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Titre : Manipulation robotique bi-bras d’objets souples basee vision

Résumé :

Les objets non-rigides sont amplement présents autour de nous, qu’il s’agisse de
notre vie quotidienne ou d’un contexte industriel. Malgré le besoin croissant d’automa-
tisation de la manipulation de tels objets, il n’existe à ce jour pas de méthode générale
et facilement implémentable pour contrôler la forme de ceux-ci. En effet, l’important
nombre de degrés de liberté des objets souples fait qu’il est difficile de suivre et contrô-
ler la façon dont ils se déforment pendant la manipulation.

L’asservissement visuel non-calibré, une méthode permettant d’estimer en ligne un
model caractérisant le contrôle du robot en fonction de données visuelles, a été dé-
veloppé et largement utilisé depuis des années. Pourtant, les premiers travaux implé-
mentant l’asservissement visuel ne considèrent en général que les objets rigides. Plus
récemment, des chercheurs ont conçu de multiples contrôleurs de formes, s’appuyant
sur l’estimation de modèle, les réseaux de neurones ou encore l’apprentissage par ren-
forcement pour calculer la commande d’un robot. Bien que ces méthodes présentent de
bons résultats, il y a néanmoins des inconvénients, comme le besoin de connaissances
sur l’objet en amont (forme, paramètres matériaux), un modèle spécifique (câbles, tis-
sus), d’importantes bases de données ou un temps d’apprentissage élevé; tout cela peut
limiter l’éventail d’applications possibles ou rendre l’implémentation de ces méthodes
laborieuses.

Cette thèse a pour objectif de combiner les concepts d’asservissement visuel, les
méthodes de contrôle basées données ainsi que basées modèle, dans le but de contrôler
la forme d’objets souples avec un robot bi-bras. Nous présentons d’abord une méthode
de contrôle basée données pour déformer des objets en un contour 3D désiré, utilisant
des référentiels de tâches coopératives pour coordonner deux bras robotiques. Cette
méthode ne requiert aucune connaissance a priori de l’objet manipulé, mais est limitée
au contrôle d’un contour 3D.

Dans cette optique, nous proposons ensuite des outils pour construire de simples
modèles géométriques et mécaniques en tirant profit du robot bi-bras à disposition.
Nous implémentons des simulations physiques permettant de relier la déformation des
modèles obtenus avec les déplacements des effecteurs du robot en temps réel.

Enfin, nous utilisons ces simulations en temps réel, combinées à un retour visuel,
pour alimenter une boucle de contrôle de forme prenant en compte le volume entier des
objets manipulés. Notre méthode peut être utilisée avec peu de connaissance sur l’objet
manipulé, permettant une mise en place facilitée et un plus large choix d’applications.
De plus, l’utilisation de simulations remédie à la difficulté d’obtenir des données vi-
suelles consistantes pour le calcul de commande. Tout au long du développement, des
validations expérimentales sont conduites avec le robot BAZAR composés de deux bras
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robotiques KUKA, différents objets, et une seule caméra RBG-D statique.

Mots-clefs : Manipulation d’Objets Déformables, Manipulation Bi-Bras, Asservisse-
ment Visuel, Méthode d’Elements Finits, Real-to-Sim.

Title: Vision-based robotic dual arm manipulation of soft objects

Abstract:

Non-rigid objects are present everywhere in our daily life as well as industrial con-
texts. Despite the increasing need for automating their manipulation, there is to date
no generally applicable and easily implementable method to control the shape of such
objects. Indeed, the high number of Degrees of Freedom (DOF) of soft objects makes
it difficult both to track and control the way they deform during manipulation.

Uncalibrated visual servoing, a method where the model mapping visual data to
robot control is estimated online, has been developped and widely used for years. Yet,
the early works implementing visual servoing usually focus only on rigid objects. More
recently, researchers have designed shape servoing controllers, relying on model estima-
tion, neural networks or reinforcement learning to compute the command. Although
these methods present good results, there are drawbacks - the need for prior knowl-
edge of the object (shape, material parameters), specific models (cables, fabrics), huge
datasets and high training time - all limiting the range of application or increasing the
difficulty of implementation.

This thesis aims at combining visual servoing, data-based and model-based methods
with the goal of shaping soft objects with a dual-arm robot. We first present a data-
based control framework to shape objects into a desired 3D contour, using cooperative
tasks frames to coordinate both arms. This work does not require any knowledge of
the manipulated object, but is limited to shaping a contour.

With this in mind, we then propose tools to build geometrical and simple mechanical
models while making use of the dual-arm robot setup. We implement physics simula-
tions relating the deformation of the obtained models with the real-time displacements
of the end-effectors.

Finally, we use real-time simulations combined with visual feedback to feed the
control framework to shape objects in their full volume. Our framework operates
with little knowledge of the manipulated object, allowing a large range of applications,
and the use of simulations remedies the difficulties of getting visual data for control
computation. Throughout the developments, we conduct experimental validations with
the robot BAZAR (composed of two KUKA arms) shaping vaious soft objects, thanks
to a single fixed RGB-D camera.

Keywords: Soft Objects Manipulation, Dual-Arm Manipulation, Visual-Servoing, Fi-
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nite Element Method, Real-to-Sim.
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Introduction

Context

Cables, organic matters like tissues or vegetables, polymers foams, clothes, even
metal parts - are deformable. Despite the presence of so many non-rigid objects ev-
erywhere in our daily life and despite the increasing need for automating their manip-
ulation, to date, there is no generally applicable and easily implementable method to
shape such objects. The high number of Degrees of Freedom (DOF) of soft objects,
which deform in every direction, makes it difficult to track and control their shape
during handling.

Figure 1: Soft objects handling in robotics. Fruit picking ([HBB+21]), cloth unfolding ([XCB+22]), cable
manipulation for plug insertion ([SWD+21]), collaborative lifting ([DR19]), ”Multiplanar Robotic Tube
Bending”design research project for caadria 2022 post-carbon2, and robotic prostate probing ([CAL+22]).
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Manipulating objects such as clothes [NKBC22], wires [LSGL18], [MS22] or tying
suture on biological surfaces [SDO+16], [ZWWL19] constitute important and open
challenges in robotics and related areas. Folding clothes [GCLW+20] or picking fruits
[UWH+20] and vegetables [SFN+20] are simple tasks for humans, which prove difficult
for robots. Such tasks often involve two important aspects: the use of two coordinated
arms, and the handling of non-rigid objects. For all these reasons, in this thesis, we
focus on the dual-arm manipulation of such objects.

The research conducted in this thesis was funded by the Socio-Physical Interac-
tion Skills for Cooperative Human-Robot Systems in Agile Production (SOPHIA3),
which is supported by the European Union’s Horizon 2020 research and innovation
program. The SOPHIA project is a European project pursued in collaboration by sev-
eral universities (Istituto Italiano di Tecnologia, Univerité de Montpellier, University of
Twente, Vrije Universiteit Brussel, Università di Pisa) and industries (Hidria, Volskwa-
gen, Baua, Hankamp, Inail, IMK automotives, DIN) with at its heart, the development
of robotic technologies for socially cooperative human-robot systems. SOPHIA’s ob-
jective is to propose socio-physically adaptive, ergonomic, reconfigurable and intuitive
production systems, for the industry. In this context, handling deformable industrial
parts like one produced at Hidria and shown in Fig.2 - needs to be studied in order to
automatize their processing in the industrial context. Indeed, the robotic manipulation
of deformable objects is harder to manage than that of rigid objects. The change in
shape must be monitored, to avoid damaging the objects permanently.

Figure 2: Industrial part produced by Hidria.

Motivations

This thesis focuses on the development of methods for automatic dual-arm manip-
ulation of various soft objects. In particular, we investigate the handling - i.e, tracking
and control - of deformation through vision, namely visual shape servoing. The prin-
ciple is as follows: the robot end-effectors guide the soft object, from an initial shape
and towards a desired shape, as illustrated in Fig. 3. The control scheme is based on
visual information, which can be obtained with non-expensive cameras.

2https://caadria2022.org/projects/multiplanar-robotic-tube-bending/
3https://project-sophia.eu/

https://caadria2022.org/projects/multiplanar-robotic-tube-bending/
https://project-sophia.eu/
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Figure 3: Illustration of visual shape servoing. The robot aims should drive the object from an initial shape
(dotted blue) observed by the camera (in blue) to a target shape (dotted red).

The objectives of this thesis are the following:

1. Propose a general framework to control the shape of different soft objects as
precisely as possible. The control scheme should apply to the use of two robotic
arms in 3D.

2. Include visual information in the control loop in real time.

3. Infer the deformation of the whole object, including its self-occluded parts.

4. Validate the proposed method through experiments with different types of ob-
jects.

Setup

The robot performs visual perception with a fixed Intel RealSense D435 RGB-D
camera. The algorithm that performs tracking is programmed using Python and the
libraries OpenCV 4, pyrealsense5 and Open3d6. The computations of robot poses are
also done in a Python script, and sent to the robot via the control library RKCL7, in
C++, which converts the pose command into joint commands for the robot. Commu-
nication between the Python script and the C++ script is done through a socket using

4https://opencv.org/
5https://dev.intelrealsense.com/docs/python2
6http://www.open3d.org/
7https://rkcl.lirmm.net/rkcl-framework/

https://opencv.org/
https://dev.intelrealsense.com/docs/python2
http://www.open3d.org/
https://rkcl.lirmm.net/rkcl-framework/
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the library Nanomsg8.

For our experiments, we use the dual-arm robot BAZAR ([CPN+19]), composed of
a mobile base and two KUKA LWR4+ arms which are each equipped with ATI Mini
45 force/torque sensor. The setup is shown in Fig. 4.

Figure 4: Robotic setup.

Assumptions
Throughout the manuscript, we consider these hypothesis:

• The soft object is already rigidly grasped by the manipulator, without any loose
contact during the whole task.

• At least one face of the soft object is in the field of vision of the camera throughout
manipulation.

Contributions

The main contributions of this work are:

Chapter 2: A visual servoing controller for cooperative dual-arm shaping of soft
objects

– A controller in SE(3) to shape the 3D contour of the visible surface of soft
object into a target 3D contour.

– An implementation of the cooperative task space for independent control of
the deformation and pose.

8https://nanomsg.org/

https://nanomsg.org/
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– The validation of our closed-loop controller on experiments with a dual-arm
robot and different objects.

Chapter 3: Tools for soft objects modeling

– A physics-based simulation implementation, to predict the deformation of
soft objects according to the robot motions.

– A methodology to estimate the radius and length of Deformable Linear
Objects (DLO) from single view RGB-D data.

– A process to create meshes from different types of reconstructed data (either
DLO parameters or a reconstructed point cloud).

Chapter 4: A hybrid model-based and visual servoing controller for dual-arm
shaping of soft objects

– A controller in SE(3) to shape the whole volume of soft object, represented
by a mesh, into a target mesh.

– An implementation of the physics-based simulation setup introduced in
Chapter 3 in the loop of the controller, allowing to estimate the deformation
(and breakage) of the entire soft object during robotic manipulation.

– A strategy to evaluate and correct the estimated (via the physics-based sim-
ulation) deformation with regards to that observed by the RGB-D camera.

– The validation of of our closed-loop controller controller with a dual-arm
robot, for different foam objects.

Organization of the thesis

This thesis is organized as follows, and as summarized in Fig.5:

• Chapter 1 presents a review of the different methods existing in the literature
for soft object robot manipulation. In particular, it addresses the tracking and
control challenges.

• Chapter 2 presents a dual-arm visual servoing scheme to shape soft objects in
SE(3). It aims at driving the object’s shape, defined by a 3D contour of the
visible surface, to a desired shape, while using cooperative tasks to control the
deformation and pose separately. We validate the framework with experiments
on our robot and with different objects, but highlight the limit of this shape
representation.

• Chapter 3 introduces tools for modeling soft objects, in an attempt to answer
the challenges that arose in Chapter 2. We present a physics simulation setup
to estimate the deformation of an object under external forces, and we propose
geometric model construction tools, which can be used to implement these sim-
ulations.



26 Introduction

• Chapter 4 presents a control scheme using model-based visual servoing for soft
objects; it proposes a solution to the vision oriented challenges that were made
apparent in Chapter 2, by putting into use the modeling tools introduced in Chap-
ter 3. Experiments are conducted, to validate the approach, both in simulation
and on the robot, with several foam objects.

• Chapter 5 summarizes and concludes the work done in this thesis.

Figure 5: Research process and organization of the manuscript.



CHAPTER 1

State of the art

Robotic manipulation of soft objects is a subject that has been studied in numerous
contexts and with various approaches, in recent years (see the survey [YVK21] for
examples on multi-robot manipulation of deformable objects).

The literature relevant to our work can be divided into two categories: firstly,
tracking of non-rigid objects and secondly, robotic control of non-rigid objects.

In the first category (tracking) are investigated methods to follow and represent
the evolution of the deformations the tracked object is subjected to. Tracking methods
can be touch-based ([SMC+18]), but we focus on the visual tracking of soft object, i.e.
the tracking of deformation through visual feedback, as it is most relevant to our work.
Visual tracking of deformations can also be divided into two categories of methods:

• Model-based, which relies on a known template of the object (its topology) and/or
a physical model.

• Model-free, which does not rely on any model.

In the second category (control), which is on the subject of control schemes for
soft objects, are presented methods to drive robotic manipulators into accomplishing a
given task with a soft object. Here, we mostly focus on shape-servoing, which consists
in controlling the deformation that a soft object undergoes in order to reach a desired
shape. These control methods can also be divided in different categories:

• Data-based, which consists in learning the behavior of a soft object offline, thanks
to preliminary collected data.

• Model-based, where a chosen physical model of the object is used to predict the
behavior of the soft object in response to its manipulation.
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• Online Jacobian estimation, which aims to iteratively estimate a local and simpli-
fied model of the deformation with regards to the robot motions during manipu-
lation. In particular, we focus on the implementation of visual-servoing methods
applied to soft objects, which consist in mapping the robot inputs with features
extracted from visual observations.

These different categories are illustrated in Fig.1.1.

Figure 1.1: Categorization of the presented topics in the state of the art with regards to Robotic manipu-
lation of soft objects.

This thesis aims at studying and developing tools, to both track and control 3D
deformation of different soft objects with robotic arms. To that end, we start by
presenting a general overview of relatively recent works made in the different topics
at stake. We first introduce works related to visual tracking of deformation, then
ones related to control of soft objects, with methods which can be either model-based
or data-based. We also investigate how visual-servoing can be applied to deformable
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objects manipulation in some notable works. Finally, we discuss the position of our
work with regard to the literature.

1.1 Visual tracking of deformation

The existing literature for pose (position and orientation) tracking of rigid objects
is expansive. The Iterative Closest Point (ICP), first introduced in [BM92] and later
developed in [RL01], is an optimization method which aims at minimizing the dis-
tance between two point clouds (a source and a target one). The registration consists
mainly of two steps: matching the points to the closest geometric entity (curve, surface,
plane, point), then estimate the rigid transformation that best aligns the matches. The
process is iterated until the resulting alignment is satisfying, and gives the final rigid
transformation from the source point cloud to the target one.

David G. Lowe [Low99] first introduces the Scale-Invariant Invariant Transform
(SIFT) algorithm in 1999 to answer correspondence problems between different views
of an object in images. SIFT selects rotation, scale and illumination invariant features
by applying Difference of Gaussians, and matches these features through descriptors
generated from a histogram of the gradients. Speeded up robust features (SURF), in-
troduced in [BTVG06], is another method for features detection and matching, based,
this time, on square-shaped filters to build a scale-space representation. Once the fea-
tures are extracted, descriptors are constructed for matching.

In 2004, the authors of [LPF04] estimate key feature points in images to construct a
training set, and conduct points matching between two images by using statistical clas-
sification. The work [PR12] describes a pose estimation method based on maximizing
the energy function, which is established from a probabilistic region-based separation
of background and foreground pixels. Both works require 3D models of the tracked
objects. Pose estimation using Neural Networks is presented in recent works such as
[WZR+18] using semantic labeling, or [XSNF17] using only RGB images.

When it comes to soft objects, however, the issue of tracking objects and their
shapes becomes more complex. While rigid objects can be defined by a non-changing
geometry - edges, corners, curves - or a pose in space, the geometry of a soft ob-
jects varies during manipulation. This makes establishing the correspondences between
shape features from one step to the other challenging.

1.1.1 Model-free tracking

Model-free methods for deformable objects tracking are methods that do not require
a template or physical model for the object to track, and only relies on it’s observed
state.
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In 2019, the authors of [CB19] present a tracking method from RGB-D data. Their
method is based on the Coherent Point Drift algorithm (CPD, first introduced in
[MS10]), which is a probabilistic point set registration method. It uses Gaussian Mix-
ture Models, to represent a point set and aims to fit them to a second point set while
preserving a structural coherence. The work in [CB19] focuses on handling occlusions,
by also considering topological consistency, adding a regularization step based on Lo-
cally Linear Embedding [RS00]. Although the presented method is template-less, the
topological coherence is ensured with an initial connectivity model of the object com-
posed of ordered vertices and edges (needed as input).

In [CPP12], the authors extract and monitor the shape deformations of soft objects
from a video sequence, which they map to force measurements. They use a three-finger
robotic hand to sense an object, so the hand fingertips’ positions are associated to the
contours of a deformed object, tracked in a series of images. The deformations are
tracked through a grid, printed on the object surface. The authors then use Neural
Networks to predict the deformation of the object when subject to interaction with
the robotic hand. [HPC17] tracks the deformation of objects undergoing probing by a
robotic hand, by using level set geometric contour representation [SK08].

Figure 1.2: Examples of DLO tracking through occlusions - Figure from [JWZ+20].

The work [JWZ+20] presents a closed-loop framework to track DLO, like ropes, es-
pecially in case of occlusions. They first complete the point cloud in frame t, using the
foreground mask and the recovered point cloud in frame t-1 through image processing.
The point cloud is then registered into nodes, using a Structure Preserved Registration
algorithm as well as a cubic spline interpolation. Through a physic-based simulator and
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a feedback linearization controller, the authors then simulate the nonlinear dynamical
behavior of the DLO to stabilize the tracking procedure. Some results of the tracking
method are shown in Fig.1.2.

The paper [FNT+11] presents a dual-grid free-form deformation (FFD) framework,
which consists in deforming a source shape to the target shape by rigidly aligning char-
acteristic features and subsequently forming a free-form deformation grid. To represent
a shape and the space around the surfaces, the authors use the Signed Distance Field
(SDF), as well as free-form deformation. The source shape is surrounded by a control
point grid, permitting to model the spatial deformation needed to match both surfaces
(source and target). A second grid is used for sampling: it is superimposed over the
FFD control point grid. This sampling grid is subdivided into sampling regions to
enclose each control point, and it is used to find the optimal translation - the one that
minimizes the difference between the SDFs in the corresponding sampling region - of
the control point within this sampling region. The control points are then translated
accordingly, and their new positions represent the deformation.

[YGL+19] proposes a non-rigid registration method for large deformations, using a
set of RGB-D scans. The authors perform a coarse-to-fine multi-resolution scheme, to
compute the deformation of multiple scans simultaneously, optimizing a global align-
ment problem with an as-rigid-as-possible constraint.

A local-to-global hierarchical optimization framework is proposed in [WZX17] to
non-rigidly register partial RGB-D feedback with dynamic motions. Tracking the de-
formation from one instant to the other is done through a deformation graph, on which
nodes are uniformly sampled throughout the surface, and neighboring nodes are con-
nected with edges. The authors define the distance between a point on a source scan
p and target scan v as:

d(p, v) = max(1− ||p− v||
dmax

, 0) ∗max(np ∗ nv, 0) (1.1)

With np and nv the points normal, and dmax a limit distance. For each point p, the
point ṽ from source scan that maximizes d - to account for large deformations - is
found; a correspondence then yields d(p, ṽ) > 0.

Digital Volume Correlation (DVC) was first introduced in [BSFS99] as an extension
of a known image analysis in 2D (Digital Image Correlation, DIC) to RGB-D data. It
is a method used to track deformations using image correlation, and it allows to obtain
complete 3D displacements and strain maps. The main attribute of the method is that
it requires the material to have a high contrast random pattern, acting somewhat as
deformation markers. Some works use Fourier-transform methods [BKTA+15], or spline
interpolation [GLH11] to solve a minimization problem and compute the correlation
between two sub-images. This method gives great 3D results for local displacements or
deformation, but does require highly accurate imaging, usually by using stereo cameras,



32 State of the art

which is difficult to attain with usual RGB-D cameras, see for [BJM+18] an extensive
review.

Many different algorithms propose solutions for template-less non-rigid registration.
One of the main difficulties of deformation tracking is maintaining topological coherence
throughout the registration process; while some works deal with this issue by using
specific geometries (e.g., DLO or grids) or via constraints added in the optimization
problem, this issue can also be solved by the use of an input model (i.e. a mesh of the
tracked object).

1.1.2 Model-based tracking

We now present different works using models to track the deformation of soft ob-
jects. A model refers to:

• a geometric model - that is, a template or topology;

• a physical model that contains the equations and different dynamics parame-
ters that rule over the object’s behavior. These equations are solved through
integration schemes or simulation as the manipulation goes.

In particular, we introduce some tracking schemes using the Finite Elements Method,
which will be of interest in our work.

