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Chapter 1

INTRODUCTION

Autonomous driving (AD) is an exciting technology that has the potential to trans-
form our transportation to be safer and more efficient. Among many components of an AD
software stack, perception plays a fundamental role as it provides inputs to safety-critical
modules such as navigation and motion planning [54]. The perception module comprises
several sub-module that handles various aspects of building an understanding of the envi-
ronment in which the ego vehicle operates. These sub-modules include (i) localizing other
road users at each time step, (ii) tracking them across time, and (iii) predicting their
motion in the future so that the subsequent motion planning module can chart a safe
course. Due to the sequential nature of these steps, localization of other road users, which
is formally referred to as object detection, is paramount to the development of AD.

As autonomous vehicles (AV) conduct themselves in a 3D world, the detection of
objects needs to be done in 3D. To achieve this, AVs are equipped with advanced sensing
systems essentially made of cameras, LiDARs, and RADARs. While which type of sensors
is sufficient for 3D object detection is still an open question, it is undeniable that LiDAR-
based methods achieve superior performance on public benchmark [8, 36, 106], compared
to other modalities especially cameras. This is because LiDARs can provide accurate
depth, which is lacking in RGB images due to perspective projection [45], at a sufficient
density, which can not yet be matched by RADAR. For this reason, this thesis regards
LiDAR as the primary component for developing the object detection module for AD.

This chapter will walk through the state-of-the-art of LiDAR-based object detection
methods and identify the remaining challenges that need to be addressed. These challenges
are the premises of the following chapters of this thesis.

1.1 Representing Point Cloud

The central question of early LiDAR-based 3D object detection is how to represent
data collected by LiDARs which is referred to as point clouds. A point cloud P , as can
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Partie , Chapter 1 – Introduction

be seen in Fig.1.1, is a set of points with 3D coordinates, expressed in the frame of the
LiDAR, and additional raw features such as reflectance.

P =
{

pi = [x, y, z, r]
}|P|

i=1
(1.1)

Figure 1.1 – A point cloud of a kangaroo.

1.1.1 Voxel-based Methods

Due to their unordered nature, point clouds cannot be processed straightforwardly by
the Convolutional layer [64] which is the building block of the Deep Learning revolution.
Since the convolution operation requires its input to be in the form of a regular grid (i.e.,
a tensor), the seminal work VoxelNet [150] converts point clouds to 3D voxel grids by
voxelizing the 3D volume using cube-like voxel. After this voxelization step, each voxel
V is assigned an initial feature vector f by applying the Voxel Feature Encoding (VFE)
layer. This layer takes in the absolute 3D coordinate and reflectance of points inside a
voxel, their relative coordinate with respect to the voxel’s center [vx, vy, vz] as input, and
performs a permutation invariant operation composed of a Multi-Layer Perceptron (MLP)
and Max Pooling as following

f = MaxPool
({

MLP ([xi, yi, zi, ri, xi − vx, yi − vy, zi − zi])
}|V|

i=1

)
(1.2)

After pre-processing the voxelized point cloud using a stack of VFE layers, the input point
cloud becomes a 4D tensor G of the shape C ×D×H ×W , with C denoting the number
of features while D,H,W representing three dimensions of the voxel grid. This tensor

12



1.1. Representing Point Cloud

is subsequently processed by a stack of 3D convolution layers which finally reduces the
D-dimension to one.

A noticeable feature of the resulting tensor B ∈ RC′×H′×W ′ is that its spatial dimension
H ′ ×W ′ is equivalent to an orthographic projection of the point cloud to the horizontal
plane, and the feature dimension C ′ is similar to the 3 color channels of an RGB image.
As a result, B can be regarded as an image of the point cloud taken by an orthographic
camera from the top view. In the literature, B is often referred to as the (pseudo) Bird-
Eye View (BEV) image.

The strength of the BEV image is that it offers a representation of the point cloud that
preserves objects’ shape and sizes and is compatible with image-based object detection
methods which have a more mature literature. Indeed, after constructing the BEV image,
VoxelNet uses the method of SSD[75] to detect objects in the BEV. The pipeline of
VoxelNet, which is typical for voxel-based detection methods, is shown in Fig.1.2.

Figure 1.2 – Pipeline of voxel-based detection methods. This image is in custody of [84].

The success of VoxelNet is because it is the first to demonstrate end-to-end object
detection in point clouds. Its major drawback is the large computational cost of its stack
of 3D convolution layers, which hinders its deployment in real-world applications such as
AD. This issue is resolved in SECOND [129] with the replacement of the dense convolution
by the sparse [41] and submanifold [42] convolution. The resulting model can reach the
inference speed of 40 frames per second. PointPillar [59] further boosts the inference speed
by directly constructing the BEV image from raw point clouds thanks to the utilization
of voxels having infinite size along the vertical direction which they refer to as pillars.
Each pillar maps a cube-like volume directly to a pixel in the BEV image. Since the D-
dimension of the voxel grid G starts at 1, the need for compressing this dimension using
3D convolution layers is dismissed, thus the lightning inference speed of up to 105 Hz.

Another family of voxel-based methods represented by PIXOR [131] implements a
pure 2D convolution pipeline to ensure real-time speed by considering the C-dimension of
the voxel grid G equal to 1. They achieve this by voxelizing point clouds using regular 3D
voxels as VoxelNet but only consider the occupancy status (0 and 1) of each voxel as its

13



Partie , Chapter 1 – Introduction

feature. Subsequently, the height dimension of the voxel grid G is treated as the channel
dimension of the resulting BEV image B.

1.1.2 Point-based Methods

Arguing that the voxelization causes loss of information, point-based methods utilize
the PointNet [92], which is an equivalent of the convolution layer for point sets, to operate
directly on raw point clouds. PointNet computes the feature f of each point pi = [x, y, z, r]i
in a point cloud based on other points pj residing inside its spherical neighborhood N
using a permutation invariant operation as follows

f = MaxPool
({

MLP (pj,pj − pi) |∥pj − pi∥2 < r
})

(1.3)

Comparing to Eq.(1.2), it can be seen that the computation of the point feature in Eq.(1.3)
is based on the same principle used for computing the voxel feature that is to use to embed
members’ feature to a higher dimension using an MLP then aggregating their features to
obtain the output.

The hierarchy of point features, which is to replicate the hierarchy of voxel features
made by a stack of convolution layers, is made by a stack of Set Abstraction layers [92].
This layer samples its inputting point set using the Furthest Points Sampling (FPS)
algorithm to obtain a subset of so-called keypoints whose features are computed based on
regular neighbor points using Eq.(1.3).

PointRCNN [100] - the pioneer of point-based methods proposes a bottom-up approach
that generates several object proposals for each keypoint, then refines the set of proposals
by aggregating features of points residing inside the proposals’ boundary to obtain the
final output. 3DSSD [134] extends this seminal work by improving the keypoints sampling
process to obtain a better coverage of foreground objects. Their extension is made by
performing the FPS on both Euclidean space and points’ latent space so that a better
foreground-background ratio in the set of resulting keypoints is achieved.

While starting with the motivation of preserving information of point clouds, point-
based methods have to downsample their inputs rather aggressively (e.g., keeping only
5K points of a 30K-point input) at the beginning of their pipeline to cope with the
large number of points in outdoor point clouds and constraint memory. Therefore, it is
hard to justify whether they can preserve more information than voxel-based methods.
In fact, PointRCNN is outperformed by voxel-based methods such as Part-A2 [101] and

14



1.2. Representing Learning Target

VoxelRCNN [25] on the KITTI dataset. Another drawback of point-based methods is their
low inference rate mostly caused by the FPS algorithm which involves memory-intensive
operations to build spherical neighborhoods.

1.2 Representing Learning Target

1.2.1 Anchor-based Methods

Early 3D object detection methods [25, 101, 129] follow the anchor-based approach,
which is popularized by image-based object detection literature (e.g., FasterRCNN [95],
YOLO [94], SSD [75]), to encode the learning target. In the anchor-based framework,
each pixel of the BEV image is assigned a set of boxes, referred to as anchor boxes or
anchors, of predefined location, size, and orientation. These anchors play the role of the
initial guess about the pose and size of ground truth objects on the scene. Given an input
point cloud, a detection model strives to

— classify positive anchors (separating good guesses from bad guesses)
— regress to a vector that is used to adjust each positive anchor such that it fits better

to its associated ground truth
For a set of ground truth objects representing their associated 3D bounding boxes, a

positive anchor is defined as an anchor that has a sufficiently high Intersection-Over-Union
(IoU) score with a ground truth bounding box. To ensure high coverage of ground truth,
each pixel is assigned several anchors spanning different sets of sizes and orientations.
This results in the predominant of negative anchors. Therefore, the loss function of the
anchor classification task is usually the Focal Loss [73] due to its ability to handle severe
class imbalance.

Given a positive anchor and its associated ground truth respectively parameterized
by [xa, ya, za, la, wa, ha, θa] and [xt, yt, zt, lt, wt, ht, θt], the learning target of the regression
task is

x∗ = xt−xa

d
, y∗ = yt−ya

d
, z = zg−za

ha

l∗ = log lt

la
, w∗ = log wt

wa , h∗ = log ht

ha

θ∗ = θg − θa

(1.4)

Here, d =
√

(xa)2 + (ya)2 is the length of the diagonal of the bottom face of the anchor.
The drawback of the anchor-based approach is two-fold. Firstly, it is memory intensive

due to the number of anchors, which scales quickly with the size of the bird-eye view image,
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that is assigned at each voxel to ensure high coverage. As a result, most anchor-based
methods [25, 101, 102, 129, 150] have to settle for low-resolution BEV images (e.g., 0.8
meter-square voxel) to comply with GPU’s memory constraint. A large pixel size makes it
more challenging to detect small objects (e.g., pedestrians) as they occupy less than two
pixels. Secondly, anchors require domain knowledge to be properly designed. This asks
for access to statistics, which are not necessarily cheap to acquire, such as average object
size, average height, or most likely heading direction.

1.2.2 Center-based Methods

Recently, the center-based approach [108, 137, 149] emerges as an alternative to the
anchor-based approach. The central idea of this framework is that each object is encoded
as 2D Gaussian, as shown in Fig.1.3, and the localization of objects (i.e., detecting their
center) is equivalent to transforming the input image into a heat map that represents
the probability of each pixel being the center of an object. This formulation opens up
the possibility of directly applying the rich literature of image segmentation using fully
convolutional neural networks to both 2D and 3D object detection, as point clouds can
be converted to BEV images.

Figure 1.3 – Example heat maps of 2D images.

In addition to the paradigm-shifting idea, the center-based approach has two properties
that make it more favorable to the anchor-based approach. First, it consumes less memory
as it requires one matrix to represent objects of one class. Second, it dismisses the need
for domain knowledge to design anchors.

An object of class c centering at the pixel coordinate [cx, cy] is encoded as a Gaussian
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1.3. Two-stage Detection Pipelines

as the following

Yx,y,c = exp
(
−(x− cx)2 + (y − cy)2

2σ2

)
(1.5)

Here, [x, y] is the coordinate of a pixel and σ is calculated based on the size of the object
based on the heuristic presented in [60]. The target probability computed in Eq.(1.5) is
learned using the following variant of the Focal Loss

L = −1
N

∑
x,y,c


(
1− Ŷx,y,c

)α
log

(
Ŷx,y,c

)
if Yx,y,c = 1

(1− Yx,y,c)β
(
Ŷx,y,c

)α
log

(
1− Ŷx,y,c

)
otherwise

(1.6)

Other attributes of the object’s bounding box are learned in the same manner as the
anchor-based method.

1.3 Two-stage Detection Pipelines

As methods for representing point clouds and learning targets get well established,
the interest of the field is shifted toward improving detection accuracy. Under a large
influence of image-based object detection literature which was dominated by two-stage
methods (e.g., FasterRCNN [95], MaskRCNN [47], RetinaNet [73], FPN[72]), the following
development of 3D object detection was about the second stage. The role of this stage
is to refine object proposals so that true positive predictions are assigned high confident
scores and fit better to their associated ground truth, while the score of false positive
predictions is lowered, thus facilitating their removal in the post-processing step.

This trend is started by PointRCNN which pools features of keypoints inside each
proposal to compute the proposal’s feature, then decodes the result into new location,
size, orientation, and score. The aggregating of pooled keypoints’ features is done by a
straightforward application Eq.(1.3). The aggregation method is further developed into
the Region of Interest (ROI) Aware Pooling operation in Part-A2 [101] to account for
the different distribution, illustrated in Fig.1.4, of the same set of points in the local
frame of different object proposals, which are referred to as ROI. The geometry of an
ROI is accounted for by transforming 3D points from the LiDAR’s frame to its canonical
frame, defined in Fig.1.5. The ROI’s feature is obtained by first voxelizing its volume, then
computing an initial feature vector to each occupied voxel using PointNet (i.e., Eq.(1.3)),
and finally employing a series of 3D convolution layers to compress the feature volume to
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Figure 1.4 – ROI-aware pooling accounts for an ROI’s geometry by transforming points
from LiDAR’s coordinate to ROI’s canonical frame. This image is in the custody of [101].

a vector.

Figure 1.5 – A ROI’s canonical frame: origin is at its center, the x-axis is parallel to its
heading direction, the z-axis points upward, and the y-axis points to the lateral direction.

More modern works on the refinement stage are under the influence of the RoIAlign
operation introduced in MaskRCNN [47]. The principle of RoIAlign, shown in Fig.1.6a,
is that each ROI is divided into a grid of keypoints, denoted by red circles in Fig.1.6a.
Each keypoint’s feature is interpolated from its neighbor pixels, denoted by blue circles
in Fig.1.6a. ROI feature is the aggregation (e.g., means or max pooling) of keypoints’
features.

The idea of RoIAlgin is first implemented in 3D by PV-RCNN [102] in the form of
the RoI-grid Pooling module. Here, each ROI is divided into a 3D grid whose points are
assigned a feature vector by applying PointNet (Eq.(1.3)) to its neighbor 3D keypoints,
as shown in Fig.1.6b. These keypoints are sampled from the input point cloud by the
FPS algorithm. The aggregation of grid points’ features to ROI’s features is also done
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(a) (b)

Figure 1.6 – Comparison between RoiAlign (a) and pooling operation of PV-RCNN [102]
and VoxelRCNN [25] (b). Red circles denote points of the grid resulting from the discretiza-
tion of the ROI. Blue circles represent pixels in sub-figure (a) and keypoints sampled from
the input point cloud in sub-figure (b).

using PointNet. While achieving impressive performance, PV-RCNN has a major draw-
back which is the slow inference rate due to the computationally expensive FPS and Ball
Query operator used respectively for sampling keypoints and building grid points’ spheri-
cal neighborhood. VoxelRCNN [25] is built on the same idea of voxelizing object proposals
as PV-RCNN. However, it offers a significantly better inference rate by leveraging the grid
structure, illustrated in Fig.1.7, of voxelized input point cloud and its corresponding fea-
ture grids for fast neighbor query. The resulting method can reach a 21.4-Hz inference

(a) (b)

Figure 1.7 – Comparison between Ball Query used in PV-RCNN (a) and Voxel Query
used in VoxelRCNN [25] (b). This image is in the custody of [25].

rate while outperforming PV-RCNN by a small margin on the KITTI dataset.
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1.4 The Transformer Craze

1.4.1 In The Backbone

The shockwave made by the Vision Transformer (ViT) [28] did spread to the 3D object
detection field, resulting in a large family of transformer-based architectures. PointFormer
[87] - the elder of this family is based on PointRCNN but replacing PointNet with the
Transformer [111] for point feature extraction. One source of strength of the Transformer
is its capacity of modeling long-range dependencies as it computes the features of one
token, which can be pixels (in image) or points (in point clouds), based on the features
of every other token. As mentioned in Sec.1.1.2, PointRCNN computes keypoint features
based on points residing in their spherical neighborhoods. Therefore, PointFormer limits
the capacity of the Transformer to model the relationships among points near-by the oth-
ers instead of the entire point cloud by following the formulation of PointRCNN. However,
such limitation imposed on the Transformer is necessary to cope with its quadratic com-
putation and memory complexity which can be infeasible even on high-end GPUs when
coupled with the large size of outdoor point clouds.

Besides circumventing the quadratic complexity, there are other benefits to restricting
the region of operation of the Transformer. As demonstrated in image-based methods [77,
152], introducing convolution-like priors such as translation equivariant, locality (i.e., the
computation is done in a local region), and hierarchical features reduce the computation
costs, and accelerates the training of transformer-based architectures while improving the
performance. Voxel Transformer [84] is conceived under the influence of this observation. It
replaces the sparse convolution layers in the backbone of SECOND with the self-attention
module [111] operating on local regions. This effectively makes the self-attention module
become convolution with dynamic weights as the weights are computed based on the
points residing inside the field of view of the attention module.

Taking a different approach to dropping the Transformer to classic architectures, [31]
use this module to develop a single-stride object detector to better detect small objects
(e.g., pedestrians or cyclists). The main challenge to detect small objects using conven-
tional convolution-based methods is that they occupy only one or two pixels in the final
BEV images due to the large downsampling ratio of the convolution backbone. [31] over-
comes this challenge by avoiding downsampling altogether, thus being single-stride. The
interaction among voxels, illustrated in Fig.1.8, is provided using the combination of
shifted windows and the cross-attention mechanism as in Swin Transformer [77].
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Figure 1.8 – Computation of voxel features in a single-stride detector using the Trans-
former and shifted windows mechanism. This image is in the custody of [31].

1.4.2 In The Second Stage

Following the success of the Transformer in the backbone, [99] develops a second stage
for refining object proposals. Compared to the computation of BEV images using convo-
lution layers, the ROI features extraction based on point features does not share the same
set of inductive priors (e.g., translation equivariant or locality). This lack of priors makes
most two-stage methods [84, 101, 102] resort to PointNet for ROI features extraction
which is not necessarily the most effective. Since the Transformer in its unconstrained
form is a powerful generic function approximator thanks to its ability to model long-
range dependencies and information rewiring, it is an appealing solution. These abilities
are leveraged by [99], using the pipeline shown in Fig.1.9, to further improve the perfor-
mance of SECOND beyond the result of PV-RCNN and VoxelRCNN. In their framework,
the initial value of an ROI’s feature is a (trainable) parameter of the detector. This initial
feature is updated by cross-attending to the features of points residing inside the ROI’s
volume.

Figure 1.9 – Computation of ROI features from point features using the Transformer.
This image is in the custody of [99].
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1.5 Remaining Challenges

Since the first end-to-end model of VoxelNet, there have been a lot of advancements
in the 3D object detection literature from the representation of point clouds, to the de-
velopment of the second stage, to a new paradigm of representing learning targets, and to
the current transformer craze. However, a challenge that remains troublesome for LiDAR-
based methods is the low-fidelity measurement of foreground objects (i.e., objects have
few LiDAR points), illustrated in Fig.1.10, which is caused by occlusion and sparsity.
This challenge is inherent to the nature of this sensing modality because (i) the space
behind each LiDAR point is unobservable, and (ii) the void between two laser beams
increases with respect to the distance from the LiDAR. As LiDAR-based methods heavily
rely on the presence of LiDAR points to produce detection [109], low-fidelity measure-
ment severely affects the detection accuracy by reducing the number of LiDAR points
(sometimes to zero).

Figure 1.10 – Illustration of the low-fidelity measurement of foreground objects caused by
occlusion and sparsity on point clouds. The car in the circle is occluded by a car and a
pedestrian that is marked by back arrows, thus having few LiDAR points despite being
close to the LiDAR. The three cars at the top of the image have few LiDAR points as
they are far away from the LiDAR.

The need for resolving this challenge is highlighted in an experiment made by [125]
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where point clouds of the KITTI dataset are completed using the oracle information of
object shapes. This experiment reveals a compelling finding that PV-RCNN can achieve
perfect detection (99.95% average precision) in the absence of occlusion.

As the issue of low fidelity is essentially the low number of points covering foreground
objects, methods that aim to address this challenge are about point cloud densification
either in the 3D space or in the latent space represented by the BEV image.

1.5.1 Densification in the 3D space

A typical approach toward point cloud densification is to leverage RGB cameras due to
their availability on autonomous vehicles and their ability to maintain dense measurements
even at long ranges. An exemplar of this class of methods is MVP [138] which (i) samples
pixels on the 2D instance mask (Fig.1.11.a) and (ii) interpolates their depth from the
projection of LiDAR points that land on the same instance mask (Fig.1.11.b) to obtain
virtual 3D points (Fig.1.11d). The densified point clouds result in a 14.5% improvement
in precision compared to the same detector operating on original (not densified) point
clouds.

Figure 1.11 – Upsampling a point cloud by interpolating depth of pixels on 2D instance
mask (a) using the projection of LiDAR points (b). This image is in the custody of [138].

This approach can be considered a late fusion between point clouds and images because
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the processing of each modality, which is the instance segmentation on images in the case
of [138], takes place independently. On the other hand, point clouds can be densified using
early fusion as in [122] which upsamples point clouds by processing the concatenation of
sparse depth maps, resulting from projecting point clouds to the image plane, and RGB
images using a two-branch fully convolutional network. An example of upsampled point
cloud is shown in Fig.1.12. While significantly increasing the point cloud density, point

(a) (b) (c)

Figure 1.12 – Comparison between point cloud (a) and upsampled point cloud (c) by
fusion with the image from the forward-facing camera (b). This image is in the custody
of [122].

clouds upsampled in this fashion suffer from two drawbacks namely local misalignment
compared to LiDAR point cloud (Fig.1.13b) and depth distortion near objects’ boundary
which results in the long-tail effect (Fig.1.13c). In addition, the utilization of a sub-model
for predicting depth from images adds significant computational overhead to the entire
model. Moreover, point clouds densified by approaches that involve images are prone
to poor precision at distances due to the inevitable LiDAR-camera calibration error.
Therefore, the real-world deployment of this family of approaches remains challenging.

(a) (b) (c)

Figure 1.13 – The misalignment (b) and long-tail effect (c) in an upsampled point cloud,
which is colored in blue, compared to the original (a), which is colored in red. This image
is in the custody of [118].

To avoid the above defects of upsampled point clouds, [125] predicts the occupancy
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probability of potentially occupied voxels (Fig.1.14a), thus enabling the detector to sup-
press spurious ’virtual’ voxels, which are generated by the detector.

(a) (b)

Figure 1.14 – Potential occupied voxels (a), which exhibit the long-tail effect similar to
point clouds upsampled using RGB images, compared to voxels that have high predicted
occupancy probability (b). This image is in the custody of [125].

1.5.2 Densification in Latent Space

Another approach toward point cloud densification is to emulate the BEV represen-
tation of occlusion-free point clouds, thus densification in the latent space. The common
recipe for this approach is using knowledge distillation [49] which entails transferring the
knowledge acquired by a large model (the teacher) to a smaller model (the student) by
forcing the representation of the input data made by the student to be similar to the
one made by the teacher. The similarity between the two representations is measured
by a combination of Kullback–Leibler divergence, negative log-likelihood, and Euclidean
distance (i.e., L2 norm). In the early phase of distilling deep models, the representation
is the output of the models (teacher and student) because the target application is the
image classification where output is simply represented as a categorical distribution. As
the knowledge distillation spreads to other fields, such as object detection, whose outputs
are more complicated to represent, the representation chosen for distillation is the feature
map produced in the middle of the architecture of the teacher and student.

