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Résumé: Les véhicules électriques connectés et
autonomes (CAV) qui maximisent l’efficacité én-
ergétique peuvent être considérés comme une
approche intégrée pour répondre aux différentes
tendances, notamment la transition verte et
numérique, dans l’industrie automobile. Les
stratégies d’économie d’énergie pour les CAV peu-
vent être classées en écoroutage (ER) et écocon-
duite (ED). Avec l’augmentation de la pénétration
des CAV, ces véhicules peuvent coopérer plutôt
que de se disputer le droit de passage, ce qui
donne naissance aux véhicules coopératifs con-
nectés et automatisés (CCAV). En fonction du
niveau d’information partagé et de la motivation
pour l’efficacité énergétique, les stratégies d’ED
des CCAV peuvent être catégorisées comme Non
Coopératives (NC), Coopératives (C) et Coopéra-
tives Centralisées (CC). Les objectifs principaux de
cette thèse sont d’évaluer expérimentalement une
stratégie de base connue de NC-ED pour un seul
CCAV, d’obtenir des solutions analytiques d’ED
pour une flotte de CCAV électriques avec différents
niveaux de coopération pour des scénarios de pelo-
ton et d’intersection sans signalisation, et d’évaluer
l’influence des différents niveaux de coopération
sur la consommation d’énergie de la flotte.

La thèse présente en premier lieu une stratégie
NC-ED connue pour un seul CAV qui constitue la
base de cette recherche. L’ED est formulé comme
un Problème de Commande Optimale (OCP), pour
un scénario de suivi de voiture et sans contraintes,
et résolu par le Principe du Minimum de Pon-
tryagin (PMP). La stratégie de suivi de voiture
NC-ED de base prédit le mouvement du véhicule
d’avant en cas d’accélération constante (CA) afin
de permettre des solutions analytiques. Dans cette
thèse, des modèles de prédiction plus sophistiqués
du véhicule d’avant, à savoir le CA-AB et le EDM-
LOSP, sont développés en l’absence de communi-
cation V2V. Les résultats indiquent que le véhicule
ego utilisant l’EDM-LOSP est plus performant que
le CA-AB avec un gain d’énergie de 4 %, tandis

que le CA-AB est plus performant de 4.5 % que le
CA de base sur des trajets urbains.

Le scénario de base NC-ED de suivi de voiture
est étendu à un scénario ED en peloton. Un OCP
est formulé pour les trois niveaux de coopération et
des solutions analytiques sont obtenues à l’aide du
PMP. Les pelotons utilisant les trois stratégies de
coopération sont évalués par rapport à un scénario
de référence utilisant un régulateur de vitesse adap-
tatif dans un environnement de simulation. Les
résultats indiquent une économie d’énergie plus
importante avec des niveaux de coopération plus
élevés. Le peloton CC-ED présente une économie
d’énergie meilleure de 2,5 %, sur un cycle WLTC
High, par rapport au peloton NC-ED. Cette thèse
présente en outre un OCP formulé pour un ensem-
ble de CCAVs traversant en toute sécurité une in-
tersection sans signalisation en minimisant la con-
sommation d’énergie. L’OCP est formulé pour
deux niveaux de coopération : NC-ED et C-ED.
L’OCP est résolu à l’aide de PMP, des solutions
sont présentés. Les deux stratégies sont éval-
uées par rapport à l’IDM comme référence pour
différents débits. Les résultats indiquent que la
stratégie C-ED est la plus performante, avec un
gain énergétique de 23,7 %.

Enfin, cette thèse présente une approche ex-
périmentale de mise en œuvre de la stratégie de
référence NC-ED dans une voiture électrique Re-
nault Zoé. Les solutions ED sont mises en œu-
vre via une tablette, qui affiche la vitesse optimale
calculée pour que le conducteur puisse la suivre
dans les secondes suivantes. La mise en œuvre de
l’algorithme se compose de deux parties : un profil
de vitesse prévu au début du voyage et un profil
de vitesse ED calculé en temps réel afin de con-
seiller le conducteur. Dans ce travail, les profils
de conduite sont analysés a posteriori pour étudier
l’impact des hypothèses faites au début d’un voy-
age. Les résultats indiquent l’importance d’avoir
des informations précises sur le trafic et les feux
de circulation.
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Abstract: Electric Connected and Autonomous
Vehicles (CAVs) that maximize energy efficiency
can be considered an integrated approach to meet
the various trends, mainly green and digital tran-
sition, in the automotive industry. Energy-saving
strategies for CAVs on the vehicle level can be cat-
egorized into Eco-Routing (ER) and Eco-Driving
(ED). With increased penetration of CAVs, such
vehicles can cooperate rather than compete for
right of way, giving rise to Cooperative Connected
and Automated Vehicles (CCAVs). Based on the
level of information shared and the motivation for
energy efficiency, the behavior of CCAVs can be
categorized into Non-Cooperative (NC), Cooper-
ative (C), and Centralized Cooperative (CC) ED
strategies. Each CCAV optimizes for itself in NC-
ED and shares only its instantaneous states with
its neighbors, while in C-ED, it shares its future
intentions. Each CCAV’s control action optimizes
for the entire group in the CC-ED. The main ob-
jectives of this thesis are to experimentally assess a
known baseline NC-ED strategy for a single CAV;
to obtain analytical eco-driving solutions for a fleet
of electric CCAVs, with varying levels of coopera-
tion, for platooning and un-signalized intersection
scenarios; and to evaluate the influence of the vary-
ing levels of cooperation, namely, NC-ED, C-ED,
and CC-ED, on fleet energy consumption.

The thesis first introduces a known NC-ED
strategy for a single CAV that forms the basis
for this thesis. ED is formulated as an opti-
mal control problem for an unconstrained and car-
following scenario and solved using Pontryagin’s
Minimum Principle (PMP). The baseline NC-ED
car-following strategy predicts the lead vehicle’s
motion under Constant Acceleration (CA) to facil-
itate analytical closed-form solutions. In a chap-
ter of this thesis, more sophisticated lead vehicle
prediction models, namely Constant Acceleration-
Average Braking (CA-AB) and EDM-LOS based
Predictor (EDM-LOSP), are developed in the ab-
sence of V2V communication. The results distin-

guished the performance of the predictors in urban
routes, where the ego vehicle using EDM-LOSP
performed better than CA-AB with 4 % energy
gain, while CA-AB had 4.5 % over the baseline
CA.

The baseline NC-ED car-following scenario is
extended to a platooning ED scenario. An OCP
is formulated for the three levels of cooperation,
and analytical solutions are obtained using PMP.
Platoons with the three cooperative strategies are
evaluated against a baseline using Adaptive Cruise
Control in a simulation environment. The results
indicate higher energy saving with increased lev-
els of cooperation. The CC-ED platoon performed
best with 2.5 % energy saving over the NC-ED
platoon on a WLTC High cycle.

This thesis further presents an OCP formulated
for a set of CCAVs safely crossing an un-signalized
intersection while minimizing energy consumption.
The OCP is formulated for two levels of cooper-
ation: NC-ED and C-ED. The conflicts that arise
in an intersection are analyzed and transformed
into constraints. The OCP with the constraints is
solved using PMP, and analytical solutions are pre-
sented. The two strategies are evaluated against
Intelligent Driver Model (IDM) as a baseline for
various flow rates. The results indicate that C-ED
performs best, with 23.7 % energy gains over IDM.

Finally, this thesis presents an experimental im-
plementation of the baseline NC-ED strategy in a
Renault Zoe electric car. The ED solutions are im-
plemented via a tablet, that displays the computed
optimal speed for the driver to follow in the next
second. The implementation of the algorithm con-
sists of two parts: an ED speed profile predicted
at the trip’s start under certain assumptions and
an ED speed profile computed in real-time advis-
ing the driver. In this work, the driven profiles are
analyzed a posteriori to study the impact of the
assumptions made at the start of a trip. The re-
sults indicate the importance of having accurate
information on traffic and traffic light behavior.
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1 - Introduction

The automotive sector is at the crossroads of various trends changing in the
industry. In particular, trends related to green transition (electromobility, hydrogen
fuel cells, etc.) and digital transition (connectivity, autonomous driving, software,
etc).

Climate change mitigation has led the green transition, forcing automakers to
embrace both fully and partially electrification. The year 2020 saw an increase of
registrations for such cars more than double to 1.4 million in the European Union
[1]. All European carmakers are set to widely increase their portfolio of electricity-
powered cars in the coming years, with almost all of them publicly committing to
ambitious electrification goals until 2030 [1].

The digital transition, mainly led by the vehicle itself and the consumer expe-
rience with it, is shifting the automotive sector from hardware-oriented to software
and digital services. Connectivity and autonomous driving were identified as topics
under digitalization having a high degree of impact and uncertainty on the au-
tomotive industry [2]. Major auto manufacturers have started building toward a
fully automated vehicle, with Advanced Driver Assistance Systems (ADAS) such
as Adaptive Cruise Control (ACC), parking, and lane-keeping assist, already avail-
able. It is expected that level 4 automated vehicles will be available for sale in the
next decade [3]. Autonomous functions heavily rely on onboard sensors such as
radar, lidar, and camera systems. In parallel, innovation in the field of Informa-
tion and Communications Technology (ICT) technology, such as Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I), has exemplified the possibilities of au-
tonomous functions. V2V communication enables vehicles to communicate and
access information about the current state (speed, position, and acceleration) of
other surrounding V2V-enabled cars, and V2I communication provides information
on traffic congestion, traffic light status, and local speed suggestions.

To align with climate change mitigation goals and digitalization trends, electric
Connected and Autonomous Vehicles (CAVs) that maximize energy efficiency can
be considered as an integrated approach to this end.

1.1 . Eco-X Strategies

While several efforts focus on safety, software, and sensing, energy has not
been the core consideration in developing CAVs. Even with Electric Vehicles (EV)1,
overcoming barriers such as range anxiety and increased acceptance by the public
requires new energy-efficiency measures. Energy-saving strategies, also referred to

1The acronym EV refers to battery electric vehicles in this thesis unless stated oth-erwise
1



as eco-strategies, can correspond to the control of traffic infrastructure or vehicles.
The strategies on infrastructure include dynamic control of speed limits and traffic
light duty cycles to influence macroscopic traffic parameters. Vehicle-level control
strategies can be classified into two categories: Eco-Routing (ER) and Eco-Driving
(ED). The former involves finding routes with the lowest energy cost or environ-
mental impact. The latter, which forms the main focus of this thesis, corresponds
to finding a speed trajectory on a given route that minimizes energy consump-
tion. A brief overview of the planning and control layers of a CAV is shown in
Fig. 1.1. Mission planning at the highest layer decides the route for a given origin
and destination, and motion planning generates the speed trajectory.

Mission Planning

Mode Planning

Motion Planning

Motion Control

Powertrain Control

Route

Stops, Modes, Horizon, ...

Speed, Lane

Pedals, Steering

Actuators
Figure 1.1: Logical Scheme of Planning and Control layers in a CAV

Some simple heuristic ED techniques acting directly on the vehicle speed or
acceleration include maintaining a low and constant speed and smooth accelera-
tion/deceleration. While these rules are intuitive and easy to implement, the true
potential of ED can be achieved if it is regarded as a mathematical Optimal Con-
trol Problem (OCP). In such a framework, the OCP is formulated to minimize a
cost while respecting all the motion constraints. In the context of ED, the energy
(either electricity or fuel based on the powertrain) consumed is the minimized cost.
The constraints a CAV is subject to can be twofold. The first is due to its phys-
ical actuators limitations, such as maximum torque or acceleration. The second
depends on a CCAV’s driving scenario, such as, avoiding a rear-end collision while
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following a car or avoiding a lateral collision in an intersection. Formulation of
such constraints requires guessing or predicting the surrounding vehicle behavior
and traffic patterns.

1.2 . Cooperative Levels

With increased penetration of CAVs, opportunities increase to not only access
current vehicle state information, but also deliberately exchange future intentions.
Such behavior can ultimately reduce the need to predict the surrounding traffic
patterns and vehicle behaviors or increase the certainty of such predictions, enabling
better coordination and energy efficiency. Automated vehicles can also cooperate
rather than compete for right of way giving rise to Cooperative Connected and
Automated Vehicles (CCAVs). Such vehicles could be designed to exhibit altruistic
behavior [4, 5] in coordinating their movements for a "common good", such as
lowering traffic congestion or fleet energy consumption. Therefore, cooperation
in this thesis refers to sharing of information and coordinating movements for a
common good.

Based on the level of information shared and the motivation for energy ef-
ficiency, the behavior of CCAVs can be categorized into three types i.e., Non-
Cooperative, Cooperative, and Centralized Cooperative ED strategies. In the
Non-Cooperative ED (NC-ED), each CCAV optimizes for itself and shares only
its instantaneous states with its neighbors (e.g., through measurements taken by
other vehicles). In the Cooperative ED (C-ED) strategy, each CCAV still optimizes
for itself but shares its future intentions with the neighboring vehicles. In the Cen-
tralized Cooperative ED (CC-ED), each CCAV’s control action optimizes for the
entire group. Figure 1.2 depicts the three levels of cooperation.

Several driving scenarios can be the object of ED. A few of them include
accelerating to a cruise speed, cruising, green waving, eco-approach-and-departure,
car-following/platooning, intersection crossing, and lane changing. This thesis will
focus mainly on two ED scenarios, i.e.,platooning and intersection crossing.

1.3 . Car-Following/Platooning ED Scenario

A car-following ED scenario involves a vehicle closely following another while
maintaining a safe inter-vehicle distance and minimizing energy consumption. Hu-
man drivers are often reactive when following other cars, as their view is usually
blocked by the preceding vehicle. In fact, automated vehicles equipped with re-
active control strategies such as ACC don’t necessarily do better than convention
baseline vehicles in terms of fuel economy [6]. Study [6], concluded that control
algorithms relying upon the prediction of the preceding vehicle’s future motion,
consistently offered improvements in fuel economy. Accurately predicting the pre-
ceding vehicle’s motion for the next few seconds is a challenging task. In fact, an
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min min

(a) NC-ED

min min

(b) C-ED

min

(c) CC-ED
Figure 1.2: Schematic showing the various cooperative schemes. Each CCAVis denoted by i, with vSPi and xi representing the velocity set point and posi-tion of the i-th vehicle. v̂i−1 represents the velocity sensed (Non-Cooperative)or shared (Cooperative). The traffic lights communicate the SPaT information.
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Figure 1.3: Schematic of eco-driving platooning scenario in a CCAV environ-ment. Each CCAV communicates its intended motion to the following CCAV.This image was created on https://education.icograms.com/

inaccurate prediction could ultimately worsen energy consumption than a purely
reactive control strategy [7, 8]. Aided with sensing capabilities CCAVs can sense
the preceding vehicle’s states and predict its motion using simple models such as
constant velocity or constant acceleration to more complex non-linear and data-
driven models. Prediction models for the preceding vehicle’s motion form the basis
of Chap. 3 of this thesis. In an environment of CCAVs, additional information via
cooperative intention sharing from the preceding CCAV could improve prediction
accuracy. Such a scenario is studied in Chap. 4. Note that each CCAV still opti-
mizes for itself but only shares its intentions as stated in the Cooperative scheme.

A car-following scenario in which several vehicles coordinate in longitudinal
formations is called platoons or strings. Tight platooning gained popularity for in-
creased throughput. At short following distances, the aerodynamic drag coefficient
is smaller especially in heavy-duty trucks, resulting in energy saving [9, 10]. In a
platoon of CCAVs, each vehicle can share its intentions or coordinate its move-
ments for a common goal, such as energy [11], string stability [12], or formation
control [13], as in the Centralized Cooperative scheme. Information flow in pla-
toons can vary from one implementation to another, such as, communication with
predecessor only; with predecessor and leader only; or with predecessor, follower,
and leader. A platooning scenario with intentions shared from the predecessor to
the immediate follower is shown in Fig. 1.3. The study of different cooperative
levels in a platooning ED scenario, formulated as an OCP, is the main focus of
Chap. 4 of this thesis.

1.4 . Intersection ED Scenario

An intersection is a shared resource that only a limited number of vehicles can
use simultaneously. In most intersections, priority is controlled by traffic lights with
fixed timings scheduled offline or using stop signs. To reduce idling and improve
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throughput, real-time traffic timing control using loop detectors measure traffic
state to override the offline timetables. In a connected and automated environment,

Figure 1.4: Schematic of eco-driving intersection scenario with acoordinator in a CCAV environment. This image was created onhttps://education.icograms.com/
intelligent traffic lights can communicate their Signal Phase and Timing (SPaT)
to the upcoming CCAVs, allowing them to approach and depart the intersection
to reduce travel time or energy consumption. The latter is often referred to as
eco-approach-and-departure (eco-AND) in literature [14, 15]. However, with a
100 % penetration of CCAVs, vehicles can communicate and coordinate their arrival
amongst each other or with a central coordinator, making physical traffic lights
redundant. Such a scenario is depicted in Fig. 1.4. Some of the benefits of
eliminating traffic lights in an all-automated environment are discussed in [16].
Chapter 5 of this thesis aims at finding ED speed profiles for CCAVs in an un-
signalized intersection with varying levels of cooperation.

1.5 . Research Objective

Earlier works have studied the motion planning of CAVs in platooning and in-
tersection crossing scenarios as a dynamic-constrained optimization problem. The
studies predominantly consider their objective functions seeking to minimize either
one or a combination of the following criteria: traffic congestion, energy consump-
tion, or comfort. Scenario-specific objective functions, such as string stability in
a platoon or criteria-based crossing order assignment in an intersection, are also
considered in the formulation. Very few studies systematically evaluate the effects
of cooperative behavior on energy consumption. Often solution methods to the
motion planning optimization problem rely on numerical methods, and closed-form
analytical solutions rarely exist. The various solutions methods to such problems
can be categorized as variational, graph search, and incremental search sample [17].
Under this categorization, Pontryagin’s Minimum Principle (PMP) is a variational
approach that reduces the optimal control problem to a Two Point Boundary Value
Problem (TPBVP), and the solution of such, if obtainable, leads to a closed-form
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analytical solution. While numerical methods allow for complex non-linear formu-
lations, their computation time limits them from a real-time implementation. In
addition to being computationally fast, analytical solutions help us gain insight into
system behavior, offering a clear view of how variables and interactions between
them affect the result.

The main objectives of this thesis are as follows:

• To experimentally assess a known baseline Non-Cooperative ED strategy for
a single CAV

• To obtain analytical eco-driving solutions for a fleet of electric CCAVs, with
varying levels of cooperation, for platooning and un-signalized intersection
scenarios

• To evaluate the influence of the varying levels of cooperation, namely, NC-
ED, C-ED, and CC-ED, on fleet energy consumption.

1.6 . Thesis Outline

This thesis includes six chapters aiming to meet the stated research objective.
Each chapter starts with a review of the relevant literature and the gaps in the
topic addressed in it.

Chapter 2 This chapter reviews the works of a known baseline Non-Cooperative
ED strategy for a single CAV [18, 19]. Its formulation, solution method, and imple-
mentation in unconstrained and car-following scenarios are discussed. The works
presented in this chapter forms the basis for the rest of this thesis, especially
chapters 4 to 6.

Chapter 3 The car-following scenario presented in Chap. 2 uses a simple Con-
stant Acceleration (CA) model to predict the preceding/lead vehicle’s motion to
facilitate closed-form analytical solutions. However, more complex non-linear pre-
diction models yield better prediction accuracy. Chap. 3 focuses on developing ve-
locity predictors for a lead vehicle. Two predictors, namely, Constant Acceleration-
Average Braking (CA-AB) and Enhanced Driver Model with Line-of-Sight Predictor
(EDM-LOSP), are developed and applied to a mild-hybrid vehicle using Dynamic
Programming (DP) based Eco-Driving Optimal Controller (EDOC). The perfor-
mance of the proposed predictors is evaluated for energy efficiency and travel time.

Chapter 4 This chapter discusses the platooning ED scenario. Analytical so-
lutions for an ED platoon of CCAVs are obtained for the three levels of cooperation.
The performance of the algorithms is evaluated in terms of energy efficiency and
string compactness against a standard ACC as the baseline. A theoretical analysis
of the string stability of the three algorithms is also presented.
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Chapter 5 The main objective of this chapter is to obtain analytical solutions
to the ED problem of an electric CCAV crossing an un-signalized intersection sub-
ject to safety constraints. As in the platooning ED-Scenario, the aim is to explore
the benefits of cooperation. However, only NC-ED and C-ED are presented and
their results are evaluated in terms of energy consumption for varying traffic flows
and compared against an Intelligent Driver Model (IDM) as a baseline

Chapter 6 This chapter accomplishes the first stated research objective. The
baseline NC-ED strategy presented in Chapter 2 is implemented on an experimental
setup involving a Renault Zoe electric car using a Visual Assistance System (VAS).
The driver follows the advised speed on the VAS on a given route. The experiment
results include a posteriori analysis of five trips on the impact of the assumptions
made, namely traffic, traffic queue, and signal phase, on the predicted ED speed
profiles.
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2 - Eco-Driving Optimal Control for an Elec-
tric CCAV

This chapter introduces the known NC-ED baseline scenario.

2.1 . State-of-the-Art

Eco-driving aims to minimize energy consumption by adjusting the vehicle’s
speed directly or indirectly using ADAS advisory systems. With the advent of
CCAVs, ED can be enforced more effortlessly and directly than with human drivers.
As stated in the introduction, approaches to ED involve either using heuristics rules
or more rigorous mathematical optimization formulation. While heuristic rules are
generally intuitive, the full potential of ED can be achieved only if it is studied as
OCP and implemented in a CCAV.

In the past decade, ED has been formulated as an OCP and solved using
different methods [1] such as (i) Dynamic Programming (DP), (ii) Direct Methods
and (iii) Indirect methods. DP was developed by Bellman [2], based on the principle
of optimality to obtain globally optimal solutions. Reference [3] formulate an ED-
OCP for an EV with a given route and the constraints defined by the route features
and lead vehicle. Their solution obtained using DP shows a 19 % energy saving
compared to constant acceleration/deceleration and cruising at constant speed.
The authors in [4] obtained ED cycles for a Hybrid Electric Vehicle (HEV) using DP
and investigated the trade-off between problem complexity and optimality. Other
studies using DP to solve ED-OCP include [5, 6, 7]. While DP provides globally
optimal solutions which serve as a benchmark, the "curse of dimensionality" leading
to an increased computational burden, is a hurdle to real-time implementation.
Efforts such as approximate DP [8] and GPU parallelization [9] try to overcome
this drawback.

In a direct method, the OCP is discretized and transcribed into a finite-
dimensional non-linear programming problem and solved using well-known opti-
mization techniques. The direct method is predominantly used in the Model Pre-
dictive Control (MPC) framework. A reference velocity computed a priori, using
DP, for a given route is tracked using MPC in [10], for ACC. Using direct methods,
different collaborative levels in platoons and their influence on energy consumption
and platoon length are studied in [11]. Other efforts include [12, 13]. While direct
methods allow for complex problem formulation, non-linearity and non-convexity
make it challenging to find an optimum properly.

An indirect method converts the optimization problem to a set of differen-
tial equations, required to satisfy conditions at its boundaries through applying
Pontryagin’s Minimum Principle (PMP) [14]. Such equations are referred to as

11



Boundary Value Problems (BVP). The optimal solution is found by solving for the
system of differential equations that satisfies boundary and/or interior-point condi-
tions. PMP facilitates analytical solutions that help understand theoretical mecha-
nisms and provide explicable results if BVP is solvable. However, non-linearity and
non-convexity remain a hurdle in solving them, and numerical methods, such as
multiple shooting, collocation, etc., are often employed. Reference [15], proposed
a Non-Cooperative EcoACC algorithm, where an ACC is formulated as an OCP (a
running cost for the cruising mode and another for the following mode). The solu-
tions are obtained numerically using an Iterative Pontryagin’s Minimum Principle
(iPMP) algorithm described in [15]. The authors extend their work in [16] using
the same algorithm to Cooperative-EcoACC.

The authors in [17, 18] formulate an ED-OCP for an EV with non-linear vehicle
dynamics and a detailed battery model. The control inputs are chosen as the
powertrain traction up and the friction braking ub force. The limits on up (i.e.
up,max and up,min) result from maximum and minimum (braking) motor torques,
Tm,max and Tm,min, respectively. Similarly, the maximum and minimum limits on
ub are given by ub,max and 0, respectively. The OCP is solved using PMP, and the
optimal control input consists of six modes, namely,

• Maximal traction (up = up,max, ub = 0)

• Optimal traction (up = u+p , ub = 0)

• Coasting (up = 0, ub = 0)

• Optimal powertrain braking (up = u−p , ub = 0)

• Maximal powertrain braking (up = up,min, ub = u0)

• Maximal braking (up = up,min, ub = ub,max)

where u+p and u−p are functions of the states and co-states. The switching between
the modes is determined by the conditions on the co-states. The optimal velocity
consists of up to six modes with different possible sequences of the control input
determined by the boundary conditions. However, for a given set of boundary con-
ditions, knowing the number of modes and the optimal sequence of these modes,
a priori, is not trivial. Hence, numerical methods are used to obtain the optimal
solution. Even assuming a mode sequence (e.g. a full six modes in the above or-
der), it is generally impossible to obtain a closed-form solution. To facilitate BVP
treatment, the OCP is simplified to obtain closed-form solutions [19, 18], that are
fast to compute and real-time implementable. The authors extend their simplified
formulation to include a lead vehicle (i.e., car-following) as a pure state-inequality
constraint and present closed-form analytical solutions in [20].

Chapter Outline This chapter reviews the works of [18, 20, 17], where an-
alytical closed-form solutions are presented. Sect. 2.2 describes the ED-OCP for-
mulation, its solution using PMP, and its implementation. The assumptions made

12



to obtain the closed-form analytical solutions are also stated. Sect. 2.3 reviews the
NC-ED car-following scenario presented in [20]. The addition of a lead vehicle as a
state-inequality constraint to the ED-OCP in Sect. 2.2 is described. The solution
to the constrained ED-OCP and its implementation are presented in Sect. 2.3.2
and Sect. 2.3.3, respectively. Sect. 2.5 presents concluding remarks. The solutions
presented in this chapter form the basis for the rest of this thesis.

2.2 . Unconstrained - EDOC

This section aims to find the velocity profile that minimizes the battery energy
consumption of an electric CCAV, going from velocity v0 to Vf over a time Tf and
a distance Df .

2.2.1 . OCP Formulation
The formulation of an optimal control problem requires [21]: (i) a mathematical

model describing the process to be controlled (ii) specification of the performance
criterion or the objective function and (iii) the physical constraints.

2.2.1.1 . Vehicle Model
The longitudinal motion of the vehicle is captured by a simple model given by

Newton’s second law,

ẋ = v,

mv̇ = Ft − (Fa + Fr + Fg)− Fb,

= Ft −
1

2
ρacdAfv

2 −mgcr −mg sin(α(x))− Fb ,

= (Ft − FR − Fb)/m ,

(2.1)

where Ft, Fa, Fr, Fg, and Fb are the traction force given by the powertrain at
the wheels, the aerodynamic resistance, rolling resistance, resistance due to gravity
and the mechanical breaking force, respectively. The states of the system, v and
x, represent the velocity and position of the vehicle, respectively. m is the mass
of the vehicle and a = v̇ is the acceleration. Considering single-gear transmissions
only, the inertial mass is constant and incorporated into m. The parameters that
contribute to the aerodynamic drag are ρa, cd, Af , denoting the external air
density, aerodynamic drag coefficient, and vehicle frontal area, respectively. The
parameters contributing to the rolling and gravity resistances are cr, the rolling
resistance coefficient, g, the gravitational constant, and α, the road slope as a
function of the position x. FR represents the collective drag forces.

To facilitate closed-form analytical solutions, the non-linear vehicle model is
linearised under the following assumptions:

• The resistive forces FR/m are modelled as a constant h. This is generally a
strong assumption. However, considering an electric city car traveling at low
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speeds and low aerodynamic drags compared to a truck, the error introduced
may be limited.

