
HAL Id: tel-04537667
https://theses.hal.science/tel-04537667v1

Submitted on 8 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compression bidirectionnelle pour l’apprentissage fédéré
hétérogène

Constantin Philippenko

To cite this version:
Constantin Philippenko. Compression bidirectionnelle pour l’apprentissage fédéré hétérogène. Op-
timization and Control [math.OC]. Institut Polytechnique de Paris, 2023. English. �NNT : 2023IP-
PAX083�. �tel-04537667�

https://theses.hal.science/tel-04537667v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
3I

P
PA

X
08

3

Bidirectional compression for federated
learning in a heterogeneous setting

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat: Mathématiques et Informatique

Thèse présentée et soutenue à Palaiseau, le 18 septembre 2023, par

CONSTANTIN PHILIPPENKO

Composition du Jury :

Mikael Johansson
Professeur, KTH Royal Institute of Technology Président / Rapporteur

Jérôme Malick
Chercheur CNRS, Université Grenoble Alpes, LJK Rapporteur

Manon Costa
Professeur assistant, Institut de Mathématiques de Toulouse Examinateur

Robert Gower
Research scientist, Flatiron Institute Examinateur

Martin Jaggi
Professeur, EPFL Examinateur

Kevin Scaman
Research scientist, Inria Paris Examinateur

Aymeric Dieuleveut
Professeur assistant, École Polytechnique (UMR 7641) Directeur de thèse

Invités:

Eric Moulines
Professeur, École Polytechnique (UMR 7641) Co-directeur de thèse

Laetitia Kameni
IT R&D Lead, Accenture Labs, Sophia-Antipolis

Remerciements i

Remerciements

Au cours de ces trois années et demi de doctorat, j’ai eu la chance d’avoir deux excellents directeurs
de thèse, Aymeric Dieuleveut et Eric Moulines.

Cher Aymeric, merci beaucoup pour cette étroite collaboration que nous avons eue tout au long
de mes années de thèse et au cours desquelles j’ai énormément appris et progessé. Tu as été un
superviseur remarquable : brillant, enthousiaste, exigent, pédagogue, patient, bienveillant, humain.
Quand je me rappelle notre première rencontre à l’Indiana Café de Denfert-Rochereau, j’étais loin
de m’imaginer l’aventure dans laquelle je m’engageais, ni les pas de géant que tu me ferais faire à tes
côtés. Tu es toujours en retard à nos réunions et en train de déborder de trois ou quatre heures
les horaires de fin, le tableau ou la feuille numérique sur lesquels tu écris sont toujours illisibles
après dix minutes de travail avec des couleurs en bouquet désordonné mais – tonnerre ! – que c’est
formateur, passionnant et stimulant !

Cher Eric, tu as été le déclencheur qui m’a permis d’obtenir cette thèse et les financements, c’est
aussi toi qui m’a mis en contact avec Aymeric. Merci de t’être trouvé sur ma route un soir de février
pour m’écouter exposer ma motivation à faire une thèse et pour m’avoir fait confiance, je t’en suis
très reconnaissant. Ce fût un honneur d’être co-encadré par toi. Au cours de ces trois années au
CMAP ou au Lagrange, ce furent des discussions à n’en pas terminer avec toi au cours desquels j’ai
été impressionné par ton érudition scientifique et ta connaissance des rouages administratifs – toutes
les deux indispensable aux succès des travaux de recherche. Merci.

Sans l’implication d’Accenture France, et en particulier sans les efforts de Laetitia Kameni et de
Richard Vidal, cette thèse n’aurait pas existé. Chers Laetitia et Richard, je vous suis reconnaissant
pour avoir permis de concrétiser mon projet de thèse. Vous m’avez suivi sur ces trois années et
toujours encouragé, vous avez complètement joué le jeu même si vous ne voyiez pas toujours comment
utiliser mes travaux pour votre équipe, et vous m’avez apporté une précieuse ouverture au monde de
l’industrie. J’ai énormément apprécié le format de notre collaboration.

I must thank Mikael Johansson and Jérôme Malick for reviewing my manuscript. It is a real
honour for me. For agreeing to be part of my Ph.D.’s defense jury, I would like also to express my
sincere gratitude to Manon Costa, Robert Gower, Martin Jaggi and Kevin Kevin Scaman. Thank
you for your time and your consideration. However, I must make a special mention of Jérôme Malick
and Robert Gower, who were members of my Follow-up Committee and were asked to ensure that
my thesis was on the right track; it was always enriching discussions for me.

Il est impossible de continuer mes remerciements sans mentionner les autres personnes qui ont
rendu cette thèse possible. Je parle bien sûr de l’équipe administrative du CMAP et en particulier
de Nasséra Naar, Alexandra Noiret, Alexandra Liot, Georgia Sant’Anna ... mais pas seulement
! L’équipe informatique du CMAP nous est tout autant indispensable ; leur bureau est toujours
ouvert, ils sont ultra réactifs à nos mails, jamais en panne d’idées face à nos problèmes et toujours
bienveillants, il s’agit bien sûr de Pierre Straebler et de Sylvain Ferrand. J’aimerais continuer en
remerciant Aldjia Mazari pour sa bienveillance et l’aide précieuse qu’elle apporte aux doctorants.

