observable O, d⟨O⟩ = (dt/iℏ)⟨[O,H]⟩ + (dt/2)
∑

m
⟨C†

m[O,Cm] + h.c.⟩ +
∑

m
[⟨OCm + h.c.⟩ − ⟨Cm +

C†
m⟩⟨O⟩]dζm, where ⟨. . .⟩ is taken in state |ϕ(t)⟩, by specializing it to cases O = Pα, O = Pβ and O = Xc.
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The differential system (5.29) integrates easily for the initial condition u(0) = 1:

uαα(t) =1 + Ω2
αt

κ
− 2Ω2

α

κ2

(
1 − e−κt/2

)
(5.32)

uαβ(t) =ΩαΩβ

γβ

(
1

γβ + κ
+ 1
κ

)(
1 − e−γβt/2

)
+ ΩαΩβ

κ(κ− γβ)
(
e−κt/2 − e−γβt/2

)
+ ΩαΩβ

κ(γβ + κ)
(
e−(γβ+κ)t/2 − e−γβt/2

)
(5.33)

uαc(t) = − Ωα

κ

(
1 − e−κt/2

)
(5.34)

uββ(t) =1 +
Ω2
β

γβ(γβ + κ)
(
1 − e−γβt

)
−

2Ω2
β

κ2 − γ2
β

(
e−γβt − e−(γβ+κ)t/2

)
(5.35)

uβc(t) = − Ωβ

γβ + κ

(
1 − e−(γβ+κ)t/2

)
(5.36)

ucc(t) =1. (5.37)

It would have been different if we had taken as unknown the covariance matrix c(t), which
obeys a nonlinear Riccati differential system [55]. Since q̄ describes a Brownian motion
(partially damped because the friction matrix in (5.30) has eigenvalues 0, γβ/2 and κ/2),
and since the homodyne signal averaged over the time interval [0, t] σ can be deduced by
integration, these random variables have a Gaussian statistic and we can reproduce the
reasoning of section 5.2. We find for the conditional mean and variance of the nuclear spin
quadrature Pa knowing σ = S, this variance determining the metrological gain (3.26) :

⟨Pa⟩σ=S = ⟨σ(t)P̄a(t)⟩stoch
⟨σ2(t)⟩stoch

S (5.38)

Varσ=S(Pa) =1
4

[
Ω2
β

Ω2 cαα(t) + Ω2
α

Ω2 cββ(t) − 2ΩαΩβ

Ω2 cαβ(t)
]

(5.39)

+ ⟨P̄ 2
a (t)⟩stoch − ⟨σ(t)P̄a(t)⟩2

stoch
⟨σ2(t)⟩stoch

.

The bracketed expression in equation (5.39) is the matrix element of c(t) in the vector
(Ωβ/Ω,−Ωα/Ω, 0) of the coordinates of the direction a in the rotated basis, thus, to within a
factor 4, the quantum variance of Pa in the stochastic state ϕ(t), time-dependent but, recall,
independent of the particular realization of ϕ(t). From the chain of equalities

⟨P 2
a ⟩(t) =⟨ ⟨ϕ(t)|P 2

a |ϕ(t)⟩ ⟩stoch (5.40)
=⟨ ⟨ϕ(t)|P 2

a |ϕ(t)⟩ − ⟨ϕ(t)|Pa|ϕ(t)⟩2 + ⟨ϕ(t)|Pa|ϕ(t)⟩2 ⟩stoch

=⟨Varϕ(t)Pa⟩stoch + ⟨P̄ 2
a (t)⟩stoch

as well as the property (3.35) on the unconditional mean ⟨P 2
a ⟩(t) = 1/4, we derive the

simplified expression

Varσ=S(Pa) = 1
4 − ⟨σ(t)P̄a(t)⟩2

stoch
⟨σ2(t)⟩stoch

. (5.41)
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It remains, in order to determine the variances and covariances of the random variables
P̄a(t) and σ(t), to calculate their amplitudes on the stochastic processes dζβ(t′) and dζc(t′),
by formally integrating equation (5.30) by the method of variation of the constant for P̄a
and X̄c, and by proceeding as in equation (5.22) for σ

pβ(t, t′) = − 1
2γ

1/2
β

{Ωβ

Ω cαβ(t′) + Ωα

Ω [1 − cββ(t′)]e−γβ(t−t′)/2
}

(5.42)

pc(t, t′) =1
2κ

1/2
{Ωβ

Ω cαc(t′) − Ωα

Ω cβc(t′)e−γβ(t−t′)/2
}

(5.43)

σβ(t, t′) =(γβκ)1/2

2t

{
−cαβ(t′)[t− t′ − fκ(t− t′)]Ωα

κ
− cβc(t′)fκ(t− t′) (5.44)

+[1 − cββ(t′)][fγβ
(t− t′) − fκ(t− t′)] Ωβ

κ− γβ

}

σc(t, t′) = 1
2t − κ

2t

{
−cαc(t′)[t− t′ − fκ(t− t′)]Ωα

κ
+ [1 − ccc(t′)]fκ(t− t′) (5.45)

−cβc(t′)[fγβ
(t− t′) − fκ(t− t′)] Ωβ

κ− γβ

}

where fλ(τ) ≡ [1 − exp(−λτ/2)]/(λ/2). We obtain:

⟨σ(t)P̄a(t)⟩stoch =
∫ t

0
dt′ [pβ(t, t′)σβ(t, t′) + pc(t, t′)σc(t, t′)] (5.46)

⟨σ2(t)⟩stoch =
∫ t

0
dt′ [σ2

β(t, t′) + σ2
c (t, t′)] (5.47)

⟨P̄ 2
a (t)⟩stoch =

∫ t

0
dt′ [p2

β(t, t′) + p2
c(t, t′)] . (5.48)

From these results we derive the long-time limits 8

⟨Pa⟩σ=S →
t→+∞

(
γm

γf + γm

)1/2 S
Γ1/2

ex
, Varσ=S(Pa) →

t→+∞

1
4

γf
γf + γm

(5.49)

with which the predictions (5.24) and (5.25) of the one-mode model, though obtained in the
weak coupling limit (4.2), are in perfect agreement.

In application of our analytical solution of the three-mode model, let us tend the rate
Γex towards zero at reduced time τ = Γext fixed by keeping (unlike the one-mode model) the

8Let us give some intermediate results and considerations. (i) While cββ(t′), cβc(t′) and ccc(t′) have a
finite limit when t′ → +∞ [we will need cββ(+∞) = (1 + ρ)−1, cβc(+∞) = Ωβ/((γβ + κ)(1 + ρ)) with
ρ = Ω2

βκ/(γβ(γβ + κ)2)], cαα(t′), cαβ(t′) and cαc(t′) tend to zero as 1/t′. (ii) In an integral over t′ containing
the exponential factor exp[−γβ(t − t′)/2] or its square, we can replace the function which multiplies it by
its limit in t′ = +∞. (iii) For any uniformly bounded function w(t, t′), we can show for ν ∈ {β, c} that∫ t

0 dt′[(t−t′)cαν(t′)+w(t, t′)]2/t2 →
∫ +∞

0 dt′c2
αν(t′). (iv) We then obtain the asymptotic limits ⟨P 2

a (t)⟩stoch →
(Ωβ/2Ω)2I + (Ωα/2Ω)2ρ/(1 + ρ), ⟨σ2(t)⟩stoch → (Ω2

α/4κ)I, ⟨σ(t)P̄a(t)⟩stoch → (ΩαΩβ/4Ωκ1/2)I or I ≡∫ +∞
0 dt′[γβc

2
αβ(t′) + κc2

αc(t′)]. We thus deduce (5.49) from (5.38) and from the first equality in (5.39),
without needing to know the value of I. From the second equality in (5.39) we get the result I = 1, which
can also be deduced from the equation of motion dcαα/dt = −γβc

2
αβ − κc2

αc embedded between t = 0 and
t = +∞.
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rate Γex/γf at a non-infinitesimal constant value. The physical motivation is clear: in the
projected experiments, 9 γf and Γex are of the same order of magnitude but are really much
smaller than γm and κ (by factors ≈ 10−6 and 10−9). We find in this limit: 10

⟨Pa⟩σ=S ∼ Γsqt

1 + Γsqt

S
Γ1/2

ex
and Varσ=S(Pa) ∼ 1

4
1

1 + Γsqt
(5.50)

where the nuclear spin squeezing rate has been introduced in the three-mode model and

Γsq ≡
( 1

Γex
+ 2
γf

)−1
. (5.51)

We find the natural scaling of the signal by Γ1/2
ex already seen in the one-mode model and the

same functional forms in time, but we lose any (5.23) type proportionality relation between
integrated signal and quadrature average over a realisation, the conditional variance of P̄a
now being ̸≡ 0. 11 In Figure 5.2c we show the time dependence γft of the conditional mean
and variance (5.50) for different values of the rate r = 2Γex/γf . It can be seen that the
squeezing process is faster the larger r is, and that it saturates at a limit behaviour. This
is to be expected, as Γsq is an increasing function of r of finite limit; at fixed time, the
conditional mean (in units of S/Γ1/2

ex ) is therefore an increasing function and the conditional
variance a decreasing function of r, as can be seen in Figure 5.2c. Specifically, in the weak
coupling limit Ω → 0, where r → 0, the squeezing rate is equivalent to the excitation creation
rate Γex, in agreement with the one-mode model, and in the limit r → +∞, it saturates at
the value γf/2. Therefore, it is not possible to squeeze faster than at the rate γf , which
is not surprising: one cannot expect to reduce nuclear spin fluctuations until each atom in
the ground state has undergone on average at least one metastability exchange collision, the
effective rate γf being in practice of the same order of magnitude as the individual rate 1/T
in equation (3.21) except in the case of extreme polarization (see figure 3.1a).

5.4 Decoherence effects
For completeness, we take into account, in the homodyne squeezing scheme, the finite lifetime
(2γ0)−1 of the metastable atoms, which de-excite when they reach the cell walls after a
diffusive motion in the gas. To this end, we add a jump operator

√
2γ0b to the three-mode

master equation (3.33). Since the non-Hermitian Hamiltonian part remains quadratic in the
quadratures of the modes, it can be put into reduced form by an appropriate rotation of
the atomic modes, as we have already done in section 4.2: we need to decompose the vector
(a, b) into the orthonormal eigenbase of the rate matrix

Γ =
(

2γf −2√
γfγm

−2√
γfγm 2(γ0 + γm)

)
(5.52)

9See section 5.5 of this chapter for such propositions.
10 In practice, it is sufficient to make Ωα tend to zero at fixed τ = Γext > 0, Ωβ , γβ and κ. In particular,

this makes all exponential transients in equations (5.32)-(5.37) disappear. To simplify the calculations, it is
useful to introduce the quantity ρ = Ω2κ/[2γm(κ + 2γm)2] so that ρ = (Γex/2γf)(1 + 2γm/κ)−2 in the limit
γf → 0.

11We have indeed Varσ=S(P̄a) ∼ Γext/[4(1 + Γext)] − Γsqt/[4(1 + Γsqt)].
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with operator-valued coefficients α and β. The direction β remains that of the maximum
eigenvalue γβ of Γ, and α that of the minimum eigenvalue γα, now non-zero

γα,β = γm + γf + γ0 ∓ [(γm + γf + γ0)2 − 4γfγ0]1/2. (5.53)

In terms of the Faraday momenta Ωα and Ωβ, the corresponding normalized eigenvectors
are written (Ωβ/Ω,Ωα/Ω) and (−Ωα/Ω,Ωβ/Ω), so that α = (Ωβa+ Ωαb)/Ω and β = (Ωβb−
Ωαa)/Ω with

Ωα = Ω(γf − γα/2)
[γmγf + (γf − γα/2)2]1/2 , Ωβ =

Ω√
γmγf

[γmγf + (γf − γα/2)2]1/2 (5.54)

with a choice of sign ensuring that α → a and β → b when γf → 0 and reproducing (4.5)
when γ0 → 0. This leads to the master equation

dρ
dt = 1

iℏ [ℏ(ΩαPα + ΩβPβ)Pc, ρ] + κ

(
cρc† − 1

2{c†c, ρ}
)

+ γα

(
αρα† − 1

2{α†α, ρ}
)

+ γβ

(
βρβ† − 1

2{β†β, ρ}
)
.

(5.55)

Since the jump operator Cα ∝ α describes unmeasured processes, we can, as we did for Cβ,
take it of the form √

γαiα and reuse the real Gaussian ansatz (5.26).

5.4.1 In the one-mode model

We restrict ourselves here to the physically useful limit γ0 ≪ γm (we still have γf < γm). At
the lowest order in γ0, the coefficients Ωα, Ωβ and γβ remain unchanged, and we have

γα ≃ 2γ0γf
γm + γf

(5.56)

which is nothing else than the decoherence rate brought back into the hybridised nuclear
spin. Furthermore, we place ourselves in the one-mode limit (4.2), with γα = O(Γex), which
allows us to evaluate the effect of decoherence using the one-mode model, which remains the
same as in section 4.2. The stochastic equation (5.7) is completed as follows

d|ϕ(t)⟩ = − Γexdt
2 (Pα − P̄α)2|ϕ(t)⟩ +

√
Γexdζs(t)(Pα − P̄α)|ϕ(t)⟩ (5.57)

− γαdt
2 (α†α+ 2iP̄αα+ P̄ 2

α)|ϕ(t)⟩ + √
γαdζα(t)(iα+ P̄α)|ϕ(t)⟩.
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The choice of γ1/2
α iα as the jump operator for the reduced decoherence allows the equation

to be solved by the same real Gaussian ansatz (5.8). This time we find12

du =[Γex + γα(1 − u)]dt =⇒ u(τ) = 1 + 1 − exp(−ϵτ)
ϵ

(5.58)

dP̄α = − 1
2γαP̄αdt+

√
Γexdζs + √

γα(u− 1)dζα
2u (5.59)

where we have posed τ = Γext and ϵ = γα/Γex. The same Gaussianity arguments as in section
5.2 lead to the same dependencies in the signal S of the conditional mean and variance,13

⟨Pα⟩σ=S = m(τ) S√
Γex

, Varσ=S(Pα) = V(τ) (5.60)

with m(τ) =
√

Γex
⟨σ(t)P̄α(t)⟩stoch

⟨σ2(t)⟩stoch
and V(τ) = 1

4 − ⟨σ(t)P̄α(t)⟩2
stoch

⟨σ2(t)⟩stoch

and the variance and covariance taken over the stochastic processes dζs ≡ dζc and dζα,

⟨σ2⟩stoch
Γex

=
∫ τ

0

dτ ′

τ2


[

1
2 + 1 − eϵ(τ ′−τ)/2

ϵu(τ ′)

]2

+ [u(τ ′) − 1]2

u2(τ ′)

[
1 − eϵ(τ ′−τ)/2

]2
ϵ

 (5.61)

=ϵτ − 2(1 − e−ϵτ/2)
ϵ2τ2 + 1

4τ
⟨σP̄α⟩stoch√

Γex
=
∫ τ

0

dτ ′

τ

eϵ(τ ′−τ)/2

2u(τ ′)

{
1
2 + 1 − eϵ(τ ′−τ)/2

ϵu(τ ′) + [u(τ ′) − 1]2

u(τ ′)
[
1 − eϵ(τ ′−τ)/2

]}
(5.62)

=1 − e−ϵτ/2

2ϵτ .

These expressions allow the effect of decoherence on spin squeezing to be easily evaluated
through the metrological gain (3.26), see the dashed lines in figure 5.2a. For the practically
useful case of a low decoherence ϵ ≪ 1 and a short time before 1/γα, they can be expanded
to first order in ϵ :

m(τ) = τ

1 + τ
− ϵ

(τ + 3)τ2

12(τ + 1)2 +O(ϵ2τ2) ; V(τ) = 1
4(τ + 1) + ϵ

(τ + 3/2)τ2

12(τ + 1)2 +O(ϵ2τ2) .

(5.63)
From this we deduce that the optimal squeezing on Pα is obtained at a time topt ∼ (3/Γexγα)1/2

and corresponds to a conditional variance Vopt ∼ (γα/12Γex)1/2. Note that in studies of spin
12In the regime ϵ ≪ 1, the long-time limit of the variance of Pα on a single realisation depends strongly

on the choice of phase in the jump operator of the reduced decoherence, which underlines the non-physical
character of this variance (see section 5.1): if we take γ1/2

α α as the jump operator, we find VarϕPα → ϵ1/2/4
instead of VarϕPα → 1/4ϵ as in equation (5.58). More generally, the choice γ

1/2
α exp(iθ)α, −π/2 < θ <

π/2, leads to the Riccati equation on parameter u of the (now complex) Gaussian ansatz du = Γexdt +
γαdt{exp(2iθ)u+ [1 − exp(2iθ)]/2 − u2[1 + exp(2iθ)]/2} so that VarϕPα → (1/4)ϵ1/2√

cos θ cos(θ/2) in a time
τ ∼ 1/

√
2ϵ[1 + exp(2iθ)]; the power law in ϵ obtained for θ = 0 is thus the rule, the one obtained for θ = π/2

is the exception.
13We have simplified the expression of V(τ) in (5.60) using the identity [4u(τ)]−1 + ⟨P̄ 2

α⟩stoch = 1/4, which
results as in equation (5.40) from the fact that the unconditional mean ⟨P 2

α⟩ = 1/4, even in the presence of
decoherence.
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squeezing in cavity alkali gases, the C cooperativity of the coupled atom-field system is of-
ten introduced, defined as the square of the coupling pulsation divided by the decay rates of
the coupled states [56]. In this sense, the cooperativity of the nuclear spin-hybridized field
system is

C ≡ Ω2
α

κγα
= Γex

γα
≃ Ω2

2γ0κ
(5.64)

so that we find the usual alkali scaling law of exponent −1/2 relating the optimal spin vari-
ance to C [56]. More generally, decoherence has a weak effect on the nuclear spin squeezing
as long as we stay at short times in front of topt.

5.4.2 In the three-mode model

The reuse of the real Gaussian ansatz (5.26) in order to solve the stochastic equation (5.4)
on the state vector in full generality allows an extension of these scaling laws beyond the
one-mode model, i.e. for any non-infinitesimal Γex/γf rate. As we shall see, the link between
Vopt and (5.64) cooperativity is then broken.

In the evolution equation of the matrix u appearing in the ansatz, the indices α and β
now play symmetrical roles and we obtain

duαα = −Ωαdt uαc + γαdt(1 − uαα) duαβ = −dt
2 [(γα + γβ)uαβ + Ωβuαc + Ωαuβc]

duββ = −Ωβdt uβc + γβdt(1 − uββ) duαc = −dt
2 [(γα + κ)uαc + Ωαucc]

ducc = κdt(1 − ucc) duβc = −dt
2 [(γβ + κ)uβc + Ωβucc]

(5.65)
whose solution for the initial condition u(0) = 1 is written

uαα(t) =1 + Ω2
α

γα(κ+ γα)
(
1 − e−γαt

)
− 2Ω2

α

κ2 − γ2
α

(
e−γαt − e−(κ+γα)t/2

)
(5.66)

uαβ(t) = ΩαΩβ

γα + γβ

(
1

κ+ γα
+ 1
κ+ γβ

)(
1 − e−(γα+γβ)t/2

)
(5.67)

+ ΩαΩβ

(κ− γβ)(κ+ γα)
(
e−(κ+γα)t/2 − e−(γα+γβ)t/2

)
+ ΩαΩβ

(κ− γα)(κ+ γβ)
(
e−(κ+γβ)t/2 − e−(γα+γβ)t/2

)
uαc(t) = − Ωα

κ+ γα

(
1 − e−(κ+γα)t/2

)
(5.68)

uββ(t) =1 +
Ω2
β

γβ(κ+ γβ)
(
1 − e−γβt

)
−

2Ω2
β

κ2 − γ2
β

(
e−γβt − e−(κ+γβ)t/2

)
(5.69)

uβc(t) = − Ωβ

κ+ γβ

(
1 − e−(κ+γβ)t/2

)
(5.70)

ucc(t) = 1 . (5.71)

The vector of mean coordinates q̄ appearing in the ansatz (5.26) obeys the stochastic equation

dq̄ = 1
2

−γα 0 0
0 −γβ 0

Ωα Ωβ −κ

dt q̄ + 1
2[1 − c(t)]

 γ
1/2
α dζα(t)
γ

1/2
β dζβ(t)

−κ1/2dζc(t)

 . (5.72)
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The unconditional mean ⟨P 2
a ⟩ always being 1/4, the mean and variance of Pa conditional on

the integrated homodyne signal remain given by equations (5.38) and (5.39), by generalising
expressions (5.46)-(5.48) of the variances and covariance of random variables P̄a(t) and σ(t)
to the case of three independent stochastic processes dζα(t′), dζβ(t′) and dζc(t′) as follows:

⟨σ(t)P̄a(t)⟩stoch =
∫ t

0
dt′

∑
ν∈{α,β,c}

pν(t, t′)σν(t, t′) (5.73)

⟨σ2(t)⟩stoch =
∫ t

0
dt′

∑
ν∈{α,β,c}

σ2
ν(t, t′) (5.74)

⟨P̄ 2
a (t)⟩stoch =

∫ t

0
dt′

∑
ν∈{α,β,c}

p2
ν(t, t′) (5.75)

with the compact expressions of the corresponding amplitudes

pν(t, t′) =(−1)δνc

√
γν

2Ω
{

Ωβe−γα(t−t′)/2[δαν − cαν(t′)] − Ωαe−γβ(t−t′)/2[δβν − cβν(t′)]
}

(5.76)

σν(t, t′) =δνc
2t + (−1)δνc

√
κγν

2t

[δcν − ccν(t′)]fκ(t− t′) (5.77)

+
∑

µ∈{α,β}

Ωµ

κ− γµ
[δµν − cµν(t′)][fγµ(t− t′) − fκ(t− t′)]

 .