The knowledge distillation framework is adapted to the context of point cloud densifi-
cation in the latent space by training the teacher model on occlusion-free point clouds and
transferring its knowledge to the student trained and tested on regular point clouds. The
occlusion-free point clouds are synthesized from the regular point clouds by leveraging
human-made annotations (e.g., 3D bounding boxes) that are available during training.

Assoc3DDet [30] is among the first in this class. It minimizes the impact of occlusion
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Figure 1.15 – The procedure for completing an object by searching for a denser object
that has a similar orientation. This image is in the custody of [30].

on each foreground object by searching for the object that has the highest density in a
database made of objects having similar orientations. LiDAR points of the object taken
from the database are adjusted to match the orientation and scale of the object of in-
terest, then merged with those of the foreground object. This procedure is illustrated in
Fig.1.15. The transfer of knowledge from the teacher to the student, which has the same
architecture, is done by applying the L2 loss to the BEV images made by the backbone
of the two models.

Sparse-to-Dense [115] takes a temporal approach, illustrated in Fig.1.16, toward gen-
erating dense object points by

(a) isolating point cluster of the object of interest collected over an entire driving se-
quence and sorting the extracted point clusters according to their size

(b) voxelizing the one with the highest density
(c) filling voxels in the voxel grid with points from all extracted point clouds
(d) mirroring the denser side of the object over its axial plane

Based on the reasoning that the student model that employs the submanifold sparse
convolution layer [41] in its backbone is unable to generate features at empty voxels,
thus cannot emulate the BEV images made by the teacher, [115] uses an additional mod-
ule made of 2D convolution layers, which enables occupancy leaking, to transform the
student’s sparse BEV images to denser BEV images before distillation. A comparison be-
tween original BEV images and densified BEV images made by [115], shown in Fig.1.17,
indicates dense feature populations in regions in regions associated with objects that are
partially observed.
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Figure 1.16 – The procedure for completing an object using its temporal point clouds.
This image is in the custody of [115].

1.6 Contributions

The common numerator of the solutions to the low-fidelity measurement above is about
generating more points using deep models. While achieving impressive performance, they
haven’t addressed the roots of the problem which are the occlusion and sparsity at long
range. As a result, their performance is still limited by the availability of the original
LiDAR points. For example, a failed case of MVP [138] is when there are few or even
zero LiDAR points whose projections reside inside an instance mask, thus the lack of
information for interpolating the depth of sampled pixels. Another example can be found
in Fig.1.17b where a ground truth that has no LiDAR points is missed while another
ground truth having a few LiDAR points is falsely located.

Aware of the aforementioned gap in the literature, this thesis addresses the low-fidelity
measurements challenge based on the idea of physically densifying point clouds by lever-
aging

• point cloud sequences

• the availability of point clouds collected by different vehicles

The motivation for the utilization of point cloud sequences is that a straightforward
concatenation of K point cloud in a sequence results in a point cloud that is on average K
times denser than each individual. This increased number of points coupled with the fact
that they are collected from different perspectives due to the motion of the ego vehicle and
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(a) (b)

Figure 1.17 – Comparison between BEV images made by SECOND (a) and by SECOND
enhanced by Sparse-to-Dense (b). The upper row shows the detected objects colored in
red and ground truth colored in green. This image is in the custody of [115].

objects’ independent motion often increases the coverage of the ego vehicle’s measurement.
As a result, detection models enjoy significant performance gains when operating on point
cloud sequences instead of individual point clouds. These gains are particularly visible in
low-resolution point clouds such as those collected by 32-beam LiDAR [8]. Since the
concatenation of point clouds is mostly done by transforming temporal point clouds to a
common frame using ego vehicle localization, it does not account for the motion of other
objects. For this reason, the concatenated point cloud contains an artifact named shadow
effect [81] that manifests as objects’ points scattering along their trajectories as shown in
Fig.1.18. This artifact, which is a misalignment in 3D between an object’s location and its
measurement - LiDAR points, results in a misalignment in the BEV representation that
can eventually lead to false detection of medium and fast-moving objects [133]. A method
for alleviating the impact of this artifact on detection models is developed in Chapter 2.

An increased number of points in the concatenated point cloud does not necessarily
guarantee better coverage as the perspective of ego vehicle with respect to some objects
can remain unchanged over the entire time span of a point cloud concatenation. For ex-
ample, a vehicle waiting in an intersection, shown in Fig.1.19, will have little measurement
of objects beyond the range of 10 meters because its field of view is severely occluded due
to the presence of other road users. As a result, the problem of low-fidelity measurements
cannot be reliably resolved solely by using point cloud sequences. However, the idea of
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(a)

(b)

Figure 1.18 – Illustration of the shadow effect in the concatenation of a point cloud
sequence spanning 0.5 seconds (a). This sequence contains three cars moving from left to
right during the 0.5-second observation. Foreground points are color-coded according to
their time lag with respect to the present. The color bar is shown in (b).

leveraging point clouds obtained from multiple perspectives does inspire another solu-
tion which is to create such a variety of perspectives using multiple vehicles presenting
at different locations in a scene. This is the central idea of the emerging collaborative
perception [11, 66, 116, 141, 142] via vehicle-to-everything (V2X) communication [82].
Similar to point cloud sequences, the concatenation of point clouds obtained by multi-
ple vehicles also results in a significant performance boost [67, 128]. Unfortunately, this
method is impractical in the V2X context due to the enormous bandwidth required to
transmit raw point clouds. A less bandwidth-intensive method is to let each connected ve-
hicle process its own measurement, and then fuse their detection for example by non-max
suppression. This late fusion method immediately enables the ego vehicle to detect objects
in unobservable regions conditioned on they are observable by other vehicles. However, a
number of prior works [66, 116, 128] show that fusing the output of connected vehicles
yields inferior performance boosts compared to fusing their BEV representations. While
being attractive in terms of performance and bandwidth consumption, the fusion of con-
nected vehicles’ BEV representations requires (i) significant changes to be made to the
architecture of single-vehicle detectors and (ii) a certain degree of synchronization among
connected vehicles. These two drawbacks hinder the real-world deployment of the collab-
orative perception. Chapter 3 addresses these issues by proposing a new collaborative
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(a)

(b)

Figure 1.19 – An intersection in the V2X-Sim dataset [67] measured by a single vehicle
(a) and by multiple vehicles (b). Ground truth objects are denoted by purple cuboids.
The point cloud of each vehicle is assigned a unique color.

method, called lately, that enables an early fusion of the ego vehicle’s raw point cloud
with other connected vehicles’ prediction which is the signature of late fusion.

The combination of Chapter 2 and Chapter 3 constitutes a complete solution to the
low-fidelity measurement challenge. In the framework of this solution, a connected au-
tonomous vehicle detects objects based on the concatenation of point clouds and col-
laboration with other connected vehicles. The core of this solution is the single-vehicle
detection model, which each connected vehicle uses to process its point cloud, as the lately
collaboration method exchanges the output of connected vehicles. The important role that
the single-vehicle detection model plays in our solution raises the necessity of improving
its precision, particularly when popular models such as SECOND and PointPillar are de-
signed to have a high recall rate at the risk of having a high number of false positives.
To this end, Chapter 4 develops a refinement stage that re-scores and re-adjusts the
prediction made by these models. The general pipeline of this stage is to compute a fea-
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ture for each ROI based on features of points (or voxels) contained by itself. The lack of
an inductive bias for computing ROI features given points features requires a learnable
operator that is as generic as possible. Such ability can be found in the Transformer [111].
However, the scalar weight that the vanilla Transformer assigns to each point falls short
in modeling the fact that a point contributes differently to different attributes of an ROI.
For example, a point near the center of a face has a small influence on the prediction of
the ROI’s size but is critical for predicting its center. Therefore, we based our refinement
stage on a variant of the Transformer called vector attention [146] that computes different
attention maps for different channels of point features, thus allowing each point to play
different roles in the prediction of different ROI attributes.
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Chapter 2

IMPROVING OBJECT DETECTORS USING

POINT CLOUD SEQUENCES

A direct solution to the challenge of low-fidelity measurements is to increase the den-
sity of point clouds by concatenating a point cloud with its predecessor in a common
coordinate frame. This method owes its effectiveness to a variety of perspectives that
the ego vehicle takes over the time span when a point cloud sequence is collected. These
different perspectives offer opportunities for occluded objects to become visible and far-
away objects to get closer to the ego vehicle, thus increasing the number of LiDAR points
on these challenging objects. This concatenation is done by transforming point clouds
obtained at each time step to the common coordinate frame, which is referred to as the
target frame hereon, using its localization. Since the transformation to the target frame
only accounts for the motion of the ego vehicle, dynamic objects instantiate at different
locations in the concatenated point cloud, resulting in the so-called shadow effect. This
effect is essentially a misalignment between object points and object bounding boxes in
3D, as can be seen in Fig.2.1, which leads to a misalignment between object features in
the BEV image and the projection of their bounding boxes to the BEV. As a result, the
performance gain brought by replacing individual point clouds with concatenated point
clouds is limited to stationary and slow-moving objects [133]. Scene flow allows aligning
point clouds in 3D space, thus naturally resolving the misalignment in feature spaces. By
observing that scene flow computation shares several components with 3D object detec-
tion pipelines, we develop a plug-in module that enables single-frame detectors to compute
scene flow to rectify their Bird-Eye View representation. Experiments on the NuScenes
dataset show that our module leads to a significant increase (up to 16%) in the Aver-
age Precision of large vehicles, which interestingly demonstrates the most severe shadow
effect. The method and results presented in this chapter are published in "Aligning Bird-
Eye View Representation of Point Cloud Sequences using Scene Flow", IEEE Intelligent
Vehicles Symposium, 2023. The code of experiments used in this chapter is published at
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Figure 2.1 – A dynamic car’s appearance on the concatenation of a 10-point-cloud se-
quence spanning 0.5 seconds. Points are color-coded according to their time lag with
respect to the present.

https://github.com/quan-dao/pc-corrector.

2.1 Introduction

The concatenation of point cloud sequences is a straightforward yet highly effective
method to enable any single-frame object detectors using multi-frame point clouds. This
concatenation is done by transforming point clouds obtained at any time step during the
observation period into a common reference frame - the target frame using the localization
of the ego vehicle, thus its name Ego Motion Compensation (EMC). First introduced in
[8], EMC has become the standard for object detection on low-resolution point clouds [4,
113, 134, 137, 151]. The most significant advantage of EMC is that it enables single-frame
methods to enjoy a performance boost thanks to denser point clouds without changing
their architecture. It is worth noticing that using EMC on any single-frame method effec-
tively converts it to a multi-frame one.

On the other hand, the major drawback of EMC is the shadow effect [81] that manifests
in dynamic objects’ points scattering along their trajectories (Fig.2.2a). This misalignment
in 3D space results in a misalignment in the feature space, shown in Fig.2.2b, which limits
the performance gain brought by adding past point clouds using EMC to stationary and
slow-moving objects only [133]. As a result, we seek to improve the performance of EMC-
boosted single-frame methods by resolving the feature misalignment.

Prior object detection methods that explicitly address the feature misalignment issue
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(a) (b)

(c) (d)

Figure 2.2 – Comparison between BEV representation of a dynamic object (b) affected
by the shadow effect (a) and the representation (d) of rectified points (c). The ground
truth object is denoted by the red cuboid in 3D and the red rectangle in the BEV plane.
Foreground points are color-coded such that the hotter their color, the more recent they
are.

can be divided into two categories that align either (i) BEV representation or (ii) object
proposals’ features. The former evolves from concatenating BEV feature maps [81] to
sequentially mapping Range-view representation from one time step to another using a
warp function made of the rigid transformation [58]. Its current state uses temporal layers
such as Long Short-Term Memory (LSTM) [51] to fuse multi-frame features. 3D-MAN
[133] is an exemplar of the latter category. It generates object proposals independently for
each point cloud and stores them in a memory bank. Features of proposals at the target
time step get refined by querying the memory bank.

A shortcoming of the methods mentioned above is the lack of explicit supervision of
the alignment operation because the notion of "well-aligned" is challenging to establish
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in the feature space. On the other hand, how well two point clouds align in 3D space
can be straightforwardly measured using scene flow metrics. For this reason, we devise
our feature alignment strategy based on rectifying EMC-concatenated point clouds using
scene flow. In details,

1. Points in an EMC-concatenated point cloud are rectified according to their scene
flow (Fig.2.2c).

2. The rectified point cloud is used to scatter points’ features to the BEV plane to
make a rectified BEV representation (Fig.2.2d).

3. The rectified BEV representation is fused with the BEV representation of the EMC-
concatenated point cloud to obtain the fused BEV representation where feature
misalignment and sparsity in the BEV representation are minimized (Fig.2.3).

(a) (b) (c)

Figure 2.3 – Comparison between BEV representation of a dynamic object affected by
the shadow effect (a), the representation after rectified points (b), and their fusion (c).

This chapter makes the following contributions:

• Developing a plug-in module that enables single-frame object detection methods to
rectify their BEV representations of EMC-concatenated point clouds using scene
flow.

• Conducting experiments on the NuScenes dataset, where it is standard to use EMC
on single-frame methods due to its low-resolution LiDAR (32 beams). Adding our
feature alignment method to PointPillars results in an improvement of up to 16%
in Average Precision (AP). Despite being a multi-task method, our estimation of
scene flow on the NuScenes dataset reaches 0.506 average End-Point Error (EPE),
which is on par with strong scene flow baselines.
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2.2 Related Works

The pioneering work [81] takes the mid-fusion approach to resolve the feature misalign-
ment by processing the concatenation of BEV feature maps with a Convolutional Neural
Network (CNN). On the other hand, the following works [9, 27, 71] take the early-fusion
approach by concatenating voxelized point clouds along the height dimension, then feed-
ing the result to a CNN. Their only difference compared to EMC is that the concatenation
occurs after the voxelization instead of before. Moreover, the absence of modules dedi-
cated to feature alignment in their architectures raises the question of how effectively the
shadow effect is handled. MVFuseNet [58], a more recent work of this category, performs
the alignment sequentially by mapping the Range-View representation at each time step
to its successor using a warp function based on ego-motion, then refining the result with
a CNN. Huang et al [51] take a similar approach by fusing features of two consecutive
point clouds using the so-called "3D sparse conv LSTM".

3D-MAN [133] solves the feature misalignment issue using object proposals. It first
generates object proposals and their associated features independently for each point
cloud and stores them in a memory bank. Then, object proposals in the target point
cloud (e.g., the most recent one) refine their features by querying the memory bank via
the cross-attention mechanism [111]. While showing strong performance, [133] relies on a
single-frame detector for per-frame proposals generation, thus requiring sufficiently dense
point clouds.

Taking a different approach, we strive to align point clouds of a sequence in 3D space
using computing scene flow of dynamic points, which naturally results in well-aligned
feature maps. The motivation of our alignment strategy has two folds:

• Scene flow pipelines require points’ features which can be computed by first con-
verting input point clouds to BEV representation, then interpolating using points’
projection on the BEV plane. The BEV representation is also needed for object
detections, thus the possibility of combining them.

• Using scene flow enables explicitly supervising the feature alignment with a physi-
cally meaningful signal.

Our method for computation of scene flow takes inspiration from [52]. We share their
method for obtaining point features by interpolating from the BEV representation of point
clouds. However, we exploit the availability of ego vehicle localization to concatenate input
point clouds before generating the BEV representation. As a result, we obtain the BEV
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representation for the entire sequence in one shot.

Since motion only makes sense in the context of objects, many motion estimation and
segmentation methods [13, 14, 40, 52] require instance segmentation by computationally
expensive clustering. Therefore, we predict per-point flow directly from their features to
achieve high inference speed. Since this flow is unconstrained, our prediction can contain
physically infeasible motions (e.g., objects having different parts undergoing different mo-
tions). This risk is reduced by adding a simplified version of the "Object motion modeling"
of [52], which we refer to as the Object Head, to our architecture. The role of this module
is to predict a single rigid transformation for each instance. During training, we use the
Object Head to guide the learning of per-point scene flow by enforcing consistency between
their prediction (more details in Section.2.4.4). The correspondence between points and
objects is available during training as ground truth, and the Object Head is deactivated
during testing. As a result, instance segmentation is no longer necessary. This critical
difference compared to [52] enables our short runtime shown in Tab.2.1.

2.3 Aligning Point Cloud Sequences

The first step toward aligning point clouds is removing the effect of the ego vehicle
motion on LiDAR measurements using Ego Motion Compensation (EMC).

2.3.1 Ego Motion Compensation

Let P t = {pt
i = [x, y, z] | i = 1, . . . , N} denote a point cloud of size N collected at

time t and having points expressed the ego vehicle frame E(t). A sequence of point clouds
S =

{
P t−K ,P t−K+1, . . . ,P t

}
spanning from the previous K steps to the current time t

is concatenated according to EMC by transforming every point in each point cloud to a
common global frame G using the ego vehicle pose GTE(t−k).

Gpt−k
i = GTE(t−k) · pt−k

i (2.1)

Here, k ∈ {0, . . . , K}. Notice that the global frame G can be the map frame or the ego
vehicle frame at any time step (e.g., E t as for NuScenes common practice).
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2.3.2 Rectifying EMC Point Clouds

Since EMC does not account for objects’ motions, points belonging to dynamic objects
are scattered along their trajectories. Let O denote an object and GTO(t) represent O’s
pose in the global frame at time step t. At time step t− k, a laser beam emitted from the
LiDAR hitting O produces a 3D point pt−k. The image of pt−k computed by EMC (2.1)
can be rectified by a two-step transformation as following

Gp̂t−k = GTO(t) · O(t−k)TG · Gpt−k (2.2)

The first transformation in (2.2), O(t−k)TG, returns the coordinate of pt−k in O’s body
frame, which is constant under the rigid body assumption. The second transformation
maps the point from the body frame to the global frame G using the object pose at time
t, GTO(t). Hereon, we refer to GTO(t) · O(t−k)TG as the rectification transformation.

2.4 Aligner: Joint Objects Detection and Motion Es-
timation

The pipeline for estimating objects’ motion shares several components with object
detection models, specifically the computation of the BEV representation, which takes
the form of a multi-channel image. Therefore, we propose to combine these two tasks in
a unified architecture, which we name Aligner, shown in Fig.2.4.

In our pipeline, an EMC point cloud is voxelized and then processed by the CNN-
based backbone to produce a BEV image B0. This image is consumed by the Object
Motion Estimation branch, made of Point Head and Object Head, to estimate both scene
flow and rectification transformation (2.2). To demonstrate our method, we choose two
backbones: SECOND [129] and PointPillars [59].

2.4.1 Object Motion Estimation

Points’ features are bilinearly interpolated from backbone-made BEV image B0 based
on their projection to the BEV plane. Given points’ features, the Point Head first segments
the input point cloud into three classes: background, static foreground, and dynamic
foreground. The definition of these classes is as follows:
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Figure 2.4 – Aligner’s overview: A concatenated point cloud is first voxelized and converted
to a BEV image B0 by a CNN backbone. Second, points’ features {fi} are obtained by
bilinearly interpolating B0 using their projection on the BEV plane. Third, points’ features
are decoded into objects’ rectification transformation and scene flow {oi} respectively by
Object Head and Point Head. The rectified BEV image B1 is the result of scattering {fi}
back to the BEV using the corrected point cloud {pi + oi}. Then, B0 and B1 are fused
by a weighted sum before being consumed by the RPN to produce 3D bounding boxes.

• Background points are those on background objects (e.g., ground, building, traffic
lights).

• Dynamic foreground points are those on foreground objects that exhibit a translation
greater than 0.5 meters during the period of interest (e.g., 0.5 seconds).

• Static foreground points are neither background nor dynamic foreground.

For a dynamic foreground point pt−k, whose timestamp is t − k, the Point Head
predicts a scene flow vector ot−k ∈ R3 which is defined as the difference between its
location computed by EMC Eq.(2.1) and by using object trajectory Eq.(2.2).

ot−k,∗ =G p̂t−k −G pt−k (2.3)

Here, ∗ in the superscript denotes the ground truth.
In the Object Head, predicted foreground points are segmented into instances (i.e.,
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objects) which we refer to as global groups. Each global group -M is further divided into
local groups - L based on foreground points’ timestamps. Let fi ∈ RC denote the features
of a foreground point pi. The features fL of a local group is computed as following

fL = Max (cat (fi,MLP (pi − p̄L)) |pi ∈ L) (2.4)

Here, p̄L is the mean coordinate of points in L and cat(·) refers to the channel-wise
concatenation operation. The features fM of a global groupM is the result of max pooling,
Max (·), of its local groups’ features.

fM = Max
(
fLj
|Lj ∈M

)
(2.5)

The rectification transformation in Eq.(2.2) is encoded as a 7-vector, which is the
concatenation of the translation vector t ∈ R3 and the quaternion q ∈ R4 representing the
rotation matrix. This transformation is predicted for each local group Lt−k(k = 0, . . . , K)
by an MLP shared among all local groups of all objects.

(t,q)Lt−k
= MLP

[
cat

(
fLt−k

, fG, p̄Lt−k
, p̄Lt

)]
(2.6)

At test time, the input EMC point cloud is rectified by translating dynamic foreground
points p using their scene flow o, instead of local groups’ rectification transformation. As
a result, the computationally expensive instance segmentation using DBSCAN can be
bypassed, thus improving the model’s inference speed.

2.4.2 BEV Image Rectification

The rectified point clo
MC according to their scene flow, is used to scatter points’ features {fi} back to

the BEV, resulting in the rectified BEV image B1. Then, B1 is fused with backbone-
made BEV image B0 via a weighted average. The weights are computed by stacking
two BEV images along the channel dimension, then passing the result to a stack of two
2D Convolution layers with 3-by-3 kernels. The rationale of fusing B1 with B0 is as
follows. B1 is fully sparse because it is created by scattering points’ features in BEV.
While not possessing the shadow effect, its sparsity harms the detection accuracy [112] as
object centers, which is a strong indicator for localizing objects, are mostly in unoccupied
regions. On the other hand, B0, which shows the shadow effect, is not sparse thanks to the
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occupancy leaking caused by regular 2D convolution layers of the backbone. The fusion
is to reduce the sparsity and prevent the shadow effect.

2.4.3 Region Proposal Network

The fused BEV image is consumed by a Region Proposal Network (RPN) to produce
object detections as 3D bounding boxes. We use the anchor-based [129] and the center-
based [137] RPN for SECOND and PointPillars, respectively.

The anchor-based RPN places two anchors in two orthogonal directions for each class
of objects at each location of the BEV image and estimates the objectness of each anchor.
For each positive anchor, the RPN also predicts a refinement vector to make the anchor
fit tighter to its ground truth.

On the other hand, the center-based RPN encodes each ground truth object as a
Gaussian on the BEV plane. The mean and covariance of each Gaussian are defined by its
corresponding object’s center and size, respectively. Then, it uses a series of Convolution
layers to decode the input BEV image into pixel-wise center probability and box attributes
(e.g., size and orientation).

2.4.4 Loss Function

Our model is trained end-to-end with a loss function L made of 3 terms corresponding
to the loss of the two heads of the Object Motion Estimation branch and the RPN.

L = Lobjects + Lpoints + LRPN (2.7)

Object Loss: Lobjects

Let (t,q) and (t∗,q∗) respectively be the prediction and ground truth of the rectifi-
cation transformation of a local group L. The object loss of this local group is

Lobjects,L = smoothL1 (t− t∗) + ∥Rot (q)− Rot (q∗)∥F + Lrecon (2.8)

Here, ∥·∥F denotes the Frobenius norm. Rot (·) represents the function that converts a
quaternion to a rotation matrix. Lrecon is the difference between points of L transformed
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by the prediction and ground truth of the rectification transformation

Lrecon = 1
NL

p

∑
p∈L

smoothL1 (T (t,q) · p− T (t∗,q∗) · p) (2.9)

In Eq.(2.9), NL
p is the number of points in the local group L. T(t,q) denotes the function

that converts a translation vector t and a quaternion q to a homogenous transformation
matrix.