• Only regenerative braking is possible with the mechanical friction brakes
absent (i.e. Fb = 0)

• The magnitude of the maximum and minimum acceleration is equal (i.e.
amax = −amin)

Following the assumptions, the control input u is chosen as the net force
produced by the powertrain per unit mass minus h, i.e., the acceleration a. The
linearised vehicle model (state dynamics, f) reads:

ẋ = v(t),

v̇ = a(t) = F/m− h.
(2.2)

2.2.1.2 . Objective Function
With the main goal to minimize battery energy consumption, the objective

function/performance criterion J , is taken as the integral of the battery power
Pb(t) over the trip. A quadratic, physics-based, DC motor model [22] is given by

Pm = km,0 + km,1ωm + km,2ω
2
m + km,3Tmωm + km,4T

2
m (2.3)

where km,{0,1,2,3,4} represent motor modelling parameters. The motor torque Tm

and speed ωm are related to v and a by

Tm =
m(a+ h)rw

γmηt
, ωm =

γmv

rw
. (2.4)

γm and rw represent the transmission ratio and the wheel radius respectively.
Assuming a constant efficiency battery model and no power link losses, the battery
power Pb is related to a and v by

Pb(t) =



1
ηb

(
km,0 + km,1

γmv(t)
rw

+ km,2
γ2
mv2(t)
r2w

+ km,3
m(a(t)+h)v(t)

ηt
+

+km,4
m2r2w(a(t)+h)2

γ2
mη2t

)
, a ≥ 0

ηb

(
km,0 + km,1

γmv(t)
rw

+ km,2
γ2
mv2(t)
r2w

+

+km,3m(a(t) + h)v(t)ηt + km,4
η2tm

2r2w(a(t)+h)2

γ2
m

)
, a ⩽ 0

(2.5)

The detailed battery power model is simplified (to facilitate analytical solutions)
under the following assumptions:

• No transmission and battery loses, ηt = ηb = 1

• km,0 = km,1 = km,2 = 0 and km,3 = 1

14



to yield

Pb(t) = m(a(t) + h)v(t) + b(a(t) + h)2, (2.6)
where b = km,4m

2r2wγ
−2
m . With the running cost Pb(t) defined, the objective

function J over a trip is written as

J =

∫ Tf

0
m(a(t) + h)v(t) + b(a(t) + h)2 dt. (2.7)

2.2.1.3 . Constraints

Both control and state variables can be subject to constraints of the type,
g(a, . . .) ≤ 0 and g(x, v) ≤ 0, respectively. They are based on physical actuation
limits, route features such as minimum and maximum speed limits or collision
avoidance constraints such as rear-end and lateral collision. The control limits
amin ≤ a(t) ≤ amax, result from the minimal and maximal (braking) motor
torques, Tm,min and Tm,max. The limits on the control input is relaxed to amax =

−amin →∞ and, the state variables remains unconstrained.

2.2.1.4 . Problem

With simplified models (2.2), (2.6) and no constraints on the state and control
variables, the eco-driving optimal control problem formulated in time domain reads:

minimize
a(t)

J =

∫ Tf

0
m(a(t) + h)v(t) + b(a(t) + h)2 dt,

state dynamics

ẋ = v(t),

v̇ = a(t),

boundary conditions BC:
{x(0) = 0, v(0) = v0, x(Tf ) = Df , v(Tf ) = Vf}.

(2.8)

2.2.2 . Solution

The formulated optimal control problem (2.8) is solved using Pontryagin’s
Minimum Principle (PMP) [14] (see Appendix A.1).
Following PMP, the Hamiltonian H is formed as:

H = m(a(t) + h)v(t) + b(a(t) + h)2 + λ(t)a(t) + µ(t)v(t). (2.9)
The variables λ(t) and µ(t) are the two costates and have the following dynamics:

µ̇(t) = −∂H

∂x
= 0⇒ µ = constant

λ̇(t) = −∂H

∂v
= m(a(t) + h) + µ.

(2.10)
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Boundary conditions for both λ and µ are free, since both the states are fixed at
their boundaries. The optimal control input should minimize H and therefore

∂H

∂a
= mv(t) + 2b(a(t) + h) + λ(t) = 0,

a(t) = − 1

2b
(mv(t) + λ(t))− h.

(2.11)

The optimal solution is obtained by solving the following Two-Point-Boundary-
Value-Problem (TPBVP)

ẋ = v(t),
v̇ = a(t),
BC : {x(0) = 0, v(0) = v0, x(Tf ) = Df , v(Tf ) = Vf}
µ̇ = 0, µ(0) = µ0,

λ̇ = −m(a(t) + h)− µ, λ(0) = λ0,
a(t) = − 1

2b (mv(t) + λ(t))− h.

(2.12)

The optimal control trajectory a(t) is explicitly obtained as and, it is an affine
function of time,

a(t) =

(
4v0
Tf
−

2Vf

Tf
+

6Df

T 2
f

)
+

(
6v0
T 2
f

+
6Vf

T 2
f

−
12Df

T 3
f

)
t, (2.13)

while the optimal trajectory v(t), see Fig. 2.1, is a quadratic function of time
[23, 24],

v(t) = v0 +

(
−4v0

Tf
−

2Vf

Tf
+

6Df

T 2
f

)
t+

(
3v0
T 2
f

−
6Df

T 3
f

+
3Vf

T 2
f

)
t2. (2.14)

The associated energy consumption of the trip Eb, a function of vehicle pa-
rameters and boundary conditions, is given by

Eb = mhDf +m
V 2
f − v20

2
+ bh2Tf + 2bh (Vf − v0)+

+4b

(
3D2

f

T 3
f

−
3Df (v0 + Vf )

T 2
f

+
v20 + v0Vf + V 2

f

Tf

)
.

(2.15)

Equation (2.14) represents a parabola and an admissible speed profile only for
certain combinations of the boundary conditions. In particular, conditions of the
type F (Df , Tf ) ≥ 0 for specific v0 and Vf define the domain of validity of the
parabolic speed profile. These conditions impose that the speed is always positive,
that its maximum does not exceed a given limit vmax, or that the control input
does not exceed the limit amax. The conditions on the domain of feasibility of the
solution is detailed in [18]. When the solution (2.14), for a given v0 and Vf , violates
any of the above-specified conditions (constraints), the final boundary conditions
Df and Tf must be adjusted such that F (Df , Tf ) ≥ 0.
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Figure 2.1: Unconstrained Scenario: the parabolic speed profile (a) and thecubic position profile (b) for v0 = 0 m/s, Vf = 0 m/s,Df = 500 m and Tf =
60 s.

2.2.3 . Implementation
The Eco-Driving-Optimal-Controller (EDOC) solution is embodied in a Model

Predictive Control (MPC) framework to account for modeling uncertainties and
closed-loop feedback. MPC is an iterative process where at each time t, based
on the current measured system states and its surroundings (i.e. lead vehicles,
traffic lights, etc.), an optimization over a finite horizon of length T and distance
D is performed. Only the first value of the control input a(0), from the resulting
optimal control trajectory, a(k), ∀k = 0, 1, . . . , T , is applied. At the next instance
of t, the states are sampled again. The process is repeated but with updated
boundary conditions, BC : {0, , v(t), D = Df − x(t), V = Vf} and a shorter
optimization horizon T = Tf − t. This fashion of MPC implementation, where the
prediction horizon gets smaller as we move forward, is termed Shrinking Horizon
Model Predictive Control. Figure 2.2 shows an example of MPC implementation.
The blue parabola represents the predicted velocity over the horizon T , and the
predicted acceleration at k = 0 is the applied optimal control input. Using (2.14),
the equation of the predicted velocity following the boundary conditions in the
MPC framework is given as,

v(k) = v(t)+

(
−4v(t)

T
− 2V

T
+

6D

T 2

)
k+

(
3v(t)

T 2
− 6D

T 3
+

3V

T 2

)
k2, k ∈ [0, T ).

(2.16)
2.3 . Car-following: Non-Cooperative EDOC

A car-following scenario involves one vehicle closely following another while
maintaining a safe inter-vehicular gap. In such a driving scenario, while the pri-
mary goal of the following vehicle is to maintain a safe distance to avoid a rear-end

17



Predicted Velocity
Predicted Acceleration

Past Future

Past Velocity

Past Acceleration

Prediction Horizon

Figure 2.2: Model Predictive Control

collision, the inter-vehicle gap can be used as a degree of freedom to abrupt slow-
downs [25] and increase the energy efficiency of the following vehicle.

2.3.1 . OCP Formulation
In this scenario, the following vehicle is a CCAV that is controlled, called the

ego vehicle. The vehicle immediately ahead is called the lead vehicle, denoted by
superscript l. The spacing gap, see Fig. 2.3, between the ego and lead vehicle, is
defined as

ξ(t) = xl(t)− x(t)− L− si,l(t) ,

ξ̇(t) = vl(t)− v(t) ,
(2.17)

where si,l is the minimum safe inter-vehicle distance, which can either be a con-
stant, smin (as in the case of 2.17), or resulting from a constant-time headway,
v(t)H. In this scenario, the ego vehicle tries to avoid a rear-end collision with the
lead vehicle, whose motion is predicted under constant acceleration assumption,
given by,

xl(t) = xl0 + vl0t+
1

2
alt2. (2.18)

where the lead vehicle’s initial velocity, position, and acceleration are represented
by vl0, x

l
0 and al, respectively. This imposes state inequality constraints ξ(t) ≥ 0,

of the type,

x(t) ≤ xl0 + vl0t+
1

2
alt2, t ∈ [0, Tf ]. (2.19)

Note that smin and L are lumped in xl0.

2.3.2 . Solution
The optimal eco-driving speed profile in the presence of a lead vehicle is ob-

tained by solving the optimal control problem (2.8), along with the constraint
(2.19). To handle the state-inequality constraint, the indirect adjoining method
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Figure 2.3: Car-Following scenario showing the spacing gap ξ(t)

[26] is used in this work (see Appendix A.2). The position constraint is rewritten
in the form

ξ(t) = x(t)− (xl0 + vl0t+ alt2/2) ≤ 0. (2.20)
and is of second order (p = 2), where

ξ(1) = ξ̇ = v(t)−
(
vl0 + al0t

)
,

ξ(2) = ξ̈ = a(t)− al0.
(2.21)

The resulting tangency conditions are:[
x(θ)− (xl0 + vl0θ + alθ2/2)

v(θ)− (vl0 + alθ)

]
= 0, (2.22)

where θ ∈ [0, Tf ] represents the junction time. The position constraint can be
active on a boundary interval or at a contact point. Here only the case of the
contact point θ is considered. The Hamiltonian is adjoined with the term ξ(2) and
multiplier η to form the Lagrangian,

L = H + η(a(t)− al), (2.23)
where η = 0 if ξ ≤ 0, η ≥ 0 if ξ = 0. Additionally, we have ∂ξ

∂v = 0,∂ξ
(1)

∂v = 1,
∂ξ
∂x = 1 and ∂ξ(1)

∂x = 0. Therefore, the system of equations, along with (2.22), that
needs to be solved reads,

ẋ = v(t),
v̇ = a(t),
BC : {x(0) = 0, v(0) = v0, x(Tf ) = Xf , v(Tf ) = Vf}
λ̇ = −m(a(t) + h)− µ, λ(0) = λ0,
µ̇ = 0, µ(0) = µ0,
a(t) = − 1

2b(λ(t) +mv(t) + η(t))− h,
η(t)ξ(x(t), t) = 0, η(t) ≥ 0, η̇ ≤ 0, η̈ ≥ 0,
λ (θ−) = λ (θ+) + π1,
µ (θ−) = µ (θ+) + π0,
π0 ≥ 0, π1 ≥ 0, π0ξ(x(t), t) = 0, π1ξ(x(t), t) = 0,
H (θ−) = H (θ+) + π0(v

l
0 + alθ) + π1a

l

(2.24)
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The constrained-optimal speed profile upon solving (2.24) is thus made up of two
parabolic phases separated by θ, see Fig. 2.4. Explicitly, it reads

v(t) =



v0 +

(
al +

4ξ̇0
θ

+
6ξ0
θ2

)
t−

−

(
6ξ0
θ3

+
3ξ̇0
θ2

)
t2, t ∈ [0, θ)

vl0 + alθ +

(
al − 6ξ0

θ2
− 2ξ̇0

θ

)
(t− θ)+

+

(
Vf − 3vl0 + 2v0 − 6

ξ0
θ
− al0Tf + 6ξ0

Tf

θ2
+

+ 2ξ̇0
Tf

θ

)
(t− θ)2

(Tf − θ)2
. t ∈ [θ, Tf ]

(2.25)

where ξ0 denotes ξ evaluated at t = 0. The contact time θ, that is, where the
constraint is met (ξ = 0), is found by imposing the overall distance, which results
in a cubic equation(

v0 − Vf + alTf

)
θ3 +

(
4vl0Tf + VfTf − 2v0Tf + alT 2

f /2

−3Df ) θ
2 +

(
6ξ0Tf + v0T

2
f − vl0T

2
f

)
θ −

(
3ξ0T

2
f

)
= 0.

(2.26)
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Figure 2.4: Car-Following Scenario: The speed (a) and position (b) profile ofego and lead vehicle. Boundary conditions: for v0 = 0m/s, Vf = 0m/s,Df =
500m,Tf = 60 s, xl0 = 20m, vl0 = 4.16m/s and al = 0.14m/s2.

2.3.3 . Implementation
The lead vehicle’s speed and acceleration are generally varying in time. In-

stead of using the initial measured states of the lead vehicle and performing a

20



single optimization at the start of the trip, the solutions are implemented in a
shrinking horizon MPC. A new optimization is performed using the re-measured
lead vehicle states at every single time step. The lead vehicle’s initial states and
acceleration become xl0 = xl(t), vl0 = vl(t) and al = al(t). Figure 2.5 shows
a flowchart illustrating the concept. The lead vehicle is detected using sensors,
and its motion is predicted under constant acceleration. The BC, obtained as
explained in Sect. 2.2.3, along with lead vehicle constraint, is then passed to the
optimal controller to obtain the optimal control input. Following the CCAV’s mo-
tion, the actual position and speed serve as the feedback input to update the
boundary conditions for the new iteration after each time step. With only the
current/instantaneous information used in predicting the lead vehicle, we refer to
this as the NC-ED car-following strategy.

Note that if the position trajectory of the lead vehicle does not intersect with
the unconstrained position trajectory of the ego vehicle, the optimal solution given
by (2.14) is used to obtain a∗(t) in the EDOC block. On the other hand, if the
lead vehicle’s position trajectory intersects with the ego vehicle’s unconstrained
position trajectory, the optimal solution given by (2.25) is used.

Lead Detection
& Prediction

BC and
Constraints EDOC CCAV

Digital Maps

ξ(t), ξ̇(t)

al(t)

BC(t), ... a∗(t) x(t), v(t)

time loop t← t +∆t

Figure 2.5: Conceptual sketch of a car-following EDOC
The first phase of position-constrained speed profile (2.25) with BC under MPC

implementation is explicitly written as:

v(k) = v(t) +

(
al(t) +

4

θ
ξ̇(t) +

6

θ2
ξ(t)

)
k −

(
6

θ3
ξ(t) +

3

θ2
ξ̇(t)

)
k2,

k ∈ [0, θ), (2.27)
and the contact point θ, (from 2.26), is given by

(v(t) −V + al(t)T
)
θ3+(

4vl(t)T + V T − 2v(t)T + al(t)T 2/2− 3D
)
θ2+(

6ξ(t)T + v(t)T 2 − vl(t)T 2
)
θ − 3ξ(t)T 2 = 0 (2.28)
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Figure 2.6 shows an example of the NC-ED car-following strategy implemented
using shrinking horizon MPC. Fig. 2.6a shows the lead vehicle and the CCAV’s
speed computed using the NC-EDOC. Fig. 2.6 shows the speed profile (blue)
computed at every step and how the final speed is an envelope of its initial values.
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Figure 2.6: An example of the MPC implementation

2.4 . Energy Assessment Model

While the vehicle model is linearised (2.2) to facilitate closed-form analytical
solutions, the performance of the algorithm are evaluated using a detailed non-linear
backward vehicle model. This section describes the vehicle model in [11], that is
subsequently used in Chap. (4), (5) and (6) to assess the energy consumption
of the CCAVs. A Nissan Leaf is modeled using publicly available data where the
motor speed ωm and torque Tm are computed from the vehicle states, looking up
the requisite motor power Pm, combining with auxiliary loads, and computing the
total current to assess resistance losses.

The vehicle traction force Ft is computed from Newton’s second law given by

Ft = ma+ av + cvv
2 (2.29)

where the terms av and cv represent the resistance force coefficients of the vehicle
states in (2.1). A brake split model then apportions part of the total traction force
Ft to the front-wheel-drive motor subject to vehicle dynamics constraints. The
regeneration capacity of the front-wheel-drive is split based on the ratio given by

Ff =

{
Ft

Ft
F t(v)

≤ 0.04

0.73Ft + 0.0108F t(v)
Ft

F t(v)
> 0.04

(2.30)
where F t(v) is the maximum braking force (minimum traction force) that weakly
depends on velocity. All Ft < Ff is assumed to lost to mechanical friction brakes.
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Assuming a constant drivetrain efficiency of 0.95, the motor torque and speed are
computed using (2.4). A lookup table Pm = f (ωm, Tm) maps the motor’s speed
and torque to its total power consumption, including motor and inverter losses,
using data from [27]. Losses in the battery with resistance Rb and open-circuit
voltage V0 are then computed via the battery current ib. The analysis models the
power electrical system as a combined motor and auxiliary power sink of value Pl in
parallel with the battery. Only one of the two possible solutions to (2.31) satisfies
the battery current limit.

ib =
V0(SOC)±

√
V 2
0 (SOC)− 4RbPl

2Rb

PT = Pl + i2bRb = V0(SOC)ib

(2.31)

The total power PT is then integrated to find the SOC and the cumulative energy
consumption.

2.5 . Conclusion

This chapter reviewed the works in [18, 20, 17], where analytical closed-from
solutions for eco-driving were obtained for an electric CCAV in an unconstrained and
NC-ED car-following scenario. This work is considered the baseline NC-ED strategy
in this thesis. The NC-ED car-following presented here predicted the lead vehicle’s
motion under constant acceleration to facilitate analytical closed-form solutions.
The optimality of the EDOC iterative scheme in Fig. 2.5 is strongly affected by
the quality of prediction of the preceding/lead vehicle. The next chapter focuses
on predicting the lead vehicle’s motion.
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3 - Lead Vehicle Prediction

This chapter discusses predicting lead vehicle velocity trajectories.

3.1 . State-of-the-Art

Advancements in navigation systems and Vehicle-to-Everything (V2X) com-
munication have given access to a wealth of information from the environment
and infrastructure, such as traffic density, location, and velocity of surrounding
vehicles, upcoming road topology, grade, speed limits, etc. CCAVs can access
such information to improve safety and comfort and employ it in their ED control
strategies [1, 2, 3, 4]. Despite the energy efficiency improvements and other ben-
efits demonstrated by these technologies, uncertainties in the traffic environment
can limit the ability of eco-driving controllers to smoothen the velocity profile.
They might eventually lead to a decline in energy savings [5]. For the real-time
implementation of EDOC with consistent energy savings, it becomes necessary to
include the dynamics of the traffic, especially the estimated future lead vehicle
velocity into the ED’s trajectory planning process.

Considering a car-following scenario with two vehicles, the lead vehicle here
refers to the immediately preceding vehicle to the ego CCAV. Predicting a lead
vehicle’s speed trajectory is vital in improving the safety and energy consumption
of CCAVs. In fact, inaccurate prediction, irrespective of the powertrain, may lead
to an overreaction of the ego CCAV, causing unwanted accelerations/decelerations
and ultimately worse energy consumption than a purely reactive control strategy
[5, 6].

Predicting a vehicle’s speed is highly dependent on the amount of informa-
tion on that vehicle and its surroundings, and the used prediction method. A
comprehensive overview of the existing prediction methods using model-based and
data-driven techniques can be found in [7]. The ego CCAV can obtain information
on the lead vehicle and its surroundings using either sensor, as in NC-ED, and/or
V2X communication, as in C-ED. The methods found in the literature for predicting
speed trajectories can be broadly classified as data-driven or model-based.

Data-driven time-series prediction methods such as Long-Short-Term-Memory
(LSTM) [1, 11], or gated recurrent network [12], have been extensively used to
perform mid-long length speed predictions. However, these methods require the
availability of extensive training data and/or V2V communication.

Model-based approaches include simple models such as constant velocity and
Constant Acceleration (CA). The constant velocity predicts the lead vehicle to
maintain the current speed over the future prediction horizon, while the CA assumes
the vehicle’s future speed to move with the same acceleration until it stops or ex-
ceeds a maximum velocity. However, these models lack adaptability to variations in
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driving styles and, in certain cases, are unrealistic. More sophisticated microscopic
car-following models such as the Intelligent Driver Model [8], the Line-Of-Sight-
based Enhanced Driver Model (EDM-LOS) [9], or Gipps’ model [10], which are,
in principle, used to model driver behavior, could also be used to predict the lead
vehicle’s velocity. Such microscopic models include parameters for driving style
calibration, allowing to capture of various driver behaviors. While model-based
methods lose accuracy over long-term prediction, they perform reasonably well in
the short-term horizon, which is the main focus of this chapter.

This chapter compares two methods to predict the lead vehicle velocity over
a short-term horizon in the absence of connectivity (V2V/V2X) or under data-
restricted cases. In such scenarios, the prediction must rely only on the lead
vehicle’s measured position and relative velocity at the current time, as in the
Non-Cooperative eco-driving (NC-ED). Two methods are considered in this study,
namely, a Constant Acceleration (CA) model and a Line-of-Sight based Enhanced
Driver Model (EDM-LOS). The CA uses the lead vehicle’s current measured ve-
locity and acceleration vehicle to forecast the future velocity for short instances
of time. However, when approaching a fixed obstacle such as a traffic light or
an intersection, the CA model prediction may become inaccurate, resulting in the
inability to correctly stop the ego vehicle at the intersection correctly. On the other
hand, the EDM-LOS model, without the information about the vehicle preceding
the lead vehicle, fails to predict braking events during car-following.

This work was conducted during a research exchange semester at the Center
for Automotive Research (CAR) at The Ohio State University, and its contribu-
tions are as follows. Two lead vehicle velocity predictors are developed: Constant
Acceleration-Average Braking (CA-AB) and EDM-LOS based Predictor (EDM-
LOSP). The CA-AB is an improved model over CA in predicting decelerations to
a stop in the presence of an obstacle. The EDM-LOSP is an improved model
over EDM-LOS to identify and predict braking events during car-following. The
proposed prediction strategies are applied to a dynamic programming-based EDOC
for a mild Hybrid Electric Vehicle (mHEV) developed at CAR [13]. A DP-based
EDOC allows the implementation of non-linear prediction models like the EDM-
LOSP. The performance of the proposed predictors is evaluated for energy efficiency
and travel time in a simulation-based environment using real-world driving profiles.
They are compared against CA as a baseline and an ideal scenario with perfect
velocity prediction (wait-and-see) as a benchmark.

Chapter Outline Section 3.2 describes the two methods, CA-AB and EDM-
LOSP, developed for leader velocity prediction. The following section describes the
application of the developed predictors to an EDOC for an mHEV. The formulation,
solution method, and implementation are presented in the section. The simulation
results in Sect. 3.3.4 discuss evaluating the predictors’ performance using real-world
drive cycles. Concluding remarks are given in Sect. 3.4.
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3.2 . Lead Vehicle Velocity Prediction

The two models considered in this work to predict the lead vehicle velocities
are the CA-AB and the EDM-LOSP. These models result from improvements made
to the CA, and EDM proposed in literature [2, 3, 9]. This section describes the CA
and EDM-LOS models, their drawbacks, and the improvements made leading to
the CA-AB and EDM-LOSP. Note that all predictions over a horizon length NH ,
are denoted using (̂.), and observed/measured signals are represented using (.)0.

3.2.1 . Constant Acceleration-Average Braking (CA-AB)

The CA model predicts the future velocity of the lead vehicle to have a constant
acceleration until it stops or reaches the speed limit [16]:

âl(t) =

{
a0, v̂l(t) < vlim

0, v̂l(t) ≥ vlim ∨ v̂l(t) = 0
(3.1)

where al0 represents the lead vehicle’s acceleration measured at the start of predic-
tion (i.e. t = 0) and âl represents the predicted acceleration. The speed limit of
the route is given by vlim. However, the CA model cannot correctly predict where
the lead vehicle will stop when approaching an obstacle, such as a traffic light or
a stop sign. The prediction could result in the lead vehicle stopping either before
or after the obstacle. To overcome this drawback, the measured acceleration al0 is
here replaced with an average braking acceleration ã, defined as:

ã =
vl0

2

2(DTL − xl0)
(3.2)

where DTL represents the position of the traffic light, xl0 and vl0 represent the
lead vehicle’s position and velocity measured at t = 0. Note that this model
formulation implies that the ego CCAV has access to V2I information, namely road
grade, speed limits and location of stop signs and traffic signals within the NH

prediction horizon. Equation (3.2) represents the minimum kinematic deceleration
required by the lead vehicle to come to a stop at the obstacle. The modes of the
CA-AB can be summarized as follows:

âl(t) =


a0, v̂l(t) < vlim (FD)

0, v̂l(t) ≥ vlim ∨ v̂l(t) = 0 (FD)

ã, (S).

(3.3)

FD and S stand for freeway driving and stop mode, respectively. The stop mode
is activated in the presence of either a stop sign or a traffic light with a red signal
phase within NH .

3.2.2 . Enhanced-Driver-Model with Line-of-Sight based Predictor (EDM-
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LOSP)

The existing EDM-LOS is a deterministic velocity predictor representing various
levels of driver aggressiveness, [4]. The EDM-LOS includes three distinct operating
modes, namely, Car-Following (CF), Freeway Driving (FD) and Stop Mode (S).
The different operating modes are represented by the following equations:

âl(t) =



amax

(
1−

(
v̂l(t)

vlim−θ0

)δ)
, vl0 ≤ vlim, (FD)

amax

(
1−

(
v̂l(t)

v̂l−1(t)

)δ
−
(

∆x∗(v̂l,∆v)
∆xl(t)

)2
)
, (CF )

−1
b

(
v̂l(t)

2

2∆xl(t)

)2

, (S)

(3.4)

where
∆xl(t) = x̂l−1(t)− x̂l(t)− ll−1

∆x∗
(
v̂l,∆v

)
= smin +

v̂l(t)
(
v̂l−1(t)− v̂l(t)

)
2
√
amaxb

sbrake(t) =
(
1 +

c1
δ

)( v̂l
2
(t)

2b

)
.

(3.5)

The terms v̂l(t) and x̂l(t) represent the lead vehicle velocity and position, respec-
tively. [amax, δ, b, c1, θ0] are the set of EDM-LOS calibration parameters. Freeway
driving represents the transition to the route speed limit without any vehicle pre-
ceding the lead vehicle. The degree of aggressiveness is further characterized by
a calibration term θ0, which determines the offset from the route speed limit. As
per this formulation, a relatively relaxed driver would drive slightly below the speed
limit. The maximum acceleration, amax, and driver aggressiveness, δ, controls how
quickly the desired speed is achieved. Regarding the car-following mode, x̂l−1(t)

and v̂l−1(t) represent the predicted position and speed of the vehicle preceding the
lead vehicle. The terms ∆xl(t) and ∆x∗ represents the current and the desired gap
between the lead and the vehicle preceding the lead vehicle, respectively. The term
b in the Stop mode represents the comfortable deceleration. When approaching an
obstacle, such as a traffic light, the deceleration usually does not exceed b and is
dynamically self-regulating towards a situation in which the kinematic deceleration
equals b [3]. The driver’s aggressiveness in braking distance is captured by sbrake,
which is dependent on a calibration term c1/δ.

The Line-Of-Sight (LOS) scheme in the EDM is used to realistically model the
driver response when approaching a traffic light. The LOS is a distance parameter
below which, in the presence of a traffic light, the driver can preview the signal
phase of the upcoming traffic light. The presence of a traffic light at DTL sets the
flag TL = 1, when DTL − xl0 ≤ min(LOS,NH). The driver performs a stopping
maneuver (S) under two conditions, namely either if the previewed signal phase is
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red or, the signal phase is yellow and xl0 > sbrake. The term ∆xl(t) now becomes

∆xl(t) = DTL − x̂l(t). (3.6)
Therefore, stop mode is activated when:

S =

{
1, TL = 1,Red Light, xl0 ≤ LOS
1, TL = 1,Yellow Light, sbrake(t) < xl0 ≤ LOS.

(3.7)
A detailed rule-based logic using LOS in the presence of a stop sign or traffic light
is described in [15].

