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Abstract

Quantum interfaces are ubiquitous in quantum technologies as they allow the
implementation of several functionalities including quantum memories, quantum
repeaters, photonic gates, and highly entangled photonic state generation. Based on
the coherent coupling between quantum emitters and propagating pulses of light,
they can be realized on a large variety of experimental platforms where quantum
non-demolition measurements, entanglement generation, and efficient production of
non-classical resources have been reported.

This thesis explores the potential of so-called collision models to model exactly
the light-matter dynamics in various kinds of quantum interfaces, providing direct
access to their joint entangled states. It allows us to derive analytic expressions of the
device performance, whether operated as a measuring apparatus or a source of cluster
states. Since our model captures light and matter as a closed system, it verifies
global energy conservation, providing access to the energy budget associated with
the execution of the quantum task. Initially, we review the theoretical foundation for
quantum measurements and introduce figures of merit used throughout the thesis.
Subsequently, we review the collision model method, which is based on waveguide
quantum electrodynamics (WGQED), setting the stage for subsequent analyses. Then,
we address fundamental inquiries. First, we investigate the emergence of non-classical
behavior of the field scattered by a quantum emitter that interacts with an intense
resonant coherent field. It reveals signatures of quantum contextuality—negativity
in the Wigner function and anomalous weak values. Second, we investigate the
possibility of non-destructive spin state measurement by limiting the energy budget
to at most one photon. We compare the performance of two different fields: coherent
field and number state superposition. We demonstrate better performance of the
latter in entanglement generation, thus providing a quantum advantage. Lastly, our
analysis extends to technological applications. We propose a photon-photon gate,
conduct a thorough error analysis, and we perform the modeling of cutting-edge
experiments envisioning the deterministic generation of highly entangled states of
light.

This theoretical capacity opens the way to directly optimizing the device perfor-
mance and efficiency as a function of the parameters accessible to experimentalists.
It also allows us to fit experimental data with high accuracy.





Résumé

Les interfaces quantiques sont omniprésentes dans les technologies quantiques
car elles permettent la mise en œuvre de plusieurs fonctionnalités, notamment les
mémoires quantiques, les répéteurs quantiques, les portes photoniques et la génération
d’états photoniques hautement intriqués. Basés sur le couplage cohérent entre les
émetteurs quantiques et les impulsions lumineuses se propageant, ils peuvent être
réalisés sur une grande variété de plates-formes expérimentales où des mesures
quantiques de non-démolition, la génération d’intrication et la production efficace de
ressources non classiques ont été rapportées.

Cette thèse explore le potentiel des modèles dits de collision pour modéliser
exactement la dynamique lumière-matière dans divers types d’interfaces quantiques,
fournissant un accès direct à leurs états intriqués communs. Cela nous permet de
dériver des expressions analytiques des performances du dispositif, qu’il soit utilisé
comme appareil de mesure ou comme source d’états de cluster. Puisque notre modèle
capture la lumière et la matière comme un système fermé, il vérifie la conservation
globale de l’énergie, donnant ainsi accès au budget énergétique associé à l’exécution
de la tâche quantique. Dans un premier temps, nous passons en revue les fondements
théoriques des mesures quantiques et introduisons les chiffres de mérite utilisés tout
au long de la thèse. Par la suite, nous passons en revue la méthode du modèle de
collision, basée sur l’électrodynamique quantique des guides d’ondes (WGQED),
ouvrant la voie à des analyses ultérieures. Ensuite, nous abordons les questions
fondamentales. Tout d’abord, nous étudions l’émergence d’un comportement non
classique du champ diffusé par un émetteur quantique qui interagit avec un champ
cohérent résonant intense. Il révèle des signatures de contextualité quantique :
négativité dans la fonction de Wigner et valeurs faibles anormales. Deuxièmement,
nous étudions la possibilité d’une mesure non destructive de l’état de spin en limitant
le budget énergétique à un photon au plus. Nous comparons les performances de deux
champs différents : le champ cohérent et la superposition d’états numériques. Nous
démontrons de meilleures performances de cette dernière en matière de génération
d’intrication, offrant ainsi un avantage quantique. Enfin, notre analyse s’étend aux
applications technologiques. Nous proposons une porte photon-photon, effectuons
une analyse approfondie des erreurs et effectuons la modélisation d’expériences de
pointe envisageant la génération déterministe d’états de lumière hautement intriqués.

Cette capacité théorique ouvre la voie à l’optimisation directe des performances
et de l’efficacité du dispositif en fonction des paramètres accessibles aux expérimen-
tateurs. Cela nous permet également d’ajuster les données expérimentales avec une
grande précision.
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Introduction

It’s a dangerous business, Frodo, going out your door. You step onto the
road, and if you don’t keep your feet, there’s no knowing where you might
be swept off to. – Bilbo by J.R.R. Tolkien

In the early years of the 20th century, the nature of radiation emitted by a black
body posed significant challenges to theoretical physics. Max Planck proposed a
solution by hypothesizing that energy existed in discrete amounts called "quanta"[1, 2].
Building upon Planck’s work, Albert Einstein extended this concept to light itself,
suggesting that light was also quantized into particles, that became known as
"photons" [3], and successfully describing the photo-electric effect [4]. This hypothesis
contradicted the prevailing theory of light as electromagnetic waves proposed by
James Clerk Maxwell. However, the wave-particle duality of matter and radiation
was established with the works of Louis de Broglie, reconciling the two contradictory
concepts [5]. Quantum mechanics was formalized in the 1920s thanks to works by
Niels Bohr [6], Erwin Schrödinger [7] and Werner Heisenberg [8, 9]. It emerged as a
paradigm shift in physical theory that fundamentally changed our understanding of
the world setting a new set of rules that physical theories must obey [10].

At the heart of quantum mechanics lie the concepts of superposition and en-
tanglement [11]. Superposition refers to the state of a physical system being in a
combination of multiple states simultaneously. Entanglement describes the non-
classical correlations between two or more particles, such that measuring one particle
instantaneously affects the state of another, even if they are spatially separated.
The phenomenon of entanglement puzzled great physicists like Albert Einstein, who,
along with Boris Podolsky and Nathan Rosen, described a physical situation known
as the EPR paradox. In their seminal paper [12], they presented the EPR paradox
as a thought experiment to argue against the completeness of quantum mechanics
as a physical theory. By examining an entangled state, they demonstrated that the
measurement of one particle instantaneously influenced another particle, regardless
of the spatial separation between them. Einstein famously referred to this non-local
behavior as "spooky action at a distance". Their findings led them to the conclusion
that the wave-function-based quantum mechanical description of physical reality was
incomplete [13]. To address this issue, Einstein proposed the existence of hidden
variables, which referred to yet unknown local properties of the system that could
explain the avoidance of the spooky action at a distance. However, Niels Bohr, in
his critique [14], disagreed with the EPR interpretation of the notion of locality,
proposing the principle of complementarity. According to Bohr, certain predictions
were possible while others were not, as they were related to mutually incompatible
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2 Introduction

sets. It was not until the 1960s that John Bell’s work [15] on Bell’s inequalities
provided a mathematical criterion to probe the locality of quantum mechanics. The
violation of these inequalities indicated the failure of a classical description, pointing
towards the non-local nature of quantum mechanics.

In the early 1980s, experimentalists were trying to test Bell’s inequalities in
the laboratory [16, 17]. Notably, the experiments performed by the 2022 Nobel
Prize in physics Alain Aspect1 revealed the violation of Bell’s inequalities, providing
experimental evidence supporting the non-local nature of quantum mechanics [18, 19].
Advances in cavity quantum electrodynamics [20, 11] and quantum optical platforms
allowed for the validation of several predicted quantum phenomena, including Rabi
oscillations [21], which demonstrated the quantization of the electromagnetic field
and the generation of entangled particles [22].

The era of quantum technologies
Do you guys just put the word “quantum” in front of everything? – Paul
Rudd (as Scott Lang), Ant-Man and the Wasp.

The emergence of quantum information represents a new perspective in the research
program of quantum mechanics. While the field of quantum foundations contin-
ued investigating the puzzling aspects of quantum mechanics and its connection
with physical reality, quantum information focused on the potential use of these
strange properties as resources for technological applications [23]. Moreover, Aspect’s
experiments represented a landmark [24] by corroborating that entanglement and
non-locality are characteristics of the physical world, it brought a burst of interest in
exploring the possibilities of using them as resources for information technologies,
paving the way for the second quantum revolution [25]. Quantum information theory
is a paradigm for the technological application of quantum mechanics that have been
developed for the last 25 years [23]. It draws inspiration from Shannon’s classical
information theory [26]. Quantum bits, or qubits, were introduced as the quantum
counterpart to classical bits. While classical bits can only exist in the states ’0’ or
’1’, qubits represented by |0⟩ and |1⟩ can exist in superpositions states: c0|0⟩+ c1|1⟩,
where c0, c1 are complex amplitudes that encode quantum information. The field
of quantum information aims to develop protocols for efficiently processing and
transmitting information taking advantage of the power of quantum properties.

This paradigm shift led to the development of quantum technologies, which
harness the unique properties of quantum systems to perform useful tasks [27].
Quantum technologies encompass various areas, including quantum computing,
which has the potential to solve complex problems more efficiently than the most
powerful classical supercomputer by using superposition and entanglement, and
quantum communication that seeks to establish secure channels for transmitting
encoded information using quantum properties. Quantum key distribution (QKD)
protocols [28] provide secure encryption keys, ensuring information confidentiality

1The motivation for the prize shared with John Clauser and Anton Zeilinger was: “for experiments
with entangled photons, establishing the violation of Bell inequalities and pioneering quantum
information science”.



Introduction 3

and protection against eavesdropping. Additionally, techniques such as quantum
teleportation [29] and superdense coding [30] utilize entanglement to make it possible
to efficiently transmit data.

A key objective of quantum technologies is the establishment of a quantum
network [31], connecting multiple nodes that can interact coherently. This concept
relies on two main components: a flying qubit for transmitting information between
stationary qubits that store and map information onto the flying qubits. Photons
have emerged as the best candidates to be the flying qubit due to the possibility to
maintain quantum coherence over long distances, while quantum states of matter are
preferred to be the stationary qubit where local storage and processing of information
happens [23]. A fundamental challenge lies in quantifying the quality of entanglement
generated between light and matter, specifically the mapping of information between
stationary and flying qubits.

Waveguide Quantum electrodynamics (WGQED) [32] investigates the interactions
of localized quantum systems, the emitters, with propagating electromagnetic fields,
hence this framework is suited for the exploration of the physics of light-matter
interactions. It has a wide range of applications for quantum technologies and it
allows the modeling in a multitude of hardware implementations such as quantum
photonics [33], superconducting circuits [34], and atomic physics [35].

Modeling WGQED systems presents inherent challenges from the fact that
propagating fields contain an infinite number of frequency modes. To overcome this
issue, effective approaches like cavity quantum electrodynamics (cQED) [20, 11, 22]
and open quantum systems [36, 37] have been widely employed. In cQED, only
a single mode of the field is considered, while open quantum systems treat the
propagating field as a bath and focus solely on the quantum emitter’s dynamics by
tracing out the field’s state. However, such effective models suffer from inherent
drawbacks as they sacrifice information about the precise state of the propagating
fields and the resulting light-matter entanglement. Consequently, these limitations
often restrict their ability to accurately characterize technological protocols.

This is where this thesis makes its contribution. Building upon the method
developed recently in Refs. [38, 39] that is based on the WGQED allowing for a
collisional model interpretation [40], where the propagating fields are viewed as
composed of smaller interacting units called ancilla. Within this framework, it is
possible to solve the full dynamics of a qubit interacting with a field inside a waveguide.
Thus, providing direct access to light-matter entangled states. Importantly, this
model can describe feasible experimental platforms based on one-dimensional atoms
(1D atoms), two of which will be discussed in this thesis: superconducting circuits
[41] and quantum dots embedded in microstructures such as micro pillars [42] or
photonic crystals [43].

One-dimensional atoms

When an atom is excited, it can emit a single photon, but the emission occurs in
random directions throughout space (isotropic). To enhance the interaction between
a single atom and a specific mode of the electromagnetic field, enabling efficient
collection or routing of photons in a preferred direction, the atom can be coupled with
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a one-dimensional (1D) environment, such as a waveguide [38, 32]. This configuration
gives rise to what is called a one-dimensional atom (1D atom). The first experimental
realization of such a system was reported in Ref. [44], where a Cesium atom was
coupled with a leaky directional cavity. Since then, significant progress has been
made in the development of artificial atoms, also known as quantum emitters, which
are engineered systems created in controlled environments to mimic the behavior of
natural atoms [45]. These artificial atoms have discrete energy levels that can be
tuned by external fields. By driving an artificial atom with light, coherent oscillations
(Rabi oscillations) can occur between specific levels, encoding the qubit states. The
advantage of artificial atoms over natural atoms is that they can be fabricated in a
scalable and controlled way [45].

Two implementations of 1D atoms based on artificial atoms have shown promise
as platforms for quantum information protocols: superconducting circuits [46, 41]
and semiconductor quantum dots [42, 43].

Superconducting circuits

Superconducting circuits are RLC circuits that incorporate a non-linear element
called the Josephson junction. These circuits are typically on the scale of micrometers
and operate at extremely low temperatures. The superconducting nature of these
circuits, which means they have no resistance, eliminates one of the most significant
detrimental effects. The Josephson junctions play a crucial role in creating non-
uniform energy levels, allowing the utilization of the lowest two levels to encode the
qubit. Quantum information can be encoded in various ways in superconducting
circuits, such as the number of superconducting electrons on a small island (charge
qubit), the direction of current around a loop (flux qubit), and the oscillatory states of
the circuit (phase qubit). These qubits can be controlled using microwaves, voltages,
magnetic fields, and currents. An essential aspect of this platform, particularly
relevant to the present thesis, is the high accuracy in preparing and measuring the
qubit state using integrated on-chip instruments [47, 41]. In fact, a recent experiment
even indicated that qubit measurement can be more efficient than preparation [48].

Superconducting circuits possess several appealing features, including scalability,
straightforward implementation, long coherence times, and compatibility with existing
fabrication techniques. These characteristics make them a promising candidate
for large-scale, fault-tolerant quantum computing systems [46, 41]. Additionally,
superconducting circuits provide an ideal platform for investigating fundamental
aspects of quantum mechanics, such as the performance of quantum non-demolition
measurements (QND measurements) [49], violation of Bell’s inequalities [50, 51], and
access to quantum weak values [48, 52, 53].

The investigation presented in Ref. [53] (see Chap. 3) is motivated by recent
observations of anomalous weak values reported in Refs. [48, 52, 53], as well as
fundamental results reported in Refs. [54] and [55]. In [54], it was mathematically
demonstrated that the emergence of anomalous weak values is a signature of the
contextual nature of the system, indicating quantum contextuality. Quantum contex-
tuality refers to the property of quantum systems where the measurement outcomes
depend not only on the state of the system but also on the choice of measurements
and the context in which they are made [13]. Ref. [55] formally showed that contex-
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tual systems should exhibit a negative Wigner function, indicating a non-classical
state of light.

In Chap. 3, we consider a qubit interacting with an intense resonant coherent
field, which is a well-known example of a Gaussian state [56]. The scattered (output)
field is continuously measured using a heterodyne measurement scheme. Since this
experiment is implemented in a superconducting circuit platform, we can measure the
qubit after a certain interaction time, allowing for post-selection of the state. This
post-selection leads to the emergence of anomalous weak values of the scattered field,
which will be defined and discussed in Chap. 3. In this specific physical platform,
we demonstrate that the scattered field exhibits Wigner negativity, indicating its
non-Gaussian nature [57]. This finding is significant as non-Gaussian states of light
are essential for achieving advantages in quantum computation, as Gaussian states
can be efficiently simulated using classical computers [57].

Quantum dots

Quantum dots are tiny structures formed within semiconductor matrices by
combining materials with different lattice parameters, typically InAs or GaAs [58].
Discrete bound states providing sharp optical transitions appear due to the confine-
ment of the motion of the charges in all three directions at the nanometer scale.
These materials possess a direct band gap and exhibit radiative decay, this property
makes them perfect candidates to be single photon sources (artificial atoms) [42].
The confinement of the quantum dot results in the quantization of energy levels,
allowing for the definition of a ground state and an excited state that can be accessed
optically. This characteristic enables us to model a quantum dot as a two-level
system (2LS or qubit) [59].

To improve the performance of quantum dots photonic microstructures can be
built to enhance its emission rate, a phenomenon known as the Purcell effect [60].
The development of experimental knowledge and techniques, such as molecular beam
epitaxy, electron beam in-situ lithography, and etching [43], has greatly possibilited
the generation of high-quality single photons from quantum dots [42, 43]. Two widely
used nanostructures for this purpose are photonic crystals and micropillar cavities.

Photonic crystals are materials with periodic variations in refractive index, which
allow control over light propagation through optical Bragg scattering. Essentially,
a hole pattern is constructed in the semiconducting material to create the desired
periodic variation [43].

On the other hand, a QD-pillar cavity system is created by embedding the
quantum dots into a solid-state cavity, typically made of GaAs, with distributed
Bragg mirrors. The mirrors confine light vertically, while lateral confinement is
achieved by etching a cylindrical micropillar [61, 62, 33, 63].

These advancements have opened up possibilities for utilizing quantum dots
as efficient sources of single photons [64]. Hence, quantum dots embedded in one-
dimensional microstructures are valuable 1D atoms [45].

To fulfill the criteria for quantum information processing, as outlined by DiVin-
cenzo in Ref. [65], stationary qubits need to exhibit long coherence times compared
to the duration of unitary manipulation (gate operation) of the qubit. Quantum
dots (QDs) provide an appealing solid-state platform for implementing stationary
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qubits. Unlike trapped ions or atomic platforms (natural atoms), QDs offer easy
integration between components, making them well-suited for practical applications.
Additionally, QDs can be electrically doped, allowing the insertion or removal of an
electron and enabling the spin degree of freedom in quantum dots due to the presence
of an electron or hole [66, 43]. The spin coherence time of an electron or hole in a QD
can range from nanoseconds to microseconds, while spin manipulation typically takes
only a few hundred picoseconds [66]. This coherence-to-manipulation time ratio,
surpassing one thousand, holds significant potential for quantum computation [67].
Consequently, the spin-photon interface (SPI) plays a fundamental role in quantum
devices, finding applications in various photonic quantum technologies. For instance,
one relevant application is the creation of highly entangled photonic states known
as cluster states, as proposed by Lindner-Rudolph [68, 63], which holds particular
significance for measurement-based quantum computing [69].

In the pursuit of efficient SPIs significant progress has been made in recent years
with spin-photon interfaces being developed to ensure that most photons sent into
the device interact with a single spin [70]. Experimental demonstrations have shown
that a single spin in a micropillar cavity can rotate the polarization of a photon by
approximately six degrees to the left or right [71], depending on the spin state. Recent
advancements reported in Ref. [72] have achieved even larger rotation amplitudes,
such as ±π/2 and π. These achievements demonstrate the potential of SPIs in
enabling coherent spin-photon interactions for technological applications.

Thesis outline
The aim of this thesis is to explore aspects of generation, characterization, and

robustness of non-classical resources. All of this is studied within the fundamental
framework of quantum measurements and their applications in the context of quantum
information processing.

Chapter 1 serves as the foundation for the subsequent chapters by reviewing
measurement theory. We start by discussing the textbook von Neumann measurement
model using a simple toy model. This chapter introduces the necessary concepts
that will be utilized throughout the thesis and set the stage for understanding the
original contributions presented in Chapters 3 and 4.

Chapter 2 focuses on the method for solving the closed dynamics of a two-level
system (qubit) coupled with a bosonic field at every time. We review the technique
developed in Ref. [73] and highlight its relevance to the subsequent chapters. The
solutions obtained through this method are essential for the original contributions
presented in Chapters 3 and 4. Additionally, in Chapter 5, we extend the solution
by considering the presence of a magnetic field that affects the quantum emitter.

The first two chapters provide the necessary theoretical background and tools for
the subsequent chapters, which contain our original contributions.

Chapter 3 presents a detailed analysis of a single qubit gate. We consider a
qubit coupled with an intense resonant coherent field. This scenario corresponds
to a specific regime of the general solution obtained in Chapter 2. We explore the
non-classical features of the scattered field, including the negativity of the Wigner
function and the emergence of anomalous weak values. By analytically computing
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the weak values and conditional Wigner function using the Hamiltonian solution, we
identify the origins of the anomalies and negativities. The findings presented in this
chapter are based on results reported in Ref. [53].

In Chapter 4, we investigate the measurement of the spin state in a degenerate
four-level system (4LS). Our goal is to achieve a non-demolishing measurement of
the spin state with limited energy resources. The system interacts with fields of
different natures: a resonant coherent field with Poissonian statistics a superposition
of vacuum and a single photon with sub-Poissonian statistics. The restricted energy
budget, where both fields have at most one photon on average, poses a challenge.
We explore the potential quantum advantage in the pre-measurement process, where
entanglement is generated between the field and the 4LS, and in the collapse step,
where the light state is measured to infer the spin state. These steps are crucial
for key quantum information protocols, such as the generation of cluster states [63].
These findings of fundamental relevance are are reported in Ref. [74]. Additionally,
we provide a technological application proposing a single-rail photon-photon gate,
which is a two-qubit photonic gate based on the absence (vacuum) or presence
(single photon) of a photon as the logical basis. We consider the scenario where the
main imperfection arises from the change in the temporal shape of the scattered
field. By utilizing the solutions obtained in Chapter 2, we derive an analytical
expression to account for this imperfection. We characterize the error by computing
the state-averaged fidelity and the error process matrix for the photon-photon gate.

In Chapter 5, we address the realistic scenario where the Lindner-Rudolph protocol
is implemented experimentally. We review the protocol and build appropriate
theoretical modeling based on a recent experiment reported in [75]. We extend the
solutions obtained in Chapter 2 to include the presence of an in-plane magnetic field
and assess its influence on key figures of merit of the protocol.

Finally, we conclude the thesis by summarizing the main findings and providing
perspectives on future research directions.

List of publications

This thesis is based on results directly developed for projects or inspired by
projects to which I contributed. Some of the content has already been published,
while others are going to be part of future publication(s). The published material
from works where I was a co-author are presented from my perspective and properly
cited. Below is a list of the original results presented in this thesis, which have been
published in the following papers, along with a brief description of my contribution
to each of them:

• Ref. [53], “Anomalous energy exchanges and Wigner-function negativities in a
single-qubit gate”. Maria Maffei, Cyril Elouard, Bruno O. Goes, Benjamin
Huard, Andrew N. Jordan, and Alexia Auffèves. Physical Review A 107, 2
(2023). In this work, I contributed during the final stage of the project. Maria
Maffei and Cyril Elouard conducted the system modeling. My contribution
involved discussing the interpretation and computation of the quasiprobability
distributions, particularly the Wigner function using the obtained wave function.
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Based on these results, I created the images and wrote the code that generates
the plots presented in the paper and in this thesis, which are available in the
dedicated GitHub repository [76].

• Ref. [74], “Energy-efficient quantum non-demolition measurement with a spin-
photon interface”. M. Maffei, B. O. Goes, S. C. Wein, A. N. Jordan, L. Lanco,
and A. Auffèves. Quantum 7 (2023). In this work, Maria Maffei and I extended
the solutions presented in Ref. [38] to the spin-photon interface case. We
addressed the entanglement generation and non-demolition measurement of
the spin state in the von Neumann measurement model, as well as selected the
figures of merit. The experiment proposed for the collapse of the meter state
was a significant contribution from Stephen Wein, who also developed efficient
codes to compute the main figures of merit proposed.

• Ref. [63], “High-rate entanglement between a semiconductor spin and indistin-
guishable photons”. N. Coste, D. A. Fioretto, N. Belabas, S. C. Wein, P. Hilaire,
R. Frantzeskakis, M. Gundin, B. Goes, N. Somaschi, M. Morassi, A. Lemaître,
I. Sagnes, A. Harouri, S. E. Economou, A. Auffèves, O. Krebs, L. Lanco, and P.
Senellart. Nature Photonics (2023). In this work, Stephen Wein and I worked
on the theoretical modeling of the system and discussed the computation of
the correlation functions and process matrix. Although this paper is not part
of this thesis, it directly inspired the research conducted in Chapter 5, which is
still unpublished but has the potential for future publication.

Throughout this thesis, I have used the Qutip Python library [77, 78] and the Melt!
[79] Mathematica package for generating plots and performing necessary analytical
and numerical calculations. The codes used for these tasks are available in a dedicated
GitHub repository [76].

https://github.com/BrunoOGoes/PhDThesisSPI/tree/main/Chapter3
https://github.com/BrunoOGoes/PhDThesisSPI.git


Chapter 1

Quantum measurements

The sciences do not try to explain, they hardly even try to interpret, they
mainly make models. By model, is meant a mathematical construct which,
with the addition of a certain verbal interpretation describes observed
phenomena. The justification for such a mathematical construct is solely
and precisely that it is expected to work – John von Neumann

1.1 The von Neumann measurement model
John von Neumann was the first to model the measurement process as a whole

[80]. In this section we review the von Neumann measurement model and we will
see that it provides a physical explanation of how the measurement occurs and how
information about the microscopic quantum system can be extracted from a quantum
state with a macroscopic object such as a photon detector or a photographic plate.

The model considers that there are two quantum systems: the measured system
(or target system), about which we want to obtain information, and the meter that
extracts the information required by correlating with the former. The measurement
is split into two steps:

1. The pre-measurement, in which the meter system interacts with the measured
system and extracts information about it by getting entangled with it, and

2. The collapse, where the state of the meter is measured, and relying on the
entanglement generated during the pre-measurement one can infer the state of
the measured system.

In the following, we will analyze a simple yet illuminating toy model to explicitly
analyze the von Neumann measurement model. The target system S is coupled to
a single-mode bosonic meter M . The goal is to encode the information about the
system observable BS probabilities on the meter system. The observable BS has the
following spectral decomposition,

BS =
∑
k

bk|bk⟩⟨bk|S, (1.1)

where bk are the eigenvalues and |bk⟩S the eigenvectors of BS.

9
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Figure 1.1: Illustration of the von Neumann measurement model. (a) Pre-
measurement: the meter M and system S start in a product state. At time t ≥ 0 they
interact with strength g0 becoming entangled. (b) Collapse: a classical apparatus
measures the state of the meter. Relying on the entanglement generated during the
pre-measurement it is possible to infer the state of the system.

To simplify the analysis we neglected the free evolution during the interaction.
The system is coupled to a single bosonic mode of the meter aM , with an interaction
strength g0. The interaction is assumed to be of the form,

HI = ig0BS ⊗ (a†M − aM) = 2g0BS ⊗ pM , (1.2)

which is proportional to the momentum operator pM = i(a†M − aM)/2. Thus, this
interaction represents a displacement of the mode aM proportional to the operator
BS (this fact will be demonstrated in what follows).

The target system is initially prepared in an arbitrary state |ψ(0)⟩S and the meter
is initially in the vacuum state |∅⟩M . The initial state of the joint system is assumed
to be a product state (see Fig. 1.1(a))

|Ψ(0)⟩SM = |ψ(0)⟩S ⊗ |∅⟩M . (1.3)

We turn on the interaction at time t = 0, Fig. 1.1(b). The joint state at time t
(see Fig. 1.1(c)), is given by (h̄ = 1)

|Ψ(t)⟩SM = exp {−iHIt} |Ψ(0)⟩SM . (1.4)

We can expand the system state on the basis of the operator BS, using the closure
relation of the eigenbasis {|bk⟩S},

∑
k|bk⟩⟨bk|S= 1S

|ψ⟩S =
∑
k

⟨bk|ψ(0)⟩S|bk⟩S =
∑
k

ck|bk⟩S, (1.5)
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where the coefficient is ck = ⟨bk|ψ(0)⟩S. Substituting Eq. (1.5) in Eq. (1.4) we obtain

|Ψ(t)⟩SM = exp
{
g0BS ⊗ (a†M − aM)t

}∑
k

ck|bk⟩S ⊗ |∅⟩M

=
∑
k

ck exp
{
g0BS ⊗ (a†M − aM)t

}
|bk⟩S ⊗ |∅⟩M

=
∑
k

ck exp
{
g0tbk(a

†
M − aM)

}
|bk⟩S ⊗ |∅⟩M

=
∑
k

ckD(g0tbk)|bk⟩ ⊗ |∅⟩M (1.6)

where D(g0bkt) = exp
{
g0bkt(a

†
M − aM)

}
is the displacement operator D(α) =

exp
{
αa†M − ᾱaM

}
, D(α)|∅⟩ = |α⟩, here ᾱ represents the complex conjugate of the

amplitude α. In our case α = g0bkt ∈ R. Finally,

|Ψ(t)⟩SM =
∑
k

ck|bk⟩S ⊗ |g0bkt⟩M . (1.7)

Hence, the interaction creates an entangled state at time t from the initial product
state. This state is a superposition of the measured system being in the eigenstate
|bk⟩S, and the meter being in the displaced state |g0tbk⟩M , with probability |ck|2.
Physically, it means that the initial vacuum state is displaced by a factor that depends
on the time and strength of the interaction g0t as well as the value of the eigenvalue
associated with the eigenstate bk. We can write the density matrix of the joint state:

ρSM(t) =
∑
k,q

ckc̄q|bk⟩S⟨bq|⊗|g0bkt⟩M⟨g0bqt| (1.8)

The reduced density matrix of the target system is,

ρS(t) = trM{ρSM(t)} =
∑
k,q

ckc̄q|bk⟩S⟨bq|⊗ trM {|g0bkt⟩M⟨gb0qt|}

=
∑
k,q

ckc̄q⟨gbqt|gbkt⟩|bk⟩S⟨bq| (1.9)

Using the inner product identity between coherent states [81],

⟨β|α⟩ = exp

{
β̄α− 1

2
(|α|2+|β|2)

}
, (1.10)

we obtain,

⟨g0bqt|g0bkt⟩ = exp

{
−(g0t)

2

2
(bk − bq)

2

}
= exp

{
−(g0t)

2

2
∆b2kq

}
(1.11)
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where ∆bkq = bk − bq is the level gap between eigenvalues of the observable. Finally,

ρS(t) =
∑
k,q

ckc̄q exp

{
−(g0t)

2

2
∆b2kq

}
|bk⟩S⟨bq| (1.12)

The off-diagonals (coherence terms) k ̸= q are damped by an exponential factor, this
gives rise to decoherence, which is proportional to the time t the interaction is turned
on, the interaction strength itself g0, and also to how separate bk is from bq. The
greater the level spacing the higher the damping, hence the faster the system goes to
a mixture (diagonal) state. Moreover, when g0t≫ 1, we have

lim
g0t→∞

exp

{
−(g0t)

2

2
(bk − bq)

2

}
= 0, for k ̸= q (1.13)

leading to an incoherent mixture of states. The diagonal entries, k = q, are, however,
not affected by the exponential damping, leaving the populations pk = |ck|2 constant.
We note the emergence of a preferred basis in the sense that as soon as we turn
on the interaction between the system and the meter, the basis of the operator BS

becomes the preferred one [82]. That is not true before the interaction, and it only
happens because we chose to couple BS with our meter. The preferred basis arises
from the fact that the populations and the coherences behave in a different way,
the former is kept constant during the dynamics while the latter is washed away.
Ultimately, we notice that in this system it is possible to tune between weak and
strong measurements [83]. If the product g0t is small we do not perturb the system
so much, but also we do not get much information about it. This can happen if the
coupling g0 is small, meaning that a small amount of entanglement is generated, or
if the time t of interaction is really short, in a way that the meter did not have time
to extract enough information about the system. On the other hand, we can extract
a lot of information if we have a large g0t, i.e., we disturb the system strongly or for
a long time.

So far we have a description of the pre-measurement process, with this example,
we understood how the interaction of the meter with the measured system creates a
global entangled state, and how the information about the system state gets encoded
onto the meter. It depends on the eigenvalue bk of the observable, the interaction
strength g0, and the time of the interaction, t. The interaction with the meter itself
leads to the decoherence process in the target system.

