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 Evelyn GUTIERREZ 

Fusion des données thermiques et tridimensionnelles pour le 
suivi des plaies chroniques 

 
Résumé :   

Les plaies chroniques constituent un problème de santé grave car elles ne suivent pas un processus de 
guérison normal et prennent beaucoup de temps à guérir. Le suivi de l'évolution de la plaie est vital pour 
évaluer le traitement actuel et déterminer la nécessité d'une approche différente. Traditionnellement, cette 
évaluation est basée sur des mesures manuelles et une observation visuelle, qui peuvent être subjectives et 
non quantitatives, entraînant une incertitude dans le suivi du patient.   

Cette thèse propose d'exploiter l'imagerie couleur et thermique des caméras embarquées dans un smartphone 
pour fournir un outil non invasif d'évaluation des plaies. Des appareils standard et peu coûteux garantissent 
son applicabilité et son évolutivité en milieu clinique, avec une acquisition rapide et simple.  

Une méthodologie a été proposée pour créer des modèles thermiques 3D réalistes et précis à partir d'un 
ensemble limité d'images capturées avec des appareils portables et en utilisant la prise de vue à main levée. 
En outre, la méthodologie proposée a été testée dans plusieurs cas de blessures, et une preuve de concept 
des mesures obtenues avec le modèle thermique 3D a été démontrée pour l'évaluation des blessures dans 
une étude clinique dans un centre médical à Lima, au Pérou.  

Mots clés : Modèles 3D, thermographie, plaies chroniques, appareils portables 
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Fusion of thermal and three-dimensional data for chronic wound 

monitoring 
 

Summary:   

Chronic wounds are a serious health problem because they do not follow a normal healing process and take 
a long time to heal. Monitoring the evolution of the wound is vital to evaluate the current treatment and 
determine the need for a different approach. Traditionally, this assessment is based on manual measurements 
and visual observation, which can be subjective and non-quantitative, leading to uncertainty in patient follow-
up.   

This thesis proposes to leverage color and thermal imaging from cameras embedded in a smartphone to 
provide a non-invasive tool for wound assessment. Standard and low-cost devices ensure its applicability and 
scalability in clinical setting, with fast and straightforward acquisition.  

We propose a methodology to create realistic and accurate 3D thermal models from a limited set of images 
captured with portable devices and using freehand shooting. In addition, the proposed methodology was tested 
in several cases of wounds, and a proof of concept of the measurements obtained with the 3D thermal model 
was demonstrated for wound evaluation in a clinical study in a medical center in Lima, Peru.  

Keywords: 3D models, thermography, chronic wounds, portable devices. 
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Abstract

Chronic wounds are a serious health problem because they do not follow a normal healing process
and take a long time to heal. Monitoring the evolution of the wound is vital to evaluate the current
treatment and determine the need for a different approach. Traditionally, this assessment is based
on manual measurements and visual observation, which can be subjective and non-quantitative,
leading to uncertainty in patient follow-up.

This thesis proposes to leverage color and thermal imaging from cameras embedded in a smartphone
to provide a non-invasive tool for wound assessment. Standard and affordable devices enables its
applicability and scalability in clinical settings.

We propose a methodology to create realistic and accurate 3D thermal models from a set of images
captured with affordable and handheld devices. This approach was automated and evaluated in
clinical settings on a total of 68 wound cases with varying degrees of severity, in Lima, Peru.
Our findings show the feasibility of this method and highlight its potential for wound assessment
through the use of thermal metrics derived from the 3D thermal models.

Keywords: 3D models, thermography, chronic wounds, portable devices.
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Résumé (Français)

Les plaies chroniques constituent un problème de santé grave car elles ne suivent pas un processus
de guérison normal et prennent beaucoup de temps à guérir. Le suivi de l’évolution de la plaie est
vital pour évaluer le traitement actuel et déterminer la nécessité d’une approche différente. Tradi-
tionnellement, cette évaluation est basée sur des mesures manuelles et une observation visuelle, qui
peuvent être subjectives et non quantitatives, entraînant une incertitude dans le suivi du patient.

Cette thèse propose d’exploiter l’imagerie couleur et thermique des caméras embarquées dans un
smartphone pour fournir un outil non invasif d’évaluation des plaies. Des appareils standards et
abordables permettent son applicabilité et son adaptabilité en milieu clinique.

Nous proposons une méthodologie pour créer des modèles thermiques 3D réalistes et précis à partir
d’un ensemble d’images capturées avec des appareils portables et abordables. Cette approche a
été automatisée et évaluée en milieu clinique sur un total de 68 cas de plaies de différents degrés
de gravité, à Lima, au Pérou. Nos résultats montrent la faisabilité de cette méthode et mettent
en évidence son potentiel pour l’évaluation des plaies grâce à l’utilisation de métriques thermiques
dérivées des modèles thermiques 3D.

Mots clés : Modèles 3D, thermographie, plaies chroniques, appareils portables
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Resumen (Español)

Las heridas crónicas constituyen un grave problema de salud porque no siguen un proceso normal
de cicatrización y tardan mucho tiempo en curar. El seguimiento de la evolución de la herida
es vital para evaluar el tratamiento actual y determinar la necesidad de un enfoque diferente.
Tradicionalmente, esta evaluación se basa en mediciones manuales y en la observación visual, que
pueden ser subjetivas y no cuantitativas, lo que genera incertidumbre en el seguimiento del paciente.

Esta tesis propone aprovechar las imágenes térmicas y a color de cámaras integradas en un smart-
phone para proporcionar una herramienta no invasiva de evaluación de heridas. Los dispositivos
estándar y asequibles permiten su aplicabilidad y escalabilidad en entornos clínicos.

Proponemos una metodología para crear modelos térmicos 3D realistas y precisos a partir de un
conjunto de imágenes captadas con dispositivos asequibles y portátiles. Este enfoque se automatizó
y evaluó en entornos clínicos sobre un total de 68 casos de heridas con distintos grados de gravedad,
en Lima, Perú. Nuestros hallazgos muestran la viabilidad de este método y destacan su potencial
para la evaluación de heridas mediante el uso de métricas térmicas derivadas de los modelos térmicos
3D.

Palabras clave: modelos 3D, termografía, heridas crónicas, dispositivos portátiles
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Introduction

The problem

Chronic wound treatment are a serious health concern with significant costs, accounting for up
to 4% of healthcare expenditure in Europe and increasing every year[1]. Worldwide, estimations
suggest that 15% of people with diabetes will suffer from chronic wound and diabetic foot ulcers
at least once in their lifetime. The consequences of these conditions can be severe, often necessi-
tating limb amputation and, in some cases, yielding to death. Mortality rates associated to these
complications are similar to certain types of cancer. [2]–[4].

Chronic wounds, such as leg ulcers, pressure sores, and diabetic wounds, present a persistent
challenge as they deviate from expected healing timelines, often requiring months to heal. In such
cases, proper monitoring of these wounds is crucial to avoid complications and ensure optimal
healing outcomes. Nevertheless, traditional wound monitoring predominantly rely on subjective
visual assessment and manual measurements, often leading to time-intensive and uncomfortable
experiences for patients.

In recent decades, imaging tools have seen significant advancements, emerging as valuable resources
for automatically providing objective metrics on the visual characteristics of wounds, facilitating
assessment and follow-up procedures. Furthermore, recent progress in digital camera technology
integrated into smartphones has made it effortless to obtain estimates of 2D metrics simply through
image capture. These developments signify promising possibilities for more accessible and efficient
wound assessment techniques.

Beyond 2D imaging, 3D imaging and thermography have also shown promising results in wound
evaluation. While 2D images serve as a cost-efficient tool for wound follow-up, they provide
limited wound information. In contrast, 3D models offer not only rich visualization but also depth
information which can accurately depict the severity of wound’s condition [5], [6]. On the other side,
thermal information of the skin surface has also provided useful information for wound assessment,
especially in monitoring wound progression and detecting infections [7]–[9]. Furthermore, there
are now readily accessible and cost-effective thermal cameras that can be seamlessly incorporated
into the wound monitoring process.

The integration of 3D models with thermography offers a valuable synergy, providing comple-
mentary metrics that enhance the accuracy and informativeness of wound diagnostics. Recent
advancements have dramatically enhanced the accessibility and affordability of creating 3D models
and capturing thermal information. Nevertheless, despite these advancements, the incorporation
of both modalities within a single reference framework for wound assessment remains relatively
underexplored. Most studies rely on intricate setups and costly equipment, rendering them im-
practical for healthcare providers in real-world clinical settings.

To address this challenge, it is crucial to consider wound assessment tools and methods that provide
objective measurements and realistic visualizations while prioritizing efficiency, accessibility, and
affordability. The use of affordable and accessible devices can offer benefits not only to healthcare
professionals but also to patients themselves. Eventually, such methods could be implemented in
a home setting, especially benefiting those with mobility limitations and individuals residing in
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underserved rural areas. Advancements in this direction could enable patients to receive timely
and relevant treatment, thereby preventing further complications and contributing to an overall
enhancement in their quality of life.

STANDUP Project WP2

This research work contributes to the MSCA RISE project STANDUP (Smartphone Thermal
ANalysis for Diabetic foot Ulcer Prevention and treatment) funded by the European Community
[10]. Started in January 2018, the project brings together six universities all over the world and
two European high tech companies with the aim of reducing DFU incidence by using a smartphone
associated to a thermal camera plugged into the smartphone.

Within this project, the Work Package (WP2) is dedicated to the evaluation of the healing of
a foot ulcer by a multimodal approach combining color imaging, 3D reconstruction and thermal
now available on smartphones. The WP2 is focused on developing a mobile application, which
will integrate color imaging, 3D reconstruction, and thermal imaging to provide a more complete
assessment of ulcer progression over time by monitoring tools to help diagnose and track changes
in ulcers from one visit to the next. The present thesis is carried out within the framework of
WP2.

Contributions

Starting from an analysis of the state of the art, the expected contributions of this work concern
the creation of a reliable and accurate thermal 3D model from a low-cost camera plugged on a
Smartphone and its application to the monitoring of chronic wounds.

In this context, our contribution can be summarized as follows:

• The study of accuracy of skin and wound temperature measurements from freehand acquisi-
tions, and using a low-cost camera.

• The optimization of temperature estimations in a multi-view thermography context.

• An improved methodology for combining thermography and 3D models into an unified and
automated process suitable for clinical application.

• An analysis of thermal metrics and their potential for chronic wound assessment.

• Finally, implementation in a clinical study on real patients to demonstrate the feasibility and
usefulness of the proposed tool in a clinical setting.

These contributions represent a significant advance in wound assessment, providing an affordable
and practical tool for creating 3D thermal models from which objective wound monitoring metrics
can be obtained.

Structure of this thesis

With the aim of providing a comprehensive understanding of the assessment and monitoring of
chronic wounds using computer vision techniques, this thesis is structured as follows:

• Chapter 1 provides medical context for chronic wounds and their evaluation. This includes
a review of imaging systemas and metrics utilized on chronic wound assessment.
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• Chapter 2 introduces concepts on 3D modeling, and computer vision, which are the basics
for the development of algorithms for thermal 3D models in later chapters.

• In Chapter 3, basic concepts on infrared radiation, thermography, and thermal cameras are
introduced, providing a foundation for the temperature correction methodologies presented
in the following chapter.

• Chapter 4 presents two distinct approaches to improving temperature estimation, with a
detailed evaluation of the methodologies in an experimental setup. Results are compared
and analyzed to identify the most useful approach.

• Chapter 5 includes a review of previous works for the creation of thermal 3D models. More-
over, this chapter presents our proposed methodology for creating accurate thermal 3D mod-
els using multi-view RGB and IR images from portable devices.

Finally, in chapter 6, a process for automating the creation of the thermal 3D model is presented.
Then, the feasibility of the process of thermal 3D model creation is shown in a clinical study on
chronic wounds of diabetic patients. Thermal metrics created with our thermal 3D models are
analyzed to determine their usefulness in wound assessment and monitoring.

An online version of this thesis could be found in the following link.

https://egutierreza.netlify.app/cb00ce57d95a4299e6bab3c9d176e617e927b940/index.html


Chapter 1

Medical Context
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Chronic wounds are a significant healthcare concern affecting millions of people worldwide. These
wounds can be challenging to manage, often leading to prolonged healing times, increased health-
care costs, and decreased quality of life for patients. Proper assessment and management of chronic
wounds are critical to ensure optimal patient outcomes.

This chapter aims to provide general information for readers who may not be familiar with chronic
wound assessment and the available tools. The chapter covers the definition of chronic wounds, an
overview of the wound assessment tools available, and commonly used wound evaluation metrics.

1.1 Chronic wounds

Wounds consist of an injury to the skin after which a healing process usually takes place. Depending
on how the healing process develops, wounds can be classified as acute or chronic. A wound is
considered chronic if it takes more than 4 to 6 weeks to heal. Causes of chronic wound include
leg ulcers, pressure sores, diabetic wounds. Chronic wounds can become stalled at some stage
of the healing process, which can lead to complications such as bacterial colonization, infection
and tissue death. These complications could lead to amputations and in the worst case can be
life-threatening.

As a general rule, a wound that takes longer than 3 months is considered a chronic wound [11].
Chronic wounds usually are classified into one of these categories: diabetic foot ulcers, venous leg
ulcers and pressure ulcers [11]. Thesse wounds occur due to different problems such as vascular
compromise, chronic inflammation, or repeated tissue aggression [12]. Thus, certain populations
are at higher risk to have wounds that can become chronic: for example, diabetic patients and the
aging population.

4
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1.2 Wound assessment tools

1.2.1 Traditional wound assessment

Traditionally wound assessment is done based on manual measurement and visual observations.
This assessment is the most common way to document wound progression and is commonly per-
formed in a healthcare facility by an experienced nurse or physician.

Apart from the qualitative assessment, quantitative measurements (wound length, width, depth,
and volume) might manually be obtained using a ruler close to the wound or a dampened cotton tip
applicator for depth. Therefore, traditional assessment is inaccurate, painful, and uncomfortable
for the patient. In addition, contact tools such as rulers or tapes increase the risk of cross-
contamination by bacterial spread.

Manual measurements do not require major equipment; however, the information collected by the
traditional method is limited, subjective assessment, and prone to human error. Moreover, tradi-
tional assessment is time-consuming. The complexity and time costs increase when documenting
large wounds and multiple wounds in one area.

1.2.2 Imaging tools for wound assessment

Unlike manual traditional wound assessment, imaging tools provide reliable and noncontact mea-
surements [13]. Imaging, especially 2D images, allows information to be retrieved quickly and
provides time-efficient and objective metrics for wound evaluation, follow-up, and even to increase
patient awareness.

Standard tools for wound assessment include digital images, 3D models, infrared imaging, ultra-
sound, and hyperspectroscopy. Each technology provides different complementary information for
the evaluation. In this thesis, we focus on the use of 3D models and infrared images for wound
monitoring.

Two-dimensional (2D) images

Two-dimensional images are the most widely used imaging tool in wound assessment. Obtaining
them is cost-effective and easy thanks to digital cameras and even easier thanks to the ubiquitous
availability of smartphones nowadays.

The basic 2D image acquisition procedure consists of taking an image from a sufficient distance
taking care to clean the wound beforehand, and using adequate illumination. A ruler or other
reference object should be included in the scene to provide correct measurements.

Digital imaging serves to document the visual characteristics in order to evaluate the evolution of
the wound. Another way to use 2D imaging is to obtain metrics of the extent of the wound. Length,
width, and perimeter, as well as 2D area, can be calculated from the images. In addition, several
studies nowadays focus on the development of wound imaging wound segmentation algorithms
and the classification of wound tissue types in order to objectively automate geometric wound
measurements [14]–[16].

Despite its advantages, The accuracy of measurements obtained using simple techniques based on
2D imaging highly depends on the camera view. A large variability can be observed depending on
the viewing angle, as previously noted [18]. The perspective effect and the curvature of the limb
can cause significant measurement errors. In addition, the depth of the wound cannot be accessed
by a simple image, while the healing process includes changes in the wound’s depth. [19], [20]. In
response to these limitations, three-dimensional approaches have subsequently emerged to address
the challenge.
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Figure 1.1: Wound measurement from a 2D image using a commercial mobile application. Image
obtained from [17].

Three-dimensional (3D) models

Three-dimensional models of the wound surface provide comprehensive information and improved
visualization compared to two-dimensional images. At first, the 3D model creation systems re-
quired large and complex devices inappropriate for clinical use. In the 2000s, image-based 3D
reconstruction of wounds enable the creation of 3D models by using simple commercial cameras
[21], [22].

While 3D models offer several advantages in wound assessment and monitoring compared to 2D
imaging, there are also disadvantages: cost, complexity, time processing, and data storage. Recent
advancements have made this technology more accessible and useful for healthcare professionals.
A broader discussion on advantages and disadvantages of current 3D model systems are developed
in Chapter 2.

Thermography

Thermography is another non-invasive source of information for wound assessmnet which provides
the skin surface temperature. In chronic wound assessment, thermography could be used to detect
temperature changes that can indicate the presence of inflammation or infection [7], [8]. This
information can guide treatment decisions, such as topical wound dressings or antibiotics.

The basic principle behind thermography is that the metabolic activity of living tissue generates
heat, which infrared cameras can detect. In the case of chronic wounds, thermography can be
used to identify areas of increased temperature that may indicate the presence of inflammation or
infection.

Several studies show the value of thermography in chronic wounds, most of them using handheld
devices and even, in some cases, using devices connected to smartphones. A summary of previous
studies demonstrating the usefulness of thermal metrics are listed and categorized in Table 1.1.



1.3. WOUND EVALUATION METRICS 7

Table 1.1: Previous studies that have shown thermography to be
useful for wound assessment, organized based on the portability
of the system, whether smartphone-connected use is possible, and
inclusion of 3D models.

Study Portable
Smartphone-

based
Includes 3D

models
Non Portable system

Barone, Paoli, and Razionale [23] X
Chang, Yu, Luo, et al. [24] X

Portable system
Fierheller and Sibbald [9] X

Bharara, Schoess, Nouvong, et al. [8] X
Nakagami, Sanada, Iizaka, et al. [25] X
Dini, Salvo, Janowska, et al. [26] X
Chaves, Silva, Soares, et al. [27] X

Chanmugam, Langemo, Thomason, et
al. [7]

X

Xue, Chandler, Viviano, et al. [28] X X
Aliahmad, Tint, Poosapadi Arjunan,

et al. [29]
X

1.3 Wound evaluation metrics

1.3.1 Wagner grading system

The Wagner grading system is a straigthforward and widely adopted wound classification system.
The grading system is based on the depth of the ulcer; the presence of complications such as
osteomyelitis or gangrene; and the extent of necrotic tissue. According to this classification system,
the condition of a wound can fall into one of 6 different stages:

• Grade 0: No wound.
• Grade 1: Superficial wound.
• Grade 2: Deep wound, extending to ligaments and muscles, but without bone involvement

or abscess.
• Grade 3: Deep wound with cellulitis or abscess and often accompanied by osteomyelitis.
• Grade 4: Localized gangrene.
• Grade 5: Extensive gangrene involving the entire foot.

Fig 1.2 shows the squematic representaton of this grading. Wagner wound grading system provides
a representation of the natural progression of foot wounds. The grading system shows that wound
status can flow from grade zero to grade five; and any grade up to grade four can be reversed
to grade zero with approapiate treatment [30]. This wound grading system allows for a more
systematic qualification of the wound status.

1.3.2 Evaluation regions

A comprehensive wound assessment involves not only the assessment of the wound itself but also
the evaluation of the surrounding areas beyond the wound [32]. Regions that are critical to assess
and their significance in the comprehensive assessment of a chronic wound are reviewed in the
following:
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Figure 1.2: Wagner grading system obtained from [31]. The arrows represent the progression of
chronic wounds. The wound can evolve from grade 0 to grade 5. Furthermore, wound stages can
be reverted to grade 0 with proper care, except if the wound reaches grade 5.

Wound bed

Wound size and depth are the most important parameters to monitor over time. Wound size is
obtained by 2D or 3D assessment. A 2D measurement, such as 2D length, width and area, can
provide information about the extent of the wound, while a 3D assessment, such as 3D wound
volume and area, can provide information about the depth of the wound.

Other characteristics that can be assessed on the wound bed include tissue type, perfusion, pH
and exudate:

• Tissue type: The type of tissue present in the wound bed, such as granulation tissue, necrotic
tissue, or slough, is evaluated to determine the stage of the healing process and to guide
treatment decisions.

• Perfusion: blood flow to the wound bed is assessed to determine if tissue perfusion is adequate
and to identify any problems that may affect healing.

• Exudate: the amount and type of wound exudate or discharge is assessed to determine the
level of inflammation and the need for topical treatments.

• pH: the pH of the wound bed is assessed to determine the level of acidity or alkalinity and
to identify any problems that may affect healing.

Wound edges

Assessment of the wound edges can provide information about wound healing by giving signs
of wound contraction. Color and texture of the wound edges are frequenly considered during
traditional wound assessment.

Periwound

The periwound, which extends approximately 2 to 4cm beyond the wound edges, plays a impor-
tant role in wound evaluation. Color, texture and temperature on the periwound can provide
information about the presence of inflammation or infection and the real extent of the wound [32].
Moreover, the presence of cold areas in the periwound can aid in identifying regions with reduced
blood flow, which is critical for effective wound healing, as sufficient blood circulation is indis-
pensable for proper recovery. Utilizing thermal information from the periwound can offer valuable
guidance in making informed treatment decisions.
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1.3.3 Geometrical metrics

Common wound measurements include length, width, perimeter and wound surface 2D area and
volume. Generally, length and width are defined by the main diameters mesured manually or
in images (see Figure 1.1). A rough approximation of the surface can be made from these two
diameters by an ellipse model. Segmentation of the wound in the image provides a more accurate
measurement. A single depth measurement (at the deepest point) provides a rough approximation
of the volume by an ellipsoid model. Digital 3D models allow a more accurate evaluation of the
volume without contact [33], [34].

Figure 1.3: Illustration of 3D geometrical metrics: wound depth in (a) and wound volume in (b)
and (c) estimated using different approaches. Images obtained from [21], [34].

1.3.4 Thermal metrics

Thermal imaging can help improve wound care [7]–[9], [26], [27], [35]–[37]. Thermal imaging metrics
are obtained by manually selecting points of interest (POI) or a region of interest (ROI) within
an evaluation region. Both the ROI and POI are typically defined manually and subjectively.
A ROI is typically a square region within the wound and periwound area, and provides much
rich information than a POI, enabling summary metrics such as mean temperature, and standard
deviation of the temperature. Fig 1.4 illustrates a manual and subjective selection of two ROIs
within the wound bed and the periwound.

Temperature metrics are derived from combining measurements of temperature at different ROIs
or POIs located in different areas of interest, i.e. wound bed, edges, periwound. The most common
metrics are temperature differences between these regions of interest; however, other metrics, such
as temperature variability, have also been proposed and studied.

Most studies highlight the revelance of the temperature differences between regios of interest
(wound, edges, periwound, and normal skin) can be a useful indicator in chronic wound monitor-
ing [7], [9], [24], [25], [27]. The metrics are obtained typically by comparing mean temperatures
in regions of interest for wound assessment: wound, periwound, and reference temperature. A
difference of the maximum relative temperatures between regions has also been performed in [7].

Another temperature metric that has been tested is thermal variability. In [24], the variance of
the temperature of the wound bed was analyzed. In [29], areas with isometric temperatures were
used to delineate. Wound area was defined from the isothermal areas of the thermal images and
it was determined that the ratio of isothermal areas between the first two weeks and the first visit
was useful in distinguishing between healing and nonhealing ulcers in diabetic feet.
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Figure 1.4: Example of manually selected ROIs in the wound and periwound; as well as the thermal
measurements obtained for each ROI.

Table 1.2 provides a summary of the studies that analyzed thermal metrics classified according to
the type of thermal metric used.

Table 1.2: Previous studies where thermal metrics were studied
for wound evaluation or monitoring, classified by type of thermal
metrics analyzed.

Study
Temperature
differentials

Temperature
variability Others

Chaves, Silva, Soares, et al. [27] X
Chanmugam, Langemo,
Thomason, et al. [7]

X

Fierheller and Sibbald [9] X
Nakagami, Sanada, Iizaka, et al.

[25]
X

Chang, Yu, Luo, et al. [24] X X
Barone, Paoli, and Razionale

[23]
X

Aliahmad, Tint,
Poosapadi Arjunan, et al. [29]

X

Finally, Table 1.3 shows a list of the reviewed studies using either 3D modeling or thermography
for wound assessment. As can be seen, the majority of studies have focused on the 3D model;
and only a few studies have studied the combination of thermography and 3D models for wound
assessment.

Table 1.3: Previous studies where either thermography, or 3D mod-
els were analysed for wound assessment.