The index ν runs over the three values α, β, c and γc = κ is posited. The function δ is the
Kronecker function, and the function fλ is the same as in equations (5.42)-(5.45).

The general solution we have just outlined has the five rates γα,Γex = Ω2
α/κ, γf on the one

hand, γβ, κ on the other. The experimentally relevant regime is the one where the last two
are "infinitely" larger than the first three and contribute only through unobservable transient
regimes. Mathematically, this limit is reached by making γf tend towards zero at fixed
κ, γm, γ0 and Ω and at fixed τ = Γext > 0. Then the first three rates tend jointly to zero, i.e.
in finite and non-zero limit rates Γex/γf → Ω2γm/[κ(γ0 + γm)2] and γα/γf → 2γ0/(γ0 + γm),
the γβ rate reduces to γ ≡ 2(γ0 + γm) and the Faraday coupling Ωβ to Ω. All exponential
transients disappear in the (5.66)-(5.70) matrix elements of u except those relaxing at the
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γα rate. The amplitudes (5.76) and (5.77) on the stochastic processes reduce to

pα(t, t′)√
Γex

= u(τ ′) − 1
2u(τ ′)

√
ϵ e−ϵ(τ−τ ′)/2 (5.78)

pβ(t, t′)√
Γex

=
√
ρ

(1 + ρ)u(τ ′)e−ϵ(τ−τ ′)/2 (5.79)

pc(t, t′)√
Γex

= (1 − ρ)
2(1 + ρ)u(τ ′)e−ϵ(τ−τ ′)/2 (5.80)

σα(t, t′)
Γex

= u(τ ′) − 1
τ u(τ ′)

√
ϵ

1 − e−ϵ(τ−τ ′)/2

ϵ
(5.81)

σβ(t, t′)
Γex

=
√
ρ

(1 + ρ)τ

[
2

u(τ ′)
1 − e−ϵ(τ−τ ′)/2

ϵ
+ ρ+ γ

κ
(ρ− 1)

]
(5.82)

σc(t, t′)
Γex

= 1
τ

[
1
2 + 1 − ρ

1 + ρ

1
u(τ ′)

1 − e−ϵ(τ−τ ′)/2

ϵ
+ ρ

1 + ρ

(
1 + 2γ

κ

)]
(5.83)

where ϵ = γα/Γex as in section 5.4, the function u(τ) is given by equation (5.58) and the
notation ρ = Ω2κ/[γ(κ+γ)2] generalises that in note 10. Relations (5.38) and (5.39) remain
valid, with the new expressions for the variance and covariance

⟨σ2⟩stoch
Γex

= ϵτ − 2(1 − e−ϵτ/2)
ϵ2τ2 + Γex

4τΓgen
sq

and ⟨σP̄a⟩stoch√
Γex

= 1 − e−ϵτ/2

2ϵτ (5.84)

and the generalized squeezing rate

Γgen
sq =

[ 1
Γex

+ 2(γ0 + γm)
γfγm

]−1
(5.85)

reproducing the variance and covariance (5.61) and (5.62) of the one-mode model with deco-
herence when Γex/γf → 0 and the spin squeezing rate (5.51) of the three-mode model without
decoherence when γ0 → 0. The new results can be simplified in the useful low-decoherence
limit γα/Γex → 0 by an expansion to order one in ϵ, which allows the results (5.63) on the
conditional mean and variance to be generalised to a non-infinitesimal value of Γex/γf as
follows:

m(t) =
Γgen

sq t

1 + Γgen
sq t

− γα
Γgen

sq

(3 + Γgen
sq t)(Γgen

sq t)2

12(1 + Γgen
sq t)2 +O[(γαt)2] (5.86)

V(t) = 1
4(1 + Γgen

sq t) + γα
Γgen

sq

(Γgen
sq t+ 3/2)(Γgen

sq t)2

12(1 + Γgen
sq t)2 +O[(γαt)2]. (5.87)

This generalisation is simply a matter of replacing τ by Γgen
sq t and ϵ by γα/Γgen

sq in the
second members of (5.63). 14 The optimal squeezing on Pa is then obtained after a time
topt ∼ (3/Γgen

sq γα)1/2 and corresponds to a conditional variance

Varopt
σ=S(Pa) ∼ (γα/12Γgen

sq )1/2. (5.88)
14It is in fact valid at all orders in ϵ since the proposed replacement does not change ϵτ (still equal to γαt)

and moves from equations (5.61) and (5.62) to equation (5.84).
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The optimal metrological gain is deduced from this by equation (3.26)

ξ2
opt,σ=S ∼ 2

η

√
γα
3

[ 1
Γex

+ 2(γ0 + γm)
γfγm

]−1/2
. (5.89)

5.5 On the parameters of an experimental realisation
In this section we make some estimates of the model parameters for the prospect of an
experimental realisation of the scheme. In the theoretical treatment throughout this chapter
we have assumed the magnetic field to be zero, the effects of a small steering field will be
discussed at the end of this section.

Recall of the proposed experimental scheme An overview of the set-up is shown in
Figure 1.1. This setup consists of a helium-3 vapour cell at room temperature and a pressure
of a few mbar placed inside an asymmetric optical cavity, ensuring that the photons leave the
cavity predominantly through the output mirror. The experimental process can be schematically
separated into four steps:
- A continuous discharge maintains a small fraction of the atoms in a metastable state while the
majority of the ensemble remains in the ground-state (of purely nuclear spin).
- The collective atomic spins of the metastable and ground-state population are oriented in the Ox
direction by optical pumping. Metastability exchange collisions then couple the ground-state and
metastable spins so that quantum correlations are continuously transferred from one to the other.
- The input light is linearly polarized in the Ox direction; it passes through the cavity in the Oz
direction and approaches the 23S1 −23P0 transition at C8 at 1083 nm. For a large detuning and in
the weak saturation limit, the 23P0 excited state can be eliminated adiabatically, giving rise to the
Faraday interaction Hamiltonian (3.2) [14]. During its propagation in the gas, the Oy polarised
cavity field mode, initially empty, populates by the Faraday effect under the action of the quantum
fluctuations of the spin of the Oz metastables.
- At the exit of the cavity, this Oy-polarised mode is measured continuously. This measurement
combined with the exchange collisions provides a quantum nondemolition measurement of the
nuclear spin.
We have considered two different quantum nondemolition measurements: by photon counting 1.1b
or by a homodyne measurement 1.1c.

In this section, it is the case of homodyne detection that will be considered. Recall that in
this work, we have assumed that the spatial inhomogeneities of the cavity mode are averaged
during the motion of the atoms, which effectively couples the light homogeneously to all the
atoms in the cell. Indeed, the squeezing time scale 1/Γsq is long compared to the time
scale 1/γwall

0 for atomic motion between the cell walls, γwall
0 /Γsq ∼ 104. The atomic motion

therefore averages the spatial variations of the cavity mode, which ensures the validity of a
description by collective interactions.

5.5.1 Numerical estimates of parameters and variables.

In this section we discuss the values of the model parameters that an experiment based on
the homodyne scheme could take. The objective of a squeezed spin state can be achieved, a
state which also demonstrates a metrological gain over a fully polarised state in the standard
quantum limit for use in magnetometry for example. We will take the opportunity to discuss
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the dependence of the parameters and results on nuclear polarisation (necessarily partial in
our case). This will lead us to mention a possible alternative scheme, which was not studied
during this thesis, but which represents a possible direction towards which the project can
evolve.

Cell and cavity We consider a cylindrical cell of 20 mm length and 5 mm diameter, filled
with Ncell = 2.5 × 1016 atoms of 3He at a pressure of p = 2 Torr. The cell is at room
temperature. It is placed inside an optical cavity to amplify the atom-light interaction [57].
For a finess of F = 50 and a cavity length of 3 cm, we obtain κ = 2π 1.0 × 108 Hz as the
cavity output rate. The cavity is laser driven on the Ox axis polarisation so that 5 mW of
the light exits the cavity in this polarisation, and we take the light to be ∆ = 2π 2.0 GHz
detuned from the C8 transition. In the steady state, we find that 6.5 × 105 s−1 photons Oy
polarized leave the cavity (3.39). 15

Atoms and light The discharge in the gas keeps ncell = 1.25 × 1011 atoms stationary in
the metastable state, in a rate ncell

Ncell
= 5 × 10−6. For a polarisation of η = 0.4, this gives an

effective number of atoms (3.17) in the ground state ofN = 1.0×1016 and n = 1.3×1010 in the
metastable state. For the coupling between the light and the metastable population (3.25),
we thus obtain Ω = 2π 4.15 × 106 Hz. From the metastability exchange rate coefficient (see
table II p.19 of reference [1]), the effective metastability exchange rates γm = 5.2 × 106 s−1

and γf = 6.9 s−1 are determined via (3.21). From the diffusion coefficient of the metastable
atoms [58], we estimate that the metastable relaxation rate due to collisions with the wall is
γwall

0 = 2.6 × 104 s−1 [59].16

Squeezing rate, decoherence rate and fundamental limit to the scheme The
nuclear spin squeezing rate is evaluated from equation (5.85), the result of the analysis of
the three-mode model with decoherence: Γsq = 1.0 s−1 . We established at the very end of
section 5.2 that the continuous homodyne scheme has an intrinsic limit to the final nuclear
spin variance that can be obtained. According to (5.88), the highest squeezing that can be
obtained would be −6.71 dB . We can also calculate the metrological gain that this state
allows if it is used within a magnetometer via equation (5.89): ξ2 = 0.53 . Here we can see
the strong constraint imposed by the only partial polarisation of the atoms, since in the case
of full polarisation the metrological gain would be ηξ2 = 0.21.

Choice of nuclear polarization As a reminder, we are constrained to η ̸= 1 as soon as we
take the F = 1/2 component (hence the K⃗ spin) of the metastable spin as an intermediate
in the scheme. Indeed, if we completely polarize the metastable population, then all the
atoms are in the |F = 3/2,MF = +3/2⟩ state of the F = 3/2 multiplicity and none in a
state of the F = 1/2 multiplicity inducing a zero K⃗ spin. In our case, we have to make a
choice about the polarisation that will determine the theoretical and optimal results that the
scheme can obtain. In figure 5.3 we show, as a function of the nuclear polarisation η, (a) the

15Recall that ⟨X2
c ⟩(t) − 1/4 = ⟨c†c⟩(t) in the case of an empty initial state.

16Well above the non-resonant photon scattering rate in the metastable state, averaged over the cell, which
we estimate at γscat

0 ≈ 2.4 × 103 s−1. Recall that the decoherence rate in the three-mode theory of section
5.4 is defined with a factor of 2: γ0 = γwall

0 /2.
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Figure 5.3: Dependence of the typical coupling and rate of the system on the nuclear
polarisation η. The parameters are those of the section 5.5.1. The vertical dashed
lines indicate the maxima. (a) Nuclear polarisation dependence of the Faraday pulsation
Ωα = χ

√
nphncell

√
ncell
Ncell

f(η). Similar to figure 3.1b, it differs by using the results of the
three-mode model in the presence of decoherence in the metastable presented in section
5.4, equations (5.54). The maximum f(η) = 0.168 is found at η = 0.406. (b) Generalized
squeezing ratio (5.85) as a function of polarization. The minimum Γgen

sq = 1.01 s−1 is found
at η = 0.382.

dependence on this variable of the Faraday pulsation Ωα for the hybridised nuclear bosonic
mode,17 and (b) the generalised nuclear spin squeezing rate. Note that the maximum of the
effective coupling corresponds to that of the squeezing rate, both maxima being around a
nuclear polarisation η ≃ 0.4. While in figure 5.4, we show in (a) the optimal nuclear spin
squeezing with respect to the standard quantum limit in dB, and in (b) the metrological gain
of the nuclear spin state for use as a magnetometer as defined by reference [25]. Comparing
Figure 5.3(a) and 5.4(b), it can be seen that the maximum of the effective coupling (and
hence the squeezing rate) does not correspond to the minima of squeezing and metrological
gain, contrary to what one might expect.18 This is because the standard quantum limit is
proportional to the size of the spin, and hence the polarisation. Thus, there is a trade-off
between the squeezing rate Γsq on the one hand and the spin squeezing or metrological gain
on the other. The figures show that one can choose a polarisation of 0.4 to obtain a squeezing
rate of around Γgen

sq ≃ 1 s−1 and an optimum metrological gain of ξ2 ≃ 0.5 (this is what we
have just presented) or one can prefer to maximise the optimum metrological gain with a
polarisation of 0.8 to obtain a gain of ξ2 ≃ 0.3 but slow down the squeezing with a rate of
Γgen

sq ≃ 0.3 s−1.

17Unlike figure 3.1b, we take here the factor fα(η) as it appears in the three-mode model with decoherence,
constructed from equation (5.54)

18Since increasing the effective coupling Ω ensures that the spin is squeezed more strongly and more quickly.
Indeed, the Faraday pulsation Ωα depends linearly on Ω (5.54), the excitation rate in the nuclear mode Γex
depends quadratically on this pulsation (4.13), the squeezing rate of the nuclear spin Γsq depends linearly on
this excitation rate (5.85) and finally, the optimal conditional variance depends on the squeezing rate at a
power −1/2 (5.88).
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Figure 5.4: Dependence of the metrological gain and the optimal spin squeezing on the nu-
clear polarisation η. The parameters are those of the section 5.5.1. The vertical dashed lines
indicate the minima. The horizontal dashed lines indicate the standard quantum limit of a
fully polarised state. (a) Optimal spin squeezing (5.88) with respect to the standard quan-
tum limit of a fully polarised nuclear spin state. The minimum Varrmoptsigma=athcalS(Pa)/(N/4) =
−6.880 dB is found at η = 0.559. (b) Metrological gain ξ2 for using the minimum variance
state (5.88) as a magnetometer [25]. The minimum ξ2 = 0.291 is found at η = 0.790.

Some words for an alternative to the scheme studied In order to take advantage
of full polarisation, one idea would be to couple the light to the F = 3/2 multiplicity, and
thus to the J⃗ spin. This possibility would have the distinct advantage that any additional
degree of polarisation leads to a stronger and faster squeezing. But this solution also brings
its own difficulties: as soon as the light couples with J⃗ , it is no longer possible to discard
the influence of the alignment tensor in the dynamics as we have done. The structure of
the equations is then fundamentally different from the one studied in this section. However,
there is an alternative way to proceed from this idea. It consists in choosing the cavity
detuning so as to recover a Faraday-type Hamiltonian H = χSzJz on spin J⃗ , while keeping
the components of the tensor ⃗⃗Q and the spin K⃗ subdominant, so that their fluctuations can
be eliminated or neglected and the three-spin model of chapter 3 can be recovered.

5.5.2 Notes on the magnetic field in a cavity

In this section we return to the question of the magnetic field, imposed or residual, in a
cavity, which has been neglected until now.

A residual magnetic field If during the squeezing phase there is a small static para-
sitic magnetic field (in addition to the director field) in the yOz plane, of angle ϕ with Oy,
this field rotates at the −ω(x)

L pulsation in the rotating frame of reference; in the stochas-
tic equation of the (5.7) one-mode model for homodyne detection, this adds a Hermitian
Hamiltonian contribution Hα =

√
Nℏω(y)

L (Ωβ/Ω)[cos(ϕ−ω
(x)
L t)Xα+ sin(ϕ−ω

(x)
L t)Pα] where

ω
(y)
L ≪ ω

(x)
L is the Larmor pulsation of the nuclear spin in the parasitic field and Ωβ/Ω is

given by the (4.5) equation The term in Pα is absorbed in a phase change of the ansatz
(5.8). The term in Xα does not change the parameter u of the ansatz (5.8) and thus
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the variance of Pα in a realisation but adds a deterministic oscillating part to P̄α, namely
(
√
Nω

(y)
L /2ω(x)

L )(Ωβ/Ω)[sin(ϕ− ω
(x)
L t) − sinϕ] and, according to (5.14), a deterministic part

√
Γex(Ωβ/Ω)(

√
Nω

(y)
L /2ω(x)

L ){[cos(ϕ−ω
(x)
L t) − cosϕ]/(ω(x)

L t) − sinϕ} to the integrated signal
σ(t). The term in sinϕ in the signal can be cancelled out by playing on the initial time
"t = 0", of the squeezing phase; the other contributions cancel out for a duration t of the
experiment which is an integer multiple of 2π/ω(x)

L .

An imposed magnetic field In the experiment, it is intended to impose a directional
field according to Ox of the order of µT in order to avoid "wild" precession of the mean spin
around a residual magnetic field of unknown direction. For the polarisations and squeezing
levels estimated in section 5.5.1, we estimate that the Larmor precession in a small guiding
field of 10−7 G for t = 10 s, approximately the total duration of the experiment, can be
neglected. We consider the effect of a magnetic field B over a time t to be negligible if the
precession of the noise ellipse from a squeezed state 10 dB degrades the squeezed variance by
less than 10% (this corresponds to an angle of 1.8 degrees). Since the Larmor frequency in
the ground state is 3.24 kHz/G, we obtain the condition B[G] × t[s] ≤ 1.5 × 10−6. Although
the Larmor frequency in the metastable state is much larger, 1.87 MHz/G, the precession
in this state is negligible for magnetic fields up to ∼ 10 mG since the rotation in the zOy
plane only occurs during the short 1/γm time between two metastability exchange collisions,
which corresponds to an angle of order 1 degree. From a theoretical point of view, however,
we can incorporate this guiding field into the analysis by placing ourselves in the frame
of reference rotating around Ox at the corresponding Larmor pulsation ω

(x)
L of the nuclear

spin to eliminate this guiding field19 ; in principle, the cavity must also be rotated at the
angular velocity ω

(x)
L in order for it to be stationary in the rotating frame of reference ; if

the cavity remains stationary in the laboratory reference frame, the Faraday coupling can be
established and a measurement of the field leaving the cavity can be made not continuously
but stroboscopically (each time the direction to be spin squeezed merges with the optical
axis) [57].

On the other hand, if one wants to use the spin squeezed state to measure a magnetic field,
one turns off the discharge and the steering field and arranges for the field to be measured
B⃗mes to be oriented along Oy. The collective nuclear spin then precesses in the xOz plane by
an angle that needs to be measured to trace back to Bmes, and the initial squeezing direction
Oz is just the one needed to reduce the angular pointing uncertainty on the spin. Another
strategy is to start from an ordinary, unsqueezed polarised state of the nuclear spin and to
carry out, with the discharge on but the steering field off, the continuous measurement of
the light field coming out of the cavity in the presence of Bmesu⃗y; in the single-mode model
with homodyne detection of section 5.2, one then falls back on the magnetometry proposals
of references [60, 61].

19The discrepancy between the metastable and fundamental Larmor momenta should be compensated for,
for example, by means of a fictitious magnetic field created by light displacement, but this precaution seems
superfluous because the metastable Larmor pulsation remains small in front of the effective metastability
exchange rate γm
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5.6 Conclusion of Part I
This part presented a proposed experiment to prepare a quantum state (nuclear spin-
squeezed state) in a helium-3 gas in its ground electronic state at room temperature. Such a
state would be obtained by placing a cell of helium-3 in an optical cavity and making a con-
tinuous measurement on the outgoing mode of the cavity, after the light has interacted with
the nuclear spins via a metastable electronic state. Theoretical analysis shows that signifi-
cant nuclear spin squeezing is achievable under laboratory conditions and for characteristic
times of the order of a second. In particular, the physical parameters of the gas (temperature
and pressure) are similar to the conditions for simple optical pumping in helium-3, with the
additional constraint that the cell must be placed inside a centimetric optical cavity.

Our study opens the way to the realisation of very long-lived (several hours) squeezed
states in a system already well known and used in metrology.
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Introduction

Superfluidity is a fascinating phenomenon because it is one of the macroscopic manifestations
of the quantum properties of matter. It is characterised by different properties depending
on the system considered, including zero viscosity, the best known and the one which gave
it its name, and superconductivity. In boson gases in dimension d = 3, superfluidity is
a consequence of Bose-Einstein condensation, a collective state of a bosonic system where
one mode of the field acquires a macroscopic population. In contrast, in the d = 1 and
2 cases, Bose-Einstein condensation is forbidden at non-zero temperature by the Mermin-
Wagner theorem [1], which states the absence of long-range order at the thermodynamic
limit. Intuitively, the quantum fluctuations of an N -body system in reduced dimensionality
are always strong enough to destroy the coherence at finite distance. Remarkably, the
superfluidity phenomenon survives in 2D at non-zero temperature and appears via an infinite-
order transition, the so-called Berezenskii-Kosterlitz-Thouless (BKT) transition [2, 3], first
observed in 1978 in a liquid helium-4 film [4].