Lobjects in Eq.(2.7) is the sum of applying Eq.(2.8) to every local group L of every
global group G

Lobjects = 1
NL

∑
G

∑
L∈G

Lobjects,L (2.10)

where, NL is the total number of local groups.

Point Loss: Lpoints

The loss of Object Motion Estimation’s Point Head is made of classification loss, offset
loss, and consistent loss.

Lpoints = Lcls + Loffset + Lconsistent (2.11)

Following [52], we use the sum of weighted binary cross entropy loss Lbce and Lovasz-
Softmax loss Lls [5] as the classification loss Lcls.

Lcls = 1
Np

∑
p

Lbce (c, c∗) + Lls (c, c∗) (2.12)

In Eq.(2.12), c and c∗ are the prediction and ground truth of the class probability of a
point p. Np is the number of points in the inputted EMC point cloud.

Loffset measures the difference between dynamic foreground points p+ translated by
predicted offset vectors o and their position after undergone the ground truth rectification
transformation (t∗,q∗).

Loffset = 1
Np+

smoothL1 (p+ + o− T (t∗,q∗) · p+) (2.13)

Np+ is the number of dynamic foreground points in the input point cloud.
The Object Head groups points into local groups before predicting a rectification trans-
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formation for each group, which is then applied to every point inside a group. For this
reason, it enforces the rigid motion among dynamic objects which is a realistic assump-
tion in the context of autonomous driving. On the other hand, the Point Head predicts
an unconstrained offset vector for each dynamic point, thus risking rectified point clouds
containing physically infeasible objects (e.g., deformed cars due to different parts under-
going different transformations). We reduce this risk by enforcing the consistency between
predictions made by the two heads using Lconsistent.

Lconsistent = 1
Np+

smoothL1 (p+ + o− T (t,q) · p+) (2.14)

RPN: LRPN

The loss function LRPN of the anchor-based and center-based RPN are respectively
defined according to Section.1.2.

2.5 Aligner++

To improve the accuracy of Aligner in estimating scene flow, thus ultimately improving
object detection, we introduce two extensions (i) incorporating HD Map and (ii) distill-
ing a model trained on the concatenation of point cloud sequences by the ground truth
trajectories.

2.5.1 Incorporating HD Map

Previous works in integrating HD Maps into 3D object detection models [32, 130] opt
for a mid-fusion approach that concatenates rasterized maps with backbone-made BEV
representations. However, this approach is incompatible with copy-paste data augmen-
tation [129], which randomly samples ground truth objects from a database and pastes
them to each point cloud used for training, as pasted objects do not necessarily adhere to
the semantics and geometry of the map (e.g., cars appear inside a building). Moreover,
they only utilize the map’s binary channels such as drivable areas, sidewalks, or car parks
while omitting the lane direction which is potentially helpful for estimating scene flow
and objects’ heading direction.

Aware of these two limitations, we propose to extract the map feature for each 3D
point and use it to augment the point’s raw features prior to further processing (e.g.,
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building a ground truth database or computing a BEV representation for object detec-
tion). The map feature extraction process is illustrated in Fig.2.5 where points’ coordinate
in the map’s BEV is used for nearest neighbor interpolation. This attachment of the map
features to points results in an early fusion between HD Maps and LiDARs, rendering the
concatenation of maps’ channels to backbone-made BEV representations unnecessary. As
a result, HD Maps are made compatible with copy-paste data augmentation.

Figure 2.5 – Extraction of map features. LiDAR points are projected to the BEV. Their
map feature is obtained by nearest-neighbor interpolation on the rasterized HD Map.

2.5.2 Distilling Shadow-Effect-Free Model

To improve the quality of the fused BEV representation, Bf in Fig.2.4, in terms
of minimizing the feature misalignment caused by the shadow effect and reducing the
sparsity, we use the teacher-student framework shown in Fig.2.6.

Figure 2.6 – Alinger++ ’s teacher-student framework: A model, pre-trained on point
clouds concatenated using object ground truth trajectories, plays the role of the teacher.
During training, the student model, which operates on point clouds concatenated using ego
vehicle localization, strives to emulate the BEV images made by the teacher by minimizing
a distillation loss.

In detail, we use ground truth objects’ trajectories to rectify the concatenation of point
cloud sequences and use the shadow-effect-free results, illustrated in Fig.2.7, to train a
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teacher model. After the teacher converged, its BEV representation Bt is used to guide
the student’s fused BEV representation Bf by optimizing the students’ weight so that the
difference measured by the L2 loss between these two representations is minimized.

(a)

(b)

(c)

Figure 2.7 – Comparison between concatenation of a point cloud sequence (a) and its
rectification using objects’ ground truth trajectories (b). Points are color-coded according
to their time lag with respect to the present. The color bar is shown in (c).

2.6 Experiments

2.6.1 Dataset and Evaluation Setting

As point clouds’ resolution has a large impact on the performance of LiDAR-based
models, we test our model on three resolutions: 16, 32, and 64. While 32-channel and
64-channel point clouds are readily available in NuScenes dataset [8] and KITTI dataset
[36] respectively, to the best of our knowledge, there are no publicly available datasets
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containing 16-channel point clouds. As a result, we synthesize a 16-channel dataset from
the NuScenes dataset using the downsampling approach of [117].

The NuScenes dataset is made of 850 20-second scenes split into 700 scenes for
training and 150 scenes for validation. Each scene comprises data samples collected by a
multimodal sensor suite including a 32-beam LiDAR operating at 20 Hz. In NuScenes’
convention, a keyframe is established once all sensors are in sync which happens every half
a second. For each keyframe, objects are annotated as 3D bounding boxes. In addition,
each object is assigned a unique ID that is kept consistent throughout a scene which
enables us to generate the ground truth for the rectification transformation and scene
flow. The downsampling of each point cloud in the NuScenes dataset to synthesize a 16-
channel one is done by first identifying its points’ beam index via K-mean (K is 32 in the
case of NuScenes) clustering on their azimuth coordinate, then assigning an equivalent
beam index with respect to 16-channel LiDAR. More details can be found in [117]. Hereon,
we refer to this synthesized dataset as NuScenes-16.

The KITTI dataset ’s 3D Object Detection partition contains 7481 and 7581 samples
for training and testing. Each sample comprises sensory measurements collected by a 64-
beam LiDAR operating at 10Hz and several cameras. A common practice when working
with KITTI is to split the original training data into 3712 training samples and 3769
validation samples for experimental studies. A challenge we encounter when using KITTI
is that its 3D Object Detection partition contains temporally disjointed samples, thus
being not straightforward to obtain input (point cloud sequences) and ground truth (scene
flow) for our model. We resolve this challenge by matching samples in the 3D Object
Detection partition with KITTI ’s raw sequences. Since there are a few raw sequences
that do not have tracklet annotation, meaning objects are not tracked, we only retain
data samples whose associated raw sequences have tracklets (i.e., trajectories of objects)
in the training set and validation set.

Metrics We use mean Average Precision (mAP) to measure the performance of our
model on the 3D object detection task. A prediction is matched with the closest ground
truth, measured by an affinity. A match is considered valid if the affinity is below a
predefined threshold. For each threshold, the average precision is obtained by integrating
the recall-precision curve for recall and precision above 0.1. The mAP is the mean of the
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average precision of the threshold set. For NuScenes, the affinity is the Euclidean distance
on the ground plane between centers of predictions and ground truth. This distance has
four thresholds: 0.5, 1.0, 2.0, and 4.0. For KITTI, the affinity is the Intersection-over-
Union (IoU) in the BEV plane. Unlike NuScenes, KITTI uses only one affinity threshold
for each class which is 0.7 for cars and 0.5 for pedestrians.

The evaluation of scene flow prediction is based on the set of standard metrics proposed
by [76] which includes End-Point Error (EPE), strict/ relaxed accuracy (AccS/ AccR),
and outlier (ROutliers). The EPE is the Euclidean distance between the predicted scene
flow and their ground truth average over the total number of points. The AccS/ AccR is
the percentage of points having either EPE < 0.05/ 0.10 meters or relative error < 0.05/
0.10. The ROutliers is the percentage of points whose EPE > 0.30 meters and relative
error > 0.30.

2.6.2 Implementation Details

We follow the common approach to handle the sparsity of NuScenes point clouds that
concatenate a keyframe point cloud with all non-keyframe point clouds between itself and
its predecessor using EMC [4, 8, 113, 134, 137, 151]. Let t denote the time step of the
keyframe. The global frame G is set at the LiDAR frame at time step t. The point cloud of
a non-keyframe collected at timestamp t− k (k = 1, . . . , 9) are mapped from the LiDAR
frame at this time step to the global frame using ego vehicle poses and LiDAR calibration.

The ground truth of rectification transformation in (2.2) requires knowing objects’
poses in the global frame at the keyframe timestamp GTO(t) and non-keyframe times-
tamp GTO(t−k). Since NuScenes only provides objects’ poses in keyframes, we obtain their
poses in non-keyframes by linearly interpolating annotations of two keyframes that are
respectively prior and successor to each non-keyframe.

To improve the generalization of our model, the following geometric transformations
are applied to point clouds and ground truth: random flip along the x- and y-axis of the
global frame, global scaling with a factor sampled from U[0.95,1.05], and global rotation by
an angle sampled from U[−π/8,π/8] around the z-axis of the global frame. Here, U denotes
the uniform distribution. Furthermore, we adopt the ground truth sampling strategy of
[151] which randomly takes boxes and their points from a database and places them in
the input point cloud. Notably, we introduce a modification to this sampling strategy by
complementing each sampled ground truth with points in its trajectory spanning from
the current time step to 10 steps in the past. This modification is similar to the "Sequence
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GtAug" of [124]. Its motivation is to increase the number of moving objects in each point
cloud, thus increasing the amount of supervision on the Object Motion Estimation. A
comparison between the regular ground truth sampling and our modified version is shown
in Fig.2.8.

(a) (b)

Figure 2.8 – The comparison between a scene augmented by the ground truth sampling
strategy and by our strategy. Points belonging to the added object are colored-coded
according to their timestamp. The hotter the color is, the more recent timestamp is.

In our experiments, input point clouds are limited to the range of [−51.2, 51.2] ×
[−51.2, 51.2]× [−5.0, 3.0] meters along X-, Y-, and Z-axis of the world frame W and the
voxel size is set to (0.1, 0.1, 0.2). We use OpenPCDet [107] for our implementation. Further
details on the model’s hyperparameters can be found in our code release.

Due to the large size of the NuScenes dataset, we only train our model on a quarter of
the training set. This mini partition of the training set is obtained by sorting keyframes
by their point clouds’ timestamps, then taking one every four keyframes. Our model is
trained for 25 epochs with a total batch size of 16 distributed over 8 GPUs with sync
batch norm. The optimizer is set to AdamW [80]. The learning rate is regulated by the
One Cycle scheduler [103] with the maximum value of 0.003 for SECOND and 0.001 for
PointPillars. It is worth noticing that the evaluation takes place on the entire validation
set.

2.6.3 Results

Scene Flow Evaluation

The comparison of our model against methods specialized in estimating scene flow is
shown in Tab.2.1. Since we only predict scene flow for dynamic foreground points, the
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comparison in Tab.2.1 only accounts for these points. More importantly, we evaluate scene
flow predicted by the Point Head of the Object Motion Estimation branch because the
Object Head is deactivated at test time to avoid the computationally expensive instance
segmentation using DBSCAN. In Tab.2.1 and the following tables, the best and second-
best performances are marked by bold and underscore font, respectively.

Table 2.1 – Performance of Aligner and Aligner++ on scene flow metrics

Method EPE ↓ AccS ↑ AccR ↑ ROutliers ↓ Runtime ↓
(seconds)

FLOT [90] 1.216 3.0 10.3 63.9 2.01
NSFPrior [65] 0.707 19.3 37.8 32.0 63.46
PPWC-Net [121] 0.661 7.6 24.2 31.9 0.99
WsRSF [40] 0.539 17.9 37.4 22.9 1.46
PCAccumulation [52] 0.301 26.6 53.4 12.1 0.25
PointPillar + 0.547 14.5 26.2 36.9 0.06Aligner
SECOND + 0.506 16.8 30.2 33.8 0.09Aligner
PointPillar + 0.616 46.4 66.6 6.8 0.10Aligner++

While being trained on fewer data (a quarter of NuScenes training set) and not having
an architecture optimized solely for scene flow, our Aligner outperforms PPWC-Net and
FLOT and are on par with WsRSF and NSFPrior. Notably, the integration of Aligner
into SECOND is the second best in the metric EPE.

In addition, we report the runtime of our models measured in seconds on an NVIDIA
A6000 GPU. The five baselines presented in Tab.2.1 have their runtime measured on an
NVIDIA RTX 3090 GPU (as reported by [52]), which has a similar computing capability.
Compared to them, our models achieve significantly better runtimes.

The last row of Tab.2.1 indicates a significant improvement compared to Aligner that
reaches state-of-the-art on accuracy-related metrics namely AccS, AccR, and ROutliers
while maintaining low inference time. The Aligner++ has relatively high EPE this is
because the evaluation is done for every point in the point cloud. This means the evaluation
is carried out for both ground truth foreground points which have associated ground truth
scene flow (can be nonzero or zero depending on dynamic) and ground truth background
points which we assign the null vector as ground truth scene flow. Since the classification
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module of the Object Head inevitably makes false positive / false negative foreground
predictions, a number of background / foreground points are predicted to have nonzero
/ zero scene flow. Even though the portion of false predictions is small, as indicated by
accuracy (AccS, AccR) and outlier metrics, the magnitude of their error is sufficiently
large, due to the fact either the prediction or ground truth is zero, thus resulting in a
large EPE.

Object Detection Evaluation

Effect of Aligner on object detectors: To verify the impact of aligning BEV rep-
resentation using scene flow on the object detection performance, we modify SECOND
and PointPillars to resemble the architecture shown in Fig.2.4 and train them end-to-end.
Tab.2.2 shows an improvement brought by our module for most classes. Notably, trucks,
construction vehicles, and buses, which exhibit severe shadow effects during motion due
to their large size, enjoy significant performance gain (up to 7.8 AP or 16%). Furthermore,
the detection improvement is higher on PointPillars since its BEV images have double
the size of SECOND’s, thus more severe feature misalignment. This highlights the impor-
tance of handling the misalignment between features and objects’ locations. Interestingly,
pedestrians also experience 0.8 AP improvement even though their motions violate the
rigid body assumption made in Eq.(2.2).

Table 2.2 – Object detection results on NuScenes dataset evaluated by matching based
on distance on BEV/ IoU

Car Truck Const. Bus Trailer Barrier Motor. Bicyc. Pedes. Traff. mAP
SECOND 73.8/ 32.8 28.5/ 14.6 12.4/ 2.1 43.7/ 22.6 32.2/ 12.2 48.3/ 4.5 21.0/ 20.3 5.0/ 11.2 69.5/ 61.8 40.4/ 4.2 37.5/ 18.6

+ our module +0.8/ +1.1 +2.8/ +0.6 +1.6/ +0.4 +5.1/ 0.6 -1.2/ -2.0 +2.1/ +1.0 +3.0/ +2.2 -0.2/ -0.3 +0.8/ +1.0 +0.6 +0.3 +1.5/ +0.5

PointPillars 78.9/ 27.0 37.9/ 13.2 4.2/ 0.3 48.9/ 20.8 21.4/ 4.0 48.4/ 3.8 28.1/24.9 7.3/ 15.8 73.3/ 65.4 41.5/ 2.5 39.0/ 17.8
+ our module +1.8/ +5.0 +7.3/ +3.7 +2.7/ -0.2 +7.8/ +6.1 +6.3/ +2.7 -1.2/ +0.3 +5.1/ +3.1 +0.3/ -0.7 +0.8/ +0.7 +3.5/ +1.0 +3.4/ +2.2

Aligner compared to other multi-frame methods: The comparison of our models
against other multi-frame methods on NuScenes is shown in Tab.2.3. Here, the matching
between predictions and ground truth is based on the IoU. Our models exhibit strong
performance in the class Pedestrians. As can be seen, our PointPillars 1

2 exceeds the 66.1
AP of MultiXNet by 2.7 AP to be the second-best model despite being trained on only half
of the data used for the baselines. We hypothesize that the removal of the shadow effect
on pedestrians helps improve our models’ generalization, thus getting high performance
from fewer training data.
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Table 2.3 – Object detection results on NuScenes dataset compared to other multi-frame
methods. The numbers following the models’ names denote the fraction of the NuScenes
training set used for training.

Pedestrians Cars Bicyclists
IntentNet [9] 63.4 60.3 31.8
MultiXNet [27] 66.1 60.6 32.6
MVFuseNet [58] 76.4 67.8 44.5

Our SECOND 1
4 62.8 33.9 10.9

Our PointPillars 1
2 68.8 40.5 29.3

On the other hand, we explain the gap between our models and baselines in class Cars
and Bicyclists by the small-size training set. Due to limited computational resources,
we only use up to half of the NuScenes training set to keep our experiments affordable.
Tab.2.4 shows that scaling from one-eight to half of NuScenes training leads to a 17.8
and 19.3 increase in the AP of Cars and Bicyclists. Therefore, we believe our performance
can greatly improve if more resources are available. Last but not least, our models are
trained with a smaller mini-batch size, which is 16 compared to 32 and 64 of MultiXNet
and MVFuseNet. As pointed out by [88], a small mini-batch size can hurt detection
performance by (i) failing to provide accurate statistics for the Batch Normalization layer
and (ii) possessing an imbalance number of positive and negative examples (e.g., the
dominant of negative proposals at the early stage).

Table 2.4 – Evolution of the performance of our PointPillars with respect to the portion
of the NuScenes training set that is actually used for training.

Size of actual Pedestrians Cars Bicyclists Training Time
training set (hours)

1/8 59.4 22.7 10.0 15
1/4 66.1 32.0 15.1 30
1/2 68.8 40.5 29.3 60

Comparison between Aligner++ and Aligner The better scene flow estimation of
the Aligner++ results in a higher detection accuracy on the NuScenes dataset which can
be seen in Tab.2.5. The integration of Aligner++, made of HD Map and distillation using
the teacher-student framework, improves the mAP average over 10 classes of objects of
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a plain PointPillar by 6 points which is almost double the gain brought by Aligner (3.4
points). Interestingly, the distillation is responsible for most (5.6 out of 6 points) of the
success of the Aligner++.

Table 2.5 – Detection improvement due to our extension

PointPillar Aligner HD Map Distilling mAP (avg
Teacher 10 classes)

! 39.0
! ! 42.4
! ! ! 42.8
! ! ! ! 45.0

Robustness against LiDAR resolutions The robustness of our Aligner++ is demon-
strated by experiments on the KITTI and the synthetic NuScenes-16 dataset. As can be
seen Tab.2.6 and Tab.2.7, the integration of Aligner++ consistently improves the accu-
racy of detecting objects in point cloud sequences. A common point between these two
tables is that performance gain amounts to the Aligner++ is larger for vehicle-like classes
(e.g., car, truck, or trailer).

Table 2.6 – Detection performance on kitti dataset

Class Model Sequence Length
1 2 3 4

Car PointPillar 66.54 70.44 69.66 69.88
+ Aligner++ / +3.91 +7.45 +6.3

Pedes- PointPillar 5.32 6.16 16.71 20.77
trian + Aligner++ / +4.82 +4.07 +3.6

This is because the scene flow ground truth is generated using the rectification trans-
formation which is established based on the rigid motion assumption. This assumption
holds for vehicle-like classes while being an oversimplification for pedestrians. As a result,
the estimation of scene flow for vehicle-like classes is more accurate, thus higher detection
accuracy. Another important result can be drawn from Tab.2.6 and Tab.2.7 is that the
effectiveness, in terms of detection accuracy, of using point cloud sequences over single
point clouds persists on various LiDAR resolutions.
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Table 2.7 – Detection performance on nuscenes-16

Model PointPillar PointPillar
+ Aligner++

Seq Length 1 10 10
Car 56.14 79.84 80.81
Truck 26.99 48.64 49.39
Const. Vehicle 0.61 8.21 9.45
Bus 38.06 59.91 59.99
Trailer 11.05 26.15 29.03
Barrier 38.02 59.07 59.26
Motorcycle 12.70 41.14 41.72
Bicycle 0.11 15.22 18.40
Pedestrian 45.57 76.13 76.64
Traffic Cone 33.04 54.66 54.51
mAP (avg. 10 26.23 46.90 47.92classes)

2.7 Conclusion

The multiple perspectives taken by the ego vehicle during the time span of a point
cloud sequence and the independent motion of objects result in different observation
angles and relative distances between LiDAR and objects. Therefore, objects, which is
hit by a few LiDAR beams in the presence due to occlusion or long distance, could be
hit by more beams in the past. As a result, the concatenation of point cloud sequences
drastically increases the fidelity of measurements made by the ego vehicle compared to
using individual point clouds, thus having the potential of boosting the performance of
object detection models. Such benefit of point cloud sequences comes with a caveat which
is the shadow effect on dynamic objects manifesting as objects’ points smearing along their
trajectories. This effect imposes a negative impact on detectors’ performance by inducing
a misalignment between objects’ features and their locations defined by the projection of
their bounding boxes to the BEV.

To minimize such impact, this chapter develops a method to rectify the BEV repre-
sentation using scene flow. Specifically, a plug-in module called Aligner first computes the
scene flow for every foreground point based on their features interpolated from the BEV
representation. Then, foreground points are translated according to their scene flow. The
resulting point cloud, which is shadow-effect-free, is used to scatter point-wise features
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back to the BEV to make a sparse shadow-effect-free BEV representation. Finally, this
new BEV representation is fused with the old one to minimize the shadow effect and
sparsity. Experiments on various datasets containing point clouds of different resolutions
show a significant performance gain brought by the proposed Aligner and its extension
Aligner++. This success in utilizing point cloud sequences paves our first step toward
resolving the challenge of low-fidelity measurements in point clouds caused by occlusion
and sparsity.

As effective as point cloud sequences can get, however, there are scenarios where the
scene geometry is so complicated that the motion of the ego vehicle during a short time
span cannot provide point cloud sequences having sufficient coverage. An example is
intersections where the field of view of the ego vehicle is severely reduced due to a large
number of road users along with man-made structures (e.g., buildings) and plantations
presenting in its proximity. A solution to these scenarios is to leverage the presence of
other vehicles and intelligent roadside units (IRSU), which are advanced sensing systems
strategically statically positioned to have unobstructed views, to add to the variety of
perspectives where the measurements of the scene are obtained. The central idea of this
solution is that fusing the measurements obtained by multiple agents (vehicles and IRSU)
can minimize or even eliminate occlusion. A realization of this solution is presented in the
next chapter.
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Chapter 3

IMPROVING OBJECT DETECTORS USING

V2X COLLABORATIVE PERCEPTION

The previous chapter has made our first step toward resolving the challenge of low-
fidelity measurements by enabling single-frame detectors to benefit from the multiple
perspectives offered by point cloud sequences. These multiple perspectives stem from the
motion of the ego vehicle during a sequence’s time span. As the ego vehicle moves across
the scene, far-away objects can become closed and those occluded can become visible.
Therefore, the concatenation of point cloud sequences provides measurements on objects
that have few or no LiDAR points at present, thus reducing the impact of low-fidelity
measurements on detectors’ performance.