Study 3D models Thermography
Shah, Wollak, and Shah [19] X
Shamata and Thompson [38] X
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Study 3D models Thermography
M. C. Barbosa, Carvalho, and Gomes [39] X

Jørgensen, Halekoh, Jemec, et al. [5] X
Treuillet, Albouy, and Lucas [21] X

Zenteno, González, Treuillet, et al. [40] X
Yee, Harmon, and Yi [41] X

Parvizi, Giretzlehner, Wurzer, et al. [42] X
Stockton, McMillan, Storey, et al. [43] X

Zvietcovich, Castaneda, Valencia, et al. [34] X
Lasschuit, Featherston, and Tonks [6] X

Lu, Yee, Meng, et al. [44] X
Mamone, Di Fonzo, Esposito, et al. [45] X

Fierheller and Sibbald [9] X
Nakagami, Sanada, Iizaka, et al. [25] X
Dini, Salvo, Janowska, et al. [26] X
Chaves, Silva, Soares, et al. [27] X

Chanmugam, Langemo, Thomason, et al. [7] X
Xue, Chandler, Viviano, et al. [28] X

Aliahmad, Tint, Poosapadi Arjunan, et al. [29] X
Bharara, Schoess, Nouvong, et al. [8] X
Barone, Paoli, and Razionale [23] X X

Chang, Yu, Luo, et al. [24] X X
Mirabella, Bellandi, Graziani, et al. [46] X X

1.4 Discussion

Traditional wound assessment methods that do not require specialized equipment are practical and
can be easily performed in many cases. However, relying on a subjective, note-taking approach can
result in inaccuracies and lead to suboptimal treatment, prolonging the patient’s healing process.
On the other hand, image-based diagnostic tools are simple to obtain and provide great value at a
low cost. Physicians are increasingly incorporating 2D imaging into routine wound documentation
for follow-up purposes. Although more effort is required to organize the images and extract metrics
from them, using computer vision and artificial intelligence helps automate the process, enabling
rapid and timely measurement.

The 3D models provide a complete and accurate representation of the wound, including its depth
and shape. This can help healthcare providers to more accurately evaluate the healing process and
determine the best course of treatment. Additionally, 3D models can be rotated and viewed from
different angles, providing a more comprehensive understanding of the wound than is possible with
2D images, which is very useful for telemedicine. However, using 3D models for wound assessment
also has some limitations. Obtaining 3D images may be more time-consuming and resource-
intensive than obtaining 2D images. The use of three-dimensional models as documentation tool
is not widespread, as expensive equipment systems and complex setup can hinder their application
in clinical settings.

Even though 3D models provide much more comprehensive information than 2D imaging, the
complex setup and cost of equipment prevent its widespread use. Nevertheless, technological ad-
vances have moved towards creating three-dimensional models using more portable and affordable
devices than before, such as portable laser scanners, commercial scanners, and, more recently,
smartphones.

Several previous studies have shown that thermal measures are related to inflammation and infec-
tion. Differences between evaluation regions are commonly highlighted as useful metrics for wound
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evaluation. Other measurements, such as temperature variability, have also been proposed, but
few studies have been performed on its utility.

One of the weaknesses of 2D thermal imaging analysis is the selection of the region of interest
within regions of evaluation, i.e., wound bed, periwound, and normal skin. The regions of interest
within evaluation regions are defined manually, which is subjective and depends on the clinician.

1.5 Conclusion

In this chapter, we introduce chronic wounds and wound assessment. Wound assessment is per-
formed traditionally with manual measurement methods, which provides subjective and limited
information for wound evaluation over time. In contrast, imaging tools can help reduce the short-
comings of traditional assessment. Imaging tools provide comprehensive information that can lead
to objective assessment metrics, which in turn leads to a systematic approach to treatment.

Specifically, three-dimensional models offer a data structure that provides comprehensive informa-
tion for assessing and monitoring wounds over time. Metrics obtained from 3D models are more
informative, reliable, and accurate than 2D metrics. Moreover, the most recent technology allows
3D model creation with straightforward acquisition and low-cost equipment.

Thermography, on the other hand, provides complementary information and could be obtained
at a low cost, given current technology. Thermal metrics are often obtained from manually de-
fined regions of interest within evaluation regions, which are subjective and lead to inter-observer
variability. Therefore, a robust definition of evaluation regions in wound assessment is required.
For this, thermal information should be registered to visual information, and regions of interest
such as wound, periwound, and normal skin could be objectively defined to obtain objective and
automated metrics from thermography.



Chapter 2

Three dimensional modeling
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A 3D model is a digital representation of an object. In this chapter, we introduce the concept
of three-dimensional modeling and explore related 3D computer vision concepts and methods.
These topics are essential to understanding the research presented in the following chapters of this
thesis. We assume that readers have a basic understanding of computer vision; otherwise, more
information can be found in [47].

This chapter is structured as follows: First, the section 2.1 introduces commonly used objects for
3D modeling. The section 2.2 describes existing reconstruction approaches and gives an overview
of current systems used for 3D wound modeling and measurement. In the section 2.3, we provide
an overview of the fundamental concepts of 3D computer vision that are relevant to our research.
In the section 2.4, the Structure from Motion (SfM) algorithm is detailed and its applications on
wounds are reviewed.

2.1 3D modeling definitions

For modeling the skin or wound surface various 3D model can be used. In the following, 3D models
that can help represent the surface of the skin are presented

3D Point Cloud

A 3D point cloud is a collection of points in 3D space. Mathematically, a 3D point cloud is
composed by a set of points P = p1, p2, … , p𝑛, where the position of each point in 3D space is
defined by its x, y, and z coordinates, each point p𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]𝑇 is a vector in 3D space.

13
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3D Mesh

A 3D point cloud can be converted into a triangulated 3D mesh by connecting its points to form
lines, which in turn can be connected to form triangular polygons, representing the surface of the
object. The lines connecting the points can be represented as a set of edges, where each edge
connects two points and is defined as a pair of indices (𝑖, 𝑗) such that (p𝑖, p𝑗) is an edge. Triangles
are a set of faces, and each face is defined as a set of indices (𝑖, 𝑗, 𝑘) corresponding to the vertices
forming the triangle with points (p𝑖, p𝑗, p𝑘).
To enhance the realism of the 3D model, texture can be added to the triangular faces of the mesh,
which can include adding color and patterns. In this thesis, textured meshes are used as for 3D
visualization to provide a more realistic and detailed appearance. Figure 2.1 depicts three types
of 3D models which will be used throughout this thesis to help represent the surface of the skin.

Figure 2.1: Illustration of types of 3D models for surface modeling of a toe. Images based on our
own data collection.

2.2 3D acquisition systems applied to wounds

In this section we review the different systems used in previous studies for wounds. The aim is
to analyze the advantages and limitations of 3D modeling systems when used for obtaining 3D
models of wounds and wound evaluation measurements.

There are two approaches to the creation of three-dimensional models: active and passive triangu-
lation.

1. Active triangulation

Active 3D reconstruction is achieved by using a sensor and a emitter, such as a laser scanner, that
emits a beam of light and measures the time it takes for the beam to travel to the surface and
bounce back. From these measurements, the distance of each point on the surface can be calculated
by triangulation, and a 3D point cloud can be generated. Common active reconstruction devices
are: laser scanners, structured light systems, RGB-D sensors, and recently, time-of-flight cameras.

Active 3D triangulation is commonly used in industrial and building inspection; robotics; and
medical imaging, where precise and accurate 3D information is required. The main advantage
of active 3D triangulation is that it provides highly accurate measurements, even in challenging
environments, such as those with poor lighting or occlusions; however, it is typically more costly
and time-consuming than passive 3D triangulation, and might require specialized equipment.
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2. Passive triangulation

Passive 3D reconstruction is a method for creating 3D models from 2D images captured by a
camera, without the use of any emitting signal. The 3D points triangulation is computed from a
set of matching projections on images of the scene from different point of view.

One advantage of passive 3D reconstruction is that it can be performed using a single camera,
making it an widely accessible solution for many applications. However, there are also limitations
to passive 3D reconstruction, such as reconstruction problems on surfaces with no texture or
reflective surfaces, and a reduced accuracy compared to models created using active reconstruction
methods.

All in all, passive 3D reconstruction has advantages such as being non-invasive, low-cost, and easy
to use. However, it also has limitations such as limited accuracy, requiring multiple images, clear
visibility, and good lighting conditions.

3D acquisition systems for wounds

Nowadays, various acquisition systems are proposed to create 3D models based on either active or
passive triangulation. Below is an overview of the most commonly used acquisition systems for 3D
model acquisition of wounds:

Laser scanners

Laser scanners utilize active reconstruction to achieve accurate 3D modeling of wounds. Laser
scanners can be highly accurate but also expensive and expensive and cumbersome to operate for
clinicians [48]. Therefore, this technology is commonly used as a benchmark in evaluating new
3D modeling systems. Laser scanner 3D measurements obtained in a study demonstrated higher
inter-rater and intra-rater consistency, compared to traditional gel injection [34].

Recent advances have taken advantage of handheld laser scanners to obtain three-dimensional
wound measurements; however, their use is limited to a stationary mode without handheld
acquisition. [34], [40].

Structured light systems

Structured light systems employ active triangulation to generate three-dimensional (3D) models.
Compared to laser scanners, structured light systems tend to be more affordable. However, the
obtained 3D models require additional software for processing.

Disadvantages of the structured light methodology include inaccurate outcomes when dealing with
reflective surfaces, like for example, moist surfaces in open wounds. This type of systems are
commonly proposed for wound evaluation, and previous studies have demonstrated that 3D mea-
surements, are accurate and better than those obtained from manual measurements. [38], [49]–
[51]

RGB-D Cameras

RGB-D camera systems, which include depth sensors, can be a suitable alternative for wound
assessment. In [52], they tested a popular and commercial device for obtaining RGB-D images
and creating 3D models, the Microsoft Kinectv2, and other similar devices PrimeSense Carmine,
Orbbec Astra. They found that this type of systems can provide accurate calculation of volume,
area, and perimeter, with results similar to those obtained from laser scanning. Moreover, in [53],
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they used a device similar to the Microsoft Kinect to obtain RGBD images to create 3D models of
wounds. The device was portable and attached to a tablet. They found that the 3D wound surface
obtained with their system had less than a 4% difference compared to measurements obtained with
laser scanners. RGB-D cameras offer an affordable solution, and some of them can be portable.
However, they can be complex to operate for a clinician, who is not necessarily familiar with this
type of devices.

Commercial 3D imaging systems for wounds

Commercially available systems, typically composed of hardware and software, provide 3D model-
ing and visualization. Most well known systems are listed below:

• Eykona (Fuel 3D, Los Angeles, United States) [54]

• InSight (eKare Inc., Fairfax, VA, United States) [55]

• WoundVision (Indianapolis, Indiana, United States) [56]

• Silhouette camera (Aranz, Christchurch, New Zealand) [57]

• LifeViz 3D system (Quantificare S.A., Valbonne, France) [58]

Table 2.1 provides a description of the commercial systems based on proprietary devices, which
can be depicted in Figure 2.2.

Table 2.1: Commercial systems based on proprietary hardware and
software for wound imaging.

System Equipment Functionalities
Eykona [54] Propietary device 2D/3D measurements
Insigth [55] Occipital sensor (propietary device [59]),

Only available for iPad
2D/3D measurements

WoundVision
[56]

Propietary device, includes a laser beam 2D measurements. Multimodal:
Color and infrared data

Silhouette [57] Propietary device, laser-assisted device 2D/3D measurements
LifeViz 3D
system [58]

Propietary device, includes dual laser
beam + light projector

3D visualization, 3D measurements

These commercially available 3D imaging systems are mainly based on structured light technology
to generate high-resolution 3D models of wounds. Most notably, all commercial systems are based
on portable hardware and allow freehand acquisition.
As commercial system include proprietary hardware and software, and clinicians will require time
to be trained on the tool. Hence, the cost of training, in addition to the cost of hardware, software
and upgrades, is a disadvantage for the usage of commercial systems.
In summary, acquisition systems have been widely used for wound modeling. However, they are
typically expensive or require training due to the complexity of their handling. In contract, passive
3D reconstruction, usually based on multi-view digital images, is known to have a reduced accuracy
compared to active reconstruction methods; however, it has the great advantage of being low cost,
and does not require specialized equipment since it can be done with any digital camera.
In the subsequent section of this chapter, we review the structure-from-motion algorithm and its
potential application in wound evaluation. Prior to dig into this topic, we will give a review of the
basic concepts of 3D computer vision necessary for this thesis and for a better understanding of
the Structure from Motion algorithm.
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Figure 2.2: Commercial systems based on proprietary hardware and software.

2.3 Basics of 3D Computer Vision

Triangulation is the process of determining the 3D position of a point from its projections on
multiple images. The basic idea is to use the relative positions of the cameras to find the 3D
position of the point in the world coordinate system. The following is an introduction to the basic
concepts required for 3D point triangulation, as well as the methods used to work with 3D models
that will be used in later chapters.

Camera reference frame

The camera reference frame refers to a coordinate system used to describe the position and ori-
entation of a 3D space. The camera reference frame is typically centered at the camera’s optical
center. The reference frame is usually defined with the x-axis pointing to the right, the y-axis
pointing downwards, and the z-axis pointing outwards from the camera lens. (See Figure 2.3)

The camera reference frame is important in computer vision, as it provides a standard coordinate
system that can be used to represent the position and orientation of objects from camera’s view.

Figure 2.3: Illustration of the camera reference frame, the image plane and the 3D object.
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The image plane is the 2D plane where the camera’s image sensor or film is positioned and captures
an image of the scene in front of it. The image plane is where the 2D image is formed, and it is
typically represented by a flat surface as seen in Figure 2.3.

2.3.1 Camera calibration

Camera calibration is the process of determining the intrinsic and extrinsic parameters of a camera,
including its optical properties, position and orientation relative to the scene being captured.
The intrinsic parameters describe the internal characteristics of the camera such as focal length,
principal point, and distortion coefficients. The extrinsic parameters describe the position and
orientation of the camera in the world coordinate system.

The intrinsic parameters are represented by a 3𝑥3 camera intrinsic matrix K, where the elements
of the matrix represent the focal length (𝑓𝑥 and 𝑓𝑦), the principal point (𝑐𝑥 and 𝑐𝑦), and skew (𝑠).
The intrinsic matrix can be represented as follows:

𝐾 = ⎡⎢
⎣

𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎤⎥
⎦

The skew parameter will be zero for most normal cameras. However, in certain unusual
instances it can take non-zero values. [60]

The extrinsic parameters can be represented by a 3x4 camera extrinsic matrix 𝑅 and a 3𝑥1 transla-
tion vector 𝑡, which describe the rotation and translation of the camera with respect to the world.
The extrinsic matrix can be represented as follows:

𝑀𝑒𝑥𝑡 = [𝑅|𝑡] = ⎡⎢
⎣

𝑅11 𝑅12 𝑅13 𝑡1
𝑅21 𝑅22 𝑅23 𝑡2
𝑅31 𝑅32 𝑅33 𝑡3

⎤⎥
⎦

(2.1)

Camera calibration is typically performed by capturing images of a special calibration pattern,
such as a checkerboard pattern, from different viewpoints. The accuracy of the camera calibration
depends on the quality of the calibration pattern, the number of images taken, and the accuracy
of the corner detection algorithm used to detect the pattern in the images.

The projection of points from the 3D world frame to a 2D image plane requires the usage of intrinsic
and extrinsic matrices as shown in Figure 2.4.

Figure 2.4: Projection of 3D points from the world frame into the image plane.

Both intrinsic and extrinsic matrices are assembled into a single matrix called the camera projection
matrix defined below.
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Camera projection matrix

The camera matrix or projection matrix is a 3𝑥4 matrix that provides the mapping from 3D points
in the world to 2D points in an image. Then, the projection of a 3D point 𝑃 onto 2D camera plane
is given by:

𝑃 = 𝐾[𝑅|𝑡] = ⎡⎢
⎣

𝑓 0 𝑐𝑥
0 𝑓 𝑐𝑦
0 0 1

⎤⎥
⎦

⎡⎢
⎣

𝑟1 𝑟2 𝑟3 𝑡1
𝑟4 𝑟5 𝑟6 𝑡2
𝑟7 𝑟8 𝑟9 𝑡3

⎤⎥
⎦

(2.2)

where 𝐾 is intrinsic matrix and [𝑅|𝑡] the extrinsic matrix.

Perspective Projection

Given a 3D point 𝑋 = [𝑋𝑤, 𝑌𝑤, 𝑍𝑤]𝑇 , to transform 𝑃 in the world coordinates to image pixel
coordinates 𝑥, the perspective projection is used as follows:

𝑥 = 𝑃𝑋 = 𝐾[𝑅|𝑡]𝑋 = ⎡⎢
⎣

𝑓 0 𝑐𝑥
0 𝑓 𝑐𝑦
0 0 1

⎤⎥
⎦

⎡⎢
⎣

𝑟1 𝑟2 𝑟3 𝑡1
𝑟4 𝑟5 𝑟6 𝑡2
𝑟7 𝑟8 𝑟9 𝑡3

⎤⎥
⎦

⎡
⎢⎢
⎣

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

⎤
⎥⎥
⎦

(2.3)

Triangulation

Triangulation is mathematically described as follows: Let 𝑃1 and 𝑃2 be the projection matrices
for two cameras that observe the same 3D point 𝑋, and let 𝑥1 and 𝑥2 be the corresponding 2D
projections of 𝑋 in the two images (Figure 2.5). The relationship between 𝑋, 𝑃1, and 𝑥1 can be
represented as:

Figure 2.5: Illustration of triangulation of a point from points matched in two 2D images.

𝑥1 = 𝑃1𝑋 (2.4)

Similarly, the relationship between 𝑋, 𝑃2, and 𝑥2 can be represented as:

𝑥2 = 𝑃2𝑋 (2.5)

To find the 3D position of 𝑋 = [𝑋1, 𝑋2, 𝑋3, 𝑋4], a linear system of equations is set up stacking
the two equations and solving for 𝑋:
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[𝑥1,1 𝑥1,2 𝑥1,3 1
𝑥2,1 𝑥2,2 𝑥2,3 1]

⎡
⎢⎢
⎣

𝑋1
𝑋2
𝑋3
𝑋4

⎤
⎥⎥
⎦

= [𝑥1,1 𝑥1,2 𝑥1,3
𝑥2,1 𝑥2,2 𝑥2,3

] ⎡⎢
⎣

𝑃1,1 𝑃1,2 𝑃1,3 𝑃1,4
𝑃2,1 𝑃2,2 𝑃2,3 𝑃2,4
𝑃3,1 𝑃3,2 𝑃3,3 𝑃3,4

⎤⎥
⎦

(2.6)

Bundle adjustment

Bundle Adjustment is an optimization technique for simultaneously refine the 3D structure of a
scene and the camera parameters from a set of matched points in images.

The goal of bundle adjustment is to minimize the reprojection error between the observed 2D
points and their estimated projections in the image plane. Given a set of 𝑁 images, each with a
set of 𝑚𝑖 corresponding 2D points in the image plane, and the initial estimates for the 3D positions
of the points and the camera parameters. The reprojection error is defined as the sum of squared
distances between the observed 2D points (𝑥𝑖𝑗) and their estimated projections( ̂𝑥𝑖𝑗):

𝐸 =
𝑁

∑
𝑖=1

𝑚𝑖

∑
𝑗=1

∣𝑥𝑖𝑗 − ̂𝑥𝑖𝑗∣
2 (2.7)

where 𝑥𝑖𝑗 is the jth observed 2D point in the ith image, ̂𝑥𝑖𝑗 is the estimated projection of the
corresponding 3D point in the image plane, and 𝑚𝑖 is the number of points in the ith image.

The optimization is solved by simultaneously updating the 3D points and camera parameters in
order to minimize the reprojection error.

Bundle adjustment is a crucial step in 3D computer vision algorithms like structure from motion
(SfM) and simultaneous localization and mapping (SLAM)

2.3.2 Computer Graphics

Raycasting

Raycasting is useful to find the corresponding between pixels in the image and vertices on the 3D
model [61]. From this correspondence, pixel values, like temperature, on 2D images can be assigned
to 3D model vertices. This methodology is useful, for example, for mapping 2D thermography
values to 3D models once the thermal camera pose is known.

Raycasting consists of casting a “ray”, i.e. a straight line from the camera’s point of view, in a
given direction, and checking whether it crosses any object or surface in the scene. This process
is performed for each pixel in the image, resulting in the correspondence between the pixels and
the vertices of the 3D model. Figure 2.3 represents the rays coming from the optical centers of the
camera and their association with the 3D model.

Rasterization

Rasterization is a method commonly used in computer graphics and virtual reality to create 2D
images from 3D models. The rasterization process referred to in this thesis refers to polygon
rasterization, which is used to convert a triangular 3D mesh into 2D images.

Rasterization involves projecting the triangles of a 3D model onto a 2D image plane, followed by
determining which pixels fall inside or on the boundary of the triangle, and computing the color of
each pixel based on the triangle’s properties and position. Figure 2.6 illustrates the rasterization
of a single triangle projected onto a 2D image plane. The process of determining which pixels are
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covered by the polygon is known as triangle rasterization. Triangle rasterization identifies which
pixels fall inside or on the boundary of the triangle, and then computes the color of each pixel
based on the triangle’s properties and position. This is typically accomplished using techniques
such as scanline or barycentric coordinate interpolation algorithms [62].

Figure 2.6: Illustration of the rasterization of a triangle into a 2D image pixel plane. Martin Kraus,
Pixels covered by a triangle, CC BY-SA 3.0

2.4 Structure from Motion (SfM)

Structure from Motion (SfM) is an algorithm to create 3D structure from multiple 2D images,
i.e. it is a passive reconstruction method. The Structure from Motion algorithm is a well-known
algorithm used for 3D reconstruction from multiple views. SfM creates point clouds from features
found in multiple 2D images. To do this, distinctive features are identified in the 2D images and
the correspondences between them are mapped. It’s implementation requires using linear algebra,
optimization techniques, and computer graphics algorithms.

SfM is convenient 3D reconstruction algorithm as it requires only a digital camera to capture mul-
tiple view images with overlapping scenes. The digital camera could be a smartphone camera, and
the acquisition does not require to be controlled, i.e. it can be done in handheld mode. Moreover,
open-source software with friendly user interface are already available to create 3D models with
SfM; for example, Meshroom, 3DF Zephyr, Colmap, and VisualSfM. This attribute makes SfM an
attractive solution for wound evaluation, particularly since it has the potential to enable remote
assessments.

In particular, Meshroom provides an open source implementation with friendly user interface [63]
besides to capabilities for running its pipeline from command line. Thus, it allows for an automa-
tized and customized implementation. Figure 2.7 shows the stages of a general SfM reconstruction
perfomed in Meshroom.

These stages are briefly described below:

1. Feature Extraction: In this stage, distinctive features are identified in 2D images using state-
of-the-art algorithms such as SIFT, AKAZE, Brute Force, etc.

2. Feature Matching: Features detected in the 2D images are matched to each other. Feature
descriptors are used to assess the similarity between images and the nearest approximate
neighbor algorithm is applied to map the correspondence between the features. Outliers are
removed through robust matching with RANSAC.

https://commons.wikimedia.org/wiki/User:Martin_Kraus
https://commons.wikimedia.org/wiki/File:Pixels_covered_by_a_triangle.png
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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Figure 2.7: General 3D SfM reconstruction pipeline implemented in Meshroom, a well-known open
source software for passive 3D reconstruction.

3. Structure from Motion (SfM): The core of the process is the SfM algorithm. Two images
with a large number of coincidences features are selected at random, and the origin of the 3D
world is fixed at the pose of the first camera. Features are then triangulated in 3D, and the
process repeats iteratively by selecting an image with matching features to triangulate new
3D points. In each iteration, bundle adjustment is applied to refine the camera’s intrinsic
and extrinsic parameters.

4. Depth Maps: With the point clouds and cameras found from the previous SfM algorithm,
depth images are generated using the Semi-Global Matching (SGM) algorithm.

5. Meshing: Octrees are created from the depth maps and a 3D Delaunay tetrahedralization is
performed. A Laplacian filter is applied to obtain a smooth 3D mesh.

6. Texturing: A technique UV texturing is used to add texture to the surface of the 3D model.
Multiview images are fusioned based on state-of-the-art algorithms [64]. Then UV mapping
is perfomed, where a 2D image, called the texture map, is mapped to the surface of the 3D
model. The texture map is created by wrapping the texture around a flat representation of
the 3D model and aligning the texture with the geometry of the model.

While SfM has proven to be an effective tool in chronic wound evaluation, it does have some
limitations that need to be addressed. One such limitation its lower accuracy when it comes
to volumetric metrics, compared to active reconstruction systems. Despite this, SfM remains a
valuable tool in chronic wound evaluation, as evidenced by various studies:

Previous studies have indicated that SfM reconstruction can produce 3D models and metrics useful
in wound evaluation.In [21], solely a pair of images from uncalibrated cameras was used to create
3D models of wounds. They found an average difference on volume of 0.52𝑐𝑚3 with a relative
error of 0.43; and a maximum error on volume estimation of less than 1.25𝑐𝑚3, for 16 cases of
wounds with a mean volume of 39.12𝑐𝑚3. In [22], multi-view 3D reconstruction from uncalibrated
images was used. Comparison to an industrial 3D scanner, showed an average error of 1.3% with
a precision of 3% for volume measurement.