In the condensed matter framework, the study of sound propagation and its attenuation
provides important information on the thermodynamic properties and low-energy excita-
tions of the system that are directly related to the transport properties [5, 6]. Moreover, in
a degenerate gas, the intrinsic coherence time of a condensate is directly related to the inter-
actions between phonons [7]. Furthermore, sound propagation in a superfluid has acquired a
wider field of application when it has been linked to astrophysical problems [8], in particular
via the concept of "analogue gravity" [9], such as Hawking radiation on the event horizon of
a black hole [10] or the modelling of neutron stars [11].

Historically, the first condensation and superfluidity experiments were conducted in liquid
helium-4. Liquid helium-4 is a strongly interacting system where the condensed fraction is
therefore low (around 10 %), which makes its theoretical modelling difficult. This is why the
obtaining of a Bose-Einstein condensate in a dilute atomic vapour in 1995,20 rewarded by a
Nobel Prize in Physics in 2001, was a small revolution in this field [12].

Today, cold dilute gases, which are weakly or strongly interacting systems, constitute a
very favourable terrain for the study of superfluidity and Bose-Einstein condensation. Indeed,
the dilute character of the system allows to easily enter the weak interaction regime and thus
to obtain very large condensed fractions. Moreover, these are systems where the essential
parameters are under the control of the experimentalists. By means of Feshbach resonances,
it is indeed possible to control the strength of the interactions between the particles, while
the external potential can be modulated at will (we even know how to make flat-bottom
potential boxes [13]).

In this part, we are interested in the case of a cold superfluid boson gas in which the
phonons are in the weak collisional regime. A given phonon of any wave vector q⃗ is in such
a regime when its eigenpulsation ωq⃗ ∼ cq with c the speed of sound in the fluid, is large
compared to the thermal damping rate Γth, ωq⃗ ≫ Γth. In other words, the wavelength of
the mode is much smaller than the mean free path of a thermal phonon in the medium. The
opposite regime, where the mode oscillates more slowly than the thermalization rate of the
system, is called "hydrodynamic". The study of sound in two-dimensional superfluid gases
has received renewed interest thanks to experiments on cold atomic gases in potential boxes,

20The researchers were able to obtain a nearly pure condensate in a rubidium 87 gas cooled to 170 nK in
a magnetic trap.
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with bosons [14, 15] or fermions [16], see recent theoretical work in the bosonic case [17, 18].
We present a classical field numerical simulation of a system governed by the quantum

hydrodynamics Hamiltonian developed by Landau and Khalatnikov in 1949 [19]. In partic-
ular, the evolution of the time correlation function of the phonons ⟨bq⃗(t)b†

q⃗(0)⟩ in a box at
thermal equilibrium is studied. In two dimensions, as in three, considering the q⃗ mode as
a small system coupled to the reservoir formed by the rest of the gas, in the Born-Markov
approximation, predicts an exponential decay of this correlation function with a rate Γq/2
where Γq is the damping rate computed by the Fermi golden rule of an initial overpopulation
in the q⃗ mode. In the d = 3 case, we show that this prediction is accurate [20] in the limit
of a reduced temperature ϵ = kBT/mc

2 → 0 with m the mass of a boson. In the d = 2 case,
on the other hand, and as we show, this condition is a priori no longer sufficient but only
necessary. In particular, we show that the definition of a valid regime for the Fermi golden
rule requires the introduction of a second "small parameter" u−1 proportional to the scaled
effective coupling constant g̃ = 1

ρξ2 (introduced in papers [14, 15]) with ρ the average boson
density and ξ = ℏ/mc the relaxation length.

In our simulations, we indeed find a systematic deviation from the exponential rate law
Γq/2 even at low reduced temperature. Thanks to the diagrammatic theory of N -body
Green’s functions (within a range of validity that we specify), we are able to propose a
prediction for this second-order deviation in the interaction between phonons at all orders in
ϵ and at the leading order in 1/u. Our simulations agree very well with this prediction. We
thus highlight significant deviations from the exponential decay predicted by Fermi’s golden
rule, contrary to what happens in the three-dimensional case. These deviations seem to us
to be accessible to experimental verification; as such, we have chosen the parameters of a
series of runs of the simulation program close to the conditions of the experiment described
in reference [15].

This part is structured as follows: in chapter 1 we present the general framework of our
study, namely Landau-Khalatnikov quantum hydrodynamics, and we calculate the phonon
damping rate by Fermi’s golden rule. In Chapter 2 we present the computer program in
detail, with a discussion of the various approximations and numerical methods we have
used. Chapter 3 discusses the diagrammatic theory of N -body Green’s functions. From this
we extract the u−1 parameter as a small additional parameter to the d = 2 theory and obtain
an integral expression for the time correlation function. Finally, in chapter 4 we present the
results of the numerical simulations we have performed. They are compared with Fermi’s
golden rule and the diagrammatic theory.



Chapter 1

Theoretical framework : Quantum
hydrodynamics

Foreword

In 1949, Landau and Khalatnikov [19], in the context of the calculation of the viscosity of
superfluid helium, propose an effective low-energy theory allowing access to the behaviour of
the fluid at non-zero temperature in an exact manner even in the strong interaction regime
but on a spatial scale that could be described as "mesoscopic" since the model is a "coarse-
grained" description of the fluid so as to average out the microscopic properties of the fluid
while describing its collective long-wave excitations. The only element to be provided to the
theory is the equation of state of the fluid at zero temperature. A comparison between this
effective theory and microscopic approaches to phonon damping in the 3D case was made
in [21]. This chapter introduces this model, its validity regime and the Hamiltonian that is
the subject of the numerical simulations. This will lead us to explain the observable of the
system on which we will work in the following chapters. In the last section, we will apply
Fermi’s golden rule in order to obtain a first prediction on the damping rates of collective
excitations in the gas.

1.1 Hydrodynamic Hamiltonian

The quantum hydrodynamic model is a description of the "coarse-grained" fluid [22]. To
formalise this starting point we consider a discretisation of the box containing the fluid by
a square unit cell of length l chosen in such a way that the density and velocity of the fluid
inside a unit cell are well defined and quasi-homogeneous. This requires a length l that is
very small compared to the typical wavelength of the collective thermal excitations of the
fluid 2π

qth
but much larger than the average distance between particles ρ−1/2, i.e.

ρ−1/2 ≪ l ≪ q−1
th (1.1)

with ρ the average density of bosons at thermodynamic equilibrium at temperature T and
qth = kBT

ℏc with c the speed of sound in the fluid. If this condition is satisfied, two canonically
conjugate Hermitian operators are introduced: a local particle density field ρ̂(r⃗) and a local
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phase field ϕ̂(r⃗),1

[ρ̂(r⃗), ϕ̂(r⃗′)] = iδr⃗,r⃗
′

l2
(1.2)

with r⃗ and r⃗′ as two points of the lattice. The velocity field is defined from a discrete gradient
on this lattice ⃗̂v(r⃗) = ℏ

m∇ϕ̂(r⃗) with m the mass of a particle. The dynamics of these fields
is described by the hydrodynamic Hamiltonian

Ĥhydro = l2
∑
r⃗

ℏ2

2m(∇ϕ̂) · ρ̂(∇ϕ̂) + e0(ρ̂). (1.3)

The term e0 denotes the energy density in the ground state, related to the chemical potential
at zero temperature by the relation µ = de0

dρ .2
The next step is to linearise the Hamiltonian (1.3) around the homogeneous steady state

at thermodynamic equilibrium

ρ̂(r⃗) = ρ̂0 + δρ̂(r⃗) (1.4)
ϕ̂(r⃗) = ϕ̂0 + δϕ̂(r⃗) (1.5)

where we have introduced the spatial averages ρ̂0 and ϕ̂0 of the operators ρ̂(r⃗) and ϕ̂(r⃗);
we simply have ρ̂0 = N̂/Ld where N̂ is the total number of particles operator; as it is a
conserved quantity, we replace in the following ρ̂0 by its quantum average ρ in the system
state. The fluctuation operators δρ̂(r⃗) and δϕ̂(r⃗) have non-zero Fourier components only
on non-zero wave vectors and carry the collective excitations of the fluid. By introducing
these developments into the hydrodynamic Hamiltonian and separating the contributions of
different orders into the fluctuation operators, we obtain the following decomposition

Ĥ
(0)
hydro = l2

∑
r⃗

e0,0(ρ) = e0,0(ρ)L2 (1.6)

Ĥ
(1)
hydro = l2

∑
r⃗

µ(ρ)δρ̂(r⃗) = 0 (1.7)

Ĥ
(2)
hydro = l2

∑
r⃗

ℏ2

2mρ(∇δϕ̂)2(r⃗) + 1
2

dµ(ρ)
dρ (δρ̂)2(r⃗) (1.8)

Ĥ
(3)
hydro = l2

∑
r⃗

ℏ2

2m∇δϕ̂· δρ̂∇δϕ̂(r⃗) + 1
6

d2µ(ρ)
dρ2 (δρ̂)3(r⃗). (1.9)

We note that Ĥ(0)
hydro is a constant (with L2 the volume of the box) which can therefore be

ignored. In the end, it is the quadratic Hamiltonian Ĥ(2)
hydro that makes the first contribution

to field dynamics. Since this Hamiltonian is easy to diagonalize and Ĥ(3)
hydro is of higher order,

it is useful to think of the system as a perturbed Hamiltonian Ĥ0 + V̂ with Ĥ
(2)
hydro in the

1The possibility of introducing the phase operator ϕ̂(r⃗) at site r⃗ results from the high occupancy condition
on the site ρld ≫ 1.

2In principle, a bare energy density e0,0 should be introduced, which then needs to be renormalized by
the zero-point energy of the modes to obtain the true energy density in the ground state and remove the
dependence on the unit cell pitch. This procedure is described in reference [22].
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role of the well-known and simple Hamiltonian and Ĥ
(3)
hydro in the role of the perturbation.

Indeed, one can put the Ĥ(2)
hydro Hamiltonian into the normal form

Ĥ
(2)
hydro =

∑
q⃗

εk b̂
†
q⃗ b̂q⃗ (1.10)

by means of a Bogolioubov transformation on the fluctuations of the fields

δρ̂(r⃗) =
√

ρ

L2

∑
q⃗∈D∗

√
ℏq

2mc
(
b̂q⃗ + b̂†

−q⃗

)
eiq⃗· r⃗ (1.11)

δϕ̂(r⃗) = −i√
ρL2

∑
q⃗∈D∗

√
mc

2ℏq
(
b̂q⃗ − b̂†

−q⃗

)
eiq⃗· r⃗ (1.12)

with D the first Brillouin zone of the lattice and D∗ this same zone deprived of q⃗ = 0⃗. We
recognise the creation b̂†

q⃗ and annihilation b̂q⃗ operators of a quantum in the mode q⃗ which
obey the bosonic switching rules [b̂q⃗; b̂†

k⃗
] = δ

q⃗,⃗k
. The resulting phonon excitation spectrum is

purely linear εq ≡ ℏωq = ℏcq where the speed of sound is given by ρdµ
dρ = mc2 which is none

other than the usual thermodynamic relation, thus justifying the name "phonons" for these
quanta.

However, in order to be able to describe all the physics of the problem, in particular
to know which interaction processes between phonons conserve energy and can lead to the
damping of sound, we are led to introduce "by hand", as Landau and Khalatnikov did, a
curvature γ which represents the first correction to the linear phonon spectrum :

εq =
q→0

ℏcq
(

1 + γ

8

( ℏq
mc

)2
+ . . .

)
(1.13)

This curvature can be introduced in a systematic way by adding to the hydrodynamic Hamil-
tonian the gradient corrections [23].

Having said this, we can insert the expressions of the fields as a function of the eigenmodes
into (1.9) to obtain

Ĥ
(3)
hydro = mc2√

ρL2

∑
k⃗1 ;⃗k2 ;⃗k3

√
ℏ3k1k2k3

8m3c3

(
3Λ + u

k⃗1 ;⃗k2
+ u

k⃗1 ;⃗k3
+ u

k⃗2 ;⃗k3

)
(1.14)

×
[1

2δk⃗1+k⃗2 ;⃗k3

(
b̂†
k⃗1
b̂†
k⃗2
b̂
k⃗3

+ h.c.
)

+ 1
6δk⃗1+k⃗2+k⃗3 ;⃗0

(
b̂†
k⃗1
b̂†
k⃗2
b̂†
k⃗3

+ h.c.
)]

with u
k⃗1 ;⃗k2

= k⃗1 · k⃗2
k1k2

the cosine of the angle between k⃗1 and k⃗2 and Λ = ρ
3

d2µ
dρ2

(
dµ
dρ

)−1
a

thermodynamic parameter. This last expression of Ĥ(3)
hydro in terms of the phonon eigenmodes

of Ĥ(2)
hydro is particularly interesting in that it makes explicit the interaction processes between

phonons. Indeed, in the sum over the wave vectors, the term proportional to b̂†
k⃗1
b̂†
k⃗2
b̂
k⃗3

for
example represents the annihilation of a phonon k⃗3 and the creation of two phonons of wave
vectors k⃗1 and k⃗2 with the constraint of conservation of the momentum k⃗3 = k⃗1 + k⃗2. This
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k⃗ k⃗ + q⃗

q⃗

(a)

q⃗

k⃗

q⃗ − k⃗

(b)

q⃗

k⃗

−q⃗ − k⃗

(c)

q⃗

k⃗

−q⃗ − k⃗

(d)

Figure 1.1: Diagrams of the interaction processes associated with the cubic Hamiltonian
Ĥ

(3)
hydro given by (1.14). (a) Landau process associated with the term b̂†

k⃗3
b̂
k⃗2
b̂
k⃗1

. (b) Beliaev
process associated with the term b̂†

k⃗1
b̂†
k⃗2
b̂
k⃗3

. (c) and (d) non-resonant processes associated
with the terms b̂†

k⃗1
b̂†
k⃗2
b̂†
k⃗3

and b̂
k⃗3
b̂
k⃗2
b̂
k⃗1

respectively.

term is then interpreted as the disintegration of one phonon into two others. It is called
the Beliaev process and we represent it as an interaction diagram in figure 1.1b. We also
show the processes associated with the other terms in the sum. Namely, the Landau process
associated with b̂†

k⃗3
b̂
k⃗2
b̂
k⃗1

where two phonons k⃗1 and k⃗2 merge into a single wave vector k⃗3,
shown in (a), and the non-resonant processes b̂†

k⃗1
b̂†
k⃗2
b̂†
k⃗3

and b̂
k⃗3
b̂
k⃗2
b̂
k⃗1

, shown in (c) and (d)
respectively, where three phonons are created from the vacuum or annihilate.

Expression of the Hamiltonian as a function of ψ̂r⃗ Let us introduce the boson field
operator, expressed in modulo-phase viewpoint

ψ̂r⃗ =
√
ρ̂(r⃗)eiϕ̂(r⃗) (1.15)

and the fluctuation operator of this field ψ̂r⃗ = √
ρ+ δψ̂r⃗ for the choice ϕ̂0 = 0. We then have

δψ̂r⃗ = √
ρ

(
δρ̂

2ρ + iδϕ̂
)
. (1.16)

By noting Re δψ̂r⃗ = δψ̂r⃗+δψ̂†
r⃗

2 and Im δψ̂r⃗ = δψ̂r⃗−δψ̂†
r⃗

2i we can express the fluctuations of the
fields as δρ̂ = 2√

ρRe δψ̂r⃗ and δϕ̂ = 1√
ρ Im δψ̂r⃗ and insert these formulas into the expression

(1.9) of the third order Hamiltonian

Ĥ
(3)
hydro = l2

√
ρ

∑
r⃗

ℏ2

m
∇
(
Im δψ̂r⃗

) (
Re δψ̂r⃗∇ Im δψ̂r⃗

)
+ 4mc2Λ

(
δψ̂r⃗

)3
. (1.17)

To conclude this section, let us introduce the âq⃗ operators into the reciprocal space defined
by the discrete Fourier transform of δψ̂r⃗

δψ̂r⃗ = 1√
L2

∑
q⃗∈D∗

âq⃗ eiq⃗· r⃗. (1.18)
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These âq⃗ operators do not coincide with the b̂q⃗ phononic modes, but one can switch from
one to the other by simple linear combination 3

âq⃗ = uq⃗ b̂q⃗ + vq⃗ b̂
†
−q⃗ with uq⃗ + vq⃗ =

√
ℏq

2mc and uq⃗ − vq⃗ =
√

2mc
ℏq

. (1.19)

Monitored observable Before concluding this section, we introduce the target observable
that the simulations in Chapter 2 and the theory of N -body Green’s functions in Chapter
3 study and analyse. It is the time correlation function of the mode q⃗ at thermodynamic
equilibrium

⟨b̂q⃗(t)b̂†
q⃗(0)⟩. (1.20)

At the initial instant this quantity is expressed as a function of the average nq⃗ = ⟨b̂†
q⃗(t)b̂q⃗(t)⟩

occupancy number of the mode q⃗, i.e. ⟨b̂q⃗(0)b̂†
q⃗(0)⟩ = 1+nq⃗. A priori, this correlation function

tends towards 0 at long times. More precisely, in the pilot equation method, well known in
quantum optics, which treats the mode q⃗ as a small system coupled to the reservoir formed
by the other modes in the Born-Markov approximation, it is shown that this correlation
function decreases exponentially with a rate Γq/2 where Γq is the damping rate predicted by
Fermi’s golden rule and calculated in section 1.3 [24, 25].

1.2 Unitless scaling of quantities

In the remainder of this part, we will use scaled quantities without unit. Thus, we introduce
the reduced temperature ϵ = kBT

mc2 which must be ≪ 1 in the regime of validity of quantum
hydrodynamics. As we shall see, in the d = 3 case, this small parameter controls the validity
of Fermi’s golden rule. In the d = 2 case, on the other hand, ϵ must share its realm with a
second small physical parameter. Moreover, we have written our simulations only in terms
of scaled quantities, which offers some comfort in writing the program and interpreting the
output data since the dynamics now depend only on a limited number of input parameters
that reflect ratios of physical quantities in the system (as we will see in Chapter 2 devoted
to the program description).

The scaled version of a quantity x will always be denoted x̄. In most cases, scaling is
done by means of the temperature T . All energies are thus scaled by kBT , times by ℏ

kBT
,

distances by ℏc
kBT

. For example, we note Ĥ(2)
hydro = kBTH̄

(2) and Ĥ(3)
hydro = kBTH̄

(3). We also
introduce the relaxation length ξ = ℏ

mc by which we express the reduced density ρξ2. The
rest of this section consists of rewriting the relations and quantities discussed so far in their
dimensionless version.

3To find these expressions, simply express δψ̂r⃗ in terms of b̂q⃗ via equations (1.16) and (1.11)-(1.12) and
compare to the Fourier decomposition (1.18) wave vector by wave vector.
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Local fluctuation operators for density and phase

δρ̄(r⃗) =
√

ρξ2

2ϵL̄2

∑
q⃗∈D∗

√
q̄
(
b̂q⃗(t) + b̂†

−q⃗(t)
)

eiq⃗· r⃗ (1.21)

δϕ̄(r⃗) = −i√
2ρξ2

ϵ

L̄2

∑
q⃗∈D∗

√
1
q̄

(
b̂q⃗(t) − b̂†

−q⃗(t)
)

eiq⃗· r⃗ (1.22)

and the phonon spectrum
ε̄q = q̄

(
1 + γ

8 ϵ
2q̄2
)
. (1.23)

Hydrodynamic Hamiltonians of order 2 and 3 The second order Hamiltonian as a
function of phonon operators b̂q⃗

H̄(2) =
∑
k⃗

ε̄k b̂
†
k⃗
b̂
k⃗
, (1.24)

third order Hamiltonian as a function of phonon operators

H̄(3) =
√

1
L̄2

ϵ3

8ρξ2

∑
k⃗1 ;⃗k2 ;⃗k3∈D∗

√
k̄1k̄2k̄3

(
3Λ + u

k⃗1 ;⃗k2
+ u

k⃗1 ;⃗k3
+ u

k⃗2 ;⃗k3

)
(1.25)

×
[1

2δk⃗1+k⃗2 ;⃗k3

(
b†
k⃗1
b†
k⃗2
b
k⃗3

+ h.c.
)

+ 1
6δk⃗1+k⃗2+k⃗3 ;⃗0

(
b†
k⃗1
b†
k⃗2
b†
k⃗3

+ h.c.
)]

and third order Hamiltonian as a function of bosonic field fluctuation operators ψ̂r⃗

H̄(3) = ϵ2√
ρξ2 l̄

2∑
r⃗

Re δψ̄r⃗∇
(
Im δψ̄r⃗

)2
+ 4Λ

(
Re δψ̄r⃗

)3
. (1.26)

1.3 Landau-Beliaev damping rate via Fermi’s golden rule

The calculation of the damping rate via Fermi’s golden rule that we will present in this
section 1.3 is not an original result and can be found for example in reference [26]. However,
we will present it in detail because it provides a first point of comparison for simulations
and because we will use similar notations and arguments in the case of the theory of Green’s
functions in chapter 3.