Finite Element Method (FEM) is a modeling approach based on continuum me-
chanics. It is used on meshes, a set of points (nodes) and connectivity between these
points (elements) which describe the topology of the considered object. The method
aims to interpolate the displacement of the nodes to approximate the displacement of
an element of the mesh.

The authors of [PPP17] combine DIC with FEM in what is called a FE-Stereo-DIC.
Considering an initial mesh plate, they use DIC to calibrate it with the 3D points of
the plate object extracted from the stereo cameras. The mesh is then corrected to
match the points of the stereoscopic image pair. For two pairs of images of the object
(an initial and a deformed image), the 3D displacement of each node of the mesh can
then be measured.

The authors of [PLS15] also propose a tracking method based on FEM. Knowing the
3D volumetric mesh of the object and the material properties of the object, the authors
match the visible nodes of the undeformed mesh, with the point cloud of the currently
deformed object (extracted from RGB-D data). They do so first, rigidly through ICP;
then, K-Nearest Neighbors (KNN) algorithm is used to find the correspondences, on
one hand, of the mesh nodes to the point cloud, and on another hand, of the point cloud
to the mesh nodes. Using this pair of correspondences, that are meanwhile weighted,
the elastic forces F are computed, as shown in Fig. 1.3.
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Figure 1.3: Example of the computed external forces applied on the mesh (green) to align it with the point
cloud (blue) - Figure from [PLS15].

Using FEM modeling based on co-rotational linear elasticity, at step ti the displaced
mesh nodes m(ti) are computed through:

F(ti) = R(ti)K(ti)[R(ti)−1m(ti)−m(ti−1)] (1.2)

with textbfR(ti) the rotation matrix output by ICP, K(ti) the stiffness matrix that
is computed using the material parameters and m(ti−1) the mesh nodes at the previous
iteration. The authors expand their work to address collision between non-rigid objects
in [PCLS18].

Similarly, the authors of [SKM19] use a similar method for visual tracking, taking
into account external forces, including a closed loop minimization technique used to
compute the Jacobian matrices relating the displacement of the nodes with the exter-
nal forces applied on it. This permits to relax the need for precise knowledge of the
material parameters.

Instead of using FEM, [ZNI+14] minimize the deformation energy, following a thin
shell deformation model using a Conjugate Gradient solver. In this work, the authors
present a template-based tracking method, as well as an algorithm for online tem-
plate acquisition. In their framework, the template is first reconstructed using a stereo
matching algorithm, which fuses multiple view RGB-D data with a 3D model, as well
as a mesh hierarchy (meshes with different fineness). For the tracking part, each new
frame is first rigidly registered to the smooth template, then non-rigidly registered to
the meshes form coarser to finer. Non-rigid registration is done by minimizing a fit-
ting energy, composed of dense geometric and lighting constraints in addition to an
as-rigid-as-possible (ARAP, [SA07]) regularizer; this fitting energy is minimized with
a Gauss-Newton solver. Details are finally fused onto the final mesh using a linear



34 State of the art

deformation model (thin-plate spline regularizer).

[SLHA13] integrates a probabilistic model to infer the correspondences between
physical model of the object (the mesh of n nodes) and its observation (point cloud
pc of p points), to then estimate the deformed state of the mesh. The authors use
the Expectation Maximization algorithm, to find the most probable nodes position, for
each point cloud, by maximizing the probability P :

arg max
m1:n
P(m1:n|pc1:p). (1.3)

Once the correspondences are estimated, the corresponding forces are deduced,
based on a Mass-Spring Model, and applied to the nodes through simulations, to obtain
the new positions of the physical model. [LAAB14] also feeds information processed
from RGB-D data into a Mass-Spring Model to simulate the physical behavior of the
deformable object. In a similar way, the authors of [WWY+15] also apply a probabilistic
model, but instead use FEM simulations for a linear-elastic model.

The presented regularization of the external force allows for online estimation of
the material parameters.

Other works also use initial templates, but performs registration without a me-
chanical model. In [CBI10], the first reconstructed mesh is deformed to fit point clouds
resulting from the observation of motion, while preserving the local rigidity with re-
spect to the reference pose. Rigid motions around control surface points are locally
averaged, to guide the deformation of the mesh. These rigid motions are computed in
a manner similar to the ICP algorithm: given a source mesh and target data, point-
to-point associations are iteratively re-established, until the error is smalle “enough”.
In [IZN+16], the authors represent the object with a mesh and a deformation field: a
deformed 3D surface mesh is created according to the RGB-D data, representing the
current state of the object. Depth correspondences with the non-deformed mesh are
computed, as well as SIFT features in the current frame and in all past frames, to fur-
ther improve the correspondence. The deformation which aligns the correspondences
is computed through a non-linear optimizer, which takes the deformation energy Edefo

as objective function:

Edefo(X) = wsEsparse(X) + wdEdense(X) + wrEreg(X). (1.4)

In this equation: the unknown 3D local deformations are stacked in X, Esparse(X)
is the alignment objective concerning the SIFT features correspondences, Edense(X)
concerns the depth correspondences, Ereg(X) is a regularization term, ws, wd, wr are
weights. The overall tracking process is illustrated in Figure 1.4.

The authors of [AFB15] consider general shape tessellations, to track shapes over
temporal sequences. The authors consider Centroidal Voronoi tessellation cells, in
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Figure 1.4: Workflow presented in [IZN+16] - Figure from [IZN+16].

which the center of mass of the cell and its centroid coincide. They build both vol-
umetric deformation and observation models, then formulate the tracking problem as
the MAP (Maximum A Posteriori probability) estimation of multiple poses of a given
geometric template model. [HZSP18] uses a parse deformation graph model [SSP07]
to estimate an inter-frame deformation model between a reference shape model and
the observations provided by an RGB-D camera. The authors also iteratively recon-
struct the model, gradually completing and refining its details, by integrating multiple
RGB-D images into the reference shape model.

1.1.3 Conclusions

These works show that many methods using markers, sequences of images, physical
models or neural networks can be used in order to track and establish correspondences
between different states of one object. Among all methods, model-based ones often
rely on a similar workflow: acquisition of a new visual representation, correspondences
estimation (ICP, nearest neighbors, SIFT, probabilistic models), resulting deformation
computation and finally template correction.

1.2 Control methods for soft object manipulation

While some works favor physics-based modeling for accuracy in the prediction of
the behavior of soft objects, other use the advantages of data-driven methods to track
and control the deformation of a wide range of objects, without knowing much about
their behavior, beforehand.

1.2.1 Data-based control

Among recent works on soft objects manipulation, many choose to use data-based
learning approaches such as Deep Neural Networks (DNN) or Reinforcement Learning
(RL) to encode relevant information and to learn the behavior of the object when sub-
ject to robot manipulation.
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In [LLG+15], the authors use the Thin plate spline robust point matching algorithm
([CR03]) to register the initial point cloud. Subsequently, a variable impedance control
strategy is learned through demonstration (using either tele-operation or kinesthetic
teaching). [TWT18] proposes a full framework for dual arm DLO (Deformable Linear
Objects) manipulation using, including state estimation, task planning and trajectory
planning. The state estimation is done using the Coherent Point Drift algorithm (sim-
ilarly to [CB19]) to determine the correspondences between iterations. For trajectory
planning, the authors also rely on a learning from demonstration approach. [SFP+19]
also proposes two predictive control algorithms (reinforcement learning and learning
from demonstration) to manipulate tissues with surgical robots.

Figure 1.5: Overview of the framework proposed in [LHM+22]: self-supervised data collection, offline
training and action selection - Figure from [LHM+22].

In [LHM+22], the robot controller learns to manipulate DLO through self-supervision.
The authors propose an image-based prediction system, which utilizes Fully-Convolutional
Neural Networks (FCNNs). Random pick-and-place actions are first performed in a
self-supervised manner, to collect a data-set (object images and action images). The
displacement images are made of a picking point, a placing point, and a vector rep-
resenting the displacement from one to the other; for each pair of images, both are
translated so that the picking point is at the center. The action image is rotated so
that the displacement vector aligns with the horizontal axis, and the rotation is re-
ported to the object image. The model is trained offline with the collected data-set
and the goals to reach are determined through a predicted image: the action which
minimizes the cost function is selected. The selected image-based cost function C is
defined, with po and pg pixels in the observation image and goal image respectively, as:
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C(o) =
∑

j

∑
i

|pg
i,j − po

i,j|2. (1.5)

This method allows to select the action which results in the predicted image state
that is closest to the goal state. The framework is illustrated in Fig.1.5.

In an approach that is similar to [LHM+22], [WKL+19] learn to generate a sequence
of images for trajectory planning, in order to reach a target shape. In this work, the
authors separate the problem into visual planning (using a deep generative model to
generate a plan) and control computation (learning inverse models from observations
using deep CNN). The system is trained from self-supervised data.

[DZAL+22] also aims to learn to manipulate DLO, this time using Deep Reinforce-
ment Learning (DRL). The DLO is described by a mesh, and the framework aims to
generate the robot motion which leads a few selected mesh nodes to a desired position.
The reward function is taken as the average Euclidean distance between the current
and desired positions of the mesh nodes. The training phase is conducted through
simulations, using FEM computation to simulate the deformation of the mesh.

Figure 1.6: Architecture of the designed Neural Network, with the number of neural units for each layer -
Figure from [HHS+19].

[TCUM19] presents an approach using RL to manipulate clothes with a humanoid
robot. To alleviate the need for heavy data-sets imposed by regular RL methods, the
authors proposes a dual DRL algorithm which allows the learning process to be more
efficient, thus reducing the number of learning samples needed. The authors apply
their method on a humanoid robot, conducting grasp and release actions to manipu-
late cloth-like objects.

The authors of [HHS+19] encode the state of the deformable object, using a fixed-
length feature based on the Fast Point Feature Histogram [RBB09], extended by using
Principal Component Analysis (PCA) to extract features from the observed object
point cloud. Their controller then uses a DNN to map the end-effectors motion to
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the object deformation. Figure 1.6 gives an overview of the framework. The neural
network in composed of 5 layers and it is trained with Mean Square Error (MSE) as
loss function. The input of the neural network is the velocity of the features, obtained
by subtracting the feature resulting from the PCA between two iterations.

1.2.2 Model estimation and model-based control

In model-based methods, a model of the object (both geometric and physic) is used
to predict its deformation in response to the external forces applied to it.

To be ale to use a model in a control scheme, it is necessary to have knowledge
on the object’s mechanical properties. In some papers, robotic manipulation is then
used to estimate a model, or the mechanical parameters proper to the object being
manipulated that are usually needed to be able to implement model-based control.

Iterative methods aim at decreasing an error function step by step. This function
usually depends on both a chosen behavior model and the observation of the object,
as in [FJP+12], where a physical model and RGB-D data are combined in a joint
error function, to estimate the material parameters of objects deforming under grav-
ity. [WMC+20] aims at optimizing a Lagrangian-Eulerian formulation, to solve the
inverse elasticity problem. The physical behavior of the object subject to deformation
is explained through the stress-train relationship, which the authors describe with the
Piola-Kirchoff stress tensor:

σ = 2µϵ + λtr(ϵ)I. (1.6)

In this equation, σ is the stress, ϵ is the strain depending on the displacement u, µ
and λ are the Lamé coefficients, and can directly be linked to the Poisson ration and
Young Modulus through:

λ = νE

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) . (1.7)

[GPIK17] estimates a parameter which determines the degree of deformability of a
material, using a position-based dynamics model along with a FEM model. [AMN18]
conducts force-based model estimation, in addition to 3D shape and pose recovery from
2D observations, by using a Probabilistic PCA formulation to learn the elastic model.

Once a model is chosen or estimated, it can be used to describe the behavior of an
object in relation to the robot motions in a control loop.

The authors of [MB18] choose to design tasks with the multiarmed bandit method.
The model of each arm acting on the object is used to compute the corresponding
command for the robot, and the reward is given in terms of utility - the reduction of
task error - for the considered task.

Instead of relying on physical simulations, the authors of [RMB18] present a frame-
work which constructs a geometry-based model to predict the motions of cloth-like
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objects and DLO given the motion of the end-effectors. Their model estimation is
based on geometric information like the positions of the grippers, their motion, or ob-
stacles. The authors formulate these constraints as an optimization problem which
they solve using gradient descent, with an additional projection step, to estimate the
model. [APR+22] and [AALN+22] model DLO behavior in a 2D workspace using an
ARAP deformation model.

Some works use Finite Element modeling to describe the behavior of the manip-
ulated objects. The method presented in [FMC+18] uses inverse FEM modeling to
compute the motions of three fingers to deform the object to a target shape. Using
both visual and force feedback, they first estimate the material parameters E and ν
for the FEM model, based on a vision-based offline calibration technique presented in
[PLFS17]: the approach consists in minimizing the error between the deformations in
simulation sim which depends on the mesh of the object m and the material parame-
ters, and the ones observed by RGB-D camera feedback defined by the point cloud pc.
The error is defined as:

e(E, ν) = dist(sim(E, ν,m),pc) (1.8)

with E the Young modulus, and ν the Poisson coefficient, used to build the stiffness
matrix K for linear elastic materials. The error minimization problem is solved using a
gradient-free Nelder-Mead method. Lagrange multipliers are used to model the forces
applied by the finger tips. These are then related to the displacement of the mesh
nodes u through Hooke’s law under the assumption of infinitesimal strain:

F = Ku. (1.9)

The inverse FEM problem is then solved for a desired deformation, to obtain the force
to be applied by the fingertips in order to reach it.

The authors of [DBPC18] propose a simulation-based control scheme; they model
a deformation energy with FEM and sensitivity analysis, as well as a gripping energy,
which they aim at minimizing. The deformation of the object is mapped to the joint
angle commands, and the model takes into account both collisions and joint limits.
The simulations couple the joint representation of the robot with the FE model of the
object, as shown in Fig. 1.7, so the total energy of the system E is minimized through
the following formulation:

m(θ) = arg min
m
E(m,θ) (1.10)

with θ the robot joint angle.
[ZPC21] proposes a FEM simulation-based trajectory for dual arm manipulation

of soft objects. The authors adapt single shooting trajectory optimization strategies
to simulations forwarded in time, by using implicit integration schemes, in order to
execute task-focused (laying clothes, whipping) trajectories in an open-loop manner.
Fig.1.8 presents results of the simulated state of the object in comparison with the real
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Figure 1.7: Interactive setup to manipulate a soft object via simulations - Figure from [DBPC18].

behavior of the object, observed via visual feedback. A finite element formulation is also
used in [KFB+21] for shape control, and to remedy for the lack of real-time simulations.

Figure 1.8: Comparison of the simulations and visual feedback from [ZPC21] - Figure from [ZPC21].
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1.2.3 Conclusions

Data-based and model-based methods are two different ways of mapping robot
motions to the objects’ behavior. Both methods have their benefits and drawbacks.
Data-based methods require training for each new object. Hence, some model-based
methods can be extended more easily than data-based methods, to different objects
(in view of approximating some of the material’s characteristics, e.g., linear elasticity).
Yet, in some cases the model assumptions (again, consider linear elasticity) may be
less accurate in describing deformation, or the material parameters can be unknown.

1.3 Visual servoing for soft objects

Visual servoing techniques aim at controlling a dynamic system using visual fea-
tures extracted from visual data. Unlike in data-driven approaches, the principle is
to estimate online a mapping between robot inputs and visual features with locally
collected data, thus estimating an approximate model.

For rigid objects, the basics of visual servoing are exposed in [HHC96],[Cha07].
Visual servoing control schemes aim at minimizing an error e(t), typically defined by:

e(t) = s− s∗ (1.11)

where s is a vector of visual features obtained from image measurements, and s∗ repre-
sents a constant, motionless target shape. This control scheme is notably used for tasks
such as tracking a face by controlling the pan-tilt of a camera [YMH17] or positioning
an object to a desired pose with regards to a robot [KGD+03].

Visual servoing control loop The principle is to select ks visual features s to
control the kf DOF of the system through a Jacobian matrix, referred to as the
“interaction matrix” L, such that:

ṡ = Lv, (1.12)

with v the velocity input to the robot controller. To try to reach a desired shape
described by the visual features s∗ and ensure an exponential decoupled decrease
of the error ṡ = −λ(s− s∗), one can then use:

v = −λL+(s− s∗) (1.13)

with L+ the Moore-Penrose pseudoinverse of L. This yields the closed-loop system
shown in Fig.1.9 and summarized by:

ṡ = −λLL+(s− s∗) (1.14)



42 State of the art

Figure 1.9: Visual servoing closed-loop system.

This control method can be extended to non-rigid objects. The main problem is to
choose relevant features to describe deformable objects.

In [NAYW+16], an adaptive deformation model for elastic materials is estimated
with regards to feature points of interest. The displacements of the feature points δs
and of the robots position δr from the equilibrium is expressed as:

δsi = Diδr, (1.15)

with δr the stacked displacement of all the end-effectors, and Di a deformation matrix.
The authors construct a vector of deformation parameters, which iteratively approx-
imates the deformation model, is estimated using a gradient descent, and relates to
the deformation features through a Jacobian deformation matrix. The deformation
features vector contains both the position of the features s and shape information; in
the end, for a desired deformation features vector, it is then possible to control ṙ to
minimize the error between the current and the desired deformation features.

[NAL18] presents a method for Fourier-based shape servoing, by encoding the shape
of the object through Fourier coefficients, and iteratively estimating a model, to deform
it. If G(α) is the Fourier series used to approximate the object contour c(α), according
to parameter α, then the vector of shape features s is computed as:

s = (GT G)−1GT c (1.16)

with G a regression-like matrix. Similarly, [ZNF+18] uses Fourier series to both char-
acterize the shape of cables, and control a dual arm robot to shape the cable in the
plane. The authors of [LKM20] also consider the manipulation of DLO (shaping of
deformable wires) through shape-servoing, but in 3 dimensions. Their approach tracks
the deformations and extracts visual features based on a geometric B-spline model.
The deformation feature vector s used in the control law is composed of a desired num-
ber of equidistant B-spline points.
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The authors of [JHPM18] present a visual servoing method for manipulating cloth-
like objects with two end-effectors. They present a novel feature representation for
such objects, which is a Histogram of Oriented Wrinkles, resulting from simple image
processing and filtering. Their framework uses a dictionary storing pre-computed visual
feedback to map the shape variations with the velocities of the end-effectors. [HSP18]
presents a Gaussian Process Regression to model and learn the deformation function
of a soft object, based on a spring model. This approach allows to adaptively learn
a nonlinear deformation function, along with the manipulation process. The authors
model a soft object using three classes of points: manipulated points, feedback points,
and uninformative points. Model??

The authors of [QMZ+22] use contour moments as a state representation of the
manipulated object. For a contour c, the contour moment of order i+ j is defined as:

hij =
p∑

k=1
uk

i v
k
j || ck − ck−1 || (1.17)

where ui and vi represent the pixel coordinates of the ith point in the image frame,
and || ck − ck−1 || represents the distance between two adjacent pixels on the contour.
Their method is applicable for elastic, composite and rigid objects, manipulated in
2D, as shown in 1.10. [Ber13] uses the concept of diminishing rigidity to compute an
approximation to the Jacobian of the deformable object, with regards to the gripper
motion.

Figure 1.10: Representation of the type of objects defined as elastic, rigid and composite, on which dual-
arm manipulation tasks include deforming and positioning until reaching a target configuration - Figure
from [QMZ+22].

[AACRM+20] uses monocular 2D images for perception, coupled with a template
to shape isometrically deforming objects. The template contains the object’s texture
map, rest shape and deformation law. It is used both to track the shape thanks to the
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Sft algorithm from [BGC+15], and to control the robot motion. Sft proposes a solution
for shape reconstruction of a deformable surface from one image and a 3D template, by
using the image point locations as well as these point’s first-order differential structure.
The authors of [AACRM+20] improve the algorithm, to have it track and generate in-
termediate feasible targets towards the final target, and to control the end-effectors to
target poses, as shown in Fig. 1.11. These target poses are extracted from patches on
the intermediate target template, to which rigid particles are then aligned - since the
patches deform with the template. The aligned rigid particles then define the target
positions and orientations of the end-effectors.

Figure 1.11: Shape servoing experiment from [AACRM+20]. The target shape is represented in brown,
the current shape in blue. The black squares represent the target poses of the end-effectors, to which rigid
particles are aligned - Figure from [AACRM+20]

The visual-servoing framework presented in [SBAMO22b] uses a 3D lattice represen-
tation formed around the manipulated object. Lattice and object are bound together
by geometrical constraints. The authors’ framework then aims at controlling the defor-
mation of the lattice. The deformation of the lattice is modeled according to an ARAP
model (as in [APR+22], [AALN+22]), which is also used to compute the interaction
matrix. The authors had introduced this model in [SBAMO22a]. It is computed via
numerical differentiation, to control the shape of thin-shell objects. In [SBAMO22b],
they present an analytic expression of the ARAP-based interaction matrix.

The authors of [ZNAPC20] encode the object via Principal Component Analysis
(PCA) on image contours of deformable/rigid objects. They present experiments for
moving and deforming 2D contours with a single arm moving in the plane (3 DOF).
Their method applies to both rigid and soft objects, allowing a large range of applica-
tions. They start by generating a sequence of small motions around the resting shape
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of the object, in order to collect deformed contours and the corresponding end-effector
poses. These data are used to estimate the local interaction matrix L, which is used
to control the end-effector into reaching local targets, until the final target shape. The
interaction matrix is re-estimated at each iteration, with the last contour variation and
effector pose, so that the estimation stays local. At each iteration, PCA is applied
to the matrix containing the past contour points, updated with new data on a sliding
window basis - so that it keeps the same dimension as well as locality. PCA allows to
select a few principal components which best express the contour variance, to encode
the contours with a small number of features.

