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RÉSUMÉ

La grande majorité des techniques d’apprentissage automatique visent à faire des pré-
dictions sur des données partielles contenant du bruit. Il en résulte des modèles proba-
bilistes, souvent dans le continu, minimisant les erreurs de prédiction.

Cependant, dans certains cas cités ci-dessous, toutes les données fournies sont exemptes
de bruit et d’erreurs, et l’objectif est de trouver un modèle qui décrit de manière concise
et précise chaque instance de l’ensemble de données:

— Dans le cadre de données historiques portant sur des exemples de production à court
terme, l’objectif est d’apprendre un modèle d’ordonnancement capable de produire
de nouveaux ordonnancements valides,

— dans le cadre d’une table donne chaque entrée donne pour une combinaison de
paramètres d’objet combinatoire la borne précise pouvant être prise par un autre
paramètre, le but est d’apprendre des conjectures donnant la valeur de la borne en
fonction des paramètres d’entrées.

Dans ce cadre, l’objectif d’apprendre un modèle portant sur des variables entières,
valide qui décrit de manière concise les relations entre les éléments fournis par un ensemble
d’exemples positifs.

En général, l’objectif n’est pas seulement de décrire l’ensemble de données en terme
d’éléments d’un langage de modélisation, mais également de générer de nouveaux ensem-
bles de données valides, par exemple la valeur d’une borne précise pour un nouveau jeu
de paramètres d’entrées, ou un nouvel ordonnancement de production. Les techniques
d’apprentissage automatique probabiliste sont insuffisantes pour de telles tâches, car elles
produisent des modèles qui ne sont pas exacts à cent pour cent. Par exemple, les techniques
probabilistes d’apprentissage automatique peuvent produire une conjecture ne correspon-
dant pas à une borne précise pour une caractéristique de sortie donnée et un ensemble
donné d’entrées.

Pour ces raisons, cela nous amène à utiliser différentes techniques d’apprentissage spé-
cialisées pour travailler dans le domaine discret et produire un modèle expliquant les
données dans leur intégralité sans introduire d’erreur. La principale difficulté est le surap-
prentissage, c’est-à-dire que lorsque l’on applique une approche de régression symbolique

13
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pour rechercher une conjecture, on obtient souvent une formule polynomiale compliquée
avec une douzaine de termes individuels qui n’ont aucune signification intuitive. Une telle
conjecture sera souvent tout simplement erronée.

Par conséquent, il est nécessaire de choisir soigneusement les méthodes que l’on utilise
dans un tel contexte. Le fait de savoir qu’il n’y a aucune d’erreurs dans l’ensemble de don-
nées permet la recherche de caractéristiques pertinentes en s’appuyant sur les dépendances
fonctionnelles pour orienter le processus d’apprentissage.

Cette thèse étudie l’acquisition de modèles discrets à partir de données sans erreurs
pour deux cas d’utilisation se recoupant en partie : (i) la recherche d’équations booléennes
arithmétiques dans le contexte de conjectures pour des objets combinatoires, étendant le
travail effectué par Beldiceanu et al. [1], et (ii) l’acquisition de modèle d’ordonnancement
à court terme à partir d’un seul exemple d’ordonnancement valide. Dans le cadre de
cette thèse, un certain nombre de techniques ont été mises au point. La plupart d’entre
elles utilisent la programmation par contraintes et produisent finalement un modèle à
contraintes discrètes.

Programmation par contraintes et acquisition de mo-
dèles

La programmation par contraintes (PPC) est une approche visant à résoudre des
problèmes combinatoires. Sa principale caractéristique, la distinguant d’autres techniques,
est qu’elle met l’accent sur la faisabilité plutôt que sur l’optimisation. Ainsi, la PPC
vise à résoudre des problèmes de satisfaction de contraintes (CSP), c’est-à-dire à trouver
une solution qui satisfasse toutes les contraintes données [2]. Les solveurs de contraintes
prennent en charge plusieurs types de contraintes :

— Des contraintes arithmétiques, c’est-à-dire des contraintes combinant des opérateurs
arithmétiques sur des variables discrètes et des constantes avec un opérateur de
comparaison ‘≤’, ‘≥’ ou ‘=’. Par exemple, une contrainte arithmétique typique d’un
problème d’ordonnancement est la manière dont la fin d’une tâche i, End[i], est
calculée en fonction de son début, Start[i], et de sa durée, Duration[i] :

End[i] = Start[i] + Duration[i] (1)
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Un autre exemple de contrainte arithmétique est le suivant

f ≤ v − p, (2)

où f est le nombre de feuilles dans un arbre enraciné, v est le nombre de sommets
d’un arbre enraciné, et p est la profondeur minimale d’une feuille dans un l’arbre
enraciné. La profondeur d’une feuille est le nombre d’arêtes entre la feuille et la
racine de l’arbre.

Les contraintes arithmétiques sont également utilisées en dehors de la PPC, par
exemple dans la programmation linéaire ou non linéaire en nombres entiers.

— Des contraintes logiques ou réifiées, c’est-à-dire des contraintes qui, en plus des
opérations arithmétiques, utilisent également les opérateurs logiques ‘ =⇒ ’ et ‘≡’.
Par exemple, si une paire de tâches i et j satisfait la condition Successor [i] = j,
alors la condition End[i] ≤ Start[j] doit également être satisfaite. Cette expression
peut s’exprimer à l’aide de la contrainte réifiée suivante :

Successor [i] = j =⇒ End[i] ≤ Start[j] (3)

— Les contraintes globales, c’est-à-dire des contraintes qui expriment une condition
générale sur un ensemble de variables de manière concise [3]. Par exemple, une
contrainte globale DISJUNCTIVE [4, 5] peut être utilisée pour imposer une re-
striction sur l’ensemble des tâches affectées à une même ressource de manière à ce
qu’elles ne se chevauchent pas.

Les contraintes sont utiles dans une grande variété d’applications telles que la recherche
opérationnelle (OR) [6], la bio-informatique [7], la chimie [8], et la vérification de logi-
ciels [9]. Les contraintes sont un outil puissant qui allie flexibilité et performance et qui,
contrairement aux approches de type "boîte noire", est facile à expliquer.

Un langage de modélisation populaire utilisé pour exprimer les modèles de contraintes
de manière simple est MiniZinc [10]. MiniZinc est un langage de modélisation indépendant
du solveur qui tire parti d’une vaste bibliothèque de contraintes, y compris les contraintes
de planification des ressources les plus courantes [5]. Comme la plupart des solveurs de pro-
grammation par contraintes (par exemple, Google OR-Tools, CHOCO, SICStus Prolog)
ou des solveurs MIP (par exemple, CPLEX, Gurobi) comprennent directement MiniZinc,
il est possible d’exécuter un modèle MiniZinc avec n’importe lequel de ces solveurs.
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La construction et l’utilisation efficace de ces contraintes dans la pratique exigent
beaucoup d’expertise de la part d’un utilisateur, car il doit se familiariser avec la grande
variété de contraintes pour savoir lesquelles seraient pertinentes pour une application don-
née ou, le cas échéant, pour développer de nouveaux types de contraintes. C’est pourquoi
un certain nombre d’outils d’acquisition de contraintes ont vu le jour. Leur objectif com-
mun est à partir d’un ensemble de données, de déterminer quelle contrainte individuelle
ou quel ensemble de contraintes individuelles décrit l’ensemble des données de manière
pertinente et concise. Le deuxième objectif de l’acquisition de modèles est la recherche de
modèles pouvant être ensuite utilisés pour produire de nouvelles solutions valides.

Chaque technique d’acquisition de modèle est limitée par les biais d’apprentissage
qu’elle utilise. Un biais d’apprentissage, également connu sous le nom de biais induc-
tif, est “l’ensemble des hypothèses que l’apprenant utilise pour expliquer les données
fournies” [11]. La nécessité d’avoir un biais dans l’apprentissage a été étudiée dès 1980
par Mitchell dans [12]. Dans cette thèse, le biais d’apprentissage se réfère au type de for-
mule que nous essayons d’apprendre, par exemple des formules polynomiales, des formules
conditionnelles, des formules par cas, ou finalement des formules booléennes.

Les contributions

La première contribution principale de cette thèse est que ni une conjecture complexe
ni un modèle d’ordonnancement ne peuvent être appris en une seule étape :

1. Les méthodes de décompositions basées sur les données que nous avons introduites
sont essentielles pour acquérir des conjectures complexes, c’est-à-dire des conjectures
impliquant des formules avec des sous-termes imbriqués mélangeant différents biais
d’apprentissage.
De telles conjectures complexes peuvent survenir lors de la recherche de bornes
précises pour les caractéristiques d’objets combinatoires. Considérons, par exemple,
l’objet arbre enraciné. Un arbre enraciné T est “un graphe non orienté dans
lequel deux sommets quelconques sont reliés par exactement un chemin, et dans
lequel un sommet est appelé racine. Le parent d’un sommet v est le sommet connecté
à v sur le chemin menant à la racine, et l’enfant d’un sommet v est un sommet dont
v est le parent. Une feuille est un sommet sans enfant.” [13]
La conjecture (8) fournit des bornes inférieure et supérieure précises sur le nombre
de feuilles ℓ d’un arbre enraciné T par rapport au nombre de sommets n de T,
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le nombre minimum d’enfants d des sommets non enracinés de T, et le nombre
maximum d’enfants d des sommets non enracinés de T, qui ont été trouvés en
utilisant une approche de décomposition :

d = 0⇒ ℓ = 1 ∧ d > 0⇒

ℓ ∈
[⌈

n · d + d− d− n + 1
d

⌉
,

⌊
n · d + d− d− n + 1

d

⌋]
(4)

La validité de la conjecture (8) a été prouvée par Jovial Cheukam-Ngouonou dans [14].

2. Consolider et combiner les informations acquises provenant de diverses sources est
crucial. Lors de l’acquisition de modèles de planification, il est essentiel de ne pas
acquérir indépendamment les contraintes temporelles, les contraintes de ressources,
les contraintes de calendrier et les contraintes fonctionnelles; en effet, cela permet
de focaliser la recherche de modèles d’ordonnancement en s’appuyant sur les infor-
mations acquises à chaque étape.

La deuxième contribution principale de cette thèse est la création d’un nouveau biais
d’apprentissage, à savoir les formules arithmétiques booléennes, dans le cadre du Bound
Seeker [1]. Ce biais s’est avéré essentiel pour l’acquisition de conjectures sur des bornes
précises, car de nombreuses conjectures consistent en plusieurs cas qui peuvent être encap-
sulés dans une seule formule utilisant une formule booléenne arithmétique. Lors de la mise
en œuvre de ce biais, un modèle de contrainte de base a été développé, qui a ensuite été
étendu en ajoutant des contraintes de cassage de symétrie, ainsi que des contraintes dites
d’anti-réécriture. Une base de données de contraintes d’anti-réécriture a été synthétisée de
manière systématique par un programme basé sur les contraintes.

La principale contribution pratique de cette thèse est de considérer à la fois l’acquisition
de formules complexes et l’acquisition de modèles d’ordonnancement au sein de la même
plateforme d’acquisition, à savoir l’extension du Bound Seeker à partir du travail de
Beldiceanu et al. [1], et son amélioration pour concilier nos deux cas d’usage. Les con-
tributions de cette thèse au Bound-Seeker préexistant à mon arrivée sont les suivantes
:

1. Le développement d’un modèle à contraintes pour acquérir des équations booléennes
arithmétiques à partir de données (voir Sections 6.2–6.4).

2. Le développement d’une méthode pour acquérir des expressions conditionnelles avec
des conditions complexes qui sont trouvées en acquérant les équations booléennes
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arithmétiques (voir Section 6.5.1).
3. Le développement d’une méthode d’acquisition de formules par cas en tant qu’arbres

de décisions compacts qui sont trouvées en acquérant des équations booléennes
arithmétiques (voir Section 6.5.2).

4. Le développement de quatre techniques de décomposition pour acquérir des conjec-
tures complexes combinant plusieurs biais d’apprentissage (voir Chapitre 7).

5. La possibilité pour l’utilisateur de sélectionner les entrées et les sorties d’un modèle
(voir Section 4.1.1.2).

6. La recherche automatisée des clés primaires et secondaires et la possibilité de fu-
sionner deux tables décrivant respectivement un ensemble de tâches et un ensemble
de ressources en une seule table (voir Sections 5.1, 5.2 et 4.1.4).

7. La capacité à classer les dépendances fonctionnelles candidates afin de sélectionner
les dépendances fonctionnelles les plus probables (voir section 5.3).

8. L’acquisition de contraintes temporelles, c’est-à-dire de contraintes correspondant à
des chaînes de précédences généralisées entre des tâches (voir Section 8.1).

9. L’acquisition de contraintes de ressources, c’est-à-dire des contraintes globales liées
à l’affectation des tâches aux ressources (voir Section 8.2).

10. L’acquisition de contraintes de calendrier et d’utilisation de l’atelier par les équipes,
c’est-à-dire des contraintes qui prennent en compte différents types de disponibilité
ou d’indisponibilité (voir Section 8.3).

11. La capacité de générer un modèle d’ordonnancement MiniZinc qui peut être utilisé
pour générer un nouvel ordonnancement valide (voir Chapitre 9).

En outre, la qualité d’acquisition des différentes contributions a été évaluée sur deux
ensembles de données générés :

12. un ensemble de données utilisé pour l’acquisition de conjectures de bornes in-
férieures et supérieures sur diverses caractéristiques de huit objets combinatoires
qui consiste en une collection de 252300 tables (voir Section 2.1) [15].

13. Un ensemble de données ouvertes de programmes de production à court terme com-
posé de 48000 tables (voir Section 10.1) [16].

Plan de la thèse

Cette thèse se compose des cinq parties suivantes:
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— En gardant à l’esprit les deux cas d’utilisation de cette thèse, à savoir l’acquisition
de conjectures et l’apprentissage de modèles d’ordonnancement, la partie I fournit
les informations de base pertinentes pour cette thèse. Elle se compose d’un chapitre.

• Le chapitre 1 fournit une vue d’ensemble de l’état de l’art pour l’acquisition de
contraintes, l’acquisition de conjectures, l’acquisition d’équations booléennes
arithmétiques et d’arbres de décision.

— La partie II décrit les deux cas d’utilisation étudiés dans cette thèse, chacun faisant
l’objet d’un chapitre.

• Le chapitre 2 décrit le premier cas d’utilisation dans lequel nous recherchons
des conjectures pour des bornes inférieures et supérieures précises de diverses
caractéristiques de huit objets combinatoires. En outre, ce chapitre contient
des exemples de conjectures complexes que le système a pu trouver avec les
nouveaux biais d’apprentissage introduits dans cette thèse. Certaines des con-
jectures complexes acquises ont été prouvées par Jovial Cheukam-Ngouonou
dans [14], ce qui signifie que le système a trouvé des conjectures valides non
triviales.
Le chapitre 2 utilise (i) nos articles publiés [1, 15], (ii) un article récemment
accepté [17], et notre (iii) article [18] qui, au moment de la rédaction de cette
thèse, est en cours d’examen dans la revue Constraints. Notez que l’article [18]
est une extension de l’article [15].

• Le chapitre 3 décrit le deuxième cas d’utilisation dans lequel nous acquérons
un modèle de contrainte à partir d’un seul exemple d’ordonnancement à court
terme valide.

— La partie III fournit une description du système dénommé le Bound Seeker présenté
pour la première fois dans [1], puis étendu dans cette thèse. Il se compose de deux
chapitres.

• Le chapitre 4 fournit une description détaillée de la fonctionnalité du système
Bound Seeker. Une partie du système génère des métadonnées qui sont large-
ment utilisées par le système.

• Le chaptitre 5 détaille les différentes contributions de cette thèse au processus
de génération de métadonnées, c’est-à-dire la génération de clés primaires et
secondaires et le classement des dépendances fonctionnelles, qui sont tous les
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deux cruciaux pour l’acquisition d’un modèle d’ordonnancement où les données
d’entrée sont généralement réparties sur plus d’une table.

— La partie IV décrit les différentes contributions de la thèse à la recherche de formules
complexes pour les deux cas d’utilisation. Elle se compose de deux chapitres :

• C-Le chapitre 6 décrit le processus d’acquisition de nouveaux biais d’apprentissage
ajoutés : équations booléennes arithmétiques, expressions conditionnelles avec
des conditions complexes et arbres de décision simples.
Le chapitre 6 utilise notre article publié [15] ainsi qu’un article [18] qui, au
moment de la rédaction de cette thèse, est en cours d’examen.

• Le chapitre 7 décrit diverses techniques de décomposition pour combiner divers
biais d’apprentissage.
Le chapitre 7 utilise notre article accepté, au moment de la rédaction de cette
thèse, à savoir [17].

— La partie V décrit comment nous acquérons des modèles d’ordonnancement à court
terme à partir d’un seul exemple positif. Elle se compose de trois chapitres :

• Le chapitre 8 décrit comment acquérir diverses contraintes d’ordonnancement
telles que les contraintes temporelles, les contraintes de ressources, les con-
traintes d’équipes et les contraintes de calendrier.

• Le chapitre 9 décrit comment convertir le modèle d’ordonnancement acquis en
un modèle MiniZinc.

• Le chapitre 10 fournit une évaluation détaillée de l’acquisition de modèles de
planification à court terme à partir d’un seul exemple.

Finalement, la Conclusion résume toutes les contributions décrites dans les chapitres 5–
10 de cette thèse.
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INTRODUCTION

The vast majority of machine learning (ML) techniques aim to make predictions on
partial and noisy data. This results in probabilistic models, often on continuous domains,
which minimises predictive errors.

However, in some cases, all provided data is free of noise and errors, and the goal is
to find a model that concisely and precisely describes each instance of the dataset, e.g.:

— a valid short-term production schedule (STPS) for a company, with the goal to learn
a scheduling model which can produce new schedules,

— a table with invariants wrt to a given sharp bound of a mathematical object, with
the goal to learn conjectures between invariants which can later be proved mathe-
matically,

— a list of valid player moves from an unspecified game, with the goal of learning the
rules of that game.

The main objective of these examples is to learn a valid model that describes the rela-
tionships between the elements provided for each input of the given dataset, often based
on discrete models. Usually, the goal is not just to describe the dataset in a modelling
language, but also to generate new valid datasets, e.g. a new production schedule. Proba-
bilistic machine learning techniques are insufficient for these tasks as they produce models
that are not 100% accurate. For example, probabilistic machine learning techniques may
produce a conjecture that violates a sharp bound for a given output characteristic and a
given set of input characteristic values of a learning dataset. This will render the acquired
conjecture useless.

This leads us to utilise different ML techniques that are specialised to work in discrete
domains and produce a model which describes the dataset as a whole without any error.
The main difficulty is overfitting, i.e. if one applies a symbolic regression approach to
search for conjectures, one often will get a complicated polynomial formula with a dozen
of individual terms that have no mathematical meaning. An overfitted conjecture would
often be simply wrong.

As a result, a careful choice of instruments is required, often designed to solve a
given problem individually. Knowing that there are no errors in the dataset simplifies
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the search for relevant features by allowing to use functional dependencies to focus the
learning process.

This thesis studies the acquisition of meaningful models from error-free data for two,
somewhat overlapping, use cases: (i) the search for Boolean-arithmetic equations in the
context of conjectures for combinatorial objects, extending the work done by Beldiceanu et
al. [1], and (ii) the acquisition of STPS from an example of a valid schedule. A number of
techniques have been developed, most of which use constraint programming and eventually
produce a constraint model.

Constraint programming and model acquisition

Constraint programming (CP) is an approach aimed at solving combinatorial prob-
lems. Its key feature which puts it apart from other is a focus on feasibility rather than
optimisation. Thus, CP is aimed at solving constraint satisfaction problem (CSP), i.e.
finding a solution which satisfy all given constraints [2]. CP solvers supports several types
of constraints:

— arithmetic constraints, i.e. constraints which combine arithmetic operators over vari-
ables and constants with a comparison operator ‘≤’, ‘≥’ or ‘=’. For example, a typical
arithmetic constraint common in STPS is how the end time of a task i, End[i], is
calculated for given start time of the task i, Start[i], and duration of the task i,
Duration[i]:

End[i] = Start[i] + Duration[i] (5)

Another example of an arithmetic constraint is

f ≤ v − p, (6)

where f is the number of leaves in a single tree, v is a number of vertices of a single
tree and p is a minimum depth of a leaf in the rooted tree. A depth of a leaf is the
number of edges between the leaf and the root of the tree.
Arithmetic constraints are also used outside of CP, e.g. in mixed-integer linear or
non-linear programming.

— logical or reified constraints, i.e. constraints which, in addition to arithmetical op-
erations also uses logical operators ‘ =⇒ ’ and ‘≡’. For example, if a pair of tasks
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i and j satisfy the condition Successor [i] = j then the condition End[i] ≤ Start[j]
must also be satisfied. This statement can be expressed with a reified constraint:

Successor [i] = j =⇒ End[i] ≤ Start[j] (7)

— global constraints, i.e. constraints that express a condition over some variables in a
concise manner independent from the context [3]. For example, a global constraint
DISJUNCTIVE [4, 5] can be used to impose a restriction on a set of tasks assigned
to a unique resource in such a way that they do not overlap with each other.

Constraints are useful in a wide variety of applications such as operations research
(OR) [6], bioinformatics [7], chemistry [8], and software verification [9]. Constraints are
a powerful tool that both combines flexibility and performance and, unlike ’black box’
approaches, is easy to explain.

A popular modelling language used to express constraint models in an easy way is
MiniZinc [10]. MiniZinc is a solver-independent modelling language which takes advan-
tage of a large library of constraints including the most common resource scheduling
constraints [5]. As most constraint programming solvers (e.g. Google OR-Tools, CHOCO,
SICStus Prolog), or MIP solvers (e.g. CPLEX, Gurobi) understand MiniZinc, one can
directly execute a MiniZinc model with any of these solvers.

To construct and effectively use such constraints in practice requires a lot of expertise
from a researcher as one must be familiar with the wide variety of constraints to know
which would be useful for a given application or, if needed, to develop new types of
constraints. Thus a number of constraint acquisition tools were developed. Their goal is to
read a given dataset and determine which individual constraint or which set of individual
constraints describes the dataset in an effective manner, i.e. it is general enough to avoid
overfitting while retaining the meaningful information, i.e. it is not too general. The aim
of model acquisition is the search of models that can then be used to produce new valid
solutions.

Each model acquisition technique is restricted by the learning biases it uses. A learning
bias, also known as an inductive bias, is “the set of assumptions that the learner uses to
predict outputs of given inputs” [11]. The need for bias in learning was explored as early
as 1980, by Mitchell in [12]. In this thesis, the learning bias refers to the type of formula we
are trying to learn, e.g. polynomial formulae, conditional formulae, case formulae, Boolean
formulae.
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Contributions

The first main contribution of this thesis is that neither a complex conjecture nor a
scheduling model can be learned in a single step, i.e. :

1. Data-driven decompositions are crucial to acquire complex conjectures, i.e. conjec-
tures involving formulae with nested sub-terms using different learning biases.
Such complex conjectures can occur during the search for sharp bounds for the
characteristics of combinatorial objects. Consider, for example, a Rooted Tree.
A Rooted Tree T is “an undirected graph in which any two vertices are connected
by exactly one path, and in which one vertex has been called the root. The parent
of a vertex v is the vertex connected to v on the path to the root, and the child of a
vertex v is a vertex of which v is the parent. A leaf is a vertex without children.” [13]
Conjecture (8) provides a sharp lower bound and a sharp upper bound on the number
of leaves ℓ of a rooted tree T wrt the number of vertices n of T, the minimum number
of children d of the non-leave vertices of T, and the maximum number of children d

of the non-leave vertices of T, that was found by using a decomposition approach:

d = 0⇒ ℓ = 1 ∧ d > 0⇒

ℓ ∈
[⌈

n · d + d− d− n + 1
d

⌉
,

⌊
n · d + d− d− n + 1

d

⌋]
(8)

The validity of Conjecture (8) was proved by Jovial Cheukam-Ngouonou in [14].

2. Consolidating and combining acquired information stemming from various sources.
When acquiring scheduling models, it is essential not to acquire temporal con-
straints, resource constraints, calendar constraints and functional constraints in-
dependently, as this permit focusing the search of scheduling models.

The second main contribution of this thesis is the creation of a new learning bias,
namely Boolean-arithmetic formulae, for the Bound Seeker [1]. This has proved to be an
essential bias in acquiring conjectures about sharp bounds, since many conjectures consist
of several cases that can be encapsulated in a single formula using a Boolean-arithmetic
formula. When implementing this bias, a core constraint model was developed, which
then later, was enhanced by adding symmetry-breaking constraints, as well as so-called
anti-rewriting constraints. A database of anti-rewriting constraints was synthesised in a
systematic way by a separate constraint program.
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The main practical contribution of this thesis is to consider both the acquisition of
complex formulae and the acquisition of scheduling models within the same acquisition
platform, namely extending the Bound Seeker from the work of Beldiceanu et al. [1], and
enhancing it to accommodate our two use cases simultaneously. The contributions of this
thesis to the system include:

1. The development of a CP model to acquire Boolean-arithmetic equations from data
(see Sections 6.2–6.4).

2. The development of a method to acquire conditional expressions with complex con-
ditions which are found by acquiring the Boolean-arithmetic equations (see Sec-
tion 6.5.1).

3. The development of a method for acquiring case formulae as simple decisions trees
which are found by acquiring Boolean-arithmetic equations (see Section 6.5.2).

4. The development of four decomposition techniques to acquire complex conjectures
combining two or more learning biases (see Chapter 7).

5. The ability for the user to select inputs and outputs of the scheduling constraint
model (see Section 4.1.1.2).

6. The automated search for primary and foreign keys and the ability to merge two
tables into one (see Sections 5.1, 5.2 and 4.1.4).

7. The ability to rank candidate functional dependencies in order to select the most
likely genuine functional dependency (see Section 5.3).

8. The acquisition of temporal constraints, i.e. constraints corresponding to chains of
generalised precedences between tasks (see Section 8.1).

9. The acquisition of resource constraints, i.e. global constraints related to the assign-
ment of tasks to resources (see Section 8.2).

10. The acquisition of calendar and shift constraints, i.e. constraints that take into
account different types of availability or unavailability (see Section 8.3).

11. The ability to generate a MiniZinc scheduling model that can be later used to
generate a new valid schedule (see Chapter 9).

Additionally the acquisition quality of the contributions was evaluated on two gener-
ated datasets:

12. a dataset used for acquiring conjectures lower and upper sharp bounds on various
characteristics of eight combinatorial objects which consists of a collection of 252300
tables (see Section 2.1) [15].
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13. an open dataset of short-term production schedules which consists of 48000 tables
(see Section 10.1) [16].

Outline of the thesis

This thesis consists of the following five parts:

— Having the two use-case of this thesis in mind, namely conjecture acquisition and
learning scheduling models, Part I provides the background information relevant to
this thesis. It consists of one chapter.

• Chapter 1 provides an overview of the state-of-the-art for constraint acqui-
sition, acquisition of conjectures, acquisition of Boolean-arithmetic equations
and decision trees.

— Part II describes the two use cases considered in this thesis, each with one chapter.

• Chapter 2 describes the first use case in which we search for conjectures for
sharp lower and upper bounds of various characteristics of eight combinatorial
objects. In addition, this chapter contains examples of some complex conjec-
tures that the system acquires with new learning biases. Some of the acquired
complex conjectures were proved by Jovial Cheukam-Ngouonou in [14], mean-
ing that the system found some non trivial valid conjectures.
Chapter 2 uses text from (i) our published papers [1, 15], (ii) from a recently
accepted paper [17], and from (iii) paper [18] which, at the time of the writing
of this thesis, are under review in the Constraints journal. Note that [18] is an
extension of paper [15].

• Chapter 3 describes the second use case in which we acquire a constraint model
from a single example of a valid short term schedule.

— Part III provides a description of the Bound Seeker system first introduced in [1],
and then extended in this thesis. It consist of two chapters.

• Chapter 4 provides the detailed description of the functionality of the Bound
Seeker system. One part of the system generates metadata which is extensively
used by the system.

• Chapter 5 details the various contributions of this thesis to the metadata gener-
ation process, i.e. the generation of primary and foreign keys and the ranking
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of functional dependencies, both of which are crucial to the acquisition of a
scheduling model where the input data is typically spread over more than one
table.

— Part IV describes various contributions of the thesis to the search of complex for-
mulae for both use cases. It consists of two chapters:

• Chapter 6 describes the process of acquisition of new added learning biases:
Boolean-arithmetic equations, conditional expressions with complex conditions
and simple decision trees.
Chapter 6 uses text from our published paper [15] and a paper [18] which, at
the time of the writing of this thesis, is under review.

• Chapter 7 describes various decomposition techniques to combine various learn-
ing biases into one acquired formulae.
Chapter 7 uses text from our accepted, at the time of the writing of this thesis,
for publishing paper [17].

— Part V describes how we acquire short term scheduling models from a single valid
example. It consists of three chapters:

• Chapter 8 describes how to acquire various scheduling constraints such as
temporal constraints, resource constraints, shift constraints and calendar con-
straints.

• Chapter 9 describes how to convert the acquired scheduling model into a MiniZ-
inc model.

• Chapter 10 provides the detailed evaluation of the acquisition of short term
scheduling models from a single example.

The Conclusion summarises all the contributions described in Chapters 5–10 of this
thesis.
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Chapter 1

BACKGROUND

This chapter provides a state-of-the-art overview of the techniques relevant to this
PhD thesis. Section 1.1 provides a description of the state of the art on various constraint
acquisition techniques. Section 1.2 provides a description of the state-of-the-art techniques
on the discovery of Boolean-arithmetic equations. Section 1.3 provides a description of
the state-of-the-art on the discovery of conjectures describing various relations between
invariants of mathematical objects.

1.1 An overview of constraint acquisition techniques

Constraint acquisition is a machine learning approach to acquire individual constraints
and constraint networks from examples of solutions and non-solutions. A constraint net-
work consists of a set of variables with their respective domain, and a set of constraints [19].
The majority of constraint acquisition techniques are aimed at the acquisition of constraint
networks on integer domains.

One of the early example of constraint acquisition [20], applied plausible explanation-
based learning (PEBL) to acquire constraint scheduling models using both partial and
full schedules. They applied the approach on scheduling scenarios of the NASA Space
Shuttles.

Padmanabhuni et al. [21] proposed a framework for learning and generalising con-
straints from positive examples. The aim of the proposed framework was the development
of automatic constraint acquisition in discrete domains, in contrast to previous work in
machine learning that focuses on continuous domains. The paper also highlights the rela-
tionship between constraint acquisition and earlier machine learning techniques, namely
inductive logic programming (ILP). Some of the ideas used by ILP are relevant to con-
straint acquisition, primarely the idea stated by Haussler et al. that all learning algorithms
use an inductive learning bias, “otherwise all possible classifications of unseen instances
are equally possible, thus no inductive or, more generally, learning method is better than
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a random guessing” [22]. In addition, paper [21] is one of the first mentions of the term
‘automatic constraint acquisition’.

Model acquisition was formally initiated by the work of Freuder [23] in the early 2000s.
Two directions were initially developed [24]: the passive approach relies on examples of
labelled solutions, called positive examples, and non-solutions, named negative examples.
The active approach assumes an oracle can tell whether an example is a solution or
not, and it aims to reduce the number of queries required to learn a model [25]. Both
approaches have advantages and limitations:

— Passive learning requires that we have enough diverse and informative labelled solu-
tions and non-solutions; on the other hand, no oracle is needed during the acquisition
process.

— Asking many questions to an oracle is not always realistic, especially if the oracle
is a human being; on the other hand, if there is a lack of diverse labelled solutions,
targeted questions can boost the learning process.

Sammut et al.[26] present a prototypical idea of the active learning approach, in which
the program learns complex concepts by memorising simpler concepts and asking questions
to a user to check whether they describe complex concepts correctly.

For problems with a strong structure, i.e. problems for which the model can be con-
cisely defined using the global constraints [3, 27] available in the MiniZinc modelling
language [10, 28], passive learning does not need a lot of labelled solutions and non-
solutions.

1.1.1 Active learning for the matchmaking problem

An early approach for active learning is first suggested by Freuder [29] and later
implemented by Freuder and Wallace [30]. In this work they state a constraint acquisition
and satisfaction problem (CASP) and apply it to the matchmaker problem.

CASP is a problem where the constraint solver first acquires the information about
the constraints which he later uses to solve the corresponding CSP. In the matchmaker
problem, the matchmaking agents represent constraint solvers which provide customers
with potential solutions, i.e. suggestions, based on the information provided by a client.
The system assumes that the constraint solver and the customer are using constraints from
the same ‘universe’, i.e. the universal set of constraints. The system works as follows:

1. The solver proposes to the customer a solution based on a set of constraints.
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2. The customer then evaluates whether or not there are constraints that are violated.
These violations are communicated to the solver. It is assumed that the customer is
able to articulate each of the constraints if necessary, i.e. express them in a constraint
language which is accepted by the system.

3. The solver incorporates these violations, produces a new set of constraints, solves
the new CSP, and provides a new solution to the user.

4. Steps 1–3 are repeated until all customer’s constraints are satisfied.

The paper [30] evaluates several strategies for producing new sets of constraints.

1.1.2 Interactive constraint acquisition and timid acquisition
strategy

The idea of interactive constraint acquisition is proposed in [31] by O’Sullivan et al.
This approach to constraint acquisition differs from that described in Section 1.1.1 in that
it does not assume that the user knows how to formulate constraints. Instead, it asks the
user for a positive example of a constraint to be acquired, then by applying the List-
Then-Eliminate algorithm [32] it determines the version space for the user’s constraint. A
version space is “the set of all classifiers expressible in the language that correctly classify
a given set of data” [33]. Then the system attempts to generalise the user’s example to
produce its own qualifying example which is presented to the user. Examples accepted
and rejected by the user are used to refine the version space. If the qualifying example is
rejected, the user is asked to provide another example.

The paper [34] evaluates several generalization strategies. It concludes that the Least
generalization strategy works best in situations where the user provides helpful examples.

O’Connell et al. [35] extends the proposed approach in [31, 34] from acquiring a single
constraint to the acquisition of a constraint network. To achieve this, the system considers
only positive examples provided by the user. The reason why the authors do not consider
negative examples is that a negative example means that one or more constraints are
violated. Determining which constraints are violated is too complex for the constraint
solver. There are ways to utilise negative examples in the context of the acquisition of
multiple constraints (see Section 1.1.3) but they have their inherent limitations.

O’Connell et al. developed the timid acquisition strategy based on Berwick’s subset
principle [36, 37]. According to this principle, the system takes the smallest possible
steps to avoid over-generalization. The paper [35] also evaluates different strategies for
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selecting examples, and concludes that the Maximum Differentiating strategy gave the
best results. Since the user cannot be expected to use such an approach, an example of a
selection assistant was developed.

1.1.3 The CONACQ system

The CONstraint ACQuisition (CONACQ) algorithm was introduced by Coletta et
al. [38] as a system for passive constraint acquisition. It uses positive and negative ex-
amples to generate the version space for the constraint network. The main weakness of
the approach in [38] is the acquisition of constraint networks that contain redundant
constraints: this has a negative impact on the acquisition process, preventing the algo-
rithm from converging to the most specific hypothesises for the target constraint network.
Bessiere et al. in [39] proposed a number of techniques to handle redundant constraints,
namely redundancy rules and backbone detection.

Furthermore, Bessiere et al. reformulate the CONACQ algorithm as a SAT-based ver-
sion space algorithm, which can also incorporate domain-specific knowledge, if necessary.
The CONACQ algorithm was tested on a series of experiments, each with 12 variables
and 12 domain values per variable. Bessiere et al. observed that the convergence rate
improves when domain-specific knowledge was used with redundancy rules and backbone
detection, but the computation time increases by up to 25 times: there is a trade-off
between computation time and convergence rate.

To demonstrate a practical application of CONACQ’s passive constraint acquisition,
Paulin et al. used it to automatically design the behaviour of autonomous robots.

Bessiere et al. proposed in [40] a version of CONACQ which supports the active
acquisition of constraint networks: the acquisition system assists the user to select the
set of the examples. The system generates membership queries (see [41]) which the user
must classify as a solution or a non-solution. A careful selection of queries significantly
reduces the number of examples required to learn the target constraint network. The paper
considers two strategies of query generation: optimal-in-expectation and optimistic. Their
evaluation showed that the optimistic strategy works best in cases where the number of
acquired constraints is small, otherwise it was better to use the optimal-in-expectation
strategy. Shchekotykhin and Friedrich improved the query generation for CONACQ by
allowing a domain expert to provide arguments, i.e. domain-specific knowledge, in addition
to classifying examples.

Papers [24, 42] provide an overview of the different versions of CONACQ.
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1.1.4 The QUACQ system

In [43], Bessiere et al. describe an active acquisition algorithm named QUick ACQui-
sition (QUACQ). This algorithm asks the user to classify partial queries. If a query is
classified negatively, the algorithm uses this knowledge to converge to a constraint from
a target constraint network. The advantages of the proposed approach are:

— it is guaranteed to converge to the target constraint network in a polynomial number
of queries,

— queries are shorter than membership queries, making them easier for a user to
handle,

— positive examples are not required for the algorithm to converge to a target con-
straint network.

The algorithm shows weakness during the acquisition of problems with dense con-
straint networks as the required number of queries becomes too large for a human user
to handle, e.g. 8645 queries are needed to acquire a constraint model for a Sudoku puz-
zle. Bessiere et al. in [44] improves the algorithm by adding generalization queries, which
allows the user to decide whether or not a learned constraint can be generalized to other
scopes of variables of the same type. The new approach, called G-QUACQ, was able to
reduce the number of queries by up to 50 times.

An alternative approach was proposed by Daoudi et al. in [45], where recommen-
dation queries were introduced. A recommendation query asks a user whether or not a
predicted constraint belongs to the target constraint network. To select which constraints
are recommended, the PREDICT&ASK algorithm was proposed, as a part of the com-
bined P-QUACQ system. The evaluation showed that P-QUACQ halves the number
of queries compared to the QUACQ algorithm.