In [65], Structure from Motion was performed using video frames with successful results. Resulting
3D models were compared to a laser scanner and a mean distance between registered 3D models
was found to be less than 0.8𝑚𝑚, with a root mean square error (RMSE) less than 0.55𝑚𝑚. The
evaluation was done on a cork phantom of 3𝑐𝑚 of diameter and two leishmaniasis wounds of 1𝑐𝑚
and 2𝑐𝑚 diameter.
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In another study, [40] has found that 3D point clouds created with SfM in an open-source software
(VisualSFM) have a mean distance of 0.36𝑚𝑚 when compared to 3D models obtained from laser
scanners. Absolute error on the volume estimation was found to be in average 33.68𝑚𝑚3 or 19.84%
for six wound followed over 4 weeks, with variable wound sizes from 2.53𝑚𝑚3 to 1214.5𝑚𝑚3.
Nevertheless, the volume evolution over 4 weeks shows the same trend as the volume evolution
obtained with a laser scanner.

In [39], 3 artificial wounds were analyzed with sizes of 4.79cm2, 36.97cm2 and 29.47cm2. Wound
surface area errors were evaluated when using 2, 3, 5, and 10 images, and they found errors of
12.47%, 8.5%, 6.6% and 3.8%, which is less than the average error found when using 2D images:
32.7. Their results suggest that larger number of images can leas to reduced errors; however,
larger number of images also require larger computational resources as computational cost lies in
the order of 𝑂(𝑛2).
More recently, [66] evaluated volume and other 3D measurements, by using SfM in a commercial
software, Agisoft Photoscan. They found high intra-rater and inter-rater reliability, with Intraclass
Correlation Coefficient (ICC) values greater than 0.98 and 0.99 respectively.

All in all, the use of SfM in wound evaluation has gained significant attention in recent years, and
for good reason. Evidence suggests that SfM is a promising tool for accurately assessing wounds.
While there have been some accuracy errors reported for SfM on volume estimation, the majority
of studies have reported errors of less than 10%. Additionally, SfM appears to be a better, more
informative, and accurate tool for measuring surface area than 2D imaging.

Interestingly, previous studies suggest that the accuracy of SfM could be further improved with
a larger number of images, and computational costs can be managed if processing is done on a
server. What’s more, current research is even exploring the possibility of processing SfM entirely
on smartphones. For instance, [67] exposes an SfM-based algorithm that can run completely on
smartphones.

2.5 Conclusion

In this chapter, the fundamental concepts of 3D computer vision are introduced which will be
utilized later in Chapter 5. Specifically, techniques such as raycasting, perspective projection, and
rasterization are introduced.

This chapter also discusses two approaches to 3D reconstruction, namely active and passive. Al-
though active reconstruction is very accurate, the necessary acquisition equipment is expensive.
On the other hand, passive reconstruction, particularly structure-based reconstruction from mo-
tion, although less accurate, has demonstrated its potential for wound assessment. Several studies
have found that SfM can enable obtaining volumetric measurements similar to those obtained
with laser scanners. Moreover, wound surface area obtained using SfM is more accurate than area
measurements using 2D imaging.

Open-source software, user-friendly and accessible is available for creating 3D models. However, the
challenge with SfM reconstruction is that it demands significant computing power. This challenge
can be overcome by performing 3D reconstruction offline, on desktop computers or on cloud servers.

In conclusion, multiple studies highlight the feasibility of SfM for providing 3D models for chronic
wound assessment and obtaining 3D measurements. Although the accuracy of measurements ob-
tained by passive reconstruction with SfM may not be as high as those obtained by laser scan-
ning, these studies demonstrate that SfM still provides reliable indicators similar to those of laser
scanners, and better than those obtained with 2D imaging, making it a useful tool for wound
assessment.
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Two dimensional thermography
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Thermal imaging or thermography consists in detecting infrared radiation emitted from an object
and convert it to temperature. Thermography provides indicators that are not visible to human
eyes, providing complementary information to color images in various applications.

Thermography is used in different fields; most of them in: medicine, buildings and security. In
buildings, it can be used for inspections: for checking temperature insolation of a house, for locating
damaged pipes, or to detect infestations. In the field of security, thermography is used to confirm
and validate the presence of people or animals in a given place. For example, to identify people at
frontier crossings, and to verify the intrusion of people or animals in rural or remote areas.

Several thermography devices are currently available, and it is useful to know how they work in
order to choose a suitable one for your wound application. In the medical context, it has been
reported to be used to detect the presence of inflammation, irregular blood flow and even some
cancers such as malignant melanomas [37], [68], [69]. It is also used in the exploration of the body’s
response to alternative procedures, such as the response to massage or the response to exercise in
a particular part of the body [69], [70]

This chapter introduces the basics of infrared radiation and thermal cameras. Special attention is
given to the accuracy of low-cost portable thermal cameras, as they are quite practical devices for
our clinical application.

This chapter is structured as follows: First, Section 3.1 introduces the basic concepts on physics
of infrared radiation. Next, Section 3.2 introduces thermal imaging, and particular focus is given
to portable low-cost thermal devices. Then, Section 3.3 reviews the sources of errors on the
temperature estimation from thermography. Finally, conclusions are given in Section 3.4.

24
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3.1 Physics of infrared radiation

All physical objects constantly emit electromagnetic radiation. Electromagnetic radiation consists
of waves that propagate through space and carry energy.

Electromagnetic radiation waves are of different wavelengths. Wavelengths can be large, longer
than a continent, up to short wavelengths, smaller than the nuclei of atoms. All the diversity of
waves constitute the electromagnetic (EM) spectrum (See Figure 3.1)

Within the EM spectrum, the range of wavelengths betwwen 380 nm and 750 nm are detected by
the eye, and this part of the EM spectrum is called visible spectrum.

The infrared (IR) spectrum is composed of wavelengths between 0.75 𝜇𝑚 and 15 𝜇𝑚. Fig. 3.1
depics the EM spectrum with a focus on the visible spectrum and the IR spectrum.

Figure 3.1: Electromagnetic waves and the visible part of the electromagnetic spectrum. Image cre-
ated by Philip Ronan, Gringer, EM spectrumrevised, higligthed IR spectrum by Evelyn Gutierrez,
CC BY-SA 3.0

3.1.1 History of infrared

The discovery of the infrared radiation was made by Herchel in 1800 while researching different
optical filters to improve the telescopes of the time. While performing experiments with the
classical Newton prism, he identified increased temperatures in areas beyond the red region of
the visible spectrum where no colour was visible. This radiation, initially called “dark heat” or
“invisible radiation”, was then called “infrared radiation”.
Fig. 3.2 illustrates the newton prism experiment and temperature measurements in 3 different
zones. The temperature in the region beyond the red zone, not visible to the eye (bottom), has
a higher temperature than the zones where visible red light is reflected (center) or another zone
below the violet rays where no radiation is supposed to reach (top).

3.1.2 Basic concepts

Infrared spectrum

The Infrared (IR) spectrum is subdivided in 4 categories according to the wavelength of the IR
radiation:

• Near infrared (NIR): Wavelengths are between 0.5𝜇𝑚 to 1𝜇𝑚.
• Short-Wave infrared (SWIR): Wavelengths are between 1𝜇𝑚 to 2.7𝜇𝑚.

https://commons.wikimedia.org/wiki/File:EM_spectrumrevised.png
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Figure 3.2: Representation of Herchel’s experiment with Newton’s prism. The temperature outside
the visible spectrum is generally 20°C (top). The temperature increases to 25.9°C in the red region
(center). The temperature increases further outside the visible spectrum to 27°C (bottom). This
is explained by invisible infrared radiation (Images obtained from [71]).
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• Mid-Wave infrared (MWIR): Wavelengths are between 3𝜇𝑚 to 5𝜇𝑚.
• Long-Wave infrared (LWIR): Wavelengths are between 8𝜇𝑚 to 14𝜇𝑚.

Blackbody

In physics, a blackbody or black body is an ideal object that absorbs all the radiation that it
receives without any reflection, diffusion neither absortion. At a given temperature, it emits a
maximun of EM radiation radiant energy than any other body at the same temperature. Thus, it
is a perfect reference object to define EM radiation corresponding to a temperature.

All other real surfaces emit a lower quantify of energy, To quantify the amount of radiation emitted
by any object at a given temperature, the concept of emissivity is used.

Emissivity

Emissivity of an object is defined as the ratio between thermal radiation emitted by the object,
and the thermal radiation emitted by a blackbody at the same temperature [72], [73]:

𝜀 = 𝐿𝑜𝑏𝑗/𝐿𝑏𝑏 (3.1)

𝐿𝑜𝑏𝑗 is the radiance of the surface of an object of interest. 𝐿𝑏𝑏 is the radiance of a blackbody at
the same temperature.

Thus, the emissivity of a blackbody, a perfect emitter, is 1. All other objects have emissivity less
than one: 𝜀 < 1.

Planck’s Law

Planck’s law can accurately describe the electromagnetic radiation of a black-body in thermal
equilibrium and at a given temperature T. Thermal equilibrium is reached when there is no net
flow of matter or energy between the body and its environment [73].

𝐿𝑏(𝜆, 𝑇 ) = 2𝜋ℎ𝑐2

𝜆5[exp( ℎ𝑐
𝜆𝑘𝑇 ) − 1] (3.2)

where 𝐿𝑏(𝜆, 𝑇 ) is the radiation as a function of the wavelength 𝜆 and Temperature 𝑇 .

Wien’s Law

The Wien’s Law states that the peak of radiation of a blackbody object varies with the temperature
of the object in an inversely proportional way. To determine the wavelentgth for which the maximun
radiation is obtained, Wien’s Law provides the following equation:

𝜆𝑚𝑎𝑥 = 𝑘
𝑇 (3.3)

where 𝜆𝑚𝑎𝑥 is the wavelength on which there is a peak in the radiation. 𝑘 is the Wien’s displacement
constant (𝑘 ∼ 2898𝑚𝐾), and 𝑇 is the absolute temperature of the object in Kelvins.

Fig 3.3 shows the emitted radiation as a function of wavelength for a blackbody as described by
Planck’s Law. Wien’s Law describes that the wavelength for the maximum radiation changes
inversely proportional to the temperature.
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Figure 3.3: Illustration of the radiation density emitted by a black body at different temperatures.
The wavelength of the radiation peak increases as the temperature decreases, i.e. wavelength is
inversely proportional to the temperature. Image obtained from 4C, Wiens law, modified by Evelyn
Gutierrez, CC BY-SA 3.0

3.2 Thermography

3.2.1 History of infrared remote detectors

Remote thermocouples were the first thermal detector used in 1821. Thanks to this technology, it
was possible to detect the thermal radiation of a person at a distance of 3 metres.
In 1880, the bolometer was invented and this was a major breakthrough. This new technology
made it possible the detection of radiation at larger distances: for example, the detection of a cow
was possible at 400 metres. Up to now, modern thermal imaging is based on this discovery.
Between 1900 and 1920, infrared cameras became popular for military applications; and more
sensitive thermal cameras were developed at this time.
Two major advances in infrared detection technology occurred in 1939: First, the use of active
thermography, in which an active light source is used to estimate the temperature of the target
object. Secondly, the introduction of microbolometers for passive thermography was developed.
Microbolometers allow for small and lightweight devices.
In 1950, the military secrecy surrounding the development of IR detection was released for the
general public. This release enabled an increase in industrial and domestic uses. In addition, in
recent years, small, low-cost thermal cameras have been introduced in recent years, which has led
to their widespread use in domestic applications.

3.2.2 Thermal Imaging devices

Thermal imaging devices, also known as thermal imagers or thermal cameras are devices composed
of sensors that can detect IR radiation of a scene. The IR radiation once detected is transformed
into estimated temperature values using camera-specific parameters. The camera specific param-
eters are provided by the manufacturer and some of them can be adjusted during or after image
acquisition.

From Radiation to Signal

Thermal imaging devices are composed of microbolometers which convert the infrared energy
emitted to electrical signals. The electrical signals are converted to values which are proportional

https://commons.wikimedia.org/wiki/User:4C~commonswiki
https://commons.wikimedia.org/wiki/File:Wiens_law.svg


3.2. THERMOGRAPHY 29

to the thermal radiation of the scene.

The array detector of a thermal camera device is composed of pixel detectors. Each one of them,
receives the radiation and converts this to a digital signal.

𝑠𝑖 = 𝑓(𝑀𝑖) (3.4)

where 𝑠𝑖 is the output signal and 𝑀𝑖 the radiation intensity at pixel i.

From Signal to Temperature Estimation

The digital signal 𝑠 corresponds to the total intensity of IR radiation reaching the detector. How-
ever, total radiation signal can be decomposed into the ratiation of the target object and the
radiation from environment factors. Thus, a decomposition has to be performed to the signal 𝑠 to
filter out environmental factors and obtain a signal related to the object radiation only 𝑠𝑜𝑏𝑗

𝑠 = 𝑠𝑜𝑏𝑗.𝜀.𝜏1.𝜏𝑤.𝜏2 + 𝐿𝑎𝑡𝑚1 + 𝐿𝑎𝑡𝑚2 + 𝐿𝑤𝑖𝑛 + 𝐿𝑟𝑒𝑓𝑙1 + 𝐿𝑟𝑒𝑓𝑙2 (3.5)

where:

• 𝐿𝑎𝑡𝑚1 is the signal corresponding to the radiation from atmosphere 1.
• 𝐿𝑎𝑡𝑚2 is the signal corresponding to the radiation from atmosphere 2.
• 𝐿𝑤𝑖𝑛 is the signal corresponding to the radiation from the window.
• 𝐿𝑟𝑒𝑓𝑙1 is the signal corresponding to the radiation reflected from ambient 1.
• 𝐿𝑟𝑒𝑓𝑙2 is the signal corresponding to the radiation reflected from ambient 2.

Figure 3.4 depicts the decomposition of the radiation arriving to the thermal camera detector.

Figure 3.4: Illustration of the radiation sources reaching the thermal camera, composed of radiation
from the object (red), radiation from the surroundings reflected on the object and the camera lens
(blue), and radiation from the atmospheres (purple). Original image obtained from [73]. Colors
were added to differentiate radiation sources.

From equation (3.5), the signal corresponding to the target object radiation, 𝑠𝑜𝑏𝑗, is obtained as
follows:

𝑠𝑜𝑏𝑗 = ( 𝑠
𝜀.𝜏1.𝜏𝑤.𝜏2

− 𝐿𝑎𝑡𝑚1 − 𝐿𝑎𝑡𝑚2 − 𝐿𝑤𝑖𝑛 − 𝐿𝑟𝑒𝑓𝑙1 − 𝐿𝑟𝑒𝑓𝑙2) (3.6)



3.2. THERMOGRAPHY 30

Given the signal associated with the object radiation, 𝑠𝑜𝑏𝑗, the temperature is estimated from the
following formula, derived from Planck’s law:

𝑇 = 𝑃𝐵
𝑙𝑜𝑔( 𝑃𝑅1

𝑃𝑅2(𝑠𝑜𝑏𝑗+𝑃𝑂))+𝑃𝐹 )
− 273.15, °𝐶 (3.7)

where:

• 𝑇 is the temperature estimated in Celcius degrees.
• 𝑃𝑅1: Planck-R1 calibration constant.
• 𝑃𝐵: Planck-B calibration constant.
• 𝑃𝐹 : Planck-F calibration constant.
• 𝑃𝑂: Planck-O calibration constant.
• 𝑃𝑅2: Planck-R2 calibration constant.

The calibration constants are specific to each thermal imaging camera device. To obtain these
parameters, the cameras undergo device calibration during manufacture [73].

Thermal Images

A thermal image, also known as infrared (IR) image or thermogram, is a digital representation of
the estimated temperature in a scene. The thermal image is a single-channel image in which an
arbitrary colour map has been assigned to the estimated temperature values.

Radiometric JPG files

Thermal images can be stored as radiometric JPG files. A radiometric JPG file provides, in addition
to an grayscale image, an embedded matrix of values relative to the radiation of the scene.

Fig 3.5 illustrates the process of going from a radiometric JPG files to temperature values with
Equation (3.7).

Figure 3.5: Illustration of a radiometric JPG image, and conversion to temperatures using the
Equation 4.5

3.2.3 Skin thermography

Human skin has high emissivity, which is close to that of a black body, with a typical value of
around 0.98 which means it emits almost all the thermal radiation that a black body would emit
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at the same temperature. However, the emissivity of skin can vary due to several factors, including
the moisture content, which can lead to a decrease in the emissivity.

The accuracy of skin thermography can be affected by the angle of observation. Theoretical and
experimental studies on human skin suggest that the emissivity significantly decreases when the
viewing angle exceeds 60° [74], [75]. To minimize the effect of the viewing angle on thermography
measurements, it is crucial to maintain a constant distance between the skin and the infrared
camera and ensure that the viewing angle is as close to normal as possible. Specialized software or
image processing techniques can also be used to account for the angle of observation and correct
any errors in temperature measurement.

To measure body temperature, the peak wavelength is achieved around 𝜆 = 9.5𝜇𝑚, which corre-
sponds to the wavelength with maximum radiant power for temperatures between 20°C and 40°C,
which are the typical temperatures of the skin and body parts. Table 3.1 shows the estimated
wavelength of the peak radiance based on Wien’s Law.

Therefore, thermal detectors sensible to the LWIR spectrum, from 8𝜇𝑚 to 14𝜇𝑚, are suitable for
skin temperarure measument. LWIR thermal cameras are the most sensitive devices to the IR
radiation emited on this range of temperatures.

Table 3.1: Wavelength of the radiation peak, according to Wien’s
Law, for a black body at 20°C, 30°C and 40°C. These temperatures
are considered since this temperature range is found in the skin of
the human body.

Temperature (K) Temperature (°C) 𝜆𝑝𝑒𝑎𝑘

293.15 20 9.67
303.15 30 9.57
313.15 40 9.27

3.2.4 Portable and low-cost thermal cameras

Most domestic objects emit IR radiation with wavelength between 3 𝜇𝑚 to 14 𝜇𝑚, i.e. objects
emit thermal radiation in the range of medium or long wave infrared, MWIR and LWIR. Hence,
commercial thermal imaging devices are sensitive to either one of these two ranges of the spectrum:
MWIR or LWIR.

After the introduction of thermography for both industrial and commercial use, its use has increased
enormously. In addition, portable devices have been introduced and the prices of thermal cameras
for non-professional use are affordable.

The latest thermal cameras from Teledyne FLIR LIC, a leading U.S. thermal camera company,
are low-cost, portable, and can be used attached to a smartphone, allowing for simplified usability.
Fig 3.6 shows the use of the FlirOne thermal Camera, the low-cost, portable device by FlirOne pro
Teledyne FLIR LIC.

There is a wide range of prices and various sizes available. The lightest and portable devices are the
FlirOne Pro and FlirOne Gen 3, which weigth less than 50gr and are priced under $1,000. Table
3.2 shows different thermal cameras from Teledyne Flir LLC, their size and prices for comparison.

FlirOne Pro and FlirOne Gen3, the ligthest low-cost thermal cameras from Teledyne Technologies
Inc have similar technical specifications. The main difference is the field of view and the thermal
resolution. Table 3.3 shows a comparison of technical specifications between the FlirOne Pro and
FlirOne Gen3.

Both the FlirOne Pro and FlirOne Gen 3 are capable of sensing LWIR waves, making them
suitable for measuring skin temperatures. Figure 3.7 illustrates the visible spectrum detected by

https://www.flir.com/
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Figure 3.6: Illustration of the FlirOne Pro thermal camera atached to an smartphone for obtaining
thermal images of a wound phantom.

Table 3.2: Comparison of size and price for various thermal camera devices

Name Size Weigth Price
FLIR T1020   167.2 mm × 204.5 mm × 188.3 mm 2.1kg $25K
FLIR E96  279.4 mm x 116.84 mm x 111.76 mm 0.99kg $13.5K
FLIR E8-XT 244 mm x 95 mm x 140 mm  0.575kg $3.5K
FlirOne Pro 34 mm × 64 mm × 14 mm 34.5g $500
FlirOne Gen3 34 mm x 67 mm x 14mm  34.5g $230

Table 3.3: Comparison of size and price for various thermal camera devices

Specifications FlirOne Gen3 FlirOne Pro
Thermal sensor size 12 um 17 um
Spectral range 8 to 14 um 8 to 14 um
IR sensor dimension 80x60 pixels 160x120 pixels
IR image dimension 640x480 pixels 640x480 pixels
Visible image dimension 1440x1080 pixels 1440x1080 pixels
**FOV** 50° ± 1° / 38° ± 1° 55 ° ± 1 ° / 43 ° ± 1 °
Measurement range -20°C to 120°C -20°C to 120°C
Accuracy ±3 °C or ±5% ±3 °C or ±5%
Thermal Sensitivity 150mK 150mK
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conventional digital cameras and the LWIR spectrum detected by the FlirOne Pro and Gen 3
thermal cameras.
While both cameras provide thermal images of the same resolution, their thermal sensor resolutions
differ. This disparity is due to interpolation rescaling of the original thermal image made by the
propietary software. The FlirOne Pro, for instance, increases the resolution from 120x160 to
640x480 pixels.
Overall, the FlirOne Pro is a better choice as it offers higher thermal sensor resolution than other
sub-$1,000 thermal imaging cameras

Figure 3.7: Illustration of the visible spectrum detected by a common smartphone camera, and
the IR range spectrum detected with a FlirOne handheld camera [76]).

3.3 Accuracy of thermal imaging systems

Thermal imagers provide temperature estimation with certain precision; and low cost thermal
cameras have lower precision. Sources of systematic errors are classified into 3 types [73], errors of
method, calibration errors and errors related to electronic components.
According to simulations in [73], method errors are the primary source of error, with emissivity
being a significant contributor to temperature errors. The camera-object angle and distance can
also influence the accuracy of the temperature measurement. For example, the angle between the
camera and the object can alter the emissivity and cause an error in thermal measurement, with
larger angles resulting in lower emissivity. The distance between the camera and the object can
also allow for more or less interference from environmental factors, affecting the accuracy of the
temperature measurement [68].
Figure 3.8 depics a summary of the sources of errors in thermography for any camera as described
by [73]. It is almost impossible to completely eliminate the influence of emissivity errors. However,
efforts should be made to reduce most of the errors, as this will improve the accuracy of the
measurements. In this thesis, camera-object angles and distances will be taken into account for
improving thermal estimation as they could be obtained when 3D information is available.

3.4 Conclusion

Thermal cameras provide a graphical and quantitative tool for analyzing the temperatures of a
scene by detecting infrared radiation emitted by an object. Temperature estimation consists in
transforming the detected radiation into temperature from Planck-based formula that depends on
various parameters of the camera, parameters related to the object and the environment.
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Figure 3.8: Schema of error source of any thermal camera as described by [73]. Camera-object
angles and distances are highligthed as in this thesis, they are taken into account for improving
temperature estimations.

LWIR cameras are ideal for detecting skin temperature, but many are expensive. In this context,
several cameras have been compared, and the FlirOne Pro has been identified as an affordable
option, plugged into a smartphone, to obtain thermographic information of wounds in clinical
settings.

However, temperature estimation is subject to several errors, including those associated with dis-
tance and angles between the camera and the object, which are critical in freehand acquisition.
Structure-from-Motion (SfM) can help account for these sources of error and improve the accuracy
of temperature measurements.

Overall, thermal cameras provide a useful tool for analyzing temperature, but attention must be
given to the parameters involved in the estimation process to ensure the accuracy of the results.
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The previous chapter stated that temperature estimation through thermography is prone to errors
due to the angle and distance between the camera and the measured object. This chapter addresses
this problem and provides methods for improving temperature estimation accuracy by considering
the angle and camera-object distance.

For this study, an experimental setup is performed to evaluate the effect of these factors, angle
and distance, on different temperature levels controlled by a special temperature controller. Fur-
thermore, two methods to enhance temperature estimation are proposed and analyzed. The first
approach is based on single-view modeling, and the second uses a multi-view weighted averaging
technique. The results of both methods are compared and discussed to determine the most useful
approach for improving temperature estimation accuracy.

This chapter is organized as follows:

• The experimental framework is described in detail in Section 4.1.

• Section 4.2 analyzes the raw temperature estimation from thermography.

• The two proposed methods for improving temperature estimation are presented and discussed
in Section 4.3.

• Finally, a conclusion is given in Section 4.4 section.
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4.1 Experimental setup

When measuring temperatures using 2D thermography, the angle and distance between the camera
and the object are not taken into consideration. This is because the 2D thermography lacks
the capability to provide information about angles and distances. Additionally, the camera’s
proprietary software only allows for adjusting these parameters for the entire scene, rather than
adjusting them for each pixel in the thermal image.

From an experiment in which we monitor the temperature of an object, we explore the estimation
error of freehand thermography. The relationship with angles and camera-object distances is
analyzed to propose further improvements in temperature estimation.