In the CF mode, the absence of V2V communication makes the information
on x̂l−1(t) and v̂l−1(t) unavailable for the ego vehicle to predict the car-following
behavior, in particular deceleration events, of the lead vehicle. To overcome this,
a modification of the freeway driving and stop mode equations are developed here
(EDM-LOSP). The prediction of the lead vehicle’s transition to the desired speed in
the FD mode uses only the current velocity, which is obtained by setting v̂l(0) = vl0
in (3.4). Given the availability of the current acceleration al0, it is possible to replace
amax with:

am =
al0

1−
(

vl0
vlim−θ0

)δ . (3.8)

Along with initial condition v̂l(0) = vl0, replacing amax with am ensures that
the first predicted acceleration âl(0) = al0. Ideally, this results in a perfect pre-
diction for the first step, as in the case of a constant acceleration assumption. In
addition, EDM-LOS is sensitive to the calibration parameters, in particular amax

and δ. The set of EDM parameters about the lead vehicle are generally unknown
to the ego CCAV. When modelling driver behavior using EDM-LOS, these param-
eters are either calibrated offline from recorded driving data [16] or using online
estimation techniques [17]. Replacing amax with the available current acceleration
al0 reduces some of the sensitivity. While the other parameters δ and θ0 still allow
to capture different driver aggressiveness. The FD mode is employed when the
current acceleration al0 is non-negative. When al0 is negative and there is no traffic
light within NH , the lead vehicle is assumed to brake because of the vehicle in
front of the lead vehicle. Since the car-following mode in EDM-LOS cannot be
employed, the stop mode is modified to predict the braking behavior. The comfort-
able deceleration b is replaced by the current acceleration al0 and xl−1(t) term in
∆xl(t) is replaced by assuming the lead vehicle is decelerating to a fixed obstacle
at a position given by

vl0
2

2|al0|
. (3.9)

One can observe that doing the above modifications to the stop mode results in
converting to a constant acceleration model, as shown in Appendix A.3. Incorpo-
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rating the current acceleration al0 of the lead vehicle, the equations of EDM-LOSP
is summarized as:

âl(t) =



am

(
1−

(
v̂l(t)

vlim−θ0

)δ)
, vl0 ≤ vlim, al0 ≥ 0

(
1
al0

) v̂l
2
(t)

2

(
vl

2
0

2|al0|
−xl(t)

)


2

, al0 < 0

−
(
1
b

)( v̂l
2
(t)

2(DTL−xl(t))

)2

, S = 1

(3.10)

3.2.3 . Comparison of Predictor Performance

To highlight and compare the performance of the proposed predictors, a short
driving profile was experimentally collected and used as reference for the lead vehicle
velocity. The speed prediction performance was quantified by computing the Root-
Mean-Square-Error (RMSE) between the actual and predicted speed. Prediction
horizon lengths of 5, 10 and 15 seconds are evaluated for each predictor. The results
are summarized in Table 3.1, showing the CA-AB and EDM-LOSP performing
better over their counterparts. Figure 3.1 provides a visual description of how
each velocity predictor performs (10 s prediction horizon) during a portion of the
driving profile. The difference between CA and CA-AB can be mostly appreciated
when the lead vehicle speed goes to zero in the presence of red phase traffic light
(e.g. around 80 s). The CA does not predict the velocity to stop at the traffic
light, as seen from the red dashed lines close to 80 s. Indeed, a longer prediction
horizon causes the velocity to pass the traffic light. The proposed CA-AB uses
ã in the place of al0, hence predicting the lead vehicle stop at the traffic light.
Summarizing, the advantages of using CA-AB over CA can be appreciated more
in urban routes, due to the high traffic light and stops density. The portions of
decreasing velocities of the lead vehicle, apart from the traffic light, for instance at
10 s, 25 s and 50 s are due the presence of vehicles preceding the lead vehicle. This
behavior, given the availability of information on the vehicle preceding the lead,
is predicted using the CF mode in EDM-LOS. However, without that information,
this predictor assumes the lead vehicle to always be in FD mode forecasting its
velocity to reach a desired speed. The proposed EDM-LOSP overcomes this by
identifying (al0 < 0) and predicting decelerations using the second mode above
mentioned in (3.10).

3.3 . Application to NC-EDOC for a mild-Hybrid Electric Vehi-
cle

This section describes the application of the prediction models, CA-AB and
EDM-LOSP, to a mild HEV (mHEV) ego CCAV in a car-following scenario. The
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Table 3.1: RMSE of different speed predictors for 5 s, 10 s and 15 s predictionhorizon

Prediction Horizon, s CA CA-AB EDM-LOS EDM-LOSP5 1.00 0.97 1.80 0.8110 2.63 2.40 2.70 2.2415 3.67 3.45 3.47 3.15
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Figure 3.1: Speed predictions of the different for a 10 s prediction window.In red, the velocities forecasted at each time step while in blue the actual leadvehicle speed

ego CCAV is equipped with a DP based EDOC developed in [13]. The various
subsections,3.3.1 to 3.3.3, describe the OCP formulation, solution method and
implementation of EDOC. Section 3.3.4 presents the simulation results.

3.3.1 . OCP Formulation

The main objective of the ego CCAV is to minimize the fuel consumption and
travel time of the CCAV over an entire itinerary. The ED-OCP presented here is
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formulated in a discrete spatial domain.

3.3.1.1 . Vehicle Model
A forward-looking model of a P0 parallel mild-hybrid electric vehicle, see Fig. 3.2,

is adopted in this work to predict the longitudinal dynamics and energy consump-
tion, [13]. A Belted Starter Generator (BSG) is connected to a 1.8 L turbocharged
gasoline engine and a 48 V battery pack. The vehicle is modeled considering only
the longitudinal dynamics given by the time-continuous counterpart in (2.1). The
powertrain components of the mHEV, such as the engine (fuel maps), BSG (torque
limit and efficiency maps), torque converter, and transmission, are modeled using
maps as a quasi-static representation. The battery is modeled using a zeroth order
equivalent circuit comprising an ideal voltage source and a resistor. The detailed
equations of the powertrain component’s model and the validation are described
in [13].

Transmission
ICE (gasoline)

48 V
Battery Pack

BSG
PowertrainController

Figure 3.2: Schematic of a P0 parallel mild Hybrid Vehicle
The state variables are chosen as the vehicle velocity, battery state of charge

(SoC), and travel time: Xx = [vx, Ex, tx]T . The engine torque and BSG torque are
chosen as the control variables: ux = [Teng, Tbsg]

T . The discretized state dynamic
equations, collectively represented by f , in the spatial domain is given as

v2x+1 = v2x + 2∆dx
(Ft,x(Xx, ux)− FR,x(vx)− Fb)

m

Ex+1 = Ex −
∆dx
v̄x

Ībatt,x(Ex, Tbsg,x)

Cnom

tx+1 = tx +
∆dx
v̄x

(3.11)

where ∆dx is the distance over one step, i.e. ∆dx = dx+1 − dx, and dx is the
distance traveled along the route at position x. The average velocity over one step
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is given by v̄x(=
vx+vx+1

2 ). The battery current at x, along with the auxiliary loads
current, is represented as Ībatt,x, and Cnom represents the nominal capacity of the
battery.

3.3.1.2 . Objective Function
The objective of the OCP is to minimize the fuel consumption and travel time

of a CCAV over a given trip. The controller aims at minimizing a cost, given by:

J(M) = cNx(xNx) +

Nx−1∑
x=1

cx(Xx, ux) (3.12)
where cNx and Nx denote the terminal and the number of steps in the given route.
The per stage cost, cx, represents the weighted average of fuel consumption and
travel time and is given by,

cx(Xx, ux) =

(
γ
ṁf,x(Xx, ux)

ṁf,norm
+ (1− γ)

)
∆tx (3.13)

where γ ∈ (0, 1) is the trade-off, ṁf,x is the fuel flow rate, ṁf,norm is the nor-
malizing factor, and ∆tx is the travel time per step. A control map µx(Xx) at
position x, is a set of admissible control inputs satisfying the constraints mentioned
in Sect. 3.3.1.3. The collection of admissible maps for x = 1, ..., Nx is referred as
the policy of the controller, denoted byM := µ0, ..., µNx .

3.3.1.3 . Constraints
Both the state and control variables are subject to constraints such as

vx ∈
[
vmin
x , vmax

x

]
, ∀x = 1, . . . , Nx

Ex ∈
[
ξmin
x , Emax

x

]
, ∀x = 1, . . . , Nx

tx ∈ [0, tN ] , ∀x = 1, . . . , Nx

v0 = vmin
0 , ξ0 ∈

[
ξmin, ξmax

]
ax ∈

[
amin, amax

]
, ∀x = 1, . . . , Nx

Teng,x ∈
[
Tmin
eng,x, T

max
eng,x

]
, ∀x = 0, . . . , Nx

Tbsg,x ∈
[
Tmin
bsg,x, T

max
bsg,x

]
, ∀x = 0, . . . , Nx

(3.14)

where vmin
x , vmax

x refers to the minimum and maximum speed limit; Emin
x , Emax

x

refer to the minimum and maximum SoC limits; amin, amax refer to the vehicle ac-
celeration for comfort; Tmin

eng,x, T
max
eng,x refer to the engine torque limits; Tmin

bsg,x, T
max
bsg,x

refer to the BSG torque limits respectively. tN refers to the maximum travel time
limit imposed at the end of the route, which can be estimated using the time
taken to complete the historical trips. To ensure charge-sustenance, E0 = ENx .
The above constraints are formulated as a result of either physical actuation limits
or route characteristics. To include V2I information and in the presence of a traffic
light, additional constraints are imposed on the time such that it lies in the feasible
set of travel time for passing at green at a signalized intersection, tx ∈ ΓG,x [14].
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3.3.1.4 . Problem

With state dynamics (3.11), the objective function (3.13) and constraints
(3.14) on the state and control variables, the ED-OCP formulated in discrete
spatial domain reads:

minimize
M

J(M) = cNx(XNx) +

Nx−1∑
x=1

(
γ
ṁf,x(Xx, ux)

ṁf,norm
+ (1− γ)

)
∆tx

state dynamics

v2x+1 = v2x + 2∆dx
(Ft,x(Xx, ux)− FR,x(vx)− Fb)

m

Ex+1 = Ex −
∆dx
v̄x

Ībatt,x(Ex, Tbsg,x)

Cnom

tx+1 = tx +
∆dx
v̄x

boundary conditions BC:
{v(0) = v0, E(0) = E0, t(0) = 0, v(Nx) = free, E(Nx) = E0, t(Nx) = free}.(3.15)
The ED-OCP formulated in (3.15) is hereafter referred to as the long-term

optimization.

3.3.2 . Solution

The formulated long-term ED-OCP is solved using DP assuming all green phase
traffic lights. The algorithm used for DP is developed in-house at the Center for
Automotive Research, The Ohio State University. The procedure first initializes
the cost-to-go function J , which represents the minimal cost to reach an admissible
terminal state from a state X at step x. Then the algorithm proceeds backward
from position Nx to 1, updating J taking advantage of Bellman’s principle of
optimality,

JNx = cNx(XNx),

minimize
µx(Xx)

Jx(Xx) = Jx+1(fx(Xx, µx(Xs))) + cx(Xx, µx(Xx)),

∀x = 1, . . . , Nx − 1.

(3.16)

The policy M∗ = (µ∗
1, . . . , µ

∗
Nx

) is optimal if for each Xx and x, µ∗
x(Xx)

minimizes right hand side of (3.16).

3.3.3 . Implementation

At the start of a trip, given the speed limit and the route length, the long-term
optimization is solved using DP, and the results are stored in an offline mem-
ory. Information on traffic light SPaT is generally unknown, a priori, over an entire
route. If the real-time route conditions, such as varying SPaT information or a lead
vehicle, vary from the assumptions made at the trip’s start, the above long-term
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optimization has to be re-run to reflect those changes. With limited computational
resources on vehicles and the computationally expensive nature of DP, it becomes
unfeasible to periodically recompute the optimization problem (3.16) for the hori-
zon Nx. To overcome this an MPC framework (short-term), the receding horizon
approach, is used. The MPC truncates the long-term optimization of Nx steps to
NH , such that NH < Nx. The short-term optimization problem reads,

minimize
M̂

Jx(M̂) = cx+NH
(Xx +NH) +

x+NH−1∑
k=x

+ck(Xk, µk(Xk)),

∀x = 1, . . . , N −NH + 1.

(3.17)

where M̂ represents the collection of admissible control input maps for k =

x, . . . , x + NH − 1. A key challenge in (3.17) is the definition of the terminal
cost and/or terminal state constraint that approximate the optimal solution pro-
vided by DP in a full-information scenario. Care has to be taken while imposing
the terminal cost for the MPC – a charge-sustaining constraint on the battery SoC
over each horizon results in an overly conservative torque split strategy, while a
greedy heuristic can lead to violation of SoC-neutrality over the entire trip. There-
fore, a terminal cost (or equivalently, the cost to complete the remaining route)
approximation strategy based on the use of Approximate Dynamic Programming
(ADP) is introduced such that the terminal cost of short-term optimization is ap-
proximated from the stored offline solution of the long-term optimization under
partial route information [13]. Under the ADP framework, the following OCP is
solved backward from k +NH − 1 to k, ∀k = 1, . . . , NX −NH + 1:

J̃k+NH
(Xk+NH

) = ck+NH
(Xk+NH

),

minimize
µ̂x(Xx)

J̃x(Xx) = J̃x+1(Xx, µ̂x(Xx)) + cx(Xx, µ̂x(Xx)),

∀x = k, . . . , k +NH − 1.

(3.18)

where J̃k+NH
is the approximated terminal cost. It should be noted that the vehicle

model, the stage cost, and the constraints in the long-term optimization remain
the same in the short-term optimization.

However, in the presence of a lead vehicle, an additional rear-end collision
avoidance constraint is formulated on the time state variable. At a position, x,
the lead vehicle acceleration âlk is predicted as described in Sect. 3.2. The time-
continuous formulation presented in Sect. 3.2 is converted to the discrete spatial
domain and can be used to forecast the lead vehicle velocity v̂lk and arrival time
t̂lk, in the short-term optimization, for k = x, . . . , x+NH − 1:

v̂lk+1 =
√

v̂l
2

k + 2âlk∆dk (3.19)
t̂lk+1 = t̂lk +

2∆dk

v̂lk+1 + v̂lk
(3.20)
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The constraint on the time t is affected by imposing a time-gap constraint between
the ego CCAV and lead vehicle as:

tk ≥ t̂lk + tgap (3.21)
where tgap represents the safety gap to the leader in time.

3.3.4 . Simulation Results
This section provides an application of the aforementioned lead vehicle ve-

locity prediction methods. The different predictors, CA-AB and EDM-LOSP, are
implemented in the above-described EDOC, particularly in equation (3.20). The
performance of the proposed predictors is evaluated in terms of energy efficiency
and travel time using real-world driving profiles and compared against CA as a
baseline and an ideal scenario with perfect velocity prediction (wait-and-see) as a
benchmark. For this analysis, different driving scenarios and routes were considered
to demonstrate the utility of the speed predictors in the eco-driving problem. Six
different routes were selected and divided between urban and mixed scenarios. The
route data were obtained using GPS information extracted from different vehicles
driven along the designated routes. The location of traffic lights along the route
was known. However, Signal Phasing and Timing (SPaT) were not available. A
realistic SPaT was manually generated by leveraging the time spent at stops by
the lead vehicle. Additional information on the routes on traffic light density and
average speed limits is provided in Table 3.2. The speed limits, lead vehicle veloc-
ity, and traffic light locations for the different routes are found in Appendix A.4 as
a function of distance traveled.

Table 3.2: Routes information for urban and mixed driving scenarios

Route Name Traffic light density (1/km) Average speed limits (m/s)Urban Route 1 3.0 12.5Urban Route 2 1.2 17.8Urban Route 3 2.3 14.7Mixed Route 1 0.5 26.3Mixed Route 2 0.7 22.3Mixed Route 3 0.4 26.3

The results obtained, in terms of total fuel consumed and travel time, and
the different speed predictors are shown in Fig. 3.3. The optimization problem
aims to minimize both fuel and time with an equal trade-off (i.e., γ = 0.5). It is
worth noting that all the strategies implemented result in charge sustaining, i.e.,
the initial and final SOC is approximately equal to 50 %. The benchmark solution
provided in these results corresponds to a perfect knowledge of the lead vehicle
velocity in the prediction horizon (i.e., 200 m).
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Figure 3.3: Bar plots for fuel consumed (a) and travel time (b) of the egovehicle using the four predictors on six different routes (M for mixed and Ufor Urban).

The bar plot in Fig. 3.3b shows travel time to remain practically unchanged
among the different speed predictors, whereas in Fig. 3.3a the fuel consumed varies
considerably. The highest differences are found in urban routes, where ego vehicle
using EDM-LOSP and CA-AB predictors, perform better than the CA and are much
closer to the Benchmark. Table 3.3 shows the percentage gain in fuel consumed
for CA, CA-AB and EDM-LOSP with respect to the Benchmark. Note that the
Benchmark predictor (i.e., having perfect prediction) doesn’t necessarily give the
least energy consumption. The negative values in Table 3.3 indicates a lower energy
consumption than the Benchmark. This is mainly because some speed fluctuations
in the lead vehicle profile is smoothed in the prediction horizon allowing for less
variations in the ego vehicle speed.

The energy gains in urban routes are further analyzed in terms of the ego ve-
hicle’s acceleration Root-Mean-Square (RMS). The ego vehicle using CA predictor
has the highest average RMS of 0.52 m/s2 and, when using CA-AB and EDM pre-
dictors, the RMS is given as 0.51 m/s2 and 0.50 m/s2 respectively. The increased
acceleration RMS of the ego vehicle using CA, indicates more frequent variations
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Table 3.3: Percentage of fuel consumed w.r.t. the Benchmark predictor

Predictor M1 M2 M3 U1 U2 U3CA 0.34 1.37 -0.40 19.07 7.89 10.11CA-AB -0.84 2.39 0.54 21.73 2.12 -0.18EDM-LOSP -0.51 2.29 0.52 9.58 1.00 1.11

in acceleration, leading to higher fuel consumption. No substantial changes are
observed in mixed routes when applying the different predictors. This is mainly
because the lead vehicle, for a substantial portion of the route, is at a constant
speed where the different predictors perform similarly.

An example of how the eco-driving solution approaches the traffic lights is
shown in Fig. 3.4 and is most visible in the zoomed window that highlights two
close traffic lights. It can be noticed how the prediction of lead vehicle speed,
along with the signal phase knowledge, allows the ego vehicle to not stop at traffic
lights when it is feasible, thus avoiding inefficient deceleration to null speed and
subsequent acceleration. Analyzing further the zoomed window, it can be seen
that the benchmark solution starts decelerating long before the first traffic light
and accelerates only towards the end of the green phase, just enough to avoid
stopping. Further differences can also be seen in the behavior of the CA eco-
driving approach (in yellow in Fig. 3.4) that accelerates right after the lead vehicle
leaves the traffic light and then decelerates when the gap is low.

Figure 3.5, illustrates the eco-driving solutions with the different speed predic-
tors implemented on Mixed Route 2. Generally, no visible differences are found
among the different predictors’ solutions. This is mainly because the lead vehi-
cle in a mixed route maintains a constant speed for majority of the route, see
Fig. A.1e, and all predictors perform well in such situations. However, all demon-
strate smoother velocities for the ego vehicle with respect to the lead vehicle
avoiding unnecessary slowdowns (see Fig. 3.5 around 840 m and 2815 m), thus
improving overall energy efficiency.

The fact that the travel time does not vary as noticeably as the fuel con-
sumption is attributable to the need to comply with traffic light phases and the
constraint imposed to stay behind the lead vehicle. Two simulations are performed
with different weights between fuel consumed and travel time to support this state-
ment. Even when orienting the cost function to penalize the travel time (i.e., lower
γ) more than the fuel consumption, no substantial variations are found, as seen in
Fig. 3.6. It is worth noting that the y-axis in Fig. 3.6 is magnified for the sake of
clarity and that the differences between γ = 0.5 and γ = 0.2, are in the orders of
seconds, hence confirming that the constraints posed by the lead vehicle and the
traffic lights do not allow room for travel time variation.
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Figure 3.4: Traffic lights SPaT and trajectories of the lead vehicle and egovehicle using different predictors
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Figure 3.6: Bar plots graph of the travel times obtained using different speedpredictors and different weights in the cost function for Urban Route 1

The prediction accuracy of lead vehicle velocity increases with increase avail-
ability of information, especially via V2V communication. However, in the absence
of V2V communication or in a data-restricted environment, the prediction accuracy
decreases. To mitigate this, two predictors, namely CA-AB and EDM-LOSP, were
developed in this chapter to predict lead vehicle velocity using only the current
measured information (NC-ED). First, a CA predictor was modified to incorporate
an average deceleration part while slowing down or stopping. Second, the EDM-
LOS was modified to incorporate current acceleration information in capturing lead
vehicle decelerations during car-following. A comparative study was conducted to
analyze the prediction accuracy of the developed predictors over different predic-
tion horizons. A time-gap based constraint was formulated in the EDOC for mHEV
leveraging the predicted lead vehicle velocity. Simulations were performed over 6
real-world routes representing urban and mixed driving scenarios with the devel-
oped predictors. Results show energy savings for CA-AB over CA and EDM-LOSP
performing better over CA-AB, especially in urban scenarios with high traffic light
or stop sign density.
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4 - Platooning

This chapter discusses eco-driving of a platoon of electric CCAVs.

4.1 . State-of-the-Art

Platooning, an extension of car-following, is a scenario where more than two
vehicles closely follow each other while maintaining a safe gap from the preceding
one. Such vehicular platoons often referred to as strings, can suffer from string
instability when the spacing gaps between vehicles amplify upstream along the
string.

Some relevant characteristics must be considered to study the dynamics of ve-
hicular platoons. A comprehensive overview of platoon characteristics is mentioned
in [1]. In terms of composition, a platoon can be homogeneous or heterogeneous.
A homogeneous platoon assumes the same dynamics for all the vehicles; its string
stability properties have been studied in [2, 3, 4, 5, 6]. On the other hand, a hetero-
geneous platoon assumes that vehicles in the platoon can have different dynamics,
see [7, 8, 9].

Secondly, the communication topology amongst the vehicles in the platoon
must also be considered. Communication with only the nearest preceding vehicle
is called predecessor following [8, 3]. Communication policies such as bidirectional
following [2] which involves communication with the preceding and following vehi-
cle, [10] or predecessor-leader [4] are also employed.

The third characteristic to be considered is the car-following strategy (control
law) used by the vehicles in the platoon. Among various car-following strategies in
literature, the most extensively studied is the linear-time invariant Adaptive Cruise
Control (ACC). With ACC, the control law is based only on the measurements
from onboard sensors, such as radar, lidar, or a camera setup. They measure the
relative speed and distance with the preceding vehicle that is then fed as input to the
controller. The acceleration is then determined to follow a desired spacing policy.
With a constant spacing policy, a constant safe distance is tracked, see [4, 2].
With a constant-time headway policy, the desired gap is velocity-dependent, see
[8, 3]. Nonlinear spacing policies have also been proposed; see [11]. Studies such
as [4, 8, 5] have shown that ACC with a constant spacing strategy exhibits string
instability, whose mitigation requires adopting a constant-time headway policy with
a certain minimum headway time [8, 3]. Besides the above strategies, there exist
car-following models used to simulate individual driving behavior. Such models,
more prominent in the field of traffic flow dynamics, include the Optimal Velocity
Model, Newell’s car-following model, Gipp’s Model, Intelligent Driver Model (IDM),
etc [12].

The evolution of communication and automated technology enables the inclu-
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sion of additional information from other vehicles in the control law. As stated in
Chap. 1, there are three types of cooperation based on the amount of information
shared and motivation for the common good. In the NC-ED strategy, each vehicle
optimizes for itself and shares only its instantaneous control action with its neigh-
bors. ACC, with the additional functionality to communicate with the preceding
vehicle to receive its current acceleration, is traditionally called as Cooperative ACC
(CACC). The authors in [13, 8] have shown that a CACC platoon can be string
stable using a constant headway policy but with a smaller minimum headway time
compared to an ACC using the same policy. However, this strategy of sharing the
current acceleration, according to the classification used in this thesis falls under
the Non-Cooperative strategy. Optimal control formulations, employing the MPC
framework, is also used in the design of ACC and CACC controllers to allow mul-
tiple design criteria and constraints on state and control variables [14, 15, 16].
The authors in [17] have described the use of NC-EDOC1, in a CCAV platoon.
The authors assessed the energy efficiency and string compactness of this algo-
rithm. They showed that the NC-EDOC saves energy for the first followers but is
string unstable and thus displays larger overall energy consumption for the string,
indicating more complex ED hierarchical schemes are necessary to improve both
aspects.

In the C-ED, each vehicle still optimizes for itself but shares its future intentions
with the neighboring vehicles. We assume that each vehicle shares the result of its
eco-driving optimization, i.e., its intended accelerations over the near future, with
its following vehicle. The drawbacks of the NC-EDOC in platoons, demonstrated
by [17], is taken as the main motivation for the C-EDOC. The idea of sharing
future intentions with the neighboring vehicle has been proposed in [18, 19] for
vehicle formations and stabilization, and [17, 20] for energy efficiency and comfort
and has been implemented in a numerical approach. The Cooperative eco-driving
algorithm presented here differs by implementing the shared intentions analytically.

In the CC-ED, the control action of each vehicle is such that it optimizes
for the entire group [21, 16]. The Centralized Cooperative EcoACC algorithm, in
[22] is proposed as an extension of their work in [16]. The formulated optimal
control problem is solved using an indirect numerical method and does not provide
a closed-form solution.

The main goal of this chapter is to present the three levels of cooperation
applied to a ED platoon of electric CCAVs and evaluate the performance of the
algorithms in terms of energy efficiency and string compactness. A standard ACC
is chosen as the baseline for evaluation. A theoretical analysis of the string stability
of the three algorithms is also presented.

Chapter Outline The organization of this chapter is as follows. Sect. 4.2, in-

1Referred to as Position-Constrained Shrinking Horizon Control (PCSHC) in thatpaper.
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troduces vehicle and platoon model. The OCP formulation, solution and the imple-
mentation for the NC-ED, C-ED and CC-ED are presented in Sect. 4.3, Sect. 4.4,
and Sect. 4.5, respectively. Sect. 4.6, gives a theoretical analysis on the string
stability of the three EDOCs and Sect. 4.7 presents the simulation results of the
algorithms. Concluding remarks are presented in Sect. 4.8.

4.2 . Platoon and Vehicle Model

Consider a platoon consisting of N +1 CCAVs, where each CCAV is indexed i

from 1 to N . The first vehicle or the leader in the platoon is indexed i = 0, which
acts as the reference trajectory for the platoon. The index of the vehicles increases
going upstream in the platoon. For example, the vehicle preceding the i-th vehicle
is denoted as i − 1 and the vehicle following as i + 1. As shown in Fig. 4.1, the
platoon uses predecessor–following communication topology where each vehicle
communicates only with the nearest preceding vehicle. All vehicles in the platoon
have the same plant dynamics (homogeneous platoon) and use constant spacing
policy. The spacing gap, between the CCAV i and i− 1 is defined as

ξi(t) = xi−1(t)− xi(t)− li−1 − smin. (4.1)

Figure 4.1: Platooning scenario
The platooning scenario considered here involves only a single lane, thereby

excluding any lane change possibility. The motion of each CCAV in the platoon is
therefore only longitudinal, and its dynamics are captured by the linearised model
given by (2.2). Under similar assumptions as in Sect. 2.2.1.1, the linearised longi-
tudinal vehicle model for a CCAV i, ∀i = 1, . . . , N is given as

ẋi = vi(t),

v̇i = ai(t) = F/m− h.
(4.2)

In a standard ACC, the feedback control law is of the form ai(vi, ξi, ξ̇i), and is
given by

ai(t) = kpξi(t) + kv ξ̇i(t) , ∀i = 1, . . . , N, (4.3)
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where kp and kv denote gains. The main goal of ACC is to follow the preceding
vehicle with the desired safe distance. However, we aim at deriving a car-following
feedback control law, of the form, ai(vi, ξi, ξ̇i, ...), such that each vehicle not only
follows its predecessor, but does it in an energy-efficient way.

4.3 . Non-Cooperative EDOC

As previously described, in the Non-Cooperative strategy each vehicle optimises
for itself and shares only its instantaneous information with the other vehicles.
Therefore, in a platoon, each CCAV i using sensors measures the current states,
xi−1, vi−1, ai−1, of the preceding CCAV i − 1. As in the case of a car-following
scenario, CCAV i tries to avoid a rear-end collision with CCAV i−1 which imposes
a state inequality constraint ξi(t) ≥ 0. The motion of CCAV i − 1 over the
optimization horizon is predicted under a constant acceleration assumption,

xi−1(t) = xi−1,0 + vi−1,0t+
ai−1t

2

2
, t ∈ [0, Ti,f ]. (4.4)

where xi−1,0, vi−1,0, ai−1 are the initial position, velocity and acceleration.