1.3.1 Conclusions

In robotics, control schemes relying on visual feedback can be used for manipulating
rigid and soft objects like-wise. The main challenge with implementing visual-servoing
for deforming object is to find a way to encode the shape of the object into features,
which can be continually tracked throughout manipulation.

1.4 Conclusion and positioning of our work with respect

to the literature

Overall, the presented overview of the state of art shows that shape-servoing for
soft objects involves different issues:

• Choosing a relevant shape descriptor (according to the available sensors, the type
of object, known template, etc.), which can be tracked over time and which is
consistent;

• Mapping the robot commands to the shape descriptor (via off-line data-based
training, by estimating a Jacobian online with local data, or according to a phys-
ical model);

• Closing the control loop with sensor feedback; when a template is used, for in-
stance, the controller is fed with the template’s current state, and not necessarily
with sensor feedback. This template has to somehow be related to this feedback
to ensure a link between model and observation.

All these aspects have to be taken into account depending on the application and
resources. A trade-off between the collection of data and the estimation of an accurate
model is crucial. Besides, the literature raises the question of the dimensionality of
soft objects manipulation: another aspect to ponder about is the number of DOF to
consider, be it for the description of the shape (contour, surface, volumetric model),
for the number of robotic actuators used (single or multiple arms) or the dimension
of the motions (on the plane or in the 3D space). The presented works for robotic
manipulation of soft objects are summarized in Tab. 1.1.
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Manipulators Workspace Control method
Specific
objects

Single Multiple 2D 3D
Visual
servoing

Data-
based

Model-
based

[LLG+15] ✓ ✓
Demons-
trations

[TWT18] ✓ ✓
Demons-
trations

DLO

[SFP+19] ✓ ✓
RL,

demons-
trations

Tissues

[LHM+22] ✓ ✓ FCNN DLO
[WKL+19] ✓ ✓ DCNN DLO
[DZAL+22] ✓ ✓ DRL DLO
[TCUM19] ✓ ✓ DRL Clothes
[HHS+19] ✓ ✓ DNN
[MB18] ✓ ✓ MBM

[RMB18] ✓ ✓
Geometry
-based

Clothes,
DLO

[APR+22] ✓ ✓ ARAP DLO
[AALN+22] ✓ ✓ ARAP DLO
[FMC+18] ✓ ✓ FEM
[DBPC18] ✓ ✓ FEM
[ZPC21] ✓ ✓ FEM
[KFB+21] ✓ ✓ FEM DLO
[NAYW+16] ✓ ✓ ✓
[NAL18] ✓ ✓ ✓
[ZNF+18] ✓ ✓ ✓ DLO
[LKM20] ✓ ✓ ✓ DLO
[JHPM18] ✓ ✓ ✓ Clothes
[HSP18] ✓ ✓ ✓
[QMZ+22] ✓ ✓ ✓ Clothes
[Ber13] ✓ ✓ ✓
[AACRM+20] ✓ ✓ ✓
[SBAMO22b] ✓ ✓ ✓ ARAP
[ZNAPC20] ✓ ✓ ✓

Table 1.1: Summary of the different works presented for soft objects manipulation
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With this thesis, we aim at proposing a dual arm soft object shape-servoing
framework uniting the benefits of data-driven and Jacobian estimation methods
(not needing a precise physical model, learning as we manipulate), with those
of model-based methods (no need of huge data-sets and training time, use of a
consistent topology and ability to deal with large deformations) while ensuring to
incorporate visual feedback into the control loop in order to relate the estimated
behavior of the object compared to the observed one.

While some works focus on specific soft objects (i.e. DLO, clothes), we try to in-
clude different types of object for a more general framework. Finally, we aim to develop
a control scheme for dual arm manipulation in SE(3), that takes into account the de-
formation of the whole object in 3D.

The next chapter presents a visual-servoing method for dual-arm control of the
shape of soft objects in 3D. We build on top of the work [ZNAPC20], to expand the
number of DOF controlled (3 to 12 DOFs), while implementing the controller in a
cooperative task space, allowing the two arms of the robotic system to be controlled in
a collaborative way.
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CHAPTER 2

Visual-servoing for dual-arm shaping of
soft objects using a cooperative task

space

While many works in the literature present visual shape servoing controllers, many
rely on model estimation, neural networks or reinforcement learning to compute the
command. Although these methods present good results, the first one requires a prior
knowledge of the object (template, material parameters) which limits its range of ap-
plication, while the others require huge datasets and training time. Furthermore, some
methods focus on specific objects, like DLO or fabrics, or rely only on single arm
manipulation.

Figure 2.1: The goal of the work presented in this chapter is to control a dual arm robot so that the initial
contour (blue) reaches the target contour (red) in three dimensions.

In this chapter, we propose a real-time, dual-arm vision-based shape servoing con-
troller. Our method does not require any prior knowledge of the object, apart from
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its color, needed for visual extraction. It applies to soft objects of different shapes
and materials, with very short initialization time. In addition, our task representation
allows a cooperative control of the two arms, to command 3D deformations and/or 3D
motions of the tracked part of the object, represented by a 3D contour.

The authors of [ZNAPC20] obtain a good encoding of the object shape, via Principal
Component Analysis (PCA). Their method shows very promising results for moving
and deforming 2D contours with a single arm moving in the plane (3 DOF). It can be
applied on both rigid and soft objects, allowing a large range of applications.

We build on top of that work, going farther and performing deformations in SE (3)
with two cooperating robotic arms. Our contributions are the following:

• While [ZNAPC20] considered 3 DOF planar motion (two translations and one
rotation) of a single arm, we increase the robot operational space dimension to
12 DOF (6 per arm), hence extending the range of applications.

• We apply the cooperative task representation [CCS96] to control the deformation
and/or the pose of the object separately. We explore how both tasks affect the
global deformation and the reaching of the target.

• We validate our controller in 3 dimensions (including orientation) in a series of
experiments, with different objects and targets. We also consider 3D deformation
of the objects.

• Application-wise, our framework can be useful in industrial contexts, where de-
forming objects (e.g., for insertion) requires robotic strength and an adaptable
and reproducible technique.

2.1 Problem statement

We consider a dual-arm robot with both end-effectors holding an object. The di-
mension of the robot operational space is 12 (i.e., each end-effector is free to move in
SE(3)). A fixed RGB-D camera observes the object, used to extract its visual features
in 3D. The goal is to modify the position and/or shape of the object into a target shape
(a target 3D contour), shown in Fig. 2.1.

In some cases, the task may consist only in giving the object the desired shape,
without caring about its position and orientation. For such a task the robot is re-
dundant : it only requires 6 DOF, and can use the other 6 for other purposes. Yet,
doing this is not trivial if each end-effector is modeled and controlled separately, as
in [LKM20]. A solution is to use the cooperative task representation introduced in
[CCS96] and outlined in Fig.2.2, to describe the task as the combination of an absolute
task and/or a relative task. The absolute task frame Fabs

ctrl is attached to one of the
arms chosen arbitrarily (the left one in our case) by a virtual link (dashed orange in
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the figure) and it is described in the absolute reference frame Fabs
ref , which is fixed in

the world. The relative task describes the pose of one end-effector F rel
ctrl in the frame

of the other one F rel
ref . This representation allows to consider as relative task the ob-

ject deformation, and as absolute task, the object’s pose . Then, for operations which
solely imply deformation or shaping, only the relative task matters, “freeing” the ab-
solute task’s 6 DOF. On the contrary, for rigid object manipulation consisting only
in translating or orienting, the relative task’s 6 DOF are “freed”. More formally, two
alternatives are possible (k = 6 or k = 12 DOF), as one can either control only one of
the poses or both the relative and absolute poses:

r = rref ∈ R6 or r =
[

rabs

rrel

]
∈ R12. (2.1)

with ref = {abs, rel}. To represent orientations, we use angle-axis vectors qr =
[xr yr zr], so rref is defined as:

rref =
[
xref yref zref xref

r yref
r zref

r

]⊤
∈ R6. (2.2)

Figure 2.2: Schema of the task representation. The relative task (green) describes the motion of Frel
ctrl in

relation to the relative frame Frel
ref , i.e. the right end-effector in relation to the left one. The absolute task

(red) describes the motion of Fabs
ctrl, in relation to the absolute frame Fabs

ref . The dashed line is the virtual

link between the end-effector and Fabs
ctrl.

Another important aspect is the perception of the object. In our work, the robot has
no knowledge of the object’s material or characteristics, except for its color (needed for
visual extraction) and current shape. At each iteration, to represent the object shape,
we use the contour seen by the RGB-D camera. We extract the target contour (to be
reached) from one of few previously saved images of the same object, held by the robot
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in various positions/shapes.

It is worth discussing the limits of the contour representation. Beside deformation
instabilities (such as bucking, or privileged curvatures) which will cause problems, it
will be impossible to apply any deformation out of the image plane or manage self-
occlusions, which do not affect the object contour. Furthermore, the target contour
is reachable if it does not differ ”too much” from the initial contour, e.g., it should
not require changing from convex to concave bending. We show a case of unreachable
target in our experiments video, linked in Section 2.3.

We denote the visible contour, composed of the 3D metric coordinates of p points,
c ∈ R3p. Working with a task of such high dimension (300 if p = 100 points) makes
it complex to control the largely lower number of DOF (k = {6, 12}) of our robot. To
solve this underactuated problem, we encode the contour c into a smaller feature vector
s ∈ Rk, with k the dimension of the required robot pose. Furthermore, we consider
that the mapping between feature variation δs and robot pose variation δr is linear,
through what we refer to as the interaction matrix L ∈ Rk×k:

δs = Lδr (2.3)

In the rest of the chapter, in addition to the hypothesis stated in the introduction
chapter, we assume the following:

• The tracked part of the object stays entirely visible throughout the manipulation,
and can be represented by closed contours c.

• The object target shape and (when applicable) pose are reachable, i.e. the tracked
part of the object can physically be deformed to (and placed at) the target.

Our goal is to drive (shape and/or place) the 3D contour of the object to a target 3D
contour c∗. Our framework (outlined in Fig. 2.3) operates as follows. First, we control
the robot end-effectors (initially in open loop), to collect a sequence of D + 1 images.
For each, the corresponding contour ci is extracted and the robot pose ri collected,
with:

ci = [x1
i , · · · , x

p
i , y

1
i , · · · , y

p
i , z

1
i , · · · , z

p
i ]⊤ ∈ R3p, i = 0, ..., D + 1. (2.4)

The collected contours are stored in the matrix C:

C = [c0, · · · , cD] ∈ R3p×(D+1) (2.5)

while we use r to compute robot pose variations δr, (see section 2.2.2) and store it
in the matrix ∆R:

∆R =
[
δr1 . . . δrD

]
∈ Rk×D (2.6)
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Figure 2.3: Overview of our framework. The robot poses and object contours are stored in matrices ∆R
and C, respectively. At each iteration, PCA yields the projection matrix U, to compute the feature vector
s from contour c, and the local target s∗

i . We also project the contour variation matrix C to estimate
the inverse interaction matrix L−1. We use L−1 to compute the robot desired pose variations δr needed
to drive s to s∗

i . These δr are finally sent to the dual-arm controller, which computes the robot joint

commands θ̇.

Then, we perform a PCA (Principal Component Analysis) on the sequence of con-
tours C, to encode the current contour ci into a smaller k-dimensional feature vector
si ∈ Rk, via projection operator U. This reduces the task shape dimension to the
number of required DOF.

We also use these sequences of object contours and corresponding robot poses, to
estimate the inverse of the interaction matrix L, which maps feature variations to robot
pose variations according to (2.3)). Since linear mapping (2.3) is only valid locally, we
must limit the motions to small displacements and cannot drive the manipulators to
the final target right away. Therefore, at every iteration i, we compute a local target c∗

i ,
via a linear interpolation between current and target contours (c and c∗, respectively).
We encode this c∗

i into a feature vector as well, denoted s∗
i .

We use the inverse of the interaction matrix L−1 to compute the robot pose varia-
tions δr, required to drive the object to the local target, s∗

i .

We then send δr to our dual-arm controller [Tar19], which relies on hierarchical
inverse kinematics, to compute the robot joint commands. The whole process is re-
peated, by continuously updating data matrices C and ∆R at each iteration i, until the
object reaches the target shape and/or position. The entire process is summarized in
Algorithm 1. While previous works made use of these different techniques (i.e. cooper-
ative task representations, image Jacobian estimation), our work presents a promising
approach to control deformable objects in SE(3), without considering specific objects
(e.g., cables or clothes).
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Algorithm 1 Control framework

procedure Initialization
R = {}
C = {}
j = 0
while j ≤ D do

Control robot in open-loop

C +← cj ▷ from camera feedback

R +← rj ▷ from robot
j ← j + 1

Construct ∆R ▷ see section 2.2.2
return ∆R, C

procedure Control loop
Define the target c∗

ci = cD

ei = RMSE(c,ci)
while ei ≤ 0.1 do

Uk = PCA(C) ▷ see section 2.2.3
si = project(ci,Uk)
L−1 = interactionMatrix(∆R,C,Uk) ▷ see section 2.2.4
s∗

i = localTarget(c∗, ci,Uk)
δri = poseCommand(L−1, s∗

i , si) ▷ see section 2.2.5
θ̇ = robotJointsCommand(δr) ▷ see section 2.2.6
Apply θ̇ to robot
Get ci, ri from camera feedback and robot respectively
Update ∆R, C
ei = RMSE(c∗, ci)

2.2 Method

In this Section, we detail each of the modules which compose our framework (again,
refer to Fig. 2.3).

2.2.1 Image processing for object contour extraction

We use an Intel Realsense D435 camera, which looks at the robot end-effectors and
at the object from a fixed (in the world) position. Both the RGB and depth images
are used to obtain a sampled, ordered contour of the object in 3D at each iteration.
The different steps of the contour extraction are presented in Fig. 2.4.

To simplify the image processing algorithm – which is not the main scope of our work
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Figure 2.4: Steps of the image processing for object contour extraction (here, a sponge). The 2D RGB
image of the camera is used to extract a mask of the object, which in turn lets us obtain its contour. This
contour is sampled into a constant number of pixels, which are consistently spaced and ordered. These
pixels are then projected as 3D points using their depth and the camera intrinsic parameters.

– we have only considered blue objects or blue parts of the objects. By thresholding
in the HSV space, we obtain a mask of the blue part, on which we apply six closings
and six openings using a 3x3 kernel. Three erosions are added to obtain a mask well
inside the object, to avoid getting outlying depth coordinates later. Then, we use the
findcontour function of OpenCV to obtain points defining the contour of the previously
extracted mask.

The contour is then sampled into a given number of points p; it is essential for
the contour points to be uniformly spaced and, more importantly, always ordered the
same way from one contour to the next. Namely, the indexes of the points in c must
correspond in ci and ci+1, for the PCA to extract the accurate contour variations. We
chose to order the contours in a clockwise direction starting from the left end-effector;
we recall (second hypothesis in Sec. 2.1) that the contact between object and left end-
effector is the same in the current and target contours. Once the contour is sampled
and ordered, it is projected in 3D metric coordinates using the pyrealsense library.
For this, we apply the function rs2 deproject pixel to point to each sampled pixel of
the contour, using the pixel depth and the camera intrinsic parameters.

The output of this module, at each iteration i, is vector ci (2.4).

2.2.2 Generating a sequence of contours and robot poses

The next step consists in generating a sequence of contours and corresponding
robot poses. These are respectively the contour variation matrix C and the robot pose
variation matrix ∆R, which are needed for two purposes: to extract the contour’s
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principal components, and to estimate the inverse interaction matrix. Matrices C and
∆R are built on a sliding window containing the most recent data: at each iteration,
the oldest data in C and ∆R are removed and replaced by the current data.

Figure 2.5: Initialization motions of the object (here, a sponge) for the absolute (left) and relative (right)
task. Here, each of the k = 12 DOF are stimulated: 3 translations and 3 rotations around the initial
position (black) for each task.

To build matrices C and ∆R, we collect the last D + 1 samples of contours c and
robot poses δr (so as to get D variations) while the robot moves. While after D + 1
iterations (i > D + 1) the robot autonomously moves using the designed control law,
for the first D + 1 iterations we let it move in open-loop. We do this by executing
a series of small motions to deform the object, exciting one by one each considered
DOF as shown in Fig. 2.5. The magnitude of these motions is chosen arbitrarily so
as to sufficiently vary the contour; we set ±0.02 m for the translations and ±π

6 rad
for the rotations. The relative motions should be reduced for stiffer or more fragile
objects, to avoid breaking them. We decided to move along each robot DOF in both
directions (±) just once yielding D = 2k. D should not be too small, to ensure that
L−1 is not under-determined, and not too large, so that the model estimation is local
and initialized quickly. This window size allows to excite every DOF equally and in
both directions, to ensure a well distributed initial model estimation.

To build matrix C, we stack all the ci (2.5). Building ∆R is a bit more cumbersome.
We must obtain the robot pose variation δri between consecutive iterations i−1 and i.
For the translations, we simply subtract the components: xref

i −xref
i−1, y

ref
i −yref

i−1, z
ref
i −

zref
i−1. For the orientations, we transform rotation vectors qref

ri
and qref

ri−1
to quaternions,

compute the distance between the quaternions (the distance between quaternions qi

and qi−1 is qi · q−1
i−1) and then transform back to the rotation vector representation.

Finally we stack all δri, to compose robot pose variation matrix, 2.6.
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2.2.3 Principal Component Analysis

Even for a small dataset and small number of contour samples, the dimension of
matrix C is too high compared to the robot DOF (for M = 24 and p = 100 points:
C ∈ R300×25). Hence, we perform a PCA on C, to reduce its dimension. First, we shift

each column of C by the mean of all columns, c̄ =
∑

cj

M+1 , j = 0, ..., D, to obtain:

Cm = [c0 − c̄, · · · , cD − c̄] ∈ R3p×D+1. (2.7)

Then, we compute Q, the covariance matrix of Cm. We obtain the eigenvector matrix
U ∈ R3p×3p by performing a Singular Value Decomposition (SVD) on Q.

We select the first k columns of U to be able to control k DOF of our system; this
choice ensures that no information is lost, as most of the time only fewer singular values
are non-zeros. But since we can’t predict how many will be ”significant”, k = 12 is the
safest maximum choice so as not to risk losing accuracy while not reducing the number
of DOF available. They define the projection matrix Uk ∈ R3p×k. These columns
correspond to the k principal components (with highest variances) in the dataset, and
therefore determine the directions of highest variability in the data.

At each iteration i, the reduced feature vector is then:

si = U⊤
k (ci − c̄) ∈ Rk. (2.8)

2.2.4 Estimation of the Inverse Interaction Matrix

The next step consists in estimating the inverse interaction matrix L−1 needed
for control. Recall that the interaction matrix is the linear mapping between feature
variation δs and robot pose variation δr (see (2.3)). This matrix is unknown for a
non-rigid object, and it should be inverted to control the robot pose. For both reasons,
[ZNAPC20] has shown that for image-based soft object manipulation, it is more efficient
to estimate the inverse interaction matrix than the matrix itself.

To this end, we project the contour matrix C into the reduced space as follows:

S = U⊤
k Cm ∈ Rk×D+1, (2.9)

and then derive the features variation over the D-dimensional window:

∆S =
[
S1 − S0 . . . SD − SD−1

]
∈ Rk×D. (2.10)

Finally, the inverse interaction matrix is given by:

L−1 = ∆R∆S+ ∈ Rk×k (2.11)

With ∆S+ the pseudo-inverse of ∆S, calculated using the Numpy SVD algorithm.
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2.2.5 Controlling the robot pose

Linear approximation (2.3) is only valid locally. Therefore, a control law based on
L−1 cannot guarantee convergence if the initial contour and the target contour c∗ are
too far. To solve this issue, we design a local target contour c∗

i at each iteration, via
linear interpolation:

c∗
i = c∗ − ci

n
(2.12)

with n big enough to ensure small displacements. Correspondingly, we can project c∗
i

into the feature vector space to obtain the local target feature vector:

s∗
i = U⊤

k (c∗
i − c̄) ∈ Rk (2.13)

The desired robot pose variations are then computed via:

δri = ΛL−1
i (s∗

i − si) ∈ Rk (2.14)

with Λ ∈ Rk×k a diagonal matrix of control gains. This feedback controller guarantees
asymptotic convergence of si to s∗

i , in the ideal case that L−1 is perfectly estimated, as
proved using the Lyapunov criterion studied hereby:

Recall the locally linear mapping δs = Lδr, which we can write in discrete form
as:

si+1 − si = Liδri (2.15)

Here, we aim at proving local convergence. Let us consider a constant local target
s∗. We consider that if the system converges to each local target, it will eventually
converge to the final one. We define the error

ei = s∗ − si (2.16)

that we regulate via the control law:

δri = ΛL−1
i (s∗ − si) (2.17)

under the assumption that L−1 is perfectly estimated.
Let us define the Lyapunov function:

V(e)i = 1
2e⊤

i ei (2.18)

whose derivative is:
δV(e)i = e⊤

i δei (2.19)

Since ei+1 = s∗ − si+1, we can rewrite δei as:

δei = ei+1 − ei

= −Λei

(2.20)



2.2 Method 59

using (2.15) and (2.17). Then, we get:

δV(e)i = e⊤
i (−Λ)ei (2.21)

With Λ > 0. We prove that δV(e)i < 0, thus the system is stable.