Let us consider the situation of a mode q⃗ out of thermodynamic equilibrium and ask
ourselves what is the evolution equation of its average occupancy number nq⃗ = ⟨b̂†

q⃗(t)b̂q⃗(t)⟩?
As we are in the standard case of an Hamiltonian H0 that is known to be weakly perturbed
by an Hamiltonian V with a more complex structure4 [27] , Fermi’s golden rule allows us to
answer the question.

4Which is better known as "Fermi’s golden rule" although it was actually Dirac who did most of the work in
1927 [27]. Only Fermi quoted the equation as the "golden rule n◦2" in his book Nuclear Physics in 1950. This
expression entered the common vocabulary of physics. It is a measure of the immensity of the contributions
of these two figures to modern physics that this qui-pro-quo does not in any way affect the intellectual legacy
of either of them.
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To write the equation for the evolution of the mean population of the non-equilibrium
mode q⃗ according to Fermi’s golden rule, we simply list the processes that populate or
depopulate the mode q⃗. Then, these contributions must be summed up with a "+" for
those that populate and a "−" for those that depopulate, with the square norm of the
matrix element of the perturbation Hamiltonian between the initial and final states of the
process as a factor, the occupation numbers of the modes involved before and after the
interaction (they intervene through the bosonic amplification factors) and finally the Dirac
and Kronecker distributions of conservation of energy and momentum during the process :
d
dtnq⃗ = − 1

2
2π
ℏ

∑
k⃗1 ,⃗k2∈D∗

∣∣∣⟨k⃗1, k⃗2|Ĥ(3)
hydro|q⃗⟩

∣∣∣2 (1 + n̄k1)(1 + n̄k2)nq⃗δq⃗,⃗k1+k⃗2
δ(εk1 + εk2 − εq)

(1.27)

+ 2π
ℏ

∑
k⃗1 ,⃗k2∈D∗

∣∣∣⟨q⃗, k⃗2|Ĥ(3)
hydro |⃗k1⟩

∣∣∣2 (1 + nq⃗)(1 + n̄k2)n̄k1δk⃗2+q⃗,⃗k1
δ(εk2 + εq − εk1)

− 2π
ℏ

∑
k⃗1 ,⃗k2∈D∗

∣∣∣⟨k⃗1|Ĥ(3)
hydro|q⃗, k⃗2⟩

∣∣∣2 (1 + n̄k1)n̄k2nq⃗δq⃗+k⃗2 ,⃗k1
δ(εk1 − εk2 − εq)

+ 1
2

2π
ℏ

∑
k⃗1 ,⃗k2∈D∗

∣∣∣⟨q⃗|Ĥ(3)
hydro |⃗k1, k⃗2⟩

∣∣∣2 (1 + nq⃗)n̄k2 n̄k1δq⃗,⃗k2+k⃗1
δ(εq − εk1 − εk2)

− 1
2

2π
ℏ

∑
k⃗1 ,⃗k2∈D∗

∣∣∣⟨0|Ĥ(3)
hydro|q⃗, k⃗1, k⃗2⟩

∣∣∣2 n̄k1 n̄k2nq⃗δq⃗+k⃗2+k⃗1 ,⃗0δ(0 − εk1 − εk2 − εq)

+ 1
2

2π
ℏ

∑
k⃗1 ,⃗k2∈D∗

∣∣∣⟨q⃗, k⃗1, k⃗2|Ĥ(3)
hydro|0⟩

∣∣∣2 (1 + nq⃗)(1 + n̄k2)(1 + n̄k1)δ0⃗,q⃗+k⃗2+k⃗1
δ(εq + εk1 + εk2 − 0)

with n̄k the thermal occupation number of the k⃗ mode (which depends only on its norm)
and |0⟩ the phonon vacuum. The first sum corresponds to the case where a Beliaev process
depopulates the mode q⃗ from the |q⃗ : nq⃗; k⃗1 : n̄k1 ; k⃗2 : n̄k2⟩ state to the |q⃗ : nq⃗ − 1; k⃗1 :
n̄k1 + 1; k⃗2 : n̄k2 + 1⟩ state. The factor 1/2 in front of the sum is a counting factor; indeed,
the state vectors obtained by exchanging k⃗1 and k⃗2 describe the same physical situation
that needs to be counted only once. It is sufficient to apply this same logic for each of
the processes, moving the supernumerary q⃗ phonon into the initial or final state and tuning
the sign before the sum accordingly. The expression we have just written is very heavy
but two observations will simplify it. The first is that the last two sums, related to non-
resonant processes, are zero. 5 The second observation is that lines 1 and 4 on the one hand,
and 2 and 3 on the other, involve the same matrix element as well as the same Dirac and
Kronecker of conservation of energy and momentum (this is a manifestation of the principle
of microreversibility). We can therefore re-express the evolution equation (1.27) as the sum
of two terms, one associated with the direct and inverse Beliaev processes, the other with
the direct and inverse Landau processes:

d
dtnq⃗ = dnq⃗

dt

∣∣∣∣
Bel

+ dnq⃗
dt

∣∣∣∣
Lan

(1.28)

5Note that all phonons and sums of phonons involved in a term must lie in the first Brillouin zone deprived
of the null vector D∗. Thus, the wave vectors k⃗1, k⃗2, q⃗ but also k⃗1 + k⃗2 in the first line of (1.27), k⃗2 + q⃗ in
the second, etc., are concerned.
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with

dnq⃗
dt

∣∣∣∣
Bel

= −1
2

2π
ℏ

∑
k⃗1 ,⃗k2∈D∗

∣∣∣⟨k⃗1; k⃗2|Ĥ(3)
hydro|q⃗⟩

∣∣∣2 [(1 + n̄k1)(1 + n̄k2)nq⃗ − (1 + nq⃗)n̄k2 n̄k1

]
(1.29)

× δ
q⃗;⃗k1+k⃗2

δ(εk1 + εk2 − εq)

dnq⃗
dt

∣∣∣∣
Lan

= −2π
ℏ

∑
k⃗1 ,⃗k2∈D∗

∣∣∣⟨k⃗1|Ĥ(3)
hydro|q⃗; k⃗2⟩

∣∣∣2 [(1 + n̄k1)n̄k2nq⃗ − (1 + nq⃗)(1 + n̄k2)n̄k1

]
(1.30)

× δ
q⃗+k⃗2 ;⃗k1

δ(εk1 − εk2 − εq).

Let us now consider a regime of small perturbation of the mode q⃗ around the thermodynamic
equilibrium state nq⃗ = n̄q + δnq⃗. It is easy to verify that the evolution equation (1.28) is
identically zero for nq⃗ = n̄q⃗. Indeed, for a gas of bosons, the thermodynamic equilibrium
obeys the Bose-Einstein distribution law n̄k = 1

exp(βεk)−1 with β = 1
kBT

rewritten as 1+ n̄k =
exp(βεk)n̄k. Using this relation in the expressions in square brackets in (1.29) and (1.30),
we find that they cancel out given the Dirac of conservation of energy. At first order in the
mode q⃗ perturbation, we then have

d
dtδnq⃗ = −Γq⃗δnq⃗ (1.31)

with
Γq⃗ = ΓBel

q⃗ + ΓLan
q⃗ (1.32)

and

ΓBel
q⃗ = π

ℏ
∑
k⃗∈D∗

∣∣∣⟨k⃗; q⃗ − k⃗|Ĥ(3)
hydro|q⃗⟩

∣∣∣2 (1 + n̄k + n̄|q⃗−k⃗|

)
δ(εk + ε|q⃗−k⃗| − εq) (1.33)

ΓLan
q⃗ = 2π

ℏ
∑
k⃗∈D∗

∣∣∣⟨k⃗ + q⃗|Ĥ(3)
hydro|q⃗; k⃗⟩

∣∣∣2 (n̄k − n̄|q⃗+k⃗|

)
δ(ε|q⃗+k⃗| − εk − εq) (1.34)

where we have used the Kronecker of conservation of momentum. These quantities Γq⃗, ΓBel
q⃗

and ΓLan
q⃗ can therefore be interpreted as damping rates of the perturbation or as thermaliza-

tion rates of the mode. In the remainder of this section, we unroll the calculation to obtain
the rate Γq⃗ in the limit of a reduced temperature small before 1, i.e. ϵ ≪ 1. We will proceed
process by process, the calculations for Beliaev and Landau being almost identical. The plan
of the calculation is the following : we pass to the thermodynamic limit in order to consider
the expressions of ΓBel

q⃗ and ΓLan
q⃗ as integrals on the variable k⃗. In polar coordinates of axis

q⃗, they are double integrals, one on the norm k, the other on the angle θ between k⃗ and q⃗.
We then move to the classical field approximation, which modifies the distribution law and
thus the population factor in the integrals, but also introduces a cut η on the norm of the
wave vectors k⃗ and q⃗ ∓ k⃗. We then place ourselves in the ϵ → 0 limit and express the Dirac
of energy conservation in terms of the θ variable at leading order in ϵ. We obtain solutions
θ0 which we reintroduce into the now simple integral which we can integrate directly.
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1.3.1 Expressions of the scaled rates as integrals over the momenta

Furthermore, we will do all the rest of the calculation in the scaled variables introduced in
section 1.2 of this chapter. From the expression (1.25) of H̄(3), let us express the matrix
elements (scaled, therefore) involved in (1.33) and (1.34)

⟨k⃗; q⃗ − k⃗|H̄(3)|q⃗⟩ = 2
√

1
L̄2

ϵ3

25ρξ2

√
q̄k̄|q⃗ − k⃗|

(
3Λ + u

q⃗,⃗k
+ u

k⃗,q⃗−k⃗ + u
q⃗,q⃗−k⃗

)
(1.35)

⟨k⃗ + q⃗|H̄(3)|q⃗; k⃗⟩ = 2
√

1
L̄2

ϵ3

25ρξ2

√
q̄k̄|q⃗ + k⃗|

(
3Λ + u

q⃗,⃗k
+ u

k⃗,q⃗+k⃗ + u
q⃗,q⃗+k⃗

)
. (1.36)

To perform the crossing to the thermodynamic limit, we simply make the transformation∑
k⃗∈D∗ → L̄2 ∫ d2k⃗

(2π)2 and insert the matrix elements :

Γ̄Bel
q = ϵ3π

23ρξ2

∫ d2k⃗

(2π)2 q̄k̄|q⃗ − k⃗|
(
3Λ + u

q⃗,⃗k
+ u

k⃗,q⃗−k⃗ + u
q⃗,q⃗−k⃗

)2 (
1 + n̄k + n̄|q⃗−k⃗|

)
δ(ε̄k + ε̄|q⃗−k⃗| − ε̄q)

(1.37)

Γ̄Lan
q = ϵ3π

22ρξ2

∫ d2k⃗

(2π)2 q̄k̄|q⃗ + k⃗|
(
3Λ + u

q⃗,⃗k
+ u

k⃗,q⃗+k⃗ + u
q⃗,q⃗+k⃗

)2 (
n̄k − n̄|q⃗+k⃗|

)
δ(ε̄|q⃗+k⃗| − ε̄k − ε̄q).

(1.38)

We introduce θ the angle between q⃗ and k⃗. Then, by definition, we can write u
q⃗,⃗k

= cos θ
and

u
q⃗,⃗k

+ u
q⃗,q⃗−k⃗ + u

k⃗,q⃗−k⃗ = cos θ + q̄ − k̄

|q⃗ − k⃗|
(1 + cos θ) (1.39)

u
q⃗,⃗k

+ u
q⃗,q⃗+k⃗ + u

k⃗,q⃗+k⃗ = cos θ + q̄ + k̄

|q⃗ + k⃗|
(1 + cos θ). (1.40)

Thus

Γ̄Bel
q = ϵ3

25πρξ2

∫ +∞

0
dk̄
∫ +π

−π
dθ q̄k̄2|q⃗ − k⃗|

3Λ + cos θ + q̄ − k̄

|q⃗ − k⃗|
(1 + cos θ)

2

(1.41)

×
(
1 + n̄k + n̄|q⃗−k⃗|

)
δ(ε̄k + ε̄|q⃗−k⃗| − ε̄q)

Γ̄Lan
q = ϵ3

24πρξ2

∫ +∞

0
dk̄
∫ +π

−π
dθ q̄k̄2|q⃗ + k⃗|

3Λ + cos θ + q̄ + k̄

|q⃗ + k⃗|
(1 + cos θ)

2

(1.42)

×
(
n̄k − n̄|q⃗+k⃗|

)
δ(ε̄|q⃗+k⃗| − ε̄k − ε̄q).

1.3.2 Classical field solution

Although it is possible to finish the calculation directly for the quantum field, we present in
detail here only the classical field version since it is in this approximation that the computer
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program of the simulations was written, which allows a direct comparison. The classical field
approximation consists of considering only the highly populated modes, such as nq⃗ ≥ 1 , and
ignoring the sparsely populated ones for which the Bose and Boltzmann distributions are
radically different. We must therefore introduce a cut-off in the momentum space, here noted
η, to which all (scaled) wave numbers that appear must be smaller. In this approximation,
the model can no longer be compared quantitatively with experiments because all derived
quantities will depend on this non-physical parameter η which we choose at will.

For our two integrals, going to the classical field limit imposes three modifications. The
first is to remove from the population factors the term +1 which represents the contribution
of quantum fluctuations, ignored in this approximation. The second is to consider for the
thermal occupancy number of a mode the equipartition formula of classical statistical physics
n̄q = kBT

εq
= 1

ε̄q
. The last one is to consider the "ultraviolet" cut-off η on each phonon involved

in the process. Of course, we choose the mode q⃗ such that it is allowed, i.e. q̄ ≤ η. For the
two other phonons of each process, we insert in the corresponding integral as many times as
necessary a Heaviside function Θ(x), null for x < 0 and equal to 1 otherwise. That is to say,
by parity, integrals on θ > 0,

Γ̄Bel
q = ϵ3

16πρξ2

∫ +∞

0
dk̄
∫ +π

0
dθq̄k̄2|q⃗ − k⃗|

3Λ + cos θ + q̄ − k̄

|q⃗ − k⃗|
(1 + cos θ)

2

(1.43)

×
(

1
ε̄k

+ 1
ε̄|q⃗−k⃗|

)
δ(ε̄k + ε̄|q⃗−k⃗| − ε̄q)Θ(η − k̄)Θ(η − |q⃗ − k⃗|)

Γ̄Lan
q = ϵ3

8πρξ2

∫ +∞

0
dk̄
∫ +π

0
dθq̄k̄2|q⃗ + k⃗|

3Λ + cos θ + q̄ + k̄

|q⃗ + k⃗|
(1 + cos θ)

2

(1.44)

×
(

1
ε̄k

− 1
ε̄|q⃗+k⃗|

)
δ(ε̄|q⃗+k⃗| − ε̄k − ε̄q)Θ(η − k̄)Θ(η − |q⃗ + k⃗|).

1.3.3 Development to the leading order in ϵ

We will go to the limit of an ϵ ≪ 1, a choice motivated by the validity regime of quantum
hydrodynamics. However, we could have solved these (1.43) and (1.44) integrals numerically,
which we did by calculating numerically the eigenenergy function, of which these integrals
are only the value at a particular point, in order to obtain a diagrammatic prediction of the
Green’s functions at all orders in ϵ, as we shall see in chapter 3. Our resolution to the leading
order in ϵ relies on the fact that for a sufficiently small reduced temperature, the angle θ0
that satisfies energy conservation is itself small.

The energy conservation relations in each of the Diracs are expressed in terms of θ as
follows:

ε̄k + ε̄|q⃗−k⃗| − ε̄q = k̄ − q̄ + γ

8 ϵ
2(k̄3 − q̄3) + (k̄2 + q̄2 − 2k̄q̄ cos θ)1/2 + γ

8 ϵ
2(k̄2 + q̄2 − 2k̄q̄ cos θ)3/2

(1.45)

ε̄|q⃗+k⃗| − ε̄q − ε̄k = (q̄2 + k̄2 + 2q̄k̄ cos θ)1/2 + γ

8 ϵ
2(q̄2 + k̄2 + 2q̄k̄ cos θ)3/2 − q̄ − γ

8 ϵ
2q̄3 − k̄ − γ

8 ϵ
2k̄3.

(1.46)
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Let θ0 be the positive solution in the variable θ of the equation ε̄k + ε̄|q⃗−k⃗| − ε̄q = 0 or
ε̄|q⃗+k⃗| − ε̄k− ε̄q = 0 with k̄ and q̄ fixed. We are convinced that in the limit ϵ → 0, the solution
of these equations is θ0 = 0 (for Beliaev, however, a real solution exists only for k̄ ≤ q̄).
Therefore, by continuity, we can assume that for a sufficiently small ϵ we have θ0 ≪ 1. Let
us take the expressions of the Dirac arguments (1.45) and (1.46) and expand them to the
small angles (and to the dominant order in ϵ) :

ε̄k + ε̄|q⃗−k⃗| − ε̄q = k̄ − q̄ + |k̄ − q̄| + γ

8 ϵ
2
(
k̄3 − q̄3 + |k̄ − q̄|3

)
+ k̄q̄

|k̄ − q̄|
θ2

2 +O(θ4) (1.47)

k̄ > q̄ : ε̄k + ε̄|k−q| − ε̄q = 2(k̄ − q̄) + k̄q̄

k̄ − q̄

θ2

2 +O(θ4) (1.48)

−→ no solution in θ.

k̄ ≤ q̄ : ε̄k + ε̄|k−q| − ε̄q = 3γ
8 ϵ2q̄k̄

(
q̄ − k̄

)
+ k̄q̄

q̄ − k̄

θ2

2 +O(θ4) (1.49)

−→ θ2
0 ≃ 3γ

4 ϵ2
(
q̄ − k̄

)2
. (1.50)

ε̄|q⃗+k⃗| − ε̄q − ε̄k =3γ
8 q̄k̄(q̄ + k̄)ϵ2 − q̄k̄

2(q̄ + k̄)
θ2 +O(θ4) (1.51)

−→ θ2
0 ≃ 3γ

4 ϵ2
(
q̄ + k̄

)2
. (1.52)

It is these θ0 solutions that we must now insert into the integral to take account of the Dirac
of conservation of energy. Let us note here that the energy denominators are of order 2 in
ϵ (when a solution exists), this observation will be of great importance in chapter 3 when
higher order diagrams are discussed.

1.3.4 Integration

Let us first recall the formula δ(f(x)) = ∑
x∗

δ(x−x∗)
|f ′(x∗)| for the Dirac of any differentiable

function f , with f ′ its derivative and {x∗} its roots. Thus, for the angular integration of the
Dirac of conservation of energy, we need the derivatives with respect to θ of the equations
(1.45) and (1.46) evaluated at the solutions θ0, i.e., at the leading order in ϵ,∣∣∣∣ d

dθ (ε̄k + ε̄|q⃗−k⃗| − ε̄q)(θ0)
∣∣∣∣ ≃

√
3γ
2 k̄q̄ϵ (1.53)∣∣∣∣ d

dθ (ε̄|q⃗+k⃗| − ε̄q − ε̄k)
∣∣∣∣ ≃

√
3γ
2 k̄q̄ϵ. (1.54)

All that remains is to gather all its ingredients to calculate the integral according to θ,

Γ̄Bel
q = ϵ2

23√
3γπρξ2

∫ q̄

0
dk̄ k̄(q̄ − k̄) (3Λ + 3)2

(1
k̄

+ 1
q̄ − k̄

)
Θ(η − k̄)Θ(η − (q̄ − k̄)) (1.55)

Γ̄Lan
q = ϵ2

22√
3γπρξ2

∫ +∞

0
dk̄ k̄(q̄ + k̄) (3Λ + 3)2

(1
k̄

− 1
q̄ + k̄

)
Θ(η − k̄)Θ(η − (q̄ + k̄)).

(1.56)
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The integration in Beliaev is restricted to k̄ ≤ q̄ because there is no solution above q̄ as
we have seen. Note that η − q̄ ≥ 0 and η − (q̄ − k̄) ≥ 0 for k̄ ∈ [0; q̄] so the Heaviside
functions in Beliaev have no effect on the integration. In Landau on the other hand, the
second Heaviside function imposes [0; η − q̄] as the integration interval. This being said, the
integrals can simply be carried out and give:

Γ̄Bel
q = 9 (1 + Λ)2 ϵ2

23√
3γπρξ2 q̄

2 (1.57)

Γ̄Lan
q = 9 (1 + Λ)2 ϵ2

22√
3γπρξ2 q̄(η − q̄). (1.58)

Hence the damping rate of phonon of momentum q⃗, calculated according to the Fermi-Dirac
golden rule and for the classical field, is written

Γ̄class
q = 9

4
(1 + Λ)2
√

3γπ
ϵ2

ρξ2 q̄

(
η − q̄

2

)
. (1.59)

Note that it depends quadratically on q̄ and that it is of order 2 in ϵ.