Now we turn our attention to the meter, which will ultimately collapse. The
reduced density matrix of the meter is

ρM = trS{ρSM} =
∑
u

∑
k,q

ckc̄q⟨bu|bk⟩S⟨bq|bu⟩ ⊗ |g0bkt⟩M⟨g0bqt|

=
∑
k

|ck|2|g0bkt⟩M⟨g0bkt|, (1.14)

which is just a statistical mixture of the coherent states |g0bkt⟩M . These states
encode the measured system’s state, they are referred to as pointer states [82]. The
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experiment that will be performed depends on one’s goals, a good choice in this
particular case is to perform a heterodyne measurement on the meter [84]. The
probability of obtaining the coherent state |µ⟩M as the outcome for this type of
measurement is given by the Husimi Q−function [81, 56](see App. A of Ref. [85]).

pbk(µ) = Q(µ, µ̄; bk) =
1

π
⟨µ|ρM |µ⟩ = 1

π
|⟨g0bkt|µ⟩|2

=
1

π

∑
k

|ck|2exp
{
−|µ− g0bkt|2

}
(1.15)
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Figure 1.2: Example: measurement of a spin 1/2. Here, B = σz =
diag{1/2,−1/2}. The upper panel shows the Husimi Q-functions, Eq. (1.15) and
the lower panel the Hinton diagrams of the measured system density matrix, Eq.
(1.12). (a) g0t = 0, (b) g0t = 1, (c) g0t = 2, and (d) g0t = 5. The measured system
starts in a balanced superposition of its spin states c↓ = c↑ = 2−

1
2 , and the field

starts in the vacuum state.

In Fig. 1.2, we apply this formalism for a spin 1/2 measuring BS = σz. We
plot the Hinton diagram (a representation of the density matrix) of the measured
system density matrix, and the associated Q−function, Eq. (1.15), in the quantum
phase space for different values of g0t. We observe that as the joint system evolves
the coherences are washed away while the probability distribution of the classical
measurement pµ=g0tbk becomes distinguishable. For negative eigenvalues, the initial
state of the meter (vacuum state |∅⟩M) is displaced to the left, while the positive
displaces it to the right of the real line. The vanishing coherences indicate that
entanglement is generated and the right choice of the measurement provides disjoint
probabilities distributions. In the next section, we introduce the figures of merit
that allow the quantification of the entanglement and readout quality of a physical
process as proposed in Refs. [86, 87].
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1.1.1 Classical and quantum Bhattacharyya coefficients

At this point, we introduce two important figures of merit that are going to be
used in Chap. 4: the Bhattacharyya coefficients. Let the joint state of the target
system and meter be

|Ψ(t)⟩ = |k⟩S ⊗ |ϕk⟩M + |l⟩S ⊗ |ϕl⟩M , (1.16)

where {|k⟩S, |l⟩S} are the two possible final states of a two-level system, and
{|ϕk⟩M , |ϕl⟩M} the two pointer states.

The quantum Bhattacharyya coefficient (qBhat) quantifies the quality of the
pre-measurement. It is defined as the modulus of the overlap between the pointer
states (proposition 4 of Ref. [87]),

Bq(t) = |⟨ϕl(t)|ϕm(t)⟩|. (1.17)

a good pre-measurement is hallmarked by a vanishing qBhat: Bq(t) = 0, complete
orthogonal pointer states. It can be easily verified that the off-diagonal matrix
elements of the measured system are directly proportional to this quantity, ρlm =
⟨l|Ψ(t)⟩⟨Ψ(t)|m⟩ ∝ Bq, meaning that when the system attains a completely mixed
state, the meter has extracted all the information and the joint system-meter are
perfectly entangled.

As we have just discussed, after the pre-measurement takes place one can extract
the information about the quantum system by measuring the meter state with a
classical measuring apparatus [82]. As a result of the measurement, one obtains
statistical distributions of its outcomes. For a general experiment, the probability
distribution induced by the measured system’s states is denoted by pj. A perfect
measurement of the target system state yields two disjoint statistical samples, i.e.,
there is no overlap between the outcomes associated with spin |l⟩ or |m⟩, l ̸= m.

The quantity that measures the amount of overlap between two samples, or in
other words, how distinguishable they are, is the classical Bhattacharyya coefficient
(cBhat) defined as (see definition 7 in Ref. [87]),

Bcl(pl, pm) =
∑
x∈X

√
pl(x)pm(x), (1.18)

where x labels the outcomes of the experiment, X denotes the set of possible
outcomes and pj(x) is the probability of obtaining the outcome x given that the
measured state is j. If the distributions are identical, no information is acquired by
the measurement because they are indistinguishable and one has Bcl(pl, pm) = 1. On
the other hand, if the distributions are disjoint, i.e., completely distinguishable one
obtains Bcl(pl, pm) = 0. The closer to zero the cBhat is the better one can distinguish
between the different outcomes. We emphasize that the cBhat is not a distance in
the mathematical sense but it can be associated with such a concept by taking its
arccos. Importantly, the cBhat is lower bounded by the qBhat

Bq(t) ≤ Bcl(pi, pj), (1.19)
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the equality holding only when both vanish.
For our toy model, considering the situation of Fig. 1.2, where the observable is

BS = σz, the state of the joint system at time t can be expressed in general as

|Ψ(t)⟩ = c↑|↑⟩ ⊗ |ϕ↑(t)⟩+ c↓|↓⟩ ⊗ |ϕ↓(t)⟩, (1.20)

where we have the pointer states |ϕ↑(↓)⟩. These states are normalized but not
necessarily orthogonal. We can compute the total density matrix ρ(t) = |Ψ(t)⟩⟨Ψ(t)|
and trace over the meter to obtain the measured system (S) density matrix

ρS(t) =

[
|c↑|2 c↑c↓⟨ϕ↓(t)|ϕ↑(t)⟩

c↑c↓⟨ϕ↓(t)|ϕ↑(t)⟩ |c↓|2
]
. (1.21)

Computing the qBhat by definition we have

Bq(t) = |⟨ϕ↓(t)|ϕ↑(t)⟩| (1.22)

=

√
ℜ{⟨ϕ↓(t)|ϕ↑(t)⟩}2 + ℑ{⟨ϕ↓(t)|ϕ↑(t)⟩}2,

=

√
|⟨σx⟩|2+|⟨σy⟩|2

4|c↑c̄↓|2
. (1.23)

For the example presented in Fig. 1.2, we have a balanced superposition c↓ = c↑ =

2−
1
2 , and for ⟨ϕ↓(t)|ϕ↑(t)⟩ real. The qBhat reduces to

Bq = |⟨σx⟩|= e−2(g0t)2 . (1.24)

The cBhat must be computed between the probability distributions p± 1
2
(µ), Eq.

(1.15), where µ is a continuous complex variable. In this case, the sum becomes an
integral over the phase space yielding

Bcl(p− 1
2
(µ), p 1

2
(µ)) =

∫
d2µ

√
p− 1

2
(µ)p 1

2
(µ) = e−

(g0t)
2

4 , (1.25)

In Fig. 1.3 we plot Eqs. (1.24) and (1.25) and a function of g0t. We observe the

ℬq

Bcl
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Figure 1.3: Bhattacharyya coefficients for spin 1/2 example.
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inequality Eq. (1.19) holds and both vanish when g0t ≥ 5.

1.2 Conclusion
In this chapter, we reviewed the von Neumann measurement model [80, 82] with

a simple toy model, see Figs. 1.1 and 1.2. It provides the theoretical ground for the
original contribution to be presented in Chaps. 4 and 3.

When the measurement is concerned, having access to the joint state of the
target system and meter, found for our simple toy model in Eq. (1.7), is of ultimate
importance. This is a notably difficult problem when the meter system is light, as
obtaining the field wave function at any time is not a simple problem. A solution for
the scattered wave function at the long-time limit is provided in Ref. [88], while Ref.
[89] provides a solution if a particular mode is concerned. In Ref. [73] this problem
was solved using the collisional model approach. The method is reviewed in the next
chapter, which completes the set of theoretical grounds and tools necessary for the
comprehension of the original works presented in Chaps. 3, 4 and 5.
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Closed-system solution of the 1D
atom from collision model

Be wise, discretize! – Mark Kac

In this chapter we review and detail the results of Ref. [73] which provide the
backbone for the studies carried out in Refs. [53] and [74], and the following chapters
of this thesis. The closed dynamics of a 2-level system (referred to as 2LS or qubit
interchangeably) interacting with a field is solved. Analytical expressions for the
joint wave-function of the qubit and the field, in different initial states are obtained.

2.1 System and model

Following Ref. [73], the system considered is a qubit coupled with a multimode
electromagnetic field in a one-dimensional waveguide (WG). The qubit is positioned
at x = 0. The states of the qubit are the ground and excited states {|g⟩, |e⟩}, with
lowering operator σ = |g⟩⟨e|. The field is assumed to propagate from left to right,
with group velocity v on a segment L. It is described by the annihilation operator
ak which destroys a photon with frequency ωk = (2πv/L)k, and obeys the bosonic
relation [ak, a

†
l ] = δkl. The total system is described by the Hamiltonian

H = Hq +Hf + Vqf , (2.1)

with bare Hamiltonians

Hq = ω0σ
†σ, (2.2)

Hf =
∞∑
k=0

ωka
†
kak,

where ω0 is the natural frequency of the qubit and ωk is the k−th mode frequency.
The interaction is assumed to be weak enough so that only frequency modes

close to ω0 play a role (quasi-monochromatic approximation) [90]. In this regime,
the rotating wave approximation is allowed [91, 81], leading to the uniform coupling

17
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Figure 2.1: Illustration of the collision model of the 1D atom. The qubit
is located at x = 0, and the field is assumed to be propagating from the left to
right with a constant group velocity v. It is decomposed into discrete temporal
modes created by the bosonic operators b(tn) = bn, Eq. (2.10). Time and space are
discretized: t → tn = n∆t and x → xn = nv∆t. (a) In the k−space the emitter is
coupled with all the frequencies {ωk} at the same time with the same strength g0.
(b) Snapshot of the system at time tn, beginning of the n−th collision. The input
operator Eq. (2.18) is defined as the temporal mode created by the operator b†n that
is arriving at the qubit where it is going to interact. The output operator Eq. (2.17)
is defined as the temporal mode created by the operator b†n−1 that has just interacted
with the qubit.
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with all frequencies [92] and an exchange interaction of Jaynes-Cummings type

Vqf = ig0

∞∑
k=0

(
σ†ak − a†kσ

)
, (2.3)

where g0 is the interaction strength.
We move to interaction picture with respect to H0 = Hq +Hf [93]

Vqf
H0−→ Vqf (t) = ig0

∞∑
k=0

(
σ†(t)e−iωktak − eiωkta†kσ(t)

)
. (2.4)

where we defined the qubit’s dipole in the interaction picture as σ(t) = e−iω0tσ. To
solve the closed dynamics of the system, we discretize time and apply the method
discussed in App. A.

2.2 Time discretization

Let N be an a-dimensional number, and t be the total time of the dynamics, then
a time step is defined as

∆t =
t

N
→

{
tn = n∆t

tN = N∆t = t
(2.5)

This discretization of time induces a discretization of the space in the waveguide,
∆x = v∆t.

Dividing and multiplying Eq. (2.4) by the square root of the mode density
ϱ = L/v and the time step ∆t, and substituting t→ tn, we obtain

Vqf (tn) = ig0

√
L

v

√
v

L

√
∆t

∆t

∞∑
k=0

(
σ†(tn)e

−iωktnak − eiωktna†kσ(tn)
)

= i

√
g20
L

v

1

∆t

√
v∆t

L

∞∑
k=0

(
σ†(tn)e

−iωktnak − eiωktna†kσ(tn)
)

= i

√
γ

∆t

√
∆t

ϱ

∞∑
k=0

(
σ†(tn)e

−iωktnak − eiωktna†kσ(tn)
)

= i

√
γ

∆t

[
σ†(tn)

(√
∆t

ϱ

∞∑
k=0

e−iωktnak

)
−

(√
∆t

ϱ

∞∑
k=0

eiωktna†k

)
σ(tn)

]
(2.6)

where we defined the vacuum decay rate to the WG

γ = g20
L

v
. (2.7)
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At this point, we define the annihilation operator at a position x of the waveguide as,

b(x, t) =
1
√
ϱ

∞∑
k=0

e−iωk(t−x
v )ak = b

(
0, τ = t− x

v

)
(2.8)

This mode is the (discrete) Fourier transform of the annihilation modes in the
momentum space. Thus, they can be interpreted as spatial modes that annihilate a
field excitation at position x. We note, however, that it depends on a single temporal
parameter τ = t− x

v
, and these modes obey the bosonic commutation relation

[b(x, t), b†(x′, t′)] = [b(0, τ), b†(0, τ ′)] = δ(τ − τ ′). (2.9)

Finally, since the qubit is assumed to be at x = 0, we observe that it naturally
appeared as the spatial mode depending only on the temporal parameter tn in Eq.
(2.6)

b(0, tn) = b(tn) ≡
bn√
∆t

=

√
∆t

ϱ

∞∑
k=0

e−iωktnak . (2.10)

Although rigorously it is a spatial mode that at time tn annihilates an excitation
at position x = 0 we will dub the modes that only have a time as a parameter as
a temporal mode, following the nomenclature of Refs. [88, 94, 40, 73]. It obeys the
bosonic algebra for different times, from Eq. (2.9)

[bn, b
†
m] = δnm. (2.11)

The b(tn) operators can be interpreted as annihilation operators of a bosonic excitation
at time tn. Finally, the interaction Hamiltonian assumes the form,

Vqf (tn) = i

√
γ

∆t

[
σ†(tn)b(tn)− b†(tn)σ(tn)

]
(2.12)

2.3 Collisional model interpretation

In the interaction picture, the interaction Hamiltonian in Eq. (2.12) evolves the
state of the system [93]. The propagator is given by,

U(tn) = exp {−iVqf (tn)tn} . (2.13)

The state at time tn is given by,

ρ(tn) = U(tn−1)ρn−1U
†(tn−1). (2.14)

Let us recall a basic formula that is necessary at this point: Let A,B be arbitrary
operators, the Baker–Campbell–Hausdorff (BCH) formula is,

ekABe−kA = B + k[A,B] +
k2

2!
[A, [A,B]] +

k3

3!
[A, [A, [A,B]]] + . . . , (2.15)



Chapter 2 21

applying Eq. (2.15) to Eq. (2.14) one can verify that (here ρn = ρ(tn)),

ρn − ρn−1

∆t
= −i[Vqf (tn), ρn−1] + γ[Ṽqf (tn), [Ṽqf (tn), ρn−1]] + O(∆t) (2.16)

where Ṽqf (tn) = Vqf (tn)/
(
i
√

γ
∆t

)
.

The interpretation is clear, by decomposing the evolution of the state as a series
of infinitesimal evolutions, we obtain a series of “collisions”. The collisions happen
between the qubit and one time bin of the field. The unitary couples the qubit
only with one temporal mode at a time, see Fig. 2.1(b), that never interacts with
the system again due to the unidimensionality of the system. Importantly, all the
unitaries are the same due to the flatness of the spectrum, i.e., the assumptions that
the qubit couples with all the k−modes with the same strength g0. For an in-depth
discussion about the collisional model, we refer to the authoritative Refs. [94, 40].

We note that Eq. (2.16) resembles a discrete-time version of the Lindblad master
equation [95]. Indeed, if the field is initially uncorrelated in the time domain, when
the continuous-time limit is taken it gives rise to a Markovian dynamics and Eq.
(2.16) reduces to a Lindbladian when the field is traced out, i.e. when only the
dynamics of the qubit is concerned [94, 40]. Otherwise, the reduced dynamics of
the qubit will be non-markovian, which is physically intuitive because once the
first time-bin has interacted with the qubit it will generate a correlation between
it and the next time bin that has not yet interacted, due to the presence of initial
correlations.

2.4 Interaction picture input-output operators and
input-output relation

From Eq. (2.8) we can define the field input and output operators [92]. The
output operator is intuitively defined as the last temporal mode that has interacted
with the qubit, that is, it is leaving the position x = 0 from the right:

bout(tn) ≡ lim
ϵ→0+

b(ϵ, tn) =
bn−1√
∆t

. (2.17)

The input operator is the temporal mode that will interact with the system, i.e., it
is approaching x = 0 from the left:

bin(tn) ≡ lim
ϵ→0−

b(ϵ, tn) =
bn√
∆t

. (2.18)

In the regions x < 0 and x > 0, a wave packet evolves without deformation from the
left to the right. Noticing that,

lim
ϵ→0±

b(ϵ, tn) = lim
ϵ→0±

1
√
ϱ

∞∑
k=0

e−iωk(t− ϵ
v )ak =

1
√
ϱ

∞∑
k=0

e−iωktak = b(0, tn), (2.19)
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implies the following relation between the input and output fields,

b(0, t) ≡ b(t) =
bin(t) + bout(t)

2
. (2.20)

Moreover, assuming the time of interaction to be much shorter than the lifetime of
radiative decay, i.e. ∆t≪ γ−1, one can compute.

⟨bout(tn)⟩ = tr

{
b(tn−1)√

∆t
U(tn−1)ρn−1U

†(tn−1)

}
(2.21)

= tr

{
U †(tn−1)b(tn−1)U(tn−1)√

∆t
ρn−1

}
we expand the operators’ product using the BCH formula Eq. (2.15) to first order in
∆t,

U †(tn−1)b(tn−1)U(tn−1)√
∆t

=
b(tn−1)√

∆t
(2.22)

+
√
γ
[
b(tn−1),

(
σ†(tn)bn − b†nσ(tn)

)]
−

√
∆tγ

[
σ†(tn)bn − b†nσ(tn)

]
b(tn−1)

[
σ†(tn)bn − b†nσ(tn)

]
+
γ

2

√
∆t
{
b(tn−1),

[
σ†(tn)bn − b†nσ(tn)

]2}
+
γ

2

√
γ∆t

[(
σ†(tn)bn − b†nσ(tn)

)2
, b(tn−1)

(
σ†(tn)bn − b†nσ(tn)

)]
by taking the trace of the last equation, using the cyclic property, and performing
the algebra we have that the terms proportional to

√
∆t,∆t vanish. Finally,

⟨bout(tn)⟩ = ⟨bin(tn−1)⟩ −
√
γ⟨σ(tn−1)⟩. (2.23)

This is similar to the celebrated input-output equation found in Ref. [92] but in the
interaction picture for the expectation values of the operators.

2.5 Solution for the spontaneous emission

Employing the developed collisional model one can start to solve the dynamics
for the simplest case possible: the spontaneous emission (SE). This instance provides
the main building block used to find the solution to more complicated and interesting
cases such as the field initially in a coherent state or being composed of a single
photon.

Let the qubit be initially excited |e⟩, and the field in the vacuum state, that is
there is no photon in any time-bin |∅⟩ =

⊗N−1
k=0 |∅k⟩. The initial state of the joint

system is,
|ΨSE(0)⟩ = |e⟩|∅⟩. (2.24)

where the subscript “SE” stands for spontaneous emission. Since the Jaynes-
Cummings interaction preserves the number of excitations we can restrict our analysis
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to the subspace spanned by the vacuum and a single photon for each temporal bin [90]

{|∅n⟩, b†n|∅n⟩}. (2.25)

The only mechanism responsible for photon creation is spontaneous emission. Based
on this physical reasoning, and following Refs. [88, 96], we may write an Ansatz for
the wave-function at time t as

|ΨSE(tN)⟩ = fe(tN)|e⟩|∅⟩+
N−1∑
k=0

fg(tN ; tk)b
†(tk)|g⟩|∅k⟩. (2.26)

It captures the two physical possibilities: the qubit can remain in the excited state,
with probability pe(tN ) = |fe(tN )|2 or it can decay to the ground state |g⟩, by emitting
one photon at some time tk, b†(tk)|∅k⟩, with probability pg(tN) =

∑N−1
k=0 |fg(tN ; tk)|2.

It satisfies pg(tk) + pe(tk) = 1 for all tk. Hence, the solution boils down to finding
the time-dependent coefficients fe(tN) and fg(tN ; tk). Using Eq. (A.6), we have

|ΨSE(tN)⟩ = fe(tN)|e⟩|∅⟩+
N−1∑
k=0

fg(tN ; tk)b
†(tk)|g⟩|∅k⟩ (2.27)

=

(
N−1∏
k=0

Uk

)
|e⟩|∅⟩

To find the coefficient fe(tN) we project the wave-function onto the |e⟩|∅⟩ subspace,
resulting

fe(tN) = ⟨e|

(
N−1∏
k=0

⟨∅|Uk|∅⟩

)
|e⟩. (2.28)

We have,

N−1∏
n=0

⟨∅|Un|∅⟩ = ⟨∅|
(
1+

√
∆t

√
γ
[
σ†(tn)��bn −�

�b†nσ(tn)
]
+
γ

2
∆t
[
σ†(tn)bn − b†nσ(tn)

]2) |∅⟩
= 1− γ

2
∆t⟨∅|

[
σ†(tn)σ(tn)bnb

†
n + σ(tn)σ

†(tn)�
��b†nbn

]
|∅⟩

= 1− γ

2
∆t⟨∅|

[
σ†(tn)σ(tn)bnb

†
n

]
|∅⟩

= 1− γ

2
∆t⟨∅|

[
σ†(tn)σ(tn)

(
b†nbn + 1

)]
|∅⟩

= 1− γ

2
∆tσ†(tn)σ(tn) (2.29)

It yields,

⟨e|
(
1− γ

2
∆tσ†(tn)σ(tn)

)
|e⟩ = 1− γ

2
∆t ≈ e−

γ
2
∆t (2.30)

⟨g|
(
1− γ

2
∆tσ†(tn)σ(tn)

)
|g⟩ = 1 (2.31)



24 Chapter 2

leading to,

fe(tN) = ⟨e|

(
N−1∏
k=0

⟨∅|Uk|∅⟩

)
|e⟩ = e−

γ
2
tN (2.32)

Finally, we obtain,
fe(tN) = e−

γ
2
tN . (2.33)

To find the coefficient fg(tN) we project the wave-function onto the {b†j|g⟩|∅j⟩}
subspace. Firstly, we use the semigroup property of the propagator [36] to split it
into three parts,

N−1∏
k=0

⟨∅|Uk|∅⟩ =

(
N−1∏
l=j+1

Ul

)
Uj

(
j−1∏
m=0

Um

)
, (2.34)

since |∅⟩ =
⊗N−1

k=0 |∅k⟩, we can write,

fg(tN ; tj) = ⟨g|⟨∅|bj

[(
N−1∏
l=j+1

Ul

)
Uj

(
j−1∏
m=0

Um

)]
|e⟩|∅⟩, (2.35)

= ⟨g|

[(
N−1∏
l=j+1

N−1⊗
l=j+1

⟨∅l|Ul|∅l⟩

)
⟨∅j|bjUj|∅j⟩

(
j−1∏
m=0

j−1⊗
m=0

⟨∅m|Um|∅m⟩

)]
|e⟩.

(2.36)

We need to find the expression for the term highlighted in red. The other two terms
are known. Intuitively, we can expect this term to promote the jump from the
excited state to the ground state at the collision tagged by the time-bin j, i.e. at
time tj = j∆t a photon is created at the expense of the relaxation of the atom: a
quantum jump occurs [84]. This is the mechanism that creates the photon in the
field. Performing the algebra,

⟨∅j|bjUj|∅j⟩ = ⟨∅j|
(
−
√
∆t

√
γσ(tj)bjb

†
j −

γ

2
∆tσ†(tj)σ(tj)bjbjb

†
j

)
|∅j⟩

= ⟨∅j|
[
−
√
∆t

√
γσ(tj)

(
�

��b†jbj + 1
)
− γ

2
∆tσ†(tj)σ(tj)

(
2��bj + b†j �

�b2j

)]
|∅j⟩

= −
√

∆tγσ(tj) = −
√
∆tγe−iω0tj |g⟩⟨e| (2.37)

Finally,
⟨∅j|bjUj|∅j⟩ = −

√
∆tγe−iω0tj |g⟩⟨e| (2.38)

Substituting into Eq. (2.36), we obtain

fg(tN ; tj) = −
√

∆tγe−iω0tj⟨g|

(
N−1∏
l=j+1

N−1⊗
l=j+1

⟨∅l|Ul|∅l⟩

)
|g⟩⟨e|

(
j−1∏
m=0

j−1⊗
m=0

⟨∅m|Um|∅m⟩

)
|e⟩

(2.39)

= −
√
∆tγe−iω0tje−

γ
2
tj ,
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where we used the identities Eqs. (2.32) and (2.38). The coefficient for the ground
state is,

fg(tN ; tj) = −
√
∆tγe−iω0tje−

γ
2
tj (2.40)

Finally, the spontaneous emission wave function, in discrete time, is

|ΨSE(tN)⟩ = e−
γ
2
tN |e⟩|∅⟩ −

√
∆tγ

N−1∑
k=0

e−iω0tke−
γ
2
tkb†(tk)|g⟩|∅k⟩. (2.41)

The wave function in continuous time is found by replacing,

tN → t, (2.42)
tk → u, (dummy integration variable)

bk√
∆t

→ b(u),

N−1∑
j=0

∆t→
∫ t

0

du.

Thus, coming back to the continuous time we obtain,

|ΨSE(t)⟩ = e−
γ
2
t|e⟩|∅⟩ − √

γ

∫ t

0

du e−(
γ
2
+iω0)tb†(t)|g⟩|∅⟩. (2.43)

This result is precisely what was expected. This solution was first obtained by Wigner
and Weisskopf in Ref. [97] (see also Sec. 14.3.4 of Ref. [98]).

2.6 Intermission: Solution in rotated reference frames
In the last section, we presented the detailed calculations for the simplest scenario,

in this section we want to show how the same technique can be used for experimentally
relevant fields such as a coherent field |α⟩ = D(α)|∅⟩, where D(α) is the displacement
operator. We will develop a procedure to find the solution for an initial state of
the field that can be written as a unitary U(λ), where λ is some (set of) complex
parameter(s) acting on the vacuum state. We start considering the initial state of
the system to be

|Ψ(0)⟩ = |ψ⟩ ⊗ |λ⟩ (2.44)

where |λ⟩ is the initial state of the field, and |ψ⟩ is the arbitrary initial state of the
system. We assume that the field state is obtained by a unitary operation applied to
the vacuum state

|λ⟩ = U(λ)|∅⟩, (2.45)

then the state at time t is given by,

|Ψ(t)⟩ = exp {−iHt} |Ψ(0)⟩
= exp {−iHt}U(λ)|ψ⟩ ⊗ |∅⟩. (2.46)



26 Chapter 2

We multiply both sides on the left by U †(λ), and use the fact that the unitary
operators can infiltrate into the exponential [23],

U †(λ)|Ψ(t)⟩ = U †(λ) exp {−iHt}U(λ)|ψ⟩ ⊗ |∅⟩
= exp

{
−i
[
U †(λ)HU(λ)

]
t
}
|ψ⟩ ⊗ |∅⟩

|Ψλ(t)⟩ = exp {−iHλt} |ψ⟩ ⊗ |∅⟩ (2.47)

where we defined the state |Ψλ(t)⟩ = U †(λ)|Ψ(t)⟩ and the Hamiltonian

Hλ = U †(λ)HU(λ) (2.48)

in a basis rotated by the parameter λ. This is dubbed the rotated frame. In this frame,
the only mechanism responsible for photon creation is the spontaneous emission.
Hence, the procedure to find the solution in a rotated frame is analogous to the
spontaneous emission case.

Solution in rotated reference frames

When the initial state is of the form

|Ψ(0)⟩ = U(λ)|ψ⟩|∅⟩, U(λ) unitary. (2.49)

We have to:

1. Rotate the Hamiltonian:

Hλ = U †(λ)HU(λ). (2.50)

2. Write an Ansatz for the wave-function in the displaced frame |Ψλ(t)⟩,
and follow steps analogous to those presented in Sec. 2.5.

3. Finally, if necessary, come back to the laboratory frame:

|Ψ(t)⟩ = U(λ)|Ψλ(t)⟩. (2.51)

2.7 Solution for the coherent field

Consider a qubit initially in one of its energy eigenstates, denoted as |ζ⟩ with
ζ = g, e. The qubit interacts with a coherent field |αd⟩ = D(αd)|∅⟩, which is tuned to
the drive frequency ωd = ω0 − δ, where δ = ω0 − ωd represents the detuning between
the qubit’s natural frequency and the drive frequency. We assume that the detuning
is small, i.e., |δ|≪ ω0. The initial state of the joint system, in the laboratory frame,
is,

|Ψ0⟩ = D(αd)|ζ⟩ ⊗ |∅⟩. (2.52)
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From the definition of the temporal mode, Eq. (2.10), we have,

bj =

√
∆t

ϱ

∑
k

e−iωktjak → ak =

√
∆t

ϱ

∑
j

eiωktjbj, (inverse Fourier transform)

so,

ad =

√
∆t

ϱ

∑
j

eiωdtjbj (2.53)

We substitute Eq. (2.53) in the displacement operator,

D(αd) = exp

{∑
j

[√
∆t

ϱ

(
αde

−iωdtjb†j − ᾱde
iωdtjbj

)]}
(2.54)

=
N⊗
j=0

exp
{
βjb

†
j − β̄jbj

}
≡

N⊗
j=0

D(βj)

with,

βj =

√
∆t

ϱ
αde

−iωdtj (2.55)

being the j−th temporal mode displacement amplitude. The relation between the
mean number of photons in the frequency mode ωd and the temporal frequency
mode tj is given by: |αd|2= ϱ|βj|2/∆t. Let’s recall a basic property of displacement
operators that is necessary at this point: Let c be a generic annihilation operator and
χ the related displacement amplitude, then it is known that [81]: D†(χ)cD(χ) = c+χ.
To obtain the displaced interaction Hamiltonian, we use

N⊗
l,m=0

D†(βl)bjD(βm) = bj + βj. (2.56)

The Hamiltonian in the displaced frame, following the prescription in Sec. 2.6, give

N⊗
l,m=0

D†(βl)Vqf (tn)D(βm) = i

√
γ

∆t

[
σ†(tn)(b(tn) + βn)−

(
b†(tn) + β̄n

)
σ(tn)

]
(2.57)

= Vqf (tn) + i

√
γ

∆t

[
σ†(tn)βn − β̄nσ(tn)

]
= Vqf (tn)−

1

2

(
2

√
γ

∆t
βn

)
i
(
σ(tn)− σ†(tn)

)︸ ︷︷ ︸
σy

, (βn ∈ R)

= Vqf (tn)−
Ωy

2
σy(tn)

≡ Vqf (tn) +HD(tn)
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where, without loss of generality, in the third line we considered the amplitude of
the coherent field to be real, βn ∈ R.

We defined the Rabi frequency,

Ωy = 2

√
γ

∆t
βn (2.58)

= 2

√
γ
v

L
αde

−iωdtj

= 2g0αde
−iωdtj

where we used Eq. (2.7). Hence,

|Ωy|= 2g0αd. (2.59)

The presence of the coherent field naturally creates a Hamiltonian that drives the
qubit promoting coherent dynamics between the excited and ground states as a
rotation around the y−axis:

HD = −Ωy

2
σy(tn) (2.60)

The propagator in the reference frame displaced by β is given by

Uβ,n = exp

{
−iVqf (tn)∆t+ i

Ωy

2
∆tσy(tn)

}
. (2.61)

If we consider the classical limit of the coherent field |αd|≫ 1, the leading term in
the propagator is that of the drive Hamiltonian HD [99], then

Uβ,n ≈ Ucl = exp

{
i
Ωy

2
∆tσy(tn)

}
= exp

{
i
∆θ

2
σy(tn)

}
= Ry(θ). (2.62)

where the we have an infinitesimal rotation by an angle ∆θ = Ωy∆t. In the continuous
limit, considering the full dynamics in the interval t′ ∈ [0, t], it becomes a finite
rotation by an angle

θ = Ωyt. (2.63)

Thus, in the classical limit of the resonant coherent field (δ = 0) we have a single
qubit gate.

This observation and Eqs. (2.63) and (2.59) are the starting point for the study
to be presented in Chap. 3, where we use the solution developed in this section to
compute the conditional Wigner and Husimi Q−function [81].

Proceeding with the solution, we introduce the short-hand notation Ũk = Uβ,k for
the propagator in the displaced frame. The wave function Ansatz for the solution is

|Ψζ
β(tN)⟩ =

(
N−1∏
k=0

Ũk

)
|Ψζ

β(0)⟩ (2.64)

=
∑
ε=g,e

[
f̃
(0)
ε,ζ (tN) +

N−1∑
n1=0

f̃
(1)
ε,ζ (tN , tn1)b

†
n1

+
N−1∑

n2=n1+1

N−1∑
n1=0

f̃
(2)
ε,ζ (tN ; tn2 , tn1)b

†
n2
b†n1

+ . . .