Unlike the QUACQ system, which produces a single explanation for each negative
example, the MULTIACQ algorithm [46] learns multiple explanations for why a user
classifies an example as negative The number of necessary queries is up to three times
from what is required by QUACQ, meanwhile the size of a query is reduced up to 10
times. Tsouros et al. in [47] improve on the MULTIACQ algorithm by (i) lowering the
complexity of learning multiple constraints after a negative example, (ii) focusing the
scopes to reduce the number of queries, and (iii) generalizing partial queries in such a
way that they can be used as examples posted to the users. The resulting algorithm, called
MQUACQ, reduces the acquisition time up to 15 times compared to QUACQ. Tsouros
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et al. in [48] introduced MQUACQ2 which further improves MQUACQ by focusing on
the structure of the learned network and by completely removing the scope of the acquired
constraint after a negative example.

Bessiere et al. in [25, 49] introduced the second version of the algorithm, QUACQ2.
In it, the problem of constraint acquisition was reformulated to be in line with standard
concept learning [50, 51], i.e. the target constraint network is a subset of the constraints
in the basis. Since the original QUACQ algorithm did not adhere to this definition it
could lead to the acquisition of a wrong constraint network, i.e. collapsing, or providing
the user with redundant queries. In contrast, QUACQ2 never collapses. Additionally,
QUACQ2 does not require normalized target constraint networks, i.e. it can learn any
type of constraint networks.

1.1.5 Soft constraint acquisition systems

Rossi and Sperduti proposed in [52] an active constraint acquisition system which
acquires a system of soft constraints and preferences. To achieve this, a learning module
is added to a soft constraint solver. The learning module acquires the information about
the preferences between provided examples from dialogue with the user. This information
can be provided in two ways. The first way is when the user provides the exact ratings of
each solution. This allows the learning module adjusting the soft constraints network by
minimizing the error function with a gradient descent search. Otherwise, if the user only
provides partial information about the solutions, the second way is to utilise reinforcement
learning techniques to maximize the expected reward function.

1.1.6 The Model Seeker

Started first as a Constraint seeker [53], which acquires a single global constraint from
the global constraints catalogue [3], the Model Seeker [54–56] is a passive constraint ac-
quisition tool capable of acquiring a complete constraint network from a limited number
of positive solutions, typically less than five. The tool requires that the solutions are pro-
vided as flat samples, i.e. as a flat list of integers, of the same size without no additional
knowledge, i.e. hints, is given. The model seeker utilises both global constraints and con-
straint programming assuming that the target constraint network has a strong internal
structure, i.e. it can be represented in a very compact way. The latter allows one to use
basic templates to group relevant variables together. The workflow of the model seeker
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tool is the following:

1. Transformation The sample solutions are converted to a normalised format which
is compatible with the tool. This produces an input vector of fixed length.

2. Candidates generation

(a) The argument creation phase creates different subsequences from the given
input vector. A given subsequence is called a pattern.

(b) For each pattern generated during step 2a, the tool calls the Constraint seeker
to find all matching constraints for all matching patterns across all given sam-
ples. The tool supports the acquisition of around 70 constraints from the global
constraints catalogue.

3. Candidates simplification The tool removes all candidate constraints that are
implied by at least one of the candidates, i.e. a so-called dominance check phase.
Afterwards, the tool performs the removal of trivial constraints, the simplification
of patterns, and the simplification and the ranking of the remaining candidate con-
straints.

4. Code generation The tool generates code for the acquired constraint network.

1.1.7 Classifier-based constraint acquisition

Unlike previous supervised learning techniques, the CLASSACQ system proposed
by Prestwich et al. is an example of an unsupervised machine learning technique. It
proposes to use a naive Bayes classifier to categorise a set of given examples as solutions
or non-solutions. The system learns simple linear constraints which are then simplified
or approximated further, thus the system acquires a soft constraint network. The system
showed the following advantages:

— robustness under noise,

— memory requirements are independent of bias size, as only the training data is stored
in memory,

— evaluation has shown that it quickly acquires a constraint network,

— the system avoids learning weak constraints, i.e. constraints that are unlikely to be
violated unless a large number of examples are provided.
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1.1.8 Other constraint acquisition techniques

We present in this section a short overview of various constraint acquisition techniques
which weren’t covered in the previous sections. Some of the mentioned techniques utilise
domain-specific knowledge. More information can be found in [51] which summarize state-
of-the-art constraint acquisition techniques which were developed by 2018.

1.1.8.1 Acquiring timetabling, scheduling and planning models

Picard-Cantin et al. [57, 58] proposed a Branch-and-Bound algorithm to learn parame-
ters of global constraints such as SEQUENCE and AMONG, with a focus on constraints
used in timetabling. Gregory and Lindsay [59] use constraint programming to learn plan-
ning domain models with action costs from examples. Senderovich et al. [60] developed
a set of tools to generate basic scheduling models [61] from event data by conversion of
acquired timed Petri nets to a constraint model.

1.1.8.2 Inductive logic programming

Mizoguchi and Ohwada [62, 63] and later Kawamura [64] developed techniques to
learn spatial constraints and linear algebra constraints in continuous domains. Lallouet et
al. [65] proposed a framework which bridges the inductive logic programming (ILP) and
CP. In it, the positive and negative solutions are presented as interpretations by first-order
rules in a chosen logic language, which are then used to produce a CSP expressed in a
chosen constraint language.

1.1.8.3 Model acquisition in the context of combinatorial problems

Paulus et al. [66] trained neural networks to learn integer linear constraints for com-
binatorial problems. Pawlak and Krawiec [67, 68] reformulated a constraint acquisition
problem as MILP, then applied a conventional MILP solver to synthesise constraints from
negative and positive examples. Kolb et al. [69] and Paramonov et al. [70] introduced Tab-
ular Constraint Learner (TaCLe) which reconstructs the constraints from tabular data
in a spreadsheet. It operates in two stages. The first stage analyses blocks of columns and
rows, the second stage investigates individual rows and columns. Kumar et al. [71, 72]
proposed a constraint acquisition approach adapted to find constraints from tensors, as
such data structures are often present in OR environments, such as scheduling, assign-
ment, etc. Their approach acquires both first-order constraints and global constraints.
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Coulombe and Quimper [73] proposed ‘Constraint Acquisition Based on Solution Count-
ing’ (CABSC). CABSC reframes the constraint acquisition problem as a Meta-CSP,
i.e. a combinatorial problem whose solution is a CSP. Instead of analysis of individual
constraints, the system reasons globally across all constraints. This allows considering
multiple different constraints at once.

1.1.8.4 Miscellaneous

Lallouet and Legtchenko [74, 75] proposed a Consistency Checking Classifier, based
on open constraints, i.e. constraints for which there are both positive and negative ex-
amples are available, which is later transformed into a constraint. To do this, classifiers
are transformed into propagators ensuring the active behaviour of a constraint. Vu et
al. [76] propose a general framework to unify acquisition algorithms for different types
of problems. The framework allows reformulating constraint acquisition problems as op-
timisation problems and formulate new, more general, acquisition techniques. Belaid et
al. [77] proposed an active constraint acquisition tool called ‘Generic Qualitative Con-
straint Acquisition’ (GEQCA). Its contribution is the development of a generic correct
method to learn any kind of qualitative constraints between each pair of entities of a
specific problem. Tsouros et al. [78] proposed an active constraint acquisition approach
which uses guided queries and builds larger constraints from the bottom-up. This allowed
to reduce both the waiting time for the user and the number of queries.

1.2 Acquiring Boolean-arithmetic expressions

Learning purely Boolean expressions from data is widely reported in the literature.
A significant number of papers explore the acquisition of relevant features, often called
the “relevant features problem” (RFP). Blum formalises the RFP in [79], and provides a
survey of various algorithms in [80]. The RFP can be applied to features that are Boolean,
integer or continuous, each of which requires its own approach [81, chapter 1.2]. Some of
the works focusing on purely Boolean RFP are described in [82–84]. In [85], Mutlu and
Oghaz provide a taxonomy of Boolean and non-Boolean feature extraction techniques
applied to graphs. Other works present the acquisition of Boolean expressions as part
of Boolean rule extraction methods for classification problems using SAT [86] or neural
networks [87]. Lastly, some papers [88, 89] focus on the construction and the simplification
of Boolean functions.
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The acquisition of Boolean-arithmetic expressions is often used in the context of classi-
fication problems where random forest [90], decision trees [91–93], Bayesian rule lists [94],
fuzzy association rules [95] and rough sets [96] approaches are used.

Most of the work considers the acquisition of relatively simple Boolean-arithmetic
expressions of the type “attribute has a value of ”. The SEEN system [93] extracts more
complex Boolean-arithmetic expressions that contain the +, × and / arithmetic operators
in the context of searching for complex rules in soft decision trees: it calls this topic
“logical-arithmetic expression mining”.

Beyond the domain of Boolean formulae, synthesising formulae from data [97] mostly
relies on a generate and test approach to produce candidate formulae of increasing com-
plexity for a fixed grammar. In the context of this thesis, applying techniques that min-
imise an error function produces complicated formulae that are not verified wrt all input
data. In [15] Gindullin et al. compared the approach presented in Chapter 6 to methods
used for symbolic regression such as GPlearn [98] and ffx [99]: GPlearn generally found
no formulae, while ffx discovered formulae with a large number of terms.

As shown above by papers [91–93], Boolean-arithmetic equations are often associated
with decision trees. Additionally, Section 6.5.2 of this thesis looks into the acquisition of
simple decision trees, mentioning Boolean-arithmetic expressions, and corresponding to
case formulae. Thus, the next section provides a short overview of various state-of-the-art
techniques used to construct decision trees.

1.2.1 Acquiring decision trees

The most common definition of decision trees (DT) is that they are “sequential models,
which logically combine a sequence of simple tests; each test compares a numeric attribute
against a threshold value or a nominal attribute against a set of possible values” [100].
It should be noted that this definition describes univariate DT, where each test involves
only one single attribute. If at least one test considers more than one attribute, then
the DT is called multivariate [101]. Multivariate DTs usually contain linear combinations
of attributes, but sometimes non-linear tests are also used [102]. Papers [91–93] cited in
Section 1.2 construct multivariate DTs.

A number of popular techniques were developed for both univariate and multivariate
DTs. For univariate DTs these include C4.5 [103, pp 17–25], CART (Classification and
Regression Trees) [104, chapters 2 and 3], SPRINT (Scalable PaRallelizable INduction
of decision Trees) [105], SLIQ (Supervises Learning In Quest) [106], Rainforest [107].
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Multivariate DTs are addressed by Ittner and Shclosser [108], Yildiz and Alpaydin [102],
Altinçay [109], Djukova and Peskov [110], Tharwart et al. [111] and Sok et al. [112, 113].

Some works consider the acquisition of fuzzy DTs, i.e. DTs where the test on each
node of a given DT produces a probabilistic result, in opposite of crispy DTs. Approaches
that produce soft DTs are Fuzzy ID3 [114], soft DTs [115], polynomial-fuzzy DTs [116],
G-FDT (Gini index based DTs) [117], SEEN (Soft dEcision Tree for logical arithmetic
Expressions miNing) [93].

Costa and Pedreira provided a recent general survey on decision trees in [118]. Another
recent survey is done by Carrisoza et al. [119] which focused on continuous optimization
and mixed-integer linear optimization formulations for decision trees. Previous surveys
have been carried out by Kotsiantis [100] and Murthy [120].

1.3 Automated discovery

The interest in automated discovery of hypothesises between mathematical concepts
dates back to 1976. Lenat [121–123] developed two programs called ‘AM’ and ‘EURISKO’
to discover new mathematical concepts with a few simple heuristics which then build upon
each other in a recursive manner. Later, in 1984, Valiant [124] formalised the concept of
learning machines, i.e. machines capable of learning entire classes of non-trivial concepts
in a polynomial number of steps, and showed that this was possible to achieve.

A more targeted research, concerned only with uncovering relations between invariants
on graphs, was first done by Brigham and Dutton [125, 126] in 1983. They developed
the so-called INteractive GRaph Invariant Delimiter (INGRID), a system for acquiring
more precise information about partially specified graphs which can be used to derive
new theorems or to test already derived theorems. They present the discovered relations
between invariants on graphs in [127, 128].

Fajtlowicz [129] developed the computer program ‘Graffity’ suited to certain types
of graphs that acquires about 60 invariants. Fajtlowicz also developed two procedures,
IRIN and CNCL, to facilitate (i) the search of the conjectures between invariants and
(ii) the removal of trivial conjectures and of conjectures that can be derived from other
conjectures because of transitivity. Larson and Van Cleemput [130, 131] based their search
for conjectures on the Dalmatian heuristic proposed in [129]. In [131] showed and proved
five novel theorems acquired by their system.

Caporossi and Hansen [132, 133] developed ‘AutoGraphiX’ a program which does
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the opposite task. From an invariant corresponding to a bound, it tries to construct
an extremal or near-extremal graph using variable neighbourhood search to sharpen the
initial bound. It is also able suggest a proof to or refute a given conjecture automatically.
The system uses three approaches to automate acquisition of conjectures - numerical,
geometrical and algebraic. In [132] it refuted 9 conjectures of Graffiti [129]. It suggested
over 50 novel conjectures, 15 of which were proved. Aochiche et al. [134] provide the
updated information on the number of uncovered, proven and disproven conjectures on
graphs.

While Colton et al. [135] are not discovering relations between invariants, they pro-
pose both a semi-automated and automated qualitative searches to build and verify new
theorems. These verified theorems classify algebras of a particular type and size into
isomorphism classes. Colton et al. used a variety of techniques including Mace Model
generator [136], C4.5 [103, pp 17–25], the Spass theorem prover [137], etc.

Davies et al. [138] has proposed, instead of a fully automated search for conjectures,
an assisting system for mathematicians to facilitate the discovery of new conjectures. To
do this, the mathematician can choose a pair of invariants, then the system uses neural
networks to generate a dataset which includes both invariants. Then the system can check
whether or not the relation between the invariants is statistically more accurate on further
samples than the baseline chance of 25% . If it is, the neural network tries to acquire a
conjecture on continuous domains, i.e. a polynomial with non-integer coefficients.

Beldiceanu et al. [1] proposed a system called the Bound Seeker which will be described
in the Chapter 4, as the current thesis uses this system as a basis to build further.

It should be noted that the aforementioned approaches are not strictly limited to
mathematical objects. If necessary, they can produce good results if applied on other
kinds of data. e.g. Brooks et al. [139] used the Dalmatian heuristic and conjecturing
techniques proposed in [129] on COVID-19 datasets to discover relations in the form of
the Boolean expressions (A ∧B) ∨ C ∨ (D ∧ E), (A ∧B)⇒ C, etc.
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Chapter 2

FIRST USE CASE: ACQUIRING

CONJECTURES ON COMBINATORIAL

OBJECTS

In this chapter, first the problem of the acquisition of maps of conjectures for sharp
bounds on combinatorial objects is described to provide the context. Next the reasons on
why there is a focus on the acquisition of Boolean-arithmetic equations are provided.

2.1 Acquiring sharp bounds for maps of conjectures
for combinatorial objects

Our work on acquiring Boolean-Arithmetic Equations is motivated by learning con-
jectures about sharp bounds on the characteristics of combinatorial objects. The learning
process is based on tables, each entry of which is a positive example, specifying the sharp
lower (resp. upper) bound of a characteristic of a combinatorial object based on a combi-
nation of values for other characteristics. As we look for sharp bounds, the learning process
acquires equality, which in the end leads to inequality, since the conjectures concern lower
and upper bounds. As all the entries in a table are error-free, we acquire formulae that
match all table entries.

Example 2.1.1. For example, a combinatorial object could be a digraph G whose charac-
teristics are the number of vertices v, the number of arcs a, and the number of connected
components c. A sharp upper bound on the number of arcs of G relative to its number
of vertices and its number of connected components is a ≤ (v − (c − 1))2 + (c − 1). This
sharp bound would be acquired from Table 2.1, which gives the sharp upper bound on the
number of arcs a wrt the number of vertices and connected components of G.
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Although the sharp bound (v−(c−1))2+(c−1) in the Example 2.1.1 does not mention
any Boolean conditions, the following section shows the relevance of Boolean conditions
to learn sharp bounds.

We consider eight combinatorial objects for which we generated a dataset:

— digraph (without isolated vertex): a set of vertices V and a set of ordered pairs
of vertices A with the restriction that each vertex of V occurs in at least one pair
of A [140].

— rooted tree: a connected acyclic undirected graph where a vertex is designed as
the “root” of the tree [141].

— rooted forest: a disjoint union of rooted trees [141]; we also consider a variant,
rooted forest2, where all rooted trees have at least two vertices.

— partition: a partition of a set S is a collection of possibly empty subsets of S

such that every element of S is in exactly one of the subsets of the collection. The
use of a partition was motivated by the by fact that a partition can be interpreted
as a solution to the conjunction of the nvalue (i.e. the number of partition sub-
sets, see [142]) and the balance (i.e. the difference between the cardinalities of
the largest and smallest subsets of the partition, see [53, pp 698–703]) constraints.
Motivated by the extension of the balance constraint, i.e. all_balance [143],
we also consider a version of partition named partition0 where all subsets of S are
non-empty.

— stretch: a solution of a stretch constraint on 0-1 variables, where a subsequence of
1 immediately preceded and followed by a 0 is called a stretch [144]; we also consider

Table 2.1 – Example of a table used to acquire the equation a = (v − (c− 1))2 + (c− 1)
leading to the sharp upper bound a ≤ (v − (c − 1))2 + (c − 1); the table gives the
maximum number of arcs a of a digraph in relation to its number of vertices v and
connected components c.

v c a

1 1 1
2 1 4
2 2 2
3 1 9
3 2 5
3 3 3
4 1 16
4 2 10
4 3 6
4 4 4
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Table 2.2 – Examples of characteristics (char.) of combinatorial objects and corresponding
conjectures: (i) c, s, oc, c and s: number of connected components (cc), strongly connected
components (scc), connected components with at least two vertices, size of the smallest
cc and size of the largest scc of a digraph; (ii) c0: denote 0 if all the cc have same
maximal size, and c otherwise, for a digraph; (iii) v and f : number of vertices and
leaves in a rooted tree; (iv) d: largest degree of a parent node in a rooted tree or a
rooted forest; (v) p and t: minimum depth and size of the smallest tree in a rooted
forest; (vi) n, nval, and m: number of elements, number of subsets, and cardinality of
the smallest subset in a partition; (vii) sr , dr , and dm: difference between the number
of elements of the largest and smallest stretches, difference between the maximum and
minimum distance of consecutive stretches, and minimum distance between consecutive
stretches in stretch; (viii) n, ng, and osc: number of elements, total number of stretches,
and number of stretches which have more than one element when the number of element
of the largest stretch is maximal in cyclic stretch.

Combinatorial object Number of char. Some of the used char.

digraph 20 c, c, s, oc
digraph 20 c0, c, s, s

rooted tree 6 d, v, f

rooted forest 11 p, d, t

partition 14 n, nval, m
stretch 26 sr , dr , dm
cyclic stretch 26 osc, n, ng

the variant named cyclic stretch where, when the sequence begins and terminates
by 1, those two 1 belong to the same stretch.

The tool described in [1], called Bound Seeker, searches systematically for conjectures
related to the acquisition of sharp bounds. The way it organises the search is following:

1. The data generation step. The input data consists of a collection of tables giving for
any combinatorial object of size at most size, for any combination of at most three
input parameters, for any feasible combinations of values of these input parameters,
the sharp lower or the sharp upper bound of a given output parameter, e.g. Table (A)
of Fig. 7.1 is an excerpt of such an input table. In addition, an input table may
also mention auxiliary parameters, so-called secondary parameters, which are all
functionally determined by the input parameters of the table.

Definition 1. For Digraph, Rooted tree, Rooted Forest, and Rooted
Forest2, size denotes the number of vertices. For Partition0 and Partitions,
size is the number of elements of the set we partition, and finally for Stretch and
Cyclic Stretch, size is the sequence length.
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The data set used for acquiring conjectures in [15] and this thesis consists of a
collection of 252300 tables representing 12 GB, giving for any combinatorial object
of size at most size, for any combination of at most three input parameters, for any
feasible combinations of values of these input parameters, the sharp lower or the
sharp upper bound of a given output parameter.

2. For each table the tool searches for relevant functional dependencies for a given
output column, for which we search for conjectures, and stores them.

3. For each candidate dependency the tool builds a sub-table where it uses only columns
mentioned in the selected FD as inputs with the selected output column.

4. For each sub-table the tool enumerates through a list of learning biases, i.e. a type
of formula we attempt to learn. For each bias a corresponding CSP is created for the
given sub-table, with constraints posted on each entry. If the CSP is solved success-
fully, the conjecture is found. The tool supported two types of biases: polynomial
formulae with unary and binary operations and conditional formulae of the type
(cond ? x : y), which is equel to x if condition cond holds, y otherwise.

2.2 The relevance of Boolean-arithmetic equations
for learning sharp bounds on combinatorial ob-
jects

To show the expressive power of Boolean-arithmetic equations (BAE), let us consider
typical uses where they are relevant for acquiring sharp bounds, i.e. an inequality for
which the equality holds for at least one example.

1. Using a BAE is a natural option when the codomain of f(X1, X2, . . . , Xn) is equal to
{0, 1} or more generally consists of only two distinct consecutive values v and v + 1.
For example, let v, a, os and s be the number of vertices, the number of arcs, the
number of of strongly connected components with the smallest number of vertices,
and the size of the smallest strongly connected component of a digraph. As the CP
model of [1] shows, when a is maximal, we have the relation os = ⌊ v

max(−s+v,s)⌋,
which is equivalent to the relation os = 1 + [v = 2 · s], where the Boolean expression
[v = 2 · s] is used as an integer, i.e. either 0 for false or 1 for true.

2. Even when the number of distinct values m of the codomain of f(X1, X2, . . . , Xn)
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is greater than two values, but still very small, we can use Boolean arithmetic
expressions to capture concise formulae. This is done by summing up m−1 Boolean-
arithmetic conditions as illustrated now: e.g. let v, a, c1 and c be the number of
vertices, of arcs, of connected components having more than one vertex and the size
of the smallest connected component of a digraph. As the CP model of [1] shows,
when a is maximal, we have the relation c1 = ⌊ (v+max(−c+v,c))

(2·max(max(−c+v,c),2)−max(−c+v,c)+1)⌋,
which is subsumed by the BAE c1 = 2− ([c = 1] + [(v − c) ≤ 1]).

3. Quite often, using BAE allows one simplifying formulae with min and max, as
illustrated now. Let v, c, c23 and s be the number of vertices, connected components,
connected components with two or three vertices where the size of each strongly
connected component is equal to one, and the size of the largest strongly connected
component of a digraph: e.g. for the graph . . . . . . . we have v = 7, c = 3, c23 =
2, s = 2. As discovered by the CP model of [1], when c is minimal, we have c23 =
(v.s ≤ 3 ? min(v − 1, 1) : 0), which can be replaced by the Boolean relation c23 =
[s = 1 ∧ v ∈ [2, 3]].

4. It may occur that a formula can provide an approximate bound with an error of
at most 1 on a parameter in Z. Then, one way to get a sharp bound, is to find
a Boolean formula that precisely describes the bound discrepancy. For example, a
non-sharp lower bound (with a deviation of at most 1) on the number of connected
components c of a digraph G wrt the number of vertices v of G, the size of the
largest connected component c of G, and the size of the smallest strongly connected
component s of G is given by c ≥ ⌈v

c
⌉; but a sharp lower bound is given by c ≥

⌈v
c
⌉+ [(s < fmod(v, c)) ∧ (2 · s > c)], where fmod(x, y) is defined by the conditional

expression (x mod y = 0 ? y : x mod y). This case is explained more in detail in the
next section.

5. Certain bounds can be expressed by a conditional formula, where the ‘then’ and the
‘else’ parts are simple expressions that are easy to identify, but the condition is a
Boolean arithmetic expression that must be acquired. For example, consider a forest
F of trees, where v, f , f and f denote respectively the total number of vertices in
the trees of F, the total number of leaves in the trees of F, and the minimum and
maximum number of leaves in the different trees of F. A sharp upper bound of
the maximum number of leaves f of a forest F is given by the conditional expres-
sion

(
f = f ∨ v = f ? f : f − f

)
, where f = f ∨ v = f is a Boolean arithmetic

expression.
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6. Some bounds can be expressed as case formulae, where the conditions correspond
to Boolean arithmetic expressions that must be acquired, and the terms that pro-
vide values for each branch are integer constants that must also be identified. For
example, a sharp lower bound on the number of strongly connected components s

of a digraph wrt the size c of its smallest connected component and the size s of its
smallest strongly connected component is given by the following case formula:

s ≥


3 if ⌊ c /s ⌋ = 1 ∧ (c− s) ≥ 1

1 else if c = s

2 otherwise

(2.1)

The following points are specific to our equation discovery context [145]:

— As our samples are error-free, we need to acquire formulae that correctly represent
all the samples we have.

— As our samples correspond to instances of combinatorial objects reaching a sharp
bound, this is why we search for equations rather than for inequalities.

— We keep the original columns of the tables, as using one-hot encoding considerably
increases the number of columns and affects the interpretability [146].

The updated version of the system with BAE as the new learning bias is presented in
the paper [15].

2.3 The relevance of formula synthesis for learning
sharp bounds

The second goal of this use case is to show how the ability to synthesise complex
formulae from different learning biases is useful to improve the quality of the search for
the maps of conjectures on sharp bounds. While the problem of synthesising formulae from
data [130] is central to many areas such as programming by example (e.g. finding formulae
in spreadsheets [70, 147, 148]), program verification (e.g. identifying loop invariants [149]),
and conjecture generation (e.g. proposing bounds for combinatorial objects [1, 130, 150]),
acquisition techniques are limited when the learning bias, i.e. “the set of assumptions
that the learner uses to predict outputs of given inputs” [11], is vast. In this thesis, these
assumptions correspond to the type of formulae we acquire.
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Besides the recent work of S.-M. Udrescu et al. [151] which applies to continuous func-
tions, most approaches for acquiring discrete functions rely on a grammar to define a
domain-specific learning bias. They use a generate-and-test method to produce candidate
formulae of increasing complexity. Several improvements were made to limit the combina-
torial explosion of candidate formulae. They include the use of probabilistic grammar or
statistical methods [152] to focus on more likely candidate formulae first, to generate par-
tially instantiated formulae whose coefficients are determined by a CP or a MIP model [1,
153], or to apply metaheuristics [154]. However, their main weakness is twofold: first, they
usually deal with formulae from a restricted domain-specific learning bias; second, they
try to directly acquire a formula that mentions all the relevant input parameters at once.

We generally do not know how to effectively combine learning biases for acquiring
formulae, so a system that knows how to solve problems with the learning bias (A) and
another system that knows how to solve problems with the learning bias (B) can be
combined to handle not only problems with the learning bias (A) or (B), but can also
acquire formulae that combine both learning biases in a nested manner. The question,
then, is how to find decomposition methods that facilitate the discovery and combination
of multiple learning biases.

The method we propose partly answers this question through the following observation.
Although many formulae are complex, i.e. they involve various operators in different sub-
terms of a same formula, some parameters only appear in a few sub-terms, and some
sub-terms have a very specific form. We show that by analysing a minimal functional
dependency (MFD) of a table, while relying on the input columns and the output column
of the table, it is sometimes possible to identify different sub-terms of a formula to be
learnt and the operators that connect its sub-terms. We carry out this analysis by using
Constraint Programming (CP) to solve certain sub-problems that allows us to decompose
the formula we are looking for, into its sub-terms, without knowing yet the formula to be
found.

2.3.1 Context and Motivation

The system [1] used three different learning biases (i)–(iii) (the detailed description
of each learning bias is provided in Section 4.1.2). Despite using these biases, the sys-
tem [1] missed many conjectures. Rather than extending these biases further or introduc-
ing new biases, we propose to combine these biases to catch complex formulae. To avoid
a combinatorial explosion, this is not done by assembling a merged grammar associated
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with different biases, but rather by devising some recursive decomposition techniques that
identify the sub-terms of a formula and how these sub-terms are connected by arithmetic
operators. The base case of such recursion belongs to biases (i)–(iii). The next section
provides a first insight on how this is achieved.

2.3.2 Running Examples and Intuition of the Decomposition
Technique

Conj. (2.2)–(2.5) illustrate sharp lower bounds found by the decomposition method
that could not be found before, as they were outside the scope of biases (i)–(iii). They
are used as running examples and were proved in Appendix A to stress the fact that
the decomposition method can find non-obvious conjectures that turn out to be true. In
the first phase, the decomposition method identifies an incomplete formula, i.e. a formula
for which some terms are still unknown and will be determined later in the 2nd phase
by applying the decomposition method recursively. In Conj. (2.2)–(2.5), the right-hand
side of each inequality matches terms, highlighted by a brace, connected by one or two
arithmetic operators (or a conditional), where:

— Terms with no grey background refer to expressions matching biases (i)–(iii), that
are found in the 1st phase.

— Terms with a grey background are found in the 2nd phase when the decomposition
is applied recursively.

Conjecture 1. Conj. (2.2) provides a sharp lower bound on the number of connected
components c of a digraph where every vertex is adjacent to at least an arc wrt its number
of vertices v, the maximum number of vertices c inside a connected component, and the
smallest number of vertices s in a strongly connected component (scc). The right-hand
side of Inequality (2.2) consists of the terms (1.1) and (1.2), resp. referring to biases (i)
and (iii), and linked by a sum.

c ≥ ⌈v/c⌉︸ ︷︷ ︸
(1.1) binary function

+ [¬((2 · s ≤ c) ∨ (s ≥ (v mod c = 0 ? c : v mod c))]︸ ︷︷ ︸
(1.2) Boolean term

(2.2)

In Phase one, the decomposition method finds a formula of the form g1,1(v, c)+
g1,2(v, c, s), where g1,1 has only 2 parameters, and where the codomain of g1,2 is the set
{0, 1}; in the 2nd phase, the method finds the functions g1,1 and g1,2.
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Conjecture 2. Conj. (2.3) gives a sharp lower bound c of a digraph wrt its number of scc
s, and the c and s characteristics introduced in Ex. 1. The term (2.1) is the isolated input
parameter s and the term (2.2), i.e. ⌊c/s⌋, refers to bias (i). These terms are connected
by an integer division rounded up.

c ≥
⌈

s︸︷︷︸
(2.1) unary function

/ ⌊c/s⌋︸ ︷︷ ︸
(2.2) binary function

⌉
(2.3)

In Phase one, the method finds the formula
⌈

g2,1(s)
g2,2(c,s)

⌉
, with g2,1(s) = s, and where g2,2

has only 2 parameters; in the 2nd phase, the method finds the function g2,2 itself.

Conjecture 3. Conj. (2.4) depicts a sharp lower bound on the maximum number of
vertices s inside an scc of a digraph wrt the s and s characteristics previously introduced.
Within Conj. (2.4), the term (3.1) is a conditional expression, i.e. bias (ii), the term (3.2)
refers to a unary function, and the term (3.3), i.e. [s = 1], corresponds to a Boolean
expression, i.e. bias (iii). These terms are connected by the division rounded up and the
sum operators.

s ≥
⌈

(v = s ? v : v − s)︸ ︷︷ ︸
(3.1) binary function as

a conditional

/ ( s− 1︸ ︷︷ ︸
(3.2) unary

function

+ [s = 1]︸ ︷︷ ︸
(3.3) Boolean

term

)
⌉

(2.4)

In Phase 1, the decomposition method finds a formula of the form
⌈

g3,1(v,s)
g3,2(s)+g3,3(s)

⌉
, with

g3,2(s) = s − 1, and where g3,1 has only 2 parameters, and where the codomain of g3,3 is
the set {0, 1}; in the 2nd phase, the method finds g3,1 and g3,3.

Conjecture 4. Conj. (2.5) depicts a sharp lower bound on the maximum number of ver-
tices c inside a connected component of a digraph wrt the v, c, c and s characteristics
previously introduced. The right-hand side of Conj. (2.5) is a complex conditional expres-
sion outside the scope of bias (ii), as its ‘else’ part is too complicated. It consists of three
parts:

— A simple condition v = c · c denoted by (4.1);

— A ‘then’ part, c, depicted by (4.2);

— An ‘else’ part, max
(
s,
⌈

v−c
c−1

⌉)
, referring to a complex term labelled by (4.3).
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c ≥
(

v = c · c︸ ︷︷ ︸
(4.1) condition

? c︸︷︷︸
(4.2) ‘then’

part

: max
(

s,
⌈

v − c

c− 1

⌉)
︸ ︷︷ ︸

(4.3) ‘else’ part

)
(2.5)

The method first finds (v = g4,1(c, c) ? g4,2(c) : g4,3(v, c, c, s)) with g4,1(c, c) = c · c,
g4,2(c) = c ; then it finds function g4,3 using the method in a recursive way:

— It finds g4,3(v, c, c, s) = max(g4,3,1(s), g4,3,2(v, c, c)), with g4,3,1(s) = s, and where
g4,3,2 has 3 parameters;

— It then finds function g4,3,2 using again the decomposition method in a recursive
way:

— It first finds g4,3,2(v, c, c) =
⌈

g4,3,2,1(v,c)
g4,3,2,2(c)

⌉
with g4,3,2,2(c) = c− 1;

— It then finds function g4,3,2,1(v, c) directly as v − c, a polynomial, i.e. bias (i).

We saw four conjectures acquired by our decomposition method. They cover all the
types of decompositions we found. Each function introduced in Phase 1 when searching
for an incomplete formula is simpler than the function initially looked for: (a) it has fewer
input parameters, e.g. in Conj. 1, g1,1(v, c) = ⌈v/c⌉ does not mention the s parameter, or
(b) its codomain is restricted to two values, e.g. in Conj. 1, the codomain of g1,2 is the set
{0, 1}, or (c) it only holds if a given condition is met, e.g. the ‘else’ part in Conj. (4) only
holds if v ̸= c · c .

Conjectures (1)–(4) were proven by Jovial Cheukam-Ngouonou [14].
Section 7 describes the acquisition process of four type of decompositions we introduced

in this section.
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Chapter 3

SECOND USE CASE: ACQUIRING

SHORT-TERM SCHEDULING MODELS

In this chapter we will look into the second use case – the acquisition of a constraint
model from a single example of a short-term production schedule. We assume that the
schedule is correct, i.e. error-free. First, we will provide the context of the use case and
provide the scope of the proposed solution. Then, we will describe the inputs that are
needed for the model acquisition. Next, since in practice the inputs have diverse formats
we discuss how to unify input data with a preprocessing step. Lastly, we describe the
intended output of model acquisition, i.e. types of constraints we want to acquire. During
the section a running example will be presented and described in depth.

3.1 Context and scope

3.1.1 Context

Advanced short-term scheduling systems were introduced several decades ago to gen-
erate optimised production schedules automatically [155]. These technologies reduce costs
and speed up the creation of production schedules. However, most companies still rely
on spreadsheets or simple rules to manage their plants [156]. Humans cannot analyse the
large number of scheduling alternatives, so the resulting production schedule is subop-
timal. Consultancy costs are a major obstacle to the adoption of advanced scheduling
systems. Implementing scheduling software requires experts to build the model, and such
a software system often requires high costs to customise the software. Furthermore, ex-
pert model building is not in line with the Industry 4.0 context, where the shop floor
is frequently reconfigured. This use case studies the acquisition of short-term scheduling
models from data to generate these models automatically.

While Industry 4.0 heavily uses various AI techniques and OR models, there is little
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work which takes advantage of AI to acquire short-term scheduling models [60] which can
be directly run on standard industrial OR tools such as CPLEX [157] from IBM or OR-
Tools [158] from Google to produce feasible schedules. Indeed, the use of AI techniques
for Industry 4.0 was up to now mostly restricted to prediction and classification problems,
e.g. [159, 160].

3.1.2 Scope

The scope of this use case is the acquisition of OR models, and the domain we consider
is STPS in an industrial context: i.e. we do not limit ourselves to pure scheduling problems
like flow shop problems, but we also consider industrial constraints like calendar or shift
constraints. Our focus is to acquire short-term scheduling models, where a model identifies
the variables (e.g. task starts, assigned resources) of the problem, and the constraints (e.g.
precedence, disjunctive) between these variables. The acquired models are technology-
agnostic (CP, MIP), expressed in the MiniZinc modelling language which can be executed
on a variety of solvers. Note that our focus is not on creating models optimised for a
specific technology, as MiniZinc takes this aspect into account by transparently adapting
a model to a particular technology, for example by linearising certain constraints when
running the model on a MIP solver [161].

— On the one hand, our model acquisition tool assumes that tasks and resources of a
schedule are described using tables and that the data provided contains no errors.
This latter assumption is made as learning from a single positive example containing
errors is too challenging.

— On the other hand, it does not assume any specific format for these tables, i.e. the
order of the columns in a table does not matter, the columns of these tables are
not necessarily labelled, and some columns may not be relevant to the acquisition
process. It is up to the acquisition system to interpret the meaning of the columns
to extract the different constraints of a scheduling model. However, it is required
to indicate which columns correspond to the input data of the model, and which
columns correspond to output data: e.g. in some scheduling problems, the machine
on which a task is pre-assigned is known (i.e. the machine corresponds to input
data), and in some other scheduling problems, the solver would also have to assign
each task to a machine (i.e. the machine corresponds to output data). This clean
separation between the input data used by a model and the model itself allows one
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to reuse an acquired model on some other input data set without modifying the
acquired model.

Learning from a single example is not as radical as it might seem. In fact, in a real-life
context, a schedule can involve anywhere from a hundred to a few thousand tasks, so even
a single example can provide enough data.

3.2 Model acquisition input

The model acquisition tool uses a single positive instance of a short-term schedule as
the basis for acquiring a model. In this work, we refer to scheduling instance as the input
data of a scheduling problem with its associated solution, whereas in classical scheduling
terminology a scheduling instance refers only to the input data. The scheduling instance
typically consists of resources and task attributes that describe an instance of a feasible
production schedule. A scheduling instance can (i) be generated by a digital twin [162],
(ii) derived from historical data or data streams collected by sensors on the shop floor,
or (iii) created manually.

Example 3.2.1. As a running example, consider tables Table 3.1 and Table 3.2 which
respectively describe the set of machines and the set of tasks of an instance of a schedule
used to acquire a model. Each column of such tables corresponds to a machine or to a task
attribute.