Returning to the quantum case For the sake of completeness, let us return to the
quantum case. Once we have passed the limit ϵ → 0, we are led to write

Γ̄quant
q = 9

8
(1 + Λ)2
√

3γπ
ϵ2

ρξ2 (IB + 2IL) (1.60)

with IB and IL two integrals from the Beliaev and Landau case respectively

IB =
∫ q̄

0
dk̄ k̄(q̄ − k̄)(1 + n̄k + n̄q−k) (1.61)

IL =
∫ +∞

0
dk̄ k̄(q̄ + k̄)(n̄k − n̄q+k) (1.62)

with this time n̄k = 1/(ek̄ − 1). It turns out that it is possible to express these integrals
separately using Bose functions gα(z) = ∑∞

n=1
zn

nα but that these functions compensate each
other when the integrals are added together! So we have IB + 2IL = q̄3

6 + 4q̄ζ(2) with
ζ(2) = π2

6 the value of the Riemann zeta function ζ(s) in s = 2, and

Γ̄quant
q = 9

8
(1 + Λ)2
√

3γπ
ϵ2

ρξ2 q̄

(
2π2

3 + q̄2

6

)
. (1.63)

Let’s compare our result with the paper by M.-C. Chung and A.B. Bhattacherjee (2009)
[26]. The authors present calculations of phonon damping in weakly interacting boson gases
in the d = 2 and d = 3 case. In 2D and in the low temperature limit kBT/mc2 → 0, they
find the boundary behaviours (see equations (30) and (22) of [26] written in our notations
taking into account a factor of 2 in the definition of the rates)

Γq ∼
q̄→0

√
3π

4ρ

(
kBT

ℏc

)2
cq (1.64)

Γq ∼
q̄→∞

√
3

16πρcq
3. (1.65)
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The behaviour at small q being dominated by Landau and that at high q by Beliaev. In the
weak interaction limit, one should take γ = 1 (as in the Bogolioubov spectrum) and Λ = 0
(as in the mean field equation of state µ = ρg); these results are then in perfect agreement
with ours (1.63).

On the other hand, the recent study [17] predicts well, in the q → 0 limit, a linear
damping rate in q but with a coefficient ∝ T at low temperature, in disagreement with
(1.64) and with the reference [26]. Indeed, the method used, based on the Hartree-Fock
approximation, does not take into account the linear part of the excitation spectrum in the
description of the thermal state, see equation (11) of this reference, which becomes unrealistic
when kBT ≪ mc2 where the thermodynamics is dominated by phonons (a similar study was
done in reference [18]).
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Chapter 2

The numerical simulation

Foreword

In this chapter, we present the program for the numerical simulation. That is to say, its
structure, its parameters and the modelling choices that governed its writing, as well as the
numerical methods that we used. We leave the exploitation of the data from the program
executions, the physical discussion of the chosen parameters as well as the figures verifying
the respect of the good physical properties of the system to chapter 4, which presents all our
results. The program is written in Fortran.1

The object whose evolution the computer program determines is the classical field δψr⃗ =√
ρ( δρ2ρ + iδϕ) which describes the fluctuations of a bosonic field ψr⃗ =

√
ρ(r⃗)eiϕ(r⃗) around

the homogeneous case ψ0 = √
ρ of the thermodynamic equilibrium. This field lives in a

two-dimensional quantization box with periodic boundary conditions. In practice, one can
therefore express the ψr⃗ field through the aq⃗ coefficients of its plane wave development or
its bq⃗ coefficients on the phonon modes (see equations (1.11), (1.12) and (1.19)). So it is
represented in the computer by an array of complex numbers with two entries.2 Each element
of these arrays represents either the value of the field at a given position in the box (for ψ)
or the value of the field for a given wave vector (for aq⃗ and bq⃗). To have a finite number
of coefficients aq⃗ we have to make an approximation : we have to discretize the space. The
program is written in such a way as to be centred on the array bq⃗ which is taken as the
object of the program, the other arrays only intervening as calculation intermediaries in the
functions which carry out the evolution. The core of the program thus consists in taking
as input an array bq⃗, a Hamiltonian and a time step and in giving as output an array b′

q⃗,
an estimate of the field evolved by the Hamiltonian. In other words, we want to integrate
the time functions bq⃗(t) of evolution governed by the system of differential equations (2.2)
between an initial 0 and final t̄max time. To define such an evolution, we need a number of

1It is a powerful and very accomplished language, particularly adapted to scientific and numerical calcu-
lations, which is why it is still one of the most used languages for high performance computing and super-
computers, in spite of its venerable age. Its crucial advantage lies in its high computational performance for
arithmetic on very large arrays. Furthermore, its longevity and continued presence in the scientific world has
led to the emergence of highly optimised computing libraries, some of which have been tested and debugged
for decades. In this project, for example, it is a well-known fast Fourier transform program written by Daisuke
Takahashi [28] that we have intensively used for the temporal evolution of the system as we will see.

2Numbers numerically represented by two floats in double precision.

89
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parameters that fix the characteristics of the box, the fluid in it and the Hamiltonian, i.e.
the interactions that take place in it. Since we cannot integrate the system of differential
equations of bq⃗ analytically, it is necessary to introduce a number of approximations in the
numerical treatment of these equations. At regular intervals during the integration, we store
on disk the values of the bq⃗ for a number of modes. It is from these saved values that
we can extract an estimate of the ⟨bq⃗(t)b∗

q⃗(0)⟩ observable. In our simulations, the ⟨. . .⟩ is
averaged over a sufficient number of independent trajectories that are representative of a
thermodynamic equilibrium state.

This chapter is divided into two main sections. The first section introduces the program
by presenting the main lines of the simulation, such as the issue of discretization, the es-
timation of ensemble averages ⟨. . .⟩ before concluding by summarizing the numerical input
parameters of the program. The second section presents the implementation of the Hamil-
tonian evolution of the field. It begins with a discussion of the initialization of the system
before describing the algorithm that realizes a time step in practice by describing the vari-
ous numerical methods and approximations that we had to use to integrate the differential
equations quickly but accurately.

2.1 Program structure

2.1.1 Space discretization: network size and step

Let us note Lx and Ly the two lengths that fix the size of the two-dimensional box. As
mentioned in the foreword, we need to consider a finite set of possible positions in the box in
order to model the problem numerically. Thus, we discretise the space into its two directions
with a unit cell of length lx and ly respectively. We will then represent any field in this
rectangular box as a two-entry array of nxny elements with nx = Lx/lx and ny = Ly/ly,
the number of points in each direction. For the sake of brevity, the results for Lx = Ly and
nx = ny are given (we have performed some calculations for Lx ̸= Ly without observing much
change in the results). Furthermore, we consider a box with periodic boundary conditions
according to Ox and Oy. This discretization imposes a cut in the reciprocal space and
amounts to limiting the wave vectors to the first Brillouin zone

kα ∈
[
− π

lα
,
π

lα

[
with α = x, y. (2.1)

2.1.2 Umklapp process

The treatment of real space by means of a discrete grating has a bad consequence in the
reciprocal space of the momenta : the appearance of so-called Umklapp processes. Consider
two wave vectors, say k⃗1 and k⃗2, of the first Brillouin zone just defined. It is quite possible
that the sum wave vector (one can imagine the coalescence of two phonons into a third)
is outside the first Brillouin zone. Taking into account the periodicity of space, one could
translate this sum vector as equivalent to a vector of the first zone. But this equivalence
implies a loss of momentum conservation (only the quasi-momentum is conserved)! In crys-
tals and solids in general, these processes are called "Umklapp" and are quite physical and
play an important role in the thermodynamic and propagation properties; they correspond
to oscillations of smaller wavelength than the fundamental unit cell, the effective wave can
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then be associated to a wave vector of the first Brillouin zone. In our case, the underlying
numerical "crystal" is completely artificial and should not play any role in the field dynamics.
It is therefore crucial to never allow an Umklapp process when calculating phonon interac-
tions. For this purpose, we define a numerical lattice twice as large as the physical Brillouin
zone lattice. That is, all arrays will have nxny elements with nx = 2nFBZ

x , ny = 2nFBZ
y . The

first Brillouin zone is then the inner rectangle of this array with dimensions nFBZ
x , nFBZ

y . In
the following, only the wave vectors of the first Brillouin zone are considered as physical,
the others only exist to manage the Umklapp processes numerically. In fact, thanks to the
doubling of the network, each time we have to sum two wave vectors of the first Brillouin
zone, the Umklapp processes will involve points of the non-physical numerical zone, on which
we will be able to set to 0 the value of the field at each time step. This aspect, which is
called "filtering of Umklapp processes", will be clarified in section two when we detail the
algorithm for the evolution of the array. Finally, it should be noted that the origin of the
reciprocal array, the null wave vector 0⃗, is one of the unphysical modes that we will have to
filter out as it is a phonon forbidden mode.

In practice, it is these numbers of physical modes nFBZ
x , nFBZ

y per direction that are used
as input parameters to the program.

2.1.3 The ultraviolet cutoff

Our program works in the classical field approximation which replaces the bosonic operator
b̂q⃗ by a complex variable. Numerically, we must therefore manipulate an array of two-
dimensional complex numbers of numerical size nxny. This transformation into a classical
field requires the introduction of a cut-off in the momentum space to avoid the catastrophe of
the blackbody radiation. We will therefore retain as physical only the wave vectors q⃗ such as
q ≤ qmax corresponding to the energy cut-off ℏcqmax = ηkBT with η a positive real number,
which is an input parameter of the program. For this classical treatment to be physically
consistent, it is necessary for the cut-off to be high enough to retain the populated modes
but low enough to ignore the modes governed by quantum fluctuations, i.e. modes whose
average population at thermodynamic equilibrium is very small compared to 1. This is why
we have always taken η = 1 in our simulations. Note that considering the scaled quantities,
we have q̄max = η.

2.1.4 Estimation of an ensemble average

As we mentioned in the introduction, the evolution we will apply to the system is Hamilto-
nian. This implies that the evolution is deterministic. However, running the program once
would not allow us to recover the complete information about the evolution of the observable
simply because we are interested in the evolution in the macroscopic state of thermodynamic
equilibrium. To obtain this overall evolution, we must start from a microscopic state taken
from the probability law of the thermodynamic equilibrium and make the system evolve. By
repeating these two steps and averaging the trajectories obtained, we must converge to the
ensemble averages of the thermodynamic equilibrium. Thus the number of trajectories to be
performed is also an input parameter which we note ntraj but which is always 3200 in the
results of this thesis.
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2.1.5 Summary of input parameters

The program is written entirely in terms of the scaled quantities introduced in chapter 1. To
define the system, the reduced temperature ϵ = kBT

mc2 , the density of the gas at equilibrium
(scaled by the relaxation length) ρξ2, the thermodynamic parameter Λ and the curvature of
the phonon spectrum γ must be given. These physical parameters determine the interactions
between phonons in the gas as well as all the thermodynamic variables. Then, an ultraviolet
cut-off η and a number of physical modes per direction nFBZ

x must be provided which fix the
size of the system by the relations nx = 2nFBZ

x , l̄x = π/(2η) and ∆k̄x = 2η/nFBZ
x (scaled

form of ∆kx = 2π/Lx) with ∆k̄x the reciprocal lattice length in the direction x and thus
L̄x = nx l̄x (similarly for the direction y). Finally, we need to define a time integration
step, ∆t̄, an integration time t̄max and the number of trajectories ntraj to be performed and
averaged. We list these parameters in the following table.

Physical input
parameters Description Used value in

our simulations

ϵ
reduced temperature

of the gas 1/2 or 1/3

γ
Curature of

the phonon spectrum 1

ρξ2 Scaled equilibrium density
of the gas 10 or 1.5625

Λ Thermodynamic
parameter 0

Numerical input
parameters

η
Ultraviolet cut-off

on momentum 1

nFBZ
x × nFBZ

y
Number of

physical modes (FBZ) 32 × 32, 64 × 64, 128 × 128

∆t̄ Time step for
the temporal integration 1/8 or 0.0195

t̄max
Integration

time 103 or 104

ntraj
Number of independant

trajectories 3200

Derived
parameteres

nx = 2nFBZ
x and ny

Size of the
numerical arrays 64, 128, 256

l̄x = π/(2η) and l̄y
Unit cell length
in position space π/2

∆k̄x = 2η/nFBZ
x and ∆k̄y

Unit cell length
in momentum space 1/16, 1/32, 1/64
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2.2 Implementation of Hamiltonian evolution

This section is devoted to the description of the time evolution algorithm. However, we will
first describe the method of drawing the initial state of the system sampling the thermal
equilibrium for the full Hamiltonian. As there is no obvious direct way to do this in the
presence of phonon interactions, an indirect method is used which involves time evolution.
In the following, we deal with the differential equations to be solved with the approximations
that allow us to integrate them on a time step ∆t̄.

2.2.1 Initialization of the field

As we explained in the previous section, at each new trajectory, we have to initialize the b
k⃗

array with a state taken from the probability law of the thermodynamic equilibrium of H̄,
i.e. with the law N e−βH̄[b

k⃗
] where N is a normalization constant. But the presence of H̄(3)

in this law does not allow us to obtain a simple function for this law. Therefore we use an
indirect method : since H̄(3) is small compared to H̄(2) at thermodynamic equilibrium, see
section 4.2 of chapter 3, we can initially derive a state of thermodynamic equilibrium for
H̄(2), let us call this state {b(2)

k⃗
(0)}, which is a good approximation. To derive a thermal

state of the full Hamiltonian, we can evolve {b(2)
k⃗

(0)} for some time according to the ergodic
evolution generated by H̄ so as to thermalise the state {b(2)

k⃗
(0)}. In the series of executions,

we have chosen a thermalization time of the order of one thousandth of the total evolution
time, i.e. between 300 and 1200ℏ/kBT , which is equivalent to a number of time steps of the
order of 103. Let us specify that we initialise the non-physical modes with a zero value.

In practice: we must draw, for each physical mode q⃗, a complex number bq⃗ with the law
βεq

π e−βεkb
∗
q⃗
bq⃗ . Obviously, this law does not depend on the phase of bq⃗, so we can start by

drawing a phase in the interval [0; 2π[ with a uniform law. As for the modulus at equilibrium,
it follows the exponential law 3 P (nq⃗) = βεqe−βεqnq⃗ . This law can be sampled by drawing a
real number u ∈ [0; 1] with a uniform law, the value −1

βεq
log(1 −u) then samples the previous

exponential law. 4

To summarise, initially, for the non-physical modes, the value is initialized to 0, for the
others:

• We draw u and v two real numbers in the interval [0; 1] according to a uniform distri-
bution.

• The value of the amplitude in mode q⃗ is initialised by bq⃗ = e2iπv
√

kBT
εq

√
− log(1 − u).

• This state is made to evolve for a certain time ttherm by the complete Hamiltonian of
the system.

3We note bq⃗ = xq⃗ + iyq⃗ and nq⃗ = b∗
q⃗bq⃗ = x2

q⃗ + y2
q⃗ with xq⃗, yq⃗, nq⃗ ∈ R and consider any function f :

R → R. We can express the mean value of f(nq⃗) with bq⃗ drawn in the thermodynamic state of H̄(2) by
⟨f(nq⃗)⟩ =

∫
dxq⃗dyq⃗

βεq

π
f(nq⃗)e−βεq(x2

q⃗
+y2

q⃗
) = 2βεq

∫
dρρf(ρ2)e−βεqρ2

or ρ =
√
x2

q⃗ + y2
q⃗ . We can re-express it

as an integral over n, ⟨f(nq⃗)⟩ =
∫∞

0 dnβεqf(n)e−βεqn, which gives the law of n.
4To sample a law P (x), we must indeed solve for

∫ x

0 dx′P (x′) = u where u is drawn uniformly in [0, 1].
For our case, we have βεq

∫ nq⃗

0 dxe−βεqx = u ⇒ βεq

βεq
(1 − e−βεqnq⃗ ) = u which inverts into nq⃗ = −1

βεq
log(1 − u).
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2.2.2 Evolution on a time step

Let us come to the Hamiltonian evolution. As a reminder, the evolution of the bq⃗ array
is deterministic and governed by the Hamiltonian H̄ = H̄(2) + H̄(3), separated into two
contributions described by equations (1.24) and (1.26) respectively. A naive method of
evolving the bq⃗ array by a time step ∆t̄ would be to simply integrate the equations over bq⃗,
i.e. to calculate expressions of the form

iℏ
d
dtbq⃗ = 1

lxly
∂b∗

q⃗
H̄ = εqbq⃗ +

∑
k⃗

(. . .)b
k⃗
b
q⃗−k⃗ + . . . (2.2)

with the sum over k⃗ such as k⃗ ∈ FBZ and q⃗ − k⃗ ∈ FBZ. The coefficient (. . .) depends on
q⃗ and k⃗ but, of course, not on bq⃗, bk⃗ or b

q⃗−k⃗. It is then sufficient to update the array of bq⃗
with an Euler scheme: bq⃗(t + ∆t̄) = bq⃗(t) + ∆t̄

(
d
dtbq⃗(t)

)
. But this naive scheme requires a

number of operations in N 2 to update the whole array per time step with N = nFBZ
x nFBZ

y

the number of physical modes in the simulation. This quadratic dependence on the number
of modes would not allow exploration of sufficiently large box sizes.

2.2.2.1 The integration method: splitting the full Hamiltonian

Therefore we considered another method, which could be called "by splitting the Hamilto-
nian", which takes advantage of the respective properties of H̄(2) and H̄(3) in addition to
the quasi-linear complexity of the discrete fast Fourier transform algorithms in the number
of points. It suffices to note that H̄(2) is local in direct momentum space, since it depends
on a sum over k⃗ of b

k⃗
, see equation (1.24), but that H̄(3) is local in direct space since it can

be expressed over a sum over the positions of ψr⃗, see equation (1.26). Thus, we could first
do an evolution according to H̄(2) with a time step of ∆t̄/2, then an evolution according
to H̄(3) with a time step of ∆t̄ and finally an evolution according to H̄(2) with a time step
of ∆t̄/2. Each of these operations has a linear complexity in the number of modes. We
do have to do a Fourier transform to move the array from direct space to reciprocal space
and back again but, as we have said, the fast Fourier transform algorithm is of quasi-linear
complexity5 in the number of modes. This method therefore produces an evolution with a
computation time growing linearly with the number of modes and not quadratically as in
the naive method!

This cleavage constitutes an approximation of the evolution operator since it consists
in replacing the e−iH̄∆t̄ operator by the e−iH̄(2)∆t̄/2e−iH̄(3)∆t̄e−iH̄(2)∆t̄/2 operator. We can
show that this approximation has an error proportional to ∆t̄3. We start from the evolution
operator which can be split within the exponential as

U ≡ e−iH̄∆t̄ = e−iH̄(2)∆t̄/2−i(H̄(3)+H̄(2)/2)∆t̄. (2.3)

5More precisely of N log N .
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Then using the Zassenhaus6 formula twice, once on the left, once on the right, we can write

U =e−iH̄(2)∆t̄/2e−iH̄(3)∆t̄e−iH̄(2)∆t̄/2 (2.4)

× e− 1
4 [H̄(2),H̄(3)](∆t̄)2 exp

{
−(−i∆t̄)3

12
[
H̄(2) + H̄(3),

[
H̄(2), H̄(3)

]]}
. . .

× e
1
4 [H̄(2),H̄(3)](∆t̄)2 exp

{
(−i∆t̄)3

12
[
H̄(2) + 2H̄(3),

[
H̄(2), H̄(3)

]]}
. . .

Note that each exponential of the development by the Zassenhaus formula is of a well defined
order of ∆t̄ in our case. In particular, all hidden terms in . . . are of order (∆t̄)4 or higher. Let
us now restrict the evolution operator to terms of order 3 in ∆t̄. In the previous equation,
this amounts to removing the . . . from the equation. But not only that, because it should
be noted that the terms of the last four exponentials in the equation are of order 2 or 3 in
∆t̄. This implies that any commutation between two of these terms is of order 4 or 5 in ∆t̄.
So at order 3 in ∆t̄, . . . disappears and we can combine the last four exponentials into one.
We then see that these second-order terms cancel each other out and we finally obtain

U ≃ e−iH̄(2)∆t̄/2e−iH̄(3)∆t̄e−iH̄(2)∆t̄/2 exp
{

−i(∆t̄)
3

6

[
H̄(2) + 3

2H̄
(3),

[
H̄(2), H̄(3)

]]}
. (2.5)

Our "split evolution" thus corresponds to a third-order approximation in ∆t̄. The disappear-
ance by symmetry of the second-order term in ∆t̄ confirms the quality of our time integration
scheme.

2.2.2.2 The steps of the integration on a time step

Now that we have exposed the method of integration by cleavage, we can ask ourselves the
question of the concrete evolution of the numerical arrays. We must therefore consider the
differential equations as defined by the Hamiltonian field theory

i
d
dt̄ bq⃗ = ∂b∗

q⃗
H̄(2)(q⃗) (2.6)

iℏ
d
dt̄ ψ̄r⃗ = 1

lxly
∂ψ̄∗

r⃗
H̄(3) (2.7)

where the ψ̄r⃗ field is of Fourier coefficients aq⃗, a linear combination of the bq⃗ as we saw in
chapter 1.

Evolution according to H̄(2) From the expression (1.24) of the second order Hamiltonian
in terms of bq⃗, it comes :

i
d
dt̄ bq⃗(t̄) = ∂b∗

q⃗
H̄(2)(q⃗) = −iε̄qbq⃗(t̄) (2.8)

bq⃗ → e−iε̄q∆t̄/2bq⃗. (2.9)

Equation (2.9) represents the transformation that is actually operated on the numerical
vector, note the 1/2 factor on the time step. Note that this transformation is exact and
therefore does not involve any error due to the non-infinitesimal value of ∆t̄.