Despite the capacity of point cloud sequences, there are scenarios where the scene
geometry is so complex that the concatenation of point cloud sequences can not offer more
information than individual point clouds. Examples of such scenarios are intersections,
Fig.3.1, where the field of view of the ego vehicle is severely obstructed by a large number
of road users presenting in its proximity. In this situation, point clouds obtained by the ego
vehicle at several consecutive time steps share the same appearance that is the contour of
nearby objects. As a result, external information is needed to help the ego vehicle improve
its perception in these scenarios.

Collaborative perception via V2X communication, which leverages the diverse perspec-
tive thanks to the presence at multiple locations of connected agents to form a complete
scene representation, is an appealing solution. The major challenge of V2X collaboration
is the performance-bandwidth tradeoff which presents two questions (i) which informa-
tion should be exchanged over the V2X network, and (ii) how the exchanged information
is fused. The current state-of-the-art resolves to the Mid Collaboration approach where
the BEV images of point clouds are communicated to enable a deep interaction among
connected agents while reducing bandwidth consumption. While achieving strong perfor-
mance, the real-world deployment of most Mid Collaboration approaches is hindered by
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Figure 3.1 – Illustration of the impact of occlusion on the measurement made by au-
tonomous vehicles at an intersection. Due to the presence of a large number of road users,
individual vehicles inevitably have miss detection, some of which are safety critical.

their overly complicated architectures and unrealistic assumptions about inter-agent syn-
chronization. This chapter devises a simple yet effective collaboration method based on
exchanging agents’ output that achieves a better bandwidth-performance tradeoff while
keeping changes made to the single-vehicle detection models minimal. Moreover, the as-
sumption about inter-agent synchronization is relaxed to the existence of a common time
reference among connected agents, which can be achieved in practice using GPS time. Ex-
periments on the V2X-Sim dataset [67] show that our collaboration method outperforms
the early collaboration method while consuming as much bandwidth as the late collab-
oration. The method developed in this chapter is published in "Practical Collaborative
Perception: A Framework for Asynchronous and Multi-Agent 3D Object Detection" which
is under review at the time of writing. The code used for experiments in this chapter will
be released in https://github.com/quan-dao/practical-collab-perception.

3.1 Introduction

Vehicle-to-Everything (V2X) collaborative perception is a promising solution to the
challenge of low-fidelity measurements. Its core idea is to form a complete scene rep-
resentation using measurements collected from multiple perspectives by leveraging the
communication among multiple connected agents presenting at different locations. Con-
nected agents can be either connected and automated vehicles (CAVs) or Intelligent Road-
Side Units (IRSUs), which are advanced sensing systems strategically placed at elevated
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locations to have maximal coverage of regions where complex traffic takes place. This en-
hanced perception capacity, thanks to V2X, comes with several new technical challenges;
the most notorious among them being the performance-bandwidth tradeoff which presents
two questions; (i) which information should be broadcast, and (ii) how the exchanged in-
formation should be fused.

This tradeoff establishes a spectrum of solutions ranging from Early to Late Collab-
oration. Raw measurements, which are point clouds in the context of this paper, are
exchanged in the framework of Early Collaboration to reduce the impact of occlusion,
thus achieving the highest performance at the expense of spending a very large amount of
bandwidth. On the other extreme, Late Collaboration exchanges high-level outputs (e.g.,
object detection as 3D bounding boxes) to minimize bandwidth usage while limiting the
performance gain thanks to collaboration. In an attempt to balance the two mutually
excluding design targets, research on V2X collaboration frameworks [66, 116, 126, 128]
are drawn toward the middle of this spectrum, thus the category’s name of Mid Collab-
oration, where intermediate representations such as BEV images of agents’ surrounding
environment are chosen for broadcasting.

While the motivation is just, most Mid Collaboration methods require making sub-
stantial changes to the architecture of single-agent perception models to accommodate
the fusion module where the combination of exchanged representations takes place. More
importantly, these methods make strong assumptions about data synchronization among
connected agents. For example, DiscoNet [66] considers a perfectly synced setting where
agents share the same clock, collect and process point clouds at the same rate and the
transmission/ receiving of BEV images experience zero latency. V2VNet [116] and ViT-
V2X [128] account for latency by postulating a global misalignment between exchanged
BEV images and those of the ego vehicle. The cause of such misalignment is the movement
of the ego vehicle between the time step it queries the V2X network and the time when
the exchanged BEV images are received. This implicitly assumes that agents in the V2X
network obtain point clouds synchronously.

Another drawback of the current state-of-the-art of V2X collaborative perception is
that only one point cloud per agent is used. Given that objects obscured in one frame may
become visible in subsequent frames due to their movement or the motion of connected
agents, and sparse regions might become dense as they draw nearer, harnessing sequences
of point clouds is a compelling strategy to improve the performance of collaborative
perception. In fact, the rich literature on multi-frame methods for single-vehicle object
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detection [8, 27, 50, 58, 109, 136] has confirmed the effectiveness of point cloud sequences
as a simple concatenation of point clouds in a common frame can boost detection accuracy
by approximate 30% [8].

Finally, Mid Collaboration methods assume that connected agents share a common
type of detector which is impractical for real-world deployment. This assumption is crit-
ical because of the domain gap between the BEV representation of point clouds made
by different detectors which severely affects their fusion [126]. Prior work [126] resolves
this challenge by introducing an additional module on top of those needed for the Mid
Collaboration to account for differences in the BEV images made by SECOND [129] and
PointPillar [81], thus further complicating the collaborative perception architecture.

Aware of the aforementioned drawbacks of previous works on V2X collaborative per-
ception, we seek a practical collaboration framework that emphasizes:

• Minimal bandwidth consumption

• Minimal changes made to single-agent models

• Minimal inter-agent synchronization assumptions

• Support heterogeneous detectors networks

We aim our design at minimal bandwidth consumption, which can only be achieved by
exchanging information about the objects detected by each agent. This design choice
naturally satisfies the second design target as it dismisses the need for complex mid-
representation fusion modules. We achieve the third target by only assuming that con-
nected agents share a common time reference which is practically achievable using GPS
time. To reach the last target, we decide to perform the fusion of exchanged information
in the input of the ego vehicle’s detector.

The challenge posed by our relaxed inter-agent synchronization assumption is that
information (i.e., detected objects) broadcast by agents in the V2X network may never
have the same timestamp as the query made by the ego vehicle. In other words, the detec-
tions made by other agents that are available on the V2X network always have an older
timestamp compared to the current timestamp of the ego vehicle. This timestamp mis-
match results in a misalignment between exchanged detected objects and their associated
ground truths (if the detections are true positives), thus risking the overall performance.
Our solution to this issue lies in the information that prior works have neglected - point
cloud sequences. We reason that objects detected in the past can be propagated to the
present if their velocities are available. The prediction of objects’ velocities pertains to
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motion prediction [27, 89, 110] or object tracking [119] which can negate our minimal ar-
chitecture changes design target. Since we assume that agents produce predictions at least
at their rate acquiring point clouds, we only need short-term (e.g., 0.1 seconds if point
clouds are collected at 10Hz) velocity prediction, which can be computed using the scene
flow, rather than long-term prediction (e.g., 3 seconds [89]) offered by motion prediction
or tracking. As a result, we use the plug-in module for scene flow estimation developed
in our previous work [21]. This choice effectively makes our V2X collaboration framework
a multi-frame method, thus enabling each connected agent, as an individual, to enjoy a
boost in detection accuracy as single-vehicle multi-frame methods do.

This chapter makes the following contributions:
• Deriving a practical framework for V2X collaborative perception that outperforms

the Early Collaboration while consuming as much bandwidth as the Late Collabora-
tion. In addition, our method does not make any assumptions about inter-agent syn-
chronization except the existence of a common time reference, introduces minimal
changes to the architecture of single-vehicle detectors, and supports heterogeneous
detector networks.
• Demonstrate the benefit of point cloud sequences in V2X collaborative perception
• Performing extensive evaluations on V2X-Sim [67] datasets to verify our method

3.2 Related Works

As described in the previous section, the main challenge of V2X cooperative percep-
tion is the performance-bandwidth tradeoff which establishes a solution spectrum ranging
from early to late collaboration. In the framework of Early Collaboration, as depicted in
Fig.3.2, agents exchange their raw measurements - point clouds. At every timestep, the
ego vehicle concatenates its own point cloud with those obtained by other agents to form
the input for its perception model. This combined point cloud offers a comprehensive
view of the scene with minimal occlusion and sparsity thanks to the diverse perspectives
of connected agents, thus being regarded as the upper bound of the performance of the
V2X collaborative perception [67, 140]. However, due to the significant amount of band-
width required to transmit raw point clouds (the order of 10 MB), the early collaboration
strategy is not feasible for real-world deployments.

On the other extreme of the performance-bandwidth tradeoff, Late Collaboration fo-
cuses on minimizing bandwidth usage by exchanging only the agents’ output, precisely the
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Figure 3.2 – Early Collaboration framework. Point clouds broadcast by connected agents are
concatenated with those of the ego vehicle, forming the input to its detector.

detection results in the form of 3D bounding boxes. As illustrated in Fig.3.3, each agent
independently detects objects using its point cloud. Subsequently, the agent merges its
predictions with those made by others to generate the final output. While this strategy is
more feasible for real-world deployments thanks to its minimal bandwidth consumption,
it exhibits significantly lower performance gains compared to early fusion. The limited
interaction among agents in the late collaboration approach contributes to this inferior
performance. In noisy environments where latency is a factor, the late collaboration strat-
egy even underperforms single-vehicle perception [128].

Figure 3.3 – Late Collaboration framework. Objects detected by other agents are fused with
those detected by the ego vehicle to form its final output.

Mid Collaboration aims to find a balance between performance and bandwidth con-
sumption by exchanging intermediate scene representations generated by the backbone
of the agents’ perception model. The motivation behind this approach is that the inter-
mediate scene representation contains more contextual information compared to the final
output (i.e., 3D bounding boxes), enabling deeper interaction among agents. Moreover,
this representation is more compact than raw point clouds since it has been reduced in
size through a series of convolution layers in the backbone and can be further compressed
using an autoencoder to minimize bandwidth usage. While the idea is elegant, implement-
ing the intermediate collaboration strategy requires a range of modules, shown in Fig.3.4,
including compressor, decompressor, and representation fusion, among others, to match
the performance of early collaboration. The fusion, in particular, is quite intricate as it

62



3.3. Methodology

involves learnable collaboration graphs using techniques such as Graph Neural Networks
[66, 116] or Transformers [128] to effectively fuse exchanged representations.

Figure 3.4 – Mid Collaboration framework. The ego vehicle fuses the BEV image of its point
cloud with those broadcast by other agents to improve its performance.

In addition, dedicated modules are required to account for different practical chal-
lenges. For example, [116, 128] use the Spatial Transformer [53] to resolve the global mis-
alignment between the ego vehicle’s representation and others’ caused by the ego vehicle’s
motion between when it makes the query and when it receives exchanged information. In
[126], the Fused Axial Attention [127] is used to bridge the domain gap between repre-
sentations made by different detection models (e.g., PointPillar [59] and VoxelNet[150])
used by different agents in the V2X network. Finally, most Mid Collaboration methods
make strong assumptions about inter-agent synchronization which is either (i) perfect
synchronization where exchanged representations always share the same timestamp [66]
or (ii) synchronized point cloud acquisitions, meaning all agents obtain and process point
clouds at the same rate and at the same time [116, 128]. Because of these complexities,
the real-world deployment of intermediate fusion remains challenging.

3.3 Methodology

This chapter aims to resolve the aforementioned complexities of Mid Collaboration to
obtain a practical framework for V2X collaborative perception. Our design is grounded
in minimal bandwidth consumption as this is nonnegotiable in real-world deployment.
To achieve this goal, we choose object detection, in the form of 3D bounding boxes, as
the information to be exchanged, which is similar to the Late Collaboration strategy. We
further relax the assumption on inter-agent synchronization to agents sharing a common
time reference (e.g., GPS time) and acknowledge that agents produce detections at dif-
ferent rates. As a result, exchanged detections always have older timestamps compared
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Figure 3.5 – Our late-early collaboration framework for V2X Cooperative Perception. In which,
objects detected by each connected agent at a past time that is closest to the present are broad-
cast. Exchanged detected objects are propagated to the present using their velocity computed
by pooling point-wise scene flow, then fused with the point cloud which the ego vehicle collected
at the present to enhance its perception.

to the timestamp of the query made by the ego vehicle, thus risking a spatial misalign-
ment between exchanged detections and their associated ground truth (if detections are
true positive). We resolve this misalignment by predicting objects’ velocity simultane-
ously with their locations by pooling point-wise scene flow which can be produced by
integrating our Aligner module, developed in Sec.2.4, to any BEV-based object detectors.
Finally, we avoid the inferior performance of Late Collaboration by devising a new collab-
oration strategy that fuses exchanged detections with the ego vehicle’s raw point cloud
for subsequent processing by its detection model.

The resulting framework is illustrated in Fig.3.5. We name our method Late-Early
Collaboration as connected agents broadcast their outputs, which is the signature of Late
Collaboration, while the ego vehicle fuse received information with its point cloud, which
is the signature of Early Collaboration.

The innovation of our collaboration strategy lies in our recognition of the similar-
ity between object detection using point cloud sequences and collaborative detection. In
both cases, there is a need to fuse information obtained from diverse perspectives. Point
cloud sequences involve capturing the motion of the ego vehicle, which results in varying
viewpoints, while collaborative detection entails incorporating insights from other agents
present in the environment. By drawing this parallel, we leverage the shared principle of
fusing information from multiple perspectives to enhance the accuracy and robustness of
both object detection approaches. Specifically, we utilize the latest advancement in the
multi-frame object detection literature, called MoDAR [68], which interprets previously
detected objects to 3D points with additional features made of object sizes, heading, con-
fident score, and predicted class. These points are propagated to the present and merged
with the point cloud obtained at the present to form the input of any off-the-shelf detec-
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tors.

3.3.1 Problem Definition

The V2X setting that we target comprises multiple CAVs and IRSUs which are col-
lectively referred to as agents. An agent Ai is equipped with a LiDAR to localize in a
common global frame G and detect objects in its surrounding environment. The detection
is based on the processing of point cloud sequences using a detection model made of the
integration of the Aligner presented in the Sec.2.4 into an off-the-shelf single-frame object
detector such as PointPillar [59]. At a time step ti, agent Ai uses a K-point-cloud sequence
Si =

{
P ti−K+1

i , . . . ,P ti
i

}
as an input to its detection model. An object bi,j detected by

agent Ai is parameterized by a nine-vector [x, y, z, w, l, h, θ, s, c]. The first seven numbers
localize the object by its center location [x, y, z], size [w, l, h], heading direction θ. The
last two numbers, s and c, respectively denote confidence score s and the predicted class
c.

Upon receiving a query having timestamp t, agent Ai will communicate its detection
Bti

i = {bi,j}Mi

j=1 and metadata produced timestamp ti that is prior to and closest to t. The
agent’s metadata produced at a timestamp ti is made of the timestamp itself and the
agent’s pose Ei(ti) at this timestamp.

Given this setting, we aim to enhance the ego vehicle’s capacity of detecting objects by
fusing its point cloud sequence Se =

{
P t−K+1

e , . . . ,P t
e

}
with the MoDAR interpretation

of predictions Bti
i made by other agents. The following section provides an overview of

the origin of MoDAR and presents in detail how we adapt this concept to collaborative
perception via the V2X context.

3.3.2 MoDAR for Object Detection on Point Cloud Sequences

MoDAR is created to enable detecting objects in extremely long point cloud sequences
(hundreds of frames). In the MoDAR framework, a sequence is divided into several short
sequences where objects are detected by a single-frame detector, tracked by a simple
multi-object tracktor (e.g., [119]). Then, the data-driven motion forecasting model Mul-
tiPath++[110] predicts objects’ future poses based on objects’ trajectories established by
the tractor. Using prediction about objects’ future poses, detected objects in each short
subsequence are propagated to the desired time step (e.g., the present). Next, each propa-
gated object, which is represented as an up-right 3D bounding box (parameterized by the
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location of its center, size, and heading) with a confidence score and a class, is interpreted
into a 3D point that takes the box’s center as its coordinate and the box’s size, heading,
confidence score and class as features. These points are referred to as MoDAR points.
They enable packing an entire subsequence into a small number of points, thus enabling
an efficient fusion of extremely long point cloud sequences.

3.3.3 V2X Collaboration using MoDAR Points

We draw the following similarity between single-vehicle object detection on point cloud
sequences and V2X collaborative detection: these two tasks share the common challenge
of finding an effective method for fusing information obtained from different perspectives
caused by the motion of the ego vehicle in the case of point cloud sequences and the
presence of other agents in the case of collaboration via V2X. Based on this observation,
we use MoDAR points as the medium for conveying information among agents in the V2X
network. Specifically, we interpret an object detected by agent Ai as a 3D bounding box
bi,j = [x, y, z, w, l, h, θ, s, c] to a MoDAR point mi,j by assigning

• [x, y, z] to the coordinate of mi,j

• [w, l, h, θ, s, c] to mi,j’s features

The challenge in our V2X setting is that different agents detect objects at different
rates, thus forcing the ego vehicle to utilize MoDAR points made by other agents at
passed time steps. This timestamp mismatch results in a spatial misalignment between
exchanged MoDAR points and ground truth dynamic objects, which can diminish the
benefit of collaboration or even decrease the ego vehicle’s accuracy. This challenge is
encountered in the context of single-vehicle detection on point cloud sequences as well
because dynamic objects change their poses from one subsequence to another. Li et al
[68] resolves this by predicting objects’ pose using a multi-object tracktor and the motion
forecasting model MultiPath++.

While this is feasible in the V2X context, the implementation of those modules for
future pose prediction does not align with our design target of minimal architecture.
Instead, we use the scene flow to propagate MoDAR points from a passed timestep to
the timestep queried by the ego vehicle. Since MoDAR points are virtual, their scene flow
is not estimated directly from a point cloud sequence but is aggregated from the scene
flow of points residing in the box they represent. To be concrete, let mi,j be a MoDAR
point representing a 3D bounding box bi,j detected by agent Ai at timestep ti. pi,h and

66



3.4. Experiments

oi,h respectively denote a real 3D point in the concatenation of agent Ai’s point cloud
sequence Si and its predicted scene flow. The scene flow om

i,j of mi,j is computed by

om
i,j = mean {oi,h | pi,h ∈ bi,j} (3.1)

Once its scene flow is obtained, the MoDAR point mi,j is propagated to the timestep t

queried by the ego vehicle as following

[m̂i,j]x,y,z = [mi,j]x,y,z + t− ti
|Si|

om
i,j (3.2)

Here, |Si| denotes the length of the point cloud sequence Si measured in seconds. [·]x,y,z

is the operator that extracts 3D coordinate of a MoDAR point.
Finally, propagated MoDAR points are transformed from the agent Ai’s pose Ei(ti)

at time step ti to the ego vehicle pose Ee(t) at time step t using the localization in the
common global frame G of the two agents

Ee(t)[m̂i,j]x,y,z = GT−1
Ee(t)

GTEi(ti) [m̂i,j]x,y,z (3.3)

The concatenation between the set of MoDAR points received from other agents and
the ego vehicle’s raw point cloud (resulting from concatenating its own point cloud se-
quence) is done straightforwardly by padding

• points in the ego vehicle’s raw point cloud with null vectors representing features of
MoDAR points, which are boxes’ size, heading, score, and class

• MoDAR points with null vectors representing features of points in the ego vehicle’s
raw point cloud which are points’ intensity and time-lag.

Once exchanged MoDAR points and the point cloud of the ego vehicle are merged, the
result can be processed by the single-vehicle model with Aligner integrated.

3.4 Experiments

3.4.1 Dataset and Metric

To evaluate our collaboration framework, we use the V2X-Sim 2.0 [67] which is made
using CARLA [29] and the traffic simulator SUMO [79]. This dataset is made of 100 100-
frame sequences of traffic taking place at intersections of three towns of CARLA which are
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Town 3, Town 4, and Town 5. Each sequence contains data samples recorded at 5 Hz. Each
data sample comprises raw sensory measurements made by the ego vehicle, one to four
CAVs, and an IRSU, which is placed at an elevated position that has a large minimally
occluded field of view of the intersection. Every vehicle and the IRSU are equipped with
a 32-channel LiDAR. All agents are in sync which results in the same timestamp of data
that they collect.

The V2X-Sim 2.0 dataset provides object annotations for each data sample. The official
training, validation, and testing split are made of temporally disjoint data samples from
three towns chosen such that there is no overlap in terms of intersections. Since we need
point cloud sequences as input to our models, we can’t use the official splits. Instead, we
use sequences in Town 4 and Town 5 as the training set, and those in Town 3 as the
validation set, thus ensuring there is no intersection overlap. This choice results in an
8900-data-sample training set and an 1100-data-sample validation set. Since this dataset
follows the format of the NuScenes, we use NuScenes’ implementation of mean Average
Precision (mAP) (details in Sec.2.6.1) to measure the performance of our framework and
baselines.

3.4.2 Implementation

In the convention of the V2X-Sim dataset, the IRSU and the ego vehicle are respec-
tively assigned the identity of 0 and 1 while other CAVs get identities ranging from 2
to 5. To test our collaboration method’s ability to handle asynchronous exchanged infor-
mation, we set the time lag between the timestamp t of the ego vehicle’s query and the
timestamp ti of the detection Bi = {bi,j} made by agent Ai(i ∈ {0, 2, 3, 4, 5}) to the time
gap between two consecutive data sample of V2X-Sim which is 0.2 seconds.

In the implementation of our V2X collaboration framework, every agent uses the
single-vehicle detection model that is developed in Sec.2.4. The architecture and hyper-
parameters are kept unchanged as the experiments of the single-vehicle model in Sec.2.6.2.
While previous works using the V2X-Sim dataset [66, 67] set the detection range to
[−32, 32] meters along the X and Y axis, centered on the ego vehicle, we extend this
range to [−51.2, 51.2] to better demonstrate the performance gain thanks to collaborative
perception via V2X.
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Enhance Detection of Visible Objects

We benchmark our approach to collaborative perception against two extremes of the
performance -bandwidth spectrum which are Late and Early collaboration. Late Collab-
oration achieves the minimal bandwidth usage by fusing the detection B1 = {b1,j}|B1|

j=1

made by the ego vehicle with the detection made by other agents {Bi|i ∈ {0, 2, 3, 4, 5}}
using Non-Max Suppression. We evaluate this baseline under three settings including

• asynchronous exchange where the gap between ti and t is 0.2 seconds as described
above

• asynchronous exchange with Bi propagated from ti to t using scene flow by the
procedure described in section 3.3.3

• synchronous exchange where there is no gap between t and ti

On the other hand, Early Collaboration reaches high performance by exchanging the
entire raw point cloud sequences Si =

{
P ti−K+1

i , . . . ,P ti
i

}
collected by each agent Ai is

the second baseline.
To verify the ability to enhance the single-vehicle perception of V2X collaboration, we

evaluate our approach and baselines in the setting where ground truths are made of objects
visible to the ego vehicle. This means eligible ground truth must contain at least one point
of the point cloud P t

e, which the ego vehicle obtained at the time step of query t. The
result of this evaluation is summarized in Tab.3.1 which shows that late collaboration in
all three settings is not beneficial, as the best late collaboration is only 93.3% (4.42 mAP
behind) of the single-agent perception. This is because True Positive (TP) detections
made by other agents are counted as false positives if they are not visible to the ego
vehicle. In addition, ill-localized but overly confident detections made by other agents
can suppress good detections made by the ego vehicle, thus further reducing the overall
performance. Remarkably, our collaboration approach using MoDAR points outperforms
the early collaboration by 4.7% (3.35 mAP). This reaffirms our design philosophy that a
good multi-agent collaborative perception framework can be made on the foundation of a
good single-agent perception model and a simple collaboration method.

