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Preface

Cancer: a villain with a long career

The word kapkivoo (pronounced karkinos and meaning, in Greek, crab) was employed
for the first time in the 4th century BC by the Hippocratic physicians to describe non-healing
swellings or ulcerous formations whose projections seemed to reach out as the claws of a crab.
These crab-like tumors were, in the words of Galen (131-203 AD), filled with — and caused by —
a «black bile formed in the liver» (Papavramidou et al., 2010). At that time, the actual content
of these lumps was not exactly known but, in the case of breast cancer, the fact that they were
easily detectable by visible signs or palpation due to their superficial location has allowed the
existence of depictions dating back many years: first breast cancer descriptions from 3500 years
ago were found in medical papyri from Ancient Egypt (Brawanski, 2012; Helgason, 1987;
Lukong, 2017). Its rarity in prehistory could be due to the low life expectancy, although there
are also no descriptions of the multiple neoplasms that can affect young people (Salaverry,

2013).

Many years later, Galen used the term oncos (the Greek word for swelling) to describe
tumor masses or edema, which would subsequently constitute one of the capital signs of
inflammation. However, all these groundbreaking scientists did not think of cancer as a curable
disease (Gill et al.,, 2015). Towards the end of the middle age, where advancement of medical
science was still halted by religious reasons, the Galenic humoral theory encountered several
opponents. Novel hypotheses, covering a broad range of unusual explanations for the breast
cancer origin were formulated, such as chemical imbalance, coagulation of defective lymph,

curdled milk, depressive mental disorders and even celibacy, to cite just a few examples.

Nevertheless, fresh ideas began to flourish. In 1757, Henri Le Dran proposed the surgical
removal of tumor masses before they spread to the regional lymph nodes, introducing the
concept of a disease that progresses in stages. But it wouldn't be until 1882 when radical
mastectomy for breast cancer was introduced by William Halsted and, even if this procedure
did not improve overall survival, a significant decrease in local recurrence was evidenced (from
56-81% reported at the time, to only 6%). Moreover, Thomas Beatson, in his publication of

1896, presented a new major milestone in the breast cancer treatment: the anti-hormonal
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therapy (Rayter & Mansi, 2003).

Concurrently, the 19th century saw a landmark event being born: the cell theory,
credited to the scientists Theodor Schwann, Matthias Jakob Schleiden and Rudolf Virchow. T.
Schwann, a German physiologist, together with M. J. Schleiden, a German botanist, stated in
his writings that all living organisms are composed of one or more cells and the products of
cells in their structures. R. Virchow, a German biologist and doctor, contributed with his tenet
in Latin: “"Omnis cellula e cellula”, which translates to "All cells arise from pre-existing cells”
through the process of division. This precept contested the theory of spontaneous generation,

still current at that time (https://www.biologyonline.com/dictionary/cell-theory).

Virchow associated for the first time the source of cancers with otherwise normal cells
(Wagner, 1999). He hypothesized that carcinomatous cells could derive from the activation of
quiescent cells in normal tissues, perhaps triggered by an important irritation in the tissues
(https://www.cancer.org/content/dam/CRC/PDF/Public/6055.00.pdf). It would take until the
end of the 20th century for this theory to gain relevance, when a strong link was highlighted
between certain cancers and long-term inflammation (Balkwill & Mantovani, 2001; Coussens

& Werb, 2002; Mantovani et al., 2008).

The rise of surgical resections in earlier times made way to the emergence of innovative
diagnostic and treatment methods, with the mammography and the radiation therapy arising
in the first half of the 20th century and major discoveries in the field of pharmacology in the
second half, like the initial U.S. approval of the anti-estrogen drug Tamoxifen for hormone
receptor-positive cancers in 1977, or the monoclonal antibody Trastuzumab, approved by the
U.S. Food and Drug Administration (FDA) in 1998 and indicated in patients with HER2-positive

tumors, as well as the emergence of chemotherapeutic compounds.

In these last two decades, substantial developments in many fronts as genetics,
molecular biology and bioinformatics led to significant progress in the understanding of the
cancer biology, which allows, in turn, developing more efficient and effective tools in cancer

prevention, early detection and treatment.

Although the advances in this area occur exponentially, the global cancer burden
remains high, with more than 19 million new cases worldwide in 2020 (Global Cancer

Observatory; available from http://gco.iarc.fr/). Whereas the average age of the population
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increases, there is a shift from infections towards common chronic conditions of the elderly,
like vascular diseases, neurological disorders and cancer, and frequently linked to
environmental factors and lifestyle. In Robbins words, «there is no escape: it seems that
everything people do to earn a livelihood, to subsist, or to enjoy life turns out to be (...) possibly
carcinogenic. » (Kumar et al., 2017). Population aging is likewise the cause of the augmentation
in the absolute burden of disease and numbers of deaths by cancers. However, if treatment
and care expansion is continued, the cancer mortality and morbidity will significantly fall in
developed countries and, in a sort of trickle-down effect, less advantaged communities will
benefit from this trend too, attaining a global improvement in public health around the world

(Gill et al., 2015).

We are facing a new era where precision medicine will aim to offer tailored therapy for
cancer. The emphasis of medical care is shifting from the management centered on a particular
disease, affecting people in the same way, to focusing on the different manifestations of the
same disease in each individual patient. In addition, a new model of practice is required, where
the health professionals can work together with the patients to choose the best treatment and

support options in every case, as it is starting to thrive in the personalized medicine approach.

Perhaps, in future decades, novel and promising advances to find safer compounds and
to overcome drug resistance, such as identify and block the alternative pathways that lead to
tumor escape, will be found. Coupled with enhanced interventions at the radiological and
surgical level, they will be able to bring the cure to a greater number of afflicted individuals
while enabling cancer to turn into a chronic disease concomitant with a good quality of life,

easing the burden of what this diagnosis represents for patients today (Lukong, 2017).
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Breast cancer

A. Epidemiology

1. A major public health issue worldwide

Breast cancer is the first cause of cancer in women worldwide, with a global incidence
of 2 261 419 cases in 2020 and responsible for 6.9% of all cancer deaths (both sexes, all ages)

(Global Cancer Observatory; available from: http://gco.iarc.fr/) (Sung et al., 2021).

Despite the fact that the incidence rates had stabilized or decreased in several countries,
breast cancer is still the most common neoplasm in women (Allemand et al., 2008; Pollan et
al., 2010). In France, the number of new breast cancer cases in females at all ages was, in 2020,
58 083, being the most frequent malignancy in women and whose age-standardized incidence
rate for both sexes exceeded the prostate cancer rate (99.1% versus 99%, respectively) (Global

Cancer Observatory; available from: http://gco.iarc.fr/).

Philippe Autier et al., in their study of the mortality trends in breast cancer between 30
European countries, have uncovered that there was a median reduction in breast cancer
mortality of 220% in 15 countries. In the U.K,, it has been demonstrated that intervening in
several factors ranging from smoking cessation support to improving detection through
screening and developing more effective treatments — such as improved surgery, radiotherapy
and drugs like tamoxifen and, more recently, anastrozole and letrozole —, the death rate
showed a diminution of 38% since the start of 1980s (Death Rates in Top Four Cancer Killers
Fall by a Third over 20 Years, 2014). In France, from 1989 to 2006, mortality decreased by 11%.
The greatest reductions in mortality were observed in the group of women aged <50 years old
(median 37%) (Autier et al., 2010). This improvement in survival has been most likely due to
progress in the different treatment alternatives (medical, surgical, radiological) together with
screening programs, and more accurate diagnostic and staging. According to all published
data from European studies, as demonstrated by the EUROSCREEN Working Group, the
reduction in breast cancer mortality associated with mammographic population-based service
screening programs is in the range of 38-48% for women screened with sufficient follow-up

time (Broeders et al., 2012).

In a report of the Munich Cancer Registry, overall survival (OS) improved among women
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without metastases at diagnosis. Survival after development of metastases was not improved,
but the anatomic sites involved varied over the years, shifting from bones to liver and central

nervous system, probably due to the increasing use of systemic treatments (Hurk et al.,, 2011).

B. Morphological classification

Breast cancer is a clinically and molecularly heterogeneous disease, which covers a
broad spectrum of entities, some of them with a particular approach and treatment.
Classifications become of crucial importance to address questions such as which tumors will
have an indolent course and which will grow rapidly, or which patients will require more

aggressive treatments (Weigelt & Reis-Filho, 2009).

Invasive breast cancers are classified by pathologists into different subgroups regarding
several clinicopathological variables as the histological grade and type and other features such
as the presence of lymph-vascular invasion, lymph node involvement, and the expression of
biomarkers by classical immunohistochemistry, mainly hormone receptors (HR) and HER2, with

different prognostic and predictive implications (Table 1).

MOLECULAR SUBTYPE

Luminal A Lasenilvial B HER2 overexpression Triple negative
HER2 negative | HER2 positive
% of all BC 50 15 15-30 12-17
Histological grade Low High Intermediate to high High
5-year survival (%)(*) 94,3 90,5 84 76,3
Metastasis Bone Bone, lungs Bone, brain, liver, lungs Lungs, brain
Younger women, afro-
Particularities Good prognosis Aggressive clinical behavior american, BRCA1
mutations
Estrogen receptor Positive Positive Positive Negative Negative
Progesterone receptor Positive Low Any Negative Negative
HER2 Negative Negative Positive Positive Negative
Ki67 Low High High High High

ER: estrogen receptor; HER2: human epidermal growth factor receptor 2; Ki67: proliferation index; PR: progesterone receptor

Table 1. Breast cancer molecular subtypes according to immunochemistry markers (modified from
(Merino Bonilla et al, 2017)). (*) Cancer StatFacts: https://seer.cancer.gov/statfacts/html/breast-
subtypes.html.

In order to inform about the tumor’'s aggressiveness, the Nottingham combined
histologic grade (Elston-Ellis modification of Scarff-Bloom-Richardson grading system), also
known as the Nottingham grading system, is the most widely used today, and it hoists

independent prognostic significance (Rakha et al., 2008). It takes into account three
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components: 1) the architecture, more precisely the tubule formation; 2) the nuclear
pleomorphism; and 3) the mitotic rate (the proliferative activity) (Sinn & Kreipe, 2013; Weigelt
& Reis-Filho, 2009). Each of these categories are scored 1-3 and the sum of these individual
values, which varies between 3 and 9, will correlate with a grade from | for well-differentiated

to Il for poorly differentiated (Elston & Ellis, 1991).

The latest edition of the World Health Organization (WHO) classification of breast
cancers (5th edition, published in 2019) recognizes as many as 44 distinct histological subtypes,
which provide important information for clinical management (Cserni, 2020). The greater part
is constituted by invasive carcinomas of no special type (NST) (formerly named invasive ductal
carcinoma, not otherwise specified [IDC-NOS] before the 2012 edition of the WHO
classification). This entity represents up to 75% of all breast cancers and constitutes a diagnosis

of exclusion (Reis-Filho & Lakhani, 2008).

Conversely, special type carcinomas, which account for up to 25% of all breast cancers,
harbor a particular histological pattern in more than 90% of their mass. With the exception of
invasive lobular carcinomas (the most frequent in the special type group) and apocrine cancers,
and in contrast with the IDC-NSTs, these special types are very homogeneous, pertaining to
only one molecular subtype (Weigelt et al., 2008, 2009). It is extremely important to recognize
and report these histological subtypes since each one carries a particular prognosis and they
are associated, for the majority of them, with an improved survival compared to IDC-NST, even
when it comes to mixed tumors merging more than one morphological variant in the same
lesion (Ellis et al., 1992). Mixed morphologies were defined as the occurrence of special types

in 10-90% of the tumor, admixed with IDC-NST.

ER was the most important biomarker associated to breast cancer for years, because of
its significance in treatment, together with PR, also measured in tissue samples and which
provides clues for prognosis. Additionally, with the PR gene dependent on ER, its expression
might indicate that the ER pathway is intact. Both proteins are routinely assessed by IHC on
formalin-fixed, paraffin-embedded (FFPE) tissue slides, and the cut point to distinguish
"positive” from “negative” cases for ER and PR is 1%, this means that in patients whose tumors
show at least 1% ER-positive cells, hormone therapy should be considered. In France, the
established cut-off is 10% (Cornish, 2020). Equally, HER2, an oncogene that encodes a

transmembrane glycoprotein with tyrosine kinase activity and the third main actor among the
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breast cancer biomarkers, is evaluated in order to refine prognosis and individualize the
patients who could benefit from therapies targeting this protein (Hammond et al., 2010;
Slamon et al., 1987). The screening test is performed by IHC and equivocal cases (score 2+) are

confirmed by in situ hybridization (Wolff et al., 2018).

Putting aside the HR-positive tumors and the HER2-positive tumors, what is left is a
hodgepodge with a “triple-negative breast cancer” (TNBC) tag encompassing all tumors that
lack the expression of ER, PR and HER2. These tumors share the absence of recognized
molecular targets for therapy, and therefore a poor prognosis (Chacon & Costanzo, 2010). They
also generally have a larger size, with no correlation between tumor size and node status, they
have a special pattern of metastasis with a propensity for visceral involvement and harbor a

more aggressive biological behavior (Dent et al., 2007).

In the conventional practice, this wide diagnosis of exclusion, which affects 12 to 17%
of women afflicted with breast cancer, emerges from the accurate assessment of the status of
estrogen receptor (ER), progesterone receptor (PR) and HER2 status. The same phenotype

characterizes the basal-like cancers, along with the positivity for keratin-5 (Foulkes et al., 2010).

Of note, is it worth mentioning here that some rare histological subtypes harboring a
TNBC phenotype are associated to a very good prognosis, such as adenoid cystic, apocrine

and secretory carcinomas.

C. Molecular classification

1. Perou and the molecular portraits revolution

Tumor classification is a dynamic process, combining multiple sources of information.
Traditionally, TNM staging system, published by the American Joint Committee on Cancer
(AJCC) and based on tumor size, regional lymph node involvement and metastasis, has been
reported as a measure of the extent of cancer, to establish a clinical stage (before treatment)
and a pathological stage (after treatment, i.e. surgery), and to give advice on the prognosis

(Figure 1).
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AJCC TNM system for staging breast cancer — 8° Edition
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Figure 1. TNM staging system for breast cancer (adapted from AJCC Cancer Staging Form
Supplement (last updated 7 January 2021)).

The advent of genomic techniques enabled to relate the different biological behaviors
of morphological groups with tumor gene expression profiles. This had led to the development
of a new and more accurate classification to complete and improve the anatomical criteria
informed in the TNM. The 8™ and latest version of this staging system, effective since January
1%, 2018, integrated biomarkers status and multigene panel status, switching from
morphological to molecular features, and entailed a major change in the study of these entities.
The interest of these recent changes is not only ontological but also the contribution in terms
of practicality and applicability to the stratification of patients who could benefit from a tailored
therapy (Koh & Kim, 2019). What was historically thought as a single disease with several
variants, emerged in fact as distinct disorders likely to be discriminated by its molecular
predominant features, as ER expression. As Perou et al. remarked on their revered gene-
expression profiling study, ER-positive and ER-negative breast cancers are indeed distinct
diseases, and same conclusions could be stated as the characterization efforts evolve. The
identification of novel groups might be related to different molecular features of mammary
epithelial biology, namely ER+/luminal-like, basal-like, HER2-enriched and normal breast-like,
in accordance with prognosis and responses to treatment (Dent et al., 2007; Perou et al., 2000)

(Table 2).
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HIGH HR LOW HR
EXPRESSION EXPRESSION

ER+ BASAL-LIKE ERBB2+ NORMAL BREAST
LUMINAL A LUMINAL B

HIGHLY BREAST LUMINAL BREAST BASAL ERBB2 NORMAL BREAST GENE
EXPRESSED EPITHELIAL CELLS EPITHELIAL CELLS ONCOGENE EXPRESSION PATTERN (BASAL
GENES EPITHELIAL CELLS AND

ADIPOSE CELLS)

IMMUNOHISTO- KERATINS 8/18 KERATINS 5/6, 14, HER2
CHEMISTRY 17, EGFR

ER+ HER2- ER+ HER2+/- ER- HER2- ER- HER2+ ER+ HER2-
PR+ KI67- PR+ KI67+ PR- PR- PR+ KI67-

Biomarker status

GRADE 1/2 2/3 3 2/3 1/2/3

Intermediate/
Poor

OUTCOME Good Poor Poor Intermediate

ER: estrogen receptor; HR: hormone receptor; PR: progesterone receptor

Table 2. Tumor gene expression profiles (Dai et al., 2015; Perou et al., 2000).

According to the research conducted by Sgrlie et al., based on the study of expression
patterns of 540 stably expressed genes (« intrinsic genes »), tumors were classified into five
intrinsic subtypes: luminal A, luminal B, HER2 over expression, basal and normal-like, setting
the standard for new classifications. The first main divergence criterion was the expression of
ESR1 gene, coding for ER and other genes representative of luminal epithelial cells. When
present, variation in this expression separated luminal tumors into two groups: the largest pool,
termed luminal subtype A, held the highest ER cluster expression; the smaller group, or luminal
subtype B, showed low to moderate expression of the genes mentioned above and high
expression of a different set of genes of unknown function. Tumors negative for genes from
the luminal/ER cluster were characterized by the presence of epithelial basal cell keratins such
as KRT5, KRT14 and KRT17, and thus named basal-like subtype. A HER2-enriched subtype was
identified from high expression of the genes in the ERBB2 amplicon, including HER2. Finally,
normal breast tissue-like group exhibited an expression profile including genes of non-
epithelial cells like adipocytes and others (Sarlie, 2004; Sarlie et al., 2003). This class may
correspond actually to an artefact related to the transcriptomic analysis technique, due to an
overproportion of benign cells over carcinomatous cells in the tumor samples analyzed.
Furthermore, it has been demonstrated that the risk and timing of disease recurrence also
depends on tumor characteristics, such as the growth rate through the analysis of Ki67
expression and the molecular subtypes (Ribelles et al., 2013). In a retrospective study

performed by Shim et al,, relapse rates were ranked by subtype, with luminal A tumors having
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the lowest (5.02%) and triple negative tumors having the highest risk of recurrence (16.76%)
(Shim et al., 2014). The same trend was found by Sgrlie regarding the overall survival in different
subgroups, where luminal B tumors turned out to be a particular clinical group with a worse
outcome due to relapse, and basal-like and HER2-positive subtypes correlated with the

shortest survival time (Sarlie, 2004).

To illustrate the complexity achieved by classifications, in the TNBC group, 6 different
subtypes have been described by Lehmann et al. on the basis of gene expression profiles:
basal-like 1 (BL1) enriched in cell cycle components; basal-like 2 (BL2) of probable
basal/myoepithelial origin; immunomodulatory (IM) enriched for genes related to immune cell
processes; mesenchymal (M); mesenchymal stem-like (MSL); both linked to cell motility and

ECM interaction; and luminal androgen receptor (LAR) (Lehmann et al.,, 2011).

Classifications become even more complex. In breast cancer, cell type and steroid
receptor signaling are deeply related. Through the study of gene expression microarrays,
Farmer et al. identified a third class of tumors, together with basal and luminal subtypes,
characterized by apocrine features and positivity for the androgen receptor (AR). Based on this
data, a classification regarding the steroid receptor activity could be argued: luminal (ER and
AR positive), basal (ER and AR negative) and molecular apocrine (ER negative and AR positive).
Continuous improvement in these categories could have a positive impact on treatment
through the identification of novel drug targets and adjustments in actual endocrine therapy

(Farmer et al., 2005).

A different insight of classifications was presented by Curtis et al. on the basis of an
integrated analysis taking account of genomic and transcriptomic data. Ten novel subgroups
with particular clinical outcomes were defined by cluster analysis stratifying tumors in 10
integrative clusters (IntClust). Once more, breast cancer heterogeneity, especially of TNBC, was
brought to light in view of the basal-like tumors distributed among different groups (Curtis et

al, 2012).

Notwithstanding the efforts of the different study groups trying to find the ideal
stratification for breast cancer entities, the current classification could be simplified to three
basic subtypes in order to come to a deeper understanding of these categories, i.e., luminal,
HER2 over-expression and triple negative tumors subtypes (Prat & Perou, 2011; Reis-Filho &
Lakhani, 2008).
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Luminal tumors harbor a profile including HR expression along with luminal keratins 8
and 18, accounting for 70% of all the breast tumors. Taking HER2 expression as a criterion, an
approximate differentiation in three subgroups can be made: 1) luminal A tumors (negative for
HER2) with a higher expression of ER-related genes, 2) luminal B tumors positive for HER2,
which have a tendency to be of higher grade and, therefore, of poorer prognosis, and 3) luminal
B tumors negative for HER2, that display a great proliferation capacity, determined by the Ki67
score. This biomarker is usually assessed by manual counting of positive nuclei on IHC stained
slides, but is subject to certain limitations such as the lack of consensus regarding the cut-off

for proliferation rate and the intra and interobserver variability.

HER2 over-expressed tumors frequently exhibit TP53 mutations and a histological high
grade. Although these tumors are sensitive to neo-adjuvant chemotherapy and a targeted anti-
HER2 treatment is available, they harbor a higher risk of relapse in the absence of complete
pathological response. This, added to the fact that not all HER2 over-expression tumors

respond to trastuzumab, confers this subtype a poor prognosis.

Basal tumors are (generally) negative for HR and HER2, and display high expression of
keratins 5, 6, 14, 17, EGFR (epidermal growth factor receptor) and proliferation genes, also a
high frequency of TP53 mutations. They are likely to be of high grade and larger size, affect
younger patients and harbor an aggressive clinical course with a high risk of relapse (Dai et al.,

2015; Rakha et al., 2008).

Molecular subtypes were introduced at the St Gallen 2011 conference (Goldhirsch et
al, 2011), and slightly modified at the St Gallen 2013 meeting (Goldhirsch et al., 2013), in order
to find the way to transpose them into a hybrid morphological / immunohistochemical
classification applicable in routine clinical practice and used as orientation in decision-making

regarding treatment choices.

The proposition that came out of this conference was a tumor classification according
to immunohistochemical criteria with an adapted treatment for each immunohistochemical

class (Table 3).
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ER and PR-positive
HER2-negative
Ki67 low (<20%)

Luminal A

Low risk of recurrence according to genomic tests

ER-positive

HER2-negative

At least one of the following:
HER2-negative 3 g
Ki67 high (at least 20%)

PR-negative
Luminal B ; ; ! 3
High risk of recurrence according to genomic tests

ER-positive

HER2-positive or amplified
Any Ki67 status

Any PR status

HER2-positive

|ER and PR-negative

|HER2-positive or amplified

ER and PR-negative
HER2-negative

ER: estrogen receptor; HER2: human epidermal growth factor receptor 2; Ki67:
proliferation index; PR: progesterone receptor; TNBC: triple-negative breast cancer.

Table 3. Molecular classification according to St Gallen 2013 (adapted from (Goldhirsch et al., 2013)).

It is important to recall that, even if it is known that molecular analysis will provide major
insights into the classification improvement and refinement, the value of morphological
assessment, relatively simple, inexpensive and not very time-consuming, cannot be
underestimated. Often the identification of certain features on the histological samples can
guide the reasoning, as it happens, for example, with the presence of metaplastic elements
which are tightly linked to a basal-like phenotype. As Weigelt & al. rightly pointed out, there is
a genotypic-phenotypic correlation between morphological patterns and molecular traits
despite the molecular subtype (Weigelt et al., 2009). This is the case of basal-like ductal
carcinomas and metaplastic cancer, which, although sharing a molecular subtype, are
genetically different. This discrepancy could explain the different sensitivities of these entities
to treatments as chemotherapy. To cite another example, the medullary and adenoid cystic
tumors have an excellent prognosis even though they belong, according to their gene

expression profiles, to the basal-like subtype, more frequently associated with a poor outcome
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(Weigelt et al., 2008; Weigelt & Reis-Filho, 2009).

Nevertheless, sometimes a special histological type constitutes a distinct pathological
entity. Such is the case of micropapillary carcinomas, with peculiar histological features, a
recurrent luminal-B phenotype and significant association with genetic aberrations shared with
high-grade tumors. These findings suggest that the identification of micropapillary carcinomas
is not just a matter of terminology, since it denotes a whole separate disease with a poorer

prognosis than IDC-NSTs (Marchio et al., 2008).

2. Molecular signatures

Advances in the field of tumor genotyping have been of practical use in treatment
decision-making. Gene-expression profiling is a relevant means in personalized medicine: it
has the power to enhance the accuracy of the clinicopathological risk assessment in predicting
cancer prognosis, aiming to better stratify breast cancer patients for tailored treatment,
including therapeutic de-escalation (Buyse et al., 2006). The analysis of a set of genes that
compose a « molecular signature », when performed on cancer cells, can help predict which
patients will most likely benefit from adjuvant chemotherapy to reduce the risk of relapse and,
equally important, which patients might not need it, avoiding unnecessary heavy treatments
and the resultant adverse side effects. It is for such patients that it seems essential to identify
predictive factors of treatment efficacy. But this risk distinction is not always clear, principally
when it comes to early stage cancers or low-risk tumors, where the maximum usefulness of
these signatures is revealed. Additionally, genes issued from poor prognosis tumor profiling
could function as a rationale for the development of new tailored therapeutics (van 't Veer et

al., 2002).

Examples of these commercially available multigene panels, the so-called pure
signatures and the most widely used multigene assays worldwide, are Oncotype DX®-
Recurrence Score® (RS) (Genomic Health) (Paik et al., 2004) and Mammaprint® Netherland
Kanker Institute 70-gene signature (Agendia BV) (Cardoso et al.,, 2016; S. Tian et al., 2010; van
de Vijver et al,, 2002). These two assays are performed in centralized laboratories (in USA for
Oncotype DX® and in Netherlands for MammaPrint®) with results available in 8-10 days.
Combined signatures (panel of genes associated to clinico-pathological characteristics) include
EndoPredict® (EPclin) (Myriad Genetics Salt Lake City, UT, US) (Fitzal et al., 2015) and Prosigna®

risk of recurrence (ROR) (formerly denominated PAM50 test) (NanoString Technologies, Seattle,
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WA, US) (Gnant et al,, 2014; T. Nielsen et al., 2014; T. O. Nielsen et al., 2010; Parker et al., 2009)
(van de Vijver et al, 2002). Other signatures also used are Breast Cancer Index (BCl)
(BioTheranostics, San Diego, CA, USA) (Ma et al., 2008, p.) and HalioDX (Ignatiadis et al., 2016).
All signatures are suitable for the individualization of low-risk tumors that might not need
chemotherapy. The two combined tests (EndoPredict® and Prosigna®) are decentralized and
can be executed in any pathology laboratory, and can also identify which patients would profit

of more than 5 years of endocrine therapy.

All assays except MammaPrint® were designed for ER-positive breast cancer patients.
The ROR and EPclin signatures integrate clinical parameters, such as tumor size and node
involvement, the latter being the most significant prognostic clinical indicator in early-stage
breast cancer. It has been demonstrated that it is useful to predict response to pre-operative
neoadjuvant therapy (Dubsky, 2020). Low-score breast tumors were unlikely to respond to
neoadjuvant CT, tumor response attained 27% when treated with neo-adjuvant endocrine
therapy (NET), while breast tumors with high scores were resistant to neoadjuvant endocrine

therapy and, in general, strongly linked to a poor tumor response.

Some of these signatures have been validated in the prospective setting.
MammaPrint® has been included in the MINDACT clinical trial, which assessed the CT benefit
in groups of different clinical and genomic prognosis, the latter estimated with this molecular
signature (Cardoso et al., 2016). Oncotype DX® utility was proven by two clinical trials:
TAILORx, which confirmed the validity of the RS to identify the patients that could benefit of
endocrine therapy only (Sparano et al,, 2015), and RxPONDER, a phase 3, randomized clinical
trial to assess the significance of CT for patients with N1 and a low/intermediate RS (Kalinsky

et al., 2021).

More details of the main molecular signatures can be found in Table 4.
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70-gene signature 21-gene signature PAM 50 Genomic Grade HOXB13: IL17BR 11-gene assay
Mammaprint® Oncotype DX® Prosigna MapQuant DXtm BCI Endopredict®
(Agendia, Netherlands) (Genomic Health, US)  (Nanostring, US) (Ipsogen/HalioDX, France) (Biotheranostics, US) (Myriad Genetics, US)
Method Microarray gRT-PCR n-counter Microarray qRT-PCR GRT-PCR 'GRT-PCR
Material  Cryo/FFPE FFPE FFPE Cryo/FFPE FFPE FFPE
Analyzed 70 genes Genes: ER, PR, BCL2, 50 genes and 97 genes Genes: HOXB13, IL17BR, Genes: DHCR7, AZGP1,
data SCUBE2, Ki67, STK15, pathological criteria BUB1, CENPA, NEK2, MGP, STC2, BIRCS,
BIRC5, CCNB1, MYBL2, (tumor size and node RACGAP1, RRM2 UBE2C, RBBPS, IL6ST
HER2, GRB7, MMP11,  status) and pathological
CTSL2, GSTM1, CD68, criteria (tumor size and
BAG1 node status)
Prognostic Recurrence Recurrence Recurrence Recurrence Recurrence Recurrence
value (5 years) (10 years) (10 years) (5 and 10 years) (10 years)
Indications ER+/N- or N+ (1-3) ER+/HER2- /N-/ET HR+/HER2- ER+/N- (grade 2) ER+/N- ER+/HER2-
ER-/N- or N+ (1-3) ER+/HER2-/N+ (1-3)  N-or N+ under tamoxifen under tamoxifen N-or N+ (1-3)
under ET
Results RS =0to 100 ~ Molecular type 0to 10 0to 15 1
ROR =0 to 100
High High > 30 High High High
Intermediate Intermediate Equivocal Intermediate High
Low Low < 18 Low Low Low Low
Prospective MINDACT TAILORx OPTIMA UK ASTER 70s UNIRAD
assay LESS RxPONDER

qRT-PCR: real-time quantitative reverse transcription-polymerase chain reaction; Cryo: cryopreservation; FFPE: formalin fixed-paraffin embedded; ER (+ or -):
estrogen receptor status; N (+ or -): lymph node status; HER2: human epidenrmal growth factor receptor 2; ET: endocrine therapy; HR (+ or -): hormone receptor
status; RS: recurrence score ; ROR: risk of recurrence score; CT: chemotherapy; MINDACT: Microarray In Node-negative and 1-3 positive lymph-node Disease may
Avoid ChemoTherapy; TAILORx: Trial Assigning Individualized Options for Treatment Rx; RkPONDER: Rx for Positive Node, Endocrine Responsive Breast Cancer;
OPTIMA: Optimal Personalised Treatment of early breast cancer using Multi-parameter Analysis; ASTER 70s: Adjuvant Systemic Treatment for (ER)-Positive HER2-
negative Breast Carcinoma in Women over 70 According to Genomic Grade.

Table 4. Summary of the main prognostic molecular signatures used in early invasive breast
cancer (adapted from (Joyon et al., 2017; Naito & Urasaki, 2018)).

Gene expression among breast cancer subtypes, as shown by the examination of
molecular signatures, is not random. Interestingly, and despite the few genes in common
among these panels, the performances are comparable, that is to say, they pinpoint the same
cluster of poor prognosis patients (Fan et al., 2006; Sestak et al., 2018). Proliferation-related
genes, which appeared to lead the signatures’ performance, turned out to be one of the
strongest prognostic factors in patients with ER-positive disease. Their expression in luminal
tumors was quite heterogeneous, with luminal A tumors showing a low expression of
proliferation-related genes, which explains the fact that signatures are helpful in predicting the
risk of relapse in ER-positive tumors. ER-negative tumors, comprising both triple-negative and
HER2-positive tumors, displayed a high expression of proliferation-related genes and are thus
classified as high-risk of recurrence by all tests (Reis-Filho & Pusztai, 2011; Sotiriou & Pusztai,
2009). Relevant information has been extracted from a meta-analysis performed by Desmedt
et al. on microarray studies, respecting the clinical outcome in HER2-positive and basal-like
subgroups. Proliferation was identified as a major predictor in prognosis, along with
histological grade, in ER-positive tumors. However, immune response and tumor invasion

appeared to be the leading molecular processes linked to survival in triple-negative and HER2-
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positive subgroups, respectively (Desmedt et al., 2008).

As it follows from the above considerations, one of the limitations of molecular
signatures is that they are not useful for TNBC or HER2-enriched because these high-grade
tumors always fall in the poor prognosis category. Another important restrains are their very

expensive cost and their unavailability in less developed laboratories around the world.

More accessible prediction tools are “Adjuvant!” software, a web-based prognostication
and treatment benefit method for breast cancer, which uses an algorithm that combines
prognostic factors for treatment decision making, by calculating the reduction in the risk of
relapse (Olivotto et al., 2005), Predict Breast (https://breast.predict.nhs.uk/) (Wishart et al., 2010,
2011, 2012) and CTS (Clinical Treatment Score) (Sestak et al., 2018). While the first was
abandoned in 2011, the other two are still in use in clinical practice. Predict Breast is a
prognostication model that uses registry data to predict overall and breast cancer specific
survival in treated early breast cancer patients. CTS is a prognostic algorithm developed on the
Translational Study of Anastrozole or Tamoxifen Alone or Combined (TransATAC) cohort. It
includes clinicopathologic information about nodal status, tumor size, grade, age, and
treatment, and the 4-marker immunohistochemical score (IHC4) (which combines prognostic
information of 4 widely used IHC markers) to estimate distant recurrence for 0 to 10 years and
5 to 10 years after diagnosis (Buus et al., 2016; Cuzick et al., 2011; Dowsett et al., 2013; Sgroi et
al, 2013).

3. Decrypting the outcome of cancer (predictive and prognostic factors)

The stratification of patients into different outcome classes, according to patient and
tumor characteristics, allows the estimation of individual outcome prediction, constructed on
the basis of validated prognostic and predictive markers. These markers can be clinical,
morphological, biological or molecular, and some factors are both prognostic and predictive.
As clearly defined by Rakha, a prognostic factor is any characteristic that is predictive of the
patient's outcome unrelated to systemic therapy, while a predictive factor is a feature that
correlates with response or lack of response to a specific treatment. Thus, prognostic markers,
related to intrinsic tumor characteristics (such as tumor growth, invasion capacity and
metastatic potential) aid to decide whether a patient should be treated with adjuvant
chemotherapy and with which treatment regimen, while the choice among the different

treatment options is assisted by the predictive markers. Up to date, the three most important
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prognostic factors remain lymph node invasion, tumor size and histological grade (Fitzgibbons

et al., 2000; Galea et al., 1992; Rakha, 2013; Rakha et al., 2008).

Strategies to better define breast cancer, including a complete characterization of the
tumor microenvironment and the actors intervening in cancer development and progression,
like tumor epithelial, myoepithelial, and stromal cells, are ongoing challenges which endeavor

to find a better approach for patients. Currently treatment options for early breast cancer can

be seen in Figure 2.
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Figure 2. (Neo)-adjuvant systemic treatment choice by marker expression and intrinsic
phenotype. (A) With possible exception of selected cases with very low risk T1abNO. (B) Anti-HER2:
trastuzumab +/- pertuzumab. (C) Adenoid cystic or apocrine, secretory carcinoma, low-grade metaplastic
carcinoma. (D) Depending on level of ER and PgR expression, proliferation, genomically assessed risk,
tumour burden and/or patient preference. (E) Except for very low-risk patients T1abNO for whom
ET/anti-HER2 therapy alone can be considered. ChT, chemotherapy; ER, estrogen receptor; ET, endocrine
therapy; HER2, human epidermal growth factor receptor 2; NO, node-negative; PgR, progesterone
receptor; TNBC, triple-negative breast cancer (from (Cardoso et al., 2019)).

One of the most important future challenges will probably be to facilitate the transition
between traditional healthcare and personalized medicine, and to guarantee an extended
access to the system with an emphasis on early breast cancer cases to find the best treatment
strategy, avoiding toxic effect of unnecessary therapies improving patients’ outcomes (Andre

et al., 2010; Collins & Varmus, 2015; Torti & Trusolino, 2011).
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Pathology: the great digital
transformation

A. At the crossroads of morphology, molecular diagnosis,
personalized treatment and computer sciences

It is known that diseases have an anatomical substrate. Since its origins as a medical
discipline, intermingled with other branches of medicine still emerging, pathology put its
efforts into unraveling the causes behind the injuries that afflicted living beings. This
achievement started to bear fruit through the knowledge both from anatomy, with the practice
of dissections and autopsies, and from biology, looking for alterations at the cellular level that

could generate each clinical picture. The concept of organ-based disease had arisen.

The relationship that unites pathology with technological development is very close
and long-standing, and maybe the most outstanding milestone to illustrate it is the way the
microscope changed the practice of this specialty from the mid-nineteenth century onwards,

when this instrument became more available, efficient and at a decreasing cost.