]
|ε⟩|∅⟩
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where the ellipses represent the components with more photon emissions events. The
|Ψζ

β(tN)⟩ is the wave-function in the β−displaced frame at time tN conditioned on
the initial energy state |ζ⟩. We introduced the notation for the coefficients in the
displaced frame:

f̃number of photons emitted
final qubit state, initial qubit state. (2.65)

For future reference, this equation can be cast in the form,

|Ψζ
β(tN)⟩ =

√
Pg(t)|g⟩|ϕg(t)⟩+

√
Pe(t)|e⟩|ϕe(t)⟩ (2.66)

where the pointer states are,

|ϕε⟩ =
1√
Pε(t)

[
√
p0,εf̃

(0)
ε,ζ (t) +

∞∑
m=1

√
pm,ε(t)

∫ t

0

dsmf̃
(m)
ε,ζ (t, s)

m∏
i=1

b†m

]
|∅⟩ (2.67)

with sm = {t1, t2, . . . , tn} being an ordered time vector t1 < t2 < t3 < · · · < t. We
have |f̃ (0)

ε,ζ (t)|2= 1 and
∫ t

0
dsm|f̃ (m)

ε,ζ (t, s)|2= 1 for all m. Also, Pε(t) =
∑∞

m=0 pm,ε(t) as
the total probability of the qubit being in the state ε at time t. Continuing, we find
the expressions for the tilted coefficients f̃ (m)

ε,ζ (t). The coefficient f̃ (0)
ε,ξ (tN ) is found by

projecting the state (2.64) onto the subspace {|ε⟩ ⊗ |∅⟩}, this gives

f̃
(0)
ε,ξ (tN) = ⟨ε|

(
N−1∏
k=0

⟨∅|Ũk|∅⟩

)
|ξ⟩ (2.68)

Now, we set k = 1,

⟨∅|Ũ1|∅⟩ = ⟨∅|
[
exp

{
−iVqf (t1)∆t+ i

Ωy

2
∆tσy(t1)

}]
|∅⟩ (2.69)

= 1 + ⟨∅|
[
−iVqf (t1)∆t+ i

Ωy

2
∆tσy(t1)

]
|∅⟩

+
1

2
⟨∅|
[
−iVqf (t1)∆t+ i

Ωy

2
∆tσy(t1)

]2
|∅⟩

Performing the algebra one finds,

⟨∅|Ũ1|∅⟩ = 1+∆t

(
i
Ωy

2
σy −

γ

2
σ†σ

)
(2.70)

≈ exp

{
−i∆t

2

[
(−iγ + 2δ)σ†σ − Ωyσy

]}
Finally,

f̃
(0)
ε,ζ (t) = ⟨ε|

[
exp

{
−i t

2

[
(−iγ + 2δ)σ†σ − Ωyσy

]}]
|ζ⟩. (2.71)

The coefficients for the qubit initially in the ground state are of particular interest in
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Chaps. 3 and 4, hence we write them here for future reference:

f̃ (0)
e,g (t) =

Ωy

ΩB

e−
(γ+2iδ)

4 sin

(
ΩB

2
t

)
(2.72)

f̃ (0)
g,g (t) = e−

(γ+2iδ)
4

[
cos

(
ΩB

2
t

)
+

(γ + 2iδ)

2ΩB

sin

(
ΩB

2
t

)]
(2.73)

where we defined the modified Rabi frequency:

ΩB =

√(
δ − i

γ

2

)2
+ Ω2

y, (2.74)

these expressions were found in a Mathematica notebook that can be found in the
dedicated GitHub repository [76]. To find the single photon emission component we
do,

f̃
(1)
ε,ζ (tN ; tn1) = ⟨ζ|⟨∅|bj

[(
N−1∏

l=n1+1

Ũl

)
Ũn1

(
n1−1∏
m=0

Ũm

)]
|ε⟩|∅⟩ (2.75)

= ⟨ζ|

[(
N−1∏

l=n1+1

N−1⊗
l=n1+1

⟨∅l|Ũl|∅l⟩

)
⟨∅n1|bn1Ũn1|∅n1⟩

(
n1−1∏
m=0

n1−1⊗
m=0

⟨∅m|Ũm|∅m⟩

)]
|ε⟩

Computing the term in red analogously to the spontaneous emission case leads to,

⟨∅n1|bn1Ũn1|∅n1⟩ = −
√
∆tγσ(tn1) = −

√
∆tγe−iω0tn1 |g⟩⟨e|, (2.76)

then,

f̃
(1)
ε,ζ (tN ; tj) = −

√
∆tγe−iω0tn1 ⟨ζ|

(
N−1∏

l=n1+1

N−1⊗
l=n1+1

⟨∅l|Ũl|∅l⟩

)
|g⟩⟨e|

(
n1−1∏
m=0

n1−1⊗
m=0

⟨∅m|Ũm|∅m⟩

)
|ε⟩

= −
√
∆tγf̃

(0)
ζ,g (tN − tn1)e

−iω0tn1 f̃ (0)
e,ε (tn1). (2.77)

The physical interpretation of Eq.(2.77) is neat: the system evolves coherently from
|ε⟩ to |e⟩, then at time tn1 a jump takes place leaving the system in the |g⟩ state
and creating a photon. Finally, the system can continue its coherent evolution to
the final state |ζ⟩.

https://github.com/BrunoOGoes/PhDThesisSPI/tree/main/Chapter2
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To compute the two-photon component the same strategy is used,

f̃
(2)
ε,ζ (tN ; tn2 , tn1) = ⟨ζ|⟨∅|bjbk

[(
N−1∏

l=n2+1

Ũl

)
Ũn2

(
n2−1∏

l=n1+1

Ũl

)
Ũn1

(
n1−1∏
m=0

Ũm

)]
|ε⟩|∅⟩

= ⟨ζ|

[(
N−1∏

l=n2+1

N−1⊗
l=n2+1

⟨∅l|Ũl|∅l⟩

)
⟨∅n2|bn2Ũn2|∅n2⟩

×

(
N−1∏

l=n1+1

N−1⊗
l=n1+1

⟨∅l|Ũl|∅l⟩

)
⟨∅n1|bn1Ũn1|∅n1⟩

(
n1−1∏
m=0

n1−1⊗
m=0

⟨∅m|Ũm|∅m⟩

)]
|ε⟩

= f
(0)
ζ,g (tN − tn2)

(
−
√
∆tγe−iω0tn2

)
f (0)
e,g (tn2 − tn1)

(
−
√
∆tγe−iω0tn1

)
f (0)
e,ε (tn1)

=
(
−
√
∆tγ

)2
f
(0)
ζ,g (tN − tn2)e

−iω0(tn2+tn1 )f (0)
e,g (tk − tn1)f

(0)
e,ε (tn1)

(2.78)

In words: the qubit evolves coherently from the state |ε⟩ to the excited state |e⟩, at
some time tn1 it emits a photon going instantaneously to the ground state |g⟩. To emit
a second photon, it must go back to the excited state at some time between the first
emission and the second emission, i.e. during tn2−tn1 , hence e−iω0(tk+tj)f

(0)
e,g (tn2−tn1).

At tn2 it jumps to the ground state emitting if no other emission event occurs it
evolves from |g⟩ to |ζ⟩ without emitting any photon for a time tN − tn2 .

At this point, a clear pattern emerges to obtain the m photons emission coefficient.
Based on the two-photon emission component, and the physical interpretation just
discussed, we can write the m > 2 photons emission component as,

f̃
(m)
ε,ζ (tN ; t) =

(
−
√

∆tγ
)m
f
(0)
ζ,g (tN − tnm)

[
m∏
i=2

e−iω0tni−1f (0)
e,g (tni

− tni−1
)

]
f (0)
e,ε (tn1).

(2.79)
with t = {tnm , . . . , tn1}, the time-ordered vector: tnm > · · · > tn1 .

2.7.1 Weak resonant drive

In this section, we discuss a relevant regime for Chap. 4: the weak resonant drive.
The resonant drive, δ = 0, assumption leads to the modified Rabi frequency:

ΩB =

√
Ω2

y −
γ

4

2

. (2.80)

We also assume the drive is weak: Ωy ≪ γ. This is referred as the linear regime. In
this case, it can be shown that the Rabi frequency reduces to,

ΩB =

√
Ω2

y −
γ

4

2

≈ i
γ

2
. (2.81)
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Assuming the qubit is initially in the ground state |g⟩. Substituting Eq. (2.81) in
Eqs. (2.72) and (2.73), we obtain

f̃ (0)
e,g (t) ≈

Ωy

γ
(1− e−

γ
2
t) (2.82)

f̃ (0)
g,g (t) ≈ 1 (2.83)

meaning that if the system starts in the ground state, it will most probably remain
there during the dynamics. The probability that it goes to the excited state is
proportional to Ωy

γ
which is assumed to be small. Hence, it is a very rare event,

meaning that in this regime the probability of emission events is small.
The average value of the lowering operator can be readily computed,

⟨σ⟩ = e−iω0tf̃ (0)
e,g (t)

(
f̃ (0)
g,g (t)

)∗
+ e−iω0t

∞∑
m=1

∫ t

0

dsmf̃
(m)
e,g (t, s)

(
f̃ (m)
g,g (t, s)

)∗
. (2.84)

where for the ease of notation we used z∗ to represent the complex conjugate of the
value z1.

The input field is
⟨bin(t)⟩ = βj =

α0√
ϱ
e−iω0tj , (2.85)

and the mean of the lowering operator, σ = |g⟩ ⟨e|, is

⟨σ⟩ ≈ e−iω0t
Ωy

γ
(1− e−

γ
2
t) =

2
√
γ

α0√
ϱ
e−iω0t. (2.86)

Substituting Eqs. (2.85), (2.86) and (2.23), we obtain

⟨bout(t)⟩ = ⟨bin(t)⟩ −
√
γ⟨σ⟩ = −⟨bin(t)⟩ (2.87)

This means that in the linear regime, we simply have a π−phase shift of the input
field. This is an important remark for what is going to be discussed in Chap. 4.

2.8 Solution for a single photon pulse

We consider a single photon wave-packet with central frequency ωp = ω0 − δ,
where the detuning δ ≪ ω0. In the temporal basis it is written,

|1⟩ =
∞∑
n=0

√
∆tξ(tn)b

†
n|∅⟩, where (2.88)

∞∑
n=0

∆t|ξ(tn)| = 1.

1In general complex conjugates are denoted by an overbar z except in cases such as this expression
where we use the * instead to not overload the text.



Chapter 2 33

We notice that the single photon wave packet is already correlated on the temporal
basis before the interaction with the qubit. From the collisional model point of
view, it is a correlated initial bath, hence leading to non-Markovian dynamics of
the reduced system [94, 40]. The strategy to solve this case is different from the
previous one. Instead of providing an Ansatz for the wave-function, we replace the
propagator Un with an effective map Mn as follows,

|Ψ(tN)⟩ = UN−1UN−2 . . . U0|Ψ(0)⟩
≈ MN−1MN−2 . . .M0|Ψ(0)⟩
= MN−1|Ψ(tN−1)⟩
≡ |ϕg(tN)⟩|g⟩+ |ϕe(tN)⟩|e⟩. (2.89)

For any n the map acts in the following way,

Mn|g⟩|ϕg(tn)⟩ = e−
γ
2 |g⟩|ϕg(tn)⟩+

√
1− e−γ∆teiω0tnbn|e⟩|ϕg(tn)⟩ (2.90)

Mn|e⟩|ϕe(tn)⟩ = e−
γ
2 |e⟩|ϕe(tn)⟩ −

√
1− e−γ∆te−iω0tnb†n|g⟩|ϕe(tn).⟩

It draws inspiration from the iterative application of the collisional model to the
spontaneous emission instance. The goal is to find a recursive relation for the
un-normalized field wave-functions |ϕϵ(tn)⟩, where ϵ = g, e. From Eq. (2.89), we have

|ϕϵ(tN)⟩ = ⟨ϵ|Ψ(tN)⟩ = ⟨ϵ|MN−1|Ψ(tN−1)⟩, (2.91)

now,

MN−1|Ψ(tN−1)⟩ = MN−1|ϕg(tN−1)⟩|g⟩+ MN−1|ϕe(tN−1)⟩|e⟩

= e−
γ
2 |g⟩|ϕg(tN−1)⟩+

√
1− e−γ∆teiω0tnbn|e⟩|ϕg(tN−1)⟩

+ e−
γ
2 |e⟩|ϕe(tN−1)⟩ −

√
1− e−γ∆te−iω0tnb†n|g⟩|ϕe(tN−1)⟩ (2.92)

Performing the projection we obtain the recursive relations,

|ϕg(tN)⟩ = e−
γ
2 |ϕg(tN−1)⟩ −

√
1− e−γ∆te−iω0tN−1b†N−1|ϕe(tn−1)⟩, (2.93)

|ϕe(tN)⟩ = e−
γ
2 |ϕe(tN−1)⟩+

√
1− e−γ∆teiω0tN−1bN−1|ϕg(tN−1)⟩. (2.94)

These relations result in the following wave functions for the qubit initially in the
ground state interacting with a single photon, i.e. |Ψ(0)⟩ = |g⟩|1⟩,

|ϕg(tN)⟩ =
N−1∑
n=0

[
√
∆tξ(tn)− γ∆te−(

γ
2
+iω0)tn

n∑
m=0

(
e(

γ
2
+iω0)tm

√
∆tξ(tm)

)]
b†n|∅⟩

+
∞∑

n=N

√
∆tξ(tn)b

†
n|∅⟩ (2.95)

|ϕe(tN)⟩ =
√
γe−

γ
2
tN

N−1∑
n=0

∆te(
γ
2
+iω0)tnξ(tn)|∅⟩ (2.96)
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Substituting in Eq. (2.89), we obtain

|ΨSP(tN)⟩ =

(
√
γ
√
∆te−

γ
2
tN

N−1∑
n=0

√
∆te(

γ
2
+iω0)tnξ(tn)|∅⟩

)
|e⟩ (2.97)

+

(
N−1∑
n=0

[
√
∆tξ(tn)− γ∆te−(

γ
2
+iω0)tn

n∑
m=0

(
e(

γ
2
+iω0)tm

√
∆tξ(tm)

)]
b†n|∅⟩

)
|g⟩

+

(
∞∑

n=N

√
∆tξ(tn)b

†
n|∅⟩

)
|g⟩.

Finally, taking the continuous-time limit, using Eq. (2.42), leads to the wave function,

|ΨSP(t)⟩ =
√
γξ̃(t)|∅⟩|e⟩+

[∫ t

0

duΥ(u) +

∫ ∞

t

duξ(u)

]
b†(t)|∅⟩|g⟩, (2.98)

where we defined
Υ(u) = ξ(u)− γξ̃(u)e−iω0u, (2.99)

and

ξ̃(t) = e−
γ
2
t

∫ t

0

du e(
γ
2
+iω0)uξ(u) (2.100)

Tracing out the field in Eq. (2.98) results in the qubit’s state obtained in Refs.
[100, 101], and in the long-time limit, one obtains the scattered field’s state derived
in [102], demonstrating the accuracy of the method.

2.9 Conclusions
In this chapter, we have reviewed the formalism presented in Refs. [39, 73] for

solving the dynamics of systems governed by time-dependent Hamiltonians. Specifi-
cally, we focused on the interaction between a qubit and a multimode electromagnetic
field in a unidimensional wave-guide, described by a Jaynes-Cummings Hamiltonian
within the interaction picture.

An original contribution was presented in Section 2.6, where we developed a
general method for handling fields obtained through a unitary transformation of the
vacuum state. This method offers a versatile approach to analyzing various field
configurations.

The main result of this chapter is the derivation of an analytical formula that
describes the joint state of the qubit and field at any given time, t. This formalism
serves as a powerful tool for investigating the fields of interest that will be explored
in the subsequent chapters of this dissertation. The codes used to obtain some of
the results of this chapter are available on a dedicated GitHub repository [76].

https://github.com/BrunoOGoes/PhDThesisSPI/tree/main/Chapter2
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Quantum weak values and Wigner
negativity in a single qubit gate

Physics is like sex. Sure, it may give some practical results, but that’s
not why we do it. – Richard P. Feynmann

3.1 Introduction

Quantum contextuality is a fundamental property of quantum systems, stating
that the probability of the measurement outcomes is dependent not only on the
state of the system but also on the choice of measurements performed and the
context in which they are made [103]. In other words, the result of a measurement is
context-dependent and cannot be explained solely by the properties of the measured
system. Contextuality is not only significant at a fundamental level but has also been
recognized as a crucial ingredient for achieving quantum advantage in information-
processing tasks [104, 105, 106].

Entanglement is another widely recognized resource to provide a quantum ad-
vantage. The seminal work by John Bell introduced Bell’s inequalities, which
demonstrates that entangled bipartite quantum systems violate certain inequali-
ties, indicating the non-local nature of these systems, a strong non-classical effect
[107]. Regarding quantum contextuality, it is essential to identify quantities that, as
the Bell’s inequalities, serve as signatures of a system’s contextual behavior. Two
hallmarks of contextuality have been identified: the negativity of quasiprobability
distributions [108] and the emergence of anomalous weak values [55].

Eugene Wigner developed the concept of quantum phase space to describe the
state of bosonic fields, which are infinite-dimensional entities. In Ref. [109] he
proposed a function to serve as a visualization tool for the quantum phase space,
considering the uncertainty principle for the field’s quadratures. The Wigner function,
as it became known, is a quasi-probability distribution that can exhibit negative
values for purely quantum states, such as Fock states. The negativity of the Wigner
function has been recognized as a witness of the non-classical nature of bosonic
field states [110]. The emergence of negativities in quasi-probability distributions
and the presence of contextuality were shown to be mutually equivalent notions
of non-classicality in Ref. [108]. In other words, the observation of negativities

35
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indicates the contextual behavior of the system. Additionally, Ref. [55] established a
specific equivalence between contextuality and Wigner negativity for homodyning (or
heterodyning) measurements, that target the generalized position and momentum
quadrature measurements [84].

Another witness of contextuality is the emergence of anomalous weak values.
Introduced in Ref. [111], quantum weak values are a quantum variable arising
from averaging over pre- and post-selected weak measurements. Recently, Ref. [54]
showed that anomalous weak values are proofs of quantum contextuality, providing
a fundamental result that indicates the contextual nature of a system whenever
anomalous weak values appear.

Based on the fundamental mathematical physical results discussed above, this
chapter aims to verify the emergence of both quantum contextuality witnesses within
a specific paradigmatic physical system. Anomalous weak values can appear when
we have a qubit interacting with a resonant intense coherent field as demonstrated
in Refs. [48] and [52]. Thus, we focus our attention to this system. The set-up is the
following: the qubit is initially in its ground state and it interacts with a resonant
strong coherent field. The output field is continuously measured using heterodyne
monitoring, granting access to the quadratures. After a specific interaction time
τ , the qubit state is projected onto its energy eigenbasis. Subsequently, we can
post-select the quadratures, that is, the field state is post-selected based on the qubit
measurement outcome. The post-selection of the heterodyne measurement is not
considered in the results proven in Ref. [55], thus representing an additional feature
for the measurement scheme. This system is fundamental to the implementation of
a single qubit gate, whereby the qubit undergoes a rotation by an angle θ = Ωyτ
(refer to Eq. (2.58) in Chap. 2).

Although the measurement setting described above involves post-selection on
a qubit’s final state, differs from the one proposed in Ref. [55], the emergence of
anomalous weak values implies the contextual nature of the field’s state based on
the fundamental result presented in Ref. [54]. Therefore, our goal is to investigate
whether the field’s Wigner function, corresponding to the post-selection choices
that yield anomalous weak values, exhibits negativity. In other words, we seek
to establish a connection between anomalous weak values and Wigner negativity
in these measurement settings involving post-selection. As will be discussed, the
answer is affirmative, suggesting that the equivalence found in Ref. [55] between
contextuality and negative Wigner distributions can be extended to more complex
measurement settings involving post-selection.

Furthermore, the analytical approach discussed in Chap. 2 provides valuable
insights into the underlying physics of the system by utilizing the collisional model
solution from Eq. (2.66). It allows us to identify the specific terms that give rise to
the distinctive features observed.

This chapter is organized as follows:

• In Sec. 3.2, we provide a comprehensive review and discussion of the physical
interpretation of the two key witnesses of the quantum nature of a bosonic
field: Wigner function negativity and anomalous weak values.

• In Sec. 3.3, we define the specific physical scenario under investigation and
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elaborate on its experimental implementation.

• In Sec. 3.4, we analytically compute the weak values of the field, as presented
in Eq. (3.35). This constitutes our first main result, and we illustrate it
graphically in Fig. 3.3(b) as a function of time. Additionally, we present Fig.
3.5(a) to further demonstrate the emergence of anomalous values as a function
of the gate angle for a fixed time of interaction τ .

• In Sec. 3.5, we calculate the conditional Wigner function, conditioned on the
post-selection state. This serves as our second main result, and we showcase it
in Fig. 3.5(b)-(c) to reveal the interplay between anomalous values and Wigner
function negativity.

3.2 Witnesses of non-classical quantum states of
light

3.2.1 Wigner function negativity

The Wigner function, as defined in [81] (see Chap. 4), is given by

W (α, α) =
1

π2

∫
d2λ exp

{
−λα + λα

}
χS(λ, λ), (3.1)

where χS(λ, λ) is the symmetric quantum characteristic function,

χS(λ, λ) = tr{exp
{
−λa

}
exp

{
λa†
}
ρ}. (3.2)

The Wigner function is a quasi-probability distribution, that may assume negative
values in certain regions of the quantum phase space for non-classical states of light,
such as number states or superposition of coherent states, also known as Schrödinger
cat states [57, 81]. These negativities can be regarded as a signature of the non-
classical behavior exhibited by quantum states, resulting from quantum interference
effects that classical physics fails to explain [110].

One way to quantify the presence of negativity in the Wigner function is by using
the Wigner negativity as a figure of merit. It is defined as [110]:

N(W ) ≡
∫
d2α |W (α, α)|−1. (3.3)

where d2α represents the integral over the entire quantum phase space. The quantity
N(W ) vanishes for coherent and squeezed vacuum states, for which the Wigner
function is non-negative. The negativity of the Wigner function serves as an indicator
of the non-classicality of a quantum state. Recently, its connection to the contextuality
of quantum mechanics has been demonstrated in Ref. [55]. Figure 3.1 presents
contour plots of the Wigner functions associated with the first four number states
{|0⟩, |1⟩, |2⟩, |3⟩}, along with their corresponding Wigner negativities. The vacuum
state, |0⟩, has a Gaussian-shaped Wigner function centered at the origin of the
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quantum phase space and does not exhibit any negativity, see Fig. 3.1(a). However,
when we examine the Wigner functions of purely quantum states, Fig. 3.1(b), (c),
and (d), negative regions emerge, which are captured by the Wigner negativity that
grows monotonically with the value of n [110].

Figure 3.1: Number state Wigner functions and Wigner function negativity.
Contour plots of the Wigner function (Eq. (3.1)) in the quantum phase space for
Fock states |n⟩ are presented. (a) Vacuum state: |0⟩ exhibits no negativity, consistent
with it being a Gaussian state [57]. (b) Single excitation: |1⟩ shows the presence of a
negative region. (c) Two excitations:|2⟩. (d) Three excitations:|3⟩. (e) The Wigner
negativity (Eq. (3.3)) is plotted as a function of the number of excitations and grows
monotonically.

3.2.2 Weak values theory in a nutshell

The emergence of weak values occurs in a scenario similar to the one discussed in
Chap. 1. We consider a measured system initially prepared in the state |i⟩S, which
interacts weakly with a meter also in some initial state |ϕi⟩. This weak interaction
results in weak entanglement between the system and the meter. Unlike in the von
Neumann scheme, where the classical measurement apparatus projects the meter’s
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state, weak values involve using the apparatus to collapse the state of the measured
system, which is assumed to be |f⟩S, associated with the field state |ϕf⟩. The
preparation, |i⟩S, and final collapse, |f⟩S, of the measured system define the pre- and
post-selection states, respectively.

When continuously observing an observable of the meter, weak values correspond-
ing to the states of the meter emerge. Importantly, these weak values can exceed the
range of allowed eigenvalues of the measured observable, as we will discuss. These
exceptional values are commonly referred to as anomalous weak values.
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Weak interaction

Figure 3.2: Quantum dynamics leading to weak values. (a) Free evolution from
the initial state |i⟩S to the final state |f⟩S, with the corresponding probability given
by Eq. (3.13). (b) Evolution with a small perturbation U(ϑ) = exp{−iϑ (BS ⊗ pM)},
where ϑ is a small parameter, with the probability described by Eq. (3.8).

To derive the formula for weak values and develop a clear physical understanding
of its interpretation, we follow the methodology outlined in Ref. [112] and Chap. 1.
The initial state of the composite system is given by:

|i⟩S ⊗ |ϕi⟩M , (3.4)

The system is left to evolve unitarily and finally, when the state of the system is
collapsed, we have the final state of the composite system is given by:

|f⟩S ⊗ |ϕf⟩M . (3.5)

This evolution captures the transformation of the combined system as it goes from
the pre-selection, |i⟩S, state to the post-selection state, |f⟩S.

Let BS denote an arbitrary operator of the system that undergoes a projective
measurement at the end of the evolution, and pM represent the momentum operator
of the meter (as discussed in Chap. 1). The interaction between the system and the
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meter is described by the unitary operator:

U(ϑ) = exp {−iϑ (BS ⊗ pM)}
≈ 1− iϑ (BS ⊗ pM) + O(ϑ2) (3.6)

where ϑ is a real parameter assumed to be sufficiently small (in Chap. 1 it was
ϑ = g0t), allowing us to perform a Taylor expansion as shown in the second line.
The state of the joint system after the interaction is given by:

|Ψ(ϑ)⟩ = U(ϑ) (|i⟩S ⊗ |ϕi⟩M) . (3.7)

We can investigate the role of the interaction in two aspects:

1. The probability of obtaining |f⟩S ⊗ |ϕf⟩M starting from the state |i⟩S ⊗ |ϕi⟩M ,
as a function of the parameter ϑ, denoted as Pi→f (ϑ), is given by:

Pi→f (ϑ) = |⟨ϕf |⟨f |Ψ(ϑ)⟩|2 (3.8)
= |⟨ϕf |⟨f |U(ϑ)|i⟩|ϕi⟩|2. (3.9)

we drop the subscripts labeling the system and meter in the states in what
follows for ease of notation.

2. The unnormalized final state of the meter, |ϕ̃f⟩, obtained by projecting the
final state of the joint system |Ψ(ϑ)⟩ onto |f⟩,

|ϕ̃f⟩ = ⟨f |Ψ(ϑ)⟩ (3.10)
= ⟨f |(U(ϑ)|i⟩ ⊗ |ϕi⟩)

These two objects allow us to analyze the probabilistic evolution of the system and
the resulting state of the meter in the context of the system-meter weak interaction.

Let’s begin by investigating the final state of the meter. If the initial state of the
meter is modified during its evolution by the unitary operator U(ϑ), we have:

⟨f |Ψ(ϑ)⟩ = ⟨f |[U(ϑ)|i⟩ ⊗ |ϕi⟩] (3.11)
≈ (⟨f |i⟩ − iϑ⟨f |BS|i⟩pM) |ϕi⟩

= ⟨f |i⟩
(
1− iϑ

⟨f |BS|i⟩
⟨f |i⟩

pM

)
|ϕi⟩

This naturally introduces the concept of the first-order weak value:

(BS)
1
w =

⟨f |BS|i⟩
⟨f |i⟩

. (3.12)

This sheds light on the effect of the weak interaction on the state of the meter: as soon
as we project the system onto the state |f⟩S the meter is displaced proportionally
to the weak value (BS)

1
w. As the pre- and post-selected states become orthogonal

(⟨f |i⟩ → 0) the value of (BS)
1
w diverges, meaning it lies outside the range of eigenvalues

of BS [111, 113]. The emergence of these values leads to a significant displacement
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of the initial state of the meter [114, 115].
Now, let’s examine the effect of the interaction on the transition probability given

by Eq. (3.8). Firstly, in the absence of interaction (ϑ = 0), the probability of finding
the system in its final state is given by:

Pi→f (0) = |⟨f |i⟩⟨ϕf |ϕi⟩|2. (3.13)

This equation describes the probability of the system transitioning from the initial
state |i⟩S to the final state |f⟩S in the absence of any interaction. It depends on the
overlap between the pre-selection and post-selection states (⟨f |i⟩).

Now, let’s consider the case where there is a weak interaction (ϑ ̸= 0). In this
case, we have:

Pi→f (ϑ) = |⟨f |⟨ϕf |U(ϑ)|i⟩|ϕi⟩|2 (3.14)
≈ |⟨f |⟨ϕf |(1− iϑBS ⊗ pM) |i⟩|ϕi⟩|2

= |⟨f |i⟩⟨ϕf |ϕi⟩|2
∣∣∣∣(1 + 2ϑℑ{⟨f |BS|i⟩

⟨f |i⟩
⟨ϕf |pM |ϕi⟩
⟨ϕf |ϕi⟩

)∣∣∣∣2
Hence, we find that:

Pi→f (ϑ)

Pi→f (0)
− 1 = 2ϑ

[
ℑ
{
⟨f |BS|i⟩
⟨f |i⟩

}
ℜ
{
⟨ϕf |pM |ϕi⟩
⟨ϕf |ϕi⟩

}
(3.15)

+ℜ
{
⟨f |BS|i⟩
⟨f |i⟩

}
ℑ
{
⟨ϕf |pM |ϕi⟩
⟨ϕf |ϕi⟩

}
.

]
This expression reveals the operational interpretation of the weak value. It charac-
terizes the relative correction to the detection probability Pi→f(0) due to a small
perturbation U(ϑ) that results in a modified detection probability Pi→f (ϑ). We note
as well the appearance of the weak value associated with the meter:

(pM)1w =
⟨ϕf |pM |ϕi⟩
⟨ϕf |ϕi⟩

(3.16)

3.3 System and model
In Chap. 2, we investigated the dynamics of a qubit interacting with a field in a

closed system. In this chapter, we focus on a specific scenario depicted in Fig. 3.3(a).
Here, a qubit with a natural frequency ω0 is initially in the ground state |g⟩ and
interacts with a resonant strong coherent input field (in). The output field (out)
is continuously measured using a heterodyne detection scheme over a time interval
t ∈ [0, τ ]. This measurement provides access to the quadratures ℑ⟨bout(t)⟩ and
ℜ⟨bout(t)⟩, which enables the computation of ⟨b†out(t)bout(t)⟩. At t = τ , a projective
measurement is performed on the qubit’s state, allowing post-selection of the field’s
state and inducing a weak measurement on it [48]. This setup implements a single-
qubit gate, as discussed in Sec. 2.7, using Eqs. (2.60) and (2.62), where the fidelity
of the gate is limited by the generation of qubit-field correlations [116].

Superconducting circuits are the ideal platform for implementing the detection
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WEAK
STRONG

Figure 3.3: Detection of the field’s weak values in the single-qubit gate. (a)
Schematic of the detection process: The gate is implemented by coherently driving
a 1D atom using an input pulse (in) with an area θ = Ωyτ . The output field
(out) is continuously monitored during the time interval [0, τ ] through a heterodyne
measurement scheme (weak measurement). At the time τ , a projective (strong)
measurement is performed on the qubit, and the acquired heterodyne data are
post-selected based on the outcome ϵ = g, e. (b) Change in the number of field
excitations over time: The plot illustrates the weak values ∆Ne (solid red line) and
∆Ng (dotted blue line) corresponding to post-selection on the qubit’s excited and
ground states, respectively. The unconditional value, ∆N (black chicken foot), is
also included and falls within the allowed range of values. The anomalous weak
values are represented by ∆Ng values below the solid gray line (−1). This plot was
generated using a driving pulse with an area θ = 0.93π and duration τ = 3/40γ−1,
where γ represents the emitter’s vacuum decay rate. These parameter values were
chosen to clearly visualize the emergence of anomalous weak values and are otherwise
arbitrary.
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scheme shown in Fig. 3.3, allowing independent access to the qubit and the field states.
Notably, experiments investigating anomalous weak values have been conducted
in this context. In Ref. [48], the authors detected resonance fluorescence emitted
by a qubit outside a cavity, demonstrating its correspondence to weak continuous
monitoring of the qubit’s lowering operator, σ = |g⟩⟨e|. They observed interference
effects between Rabi oscillations associated with past and future states [117, 118].