2.2.6 Controlling the robot joints

To map the desired robot pose variations δr to the robot joint velocities θ̇, we use
the cooperative task representation, outlined in Sect. III, and recalled here (for further
details, refer to [Tar19], [CCS96], [JR14]). We consider δr ∈ R12 as the variation of r
defined in (2.1). From Jlef and Jrig (the Jacobian matrices of the left and right arm in
Fabs

ref ), we derive the cooperative task Jacobian matrices:

Jabs =
[

1
2Jlef

1
2Jrig

]
Jrel =

[
−ΨΩJlef

1
2ΩJrig

]
,

(2.22)

where

Ψ =
[
I −Υlef
0 I

]
, Ω =

[
Φlef 0

0 Φlef

]
, (2.23)

with Υlef the skew-symmetric matrix of the position of the left arm in the relative task
frame, and Φlef the rotation matrix of the left arm in Fabs

ref .
If both the relative and absolute tasks have to be satisfied at the same time (k = 12),

a relevant choice is to prioritize the relative task, to avoid undesired internal stress
which may damage the object and/or the robot. Taking into account joint (position,
velocity and acceleration) limits, the highest priority task is solved through:

θ̇1 ∈min
θ̇
||Jrelθ̇ − δrrel||2

subject to: joint limits.
(2.24)

The obtained solution vector θ̇1 provides a null-space condition to the second task, so
the final joint velocities to be sent to the robot are:

θ̇ ∈min
θ̇
||Jabsθ̇ − δrabs||2

subject to: joint limits,

Jrelθ̇ = Jrelθ̇1.

(2.25)

We add the relative task solution as a constraint to the absolute task to avoid
interference. Using this formulation, the absolute task error is minimized as long as
the resulting joint velocity vector provides the best solution for (2.24).

If only the relative task has to be satisfied to deform the object, and we “free” the
object pose, k = 6 and we can simply apply (2.24) and set θ̇ = θ̇1.
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2.3 Experiments and results

To validate the method, we conducted many experiments, during which we tested
different initial and target shapes, as well as different objects (rigid or not, pre-
sented in Fig.2.6). A video of experiments is available at https://www.youtube.

com/watch?v=cxoqIOt973s and the source codes are accessible at https://gite.

lirmm.fr/csaghour/rkcl-bazar-flex-app.git. At the beginning of each experi-
ment, M = 24 predefined motions are executed. We set the number of contour points
to p = 100 and the number of intermediate targets to n = 20. The control gain matrix
was tuned experimentally to Λ = 0.07 Ik, to obtain motions neither too fast nor too
slow.

Figure 2.6: Example of objects to be manipulated. Left to right: cardboard box, plastic glove, crown-
shaped sponge, sponge. The face in front the camera once grasped (blue) is of a distinctive color to allow
the image segmentation. Only the deformation of this face is tracked.

The experiments using the sponge shown in Fig. 2.6 demonstrate successful con-
vergence to the different final targets (in red in the figure), involving the deformation,
as well as change in the orientation and position of the object (see Fig. 2.7). We also
show that the method gives equally successful results with a different initial position
of the object. The results do not depend on the camera-object relative pose since the
initialization phase is carried out at the start of each experiment. The evolution of the
cooperative task frames is shown in the third column of Fig. 2.7.

We define the task error as the RMSE between the current contour and the final
target contour:

ei =

√√√√ 1
3p

3p∑
i=1

(c∗ − ci)2 (2.26)

This metric decreases (see the last column of Fig. 2.7) until reaching an acceptable
threshold (0.01m in our experiments).

https://www.youtube.com/watch?v=cxoqIOt973s
https://www.youtube.com/watch?v=cxoqIOt973s
https://gite.lirmm.fr/csaghour/rkcl-bazar-flex-app.git
https://gite.lirmm.fr/csaghour/rkcl-bazar-flex-app.git
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Figure 2.7: The two first columns are the robot camera view of seven experiments. Starting from different
initial configurations (in blue on the first column), we reach the final targets (in red). The third column
shows the initial (transparent) and final poses of the absolute frame F abs

ctrl and relative frame F rel
ctrl. The

last column shows the evolution of the shape difference defined in (2.26) according to the iteration step.
The experiments include, from top to bottom: four different shaping of a sponge, then shaping of different
objects: a crown-shaped sponge, a plastic glove, and a cardboard box. For the cardboard box, the relative
frame F rel

ctrl is freed, so only the absolute task F abs
ctrl evolves.

We also performed experiments with the other objects shown in Fig. 2.6, soft (a
differently shaped sponge, a plastic glove) and rigid (a cardboard box). The method
proves to be effective with those as well, as shown in Fig. 2.7, despite the rough
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contours for an object of more complex shape like the glove. For this experiment, noise
was detected in the images, explaining the wide oscillations of the error observed in
Fig. 2.7. Nevertheless, the controller converged to the final target shape, showing
the robustness of the method. Again, tasks like bending, compressing, rotating and
translating were successfully carried out, proving the large spectrum of applications of
our controller. Tab. 2.1 contains the convergence time of the experiments, as well as
the initial error between the initial and goal shape.

Experiment Initial error Convergence time (s)
1 0.74 12
2 0.36 26
3 0.42 10
4 0.34 42
5 0.4 30
6 0.41 22
7 0.54 28
8 0.5 21

Table 2.1: Convergence data for all the experiments.

Figure 2.8: Experiment with the sponge, reaching the target configuration from the initial position (in
blue, left) while only controlling the relative task. The target (in red, top row) is aligned with the relative
reference frame F rel

ref (the left end-effector) so that the aligned target (in red, bottom row) can be achieved
with only the relative task being controlled. On the right are shown the evolution of the cooperative task
frames (top) and of the error (bottom).

Regarding the manipulation of the cardboard box, which we considered as rigid,
the experiment consists only in orienting and translating the object. Through this
experiment, we show that our framework can be used for manipulating a wider spectrum
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of objects, including rigid ones. In this case, only k = 6 DOF are needed for the absolute
task, and the 6 other DOF are freed. These could be used, for example, for obstacle
avoidance. We can, on the contrary, choose to only deform the object and not move its
position and orientation in the space. Then, only the relative task is needed, therefore
reducing the number of DOF to k = 6. Such an experiment is presented in Fig. 2.8.
To achieve this, the target is aligned so as to match with the fixed end-effector during
the experiment. This allows us to shape the object with no concern on the orientation
and position. The error is then computed between the aligned contour and the current
contour.

Table 2.2: Range of the displacements of the absolute and relative tasks during the eight experiments
(with largest values in bold). x, y, z are the translation in mm, u, v, w the rotations in rad (Euler angles)
around axis X, Y , Z, respectively.

Experiment xabs yabs zabs uabs vabs wabs

1 -28 56 -7 -0.31 0.73 0.01
2 7 18 9 -0.37 -0.01 0.17
3 -13 -32 -2 -0.12 0.1 0.05
4 -27 12 -14 0.06 -0.14 0.04
5 20 -20 12 -0.17 0.9 0.06
6 -37 37 32 -0.25 -0.21 0.02
7 -14 41 13 -0.2 0.61 -0.1
8 - - - - - -

(a) Absolute task

Experiment xrel yrel zrel urel vrel wrel

1 8 -0.6 10 -0.03 0.03 0.03
2 7 34 -39 -0.02 -0.01 -0.06
3 -1 -7 -8 0.01 0.04 0.08
4 8 -10 -14 0.15 0.01 0.05
5 8 3 -15 0.05 0.01 -0.01
6 -43 8 -7 0.01 0 0.01
7 - - - - - -
8 -20 -80 14 -0.05 -0.24 -0.13

(b) Relative task

The range of displacements of the absolute and relative task for each experiment
are shown in Table 2.2. The most important absolute displacements during these
experiments are rotations, especially on the Y abs-axis. We observe that the relative
displacements are small compared to the absolute ones: this is because the objects
which we considered can be displaced/oriented on a larger scale than it can be de-
formed. Unexpectedly, the relative translation on the Zrel-axis is small for experiment
1, which was aimed to be a traction; this serves to show that a desired contour can
be attained in more than one absolute/relative displacements combination, and that a
contour does not testify of a specific deformation. This is because by representing the
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object only with its visible contour, we lose information about its global geometry. In
average, the most important relative displacements are translations (experiments 2, 6,
8). In experiments 4 and 8, the rotations are also large enough to be visible on the
corresponding frame evolution figures.

We also experimentally investigate how the number of samples, thus the size of
the window of past data, impacts the controller. Practical experiments showed that
a smaller window (D = 12) could lead to cases where L−1 is under-determined. We
inferred that D = 24 seemed to be a window size complete enough to describe well the
span of possible motions in order to start the manipulation unbiased toward a specific
direction, since it contains information about every DOF in both directions.

Theoretically, we also aim to keep that window rather small to allow fastest compu-
tations, and because our approximation (equation 2.3) is local; a larger window would
risk making the model inaccurate. If the contour at i = 1 and at i = D are too differ-
ent, L won’t be an accurate linear model of the large deformation that occurs.

We did a few extra experiments to explore this. In those, we aim to reach a same
target with either a window of size D = 24 or one of size D = 48. A few trials for
both cases are summarized in Tab.2.3; we define as ’success’ an experiment during
which the error ϵ (2.26) reaches the desired threshold (0.1). Note that the initialization
time is longer for the larger window because it requires the double of initial motions.
For D = 12, the controller does not converge as a result of L−1 being often under-
determined.

D Initialization
time (s)

Mean duration
of each iteration

experiment time
(s)

Success

24 39.4 0.23 47 yes
24 43.2 0.17 12 yes
24 42.0 0.25 11 yes
24 42.8 0.16 8 yes
48 76.1 0.22 >60 yes
48 79.7 0.18 21 yes
48 75.9 0.31 >60 no
48 77.8 0.21 >60 no
48 78.5 0.2 >60 yes

Table 2.3: Experiments with different window sizes

To summarize, it would seem that the overall convergence (if there is any) time is
longer with the larger window, as predicted. We found out that experiments with a
larger window do not succeed every time. It is however difficult to conclude on the
optimized number of samples taken without more trials, that are difficult implement
(open-loop motions to program for initialization, experiments that are unsafe for the
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objects/robot...). We do explore this issue in the last chapter of the thesis, 4.8, where
we propose to investigate this choice through simulations.

2.4 Conclusion and discussion

This chapter presents a complete method for dual-arm shaping of soft objects in 3D
and in real time. We use a few initializing motions to both execute a PCA to reduce
the dimensions of the visual data and to compute an interaction matrix, and iteratively
obtain robot control inputs to reach a final target shape. The framework is able to
handle objects of different geometry and materials, soft and rigid alike without any
prior knowledge, although we experimented on a limited variety of objects. Neverthe-
less, the 3D target shapes could be successfully reached in these experiments.

From a theoretical viewpoint, our work raised questions on the representations,
while considering the numerous DOFs needed to shape and move the objects. We
believe that using a relative task to describe and control exclusively deformations is
a promising approach. Our work addresses different challenges regarding 3D motion
representation, while considering the limitations of the objects’ geometrical representa-
tion. In an industrial context, we aim at proposing solutions for tasks such as ”deform
and place”.

One of the main aspects to improve is vision. Contours are not well suited to
describe volumetric objects and limit the deformations to those of the visible surface.
Our approach does address 3D deformation, although the object is reduced to a visible
surface. The surface is represented in 3D space (thanks to the depth measurement) and
not just in a plane. Therefore, the manipulation is indeed in 3D, and we can shape the
object out of the image plane (e.g., along the depth axis, or along the two out-of-plane
orientations).

Figure 2.9: Example of an object (e.g., a speaker diaphragm, or a contact lens) with out-of-plane defor-
mations which cannot be controlled using the visible contour.
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Yet, we agree that the visual representation that we chose (contours) limits the
spectrum of manipulations. For instance:

• We cannot deal with object self-occlusions.

• Out-of-plane deformations, which do not change the contour, are not controllable.
An example is shown in Fig.2.9.

Yet, a 3D volumetric sampling might be challenging to achieve, since the success of
our method largely depends on the consistency of the points and on their order from
one iteration to the other, which is not assured with simple point clouds. Occlusions
could also be difficult to handle.

As a remedy to this problem, we focus the rest of our work on the addition of an
adaptive deformation model. Such a hybrid controller would be able, for instance, to
estimate the deformation of the self-occluded part of the object, and to ensure target
reachability.



CHAPTER 3

Modeling and simulations for soft
objects manipulation

3.1 Motivations

The preliminary work presented in Chapter 2 led us to focus on modeling, following
and controlling the deformation of the manipulated object over its entire volume -
including its self-occluded parts. Since our objective is to find a state representation
which can be used to track the deformations and used in a control scheme similar to
the one described in chapter 2, we look for a geometric representation that verifies the
following requirements:

1. have a constant dimension;

2. have a consistent topology between iterations: each element should be matched
to its previous position in space, in order to compute local displacement;

3. represent the whole volume of the object.

For these reasons, we choose to use a mesh to describe the object being manipulated.
A meshM is an entity constituted of:

• m, a set of 3 dimensional points, called nodes: m ∈ R3×n, with n the number
of nodes.

• P, called connectivity set (or elements), which links the nodes to each others in
arbitrary polygons. For instance, for a triangle mesh, elements will be constituted
of sets of three node indexes, each composing a triangle: P ∈ R3×tr with tr the
number of triangles representing the full surface of the object. For a tetrahedral
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mesh, each element will be constituted of the indexes of four nodes: P ∈ R4×te

with te the number of tetrahedra representing the full volume of the object.

The number of nodes is constant. Since these nodes can be displaced in space,
the connectivity between them remains unchanged, allowing the mesh to be ordered
consistently. Throughout the manuscript, we refer to tetrahedral mesh asM = [m,P],
whileMv = [mv,Pv] denotes a triangle mesh, also referred as visual mesh (since it only
represents the external surface of the object).

The tetrahedral mesh - for the full volume - is the one used to compute the de-
formation, via physics simulation. Instead, the triangle mesh is used to represent the
external surface of the object, used as comparison with the observed state of the object.

Then, using a mechanical model, the displacement of the nodes in relation to ex-
ternal forces can be estimated in simulations. These external forces can be measured
from the real robot onto the mesh by means of sensors (force, positions, camera...) to
feed a real-to-sim tracking framework. Real-to-sim approaches, sometimes referred as
Digital Twins, create simulation models which behave as much as possible like the real
system. The goal is to analyze the system behavior, or possible scenarios ([VEBR18],
[VSM+21]).

In this chapter, we will first present the basics of FEM as our chosen physical model
and its resolution, as well as the simulations setup (section 3.2). Then, we will present
various solutions for the model construction (section 3.3.3).

3.2 Finite Element Method (FEM) based simulation

FEM simulations have been used for numerical solving in multiple areas (automo-
bile, aeronautical, chemical, pharmaceutical, infrastructures...) for engineering design
and manufacturing. In fact, they allow modeling many different physical processes -
structural analysis, fluid flow, heat conduction, and electromagnetic potential, to cite
a few ([LLP22]).

The principle of FEM is to obtain a set of algebraic equations to solve for unknown
displacement (called nodal quantity) given a set of external forces applied to the system.
Overall, [Log11] presents the main steps of the solving method, which will be further
detailed in the following, as:

1. Sub-divide the solid (the object) into smaller elements;

2. Choose a displacement function within each element, and approximate the nodal
unknowns for each element;

3. Define the strain/displacement and stress/strain relationships, and derive the
relations among the nodal values of the solution over each element;

4. Assemble the elements and obtain the global solution.

The advantages of numerical methods, and in particular FEM are listed in [Red13]:
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• They provide numerical solution which albeit approximate, are easier to find than
analytic solutions for complex models.

• By relying on simulations, they are more viable than Physical experiments in
term of time and resources.

• They enable choosing which relevant features to include and analyze.

• By discretization, they allow for an accurate representation of complex geometry,
with simpler subdomains.

• they easily represent the total solution through approximate functions defined
within each element, and can therefore capture local effects.

FEM also allow to take into account irregular boundaries, dynamic systems as well
as non-linear problems. On the other hand, a drawback resulting from sampling a
complex domain of interest is that values are interpolated between the elements; if the
samples are big, the nodes are widely spaced, and the approximation in between can
draw away from reality. Conversely, numerous very small samples will result in higher
costs in term of memory and computation. A good trade-off between accuracy and
computation cost should be considered.

3.2.1 Basic principles

The Finite Element Method is a numerical method for solving differential equations,
based on the discretization of a continuous domain Ω into a finite number of small
elements. To do so, the studied domain is sampled as a meshM, and modeled according
to boundary conditions (constraints on some surfaces or nodes), external forces, and
material models (linear elasticity, hyper-elasticity, visco-elasticity, plasticity...). By
using a discrete representation u of the field of unknown displacements, an approximate
problem of which u is the solution is defined.

The aim of the method is primarily to compute a global stiffness matrix K such as:

F = Ku (3.1)

with F the external force applied on the surface δΩF (Neumann boundary condi-
tion), and u the (unknown) displacement. A kinematically admissible displacement
must also satisfy the Dirichlet boundary condition: u = U an imposed displacement
on the surface δΩU .

Let us hereby detail the FEM general formulation.

General formulation, Direct Method, or Displacement method
The displacement ue of each element (local) of index e is function of the displace-
ment at the nodes u as:

ue = Nu (3.2)
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Figure 3.1: Discretization of domain Ω (a) into a mesh M (b). Each element (tetrahedron Pk) of the
mesh is made of four nodes (c). Boundary conditions and external force F are also modeled and applied
onM.

withN the shape function (also called blending function), which is an interpolation
function over non-nodal points. Shape functions are known, and depend on the
geometry chosen for the elements, the number of interpolation points, as well as
the boundary conditions.

The strain ϵe is then written according to these displacement through a con-
stitutive equation:

ϵe = Sue (3.3)

. Depending on the hypothesis of the model, S can be expressed by the Cauchy-
Green deformation tensor for large deformations [LRK09], or through infinitesimal
strain theory. This entails:

ϵe = SNu = Bu (3.4)

The strain-stress relationship can then be expressed through the constitutive equa-
tion [Flü65]:

σe = Cϵe (3.5)

Globally, to take into account the external forces applied on the domain, the
virtual work of these forces for a virtual displacement û is written as the internal
work of the stress on the volume Ω for the same displacement, giving:

û⊤F =
∫

Ω
ϵ̂⊤σdv (3.6)
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Which is equivalent to:

û⊤F = û⊤
(∫

Ω
B⊤CBdv

)
u (3.7)

Finally, an expression of the rigidity matrix K is obtained, so as to write 3.7
as 3.1, with K as:

K =
∫

Ω
B⊤CBdv (3.8)

Knowing F and having built K, it is then possible to use 3.1 to compute the
displacement over the mesh.

There exist other formulations of the problem to solve for u; the variational (also
said integral) approach, for instance. The FEM resolution can then be solved as a
potential energy minimization problem [BF91].

Variational method
For a virtual displacement û, the total external virtual work is done by external
force F and by body forces f. This yields, over the domain, the equilibrium:∫

ΩF

û⊤Fds+
∫

Ω
û⊤fdv =

∫
Ω

ϵ̂⊤σdv (3.9)

Taking into account constitutive equation σ = Cϵ and knowing that ϵ depends
on u (3.4), it gives: ∫

ΩF

û⊤Fds+
∫

Ω
û⊤fdv =

∫
Ω

ϵ̂(û)⊤Cϵ(u)dv (3.10)

⇔ l(û) = a(u, û) (3.11)

The variational formulation of the problem is then to find the continuous displace-
ment field uh such that, for any kinematically admissible displacement uadm:

a(uh,uadm) = l(uadm) (3.12)

With a a function that is bi-linear, symmetrical, positive definite.
Defining a mesh entails that uh is sampled through global interpolation functions,
defined as:

uh =
n∑

i=1
ψiui (3.13)

The stiffness matrix K is then built over the global interpolation functions, by
rewriting 3.12 as the approximate variational formulation. For an admissible dis-
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placement uadm = ψj and with u expressed as 3.13, we get:

a(
n∑

i=1
ψiui, ψj) = l(ψj) (3.14)

and by linearity of a:

⇔
n∑

i=1
a(ψi, ψj)ui = l(ψj) (3.15)

⇔ Ku = F, Ki,j = a(ψi, ψj) (3.16)

In our case, we choose to consider linear elasticity as a simple but satisfying ap-
proximation of the behavior of vastly used materials. We then take Hooke’s equations
for isotropic materials as constitutive equations 3.5. It describes the evolution of the
stress σ in relation to the strain ϵ considering the Poisson coefficient ν and the Young’s
modulus E, with the stiffness matrix given as:

C = E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2


(3.17)

.

3.2.2 Simulations setup

We use Simulation Open Framework Architecture (SOFA)1 [FDD+12] software to
run real-time FEM simulations of the deformation of the object being manipulated.
Interactive physical simulations involve multiple components - collisions, mechanical
behavior, visual rendering - all of which are computationally expensive. Most impor-
tantly, the need to account of real-time input is essential for our framework, since
we aim at using the robot feedback to simulate the deformation of the object during
manipulation, in a Real-to-sim manner. The end goal is to use these simulations as
feedback in the control loop, hence the need for fast and effective computations.