4.1.1 Acquisition protocol

A temperature controller with LCD touchscreen from LINKAM (Link am Scientific Instruments
Ltd, Water field, Epsom, United Kingdom) is used to control the temperature. The temperature
stage has a circular piece of metal of 2 cm of diameter. The temperature can be set to any value
between -196°C and 125°C; and the circular piece of metal will reach the desired temperature with
an accuracy of less than $±$0.1°C. Once the temperature is reached, the device keeps it for around
one hour. The metal piece surface which is covered with carbon tape for eliminating specular
reflections.

The FlirOne thermal camera is attached to a smartphone to simulate the handheld acquisition
that occurs during clinical use. Several images are captured varying the camera-to-object distance
and angle.

Four markers are placed around the temperature plate to calculate the distance and angle between
the camera and the object, as well as a temperature label. Fig 4.1 shows the experimental setup.
Two images are obtained as the thermal camera device incorporates two sensors, one for visible
image and another one for thermal image.

Figure 4.1: Experimental setup: A pair of images RGB-IR images obtained from FlirOne Gen3.
Temperature controlled standatd is observed from different angles and distances.

The experiments are conducted within a controlled temperature closely approximating the ranges
commonly found in ambient and skin temperature, a range within which indoor objects and human
skin are typically observed. In order to achieve this, a set of specific temperature values, namely
21°C, 25°C, 28°C, 30°C, 32°C, 35°C, 38°C, and 40°C, have been selected for analysis.
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4.1.2 Estimation of camera angle and distance fom object

The camera point of view is defined by the distance and angles between to the temperature con-
trolled target (See Fig 4.2). The angle camera-object is defined between the optical axis of the
camera and the normal to the surface of the target. The distance is defined as the euclidean
distance from the camera center to the target.

Figure 4.2: Illustration of the distance and angle of observation between the camera and the target
object.

Given the camera position (C), a point (P) in the surface, the viewing direction vector (V) and
the surface normal vector (N), the distance and angles are calculated as follows:

𝑑 = |C − P|

𝜃 = cos−1 ( V ⋅ N
|V| |N|) (4.1)

The handheld camera pose is estimated from the four aruco markers placed aroud the target. The
estimation of the camera pose, i.e. camera-object distance and angles, is performed by utilizing
four ArUco markers. The distance and angle for each ArUco marker were individually calculated,
and the final camera-object distance is determined through averaging the distances of the four
markers [77]. Similarly, the camera-object angle is obtained by averaging the angles of the four
markers.

4.1.3 Temperature estimation from IR image

The temperature estimation from IR image is carried out using the “thermimage” package from
R. It permits the adjustment of key parameters such as emissivity and ambient temperature to
transform raw radiance values into temperature values (Eq. (3.7))

Ambient temperature is controled during the experiment and set up to 22°C, while emissivity of
the carbon tape covered target is set to 0.98.

The centroid of the target is manually selected in IR images, a 6x6 pixels region of interest (ROI).
The average temperature is then calculated and used as the estimated temperature of the object.
(See Figure 4.3)
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Figure 4.3: Target object and region of interes (ROI) from which the temperature has been mea-
sured

4.1.4 Evaluation metrics

For each temperature estimate from IR image, absolute errors and relative errors are calculated
from temperature controlled standard (𝑇𝑅𝑒𝑓)as follows:

𝜀𝑎𝑏𝑠 = 𝑇 𝑅𝑒𝑓 − 𝑇 𝐸𝑠𝑡 (4.2)

𝜀𝑟𝑒𝑙 = (𝑇 𝑅𝑒𝑓 − 𝑇 𝐸𝑠𝑡)
𝑇 𝑅𝑒𝑓 (4.3)

Since the errors are either positive and negative, the root mean square error (RMSE) is also
considered, and it’s calculated as follows:

𝑅𝑀𝑆𝐸 = √∑𝑁
𝑖=1 (𝑇 𝑅𝑒𝑓

𝑖 − 𝑇 𝐸𝑠𝑡
𝑖 )2

𝑁 (4.4)

where N is the number of images for which the temperature is estimated.

4.2 Stage I: Exploration

Using this experimental setup, 365 thermal images are captured with FlirOne Gen3 camera con-
nected to an iPad, varying the point of view for each temperature from 20 to 40 degrees Celsius.
Table 4.1 and 4.2 present the angles and distances obtained in the experiment. The distance be-
tween the camera and the center of the target varies from 13 to 70 𝑐𝑚, and the angle varies from 0
to 60 degrees. 98% of the points of view had angles less than 50°𝐶 and distances less than 60 𝑐𝑚.
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Table 4.1: Distribution of distances (in centimeters) on the 365
acquired images

Distance(𝑐𝑚) # Obs %
(10,15] 7 1.9%
(15,20] 86 23.6%
(20,25] 76 20.8%
(25,30] 56 15.3%
(30,35] 36 9.9%
(35,40] 30 8.2%
(40,45] 19 5.2%
(45,50] 23 6.3%
(50,55] 12 3.3%
(55,60] 13 3.6%
(60,65] 5 1.4%
(65,70] 1 0.3%
(70,75] 1 0.3%
Total 365 100.0%

Table 4.2: Distribution of angles (in degrees) on the 365 acquired
images

Angles (°) # Obs %
(0,10] 100 27%
(10,20] 126 35%
(20,30] 55 15%
(30,40] 45 12%
(40,50] 32 9%
(50,60] 7 2%
Total 365 100%

The comparison of the temperature estimates from IR images to the temperature controled target
is provided in Table 4.3. The results indicate that the absolute error ranges from -3 to 4°C and
the relative error ranges from -11% to 10%. The Root Mean Squared Error (RMSE) for all images
is 1.33 °𝐶.

Table 4.3: Summary of temperature errors on the 365 acquired
images

Range Mean Std
Absolute error (°C) [-2.6; 4] -0.2 1.2
Relative error (%) [-11.4; 10.5] -0.9 4.1

Afterwards, the errors are analyzed according to distance and angle. Figure 4.4 presents the box
plots of the relative error in percentage, grouped by deciles of distances and angles. A linear
relationship between the relative error and distance is evident from the figure, while a polynomial
relationship appears to fit better for the relative errors grouped by angle deciles. The pattern
observed in the absolute errors is consistent with that seen in the relative errors as they are
proportionally related.
The analysis of absolute and relative error indicates the potential for enhancing temperature esti-
mates through the consideration of distances and angles. To address this, two methodologies are
proposed in the next section.
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Figure 4.4: Boxplots for relative errors as a function of deciles of distances and deciles of angles of
the camera from the temperature-controlled target.

4.3 Stage II: Improving temperature estimation

Two methods for improving temperature estimation in thermography are studied. First, a regres-
sion model with inverse prediction based on experimental data; and then, a multiview temperature
averaging method that is evaluated using resampling techniques. The two methods are described
in this section. The first methodology proposes the incorporation of distance and angle into a
regression model with inverse prediction to improve temperature estimation in individual thermal
images. The second approach leverages multiple views to further improve the estimation. Both
methodologies are further discussed in the following section.

4.3.1 Regression model with inverse prediction

To model the relationship between the estimated and actual temperature, a regression model that
includes variables such as reference temperature, distance, angles, and their second degree term to
account for their linear and nonlinear effects on the temperature estimation error. The equation
of the model is as follows:

𝑇𝐸𝑠𝑡 = 𝛽0 + 𝛽1𝑇𝑅𝑒𝑓 + 𝛽2𝐷 + 𝛽3𝐴 + 𝛽4𝐴2 + 𝜖 (4.5)

Where:

• 𝑇𝐸𝑠𝑡 is the temperature estimated from IR images

• 𝑇𝑅𝑒𝑓 is the real controlled-temperature of the target

• 𝐷 is the distance between the camera view and the object

• 𝐴 is the angle between the camera view and the object, as described previsously in Section
4.1.2

• 𝐴2 is the squared angle.

The database used for model fitting and validation is restricted to temperatures between 30°C and
40°C, resulting in a final sample size of 240 images. The regression model is fitted using 5-fold
cross validation.
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The objective of this study is to predict the actual temperature (𝑇𝑅𝑒𝑓). However, since 𝑇𝑅𝑒𝑓 is
controlled during the experiments, it cannot be used as the target variable in a regression model
due to its lack of independence between observations. As a result, the estimated temperature
(𝑇𝐸𝑠𝑡) is used as the target variable in the regression model and 𝑇𝑅𝑒𝑓 is included as a predictor
variable.

To predict 𝑇𝑅𝑒𝑓 , an inverse prediction methodology is applied to the regression model. The re-
gression model and the equation for the inverse prediction procedure are illustrated in Figure
4.5.

Figure 4.5: Illustration of changes in the regression model equation when using inverse prediction.

Cross validation result is presented in Table 4.4. The results show improvements in accuracy and
precision. Average error is 0.283 °𝐶 before applying the correction model, which is reduced to
0.015°𝐶 after correction. The standard deviation of errors, a measure of precision, decreased from
1.121 to 0.899 after correction. Additionally, the root mean squared error (RMSE) is reduced from
1.154 to 0.903, a reduction of 22.

Table 4.4: Statistics on the errors before and after applying the
proposed method to improve the estimated temperatures from 5-
fold cross-validation testing on 240 images.

5-Fold Cross Validation Results (n=240)
Absolute Error (°C) Raw estimation After correction

Mean 0.283 0.015
Std. dev. 1.121 0.899

Relative Error (%) Raw estimation After correction
Mean 0.678 0.042

Std. dev. 3.190 2.60
RMSE (°C) 1.154 0.903

An 𝑅2 of 0.932 is obtained for this model fitted to the full data set. Table 4.5 shows the esti-
mated coefficients and p-values of significance of the variable in the proposed model. These results
demonstrate the relevance of including distance and angles in the proposed model for correction
(p-values<0.05).

Table 4.5: Estimated coefficients for the temperature correlation
model.

Predictors Estimates Confidence Interval P-values
Intercept(𝛽0) 5.304 [3.998; 6.988] <0.001

Ref. temperature(𝛽1) 0.880 [0.823; 0.908] <0.001
Distance(𝛽2) -0.054 [-0.059; -0.030] <0.001
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Predictors Estimates Confidence Interval P-values
Angle(𝛽3) 0.039 [0.004; -0.102] 0.008

Squared Angle (𝛽4) -0.001 [-0.002; -0.0001] <0.001

The outcomes of the proposed model reveal that temperature estimation can be enhanced by taking
into account the angles and distances between the object of interest and the camera. Particularly,
our findings are applicable for temperatures ranging between 30 °C and 40 °C and the FlirOne
Gen 3 camera. However, the extent to which our model can be generalised to other thermography
devices and temperature ranges requires further investigation. In light of this, additional tests are
imperative to validate our proposed model beyond the scope of this study.

4.3.2 Combining temperatures from multiple views

Weighted averaging from multiple views will be studied in this section as an alternative to improve
temperature estimates. For each sample, the weighted average is calculated and used to estimate
the actual temperature. The method is evaluated for four different numbers of views (n=3, 5, 10,
and 15) for weighted averaging and 100 samples for each reference temperature.

̄𝑌 =
∑𝑛

𝑗=1 𝑤𝑗𝑌𝑗

∑𝑛
𝑗=1 𝑤𝑗

(4.6)

The weight assigned to the 𝑗-th thermal image, 𝑤𝑗(𝜃, 𝑑), is based on the angle, 𝜃, and distance, 𝑑.
The weights are defined as follows:

𝑤𝑗 = 𝑤𝑗(𝜃, 𝑑) = 𝑤1(𝜃)𝑤2(𝑑)

𝑤1(𝜃) = 1
1 + 𝑒 𝑑−40

4

𝑤2(𝑑) = 1
1 + 𝑒 𝜃−60

4
(4.7)

Shorter distances and smaller angles are assigned higher weights. This is because it has been
observed that angles larger than 60° have a significant effect on emissivity [78]. On the other hand,
larger distances result in larger errors due to atmospheric transmission. Based on the results in
Figure 4.4, which show that relative errors increase considerably with larger distances, a cutoff
value of 40 𝑐𝑚 is chosen.

An inverse logistic function is used as a weighting function related to angle (𝑡ℎ𝑒𝑡𝑎) and camera-
point distance 𝑑 (See Fig 4.6). The weighting functions assign high weights to distances less than
40 cm and angles less than 60°; and for other cases where larger distances and angles exist, small
and near-zero weights are assigned.

The results, as presented in Table 4.6, indicate that the use of a weighted average of multiple views
improves the accuracy and precision of temperature estimation. The RMSE decreased from 1.33
with a single image to 0.76 with 3 images, to 0.6 with 5 images, to 0.49 with 10 images, and to 0.45
with a weighted average of 15 images. The mean error becomes closer to zero and the precision,
as indicated by the standard deviation, is reduced with the use of the weighted averaging method.
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Figure 4.6: Weighting functions for distance (left) and angles (right) to calculate the multiview
averaged temperature.

Table 4.6: Absolute error and relative error using raw images, mean value and weighted mean to
estimate temperatures.

Absolute Error (°C) Relative Error (%)
Mean Std Mean Std RMSE

Raw IR Images (n=240) 0.28 1.12 0.68 3.19 1.154
Weigthed avg. (3 views) -0.08 0.87 -0.05 2.55 0.760
Weigthed avg. (5 views) -0.06 0.78 0.01 2.30 0.600
Weigthed avg. (10 views) -0.06 0.70 0.02 2.08 0.490
Weigthed avg. (15 views) -0.05 0.67 0.04 2.01 0.450

4.4 Conclusion

Thermal imaging cameras are susceptible to measurement errors due to various influencing factors.
One weak point of low-cost thermal cameras is their accuracy, which can be inferior to professional
thermal cameras, particularly when used for handheld acquisition.

Although it may not be possible to eliminate these errors completely, taking into account the
angle and distance between the camera and the object has the potential to enhance temperature
estimates in thermography.

Two approaches were proposed and evaluated for improving temperature estimates for low-cost
portable thermal cameras. The first approach is a model-based correction, which requires
temperature-controlled experiments and specialized equipment, but shows that a temperature
correction model can be used for low-cost equipment. The second approach is multiview
temperature averaging, which is more practical and functional. Results showed that multiview
temperature averaging significantly improved accuracy and precision: the root mean square error
(RMSE) can be reduced to 0.76°C when using three images and further reduced to 0.45°C when
using 15 images, compared to the initial RMSE of 1.154°C obtained through raw temperature
estimation from IR images.

These findings highlight the significance of incorporating additional information to enhance the
precision of temperature estimates obtained through thermal imaging. We show that incorporating
angles and distances into temperature estimation using multiview averaging improves temperature
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estimates in low-cost thermal cameras. The 3D model resulting from the structure from motion
allows access to the calculations of the various points of view, making it possible to apply this
multiview correction method for the temperature measurement on the object.
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As noted in Chapter 2, 3D models provide more complete information than 2D images. In the
case of thermography, the same principle applies: thermal 3D models provide more complete
information than 2D thermography. In addition, 3D thermography can be useful for scanning larger
curved surfaces in wound assessment and monitoring, which is not possible with 2D thermography.
Current thermal 3D models rely on expensive equipment, complex configurations and usually fixed
camera settings. The use of fixed camera settings presents a limitation, as it only allows scanning
a limited area. Conversely, in order to scan a larger area, it is necessary to zoom out, which
results in a loss of detailed thermal information. Additionally, in the case of curved areas, a single
thermal view may not provide suffcient coverage of the entire area of interest. In response to these
limitations, we propose a methodology that leverages 3D passive reconstruction to create multi-
view thermal 3D models with simple handheld acquisition. The multi-view approach incorporates
both short-distance and long-distance thermography, providing greater coverage and detail while
also improving temperature estimation through the use of low-cost thermal cameras.

Furthermore, the use of portable and easy-to-acquire devices for image acquisition makes its use
more accessible than previously proposed methodologies in remote areas, for example, where there
is a lack of medical staff.

In this chapter, we present a methodology for creating thermal 3D models for scanning various
wound surfaces and sizes, and provide robust temperature estimation. This chapter is structured
as follows:

The chapter is divided into five sections: In Section 5.1, we presents an overview of multimodal
registration with a focus on IR-RGB images. In Section 5.2, we explain multimodal calibration,
which is usable when using rigidily connected multimodal senrost. Then, in Section 5.3, we provide

45
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an overview of the current methodologies for creating thermal 3D models. Next, in Section 5.4,
we present the details of our proposed methodology. Finally, in Section 5.5, the experimental
validation of the proposed methodology is presented, followed by a discussion in Section 5.6. The
conclusion ends the chapter in Section 5.7.

5.1 Overview of multimodal registration

Before diving into the topic of multimodality, let’s first define registration and modality. Regis-
tration is the process of aligning in a common reference system two or more similar objects taken
at various times or from diverse sensors [79]. In medical imaging, the term “modality” refers to
the type of imaging technology used to acquire an image. Examples of imaging modalities include
X-ray, magnetic resonance imaging (MRI), ultrasound, and thermography (IR), among others.

Unimodal registration consists of aligning images from a single modality. For example, it could
consist of aligning two different infrared images of the same body part captured with the same
technology at different times. In contrast, multimodal registration involves aligning images from
different modalities, such as aligning a thermal and an RGB image of the same body part. Multi-
modal registration is more difficult than unimodal registration because of differences in the features
and characteristics revealed in each image modality, making direct comparison quite complex.

To achieve the desired alignment, a reference image and a moving image are involved, and a spatial
transformation should be found to bring the moving image closer to the reference one. According
to [80], multimodal registration methodologies are classified in feature-based and intensity-based.

In the feature-based approach, points, lines, or contours, are used with matching techniques to align
the moving image with the reference image. However, finding common unique features between
the multimodal images can be a challenge due to their different nature.

On the other hand, the intensity-based approach involves finding the spatial transformation by
optimizing a similarity metric between images. The similarity metric depends on a comparion
of the intensities between both images. The method is straigthforward, but selecting a suitable
evaluation metric for accurate image alignment is a challenge.

To date, there is no general methodology for multimodal registration that works well in all envi-
ronments. The method of registration depends on the specific characteristics of the image pair to
be registered, and it requires making three crucial decisions in selecting - the appropriate spatial
transformation, - the similarity metric, and the optimization algorithm.

5.1.1 RGB-IR registration

This section focuses on the registration between color and thermal images. Color images are
acquired and stored as an RGB matrix defining the red, green and blue color components. IR
images only encode one radiation value and usually have a much lower resolution than color images.

Registration of RGB to IR images poses a significant challenge due to the fundamental differences
between color and IR images. While color images contain sharp color changes, IR images exhibit
smooth intensity changes, making edge identification difficult (See Figure 5.1). Previous studies
have attempted to solve this problem by using entropy similarity metrics, such as mutual informa-
tion, in an intensity-based registration approach. This technique aims to optimize the alignment
of RGB and IR images by measuring the similarities between their respective intensity values.
This presupposes the transformation of the RGB image into an grayscale intensity image. Despite
its usefulness in some scenarios, the intensity-based approach has certain limitations, such as the
difficulty of selecting suitable evaluation metrics to ensure an accurate image alignment.

Feature-based registration with silhouettes is another common approach used for aligning infrared
and color images, particularly when the objects of interest are warmer or colder than the ambient
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temperature, as in the case of human skin [81]. This method requires small objects with varied
contours, which are far away from the camera to ensure that the edges of the object can be detected.
Buildings, for example, have visible and detectable edges in both infrared and RGB space, which
can be used for thermal color registration [82], [83]. Another application is the IR-RGB registration
of head images using the edges of facial features and contours of the head. The edges and textures
of wounds can also be used for registration, as demonstrated in the registration of foot images for
diabetic foot ulcer prevention [84]. In this case, images of the feet are taken from a distance of
about 80 cm, allowing the contours of the foot to be well distinguished and registered.

When it comes to registering thermal and color images, there are several challenges to consider,
especially when dealing with thermal images of skin and body parts.

Lack of texture in thermography When dealing with thermography of skin with no lesions,
the temperature may not exhibit significant variability, and uniform values are not helpful for
registration. To enhance the contrast of IR images in such cases, an intensity transformation is
applied [85].

Lack of distinctive silhouettes Another related challenge is the lack of sharp silhouettes of
the target object. For example, in the case of legs, silhouettes do not vary much even if there are
large changes in perspective. This can lead to registration errors if silhouettes are used. Figure 5.1
illustrates this problem by showing an example of two IR images in which the silhouettes are very
similar, however, they are taken from different perspectives. A registration between the silhouettes
of both images could lead to an incorrect registration.

Figure 5.1: Illustration of the lack of distinctive silhouettes in IR images which can lead to mis-
matched registration of silhouettes.

Confounding silhouettes A limitation of the use of silhouettes arises when background objects
alter the silhouettes of object of interest in IR images. This can occur in the case of wound imaging
in clinical settings: by scanning the object from multiple perspectives, the patient’s surrounding
body may be confused with the object of interest in the IR image space.

Fig 5.2 shows an example where silhouettes of the object of interest are not easily distinguishable
between IR and RGB images. In this example, the silhouette of the foot is not well defined in the
IR image due to the presence of the other leg.
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Figure 5.2: Infrared and corresponding RGB image of a foot where contours are not clearly defined
in the infrared image due to the presence of other leg.

In conclusion, the registration between IR-RGB images is mainly done by features, in particular
silhouettes. When they are distinctive and appear in both modalities. This is especially useful in
certain cases such as: buildings, faces or small objects having sharp edges. For wounds on feet and
legs, a lack and mis-segmentation of the silhouettes can complicate the registration.

5.2 Multimodal Stereo Calibration

Multimodal calibration consists on obtaining a geometrical transformation between cameras poses
when the RGB and IR camera sensors are in relative fixed positions. It also provides intrinsics
features for each camera like distorsions. This section details the multimodal stereo calibration
used with FlirOne Pro, a portable thermal device. The calibration step will subsequently be
incorporated in the proposed methodology for the creation of the thermal 3D model.

FlirOne Pro has two built-in sensors: due for IR for color images, vertically aligned and separated
by a small distance (See Figure 5.3).

The FlirOne Pro camera takes, from one single shot, a pair of images: an RGB image and a IR
image. Moreover, since the relative positions of the two sensors are fixed, a stereo calibration is
used. The process of calibrating a stereo camera involves determining the intrinsic parameters of
each sensor and the geometric transformation between the extrinsic parameters

The most common way to perform a stereo calibration is from images of an object containing a
pattern with edges recognizable from both cameras. When dealing with unimodal calibration, i.
e. both cameras provide same modality, for example, both are visible cameras, a black and white
chessboard is used.

For multimodal calibration, a special chessboard required to be created. The chessboard was made
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Figure 5.3: FlirOne Pro thermal camera. In this camera, RGB and IR sensors are in fixed relative
positions.

of two materials with contrasting thermal properties to allow a distinctive pattern to be detected
in the IR and RGB image views.

Multimodal chessboard pattern

The multimodal chessboard is an 8x5 board measuring 26𝑐𝑚x16𝑐𝑚. The chessboard is made of
a rectangular white tile and black foam squares. This chessboard is refrigerated for 15 minutes,
after which the board is removed from the refrigerator, and the photo shoot is performed.

Figure 5.4 shows the detection of corner points on the chessboard in both modalities.

Figure 5.4: Example of the detection of edges on RGB image (left) and its corresponding IR image
(right) for a multimodal calibration chessboard.

Chessboard Points Detection

Chessboard detection in RGB images is performed with standard algorithms implemented in the
OpenCV Python library. On the other hand, chessboard detection in thermal images are difficult
to detect as borders are not well defined. Thus, a procedure to preprocess the image is followed
and described below:

1. First, contrast enhancement is applied to better differentiate black and white colors.
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2. Then, conversion to grayscale is applied. This is done in preparation for applying the next
step.

3. Chessboard edge detection with classical algorithms is performed using the OpenCV Python
library.

4. Finally, a refinement of the detected points inspired by [86] is performed. The RANSAC algo-
rithm is applied to the detected points to correct the misalignment between points belonging
to the same row and columns.

Geometrical Transformation

The multimodal calibration consits initially on estimating the intrinsics and extrinsics for each
sensor: RGB and IR sensor. Once intrinsics (𝐾𝑅𝐺𝐵, 𝐾𝐼𝑅) and extrinsics (𝑅𝑅𝐺𝐵, 𝑅𝐼𝑅, 𝑡𝑅𝐺𝐵 and
𝑡𝐼𝑅) are obtained, the relative geometrical transformation between the IR and RGB sensors are
computed. Let 𝑅∗ and 𝑡∗ be the rotation and translation that define the geometrical transformation
between the two sensors. Calculation of these matrices is sdone as follows:

𝑅2 = 𝑅∗𝑅1 + 𝑡∗𝑡2 = 𝑅∗𝑡1 (5.1)

Then, 𝑅∗ and 𝑡∗ are the parameters that minimize the total re-projection error for all the points
in all the available views from both cameras. The individual calibration as well as the stereo
calibration was done using the OpenCV library in Python [87].

5.3 State-of-the-art on thermal 3D model creation

A thermal 3D model is a three-dimensional representation in which surface temperature data is
stored. In this section, we review various methodologies for creating thermal 3D models, focusing
on their use in skin and wound analysis.
The creation of these thermal models has been divided into two types: calibration-based methods
and registration-based methods depending on the strategy used to create the thermal 3D models.
Figure 5.5 depics our classification of strategies for creating thermal 3D models.