Through the emergence of microscopy and the committed work of figures like Virchow,
Morgagni and Bichat in the correlation of histological and cytological findings with specific
physio-pathological processes, histopathology became more and more important, until
becoming an individual domain among specialties (Chan & Salto-Tellez, 2012). Modern
practice changed progressively with the emergence of technical advances as the fixation,
embedding and staining procedures for tissues study. It changed at an even more accelerated
pace since early days of last century with immunohistochemical staining, molecular methods,

genomics and, more recently, image processing and analysis by computational approaches

(Figure 3).
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Figure 3. Chronology of transforming milestones in pathology (adapted from (Salto-Tellez et al.,
2019, p.)).
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The long road of pathology moves towards a greater degree of detail, dominated these
last years by the switch from cell-based to gene-based causes of disease, to understand them
and explain them at a molecular level (van den Tweel & Taylor, 2010). This conversion from the
general to the particular is transforming medicine at the individual level, with the rising trend
of personalized treatment. Medical care has fluctuated from a generic approach of the diseases
to the subclassification of patients into smaller and more homogeneous groups based on
distinctive biomolecular features of both the patient and his/her disease. The role of the
pathologist, with increasing demands on diagnostics, is key in providing the scientific evidence

necessary to characterize tumors and enhance treatment.

As always, this transformation is boosted by technological advances. First, current
molecular diagnoses are mostly based on traditional or upgraded versions of
immunohistochemistry. Second, computational science and information technology brought a
fresh approach that is changing the specialty once again through big data management and
digital imaging systems, which are slowly replacing the traditional use of microscopes in
histopathology. A workflow in a modern pathology laboratory could be schematized as in

Figure 4.
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Figure 4. Tissue pipeline. Representation of the pipeline that a tissue sample would take, passing
through several traditional and molecular pathological tasks until deliverance of optimal results. Digital
pathology can be applied at the different steps of the path from management of databases to tools that
can be integrated in routine diagnostic (adapted from (Salto-Tellez et al., 2014)).

The first virtual microscope, developed in Baltimore in 1997, emerged from a
collaboration between the Department of Computer Science from the University of Maryland
and the Department of Pathology from the Johns Hopkins Medical Institution. This instrument,

described as “a realistic emulation of a high-power light microscope”, has surpassed today the
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possibilities of light microscopy. At that time, while the hardware was beginning to be available
in a relatively easy way, there was a lack of software that would allow the new technology to
work in the same way that a traditional light microscope did. The main problem was the
extremely large quantities of data and the need of both a powerful compression and a minimal
loss of information. Just to make a cursory comparison, at that time, an image occupied 35-

210 GB of raw data per slide versus 2-3 GB occupied by an image today (Ferreira et al., 1997).

With the expansion of the volume and data complexity of cancer specimens, pathology
laboratories face the challenge of an increasing workload, not only in the morphological setting
but also in the “special techniques” field. The bundle of immunohistochemical and molecular
tests required for diagnosis, prognosis or therapeutic decision-making is continuously
escalating, and it demands new working modalities to absorb this extra burden. Digital
pathology (DP), which is becoming broadly available, may enable the implementation of
artificial intelligence in the form of computer learning tools to boost certain tasks, such as
tumors classification, that will ultimately accelerate the administration of appropriate therapies
and accurate prognostication. Eventually DP, through telepathology facilities, could also allow
the flexible use of the pathologist expertise from different locations, with centralized slide
production and dispersal of diagnostic pathologists across or between regions (P. H. Tan et al.,

2020; Williams & Treanor, 2020).

B. Digital pathology and image analysis

1. From the conventional microscope to the computer screen

Personalized medicine started to open spaces through the traditional health care
workflow and changed the way in which diagnoses are made. Several constraints are still
encountered, sometimes related to the increasing demand, such as the lack of pathologists in
remote locations or the lack of training in special determinations or techniques required, or
related to insufficiently equipped laboratories. Other times, the concerns are linked to the

employed methods for assessment, such as intra and interobserver variability.

Modern pathology has found the answer to some of these issues in the implementation
of a digital workflow. The term digital pathology encompasses all associated technologies that

exploit digital images to enable improvements and innovations in current practice, while digital
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microscopy, another commonly used term, refers only to high resolution scanning of

histological slides and their subsequent storage.

Digital pathology involves the scanning of glass slides containing pathological
specimens into digital image files with purposes of interpretation, automated analysis and
archiving (Jara-Lazaro et al,, 2010). The combination of digitized pathology data with image
processing techniques is a real breakthrough both in diagnostics and research, in particular
after the introduction of artificial intelligence and its diverse subfields specifically adapted to
image classification through pattern recognition (see next chapter). Digital methods provide
efficient tools that allow the pathologists to choose when it is mandatory to deliver results in
a highly quantitative manner (i.e. biomarkers scoring) to increase its reproducibility and to

assist clinical decision making (Robertson et al., 2018).

It could be said that the functional unit of digital pathology is the so-called whole slide
image (WSI) or virtual or digital slide. This term refers to the full image of a histological section
captured with a scanning device and converted into a high-resolution digital slide that can be
viewed, managed, shared and analyzed on a computer screen/system. The slide scanner is
composed of four central elements: a light source, a motorized slide stage, objective lenses,
and a high-resolution camera for image capture. Two characteristics are essential for slide
scanners: the speed of scanning (to obtain images in times compatible with clinical diagnosis)
and the resolution and quality of the images that are obtained, as they are the basis of the
analysis by pathologists. The balance between acquisition speed and resolution will be dictated
by the type of activity for which the scanner will be used (research projects, intra-operative

consultations, etc.) (Frenois, 2019; Zarella et al., 2018).

The acquisition time varies depending on the tissue surface, the used magnification and
the scanner type but, in general, it requires between less than a minute (with a high-speed
scanner) and 20 minutes for a complete slide at a high magnification. The product is a single
high-resolution digital file of between 200 MB (Megabytes) and 5 GB (Gigabytes) always
depending on the tissue size and the chosen magnification. Special attention must be paid to
the quality of WSI to prevent subsequent problems when performing image analysis. Image
artifacts such as tissue folds, blurred zones and pen marks need to be eliminated or corrected,
as well as batch effects, introduced at the moment of the staining, derived of the presence of

sub-cohorts prepared with different colorations and digitizing devices, or when several batches
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are required to analyze large clinical series (Heeke et al., 2019; Kothari et al., 2013).

Routinely, once scanned, quality of WSl is first checked to assess if they are exploitable
or not, and then the insufficiently good WSI have to be rescanned. These additional tasks entail
a double loss of time in the workflow. Novel methods have been developed to overcome this
matter, allowing the automatic assessment of WSI while the scanning process is in progress, or

later as a quality control tool (Ameisen et al,, 2013, 2014).

Most of the digital microscopy systems use similar functioning principles. They are
basically composed of an optical microscope system (motorized microscope or scanner), an
acquisition system with a software to control the scan procedure, and display devices coupled
to a digital slide viewer. These devices work with conventional slides (25 x 75 x T mm) which
are digitized in different focused planes through the z-axis to emulate the fine focus of a
conventional microscope (see below) (Rojo et al., 2006). Besides the listed above, extra
elements may be required to implement a digital pathology structure, such as image storage
systems, data sharing systems for the transmission of images and more complex image analysis

software.

The process starts when a proper slide is placed in the scanner and an overview of the
whole slide is acquired that will serve to localize the sample. Subsequently, the region of
interest is manually or automatically delimited, and the image settings (acquisition mode,
magnification) and focus points are adjusted. Focus points, manually or automatically
introduced, are selected areas in the image, where the optical system will adjust itself to obtain
a maximal sharpness. Then, during the scan stage, the virtual slide is created through the
sequential acquisition of square or rectangular microscopic fields — patches — that are later
stitched into a unique, seamless image. The software then generates the intermediate
magnifications from the most detailed image using subsampling algorithms, which allow the
visualization of the full WSI at all possibly magnifications. The product is an image termed
pyramidal (Figure 5), where every point is designated by coordinates for both the location in
the image (width, length and height; X, Y and Z - see below — respectively) and magnification

(G).
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Figure 5. Visualization of a multi-resolution representation of an image (pyramidal image). The
image acquisition system takes a series of shots (tiles) moving from one corner of the slide to the
opposite corner. These sets of files are assembled into an image of maximum dimension. The resizing
algorithms then generate the intermediate magnifications from the most detailed image, allowing the
image to be visualized at different resolutions, from the initial detailed image to a low magnified image.
When the user browses the slide from the entire preview, he can access tiles of different magnifications,
from low to high, up to maximum resolution (base image) (adapted from (Ameisen et al., 2012)).

The result of the whole acquisition procedure is one or multiple image files and their
associated metadata files, compressed in a specific file format depending on the employed
device (Ameisen et al., 2012). Generally, to overcome image size problems, instead of being
saved as a whole, images are split in small tiles, lighter to manipulate, saved in tiled TIFF format.
As the viewer software can generate an image of the region to be displayed at a desired
magnification, it is possible to scroll continuously between the lower and maximum
magnification. By this method, the slide viewer will only access and display the tiles of the tissue

area being requested at a given time, overcoming the issue of large file size of digital images.

An additional technique is of great usefulness when tridimensional microstructures or
cell clusters are present such as in cytology preparations, or just in case of thick tissue sections,
allowing to explore their width by examining the slide through the entire thickness of the cut.
Known as z-stacking or focal plane merging, it consists of capturing successive images obtained
at varying focus levels in the thickness of the section, meaning that in each image different
areas of the sample will be in focus. Then these patches are combined into a single final image,

to increase the depth of field (Figure 6). The result emulates the fine focusing of a classical
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microscope. However, the use of this technique increases the acquisition time and data in

proportion to the number of scanned and saved planes.
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Figure 6. Z stacking. The stack acquisition allows to scan the thickness of the tissue section to capture
the signals at different levels. Several images are acquired at every plane and then compiled in a single
picture while keeping, for each position (x,y), the most intense pixel on the z axis.

The so-produced WSI are a great source of data at multiple scales depending on the
resolution (e.g. x20, x40) and z-stack level, along with color, shape and texture information.
Such characteristics, added to the fact that pathological slides are not macroanatomically
oriented (contrary to the case of radiological images), make WSI ideal for a wide range of
computer tools, plus the point that this sort of visual information cannot be easily assessed by
the human eye, mostly when it comes to very subtle shades of color or texture (Niazi et al,
2019). Extra assets of digital slides over glass slides are that they are safe from breaking, loss,
and fading staining, keeping their quality constant over time. With the aid of viewer software,
and differing from what happens with a conventional microscope, a whole slide can be seen at
once, zooming-in on areas of interest, without changing the objectives or having to refocus,
and so avoiding fragmented views that could cause the pathologist to miss relevant things
(Figure 7). Moreover, several slides can be displayed side by side. This option may be
particularly advantageous when looking at multiple pictures of tumors over time, to compare
structural details between slides or to evaluate different stainings on the same tissue area. It is
also useful to annotate and to share the slides for teaching purposes, second opinions or simply
to replace a multi-head microscope. Furthermore, storage issues such as the need of
conditioned large rooms, and the laborious task of storing and retrieving glass slides (during
which, inevitably, a number of them will be misplaced and lost) can be surmounted. Clearly,

there are still drawbacks: the slides must be scanned, with the cost in equipment and human
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resources that this carries; then, there has to be checked that scans are not blurry and, in a
more general vision, an IT infrastructure (servers, network, screens, etc) is needed (with
redundant storage units to prevent loss of information in case of breakdown). But certainly,
the opportunity given by digitized WSI to be treated by Al-based algorithms to improve the

performances is a real game changer in the routine diagnostic workflow.
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Figure 7. Visualization software. Example of the dashboard (a) in OLYMPUS OIyVIA 2.9 software. It
allows the display of images with .vsi format. Here, zooming tool has been used to enlarge the tissue (b)
and image properties are visible (c).

2. Digital image analysis

Digital image analysis (DIA) refers to the intention of obtaining significant information
from images in an objective and reproducible manner via specialized software, reducing human
bias (Riber-Hansen et al, 2012). In other words, DIA is an attempt to make the software

"understand" or "read" the histological slides.

The main objective of DIA is to increase the amount and quality of data that can be

acquired from a tissue section, by providing quantitative measurements of histological features
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that could make possible to carry out statistical analyses. These features present in the WSI can
be catalogued in three increasing levels according to their biological interpretability. The first
layer or pixel level includes raw data corresponding to image properties such as color and
texture, which completely lack of biological correlate but is precisely useful because of its
objectivity. The next, called object level is based on the notion of segmentation (see below): the
features, such as shape, texture and spatial distribution, are now related to tissue objects, for
instance, cell structures. The upper or semantic level gathers and integrates the features from
lower levels to formulate a meaningful biological concept in the form of a classification, e.g.,

the percent of tumor cells in a WSI (Kothari et al., 2013).

Given the magnitude of the information contained in the unique features of the WSI,
the first requirement is to choose which areas are most important or relevant for a particular
study. The selection of these regions of interest (ROI) is necessary to limit the bias on the results,
avoiding the inclusion of zones with artifacts, or normal tissue zones when the study concerns
the tumor cells. Besides, WSI are cropped into smaller non-overlapping or overlapping squares

or tiles of, e.g. 256 x 256 pixels, to optimize processing time and computer efficiency.

Pre-processing aside, the analysis usually starts with biological object demarcation
(cells, compartments, etc.) in order to recognize and quantitatively assess certain signals (for
example, cell staining), morphology and tissue architecture, to be ultimately applied to assist
diagnosis, prognosis and prediction (Aeffner et al., 2019). The process of partitioning a digital
image into multiple sections or sets of pixels, assigning a particular label to every pixel, is
known as segmentation. The aim of segmentation is to “translate” the information contained
in an image to something more suitable and easier to be analyzed by the computer. This duty
can be performed through visual assessment by an experienced pathologist, which proves to
be a difficult task especially when it comes to mIHC/IF, or by semi-automated or automated
analysis, in which the software pre-selects ROIs to be verified by the pathologist, or the ROIs
are fully recognized by a trained software, respectively (Stack et al., 2014). The automated DIA
uses a series of mathematical algorithms that process images, enabling the classification of
their elements based on their color, texture, and/or context. Color is defined by the amount of
red, green, and blue present in a pixel usually on an 8-bit scale of 0 to 255. For brightfield
microscopy, which is absorptive, 255 represents the brightest of maximal color (white) intensity

and O represents the absence of color (black); however, for fluorescence-based digital
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pathology, which is absorbance coupled with emission, single color images representing
individual fluorophores are converted to a gray scale, and the intensity is then measured on a

similar scale (Webster & Dunstan, 2014).

To summarize, WSIs that overwent the scanning stage can be subsequently assessed
with an image analysis software, with the benefit of automatizing the detection of parameters
that cannot be accurately perceived by the human eye. These kinds of software usually include
user-trainable algorithms, which can be adjusted until optimal results are obtained. After an
initial step where several parameters are corrected, the different phases of the analysis include
tissue segmentation to examine each compartment separately (e.g. tissue vs background or
tumor vs stroma vs background if an antibody has been used to stain tumor cells), cell
segmentation with the use of nuclear staining as a counterstain, and biomarkers’ signals
identification and quantification with the phenotyping tool, that uses machine learning
algorithms. This is an example of what a DIA workflow consists of: an iterative process where
algorithm parameters are adjusted according to the desired objective; next, the user runs the
algorithm on a subset of images, and then the performance is evaluated and the parameters
are possibly readjusted until sufficient algorithm performance is achieved. The contribution of
the pathologists reviewing the results within the process is essential in at least two senses, to
verify cell detection and correct phenotyping on one hand, and to contribute with their
knowledge about the pre-analytical variables and the correlation with biological and

pathophysiological expertise of the specialty on the other (Aeffner et al., 2019).

3. Functions and utility of digital slides

The so-obtained virtual slides can be suitable for different purposes. According to Al-
Janabi et al., digital pathology may have four basic main applications: diagnostics, research,
education and archiving (Al-Janabi et al., 2012). Several elements are common to the different
spheres of application, such as the slide annotation tools, that are employed for training
purposes, diagnostic practice and research, through identification of ROIs, tumor size
measurements, etc. These benefits are appreciated at different stages, and from the point of
view of the patient, faster turnaround times for diagnosis, improved access to expert opinion
and more robust reports are just some of the assets of digital pathology (Williams & Treanor,

2020). Functions of digital pathology are exposed in Figure 8.
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Figure 8. Functions of digital pathology. A summary of the different utilities that can be achieved with
digital pathology are depicted: the digitalization of pathology slides for storage and multi-site
discussion, the automated scoring of IHC and automated counting of hybridization signals, the
automated identification of tumors over tissue slides for subsequent microdissection, and the more
recent functionalities involving artificial intelligence (adapted from (Salto-Tellez et al., 2014)).

This functionality refers to the replacement of conventional light microscopic
examination of stained glass slides (H&E, IHC) with examination of WSI on screen by a
pathologist to make a diagnosis (Williams & Treanor, 2020). The digital slides contain
information that may be extracted in a computerized manner to standardize scorings and to
automatize or semi-automatize diagnostic process. The basis of many of these assignments
relies in the translation of digital arrangements and intensities into quantitative scores and in
pattern recognition, assignable to characteristic features of a given diagnosis and quantitation
of various biomarkers. The possibility to compare unknown histological entities that may
appear in daily practice with diagnoses portrayed in textbooks or already present in archival
cases, represents a great advance and a non-negligible gain of time for the patient and also
for the pathologist. More interesting, digital pathology may permit the implementation of
innovative Al and computer learning tools to refine tumor classifications that will ultimately
simplify and accelerate treatment choices according to an accurate patients’ stratification, and

also a more precise prognostication, taking the quality and speed of patient care to a superior
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level.

The patients, ultimately, would derive the most benefit from this technology, which may
help them to receive the correct diagnosis sooner. An expert professional in very specific
subjects can be reached anywhere as long as that person has a screen and an internet
connection, and WSI are easier to handle in the case of presentation for discussion at
multidisciplinary meetings or tumor boards. In addition, since information sharing is facilitated,
the transmission of medical information in case of decentralization of medical care (patient

transferred to another health care center for follow-up) is ensured and accelerated.

Image analysis has been used to quantify routinely evaluated markers in breast cancer.
Excellent performances have been demonstrated for ER and PR, while more sophisticated
systems are required for HER2 due to the distinctive localization of these proteins (membrane
staining for HER2 versus nuclear staining for HR) (Garberis et al., 2021). In fact, and contrary to
what happens with nuclei, the lack of membranous counterstain makes segmentation more

complex (Shamai et al.,, 2019).

Diagnosis over frozen sections will be discussed in the section "D. Telepathology”.

A digital pathology images archive, well organized and associated to clinical
information, signifies an invaluable scientific resource for the research community. Digitized
slides can be rapidly retrieved for academic purposes and clinical trial review, and together
with the corresponding databases, represent the ideal substrate for the development of
computerized algorithms (Williams & Treanor, 2020). Publicly available digital slide repositories
are an excellent contribution for knowledge development, not only making raw data available
for confirmation and validation in scientific publication context, but also sharing valuable
resources to further development and test of algorithms in diverse research teams, and to

compare histopathological information from different clinical trials (Hipp et al., 2011).

Digital pathology allows the constitution of excellent resources for undergraduate and
postgraduate education. The access to instructive and unusual cases, even between different
centers, is facilitated, and small tissue samples or singular findings are no longer a constraint.

Since all students evaluate the same tissue section, it also eliminates the slide-to-slide
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variability. In addition, the use of WSI as an educational tool permits the trainer and any
number of trainees to share cases in real time, and to have an instantaneous feedback of the

experience.

Other education contexts are also beneficiated by the use of digital slides. Case
presentations at tumor boards, and pathology presentations in general, can dispose of high-
quality images with less preparation time, and flexibility concerning image regions on a slide

and different resolutions, that can be chosen during the presentation.

The switch from physical depositories of slides to high-resolution images storage has
several advantages. On one hand, it eliminates the risks linked to the conservation of glass
supports (discoloration, damage, loss over time) while it also makes it easy for the pathologists
to access to archived cases and to compare them with current analyses. To this object it is
important to maintain a minimum searchable database with specimen-specific reports, so that
slides may be rapidly retrieved, and to guarantee a periodic backup of the digital archive. On
the other hand, it reduces the healthcare costs associated with the production of additional
slides and duplicate tests when a patient is transferred to another hospital (Chong et al., 2020).
However, the costs of digital slides storage must be taken in consideration, even if, due to the
rapid advances in computational field, these prices are constantly decreasing with the increase

in server capacity development.

When working with fluorescent techniques, it should be considered that the signal
emitted by fluorochromes gradually fades out over a few weeks, months or years, even under
optimal storage conditions. Taking into consideration the ability of certain scanners to acquire
fluorescent slides, another important benefit of digital pathology is the possibility of

conserving these images for long time.

4. Multiplexed images analysis

Thus far, to explain the basis of digital pathology, examples have been taken from slides
stained with classic chromogenic methods. Nonetheless, there are image analysis tools capable
of identifying and quantitating all targets of interest generated by a plethora of techniques,
and that includes brightfield mIHC and mIHC/IF. This purpose is feasible using a multispectral

camera able to capture intervals (> 10 nm) across the entire visible spectrum (420 nm to 720
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nm) and a spectral library, which contains the information of each fluorophore emission
spectra, as well as the autofluorescence spectrum from an unstained tissue, in order to provide
the correct parameters to unmix and quantitate the cases of study. Several image analysis

software packages can support this type of assessment.

Fluorescent mIHC has a plus that makes it suitable for DIA, due to the additive nature
of the fluorescent signals and the directly proportional relationship that links the signals’
intensity to the concentration of antigens to be detected. The feasibility of the analysis is the
result of the different spectral characteristics of the fluorophores and their fluorescent intensity
quantitation. Taking the example of the Vectra system, the original observations are spectrally
unmixed into as many images as the number of “colored” markers. Then the software enables
the visualization of these different pictures by constructing a composite image in which several
layers that can be shut on and off independently to aid visual assessment (Stack et al., 2014;

van der Loos, 2008).

To alleviate the task of automated tissue segmentation when several biomarkers are
used, specific cellular attributes can be pointed out by the employment of biological landmarks.
Thus, highlighting some tissue reference points, the software (and the pathologist) can
relatively easily separate, for instance, tumor from non-tumor zones, or to pinpoint each cell

individually.

5. Current obstacles and potential solutions

As a new technology in course of adoption, digital pathology still encounters several
technical barriers to overcome, such as data storage, transmission, processing and
interoperability, apart from its still high cost. Extra equipment (servers, networks, computers,
scanners) and staff, as well as additional steps such as slide preparation and scanning should
be integrated into the workflow, in such a way that times to deliver an attended result are not
too extended, and ensuring high-quality images necessary to arrive at a consistent diagnosis.
Detailed information about different scanning devices can be consulted in (Patel et al., 2021).
As examples of the parameters that could negatively influence image quality, the erroneous
selection of focus points during the scanning or the absence of color normalization can be
mentioned. Fortunately, methodologies for color management such as spectral analysis and
proper calibration can help to deal with differences in image acquisition, staining conditions,

and other coloring issues. Focusing and compression ratio are other problems that can be
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introduced by slide scanners, and that are not simple to handle by the user, basically because
algorithms behind these operations are non-modifiable. Among the adaptable factors
influencing image quality, glass histopathology production is one that could be easily
improved, avoiding section wrinkles, thick tissue sections, dull microtome blades, and bubbles

in the mounting media (Weinstein et al., 2009).

Visualization is another important point of improvement to soften the transition from
analog to digital slides assessment, mainly because of the low screen refreshment and
especially because of the poor representation of colors by certain screens (either because some
colors cannot be displayed -gamut problem or color difference from one device to another- or
because some colors are replaced by others). With the aid of technology, the “desk equipment”
should be optimized in such a way that the pathologist proceeds with a similar method as
using a conventional microscope (for example, creating a special mouse that allows to z-
navigate on images in a more intuitive way) to make the most of a new work environment. In
sum, a major evolution of the pathologist's workstation should be considered to adapt it to

technical advances.

Data sharing limitations slow down the impact of the digital slides embracing. On the
one hand, the open data and open code are not largely established; scarcity of publicly
available datasets including both patient data and annotated images, as TCGA, restricts the
progress in the field. On the other hand, technical challenges due to the enormous amounts
of imaging data generated by slide scanners complicate the information sharing. This difficulty
is intensified by the fact that techniques such as TMAs and novel molecular approaches
generate even larger datasets, and by its dependence on the specific software used. Since no
universal data format is in widespread use, each vendor implements its own proprietary data
formats, analysis tools, viewers and software libraries. Pathologists become a kind of "hostages”
of the digital solution used in the laboratory, and they do not have the possibility of testing
the services of others vendors, seriously affecting not only the pathologists, but also the
interoperability (Goode et al., 2013). The lack of standardized procedures makes more difficult
to validate tools on new datasets and, vice versa, datasets generated with different pieces of
software may not be able to work with; even if efforts are taking place to achieve to a
normalization of methods, as is the «case of DICOM regarding WSI

(https://dicom.nema.org/Dicom/DICOMWSI/). Digital Imaging and Communications in
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Medicine (DICOM) is the international standard for the use of medical images and their related
information. With its origins in radiology, it expanded to cover other specialties that use images
in their daily practice as well. The DICOM Standards Committee Working group 26, in an effort
to make digital pathology more universal, developed standards for storage, display, sharing
and management of WSI. A pathology images system based on DICOM stimulates a rapid
growth of digital slides technology applications, providing the basis for image annotation and
DIA (Cornish, 2020; Herrmann et al, 2018; Rojo et al., 2009; Singh et al, 2011). The FDA
approved the first WSI system for primary diagnosis in surgical pathology in 2017 (Evans et al.,
2018).

Nonetheless, open-source solutions are beginning to gain ground to ease the handling
of WSI (W. C. C. Tan et al., 2020). Libraries to simplify the reading and manipulation of digital
slides of multiple vendor formats are freely available, such as OpenSlide
(https://openslide.org/) (Goode et al., 2013) or Bio-Formats
(https://docs.openmicroscopy.org/bio-formats). A detail of supported image formats can be
found in https://qupath.readthedocs.io/en/latest/docs/intro/formats.html.  Open-source
software is also integrating image analysis routines, being two of them QuPath
(https://qupath.github.io/) (Bankhead et al, 2017) and ASAP (Automated Slide Analysis
Platform) (https://computationalpathologygroup.github.io/ASAP/#home). In a study using a
colorimetry-based evaluation method, these WSI viewers generated similar images (Cheng et
al., 2020). There is still a long way to go; however, to convert such appliances into widely used
products, starting by providing training, support, maintenance and adaptation to specific

required tasks to obtain its maximal profits.

C. Telepathology

1. Pathologists here, there and everywhere...

The advent of digital pathology not only can help to reduce the physical transport and
archival storage of glass slides. It also facilitates the sharing of digital pathology images and
accompanying clinical information by the means of network connections to remote sites to be
assessed by a pathologist, giving rise to what is called telepathology. Falling under the category
of telehealth, the delivery of pathology services over a distance have a range of applications,

such as clinical remote interpretations (telediagnosis), teleconsultation, colleagues’ advice for
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difficult or rare cases, slide conferences and panels, educational purposes or medical research

(Al-Janabi et al.,, 2012).

Telepathology refers also to the sending of image files to make a diagnosis, but the
greatest advantages come from the use of image exchange platforms and the possibility of
sharing information in real-time. The scope of this technology is vast, it covers not only the
problem of remote places where there is a shortage of pathologists but also the need of
pathology expertise in small centers where the full-time presence of a pathologist is not
justified. This is particularly interesting when it comes to respond requests for intra-operative
consultations regarding the analysis of frozen sections. Moreover, it improves patient care
quality through easier and faster consultation between professionals, resulting in more

accurate diagnoses and therefore better treatment management.

Some of the evoked arguments against an extensive application of telepathology are
its elevated cost, and the wrong beliefs on telepathology as a method neither fast enough nor
precise (statement based on the quality of the obtained images) for its use over frozen sections,
even if a good average accuracy has been demonstrated (Dietz et al., 2020; Gephardt & Zarbo,

1996).

Canada has been at the forefront of the implementation of telepathology. A successful
telepathology program for frozen section diagnoses, in the absence of an on-site pathologist,
has been running since 2006 at the University Health Network (UHN) in Ontario, Canada. The
results with WSI in terms of accuracy are equivalent to that accomplished with light microscopy,
with at least two pathologists reviewing the case and communicating the diagnosis to the
surgeon within 14 to 16 minutes from receiving the tissue sample. A final report is signed out
when the slides assessed by telepathology are reexamined by light microscopy in conjunction
with the FFPE sections of the case (Evans et al., 2009, 2010). The Eastern Quebec Telepathology
Network is another fruitful experience that started in 2011 and that allowed to provide high
quality pathology services since then, alleviating the difficulty of covering such a large territory

(Tétu et al.,, 2014).

As reflected in the UHN experience, it is crucial to establish that the pathologist will
arrive at the same diagnosis regardless of the methodology employed. Before the
implementation of a digital pathology system, all centers should carry their own validation

procedure, needed to ensure that the WSI system can reliably work in a clinical daily practice
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(Hanna et al, 2015). For instance, a variety of tasks, such as diagnosis, frozen sections
assessment, teaching and supervision of residents, have been executed both in a conventional
fashion (using light microscopy) and by means of remote digital pathology services to compare
their performances in a study at the Farde Central Hospital in Norway. The results have shown
a very high concordance between the diagnoses achieved by both methods, with a shorter
turnaround time for remote digital reporting of cases (Vodovnik & Aghdam, 2018). Further
information on validation is listed in
https://digitalpathologyassociation.org/_data/cms_files/files/DPA-Healthcare-White-Paper--
FINAL_v1.0.pdf (access October 28", 2022). In France, the Pathology Laboratory at the Rennes
University Hospital has experienced the transition towards a modern workflow in less than two
years, being the first in deploying a comprehensive digital pathology system
(https://www.atlanpolebiotherapies.eu/news/the-first-in-france-the-university-hospital-of-
rennes-has-deployed-the-1st-comprehensive-digital-pathology-system-thanks-to-the-
nominoe-fund/;  https://healthcare-in-europe.com/en/news/bringing-digital-pathology-to-

the-hospital-environment.html).

2. ...with a “little” help of technology

Several years have gone by since the first photographs of blood smears were sent via
video, in 1968 in the USA. Throughout this time, telepathology applied the available imaging
technology in different ways. Four modes can be mentioned: 1) static image type, prior to 2000,
involving histological photographs (snapshots) transmitted from camera-equipped
microscopes via e-mail or stored on a shared server to be assessed by the pathologist/s
anytime (i.e.,, asynchronous telepathology); 2) dynamic image type, more common from 2000
to 2007, where either the images are transmitted in real time (streaming) from a video camera
(video microscopy), or the pathologist can use the robotic functions of a microscope to operate
it remotely (robotic microscopy); 3) WSI system, also called “virtual” microscopy, the most
popular since 2007, where the development of slide scanners that can rapidly create a high-
quality virtual image from an histological section to be addressed via Internet allows a faster
view of the digital image at various magnifications; and 4) hybrid methods, also known as multi-
modality telepathology, which combine WSI with video or robotic microscopy (Dietz et al., 2020;

Pantanowitz et al.,, 2014).

WSI system comprises both the slide scanner and the required software to view the
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virtual slides on a computer monitor or cell phone screen. The representative images
corresponding to the pathological diagnoses are saved on the server computer. In this way,
they are available for long-distance consultations, allowing the pathologist to work from home
or from any location around the world, and to easily access to revisions or opinions from
colleagues. Moreover, the investment and labor costs of WSI are lower than those of robotic

microscopy (Jara-Lazaro et al., 2010; Ribback et al., 2014).

Nevertheless, several factors including costs, technology restrictions, resistance from
pathologists (e.g. reluctance, skepticism, technophobia) and lack of standards, limit the
widespread use of telepathology. Other issues to consider, derived of the use of
telecommunication systems, slow down the implementation of these technologies, such as
security and privacy concerns, that are crucial for their acceptance for clinical use (Farahani &

Pantanowitz, 2015).

D. Future directions: towards the slideless era?

The convergence of large tissue collections preserved in biobanks and novel methods
as mIHC, along with automated computer-aided imaging technologies, allows glimpsing a
future where the management of complex information will have a direct impact in routine
health care, improving prognostic and predictive patient stratification. A transition phase for
pathologists towards automatic scoring methods may result in more accurate characterization
of diseases. Even more interesting, the possible implementation of WSI for routine pathologic

diagnoses could give rise to “slideless” laboratories.

However, to fully accept WSI as a diagnostic modality, the integration of additional
medical information is required. A correct diagnosis cannot be considered without the rest of
the electronic medical record (e.g. gross pathology description, prior pathology reports, clinical
history, etc) (Pantanowitz et al., 2011), and a growing number of results from molecular
determinations must be added to this list. Thus, the large scale of data denotes a hindrance for
the pathology lab, which needs to optimize the resources in order to support data mining (i.e.,
exploration and extraction of information from a large amount of data) as well as a model for
storage and retrieval, so that the information can be easily capitalized (Becich, 2000). Other
technical factors such as the need of increasing scan speed and the WSI quality should be also

contemplated.
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From a more organizational perspective, the quotidian use of WSI demands guidelines,
especially for diagnostic procedures, standardization of technical specifications regarding
format and storage, and information sharing (e.g. consultations provided across international

borders).

Nowadays, the idea of a slideless practice reflects, for most of the people, an
environment where pathologists work with WSIs, but histological sections on glass slides are
still necessary in diagnostic surgical pathology, essentially, because they must be produced as
the first step of any digital workflow. Nevertheless, the raise of new technologies may definitely
change the functioning of pathology laboratories. In an extreme representation, the surface
imaging microscopy (SIM) technology allows to obtain a digital image directly from the
surface of the paraffine block where the tissue is embedded. If a quality equivalent to that of
conventional HE sections is achieved, the era of glass slides together with its scanning may be
over (Jara-Lazaro et al,, 2010). Other astounding slideless techniques include the open-top light
sheet microscopy, which generates 3D images of tissues without the need for sectioning or
slide preparation (Glaser et al., 2017), or MUSE microscopy, which uses ultraviolet illumination

to obtain images of tissue surfaces almost instantly (Fereidouni et al., 2017).

Other outstanding advances for tissue assessment include three-dimensional (3D)
techniques for microscopy (W. Li et al., 2017, 2019). Among them, tissue clearing is based on
the modification of the optical properties of usually opaque samples, to render them
transparent while keeping their structure and fluorescent labels intact, which allows high-
resolution microscopic imaging (T. Tian et al,, 2021). These technologies will not only enhance
our comprehension of the connections between cells and their microenvironment, but it could

be directly applicable to diverse areas as diagnostic medicine (W. C. C. Tan et al., 2020).

While the pathology practice is not entering headlong into this almost science-fiction
era for tissue analysis, especially because of the unequal access to the panoply of novel tools
and techniques, some changes are starting to operate in daily life. The implementation of WSI
in medical student education will accelerate the adoption of digital pathology and fresh
technologies in general in the years to come, along with the integration of equipment that
allows the immediate implementation of the knowledge acquired. In certain locations, scanners
are already part of the laboratory workflow: the slides pass through the staining stage, and

then through the digitization step on a continuum, and software solutions are bringing
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accessibility to WSI even in mobile devices.

Computer-aided diagnosis (CAD) takes the relay for automating the processing of WSI
(for example, detecting lesions) in order to provide aid and assistance to the pathologist by
means of a digital analysis (Chong et al., 2020). A necessary step is to simulate and capitalize
the analysis product of pathologist’s professional expertise, by using mathematical algorithms
capable of aiding in histopathological image analysis, such as cell detection, segmentation and
automated detection of diverse parameters (mitoses, metastases in lymph nodes, and ROls)
(Jiang et al, 2020). Many image analysis tools are already capable of quantifying tissue
immunostaining, including the immunohistochemical expression of ER, PR, HER2 and Ki67
(Couture et al,, 2018; Garberis et al., 2021; Saha et al,, 2017; Vandenberghe et al., 2017) with

the same or even better accuracy than the manual method (Stalhammar et al., 2016, 2018).

All these great changes in the way of thinking and practicing pathology bring new
thoughts and interrogations that will have to be answered. Regarding the old and dragged
glass slide, the question remains if it should be still kept for long time after scanning, in other
words, which is the limit of the WSI and what could be done if the need surges to return to the
“true” tissue slide (for example in the need of rescanning because of a failure in stockage that

would require returning to the tissue).

As expressed by Bertheau et al., “the pathologist will always keep close contact with the
tissue or cell sample of the patient because, while the image is important, it does not
summarize all the complexity of a tissue or a cell which remains above all a molecular edifice
complex and lively” (Bertheau et al., 2012). Maybe, in a near future, a battery of special studies
and techniques will be used to perform a full characterization of the specimens before reaching
the pathologist's hands, so that he or she has a maximum of information from the beginning
of the diagnostic process. In any case, it is clear that we are far from being able to understand

all the scope of the digital revolution.
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A. Basics of artificial intelligence approaches in pathology

1. Introducing some concepts

Artificial intelligence (Al) is emerging in Medicine and particularly in pathology as a
novel tool for improving the precision of diagnosis strategies. Al describes automated systems
that can perform tasks considered to require "intelligence”, imitating what a human being
could do when confronted to the same situation. These systems are based on the creation and
application of algorithms (Liu et al, 2019). Adopting computational neurobiology,
mathematical logic and computer science, Al holds promise for enhancing automation,
elimination of tedious tasks, improved accuracy, and efficiency. By identifying patterns of
recognition, Al allows the processing of large datasets that contain information from clinical
and pathological records, as well as data generated in genomics research which, due to its

scale and diversity, could be more difficult to handle if manually analyzed (Topol, 2019).