In a more recent experiment, reported in Ref. [52], the authors studied the field’s
quadratures. They experimentally probed the energy of the driving pulse conditioned
on the measured state of the qubit and observed a change in the pulse energy due to
pre-measurement entanglement. Notably, the pulse energy could change by more
than one quantum depending on the qubit energy outcome, revealing the subtle
back-action of qubit measurements on the drive pulse. The collisional model provides
a precise description of the field’s state between the pre-selection and post-selection
of the qubit, enabling the study of anomalous energy exchanges between the qubit
and the field.

The system is described by the Hamiltonian in Eq. (2.60) and it is driven by a
strong resonant coherent pulse with amplitude

⟨bin(t)⟩ = βin(t) =
α0e

−iω0t

√
ϱ

, (3.17)

where α0 ∈ R. The field’s state at the initial time t = 0− is given by

|α0⟩ = D(α0)|∅⟩ (3.18)

where the displacement operator is

D(α0) = exp
{
α0a

†
0 − ᾱ0a0

}
= exp

{∫
dtβtb

†(t)− β̄tb(t)

}
(3.19)

(see Sec. 2.7).
In the classical limit of the field, the reduced dynamics of the qubit is solely

determined by the driving term in Eq. (2.60), acting as a rotation around the y−axis
(2.62) by a finite angle (Eq. (2.62))

θ = Ωyτ, (3.20)

where τ is the interaction time. Therefore, we have

|Ψ0⟩ = |g⟩ ⊗ |α0⟩
τ−→ |Ψ(θ)⟩ =

[
cos

(
θ

2

)
|g⟩+ sin

(
θ

2

)
|e⟩
]
⊗ |α0⟩ (3.21)

The joint solution of the qubit-field state is given by Eq. (2.66), and the discrete-time
Lindblad equation, Eq. (2.16), governing the qubit’s state takes the following form,

ρn − ρn−1

∆t
=

Ωy

2
[σ − σ†, ρn−1] + γ

(
σρn−1σ

† − 1

2
{σ†σ, ρn−1}

)
. (3.22)
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3.4 Husimi Q−function and field’s weak values

In the scenario presented in Fig. 3.3(a), our focus is on studying the change in
the number of excitations of the field. This change is given by the expression:

∆Nϵ =

∫ τ

0

dt⟨b†out(t)bout(t)⟩ϵ − |βin(t)|2. (3.23)

Here, the subscript ϵ = g, e represents the post-selection outcome. When there is
no subscript, we consider the case where the outcomes are not post-selected, i.e.,
unconditional.

Once the qubit can absorb or emit one excitation of the field, one would expect the
modulus of the difference, |∆Nϵ|, to fall within the range of [0, 1]. Specifically, ∆N =
−1 is expected when the qubit absorbs one excitation from the field, transitioning to
the excited state |e⟩.

To compute Eq. (3.23), we first calculate the conditioned Husimi Q−function
based on the outcome ϵ. For a system in the state ρ(tn) = ρq(tn)⊗ |βn⟩⟨βn|, where
ρq(tn) represents the emitter’s state at time tn, the Q−function is defined as [81]:

Qϵ(sn) =
1

π
⟨sn|ρ(tn)|sn⟩, (3.24)

with

|sn⟩ = D(n)(sn)|∅n⟩, and (3.25)

D(n)(s) = exp
{
snbn − snb

†
n

}
.

Here, |sn⟩ = D(n)(sn)|∅n⟩, is the coherent state with amplitude sn, and D(n)(sn) =
exp

{
snbn − snbn

†} is the displacement operator of the n-th temporal mode with
amplitude sn. The computation of the Q−function is motivated by three reasons.
Firstly, it can be interpreted as a valid probability distribution since, by definition,
it is always positive [81]. Secondly, it represents the probability distribution of the
outcomes of a heterodyne measurement (see App. A of Ref. [85]), which is precisely
the measurement being considered here. Finally, it allows us to express the intensity
of the output field in terms of the Q−function as [81]:

⟨b†out(tn)bout(tn)⟩ϵ = lim
∆t→0

1

∆t

∫
d2sn (|sn|2−1)Qϵ(sn). (3.26)

This expression is necessary to obtain the weak values in Eq. (3.23).
Two approaches can be employed to compute the Q−function. The first approach

involves directly utilizing the wavefunction result obtained in Chap. 2, Eq. (2.66),
which leads to an analytical formula dependent on the coefficients. The second
approach utilizes the past quantum state formalism proposed in Refs. [117, 118] and
is well-suited for numerical simulations. Both approaches yield consistent results.
We will begin by presenting the latter approach, and then present the steps using
the former.

We begin by defining the projector as Πsn = |sn⟩⟨sn|. Using the cyclic property
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of the trace, we rewrite Eq. (3.24) as

Qϵ(sn) =
1

π
tr {Πsnρ(tn)} , (3.27)

To investigate how the outcome ϵ for the qubit energy at time τ affects the weak
values of the field, we utilize the past quantum state formalism [117, 118] that
applies to closed and open dynamics. This formalism introduces an effect matrix
Eϵ(τ, t) = U †(τ − t)|ϵ⟩⟨ϵ|U(τ − t), where U(t) is the propagator. The effect matrix
backpropagates the effect of the measurement outcome |ϵ⟩ at time τ . Equation (3.27)
can be expressed in terms of the effect matrix as follows:

Qϵ(sn) =
1

πPϵ(τ)
tr {Eϵ(τ, tn+1)Πsnρ(tn+1)} . (3.28)

Here, Pϵ(τ) represents the probability of measuring ϵ at time τ (see Eq. (2.66)).
Using ρ(tn+1) = U(tn)ρnU

†(tn) = U(tn) (ρq(tn)⊗ |βn⟩⟨βn|)U †(tn), we obtain:

Qϵ(sn) =
1

πPϵ(τ)
tr
{
Eϵ(τ − tn)ΠsnU(tn)ρnU

†(tn)
}

(3.29)

=
1

πPϵ(τ)
tr
{
⟨sn|Eϵ(τ − tn+1)|sn⟩⟨sn|U(tn)ρq(tn)⊗ |βn⟩⟨βn|U †(tn)

}
=

1

πPϵ(τ)
tr

Eϵ(τ − tn+1)⟨sn|U(tn) |βn⟩ρq(tn)⟨βn|︸ ︷︷ ︸
=ρ(tn)

U †(tn)|sn⟩


Applying the BCH formula, Eq. (2.15), in the red term up to second order in ∆t,
and defining

E =
exp{−|sn − βn|2}

π
(3.30)

we obtain

Qϵ(sn)

E
=

1

Pϵ(τ)
tr {Eϵ(τ, tn+1)ρ(tn+1)} (3.31)

+
1

Pϵ(τ)
γ∆t(|βn − sn|2−1) tr

{
Eϵ(τ, tn+1)σρ(tn)σ

†}
+

1

Pϵ(τ)

√
γ∆t(βn − sn) tr {Eϵ(τ, tn+1)σ(tn)ρ(tn)}+ h.c.

where “h.c.” stands for hermitian conjugate. Noticing the identities,

Pϵ(τ) = tr {Eϵ(τ, tn+1)ρ(tn+1)} , (3.32)

⟨σ(tn)⟩ϵ =
tr {Eϵ(τ, tn+1)σ(tn)ρ(tn)}

Pϵ(τ)
, (3.33)
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allows the simplification to,

Qϵ(sn) = E
[
1 + ∆t(|αn − sn|2−1)γJϵ(tn) + 2

√
γ∆tℜ{(sn − αn)⟨σ(tn)⟩ϵ}

]
,

(3.34)
where it was defined,

γJϵ(tn) =
1

Pϵ(τ)
tr
{
|ϵ⟩⟨ϵ|U(τ − tn)σρq(tn)σ

†U †(τ − tn)
}
.

Equation (3.34) gives the final form of the conditional Husimi Q−function of the
field’s temporal modes. It predicts the outcomes of a continuous heterodyne detection
subjected to post-selection on the outcome ϵ.

Finally, by substituting this equation into Eq. (3.23) and evaluating the integral,
we obtain the conditional variation of the number of excitations:

∆Nϵ =

∫ τ

0

dt (γJϵ(tn)− Ωyℜ{⟨σ(tn)⟩ϵ}) . (3.35)

Physically, the first term ∫ τ

0

dtγJϵ(tn) =
∑
j≥1

pjϵ(τ)

Pϵ(τ)
, (3.36)

represents the total probability of spontaneous emission events occurring during the
evolution of the qubit from the ground state |g⟩ to the final state |ϵ⟩. The second
term,

−
∫ τ

0

dtΩℜ{⟨σ(tn)⟩ϵ} = 2

∫ τ

0

dtℜ{⟨bin(t)⟩∗ (⟨bout(t)⟩ϵ − ⟨bin(t)⟩)} (3.37)

= 2

[∫ τ

0

dtℜ{⟨bin(t)⟩∗⟨bout(t)⟩ϵ} −
∫ τ

0

dtℜ
{
|⟨bin(t)⟩|2

}]
comprises the total input intensity, |⟨bin(t)⟩|2, and the interference between the input
and the emitter’s fluorescence output post-selected on state |ϵ⟩ (highlighted in red):
⟨bin(t)⟩∗⟨bout(t)⟩ϵ. The latter is the term in ∆Nϵ can exceed 1, giving rise to the
observed anomalous values.

In Fig. 3.3(b), we plot the conditional weak values ∆Ng(e), and the unconditioned
variation of the number of excitations ∆N for a gate angle smaller than π, i.e.,
θ = Ωyτ < π. If the angle was a π rotation, we would certainly observe a population
inversion of the qubit. In this case, we observe that ∆Ne and ∆N fall within the
allowed range of values, while ∆Ng starts to exceed one after a sufficiently long
interaction time. The physical interpretation is clear: even if the angle is smaller
than π, driving the system long enough makes it unlikely to find the qubit in the
ground state. Therefore, the qubit is most probably in the excited state. For the
sake of completeness, we will now outline the main steps to compute the Q-function
using the analytical solution provided in Eq. (2.66). In the laboratory frame and
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considering the truncation to the two-photon component, the state can be written as

|ϕ̃ϵ⟩ =

{⊗
n

D(n)(βn)√
Pϵ(τ)

[
f (0)
ϵ (τ) +

N−1∑
n=1

√
∆tf (1)

ϵ (τ, tn)b
†
n +

N−1∑
n=1

∑
n′>n

∆tf (2)
ϵ (τ, tn′ , tn)b

†
n′b

†
n

]
|∅⟩

}
.

(3.38)
The Q−function is then given by,

Qϵ(sn) =
1

π
tr
{
Πsn−βnη

(n)
ϵ

}
, (3.39)

where η(n)ϵ represents the reduced density matrix of the mode bn in the displaced
frame, and Πsn−βn = |sn − βn⟩⟨sn − βn|. The field state in the displaced frame, in
discrete time, can be expressed as

|ϕϵ⟩ =
1√
Pϵ(τ)

[
f (0)
ϵ (τ) +

N−1∑
n=1

√
∆tf (1)

ϵ (τ, tn)b
†
n +

N−1∑
n=1

∑
n′>n

∆tf (2)
ϵ (τ, tn′ , tn)b

†
n′b

†
n + . . .

]
|∅⟩.

(3.40)
To obtain the state η(n)ϵ , we need to trace over all modes m ̸= n, leading to

η(n)ϵ = trm̸=n {|ϕϵ⟩⟨ϕϵ|} (3.41)

=
1

Pϵ(τ)

[
|ϕ01

ϵ ⟩⟨ϕ01
ϵ |+

∑
n′ ̸=n

|ϕ12
ϵ (n′)⟩⟨ϕ12

ϵ (n′)|+
∑
n′ ̸=n

∑
m̸=n

|f (2)
ϵ (τ, tm, tn′)|2|∅n⟩⟨∅n|

]
.

Here, we define the following states:

|ϕ01
ϵ ⟩ = f (0)

ϵ (τ)|∅n⟩ −
√
∆tf (1)

ϵ (τ, tn)e
−iω0tn|1n⟩ (3.42)

|ϕ12
ϵ (m)⟩ = −

√
∆tf (1)

ϵ (τ, tm)e
−iω0tn|1n⟩+∆t

(
f (2)
ϵ (τ, tm, tn) + f (2)

ϵ (τ, tn, tm)
)
e−iω0(tn+tm)|1n⟩

Finally, substituting Eq. (3.41) into Eq. (3.39) yields:

Q(n)
ϵ (s)

E
= Pϵ(τ) (3.43)

+∆t

(
|f (1)

ϵ (τ, tn)|2+
∑
m>n

∆t|f (2)
ϵ (τ, tn, tm)|2+

∑
m<n

∆t|f (2)
ϵ (τ, tm, tn)|2

)
(|βn − sn|2−1)

− 2
√
∆tRe

{
eiω0tn (sn − βn)

(
f (1)
ϵ (τ, tn)f

(0)
ϵ (τ) +

∑
m>n

∆tf (2)
ϵ (τ, tn, tm)f

(1)
ϵ (τ, tm)

)}

− 2
√
∆tRe

{
eiω0tn (sn − βn)

∑
m<n

∆tf (2)
ϵ (τ, tm, tn)f

(1)
ϵ (τ, tm)

}
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This expression leads to,

Pϵ(τ)∆Nϵ = p(1)ϵ (τ) + p(2)ϵ (τ) (3.44)

− 2ℜ
{
f (0)
ϵ (τ)

∫ τ

0

dtβ̄te
−iω0tf (1)

ϵ (τ, t)

}
− 2ℜ

{∫ τ

0

dt

∫ τ

t

dt′f (1)
ϵ (τ, t′)f (2)

ϵ (τ, t, t′)β̄te
−iω0t

}
− 2ℜ

{∫ τ

0

dt

∫ t

0

dt′f (1)
ϵ (τ, t′)f (2)

ϵ (τ, t′, t)β̄te
−iω0t

}
which is equivalent to the expression presented in Eq. (3.35).

Alternatively, we can numerically solve the system dynamics and utilize the
final state to calculate the Q-function using built-in functions of QuTip [77, 78].
Figure 3.4 illustrates the emergence of anomalous weak values by comparing the
values of ∆Nϵ obtained from the numerical simulation and the analytical formulas
with different photon truncations. In Fig. 3.4(a) we plot ∆Nϵ from the numerical
simulation, and the analytical solution for both the single-photon and two-photon
truncations. We observe a perfect match for the two-photon truncation, while a
similar quantitative behavior persists even when considering only a single photon
emission. This observation significantly speeds up the evaluation of integrals, as
computing the single integral for the one-photon emission coefficient is much faster
than the double integral. In Fig. 3.4(b), we present a comparison between the
numerical and analytical solutions considering ∆Nϵ ≈ ∆Nϵ(ω0), and they exhibit
an excellent agreement. This is expected since the resonant regime employed for
single-qubit gates results in the central frequency being the most populated.

3.5 Conditional Wigner function and Wigner nega-
tivities

In this section, we compute the Wigner function (Eq. 3.1) for the mode with
frequency ω0, which corresponds to the qubit’s frequency and the center of the field’s
spectrum. This is motivated by the fact that the resonant regime that is used to
implement single-qubit gates makes the central frequency ω0 be the most populated,
as verified in the last section. Consequently, we have that

N (ω0) = ⟨a†0a0⟩ ≈
∫ τ

0

dt ⟨b†(t)b(t)⟩, (3.45)

allowing us to approximate the conditional change in the field’s excitation number,
Eq. (3.23), as

∆Nϵ ≈ ∆Nϵ(ω0) = ⟨a†0a0⟩ϵ − |α|2 (3.46)

Furthermore, we compute the Wigner negativity, Eq. (3.3), and demonstrate that
when anomalous weak values occur for a certain gate angle, the conditioned Wigner
function for the outcome g exhibits non-classical behavior (see Fig. 3.5(a)-(b)).

The Wigner function can be readily computed using its definition and the proper-
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Figure 3.4: Comparison of truncations and frequency contribution. (a)
The graph compares the values of ∆Nϵ as a function of θ obtained using different
truncations of the field’s wave function. The exact values of ∆Ne (represented by
the solid red line) and ∆Ng (represented by the dotted blue line) are computed by
numerically integrating the qubit’s forward and backward Lindblad master equation,
as described in Refs. [117, 118]. We observe that the weak values obtained by
truncating the field’s wave function at the component with two emitted photons,
as given by Eq. (3.44), align perfectly with the exact solutions: ∆Ne (depicted by
the pink circle) and ∆Ng (depicted by the light blue diamond). However, the weak
values computed with the truncation at one emitted photon, ∆Ne (shown as the
brown plus) and ∆Ng (shown as the purple cross), deviate from the exact results for
θ values larger than approximately 0.8π. (b) This plot compares the exact change
in the total number of excitations of the field, ∆Nϵ, with the change in the field’s
number of excitations centered at frequency ω0, namely ∆Ne(ω0) (illustrated by the
pink triangle) and ∆Ng(ω0) (depicted by the light blue square), in the considered
regime. The discrepancy between the two data sets is negligible. This indicates that
the output field is effectively monochromatic. The gate angle is fixed to γτ = 3/40.
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ties of displaced number states (see Ref. [119]). In particular, the following identity
is needed:

⟨m|D(α)|n⟩ =
√
n!

m!
α(m−n)e−

1
2
|α|2L(m−n)

n (|α|2) (3.47)

which provides the matrix element of the displacement operator with amplitude α in
the Fock state basis. Here L(m−n)

n is the Laguerre polynomial (for a derivation see
App. B of Ref. [120]).

The conditional Wigner function of the mode ω0 is obtained by following steps
similar to those outlined for the Q-function. It can be expressed as:

Wϵ(µ) =
1

π2

∫
d2λ exp

{
−λµ̄+ λ̄µ

}
tr
{
exp

{
−λ̄a0 + λa†0

}
|ψϵ(τ)⟩⟨ψϵ(τ)|

}
, (3.48)

Evaluating the expression, we have:(
2 exp {−2|µ− α|2}

πPϵ(τ)

)−1

Wϵ(µ) =
[(
Pϵ(τ)− |f̃ (1)

ϵ (τ, 0)|2−2|f̃ (2)
ϵ (τ, 0, 0)|2

)
− |f̃ (1)

ϵ (τ, 0)|2L1(4|µ− α|2) + 2|f̃ (2)
ϵ (τ, 0, 0)|2L2(4|µ− α|2)

− 8ℜ
{(
f̃ (2)
ϵ (τ, 0, 0)

)∗
f̃ (1)
ϵ (τ, 0)(µ− α)

}(
2|µ− α|2−1

)
+ 8ℜ

{(
f̃ (2)
ϵ (τ, 0, 0)

)∗
f̃ (0)
ϵ (τ)(µ− α)

}
−4ℜ

{(
f̃ (1)
ϵ (τ, 0)

)∗
f̃ (0)
ϵ (τ)(µ− α)

}
+ . . .

]
.

Here, Ln(x) = L1
n(x) are the Laguerre polynomials. In Fig. 3.5(a), we demonstrate

that for a fixed interaction time τ , the change in the excitation number of the field,
conditioned on the ground state ∆Ng, exhibits anomalous values within a specific
range of gate angles θ. Figs. 3.5(b) and 3.5(c) display the conditioned Wigner
functions for the ground and excited states, respectively, highlighting a clear negative
region in Wg for a fixed angle θ < π (see caption). In Fig. 3.5(d), we plot the
Wigner negativity (Eq. (3.3)) as a function of the angle, while Fig. 3.5(e) focuses on
the range of angles where anomalous weak values are observed. We make a crucial
observation: the Wigner function is conditioned on the ground state Wg exhibits
negative values when ∆Ng assumes anomalous values below −1 for certain gate
angles. Thus, we demonstrate that this paradigmatic setup showcases the coexistence
of anomalous weak values and Wigner negativities, which are distinctive non-classical
features.

3.6 Conclusions
In conclusion, we investigated the emergence of two indicators of non-classicality

exhibited by the scattered field use to implement a single qubit gate: Wigner function
negativity and anomalous weak values. These phenomena are intimately connected to
foundational aspects of quantum mechanics, specifically quantum contextuality. The
continuous monitoring of the output field through a heterodyne measurement, coupled
with post-selection based on the qubit’s measurement outcomes, forms the basis of
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Figure 3.5: Anatomy of the single-qubit gate. (a) Weak values of the change
in the number of field excitations as a function of the gate’s angle: ∆Ne (solid red
line) and ∆Ng (dotted blue line). (b)-(c) Contour plots of the conditional Wigner
functions Wg and We for θ/π = 0.93, respectively. The Wigner function conditioned
on the ground state Wg exhibits a highlighted pink region of negative values. (d)
Wigner function’s negativity [57], N(Wϵ) =

∫
d2µ|Wϵ(µ)|−1, as a function of θ: We

(solid red line) is always positive, hence it has zero negativity. On the other hand, Wg

(dotted blue line) can take negative values in the region of anomalous weak values of
∆Ng. (e) Plot of Wg (in log scale) in the region of anomalous values of ∆Ng, i.e.,
θ ∈ [0.6π, π]. All the plots were obtained for τ = 3/40γ−1. The choice of parameters
is arbitrary; the selected ones clearly illustrate the emergence of anomalous weak
values and the negativity of the Wigner function.
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our experimental setup. By employing the results of the CM developed in Chap. 2,
we derived analytical expressions for two quasi-probability distributions conditioned
on the post-selected state outcomes: the Husimi Q-function, enabling access to the
field’s anomalous weak values [54], and the Wigner function, exhibiting expected
negative regions in accordance with foundational results [55]. The significance of
this work lies in the presentation of a realistic experimental setup that presents
simultaneously both indicators of non-classical behavior, namely Wigner negativity
and anomalous weak values, establishing a connection between them.

We established a connection between anomalous weak values and Wigner nega-
tivity. This paves the way for the investigation of the equivalence found in Ref. [55]
between contextuality and negative Wigner distributions can be extended to more
complex measurement settings involving post-selection, such as the one described in
this chapter.

The code I wrote to generate the plots presented in this chapter and the paper
Ref. [53] is available on this GitHub link [76].

https://github.com/BrunoOGoes/Anomalous-weak-values-And-Wigner-Negativities
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The spin-photon interface:
Energy-efficient quantum
non-demolition measurement and
photon-photon gate proposal

When things get tough, there are two things that make life worth living:
Mozart, and quantum mechanics. – Victor Frederick Weisskopf

4.1 Introduction

Photonic quantum technologies require high-rate and high-fidelity quantum emit-
ters. Quantum emitters that host a spin offer the capability to generate entanglement
between the spin and photon, resulting in a spin-photon interface (SPI) [121, 43].
The SPI is engineered to facilitate the transfer of information between a station-
ary qubit (represented by the spin) and a flying qubit (represented by light) in a
deterministic and coherent manner. This feature makes SPIs particularly valuable
in measurement-based quantum computing [122, 123, 124] and quantum network
applications [125, 31, 126, 127, 128, 129, 130]. They play a crucial role in various
photonic quantum technologies, including quantum memories [131], photon-photon
gates [132, 133, 134], and the generation of highly entangled photonic states, also
known as cluster states [68, 135, 63].

Before considering specific applications, it is important to pause and ponder a
fundamental question: How is information about the spin state (the system being
measured, as discussed in Chapter 1) effectively transferred to the light state (the
meter system) in a coherent manner? By exploring this question, we can gain insights
into the importance of selecting the right meter and experimental measurement
scheme to extract the most information possible. This is the motivation for the
investigation presented in this chapter.

This chapter builds upon the findings reported in Ref. [74], where we conducted
an analysis of the performance of the SPI in achieving a quantum non-demolition
measurement (QND) of the spin state [136]. Our investigation encompasses both
the pre-measurement level and the complete measurement protocol. We employ the

53
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qBhat coefficient (Eq. (1.17)) to evaluate the quality of the information encoding and
the cBhat coefficient (Eq. (1.18)) to quantify the effectiveness of the meter read-out,
as discussed in Chapter 1. Our objective is to optimize the readout performance by
selecting the appropriate type of light (meter) that probes the system. Specifically,
we set a constraint on the energy budget, considering at most one photon to interact
with the spin. This enables the comparison between classical and quantum resources
[137]. The classical resource is represented by a coherent state (Poissonian statistics),
while the quantum resource is represented by a superposition of vacuum and a single
photon (sub-Poissonian statistics) [59]. The central research question we aim to
address is as follows:

• Within the von Neumann measurement model and under the energy budget
limitation of at most one photon, does the use of quantum resource offer any
advantage over the classical resource?

The analysis is based on the closed dynamics solution obtained from the collisional
model in Chap. 2. We have access to the joint state of the spin and light at any given
time t, which considers the pulse deformations induced by the interaction of light
with the spin and all the temporal modes of light. This is a significant advantage of
the model compared to effective approaches like cavity quantum electrodynamics
(cQED) [20, 11, 22] and open quantum systems [36, 37]. We recall that in the former,
only a single mode of the field is taken into account in the modeling, while the latter
treats the propagating field as a bath and focuses solely on the quantum emitter’s
dynamics by tracing out the field’s state.

This chapter is organized as follows:

• In Sec. 4.2, we introduce the Spin-Photon Interface (SPI).

• In Sec. 4.3, we present the solution of the dynamics, building upon the solutions
obtained in Chap. 2, and we analyze the pre-measurement stage of the von
Neumann measurement, where we present the first major result and identify
two important regimes, namely the monochromatic regime and the pulsed
regime.

• Sec. 4.4 is dedicated to the analysis of the collapse stage, proposing a measure-
ment protocol tailored for the monochromatic regime.

• In Sec. 4.5, we consider a technological application. We outline the ideal
protocol for implementing the photon-photon controlled σz phase gate which
can be implemented in the monochromatic regime (refer to Figure 4.3(b)). We
introduce a parameter that quantifies the deviation of the scattered field from
the monochromatic regime, which is the primary source of error. Expressions
for both the ideal gate and the real gate as a function of this parameter are
provided. We also carry out the error analysis of the protocol by evaluating
the state-average fidelity [138] and the error matrix [139, 140].

• Finally, in Sec. 4.6, we discuss the results of this investigation and outline
directions for further studies.

The codes with the analytical results and plots presented in this chapter are
available in the dedicated GitHub repository [76].

https://github.com/BrunoOGoes/PhDThesisSPI/tree/main/Chapter5
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4.2 The spin-photon interface

Figure 4.1: The spin-photon interface. (a) Energetic structure of the quantum
emitter. The system is a 4-level system (4LS) with two degenerate transitions. Each
branch is coupled to left and right circularly polarized light. (b) The interface
comprises a quantum emitter with a spin degree of freedom, represented by the red
arrow within the shaded gray area. The emitter is coupled to a 1D waveguide. (c)
Unfolded waveguide. The SPI is at the origin, x = 0, and interacts sequentially with
the input ancillas.

We investigate a spin-photon interface (SPI) consisting of a degenerate 4-level
system (4LS) [141], as shown in Fig. 4.1(a). The interface is composed of two ground
(spin) states denoted by {|↑⟩, |↓⟩}, with zero energy, and two excited (trion) states
{|⇑⟩|⇓⟩}, with energy ω0. The spin projections for these states are ±1/2 and ±3/2,
respectively (here h̄ = 1). Importantly, the transitions

|↓⟩ → |⇓⟩ (4.1)
|↑⟩ → |⇑⟩

are selectively driven by left (L) and right (R) circularly polarized light, corresponding
to helicity −1 and +1, respectively. This level configuration is usually observed in
quantum dots where an electron is confined [43, 68] (see also App. B). The emitter
is coupled to a waveguide (WG) that has two baths of circularly polarized modes
with frequencies ωk.

The total system of the SPI is described by the Hamiltonian:

H = H4LS +Hf,RL +HSPI. (4.2)
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The bare Hamiltonian of the 4LS is given by:

H4LS =
∑
j=R,L

ω0σ
†
jσj, (4.3)

where the lowering operators are defined as:

σL = |↓⟩⟨⇓ | ,and (4.4)
σR = |↑⟩⟨⇑ |. (4.5)

Similar to Chap. 2, the emitter is located at x = 0 of the WG, and we assume light
can only propagate from the left to the right (see Fig. 4.1(c)).

The fields in the WG are described by:

Hf,RL =
∑
j=R,L

(
∞∑
k=0

ωka
†
j,kaj,k

)
, (4.6)

where aj,k are annihilation operators that remove an excitation of angular frequency
ωk with polarization j. The dispersion relation of the field is given by k = ωk/v,
where v is the group velocity of the field and k ≥ 0 is the wave vector. This condition
on k ensures the unidirectionality of the field.

The interaction between the spin and the field is described by the spin-photon
interface Hamiltonian:

HSPI = ig0
∑
j=R,L

[
∞∑
k=0

(
σ†
jaj,k − a†j,kσj

)]
, (4.7)

where g0 is the light-matter interaction strength, assumed to be the same for both
polarizations and constant across the frequencies.

Following the method discussed in Chap. 2, we move to the interaction pic-
ture with respect to H0 = H4LS +Hf,RL [39, 73]. The time-dependent interaction
Hamiltonian becomes:

HSPI(t) = i
√
γ
∑
j=R,L

[
σ†
j(t)bj(t)− b†j(t)σj(t)

]
, (4.8)

where we defined the interaction picture j−polarized lowering operator

σj(t) = e−iω0tσj, (4.9)

and the j−polarized photon annihilation operator at time t as1, bj(t) = ϱ−
1
2

∑
k e

−iωktai,k,
obeying the bosonic algebra for different polarizations at different times is defined by[
bj(t), b

†
k(s)

]
= δjkδ(t− s). The parameter ϱ is the density of modes in the WG and

we have the vacuum decay rate of the 4LS to the WG given by γ = g2ϱ [92, 142].

1More precisely, the annihilation operator at position x = 0 as discussed in Chap. 2.
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4.3 Pre-measurement analysis

4.3.1 Dynamics solution

We consider the 4LS initially prepared in a superposition of its spin states and
the field in a horizontally polarized state, denoted by |ΦH(0)⟩, so that it interacts
with both spin states. Thus, the joint system is initially in the product state:

|Ψ(0)⟩ = (c↑|↑⟩+ c↓|↓⟩)⊗ |ΦH(0)⟩, (4.10)

where |c↑|2+|c↓|2= 1. The system evolves unitarily according Eq. (4.8), and at time
t it is found to be in the entangled state

|Ψ(t)⟩ = c↑ (|↑⟩ ⊗ |ϕ↑(t)⟩+ |⇑⟩ ⊗ |ϕ⇑(t)⟩) + c↓ (|↓⟩ ⊗ |ϕ↓(t)⟩+ |⇓⟩ ⊗ |ϕ⇓(t)⟩) , (4.11)

where |ϕ↑(↓)(t)⟩ represents the field’s wave-functions induced by the spin states, and
|ϕ⇑(⇓)(t)⟩ represents the field’s wave functions induced by the trion states.

Next, we consider the long-time (asymptotic) limit, γt→ ∞, in which the system
has decayed to its ground state [59]:

|ΨSS⟩ ≡ lim
γt→∞

|Ψ(t)⟩ = c↑|↑⟩ ⊗ |ϕ↑⟩+ c↓|↓⟩ ⊗ |ϕ↓⟩, (4.12)

where “SS” stands for steady state. In this limit, the pointer states are given by
|ϕ↑(↓)⟩ [82]. As discussed in Chap. 1, the quality of the entanglement generated
between the field and the spin is quantified by the quantum Bhattacharyya coefficient
(qBhat), given by Eq. (1.17) [143, 87, 86].

The pointer states associated with the coherent field are represented by |ϕcs
↑(↓)⟩

where the superscript “cs” stands for the classical state, while the pointer states
associated with the superposition of zero and one photon are represented by |ϕqs

↑(↓)⟩
with “qs” denoting the quantum state. We will compute the qBhat, Eq. (1.17), for
both: Bqs

q = |⟨ϕqs
↓ |ϕ

qs
↑ ⟩| and Bcs

q = |⟨ϕcs
↓ |ϕcs

↑ ⟩|.