Figure 5.5: Our classification scheme for thermal 3D modeling methods.

5.3.1 Calibration-based method

Calibration-based methods rely on using a geometrical transformation to accurately estimate the
pose of the thermal camera. Once the thermal camera pose is obtained, temperature values are
mapped to the 3D point cloud via raycasting. Calibration-based methods are implemented on
systems that are either stationary or portable. These two types of systems are reviewed below:
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Stationary systems

In recent years, several studies have focused on the creation of thermal 3D models. To achieve
accurate camera pose estimation, stationary systems have been employed in these studies. Station-
ary systems involve the use of devices that remain in fixed positions, which improves the accuracy
of thermal and color camera pose estimation; however, the scanning area is restricted.

One of the earliest systems on record for thermal 3D modeling of skin employed a stationary system
consisting of three devices: a pair of stereo cameras and a thermal camera [88]. The high-resolution
stereoscopic cameras facilitated the creation of the 3D model from two different views, while the
thermal camera provided 2D infrared images and radiance values that were mapped to the 3D
model by raycasting and correction based on the viewing angle between the thermal camera and
the skin surface. The use of a tripod was essential to ensure that all devices remained in fixed
positions during calibration and acquisition.

Other studies have used structured light for 3D reconstruction [23], [89] and high-precision thermal
cameras to obtain IR images, both fixed on a tripod to maintain fixed relative positions.

More recently, passive reconstruction has been employed to create three-dimensional thermal mod-
els [90], [91]. In [91], a portable thermal camera on a tripod was used to acquire images from differ-
ent points of view; and in [90], a system consisting of a large rig with three high-definition cameras
and three low-cost FlirOne thermal cameras was used. Although the cameras were portable, the
large size of the equipment did not allow the entire system to be easily transported. In addition,
the use of only three views limits the reconstruction to a restricted three-dimensional surface.

Figure 5.6: Stationary thermal 3D model systems. Images obtained from [92] (a), [89] (b), [23] (c),
[93] (d), and [94] (e), [95] (f).
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Table 5.1: Studies on the creation of thermal 3D models using
stationary systems.

Study
3D modeling
approach

3D modeling
device

Thermal
Camera (IR

image
Resolution) Application

# of
cases

Skin and
wounds

Ju, Nebel, and
Siebert [88]

Stereo
Reconstruction

Two high
resolution
cameras:

Mamiya RZ67
PRO II)

FLIR Indigo
Systems Merlin
(320 x 256px)

Head 1

Colantonio,
Pieri, Salvetti,

et al. [89]

Structured light
reconstruction

SONY XCD 910
SX (4MP)

FLIR A40 (320
× 240px)

Feet 3

Barone, Paoli,
and Razionale

[23]

Structured light
reconstruction

RGB video
camera (CCD,

10 MP)
Standard video
projector (DLP,
10MP pixels)

Thermal video
camera NEC

TH-9100 (320 ×
240px)

Wounds 7

van Doremalen,
van Netten,

van Baal, et al.
[90]

Multiview
Reconstruction

Vectra XT,
Canfield

Imaging Systems

FLIR One Gen
2 (160 × 120px)

Feet 8

Kręcichwost,
Czajkowska,
Wijata, et al.

[93]

Stereo
Reconstruction

+ RGB-D

RGB Camera -
Fujifilm X-T1,
Stereo Camera -
MicronTracker
Hx40, Depth
Camera -

SwissRanger
SR4000

FLIR A300 (320
× 240px)

Feet 79

Other
applications
Yang, Su, and

Lin [82]
Stereo

Reconstruction
Two iPhone SE FlirOne Gen 3

(320x 240px)
Buildings

and
interior
scene

3

Landmann,
Heist, Dietrich,

et al. [95]

Structured light
reconstruction

Two Photron
FASTCAM

SA-X2

FLIR X6900sc
SLS

(640x512px)

Moving
targets:
inflat-
ing

airbag,
a bas-
ketball
player
and the
crush-
ing of
metal.

3
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In summary, stationary systems can help provide accurate thermal 3D models, however, they are
highly expensive and limited on scanning surface. Stationary systems are expensive as they are
composed of high end devices like laser scanners. Stationary systems can access only to a few views
of the scene, thus, reconstruction is limited to a small scene. Furthermore, the lack of portability
is an additional problem. For this reason, presumably, most previous studies are implemented in
few cases of application on the skin and wounds.

Portable Systems

Portable systems, on the other hand, are simpler to use and provide the advantage that multiple
views of the scene can be scanned. Recent studies have shown the introduction of portable systems
consisting of a 3D scanner with good accuracy and cameras mounted in fixed relative positions.
However, only a few of them are applied on the skin, wounds and none of them is applied in more
than 3 practical cases.

In [61], [96], they introduce a systems composed of a thermal camera and a commercial multi-sensor
based equipment, i.e. Xbox. The commercial device is composed of a projector, an RGB camera
and a NIR camera, and serves to create the 3D model structure. Both devices, Xbox and thermal
camera, are attached with a holder and connected to a computer for a real time acquisition.

In a similar way, previous propositions rely on multiple devices attached to a holder [92], [97]. In
contrast with previous approach, depth sensors are employed to create the 3D structure. Thermal
camera to provide temperature values to the 3D model.

Figure 5.7: Portable thermal 3D model creation systems. Device images obtained from [96] (a),
[97] (b), and [98] (c).

Portable systems are advantageous over fixed systems as they provide a comprehensive multi-view
evaluation of the surface, However, portable systems require hand-held support to keep relative
positions fixed. In addition, depth camera devices, although less expensive than laser scanners,
could require a connection to a computer or power source, which could restrict their portability.
Table 5.2 summarizes previous studies performed with portable 3D thermal modeling systems.
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Table 5.2: Studies on the creation of thermal 3D models using
calibration-based portable systems.

Study
3D modeling
approach

3D modeling
device

Thermal
Camera

(Resolution) Application
# of
cases

Skin and
wounds

Moghadam [99] RGB-D camera
based

RGB-D camera
(ASUS Xtion
Pro Live)

Thermoteknix
Miricle 307K
(640 x 480px)

Human
body
parts
(torso
and
legs)

3

Xu, Ye, Wang,
et al. [92]

RGB-D camera
based

Structured light
scanner

(Microsoft
Kinect v2
sensor)

Flir A65
uncooled LWIR
(640 × 512 px)

Human
body in
indoor
scene

-

Other
applications
Vidas and

Moghadam [61],
Vidas,

Moghadam, and
Sridharan [96]

RGB-D camera
based

RGB-D camera
(ASUS Xtion
Pro Live)

Thermoteknix
Miricle 307K
(640 x 480px)

HVAC
systems
and ma-
chinery

Ordonez Muller
and Kroll [97]

RGB-D camera
based

RGB-D camera
(PrimeSense
Carmine 1.09)

Optris PI 450
(382 x 288px)

Objects
within a
labora-
tory

3 case
studies

Schramm,
Osterhold,

Schmoll, et al.
[98]

RGB-D camera
based

Intel RealSense
D415 (RGB
2MP, D

Optris PI 450
(382 x 288px)

Indoor
scenes
with lab
objects

2 case
studies

5.3.2 Multimodal (IR-RGB) registration approach

The multimodal registration approach are those not based on camera calibration, but on image
registration. There are 3 types of multimodal registration that can be used for creating thermal
3D models:

1. 2D registration, i.e. IR-RGB images-based registration

2. 3D registration, i.e. aligning the color and thermal 3D models

3. 2D-3D registration, i.e. aligning 2D thermal image information onto 3D model

Few studies have proposed techniques to create thermal 3D models for skin and wound applications,
especially applying multimodal registration.

Based on 2D registration

2D registration of color and thermal images for skin or body areas is often based on silhouette
registration. This is feasible when body and skin images are taken from a great distance, as several
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edges become visible in both modalities, making alignment between images feasible. However, in
the case of close-up images of extremities such as legs, the edges are not easily distinguishable, and
this may result in incorrect registrations. As per our knowledge, this has not been used before for
thermal 3D model creation. Presumably because Small registration errors in 2D images, can lead
to large registration errors in 3D.

In devices with stereoscopically placed sensors, 2D multimodal registration can be performed using
a fixed scaling and 2D translation, if the object scanned is kept at a fixed distance from the camera.
[91] applies this idea to the fusion of thermal and color images taken from a specifically fixed
distance. Then, using fused RGB and IR images, the thermal 3D models are created.

Based on 3D registration

This methodology involves aligning a noisy thermal 3D point cloud to a color 3D model. To achieve
this, a thermal 3D model needs to be created using a passive 3D reconstruction method. In a study
by Truong et al. [86], a portable system with a straightforward process was presented. The system
applies SfM reconstruction to 2D RGB and 2D IR images, creating a color 3D model and a thermal
3D model, respectively. The resulting point clouds are then registered using ICP-based algorithms
to align the thermal data with the color 3D model. The system requires only a portable color
camera and an IR camera, and offers advantages such as simplicity, portability, and wide coverage
of the reconstruction. The methodology is successfully applied to indoor scenes and buildings
which contain varying intensity values and distinguishable edges in both IR and RGB modalities.

Based on 2D to 3D registration

This method consists of finding the thermal camera pose by optimizing a similarity metric between
thermal data from 2D images and a 3D model. In [85], a 3D model is created using Structure from
Motion (SfM) on RGB data, while [100] employs a laser scanner. Both models are projected onto
a 2D space where an optimization is performed to find a thermal camera pose that optimizes the
silhouette similarity metric. These methods have been successfully applied to individuals heads
[85], small designed objects, and distant images of large statues where silhouettes are obvious [100].

In summary, two approaches are distinguished for creating thermal 3D models. First, an accurate
estimation of the infrared thermal camera poses is performed. Then, raycasting is performed to
assign the temperature values to the 3D model. To achieve high accuracy in camera pose estimation,
active or stationary reconstruction systems are needed. To provide these systems with portability,
manual assistance is often needed to maintain fixed relative positions. A second approach is based
on multimodal registration. The thermal camera pose is estimated by optimizing a similarity
metric, which is created from detectable silhouettes. This approach requires multiple edges to be
detectable in both thermal and color imaging modalities. However, not many applications have
been demonstrated in skin.

5.4 Proposed methodology for multiview thermal 3D model

This section presents a methodology for creating multi-view thermal 3D models.

The proposed methodology is implemented using images from two low-cost devices: a mobile
device, which can be a smartphone or a tablet; and a dual sensor thermal camera, FlirOne Pro.

Several RGB and IR images are collected in manual mode from both devices, which serve as input
for the proposed methodology (See 5.8). This methodology combines multimodal calibration and
methodologies used in 2D/3D registration based approaches. The methodology is divided into 3
stages:
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1. Calibration-based thermal 3D model creation.

2. Refinement of thermal camera poses.

3. Fusion of several thermal views.

Figure 5.8: Summary of the inputs, outputs and stages of the proposed methodology.

In the first stage, 3D model is created with passive reconstruction from multi-view RGB images, and
thermal camera poses are estimated using multimodal stereo camera calibration. Then, refinement
of the thermal camera poses is performed based on an optimization technique. Finally, in the third
stage, multi-view thermography is combined to estimate tempertures onto the 3D model. Fig 5.9
shows the complete pipeline of our proposed methodology.

Each of these stages is described in detail below.

5.4.1 Stage I: Calibration-based thermal 3D model creation

The creation of single thermal 3D models is done by estimating the thermal camera pose of the
FlirOne camera using multimodal calibration. Then, using raycasting, temperature estimated from
radiometric files is transferred from 2D to 3D point cloud. Figure 5.10 illustrates this stage.

The steps of this stage are explained in more detail below:

3D Structure from Motion (SfM)

The process of 3D reconstruction requires the use of RGB images as input. These RGB images
can come from two sources: those taken using a smartphone or other mobile device and those
captured using an IR device. Chapter 3 presented a portable thermal Camera: FlirOne Pro, which
is capable of capturing both an RGB image and a IR image simultaneously. For the purpose of
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Figure 5.9: Workflow of the proposed methodology.

Figure 5.10: Workflow illustrating the creation of calibration-based thermal 3D models using
passive reconstruction and multimodal calibration of stereo cameras.



5.4. PROPOSED METHODOLOGY FOR MULTIVIEW THERMAL 3D MODEL 58

estimating camera poses from FlirOne Camera, the RGB images captured by the FlirOne Camera
are used as inputs.

The 3D model is reconstructed using multi-view RGB images taken with a digital camera. The
Structure from Motion algorithm, as implemented in the open-source software Meshroom [101], is
used to perform the reconstruction. The feature detectors utilized are SIFT and AKAZE, with a
sensitivity setting of “high” for smartphone images and “ultra” for low-resolution FLirOne RGB
images. A maximum reprojection error of 4 is setup to the SfM algorithm.

As a result of the passive reconstruction, a 3D mesh, i.e., a point cloud 𝑃 , and triangular polygons
are obtained; along with estimated camera poses for all RGB cameras: i.e., smartphone camera
poses and FlirOne camera poses. The number of images used for the reconstruction is 𝑁 and could
be written as follows:

𝑁 = 𝑁𝑟𝑔𝑏 + 𝑁𝑖𝑟 (5.2)

Where 𝑁𝑟𝑔𝑏 is the number of color images captured by the mobile device that are used for 3D
reconstruction. 𝑁𝑖𝑟 is the analog for the FlirOne thermal camera device.

Thermal camera pose estimation

After the SfM reconstruction, a 3D model represented by pointcloud 𝑃 = {𝑝1, 𝑝2, 𝑝3, ..., 𝑝𝑀},
composed of 𝑀 points is obtained, as well as the camera pose is estimated [𝑅𝑖|𝑡𝑖] for each color
image 𝑖. 𝑖 = {1, 2, 3...𝑁}
The IR camera pose is determined using the multimodal calibration previously described in (5.1).
Then, the IR camera poses are estimated based on corresponding stereo RGB camera poses as
follows:

𝑅𝑖𝑟
𝑖 = 𝑅𝑖𝑟

𝑟𝑔𝑏𝑅𝑖 + 𝑡𝑖𝑟
𝑟𝑔𝑏

𝑡𝑖𝑟
𝑖 = 𝑅𝑖𝑟

𝑟𝑔𝑏𝑡𝑖 (5.3)

where [𝑅𝑖𝑟
𝑖 |𝑡𝑖𝑟

𝑖 ] represents the rotation and translation matrices of the 𝑖 − 𝑡ℎ camera pose. This is
computed for each of the 𝑁𝑖𝑟 images captured from FlirOne, 𝑖 = 1, 2, 3...𝑁𝑖𝑟.

Temperature information onto 3D models

For each thermal view, using the estimated IR camera pose, a calibration-based thermal 3D models
is created. To assing temperatures to the 3D model, we do the following: First, the 3D model
is transformed into the image plane through projection transformations. Then, then points are
assigned temperatures depending on the temperature of the pixels where they fall. Thus, for each
𝑗 of the 𝑁𝑖𝑟 flirOne images, using the initial estimated camera pose, the thermal values associated
with the 𝑗 − 𝑡ℎ views are as follows:

𝑌𝑗 = {𝑦𝑖𝑗} = {𝑦1𝑗, 𝑦2𝑗, 𝑦3𝑗..., 𝑦𝑀𝑗} (5.4)

where 𝑦𝑖𝑗 is the temperature value using view 𝑗 assigned to the 𝑖 − 𝑡ℎ point of the 3D point cloud.
𝑖 = {1, 2, 3, ...𝑀}, and 𝑗 = {1, 2, 3, ...𝑁𝑖𝑟}



5.4. PROPOSED METHODOLOGY FOR MULTIVIEW THERMAL 3D MODEL 59

5.4.2 Stage II. Refinement of thermal camera poses

The thermal camera poses estimated in Equation (5.3) are subject to two sources of error: 1)
errors related to the RGB camera pose estimated via passive reconstruction, and 2) errors related
to the geometrical transformation determined by the stereo calibration. To address these errors,
a refinement of the camera pose is incorporated. This refinement involves selecting one of the
thermal views and using its corresponding calibration-based thermal 3D model to improve camera
poses of the rest of the thermal 2D views.
As a result of the 2D/3D registration, the thermal camera poses are refined. Figure 5.11 depicts
the workflow for this stage where camera pose refinement is performed.

Figure 5.11: Illustration of the thermal camera pose refinement process based on the reference
thermal 3D model and optimization.

The registration of a thermal 3D model and 2D IR images is achieved by solving an optimization
problem in 2D space. We generate synthetic views by projecting the reference thermal 3D model
and use the optimization algorithm to maximize the similarity between the synthetic thermal views
and the real thermal images. We use the correlation between pixel values as a similarity metric, as
both images contain thermal data from the skin and wound scene. As a result of the optimization
process, we can refine the IR camera poses.
The refinement process implemented is similar to the optimization-based registration approach
presented in [92] where multimodal registration was done on thermal images and depth images.

Selecting the reference thermal 3D model

When using thermal camera poses to transfer temperatures from 2D thermography to the 3D
model, even small errors in camera pose estimation can cause significant registration errors, par-
ticularly when images are taken from a short distance. To mitigate this problem, we propose using
the farthest thermal view as the reference view and adjusting the camera poses in other views to
match the thermal patterns in the reference view.
By using this reference Thermal 3D model approach, we can refine the camera poses in other
views to achieve high correlation with the reference thermal 3D model. This method offers two
key benefits: first, the farthest thermal view provides a reference thermal 3D model for multiple
views, which helps to cover a large portion of the surface; second, errors in camera pose estimation
have minimal impact on creating the thermal 3D model.
To determine the farthest image, we measure the distances between the wound 3D model and the
camera poses. We then use the selected thermal view to assign temperatures to the 3D model,
resulting in a thermal 3D model called the Reference Thermal 3D Model (RT3DM).
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Synthetic views

A synthetic view is created using rasterization, which involves projecting the 3D model pointcloud
(𝑃 ) onto a 2D plane of the IR camera. This projection is similar to taking a virtual photo using
the reference thermal 3D model (RT3DM), resulting in what is known as a synthetic view. For
each of the 𝑁𝑖𝑟 images, a synthetic image 𝑆𝑖 is created using its camera pose [𝑅𝑖𝑟

𝑖 |𝑡𝑖𝑟
𝑖 ].

𝑆𝑖 = 𝑆(𝑃 , [𝑅𝑖𝑟
𝑖 |𝑡𝑖𝑟

𝑖 ]) (5.5)

Optimization of similarity metric

For each thermal image, the similarity is optimized in order to determine the refined camera pose.
The similarity metric is the correlation between intensity values from the synthetic view and the
2D IR image. The correlation is calculated using only those pixels for which there is a value in the
synthetic image:

𝑅𝑖𝑟∗
𝑖 , 𝑡𝑖𝑟∗

𝑖 = argmax
𝑅𝑖𝑟

𝑖 ,𝑡𝑖𝑟
𝑖

𝐶𝑜𝑟𝑟(𝑆𝑖, 𝐼𝑖) (5.6)

The Nelder-Mead algorithm is used to optimize the similarity metric described above. This al-
gorithm is widely recognized as one of the best methods for multidimensional optimization. The
initial estimation of the IR camera pose serves as the starting point for the optimization algorithm.
The termination tolerance is set at 10−8, with a maximum of 1200 iterations. Figure 5.12 depics
the optimization process.

Figure 5.12: Optimization process carried out for each thermal view to refine camera pose.

On an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.21 GHz computer, this algorithm takes an
average of 7 seconds per thermal image.
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5.4.3 Stage III: Fusion of several thermal views

Given the 𝑁𝑖𝑟 thermal views, each of the 𝑀 points on the 3D model pointcloud have several
temperatures that could be assigned to it. These temperature values can be represented in a
matrix 𝑀 x 𝑁𝑖𝑟 that represents all temperature values asssigned to the point cloud from different
views as follows:

𝑌 =
⎛⎜⎜⎜⎜
⎝

𝑌1,1 𝑌1,2 ⋯ 𝑌1,𝑁𝑖𝑟
𝑌2,1 𝑌2,2 ⋯ 𝑌2,𝑁𝑖𝑟

⋮ ⋮ ⋱ ⋮
𝑌𝑀,1 𝑌𝑀,2 ⋯ 𝑌𝑀,𝑁𝑖𝑟

⎞⎟⎟⎟⎟
⎠

(5.7)

To obtain a single measurement that combines the temperature of multiple views, a weighted
average is calculated. The method used to combine the temperatures is a weighted average as
proposed in 4.3 which takes into account the distance and angle between the camera and the
captured scene surface. This approach reduces noise and improves temperature accuracy. A
similar weighted average for fusion of multiple views has been previously employed in [61].

After combining the temperature measurements, we can estimate the temperature at any point 𝑖
in the 3D model point cloud using the weigthed average as in the following equation:

̄𝑌𝑖 =
∑𝑁𝑖𝑟

𝑗=1 𝑤𝑖𝑗(𝜃𝑖𝑗, 𝑑𝑖𝑗)𝑌𝑖𝑗

∑𝑁𝑖𝑟
𝑗=1 𝑤𝑖𝑗(𝜃𝑖𝑗, 𝑑𝑖𝑗)

(5.8)

where 𝑤𝑖𝑗(𝜃, 𝑑) is the weight for the point 𝑖 in the image view 𝑗. 𝑗 represents the camera view,
with 𝑗 = 1, 2, 3, ..., 𝑁𝑖𝑟 and 𝑖 represents a point in the 3D model, with 𝑖 = 1, 2, 3, ..., 𝑀 . The
weight depends on the visualization angle (𝜃) and the distance between the camera and the point
(𝑑). Points with small distances and acute angles have higher weights than distant points with
larger angles. Specifically, points with distances smaller than 40𝑐𝑚 and angles lower than 60° have
weights greater than 0.5.

5.4.4 Evaluation of multi-view consistency

To assess that the images are consistency between the different views and, therefore, well aligned
with the reference thermography, a multivariate measure of correlation is observed: the intraclass
correlation coefficient is applied to the data structured in (5.7).

Given 𝑌𝑖𝑗, the values of temperature for a given 𝑖− 𝑡ℎ point in the 3D model point cloud, observed
from 𝑗 − 𝑡ℎ view. The temperature value can be modeled as follows:

𝑌𝑖𝑗 = 𝜇𝑖 + 𝛼𝑗 + 𝜀𝑖𝑗

where 𝑌𝑖𝑗, is decomposed in three parts: a real temperature for each point 𝜇𝑖; an effect from j-th
thermal view 𝛼𝑗; and a random error for each point and thermal view 𝜖𝑖𝑗. Assuming independent
effects between the components, the variance of temperatures in the point cloud could be expressed
as follows:

𝜎2
𝑌 = 𝜎2

𝜇 + 𝜎2
𝛼 + 𝜎2

𝜀

Then, ICC is calculated as follows:

𝐼𝐶𝐶 = 𝜎2
𝛼

𝜎2𝛼 + 𝜎2𝜀

where
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• 𝜎2
𝛼: variance due to the different views.

• 𝜎2
𝜖 : variance due to random error.

• n = number of subjects;

• k = number of raters/measurements.

ICC is a scale-free measurement which varies from 0 to 1. When ICC is close to 0, it means there
is a low correlation between different views values. In contrasts, when ICC is close to 1, there
is consistency between different views; i.e. there is high correlation between values from different
views.

5.5 Proof of concept on real wounds

Six wounds are analysed to demonstrate the feasibility of the presented methodology. The images
of the patients’ wounds were acquired in a hospital in France, where the acquisition protocol was
performed in manual mode with instructions to take multiple views around the wound. The user
acquired several views in front of the wound with an arc position movement to capture multiple
overlapping views of the wound. With four thermal images in front of the wound, and one of the
thermal images from further away. The thermal imaging camera is always placed on top of the
smartphone to capture the photos, so we can always use the same geometric calibration. Figure
5.13 illustrates the six cases for which we show the result in this section.

Figure 5.13: Six cases of foot and lower extremity injuries used to show application of our algorithm
for multi-view thermal 3D model creation.

5.5.1 Calibration-based thermal 3D models

For each model, we used passive reconstruction and applied a geometric transformation to the
RGB camera pose to obtain the IR camera pose.

To perform multimodal stereo calibration, we captured 86 images of the chessboard pattern de-
scribed in section 5.2 and used the open-cv package in Python for calibration. The resulting
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average reprojection error was 6.83 pixels, which represents 0.85% of the diagonal pixels. This er-
ror provides a baseline for comparison, and we anticipate that implementing geometric translation
between cameras to estimate the IR camera pose will result in a similar level of error.

Using SfM with Meshroom, we obtained estimated camera poses for all 𝑁 color views: 𝑁𝑟𝑔𝑏
from the high resolution RGB camera and 𝑁𝑖𝑟 views from the thermal camera. We applied a
geometric transformation by stereo calibration to each of the 𝑁𝑖𝑟 IR camera views, and then, we
used raycasting to assign temperature values to the 3D point cloud. Figure 5.14 shows examples
of the resulting calibration-based thermal 3D models created using this methodology.