Depending on tasks that the system is able to handle, one could speak of two different
kinds of Al In popular culture Al is akin to the concept of strong Al (artificial general
intelligence, AGI), which defines a type of multitasking Al with human-level intelligence, but in
practice it is just weak Al, which can perform a unique specific task with high accuracy (Tizhoosh

& Pantanowitz, 2018).

Three concepts are often confused in the Al field: Al, machine learning, and deep
learning. Robertson defined machine learning (ML) as the science of making computers analyze
and learn from data without human instruction, carried out by artificial neural networks (ANN)
(Robertson et al., 2018). ANN are computational models able to recognize features through
the extraction of abstract attributes from datasets, subsequently utilized to achieve certain
tasks such as classification. Thus, ML could be described as a subcategory of Al (narrow Al) in
which some aspect(s) of human intelligence are exhibited, through the development of
algorithms capable of “learning” to solve a problem directly from the data, that is to say,

without being reprogrammed (Figure 9).
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Figure 9. Perspective of the different concepts in the artificial intelligence sphere.

In the general case, a mathematical model is first created with a scientific objective (for
example, to recognize images) and then trained to “learn” the weights that could carry out the
task (in the example, to predict the configuration in future cases). The first step or training
phase involves providing huge amounts of data to the system and permitting the algorithm to
adjust itself and improve (McClelland, 2017; Q. Xie et al., 2019). In the second step or prediction
phase, as its name implies, the ANN processes the input to produce predictions. The size and
variety of the datasets, as well as their prospective character, are important factors to consider
in order to avoid erroneous results (Mutasa et al., 2020). When the inputs of the system are
images, they are best treated on Graphics Processing Units (GPU), highly specialized electronic
circuits that allow the calculations in parallel for fast processing of pixel-based data, such as

histological pictures.

There are different ML learning paradigms: supervised, weakly supervised, unsupervised
and reinforcement learning. Supervised learning refers to train a model to predict outcome
statuses that are provided as labeled data for training. In other words, this labeled data
commonly corresponds to examples of the correct output, contained in the training data. The
model learns by trying to establish the relationship between the input data and the assigned

label. In unsupervised learning, the model is trained to recognize patterns within the input data
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without the use of labels. Thus, a supervised algorithm, such as support vector machines (SVM),
random forest (RF), or classification trees, needs human experts to manually delineate
important information in the data, while an unsupervised algorithm, such as clustering, is able
to extract features without labeled data, making of it an interesting tool in research due to its
utility to describe hidden structures from images. Neural networks (NN) seem to be flexible as
they can be either supervised, unsupervised or weakly supervised, depending on the type of
architecture considered. Reinforcement learning could be summarized as a subset of
unsupervised learning, where the NN employs self-supervised learning and obtains supervisory
signals from the structure of the data itself, using any observed or unhidden part of the input
to predict a hidden part (or property) of it (Esteva et al.,, 2019; Zhu et al., 2020). A small mention
to define a method used in our work, momentum contrastive learning (MoCo) (X. Chen & Fan,
2020) which stands for a self-supervised learning algorithm that allows the training with data
of lower quality. The “contrastive” refers to the training data for a binary classification task,
which can be divided into positive examples (those that match the target) and negative
examples (those that do not match the target). Contrastive self-supervised learning uses both

positive and negative examples (Camp, 1996; Y. Tian et al., 2021).

Supervised learning has been traditionally the most common approach in digital
pathology but, due to the costs of precise annotations, weakly supervised learning is becoming
more popular. In the latter, the detail in annotations is reduced at the expense of model
accuracy. For example, in multiple instance learning (MIL), a type of weakly supervised learning
algorithm used in our study, the labels are not referred to each patch (patch-level labels) but
to the entire WSI, and therefore easy to obtain. Each WSI of the dataset is considered a "bag”
containing a set of instances (patches or tiles), and there is one single label per bag. If all its
instances are negative, the bag is considered negative, and if at least one instance in the bag
is positive, then the whole bag is considered positive (known as the standard MIL assumption).
The objective of MIL is to predict the label (of a bag or an instance) based on training data that
includes only bag labels (Figure 10). An example of high diagnostic accuracy obtained with
weakly supervised learning is detailed in (Campanella et al., 2019). The most outstanding
characteristic of MIL regarding the medical field is that it can be integrated into a deep learning
model, which allows the creation of systems where WSiIs are fed in as inputs and diagnoses are

returned as outputs. DeepMIL models can automatically reveal novel, abstract features from
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WSiIs that perform better than traditional features at determining survival, treatment response,

and genetic defects (llse et al.,, 2018).

e A e I i

Negative bag Positive bag Positive bag

Figure 10. Multiple instance learning. Each WSI is represented by a bag containing a certain number
of tiles (image segments) or instances, extracted from the original digitized slide. When all the instances
in a bag are negative (non-tumor tiles) the bag is labeled as negative; when the bag contains at least a
positive instance (tumor tile), it is labeled as positive.

Deep learning (DL) is a recent biologically-inspired ML approach, where depth is
generated by a sequence of multiple cascading layers used by the algorithms to enhance the
system. Each layer contains a variable number of neuron-like computing units, emulating
neurons in the visual cortex in the brain, and is focused on a specific feature to learn, such as
curves/edges in image recognition. In contrast to non-DL machine learning methods, DL does
not need feature extraction or representation steps: data travels from the starting line to the
output last layer without human intervention, which is why it is called an end-to-end model
(Komura & Ishikawa, 2018). Several types of neural network exist, depending on how the units
or nodes of each layer are connected, how the data is propagated inside the network, how the
network learns the patterns, and to what extent the network can remember what it has learned.
Some examples of DL approaches are feed forward (FF) NN, multi-layer perceptron (MLP),

recurrent NN (RNN), and convolutional NN (CNN).

In FFNN, the first and simplest NN, the information moves in only one direction—
forward—from the input nodes, through the hidden nodes (if any) and to the output nodes

(Schmidhuber, 2015). There are no cycles or loops in the network. MLP is the classical type of
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NN. It is a supervised learning algorithm suitable for classification and regression prediction
problems where inputs are assigned a class or label. Data is often provided in a tabular format.
Since it is flexible, it can be applied to different types of data, such as the pixels of an image
that can be reduced down to one long row of data and fed into a MLP (Dayhoff & Deleo,
2001). CNNs (see below) are also suitable for prediction, and they are useful for data that has
a spatial relationship: the benefit over MLP is their ability to develop an internal representation
of a two-dimensional image. This allows the model to learn position and scale in the data,
which is important when working with images. RNN, derived from FFNN, differ in the ability of
their connections to create a cycle. They were designed to work with sequence prediction
problems, suited for both sequences of text and sequences of spoken language, and thus used
for text data and speech data. They are not appropriate for tabular datasets nor image data

input.

In DL, the data passes through the system in a process called forward propagation,
where the output from a previous layer is taken up as input for the next layer. As the
information gets across the different levels, the prior representation gains in complexity and
abstraction, and when the network has been propagated through, a loss function is used to
calculate the error (the difference between the output and the ground truth — see below) and
the internal parameters or weights are readjusted (back propagation) to reduce this error; then
the forward propagation is started over again. By this method, iterated over thousands of
training cycles, computers can handle millions of labelled images and “learn” from them until
they are ready to recognize these structures autonomously, that is to say, to classify unknown

images without human aid (Aeffner et al., 2018) (Figure 11).
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Figure 11. Simplified schematic of deep learning approach. Example images of epithelial cells and
other cells are fed into a convolution layer that passes on features to a neural network to learn to identify
epithelial cells autonomously in unknown images. As the information is passing through the neural
network (comprised of connected computing units called "neurons” arranged in layers), the algorithm
freely selects the most important image features of epithelial cells. Entering these layers of neurons, this
feature information is transformed and passed on through weighted connections to the next layer. The
algorithm completes thousands of training cycles to learn to recognize these structures autonomously
in novel, unseen images (adapted from (Aeffner et al,, 2018)).

COMPUTING UNITS

As a case of representation learning, DL can automatically discover the representations
needed for detection or classification in the raw data with which it is fed. This process, that
involves a global recognition of patterns across spatial scales — from organ systems to cells and
even molecules, requires arduous training by the machine, that can learn by itself, and an ability
to associate the recognized lines and curves with figures and whole forms and to complete the
empty spaces or missing information (Chan & Salto-Tellez, 2012). In the example of an image,
the assemblage of pixel values conforms the raw data, and the first layer focuses on the
learning of edges. The second layer will spot the motifs designed by particular arrangements
of these edges and, in turn, these motifs may be part of larger combinations that correspond
to parts of familiar objects. Then, subsequent layers could assess combinations of these parts
to detect objects, in a hierarchical manner similar to that existing in speech and text. As
explained by LeCun et al., “the key aspect of DL is that these layers of features are not designed
by human engineers: they are learned from data using a general-purpose learning procedure”

(LeCun et al., 2015).
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2. The visual recognition: basis of the histological analysis both by the pathologist
and the computer

It could be said that a large part of the cognitive abilities responsible for image
processing reside in the visual cortex of the human brain, and that they are based on
recognition. Basically, we identify an image that we have already seen, through comparisons
and inferences regarding our prior experience. The same principle of image recognition is
employed by the Al-based approach in pathology, while adding a wide range of options to

advance and optimize workflow (Heeke et al.,, 2019).

In computer vision, the extraction of visual characteristics from a digital image consists
of mathematical transformations calculated on its pixels. The pixel (px), the smaller element of
a display surface, often presented as a colored square, is the unit of measurement for the
definition of a digital image. Each pixel is associated with a color, usually reconstituted by a

triad of primary components rendering red, green and blue tones by electrical excitation.

Convolutional neural networks (CNN or ConvNets), a specialized type of neural
networks, are among the most famous DL models for pattern recognition and detection tasks,
being efficient solutions to extract relevant features from digital images (Ertosun & Rubin,
2015). CNN are particularly well adapted to images because of their usefulness for multi-scale

analysis and their capacity to capture well the invariances present in the images (Mallat, 2016).

This DL algorithm is named after the mathematical operation convolution, employed in
at least one of their layers (convolutional layer). In the simplest version, as described by LeCun
in (LeCun et al.,, 1998), a convolutional layer and a pooling layer are stacked up and followed
by a few fully connected layers and a task-specific output layer to form a deep model. The
pooling layer is used precisely to save space in memory by reducing the size of feature maps
by spatially averaging the information. The limit in the number of layers is determined by the
amount of memory available on the GPUs and by the acceptable amount of training time
(Chang et al., 2019; Krizhevsky et al., 2017) as well as the number of parameters (i.e., a single
layer but with 1 million neurons will be limiting). In this case, a neuron corresponds to a filter
(@ matrix of a certain dimension, which will traverse the image through the convolution

operation).

The general architecture of ConvNets is directly inspired by the LGN-V1-V2-V4-IT

hierarchy in the visual cortex ventral pathway (Figure 12).
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Figure 12. Comparison between the human visual pathway and a CNN. Most CNNs have at least 5
layers, the final of which feeds into a fully-connected layer. Frequently 2-3 fully connected layers are
used in a row and the final layer of the network performs a classification. CNNs can replicate the creation
of neural representations in a similar way as performed by the visual system through the same
“untangling” process. That is, both systems take representations of different object categories that are
inseparable at the image/retinal level and create hierarchical representations that allow for linear
separability. Feature visualization shows how a CNN “sees” and how it could build up its understanding
of images over many layers.

CNN: convolutional neural network; LGN: lateral geniculate nucleus; RGC: retinal ganglion cell; V1,2,4:
visual cortex 1,2,4 (adapted from https://gracewlindsay.com/2018/05/17/deep-convolutional-neural-
networks-as-models-of-the-visual-system-qa/, feature visualization extracted from
https://distill.pub/2017 /feature-visualization/).

Unlike traditional image analysis, where the features of interest are manually selected,
CNN can perform automatic identification, guided or not by an element called ground truth.
The ground truth can be a category, a quantity or a label, manually delineated by a pathologist
in the form of an annotated dataset, provided to the algorithm along with the raw images set,

that will orientate it in the prediction or characterization of an image. Depending on their use
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of ground truth for construction or validation, the models can belong to the supervised
learning or the unsupervised learning categories. In the first, the algorithm training is based on
a previously defined label, i.e. the recognition of benign vs malignant regions according to
manual annotations, while in the latter, natural divisions in the dataset are recognized without
the need for a ground truth. This is the case of tumor clustering into subtypes according to

similar image attributes (Abels et al., 2019).

3. Of ‘black boxes’ and “‘glass boxes’

The term black box refers to a system where the inputs and outputs are perceivable but
its process of decision remain ‘hidden’. The operation of such system (in this case, an algorithm,
or an ANN) is therefore only understood from the angle of its interactions, and there is no
verifiable path to understand the rationale behind its decisions. This is not a lesser point to
consider, mostly when it comes to features directly correlated to clinical endpoints. DL
approaches, working as black boxes, do not allow explaining or proving the results obtained,
and even the way in which the algorithm reached its deductions is difficult to comprehend. The
main issues derived from the limited interpretability of DL models are, on the one hand, the
lack of transparency that can make an algorithm look as non-reliable, and therefore hinder its
acceptance among physicians and other experts involved in the diagnostic field and, on the

other hand, the difficulty of correcting an algorithm for which the reasoning is unknown.

The opposite of a black box, called a glass box, is a system whose mechanisms are
visible and allow the understanding of how they work. This is the objective of the explainable
Al (XAl), through strategies such as the visualization of pixels that impacted the decision-
making (Samek et al., 2015) or the interactive ML+human-in-the-loop approach that uses the
strengths of human cognitive abilities where automatic approaches fail, mostly due to data
complexity or insufficient training samples (Holzinger, 2018; Holzinger et al., 2017). The
intervention of the pathologist decoding the steps followed by the network and the way in
which features are used to elaborate a conclusion, may be solutions for the still reluctant
acceptance of this method (Mobadersany et al., 2018). Moreover, the human-computer
interaction could increase the performance of either Al or pathologist alone (Abels et al., 2019;

Liu et al.,, 2019).

However, explainable Al approaches do not resolve the problem of interpretability in a

completely satisfactorily way. In a trade-off between performance and interpretability, and as
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pointed out by Rudin, the current efforts are centered on creating second models to explain
the first black box models, rather than designing models that are inherently explainable, and
this could produce, in the eagerness of elucidating the original algorithm, methods that are
finally not faithful to it. Conceiving models that are interpretable per se instead, would aid
earning clinicians and patients' trust, cutting with the algorithms’ interpretability problem

(Rudin, 2019).

B. Data and requirements for Al implementation in pathology

1. Data sets terminology

A data set, as the name implies, is a collection of data coming, for example, from a
single database, that will be transformed into a numerical representation that the ML algorithm
can process. The required size of the data set will depend on the complexity of the ML project.
The amount of information contained in it must be good enough for the algorithm to work
properly, allowing the split in different non-overlapping data subsets, with the necessary
amount of available data, for the algorithm to acquire the ability to generalize and to converge
towards an optimal solution. Data sets are usually divided into a training set, a validation set
and a test set, and they take up about 60%, 10%, and 30% of the data, respectively, though

these percentages vary depending the considered literature (Angermueller et al., 2016).

The training set is fed to the ML algorithm to teach a model, by searching for data
patterns among input variables. Training is performed by updating the parameters iteratively

until the model optimally fits the data.

The validation and testing samples are used for analyzing the performance of a ML
model. By using samples that were not employed for building or adjusting it, the result of the

model’s effectiveness will be unbiased.

The validation set is used right after training, to tweak and adjust the hyperparameters
by evaluating the performance for a given set of hyperparameters at each training. The
hyperparameters are the variables which determine the network structure, e.g. the number of
hidden units, and the variables which determine how the network is trained, e.g. the learning
rate. Hyperparameters are set before the learning process begins; they are tunable and can
directly affect how well a model trains itself. To improve the reproducibility, especially when

working with limited data sets, the adjustments may be repeated using multiple random
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partitions of training and validation sets, in a resampling procedure named k-fold cross-
validation, where k-fold refers to a single parameter k corresponding to the number of groups
that a given data sample is to be split into. This technique is useful to estimate the skills of a
ML model on unseen data. The procedure involves randomly dividing the data set into k
groups, or folds, then the first fold is treated as a validation set, and the method is fit on the
remaining k — 1 folds. The configuration of the groups does not change for the duration of the
procedure: the samples stay always in the same group they were assigned, meaning that each
sample is used in the validation set 1 time and used to train the model k-1 times. The results

of a k-fold cross-validation run are often summarized with the mean of the model skill scores.

The test set is independent from the training or validation sets. It is used to understand
how the ML model will work, to evaluate its accuracy, and to determine if it can be applied
clinically. After this phase, the ML model is usually not adjusted anymore, in order to avoid

overfitting (see below).

2. Considerations for pathological image analysis

There are two basic preconditions for the use of Al in pathology: 1) the digitization of
histological slides, and 2) the availability of structured data (especially concerning the
information present in pathology reports) of good quality and in enough quantity to be used
as input. The presence of structured data, which is, translated into a language the computer
can understand, such as large spreadsheets holding unique numbers or values, is unusual in
health care, where most of the information is in an “unstructured” form consisting mostly of

clinical chart notes (Bini, 2018).

Furthermore, apart from the hard work that it takes to convert all that poorly preserved
data into something usable, it is of paramount importance to corroborate that this data is
clean, artefact free and comprehensive to train correctly an algorithm. In fact, the unique
characteristics of the pathological datasets can pose serious problems that end up affecting
the image analysis. Each one of the steps until obtaining a WSI, and the devices implied in the
process, can introduce undesirable effects damaging the quality of the digital images. These
steps refer to tissue characteristics (fixation and sectioning, staining, orientation, heterogeneity
of biological samples, morphological and architectural structure of histological regions such as
overlaps, touching objects, weak boundaries, etc.) and acquisition conditions (presence of dust,

uneven thickness of the scanned section, marker traces, scanning magnification, focus,

64



Introduction ~ Atrtificial Intelligence and Medicine

different equipment and file formats, etc.). To alleviate the impact of these variations before
launching the automated analysis, different pre-processing techniques, such as normalization,

can be applied (Chang et al., 2019).

The very large size of WSIs (in the order of tens of billions of pixels) can be a real
problem, first to fit in memory, and second, because classic ML architectures do not work well
on such large scales (tissue to cell). It is to consider that if they are resized to a smaller
dimension, there is the possibility of losing information at the cellular level. Thus, WSIs need
to be divided into squares, so-called “patches”, of about 256 x 256 pixels, that will be analyzed
independently. Once generated, these tiles will be used to construct the training and validation

sets.

Then, most Al algorithms need a large set of training images. Two Al approaches can
be distinguished: those based on image annotation, and those more autonomous based on
DL. They use two broad classes of features respectively: handcrafted features and unsupervised

features (Madabhushi & Lee, 2016).

Handcrafted features hold a certain degree of interpretability by their connection to
particular attributes in the image, such as architecture, shape, color and texture. These
characteristics are identified by expert pathologists for the “labeling” or annotation of images,
which includes also the manual delineation of ROI. This task may turn out not only boring but
also challenging when working with not enough sharpness or resolution in the learning set
images. Hence, efforts have been made to find the way of automatizing their detection, using
computer vision operations such as color space conversion, image blurring, sharpening, edge
detection, morphological transformation, pixel value quantization, clustering, and thresholding

(Chang et al., 2019).

More related to DL strategies that learn from unknown pattern, unsupervised features
undergo interpretability issues regarding the feature selection performed by the deep network
in an autonomous fashion, but count with the advantage of being rapidly operational for any

problem.

Frequently, due to lack of expert annotations, patient privacy issues or very specific
scientific questions, ANN are confronted to medical image datasets that are not large enough

to achieve successful performances. Different strategies can be put into practice to bypass this
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obstacle. One of them is transfer learning, in which the designed system is pre-trained on a
different (and larger) annotated dataset and with a different task, and then the system’s
parameters are calibrated with data on the target dataset. Through the re-use of the learned
features by the CNN from a different source task and data, apart from solving the problem of
limited data, the effort of manual labeling is reduced, as well as the training time (Bayramoglu
& Heikkila, 2016; Tewary & Mukhopadhyay, 2021). Another tactic is data augmentation, which
consists of artificially increasing the size of the dataset by performing operations that modify
the appearance of the image (for example, by reducing the brightness, by rotating the image,
etc.), without modifying its corresponding label. A third technique entails the processing of the
input image at different magnifications, that is to say, different algorithms operating at various
scales and obtaining information at different levels (cellular, structural). Finally, different ML
methods can be combined to accomplish a single task to improve prediction. For example, a
first step depicted by the trained DL network, employed merely as a representation method,
may be continued by a second technique, such as RF or SVM, among others (Robertson et al.,

2018).

Finally, and not less important, a frequent topic of dealing with medical data is the
privacy of the patients and their medical records. When launching a project, it must be
guaranteed that datasets comply with General Data Protection Regulation (GDPR). A usual
solution is to give restricted access to the individuals who are involved in the project, but there
is still the problem of the data used to train a deep network when the model must be released.
Novel techniques propose a solution on this concern: the use of encrypted input data (Dowlin

etal, s. d.; P. Xie et al,, 2014).

3. Overfitting and spectrum bias

One of the most important and recurrent limitations in CNN algorithms applied to
medical research is that the datasets are relatively small and frequently coming from a single
institution. This goes against the principle of model improvement that comes from the training
with larger datasets, but also with the need of prospectively collected data from multiple care
centers, that will be required for further validation of the algorithm. These major issues are

known as overfitting and spectrum bias.

Ovefrfitting is a recurrently encountered challenge in Al algorithm development. It refers

to a situation in which a CNN algorithm becomes exceedingly reliant on the provided training
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data, to the degree that it has a negative effect for the model to generalize to new data, while

concurrently inflating the model’s performance with the training dataset (Park, 2018).

Very optimistic results in the validation set might raise the suspicion of overfitting, as
well as a large performance gap between the validation and test sets and data-related factors
(differences in patient populations, or in the source of the observations -e.g. diverse scanners
employed-). The use of algorithms on new, unseen datasets, analyzed in a prospective manner,
could be a possible approach to limit this phenomenon, and an important step in transitioning
this fresh technology out of the research lab and into the clinic (see point D. Validation of Al

methods).

The other mentioned pitfall in CNN models is given by the data collection. When cases
are included in an unnatural ratio between the presence and absence of the event of interest
(e.g., relapse) there is the risk of spectrum bias. It means that the dataset used for model
development does not satisfactorily reproduce the target population, i.e., the patients to whom
the algorithm will be applied in real-world practice. This is an important consideration when

working with rare diseases.

C. The process

1. A few more definitions...

When conceiving a project that implies the use of DL, it can be chosen: 1) to work with
an existing architecture or 2) to design a new network with a certain number of layers,
convolutional attributes and type of input. Then, ANN have two phases: a learning phase and

an operational phase. Next are cited some notions for a better understanding of the process.

Two concepts are related to the way in which an algorithm browses the information
present in the dataset: epoch and iteration. The first means the number of times a learning
algorithm process the entire dataset, while the second refers to the number of batches or steps
through partitioned packets of the training data, needed to complete one epoch, being a batch
the number of training samples or examples in one iteration. Allowing this iteration over parts
or batches, are necessary considering the huge data size to be processed. To sum up, an epoch
refers to one cycle through the full training dataset, and several iterations exist for each
complete epoch. In guise of example, if it is desired to conduct a project with a big training set

of 1 million images in total, and the batch size is set to 50K, this means the network needs 20
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(TM/50K) iterations to complete one epoch. Then a certain number of epochs is required to

train a neural network.

2. The learning phase

In concordance with the different partitions of the datasets described above, model
development includes three sequential steps: 1) training, 2) validation, and 3) testing. These
denominations should not be confused with the names given to the datasets decomposition.
The basic mechanism for learning follows the principle of "trial and error", through the forward

and backward propagation already mentioned.

In the training step, different categories to be recognized, or instances, are defined, each
one with a list of relevant characteristics, or features. By learning from these features, the model
can categorize new instances not seen before. Taking the example of how to teach a computer
to identify which organ each sample comes from in a set of tissues, the set of all the labeled
images is called the training data set or ground truth. This database of histopathological
images allows creating some kind of "textbook cases" for the network to learn. After
"absorbing” them, the ANN will have learned which combination of features is associated with
any type of tissue. The information goes back and forth in the network as much until the
desired behavior is obtained. As is deductible from the example of the set of tissues mentioned
above, a key aspect for an effectively use of a DL approach is to provide a sufficiently rich set
of exemplars, i.e., images from all the organs, to ensure a good representation of diversity in

the training set (Janowczyk & Madabhushi, 2016).

In the validation step, the pathologist evaluates the degree of “maturity” of the network
to estimate the performance of the model thus obtained. Continuing with the example, at this
point the software is confronted with an image it has never seen before, and it recognizes with
a certain accuracy which tissue it belongs to. It is to highlight that the accuracy goes up with
the number and size of the training set, and that is why it is so important to precisely define
the minimum number of cases required for training. Furthermore, the software can adjust itself
and learn through feedback loops (right decision/wrong decision) (Ryad Zemouri et al., 2019).
DL models, some of them with up to 100 layers deep, can extract their own relevant features
without human input if the training set is large enough. It means that they can find by
themselves, in our example, the features that define each tissue without being told what those

features are, and with no need of structured data sets to learn from.
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In the testing step, new image patches (cases that until now had never been “seen” by
the model) are submitted to the network, for which a class prediction from the learned model

is obtained.

3. The operational phase

Once the model has been validated, the operating phase then follows, where the
network is ready to use in aiding the pathologists to elaborate their diagnoses. Kayser et al.
detailed the steps followed by a virtual slide included in an Al-based diagnostic system (Kayser
et al,, 2009). A concise scheme of the workflow that contemplates the inclusion of Al methods

in diagnoses assistance is illustrated in Figure 13.

Biopsy/Surgical specimen I

Tissue preparation I

IHC
Staining I IF monoplex

IF multiplex
Scanning I
ROI selection / Annotation I

Digital images analysis

I Al methods I Algorithms

Automatic recognition

CAD ¢ of cellular attributes

Prediction of unknown
\ parameters

Figure 13. Workflow for a pathology lab that incorporates computer aided diagnosis (CAD). Al:
artificial intelligence IF: immunofluorescence; IHC: immunohistochemistry; ROI: regions of interest
(adapted from (Garberis et al., 2021).

D. Validation of Al methods

1. Some considerations about evaluation

Before getting into details of how an Al method can legitimately meet the operational

needs of the medical community, a consideration must be made that validation has different
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meanings regarding the field of medicine and the field of Al. While, in the first, it means the
process of verifying the performance of a diagnostic or predictive model, in the latter, it refers
to a specific step in development in which the model is fine-tuned, or the most optimized
model from among minor variants is chosen after training. Another term, test, is used instead
to denote the process of evaluating the model’'s performance (Park, 2018). This aspect should
be taken into account when referring to the denomination of datasets. In the guide published
by Liu et al., in an attempt to adapt the terminology of computer science to the clinical field,
the validation set is referred to as “tuning set” while the test set becomes the “validation set”

(Liu et al., 2019).

Another remark is the need of comparison of the DL model with an accepted reference
standard or gold standard, which encompasses the ground truth before descripted. In many
cases, manual pathology assessment of lesions and biomarker scores by an experienced
pathologist serves as the reference standard, and alternative methodologies could be used as

benchmark to counterbalance its subjective nature (Aeffner et al., 2017).

As with any other medical technologies, Al algorithms must embody clinical validation
before their widespread application in the daily practice: they have to be tested. In fact, this is
not a minor issue. First, to estimate the degree of confidence accorded to the result of an
algorithm, and to comply with the rule of internal validation, it must be ensured that data has
been accurately collected and processed and that the biases attributable to these steps have
been limited or eliminated if possible (for example, data cleaning when it comes to databases,
picture quality in projects involving image acquisition and, most important in the medicine
field, scarcity of events in non-prevalent diseases or collected data that is not representative
of the whole population of study). Internal validation refers to the assessment of the algorithm
with the data that were used to develop the model. Typically used internal validation methods

are cross-validation and bootstrapping (Hastie et al., 2009).

Cross-validation is a resampling method that uses different portions of the data to test
and train a model on different iterations (Kohavi, 2001). It is frequently used for prediction
issues, when it is required to estimate how accurately a predictive model will perform in “real
life”. The objective of this method is to give an insight on how the model will generalize to an
independent dataset by testing it on data that was not used to train it. Thus, data are

partitioned into complementary subsets, then the analysis is performed on the designated
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subset, the training set, and validated on another subset, the testing set. Multiple rounds of
cross-validation are performed in order to reduce variability, and the validation results are
combined (e.g. averaged) over the rounds to derive a more accurate estimate of the model's
predictive performance. Bootstrapping states for a statistical procedure where a single dataset
is resampled to create many simulated samples (Hesterberg, 2011). In this method, n samples
are extracted at random from the original dataset a number k of times, and a model is trained
on each of these new sub datasets. The predictions will then be averaged across the k different
models to get the final predictions, leveraging the different training conditions of the models
to reduce the uncertainty during inference. It must be noted that increasing the number of

resamples will not increase the amount of information in the data.

Second, the generalization of the approach, or external validation, must be carried out.
Ideally, this can be accomplished through the study of a sufficient number of samples that were
not used for model development, and exhibiting a variety of characteristics that more or less
represents the entire spectrum of the investigated problem. However, Al algorithms
performance is usually calculated on test datasets that are nothing more than random
subsamples or splits of the original dataset, hence external validation is difficult to achieve. Two
strategies are employed to overcome this matter: the use of a completely external dataset,
exploiting data from newly recruited patients (temporal validation) or from a different site
(geographic validation). The less preferred use of a small section randomly chosen from the
original dataset and kept untouched for use as a test dataset (split-sample validation) may
address the internal validity of a model but would not correctly evaluate its generalizability
(Park, 2018). External validation requires several features such as a diagnostic cohort design,
the testing in multi-institutional data (interoperability), and a prospective data collection and

here is where a lot of studies fail (Kim et al., 2019).

Last but not least, there is the interpretability problem: the lack of understanding of Al
systems by a large sector of the medical community could cause the reject of the algorithm

decision just because physicians do not understand how the DL model draws its conclusions.

2. Algorithms’ performance analysis

Accuracy is the most widely used measure to evaluate the performance of an algorithm
and is perhaps the major driver while developing predictive models, since it will determine
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which model to choose. Briefly, it represents how many predictions of the classifier were in fact
correct (Henriques Abreu et al,, 2016). However, the predictions of a good model should not

only be accurate, but also well calibrated: accuracy is not trustful in a misbalanced dataset.

Typically, the receiver operating characteristic (ROC) curve and the calibration plot are
respectively used to evaluate discrimination and calibration, two different aspects of the
performance of diagnostic or predictive models (Park, 2018). Discrimination accounts for the
sensitivity (True Positive rate, i.e. the proportion of positives that are correctly identified) and
specificity (True Negative rate, i.e. the proportion of negatives that are correctly identified) of
a binary classification algorithm, whereas calibration shows the relation between the true class

of the samples and the predicted probabilities.

A ROC curve is a graph representing the performance of a classification model for all
classification thresholds. This curve plots the rate of true positives as a function of the rate of

false positives (Figure 14).
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Figure 14. ROC curves. In a random classifier, the distribution of examples is hazardous. “Pink” model
shows a more accurate classification than “blue” model. The AUCs of their ROC curves are between 0.5
and 1, which means that these two models rank a random positive example above a random negative
example more than 50% of the times.

The area under the ROC curve, or AUC, also known as C statistic, measures the entire
two-dimensional area under the entire ROC curve (by integral calculations) and provides an
aggregate measure of performance ranging from 0 to 1 for all possible classification
thresholds. The AUC is a widely employed value that can be interpreted as a measure of the

probability that the model will rank a random positive example above a random negative
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example. In other words, a model with 100% wrong predictions has an AUC of 0, and a model
where all the predictions are correct, has an AUC of 1, meaning that the closer the AUC is to 1,
the better the discrimination performance of the diagnostic test. However, in practice, a
"perfect"” classification model with an AUC of 1 should be suspicious, as it probably results from

an error in the model; an example of this situation could be the overfitting of the training data.

Another form to visualize the performance of an algorithm is the confusion matrix
(Figure 15), where the instances in a predicted class are confronted to the actual class, allowing
to easily recognize whether the system is confusing two classes (i.e. commonly mislabeling one

as another).

Actual class \
EOSTLVE NESALVE
- ¢ e
Positive True Positive False Positive
Negative False Negative True Negative

Figure 15. Confusion matrix. By comparing the predicted values with the true values taken by a
variable, it is possible to evaluate the precision of the model.

The calibration plot displays the goodness of fit between predicted and real
probabilities. In this graph, the samples are clustered in deciles (0-10%, 10-20%, ... 90-100%)
according to their class probabilities. The mean values of every decile predicted by the pre-
trained model are represented on the x-axis and the corresponding event rate (true outcome)

on the y-axis. Perfect calibration would be reflected as a 45° line (Figure 16).
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Figure 16. Calibration plot. Example of two calibrated models with the actual class label represented
in the y-axis and its predicted probability represented in the x-axis.

Other essential metrics used to ensure a model performs well are Precision/Recall and
Dice coefficient (F1-score). All three measures distinguish the correct classification of labels
within different classes. Recall is a function of its correctly classified examples (true positives)
and its misclassified examples (false negatives). Precision is a function of true positives and
examples misclassified as positives (false positives). There is a trade-off between precision and
recall: when tuning a classifier, improving the precision score often results in lowering the recall

score and vice versa.

F-1 score is a measure used to assess the quality of binary classification problems as
well as problems with multiple classes. It ranges from 0 to 1, with F1-score = 1 meaning that
the model has perfect precision and recall, otherwise said, signifying the greatest similarity
between the prediction and the ground truth. F-1 combines precision and recall into a single
metric, using the harmonic mean, which is given by the formula: F7-score = 2 x (precision x

recall)/(precision + recall) (Goutte & Gaussier, 2005; Sokolova et al., 2006).

Finally, beyond all the mentioned performance metrics, the model validation continues
with the demonstration of its value by comparison against the reference standard (the best
diagnostic or therapeutic modality for a condition, issued by experts in the domain), and
through its effect on patient outcomes. This can be attained by means of clinical trials or well-

designed observational outcome research (Park & Han, 2018).
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One of the main difficulties in algorithms validation in the medical field is the lack of
big, curated datasets. This drawback started to change with the advent of challenges. In these
open competitions, researchers are provided with a platform that includes a set of data, to
evaluate the performance of their algorithms by answering a particular scientific question
within the domain of computational pathology (Hartman et al.,, 2020; Serag et al., 2019). Putting
out image datasets for the public and raising meaningful scientific subjects, challenges are

excellent means to compare potentially useful models in medical imaging issues.

Competition topics are various, such as the automatic detection of metastases in lymph
nodes of breast cancer patients, exposed in the CAMELYON16 (Ehteshami Bejnordi et al., 2017)
and CAMELYON17 challenges (Bandi et al., 2019; Litjens et al,, 2018), the quantification of
tumor cellularity (Petrick et al., 2021) or the assessment of biomarkers. For the "HER2 challenge
contest 2016", based on the automated detection of HER2 status on IHC stained slides, 8 of
the 10 top-ranked methods were based on DL (CNN). The results supported the idea that an
automated or semi-automated scoring method has a high potential for deployment in daily
practice (Qaiser et al., 2018; Qaiser & Rajpoot, 2019). The recent "HEROHE Grand Challenge
2020" raised a similar question but on HE images of invasive breast cancer, where the task was
to achieve HER2 status without the corresponding IHC image, searching to exploit
morphological characteristics as surrogates for this determination. A cascade of DL classifiers
plus multi-instance learning (MIL) were applied to the dataset, showing good efficiency scores
for different evaluation metrics (Conde-Sousa et al., 2021; La Barbera et al., 2020). Five
challenges focused on the evaluation of mitoses in invasive breast carcinomas: MITOS2012
(Roux et al, 2013), AMIDA13 (Veta et al., 2015), MITOS&ATYPIA14 (https://mitos-atypia-
14.grand-challenge.org/),  TUPAC16  (Veta et al, 2019) and MIDOG2021
(https://imig.science/midog/) (Aubreville et al., 2022). Another competition has been held in
the MICCAI (Medical Image Computing and Computer Assisted Intervention) Conference

regarding mitosis detection: the ICPR 2012 Mitosis Detection Competition (Ciresan et al., 2013).

The French Society of Pathology (SFP, Société Francaise de Pathologie) organized its first

data challenge in 2020, based on biopsies of uterine cervix (Delaune et al., 2022).
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E. Applications

The striking contribution of Al to health professionals is the possibility to convert an
abundant assortment of disconnected data into investigated information valuable for decision-
making, through the correlation between different biological parameters evidenced by
mathematical algorithms (Lecuona & Villalobos-Quesada, 2018). In the pathology sphere, Al
could take part to cope with the enormous quantities of data that digital pathology creates,
not only aiding in binary classification but also in segmentation, estimation of continuous
measurements, and workflow automation. The applicability of Al on breast cancer molecular
pathology could also optimize the interpretation of the generated data, improving the
recognition of different pathological subgroups that could be correlated with definite
outcomes. Moreover, it will allow the pathologists to work at a “higher level” supervising and
managing the system, giving them the time needed to focus on problematic cases. Al software
tools can diminish their workload by handling time-consuming tasks such as counting mitoses
or assisting with case triage (Kayser et al., 2009; Pantanowitz et al., 2020). Algorithms could also
provide the pathologists with meaningful knowledge to support them in the daily decision-
making, through the purveyance of archive cases similar to the event being examined or prior

specimens from the same patient for comparison (Tizhoosh & Pantanowitz, 2018).