Enhance Detection of Invisible Objects

Besides enabling the ego vehicle to detect more accurately objects that are visible
to itself, another great benefit of collaborative perception is to help the ego vehicle see
the invisible objects - those that do not contain any points of its point cloud P t

e, thus
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Table 3.1 – Performance of Collaboration Methods on Ground Truth Visible to The Ego
Vehicle

Collaboration Method mAP
None 65.71
Late - async 54.77
Late - async prop. 59.34
Late - sync 61.29
Early 71.84
Ours 75.19

overcoming the challenge of occlusion and sparsity. To demonstrate this, we relax the
criterion of eligibility of ground truth such that they only need to contain at least one
point emitted by any agents in the V2X network. In this experiment, we add a strong Mid
Collaboration method - DiscoNet [66] to the set of baselines to showcase the capability of
our approach compared to the state-of-the-art. In the framework of DiscoNet, connected
agents, which have identical detection architecture, exchange BEV images of their point
cloud. The ego vehicle fuses the BEV image of its point cloud with the exchanged BEV
via a fully connected collaboration graph to use as the input to the detection head.

In addition to the detection precision, we also measure the bandwidth consumption of
each collaboration method. Our measurement is based on the raw uncompressed form of
the exchanged data to facilitate a fair comparison.

The results shown in Tab.3.2 indicate that on a larger set of ground truths, Late
Collaboration does improve performance, compared to single-vehicle (no collaboration).
The improvement is significant (at least 8.35 mAP) even in the poorest setting where the
set of exchanged detection {Bi|i ∈ {0, 2, 3, 4, 5}} is 0.2 seconds behind the time of query,
thus resulting a spatial misalignment between detected objects that are exchanged and
their associated ground truths if the underlying objects are dynamic. This can be explained
by a significant number of static and slow-moving objects present in intersections whose
past detections remain true positives at the present. When detections of dynamic objects
are perfectly accounted for as in the sync setting where agents exchange their detections
at the same timestamp as the query, the performance is largely improved by 9.29 mAP
(15.2%), compared to the async setting. However, this sync setting is unrealistic because
different agents have different detection rates. Interestingly, propagating detections using
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scene flow as in the async prop. setting can reach 96.2% the performance of the sync
setting (2.68 mAP behind). This implies the effectiveness of scene flow estimated by our
Aligner++.

Table 3.2 – performance of collaboration methods, measured by mAP, on ground truth
that are visible to at least one agent

Collaboration Sync Async Bandwidth
Method Usage (MB)
None 52.84 - 0

Late 70.48 61.19 0.0167.80 1

Mid - DiscoNet 2 78.70 73.10 25.16
Early 78.10 77.32 33.95
Ours 79.20 76.72 0.01

In the sync setting, DiscoNet narrowly exceeds Early Collaboration by 0.6 mAP
(0.7%), thus showing the benefit of the deep interaction among agents powered by their
dense collaboration graph. However, this benefit comes at the cost of relatively high band-
width usage of 25 MB per broadcast BEV image on average which is only 25% less than
the average bandwidth required by Early Collaboration. The operation of our method
in this setting is as follows: MoDAR points broadcast by other agents have the same
timestamp as the point cloud of the ego vehicle; therefore their propagation using scene
flow is skipped. Our method slightly exceeds DiscoNet by 0.5 mAP (0.6%) to reach the
highest performance while consuming the least bandwidth among collaborative methods.
This confirms the effectiveness of MoDAR in facilitating collaboration among connected
agents.

In the async setting, DiscoNet is severely affected by the misalignment among ex-
changed BEV images caused by timestamp mismatch as its performance dropped by
5.6 mAP (7.1%). Our method is affected because the misalignment between exchanged
MoDAR points and their corresponding ground truth is explicitly taken into account by
the propagation of MoDAR points using scene flow. As a result, the performance gap
between ours and DiscoNet is extended to 3.62 mAP (5%). Early Collaboration shows the
most robustness against timestamp mismatch with an 0.8 mAP (1%) drop. This can be
explained by the detector’s ability to implicitly handle to some extent the misalignment
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among point clouds. This phenomenon is well known in the literature on multi-frame
single-vehicle object detection [8, 133, 137, 151] where models trained on the concate-
nation of 0.5-second point cloud sequences enjoy a 30% mAP gain compared to models
trained on individual point clouds.

Support Heterogeneous Detector Networks

To show that our collaboration method supports heterogeneous networks out of the
box, we perform an experiment where we start with a network of agents uniformly using
PointPillar as their detectors and gradually replace PointPillar with SECOND in one
agent after another. The result of this experiment is shown in Fig.3.6. As the number

Figure 3.6 – Performance of the ego vehicle in heterogeneous collaboration networks made
PointPillar and SECOND detectors. As the number of SECONDs increases from 0 to 6
- the size of the network, the ego vehicle’s performance transits from its value in a full-
PointPillar network to its value in a full-SECOND network without catastrophe dropping
out of the lower bound of Late Collaboration.

of SECOND increases, the performance of the collaborative perception gradually transits
in a downward trend from 76.72 mAP of a full-PointPillar network to 71.94 mAP of a
full-SECOND network, without dropping below the lower bound of Late Collaboration,
which is the case of Mid Collaboration method without dedicated modules for bridging

1. Exchanged detections are propagated using scene flow according to (3.2) before fusion by Non-Max
Suppression.

2. Our implementation based on [66]
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the domain gap [126]. This downward trend is because an individual PointPillar achieves
higher AP than an individual SECOND on the V2X-Sim dataset when being trained under
the same setting. More interesting, the combination made of the RSU using SECOND
and all connected vehicles using PointPillar archives the best performance of 77.74 mAP,
reaching 99.5% performance of Early Collaboration in sync setting.

Relation between Performance and Network Size

Finally, to study how the performance of collaboration perception evolves with respect
to the number of agents in the V2X networks, we gradually increase the number of par-
ticipants in the collaboration. As can be seen in Fig.3.7, the collaboration with only the
IRSU brings 15.09 mAP (28.6%) improvement.

Figure 3.7 – The performance of ego vehicle’s detection increases sharply in collaboration
with only IRSU, then slows down and saturates at 98.2% of Early Collaboration in sync
setting as the number of connected agents increases.

The magnitude of performance gain reduces and eventually saturated as the number
of agents increases. An increased number of agents results in higher overlap in agents’
field of view which makes objects in the overlapped regions well detected by many agents.
However, this overlap also means the field of view of the collaboration network as a
whole does not increase proportionally with the number of agents. Moreover, exchanging
detected objects made by distant agents may not get used by the ego vehicle because they
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are outside the predefined detection range.

(a) 1 RSU & 3 CAVs (b) 1 RSU & 1 CAVs (c) 1 RSU & 3 CAVs

(d) 1 RSU & 2 CAVs (e) 1 RSU & 3 CAVs (f) 1 RSU & 1 CAVs

Figure 3.8 – Qualitative performance of our method on three samples of the V2X-Sim
dataset. The number and type of connected agents are annotated in the title of each image.
Blue points are LiDAR points collected by the ego vehicle. Gray points are LiDAR points
collected by other agents which are displayed for visualization purposes only. Orange stars
denote the MoDAR points broadcast by other connected agents. Green solid and dashed
rectangles respectively represent ground truth visible and invisible to the ego vehicle. Red
rectangles are the detections made by the ego vehicle using our method.

Qualitative Performance

The qualitative performance in Fig.3.8 shows that collaborative perception using
MoDAR points enables the ego vehicle to detect objects that are occluded or have a few
to zero LiDAR points due to long range. Particularly, the vehicle at the top of Fig.3.8a is
occluded with respect to the ego vehicle due to the presence of a large vehicle. However,
this occluded vehicle is successfully detected thanks to a single MoDAR point produced by
the IRSU. Another example of occluded vehicles that are successfully detected is Fig.3.8e
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where vehicles in the bottom right corner are occluded by a building-like structure. The
illustration of successful detection at long range thanks to MoDAR points can be found
in Fig.3.8b, Fig.3.8d, and Fig.3.8f where vehicles near their edges have a few or even zero
LiDAR points of the ego vehicle.

3.5 Conclusions

This chapter brings together two solutions to the challenge of low-fidelity measurement
in a unified framework that leverages the benefit of multiple perspectives, offered by the
motion of the ego vehicles and by the presence of other connected agents, to the fullest.
The result is a collaborative perception method that enables the ego vehicle to detect
objects that are completely unobservable to its LiDAR due to occlusion or sparsity at
long range. More importantly, the method developed here is highly feasible for real-world
deployment because it (i) minimizes bandwidth usage, (ii) dismisses the need for inter-
agent synchronization, (iii) makes minimal changes to single-agent object detectors, and
(iv) supports networks of heterogeneous detectors.

Since our collaborative perception method is built on the foundation of single-agent
detectors, its performance is inevitably capped by the performance of individual agents
participating in the V2X network. An example failed case is where an object that is
unobservable to the ego vehicle and is not detected by the agent to which is observable.
In this case, there is no MoDAR point created for this false negative detection, thus
making it remain unobservable to the ego vehicle after collaboration. Another case is
regions, which are unobservable to the ego vehicle, are populated with high-confident false
positive detections made by other connected agents. These high-confident false positive
detections can induce false positive detections in the collaborative model. These failed
cases highlight the need for improving single-agent detectors such that false positive and
false negative detections are minimized.

The two most popular single-agent detectors are PointPillar and SECOND which
are designed to have a theoretical recall rate of 100%. This design choice enables them
to enjoy a significantly high recall rate in practice. For example, SECOND achieves a
0.95 recall rate on the KITTI dataset [24]. Such a high recall rate means a reduced
amount of false negative detections but at the cost of an increased amount of false positive
detections. The balance between false negative and false positive can be achieved by
adding a second stage to the existing single-agent detectors to re-score their output so
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that false positive detections have low confident scores. In addition, the second stage can
re-adjust the prediction of single-agent detectors to make true positive detections fit better
to their associated ground truth. The development of such a second stage is presented in
the next chapter.
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Chapter 4

IMPROVING OBJECT DETECTORS USING

REFINEMENT STAGE

As the challenge of low-fidelity measurement is addressed by Chapter.2 using point
cloud sequences and by Chapter.3 using V2X collaborative perception, the perception
capacity of the ego vehicle is tremendously increased such that it is able to detect objects
that are invisible to its LiDAR. However, the detection result is not yet perfect due to
the presence of high-confident detection in background regions and poorly localized true
positive detection (i.e., detected boxes that have low overlap with their corresponding
ground truth). These limitations are caused by the limited representation capacity of the
BEV images which compress the 3D space into rather small size images (e.g., 128× 128)
using large pixel sizes (e.g., 0.8 meters). The low resolution is particularly challenging for
detecting small objects such as pedestrians or cyclists as they often occupy a small number
of pixels. A straightforward resolution increase can compromise a detector’s accuracy on
large objects if the receptive field of each pixel in BEV does not sufficiently cover the
entire object it contains. As a result, the depth of the detector needs to be increased, thus
increasing computational overhead and GPU memory consumption. Striking the balance
in the accuracy of large and small objects is challenging.

Deng et al [24] make the observation that anchor-based detectors such as SECOND
[129] achieve an exceptionally high recall rate (up to 95%) while having moderate preci-
sion. This is due to a large number of false positives and poorly localized detection. This
observation makes a strong case for a two-stage approach toward 3D object detection
which

1. recovers as much ground truth as possible

2. re-scores and re-adjusts detected objects to remove false positives and improve object
localization, respectively

In order words, a two-stage detector first tries to achieve high recall, then picks only
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good detections and makes them better using the second stage to achieve high precision.
Following this two-stage approach, small objects can be well detected by detectors using
low-resolution BEV images.

Aware of the reasoning above, this chapter develops a refinement stage to further
improve the performance of LiDAR-based object detectors. The method developed in this
chapter is published in "Attention-based Proposals Refinement for 3D Object Detection",
IEEE Intelligent Vehicles Symposium, 2022. The code used for experiments in this chapter
is available at https://github.com/quan-dao/APRO3D-Net.

4.1 Introduction

This stems from the observation that anchor-based methods such as SECOND [129]
have exceptionally high recall rate (up to 95%) yet only achieves a moderate performance,
e.g. SECOND’s 78 Average Precision (AP) for Car class in KITTI. The role of a refinement
stage is to unleash the full potential of anchor-based methods. The key to the refinement
stage is how to compute ROI features effectively. Early works, e.g. PartA2 [101], PV-RCNN
[102] and VoxelRCNN [24], address this by first dividing ROI into a 3D grid then extracting
feature at each grid location before feeding the concatenation of grid point features to
a Multi-Layer Perceptron (MLP) to obtain the desired output. Their motivation is that
such a grid can recover the 3D structure lost in the BEV representation used in the region
proposal stage. Arguing that computing grid point features require several hand-crafted
components, CT3D [99] devises a variant of the transformer [111] to compute ROI feature
directly from points pooled from raw point clouds. Though having less inductive bias,
CT3D achieves state-of-the-art performance, demonstrating the benefit of integrating the
transformer into the 3D detection pipeline.

This chapter adds to the family of two-stage voxel-based 3D object detectors by mak-
ing two main contributions. First, we develop a new ROI Feature Encoder (RFE) for
computing per-proposal features based on Vector Attention [146]. RFE, together with a
detection head, can serve as a refinement stage for voxel-based and point-based region
proposal frameworks. Second, we observe that strong methods such as PV-RCNN [102]
and CT3D [99] employ additional modules to learn pooled point features, thus increasing
model size and reducing frame rate. Therefore, we propose to pool directly from feature
maps generated by the backbone during the region proposal process. Inspired by [16], our
pooling strategy effectively fuses multi-scale features, thus increasing the model’s ability
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to detect classes of different sizes.
Compared to PartA2, PV-RCNN, and VoxelRCNN, we are similar in the interest of

using inductive bias to compensate for the loss of 3D structure in the BEV representation
used in the proposal generation stage. While their inductive bias is to impose a grid
structure to ROI, ours takes place in position encoding of pooled points (Section 4.2.2).
Specifically, pooled points’ coordinates are mapped to ROI’s canonical frame and then
augmented with their displacement vector to ROI’s eight vertices. The difference between
pooled points’ augmented coordinates and that of ROI’s center is input to an MLP for
computing position encoding.

Our pooling strategy uses the same source as VoxelRCNN which is the intermediate
feature maps generated by the 3D backbone of the region proposal framework. Instead of
concatenating features pooled across different scales like VoxelRCNN, we first pool from
the highest one to compute initial ROI features, then update these initial ROI features
using features pooled from another feature map at a lower scale. The reason is to condition
ROI features obtained at lower scales on the higher ones, thus encouraging the consistency
of learned features throughout the architecture.

CT3D [99] is the closest to our proposed approach since we share the method of
computing ROI features via the attention mechanism. Compared to CT3D, we have two
key differences. First, we use a different formulation of the attention mechanism, namely
Vector Attention [146], to assign different attention weights to different channels of one
point feature. The motivation will be explained in Section 4.2.2. Second, CT3D pools
from the raw point cloud to enable its integration into virtually any detection framework.
Such flexibility comes at the cost of ignoring the valuable intermediate results of the
region proposal process. This forces CT3D to recompute features for pooled points before
transforming them to ROI features using self-attention in which a pooled point feature
is a weighted sum of others’. Our method pools from the backbone’s intermediate feature
maps. As a result, it is no longer necessary to recompute pooled features. Furthermore,
by re-using backbone features, our pooling strategy maximizes the use of the information
produced in the region proposal process.

4.2 APRO3d-Net for 3d object detection

Figure 4.1 shows the overview of APRO3D-Net made of integrating our RFE modules
to SECOND [129]. Our framework first interprets feature maps created during the region
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proposal process into point-wise features. ROIs pool these points based on their relative
locations. Pooled point features and their position encoding that incorporate an ROI’s
geometry are transformed into the ROI’s features by the Vector Attention. The ROI’s
features are mapped to its confidence score and refinement vector by two MLP-made
heads.

Figure 4.1 – The overall architecture of APRO3D-Net. The voxelized point cloud is fed
to a 3D backbone for feature extraction. The backbone’s output is then converted to
a BEV representation on which an RPN is applied to generate ROI. Several ROI Fea-
ture Encoders (RFE) transform feature maps produced by backbone into ROI features
by first pooling from inputted feature maps, then encoding pooled points position, and
finally refining previous ROI features using pooled features and their position encoding
via Attention Module. The refined ROI feature is mapped to confidence and refinement
vector by two MLP-based detection heads. Here, blue cuboids and green parallelograms
respectively denote feature maps computed by 3D and 2D convolution. Notice that the
channel dimension is omitted for clarity.

4.2.1 3D Backbone and Region Proposal Network

The reason for choosing SECOND to demonstrate our method instead of a point-
based method such as PointRCNN is twofold. First, point-based methods are not as
computationally efficient because of their repetitive use of query operations (ball query
and k-nearest neighbor query), which can take up to 80% computational time [78]. More
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importantly, the model’s final performance is strongly conditioned by how well ROIs
produced by the RPN cover ground truth boxes. The indicator for such ability is the
RPN’s recall rate, which [101] shows is higher with SECOND-like RPN.

SECOND first uses a backbone made of Sparse Convolutions to learn a compact
representation of the input point cloud. The backbone’s final output is a C-channel feature
volume D×H×W . It is then converted into a BEV representation of size (C×D)×H×W
by flattening the channel and depth dimension. Each location of the resulting BEV image
is associated with multiple anchors corresponding to different classes and orientations.
Finally, an RPN made of a standard 2D CNN predicts class probability and offset vector
w.r.t associated ground truth for each anchor. Anchors modified by predicted offset vectors
become ROI. ROIs are post-processed by the non-max suppression procedure to remove
redundant but low confident ROI to make the final output R

R = {([xr, yr, zr, dxr, dyr, dzr, θr] , clsr)}M
r=1 (4.1)

where each ROI is parameterized by the location of its center [xr, yr, zr], its size [dxr, dyr, dzr],
its heading direction (i.e. yaw angle) θr and its class clsr.

4.2.2 ROI Feature Encoder

RFE has three sub-modules: Feature Map Pooling, Position Encoding, and Attention
Module. The Feature Map Pooling interprets backbone-generated feature volumes into
point-wise features and pools them according to their location relative to ROIs’ bound-
ing box. Points pooled by an ROI are assigned position encoding vectors to incorporate
the ROI’s geometry. The Attention Module transforms pooled points’ features and their
position encoding into the ROI’s feature via the Vector Attention [146], which essentially
is a weighted sum of pooled point features.

Feature Maps Pooling

Define the ego vehicle frame E as the following its origin is at the center of the rear
axel of the ego vehicle, the X-axis coincides with the ego vehicle’s heading direction, the
Z-axis is the reversed gravity direction, and the Y-axis is the cross product of Z and X-
axis. Without loss of generalization, assume that point clouds are expressed in this frame.
An occupied voxel (d, h, w) of the feature map Fi(i = 1, . . . , 4) (Figure 4.1) is interpreted
into a 3D location (x, y, z) by
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E
[
x, y, z

]
=
([
w, h, d

]
+ 0.5

)
· V i + E

[
x, y, z

]
min

(4.2)

Here, V i is the size voxels in Fi. d, h, w are respectively the voxel’s grid location along the
Z-axis, Y-axis, and X-axis. E [x, y, z]min is the minimum metric coordinate of the detection
region in the ego vehicle frame. Applying Eq.(4.2) to every occupied voxel of Fi results
in a set of point-wise features P i =

{(
Lpi

j =
[
xi

j, y
i
j, z

i
j

]
, f i

j

)}N i

j=1
. Here, f i

j is the feature at
the grid location that gives rise to pi

j, while N i is the number of occupied voxels in Fi.
The pooling scheme, illustrated in the bottom-left corner of Figure 4.1, is performed

based on the location of point-wise features P i relative to the enlarged ROIs. The en-
largement of ROIs is to incorporate missing foreground points due to the mismanagement
between ROIs and their corresponding ground truth. Let Rr denote the 3D volume occu-
pied by an ROI r after being enlarged by [∆x,∆y,∆z]. A point feature

(
pi

j, f i
j

)
is pooled

into ROI r if
pi

j ∈ Rr (4.3)

Inspired by [100, 101], we transform pooled point-wise features to ROI’s canonical
coordinate system to reduce the variance during training, thus improving the model’s
generality. This coordinate system, shown in Fig.4.2, is defined as the following

• origin is at ROI’s center

• the X-axis has the same direction as ROI’s heading direction

• the Z-axis is vertical and points upward

From Eq.(4.1), a ROI is characterized by a seven-vector [xr, yr, zr, dxr, dyr, dzr, θr]. A
point pj is transformed to ROI r’s canonical frame by

rpj =


cos θr sin θr 0
− sin θr cos θr 0

0 0 1


 EpT

j −


xr

yr

zr


 (4.4)

Attention Module

Discussion Once pooled, point-wise features are used to compute a single feature vector
representing the entire ROI. A straightforward method is to transform points individually
(via an MLP) and then aggregate them using a permutation invariance operation (e.g.,
sum, mean, or max pooling). However, this approach disregards valuable information
about an ROI’s geometry, such as point distribution or the ROI’s size. To remedy this,
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Figure 4.2 – ROIs and pooled points in LiDAR frame (Left) compared to them in ROIs’
canonical frame (Right). Here, ROIs are denoted by red cuboids while pooled points are
colored orange. Red, green, and blue arrows respectively represent the canonical frame’s
X, Y, and Z axis.

we propose to use the attention mechanism to compute the ROI feature given pooled
point-wise features. The advantage of using the attention mechanism is two folds

• The model can dynamically define how much each point feature contributes to an
ROI feature, thus naturally reducing the impact of background points while not
suppressing them entirely. Such a balance can be helpful because background points,
especially those on the ground, can provide context for estimating height.

• ROIs’ geometry information (e.g., points location, ROI size) can be explicitly in-
jected into the computation by position encoding.

While the original multi-head attention [111] used by ViT [28] and its variants have
achieved remarkable successes in the realm of computer vision, it has a drawback of
treating every channel equally. In other words, a single set of scalar weights is assigned
to C-dimension point-wise features in the weighted sum for an ROI feature. Since we
pool from feature maps generated by the backbone made of convolution layers, each
channel of any feature map is a detector for a certain feature [143]. Therefore, using
a single set of scalar weights can risk less important features overshadowing important
ones. In addition, using multi-head attention can introduce inconsistency since ViT and
CNNs learn significantly different features [93]. For the reasons above, we opt for Vector
Attention [146] which is effective in 3D classification and segmentation tasks [147].
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Vector Attention Essentially, the computation of an ROI feature is cross-attention,
where the ROI feature queries the set of pooled point-wise features. Let r be the initial
value of the ROI feature, and Pr = {(rpj, fj)}Nr

j=1 be the set of pooled point-wise features.
The new ROI feature r̂ is computed by

r̂ =
∑
Pr

softmax (MLP (φ (r)− ψ (fj) + ζ))⊙ (α (fj) + ζ) (4.5)

Here, φ, ψ, α are linear projections. ⊙ denotes the Hadamard product (i.e., element-wise
multiplication). ζ represents the position encoding, whose detail will be presented shortly.
In Eq.(4.5), φ (r) , ψ (fj) , α (fj) respectively take the role of query, key, and value.