Figure 5.14: Calibration-based thermal 3D models created based on 3D models from passive re-
construction and initial infrared camera poses estimated by stero multimodal calibration.

5.5.2 Thermal camera pose refinement

After creating the first calibration-based thermal 3D model, a camera pose refinement is performed.
Using different visualizations, we demonstrate that the proposed refinement process improves the
registration between the infrared images and the 3D colour model.

To refine the infrared camera pose, we compared the perspective view of the 3D model with its
corresponding 2D thermography. Fig 5.15 shows four examples of 3D models viewed from the
perspective of the estimated IR camera poses overlaid with raw thermal images. The initial IR
camera pose estimation resulted in a visible mismatch between the object edges and those of the
IR image, as shown in the images (top row). However, our proposed pipeline showed a qualitative
improvement in edge alignment after IR camera pose refinement (bottom row).

When comparing Synthetic Views Before and After Refinement, we can see that there is an im-
provement in thermography registration. In Figure 5.16, an example is shown. Two synthetic
views of a foot area are shown. The synthetic views were created before and after refinement of
the thermal camera pose. The alignment between the synthetic view and the real thermal image
is improved after the camera pose refinement.

5.5.3 Multi-View Thermal 3D models

A comparison between the single-view and multi-view thermal 3D models reveals several advantages
of the latter. With multiview thermography, thermal data can cover larger surfaces, resulting in
more comprehensive 3D models. Figure 5.17 provides a visual comparison of the results obtained
using single and multiple thermal views. It demonstrates the benefits of the multiview approach
and its suitability for large as well as small wounds.
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Figure 5.15: Example of thermal 3D registration before and after the IR Camera Pose Refinement

Figure 5.16: Illustration of synthetic thermal images created by projecting the reference view
model using the baseline (left), the adjusted IR camera pose (center), and the original thermal
image (right). The dashed horizontal lines show that the synthetic images are in better alignment
with the actual thermal image when the camera pose is adjusted.
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Figure 5.17: Two examples of calibration-based thermal 3D models and their corresponding multi-
view thermal 3D models. Multi-view thermal models created with the proposed methodology.

Finally, the methodology has been applied to all six cases, and the results are shown below. Figure
5.18 shows the resulting color 3D model and thermal 3D model obtained using the methodology
presented for creating thermal 3D models.

Figure 5.18: Six cases were chosen to show the thermal 3D creation.

To evaluate the consistency achieved within multi-view thermography by different views, we used
the Intra-Class Correlation Coefficient (ICC) as described in Section 5.4.4 before and after the
refinement of the IR camera pose.

We observed an improvement in ICC for cases where the ICC was initially low (𝐼𝐶𝐶 ≤ 0.65)
before the refinement. However, for those with high ICC, the refinement process improved slightly
(<0.1 improvement), and only one case with high ICC decreased from 0.89 before to 0.78 after
refinement. Table 5.3 presents the results on ICC before and after the camera pose refinement
process.
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Table 5.3: Intraclass Correlation Coefficient (ICC) before and after the refinement of thermal
camera poses. Last columns shows the relative change in ICC.

ICC ICC Change
Patient Location Area No. points in 3D model (M) Before After Difference
P1 Ankle 1.49 247997 0.42 0.66 0.24
P2 Toe 0.80 156712 0.87 0.94 0.07
P3 Multiple 25.43 123347 0.89 0.78 -0.11
P4 Lateral 4.49 210024 0.27 0.91 0.64
P5 Calcaneus 2.47 189054 0.93 0.94 0.01
P6 Lateral 9.29 70493 0.65 0.97 0.32

5.6 Discussion

Thermography, a technique for evaluating wounds, has gained increasing interest in recent years.
Using two-dimensional (2D) thermography restricts the evaluation to a single viewpoint. In ad-
dition, 2D thermography for wounds requires a manual definition of regions of interest to obtain
quantitative metrics for wound assessment. Furthermore, the thermal accuracy changes depending
on the angle and distance between the camera and the wound. Given the current limitations of
2D thermography, alternative approaches such as thermal 3D modeling are more interesting for
wound evaluation.

The literature review of thermal 3D models for skin and wounds shows that the various systems
proposed for creating thermal models rely on high-cost devices and fixed cameras. Thus, many
of them are not practical for hectic clinical environments. Moreover, most thermal 3D models
generally use a single view, which leads to a decision regarding the scanning coverage and the
thermal resolution targeted. However, in curved areas, neither option would be feasible to assess
the entire area and its surroundings with a single view.

Therefore, this chapter presents a methodology for creating thermal 3D models from digital images.
No complex equipment is required: acquisition with low-cost commercial devices is proposed. Our
methodology focuses on the use of low-cost portable devices, in contrast to previous approaches
that require specialized equipment. By relying on readily available digital images, the proposed
methodology enables an affordable and accessible solution for thermal 3D modeling.

Our proposed thermal 3D model improves the thermal estimation of thermography by synthesizing
information from multiple-view thermal images, which is a contrast to previous thermal 3D mod-
eling systems that typically use a limited number of thermal views. Furthermore, our approach
uses passive reconstruction and refinement of camera poses, an alternative to most previous work’s
expensive active reconstruction techniques. It only requires digital images acquired with a portable
device like a smartphone and a commercial portable dual-sensor thermal camera.

Our study results demonstrate that our proposed methodology can generate high-quality ther-
mal 3D models from images captured using low-cost devices. By creating a multi-view thermal
model, we address the trade-off between scanning surface area and thermal resolution, which is
commonly observed in single-view thermal images. Combining multiple thermal views obtained
at varying distances, we enlarge the scanning area while preserving detailed thermal information
on the surface. Furthermore, integrating thermal views from multiple perspectives and distances
enhances temperature accuracy, leading to more reliable and precise temperature estimation, as
demonstrated in Chapter 4.

The employed refinement methodology demonstrates the capability to improve camera poses. How-
ever, the table presented in Section 5.3 shows that the refinement is most useful for thermal views
with no consistency among them, i.e., where the thermal views are not consistent across different
views. Inconsistency in the views when using a calibration-based thermal 3D model can lead to
varying and non-repeatable thermal metrics. In the case of multiple views, the camera poses are
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adjusted, and the thermography of the multiple views is combined, leading to stable and robust
thermography metrics.

Finally, the proposed methodology has the potential to be implemented in use cases beyond wounds
and skin due to several key factors. Firstly, passive reconstruction can be used for any object as
long as the scene is static with no movement and the surface is not reflective. Secondly, stereo
calibration only depends on the device, so it can be used in any other case. Finally, refinement
does not rely on the silhouette but rather on the variability of temperatures on the surface. As
such, it can be applied to surfaces with variable temperatures.

5.7 Conclusion

This chapter presents a methodology for creating multi-view thermal 3D models for wound eval-
uation. In addition, a comprehensive literature review on previous systems for creating thermal
3D models has been included, providing a detailed overview of the state-of-the-art in the field.
The chapter also details the process of stereo camera calibration, which is an important step in
creating accurate thermal 3D models. Overall, the chapter thoroughly analyzes the methodology
used to create thermal 3D models for wound evaluation, including a review of previous work and
a detailed description of the proposed methodology and calibration process.

Our proposed methodology employs passive 3D reconstruction and camera pose refinement to
create a multi-view thermal 3D model. This approach offers several advantages, including an
increased surface area coverage compared to calibration-based thermal 3D models. Additionally,
camera poses estimation from multiple IR views is refined using a reference thermal 3D model,
resulting in more accurate and reliable models. One of the key benefits of our proposed methodology
is that it can be implemented using low-cost devices, such as a smartphone or mobile device, along
with any dual-sensor (IR-RGB) portable thermal camera like the FlirOne Pro. This makes the
technology accessible to a wide range of users, including healthcare professionals in low-resource
settings.

Furthermore, using portable and user-friendly devices for image acquisition makes our proposed
methodology more accessible than previously proposed models, enabling its application in areas
with limited medical resources. This approach offers a promising solution for objective and af-
fordable wound assessment and monitoring. Moreover, our methodology has the potential to be
applied to other areas besides wound assessment, as there are no limits on the acquisition, and it
could be suitable for larger surfaces. This versatility opens up opportunities for the application of
our proposed methodology in different fields where portable thermal 3D modeling is necessary.
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In the previous chapter, an algorithm was presented for creating thermal 3D models from 2D
thermal and color images acquired with affordable and portable devices. Given the purpose of
its application in clinical scenarios, this chapter proposes a detailed pipeline for the automated
creation of thermal 3D models. The implementation of our proposed system to create thermal 3D
model has been demonstrated on 68 cases of wound in a real clinical setting. This clinical study
surpasses the sample size of previous studies that report the usefulness of 3D thermal models on
skin or wounds but only show their results on small samples composed of less than 5 cases [23],
[99].

This chapter is structured as follows: In section 6.1, the details of the automated process to create
thermal 3D models are described. In section 6.2, the quantitative measurements relevant to the
wound assessment are described. Next, in Section 6.3, the experimental setup for the clinical
study and the acquisition protocol are described; followed by Section 6.4, where results of the
implementation on real patients are presented with a detailed analysis of the thermal metrics and
their relevance for chronic wound assessment. Finally, Section 6.5 presents a discussion on the
prospects for clinical integration, and Section 6.6 concludes with a summary of the chapter.

6.1 Towards automated creation of thermal 3D models

In order to create thermal 3D models in an automatic process, additional methodologies have been
implemented to automate the thermal 3D model creation process.

These additional processes are incorporated into the thermal 3D model creation process described
above in 5.4. They include image preprocessing for the removal of non-relevant background objects

68
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in the images, postprocessing of the color 3D model, and finally the creation of geometric and
thermal metrics from the thermal 3D model. Figure 6.1 shows an overview of the process of
automatic thermal 3D model creation.

Figure 6.1: Pipeline for automated creation of thermal 3D models.

6.1.1 Background Removal

The Structure from Motion (SfM) technique involves performing 3D points triangulation based on
feature detection and matching between several points of views. However, when capturing images
from different perspectives in handheld mode, several background objects can inadvertently appear
on the images.

In a clinical environment, images often include non-interesting surrounding objects, such as the
bed, clothing, other body parts, and medical equipment, which are not useful for wound analysis.
Moreover, detecting and matching these non-useful background objects can consume resources and
slow down the creation of thermal 3D models. To address this issue, a pre-processing step for
removing surrounding background objects has been implemented. This step utilizes a U-network
deep learning model previously used by the STANDUP project. The model was trained and applied
as a helper to assist in wound segmentation tasks in previous studies of the STANDUP project
[102]. The skin segmentation model was applied on raw color images to obtain a skin mask, a
binary mask that detects the skin and rejects the background. Subsequently, a mask dilation with
a kernel of 10x10 was performed to avoid eliminating misclassified skin edges as could be seen in
Figure 6.2.

This process leads to efficient removal of surrounding objects, as well as improved processing time
and 3D reconstruction. Fig 6.3 shows the 3D model results after applying background removal
in various examples. Moreover, a quantitative evaluation of this pre-processing on 5 wound cases
shows a reduction in processing time by 17% on average, with a reduction in the 3D model repro-
jection error (root mean square error, RMSE) by 9% on average.

6.1.2 3D model scaling

After 3D modeling by SfM, the color 3D model has an arbitrary scale. Therefore, to convert the
3D model scale to a real-world scale in centimeters, a scale factor is applied.

The scale factor is calculated by using a reference object with a known size placed near the patient’s
skin. The reference object chosen is an ArUco markers as state-of-the-art algorithms already exist
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Figure 6.2: Automatic background removal procedure by deep learning based skin segmentation:
raw RGB image (left) and the corresponding image after applying background removal (right).

Figure 6.3: Example of 3 cases where the background removal treatment was applied. Baseline
3D models with reconstructed background objects (top) and corresponding 3D models once the
background removal process is implemented (bottom).
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for efficient detection of the object. The reference object is kept close to the wound and should be
visible in at least two of the images captured.

AruCo detection for RGB images is implemented using OpenCV within python. Once cornes of
the ArUco marker are detected in 2D images, raycasting is used for finding corresponding points in
the 3D model. The size of the square ArUco marker is calculated in the 3D model and compared to
the real size of the ArUco in centimeters. Matematically, the scaling factor calculated with 𝑗 − 𝑡ℎ
RGB image is denoted as 𝑆𝐹𝑗 and is computed as follows:

𝑆𝐹𝑗 =
̂𝑑3𝐷
𝑗

𝑑𝑅𝑒𝑎𝑙 (6.1)

where ̂𝑑3𝐷
𝑗 is the estimated size of the square in the 3D model using AruCo corner detection from

the 𝑗 − 𝑡ℎ image. 𝑑𝑅𝑒𝑎𝑙 is the actual size, in centimeters, of the ArUco marker. In our case:
𝑑𝑅𝑒𝑎𝑙 = 2.2𝑐𝑚.

Finally, a single scale factor is calculated averaging the scaling factors obtained from several 𝑁
views as follows:

𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 = ∑𝑁
𝑖=1 𝑆𝐹𝑖

𝑁 (6.2)

Fig 6.4 shows the detection of the ArUco markers in 2D and 3D space. The detected corners are
used to calculate the scale factor.

Figure 6.4: Illustration of Aruco markers detection process and computation of the scale factor.

6.1.3 3D wound segmentation

Wound segmentation in the 3D model was created from 2D color image segmentation, which was
performed by applying a deep learning model previously developed in the STANDUP project [16].

The 2D segmentation of multiple views are reprojected onto the 3D mesh using the extrinsic RGB
matrix and raycasting. Then, points on the 3D mesh are assigned to wounded or unwounded based
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on the majority vote of the multiple reprojected views. The idea of using majority vote strategy
comes from a previous study on multiview classification [103]. Fig 6.5 depics an example of the
3D wound segmentation from 2D images.

Figure 6.5: Ilustración de la segmentación en imágenes 2D, y su resultado en el modelo 3D de una
herida.

6.2 Quantitative wound measurements

In this section, we provide the definitions of geometric and thermal metrics, which will be later
analyzed in Section 6.4.

6.2.1 Evaluation regions

As highlighted earlier in Chapter 1, evaluation regions beyond the wound, such as the wound edges
and periwound, are important for wound assessment. In this section, we provide an objective
definition of such regions in the 3D model in order to subsequently use them in the calculations of
the thermal metrics.

Wound Edges (WE)

Based on a 3D segmentation of the wound, the wound edge (WE) is the region surrounding the
wound, limited to a width of 0.5 cm. This area clearly separates the wound bed and the periwound
area.

Periwound (PW)

The periwound region has been into the focus of research as it has the potential to provide thermal
metrics for wound assessment. This region is defined as the adjacent area located within a geodesic
width of up to 4 cm from the wound edges, as proposed by Dowsett et al. [32]. The use of a geodesic
distance from the wound edges is a critical factor in the definition of the periwound area, as it
enables the consideration of the complex three-dimensional (3D) structure of the wound and its
surrounding tissue.

Normal Skin (NS)

The region of normal skin, characterized by the absence of visible signs of injury, is defined as the
area adjacent to the periwound. Although there are no fixed criteria for the extent of normal skin,
a width of up to 4 cm from the wound edge has been selected to capture a representative sample
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of the surrounding tissue. This width is similar to the periwound area and provides a balance
between obtaining adequate baseline temperature information and ensuring that the region is of
sufficient size to provide meaningful information while avoiding an overly wide or diffuse extent.
Figure 6.6 depicts the 3D segmentation of the wound model, including the wound bed, wound
edges, periwound, and normal skin regions previously described.

Figure 6.6: Depicted in the 3D model are the distinct regions of skin, including the wound bed,
wound edges, peri-wound, and normal skin.

While the region size parameters have been established for the purposes of this thesis based on gen-
eral guidelines and considerations, it is important to acknowledge that they are open to adaptation
in future applications as deemed appropriate by the treating physician.

6.2.2 Wound surface area

Once the wound has been segmented in the 3D model, the calculation of the wound area is an
straigthforward process. It consists of adding the area of the triangles corresponding to the wound
bed area obtained by the segmentation process described above. With this method, a more realistic
measurement of the wound surface can be obtained, as it takes into account the curvature of the
area and, therefore, can provide more detailed indicators for wound assessment and follow-up.

6.2.3 Thermal metrics

Temperature metrics, including temperature differences between evaluation regions and wound
variability within regions, have previously been studied in the assessment and prognosis of chronic
wounds [7], [24], [25], [104]. Therefore, six thermal metrics have been created. The first three met-
rics serve to analyze the temperature differences between evaluation regions (i.e. wound, periwound,
and normal skin), while the last three metrics are intended to analyze temperature variability within
each evaluation region. These metrics are defined above:

• 𝑇𝑊𝐵−𝑃𝑊 : Calculated and expressed in Celsius (°C), this metric provides information on the
temperature of the wound bed relative to that of the periwound. A value greater than zero
indicates that the temperature of the wound bed is higher than that of the periwound.
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• 𝑇𝑊𝐵−𝑁𝑆: Temperature difference between wound bed(WB) and normal skin(NS) in °C, is
calculated and expressed in Celsius (°C). This metric provides information on the temperature
of the wound bed relative to that of the normal skin.

• 𝑇𝑃𝑊−𝑁𝑆: Temperature difference between periwound(PW) and normal skin(NS), is calcu-
lated and expressed in Celsius (°C). This metric provides information on the temperature of
the periwound relative to that of the normal skin.

• 𝐶𝑉𝑊𝐵, 𝐶𝑉𝑃𝑊 , and 𝐶𝑉𝑁𝑆: The coefficient of variation (CV) of temperatures within the
wound bed (WB), periwound (PW) and normal skin (NS) respectively. CV quantifies the
degree of temperature variation within each evaluation region, and is calculated as follows:

𝐶𝑉𝑧𝑜𝑛𝑒 = 𝑆𝑡𝑑(𝑇𝑧𝑜𝑛𝑒)
𝐴𝑣𝑔(𝑇𝑧𝑜𝑛𝑒) (6.3)

where the Zone can be either wound bed (WB), periwound (PW) and normal skin (NS). 𝑆𝑡𝑑(𝑇𝑧𝑜𝑛𝑒)
is the standard deviation of the zone, and 𝐴𝑣𝑔(𝑇𝑧𝑜𝑛𝑒) is the average temperature on the zone.

6.3 Experimental Setup

The primary objective of the present study is to investigate the feasibility of employing portable
devices to construct thermal 3D models in clinical settings. Furthermore, the study aims to evaluate
the value of thermal metrics obtained from these thermal 3D models chronic wounds assessment.
The experiments were conducted between December 2021 and June 2022 at a private clinic in
Lima, Peru, and were approved by the Ethics Committee of the Pontificia Universidad del Peru.
Patients with an open wound who were undergoing treatment and agreed to participate in the study
were included in the data collection process, while patients without a wound were excluded. An
experienced clinic assistant, who had received specialized training in image acquisition, performed
the data acquisition process.
In this section, we describe the research protocol in clinical environment, as well as provide detailed
information on the image acquisition process.

6.3.1 Research protocol in clinical environment

The standard protocol for evaluating wounds typically begins by instructing patients to rest in a
comfortable position and cleaning the affected area. Subsequently, healthcare providers proceed to
qualitatively assess the wound and document their observations, followed by necessary treatment.
Our data acquisition process adheres to the aforementioned initial steps of patient positioning
and wound cleaning. Before initiating image acquisition, patients who consent to participate are
informed and asked to remain in a comfortable and still position for five minutes to minimize
motion blur. This is important for achieving accurate correspondence between the images in the
Structure from Motion (SfM) algorithm.
To ensure visual clarity and accurate documentation in the 3D model, the wound area should be
free of bandages and creams. If necessary, any residual bandages or creams can be gently removed
with warm water. After cleaning, the patient should rest for five minutes to allow the wound and
surrounding skin to equilibrate to ambient temperature.
The subsequent image acquisition process involves capturing images with both a mobile and a
thermal camera. More details on image acquisition are given in Section 6.3.2. After the images
are collected, healthcare providers can continue with qualitative evaluation and treatment of the
wound.
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6.3.2 Data Acquisition

The complete acquisition workflow is depicted in Figure 6.7

Figure 6.7: Workflow for image acquisition in the clinical environment

Devices

The acquisition of images was performed using a smartphone Xiaomi RedMi Pro 10, and a FlirOne
Pro thermal camera(FLIR Systems, Inc., Oregon, USA). The thermal camera was attached to the
smartphone as shown in 6.10. The smartphone camera captures images at a high resolution of
4000x3000 pixels, while the FlirOne Pro thermal camera captures two images at the same time: an
RGB image and a IR image, both saved in a unique radiometric JPG file. The RGB image has a
resolution of 1080x1440 pixels, and the IR image has a resolution of 480x640 pixels. The thermal
sensor of the FlirOne camera has a spectral range of 8 − 14𝜇𝑚, a thermal sensitivity of 70𝑚𝐾,
and a thermal accuracy of ±3°𝐶 or ±5%, according to the manufacturer.

Device - Sensor Resolution
Smartphone - RGB 3000x4000px
FlirOne Pro - RGB 1080x1440px
FlirOne Pro - IR 480x640px

The mobile device has been a smartphone in this study. However, as previously reported in Section
2, SfM 3D models can be created with any other digital camera with similar resolution can be used,
such as those found in tablets.

Reference Card

An easy-to-detect reference card was also used to adjust the 3D size to a true centimeter scale.
The reference card can be any object for which at least two points of known distance are known.
It will be used to adjust the 3D scale to real scale in 𝑐𝑚.

Initially, a colored rectangular marker was used for this purpose. However, we switched to using
the Aruco marker after a month, since the ArUco marker has algorithms implemented to detect
its four corners in a efficient way [77].
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The fiducial marker is placed on the clean skin or on the wound bed, close to the wound, in a
position where it is visible when the photographs are taken. At least two images must contain the
ArUco marker so that it can be reconstructed in the 3D model.

Figure 6.8: A sample of an ArUco marker. The ArUco marker is easy to detect by well known
algorithms implemented in opencv.

Image acquisition

To create thermal 3D models for wound evaluation, the protocol for acquiring thermal and color
images is done using low-cost cameras in handheld model. The acquisition procedure builds upon
previous studies on 3D photogrammetric reconstruction for wounds [40], [65], but with the addition
of thermal imaging to the acquisition protocol. The acquisition process consists of two phases: RGB
image acquisition and thermal imaging acquisition. The details for each process are described
below.

1. RGB image acquisition: To build the color 3D model, the operator captures various different
overlapping views of the wound with a smartphone, using a traditional passive reconstruction
protocol. The camera is placed about 20-30 cm in front of the wound, and the operator
captures images in a circular motion, ensuring the images are in focus on the wound. The
number of images requested is 20 images. However, It’s important to note that the operator
could take a few more color or thermal images than requested inadvertently, which is not a
problem and can improve the quality of the 3D models. In general, the more images, the
better the quality of the 3D model, although it will require more time to process the images.
It is even possible to create 3D models with only 2 images.

2. Thermal imaging acquisition: With the thermal camera, a similar procedure is followed. The
thermal camera is placed about 20-30 cm in front of the wound, and the operator captures
at least 4 different overlapping views. In addition, an additional thermal image is captured
from a greater distance (between 30 and 40 cm) to provide a broader thermal perspective of
the wound and the surrounding skin. This distant image is used as the reference view in the
thermal 3D model algorithm described in the previous chapter.

The goal of the different thermal images is to capture the thermography of the wound and sur-
rounding area from different perspectives and map resulting temperatures onto the surface of the
3D model. While more images from different views could be useful to cover a larger area of the 3D
model with thermography, the number of images was not controlled and only used as a reference
for the acquisition. Figure 6.9 depics the acquision that should be perfomed in two steps: first
with the mobile camera and then the acquisition with the thermal camera.

The process of acquiring images for wound monitoring is generally straightforward and allows for
flexibility in the number of images needed.

Operator

Since the acquisition procedure depends on the operator’s ability to take photographs, user ac-
quisition training is conducted. First, a training is conducted in an office with an uncluttered
environment. Then, another training is conducted in the clinical environment. Figure 6.10 shows
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Figure 6.9: Acquisition configuration proposed as a reference. First, acquisition is performed with
the high-resolution camera of the mobile device in two circular motions in front of the wound. Next,
a small thermal image is acquired with the thermal camera in a similar motion, and a thermal
image captured from further away.

Figure 6.10: Illustration of handheld image acquisition using portable devices in clinical settings
for creating thermal 3D models of wounds.
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an example of handheld acquisition in an uncluttered environment with an artificial wound phan-
tom.

Since the acquisition is manual and therefore the camera positions are not controlled, the camera
positions may differ from those presented in Figure 6.9. This is not a problem for the creation of
3D models with the SfM algorithm.

6.3.3 Database

Each acquisition of images performed on a wound is called a visit. Images of each visit are processed
to create the thermal 3D model; some patients have been captured more than once.

In total, the database is composed of 68 processed visits, which correspond to 32 volunteers. From
those, 13 patients have been captured more than once, i.e. they have various visits over time.

Thermal 3D models were used to calculate geometrical and thermal metrics as described in the 6.2
section. Wound surface area ranged from 0.4 𝑐𝑚2 to 139.4 𝑐𝑚2, with a mean surface area of 27.75
𝑐𝑚2 and a standard deviation of 28.7 𝑐𝑚2.