Coherent state

We consider the initial horizontally polarized coherent state, |βH⟩ = D(βH)|∅⟩,
where βH is the amplitude:

|Φcs
H(0)⟩ = |βH⟩ = D

(
βHb

†
H − βHbH

)
|∅⟩ (4.13)

= D

(
βH

(b†R + b†L)√
2

− βH
(bR + bL)√

2

)
|∅⟩

= D

(
(βHb

†
R − βHbR)√

2
+

(βHb
†
L − βHbL)√

2

)
|∅⟩

=

∣∣∣∣βL =
βH√
2

〉
L
⊗
∣∣∣∣βR =

βH√
2

〉
R
.
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Then, we have the initial system given by:

|Ψcs(0)⟩ = (c↑|↑⟩+ c↓|↓⟩)⊗
∣∣∣∣ βH√

2

〉
L
⊗
∣∣∣∣ βH√

2

〉
R

(4.14)

Since |↑ (↓)⟩ only interacts with R(L) polarized light, we can import the solution
obtained in Chap. 2, Eq. (2.66), for each polarization. We have the following map
for each spin state:

|↓⟩ ⊗
∣∣∣∣ βH√

2

〉
→|↓⟩ ⊗ |ϕcs

↓ ⟩ (4.15)

|↑⟩ ⊗
∣∣∣∣ βH√

2

〉
→|↑⟩ ⊗ |ϕcs

↑ ⟩

where we have introduced the pointer states,

|ϕcs
↓ ⟩ =

(
D(βH/

√
2)√

P↓(t)

[
√
p0,↓f̃

(0)
↓ (t) +

∞∑
m=1

√
pm,↓(t)

∫ t

0

dsmf̃
(m)
↓ (t, s)

m∏
i=1

b†m,L

]
|∅⟩

)
(4.16)

|ϕcs
↑ ⟩ =

(
D(βH/

√
2)√

P↑(t)

[
√
p0,↑f̃

(0)
↑ (t) +

∞∑
m=1

√
pm,↑(t)

∫ t

0

dsmf̃
(m)
↑ (t, s)

m∏
i=1

b†m,R

]
|∅⟩

)
,

where the coefficients f̃ (n)
↑(↓) are given by Eqs. (2.68), (2.79), and the probabilities are

defined below Eq. (2.67). It is important to remark that spin ↑ only emits the right
polarized photons while spin ↓ only emits left polarized photons. When we evaluate
the qBhat using Eq. (1.17) only the vacuum component is non-zero, i.e., from Eq.
(1.17), we obtain

Bcs
q = p0 ≡

√
p0,↓p0,↑
P↓P↑

(
f̃
(0)
↓

)∗
f̃
(0)
↑ . (4.17)

This result is significant as it establishes a fundamental limit on the quality of the
entanglement generated with a coherent field: The probability of the trion state
not undergoing re-emission, represented by p0, is the fundamental constraint to the
quality of the entanglement.
Quantum superposition of zero and one photon

Next, we examine the initial superposition of a vacuum and a single horizontally
polarized photon (qs):

|Φqs
H (0)⟩ = c∅|∅⟩+ c1|1H⟩, (4.18)

where c∅ and c1 are complex coefficients whose square moduli sum to unity. The
single photon component is,

|1H⟩ =
|1L⟩+ |1R⟩√

2
(4.19)

=

(
bL(t) + bR(t)√

2

)
|∅⟩ ≡ bH(t)|∅⟩.
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We need three ingredients to derive the solution:

1. Let j represent the polarization of the single photon, and β(t) be the temporal
shape of the pulse. Then,

|1j⟩ =
∫ ∞

0

dt βj(t)b
†
j(t)|∅⟩, (4.20)∫ ∞

0

dt |βj(t)|2 = 1.

2. The map,

|↑ (↓)⟩ ⊗ |1R(L)⟩ → |↑ (↓)⟩ ⊗ |1R̃(L̃)⟩ (4.21)

|↑ (↓)⟩ ⊗ |1L(R)⟩ → |↑ (↓)⟩ ⊗ |1R(L)⟩

which says that a single R(L)-photon interacts has its temporal shape deformed,
represented by R̃(L̃), after interacting with spin ↑ (↓).

3. The solution obtained in Chap. 2, the scattered photon is:

|1j̃⟩ =
∫ ∞

0

dt Υ(t)b†j(t)|∅⟩, (4.22)

Υ(t) = β(t)− γβ̃(t)

β̃(t) = e−γt/2

∫ t

0

dt′
[
e

γt′
2 β(t′)

]

Using these three ingredients we obtain:

|↑ (↓)⟩ ⊗ |Φqs
H (0)⟩ → |↑ (↓)⟩ ⊗ |ϕqs

↑(↓)(t)⟩ (4.23)

where the pointer states are:

|ϕqs
↑(↓)(t)⟩ = c∅|∅⟩+

c1√
2

∫ ∞

0

dt
[
β(t)b†L(R)(t) + Υ(t)b†R(L)(t)

]
|∅⟩, (4.24)

There is a crucial difference between Eqs. (4.16) and (4.24): the latter has an
additional L(R)-photon component in the pointer state associated with spin |↑⟩ (|↓⟩)
(highlighted in red). This component emerges from the part of the field that does
not interact with the spin, hence the shape is not modified, β(t).

Next, we proceed with the computation of the qBhat for the coherent superposition
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of a vacuum and a single photon. From Eq. (4.24) we have the overlap:

⟨ϕqs
↓ (t)|ϕ

qs
↑ (t)⟩ = |c∅|2+

|c1|2

2

[∫∫
dsdt β̄(s)Υ(t)⟨0|bL(s)b†L(t)|0⟩ (4.25)

+

∫∫
dsdt β(t)Ῡ(s)⟨0|bR(s)b†R(t)|0⟩

]
= |c∅|2+

|c1|2

2

[∫∫
dsdt β̄(t)Υ(t)δ(s− t) +

∫∫
dsdt β(t)Ῡ(t)δ(s− t)

]
= |c∅|2+

|c1|2

2

[∫
dt β̄(t)Υ(t) +

∫
dt β(t)Ῡ(t)

]
= |c∅|2+|c1|2ℜ

{∫
dt β̄(t)Υ(t)

}
= p∅ + pH

∫
dt ℜ

{
β̄(t)Υ(t)

}
where we defined the single photon horizontal component probability as pH = |c1|2
and the vacuum probability component as p∅ = |c∅|2. We can simplify the equation
further by expanding the product β̄(t)Υ(t) and using the fact that β(t) is normalized
and the identity p∅ + pH = 1. This yields the following expression:

⟨ϕqs
↓ (t)|ϕ

qs
↑ (t)⟩ = 1− γpH

∫
dt ℜ

{
β(t)β̃(t)

}
. (4.26)

Finally, the qBhat for the quantum state is:

Bqs
q =

∣∣∣∣1− γpH

∫
dt ℜ

{
β(t)β̃(t)

}∣∣∣∣ . (4.27)

At this point, we have an important result. It is possible to achieve perfect entangle-
ment for the quantum state, i.e. Bqs

q = 0, by tuning pH such that:

pH =
1

γ
∫
dt ℜ

{
β(t)β̃(t)

} . (4.28)

for any given pulse temporal shape β(t).

To sum up, in this section we obtained the qBhat for the classical and quantum
states. The qBhat of the for the coherent state, Eq. (4.17), is fundamentally limited
by the probability of no re-emission of the trion states while the qBhat for the
coherent superposition of vacuum and a single horizontally polarized photon, Eq.
(4.27), can provide perfect entanglement for any pulse shape, β(t), as long as the
single photon component probability is adjusted according to Eq. (4.28). Next, we
investigate the possibility of a quantum advantage in the low energy (at most one
photon) the regime that is the focus of our investigation.
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4.3.2 Coherent state qBhat: from low to high energy

We set the initial state of the 4LS as a balanced superposition of its spin states

|ψ4LS(0)⟩ =
|↑⟩+ |↓⟩√

2
. (4.29)

Figure 4.2 shows the value of Eq. (4.17) for a coherent input pulse, in the steady

Figure 4.2: Quantum Bhattacharrya coefficient for coherent field. The input
pulse is H-polarized with a square amplitude β(t) =

√
ΘΓ. In the long-time limit,

due to the area law, it is equivalent to a decreasing exponential pulse given by Eq.
(4.30). The horizontal axis represents the average number of photons per pulse,
nH = ⟨a†HaH⟩ = Θ, while the vertical axis corresponds to the pulse bandwidth, Γ,
measured in units of the 4LS vacuum decay rate γ. The colormap indicates the value
of the qBhat, ranging from red (Bq = 0) to blue (representing Bq = 1). (a) The
low-energy regime, (b) High-energy, short-pulse regime where the system undergoes
Rabi oscillations, and (c) High-energy, long-pulse regime.

state, with a square temporal shape given by a square pulse: β(t) =
√
ΘΓ, Θ is

an a-dimensional parameter representing the area of the pulse and Γ is the pulse
bandwidth. The area theorem states that the shape of the pulse is not as important
as its timescale, see Refs. [144, 145, 146, 147, 148]. This means that in the steady
state the square pulse presents the same behavior as if the simulations were performed
with a decreasing pulse:

β(t) =
√
ΘΓe−(

Γ
2
−iω0)t, (4.30)

with the advantage that it is computationally more efficient to simulate.
The plot is divided into three distinct regions, referred to as energy sectors. The

region 4.2(a), delimited by nH ≤ 1, corresponds to the low-energy sector that is
the main focus of our investigation. In this sector, Bcs

q never vanishes, indicating
that the pointer states |ϕcs

↑(↓)⟩ are never orthogonal, hence not distinguishable. When
the input pulses are longer than the trion state lifetime (Γ ≪ γ) we are in the
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monochromatic regime, we found ourselves in the linear regime discussed in Sec.
2.7.1. The field is very attenuated, in such circumstances the scattered pulses acquire
a π-phase shift, yielding the pointer states:

|ϕcs
↑ ⟩ →

∣∣∣∣βL =
βH√
2

〉
⊗
∣∣∣∣βR =

eiπβH√
2

〉
, (4.31)

|ϕcs
↓ ⟩ →

∣∣∣∣βL =
eiπβH√

2

〉
⊗
∣∣∣∣βR =

βH√
2

〉
.

In regions 4.2(b) and 4.2(c), we are in the high-energy sector, indicated by an average
of more than 10 photons, nH ≥ 10 in the coherent input field. Region (b) focuses on
the behavior of short and strong pulses with γ < Γ ≤ 102γ. Fringes appear in this
region, corresponding to Rabi oscillations. Red fringes correspond to odd π-pulses,
resulting in a complete inversion of the 4LS populations to the trion states. After
such a process, spontaneous emission occurs, leading to p0 = 0, hence with intense
short pulses it is possible to generate maximal entanglement between the spin and
the coherent field. This is the regime used to generate cluster states as reported in
the experiments of Refs. [135, 63]. We also observe blue regions corresponding to
even π-pulses, the complete Rabi oscillations that bring the 4LS back to its ground
state. In this scenario, photons are scattered only in the driving mode, and there
is no spin state information encoded in the scattered photons. Finally, region (c)
represents the high-energy and long pulses, 10−2γ < Γ ≤ γ. In this situation, since
the light and the 4LS system interact for a sufficient amount of time, the 4LS will
certainly emit photons in modes other than the driving one. As a result, information
about the spin state will always be available in the scattered field.

4.3.3 Low energy regime

By substituting the decreasing temporal shape Eq. (4.30), with Θ = 1, into Eq.
(4.27), we obtain:

Bqs
q =

∣∣∣∣1− 2pHγ

γ + Γ

∣∣∣∣ . (4.32)

This expression becomes zero when the equality

pH =
1

2

(
1 +

Γ

γ

)
(4.33)

is satisfied. Consequently, we can identify two extreme limits of the pulse bandwidth,
namely when we have long (square) pulses with the bandwidth Γ → 0 and for very
short pulses Γ → γ, it is possible to achieve perfectly distinguishable pointer states.
This defines the interval 1/2 ≤ pH ≤ 1, where a perfect mapping between the state
of the spin and the pointer states can be achieved. This is the first main result of
this chapter: we observe a quantum advantage at the pre-measurement level as the
quantum state allows perfect spin-light entanglement. In Fig. 4.3 we present this
result graphically. We compare the qBhat in Eqs. (4.17) (focused on the low energy
sector) and (4.32).

Based on Figure 4.3(b) and Eq. (4.32), we define two regimes:
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Figure 4.3: Quantum Bhattacharrya analysis in the low energy regime.
The input pulse is H-polarized, with its amplitude determined by Eq. (4.30). The
horizontal axis represents the average number of photons per pulse, nH = Θ, for
the coherent pulse (a) and the single photon probability, pH, for the superposition
of vacuum and single-photon (b), while the vertical axis corresponds to the pulse
bandwidth, Γ, measured in units of the 4LS vacuum decay rate γ. The color map
indicates the value of the qBhat, ranging from red (Bq = 0) to blue (representing
Bq = 1). (a) Zoomed-in view of 4.2 specifically focused on the low-energy sector. In
this region, it is evident that the qBhat never reaches 0, implying that the pointer
states are not orthogonal. (b) qBhat analysis for the superposition of a vacuum
and a single horizontally polarized photon. The white line highlights the points
where Bqs

q = 0, illustrating a quantum advantage over the coherent pulse at the
pre-measurement level.
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1. Monochromatic limit: In this regime, we have a long pulse with Γ ≪ γ
and pH = 1/2 (balanced superposition of vacuum and single photon). The
interaction of light with the spin states can be described by the following map
for circular polarization:

|↑⟩ ⊗ |1R⟩ → |↑⟩ ⊗
(
eiπ|1R⟩

)
, (4.34)

|↑⟩ ⊗ |1L⟩ → |↑⟩ ⊗ |1L⟩,
|↓⟩ ⊗ |1R⟩ → |↓⟩ ⊗ |1R⟩,
|↓⟩ ⊗ |1L⟩ → |↓⟩ ⊗

(
eiπ|1L⟩

)
.

Alternatively, in terms of linear polarization, we can write:

|↑⟩ ⊗ |1H⟩ → |↑⟩ ⊗ (i|1V⟩) , (4.35)
|↓⟩ ⊗ |1H⟩ → |↓⟩ ⊗ (−i|1V⟩) .

2. Mode-matched limit: In this regime, we have a pulse with a duration
comparable to the trion’s lifetime, Γ ≈ γ and pH = 1 (single photon).

Let’s analyze the monochromatic limit. Substituting Eq. (4.18) into Eq. (4.10), we
have:

|Ψqs(0)⟩ = (c↑|↑⟩+ c↓|↓⟩)⊗
(
|∅⟩+ |1H⟩√

2

)
,

(4.35)
−−−→c↑|↑⟩ ⊗

(
|∅⟩+ i|1V⟩√

2

)
+ c↓|↓⟩ ⊗

(
|∅⟩ − i|1V⟩√

2

)
, (4.36)

= c↑|↑⟩ ⊗ |ϕqs
↑ ⟩+ c↓|↓⟩ ⊗ |ϕqs

↓ ⟩.

Here, the pointer states are:

|ϕqs
↑ ⟩ =

|∅⟩+ i|1V⟩√
2

, (4.37)

|ϕqs
↓ ⟩ =

|∅⟩ − i|1V⟩√
2

.

Interestingly the vacuum component, |∅⟩, plays a crucial role in the emergence of
the orthogonality of the pointer states.

In the mode-matched regime, the scattering process induces a phase shift in
|1L(R)⟩ results in a clockwise (counterclockwise) rotation of the pulse polarization.
Additionally, the temporal shape of the pulse is modified during the scattering process.
The final polarization and pulse shape depend on the pulse area Θ, its duration
Γ−1, and the input shape βin(t) itself. Here, the information about the spin state is
encoded in the polarization of |ϕcs

↑(↓)⟩, the map is:

|↑⟩ ⊗ |1H⟩
Γ=γ−−−→
pH=1

|↑⟩ ⊗ |1R⟩, (4.38)

|↓⟩ ⊗ |1H⟩
Γ=γ−−−→
pH=1

|↓⟩ ⊗ |1L⟩.
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In all other cases, within the bandwidth range 1/2 < pH < 1, the pulse temporal
shape gets modified during the scattering process. This causes the entanglement
to spread over different degrees of freedom: polarization and temporal mode shape
of the scattered light. This insight reveals that the temporal degrees of freedom
contribute to non-idealities in SPI for both quantum information protocols and
classical information extraction. The latter is the subject of analysis in the next
section, followed by an example of the former: a photon-photon gate. This non-
ideality is the most fundamental aspect of this system since photonic quantum
information protocols require pulses with a finite duration.

To summarize, within the two investigated regimes, namely (1) Monochromatic
limit and (2) Mode-matched limit, using a superposition of vacuum and a single
photon offers a clear advantage over a low-energy coherent state for generating spin-
light entanglement. In other words, quantum light provides a better pre-measurement
of the spin state compared to classical light, demonstrating a quantum advantage
[137].

4.4 Spin state readout

As discussed in Chap. 1, pre-measurements are followed by collapses of the meter
state. In this section, we present a measurement scheme depicted in Fig. 4.4 that
includes both pre-measurement and collapse of the meter state, focusing on the
monochromatic regime (1). As discussed in Sec. 2.7.1 of Chap. 2, in this regime,
the information about the spin state is encoded in the phase of the field. Therefore,
we propose a measurement protocol that targets the phase acquired by the light
scattered by the SPI. This choice is further motivated due to the fact that it provides
a different perspective on the measurement set as the polarization of light is already
widely used in the community [71, 72].

The measurement scheme is illustrated in Fig. 4.4(a). It consists of a Michelson
interferometer, with the meter assumed to be right circularly polarized light. On
the left arm, we have a source that produces the input field. The pulse is directed
toward a 50/50 beam splitter (BS), which splits the pulse into two parts. The portion
of the pulse transmitted to the right arm of the BS interacts with the SPI, while
the portion transmitted to the upper arm of the BS is reflected by a mirror. A
tunable phase shifter, φ, is inserted to optimize the interference of the two reflected
beams. Finally, the reflected beams are recombined at the BS and directed towards
a photondetector2. The light-matter interaction can be described by the following
map:

|↑⟩ ⊗ |Ψin⟩ → |↑⟩ ⊗ |Ψ↑⟩ (4.39)
|↓⟩ ⊗ |Ψin⟩ → |↓⟩ ⊗ |Ψ↓⟩.

The measurement protocol can be described as follows:

2The beams in the output port have been transmitted once and reflected once by the BS. We
assume that the BS is a half-silvered mirror consisting of a glass plate with a semi-reflective coating
on one side and an anti-reflection coating on the other.
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Source

M1

Detector

SPI
BS

φ

Figure 4.4: Spin state readout. (a) The figure illustrates the setup of the Michelson
interferometer. The SPI is situated in the right arm, while the upper arm has a
tunable phase plate (φ). BS represents a 50/50 beam-splitter. The source emits
either a coherent pulse (representing the classical state, cs), with an average of one
photon or a single photon (representing the quantum state, qs). Both cases involve
right circularly polarized photons. (b) qBhat coefficients are depicted: the black
curve represents the quantum state (single photon), the red dotted line represents
the coherent state (classical light), and the blue dashed line represents the classical
Bhattacharyya coefficient for the quantum state. The qBhat for the quantum state
serves as the lower bound for the cBhat. These coefficients are equal when both
vanish in the monochromatic limit. All coefficients are calculated in the long-time
limit, with the pulse bandwidth Γ as the variable. Region 1 demonstrates the
presence of a quantum advantage, with the blue curve below the red curve. Region
2 indicates that the proposed experimental protocol does not effectively target the
desired variable. Region 3, below the black curve, represents an inaccessible region
where the desired measurement outcomes cannot be achieved.
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1. The spin is prepared in one of its eigenstates: |↑⟩ or |↓⟩.

2. A source of monochromatic circularly right-polarized light is used to probe the
spin state. This source can provide either a single-photon, |1R⟩ ⊗ |∅L⟩, or a
low-intensity coherent state with an average of one photon, |βR = 1⟩ ⊗ |∅L⟩.

3. The light pulse is directed into a Michelson interferometer.

(a) The interferometer consists of the SPI in the right arm and a tunable
phase plate (φ) in the upper arm, along with a 50/50 beam splitter. Our
objective is to measure the phase.

4. The pulse exits the interferometer in one of the pointer states: |Ψ↑⟩ or |Ψ↓⟩,
which are correlated with the spin states |↑⟩ or |↓⟩, respectively. This step
represents the pre-measurement and is quantified by the qBhat equation (Eq.
(1.17)).

5. A photodetector is positioned at the output port of the interferometer to
collapse the state of the meter. The possible outcome is the detection of a
photon, referred to as a "click" in the detector, or the absence of a photon,
termed a "no click".

6. Since the spin is probed with right-polarized light, the phase of the phase plate
(φ) is chosen such that p↑(click) = 1 (p↓(click) = 0) if the spin is |↑⟩(|↓⟩).

By observing the presence or absence of light in the photon detector, assuming a
lossless system, we can infer the spin’s state. In this scenario, the cBhat equation
(Eq. (1.18)) can be written as:

Bcl =
√
p↑(click)p↓(click) +

√
p↑(no click)p↓(no click)

=
√
p↑(click)p↓(click) +

√
(1− p↑(click)) (1− p↓(click)), (4.40)

where pj(click) represents the probability of a detection event (click in the detector)
given that the spin is prepared in the state |j⟩, with j =↑, ↓.

To derive the expression for the output state |Ψ↑(↓)⟩, we need the 50/50 beam
splitter map:

|1⟩ ⊗ |∅⟩ → |∅⟩ ⊗ |1⟩+ |1⟩ ⊗ |∅⟩√
2

, (4.41)

|∅⟩ ⊗ |1⟩ → |∅⟩ ⊗ |1⟩ − |1⟩ ⊗ |∅⟩√
2

.
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Let |Ψin⟩ be R-polarized input field state, we obtain:

|Ψin⟩ ⊗ |∅⟩ BS−→ |∅⟩ ⊗ |Ψin⟩+ |Ψin⟩ ⊗ |∅⟩√
2

(4.42)

SPI−−→ |∅⟩ ⊗ |ψj⟩ ⊗ |j⟩+ |Ψin⟩ ⊗ |∅⟩ ⊗ |j⟩√
2

BS−→ 1

2
[(|Ψin⟩ − |ψj⟩)⊗ |∅⟩+ |∅⟩ ⊗ (|Ψin⟩+ |ψj⟩)]⊗ |j⟩

→ |Ψj⟩ ⊗ |j⟩,

where
|Ψj⟩ =

1

2
[(|Ψin⟩ − |ψj⟩)⊗ |∅⟩+ |∅⟩ ⊗ (|Ψin⟩+ |ψj⟩)] (4.43)

is the final photonic state that arrives at the detector. The qBhat coefficient for
this system is Bqs

q = |⟨Ψ↓|Ψ↑⟩| is the same as the one evaluated considering the sole
spin-photon interface interacting with an input field having pH = 1/2.

In 4.4(b), we compare the cBhat and qBhat values for the quantum state (Bqs
cl

and Bqs
q , respectively). The inequality Bqs

q ≤ Bqs
cl , and the equality occurs when

both coefficients vanish [87]. We also include the qBhat plot for the classical state
Bcs, which does not vanish due to the no re-emission probability. The plot is divided
into three regions:

1. Region (1) corresponds to long pulses, where Γ/γ ≤ 10−1. In this region, a
clear quantum advantage is observed, as the classical measurement performed
on the quantum state consistently extracts more information than coherent
fields with equivalent energy and temporal profiles. This indicates that the
quantum advantage observed at the pre-measurement stage remains robust
at the collapse level. It is important to note the significant advantage in this
region.

2. Region (2) represents short pulses, where Γ/γ > 10−1. In this region, the qBhat
values for both quantum and classical states are similar, suggesting that phase
measurement may not be the most suitable approach to extract information.
As discussed previously, polarization measurement, which is widely used in
the literature [72], could be a better choice for extracting information in this
region.

3. Region (3), below the black curve, represents an inaccessible region where the
desired measurement outcomes cannot be achieved.

In summary, the analysis presented in Fig. 4.4 provides insights into the behavior
of the cBhat and qBhat for different pulse durations and highlights the importance of
selecting the appropriate measurement scheme based on the specific characteristics of
the pulse. Here, we demonstrate that within this experimental set-up, the quantum
advantage is robust at the classical level yielding orthogonal (distinguishable) pointer
states. Hence, the quantum advantage is also verified at the collapse step. This
constitutes the second main result of this chapter.
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4.5 Application: Protocol for a controlled phase gate

In this section, we propose a controlled σz phase gate between two photons. The
non-linear element responsible for implementing this gate is the spin in the quantum
dot [149, 150, 151]. We focus on addressing the error caused by one fundamental
source of imperfection: changes in the shape of scattered light. For this analysis,
we consider only this intrinsic source of error and exclude the influence of other
sources of noise, especially due to the system’s decoherence stemming from the solid
state matrix. To achieve this, we use two tools to proceed with the error analysis:
state-average gate fidelity [138] and error matrix [139, 140].

The error analysis is critical in quantum computation as it inspires quantum
error correction techniques [138, 152, 139]. The accurate knowledge of the errors a
system is subjected to is extremely important to the development of robust quantum
computing systems [149, 151, 152, 153]. Firstly, the gate fidelity is the most used
figure of merit quantifying the accuracy of quantum gate operations [23], this is the
basis of the state-average gate fidelity [138] used in this chapter. The improvement
of this figure of merit is essential for any quantum computation task. Since the
state-average gate fidelity is simply a number it does not provide any clue about
what is the nature of the error, or how would it possible to correct it. To gain
information about the source of errors it is necessary to correctly model it. The error
matrix informs if an error is present and its elements provide insights on the errors
[139, 140].

4.5.1 The ideal protocol

In this section, we present the protocol used to implement the controlled phase
gate with a spin-photon interface (SPI) in the ideal scenario, and then we proceed to
study how the modifications in the shape of the output field of the single photon
impacts the performance of the gate.

The ideal protocol is implemented within the (quasi-)monochromatic regime.
This regime assumes a long pulse with Γ ≪ γ, referring to Fig. 4.3(b) it corresponds
to the single photon component probability being pH = 1/2, in short, we consider a
pulse consisting of a superposition of zero and one photon. In this regime, assuming
circularly right polarized light, a single photon interacts exclusively with the spin-up
state, introducing a π-phase shift. This interaction can be described by the following
map:

|↑⟩ ⊗ |∅⟩ → |↑⟩ ⊗ |∅⟩, (4.44)
|↓⟩ ⊗ |∅⟩ → |↓⟩ ⊗ |∅⟩,
|↑⟩ ⊗ |R⟩ → −|↑⟩ ⊗ |R⟩,
|↓⟩ ⊗ |R⟩ → |↓⟩ ⊗ |R⟩.

Here, |∅⟩ represents the field vacuum state, and |R⟩ represents the circularly right-
polarized single-photon (R-photon) state.

The logical basis corresponds to the absence or the presence of a R-photon in
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one optical mode. This is known as the single rail basis [154]. It is defined as:

{|0⟩, |1⟩} ≡ {|∅⟩, |R⟩}. (4.45)

The protocol is composed of two ingredients: three spin rotations, U [l], with l = 0, 1, 2,
and 2 identical light pulses, |Φ[i]

in⟩, with i = 1, 2. Specifically, we establish:

|Φ[i]
in⟩ =

|∅⟩i + |R⟩i√
2

, i = 1, 2 (4.46)

U [0] = U [1] = U [2] = Ry

(π
2

)
= exp

{
−iπ

4
σy

}
(4.47)

The rotations are assumed to happen instantaneously. Although we assume their
equality here, this assumption is not constraining. The protocol can be outlined in
the following manner:

1. Spin initialization: We start by assuming that the spin is initially prepared
in the |↑⟩ state. To initiate the protocol, a rotation of π/2 around the y-axis,
denoted as U [0], is applied, resulting in

|ψ0⟩spin = U [0]|↑⟩ = |↓⟩+ |↑⟩√
2

= |+⟩ (4.48)

2. First pulse: After the spin is in the |+⟩ state, the first step involves sending
the initial light pulse, |Φ[1]

in ⟩. This can be expressed as follows:(
|∅⟩1 + |R⟩1√

2

)
⊗
(
|↓⟩+ |↑⟩√

2

)
=

1

2
(|∅⟩1 + |R⟩1) |↓⟩+ (|∅⟩1 + |R⟩1) |↑⟩ (4.49)

Map. (4.44)
−−−−−−−−→1

2
[(|∅⟩1 + |R⟩1) |↓⟩+ (|∅⟩1 − |R⟩1) |↑⟩]

3. Spin rotation: Following the first pulse, a second rotation, denoted as U [1],
is applied to the spin:

1

2
[(|∅⟩1 + |R⟩1) |↓⟩+ (|∅⟩1 − |R⟩1) |↑⟩] (4.50)

U [1]

−−→ 1

2
√
2
(|∅⟩1 + |R⟩1) (|↓⟩ − |↑⟩) + (|∅⟩1 − |R⟩1) (|↓⟩+ |↑⟩)

=
1√
2
(|∅⟩1|↓⟩ − |R⟩1|↑⟩)
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4. Second pulse: Subsequently, the second pulse, denoted as |Φ[2]
in ⟩, is sent:(

|∅⟩2 + |R⟩2√
2

)
⊗
[

1√
2
(|∅⟩1|↓⟩ − |R⟩1|↑⟩)

]
(4.51)

=
1

2
(|∅⟩2 + |R⟩2) (|∅⟩1|↓⟩ − |R⟩1|↑⟩)

=
1

2
(|∅⟩2|∅⟩1|↓⟩+ |R⟩2|∅⟩1|↓⟩ − |∅⟩2|R⟩1|↑⟩−|R⟩2|R⟩1|↑⟩)

Map. (4.44)
−−−−−−−−→ 1

2
(|∅⟩2|∅⟩1|↓⟩+ |R⟩2|∅⟩1|↓⟩ − |∅⟩2|R⟩1|↑⟩+ |R⟩2|R⟩1|↑⟩)

where we have emphasized the term that undergoes a phase change when the
map is applied.

5. Erase spin state information: To reset the spin state information, a third
rotation, denoted as U [2], is applied to the spin:

→ 1

2

(
|∅⟩2|∅⟩1

(
|↓⟩ − |↑⟩√

2

)
+ |R⟩2|∅⟩1

(
|↓⟩ − |↑⟩√

2

))
(4.52)

+
1

2

(
−|∅⟩2|R⟩1

(
|↓⟩+ |↑⟩√

2

)
+ |R⟩2|R⟩1

(
|↓⟩+ |↑⟩√

2

))
=

1√
2

[
|↓⟩
(
|∅⟩2|∅⟩1 − |∅⟩2|R⟩1 + |R⟩2|∅⟩1 + |R⟩2|R⟩1

2

)]
+

1√
2

[
−|↑⟩

(
|∅⟩2|∅⟩1 + |R⟩2|∅⟩1 + |∅⟩2|R⟩1 − |R⟩2|R⟩1

2

)]
=

1√
2

[
|↓⟩|ψideal

↓ ⟩ − |↑⟩|ψideal
↑ ⟩

]
,

where

|ψideal
↓ ⟩ = |∅⟩2|∅⟩1 − |∅⟩2|R⟩1 + |R⟩2|∅⟩1 + |R⟩2|R⟩1

2
(4.53)

|ψideal
↑ ⟩ = |∅⟩2|∅⟩1 + |R⟩2|∅⟩1 + |∅⟩2|R⟩1 − |R⟩2|R⟩1

2

6. Spin measurement: Ultimately, we perform a spin measurement to ascertain
the final photonic state |ψideal

j ⟩, where j =↑, ↓ signifies the spin outcome. This
projection establishes the two-photon gate conditioned on the spin result j. If
the final spin state is j, the corresponding ideal gate is denoted by Gideal

j . We
have:

|ψideal
j ⟩ = Gideal

j |ΦTot
in ⟩. (4.54)

Here, |ΦTot
in ⟩ ≡ |Φ[2]

in ,Φ
[1]
in ⟩ = |Φ[2]

in ⟩ ⊗ |Φ[1]
in ⟩ is the total input photonic state.

Introducing the short-hand notation |a⟩2 ⊗ |b⟩1 = |ab⟩ for the logical basis. If the
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final spin state is j =↓, we have

|00⟩
Gideal

↓−−−→ |00⟩, (4.55)

|01⟩
Gideal

↓−−−→ −|01⟩,

|10⟩
Gideal

↓−−−→ |10⟩,

|11⟩
Gideal

↓−−−→ |11⟩,

while if the final spin state is j =↑ we obtain:

|00⟩
Gideal

↑−−−→ −|00⟩, (4.56)

|01⟩
Gideal

↑−−−→ −|01⟩,

|10⟩
Gideal

↑−−−→ −|10⟩,

|11⟩
Gideal

↑−−−→ |11⟩.