Generally speaking, a ML model can be used for numerous purposes in the medical
field. Considering only diagnostic applications, Al may assist from the screening phase,
selecting high-risk patients, then in the diagnosis construction by backing physicians and
improving their accuracy, to the post-diagnosis phase where it could function as a quality check
(Liu et al., 2019). DL models are applicable to several imaging modalities, such as CT and MRI
data, endoscopy and dermoscopy images, but the histology slides are the support that can
carry the bigger density of information, which turns WSI into an appealing resource for these
approaches (Echle et al, 2021). As showed by a study conducted by Turkki et al., useful
information for outcome prediction can be retrieved by ML even in small samples such as tissue
microarrays (Turkki et al., 2019). Applied to the research field, Al can detect patterns that are
not noticeable for the human eye, opening the avenue to the so-called imaging biomarkers,
i.e. new unknown biomarkers resulting from DL algorithms. The correlation of these patterns
with molecular subtypes, treatments responses, and prognosis provides an opportunity to

refine the diagnostics in precision medicine (Ektefaie et al.,, 2021; Rakha et al., 2020).
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Digital image analysis tools and Al methods can be applied to a large variety of tissue
preparations to identify particular lesions or patterns, to optimize cancer scorings and to
quantify immune infiltrates (Aeffner et al., 2018). Typical image analysis tasks in the context of
digital pathology include detection, segmentation and tissue classification, as well as
quantification and grading. As mentioned above, segmentation consists of delineating precise
borders for morphological elements such as nuclei, epitheliums, etc., so that these features can
be correctly extracted. Detection refers to merely pinpoint the center of the cell or event of
interest (e.g., a lymphocyte or a mitotic figure). Tissue classification is a more complex
assignment that can be performed by learning a set of archetypal features of a tissue class via
DL. This approach needs annotated image patches with the class label to learn the most
representative characteristics for class discrimination. Thus, the accuracy of the classifier relies
on rigorous ground truth annotations, performed by an expert in a time-consuming and
laborious duty. Optimization of the process of ground truth production demands pixel level
precise annotations, and dealing with the representation of three-dimensional (3D) structures
in 2D planar images of tissue sections. DL could be the solution itself for the first task, providing
high-quality annotated outputs to be verified by pathologists, who will save time focusing only
in the correction of errors made by the DL network (Janowczyk & Madabhushi, 2016). From
this we can infer that the objective of Al applications, as explained by Robertson et al., “is not
to replace the pathologist but to make the diagnostic workflow more efficient and help
evaluate and extract the most important information from the images, as well as to detect
patterns not visible to the human eye” (Robertson et al., 2018). Some of the current applications

of Al in breast cancer pathology are exposed in Table 5.
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Applications Comments

Diagnostic applications

Tumor detection

Primary tumor detection:

Detection of malignant tumours and differentiation from benign and normal structures using digitalized
images of fine-needle aspiration biopsy samples [1]. Quantitative measurements of nuclear shape and
size, which could be applied across different tumour subtypes [2].

Metastatic deposits detection in
lymph nodes:

Detection of metastatic tumour deposits in the lymph nodes, with a higher diagnostic achievement over
11 pathologists [3].

Breast cancer grading

Breast cancer grade assessment by image analysis with DL [4], objective enumeration of mitotic figures
[5], measurements of nuclear shape and size, with automatic detection and segmentation of cell nuclei in
histopathology images [6].

Breast cancer subtype Image analysis with DL to detect breast cancer histologic subtypes [4].

Assessment of tumour Measurement of intra-tumour and inter-tumour heterogeneity [5,7], identify and quantify non-epithelial
heterogeneity and tumour cells such as fibroblast, neutrophils, lymphocytes and macrophages [8] and computerized image-based
microenvironment

detection and grading of tumour infiltrating lymphocytes (TILs) in HER2+ breast cancer [9].

Receptor status and intrinsic
subtype assessment

Prognostic Applications

Quantitative measurements of immunohistochemically stained Ki-67 [10], ER [4], PR and HER2 images
[11]. GAN-based approach to provide a virtual immunohistochemistry staining pattern from the H&E
stained WSIs [10,12]. Image analysis with DL to predict breast cancer intrinsic subtype [4].

Prognostic significance of tumour

Morphological features (nuclear shape, texture and architecture) to predict risk of recurrence and overall

morphological features survival in patients with ER-positive breast tumours [2].

Al-based assays to measure the arrangement and architecture of different tissue elements such as TiLs
within the tumour have demonstrated their value in predicting survival [7] and that the spatial
distribution of TILs among tumour cells expression profiling is associated with late recurrence in ER-
positive breast cancer [13].

Prognostic significance of
different peri-tumoral elements

Applications related to predictive ML approaches used to correlate the expression of certain markers such as cell cycle and proliferation
values and response to markers [14] or the presence of certain morphological features in the tumour to the response of specific
treatment therapy.

Table 5. Current applications of artificial intelligence in breast pathology (adapted from Ibrahim
2020 The Breast). References: 1- (Osareh & Shadgar, 2010); 2- (Whitney et al., 2018); 3- (Ehteshami
Bejnordi et al., 2017); 4- (Couture et al.,, 2018); 5- (Lu et al., 2016); 6- (Al-Kofahi et al., 2010); 7- (Yuan,
2015); 8- (J. Chen & Srinivas, 2016); 9- (Basavanhally et al., 2010); 10- (Sahiner et al., 2018); 11- (Hossain
et al, 2019); 12- (Z. Xu et al., 2019); 13- (Heindl et al,, 2018); 14- (Tokés et al.,, 2016).

Two main applications that illustrate the use of ML in oncology are classification and
regression, according to the variable related to the prediction problem. Thus, the prediction
problems of a qualitative variable are classification problems, while the prediction problems of
a quantitative variable (non-categorical) are considered regression problems. Classification or
pattern recognition are in general addressed with supervised learning approaches, which bring
advantages such as accuracy and reproducibility when assessing the expression of IHC markers,
tumor morphology, and spatial distribution of tumor infiltrating lymphocytes (TILs). Regression
or survival analysis is a traditional means to assess the prognostic significance of each
candidate feature or covariate. Since ML tools are able to detect novel features in intricate
input data, they open the gate to obtain prognostic information beyond established
classifications and to develop novel predictive models in cancer research, based on complex
nonlinear relationships among prognostic factors. The model learns to predict parameter
values that will correlate with a better or worst prognosis (Koelzer et al., 2019; Ryad Zemouri

et al, 2019) (Figure 17).
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Figure 17. Classification versus regression. After a first step where a model learns on training data, it
can be used to solve two types of problems. In classification, it will categorize objects into classes or
categories defined by the user. In regression, it will predict an unknown parameter from a sum of
elements, that may be employed to construct complex scales that allow stratification, such as risk scores.

Histopathology has found in ML methods a source of appliances useful to improve
predictions in two different fields of application: 1) clinico-pathological workflow, reproducing
a specific task according to the state of the art, to assist pathologists in diagnostics task and/or
to automatize repetitive duties, simplifying patients’ stratification, and 2) research, enabling
the detection of unknown signals not accessible to classical observation in large datasets
coupled to outcome-based labels (Bataillon et al., 2019; Ibrahim et al., 2020). Some of the tasks
included in the first point represent a gain of time for pathologists, such as the detection of
tumor versus benign lesions/non-pathological tissue, or the diagnosis of lymph node
metastases (Ehteshami Bejnordi et al., 2017), while other tasks serve to bring objectivity to the
results, such as histological grading (Jaroensri et al., 2022) or the evaluation and quantification

79



Introduction ~ Atrtificial Intelligence and Medicine

of IHC staining to assist pathologist in biomarker status determination. The second point refers
to the "prognostic applications” that will aim to develop novel drugs or to predict patients’
response to treatments and evolution, such as TILs quantification or evaluation of the stroma
(Courtiol et al., 2019; Dodington et al., 2021; H. Li et al., 2021; Nederlof et al,, 2022; Wu et al.,
2022).

F. Novel defies posed by Al: shaping the medicine of the future

As digital pathology market is increasingly expanding, laboratories that rely on digital
pathology will either start or intensify the use of Al to meet the demands of modern medicine.
To accomplish this transformation, the generalization of the approach must be achieved, in
order to ease its adoption by different centers, using data from several scanner brands and
models, and slides issued from different preparation processes. These considerations are
essential in order to avoid, for example, the association of a particular disease with a device
employed in the health center where it is prevalent and, as a result, the prediction of this

disease every time that the algorithm is confronted to a data coming from the same device.

An already significant improvement in workflow is expected on tedious and time-
consuming tasks such as mitosis counting, but it requires also an effort on the part of the
pathologists, that must have to be comfortable embracing this technology, participating in
preparation tasks such as slides annotation, and in the supervision of the global operation of
the model. This labor will translate in an increased accuracy of image-based diagnostics, that
will improve with pattern recognition and, in the long run, it will reduce their workload. Hence,
even if, at the beginning, the change to a workflow that includes Al and digital pathology may
imply a lot of work on understaffed pathology departments that suddenly must handle a vast
amount of data, it will be worthy later. As an example, we can look upon the great number of
normal biopsies for certain screening procedures: Al can learn what is normal or not, and flag

the cases that need further investigation, improving tasks organization.

Advances will go even further. The implantation of Al approaches that, applied directly
on H&E sections, can predict biomarker status and molecular subtypes, could compete with
IHC or identify patients most likely to benefit from molecular testing, even to refine cancer
subtyping, as shown by Islam et al., by integration of multiple data sources (Couture et al,

2018; Jaber et al., 2020; Mohaiminul Islam et al., 2020; Shamai et al., 2019).
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In the breast pathology field, the application of Al, apart from improving the
pathologist’s diagnostic accuracy and biomarker assessment, will also deliver results beyond
that can be gain by eyeball assessment of histological characters. DL could thus constitute a
cheaper and faster alternative for some of the expensive multigene assays to predict the
outcome of breast cancer, if not replacing them completely as mentioned above, or at least as
a previous step to the implementation of these onerous tests (Finberg et al., 2007). Promising
results obtained by Coudray et al. in lung cancer show that it is possible to predict certain gene
mutations from image data alone (Coudray et al., 2018). Determination of mutational status
meets the obstacle of the small number of slides containing positive instances (i.e. gene
mutations) required to attain good accuracy values. Nonetheless, it is worth directing efforts
to better constitute the training datasets: given the impact of these mutations in treatment
choices, this DL application may have a crucial role in the personalized medicine field in the

near future.

Historically, the characteristics taken into account by pathologists to estimate the
prognosis of tumors have been related to epithelial cells, as reflected in the Nottingham
grading system. Nonetheless, some stromal features have gained space in histopathological
reports (Salgado et al.,, 2015). As proven by the findings of Beck et al. in DL models research,
stromal features are highly associated with overall survival, suggesting that the evaluation of
these parameters may refine prognosis assessment, being useful, for instance, to achieve better
discrimination between low and high-risk patients in histological grade 2 subgroup of invasive
early breast cancer. Even more interesting, the system used in this study was automated with
no manual steps (excepting the quality check of the images), demonstrating the utility of DL
approaches to find features whose significance was not previously documented (Beck et al.,
2011). In a similar vein, and based on computer-aided HE histopathology images analysis, Chen
et al. suggested that assessing stromal morphologic features may offer significant help to

improve outcome prediction in breast cancer (J.-M. Chen et al., 2015).

Several limitations, some of them already mentioned in the sections above, include
drawbacks from the preanalytical phase that can be the cause of artifacts on the final image
such as creases, shadows, blurry areas and variation in coloring, to the later steps such as the
need of significant storage capacity (~3GB per slide scan) to save all the high-definition images.

Regarding the data itself and the DL model application to it, on one side, there is the enormous
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number of tissue types and lesions that, combined, engender a never-ending list of samples
to be learnt by an algorithm, with the consequence this entails for training: an even longer list
containing several examples for every case is required! On the other side, DL strategies should
be adapted to the many peculiarities of the medical field, not only fitting the larger size of
medical images and “less curated” datasets obtainable from most of the medical studies, but
also producing a pertinent result. The classical binary variable classifier should be tailored to
the clinical practice, where the answer is not “yes or no” but a more complex result that takes
into account cognition, experience and clinical context. Other constraints are the need of
annotations to be performed by an expert, and the fact that outcome depends on many factors,
which may be present or not on the analyzed images (Robertson et al, 2018; Tizhoosh &
Pantanowitz, 2018). With respect to “practical” questions, another limitation is the cost of
modernization of outdated IT infrastructures in health care centers. High performance
computers are needed to guarantee a rapid data processing, and user-friendly platforms to

ease adoption among those who do not come from the computer field.

Pitfalls can be resumed in four key points, as exposed by Xu et al.: 1) too few datasets,
2) variances among equipment used in the different locations (lack of standardization), 3) lack
of explanation capacity of current Al methods (algorithm seen as a black box), and 4) diagnosis
of rare diseases (not enough cases to meet the requirements of Al approaches) (J. Xu et al.,
2019). As pointed out by the authors, most (if not all) of these items can be solved by working
at the Al model level, i.e. perfecting algorithms that can be adapted to different conditions and
size of available information, or resorting to transfer learning strategies (reusing pre-trained
CNN networks on other problems, employing open source image libraries) or combining

several models to overcome the scarcity of learning samples.

The interpretability problem is of particular importance in pathology. The FDA have
already approved in the US more than 60 applications in ML/AI for radiology, cardiology, and
internal medicine/general practice so far, but only a few for pathology (Benjamens et al., 2020;
Jahn et al, 2020); https://medicalfuturist.com/fda-approved-ai-based-algorithms/;
https://www.thelancet.com/cms/10.1016/S2589-7500(20)30292-2/attachment/c8457399-
f5ce-4a30-8d36-2a9c835fb86d/mmc1.pdf). This may be due to the fact that with pathological
diagnoses comes a great complexity and responsibility and this is hard to accept when sources

of decision remain locked. This trend could revert with the development of adaptive algorithms
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that can be modifiable while being used.

Since image research cannot be validated without the active involvement of
pathologists to confirm certain aspects (influence of pre-analytical variables, WSI quality,
algorithm performance) an important step to take is to train young pathologists in
computational science basics and in new technologies which, rather than looking to replace
them, cannot continue to "learn" without the pathologists being at the heart of the process: it
is the pathologist who contribute the pathophysiological knowledge to interpret the generated
data. Hence, answering the recurrent question of whether Al will soon supplant pathologists,
in Heeke's words, "Al won't replace pathologists, yet pathologists who use Al could replace

those who don't” (Heeke et al., 2019).
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Objectives

The aim of this project is to build clinical decision support tools that could aid in
patients’ stratification and treatment, applying mathematical models over multi-parameter
data with the purpose of expanding health care. Giving accurate predictive information on the
behavior of individual malignancies could improve the determination of which patients with
an initial diagnosis of breast cancer may be safely observed rather than require further
therapies. Thus, the application of image analysis coupled with Al and using information and
supports already accessible at the Pathology laboratory, could better predict relapse compared

to the currently available methods.

Secondarily, we attaint to elucidate breast cancer biology at a cellular level by the
interpretation of results produced by the developed algorithms. To do so, we planned to assess
the correlation between the pathological subgroups generated by Al and the risk of recurrence,
paying special attention at the features extracted by the model that could be related to

different outcomes.
Therefore, our main objectives were to:
1) evaluate whether Al applied to WSI could predict metastatic relapse at five years,

2) evaluate whether the prognostic elements provided by Al adds supplementary

information to routine used clinico-pathological prognostic parameters,

3) decipher the features used by Al to estimate risk (interpretability phase).
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Patients

All materials used in this project have already been described in Garberis & Gaury
et al. (see in Results, Part “Materials, Methods, Design” ). Herein, | provide additional

details.

A. Patient cohorts

The study involves two cohorts: a training cohort and a validation cohort.

The training cohort is anchored at Gustave Roussy Hospital, Villejuif, France, and
includes a great part of the population from the GrandTMA study, which nucleated women
treated with surgery and/or chemotherapy (anthracyclines + taxanes), endocrine therapy,
trastuzumab, radiation therapy, with less than 5 years of hindsight and associated with a
complete clinical database. The main objective of this retrospective study was to construct a

Tissue MicroArray (TMA) that could be used for translational research projects.

These patients integrated, at the time, the records of a program called “consultation
and assessment in one day”, during a first consultation in the Breast Pathology Department.
The objective of this consultation, motivated by an abnormality detected in breast/s, is to try
to specify the nature of this anomaly within one day. To this prospect, the patient is taken in
care by a multidisciplinary medical team (oncologists, surgeons, radiologists, pathologists, all
breast specialists) who will together take the necessary decisions to establish a diagnosis, to
perform adequate additional radiological explorations and, if necessary, offer a treatment,
depending on the different possible orientations after this consultation and the delay of

additional exams.

The cohort comprises 1850 women aged 22-95 years, diagnosed with early stage breast
cancer (including all types of invasive adenocarcinomas), surgically treated at Gustave Roussy,
between October 2005 and December 2013. Patients had a representative tumor specimen
(formalin-fixed, paraffin-embedded tumor sample) used for diagnostic purposes and available
for further analysis. They were all followed at Gustave Roussy according to the clinical protocol
(planned by the study). Of note, most of the patients were transferred to another facility for

follow-up after five years; therefore, we decided to assess the risk only at five years.

91



Materials and Methods

The validation cohort was extracted from a dataset from CANTO, a French observational

and prospective study. Additional information can be retrieved in (Vaz-Luis et al., 2019).

B. Privacy considerations

As this is a retrospective study relating solely to data usually collected for healthcare,
this work was carried out in accordance with the provisions of the Public Health Code
applicable to research not involving the human person (Public Health Code - Article R1121-1
amended by Decree no. 2017-884, May 9™, 2017) and therefore it does not come under the
jurisdiction of a Committee for the Protection of Persons. It obtained the favorable opinion of
the expert Committee for Research, Studies and Evaluations in the field of breast pathology, as
well as of the Ethics Committee (Data Protection Office, Gustave Roussy). It has been submitted
to the National Commission for Computing and Liberties (CNIL) under reference 2225201 v 0
and has been declared in accordance with the reference methodology MR-004. The patients
involved were informed of the research via an information letter distributed by post with the

possibility of opposing the study within three weeks from the date of dispatch.
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Methods

All methods used in this project have already been described in Garberis & Gaury
et al. (see in Results, Part “Materials, Methods, Design” ). Herein, | provide additional

details.

A. Slide scanning

All glass slides selected for this study were stocked at the Pathology Department, as
part of routine clinical care and are thus of diagnostic quality. As a quality-control measure, all
slides were inspected manually before (for cleaning and re-mounting when necessary) and
after scanning (for re-scanning of out-of-focus images in order to avoid issues that might affect

subsequent image analysis).

Scanning was performed on an Olympus V120 scanner (Olympus Corp., Shinjuku,
Tokyo, Japan). Slides were scanned at 20x magnification. Automated scanning processes
(selection of scanning area, placement of focus points) were quality checked and repeated

manually where necessary.
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ABSTRACT

Adapted cancer treatment strategy requires accurate stratification. We developed an
artificial intelligence (Al)-based tool that uses digitized tumor slides to assess the 5-
years metastasis-free survival (MFS) of patients with estrogen receptor-positive,
HER2-negative (ER+/HER2-) early breast cancer (EBC). We developed a Deep
Learning model (RlapsRisk™ BC) that independently predicts MFS and added
significant prognostic information to clinico-pathological variables (c-index in the
validation set 0.80 versus 0.76 for clinico-pathological factors alone, p-value<0.05). A
threshold corresponding to a probability of MFS event of 5% at 5 years was applied to
dichotomize patients into low or high-risk groups. After dichotomization, combining
RlapsRisk BC and clinico-pathological factors showed a higher cumulative sensitivity
on the validation dataset (0.76 vs 0.61) for an equal dynamic specificity (0.76) in
comparison with the clinical score alone. Expert characterization of the most predictive
tissue tiles according to RlapsRisk BC revealed well-known morphological features in
prognostic determination and potential new morphological features to be further

explored.
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INTRODUCTION

Despite significant progress in classification and treatment over the past two decades,
breast cancer (BC) remains the leading cause of cancer death for women worldwide
(1). Proposing an optimal therapeutic strategy to each patient requires systematic and
accurate characterization of each disease. Specifically, estrogen receptor positive
(ER+), HER2-negative (HERZ2-) invasive breast cancer, which accounts for
approximately 70% of all invasive BC, is associated with a wide spectrum of outcomes
and treatment requirements. For many of these women, a key question remains
whether adjuvant chemotherapy with the burden of acute side effects and the potential
long-term persistent quality of life (QoL) deterioration (2) can be safely avoided.
Furthermore, women with a predicted high risk of metastatic relapse despite current
standard treatment could be offered more intensive or extended adjuvant strategies,

including the addition of a CDK4/6 inhibitor, or other approaches (3),(4).

Prognosis definition has been traditionally based on clinical and histopathological
factors, such as the patient's age and the histological classification and grade.
Biomarker assessment mainly by immunohistochemistry (ER, progesterone receptor -
PR-, HER2 and the proliferation marker KI67) was added to this estimation and later
refined with the inclusion of molecular signatures. Results from the TAILORX trial
showed that Oncotype DX®, a 21-gene expression molecular test that assesses the
10-year metastasis-free survival (MFS), could spare up to 85% of women with early
estrogen receptor-positive, HERZ2-negative (ER+/HER2-) breast cancer (EBC)
unnecessary adjuvant chemotherapy, without impacting patient outcomes (5),(6),(7).
Currently, several gene expression signatures assessed on the primary tumor material
are endorsed by international guidelines to support clinicians in refining the prognosis
of patients with EBC and taking adjuvant treatment decisions (8). Beside this molecular
characterization, prognostic tools using classical factors and embedded into publicly
available websites may be used as an aid in clinical decision making. For instance,
Predict Breast Cancer, a widely used online prognostication software, uses known
prognostic factors such as tumor size, KI67 index, tumor grade and lymph node status
to predict overall survival at 5 and 10 years (9),(10). However, sensitive markers such
as Ki67 may be subject to reproducibility and expertise biases (11),(12),(13),(14),(15).
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The characterization and prognostication of diseases has evolved over time and
recently has expanded to include more sophisticated instruments and methods from
the computational field. Artificial intelligence (Al), particularly machine learning (ML)
approaches, are increasingly being developed to answer biological and clinical
questions. Notably, recent studies have shown the potential of deep learning (DL)
models applied to histopathological whole slide images (WSI) to predict patient
outcome and unveil features correlated with prognosis in different malignancies, such

as brain tumors (16), mesothelioma (17), colorectal cancer (18) and breast cancer (19).

In this study, we aimed to investigate whether Atrtificial Intelligence (Al) applied on
tumor WSI could: (i) identify patients who have a substantial risk of metastatic relapse
despite receiving standard treatments, and (ii) provide additional prognostic
information beyond clinico-pathological prognostic criteria. The ultimate goal was to
develop an Al-based digital pathology tool to allow assessment of risk of metastatic

relapse.

RESULTS

The primary objective of this study was to evaluate the additional 5-years MFS
prognostic value of RlapsRisk BC score relative to that of the current clinico-
pathological criteria, in patients with ER+/HER2- early breast cancer. The secondary
objective consisted in comparing the capacity of a model combining standard clinico-
pathological criteria and RlapsRisk BC to dichotomize patients between high risk and
low risk of developing 5-years MFS events to that of a model based on clinical factors
only. This comparison was assessed on the entire population of the validation cohort
and in different subgroups of clinical interest (histological grade 2, clinical intermediate
risk of relapse as defined in supplementary table 2, pre- versus post-menopausal
status, with or without lymph node invasion, treated with or without adjuvant

chemotherapy).

Model development and datasets

To build our model, we used the GrandTMA cohort as a discovery dataset. This cohort

has been collected retrospectively from patients diagnosed in the “One-stop breast
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clinic’ program and treated at Gustave Roussy Cancer Center (Villejuif, France)
between October 10th 2005 and February 7th 2013 (20). The cohort comprised 1802
patients diagnosed with early invasive BC (1429 ER+/HER2-, 110 ER+/HER2+, 70 ER-
/HER2+ and 193 ER-/HER2- tumors) who underwent surgery as first treatment and
had at least one available hematoxylin-eosin-saffron (HES)-stained tumor slide from
surgery specimen. For the purpose of a one-shot external validation of our model, we
used a dataset from the French observational and prospective CANTO cohort
(NCT01993498) (21). Out of 14,000 patients accrued in CANTO so far, 1703
ER+/HER2- EBC patients had a minimum follow-up of 5 years and were eligible for the
present study. HES slides and full clinico-pathological features were exploitable from
889 patients. None of these patients were also included in the GrandTMA cohort. See

supplementary methods for additional information on the two cohorts.

Our approach consisted in developing an algorithm that learned from the WSIs to
predict the 5-years metastasis-free survival (MFS) without any local annotation
provided by pathologists. To build this model we used a method composed of three
steps: i) tissue tiling, ii) feature extraction, iii) creation of a risk score (Figure 1). All

these steps are detailed in the supplementary methods.
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Figure 1: RlapsRisk BC algorithm overview

We then developed a clinical score to predict the 5-year MFS from a multivariable Cox
model trained using the discovery dataset (hereafter the Clinical Score), based on the
following clinical variables: age, tumor size, histological grade, lymph node invasion
and Ki67 expression. We considered this score as our baseline reference that we
compared to a score based on a Cox Model adjusted for the clinical factors and
RlapsRisk BC score to assess the additional predictive value of the RlapsRisk BC
score to the standard clinical factors (hereafter the Combined Score). Adjuvant
treatment regimen was not a prognostic factor in multivariable analyses (both with or

without RlapsRisk BC score) and was therefore removed from all prognostic models.

RlapsRisk BC score and Prognosis

On both GrandTMA and CANTO cohorts, RlapsRisk BC score was an independent

prognostic factor of MFS (Table 1) when integrated into a multivariable Cox model
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including histological grade, age, lymph node invasion, tumor size, and Ki67

expression. All variables, except histological grade, were considered continuous.

Cox Model without

Cox Model with

Grand TMA |Variable RlapsRisk BC RlapsRisk BC
Unit HR (95%
Cl) P Unit HR (95% CI) P
Histological
grade 1 1 (ref) N.A 1 (ref) N.A
Histological 1.85 1.90
grade 2 (1.05-3.26) 0.03 (1.06-3.40) 0.03
Histological 213 219
grade 3 (1.13-4.00) 0.02 (1.15-4.18) 0.02
1.40 1.39
Age (1.13-1.73) <0.005 (1.13-1.71) <0.005
Lymph Node 1.13 112
Invasion (1.08-1.15) <0.005 (1.08-1.16) <0.005
1.33 1.18
o Tumor Size (1.16-1.51) <0.005 (1.00-1.40) 0.05
Multivariable
Cox model 1.56 1.39
Ki67 expression | (1.32-1.85) <0.005 (1.16-1.66) <0.005
1.38
RlapsRisk score N.A. N.A. (1.19-1.59) <0.005
C-index (cross- 0.78 0.80
validation) (+/- 0.04) (+/- 0.04)

Table 1A: Multivariable Cox proportional hazard models estimating the contribution of several
prognostic variables on MFS on GrandTMA. P columns contain the probability of observing these results

if the Unit HR were equal to 1.
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Cox Model without Cox Model with
CANTO |Variable RlapsRisk BC RlapsRisk BC
Unit HR (95% CI) P Unit HR (95% CI) P
Histological
grade1 1 (ref) N.A 1 (ref) N.A
Histological 1.14 1.16
grade 2 (0.80-1.63) 0.47 (0.81-1.66) 0.41
Histological 1.39 1.28
grade 3 (0.90-2.14) 0.14 (0.83-1.97) 0.27
1.03 1.03
Age (0.87-1.21) 0.77 (0.87-1.22) 0.33
1.13 1.1
Lymph Node Invasion (1.05-1.21) <0.005 (1.04-1.18) <0.005
117 1.13
Multivariable [Tumor Size (1.02-1.36) 0.03 (0.98-1.31) 0.10
1.14 1.24
Cox model Ki67 expression (0.98-1.33) 0.08 (0.98-1.33) 0.09
1.26
RlapsRisk BC score N.A N.A (1.08-1.46) <0.005
C-index (external 0.76 0.80
validation)* (+/- 0.037) (+/- 0.035)

Table 1B: Multivariable Cox proportional hazard models estimating the contribution of several
prognostic variables on MFS on CANTO. P columns contain the probability of observing these results if
the Unit HR were equal to 1.

* C-index were computed from the Cox multivariable models trained on Grand TMA.

The discrimination power of these two scores was first compared using the Harell C-
index (22) on the discovery dataset with a stratified fivefold cross-validation strategy,
and three repeats. Due to the small number of events, we stratified this cross-validation
on the events to preserve a minimal number of events per fold. Data from the CANTO
cohort were held out from the training series and were used only for a one-shot external
validation and the assessment of the discrimination of each model. RlapsRisk BC
increased the model discrimination when added to the clinical factors in the CANTO
validation dataset, with a Harell C-index of 0.80 compared to 0.76 for the clinical factors
alone (+0.04, p-value <0.05).

We then assessed the prognostic performance of RlapsRisk BC score and the clinical

factors in patients subgroups defined by standard clinico-pathological factors, by the
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clinical risk groups (Supplementary Table 2) and by adjuvant treatment regimen. The
assessment of potential heterogeneities in these subgroups was conducted by Cox
regression analyses. When a factor was used to build a subgroup it was removed from
the associated Cox multivariable model. A higher RlapsRisk BC score was associated
with an increased risk of distant recurrence in all subgroups except for patients with
pN2, pN3 and pT3 TNM stages (see Figure 2), which were subgroups with limited

sample sizes.

Events/patients HR (95% CI} p-value

Age at surgery

=60 26/497 R B 1.36(1.06.1.74) 1.38e-02

=60 20/392 —a— 1.49(1.05,2.12) 2.69e-02
Ki67

<20 26/694 B 1.29(0,98,1.7) 6.83e-02

=20 28/195 —— 1.42(1.03,1.97) 3.23e-02
Menopausal Status

No 14/223 I 1.4(0.98,1.99} 6.40e-02
Yes 32/666 —— 1.38(1.08,1.76) 9.10e-03
pN

o 16/592 s 3 1.6(1.08,2.39) 1.97e-02

1 15/226 —_— 2.04(1.45,2.86) <0005

2 7/48 e s e 0.64(0.29,1.4) 2.63e-01

3 8/24 = 0.95(0.49,1.86) 8,85e-01
PT

1 14/544 ] 1.69(0.8,3.6) 1.72e-01

2 26/308 —— 1.45(1.14,1.84) <0.005

3 6/37 e m— 0.66(0.34,1.29) 2.24e-01
Tumor Grade

G2 29/536 —— 1.63(1.28.2.08) <0.005

G3 17/168 —— 1.06(0.75,1.5} 7.28e-01
Chemotherapy

No B/485 = 1.94(1.02,3.69) 4.26e-02

Yes 38/404 — 1.3(1.06,1.6) 1.34e-02
Clinical Risk Group

Intermediary 21/531 l_— 1.57(1.07,2.31) 2.06e-02

High 25/248 :—.— 1.31(1.01,1.7) 3,890.02

00 0s 10 15 20 25

Figure 2: Forest plot of the adjusted RlapsRisk BC score HRs on prediction of 5-year metastasis-free
survival. Each square of the forest plot represents the HR of the adjusted RlapsRisk BC score (a
continuous variable) + clinical factors in the subgroup of patients defined by the variable category in the
first column of the table. The 95% HRs confidence intervals are represented by the horizontal lines.
Histological tumor grade 1 and low clinical risk Group were removed as no MFS events were recorded
in these subgroups. P columns contain the probability of observing these results if the Unit HR were
equalto 1.

Clinical validity of RlapsRisk BC

To compare the capacity of the models to dichotomize patients between high risk and
low risk of developing 5-years MFS events, thresholds corresponding to a probability
of MFS event of 5% at 5 years were set for each risk score in the training set and

prespecified accordingly for validation (see supplementary methods for details). When
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211 dichotomized, the scores were then referred to as “classifiers” (e.g. combined model
212 classifier).

213

214 After applying the MFS risk stratification according to the previously defined classifiers,
215  Kaplan—Meier analyses showed significant differences in distant recurrence events

216  between low-risk and high-risk patients both in the discovery and validation datasets,

217

as summarized on Table 2 and highlighted on Figure 3.

218
CANTO validation cohort (N=889)
RlapsRisk BC Clinical score Combined model
Classifier classifier classifier
Number at Low
Risk* 562 663 658
Number at High
Risk** 327 226 231
% of patients with
MFS events in the 1,42% 1,96% 1,22%
Low Risk group
% of patients with
MFS events in the 7,95% 9,29% 11,26%
High Risk group
Kaplan Meier’s
Hazard Ratio 4.36 4.25 6.99
95% CI 2.32-8.18 2.36-7.64 3.73-13.09
p-value <0.005 <0.005 <0.005

219 Table 2: Classification of Patients according to each classifier (RlapsRisk BC, Clinical score, and
220  Combined)

221 * Predicted probability of 5-years MFS event <5%

222  **Predicted probability of 5-years MFS event >5%

10
10 10
0.9 o 0.9
0.8
0.8 . 0.8
: Low risk {ref} .
Low risk (ref) i h - Low risk (ref)
High risk, HR=4.36 (95% C12.32 - 8.18) High sk, HR=4.25_(95%0.2:36 - T.69) High risk, HR=6.99 (95% C1 3.73 - 13.08)
p<0,005 §5 p<0.005 p=0.005
07 450 300 1350 1600 B 450 900 1350 1800 07 450 00 1350 1800
Low risk
Low risk Low risk
Atisk 562 545 526 510 435 Atrisk 562 2 623 538 495 Atrisk 658 634 615 503 487
Censored 0 17 32 a7 119 Censored 0 21 3 58 155 Censored O 24 a0 61 153
Events 0 [ a H 8 Events 0 o 3 & 13 Events 0 o 3 4 8
High risk High risk High risk
Atrisk 327 12 298 274 218 Atrisk 226 215 201 186 158 Atrisk 231 23 200 191 156
Censored 0 15 5 38 83 Censored 0 1 20 26 a7 Censored 0 B 17 24 0
Events O ] ] 15 26 Events 0 o 5 14 21 Events 0 ] 5 16 26

226 Figure 3: Metastases-free survival of patients stratified according to RlapsRisk BC classifier (left)
227 Clinical score classifier (middle) and RlaspRisk + clinical score combined model classifier (right)
228 among patients from the CANTO validation cohort. Numbers in parentheses indicate the 95% CI of the
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HR.

We also assessed the performance of our tool across groups of patients at different
risk of recurrence, as defined according to known prognostic factors, such as
menopausal status, presence of lymph node invasion vs. not, treatment by chemo-
endocrine therapy vs. endocrine therapy alone. The discriminative power of the
combined model classifier in those subgroups (Table 3) suggests that, when combined
with the current clinical factors RlapsRisk BC could be used as an additional layer of
information for better defining the risk of recurrence of each patient. Indeed, on the full
CANTO dataset, with a common dynamic specificity of 0.76, the combined model
Classifier increased the cumulative sensitivity by 15 points in comparison to the clinical
score classifier alone. When looking at the histological grade 2 subgroup and the
“‘intermediate clinical risk” subgroup (defined in the supplementary table 2), with a
dynamic specificity equivalent and a gain of 28 and 26 points respectively in cumulative
sensitivity, the combined model classifier largely outperformed the clinical score
classifier. These figures illustrate the benefit of adding RlapsRisk BC score to the
current clinical factors for a better estimation of prognosis within subgroups with a

difficult prognosis estimation.