Using a different set of weights for each channel requires storing Nr×C parameters for
computing r̂. As a result, the space complexity of the Vector Attention is O (MNrC) with
M as the number of ROI, thus making Vector Attention more expensive than multi-head
attention. However, given that the number of ROIs in the refinement stage is relatively
small (100 during testing), Vector Attention is still affordable on mid-end hardware.

Following [111], the Attention Module, shown in Fig.4.3, consists of Vector Attention,
residual connection, normalization layers (BatchNorm by default), and MLP.

Figure 4.3 – Architecture of the Attention Module.

Position Encoding

We leverage position encoding to inject geometry information, including point location
and ROI size, into the attention mechanism. A point j ’s location is readily available in
its coordinate rpj in the ROI r’s canonical frame. To incorporate an ROI’s size, we use
the approach proposed by [99] in which a point’s displacement relative to the ROI’s eight
vertices augments its coordinate.

rp̃j =
[

rpj
rpj,1 . . . rpj,8

]
∈ R1×27 (4.6)
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In Eq.(4.6), rpj,k(k = {1, . . . , 8}) denotes the vector going from vertex k to rpj.
Position encoding ζ used in Eq.(4.5) is computed by

ζ = MLP (rc̃−r p̃j) (4.7)

where rc̃ is the result of applying Eq.(4.6) to the ROI’s center.

Handling Multi-scale Feature Maps

While prior works pool from one fixed source such as raw point clouds [99], a set of
sampled points [102], or some feature maps [24, 101], we propose to pool from every feature
map. Our motivation is that each feature map has a different scale thus helping detect
objects of different sizes. For example, large-scale feature maps can help detect large
objects such as cars thanks to the large receptive field at each location. On the other
hand, their high sparsity makes pooling with small ROIs (e.g., ROI of class pedestrians or
cyclists) returns a significantly low number of points or event empty, making extracting
meaningful ROI features difficult.

Our pooling scheme is detailed by Alg.1. Inspired by [16], we sequentially pool feature
maps from the largest to the smallest scale. Once a feature map is pooled, ROI features are
computed from their associated point-wise features using Eq.(4.5). This process repeats
N times with N different sets of RFEs to increase the model’s depth.

4.2.3 Detection Heads and Learning Targets

An ROI’s feature computed by a series of RFEs is mapped to a higher dimension space
by a two-hidden layer MLP before being decoded into ROIs’ confidence and refinement
vector. Following [101], an ROI’s confidence is set to the normalized IoU with its associated
ground truth, thus making the refinement stage class-agnostic. Let IoU denote ROI r’s
regular IoU, its normalized IoU is

c∗
r =


1 if IoU > χH

0 if IoU < χL

IoU−χL

χH−χL
otherwise

(4.8)

where, χH and χL are foreground and background threshold.
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Algorithm 1: Computing ROI features by pooling from multiple feature maps
Input:
F i (i = {1, . . . , 4}) : feature maps generated by backbone
R = {([xr, yr, zr, dxr, dyr, dzr, θr] , clsr)}M

r=1 : set of ROI generated by RPN
Output: RF = {rr} : set of ROI features
// Initialize ROI features with model’s learnable parameter Θ
RF ← ∅ ;
for r in {1, ..., |R|} do

rr ← Θ ;
RF ← RF ∪ {rr} ;

end
for N times do

for i in {4, ..., 1} do
for r in {1, ..., |R|} do
Pr = {(rpj, fj)} ← Pool (F i)
rr ← Attention (rr,Pr) ; // Eq.(4.5)

end
end

end

The target of the refinement head is the normalized residue of an ROI with respect to
its associated ground truth. Given the parameters of ROI r defined by Eq.(4.1) and its
associated ground truth, its normalized residue δ∗

r = [x∗, y∗, z∗, dx∗, dy∗, dz∗, θ∗] is

x∗ = xg
r−xr

d
, y∗ = yg

r −yr

d
, z∗ = zg

r −zr

dzr

dx∗ = log dxg
r

dxr
, dy∗ = log dyg

r

dyr
, dz∗ = log dzg

r

dzr

θ∗ = θg
r − θr

(4.9)

In Eq.(4.9), the superscript g denotes the ground truth box’s parameters, while the sub-
script r represents the ROI index. d =

√
x2

r + y2
r is the diagonal of the base of the ROI.

4.2.4 Loss Function

Our RFE module can be trained end-to-end with the RPN by optimizing the summa-
tion of the RPN loss, the refinement stage’s loss, and an auxiliary loss.

L = LRPN + Lrefine + Laux (4.10)
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4.2. APRO3d-Net for 3d object detection

RPN Loss

Since we adopt the backbone and the RPN of SECOND, the RPN loss is as in [129]
which is the sum of classification and a regression loss

LRPN = 1
A+

∑
a

[Lcls (ca, c
∗
a) + 1 (c∗

a ̸= 0)Lreg (δa, δ
∗
a)] (4.11)

where, ca and δa are the output of RPN’s Class branch and Bbox branch, and A+ is the
number of positive anchors. The classification target of the RPN c∗

a is the class of ground
truth box of anchor a. The regression target δ∗

a of anchor a is calculated according to
Eq.(4.9). 1 (c∗

a ̸= 0) is the indicator function which takes value of 1 for positive anchors
whose c∗

a ̸= 0 and 0 otherwise. The classification loss Lcls is the Focal Loss [73], while the
regression loss Lreg is the Huber Loss (i.e. smooth-L1).

Refining Loss

Similar to the RPN loss, this loss makes of classification and a regression loss.

Lrefine = 1
M

∑
r

[Lcls (cr, c
∗
r) + 1 (c∗

r ≥ χreg)Lreg (δr, δ
∗
r)] (4.12)

Here, the classification target is the normalized IoU (Eq.(4.8)), and Lrefine is normalized by
the total number of ROIs M . The regression threshold χreg used in Eq.(4.12) is different
from the foreground threshold χH of Eq.(4.8).

Auxiliary Loss

Inspired by [46, 101], auxiliary supervision is applied to two backbone-generated fea-
ture maps, F3, and F4, to guide the feature extraction. To be specific, they are interpreted
into point-wise features. Each point feature k is then fed into an MLP to predict its fore-
ground probability fk, offset toward the associated ground truth box’s center ok, and part
probability pk [101]. A point is labeled as foreground if it is inside a ground truth box.
The label of the part probability of foreground points is essentially their coordinate in
the canonical frame (Fig.4.2) of the associated ground truth box normalized by the box’s
sizes.
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Laux = 1
P+

[
P∑

k=1
Lcls (fk, f

∗
k )
]

+

1
P+

 P+∑
k=1
Lreg (ok, o

∗
k) + Lbce (pk, p

∗
k)
 (4.13)

In Eq.(4.13), Lbce is the Binary Cross Entropy (BCE) loss. The ∗ in the superscript
denotes the label, while subscript k is the point index. P+ is the number of foreground
points. The regression loss and BCE loss are only calculated for foreground points.

4.3 Experiments

To demonstrate the effectiveness of our method, we evaluate it on KITTI [35] and
NuScenes [8] datasets. The details of these datasets and the metric used for evaluation
can be found in Sec.2.6.1. Furthermore, we carry out comprehensive ablation studies to
understand the influence of each module on the overall performance.

4.3.1 Implementation Details

We build our method to work on top of SECOND (or other 3D proposal methods). We
use the implementation of SECOND and other RPNs provided by the OpenPCDet [107]
toolbox. To demonstrate the robustness of our choice of model’s hyperparameters, we
keep them constant for experiments on both KITTI and NuScenes. The three exceptions
are the point cloud range, the initial voxel size, and the number of channels of the last
feature map, F4.

RPN

Since we do not introduce any modification to SECOND, the following presents the
parameters directly related to our method, while the rest can be found in OpenPCDet.

KITTI Point clouds are clipped by [0m, 70.4m] in the X-axis, [−40m, 40m] in the Y-
axis, and [−3m, 1m] in the Z-axis and voxelized with grid size of [0.05m, 0.05m, 0.1m].
SECOND’s intermediate feature maps (F i, i = 1, . . . , 4) have 16, 32, 64, and 64 channels.
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4.3. Experiments

Proposals are post-processed by non-max suppression with the overlapped threshold of
0.8 (0.7) to obtain 512 (100) ROIs during training (testing).

NuScenes point clouds’ range [−51.2m, 51.2m] along X-axis, Y-axis, and [−5m, 3m]
along Z-axis. The voxel size for discretizing the input point cloud is [0.1m, 0.1m, 0.2m].
The point cloud of a NuScenes keyframe (i.e., sample) contains about 40k points which
are just one-third the size of a KITTI point cloud, thus making it highly difficult for any
methods. We follow the common practice that maps point clouds in 10 previous non-
keyframes to the timestamp of the keyframe using ego vehicle’s odometry to increase the
number of points by ten times. Regarding the 3D backbone, the number of channels in
the last feature map F4 is 128, while the rest are similar to the KITTI configuration.

ROI Feature Encoder

128 ROIs are sampled from RPN output for the refinement stage during training. Each
ROI is then enlarged by 0.5m along three dimensions for pooling. We empirically find that
the pooling from the second feature map, F2, does not bring significant improvement
to the final performance. Therefore, we opt for pooling 64, 128, and 256 points from
F4,F3,F1 for each ROI.

The feature dimension is kept constant at da equal to 128 throughout the Attention
Module. Features pooled from {F4,F3,F1} are linearly mapped to da before going to
the Vector Attention. The MLP of the Attention Module and Position Encoding has a
256-neuron hidden layer activated ReLU function. The sequential pooling from F4 to F1

for computing ROIs’ feature is repeated 3 times with three different sets of RFEs.

Training

The entire architecture presented in Fig.4.1 is optimized end-to-end by the Adam
optimizer. For KITTI, we train the model for 100 epochs with a total batch size of 24.
The learning rate is controlled by the One-Cycle policy [104] with a maximum value
of 0.01. For NuScenes, the training lasts 20 epochs while the same batch size and the
learning rate policy remain unchanged. The maximum learning rate reduces to 0.03. In
the detection head, the foreground threshold χH , background threshold χL, and regression
IoU threshold χreg are 0.75, 0.25 and 0.55. We use the same data augmentation strategy
as [101, 102, 129].
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4.3.2 Results On KITTI Dataset

The comparison of our method against the state-of-the-art on KITTI test set is pre-
sented in Tab.4.1. Among methods built on top SECOND, namely [24, 46, 99, 102], we
achieve the best performance in class Cyclist and competitive performance in class Car,
passing the 80 AP threshold while having the least number of parameters. Note that we
train a single model for two classes instead of separate models as previously done by [59,
100, 129].

Table 4.1 – Performance comparison on KITTI test set with AP calculated with 40 recall
positions

Method Num Para- Car - 3D Detection Cyclist - 3D Detection
meters (M) Easy Mod. Hard Easy Mod. Hard

SECOND [129] 20 83.34 72.55 65.82 71.33 52.08 45.83
PointPillar [59] 18 82.58 74.31 68.99 77.10 58.65 51.92

PointRCNN [100] 16 86.96 75.64 70.70 74.96 58.82 52.53
SA-SSD [46] 226 88.75 79.79 74.16 - - -
Part A2 [101] 40.8 87.81 78.49 73.51 - - -

PV-RCNN [102] 50 90.25 81.43 76.82 78.60 63.71 57.65
Voxel R-CNN [24] 28 90.90 81.62 77.06 - - -

CT3D [99] 30 87.83 81.77 77.16 - - -
APRO3D-Net (ours) 22.4 87.09 80.30 76.10 78.54 64.55 57.78

Our performance on KITTI val set with AP calculated at 40 recall positions is also
reported in Tab.4.2, indicating that the gap between our method and top performers in
class Car is shortened, with the highest difference being just 0.45 AP. Compared to CT3D
which also computes ROIs’ feature using the attention mechanism, we surpass their AP
for class Pedestrian and Cyclist by 1.42 and 1.47.

Table 4.2 – Performance comparison on KITTI val set with AP calculated at 40 recall
positions

Method AP3D - Moderate
Car Cyclist Pedestrian

PV-RCNN [78] 84.83 71.95 56.67
Voxel R-CNN [24] 85.29 - -

Voxel R-CNN 3 84.95 71.43 58.24
CT3D [99] 84.97 71.88 55.58

APRO3D-Net (ours) 84.85 73.35 57.41
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4.3.3 Results On NuScenes Dataset

The performance on NuScenes validation set is shown in Table 4.3. In this table,
SECOND and PointPillars are single-stage methods, while others, including ours, are
two-stage. In this more challenging method, the benefit of integrating our RFE to SEC-
OND is more prominent, indicated by almost 20 mAP improvements. In addition, ours
outperforms 3DSSD [134] and InfoFocus [114], two recent two-stage methods, by a large
margin except for class Car and Truck. This competitive performance on the NuScenes
dataset shows our method’s ability to handle object classes with high variance in scales.

Table 4.3 – AP on NuScenes dataset

Method Car Ped Bus Barrier Traf. Cone Truck Trailer Motor Cons. Veh. Bicycle mAP
SECOND [129] 75.53 59.86 29.04 32.21 22.49 21.88 12.96 16.89 0.36 0 27.12
PointPillars [59] 70.5 59.9 34.4 33.2 29.6 25.0 20.0 16.7 4.5 1.6 29.5

3DSSD [134] 81.20 70.17 61.41 47.94 31.06 47.15 30.45 35.96 12.64 8.63 42.66
InfoFocus [114] 77.6 61.7 50.5 43.4 33.4 35.4 25.6 25.2 8.3 2.5 36.4

APRO3D-Net (ours) 77.75 74.02 64.86 52.61 46.34 43.99 34.9 39.36 13.44 23.00 47.03

4.3.4 Qualitative Performance

To show that different channels within the same point feature contribute differently to
an ROI feature, we visualize pooled points’ attention weight (the term on the left of ⊙ in
Eq.(4.5)) in Fig.4.4. As can be seen, the region of ROI, where attention is concentrated,
varies across channels. For example, Box 1 respectively pays the most attention to its
front and rear to compute two different channels of its feature.

In addition, a visual evaluation of our method’s performance on the test split of KITTI
and NuScenes dataset made by projecting predictions onto images, as in Fig.4.5, shows
that our refinement module can avoid false positive and improve object localization.

4.3.5 Ablation studies

We perform extensive ablation studies to validate our design choices and understand
the impact of each module on the overall performance. All models used in this section
are trained on the KITTI train set and evaluated on the KITTI val set. Unless stated
otherwise, evaluations are based on AP calculated at 40 recall precision.

3. Performance of model trained for 3 classes, reproduced from official code release
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Figure 4.4 – Visualization of attention weights. Predictions and their associated ground
truth boxes are respectively marked by red and blue. Orange denotes pooled points. In
two zoomed windows, points are color-coded according to their attention weights. The
hotter the color, the higher the attention weight.

First, we verify our motivation for choosing Vector Attention over multi-head attention
by changing the attention formula in Eq.(4.5) while keeping the rest of the architecture
unchanged. The result shown in Tab.4.4 confirms the superiority of Vector Attention
with significant AP difference for class Car and Cyclist. Such difference is due to Vector
Attention enabling the model to choose where to look (which points) and what to look
for (which channels) when computing ROI features, as illustrated in Fig.4.4. On the other
hand, multi-head attention can only choose where to look because of its scalar weight.

Table 4.4 – Performance on KITTI val set of Multi-Head Attention compared to Vector
Attention

Method AP3D - Moderate
Car Cyclist Pedestrian

Multi-head Attention 82.50 70.35 57.58
Vector Attention 84.85 73.35 57.41

Improvement 2.35 3.00 -0.17

The second experiment is to analyze the impact of position encoding on the overall
performance. The first row of Tab.4.5 shows the result of the model that does not use
position encoding, meaning setting ζ in Eq.(4.5) to 0. The second row is the performance
of building position encoding from the point displacement relative to the ROI center
only. In other words, rpj,1, . . . ,

r pj,8 are removed from Eq.(4.6). Tab.4.5 shows that using
position encoding increases performance for class Car, Cyclist, and Pedestrian to 8.19,
6.24, 4.03 AP. Moreover, position encoding contains the most information about ROI
geometry (third row) and performs the best overall, especially for the most important
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4.3. Experiments

(a) (b)

(c) (d)

Figure 4.5 – Qualitative performance of APRO3D on KITTI (top row) and NuScenes
(bottom row). Objects detected by SECOND and APRO3D are respectively represented
by dashed and continuous cuboids.

class Car.

Table 4.5 – Performance on KITTI val set of different position encoding methods

Method AP3D - Moderate
Car Cyclist Pedestrian

None 76.66 69.65 53.38
Center 82.72 75.89 55.74

Center and Vertices 84.85 73.35 57.41

Next, three pooling strategies are compared. The performance shown in the first row of
Tab.4.6 is obtained by equally pooling M points from each feature map Fi then concate-
nating their features before passing them to RFEs for ROIs feature computation. In the
other rows, we sequentially pool from F4 to F1 while skipping F2. The difference between
the second and third rows is the sequential pooling process takes place only once in the
second row while it repeats three times in the third. In other words, N of Alg.1 is set to
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1 and 3 in the row second and third, respectively. Even though pooling all at once (first
row) does not show any significant performance drop for class Car while achieving the best
performance in class Pedestrian, this pooling strategy is the most memory-intensive. The
number of points to be processed, which linearly grows with the number of feature maps
and ROIs, can quickly overflow GPUs’ memory. Another aspect to be noticed is repeating
the pooling process (with a different set of RFE) only brings marginal performance gain.

Table 4.6 – Performance on KITTI val set of different pooling methods

Method AP3D - Moderate
Car Cyclist Pedestrian

All at once 84.15 71.04 57.55
Sequential without repetition 84.66 75.34 56.15

Sequential with repetition 84.85 73.35 57.41

Finally, the versatility of our method is demonstrated by its integration with different
RPNs: SECOND, PartA2, PointRCNN. Since PartA2 has a UNet-like backbone, we pool
from feature maps produced by its up-sampling branch while keeping the rest of the
architecture unchanged. In the case of PointRCNN, we pool from the final output of
its backbone. Note that when not using the RFE, PointRCNN, and PartA2 use their
refinement stage. Tab.4.7 shows the performance gain at different difficulty levels of class
Car, thus confirming the effectiveness of our method. The limited gain when integrating
with PointRCNN can be explained by its lower recall rate compared to SECOND. This
experiment validates our design choice regarding the RPN method.

Table 4.7 – Performance gain on KITTI val set brought by our RFE to different RPNs

Method AP3D (Car)
Easy Moderate Hard

SECOND 88.61 78.62 77.22
SECOND + RFE +0.75 +4.89 +1.56

PartA2 89.47 79.47 78.54
PartA2 + RFE -0.08 +3.16 +0.36

PointRCNN 88.88 78.63 77.38
PointRCNN + RFE +0.06 +0.38 +1.02
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4.4 Conclusion

As one-stage object detection models are designed to have a theoretical recall rate
of 100%, thus translating to a high recall rate in practice, their precision is hurt by
the presence of a large number of false positives. These false positives can deteriorate
downstream modules such as object tracking or collaborative perception based on MoDAR
as developed in the previous chapter. Therefore, the re-evaluation and re-adjustment of
prediction made by one-stage detectors is necessary. This chapter addresses this need with
an ROI refinement module that transforms features of points residing inside each ROI into
its features using Vector Attention.

The rationale behind the design of this module is that the absence of an inductive
bias for the computation of ROI features given points features requires the layer em-
ployed for this purpose to be as generic as possible. The Transformers [111] satisfies this
condition; however, it is still restricted because it imposes the same scalar weight across
different feature channels of the same point. This is not ideal as the prediction of different
attributes can be influenced differently by different feature channels of each point. For
example, ground points have little to do with the prediction of an object’s center, but
are instrumental to the prediction of its height. A scalar weight that suppresses a ground
point’s influence on the center prediction will also suppress the valuable information this
point has to offer to the prediction of an object’s height. Based on this reasoning, we opt
for Vector Attention which offers a higher capacity for modeling the interaction among
points and ROI features by enabling a vector weight for each point Such capacity comes
at the expense of a higher memory complexity. However, this tradeoff is feasible due to
the manageable number of ROI thanks to the preprocessing using Non-max Suppression.

An innovation of this chapter is that point features, which are inputted to Vector
Attention, are obtained from intermediate feature volumes produced by the 3D backbone
instead of being computed from raw point clouds, thus saving both inference time and
training time. Moreover, the pooling of point features to compute ROI features takes
place in multiple feature volumes. Since each of these has a different resolution, meaning
a different level of occupancy, this pooling scheme ensures that ROIs of different sizes can
pool a sufficient amount of point features. Experiments on KITTI and NuScenes datasets
validate the effectiveness of our method.

The refinement stage presented in this chapter completes the set of solutions to 3D
object detection that gradually boosts detection models using
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1. Point cloud sequences instead of individual point clouds

2. V2X collaborative perception

3. A transformer-based refinement stage
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Chapter 5

CONCLUSIONS AND PERSPECTIVES

5.1 Conclusion

The safety of autonomous vehicles critically relies on their ability to detect objects in
3D. While which sensing modality is sufficient to achieve this goal is still an open question,
it is undeniable that LiDAR-based methods dominate every public benchmark. Their
success is because LiDARs provide accurate depth measurement, which is unavailable
when using RGB cameras, at a high density, which cannot be matched by RADARs.
However, LiDAR measurements - point clouds are severely affected by occlusion and
sparsity at long-range due to the operation principle of this sensor that relies on bounding
laser beam off objects’ surface.

The impact of these two issues on the safety of autonomous vehicles is highlighted
in a safety report published by Waymo stating that 2 out 8 accidents involving their
autonomous vehicles are due to occlusion at intersections [98]. As a result, a significant
research effort has been devoted to finding their solutions. The common numerator of
these prior works is to densify point clouds either in 3D space or in the latent space of
the BEV representation. The former upsample the sparse depth map made by LiDAR by
leveraging the fusion with RGB images [122, 138]. On the other hand, the latter transfers
the dense BEV representation of a teacher model, which was pre-trained on point clouds
densified using knowledge of object shape (available during training), to a student model
that processes raw point clouds [30, 115]. While achieving competitive results on public
benchmarks, these methods have not addressed the root cause of occlusion and sparsity
which is the lack of the LiDAR points in some regions.

This thesis fills the above gap in the literature with a framework that leverages the
availability of point clouds acquired from multiple perspectives to the fullest. The first
component of this framework is an off-the-shelf single-vehicle detention model enhanced by
the utilization of point cloud sequences as input, instead of individual point clouds. While
a straightforward concatenation of point clouds directly leads to improved precision in the
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detection of stationary and slow-moving objects, such improvement does not transfer to
medium-to-fast-moving objects because their representations in the BEV are misaligned
with their location (i.e., their bounding boxes). This representation misalignment is caused
by the shadow effect in the concatenated point cloud which manifests as points of a moving
object scattered along its trajectory. To extend the benefit of point cloud sequences,
Chapter 2 proposes a plug-in module, named Aligner, that estimates the scene flow and
uses this to rectify such misalignment. The result is an improved precision over models
using solely the concatenation of point cloud sequences. More importantly, the availability
of scene flow allows computing the velocity of detected objects by averaging the scene flow
of points that they contain. This velocity estimation is crucial for the second component
of our framework.