In the simulation scene, the deformation model involves the tetrahedral mesh of
the object in the robot frame,M. The visual meshMv is imported in the simulator
as a visual model ; it is mapped to the tetrahedral mesh as a child of the parent de-
formation model. The DOF of the tetrahedral mesh are connected to the visual mesh
nodes through SOFA’s mapping functions, so that the deformation sustained by the
deformation model propagates to the visual model.

1https://www.sofa-framework.org/

https://www.sofa-framework.org/
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In the following, we call a rigid particle, a rigid mechanical object denoted pr. It is
an object defined by a position and orientation, and can be moved in the SOFA scene
as a single particle.

Figure 3.2: Simulation setup. The nodes of the mesh are shown in white. The red lines represent the
bounding boxes around the positions of prl and prr, represented by the frames. The holding nodes Hl and
Hr are the red nodes in left and right boxes respectively.

The object is already grasped by the robot, and the positions and orientation of both
end-effectors, rl and rr are known. We call prl and prr the rigid particles corresponding
to the left and right end-effectors respectively, as illustrated on Fig.3.3. We define the
contact between the end-effectors of the robot and the object by a set of mesh nodes,
called holding nodes. These nodes are contained in each of the bounding boxes built
around the position of prl and prr and denoted Hl and Hr respectively, see Fig.3.2.

The holding nodes Hl and Hr are mapped to the rigid particles prl and prr re-
spectively, and represent the contact between the mesh and the end-effectors. Since
the object is considered firmly gripped, the mapping is supposed rigid: when the par-
ticles are displaced, the attached holding nodes are transformed in the same way, in a
master/slave fashion.

This is equivalent to defining a displacement constraint on these nodes. We refer
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as ”displacement constraint” the rigid motion (translation and rotation) imposed on a
rigid particle attached to holding nodes.

The rest of the mesh is subject to deformation following FEM resolution, since the
holding nodes interact with the rest of the object through nodal connections. To sim-
ulate the deformation caused by the real end-effectors during manipulation, we relate
prl and prr to the position and orientation of the actual robot end-effectors rl and rr.
These are retrieved from the robot at each iteration.

Figure 3.3: Simulation setup. The mesh M is shown in blue. The frames prl and prr represent the the
rigid particles related to rl and rr respectively, acting on the mesh when transformed accordingly to the
displacements of the end-effectors.

Note that for small displacements (as are those applied by our controller, see
Sec. 2.2.5), the material parameters given as input to the simulator have a small im-
pact on the mesh deformation, unless the object is slacking2. Indeed, since the effect
of gravity can be neglected (because the object is rigid, or light), the constraints are
solely geometric. Figure 3.4 shows meshes resulting from simulations, during which a
displacement constraint is applied, with different material parameters E and ν.

In this example, the displacement control is applied on the right end-effector, with a
span of 0.02 m for the translation and angles of π

10rad for the rotation on each axis. We
try out Young Modulus going from 5000 Pa to 50000000 Pa, resulting in a maximum
error (norm L2) between the deformed meshes of 0.05. For the Poisson ratio, we try
out values from 0.1 to 0.45, which can correspond to materials such as foams, polymers,

2Deformation under the object’s own weight
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Figure 3.4: Application of the same displacement constraint for different material parameters.

or metals. The maximum RMSE between the deformed meshes after application of a
same displacement constraint is 0.06.

These simulations show that for such objects (ones on which gravity can be ne-
glected), the exact knowledge of the material parameters is not necessary to simulate
the behavior according to the end-effectors displacement.

The simulation setup presented in this section can be expanded to any objects for
which the meshes are known or acquired beforehand. We will now present a method
to reconstruct the meshes of specific objects: DLO.

3.3 Tools for mesh construction

To implement simulations for an object, it is necessary to first construct its mesh.
Two meshes are necessary for each object:

• a triangle mesh,Mv

• a tetrahedral mesh,M

The triangle mesh is the visual model, representing the external surface of the mesh.
It is mapped to the tetrahedral mesh, which represent the volume of the object and is
the one used for the FEM computations. For the simulations to run fast, it is necessary
to keep the number of tetrahedra not too high, while also making sure to have enough
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tetrahedra so that the mesh isn’t too stiff. A high level of detail is not necessary for
M, butMv should be more detailed, since it represents the visual aspect of the object.

In this section, we will first review visual volume reconstruction. Then, we will
present a method for volume reconstruction of Deformable Linear Objects, that are
objects that can be reduced to a single dimension and referred as DLO in the following,
in Section 3.3.2. We will then present tools to automatically construct a mesh given
two types of reconstructed volumes: one resulting from our method for reconstruction
of DLO, or reconstructed point cloud.

3.3.1 3D volume reconstruction

Volume reconstruction aims at building the three-dimensional model of a scene,
object, or person, from observations.

An overview of 3D reconstruction algorithms can be found in recent state of the
art [ZSG+18]. In term of static scenes, multi-view reconstruction has interested many
works in the field of robot navigation for instance, such as [NZIS13], [CZK15] or SLAM
(Simultaneous Localization And Mapping) [NIH+11], [MC13], [LLW+17], [LCL19].

Complex models reconstruction such as that of humans in dynamic settings has
been addressed in many works. The authors of [DFF13] propose a non-rigid matching
algorithm which aligns 3D observations (partial point clouds) of moving objects, by
using both geometry and texture measurements, to construct a model which improves
as observations are added. They combine dense point cloud alignment with color con-
sistency, formulate the problem by energy minimization, and solve it with a gradient
descent method. The fusion of 3D data is done using a 3D representation that adds
two fields: a Signed Distance Field (SDF) and a direction field pointing at the nearest
points on the surface. Later, [DKD+16] presents a capture system that uses 24 cameras
and multiple GPUs.

The authors of [SBCI17] present an incremental reconstruction method from par-
tial scans, based on level set method ([OFP04]), minimizing an energy which takes
into account the geometry of the SDF as well as the deformation field. [NFS15] pro-
poses a SLAM system which reconstructs non-rigidly deforming scenes, by estimating a
volumetric warp field that transforms the canonical model space into the current frame.

The mentioned works all consider either complex, detailed scenes, or actively de-
forming objects. Taking into account our robotic system already grasping the object to
be manipulated, simpler methods can be considered. Scanning methods as in [TZL+12]
show good result of model reconstruction by using multiple RGB-D cameras to collect
different views of the subject. [SZY+18] uses a turntable to scan different views of the
object to reconstruct.
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3.3.2 DLO reconstruction through parametrization

In order to construct a mesh to represent DLOs, we choose to model a DLO as a
cylinder, parameterized by its radius and length.

Many works consider the matter of DLO state estimation, usually representing
DLOs as 1D objects. In [CZGP22], deep learning is used to extract features of a DLO
through spline modeling. Based on the RGB-D data, [ZFH16] approximates the DLO
with Bézier curves as a chain of connected rectangles. The authors of [GPCB19] pro-
pose a solution to reconstruct a 3D curve from a 2D image and a 1D template. [WY23]
proposed a method to extract the DLO skeleton from depth images. [MX23] conducts
rope diameter estimation by the mean of different image processing steps. The authors
enclose the rope area in contact with a segmented rod with a minimum area rectangle,
whose width is taken as the diameter of the rope.

We propose a few image processing steps in order to extract the desired parame-
ters (radius and length) of the considered DLO from camera feedback. The DLO is
already grasped between the end-effectors, and entirely in the frame of the RGB-D
camera. First, the pixels representing the DLO are segmented from the RGB image,
Fig. 3.5(a). The largest contour cdlo is extracted (Fig. 3.5(b)), and considered as the
main DLO body.

Length estimation: a B-Spline interpolation is conducted on this contour (Fig. 3.5(c)),
to obtain a set of 2D points constituting the DLO curve. These points are related to
their closest pixel on the RGB image, giving the set of pixels of coordinates (idlo, jdlo),
and then projected into the 3D space using the corresponding depth d(idlo, jdlo) and
the camera intrinsic parameters. We obtain the set of 3D points pcdlo ∈ Rd × 3 (see
Fig. 3.5(d)). The length of the DLO is then computed as:

l =
n−1∑
k=0
∥pcdlo

k+1 − pcdlo
k ∥. (3.18)

Radius estimation: we find the largest circle fitting in the contour cdlo, see Fig.3.6(a),
(b). The pixels contained in the intersection between this circle and cdlo are projected in
3D (Fig. 3.6), also using the corresponding depth d(idlo, jdlo) and the camera intrinsic
parameters and giving the set of 3D points pcrad. The Euclidean distance between each
point in pcrad is computed as D, and the radius is defined as:

R = max(D)/2. (3.19)

We obtain the parameters of the DLO, (R,l). Table 3.1 presents the result of the
DLO parameters estimation from visual feedback for different objects.

This results give a mean error of 7% for the radius and 2% for the length. The error
maximum of 15% and minimum of 0% for the radius. The error maximum of 4.5% and
minimum of 0.8% for the length.
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Figure 3.5: Extraction of the 3D points constituting the DLO for length estimation. The body of the DLO
is segmented (a), then the largest contour is found (b). B-spline approximation gives the 2D curve (c) and
is projected in 3D to give pcdlo (d).

Figure 3.6: Image processing for radius estimation. The largest circle (green) fitting in the contour (red)
is found (a), and the mask of their intersection is created (b). These pixels are projected in 3D (c) and
used to estimate the radius of the DLO.

3.3.3 Meshing from DLO parameters

In the case of DLO, we use the python library gmsh3 to generate a cylinder from
parameters (R, l) and to create the triangle and tetrahedral meshes, as shown in Fig.

3https://gmsh.info/
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Object real radius estimated radius real length estimated length

Rope 3 3 525 530
Foam noodle 1 30 29 630 625
Foam noodle 2 30 27 510 487
HIDRIA part 20 17 355 350

Table 3.1: Result of the DLO parameters estimation on different objects, values in mm. The real values
were measured by hand. The HIDRIA part is the one presented in Fig.2
.

3.7.

Figure 3.7: DLO meshes generated for different pairs of parameters (R, l): (a)(R, l) = (0.1, 0.5),
(b)(R, l) = (0.05, 0.7), (c)(R, l) = (0.005, 0.5). Top row shows the visual meshes Mv

0 and bottom
row the tetrahedral meshesM0.

The obtained meshes are cylinders, whereas the DLO may be deformed and there-
fore have a non-cylindrical configuration in its observed state, as seen in Fig.3.7. Hence,
we need to conduct an extra step to align the meshes with to the current observed DLO.

To this end, we subsample the 3D points constituting the DLO curve pcdlo (see
Fig.3.5 (d)) down to ks samples. The length between sample pk and pk−1 is denoted
dl(k), k ∈ [0, ks] and it is calculated using all the points in pcdlo in between. We take
dl(0) = 0 for the first point in pcdlo. The vector between sample pk and the next point
in pcdlo is also computed and expressed as a rotation from the x-axis unit vector, and
denoted q(k), see Fig.3.8 (a). The last sample pks

is the very last point in pcdlo, and
its rotation q(ks) is calculated with the closest point in pcdlo.

A FEM simulation scene is created with the cylindrical meshes. The tetrahedral
mesh of the DLO,M0, is also sampled: we create ks rigid particles. The rigid parti-
cle prk is created at length dl(k) from the axis of the cylinder, see Fig.3.8 (b). Each
rigid particle is then rigidly attached to the mesh nodes around it, similarly to the
end-effectors in section 3.2 which are rigidly mapped to the holding nodes. Finally,
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Figure 3.8: Sampling for alignment between the mesh in resting position and the current configuration of
the DLO. (a) shows pcdlo sampled into k points (in green). Each sample pk is associated to the length
separating it from the previous sample, dl(k), and to a rotation from the x-axis, q(k). (b) shows the
corresponding sampling of the mesh m into rigid particles prk.

translation to the corresponding sample pk and rotation q(k) is applied to each rigid
particle prk to align it with the current configuration of the DLO. The FEM simulation
is run, deforming the mesh parts which are not rigidly mapped to any rigid particle
accordingly, until quasi-equilibrium is reached. The resulting meshesMcam andMv

cam

are obtained. Examples of the resulting alignment of DLO meshes are compared to the
camera view in Fig.3.9.

The number of samples ks is tuned depending on the length and shape of the DLO:
ks small for short DLO or smooth curvatures as the foam noodles, and ks bigger for
thin and long objects like the rope. It should also be noted that in case of thin objects,
depth camera precision may cause the depth map of the DLO to be incomplete - and
possibly miss points on the reconstructed point cloud. This can cause some parts of
the DLO not to be aligned, as observed on Fig.3.9(d).

3.3.4 Creating a mesh from reconstructed point cloud

We now present how to use some existing libraries in order to create meshes for
objects other than DLO. It consists in building meshes from reconstructed surface in
the form of points clouds. This method can be applied to any point cloud of the full
volume of the object, which could also be obtained by other methods [SQL22].

In our case, we only reconstruct a partial surface point cloud of the our different
objects by acquiring different views of the objects grasped by the robot, through ro-
tation. The reconstruction method described bellow is only possible because of these
conditions:

1. The object is in stable configuration; it is either light or rigid enough for gravity
to be neglected compared to other external forces, i.e. the shape of the object
does not change, as long as the force applied by the robot is constant.

2. The object presents faces, i.e. is non-spherical.
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Figure 3.9: Result of the DLO mesh alignment for different objects. The triangle mesh nodes after
alignment are projected on the corresponding RGB image, in red.

3. The back side of the object is considered as approximately planar.

We consider the object already grasped by the robot end-effectors, that are placed
such that the effectors’ normals are parallel. We can reconstruct the geometry of the
object, while avoiding the use of extra tools or cameras, is to “scan” the object, by
rotating it around the axis of the effectors normal, xe. A single, static RGB-D camera
placed in front of the object observes the different views at each rotation increment
during the open-loop manipulation.

In open-loop, the end-effectors rotate by an angle θ < π
2 , see Fig. 3.10(a). They

then rotate back, so the object returns to its initial position, Fig. 3.10(b). The reversed
rotations of −θ are then performed, Fig. 3.10(c), before returning to the initial posi-
tion once more. This sort of scan is possible because of condition 1, ensuring that the
object does not deform significantly in between views. Existing non-rigid registration
algorithms would remedy this point.

The point cloud of the object is extracted from the collected views. Iterative Closest
Point (ICP) algorithm is used to rigidly transform the different rotated point clouds,
to align them to the final point cloud of the object in initial position pc0, thus recon-
structing different faces of the object. Without condition 2, ICP would not be able
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Figure 3.10: Multi-view point cloud reconstruction. The first row shows the RGB camera feedback, the
second row shows the extracted point cloud of the object, and the last row shows the reconstructed point
cloud. First, the robot rotates the object by an angle θ around the axis of the effectors xe (a), rotates it
back to the original position (b), then rotates it about an angle −θ (c).

to construct the surface properly and stack the different views together. Condition 3
allows for a partial point cloud of the external surface to be sufficient to construct the
meshes, as the surface reconstruction algorithm (presented in the following) give good
results even with holes in the point cloud.

This method is very specific to the objects we considered in this chapter but proved
to be satisfying. For objects not fulfilling these conditions, any other existing point
cloud reconstruction method can also be used.

Once the point cloud is obtained, we first run ICP again to align the reconstructed
point cloud with the current observed point cloud of the object pc0: the reconstructed is
then in the camera frame, and denoted pccam. Then is performed surface reconstruction
using Alpha shapes ([EKS83]). We perform it twice, with different trade-off parameters:

• one to obtain a reconstruction as detailed as possible, which will give the triangle
meshMv

cam;

• another with a lower level of detail,Mcam, to obtain a smaller number of nodes
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allowing computations to run fast enough.

The least detailed reconstruction is tetrahedralized using the CGAL4 engine, giving
M0.

Figure 3.11: Triangle (middle row) and tetrahedral (bottom row) meshes reconstructed from point clouds
for different objects. (a) dented foam 1, (b) dented foam 2, (c) foam cube.

3.4 Conclusion

In this chapter, we proposed a simulation setup for estimating in real-time the
deformation of an object according to the robot end-effectors displacement, through
the use of a model, both geometric (a template) and mechanical (FEM). Knowing the
initial tetrahedral and triangle meshes of the object, we are able to apply the motions
of the end-effectors to the object in simulation and estimate the resulting deformations
of the object.

We also presented a simple volume reconstruction method for DLOs, which take
advantage of the dual-arm robot setup. We also proposed tools to build the meshes of
the reconstructed DLO volume, as well as for reconstructed point cloud. To summarize,
once the object is grasped by the end-effectors, the model construction consists in:

4https://www.cgal.org/

https://www.cgal.org/
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Figure 3.12: Model estimation process: mesh construction.

1. Volume reconstruction:

• for DLOs: parameters estimation

• for other objects: point cloud acquisition

2. Meshing: creation of tetrahedral and triangle meshes.

3. For DLOs: alignment of the meshes with the visual feedback: sections of the mesh
are aligned to sample points extracted from the camera feedback beforehand.

The process is illustrated in Fig. 3.12.
In the next chapter, we will present how to use the presented simulations in a robot

control scheme for deformable objects shape servoing.



CHAPTER 4

Dual-arm shaping of soft objects in 3D
based on visual-servoing and FEM

simulations

Figure 4.1: The goal of the work presented in this chapter is to control a dual arm robot so that the initial
mesh (blue) reaches the target mesh (red) in three dimensions.

We propose a servoing scheme that is vision and model-based, using the object’s
template as well as a linear elastic mechanical model. The template is then used as
the object geometric representation, and by running physics-based simulations in the
control loop, it is then possible to estimate the deformation of the object resulting from
the robot motions. The visual feedback is also included in the loop in order to ensure
that the estimation matches with the observed behavior of the object.
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In the previous work, the robot motions were not restricted to plane motions. How-
ever, the proposed method could only control the projections in 3D of the observed
surface. In this chapter, we build on top of the control scheme developed in 2, by
now taking into account the whole volume of the manipulated object - and not only
its visible surface - thanks to the principles and tools introduced in 3. The proposed
framework is then model and vision-based.

We now represent the manipulated soft object with a mesh, and track its deforma-
tion through the robot and RGB-D camera feedback. The shaping task then involves
deforming the mesh from one initial configuration to a target one, as shown in the
example of Fig.4.1.

4.1 Motivations

We aim to track and control the deformation of an entire object, in SE(3). In our
previous work (chapter 2), we solely use projected contours to describe the geometry of
the manipulated object. The major drawback of this is that only the visible part of the
object is tracked, and therefore the hidden part of the object is not controlled. Instead,
in this chapter, we implement real-time FEM simulations during manipulation, to track
the deformation of the full volume of the object, and to relate it to visual feedback.

The benefits are:

• We obtain a consistent topology of the whole object, as introduced in chapter
3. Such a representation allows us to implement a Jacobian estimation as in
Chapter 2. Yet, instead of considering only the contours of the visible surface, as
in Chapter 2, we now also consider the self-occluded parts of the object;

• We can use simulations to collect the data-set initially needed to associate robot
pose variation and corresponding shape variation. This avoids having to control
the robot and object in open loop, with the risk of breaking either or the other;

• We can use the simulations to determine the target shape: it is not required
to reach the target shape manually (by moving the robot or the real object)
beforehand. We introduce an intuitive and user-friendly target shape selection
process.

However, accurate mechanical models are complex to define. They depend on the
material properties and are computationally expensive. Instead of trying to estimate
a precise mechanical model, we use linear elasticity as a simple approximation of the
mechanical behavior of the manipulated objects, and use the information provided by
the robot end-effectors to run simple and efficient simulations. The simulations allow to
estimate the deformation of the whole object, including of its occluded parts, according
to the end-effectors position and orientation.
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4.2 Overview of the framework

In contrast with the previous work, we use simulations to track in real time the
shape of the object. A mesh model of the manipulated object is either known, or
reconstructed from visual feedback with the method presented in 3.3, when applicable
(DLO, or reconstructed point cloud). The material parameters of the object are not
necessarily needed for manipulation, as the constraints are considered as geometric (see
section 3.2.2) but they can be used to monitor the deformation.

At each iteration, we perform a simulation, to deform the mesh of the object accord-
ing to the displacements of the robot end-effectors, as presented in section 4.6.4. We
use the tetrahedral mesh nodes to represent the current object shape. The point cloud
of the object is extracted from the RGB-D camera, and used to correct the simulated
mesh, as detailed in section 4.7.2. The target shape, denoted m∗, is also composed of
mesh nodes and it is chosen in the simulation, via keyboard commands. Our goal is
to generate a sequence of commands for the dual-arm robot to deform and drive the
current mesh m to the target mesh m∗.

Since the representation as tetrahedral mesh has a high dimension wrt the number
of robot DOF, we encode the mesh in a smaller feature vector s ∈ Rk with k << n (n
indicating the number of mesh nodes). As presented in chapter 2, we consider that the
mapping between feature variation δs and robot pose variation δr is linear, through
the interaction matrix L ∈ Rk×k:

δs = Lδr ∈ Rk (4.1)

In the rest of the chapter, we assume the following:

• The mesh of the object is known, or in case of a DLO, we have constructed it,
following our method prior to the manipulation.

• The color of the object is different enough of that of the end-effectors to be
segmented separably.

The control framework is similar to the one presented in chapter 2, and presented
in Fig.4.2. However, the tetrahedral mesh nodes, m are used instead of 3D contours to
represent the shape of the manipulated object:

m =


m1,x m1,y m1,z

...
...