Table 3.1 – An example of ‘machines table’ giving for each machine its identifier, its speed,
and its unavailability

Machine_id Speed Unavailability

MB_10 2 {30..39,50..59}
MB_2 3 {15..19}
MB_3 2 {40..49,70..79}
MB_5 4 {40..49,70..79}

The type of configuration used in Example 3.2.1 is quite common for companies already
using scheduling software such as an Excel spreadsheet, a basic ERP or an ontology-based
digital twin.
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Table 3.2 – An example of ‘tasks table’ providing for each task its attributes

Task_id Start Quantity Duration Machine Machines_set Successor

AB10001 0 10 20 MB_10 {MB_5, MB_10} AB10002
AB10002 20 10 30 MB_2 {MB_2, MB_3} AB10003
AB10003 50 10 20 MB_3 {MB_3, MB_5} AB10004
AB10004 70 10 20 MB_10 {MB_10} –
AB10005 0 4 12 MB_2 {MB_2, MB_5} AB10006
AB10006 20 4 8 MB_10 {MB_2, MB_10} AB10007
AB10007 28 4 8 MB_3 {MB_3, MB_5} –
AB10008 0 9 36 MB_5 {MB_5, MB_10} AB10009
AB10009 50 9 27 MB_2 {MB_2} –

3.3 Preprocessing of the inputs for the model acqui-
sition

The tables providing a scheduling instance are preprocessed to:

1. Select the relevant columns, namely the columns required to build a model. This
is because the information regarding a scheduling instance is usually only a small
fraction of the data available in the databases and spreadsheets of a company.

2. Mark columns corresponding to an input of the model as well as columns refereeing
to model output, i.e. columns whose values will be determined by the model.

3. Convert data to a uniform format supported by the model acquisition part.

While Issues 1 and 2 are handled by a human who annotates every column of the tables,
the automatic preprocessing phase described below solves Issue 3. The model acquisition
tool works with tables whose cells correspond to an integer value, a list of integers, or a list
of integer intervals. Therefore, cells corresponding to strings are automatically converted
to an appropriate integer:

— As many identifiers (e.g. task identifiers, product identifiers, or resource identifiers)
are alphanumeric, the preprocessing tool converts them to natural numbers.

— Sometimes an undefined value is represented by an alphanumeric string, and we
convert them to an unused integer value. Similarly, an empty cell is also converted
to an unused integer value.

— Cells may refer to task identifiers which are not part of the input data as the corre-
sponding tables may only focus on a set of tasks associated with a restricted time
horizon. Such references to missing task identifiers are converted to some unused
integer value.
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— Cells containing date and time information are converted into natural numbers.
The earliest instant occurring in a table is set to 0, while the other time points are
presented as a shift from the earliest instant.

Example 3.3.1. After the preprocessing phase, Table 3.1 and Table 3.2 are respectively
transformed into Table 3.3 and Table 3.4, where blue cells correspond to modified values.
Object identifiers, i.e. machine and task identifiers, were changed to distinct integer values
as shown by the first columns of Table 3.3 and Table 3.4; references to machine and task
identifiers were updated accordingly as illustrated by the last three columns of Table 3.4.
Within the ‘Successor’ column of Table 3.4, missing values were replaced by the otherwise
unused integer value −1. In the rest of the thesis, to continue with the same running
example, we will assume that all the columns in Table 3.3 are marked as input columns,
and that only the ‘Quantity’, ‘Machines_set’ and ‘Successor’ columns in Table 3.4 are
input columns. In other words, given the previous input columns, only columns ‘Start’,
‘Duration’ and ‘Machine’ in Table 3.4 need to be determined by the acquired OR model.

Table 3.3 – Machines table obtained after preprocessing Table 3.1

Machine_id Speed Unavailability

10 2 {30..39,50..59}
2 3 {15..19}
3 2 {40..49,70..79}
5 4 {40..49,70..79}

Table 3.4 – Tasks table obtained after preprocessing Table 3.2

Task_id Start Quantity Duration Machine Machines_set Successor

10001 0 10 20 10 {5, 10} 10002
10002 20 10 30 2 {2, 3} 10003
10003 50 10 20 3 {3, 5} 10004
10004 70 10 20 10 {10} −1
10005 0 4 12 2 {2, 5} 10006
10006 20 4 8 10 {2, 10} 10007
10007 28 4 8 3 {3, 5} −1
10008 0 9 36 5 {5, 10} 10009
10009 50 9 27 2 {2} −1

3.4 Output of the model acquisition tool

The MiniZinc modelling language [10] provides a large library of predefined constraints
where many of these constraints represent high-level modelling abstractions [3], which are
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understood by most solvers. We acquire a MiniZinc constraint model, where a model
consists of a conjunction of constraints of the following types: functional constraints,
temporal constraints, resource constraints, calendar constraints, and shift constraints.
The rest of this section reviews the type of constraints that the tool can acquire, whereas
sections 4.1.2, 8.1, 8.2 and 8.3 describe the acquisition process.

3.4.1 Functional constraints

A functional constraint is a constraint of the form y = f(x1, x2, . . . , xn), where x1, x2,
. . . , xn, y are columns of some table T , and f is a function which determines the value of
column y from the values of columns x1, x2, . . . , xn for every row of table T . Function f

corresponds to a linear expression or to a non-linear expression involving usual arithmetic
operators such as ‘min’, ‘max’, ‘×’. The acquisition process of functional constraints will
be mentioned in Section 4.1.2.

Example 3.4.1. From Tables 3.1 and 3.2 we observe the functional constraint (3.1) which
computes the duration of a task i from the machine that processes the task and from the
corresponding machine speed which denotes how fast a machine can process one item, i.e.
the processing time per item.

Duration[i] = Speed[Machine[i]]×Quantity[i] (3.1)

3.4.2 Temporal constraints

Given a sequence S of tasks, a temporal constraint on the sequence S enforces the same
temporal relation between all pairs of consecutive tasks of the sequence S. A temporal
relation between two consecutive tasks is a minimum, maximum, exact distance constraint
between (i) the start or the end of the first task and (ii) the start or the end of the second
task.

Identifying a temporal constraint requires (i) to recognise the associated sequences
of tasks, (ii) to find which attributes of the task are involved (i.e. start, end, duration),
(iii) to define whether it is a minimum, maximum or exact distance constraint, and
finally (iv) to compute the constant corresponding to the distance between consecutive
tasks of a sequence S. The acquisition process of temporal constraints will be explained
in Section 8.1.
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Example 3.4.2. Within Table 3.2, using the ‘Successor’ column, we observe the following
three sequences of tasks:

— S1 = AB10001, AB10002, AB10003, AB10004,

— S2 = AB10005, AB10006, AB10007, and

— S3 = AB10008, AB10009.

These sequences correspond to precedence constraints between the end of task i and the
start of the next task with a minimum distance of 0, namely:

Start[i] + Duration[i] + 0 ≤ Start[Successor[i]] (3.2)

3.4.3 Resource constraints

Resource constraints restrict the simultaneous resource utilisation by the tasks. We
support the acquisition of the following two types of resource constraints, namely, dis-
junctive [4, 5] and diffn [10, 163] constraints. Given a set of tasks T , where each task
is defined by its start and end, the disjunctive(T ) constraint prevents all pairs of tasks
in T from overlapping in time.

Given a set of rectangles R, where each rectangle is defined by the coordinates of its
bottom left corner, its length, and its width, the diffn(R) constraint requires that all
pairs of rectangles in R do not overlap, and that all rectangle sides are either perpendicular
or parallel to the placement axes x and y. In the context of scheduling problems, the x

and y axes represent the time and the resource axes. Each rectangle r of R corresponds to
a task, where the x-coordinate of r, the y-coordinate of r, the length of r, and the width
of r respectively refer to the start of the task, the resource to which the task is assigned,
the duration of the task, and the constant 1, i.e. 1 as the task is assigned to one single
resource.

Note that the disjunctive constraint is a special case of the diffn constraint where
the set of tasks to process on each resource is known. The diffn constraint applies when
tasks are not pre-assigned to specific resources. In this latter case, the within constraint
defines the set of resources that can process a task (see Equation 3.3). The acquisition
process of resource constraints is described in Section 8.2.

Example 3.4.3. First, observe that in Table 3.2, the ‘Machine’ attribute of the i-th
task can only be selected from a corresponding ‘Machines_set’ attribute, i.e. we have the
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following within(Machine[i], Machine_set[i]) constraint corresponding to:

Machine[i] ∈ Machine_set[i] (3.3)

Second, as tasks which are assigned to a same machine do not overlap, we have a diffn
constraint where the i-th task corresponds to a rectangle whose coordinates of its bottom
left corner, length and width respectively are (Start[i], Machine[i]), Duration[i] and 1.

3.4.4 Calendar constraints

When dealing with short-term scheduling, the execution of tasks is often restricted
by calendar constraints [164, 165]. Depending on the resource it uses, a task can only
run during certain periods when the resource is available. Each resource can have its own
calendar, defined as a set of time intervals during which the resource is available or not.

Given a set of tasks T , where each task is defined by its start, its end and the calendar
identifier it uses, and a set of calendars C, where each calendar is specified by a unique
identifier and a sorted list of disjoint intervals, the calendar(kind, T, C) constraint holds
iff

— kind = 1: each task start is in a calendar interval,

— kind = 2: each task end minus one is in a calendar interval,

— kind = 3: each task is included in a calendar interval,

— kind = 4: each task start does not belong to any calendar interval,

— kind = 5: each task end minus one does not belong to any calendar interval,

— kind = 6: each task does not overlap any calendar interval.

Note that we use the term ‘task end minus one’ rather than ‘task end’, because we want
to refer to the last instant when the task is running.

3.4.5 Shift constraints

The working day in a workshop is often divided into working periods called shifts,
with a team of workers assigned to each shift. The number of shifts usually varies from
three to two, depending on whether it is a working day or a weekend. Certain tasks that
need to be monitored by the same team must start and finish within the same shift.
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Given a set of tasks T , where each task is defined by its start, its end and the calendar
identifier it uses, and a set of calendars C, where each calendar is specified by a unique
identifier and a sorted list of disjoint intervals, the shift(T, C) constraint holds iff

— there is no gap between two consecutive calendar intervals,

— each task is included in a calendar interval.

The shift constraint can be seen as a special case of the calendar constraint when
kind = 3 and there is no gap between successive calendar intervals.

Example 3.4.4. First, observe that in Table 3.2, the ‘Machine’ attribute of the i-th
task can only be selected from a corresponding ‘Machines_set’ attribute, i.e. we have
the following within(Machine[i], Machine_set[i]) constraint corresponding to the equation
3.3.

Second, as tasks which are assigned to a same machine do not overlap, we have a
diffn constraint where the i-th task corresponds to a rectangle whose coordinates of its
bottom left corner, length and width respectively are (Start[i], Machine[i]), Duration[i] and
1.

Third, since each task i does not intersect any calendar interval of
Unavailability[Machine[i]] associated with the machine Machine[i] to which task i

is assigned, we have a calendar constraint with kind = 6, where the i-th task cor-
responds to a task starting at Start[i], ending at Start[i] + Duration[i], and using the
calendar of the machine Machine[i] to which it is assigned.

3.4.6 Wrapping up the constraints of the running example

This section first illustrates the solution associated with the example schedule given
in Table 3.3 and Table 3.4. It then provides pseudocode for the model, which is generated
from the contents of Table 3.3 and Table 3.4 by the model acquisition tool presented in
Section 9.3.

Figure 3.1 illustrates the solution associated with the sample schedule given in Ta-
bles 3.3 and 3.4. Each task corresponds to a rectangle labelled with its identifier, whose
coordinates in the bottom left corner are the start of the task and the machine to which
the task is assigned. Tasks coloured in the same way are part of a chain of precedence
constraints, for example task 10005 finishes before task 10006 starts, while task 10006
ends before task 10007. Hatched areas represent intervals between consecutive tasks al-
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located to the same machine and thick red lines correspond to the periods of machine
unavailability associated with the machine calendars.
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Figure 3.1 – Schedule corresponding to the running example

To be directly transferable to other sets of input data, a generated model always
consists of two parts: the first part corresponding to the input data declaration, and
the second part consisting of parameterised constraints. In the model shown below, the
arrays Task_id, Successor, and Machine_set refer to concrete elements in the other
arrays. All input data arrays are taken directly from the input schedule. Note that the
start and duration of a task are not part of the input data, as they will be obtained by
running the model.

The arrays Calendar_id, Res, Low and Len introduce the periods of unavailability
of each machine; they correspond respectively to an unavailability period identifier, to the
machine to which it corresponds, to when it starts and to how long it lasts. This informa-
tion is generated from the ‘Machine_id’ and ‘Unavailability’ columns in Table 3.3. Since
we have a calendar constraint which requires that the start and end of the tasks do not
overlap any calendar interval (i.e. the kind parameter is equal to 6), all downtimes were
included in the diffn constraint in the form of dummy fixed rectangles. This ensures that
each task will not overlap any unavailability period of the machine assigned to the task.

INPUT DATA OF THE MODEL
Task_id = [ 1, 2, 3, 4,5,6, 7,8, 9]

Successor = [ 2, 3, 4,-1,6,7,-1,9,-1]

Quantity = [10,10,10,10,4,4, 4,9, 9]

Machine_set = [{1,4},{2,3},{3,4},{1},{2,4},{1,2},{3,4},

{1,4},{2}]

Speed = [2,3,2,4]

Calendar_id = [ 1, 2, 3, 4, 5, 6, 7]

Res = [ 1, 2, 2, 3, 3, 4, 4]

Low = [15,40,70,40,70,30,50]

Len = [ 5,10,10,10,10,10,10]
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PARAMETERISED CONSTRAINTS OF THE MODEL
∀i ∈ Task_id :

Duration[i] = Speed[Machine[i]]× Quantity[i]
∀i ∈ Task_id, Successor[i] ̸= −1 :

Start[i] + Duration[i] + 0 ≤ Start[Successor[i]]
∀i ∈ Task_id :

Machine[i] ∈ Machine_set[i]
diffn([Start[i],Machine[i],Duration[i], 1] | ∀i ∈ Task_id,

[ Low[j], Res[j], Len[j], 1] | ∀j ∈ Calendar_id)
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Chapter 4

THE MODEL ACQUISITION TOOL

To achieve objectives stated in Chapters 2 and 3 a model acquisition tool was developed
together with Nicolas Beldiceanu and Jovial Cheukam-Ngouonou. The tool is written
in SICStus Prolog [166]. The tool uses extensively the Prolog’s ability to backtrack to
effectively generate and enumerate through the data tables, characteristics, the candidate
formulae, etc. The tool also use the finite domain constraint solver [167] to acquire the
different types of constraints from the input data.

For the first use case (see Chapter 2) the tool outputs the list of acquired conjectures
on sharp bounds of the given characteristics. For the second use case (see Chapter 3) the
tool outputs a model MiniZinc file and a data MiniZinc file which then can later be used
to generate new valid schedules.

In this chapter we will describe each component of the tool to provide a global view
of what was done prior to and during this thesis.

4.1 Description of the components of the acquisition
tool

The tool consists of several components that are launched separately from each other.
Each component designed to solve a particular problem. There are five main component
examined in this section:

1. Metadata generation component, which analyses each tables to extract data which is
used by other components. It also acquires temporal constraints (see sections 3.4.2
and 8.1).

2. Functional constraint acquisition component, which acquires conjectures for com-
binatorial objects (see Chapter 2) and functional constraints for STPS (see Sec-
tion 3.4.1).
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3. Schedule constraint acquisition component, which acquires resource and calendar
constraits (see Sections 3.4.3 and 3.4.4 and Chapter 8).

4. Table merging component, which merges two table into one.

5. Model conversion component, which converts acquired constraints into an output
MiniZinc files.

4.1.1 Metadata generation

The model acquisition process must access certain aggregated information several
times to guide and focus on the acquisition of various types of constraints. For each
merged table, this aggregated data is calculated once and for all and stored in an as-
sociated metadata file. There are three types of metadata that we describe in the next
paragraphs, namely, (i) information valid for an entire table, (ii) information specific to
each column in a table, and (iii) information describing a relationship between a column
in a table and other columns in the same table.

4.1.1.1 Metadata valid for an entire table

We have the following information.

— Name and number of columns of the table, and ranked candidate primary keys.

— All relevant information for computing temporal constraints is computed during the
metadata generation phase. How this is done is described in Section 8.1.

4.1.1.2 Metadata specific to each column in a table

For each column we compute the following information.

— Flags noting whether or not the column could be used as an input and/or output
of a functional constraint. These flags are initially provided by the user in the table
file and then stored in the metadata in a convenient format.

— The potential scheduling attributes to which the column name can correspond,
i.e. start, duration, end. To do this, we normalise the names of the columns and look
for the presence of certain sub-words that indicate that a column might correspond
to a particular scheduling attribute.

— The data type of the cells of the column, namely 0–1 integer, integer or set of
integers.
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— The number of distinct values and the list of distinct values when the number of
distinct values is small.

— The minimum value, the maximum value, and the sum of all entries in each column
when the column data type is an integer.

4.1.1.3 Information describing a relationship between a column and other
columns

We gather the following relationships.

— The indication that a column is the same as another column in the table. When
there are two or more identical columns, we consider only the first one and discard
the others.

— The fact that for each entry in a table, the corresponding value in a given column is
always smaller (or always larger) than the corresponding value in another given col-
umn. This information is used, for example, when acquiring functional constraints,
see Section 4.1.2.

— The fact that for each entry in a table, the corresponding value in a given column
is always included in the corresponding set of values in another given column. This
indicates that a column is a part of a within constraint, see Section 8.2.

— To control the search for functional constraints looking for a formula expressing the
value of a column c as a function of other columns, we precompute for each column
c the list of its minimal functional dependencies [168], that we now define.

Definition 2. Given a table T , a column c of T , and a set of columns C of T (with
c /∈ C), C functionally determines c if and only if each C value in T is associated
with one single c value in T .

Definition 3. Given a table T , a minimal functional dependency for column c is
a set of columns C such that ( i) C functionally determines c, and ( ii) there is not
subset C′ ⊂ C such that C′ functionally determines c.

Example 4.1.1. Regarding the ‘Duration’ column, the merged table Table 4.1 con-
tains 10 minimal functional dependencies that we compute and record:

• {‘Task_id’},

• {‘Start’, ‘Quantity’},

• {‘Start’, ‘Machine’},

• {‘Start’, ‘Successor’},
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• {‘Start’, ‘Speed’},

• {‘Quantity’, ‘Machine’},

• {‘Quantity’, ‘Machine_set’},

• {‘Quantity’, ‘Successor’},

• {‘Quantity’, ‘Speed’},

• {‘Machine’, ‘Successor’}.

— In some cases, focusing only on minimal functional dependencies is not enough to ac-
quire a functional constraint. As a result, the model acquisition tool will also check
all combinations of minimal functional dependencies with one or two additional
columns. As the number of functional dependencies obtained can be too large (sev-
eral hundreds), we rank them to select the best candidates. The detailed description
of the ranking process is provided in Section 5.3.

4.1.2 Conjectures and functional constraints acquisition

The acquisition of conjectures and functional constraints learns equality constraints
expressing the value of an output column relatively to other columns. For example, in
the context of short-term scheduling models, such constraints may include calculating the
duration of a task based on the size of the order and the speed of the machine to which
the task is assigned.

In practice, there is no difference between the process of acquiring conjectures for
combinatorial objects and functional constraints, as the same technique is used for both.
For the sake of simplicity, the remainder of this section will refer to functional constraints
only, unless otherwise specified.

The acquisition of functional constraints is organised as follows:

1. The model acquisition tool selects all output columns from the metadata.

2. For each output column:

(a) Based on the list of ranked functional dependencies of the selected output
column, we generate the list of candidate formulae. Each candidate formula
includes (a) the list of input parameters of the functional dependency, (b) the
type of formula, e.g. polynomial, arithmetic-Boolean expression, and (c) the
parameters of the formula indicating its complexity, such as a communicative
operator, a number of Boolean-arithmetic terms or a number of monomes, etc.
The model acquisition tool ranks the candidate formulae from the simplest to
the most complex.
A candidate formula belongs to one of the following learning biases:
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• (learning bias (i)) formulae that contain binary and unary functions within
a polynomial function. The list of binary and unary functions include +,
−, ×, /, min, max, mod and Boolean comparisons against constants (in-
terpreted as 1 if a comparison is true and 0 otherwise). This learning bias
was developed by Nicolas Beldiceanu and Jovial Cheukam-Ngouonou.

• (learning bias (ii)) a case formula of the format:

y =
 f1(x1, x2, . . . , xn) if C1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn) otherwise,
,

where:

— C1(x1, x2, . . . , xn) is a Boolean-arithmetic condition containing one of
the following comparison operator ≤, ≥, ∈, /∈, and that may include
one or more arithmetic operators such as +, −, ×, /, min, max or
mod;

— f1(x1, x2, . . . , xn), f2(x1, x2, . . . , xn) are either an input column, a coef-
ficient or a binary or a unary function that uses +, −, ×, /, min, max
or mod.

This learning bias was introduced by Jovial Cheukam-Ngouonou and Nico-
las Beldiceanu.

• (learning bias (iii)) an arithmetic-Boolean expression (BAEx) B of the
format B = gn

i=1Ci(x1, . . . , xn), where:

— Ci(x1, x2, . . . , xn) is an arithmetic-Boolean condition that contains one
of the comparison operators ≤, ≥, ∈, /∈ and can include one or more
arithmetic operators such as +, −, ×, /, min, max or mod;

— n ≥ 1 is the number of arithmetic-Boolean conditions;

— g ∈ {∧,∨, =,⊻, +} is a single commutative logical operator or the sum
operator.

This learning bias was developed by the author of this thesis under the
supervision of Nicolas Beldiceanu. The detailed description is presented in
Chapter 6.

• (learning bias (iv)) a case formula of the form:
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y =



c1 if B1

c2 if B2 ∧ ¬B1

c3 if B3 ∧ ¬B2 ∧ ¬B1

. . .

cn otherwise,

,

where:
— Bj is an arithmetic-Boolean expression, Bj = gn

j=1Cj(x1, x2, . . . , xn);
— cj is a label of a cluster j corresponding to an integer value.
This learning bias was developed by the author of this thesis under the
supervision of Nicolas Beldiceanu. The detailed description is presented in
Section 6.5.

• four decomposition techniques (7.2), (7.3), (7.4), and (7.5), which combine
learning biases (i)–(iii) together. This part was developed by the author
of the thesis under the supervision of Nicolas Beldiceanu. The detailed
description is presented in Chapter 7.

(b) The model acquisition tool enumerates through the list of candidate formulae:
i. It generates a constraint model corresponding to the current candidate

formula [1].
ii. It attempts to solve the constraint model:

— if the model acquisition tool does not find a solution, it moves on to
the next candidate formula,

— otherwise, if a solution was found, this solution is compared against
previously found solutions for the output column. If the system con-
siders the new solution to be simpler than any of the previously found
solutions, or if there were no previously found solutions before, then the
solution is recorded in a database. This allows the model acquisition
tool to acquire increasingly simpler constraints.

Note that all the learning biases are checked in a particular order, one after the other.
The following ideas were used to design this ordering. The first idea is to try simple
formulae that can be checked quickly and are more likely to appear first. The second idea
is to provide only those learning biases that can realistically be present in a use case.

The ordering of the learning biases during the search for conjectures for combinatorial
objects is the following:
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1. Boolean-arithmetic formulae: bias (iii) when the output column of the table ‘tab’
has only two values.

2. Simplest polynomial formulae: bias (i) with one monome.
3. Simple conditional formulae: bias (ii) and bias (iv) when n = 2.
4. Simple polynomial formulae: bias (i), two or three monomes.
5. The decompositions (7.2), (7.3), (7.4), and (7.5), in this order.
6. Complex polynomial formulae: bias (i), four to six monomes.
7. Complex case formulae: bias (iv) when n ≥ 3.
The order of learning biases during the search for functional constraints in STPS is:
1. Boolean-arithmetic formulae: bias (iii) when the output column of the table ‘tab’

has only two values.
2. Simple polynomial formulae: bias (i) with one to three monomes.
3. Simple conditional formulae: bias (ii) and bias (iv) when n = 2.

4.1.3 Acquiring scheduling constraints

This module acquires resource and calendar constraints related to task scheduling.
These constraints were described in sections 3.4.3 and 3.4.4.

The module was developed by the author of the thesis and Nicolas Beldiceanu. See
Chapter 8 for the full description of the acquisition process.

4.1.4 Merging tables

Some scheduling constraints can only be obtained by examining two or more tables
simultaneously. These tables will be related to each other as a parent table and a child
table, and will be merged before acquiring any constraints. Merging tables removes the
need to access to the entries of the child tables from the entries of the parent table as
such entries will be directly available from the merged table. In addition, the constraint
acquisition part is simpler when all constraints are acquired from a single table.

It should be noted that some input tables may have no explicitly stated primary key.
In this case, there are two possibilities:

— if the user explicitly annotated that there are no primary keys, then the model
acquisition system will not try to learn temporal constraints and will attempt to
learn functional, resource and calendar constraints,
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— otherwise, the model acquisition system will try to guess the best candidate for the
primary key.

Example 4.1.2. For instance, in Example 3.4.1, the functional constraint (3.1) express-
ing the duration of each task, besides using the ‘Machine’ and the ‘Quantity’ columns of
the tasks table Table 3.4, also mentions the ‘Speed’ column of the machines table Table 3.3.

To merge a child table and a parent table, we perform the following steps:
— We get the primary key of the parent table and the foreign key of the child table

that connects the two tables.
— We create the columns of the merged table: the merged table includes all the columns

of the child and parent tables, except for the primary key column of the parent table.
The columns from the child table are listed first, before the columns of the parent
tables.

Example 4.1.3. The merged table created from the child table Table 3.4 and the parent
table Table 3.3 has the following columns, where columns from the child (resp. parent)
table are shown in blue (resp. cyan).

Task_id Start Quantity Duration Machine Machines_set Successor Speed Unavailability

— For each row c in the child table, we create a corresponding row in the merged table:
— We identify the row p in the parent table for which the primary key matches

the foreign key value of the c-th row of the child table.
— The merged table entry takes the c-th row of the child table, as well as the

p-th row of the parent table except its primary key.

Example 4.1.4. For example, for the first two rows of the child tasks table Table 3.4 the
corresponding rows of the parent resource table Table 3.3 are rows 1 and 3 for which the
machine speed is respectively 2 and 3. Consequently, the first two rows of the merged table
are given below.

Task_id Start Quantity Duration Machine Machines_set Successor Speed Unavailability

10001 0 10 20 10 {5, 10} 10002 2 {30..39,50..59}
10002 20 10 30 2 {2, 3} 10003 3 {15..19}

— We generate information which links back the columns of the merged table to its
child and parents tables. This information will be used later when creating the
MiniZinc model to synthesise the code that accesses the original child and parents
tables.

75



Partie III, Chapter 4 – The model acquisition tool

Example 4.1.5. The full merged table obtained after merging Table 3.4 and Table 3.3 is
the Table 4.1 shown below.

Table 4.1 – Merged table obtained after merging Table 3.3 and Table 3.4

Task_id Start Quantity Duration Machine Machines_set Successor Speed Unavailability

10001 0 10 20 10 {5, 10} 10002 2 {30..39, 50..59}
10002 20 10 30 2 {2, 3} 10003 3 {15..19}
10003 50 10 20 3 {3, 5} 10004 2 {40..49, 70..79}
10004 70 10 20 10 {10} −1 2 {30..39, 50..59}
10005 0 4 12 2 {2, 5} 10006 3 {15..19}
10006 20 4 8 10 {2, 10} 10007 2 {30..39, 50..59}
10007 28 4 8 3 {3, 5} −1 2 {40..49, 70..79}
10008 0 9 36 5 {5, 10} 10009 4 {40..49, 70..79}
10009 50 9 27 2 {2} −1 3 {15..19}

The module was developed by the author of the thesis.

4.1.5 Generating a MiniZinc model

The model conversion module is used to convert acquired by other modules constraints
stored in an internal database into a MiniZinc file. The full description is given in Section 9.
The module is fully developed by the author of the thesis.

4.2 Workflow of operations for acquiring sharp bounds
on characteristics of combinatorial objects

The conjecture acquisition workflow consists of the following steps:

1. The input tables are generated (see Section 10.1).

2. The model acquisition system analyses independently each data table to produce
metadata files.

3. The model acquisition system combines the metadata information extracted from
each table in a meta-metadata file.

4. The system uses the meta-metadata file to identify the order in which to explore
the the input tables and uses this order to focus on acquiring conjectures for sharp
bounds of characteristics of combinatorial objects. It will store all found conjectures
into a conjecture file.
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4.3 Workflow of operations for acquiring STPS

The model acquisition workflow consists of the following steps:

1. The model acquisition system analyses independently each data table describing
various aspects of a scheduling plan, e.g. the description of tasks and resources, to
produce metadata files.

2. The model acquisition system combines information extracted from each table in
some aggregated table from which the model will be acquired.

3. The model acquisition system produces the metadata file for the aggregated table.
Temporal constraints are acquired in this step.

4. Using some identified MFDs, the model acquisition system focuses on acquiring
functional constraints which explain the value of an attribute wrt to the values of
some other attributes.

5. The model acquisition system acquires typical scheduling constraints, i.e. resource
and calendar constraints.

6. The model acquisition system generates a MiniZinc model from the different types
of constraints it learns in the previous steps. The model is generated in a way that
each class of constraints is clearly commented and outlined in a generic way that
allows one to change input data, e.g. to modify the set of available machines for a
task.
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Chapter 5

ACQUIRING PRIMARY AND FOREIGN

KEYS AND RANKING FUNCTIONAL

DEPENDENCIES

This chapter presents contributions of the author of the thesis to the creation of
metadata focusing on the acquisition of scheduling models. Sections 5.1 and 5.2 provide
descriptions of generation of primary and foreign keys for the table respectively. Next, in
Section 5.3, the process of ranking FDs for the formulae search is described.

5.1 Generation of primary keys of an input table

If the user does not provide the intended primary key (PK) of an input table then the
model acquisition tool generates a candidate PK. There are two reasons for this:

— it can be used to combine two or more tables together,

— it is used to filter out columns that cannot be used during the constraint acquisition,
as these columns usually contain information that is not numerical before converting
the input tables.

Note that primary keys are only generated for tables corresponding to STPS. We do
not generate PKs for tables that contain information about sharp bounds of characteristics
of combinatorial objects.

In this section, we first present the problem statement for finding a candidate PK,
as well as some conditions that help to simplify the search for candidate PKs. We then
describe four search algorithms for candidate PKs and conclude with a quantitative eval-
uation of each algorithm.
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5.1.1 Problem statement

The task is to find all viable candidates for the PK from a table with n columns and
m rows, sorted by a cost function to rank them. We assume that all columns have at least
two unique values, and that no column is the same as another, meaning that there is at
least one row that has different values within those columns.

An algorithm that searches for candidate PKs presents its results as a list of sets
{Cost, [B1..Bn]}, where Bi, i = 1..n is a list of Boolean variables. If Bi = 1, it means
that column i is a part of a candidate PK. If Bi = 0, then column i is not a part of a
candidate PK.

In order for candidate PK search algorithms to work correctly, it is necessary that the
cost function satisfies conditions:

— the cost must not decrease if a column is added to a candidate;

— the cost must not change if the order of columns included in the candidate is changed.

Here are some examples of cost functions:

— Cost = ∑n
i=1 ColRangei × Bi,

— Cost = ∑n
i=1 ColNVal i × Bi,

— Cost = ∑n
i=1(ColRangei − ColNVal i)× Bi,

— Cost = ∏n
i=1 ColRangeBi

i ,

— Cost = ∏n
i=1 ColNValBi

i ,

— Cost = ∏n
i=1 ColRangeBi

i +∑n
i=1 Bi,

— Cost = ∏n
i=1(ColRangei − ColNVal i)Bi ,

where:

— ColRangei is the range of values of column i, i.e. ColRangei = Max i − Mini + 1,
where Mini and Max i are minimal and maximal values of the column i,

— ColNVal i is the number of distinct values within column i.

We exclude dominated candidates from the results. The candidate i is dominated by
the candidate j when both conditions are satisfied:

— candidate j has a lower cost than i;

— the set of columns of candidate j is the subset of columns of candidate i.
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For all algorithms, it is possible to limit the maximum cardinality of a candidate, i.e.
the maximum number of columns in the candidate. By default, the maximum cardinality
for all algorithms is set to three as primary keys in the real life applications rarely use
four or more columns.

5.1.2 Necessary conditions for a subset of columns to be a pri-
mary key candidate

For the set of columns S , it is possible to perform a preliminary check to determine
as it is faster to first check necessary conditions whether the set S can be or cannot be a
candidate PK. If the necessary conditions for a subset of columns are satisfied, then we
proceed with the thorough check in accordance with the selected algorithm, i.e. we apply
the global constraint lex_alldifferent [169] on all projected entries of the table for
the given subset of columns.

Definition 4 (necessary condition 1). If a subset of columns S is a candidate PK, then
the maximum number of unique combinations of column distinct values must be equal or
greater than the number of entries in the table:

∏
i∈S

ColNVal i ≥ m

Definition 5. MaxOccurencesi for the column i is the maximum number of rows where
the same distinct value is presented.

MaxOccurences for all columns are precalculated and stored in the metadata before-
hand.

Definition 6 (necessary condition 2). If a subset of columns S is a candidate PK, then
for every S1 and S2 , such that S1 ∪ S2 = S , S1 ∩ S2 = ∅, the following inequality must be
true:

∑
i∈S1

MaxOccurencesi − (|S1| − 1)×m ≤
∏

i∈S2

ColNVal i

Remark 1. Necessary condition 1 is a particular case of necessary condition 2, when
S1 = ∅.
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Remark 2. Necessary condition 2 can be generalised further, when not only most often
occurrences are considered, but also second ones, third ones, etc. If Occurrencei,j is a
j-most occurrence of a distinct value within the column i, S is a candidate PK, then for
every S1 and S2 , S1 ∪ S2 = S , S1 ∩ S2 = ∅, the inequality must be true:

1 ≤ l1 ≤ min
i∈S1

NVali

∑
i∈S1

l1∑
j=1

Occurencesi,j − (|S1| − 1)×m ≤ l
|S1|
1 ×

∏
i∈S2

ColNVal i

The computation experiments showed that using these generalised conditions for l1 ≥ 2
do not improve the performance of algorithms 1 and 2.

Using necessary conditions 1 and 2 to prune the initial set of candidate solutions helps
reduce the search space for an algorithm that tries to produce the list of candidate solution.
In Sections 5.1.3–5.1.6 four PK candidates search algorithms are described, two of which
use the necessary conditions 1 and 2. The four algorithms are evaluated in Section 5.1.7.

Each of these algorithms takes a table and a list of candidate columns as an input.
The output of each algorithm is a list of candidate PKs sorted in the ascending order
WRT to the chosen cost function.

5.1.3 Algorithm 1 for searching candidate PKs

1. Candidate generation. Generate set of all column combinations and put them in the
list of candidate PKs in increasing order of cardinality.

2. Candidate elimination:

(a) select the first element of the list of candidate PKs. If the list is empty, stop
the process;

(b) check necessary conditions 1 and 2 for the chosen candidate PK. If they are
satisfied, move to the step 2c. If one of the conditions is not satisfied, remove
the selected candidate PK from the list and return to Step 2a.

(c) for the selected candidate PK apply lex_alldifferent global constraint on
all projected entries of the table:

— if the candidate PK does not satisfy the constraint, remove it from the list
of candidates and return to Step 2a;
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— if the candidate satisfies the constraint, then put the candidate into the list
of results and remove all dominated candidates from the list of candidate
PKs. Return to Step 2a.

3. Calculating costs. Calculate the cost of each solution in the list of the results. Sort
the list of solutions by cost.

The step 2b is not required for the algorithm to function, but the usage of necessary
conditions 1 and 2 improves the performance of the algorithm.

5.1.4 Algorithm 2 for searching candidate PKs

1. Candidate generation. Generate the constraint model. Results of this model will
automatically satisfy necessary condition 1.

Bi = 0 ⇐⇒ Ci = 1

Vi = 1 ⇐⇒ Ci = NVal i

n∏
1

Ci ≥ NRows,

where Bi, i = 1..n - Boolean variables representing the inclusion of columns in the
solution, and Ci - integer variables.
Find all valid solutions and calculate their costs. Put the solutions in a list of all
candidate PKs. Sort the list by cost and cardinality of a solution.

2. Candidate elimination:
(a) take the first element of the list of candidates. If the list empty, stop the process;
(b) check necessary conditions 2. If they are satisfied, move to the step 2c. If one

of the conditions is not satisfied, remove the candidate from the list, take the
next one and return to Step 2a.

(c) apply lex_alldifferent global constraint on the first element of the list of
candidates:
— if the candidate does not satisfy the constraint, remove it from the list of

candidates and return to Step 2a;
— if the candidate satisfies the constraint, then put the candidate into the list

of results and remove all dominated candidates from the list of candidates.
Return to Step 2a.

83



Partie III, Chapter 5 – Acquiring primary and foreign keys and ranking functional dependencies

3. Result presentation. Calculate the cost of each solution in the list of the results. Sort
the list of solutions by cost.

5.1.5 Algorithm 3 for searching candidate PKs

1. Generation of constraints. For each pair of entries i and j of the input table generate
a constraint: ∑

∀k,tab[i,k]̸=tab[j,k]
Bk ≥ 1, i ̸= j, (5.1)

where k is a column index of a table ‘tab’. The constraint ensures that at least one
column for which can help differentiate between rows i and j is a part of a candidate
PK. For example, for two rows of a table with five columns below:

B1 B2 B3 B4 B5

1 4 3 6 3
1 3 3 6 1

columns B1, B3 and B4 are not necessarily part of a PK candidate. But either
or both columns B2 and B5 must be a part of a candidate PK. To reflect this, a
constraint B2 + B5 ≥ 1 is posted.

2. Solving the constraint model. Solve the stated CSP and store every valid solution
in a list. Calculate the cost of each solution in the list. Sort the list of solutions by
cost.

3. Candidate elimination. Remove all dominated candidates and output from the final
list of results.

5.1.6 Algorithm 4 for searching candidate PKs

1. Generation of constraints. The approach is similar to Algorithm 3. The difference
from Algorithm 3, is that not all pairs of entries of the input table are used to save
time.
For each column:

(a) the table is sorted by the selected column and the values of this column is
taken as the key;
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(b) all pairs of rows with the same value of the key are taken to form constraints,
add them to the list of constraints.

2. Solving the constraint model. Solve the stated CSP and store every valid solution
in a list. Calculate the cost of each solution in the list. Sort the list of solutions by
cost.