In the basis B2 = {|00⟩, |01⟩, |10⟩, |11⟩}, the ideal gate matrices implemented on the
logical qubits, conditioned on the measurement outcome j ∈ ↑, ↓ of the spin state
are given by:

Gideal
↓ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , and (4.57)

Gideal
↑ = (−1)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


It’s worth noting that for the spin ↑ case, we have factored out the global phase
factor of the gate [139]. Consequently, by applying π/2 rotations on the spin state
after each light pulse in the quasi-monochromatic regime, it becomes possible to
achieve a controlled σz-phase gate on the logical qubit:

|01⟩
Gideal

↓−−−→ eiπ|01⟩, and (4.58)

|11⟩
Gideal

↑−−−→ eiπ|11⟩.
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4.5.2 The light-matter interaction map and the non-monochromaticity
parameter

We now consider the realistic situation, where the interaction of a single R-photon
of finite length with spin up not only introduces a π-phase but also changes its shape
resulting in a non-monochromatic output, |R̃⟩. The light-matter interaction map in
this situation is the following:

|↑⟩ ⊗ |∅⟩ → |↑⟩ ⊗ |∅⟩, (4.59)
|↓⟩ ⊗ |∅⟩ → |↓⟩ ⊗ |∅⟩,
|↑⟩ ⊗ |R⟩ → −|↑⟩ ⊗ |R̃⟩,
|↓⟩ ⊗ |R⟩ → |↓⟩ ⊗ |R⟩.

Here, |∅⟩ represents the field vacuum state, and |R̃⟩ represents the circularly right-
polarized single-photon state. The notation R̃ indicates that the shape of the photon
may be different from the input R-photon after the scattering process.

The non-monochromatic output state |R̃⟩ does not lie in the chosen logical basis,
as defined in Eq. (4.45). To account for this, we consider a third component |R⊥⟩,
which is orthogonal to both |R⟩ and |∅⟩: ⟨R⊥|R⟩ = ⟨R⊥|∅⟩ = 0. The expression for
the non-monochromatic output can be written as:

|R̃⟩ = c⊥|R⊥⟩+ cR|R⟩, (4.60)

where c⊥ and cR are coefficients whose squared moduli sum to unity. It is important
to note that part of the scattered field leaks out of the computational basis when
c⊥ ̸= 0. Our objective is to study the gate’s performance in the presence of this
leakage. To quantify the non-monochromaticity of the scattering process and the
orthogonality between |R⟩ and |R̃⟩, we introduce the parameter

m̃ = ⟨R|R̃⟩ (4.61)

When |m̃|= 1, the process is perfectly monochromatic, while |m̃|= 0 indicates
complete orthogonality between the input field |R⟩ and the scattered field |R̃⟩ (non-
monochromatic output). Moreover, we can relate m̃ to the mean photon overlap
measured by a Hong-Ou-Mandel (HOM) interference experiment as MRR̃ = |m̃|2 [42].
In terms of this parameter we can write:

|R̃⟩ = m̃|R⟩+
√
1− |m̃|2|R⊥⟩. (4.62)

Using Eq. (4.20) for the input photon and the solution, Eq. (4.22), for the scattered
photon, we can express Eq. (4.61) analytically in terms of the input and output
shapes of the single photon, β(t) and Υ(t), as:

m̃(β,Υ) =

∫ ∞

0

ds β̄(s)Υ(s). (4.63)
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where β̄(s) denotes the complex conjugate of β(s). This equation bridges the
microscopic physical parameters (Γ, γ) encoded in the input and output shapes of
the field (β, Υ) with the variable that fundamentally controls the quality of the gate:
m̃. In the monochromatic regime, where the input pulse shape is normalized, we
obtain m̃ = 1 as expected.

Using the decreasing exponential pulse shape, we have:

β(t) =
√
Γ exp

{
−Γ

2
t

}
, (4.64)

Υ(t) =
√
Γe−

(γ+Γ)
2

t

[
2γe

Γ
2
t − (γ + Γ)e

γ
2
t
]

Γ− γ
.

The non-monochromaticity resulting from the decreasing pulse shape can be expressed
as:

m̃(Γ, γ) =
2γ

γ + Γ
− 1. (4.65)

The input and output intensities can be computed as Ix(t) = |x(t)|2, where x = β, Υ
respectively. The shapes of these intensities, as well as the non-monochromaticity
parameter, are presented in Fig. 4.5. Figures 4.5(a) and 4.5(b) show the output
temporal shape of the intensity as Γ/γ increases. It presents visually the increasing
non-monochromaticity which is captured by the parameter in Eq. (4.65), represented
in Fig. 4.5(c) showing that as the ratio Γ/γ increases, the non-monochromaticity of
the pulse becomes more prominent, deviating from the unity which represents the
ideal quasi-monochromatic pulse.
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Figure 4.5: Pulse temporal shapes. Comparison of input (continuous red line) and
output (dashed black line) pulse temporal shapes at different values of Γ/γ as a func-
tion of time. (a) Γ/γ = 10−2 corresponding to the quasi-monochromatic regime, where
the shapes are nearly identical. (b) Γ/γ = 10−1, showing a decrease in monochro-
maticity as the output field differs from the input. (c) Non-monochromaticity
parameter, Eq. (4.65) as a function of Γ/γ.

4.5.3 Non-ideal gate

We follow the steps (1)-(4) described in Sec. 4.5 using the general non-monochromatic
map defined by Eq. (4.59) to obtain the real gates. The final photonic states are:
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|ψreal
↓ ⟩ = 1

2

(
|∅⟩2

(
|∅⟩1 + (

|R⟩1 − |R̃⟩1
2

)

)
+ |R⟩2

(
|∅⟩1 + (

|R⟩1 − |R̃⟩1
2

)

))
(4.66)

+
1

2

(
−|∅⟩2(

|R⟩1 + |R̃⟩1
2

) + |R̃⟩2(
|R⟩1 + |R̃⟩1

2
)

)

|ψreal
↑ ⟩ = −1

2

(
|∅⟩2

(
|∅⟩1 + (

|R⟩1 − |R̃⟩1
2

)

)
+ |R⟩2

(
|∅⟩1 + (

|R⟩1 − |R̃⟩1
2

)

))

− 1

2

(
|∅⟩2(

|R⟩1 + |R̃⟩1
2

)− |R̃⟩2(
|R⟩1 + |R̃⟩1

2
)

)

In the monochromatic limit, |R̃⟩i = |R⟩i, the Eqs. (4.66) reduce to Eqs. (4.53) (the
detailed calculation can be found in the App. C). We want to find the real gates,
Greal

j , defined by |ψreal
j ⟩ = Greal

j |ΦTot
in ⟩ represented in the logical basis. Using Eq.

(4.62), we can write,

|R⟩i ± |R̃⟩i
2

=
1± m̃

2
|R⟩i ±

√
1− |m̃|2

2
|R⊥⟩i. (4.67)

Substituting the expression from Eq. (4.67) into Eqs. (4.66) and projecting the final
state onto the logical basis, yields the real gate actions. For the spin |↓⟩ state, we
obtain:

|00⟩
Greal

↓−−→ |00⟩ (4.68)

|01⟩
Greal

↓−−→ −m̃|01⟩ = −eiε↓|01⟩

|10⟩
Greal

↓−−→ |10⟩

|11⟩
Greal

↓−−→ 1

2
(m̃2 + 1)|11⟩ = eiδ↓|11⟩.

For the spin |↑⟩ state, the gate is:

|00⟩
Greal

↑−−→ −|00⟩ (4.69)

|01⟩
Greal

↑−−→ −|01⟩

|10⟩
Greal

↑−−→ −|10⟩

|11⟩
Greal

↑−−→ 1

2
(m̃2 + 2m̃− 1)|11⟩ = eiε↑ |11⟩

In this context, the non-ideal σz phase gates are characterized by the parameter ε↓(↑),
which corresponds to the actual angles acquired during the inte0raction, and the
angle δ↓ signifies an additional unitary error. In the ideal scenario, both angles satisfy
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the condition ε↓(↑) = δ↓ = 2π. We observe that the map is completely positive but
not trace-preserving due to the leakage of information into the orthogonal subspace
spanned by |R⊥⟩, which is not part of the logical basis (Eq. (4.45)). The actual gate
angles acquired during the protocol, as functions o m̃, are given by,

ε↓ = 2π − i log {−m̃} , (4.70)

ε↑ = 2π − i log

{
−(m̃2 + 2m̃− 1)

2

}
, (4.71)

δ↓ = 2π − i log

{
m̃+ 1

2

}
.

The real and imaginary parts of the real angles are shown in Fig. 4.6. The matrix rep-
resentations in the logical basis Eq. (4.45), as functions of the non-monochromaticity
parameter is given by:

Greal
↓ =


1 0 0 0
0 −m̃ 0 0
0 0 1 0

0 0 0 (m̃2+1)
2

 =


1 0 0 0
0 −eiε↓ 0 0
0 0 1 0
0 0 0 eiδ↓

 , and (4.72)

Greal
↑ = −


1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 − (m̃2+2m̃−1)
2

 = −


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −eiε↑

 .
In the quasi-monochromatic regime, where m̃ = 1, the ideal gate matrices in Eq.
(4.57) are recovered. In Fig. 4.6(a), it is evident that the real component of ε↓

Re{ε↓}/π

Im{ε↓}/π

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

m


(a)

Re{δ↓}/π

Im{δ↓}/π

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

m


(b)

Re{ε↑}/π

Im{ε↑}/π

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m


(c)

Figure 4.6: Angle errors, Eq. (4.71).

remains constant at 2π, while the imaginary component emerges as m̃ approaches
0, resulting in a rotational angle error. In Fig. 4.6(b), the real part of the angle
δ↓ also maintains a constant value of 2π for all m̃ values, and the imaginary part
is much smaller than 2π as m̃ approaches 0, ultimately becoming a constant error
for m̃ < 0.4. In Fig. 4.6(c), we observe that achieving the desired σz-gate requires
the m̃-parameter to exceed 0.4; otherwise, the real part of the angle ε↑ becomes 3π,
leading to an identity gate. Focusing on the region where m̃ > 0.4, we confirm that
the real component of ε↑ remains 2π. For the range 0.4 < m̃ < 1, the imaginary part
introduces a tilt in the gate, resulting in an error. Based on these observations, we
will focus our analysis for values m̃ > 0.4.
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In the next section, we analyze the gate error as a function of the parameter m̃
and study deeper into the error analysis by modeling the error itself. The tools used
to perform this analysis are the state-averaged fidelity [138] and the error matrix
[139, 140].

4.5.4 Error analysis

State-average gate fidelity

The fidelity measure we employ for evaluating the gate (or process) is constructed
from the state fidelity, which is the squared inner product between the ideal and
realized final (pure) states [23]. The state-averaged fidelity, proposed in Ref. [138],
offers a succinct and clear means to access the average fidelity of general quantum
operations within a finite-dimensional space. Specifically, for a four-dimensional
context, the state-averaged fidelity takes the form:3

Fave(Ureal, Utarget) ≡
tr
{
U †

realUreal

}
+ |tr

{
U †

targetUreal

}
|2

20
. (4.73)

In our context, Ureal = Greal
j represents the realized operation projected into the

pertinent logical subspace, while Utarget = Gideal
j , where j =↑, ↓ corresponds to the

desired ideal gate operation conditioned on spin j. It is important to note that
the projected Ureal is not necessarily unitary [139]. The first term, tr

{
U †

realUreal

}
,

captures the potential non-unitarity stemming from any leakage originating in the
computational basis. The second term, |tr

{
U †

targetUreal

}
|2, quantifies the square of

the Hilbert-Schmidt inner product between Utarget and Ureal. This term reflects the
similarity or overlap between the realized operation and the ideal target operation in
the logical subspace.

It is crucial to emphasize that the validity of Eq. (4.73) relies on the assumption
that the initial and the final state involved are pure. Consequently, this equation is
inapplicable for mixed states.

We compute Eq. (4.73) with Mathematica (notebook available the dedicated
GitHub repository [76]) and we obtain,

F j
ave =

1

20

(
4 +

1

4
(5 + m̃(2 + m̃))2

)
(4.74)

for both cases j =↑, ↓. Figure 4.7 displays the plot of the state-average fidelity for
values of m̃ greater than 0.4, where the real part of both real angles is 2π (as shown
in Fig. 4.6). Notably, we observe that the fidelity consistently surpasses F j

ave ≥ 0.6,
eventually reaching unity in the monochromatic limit.

3The factor 1/20 is specific for the 4-dimensional space we are considering, for a d−dimensional
space the denominator takes the value d2 + d.

https://github.com/BrunoOGoes/PhDThesisSPI/tree/main/Chapter5
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Figure 4.7: State-averaged fidelity, Eq. (4.74).

Error matrix

We can analyze the deviation of the real gate Greal
j from the ideal gate Gideal

j by
representing it as a composition of the ideal gate and an error matrix, as discussed
in Ref. [140]. This error matrix, denoted as Ej, is expressed as follows: Greal

j =
EjG

ideal
j . Given that Gideal

j is invertible, the error matrix can be calculated using the
relationship:

Ej = Greal
j

(
Gideal

j

)−1
, (4.75)

where j =↑, ↓. A convenient way to model errors is through the Pauli error channel
[155, 23]. The Pauli error channel operates on a general quantum state by applying
the Pauli operators

BP = {I ≡ 1, σx ≡ X, σy ≡ Y, σz ≡ Z} (4.76)

with certain probabilities. The Pauli operators capture different types of errors that
can affect the state:

• I is the identity operator, this operator represents no error.

• X implements a bit flip between the computational basis elements.

• Y combines a phase flip with a bit flip.

• Z introduces a phase flip.

For our proposed photon-photon gate, we characterize the error Ej using a two-qubit
Pauli error channel. This channel is defined in terms of the tensor product of two
single-qubit Pauli operator sets:

B2 = (BP )
⊗2 = {I1, X1, Y1, Z1} ⊗ {I2, X2, Y2, Z2}, (4.77)

Thus, the real gate’s behavior is represented as the application of the ideal gate
followed by the two-qubit Pauli error channel [139, 155]. The resulting photonic
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state transformation can be expressed as:

ρphotonic
0 →

∑
B∈B2

pBBρB
† (4.78)

where ρphotonic
0 = |Φ[2]

in ,Φ
[1]
in ⟩⟨Φ

[1]
in ,Φ

[2]
in |, and our goal is to determine the probabilities

pB. This approach is particularly effective for modeling errors in single or multiqubit
processes, making it well-suited for addressing both decoherence-induced errors and
intrinsic gate errors. Specifically, intrinsic gate errors refer to deviations stemming
from sources other than decoherence, such as inaccuracies in unitary qubit rotations.
For instance, if the process is trace-preserving, then

∑
B∈Bn

pB = 1. However, in
the presence of significant errors leading to leaks out of the logical basis, we might
observe

∑
B∈Bn

pB < 1.
Furthermore, the Pauli error channel model is straightforward to apply and allows
us to obtain simple analytical formulas for the Pauli-error probabilities pB. From
a practical standpoint, these probabilities can be directly measured without the
need for full-process tomography, as they correspond to the diagonal elements of the
process matrix when expressed in the Pauli basis [156, 157, 23]. As a result, this
approach provides valuable insights into the error characteristics of the quantum
process, avoiding the requirement for more resource-intensive and comprehensive
tomographic procedures. We calculate the error matrix by employing Eq. (4.75) and
then expand it within the basis provided by Eq. (4.77). The resulting error matrices
are as follows:

E↑(m̃) =


1
8
(m̃(m̃+ 2) + 5) 0 0 −1

8
(m̃− 1)(m̃+ 3)

0 0 0 0
0 0 0 0

−1
8
(m̃− 1)(m̃+ 3) 0 0 1

8
(m̃− 1)(m̃+ 3)

 ,

E↓(m̃) =


1
8
(m̃(m̃+ 2) + 5) 0 0 −1

8
(m̃− 1)(m̃+ 3)

0 0 0 0
0 0 0 0

−1
8
(m̃− 1)2 0 0 1

8
(m̃− 1)2

 (4.79)

We can visually represent them for some values of m̃. It is observed that only the
error amplitudes ejZ1Z2

, ejZ1I2
, ejI1Z2

, and ejI1I2 are non-zero. Therefore, based on Eq.
(4.78) the transformation of the initial photonic state ρphotonic

0 can be expressed as
follows:

ρphotonic
0 → pjIIρ

j+pjZ1I
Z1ρ

jZ1+p
j
IZ2
Z2ρ

jZ2+p
j
IZ2
Z2ρ

jZ2+p
j
Z1Z2

Z2Z1ρ
jZ1Z2 (4.80)
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Figure 4.8: Error matrices plot. Upper panel showcases the error matrices for E↑
and the lower panel presents the error matrices for E↓for certain values of m̃.

with probabilities,

p↓II = p↑II =

∣∣∣∣18(m̃(m̃+ 2) + 5)

∣∣∣∣2 , (4.81)

p↑Z1I
= p↓Z1I

= p↑IZ2
=

∣∣∣∣18(m̃− 1)(m̃+ 3)

∣∣∣∣2 ,
p↓IZ2

=

∣∣∣∣18(m̃− 1)2
∣∣∣∣2 ,

p↑Z1Z2
=

∣∣∣∣18(m̃− 1)(m̃+ 3)

∣∣∣∣2 ,
p↓Z1Z2

=

∣∣∣∣18(m̃− 1)2
∣∣∣∣2 .

These probabilities are depicted in Fig. 4.9. The blue line represents the sum of all
probabilities and demonstrates the amount of leakage from the logical basis, i.e., it
is the quantity tr

{
U †

realUreal

}
. We now proceed to interpret the significance of these

error amplitudes:

• The probability pII corresponds to a scenario where no error has occurred,
indicating that the final photonic state matches the target state established by
the ideal gate, as described in Eq. (4.53). The error amplitude ejII consistently
holds a nonzero value and is related to the fidelity of the process [140]. It
assumes a value of one when the ideal gate is perfectly executed (m̃ = 1),
while all other elements vanish. However, as the system moves away from the
monochromatic regime, the fidelity of the process is impacted: ejII < 1, leading
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to the emergence of the other amplitudes.

• The error amplitudes ejZI and ejIZ are found along the first row/column of
the error matrix and are real. This distinct feature indicates a non-unitary
alteration in the state, unrelated to the presence of decoherence processes, as
discussed in Ref. [140]. In our specific context, their emergence is connected
to the phenomenon of the scattered field leaking into a component that is not
considered in the logical basis—specifically, the leakage into |R⊥⟩.

• Lastly, ejZZ hallmarks the presence of correlated errors. The alteration in the
shape of the scattered first pulse is linked to a corresponding alteration in
the shape of the scattered second pulse. This error correlation stems from
the interaction between photons and spin [139]. This insight highlights an
important fact: it becomes necessary to develop appropriate error correction
strategies to address this correlated error [152].

This analysis highlights the significance of the error matrix. The process fidelity
is encapsulated in the element eII , making it sufficient to focus on this element to
extract information about the implemented process. Furthermore, the other elements
offer valuable insights into the nature of errors, thereby providing a complete error
characterization.

pI1 I2 pI1 Z2 pZ1 I2

pZ1 Z2 pTot
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Figure 4.9: Probabilities plots. Error probabilities, Eq. (4.81), for (a) E↓, and (b)
E↑.

4.6 Conclusions and perspectives
In this chapter, we have examined the interaction between 4LS, and a traveling

pulse of light, which forms the SPI. Our focus was on the investigation of the
entanglement generation, in other words, the potential for a QND measurement, at
a low-energy regime, where we considered at most one photon. We compared the
performance of a coherent field with a quantum superposition of zero and single-
photon states. Our analysis is based on the von Neumann measurement model, which
involves two steps: the pre-measurement and the collapse (as discussed in Chap. 1).

The first major finding is that the superposition of zero and single photons
effectively entangle with the spin state, resulting in perfectly orthogonal pointer
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states, for any pulse shape as evidenced by Eq. (4.28), while the coherent field
does not with a low energy budget. This demonstrates a quantum advantage at the
pre-measurement stage.

During the pre-measurement, we observed that information about the spin state
may be distributed across different degrees of freedom. This implies that a fine-tuning
of the measured observable is necessary to extract information about the spin state
from the light, depending on the energy budget and the pulse bandwidth. Taking
this into consideration, we focused on the monochromatic regime and proposed an
experimental protocol based on the interaction of the spin with light and the phase
shift acquired between the pulses. The proposed experiment constitutes a Michelson
interferometer, and we observed that the quantum advantage is maintained at the
collapse stage after the light has interacted with the SPI.

The Hamiltonian model of the SPI serves as a powerful tool for studying errors in
photonic quantum computing, particularly concerning light pulses of finite duration
[134] holding importance for fundamental questions and technological applications.
Following the latter, we have presented a protocol for implementing a photon-photon
gate in the single-rail basis using a 4LS as a non-linear device, inferred from the
measurement of the spin state. The gate operation is determined by Eq. (4.57),
achieved through the light-matter interaction defined by Eq. (4.59), along with
unitary manipulations of the spin state. To characterize the non-monochromaticity
of the scattering process, we introduced a parameter defined in Eq. (4.61) and
established an analytical expression relating it to microscopic parameters obtained
from the collisional model solution [73], as shown in Eq. (4.63). Throughout our
analysis, we focused on the quasi-monochromatic regime and the deviation from it.
We obtained the ideal gate matrix given by Eq. (4.57). Furthermore, we determined
the matrices representing the real process in terms of the non-monochromaticity
parameter, and modeled it as a two-qubit Pauli error channel, given by Eq. (4.72).
They are not trace-preserving unless the process is monochromatic, this is due to
the component that is orthogonal to the chosen logical basis, leading to a loss of
information.

A thorough error analysis was performed based on state-average fidelity [138] and
the error matrix [140, 139]. By examining the error amplitudes of the error matrix
and associated probabilities, we can gather information about the specific types of
errors occurring in the system. In the case of the study presented here, we have
theoretical control over the nature of the error, namely the change in the shape of
the scattered field, which represents a coherent error. We observed the signature of
coherent errors, indicated by non-vanishing real elements in the first row and columns
of the error matrix [140]. Furthermore, we identified an error due to the correlation
between errors arising from the difference in the shapes of the scattered pulses [155].
It is interesting to notice that when considering the average state fidelity, both gates
appear to perform similarly. However, upon closer examination of the error matrix,
we observe distinct error contributions in the Pauli channel for each gate, providing
further insight into their error characteristics.

As a perspective, we can consider the possibility of improving the performance
by applying different inter-pulse rotations. These findings represent the first step
towards the goal of characterizing the errors in SPIs based on quantum dots, which
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can allow the proposition appropriate error correction schemes to facilitate gate-based
and measurement-based quantum computation with the SPI.
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Chapter 5

The SPI subjected to an in-plane
magnetic field

Experiment is the only means of knowledge at our disposal. Everything
else is poetry and imagination. – Max Planck

5.1 Introduction

In recent years, there has been a growing interest in the implementation of the
Lindner-Rudolph protocol (LRP) [68] due to its potential for generating linear cluster
states through spin-photon entanglement [135, 63]. Cluster states are highly entangled
photonic states that serve as a fundamental resource for measurement-based quantum
computing (MBQC), a paradigm that takes advantage of the redundant information
encoded in these states to process quantum information effectively [122, 158, 69].
MBQC offers several advantages including robustness against photon losses, the
ability to perform computations in parallel, and reduced operation overhead [69].
However, the successful implementation of the LRP poses several experimental
challenges that need to be addressed, especially in terms of preparing the specific
superposition states required for the protocol.

The progress made in spin-photon interfaces utilizing quantum dots has established
it as an excellent platform for implementing the LRP. A significant achievement
in this field was the realization of linear cluster states using quantum dots with
dark excitons, reported in Ref. [135]. More recently, a development was made and
reported in Ref. [63] demonstrating the efficient generation of three-partite cluster
states involving a semiconductor electronic spin and two indistinguishable photons.

In this chapter, we focus on analyzing the spin dynamics in the LRP under
realistic experimental conditions of Refs. [75, 63]. We consider a system where the
ground state encompasses the two spin states of the trapped electron and the excited
state comprises the two spin states of the optically excited spin-hole pair (the trion),
see App. B. Both are influenced by the magnetic field with characteristic Larmor
frequencies: Ωg and Ωe, respectively. The presence of parasitic fields affecting the
electron spin introduces an inherent physical difference between these frequencies,
which affects the fidelity of spin rotations. Another significant complication is the
necessity to optically excite the electron spin state that is processing. This dynamic
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nature introduces complexities in accurately timing the pulse delivery.
This chapter aims to address these intrinsic imperfections and gain insights

into the performance of the LRP by applying the collisional model to a realistic
experimental scenario. Our analytical solution enables us to investigate important
performance metrics, such as the fidelity of spin rotations.

By making a comprehensive analysis of spin dynamics, we contribute to enhance
the understanding of the LRP’s performance optimization, paving the way for future
advancements in the field of MBQC. The chapter is organized as follows:

• In Sec. 5.2, we provide a concise overview of the ideal LRP, emphasizing its
key components, underlying conditions, and essential parameters for successful
implementation. We also formulate the main research questions addressed in
this chapter. We introduce our model for the experimental setup and examine
the protocol within the framework of this realistic scenario.

• In Sec. 5.3, we present the solution for spontaneous emission and validate the
model’s accuracy by fitting it to actual experimental data reported in Ref. [75].

• In Sec. 5.4, we attack the central question of the chapter, where we investigate
how the imperfections captured by the Hamiltonian solution impacts the
protocol.

5.2 System, protocol and modeling

5.2.1 System

Figure 5.1: Schematic of the spin-photon interface subjected to an in-
plane magnetic field. a) Energy structure. The system is represented by a
quasi-degenerate 4-level system under the influence of a low in-plane magnetic field
B⃗ (Voigt configuration, see App. B). The conservation of angular momentum leads
to the selective transitions |↓⟩ → |⇓⟩(|↑⟩ → |⇑⟩) by left (right) polarized light. The
magnetic field B⃗ induces precession of the spin states. (b) The interface comprises a
quantum emitter with a spin degree of freedom (depicted by a red arrow in the gray
shaded area) coupled to a 1D waveguide, which is subjected to an external magnetic
field B⃗.

The Lindner-Rudolph protocol (LRP) generates a string of photonic cluster states
using two ingredients: light pulses and spin rotations. The protocol considers a
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4LS degenerate system, as the one investigated in Chap. 4. The ground states are
represented by {|↑⟩, |↓⟩}, with projections of ±1/2 along the z-axis and zero energy.
The corresponding excited states are denoted by {|⇑⟩, |⇓⟩}, with projection ±3/2,
and energy ω0. Transitions from |↑⟩ → |⇑⟩ (or |↓⟩ → |⇓⟩) are induced by right (or
left) circularly polarized photons, which have ellipticity of +1(−1), respectively. In
the context of quantum dots, these transitions occur through the emission of single
photons via the decay of the trion.

Here, we add to the Hamiltonian Eq. (4.2) an external magnetic field oriented
perpendicularly to the growth direction along the x-direction. This is known as the
Voigt configuration (refer to Fig. 5.1). The magnetic field is assumed to be weak
enough to ensure that the Zeeman effect only causes a level splitting comparable to
the spectral linewidth, hence the 4LS remains (quasi)degenerate. Consequently, when
the system interacts with light, only the vertical transition |↑⟩ → |⇑⟩ (|↓⟩ → |⇓⟩) is
promoted by right (left) polarized light, and diagonal transitions can be disregarded
for our analysis [75, 63] (see App. B).

To account for the magnetic field interaction we add the following term to Eq.
(4.2):

HB = HB,tr +HB,el. (5.1)

Here, HB,tr and HB,el represent the magnetic field interactions for the trion and
electron spins, respectively. The presence of an external magnetic field B⃗ causes the
spin states to undergo precession around its axis. Specifically, for the trion state, we
have:

HB,tr =
Ωe

2
û · σ⃗tr, (5.2)

where Ωe represents the Larmor frequency of the excited state, û is the unity vector
that defines the direction of the magnetic field perceived by the trion, and σ⃗tr

represents the vector of Pauli matrices acting on the space {|⇑⟩, |⇓⟩}. Similarly, for
the electron spin state, we have:

HB,el =
Ωg

2
n̂g · σ⃗el, (5.3)

where Ωg represents the Larmor frequency of the ground state, n̂g is the unity vector
that defines the direction of the magnetic field perceived by the electron, and σ⃗el

represents the vector of Pauli matrices acting in the space {|↑⟩, |↓⟩}.
The electron possesses an s-type orbital wavefunction, meaning that there is a

strong localization on the lattice site and dominant interaction with nuclei through
Fermi-contact interaction. The spin states are sensitive to the random magnetic fields
present in the solid-state matrix. Notably, the Overhauser field originates from the
hyperfine interaction with the nuclei surrounding the quantum dot [159, 121]. Another
component to take into account for the magnetic field is the one that emerges from
the nuclear quadrupolar fields in strained quantum dots. This ensemble is referred
to as parasitic fields, and their action on the spin is modeled by the unity vector
n̂g. In the excited state, the physical system is a hole with a p-type orbital, which
is not localized on the lattice site. Consequently, the Fermi-contact interaction is
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suppressed, and the heavy hole becomes sensitive only to the dipole-dipole interaction
and the external magnetic field. Since it points in the x−direction we have the
unity vector û = x̂ = (1, 0, 0) [160]. These different physical wavefunctions give rise
to a fundamental difference in the Larmor frequencies. The excited state exhibit
precession characterized by the Larmor frequency:

Ωe ≡ Ω = ghµB|B⃗ext|. (5.4)

Here, |B⃗ext| represents the magnitude of the external magnetic field, gh is the g-factor
of the hole and µB is the Bohr magneton. The frequency Ω can be experimentally
controlled by manipulating the magnitude of the external magnetic field. The
ratio between the ground state Larmor frequency Ωg and the excited state Larmor
frequency Ω is defined by:

rge ≡
Ωg

Ω
, (5.5)

Using (5.13) and û = x̂ allows us to re-write Eq. (5.1) as:

HB =
Ω

2

(
σtr
x + rgen̂g · σ⃗el

)
. (5.6)

Now that we have defined the system under consideration, let us review the Lindner-
Rudolph protocol (LRP) operating under ideal conditions, as proposed in Ref. [68].

5.2.2 The ideal Lindner-Rudolph protocol

The system is initially prepared in |↑⟩ and is taken to the superposition state

|ψ0⟩ = |−i⟩ = |↑⟩ − i|↓⟩√
2

. (5.7)

The ideal protocol involves two main components:

1. π−pulses: These pulses induce a complete inversion of the population between
the ground state and the excited state. When applied with precision timing
and intensity, π-pulses effectively flip the quantum system’s population from
its initial state in the ground state to the corresponding excited state, and vice
versa.

2. Instantaneous rotations on the spin states: These rotations create su-
perpositions of the electronic spin states by performing π/2 rotations of the
spin.

In a real experimental setup, the rotation component (2) is implemented using the
in-plane magnetic field (Voigt configuration). The rotation corresponds to the Larmor
precession of the spin around the x-axis, occurring over a finite period of Ω−1

g , where
Ωg represents the Larmor frequency of rotation between the states |↑⟩ and |↓⟩. Hence,
the rotation is described by

Rx(t) = exp

{
−iΩg

2
tX

}
, (5.8)
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where X = |↑⟩⟨↓ |+|↓⟩⟨↑ | is the spin-flip Pauli operator. Ideally, a π/2 rotation
creates the desired superposition, Eq. (5.7), within a period of

tg =
π

2Ωg

=
π

2rgeΩ
. (5.9)

Regarding the pulses, the field is horizontally polarized to simultaneously excite
both transitions. We introduce the notation |1j⟩n, where j = R,L represents the
photon polarization, and n > 0 representing the single photons emitted by the 4LS
subsequent to the (n− 1)−th pulse.