...

mn,x mn,y mn,z

 ∈ Rn×3 (4.2)

In addition, we use the triangle mesh nodes mv to compare the simulations with
the visual feedback. First, the simulation is set up according to the current state of
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the robot and object, in the setup which we will detail in section 4.3.

Instead of implementing an open-loop control phase, to collect an initial sequence
of shapes with corresponding robot poses, we collect these through simulations, as will
be detailed in section 4.4. We then obtain the matrices containing the resulting mesh
nodes and robot pose variations, M and ∆R respectively.

In order to be stored in M, the mesh nodes m are arranged in a single dimension
vector m̌:

m̌ = [m1,x, · · · ,mn,x,m1,y, · · · ,mn,y,m1,z, · · · ,mn,z]⊤ ∈ R3n. (4.3)

Figure 4.2: Overview of our framework at each iteration i. Given a sequence of past mesh nodes m and
corresponding robot poses r, composing matrices M and ∆R respectively, we apply PCA on M, to obtain
projection matrix Uk. This is then used to reduce the dimension of M, to estimate L−1, linearly mapping
the features variation to the robot pose variation. With L−1, we compute the robot input δr driving current
shape si to intermediary target s∗

i in the reduced space. The robot input is sent to the dual-arm robot
controller to obtain the joint command θ̇. Once the command is achieved, the new robot pose ri+1 is sent
to the simulator, and the simulation runs until quasi equilibrium is reached. The resulting triangle mesh
nodes mv

i+1 are compared to the point cloud of the object pci+1 obtained via visual processing, through
ICP. If the resulting error is higher than the acceptable threshold, a step of correction to visual feedback is
conducted. The past data matrices are updated and everything is repeated at iteration i + 1.
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We extract features and compute control inputs as in chapter 2, by conducting
PCA on the mesh nodes matrix, to obtain the projection matrix Uk, encoding the
features in the reduced space of k highest variance eigen values. Both the current and
intermediary target mesh nodes m̌i and m̌∗

i are projected to encode the shape into a
smaller number of k features, giving si and s∗

i respectively. We estimate the inverse
interaction matrix L−1, mapping the robot pose variation to the shape variation, and
use it to compute the control input δr driving the current shape to the intermediary
target. The dual-arm controller computes the corresponding robot joint commands, θ̇
to achieve the motion.

Once the command is achieved, the new robot poses ri+1 are retrieved and sent
to the simulator. The rigid particles prr and prl are displaced to correspond to the
new robot poses. The simulation runs a few steps until a state of quasi-equilibrium of
the mesh is reached. This equilibrium configuration yields the new mesh nodes mi+1
and mv

i+1. Meanwhile, the point cloud of the new state of the object pci+1 is retrieved
through visual processing, as we will explain in section 4.7.1.

The meshes resulting from the simulation are compared and corrected to pci+1 if
necessary. This step will be detailed in section 4.7.2. The data matrices are updated
using the corrected mesh points m̃i+1 and robot poses at every iteration i. The process is
repeated until the target shape is considered reached. The whole process is summarized
in algorithm 2.

4.3 Robot setup, simulations and reference frames

Before starting the manipulation, the robot firmly grasps the object. A RGB-D
camera, in our case the Intel Realsense D435, is fixed on the robot, and looks at the
object.

The meshes of the object may be already known, or else be reconstructed as ex-
plained in section 3.3 in the case of DLOs or for objects reconstructed from point
cloud.

In any case, the meshes must represent the current state of the object. The meshes
denotedMcam andMv

cam are expressed in the camera frame Fcam. Since the camera
position and orientation in the robot frame Frob is known, the transformation from the
camera frame to the robot frame T rob

cam is obtained, see Fig. 4.3.
Both tetrahedral and triangle meshes are transformed into the robot frame, and will

be denoted simplyM andMv for clarity. Changing the frame of the mesh consists in
transforming all their nodes:

m = T rob
cammcam (4.4)

and similarly,
mv = T rob

camm
v
cam. (4.5)
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Algorithm 2 Control framework

procedure Initialization
R = {}
M = {}
j = 0
while j ≤ D do

Generate pose rj and apply in simulation ▷ section 4.4

M +← m̌j

R +← rj

j ← j + 1
Construct ∆R ▷ section 4.4
return ∆R, M

procedure Control loop
Define the target m∗ ▷ section 4.5
m̌i = m̌D

ei = ||m̌∗ − m̌i||
while ei ≤ 0.1 do

Uk = PCA(M) ▷ section 4.6.1
si = project(m̌i,Uk)
L−1 = interactionMatrix(∆R,M,Uk) ▷ section 4.6.2
s∗

i = localTarget(m̌∗, m̌i,Uk)
δri = poseCommand(L−1, s∗

i , si) ▷ section 4.6.3
θ̇ = robotJointsCommand(δr) ▷ section 4.6.3
Apply θ̇ to robot
Get pci+1, ri+1 from camera feedback and robot respectively ▷ section 4.7.1
mi+1 = displacementConstraint(mi, ri+1) ▷ in simulation, section 4.6.4
fiti = ICP (pci+1,mv

i+1) ▷ section 4.7.2
if fiti < threshold then

m̃i+1, m̃v
i+1 = correction(mi+1,mv

i+1,pci+1) ▷ section 4.7.2
else

m̃i+1, m̃v
i+1 = mi+1,mv

i+1

Update ∆R, M
ei = ||m̌∗ − m̌i||

The object meshes are then imported into the simulator, which operates in the robot
frame. Since the object is gripped by the robot arms, the rigid particles prl and prr

representing each end-effectors are created according to the current end-effector poses
rl and rr. In contrast with the work presented in chapter 2, here the dual arm robot
is not controlled following the cooperative tasks space: instead, each end-effector (left
and right) is controlled independently and denoted by the letter l and r respectively.
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Figure 4.3: Camera frame Fcam and Robot frame Frob

We made this choice since it is more direct to use the same reference frame (Frob) for
both effectors when applying the robot motions in the simulation. It also seems more
intuitive in the graphic interface for keyboard control (see section 4.5).

These particles are attached to the holding nodes Hl and Hr of the tetrahedral
mesh, as described in section 3.2.2. A rigid particle is defined by a position and an
orientation:

prref = [xref , yref , zref , qref ] (4.6)

With q a quaternion, and corresponds to a robot pose:

rref = [xref , yref , zref ,ρref ] (4.7)

with ρ the angle-axis vector representation of the end-effector orientation, ref = {l, r}
for the left and right end-effector respectively. The dual-arm robot pose r is then
defined as:

r = [rl, rr] (4.8)

As detailed in section 3.2.2, if the manipulated object is light or rigid enough for
its shape not to be affected by gravity (i.e. it does not slack), the material parameters
(mass, Young modulus and Poisson coefficient) will not impact the simulation. This is



92 Visual and model based dual arm controller for shaping of soft objects

due to the fact that the shape is constrained by the displacement of the end-effectors,
and not by the applied force magnitude. In such cases, we can still use the knowledge
of the parameters to monitor the internal stress, and to assure that the object is being
manipulated in the elastic domain and does not undergo irreversible deformations.
Then, the mass of the object can be obtained through the force sensors on the end-
effectors and the Young modulus and Poisson coefficient included in the simulator FEM
model. Else, these parameters are set to default values.

4.4 Generation a sequence of mesh nodes and robot poses

In order to construct the initial sequence of mesh nodes M, and the corresponding
robot poses variation ∆R for a first estimation of the mapping L−1, as well as for fea-
tures extraction, we now use simulations. There is then no need to control the robot
in open-loop to collect the needed shape samples, as was the case in Chapter 2.

In this section, we explain how we generate the data matrices M and ∆R. M is
constituted of D + 1 different samples of shapes (deformed meshes), so as to have D
variations. To generate them, we consider the simulation already set up according to
the current state of the object, and that the robot poses are known. Let us denote l0
the distance between the two end-effectors rl0 and rr0 in this current state. We choose
a maximum radius R0 to describe a sphere inside which the particles can be displaced.

We then consider, for a sample i, the position for the left rigid particle as:xl

yl

zl


i

=

xl

yl

zl


0

+R0

al

bl

cl


i

(4.9)

With al, bl, cl ∈ [−1, 1]. We then define the position of the right rigid particle in
spherical coordinates from the new position of prli. This ensures that the new position
of prri is at an acceptable distance and avoids stretching the object too much, while
also included in a sphere of radius R0 around its original position:

Ri = arR0 + l0

θi = π
2 − αxy + br(arctan yr0−yli+R0

xr0−xli
− αxy)

ϕi = π
2 − αxz + cr(arctan zr0−zli+R0

xr0−xli
− αxz)

(4.10)

With αxy = arctan yr0−yli

xr0−xli
and αxz = arctan zr0−zli

xr0−xli
. Figure 4.4 illustrates how the

spherical coordinates are used to compute prri.

The random coefficient ar is chosen depending on the desired stretching of the
object: ar ∈ [−0.75, 0.25] will allow stretching up to 0.25R0, while ar ∈ [−1, 0] will
only allow the object to be bent. Finally, we have br, cr ∈ [−1, 1].
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Figure 4.4: Spherical coordinates for random pose generation.

This yields, in Cartesian coordinates:

xr

yr

zr


i

=

xr

yr

zr


0

+

Ri sinϕi sin θi

Ri cosϕi

Ri sin θi cosϕi

 (4.11)

In terms of orientation, random Yaw, Pitch, Roll Euler angles are generated between
−π

4 and π
4 and converted into the quaternion qi (following Euler convention ZYX), to

correspond to the rigid particle object (4.6). The resulting rigid particle poses are
prli = [xl, yl, zl, ql]i and prri = [xr, yr, zr, qr]i.

If the material parameters are known, another condition for shape collection can
be added on the Von Mises stress during the simulation. By monitoring the value of
the Von Mises stress, we can discard the shapes which generate too high of a stress
on a part of the object. These shapes would have higher chances to break or deform
irreversibly. This condition and the Von Mises stress are detailed in the next section 4.5.

Some examples of generated shapes are shown on Fig. 4.5. The D + 1 resulting
meshes nodes mi ∈ R3×n are stacked in a column vector m̌i ∈ R3n, stored in matrix M:

M = [m̌0, · · · , m̌D] ∈ R3n×D+1 (4.12)

In this initialization phase, the corresponding rigid particles pose [prl,prr] are used
to compute the robot pose variation between iterations i − 1 and i. During manipu-
lation, these variations will be computed from the robot end-effectors poses feedback.
The position components are simply subtracted, while the rotation is computed as the
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distance between quaternions: 
δxi = xri − xri−1

δyi = yri − yri−1

δzi = zri − zri−1

δqi = qi · q−1
i−1

(4.13)

Finally, the variation quaternion δqi is converted to an angle-axis vector δρi to give
the robot pose variation δri = [δxi, δyi, δzi, δρi]. The D robot pose variations obtained
are stacked into matrix ∆R:

∆R =
[
δr1 . . . δrD

]
∈ Rk×D. (4.14)

Figure 4.5: Examples of different shapes obtained with simulations. Mesh nodes resulting from D = 10
randomly computed rigid particle poses, (a) for a sponge, (b) for a DLO.

4.5 Simulation for target selection

In contrast with chapter 2, the target shape does not have to be selected from al-
ready reached shapes (i.e, by moving the robot or object manually to obtain a desired
shape, to then go back to an initial shape and deform it again in closed-loop). Instead,
we profit from the SOFA graphic interface, to control the object mesh. In practice,
the user can select the target shape by displacing the rigid particles prl and prl via
keyboard commands, as shown in Fig.4.6, until s/he obtains the desired shape. This
Human-Machine Interface (HMI) for target shape selection is user-friendly, and allows
an easy use of the framework without the necessity of knowledge on how to control the
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robot manually.

Figure 4.6: Keyboard commands for target selection via simulation.

If the material parameters are known or estimated, one can choose to compute the
Von Mises stress during simulations.

The general form of Von Mises stress is:

σv =
√

1
2[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] + 3σ2

12 + σ2
23 + σ2

13 (4.15)

The Von Mises criterion states that the body will yield if the applied stress is
greater than a critical value σy, called the yield strength ([Arm16]) (see Fig.4.7).
The criterion is defined as:

σv ≥ σy (4.16)

This criterion is used to predict yielding for ductile materials.

The Von Mises stress is represented visually in the SOFA graphic interface through
a color scale (where red indicates higher internal stress, hence higher damaging risk).
Figure 4.8 shows the visual representation of the Von Mises stress on a mesh. Zones
of high stress are circled in red. With this tool, the user can easily monitor if a target
shape is hazardous or unreachable.

Similarly, it is then possible to impose a stress limit on the mesh, so that:
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Figure 4.7: Typical strain-stress behavior for polymers. In the elastic domain, the body recovers its original
shape when the stress is released (reversible deformation). In the plastic domain, instead, the deformation
is irreversible. The yield strength defines the limit between elastic and plastic strain. Figure from [CPS+17].

Figure 4.8: Examples of visual representations of the Von Mises stress on a mesh in SOFA during target
selection. On subfigures (b), (c) and (d), we circled in red the mesh areas presenting high Von Mises stress.

• During the initial data collection, the generated meshes with internal stress higher
than the limit are discarded;
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• During manipulation, the control loop can automatically stop if the internal stress
reaches high values, and therefore avoid damaging the object.

4.6 Run time control

In this Section, we detail each of the modules which compose our control loop (again,
refer to Fig. 4.2). The framework is very similar to the one presented in chapter 2,
although it uses tetrahedral mesh nodes instead of visible contours to represent the
object.

4.6.1 Principal Component Analysis

We start by decreasing the size of the past data matrix M containing the mesh
node samples, via PCA. First, we shift each column of M by the mean of all columns,

m̄ =
∑

m̌j

D+1 , j = 0, ..., D, to obtain:

Mm = [m̌0 − m̄, · · · , m̌D − m̄] ∈ R3n×D+1. (4.17)

We then compute Q, the covariance matrix of Mm, and (via Singular Value Decompo-
sition - SVD - on Q) the eigenvector matrix U ∈ R3np×3n.

We select the first k columns of U to be able to control k DOF of our system;
this choice is investigated in section 4.8.2. These columns form the projection matrix
Uk ∈ R3n×k, whose columns correspond to the k principal components (with highest
variances) in the dataset, and therefore determine the directions of highest variability
in the data.

At each iteration i, the reduced feature vector is then:

si = U⊤
k (m̌i − m̄) ∈ Rk. (4.18)

4.6.2 Estimation of the Inverse Interaction Matrix

The next step consists in estimating the inverse interaction matrix L−1 needed
for control. Recall that the interaction matrix is the linear mapping between feature
variation δs and robot pose variation δr (see (4.1)). This matrix is unknown for a
non-rigid object, and it should be inverted to control the robot pose.

To this end, we first project the mesh nodes matrix M into the reduced space as
follows:

S = U⊤
k Mm ∈ Rk×D+1, (4.19)

and then derive the features variation over the D-dimensional window:

∆S =
[
S1 − S0 . . . SD − SD−1

]
∈ Rk×D. (4.20)
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Finally, the inverse interaction matrix is given by:

L−1 = ∆R∆S+ ∈ Rk×k, (4.21)

with ∆S+ the pseudo-inverse of ∆S.

4.6.3 Controlling the robot joints

Linear approximation (4.1) is only valid locally. Therefore, a control law based on
L−1 cannot guarantee convergence if the initial and final shapes are too far. To solve
this issue, we design an intermediary target mesh with nodes m̌∗

i at each iteration, via
linear interpolation:

m̌∗
i = m̌∗ − m̌i

n
(4.22)

with n big enough to ensure small displacements. Correspondingly, we can project m̌∗
i

into the feature vector space to obtain the intermediary target feature vector:

s∗
i = U⊤

k (m̌∗
i − m̄) ∈ Rk. (4.23)

The desired robot pose variations are then computed via:

δri = ΛL−1
i (s∗

i − si) ∈ Rk (4.24)

with Λ ∈ Rk×k a diagonal matrix of control gains. As in chapter 2, this feedback
controller guarantees asymptotic convergence of si to s∗

i , in the ideal case that L−1 is
perfectly estimated.

The robot pose variation command δr ∈ R12 is mapped to the joint velocities θ̇
through the standard QP (Quadratic Programming) optimization problem:

min
θ̇
||Jθ̇ − δr||2

subject to: joint limits.
(4.25)

We take into account joint limits in terms of position, velocity and acceleration, and
use

J =
[
JT

lef JT
rig

]T
(4.26)

with Jlef and Jrig the Jacobian matrices of the left and right arm respectively.

4.6.4 Obtaining the new shape

Once the command has been achieved, the new robot pose ri+1 is retrieved, and
transferred to the simulator: the rigid particles prl and prr representing the end-
effectors are constrained in displacement to reach the new position and orientation,
ri+1.
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For a given robot pose rref = [xref , yref , zref ,ρref ], ref = {l, r}, a displacement
constraint of the corresponding rigid particle amounts to simply imposing:

prref = [xref , yref , zref , qref ] (4.27)

with qref the quaternion equivalent to the angle-axis vector ρref . This constraint is,
by proxy, imposed to the corresponding holding nodes Href , which are rigidly attached
to the rigid particle.

After the constraint is imposed, the FEM simulation runs to deform the rest of the
mesh until quasi-equilibrium is reached, i.e. for simulation step j, we have:

mj ≊ mj−1 (4.28)

The resulting meshes are denoted mi+1, m
v
i+1. The new point cloud of the object

pci+1 is transformed into the robot frame through the transformation matrix T rob
cam.

ICP1 is then conducted between pci+1,rob and the triangle mesh mv
i+1. Running ICP

between the point cloud in the robot frame pci+1 and the visual mesh nodes mv
i+1 gives

the transformation Ti+1, from the point cloud to the mesh. A fitness score between the
triangle mesh and transformed point cloud is computed. The process is illustrated in
Fig. 4.9.

Figure 4.9: Process to obtain the new shape from both simulation and visual feedback.

If the fitness result of the ICP is lower than an imposed threshold, a correction step
is conducted to improve the similarity between meshes and visual feedback. The visual
processing and correction steps are detailed in the following section. The corrected

1http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html, sec-
tion Point-to-plane ICP

http://www.open3d.org/docs/release/tutorial/pipelines/icp_registration.html
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mesh nodes are denoted m̃i+1 and m̃v
i+1.

If the ICP gives satisfying results (this evaluation will be detailed in section 4.7.2),
the correction step is skipped and we simply take:m̃i+1 = mi+1

m̃v
i+1 = mv

i+1
(4.29)

The past data matrices ∆R and M are updated with the new pose variation com-
puted via 4.13 and the nodes m̃i+1.

The task error at iteration i is defined as the norm error between between the
transformed corrected mesh nodes and the target mesh nodes, in meters:

ei = ∥m∗ − T −1
i m̃i∥ (4.30)

NOTE:
The rigid transformation Ti+1 resulting from the ICP is not applied to the mesh nodes
when added to the data matrix M, since the estimated deformation (the mesh) is
considered close enough to the observed deformation (the point cloud). Applying the
rigid transformation also transforms the holding nodes, resulting in their displacement
not corresponding to the displacement of the end-effectors anymore. To avoid this
issue, which may cause the algorithm not to converge for lack of coherence, the rigid
transformation Ti+1 is only accounted for in the computation of the task error, and
used as well in the correction step that will be detailed in the next section. This is
also the reason why the correction step is not performed at every iteration, ensuring
coherence in the data matrices.

4.7 Including visual feedback

4.7.1 Image processing

Instead of relying on the known color of the object, as in chapter 2, here we decides
to use the color of the robot end-effectors to segment the object in the RGB image.
We assume that:

• the object is at all times contained in-between the two end-effectors, i.e. it is at
the right of the left end-effector and at the left of the right end-effector;

• the color of the object is not too close to that of the end-effectors.

Since the end-effectors’ color remains unchanged regardless of the object being manip-
ulated, the image acquisition needs no tuning from one manipulation to the next. Our
setup uses the green color of the end-effectors, but it is straightforward to replace color
segmentation by markers on the end-effectors, if needed.
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Figure 4.10: Different steps of point cloud acquisition. From RGB image (a), the robot end-effectors are
segmented by color (b). An inverted mask is applied to the depth map, to nullify the depth value of the
effectors. The depth of pixels right of the right effector and left of the left one are also set to 0, as are
the background pixels. This constitutes a mask which is applied to (a), resulting in (c). From there, the
dominant color of (c) is segmented as well, giving (d). (d) is then projected in 3D, resulting in the point
cloud (e) expressed in the camera frame.

The process start by extracting the pixels of both end-effectors, from their known
color (see Fig.4.10(b)). The depths of the end-effectors pixels (ie, je) are set to zero, and
so are the depths of pixels left of the left end-effector and right of the right end-effector.
The depth values which are farther than a limit distance dbg = max(d(ie, je))− 0.5 are
considered as background, and nullified as well:

d(i, j) = 0 if


(i, j) ∈ (ie, je)
i < min(ie)
i > max(ie)
d(i, g) > dbg

for a pixel of coordinate (i, j), with depth d(i, j). The resulting depth map is trans-
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formed into a binary mask and applied to the RGB image to obtain a new image where
all pixels such as d(i, j) = 0 are colored white, Fig.4.10(c).

When getting the very first camera feedback during the manipulation, we conduct
Hue Clustering [Mac67] to extract the dominant color of the remaining pixels of the
resulting RGB image. This step can be longer, so to avoid having to repeat it at every
iteration, we save the dominant color extracted from the first camera feedback and pass
it as an input for the rest of the experiment.