3. Candidate elimination. Remove all dominated candidates and output from the final
list of results.

5.1.7 Performance comparison

Table 5.1 compares search times of Algorithms 1, 2, 3 and 4. Datasets testsales1000,
testsales2000, testsales5000 are based on the table "Internet Sales" from AdventureWorks
sample databases [170]. Datasets testrandom1000 and testrandom5000 are generated with
random values with the exception of the first three columns, which are generated with a
predetermined pattern.

Table 5.1 – Comparison between candidate PK search algorithms

Dataset Cols Rows Alg. 1 Alg. 2 Alg. 3 Alg. 4
testsales1000 20 1000 99ms 101ms 8s 9s

testrandom1000 40 1000 7s 18s 1m30s 3m10s
testsales3000 20 3000 380ms 383ms 1m20s 1m35s
testsales5000 20 5000 629ms 635ms 4m55s 3m20s

testrandom5000 50 5000 1m45s 2m25s N/A N/A

Algorithms 3 and 4 took more than 24h to solve the testrandom5000 problem and
their results are not included in the table.

The model acquisition tool uses Algorithm 1 together with the cost function Cost =∏n
i=1 ColRangeBi

i +∑n
i=1 Bi. This criteria minimises the number of possible unique values

of a given PK, i.e. ∏n
i=1 ColRangeBi

i , and, if there are two candidate PKs with the same
number of possible unique values, it provides the preference to a candidate PK with a
fewer number of columns by using ∑n

i=1 Bi.

5.2 Generation of foreign keys of an input table

To combine two tables into one, we need to know both PKs of both tables and a foreign
key (FK) of the child table. If the user does not provide the FK, the model acquisition
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tool searches for the best candidate FK. It could be done by acquisition of semantic
constraints [171], which is outside of the scope of this thesis. Instead, in this section a
simple algorithm which solves the stated problem is presented below.

Given the list of all tables, the system checks every pair of potential children and
parents. For each Child and Parent tables we:

1. take the list of candidate PKs from the Parent table;

2. take a candidate PK from the list, project it on the entries of Child table (Child PK
entries);

3. search for all subsets of columns of Parent table for which, after the projection on
the entries of Parent table (Parent FK entries), the resulting entries contain every
entry from Child PK entries;

4. assign cost for each found subset. The cost is the coverage of Parent FK entries by
Child PK entries. The higher the coverage, the better;

5. return to step 2 and repeat the process until all candidate PKs are considered, in
which case we move to the next step;

6. select the candidate FK with the highest cost and record it in the metadata file.

5.3 Ranking functional dependencies

As previously said in Section 4.1.1, it is required to select FDs which is more likely to
produce a functional constraint. In the literature, it is referred as a genuine FD discovery
problem [172, 173]. In order to do this we rank FDs according to the following three
heuristic criteria in ascending lexicographic order:

1. The number of distinct row values within the selected functional dependency (see
Section 5.3.1).

2. The maximal correlation coefficient between the selected functional dependency and
the output column. The model acquisition tool first calculates either the Pearson
correlation coefficient between a single input column and the output column, or an
adjusted multiple correlation coefficient between several input columns and the out-
put column. Second, based on the selected functional dependency, it calculates inter-
mediate columns on number of formulae corresponding to some non-linear learning
biases and calculates the Pearson correlation coefficients for between each interme-
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diate column and the selected output column. Out of all The model acquisition then
takes the maximal calculated correlation coefficient (see Section 5.3.2).

3. The number of columns within the selected functional dependency (see Section 5.3.3).

For each column in the merged table, we calculate and record a ranked list of functional
dependencies.

Sections 5.3.1–5.3.3 provide the reasoning behind each criteria and detailed description
on how the given criteria is calculated. Then, Section 5.3.4 provides a detailed explanation
on how the ranking of FDs is done and how we select the best candidate FD from the
list. Section 5.3.5 provides an empiric evaluation of the proposed ranking strategy.

5.3.1 Number of distinct vectors within a selected functional
dependency

The reasoning behind this criteria is that the number of distinct rows within a genuine
functional dependency will likely be close to the number of distinct values in the output
column [168, 174]. An advantage of this criteria is that it can be used for both numerical
and non-numerical data entries.

A limitation of this criteria is that there are situations where columns of an FD
with a large number of unique values lead to outputs with a limited number of distinct
values. e.g. if we have a column duration which is a result of the calculation Duration[i] =
End[i]−Start[i], then the column Duration can potentially have a small number of distinct
values, while columns Start and End are likely to have a large number of distinct values
each.

Nonetheless, preliminary tests showed that this is the strongest criteria out of three.

5.3.2 Correlation between a functional dependency and its out-
put

The reasoning behind this criteria is following. If there is a correlation coefficient
between inputs and an output it is more likely that there is a relation between them.

To do so we calculate either a Pearson’s correlation coefficient between a single column
FD and the output column or an adjusted multiple correlation coefficient between an FD
with multiple columns and the output column. Unlike the first criteria, this criteria only
works with numerical data. Pearson’s correlation and multiple correlation coefficients are
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only useful when searching for linear formulae. As a result, a further generalisation is
needed to accommodate a variety of learning biases. To achieve this goal:

— for a single column FD we calculate:

— Pearson’s correlation coefficient between the FD and the output column,

— Pearson’s correlation coefficient between 1/X , where X is a value in the row
for FD, and the output column,

and take the maximum absolute value out of two;

— for a two columns FD we assume that X and Y are values in an entry of the table
for the FD in first and second columns respectively. Then we calculate:

— adjusted multiple correlation coefficient between FD and the output column,

— Pearson’s correlation coefficient between the output column and the vector
with values X + Y for each entry of the table,

— Pearson’s correlation coefficient between the output column and the vector
with values X − Y for each entry of the table,

— Pearson’s correlation coefficient between the output column and the vector
with values X × Y for each entry of the table,

— Pearson’s correlation coefficient between the output column and the vector
with values ⌊X/Y ⌋ for each entry of the table,

— Pearson’s correlation coefficient between the output column and the vector
with values ⌊Y /X⌋ for each entry of the table,

— Pearson’s correlation coefficient between the output column and the vector
with values min(X , Y ) for each entry of the table,

— Pearson’s correlation coefficient between the output column and the vector
with values max(X , Y ) for each entry of the table,

and take the maximum absolute value out of all of them;

— for FD with n ≥ 3 columns, we calculate:

— adjusted multiple correlation coefficient between the FD and the output col-
umn;

— for each possible vector V , where Vi ∈ {−1, 1}, i ∈ 1..n, we:

— produce a new vector of values ∑n
i Xi × Vi, where Xi a value of an entry

of the table in a column i of the FD,

88



5.3. Ranking functional dependencies

— calculate Pearson’s correlation coefficient between calculated values and
the output column.

— every possible adjusted multiple correlation coefficient between FD, with the
values of one of the column being squared, and the output column.

and take the maximum absolute value out of all of them.

The higher the absolute value of the coefficient the more genuine FD appears to be.

Remark 3. Every Pearson’s correlation coefficient and multiple correlation coefficient is
tested for statistical significance for p = 0.05.

Remark 4. Specific correlations calculated for an FD can depend on the specific appli-
cation domain. e.g. X + Y , X − Y or ∑n

i Xi are likely to be encountered in scheduling
models.

5.3.3 Number of columns within a functional dependency

This is the weakest criteria out of three. If we have two FD with identical values on
first two criteria we have a preference for an FD with a smaller number of columns.

5.3.4 Selecting functional dependencies

For every FD all three criteria are calculated. FDs with maximum absolute value of
a correlation coefficient lesser than 0.5 are discarded from consideration. Afterwards, all
FDs are sorted in ascending lexicographic order. Then the top N FDs are taken, where
N is preselected. The current version of the model acquisition tool sets N = 20.

Example 5.3.1. After adding a column to the ten minimal functional dependencies listed
in Example 4.1.1, and ranking the corresponding set, we obtain the following four best
ranked functional dependencies sorted in ascending order wrt their respective cost vector.

1. {‘Quantity’, ‘Speed’} with cost (6,−0.98, 2),

2. {‘Start’, ‘Quantity’, ‘Speed’} with cost (9,−0.98, 3),

3. {‘Start’, ‘Quantity’} with cost (9,−0.75, 2),

4. {‘Start’, ‘Speed’} with cost (9, 0, 2).

Values 6 and 2 from the cost vector (6,−0.98, 2) of the best ranked functional dependencies
{‘Quantity’,‘Speed’} are respectively explained by:
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• Value 6 corresponds to the number of distinct pairs of values in the ‘Quantity’ and
‘Speed’ columns of the merged table Table 4.1, namely (10, 2), (10, 3), (4, 3), (4, 2),
(9, 4), (9, 3).

• Value 2 is the number of columns of the best ranked functional dependency, i.e.
{‘Quantity’, ‘Speed’}.

The best ranked functional dependency is used to find the functional constraint:

‘Duration’ = ‘Quantity’× ‘Speed’.

5.3.5 Assessment of the functional dependencies ranking pro-
cess

Forty test tables were generated with random formulae using random input columns.
On average, about 400 minimal FDs and their derivatives were considered for each table.
The proposed ranking criteria was applied. The results showed that:

— Two of the tables did not generate a required genuine FD. This can be solved by
adding two columns to a minimal functional dependency instead of one.

— For two tables the intended genuine FD got ranked very low (85 and 132, respec-
tively).

— For two tables the intended genuine FD got ranked between first 30 and first 40
positions.

— For the remaining 34 tables (34 tables) genuine FDs got ranked within first 30
positions.

While not perfect, it shows that the proposed ranking criteria helps localize the genuine
FD in most cases.
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Acquiring conjectures and functional
constraints
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Chapter 6

NEW BIASES FOR FUNCTIONAL

CONSTRAINTS ACQUISITION

Previously, in Chapter 2, we described several settings for the practical use of Boolean
expressions that we observed in the context of sharp bound acquisition and in Section 1.2
we discussed the related work.

In this chapter, we provide the description of the new bias, Boolean-arithemtic expres-
sions and its applications in the acquisition of case formulae conjectures. In Section 6.1,
we define the Boolean-arithmetic formulae that we consider throughout this paper. In
Section 6.2, we provide a core CP model for learning a BAE that explains an output
column of a table from a set of input columns. In Section 6.5, we show how BAE ac-
quisition can be used to acquire conditions for known clusters. We show in Section 6.3
various extensions of the core model to restrict the search space of Boolean-arithmetic
expressions. We evaluate the core model and its extensions in Section 6.6.

6.1 Describing Boolean-arithmetic expressions

The BAEx we consider is dictated by two opposite objectives.

— On the one hand, we want to focus on concise expressions involving few variables and
constants. This is motivated by the need to generate formulae that can be interpreted
by a human being, and by the necessity to avoid a combinatorial explosion when
searching for such formulae [152], for efficiency reasons. Consequently, we limit the
number of variables and constants, as well as the number of sub-terms of Boolean-
Arithmetic expressions.

— On the other hand, we aim at covering a variety of Boolean expressions which occurs
in practice. This is done by allowing one to use a variety of arithmetic operators
and Boolean functions.
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To meet the above objectives, we use the following two-level description:

— First, we consider a Boolean-arithmetic condition (BAC) mentioning no more than
three variables and two constants, the comparison operators ≤, =, ≥, >, ∈ and
a variety of arithmetic operators such as +, −, ×, ⌊ ⌋, ⌈ ⌉, mod, min, max. We
have 57 elementary arithmetic conditions listed in Table 6.1, where x, y, z represent
variables and c, d constants. Only the ‘∈’ condition may be negated: in fact (a) in the
classes A1,A2,. . . ,B17 all inequalities already have a negated counterpart, and (b) we
do not negate equality constraints as this leads to weak constraints, i.e. constraints
that accept many solutions.

— Second, we build a Boolean-arithmetic term by feeding several arithmetic conditions,
or their negation, to a commutative and associative aggregation operator such as +,
∨, ∧, ⊕, eq, card1, voting, where:

— ⊕ stands for xor;

— eq is equal to 1 iff all its conditions are evaluated to the same value;

— card1 is equal to 1 iff only one of its conditions is evaluated to 1;

— voting is equal to 1 iff the majority of its conditions are evaluated to 1.

The use of a commutative and associative aggregation operator simplifies the inter-
pretability of a formula and reduces the combinatorics, as the order of the BACs within
a Boolean-arithmetic term is irrelevant. It allows for a compact representation of some
Boolean expressions, that would otherwise be large when expressed in conjunctive or
disjunctive normal form without introducing new variables. For example, the n-ary xor,
i.e. ⊕n

i=1 ℓi, is represented by a CNF consisting of 2n−1 clauses, where each clause mentions
all literals ℓ1, ℓ2, . . . , ℓn. It also permits the use of the ‘+’ operator in a natural way.

6.1.1 Limiting the complexity of Boolean-arithmetic expressions

To restrict the space of possible Boolean arithmetic expressions, which is huge since it
results from the combination of 57 elementary arithmetic conditions listed in the second
column of Table 6.1, we use the following empirical observations.

— It is rare for a Boolean arithmetic expression to mention several conditions using
the same arithmetic operator, especially if the arithmetic operators mention many
variables. To implement this idea, we classify conditions into three categories A,
B, and C depending on the number of variables in the condition. Categories A, B,
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and C respectively consist of different classes A1–A2, B1–B17, C1–C5. The number
of occurrences of conditions in the same class is unlimited for A, restricted to two
occurrences for B, or reduced to a single occurrence for C.

— Considering that (i) the arithmetic operators sum, difference, and product are fairly
common, but that other operators such as mod are less common, and that (ii) the
use of more than one condition involving three variables is rare, we impose that all
classes B6–C5 are incompatible. For example, if we use a condition from B6, we will
not use any condition from B7–C5.

Table 6.1 – List of the 57 considered conditions with their assigned respective cost that
will be used in Section 6.4; within a condition, x, y, z are variables, y stands for the
minimum value of y, c and d are constants, and (cond ? e1 : e2) denotes expression e1 if
condition cond holds, expression e2 otherwise.

Class Conditions (with their costs in parenthesis)

A1 x = c (1), x ≤ c (1), x ≥ c (1)
A2 x ∈ [c, d] (0)
B1 x = y (0), x ≤ y (0)
B2 x = c · y (2), x ≤ c · y (3)
B3 x = c · y (2), c · x ≤ y (3)
B4 x + y = c (2), x + y ≤ c (3), x + y ≥ c (3)
B5 x − y = c (2), x − y ≤ c (3), x − y ≥ c (3)
B6 x mod c = d (6), x mod c ≤ d (7), x mod d ≥ d (7)
B7 |x − y| = c (3), |x − y| ≤ c (4), |x − y| ≥ c (4)
B8 min(x, y) = c (3), min(x, y) ≤ c (4), min(x, y) ≥ c (4)
B9 max(x, y) = c (3), max(x, y) ≤ c (4), max(x, y) ≥ c (4)
B10 x · y = c (4), x · y ≤ c (5), x · y ≥ c (6)
B11 ⌊x/y⌋ = c (4), ⌊x/y⌋ ≤ c (5), ⌊x/y⌋ ≥ c (5)
B12 ⌊x/(max(y − y, 1))⌋ = c (7), ⌊x/(max(y − y, 1))⌋ ≤ c (8), ⌊x/(max(y − y, 1))⌋ ≥ c (8)
B13 ⌈x/y⌉ = c (4), ⌈x/y⌉ ≤ c (5), ⌈x/y⌉ ≥ c (5)
B14 x mod y = c (6), x mod y ≤ c (7), x mod y ≥ c (7)
B15 x − (y mod x) = c (7), x − (y mod x) ≤ c (8), x − (y mod x) ≥ c (8)
B16 x − (x mod y) = c (7), x − (x mod y) ≤ c (8), x − (x mod y) ≥ c (8)
B17 (x = 0 ? y : x mod y) = c (7), (x = 0 ? y : x mod y) ≤ c (8), (x = 0 ? y : x mod y) ≥ c (8)
C1 x + y ≤ z (100)
C2 (x − y) mod z = 0 (100)
C3 ⌈(x − y)/z⌉ ≤ ⌊(x − z)/y⌋ (100)
C4 x ≥ (y = 0 : z ; y mod z) (100)
C5 x mod y > z mod y (100)

6.2 A core model for acquiring Boolean-arithemtic
equations

This section introduces a CP-based core model for acquiring BAE. First, the model
relies on reified constraints to represent learned Boolean expressions that mention a re-
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stricted number of arithmetic conditions taken from a large set of candidate conditions.
Second, the model incorporates symmetry-breaking constraints resulting from the re-
laxation of arithmetic conditions. Section 6.3 will extend these symmetry-breaking con-
straints by considering also commutative arithmetic operators, as well as conditions that
mention the same comparison and arithmetic operators with different attributes.

6.2.1 Problem description

Given a two-dimensional table tab[1..r, 1..c] of integer values, consisting of r distinct
rows and c distinct columns, where column c is functionally determined by columns
1, 2, . . . , c− 1, the problem is to come up with a constraint model to acquire an equality
constraint of the form

∀j ∈ [1, r] : tab[j, c] = f(tab[j, 1], tab[j, 2], . . . , tab[j, c− 1]) (6.1)

i.e. a constraint that is valid for all rows of the table, where f is a Boolean-arithmetic
expression mentioning c− 1 parameters and nAC conditions, where nAC will be called the
arity of the Boolean-arithmetic Equation (6.1).

As we want to restrict the complexity of the acquired formulae, the expression f is lim-
ited to nAC ∈ {1, 2, 3} conditions taken from a list of conditions C, where each condition is
chosen from m = 57 potential distinct BACs introduced in Section 6.1 (where a small num-
ber of conditions may be duplicated using different constants), and a single commutative
and associative aggregation operator g selected from the set {∨,∧,⊕, +, eq, card1, voting}.
As the acquisition system successively tries the different aggregation operators, we assume
from now on that g is fixed. As we search for Boolean-arithmetic expressions by increasing
number of BACs, we also assume that nAC is fixed to a value in {1, 2, 3}.

Each potential candidate BAC Cd of f (with d ∈ [1, m]) mentioning ℓd columns of the
table ‘tab’ (with ℓd ∈ [1, 3]) and ℓ′

d coefficients (with ℓ′
d ∈ [0, 2]) is represented by the term

Cd

 ad,1, . . . , ad,ℓd
,

cd,1, . . . , cd,ℓ′
d

, where:

— the variables ad,1, . . . , ad,ℓd
denote the indices of the distinct columns of the table

tab[1..r, 1..c] mentioned by condition Cd,

— the variables cd,1, . . . , cd,ℓ′
d

represent the coefficients used in the arithmetic expression
of condition Cd.

The problem is to come up with a CP-based model which, given (i) a commutative
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and associative Boolean operator g ∈ {∨,∧,⊕, +, eq, card1, voting}, and (ii) a fixed num-
ber of conditions nAC, extracts the subset of relevant conditions for the expression f of
Constraint (6.1), and finds for each used conditions all its parameters, i.e. which columns
and which coefficient values it uses.

Example 6.2.1. To illustrate the section on describing the problem, we provide an ex-
ample of a table and the corresponding acquired BAE. On the page 101, the left-hand
side of Table 6.3 provides a table tab[1..9, 1..4] from which we acquire the following BAE
x4 = [(x1− x2) = 2]∨ [x3 ≤ 4]. The acquisition process is now explained in Section 6.2.2.

6.2.2 A CP core model

Notation 1. Given a table tab[1..r, 1..c], the j-th row of tab[1..r, 1..c] is called a negative
entry if tab[j, c] = 0, and a positive entry otherwise.

6.2.2.1 Selecting the BACs used in f

To each potential BAC Cd (with d ∈ [1, m]) of a Boolean-arithmetic expression f , we
associate a variable bd such that:

• bd = −1 means that neither condition Cd, nor condition ¬Cd are used in f ,

• bd = 0 indicates that the condition ¬Cd is used in f , i.e. Cd is negated,

• bd = 1 signifies that the condition Cd occurs in f .

As f should mention nAC BACs, we set up the following among constraint [163] to specify
that m− nAC conditions must be unused:

among (m− nAC, ⟨b1, b2, . . . , bm⟩,−1) (6.2)

6.2.2.2 Selecting the attributes used in each BAC

For each potential condition Cd

 ad,1, . . . , ad,ℓd
,

cd,1, . . . , cd,ℓ′
d

 (with d ∈ [1, m]), we set all its

variables ad,1, ad,2, . . . , ad,ℓd
to 0 when the condition Cd is not used, i.e. when bd = −1. We

introduce the variables a′
d,1, a′

d,2, . . . , a′
d,ℓd

corresponding to ad,1 + 1, ad,2 + 1, . . . , ad,ℓd
+ 1:

we use the offset +1 as these variables will also be used in element constraints [163]
whose index starts at 1.
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For each potential condition Cd, its variables a′
d,1, a′

d,2, . . . , a′
d,ℓd

should either be all
distinct and greater than or equal to 2, or be all equal to 1. This is expressed by the next
global_cardinality (gcc) constraint [175]:

gcc
 〈

a′
d,1, a′

d,2, . . . , a′
d,ℓd

〉
,

⟨1 : {0, ℓd}, 2 : {0, 1}, . . . , c : {0, 1}⟩

 (6.3)

When the condition Cd is unused, i.e. bd = −1, we set all its variables a′
d,1, a′

d,2, . . . , a′
d,ℓd

to 1 to break symmetry, i.e. to avoid enumerating over these variables:

∀d ∈ [1, m],∀k ∈ [1, ℓd] : bd = −1⇔ a′
d,k = 1 (6.4)

To force the use of all attributes from 1 to c − 1 of the table tab[1..r, 1..c] across all
selected conditions, i.e. those conditions Cd, (with d ∈ [1, m]) such that bd ̸= −1, we set
up the following gcc constraint:

gcc


〈 a′

1,1, a′
1,2, . . . , a′

1,ℓ1 ,

a′
2,1, a′

2,2, . . . , a′
2,ℓ2 ,

. . . . . . . . . . . . . . . . . . .
a′

m,1, a′
m,2, . . . , a′

m,ℓm

〉
,

〈 2 : o2,

3 : o3,

. . . . .
c : oc

〉
with oi ∈ [1, m],∀i ∈ [2, c] (6.5)

6.2.2.3 Restricting the coefficients of each BAC

When the BAC Cd

 ad,1, . . . , ad,ℓd
,

cd,1, . . . , cd,ℓ′
d

 is used, i.e. bd ̸= −1, the coefficient variables

cd,1, . . . , cd,ℓ′
d

denote the coefficients used in the arithmetic expression related to Cd. As
we look for simple formulae, the initial domain of such variables is initialised to a small
interval, e.g. [−9, +9], which turned out to be not too restrictive when considering sharp
bounds on combinatorial objects.

Note that we are not interested in acquiring conditions that can be substituted by
true or false as they could be simplified away. For some types of conditions, this would
require additional constraints on the condition’s coefficients, e.g. for Cd(ad,1, cd,1, cd,2) ≡
[(ad,1 mod cd,1) = cd,2] we post the additional constraints bd ̸= −1 ⇒ cd,1 ≥ 2 and
bd ̸= −1⇒ cd,2 ∈ [0, cd,1 − 1]:

— If cd,1 = 1 then the condition Cd(ad,1, cd,1, cd,2) is either always true, when cd,2 = 0,
or always false when cd,2 ̸= 0.
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— Otherwise, if cd,1 ≥ 2 and cd,2 /∈ [0, cd,1 − 1], then the condition Cd(ad,1, cd,1, cd,2) is
always false as (ad,1 mod cd,1) ∈ [0, cd,1 − 1].

When the condition Cd is unused, we have bd = −1 ⇒ (cd,1 = · · · = cd,ℓ′
d

= 0) to
avoid multiple solutions stemming from the coefficients of an unused condition. How to
restrict further the initial domain of the coefficient variables wrt the entries of the table
tab[1..r, 1..c] to limit the search will be explained in Section 6.3.3.

6.2.2.4 Setting row constraints

To evaluate each condition Cd wrt the j-th row of the table tab[1..r, 1..c], we create
the variables vd,j,k for the values of its k-th attributes and a variable bd,j for the value of
Cd. This is now described:

— For each condition Cd (with d ∈ [1, m]), for each row j (with j ∈ [1, r]), and for
each argument k (with k ∈ [1, ℓd]) of condition Cd, we create a variable vd,j,k that
gives, either the value of the k-th argument of condition Cd wrt the j-th row of the
table tab[1..r, 1..c], or 0 if the condition Cd is unused. This is expressed by element
constraint [163]:

• ∀d ∈ [1, m], ∀j ∈ [1, r], ∀k ∈ [1, ℓd] :
element

(
a′

d,k, ⟨0, tab[j, 1], tab[j, 2], . . . , tab[j, c− 1]⟩ , vd,j,k

)
.

— We also create a 0–1 variable bd,j which will be set to true iff condition Cd holds for
the j-th row of the table tab[1..r, 1..c]:

• ∀d ∈ [1, m], ∀j ∈ [1, r] : bd,j ⇔ Cd (vd,j,1, vd,j,2, . . . , vd,j,ℓd
) .

Now, based on the aggregator g, we state some row constraints for each used condition
Cd (with d ∈ [1, m]) and wrt each row of the table tab[1..r, 1..c]. These row constraints
are related to the type of aggregator g we are using. In this context, we distinguish the
following types of aggregators I, II, and III:

I. Aggregators for which (i) positive and negative table entries have distinct row con-
straints and (ii) a single table entry may determine the value of each condition
Cd. For example, if g is the ‘∧’ aggregator then on a positive entry, a condition Cd

which is false (with d ∈ [1, m]) falsifies the Boolean arithmetic expression f , which
is impossible on the positive entries, meaning that each condition used in f must
be true. Aggregators ‘∨’ and ‘∧’ belong to this class.
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II. Aggregators for which (i) positive and negative table entries have distinct row con-
straints, and (ii) a single table entry cannot determine the value of each condition
Cd. Aggregator ‘eq’ belongs to this class.

III. Aggregators for which (i) positive and negative table entries have the same row
constraint, and (ii) a single table entry cannot determine the value of each condition
Cd. Aggregators ‘+’, ‘⊕’, ‘card1’, and ‘voting’ belong to this class.

Table 6.2 provides for each class in {I, II, III} of aggregator g the corresponding row
constraints that determine the value of the Boolean arithmetic expression f . As mentioned
earlier, for the first two classes, these row constraints depend on whether we have a positive
or negative table entry; for the third class, the same constraint applies for both a positive
and a negative table entry. We now explain the constraints stated in Table 6.2 for the
first aggregator of each class.
[Case aggregator g is ‘∨’ ]

— For each positive row j (with j ∈ [1, r]), we post the constraint ∨m
d=1[bd = bd,j] to

ensure that at least one condition is true so that the disjunction of conditions holds.

— For each condition Cd (with d ∈ [1, m]) and each negative row j (with j ∈ [1, r]),
we post the constraint table(⟨(bd, bd,j)⟩, ⟨(−1, 0), (−1, 1), (0, 1), (1, 0)⟩) [3, pp 1400–
1402]. When the condition Cd is not used, i.e. bd = −1, there is no restriction on
bd,j, i.e. bd,j ∈ {0, 1}; otherwise, each condition must be falsified, i.e. bd,j = 1− bd, so
that the corresponding disjunction of conditions is not true.

[Case aggregator g is ‘∧’ ]

— For each condition Cd (with d ∈ [1, m]) and each positive row j (with j ∈ [1, r]),
i.e. rows such that tab[j, c] = 1, we post the constraint table(⟨(bd, bd,j)⟩, ⟨(−1, 0), (−1, 1), (0, 0),
(1, 1)⟩). When the condition Cd is not used, i.e. bd = −1, there is no restriction on
bd,j; otherwise, the evaluation of the condition Cd wrt the j-th row should be iden-
tical to the value tab[j, c].

— For each negative row j (with j ∈ [1, r]), i.e. rows such that tab[j, c] = 0, we post the
constraint ∨m

d=1[bc = ¬bd,j] to falsify at least one condition so that the corresponding
conjunction of conditions is not true.

[Case aggregator g is ‘eq’ ]
— For each positive row j (with j ∈ [1, r]), we post the constraint:

[∑m
d=1[bd = bd,j] = nAC] ∨ [∑m

d=1[bd = ¬bd,j] = nAC]
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enforcing either that all conditions hold or that all conditions are false.

— For each negative row j (with j ∈ [1, r]), we post the constraint:

[∑m
d=1[bd = bd,j] < nAC] ∧ [∑m

d=1[bd = ¬bd,j] < nAC]

imposing that at least one condition is false and at least one is true.

Table 6.2 – Row constraints which are posted on a positive or a negative table entry
for computing the value of a Boolean arithmetic expression f , depending on the used
aggregator g of classes I, II; for class III the same row constraint is posted for all entries.

Class g Positive entries (tab[j, c] = 1) Negative entries (tab[j, c] = 0)

I
‘∨’ ∨m

d=1[bd = bd,j] table
(
⟨(bd, bd,j)⟩,

〈
(−1, 0), (−1, 1),
( 0, 1), ( 1, 0)

〉)

‘∧’ table
(
⟨(bd, bd,j)⟩,

〈
(−1, 0), (−1, 1),
( 0, 0), ( 1, 1)

〉)
∨m

d=1[bd = ¬bd,j]

II ‘eq’ ∨( ∑m
d=1[bd = bd,j] = nAC,∑m
d=1[bd = ¬bd,j] = nAC

) ∧( ∑m
d=1[bd = bd,j] < nAC,∑m
d=1[bd = ¬bd,j] < nAC

)

III

‘+’ tab[j, c] = ∑m
d=1[bd = bd,j]

‘⊕’ tab[j, c] = (∑m
d=1[bd = bd,j]) mod 2

‘card1’ tab[j, c] = [(∑m
d=1[bd = bd,j]) = 1]

‘voting’ tab[j, c] = [2 · (∑m
d=1[bd = bd,j]) > nAC]

[Case aggregator g is ‘+’ ] For each row j (with j ∈ [1, r]), we post the constraint
tab[j, c] = ∑m

d=1[bd = bd,j] to ensure that the appropriate number of conditions are satisfied.
[Case g is ⊕ ] Using the observation that x⊕ y is equal to (x + y) mod 2, and that ⊕ is
associative, we post for each row j (with j ∈ [1, r]) the constraint tab[j, c] = (∑m

d=1[bd =
bd,j]) mod 2.

[Case g is card1 ] We post for each row j (with j ∈ [1, r]) the constraint tab[j, c] =
[(∑m

d=1[bd = bd,j]) = 1].

[Case g is voting ] We post for each row j (with j ∈ [1, r]) the constraint tab[j, c] =
[2 · (∑m

d=1[bd = bd,j]) > nAC].

100



6.2. A core model for acquiring Boolean-arithemtic equations

Table 6.3 – Illustrating the core model on the table tab[1..9, 1..4] (with columns x1, x2,
x3, x4) for acquiring a Boolean-arithmetic expression explaining x4 wrt x1, x2, x3 using
the ‘∨’ aggregator with two conditions C1 and C2 selected from the following potential
candidate conditions C1 : xi − xj = cst, C2 : xi ≤ cst and C3 : xi = xj.

j
table tab C1 = [(x1 − x2) = 2] C2 = [x3 ≤ 4] C3 = [xk1 = xk2 ] row

constraint
satisfactionx1 x2 x3 x4

b1=1 a′
1,1=2 a′

1,2=3 b2=1 a′
2,1=4 b3=−1 a′

3,1=1 a′
3,2=1

b1,j v1,j,1 v1,j,2 b2,j v2,j,1 b3,j v3,j,1 v3,j,2

po
sit

iv
e

en
tr

ie
s

1 4 2 5 1 1 4 2 0 5 1 0 0 true
2 3 4 4 1 0 3 4 1 4 1 0 0 true
3 1 1 3 1 0 1 1 1 3 1 0 0 true
4 3 1 5 1 1 3 1 0 5 1 0 0 true
5 4 1 2 1 0 4 1 1 2 1 0 0 true

ne
ga

tiv
e

en
tr

ie
s

6 2 4 5 0 0 2 4 0 5 1 0 0 true
7 4 1 5 0 0 4 1 0 5 1 0 0 true
8 4 3 5 0 0 4 3 0 5 1 0 0 true
9 3 5 5 0 0 3 5 0 5 1 0 0 true

Example 6.2.2 (Continuation of Example 6.2.1). Table 6.3 summarises the acquisition
of the BAE x4 = [(x1 − x2) = 2] ∨ [x3 ≤ 4] from the table tab[1..9, 1..4]: it provides the
main variables introduced by the core model. First, note that only conditions C1 and C2

are selected, as b3 = −1. For the first positive entry (i.e. j = 1) and the first negative entry
(i.e. j = 6), we now show that the corresponding row constraints described in Table 6.2
are true:

— As row 1 is a positive entry, we post the constraint [b1 = b1,1]∨ [b2 = b2,1]∨ [b3 = b3,1]
which is true as b1 = b1,1 holds.

— As row 6 is a negative entry, we post the constraint table (⟨(bd, bd,6)⟩,T), with
T = ⟨(−1, 0), (−1, 1), (0, 1), (1, 0)⟩, for each condition Cd (d ∈ {1, 2, 3}). All three
constraints hold for the sixth row.

Although the previous model encodes all the necessary constraints, it has two main
weaknesses. First, it generates a large number of symmetric solutions corresponding to
certain possible permutations of arguments or conditions. Second, it lacks of global view
as all row constraints are loosely coupled to the original table. The aim of the next section
is to address these weaknesses.
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6.3 Enhancing the core model

In this section, we describe three ways of strengthening the core model presented in
Section 6.2.

6.3.1 Linking the number of conditions, their arity, and the
number of attributes

We introduce the following constraints to explicitly restrict the potential combinations
of unary, binary and ternary conditions to consider.

Notation 2. Within the expression f formed by nAC conditions, let nAC,k denote the
number of conditions mentioning k attributes.

Since we restrict the Boolean-arithmetic expression f to at most three conditions,
we state the constraints nAC = ∑3

k=1 nAC,k and ∑3
k=1 k · nAC,k = ∑c

i=2 oi, where oi is
the number of occurrences of value i in the variables a′

d,1, a′
d,2, . . . , a′

d,ℓd
, as stated by the

gcc constraint (6.3) of the core model. We now state the lower and upper bounds on
the number of distinct attributes c − 1 appearing in the expression f wrt nAC,k (with
k ∈ [1, 3]):

• c− 1 ≥ max3
k=1 (k ·min(1, nAC,k)), • c− 1 ≤ ∑3

k=1 (k · nAC,k).

6.3.2 Symmetry breaking

As a formula may involve commutative arithmetic operators whose arguments can
be interchanged, and mention several occurrences of the same condition which can be
swapped, we show how to restrict the search space for formulae.

6.3.2.1 Commutative arithmetic operators

For each BAC Cd

 ad,1, ad,2,

cd,1, . . . , cd,ℓ′
d

 (with d ∈ [1, m]) mentioning two attributes ad,1

and ad,2, as well as a commutative arithmetic operator such as +, min, or max, we order
its arguments only when the condition is used, by posting a constraint of the form bd ̸=
−1 ⇒ a′

d,1 < a′
d,2 on its variables a′

d,1 and a′
d,2, i.e. we use a strict inequality as a same

attribute is used at most once in a condition Cd.
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6.3.2.2 Conditions mentioning the same comparison and arithmetic opera-
tors

In case the same condition would occur several times in the expression f , positively or
negatively, or with different attributes, we post symmetry-breaking constraints to prevent
generating equivalent subexpressions. We order the list of potential BACs C1, C2, . . . , Cm

so that conditions that use the same comparison operator ≤, =, ≥, ∈, as well as the same
arithmetic operator +, −, ×, ⌊ ⌋, ⌈ ⌉, mod, min, max are located consecutively. For

each pair of consecutive conditions Cd

 ad,1, . . . , ad,ℓd
,

cd,1, . . . , cd,ℓ′
d

, Cd+1

 ad+1,1, . . . , ad+1,ℓd+1 ,

cd+1,1, . . . , cd+1,ℓ′
d+1


(with d ∈ [1, m− 1]) using the same comparison and arithmetic operators, we enforce the
following symmetry-breaking constraint.

The idea is to impose a strict decreasing lexicographic ordering constraint (SLOC)
between the variables of such consecutive conditions Cd and Cd+1.

Example 6.3.1. Assume we have two consecutive conditions Cd and Cd+1 corresponding
to an equality constraint, i.e. the first condition of class B1 of Table 6.1. To avoid gen-

Table 6.4 – Definition of the input letters of the finite automaton depicted in Part (A) of
Fig. 6.1 used for breaking symmetry between two consecutive conditions

Input letter Corresponding condition Comment
wk = 0 uk = −1 ∧ vk = −1 Both conditions are unused.

wk = 1 (uk = 0 ∨ uk = 1) ∧ vk = −1 Only one condition is used.

wk = 2 uk = 1 ∧ vk = 0 The 1st condition is used positively,

and the negation of the 2nd condition is used.

wk = 3 uk = 0 ∧ vk = 0 The negation of the 1st condition is used,

and the negation of the 2nd condition is used.

wk = 4 uk = 1 ∧ vk = 1 k = 1: both conditions are used positively,

k > 1: attributes of both conditions are unused.

wk = 5 uk > 1 ∧ vk = 1
uk is an attribute of the 1st condition, and

vk an unused attribute of the 2nd condition,

as the 2nd condition is unused.

wk = 6 uk > 1 ∧ vk > 1 ∧ uk = vk
uk and vk are attributes of the two used

conditions, such that uk = vk.

wk = 7 uk > 1 ∧ vk > 1 ∧ uk > vk
uk and vk are attributes of the two used

conditions, such that uk > vk.

wk = 8 uk > 1 ∧ vk > 1 ∧ uk < vk
uk and vk are attributes of the two used

conditions, such that uk < vk.
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erating both the formula ‘x = y ∧ y = z’ and the formula ‘y = z ∧ x = y’, we order the
conditions Cd and Cd+1 wrt the variables involved in these two conditions: If we assume
that the vector (y, z) is lexicographically greater than the vector (x, y), our symmetry-
breaking constraint prevents us from generating the first formula ‘x = y ∧ y = z’.