The wounds were located in different areas of the foot and leg: sole, heel and edges of the foot; and
58 visits (75%) had been previously undergone any amputation, generally of one or more fingers
or toes.

Wound classification according to the Wagner wound classification system was performed manually
for each wound case. Wagner’s wound grading system was described previously in Section 1.3.1.
Wound grading was distributed as follows: 16 (23.5) cases had grade 4 wounds, 23 cases (33.8%)
grade 3 wounds, 24 cases (35.3%) grade 2 wounds and 5 cases (7.4%) grade 1 wounds. This is
shown in Table 6.2

Table 6.2: Distribution of wound grades in the 68 thermal 3D
models processed.

Wound grading Freq %
Grade 1 5 7%
Grade 2 24 35%
Grade 3 23 34%
Grade 4 16 24%

6.4 Evaluation of thermal 3D models and metrics

In Figure 6.11, we could observe the color and thermal 3D models created for various wound stages
and sizes. This demostrates the feasibility of creating the multi-view thermal 3D model with our
proposed methodology, specially in clinical environment.

For each visit, the acquisition of images takes less than 5 minutes. On the other hand, the processing
time for creating thermal 3D models for each visit is in average 15 minutes using a Intel i7-12650H
CPU (16 cores), 2.3 Ghz (Hyper-Threading 3.6 Ghz) 16 GB DDR5 RAM (4800 Mhz); a Nvidia
GeForce Rtx 3060 6GB GPU; 512 GB Disk memory (NVNe SSD), and O.S. Windows 11.

The system demonstrated to be straightforward, requires minimal resources and can provide 3D
thermal models in clinical settings, including remote areas or at home. In terms of time, a pro-
cessing time of 15 minutes per model, leads to about 4 hours of processing for a maximum of 16
acquisitions per day, assuming patients each 30 minutes during a work day of 8 hours.

In addition to assessing the feasibility of creating 3D thermal models with the proposed automated
process in clinical settings, An analysis of the relevance of thermal metrics is performed.
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Figure 6.11: Examples of 3D color and thermal models created for three different wound sizes and
wound grades. In each case, color 3D models (left), thermal 3D models (center) and blended color
and thermal 3D model visualization (right) are displayed.
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6.4.1 Relevance of thermal metrics for wound assessment

The six thermal metrics obtained from the thermal 3D model are analyzed to test its relevance in
wound evaluation.

First, we explore the temperature difference metrics. From 6.3, we observe that difference between
the periwound and normal skin vary between positive and negative results; i.e. our sample is
composed of patients with higher temperature in the periwound compared to the normal skin, as
well as patients lower temperature in the periwound, compared to normal skin.

Table 6.3: Statistics for temperature differences, including the
mean and its 95% confidence interval (CI). The final column dis-
plays the p-value obtained from a t-test that was used to determine
whether the temperature differences between evaluation regions are
statistically different from zero.

Difference mean ci95 pval
𝑇𝑃𝑊−𝑁𝑆 -0.64 [-0.99; -0.3] 0.00043
𝑇𝑊𝐵−𝑁𝑆 -0.93 [-1.45; -0.42] 0.00056
𝑇𝑊𝐵−𝑃𝑊 -0.29 [-0.69; 0.11] 0.15104

In contrast, a significant difference was found between the average wound temperature and the
average temperature of normal skin, which suggest that our database is composed mostly of cases
where average wound bed has lower temperatures than the periwound and normal skin. On average,
the wound temperature was 0.93°C lower than the normal skin temperature. Average wound bed
temperature was also significantly lower than the periwound temperature, with the wound bed
temperature being 0.64°C lower on average.

Temperature difference metrics were also evaluated in relation to the Wagner’s wound grading.
Figure 6.12 presents box plots that show the distribution of thermal metrics grouped by wound
staging.

Figure 6.12: Distribution of temperature differences for different grades of wounds. The wound
grade corresponds to the Wagner classification for diabetic wounds.

From this figure, a difference in metrics between grading is noticeable. Specifically, the periwound
temperature is slightly higher than the temperature of normal skin in grade 1 wounds. Conversely,
the periwound temperature is lower than the normal skin temperature in grade 3 and 4 wounds. In
grade 2 wounds, the periwound temperature and normal skin temperature are similar on average.
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When analyzing the temperature difference between wound bed and normal skin, a similar trend
is observed. Lower wound bed temperatures are associated with severe wound stages. Table 6.4
demonstrated significant differences in differential thermal metrics by one-way ANOVA.

Table 6.4: ANOVA test results for each temperature difference
metric, to test for significant differences between wound grades.

Response Mean Sq BetweenGroups Mean Sq Residual F-value p-val
𝑇𝑊𝐵 − 𝑇𝑃𝑊 8.6077 1.6635 5.1744 0.002600
𝑇𝑊𝐵 − 𝑇𝑁𝑆 18.4456 2.7901 6.6111 0.000573
𝑇𝑃𝑊 − 𝑇𝑁𝑆 3.8009 0.8375 4.5382 0.005306

On the other hand, Table 6.5 presents the basic statistics for the temperature variability metrics.
Overall, the metrics on the coefficient of variation (CV) of temperatures are less than 20%, with a
right-skewed distribution. The CV of wound bed temperatures is found to be the lowest compared
to the CV of periwound (PW) temperatures and normal skin (NS) temperatures.

Table 6.5: Statistical analysis of the coefficient of variation (CV)
metrics obtained from thermal 3D models created for 68 wound
cases. The table presents each evaluated metric along with its basic
statistical measures, such as minimum value, quartile 1, median,
mean, quartile 3, and maximum.

Metrics Min Q1 Median Mean Q3 Max
𝐶𝑉𝑊𝐵 0.004 0.025 0.036 0.041 0.050 0.178
𝐶𝑉𝑃𝑊 0.009 0.044 0.063 0.069 0.086 0.178
𝐶𝑉𝑁𝑆 0.003 0.042 0.064 0.070 0.084 0.193

Coefficients of variation within evaluation regions, were also analyzed with wound grade. The
KS test was applied to determine if there were significant differences in the metrics between the
different wound grades. The results demonstrated a significant difference in the CV of wound
bed temperature: the higher the wound grade, the greater the variability of temperatures within
the wound. No statistically significant differences were observed for other CV metrics. Table 6.6
presents the p-values obtained by Kruskal Wallis test.

Table 6.6: Kruskall Wallis test results to assess whether thermal
variability is significantly different between wound grades.

Metric Median Krustal-Wallis Chi-squared p-value
𝐶𝑉𝑊𝐵 0.036403 10.7590 0.01311
𝐶𝑉𝑃𝑊 0.063138 3.1729 0.36570
𝐶𝑉𝑁𝑆 0.063635 4.7379 0.19200

It should be emphasized that the previous analysis was based on a sample of patients with temper-
ature differences between +/ − 2°𝐶. Therefore, to explore relationships of thermal metrics beyond
this range, a further study has to be done. Nonetheless, these findings provide evidence of the po-
tential of using these metrics as a support metric in evaluating wound evolution. By analyzing the
temperature differences between different evaluation regions, wound bed, periwound, and normal
skin, against Wagners’s wound gradient, the study was able to provide insights of thermal metrics
for wound assessment.
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Figure 6.13: Distribution of temperature differences for different grades of wounds. The wound
grade corresponds to the Wagner classification for diabetic wounds.

6.5 Discussion

Traditional wound assessment is time-consuming and subjective. Thermography and 3D models
provide helpful complementary information on wound assessment and, most importantly, allow
quantitative measurements to be made and documented over time to monitor wound healing.

Two-dimensional thermography can provide objective indicators on wound evaluation; however,
the election of the region of interest within the wound in periwound is subjective and limited. By
creating the wound segmentation on the 3D model, we can provide objective definitions of evalua-
tion regions like wound bed, periwound, and normal skin, which contributes to the reproducibility
and objectivity of geometrical and thermal metrics created from the color and thermal 3D models.
Nevertheless, as the definition of evaluation regions depends on wound segmentation, which in turn
depends on the 2D segmentation of color images, special attention should be focused on the model
for 2D segmentation to have the most accurate 3D wound segmentation results. To improve the
2D segmentation model, a data augmentation based on the reprojection of the 3D segmentation
into 2D was proposed by our team in [105]. Given the dataset collected so far, data augmentation
can be performed to explore the improvements of the current 2D segmentation model.

The thermal 3D model created with our methodology enables the creation of comprehensive and
affordable visualization tools, which can help clinicians and patients. Indeed, visualization of
color and thermal 3D models, and their evolution over time, can increase patient knowledge and
awareness of his/her condition, which in turn, can motivate better home care and clinical outcomes
[106].

The clinical study presented in this chapter shows the use of thermal metrics and thermal 3D
models in the clinical setup. Acquisition time is less than 5 minutes, and therefore convenient to
be performed during a 30-minutes appointment. The current processing time to create 3D thermal
models is, on average, 15 minutes per case. In the best scenario, the thermal 3D models could
be completed before the end of the visit, which could be helpful in two ways: for the physician
to review or corroborate the state of the wound in order to define a subsequent appointment,
and also, it could be helpful in explaining the patient the evolution of his/her wound over time.
Furthermore, the documentation of thermal 3D models over time could also allow the identification
of subito changes commonly related to complications in wound evolution.

In remote areas where specialists in wound care are not available [107], creating thermal 3D models
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could help with teleconsultation and remote evaluation. Documentation of thermal 3D models
could enable the transmission of information to a specialized clinician for analysis and treatment
recommendations.

Moreover, if this is implemented in remote locations where the internet is not always available, the
processing can be performed at the end of the day. For 16 patients per day, assuming one patient
every 30 minutes for 8 hours, a maximum of 4 hours per day is estimated to process the 3D thermal
models. Therefore, the image processing can be done overnight and be ready the next day. This
challenge offers opportunities to further research on the implementation of these algorithms totally
in a smartphone.

The proposed methodology can be implemented to be used at home. For this, the patient requires a
low-cost dual-sensor commercial thermal camera, a marker with known size, and undergo training
to acquire thermal images. Currently, image processing cannot be performed entirely on the
smartphone but can be uploaded to the cloud. Cloud processing and storage are done so that
thermal 3D models are available when required by the physician and the patient.

The clinical study results show that wound grading is associated with temperature differences
between evaluation regions. Specifically, we have found that severe stages of chronic wounds are
associated with low temperatures in the periwound compared to normal skin. Also, they are
associated with low temperatures on the wound bed, compared to the periwound and normal skin.
On the other hand, wounds in mild stages are associated with higher temperatures in the periwound
compared to the normal skin (𝑇𝑁𝑆−𝑃𝑊 ). They are also associated with higher temperatures on
the wound bed, compared to the periwound(𝑇𝑃𝑊−𝑊𝐵) and normal skin(𝑇𝑁𝑆−𝑊𝐵). These results
are consistent with clinical analysis of wound healing.

In addition, thermal metrics have also shown a linear relationship to the healing rate by day. In
particular, the temperature in the wound bed compared to the normal skin 𝑇𝑁𝑆−𝑊𝐵 shows that
when more temperature in the wound bed is compared to the normal skin, the wound is more
likely to have a higher healing rate by day.

The relationship found in the clinical is exciting as they show the potential of the thermal metrics
for the evaluation of the wound status and the prognosis of wound evolution. Further research is
needed as the sample size of patients followed over time is reduced, and patients have not been
observed since the first day of the evaluation.

The clinical study has faced some limitations which have to be improved in the future. First, due
to several confinements in Peru, data acquisition has been interrupted or limited. As a result,
patients followed over time were not sampled at a regular visit interval: While some patients were
collected every week, others were observed every two weeks or more. Furthermore, patients were
not followed from the beginning of their treatments.

Our sample of patients was composed mostly of complex cases: 75% of the wounds had previous
amputations, which makes these cases likely to heal slowly. These cases require longer-term follow-
up than wounds of patients with no amputation. Therefore, extending this study to other types
of patients would be valuable to confirm the findings. A larger collection of thermal 3D models
would be feasible to acquire and process given the experience acquired during this clinical study
and thanks to the automated pipeline for processing thermal 3D models.

Looking forward to the integration of this application in the clinical process, some considerations
to be taken into account are presented, according to our experience in the realization of this clinical
study:

Acquisition images should be taken at the beginning. The time is less than 5 minutes and is
performed at the beginning of the session. During this time, we observed physicians speaking
to patients about general symptoms and answering questions raised by the patient and relatives
regarding the wound evolution.

The system we have presented does not require a specialized setup. The user in charge of the
acquisition does not need to be specialized in photography but should undergo a short training
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period to get used to acquisition devices and protocol. Thus, the user can be a nurse, or a medical
assistant used to take pictures with a smartphone.

Although the acquisition is easy, there are external conditions that must be taken into account in
order for the acquisition to be successful. In our experience, the most common drawbacks that
may arise during acquisition are as follows: First, The finger may obstruct the view of the thermal
camera, as the position of the thermal camera when holding the smartphone may inadvertently
cover the camera with the hand or fingers. Second, thermal camera images may focus on other
objects instead of the skin and wound. The user must practice capturing images with the thermal
imaging camera device to receive feedback on how to move the entire smartphone in order for the
camera to focus on the wound.

Ambient lighting conditions observed during acquisition must be taken into account in image
acquisition. In particular, we strongly recommend the use of natural or diffused light. The wound
should not be exposed to direct light, as this can reflect off on moist tissue and produce shadows.
Both reflections and shadows pose problems in 3D triangulation by SfM and could reduce the
quality of the 3D model.

6.6 Conclusion

The current chapter discusses the application of a system that utilizes previous work on algorithms
for creating thermal 3D models from low-cost devices. The chapter details the data acquisition
and implementation of an automated algorithm for processing thermal 3D models, which was
applied in a clinical setting to a non-negligible sample size of 68 cases of wounds. This study
surpasses previous reports on the usefulness of thermal 3D models, which are commonly limited
to small sample sizes of less than five cases. This implementation demonstrates the feasibility of
automating the creation of 3D thermal models, enabling clinicians to document the thermal 3D
model visualization and objective metrics for better wound management.

The chapter also highlights findings of clinical interest: relationships are observed between wound
grading and temperature differences in the wound bed, peri-wound, and normal skin areas. These
results are consistent with clinicians’ expectations of wound temperature patterns as a function of
wound grading.



Chapter 7

Conclusion and perspectives

7.1 Conclusion

To go beyond the state of the art on imaging techniques proposed for the follow-up of chronic
wounds, the European STANDUP project has taken the challenge of using a low cost multimodal
equipment composed of a FLIR one camera plugged to a Smartphone. This equipment allows a
light and practical use in all care environments, including telemedicine, in rural areas with poor
access and few medical staff.

To address this challenge, this thesis presents several contributions:

An analysis of the accuracy of a Flir One thermal camera for freehand acquisition

The experimentation under controlled temperature presented in Chapter 3, has allowed to high-
light the importance of camera perspective, i.e. camera-object angle and distances, for improving
temperature estimates. (Published in [108])

Two methods to improve temperature estimates in a multi-view context

Following the previous analysis, we have introduced two innovative methods for temperature cor-
rection in multiple thermal data contexts. The first method improves temperature estimates from a
single thermal image using a state-of-the-art regression model with inverse prediction. The second
method improves temperature estimation by combining data from multiple thermal views with
a weighted average, giving priority to frontal and close views of the wound. These two methos
have demonstrated the potential to improve the accuracy and precision of temperature estimates
obtained with raw IR images. This is especially important for low-cost cameras, which typically
have lower thermal accuracy.

A comprehensive review of previous works on thermal 3D model adapted for wounds
and skin

We present a review of several works aimed at the creation of thermal 3D models for wounds and
skin. Our review has uncovered some critical gaps. We have identified a shortage of portable and
affordable thermal 3D models systems for wound assessment, which presents a significant barrier
to wider adoption of thermal 3D models. Moreover, our review has highlighted the lack of clinical
studies, and the reliance on small case studies to validate 3D thermal models.
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A methodology for creating thermal 3D models from low-cost portable devices

Our methodology is suitable for being used with a smartphone or any other mobile device like a
tablet, which can capture high resolution RGB images; coupled any dual-sensor thermal camera,
like FlirOne. It goes beyond state-of-the-art approaches to create high-quality 3D thermal models,
including more accurate estimates of the surface temperature of a 3D model through a multi-view
fusion approach.

Unlike previous methods, our approach does not require any specialized setting for acquisition and
allows for freehand acquisition, making it convenient and accessible. We showcase the efficacy of
our methodology by utilizing two commercial and low-cost devices: a smartphone and a low-cost
thermal camera, FlirOne Pro; and we have demonstrated its capabilities with several cases of
wounds. Notably, our methodology offers the advantage of unrestricted scanning surfaces, making
it particularly suitable for large wounds or those with curved surfaces

The proposed methodology can be extrapolated to create 3D thermal models of other body parts,
objects or scenes. As our method is based on SfM, larger scenes can be reconstructed with sufficient
overlapping images. Moreover, our algorithm allows the combination of multiple thermal views,
which is useful to enlarge the scanning surface of the created thermal 3D models.

The proposed methodology was integrated into a fully automated process to create reproducible
and accurate 3D thermal models. This is a key point in collecting data from images acquired in
medical centers for clinical study. This process has also contributed to the growing base of labeled
images for deep learning of wound segmentation [105].

Clinical study for wounds assessment and healing monitoring

An extensive collection of images of chronic wounds and thermal 3D models for diabetic patients
has been done on a clinical settings. We provide a detailed clinical protocol for further replication,
and provide insights for its implementation in clinical settings.

Furthermore, we have analyzed the thermal metrics produced by our thermal 3D models, and
we have found evidence of its usefulness for wound evaluation and monitoring. Our results show
significant relationship between thermal metrics wound staging, a clinical bio-marker of wound
status.

In summary, in contrast to previous studies that proposed impractical and expensive systems, we
propose a methodology to create 3D thermal models suitable for portable and low-cost devices.
Furthermore, an automated process based on the proposed methodology was implemented to create
3D thermal models from 68 wound cases collected in a clinical setting. The data collection has
allowed the study of thermal metrics, which have shown their potential for wound assessment and
monitoring.

7.2 Perspectives

The application of our methodology has highlighted certain challenges that need to be further
investigated. Although the process of acquiring images for chronic wound monitoring is generally
straightforward and allows for flexibility in the number of images needed, it is important to note
that larger surfaces may require a greater number of images to ensure complete coverage of the
area. Further research is necessary to investigate and define better acquisition protocol according
to the wound size, and curvature of the surface where the wound is located.

The accuracy of our process for creating thermal 3D models and metrics relies heavily on wound
segmentation for obtaining precise geometrical and thermal metrics. Therefore, it is important to
advance the wound segmentation technique, either in 2D imaging or solely on the 3D model.
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Improving the background removal process is also necessary. Currently, the background removal
helps to a great extent in eliminating non-useful surrounding objects; however, certain parts of
the bed are still present. To automate thermal metrics, it is essential to ensure that all non-skin
surrounding objects are removed. This could be automated further using 3D model colors and
changes in curvature of the surface.

Using 3D thermal models beyond chronic wounds

The methodology presented does not limit the number of different views in RGB and color images.
Therefore, it is worth noting that its applicability goes beyond chronic wounds. Thermal 3D
models would also be very useful for the follow-up of other pathologies such as acute wounds,
burns, angiomas, and inflamations in any other body part.

However, while the thermal 3D modeling methodology is suitable for other cases beyond wounds,
the automated process for creating thermal 3D models has been specially designed for dealing
with cluttered and hectic clinical environment. The application to other objects or scenes migth
require particular automation process of the thermal 3D model creation. For example, background
removal, in our case, is applied to remove any uninteresting object and for reducing computational
time. The same might not be desired in other applications, like indoor scene scanning.

Computing resources

We have shown that a simple handheld acquisition can be used for creating thermal 3D models.
The creation of thermal 3D models has also been automated for a simple processing of thermal 3D
models for wounds. Nevertheless, despite the advantages of our automated implemented process,
the algorithm creates thermal 3D models in an average of approximately 15 minutes per case, and
computational resources required are not negligible. This is a current limitation, which provides
opportunities for improvement in the future.

A mobile application is under development to manage image acquisition and provide visualization
of the thermal 3D models. The android application could be useful for providing user instant
feedback on image acquisition. This would help ensure that only suitable 2D images are used for
3D thermal modeling. Furthermore, the application’s capabilities could be improved by enabling
real-time reconstruction. This could be achieved by utilizing algorithms that support real-time
reconstruction on smartphones such as [67]. Alternatively, ToF sensors available in smartphones
nowadays could also be incorporated into the thermal 3D modeling pipeline to obtain higher
resolution and more accurate 3D models.



Chapter 8

Extended Summary in French

Introduction

Le problème

Le traitement des plaies chroniques est une préoccupation majeure pour la santé, avec des coûts
importants, représentant jusqu’à 4 % des dépenses de santé en Europe et augmentant chaque
année[1]. À l’échelle mondiale, les estimations suggèrent que 15 % des personnes atteintes de
diabète souffriront de plaies chroniques et d’ulcères du pied diabétique au moins une fois au cours de
leur vie. Les conséquences de ces affections peuvent être graves, nécessitant souvent l’amputation
d’un membre et, dans certains cas, conduisant au décès. Les taux de mortalité associés à ces
complications sont similaires à certains types de cancer. [2]–[4]. Les plaies chroniques, telles que
les ulcères de jambe, les escarres et les plaies diabétiques, représentent un défi persistant car elles
dévient des délais de guérison attendus, nécessitant souvent des mois pour guérir. Dans de tels
cas, une surveillance adéquate de ces plaies est cruciale pour éviter les complications et garantir
des résultats de guérison optimaux. Néanmoins, la surveillance traditionnelle des plaies repose
principalement sur une évaluation visuelle subjective et des mesures manuelles, conduisant souvent
à des expériences chronophages et inconfortables pour les patients.

Au cours des dernières décennies, les outils d’imagerie ont connu des progrès significatifs, émergeant
en tant que ressources précieuses pour fournir automatiquement des mesures objectives sur les
caractéristiques visuelles des plaies, facilitant les procédures d’évaluation et de suivi. De plus,
les progrès récents dans la technologie des appareils photo numériques intégrés aux smartphones
ont facilité l’obtention d’estimations de mesures en 2D simplement par la capture d’images. Ces
développements indiquent des possibilités prometteuses pour des techniques d’évaluation des plaies
plus accessibles et efficaces.

Au-delà de l’imagerie en 2D, l’imagerie en 3D et la thermographie ont également montré des résul-
tats prometteurs dans l’évaluation des plaies. Alors que les images en 2D servent d’outil économique
pour le suivi des plaies, elles fournissent des informations limitées sur les plaies. En revanche, les
modèles en 3D offrent non seulement une visualisation riche, mais aussi des informations en pro-
fondeur qui peuvent décrire avec précision la gravité de l’état de la plaie [5], [6]. D’autre part, les
informations thermiques de la surface cutanée ont également fourni des informations utiles pour
l’évaluation des plaies, en particulier pour le suivi de la progression des plaies et la détection des
infections [7]–[9]. De plus, il existe désormais des caméras thermiques facilement accessibles et
abordables qui peuvent être intégrées de manière transparente dans le processus de surveillance
des plaies.

L’intégration de modèles en 3D avec la thermographie offre une avantage, fournissant des mesures
complémentaires qui pourraient améliorent la précision et l’informativité des diagnostics des plaies.
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Les avancées récentes ont considérablement amélioré l’accessibilité de la création de modèles en
3D et de la capture d’informations thermiques. Néanmoins, malgré ces avancées, l’incorporation
des deux modalités dans le meme cadre de référence pour l’évaluation des plaies reste relativement
inexplorée. La plupart des études reposent sur des installations complexes et un équipement
coûteux, les rendant peu pratiques pour les prestataires de soins de santé dans des environnements
cliniques du monde réel.

Pour relever ce défi, il est crucial de considérer les outils et les méthodes d’évaluation des plaies
qui fournissent des mesures objectives et des visualisations réalistes tout en privilégiant l’efficacité,
l’accessibilité et l’abordabilité. L’utilisation d’appareils abordables et accessibles peut offrir des
avantages non seulement aux professionnels de la santé, mais aussi aux patients eux-mêmes. À
terme, de telles méthodes pourraient être mises en œuvre à domicile, bénéficiant particulièrement
aux personnes à mobilité réduite et aux personnes vivant dans des zones rurales mal desservies.
Les avancées dans cette direction pourraient permettre aux patients de recevoir un traitement
opportun et pertinent, contribuant ainsi à une amélioration globale de leur qualité de vie.

Projet STANDUP WP2

Ce travail de recherche contribue au projet MSCA RISE STANDUP : Analyse Thermique par
Smartphone pour la Prévention et le Traitement des Ulcères du Pied Diabétique (UPD), financé par
la Communauté européenne [10]. Initié en janvier 2018, ce projet réunit six universités du monde
entier et deux entreprises européennes de haute technologie dans le but de réduire l’incidence des
UPD en utilisant un smartphone associé à une caméra thermique branchée sur le smartphone.