Interestingly, the score combining RlapsRisk and the clinical variables is the only model

achieving a stable performance for both pre- and post-menopausal patients.
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Subgroup RlapsRisk BC classifier Clinical score classifier | Combined model classifier
N Cumulative Dynamic Cumulative Dynamic Cumulative Dynamic
sensitivity specificity sensitivity specificity sensitivity specificity

0.77 0.67 0.61 0.76 0.76 0.76

Full Population 889 [0.61-0.87] | [0.63-0.70] | [0.45-0.75] | [0.72-0.79] [0.61-0.87] |[0.73-0.80]
Patients with histological 0.80 0.68 0.46 0.79 0.74 0.79

grade 2 carcinoma 534 [0.59-0.91] | [0.63-0.72] | [0.28-0.66] | [0.74 - 0.83] [0.53-0.87] |[0.75-0.83]
Intermediate 0.84 0.73 0.41 0.82 0.67 0.84

clinical risk group 529 [0.58-0.95] | [0.68—-0.79] | [0.20-0.66] | [0.78 —0.86] [0.41-0.85] |[0.80-0.87]
Patients with Node 0.71 0.5 0.71 0.62 0.8 0.56

positive disease 296 [0.53 — 0.85] [0.43 — 0.57] [0.52 — 0.85] [0.55 - 0.68] [0.61 —0.90] [0.49 — 0.63]
0.90 0.74 0.38 0.82 0.69 0.85

Patients with NO disease 593 [0.62-0.98] | [0.70-0.78] | [0.17-0.65] | [0.78-0.85 [0.40 —0.88] | [0.81-0.88]
0.81 0.57 0.50 0.83 0.72 0.79

Pre-Menopausal patients 223 [0.52-0.94] | [065-0.79] | [0.25-0.75] | [0.77 - 0.88] [0.43-0.90] |[0.72-0.84]
0.75 0.70 0.66 0.73 0.78 0.75

Post-Menopausal patients| 666 [0.56-0.87] | [0.66—0.73] | [0.47-0.80] | [0.69-0.77] [0.60—0.90] |[0.71-0.79]
Patients who received 0.75 0.48 0.66 0.60 0.78 0.57

adjuvant CT 405 [0.57 — 0.87] [0.43 — 0.54] [0.49 — 0.80] [0.54 — 0.65] [0.61 — 0.89] [0.51 — 0.62]
Patients who did not 0.85 0.80 0.41 0.88 0.70 0.91

received adjuvant CT 484 [0.52 - 0.97] [0.76 — 0.84] [0.16 — 0.71] [0.84 — 0.91] [0.38 — 0.90] [0.87 — 0.93]

264

265
266
267
268

269
270

271
272
273
274
275
276
277
278
279
280

Table 3: Performance of the Classifiers in different subgroups of the CANTO cohort (external validation)

Additional exploratory Kaplan—Meier analyses highlighted significant differences
between high-risk and low-risk in all these subgroups (see supplementary material

Figures 3 to 7).

Model interpretability: features assessment

To identify and characterize areas of slides that most impact the overall risk score
given by the model, we computed the marginal contribution of each tile to the overall
risk score to assess its positive or negative contribution to the final risk score predicted
by the final multilayer perceptron (MLP). The extremal tiles were further reviewed and
annotated by two expert pathologists blinded to the predicted outcome (see
supplementary methods for more details). The most predictive features of high risk of
relapse according to RlapsRisk BC Classifier (Figure 4B) were the presence of high
tumor cell content (P < 0.0001), high degree of nuclear pleomorphism (P < 0.0001),
massive architecture (P < 0.0001) with low tubule formation (P < 0.0001) and

trabecular structures (P < 0.0001) as well as mitotic activity (P < 0.0001). Multiple
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282
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288
289

290

291
292
293
294

295
296
297

298
299
300
301

features were associated with low risk of relapse such as fibrosis (P < 0.0001),
presence of vascular structures (P < 0.0001) and isolated tumoral cells (P = 1.2E-03).
Interestingly, tiles associated with low risk (Fig. 4A) were not only located in tumor
stroma (P < 0.0001), but also in the adjacent normal tissue (P < 0.0001). Moreover,
the model was also able to capture complex cell interactions, as spatial mixing of
fibroblasts and tumor infiltrating lymphocytes (TILs) were also retrieved in low risk tiles
(P = 2.5E-04), a feature of good prognosis highlighted in a recent study (25). These
results showed that our model was able to capture well established prognostic factors

as well as complex and novel patterns to predict patient outcomes.
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Figure 4: Model Interpretability. A. Tiles exhibiting features associated with a low risk of relapse; B. Tiles
exhibiting features associated with a high risk of relapse; C. Annotated histological features.

DISCUSSION

The integration of digital pathology is increasing in everyday’s practice, and workflows
that include digitization of glass slides are no longer an exception in pathology
laboratories. This ongoing transition is paving the way for the implementation of Al-

based digital pathology medical devices in clinical practice.
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In this study, we developed and validated a new digital pathology score, which predicts
distant recurrence at 5 years after surgery in adequately-treated early-stage breast
cancer patients, bearing ER-positive and HER2-negative tumors. Our method uses
just a standard-stained and scanned tumor slide already available for diagnostic

purposes in the pathology laboratory.

RlapsRisk BC score has a strong, validated, prognostic value that is independent of
established clinicopathologic factors. It provides additional information beyond
classical clinico-pathological factors. When combined together, clinico-pathological
factors and RlapsRisk BC were able to dichotomize patients into low-risk and high-risk
groups with a strong discriminative power, both on the entire population and within

subgroups of interest.

Contrary to other digital pathology approaches predicting morphological features, such
as histological grade or KI67 index that are ultimately indirectly linked to prognosis
(26),(27),(28),(29), we trained our Deep Learning model to directly predict the 5-year
MFS. Not only did we not require local annotations to train the algorithm which takes
as input the entire WSI, but our prediction task was directly addressing our clinical

question, i.e. prediction of 5-years MFS.

A different approach presented by Wang et al. (30) attained a risk prediction from
Nottingham histological grade through the re-stratification of the intermediate category
(NHG2). NHG2, which encompassed the largest group of patients, was dichotomized
in a low-grade subgroup and a high-grade subgroup, achieving a HR of 2.94 (95% ClI
1.24-6.97, P = 0.015) for the stratification between the two groups according to
Recurrence Free Survival (RFS). While the presented tool had an important prognostic
implication, it was centered on the intermediate risk group and it addressed the
question of recurrence risk in an indirect manner (30). However, the strength of their
approach is served by the straightforward explicability of the model. Highlights of
simple interpretability features will ensure the pathologist that a given classification was
performed according to expected criteria: tubule formation, nuclear pleomorphism and
mitotic activity, in the case of histological grading. Similarly, in our study, RlapsRisk BC

Classifier achieved on the validation cohort a high discriminative power on NHG2
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patients with a sensitivity of 0.8 and a specificity 0.68, respectively, and illustrated by
an HR of 4.15 (95% CI 1.88-9.15, P < 0.005) for MFS (see supplementary material)
despite the use of a different endpoint which excludes locoregional relapse,

contralateral tumors and death contrary to RFS.

Interpretability is indeed a valid concern for the use of Al in digital pathology, presented
as a crucial challenge by Duggento et al. (31). In our study, we aimed to investigate
the features that supported a low-risk or high-risk prediction from RlapsRisk BC.
Analyzing the most predictive tiles, we confirmed that the model retrieves well-
established criteria alongside complex and novel histological patterns that have an
impact on patient outcomes, such as high atypia or mitotic activity, without the need
for locally annotated data. In this manner, we propose a natively interpretable model
to step out of the black box paradigm, a major hurdle toward a broad adoption of any

Al solution in clinical practice to help clinicians tackle medical challenges (32).

Currently, one of these challenges in ER+/HER2- EBC management is the adaptation
of the treatment according to the risk of the patient. Reducing the number of
unnecessary adjuvant chemotherapies or even endocrine therapies to improve quality
of life while maintaining an equivalent survival rate of the patients is the key challenge.
This group is currently the target population for molecular signatures, where the issue
is to use the genomic score to decide on an adjuvant chemotherapy or to decide on a
de-escalation in certain patients. However, the restrictive indications for use limit the
eligible population of molecular tests, their use is not generalized, and they are not
covered by the health care system in many countries (33). These facts expose a gap
where a simpler, less-expensive, routinely available tool, could support decision-
making, replace molecular signatures or, at least, work as a pre-screening test for
ulterior use of onerous molecular determinations in a subset of cases. This approach
has already been explored in some studies (34), and a comparison study between
molecular signatures and RlapsRisk in a similar setting to the TRANSATAC study (35)

would provide helpful insights on this matter.

Even though our study presents an innovative and useful tool for patient stratification,

there are some limitations.

Regarding the preanalytical phase, our model was fitted for HES-stained tumor slides,
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and has not yet been validated on HE-stained histopathological slides, despite it being
the staining of choice in pathology laboratories outside of France. Adaptations of the
model for an optimal application on HE-stained slides and other routine stainings are
currently under development. As for the scanning of the slides, only two different

scanners were used for the digitization.

In addition, the population of the validity set derives for the majority from the same
center, where data for the training part were collected. On those issues, assorted data
from novel external centers is being collected and included in future validation cohorts,
which will allow us to confirm the medical utility of RlapsRisk BC, as recommended in
(36).

In conclusion, RlapsRisk BC™ resulted to be an independent prognostic factor of MFS
and added significant prognostic information to clinico-pathological variables. After
patients dichotomization into low-risk and high-risk groups, RlapsRisk combined with
classical clinico-pathological risk factors showed higher discrimination power
compared to clinico-pathological risk factors alone. A prospective observational study
comparing RlapsRisk BC to molecular prognostic signatures is currently ongoing and
will allow to determine the impact of the implementation of this Al-based tool into the
practice workflow. Future extensions of our research include the development of novel
algorithms, adapted to a broader variety of inputs. To deepen interpretability issues,
an exhaustive analysis of tiles is contemplated with a focus on the spatiality notion that

could provide novel insights in tumor biology.

Data Availability

The GrandTMA dataset that supports the findings of this study is available from
Gustave Roussy but restrictions apply to the availability, which were used with
permission for the current study, and so are not publicly available. The CANTO dataset
used for external validation is available from UNICANCER but restrictions apply to the
availability of data, which were used with permission for the current study, and so are
not publicly available. The datasets, or a test subset, may be available from Gustave

Roussy or UNICANCER subject to ethical approvals.
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Code Availability

The code used for training the models has a large number of dependencies on internal
tooling and its release is therefore not feasible. However, all experiments and
implementation details are described thoroughly in the Online Methods section so that

it can be independently replicated with non-proprietary libraries.
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Methods

Datasets description
GrandTMA

To build our models we used a discovery dataset collected retrospectively from
patients treated at Gustave Roussy in France and included in the “GrandTMA” cohort.
This cohort comprises all patients newly diagnosed with a breast carcinoma as part of
the “One-stop breast clinic” program at Gustave Roussy between October 10th 2005
and February 7th 2013 (20). The inclusion criteria for the present study were: i)
diagnosis of invasive breast carcinoma, with or without associated in situ carcinoma,
ii) any type of treatment but neoadjuvant chemotherapy, iii) availability of a surgical
specimen with a formalin-fixed, paraffin-embedded (FFPE) tumor sample available, iv)
complete clinical and therapeutic data, v) follow-up over at least 4 years and updated
annually. The exclusion criteria were: i) exclusive non-invasive tumors, ii) cytology-only
available cases, iii) absence of follow-up, iv) other non-adenocarcinomatous lesions of
the breast. This led to the inclusion of 1802 patients diagnosed with early invasive BC
(1429 ER+/HER2-, 110 ER+/HER2+, 70 ER-/HER2+, 193 ER-/HER2-), with at least 1
available hematoxylin-eosin-saffron (HES)-stained tumor slide from the surgical
specimen at the Pathology Department (details in Supplementary Figure 1). Biomarker
status (ER, PR, and Ki67 immunohistochemistry (IHC) expression, and HER2 protein
expression/gene amplification) was defined and determined locally according to the
current recommendations of the College of American Pathologists and the American
Society of Clinical Oncology (CAP/ASCO (37),(38)), and the French recommendations
of the Study Group on Immunohistochemical Prognostic Factors in Breast Cancer
(GEFPICS (39)). ER and PR expression positivity was defined as an IHC staining of at
least 10% of tumor cells, as is standard in several European countries. Lesions were
considered positive for HER2 (score 3+) if the number of tumor cells with a complete
and intense membrane IHC staining exceeded 10% of the whole invasive tumor cells
population; equivocal (score 2+) if the number of tumor cells showing a complete and
moderately intense membrane IHC staining, or an incomplete basolateral membrane
IHC staining of moderate to severe intensity exceeded 10% of the total infiltrating tumor

population; and negative in the remaining cases (scores 0 and 1+). When
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dichotomized, Ki67 cut-off was defined according to the current recommendations (i.e.
cut-off set at 20%) (38), (40).

Image acquisition was performed using an Olympus VS120 slide scanner at 20x
magnification. In order to avoid scanning issues that might affect subsequent image
analysis, all slides were checked by a pathologist after digitization to discard slides with
insufficient quality and rescanned when necessary (blurred images, need of slides re-

mounting when coverslip was damaged).

This work was carried out in accordance with the provisions of the Public Health Code
applicable to research not involving the human person (Public Health Code - Article
R1121-1 amended by Decree no. 2017-884, May 9", 2017) and therefore it does not
come under the jurisdiction of a Committee for the Protection of Persons. It obtained
the favorable opinion of the expert Committee for Research, Studies and Evaluations
in the field of breast pathology, as well as of the Ethics Committee (Data Protection
Office, Gustave Roussy). It has been submitted to the National Commission for
Computing and Liberties (CNIL) under reference N° F20220121170839 and has been
declared in accordance with the reference methodology MR-004. The patients involved
were informed of the research via an information letter distributed by post mail with the

possibility of opposing the study.

CANTO

For the purpose of an external validation of our model, we used a dataset from the
French observational and prospective CANTO cohort (NCT01993498) (21). In this
cohort, patients were included at diagnosis of their invasive breast cancer, before any
treatment, following the given criteria: i) women only, ii) aged over 45 years old, iii)
HER2- and ER+ (same definition as for the GrandTMA cohort), iv) with a histologically
invasive breast cancer diagnosed, v) with no clinical evidence of metastasis at the time
of inclusion. Out of 14,000 patients accrued in CANTO so far, 1703 ER+/HER2- EBC
patients had a minimum follow-up of 5 years and were eligible for the present study
(708 patients from Gustave Roussy and 997 patients from other cancer centers of the
UNICANCER group). None of these patients were also included in the GrandTMA
cohort. Thirty-one patients from Gustave Roussy had incomplete data and were

excluded from the study, resulting in 675 HES slides available with clinical data. From
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the other centers of the CANTO cohort, we had access to 214 HES slides from
resection used for primary diagnosis (details in Supplementary Figure 2). In total 889
patients had exploitable HES slides, together with full clinico-pathological features

(described in Supplementary Table 1).

All data collections were performed in the framework of the CANTO clinical trial
(NCT01993498), in compliance with all legal requirements. All patients included in the
study were informed through the website https://mesdonnees.unicancer.fr/ on the

reuse of their data for a separate objective with the possibility of opposing the study.
Endpoint

The chosen endpoint for survival data analysis was metastasis-free survival (MFS) at
five years, defined as the time from initial surgery to occurrence of metastatic event or
death before five years. Local relapse or axillary lymph node recurrence events were
ignored. Patient’s follow-up was censored at the time of contralateral breast cancer,

second non-breast primary cancer or last available date of follow-up.

Model Description
To develop our risk score from histology slides we used a method composed of three

steps: i) tissue tiling, ii) feature extraction, iii) creation of a risk score. The
transformation of the score into a probability of occurrence of a MFS event before five
years and the selection of a threshold are two additional steps, detailed in Statistical

Analysis.

Tissue segmentation and tiling

Each of the Whole Slide Images (WSI) was first divided into small squares, 76 x 76
micrometers in size (224 x 224 pixels) called “tiles”. This tiling was performed by first
segmenting the tissue, using a pre-trained U-Net neural network (41) that discarded
the background, and artifacts of scanning or preparation. This segmented tissue was
then divided into N (ranging from 10,000 to 75,000) tiles.

Feature Extraction

The N tiles were embedded into D-dimensional feature vectors using a pre-trained
CNN (Figure 1A). We implemented Momentum Contrast v2 (42), a self-supervised
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learning algorithm that improved performance for various prediction tasks in previous
studies (43) trained on the Cancer Genome Atlas Colon Adenocarcinoma (TCGA-
COAD) dataset (44)). Multiple data augmentations were applied while the model was
optimized for 200 epochs (approximately 30 hours) on 16 NVIDIA Tesla V100 Graphics
processing units (GPU). This frozen pre-trained algorithm was then used to extract

features during training and inference.

Risk prediction using Multiple instance learning

The N feature vectors were then aggregated using a multiple instance learning (MIL)
model trained to predict MFS at five years (Figure 1C). We reimplemented the attention
based model called DeepMIL proposed by lise et al. (45). A linear layer with L neurons
(L = 256 here) was applied to the embedded features followed by a Gated Attention
layer with L hidden neurons. A multilayer perceptron (MLP) with 128 neurons was then
applied to the output. To speed-up training, only a random subset of 8000 tiles per WSI
was used, while all tiles of a slide are processed for inference. DeepMIL was trained
using an extension of the standard cross-entropy loss used to train survival prediction

models with right-censored data (46).

Integrating a tumor-related feature in the algorithm

Our preliminary analyses highlighted that the number of tumor tiles contained in each
slide was associated with distant relapse and yet was not captured by the model. We
therefore incorporated this feature by classifying all the tiles of a slide as tumor vs non-
tumor (Figure 1D). An ensemble of four MLPs trained in a patch-based supervised
learning approach was used.

The combination of the predicted DeepMIL risk score and the tumor count score was

done by scaling and summing both features, forming the RlapsRisk BC score (Fig. 1B).

Thresholds determination

For the RlapsRisk BC score, as well as the clinical and combined risk scores, we fitted
a Weibull AFT (Accelerated Failure Time) model on the discovery dataset to transform
risk scores into probabilities of occurrence of MFS event before 5 years. This step was
used to identify the threshold of each risk score corresponding to a probability of 5-
years MFS event of 5% defined by the Weibull Models. This 5% MFS rate threshold

corresponds to the 5-year interpolation of an exponential model from the 10-year MFS
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of 10%, which is the most common output of the molecular signatures currently used

in clinical practice (23).

Method for interpretability features assessment

Training an Al model on digital slides from diagnosis to predict metastatic relapse is
an original approach compared to recent research works in Digital Pathology, that
generally predict well known pathological features (e.g. histological grading or KI67
index). However, bypassing human knowledge in the training phase requires even
more explanations of the functioning of the model. We detail herein our method to
identify and characterize typical areas on a well defined set of slides that had extreme
risk scores. Interpretability relies on the possibility to access the relevant information

for our model that is contained in input data or learned by the model itself.

In the model, each tile was associated with an attention score that was used in the final
weighted average to obtain the input vector for the risk predictor (see Figure 4).
However, this score did not provide information about the impact on prognosis of the
tile. To overcome this limitation, we computed the Shapley value (47) associated with
each tile, which measures the marginal contribution of each tile to the overall risk score
to assess its positive or negative contribution to the final risk score predicted by the
final MLP.

For 20 slides of the validation dataset (10 classified with highest RlapsRisk BC scores,
10 classified with lowest RlapsRisk BC scores by our model), we computed the
Shapley values of each tile and extracted those with the 10 highest computed
contributions (in the case of the highest RlapsRisk BC scores, those tiles constituting
the high risk contribution group) and 10 lowest ones (in the case of the lowest
RlapsRisk BC scores, constituting the low risk contribution group) for each slide. Those
tiles were further reviewed and annotated by two expert pathologists blinded to the

predicted outcome.

Fifty-six histological features were recorded, encompassing tumor architecture
patterns, stroma features, presence of different cell types and tiles’ localization. Only
twenty-two histological features were kept in the analysis after excluding those with

low agreement between the two experts (Cohen’s kappa < 0.21, (48)). The proportions

25



706
707
708

709

710
7

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

729
730
731
732
733
734
735
736
737
738
739
740
741
742

of appearance of each feature in the highest and lowest contribution groups were
compared with a two proportion Z-test, statistical significance was calculated using the

Bonferroni adjustment, resulting in a corrected alpha value of 1E-3.

Statistical Analysis

Performance assessment though Harrell’'s c-index and Kaplan-Meier analyses were
performed with uni- and multivariable Cox proportional hazards models implemented
in the lifelines (0.27.4) package of Python, cumulative sensitivities and dynamic
specificities were computed using the scikit-survival package (0.19.0). We performed
Kaplan-Meier analyses to assess the association of each classifier with MFS (the
presented HR and their 95%CI corresponding to the related univariable Cox models),
and used Log-rank tests to compare survival distributions between stratification
subgroups. In order to evaluate the prediction performance of these classifiers in terms
of discrimination of the risks of metastatic events before five years, we computed the
cumulative sensitivity as well as the dynamic specificity associated with each model.
These are natural extensions of the so-called sensitivity/specificity to the particular
setting of time-to-event outcomes that may be censored (24). P-values to compare the
performance in c-index of the different models were based on permutation tests.
Confidence intervals were computed using bootstrapping with nonparametric,
unstratified resampling. All tests were two-tailed, and P values < 0.05 were considered
statistically significant. We followed the recent MI-Claim checklist to improve the

reporting of our ML methods. The checklist is available in the Supplementary Materials.
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SUPPLEMENTARY MATERIAL

Flow Charts
Grand TMA
(n=1802)
ER-/HER2+ Tumors
(n=70)
» ER-HER2-
- (n=193)
ER+HER2+
(n=110)
Y
ER+/HERZ2- Tumors
(n=1429)
Patient treated with adjuvant Patient Treated with adjuvant
chemotherapy and endocrine therapy endocrine therapy alone
(n=502) (n=927)

Supplementary Figure 1: Flow Diagram GrandTMA Cohort

CANTO Cohort
(n=14,000)

:

Patients with 5 years of follow-up and ER+ HER2- tumors
(n=1703)

Patient with digitized biopsy slide only
(n=320)

Patient with digitized HP stained slide only
(n=288)

Y
Patient with digitized HES available

(n=889)
Patient treated with adjuvant Patient Treated with adjuvant
chemotherapy and endocrine therapy endocrine therapy alone
(n=404) (n=485)

Supplementary Figure 2: Flow Diagram CANTO Cohort
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Clinical variables

TMA CANTO
Clinical Variable Group N, % N, %
None 1379 92,61% 843 94,83%
MFS events before 5 years 57 3,83% 34 3,82%
after 5 years 53 3,56% 12 1,35%
77
Follow-up Mean (sd) months(41) NA| 69 months(24) NA
Age Mean (sd) 61.2 (12.4) NA 57.7 (12.2) NA
Post-menopausal 1070 74.88% 667 74.86%
Menopausal Status
Pre-menopausal 359 25.12% 224 25.14%
1 979 68.51% 592 66,44%
2 398 27.85% 265 29,74%
pT 3 50 3.40% 33 3,70%
4 3 0.21% 0 0,00%
NA 2 0.14% 1 0,11%
0 950 66.48% 593 66,55%
1 359 25.12% 227 25,48%
pN
2 72 5.04% 46 5,16%
3 48 3.36% 24 2,69%
NO 950 66.48% 753 84,51%
Lymph node status
N+ 479 33.52% 138 15,49%
G1 428 29.95% 185 20,76%
. i G2 736 51.50% 537 60,27%
Tumor histological
grade
G3 263 18.40% 169 18,97%
NA 2 0.14% 0 0,00%
<20% 1150 80,48% 756 84,85%
Ki67
>20% 279 19,52% 135 15,15%
Radiation therapy YES 1217 85.16% 475 53,31%
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NO 212 14.84% 516 57,91%

YES 1387 97.06% 856 96,07%
Endocrine therapy

NO 42 2.94% 35 3,93%

YES 505 35.34% 485 54,43%
Chemotherapy

NO 924 64.66% 406 45,57%

Supplementary Table 1 : Patients characteristics in the discovery and validation datasets

Clinical risk groups

pN2 & post-menopause
Grade 3

High Risk Intermediate Low Risk
(At least one criterium) (All Criteria)
pT1
. pL31 o pNO/i+/mi
: P pre-menopause Other Situation Grade 1
[ J

Kl67<15-20%

No lymphovascular emboli

Supplementary Table 2 : Clinical risk groups definition.

Integrating a tumor-related feature in the algorithm

To train the tumor classification algorithm, we had at our disposal the 1759 slides of
the GrandTMA database whose tumor regions had been contoured by two expert
pathologists. The feature extraction pipeline presented in the Model Description was
re-used and the multiple instance learning model was replaced by a binary classifier
composed of a linear layer with 2048 neurons that classified each tile as tumor vs. non

tumor.

KM Analyses
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Supplementary Figure 3: Stratification performed by RlapsRisk BC Classifier (left), Clinical Score
Classifier (middle), Combined Model Classifier (right) on Grade 2 patients from the CANTO cohort.
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Discussion and Conclusions

A. Discussion

1. General considerations

Breast cancer is naturally positioned as a discipline of choice for the application of Al

due to its high incidence and the major oncotheranostic issues that it carries.

This is evidenced by the great interest that the association of Al and medicine is
arousing in oncology community, with the increase of presented abstracts at high-level
congresses and symposiums; particularly, our work was selected for proffered paper
presentation at the ESMO Congress 2021 and then the validation phase was designated for

poster presentation with an award at the last ESMO Congress 2022 (see Annexes section).

The new requirements of patients’ stratification can be met by a combination of
computational pathology and artificial intelligence. Mathematical models seem to be very
attractive tools with which to elucidate diverse scientific questions such as the response to a
certain treatment or the prediction of risk of relapse (Pages et al., 2018). The benefit of
chemotherapy reducing the risk of recurrence in high-risk tumors is well documented, but in
low-risk tumors, the side effects of such treatment would most likely outweigh the profits
(Penault-Llorca, 2021). In the intermediate group, and essentially in the early stage diseases,
the risk stratification is difficult and additional tools are necessary to aid in the decision about
whether chemotherapy would add extra benefit compared to endocrine therapy alone. This is
even more important because, due to the increase in the proportion of breast cancers with a
good prognosis, as a result of screening, early diagnosis and faster implementation of
treatments, novel strategies are required targeting this particular population. The current
objective is therefore no longer just to prevent recurrence, but also to improve the quality of

life of patients, which means to reduce toxicity as much as possible.

Thus, the chosen strategy for our work was to develop a DL model and to combine it
with histopathological features present on WSI and clinico-pathological data to assess the risk
of relapse in early breast cancer. We tested this method on an external cohort and we showed
that it produced reliable data that validated its generalization. We also tried to identify which

morphological characteristics, along with their location on the tissue, were most important for
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the algorithm and best predictors of patients’ outcome.

Supplementary corroboration of our method come to the fact that results are consistent
with other approaches already validated for clinical practice. In the same line of molecular
signatures and other prediction tools such as Predict Breast and CTSO, the prognostic
performance was slightly weaker in pre-menopausal patients than in post-menopausal
patients. Regarding lymph node status, our method shows an advantage over the other
predictors with an equivalent c-index for prognosis in patients with positive or negative lymph
nodes, contrary to the other cited methods that, although still significant, are a little less
performant in the node negative setting (Sestak et al., 2018). It should be contemplated that
besides all the performance analyses, molecular signatures are still expensive and not available
in less developed regions in the world, while our method requires a single routine digitized

slide only, already available for diagnosis.

Distinct characteristics of the considered disease have an influence in the study design.
Since HR+ breast cancers can show a long period before the recurrence appears, two
considerations must be mentioned. First, the careful endpoint selection that must be associated
with a specific period for event prediction. This endpoint should be extensive enough to cover
a sufficient quantity of events, taking into account other points such as, in our case, the transfer
of patients’ controls after five years that can result in a loss of follow-up. Second, and as
exposed in the review by Abreu et al,, in this particular population there exist the imbalanced
class distribution, that is, the "recurrence” class is represented by a shorter number of examples
than the “no-recurrence” class, which is inherent in survival analyses, however (Henriques
Abreu et al,, 2016). The class imbalance may deteriorate the performance of the model if this
is not considered and corrected, since one of the classes will not have enough elements for the
classifier to learn about it. In HR+ breast cancer recurrences, where the events tend to be scarce
in the short term, this is particularly dangerous, since a false negative would be traduced in no
treatment for a recurrent cancer because the disease is classified as in remission. Nevertheless,
we did not employ any particular strategy to manage this problem in our final model, since we
had tested some traditional methods of oversampling patients with recorded relapses, but

without obtaining significant improvements in the results.

Interpretability is one of the big issues in the field of Al applied to medicine. However,

the recognition of "hidden” features by deep learning models, as we found in our study, can

136



Discussion and Conclusions

provide novel information regarding prognosis. Once these features identified, they can be
deciphered and comprehended for ulterior integration in histopathological assessment, which

may be more easily accepted by the medical community than a “closed” method.

2. Limitations

Firstly, pre-analytical factors such as fixation procedures, slide preparation (cutting,
staining quality) and storage in every laboratory can affect the results of the evaluation and
should be adjusted to the recommendations of use of our Al-based tool. Scanning problems
involving unfocused images or bad quality WSIs should be also taken into consideration. A
pathology quality assessment is imperative as an initial step to minimize the effect of the pre-

analytical variables.

Another major concern is the availability of big, clean and updated cohorts in the
medical domain, with complete clinical and histopathological data, and associated good
quality WSI suitable for digital image analysis. Al-based approaches are dependent on both
the quality and the quantity of input data. The absence of any of these conditions translates in
insufficient amount of training and/or test data, which, in turn, difficults the validation of
experimental Al models. Unfortunately, this limitation is quite frequent, as seen in the
interesting work carried out by Klimov et al. to predict the risk of relapse in ductal carcinoma
in situ (Klimov et al., 2019). Contrary to the aforementioned work, even if our sample size was
limited when compared with other studies of the genre, a blind validation of our model was
performed on an independent cohort, with promising results, and efforts are currently ongoing

to enlarge the test cohorts in order to increase the robustness of our algorithm.

As highlighted by (Mobadersany et al., 2018), DL models applied to histology raise a
challenge: the features in WSI are, in the end, pixels with a signification that depend entirely
on context and, finally, in the interpretation, without an intrinsic meaning. The result is
commonly a complex system, laborious to grasp and thus more prone to be rejected. In any
case, and regardless of the sophisticated tools that can be deployed, the role of the
pathologists is essential as a guarantor of the process and only their expertise can provide

sense to the results and verify the analyses carried out on the tissue sections.

In a wider angle, the application of medical decision support systems to the field of
medicine require the overcoming of some major obstacles. First of all, databases that are
rapidly expanding must be held to appropriate standards for the ulterior use in a workflow that
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includes digital pathology and/or Al. Second, there must be a change in the degree of
acceptance to the new technological solutions, to make easier their implementation after
apprehending their functioning and the benefits that they have to offer for patients and for
the medical workflow in general. Third, the establishment of multidisciplinary teams must be
encouraged and facilitated, including health care delivery personal, database, statistics and

computational experts, in order to create a gradual transition to the health care of the future.

3. Perspectives

Additional applications of our work include the use of our DL-based approach to predict
biomarkers status from HES WSI in an accurate and objective manner (see in Annexes section)
(poster USCAP). We found that biomarker status could be predicted with 91%, 76%, 94% and
85% accuracy for ER, PR, HER2 and Ki67 respectively, suggesting that it could be a viable option
for patients’ stratification and as a support in therapeutic decisions in the low-resource setting,
where biomarker testing by IHC is not routinely performed. Future work should extend this

approach through the validation on larger cohorts.

We are currently focused on the prospective phase of our study, which includes the
deployment of RlapsRisk, our Al-based prediction tool, in the routine workflow, and aims at
comparing RlapsRisk score to the current routine molecular signatures scores (Oncotype DX®).
This trial period consists of scanning new tumor slides and quality check performed by
pathologists to feed the algorithm, which will produce a .pdf document with the result of
prediction (Figure 18), as the model displayed on the Annexes section. This report will then
integrate the medical report of the patient, as is presently the case with the pathological report,
the radiological studies or the results of molecular tests. We believe that external validation as
performed in our work is a great advantage over other Al-based studies, as pointed by (Kim et
al., 2019), and that this fundamental prospective phase will contribute with the design features
that are recommended for robust validation of the real-world clinical performance of Al
algorithms. This study will allow us to directly compare our Al-based RlapsRisk to the current

molecular signatures (Oncotype DX®).

We also plan to increase the retrospective validation of the RlapsRisk tool in a larger
clinical trials that were used to validate molecular signatures, such as the TransATAC study.
Moreover, it would be very important to explore whether the RlapsRisk device is able to predict

late recurrence between five and ten years (an aspect that we could not explore in our
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GrandTMA cohort due to the decentralized follow-up of the patients after 5 years). Ongoing
studies are in process on national and international plan to: 1) retrospectively validate our
results in other centers (France, Italy, Netherlands), 2) extend validation to HE-stained slides

and 3) generalize the validation of RlapsRisk to other scanner devices.

Today
3 . t Int ion with oth e
Tissue sample ws(:aalthologi st) - e;l cal data/r i ler Diagnosis & Decision
+ +
Tomorrow » Incorporation Production of an Al
of a final report for the
digitization step assessed sample

Figure 18. Routine workflow at the Pathology laboratory with the implementation of RlapsRisk.

B. Conclusions

In conclusion, we validated an Al-based digital pathology medical device for use on
diagnostic tissue slides. The technique enabled us to provide prognostic information from HES-
stained tumor WSI in the final form of a report containing a risk of relapse score and detailed

areas of the slides that contributed to the prediction, in order to support interpretability.

Finally, we expect that our efforts pave the way for future biomarker research,
contributing to plant the foundations for the development of new personalized treatments,
taking advantage of the capacity of deep learning to discover previously unrecognized
morphological characteristics from tissue sections that could have clinical relevance. This
convergence of digital pathology, automation, and powerful analytics like DL and Al in
healthcare, along with the strengths of human perception and judgment, are bringing together
the tools needed for scientists and clinicians to unlock medical breakthroughs at a pace like

never before.
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LECTURE DU RESULTAT

Le graphique suivant montre la relation entre le score recurisk et I'estimation de la probabilité de récidive a distance a
5 ans pour les patientes traitées pendant 5 ans par hormonothérapie adjuvante seule.
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Owkin Dx RlapsRisk BC est une analyse de lame HES par intelligence artificielle pour les patientes atteintes d’'un
cancer du sein ER+, HER2-, a un stade précoce. RlapsRisk BC a pour objectif d'informer le clinicien sur le risque de
rechute.

Cette analyse d'image détermine un score de risque de rechute a partir duquel est identifiée la probabilité de récidive
adistance a 5 ans avec 5 ans d’hormonothérapie adjuvante seule. Le résultat Haut risque ou Bas risque indique la
catégorie de risque de récidive a distance avec 5 ans d’hormonothérapie adjuvante seule.
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dans le manuel utilisateur.
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Communications on the RlapsRisk
study

A. ESMO Congress 2021 - Paris, France

Proffered Paper oral presentation. “Prediction of distant relapse in patients with invasive
breast cancer from deep learning models applied to digital pathology slides”. Garberis 1.*,
Saillard C.*, Drubay D., Schmauch B., Aubert V., Jaeger A, Sapateiro M., de Lavergne A., Kamoun
A., Courtiol P., André F., Lacroix-Triki M..

*both authors contributed equally to the study.

B. USCAP 2022 - Los Angeles, California, USA

Poster. "Explainable Deep Learning predicts molecular subtypes and improves risk of
relapse assessment from invasive breast cancer histological slides”. Saillard C.*, Garberis
L.*, Drubay D., Gaury V., Aubert V., Schmauch B., Jaeger A., Herpin L., Elgui K., Linhart J., Kamoun
A., André F., Lacroix-Triki M.

*both authors contributed equally to the study.

C. ESMO Congress 2022 - Paris, France

Poster. “Blind validation of an Al-based tool for predicting distant relapse from breast
cancer HES stained slides”. Garberis I.*, Gaury V.*, Drubay D., Saillard C., Aubert V., Elgui K,

Bernigole F., Jacquet A., André F., Lacroix-Triki M.

*both authors contributed equally to the study.
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Résumé

Human Epidermal Growth Factor Receptor 2 (HER2) est un important biomarqueur pronostique et
prédictif dans le cancer du sein. Sa détection permet de définir quelles patientes pourront béné-
ficier d’'un traitement ciblé. Si la détermination du statut HER2 par immunohistochimie (IHC) en
catégories positive vs négative est actuellement bien installée et reproductible, I'apparition d'une
nouvelle catéqgorie dite « HER2-faible » pourrait poser quant a elle des problemes d’interprétation
et de reproductibilité.

Nous avons décrit ici les méthodes utilisées actuellement en routine pour préciser le statut HER2
et I'application de techniques innovantes de Machine Learning (ML) pour améliorer ces détermi-
nations, ainsi que les principaux défis et opportunités liés a I'exploitation de la pathologie numé-
rique a I'ére de I'intelligence artificielle (1A).

Summary

Could artificial intelligence play a role in breast cancer diagnosis?
- The example of HER2 Ingrid

HER?Z is an important prognostic and predictive biomarker in breast cancer. Its detection makes
it possible to define which patients will benefit from a targeted treatment. While assessment of
HER? status by immunohistochemistry in positive vs negative categories is well implemented and
reproducible, the introduction of a new “HER2-low” category could raise some concerns about its
scoring and reproducibility.

We herein described the current HER2 testing methods and the application of innovative machine
learning techniques to improve these determinations, as well as the main challenges and oppor-
tunities related to the implementation of digital pathology in the up-and-coming Al era.
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Introduction : la révolution des machines

Nous sommes aujourd’hui confrontés a un futur qui aurait pu
paraitre trés improbable pour la plupart des cerveaux d’une
époque passée. Il y a presque 60 ans, le grand auteur de
science-fiction Isaac Asimov publia dans le New York Times un
article intitulé « Visite de I'Exposition universelle de New York de
2014 », inspiré par celle de 1964 [1]. Asimov a d’ores et déja saisi
I'importance qu’auront les ordinateurs, qui commencaient a peine
a étre utilisés par les particuliers. « L'informatisation continuera
a progresser inévitablement » et « I'objet mobile informatisé va
pénétrer dans la maison », prédit sans se tromper |'écrivain, mais
en méme temps il méconnaissait jusqu’a quel point ses paroles
seraient d’actualité au xxe siecle.