The ideal protocol proceeds as follows:

|↑⟩ − i|↓⟩√
2

π−pulse−−−−−→ |↑⟩|1R⟩1 − i|↓⟩|1L⟩1√
2

(5.10)

Rx(π/2)−−−−→ (|↑⟩ − i|↓⟩)|1R⟩1 − i(|↑⟩+ i|↓⟩)|1L⟩1√
2
√
2

π−pulse−−−−−→ (|↑⟩|1R⟩2 − i|↓⟩|1L⟩2)|1R⟩1 − i(|↑⟩|1R⟩2 + i|↓⟩|1L⟩2)|1L⟩1√
2
√
2

=
1√
2

(
|↑⟩
(
|1R⟩1 − i|1L⟩1√

2

)
|1R⟩2 − i|↓⟩

(
|1R⟩1 + i|1L⟩1√

2

)
|1L⟩2

)
By repeating the aforementioned process N times, a linear cluster state consisting of
N + 1 entities is generated, composed of N photons and the spin. This spin can be
decoupled by performing a polarization measurement on the last emitted photon.
For instance, if the photon is measured as |1R⟩2, then the spin state is |↑⟩, and we
have the state:

|1R⟩1 − i|1L⟩1√
2

(5.11)

It is worth mentioning that after the first pulse, a Bell state is obtained. By repeatedly
applying pulses without performing the rotation step (2), the GHZ-state can be built
[161].

The crucial assumptions of this protocol are:

• The system is considered to be a degenerate 4LS. In realistic experimental
conditions, this can be achieved by applying a magnetic field with a modu-
lus that is sufficiently weak to ensure that the Zeeman effect only causes a
level splitting comparable to the spectral linewidth, thereby maintaining the
(quasi)degeneracy of the 4LS [75, 63]. This is considered in the model we
proposed in Sec. 5.2.1, hence limiting its range of validity to weak magnetic
fields.

• The magnetic field acting on the ground state |↑⟩, |↓⟩ is assumed to be perfectly
aligned along the x−direction: n̂g = x̂.

• It is implicitly assumed that the Larmor frequencies of the ground and excited
states are the same: rge = 1.

• Lastly, we assume the feasibility of measuring the last emitted photon to
decouple the spin state and rely on the fact that this measurement allows
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us to accurately infer the spin state. Resonant π-pulses present a significant
experimental challenge as the input and output fields have the same frequency.
To overcome this limitation, a different excitation technique based on acoustic
phonon-assisted excitation has been recently employed in Ref. [75]. By using a
slightly blue-detuned laser, it has been demonstrated that the excited state |⇑⟩
or |⇓⟩ can be prepared with high fidelity, effectively acting as π−pulses. After
reaching the excited state, the system relaxes, and under the condition that
γ−1 ≪ Ω−1, i.e., the system decays before it has time to precess in the excited
state. Hence, another important ratio must be considered,

rΩγ =
Ω

γ
(5.12)

If the preparation is |⇑⟩, a right-polarized photon (R-photon) is emitted, and
its detection indicates that the spin is |↑⟩, initiating the timer to let the system
precess to achieve the desired superposition state, Eq. (5.7).

In the following section, we solve the model proposed in Sec. 5.2.1 incorporating all
these intrinsic realistic imperfections, and subsequently we reexamine the Lindner-
Rudolph protocol (LRP) based on the obtained solution.

Our objective is to investigate the fidelity between the target superposition state
and the real state of the system when π−pulses are applied, considering the relevant
parameters and realistic imperfections (the step highlighted in red in Eq. (5.10)).
Errors in this step accumulate during the process deteriorating the cluster state that
is built.

Let us collect the important parameters:

1. The ratio between the Larmor frequencies of the ground state, Ωg, and excited
state, Ωe ≡ Ω:

rge =
Ωg

Ω
. (5.13)

2. The direction of the magnetic field acting on the ground state, represented by
the normalized vector

n̂g = (nx, ny, nz), |ng|= 1. (5.14)

3. The ratio between the vacuum decay rate, denoted as γ, and the Larmor
frequency in the excited state denoted as Ω:

rΩγ =
Ω

γ
. (5.15)

The ideal protocol described in this section assumes that the following three conditions
are fulfilled:

i. rge = 1,
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ii. n̂g = x̂ = (1, 0, 0), hence considering the modulus of the inner product: ⟨n̂g · x̂⟩ =
1, and

iii. rΩγ = Ω
γ
≪ 1.

These parameters form the foundation for an optimally functioning protocol. Any
deviations from these ideal conditions are anticipated to lead to a deterioration of
the protocol and compromise the quality of the generated cluster state.

We address two pragmatic questions:

• How do the deviations from the ideal conditions defined by (i)-(iii) impact the
protocol? For that, we must study the impact of these parameters in evolving
the system to the correct superposition state when the (effective) π−pulse is
applied.

• How reliable is the measurement of the emitted photon to infer the state of
the spin? This is quantified by the cBhat.

To answer these questions we solve the joint dynamics of the 4LS and light with the
collisional model.

5.2.3 Collisional model

Under the assumption of a weak magnetic field, we may set a new notation
decoupling the spin and energy degrees of freedom to solve the dynamics. We define
the following mapping:

|⇑⟩ → |e⟩ ⊗ |↑z⟩ (5.16)
|⇓⟩ → |e⟩ ⊗ |↓z⟩
|↑⟩ → |g⟩ ⊗ |↑z⟩
|↓⟩ → |g⟩ ⊗ |↓z⟩.

In this mapping, |g⟩ and |e⟩ represent the energy degrees of freedom (DOFs), while
|↓z⟩ and |↑z⟩ represent the spin DOFs. It is important to note that the mathematical
spin |↑z⟩ has a sub-index z that distinct it from the physical electron spin denoted
by |↑⟩.

We define the following lowering operators:

s = |↓z⟩⟨↑z |, (5.17)
σ = |g⟩⟨e|.

The states with spin |↑z⟩ are connected through a right-polarized field, while the
states with |↓z⟩ are connected through a left-polarized field. Additionally, we define
the Pauli operators for each subsystem in the usual manner: sz = |↑z⟩⟨↑z |−|↓z⟩⟨↓z |
and σz = |e⟩⟨e|−|g⟩⟨g|, for instance.

The Hamiltonian describing the system is given by Eq. (4.2) with the addition of
Eq. (5.1):

H = Hwg + (Hen +HB + VL + VR), (5.18)
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where the bare Hamiltonians are defined as:

Hen = ω0σ
†σ (5.19)

Hwg =
∑
j=R,L

∞∑
k=0

ωj,ka
†
j,kaj,k (5.20)

Here, aj,k represents the annihilation operator of a photon with polarization j
and momentum k (with frequency ωj,k). They obey the usual bosonic algebra
[aj,k, a

†
i,q] = δjiδkq, where δij is the Dirac delta. Using Eq. (5.16), the magnetic field

Hamiltonian in Eq. (5.1) can be cast as:

HB =
Ω

2
(rge|g⟩⟨g|⊗n̂g · s⃗+ |e⟩⟨e|⊗sx) , (5.21)

VL(R) = ig0

∞∑
k=0

(
a†L(R),kσ − σ†aL(R),k

)
⊗ |↓z (↑z)⟩⟨↓z (↑z)|. (5.22)

We now move to the interaction picture with respect to H0 = Hwg, this choice is
convenient because the spin operators do not gain a time dependency. The resultant
interaction picture Hamiltonian is:

VL(R) → VL(R)(t) = i
√
γ
[(
b†L(t)σ − σ†bL(t)

)]
⊗ |↓z (↑z)⟩⟨↓z (↑z)|. (5.23)

Here, the vacuum decay rate is given by:

γ = g20δ. (5.24)

We define the temporal bosonic operators for each polarization p ∈ {L,R} as:

bp(t) =
1√
δ

∑
k

e−iωp,ktap,k, (5.25)

where δ = L/v represents the density of modes in the waveguide, and it satisfies the
bosonic algebra [bp(t), bp′(t

′)] = δp,p′δ(t− t′). Rearranging the terms, we obtain:

Hen +HB = σ†σ ⊗ Ĉe(s⃗)− σσ† ⊗ Ĉg(s⃗), (5.26)

where

Ĉe(s⃗) = ω0 +
Ω

2
sx, (5.27)

Ĉg(s⃗) = rge
Ω

2
n̂g · s⃗. (5.28)
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We introduce the (mathematical) spin rotation operators:

Rg(t) = exp
{
−iĈg(s⃗)t

}
(5.29)

Re(t) = exp
{
−iĈe(s⃗)t

}
.

The first operator is associated with rotations in the ground state, while the second
operator corresponds to rotations in the excited state. These definitions will prove
valuable for our subsequent analysis.

5.2.4 Realistic LRP

The goal of our study is to benchmark the fidelity of the building block of the
LRP [68], specifically the mapping between the spin state and the photon state [162].

The crucial step, as we have seen in the Sec. 5.2.2 is the preparation of the system
in the superposition state and the subsequent decoupling of the spin by measuring
the polarization of the last emitted photon. We review the process from the very
beginning where the preparation of the superposition state is concerned. Based on
Ref. [75] it is known that a |⇑ (⇓)⟩ state can be prepared with high fidelity. Hence,
the system is left to decay and once a R(L)-photon is detected it is known that
the state at that time is |↑ (↓)⟩, this starts the clock for the spin precession. Let’s
analyze this situation:

1. At time t = 0−, the 4LS and field are prepared in the state

|Ψ↑z(0−)⟩ = |e⟩ ⊗ |↑z⟩ ⊗ |∅⟩ ⊗ |∅⟩. (5.30)

2. In a very short time interval δt = γ−1 the system decays, emitting a single
right (R) circularly polarized photon,

|Ψ↑z(δt)⟩ = |g⟩ ⊗ |↑z⟩ ⊗ |1R⟩0 ⊗ |∅⟩0, (5.31)

where Ωδt→ 0+. Here, |1R⟩0 represents the heralding photon. It informs that
the system is in the state |g⟩ ⊗ |↑z⟩, starting the clock.

3. Once in the ground state, the spin is allowed to precess freely under the action
of the magnetic field for a time until tpulse. Ideally, the interval is,

tpulse = tg =
π

2rgeΩ
. (5.32)

During this time the state evolves to:

|Ψ↑z(0+)⟩ tg−→ |Ψ↑z(tg)⟩ = |g⟩ ⊗ |−iy⟩ ⊗ |1R⟩0 ⊗ |∅⟩0, (5.33)

where |−iy⟩ = (|↑z⟩ − i|↓z⟩)/
√
2.

4. At time tpulse, the effective π−pulse is applied. The system is excited and
rapidly decays to the ground state emitting an R and an L right-polarized
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photons in an infinitesimally short decay time ε→ 0+, then:

|Ψ↑z(tg + ε)⟩ = |g⟩ ⊗
[
|↑z⟩|1R⟩1|∅⟩1 − i|↓z⟩|∅⟩1|1L⟩1√

2

]
⊗ |1R⟩0 ⊗ |∅⟩0 (5.34)

where the sub-index “1” in the photonic states refers to the first emission event.
This defines the building block of the LRP, corresponding to the line highlighted
in red of Eq. (5.10).

A crucial observation is that the time interval of the spin precession during step 3 is
essential. In ideal conditions, described by the conditions (i)-(iii) the state at time tg
is |−i⟩, which serves as our target state. But in the presence of parasitic magnetic
fields this state is not perfectly achieved at this time.

Next, we solve the joint wave function of the SPI subjected to the magnetic
field as described in the experiments of Refs. [75, 63]. The main advantage of this
approach is that it enables us to derive an analytical expression for the fidelity of
the system as a function of time and the parameters rΩγ, rge and n̂g.

5.3 Spontaneous emission solution

Figure 5.2: Possible processes. Assuming the spin is initially in the excited state
|e, ζ⟩, the presence of the magnetic field allows for the following processes: (a) It
precesses in the excited state without emitting any photon, resulting in the state
|e, ↑⟩. (b) It precesses in the excited state without emitting any photon, resulting in
the state |e, ↓⟩. (c) It processes in the excited state for a duration of u and reaches
the intermediate spin state |e, ↑⟩, emitting a R-polarized photon. Then, it continues
to precess in the ground state for a duration of t− u and ends in the state |g, ↑⟩. (d)
It precesses in the excited state for a duration of u and reaches the intermediate
spin state |e, ↑⟩. Then, it precesses in the ground state for a duration of t− u and
ends in the state |g, ↓⟩. (e) It precesses in the excited state for a duration of u and
reaches the intermediate spin state |e, ↓⟩, emitting an L-polarized photon. Then,
it continues to precess in the ground state for a duration of t− u and ends in the
state |g, ↑⟩. (f) It precesses in the excited state for a duration of u and reaches the
intermediate spin state |e, ↓⟩, emitting a R-polarized photon. Then, it precesses in
the ground state for a duration of t− u, flips the spin, and ends in the state |g, ↓⟩.
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We assume the system is initially in the state |e⟩⊗ |ζ⟩ ≡ |e, ζ⟩ with a specific spin
ζ ∈ {↑z, ↓z}, and the field is initially in the vacuum state |∅, ∅⟩. In this situation,
two processes can occur:

1. Spontaneous emission, leading to the creation of an R or L photon, i.e., right
and left circularly polarized photon respectively, and

2. Coherent precession of the (mathematical) spin, |↑z (↓z)⟩, in the excited and
ground states induced by the magnetic field.

To analyze the dynamics of the system, we employ the collisional model, following
the approach outlined in Chap. 2 by writing a wave function Ansatz and finding the
necessary coefficients. The detailed calculations can be found in App. D.

By starting from the initial state |Ψζ(0)⟩ = |e, ζ, ∅, ∅⟩, we can determine the
resulting wave function at any time t as

|Ψζ(t)⟩ =
(
exp

{
−γ
2
t
}
⟨↑z |Re(t)|ζ⟩

)
|e⟩|↑z⟩|∅⟩|∅⟩ (Fig. 5.2a) (5.35)

+
(
exp

{
−γ
2
t
}
⟨↓z |Re(t)|ζ⟩

)
|e⟩|↓z⟩|∅⟩|∅⟩ (Fig. 5.2b)

+

(∫ t

0

du ⟨↑z |Rg(t− u)|↑z⟩
√
γb†Rexp

{
−γ
2
u
}
⟨↑z |Re(u)|ζ⟩

)
|g⟩|↑z⟩|∅⟩|∅⟩ (Fig. 5.2c)

+

(∫ t

0

du ⟨↑z |Rg(t− u)|↓z⟩
√
γb†Lexp

{
−γ
2
u
}
⟨↓z |Re(u)|ζ⟩

)
|g⟩|↑z⟩|∅⟩|∅⟩ (Fig. 5.2d)

+

(∫ t

0

du ⟨↓z |Rg(t− u)|↑z⟩
√
γb†Rexp

{
−γ
2
u
}
⟨↑z |Re(u)|ζ⟩

)
|g⟩|↓z⟩|∅⟩|∅⟩ (Fig. 5.2e)

+

(∫ t

0

du ⟨↓z |Rg(t− u)|↓z⟩
√
γb†Lexp

{
−γ
2
u
}
⟨↓z |Re(u)|ζ⟩

)
|g⟩|↓z⟩|∅⟩|∅⟩ (Fig. 5.2f)

The wave function presented above has a straightforward physical interpretation.
The first and second lines are represented schematically in 5.2(a) and (b) respectively,
describe the Larmor precession between the state |ζ⟩ and the spin state |↑z (↓z)⟩ in
the excited state. The third line showed in 5.2(c), represents the Larmor precession in
the excited state for a duration u, starting from the initial state |ζ⟩ and transitioning
to the intermediate spin state |↑z⟩. This is followed by a jump to the ground state,
resulting in the creation of an R-photon (depicted in orange). Finally, the wave
function describes the Larmor precession in the ground state from the intermediate
spin state |↑z⟩ to the final spin state |↑z⟩(in blue). Similar interpretations can be
made for the remaining lines. Consequently, the wavefunction represents a coherent
superposition of various processes, each of which is illustrated in Fig. 5.2.

To validate our model, we employ it to fit the data obtained from the experiment
reported in Ref. [75]. In this experiment, the system is excited using acoustic phonons
instead of resonant excitation. The use of a slightly blue-detuned pulse allows the
selection of the polarization of optical transitions and facilitates the initialization and
measurement of single spin states. The authors of Ref. [75] examine the coherence of
the trion in a low transverse magnetic field and monitor the spin Larmor precession
during the radiative emission process of the excited state. Our model is capable of
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fitting this data, as demonstrated in Fig. 5.3. By utilizing Eq. (5.35), we compute
the intensities for a spin initially in the |↑z⟩ state, given by:

I↑zR (t) = ⟨b†RbR(t)⟩ = γ
∣∣∣exp{−γ

2
t
}
⟨↑z |Re(t)|↑z⟩

∣∣∣2 = γe−γt cos2
(
Ω

2
t

)
, (5.36)

I↑zL (t) = ⟨b†LbL(t)⟩ = γ
∣∣∣exp{−γ

2
t
}
⟨↓z |Re(t)|↑z⟩

∣∣∣2 = γe−γt sin2

(
Ω

2
t

)
.

Here, the notation I initial spin
Polarization represents the intensities. The degree of circular

polarization is given by:

DCP =
I↑zR − I↑zL
I↑zR + I↑zL

(5.37)

Our model predicts:

DCP = cos(Ωt). (5.38)

In Fig. 5.3, we compare these quantities with the experimental data presented in
Figure 2 of Ref. [75]. The dashed black line represents the results of our closed model
dynamics, neglecting any dephasing effects. We observe a remarkable agreement
between the data points1 and our analytical results, strongly corroborating the
accuracy of our model. For details on the parameters, we refer to App. B.1. The
importance of this figure is that it shows that the high hole spin Landé factor gh
allows a relatively weak magnetic field to be sufficient for the implementation of a
large number of precession cycles during the time of spin coherence, which is longer
than the trion lifetime T (trion)

1 . Within these experimental conditions, it is possible
to implement the LRP as reported in Ref. [63].
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Figure 5.3: Model validation.This figure replicates Figure 2 from Ref. [75]. The
dashed black line corresponds to the result of our closed model dynamics, neglecting
any dephasing effects. In color we show the experimental data points, demonstrating
a remarkable agreement with our analytical results. The parameters match those
used in Ref. [75], with a vacuum decay rate of γ = 1, see App. B.1.

1The data belong to C2N-Paris and were kindly provided by the corresponding author of Ref.
[75], who allowed the reproduction in this thesis.
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5.4 Protocol benchmark: fidelity and cBhat

In this section, our main focus will be on studying spin dynamics using our
analytical solution. To carry out this analysis, it is crucial to compute the reduced
spin state, which is the primary objective of this section. When the system initially
possesses spin ζ, |Ψζ(0)⟩ = |Φ(0)⟩ ⊗ |ζ⟩, where |Φ(0)⟩ is a general field and energy
state2and is subjected to a magnetic field, the total wave function at time t can be
represented as follows:

|Ψζ(t)⟩ = |ψζ
ζ (t)⟩|ζ⟩+ |ηζi (t)⟩|i⟩, ζ(i) ∈ {↑z (↓z), ↓z (↑z)}. (5.39)

In the above expressions, |ζ⟩ and |i⟩ denote the (mathematical) spin states, while |ψζ
ζ ⟩

and |ηζi ⟩ correspond to the joint state of the field and energy. The superscript indicates
the initial spin, while the subscript highlights the final spin state. Consequently, we
can express the density matrix of the total state, ρζ(t), as follows:

ρζ(t) = |ψζ
ζ ⟩⟨ψ

ζ
ζ |⊗|ζ⟩⟨ζ|+|ψζ

ζ ⟩⟨η
ζ
i |⊗|ζ⟩⟨i| (5.40)

+ |ηζi ⟩⟨ψ
ζ
ζ |⊗|i⟩⟨ζ|+|ηζi ⟩⟨η

ζ
i |⊗|i⟩⟨i|

To obtain the reduced state, we perform a partial trace over the field and energy
states (All) but the spin (sp), resulting in:

ρζsp(t) = trAll/sp{ρζ(t)} (5.41)

= ⟨ψζ
ζ |ψ

ζ
ζ ⟩|ζ⟩⟨ζ|+⟨ηζi |ψ

ζ
ζ ⟩|ζ⟩⟨i|

+ ⟨ψζ
ζ |η

ζ
i ⟩|i⟩⟨ζ|+⟨ηζi |η

ζ
i ⟩|i⟩⟨i|.

where the cyclic property of the trace in the subspace of the field and energy states
were used to obtain the reduced state. The elements of the matrix ρζsp(t) are given
by the three overlaps:

ρζζζ = ⟨ψζ
ζ |ψ

ζ
ζ ⟩, (5.42)

ρζii = ⟨ηζi |η
ζ
i ⟩,

ρζiζ = ⟨ηζi |ψ
ζ
ζ ⟩.

2Although the results are going to be applied to the SE wavefunction, Eq. (5.35), they are
general for any field.
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Now, using the solution Eq. (5.35), we can compute the necessary overlaps for the
case of ζ =↑z and i =↓z. We have:

|ψ↑z
↑z ⟩ = exp{−γ

2
t}⟨↑z |Re(s⃗, t)|↑z⟩|e, ∅, ∅⟩ (5.43)

+
√
γ

∫ t

0

du⟨↑z |Rg(s⃗, t− u)|↑z⟩f (0),↑
↑,e (u)b†R(u)|g, ∅, ∅⟩

+
√
γ

∫ t

0

du⟨↑z |Rg(s⃗, t− u)|↓z⟩f (0),↑
↓,e (u)b†L(u)|g, ∅, ∅⟩

|η↑z↓z ⟩ = exp{−γ
2
t}⟨↓z |Re(s⃗, t)|↑z⟩|e, ∅, ∅⟩ (5.44)

+
√
γ

∫ t

0

du⟨↓z |Rg(s⃗, t− u)|↑z⟩f (0),↑
↑,e (u)b†R(u)|g, ∅, ∅⟩

+
√
γ

∫ t

0

du⟨↓z |Rg(s⃗, t− u)|↓z⟩f (0),↑
↓,e (u)b†L(u)|g, ∅, ∅⟩

where f (0),i
j,e (u) is the coefficient of zero photon emission connecting the spin states i

to j in the excited state e (see App. D).We can easily compute the overlaps, resulting
in:

ρ↑z↑z↑z = exp{−γt}|⟨↑z |Re(s⃗, t)|↑z⟩|2 (5.45)

+ γ

∫ t

0

du|⟨↑z |Rg(s⃗, t− u)|↑z⟩|2|f (0),↑
↑,e (u)|2+γ

∫ t

0

du|⟨↑z |Rg(s⃗, t− u)|↓z⟩|2|f (0),↑
↓,e (u)|2

ρ↑z↓z↓z = exp{−γt}|⟨↓ |Re(s⃗, t)|↑⟩|2

+ γ

∫ t

0

du|⟨↓z |Rg(s⃗, t− u)|↑z⟩|2|f (0),↑
↑,e (u)|2+γ

∫ t

0

du|⟨↓z |Rg(s⃗, t− u)|↓z⟩|2|f (0),↑
↓,e (u)|2

ρ↑z↓z↑z = exp{−γt}⟨↓z |Re(s⃗, t)|↑z⟩∗⟨↑z |Re(s⃗, t)|↑z⟩

+ γ

∫ ∞

0

du⟨↓z |Rg(s⃗, t− u)|↑z⟩∗⟨↑z |Rg(s⃗, t− u)|↑z⟩|f (0),↑
↑,e (u)|2

+ γ

∫ ∞

0

du⟨↓z |Rg(s⃗, t− u)|↓z⟩∗⟨↑z |Rg(s⃗, t− u)|↓z⟩|f (0),↑
↓,e (u)|2.

Here, z∗ represents the complex conjugation. This procedure provides the reduced
state in the mathematical spin subspace, but not in the physical spin subspace that
corresponds to the ground state. To find the physical spin state, we assume that
spontaneous emission has occurred, exp{−γt} → 0, and normalize the density matrix
accordingly.

5.4.1 Fidelity

The fidelity between two quantum states, ρa and ρb, is defined as [23]

F (ρa, ρb) = tr{
√√

ρaρb
√
ρa}, (5.46)

and it measures how similar are ρa and ρb.



Chapter 5 99

A general qubit state can be expressed using the Pauli basis as

ρgen =
1

2
(1 + rxsx + rysy + rzsz) , (5.47)

where ri = ⟨si⟩, represents the expectation value of the Pauli operator si (with
i = x, y, z). We consider ρgen to be the state of the mathematical spin, which
corresponds to the physical electron state after the system has fully relaxed to the
ground state. For the physical spin, assuming it initially started in the state |g⟩⊗|↑z⟩,
the target state is given by

ρ↑target = |−i⟩⟨−i|= 1

2

[
1 i
−i 1

]
(5.48)

The fidelity between ρgen and ρ↑target is

F (ρgen, ρ
↑
target) =

1− ry
2

(5.49)

=
1

2
+ ℑ

{
ρ↑↓↑

}
,

where we used that ry = tr{σyρ↑sp} = −2ℑ
{
ρ↑↑↓

}
. We can analytically compute the

fidelity for a time t≫ γ−1, where the spontaneous emission process has concluded and
the mathematical spins (↑z /↓z) accurately represent the physical spins (↑ /↓). The
fidelity has a cumbersome analytical expression, it might be found in the Mathematica
notebook available in the dedicated GitHub repository [76]. We can find a simple
approximated expression by neglecting the terms of order r3Ωγ or higher, leading to
the approximated expression:

Fapprox =
1

2
+
nx

2
fx (rge, rΩγ; t) +

nynz

2
fyz (rge, rΩγ; t) , (5.50)

where fx(Ω, rge, rΩγ; t) and fyz(Ω, rge, rΩγ) are defined as follows:

fx(rge, rΩγ,Ω; t) = k1(rge, rΩγ) cos(rgeΩt)− k2(rge, rΩγ) sin(rgeΩt), (5.51)

and

fyz(rge, rΩγ,Ω) = k3(rge, rΩγ) + k4(rge, rΩγ) cos(rgeΩt) + k5(rge, rΩγ) sin(rgeΩt) + O(rΩγ)
3

(5.52)

https://github.com/BrunoOGoes/PhDThesisSPI/tree/main/Chapter6


100 Chapter 5

with the coefficients given by:

k1(rge, rΩγ) = −
rgerΩγ

[
1 + (r2ge − 1)r2Ωγ

]
2(1 + r2ge)r

2
Ωγ + (r2ge − 1)r2Ωγ

(5.53)

k2(rge, rΩγ) =
1 + (1 + r2ge)r

2
Ωγ

1 + 2(1 + r2ge)r
2
Ωγ + (r2ge − 1)r2Ωγ

k3(rge, rΩγ) = −
1 + 2(r2ge + 1)r2Ωγ

(1 + r2Ωγ)
[
1 + (r2ge − 1)2r2Ωγ

]
(r2ge + 1)r2Ωγ

k4(rge, rΩγ) =
rgerΩγ

(1 + r2Ωγ)
[
1 + (rge − 1)2r2Ωγ

] [
1 + (rge + 1)2r2Ωγ

]
k5(rge, rΩγ) =

1 + (1 + r2ge)r
2
Ωγ[

1 + 2(r2ge + 1)r2Ωγ + (r2ge − 1)r2Ωγ

]
It is worth noting that the expression (5.50) has a term proportional to the x−component
of n̂g and a component proportional to the components y and z.

Armed with these analytical expressions, we can examine the behavior of fidelity
for different parameters. Figure 5.4 illustrates our investigation of the case where
both the electron and hole solely respond to the external magnetic field, n̂g = x̂. We
compute the fidelity for tg. In Fig. 5.4(a), we present contour plot illustrating the
relationship between rge, rΩγ , and the fidelity for tg. In Fig. 5.4(b), we consider the
scenario where the Larmor frequencies are equal (rge = 1) for tg, respectively.

Figure 5.4: Fidelity at the time of re-excitation with perfect magnetic field
alignment. The plots show the fidelity of the spin state for the time of re-excitation.
(a) Contour plot: For tg given by Eq. (5.32) varying rge and rΩγ. (b) Ideal case:
tg = π/2rgeΩ, rge = 1, n̂g = x̂. The horizontal gray line hallmarks the unity fidelity.
The vacuum decay rate is γ = 1.

Next, we investigate the impact of the parasitic magnetic field on the interaction
with the electronic spin. In Fig. 5.5 we examine the scenario where the electron
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is subjected to a field with components n̂g = (1, n, n)/|(1, n, n)|, with the same
component in the y and z directions. We compute the fidelities for tg.

In Figs. 5.5(a), 5.5(b), and 5.5(c) we consider the ratios of the Larmor frequencies
to be (1, 1.5, 2.5), respectively, and present a contour plot of the fidelity for tg. Here,
we observe that the region where the fidelity exceeds 0.95 shrinks as rge increases, and
the lower the inner product ⟨n̂g, x̂⟩ the worse the fidelity, that’s to say the shorter the
x component of the magnetic field in the ground state, the worst will be the fidelity.
This is expected, as it signifies that the parasitic fields are tilting the direction of
precession and taking the system to an undesired state.

Figure 5.5: Fidelity at the time of re-excitation influenced by parasitic
fields. The Larmor frequency ratio is denoted by rge, where Ω. The vacuum decay
rate is set to γ = 1. The unity vector n̂g = (1, n, n)/|(1, n, n)| represents the direction
of the magnetic field. We present fidelity tg, given by Eq. (5.32), for (a) rge = 1, (b)
rge = 1.5, and (c) rge = 2.5

5.4.2 cBhat
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Figure 5.6: cBhat for the Lindner-Rudolph protocol.

To conclude our analysis, we evaluate the precision of the spin decoupling stage
by measuring the last emitted photon using the cBhat method, as described in Eq.



102 Chapter 5

(1.18). The intensity functions can be expressed as follows:

I↑zR (t) = I↓zL (t) = γe−γt cos2
(
Ω

2
t

)
. (5.54)

The cBhat is computed based on the probabilities of a click event:

p↑(click) =
∫ tclick

0

dt I↑zR (t), (5.55)

where tclick represents the interval between the excitation pulse and the final click in
the detector. If t≫ γ−1 the probability becomes:

p↑(click) =
1

2

[
1 +

1

1 + r2Ωγ

]
, (5.56)

The cBhat can be expressed as:

Bcl = 2
√
p↑(click) [1− p↑(click)], (5.57)

= rΩγ

√
2 + r2Ωγ

1 + r2Ωγ

.

In the ideal limit rΩγ ≪ 1, we have

Bcl ≈
√
2rΩγ (5.58)

The accuracy of the measurement is primarily influenced by the ratio rΩγ . The cBhat
is directly proportional to this quantity, meaning that lower ratios result in more
distinguishable probability distributions. The fundamental limitation arises from the
fact that the decay process occurs with a finite time γ−1. The ideal condition (iii)
assumes an immediate decay upon excitation; however, if rΩγ ≪ 1 is not fulfilled, a
fundamental error related to spin decoupling emerges.

5.5 Discussion and perspectives

In this chapter, we made a comprehensive analysis of the LRP within the real-
istic experimental conditions [75, 63]. We took into account the critical intrinsic
imperfections that affect the protocol’s performance, including the ratio of Larmor
frequencies, rge, and the presence of parasitic magnetic fields that affect the electronic
spin state, n̂g. Through the use of the collisional model, we solved the dynamics
of the emitter and the field, with a particular focus on the spontaneous emission
process.

To verify the validity of our model, we compared its predictions with experimental
data presented in previous studies in Fig. 5.3. The agreement between our model’s
results and the experimental data serves as a robust validation, showing the accuracy
and reliability of our proposed model. This validation step holds significant weight
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as it demonstrates the model’s capability to capture the essential aspects of the
physical system under investigation.

Furthermore, by deriving analytical expressions for the spin state and thoroughly
investigating the fidelity of the process, we gained insights into the behavior of spin
precession during the protocol. This analysis plays an important role in enhancing the
quality of generated linear cluster states. Armed with this knowledge, experimentalists
can make informed decisions regarding the timing of pulse delivery, leading to
improved outcomes in practical implementations.

There are promising prospects for conducting characterization experiments in
the continuous wave (CW) regime, where the initial state of the field is coherent.
This direction opens up possibilities to explore the cross-correlation function between
circular polarizations, such as g(2)RL(τ), which can provide valuable insights into charge
dynamics and coherence times. Such experiments hold paramount importance and
the framework presented in this chapter can be readily extended to address these
scenarios, enriching our understanding and control over the system and the protocol.
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Conclusions and perspectives

“It’s gone. It’s done

Yes, Mr. Frodo. It’s over now.”– Frodo Baggins and Samwise Gamgee,
Lord of the rings - The return of the king

The primary contribution of this thesis is centered around employing a compre-
hensive Hamiltonian solution for physical systems relevant to quantum technological
applications. Our focus primarily revolved around exploring pertinent and con-
temporary instances of non-classical resource generation, such as non-Gaussian
fields and entanglement, along with applications in quantum technology, includ-
ing photon-photon gates with error characterization and LRP analysis involving
essential parameters. In essence, we extensively employed a technique that closes
systems typically treated within the framework of open quantum systems. This
approach provided us with complete information about the combined state of the
quantum system under investigation. Our study has been conducted within the
fundamental framework of quantum measurements, as presented in Chapter 1, and
their applications in the context of quantum information processing. To develop our
solutions, we have built upon the framework of WGQED, as explained in Chapter 2.
This theoretical tool allows us to solve the closed dynamics of a quantum emitter
coupled with a bosonic field at every moment in time, hence grating access the joint
wavefunction.