The second component of our framework targets the scenarios where the field of view of
the ego vehicle is heavily obstructed for an extended amount of time such that point cloud
sequences cannot offer more information compared to individual point clouds. An example
of such a scenario is when the ego vehicle waits at an intersection and is surrounded by a
large number of other road users. In these scenarios, any strengths of single-vehicle models
are effectively negated because most objects are unobservable and thus undetectable. Our
framework addresses this challenge following the methodology of the emerging collabo-
rative perception via V2X communication [66, 116, 126, 128]. In the presence of other
connected agents, including other connected autonomous vehicles and intelligent roadside
units, the perception capacity of the ego vehicle is enhanced by exchanging information
with others. Chapter 3 has pointed out the shortcomings of the current state-of-the-art
collaborative perception, which centers on exchanging BEV representation among con-
nected agents, including

— complicated architecture changes to accommodate the fusion of BEV representation
— strong assumption about inter-agent synchronization
— being unable to support a network of heterogeneous detection models

and derives a more practical method which we called lately fusion. This method is a combi-
nation of the late fusion method and early fusion method to strike a better performance-
bandwidth tradeoff compared to prior works. Its operation is made of the exchange of
connected agents’ output, which is the signature of the late fusion, and the fusion of ex-
changed information to the raw point cloud of the ego vehicle, which is similar to the
principal of the early fusion. The availability of detected objects’ velocity thanks to the
Aligner enables translating objects detected at a past timestep to the present. This dis-
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misses the need for inter-agent synchronization as each agent can store the most recent
set of detected objects in a database which the ego vehicle can query and compensate
for the time difference using the velocity of detected objects. The lately fusion achieves a
performance comparable to the early fusion, which is regarded as the performance ceil-
ing of collaborative perception while consuming as little bandwidth as the late fusion,
which is orders of magnitude smaller than the bandwidth needed for exchanging BEV
representation.

5.2 Perspective

5.2.1 Robustness to Localization Error

An important factor in the function of our lately fusion framework is the precise local-
ization of each connected agent. This is required to accurately transform an agent’s output
to the local frame of the ego vehicle. The positional and heading error of standard local-
ization approaches [19, 69, 123] can be modeled by Gaussian distributions with a standard
deviation of 0.2 meters and 0.2 degrees, respectively. Xu et al [128] have shown that this
level of localization noise severely reduces (up to 50%) the precision of all collaboration
frameworks including early, late, and mid collaborations. A study on the robustness of
our method lately collaboration approach is required to strengthen its practicality.

To the best of our knowledge, [128] is the only work that addresses the impact of con-
nected vehicles’ localization errors. Their solution is based on data augmentation which
randomly perturbs connected vehicles’ poses with random variables sampled from Gaus-
sian distributions. While being effective in preventing a sharp performance drop, their
method remains unaware of other agents’ localization uncertainty.

The flexibility of using MoDAR to communicate detection results among connected
agents in our lately collaboration framework enables explicit incorporation of connected
agents’ localization uncertainty to their detection results. In detail, let Σi denote the co-
variance matrix of the pose [xi, yi, zi, θi] in the common frame W of agent Ai and an ob-
ject detected by this agent be represented by bi,j = [xi,j, yi,j, zi,j, wi,j, li,j, hi,j, θi,j, si,j, ci,j].
Here, [xi,j, yi,j, zi,j, θi,j] defines the pose of the object in the body frame of Ai, [w, l, h]
is the object’s size, s is the confident score, and c is the object’s class. This object is
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transformed into the common frame W as the following

W


x

y

z

θ

 =


xi,j cos θi − yi,j sin θi + xi

xi,j sin θi + yi,j cos θi + yi

zi,j + zi

θi,j + θi

 (5.1)

Let f represent the left-hand side of the equation above. The covariance matrix Σi,j of
the pose of bi,j in the common frame W is

Σi,j = δ f

δ Wqi

Σi

(
δ f

δ Wqi

)T

(5.2)

with Wqi = [xi, yi, zi, θi]T . The value of Σi,j computed from Σi using the equation above
can be flattened and concatenated to the feature of the MoDAR point that represents bi,j,
to inform the detection model of the localization uncertainty of agent Ai. How this explicit
indication of connected agents’ localization uncertainty improves the robustness of the
collaborative perception performance, especially in comparison with data augmentation
as in [128] is an interesting research prospect.

5.2.2 Auto Label V2X Dataset using Object Discovery

To demonstrate the capacity of our lately collaboration framework in a real-world
setting, we set out to create our own V2X setup including one intelligent roadside unit
and two connected autonomous vehicles. Because detection models in our framework
are trained in a fully supervised manner, an annotated dataset is required. While the
V2X hardware is accessible thanks to the maturity of the LiDAR technology, manually
annotating thousands of point clouds is infeasible without a large budget. The recent
development in unsupervised object detection called object discovery [139, 144] offers
an interesting alternative to manual annotation. In the object discovery framework, an
initial set of labels (i.e., 3D bounding boxes) S0 is created using clustering methods (e.g.,
DBSCAN or HDBSCAN) coupled with a set of heuristics. For example, [139] builds S0

by first assigning a dynamic score to each LiDAR point. The higher the dynamic score
of a point, the higher its probability of belonging to a dynamic object. Then, each point
cloud is clustered based on points’ 3D coordinates and dynamic scores. Next, an up-
right bounding box is fit to each cluster using the algorithm developed in [132]. Finally,
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the initial set of labels S0 is created by filtering improbable boxes according to a list of
heuristics. Once S0 is obtained, a self-training process, Alg.2, is started to progressively
increase the performance of detection models.

Algorithm 2: Self-training
Input:
Point clouds in the dataset {Pi}M

i=1
The initial set of labels S0
Number of self-training round N
Output: Trained detector DN

S ← S0 ;
for i in {1, ..., N} do

Di ← randomly_initialize_weights()
Di ← train_detector

(
Di, {Pi}M

i=1 ,S
)

S ← make_prediction
(
Di, {Pi}M

i=1

)
// inference mode

end

A critical component of existing object discovery in point clouds is the unsupervised
clustering algorithm, which is usually DBSCAN or its variant HDBSCAN. Due to its
density-based nature, this algorithm requires a sufficiently high-fidelity measurement of
an object to successfully group all its points into a single cluster. Such a requirement can
only be satisfied at close ranges. For example, [144] limits its region of discovery to a
square of size 64 meters centered at the 64-beam LiDAR of the ONCE dataset [83].

When adopting the above object discovery algorithms to the V2X context, we leverage
the observation that a region at a long range with respect to one agent is at a close range
with respect to another. Therefore, the early-fusion point clouds (i.e., the concatenation of
point clouds obtained by every connected agent) offer a larger high-fidelity measurement
window. Our object discovery algorithm, illustrated in Fig.5.1, is as follows

1. Concatenate point clouds obtained by every connected agent in the frame of the
IRSU

2. Filter LiDAR points outside the discovery window and on the ground

3. Filter LiDAR points that do not belong to vehicle classes by projecting them to
IRSU’s images segmented by a semantic segmentation model

4. Fit an up-right bounding box to each cluster using the procedure proposed by [145]

5. Filter bounding boxes having excessive dimensions
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6. Refine surviving small bounding boxes by anchoring each box at the corner that is
closest to the LiDAR and expanding its width and height to match with precompute
statistic of vehicle dimension

We apply the above procedure and the self-training algorithm Alg.2 to train one detector
for processing point clouds of the IRSU and one for processing point clouds of Cars in the
V2X-Sim dataset. In our experiments, the discovery window is set to a 64-meter-square
square centered at the LiDAR.

Algorithm 3: Obtaining a long-range detector for the IRSU
Input:
Point clouds in the dataset {Pi}M

i=1
Number of self-training round N
short-range for initial object discovery r0
targeted detection range r1
Output: Trained long-range detector for the IRSU DI,r1

N

// for the IRSU
SI

0 ← discover_objects_in_irsu_frame
(
{Pi}M

i=1 , r0
)

DI
N ← self_training

(
{Pi}M

i=1 ,SI
0, N

)
// for Cars
SC

0 ← discover_objects_in_car_frame
(
{Pi}M

i=1 , r0
)

DC
N ← self_training

(
{Pi}M

i=1 ,SC
0 , N

)
// to extend IRSU detection range from r0 to r1

SI+C,r1
0 ←

for i in {1, ...,M} do
// all detectors are in inference mode
BI,r0 ← make_prediction

(
DI

N ,Pi, r0
)

// Pi limits in the range r0

BC,r0 ← make_prediction
(
DC

N ,Pi, r0
)

transform BC,r0 to IRSU frame
BI,r1 ← non_max_suppression

(
BI,r0 ,BC,r0

)
SI+C,r1

0 ← SI,r1
0 ∪ BI,r1

end
DI,r1

N ← self_training
(
{Pi}M

i=1 ,S
I+C,r1
0 , N

)
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To extend the detection range beyond the discovery window, we use trained short-
range detectors to generate detection for both Cars and IRSU in every sample of the
V2X-Sim dataset. Notice that each sample of this dataset contains point clouds collected
by a number of connected agents including 1 IRSU and at least 1 connected autonomous
vehicles. Then, the detection made by all agents are transformed to the reference frame of
the IRSU and merged using the Non-max Suppression procedure. The complete procedure
for obtaining a long-range detector for the IRSU is presented in Alg.3

The result of experiments in the V2X-Sim dataset is shown in Tab.5.1. In these exper-
iments, the architecture of every detector is PointPillar. Oracle models are trained with
manually created bounding boxes instead of discovered bounding boxes. These experi-
ments show that the model trained by labels from discovered objects and self-training can
reach up to 94% performance of the oracle model when a concatenation of point cloud
sequences obtained by the IRSU only is used as the input instead of the early fusion point
cloud.

Table 5.1 – Performance of Unsupervised Object Detection by Object Discovery and Self-
training

Detector r0 = 32m r1 = 51.2m Early Fusion mAP
Point Cloud train val

SI
0 ! ! 43.42

DI
1 ! ! 72.97

OracleI ! ! 87.0

SC
0 ! ! 22.52

DC
1 ! ! 62.77

SI
0 ! ! 28.65

SI+C
0 ! ! 36.54

DI
1

! ! 48.31
! 50.18

OracleI ! ! 60.19
! 52.94

During this preliminary study, we found that our auto-labeling method is heavily
affected by false positives due to the imperfect initial labels as well as the false positive
prediction used as labels during self-training. We hypothesize that false positives enable a
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(a) Get early fusion point cloud

(b) Remove ground then fit an up-right
bounding box to each cluster. Each clus-
ter is represented by a unique color

(c) Refine boxes’ size and heading

Figure 5.1 – Object discovery procedure
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predecessor to pass on its mistake to its successor during the self-training. If a type of false
positive occurs frequently enough (e.g., poles are falsely detected as pedestrians) in a label
set, the model trained using this label set will make the same false positive detection with
a high confidence score. As a result, these false positives survive the confidence threshold
and are present in the label set of the next self-training round. The impact of false positives
can be minimized by applying a high threshold on the confidence score of predictions used
as labels at the early stage of self-training. However, high confidence prediction usually
amounts to easy cases such as nearby unoccluded objects, a too-high confidence threshold
can limit the final model to detect easy objects only. A study on how to minimize the
presence of false positives in the labels set while reducing the model’s ability to self-
improve through self-training is necessary for the adaptation of auto-labeling. Moreover,
it is interesting to see how collaborative detection models trained on auto-label data
perform in comparison with those trained on manually labeled data.
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Appendix A1

A TWO-STAGE DATA ASSOCIATION

APPROACH TO 3D MULTI-OBJECT

TRACKING

The main chapters of this thesis have developed two solutions to the challenges posed
by low-fidelity measurements of LiDARs to object detection models including (i) using
point cloud sequences instead of individual point clouds as the input and (ii) collaborative
perception via V2X. This set of solutions enables the ego vehicle to detect objects that are
occluded and at long range. As the detection task is well addressed, the next step in the
AV perception stack is to track objects. The purpose of this step is the establishment of
objects’ historical trajectories which is essential for the prediction of their future location.

The capacity of the detection developed in prior chapters enables tackling the track-
ing task using the track-by-detection paradigm which formulates the tracking as a data
association problem. The core idea of this paradigm is that at each time step a set of
trajectories, which are also referred to as tracklets, or trajectories, that was established
in the previous time steps is grown by finding the correspondent of each tracklet in the
set of detection made at the current time step. Due to the coupling of the tracking per-
formance with the detection performance, a state-of-the-art detector usually produces
state-of-the-art tracking accuracy even when being integrated with a rather straightfor-
ward data association algorithm. As a result, most 3D Multi-Object Tracking (MOT)
comprises a strong detector and a simple Linear Assignment Problem (LAP) serving as
the data association module.

This chapter contributes to the literature on 3D MOT by adopting a two-stage data
association method which was successfully applied to image-based tracking in the 3D
setting. Our method outperforms the baseline using one-stage bipartite matching for data
association by achieving 0.587 Average Multi-Object Tracking Accuracy (AMOTA) on
the validation set of the NuScenes dataset and 0.365 AMOTA (at level 2) on the test set
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of the Waymo dataset. The code is released at https://github.com/quan-dao/track_
with_confidence

A1.1 Introduction

Multi-object tracking has been a long-standing problem in the computer vision and
robotics community since it is a crucial part of any autonomous system. From the early
work of tracking with hand-craft features, the revolution of deep learning which results
in highly accurate object detection models [75, 94, 96] has shifted the focus of the field
to the track-by-detection paradigm [7, 97]. In the framework of this paradigm, tracking
algorithms receive a set of object detection, usually in the form of bounding boxes, at
each time step and they aim to link detection of the same object across time to form
trajectories.

While image-based methods of this paradigm have reached a certain maturity, 3D
tracking is still in its early phase where most of the published approaches originated from
successful 2D exemplars. One popular method is [119] which extends [7] into 3D space.
In these works, detections are linked to tracks by solving a bipartite matching with the
Hungarian algorithm [57], then states of tracks are updated by a Kalman filter. Taking
a similar approach to establish a detection-to-track correspondence, [71] trains a network
for calculating the matching cost instead of using the 3D IoU. In [81, 136], objects’ poses
in the current and a number of future frames are predicted by deep neural networks. Thus,
tracks can be formed by greedy closest-point matching.

Even though 3D tracking has progressed rapidly thanks to the availability of stan-
dardized large-scale benchmarks such as KITTI [38], NuScenes [8], Waymo Open Dataset
[106], the focus of the field is placed on developing better object detection models rather
than developing better tracking algorithm as evidenced in the Table.A1.1 which presents
the performance measured by the AMOTA metric of tracking algorithms following the
track-by-detection paradigm and the performance of their object detector measured by
mAP.

AMOTA is a scalar value representing how well the algorithm does in limiting:
• ID switches (IDS): the number of times tracks are associated with wrong detections;
• False Positives (FP): the number of times real objects are missed detected;
• False Negatives (FN): the number of times the tracking algorithm reports tracks in

places where there are no real objects present.
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Table A1.1 – Summary of tracking methods which details are published in the leader
board of NuScenes and Waymo Open Dataset

Dataset Method Name Tracking Method AMOTA Object Detector mAP

NuScenes

CenterPoint [136] Greedy closest-point matching 0.650 CenterPoint 0.603
PMBM Poisson Multi-Bernoulli Mixture filter [33] 0.626 CenterPoint 0.603
StanfordIPRL-TRI [18] Hungarian algorithm with Mahalanobis distance as cost function and Kalman Filter 0.550 MEGVII [zhu2019megvii] 0.519
AB3DMOT [119] Hungarian algorithm with 3D IoU as cost function and Kalman Filter 0.151 MEGVII 0.519
CenterTrack Greedy closest-point mathcing 0.108 CenterNet [149] 0.388

Waymo

HorizonMOT [26] 3-stage data associate, each stage is an assignment problem solved by Hungarian algorithm 0.6345 AFDet [34] 0.7711
CenterPoint Greedy closest-point matching 0.5867 CenterPoint 0.7193
PV-RCNN-KF Hungarian algorithm and Kalman Filter 0.5553 PV-RCNN [102] 0.7152
PPBA AB3DMOT Hungarian algorithm with 3D IoU as cost function and Kalman Filter 0.2914 PointPillars and PPBA[17] 0.3530

There are two trends that can be observed in this table. First, tracking performance
experiences a boost when a better object detection model is introduced. Second, the
method of AB3DMOT [119] which uses the Hungarian algorithm on some metrics (e.g.
3D IoU, Mahalanobis distance) to perform data association, Kalman Filters to update
tracks’ states once they have associated detections and set of heuristic rules to manage
birth and death of tracks, is favored by most recent 3D tracking systems.

The reason for AB3DMOT’s popularity is that it is simple yet achieves competitive
results in challenging datasets at a significantly high frame rate (more than 200 FPS on
KITTI). However, its simplicity comes at the cost of the MOT system being vulnerable
to false associations due to occlusion or imperfect detections which is the case for objects
in a clutter or far away from the ego vehicle.

Aware of the shortage of a generic 3D tracking algorithm that can better handle oc-
clusion and imperfect detections, yet remains relatively simple, we adapt the image-based
tracking method proposed by [3] to the 3D setting. Specifically, this method is a two-
stage data association scheme. In this scheme, each tracklet is assigned a confidence score
computed based on how well the associated detection matches with itself. The first asso-
ciation stage aims to establish the correspondence between high-confident tracklets and
detection. The second stage matches the leftover detection with low-confident tracklets
as well as links low-confident tracklets to high-confident ones if they represent broken
trajectories.

This paper makes two contributions

• Our main contribution is the adaptation of an image-based tracking method to the
3D setting. In detail, we exploit a kinematically feasible motion model, which is
unavailable in 2D, to facilitate the prediction of objects’ poses. This motion model
defines the minimal state vector needed to be tracked.

• Extensive experiment carried out in various datasets proves the effectiveness of our
approach. In fact, our better performance, compared to AB3DMOT-style models,
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shows that adding a certain degree of re-identification can improve the tracking
performance while keeping the added complexity to the minimum.

A1.2 Related work

A multi-object tracking system in the track-by-detection paradigm consists of an object
detection model, a data association algorithm, and a filtering method. While the last
two components are domain agnostic, object detection models, especially learning-based
methods, are tailored to their operation domain (e.g. images or point clouds). To ensure
a fair comparison with existing tracking methods, we use the detection result provided by
baseline models of benchmarks (e.g. PointPillars of NuScenes)

Data association via the Hungarian algorithm was early explored in [37] where a 2-stage
tracking scheme was proposed for offline 2D tracking. Firstly, detections are linked frame-
by-frame to form tracklets by associating detections to tracklets via solving a LAP with
the Hungarian algorithm. The cost matrix of this LAP is computed based on geometric
and appearance cues. While the geometric cue is the 2D IoU, the appearance cue is the
correlation between two bounding boxes. Secondly, tracklets are associated with each
other to reduce trajectory fragments and ID switches due to occlusion. Similar to the
previous step, this association is also formulated as a LAP and solved by the Hungarian
algorithm.

Due to its batch-processing nature, the method of [37] cannot be applied to online
tracking. Bewley et al [7] overcome this by eliminating the second stage, which effec-
tively sacrifices the ability to re-identifies objects after a period of occlusion. Despite its
simplicity, the method proposed by [7], named SORT, achieves a competitive result in
MOT15[62] with lightning-fast inference speed (260 Hz). The success of SORT inspired
[119] to adapt it to the 3D setting by using 3D IoU as the affinity function. The per-
formance of SORT in the 3D setting is later improved in [18] showing the superiority
over 3D IoU of the Mahalanobis distance which is the magnitude of difference between
the expected detection given the ego vehicle pose and the real detection while taking
into account their uncertainty. Mauri et al [85] integrates the 3D version of SORT into a
complete perception pipeline for autonomous vehicles.

The two-stage association scheme is adapted to online tracking in [3] which proposes a
confidence score to quantify tracklets quality. Based on this score, tracklets are associated
with detections or other tracklets, or terminated. The appearance model learned by ILDA
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in [3] is improved by deep learning in the follow-up work [2]. Recently, this association
scheme is revisited in the context of image-based pedestrian tracking by [132] which
proposed to use the rank of the Hankel matrix as tracklets motion affinity. To be specific,
this technique estimates a tracklet’s dynamic by a linear regressor taking its previous
states as input. In noise-free scenarios, the order of such a regressor (i.e. the number of
past states needed to estimate the current state) is equal to the rank of the Hankel matrix
which formula can be found in [132]. The intuition behind this technique is that if two
tracklets belong to the same trajectory, explaining their merged trajectory would require
a low-order regressor. This technique is popular in image-based tracking despite being
prone to deterioration due to noise because of the absence of an accurate motion model
in this space. However, objects’ motion in 3D can be well explained by their kinematic
models. Therefore, our approach employs two different kinematic models for two different
categories of objects to have more computationally efficient and accurate motion affinity.

Differently from [3] and its related works, this paper applies the two-stage association
scheme to online 3D tracking. In addition, we can achieve strong performance while relying
solely on geometric cues to compute tracklet affinity by leveraging the Constant Turning
Rate and Velocity (CTRV) motion model which can accurately predict objects’ position
in 3D space by exploiting their kinematics.

A1.3 Method

A1.3.1 Problem Formulation

Online MOT in the sense of track-by-detection aims to gradually grow the set of
tracklets R0:t = {T i}|R0:t|

i=1 by establishing correspondences with the set of detections
received at every time step Bt = {bj

t}
|Bt|
j=1 and updating tracklets state accordingly. A

detection bj
t at time step t encapsulates information of an object as a 3D bounding box

bj
t =

[
x y z θ w l h

]T
, (A1.1)

here, [x, y, z] is the position of the box’s center, θ is its heading direction, and [w, l, h] is its
size. It is worth noticing that in the context of autonomous driving, objects are assumed
to remain in contact with the ground; therefore, their detections are up-right bounding
boxes whose orientation is described by a single number - the heading angle. A tracklet is a
collection of state vectors corresponding to the same object T i = {xi

k|0 ≤ tis ≤ k ≤ tie ≤ t},
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here tis, tie are respectively the starting- and ending time of the tracklet.
The correspondence between R0:t and Bt can be formally defined as finding the set

R∗
0:t that maximizes its likelihood given Bt.

R∗
0:t = argmax

R0:t

p (R0:t|Bt) (A1.2)

Due to the exponential growth of possible associations between R0:t and Bt, Eq.(A1.2)
is computationally intractable after a few time steps. Here, such a correspondence is
approximated by the two-stage data association proposed by [3] as shown in the following.

A1.3.2 Two-stage Data Association

Tracklet Confidence Score

The reliability of a tracklet is quantified by a confidence score which is calculated
based on how well-associated detections match with its states across its life span and how
long its corresponding object was undetected.

conf
(
T i
)

=
 1
Li

∑
k∈[ti

s,ti
e]|vi(k)=1

Λ
(
T i, dj

k

)× exp
(
−βW

Li

)
(A1.3)

where vi(k) is a binary indicator that takes 1 if the tracklet has a detection bj
k associated

with it at time step k, and 0 otherwise. Li is the number of time steps that the traklet
gets associated with detection. Λ(·) is the affinity function that evaluates the similarity
between a track and a detection. Its detail will be presented in the following subsection.
β is a tuning parameter that takes a high value if the object detection model is accurate.
W = t− tis−Li + 1 is the number of time steps that the tracklet was undetected (i.e. did
not have associated detection) calculated from its birth to the current time step t.