4.3.1 . OCP Formulation

Under similar assumptions on vehicle model, objective function and constraints
as in Sect. 2.3, each CCAV i obtains its eco-driving speed profile by solving the
following optimization problem,

minimize
ai(t)

Ji =

∫ Ti,f

0
m(ai(t) + h)vi(t) + b(ai(t) + h)2 dt,

state dynamics

ẋi = vi(t),

v̇i = ai(t),

boundary conditions BC:
{xi(0) = 0, vi(0) = vi,0, xi(Ti,f ) = Di,f , v(Ti,f ) = Vi,f},

constraints

xi(t) ≤ xi−i,0 + vi−1,0t+
1

2
ai−1t

2, t ∈ [0, Ti,f ].

(4.5)

4.3.2 . Solution

The OCP (4.5) for each CCAV i, ∀i ∈ [1, N ], is solved using PMP following
similar steps detailed in Sect. 2.3. In the absence of the constraint from CCAV i−1,
the optimal solution is given by
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vi(t) = vi,0 +

(
−4vi,0

Ti,f
−

2Vi,f

Ti,f
+

6Di,f

T 2
i,f

)
t+

(
3vi,0
T 2
i,f

−
6Di,f

T 3
i,f

+
3Vi,f

T 2
i,f

)
t2.

t ∈ [0, Ti,f ], ∀i ∈ [1, N ]. (4.6)
and in the presence of the preceding vehicle constraint ξi(t) ≥ 0, the optimal
solution yields two parabolic speed profiles joined at it’s contact point θi.

vi(t) =



vi,0 +

(
ai−1 +

4ξ̇i,0
θi

+
6ξi,0
θ2i

)
t−

−

(
6ξi,0
θ3i

+
3ξ̇i,0
θ2i

)
t2, t ∈ [0, θi)

vi−1,0 + ai−1θi +

(
ai−1 −

6ξi,0
θ2i
− 2ξ̇i,0

θi

)
(t− θi)+

+

(
Vi,f − 3vi−1,0 + 2vi,0 − 6

ξi,0
θi
− ai−1Ti,f + 6ξi,0

Ti,f

θ2i
+

+ 2ξ̇i,0
Ti,f

θi

)
(t− θi)

2

(Ti,f − θi)
2 . t ∈ [θi, Ti,f ] , ∀i ∈ [1, N ].

(4.7)
The contact time θi, that is, where the constraint is met (ξi = 0), is given by

(vi,0 − Vi,f + ai−1Ti,f ) θ
3
i +

(
4vi−1,0Ti,f + Vi,fTi,f − 2vi,0Ti,f + ai−1T

2
i,f/2

−3Di,f ) θ
2
i +

(
6ξi,0Ti,f + vi,0T

2
i,f − vi−1,0T

2
i,f

)
θi −

(
3ξi,0T

2
i,f

)
= 0.(4.8)

4.3.3 . Implementation
The preceding vehicle’s velocity and acceleration are generally varying in time

and hence the above solutions are implemented in a shrinking horizon MPC fashion,
as described in Sect. 2.3.3. This section explicitly states the optimal control input
applied by a CCAV i in the EDOC.

If the position trajectory of the CCAV i − 1 (i.e. xi−1(k)) does not intersect
with the unconstrained position trajectory of the CCAV i, that is, if Fcf given by

Fcf =

(
xi(t) + vi(t)k +

(
−2vi(t)

Ti
− Vi

Ti
+

3Di

T 2
i

)
k2+(

vi(t)

T 2
i

− 2Di

T 3
i

+
Vi

T 2
i

)
k3
)
−
(
xi−1(t) + vi−1(t)k +

ai−1(t)k
2

2

)
= 0

(4.9)
has no real positive root in k, then the optimal solution given by

vi(k) = vi(t) +

(
−4vi(t)

Ti
− 2Vi

Ti
+

6Di

T 2
i

)
k +

(
3vi(t)

T 2
i

− 6Di

T 3
i

+
3Vi

T 2
i

)
k2,

k ∈ [0, Ti), ∀i ∈ [1, N ]. (4.10)
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and the optimal acceleration, ai(k) with k = 0, given by

ai(t) = −
4

Ti
vi(t)−

2

Ti
Vi +

6

T 2
i

Di . (4.11)
is used. If Fcf has a positive real root, then optimal velocity given by

vi(k) = vi(t) +

(
ai−1(t) +

4

θi
ξ̇i(t) +

6

θ2i
ξi(t)

)
k −

(
6

θ3i
ξi(t) +

3

θ2i
ξ̇(t)

)
k2,

k ∈ [0, θi), ∀i ∈ [1, N ], (4.12)
and the optimal acceleration, ai(k) with k = 0, given by

ai(t) = ai−1(t) +
4

θi
ξ̇i(t) +

6

θ2i
ξi(t) . (4.13)

is used. The control law (4.13) is structurally similar to that of ACC, however, it
also depends on the acceleration of the preceding vehicle.

The assumption of a constant acceleration for the CCAV i − 1 could render
the controllers (4.11)–(4.13) infeasible in certain situations. For instance, when
acceleration ai−1 is negative, it is possible that CCAV i−1 stops at a time tstop =

vi−1/|ai−1| < Ti, hindering the CCAV i from reaching its final position Di. In this
situation the boundary conditions of the CCAV i are updated to that of i− 1

Vi = 0 , Di = ξi(t) +
vi−1(t)

2

2|ai−1(t)|
. (4.14)

Substituting these boundary conditions in (4.11), the control input is modified as

ai(t) = −
4

Ti
vi(t) +

6

T 2
i

ξi(t) +
3

T 2
i

vi−1(t)
2

|ai−1(t)|
. (4.15)

Another scenario that could render (eqs. (4.11) and (4.13)) infeasible during de-
celeration of CCAV i − 1, is when it stops at a time tstop > Ti but at a position
lower than Di. The updated boundary conditions are therefore given by:

Vi = vi−1(t) + ai−1(t)Ti ,

Di = xi−1(Ti) = ξi(t) + vi−1(t)Ti +
ai−1(t)T

2
i

2
.

(4.16)

Substituting these boundary conditions in (4.11), the control input is obtained as

ai(t) = ai−1(t) +
4

Ti
ξ̇i(t) +

6

T 2
i

ξi(t) . (4.17)
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4.4 . Cooperative EDOC

In C-ED scenario, cooperation is introduced in the platoon as the ability to
share intentions over a certain horizon. Each CCAV i still optimizes for itself but
shares its future intentions with the following vehicle, i.e., CCAV i + 1. Differing
from the NC-ED scenario, where CCAV i measures the instantaneous acceleration
of CCAV i − 1, in the C-ED scenario, CCAV i solves its own OCP and sends its
solution to the following CCAV. Thus CCAV i receives from CCAV i − 1. To use
this vector of shared accelerations in the eco-driving control of a CCAV i, this
is lumped into one "future mean value" ãi−1, evaluated over a preview window
length L, as

ãi−1 =
1

L

∫ t+L

t
ai−1(τ)dτ . (4.18)

This future mean preceding vehicle’s acceleration ãi−1 replaces the measured ac-
celeration ai−1 in all equations of the previous section. The preview window length
L is chosen based on sensitivity analysis for minimum energy consumption.

4.4.1 . OCP Formulation
Each CCAV i, ∀i ∈ [1, N ], solves the same OCP formulated in (4.5), with the

exception that the state-inequality constraint becomes,

xi(t) ≤ xi−i,0 + vi−1,0t+
1

2
ãi−1t

2, t ∈ [0, Ti,f ]. (4.19)
4.4.2 . Solution
The optimal trajectory in the absence of the constraint (4.19), ∀i ∈ [0, N ], is

given by (4.6) and in the presence of the constraint is given by,

vi(t) =



vi,0 +

(
ãi−1 +

4ξ̇i,0
θi

+
6ξi,0
θ2i

)
t−

−

(
6ξi,0
θ3i

+
3ξ̇i,0
θ2i

)
t2, t ∈ [0, θi)

vi−1,0 + ãi−1θi +

(
ãi−1 −

6ξi,0
θ2i
− 2ξ̇i,0

θi

)
(t− θi)+

+

(
Vi,f − 3vi−1,0 + 2vi,0 − 6

ξi,0
θi
− ãi−1,0Ti,f + 6ξi,0

Ti,f

θ2i
+

+ 2ξ̇i,0
Ti,f

θi

)
(t− θi)

2

(Ti,f − θi)
2 . t ∈ [θi, Ti,f ] , ∀i ∈ [1, N ].

(4.20)
The contact time θi, that is, where the constraint is met (ξi = 0), is given by

(vi,0 − Vi,f + ãi−1Ti,f ) θ
3
i +

(
4vi−1,0Ti,f + Vi,fTi,f − 2vi,0Ti,f + ãi−1T

2
i,f/2

−3Di,f ) θ
2
i +

(
6ξi,0Ti,f + vi,0T

2
i,f − vi−1,0T

2
i,f

)
θi −

(
3ξi,0T

2
i,f

)
= 0.(4.21)
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4.4.3 . Implementation
With the solutions being implemented in shrinking horizon MPC, the term

ai−1(t) in equations (4.9),(4.12),(4.13),(4.15) and (4.17) is replaced by ãi−1(t).

4.5 . Centralized Cooperative EDOC

In Centralized Cooperative strategy, the objective is to minimise the energy
consumption of the entire platoon.

4.5.1 . OCP Formulation
Two different OCP are formulated considering the entire platoon as a single

system. The first formulation considers no preceding vehicle to the platoon (i.e.,
absence of vehicle i = 0) and the second formulation considers a preceding vehicle
(i.e., presence of vehicle i = 0). The trajectory of vehicle i = 0 is imposed and it
acts as a leader to the platoon.

Absence of vehicle i = 0: Under similar assumptions as in Chap. 2, the cost
functional is now formulated as the sum of battery energy (2.6) of all N CCAVs in
the platoon. In the absence of a preceding vehicle i = 0 to the platoon, the first
optimal control problem can be formulated as

minimize
ai(t)

J =

∫ Ti,f

0

N∑
i=1

(
m (ai(t) + h) vi(t) + b (ai(t) + h)2

]
dt,

state dynamics and BC for i = 1

ẋi = vi(t),

v̇i = ai(t),

BC : {x1(0) = 0, v1(0) = v1,0, x1(T1,f ) = D1,f , v1(T1,f ) = V1,f},
state dynamics and BC for i ∈ [2, N ]

ξ̇i(t) = wi(t) = vi−1(t)− vi(t),

ẇi(t) = ai−1(t)− ai(t),

BC : {ξi(0) = ξi,0, wi(0) = wi,0, ξi(Ti,f ) = ξi,f , wi(Ti,f ) = 0}. (4.22)
where ξi(t) and wi(t) represent relative position and velocity, respectively.

Since there is no preceding vehicle to CCAV 1, it remains unconstrained. How-
ever, CCAVs 2 ≤ i ≤ N is imposed with a state-inequality constraint of the form

ξi(t) ≥ 0, ∀i ∈ [2, N ] (4.23)
to avoid colliding with each other.

Presence of vehicle i = 0: In the presence of a preceding vehicle i = 0,
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CCAV 1 avoids a rear-end collision with a position-inequality constraint of the
form

x1(t) ≤ x0,0 + v0,0t+
1

2
ã0t

2, t ∈ [0, Ti,f ]. (4.24)
We assume that CCAV 0 shares its future intentions, ã0, with CCAV i. The second
OCP is formulated by appending (4.24) to the set of equations in (4.22) and (4.23).

4.5.2 . Solution
The solution is obtained using PMP analysis.

Absence of vehicle i = 0: The Hamiltonian is formed as,

H = m(a1(t) + h)v1(t) + b(a1(t) + h)2 + λ1a1(t) + µ1v1(t)

+

N∑
i=2

m(ai(t) + h)(v1(t)−
i∑

n=2

wn(t)) + b(ai(t) + h)2

+ λi(ai−1(t)− ai(t)) + µiwi(t). (4.25)
The co-state dynamics, for i = 1, are given as

µ̇1(t) = −
∂H

∂x1
= 0

λ̇1(t) = −
∂H

∂v1
=

N∑
i=1

m(ai(t) + h) + µ1,

(4.26)

and for the rest N − 1 and ∀ i ∈ [2, N ] are given as

µ̇i(t) = −
∂H

∂ξi
= 0

λ̇i(t) = −
∂H

∂wi
= −m(ai(t) + h) + µi.

(4.27)

The control input a(t) for i = 1 is given by

∂H

∂a1
= mv1(t) + 2b(a1(t) + h) + λ1(t) + λ2(t) = 0,

a1(t) = −
1

2b
(mv1(t) + λ1(t) + λ2(t))− h.

(4.28)

and for all i ∈ [2, N ]

∂H

∂ai
= m(v1(t)−

N∑
n=2

wn(t)) + 2b(ai(t) + h)− λi(t) + 1Aλi+1(t) = 0,

ai(t) = −
1

2b

(
m(v1(t)−

N∑
n=2

wn(t))) + λi(t)− 1Aλi+1(t)

)
− h

(4.29)

where 1 is an indicator function of subset A = [2, N − 1].
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For i = 1, the necessary condition ∂H/∂a1 = 0 depends on the adjoint states
to its own speed and relative speed to the follower. However, when solving for the
optimal solution v1(t), one would find the same solution as in (4.6) with i = 1,
indicating that the first follower is not affected by the cooperation of the platoon.
For the rest N − 1 vehicles, the optimal solution for relative velocity is given by

wi(t) = wi,0 −

(
4wi,0

Ti,f
−

6ξi,f
T 2
i,f

+
6ξi,0
T 2
i,f

)
t−

(
6ξi,f
T 3
i,f

− 6ξi,0
T 3
i,f

− 3wi,0

T 2
i,f

)
t2,

t ∈ [0, Ti,f ), i ∈ [2, N ] (4.30)
and the velocity of vehicles 2 ≤ i ≤ N is given by

vi(t) = v1(t)−
i∑

n=2

wn(t). (4.31)
Thus, the optimal velocity of vehicles 2 ≤ i ≤ N , depends on v1(t) and relative
speed of preceding vehicles, as per the relation (4.31), indicating the cooperative
nature of the Centralized strategy. The optimal solution of the relative position
(spacing gap) is given by

ξi(t) = ξi,0 + wi,0t−

(
2wi,0

Ti,f
−

3ξi,f
T 2
i,f

+
3ξi,0
T 2
i,f

)
t2

−

(
2ξi,f
T 3
i,f

− 2ξi,0
T 3
i,f

− wi,0

T 2
i,f

)
t3, t ∈ [0, Ti,f ), i ∈ [2, N ]. (4.32)

It can be proven that ξi(t) given by (4.32) will always be greater than or equal to
zero provided the final relative position ξi,f ≥ 0 and certain conditions are satisfied.
Thus the solution (4.30) for CCAVs 2 ≤ i ≤ N is sufficient to remain collision
free. The conditions under which ξi(t) ≥ 0 are discussed in Sect. 4.6.3.

Presence of vehicle i = 0: In the presence of a preceding vehicle i = 0 in
front of the platoon, the optimal solution for the vehicle i = 1 is the same as in
the Cooperative EDOC, given by the Eqn.(4.20). The solution for the rest N − 1

vehicles remains unchanged.

4.5.3 . Implementation
Similar to the NC-EDOC and C-EDOC, the optimal solutions are implemented

in a MPC framework. The optimal solution is rewritten, using (4.30), with bound-
ary conditions in the MPC horizon as, BC : {ξi,0 = ξi(t), wi(0) = wi(t), ξi(Ti) =

ξi,f , wi(Ti) = 0}, as

wi(k) = wi(t)−
(
4wi(t)

Ti
−

6ξi,f
T 2
i

+
6ξi(t)

T 2
i

)
k−(

6ξi,f
T 3
i

− 6ξi(t)

T 3
i

− 3wi(t)

T 2
i

)
k2, k ∈ [0, Ti) (4.33)
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For the Centralized Cooperative case, the explicit control inputs evaluated at k = 0

for CCAV i = 1 are the same as given in Sect. 4.4.3 and for CCAVs 2 ≤ i ≤ N , it
is obtained from (4.31). For vehicle i > 1, the control input ai, in the absence of
a vehicle i = 0, is given by

ai(t) =

(
− 4

T1
v1(t)−

2

T1
V1 +

6

T 2
1

D1

)
−

i∑
n=2

(
4wn(t)

Tn
−

6ξn,f
T 2
n

+
6ξn(t)

T 2
n

)
, 2 ≤ i ≤ N (4.34)

and in the presence of a vehicle i = 0, is given by

ai(t) =

(
a0(t) +

4

θ1
ξ̇1(t) +

6

θ21
ξ1(t)

)
−

i∑
n=2

(
4wn(t)

Tn
−

6ξn,f
T 2
n

+
6ξn(t)

T 2
n

)
, 2 ≤ i ≤ N (4.35)

where a0(t) is the current acceleration of the vehicle leading the Centralized pla-
toon.

4.6 . String stability

This section verifies if the car-following feedback control law obtained, for the
NC-EDOC, C-EDOC and CC-EDOC are string stable. As previously stated, a
tight formation platoon can experience "string instability" where the disturbance
of the system states are amplified along the string. Various definitions and analysis
methods have been proposed in literature to study string stability [1]. In this study,
we employ the definition of a "strong frequency domain string stability" sufficient
condition [8] which states that, a platoon with linear control law and predecessor
following topology is string stable, if the transfer function between of the outputs
between CCAV i and CCAV i− 1, denoted by G, is such that

||G(s)||∞ ≤ 1. (4.36)
s→ jω denotes the Laplace variable, and ||.||∞ denotes the maximum amplitude
for all ω > 0. Disturbance of various system states, such as velocity, gap and
position are often considered in literature. However, for a homogeneous platoon the
transfer function for these signals are identical. Focusing on preventing collisions,
the error between the desired and the actual inter vehicle distances, given by ξi,
is often considered. If ξi denotes the signal of interest, the string stability transfer
function Gi(jω), for a CCAV i is written as

Gi(jω) =
ξi(jω)

ξi−1(jω)
, ∀i ∈ [1, N ]. (4.37)
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The platoon is said to be string stable if

||Gi(jω)||∞ ≤ 1, ∀i ∈ [1, N ], ω > 0. (4.38)
In the case ||Gi(jω)||∞ = 1, this condition is called marginally string stable.

4.6.1 . Non-Cooperative EDOC
To study the string stability of a platoon it is convenient to define the system

states that couples the dynamics of CCAV i and its predecessor CCAV i−1. Here,
the system states are defined as z = (ξi, ξ̇i, vi, ai−1). The non-linear control law
ai(t) for a NC-EDOC under nominal conditions (i.e. without infeasibilities) is given
by (4.13), and is stated below:

ai(t) = ai−1(t) +
4

θi
ξ̇i(t) +

6

θ2i
ξi(t). (4.39)

The term θi = f(zi, Di, Ti, Vi) is given by

aθ3i+bθ2i + cθi + d = 0, (4.40)
where

a = vi − Vi + ai−1Ti

b = 2Ti(2ξ̇i + vi) + ViTi + ai−1T
2
i /2− 3Di

c = 6ξiTi − ξ̇iT
2
i

d = −3ξiT 2
i .

To make the analysis simpler, a receding horizon approach is assumed where Di, Ti

and Vi, are considered constants. An explicit solution for θi is obtained by solving
for the root of the cubic equation (4.40), given by

θi =
(
q +

(
q2 + (r − p2)3

)1/2)1/3
+
(
q −

(
q2 + (r − p2)3

)1/2)1/3
+ p, (4.41)

where
p = −b/(3a), q = p3 + (bc− 3ad)/(6a2), r = c/(3a).

4.6.1.1 . String Stability Transfer Function, Gi,NC

To obtain the string stability transfer function Gi,NC(jω), the non-linear control
law given by (4.39) is linearised around the equilibrium with a positive θi

2. An
equilibrium condition for a non-stationary platoon is given by ai(zi) = 0,∀i ∈
[1, N ], where zi = (0, 0, v∗, 0). This indicates that all the CCAVs drive at the
same speed v∗. The linearised control law around equilibrium is obtained as

āi = fξ ξ̄i + fξ̇
˙̄ξi + fvv̄i + faāi−1, (4.42)

2A positive θi at equilibrium exists under the conditions Vi < vi and Di/Ti >
(2vi + Vi)/3
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where ξ̄i = ξi − ξi,e,
˙̄ξi = ξ̇i − ξ̇i,e, v̄i = vi − vi,e and, āi−1 = ai−1 − ai−1,e denote

the perturbations and subscript e denotes the states at equilibrium. The terms
fξ = ∂ai

∂ξi
, fξ̇ = ∂ai

∂ξ̇i
, fv = ∂ai

∂vi
, fa = ∂ai

∂ai−1
denote the partial derivatives of (4.39)

explicitly evaluated as

fξ =
6

θ2i
−

4ξ̇i
∂θi
∂ξi

θ2i
−

12ξi
∂θi
∂ξi

θ3i
, (4.43a)

fξ̇ =
4

θi
−

4ξ̇i
∂θi
∂ξ̇i

θ2i
−

12ξi
∂θi
∂ξ̇i

θ3i
, (4.43b)

fv = −

(
4ξ̇i

∂θi
∂vi

θ2i
+

12ξi
∂θi
∂vi

θ3i

)
, (4.43c)

fa = 1−

(
4ξ̇i

∂θi
∂ai−1

θ2i
+

12ξi
∂θi

∂ai−1

θ3i

)
. (4.43d)

The dependency of the states on time and for θi on z are dropped for readability.
The dynamics of the spacing error are given by

ξ̄i = x̄i−1 − x̄i

˙̄ξi = v̄i−1 − v̄i,

¨̄ξi = āi−1 − āi,

(4.44)

Substituting for āi−1 and āi using (4.42) yields

¨̄ξi = fξ(ξ̄i−1 − ξ̄i) + fξ̇(
˙̄ξi−1 − ˙̄ξi) + fv(v̄i−1 − v̄i) + fa(āi−1 − āi−2). (4.45)

Replacing ˙̄ξi = (v̄i−1−v̄i) and ¨̄ξi−1 = (āi−1−āi−2), the last equation is rearranged
to yield

¨̄ξi + (fξ̇ − fv)
˙̄ξi + fξ ξ̄i = fa

¨̄ξi−1 + fξ̇
˙̄ξi−1 + fξ ξ̄i−1. (4.46)

With the bar on the variables dropped for readability, assuming zero initial con-
ditions and taking Laplace transform of Eqn. (4.46), the string stability transfer
function Gi,NC(s) of ξi is given as

Gi,NC(s) =
ξi
ξi−1

=
fas

2 + fξ̇s+ fξ

s2 + (fξ̇ − fv)s+ fξ
. (4.47)

Inserting s→ jω

Gi,NC(jω) =
UP

LP
=

−faω2 + fξ̇jω + fξ

−ω2 + (fξ̇ − fv)jω + fξ
. (4.48)
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4.6.1.2 . String Stability Criteria
String stability requires |UP

LP | ≤ 1, which is equivalent to [23]:

||UP ||2 ≤ ||LP ||2. (4.49)
Taking magnitude of UP yields

|UP | = (fξ − faω
2)2 + (fξ̇ω)

2,

= f2
aω

4 + (f2
ξ̇
− 2fξfa)ω

2 + f2
ξ .

(4.50)
Similarly, the magnitude of LP is given by

|LP | = (fξ − ω2)2 + (fξ̇ − fv)
2ω2,

= ω4 + (f2
ξ̇
+ f2

v − 2fξ̇fv − 2fξ)ω
2 + f2

ξ .
(4.51)

Thus the condition |UP
LP | ≤ 1 simplifies as:

||Gi(ω)||∞ =
f2
aω

4 + (f2
ξ̇
− 2fξfa)ω

2 + f2
ξ

ω4 + (f2
ξ̇
+ f2

v − 2fξ̇fv − 2fξ)ω2 + f2
ξ

≤ 1. (4.52)
String stability requires ||Gi(ω)||∞ ≤ 1, which is unconditionally satisfied if the
coefficients of the LP are greater than the UP . Therefore, the first sufficient
condition for string stability is given by

f2
a ≤ 1, (4.53a)

fv(2fξ̇ − fv)− 2fξ(fa − 1) ≤ 0. (4.53b)
In the event of the coefficients of the LP are not greater than the UP , the second
condition for string stability is obtained by maximizing for the polynomial

max
ω>0

Y1(ω) = (f2
a − 1)ω2 + (2fξ̇fv − f2

v + 2fξ − 2fξfa) ≤ 0 (4.54)
The polynomial (4.54) is obtained by rearranging the fraction (4.52) as shown
below:

f2
aω

4 + (f2
ξ̇
− 2fξfa)ω

2 + f2
ξ ≤ ω4 + (f2

ξ̇
+ f2

v − 2fξ̇fv − 2fξ)ω
2 + f2

ξ , (4.55)
(f2

a − 1)ω4 + (2fξ̇fv − f2
v + 2fξ − 2fξfa)ω

2 ≤ 0. (4.56)
After solving for the critical point ω∗ by setting ∂Y1/∂ω = 0 and inserting it into
Y1, we obtain the second sufficient condition for string stability as,

Fnc,1 = f2
a ≤ 1, (4.57a)

Fnc,2 = fv(2fξ̇ − fv)− 2fξ(fa − 1) ≤ 0. (4.57b)
It can be noticed that both conditions, (4.53) and (4.57) are identical.
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4.6.1.3 . String Stability at Equilibrium Point
Evaluating the partial derivatives fa, fv, fξ, fξ̇ at equilibrium, we obtain

fa = 1, fv = 0, fξ =
6

θ2i
, fξ̇ =

4

θi
. (4.58)

Substituting these values in (4.52), the magnitude of the transfer function
||Gi(ω)||∞ = 1, and the inequalities in (4.57) becomes equalities, indicating that
the equilibrium point of Non-Cooperative EDOC is only marginally string stable.
This is also consistent with literature [8], where a platoon with using constant
spacing policy and the acceleration of the preceding vehicle is marginally string
stable.

4.6.2 . Cooperative EDOC
This section extends our analysis to the Cooperative-EDOC. The control law

of the C-EDOC is identical to that of the Non-Cooperative, with the exception
of the instantaneous preceding vehicle’s acceleration, ai−1(t), replaced by ãi−1(t).
The control law reads

ai(t) = ãi−1(t) + +
4

θi
ξ̇i(t) +

6

θ2i
ξi(t), (4.59)

where θi is given by (4.41), with ãi−1(t) replacing ai(t) where necessary. In a
similar fashion to the NC-EDOC, the C-EDOC is linearised around equilibrium to
yield

āi = fξ ξ̄i + fξ̇
˙̄ξi + fvv̄i + fa¯̃ai−1, (4.60)

with partial derivatives as in (4.43) with ãi−1(t) replacing ai(t) where necessary.
The spacing error dynamics equation is obtained as

¨̄ξi + (fξ̇ − fv)
˙̄ξi + fξ ξ̄i = fa

¨̃̄
ξi−1 + fξ̇

˙̄ξi−1 + fξ ξ̄i−1 (4.61)
4.6.2.1 . String Stability Transfer Function, Gi,C
With the bar on the variables dropped for readability, assuming zero initial

conditions and taking Laplace transform of Eqn. (A.17), the string stability transfer
function (see Appendix A.5 for derivation) for the C-EDOC Gi,c(s) is given as

Gi,c(s) =
ξi
ξi−1

=
(fa/L(e

(sL) − 1) + fξ̇)s+ fξ

s2 + (fξ̇ − fv)s+ fξ
. (4.62)

Inserting s→ jω, we get

Gc(ω) =
UP

LP
=

(fa/L(e
(jωL) − 1) + fξ̇)jω + fξ

−ω2 + (fξ̇ − fv)jω + fξ
. (4.63)

Using the identity ejωL = cos(ωL) + j sin(ωL) and rearranging the UP , we get

UP =

(
fξ −

faω

L
sin(ωL)

)
+ j

(
faω

L
cos(ωL)− faω

L
+ fξ̇ω

)
. (4.64)
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Taking magnitude of UP yields

|UP | =
(
fξ −

faω

L
sin(ωL)

)2

+

(
faω

L
cos(ωL)− faω

L
+ fξ̇ω

)2

,

=

(
f2
ξ +

f2
aω

2

L2
sin2(ωL)−

2fξfaω

L
sin(ωL)

)
+

(
f2
ξ̇
ω2 +

f2
aω

2

L2
−

2f2
aω

2

L2
cos(ωL) +

f2
aω

2

L2
cos2(ωL)−

2fafξ̇ω
2

L
+

2fafξ̇ω
2

L
cos(ωL)

)
.