6eX+Y = eXeY e− 1
2 [X,Y ]e 1

6 [X+2Y,[X,Y ]] . . . for any two square matrices X and Y .
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Evolution according to H̄(3) The next step in the evolution algorithm is to transform the
bq⃗ array into the aq⃗ array by linear combination (1.19) before applying a Fourier transform
to obtain the ψr⃗ array. To carry out the evolution of this array, we consider the evolution
equation defined by iℏ d

dt̄ψr⃗ = ∂ψ∗
r⃗
H̄(3). This gives us the evolution equation

dψ̄r⃗
dt̄ = −iρξ2

[
ϵ2

2 (∇ Imψr⃗)2 − iϵ2∇ (Re(ψr⃗)∇[Imψr⃗)]) + 6Λ(Reψr⃗)2
]
. (2.10)

In subsection 2.2.3, we derive this expression explicitly from the third-order Hamiltonian in
viewpoint r⃗. In general, the computation of a gradient on a lattice is not local in position
but is a local operation in momentum; to preserve the locality of the integration on H̄(3)

and to avoid multiplying the Fourier transforms, we present in this same subsection 2.2.3
the approximate form of the gradient that we use in the program. This is a very good
approximation and has been checked for error by comparison with the exact gradient.

Filtering of Umklapp processes In expression (2.10), note that the array ψ̄r⃗ is squared.
From a numerical point of view, this means that once we switch back to the momentum
representation, all the numerical modes, including those described as non-physical at the
beginning of this chapter, will a priori be of non-zero amplitude because the quadratic terms
in ψ̄r⃗ mix all the modes. Indeed, we can write ψ̄r⃗ = 1√

L̄xL̄y

∑
k⃗
a
k⃗
eik⃗· r⃗ by definition of

the Fourier transform and therefore ψ̄2
r⃗ = 1

L̄xL̄y

∑
k⃗1 ;⃗k2

a
k⃗1
a
k⃗2

ei(k⃗1+k⃗2) · r⃗. Numerically, some
non-physical modes will be populated since the sum k⃗1 + k⃗2 can represent a wave vector
whose momentum is greater than η or the null vector 0⃗ or a wave vector outside the first
Brillouin zone. These are the so-called Umklapp processes that we discussed in section 2.1.2
earlier in this chapter. To prevent these terms from interfering with the time integration,
we need to remove them whenever they appear. In the practice of the programme, this
means setting the field strength on the non-physical modes of the bq⃗ array to 0 each time a
non-linear operation on ψ̄r⃗ is performed.

Naive time integration method: Euler To implement an evolution, a time integration
method must be decided upon, as one cannot explicitly integrate the expression (2.10). In
the case of an Euler method, the evolution during ∆t̄ is done by ψ̄r⃗(t+∆t̄) ≃ ψ̄r⃗(t)+∆t̄dψ̄r⃗

dt̄ .
Once the time derivative has been calculated and this transformation of the array has been
carried out, we can apply the inverse Fourier transform to obtain aq⃗ again and then bq⃗. We
can then filter the Umklapp processes by putting the non-physical modes in this array at
0 and then carry out a second time the evolution according to H̄(2) exactly as in the first
step (2.9). 7 The error committed on a time step has two sources : the approximation of
the Euler method which depends on ∆t̄ and the approximation when calculating the (2.10)
derivative, i.e. our gradient approximation (see section 2.2.3). Finally, during this time step
∆t̄, we had to do two 2D Fourier transforms.

7Since the relationship between aq⃗ and bq⃗ is a linear transformation, the filtering of Umklapp processes
can be done on either one, or even in the numerical linear transfomation from one to the other by positing
uk⃗ = vk⃗ = 0 for any non-physical mode k⃗.
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Time integration method: Runge Kutta of order 4 The Euler method is known
to be unsatisfactory for time integration. It is indeed an unstable scheme for conservative
evolution since it consists of approximating a curve by its tangent at the known initial point
and its error over one step grows as ∆t̄2 while its total accumulated error is of order ∆t̄. For
this type of physical system, this scheme is characterised by the linear divergence in time
of the total energy of the system, whose slope is controlled by ∆t̄. 8 Conversely, schemes
of the Runge-Kutta form are very popular because of their ease of implementation on the
one hand, but also because of their accuracy and the stability of the evolution they allow on
the other. In this case, we have chosen the Runge-Kutta method of order 4, which allows us
to obtain very good results for the conservation of total energy (as we illustrate in section
4.2) while keeping the computation time reasonable. In this method, we need to calculate
the derivative four times according to equation (2.10) at different points that depend on
each other.9 To avoid Umklapp processes, we will therefore need to make three returns to
the bq⃗ array, one after each calculation of the derivative, in order to filter out unphysical
modes. Each return requires two Fourier transforms, one to return to aq⃗/bq⃗, then another
to return to ψ̄r⃗ after the filter. This corresponds to 6 additional Fourier transforms to the
total integration scheme compared to the Euler method, bringing the total number of Fourier
transforms to 8. 10

Summary Let us summarize the numerical steps in our scheme to realize the evolution
during a step ∆t̄ from the array bq⃗(t̄) :

• Application of H̄(2) : bq⃗ → b′
q⃗ = bq⃗(t) exp(−iε̄q∆t̄/2)

• Obtaining aq⃗ = uq⃗bq⃗ + vq⃗b
∗
−q⃗

• Fourier transform of aq⃗ : ψ̄r⃗ = 1√
L̄xL̄y

∑
k⃗
a
k⃗
eik⃗· r⃗

• Runge-Kutta method of order 4 from ψ̄r⃗, for a step of integration ∆t̄ and as an expres-
sion of the derivative the equation (2.10). Performing the method excluding Umklapp
processes involves 4 Fourier transforms.

• Inverse Fourier transform to obtain aq⃗ then bq⃗ and filter the Umklapp processes.

• Application of H̄(2) a second time: bq⃗ → b′
q⃗ = bq⃗(t) exp(−iε̄q∆t̄/2)

8Indeed, let us take a differential equation iα̇ = ωα and thus α(dt) = α(0)e−iωdt exactly. Euler’s method
is to take α(dt) ≃ (1 − iωdt)α(0) and therefore α(ndt) ≃ (1 − iωdt)nα(0). The problem then is that
|1 − iωdt| > 1 so the scheme is unstable! We can explain this property by the formula (1 − iωdt)n =

en log(1−iωdt) = en[−iωdt+ (ωdt)2
2 +··· ] = e−iωteωt dt

2 with t = ndt.
9If we have a function y(t) whose derivative f(t, y(t)) is known and can be calculated, a known value of y

at a given time yn and a step of integration h, the Runge Kutta method of integration of order 4 to find a
value yn+1 to tn+1 from yn to tn consists in evolving according to the expression yn+1 = yn +h k1+2k2+2k3+k4

6
with k1 = f(tn, yn), k2 = f(tn + h/2, yn + hk1/2), k3 = f(tn + h/2, yn + hk2/2), k4 = f(tn + h, yn + hk3).

10If we had chosen the Runge Kutta method of order 2, we would have had to do an additional filtering
operation, so 4 Fourier transforms in total.
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2.2.3 The gradient operator on a discrete lattice

In this subsection we obtain the evolution equation of the classical field ψ̄r⃗ of the (dimen-
sionless) Hamiltonian H̄(3) of equation (1.26). We can write:

i
d
dt̄ ψ̄r⃗ = 1

lxly
∂ψ̄∗

r⃗
H̄(3). (2.11)

Let us place ourselves in the 1D case to simplify the rest of the development. In this case,
the gradient of a complex-valued field ψ∗(x) defined on a discrete lattice of steps lx can be
written

∂xψ(x) =
∑
m∈Z

cmψ(x+mlx) (2.12)

with cm real coefficients obeying the constraint c−m = −cm. That is, a gradient is a certain
antisymmetric linear combination of the values taken by the field on the grid in a certain
direction. We can write our Hamiltonian in terms of these coefficients:

H̄(3) = lxly√
ρξ2

∑
y

ϵ2 Reψ(y)
(∑
m∈Z

cm
ψ(y +mlx) − ψ∗(y +mlx)

2i

)2

+ 4Λ (Reψ(y))3


(2.13)

= lxly√
ρξ2

∑
y

−ϵ2

4 Reψ(y)
∑

m,n∈Z

cmcn (ψ(y +mlx) − ψ∗(y +mlx)) (ψ(y + nlx) − ψ∗(y + nlx))

(2.14)

+4Λ (Reψ(y))3
]
.

We can now perform the partial derivation with respect to ψ∗(x)

∂ψ∗(x)H̄
(3) = lxly√

ρξ2

∑
y

6Λ (Reψ(x))2 δx,y + ϵ2

2
∑

m,n∈Z

cmcnδx,y+mlx Reψ(y)(ψ(y + nlx) − ψ∗(y + nlx))

(2.15)

−ϵ2

8 δx,y
∑

m,n∈Z

cmcn (ψ(y +mlx) − ψ∗(y + nlx)) (ψ(y + nlx) − ψ∗(y + nlx))

 .
In the second member, we recognize in the third contribution (the double sum), a squared
gradient. Furthermore, we can sum over y and take into account the Kronecker deltas in
each contribution.

∂ψ∗(x)H̄
(3) = lxly√

ρξ2

[
6Λ (Reψ(x))2 + ϵ2

2 (∂x Imψ(x))2 (2.16)

+ϵ2

2
∑

m,n∈Z

cmcn Reψ(x−mlx) (ψ(x−mlx + nlx) − ψ∗(x−mlx + nlx))

 .
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In the second member, we recognise in the sum over n the expression of the gradient :

∂ψ∗(x)H̄
(3) = lxly√

ρξ2

[
6Λ (Reψ(x))2 + ϵ2

2 (∂x Imψ(x))2 (2.17)

+ϵ2

2
∑
m∈Z

cm Reψ(x−mlx)∂x (ψ(x−mdx) − ψ∗(x−mdx))
]
.

Finally we can make the change of dummy variable m −→ −m′ and then find the expression
of the gradient using c−m′ = −cm′ . This leaves

∂ψ∗(x)H̄
(3) = lxly√

ρξ2

[
6Λ (Reψ(x))2 + ϵ2

2 (∂x Imψ(x))2 − iϵ2∂x Reψ(x)∂x (Imψ(x))
]
.

(2.18)
We return to the evolution of ψ̄r⃗ and the general case of the d dimensional lattice:

i
d
dt̄ ψ̄r⃗ = 1√

ρξ2

[
6Λ
(
Re ψ̄r⃗

)2
+ ϵ2

2
(
∇ Im ψ̄r⃗

)2
− iϵ2∇

(
Re ψ̄r⃗∇ Im ψ̄r⃗

)]
. (2.19)

Numerical computation of the gradient As we have just written, the expression of
the differential equation on ψ̄r⃗ relies on the computation of discrete gradients of functions
of ψ̄r⃗. The generic expression of the discrete gradient as we have written it (2.12) is not
local in position and therefore implies that its numerical computation is quadratic in the
number of modes since for each point of the lattice, one has to sum over the terms in each
direction. Naive numerical summation would surely slow down the program and kill the
linear complexity that we had gained by "splitting" the total evolution operator.

We then have two possibilities to preserve this linearity : the first is to compute these
gradients in the momentum space because the operation is local there. Indeed ∂xψ(x) =
∂x
∑
kx
axe−ixkx = ∑

kx
−ikxakxe−ixkx . This possibility, which has the advantage of being

exact, adds as many Fourier transform pairs as there are gradients for a time step. For
our Runge-Kutta type scheme of order 4, this amounts to adding 16 Fourier transforms. It
is therefore a rather heavy choice. The second possibility, and the one we have chosen, is
simply to approximate the gradient by a finite difference, i.e. to restrict the generic formula
(2.12) to only a few non-zero coefficients on the neighbouring points. We have chosen as
truncation the formula

∂xψ(x) ≃ 4
3

(
A− 1

4B
)

(2.20)

with A =ψ(x+ lx) − ψ(x− lx)
2lx

and B = ψ(x+ 2lx) − ψ(x− 2lx)
4lx

.

It is possible to convince oneself that this expression is a good approximation of the gradient
by considering the test function ψ(x) = eikx. Its exact derivative is ∂xψ(x) = ikeikx whereas
our approximation gives

∂xψ(x) ≃ ikeikx 4
3

(sin(klx)
klx

− 1
4

sin(2klx)
2klx

)
. (2.21)
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Assuming u = klx is small enough, we can expand the sines with sinu
u = 1 − u2

6 + O(u4).
This gives, for the factor in the previous equation

F = 4
3

(sin(klx)
klx

− 1
4

sin(2klx)
2klx

)
= 4

3

(
1 − (klx)2

6 − 1
4

(
1 − 4(klx)2

6

)
+O(u4)

)
= 1 +O(u4)

(2.22)
where the O(u4) is non-zero, which makes our truncation a fourth order approximation of
the spatial derivative. But is klx small enough? Is it legitimate to limit ourselves to a Taylor
expansion to the second order? On this point, we are helped by the fact that k ≤ π

2lx for
any k physical wave vector of the network. Admittedly, π

2lx lx ≃ 1.57 is not small a priori
but the factor F is strictly decreasing with a very flat centre on the interval [0; π2 ] and
F (π2 ) = 8

3π ≃ 0.85. This is why we have taken the liberty of using this approximation in the
numerical integration, an approximation which is quite reasonable and which speeds up the
calculation.

These approximations will be confirmed in chapter 4 where, before presenting the final
results of our simulations, we will show the figures of conservation of energy as well as the
achievement of thermodynamic equilibrium.



Chapter 3

Analysis by N-body Green’s
functions

Foreword

In quantum physics, the N -body problem for a system at thermodynamic equilibrium can
be studied by means of the formalism of Green’s functions, averages of the ψ(r⃗2, t2)ψ†(r⃗1, t1)
operator in the equilibrium state with ψr⃗(t) the field operator creating a particle at position
r⃗ at the instant t in the Heisenberg picture [29]. This function is interesting because it is
possible to extract from the singularities of its Fourier transform information on the dynamic
properties of the system, on its excited states as well as on its responses to an external
perturbation. We will also see how Fermi’s golden rule described in chapter 1 is retreive in
the Green’s function approach as a poorly controlled approximation and how this approach
allows to go beyond it by systematically taking into account all the diagrams of the same
order in the perturbation.

First, in sections 3.1 and 3.2, this chapter focuses on defining the different functions and
quantities involved in the method, which we relate to our observable before constructing the
diagrammatic series we use later. In a second step, sections 3.3 and 3.4 present the new
results we have obtained. The specificity of the d = 2 case compared to the d = 3 case in
the ϵ = kBT/mc

2 → 0 reduced low temperature limit is explored, leading to a discussion of
the applicability of Fermi’s golden rule in two-dimensional boson gases.

3.1 Expression of the signal in terms of the self-energy func-
tion Σ

The study by Green’s functions of our phonon damping problem has been mainly carried
out by Yvan Castin. In this section, we present the main ingredients, in order to arrive at
the integral formulation (3.13) which we have calculated numerically at all orders in ϵ for
comparison with our simulations.

Using the teachings of A. Fetter and J. Walecka presented in their book Quantum Theory
of Many-Particle Systems [29], in particular in their section 31 p.292 and their equations
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ℜz

ℑz

C+

C−

Figure 3.1: Path integrals C+ and C− in the complex plane of the z variable.

(31.23) and (31.24), we can express our signal for t ≥ 0 as

⟨b̂q⃗(t)b̂†
q⃗(0)⟩ =

∫ +∞

−∞

dω
−2iπ e−iωt

(
G(q⃗, ω + i0+)

1 − e−βℏω + G(q⃗, ω − i0+)
1 − eβℏω

)
(3.1)

=
∫ +∞

−∞

dω
−2iπ e−iωt

(
G(q⃗, ω + i0+) + G(q⃗, ω + i0+) − G(q⃗, ω − i0+)

eβℏω − 1

)
(3.2)

where the Green’s function G(q⃗, ω), analytic in the complex plane deprived of the real axis
(on which it has a cut-off line), is defined in terms of the self-energy function Σ by

G(q⃗, z) ≡ 1
z − εq − Σ(q⃗, z) ∀z ∈ C \ R. (3.3)

To develop an intuition of the expression (3.1), let us give a simplified form in the weak
coupling limit where the integral on ω is dominated by a neighbourhood of εq/ℏ. We can then
replace e±βℏω by e±βεq in the denominators of the integrand. Let us also restrict ourselves
to the case t > 0 which allows us to reduce to a curvilinear integral in the complex plane 1

⟨b̂q⃗(t)b̂†
q⃗(0)⟩ ≃ (1 + n̄q)

∫
C+

dz
2iπ e−izt/ℏG(q⃗, z) (3.4)

where C+ denotes a straight line parallel to the real axis in the upper half-plane, directed
towards −∞ , as in Figure 3.1. Σ can be extended analytically, so G from the upper to the
lower half-plane through their cut-off line; the extended Green’s function G↓(q⃗, z) usually
admits one or more poles z0, defined by z0 = εq + Σ↓(q⃗, z0), and which play a role in the
dynamics of the observable. Indeed, by closing the path C+ by a semicircle in the lower
half-plane, with a radius that is made to tend to infinity, we create a closed integration path
allowing us to apply the residue theorem. From then on, each pole makes an exponentially
decreasing contribution to the mean ⟨b̂q⃗(t)b̂†

q⃗(0)⟩. The application of the residue theorem,
however, requires moving and then bypassing the G(q⃗, z) cut-off line, see Figure 3.2, with
the bypassing yaw making a contribution to the correlation function tending towards 0
algebraically (power law) at long times.

1The contribution of the path C− defined in figure 3.1 is zero in this case as can be shown by closing the
contour in the lower half-plane on a large semicircle and using the analyticity of G in this half-plane.
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Re z

Im z

Figure 3.2: Path integral in the complex plane allowing the residue theorem to be applied
on the simplified form (3.4) of the signal. The black dots are the connection points and the
black lines starting from them are the displaced cut-off lines. The black crosses represent
the poles of the function G↓.

3.2 Perturbative development of the self-energy function

Following the Fetter-Walecka, a perturbative development of the self-energy function into
powers of the cubic phonon-phonon interaction can be performed in the form of Feynman
diagrams:

Σ = + + + . . .

Second order in H̄(3) Fourth order in H̄(3)

(3.5)
where we represent the diagrams of orders 2 (the first term) and 4 (the next two) in H(3).
The dashed lines represent the G̃0(q⃗, ω) factors that always frame Σ in the development of
Green’s function in imaginary time G(q⃗, iω). Each vertex of each graph corresponds to an
action of H(3) so is always the meeting point of three lines and contributes by a factor equal
to the corresponding matrix element of H(3).2 The next step is to orient each line of a given
diagram, to assign to each line two quantities (the impulse and the Matsubara frequency of
the mode) conserved at the nodes. Finally, the contributions on all possible orientations of
the internal lines, on all independent wave vectors and internal Matsubara frequencies must
be summed.