Applying a threshold τ c this confidence score divides the set R0:t into a subset of high-
confident tracklets Rh

0:t = {T i,h|conf (T i) > τ c} and a subset of low-confident tracklets
Rl

0:t = {T i,l|conf (T i) ≤ τ c}. These two subsets are the fundamental elements of the
two-stage association pipeline shown in Fig.A1.1

Affinity Function

Affinity function Λ(·) is to compute how similar a detection is to a tracklet or a tracklet
is to another. As mentioned earlier, due to the lack of colorful texture in point clouds, the
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Figure A1.1 – The pipeline of two-stage data association. In the first stage - the local
association establishes the correspondences between detections at this time step and high-
confident tracklets. Then, the global association stage matches each low-confident tracklets
with either a high-confident tracklet or a left-over detection or terminates it.

affinity function is just comprised of geometric cues. Specifically, it is the sum of position
affinity and size affinity.

Λ(T i, dj
t) = Λ(T i, dj

t)p + Λ(T i, dj
t)s (A1.4)

The scheme for computing position affinity between a tracklet and detection or between
two tracklets is shown in Fig.A1.2

(a) tracklet-to-detection position affinity (b) tracklet-to-tracklet position affinity

Figure A1.2 – The computational scheme of position affinity. The filled triangles (or
rectangles) are subsequent states of a tracklet. The colored arrow represents the time
order: the closer to the tip, the more recent the state. The triangle (or rectangle) in the
dash line is the state propagated forward (or backward) in time. The covariance of these
propagated states are denoted by ellipses with the same color. The two-headed arrows
indicate the Mahalanobis distance. In subfigure (a), the blue circle denotes a detection.

As shown in Fig.A1.2a, the position affinity between a tracklet and a detection is
defined as the Mahalanobis distance between tracklet’s last state propagated to the current
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time step t and the measurement vector zj
t = [x, y, z, θ]T extracted from the detection bj

t

Λ(T i, dj
t)p =

(
h
(
x̄i

e

)
− zj

t

)T
· S−1 ·

(
h
(
x̄i

e

)
− zj

t

)
(A1.5)

where x̄i
e is the last state of tracklet T i propagated to the current time step using the

motion model which will be presented below. h(·) is the measurement model computing
the expected measurement using the inputted state.

The matrix S is the covariance matrix of the innovation which is the difference between
the expected measurement and its true value

S = H ·P ·HT + R (A1.6)

here, H = δh/δx is the Jacobian of the measurement model. P,R are covariance matrix
of x̄i

e and zj
t , respectively. These covariance matrices are calculated based on training data

using the approach proposed by [18].
In the case of two tracklets T i and T j, assuming T j starts after T i ended, their motion

affinity is, according to Fig.A1.2b, is the sum of

• The Mahalanobis distance between the last state of T i propagated forward in time
and the first state of T j

• The Mahalanobis distance between the first state of T j propagated backward in
time and the last state of T i

Λ(T i, T j)p = Λ(T j, x̄i
e)p + Λ(T i, x̄j

s)p (A1.7)

here, x̄i
e is the last state of tracklet T i propagated forward in time to the first time step

of tracklet T j, while x̄j
s is the first state of tracklet T j propagated backward in time to

the last time step of tracklet T i.
The size affinity Λ(T i, dj

t)s is computed as following

Λ
(
T i, dj

t

)s
= −|w

i
e − w

j
t |

wi
e + wj

t

· |l
i
e − l

j
t |

lie + ljt
· |h

i
e − h

j
t |

hi
e + hj

t

(A1.8)

here, [wi
e, l

i
e, h

i
e] are the size of the last state of tracklet T i, while [wj

t , l
j
t , h

j
t ] are the size

of the detection dj
t . In the case of two tracklets T i and T j, assuming T j starts after T i

ended, their size affinity is
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Λ
(
T i, T j

)s
= −|w

i
e − wj

s|
wi

e + wj
s

· |l
i
e − ljs|
lie + ljs

· |h
i
e − hj

s|
hi

e + hj
s

(A1.9)

The subscript e, s in Equation (A1.9) respectively denote the ending and starting state
of a tracklet.

To reduce the risk of false association, a threshold is applied to the affinity

Λ(T i,bj
t) =

Λ(T i,bj
t), if Λ(T i,bj

t) < σ

∞, otherwise
(A1.10)

Local Association

In this association stage, high-confident tracklets (Th
0:t) are extended by their corre-

spondence in the set of detections Bt. This tracklet-to-detection is found by solving the
LAP characterized by the cost matrix L as following

L =
[
li,j
]
∈ Rh×d, with li,j = −Λ

(
T i,h,bj

t

)
, T i,h ∈ Rh

0:t (A1.11)

where h, d are respectively the number of high-confident tracklets and the number of
detections. The intuition of this association stage is that because tracklets with high-
confident have been tracked accurately for a number of time steps, the affinity function
can identify if a detection belongs to the same object as the tracklet with high accuracy,
thus limiting the possibility of false correspondences. In addition, low-confident tracklets
are usually resulted from fragment trajectories or noisy detections, excluding them from
this association stage help reduces the ambiguity.

Global Association

As shown in Figure A1.1, the global association stage carries out the following tasks

• Matching low-confident tracklets with high-confident ones

• Matching low-confident tracklets with detections left over by the local association
stage

• Deciding to terminate low-confident tracklets

These tasks are simultaneously solved as a LAP formulated by the following cost matrix
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G(l+d′)×(h+l) =
 Al×h Bl×l

∞d′×h Cd′×l

 (A1.12)

here, l, d are respectively the number of low-confident tracklets and detections left over
by the local association stage. ∞d′×h is the matrix of size d′× h with every element is set
to ∞. Recall h is the number of high-confident tracklets. Submatrix A is the cost matrix
of the event where low-confident tracklets are matched with high-confident ones

A = [ai,j] ∈ Rl×h, with ai,j = −Λ
(
T i,l, T j,h

)
(A1.13)

Submatrix B represents the event where low-confident tracklets are terminated.

B = [bi,j] ∈ Rl×l, with bi,j =

− log (1− conf (T i)) , if i = j

∞, otherwise
(A1.14)

Finally, submatrix C is the cost of associating low-confident tracklets with detections left
over by the local association stage.

C = [ci,j] ∈ Rd′×l, with ci,j = −Λ
(
T j, di

t

)
(A1.15)

The solution to the LAP in this stage and in the Local Association stage is the asso-
ciation that minimize the cost and can be either found by the Hungarian algorithm for
the optimal solution or by a greedy algorithm which iteratively picks and removes corre-
spondence pair with the smallest cost until there is no pair has cost less than a threshold.
The detail of this greedy algorithm can be found in Alg.4 in Sec.A1.3.4.

Once a detection is associated with a tracklet, its position, and heading are used to
update the tracklet’s state according to the equation of the Kalman Filter, while its sizes
are averaged with the tracklet’s sizes in the past few time steps to result in updated sizes.
Detections do not get associated in the global association stage and are used to initialize
new tracklets.

A1.3.3 Motion Model and State Vector

Leveraging the fact that objects are tracked in 3D space of a common static reference
frame which can be referred to as the world frame, the motion of objects can be described
by more kinematically accurate models, compared to the commonly used Constant Veloc-
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ity (CV) model. Here, we use the CTRV model to predict the motion of car-like vehicles
(e.g. cars, buses, trucks), while keeping the CV model for pedestrians.

For car-like vehicles, its state can be described by

x = [x, y, z, θ, v, θ̇, ż]T (A1.16)

here, [x, y, z] is the location in the world frame of the center of the bounding box rep-
resented by the state vector, θ is the heading angle, v is the longitudinal velocity (i.e.
velocity along the heading direction), θ̇, ż are respectively velocity of θ and z. The motion
on the XY plane of car-like vehicles can be predicted using CTRV as following

xt+1 = xt +



v
θ̇

(
sin(θ + θ̇∆t)− sin(θ)

)
v
θ̇

(
− cos(θ + θ̇∆t) + cos(θ)

)
ż∆t
θ̇∆t

0
0
0


(A1.17)

where, ∆t is the sampling time. Note that in Equation (A1.17), z is assumed to evolve
with constant velocity. In the case of zero turning rate (i.e. θ̇ = 0),

xt+1 = xt +
[
v cos(θ) v sin(θ) ż∆t θ̇∆t 0 0 0

]T
(A1.18)

The state vector of a pedestrian is

x =
[
x y z θ ẋ ẏ ż θ̇

]T
(A1.19)

The motion of pedestrians is predicted according to the CV model

xt+1 = xt +
[
ẋ ẏ ż θ̇ 0 0 0 0

]T
·∆t (A1.20)

A1.3.4 Complexity Analysis

As shown in Fig.A1.1, our data association pipeline is made of four components: Local
Association, Global Association, Update Tracklets’ States, and Update Tracklets’ Confi-
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dence. This section gives an analysis of the time complexity referred to as the complexity
of these four components.

Let d and h be the number of detections and the number of high-confident tracklets,
respectively. The time complexity of the Local Association step is the sum of the com-
plexity of computing the cost matrix L in Eq.(A1.11) and solving the LAP represented
by L. Since L has the size of h× d, the complexity of computing L is O(hd).

The LAP represented by L can be solved by either the Hungarian algorithm or a greedy
algorithm [18]. The complexity of the Hungarian algorithm is O(hd2). On the other hand,
the greedy algorithm is made of two steps presented in Alg.4. The first step of sorting
the flattened cost matrix C ∈ Rr×c has the complexity of O(rc log(rc)) = O(rc log(c))
assuming c > r. The complexity of the second step in the best-case scenario where the for
loop is stopped at k = 0, meaning there is no valid association, is O(1). The worst case
scenario happens when the For Loop proceeds till the last value of k, which means every
possible association has an affinity less than the threshold σ. In this case, the complexity
is O(|cflat|) = O(rc). As a result, the complexity of the greedy algorithm is

O(rc log(c)) + O(rc) = O(rc log(c)) (A1.21)

Using Eq.(A1.21), the complexity of the Local and Global Association step solved by the
greedy algorithm is O(hd log(d)) and O((l + d′)(h + l)) log(l + d′), respectively. Recall l
and d′ are the number of low-confident tracklets and the number of detections left over
by the Local Association step. The other steps, Update Tracklets’ States and Update
Tracklets’ Confidence have linear complexity because they are made of one loop through
all tracklets.

A1.4 Experiments

The effectiveness of our method is demonstrated by benchmarking against SORT-style
baseline models on 3 large-scale datasets: KITTI, NuScenes, and Waymo. In addition, we
perform ablation studies using the NuScenes dataset to better understand the impact of
each component on our system’s general performance.
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Algorithm 4: Greedy algorithm for solving LAP
Input: Cost matrix C ∈ Rr×c and cost threshold σ
Result: List of pairs of indices. Each pair of (i, j) denotes the correspondence

between a row i and a column j of the inputted cost matrix C
Flatten C into an array cflat and sort cflat into the ascending order ;
P = ∅ ;
for k ∈ {0, 1, ..., |cflat| − 1} do

if cflat > σ then
break ;

else
j = k mod c ;
i = (k − j)/c;
if both i and j aren’t in any pairs in P then

add (i, j) to P
end

end
end

A1.4.1 Tuning the hyper parameters

There are 3 hyperparameters in our data association pipeline: the confidence threshold
τ c, the detection model accuracy β in Eq.(A1.3), and the affinity threshold σ.

The confidence threshold τ c is set to 0.5 according to [3]. It is worth noticing that [3]
suggests that this parameter does not have any significant effect on the tracking perfor-
mance. The value of β is chosen empirically such that a high-confident tracklet becomes
low-confident after being undetected for three frames.

As observed from experiments, the position affinity Λ(·, ·)p is the dominant component
in the tracklet-to-detection and tracklet-to-tracklet affinity. Since the position affinity,
which is the Mahalanobis distance between expected detection and real detection, is χ2

distributed, the affinity threshold σ in Eq.(A1.10) is chosen according to the percentile of
χ2 distribution where the position affinity resulted from a correct association is expected
to fall into. Notice that the degree of freedom of the χ2 distribution of our interest is 4
due to the dimension of the measurement vector.

Intuitively, the affinity threshold σ determines how conservative our tracking algorithm
is. A small σ makes our algorithm be more skeptical by rejecting detections that are close,
but not close enough to the prediction of tracks’ states. This works well in the scenario
where a large number of false-positive detections are present (e.g. Waymo dataset). How-
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ever, too small σ can reject correct detections thus deteriorating the tracking performance.
The method used for searching for a good value of σ is

• Performs a coarse grid search with the expected percentile of χ2 distribution in the
set {10%, 50%, 90%, 95%, 97.5%, 99%} which means the value of σ is in the set
{0.53, 1.67, 3.89, 4.75, 5.57, 6.64} while keeping the rest of the hyperparameters un-
changed. Note that here the value of the threshold σ is just half of the corresponding
value in the χ2 Distribution Table. This is because the motion affinity is scaled by
half in our implementation to reduce its dominance over the size affinity.

• Once a performance peak is identified at σ̂, a fine grid search is performed on the
set {σ̂ − 0.2, σ̂ − 0.1, σ̂, σ̂ + 0.1, σ̂ + 0.2}

The resulting value of σ on KITTI, NuScenes, and Waymo are respectively 6.5, 4.5, and
1.5.

A1.4.2 Tracking Results

Evaluation Metrics Classically, MOT systems are evaluated by the CLEAR MOT
metrics [6] which compute tracking performances based on three cores quantities which
are the number of False Positives, False Negatives, and ID Switches. Intuitively, this set
of metrics aims at evaluating a tracker’s precision in estimating tracks’ states as well as
its consistency (i.e. keeping an unique ID for each even in the presence of occlusion).
As pointed out by [63] and later by [119], there is a linear relation between MOTA and
object detectors’ recall rate, as a result, MOTA does not provide a well-rounded evaluation
performance of trackers. To remedy this, [119] proposes to average MOTA and MOTP
over a range of recall rate, resulting in two integral metrics AMOTA and AMOTP which
become the norm in recent benchmarks.

Datasets To verify the effectiveness of our method, we benchmark it on 3 popular
autonomous driving datasets which offer 3D MOT benchmarks: KITTI, NuScenes, and
Waymo. These datasets are collections of driving sequences collected in various envi-
ronments using a multi-modal sensor suite including LiDAR. KITTI tracking benchmark
interests in two classes of objects which are cars and pedestrians. Initially, KITTI tracking
was designed for MOT in 2D images, and recently [119] adapts it to 3D MOT. NuScenes
concerns a larger set of objects which comprises of cars, bicycles, buses, trucks, pedes-
trians, motorcycles, trailers. Waymo shares the same interest as NuScenes but groups
car-like vehicles into a metaclass.
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Public Detection As can be seen in Tab.A1.1, AMOTA highly depends on the pre-
cision of object detectors. Therefore, to have a fair comparison, the baseline detection
results made publicly available by the benchmarks are used as input to our tracking sys-
tem. Specifically, we use Point-RCNN detection for the KITTI dataset, MEGVII detection
for NuScenes, and PointPillars with PPBA detection for Waymo.

The performance of our model compared to the SORT-style baseline model in 3 popular
benchmarks is shown in Tab.A1.2. As can be seen, our model consistently outperforms

Table A1.2 – Quantitative performance of our model on KITTI validation set, NuScenes
validation set, and Waymo test set. AMOTA is the primary metric of these benchmarks.
FP, FN IDS and FRAG are absolute numbers in the case of KITTI and NuScenes, while
they are divided by the total number of objects in Waymo. The performance on Waymo
is calculated at the difficulty of LEVEL 2.

Dataset Method AMOTA↑ AMOTP↓ MT↑ ML↓ FP↓ FN↓ IDS↓ FRAG↓

KITTI (val) Ours 0.415 0.691 NA NA 766 3721 10 259
AB3DMOT[119] 0.377 0.648 NA NA 696 3713 1 93

NuScenes (val) Ours 0.583 0.748 3617 1885 13439 28119 512 511
StanfordIPRL-TRI[18] 0.561 0.800 3432 1857 12140 28387 679 606

Waymo (test @ L2) Ours 0.365 0.263 NA NA 0.089 0.533 0.014 NA
PPBA-AB3DMOT 0.291 0.270 NA NA 0.171 0.535 0.003 NA

the baseline model in terms of the primary metric AMOTA, thus proving the effectiveness
of the 2-stage data association. Specifically, the improvement is 10.080%, 3.922%, 25.430%
for KITTI, NuScenes, and Waymo. It is worth noticing that, our approach has more track
fragmentations, 259 compared to 93 of the baseline in KITTI. The reason for this is that
at each time step tracklets have no matched detections are not reported by our approach,
while the baseline predicts their pose using the CV model and reports this prediction.

The comparison runtime on the KITTI dataset of our tracking algorithm against
AB3DMOT [119] is shown in Tab.A1.3. Despite the additional complexity added by the
second stage of the data association, our approach can achieve a runtime that is close
to AB3DMOT on KITTI and exceeds the real-time speed by a large margin. On more
challenging datasets, the object detector generates a significantly larger number of de-
tections per frame on average, 57.50 on NuScenes and 264.18 on Waymo, compared to
10.04 of KITTI. This large number of detections enlarges the cost matrix of the Local and
Global Association step, thus making the LAPs represented by them more costly to solve.
T herefore, the runtime of our approach is reduced to 1.44 frames-per-second (fps) on
NuScenes and 0.35 fps on Waymo. This runtime can be greatly improved if our approach

123



is re-implemented in a compiling language such as C++.

Table A1.3 – Comparison of our approach’s runtime on KITTI dataset against
AB3DMOT’s

Class of objects Our runtime (fps) AB3DMOT’s runtime (fps)
Car 115 186

Pedestrian 497 424
Cyclist 1111 1189

A1.4.3 Ablation Study

In this ablation study, the default method has the following settings

• Two stages of data association (local and global). Each stage is formulated as a LAP
and solved by a greedy matching algorithm [18].

• The affinity function is the sum of position affinity and size affinity (as in Equation
(A1.4)).

• The motion model is CTRV for car-like objects (cars, buses, trucks, trailers, bicycles)
and CV for pedestrians.

• The value of hyperparameters are set as following: β = 1.35 (in Eq.(A1.3)), tracklet
confidence threshold τ c = 0.45, and the affinity threshold σ = 4.5 (in Eq.(A1.10))

To understand the effect of each component on the system’s general performance, we
modify or remove each of them and carry out experiments with the rest of the system
being kept the same as the default method and the same hyperparameters. The changes
and the resulting performance are shown in Tab.A1.4.

Table A1.4 – Ablation study using NuScenes dataset.

Method AMOTA↑ AMOTP↓ MT↑ ML↓ FP↓ FN↓ IDS↓ FRAG↓
Default 0.583 0.748 3617 1885 13439 28119 512 511
Hungarian for LAP 0.587 0.743 3609 1880 13667 28070 596 573
No ReID 0.583 0.748 3616 1882 13429 28100 504 510
Global assoc only 0.327 0.924 2575 2244 26244 38315 4215 3038
Const Velocity only 0.567 0.781 3483 1966 12649 29427 718 606
No size affinity 0.581 0.748 3595 1904 13423 28448 512 508
3D IoU as affinity 0.535 0.898 3090 2075 9168 33041 550 528
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It can be seen that solving the matching problem (formulated as a LAP) with the Hun-
garian algorithm instead of the greedy matching algorithm of [18] results in a marginal
increase of AMOTA; however, this increased performance comes at the cost of increased
execution time since the Hungarian algorithm has higher time complexity (cubic time
compared to quadratic time). In addition, using the CV model only reduces the AMOTA
by 2.744% compared to the default setting which shows the effectiveness of the CTRV
model in predicting the motion of car-like vehicles. Finally, performing global associa-
tion only deteriorates the tracking performance and confirms the importance of the local
association step which significantly reduces the association ambiguity for the second stage.

A1.5 Conclusion

In conclusion, this chapter has successfully adapted an image-based tracking method
to the 3D space. Particularly, extensive experiments carried out in various datasets show
that our two-stage data association pipeline can result in significant improvement in the
tracking accuracy by adding a certain degree of re-identification while keeping the added
complexity to the minimum. Nevertheless, medium and long-term occlusion remains chal-
lenging for our approach due to the fact that the affinity function relies mostly on tracklets’
position whose prediction’s reliability reduces with the length of the prediction horizon.
In the domain of image-based MOT, this problem is offend solved by exploiting trackets’
appearance with Siamese networks [10, 61]. However, the extension of this method to
3D space is not straightforward due to the lack of color and texture in point clouds. A
possibility to resolve this issue is to associate 3D tracklets with 2D object detections, then
carry out re-identification in images. Taking a different approach, a recent work in graph
neural networks [120] proposes to jointly learn affinity functions from point clouds and
images.
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Titre : Résoudre l’occlusion et la faible densité à distance des nuages de points pour la détec-
tion d’objets 3D par perception collaborative

Mots-clés : perception collaborative, V2X, détection objets en 3D, apprentissage profond

Résumé : La détection précise d’objets 3D
est un enjeu majeur pour l’intégration sécu-
risée des véhicules autonomes dans le trafic
routier. Le LiDAR, offrant des mesures de pro-
fondeur précises et relativement denses, est
très présent dans les bases de données de
référence. Cependant, ses nuages de points
sont clairsemés à longue distance et sou-
mis aux occlusions. L’état de l’art propose
alors des techniques de suréchantillonnage,
par fusion avec des caméras ou par distil-
lation des connaissances, afin d’obtenir de
bonnes détections. La première méthode per-
met de reconstruire la profondeur des pixels
afin de générer des points supplémentaires
tandis que la seconde vise à obtenir des

nuages de points imitant ceux sans occlusion
ni dispersion. Comme ces approches utilisent
des mesures obtenues par le véhicule ego à
chaque pas de temps, la détection est inévi-
tablement affectée par ces régions inobser-
vables. Conscient des limites des méthodes
à perspective unique, ces travaux de thèse
s’efforcent à résoudre les problèmes d’occlu-
sion et de rareté en exploitant des perspec-
tives multiples. Notre approche exploite d’une
part les mesures du véhicule ego par sé-
quences : au cours de son déplacement dans
le temps. D’autre part, nous proposons une
perception collaborative basée sur la fusion
des informations obtenues par de multiples
agents connectés.

Title: Toward Solving Occlusion and Sparsity in Deep Learning-Based 3D Object Detection
through Collaborative Perception

Keywords: collaborative perception, V2X, 3D object detection, deep learning, LiDAR

Abstract: Detecting objects at a high pre-
cision in 3D is critical for the safety of
autonomous vehicles. LiDAR measurements,
presented as point clouds frequently suffer
from occlusion and sparsity. Prior works ad-
dress these challenges by upsampling (i) point
clouds via fusion with RGB cameras or (ii) their
representations via knowledge distillation. Be-
cause these approaches are designed to use
point clouds obtained only by the ego vehi-
cle at a single timestep, they are inevitably af-
fected by unobservable regions caused by oc-
clusion and sparsity. Aware of the limitations of

single-perspective methods, this thesis strives
to resolve occlusion and sparsity by leveraging
point clouds obtained from multiple perspec-
tives to the fullest. The core of our approach is
made of two components that are respectively
built on the utilization of point cloud sequences
and collaborative perception via V2X commu-
nication. While the former is about using infor-
mation obtained by the ego vehicle during its
motion through time, the latter is based on the
fusion of information obtained by multiple con-
nected agents scattering over space.
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