Dans le cadre de ce projet, le Work Package (WP2) est dédié à l’évaluation de la evolution d’un
ulcère du pied grâce à une approche multimodale combinant l’imagerie en couleur, la reconstruction
en 3D et les informations thermiques désormais disponibles sur des appareils portables tels que les
smartphones. Le WP2 se concentre sur le développement d’une application mobile qui intègrera
l’imagerie en couleur, la reconstruction en 3D et l’imagerie thermique pour fournir une évaluation
plus complète de la progression de l’ulcère au fil du temps, en fournissant des outils de suivi pour
aider au diagnostic et au suivi des changements dans les ulcères entre chaque visite. La présente
thèse s’inscrit dans le cadre du WP2.

Contributions

À partir d’une analyse de l’état de l’art, les contributions attendues de ce travail portent sur la
création d’un système permettant de générer un modèle thermique 3D précis à partir d’une caméra
peu coûteuse connectée à un smartphone, ainsi que sur son application dans la surveillance des
plaies chroniques.

Dans ce contexte, nos contributions peuvent être résumées comme suit :

• L’étude de la précision des mesures de température de la peau et des plaies à partir
d’acquisitions à main levée, en utilisant une caméra peu coûteuse.

• L’amelioration des estimations de température dans un contexte de thermographie multi-
vues.

• Une méthodologie améliorée pour combiner la thermographie et les modèles 3D dans un
processus unifié et automatisé adapté à une application clinique.

• Une analyse des mesures thermiques et de leur potentiel pour l’évaluation des plaies
chroniques.

• Enfin, la mise en œuvre dans une étude clinique sur de vrais patients pour démontrer la
faisabilité et l’utilité de l’outil proposé dans un cadre clinique.
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Ces contributions représentent une avancée significative dans l’évaluation des plaies, en fournissant
un outil abordable et pratique pour la création de modèles thermiques 3D à partir desquels des
métriques objectives de surveillance des plaies peuvent être obtenues.

Structure du manuscript

Dans le but de fournir une compréhension complète de l’évaluation et de la surveillance des plaies
chroniques à l’aide de techniques de vision par ordinateur, cette thèse est structurée comme suit :

Le chapitre 1 fournit le contexte médical des plaies chroniques et de leur évaluation. Cela comprend
une revue des systèmes d’imagerie et des métriques utilisés dans l’évaluation des plaies chroniques.

Le chapitre 2 introduit des concepts sur la modélisation 3D et la vision par ordinateur, qui sont les
bases du développement d’algorithmes pour les modèles thermiques 3D dans les chapitres ultérieurs.

Dans le chapitre 3, des concepts de base sur le rayonnement infrarouge, la thermographie et les
caméras thermiques sont présentés, fournissant une base pour les méthodologies de correction de
température présentées dans le chapitre suivant.

Le chapitre 4 présente deux approches distinctes pour améliorer l’estimation de la température,
avec une évaluation détaillée des méthodologies dans un cadre expérimental. Les résultats sont
comparés et analysés pour identifier l’approche la plus utile.

Le chapitre 5 inclut une revue des travaux précédents sur la création de modèles thermiques 3D.
De plus, ce chapitre présente notre méthodologie proposée pour créer des modèles thermiques 3D
précis en utilisant des images en couleur et infrarouges multi-vues à partir de dispositifs portables.

Enfin, dans le chapitre 6, un processus d’automatisation de la création du modèle thermique 3D est
présenté. Ensuite, la faisabilité du processus de création du modèle thermique 3D est démontrée
dans une étude clinique sur les plaies chroniques des patients diabétiques. Les métriques thermiques
créées avec nos modèles thermiques 3D sont analysées pour déterminer leur utilité dans l’évaluation
et la surveillance des plaies.

Résumé étendue

Ensuite, dans ce résumé étendu, nous présentons un aperçu de trois des contributions les plus
pertinentes de ce travail :

Estimation de température à partir d’images IR multi-vues

L’estimation de la température par thermographie est sujette à des erreurs en raison de l’angle et
de la distance entre la caméra et l’objet mesuré. Chapitre 4 aborde ce problème et propose des
méthodes pour améliorer la précision de l’estimation de la température en tenant compte de l’angle
et de la distance entre la caméra et l’objet mesuré.

Pour cette étude, une configuration expérimentale est réalisée pour évaluer l’effet de ces facteurs, à
savoir l’angle et la distance, sur différentes températures contrôlées par un contrôleur de tempéra-
ture spécial. De plus, deux méthodes pour améliorer l’estimation de la température sont proposées
et analysées. La première approche repose sur une modélisation à partir d’une seule vue, tandis que
la seconde utilise une technique de moyenne pondérée multi-vues. Les résultats des deux méthodes
sont comparés et discutés pour déterminer l’approche la plus utile pour améliorer la précision de
l’estimation de la température.

Le cadre expérimental est décrit en détail dans la section 4.1. La section 4.2 analyse l’estimation
brute de la température par thermographie. Les deux méthodes proposées pour améliorer
l’estimation de la température sont présentées et discutées dans la section 4.3.
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Deux approches ont été proposées et évaluées pour améliorer les estimations de température pour
les caméras thermiques portables peu coûteuses. La première approche est une correction basée
sur un modèle, qui nécessite des expériences à température contrôlée et un équipement spécialisé,
mais montre qu’un modèle de correction de température peut être utilisé pour un équipement peu
coûteux. La deuxième approche est la moyenne de la température multi-vues, plus pratique et
fonctionnelle. Les résultats ont montré que la moyenne de la température multi-vues améliorait
significativement la précision et la précision : l’erreur quadratique moyenne (RMSE) peut être
réduite à 0,76 °C en utilisant trois images et réduite encore à 0,45 °C en utilisant 15 images, par
rapport au RMSE initial de 1,154 °C obtenu à partir de l’estimation brute de la température à
partir d’images IR.

Ces résultats mettent en évidence l’importance de l’incorporation d’informations supplémentaires
pour améliorer la précision des estimations de température obtenues par imagerie thermique. Nous
montrons que l’incorporation des angles et des distances dans l’estimation de la température en
utilisant une moyenne multi-vues améliore les estimations de température dans les caméras ther-
miques peu coûteuses. Le modèle 3D résultant de la Structure from Motion (SfM) permet d’accéder
aux calculs des différents points de vue, ce qui rend possible l’application de cette méthode de cor-
rection multi-vues pour la mesure de la température sur l’objet.

Création de modèles thermiques 3D

À partir de l’état de l’art sur la création de modèles thermiques 3D, deux approches se distinguent
pour la création de modèles thermiques 3D. Tout d’abord, une estimation précise des poses de la
caméra thermique infrarouge est effectuée. Ensuite, une opération de lancer de rayons (raycasting)
est effectuée pour attribuer les valeurs de température au modèle 3D. Pour atteindre une grande
précision dans l’estimation de la pose de la caméra, des systèmes de reconstruction actifs ou sta-
tionnaires sont nécessaires. Pour fournir à ces systèmes une portabilité, une assistance manuelle
est souvent nécessaire pour maintenir des positions relatives fixes. Une deuxième approche re-
pose sur l’enregistrement multimodal. La pose de la caméra thermique est estimée en optimisant
une métrique de similarité, créée à partir de silhouettes détectables. Cette approche nécessite
que plusieurs bords soient détectables dans les deux modalités d’imagerie thermique et couleur.
Cependant, peu d’applications ont été démontrées sur la peau.

Nous proposons une méthodologie qui ne nécessite que des images de deux appareils peu coûteux
: un appareil mobile, qui peut être un smartphone ou une tablette, et une caméra thermique à
double capteur, FlirOne Pro.

Plusieurs images en couleur et IR sont collectées en mode manuel à partir des deux appareils, qui
servent de base pour la méthodologie proposée (voir 5.8). Cette méthodologie combine l’étalonnage
multimodal et les méthodologies utilisées dans les approches basées sur l’enregistrement 2D/3D.
La méthodologie est divisée en 3 étapes :

1. Création de modèle thermique 3D basée sur l’étalonnage.

2. Raffinement des poses de la caméra thermique.

3. Fusion de plusieurs vues thermiques.

Dans la première étape, un modèle 3D est créé par reconstruction passive à partir d’images en
couleur multi-vues, et les poses de la caméra thermique sont estimées à l’aide d’un étalonnage
stéréo multimodal. Ensuite, le raffinement des poses de la caméra thermique est effectué grâce
à une technique d’optimisation. Enfin, dans la troisième étape, la thermographie multi-vues est
combinée pour estimer les températures sur le modèle 3D. La figure 8.1 montre l’ensemble du
processus de notre méthodologie proposée.
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Figure 8.1: Flux de travail de la méthodologie proposée.

Figure 8.2: La création de modèles 3D thermiques est illustrée pour six cas.
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La méthodologie a été appliquée à l’ensemble des six cas, et les résultats sont présentés ci-dessous.
La Figure 8.2 montre le modèle 3D en couleur résultant et le modèle 3D thermique obtenu à l’aide
de la méthodologie présentée pour la création de modèles 3D thermiques

Notre méthodologie proposée emploie la reconstruction 3D passive et le raffinement de la pose
de la caméra pour créer un modèle thermique 3D multi-vues. Cette approche présente plusieurs
avantages, notamment une couverture de la surface accrue par rapport aux modèles thermiques 3D
basés sur l’étalonnage. De plus, l’estimation des poses de la caméra à partir de multiples vues IR
est affinée à l’aide d’un modèle thermique 3D de référence, ce qui permet d’obtenir des modèles plus
précis et fiables. L’un des principaux avantages de notre méthodologie proposée est qu’elle peut
être mise en œuvre à l’aide d’appareils peu coûteux, tels qu’un smartphone ou un appareil mobile,
associés à une caméra thermique portable à double capteur (IR-RGB) comme la FlirOne Pro. Cela
rend la technologie accessible à un large éventail d’utilisateurs, notamment les professionnels de la
santé dans des environnements à ressources limitées.

De plus, l’utilisation d’appareils portables et conviviaux pour l’acquisition d’images rend notre
méthodologie plus accessible que les modèles précédemment proposés, ce qui permet son application
dans des zones disposant de ressources médicales limitées. Cette approche offre une solution
prometteuse pour l’évaluation et la surveillance objectives et abordables des plaies. De plus

Application clinique

Étant donné l’objectif de son application dans des scénarios cliniques, le Chapitre 6 propose un
pipeline détaillé pour la implementation de modèles thermiques 3D. L’implémentation de notre
système proposé pour créer un modèle thermique 3D a été démontrée sur 68 cas de plaies dans
un environnement clinique réel. Cette étude clinique dépasse la taille de l’échantillon des études
précédentes qui rapportent l’utilité des modèles thermiques 3D sur la peau ou les plaies, mais ne
montrent leurs résultats que sur de petits échantillons composés de moins de 5 cas [23], [99].

Dans la section 6.1, les détails du processus automatisé de création de modèles thermiques 3D
sont décrits. Dans la section 6.2, les mesures quantitatives pertinentes pour l’évaluation des plaies
sont décrites. Ensuite, dans la Section 6.3, la configuration expérimentale de l’étude clinique et le
protocole d’acquisition sont décrits ; suivi de la Section 6.4, où les résultats de la mise en œuvre
sur de vrais patients sont présentés avec une analyse détaillée des métriques thermiques et de leur
pertinence pour l’évaluation des plaies chroniques. Enfin, la Section 6.5 présente une discussion
sur les perspectives d’intégration clinique, et la Section 6.6 se conclut par un résumé du chapitre.

Système automatisé

Afin de créer des modèles thermiques 3D dans un processus automatique, des méthodologies supplé-
mentaires ont été mises en œuvre pour automatiser le processus de création de modèles thermiques
3D. Ces processus supplémentaires sont incorporés dans le processus de création de modèles ther-
miques 3D décrit ci-dessus dans 5.4. Ils comprennent la prétraitement des images pour éliminer les
objets de l’arrière-plan non pertinents dans les images, le post-traitement du modèle 3D en couleur,
et enfin la création de métriques géométriques et thermiques à partir du modèle thermique 3D. La
Figure 8.3 donne un aperçu du processus de création automatique de modèles thermiques 3D.

Mesures quantitatives des plaies

Comme souligné précédemment dans le Chapitre 1, les régions d’évaluation au-delà de la plaie,
telles que les bords de la plaie et la périplaie, sont importantes pour l’évaluation des plaies. Dans
cette section, nous fournissons une définition objective de ces régions dans le modèle 3D afin de les
utiliser ultérieurement dans le calcul des métriques thermiques.
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Figure 8.3: Chaîne de création automatisée de modèles 3D thermiques

La Figure 8.4 représente la segmentation en 3D du modèle de la plaie, y compris le lit de la plaie,
les bords de la plaie, la périplaie et les régions de peau normale.

Figure 8.4: Représentées dans le modèle 3D se trouvent les différentes zones de la peau, notamment
le lit de la plaie, les bords de la plaie, la périphérie de la plaie et la peau normale

Les métriques de température, y compris les différences de température entre les régions
d’évaluation et la variabilité de la température au sein des régions, ont déjà été étudiées dans
l’évaluation et le pronostic des plaies chroniques [7], [24], [25], [104]. Par conséquent, six métriques
thermiques ont été créées. Les trois premières métriques servent à analyser les différences de
température entre les régions d’évaluation (c’est-à-dire la plaie, la périplaie et la peau normale),
tandis que les trois dernières métriques visent à analyser la variabilité de la température au sein
de chaque région d’évaluation. Ces métriques sont définies :

• 𝑇𝑊𝐵−𝑃𝑊 : Calculé et exprimé en degrés Celsius (°C), cette métrique fournit des informations
sur la température du lit de la plaie (Wound bed WB) par rapport à celle de la périplaie
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(periwound PW ). Une valeur supérieure à zéro indique que la température du lit de la plaie
est plus élevée que celle de la périplaie.

• 𝑇𝑊𝐵−𝑁𝑆 : Différence de température entre le lit de la plaie (WB) et la peau normale (Normal
skin NS) en °C, est calculée et exprimée en degrés Celsius (°C). Cette métrique fournit des
informations sur la température du lit de la plaie par rapport à celle de la peau normale.

• 𝑇𝑃𝑊−𝑁𝑆 : Différence de température entre la périplaie (PW) et la peau normale (NS), est
calculée et exprimée en degrés Celsius (°C). Cette métrique fournit des informations sur la
température de la périplaie par rapport à celle de la peau normale.

• 𝐶𝑉𝑊𝐵, 𝐶𝑉𝑃𝑊 et 𝐶𝑉𝑁𝑆 : Le coefficient de variation (CV) des températures dans le lit de la
plaie (WB), la périplaie (PW) et la peau normale (NS) respectivement.

Configuration expérimentale

L’objectif principal de la présente étude est d’examiner la faisabilité de l’utilisation d’appareils
portables pour créer des modèles thermiques 3D dans des environnements cliniques. De plus,
l’étude vise à évaluer la valeur des métriques thermiques obtenues à partir de ces modèles ther-
miques 3D dans l’évaluation des plaies chroniques.

Les expériences ont été menées entre décembre 2021 et juin 2022 dans une clinique privée de Lima,
au Pérou, et ont été approuvées par le Comité d’éthique de la Pontificia Universidad del Peru.
Les patients présentant une plaie ouverte, en cours de traitement et ayant accepté de participer
à l’étude, ont été inclus dans le processus de collecte de données, tandis que les patients sans
plaie ont été exclus. Un assistant clinique expérimenté, ayant reçu une formation spécialisée dans
l’acquisition d’images, a effectué le processus de collecte de données.

Base de données

Chaque acquisition d’images réalisée sur une plaie est appelée une visite. Les images de chaque
visite sont traitées pour créer le modèle thermique 3D ; certains patients ont été capturés plus
d’une fois.

Au total, la base de données est composée de 68 visites traitées, correspondant à 32 volontaires.
Parmi eux, 13 patients ont été capturés plus d’une fois, c’est-à-dire qu’ils ont eu plusieurs visites
au fil du temps.

Les modèles thermiques 3D ont été utilisés pour calculer les métriques géométriques et thermiques
comme décrit dans la section 6.2. La surface de la plaie variait de 0,4 𝑐𝑚2 à 139,4 𝑐𝑚2, avec une
superficie moyenne de 27,75 𝑐𝑚2 et un écart type de 28,7 𝑐𝑚2.

Résultat

Les six métriques thermiques obtenues à partir du modèle thermique 3D sont analysées pour évaluer
leur pertinence dans l’évaluation des plaies.

Tout d’abord, nous explorons les métriques de différence de température. Les six métriques ther-
miques obtenues à partir du modèle thermique 3D sont analysées pour évaluer leur pertinence dans
l’évaluation des plaies. Les différences de température entre la peau périplaie et la peau normale
varient, avec certains patients présentant une température plus élevée dans la peau périplaie et
d’autres une température plus basse. En moyenne, la température de la plaie est inférieure à celle
de la peau normale, indiquant que la majorité des cas ont des températures plus basses dans la
plaie.
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Figure 8.5: Distribution des différences de température pour différents stades de plaies. Le grade
de la plaie correspond à la classification de Wagner pour les plaies diabétiques.

Les métriques de différence de température ont également été évaluées en relation avec la classi-
fication de Wagner. La Figure 8.5 présente des boîtes à moustaches qui montrent la distribution
des métriques thermiques groupées par stades de plaies.

Les différences de température entre la peau périplaie et la peau normale varient selon les différents
stades des plaies, avec des températures plus basses dans le lit de la plaie associées à des stades de
plaies plus sévères, comme l’indique l’ANOVA à un facteur.

De plus, les coefficients de variation au sein des zones d’évaluation ont été analysés en fonction du
stade de la plaie. Le test de Kruskal-Wallis a été utilisé pour déterminer s’il existait des différences
significatives dans les métriques entre les différents stades de plaies. Les résultats ont montré une
différence significative dans le coefficient de variation de la température du lit de la plaie : plus le
stade de la plaie est élevé, plus la variabilité des températures dans la plaie est grande. Aucune
différence statistiquement significative n’a été observée pour les autres métriques de coefficient de
variation.

Conclusions

Dans ce travail, nous avons détaille la collecte de données et la mise en œuvre d’un algorithme
automatisé de traitement de modèles thermiques 3D, qui a été appliqué dans un contexte clinique
à un échantillon non négligeable de 68 cas de plaies. Cette étude dépasse les rapports précédents
sur l’utilité des modèles thermiques 3D, qui sont généralement limités à de petits échantillons de
moins de cinq cas. Cette mise en œuvre démontre la faisabilité de l’automatisation de la création
de modèles thermiques 3D, permettant aux cliniciens de documenter la visualisation des modèles
thermiques 3D et les métriques objectives pour une meilleure gestion des plaies.

Le résultat met également en évidence des résultats d’intérêt clinique : des relations sont observées
entre la classification des plaies et les différences de température dans le lit de la plaie, la pé-
riphérie de la plaie et la peau normale. Ces résultats sont cohérents avec les attentes des cliniciens
concernant les motifs de température des plaies en fonction de leur classification.

Conclusion

Pour aller au-delà de l’état de l’art des techniques d’imagerie proposées pour le suivi des plaies
chroniques, le projet européen STANDUP a relevé le défi d’utiliser un équipement multimodal à



97

faible coût composé d’une caméra FLIR One connectée à un smartphone. Cet équipement permet
une utilisation légère et pratique dans tous les environnements de soins, y compris la télémédecine,
dans les zones rurales avec un accès limité et peu de personnel médical.

Pour relever ce défi, cette thèse présente plusieurs contributions :

1. Une analyse de la précision de la caméra thermique Flir One pour l’acquisition à main levée

L’expérimentation sous température contrôlée présentée dans le chapitre 4 (thermographie) a per-
mis de mettre en évidence l’importance de la perspective de la caméra, c’est-à-dire l’angle et les
distances entre la caméra et l’objet, pour améliorer les estimations de température. (Publié dans
[108])

2. Deux méthodes pour améliorer les estimations de température dans un contexte multi-vue

Suite à l’analyse précédente, nous avons introduit deux méthodes innovantes de correction de
la température dans plusieurs contextes de données thermiques. La première méthode améliore
les estimations de température à partir d’une seule image thermique en utilisant un modèle de
régression de pointe avec prédiction inverse. La deuxième méthode améliore l’estimation de la
température en combinant les données de plusieurs vues thermiques avec une moyenne pondérée, en
donnant la priorité aux vues frontales et rapprochées de la plaie. Ces deux méthodes ont démontré
le potentiel d’amélioration de la précision et de la précision des estimations de température obtenues
avec des images IR brutes. Ceci est particulièrement important pour les caméras à faible coût, qui
ont généralement une précision thermique moindre.

3. Une revue exhaustive des travaux antérieurs sur les modèles thermiques 3D adaptés aux
plaies et à la peau

Nous présentons une revue de plusieurs travaux visant à la création de modèles thermiques 3D
pour les plaies et la peau. Notre revue a révélé certaines lacunes critiques. Nous avons identifié
une pénurie de systèmes de modèles thermiques 3D portables et abordables pour l’évaluation des
plaies, ce qui constitue un obstacle significatif à une adoption plus large des modèles thermiques
3D. De plus, notre revue a souligné le manque d’études cliniques, et la dépendance à de petites
études de cas pour valider les modèles thermiques 3D.

4. Une méthodologie pour créer des modèles thermiques 3D à partir de dispositifs portables à
faible coût Notre méthodologie convient à une utilisation avec un smartphone ou tout autre
appareil mobile, tel qu’une tablette, capable de capturer des images RVB haute résolution,
associé à une caméra thermique à double capteur comme la Flir One. Elle va au-delà des
approches de pointe pour créer des modèles thermiques 3D de haute qualité, notamment des
estimations plus précises de la température de surface d’un modèle 3D grâce à une approche
de fusion multi-vues.

Contrairement aux méthodes précédentes, notre approche ne nécessite pas de réglages spécialisés
pour l’acquisition et permet une acquisition à main levée, la rendant pratique et accessible. Nous
avons démontré l’efficacité de notre méthodologie en utilisant deux appareils commerciaux à faible
coût : un smartphone et une caméra thermique à faible coût, la FlirOne Pro, et nous avons dé-
montré ses capacités avec plusieurs cas de plaies. Notamment, notre méthodologie offre l’avantage
de numériser des surfaces sans restriction, la rendant particulièrement adaptée aux plaies étendues
ou présentant des surfaces incurvées.

La méthodologie proposée peut être extrapolée pour créer des modèles thermiques 3D d’autres
parties du corps, d’objets ou de scènes. Comme notre méthode est basée sur la SfM, des scènes
plus larges peuvent être reconstruites avec des images suffisamment chevauchantes. De plus, notre



98

algorithme permet la combinaison de vues thermiques multiples, ce qui est utile pour agrandir la
surface de numérisation des modèles thermiques 3D créés.

Intégration de la méthodologie dans un processus entièrement automatisé pour créer des modèles
thermiques 3D reproductibles et précis Cette automatisation est essentielle pour la collecte de
données à partir d’images acquises dans les centres médicaux à des fins d’études cliniques. Ce pro-
cessus a également contribué à l’augmentation de la base d’images étiquetées pour l’apprentissage
en profondeur de la segmentation des plaies [105].

5. Étude clinique pour l’évaluation des plaies et la surveillance de sa guérison

L’étude a impliqué une vaste collecte d’images de plaies chroniques et de modèles thermiques 3D
pour les patients diabétiques dans un environnement clinique. Un protocole clinique détaillé a été
fourni pour permettre une éventuelle reproduction de l’étude dans des contextes similaires. Les
résultats ont montré que les métriques thermiques produites par les modèles thermiques 3D étaient
utiles pour évaluer et surveiller l’état des plaies, notamment en établissant une relation significative
avec la stadification des plaies, un biomarqueur clinique important.

En résumé, cette étude propose une méthodologie pour créer des modèles thermiques 3D adaptés
aux appareils portables et peu coûteux, offrant ainsi une solution pratique et économique. De plus,
un processus automatisé basé sur cette méthodologie a été mis en place pour créer des modèles
thermiques 3D à partir de cas de plaies collectés en milieu clinique. Ces modèles ont le potentiel
d’améliorer l’évaluation et la surveillance des plaies.



Appendices

Visualization Tools

Online HTML visualization

An innovative online visualization tool has been developed using Rmarkdown, which provides an
efficient and user-friendly platform for displaying 3D thermal models. The tool presents the 3D
thermal and color models in an organized and easily accessible manner while also displaying relevant
statistics associated with each model. Furthermore, the web page serves as a useful platform for
organizing color, thermal 3D models, and metrics, as illustrated in Figure 8.6. Fig 8.7 shows the
3D interactive visualization on the web page. A web page with the results can be found in this
link.

Figure 8.6: Preview of a web page created to organize and navigate through the results of thermal
3D modeling.

Smartphone Application

An smartphone applicaction has been developed in Android to showcase the possibilities of the
proposed methodology. The application is currently under development. Preliminary views of the
smarpthone application are shown in 8.8
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Figure 8.7: Visualization tool to observe the color and thermal 3D model on the web page.

Figure 8.8: Preview of the smartphone application which provides acquision support and visual-
ization of results.
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