2Note a departure from the instructions in the manual : we omit the interaction lines (represented by
wavy lines in [29]) as they are not useful in our case. This is because the matrix element calculations in Fetter
and Walecka are done between unsymmetrized states and therefore have to distinguish between direct and
exchange terms, whereas the phonon states we consider are automatically symmetrized.
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3.2.1 Expressions of the self-energy functions of order 2

If we focus on order 2, this gives the sum of diagrams

Σ(2) = + +

Landau Beliaev non-resonant

q⃗ + k⃗, ω + ω′

q⃗, ω
k⃗, ω′

q⃗, ω

q⃗ − k⃗, ω − ω′

q⃗, ω
k⃗, ω′

q⃗, ω

−(q⃗ + k⃗),−(ω + ω′)

q⃗, ω
k⃗, ω′

q⃗, ω

(3.6)

where we can easily recognise, from left to right in (3.6), the Landau, Beliaev and non-
resonant processes that we had already introduced as diagrams in chapter 1 (figure 1.1).
The rules for constructing function Σ from the diagrams, the so-called "Feynman rules", are
given in the Fetter-Walecka. For example, for the Beliaev diagram, this gives:

Σ(2)
Bel(q⃗, iω) = 1

−βℏ2

∫ ddk⃗
(2π)d

∑
ω′∈ 2π

βℏZ

1
2

∣∣∣⟨k⃗, q⃗ − k⃗|Ĥ(3)|q⃗⟩
∣∣∣2

[iω′ − εk/ℏ][i(ω − ω′) − ε
q⃗−k⃗/ℏ] (3.7)

where Ĥ(3) is the density Hamiltonian. To sum over ω′, we decompose the factor 1
(z′−a)(b−z′) =

1
b−a( 1

z′−a + 1
b−z′ ) where z′ = iω′ into simple elements and use the Fetter-Walecka result p.249

limη→0
∑
ω′∈ 2π

βℏZ
eiηω′

iω′−x = −βℏ
eβℏx−1 for any non-zero real x. Note the factor 1/2 in the numerator

of (3.7) which avoids double counting: the diagram is indeed invariant by rotation by an
angle π around the horizontal axis. This factor 1/2 appears in Σ(2)

non-res for the same reason
but not in Σ(2)

Lan.
As the method is reproduced for the Landau and non-resonant processes, we extend

analytically to C \ R by replacing the discrete variable iℏω by the continuous variable z and
obtain

Σ(2)
Bel(q⃗, z) =

∫ ddk⃗
(2π)d

1
2

∣∣∣⟨k⃗, q⃗ − k⃗|Ĥ(3)|q⃗⟩
∣∣∣2

z − (εk − ε
q⃗−k⃗)

(
1 + n̄

k⃗
+ n̄

q⃗−k⃗

)
(3.8)

Σ(2)
Lan(q⃗, z) =

∫ ddk⃗
(2π)d

∣∣∣⟨q⃗ + k⃗|Ĥ(3) |⃗k, q⃗⟩
∣∣∣2

z + εk − ε
q⃗+k⃗

(
n̄
k⃗

− n̄
q⃗+k⃗

)
(3.9)

Σ(2)
non-res(q⃗, z) = −

∫ ddk⃗
(2π)d

1
2

∣∣∣⟨⃗0|Ĥ(3) |⃗k, q⃗,−(q⃗ + k⃗)⟩
∣∣∣2

z + εk + ε−(q⃗+k⃗)

(
1 + n̄−(q⃗+k⃗) + n̄

k⃗

)
. (3.10)

3.2.2 Expression of the signal for the classical field

Before studying further the properties of this self-energy function in the d = 2 case, let us
return to the (3.1) expression of the signal as an integral of Green’s function and adapt it to
the case of the classical field approximation. In this case, we replace Bose’s law 1

eβℏω−1 with
the classical physics equipartition law 1

βℏω , which gives

⟨b̂q⃗(t)b̂†
q⃗(0)⟩class =

∫ +∞

−∞

dω
−2iπ

e−iωt

βℏω

(
G(q⃗, ω + i0+) − G(q⃗, ω − i0+)

)
. (3.11)
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Since Σ admits a cut-off line on the real axis, causing a discontinuity in its imaginary part
but not in its real part, we can write

Σ(q⃗, ω ± i0+) = ΣR(q⃗, ω) ± iΣI(q⃗, ω) (3.12)

where functions ΣR and ΣI are real-valued. By introducing these expressions into the signal,
we obtain

⟨b̂q⃗(t)b̂†
q⃗(0)⟩class =

∫ +∞

−∞

dω
π

e−iωt

βℏω
−ΣI(q⃗, ω)

[ℏω − εq − ΣR(q⃗, ω)]2 + [ΣI(q⃗, ω)]2
. (3.13)

3.2.3 Principle of a numerical calculation

Note that it is always possible to rewrite our self-energy functions as integrals over a real
variable of a density of state over an energy denominator. Indeed, we can write the schematic
expression

Σ(q⃗, z) =
∫ ddk⃗

(2π)d
. . .

z − ∆ε =
∫ ddk⃗

(2π)d
∫ +∞

−∞
dεδ(∆ε−ε) . . .

z − ε
=
∫ +∞

−∞

dε
z − ε

∫ ddk⃗
(2π)d δ(∆ε−ε)(. . .)

from which we can define a density of states ρ(q⃗, ε) =
∫ ddk⃗

(2π)d δ(∆ε−ε)(. . .) and thus Σ(q⃗, z) =∫+∞
−∞

dε
z−ερ(q⃗, ε). For our three second-order processes in H̄(3), the densities of states can be

written as

ρBel(q⃗, ε) =
∫ ddk⃗

(2π)d δ(εk − ε
q⃗−k⃗ − ε)1

2
∣∣∣⟨k⃗, q⃗ − k⃗|Ĥ(3)|q⃗⟩

∣∣∣2 (1 + n̄
k⃗

+ n̄
q⃗−k⃗

)
(3.14)

ρLan(q⃗, ε) =
∫ ddk⃗

(2π)d δ(εq⃗+k⃗ − εk − ε)
∣∣∣⟨q⃗ + k⃗|Ĥ(3) |⃗k, q⃗⟩

∣∣∣2 (n̄k⃗ − n̄
q⃗+k⃗

)
i (3.15)

ρnon-res(q⃗, ε) = −
∫ ddk⃗

(2π)d δ(εk + ε
q⃗+k⃗ + ε))1

2
∣∣∣⟨⃗0|Ĥ(3) |⃗k, q⃗,−(q⃗ + k⃗)⟩

∣∣∣2 (1 + n̄
q⃗+k⃗ + n̄

k⃗

)
.

(3.16)

We recognise here a generalised form of the (1.33)-(1.34) integrals for the Beliaev-Landau
damping rates according to Fermi’s golden rule calculated in chapter 1. One can indeed write
Γproc
q⃗ = ρproc(q⃗, εq). A numerical calculation can then follow the same strategy as that taken

on that occasion: one integrates the energy conserving Dirac on the variable θ, angle between
q⃗ and k⃗, and reinserts the roots θ0 into the matrix element and the occupation numbers to
finally integrate explicitly on the wave number k. Care must be taken to ensure that the
energy conserving angles θ0 do not introduce any zero momentum phonons or phonons with
a wave number greater than the ultraviolet cut-off η (whether k⃗, q⃗+ k⃗ or q⃗− k⃗). Finally, let
us note that the non-resonant processes contribute this time to the final result, of course on
ΣR but even on ΣI if ε is quite negative, although this contribution is negligible in practice
compared to those of the Beliaev and Landau processes. Finally, we show that

ΣI(q⃗, ω) = −πρ(q⃗, ℏω), (3.17)

ΣR(q⃗, ω) = −
∫ +∞

−∞
dερ(q⃗, ℏω + ε) − ρ(q⃗, ℏω − ε)

2ε (3.18)
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in particular by expressing the integrand of ΣR in terms of the Cauchy principal value and
that of ΣI in terms of the Dirac distribution:

Σ(q⃗, ℏω + i0+) =
∫ +∞

−∞
dε ρ(q⃗, ε)

(
v.p. 1

ℏω − ε
− iπδ(ℏω − ε)

)
. (3.19)

3.3 Specificity of the 2D case

In order to clarify the specificity of the d = 2 case, we propose in this section an analysis
of the behaviour of Σ in the ϵ → 0 limit at fixed ρξ2 and q̄. The objective is to determine
the applicability of the Fermi golden rule in this limit. As such, a comparison will be made
with the d = 3 case where it can be applied. The argument is based on the consideration
of the dominant order in ϵ of Σ on the one hand, and that of the scale of variation of Σ in
z−εq ≡ ζ on the other hand. The two corresponding power laws have already been discussed
and even expressed in chapter 1. In fact, in the expressions of Σproc (3.8)-(3.10), it can be
seen that it is the "energy defect" term of form 1

ζ−∆ε , which determines the variation of Σ in
ζ. However, these energy defects have already been calculated to the leading order in ϵ. We
can read on equations (1.49) and (1.51) that these defects are of order ϵ3 (reasoning on the
scaled quantities), consequence of the dependence in ϵ of the angle θ0 [see equations (1.50)
and (1.52)].

Similarly, we can read from the expression of Γ̄q (1.59) the order ϵ3 for the dominant
order of Σ. This is because, as with the integral of the damping rates, the squared matrix
element contributes a factor of ϵ3 while the squared energy defect contributes a factor of ϵ−1

to the leading order. Σ̄ is therefore of order 2 in ϵ and Σ of order 3 in ϵ.
The two power laws involved are therefore identical, which will have important conse-

quences for the behaviour of the signal for small values of ϵ. In the case d = 3 a contrario,
the scale of variation in ζ of Σ remains of order ϵ3 but the clean energy function is of order
ϵ5, the damping rate varying as T 5 [30].

Consequences for the accuracy of the pole approximation Let us introduce a scaling
of Σ, ζ and t in the limit ϵ → 0

Σ(q⃗, z) ≡ ϵνσ(q⃗, z − εq
ϵµ

= ζ

ϵµ
) ; t

ℏ
≡ ϵ−νt ; ζ ≡ ϵνζ (3.20)

and write the signal (3.4) in terms of these scaled variables

⟨b̂q⃗(t)b̂†
q⃗(0)⟩

n̄q
eεqt/ℏ ≃

ϵ→0

∫
C+

dζ
2iπ

e−iζt

ζ − σ(q⃗, ζϵν−µ) . (3.21)

The result is clear: for the case d = 3 where ν = 5 and µ = 3, there is ϵν−µ = ϵ2 → 0
so the pole approximation replacing the function Σ in the denominator of (3.21) by the
constant σ(q⃗, 0) is accurate in the limit ϵ → 0. On the other hand, in the case d = 2, there
is ν = µ = 3 hence ϵν−µ = 1, which implies that this limit is not sufficient to make the pole
approximation and therefore Fermi’s golden rule exact!
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3.4 Diagrammatic theory at the dominant order in ϵ

Now that we have established the specificity of the d = 2 case with respect to the ϵ → 0 limit,
it would be useful to obtain a "small parameter" of the model that would characterize the
strength of the interactions and by means of which we could obtain a condition of validity
of the Fermi golden rule. We start by scaling the variables again by

t̃ ≡ ϵ2
3γ
8 q̄t̄ ; z̄ − ε̄q ≡ ϵ2

3γ
8 ζ̃ ; Σ̄(2) ≡ ϵ2

3γ
8 Σ̃(2). (3.22)

The scaled Beliaev and Landau self-energy functions at order 2 in H̄(3) are then written in
the ϵ → 0 limit in the upper half-plane:

Σ̃(2)
Bel(q̄, ζ̃) = 1

iu

∫ q̄/2

0

dk̄
q̄

(
k̄(q̄ − k̄)

)3/2
(1 + n̄k + n̄q−k)(

k̄(q̄ − k̄) + ζ̃
)1/2 (3.23)

Σ̃(2)
Lan(q̄, ζ̃) = 1

iu

∫ +∞

0

dk̄
q̄

(
k̄(q̄ + k̄)

)3/2
(n̄k − n̄q+k)(

k̄(q̄ + k̄) − ζ̃
)1/2 (3.24)

with u = πρξ2γ3/2
√

3(1 + Λ)2 . (3.25)

Thus, at order 2 in ϵ, the physics of the system depends only on the physical parameter u !
In particular, these relations suggest that Fermi’s golden rule can be successfully applied
when u ≫ 1. 3 However, the order of magnitude in ϵ and u of the higher order self-energy
functions must be checked

3.4.1 Studying the higher orders of the self-energy function

To study these higher orders, we use a method of "power counting" the terms in the integrals
contributing to Σ in order to evaluate the leading order in ϵ and u without having to explicitly
calculate these integrals. In particular, this method relies on the following argument : we
assume that for all diagrams at all orders in H̄(3), the angles that satisfy the Dirac of
conservation of energy are small and of order ϵ and therefore the energy denominators are
also small and of order ϵ3. This is what we had indeed seen at order 2 in the expressions
(3.8) and (3.9). This assumption is not so strong because of the quasi-linearity of our phonon
spectrum. If it were exactly linear (a true ε = ck phonon spectrum), only collinear phonons
could have interacted on the energy layer, i.e. θ0 = 0 would have been the only possible
solution for energy conservation. 4 Therefore, by continuity, a small curvature must lead to
a small angle.

As an example, consider a fourth-order diagram in H̄(3) shown in Figure 3.3. To be-
gin with, any matrix element can be represented schematically (see equation (1.14)) by

3The characteristic time scale of the golden rule corresponds to t̃ ∼ u so ζ̃ ∼ 1/u in frequency space so
that in the u → +∞ limit, Σ̃(2)(q̄, ζ̃) can be approximated by Σ̃(2)(q̄, i0+) in the signal integrand, giving back
the pole approximation and thus Fermi’s golden rule for damping.

4This is why one cannot be satisfied with this spectrum, which restricts collisions in a way that differs
from experimental reality.
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k⃗ − k⃗′

q⃗
k⃗

k⃗′

q⃗ − k⃗

q⃗ − k⃗′
q⃗

Figure 3.3: One of the fourth-order in H̄(3) diagrams with an intermediate phonon coupling
the two branches of the loop. We have noted the momentum of each phonon, taking into
account the conservation of the momentum at each node, which leaves two internal wave
vectors to integrate on. The green dashed lines represent the energy denominators ∆E.
The matrix elements of the cubic interaction H̄(3) will be divided by the energy of each
intermediate state as many times as there are independent intermediate states (∆E contains
the sum of the energies of the phonons intersected by a given green dash).

⟨f |H(3)|i⟩ ∝
√

ℏk1
mc

ℏk2
mc

ℏk3
mc

mc2
√
ρ ∝ ϵ3/2mc2

√
ρ because each wave number is of order kBT/ℏc. Thus,

we can write (counting 4 matrix elements of H(3) on the diagram)

Σ(4) ∝
∫

d2k⃗

∫
d2k⃗′

(
ϵ3/2mc2

√
ρ

)4 1
∆E∆E∆E (3.26)

where ∆E represents a different energy denominator each time. There are three of them
because, as can be seen in figure 3.3, for each possible diagram at this order (i.e. for all
possible orientations of the inner lines of the diagram), there are three intermediate states
(there was only one at order 2). We switch to polar coordinates of axis q⃗ in the momentum
space and take into account that the angular width is ≈ ϵ and ∆E ≈ kBTϵ

2. So

Σ(4) ∝
∫

dkdk′ kk′
∫

dθdθ′
(
ϵ3/2mc2

√
ρ

)4 1
∆E∆E∆E (3.27)

∝
((

kBT

ℏc

)2)2

(ϵ)2
(
ϵ3/2mc2

√
ρ

)4 ( 1
kBTϵ2

)3
. (3.28)

In conclusion,

Σ(4) ∝ kBT

(
ϵ

ρξ2

)2
where Σ̄(4) ∝ ϵ2

(ρξ2)2 . (3.29)

With the same arguments, let us consider adding a higher order. From the point of view of
the diagram, we must add two nodes H(3) that is to say two matrix elements, an intermediate
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phonon thus an integration
∫

dk k
∫
θ, two intermediate states thus two energy denominators.

Thus we add a factor of order∫
dk k

∫
θ⟨f |H(3)|i⟩ 1

∆E∆E∆E ∝
(
kBT

ℏc

)2
ϵ

(
ϵ3/2mc2

√
ρ

)2 ( 1
kBTϵ2

)2
= 1
ρξ2 (3.30)

According to this method of counting powers associated with the hypothesis of the small
denominators of energy for the small angles, the diagrams of higher order are all of dominant
order ϵ2 but of increasingly higher order in 1/u:

Σ̄(2n) ∝ ϵ2

(ρξ2)n ∀n ∈ N∗ (3.31)

which thus appears like a small unexpected parameter in the diagrammatic series.
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Chapter 4

Results and comparison

Foreword
In this chapter we discuss the results from two runs of the simulation that differ in their
interaction regime. Although both runs remain in the weakly collisional regime for all modes
of the simulation, they differ in the value of the parameter u = πγ3/2

√
3(1+Λ)2 ρξ

2 that we intro-
duced in the previous chapter and that characterises the strength of the interactions in the
two-dimensional boson gas. Among the physical parameters of the two series, several are
identical: the phonon curvature γ = 1, the thermodynamic parameter Λ = 0, the ultraviolet
cut-off η = 1 and the reduced temperature ϵ = 1/2. They therefore differ only in the value of
the scaled density ρξ2. We have ρξ2 = 10 for series 1 and ρξ2 = 1.5625 for series 2. We also
present results from simulations identical to series 1 except for the value of the reduced tem-
perature ϵ = 1/3, which we call series 1 bis. Before presenting the results of the simulations,
we check that the sets of parameters agree with the constraints of validity of the quantum
hydrodynamics theory before addressing the question of the interaction regime defined by
these physical parameters. Then we present some data extracted from the simulations that
assure us of the physical consistency of our numerical integration before illustrating in the
section that follows the behaviour of the temporal autocorrelation of a mode ⟨bq⃗(t)b∗

q⃗(0)⟩
which is compared to the prediction of the Fermi golden rule. Finally, in the last section of
this chapter, this part and this thesis, we study in detail the discrepancy between our sim-
ulations and the pole approximation as well as the different predictions on this discrepancy
from the diagrammatic method of the N -body Green’s functions. This discussion allows us
to conclude on the validity and viability of our simulations and our theory.

4.1 Series validity and interaction regime
As mentioned in section 1.1 of chapter 1, quantum hydrodynamics, a low-energy mesoscopic
theory, is subject to restrictions on the parameters of the system that guarantee the consis-
tency of its description. The constraints boil down to (i) ρ

q2
th

= ρξ2

ϵ2 ≫ 1 which ensures the rele-
vance of the coarse-grained description of (1.1) hydrodynamics and (ii) kBT ≪ mc2 ⇒ ϵ ≪ 1
which ensures that the temperature is low enough to populate only the phonon part of the
excitation spectrum. Another useful quantity to judge the suitability of our description is
the number of particles in a unit cell of our lattice. For our "coarse-grained" description

111
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to be relevant, this number must be large in front of 1, so ρdxdy = ρξ2
(
π
ηϵ

)2
≫ 1.1 We

summarise our series and the value of these constraints in the following table :

Serie ρξ2 ϵ u ρdxdy ρξ2

ϵ2 Γth/ωmin
q⃗

1 10 1/2 18.14 394.8 40 2.2 · 10−2

1 bis 10 1/3 18.14 888.3 90 0.11
2 1.5625 1/2 2.83 61.7 6.25 0.96

For our three series, the constraint ρξ2

ϵ2 ≫ 1 seems to be well realised. If the value ϵ = 1/2
may seem a bit large to satisfy the constraint ϵ ≪ 1, which would imply that the collective
excitations are not quite phononic, one should not forget that the curvature of the spectrum
is of the form γ

8 ϵ
2 ≃ 0, 031 in the simulation, which remains small. It can therefore be seen

that what clearly differentiates the two series is the value of the parameter u = πγ3/2
√

3(1+Λ)2 ρξ
2

which we introduced in chapter 3 [see (3.25)] and which is none other than the inverse of the
small parameter of the diagrammatic development. It is 18.14 for series 1 and 2.83 for series
2. Therefore, the Fermi golden rule should be closer to series 1 than to series 2.

Collisional regime of the simulations With these parameters, are we, for a given mode,
rather in the hydrodynamic or weakly collisional regime? We can answer this question by
comparing the pulsation of the mode with the damping of a typical thermal mode. For ex-
ample, we can consider the fundamental excitation mode of each grid, with a scaled pulsation
of ω̄min

q⃗ = 2η/nFBZ
x , and the damping rate of the maximum energy mode with an average

population of 1, which we find from the simulation data (see section 4.3). The hydrodynamic
regime then corresponds to the limit Γth/ωmin

q⃗ ≫ 1, while the low collisional regime refers to
the inverse limit Γth/ωmin

q⃗ ≪ 1. According to the last column of the previous table, which
gives the value of this ratio, the three series 1, 1 bis and 2 are in the low collisional regime
for all modes, even for the largest size 128 × 128. 2

4.2 Conservation of energy checks
Constraints on the parameter values imposed by the model approximations are not the only
ones we need to pay attention to in order to be sure that our simulations are a good account of
the physical phenomena. The numerical methods we use to calculate the evolution in practice
must also be accurate enough. In this section we check the stability properties of the time
integration method, which is approached threefold (see chapter 2): firstly in the integration
done via the fourth-order Runge Kutta method on H̄(3), secondly by the four-point formula
used for the calculation of the gradient, and thirdly by splitting the Hamiltonian into H̄(2)

and H̄(3).
1Note, however, that this quantity depends on the ultraviolet cutoff which weakens its physical interpre-

tation and thus its importance as a validity condition.
2This indicates that the limited size of the box prevents us from observing low-energy modes that could

be found in the hydrodynamic regime. In this case, this regime seems within reach in view of series 2, since
doubling or quadrupling the number of modes would bring a fraction of the lowest energy modes into this
regime. For the moment, we have not been able to explore this regime in depth, we put at the end of this
chapter, as a conclusion, a first glance from a third series of runs trying to catch a glimpse of these small
modes in the hydrodynamic regime in the case ρξ2 = 1.5625.
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Figure 4.1: We represent two average quantities related to the energy of the gas and its
conservation during integration. Each colour corresponds to a different system size: blue for
32 × 32 physical modes, green for 64 × 64 and red for 128 × 128. Each point that makes
up the curves is the ensemble average over the 3200 realisations at instant t̄. On the left,
we represent the ratio of the average of the absolute value of the interaction energy, i.e. the
absolute value of H̄(3), to the total energy, the average of H̄ = H̄(2) +H̄(3) over time. On the
right, is shown the ratio of the maximum value among the 3200 realisations of the quantity
|Etot(t̄) − Etot(0)| with Etot(t̄) the value of H̄ for a given realisation at a given time to the
average of the absolute value of t̄ at this instant. (a) and (b) correspond to series 1, (c) and
(d) to series 1 bis, (e) and (f) to series 2.
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In figure 4.1 we show two types of quantities related to the energy of the gas and its con-
servation over time in the simulations. These averages are always taken over the realisations,
the sub-figures in the left column represent the ratio of the average of the absolute value of
the Hamiltonian H̄(3) at an instant t̄, to the average of the total Hamiltonian H̄(2) + H̄(3) at
this same instant. As for the sub-figures in the right-hand column, they represent the ratio of
the maximum deviation (in absolute value) among all realisations between the total energy
at time t̄ and at time 0, to the average of the absolute value of the interaction energy at
time t̄. As we can see, the simulations are satisfactorily accurate. The constancy of the ratio
between the interaction energy and the total energy of the sub-figures on the left confirms
that the system has thermalized, i.e. reached a state of equilibrium. The sub-figures on
the right give us information on two topics. Firstly, we can see that the Runge-Kutta time
integration method of order 4 is quite satisfactory since the total energy fluctuates very little
and is stable over time. Furthermore, by comparing the sub-figures on the left, we can see
that the total energy is conserved in relative value to within 10−6 for series 1 and 1 bis and
10−7 for series 2 without apparent divergence. The second piece of information from the
figures on the right is that the fluctuation of the total energy is always a very small fraction
of the interaction energy, at worst ≃ 1% for series 1 and 1 bis and at best ≃ 0.005% in
the subseries 128 × 128 of series 2. Having such a small ratio is important as all the effects
we want to observe in these simulations result from the interaction Hamiltonian, so it is
important that its effect on the system is larger than the numerical errors and uncertainties.
The fact that the ensemble mean of H̄(3) is always much larger than the maximum deviation
from energy conservation confirms that this constraint is satisfied.