However, we need to consider the cases where these conditions are unused (bd = −1,
bd+1 = −1), negated (bd = 0, bd+1 = 0) or positively used (bd = 1, bd+1 = 1). We use
the following idea to adapt the SLOC to our context: a SLOC can be described as a
finite automaton whose input alphabet consists of letters that pairwise compare the k-th
components of two vectors [169]. We compare the vectors −→U = (bd, a′

d,1, a′
d,2, . . . , a′

d,ℓd
) =

(u1, u2, . . . , uℓd+1) and −→V = (bd+1, a′
d+1,1, a′

d+1,2, . . . , a′
d+1,ℓd+1

) = (v1, v2, . . . , vℓd+1). Re-
call from Section 6.2.2 that (i) depending on whether condition Cd is unused, negated
or used positively, bd will be set to −1, 0 or 1 respectively, and that (ii) the variables
a′

d,1, a′
d,2, . . . , a′

d,ℓd
are all in the range [2, c] as we applied the offset +1. By pairwise com-

paring the k-th components of vectors −→U and −→V (with k ∈ [1, ℓd + 1]) we create the
following vector −→W = (w1, w2, . . . wℓd+1), where each component is defined by one of the
nine letters 0, 1, . . . , 8 described in Table 6.4.

We then force the components of vector −→W to be accepted by the finite automaton
given in Fig. 6.1. The three accepting states labelled by n, o, and t respectively correspond
to the fact that (i) none of the conditions Cd, Cd+1 is used, (ii) only the first condition Cd

is used, and (iii) the two conditions Cd, Cd+1 are both used. The outgoing transitions from
state ϵ to states t

̸= and t
> enforce that, when using a condition and its negated form,

no condition is used

one condition
is used

two conditions are used

ϵn

o

t
> t

t
̸=

0

2

4

1

5

3

4

6

7

6
7

8

6

7

8

−→
U

−→
V

−→
W Condition(s)

(−1, 1) (−1, 1) (0, 4) none

( 0, 2) (−1, 1) (1, 5) ¬Cd(1)

( 0, 3) (−1, 1) (1, 5) ¬Cd(2)

( 0, 3) ( 0, 2) (2, 7) ¬Cd(2) ¬Cd+1(1)

( 1, 2) (−1, 1) (1, 5) Cd(1)

( 1, 3) (−1, 1) (1, 5) Cd(2)

( 1, 3) ( 0, 2) (2, 7) Cd(2) ¬Cd+1(1)

( 1, 3) ( 1, 2) (4, 7) Cd(2) Cd+1(1)

(A) (B)

Figure 6.1 – (A) Finite automaton for breaking symmetries between two consecutive con-
ditions Cd, Cd+1 sharing the same comparison and arithmetic operators, where accepting
states are denoted by a double circle; (B) Examples of vectors −→U , −→V , −→W and correspond-
ing used conditions with their arguments (each condition mentions one single attribute).
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the negated form is located in the second position. The two outgoing transitions of state
t
> ensure that the arguments of the first used condition are lexicographically strictly

greater than the arguments of the second condition, while the two outgoing transitions of
state t

̸= force the two conditions not to use the same arguments.

Example 6.3.2. We illustrate how the automaton of Figure 6.1 prevents generating the
first formula ‘x = y ∧ y = z’ shown in Example 6.3.1. Without loss of generality, we
assume that z is lexicographically greater than y, and that y is lexicographically greater
than x. As both conditions ‘x = y’ and ‘y = z’ are used positively, their respective vectors
−→
U and −→V are respectively equal to (1, x, y) and to (1, y, z). Then, by pairwise comparing the
three components of vectors −→U and −→V , the corresponding vector −→W is equal to (4, 8, 8),
i.e. 4 as both conditions are used positively, 8 as x and y are attributes such that x is
lexicographically less than y, 8 as y and z are attributes such that y is lexicographically
less than z. As the finite automaton of Figure 6.1 rejects the sequence (4, 8, 8), the formula
‘x = y ∧ y = z’ will not be generated.

6.3.3 Pre-computing the combinations of possible values of the
coefficients of a condition

Most BACs Cd

 ad,1, . . . , ad,ℓd
,

cd,1, . . . , cd,ℓ′
d

 can be presented as a comparison of the form

C ′
d(P )♢ cd,ℓ′

d
(with ♢ ∈ {≤, =,≥}), where C ′

d(P ) is an arithmetic expression parame-

terised by P =
 a′

d,1, . . . , a′
d,ℓd

,

cd,1, . . . , cd,ℓ′
d
−1

. Such BACs in a Boolean formula f must not be

equivalent to true or false, as otherwise they could be simplified away from f . We
also want to avoid generating a condition involving an inequality when an equality would
suffice. For this purpose we proceed as follows.

— For each possible combination of values p of parameter P wrt the potential values
of a′

d,1, . . . , a′
d,ℓd

, cd,1, . . . , cd,ℓ′
d
−1, we compute the feasible values of C ′

d(p) wrt all the
table entries of tab[1..r, 1..c]. We denote by Vd,p such sets.

— Then, depending on the comparison operator ♢ used in condition Cd, we derive for
each combination of values p of parameter P , the set of values of coefficient cd,ℓ′

d

which does not make condition Cd always true or always false. We denote such sets
as V♢

d,p. They are obtained from the sets Vd,p in the following way.

— [♢ is ‘=’]: when the coefficient cd,ℓ′
d

is assigned a value outside Vd,p the condition
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Table 6.5 – Example table for pre-computing the possible values of the coefficients for
conditions C1 and C2

x1 x2 xc [x1 − x2] [x2 − x1] [x1 mod 3] [x2 mod 3]

1 2 0 −1 1 1 2
2 1 0 1 −1 2 1
1 2 1 −1 1 1 2
1 3 1 −2 2 1 0
1 4 1 −3 3 1 1

Cd would always be false; if the cardinality of Vd,p is 1 then V♢
d,p = ∅ (i.e. if there

is only one value the condition would always be true), otherwise V♢
d,p = Vd,p.

— [♢ is ‘≤’ or ‘≥’]: let α and ω respectively be the smallest and the largest value
of the set Vd,p; then V♢

d,p = Vd,p \ {α, ω}. The intuition for ♢ =‘≤’ is as follows:
if we keep α then ♢ =‘≤’ is equivalent to ♢ =‘=’; if we keep ω the condition
will always be true. For ‘≥’ the intuition is symmetrical.

— We may further reduce the set V♢
d,p by considering the aggregator g. First, for each

possible combination of values p of parameter P , we compute the feasible values of
C ′

d(p) wrt all the positive (resp. negative) table entries of tab[1..r, 1..c]. We denote
by V

pos
d,p (resp. Vneg

d,p ) such sets. From these sets, we compute the further restricted
set V

♢,g
d,p as follows:

— [g is ‘∧’]: if ♢ is ‘=’ then V
♢,g
d,p = V

pos
d,p else V

♢,g
d,p = V

pos
d,p ∩ V♢

d,p,

— [g ∈ {‘ ∨ ’, ‘ + ’}]: V
♢,g
d,p = V♢

d,p \ V
neg
d,p ,

— [g /∈ {‘ ∧ ’, ‘ ∨ ’, ‘ + ’}]:V♢,g
d,p = V♢

d,p.

— Finally, we set up the table constraint table
〈 a′

d,1, . . . , a′
d,ℓd

,

cd,1, . . . , cd,ℓ′
d

〉
,S

 where S

corresponds to the union of Cartesian products ∪p∈P (p× V
♢,g
d,p ).

Example 6.3.3. To illustrate the process, consider Table 6.5. There are two input columns
1 and 2 and the output column c. Consider the two conditions C1 = [a1,1 − a1,2 = c1,1]
and C2 = [a2,1 mod c2,1 ≥ c2,2].
• For C1 we have only two options for p = {a1,1, a1,2}, namely:

1) p = {1, 2}:
 V1,p = {−3,−2,−1, 1}, V=

1,p = V1,p,
V

=,‘∧’
1,p = {−3,−2,−1}, V

=,‘∨’
1,p = V=

1,p \ {−1, 1} = {−3,−2}.

2) p = {2, 1}:
 V1,p = {−1, 1, 2, 3}, V=

1,p = V1,p,
V

=,‘∧’
1,p = {1, 2, 3}, V

=,‘∨’
1,p = V=

1,p \ {−1, 1} = {2, 3}.
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• For C2 we need to enumerate on c2,1. w.l.o.g., we only consider the case c2,1 = 3. In
this context, the options for p = {a2,1, c2,1} are:

1) p = {1, 3}: V2,p = {1, 2}, α = 1, ω = 2, V
≥
2,p = V2,p \ α, ω = ∅, i.e. this set of

options for this condition is not considered any further.

2) p = {2, 3}:


V2,p = {0, 1, 2}, α = 0, ω = 2, V

≥
1,p = V2,p \ {α, ω} = {1},

V
pos
2,p = {1}, Vneg

2,p = {1, 2},
V

≥, ‘∧’
2,p = V

pos
2,p ∩ V

≥
2,p = {1},V≥,‘∨’

2,p = V
≥
2,p \ V

neg
2,p = ∅.

6.4 Defining, acquiring, and applying anti-rewriting
constraints to avoid generating simplifiable Boolean-
arithmetic expressions

In some cases, the generated BAEs can be simplified, as it was done for example
in [176], or when a condition is always true or always false. Also, we already handle
this case in Section 6.3.3, there are many other cases where a formula could be possibly
simplified, as we allow combining a wide range of conditions. For example, we should
not generate a BAE like (x1 + x3 = 5) ∧ (x1 ≤ x2) ∧ (x2 ≤ x1), as it can be simplified
to (x1 + x3 = 5) ∧ (x1 = x2). Our approach is to create and add a set of constraints
that prevent the generation of simplifiable expressions from the very beginning of the
acquisition process. We will refer to these constraints as anti-rewriting constraints.

Since there are a huge number of possible anti-rewriting constraints, we synthesise a
database of anti-rewriting constraints once and for all, using a CP approach to capture
such constraints systematically.

The main idea of this sectnio is to identify anti-rewriting constraints that limit the
creation of a pair of conditions, which can then be simplified. To do this, we will identify
the hypotheses under which a pair of conditions is simplifiable: these hypotheses concern
both (i) the way in which two conditions share certain variables (because otherwise the
two conditions would be independent), and (ii) the restrictions on the coefficients of
certain variables in these conditions, i.e. restrictions on the domain of a coefficient, or
constraints between two coefficients.

We first describe in Section 6.4.1 the type of hypotheses we use on the coefficients of the
conditions of an anti-rewriting constraint. We then introduce in Section 6.4.2 three fami-
lies of anti-rewriting constraints, and show in Section 6.4.3 how to use such anti-rewriting
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constraints to restrict the search space. For each family of anti-rewriting constraints, we
provide the algorithms used to acquire the corresponding anti-rewriting constraints in
Section 6.4.4, and the way to select the most general anti-rewriting constraints in Sec-
tion 6.4.5. Finally, we describe the database of anti-rewriting constraints in Section 6.4.6.

6.4.1 Hypothesis description for a pair of conditions of an anti-
rewriting constraint

The three families of anti-rewriting constraints that prevent the generation of a simplifi-
able term of the form C1 or C1 g C2 all require a hypothesis on the coefficients of condition
C1 and possibly C2. In the simplest case, a hypothesis can be the Boolean constant true,
which means that the hypothesis imposes no restrictions on the coefficients of conditions
C1 and C2. Otherwise, in the general case, to define a hypothesis, we introduce the notion
of a comparison function on the coefficients of C1 and C2.

Definition 7. Given condition C1

 a1,1, . . . , a1,ℓ1 ,

c1,1, . . . , c1,ℓ′
1

 and, possibly, condition

C2

 a2,1, . . . , a2,ℓ2 ,

c2,1, . . . , c2,ℓ′
2

, the domain of a comparison function is one of the following expres-

sions c1,i cmp cst, c2,j cmp cst, c1,i + cst1 cmp c2,j + cst2, or cst3 · c1,i cmp cst4 · c2,j, (with
i ∈ [1, ℓ′

1], j ∈ [1, ℓ′
2] and cmp ∈ {=,≤,≥, ̸=}), where cst, cst1, cst2, cst3, and cst4 are

natural numbers in [0, 2], where cst1 ·cst2 = 0, and where cst3 ·cst4 = max(cst3, cst4) > 0,
and the codomain is the set {true,false}.

Definition 8. Given condition C1

 a1,1, . . . , a1,ℓ1 ,

c1,1, . . . , c1,ℓ′
1

 and, possibly, condition

C2

 a2,1, . . . , a2,ℓ2 ,

c2,1, . . . , c2,ℓ′
2

, a hypothesis h is one of the following expressions (i) the

Boolean constant true if there is no restriction on the coefficients of C1 and C2, (ii) one
single comparison function or, when we have two conditions, (iii) the conjunction or
the negation of the conjunction of two comparison functions, provided that one of the
conditions C1 or C2 mentions at least one coefficient and the other includes at least two
coefficients, i.e. min(ℓ′

1, ℓ′
2) ≥ 1 and max(ℓ′

1, ℓ′
2) ≥ 2.

We call a hypothesis corresponding to the case (iii) of Definition 8 compound, and
simple otherwise.
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Definition 9. Given condition Ck

 ak,1, . . . , ak,ℓk
,

ck,1, . . . , ck,ℓ′
k

, k ∈ {1, 2}, and condition

C3

 a3,1, . . . , a3,ℓ3 ,

c3,1, . . . , c3,ℓ′
3

, a link-hypothesis hk,3 is either (i) the Boolean constant true,

(ii) an expression ck,i + cst1 = c3,j + cst2 (with i ∈ [1, ℓ′
k], j ∈ [1, ℓ′

3]), where cst1 and cst2

are natural numbers in [0, 1], where cst1 · cst2 = 0.

Example 6.4.1. To illustrate Definitions (7)–(9) consider the two conditions ‘(x mod
c1,1) = c1,2’, and ‘¬(x ∈ [c2,1, c2,2])’. The hypothesis ‘(c1,2+1) ≤ c2,1∧2·c1,2 ≥ c2,2’ matches
case (iii) of Definition (8), as we have a conjunction of two comparison functions, where
the two conditions use two coefficients each. This hypothesis will be used in the anti-
rewriting constraint presented in Example 6.4.2.

The next section shows how to exploit Definitions (7)–(9) to define three families of
anti-rewriting constraints, while Section 6.4.3 details how such anti-rewriting constraints
will be used.

6.4.2 Defining families of anti-rewriting constraints

As for the problem described in Section 6.2.1, we consider a table tab[1..r, 1..c] of inte-
ger values, and a Boolean-arithmetic expression f satisfying (6.1). As in Section 6.2.2.3,
we also assume that each condition in f can be made true or false by a combination
of values in the domains of its variables. In addition, we suppose that f uses the aggre-

gation operator g, and one or two Boolean-arithmetic conditions Car
1

 a1,1, . . . , a1,ℓ1 ,

c1,1, . . . , c1,ℓ′
1


(resp. Car

2

 a2,1, . . . , a2,ℓ2 ,

c2,1, . . . , c2,ℓ′
2

), where A1 = {a1,1, . . . , a1,ℓ1} (resp. A2 = {a2,1, . . . , a2,ℓ2})

denotes the set of columns of table tab[1..r, 1..c] used by Car
1 (resp. Car

2 ).
We define three families of anti-rewriting constraints, preventing generating a Boolean-

arithmetic expression in which conditions Car
1 (resp. Car

1 and Car
2 ) can be simplified if

certain requirements are met. We have the following two types of needs for our three
families:

— The first requirement is that, if we use both conditions Car
1 and Car

2 in f , conditions
Car

1 and Car
2 are tightly coupled, since it makes little sense to find anti-rewriting

constraints between almost independent conditions. To do this, we assume that
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one of the conditions Car
1 or Car

2 refers to all the columns in the other condition
(i.e. A1 ⊆ A2 or A2 ⊆ A1), and we denote the set of columns used by A as A1 ∪A2.

— The second requirement is a hypothesis h imposed on the coefficients c1,1, . . . , c1,ℓ′
1

of Car
1 if only one condition is used, or on the coefficients c1,1, . . . , c1,ℓ′

1
of Car

1 and
the coefficients c2,1, . . . , c2,ℓ′

2
of Car

2 if both conditions are used in f .

We now define each family of anti-rewriting constraints as a condition involving (i) the
aggregation operator g, (ii) the conditions Car

1 and possibly Car
2 , and (iii) the hypothesis

h on the coefficients of Car
1 and Car

2 . For each family, we provide the condition that
characterises it, the type of simplification it prevents, and an illustrative example.

Definition 10. A Family 1 anti-rewriting constraint consists of an aggregator g ∈ {∧,∨},
two non-equivalent conditions Car

1 and Car
2 , and a hypothesis h on the coefficients of Car

1

and Car
2 satisfying the following statement:

h ⇒ ((Car
1 ⇒ Car

2 ) ⊕ (Car
2 ⇒ Car

1 )) (6.6)

If, assuming the hypothesis h holds, one and exactly one of the two conditions Car
1 or

Car
2 is superseded by the other, then the subexpression Car

1 g Car
2 would be simplified by

using the strongest of the two conditions when g =‘∧’ (i.e. the condition on the left-hand
side of the implication), or by employing the weakest condition when g =‘∨’ (i.e. the
condition on the right-hand side of the implication).

Example 6.4.2. An example of an anti-rewriting constraint for Family 1 for nonnegative
x, when g =‘∧’, is given the two conditions ‘(x mod c1,1) = c1,2’, and ‘¬(x ∈ [c2,1, c2,2])’,
and by the hypothesis ‘(c1,2 + 1) ≤ c2,1 ∧ 2 · c1,2 ≥ c2,2’.

This is because the conjunction ‘(x mod c1,1) = c1,2 ∧ ¬(x ∈ [c2,1, c2,2])’ of the two
conditions can be rewritten as ‘(x mod c1,1) = c1,2’ when the hypothesis ‘(c1,2 + 1) ≤
c2,1 ∧ 2 · c1,2 ≥ c2,2’ holds.

To prove this statement, we will prove that if the hypothesis ‘(c1,2 +1) ≤ c2,1∧2 · c1,2 ≥
c2,2’ is true then the condition ‘(x mod c1,1) = c1,2 implies the condition ‘¬(x ∈ [c2,1, c2,2])’
but not the other way around:

1. if the condition ‘(x mod c1,1) = c1,2’ is false, then the condition ‘¬(x ∈ [c2,1, c2,2])’
can be both positive or negative for the implication to be true. Thus we only concen-
trate on cases where the condition ‘(x mod c1,1) = c1,2’ is true.
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2. For the condition ‘(x mod c1,1) = c1,2’ to be true x must be equal to c1,2 + k · c1,1,
where k ≥ 0. We must remember that c1,1 > c1,2 as discussed in Section 6.2.2. It
means that we can substitute c1,1 as c1,2 + cst, where cst ≥ 1. Thus x = c1,2 + k · c1,1

can be rewritten as x = (k + 1) · c1,2 + k · cst.

3. If the hypothesis ‘(c1,2 +1) ≤ c2,1∧2 ·c1,2 ≥ c2,2’ is true then we consider three cases:

— When k = 0, then x = c1,2. Since (c1,2 + 1) ≤ c2,1 then the condition ‘¬(x ∈
[c2,1, c2,2])’ is true, as x ≤ c2,1 − 1.

— When k = 1, then x = 2 · c1,2 + cst. As 2 · c1,2 ≥ c2,2 then x ≥ c2,2 + cst or,
because cst ≥ 1, x ≥ c2,2 + 1 for which the condition ‘¬(x ∈ [c2,1, c2,2])’ will be
true.

— for k ≥ 2, the proof is trivial.

This shows that the condition ‘(x mod c1,1) = c1,2 implies the condition ‘¬(x ∈
[c2,1, c2,2])’.

4. To show that the condition ‘¬(x ∈ [c2,1, c2,2])’ does not imply the condition ‘(x mod
c1,1) = c1,2’ we must remember that c1,1 ≥ 2 as discussed in Section 6.2.2. Thus,
if for x the condition ‘(x mod c1,1) = c1,2’ is true then for x + 1 the condition
‘((x + 1) mod c1,1) = c1,2’ is false. When k ≥ 1, as shown in the previous step,
both conditions ‘(x mod c1,1) = c1,2’ and ‘¬(x ∈ [c2,1, c2,2])’ are true when x =
(k+1)·c1,2+k·cst. If we take x = 2·c1,2+cst+1 then the condition ‘(x mod c1,1) = c1,2’
is false while the condition ‘¬(x ∈ [c2,1, c2,2])’ remains true. Thus, the condition
‘¬(x ∈ [c2,1, c2,2])’ cannot imply the condition ‘(x mod c1,1) = c1,2’.

Definition 11. A Family 2 anti-rewriting constraint consists of an aggregator g ∈
{∨,∧,⊕, eq}, two conditions Car

1 and Car
2 , and a hypothesis h on the coefficients of Car

1

and Car
2 satisfying the following statement:

h ⇒ (Car
1 g Car

2 ) ∨ ¬(Car
1 g Car

2 ) (6.7)

When g ∈ {∨,∧,⊕, eq}, assuming the hypothesis h holds, the subexpression Car
1 g Car

2

is either always true or always false, we should not generate that subexpression.

Example 6.4.3. An example of an anti-rewriting constraint for Family 2 when g =‘∧’ is
given by the two conditions ‘x ≥ c1,1’, and ‘x ≤ c2,1’, and by the hypothesis ‘c1,1 > c2,1’.
In fact, if c1,1 > c2,1 holds, then the conjunction x ≥ c1,1 ∧ x ≤ c2,1 is always false.
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To describe the third family of anti-rewriting constraints, we must first introduce
the notion of the cost of a condition, which heuristically reflects the complexity of the
condition, i.e. the lower the cost of a condition, the simpler the condition. This is because,
if some conditions are equivalent to others, we want to keep only the simplest condition.

Definition 12. The cost of a condition C, denoted by cost(C), is defined in the second
column of Table 6.1. The cost of the negation of a condition C is defined as cost(C) + 1.

We also need to heuristically compare the complexity of an expression of the form
Car

1 g Car
2 , where Car

1 and Car
2 are two conditions linked by an aggregator g, with a single

condition Car
3 . To do this, we define two vectors which are then compared lexicographically.

Definition 13. We associate to Car
1 g Car

2 and to Car
3 two vectors vCar

1 ,g,Car
2

= ⟨a1, a2, a3⟩
and vCar

3
= ⟨b1, b2, b3⟩ where:

• a1 is the number of attributes used in Car
1 and Car

2 , while b1 is the number of at-
tributes used in Car

3 .
• a2 is defined as cost(Car

1 ) + cg + cost(Car
2 ) (with c∧ = 0, c∨ = 1, c⊕ = 2, cg = 3 if

g /∈ {∧,∨,⊕}), while b2 is defined as cost(Car
3 ).

• a3 and b3 correspond to the number of conditions of Car
1 g Car

2 and Car
3 , namely 2

for Car
1 g Car

2 and 1 for Car
3 .

Definition 14. A Family 3a anti-rewriting constraint consists of a single condition Car
1 ,

a hypothesis h on the coefficients of Car
1 , a condition Car

3 referring to a subset of the
columns of Car

1 , and a so-called link-hypothesis h1,3, between a coefficient of condition Car
1

and a coefficient of condition Car
3 , satisfying the following statement:

((h ∧ h1,3)⇒ (Car
1 ⇔ Car

3 )) ∧ (cost(Car
1 )>cost(Car

3 )) (6.8)

If, assuming that the hypotheses h and h1,3 hold, the expressions Car
1 and Car

3 are
equivalent and the cost of Car

1 is greater than the cost of Car
3 , we should not generate the

expression Car
1 , since Car

1 could be rewritten as the simpler expression Car
3 . As shown by

Example 6.4.4, Definition 14 uses a hypothesis h1,3 to get a tighter connection between
the conditions Car

1 and Car
3 , allowing an implication between the two parts of Formula 6.8.

Example 6.4.4. Given h = ‘c1,1 = 2’, h1,3 = ‘c1,1 + 1 = c3,1’, x1 > 0 and x2 > 0,
the condition ‘x1 · x2 ≤ c1,1’ is equivalent to the simpler condition ‘x1 + x2 ≤ c3,1’, i.e.
‘(x1 · x2 ≤ 2) ⇔ (x1 + x2 ≤ 3)’; simpler as cost(‘x1 · x2 ≤ c1,1’) = 5 is greater than
cost(‘x1 + x2 ≤ c1,1 + 1’) = 3.
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Definition 15. A Family 3b anti-rewriting constraint consists of an aggregator g ∈
{∨,∧,⊕, eq}, two conditions Car

1 and Car
2 , a hypothesis h on the coefficient Car

1 and Car
2 ,

a condition Car
3 which is neither always true nor always false and referring to a subset of

the columns of Car
1 or Car

2 , a link-hypothesis h1,3 between a coefficient of condition Car
1 and

a coefficient of condition Car
3 , and a link-hypothesis h2,3 between a coefficient of condition

Car
2 and a coefficient of condition Car

3 , satisfying the following statement:

(h ∧ h1,3 ∧ h2,3)⇒
((Car

1 g Car
2 )⇔ Car

3 )) ∧
(vCar

1 ,g,Car
2

>ℓex vCar
3

)
(6.9)

If, assuming hypothesises h, h1,3 and h2,3 hold, Car
1 g Car

2 and Car
3 are equivalent, and

the cost of Car
1 g Car

2 is greater than the cost of Car
3 , we should not generate the expression

Car
1 g Car

2 , since Car
1 g Car

2 could be rewritten as the simpler expression Car
3 .

Example 6.4.5. An example of an anti-rewriting constraint for Family 3 with no hy-
pothesis at all, i.e. h = ‘true’, h1,3 = ‘true’ and h2,3 = ‘true’, when g =‘∧’, is
given by the two conditions ‘x1 ≤ x2’ and ‘x1 ≥ x2’. This conjunction is equivalent to
the condition ‘x1 = x2’, where ‘x1 = x2’ is simpler than ‘x1 ≤ x2’ and ‘x1 ≥ x2’ as the
cost vector of ‘x1 = x2’ = ⟨2, 0, 1⟩ is lexicographically strictly less than the cost vector of
‘x1 ≤ x2’ ∧ ‘x1 = x2’ = ⟨2, 0 + 0 + 0, 2⟩.

Example 6.4.6. An example of an anti-rewriting constraint for Family 3, when g =‘∧’,
is given by the two conditions ‘x ≥ c1,1’ and ‘x ≤ c2,1’, and by the hypothesis ‘c1,1 = c2,1’.
In fact, if c1,1 = c2,1 holds, then the conjunction ‘(x ≥ c1,1) ∧ (x ≤ c2,1)’ is equivalent to
the condition ‘x = c1,1’, where ‘x = c1,1’ is simpler than ‘x ≥ c1,1’ and ‘x ≤ c2,1’ as the
cost vector of ‘x = c1,1’ = ⟨1, 1, 1⟩ is lexicographically strictly less than the cost vector of
‘(x ≥ c1,1) ∧ (x ≤ c2,1)’ = ⟨1, 1 + 0 + 1, 2⟩.

We perform a systematic search for anti-rewriting constraints for every pair of condi-
tions we have in Table 6.1, retaining the most general rules as described in Section 6.4.5.
All acquired anti-rewriting constraints are stored in a database which will later be con-
sulted when acquiring BAE. For each identified anti-rewriting constraint, we store (i) the
corresponding conditions Car

1 and, if used, Car
2 , including whether they are negated or

not, (ii) the attribute sets A1 and, if used, A2, (iii) the aggregator g, (iv) the hypothesis
h, and (v) the set of matching attributes M that we now define. Note that we do not
record the linked hypotheses attached to the anti-rewriting constraints of Family 3b, as
they were only used to find the condition Car

3 . Since the condition Car
3 is the simplified
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form of the non-simplified expression Car
1 g Car

2 specified by an anti-rewriting constraint
of Family 3b, we do not store Car

3 either.

Definition 16. Given an anti-rewriting constraint mentioning two conditions Car
1 and Car

2

(resp. one condition Car
1 ), we define the matching set M of that anti-rewriting constraint

as the set of pairs (t1, t2), where t1 ∈ [1, ℓ1] and t2 ∈ [1, ℓ2], for which a1,t1= a2,t2 (resp.
the empty set).

In other words, the matching set M establishes the correspondence between the shared
attributes of conditions Car

1 and Car
2 .

Table 6.6 contains several examples of acquired anti-rewriting constraints for aggre-
gator g in {∧,∨} and conditions ‘A1’, ‘A2’ and ‘B1’ from Table 6.1, assuming that each
variable xi (with i ∈ {1, 2}) is greater than or equal to 0. More complex anti-rewriting
constraints found by the system are given in Section 6.4.5.

Table 6.6 – Examples of simple anti-rewriting constraints acquired for some conditions in
Table 6.1, where ‘F’ is a shortcut for ‘Family’.

k F Car
1 Car

2 A1 A2 g h M Equivalent

1 1 x1 =c1,1 x1 ≤c2,1 [x1] [x1] ∧ c1,1 ≤c2,1 (1,1) x1 =c1,1
2 1 x1 =c1,1 x1 ≤c2,1 [x1] [x1] ∨ c1,1 ≤c2,1 (1,1) x1 ≤c2,1
3 1 x1 =c1,1 x1 ≥c2,1 [x1] [x1] ∧ c1,1 ≥c2,1 (1,1) x1 = c1,1
4 1 x1 =c1,1 x1 ≥c2,1 [x1] [x1] ∨ c1,1 ≥c2,1 (1,1) x1 ≥c2,1
5 1 x1 =x2 x1 ≤x2 [x1,x2] [x1,x2] ∧ true (1,1), (2,2) x1 =x2
6 1 x1 =x2 x1 ≤x2 [x1,x2] [x1,x2] ∨ true (1,1), (2,2) x1 ≤x2
7 1 x1 =x2 x2 ≤x1 [x1,x2] [x2,x1] ∧ true (1,2), (2,1) x1 =x2
8 1 x1 =x2 x2 ≤x1 [x1,x2] [x2,x1] ∨ true (1,2), (2,1) x2 ≤x1
9 2 x1 ≤c1,1 x1 ≥c2,1 [x1] [x1] ∧ c1,1 + 1≤c2,1 (1,1) false

10 2 x1 ≤c1,1 x1 ≥c2,1 [x1] [x1] ∨ c2,1 ≥c2,1 (1,1) true
11 2 x1 ≤x2 x2 ≥x1 [x1,x2] [x2,x1] ∨ true (1,2), (2,1) true
12 3a x1 ≤c1,1 – [x1] − ∧,∨ c1,1 =0 – x1 =0
13 3b x1 =c1,1 x1 ≤c2,1 [x1] [x1] ∨ c1,1 =c2,1 + 1 (1,1) x1 ≤c1,1

14 3b x1 ≥c1,1 ¬(x1∈[c2,1, c2,2]) [x1] [x1] ∧ c1,1 ≥c2,1∧
c1,1 ≤c2,2

(1,1) x1 ≥c2,2 + 1

15 3b x1 ≤x2 x2 ≤x1 [x1,x2] [x2,x1] ∧ true (1,2), (2,1) x1 =x2

6.4.3 Using anti-rewriting constraints to restrict the search space

For acquiring a BAE mentioning a subset of the potential conditions C1, C2, . . . , Cm

of Section 6.2.1 we state:

— the core model constraints introduced in Section 6.2.2,

— the enhanced model constraints described in Section 6.3, and finally
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— the anti-rewriting constraints: we post the anti-rewriting constraints that mention a
single condition Ci (with i ∈ [1, m]), i.e. those of Family 3a, and the anti-rewriting
constraints referencing two conditions Ci and Cj (with i, j ∈ [1, m], i < j), i.e. those
of families 1, 2, and 3b.

Anti-rewriting constraints that mention a single condition For each condition
Ci of C1, C2, . . . , Cm (with i ∈ [1, m]), we collect the set Si of stored constraints from
the database of anti-rewriting constraints, i.e. those constraints of Family 3a, mentioning
condition Ci. For each anti-rewriting constraint k of the set Si, let ni,k be a 0–1 integer
value defined as 1 (resp. 0) if condition Ci is used positively (resp. negatively) in the k-th
anti-rewriting constraint; we state the following constraint to avoid generating a formula
mentioning a condition Ci that could be simplified, where the variable bi was introduced
in Section 6.2.2 to indicate how condition Ci is used

(bi = ni,k)⇒ ¬h (6.10)

Implication (6.10) can be interpreted as follows. If condition Ci is used in the k-th anti-
rewriting constraint, we ensure through implication that the hypothesis h is negated, as
otherwise the condition Ci could be simplified.

Anti-rewriting constraints that mention two conditions For each pair of condi-
tions Ci, Cj of C1, C2, . . . , Cm (with i, j ∈ [1, m], i < j) we collect the set Si,j of stored
constraints from the database of anti-rewriting constraints, i.e. those constraints of fami-
lies 1, 2 and 3b mentioning conditions Ci and Cj. For each anti-rewriting constraint k of
the set Si,j we state the following constraint

((bi = ni,k) ∧ (bj = nj,k) ∧ (∧(ti,tj)∈M(ai,ti
= aj,tj

)))⇒ ¬h (6.11)

Implication (6.11) can be interpreted as follows. If (i) condition Ci is used as specified
by the k-th anti-rewriting constraint, and similarly if (ii) condition Cj is used appropri-
ately, and if (iii) the attribute variables used in Ci and Cj correspond to the matching
set associated with the k-th anti-rewriting constraint, we check that the conjunction of
these three conditions implies the negation of hypothesis h, as otherwise the term Ci g Cj

could be simplified.

Example 6.4.7. Suppose we acquire a BAE corresponding to the conjunction of at most
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three conditions of seven possible conditions C1, C2, . . . , C7, where

C1 ≡ ‘a1,1 = c1,1’, C2 ≡ ‘a2,1 ≤ c2,1’, C3 ≡ ‘a3,1 ≥ c3,1’, C4 ≡ ‘a4,1 = a4,2’,
C5 ≡ ‘a5,1 ≤ a5,2’, C6 ≡ ‘a6,1 ≤ a6,2’, C7 ≡ ‘a7,1 ∈ [c7,1, c7,2]’,

with respect to a database of anti-rewriting constraints consisting only of the anti-rewriting
constraints in Table 6.6. For each condition Ci (with i ∈ [1, 7]) (resp. for each pair of
conditions Ci, Cj (with i, j ∈ [1, 7], i < j)), the left part of Figure 6.2 (resp. the right
part of Figure 6.2) provides the set of anti-rewriting constraints mentioning condition Ci

(resp. conditions Ci and Cj). Implication (6.10) (resp. Implication (6.11)) will be stated
for each of the identified anti-rewriting constraints.

C1 C2 C3 C4 C5 C6 C7

∅ 12 ∅ ∅ ∅ ∅ ∅

(A)
C1 C2 C3 C4 C5 C6 C7

C1 – 1,13 3 ∅ ∅ ∅ ∅

C2 – – 9 ∅ ∅ ∅ ∅

C3 – – – ∅ ∅ ∅ 14

C4 – – – – 5,7 5,7 ∅

C5 – – – – – 15 ∅

C6 – – – – – – ∅

(B)

Figure 6.2 – Sets of anti-rewriting constraint identifiers (taken from the column named
k from Table 6.1) for (A) conditions C1, C2, . . . , C7 and (B) their corresponding pairs.

For example, the following implications will be stated for the anti-rewriting constraints
number 12, 1, 7 and 14.

12: The twelfth anti-rewriting constraint mentions only the condition C2. Following Im-
plication (6.10), we post the constraint (b2 =1)⇒ ¬(c2,1 =0).

1: The first anti-rewriting constraint mentions the two conditions C1 and C2. Following
Implication (6.11), we post the constraint (b1 = 1 ∧ b2 = 1 ∧ a1,1 = a2,1) ⇒ ¬(c1,1≤
c2,1).

7: The seventh anti-rewriting constraint mentions the two conditions C4 and C5 with
two pairs of matching attributes and a negated hypothesis. Following Implication (6.11),
we post the constraint (b4 =1 ∧ b5 =1 ∧ a4,1 =a5,2 ∧ a4,2 =a5,1)⇒ ¬true.
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14: The fourteenth anti-rewriting constraint mentions the two conditions C3 and C7,
one of them being negated, and a negated compound hypothesis. Following Impli-
cation (6.11), we post the constraint (b3 = 1 ∧ b7 = 0 ∧ a3,1 = a7,1) ⇒ ¬(c3,1 ≥
c7,1 ∧ c3,1≤c7,2).

6.4.4 Method for acquiring anti-rewriting constraints

In this section we show how to systematically search for anti-rewriting constraints cor-
responding to the three definitions provided in Section 6.4.2. Ideally, the aim would be to
prove the validity of each anti-rewriting constraint. Given that we obtain several thousand
anti-rewriting constraints, we cannot envisage a manual proof for each of them. We use
the following general approach to get around this difficulty. Instead of proving a logical
formula associated with an anti-rewriting constraint, we use constraint programming to
check that the negation of the formula has no solution by making an assumption about
the range of unknowns in the formula, i.e. we check that we cannot find a counterexample
that invalidates the logical formula: For the variables in the formula, we take a range
of nonnegative values, while for the coefficients we take a small interval corresponding
to the values used in the Bound Seeker. Note that with this method, the anti-rewriting
constraints found are valid if the variables and coefficients are well within the respective
ranges considered during the generation of the anti-rewriting constraints. If this were not
the case, the anti-rewriting constraints found might prove to be too restrictive, preventing
the Bound Seeker from finding certain formulae.

To explain the general methodology to acquire anti-rewriting constraints we first in-
troduce some vocabulary. For the different anti-rewriting constraints (6.6), (6.7), (6.8),
and (6.9) we call in-condition conditions Car

1 and Car
2 , and out-condition condition Car

3 .
To generate each anti-rewriting constraint for a given in-condition Car

1 or two given in-
conditions Car

1 and Car
2 of Table 6.1, and an aggregator g, we do as follows:

1. Using Definition 8, we enumerate over the possible hypotheses. To reduce the number
of hypotheses to be considered, we check for families 1 and 3b that, for each selected
hypothesis h, the conjunction h ∧ Car

1 ∧ Car
2 admits at least one solution.

2. Using Table 6.1, we enumerate over the possible out-conditions if an out-condition
is mentioned in the definition of the anti-rewriting constraint.

3. We check that the negation of the formula associated with the anti-rewriting con-
straint has no solution, provided the variables and the coefficients of the in-conditions

117



Partie IV, Chapter 6 – New biases

are in a given range. If this is the case, we record the in-conditions, the hypothesis,
and the eventual out-condition of the found anti-rewriting constraint.
To improve the performance of Step 3 for Families 1 and 2, we split the implica-
tions (6.6) and (6.7) into two parts and check that only one of them is true, by
verifying that only the negation of one of them has no solution.