(4.65)
Using the identity sin2(ωL)+cos2(ωL) = 1 and, the Taylor’s series approximation
sin(ωL) ≤

(
ωL− (ωL)3

6

)
and cos(ωL) ≤

(
1− (ωL)2

2

)
, we get

|UP | ≥
(
L2fafξ

3
− Lfafξ̇ + f2

a

)
ω4 +

(
f2
ξ̇
− 2fafξ

)
ω2 + f2

ξ (4.66)
Similarly, the magnitude of LP is given by

|LP | ≥ ω4 + (f2
ξ̇
+ f2

v − 2fξ̇fv − 2fξ)ω
2 + f2

ξ . (4.67)
Thus the condition |UP

LP | ≤ 1 simplifies as:(
L2fafξ

3 − Lfafξ̇ + f2
a

)
ω4 +

(
f2
ξ̇
− 2fafξ

)
ω2 + f2

ξ

ω4 + (f2
ξ̇
+ f2

v − 2fξ̇fv − 2fξ)ω2 + f2
ξ

≤ 1. (4.68)
4.6.2.2 . String Stability Criteria
Similar to the Non-Cooperative case, the conditions for the transfer function

Gi,C ≤ 1 is obtained by analysing the coefficients of the fraction and finding the
maximum of the function obtained from (4.68). In doing so, the conditions for
Cooperative string stability are given by

Fc,1 =

(
L2fafξ

3
− Lfafξ̇ + f2

a

)
≤ 1, (4.69a)

Fc,2 = fv(2fξ̇ − fv)− 2fξ(fa − 1) ≤ 0 (4.69b)
4.6.2.3 . String Stability at Equilibrium Point
With the partial derivatives at equilibrium obtained as, fa = 1, fv = 0, fξ =

6
θ2i
, fξ̇ =

4
θi

and evaluating (4.69) at equilibrium, the condition (4.69b) is equal to
zero, as in (4.57b). The condition (4.69a) is less than 1 if

fξL
2

3
− Lfξ̇ < 0, (4.70)

Evaluating θi at equilibrium we obtain

θi =
−b
a

(4.71)
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where b = 2Tivi + ViTi− 3Di and a = (v− V ). Substituting (4.71) in fξ and fξ̇,
the condition (4.69a) is simplified as

L < 2θi. (4.72)
Expanding the terms yield a condition for Cooperative string stability in terms of
its boundary conditions and the preview window length as

(vi − Vi)L+ 4Tivi + 2ViTi − 6Di < 0. (4.73)
The magnitude of the transfer function Gi,C is less than 1, if the above condition is
satisfied indicating cooperation improves string stability over the Non-Cooperative
EDOC where only marginal string stability could be guaranteed.

A careful analysis of the condition (4.69a), which is quadratic in L, shows
that, for L = 0, the Cooperative condition (4.69a) reduces to the Non-Cooperative
condition (4.57a), which is consistent with the definitions of the Cooperative and
Non-Cooperative schemes. Furthermore, the condition (4.69a) has a minimum at
θi and indicates instability at L > 2θi. Graphically, this is represented in Fig. 4.2.
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Figure 4.2: Region of Stability. The figure is plotted at equilibrium for valuesof fξ = 0.0234 and fξ̇ = 0.25

4.6.2.4 . Numerical Evaluation
A numerical analysis is performed to further evaluate the benefits of coopera-

tion on string stability. The conditions obtained from the above theoretical analysis
is evaluated for different boundary conditions around the equilibrium. For a fixed
Di = 500 m and Ti = 60 s, the other boundary conditions ξi, ξ̇i, vi, Vi, ai−1 are
varied randomly around the equilibrium following a normal distribution. The dis-
tributions of the boundary conditions are given in Appendix A.6. Fig 4.3 shows
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the frequency distributions for varying values of L = 5, 10, 20 of the conditions
(4.57a) and (4.69a) when (4.57b, 4.69b) is satisfied. The distribution of values
in the stability region for the C-EDOC is higher than the NC-EDOC and increases
for increasing values of L, further indicating that cooperation improves the string
stability of a platoon.
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Figure 4.3: Frequency Distribution of the NC-ED (Fnc,1) and C-ED (Fc,1) stabil-ity conditions for varying values of L when (Fnc,2,Fc,2) are satisfied. The leftside of the dotted line indicates stability region.

4.6.3 . Centralized Cooperative EDOC

The string stability Centralized Cooperative EDOC platoon can be studied
without the use of the transfer function in frequency domain. An explicit so-
lution for relative position (i.e. spacing error) for the CC-EDOC is given by
(4.32). Assuming same boundary conditions for relative velocity and position for
all CCAVs i ∈ [2, N ], the spacing gap between any CCAV i and i−1 has the same
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dynamics given by

w(k) = w(t)−
(
4w(t)

T
−

6ξf
T 2

+
6ξ(t)

T 2

)
k −

(
6ξf
T 3
− 6ξ(t)

T 3
− 3w(t)

T 2

)
k2,

k ∈ [0, T ).(4.74)
Identical relative position dynamics for all CCAVs indicate that the spacing gap
does not propagate upstream the platoon, thereby maintaining string stability. An
example of the relative position and velocity is shown in Fig. 4.4 for a CC-EDOC
platoon.
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Figure 4.4: Relative Velocity wi(k) in (a) and Relative Position ξi(k) in (b) forCCAVs i ∈ [2, 5]

Table 4.1: The localminimum, its critical point and the conditions for the localminimum to remain at its critical point
Cases Local Minimum Crit. Point Condition

wi(t) ≥ 0,∆ξi ≥ 0 ξi,f k = Ti -
wi(t) ≥ 0,∆ξi ≤ 0 ξi,f k = Ti Ti|wi(t)| > 3|∆ξi|

wi(t) ≤ 0,∆ξi ≥ 0 ξi,f k = Ti Ti|wi(t)| < 3|∆ξi|

wi(t) ≤ 0,∆ξi ≤ 0 ξmin
a k1

a ξmin ≥ 0

a Refer to Appendix A.7

However, the choice of a certain set boundary conditions could render ξi(k) <
0, causing a rear-end collision. The conditions under which ξi(k) ≥ 0 is ensured
is discussed here. Equation (4.32), being a cubic function of time, has one local
minimum and maximum and the critical point indicates where the local minimum
occurs. The critical points of ξi(k) are obtained from wi(k) = 0. A local minimum
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occurring within an interval with positive values at its extremities, is automatically
the global minimum in that interval, for a cubic equation. Therefore, a non-
negative local minimum in the interval [0, Ti] guarantees ξi(k) ≥ 0. Four cases are
considered based on the signs of wi(t) and ∆ξi = ξi(t)− ξi,f .

Table 4.1 gives the local minimum and its critical point for the four considered
cases. A positive local minimum with its critical point within the prediction horizon
would guarantee ξi(k) ≥ 0, ∀ k ∈ [0, Ti]. For the first three cases, the local
minimum is ξi,f and it occurs at Ti, ensuring ξi(k) ≥ 0. However, for the last
case, a negative local minimum ξmin occurs at k1 ∈ [0, Ti]. The condition ξmin ≥ 0

is enforced so that ξi(k) ≥ 0, ∀ k ∈ [0, Ti]. The equation for ξmin and the proof
that k1 occurs within the horizon Ti is given in the Appendix A.7.

4.7 . Simulation results

This section discusses the simulation results of energy assessment and mean
string length. The energy is computed using the model detailed in Sect. 2.4. Four
homogeneous platoons, each with N = 5, with different algorithms are simulated.
The first one is equipped with an ACC using a constant headway time of 1.2 s.
The second, third and the fourth platoon are equipped with the NC-EDOC, C-
EDOC and CC-EDOC respectively. The WLTC High drive cycle is used for energy
assessment and the string compactness is assessed using the mean string length.
The leader in the platoon i = 0, acting as the virtual reference trajectory, follows
the WLTC cycle in open loop, with no elevation, covering a fixed distance Di in a
fixed time Ti.
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Figure 4.5: Energy vs Mean String Length of the four algorithms. ACC with
H = 1.2 s, represents the minimum headway time for string stability for theused proportional and derivative gains and L = 22 s, is the preview windowlength for minimum energy consumption of the Cooperative strategy.

A study by [17] showed the NC-EDOC algorithm has better energy efficiency
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with a single follower in comparison to the ACC but performed worse in terms
of energy efficiency and string compactness when evaluated with several follow-
ing vehicles. Figure 4.5, shows the energy efficiency versus mean string length,
excluding the virtual reference vehicle i = 0, of the different algorithms. The C-
EDOC, with L = 22 s overcomes the drawbacks of the NC-EDOC in a platoon,
performing better in terms of energy efficiency and string compactness. The gain
in energy efficiency is attributed to better prediction of the preceding vehicle in
the C-EDOC. The NC-EDOC predicts the preceding vehicle using the constant
instantaneous acceleration ai−1(t) over the prediction horizon Ti. However, this
prediction can sometimes cause CCAV i to overreact to an instantaneous strong
deceleration of CCAV i − 1, that is likely to change its acceleration in the near
future. The C-EDOC captures to an extent this change in acceleration of the pre-
ceding vehicle by using the mean of the future accelerations ãi−1(t) over a window
length L. The preview window length L is chosen based on a sensitivity analysis
for minimum energy consumption for a given trajectory. A too small horizon length
L, may not capture any preceding vehicle’s change in acceleration and a too large
L, could cause the ego vehicle to react to a change too far out in the future. In
this simulation, with vehicle i = 0 following WLTC High, a too large L caused the
ego vehicles to travel slower in the beginning, increasing its gap from i = 0, and
travel faster towards the end to satisfy the enforced average speed. This opposing
behavior of planning for too far in the future while having to satisfy the given aver-
age speed (Di,f/Ti,f ) increases the energy consumption. The CC-EDOC performs
best in terms of energy efficiency and string compactness owing to the cooperative
nature of CCAVs to reduce the overall energy consumption, provided vehicle i = 1

follows an eco-driving speed profile.
Figure 4.6, shows the velocity profiles of the vehicles in the platoon with the

four different algorithms. It can be seen that NC-ED, using ai−1(t) smoothens out
certain speed fluctuations of the reference trajectory but appears to have certain
discontinuities (sharp decelerations) when the leader is decelerating aggressively
(for example, between 350 s and 450 s). On the other hand, the velocity trajec-
tories of the Cooperative eco-driving algorithm have reduced discontinuities and
follow a much smoother trajectory as a result of using the average of the future
accelerations ãi−1(t) of the preceding vehicle. The vehicles in the Centralized Co-
operative algorithm follow an almost unvaried speed profile amongst each other,
indicating fewer variations in accelerations/decelerations among them. This, in
turn, contributes to better overall energy efficiency as a platoon compared to the
other algorithms.

Remark 1. The implementation complexity of the three cooperative algorithms
in a platoon can be two fold, i.e., computational speed and required information
to obtain the ED control input. The closed-form analytical solutions obtained for
the three cooperative algorithms ensure high computational efficiency. However,
the information required by each algorithm increases with increasing cooperation.
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Figure 4.6: Velocity Trajectories in the WLTC High Cycle

This in turn increases the complexity in the perception/communication modules of
a CCAV. The NC-ED platoon requires the instantaneous information, via sensors, of
CCAV i−1 to obtain its control input while the C-ED platoon requires CCAV i−1 to
share its intentions via communication. The CC-ED platoon requires all the CCAVs
preceding CCAV i to share its information, making it the platoon with the highest
complexity.

Specific Case Study : In this section, we detail the discontinuities observed
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in the velocity trajectories of NC-EDOC in Figure 4.6. The situation simulated
here shows a homogeneous platoon with N = 10 under a sinusoidal perturbation,
for the leader i = 0, of frequency ω = 0.01 rads/s and final time Ti,f = 630 s.
The vehicles in a platoon start with the same initial velocity and a certain initial
separation greater than smin.
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Figure 4.7: Velocity profile (Fig. 4.7a) and spacing error (Fig. 4.7b) of a NC-EDOC platoon (N = 10) under a sinusoidal perturbation of the leader

Figures 4.7a–4.7b show the Non-Cooperative case where the preceding vehicle
shares only its current acceleration ai−1. At the first time step, the ego vehicle
finds its preceding vehicle decelerating and stopping at a time tstop = vi−1/|ai−1| =
6/0.01 = 600 s, which is less than Ti = 630 s. This would obstruct the ego vehicle
to reach its destination Di. The controller, therefore based on the condition tstop <

Ti chooses (4.15) as its control input. Since a large negative acceleration ai−1 is
assumed to persist in the future, the controller tends to overreact to preceding
vehicle’s acceleration, that is likely to change after several seconds. In doing so,
the acceleration of each vehicle is larger in magnitude than its preceding vehicle as
we move upstream in the platoon, eventually causing them to come to a stand still.
Figure 4.7a shows the velocity profile of the vehicles in the platoon and Fig. 4.7b
the amplification of the spacing error during the beginning of the trip, thus making
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Figure 4.8: Velocity profile (Fig. 4.8a) and spacing error (Fig. 4.8b) of an C-EDOC platoon (N = 10) under a sinusoidal perturbation of the leader, with
L = 40 s.

the platoon string unstable.
In the Cooperative case, Figures 4.8a–4.8b, the leader i = 0 following a known

trajectory, now shares its vector of future acceleration over a preview window length
L = 40 s. The following vehicle i = 1, solving its OCP with constant preceding
vehicle acceleration, uses the mean of the acceleration vector ãi−1 over 40 s rather
than instantaneous acceleration ai−1. The mean of the shared acceleration ãi−1

is now lower in magnitude than the current acceleration ai−1, indicating that the
preceding vehicle is either going to reduce its deceleration or start accelerating in
the near future. The condition tstop < Ti now finds the preceding vehicle to stop at
a time after the final time Ti, thereby enabling the controller to use control input
(4.17). Figure 4.8a shows the velocity profile of the ego vehicles in the platoon.
The deceleration of each vehicle is attenuated as we go upstream the platoon,
thereby preventing any propagation of spacing error.

4.8 . Conclusion
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A car-following ED scenario formulated as an OCP in Chap. 2 is extended
to the platoons. Three levels of cooperation (i.e., NC-ED, C-ED, and CC-ED)
are applied to the platoons and evaluated for their energy efficiency and string
compactness. While NC-EDOC is energy efficient with a single follower, it performs
worse in energy efficiency and string compactness when evaluated in a string of
several following vehicles. This is mainly attributed to the overreaction of the
ego vehicle to an instantaneous strong acceleration/deceleration of the preceding
vehicle. The C-EDOC, when using the average of the future acceleration of the
preceding vehicle, has a better motion prediction and compensates to an extent
for the overreaction of the ego vehicle. This improves energy efficiency and string
compactness compared to NC-EDOC. The CC-EDOC performs best in terms of
energy efficiency and string compactness. This confirms our intuitive understanding
that a rigid platoon would be the target if the leading vehicle performs eco-driving.
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5 - Intersection

This chapter discusses the intersection ED scenario.

5.1 . State-of-the-Art

An intersection is a junction where two or more roads meet, and is a shared
resource that only a limited number of vehicles can occupy at once. Several vehicles
wanting to use it simultaneously can cause conflicts leading to collisions. Therefore,
intersections are controlled to resolve these conflicts, using traffic technologies
such as traffic lights and stop or yield signs. In a CCAV environment, the vehicles
in an intersection can coordinate and communicate to resolve conflicts with each
other. This eliminates the need for additional infrastructure leading to un-signalized
intersections.

In the literature on un-signalized intersections, the area within the perimeter
where CCAVs can communicate with each other or the infrastructure is often called
the Control Zone (CZ). The region in the center, where vehicle paths cross, is called
the Intersection Zone (IZ), see Fig. 5.1a. The lane in the CZ leading to and out
of the IZ is called the entry and exit lanes, respectively. An intersection being a
shared resource poses two main challenges: scheduling the CCAVs in the IZ and
its motion planning.

The scheduling problem determines the priority of CCAVs at the intersection.
Heuristic or rule-based methods such as First Come First Serve (FCFS) [1] or
First-In-First-Out (FIFO), right-before-left and nearest to the crossing point, etc.,
are often used in literature to schedule CCAVs crossing an intersection. Schedul-
ing problems can also be cast as optimization problems to minimize travel time
or energy consumption using tools such as Mixed Integer Linear Programming
(MILP) [2, 3]. The second challenge, motion planning, involves generating paths
or trajectories for the longitudinal and lateral motion of the CCAVs. The literature
distinguishes a path as having a spatial component and a trajectory as having a
temporal component. A path is a geometric set of points, f(x, y, . . .) = 0, to
go from point a to point b, and a trajectory describes the evolution of path in
time, x(t) [4]. Suppose a CCAV follows a predefined fixed path. In that case, the
problem narrows down to finding the trajectory (i.e., velocity) concerning a certain
objective while respecting constraints such as vehicle dynamics, speed limits, and
safety constraints.

A rich body of literature is available for intersection scheduling and motion
planning. A comprehensive overview of the various heuristic and optimization
methods employed can be found in [5, 6]. Some of the works focusing on trajec-
tory optimization for energy consumption are reviewed here. Reference [7] proposes
a problem formulation to minimize the trip time and the control effort of a CCAV
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crossing an intersection. Pontryagin’s Minimum Principle (PMP) is used to formu-
late the problem. The authors state that the problem, in theory, could be solved
using PMP. However, owing to the difficulty in obtaining analytical solutions, the
problem is solved using numerical discrete and convex optimization. Rear-end col-
lision in the CZ is avoided by formulating a position-inequality constraint, and
lateral collision is avoided by modeling the entire IZ as a collision region. In the
numerical Model Predictive Control (MPC) proposed by [8], the cost functional
directly captures the energy usage of an Electric Vehicle (EV) and the travel time.
The authors in [9, 10, 11] formulate a quadratic MPC to minimize the control
effort and the deviation from the reference velocity. In [9], the vehicle closest to
the intersection in terms of time is assigned a higher priority. Rear-end and lat-
eral collisions are formulated as linear constraints, and the solutions are obtained
numerically. Reference [10] use a predefined crossing order, and the optimization
problem is solved sequentially in that order. Lateral collision is avoided by enforcing
a terminal constraint in the finite horizon. The authors do not consider more than
one vehicle arriving in the same lane simultaneously eliminating the rear-end colli-
sions. The authors in [11] assign priority using the vehicle’s time to react, giving
priority to faster vehicles closer to the intersection. Lateral collision is avoided by
modeling the collision region as a point on the vehicle’s path. The dots in Fig.5.2,
represents a collision point, and this modeling approach allows for more than one
vehicle inside the IZ simultaneously.

While numerical methods facilitate non-linear models and complex formula-
tions, analytical methods provide fast and explicable solutions. However, only a
handful of research efforts have been made to obtain analytical closed-form solu-
tions in the optimal control framework of CCAVs in an intersection. The authors in
[12], present a bi-level optimization problem for scheduling and trajectory of CCAVs
in an intersection without any turns. The upper-level optimization schedules the
CCAVs by maximizing the throughput under the FIFO policy. The authors argue
that the lower-level problem minimizes acceleration, which minimizes the transient
engine operation and fuel consumption. With the optimization horizon of the
lower-level problem only on the entry lane, the solution to this problem produces
an optimal speed profile only until the start of IZ. The vehicles are restricted to
a constant velocity thereafter through the intersection. In a follow-up work [13],
the authors extended the problem formulation to consider left and right-turning
vehicles and present a bi-level optimization solely for the trajectory of the CCAVs.
Still, under FIFO policy, the upper-level problem has an optimization horizon only
for the entry lane, jointly minimizing travel time and accelerations. The arrival time
and velocity at the end of the entry lane are then used as inputs to the second
optimization problem. The lower-level problem jointly reduces jerks and acceler-
ations with an optimization horizon only for the IZ. The CCAVs are restricted to
constant velocity on the exit lane to avoid rear-end collision. The solution to the
above formulation leads to one optimal speed profile on the entry lane and a second
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optimal speed profile inside the IZ followed by a constant velocity.
The main objective of this chapter is to obtain analytical solutions to the

ED problem of an electric CCAV crossing an un-signalized intersection subject to
safety constraints. As in the platooning ED-Scenario, the aim is then to explore
the benefits of cooperation. The contributions of this chapter can be summarised
as follows. We formulate a single-level optimization problem to the ED intersection
scenario with an optimization horizon that includes the entry lane, the IZ and the
exit lane. The analytical, objective function directly captures the energy usage
in an EV, and can deal with position and speed constraints, similar to what has
already been studied in [14, 15, 16] and presented in Chap. 2. Cooperation is
introduced amongst the CCAVs as the ability to share intentions. Two levels of
cooperation, namely the NC-ED and C-ED, are evaluated for performance in terms
of energy consumption.

Chapter Outline: The organization of this chapter is as follows. Section 5.2
presents the intersection and vehicle model and its assumptions. The various
conflicts in an intersection are also discussed. In Sect. 5.3 and Sect. 5.4, the
OCP formulation, solution method and implementation for the NC-EDOC and C-
EDOC are respectively presented. The simulation results and their discussions are
presented in Sect.5.5. Concluding remarks are given in Sect. 5.6.

5.2 . Intersection and Vehicle Model

This section describes the considered un-signalized intersection and vehicle
model. The various conflicts a CCAV can face in an intersection are also analyzed.

5.2.1 . Intersection Model

The intersection considered here is an isolated un-signalized four-legged inter-
section with flat straight roads crossing at right angles. Figure 5.1a represents the
intersection model considered in this paper. Each leg of the intersection consists of
two lanes with traffic flowing in opposite directions. The center of the intersection,
of equal sides, where two or more paths can intersect, is called the Intersection
Zone (IZ). It is within the IZ a possible lateral collision can occur. The roads
leading to and away from the IZ, of length l, are called the entry lane and exit
lane, respectively. The area in the vicinity of IZ where CCAVs can communicate
with each other, and a coordinator is called the Control Zone (CZ). The point
where the entry and exit lane meets the IZ is called the Diverging Point (D) and
Merging Point (M), respectively.

Let N(t) ∈ N be the total number of CCAVs in the CZ, andN (t) = {1, 2, ..., N(t)}
be the set of CCAVs’ ID inside the CZ at time t ∈ R+. A CCAV leaving the CZ
is removed from N (t), and the IDs’ are reset starting from one. The sequence1

1Unlike a set, the order matters in a sequence
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CO(t) is a permutation of N (t) that represents the crossing order according to a
given criterion, whose nth element is denoted as COn(t). As mentioned earlier, the
criterion can be FCFS, right-before-left, or as a result of an upper-level optimizer.
In this work, we assume a predefined crossing order computed and communicated
to the vehicles via a coordinator present at the intersection.

For a four-way intersection with one lane in each direction, there are a total of
12 paths across the intersection. Taking a left or right turn, the path of a CCAV
in the IZ is modeled as a constant radius arc with a central angle of 90◦. The
path of the CCAV in the entry and exit lanes is modeled as straight lines through
the center of the lane. The entry lane and the direction of a CCAV determine
along which of the 12 paths it travels. The lateral collision region in this work is
modeled as points, called Crossing Points (C), and are given by the intersection of
the CCAVs’ paths. Figure 5.2 shows the 12 paths and the 16 crossing points in
the IZ.

We assume that each CCAV entering the intersection has perfect information
about the geometry of the intersection and can compute the distance to the cross-
ing points on its path. Furthermore, each CCAV receives the following information
from other CCAVs with higher priority: the entry lane, heading direction, arrival
time at their crossing point, and instantaneous or future control actions.

In this modeling framework, we impose further assumptions to abstract from
implementation issues and focus on the fundamental aspect of motion planning:
(i) all CCAVs are equipped with V2V communication capabilities. Appropriate
sensors can sense local information of itself and others in proximity without losses
or delays; (ii) the CCAVs are not allowed to overtake each other nor make a U-turn;
(iii) no pedestrians are considered crossing the intersection; (iv) each CCAV follows
a predefined path without any deviation.

To simplify the analysis and the mathematical formulation, the paths in an
intersection are converted from a 2-D Cartesian coordinate to a single-dimensional
coordinate system. Figure 5.1a shows the 2-D paths in OXY , and Fig 5.1b shows
the path converted to 1-D in x. For example, CCAV i ∈ N (t) having initial
coordinates in OXY as ∆0 = {Xi

0, Y
i
0} and final coordinates as ∆f = {Xi

f , Y
i
f },

is mapped onto x with 0 and Di,f as initial and final coordinates, respectively. The
length from ∆0 to D in OXY is denoted using D in x, however, the length from
∆0 to M in OXY is denoted by Mi in x. The subscript i in Mi indicates that
the merging point depends on the path (i.e., left, right, and straight) taken by the
CCAV i. On the other hand, the diverging point D is independent of the path as
it occurs before the turn. Similarly, the length of the path for CCAV i from ∆0 to
C, denoted by Cip, is different from the path for CCAV p from ∆0 to C, denoted
by Cpi. The length from D to Mi in x represents the curvilinear length of the
arc D to M in OXY for CCAV i. The single-dimension reformulation is justified
from the assumption that, the CCAV’s path remains fixed without any deviation.
In doing so, the lateral control (i.e.steering angle) is fixed, reducing the problem
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Figure 5.1: Intersection Model in (a):M,D, Ci,p represent the merging point,diverging point and crossing point respectively for CCAV i. ℓ andw are the exitand entry lane length and width of each lane, respectively. The 1-D transfor-mation of the paths are shown in (b).

to finding the ED velocity along the path.

Figure 5.2: 16 Crossing Points in an intersection with 12 paths
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5.2.2 . Conflicts in an Intersection

This section describes the fundamental conflicts any CCAV i ∈ N (t) can face
with its higher prioritized CCAVs. The higher prioritized vehicles for a CCAV i ∈
N (t), with priority k such that COk(t) = i, is given by the sub-sequence Hi(t) =

(COn(t))
k−1
n=1. There are four types of fundamental conflicts in a traffic conflict

analysis: car-following /sequential, crossing, diverging and merging conflict [17].

Car-following/Sequential Conflict: The car-following/sequential conflict, see
Fig. 5.3a, occurs when CCAV i ∈ N (t) has a preceding CCAV p ∈ Hi(t) following
the same path. Let CF i(t) represent a sub-sequence of Hi(t), with all vehicles in
Hi(t) having the same path as CCAV i.

Crossing Conflict: A crossing conflict, see Fig. 5.3b, occurs for CCAV i ∈
N (t) when its path intersects with a CCAV c ∈ Hi(t) in the IZ. Let CCi(t) represent
a sub-sequence of Hi(t), with all the vehicles in Hi(t) whose paths intersect with
CCAV i.

Diverging Conflict: A diverging conflict, see Fig. 5.3c, occurs when CCAV i ∈
N (t) has the same entry lane with a preceding CCAV d ∈ Hi(t), but different
heading directions. The conflict exists for CCAV i ∈ N (t) only until D. Let
DCi(t) represent a sub-sequence of Hi(t), with all vehicles in Hi(t) having the
same entry lane as CCAV i ∈ N (t) but with a different heading direction.

Merging Conflict: Merging conflict, see Fig. 5.3d, occurs when CCAV i ∈
N (t) has the same exit lane as CCAV e ∈ Hi(t) but with different entry lanes.
The exit lane of a CCAV can be easily found with the knowledge of intersection
geometry, entry lane, and heading direction. A merging conflict is active only in
the exit lane starting from Mi. Let MCi(t) a sub-sequence of Hi(t), with all
vehicles in Hi(t) having the same exit lane as CCAV i but different entry lane.

The sequences DCi(t),MCi(t), CCi(t), CF i(t) are collectively referred to as
the conflicting sequences in the remainder of the chapter.

5.2.3 . Turning Speed

Another important safety consideration independent of the other CCAVs in the
intersection is the turning speed. We enforce a safe turning speed for CCAVs taking
a turn in the intersection. The centripetal force provided by the tyre friction forces
defines the safe speed of the CCAVs in turns and is given by

vsafe =
√

fgR, (5.1)
where f , g, and R represent the tyre friction coefficient, gravitational constant,
and radius of the turn. The latter is different for left and right-turning vehicles.
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Figure 5.3: Four Basic Conflicts in an Intersection.

5.2.4 . Vehicle Model

As mentioned above, the CCAVs follow a fixed path, meaning vehicles can
control only their acceleration/deceleration. This enables the decoupling of path
and trajectory. A second-order longitudinal dynamics to describe each CCAV i ∈
N (t). Under similar assumptions as in Sect. 2.2.1.1, the linearised longitudinal
vehicle model is given as

ẋi = vi(t),

v̇i = ai(t) = F/m− h.
(5.2)

It remains to obtain the ED optimal feedback control law ai(t) for each CCAV i

resolving the conflicts it can face.

5.3 . Non-Cooperative EDOC

In the NC-EDOC, each CCAV aims to minimize its energy consumption while
sharing and having access to only instantaneous information from other CCAVs
in N (t). This section describes the ED-OCP formulation for a CCAV i ∈ N (t)

and the mathematical translation of the various conflicts into constraints. The
solution of the ED-OCP with different constraints obtained using PMP and its
implementation are detailed in this section.