L"avenir de la médecine sera probablement dicté par deux piliers
principaux : la médecine personnalisée et les progres techniques.
Le premier fait référence aux thérapies ciblées, dirigées contre
des cibles spécifiques susceptibles d’étre détectées par des
biomarqueurs. Le deuxieme, quant a lui, englobe différents outils
et méthodes capables d'améliorer la démarche diagnostique. Ces
deux éléments touchent de pres certaines spécialités médicales et
notamment |'anatomie pathologique. En effet, les pathologistes
devront étre capables d’intégrer les dimensions morphologiques,
cliniques et moléculaires de la maladie, en maitrisant de nou-
velles techniques et technologies pour délivrer des diagnostics
de qualité dans les meilleurs délais [2].

Les pathologistes, ainsi que les radiologues, dont le travail est
axeé sur le repérage des signes de maladie grace a I'imagerie
médicale, sont dans une position stratégique pour tirer le meil-
leur parti de la révolution déclenchée par I'avenement de I'IA
en médecine. Adoptant la neurobiologie computationnelle, la
logique mathématique et I'informatique, I'IA pourrait faciliter
I'automatisation du travail, éliminer les taches fastidieuses, et
améliorer la précision et I'efficacité de la pratique quotidienne.
Cet article a pour objectif d’effectuer un état des lieux de la
caractérisation du statut HER2 dans des échantillons biologiques
et des technologies innovantes conduisant a I'amélioration de
cette détermination.

Diagnostic a I’heure actuelle
dans le cancer du sein

Diagnostics précis pour une maladie trés répandue
Le cancer du sein est la premiére cause de cancer chez les
femmes dans le monde, dont I'incidence a été de 2 261 419 cas
en 2020 [3]. Dans la pratique diagnostique de routine, le tissu
tumoral mammaire est coloré a I'hématoxyline-éosine (HE), puis
examiné au microscope optique pour I'évaluation morphologique
qui sera détaillée dans le compte-rendu anatomopathologique.
Ce rapport sera complété par les résultats de I'analyse immuno-
histochimique, pour évaluer I'expression des biomarqueurs a des
fins pronostiques et prédictives.
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En effet, il est bien connu que, en plus de la taille de la tumeur,
de I'envahissement des ganglions lymphatiques et de la présence
de métastases, la biologie tumorale est d'une importance vitale
pour le pronostic et la prédiction de la réponse au traitement.
Ainsi, grace a la caractérisation histopathologique et moléculaire
des cancers, la thérapie peut étre considérablement améliorée
en |'adaptant a chaque cas individuel. Dans une démarche de
médecine personnalisée, le panel de routine pour le cancer
du sein inclut la détermination des récepteurs hormonaux aux
cestrogénes (RE) et a la progestérone (RP), de HER2 et de Ki67
pour évaluer I'index de prolifération tumorale.

HER2 et recommandations internationales
d’évaluation

De tous les oncogenes liés au pronostic dans le cancer du sein,
ERBB2 et sa protéine HER2, qui est surexprimée dans environ
15 % des tumeurs de stade précoce, est le plus étudié [4].
Chez les patientes non traitées, la présence d’une amplification
d'ERBB2 a été associée a un pronostic plus péjoratif [5,6]. En
outre, la positivité de HER2 est liée a des lésions de haut grade
et a un taux de prolifération cellulaire élevé [7].

L'évolution de ces patientes a radicalement changé avec I'intro-
duction des agents ciblant HER2, tels que le trastuzumab. Pour
prédire une possible réponse a ce traitement, HER2 est utilisé en
tant que biomarqueur compagnon, en combinant les techniques
d'IHC et d’hybridation in situ (HIS).

Selon les recommandations du College of American Pathologists
et de I'’American Society of Clinical Oncology (CAP/ASCO0), et les
recommandations francaises du Groupe d’étude des facteurs
pronostiques immunohistochimiques dans le cancer du sein
(GEFPICS) (mise a jour sous presse), une tumeur est considérée
comme positive pour HER2 (score 3+) si le nombre de cellules
tumorales présentant une forte surexpression de HER2 (c’est-a-
dire avec un marquage membranaire complet et intense) dépasse
10 % de la population tumorale infiltrante totale ; équivoque
(score 2+) si le nombre de cellules tumorales présentant une
surexpression modérée de HER2 (c’est-a-dire avec un marquage
membranaire complet et d’intensité modérée, ou incomplet
basolatéral d’intensité modérée a forte) dépasse 10 % de la
population tumorale infiltrante totale ; et négative dans tous les
autres cas (scores 0 et 1+) [8]. Le détail du scoring des différentes
catégories est accessible en intégralité dans les derniéres recom-
mandations du GEFPICS (mise a jour sous presse) [8]. Les patients
sont éligibles ou non a la thérapie ciblée selon leur statut HER2
positif ou négatif respectivement, tandis que les cas équivoques
(score 2+) sont renvoyés au test HIS pour affiner le statut [9]. Il
existe cinq différents groupes d'apres la technique d’HIS pour le
cancer du sein, selon le rapport HER2 / Chromosome Enumeration
Probe 17 (CEP17, sonde d’énumération des centroméres pour le
chromosome 17) et le nombre moyen de copies de HER2 par
noyau. Les normes d’évaluation sont résumées dans la figure 1.
De facon récente, suite a l'introduction de nouvelles thérapies
ciblées (anticorps conjugués a une chimiothérapie, tels que
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Ficure 1

Synthése des recommandations pour I’évaluation de I’expression de HER2 dans les cancers du sein, par IHC et HIS en utilisant

un dosage a double signal (adapté de [9]).

le trastuzumab déruxtécan), une nouvelle catégorie de statut
HER2 dite « HER2-faible » est apparue. Cette catégorie inclut les
scores IHC 1+ et 2+ non amplifiés en HIS, auparavant classés
en négatifs. Les premieres données issues des essais cliniques
montrent en effet une efficacité de ces molécules (c’est-a-dire
trastuzumab déruxtécan) dans les tumeurs « HER2-faibles »,
mais la reproductibilité interobservateur pour cette catégorie
est suboptimale [10,11]. Cette nouvelle catégorie apparait
dans les derniéres recommandations nationales (mise a jour
sous presse) [8].

Inconvénients de la méthode d’appréciation
traditionnelle

Le principal inconvénient des méthodologies actuelles d’éva-
luation de HER2 est le caractere semi-quantitatif de la détermi-
nation, qui est donc sujette a une variabilité interobservateur,
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particulierement rapportée dans les scores HER2 1+ et 2+. Par
ailleurs, le résultat de la technique de marquage dépend aussi du
protocole technique, d’oti émanent plusieurs sources de variabilité,
et qui conditionne I'intensité du marquage (parameétre crucial des
catégories HER2-faibles), comme le temps et la température de
la réaction, ou les réactifs employés [12]. Le défi datteindre une
rigoureuse standardisation de cette nouvelle notion d'HER2-faible
est relevé dans la derniére version des recommandations GEFPICS.
Un autre facteur a I'origine de la variabilité des résultats, et parti-
culierement aux discordances de notation entre pathologistes, est
représenté par les cas qui arborent une expression hétérogéne de
HER2 au sein de la tumeur. Différents travaux se sont concentrés
sur la résolution de cette difficulté, qui peut potentiellement
entrainer des conduites de traitement inadéquates [13,14].

De nouvelles méthodes fiables pour quantifier I'expression
protéique pourraient permettre de prédire plus précisément
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I'efficacité thérapeutique, notamment vis-a-vis des nouvelles
thérapies ciblées. Ce besoin est également fortement soutenu par
la demande croissante de la détermination du statut HER2 dans
d’autres tumeurs solides qui pourraient tirer un grand bénéfice cli-
nique des médicaments ciblant la voie de signalisation HER2 [15].

La contribution de I'lA 3 la sénologie

Pathologie numérique : 3 mi-chemin

entre la médecine et l'informatique

La pathologie numérique est un concept apparu d'abord
dans le contexte de I’'enseignement. Elle réunit toutes les
technologies qui permettent d’acquérir des images a partir de
coupes tissulaires préparées pour évaluation histopathologique
et sa conséquente exploitation via des techniques d’analyse
assistées par ordinateur (CAD, pour Computer-Aided Diagnosis).
Le scanner de lames de verre est une partie centrale de ce
processus, permettant une acquisition rapide et a haute réso-
lution, de maniére automatisée. Souvent, et en raison de son
colt élevé, le scanner est aussi le facteur limitant [16]. Donc,
la numérisation de lames dans les laboratoires de pathologie
n‘en est encore qu'a un stade débutant, dépendant de projets
d’investissement en cours, mais avec de fortes perspectives de
développement dans le court terme.

L'acquisition d'images est basée sur les lames préparées en rou-
tine, dont la qualité doit étre optimale pour obtenir une image
virtuelle de valeur. Pour un échantillon d’une taille habituelle
(15 x 15 mm) et au grossissement couramment utilisé (x 20),
la vitesse d"acquisition oscillera entre 30 secondes et 5 minutes,
dépendant des spécifications du scanner. Ce processus produit
des fichiers de tres grande taille, ce qui entraine des contraintes
au niveau de leur visualisation et surtout du stockage. Pour mini-
miser ces obstacles, la numérisation se fait par des petits carrés
ou patches, qui seront compressés puis assemblés dans un type
spécial de fichier nommé « pyramidal » qui simule le fonction-
nement du microscope optique, en permettant d’afficher toutes
les résolutions possibles d'une image [17]. Ces fichiers s’ouvrent
dans des logiciels de visualisation, normalement fournis par
le fabricant du scanner, ce qui représente un autre obstacle a
franchir : malgré I'existence de viewers universels multiformats,
I'absence de format unique pour les images générées par des
outils provenant de différents constructeurs est préjudiciable
pour la généralisation des solutions de pathologie numérique.
Les lames virtuelles (WS, pour Whole Slide Images) ainsi obte-
nues peuvent convenir a différentes finalités. Comme décrit par
Al-Janabi et al., les applications principales peuvent se regrouper
en diagnostic, recherche, éducation et archivage, avec des
avantages appréciés a plusieurs niveaux [18]. Du point de vue
du patient, des délais de diagnostic plus rapides, un meilleur
acces aux avis d’experts et des rapports anatomopathologiques
plus solides en raison de la précision apportée par les nouvelles
technologies ne sont que quelques atouts de la pathologie
numérique.
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En raison du nombre croissant de biomarqueurs évalués quanti-
tativement pour la prise de décision thérapeutique, le CAD des
biomarqueurs tissulaires pourrait devenir un aspect crucial de
la médecine personnalisée, en assurant le choix de |'option de
traitement adéquate pour chaque cas.

Un renforcement réciproque fait avancer l'installation des
technologies modernes dans la pratique quotidienne. Tout
d’abord, I'utilisation de scanners dans les services de patho-
logie, qui augmente progressivement, renforcera probablement
I'adoption d’une analyse automatisée pour certaines activités
de diagnostic. En méme temps, I'implémentation de la micro-
scopie numérique dans la routine diagnostique est poussée par
I'émergence de I'lA en médecine, qui se nourrit de données
massives ou big data pour tester leurs algorithmes et méthodes
d’analyse automatisée.

L'établissement d’un nouveau flux de travail qui inclut la numé-
risation et I'annotation de lames est ainsi encouragé (figure 2).
Avant la mise en ceuvre d'un systéme de pathologie numérique,
il est fondamental d’appréhender I'importance et I'impact
potentiel des discordances entre la lame de verre et les images
digitalisées. Tous les centres devraient disposer de leur propre
procédure de validation, nécessaire pour garantir que ce systéme
peut fonctionner de maniére adéquate dans la pratique clinique
de routine, c'est-a-dire que le pathologiste parviendra au méme
diagnostic quelle que soit la méthodologie adoptée [19]. Dans
le cadre d’'une méta-analyse menée par Williams et al., ou
8 069 comparaisons ont été évaluées, les discordances men-
tionnées atteignaient 4 %, dont la moitié correspondaient a des
cas de diagnostic difficile et a ceux connus pour étre liés a une
variabilité interobservateur [20].

Mais... qu’est-ce que I'lA ?

L'IA est un concept au sens large décrivant des systéemes auto-
matisés qui peuvent effectuer des taches considérées comme
nécessitant de I'« intelligence », en imitant ce qu’un humain
pourrait faire dans la méme situation. Ces systemes reposent sur
la création et I'application d’algorithmes [21].

La différence entre I'lA, I'apprentissage automatique ou Machine
Learning (ML) et I'apprentissage profond ou Deep Learning (DL)
n'est pas toujours évidente pour les non-experts. Le ML, une
sous-catégorie de I'lA, fait référence au processus par lequel un
systéme est capable d’apprendre et d’analyser a partir de données
qui lui sont fournies. Le DL, sous-type de ML, est un modéle infor-
matique inspiré par la biologie, ou la profondeur est donnée par
les niveaux d’abstraction ou couches qui l'intégrent, constituées
par des unités de calcul nommées neurones [22]. Les réseaux de
neurones convolutifs (CNN pour Convolutional Neural Networks),
qui sont une forme de DL, ont été utilisés avec succes dans une
diversité de taches de reconnaissance visuelle d’objets [23,24].
L'algorithme, entendu comme la suite d’opérations mathéma-
tiques qui permettront d’arriver a la résolution d’un probleme,
est le coeur du systeme informatique. Extrapolé au domaine de
la pathologie et en fonction du rapport que ce systéme maintient
avec I'humain, on peut décrire deux aspects dans I'lA, avec

tome 108 > Supplément 1 > Novembre 2021

09/11/2021 10:36:30



L’intelligence artificielle pourrait-elle intervenir dans I’aide au diagnostic des cancers du sein ? - L’exemple de HER2

Préparation des tissus/lames |

Marquage [HC

Acquisition (scanner)

Sélection des ROI

Analyse assistée
par ordinateur =<
(CAD)

Analyse d'images

automatique d'attributs

I Reconnaissance
cellulaires

W

Comptage de mitoses

Méthodes d'1A

—> Algorithmes

\ Prédiction de parameétres

non connus
Pronostic

FiGURe 2

Flux de travail pour un laboratoire de pathologie qui incorpore I’analyse assistée par ordinateur (CAD). IHC : immunohistochimie,

ROI : régions d’intérét, IA : intelligence artificielle

des niveaux de complexité croissants. Dans |'approche de ML,
I"algorithme essayera de reproduire la démarche du pathologiste :
c’est 'humain qui apprend a la machine a résoudre un probleme,
avec des criteres propres de I'anatomie pathologique, comme
la prise en compte de Ia taille et de la forme des cellules. Dans
I'approche de DL, la machine n’a pas besoin d’intervention
humaine pour trouver une solution a la question demandée :
elle va se débrouiller pour créer les algorithmes elle-méme, basée
sur des critéres « invisibles » a I'ceil humain, qui ne proviennent
pas de la biologie mais des éléments constitutifs de I'image,
comme la couleur, le contraste, etc.

Une deuxiéme considération sur le role du pathologiste dans le
systeme porte sur le type d’apprentissage. Dans |'apprentissage
supervisé, la cohorte d’entrainement présentée au réseau a été
préalablement étiquetée : le programme informatique reconnait
les labels ou annotations introduites par le pathologiste pour
apprendre a distinguer différentes caractéristiques qu’il devra
repérer dans les futures cohortes. L'ordinateur pourra ainsi mettre
en pratique le systeme de classification appris pour grader ou
scorer de nouvelles images. Dans |'apprentissage non supervisé,
les données sont présentées au programme sans aucune anno-
tation et, a force d’analyser une grande quantité d’entrées, il
devient capable de trouver des associations et des motifs a partir
des caractéristiques présentes dans les images. Cela permettra
de générer des classifications indépendamment de |’entraineur.
Plus la quantité de données est importante, plus performant
deviendra I'algorithme.
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Comment I'lA pourrait aider au diagnostic ?

L'utilité de I'lA dans la pathologie diagnostique se traduit par une
transformation de I'interprétation subjective des résultats des
biomarqueurs en résultats quantitatifs plus précis et reproduc-
tibles. A titre d’exemple, on peut mentionner les performances
obtenues par Bai et al. en utilisant des modéles mathématiques
(Algorithms for Quantum Applications [AQUA]) pour mener 3 bout
une détermination quantitative de HER2, par rapport a la méthode
standard semi-quantitative [25]. A terme, la pathologie numérique
peut fonctionner non seulement comme un moyen pour fournir de
meilleurs services, mais aussi en tant qu’un véhicule pour soulager
le pathologiste de certaines taches qui consomment beaucoup de
temps, laissant la place a un rdle plutdt centré sur la supervision
des résultats obtenus grace a I'analyse automatisée d’images.
Cependant, donner du sens biologique a une matrice de pixels
n‘est pas une tache aisée : le pathologiste doit acquérir des
compétences dans le traitement et la segmentation d'images,
ainsi que des notions d’informatique. Toutefois, il reste le
porteur d'une expertise qui couvre notamment les facteurs les
plus importants pour I'étude, tels que l'influence des conditions
préanalytiques sur les coupes tissulaires colorées, la qualité
des WSI et la performance des algorithmes ; de méme que les
connaissances physiopathologiques pour interpréter les données
générées dans le contexte de la question de recherche et les
limites de la conception de I'étude [26].

L'application de I'lA trouve un champ fertile dans la pathologie
oncologique sénologique, du fait de la valeur prédictive et
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pronostique de I'évaluation histopathologique et moléculaire
des tumeurs et des déterminations qui font partie du compte-
rendu anatomopathologique [27]. Ces informations obtenues a
partir des lames HE et des lames d’'IHC pour les biomarqueurs
histopronostiques (RE, RP, HER2, Ki67) sont encadrées dans la
démarche de la médecine personnalisée, qui cherche a orienter
le traitement en fonction des caractéristiques moléculaires de
chaque tumeur.

Dans les années a venir, I'lA pourrait méme se positionner comme
un rival sérieux de I'HC, au point de remplacer entiérement cette
technique, en prédisant les résultats ou le statut des biomarqueurs
directement a partir des lames HE. Certains classificateurs basés
sur des modeles du DL seraient en mesure de fournir, a partir
de la lame HE, des informations sur le sous-type moléculaire
intrinseque des tumeurs, ce qui pourrait concurrencer méme
d’autres méthodes comme les tests moléculaires [28,29]. Il est
probablement plus juste de penser I'IA comme une technique
complémentaire de plus a la disposition du pathologiste (au
méme titre que I'lHC ou la Fluorescent In Situ Hybridization [FISH]
par exemple) capable de faire dans certaines situations ce que
d’autres techniques complémentaires ne font pas (sur le plan
diagnostique, pronostique ou théranostique), et capable pour
certaines autres situations de remplacer potentiellement (ou
restreindre I'utilisation de) ces techniques.

Applications en pathologie mammaire

Bataillon et al. ont décrit deux approches qui pourraient assister le
pathologiste a exécuter ses activités quotidiennes. D'un coté, des
algorithmes entrainés pour réaliser des taches de triage, comme
la sélection de biopsies prioritaires, la demande de techniques
complémentaires ou l'identification de métastases dans les
ganglions lymphatiques, taches qui s’avérent souvent longues et
fastidieuses [30]. Dans ce cadre, qui regroupe les activités tendant
a mimer le modus operandi du pathologiste, on peut aussi inclure
la quantification (de mitoses, de cellules) qui peut étre aussi
exécutée par un programme informatique, avec des résultats
comparables a ceux d'un expert [31-33]. Cet « assistant virtuel »,
placé au début du flux de travail, pourrait étre d’'une grande aide
pour organiser les activités et mieux répondre aux demandes
des cliniciens et patients, tout en déchargeant le pathologiste
qui aurait plus de temps a consacrer a des activités d’expertise
diagnostique, de recherche et d’enseignement, fréquemment
reléguées au second plan derriére le repérage des éléments sur
les lames histologiques.

D’un autre c6té, on retrouve des algorithmes qui s'éloignent des
parametres connus pour tenter de trouver, de maniére autonome,
des solutions a des questions complexes. Ces réponses, comme
la prédiction de la réaction a un traitement donné, sont basées
sur des détails inapercus par |'ceil humain, en raison de leur
appartenance aux propriétés intrinseques de I'image, ou parce
que la quantité de données a analyser pour arriver a discerner une
trame est trop volumineuse [34]. Malgré le probleme d'interpré-
tabilité que cette méthodologie comporte, son étendue produit
des résultats remarquables. Dans une étude conduite par Islam
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et al., un modele de DL intégratif a été utilisé sur des ensembles
de données omiques de cancer du sein pour les classer selon
leurs sous-types moléculaires [35]. Un examen plus approfondi du
sous-groupe HER2-enrichi a montré qu’en fait il était composé de
trois sous-types de cancers avec des valeurs de survie spécifique
significativement différentes (figure 3).

Stratégies informatiques au service
de I'évaluation du statut HER2

Le CAD est un outil trés alléchant pour répondre plus facilement
aux nouvelles exigences de la médecine personnalisée, compor-
tant les facultés de réduire le temps d'élaboration du diagnostic
et d'augmenter la reproductibilité du scoring des biomarqueurs.
A I'égard des techniques de DL, les avancées dans la reconnais-
sance d’'images et la détection entierement automatisée des
attributs ont fait leur entrée dans le laboratoire de pathologie
pour contribuer amplement a la prise de décision clinique.
Considérant |'évaluation de HER2 dans le cancer du sein, deux
approches peuvent étre citées : la prédiction du statut HER2 a
partir de lames colorées par HE et la prédiction du statut HER2 a
partir de lames d’IHC. Deux stratégies seront ensuite brievement
abordées : la prédiction du statut HER2 a partir de lames d'HIS
et I'essor des challenges publics pour faire avancer la recherche
en IA.

Des applications d’IA pour I'évaluation de HER2 peuvent étre
consultées dans le fableau I.

Algorithmes pour prédire le statut HER2

a partir d'une lame HE

D’apres un nombre croissant d’explorations méthodologiques, la
capacité du DL pour réaliser des taches complexes de reconnais-
sance d’éléments et de motifs pourrait conduire a une nouvelle
génération d’outils de CAD.

Il est connu que certaines anomalies moléculaires s"accompagnent
de modifications morphologiques identifiables dans des coupes
histologiques colorées par HE [36-38]. En général, ces caractéris-
tiques sont trop fines pour étre percues de maniére fiable par une
inspection manuelle. Rawat et al. appellent ces traits présents
sur les lames HE « empreintes tissulaires » et ils s’en servent
pour enseigner a la machine les différences biologiques entre
les patients. L'algorithme apprend de maniére non supervisée
(sans annotations) comment déduire le statut des biomarqueurs
a partir des WSI [39].

Dans une étude développée par Shamai et al., une méthode de
DL a été appliquée a des images de Tissue Microarrays (TMA)
de cancer du sein, colorées par HE, pour prédire I'expression de
19 biomarqueurs dont RE, RP et HER2. Les résultats ont renforcé
I'idée que I'expression des marqueurs moléculaires se reflete
phénotypiquement dans la morphologie des tissus, sous forme
de trames subtiles, et que ces derniéres peuvent étre identifiées
par des modéles mathématiques. Ainsi, I'lA pourrait étre utilisée
pour prédire I'expression de biomarqueurs directement a partir
des images colorées par HE [40]. Comme le modele développé
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Différentes méthodologies d’IA applicables a la pathologie numérique. Dans I’approche de ML, I’algorithme apprend a reconnaitre
des traits, qu’il utilise ensuite pour scorer de nouvelles images. Dans I’approche de DL, les caractéristiques des images sont retrouvées
directement par I'algorithme, sans intervention humaine, pour répondre a la tache assignée. CNN : réseau de neurones convolutifs

n'a été validé que pour le RE, et que la taille des échantillons
est limitée puisqu’il s’agit des TMA, d’autres études doivent étre
menées sur les déterminations de HER2, mais les résultats sont
déja prometteurs.

Des résultats semblables ont été obtenus par un modéle de DL
développé par Bychkov et al., entrainé avec des données d'HIS
et de TMA colorés par HE, capable de prédire le statut HER2 a
partir de I'architecture tissulaire [41]. Ce travail a ensuite exploré
la corrélation des prédictions a Iefficacité du traitement adjuvant
par trastuzumab. Il a été démontré que ce score peut identifier
des patients pouvant obtenir un bénéfice plus important avec ce
traitement, mais aussi une autre catégorie de patients. Ce groupe
inclut les cas avec un résultat HIS négatif (donc non éligibles
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a une thérapie ciblée anti-HER2), et pourtant possédant une
morphologie compatible avec une tumeur positive pour HER2 ;
ces patients ont une survie moins favorable. Il reste a déterminer
la place que ce type d'information provenant d’un algorithme
pourrait occuper a cdté des explorations moléculaires existantes.
Dans la méme ligne de Rawat et al., des WSl ont été utilisées par
I'équipe d’Anand pour développer un classificateur qui permet
de discerner entre cas positifs et négatifs pour HER2, pouvant
s'ériger en une potentielle méthode de dépistage avant le test
par IHC [42]. Cette méthode est composée de trois réseaux de
neurones séquentiels, entrainés avec des WSI de deux coupes
en série de tumeur par patient (IHC pour HER2 et HE). Ce modeéle
a non seulement donné de bonnes performances sur la cohorte
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TaBLEAU |
Comparaison des approches d’IA pour I’évaluation de HER2
Dataset
Méthode Année Classificateur Remarques
Lames Coloration
Masmoudi et al. [56] 2009 WSl IHC Multistage clustering algorithm Précision : 90 %
Ficarra et al. [57] 2011 WSl IHC Diagrammes de Voronoi, triangulation (C:0,98;
de Delaunay erreur moyenne : 0,14
Brigmann et al. [58] 2012 WSI IHC Logiciel HER2-CONNECT™ Sensibilité : 99,2 % ;
specificité : 100 %
Tuominen et al. [43] 2012 WSI IHC Logiciel ImmunoMembrane™ Valeur Kappa : 0,80
Pitkaaho et al. [59] 2016 WSl IHC CNN, architecture AlexNet Précision : 97,7 %
Vandenberghe et al. [45] 2017 WSl IHC LSVM, RF, CNN Précision : 83 %
Saha et al. [46] 2018 WSI IHC Her2Net-LSTM recurrent network Précision : 98 %
Qaiser et al. [49] 2018 WSI IHC ResNet, RNN pour deep reinforcement Précision : 79 %
learning
Khameneh et al. [60] 2019 wsl IHC Architecture UNet pour classification Précision : 87 %
tissulaire
Rawat et al. [39] 2020 TMA et WSI H&E Architecture Resnet34, fingerprint-based AUC: 0,71 et 0,79
classifier (selon la cohorte)
Anand et al. [42] 2020 WSI H&E (NN AUC: 0,82
Tewary et al. [44] 2021 WSl IHC VGG19 architecture (very deep CNN), Précision : 93 %
fully connected dense layers
Bychkov et al. [41] 2021 TMA et WSI H&E CNN, transfer learning Précision : 70 % (sur TMA);
67 % (sur WSI)

AUC: Area Under Curve ; CC: coefficient de correlation ; CNN : Convolutional Neural Network, réseau de neurones convolutifs ; H & E : hématoxyline-éosine ; IHC : immunohistochimie ;
LSTM : Long Short-Term Memory ; LSVM : Linear Support Vector Machine ; RF : Random Forest ; RNN : Recurrent Neural Network ; TMA : Tissue Microarray ; WSI : Whole Slide Image.

d’entrainement, mais a également fonctionné pour un ensemble
de données indépendantes et multicentriques, ce qui représente
un vrai challenge pour les études de ce genre sur des données
médicales.

Algorithmes pour prédire le statut HER2

a partir d'une lame d’IHC

(1A pour aider a Iinterprétation du scoring)

Dans le cas des lames d'IHC, certains facteurs peuvent augmenter
la complexité de la tache en raison par exemple d'une mauvaise
contre-coloration, de noyaux qui se chevauchent ou d'un mar-
quage non spécifique (bruit de fond).

En régle générale, |'évaluation automatisée du marquage HER2
commence par l'extraction de la membrane cellulaire, suivie
de la quantification de sa continuité pour construire le score.
Cette procédure implique d'abord une segmentation basée sur le
signal colorimétrique (délimitation des éléments morphologiques
tels que les noyaux, les épithéliums, etc., afin qu'ils puissent
étre analysés), puis une classification par des méthodes de ML.
L'application employée actuellement, ImmunoMembrane [43],
qui est disponible en tant que plugin pour Image), et de nouvelles
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approches comme AutolHC-Analyzer [44] sont des exemples de
cette méthodologie.

Dans I'étude conduite par Vandenberghe et al., I'analyse
d’échantillons de tissus mammaires colorés par I'IHC a permis
de confronter, en premier lieu, des modeles de ML avec une
approche de DL (ConvNet). Les performances du DL ont sur-
passé celles des modéles de ML. Ensuite, ces résultats ont été
comparés a ceux obtenus par un pathologiste. Dans la cohorte
étudiée, I'algorithme a fourni des scores HER2 au moins aussi
précis que le pathologiste. Ces conclusions suggerent qu’une
fois I'apprentissage accompli, I'approche proposée peut générer
des scores HER2 valides de maniere entierement automatisée.
En outre, la méthode de DL peut jouer un réle déterminant
dans la mise en relief de cas difficiles qui présentent un risque
d’erreur de diagnostic, ce qui s’avere particuliéerement utile
pour la quantification objective et précise de biomarqueurs dans
les cas montrant une grande hétérogénéité. Comme dans un
grand nombre d'études, une limite de ce travail est le manque
de validation sur des échantillons provenant de divers centres.
Cette validation supplémentaire est requise pour généraliser
cette approche [45].
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Saha et al. ont proposé une méthode qui utilise un réseau plus
profond que ConvNet pour déterminer le statut HER2, qu'ils ont
nommée Her2Net. Her2Net a montré une bonne performance
lors de la comparaison avec le scoring fait par des pathologistes,
atteignant une précision de 98,33 %. Un des atouts de cette
méthode est I'option de I'intégrer dans d’autres structures de
calcul pour la segmentation, la classification et le scoring [46].

Algorithmes pour prédire le statut HER2

a partir d'une lame d’HIS

Avec la possibilité de numériser les lames d’HIS, une porte
s’ouvre pour I'exploitation de cette technique dans le champ
de I'lA. C. Franchet et C. Laurent ont ainsi décrit une méthode
d’analyse automatisée pour assister au diagnostic du statut HER2
sur des lames d’HIS fluorescentes [47]. Dans cette approche, les
signaux d’hybridation sont capturés dans la surface de la lame
et aussi dans son épaisseur pour obtenir une image assem-
blée qui contient les pixels les plus intenses. L'image passera
ensuite par une étape de segmentation nucléaire, puis par
I'annotation des noyaux et signaux d’hybridation dans le but
d’étre quantifiée. Différentes modalités pourront étre utilisées
en fonction de I'anomalie recherchée, de I'identification des
fusions de genes a I"énumération des chromosomes, comme
c'est le cas pour HER2.

Stratégies pour faciliter le développement
des algorithmes d’IA : les challenges publics
Le formidable potentiel des méthodes automatisées pour assister
le pathologiste avec des scores d’analyse objectifs pour I'lHC a été
révélé dans le contexte des challenges. Il s'agit de « concours »
qui mettent a disposition des chercheurs une plateforme incluant
un ensemble de données, pour évaluer les performances des
algorithmes dessinés en vue de répondre a une question scien-
tifique particuliere [48].
Pour le « HER2 Challenge Contest 2016 », ou le sujet était la
détection automatisée du statut HER2 sur des lames colorées
par IHC, 18 soumissions issues de 14 équipes ont été considé-
rées, et 8 des 10 méthodes mieux classées étaient basées sur
du DL (CNN). Les résultats étaient cohérents avec les travaux
précédents sur le sujet, appuyant l'idée qu’une méthode de
scoring automatisée ou semi-automatisée a un fort potentiel
de déploiement dans la pratique quotidienne [49]. Le probleme
de I'hétérogénéité du marquage HER2 a été abordé par une
architecture de DL créée pour prédire les régions d’intérét (ROI)
a regarder dans I'échantillon observé [50]. Le récent « HEROHE
Grand Challenge 2020 » a relevé une question analogue mais
sur des images HE de cancer du sein invasif ou le défi était
d’obtenir le statut HER2 sans I'image IHC correspondante.
Encore une fois, I'idée était d’exploiter les caractéristiques
morphologiques en tant que substituts du statut HER2. Une
cascade de classificateurs de DL et de I'apprentissage multi-
instance (MIL) ont été appliqués a I'ensemble de données,
montrant de bons scores d’efficacité pour différentes métriques
d’évaluation [51].
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Conclusion

L'IA (notamment les modeéles de DL) représente une option trés
attrayante pour augmenter I'efficacité des évaluations réalisées
dans le laboratoire de pathologie. En effet, les méthodes
d’usage courant ne sont pas exemptées d’erreur, en plus d’étre
fréquemment codteuses et chronophages. Les nouveaux outils
informatiques pourraient améliorer le flux de travail par la
réduction des coGts, par exemple en évitant I'utilisation de I'IHC
pour le dépistage, ou en ayant la possibilité d"analyser plusieurs
biomarqueurs ou d'évaluer I'hétérogénéité intratumorale avec
seulement une lame HE [52].

Pourtant, il faut garder un ceil sur I'importance d’un rigoureux
contréle humain tout au long du processus et surtout dans I'étape
de validation. D’une part, une attention spéciale doit étre accor-
dée a la normalisation des données en ce qui concerne la phase
préanalytique (fixation, coloration HE, protocole d'IHC, utilisation
de témoins, participation a une évaluation externe de la qualité,
suivi des recommandations en vigueur), du type de scanner et des
protocoles de numérisation dans les cohortes provenant de divers
centres. D'autre part, il ne faut pas oublier que les images sont
des représentations imparfaites de la réalité, et qu’elles doivent
étre analysées de maniére intégrée en fonction du contexte
anatomoclinique, tache qui peut s'avérer plus complexe pour
une machine, et a la lumiere des particularités de I'expression
de HER2 en IHC. En d’autres mots, il ne faut pas prendre chaque
pixel littéralement.

Afin de faire des approches de DL une pratique de routine, il est
essentiel de compter avec des cohortes de qualité, exhaustives
et d’acces simplifié, comportant des images annotées, assem-
blées a des données cliniques, morphologiques, radiologiques
et moléculaires structurées. Cela permettra de fluidifier le test
de nouvelles méthodologies en prospectif et rétrospectif, et de
pouvoir ainsi les mettre en pratique plus rapidement.
Puisqu’une forte critique faite a ces approches est I'ignorance
des opérations qui ont lieu dans I'ordinateur pour élaborer
une réponse (la fameuse « boite noire »), I'épreuve ultime a
surmonter sera de doter les méthodes de I'interprétabilité requise
pour qu’elles soient acceptées par la communauté médicale [53].
Des efforts visant a limiter cet effet incluent des solutions comme
les attention maps, qui permettent de sélectionner des sous-
ensembles d'images dans les coupes histologiques, contenant des
ROI qui seront ensuite traitées d’une facon analogue a la méthode
du pathologiste [54], ou des systémes capables d’interpréter
chaque ROI en décrivant les caractéristiques microscopiques
et d’expliquer ce que le réseau voit lors de la description des
observations sur les lames [55].

Finalement, outre le manque d’interprétabilité de I'lA, certains
pathologistes craignent le changement de workflow. En effet, en
plus de devoir s"appuyer sur les résultats des algorithmes, souvent
inexplicables, et de s’éloigner de la microscopie optique telle
qu’on la connait, qui a servi fideélement la spécialité depuis plus
de 100 ans, les pathologistes doivent apprendre non seulement
a utiliser de nouvelles plateformes, mais aussi a les adapter a
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la pratique quotidienne pour standardiser les comptes-rendus
anatomopathologiques. Si la résistance au changement est
effectivement présente parmi les pathologistes comme dans
d’autres spécialités, I'anatomie-pathologie est une discipline
dynamique qui implémente réqgulierement et avec succes de
grandes avancées scientifiques a ses pratiques usuelles. Il est
donc impératif de former pleinement les futures générations de
pathologistes aux nouvelles technologies qui font partie de la
pathologie numérique et de I'lA en santé, sans oublier néanmoins
que le pathologiste reste le garant du diagnostic, responsable de
la validation et la mise en pratique de ces avancées. Le réle du
pathologiste se déroulera a l'interface entre le diagnostic et la
recherche, et sera primordial pour vérifier la qualité du diagnostic
et des analyses réalisées sur les coupes tissulaires.
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Abstract. In digital pathology, various biomarkers (e.g., KI67, HER2,
CD3/CDB8) are routinely analysed by pathologists through immunohisto-
chemistry-stained slides. Identifying these biomarkers on patient biopsies
allows for a more informed design of their treatment regimen. The di-
versity and specificity of these types of images make the availability of
annotated databases sparse. Consequently, robust and efficient learning-
based diagnostic systems are difficult to develop and apply in a clinical
setting. Our study builds on the observation that the overall organization
and structure of the observed tissues is similar across different staining
protocols. In this paper, we propose to leverage both the wide availabil-
ity of hematoxylin-eosin stained databases and the invariance of tissue
organization and structure in order to perform unsupervised nuclei seg-
mentation on immunohistochemistry images. We implement and evaluate
a generative adversarial method that relies on high-level nuclei distribu-
tion priors through comparison with largely available hematoxylin-eosin
stained cell nuclei masks. Our approach shows promising results com-
pared to classic unsupervised and supervised methods, as we demonstrate
on two publicly available datasets.