— For Family 1, h ⇒ (Car
1 ⇒ Car

2 ) and h ⇒ (Car
2 ⇒ Car

1 ).
— For Family 2 (with g ∈ {∨,∧,⊕, eq}), h ⇒ (Car

1 g Car
2 ) and h ⇒ ¬(Car

1 g Car
2 ).

6.4.5 Finding the set of most general anti-rewriting constraints

Among all anti-rewriting constraints sharing the same condition or the same pair of
conditions, we need to extract the most general ones. To do this, we look for the most
general set of hypotheses for a given aggregator and a condition or pair of conditions
shared by a set of anti-rewriting constraints.

In practice, for each family 1, 2, 3a, and 3b many candidate hypotheses, denoted by
Hg,Car

1 ,Car
2

, are found for an aggregator g and a given pair of conditions Car
1 and Car

2 . If fact,
for certain triples g, Car

1 , Car
2 , we found several hundred candidate hypotheses. Many pairs

of hypotheses in Hg,Car
1 ,Car

2
are redundant, either because they are equivalent or because

one hypothesis is implied by the other.

Example 6.4.8. For example, with the candidate hypothesises h1 = ‘c1,1 ≥ c2,1’ and
h2 = ‘c1,1 ≥ c2,1 + 1’ we keep only h1 because it is implied by h2, i.e. if h2 is true, then
h1 is also true.

We now describe the method for eliminating redundant hypotheses from the set of
candidate hypotheses Hg,Car

1 ,Car
2

. We compare all pairs of hypotheses hi, hj (with i ̸= j) of
Hg,Car

1 ,Car
2

, and we remove one of the hypotheses if one of the logical expressions is met:
• hi ⇔ hj: if one of them is a simple hypothesis and the other is a compound hypoth-

esis we keep the simple hypothesis, otherwise we keep hypothesis hi.
• ¬(hi ⇔ hj) ∧ (hi ⇒ hj): we retain the more general hypothesis hj.
As before, to check a logical expression, we use a CP program to test that the negation

of the logical expression has no solution.

Example 6.4.9. The search for the most general hypotheses for the aggregators ∧ or ∨,
and for the pair of conditions ‘x mod c1,2 = c1,1’ and ‘x /∈ [c2,1, c2,2]’, (with x ∈ [1, 100])
reduces the number candidate hypothesises for Family 1 from 596 to 6 hypothesises:
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• h1: ‘(c1,2 + 1 ≤ c2,1) ∧ (2 · c1,2 ≥ c2,2)’,

• h2: ‘c1,1 ≥ c2,2 + 1’,

• h3: ‘(c1,2 ≥ c2,2 + 1) ∧ (c1,1 + 1 ≤ c2,1)’,

• h4: ‘(c1,1 = 1) ∧ (c1,2 ≥ c2,2)’,

• h5: ‘(c1,2 ≥ c2,2) ∧ (2 · c1,1 = c2,1)’,

• h6: ‘(c1,2 ≥ c2,2) ∧ (c1,1 + 1 = c2,1)’.

6.4.6 Characteristics of the generated database of anti-rewriting
constraints

The described system generated 2,072 simple and compound constraints for Family 1
in less than an hour, 1,228 simple and compound constraints for Family 2 in less than an
hour, and 468 simple constraints for Family 3 in about three days using a 2.6 GHz Intel
Core i7.

Note that we did not automatically generate anti-rewriting constraints for conditions
using ‘ mod ’ operations, as this was too costly, since CP systems handle arithmetic expres-
sions that mix the ‘mod’ operator with multiple occurrences of a same variable poorly.

The automatically generated anti-rewriting constraints were combined with 14 hand-
written constraints covering cases outside the scope of the three families. Handwritten
constraints are more general than automatically generated anti-rewriting constraints, as
they can cover several cases at once. Handwritten constraints include:

— Constraints that consider information about the domains of the attributes involved
in the expression Car

1 g Car
2 . For example, the expression ‘(x1 = c1,1)∧(x1 ≤ x2)’ can

be simplified to ‘x1 = c1,1’ under the hypothesis h = ‘c1,1 ≤ min(x2)’. The system
does not generate such constraints because it would be too costly to find them.

— Constraints with conditions using ‘mod’ operations.

6.5 Additional applications of Boolean-arithmetic ex-
pressions

We will look at two other applications of BAEs, where BAEs are used as a building
block for learning more complex expressions:
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— A first application where we extend the acquisition of conditional expressions in-
troduced in [1], using the BAE to learn complex conditions rather than using a
predefined set of simple conditions as before. An example of this situation was pro-
vided at the end of Section 2.2 by Item 5.

— A second application, where the number of distinct values in an output column is
small, is the acquisition of case formulae: we use the acquisition of a BAE to find
the conditions which determine which value, i.e. which branch of the case should be
selected, as illustrated at the end of Section 2.2 by Item 6.

6.5.1 Using Boolean-arithmetic expressions to learn extended
conditionals

We assume that we already know two simple functions fthen(Xj) and felse(Xj) (with
Xj = tab[j, 1], tab[j, 1], . . . , tab[j, c − 1], j ∈ [1, r]) such that, for the output column c,
we have either tab[j, c] = fthen(Xj) or tab[j, c] = felse(Xj) for all j ∈ [1, r]. Under this
hypothesis, we want to acquire a formula of the form tab[j, c] = (cond(Xj) ? fthen(Xj) :
felse(Xj)). We use the BAE to enable the acquisition of more complex conditions for the
‘cond(Xj)’ condition than the simple conditions used in [1].

To this end, we replace each output column value tab[j, c] such that tab[j, c] =
fthen(Xj) and tab[j, c] ̸= felse(Xj) by the intermediate Boolean value tab′[j, c] = 1; simi-
larly, we replace each value tab[j, c] such that tab[j, c] = felse(Xj) and tab[j, c] ̸= fthen(Xj)
by tab′[j, c] = 0. We ignore those values for which tab[j, c] = fthen(Xj) = felse(Xj), as
the value of the conditional expression (cond(Xj) ? fthen(Xj) : felse(Xj)) is, in this case,
independent of the condition cond(Xj). Finally, we search for a BAE for the entries of
table tab′.

Example 6.5.1. Consider the example introduced in Item 5 of Section 2.2, where we
used the conditional expression

(
f = f ∨ v = f ? f : f − f

)
. In this context, Table 6.7

provides, for an excerpt of the corresponding table tab[j, k] (with j ∈ [1, 6], k ∈ [1, 4]),

— the ‘then’ part of the conditional, i.e. fthen(f) = f ,

— the ‘else’ part of the conditional, i.e. felse(f, f) = f − f , and

— the corresponding entries of table tab′[j, k] (with j ∈ [1, 6], k ∈ [1, 4]) which will be
used to find the condition f = f ∨ v = f .
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Table 6.7 – Illustrating the construction of Table tab′[j, k] for finding the condition f =
f ∨ v = f of the extended conditional of the example introduced in Item 5 of Section 2.2

v f f tab[j, c] = f fthen(f) felse(f, f) tab′[j, c]

1 1 1 1 1 0 1
2 1 1 1 1 0 1
2 2 1 1 1 1 –
3 1 1 1 1 0 1
3 2 2 2 2 0 1
3 2 1 1 2 1 0

6.5.2 Using Boolean-arithmetic expressions to learn case formu-
lae as small decision trees

Decision trees are widely used for classification problems, see e.g. [91, 92, 177], as deci-
sion trees are often more interpretable compared to other machine learning approaches [177].
Some work such as [93] make very limited use of Boolean-arithmetic conditions in the
nodes of a decision tree. However, to the best of our knowledge, no work on the acqui-
sition of decision trees really considers the particularities associated with the search for
small case formulae in the context of discrete combinatorial objects:

— While our input data may be large, the resulting decision tree should be small to
get interpretable formulae.

— To get small decision trees, we need to combine various logical operators such as the
7 operators introduced in Section 6.1, with a fair variety of arithmetic conditions
such as the 57 conditions depicted in Table 6.1.

— Knowing that our input data contains no errors and consists of integer values, we
have to reconcile two conflicting objectives: (i) finding small decision trees (ii) that
accurately cover all our input data.

Besides the example explained in Item 6 at the end of Section 2.2, typical examples of such
case formulae derived from the acquisition of small decision trees are shown in Figure 6.3.

In the rest of this section, we describe our approach to learn small decision trees. If
the number of distinct values in an output column is limited, i.e. less than or equal to
four and greater than two, as otherwise we could consider a conditional expression, we
use BAEs to build a small decision tree that classifies each distinct value of the output
column. To illustrate the method for building such a decision tree, we will use a running
example that we now present.
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0 if x1 = 1
1 else if x1 = x2 ∨ 2 · x2 ≤ x1

2 otherwise


0 if x1 = 1 ∧ x2 ≤ 2
1 else if x2 = x1 ∨ x3 = 1
2 otherwise

0 if x1 = 1 ∧ x2 = 1
1 else if x1 = x2

2 otherwise


0 if (x1 + x2) ≤ 3
1 else if voting(x1 = x2, x2 = 1, (x1 − x3) ≤ 2)
2 else if x1 = x3 ∨ x2 = 1 ∨ (x1 − x2) mod x3 = 0
3 otherwise

Figure 6.3 – Typical formulae we acquired using small decision trees with BAE

Example 6.5.2. Consider the table shown in Part (A) of Figure 6.4, which consists of
two input columns x1 and x2, and an output column x3 containing three different values.
Part (B) of Figure 6.4 represents the decision tree classifying the three output values, and
Part (C) gives the corresponding case formula.

x1 x2 x3

1 1 0
1 2 0
2 2 1
2 3 2
2 4 2
3 3 1
3 4 2

(A)

x1 = 1

x3 ← 0 x1 = x2

x3 ← 1 x3 ← 2

yes no

yes no

(B) x3 =


0 if x1 = 1
1 else if x1 = x2

2 otherwise

(C)

Figure 6.4 – (A) Example table for illustrating the acquisition of small decision trees,
(B) corresponding decision tree, and (C) associated case formula.

Note that, within Example 6.5.2, the value of x3 is functionally determined by the two
input columns x1 and x2. However, observe that whether x3 is assigned the value 0 or a
value in the set {1, 2} is determined solely by the input column x1. This brings us back
to the concept of conditional functional dependency [178] that we now recall.

Definition 17. Given a two-dimensional table tab[1..r, 1..c] of integer values, consisting
of r distinct rows and c distinct columns, where column c is functionally determined by
columns 1, 2, . . . , c − 1, the set of Conditional Functional Dependency (CFD) wrt two
disjoint subsets of values V0 and V1 taken by column c is the set of minimal functional
dependencies determining column c, provided that all values in V0 and in V1 are respectively
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replaced by 0 and 1 in the c-th column of table tab[1..r, 1..c], ignoring rows for which
tab[i, c] /∈ V0 ∪ V1 (with i ∈ [1, r]). Such a set of conditional functional dependencies is
referred to as CFDV0,V1.

At each level of a decision tree, we will use a conditional functional dependency to
determine which input columns from column set {1, 2, . . . , c − 1} should be used to find
the corresponding BAE. We first present a naive approach to building such a decision tree
and then refine it.

6.5.2.1 A first deterministic approach for learning small decision trees

Let C = {v1, v2, . . . , vp} be the set of distinct output values, sorted in increasing
order, used in the c-th column of table tab[1..r, 1..c]. For each value vk of the set C (with
k ∈ [1, p]), we perform the following steps.

1. set V1 to {vk} and V0 to {vk+1, vk+2, . . . , vp}

2. for each row i of tab:
if tab[i, c] ∈ V1 then reset tab[i, c] to 1 else reset tab[i, c] to 0

3. let cfdV0,V1 ∈ CFDV0,V1 be a CFD determining tab[i, c]

4. run the Boolean-arithmetic acquisition process to find a condition which is true iff
tab[i, c] = 1 wrt the selected input columns in cfdV0,V1

5. remove from table tab all rows such that tab[i, c] ∈ V1, and restore the initial output
value of the output column of the remaining entries

Although the previous algorithm is simple, its main weakness is that, if Step 4 fails,
the procedure will not find a decision tree. To add flexibility to the previous deterministic
approach, we can do two things:

— To not just take the output values in ascending order, as in Step 1, but consider
all possible permutations of the output values. Note that the conditional functional
dependencies selected at Step 3 depend on the permutation being considered.

— To not just pick up one conditional functional dependency, as in Step 3, but consider
all possible conditional functional dependencies.

6.5.2.2 A non-deterministic approach for learning small decision trees

To consider all permutations of the output values and all conditional functional de-
pendencies, we construct the following search tree, which will later be explored using a
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breadth-first search to find a concrete decision tree. Note that the size of such a tree is
rather limited, as we consider permutations of at most four output values.

— The state of each node n of the search tree consists of two disjoint sets of values
Vn

0 and Vn
1 , as well as possibly of one conditional functional dependency cfdnV0,V1 ∈

CFDnV0,V1 .

— The root node of the search tree, i.e. the node labelled with ‘1’, consists of the sets
V1

0 = C and V1
1 = ∅.

— Given a node n of the search tree, with the two sets of values Vn
0 and Vn

1 its children
n′ are defined in the following way:

∀v ∈ Vn
0 ,∀cfdnVn

0 \{v},{v} ∈ CFDnVn
0 \{v},{v} :


Vn′

0 = Vn
0 \ {v}

Vn′
1 = {v}
cfdn

′

Vn′
0 ,Vn′

1
= cfdnVn

0 \{v},{v}

Example 6.5.3. Figure 6.5 shows the precomputed search tree for Example 6.5.2. For
example, the three arcs of the leftmost path from the root node labelled by the state V1

0, V1
1

to the leave nodes labelled by the state V2
0 , V2

1 , cfd2
0,1 respectively indicate:

— The arc from the root node V1
0, V1

1 to V2
0, V2

1, cfd2
0,1 indicates that if we replace the

values in V2
1 = {0} (resp. the values in V2

0 = {1, 2}) in column x3 in the table of the
example given in Part (A) of Figure 6.4 with the value 1 (resp. the value 0), then
x3 is functionally determined by x1.

— The arc from V2
0, V2

1, cfd2
0,1 to V3

0, V3
1, cfd3

0,1 indicates that, ignoring the value
0 of x3 (i.e. values of x3 not in V2

0), if we replace the values in V3
1 = {1} (resp.

the values in V3
0 = {2}) with value 1, (resp. the value 0), then x3 is functionally

determined by x1 and x2.

— Finally, the arc from V3
0, V3

1, cfd3
0,1 to the leaf node V4

0, V4
1, cfd4

0,1 indicates that
we already consider all possible values of x3 except value 2 as V4

0 = ∅ and V4
1 = {2}.

The three output values in V2
1, V3

1, and V4
1 and the variables of the corresponding condi-

tional functional dependencies cfd2
0,1, cfd3

0,1, and cfd4
0,1 matches, from top to bottom,

the output values and variables used in the case formula shown in Part (C) of Figure 6.4.

Heuristics used to explore the search tree Given that we have to acquire a BAE
for each node in the search tree that does not correspond to the root or a leaf, and that
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V1
0 = {0, 1, 2},

V1
1 = ∅

V2
0 = {1, 2}

V2
1 = {0}

cfd2
0,1 = {x1}

V3
0 = {2}

V3
1 = {1}

cfd3
0,1 = {x1, x2}

V4
0 = ∅

V4
1 = {2}

cfd4
0,1 = ∅

V5
0 = {0, 2}

V5
1 = {1}

cfd5
0,1 = {x1, x2}

V6
0 = {2}

V6
1 = {0}

cfd6
0,1 = {x1}

V7
0 = ∅

V7
1 = {2}

cfd7
0,1 = ∅

V8
0 = {2}

V8
1 = {0}

cfd8
0,1 = {x2}

V9
0 = ∅

V9
1 = {2}

cfd9
0,1 = ∅

V10
0 = {0, 1}

V10
1 = {2}

cfd10
0,1 = {x1, x2}

V11
0 = {1}

V11
1 = {0}

cfd11
0,1 = {x1}

V12
0 = ∅

V12
1 = {1}

cfd12
0,1 = ∅

Figure 6.5 – Search tree of the running example, where cfdi
0,1 is a shortcut for cfdi

Vi
0,Vi

1
(with i ∈ [1, 12])

acquiring a BAE can be expensive, we use a heuristic to select the next node on the
frontier along which the breadth-first search algorithm is currently exploring. For the
same reason as above, namely that it is expensive to acquire a BAE, we stop the search
as soon as we have found all the BAEs along one of the branches of the search tree. The
heuristic described below tends to produce smaller decision trees faster than many other
search strategies we have also tested.

Each node node of the frontier is associated with a cost vector whose number of
components q is the maximum between, on the one hand, (i) the maximum possible arity
over all BAE of the search tree, i.e. 3 in our case, and, on the other hand, (ii) the maximum
number of parameters of the conditional functional dependencies. We select the node of
the frontier whose cost vector is the smallest from a lexicographic point of view. The cost
vector of a node on the frontier is the sum of three vectors, which we will now describe.

— For the part of the path P from the root of the search tree to the node node, the
cost corresponds to a vector whose i-th component (with i ∈ [1, q]) is the number
of Boolean equations already found of arity q − i + 1 on P .

— For the sub-tree S whose root is the node node, the cost corresponds to a vector
which is the lowest cost from a lexicographical point of view associated with the
different paths in the sub-tree S, starting from the node node and leading to a leaf
of S. The cost of a given path corresponds to a vector of q components, where the i-
th component (with i ∈ [1, q]) is the number of conditional functional dependencies
involving q − i + 1 columns.
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— Finally, for the sub-tree S whose root is the node node, we also have a vector of q

components, where the i-th component (with i ∈ [2, q]) is equal to zero, and where
the first component is defined as follows. If there is at least one path from the node
node to a leaf of S where the numbers of entries associated with the different output
values on that path are not increasing, then the first component is 1, otherwise it
is 0. This is because we prefer the last output value to have the largest number of
entries, as (i) we do not have to compute any BAE for the last output value, and
as (ii) calculating a BAE for an output value with fewer entries usually results in a
simpler formula.

The construction of the three previous vectors takes account of the fact that we assign
the highest weights to the components with the lowest index, considering that we are
ultimately selecting the smallest cost vector in the lexicographical sense. This favours
the selection of a node for which there is a path to a leaf that minimises the number of
variables located in the BAEs still to be found.

Example 6.5.4. Consider the search tree for the running example shown in Figure 6.5.
The costs of the nodes associated with the three nodes on the initial frontier of the search
tree with sets V2

1, V5
1, and V10

1 are defined as the sum of three vectors, as explained above:

• for V2
1 we get ⟨0, 0, 0⟩+ ⟨0, 1, 1⟩+ ⟨0, 0, 0⟩ = ⟨0, 1, 1⟩.

• for V5
1 we get ⟨0, 0, 0⟩+ ⟨0, 1, 1⟩+ ⟨1, 0, 0⟩ = ⟨1, 1, 1⟩.

• for V10
1 we get ⟨0, 0, 0⟩+ ⟨0, 1, 1⟩+ ⟨1, 0, 0⟩ = ⟨1, 1, 1⟩.

We therefore select the node associated with V2
1 and obtain the BAE x1 = 1. The frontier

now consists of the nodes V3
1, V5

1, and V10
1 , where the cost of the node associated with V3

1

is equal to ⟨0, 0, 1⟩+ ⟨0, 1, 0⟩+ ⟨0, 0, 0⟩ = ⟨0, 1, 1⟩. We therefore select the node associated
with V3

1 and obtain the BAE x1 = x2. Now, as we reach a leaf of the search tree, we stop
the search as we found a formula. This formula corresponds to the case formula shown in
Part (C) of Figure 6.4.

6.6 Evaluation

The CP core model introduced in Section 6.2 and its extensions described in Sec-
tions 6.3 and 6.4, as well as the extended conditionals and case formulae presented
in Section 6.5, were evaluated in the context of the search for conjectures on sharp
bounds on characteristics of several combinatorial objects. The source code is available
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at https://github.com/cquimper/MapSeekerCPAIORExtended together with the instruc-
tions on how to utilise the code to replicate the results of this section.

We first review the different types of combinatorial objects and the corresponding
input data used in this evaluation. We then examine the contribution of using Boolean-
arithmetic equations, extended conditionals and case formulae for acquiring sharp bounds
on the characteristics of combinatorial objects, besides the polynomials and conditional
formulae used in [1]. Finally, we measure the enhancements introduced in this article in
Sections 6.3 and 6.4, of the CP core model for acquiring BAEs presented in Section 6.2.

6.6.1 Describing the combinatorial objects and the data used in
the experiments

We consider the following set of combinatorial objects for our experiments.
— digraph (without isolated vertices): a set of vertices V and a set of ordered

pairs of vertices A with the restriction that each vertex of V occurs in at least one
pair of A [140].

— rooted tree: a connected acyclic undirected graph where a vertex is designed as
the “root” of the tree [141].

— rooted forest: a disjoint union of rooted trees [141]; we also consider a variant,
rooted forest2, where all rooted trees have at least two vertices.

— partition: a partition of a set S is a collection of non-empty subsets of S such that
every element of S is in exactly one of the subsets of the collection. The use of a
partition was motivated by the fact that a partition can be interpreted as a solution
to the conjunction of the nvalue (i.e. the number of partition subsets, see [142])
and the balance (i.e. the difference between the cardinalities of the largest and
smallest subsets of the partition, see [3, pp 698–703]) constraints. Motivated by the
extension of the balance constraint, i.e. all_balance [143], we also consider a
version of partition named partition0 where a subset may be empty.

— stretch: a solution of the stretch constraint on 0-1 variables v0, v1, . . . , vn−1 where a
subsequence of 1 immediately preceded and followed by a 0 is called a stretch [144];
we also consider the variant named cyclic stretch where we use modular arithmetic
wrt n to define a cyclic stretch.

For digraph, rooted tree, rooted forest, and rooted forest2, size denotes
the number of vertices. For partition and partition0, size is the number of elements
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of the set we partition, and for stretch and cyclic Stretch, size is the sequence
length. The data set [15] used for acquiring conjectures consists of a collection of 252300
tables representing 12 GB, giving for any combinatorial object of size at most size, for any
combination of at most three input parameters, for any feasible combinations of values
of these input parameters, the sharp lower or the sharp upper bound of a given output
parameter. An input table may contain auxiliary parameters, called secondary parameters,
all functionally determined by the table’s input parameters. The programs generating
all the data used in this section have been included in the code made available from
https://github.com/cquimper/MapSeekerCPAIORExtended. In the context of digraphs,
an example of input table was given in Chapter 2, see Table 2.1, with two input parameters
corresponding to the number of vertices and the number of connected components, and
one output parameter corresponding to the maximum number of arcs.

6.6.2 Evaluating the contribution of Boolean-arithmetic equa-
tions and their extensions for learning sharp bounds

6.6.2.1 Illustrating the diversity of Boolean-arithmetic formulae found

To illustrate the diversity of Boolean-arithmetic formulae found, Table 6.8 shows for
each combinatorial object and some of their characteristics, some conjectures discovered
using the Boolean model described in this paper. hose conjectures are (i) either an equality
expressing the value of a characteristic when another characteristic is reaching its sharp
bound (bounded characteristic) (ii) either an inequality representing a sharp bound for-
mulated wrt other characteristics (bounding characteristics) [1].

6.6.2.2 Evaluating the contribution of Boolean-arithmetic equations to learn
sharp bounds

We evaluate the number of formulae found by the full version of the model which
includes all the contributions of Sections 6.2, 6.3, 6.4, and 6.5 (i.e. Model 2) which replace
those formulae found by the model acquiring only polynomials or conditionals of [1] (i.e.
the Model 1) and the number of new formulae which were not found by Model 1, as
mentioned in Table 6.9, Table 6.10 and Table 6.11. To achieve this experiment the two
models, written in SICStus 4.7.1, were executed on a cluster with Intel processors such
as Silver 4216 Cascade Lake @ 2.1˜GHz, and E7-4809 v4 Broadwell @ 2.1˜GHz. We use
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Table 6.8 – Examples of characteristics (char.) of combinatorial objects and corresponding
conjectures: (i) c, s, oc, c and s: number of connected components (cc), strongly connected
components (scc), connected components with at least two vertices, size of the smallest
cc and size of the largest scc of a digraph; (ii) c0: denote 0 if all the cc have the same
maximal size, and c otherwise, for a digraph; (iii) v and f : number of vertices and
leaves in a rooted tree; (iv) d and d: smallest degree and largest degree of a parent
node in a rooted tree or a rooted forest; (v) p, p and t: minimum depth, maximum
depth and size of the smallest tree in a rooted forest; (vi) n, nval, and m: number
of elements, number of subsets, and cardinality of the smallest subset in a partition;
(vii) sr , dr , dmin and dmax : difference between the number of elements of the largest and
smallest stretches, difference between the maximum and minimum distance of consecutive
stretches, minimum distance between consecutive stretches and maximum distance between
consecutive stretches in stretch; (viii) n, smax , ng, and osc: number of 0–1 variables,
number of elements of the largest stretch, number of stretches, and number of stretches
which have more than one element in cyclic stretch.

Combinatorial Kind of Bounding Examples of discovered conjectures when
object bounded char. char. the bounded char. achieves its bound

digraph lower bound of c c, s, oc c ≥ 1 + [¬(s ≤ c ∧ oc ≤ 1)]
digraph lower bound of c c, s, s c0 = [¬ voting(c = s, c = 1, min(c, s) = 1)]
rooted tree upper bound of f d, v, p p = (p ≥ 2 ∨ v − d = 1 ? p : 2)
rooted forest lower bound of f p, d, t d = 2 − ([v + p ≤ 2] + [(t − p) = 1])
partition lower bound of nval n, m nval ≥ 1 + [2 · m ≤ n]
stretch lower bound of dmax sr , dr dmin = [(sr + dr) ≥ 1]
cyclic stretch upper bound of smax n, ng osc = [¬ card1(n = 2 · ng, n · ng = 3, n · ng ≤ 3)]

510 threads for the whole experiment and allocate a time out of 48 hours to each thread
to find all the lower and upper bounds of the different combinatorial objects.

— Table 6.9 gives (i) the number of Boolean formulae found, i.e. 4171 (sum of second
columns) (ii) the number of Boolean formulae replacing a formula with a polynomial
or a conditional, i.e. 4091 (sum of third columns) and (iii) the number of new
Boolean formulae, i.e. 80 (sum of fourth columns) discovered compared to the model
described in [1], i.e. Model 1, which only looked for formulae with conditionals,
polynomials and arithmetic functions involving two polynomials.

— Table 6.10 gives (i) the number of extended conditional formulae found, i.e. 237
(sum of second columns) (ii) the number of extended conditional formulae replac-
ing a formula with a polynomial or a conditional, i.e. 213 (sum of third columns)
and (iii) the number of new extended conditional formulae, i.e. 24 (sum of fourth
columns).

— Table 6.11 gives (i) the number of cases formulae found, i.e. 295 (sum of second
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columns) (ii) the number of cases formulae replacing a formula with a polynomial
or a conditional, i.e. 266 (sum of third columns) and (iii) the number of new cases
formulae, i.e. 29 (sum of fourth columns).

This experiment shows that by using the new model, i.e. Model 2, for learning sharp
bounds, the Boolean-arithmetic equations and their extensions contribute a lot for the
interpretability of formula as 4570 Boolean, extended conditionals and case formulae re-
place polynomials and conditionals of the model described in [1], i.e. Model 1. Model 2
also contributes identifying new formulae not found by the Model 1 as 133 Boolean, ex-
tended conditionals, and cases formulae were newly found in the context of learning sharp
bound.

Table 6.9 – Contribution of the full version of the model with incorporated anti-rewriting
constraints of Section 6.4, i.e. Model 2, which acquires Boolean formulae (BF), polynomials
and conditionals, compared to searching only polynomial and conditional formulae with
the model of [1], i.e. Model 1.

Combi- Number of (BF) which are:
natorial found replacing new
object polynomials

& conditionals

digraph 515 464 51
rooted tree 61 61 0
rooted forest 436 431 5
rooted forest2 415 415 0

Combi- Number of (BF) which are:
natorial found replacing new
object polynomials

& conditionals

partition 113 113 0
partition0 51 51 0
stretch 1373 1359 14
cyclic stretch 1207 1197 10

Table 6.10 – Contribution of the full version of the model with incorporated anti-rewriting
constraints of Section 6.4, i.e. Model 2, which acquires extended conditionals formulae
(EC) (described in Section 6.5.1), polynomials and conditionals, compared to searching
only polynomial and conditional formulae with the model of [1], i.e. Model 1.

Combi- Number of (EC) wich are:
natorial found replacing new
object polynomials

& conditionals

digraph 69 53 16
rooted tree 12 12 0
rooted forest 111 103 8
rooted forest2 36 36 0

Combi- Number of (EC) which are
natorial found replacing new
object polynomials

& conditionals

partition 3 3 0
partition0 4 4 0
stretch 34 29 5
cyclic stretch 26 26 0
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Table 6.11 – Contribution of the full version of the model with incorporated anti-rewriting
constraints of Section 6.4, i.e. Model 2, which acquires case formulae (CF) (described in
Section 6.5.2), polynomials and conditionals, compared to searching only polynomial and
conditional formulae with the model of [1], i.e. Model 1.

Combi- Number of (CF) which are:
natorial found replacing new
object polynomials

& conditionals
digraph 32 28 4
rooted tree 3 3 0
rooted forest 11 8 3
rooted forest2 1 1 0

Combi- Number of (CF) which are:
natorial found replacing new
object polynomials

& conditionals
partition 6 4 2
partition0 3 3 0
stretch 107 100 7
cyclic stretch 74 66 8

6.6.3 Evaluating the enhancements of the CP core model for
acquiring Boolean-arithmetic equations

In this section we evaluate the computing time spent by the core model of Section 6.2
(i.e. C. Model), by its enhanced version of the model of Section 6.3 (i.e. E. Model) and by
the full version of the model with incorporated anti-rewriting constraints of Section 6.4
(i.e. F. Model) wrt (i) the kind of combinatorial object, and wrt (ii) the type of aggregator
used in a BAE.

To achieve this, we took 1546 examples of BAEs we acquired in Section 6.6.2 to
generate a corresponding test table for each. Then, for each generated test table we select
the aggregator g and the number of terms nAC , both of which correspond to the selected
acquired BAE, and execute one of the models. We tested the performance on a MacBookPro

with a 2.6 GHz Core i7 and 16 GB of memory using SICStus 4.6.0. The aggregated results
are presented in Tables 6.12 and 6.13.

Table 6.12 – Acquisition time for C. Model, E. Model and F. Model wrt combinatorial
objects

Combinatorial Number of Average time per conjecture
object conjectures C.Model E.Model F.Model

digraph 226 33s 5.5s 5.4s
rooted tree 17 0.7s 0.2s 0.3s
rooted forest 171 4.2s 2.2s 2.3s
rooted forest2 106 5.3s 3s 2.8s
partition 50 2.3s 1.4s 1.5s
partition0 23 1.7s 0.9s 1s
stretch 447 4.4s 1.6s 1.6s
cyclic stretch 506 2.6s 1.4s 1.5s

Total 1546 3.4h 1h 1h

Table 6.12 shows that both the E. Model and the F. Model acquire a BAE with, on
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Table 6.13 – Acquisition time for C. Model, E. Model and F. Model wrt aggregators

g nAC
Number of Average time per conjecture
conjectures C.Model E.Model F.Model

∧ 1 1148 0.49s 0.3s 0.3s
∧ 2 52 15s 7.8s 8.4s
∨ 2 90 11s 5.4s 5.8s
∨ 3 1 2415s 209s 192s
eq 2 73 22s 13s 14s
eq 3 14 398s 62s 56s
+ 2 160 1.7s 0.9s 1.2s
+ 3 8 3.6s 1.1s 1.5s

average, 72% less time than the C. Model. Additional tests showed that using just the
constraints from Section 6.3.1 increases the speed of the C. Model by ≈ 5%, just the
constraints from Section 6.3.2 – by ≈ 63%, and just the constraints from Section 6.3.3 –
by ≈ 48%.

Table 6.13 shows that anti-rewriting constraints of Section 6.4 slightly slow down the
performance during acquisition of simpler BAE, e.g. when g = ‘∧′ and nAC = 2, as a
little time is spent on posting the constraints. There is a small drawback of including the
anti-rewriting constraints.

The benefit of using the anti-rewriting constraints is twofold (i) they reduce the time
of acquisition of more complex BAE, e.g. for g = ‘ eq′ and nAC = 3 anti-rewriting rules
reduced time by 9.6%, for g = ‘∨′ and nAC = 3 – by 8.1%, and (ii) for ≈ 2.8% of tables
they prevented generation of more complex equations. For example, for a table for the
graph, the F. Model generated only one BAE, s = 3 − ((c = s) + (c = c)), while the
E. Model also produced a more complex BAE, s = 1 + (c− s ≥ 1) + (⌈c÷ c⌉ ≥ 2).
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Chapter 7

DECOMPOSITIONS AS A RECURSIVE WAY

TO ACQUIRE COMPLEX FORMULAE

Previously, in Section 2.3.1 we explored the motivation behind examination of various
decomposition techniques to synthesise complex formulae which combine several learning
biases and in Section 2.3.2 we gave concrete examples of complex formulae obtained using
our new decomposition techniques. In Section 7.1 we provide the definition of what decom-
position technique is. In Section 7.2 we describe the decomposition techniques introduced
in this chapter. In Section 7.3, we evaluate our contribution to assess its performance and
the relevance of the discovered conjectures. Some of the more complicated conjectures
found by the system were proven by Jovial Cheukam-Ngouonou.

7.1 Decompositions definition

By decomposing the formula to acquire into an expression consisting of several simpler
terms as mentioned in Section 2.3.2, we aim to solve an easier acquisition problem. To this
end, we introduce four ways of decomposing a function. Before formally defining them,
we explain each of them intuitively.

— [Adding a Boolean expression] The first decomposition breaks down a func-
tion as the sum of a function with fewer input parameters, and a function whose
codomain is the set {0, 1}. As shown in Conj. (1), this decomposition was motivated
by the possibility of approximating a bound by an error margin of at most 1.

— [Isolating a parameter] The 2nd decomposition is based on the idea that one
may find a formula in which an input parameter only occurs in the outer term of
the formula where no other input parameter is used. In Conj. (2), the parameter
s only occurs in the numerator of the top-level of binary function ‘integer division
rounded up’.
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— [Isolating a parameter and using a 0-1 slack] The 3rd decomposition generalises
the 2nd decomposition by introducing a 0-1 slack term that can refer to any subset
of the input parameters. In Conj. (3), the input parameter s does not occur in the
numerator of the formula; indeed, it is only mentioned by the denominator of the
top level function ‘integer division rounded up’.

— [Introducing a conditional] The 4th decomposition is based on the intuition
that it may be easier to find a formula that applies to a subset of the table entries
rather than to all. The 4th decomposition divides the table entries into a ‘then’
and an ‘else’ set using a simple condition then, for each set, we have to identify a
corresponding formula. We use a small set of predefined formulae with a subset of
the condition’s parameters for the ‘then’ set, while imposing no restriction on the
‘else’ set. Conj. (4) illustrates such conditional decomposition.

7.1.1 Problem statement

Given a table tab[1..nrows, 1..ncol + 1] of integer values, consisting of nrows rows and
ncol +1 columns, where columns 1, 2, . . . , ncol form a mfd determining column ncol +1, we
address the following question: How to decompose the problem of discovering a function
g satisfying all the following set of equalities

∀j ∈ [1, nrows] : tab[j, ncol + 1] = g(tab[j, 1], . . . , tab[j, ncol]) (7.1)

into a set of easier subproblems requiring finding a limited number of functions satisfying
one of the decompositions (7.2)–(7.5) of Def. 18 that we now introduce.

Definition 18 (Decomposition Types).

∀j ∈ [1, nrows] : tab[j, ncol + 1] = g1(tab[j, a1], . . . , tab[j, aℓ1 ]) + g2(tab[j, b1], . . . , tab[j, bℓ2 ] (7.2)

∀j ∈ [1, nrows] : tab[j, ncol + 1] = g1(tab[j, a1], . . . , tab[j, aℓ1 ]) ⊕ g3(tab[j, b1]) (7.3)

∀j ∈ [1, nrows] : tab[j, ncol + 1] = g1(tab[j, a1], . . . , tab[j, aℓ1 ]) ⊕

(g2(tab[j, b1], . . . , tab[j, bℓ2 ]) + g3(tab[j, b1])) (7.4)
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∀j ∈ [1, nrows] : tab[j, ncol + 1] =
(cond(tab[j, c1], . . . , tab[j, cℓ3 ]) ?

g4(tab[j, d1], . . . , tab[j, dℓ4 ]) :
g1(tab[j, a1], . . . , tab[j, aℓ1 ]))

(7.5)

1. g1 : Zℓ1 → Z refers to one of the biases ( i)–( iii) or to a formula obtained by
one of the four decompositions; a1, . . . , aℓ1 are distinct indices from [1, ncol] with
ℓ1 ∈ [1, ncol − 1] for (7.2)–(7.4) as g1 does not involve all input parameters, and
with ℓ1 ∈ [1, ncol] for (7.5). For (7.3)–(7.4), b1 is different from a1, . . . , aℓ1.

2. g2 : Zℓ2 → {0, 1} matches bias ( iii); b1, . . . , bℓ2 are distinct indices from [1, ncol] with
ℓ2 ∈ [1, ncol]. Note that in (7.2), functions g1 and g2 may share some parameters.

3. g3 : Z → Z is one of the unary functions A · x2 + B · x + C, ⌊A·x2+B·x
D
⌋, ⌈A·x2+B·x

D
⌉,

min(A · x + B, C), max(A · x + B, C), (A · x + B) mod D, |A · x + B|, [((x + A) mod D) = C],
[((x + A) mod D) ≥ C], [((x + A) mod D) ≤ C], with A, B, C ∈ Z, and D ∈ Z+. To limit
the search space, we consider unary functions involving up to 3 constants.