Another color segmentation is then applied to the new RGB image to extract the
pixels corresponding to the dominant color. These will characterize the manipulated
object, Fig.4.10(d). Finally, these pixels are projected into 3D coordinates using the
camera intrinsic parameters and depth value, as was done in 2.2.1. The object point
cloud pccam is obtained, Fig.4.10(e). The point cloud is finally transformed to the robot
frame using the transformation matrix T rob

cam to give:

pc = T rob
campccam (4.31)

4.7.2 Evaluation of the mesh with the visual feedback and correction

For many different reasons (the material not following a perfectly linear-elastic be-
havior, small errors on the gripping model, bulking effects, privileged direction of bend-
ing, and so on), the simulation may mismatch the actual object deformation. Hence,
after each control step, we evaluate the mesh resulting from the simulation, via visual
feedback.

Given a source set of 3D points P and the target set of points Q, the ICP algorithm
finds, via Nearest Neighbors Search, the correspondence set K, defined as K =
{(p, q)} with p from P and q from Q.

For κ correspondences, and a target set of points of size nq, we define the
fitness fit of the ICP algorithm as:

fit = κ

nq

∈ [0, 1] (4.32)

We consider the alignment of the simulation with the visual feedback satisfactory,
if the ICP outputs a fitness value fiti+1 > 0.8, i.e. if the point cloud and the nodes
overlap by more than 80%.

When the fitness is not satisfactory, we proceed with a correction step. Our ap-
proach consists in considering the mesh as an articulated object: the goal is to find the
maximum displacement between corresponding points and nodes, and create a particle
acting as a joint, to apply this displacement to the corresponding slice of the mesh,
and deform the rest of the mesh accordingly.
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For easier reading, let us denote a current point cloud aligned to the mesh with the
transformation (resulting from ICP) T :

pc = T rob
camT pccam. (4.33)

We also denote the current (updated with the displacement of the end-effectors) tetra-
hedral mesh nodes m and the corresponding triangular mesh nodes mv. Using KNN
(K-Nearest Neighbors, [MM99]) algorithm, we find the nearest triangle mesh node to
each point of the point cloud. The result is a list of nodes KNN, such that node
KNNi ∈ mv is the triangle mesh node closest to point pci. We call (p∗,n∗) the pair of
point cloud point and corresponding triangle mesh node respectively, see Fig.4.11(a),
such as:

p∗ = pcκ

n∗ = KNNκ,
(4.34)

with κ such that :

Find κ ∈ max
κ∈[0,p]

(||pcκ −KNNκ||2). (4.35)

Once n∗ is known, we find the holding nodes Hn: The tetrahedral mesh m is ”sliced”
in the direction of the plane normal to the end-effectors axis ppr, with a small tolerance
on the distance to the plane, to get more nodes (see Fig.4.11(b)). The nodes in Hn are
such that:

∣∣∣ppr · n− ppr · n∗
∣∣∣ ≤ tol,n ∈ m. (4.36)

with tol = 0.01.

Next, the holding nodes Hn are rigidly attached to a rigid particle prn created after
the position n∗, see Fig.4.11(c). Since the correction is applied with translation alone,
the orientation of the rigid particle is set to qn = [0, 0, 0, 1].

We finally apply a displacement constraint on the rigid particle prn to reach the
position p∗. The displacement is, due to the rigid link, also applied to the nodes in
Hn. The simulation runs and deforms the rest of the geometry accordingly, resulting
in the corrected meshes m̃i+1 and m̃v

i+1, as shown in Fig. 4.11(d).

The matrix containing the past mesh nodes M is updated using the corrected mesh
points m̃i+1 for the next iteration, see Fig.4.2.
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Figure 4.11: Steps of the correction to visual feedback. (a) We find the node of the triangle mesh (n∗
in red) which is the farthest from its corresponding point in the point cloud (p∗ in blue). (b) In the
tetrahedral mesh, we select the holding nodes (Hn, in darker green), which have a distance to the plane
orthogonal to the axis of end-effectors ppr lesser than a threshold. (c) A rigid particle prn is added; it is
rigidly attached to all the points in Hn. We displace prn to have it reach p∗. (d) The rest of the mesh is
deformed, resulting in m̃v

i+1 shown in red.

4.8 Experiments with robot simulator

Simulations are critical in robotics to analyze performances and design control sys-
tems (see [Žl08]), and many simulators (Coppelia-Sim2, MuJoCo3, Gazebo4, to cite a
few) allow users to model different robots and environments. If rigid objects can easily
be included in robot simulators, it is seldom the case for soft objects.

MuJoCo includes a collection of basic elements designed to simulate ropes, cloth,
and soft bodies represented by standard geometries like cubes or balls, but not specific
geometries. The authors of [DBPC18] design their own simulator, which couples the
shape representation (FEM energy) to the robot joint representation. Another ap-
proach is to use available rigid models to approximate the behavior of soft objects. For
instance, the authors of [CP20] model cables using rigid links connected by revolute
joints. The authors of [ZPC21] use FEM simulations for their trajectory optimization
strategy, using a compressible neo-Hookean material model.

2http://www.coppeliarobotics.com/
3https://mujoco.org/
4https://gazebosim.org/home

http://www.coppeliarobotics.com/
https://mujoco.org/
https://gazebosim.org/home
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When it comes to visual servoing for soft object manipulation, in addition to the
robot model, an accurate visual result must be generated as part of the control loop.
Hence, for methods based on camera feedback, the deformed shape corresponding to
the robot end-effectors’ action must be generated in parallel. To this end, the authors
of [ZNAPC20] include, in parallel to their control framework, simulations of DLO (ca-
bles) based on differential geometry.

Figure 4.12: Overview of the framework in simulation. The difference with 4.2 are framed in doted green
lines. The joint command is sent to the robot simulator instead of the robot, and the visual processing
blocks are skipped.

In our framework, the use of mesh nodes for shape feedback allows us to test out
the control framework entirely in simulation, by sending the joint command to the
simulator instead of sending it directly to the robot. This allows feeding the result
of the FEM simulations directly into the data matrix ∆M, as shown in Fig. 4.12.
Figure 4.13 shows, on one side, the model of the robot in the simulator (in our case,
CoppeliaSim), and on the other, the mesh of the object corresponding to the pose of
the end-effectors, acting like a visual representation of the object.

Figure 4.14 presents the results of the shaping simulations. These results shows the
dual-arm robot reaching successfully three different target shapes involving different
DOFs in SE(3), and task with translating, bending, twisting, and stretching. Simu-
lations are also very useful for investigating more in depth the dimension of the data
matrices required in the framework, which would be cumbersome to do with real robot
experiments. We discuss this in the following section.
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Figure 4.13: Simulated experiment visuals. On the right is robot simulator, moving the end-effectors
according to the control inputs. On the left is the FEM simulation of the object, which deforms the mesh
according to the new end-effectors poses, updated by the robot simulator.

(a) Target shape 1 (b) Target shape 2 (c) Target shape 3

Figure 4.14: Example of 3 different simulated experiments. The first two rows show the initial and final
configurations of mesh (top) and robot (bottom). The third row shows the initial, final and target mesh
(all sampled for visibility) of the experiment. The very last row shows the evolution of the shape error
(4.30) during the experiment, with the doted red line representing the acceptable threshold e = 0.05. For
these experiments, we use D = 24 and k = 12.
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4.8.1 Choice of the number of samples

Let us first look at the number of samples which constitute data matrices ∆M and
∆R, which respectively contain past shapes, and corresponding end-effector poses.
The authors of [ZNAPC20] do not discuss the number of samples chosen. They only
mention that it should be D ≥ k for ∆R ∈ Rk×D to have full row rank.

Since these data can be collected through simulations, we run three, with the goal
of reaching the target shapes shown in 4.14, referred to as target shape 1, target shape
2 and target shape 3 for columns 1 to 3 respectively. We attempt to reach each target
shape, with a variable number of samples, to explore the impact of D on the controller’s
success. The experiments are repeated thrice, with different initialization data for each
trial.

We consider as failed an experiment which has not reached the acceptable error
threshold after 200 iterations of the control loop. The results are summarized in Ta-
ble 4.1, while Figure4.15 shows the evolution of the shape error 4.30 during the 36
simulations.

Target shape D Average total time
(s)

Success

1 13 50 yes, yes, no
2 13 64 yes, yes, yes
3 13 105 yes, no, yes

1 15 48 yes, yes, yes
2 15 64 yes, yes, yes
3 15 104 yes, yes, yes

1 25 81 yes, yes, yes
2 25 71 yes, yes, yes
3 25 119 yes, yes, yes

1 40 114 yes, yes, yes
2 40 89 yes, yes, yes
3 40 - no, no, no

Table 4.1: Simulated experiments with different number of samples. D = 15 and D = 25 both give a
100% success rate.

The simulated experiments show that a number of samples too small (13) or too
high (40) leads to some experiment not converging. Indeed, the number of samples too
small will lead to little variety, thus a bad representation of the available motions; on
the contrary, too many samples imply losing local information about motion.

In terms of performances, by comparing the cases of D = 15 and D = 25, we notice
that the lesser the samples, the fastest the computations. Keeping all of this in mind,
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(a) Target shape 1

(b) Target shape 2

(c) Target shape 3

Figure 4.15: Evolution of shape error (4.30) during simulated experiments with different number of samples.
Lines in cyan represent the trials for D = 13, green for D = 15, black for D = 25 and blue for D = 40.
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it appears that choosing a number of samples between 15 and 25 would be a good
trade-off between performance, locality while reducing the risk of under-representing
the available motions. To ensure not an under-determined (similarly to experiments
with D = 13), we take D = 17 for real robot experiments.

4.8.2 Choice of the number of features

It is not required for the interaction matrix L to be square. It is then worth ques-
tioning how many features are needed to represent the shape of an object. Therefore,
in this section, we investigate the significance of the number of principal component
and its impact on the command computations.

Since it is custom in visual servoing to consider a number of features at least as
great as the number of DOF controlled [Cha07] (to avoid redundant visual data), here,
[rl, rr], our first choice is to consider k = 12 features.

To verify the validity of this choice, we conduct a series of simulations. As metric, we
use the explained variance, which indicates how much each of the principal components
encodes the dataset variation. The variance of the i-th principal component is defined,
for a column vector of size 3p, as:

var(λi) = λi

λ1 + λ2 + . . . + λ3p

(4.37)

with λi the eigenvalue associated with the i-th principal component resulting from the
SVD (refer to Sec. 4.6.1). This metric allows to compare their significance, thus their
encoding of useful information about the shape. We then observe the explained variance
of the principal components, resulting from the PCA during 4 different trials, and
summarize it in Table 4.2. For each trial, the PCA is performed on a new set of D = 17
randomly generated samples. For principal component i, Cumulative proportion of
explained variance is given by:

CP (i) =
i∑

n=1
var(λn) (4.38)

Nb principal components (i) Trial 1 Trial 2 Trial 3 Trial 4 Average
6 0.899 0.893 0.906 0.901 0.899
8 0.971 0.958 0.978 0.968 0.968
10 0.993 0.986 0.978 0.968 0.981
12 0.999 0.998 0.998 0.999 0.998

Table 4.2: Cumulative proportion of explained variance for different number of principal components, for
different trials.

As Table 4.2 shows, more than 90 % of the shape is encoded by 6 to 8 principal
components, but 10 to 12 principal components represent a variance close to 1, giving
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the best representation of the data. These simulations comfort us in the choice of tak-
ing k = 12 features for our control strategy.

All in all, the control framework could, with the exception of the modules involv-
ing visual feedback, be validated through simulations only, allowing us to tune most
parameters offline, and to avoid cumbersome tests on the real robot.

4.9 Experimental results

We conduct experiments with different foam objects, of varying shapes, densities
and rigidities. They are presented in Fig.4.16.

Figure 4.16: Different foam objects used during the experiments. From left to right: sponge, thin convo-
luted foam, convoluted foam, foam noodle.

The material parameters are considered unknown, and set on the FEM simulations
to E = 2.5e6 Pa and ν = 0.3. Once again, the objects are gripped at the beginning
of each experiment. The experiments consist in shaping the object held by the robot
arms into a target shape. The deformation of the object is observed through a RGB-D
camera, Intel Realsense D435.

At each control iteration i, the displacement of the end-effectors of the robot from
the previous iteration is applied to the FEM simulations, by displacement constraint
(see Sec. 4.6.4). The resulting mesh points (deformed according to the end-effectors
displacement) mi are obtained. Meanwhile, the point cloud of the deformed object pci

is extracted, and ICP is conducted between the obtained triangle mesh nodes and the
point cloud, giving Ti, the transformation from pci to best fit mv

i . The ICP fitness
score is obtained, and if it lesser than a chosen threshold (0.8 as default), we perform
the correction step explained in section 4.7.2. The resulting mesh is m̃i. We compute
the shape error 4.30, between the target mesh nodes m∗ and the corrected mesh nodes
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m̃i, and the manipulation continues until the error decreases bellow a threshold set to
e = 0.05 m.

Figure 4.17: Different experiments with the sponge. First column: initial shape of the mesh (blue) compared
to target shape (red), both projected on the RGB image. Second column: obtained final shape. Third
column: evolution of the error e during the experiments, until the threshold e < 0.05m is reached.
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Figure 4.18: Different experiments with other objects - two dented foams and a foam noodle. First column:
initial shape (blue) and target shape (red). Second column: final shape compared to the target. Third
column: evolution of the error e until the threshold e < 0.05 is reached.
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Figures 4.17 and 4.18 show the experiments. In the figures, the blue points repre-
sent the corrected mesh nodes transformed in the camera frame T cam

rob T −1
i m̃i, projected

on the RGB image. The red points represent the target mesh nodes transformed in the
camera frame T cam

rob m∗, also projected on the image.

Figure 4.17 presents different experiments with the sponge object, involving the 3D
workspace. The experiments include bending in different axis and torsion (third row).
All succeed in reaching the target shape. The fourth row experiment also presents
convergence to the target shape, despite visual occlusion of the object by the robot
end-effectors. Figure 4.18 shows different experiments with other foam objects. On the
error plot of the second experiment with the thin dented foam, presented on the second
row of the figure, we can see the task error e oscillating due to the ICP converging alter-
natively to different transformations. Since the data matrix M is not directly impacted
by the result of ICP, the control algorithm manages nonetheless to decrease the task
error, until convergence. Additionally, one can observe that on the last experiment
with the foam noodle (fifth row), the initial mesh is not exactly aligned with the point
cloud of the object. Yet, the shift between the two is corrected during manipulation.

The final RMSE for all the objects presented in these experiments are presented in
Tab. 4.3.

Experiment sponge thin convoluted foam convoluted foam foam noodle
Mesh nodes 579 564 800 102
RMSE (m) 0.001 0.001 0.001 0.003

Table 4.3: RMSE between the target mesh and the transformed final mesh reached at the end of the
experiments with the objects presented in Fig.4.17 and 4.18.

Concerning the foam noodle experiments, it is noticeable that the mesh is displaced
compared to the tips of the noodle (i.e, the tips of the mesh and the object are not
aligned). However, the ICP gives a high fitness score nonetheless, since it is sensitive
to the curvatures. The task error e, which is computed between the mesh nodes (blue
points on the figures) and the target mesh nodes (red points on the figures), is not im-
pacted directly by the visual feedback as long as the ICP fitness stays above threshold;
this is why it converges nonetheless.

In the case of the foam noodle, the curvature of the point cloud and the mesh nodes
”match”, even if the tips of object and mesh are not aligned. Since the ICP fitness score
stays high, visual feedback correction does not occur. It is then necessary to tune the
fitness score threshold, to control the frequency of correction steps.

Figure 4.19 presents the results of experiments with the foam noodle reaching the
same target shape with different thresholds of the ICP fitness, resulting in different
occurrences of the correction step. We can observe that with a higher threshold - and
therefore more correction steps during the experiment - the final shape of the mesh
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(a) Experiment with a threshold for ICP fitness at 0.85.

(b) Experiment with a threshold for ICP fitness at 0.9.

(c) Experiment with a threshold for ICP fitness at 0.92.

Figure 4.19: Experiments showing how tuning the ICP fitness threshold may ensure adequate correction
to visual feedback. The first column shows the final shape in blue, compared to the target shape in red,
projected on the RGB image. The second column shows the evolution of the error during the experiments,
reaching the threshold e < 0.05. The third column shows the evolution of the ICP fitness score during the
experiments, with the correction steps circled in green.

resembles more the observed shape of the noodle. It is then necessary to tune the
threshold of the ICP fitness accordingly to obtain a adequate correction to the visual
feedback.

Finally, on Fig.4.20 is shown an example of two consecutive correction steps at the
initial ICP alignment of the mesh with the point cloud of the foam noodle.
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Figure 4.20: Example of correction of the mesh nodes (blue) with the point cloud of the object (red), after
ICP alignment.

4.9.1 Stress monitoring experiments

In this section, we present a bending experiment while implementing stress mon-
itoring. The object used in this experiment is a planar test tube 3D-printed in with
PLA. The material parameters are set to E = 3120 MPa, ν = 0.36 and a density
ρ = 1240 kg.m−3.

Figure 4.21: The objective of the experiment is to drive the initial shape (blue) to the target shape (red).
We monitor the internal stress during the experiment to observe the different type of deformation: elastic
(blue), plastic (green) and finally, rupture (red).

As we consider linear elasticity, we aim to apply a stress threshold during the
manipulation in order to control the type of deformation applied to the object. As
previously detailed in sec.4.5, the deformation applied to the object evolves with the
value of the stress applied to it. At first, the deformation is elastic, and the object
comes back to its original shape when the applied stress returns to zero. When the
applied stress exceeds a first threshold (orange dotted line in Fig.4.21), the deformation
becomes plastic. From there, even when the stress diminishes again, the object will
remain deformed: it is permanently damaged. Finally, when the stress reaches the
plastic limit (red dotted line in Fig.4.21), the object will reach its rupture point and
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break.
In Fig.4.22 are presented three experiments in order to reach the same shape. Dur-

ing the experiment, the Von Mises stress (4.15) at each node is computed and plotted.
In the first experiment, a stress limit is applied in order to keep the deformation of the
object in the elastic domain. In the second one, we allow the object to be damaged (i.e.
the deformation is in the plastic domain) but apply a stress limit to avoid breaking.
Finally, the last experiment shows the manipulation without stress limit. For each
experiment, the evolution of the Von Mises stress is plotted (first row), and we show
the resulting shape of object after experiment (last row).

Figure 4.22: Different stress monitoring experiments. In the first experiment (first column), the deformation
of the object stays elastic during manipulation, and the shape of object after experiment goes back to
its original shape. In the second experiment (middle column), the deformation is plastic: the object is
permanently damaged even after relaxation of the applied stress. The last experiment (last column) is
conducted without stress limit, showing the deformation going beyond plastic domain and resulting in the
object breaking.

These experiments show that applying a stress limit during manipulation can avoid
the damaging and/or breaking of the object manipulated, in the case where the material
parameters are known.

4.9.2 Time performances

Let us now study the time performances of the control loop on the sponge ex-
periments presented in Fig. 4.17, numbered from one to five. The total time of the
experiments differs widely in function of the complexity of the target and of the ini-
tial error, but we can compare the average duration of one control iteration, for these
different experiments.
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A single control iteration can be broken down to four different modules:

• simulation: application in the FEM simulation, of displacement constraint up-
dated by the robot poses, and running the simulation until quasi-equilibrium is
reached (Section 4.6.4).

• image processing : acquisition of the current point cloud of the object (section
4.7.1).

• correction: running ICP, evaluation, and if necessary, correction step, Section
4.7.2.

• control : update of data matrices and PCA (Sec. 4.6.1), estimation of the inverse
interaction matrix (Sec. 4.6.2), computation of the command (Sec. 4.6.3), sending
the command to the robot, performing the command and acquiring the new robot
poses.

Figure 4.23: Average time per iteration of the modules for the five sponge experiments shown in Fig. 4.17.

Module simulation image processing correction control
Average time 1.884 0.045 0.019 0.958

Table 4.4: Average time of the modules for the experiments presented in Fig. 4.17.

Figure 4.23 shows the average duration of each of these modules per iteration, for
the five sponge experiments, and Tab.4.4 summarizes the average time of each modules
for all these experiments. We see that for the sponge object, the average duration of
a single iteration is close to 3s, with the biggest part of it dedicated to the simula-
tion module (almost 2s). The second most time-consuming module is control, which
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takes about a second per iteration. This module depends on the gains of the robot
(which are tuned so that the motions don’t look too jerky), since it waits for the mo-
tion of the end-effectors to be executed to obtain the new poses. In this module are
also included the PCA (4.6.1), Jacobian computation (4.6.2), control and robot joints
commands computation (4.6.3), communication by socket5 between python and the
RKCL C++ robot control codes (both ways: sending the command and receiving the
new pose). Point cloud acquisition takes around 0.045s in average. ICP algorithm
runs quite quickly compared to the rest, with an average time bellow 0.02s when no
correction step is needed. However, this time increases quickly with the correction
step, since additional simulations are needed. Looking at the last experiment shown in
Fig.4.19, where several correction steps are performed, we obtain an average time for
the correction module during the experiment of 0.0168s per iteration, versus 0.751s in
average for a correction step.