5.3.1 . OCP Formulation

Consider a CCAV i ∈ N (t) crossing an intersection of distance Di,f in time
Ti,f with given initial and final speed vi,0 and Vi,f respectively. Let ti,0 be its entry
time in the CZ.

5.3.1.1 . Unconstrained-EDOC

In the event of CCAV i being the only vehicle in the intersection (i.e. |N (t)| =
1), an unconstrained OCP is formulated as shown below. Under similar assumptions
for an electric vehicle in Sect. 2.2, and employing the vehicle model (5.2) and
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objective function (2.6), the OCP reads

minimize
ai(t)

Ji =

∫ ti,0+Ti,f

ti,0

m(ai(t) + h)vi(t) + b(ai(t) + h)2 dt,

state dynamics

ẋi = vi(t),

v̇i = ai(t),

boundary conditions BC:
{xi(ti,0) = 0, vi(ti,0) = v0, xi(ti,0 + Ti,f ) = Di,f , vi(ti,0 + Ti,f ) = Vi,f}.

(5.3)

where Di,f is the path length from the entry lane’s start to the exit lane’s end.
Since each CCAV solves its OCP, we rewrite the formulation from a global to a
local time reference frame as follows

minimize
ai(t)

Ji =

∫ Ti,f

0
m(ai(ti) + h)vi(ti) + b(ai(ti) + h)2 dt,

state dynamics

ẋi = vi(ti),

v̇i = ai(ti),

boundary conditions BC:
{xi(0) = 0, vi(0) = v0, xi(Ti,f ) = Di,f , vi(Ti,f ) = Vi,f}.

(5.4)

For notation brevity, we will drop the subscript i from ti in the rest of the chapter.
Therefore, t ∈ [0, Ti,f ] in the rest of this chapter denotes the time of an individual
CCAV i ∈ N (t) entering and leaving the CZ at 0 and Ti,f , respectively.

5.3.1.2 . Constrained-EDOC
As CCAV i enters the intersection, the presence of other higher prioritized

CCAVs in the intersection (i.e. Hi(t) is not empty) can cause a potential con-
flict. The conflicts between CCAV i ∈ N (t) and the vehicles in the conflicting
sequences are identified and added as a constraint to the ED-OCP in (5.4). The
conflict can be either one of the four fundamental conflicts detailed in Sect. 5.2.2
or a combination of these four. The following section details the mathematical
transformation of the fundamental conflicts into constraints to be added to (5.4).

Car-Following/Sequential Constraint: Car-following conflict occurs when
CCAV i ∈ N (t) and an immediately preceding CCAV p ∈ CF i(t), have the same
path. Such a conflict leads to a potential rear-end collision without adjusting
CCAV i’s speed. A collision of such type is formulated as a position-inequality
constraint. CCAV p’s motion is predicted for the entire horizon Ti,f , under the
constant acceleration assumption ap, as

xi(t) ≤ xp,0 + vp,0t+
1

2
apt

2 − smin − lp , t ∈ [0, Ti,f ] (5.5)
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where xp,0, vp,0 and ap are the initial position, velocity and acceleration of CCAV p.
smin and lp denotes the constant safe minimum gap and length of CCAV p. In the
rest of the chapter, the term smin and lp are lumped into the initial position for
convenience.

Crossing Constraint: A crossing conflict occurs when the path of two or
more CCAVs intersects in the IZ, leading to a potential lateral collision between
them. A collision of such type is formulated as an interior-point constraint [18],
where equality constraints on the states are imposed point-wise along the horizon.
Consider two CCAVs i ∈ N (t) and CCAV c ∈ CCi(t) with CO(t) = {c, i}. The
lateral collision avoidance constraint is formulated as

xi(t+ τCic ) = Cic with τCic = tCic + dT . (5.6)
where Cic represents the distance to the crossing point, see Fig. 5.4. The term dT

represents the safety margin between the arrival of the CCAVs at their respective
crossing points. CCAV c’s required time tCic , to arrive at its crossing point Cci is
computed by solving

Cic = xc,0 + vc,0t
Ci
c +

1

2
act

Ci
c

2
, (5.7)

where xc,0, vc,0 and ac are the initial position, velocity and acceleration of CCAV c.
Figure 5.4 shows a qualitative example of the interior-point-constraint. CCAV i is
constrained to arrive at or after τCic at Cic.

i

c

Cic
Cci

(a)

dT
tCic ,Cic τCic ,Cic

Time [s]

Pos
itio

n[m
] CAV c

(b)
Figure 5.4: Distance to the crossing conflict (a) for CCAV i is denoted by Cicand for CCAV c is denoted by Cci. CCAV i is constrained to arrive after or at theinterior-point constraint (τCic , Cic), shown on x− t plane (b).

Diverging Constraint: A diverging conflict occurs in the entry lane, when
CCAV i ∈ N and its immediately preceding vehicle d ∈ DCi(t) have the same
entry lane and different heading direction. Once CCAV d changes direction at D,
CCAV i is no longer in conflict. Like the car-following, the diverging conflict poses

81



a potential rear-end collision. It is formulated as a position-inequality constraint
except that CCAV i is constrained only until D. More formally

xi(t) ≤
{

xd,0 + vd,0t+
1
2adt

2 t ∈ [0, τDd ]
∞ t ∈ (τDd , Ti,f ]

(5.8)
As in the car-following constraint, CCAV d’s motion is predicted under the constant
acceleration assumption until D. The term τDd , see Fig.5.5, denotes the arrival time
at D and is computed as follows,

D = xd,0 + vd,0τ
D
d +

1

2
adτ

D
d

2
, (5.9)

xd,0, vd,0 and ad represent the initial position, velocity and acceleration of CCAV d,
respectively.
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(b)
Figure 5.5: The path of CCAV d is shown in (a) and a qualitative example ofits constraint on the x − t plane of CCAV i in (b). The term τDd indicates thearrival time of CCAV d at D.

Merging Constraint: A merging conflict occurs when the path of CCAV i ∈
N (t) and CCAV e ∈ MCi(t), merge at Mi. CCAV i remains conflict-free from
CCAV e untilMi but upon entering the exit lane, CCAV e poses a potential rear-
end collision. As in (5.8), merging conflict is formulated as a position-inequality
constraint but starting fromMi until the end of the horizon. Explicitly it reads

xi(t) ≤
{
∞ t ∈ [0, τMes

e ]
(xe,m +Mi) + ve,mt+ 1

2aet
2 t ∈ (τMes

e , Ti,f ]
(5.10)

As earlier, the motion of CCAV e in the exit lane is predicted under the constant
acceleration assumption. The arrival time τMes

e of CCAV e at Mes = Me +

ds s.t. ds > smin, is computed using

Mes = xe,0 + ve,0τ
Mes
e +

1

2
aeτ

Mes
e

2
. (5.11)
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where xe,0, ve,0 and ae represent the initial position, velocity and acceleration of
CCAV e, respectively.

The term xe,m represents the distance of CCAV e from its merging pointMe

at τMes
e , which as per this formulation is equal to ds, see Fig. 5.6b. The velocity

and acceleration measured at xe,m are represented by ve,m and ae, respectively.
The term (xe,m +Mi) ensures that the position of CCAV e is mapped onto the
position frame of CCAV i. The choice of ds as a distance margin guarantees2 that
CCAV i arrives at Mi after CCAV e with a gap of ds > smin. This ensures that
the position constraint at the first time step τMes

e is not violated.

e
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Figure 5.6: The path of CCAV e is shown in (a) and a qualitative example ofits constraint on the x− t of CCAV i plane in (b).

Turning Speed Constraint: The turning speed constraint restricts a CCAV’s
speed in the IZ to a maximum defined by (5.1). The constraint is enforced by
letting the speed of CCAV i equal to vtr < vsafe at the midpoint of its path in the
IZ, see Fig. 6.12a. The choice of vtr, a lower value than vsafe, is a conservative
approach that keeps the CCAV’s speed below the threshold. More formally,

vi(t+ τt) = vtr,

xi(t+ τt) = Di,f/2.
(5.12)

Let amax be the maximum acceleration of CCAV i and δ denote the length of
CCAV’s turning path inside the IZ. The term vtr is obtained by solving the two
equations

vsafe = vtr + amaxt (5.13a)
δ

2
= vtrt+

1

2
amaxt

2 (5.13b)

2A time based margin does not always guarantee constraint satisfaction atMi. Asmall dT might cause xe,m <Mi + smin, while a large dT might be too restrictive
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Figure 5.7: CCAV i is constrained to have its speed equal to vtr at themidpointof its path.

5.3.2 . Solution

The solution to unconstrained and constrained ED-OCP formulated for the NC
strategy is presented in this section.

5.3.2.1 . Unconstrained

The solution of the unconstrained ED-OCP formulated in (5.4) follows the
same solution method detailed in Sect. (2.2.2) and the obtained solution is a
parabolic speed profile as a function of time given by

vi(t) = vi,0 +

(
−4vi,0

Ti,f
−

2Vi,f

Ti,f
+

6Di,f

T 2
i,f

)
t+

(
3vi,0
T 2
i,f

−
6Di,f

T 3
i,f

+
3Vi,f

T 2
i,f

)
t2.

t ∈ [0, Ti,f ] (5.14)
The associated energy consumption of the trip Eb, a function of vehicle parameters
m, b, h and boundary conditions, is given by

Eb = mhDi,f +m
V 2
i,f − v2i,0

2
+ bh2Ti,f + 2bh (Vi,f − vi,0)+

+4b

(
3D2

i,f

T 3
i,f

−
3Di,f (vi,0 + Vi,f )

T 2
i,f

+
v2i,0 + vi,0Vi,f + V 2

i,f

Ti,f

)
.

(5.15)

5.3.2.2 . Constrained

Car-Following/Sequential Constraint: The car-following constraint is sim-
ilar to the ED-OCP already solved in Sect. 2.3, where

ξi(t) = xi(t)− (xp,0 + vp,0t+
1

2
apt

2). (5.16)
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Following the same method, the optimal speed profile yields,

vi(t) =



vi,0 +

(
ap +

4ξ̇i,0
θi

+
6ξi,0
θ2i

)
t−

−

(
6ξi,0
θ3i

+
3ξ̇i,0
θ2i

)
t2, t ∈ [0, θi)

vp,0 + apθi +

(
ap −

6ξi,0
θ2i
− 2ξ̇i,0

θi

)
(t− θi)+

+

(
Vi,f − 3vp,0 + 2vi,0 − 6

ξi,0
θi
− apTi,f + 6ξi,0

Ti,f

θ2i
+

+ 2ξ̇i,0
Ti,f

θi

)
(t− θi)

2

(Ti,f − θi)
2 . t ∈ [θi, Ti,f ] .

(5.17)

The contact time θi, that is, where the constraint is met (ξi = 0), is given by

(vi,0 − Vi,f + apTi,f ) θ
3
i +

(
4vp,0Ti,f + Vi,fTi,f − 2vi,0Ti,f + apT

2
i,f/2

−3Di,f ) θ
2
i +

(
6ξi,0Ti,f + vi,0T

2
i,f − vp,0T

2
i,f

)
θi −

(
3ξi,0T

2
i,f

)
= 0.

(5.18)
Crossing Constraint: The solution to the ED-OCP (5.4) with constraint (5.6)

is obtained as follows. The optimal speed profile of CCAV i is composed of two
almost-independent unconstrained segments (5.14), defined by BC : {0, vi,0, Cic, vi(t+
τCic )} for the first segment and BC : {Cic, vi(t + τCic ), Di,f , Vi,f} for the second
segment. With the position and time at the junction of the two segments imposed
by the constraint (5.6), the optimal speed profile is completely defined by the free
parameter vi(t+ τCic ), obtained as follows.

The energy consumption of the whole trip Ebf is given as the sum of each
segment’s energy consumption, and the optimal value for vit = vi(t + τCic ) is
obtained by minimizing Ebf = E

(1)
b + E

(2)
b . The equations for E(1)

b and E
(2)
b are

obtained from (5.15), and Ebf is explicitly given as

Ebf =

(
3C2ic
(τCic )3

− 3Cic (vi,0 + vit)

(τCic )2
+

v2i,0 + vi,0vit + v2it

τCic

)
+(

3(Di,f − Cic)2

(Ti,f − τCic )3
−

3(Di,f − Cic) (vit + Vi,f )

(Ti,f − τCic )2
+

v2it + vitVi,f + V 2
i,f

(Ti,f − τCic )

)
.

(5.19)
The free parameter vit is explicitly obtained by setting

∂Ebf

∂vit
= 0 (5.20)

and is given by

vit =

((
(3Cic−3Di,f )

(τ
Ci
c −Ti,f )2

− Vi,f

(τ
Ci
c −Ti,f )

)
−
(

3Cic
(τ

Ci
c )2
− vi,0

τ
Ci
c

))(
τCic (τCic − Ti,f )

)
2τCic − 2(τCic − Ti,f )

.

(5.21)
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Thus, vit is a function completely defined by the two segments’ boundary con-
ditions. The optimality of the approach has been shown in [16, 19]. Figure 5.8
shows an example of the optimal speed and position profile satisfying the crossing
constraint.
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Figure 5.8: The position profile (b) passes through the interior-point Ci =54.50 m and τCic = 5.2 s. The free parameter vit = 7.39 m/s2 is shown in thevelocity profile (a), with vi,0 = Vi,f = 12 m/s2,Di,f= 110 m and Ti,f=14 s.

Diverging Constraint: The optimal solution to the ED-OCP (5.4) with the
diverging constraint (5.8) contains two segments. The first segment where (5.17)
applies3, satisfying the inequality constraint ξi(t) ≤ 0 posed by CCAV d. The
second segment where (5.14) applies has the constraint jumping to infinity. The
BC for the first and second segments are given as {0, vi,0, xi(t+ τDd ), vi(t+ τDd )}
and {xi(t+τDd ), vi(t+τDd ), Di,f , Vi,f}, respectively. With the time at the junction
of the segments imposed by τDd (arrival time of CCAV d at D), the optimal solution
is now defined by two unknown free parameters, xid = xi(t+τDd ), vid = vi(t+τDd ).

The optimal value for these two parameters is found by minimizing the sum of
energies of the two segments (i.e., the total energy consumption of the trip Ebf ).

Ebf = E
(1)
b + E

(2)
b . (5.22)

E
(1)
b is energy consumption obtained by substituting the solution (5.17) and its

corresponding control input ai(t) in Ji of (5.4). An alternate way of obtaining
E

(1)
b using (5.15) is by rewriting

E
(1)
b = E

(1.1)
b + E

(1.2)
b , (5.23)

where E
(1.1)
b is the energy consumption of the first parabola of (5.17) for t ∈

[0, θi) whose BC = {0, vi,0, (xd,0 + vp,0θi + 0.5adθ
2
i ), (vd,0 + adθi)} and E

(1.2)
b is

3Note that the parameters xp,0, vp,0 and ap in (5.17) are replaced with xd,0, vd,0 and
ad, respectively and ξi(t) is given by ξi(t) = xi(t)− (xd,0 + vd,0t+

1
2adt

2).
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the energy consumption of the second parabola of (5.14) for t ∈ [θi, τ
D
d ] whose

BC = {(xd,0 + vp,0θi + 0.5adθ
2
i ), (vd,0 + adθi), xid, vid}. The equations explicitly

read

E
(1.1)
b =

3(xd,0 + vd,0θi + 0.5adθ
2
i )

2

θ3i
−

3(xd,0 + vp,0θi + 0.5adθ
2
i ) (vi,0 + (vd,0 + adθi))

θ2i
+

v2i,0 + vi,0(vd,0 + adθi) + (vd,0 + adθi)
2

θi
,

(5.24a)

E
(1.2)
b =

3(xid − (xd,0 + vd,0θi + 0.5adθ
2
i ))

2

τDd
3 −

3(xid − (xd,0 + vp,0θi + 0.5adθ
2
i )) ((vd,0 + adθi) + vid)

τDd
2 +

(vd,0 + adθi)
2 + (vd,0 + adθi)vid + v2id

τDd
.

(5.24b)

The term E
(2)
b is the energy consumption of the segment where the constraint

goes to infinity. With BC = {xid, vid, Di,f , Vi,f}, E
(2)
b using (5.15) is obtained as

E
(2)
b =

3(Di,f − xid)
2

θ3i
−

3(Di,f − xid) (vid + vi,f )

θ2i
+

v2id + vidVi,f + V 2
i,f

θi
.

(5.25)
Note that, only the terms in the bracket multiplied with 4b in (5.15) is used, as
the other terms cancel out when calculating Ebf . The total energy consumption
of the trip is thereby given as

Ebf = E
(1.1)
b + E

(1.2)
b + E

(2)
b . (5.26)

The Ebf now involves three unknown parameters, i.e., the two free parameters xid,
vid, and the contact time θi. The three parameters are constrained to satisfy the
contact time function

fdθ =
∆ (vi,0 − vid + adτ

D
d

)
θ3i +

(
4vd,0τ

D
d + vidτ

D
d − 2vi,0τ

D
d + adτ

D
d

2
/2

−3xid) θ2i +
(
6xidτ

D
d + vi,0τ

D
d

2 − vd,0τ
D
d

2
)
θi −

(
3xd,0τ

D
d

2
)
= 0.

(5.27)
The three unknowns (vid, xid, θi) are obtained by solving the following constrained
minimization problem,

minimize
vid,xid,θi

Ebf ,

subject to fdθ.
(5.28)

The optimization problem (5.28) is solved using the method of Lagrange mul-
tipliers (λ) and the solution involves solving four equations in four unknowns
(vid, xid, θi, λ), see Appendix A.9. An example involving a diverging conflict and
its solution is shown in Fig. 5.9.
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Figure 5.9: Velocity (a) and position (b) of CCAV i in diverging conflict. The
BC for CCAV i is given as xi,0= 0 m, vi,0 = 21 m/s, Di,f=110 m, Vi,f = 24 m/s.
Ti = 12 s. CCAV d’s states are measured as xd,0 = 5 m,vd,0 = 10 m/s and ad =0.07 m/s2. With D = 50 m, the arrival time is calculated as τDd = 4.43 s. Thefree parameters are calculated as vid = 3.624 m/s and xid = 36.525 m.

Merging Constraint: The merging constraint is similar to the diverging but
with the inequality constraint ξi ≤ 0 by CCAV e in the exit lane. Following the same
procedure, the optimal solution to the ED-OCP (5.4) with constraint (5.10) is made
up of two segments, i.e., the first segment where (5.14) applies and the second
segment where (5.17) applies4. The BC for the first and second segments are
given as {0, vi,0,Mi, vi(t+τMes

e )} and {Mi, vi(t+τMes
e ), Di,f , Vi,f}, respectively.

CCAV i’s position at the end of the first segment is constrained to arrive at xi(t+
τMes
e ) =Mi. With both position and time at the junction imposed, the optimal

solution is now defined by the one unknown free parameter, vim = vi(t + τMes
e ).

The optimal value for this parameter is found by minimizing the trip’s total energy
consumption.

Ebf = E
(1)
b + E

(2)
b , (5.29)

where E
(1)
b is the energy consumption using the unconstrained solution (5.17) for

t ∈ [0, τMes
e ], with BC = {0, vi,0,Mi, vim}, is given as

E
(1)
b =

3Mi
2

τMes
e

3 −
3Mi (vi,0 + vim)

τMes
e

2 +
v2i,0 + vi,0vim + v2im

τMes
e

. (5.30)

and E
(2)
b is computed as

E
(2)
b = E

(2.1)
b + E

(2.2)
b . (5.31)

4Note that the parameters xp,0, vp,0 and ap in (5.17) are replaced with (xe,m −
Mi), ve,m and ae, respectively and ξi(t) is given by ξi(t) = xi(t) − ((xe,m −Mi) +
ve,mt+ 1

2aet
2).
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For sake of brevity, we will use θ̄i = (θi − τMes
e ) and T̄i,f = (Ti,f − θi). The

term E
(2.1)
b is the energy consumption of (5.14)’s first parabola for t ∈ [τMes

e , θi)

whose BC = {Mi, vim, (xe,m + ve,mθ̄i + 0.5aeθ̄
2
i ), (ve,m + aeθ̄i)} and E

(2.2)
b is

the energy consumption of (5.14)’s second parabola for t ∈ [θi, Ti,f ] whose BC =
{(xe,m + ve,mθ̄i + 0.5aeθ̄

2
i ), (ve,m + aeθ̄i), Di,f , Vi,f}. The energies E

(2.1)
b and

E
(2.2)
b are given as

E
(2.1)
b =

3(xe,m + ve,mθ̄i + 0.5aeθ̄
2
i −Mi)

2

θ̄3i
−

3(xe,m + ve,mθ̄i + 0.5aeθ̄
2
i −Mi)

(
vim + (ve,m + aeθ̄i)

)
θ̄2i

+

v2im + vim(ve,m + aeθ̄i) + (ve,m + aeθ̄i)
2

θ̄i
,

(5.32a)

E
(2.2)
b =

3(Di,f − (xe,m + ve,mθ̄i + 0.5aeθ̄
2
i ))

2

T̄ 3
i,f

−

3(Di,f − (xe,m + ve,mθ̄i + 0.5aeθ̄
2
i ))
(
(ve,m + aeθ̄i) + Vi,f

)
T̄ 2
i,f

+

(ve,m + aeθ̄i)
2 + (ve,m + aeθ̄i)Vi,f + V 2

i,f

T̄i,f
.

(5.32b)

The total energy consumption of the trip is thereby given as

Ebf = E
(1)
b + E

(2.1)
b + E

(1.2)
b . (5.33)

The Ebf now involves 2 unknown parameters, i.e. the free parameter vim and the
contact time θi. The two parameters are constrained to satisfy the contact time
function

fmθ =
∆ (vim − Vi,f + aeT̄i,f

)
θ̄3i +

(
4ve,mT̄i,f + vimT̄i,f − 2vimT̄i,f + aeT̄

2
i,f/2

−3D̄i,f

)
θ̄2i +

(
6D̄i,f T̄i,f + vimT̄ 2

i,f − ve,mT̄ 2
i,f

)
θ̄i −

(
3xe,mT̄ 2

i,f

)
= 0.(5.34)

where D̄i,f = (Di,f −Mi). The two unknowns (vim, θi) are obtained by solving
the following constrained minimization problem,

minimize
vim,θi

Ebf ,

subject to fmθ.
(5.35)

The optimization problem (5.35) is solved using the method of Lagrange multipliers
(λ) and the solution involves solving three equations in three unknowns (vim, θi, λ),
see Appendix A.8. An example involving a merging conflict and its solution is shown
in Fig. 5.10.
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Figure 5.10: Velocity (a) and position (b) of CCAV i under a merging conflict.The BC for CCAV i is given as xi,0= 0 m, vi,0 = 8 m/s, Di,f=110 m, Vi,f = 7 m/s.
Ti = 12 s. CCAV e’s states are measured as xe,m = 5 m, ve,m = 9.07 m/s and ae= 0.18 m/s2. WithMi = 50 m, the arrival time is calculated as τMes

e = 5.97 s.The free parameter, vim = 9.97 m/s.
Remark 2. When there is only one CCAV in Hi(t), then CCAV i ∈ N (t) can face
either one of the four conflicts or no conflict. However, in the presence of several
CCAVs inHi(t), CCAV i ∈ N (t) could face none, any one, or a combination of the
four basic conflicts. All possible combinations of conflicts are identified a priori
(see Appendix A.10). Each combination is translated into a constraint (either a
piecewise combination, or two or more constraints on the position state) and is
appended to the OCP (5.4) and its general solutions are computed a priori. The
optimal solution consists of two or more segments depending on the constraint.
The free parameters at the junctions of the optimal solution are identified, and
the optimal value for these parameters is obtained by minimizing the energy of
the entire trip, as demonstrated previously.

Turning Speed Constraint: As mentioned earlier, turning speed constraint
restricts a CCAV’s speed in the IZ to a maximum defined by (5.1). The formulated
constraint (5.12), is an interior-point constraint like (5.6). However, position and
velocity are fixed with τt as the free parameter. The optimal solution has two
almost-unconstrained segments with BC for the first and second segment given
by {0, vi,0, Di,f/2, vtr} and {Di,f/2, vtr, Di,f , Vi,f}, respectively. The term τt is
found by minimizing the energy of the entire trip. The procedure is similar to that
of crossing conflict. An example of the optimal solution satisfying the turning safe
speed is shown in Fig. 5.11.

5.3.3 . Implementation
This section describes the algorithm of how the ED driving solutions are im-

plemented in CCAVs crossing an intersection. A pseudo algorithm of the ED
intersection scenario is presented in Algorithm. 1.
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Figure 5.11: The velocity (a) and position (b) of CCAV i having its speed below
vsafewhen taking a right turn of radius 5 m is shown here. The BC for CCAV iis given as xi,0= 0m, vi,0 = 7.29m/s,Di,f=101.85m, Vi,f = 8.33m/s. Ti = 14.69 s.The free parameter, kt = 7.53 s.vsafe = 5.2 m/s and vtr is computed as 4.2 m/s.

At each time t, CCAVs in the intersection, i.e., N (t), solve their OCP sequen-
tially in the order dictated by CO(t). A CCAV i ∈ N (t), entering the intersection
at a time ti,0, performs the following tasks to obtain its optimal control input: (i)
obtains its set of BC (see line (7) in Algo. 1); (ii) identifies the conflicts posed by
the other CCAVs already in the intersection; (iii) computes the optimal solution
and; (iv) implements the computed solution.

Conflict Identification: In the NC-ED scenario, CCAV i decelerates to a
fixed distance before D called the visibility distance Dvis, at which it determines
whether a higher prioritized CCAV poses a crossing or merging conflict. The desired
speed at Dvis is equal to amax multiplied by one second. However, CCAV i can
detect a diverging or car-following conflict from xi(0). This approach is followed
in [20] and illustrated in Fig. 5.12. In the absence of conflicting CCAVs in the
intersection or when it has the highest priority, CCAV i ∈ N (t) is considered
unconstrained. However, in the presence of one or more conflicting vehicles in
Hi(t), CCAV i ∈ N (t) could face one of the four fundamental conflicts or a
combination of them. If only one CCAV belongs to any of the conflicting sets,
CCAV i has one of the four conflicts. On the other hand, if there is one CCAV
from more than one of the conflicting sets, then CCAV i has a combination of
the four conflicts. The portion of the algorithm detailing conflict identification is
presented in Appendix.A.10.

Optimal Solution: With the conflicts and conflicting CCAVs in Hi(t) iden-
tified for CCAV i, all possible solutions satisfying the constraints posed by these
conflicts are evaluated. With the OCP of the CCAVs solved sequentially, all CCAVs
in Hi(t) have already computed their optimal solution. This allows for a CCAV i
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Figure 5.12: An illustration of conflicting CCAV’s detection by CCAV i at Dvis.CCAV i at xi(0) cannot detect the CCAVs c and e arriving from the top andbottom lane. Only on reaching Dvis at a velocity amax × 1 m/s at t = τ ,CCAV i can identify the crossing and merging conflict posed by CCAV c and
e, respectively. The conflicting sets at x(0) = 0 are given as CO(0) = (c, e, i),
DCi(0) = (∅),MCi(0) = (∅), CCi(0) = (∅), CF i(0) = (∅), and at x(τ) = Dvisas CO(τ) = (c, e, i), DCi(τ) = (∅),MCi(τ) = (e), CCi(τ) = (c), CF i(τ) = (∅).

to sense the instantaneous states and control input of the conflicting CCAVs to
compute its optimal control input. In an unconstrained case, CCAV i can follow
the solution in (5.14). In the presence of conflicts, all possible solutions for the
given constraint are evaluated and CCAV i applies the solution with no constraint
violation and the least energy consumption. The optimal solution computation
part of the algorithm is detailed in Appendix.A.10.

Implementation: As new CCAVs enter and exit the intersection, the CO(t)
changes based on the defined priority criterion and subsequently, the CCAVs in
the conflicting sets also change. Furthermore, the acceleration of the CCAVs pos-
ing a conflict varies in time, needing to update its constant acceleration motion
prediction. To capture the changing environment and predict conflicting CCAVs
better, the solutions are implemented in a shrinking horizon MPC fashion as de-
tailed in Sect. 2.3.3. The final boundary conditions and the optimal control input
are computed as shown in lines (6) and (15) of algorithm. 1, respectively.