Keywords: Precision medicine - Biomedical imaging - Digital pathology
- Generative Adversarial Networks.

1 Introduction

Learning nuclei segmentation models is a challenging problem for immunohisto-
chemistry (THC) stained histological images. In routine pathology, IHC images
are used to provide a distinct readout for proteins at the surface of nuclei or cell
membranes that would otherwise be invisible to the human eye, using immunos-
tains [3]. IHC is widely used for diagnostic and for treatment selection, notably
in cancer pathology, since it bypasses the need to perform expensive and time-
consuming genetic testing. There are over 100 immunostains routinely used by
pathologists, highlighting different proteins such as Ki67 and HER2, which can
provide clues to tumor proliferation. The segmentation of nuclei stained as such

183



2 Le Bescond L., Lerousseau M., Garberis I. et al.

provides essential information for distinguishing benign cells from malignant cells
or those which express a specific protein from those which do not. The ability to
automatically identify and segment nuclei in THC images is crucial since It could
(i) accelerate the diagnosis time of cancers, (ii) reduce misdiagnosis in routine
pathology, and (iii) improve the performance of cell-based learning system for
therapy response prediction.

The most popular nuclei segmentation approaches currently rely on manu-
ally obtained, careful pixel-based annotations of nuclei [16,17,26,30]. However,
producing such annotations is time-consuming, cumbersome, tedious and error-
prone, which hampers the development of segmentation models for a wide range
of immunostains. Some semi-supervised methods such as [11] have been pro-
posed to alleviate this need, requiring however manual interactions making their
use on whole slide level time consuming. On the other hand, current unsuper-
vised segmentation approaches, such as those based on color clustering, perform
inadequately, preventing their application in clinical settings.

This study introduces an approach that revolves around a simple idea: we
exploit the fact that the spatial organization and shape characteristics of cells
in histological tissue do not change significantly with the type of stain used to
color tissue slides. Specifically, we design and evaluate a powerful and highly
versatile adversarial-based approach that leverages already publicly available
nuclei annotations for haematoxylin-eosin (H&E) stainings to learn segmentation
models for potentially many types of immunostains.We show in our experiments
that our approach is effective for two of the most prevalent types of nuclear-
based and membranous-based immunostains. On these examples, our approach
obtains results which are close to fully supervised approaches evaluated on two
publicly available datasets, without requiring any annotation.

2 Related Work

Nuclei segmentation is attracting a lot of attention lately with different chal-
lenges focusing on methods that can provide accurate segmentations for the
many and diverse nuclei present on histology slides [5,32]. These challenges how-
ever focus on fully supervised methods, mostly in the domain of H&E stains.
Similar approaches relying on manually obtained pixel-based annotations on
H&E sometime generalize to some IHC stains e.g., for HER2-stained segmen-
tation [27] and StarDist [29]. However, these methods essentially use color aug-
mentation strategies [18,24], which would be specific to each new staining. In
practice, there is a trade-off between the available amount of annotated tiles
and the expressive power of the annotations: a higher number of annotated tiles
can improve the generalization performance of segmentation systems due to the
higher variability of the training data.

Conversely, a variety of thresholding-based approaches have been investigated
for unsupervised nuclei segmentation, either based on Otsu thresholding [12,20]
or constrained local thresholding [2,19,31]. Self-supervised learning has also been
investigated for nuclei segmentation. In [28], authors train a network to accu-
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real
—> or
fake?

Fig. 1. An overview of our proposed framework.

rately classify the magnification of an input tile using an attention module, and
show that the attention maps can be used to produce detection maps of nuclei
in H&E staining which can be further converted into nuclei segmentation maps.

Cross-domain learning is a paradigm that consists of the adaptation of a
model from one domain to another; for instance from the H&E domain to the
THC domain. In this vein, authors of [13] tackle H&E-THC cross-domain learning
by matching the distribution of high-level features obtained from both domains,
for tissue segmentation. Other recent approaches have leveraged the use of gen-
erative adversarial networks (GANSs) to train segmentation network with various
approaches. GANs can be used to generate images via style transfer and use an-
notations provided in a domain into another, which can then be used to train
a supervised network like a U-Net of a Mask-RCNN [13,14]. Moreover, in [33]
an auto-encoder like approach for image-to-image translation for style transfer
is proposed, learning the segmentation and transfer simultaneously.

Contrary to these approaches, our method exploits the available information
at the segmentation level, by encoding and identifying the histological tissue
characteristics that are independent of the explored staining. To the best of our
knowledge this is the first time that such a scheme is explored, and shown to
provide close to fully supervised performance.

3 Methodology

In this study, we propose an unsupervised method for nuclei segmentation in-
corporating priors from public available datasets. The intuition for our work is
that the underlying spatial organization of cells within tissues is the same ir-
respective of staining. For a given immunostain, rather than relying on specific
pixel-based annotations, our approach exploits generic pixel-based segmentation
annotations from classical H&E-stained histological images.

Our architecture is composed of three different components trained jointly, as
illustrated in Figure 2. The first is a generator (S) which generate segmentation
maps from the IHC inputs. The output of S is then processed by a discriminator
(Dg) which predicts if the produced segmentation is plausible or not. Moreover,
real, unpaired segmentation from public datasets are given to the discriminator,
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in order to guide and encode real tissue characteristics. The last component of
our method relies in a reconstruction generator (R) which trained to reconstructs
IHC-looking nuclei from a segmentation. This way our framework enforces con-
sistency priors between the generated and the real tiles.

Formally, given an input ITHC tile ¢ from a training of T, the segmentator S
produces a predicted segmentation map S(t). Given a database DB of segmen-
tation maps from any type of staining (e.g., H&E), a ground-truth segmentation
map Sgr is sampled from DB for each THC tile t. The discriminator D is then
asked to correctly predict that each Sgr is real (label 1) and that each predicted
THC segmentation map Sgr is fake (label 0); this is done by minimizing £p:

Lp = (D(Sar) = 1)* + (D(S(1))) (1)

Conversely, the segmentator S is optimized by maximizing its ability to fool, i.e.
by minimizing the loss function MSE s that is:

Lo = (D(S(1) —1)* (2)

The two examined losses Lp and L should train S to produce segmentation
maps that contain nuclei object that resembles true nuclei segmentation (shape
prior), and that display nuclei distribution similar to the nuclei distribution
of DB (organization prior). In fact, with both losses Lp and L& combined, the
system is optimized when the distributions of DB and {S(t),t € T'} are matched.

However, we found that the segmentation model S tended to produce false
negatives by failing to segment some nuclei. The reconstructor R is intended
to circumvent this, by reconstructing the input THC tile ¢ from its predicted
segmentation S(t); nuclei that would be missed by S would then induce errors
in the reconstruction R(S(t)), therefore inducing S to minimize the number of
false negatives. R is trained by minimizing the reconstruction Lg, where an ¢;
norm is used for sparsity:

Lr = |R(S(0) ~ 1], 3)

Following CycleGAN [34], we add another discriminator on the IHC and recon-
structed THC domains, in order to train R (and therefore .S through backpropa-
gation) with an additional loss beyond pixel-based. For simplicity, we merge this
discriminator loss within £p, and the corresponding adversarial loss of R within
Lr and Lg.

Furthermore, we introduce an additional consistency loss for robustness and
to ensure that the segmentator does not solely focus on color for decision making.
For an THC tile ¢, we consider two color augmentations ¢; and ¢ (e.g. color jitter)
and two augmented views ¢ (t) and co(t) of t. The consistency loss is defined as
the /1 norm between the predicted segmentation maps of both augmented views:

Lo = |[S(ea(t)) = S(e2®))]], (4)

Finally, we sharpen the predicted segmentation maps S(t) by multiplying the
predicted logits of the segmentator .S using a sharpening factor r=60, similarly
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to [7]. This result in saturated value of 0 or 1 rather than float values in [0, 1]
which can be used by the discriminator D to easily identify fake segmentations.

The system is trained end-to-end, by optimizing both modules through min-
imization of the following loss function:

Lsystem = Lp + L+ Lr+ Lo (5)

4 Experimental Configuration

4.1 Databases

We performed extensive experiments on 3 immunohistochemistry datasets to
measure the performance of all benchmarked approaches. In detail, we utilize the
DEEPLIIF DATASET [6] with 1667 Ki67-stained fields of view of size 512 pixels
at 40x magnification. We used the same data splitting than publicly available, i.e.
709 images for training, 303 for validation and 598 for testing. Immunofluores-
cence correspondences in the dataset were discarded for the current study. Each
image is supplied with ground-truth annotations, which were used for testing
purposes but never for our training except for the fully supervised benchmark
comparisons. Ki767 THC images are actually colored with haematoxylin, which
marks all nuclei, and Ki67, which marks pKi67 at the surface of some nuclei;
nuclei of Ki67-stained images are thus either brown or blue. We also employ he
BCDATASET [8] which consists of 1338 Ki67-stained 640 pixel-width 40x fields
of view. Each nucleus is annotated with a single point highlighting its center.
These were never used for our training except for testing purposes. Lastly, we
use also the WARWICK HER2 DATASET [22,23] which contains 84 HER2-
stained whole slide images (WSI) split in 50 training and 34 testing images. We
extracted 256x256 patches from each tiles after performing contours detection
and filtering based on texture and lightness criteria [15]. To get a good represen-
tation of each tissue, we performed K-Means clustering on the Resnet features of
each patch and selected for each one the closest to centroids [10]. As KMeans is
sensitive to outliers, we applied an isolation forest algorithm to remove the few
artifacts that may remain after our pre-processing steps. For the testing set, we
divided the patch sets into 2 folds leading to 68 patches. Similarly, for the train-
ing set, we divided the patch sets into 14 folds leading to 700 patches. The testing
tiles were finally annotated by a expert anatomopathologist.Compared to Ki67,
HER2-stained images are more challenging since HER2 marks the membranes
of cells (and not their nuclei).

4.2 Baselines

We compare the performance of our proposed method with five competing meth-
ods, including two fully supervised approaches. Specifically: a fully supervised
model based on Unet [9] was utilized. Moreover, NuClick [11] was also em-
ployed, a weakly supervised approach specifically designed to compute nuclei
masks from point annotations at the center of each cell. To train this model,

187



6 Le Bescond L., Lerousseau M., Garberis I. et al.

a senior pathologist manually annotated all nuclei centers in HER2, and such
centers were obtained by computing the centroid of each nuclei ground-truth
mask for both DeepLIIF and BCDataset datasets. Furthermore, StarDist [29]
is a supervised method originally trained on H&E images. For our problem, this
approach can be considered unsupervised since it does not rely on extra anno-
tations. StarDist was used as a plugin within QuPath [1]. Thresholding was
performed by applying Otsu thresholding on the Gaussian filtered luminance
image. We also applied the same protocol to images obtained through color de-
convoluton [25] but this method was found to perform worse. The proposed
approach was implemented with Unet-styles segmentator S and reconstructor
R, and PatchGAN-based discrimators D and Dg [9]. At each iteration, a seg-
mentation map S(t) is produced by G for an input IHC tile ¢. S(¢) is forwarded
into the discriminator Dg, along with a randomly sampled segmentation map
from the Pannuke dataset [4,5] which contains nuclei instance masks of H&E
tiles extracted at either 20X or 40X magnification. Similarly, the reconstructor
R outputs from these masks simulated IHC images that are compared to the real
ones through discriminator Dg. As we found that the reconstruction represents
a key factor in the training of our method, we leveraged HER2 membranous
nature to train our approach reconstructing only the deconvolved hematoxylin
images as nucleus are only highlighted by this marker in this setting [25].

4.3 Implementation Details

We trained the generator using 64 filters in the last convolutional layer and a
dropout of 0.5 and Adam optimizer with a learning rate of 0.0002 and $; = 0.5
and fB = 0.999. For the discriminator, we used 64 filters and 3 layers in total,
with the same parameters for the optimizer. We exploited nucleus invariance to
rotation and flipping to perform data augmentation. Moreover, as our datasets
are all extracted from slides scanned at 40X magnifications, we performed ran-
dom resizing to simulate 20X magnifications images and reproduce Pannuke
distribution.

The fully supervised Unet based architecture was tuned on the number of
filters ngf € [64,128], the dropout value p € [0.3 : 0.5], the learning rate
Ir € [107° : 1072], the decay rate dr € [107!0 : 1073] and the batch size
bs € [10, 30,60, 120, 140] using a gaussian process algorithm during 50 iterations
maximising the F1 score on the validation set after 10 training epochs.

Both fully supervised Unet and the unsupervised proposed approach were
then trained on a single A100 GPU for up to 600 epochs with PyTorch v1.10 [21].
For Unet, the model with the lowest validation score was inferred on the (shared)
testing set of the DeepLIIF dataset (and was not trained on both other datasets
because of missing ground-truth training data). For proposed, the final model
was selected by finding the minimum of the system loss Lgygtem after 250 epochs
to discard early training instabilities. To extract nucleus on our method, we first
applied a median filter with a window size of 5 to remove the noise that may
remain on our final predictions. For HER2 images, we applied in addition an
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Fig. 2. Examples of predictions of our approach on the different datasets

erosion operation with a radius of 5 to remove remaining artifacts. We lastly
applied a watershed algorithm to retrieve final instances [28§].

5 Results & Discussion

Semantic Object
Method  Unsupervised | Dice Accuracy Precision Recall| AJI  Dice Hausdorff
Unet X 77.56 84.49 81.59 73.95| 40.02 64.30 5.10
Nuclick X 76.19  82.57 86.12 68.36 | 56.70 73.18 4.76
Threshold v 64.74  75.59 76.68 56.24 | 29.88 51.66 5.80
StarDist v 62.06 73.03 88.16 47.95 | 40.80 52.06 5.21
Proposed v 70.27 79.86 74.55 66.60 | 41.91 54.43 5.77

Table 1. Results on the DeepLIIF dataset [6]. Accuracy is balanced. Bold indicates the
top performing method for each metric, for both supervised and unsupervised groups.

Table 1 reports semantic and object-level results on the DeepLIIF dataset
for Ki67-stained images. The proposed approach obtained the highest Dice score
of 70.27 and the highest balanced accuracy of 79.86 among all unsupervised ap-
proaches, i.e. approaches that do not necessitate additional annotations. While
StarDist [29] obtained a higher precision, the proposed obtained the best re-
call of unsupervised approaches with 66.60; trading recall for precision is better
for clinical considerations as false negative could aggravate the course of the
patient care, while false positive can be more easily corrected. The proposed
approach obtained competitive results with the fully supervised Unet and the
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weakly supervised NuClick which obtained no more than 6% of improvement on
the balanced accuracy without requiring any further annotations.

Semantic Object
Method  Unsupervised | Dice Accuracy Precision Recall| AJI  Dice Hausdorff
Unet X NA NA NA NA NA NA NA
Nuclick X 44.55  71.81 40.10  50.46 | 38.95 56.40 5.21
Threshold v 39.85  63.57 64.40 29.05 | 17.71 39.85 5.59
StarDist v 56.85  71.83 77.86 44.94 | 34.81 57.73 4.29
Proposed v 62.59 77.05 70.67 56.51 | 39.29 60.01 4.68

Table 2. Results on the Warwick dataset [22,23]. Accuracy is balanced. Bold indicates
the top performing method for each metric, for both supervised and unsupervised
groups. Unet results are not available (NA) since ground-truth segmentation maps
were unavailable.

The Table 2 outlines the results on the testing set extracted from Warwick
dataset. Our approach outperforms the other methods on almost all metrics,
showing great improvements in semantic metrics with a Dice score of 62.59 and
a recall of 56.51 while the classic methods top at 56.85 and 50.46 respectively.
Once again, our approach proved to be better tailored to a clinical use with a
higher recall and better object metrics. It is also advocating for a great adapt-
ability of our method to the diversity of IHC staining. Indeed, providing minor
changes in the training and post-processing, we successfully applied our method
to two different staining conditions, thus underlying that our method can bet-
ter leverage H&E information than directly applying pre-trained state-of-the-art
algorithms.

Finally, we assessed the generalisation of the proposed approach trained on
DeepLIIF to BCDataset dataset. As highlighted in Fig.2, our approach managed
to provide a segmentation matching many ground truth annotations without
adding any additional knowledge.

We performed an ablation study that can be found in the supplementary
material by successively removing some key components of our method and
computing the performances on both DeepLIIF (Ki67 staining) and Warwick
(HER2 staining). On both dataset, removing the cycle loss decreased the perfor-
mances significantly on all the metrics, and produced masks uncorrelated to the
input, thus underlying the key role of the proposed cycling architecture. For the
consistency loss and the sharpening factor, we noticed that these two elements
balanced each other, with a stronger precision but a lower recall when decreasing
the sharpening factor, and inversely when removing the consistency loss.

6 Conclusion

In this paper, we introduced a simple yet effective and unsupervised framework
for nuclei segmentation integrating spatial organization priors. Extensive exper-
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iments on 3 highly heterogeneous datasets highlight the potential of this ap-
proach. In particular, we found that our approach outperformed all other bench-
marked unsupervised methods as well as some weakly supervised approaches.
There are several axes of improvements over this work. First, besides the
nuclei segmentation and detection information, the type of nuclei is also an
important information in routine pathology. The current formulation could in-
tegrate such information by outputting one segmentation mask per stain and
counterstain of IHC images (e.g. HER2 and haematoxylin). Another very inter-
esting direction include the integration of additional datasets or segmentation
masks, which would unravel further shape and organization priors for the nuclei.
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UNSUPERVISED NUCLEI SEGMENTATION
USING SPATIAL ORGANIZATION PRIORS

LEVERAGING TISSUE INVARIANCE ACROSS STAINING TO PERFORM
UNSUPERVISED NUCLEI SEGMENTATION,

Loic Le Bescond, Marvin Lerousseau, Ingrid Garberis, Fabrice André, Stergios Christodoulidis, Maria Vakalopoulou & Hugues Talbot
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Abstract ity observed in histopathology and hin-
der the interpretability of those interac-
tions. In this work, we present Hyper-
AdaC, an adaptive clustering-based hy-
pergraph representation to model high-
order correlations among different re-
gions of the WSIs while being compact
enough to help Graph Neural Networks
generalize in the case of survival pre-
diction. We evaluate our approach on
5 different cancer datasets. We outper-
form most state-of-the-art graph-based
methods for survival prediction with
WHSIs, creating a more efficient and ro-
bust alternative to other graph repre-
sentations. The code is available at :
[Github Link Here]

The emergence of deep learning in the
medical field has popularized the de-
velopment of models to predict sur-
vival outcomes from histopathology im-
ages in precision oncology. Due to
their large sizes, learning proper rep-
resentations from whole slide images
(WSI) is a crucial problem for compu-
tational pathology. Graph-based for-
malism has opened interesting perspec-
tives for this challenging task, as they
can be context-aware and model local
and global topological structures in the
tumor’s microenvironment. However,
the critical issue in using graph rep-
resentations lies in their generalizabil-
ity. They can suffer from overfitting due
to their large sizes or high discrepan-
cies between nodes due to random sam-

pling from WSI. In addition, graphs are Keywords: Histopathology, Hyper-
limited to pairwise interactions, which graphs, Survival Analysis, Representa-
can sometimes fail to represent the real- tion Learning, Interpretability.

(© 2022 H. Benkirane, M. Vakalopoulou, S. Christodoulidis, I.-J. Garberis, S. Michiels & P.-H. Cournede.
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1. Introduction

Computational Pathology has rapidly devel-
oped over the past decade due to the de-
velopment of whole-slide image (WSI) scan-
ners that digitize histopathology, immuno-
histochemistry, or cytology slides into high-
resolution images (Zhang, 2019; Lin, 2019).
It has increased their exploitation for can-
cer diagnosis and prognosis, relying on mas-
sive progress in gigapixel image analysis
with statistical learning. In this perspective,
WSIs have been used for numerous predic-
tion tasks, one of the most challenging being
survival prediction (Zhu et al., 2016, 2017).
It consists in modeling the survival function
until the occurrence of a particular event
(e.g., death, relapse). For this purpose, mul-
tiple approaches were adopted in the litera-
ture to deal with the challenge of processing
large images to train a survival network.

One of the most popular methods, Mul-
tiple Instance Learning (MIL), performs
weakly-supervised learning on WSIs by ex-
tracting small image patches as indepen-
dent instances and aggregating them in bags
of unordered instances (Sudharshan et al.,
2019). However, even if this approach has
performed well for some tasks like cancer
grading (Zhou et al., 2019) and subtyp-
ing (Anand et al., 2020), its adaptation
to survival prediction is not straightforward
as it should rely on local instances as well
as global-level features. Standard MIL ap-
proaches only consider bags of instances as
independent and thus do not incorporate
context information, failing to learn general
associations in the tumor or its environment
to assess patient mortality risk (Saltz et al.,
2018). To alleviate this issue, graph repre-
sentations have a known growing interest as
they can embed global interactions between
patches in a network that allows communica-
tion between instances (Adnan et al., 2020;
Li et al., 2018; Chen et al., 2021). However,

existing works on this subject either consider
huge graphs that can hinder Graph Neural
Networks’ (GNNs) generalizability (Yehudai
et al., 2021) or involve sampling, which cov-
ers only part of the information field and
neglects lots of pathological tissues. More-
over, graph representations being limited to
pairwise associations can sometimes fail to
model local structures when there are signif-
icant discrepancies between instances (Garg
et al., 2020).

In this work, we propose a novel hyper-
graph representation (Hyper-AdaC) based
on adaptive clustering (Miillner, 2011) for
accurate survival prediction. The contribu-
tion of this model to the representation of
gigapixel WSIs is twofold. First, we deal
with the limitations of the graph size by
using hierarchical clustering based on both
morphological similarity and spatial prox-
imity to summarize WSIs information effi-
ciently. This method is easy to adapt and
does not rely on constraining hypotheses,
like the number of clusters to consider, since
it can change with the tissue morphologi-
cal characteristics. This method can also be
seen as a way to efficiently bypass the lim-
itations of random patch sampling as it fil-
ters the most relevant patches from the WSI,
resulting in less loss of information. Sec-
ondly, we overcome the constraints induced
by the local structures thanks to our hy-
pergraph representations of those clustered
instances depending on morphological and
spatial features. To validate our method,
we quantitatively evaluate it on 5 different
cancer datasets from The Cancer Genome
Atlas (TCGA) and compare it to several
other state-of-the-art methods for survival
outcome prediction, proving better perfor-
mance.

197



HyPER-ADAC

2. Related Work

Several methods have been developed for sur-
vival analysis in computational pathology,
mainly using MIL approaches (Mobadersany
et al.,, 2018; Lu et al., 2021; Yao et al.,
2020). Those methods rely on sampling a
limited number of patches to deal with the
large size of WSIs. They can suffer from
coverage and generalization limitations, as
shown in multiple studies (Ciga et al., 2021;
Di et al., 2022). To overcome those lim-
itations, many approaches have been pro-
posed, in which patches are grouped using
clustering algorithms such as K-Means algo-
rithm before sampling (Zhu et al., 2017; Yao
et al., 2020) to identify morphological pheno-
types in WSIs and reduce the dimensional-
ity. Recent more advanced methods (Chen
et al., 2021; Shao et al., 2021) started tak-
ing an interest in correlations between small
instances of gigapixel images, which is ne-
glected by the initial hypothesis of the MIL
approach (Carbonneau et al., 2018). Fol-
lowing this idea, graph-based representations
have become an excellent alternative for ro-
bust context-aware representations (Li et al.,
2018; Zheng et al., 2021). To alleviate the is-
sue of limited sampling, Chen et al. (2021)
proposed a way to model interactions be-
tween features of adjacent patches using a
k-nearest neighbors (k-nn) graph. As clas-
sical graph representations can only model
pairwise interactions between image patches,
new methods are considering broader rep-
resentations by trying to lift the i.i.d. hy-
pothesis from standard MIL (Shao et al.,
2021), or by switching to hypergraph repre-
sentations (Di et al., 2020, 2022). Contrary
to these methods, Hyper-AdaC relies on hy-
pergraphs to capture interesting spatial and
morphological features from WSIs, harvest-
ing informative global and local WSI depen-
dencies for survival models.

3. Method

Within the scope of this study, we design,
implement and evaluate a hypergraph based
survival network for overall survival outcome
prediction. For 1 <14 < N, let us denote by
W;, the WSI of a patient, T; its event time,
and Cj its censoring status. The goal of this
study is to build and train a survival neu-
ral network S and to determine a function ¢
that maps the WSI into a hypergraph repre-
sentation, such that S(¢p(W;), ®) = r;, with
® a set of trainable parameters and r; the
hazard rate of the time-to-event outcome of
interest.

3.1. Hypergraph Construction

We denote by G; a hypergraph representa-
tion of W; such that ¢(W;) = G;. Prior to
the construction of the hypergraph, we first
performed automatic tissue and background
separation using Lu et al. (2021). We then
extract non-overlapping 256 x 256 patches at
20x magnification that are fed to a ResNet-
18 trained using the same contrastive learn-
ing strategy as in Ciga et al. (2022) that
represents with a 1024-dimensional feature
vector h € R!2% each patch. The set
of (hj)i<j<n, associated to a W; with n,
patches will be stacked into a feature ma-
trix X; € R*1024 Each patch z; is charac-
terized by its ResNet-18 feature representa-
tion h; that embeds the morphological prop-
erties of the patch and a set of coordinates
9j = (92,5, 9y,;) that represents the spatial
position of the center of the patch. Since the
hypergraph should not be too large for the
generalizability of the GNN (Yehudai et al.,
2021), we perform a first step of Adaptive
Agglomerative Clustering on the different
patches. For that, we compute two similar-
ity matrices Kj € R™>" and K, € R"*"»
such that Kh = (’{'h($iaxj))1§i,j§np and
Kg = (Hg(xi,xj))lgi’jgnp where /ih(.%‘i,xj) =
e~ ullhi=hill* i 5 morphological similarity
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Figure 1: Overview of the Hyper-AdaC pipeline.

We first perform a feature extraction

step using a SimCLR framework trained on TCGA images. Then the features
are processed into a clustering step that performs agglomerative clustering based
on a similarity metric k. The clustered features serve as nodes to construct a
hypergraph that is then fed to a Graph Neural Network (GNN) that predict the
hazard ratio. The GNN is composed of multiple Hypergraph convolutions and
attention modules, followed by an FC-block (Fully-Connected block) and a global

pooling layer.

metric and kg(z;, z;) = e Palloi=9s1* ig o spa-
tial proximity metric. Following the ideas
presented in Miillner (2011), we use the ker-
nel k(zi, ;) = kp(hi, hj)kg(gi, gj) as a simi-
larity kernel for agglomerative clustering, as
done in Lu et al. (2022). This kernel will be
computed for each pair of patches from the
same WSI and all patches for which similar-
ity will be greater than a threshold § will
be considered belonging to the same clus-
ter C} and merged hierarchically into a sin-
gle patch representation pj, = (ﬁk, Jr) where
hk = %HZjeCk hj and gk = |071k| ZjECk 9gj-
Now that we have a reduced set of points P;,

a hypergraph denoted by G; =< V;, F;, X; >
is constructed. For a single WSI, we consider
each clustered patch as a vertex of the hyper-
graph such that V; = [pj]jep,. Each hyper-
edge is associated to the neighbourhood of
each node V;. This neighborhood is defined
as v(pj) = {pr € Pi; kn(pk,pj) = On}, where
0p, is a threshold value to fine-tune. Those
hyperedges are indicated by an incidence ma-
trix H € RIPiIXIEil guch that,

1 if pj € v(pk)
0 else

k) = { 1)
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The interesting aspect about hypergraph
compared to regular graph is that the neigh-
borhood of each node is depicted as a single
hyperedge. This allows us to train our model
with fewer parameters and thus decrease the
time complexity of the convolution. In ad-
dition to this, it creates a community effect
that gives more importance to bigger hyper-
edges, which will represent denser regions of

our WSI.

3.2. Construction of the Graph
Neural Network

Network’s Architecture: The GNN we
propose (Fig. 1) consists of a series of hy-
pergraph convolutions and attention as de-
fined in Bai et al. (2021), with each layer us-
ing a multi-layer perceptron to generate em-
bedding of nodes based on the features of
the node itself and its neighbors. Each layer
consists of batch normalization and dropout
layers to avoid instability during training.
We also use the idea introduced in Lu et al.
(2022) of accumulating the feature repre-
sentations of the convolution layers in the
GNN. Those node-level representations are
then pooled to generate a graph-level rep-
resentation. This representation is then fed
to a survival network composed of a series
of multi-layer perceptrons that predict the
hazard rate used for survival outcome pre-
diction.

Network’s Loss Function: The en-
tire network is trained using the Cox-
proportional hazard loss introduced in Ching
et al. (2018), it uses the partial log-likelihood
as the cost function, defined as follows:

PI(©) = I3 2 [s(60%).8)
“log 3" ean(S(6(W), ©))
T:>T;

where 1 is a neural network modelling the
hazard ratio and ® are the network’s param-
eters. The cost function to train the model
is therefore defined by:

L(®) = pl(©) + A|©|3 (3)

4. Experimental Setup
4.1. Dataset

For this study, we performed extensive ex-
periments using five different cohorts from
The Cancer Genome Atlas (TCGA) detailed
in Table 3. We chose those 5 datasets based
on size and distribution of uncensored-to-
censored patients. On average, each WSI
contains approximately 12691 patches at
20x magnification that are then reduced by
hierarchical clustering to around 3147 points.

4.2. Implementation Details

The architecture of the GNN is constructed
using three hypergraph convolution layers of
256 neurons each followed by a three lay-
ers survival network of respectively 256, 128,
and 64 neurons that outputs the hazard ra-
tio using a Sigmoid activation function in
the output layer. The entire architecture is
built using fully-connected blocks. For each
layer, we use a batch normalization technique
to address the problem of internal covariate
shift. Also, to avoid overfitting problems, we
use dropout with a rate of 0.2. For the graph
construction, we select a similarity threshold
of 80% with A, = 3\, to give more impor-
tance to morphological features during the
clustering. This choice of hyperparameters
has been validated with the experiments pre-
sented in Appendix A. To train Hyper-AdaC,
we used Adam optimization with a learning
rate of 1073 with an exponential scheduler,
a weight decay of 107° and 20 epochs. All
models were trained using an Nvidia Tesla
V100S with 32 GB of memory.
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Table 1: A detailed description of the cohorts used for the study. The table includes the
different cancer types, as well as the number of patients and WSIs per type.

’ Cancer Type

‘ # of Patients ‘ # of WSIs

Bladder Urothelial Carcinoma (BLCA)
Breast Invasive Carcinoma (BRCA)

Lung Adenocarcinoma (LUAD)

Glioblastoma & Lower Grade Glioma (GBMLGG)

Ulterine Corpus Endometrial Carcinoma (UCEC)

437 457
1022 1133
389 860
515 541
538 566

To evaluate Hyper-AdaC, we perform 5-
fold cross-validation for each cancer type,
and we compute the concordance index (C-
index) Uno et al. (2011) across all the vali-
dation folds to measure the predictive perfor-
mance of the method. We also compare our
proposed method to multiple other represen-
tations of WSIs from the literature to eval-
uate its contribution when faced with differ-
ent state-of-the-art approaches. For all our
experiments, we used the same survival loss
function, the exact SimCLR feature embed-
dings, and training hyperparameters for all
methods for a fair comparison. The basis of
comparison we consider is the following:

o DeepAttnMISL (Yao et al., 2020):
Performs standard Multiple-Instance
Learning by first applying K-Means al-
gorithm to cluster instance-level fea-
tures and then process each cluster using
Siamese networks.

e DeepGraphSurv (Li et al., 2018):
A graph-based representation over sam-
pled patches, which uses spectral GCN
to consider the topological relationships
between patches. We also integrate K-
Means algorithm before sampling from

clusters in another setup we will call
C.DeepGraphSurv.

e Patch-GCN (Chen et al., 2021): Cur-
rent state-of-the-art for GNN for sur-

vival.  Performs Graph Multiple in-

stance learning by considering the WSI
as a 2D-point cloud, building a k-nearest
neighbors graph.

e knn-hypergraph (Di et al., 2020): k-
nearest neighbors hypergraph construc-
tion using sampling of patches. We use
the same pipeline as Hyper-AdaC.

When comparing our approach to other
methods, we see that Hyper-AdaC outper-
forms most of the primary methods in terms
of C-index (Table 2 and Figure 2). In gen-
eral, our approach is at least 1.6% better
overall than every other method and in most
of the separate datasets (except for BLCA
and GBMLGG). When comparing with the
results of DeepGraphSurv, we can immedi-
ately see the limitations of sampling patches
from WSIs as this method is the weakest
in these comparisons. It only covers around
20% of the WSI and fails to train GNNs due
to significant discrepancies between sampled
patches. We also witness a clear improve-
ment by adding context information, as al-
most all the graph representations outper-
form the multiple-instance learning method
DeepAttnMISL. Another exciting aspect is
our proposed method’s standard deviation
between the C-index values across the 5-fold.
One can observe that Hyper-AdaC reports
the lowest variability of the validation C-
index, suggesting a more robust model due
to the compact form of its representation.
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Table 2: Survival Performances of state-of-the-art methods using concordance index on 5
TCGA cohorts: Bladder Urothelial Carcinoma (BLCA), Breast Invasive Carci-
noma (BRCA), Glioblastoma & Lower Grade Glioma (GBMLGG), Lung Adeno-
carcinoma (LUAD) and Ulterine Corpus Endometrial Carcinoma (UCEC).

[ Model | BLCA | BRCA | GBMLGG | LUAD | UCEC
DeepAttnMISL (Yao ef al., 2020) [ 0.514 +0.052 [ 0.564 +0.050 | 0.781+0.037 | 0.558 £0.060 | 0.595 + 0.067
DeepGraphSurv_(Li et al., 2018) [ 0.495+0.045 [ 0.551 +0.077 | 0.816+0.031 | 0.563 +0.050 | 0.614 & 0.052
C.DeepGraphSurv_(Li et al., 2018) | 0.504 +:0.042 | 0.564 +0.043 | 0.787 £0.028 | 0.559 £ 0.036 | 0.625 £ 0.057
Patch-GCN  (Chen et al., 2021) 0.561 £0.042 | 0.587 £0.043 | 0.834 £0.029 | 0.570 +0.050 | 0.632 + 0.059
k-nn Hypergraph (Di et al., 2020) [ 0.611 +0.049 [ 0.545+0.071 | 0.805+0.044 | 0.584 £0.061 | 0.615 =+ 0.020
Hyper-AdaC (ours) 0.564+0.034 | 0.592+0.025 | 0.778 £0.024 | 0.595 +0.012 | 0.667 + 0.022

Overall Survival Performances across datasets

DeepAttnMISL

DeepGraphSurv C.DeepGraphSurv

'?‘¢"

Patch-GCN
Methods

knn-Hyperpergraph Hyper-adaC

Figure 2: Overall survival performances across all datasets. They are computed by taking
the C-indices on all folds of the evaluation, for all datasets.

Moreover, as the representation is smaller
on Hyper-AdaC, the computing time is lower
than considering a whole WSI graph because
graph convolution has a worst-case complex-
ity of O(n?) where n is the number of nodes.
However, this reduction comes with a trade-
off since the graph construction part is heav-
ier due to the hierarchical clustering step
that comes with the additional complexity of
O(kn?), where k is the final number of clus-
ters and n is the initial number of patches.
In practice, our method is about 30% slower

than graphs constructed using the whole
WHSI like Patch-GCN or random sampling
like DeepGraphSurv. On the other hand, we
are almost 20% faster during training due to
more compact representations, better sum-
marized WSI, and fewer parameters. Finally,
when we compare the adaptive clustering to
k-means through C.DeepGraphSurv, we see
that the adaptive property of the hierarchical
clustering compared to K-means provides us
with more information as it sums up quite
well the discrepancies in the tissue without
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Figure 3: Comparison between the model attention heatmaps and manual annotations of
tumor regions for three different patients from the TCGA-LUAD dataset (Blue
for low risk patients and red for high risks patients). First column: Annotations
of tumor regions (in red) in the WSI by a pathologist. Second column: Attention
Heatmaps. Third column: sampled patches from 3 different attention regions;
High attention (Red border), Medium attention (Green border) and low attention

(Blue Border).

having to include the number of clusters as
it can change from one slide to another.