Regarding our original contributions, in Chapter 3, we have explored the emer-
gence of non-classical behavior in a strong resonant coherent field. Based on fundamen-
tal results, we have observed two independent signatures of quantum contextuality:
the emergence of anomalous weak values and the negativity of the Wigner function.
By analytically computing the weak values and conditional Wigner function using
the Hamiltonian solution, we have identified the origins of these anomalies and
negativities. These findings have been published in Ref. [53].

In Chapter 4, we have investigated the non-destructive measurement of the spin
state in a degenerate four-level system (4LS). The 4LS has been made to interact
with fields of different natures: a resonant coherent field with Poissonian (classical)
statistics and a superposition of vacuum and a single photon with sub-Poissonian
(quantum) statistics. Our results have shown that, when limited to a one-photon
energy budget, we achieve quantum advantage in the pre-measurement process and in
the collapse step, provided the experiment is designed to target the appropriate degree
of freedom. These results are particularly relevant for key quantum information
protocols, such as the generation of cluster states [63]. Further details on these
findings can be found in Ref. [74]. Additionally, we have proposed a single-rail
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photon-photon gate, which serves as a two-qubit photonic gate based on the presence
(single photon) or absence (vacuum) of a photon as the logical basis. We have
considered the ideal scenario where the only imperfection arises from the change in
the temporal shape of the scattered field due to the finite duration of the pulse. To
assess the gate’s performance, we have characterized the error by computing the
state-averaged fidelity and the error process matrix. This analysis provided insights
into the types of errors and their nature, paving the way for the design of suitable
error correction protocols.

Finally, in Chapter 5, we have addressed the realistic scenario where the LRP is
implemented. We have extended the solutions obtained in Chapter 2 to include the
action of an in-plane magnetic field that is present throughout the dynamics and
used it to further characterize the protocol through relevant figures of merit.

Looking ahead, the closed system formalism offers promising perspectives, such as
the investigation of protocols to generate spin-spin entanglement through spin photon
entanglement generation [163, 164, 165]. We can also envision the proposition of
new protocols for building non-classical states of light. On a fundamental level, this
approach can be extended to investigate the thermodynamics of quantum systems
using quantum optical systems, offering insights into the energetic properties of these
platforms [39, 166].



Appendix A

General solution of time dependent
Hamiltonians

This appendix is devoted to the basis of the approach we use to solve the dynamics
of the systems of interest in this thesis, i.e. the collisional model. The problem
is simple: we want to solve the dynamics of a quantum system described by an
arbitrary time-dependent Hamiltonian H(t),

∂t|Ψ(t)⟩ = −iH(t)|Ψ(t)⟩. (A.1)

We will use the information that in the case of a time independent Hamiltonian H
the solution is given by [93],

|Ψ(t)⟩ = e−iHt|Ψ(t0)⟩ (A.2)

where |Ψ(t0)⟩ is the initial state of the quantum system.

A.1 Coarse-graining of time

We assume that the Hamiltonian H(t) is piecewise constant at intervals ∆t, in
which it has the value H(n∆t) in the time window t ∈ [n∆t, (n+1)∆t]. Hence, from
Eq. (A.2) we know that the solution in one interval is given by,

|Ψ((n+ 1)∆t)⟩ = e−i∆tH(n∆t)|Ψ(n∆t)⟩, (A.3)
= Un|Ψ(n∆t)⟩ (A.4)

from this point on we introduce the short-hand notation |Ψn⟩ = |Ψ(n∆t)⟩. Hence,
for a time interval t ∈ [t0 = M∆t, t = N∆t], with N > M integers, and ∆t =
(t− t0)/(N −M) we have the solution as a composition [167],

|ΨN⟩ = e−i(N−1)∆tHN−1e−i(N−2)∆tHN−2 . . . e−iM∆tHM |ΨM⟩ =

(
N−1∏
k=M

Uk

)
|ΨM⟩ = U (tN , tM)|ΨM⟩

(A.5)
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where the total evolution operator from time tM to tN U (tN , tM) was defined as
(from now on H(n∆t) = Hn),

U (tN , tM) = e−i(N−1)∆tHN−1e−i(N−2)∆tHN−2 . . . e−iM∆tHM (A.6)

= UN−1UN−2 . . . UM =
N−1∏
k=M

Uk (A.7)

where Uk are the evolution operators in the interval ∆t in which the Hamiltonian is
constant. In the continuous-time limit ∆t→ 0 the solution becomes exact. Notice
that for ∆t≪ 1 we might expand the constant evolution operator in a Taylor series,

Un = e−in∆tHn ≈ 1− in∆tHn +
(−in∆tHn)

2

2!
+

(−in∆tHn)

3!
+ . . . , (A.8)

the Eqs. (A.5) and (A.8) form the building block of the collisional model.

The time-dependent evolution operator has the following properties,

U (tM , tM) = 1 (A.9)
U (tN , tj)U (tj, tM) = U(tN , tM), ∀j ∈ [M,N ] (A.10)

U (t, s)U †(t, s) = 1 ∀t, s (A.11)
U †(t, s) = U(s, t) (A.12)

which are the same properties as the time-independent case. Importantly, the
semigroup property, Eq. (A.10), implies that the solution can be broken down
into pieces. Thus, Eqs. (A.5) and (A.6) provide a general way of dealing with
time-dependent dynamics. If the Hamiltonian turns out to commute at different
times, i.e [Hi, Hj] = δij, the exponential can be simply recombined and the solution
for the continuous time evolution operator U (t, t0) becomes,

U (t, t0) = lim
∆t→0

exp

{
−i

N∑
k=M

∆tH(k∆t)

}

= exp

{
−i
∫ t

t0

ds H(s)

}
. (A.13)

But this is not true in general. We consider now the non-commuting case, [Hi, Hj ] ̸=
δij. To write the solution in a similar way as Eq. (A.13) we have to define the
time-ordering operator T whose action is to always bring later times to the left. Let
A,B represent arbitrary time-dependent operators, then

T A(t1)B(t2) =

{
A(t1)B(t2) , if t1 > t2

B(t2)A(t1) , if t2 > t1

Thus, it is easy to see that when this operator acts upon commutators it makes them
vanish, i.e. T ([A(t1), B(t2)]) = 0, and in the BCH formula, (2.15), only the first two
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terms contribute. Hence, we are allowed to write,

T exp {A(t2) +B(t1)} = exp {A(t2)} exp {B(t1)} .

Finally, thanks to the protection of the time-ordering operator, we may write the
generic solution of a time-dependent problem as,

U (t, t0) = T exp

{
−i
∫ t

t0

ds H(s)

}
.
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Appendix B

Confining charges in quantum dots

Figure B.1: Magnetic field configurations. Level diagram for (a) the absence of
the magnetic field. (b) Faraday configuration. (c) Voigt configuration.

As outlined in the thesis introduction, quantum dots are tiny structures embedded
within semiconductor matrices. They are formed by combining materials with distinct
lattice parameters, usually InAs or GaAs [58]. These structures give rise to discrete
bound states, leading to well-defined optical transitions owing to the confinement of
charge movement in all three dimensions at the nanoscale. These materials possess a
direct band gap and exhibit radiative decay characteristics. Particularly, at cryogenic
temperatures (approximately 4 Kelvins), these materials display precise optical
transitions between discrete energy levels, making them excellent candidates for
generating single photons, serving as artificial atoms [42]. This characteristic allows
us to model a quantum dot as a qubit [59].

Charge carriers can be trapped within these quantum dots, which can be either
excess electrons in the conduction state or holes (electron vacancies) in the valence
states. The simplest form of charged quantum dots involves a single electron (or
hole) confined within the quantum dot. The electron possesses a spin of 1/2, with
relevant spin states denoted as {|↑⟩, |↓⟩}, with spin projection ±1/2, respectively.
States featuring a single charge can be optically excited by creating an electron-hole
pair alongside the initially confined charge. When a quantum dot holds a single
electron, due to the Pauli exclusion principle, the excited state comprises a singlet
configuration (two electrons with opposite spins) coupled with a hole. The hole states
exhibit a spin of 3/2, giving rise to four possible spin projections of ±1/2 and ±3/2.
The former are termed light-holes, while the latter are referred to as heavy-holes.
Although light and heavy holes are theoretically degenerate in energy, experimental
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setups typically involve quantum dots with a height significantly smaller than their
width. This vertical confinement accentuates the energy level differences between
light and heavy holes, lifting their degeneracy. In practice, only the energy levels
corresponding to heavy-holes are populated, represented as {|⇑⟩, |⇓⟩}. These heavy
holes are termed trions. The transitions |↓⟩ → |⇓⟩ and |↑⟩ → |⇑⟩ are selectively
driven by left (L) and right (R) circularly polarized light, corresponding to helicities
of −1 and +1, respectively, in accordance with angular momentum conservation.

It is possible to modify the optical properties of QD subjecting it to an external
magnetic field. The magnetic field can be oriented mainly in two manners:

1. Along the growth axis of the quantum dot: referred to as the Faraday configu-
ration. In this case, the magnetic field introduces Zeeman splittings to both
the spin and trion states, while the eigenstates remain associated with spin
projections along the z-axis.

2. Perpendicular to the growth axis: known as the Voigt configuration. This
orientation breaks rotational symmetry, resulting in a transformation of the
eigenstates. The newly defined eigenstates align with the in-plane axis. Zeeman
splittings are ∆e(h) = h̄ge(h)µB|B⃗|, where h̄ is the Planck constant, ge(h) is the
transverse electron (hole) Landé factor, µB is the Bohr magneton and |B⃗| is
the magnitude of the magnetic field.

B.1 Experimental details
In this section we provide the experimental parameters used to plot Fig. 5.3.
The experiment realized in Ref. [75] has the following parameters: The QD

that emits a photon with wavelength λ0 = 927nm. The authors use a blue-detuned
laser such that ∆λ = λlaser − λ0 = 1nm. The duration of the excitation pulse is
of 20ps, it adiabatically dresses and undresses the QD ground and excited states.
The fast relaxation of a longitudinal acoustic phonon is the mechanism that allows
to efficiently populate the excited state with high probability pexcited > 0.85. The
advantage of the LA assisted excitation scheme lies in the possibility of filtering
the emitted photon spectrally and not the polarization. The field is put in the
x−direction only (Voigt configuration) with magnitudes |Bx|= 150, 250, 350, and
450mT. The hole Landé factor is of gh = 0.38± 0.01. The trion radiative decay time
is of T (trion)

1 = 450± 20ps and the hole spin coherence time is T ⋆
2 ≥ 15± 5ns. These

values provide a lower bound for the electron spin coherence time T (spin)
2 , that is

limited by the lifetime of the excited state.
The high hole spin Landé factor gh allows a relatively weak magnetic field to

be sufficient for the implementation of a large number of precession cycles during
the time of spin coherence, which is longer than the trion lifetime T (trion)

1 , this is
the content of Fig. 5.3. In the Fig. 5.3 the vacuum decay rate γ was set to unity
by normalizing all the experimental values by the trion lifetime γexp = 1/T

(trion)
1 .

Within these experimental conditions it is possible to implement the LRP for cluster
state generation as reported in Ref. [63].
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Detailed calculation of the final real
photonic states

In this appendix, we provide detailed calculations based on the map (4.59) that
leads to the final photonic states in Eq. (4.66). We follow the protocol described in
Sec. 4.5.1:

1. First pulse: After the spin is in the |+⟩ state, the first step involves sending
the initial light pulse, |Φ[1]

in ⟩. This can be expressed as follows:(
|∅⟩1 + |R⟩1√

2

)(
|↓⟩+ |↑⟩√

2

)
=

1

2
(|∅⟩1 + |R⟩1) |↓⟩+ (|∅⟩1 + |R⟩1) |↑⟩ (C.1)

Map. (4.59)
−−−−−−−−→1

2

[
(|∅⟩1 + |R⟩1) |↓⟩+

(
|∅⟩1 − |R̃⟩1

)
|↑⟩
]

2. Spin rotation: Following the first pulse, a second rotation, denoted as U [1],
is applied to the spin:

1

2

[
(|∅⟩1 + |R⟩1) |↓⟩+

(
|∅⟩1 − |R̃⟩1

)
|↑⟩
]

(C.2)

→ 1

2
√
2
(|∅⟩1 + |R⟩1) (|↓⟩ − |↑⟩) +

(
|∅⟩1 − |R̃⟩1

)
(|↓⟩+ |↑⟩)

=
1√
2

((
|∅⟩+ (

|R⟩1 − |R̃⟩1
2

)

)
|↓⟩ − (

|R⟩1 + |R̃⟩1
2

)|↑⟩

)
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3. Second pulse: Subsequently, the second pulse, denoted as |Φ[2]
in ⟩, is sent:(

|∅⟩2 + |R⟩2√
2

)
1√
2

((
|∅⟩+ (

|R⟩1 − |R̃⟩1
2

)

)
|↓⟩ − (

|R⟩1 + |R̃⟩1
2

)|↑⟩

)
(C.3)

=
1

2
(|∅⟩2 + |R⟩2)

((
|∅⟩+ (

|R⟩1 − |R̃⟩1
2

)

)
|↓⟩ − (

|R⟩1 + |R̃⟩1
2

)|↑⟩

)
Map. (4.59)
−−−−−−−−→ 1

2

(
|∅⟩2

(
|∅⟩+ (

|R⟩1 − |R̃⟩1
2

)

)
|↓⟩+ |R⟩2

(
|∅⟩+ (

|R⟩1 − |R̃⟩1
2

)

)
|↓⟩

)
1

2

(
−|∅⟩2(

|R⟩1 + |R̃⟩1
2

)|↑⟩+ |R̃⟩2(
|R⟩1 + |R̃⟩1

2
)|↑⟩

)

4. Erase spin state information: Rotating the spin and rearranging the we
obtain,

1

2
√
2
|↓⟩

(
|∅⟩2

(
|∅⟩1 + (

|R⟩1 − |R̃⟩1
2

)

)
+ |R⟩2

(
|∅⟩+ (

|R⟩1 − |R̃⟩1
2

)

)
(C.4)

−|∅⟩2(
|R⟩1 + |R̃⟩1

2
) + |R̃⟩2(

|R⟩1 + |R̃⟩1
2

)

)

+
1

2
√
2
|↑⟩

(
−|∅⟩2

(
|∅⟩1 + (

|R⟩1 − |R̃⟩1
2

)

)
− |R⟩2

(
|∅⟩+ (

|R⟩1 − |R̃⟩1
2

)

)

−|∅⟩2(
|R⟩1 + |R̃⟩1

2
) + |R̃⟩2(

|R⟩1 + |R̃⟩1
2

)

)
=

1√
2

[
|↓⟩|ψreal

↓ ⟩ − |↑⟩|ψreal
↑ ⟩

]
where |ψreal

j ⟩ are given by Eq. (4.66).
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4LS subjected to a magnetic field:
spontaneous emission solution

By utilizing the LA-phonon assisted excitation scheme, it becomes feasible to
prepare the spin in the excited state with a high probability [75]. In this context, we
aim to address the experimental setup investigated in Ref. [75], which was further
employed for implementing the Lindner-Rudolph protocol [63]. The experimental
procedure is as follows: a slightly off-resonant coherent pulse, characterized by
ωp = ω0 + δω, where ωp represents the pump frequency, prepares the system in
the excited state with the spin |↑⟩ or |↓⟩, after which it is allowed to relax through
spontaneous emission.

Considering the experimental situation outlined in the previous paragraph, we
assume that there are no excitations in the R and L polarizations and the system are
initially in the excited state for one of the spins. The vacuum state of the temporal
mode j with polarization ’pol’ is denoted as |∅⟩pol,j, and the single photon state
is denoted as |1⟩pol,j ≡ b†pol(tj)|∅⟩pol,j (where the subscript will be dropped when
obvious). Thus, the initial state can be expressed as

|Ψζ(0)⟩ = |e⟩ ⊗ |ζ⟩ ⊗ |∅⟩ ⊗ |∅⟩. (D.1)

In other words, we assume that the QD is in the excited state due to the absorption
of a previous photon, the spin can be either up or down, and the R and L modes are
in vacuum. Depending on the spin state, the system will spontaneously emit either
one R or L photon. Therefore, we can restrict the search for solutions to the subspace
consisting of a vacuum and a single photon, as the Hamiltonian we are considering
conserves the number of excitations in the system. This implies that we truncate
our Fock basis for each temporal mode to the space spanned by {|∅⟩R(L),j, |1⟩R(L),j}.
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The state at time tN = N∆t can be written with the wavefunction ansatz

|Ψζ(tN)⟩ = f
(0),ζ
↑,e (tN)|e⟩|↑⟩|∅⟩|∅⟩+ f

(0),ζ
↓,e (tN)|e⟩|↓⟩|∅⟩|∅⟩ (D.2)

+
N−1∑
j=0

[
f
(1,R),ζ
↑,g (tN , tj)|g⟩|↑⟩|1R,j⟩|∅⟩+ f

(1,R),ζ
↓,g (tN , tj)|g⟩|↓⟩|1R,j⟩|∅⟩

]
+

N−1∑
j=0

[
f
(1,L),ζ
↑,g (tN , tj)|g⟩|↑⟩|∅⟩|1L,j⟩+ f

(1,L),ζ
↓,g (tN , tj)|g⟩|↓⟩|∅⟩|1L,j⟩

]
.

Here, |Ψζ(tN )⟩ indicates that at time t0 = 0, the state was |Ψζ(0)⟩, and the notation
of the coefficients provide the following information:

f
(number of photons,polarization),initial spin state
final spin state,energetic state . (D.3)

This wavefunction encompasses all the possible processes that can take place. Thus,
the objective of the following sections is to determine the coefficients of Eq. (D.2).
That is the goal of the next sections. To achieve this, we will gather the necessary
components. As discussed in Sec. A.1, the evolved state can be expressed as follows
(we assume, without loss of generality ζ =↑z):

|Ψ↑(tN)⟩ =

(
N−1∏
k=0

Uk

)
|Ψ↑(0)⟩ (D.4)

= f
(0),↑
↑,e (tN)|e⟩|↑⟩|∅⟩|∅⟩+ f

(0),↑
↓,e (tN)|e⟩|↓⟩|∅⟩|∅⟩

+
N−1∑
j=0

[
f
(1,R),↑
↑,g (tN , tj)|g⟩|↑⟩|1R,j⟩|∅⟩+ f

(1,R),↑
↓,g (tN , tj)|g⟩|↓⟩|1R,j⟩|∅⟩

]
+

N−1∑
j=0

[
f
(1,L),↑
↑,g (tN , tj)|g⟩|↑⟩|∅⟩|1L,j⟩+ f

(1,R),↑
↓,g (tN , tj)|g⟩|↓⟩|∅⟩|1L,j⟩

]
We consider a small time interval, ∆t≪ 1, which allows us to truncate Uk and other
terms to first order in ∆t. Any term that appears with ∆tn, n > 1, is neglected in
the evolution. Thus, we can express the evolution as follows:

U1 = 1− i∆t
(
Ĉeg(s⃗)σ

†σ − Ĉg(s⃗)σz

)
(D.5)

+
√
∆tγ

[(
b†L(t)σ − σ†bL(t)

)
⊗ ss† +

(
b†R(t)σ − σ†bR(t)

)
⊗ s†s

]
+∆t

γ

2

[(
b†L(t)σ − σ†bL(t)

)2
⊗ ss† +

(
b†R(t)σ − σ†bR(t)

)2
⊗ s†s

]
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It will be useful to define the rotation operators as follows:

Rg(s⃗) = exp
{
−i∆tĈg(s⃗)

}
, (D.6)

Re(s⃗) = exp
{
−i∆t

(
Ĉeg(s⃗)− Ĉg(s⃗)

)}
= exp {−i∆tω0} exp

{
−i∆tΩe

2
sx

}
(D.7)

These operators can be expressed as:

Rg(s⃗) = cos

(
∆t

Ωg

2

)
− in⃗s⃗ sin

(
∆t

Ωg

2

)
, (D.8)

Re(s⃗) = exp {−i∆tω0}
[
cos

(
∆t

Ωe

2

)
− isx sin

(
∆t

Ωe

2

)]
. (D.9)

Note that the first rotation operator, Rg(s⃗), depends only on Ωg, while the second
rotation operator, Re(s⃗), depends only on Ωe. Therefore, the first operator is
responsible for the physical precession in the ground state, while the second operator
promotes rotations in the excited state. With these essential tools in place, we are
now equipped to determine the coefficients needed for further analysis.

D.1 Finding the f (0),↑↑(↓),e(tN)

Before proceeding with the calculation, let’s consider the expected physical behav-
ior. As the system is in the excited state, we anticipate the emergence of spontaneous
emission, which will be accompanied by an exponential factor proportional to the
decay rate γ. Additionally, we must consider the influence of the magnetic field
on the spin. In the excited state, the field is oriented in the x-direction, implying
a rotation term proportional to the excited state Larmor frequency Ωe, causing
precession around the x-axis.

To determine f
(0),↑
↑(↓),e(tN), we need to project the final state |Ψ↑(tN)⟩onto the

subspace spanned by {|e, ↑ (↓), ∅, ∅⟩}. Thus, we can write:

f
(0),↑
↑(↓),e(tN) = ⟨e, ↑ (↓), ∅, ∅|Ψ↑(tN)⟩ (D.10)

= ⟨↑ (↓)|

(
N−1∏
k=0

⟨∅, ∅|Uk|∅, ∅⟩

)
|↑⟩

To find the matrix element U∅∅
∅∅, which is defined as:

U∅∅
∅∅ ≡ ⟨∅, ∅|U1|∅, ∅⟩ = ⟨∅, ∅|

[
1− i∆t

(
Ĉeg(s⃗)σ

†σ − Ĉg(s⃗)σz

)]
|∅, ∅⟩ (D.11)

+
√
∆tγ⟨∅, ∅|

[(
b†L(t)σ − σ†bL(t)

)
⊗ ss† +

(
b†R(t)σ − σ†bR(t)

)
⊗ s†s

]
|∅, ∅⟩

+∆t
γ

2
⟨∅, ∅|

[(
b†L(t)σ − σ†bL(t)

)2
⊗ ss† +

(
b†R(t)σ − σ†bR(t)

)2
⊗ s†s

]
|∅, ∅⟩
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In this context, the Kramer’s operator is denoted by the symbol U (gothic U),
represented as

Uintial field state R,intial field state L
final field state R, final field state L .

Doing the algebra, we obtain that U∅∅
∅∅ can be cast as:

U∅∅
∅∅ = ⟨∅, ∅|U1|∅, ∅⟩ = exp

{
−i∆t

[(
Ĉeg(s⃗)σ

†σ − Ĉg(s⃗)σz

)
− i

γ

2
σ†σ
]}

(D.12)

Assuming that the quantum dot (QD) is initially in the excited state |e⟩ and that
σz|e⟩ = |e⟩ and σ†σ|e⟩ = |e⟩, we can find the action of this operator on |e⟩:

U∅∅
∅∅|e⟩ = exp

{
−i∆t

[(
Ĉeg(s⃗)− Ĉg(s⃗)

)
− i

γ

2

]}
|e⟩ (D.13)

= exp
{
−γ
2
∆t
}

Re(s⃗)|e⟩

We also consider the action of this operator on the ground state |g⟩ using σz|g⟩ = −|g⟩
and σ†σ|g⟩ = 0,

U∅∅
∅∅|g⟩ = exp

{
−i∆t

[(
Ĉeg(s⃗)σ

†σ − Ĉg(s⃗)σz

)
− i

γ

2
σ†σ
]}

|g⟩ (D.14)

= exp
{
−i∆tĈg(s⃗)

}
|g⟩ = Rg(s⃗)|g⟩

It is worth highlighting the following identities:

N−1∏
k=m

(U∅∅
∅∅)k|g⟩ = exp

{
−i(tN − tm)Ĉg(s⃗)

}
|g⟩ = RN−m

g (s⃗)|g⟩ (D.15)

and,

N−1∏
k=m

(U∅∅
∅∅)k|e⟩ = exp

{
−γ
2
(tN − tm)

}
RN−m

e (s⃗)|e⟩ (D.16)

The coefficient f (0),↑
↑(↓),e(tN) is given by1:

f
(0),↑
↑(↓),e(tN) = ⟨↑ (↓)|

(
N−1∏
k=m

⟨∅, ∅|Uk|∅, ∅⟩

)
|↑⟩ (D.17)

= exp
{
−γ
2
(N −m)∆t

}
⟨↑ (↓)|R(N−m)

e (s⃗)|↑⟩

Finally,

f
(0),↑
↑(↓),e(tN) = exp

{
−γ
2
tN

}
⟨↑ (↓)|RN

e (s⃗)|↑⟩ (D.18)

The calculation is completely analogous if the initial spin is down, resulting in

1For the sake of generality we take the productory from k ∈ [m,N − 1], in our particular case
m = 0.
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the boxed expression:

f
(0),↓
↑(↓),e(tN) = exp

{
−γ
2
tN

}
⟨↑ (↓)|RN

e (s⃗)|↓⟩ (D.19)

D.2 Finding the f (1,R),↑↑(↓),e (tN , tj)

In this section we are going to find all the coefficients f (1,pol),↑
↑(↓),g (tN , tj), pol ∈ {R,L}.

We are computing concretly the coefficient f (1,R),↑
↑(↓),e (tN , tj), for L-polarization the

steps are completly analogous.The procedure is similar, we project the final state
|Ψ↑(tN)⟩ onto the subspace spanned by{|g, ↑ (↓), 1R,j, ∅L⟩}.

Due to the semigroup property of the unitary operator, the total evolution operator
can be split into three terms as follows:

U (tN , 0) =

(
N−1∏
k=j+1

Uk

)
Uj

(
j−1∏
l=0

Ul

)
(D.20)

Therefore, we can express the inner product ⟨g, ↑ (↓), 1R,j, ∅|Ψ↑(tN)⟩ as:

⟨g, ↑ (↓), 1R,j, ∅|Ψ↑(tN)⟩ = ⟨g, ↑ (↓), 1R,j, ∅|[, ] |Ψ↑(0)⟩

= ⟨g, ↑ (↓), 1R,j, ∅|

[(
N−1∏
k=j+1

Uk

)
Uj

(
j−1∏
l=0

Ul

)]
|e, ↑, ∅, ∅⟩

= ⟨g, ↑ (↓)|

[(
N−1∏
k=j+1

N−1⊗
k=j+1

⟨∅R,k, ∅L,k|Uk|∅R,k, ∅L,k⟩

)
(D.21)

⟨1R,j, ∅L,j|Uj|∅R,j, ∅L,j⟩

(
j−1∏
l=0

j−1⊗
l=j+1

⟨∅R,l, ∅L,l|Ul|∅R,l, ∅L,l⟩

)]
|e, ↑⟩

The last expression may not appear aesthetically pleasing, but the separation of
indexes will be useful in the subsequent lines. Reading from right to left, we observe
that the coefficient f (0) that we previously computed will appear in the purple terms
since we know how to handle the unitary between vacuum states. Now, let’s focus
on the new ingredient highlighted in red, which connects the vacuum subspace to
the subspace containing one R-photon. This implies that the photon was created at
some point in time.

Computing the operator U∅∅
1∅, we obtain:

U∅∅
1∅ =

√
∆tγσ ⊗ s†s (D.22)
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Inserting this result in Eq. (D.21), we find:

⟨g, ↑ (↓), 1R,j, ∅|Ψ↑(tN)⟩ =
√

∆tγ⟨↑ (↓)|RN−j
g (s⃗)|↑⟩f (0),↑

↑,e (tj) (D.23)

=
√

∆tγr↑(↓),↑g f
(0),↑
↑,e (tj).

Here, r↑(↓),↑g (tN , tj) = ⟨↑ (↓)|RN−j
g (s⃗)|↑⟩. Finally, we have:

f
(1,R),↑
↑(↓),g (tN , tj) = ⟨g, ↑ (↓), 1R,j, ∅|Ψ↑(tN)⟩ =

√
∆tγr↑(↓),↑g f

(0),↑
↑,e (tj) (D.24)

This elegant result has a clear physical interpretation: on the right-hand side,
we have the coefficient f (0),↑

↑,e (tj). The system rotates and can emit a photon. If the
intermediate spin state is |↑⟩, it can only emit an R-photon, and the system ends
up in the state |g, ↑⟩. Once in the ground state with an initial spin of ↑, it starts
precessing under the influence of the magnetic field and ends up in one of the possible
spin states. The calculation is completely analogous for L-polarization. 2, , leading
to:

f
(1,L),↑
↑(↓),g (tN , tj) = ⟨g, ↑ (↓), 1L,j, ∅|Ψ↑(tN)⟩ =

√
∆tγr↑(↓),↓g f

(0),↑
↓,e (tj) (D.25)

It is important to note that the intermediate spin state here is ↓. With these insights,
we have obtained all the coefficients and, consequently, the wave function.

The wave-function coefficients:

We have,

f
(0),↑
↑(↓),e(tN) = exp

{
−γ
2
tN

}
⟨e, ↑ (↓)|RN

e (s⃗)|e, ↑⟩ (D.26)

f
(1,R),↑
↑(↓),g (tN , tj) = ⟨g, ↑ (↓), 1R,j, ∅|Ψ↑(tN)⟩ =

√
∆tγ⟨g, ↑ (↓)|RN−j

g (s⃗)|g, ↑⟩f (0),↑
↑,e (tj)

(D.27)

f
(1,L),↑
↑(↓),g (tN , tj) = ⟨g, ↑ (↓), 1R,j, ∅|Ψ↑(tN)⟩ =

√
∆tγ⟨g, ↑ (↓)|RN−j

g (s⃗)|g, ↑⟩f (0),↑
↓,e (tj)

(D.28)

where,

Rk
g (s⃗) ≡ Rg(s⃗, tk) = 1 cos

(
tk
Ωg

2

)
− in⃗s⃗ sin

(
tk
Ωg

2

)
, (D.29)

Rk
e (s⃗) ≡ Re(s⃗, tk) = exp {−itkω0}

[
1 cos

(
tk
Ωe

2

)
− iσx sin

(
tk
Ωe

2

)]
.

(D.30)

2In this case, we find that ⟨∅|bL(tN )⟨∅R,N |UN |∅R,N ⟩|∅L,N ⟩ =
√
∆tγσ ⊗ ss†
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D.3 Continuous time wave-function
To obtain the continuous time limit, we make the following substitutions:

tN → t

tj → u, (just a dummy integration variable)
bN√
∆t

→ b(u)

N−1∑
j=0

∆t→
∫ t

0

du

By following the procedure, we obtain the wave function in continuous time:

|Ψ↑(↓)(t)⟩ = exp
{
−γ
2
t
}
[⟨e, ↑ |Re(s⃗, t)|e, ↑ (↓)⟩|e⟩|↑⟩|∅⟩|∅⟩+ ⟨e, ↓ |Re(s⃗, t)|e, ↑ (↓)⟩|e⟩|↓⟩|∅⟩|∅⟩]

(D.31)

+
√
γ

∫ t

0

du
[
⟨g, ↑ |Rg(s⃗, t− u)|g, ↑⟩f (0),↑(↓)

↑,e (u)b†R(u)
]
|g⟩|↑⟩|∅⟩|∅⟩

+
√
γ

∫ t

0

du
[
⟨g, ↑ |Rg(s⃗, t− u)|g, ↓⟩f (0),↑(↓)

↓,e (u)b†L(u)
]
|g⟩|↑⟩|∅⟩|∅⟩

+
√
γ

∫ t

0

du
[
⟨g, ↓ |Rg(s⃗, t− u)|g, ↑⟩f (0),↑(↓)

↑,e (u)b†R(u)
]
|g⟩|↓⟩|∅⟩|∅⟩

+
√
γ

∫ t

0

du
[
⟨g, ↓ |Rg(s⃗, t− u)|g, ↓⟩f (0),↑(↓)

↓,e (u)b†L(u)
]
|g⟩|↓⟩|∅⟩|∅⟩
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