5.4 . Cooperative EDOC

This section describes the formulation, solution, and implementation of CCAVs
entering an intersection under the Cooperative eco-driving scenario. In the C-ED,
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Algorithm 1 Calculate a∗i (t)

Require: {x0, v0, Df , Vf} for all CCAVs simulated
1: for t← 0 to Tsim do
2: Obtain N (t), CO(t) from coordinator
3: for j ← 1 to N(t) do
4: CCAV i = COj(t)5: Measure xi(t), vi(t)6: Compute Ti = Ti,f − t,Di = Di,f − xi(t), Vi = Vi,f7: BC = {0, vi(t), Di, Vi}8: if j = 1 then
9: No conflicting CCAVs
10: Optimal solution→ Unconstrained ai(k) ▷ Using Eqn. (5.17)
11: else
12: Identify conflicts and conflicting CCAVs ▷ Refer to App. A.10
13: Compute optimal solution→ ai(k) ▷ Refer to App. A.10
14: end if
15: Apply only the first control input→ a∗i (t) = ai(0)16: end for
17: end for

each CCAV still optimizes for itself like the NC-ED. However, it shares future
intentions with the other CCAVs in the intersection.

5.4.1 . OCP Formulation
Consider a CCAV i ∈ N (t) with the same BC as in the NC-EDOC (5.4).

5.4.1.1 . Unconstrained EDOC
In the event of CCAV i ∈ N (t) being the only one in the intersection, an

unconstrained OCP is formulated precisely as in (5.4).

5.4.1.2 . Constrained EDOC
As in Sect. 5.3.1.2, the conflicts posed by higher prioritized CCAVs are math-

ematically transformed into constraints to be added to the OCP.

Car-Following/Sequential Constraint: The potential rear-end collision avoid-
ance is formulated as a state-inequality constraint, as in (5.5) with the exception
that the preceding CCAV’s motion is predicted using its shared solution. To be
used in the eco-driving control of CCAV i ∈ N (t), this information is lumped into
one “future mean value" ãp, evaluated over a preview window length L, as

ãp(t) =
1

L

∫ t+L

t
ap(τ)dτ. (5.36)

The state-inequality constraint is written as,

xi(t) ≤ xp,0 + vp,0t+
1

2
ãpt

2 , (5.37)
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where xp,0 and vp,0 are the initial position and velocity of CCAV p ∈ CF i(t). The
shared intentions ãp in the C-ED scenario replaces the instantaneous measured
acceleration ap of the NC-ED.

Crossing Constraint: The potential lateral collision avoidance in the IZ is
formulated as an interior-point constraint as in Sect. 5.3.1.2. Considering two
CCAVs i ∈ N (t) and CCAV c ∈ CCi(t) with CO(t) = {c, i}, the constraint is
formulated as,

xi(t+ τ̃Cic ) = Cic with τ̃Cic = t̃Cic + dT , (5.38)
where Cic is the distance to the crossing point. The term dT is a safety margin
between arrival of the CCAVs at their respective crossing points. Differing form the
NC-ED, the arrival time k̃Cic of CCAV c at its own crossing point Cci, is computed
using its shared solution. Lets assume, for example, CCAV c follows (5.14). Its
arrival time t̃Cic at Ci is given by solving

Cci = xc,0 + vc,0t̃
Ci
c +

(
−2vc,0

Tc,f
−

Vc,f

Tc,f
+

3Dc,f

T 2
c,f

)(
t̃Cic
)2

+(
vc,0
T 2
c,f

−
2Dc,f

T 3
c,f

+
Vc,f

T 2
c,f

)(
t̃Cic
)3 (5.39)

Diverging Constraint: The potential rear-end collision avoidance in the entry
lane is formulated as a piece-wise constraint as in Sect. 5.3.1.2, with the exception
that the preceding CCAV d ∈ DCi(t)’s motion is predicted using its shared solution.
More formally

xi(t) ≤
{

xd,0 + vd,0t+
1
2 ãdt

2 t ∈ [0, τDd ]
∞ t ∈ (τDd , Ti,f ]

(5.40)
where xd,0 and vd,0 are the CCAV d’s initial position and velocity. ãd represents
the average acceleration of d computed by replacing p with d in (5.36). τDd is the
arrival time of CCAV d using ãd as the acceleration.

Merging Constraint: Similar to Sect. 5.3.1.2, the piece-wise constraint in the
exit lane to avoid a rear-end collision is formulated as

xi(t) ≤
{
∞ t < τMes

e

(xe,m −Mi) + ve,mt+ 1
2 ãet

2 t ≥ τMes
e

(5.41)
where τMes

e is the arrival time of CCAV e at Mes = Me + ds s.t. ds > smin,
obtained from the shared solution of CCAV e. Its motion in the exit lane is predicted
using the average acceleration ãe obtained by replacing p with e in (5.36). The
term ve,m represents the velocity measured at xe,m =Mes.

Apart from the four fundamental conflicts, a CCAV i ∈ N (t) could face a
combination of the conflicts, see Appendix A.10.
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Turning Speed Constraint: With turning speed constraint independent of
other CCAVs, the formulation given in Sect. 5.3.1.2 remains unchanged.

5.4.2 . Solution
The method to obtain the solutions to the OCP (5.3.1.1), with the constraints

(5.37), (5.38), (5.40) and (5.41) remains the same as detailed in Sect. 5.3.2. When
the optimal solution consists of two or more segments, the free parameters at the
junctions are identified and the optimal value for the free parameters are obtained
by minimizing the energy of the entire trip. The parameters replaced in NC-ED’s
solutions to obtain the C-ED’s solution are

• Unconstrained: No Change

• Car-Following Constraint: ãp replaces ap

• Crossing Constraint: τ̃Cic and t̃Cic replaces τCic and tCic respectively

• Diverging Constraint: ãd replaces ad

• Merging Constraint: ãe replaces ae

5.4.3 . Implementation
The scenarios NC-ED and C-ED in an intersection differs in two aspects :

(i) the amount of information shared to CCAV i, discussed in Sect. 5.4.2; (ii)
the point at which CCAV i identifies its conflicting vehicles. Unlike the NC-ED
scenario, where CCAV i can identify the conflicting CCAVs only Dvis m before D;
in the C-ED CCAV i can identify, with the help of communication, its conflicting
CCAVs as soon as it enters the intersection (i.e., xi(0)). An illustration of this is
shown in Fig. 5.13.

Besides the conflict identification point, the computation of the solution and
its implementation in the shrinking horizon MPC remains the same as in the NC-
ED.

5.5 . Simulation Results

In this section, we evaluate the performance of the proposed NC-ED and C-ED
algorithms in terms of energy consumption in a MATLAB simulation environment.
the energy consumption of each CCAV is computed using the model described
in [?]. The algorithms are compared against a baseline scenario generated by
the traffic simulation software SUMO using the Intelligent Driver Model (IDM).
SUMO is an open-source microscopic and continuous multi-modal traffic simulation
package designed to handle large networks. An isolated intersection model is first
created in SUMO with l = 47 m and w = 4 m. Three flow rates of 800, 1200
and 1600 veh/hr are simulated thrice for convergence of total energy consumption
in each flow rate. A total of N = 30 CCAVs are set to enter the intersection
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Figure 5.13: An illustration of conflicting CCAV’s detection by CCAV i at xi(0).CCAV i at xi(0) detects the CCAVs c and e arriving from the top and bottomlane and is able to identify the crossing and merging conflict posed by them,respectively. The conflicting sets at at t = 0 as CO(0) = (c, e, i), DCi(0) = (∅),
MCi(0) = (e), CCi(0) = (c), CF i(0) = (∅).
with randomized boundary conditions using uniform distribution on initial velocity,
entry lane and direction. The arrival time of each CCAV is obtained using negative
exponential distribution given by

ti,0 = −λ log(X) (5.42)
where λ is the mean headway between vehicles (flowrate/3600) and X is a random
variable between 0 and 1. The CCAVs is SUMO are modelled using the built-in
reactive IDM car-following strategy given by

v̇i = a

(
1−

(
vi
v0

)δ

−
(
s∗ (vi,∆vi)

si

)2
)

with s∗ (vi,∆vi) = s0 + viT +
vi∆vi

2
√
ab

(5.43)

where v0, s0, T, a, and b are model parameters which represent desired velocity,
minimum spacing, desired time headway, the maximum vehicle acceleration and
comfortable braking deceleration, respectively. The dealing of conflicts amongst
CCAVs in an intersection in SUMO is detailed in [20].

The parameters for the ED algorithm in MATLAB are such that, the minimum
safety distance smin = 7 m and the safety dT to avoid a lateral collision is set to
2.5 s. The distance margin ds for merging constraint is chosen as 9 m. The initial
speed is uniformly distributed in the interval 8.3 m/s ± 2 m/s. The maximum
acceleration and deceleration of the CCAVs are set to 4 m/s2.
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The IDM cannot enforce a prescribed final time or speed unlike the ED solu-
tions. The final time and speed of the CCAVs obtained at the end of the simulation
in SUMO are used as inputs in the EDOC. This ensures the same average speed for
a CCAV i ∈ N (t) across the algorithms. The right-before-left criterion is given as
the crossing order in SUMO and is also maintained across the NC-ED and C-ED.

The velocity trajectories of the CCAVs, arriving at a flow rate of 800 veh/h,
equipped with IDM, NC-EDOC and C-EDOC algorithms are shown in Fig. 5.14.
The CCAVs using IDM and NC-ED decelerate to 4 m/s2 at Dvis, which is 4.5 m
before D. At Dvis, CCAV i checks for merging or crossing conflicts with higher
prioritized CCAVs and obtains only the instantaneous control input from the con-
flicting CCAVs. In the event of a conflict, the CCAV i adjust its speed profile,
with some of them coming to an almost complete stop, e.g., the purple CCAV at
130 s. On the other hand, CCAVs with C-EDOC do not decelerate to check for
conflicts. They can identify the conflicts CCAVs as soon as they enter and plan
their trajectory accordingly. CCAVs taking a left or right turn also decelerate to
satisfy turning speed constraints, e.g. CCAV 5, green speed profile at around 40 s,
is taking a right turn and has a safe speed of 5.24 m/s inside the IZ.

0 50 100 150
0
2
4
6
8

Vel
ocit

y[m
/s]

Intelligent Driver Model

0 50 100 150
0
2
4
6
8
10

Vel
ocit

y[m
/s]

Non-Cooperative ED

0 50 100 150

2

4

6

8

Time [s]

Vel
ocit

y[m
/s]

Cooperative ED

Figure 5.14: Velocity trajectories of CCAVs at 800 veh/h
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The velocity trajectories of flow rates 1200 veh/h and 1600 veh/h are shown
in Fig. 5.16 and Fig. 5.17, respectively. With higher flow rates, shorter is the
interval between arrival times of CCAVs. For clarity only odd numbered CCAVs are
displayed in figures 5.16 and 5.17. It can be noticed that the number of slow downs
or stops increase from 800 veh/h to 1600 veh/h. This can be attributed to the
increase in number of vehicles in the intersection simultaneously and consequently
increased conflicts. This causes the CCAVs to slow down avoid collision. Another
reason that causes the vehicles to come to a complete stop is the assigned crossing
order from SUMO. The right-before-left criterion often causes vehicles to come
to a complete stop, especially at high flow rates. For example, CCAV 9 (orange
line) in Fig. 5.17 has to come to a come stop to give way to three CCAVs coming
from its right side. Similar behavior can be observed towards the end from 60 s
to 80 s where a CCAV (green) comes to stop to give way to higher prioritized
CCAVs and creates an almost deadlock situation with the light and dark blue
CCAVs. Such behavior indicates the need to well define criterion for priority. The
velocity trajectories also indicate a high jerk at the point where the CCAV starts
to accelerate again after slowing down, especially in the NC-ED and IDM. Such
a behavior could cause discomfort to the passengers. This could be overcome
by decreasing the average velocity of the CCAVs (i.e., increasing Ti,f ). However,
for the sake of fair comparison between the three algorithms the average speed is
maintained uniformly.
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Figure 5.15: Total energy consumption of 30 CCAVs at flow rates of 800, 1200,1600 veh/h.
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Figure 5.16: Velocity trajectories of CCAVs at 1200 veh/h
The total mean energy consumption of 30 CCAVs in the three runs are given

in Fig. 5.15. It can been seen that the total energy consumption increases with an
increase in flow rate. This is due to the increased conflicts amongst the CCAVs
causing a CCAV i ∈ N (t) to adjust its speed profile. The CCAVs in NC-ED con-
sumes 3 % less energy than IDM. With IDM and NC-ED having same information
on conflicting vehicles, the energy reduction is caused by the optimal ED speed
profiles employed by the CCAVs. The C-ED performs best amongst the three, with
a reduction of 23.7 % over IDM and 21.3 % over the NC-ED. The CCAVs with
cooperation have more accurate information about the conflicting vehicles and get
this information much earlier (i.e. at xi(0)) than the other two algorithms. This
enables better anticipation and hence the CCAVs can adjust their speed profiles
accordingly.

5.6 . Conclusion

This chapter addressed the problem of finding the optimal ED speed trajec-
tory for the entire horizon (i.e., entry lane, IZ and exit lane) of an urban isolated
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Figure 5.17: Velocity trajectories of CCAVs at 1600 veh/h
intersection. Various conflicts in the intersection were formulated has as con-
straints to the CCAV and its solutions were presented. Two levels of cooperation,
namely, the Non-Cooperative and Cooperative, were studied and evaluated for en-
ergy consumption in comparison to the baseline, IDM. The Cooperative algorithm
performed best, with a reduction of 23.7 % over IDM and 21.3 % over the NC-ED.
The C-ED indicates that, earlier determination of conflicts with higher prioritized
CCAVs and better prediction of their arrival time and motion, leads to better energy
efficiency.
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6 - Experimental Implementation of Eco-Driving
Concepts

6.1 . Introduction

This chapter discusses the experiments on implementing ED solutions in an
electric vehicle. The work focused on using mostly existing vehicle hardware, with
the additional benefit from cloud-based servers.

6.2 . System Overview

The ED solutions obtained in Chapter 2 for en electric vehicle is implemented in
a Renault Zoe, the specifications of which are detailed in Table 6.1. The effective
implementation of the ED solutions would ideally be in a SAE level-3 electric CAV
or a current off-the-shelf electric vehicle retrofitted with an autonomous stack
(systems including localization, perception and planning/control). However, with
the main focus on using pre-existing hardware, we resort to the use of Visual
Assistance Systems (VAS). The VAS is a dedicated personal device tablet physically
located on the dashboard of the car, which presents the computed recommended
optimal speed v∗ for the driver to follow, see Fig. 6.1.

(a) Renault Zoe ZE-50 (b) IFPEN Tablet on the dashboard
Figure 6.1: A picture of Renualt Zoe and the VAS on the dashboard

A conceptual schematic of the ED algorithm implementation is shown in
Fig. 6.2. The EDOC communicates with the human driver using a Human-
Machine-Interface HMI. Before the start of a trip, the driver enters their origin
and destination in the HMI Eco-Charging, using a HERE maps interface. The ori-
gin and destination inputs are then communicated to the IFPEN’s MOBI-Cloud1

server via the Web Socket Server (WSS) technology. The MOBI-Cloud server

1https://mobicloud.ifpen.com/
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hosts an algorithm named Eco-Charging EC, which computes the route for the
given origin destination pair as one of its outputs. The EC algorithm then breaks
the trip into sub-trips called links, based on certain break-point detection criteria
2. Each link is assigned an id and contains attributes such as, latitude and lon-
gitude coordinates, speed limit, link length, predicted travel time and predicted
final speed. The WSS acts only as a central coordinator, with minimal compu-
tational capability, hosting three sub-functions, namely, Links Aggregation, Map
Matching, and BC and Constraints. Its responsibility is to receive and dispatch the
information between the various sub-functions.

The link length Df is given by the length of the path between the start and end
of each link. The average speed in a link, which is a function of the free-flow speed
and average traffic speed and computed as a result of a graph based optimization
problem in EC, gives the predicted final time Tf . In the presence of a traffic light
or a stop-sign the final speed Vf is considered zero and in the absence of any, the
final speed is predicted to be the average speed of the next link. Note that, the
signal phase of all traffic lights are assumed red and its timing is not taken into
consideration.

The links along with its attributes are passed back to the Links Aggregation
via WSS, which further performs, based on certain heuristic rules, an aggregation
process on the links that are too small or where the driver will not perceive any
major changes.

During the trip (i.e., real-time), the function Position Service measures the
states (i.e., current speed and coordinates) of the vehicle along the trip and is dis-
played on the HMI Eco-Charging. These measurements are carried out either using
a GPS module connected via an USB or a smartphone connected via blue-tooth.
Using the measured coordinates, the Map Matching module in the WSS identifies
the current link i the vehicle is in and passes its attributes, mainly {Df , Tf , x(t)}, to
the BC and Constraints module. This in turn computes the BC = {0, v(t), D, V }
and the constraints and passes it to the Eco-Driving Optimal Controller (EDOC).
The BC computed using the shrinking horizon MPC are detailed in Sect. 2.2.3.
The EDOC computes the ED speed profile for the given BC and displays the opti-
mal speed v(t)∗ to be followed for the next instance on the HMI Eco-Driving, see
Fig. 6.3.

The lack of V2V, V2I and perception module, limits us from knowing the
traffic light SPaT and lead vehicle behavior. As stated earlier, all traffic lights are
considered to be in a red phase thus imposing its link’s final speed to zero. The
absence of a camera or a lidar/radar module, at the time of writing this thesis,
limits the EDOC to account for the lead vehicle constraint and compute v(t)∗ only
using unconstrained ED solutions in (2.2.3). In the presence of a maximum speed
constraint v(t)∗ is computed using the solutions detailed in [1].

2A few of the criteria include change of speed limit, a new lane and, presence ofan intersection, traffic light or a stop-sign.
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Figure 6.2: Schematic of the various functions in the VAS

6.3 . Experimental Procedure

Testing was performed by driving the vehicle on an urban route between Rueil-
Malmaison and Chatou in France’s Île-de-France region. Figure 6.4 shows the
route and the various links created for the route. The experiments were conducted
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Figure 6.3: The figure shows the HMI-Eco-Driving. The blue arrow on theodometer indicates the speed to be followed at the next instance, v∗ and thegreen arrow indicates the current speed
Table 6.1: Technical Specification of Renault Zoe ZE-50
Performance Battery0 - 100 km/h 11.4 sec Nominal Capacity 54.7 kWhTop Speed 135 km/h Battery Type Lithium-ionElectric Range 315 km Nominal Voltage 350 VTotal Power 80 kW Number of Cells 192Total Torque 225 Nm Useable Capacity 52.0 kWhDrive Front Architecture 400 V

on the same route and time of the day for repeatability and to reduce variability
in traffic conditions.

6.4 . Results

This section discusses the results of five trips, numbered from 1 to 5, conducted
on the earlier shown route. As stated in Sect. 6.2, the lack of V2V, V2I and
perception module, limits us from knowing the traffic light SPaT and lead vehicle
behavior. Therefore, the following assumptions were made:

• No traffic Queue

• Red signal phase for all traffic lights

• No traffic.
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Figure 6.4: The experiment route

Note that the impact of signal timing is excluded as we do not consider eco-
approach and departure in the current implementation. The results discussed be-
low includes a posteriori analysis on the impact of these assumptions on the BC
identification. The impact is quantified in terms of energy consumption for the five
trips while a single trip named Trip 1, among the five, is used as a working example
to describe the methodology of the analysis. Note that, this section doesn’t discuss
or compare the energy gains of the system with or without eco-driving.

Fig 6.5 and Fig 6.6 show the speed traces of Trip 1 as a function of time and
distance respectively. The predicted speed profile (referred to as ex-ante thereafter)
is shown in Fig. 6.5a and Fig. 6.6a. The ex-ante is computed at the start of the trip,
an output of EC, under the assumptions of no traffic and traffic queue, red signal
phase and no signal timing for traffic lights. The driven speed profile along with
its target/advised speed is shown in Fig. 6.5b and Fig. 6.6b. The target/advised
(blue) speed is computed in real-time under the shrinking horizon MPC and similar
assumptions, using measured the measured speed and position as its new initial
conditions at each time, t. The vertical lines in the figures indicate the start of the
different links, given by Links Aggregation, along the trip.

The influence of the no traffic queue assumption can be seen in link 4 in
Fig. 6.6b. While the vehicle, at a red traffic light, has stopped a few meters earlier
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Figure 6.5: The ex-ante and driven speed profile as a function of time for Trip1.

than the stop line, possibly due to the presence of leading vehicles, the link is
deemed complete only when the vehicle crosses the stop line when the signal turns
green.

The advised speed is effective in anticipating stops or maintaining a certain
average speed. For instance, the first link has a zero predicted final speed due to
the presence of a traffic light and the target speed advises the driver to decelerate
to a stop. The same can be noticed in links three and four. However, in links
five and six, while advised to decelerate to predicted zero final speed, the driver
maintains the current speed. The advise to decelerate is due to the red signal
phase assumption at a traffic light, when it was green in reality.

Finally, the driven speed profile without considering stops takes much longer
(∼ 442 s) to complete the trip while the ex-ante predicts a shorter travel time,
owing to the no traffic assumption.

6.4.1 . Impact of the Assumptions
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Figure 6.6: The ex-ante and driven speed profile as a function of position forTrip 1.

The impact of red signal phase, no traffic queue and no traffic, on the ex-ante
speed profile is determined by conducting a posteriori analysis using the driven
speed profile. The impact of the assumptions are quantified in terms of energy
consumption. This subsection answers the question, what should have been the
ex-ante speed profile computed at the start of the trip, if we had access to traffic,
traffic queue length and signal phase? To do so, traffic queue, the actual signal
phase and traffic are identified from the driven speed profile and the theoretical
speed profiles are recomputed.

6.4.1.1 . Identification of Traffic Queue Length and Signal Phase

Fig. 6.7 shows a trip where the vertical black lines indicate the predicted
start/end of each link. A link is considered complete when the remaining dis-
tance D in the link is zero. The total length of the link Df is computed assuming
that the car will stop precisely at the stop line. However, it is not always the
case due to the presence of a queue at the traffic light or a stop sign. A closer
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look at the end of link 13 indicates that the car stops earlier (brown dashed line
with number 14) than its predicted end (black dashed line with number 14). This
queue is identified from the driven profile using a heuristic rule stating that if the
car stops within a certain distance from the predicted end of a link, it is identified
as complete. The new identified start of links (brown) are shown in Fig 6.7. Note
that no additional links are created, and only existing ones are re-positioned. The
boundary conditions for each of the links, BCi = {0, v0, Df , Vf}, with the adjusted
break points are extracted to compute the theoretical speed profiles, discussed in
Sect. 6.4.2. The actual signal phase at the time of driving is identified by choosing
the speed at the end of each link as Vf . A zero Vf indicates the signal phase was
red and a non-zero Vf indicated a green signal phase.
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Figure 6.7: Break Points (BP) Adjusted to consider Traffic Queue for Trip 1

6.4.1.2 . Identification of Traffic, Traffic Queue Length and Signal
Phase

The influence of traffic (i.e. presence of preceding vehicle), is identified by
looking at significant speed decrease in the driven profile, for example in link 13 at
around 2300 m in Fig. 6.8. Such reduction in speeds are identified using the concept
of prominence and the reference level from which the prominence is computed is
identified as new break points (blue dots in Fig. 6.8) for links. Note that this
step leads to new links in addition to the ones initially given by Links Aggregation.
Similarly, the boundary conditions for each of the links, BCi = {0, v0, Df , Vf}, are
extracted to compute the theoretical speed profiles, discussed in Sect. 6.4.2.

6.4.2 . Energy Analysis
With traffic, queue and signal phase identified from the driven profile, their

impact is evaluated systematically in terms of energy consumption. The BCi ex-
tracted from each link are used to compute the theoretical speed profiles using
either (2.14) or speed constrained solutions detailed in [1]. The theoretical speed
profiles computed using BCi identified a posteriori, will thereafter be referred to as
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Figure 6.8: Break Points (BP) Identified for Traffic in Trip 1
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Figure 6.9: This figure shows the energy consumption of the ex-ante, ex-post with traffic queue and signal phase (ex-post:1), ex-post with traffic, trafficqueue and signal phase (ex-post:2), and the driven speed profile of Trip 1.
Fig. 6.10a repeats the ex-ante speed profile computed at the start of Trip 1

assuming no traffic, traffic queue and signal phase. Fig. 6.10b shows the ex-post
speed profile computed knowing the traffic queue and signal phase but no traffic
and Fig. 6.10c shows the ex-post speed profile computed knowing the traffic, traffic
queue and signal phase. The four-speed profiles of the other trips are shown in
Appendix A.11.

Fig. 6.9 shows the energy consumption of the four speed profile, namely, ex-
ante, ex-post with traffic queue and signal phase (ex-post:1), ex-post with traffic,
traffic queue and signal phase (ex-post:2), and the driven speed profile. The higher
energy consumption of the ex-ante can be attributed to the combination of red
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Figure 6.10: Figure showing the ex-ante, ex-post:1, ex-post:2 and the drivenspeed of Trip 1

signal phase and no traffic assumption. These assumptions cause the vehicle to
travel at a higher average speed while stopping and starting at every link. The
heavy accelerations and decelerations lead to an increased energy consumption.
The increase in energy between the ex-post:1 and 2 indicates the additional accel-
erations/decelerations due to preceding traffic. If we had access to traffic, traffic
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Figure 6.11: Energy Consumption Analysis of the five trips

queue and signal phase information, the ex-post:2 speed profile would have been
the optimal ex-ante computed at the start of the trip. The driven profile’s increase
in consumption with respect to the ex-post:2 can then be attributed to the driver’s
ability to follow the advised speed.

The energy consumption of all five trips for the four-speed profiles is shown
in Fig. 6.11. The energy consumption is computed using the model described in
Sect. 2.4 with driven speed logged during the trip. While the model in Sect. 2.4
is for a Nissan Leaf, it still serves as a base for analysing the trends and behavior
in energy consumption. It can be observed that each trip has the same trend
indicating the effect of pessimistic/worst-case assumption of stopping at every
traffic light and the over-optimistic assumption of no traffic. The higher energy
consumption in Trips 1 and 2 is due to shorter travel times (or higher average traffic
speed) predicted from the MOBI-Cloud at the start of the trip. In combination with
coming to a stop at every traffic light, satisfying this high average speed requires
high accelerations/decelerations, sometimes even beyond the car’s physical limit.
This, however, is corrected in real-time by the EDOC, when computing the target
speed to respect the maximum acceleration limits of the vehicle leading to a lower
average speed. It can be noticed from Fig. 6.12, that Trip 1 generally has a higher
predicted average speed for many links than Trip 5. Let us consider Trip 1’s link 14
which has a predicted average speed slightly above 40 km/h, see Fig. 6.12. The
same link has a traffic light at its beginning and at the end, see the predicted final
speed in Fig. 6.5b. The ex-ante predicts a speed profile that requires very high
acceleration/deceleration, shown in Link 14 of Fig 6.10a, satisfying the average
speed slightly above 40 km/h and stopping at the lights. However, the driven
and target profile can only satisfy an average speed of 20 km/h (see Fig. 6.12a)
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considering the car’s maximum acceleration limits.
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Figure 6.12: Figure showing the predicted and driven average speed of thelinks for Trip 1 and Trip 5.

6.5 . Conclusion

This chapter discussed the implementation of the ED solutions via a Virtual
Assistance System (VAS) in a Renault Zoe. The VAS takes as user input the
trip’s origin and destination and breaks them into smaller segments called links.
The boundary conditions of each of these links are predicted, a priori, under the
assumptions of no traffic, no traffic queue and red signal phase at every traffic
light. In real-time, the driver is advised a target speed, computed by the EDOC
under a shrinking horizon MPC paradigm, to follow on the next time step. The
driven profile is analysed a posteriori, to study the impact of the made assumptions
and are quantified in terms of energy consumption using ex-post theoretical speed
profiles. The ex-ante speed profile for trips 1 and 2 and trips 3, 4 and 5 consume
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on average 52.3 % and 15.9 % more than the driven profile, respectively. The
worst case assumption of all red signal phases and the over-optimistic assumption
of no traffic predicts a speed profile with high accelerations/decelerations and in
turn, increased energy consumption for the reference speed (ex-ante). While this
is corrected under the MPC framework in real-time, having accurate surrounding
information, especially on traffic and signal phase, will reduced the energy gap
between predicted and driven speed profile. At the time of writing this thesis, the
experimental setup has no perception system. Future works includes the installation
of a roof-mount stereoscopic camera perception system. This allows to obtain
information on leading vehicle’s relative speed and position and the signal phase
status of the traffic light within the system’s vision.
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7 - Conclusion and Perspectives

In this final chapter, the research objectives presented in Chap. 1 are answered
by conclusions linked to different chapters of this thesis. Additionally recommen-
dations for future directions in each chapter will be given.

7.1 . Conclusion

The adoption of electric CCAVs designed to maximize energy efficiency can be
regarded as an integrated approach to meet the changing trends in the automotive
sector. This motivated the development of eco-driving algorithms for CCAVs in
different driving scenarios in this thesis. The choice to obtain analytical solutions
was driven by real-time implementation and to have insight into ED behavior. For
the sake of readability, the research objectives presented in Chap. 1 will be repeated
in the following paragraphs. Below each objective, the conclusions of this thesis
that address the respective objective are detailed.