In summary, additionally to the code not being optimized, the control loop is mostly
slowed down by the FEM simulations. One way of reducing their duration, is to study
the effect of the mesh size. We conduct additional experiments with meshes of different
sizes, presented in Fig. 4.24. The timing of the simulation and correction modules,
as well as the average timing of one displacement constraint generated for the data
initialization (4.4), referred to as initialization step, are plotted on Fig. 4.25.

Figure 4.24: Meshes of different sizes for the foam noodle

From these experiments, it is clear that the simulation time largely depends on the
size of the meshes, for the initialization data generation as well as for the simulation
during the control loop. Both modules take an average time close to 0.5s for a mesh
made of around 100 nodes, while they take between 2 to 3s for a mesh containing 374
nodes. The correction module time is, in total, lower, as it is not performed often. In
the sponge experiments, the tetrahedral mesh used for the computations contains 579
nodes and 1628 elements, which is quite significant, and which explains the slow pace
of the simulations and as a result, of the iterations.

It is however important not to reduce the size of the mesh too much, so as to not

5https://nanomsg.org/
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Figure 4.25: Average time per iteration for different mesh sizes

lose shape data, as one can observe a curvature difference between the meshes in Fig.
4.24, with mesh (c) closest to the observed one. It is also important to keep in mind
that the least the number of elements, the more rigid the mesh. Choosing the size of
the tetrahedral mesh consists in finding a satisfying trade-off between shape details,
computation time and rigidity. The whole code could also be optimized to be faster,
using multi threading for instance. Our work was however more focused on the method,
but it is to keep in mind for future work.

4.10 Conclusion and discussion

In this chapter, we present a framework for shaping soft objects, based on both
visual-servoing and model-based methods. Similarly to the method presented in chap-
ter 2, we use PCA to reduce the dimension of the object, and we estimate a linear local
mapping between past features and the corresponding robot poses. However, in this
chapter, we also represent the object by a triangular and a tetrahedral mesh, in order to
estimate the deformation of the object with regards to the motions of the end-effectors
at every step, through FEM simulation. We present experiments with different object
and tasks in SE(3), summarized in Tab. 4.5.

Meshes of the objects are required to use this framework. However, this is the case
in this industry where CAO models of the manipulated objects are usually known.
There also exist many methods to reconstruct meshes from either scans, point clouds
or DLO parameterization, as discussed in chapter 3. Knowledge on the material -
material parameters, weight - are also to be known if gravity affects the shape sig-
nificantly. The assumption of linear elasticity also cannot be applied to all objects,
and this could cause the deformation estimation from the FEM simulation not to fit
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Object Experiment Tasks

Sponge

1 Bending, translations only
2 Compression with rotations
3 Torsion
4 Bending (around y-axis)
5 Bending with rotations

Thin dented foam
1 Bending with rotation
2 Stretching

Dented foam
1 Bending, spinning
2 Torsion

Foam noodle (DLO)
1

Out of plane deformation,
translations only

2
Out of plane deformation,
with rotation

Table 4.5: Summary of the experiments preformed in this chapter.

with the observed behavior of the object during manipulation. In contrast, the frame-
work presented in chapter 2, if there was no prior knowledge of the manipulated object.

The control loop running time also proves to be quite slow. Future work should
involve code optimization, to allow faster running, and keeping in mind the size of
the meshes while constructing them. The investigation of other types of objects - like
clothes - and models (non-linear) with this framework would also be interesting.



Conclusion

Short summary of the thesis

In this thesis, we presented two frameworks for controlling the shape of deformable
object, using visual feedback (chapters 2 and 4), as well as various tools for modeling
non-rigid objects deformation (3).

Chapter 2 presents a dual-arm controller to shape the 3D contours of an object’s
visible surface, observed with a RGB-D camera, into desired 3D contours.

Chapter 3 introduces a setup for real-time FEM simulation to reproduce the motions
of the robot end-effectors in simulation, in a Real-to-Sim manner, and consequently es-
timate the resulting deformation of the object. This chapter also presents tools for
meshes reconstruction, for DLOs as well as for reconstructed, partial point clouds.

Finally, chapter 4 puts into practice the setup presented in Chapter 3, in a control
framework which relies on both a model and on visual feedback. The presented dual-
arm controller allows to shape the 3D mesh of a considered object into a desired one,
selected through an intuitive graphic interface.

Comparison of the proposed frameworks and discussion

The presented control frameworks (2 and 4) both allow to:

• Shape objects in SE(3) with a dual-arm robot;

• Shape objects of different topology and materials;

• Achieve out-of-plane deformations such as torsion, bending or compression.

• Consider large deformations.
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However, they rely on different hypotheses and prior knowledge, and they present
different advantages and drawbacks, as detailed in Tab.4.6.

Framework Chapter 2 Chapter 4

Hypotheses

- Object can be segmented
from the scene by its
color
- The visible part of the
object does not change too
much from the start to
final shape

- Object can be segmented
from the end-effectors
- The behavior of the
object can be approximated
with linear elasticity

Prior knowledge - Color of the object

- Color of the end-effectors
- Meshes of the object
- m,E, ν if the gravity
cannot be neglected w.r.t.
the forces applied by
the robot

Advantages
- Fast computations
- Little prior knowledge
is needed

- Whole volume of the
object, including the self-
occluded parts, are
controlled
- Possibility of monitoring
the applied stress
- Target selection through
user-friendly HMI

Drawbacks

- Only the 3D contour
of the visible surface
is controlled
- No monitoring of the
applied stress (risk
of damage)
- The target must be
manually reached before
manipulation to obtain
the target 3D contour

- Slow computations
- More prior knowledge
of the object is needed

Table 4.6: Comparison of the two control frameworks presented in this thesis.

The major difference between the two methods is the shape representation; in chap-
ter 2, it consisted of visible contours projected in 3D. The use of meshes in chapter 4 is
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a step-up from this, allowing to put into greater use the workspace, and to control the
deformation of the whole volume of the object in 3D, and not only that of its visible
part. This representation also allows to deal with the self-occlusions of the objects dur-
ing manipulation, and the use of FEM simulations allows to estimate the deformation
of the object even in case of occlusions on the image.

Another notable difference is in the target shape selection. While the framework
of chapter 2 requires a ”reachable” target, which must be manually reached before-
hand, either by moving the robot or by manually deforming the object, the framework
presented in chapter 4 does not require this. A simple graphic interface (HMI) and
keyboard controller allow a target selection that is intuitive, visual and does not require
the robot. This target selection can also be used to monitor the stress, hence ensuring
that the chosen target will not damage the object.

All in all, chapter 4 presents a framework to shape soft objects more precisely (in
their full volume) than the one presented in chapter 2. Yet, this framework requires
more information about the manipulated object than that of Chapter 2.

Perspectives

Let us now discuss improvement leads and future work.

Optimization of the performances
As it was discussed in 4.9.2, a short-term improvement would be to optimize the control
loop so that the manipulation of the object is faster. Other than optimizing the code,
generating smaller meshes (i.e. with less nodes) could be achieved by parametrising
the method presented in chapter 3.3.

Cooperative tasks space
Another interesting point would be the implementation of the cooperative tasks space
presented in chapter 2 in the model-based control framework presented in chapter 4.
This would allow to free DOFs in the case where a rigid object is manipulated, or in
the case where only the deformation of the object (and not its position/orientation in
space) is of interest.

Material parameters estimation
A longer-term work would be the implementation of material estimation through ma-
nipulation, for instance by relying on force sensors on the robot end-effectors. Yet,
the precision of the force sensors would need to be high. We could envisage making
an estimation through an initial manipulation, by relating the observed displacement
(from visual feedback) to the applied force (measured by the force sensors), for example
through Hooke’s law.
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Human interaction
Finally, the implementation of human interaction with the object for cooperative ma-
nipulation, would be interesting. Application like handling of large objects (like sheets),
folding, or ”deform and place” especially, would make compelling use-cases.



APPENDIX A

Résumé des travaux

A.1 Introduction et contexte

Dans ce manuscrit, nous présentons des travaux de recherche portant sur la manip-
ulation robotique bi-bras d’objets déformables.

De nombreux travaux existants traite de la manipulation d’objets souples; nous
pouvons distinguer deux catégories de travaux:

• Ceux portant sur le traçage de la déformation;

• Ceux portant sur le contrôle de la déformation.

Cette première catégorie englobe les travaux visant à suivre et représenter l’évolution
de la forme d’un objet sujet à des déformations. Si nous nous concentrons sur les
travaux portant sur un traçage visuel des déformations, c’est-à-dire un traçage basé
sur un retour visuel. Ces méthodes peuvent être basée modèle, s’appuyant sur un mod-
èle géométrique (une topologie) ou un modèle mécanique. A l’inverse, il existe aussi
des méthodes dites sans modèle, ne s’appuyant que sur les retours visuels.

En ce qui concerne la seconde catégorie (contrôle), il s’agit de travaux visant a
proposer des méthodes pour contrôler des objets non-rigides pour accomplir certaines
tâches, comme plier un vêtement, insérer un câble, ou encore cueillir un fruit. Nous étu-
dions en particulier le contrôle de forme, dont le but est de donner une forme désirée
à un objet. De telles tâches peuvent être accomplie avec des méthodes basée don-
nées, consistant à apprendre le comportement de certains objets grâce à des données
collectées au préalables, à travers de l’apprentissage par renforcement ou par démon-
stration, par exemple. D’autres méthodes sont elles dites basées modèle, et s’appuient
sur un modèle physique choisit pour prédire le comportement de l’objet, et ainsi les
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changements de forme. Enfin, d’autres méthodes passent plutôt par une estimation de
Jacobienne en ligne, utilisant quelques données passées pour estimer itérativement un
modèle simplifié entre les commandes du robot et la déformation de l’objet.

Dans l’ensemble, les travaux existants montrent que le contrôle de forme d’objets
non-rigides implique différentes problématiques à considerer:

• Choisir un descripteur de forme pertinent (en fonction des capteurs disponibles,
le type d’objet, le modèle connu, etc.) et traçable;

• Décrire les commandes du robot par rapport au descripteur de forme (via un
apprentissage basé données, part estimation de matrice Jacobienne à partir de
données passées, ou selon un modèle physique);

• Fermer la boucle de contrôle grâce à un retour capteur.

Les méthodes basées données sont adéquates pour estimer les déformations d’ojets
souples dont peu d’informations sont connues: similairement à la façon dont un être hu-
main procéderai pour déformer un objet souple, apprenant en manipulant et touchant.
Cependant, l’utilisation de réseaux de neuronnes profond ou autres méthodes d’apprentissage
(par démonstration ou renforcement) nécessite des bases de données conséquentes pour
l’entrainement (qui peuvent être laborieuses à récolter), et la phase d’apprentissage est
couteuse en temps. Quant aux méthodes basées modèles, elles se montrent précises
pour prédire les déformations d’objets déformables tant que les propriétés physiques
(matériau, loi de comportement) et la géométrie (modèle 3D) de l’objet sont connues,
limitant les possibilités d’application. Un compromis entre la collecte de données et
l’estimation d’un modèle précis est donc crucial. Nous commençons par présenter une
méthode de contrôle bi-bras pour déformer des objets souples ou rigides en un contour
désiré, dans SE(3).

A.2 Asservissement visuel en tâches cooperatives pour

contrôle de la forme d’objets souples à deux bras

Les auteurs de [ZNAPC20] présentent un contrôleur de forme et/ou position d’objets
souples ou rigides. Leur methode implémente une Analyse en Composantes Principales
(ACP) pour encoder le contour dans l’image de l’objet manipulé en un plus petit vecteur
d’informations visuelles. Ils présentent des expériences de déplacement et déformation
de contour 2D avec un seul bras se déplaçant dans le plan (3 Degrés De Liberté, DDL).

Notre but dans cette section est de proposer une méthode construite à partir du
travail de ces auteurs, étendue à la manipulation à deux bras et en 3D.

Nos contributions sont les suivantes:

• Nous augmentons le nombre de DDL de [ZNAPC20] de 3 (mouvements planaires
à un bras) à 12 (mouvements dans SE(3) - trois rotations et trois translations,
pour deux bras), permettant de plus nombreuses applications.
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souples à deux bras 127

• Nous implémentons une représentation en tâches coopératives ([CCS96]) afin
de contrôler d’une part la déformation, d’autre part la position/orientation de
l’objet, avec 6 DDL pour chaque.

• Nous validons le contrôleur dans des experiences sur différents objets, en consid-
érant leur déformation en 3D.

La boucle de contrôle se déroule comme suit: d’abord, une séquence de petits mou-
vements autour de la forme au repos de l’objet est générée, afin de collecter les contours
déformés c (de l’objet observé par une caméra RBG-D, et obtenus par traitement visuel,
en 3D) et les positions des Organes Terminaux (OT) r correspondantes. Les contours
collectés permettent, à travers une APC, d’obtenir une matrice de projection dans
l’espace réduit. Celle-ci est utilisée pour réduire les contours en vecteur d’information
visuelles de plus petite dimension, notés s. Ces données collectées permettent aussi
d’estimer la matrice d’interaction locale inverse L−1, telle que:

δs = Lδr (A.1)

Avec δs la variation du vecteur d’informations visuelles et δr la variation des positions
des OTs. Cette matrice est utilisée pour calculer les commandes en pose des OTs de
sorte que l’objet atteigne des formes intermédiaires, jusqu’à finalement obtenir la forme
désirée, exprimée as s∗. La boucle de contrôle est illustrée dans la Fig.A.1.

Figure A.1: Résumé de la boucle de contrôle pour déformation de contours.

Nous montrons les performances du contrôleur en manipulant diverse objets (mousses,
gant en plastique, boite en carton) jusqu’à ce qu’ils atteignent une forme désirée, in-
cluant des déformations telles que torsion, compression, rotation larges ou simplement
changement de position/orientation dans l’espace 3D.
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A.3 Estimation de modèle et simulations

De la section précedente ressort une limite dans la représentation d’un objet utilisant
des contours visibles: il est impossible de suivre, et donc contrôler, les parties de l’objet
non visibles par la caméra. Pour étendre le contrôle à l’ensemble de l’objet, nous
présentons dans cette section une solution basée sur la mise en place de simulations
physiques en temps réels.

La Méthode des Eléments Finis (MEF) est une méthode numérique de résolution
d’équations différentielles, basée sur la discrétisation d’un domaine continu (par exam-
ple, un objet) en un nombre fini de petits éléments. Pour ce faire, le domaine étudié est
échantillonné en un maillageM contenants des noeudsm et des élements (tétrahèdres),
et ensuite modélisé en fonction de conditions aux limites (contraintes sur certaines sur-
faces ou nœuds), de forces extérieures et de modèles de matériaux (élasticité linéaire,
hyper-élasticité, visco-élasticité...). Nous utilisions le logiciel Simulation Open Frame-
work Architecture (SOFA)1 [FDD+12] pour effectuer des simulations MEF en temps
réel, et obtenir une estimation de la déformation de l’objet manipulé en prenons en
compte les entrées du robot (les positions des OTs) en temps réel. L’objectif final est
d’utiliser ces simulations comme retour sur l’état de la forme de l’objet dans la boucle
de contrôle, d’où la nécessité de calculs rapides et efficaces.

Nous représentons les OTs par ce que l’on appelle des particules rigides, notées prl

et prr pour l’OT gauche et droit respectivement. Les noeuds contenus dans des boites
d’encombrement autour de ces particules rigides sont dénotés Hl et Hr respectivement,
et sont attachés de façon rigide à la particule rigide correspondante. Ainsi, lorsque le
les OTs ce déplacent (en position et rotation), il est possible de reporter ses nouvelles
positions dans la simulation et estimer comment celles-ci influent la forme de l’objet
grâce aux calculs élements finits. Dans la Fig. A.2 est illustrée la mise en place d’une
simulation dans SOFA.

Figure A.2: Simulation de l’objet observé par la camera (à guache) dans SOFA (à droite). Les particules
rigides, repésentée par les repères, sont attaché de façon rigide aux noeuds contenus dans les boites
d’encombrement autour de celles-ci, en rouge.

1https://www.sofa-framework.org/
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Nous présentons aussi des méthodes de maillage afin d’obtenir les modèles géomètriques
des objets considerés, dans deux cas:

• L’objet est un Objet Linéaire Déformable (OLD); il s’agit d’objets dont la longueur
est assez grande par rapport aux autres dimensions que ceux-ci peuvent être ré-
duits à une seule dimension, comme un cable, une corde, etc.

• Un objet dont la surface extérieure a été reconstruite sous forme d’un nuage de
points.

Figure A.3: Examples de maillages obtenus pour une frite en mousse (a), une corde (b), et une éponge (c).

La Fig. A.3 présente des résultats de maillages pour différents objets obtenus avec
ces méthodes.

A.4 Déformation d’objets souples à deux bras en 3D, basée

données et modèle

Dans cette section, nous intégrons la simulation présentée dans la section précé-
dente dans une boucle de contrôle de forme pour obtenir un contrôleur basé à la fois
vision et modèle. Nous utilisons maintenant les noeuds du maillage comme descripteur
de forme, permettant de suivre et contrôler l’objet dans son intégralité, y compris les
parties non-observées par la caméra. Pour se faire, nous proposons de reporter les
mouvements du robot dans la simulation MEF décrite précédemment, en temps réel.
Ainsi, une déformation estimée de l’objet résultante est appliquée au maillage. Le mail-
lage déformé est ensuite comparé au nuage de points de l’objet observé par la camera.
Cette déformation estimée (le maillage) est donc évalué par rapport à la déformation
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observée (le nuage de point); dans le cas où l’erreur entre les deux est supérieure à un
seuil déterminé, une étape de correction au point cloud est alors réalisée. Le calcul de
la commande se déroule similairement à celui du contrôleur présenté section A.2: une
matrice contenant les maillages déformés précédants est utilisée pour extraire les com-
posantes principales, et par conséquent réduire la dimension des maillages en vecteurs
d’information de forme s. Utilisant aussi la matrice contenant les données de position
des OTs précédantes, la matrice d’interaction inverse L−1 est estimée et utilisée pour
calculée les positions des OTs qui permettrons d’atteindre un maillage désiré m∗. La
boucle de contrôle est illustrée dans Fig.A.4.

Figure A.4: Résumé de la boucle de contrôle pour deformation de maillages.

Les avantages de cette méthode de contrôle sont diverses; l’utilisation de simula-
tion physiques permet notamment de choisir une forme désirée de façon interactive, à
travers une interface graphique facile d’utilisation. De plus, si les paramètres matéri-
aux de l’objet sont connus, il est possible de surveiller les contraintes internes et de
s’assurer que l’objet n’est pas ab̂ımé (par exemple, déformé dans le domaine plastique)
durant la manipulation. Enfin, il est aussi possible de tester la boucle de contrôle en
simulation uniquement, en faisant abstraction du retour visuel, et ainsi s’assurer du
fonctionnement de la méthode sans risque et sans avoir à utiliser un robot.

Nous présentons des résultats expérimentaux en simulation et avec un robot bi-bras,
et des objets de différentes formes et rigidités.
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A.5 Conclusion

Dans cette thèse, nous présentons deux méthodes pour contrôler la forme d’objets
déformables se basant sur un retour visuel, ainsi que de divers outils de modélisation
de déformation pour objets non-rigides. Le chapitre 2 présente un contrôleur bi-bras
pour déformer le contour 3D de la surface visible d’objets déformables, observé avec
une caméra RGB-D, en un contour 3D désiré.

Le chapitre 3 présente la mise en place de simulation MEF en temps réel pour re-
produire les mouvements des OTs du robot en simulation, et par conséquent estimer
la déformation résultante de l’objet. Ce chapitre présente également des outils pour
reconstruire des maillages, pour les OLD ainsi que pour les nuages de points reconstru-
its.

Enfin, le chapitre 4 met en pratique le dispositif de simulation présenté au chapitre
précédent, dans une boucle de contrôle qui s’appuie à la fois sur un modèle et sur un
retour visuel. Le contrôleur bi-bras présenté permet de déformer le maillage d’un objet
considéré en celui souhaité, sélectionnés via une interface graphique intuitive.

Les deux méthodes de contôle présentent des differences en terme d’hypothèses et
de connaissances sur l’objet préalables (par example, un maillage). Dans l’ensemble, le
chapitre 4 présente une méthode pour déformer plus précisément les objets non-rigides
(en considérant leur volume complet) que celle présentée au chapitre 2. Cependant,
cette méthode nécessite plus d’informations sur l’objet manipulé que celle du chapitre
2.

Les méthodes présentées permettent cependant toutes deux de :

• Déformer des objets dans SE(3) avec un robot à deux bras ;

• Déformer des objets de topologies et de matériaux différents ;

• Réaliser des déformations hors plan telles que la torsion, la flexion ou la compres-
sion.
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[SFN+20] Delia SepúLveda, Roemi Fernández, Eduardo Navas, Manuel Armada,
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[ZNI+14] Michael Zollhöfer, Matthias Nießner, Shahram Izadi, Christoph
Rehmann, Christopher Zach, Matthew Fisher, Chenglei Wu, Andrew
Fitzgibbon, Charles Loop, Christian Theobalt, et al. Real-time non-rigid
reconstruction using an rgb-d camera. ACM Transactions on Graphics
(ToG), 33(4):1–12, 2014. 33

[ZPC21] Simon Zimmermann, Roi Poranne, and Stelian Coros. Dynamic manip-
ulation of deformable objects with implicit integration. IEEE Robotics
and Automation Letters, 6(2):4209–4216, 2021. 13, 39, 40, 46, 104
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