Our experiments indicate lower perfor-
mance on BLCA and GBMLGG datasets.
To analyze more this point, we performed
some additional experiments detailed in Ap-

pendix B. In fact, for BLCA we see that the
number of elements conserved after the ag-
glomerative clustering is still too high, result-
ing in a bigger graph and, therefore weaker
performances. This reasoning can be in-
verted for GBMLGG for which agglomera-

203



HyPER-ADAC

tive clustering conserves only very little in-
formation, meaning that the morphological
structure of this particular cancer is more
homogeneous than others, and we lose a lot
of information as this clustering disregards
local variability. To alleviate these issues,
dataset-specific hyperparameter tuning can
be performed (while we originally preferred
common hyperparameters for all datasets to
enhance the generalizability of our model).
In practice, we add more constraints on the
graph construction for BLCA dataset by set-
ting the similarity threshold 6 to 85% and
relax them on the GBMLGG dataset where
we set 0 = 70%. We also set A\, = 2), for the
GBMLGG dataset to focus less on morpho-
logical properties for similarity as the tissue
is generally highly homogeneous, so the clus-
tering will be more uniform across the WSI.
By doing that, we can witness a spike in per-
formance as the C-index for our method in
the BLCA dataset gets to 0.619 + 0.037 and
to 0.812 4 0.025 for the GBMLGG dataset,
similar to the state-of-the-art results.

Examples of WSIs annotated by a pathol-
ogist and the corresponding model attention
heatmaps are presented in Figure 3. We can
observe that our model succeeds in discrim-
inating zones based on their morphological
and spatial features. Moreover, for the tu-
moral zone depicted by the pathologist in the
first column of Figure 3 coincides with the
regions where attention is at its highest. An
additional exciting point is that the model
focused on dense inflammatory cell regions
for patients with low predicted risk, which
are signs of good immunity response. The
multiple purple dots highlight those inflam-
matory cell regions in high attention regions
for the two low-risk patients (third column
of Figure 3 showing a zoom of the attended
patches). We witness increasing importance
given to tumor cells for patients with high
risk because of their density. This is where
the hypergraph construction proves its ad-

vantage: it creates a community behavior
with hyperedges. It can assess the density
of small regions through their weights, and
thanks to message passing between hyper-
edges, areas with more significant communi-
ties have a more decisive influence on survival
prediction.

5. Conclusion

Computational Pathology has made tremen-
dous progress when dealing with WSI global
representations. However, many approaches
still suffer from generalizability problems and
do not properly model the whole tumor’s mi-
croenvironment. In this work, we have in-
troduced a compact hypergraph representa-
tion, Hyper-AdaC, that solves the size issue
of graphs for GNNs without losing important
and patient-specific information from whole-
slide images. We showed through our exper-
imentation that Hyper-AdaC creates an ef-
ficient and robust representation for train-
ing GNNs and allows broader associations
between patches. An interesting perspec-
tive is to explore the efficiency of this repre-
sentation in the promising context of multi-
modal learning for survival outcome predic-
tion, combining WSIs with multi-omics and
clinical data.

Acknowledgments

The project is supported by the Prism
project, funded by the Agence Nationale de
la Recherche under grant number ANR-18-
IBHU-0002 and by the Public Health grad-
uate school of Paris-Saclay University. The
Data has been made available by the TCGA
research network.

References

Mohammed Adnan, Shivam Kalra, and
Hamid R Tizhoosh. Representation learn-
ing of histopathology images using graph

204



BENKIRANE VAKALOPOULOU CHRISTODOULIDIS GARBERIS MICHIELS COURNEDE

neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vi-
ston and Pattern Recognition Workshops,
pages 988-989, 2020.

Deepak Anand, Shrey Gadiya, and Amit
Sethi. Histographs: graphs in histopathol-
ogy. In Medical Imaging 2020: Digital
Pathology, volume 11320, pages 150-155.
SPIE, 2020.

Song Bai, Feihu Zhang, and Philip HS
Torr. Hypergraph convolution and hyper-
graph attention. Pattern Recognition, 110:
107637, 2021.

Marc-André Carbonneau, Veronika Cheply-
gina, Eric Granger, and Ghyslain Gagnon.
Multiple instance learning: A survey of
problem characteristics and applications.
Pattern Recognition, 77:329-353, 2018.

Richard J Chen, Ming Y Lu, Muham-
mad Shaban, Chengkuan Chen, Tiffany Y
Chen, Drew FK Williamson, and Faisal
Mahmood. Whole slide images are
2d point clouds: Context-aware survival
prediction using patch-based graph con-
volutional networks.
Conference on Medical Image Comput-
ing and Computer-Assisted Intervention,
pages 339-349. Springer, 2021.

In International

Travers Ching, Xun Zhu, and Lana X
Garmire. Cox-nnet: an artificial neural
network method for prognosis prediction
of high-throughput omics data. PLoS com-
putational biology, 14(4):¢1006076, 2018.

Ozan Ciga, Tony Xu, Sharon Nofech-Mozes,
Shawna Noy, Fang-I Lu, and Anne L. Mar-
tel. Overcoming the limitations of patch-
based learning to detect cancer in whole
slide images. Scientific Reports, 11(1):1-
10, 2021.

Ozan Ciga, Tony Xu, and Anne Louise Mar-
tel. Self supervised contrastive learning for

10

digital histopathology. Machine Learning
with Applications, 7:100198, 2022.

Donglin Di, Shengrui Li, Jun Zhang, and Yue
Gao. Ranking-based survival prediction on
histopathological whole-slide images. In
International Conference on Medical Im-
age Computing and Computer-Assisted In-
tervention, pages 428—-438. Springer, 2020.

Donglin Di, Jun Zhang, Fuqgiang Lei,
Qi Tian, and Yue Gao. Big-hypergraph
factorization neural network for survival
prediction from whole slide image. IEFE
Transactions on Image Processing, 31:
1149-1160, 2022.

Vikas Garg, Stefanie Jegelka, and Tommi
Jaakkola. Generalization and represen-
tational limits of graph neural networks.
In International Conference on Machine
Learning, pages 3419-3430. PMLR, 2020.

Ruoyu Li, Jiawen Yao, Xinliang Zhu,
Yeqing Li, and Junzhou Huang. Graph
cnn for survival analysis on whole slide
pathological images.
Conference on Medical Image Comput-
ing and Computer-Assisted Intervention,
pages 174-182. Springer, 2018.

In International

et al. Lin, Huangjing. Fast scannet: Fast and
dense analysis of multi-gigapixel whole-
slide images for cancer metastasis detec-
tion. IEEFE Transactions on Medical Imag-
ing, 38:1948-58, August 2019.

Ming Y Lu, Drew FK Williamson, Tiffany Y
Chen, Richard J Chen, Matteo Barbieri,
and Faisal Mahmood. Data-efficient and
weakly supervised computational pathol-

ogy on whole-slide images. Nature biomed-
ical engineering, 5(6):555-570, 2021.

Wengi Lu, Michael Toss, Muhammad Da-
wood, Emad Rakha, Nasir Rajpoot, and
Fayyaz Minhas. Slidegraph—+: Whole slide
image level graphs to predict her2 status

205



HyPER-ADAC

in breast cancer. Medical Image Analysis,
page 102486, 2022.

Pooya Mobadersany, Safoora Yousefi, Mo-
hamed Amgad, David A Gutman, Jill S
Barnholtz-Sloan, José E Veldzquez Vega,
Daniel J Brat, and Lee AD Cooper.
Predicting cancer outcomes from histol-
ogy and genomics using convolutional

networks.  Proceedings of the National
Academy of Sciences, 115(13):E2970—
E2979, 2018.

Daniel Miillner. Modern hierarchical, ag-
glomerative clustering algorithms.
preprint arXiv:1109.2378, 2011.

arXiv

Joel Saltz, Rajarsi Gupta, Le Hou, Tahsin
Kurc, Pankaj Singh, Vu Nguyen, Dim-
itris Samaras, Kenneth R Shroyer, Tian-
hao Zhao, Rebecca Batiste, et al. Spatial
organization and molecular correlation of
tumor-infiltrating lymphocytes using deep

learning on pathology images. Cell reports,
23(1):181-193, 2018.

Zhuchen Shao, Hao Bian, Yang Chen, Yifeng
Wang, Jian Zhang, Xiangyang Ji, et al.
Transmil: Transformer based correlated
multiple instance learning for whole slide
image classification. Advances in Neural
Information Processing Systems, 34:2136—
2147, 2021.

PJ Sudharshan, Caroline Petitjean, Fabio
Spanhol, Luiz Eduardo Oliveira, Lau-
rent Heutte, and Paul Honeine. Multi-
ple instance learning for histopathologi-
cal breast cancer image classification. Ez-
pert Systems with Applications, 117:103—
111, 2019.

Hajime Uno, Tianxi Cai, Michael J Pencina,
Ralph B D’Agostino, and Lee-Jen Wei.
On the c-statistics for evaluating over-
all adequacy of risk prediction procedures
with censored survival data. Statistics in
medicine, 30(10):1105-1117, 2011.

11

Jiawen Yao, Xinliang Zhu, Jitendra Jonna-
gaddala, Nicholas Hawkins, and Junzhou
Huang. Whole slide images based cancer
survival prediction using attention guided
deep multiple instance learning networks.
Medical Image Analysis, 65:101789, 2020.

Gilad Yehudai, Ethan Fetaya, Eli Meirom,
Gal Chechik, and Haggai Maron. From
local structures to size generalization in
graph neural networks.

Conference on Machine Learning, pages
11975-11986. PMLR, 2021.

In International

et al. Zhang, Zizhao. Pathologist-level inter-
pretable whole-slide cancer diagnosis with
deep learning. Nature Machine Intelli-
gence, 1:236-45, May 2019.

Yi Zheng, Rushin Gindra, Margrit Betke,
Jennifer Beane, and Vijaya B Kolacha-
lama. A deep learning based graph-
transformer for whole slide image classi-
fication. medRziv, 2021.

Yanning Zhou, Simon Graham, Navid Alemi
Koohbanani, Muhammad Shaban, Pheng-
Ann Heng, and Nasir Rajpoot. Cgc-
net: Cell graph convolutional network for
grading of colorectal cancer histology im-
ages. In The IEEFE International Confer-
ence on Computer Vision (ICCV) Work-
shops, 2019.

Xinliang Zhu, Jiawen Yao, and Junzhou
Huang. Deep convolutional neural network
for survival analysis with pathological im-
ages. In 2016 IEEE International Confer-
ence on Bioinformatics and Biomedicine
(BIBM), pages 544-547. IEEE, 2016.

Xinliang Zhu, Jiawen Yao, Feiyun Zhu, and
Junzhou Huang. Wsisa: Making survival
prediction from whole slide histopatholog-
ical images. In Proceedings of the IEEE
conference on computer vision and pattern
recognition, pages 7234-7242  2017.

206



BENKIRANE VAKALOPOULOU CHRISTODOULIDIS GARBERIS MICHIELS COURNEDE

Table 3: Average number of nodes remaining after the hierarchical clustering step for each
dataset. Due to our selection criteria, the GBMLGG dataset had a significant lower
number of nodes (as the ratio is also lower, it may indicate higher homogeneity
among tissues), which may explain the lower performance with respect to the other
cancer types. In this study, we selected the same hyperparameters for all the cancer
types to prove the generalizability of our method, outperforming the other state-
of-the-art methods. Some specific hyperparameters tuning for the GBMLGG and

BLCA may resolve this issue.

Cancer Type ‘ # of patches ‘ # of nodes %
Bladder Urothelial Carcinoma (BLCA) 58586 9187 0.16
Breast Invasive Carcinoma (BRCA) 38107 5304 0.14
Glioblastoma & Lower Grade Glioma (GBMLGG) 15855 961 0.06
Lung Adenocarcinoma (LUAD) 43445 6003 0.14
Ulterine Corpus Endometrial Carcinoma (UCEC) 56162 7748 0.14

Appendix A. Patch Clustering

We compute the average number of elements
remaining after the hierarchical clustering
step for each dataset separately, the results
along with the ratio between initial and fil-
tered patches are represented in Table 3.
We observe that, in general, this step leaves
about 14% of the WSI, and as shown in Fig-
ure 3, those elements are well spread across
the WSI. However, we can see that both
BLCA and GBMLGG datasets behave differ-
ently from the others. For BLCA, the ratio
of remaining elements over the total num-
ber of patches is higher than all the other
datasets, whereas for GBMLGG it is the op-
posite. Our method does not perform well
for those particular test cases.

Appendix B. Ablation Studies

We perform an ablation study on the dif-
ferent graph hyperparameters to justify our
construction choices. In Figure 4, we can see
the effect of the similarity threshold §;, on
the survival performances. The stricter the
constraint, the better the performance, indi-
cating that larger graphs fail at learning gen-
eralizable properties. This idea is also sup-
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Ablation Study for the similarity threshold
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Figure 4: Ablation Study for the similarity
threshold 0 used in the hierar-
chical clustering step. We evalu-
ate for each hyperparameter the 5-
fold cross-validated C-index on the
overall 5 TCGA datasets used in
this study.

ported by the standard deviation across the
5-folds that decreases, proof that the model
is less robust with larger graphs. A similar-
ity threshold of 80% achieves the peak per-
formance; past that point, the performances
start to decrease again because we tend to
oversimplify the WSI and start neglecting in-
formation.
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Ablation study for the kernel parameter
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Figure 5: Ablation study for W used in the
hierarchical clustering step. We
evaluate for each hyperparameter
the 5-fold cross-validated C-index
on the overall 5 TCGA datasets.

Figure 5 highlights the relationship be-
tween morphological features and geograph-
ical properties with respect to the overall
survival performance. We see that, in gen-
eral, focusing on morphological properties
is more beneficial to the performances than
spatial properties as they hold more infor-
mation about the structure of the tissue (in-
cluding, to a certain extent, spatial infor-
mation because similar patches tend to be
close). However, focusing too much on mor-
phological features can hinder the accuracy
of our survival predictions, as sometimes the
homogeneity of specific tissues can make the
filtering biased and overlook chunks of WSIs
that may hold vital information.

Appendix C. About Hypergraphs

A Hypergraph is a generalization of the
graph structure that extends the interaction
between instances to a higher-level. To de-
scribe this complex relationship where an
edge can connect to more than two nodes,
we define a hypergraph G = (V, E) as a hy-
pergraph with M vertices and N hyperedges.
The hypergraph can then be generated us-

13

ing an incidence matrix H € RV*M_ For
each vertex i, the vertex degree is defined as
Di; = Y .cp Hie and the hyperedge degree
will be Bee = > cy Hie-

C.1. Hypergraph Convolution

This hypergraph can be associated to a fea-
ture matrix X € RV*F where F is the feature
dimension of one node. In the context of our
study, this node feature will represent the ag-
gregated Resnet-18 features of one cluster. A
step of this convolution is defined in Bai et al.
(2021) as follows:

XD = 5D :HWB'H’D :XP)
(4)
where W is the weight matrix, ¢ a non-
linear transformation and P is the weight
matrix between layer | and 141.

C.2. Hypergraph Attention

To build the attention visualization, we used
an attention mechanism for Hypergraphs de-
scribed in Bai et al. (2021) as:

exp(o(sim(z;P,z;P)))
ZkeM exp(o(sim(z; P, xP)))

where the similarity function computes
similarity between two vertices as follows:

()

Oéij =

(6)

where a is a weight vector and [.||.] denotes
concatenation.

sim(xi, xj) = aT[xinj]
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Synthese en francais

C. Introduction

Le cancer du sein, malgré la stabilisation ou méme la diminution des taux d'incidence
dans plusieurs pays, reste la tumeur la plus fréquente chez les femmes. Cette maladie est
caractérisée par une vaste hétérogénéité tant au niveau clinique comme moléculaire, incluant
un large éventail d'entités avec des approches particulieres. Une classification précise et
exhaustive est cruciale pour identifier les tumeurs qui auront une évolution indolente ou celles
qui se développeront rapidement, ainsi que les patients qui nécessiteront de traitements plus

agressifs.

A I'heure actuelle, différents sous-groupes sont reconnus par les pathologistes selon
des variables clinico-pathologiques, notamment le grade et le type histologiques, et d'autres
caractéristiques comme la taille tumorale, la présence d'invasion lympho-vasculaire,
I'envahissement des ganglions lymphatiques, et I'expression de biomarqueurs détectée par
I'immunohistochimie, comprenant les récepteurs hormonaux aux oestrogénes et a la
progestérone (RE, RP), HER2 et Ki67 pour évaluer la prolifération. Ces sous-groupes ont des
implications pronostiques et prédictives différentes les uns des autres. La classification
courante peut-étre simplifiée, a I'égard de I'expression ou non des biomarqueurs mentionnés,
en trois sous-types moléculaires : les tumeurs luminales (A et B), le groupe HER2-positif et les

tumeurs triple-négatives.

Les avancées dans le génotypage des tumeurs sont venues a l'aide de la prise de
décision thérapeutique avec les signatures moléculaires, utilisées pour prédire quels patients
bénéficieront le plus probablement d'une chimiothérapie adjuvante pour réduire le risque de
rechute et, tout aussi important, quels patients pourraient ne pas en avoir besoin, en évitant
des traitements lourds avec des effets indésirables associés. D'autres outils pour la prédiction
du risque de rechute fonctionnent avec des algorithmes appliqués a des données clinico-

pathologiques, tel que Predict Breast, consultable online, et le CTS (Clinical Treatment Score).

Avec |'augmentation du volume et de la complexité des déterminations requises pour
une évaluation complete de chaque cas, les laboratoires de pathologie sont confrontés au défi

d'une charge de travail croissante incluant de nouvelles techniques et outils. Des modalités de
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travail plus adaptées pour absorber cette charge supplémentaire deviennent urgentes. La
pathologie numérique, qui commence a se déployer dans la pratique quotidienne, permet la
mise en ceuvre de solutions informatiques pour la gestion d'échantillons et pour
I'automatisation de certaines taches, ainsi que de l'intelligence artificielle (IA) pour, par
exemple, la classification des tumeurs, qui permettront a terme d'accélérer I'administration de
thérapies appropriées et de fournir un pronostic précis aux cliniciens et patients. Ce flux de
travail implique la numérisation de lames histologiques dans des fichiers d'images numériques
ou whole slide images (WSI) qui seront utilisées pour l'interprétation, I'analyse automatisée et

I'archivage dans des serveurs.

L'IA est en train de gagner terrain en médecine et en particulier en pathologie en tant
que nouvel outil pour améliorer la précision des stratégies diagnostiques, basé sur la création
et I'application d'algorithmes, et notamment des réseaux de neurones artificielles, formés par
une séquence de couches (apprentissage profond ou deep learning, DL), qui constituent une
approche idéale pour la reconnaissance visuelle, comme le traitement des WSI. En général, ces
modeéles mathématiques sont dessinés en réponse a une question scientifique (par exemple,
reconnaitre des cellules cancéreuses dans les images histologiques) puis entrainés pour «
apprendre » les traits qui pourraient résoudre la question demandée (dans I'exemple, prédire
la configuration dans des cas futurs). En identifiant les trames de reconnaissance visuelle, I'IA
permet le traitement de grands ensembles de données qui, en raison de leur échelle et de leur
diversité, pourraient étre tres difficiles a gérer s'ils étaient analysés manuellement. La premiere
étape ou entrainement consiste a fournir d'énormes quantités de données au systéme qui
permettront a I'algorithme de s'ajuster et de s'améliorer. Dans la deuxieme étape ou prédiction,
comme son nom l'indique, le réseau de neurones mouline les données d’entrée pour produire
des prédictions. La taille et la variété des jeux de données, ainsi que leur caractere prospectif,
sont des facteurs importants a considérer afin d'éviter des résultats erronés. Quand ces

données d'entrée sont annotées, on parle d'apprentissage supervisé.

L'apprentissage supervisé a toujours été I'approche la plus courante en pathologie
numérique mais, en raison du colt des annotations précises, I'apprentissage faiblement
supervisé devient de plus en plus populaire. L'apprentissage a instances multiples (multiple
instance learning, MIL), un type d'algorithme d'apprentissage faiblement supervisé utilisé dans

notre étude, en est un exemple.
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Un point capital a considérer quand on applique des approches d'lA est I'interprétabilité
des résultats. Les systemes émulent des boites noires ou les entrées et les sorties sont
perceptibles mais le processus de décision reste "caché". Cette condition peut, d'un part,
empécher I'acceptation des solutions employant I'lA par les médecins et autres experts et,
d'autre part, engendrer des difficultés pour la correction des algorithmes dont le raisonnement
est inconnu. Une maniére de contourner cette contrainte est I'lA « explicable », ou I'effort est
dirigé pour dévoiler et trouver le sens biologique aux traits qui ont un poids plus important

pour la prédiction élaborée par 'algorithme.

Comme pour toute autre technologie médicale, les algorithmes d'lA doivent passer par
une validation clinique avant leur application généralisée. Deux types successifs de validation
ont lieu : la validation interne, qui fait reférence a I'évaluation de I'algorithme avec les données
qui ont été utilisées pour développer le modele, et la validation externe, qui peut étre
accomplie grace a I'étude d'un nombre suffisant d'échantillons qui n'ont pas été utilisés pour
I'entrainement et qui présentent une variété de caractéristiques représentative de I'ensemble

du spectre du probleme étudié.

Dans le domaine de la pathologie mammaire, I'application de I'lA, en plus d'améliorer
la précision du diagnostic et I'évaluation des biomarqueurs, peut fournir des résultats au-dela
de ce qui peut étre obtenu par une évaluation oculaire des caracteres histologiques. Ces
méthodes pourraient ainsi constituer une alternative moins chére et plus rapide a certains tests
multigéniques comme les signatures moléculaires, pour prédire I'évolution du cancer du sein,
pouvant les remplacer completement ou du moins comme une étape préalable a la mise en

ceuvre de ces tests onéreux et de disponibilité encore limitée.

D. Objectives

L'objectif principal de ce travail était de développer un outil de pathologie numérique
basé sur I'lA couplée aux données cliniques et supports déja accessibles au laboratoire de
pathologie comme les WSI, pour évaluer le risque de rechute a distance a 5 ans chez les
patients avec un cancer du sein invasif en phase précoce (eiBC). Le but ultime en cas de succes
était d'améliorer la stratification de patientes qui pourraient étre observées en toute sécurité
plutot que de nécessiter d'autres thérapies complémentaires, avec les effets secondaires que

cela entraine.
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Deuxiemement, nous souhaitions décrypter les éléments morphologiques pris en
compte pour prédire le risque de rechute, par l'interprétation des résultats produits par les
algorithmes développés. Pour ce faire, nous avons prévu d'évaluer la corrélation entre les sous-
groupes pathologiques générés par I'lA et le risque de récidive, en accordant une attention
particuliere aux caractéristiques morphologiques extraites par le modeéle qui pourraient étre

liées a différents résultats.
Ainsi, nos principaux objectifs étaient de:
1) évaluer si I'lA appliquée au WSI pouvait prédire la rechute métastatique a cing ans,

2) évaluer si les éléments pronostiques fournis par I'lA ajoutent des informations

supplémentaires aux parametres pronostiques clinico-pathologiques utilisés en routine,

3) décrypter les caractéristiques utilisées par I'lA pour estimer le risque (interprétabilité).

E. Matériels et Méthodes

1. Patients

Nous avons utilisé deux cohortes pour notre projet.

La premiere, employée pour construire nos modeles, correspond aux données
collectées rétrospectivement, pour la base du projet GrandTMA, aupres de patients
diagnostiqués d'un cancer du sein et traités a Gustave Roussy, France. Cela a conduit a
I'inclusion de 1429 patients diagnostiqués avec un eiBC ER+/HER2- avec un suivi complet et
au moins 1 lame de tumeur colorée par I'hématoxyline-éosine-safran (HES) et numérisée. Les
informations clinico-pathologiques supplémentaires comprenaient I'age, la taille tumorale, le
grade et le sous-type histologiques, le nombre de ganglions lymphatiques envahis, le sous-

type moléculaire et le statut des biomarqueurs (ER, PR, HER2 et Ki67).

La deuxieme cohorte, sélectionnée pour valider notre modele, est issue d'une étude
observationnelle et prospective francaise, CANTO, comprenant 915 HES WSI de patients
diagnostiqués d'un eiBC ER+/HER2-.

2. Endpoint

L'endpoint choisi est l'intervalle libre de métastase (MFI, metastasis free interval) a 5 ans.

3. Modele
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Pour prédire un score de risque de rechute a distance a partir d'une lame histologique,
nous avons procédé en trois étapes : le découpage des tissus dans les WSI, |'extraction des
caractéristiques et la prédiction du risque. Les WSI ont été d'abord divisées en petits carrés de
76 x 76 micrometres (224 x 224 pixels) appelés « tuiles », a partir desquels des caractéristiques
ont été extraites par un réseau de neurones convolutionnel pré-entrainé. Au cours du
développement du modeéle, les caractéristiques des tuiles ont été introduites dans le réseau
avec les données de survie, et un modele d'attention a appris a attribuer un poids a chaque
tuile en fonction de sa pertinence pour prédire la rechute a distance. Enfin, le réseau a agrégé
ces caractéristiques a l'aide d'une moyenne pondérée dont les poids étaient les scores

d'attention, et a ainsi créé une représentation unique de chaque WSI utilisée pour la prédiction.

4. Validation

L'évaluation du modele de DL et des scores cliniques standards a été réalisée sur la
cohorte indépendante CANTO. Nous avons comparé les performances en termes de capacité
de stratification, de sensibilité cumulée et de spécificité dynamique a 5 ans (adaptations de la
sensibilité et de la spécificité classiques pour inclure non seulement |'occurrence ou pas de

I'’événement d'intérét mais aussi le temps écoulé jusqu’a cet évenement).

Nous avons aussi confronté nos performances a des scores cliniques pertinents utilisés
dans la pratique quotidienne, Predict Breast (PB) et CTS (basés sur I'age, la taille et le grade
histologique de la tumeur, le nombre de ganglions lymphatiques envahis, le statut des
biomarqueurs ER, HER2 et KI67. Enfin, et concernant la question de l'interprétabilité des
algorithmes, nous avons évalué les caractéristiques présentes dans les tuiles sélectionnées par
les modeéles mathématiques afin d'identifier les éléments responsables de la prédiction du

risque.

Pour faire la distinction entre les patients a haut risque et a faible risque de rechute a
distance a 5 ans, nous avons défini un seuil pour le score de risque continu fourni par notre

algorithme, fixé a 10 %, choisi en accord avec |'état de I'art acceptable pour la pratique clinique.

F. Résultats

1. Sur I'ensemble des données d’entrainement

En ce qui concerne le pouvoir discriminant du score pour prédire le MFI, notre score a
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montré un c-index moyen de 0,77 (95%Cl: [0.71, 0.83]). Les scores cliniques n'ont pas surpassé
le score de notre modele, avec des performances de 0,76 (95%Cl: [0.70, 0.82]) tant pour PB que

pour le CTS.

Notre modeéle a permis de stratifier selon le MFI avec un hazard ratio (HR) de 4,19

(95%Cl 2,88-6,1 ; p <0,0001) pour le groupe a haut risque par rapport au groupe a faible risque.

2. Sur I'’ensemble des données de validation

Notre modele a prédit le MFI en obtenant un c-index de 0.76 (95%Cl: [0.72,0.77]). En
comparaison, le CTSO a atteint un c-index de 0.81 (95%Cl: [0.80,0.83]) et PB atteint un c-index
de 0.73 (95%Cl: [0.70, 0.76]).

Un HR de 4,97 (95%Cl 2.73-9.04; p<0.0001) a été observé dans la série de validation,
comparable aux estimateurs de risque bien établis en routine, qui combinent des données
d’'entrée pathologiques, cliniques et moléculaires, atteignant des valeurs équivalentes ou
supérieures en termes de sensibilité et de spécificité. De plus, la combinaison de notre score
de risque avec d'autres scores de risque a donné un pouvoir discriminant encore plus élevé
pour le groupe a haut risque versus le groupe a faible risque), montrant que notre modéle
fournit de nouvelles informations et qu'il pourrait fonctionner comme une détermination

additionnelle pour la stratification de patients a pronostic incertain.

3. Interprétabilité

L'analyse d'interprétabilité a mis en évidence la capacité du modele a s'appuyer sur des
caractéristiques histologiques connues ainsi que sur des interactions cellulaires complexes
(comme le rapprochement spatial de fibroblastes et de lymphocytes dans des tuiles a faible
risque) pour la prédiction du risque de rechute, ce qui a validé biologiquement notre approche.
Les caractéristiques les plus prédictives d'un risque élevé de rechute ont été la haute densité
en cellules tumorales, un degré élevé de pléomorphisme nucléaire, une architecture massive
et la faible formation de tubules, des structures trabéculaires ainsi qu'une activité mitotique

élevée.

G. Conclusion

Dans cette étude, nous avons concu un outil basé sur I'lA pour prédire si un patient
diagnostiqué d'un eiBC ER+/HER2- rechutera dans les cinq ans suivant la chirurgie initiale. Pour
fournir un score de risque, la méthode utilise simplement une lame représentative de la tumeur,
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colorée et numérisée de maniére standard, déja disponible a des fins de diagnostic au
laboratoire de pathologie. Nous avons validé notre modéle sur une cohorte externe
indépendante obtenant des performances au moins équivalentes a celles des scores cliniques

actuellement utilisés dans la pratique quotidienne.

Contrairement a d'autres approches de pathologie numérique qui prédisent des
caractéristiques morphologiques (le grade histologique, le scoring KI67) et sont donc
indirectement liés au pronostic, nous avons entrainé notre modeéle directement pour prédire

le MFI, réepondant directement a notre question clinique.

Nous avons conclu que notre étude met en évidence les avantages de I'lA appliquée a
la pathologie numérique pour améliorer la stratification du risque des patientes atteintes d'un
eiBC et pour élargir I'acces a des stratégies thérapeutiques personnalisées, y compris la

désescalade thérapeutique.
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Résumé : L'intelligence artificielle (IA) émerge en
médecine comme un nouvel outil pour améliorer la
précision des stratégies diagnostiques. En identifiant
les trames de reconnaissance visuelle, I'l|A permet le
traitement de grands ensembles de données qui, en
raison de leur échelle et de leur diversité, pourraient
étre tres difficiles a gérer s'ils étaient analysés
manuellement. L'apprentissage profond (AP), un
domaine de l'apprentissage automatique ou
machine learning ou la profondeur est générée par
une séquence de couches, est une approche idéale
pour la reconnaissance visuelle, comme le traitement
de lames histologiques numérisées. Le mécanisme
est basé sur l'entrainement d'algorithmes pour
concevoir des modeles mathématiques capables de
prédire la configuration dans des cas futurs.
L'« entrainement » consiste a fournir d'énormes
quantités de données au systeme et a permettre a
I'algorithme de s'ajuster et de s'améliorer.
Le cancer du sein (CS) est la premiere cause de cancer
chez les femmes dans le monde. Les CS invasifs sont
classés par les pathologistes en différents sous-types
en fonction du grade et du type histologique et
d'autres caractéristiques telles que la taille tumorale,
la présence d'une invasion lympho-vasculaire,
I'atteinte des ganglions lymphatiques, I'expression
des récepteurs hormonaux et de HER2, ou l'index de
prolifération évalué par le Ki67, avec différentes
implications pronostiques et prédictives. La vaste
hétérogénéité du CS a un impact particulier dans le
pronostic et la réponse au traitement. De plus, il a été
démontré que le risque et le moment de la récidive
de la maladie dépendent également des
caractéristiques tumorales mentionnées. Ce fait
souligne le besoin de meilleurs outils pour la
stratification des patients concernant la prise de
décision thérapeutique, a la fois pour la mise en
ceuvre de traitements adaptés et aussi pour éviter
des traitements lourds chez les patients identifiés

comme ayant un risque faible de récidive.
L'applicabilité de I'lA sur la pathologie numérique
pourrait gérer la grande quantité de données
générées afin d'optimiser son interprétation,
améliorant ainsi la reconnaissance des différents
sous-groupes du CS précoce qui pourraient
s'associer a différentes évolutions.

L'objectif de ce travail était de développer un outil
de pathologie numérique basé sur I'lA pour évaluer
le risque de rechute a distance a 5 ans chez les
patients avec un CS invasif en phase précoce,
applicable partout et a un colt abordable. Nous
avons utilisé des lames tumorales colorées par
hématoxyline-éosine-safran (HES) et scannées,
provenant de résections chirurgicales de CS, ainsi
que des données cliniques et histopathologiques,
comme données d'entrée pour entrainer des
réseaux de neurones afin de prédire un risque de
rechute. Dans un deuxieme temps, nous avons
validé les résultats obtenus sur un jeu de données
externe et nous avons comparé nos performances
a des scores cliniques pertinents utilisés dans la
pratigue quotidienne, atteignant des valeurs
équivalentes ou supérieures en termes de
sensibilité et de spécificité. Enfin, et concernant la
question de |'explainable Al, nous avons évalué les
caractéristiques  présentes dans les tuiles
sélectionnées par les modéles mathématiques afin
d'identifier les éléments responsables de la
prédiction du risque, et de valider biologiquement
notre approche.

Nous avons conclu que notre étude met en
évidence les avantages de I'|A appliquée a la
pathologie numérique pour améliorer la
stratification du risque des patientes atteintes d'un
CS et pour élargir l'accés a des stratégies
thérapeutiques personnalisées, y compris la
désescalade thérapeutique.
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Abstract : Artificial intelligence (Al) is emerging in
Medicine as a novel tool for improving the precision
of diagnostic strategies. By identifying patterns of
recognition, Al allows the processing of large
datasets, which, due to its scale and diversity, could
be very difficult to handle if manually analyzed. Deep
learning (DL), an area of machine learning where
depth is generated by a sequence of multiple layers,
is an ideal approach for visual recognition, such as
the processing of scanned histological slides. The
mechanism is based on training algorithms to design
mathematical models that predict the configuration
in future cases. “Training” involves providing huge
amounts of data to the system and permitting the
algorithm to adjust itself and improve.

Breast cancer (BC) is the first cause of cancer in
women worldwide. Invasive BCs are classified by
pathologists into different subtypes using the
histological grade, type, and other features such as
the tumor size, the presence of lymph-vascular
invasion, lymph-node involvement and expression of
hormone receptors, HER2 and Ki67, with different
prognostic and predictive implication. BC vast
heterogeneity has a particular impact on prognosis
and response to treatment. Moreover, it has been
demonstrated that the risk and timing of disease
recurrence also depends on tumor characteristics
aforementioned. This fact highlights the need for
better tools for patients’ stratification regarding
treatment decision, both for the implementation of
tailored therapeutic schemes and for avoiding heavy
treatments in the so-called low-risk patients. The
applicability of Al on digital pathology could manage
the data generated in order to optimize its
interpretation, improving the recognition of different
pathological subgroups of early BC that could
associate with different outcomes.

The aim of this work was to develop an Al-based
digital pathology tool to assess the risk of distant
relapse at 5 years in early invasive BC patients,
applicable everywhere and at an affordable cost.
We used scanned hematoxylin-eosin-safran (HES)-
stained tumor slides from BC resection specimens,
along with clinico-pathological data, as inputs to
train neural networks in order to predict a risk of
relapse. Subsequently, we validated the obtained
results on an external dataset and we compared
our performances to relevant clinical scores used in
daily practice, attaining equivalent or superior
values in terms of sensitivity and specificity. Finally,
and regarding explainable Al question, we assessed
the features present in the tiles selected by the
mathematical models in order to identify the
elements that supported the risk prediction, in
order to find biologically coherent results that
validated our approach.

We concluded that our study highlights the benefit
of Al-based digital pathology to improve the risk
stratification of breast cancer patients and expands
access to personalized therapeutic strategies,
including treatment de-escalation purposes.




	Acknowledgements
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Preface
	Introduction
	Breast cancer
	A. Epidemiology
	B. Morphological classification
	C. Molecular classification

	Pathology: the great digital transformation
	A. At the crossroads of morphology, molecular diagnosis, personalized treatment and computer sciences
	B. Digital pathology and image analysis
	C. Telepathology
	D. Future directions: towards the slideless era?

	Artificial Intelligence and Medicine
	A. Basics of artificial intelligence approaches in pathology
	B. Data and requirements for AI implementation in pathology
	C. The process
	D. Validation of AI methods
	E. Applications
	F. Novel defies posed by AI: shaping the medicine of the future


	Objectives
	Objectives

	Materials and Methods
	Patients
	A. Patient cohorts
	B. Privacy considerations

	Methods
	A. Slide scanning


	Results
	Research Article

	Discussion and Conclusions
	Discussion and Conclusions
	A. Discussion
	B. Conclusions


	References
	References

	Annexes
	RlapsRisk Report

	Annexes
	Communications on the RlapsRisk study
	A. ESMO Congress 2021 – Paris, France
	B. USCAP 2022 – Los Angeles, California, USA
	C. ESMO Congress 2022 – Paris, France


	Annexes
	Other publications on the AI domain
	A. Review article
	B. Research articles


	Introduction
	Related Work
	Method
	Hypergraph Construction
	Construction of the Graph Neural Network

	Experimental Setup
	Dataset
	Implementation Details

	Conclusion
	Patch Clustering
	Ablation Studies
	About Hypergraphs
	Hypergraph Convolution
	Hypergraph Attention

	Annexes
	Additional work performed during this thesis
	Synthèse en français
	C. Introduction
	D. Objectives
	E. Matériels et Méthodes
	F. Résultats
	G. Conclusion