Research Objective 1

• To experimentally assess a known baseline Non-Cooperative ED strategy for
a single CAV

This objective has been addressed in Chap. 6 of this thesis. The NC-ED base-
line algorithm presented in Chap. 2 has been implemented in a Renault Zoe via a
Visual Assistance System (VAS). The experimental setup at the time of writing is
only equipped with a localization system and does not include a perception system
to detect traffic (lead vehicle and signal phase). Experiments were conducted on a
route connecting Rueil-Malmaison and Chatou in France. The implementation of
the algorithm consists of two major parts. In the first part, the EC algorithm breaks
the route into smaller links for a given origin and destination, and computes a ref-
erence speed profile for each link. This step is carried out on IFPEN’s cloud-based
server MOBI-Cloud at the trip’s start. The reference speed profile is computed
under the assumptions of no traffic, no traffic queue and only red signal phase and
its BC are extracted. The second part of the algorithm occurs in real-time under
a a shrinking horizon MPC framework. Optimal speed profiles are computed for
the vehicle’s current link with initial BC from the measured states (i.e., x(t), v(t))
and final BC from the reference speed (i.e., D = Df , V = Vf ). The driver is then
advised via the VAS to follow the optimal speed for the next second, after which
the states are measure again and the optimal speed is re-computed with the new
BC. This process is repeated every second until the end of trip.

The driven profile was analysed a posteriori, to study the impact of the made
assumptions and they were quantified in terms of energy consumption. The worst
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case assumption of all red signal phases and the over-optimistic assumption of no
traffic predicts a speed profile with high accelerations/decelerations and in turn,
increased energy consumption for the reference speed. While this is corrected
under the MPC framework in real-time, having accurate surrounding information,
especially on traffic and signal phase, will reduced the energy gap between predicted
and driven speed profile.

Research Objectives 2 & 3

• To obtain analytical eco-driving solutions for a fleet of electric CCAVs, with
varying levels of cooperation, for platooning and un-signalized intersection
scenarios

• To evaluate the influence of the varying levels of cooperation, namely, NC-
ED, C-ED, and CC-ED, on fleet energy consumption

The above research objectives have been addressed in chapters 4 and 5. Chap-
ter 4 extended the NC-ED car-following scenario presented in Chap. 2 to a pla-
tooning ED scenario. The platoon was modeled as homogeneous with predecessor
following topology and eco-driving was cast as an OCP for the NC-ED, C-ED and
CC-ED strategy. With electric vehicles as the choice of powertrain, the running
cost was chosen as the instantaneous battery power of a single CCAV for the NC-
ED and C-ED, and as the sum of all the CCAV’s battery power in the platoon
for the CC-ED. The boundary conditions required the platoon starting with a cer-
tain initial speed and position to cover a fixed distance over within a certain time.
Collision avoidance in the platoon was formulated as a state-inequality constraint.
The preceding vehicle’s motion was predicted using constant acceleration to fa-
cilitate analytical solutions. The NC-ED using the instantaneous acceleration and
the C-ED using the average of the future accelerations. The OCP problem was
solved using PMP and closed form analytical solutions were presented for the three
strategies. This chapter also addressed the issue of string stability in a platoon.
Theoretical linear stability condition was employed to see if the optimal control
inputs of the three cooperative strategies were string stable. This analysis showed
us that the NC-ED is only marginally string stable, while C-ED and CC-ED are
string stable under certain conditions. Platoons equipped with NC-ED, C-ED and
CC-ED strategies were tested in a simulation environment against ACC as a base-
line. The performance were evaluated in terms of energy consumption and string
length and the results indicated that increasing levels of cooperation improved
energy efficiency and compactness of the platoon.

Prediction of preceding vehicle’s behaviour plays an important role when fol-
lowing a car as in the car-following and platooning scenarios. The certainty of the
prediction affects safety and energy efficiency. To this end in Chap. 3, we proposed
two model-based predictors, namely CA-AB and EDM-LOSP, for preceding vehi-
cle’s behavior. The proposed predictors were modifications of the already existing
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CA and EDM-LOS models. The predictors were implemented in a DP based ED
algorithm for a mild hybrid electric vehicle. We performed simulations over 6 real-
world routes representing urban and mixed driving scenarios with the developed
predictors and the results showed energy savings, especially in urban scenarios with
high traffic light or stop sign density.

Chapter 5 addresses ED in an un-signalized urban intersection. With the same
objective function as in the platooning scenario, ED was formulated as an OCP
for the NC-ED and C-ED strategies. The intersection considered was a four-road,
right-angled intersection. The various conflicts that arise in an intersection were
transformed into mathematical constraints to be appended to the OCP. The OCP
along with the various constraints were solved using PMP to facilitate analytical
solutions. The C-ED algorithm has access to more accurate information and much
earlier compared to the NC-ED. The two algorithms were tested for energy effi-
ciency against IDM as a baseline. Simulations were performed for various traffic
flow rates and the results indicated the best performance for the Cooperative ED.

7.2 . Future Perspectives

This section describes some possible recommendations for future works in chap-
ters 3 to 6.

Chapter 3 This chapter has been devoted to predicting the behavior of the
preceding vehicle to incorporate into an OCP. The two proposed models, CA-B
and EDM-LOS, were only validated through numerical simulations. An experimen-
tal validation through on a real car (mHEV) would provide better insight on the
performance of the predictors. Another direction for future works would be the
online parameter estimation, in particular δ and θ, of the EDM-LOSP using tools
like extended Kalman filter. Incorporating the timing information from the traffic
lights could also improve prediction accuracy.

Chapter 4 This chapter assumes platoons to be homogeneous and without
any communication delays. The model could be extended to consider heteroge-
neous CCAVs and study the effect of delays on string stability. A future direction,
that is already under way at IFPEN, is the experimental validation via a robotic
testbed. Before CCAVs are deployed en masse on the road, a thorough performance
evaluation from numerical to real-world testing is required. Scaled-down robotic
testbeds offer flexibility on quick and repeatable tests that go one step beyond
simulations.

Chapter 5 The intersection scenario in Chap. 5 opens up several directions
for future works. The first one includes generalization of the algorithm to suit all
types of intersection. Secondly, the scheduling and path planning problem, which is
currently assumed given, can be addressed. The CC-ED remains an open problem
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that has not been dealt with, in this thesis. Finally, an experimental validation on
a robotic test bed is planned for the future.

Chapter 6 Future works in Chap. 6, include the implementation of a stereo-
scopic camera perception system to obtain information on leading vehicle’s relative
speed and position and the signal phase status of the traffic light within the sys-
tem’s vision. The installation of the camera system is currently ongoing and the
testing of the NC-ED car-following algorithm will follow.
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A - Appendix

A.1 . Pontryagin’s Minimium Principle

Let bold face x and u represent a vector of n-state and q-control variables,
respectively. PMP is based on the definition of the Hamiltonian function that is
formed as

H(x,u, t) = L(x,u, t) + λf(x,u, t) (A.1)
where λ ⊂ Rn is a vector of costates, having the same dimension n as the state
vector. If state constraints are not present, the necessary conditions for the opti-
mality of a control trajectory u(t), t ∈ [0, tf ] include: the state dynamics

ẋ(t) =
∂H

∂λ
(x(t),u(t), t) (A.2)

with the boundary conditions

x(0) = xi, xj (tf ) = xj,f , j = 1, . . . , q (A.3)
the costate dynamics (Euler-Lagrange equations)

λ̇(t) = −∂H

∂x
(A.4)

with the transversality conditions and the Hamiltonian minimization condition of
the minimum principle

u(t) = arg min
u∈U(x,t)

H(x(t), u, t). (A.5)
This 2n-dimensional system of coupled differential equations forms a two-point
boundary value problem (TPBVP), since n boundary conditions are given at the
initial time and the other n values at the final time. Of these latter values, q

concern state variables and the remaining n− q concern costate variables.

A.2 . Indirect Adjoining Method

When the problem presents pure state inequality constraints of the form
g(x(t), t) ≤ 0, the indirect adjoining method can be used. Consider the case with
ℓ = 1 (just one such constraint). If g(x(t), t) is of the p th order, that is, it is
differentiated p times with respect to time until the control variable u explicitly
appears, then the term g(p)(x,u, t) is adjoined to the Hamiltonian with a multiplier
η, to form the Lagrangian

L(x(t),u(t), t) ≜ H(x(t),u(t), t) + ηg(p)(x(t),u(t), t). (A.6)
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In this case the necessary conditions for a control trajectory to be optimal are still
eqs. (A.2) to (A.5), with the Lagrangian replacing the Hamiltonian, together with
the jump conditions at times at which state constraints become active (entry or
contact times). The jump conditions derive from imposing that

[
g(0)(θ), . . . , g(p−1)(θ)

]
=

0 and treating these tangency conditions as interior point constraints that are ad-
joined to the Lagrangian through the additional multipliers π ’s.

λ
(
θ−
)
= λ

(
θ+
)
+

p−1∑
j=0

πj
∂g(j)

∂x
(x(θ), θ),

H
(
θ−
)
= H

(
θ+
)
−

p−1∑
j=0

πj
∂g(j)

∂t
(x(θ), θ),

(A.7)

well as the complementary slackness conditions

η(t)g(x(t), t) = 0, (−1)jη(j)(t) ≥ 0, j = 0, . . . , p, (A.8)
and

πj ≥ 0, πjg(x(θ), θ) = 0, j = 0, . . . , p− 1. (A.9)
For the special yet common case of first-order constraints ( p = 1 ), (A.8) re-
duces o η(t)g(x(t), t) = 0, η(t) ≥ 0, η̇(t) ≤ 0 with η(t) as an additional unknown
to be determined. These conditions mean that when the constraint is not ac-
tive (g(x(t), t) < 0), then η(t) is set to zero. When the constraint is active
(g(x(t), t) = 0), η(t) must be positive but unknown. The condition g(·) = 0 pro-
vides the additional equation necessary in this case to determine the newly added
unknown η. Equation A.9 holds for the single unknown multiplier π0. In summary,
inequality constraints introduce additional unknowns that have to be determined
as well, and additional conditions.

A.3 . Proof of CF (al0 < 0) in EDM-LOSP is equivalent to CA

Following, a proof is given that the CF (al0 < 0) in EDM-LOSP is equivalent to
a constant acceleration prediction. The proof is given for the predictor equations
in continuous time, but the same result holds for the discrete system. Given the
current instantaneous speed vl0 and acceleration al0, let x̂l(t), v̂l(t), be the lead
vehicle position and speed, respectively, where:

dx̂l

dt
= v̂l(t), x̂l(0) = 0. (A.10)

The stop mode in EDM-LOSP is then given by:

âl(t) =
dv̂l

dt
= − 1

|al0|

(
v̂l(t)

2

2∆x(t)

)2

= −akin(t)
2

|al0|

= −akin(t)
(
akin(t)

|al0|

)
, v̂l(0) = vl0,

(A.11)
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where ∆x(t) is the distance of the lead vehicle from the next predicted stop.

Theorem 1. If∆x(t) :=
vl0

2

2|al0|
− x̂l(t), then âl(t) = −|al0|

Proof: The proof proceeds by showing that:
1. akin(t) = |al0|, is an equilibrium point for the acceleration.
2. By the definition of ∆x(t), the equilibrium is attained at t = 0 and âl(t) =

−|al0|
Let akin(t) =

v̂l(t)
2

2∆x(t) , then:

dakin
dt

=
4v̂l(t)dv̂

l

dt ∆x(t)− 2v̂l(t)2 d∆x
dt

4∆x(t)2

=
v̂l(t)

∆x(t)

(
akin(t)

|a0|

)
(|a0| − akin(t)) .

(A.12)

Hence akin(0) = |al0| entails that akin remains constant. Now, from the definition

of ∆x it follows ∆x(0) =
vl0

2

2|al0|
. By substitution in the expression for akin and

recalling the initial condition on v̂l it can be shown:

akin(0) =
v̂l(0)2

2∆x(0)
=

vl0
2

2

(
vl0

2

2|al0|

) =
∣∣∣al0∣∣∣ → â(t) =

dv̂l

dt
= −akin(t)

2∣∣al0∣∣ = −
∣∣∣al0∣∣∣ .

(A.13)
A.4 . Six lead vehicle profiles considered for simulation

The six real-world lead vehicle’s speed profiles considered for simulation are
shown in Fig. A.1.

A.5 . String Stability Transfer Function of C-EDOC

The derivation of the transfer function Gc,i is detailed here.
Laplace transform of a average operator is given by,

ãi−1 =
1

L

∫ t+L

0
ai−1 dτ

ãi−1 =
1

L

(∫ t+L

0
ai−1 dτ −

∫ t

0
ai−1 dτ

)
ãi−1(s) =

1

L

(
esLL(ai−1(τ))

s
− L(ai−1(τ))

s

)
,

ãi−1(s) =
esL − 1

sL
L(ai−1(τ))

(A.14)
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Figure A.1: The six drive cycles considered for the lead vehicle
The error dynamics of ¨̃

ξi−1 is given by

¨̃
ξi−1 = ãi−2 − ãi−1 (A.15)

Taking Laplace transform and substituting ãi−1(s) gives

¨̃
ξi−1(s) =

esL − 1

sL
(L(ai−2(τ))− L(ai−1(τ))) ,

¨̃
ξi−1(s) =

esL − 1

sL

(
L( ¨̃ξi−1(τ))

)
.

(A.16)

Taking Laplace transform and employing ¨̃
ξi−1(s) in

ξ̈i + (fξ̇ − fv)ξ̇i + fξξi = fa
¨̃
ξi−1 + fξ̇ ξ̇i−1 + fξξi−1 (A.17)

we obtain the string stability transfer function,

Gi,c(s) =
ξi
ξi−1

=
(fa/L(e

(sL) − 1) + fξ̇)s+ fξ

s2 + (fξ̇ − fv)s+ fξ
(A.18)

A.6 . Distribution of the Boundary Conditions considered
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The distributions of the states zi and boundary condition Vi used for the numer-
ical evaluation of string stability conditions in Sect. 4.6.2.4 is shown in Fig. A.2.
The distribution has a sample number of forty following a normal distribution
around equilibrium.
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Figure A.2: The distribution of the state zi and final speed Vi

A.7 . The terms ξmin and k1

The local minimum, ξmin, when wi(t) ≤ 0 and ∆ξi ≤ 0 and the proof that
local minimum occurs with the interval [0, Ti] is given in this section.

Local minimum ξmin The local minimum for the case wi(t) ≤ 0 and ∆ξi ≤ 0

is given by

ξmin =
A(ξi(t), wi(t),∆ξi, ξi,f )

B(∆ξi, wi(t))
, (A.19)

where
A = 216ξi(t)|∆ξi|3 − 4T 4

i |wi(t)|4 + 20T 3
i ξi(t)|wi(t)|3

+ 7T 3
i ξi,f |wi(t)|3 + 324Tiξi(t)|∆ξi|2|wi(t)|

− 36T 2
i |∆ξi|2|wi(t)|2 − 24T 3

i |∆ξi||wi(t)|3

+ 144T 2
i ξi(t)|∆ξi||wi(t)|2 + 18T 2

i ξi,f |∆ξi||wi(t)|2 ,
B = 27 (2|∆ξi|+ Ti|wi(t)|)3

(A.20)
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The condition ξmin ≥ 0 ensures ξi(k) ≥ 0, ∀ k ∈ [0, Ti], when wi(t) ≤ 0 and
∆ξi ≤ 0

Proof that k1 lies in the interval [0, Ti] Imposing k1 ≤ Ti one obtains

Ti |wi(t)|
3 |wi(t)|+ 6|∆ξi|

Ti

≤ Ti,

Ti |wi(t)| ≤ 3Ti |wi(t)|+ 6|∆ξi|,
2Ti |wi(t)|+ 6|∆ξi| ≥ 0.

The latter inequality is always satisfied for non-negative values for Ti, proving that
k1 lies in the interval [0, Ti]

A.8 . Merging Constraint

This section describes the solution to the minimization problem formulated in
(5.35) to obtain the free parameter vim and the unknown contact time θi. Using
Lagrange multipliers method, the Lagrangian is formulated as,

L = Ebf + λfmθ (A.21)
where λ is the Lagrange multiplier. At the constrained optimum the necessary
conditions for optimum are given as,

∂Ebf

∂vim
+ λ

∂fmθ

∂vim
= 0 (A.22a)

∂Ebf

∂θi
+ λ

∂fmθ

∂θi
= 0 (A.22b)

In addition to the above equations, fmθ (5.34), must hold. The three equations,
(A.22a),(A.22b), and (5.34) are solved using fsolve in MATLAB.

A.9 . Diverging Constraint

This section describes the solution to the minimization problem formulated in
(5.28) to obtain the two free parameters vid and xid and the third unknown contact
time θi. Using the Lagrange multipliers method, the Lagrangian is formulated as,

L = Ebf + λfdθ (A.23)
where λ is the Lagrange multiplier. At the constrained optimum, the necessary
conditions for optimum are given as,

∂Ebf

∂vid
+ λ

∂fdθ
∂vid

= 0 (A.24a)
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∂Ebf

∂xid
+ λ

∂fdθ
∂xid

= 0 (A.24b)
∂Ebf

∂θi
+ λ

∂fdθ
∂θi

= 0 (A.24c)
In addition to the above equations, fdθ (5.27), must hold. The four equations,
(A.24a),(A.24b), (A.24c) and (5.27) are solved using fsolve in MATLAB.

A.10 . Possible Conflicts, its identification and optimal solution
computation in an Intersection

This section describes the possible conflicts a CCAV can face inside an inter-
section, how to identify them and how its an optimal solution is chosen for that
conflict type.

A.10.1 . Combination of possible conflicts
Section 5.2.2 described the four fundamental conflicts in a traffic conflict anal-

ysis. When a CCAV i ∈ N (t), with only one CCAV in Hi(t), it can face either
one of the four conflicts or none of them. However, in reality, there are often more
CCAVs in Hi(t) and hence a CCAV i ∈ N (t) can face none, one or a combination
of the four conflicts. This section identifies all the possible combinations of the
four conflicts that a CCAV i ∈ N (t) could face. To this end, we analyze the
conflicts in the entry, IZ, and exit lanes.

Let’s consider where CCAV i ∈ N (t) enters the intersection through the left
lane1 and goes straight. Under the assumptions of CF i(t) = ∅ and only one CCAV
in CCi(t), its maximum constraining case (i.e., the maximum possible combination
of conflicts) is the presence of a conflict in the entry (diverging), IZ (crossing),
and exit lanes (merging). Such a scenario is shown in Fig. A.3a, labeled S0

max.
CCAV i’s higher prioritized CCAVs are given as Hi(t) = (d, e, c), and its conflicting
sets are given as DCi(t) = (d), CCi(t) = (c), CF i(t) = ∅ and MCi(t) = (e). A
qualitative example of scenario S0

max’s translation into constraints on the position-
time plane is shown in Fig A.3b. While S0

max represents the maximum conflicting
combination under the above-stated assumptions, the other possible conflicts are
detailed in Table A.1. Logical 1 and 0 indicate the presence or absence of diverging,
crossing, or merging conflict. All conflicts under the assumptions of CF i(t) = ∅
and only one CCAV in CCi(t) are categorically labeled S0.

We now relax one of the above assumptions to consider the presence of a
CCAV p ∈ CF i(t). Suppose both the sequences DCi(t) and CF i(t) have higher
conflicting CCAVs. In that case, CAV i conflicts only with its immediately preceding
vehicle in the entry lane (i.e., CCAV with the lowest priority in |DCi(t)∪CF i(t)|).
It should be noted that CAV i can face a diverging conflict or a car-following
conflict, not both simultaneously. Let k and q represent the crossing order such

1The same procedure applies to any other entry lane.
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Figure A.3: The paths of the CCAVs (a) for scenario S0

max and constraint onthe CCAV i’s x− t plane (b).
Table A.1: Conflicts in S0

S0

Diverging Crossing Merging0 0 01 0 00 1 00 0 11 1 01 0 10 1 11 1 1

that COk(t) = e and COq(t) = p. Assuming CCAV e ∈ MCi(t) has higher
priority than CCAV p (i.e., k < e), then the maximum constraining case (S1

max) for
CCAV i is a car-following conflict and a crossing conflict, as shown in Fig. A.4a. A
qualitative example of scenario S1

max’s translation into constraints on the position-
time plane is shown in Fig A.4b. While S1

max represents the maximum conflicting
combination under the above-stated assumptions, the other possible conflicts are
detailed in Table A.2. Logical 1 and 0 indicate the presence or absence of a car-
following or crossing conflict. All conflicts under the assumptions of k < e and
only one CCAV in CCi(t) are categorically labeled S1.

Assuming CCAV e ∈MCi(t) has lower priority than CCAV p (i.e., k > e), then
the maximum constraining case (S2

max) for CCAV i is a car-following, crossing and
a merging conflict, as shown in Fig. A.5a. A qualitative example of scenario S2

max’s
translation into constraints on the position-time plane is shown in Fig A.5b. While
S2
max represents the maximum conflicting combination, the other possible conflicts

are detailed in Table A.3. Logical 1 and 0 indicate the presence or absence of a
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car-following, crossing, or merging conflict. All conflicts under the assumptions of
k > e and only one CCAV in CCi(t) are categorically labeled S2.

Remark 3. In certain instances, the combinations of conflicts identified in S0, S1,
and S2 are repeated. For example, the conflict combination 10 in S1 and 100 in
S2 indicates that a CCAV i ∈ N (t) is subject to the car-following conflict in both
scenarios.

Remark 4. The conflicts combination are independent of NC-ED or C-ED.

All the above possible conflicts are identified under the assumption that there
is only one CCAV in CCi(t). If there are several higher prioritized CCAVs in CCi(t),
the CCAV that causes the maximum violation of the unconstrained solution of
CCAV i, a method inspired from [1], is the conflicting CCAV.
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Table A.2: Conflicts in S1

S1

Car-Following Crossing
0 01 00 11 1

Table A.3: Conflicts in S2

S2

Car-Following Crossing Merging
0 0 01 0 00 1 00 0 11 1 01 0 10 1 11 1 1

A.10.2 . Identification of Conflicts

This section expands a portion of algorithm 1 presented in Sect 5.3.3 on how
any CCAV i ∈ N (t) computes its conflicting sets and then identifies which conflict,
among the conflicts presented in Sect. A.10.1, it faces. Algorithm 2 describes the
process for a CCAV i inN (t) in identifying conflicts with xi(t) ≤ Dvis for NC-ED
and algorithm 3 describes the process when xi(t) > Dvis. The C-ED follows the
same steps as in algorithm 3 from xi(0).
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Algorithm 2 Conflict identification NC-ED with xi < Dvis

1: Initialize CF = 0, DC = 0
2: Hi = CO1 : COj−13: Conflicting sets ▷ Computed using the entry lane and direction of CCAVsinHi

4: for q ← 1 to length (Hi) do
5: if Hi

q ∈ CF i then
6: CFccav =Hi

q7: CFpriority = q
8: end if
9: if Hi

q ∈ DCi then10: DCccav=Hi
q11: DCpriority = q

12: end if
13: if CFccav ̸= ∅ AND DCccav ̸= ∅ then
14: maxP = max(CFpriority ,DCpriority)15: if Hi

maxP == DCccav then16: DC = 1
17: DCccav =Hi

maxP18: else
19: CF = 1
20: CFccav =Hi

maxP21: end if
22: end if
23: end for
24: if CF == 1 then
25: Conflict falls in S1

26: Conflict = CF
27: else
28: Conflict falls in S0

29: Conflict = DC
30: end if
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Algorithm 3 Conflict identification for C-ED and NC-ED with xi > Dvis

1: Initialize CF = 0, DC = 0, MC = 0, CC = 0, MCM = 0
2: Hi = CO1 : COj−13: Conflicting sets ▷ Computed using entry lane and direction of CCAVs inHi

4: for q ← 1 to length (Hi) do
5: if Hi

q ∈ CF i then
6: CFccav =Hi

q7: CFpriority = q
8: end if
9: if Hi

q ∈ DCi then10: DCccav=Hi
q11: DCpriority = q

12: end if
13: if Hi

q ∈ CCi then14: CCccav =Hi
q15: CC = 1

16: end if
17: if Hi

q ∈MCi then18: MCccav =Hi
q19: MCpriority = q

20: MC = 1
21: end if
22: if CFccav ̸= ∅ AND CFccav ̸= ∅ then
23: maxP = max(CFpriority ,DCpriority)24: if Hi

maxP == DCccav then25: DC = 1
26: DCccav =Hi

maxP27: end if
28: if Hi

maxP == CFccav then29: if MC = 1 then
30: if (Hi

maxP == MCccav) OR (MCpriority > maxP) then
31: CF = 1
32: MC = 0
33: CFccav =Hi

maxP34: else if (MCpriority < maxP) then
35: MCM = 1
36: CF = 1
37: else if MC = 0 then
38: CF = 1
39: CFccav =Hi

maxP40: end if
41: end if
42: end if
43: end if
44: end for
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45: if MCM == 1 then
46: Conflict falls in S2

47: Conflict = [CF CC MCM ]
48: else if CF == 1 then
49: Conflict falls in S1

50: Conflict = [CF CC]
51: else
52: Conflict falls in S0

53: Conflict = [DC CC MC]
54: end if

A.10.3 . Optimal Solution Computation

Once the type of conflict is identified, the states are measured or communicated
from the conflicting CCAVS, be it, CFccav, MCccav, DCccav, or CCccav. With this
information, CCAV i ∈ N (t) evaluates all possible solutions for a conflict type and
applies the one with the least energy consumption satisfying all the constraints.
General solutions for all types are conflicts are computed a priori as detailed in
remark. 2. The optimal solution consists of two or more segments depending on
the constraint. For instance, conflict type S0 − 110 has 4 possible solutions, i.e.,
unconstrained solution has one segment, solution satisfying only diverging conflict
(S0 − 100) has three segments, solution satisfying only crossing conflict S0 − 010

has two segments and the solution satisfying both diverging and crossing conflict
S0−110 has four segments. Figure A.6 shows the four possible solutions. It can be
noticed that the solution in Fig. A.6a and Fig. A.6c violates the diverging conflict.
The point constraint by CCAV c is violated only if the solution passes before
the constraint. Solutions in figures A.6b and A.6d satisfy both the constraints.
However, solution in Fig. A.6b consumes the least energy2. Hence the optimal
solution for CCAV i facing the conflict S0− 110 is the solution given in Fig. A.6b.
A pseudo-algorithm of the process is shown in Algorithm 4.

Remark 5. Once a solution z with the least energy consumption satisfying all the
position- state constraints are obtained, the turning speed constraint is checked.
If the safe turning speed is violated, then the z is not the optimal solution. The
process of evaluating all possible solutions is repeated. However, the possible so-
lutions are now obtained by splitting the solution presented in Sect. 5.3.2.2 into
segments, such that it satisfies the position-constraints.

2The less constrained a solution is, the lesser is the energy consumption
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Figure A.6: Figure showing all the four possible solutions for conflict S0−110

Algorithm 4 Optimal Solution Computation
Require: Identified Conflict type
Require: Possible solutions for the conflict type
1: Energy∗←∞
2: Let s be the number of possible solutions
3: for z ← 1 to s do
4: if Solution z satisfies all constraints then
5: Compute Ebf6: if Ebf < Energy∗ then
7: Energy∗←∞
8: Optimal Solution← z
9: end if
10: end if
11: end for
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A.11 . Speed Profiles from Experiments

The speed profiles from experiments for trips 2 to 5 are shown here.
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Figure A.7: Figure showing the ex-ante, ex-post:1, ex-post:2 and the drivenspeed of Trip 2

135



0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

20

40

60

1 2 3 4 5 6 7 8 9 10 1112 13

Spe
ed

[km
/h]

Driven Speed Ex-Ante

(a)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

20

40

60

1
2

3

4 5

6

7

8 9

10
11
12

13

Spe
ed

[km
/h]

Driven Speed Ex - Post : Traffic Q and Signal Phase

(b)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

20

40

60

1
2 3

4 5

6

7

8

9

10

11 12

13

14

15
16

17
18

Position [m]

Spe
ed

[km
/h]

Driven Speed Ex-Post : Traffic, Traffic Q and Signal Phase

(c)
Figure A.8: Figure showing the ex-ante, ex-post:1, ex-post:2 and the drivenspeed of Trip 3
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Figure A.9: Figure showing the ex-ante, ex-post:1, ex-post:2 and the drivenspeed of Trip 4
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Figure A.10: Figure showing the ex-ante, ex-post:1, ex-post:2 and the drivenspeed of Trip 5
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