4. Within (7.3)–(7.4), ⊕ stands for one of the operators ‘+’, ‘ ·’, ‘min’, ‘max’, ‘⌊ ⌋’,
or ‘⌈ ⌉’.

5. Within (7.5), cond is a condition mentioning at most 3 parameters, i.e. ℓ3 ∈ [1, 3],
of the form ‘x = min(x)’, ‘x = y’, ‘x ≤ y’, ‘x mod y = 0’, ‘x = y · z’, ‘A · x ≤ y’,
while g4 is one of the functions ‘B’, ‘x’, ‘[x = min(x)]’, ‘[x > min(x)]’, ‘x · y’, ‘[x = y + B]’,
‘x = y + z’, with ‘A’, ‘B’ ∈ Z.

We introduce a fair number of functions and conditions for g3, g4, and cond in Def. 18.
To avoid overfitting, they mention at most 3 coefficients whose range is restricted to
[−2, 2].

Example 7.1.1. Within Sect. 2.3.2, the right-hand part of inequalities (2.2), (2.3), (2.4),
and (2.5) resp. matches the following decomposition types:

— (7.2) with g1(v, c) = ⌈v
c
⌉ and g2(v, c, s) = [¬((2 · s ≤ c) ∨ (s ≥ (v mod c = 0 ? c :

v mod c))].

— (7.3) with g1(c, s) = ⌊c/s⌋, g3(s) = s, and ⊕ =‘⌈ ⌉’.

— (7.4) with g1(v, s) = (v = s ? v : v−s), g2(s) = [s = 1], g3(s) = s−1, and ⊕ =‘⌈ ⌉’.

— (7.5) with g1(v, c, c, s) = max
(
s,
⌈

v−c
c−1

⌉)
and g4(c) = c.

135



Partie IV, Chapter 7 – Decompositions

7.2 Implementing the different types of decomposi-
tions

The implementation combines (a) phases of generating a limited number of alterna-
tives on the type of functions used in the decomposition and on which parameters these
functions mention, and (b) test phases verifying certain simple conditions and solving
a constraint model to find the values of the coefficients of the functions mentioned in
the terms of the decomposition. We introduce some notation to refer to intermediate
structures used to analyse the consequence of eliminating an input parameter from a mfd.

Notation 3. Consider the table tab[1..nrows, 1..ncol +1], in which the first ncol columns,
the input parameters, form a mfd determining column ncol + 1, i.e. the output parameter.

— Let tab↗
k [1..nrows, 1..ncol + 1] be the table obtained by sorting the rows of the table

tab[1..nrows, 1..ncol + 1] in increasing lexicographic order wrt columns 1, . . . , k −
1, k + 1, . . . , ncol + 1, i.e. column k is skipped; to make the correspondence between
the entries of the tables tabk and tab↗

k , let σk denote the permutation that maps the
j-th row of the table tabk to the σk(j)-th row of the table tab↗

k (with j ∈ [1, nrows]).
— Let I denote the parameters associated with columns 1, 2, . . . , ncol of the table tab,

and let Ij (with j ∈ [1, nrows]) represents the corresponding parameter values for
the j-th row of the table tab, i.e. values tab[j, 1], tab[j, 2], . . . , tab[j, ncol].

— Let Ik (with k ∈ [1, ncol]) denote the parameters associated with columns 1, . . . , k−1,

k + 1, . . . , ncol of the table tab, while let Ik
j (with j ∈ [1, nrows]) represents the cor-

responding parameter values tab[j, 1], . . . , tab[j, k− 1], tab[j, k + 1], . . . , tab[j, ncol].

7.2.1 Decomposition of Type (7.2) [adding a Boolean expression]

Question We want to check whether there is a k ∈ [1, ncol] such that ∀j ∈ [1, nrows] :
tab[j, ncol + 1] = g1(Ik

j ) + g2(Ij), with g2 : Zℓ2 → {0, 1}; i.e. we seek an approximation
with a maximum error of 1, by using a function g1, without parameter k, and a correction
term g2.

Steps for finding a decomposition of Type (7.2)

1. [Determining the parameters of g1] First, we successively select the k-th column
(with k ∈ [1, ncol]) to remove from the input parameters of the function g1, and we
apply Steps 2. to 4. for each candidate column k.
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1
2
3
4
5
6
7
8
9

σ3
1
2
3
4
5
6
7
8
9

v c s c

9 2 1 5
9 3 1 3
9 3 2 4
9 3 3 3
9 4 1 3
9 4 2 3
9 5 1 2
9 5 2 2
9 5 4 2

(A) tab[1..9,1..4]

v c s c

9 2 1 5
9 3 1 3
9 3 3 3
9 3 2 4
9 4 1 3
9 4 2 3
9 5 1 2
9 5 2 2
9 5 4 2

(B1) tab↗
3 [1..9,1..4]

5
3
3
3
3
3
2
2
2

(B2) min↗
3 [1..9]

v c g1(v, c)
9 2 5
9 3 3
9 3 3
9 3 3
9 4 3
9 4 3
9 5 2
9 5 2
9 5 2

(C1)

v c s g2(v, c, s)
9 2 1 0
9 3 1 0
9 3 2 1
9 3 3 0
9 4 1 0
9 4 2 0
9 5 1 0
9 5 2 0
9 5 4 0

(C2)

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

Figure 7.1 – Tables used to find a decomposition of type 7.2 for Conj. (1); bold entries
refer to Ex. 7.2.1.

2. [Checking whether the codomain of g2 is the set {0, 1}] Second, provided
function g1 does not use the k-th input parameter selected in Step 1, we analyse
how this affects the codomain of function g2, even if functions g1 and g2 are yet
unknown.
For each maximum interval of consecutive rows [ℓ, u] in the sorted table tab↗

k [1..nrows,

1..ncol + 1] for which columns 1, . . . , k − 1, k + 1, . . . , ncol have the same value, we
get the maximum maxℓ,u and minimum minℓ,u values in the (ncol + 1)-th column,
and we check that the difference maxℓ,u−minℓ,u does not exceed 1. In other words,
we test for the table tab↗

k that, for each combination of identical input parameters,
from which the k-th input parameter is ignored, the corresponding output parame-
ter varies by at most 1. When satisfied, this test ensures that the codomain of g2 is
in {0, 1}.
For each entry j ∈ [ℓ, u] of the table tab↗

k we set min↗
k [j] = minℓ,u, where min↗

k is
a one-dimensional table whose entries vary from 1 to nrows.

3. [Determining the values of g1(Ik
j ) and g2(Ij)] Third, for each combination

of input parameters of functions g1 and g2 we compute their respective output
values: ∀j ∈ [1, nrows], g1(Ik

j ) = min↗
k [σk(j)] and g2(Ij) = tab↗

k [σk(j), ncol + 1] −
min↗

k [σk(j)].

4. [Using g1(Ik
j ) and g2(Ij) for identifying functions g1 and g2] We search for g1

by using the CP solvers associated with biases (i)–(iii) or by applying recursively
one of the decompositions of this paper. To identify g2 we call the Boolean solver
associated with the bias (iii).
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Example 7.2.1 (Illustrating the Search for a Decomposition of Type (7.2) for Conj. (2.2)).
Part (A) of Fig. 7.1 provides 9 entries of the table ‘tab’ with input parameters v, c, s

and the lower bound of the output parameter c, previously introduced. Assume we skip the
third column of table ‘tab’, k = 3, shown in grey in table tab↗

3 , i.e. we ignore column s.

— Parts (B1) and (B2) resp. show the tables introduced for finding a decomposition of
Type (7.2), i.e. tables ‘tab’, tab↗

3 , and min↗
3 . The permutation σ3 (with σ3(3) = 4,

σ3(4) = 3, and σ3(j) = j otherwise) maps the entries of table ‘tab’ to the entries
of table tab↗

3 . The rows of tab↗
3 and min↗

3 can be partitioned in four maximum
intervals, depicted in dark and light grey, resp. corresponding to the pair of values
(9, 2), (9, 3), (9, 4), and (9, 5) for the input parameters v and c. As for each of these
four intervals the difference between the maximum and the minimum value of c does
not exceed one, we can compute the values of g1(v, c) and g2(v, c, s).

— Parts (C1) and (C2) resp. give the tables used to acquire g1(v, c) and g2(v, c, s),
e.g. for j=3, g1(I3

j )=g1(I3
3 )=g1(9, 3)=min↗

3 [σ3(j)]=min↗
3 [σ3(3)]= min↗

3 [4]=3, and
g2(Ij)=g2(9, 3, 2)=tab↗

3 [σ3(j), 4]−min↗
3 [σ3(j)]=tab↗

3 [4, 4]−min↗
3 [4] = 4− 3 = 1.

7.2.2 Decompositions of Types (7.3) and (7.4) (isolating a param-
eter)

Using a binary operator ⊕, Decomposition (7.3) combines 2 sub-terms: a function g3

involving a single input parameter, with a function g1 mentioning only all other remaining
input parameters. Decomposition (7.4) extends (7.3) a bit by adding an extra term whose
codomain is the set {0, 1}. As identifying Decomposition (7.4) is very similar to identifying
Decomposition (7.3), we focus on the latter for space reasons.

Question We want to check whether there is a k ∈ [1, ncol] such that ∀j ∈ [1, nrows] :
tab[j, ncol+1] = g1(Ik

j )⊕g3(tab[j, k]), where ⊕ and function g3 were defined in Def. 18; i.e.
we want to see if we can express the formula we are looking for, by restricting one of its
parameters to just one of the formula’s sub-terms.

1. [Selecting k, ⊕, and g3] To determine the images of function g1 that will be
used to find function g1 itself in Step. 2 we successively consider the ncol × 10 × 6
combinations of triples ⟨k, g3,⊕⟩ (with k ∈ [1, ncol]), see Items 3–4 of Def. 18 for
g3 and ⊕. To find whether a combination of triples can be used or not to find the
images of the function g1, we apply the following steps:
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1
2
3
4
5
6
7
8
9

s c s c

1 1 1 1
2 1 1 2
2 3 2 2
2 9 3 1
3 1 1 3
3 3 2 3
3 9 3 1
4 3 2 4
4 9 3 2

(A) tab

1
2
3
4
5
6
7
8
9

s c s c

1 1 1 1
2 1 1 2
3 1 1 3
2 3 2 2
3 3 2 3
4 3 2 4
2 9 3 1
3 9 3 1
4 9 3 2

(B) tab↗
1

σ−1
1

g3(s)=A·s2+B ·s+C g1(c, s) ⌈g3(s)/g1(c, s)⌉ = c

A + B + C y1 ⌈( A + B + C)/y1⌉= 1
4 · A + 2 · B + C y1 ⌈( 4 · A + 2 · B + C)/y1⌉= 2
9 · A + 3 · B + C y1 ⌈( 9 · A + 3 · B + C)/y1⌉= 3
4 · A + 2 · B + C y4 ⌈( 4 · A + 2 · B + C)/y4⌉= 2
9 · A + 3 · B + C y4 ⌈( 9 · A + 3 · B + C)/y4⌉= 3

16 · A + 4 · B + C y4 ⌈(16 · A + 4 · B + C)/y4⌉= 4
4 · A + 2 · B + C y7 ⌈( 4 · A + 2 · B + C)/y7⌉= 1
9 · A + 3 · B + C y7 ⌈( 9 · A + 3 · B + C)/y7⌉= 1

16 · A + 4 · B + C y7 ⌈(16 · A + 4 · B + C)/y7⌉= 2

(C)

c s g1(c, s)

1 1 1 (y1)
1 1 1 (y1)
3 2 1 (y4)
9 3 3 (y7)
1 1 1 (y1)
3 2 1 (y4)
9 3 3 (y7)
3 2 1 (y4)
9 3 3 (y7)

(D)

1
2
3
4
5
6
7
8
9

Figure 7.2 – (A),(B),(D) Tables, and (C) Constraints used for finding a decomposition of
Type 7.3 for Conj. (2); variables y1, y4, and y7 in Tables (C) and (D) correspond to the
‘value variables’ for g1.

(a) [Creating the “value variables” for the images of g1] For each maximum
interval of consecutive rows [ℓ, u] of the table tab↗

k [1..nrows, 1..ncol + 1] for
which columns 1, . . . , k − 1, k + 1, . . . , ncol have the same value, we create
a single domain variable yℓ representing the value of g1(Ik

σ−1
k

(ℓ)), where σ−1
k

denotes the inverse permutation of permutation σk.

(b) [Stating the row constraints for finding the coefficients of g3, and
the value of g1 for each row] For each entry j of a maximal interval of
consecutive rows [ℓ, u] of the table tab↗

k [1..nrows, 1..ncol +1] for which columns
1 . . . , k − 1, k + 1, . . . , ncol have the same value, we create the constraint yℓ ⊕
g3(tab[σ−1

k (j), k]) = tab[σ−1
k (j), ncol + 1].

(c) [Solving the row constraints] We solve the conjunction of constraints stated
in Step 1b: we find the values of the coefficients of the unary function g3, and the
values of the “value variables” of g1, while minimising the sum of the absolute
value of the coefficients of g3 using a CP solver.

Among all triples for which Step 1c found a solution, we keep those triples ⟨k,⊕, g3⟩
which minimise the sum of absolute values of the coefficients of g3.

2. [Identifying function g1] As for the decomposition of Type (7.2), we search for
function g1 by employing the existing CP solvers associated with biases (i)–(iii) or
by applying recursively one of the 4 decompositions proposed in this paper. For this
purpose we reuse the value of the “value variables” found for g1 in Step 1c.

Example 7.2.2 (Illustrating the Search for a Decomposition of Type (7.3) for Conj. (2.3)).
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Part (A) of Fig. 7.2 provides 9 entries of the data for the input parameters s, c, s and the
lower bound of the output parameter c, namely table ‘tab’ previously introduced. Assume
we skip the first column of the table ‘tab’, i.e. k = 1 shown in grey in the table tab↗

1 , that
is we ignore the column labelled by s. The rows of Parts (B)–(C) of Fig. 7.2 can be par-
titioned in three maximum intervals, depicted in dark and light grey, resp. corresponding
to the pair of values (1, 1), (3, 2), and (9, 3) for the input parameters c and s.

— Assuming we look for a function g3 of Type A · s2 + B · s + C, and for a binary
operator ⊕ of the form ‘⌈ ⌉’, the three columns in Part (C) resp. show for each row
of tab↗

1 , (p1) the unary function g3, (p2) the “value variables” for g1, and (p3) the
corresponding constraints.

— Part (D) gives the derived table used to acquire g1(c, s).

7.2.3 Decomposition of Type (7.5) (introducing a conditional)

Type (7.5) decomposition combines a simple condition and a simple function g4 for
the ‘then’ part of the condition, with a function g1 corresponding to biases (i)–(iii),
or obtained by one of the first three decompositions described in this paper, i.e. the
conditional decomposition is not applied recursively, as this has proven to be very time-
consuming. We use the following steps to search for a decomposition of Type (7.5):

1. [Selecting cond and g4] We successively consider the 6× 7 combinations of pairs
⟨cond, g4⟩, see Item 5 of Def. 18. To determine whether or not a combination of pairs
can be used, we create this constraint model:

(a) The variables c1, c2, . . . , cn (resp. d1, d2, . . . , dm) denote the indices of the columns
of the table tab[1..nrows, 1..ncol + 1] used in the condition cond (resp. in func-
tion g4 of the ‘then’ part). These variables are in [1, ncol] as they correspond
to input parameters, i.e. we state the constraints ∀i ∈ [1, n] : ci ∈ [1, ncol],
alldifferent([c1, c2, . . . , cn]), ∀i ∈ [1, m] : di ∈ [1, ncol], and alldifferent([d1, d2, . . . , dm]).

(b) For each entry j (with j ∈ [1, nrows]) of the table tab[1..nrows, 1..ncol + 1], we
state the constraints:

i. ∀k ∈ [1, n ] : element(ck, tab[j, 1..ncol], vj,k ),
cond(vj,1, vj,2, . . . , vj,n)⇔rj, rj∈ [0, 1],

ii. ∀k ∈ [1, m] : element(dk, tab[j, 1..ncol], wj,k),

iii. rj = 1⇒ g4(wj,1, . . . , wj,m) = tab[j, ncol + 1].
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(c) By maximising the number of rows in the table tab[1..nrows, 1..ncol + 1] for
which condition ‘cond’ is met, we try to create a smaller subproblem for acquir-
ing the ‘else’ part. This is done by stating the constraints cost = ∑

j∈[1,nrows] rj,
cost > 0, cost < nrows. The last two constraints require the ‘then’ (or ‘else’)
part to contain at least one row for which condition ‘cond’ is true (or false) as
we want to obtain a non-simplifiable conditional formula. We maximise cost
wrt the posted constraints.

2. [Identifying function g1] As for decompositions (7.2)–(7.4), using Item 5 of Def. 18,
we search for function g1 using the CP solvers related to biases (i)–(iii), or by recur-
sively applying decompositions (7.2)–(7.4). To do this, we focus only on all the j-th
rows of the table tab[1..nrows, 1..ncol +1] for which condition cond(vj,1, vj,2, . . . , vj,n)
does not hold, i.e. the ‘else’ part of the conditional.

7.3 Evaluation

7.3.1 Type of conjectures we are looking for

We search for:

(I) conjectures expressing a secondary parameter wrt input parameters,

(II) conjectures expressing sharp bound on an output parameter wrt input parameters,

(III) conjectures expressing a secondary parameter wrt both input and secondary param-
eters,

(IV) conjectures expressing sharp bound on an output parameter wrt both input and
secondary parameters.

We prefer conjectures using input parameters only as it allows one to express sharp
bounds directly wrt input parameters, i.e. without using secondary parameters. Focusing
only on sharp bounds limits the number of conjectures learned, which now depends only
on the number of characteristics considered for the combinatorial objects.

7.3.2 Experimental Setting

We compare 2 versions of the acquisition tool using SICStus 4.7.1 on an cluster with
Intel processors such as Silver 4216 Cascade Lake @ 2.1GHz, and E7-4809 v4 Broadwell @
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2.1Ghz. The source code is available at https://github.com/cquimper/MapSeekerAAAI24
together with the instructions on how to reproduce the results presented in this section;
The 1st version uses biases (i)–(iii), while the 2nd version uses biases (i)–(iii) and the 4
decompositions (7.2)–(7.5). If one of these versions took more than 96 hours to complete
the acquisition for an input table, that table is excluded from the result evaluation, unless
otherwise stated. We acquire conjectures on tables of smaller sizes and test them on
the largest tables using the method described in [1] on selecting table size. We exclude
invalidated conjectures from our evaluation.

7.3.3 Experimental Results

Out of a total of 4469 tables, the 1st version had timeouts on 44 tables, the 2nd version
on 49 tables, with almost no overlap. We remove these tables and use the remaining 4378
tables to compare 2 versions. The 4378 tables has 21797 secondary and output parameters.
As cluster node performance varies and we cannot control allocation of tables over CPUs,
we only compare the aggregated full acquisition time for both versions. The 1st version
took 5888 hours in total, while the 2nd version took 25053 hours to complete. A total of
26 (resp. 54) conjectures acquired by the 1st (resp. 2nd) version were not validated.

Table 7.1 shows the detailed results of the experiment. The 1st and the 2nd versions
resp. found conjectures for 16078 and 17255 secondary or output parameters. The 2nd
version found conjectures of types I–IV (resp. I–II) for 5% more (resp. 14% more) sec-
ondary and output parameters compared to the 1st version. The 14% increase reflects the
fact that the 2nd version expresses more conjectures with input parameters only, which
is one of our goals. Including all 4469 tables, the 2nd version found conjectures for 7%
more secondary and output parameters than the 1st version.

The 2nd version found 6% more conjectures of types II and IV, i.e. sharp bounds. In the
2nd version, 2857 secondary or output parameters (16.5% of the 17255 parameters) have
conjectures that use decompositions (7.2)–(7.5); 26% of them use several decompositions
in one conjecture.

In [14], we proved Conjectures (2.2)–(2.5) to show that our decomposition methods
find non-trivial sharp bounds, as well as some non-obvious conjecture found for Rooted
Tree.
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Table 7.1 – Detailed experimental results for the 1st and the 2nd versions of the acquisition
tool, where no is the number of secondary and output parameters across all tables, nt is
the number of acquired conjectures by the 1st or the 2nd version, na is the number of
secondary and output parameters for which the 1st or the 2nd version could acquire at
least a conjecture, nb is the number of output parameters for which the 1st or the 2nd
version could acquire at least a conjecture, ni is the number of secondary and output
parameters for which the 1st or the 2nd version could acquire at least a conjecture input
parameters only, ne is the number of conjectures invalidated on the largest available size of
a combinatorial object, nd is the number of output parameters for which the 2nd version
could acquire at least a conjecture using decompositions (7.2)–(7.5), n7.2, n7.3, n7.4, n7.5
are the number of output parameters for which we could resp. acquire at least a conjecture
using (7.2), (7.3), (7.4), (7.5), n>1 is the number of output parameters for which the 2nd
version found at least a conjecture using more than one decompositions.

combinatorial
noobject

Digraph 2861
Rooted Tree 185
Rooted Forest 2088
Rooted Forest2 2861
Partition 562
Partition0 235
Stretch 6416
Cyclic Stretch 6589
total 21797

1st version
nt na nb ni ne

3270 2637 4341789 2
225 138 67 119 0

2343 1577 5621250 4
2404 1639 5691372 1
572 436 78 279 0
238 189 37 134 0

6481 4978 5562157 4
5964 4484 5212041 15

214971607828249141 26

2nd version
nt na nb ni ne nd n7.2 n7.3 n7.4 n7.5 n>1

3412 2702 447 1940 6 328 89 71 52 156 66
240 152 77 133 1 39 10 12 6 18 8

2672 1697 613 1428 6 433 122 131 112 168 121
2563 1700 607 1459 9 361 71 108 94 103 65
586 453 78 303 0 89 11 27 7 34 9
282 209 38 162 0 65 14 12 10 20 13

6981 5237 582 2473 0 660 146 220 118 357 161
7011 5105 561 2486 32 882 103 299 131 636 309

2374717255300310384 542857 566 880 530 1492 752





Part V

Acquiring and generating short-term
production scheduling models
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Chapter 8

ACQUIRING SCHEDULING CONSTRAINTS

In this chapter we will describe the process of acquisition of various schedule constraints
relevant to the use case described in Chapter 3. In Section 8.1 we describe the process
of acquisition of temporal constraints put on subsequent tasks within a chain of tasks.
In Section 8.2 we describe the process of acquisition of scheduling constraints put on the
resources. In Section 8.3 we describe the process of acquisition of calendar constraints,
i.e. the constraints that put limits on possible time periods for each task.

8.1 Acquiring temporal constraints

Using the merged table, the acquisition of temporal constraints is done in three steps:
1. Identify disjoint sequences of tasks.
2. Recognise columns that refer to the start, the duration, or the end of a task, i.e.

temporal task attributes.
3. Solve a discrete optimisation problem to identify temporal constraints that hold for

all pairs of adjacent tasks of the identified sequences.

8.1.1 Identifying disjoint sequences of tasks

A column s of the merged table is a disjoint sequence of tasks if it contains two types
of values: (i) values corresponding to distinct primary keys in the merged table, namely
values representing distinct task identifiers, and (ii) an additional unique value that does
not match any primary key in the merged table, namely a value that represents the end
of a sequence of tasks. Such a column is called a link column, and the corresponding pairs
of linked tasks are denoted by L.

Example 8.1.1. Within the merged tasks table, Table 4.1, only the ‘Succes-
sor’ column fulfils the above two conditions: the ‘Successor’ column only con-
tains task identifiers or the single value −1. The corresponding set of linked tasks
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is L = {(10001, 10002), (10002, 10003), (10003, 10004), (10005, 10006), (10006, 10007),
(10008, 10009)}.

8.1.2 Identifying temporal task attributes

to identify potential temporal attributes we first calculate two sets – T1 and T2. We
compute a first set of potential temporal attributes T1 by considering all the columns of
the merged table except the columns corresponding to a primary key, a link column, and
a set of values. Using the column names from the merged table, we compute a second
set of potential temporal attributes T2. We compute a second set of potential temporal
attributes T2 by using the column names. To achieve this, the model acquisition tool
uses a dictionary of common words used to denote temporal characteristics of a task, e.g.
‘duration’, ‘time’, etc. If the column name contains a word from such dictionary the model
acquisition tool puts it in the set T2. The dictionary can by adapted for different settings
if necessary.

If the intersection of the sets T1 and T2 contains fewer than two elements (two as a
temporal constraint mentions at least two columns of the merged table), the set T1 is the
set of potential temporal attributes (as the column names could not be used to identify the
temporal attributes); otherwise, the set T1∩T2 is the set of potential temporal attributes.
We split the set of potential temporal attributes into two subsets Tin and Tout respectively
corresponding to input and output attributes given in the metadata (see Section 3.3).

Example 8.1.2. Within the merged tasks table, i.e. Table 4.1, the system identifies the
set of input temporal attributes Tin = ∅, and the set of output temporal attributes Tout =
{‘Start’,‘Duration’}.

8.1.3 Identifying temporal constraints

A temporal constraint consists of an inequality ≤, (resp. ≥), 1 where the left-hand side
is a sum of temporal attributes to which we may add a nonnegative distance d≤ (resp. d≥),
and the right-hand side is a sum of temporal attributes. Such temporal constraint has to
hold for all entries of the merged table for which the value of the link column is a task
identifier. Using the link column and the sets of potential temporal attributes identified
in the previous steps we need to find out the following information:

1. Two symmetrical temporal constraints using ≤ and ≥ are converted to an equality.
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— The set of attributes used in the left-hand side and right-hand side of the temporal
constraint.

— The kind of comparison operator used in the temporal constraint.

— The distance used in the left-hand side of the temporal constraint.

We use the following constraint model to acquire these three elements:

minimise d≤ + d≥ such that:
∀k ∈ Tin ∪Tout : bℓ

k ∈ {0, 1}, br
k ∈ {0, 1},

∀(i, j) ∈ L :
∑

k∈Tin∪Tout

xi,k · bℓ
k + di,j =

∑
k∈Tin∪Tout

xj,k · br
k,

d≤ ≥ 0, d≤ = min
(i,j)∈L

(di,j), d≥ ≥ 0, d≥ = max
(i,j)∈L

(di,j)

(8.1)

where xi,k (resp. xj,k) denotes the value of the k-th column of task i (resp. j) in the
merged table, and where the 0–1 variables bℓ

k and br
k (with k ∈ Tin ∪Tout) indicate which

temporal attributes (i.e. columns) are selected or not. We search for the combination of
temporal attributes that minimises d≤ + d≥ as smaller values for d≤ and d≥ produce less
restrictive constraints, thus avoiding overfitting.

To focus the search of temporal constraints, we add the following restrictions to the
constraints depicted in (8.1):

1. The left-hand (resp. right-hand) side of a temporal constraint should mention at
most two temporal attributes from Tin ∪ Tout. This is because both the left-hand
and the right-hand sides of a temporal constraint never simultaneously mention the
start, the duration and the end attributes.

2. The left-hand (resp. right-hand) side of a temporal constraint should mention at
least a temporal attribute from the Tin set. This is because it is extremely unlikely
that the left-hand (resp. right-hand) side of a temporal constraint only mention
input columns of the merged table.

3. If the left-hand (resp. right-hand) side of a temporal constraint mentions only one
single attribute ain from the Tin set, and if the right-hand (resp. left-hand) side
mentions more than one attribute from Tin, then the right-hand (resp. left-hand)
side should also reuse the ain attribute.

4. If both, the left-hand and the right-hand sides of a temporal constraint mention more
than one temporal attribute from the Tin set, then there is at least one attribute
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aℓ ∈ Tin of the left-hand side of a temporal constraint and there is at least one
attribute ar ∈ Tin of the right-hand side of a temporal constraint, such that for all
entries of the merged table, the value of aℓ is always less than or equal (resp. greater
than or equal to) to the value of ar.

The choice of which temporal constraint to keep, i.e. a ‘less than or equal to’ or a
‘greater than or equal to’, depends on for how many pairs (i, j) of L, the distance
di,j = ∑

k∈Tin∪Tout

(
xj,k · br

k − xi,k · bℓ
k

)
is closer to d≤ or to d≥:

— If the number of pairs which are closer to d≤ is greater, then the model acquisition
tool keeps the temporal constraint that uses the ‘≤’ comparison operator.

— If the number of pairs which are closer to d≥ is greater, then the model acquisition
tool keeps the temporal constraint that uses the ‘≥’ comparison operator.

— Otherwise, the model acquisition tool keeps both temporal constraints.

Example 8.1.3. First, using the link column, i.e. column ‘Successor’, and the potential
temporal attributes {‘Start’,‘Duration’}, we create the set of potential temporal constraints
listed in Table 8.1.

Second, we search for the values of the Boolean variables bℓ
2, bℓ

4, br
2, br

4 which minimise
the sum of the two distances d≤ +d≥ while satisfying all temporal constraints of Table 8.1.
We obtain the solution bℓ

2 = 1, bℓ
4 = 1, br

2 = 1, br
4 = 0, d≤ = 0, d≥ = 14, meaning that we

select the attributes ‘Start’ and ‘Duration’ for the left-hand side of the potential temporal
constraint and we only select the attribute ‘Start’ for the right-hand side.

Third, we find out which of the comparisons ≤ or ≥ leads to a tighter temporal con-
straint. As within the distances d10001,10002 = 20−(0+20) = 0, d10002,10003 = 50−(20+30) =
0, d10003,10004 = 70− (50+20) = 0, d10005,10006 = 20− (0+12) = 8, d10006,10007 = 28− (20+
8) = 0, d10008,10009 = 50−(0+36) = 14 depicted in column ‘distance’ of Table 8.1, the ma-

jority of them, i.e. four, are closer to d≤ = min
 d10001,10002, d10002,10003, d10003,10004,

d10005,10006, d10006,10007, d10008,10009

 = 0

than to d≥ = max
 d10001,10002, d10002,10003, d10003,10004,

d10005,10006, d10006,10007, d10008,10009

 = 14, we select the ‘≤’ compar-

ison operator and obtain the temporal constraint (3.2) quoted in Example 3.4.2.
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Table 8.1 – Main model part used for acquiring temporal constraints: state an equality
constraint for each task i which is linked to a task j via the ‘Successor’ column; the left
(resp. right) term of a potential temporal constraint is a weighted sum of the temporal
attributes of task i (resp. j) using the Boolean variables bℓ

2, bℓ
4 and the distance di,j (resp.

br
2 and br

4) corresponding to the selection of the temporal attributes within the potential
temporal constraint.

left-hand side right-hand side link distance di,j

0 · bℓ
2 + 20 · bℓ

4 + d10001,10002 = 20 · br
2 + 30 · bℓ

4 10001 linked to 10002 d10001,10002 = 0
20 · bℓ

2 + 30 · bℓ
4 + d10002,10003 = 50 · br

2 + 20 · bℓ
4 10002 linked to 10003 d10002,10003 = 0

50 · bℓ
2 + 20 · bℓ

4 + d10003,10004 = 70 · br
2 + 20 · bℓ

4 10003 linked to 10004 d10003,10004 = 0
0 · bℓ

2 + 12 · bℓ
4 + d10005,10006 = 20 · br

2 + 8 · bℓ
4 10005 linked to 10006 d10005,10006 = 8

20 · bℓ
2 + 8 · bℓ

4 + d10006,10007 = 28 · br
2 + 8 · bℓ

4 10006 linked to 10007 d10006,10007 = 0
0 · bℓ

2 + 36 · bℓ
4 + d10008,10009 = 50 · br

2 + 27 · bℓ
4 10008 linked to 10009 d10008,10009 = 14

8.2 Acquiring resource constraints

In Section 3.4.3 we provided the description of resource constraints such as disjunc-
tive [4, 179] or diffn. We also introduced the within constraint is used in a scheduling
problems to express that a task must be assigned to a resource taken from a given set of
resources. The acquisition of within constraints is done during the metadata generation
as this is a straightforward task, i.e. see Example 3.4.3.

Resource constraints such as disjunctive [4, 179] or diffn [163, 180], which express
that certain tasks must not overlap in time, are learned after acquiring temporal and
functional constraints. In fact, the columns in the merged table that are part of the
temporal and functional constraints are used to restrict the candidate columns involved
in the resource constraints. To this end, the model acquisition tool follows the steps below:

— It generates a list of columns that can be interpreted as a resource column, namely a
column corresponding to a resource to which some tasks are assigned. These columns
must not be part of the primary key (see Section 5.1) nor be present in a temporal
constraint (see Section 8.1) or in any of the acquired functional constraints (see
Section 4.1.2).

— It collects temporal column candidates. It uses (i) the columns in the acquired
temporal constraints, as well as (ii) the columns that are not part of the primary
and foreign keys of the merged table, that do not correspond to sets of values, and
that are not part of a within constraint.

— For each candidate resource column:
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— From the list of temporal column candidates, it considers each pair of columns
where one acts as the start time of the tasks, and the other as the duration or
end time of the tasks.

— It creates a constraint model to check that tasks assigned to a same resource
do not overlap.

— It moves to the next temporal column candidate if two tasks that are assigned
to a same machine overlap; otherwise, it records the sum of time differences
between adjacent tasks as the resource constraint cost. For each candidate re-
source column, the model acquisition tool selects the pair of temporal columns
that minimise the cost, e.g. see the hatched areas in Figure 3.1.

— After selecting the pair of temporal columns with minimal cost, it checks
whether the candidate resource column is part of a within constraint or not.
If yes, the model acquisition tool acquires a diffn constraint as the tasks are
not pre-assigned; otherwise, the model acquisition tool acquires a disjunctive
constraint as all tasks were initially pre-assigned to a resource.

Example 8.2.1. To find a resource constraint, the model acquisition tool first tries to
identify a resource column in the merged table. It discards ( i) column ‘Task_id’ as it
corresponds to a primary key of the merged table, ( ii) columns ‘Duration’, ‘Quantity’,
and ‘Speed’ as they are part of a functional constraint (3.1) presented in Example 3.4.1,
( iii) column ‘Start’ as it occurs in the temporal constraint (3.2) shown in Example 3.4.2,
( iv) column ‘Successor’ as it is a link column, and (v) column ‘Machine_set’ as it is a set
of integer values. The only remaining potential resource column is the ‘Machine’ column,
which is a word in the dictionary of the model acquisition tool assigned to denote resource
columns.

For the ‘Machine’ column and the temporal columns ‘Start’ and ‘Duration’ the system
finds out that the tasks which are assigned to the same machine do not overlap in time.
The cost of this constraint is 64 corresponding to the sum of the gap between consecutive
tasks on machines 2, 3 and 10 as illustrated by the hatched areas in Figure 3.1. Finally,
as we have a within constraint involving the ‘Machine’ column, the model acquisition
tool generates a diffn constraint stating that two tasks that will be assigned to the same
machine should not overlap in time. In this diffn constraint, each task is represented as
a rectangle whose bottom left corner coordinates, length, and width respectively correspond
to the ‘Start’ column, to the ‘Machine’ column, to the ‘Duration’ column, and to 1.
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8.3 Acquiring calendar constraints

To acquire the calendar constraints introduced in Section 3.4.4 the model acquisition
tool proceeds as follows:

— It first collects resource column candidates and temporal column candidates in the
same way as described in Section 8.2 for acquiring resource constraints.

— It then selects potential calendar columns, i.e. columns whose entries correspond to
a sorted list of non-overlapping intervals.

— Finally, for each combination of resource column candidates, temporal column can-
didates, potential calendar columns, and of the kind parameter of a potential cal-
endar constraint, it checks whether the corresponding constraint holds or not.

Example 8.3.1. As in Example 8.2.1, the unique resource column candidate is the ‘Ma-
chine’ column, and the temporal column candidates are the ‘Start’ and the ‘Duration’
columns. The only calendar column candidate is the ‘Unavailability’ column as it consists
of sets of disjoint intervals. The model acquisition tool learns a calendar constraint with
a kind parameter set to 6, i.e. a constraint that prevents each task from overlapping any
unavailability period associated with the machine to which the task is assigned.

152



Chapter 9

GENERATING MINIZINC MODELS

9.1 Generating a MiniZinc model wrt the acquired
constraints

The last step of the model acquisition tool generates an executable model as stated
in Section 3.4 from all the constraints acquired in the previous step. The MiniZinc code
generator successively generates:

— the variable and data arrays for each column,
— the input data and the output variables,
— the foreign key constraints between tables,
— the acquired temporal constraints for chains of tasks,
— the acquired functional constraints,
— the acquired resource constraints,
— the acquired calendar constraints,
— the acquired shift constraints.
Apart from the calendar constraints and the shift constraints, all other acquired con-

straints are available in the MiniZinc modelling language and can therefore be translated
directly to MiniZinc. As the generation of the MiniZinc code for the shift constraint
is done in the same way as the generation of the code for the calendar constraint,
we will only show how to reformulate the different variants of the calendar constraint
introduced in Section 8.3.

9.2 Reformulating the calendar constraint

The reformulation of an acquired calendar constraint depends on several condi-
tions, on how the input data was provided, and on the nature of the acquired resource
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constraints. In the following, n denotes the number of tasks.

1. [We received a single table describing the tasks of a schedule] In this case,
each task t has its own list of sorted intervals of availability or unavailability denoted
Caℓt; Caℓt denotes the complement of the list of sorted periods Caℓt.

— kind = 1⇒ ∀t ∈ [1, n] : st ∈ Caℓt,

— kind = 2⇒ ∀t ∈ [1, n] : st + dt − 1 ∈ Caℓt,

— kind = 3⇒ ∀t ∈ [1, n] : disjunctive(Caℓt∪{[st, dt]}), i.e. task t is completely
included in one of the intervals of the calendar constraint.

— kind = 4⇒ ∀t ∈ [1, n] : st ∈ Caℓt,

— kind = 5⇒ ∀t ∈ [1, n] : st + dt − 1 ∈ Caℓt,

— kind = 6 ⇒ ∀t ∈ [1, n] : disjunctive(Caℓt ∪ {[st, dt]}), i.e. task t does not
overlap any calendar interval.

2. [We got two tables describing the tasks and resources involved in a sched-
ule]

(a) [The periods of availability or unavailability were defined in the tasks
table, i.e. they are specific to each task] This means that we can directly
generate MiniZinc code that restricts the start or the end of each task wrt the
set of intervals that describe the calendar. This case is treated in the same way
as Case 1.