Finally, we can point out that the ratio of the energies of the left sub-figures is a physical
variable of the system. As such, it should not depend on the size of the numerical box if
it has reached the thermodynamic limit. In the figures, we can see that there is a certain
dependence on the size while agreeing on the order of magnitude, but also that the larger
subsets are much closer to the thermodynamic limit. This is why the following figures focus
on these subseries. We will return to the question of reaching the thermodynamic limit in
the last section when we find that the dynamics depend little on the size of the system by
showing that modes with different momenta but the same wavenumber have close dynamics.

4.3 Fermi-Dirac golden rule versus simulation

In the approximation underlying the Fermi-Dirac golden rule, the evolution of the observable
⟨b̂q⃗(t)b̂†

q⃗(0)⟩ or its classical field version is purely exponential with a scaled damping rate Γ̄q

2
with Γ̄q given in equation (1.59). In figure 4.2, we represent, on the left, the evolution over
time of this observable ⟨bq⃗(t̄)b∗

q⃗(0)⟩ normalised by the population n̄q of the thermodynamic
equilibrium for the first 16 modes on each half-axis of the lattice for the subseries 128 × 128
of each series and on the right, a numerical estimate of the damping rate of this observable
for these same modes and this same subseries 128 × 128 (from top to bottom: series 1,
then 1 bis then 2). By mode on a half-axis, we mean modes of wave vector of the form
(± 2l

nFBZ
x

, 0) or (0,± 2l
nFBZ

y
, 0) with l ∈ J1;nFBZ

x/y /2K. For a given l, the 4 vectors on each of the
half-axes play symmetrical roles for a square array. The observables of these 4 modes must
therefore behave in the same way because they are subject to strictly the same evolutionary
equations. We have therefore averaged the signals of these 4 modes to obtain the overall
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Figure 4.2: In the left-hand column, we show the absolute value of our target observable in
the 128×128 subseries for each series, reduced to the thermodynamic equilibrium population,
with which it coincides at the initial time, for the first 16 modes per half-axis, i.e. whose
wave vector is of the form (± 2n

nFBZ
x

, 0) or (0,± 2n
nFBZ

y
) with n integer between 1 and 16. We

have averaged the signals of the four modes of equal n since they are equivalent in the square
quantization box. In the right-hand column, we plot the damping rates as a function of q̄.
The black dots are taken from the curves in the left-hand column, each point is taken as the
inverse of the time at which the amplitude of the signal has decreased by a factor of 1/e. The
red dashed line corresponds to an affine fit in q̄ while the blue corresponds to a quadratic
fit. Finally, the black dashed line is the Landau-Beliaev damping rate (divided by two) as
calculated by the Fermi-Dirac golden rule (1.59). Figures (a) and (b) are from series 1, (c)
and (d) from 1 bis and (e) and (f) from 2.
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averages of the observable with a statistical uncertainty reduced by a factor of 2. Note that
the temporal correlation function we represent is strictly equal to the average population of
the thermodynamic equilibrium at the initial time. This is why all these curves must start
at 1, which is the case on the figures. We also notice very well the not quite exponential
damping at short and long times, as our theory predicts 3, with these "bounces" that we can
see in the correlation function. This is a consequence of the richer structure of the self-energy
function, which has a cut-off line from a branch point in addition to a pole in its analytical
extension. Since the damping is not quite exponential, it is difficult to extract a damping
rate by fitting. Instead, to obtain an estimate of a rate, we determined the time t̄1/e after
which our temporal autocorrelation observable has decayed by a factor 1/e ≃ 0.368. If the
Fermi-Dirac golden rule were correct, then we would have a perfect match between these
rates Γ̄q

2 = 1/t̄1/e. It is therefore the inverse of this time that we represent in the figures in
the right-hand column (black dots), rates determined directly from the curves of the figures
in the left-hand column. 4 In the black dashed line, we plot the rate (divided by two) from
the Fermi-Dirac golden rule (1.59). The red and blue dashed lines correspond to affine and
quadratic fits of the black points. It is the slope obtained by the affine fit that we used to
estimate the Γth thermalization rate, i.e. that of the q̄ = 1 modes.

It can be seen that the modes decay more slowly than the golden rule prediction. Never-
theless, the obvious linearity of the decay rates at 1/e to low q̄ does not contradict this and
supports the idea that these simulations are indeed in the weak collision regime and not in
the hydrodynamic regime.

4.4 Comparison between Green’s functions theory and nu-
merical simulations

In this last section we present the results of our simulations for the deviation between the
reduced signal and the pole approximation. In particular, the figures in this section all
represent the quantity

⟨bq⃗(t̄)b∗
q⃗(0)⟩

n̄q
eiε̄q t̄ − e−iΣ(q̄,ε̄q+i0+)t̄ (4.1)

for values q̄ equal to 1/4 and 5/16. In equation (4.1), the self-energy function Σ(q̄, ω̄)
is calculated to order 2 in H̄(3). Forming this quantity is equivalent to subtracting from
the curves in the left-hand column of Figure 4.2 the prediction of the e−iΣ(q̄,ε̄q+i0+)t̄ pole
approximation that is obtained numerically by performing integrations (3.17) and (3.18) and
then retaining the 0th-order ω̄ = ε̄q + i0+ pole approximation. Recall also that n̄q = 1/ε̄q
according to the equipartition law of classical physics. As Σ is calculated to order 2 in H̄(3),
the imaginary part gives back (within a factor of 2) the damping rate of Fermi’s golden
rule; on the other hand, the real part describes a shift in the eigenpulsation of the modes
due to their interactions, which escapes the golden rule and contributes to the phase of the
signal. We compare these results with the predictions of the diagrammatic Green’s functions

3Let us note however that the non-exponential departure is not specific to the two-dimensional case.
Indeed, Fermi’s golden rule which predicts a purely exponential damping is never valid at short times, whatever
the order in ϵ and the dimensionality of the system.

4Only 15 points are counted because the fundamental mode has not damped sufficiently to be assigned a
time t̄1/e.
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Figure 4.3: Series 1: deviations from the pole approximation of the autocorrelation function
as in the equation (4.1) for different lattice sizes and different wavenumbers in the lattice.
Red is associated with the real part of the signal, blue with its imaginary part. The colored
area corresponds to the statistical uncertainty on the mean given by the usual formula
(standard deviation)/√ntrajnmode with nmode the number of mode of the same wavenumber
on the axis. Time is in units of 2/Γ̄q, Fermi’s golden rule prediction for the classical field
(1.59). (a) The signal for the three subseries of different sizes for the modes with q̄ = 1/4 on
the semi-axes of the lattice. Each color gradient is associated with a lattice size gradient (the
lightest corresponds to the smallest lattice and the darkest to the largest). (b) The signal of
modes of momentum q̄ = 5/16 for the sub-series of size 64 × 64, we compare the signal of
the modes on the axis (red and blue) and on the off-axis modes (orange and green) defined
in note 5.

method with a calculation of the self-energy function, at all ω̄ pulsations, at order 2 and at
all orders in ϵ.

As a reminder, the power counting argument discussed in Section 3.3 of Chapter 3 sug-
gests that in the two-dimensional case, the pole approximation is not sufficient to predict
phonon damping, even at low temperatures. For Fermi’s golden rule to be applicable, a
second parameter, 1/u, must be small. Our simulations attempt to confirm or refute this
fact by time integration at all orders in H̄(3) and ϵ. We present the different results per
series. The colour and shape code is identical in all the following figures: the red colour
is associated with the real part of the signal and the blue colour with the imaginary part.
The solid lines represent the results of the simulations. The dashed lines are associated with
a diagrammatic prediction at all orders in ϵ while the dotted lines are associated with the
prediction at order 2. The darker the colour, the larger the system size.

4.4.1 Series 1

Let us start by considering series 1, which is characterised by the parameters ρξ2 = 10 and
ϵ = 1/2. Figure 4.3a shows the deviation (4.1) for the phononic modes with momentum
q̄ = 1/4 for systems with sizes. For a perfect achievement of the thermodynamic limit, these
three subseries should give strictly the same results since the considered correlation function
should not depend on the extensive variables of the system anymore. We see on this figure
that the three subseries agree well even if we remark that the real part has not completely
converged except at short times. Notice the structure of this signal: an abrupt increase in the
deviation from the pole approximation before an oscillating convergence towards it at long
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Figure 4.4: In series 1, for simulations in the lattice with 128 × 128 physical modes, the
deviation from the pole approximation of the temporal correlation function (4.1) for two
distinct modes of the lattice. Shapes and colors of the curves identical to the figure 4.3, see
its description as well as the text for details. By numerical integration of the equations (3.17)
and (3.18) of chapter 3, we obtain a prediction at all orders in ϵ (dashed) and at order 2 in
ϵ (dotted). (a) The signal for the phononic modes of momentum q̄ = 1/4. (b) The signal
for modes of momentum q̄ = 5/16 and which are outside the axes of the lattice. Figures (c)
and (d) are the equivalent of (a) and (b) for series 1 bis.

times. This structure will be seen again in all future figures as well as in the diagrammatic
predictions. In sub-figure (b) we compare on-axis and off-axis modes 5 of same momentum
q̄ = 5/16 in the intermediate sub-series of size 64×64. Again, any difference in the dynamics
of these two modes can only be an effect of the finite size of the system. The conclusion
we draw is the same as for sub-figure (a), the dynamics are broadly similar even though the
modes have not perfectly converged with each other. It should be noted that, by nature,
thermodynamic convergence for this gap is difficult to achieve since we are trying to extract
and highlight a subdominant term in the dynamics.

In Figure 4.4 we focus on the largest subset, closest a priori to the thermodynamic limit,
and compare the signal with the predictions of the diagrammatic Green’s functions methods
obtained by numerical integration of equations (3.17) and (3.18) in Chapter 3. Sub-figure

5 By off-axis modes, we mean the 8 modes with coordinates (±3nFBZ
x /2, 4nFBZ

x /2) and
(±4nFBZ

x /2, 3nFBZ
x /2) in the numerical wave vector lattice. The scaled wavenumber of these modes is in-

deed equal to q̄ = 5/16. This mode was chosen precisely for the "Pythagorean triplet" 52 = 32 + 42 which
matches an on-axis mode with the off-axis modes of the same wavenumber. For reasons of disk memory
economy, we record only the 16 smallest modes on each axis for each series, which is why we do not have the
q̄ = 5/16 on-axis mode for the larger 128 × 128 grid because this mode is of coordinates (±20, 0) and (0,±20)
on the numerical array. Finally, note that the signal of these Pythagorean modes has been averaged over the
8 modes of the same wave number on the grid (and not only 4 as for the modes on the axes).
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Figure 4.5: In series 2, several gaps from the approximation of the pole of the autocorrelation
function as in (4.1) compared according to the size of the lattice on the one hand and the
position of the mode in the lattice on the other. Shapes and colors of the curves identical to
the figure 4.3, see its description as well as the text for details. (a) The signal for the three
subseries of different sizes for the modes q̄ = 1/4 on the lattice axes. (b) The signal of the
modes of wavenumber q̄ = 5/16 for the sub-series of size 64 × 64, we compare the signal of
the modes on the axis (red and blue) and off-axis modes (orange and green).

(a) still is for the q̄ = 1/4 modes and sub-figure (b) for the (off-axis) modes with q̄ = 5/16. A
very good qualitative and quantitative agreement between the Green’s functions predictions
(dashed and dotted lines) and the simulations (solid lines) can be seen, but it is at very
short times that the best agreement between the different curves is obtained. In addition,
we present results for a variant of series 1 with a lower reduced temperature ϵ = 1/3. This
is the series that we introduced earlier as 1 bis and that we illustrate in sub-figures (c) and
(d). Comparison with subfigures (a) and (b) of series 1 shows that the two variants are very
similar, at most we note without surprise that the prediction of the diagrammatic method
at order 2 in ϵ agrees less well with that at all orders in series 1 than in series 1 bis. The
change ϵ = 1/2 → ϵ = 1/3 may not seem impressive but it should be remembered that the
curvature of the spectrum for the scaled wave vector q̄ is in ϵ2 as are most of the physical
properties we study such as damping rates. This change introduces a factor 2.25 on the value
of ϵ2, which is not negligible. As suggested by the table in section 4.1 which summarises the
parameters, series 1 and 1 bis, although of different parameters and regime, are both deep in
the low collisional regime and indeed there is little difference in our simulations. One should
remember the lessons of chapter 3 : at order 2 in ϵ, u is the only physical parameter (besides
ϵ) of the system. Series 2 explores the effect of a change in this parameter on the phonon
dynamics.

4.4.2 Series 2

Series 2 corresponds to a regime of much stronger interactions than series 1, since its param-
eter u is much smaller (from u ≃ 18 we move to u ≃ 3). We have already pointed out that
the first modes of the numerical grid are close to the hydrodynamic regime as Γth/ωmin

q⃗ ≃ 1.
We plot in Figure 4.5 the deviation (4.1) of the autocorrelation function from the pole ap-
proximation for each of the subseries of different sizes, as we did earlier for series 1. First,
we notice that the simulations converged much better with the size of the system: in sub-
figure (a) the curves for the q̄ = 1/4 modes for different sizes of the simulations show almost
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Figure 4.6: In series 2, for simulations on the lattice with 128 × 128 physical modes, the
deviation from the pole approximation of the autocorrelation function as in (4.1) for two
distinct lattice modes. Shapes and colors of the curves as in the figure 4.3, see its legend as
well as the text for more details. By numerical integration of the equations (3.17) and (3.18)
from chapter 3, we obtain a prediction at all orders in ϵ (dashed) or at order 2 in ϵ (dotted).
(a) The signal for the phononic modes on the axes and of wavenumber q̄ = 1/4. (b) The
off-axis modes signal with wavenumber q̄ = 5/16.

indistinguishable curves; the same is true in sub-figure (b) which compares the q̄ = 5/16
mode on-axis and off-axis in the 64 × 64 size simulations. In contrast to series 1, therefore,
the thermodynamic limit is clearly reached.

Figure 4.6 focuses on the 128 × 128 subseries and compares the simulations with the
diagrammatic predictions. The predictions at all orders in ϵ (dashed lines) agree very well
with the simulations while those at order 2 diverge (dotted lines). This good agreement was
not a foregone conclusion. Indeed, as we learned in chapter 3, the diagrams that the Green’s
functions prediction ignores, even if we restrict ourselves to the order ϵ2, differ by their order
in 1/u. By decreasing u, we have thus increased the contribution of these subdominant
diagrams, which should worsen the error that the diagrammatic method makes at order 2 in
H̄(3). However, the agreement remains just as good.

The diagrammatic theory by Green’s functions that we have successfully tested in our
simulations for different parameter regimes can be adapted to the quantum case and thus
compared with real measurements from experiments. We believe we have thus established
the ability of our numerical scheme to describe these two-dimensional superfluids. It is
a very versatile computer program from which we can explore other parameter regimes.
For example, increasing the size of the system would allow us to probe the transition to
the hydrodynamic regime. Another direction directly accessible without having to adapt the
program would be to explore the concave γ < 0 case where it is now the fourth-order diagrams
in H̄(3) that characterise the dissipative dynamics, the second-order diagrams having a purely
real contribution to the eigenenergy function in the pole approximation.

4.5 Conclusion of the second part

We have performed simulations based on Landau and Khalatnikov quantum hydrodynamics
to study phonon damping in a two-dimensional boson gas in the superfluid and low tem-
perature regime. The simulations showed a significant deviation from the exponential decay
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predicted by Fermi’s golden rule even at low temperatures. This is a surprising behaviour
and different from the three-dimensional case where the Fermi golden rule becomes exact
in the limit where the temperature tends to zero. In Chapter 3, we used the diagrammatic
method of N body Green’s functions to study the phonon dynamics of the system. By this
method, we obtain a prediction at order 2 in the H(3) interaction Hamiltonian (cubic in the
phonon creation and annihilation operators) which qualitatively confirms the deviation from
Fermi’s golden rule visible in the simulations, conducted at all orders in H(3). Furthermore,
the diagrammatic method informs us that, in two dimensions, the Fermi golden rule does
not become exact in the very low temperature limit and suggests the existence of a second
"small parameter" necessary for its validity.

The characterisation of this discrepancy is a new result, to our knowledge, and is in a
regime close to recent experimental observations in two-dimensional gases of cold atoms [14,
15, 16].
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Résumé

Dans une première partie, nous étudions la possibilité d’obtenir des états comprimés de spin
nucléaire dans un gaz d’hélium 3 à température ambiante en cellule par mesure quantique
non destructive en continu. Comme les atomes dans l’état fondamental interagissent très peu
avec l’environnement, nous les couplons à une faible fraction d’atomes dans l’état métastable
par des collisions d’échange de métastabilité, ces derniers pouvant interagir avec un champ
électromagnétique en cavité. Nous avons considéré deux configurations dans lesquelles on
mesure un nombre de photons ou une quadrature du champ en sortie de la cavité. Nous
prédisons qu’une compression significative du spin nucléaire de très longue durée de vie
pourrait être ainsi obtenue avec des valeurs des paramètres à la portée d’une expérience.

Dans une seconde partie, nous étudions, à température non nulle, l’amortissement des
modes de phonons dans un superfluide bidimensionnel d’atomes froids bosoniques ou d’hélium
4 liquide. À cette fin, nous utilisons un hamiltonien effectif de basse énergie, celui de
l’hydrodynamique quantique de Landau et Khalatnikov qui vaut même dans le régime
d’interactions fortes pour peu que l’on connaisse l’équation d’état du système dans son état
fondamental. Par des simulations de champ classique très précises, à notre connaissance ja-
mais effectuées pour ce type d’hamiltonien, nous mettons en évidence des écarts significatifs
à la décroissance exponentielle prédite par la règle d’or de Fermi, contrairement à ce qui se
passe dans le cas tridimensionnel. Ces résultats sont confirmés par la méthode diagramma-
tique des fonctions de Green à N corps (dans son domaine de validité que nous précisons) et
nous semblent accessibles à une vérification expérimentale.

Mots-clés Métrologie quantique, compression de spin, spin nucléaire, hélium 3, mesure
quantique non destructive en continu, fonction d’onde Monte-Carlo.

Condensat de Bose-Einstein bidimensionnel, superfluide, amortissement des phonons,
hydrodynamique quantique, processus Landau-Beliaev, fonction de Green à N corps.

Abstract

In a first part, we study the possibility of obtaining nuclear spin squeezing in a room
temperature helium-3 gas in a cell by continuous quantum non-demolition measurement.
As atoms in the ground state interact very little with the environment, we couple them to
a small fraction of atoms in the metastable state by metastability exchange collisions, the
latter being able to interact with an electromagnetic field in an optical cavity. We have
considered two configurations in which either a photon number or a quadrature of the field
at the cavity output is measured. We predict that a significant very long-lived squeezing of
the nuclear spin could be obtained in this way with experimentally feasible parameter values.

In a second part, we study, at non-zero temperature, the damping of phonon modes in
a two-dimensional superfluid of cold bosonic atoms or liquid helium-4. For this purpose, we
use an effective low-energy Hamiltonian, the Landau-Khalatnikov quantum hydrodynamics
Hamiltonian, which holds even in the strong interaction regime as long as the equation of
state of the system in its ground state is known. By means of very precise classical field
simulations, to our knowledge never carried out for this type of Hamiltonian, we highlight
significant deviations from the exponential decay predicted by Fermi’s golden rule, contrary
to what happens in the three-dimensional case. These results are confirmed by the diagram-
matic method of many-body Green’s functions (in its domain of validity that we specify)
and seem accessible to experimental verification.

Keywords Quantum metrology, spin squeezing, nuclear spin, helium 3, continuous
quantum non-destructive measurement, Monte-Carlo wave functions.

Bose-Einstein condensate in 2D, superfluid, phonons damping, quantum hydrodynamic,
Landau-Beliaev process, many-body Green functions.
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