(b) [The periods of availability or unavailability were defined in the re-
source table, i.e. they are specific to each resource]

i. [The tasks were pre-assigned to the resources] In this context, let rt

denotes the resource assigned to task t. This case is very similar to Case (1)
as we only need to replace Caℓt by Caℓrt , and Caℓt by Caℓrt .

ii. [The tasks were not pre-assigned to the resources] In this context,
let rt denotes the resource that will be assigned to task t, which is a variable
of the model, and let R (resp. R) denotes the rectangles derived from the
intervals (resp. complement of the intervals) of the calendars attached to
all the resources. Now, depending on whether we already have a diffn
constraint using the same attributes as the calendar constraint, we have
two cases.
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A. [We have already a diffn constraint] We simply add to the existing
diffn constraint the list of fixed rectangles R (resp. R) corresponding
to the different calendars when kind = 3 (resp. kind = 6).

B. [We do not have a diffn constraint] We need to create a diffn
constraint for each task, so that tasks assigned to the same resource
can possibly overlap.

— kind = 1⇒ ∀t ∈ [1, n] : diffn(R ∪ {[st, rt, 1, 1]}),

— kind = 2⇒ ∀t ∈ [1, n] : diffn(R ∪ {[st + dt − 1, rt, 1, 1]}),

— kind = 3⇒ ∀t ∈ [1, n] : diffn(R ∪ {[st, rt, dt, 1]}),
i.e. task t is completely included in one of the intervals of the calendar
of the resource to which it is assigned.

— kind = 4⇒ ∀t ∈ [1, n] : diffn(R ∪ {[st, rt, 1, 1]}),

— kind = 5⇒ ∀t ∈ [1, n] : diffn(R ∪ {[st + dt − 1, rt, 1, 1]}),

— kind = 6⇒ ∀t ∈ [1, n] : diffn(R ∪ {[st, rt, dt, 1]}),
i.e. task t does not overlap any calendar interval of the resource to
which it is assigned.

9.3 Illustrating the constraint model for Tables 3.3
and 3.4

To demonstrate the generation of MiniZinc models, we will take the example from
tables 3.3 and 3.4, run the acquisition process accordingly to 4.3 and then convert it to a
MiniZinc file. The resulting constraint model consists of:

— A foreign key constraint to link the task and machine tables (line 50).

— A precedence constraint (line 70) where the sum of the start time and the duration
of the task must be less than or equal to the start time of its successor task.

— A constraint expressing the duration of each task as the product of the quantity
produced by the task and the speed of the machine to which the task is assigned
(line 53). This constraint uses columns from both the task and machine tables.

— A within constraint stating for each task the machines to which the task can be
assigned (line 16).
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— A diffn constraint ensuring that, for each machine, downtime periods and assigned
tasks do not overlap (line 66).

Listing 9.1 – The model file code
1 % the user cannot change the va lue s f o r the number o f
2 % columns in the tab l e s , but can change other va lue s
3 % c o n s i s t e n t l y .
4

5 i n c lude "table.mzn" ;
6 i n c lude "globals.mzn" ;
7

8 % d e c l a r e v a r i a b l e s and c o n s t r a i n t s f o r t ab l e ‘ task . pl ’
9 s e t o f i n t : ROWS1 = 1 . . 9 ;

10 array [ROWS1] o f i n t : tasks_task_id ;
11 array [ROWS1] o f var 0 . . 7 0 : tasks_start_time ;
12 array [ROWS1] o f i n t : tasks_quant i ty ;
13 array [ROWS1] o f var 8 . . 3 6 : tasks_durat ion ;
14 array [ROWS1] o f var {2 ,3 , 5 , 10} : tasks_machine ;
15 array [ROWS1] o f s e t o f i n t : tasks_machines_set ;
16 c o n s t r a i n t f o r a l l ( i in ROWS1) ( tasks_machine [ i ] in tasks_machines_set [ i ] ) ;
17 array [ROWS1] o f i n t : ta sk s_succe s so r ;
18

19 s e t o f i n t : COLUMNS1 = 1 . . 6 ;
20 array [ROWS1,COLUMNS1] o f var i n t : t a sk s ;
21 c o n s t r a i n t ta sk s =
22 [ | tasks_task_id [ 1 ] , tasks_start_time [ 1 ] , tasks_quant i ty [ 1 ] ,

tasks_durat ion [ 1 ] , tasks_machine [ 1 ] , t a sk s_succe s so r [ 1 ] ,
23 | tasks_task_id [ 2 ] , tasks_start_time [ 2 ] , tasks_quant ity [ 2 ] ,

tasks_durat ion [ 2 ] , tasks_machine [ 2 ] , t a sk s_succe s so r [ 2 ] ,
24 | tasks_task_id [ 3 ] , tasks_start_time [ 3 ] , tasks_quant ity [ 3 ] ,

tasks_durat ion [ 3 ] , tasks_machine [ 3 ] , t a sk s_succe s so r [ 3 ] ,
25 | tasks_task_id [ 4 ] , tasks_start_time [ 4 ] , tasks_quant ity [ 4 ] ,

tasks_durat ion [ 4 ] , tasks_machine [ 4 ] , t a sk s_succe s so r [ 4 ] ,
26 | tasks_task_id [ 5 ] , tasks_start_time [ 5 ] , tasks_quant ity [ 5 ] ,

tasks_durat ion [ 5 ] , tasks_machine [ 5 ] , t a sk s_succe s so r [ 5 ] ,
27 | tasks_task_id [ 6 ] , tasks_start_time [ 6 ] , tasks_quant ity [ 6 ] ,

tasks_durat ion [ 6 ] , tasks_machine [ 6 ] , t a sk s_succe s so r [ 6 ] ,
28 | tasks_task_id [ 7 ] , tasks_start_time [ 7 ] , tasks_quant ity [ 7 ] ,

tasks_durat ion [ 7 ] , tasks_machine [ 7 ] , t a sk s_succe s so r [ 7 ] ,
29 | tasks_task_id [ 8 ] , tasks_start_time [ 8 ] , tasks_quant ity [ 8 ] ,

tasks_durat ion [ 8 ] , tasks_machine [ 8 ] , t a sk s_succe s so r [ 8 ] ,
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30 | tasks_task_id [ 9 ] , tasks_start_time [ 9 ] , tasks_quant i ty [ 9 ] ,
tasks_durat ion [ 9 ] , tasks_machine [ 9 ] , t a sk s_succe s so r [ 9 ] ,

31 | ] ;
32

33 % d e c l a r e v a r i a b l e s and c o n s t r a i n t s f o r t ab l e ‘ machines . pl ’
34 s e t o f i n t : ROWS2 = 1 . . 4 ;
35 array [ROWS2] o f i n t : machines_machine_id ;
36 array [ROWS2] o f i n t : machines_machine_speed ;
37

38 s e t o f i n t : COLUMNS2 = 1 . . 2 ;
39 array [ROWS2,COLUMNS2] o f var i n t : machines ;
40 c o n s t r a i n t machines =
41 [ | machines_machine_id [ 1 ] , machines_machine_speed [ 1 ] ,
42 | machines_machine_id [ 2 ] , machines_machine_speed [ 2 ] ,
43 | machines_machine_id [ 3 ] , machines_machine_speed [ 3 ] ,
44 | machines_machine_id [ 4 ] , machines_machine_speed [ 4 ] ,
45 | ] ;
46

47

48 array [ROWS1] o f var i n t : fk_machines ;
49 % c o s t r a i n t to connect t a b l e s " ta sk s " and " machines " with a f o r e i g n key

" fk_machines " :
50 c o n s t r a i n t f o r a l l ( i in ROWS1) ( machines_machine_id [ fk_machines [ i ] ] =

tasks_machine [ i ] ) ;
51

52

53 c o n s t r a i n t f o r a l l ( i in ROWS1) ( tasks_durat ion [ i ] = ((1∗ tasks_quant i ty [ i ] ∗
machines_machine_speed [ fk_machines [ i ] ] ) ) ) ;

54

55 array [ i n t ] o f i n t : mach ines_unava i l ab i l i ty_star t ;
56 array [ i n t ] o f i n t : mach ines_unava i lab i l i ty_resource ;
57 array [ i n t ] o f i n t : machines_unava i lab i l i ty_durat ion ;
58 array [ i n t ] o f i n t : machines_unavai labi l i ty_one ;
59

60

61 % args : d i f f n ( L i s t o f task s t a r t times ,
62 % L i s t o f machines f o r each task ,
63 % L i s t o f task durat ions ,
64 % L i s t o f 1 s )
65 % t h i s DIFFN c o n s t r a i n t a l s o i n c l u d e s CALENDAR c o n s t r a i n t .
66 c o n s t r a i n t ( d i f f n ( [ tasks_start_time [ i ] | i in ROWS1] ++
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machines_unava i lab i l i ty_start , [ tasks_machine [ i ] | i in ROWS1] ++
machines_unava i lab i l i ty_resource , [ tasks_durat ion [ i ] | i in ROWS1] ++
machines_unavai lab i l i ty_durat ion , [ 1 | i in ROWS1] ++
machines_unavai labi l i ty_one ) ) ;

67

68 array [ROWS1] o f i n t : tasks_task_id_successor ;
69 % PRECEDENCE c o n s t r a i n t :
70 c o n s t r a i n t f o r a l l ( i in ROWS1 where tasks_task_id_successor [ i ] != −1)

( ( tasks_start_time [ i ]+ tasks_durat ion [ i ] ) <=
( tasks_start_time [ tasks_task_id_successor [ i ] ] ) ) ;

Listing 9.2 – The data file code
1 % The user can modify any i n t e g e r or s e t va lue .
2 % The s i z e o f each array must be modi f i ed c o n s i s t e n t l y .
3

4 tasks_task_id = [10001 ,10002 ,10003 ,10004 ,10005 ,10006 ,10007 , 10008 ,10009 ] ;
5 tasks_quant i ty = [ 1 0 , 1 0 , 1 0 , 1 0 , 4 , 4 , 4 , 9 , 9 ] ;
6 tasks_machines_set = [{5 ,10} ,{2 ,3} ,{3 ,5} ,{10} ,{2 ,5} ,{2 ,10} ,{3 ,5} ,

{5 , 10} , {2} ] ;
7 ta sks_succe s so r = [10002 ,10003 ,10004 , −1 ,10006 ,10007 , −1 ,10009 , −1] ;
8 machines_machine_id = [ 1 0 , 2 , 3 , 5 ] ;
9 machines_machine_speed = [ 2 , 3 , 2 , 4 ] ;

10 mach ines_unava i l ab i l i ty_star t = [ 3 0 , 1 5 , 4 0 , 7 0 , 4 0 , 7 0 ] ;
11 machines_unava i lab i l i ty_resource = [ 1 0 , 2 , 3 , 3 , 5 , 5 ] ;
12 machines_unava i lab i l i ty_durat ion = [ 9 , 4 , 9 , 9 , 9 , 9 ] ;
13 machines_unavai labi l i ty_one = [ 1 , 1 , 1 , 1 , 1 , 1 ] ;
14 tasks_task_id_successor = [2 ,3 ,4 , −1 ,6 ,7 , −1 ,9 , −1] ;

If the user opens this file in MiniZinc IDE and executes it, the resulting schedule will
likely be not optimised because the generated model does not have a KPI for which it can
optimize a schedule. The user must add KPI to the model manually. e.g. the user wants
to add a KPI that is the sum of all make-spans for all three products at the end of the
model file:

Listing 9.3 – Added MiniZinc code to the model file

72 var i n t : max_makespan ;
73 c o n s t r a i n t max_makespan = max ( [ tasks_start_time [ 4 ] +

tasks_durat ion [ 4 ] , tasks_start_time [ 7 ] + tasks_durat ion [ 7 ] ,
tasks_start_time [ 9 ] + tasks_durat ion [ 9 ] ] ) ;

74 s o l v e minimize max_makespan ;
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After solving the constraint model with the new KPI in MiniZinc IDE the user would
obtain a new schedule that reduces maximum make-span from 90 to 89 (see also Table 9.1
and Figure 9.1):

Listing 9.4 – The generated schedule with an acquired constraint model presented in
Listings 9.1, 9.2 and 9.3

1 ta sk s =
2 [ | 10001 , 0 , 10 , 20 , 10 , 10002
3 | 10002 , 20 , 10 , 20 , 3 , 10003
4 | 10003 , 49 , 10 , 20 , 3 , 10004
5 | 10004 , 69 , 10 , 20 , 10 , −1
6 | 10005 , 0 , 4 , 12 , 2 , 10006
7 | 10006 , 19 , 4 , 12 , 2 , 10007
8 | 10007 , 49 , 4 , 16 , 5 , −1
9 | 10008 , 0 , 9 , 36 , 5 , 10009

10 | 10009 , 36 , 9 , 27 , 2 , −1
11 | ] ;

The user can also modify input data and rerun the model. e.g. he can edit line 6 to
change the list of available resources for each task or 9 to change machines’ speeds and
unavailability periods.

Table 9.1 – A new schedule minimizing the maximum make-span of the production sched-
ule from the acquired constraint model presented in Listings 9.1, 9.2 and 9.3

Task_id Start Quantity Duration Machine Machines_set Successor Speed Unavailability

10001 0 10 20 10 {5, 10} 10002 2 {30..39, 50..59}
10002 20 10 30 3 {2, 3} 10003 2 {40..49, 70..79}
10003 49 10 20 3 {3, 5} 10004 2 {40..49, 70..79}
10004 69 10 20 10 {10} −1 2 {30..39, 50..59}
10005 0 4 12 2 {2, 5} 10006 3 {15..19}
10006 19 4 8 2 {2, 10} 10007 3 {15..19}
10007 49 4 8 5 {3, 5} −1 4 {40..49, 70..79}
10008 0 9 36 5 {5, 10} 10009 4 {40..49, 70..79}
10009 36 9 27 2 {2} −1 3 {15..19}
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The initial schedule

The schedule after optimization

− machine 2 − machine 3 − machine 5 − machine 10

Figure 9.1 – The comparison between schedule from Tables 3.3 and 3.4 and the schedule
generated from the acquired constraint model presented in Listings 9.1, 9.2 and 9.3



Chapter 10

EVALUATING THE ACQUISITION OF THE

SHORT-TERM SCHEDULES

In this section, we evaluate our model acquisition tool on a large set of instances
with a variety of scheduling constraints, a varying number of tasks, and the addition
or omission of data not involved in the desired model. First, we present our instance
generator, which is used to generate the input data for the learning process. Secondly,
we analyse the models obtained by our model acquisition tool by comparing them with
the models used to generate the training data: For each type of constraint, we report the
number of constraints actually learned, as well as the number of learned constraints not
present in the initial model.

The source code is available at https://github.com/cquimper/MapSeekerScheduling
together with the instructions on how to utilise the code to replicate the results of this
chapter.

10.1 Generating a variety of input tables for the ac-
quisition tool

To test the robustness of our model acquisition tool in a variety of situations, we
generated 48,000 instances of schedules with variations in the following five dimensions:
1. task description, 2. temporal constraints, 3. resource constraints, 4. the introduction
or absence of noisy columns, and 5. the number of tasks and resources in a schedule. For
each combination of these five dimensions, we generate ten examples. The corresponding
generated dataset is available in the Zenodo repository[16]. We will now describe each of
these five dimensions.

1. Different ways of describing a task. Although each task i necessarily has a start
time start_timei, an end time end_timei and a duration durationi, a tasks table
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may contain only two of these attributes, the missing attribute being obtained from
the equality start_timei +durationi = end_timei. We therefore provide two or three
attributes for the tasks in the models we generate.
In the models we produce, start_timei is an attribute that the solver must determine,
while end_timei is calculated based on start_timei and durationi. The duration of
tasks is either stated explicitly if the duration attribute is present in the table, or
implicit if the start time and end time attributes are both present in the table. We
consider two variants for the duration attribute: The first variant is where durationi

is just an input to the model and has a pre-assigned value. The second variant
is where durationi is both an input used to calculate end_timei and an output
determined by a formula using pre-assigned input values, for example durationi =
qtyi · resource_speedi.
As a result, we have eight ways of describing a task, namely:

(a) only the start time and duration columns are part of the table, the task duration
is a pre-assigned input parameter,

(b) only the start time and end time columns are part of the table, the task duration
is a pre-assigned input parameter,

(c) only the duration and end time columns are part of the table, the task duration
is a pre-assigned input parameter,

(d) all three columns are present in the table, the task duration is a pre-assigned
input parameter,

(e) the start time, duration and end time columns are all part of the table, and
the task duration is calculated using a formula,

(f) only the start time and end time columns are part of the table, and the task
duration is calculated using a formula,

(g) only the duration and end time columns are part of the table, and the task
duration is calculated using formula,

(h) all three columns are present in the table, and the task duration is calculated
using a formula.

2. Different ways of expressing temporal constraints between task i and its successor j

as described in Section 8.1, where all constants cst, cst1, cst2 are nonnegative:

(a) no temporal constraints at all,
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(b) starti + cst ≤ startj,

(c) starti + cst ≥ startj,

(d) starti + cst1 ≤ startj, starti + cst2 ≥ startj (cst2 ̸= cst1),

(e) starti + cst = startj,

(f) starti + cst ≤ end_timej,

(g) starti + cst ≥ end_timej,

(h) starti + cst1 ≤ end_timej, starti + cst2 ≥ end_timej (cst2 ̸= cst1),

(i) starti + cst = end_timej,

(j) end_timei + cst ≤ startj,

(k) end_timei + cst ≥ startj,

(l) end_timei + cst1 ≤ startj, end_timei + cst2 ≥ startj (cst2 ̸= cst1),

(m) end_timei + cst = startj,

(n) end_timei + cst ≤ end_timej,

(o) end_timei + cst ≥ end_timej,

(p) end_timei + cst1≤end_timej, end_timei+cst2≥end_timej (cst2 ̸=cst1),

(q) end_timei + cst = end_timej.

Note that we only generate temporal constraints that mention the start time, i.e.
2b–2m, if the start time attribute is part of the table, i.e. not in the cases 1c
or 1g. Items for which the restriction only mentions the ‘≤’ (resp. ‘≥’) comparison
operator correspond to maximum (resp. minimum) distance constraints, while items
using only the ‘=’ comparison operator match an exact distance constraint. In the
items mentioning both ‘≤’ and ‘≥’, the two constants cst1 and cst2 are distinct as,
otherwise, we would have an exact distance constraint. Minimum and maximum
distance constraints are for instance linked to some minimum/maximum waiting
time between consecutive tasks. Some constraints, e.g. Item 2b, express a pipelining
constraint where consecutive tasks can partially overlap.

3. Different ways of expressing resource scheduling constraints as described in Sec-
tions 8.2 and 8.3:

(a) no scheduling constraints at all,

(b) a disjunctive constraint for each subset of tasks using the same resource,
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(c) a diffn constraint on all tasks, so that there is no overlap between tasks that
will be assigned to the same resource,

(d) a shift constraint that forces the start and end times of each task to be within
the same availability period, with no gap between two consecutive availability
periods,

(e) a calendar constraint that forces the start and end time of each task assigned
to a given resource r to fall within the same period of availability of the resource
r,

(f) a set of disjunctive constraints and a shift constraint,

(g) a diffn and a shift constraint,

(h) a set of disjunctive constraints and a calendar constraint,

(i) a diffn and a calendar constraint.

The combination of certain temporal and resource constraints may lead to infeasi-
bility. For instance, in a temporal constraint of type 2c, the two corresponding tasks
may overlap, which is incompatible with a disjunctive constraint between these
tasks, i.e. a constraint of type 3b. Therefore, we do not generate scheduling instances
that mix the dimensions 2c, 2d, 2e, 2g, 2h, 2i, 2o, 2p, 2q, with the dimensions 3b,
3c, 3f, 3g, 3h, 3i. Note that the number of resources generated varies according to
the number of tasks, as explained in Item 5.

4. Creating noisy columns or not:

(a) no additional noisy columns,

(b) three extra columns with random values standing for noise.

5. Number of tasks and resources referenced by the schedule:

(a) 10 tasks and 2 resources,

(b) 100 tasks and 10 resources,

(c) 1,000 tasks and 20 resources,

(d) 10,000 tasks and 100 resources.

Since any combination of 1a–1d with 2a and with 3a has no constraints, we ignore
these combinations.
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10.2 Summary of the results and detailed discussion

10.2.1 Summary of the results

We tested whether the model acquisition tool learns the intended model for each of
the 48,000 examples. Tables 10.1–10.7 provide detailed statistics for each type of acquired
constraint, which will be discussed in detail in Section 10.2.2.

The model acquisition tool captures 48% of precedence constraints accurately and 40%
partially, 99% of resource constraints, 98% of calendar and shift constraints, and 90% of
functional constraints exactly.

The number of rows in the input tables affects the quality of the functional (see
tables 10.4–10.5) and precedence (see Table 10.1) constraints: the lower the number of
rows, the greater the chance of getting an incorrect constraint. In all cases, however, the
results stabilise from a hundred tasks upwards.

If the number of rows is small, there is a slight risk of acquiring incorrect resource,
shift and calendar constraints, especially if there are noisy columns in the tables (see
tables 10.2–10.3 and 10.6–10.7).

On average, using SICStus Prolog 4.6.0 on a 2019 MacBook Pro Core i7 with 6 cores
and 16 GB, it took 4 seconds to acquire a MiniZinc model from a schedule with 10 tasks,
10 seconds for 100 tasks, 21 seconds for 1,000 tasks and 27 seconds for 10,000 tasks.

Table 10.1 – Statistics of acquisition of precedence constraints

Input tables Ctrs to
find

Exact
ctrs, %

Partial
ctrs, %

Wrong
ctrs, %

10 rows 10960 32,92 53,22 11,74
100 rows 10960 52,64 37,12 2,35
1000 rows 10960 53,68 34,89 1,11
10000 rows 10960 53,74 34,52 0,55
w/ noise cols 21920 47,95 41,05 3,04
w/o noise cols 21920 48,53 38,83 4,84
all tables 43840 48,24 39,94 3,94

10.2.2 Detailed discussion

Within this section, we refer to a specific example by using its unique identifier used
in the Zenodo repository[16]. For each type of constraint, we analyse the discrepancy
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Table 10.2 – Statistics of acquisition of disjunctive constraints

Input tables Ctrs to
find

Exact
ctrs, %

Partial
ctrs, %

Wrong
ctrs

10 rows 2880 96,11 0 20
100 rows 2880 99,51 0 0
1000 rows 2880 99,72 0 0
10000 rows 2880 99,97 0 0
w/ noise cols 5760 99,2 0 20
w/o noise cols 5760 98,42 0 0
all tables 11520 98,82 0 20

Table 10.3 – Statistics of acquisition of diffn constraints

Input tables Ctrs to
find

Exact
ctrs, %

Partial
ctrs, %

Wrong
ctrs

10 rows 2880 97,68 0,34 0
100 rows 2880 98,61 0 0
1000 rows 2880 98,47 0 0
10000 rows 2880 98,82 0 0
w/ noise cols 5760 98,4 0,07 0
w/o noise cols 5760 98,38 0,1 0
all tables 11520 98,39 0,09 0

Table 10.4 – Statistics of acquisition of formulae for end_time

Input tables Ctrs to
find

Exact
ctrs, %

Partial
ctrs, %

Wrong
ctrs, %

10 rows 5920 81,1 12,06 0,02
100 rows 5920 93,18 5,95 0
1000 rows 5920 93,48 5,59 0
10000 rows 5920 93,36 5,84 0
w/ noise cols 11840 90,41 6,79 0,01
w/o noise cols 11840 90,14 7,93 0
all tables 23680 90,28 7,36 0

between the expected constraints and the acquired constraints.

10.2.2.1 Precedence constraints

In Table 10.1, each acquired precedence constraint is classified in one of the following
categories:
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Table 10.5 – Statistics of acquisition of formulae for duration

Input tables Ctrs to
find

Exact
ctrs, %

Partial
ctrs, %

Wrong
ctrs, %

10 rows 4060 66,43 17,86 1,87
100 rows 4060 97,68 0 0
1000 rows 4060 97,8 0 0
10000 rows 4060 97,73 0 0
w/ noise cols 8120 91,1 3,78 0,19
w/o noise cols 8120 88,73 5,14 0,73
all tables 16240 89,91 4,46 0,47

Table 10.6 – Statistics of acquisition of shift constraints

Input tables Ctrs to
find

Exact
ctrs, %

Partial
ctrs, %

10 rows 3960 95,63 2,14
100 rows 3960 98,89 0,2
1000 rows 3960 99,37 0,1
10000 rows 3960 99,52 0,05
w/ noise cols 7920 98,78 0,5
w/o noise cols 7920 97,92 0,74
all tables 15840 98,35 0,62

Table 10.7 – Statistics of acquisition of calendar constraints

Input tables Ctrs to
find

Exact
ctrs, %

Partial
ctrs, %

10 rows 3960 94,47 0,1
100 rows 3960 98,86 0
1000 rows 3960 99,6 0
10000 rows 3960 99,95 0
w/ noise cols 7920 98,89 0,05
w/o noise cols 7920 97,55 0
all tables 15840 98,22 0,03

— An exact constraint, i.e. a constraint that is correctly identified.

— A partial constraint, if only part of the constraint is correctly identified, i.e. if one
of the following statements is true:

— A coefficient or comparison operator in a precedence constraint is incorrectly
identified;
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e.g. for the table ‘schedule_robustness_a_b_a_a_d_9.pl’, instead of the con-
straint

starti + 5 ≤ startj

the model acquisition tool learned

starti + 5 = startj (10.1)

— The precedence constraint uses the start time instead of the end time, or
vice versa;
e.g. for the table ‘schedule_robustness_b_k_b_a_a_0.pl’, instead of the con-
straint

endi + 3 ≥ startj (10.2)

the model acquisition tool learned

starti + 17 ≤ endj (10.3)

— The model acquisition tool learns either one constraint instead of two, or two
constraints instead of one;
e.g. for table ‘schedule_robustness_b_b_c_b_a_4.pl’, instead of a constraint

starti + 2 ≤ startj (10.4)

the model acquisition tool learned

starti + 2 ≤ startj ∧ starti + 56 ≥ startj (10.5)

A partial constraint may be a stricter version of an intended constraint, such as
Constraint (10.1), or, depending on task durations, it may or may not contradict
the intended constraint; e.g. Constraint (10.3) will not contradict Constraint (10.2):
i.e. if each task duration is greater than or equal to 7 then Constraint (10.3) can be
rewritten as endi + 3 ≤ startj.

— A wrong constraint, i.e. either:

— The constraint uses an unexpected attribute;
e.g. for the table ‘schedule_robustness_c_o_a_a_a_0.pl’, instead of a con-
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straint
endi + 3 ≥ endj (10.6)

the model acquisition tool learned

endi + 17 ≤ endj + durationj (10.7)

— The constraint was not expected for this table.

10.2.2.2 Resource, calendar and shift constraints

Each acquired resource constraint, i.e. disjunctive and diffn, and each calendar or
shift constraint is classified in one of the following categories:

— An exact constraint, i.e. a constraint that is correctly identified.

— A partial constraint, where the resource (resp. calendar or shift) constraint mentions
the proper resource (resp. calendar) attribute, but one or more temporal attributes,
i.e. start time, end time or duration, are used in the wrong place.

— A wrong constraint, if one of the following statements is true:

— The resource or the calendar attribute was not correctly identified.

— A non-temporal attribute is used in place of a temporal attribute.

— The constraint is not supposed to be acquired: for example, if the tool learns
a set of disjunctive constraints instead of a single diffn constraint because
it mistakenly assumes that tasks are pre-assigned, we consider that these are
incorrectly learned disjunctive constraints.

10.2.2.3 Functional constraints

Each acquired functional constraint is classified in one of the following categories:

— An exact constraint, i.e. a constraint that is correctly identified.

— A partial constraint, when the tool learns a formula with only a subset of the ex-
pected input attributes, which can happen if some unused attributes are constants;
e.g. for the table ‘schedule_robustness_d_f_d_b_ a_8.pl’, instead of the con-
straint

endi = starti + durationi (10.8)
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the model acquisition tool learned

endi = durationi + 1, (10.9)

because all start times are equal to one.

— A wrong constraint, when the model acquisition tool learns a formula from a different
family or a formula that uses attributes that are not expected;
e.g. for the table ‘schedule_robustness_e_k_i_a_a_1.pl’, instead of the constraint

durationi = quantityi · speedi + 7 (10.10)

the model acquisition tool learned

durationi = 11 + ¬[quantityi = 4] (10.11)
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CONCLUSION

The aim of this thesis was to propose a variety of ML techniques related to the acqui-
sition of constraint models from error-free data in the context of two use cases.

The first use case is the search for conjectures for eight different combinatorial objects
which was established in [1]. Two primary contributions are

— A new learning bias, Boolean-arithmetic equations (BAE). To acquire a BAE, a
constraint model is created and then solved.
The proposed constraint model consists of three parts:

— The core model. The model is necessary to select which Boolean-arithmetic
conditions (BAC) would be part of the final BAE for a given logical operator.

— Constraints enhancing the core model. These constraints are aimed at improv-
ing the performance of the core model by imposing symmetry-breaking con-
straints and by limiting the search tree to only non-simplifiable solutions.

— The anti-rewriting constraints. Their goal is to prevent the generation of sim-
plifiable BAE. These constraints are generated automatically by a separate
constraint program and stored into a reusable database. The anti-rewriting
constraints are categorised into several families to simplify their generation.

The new learning bias is also used to construct case formulae by creating sub-tables
from the main table.

— An idea of formula synthesis which allows combining multiple learning biases into
one conjecture. The way this is done is by analysing a given table to see different ways
it can be decomposed rather than using a brute-force approach. Four decomposition
techniques were developed which allow decomposing any given table into sub-tables.
We then can apply any learning bias or any decomposition technique on each sub-
table recursively. This helps to acquire complex conjectures in a modular manner.

Both contributions were evaluated on the dataset containing information about sharp
bounds for eight combinatorial objects. The evaluation showed that both contributions
help acquire a large number of missing conjectures for the dataset.
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The second use case is the acquisition of a constraint model from a single valid
short-term production schedule (STPS). The goal is to acquire the relevant scheduling
constraints such as functional constraints between columns, temporal constraints within
chains of tasks, constraints put on the usage of resources and constraints which align each
tasks with the provided calendar. The acquired constraints are then combined into a sin-
gle model for future use. The thesis takes the tool developed in [1] and proposes various
enhancements to accommodate this use case:

— The automated search for candidate primary and foreign keys for cases when none
are provided.

— The ranking of functional dependencies to select the most likely candidate functional
dependencies which can produce a valid functional constraint.

— The acquisition of temporal constraints. These constraints ensure that each subse-
quent tasks within a given chain are aligned properly against each other.

— The acquisition of resource constraints. These constraints ensure that tasks assign for
each resource do not intersect. To ensure this, global constraints DISJUNCTIVE
and DIFFN are used.

— The proposal and the acquisition of calendar and shift constraints, i.e. the constraints
which ensure that each task is placed accordingly to a given calendar, be it periods
of availability or unavailability of an individual resource or a given shift schedule.

— The module which converts acquired constraints into a single constraint model in a
MiniZinc file. This constraint model then can later be used together with a variety
of solvers to produce new schedules, optimised wrt different criteria.

This thesis also provides an evaluation of the acquisition quality of the developed tool
against a dataset of 48000 schedules. The evaluation showed good results where the vast
majority of constraints was identified correctly.

In conclusion, this thesis achieves our initial goals: it shows that ML approaches specif-
ically designed to work with error-free data can provide good results in many situations.

Future work may include exploring the following topics:

— acquring new scheduling constraints to the system such as conditional scheduling
constraints;

— coming with new decomposition techniques, e.g. when we can infer specific properties
on the shape of the conjecture;
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— acquiring constraints when it is known or expected to have a very limited number
of errors.
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Titre : Apprentissage de modèles à contraintes concis à partir de données sans erreurs:
études sur l’acquisition d’équations arithmétiques booléennes et de modèles d’ordonnancement
à court terme

Mot clés : programmation par contraintes, acquisition de modeles, limites nettes

Résumé : Utilisant la programmation logique
par contrainte, l’objectif de cette thèse est de
développer plusieurs techniques d’acquisition
de contraintes pour les situations où nous dis-
posons de données sans erreur. De telles sit-
uations rendent la majorité des techniques
de ML inutilisables et de nouvelles approches
sont nécessaires.

Les techniques d’acquisition de con-
traintes proposées sont appliquées à deux cas
d’utilisation : la recherche de nouvelles con-
jectures de limites fortes pour huit objets com-
binatoires et l’acquisition de contraintes à par-
tir d’un calendrier de production à court terme
unique et valide.

Les contributions de la thèse compren-

nent (i) un modèle de contrainte pour acquérir
des expressions booléennes-arithmétiques à
partir de données, (ii) une base de données
générée automatiquement de contraintes
anti-réécriture qui empêchent la génération
d’équations booléennes-arithmétiques simpli-
fiables, (iii) un certain nombre de techniques
de synthèse de formules qui peuvent acquérir
une formule unique combinant plusieurs biais
d’apprentissage, (iv) l’acquisition d’une variété
de contraintes d’ordonnancement telles que
les contraintes temporelles, de ressources,
de calendrier et d’équipes, et dans ce
dernier cas (v) la génération d’un modèle
d’ordonnancement MiniZinc.

Title: Learning concise constraint models from error-free data: studies on learning Boolean-
arithmetic equations and short-term scheduling models

Keywords: constraint programming, model acquisition, sharp bounds

Abstract: Using constraint logic program-
ming, the goal of this thesis is to develop
several constraint acquisition techniques for
the situations where we have error-free data.
Such situations render majority of ML tech-
niques unusable and new approaches are re-
quired.

The proposed constraint acquisition tech-
niques are applied for two use cases: search
for new sharp bounds conjectures for eight
combinatorial objects and the constraint ac-
quisition from a single valid short-term produc-
tion schedule.

The contributions of the thesis include
(i) a constraint model to acquire Boolean-
arithmetic expressions from data, (ii) an auto-
matically generated database of anti-rewriting
constraints that prevent the generation of
simplifiable Boolean-arithmetic equations, (iii)
a number of formulae synthesis techniques
which can acquire a single formula combin-
ing several learning biases, (iv) the acquisi-
tion of a variety of scheduling constraints such
as temporal, resource, calendar and shift con-
straints, and in this later case (v) the genera-
tion of a MiniZinc scheduling model.


	Résumé
	Introduction
	I Background
	Background
	An overview of constraint acquisition techniques
	Active learning for the matchmaking problem
	Interactive constraint acquisition and timid acquisition strategy
	The CONACQ system
	The QUACQ system
	Soft constraint acquisition systems
	The Model Seeker
	Classifier-based constraint acquisition
	Other constraint acquisition techniques

	Acquiring Boolean-arithmetic expressions
	Acquiring decision trees

	Automated discovery


	II Use cases
	First use case: Acquiring conjectures on combinatorial objects
	Acquiring sharp bounds
	The relevance of Boolean-arithmetic equations for learning sharp bounds
	The relevance of formula synthesis
	Context and Motivation
	Running Examples and Intuition of the Decomposition Technique


	Second use case: Acquiring short-term scheduling models
	Context and scope
	Context
	Scope

	Model acquisition input
	Preprocessing of the inputs for the model acquisition
	Output of the model acquisition tool
	Functional constraints
	Temporal constraints
	Resource constraints
	Calendar constraints
	Shift constraints
	Wrapping up the constraints of the running example



	III Overview of the model acquisition tool
	The model acquisition tool
	Description of the components of the acquisition tool
	Metadata generation
	Conjectures and functional constraints acquisition
	Acquiring scheduling constraints
	Merging tables
	Generating a MiniZinc model

	Workflow of operations for acquiring sharp bounds on characteristics of combinatorial objects
	Workflow of operations for acquiring STPS

	Acquiring primary and foreign keys and ranking functional dependencies
	Generation of primary keys of an input table
	Problem statement
	Necessary conditions for a subset of columns to be a primary key candidate
	Algorithm 1 for searching candidate PKs
	Algorithm 2 for searching candidate PKs
	Algorithm 3 for searching candidate PKs
	Algorithm 4 for searching candidate PKs
	Performance comparison

	Generation of foreign keys of an input table
	Ranking functional dependencies
	Number of distinct vectors within a selected functional dependency
	Correlation between a functional dependency and its output
	Number of columns within a functional dependency
	Selecting functional dependencies
	Assessment of the functional dependencies ranking process



	IV Acquiring conjectures and functional constraints
	New biases
	Describing Boolean-arithmetic expressions
	Limiting the complexity of Boolean-arithmetic expressions

	A core model for acquiring Boolean-arithemtic equations
	Problem description
	A CP core model

	Enhancing the core model
	Linking the number of conditions, their arity, and the number of attributes
	Symmetry breaking
	Pre-computing the combinations of possible values of the coefficients of a condition

	Anti-rewriting constraints to avoid generating simplifiable Boolean-arithmetic expressions
	Hypothesis description for a pair of conditions of an anti-rewriting constraint
	Defining families of anti-rewriting constraints
	Using anti-rewriting constraints to restrict the search space
	Method for acquiring anti-rewriting constraints
	Finding the set of most general anti-rewriting constraints
	Characteristics of the generated database of anti-rewriting constraints

	Additional applications of Boolean-arithmetic expressions
	Using Boolean-arithmetic expressions to learn extended conditionals
	Using Boolean-arithmetic expressions to learn case formulae as small decision trees

	Evaluation
	Describing the combinatorial objects and the data used in the experiments
	Evaluating the contribution of Boolean-arithmetic equations and their extensions for learning sharp bounds
	Evaluating the enhancements of the CP core model for acquiring Boolean-arithmetic equations


	Decompositions
	Decompositions definition
	Problem statement

	Implementing the different types of decompositions
	Decomposition of Type (7.2) [adding a Boolean expression]
	Decompositions of Types (7.3) and (7.4) (isolating a parameter)
	Decomposition of Type (7.5) (introducing a conditional)

	Evaluation
	Type of conjectures we are looking for
	Experimental Setting
	Experimental Results



	V Acquiring and generating short-term production scheduling models
	Scheduling constraints
	Acquiring temporal constraints
	Identifying disjoint sequences of tasks
	Identifying temporal task attributes
	Identifying temporal constraints

	Acquiring resource constraints
	Acquiring calendar constraints

	Generating MiniZinc models
	Generating a MiniZinc model wrt the acquired constraints
	Reformulating the calendar constraint
	Illustrating the constraint model for Tables 3.3 and 3.4

	Evaluation
	Generating a variety of input tables for the acquisition tool
	Summary of the results and detailed discussion
	Summary of the results
	Detailed discussion


	Conclusion
	Bibliography