À présent, j’aimerai mentionner les nombreux professeurs du CMAP membres de l’équipe SIMPAS
avec qui j’ai eu souvent l’occasion de discuter : Josselin Garnier, Marylou Gabrié, Emmanuel Gobet,
Rémi Flamary, El Mahdi El Mhamdi, Stephano de Marco, Alain Durmus, Erwan Le Pennec, Erwan
Scornet. Mahdi, merci pour toutes ces discussions incroyables sur l’éthique de l’IA, ton enthousiasme,
ton exigence, ta bienveillance sont contagieux ; je me souviens en particulier d’un débat que nous
avons eu en février dans l’eau froide de la Méditerranée ! Erwan, merci pour tes retours toujours
très encourageants sur le cours de MAP545 et sur le plan de mon introduction de thèse. Marylou,
merci de dynamiser l’équipe SIMPAS en organisant les réunions mensuelles. Et je dois justement
terminer avec le grand architecte de notre équipe : Marine Saux !

Remerciements ii

En commançant ma thèse, j’ai été le premier doctorant d’Aymeric, et aussi le seul à travailler avec
lui pendant près d’un an. Cela a des avantages, par exemple nous avons pu énormément travailler
ensemble au cours de cette période, favorisé par le premier confinement au cours duquel nous nous
appelions très réguièrement. Mais c’est vrai que l’ambiance d’équipe me manquait, heureusement
Baptiste Goujaud, Margaux Zaffran et Alexis Ayme sont vite arrivés pour mettre de l’ambiance
dans la “Dieuleveut Team”. Merci à vous trois pour votre soutien, votre aide, votre enthousiasme et
pour toutes ces discussions au CMAP, au Turing, à Jussieu, au CIRM, à l’IHP, à Font-Romeu, à
Hyères ! Baptiste, ce sont des discussions mathématiques à n’en pas terminer avec toi qui, lorsqu’on
y rentre, nous happent dans un trou spatio-temporel. Merci pour ton regard critique et tes retours
constructifs, en particulier sur mon introduction de thèse ; et surtout pour ton aide sur la preuve
de la covariance pour laquelle je m’arrachais les cheveux ! Margaux, toujours de bonne humeur,
toujours pleine d’énergie, toujours prête à rendre service ! Impossible de lister toutes les fois où tu
proposes et donnes un coup de main, je vais donc me contenter de remercier ta relecture extrêment
consciencieuse, méticuleuse et rigoureuse de mon introduction de thèse et ton aide pour répéter ma
soutenance de doctorat, merci ! Enfin, je souhaite bon courage à ceux qui viennent d’arriver dans
l’équipe : Renaud Gaucher, Damien Ferbach, Rémi Leluc et Mahmoud Hegazy.

À un moment où j’étais un peu en panne d’inspiration sur mon dernier chapitre de thèse et avec
un sentiment de solitude, j’ai pu faire une sorte de récréation mathématique en collaborant sur un
projet orchestré par Jean du Terrail et Mathieu Andreux. Cela m’a permis d’explorer un nouvel axe
de recherche, de travailler en équipe et de collaborer avec Aurélien Bellet, Paul Mangold et Edwige
Cyffers. Merci pour nos riches réflexions sur les formes d’hétérogénéités possibles.

Je vais bientôt entamer une nouvelle aventure à l’Inria pour prospecter une autre zone de ce
champs de recherche qu’est l’optimisation. C’est une chance pour moi de pouvoir collaborer avec
Laurent Massoulié et Kevin Scaman ; j’ai hâte d’explorer de nouveaux horizons mathématiques avec
vous !

Au cours de cette thèse, j’ai eu la chance de participer à une aventure assez incroyable qui m’a
transformée, il s’agit du Congrès des Jeunes Chercheurs en Mathématiques Appliquées organisé en
octobre 2021 à l’Ecole polytechnique par une bande de doctorants très motivés : Thomas Belloti,
Guillaume Bonnet, Apolline Louvet, Claire Ecotiere, Corentin Houpert, Baptiste Kerleguer, Pierre
Lavigne, Clément Mantoux, Solange Pruilh, Louis Reboul, Dominik Stantejsky, Josué Tchouanti
Fotso. Merci à vous d’avoir rendu possible ce congrès. Cela n’a pas été toujours facile, nous nous
sommes écharpés par moments, mais nous avons tenu bon en gardant la boussole pointée sur nos
objectifs. J’ai beaucoup appris à votre contact et je me suis découvert un nouvel interêt pour les
structures associatives. Mais il faut signaler que nous étions épaulés par un efficace comité scientifique
que je tiens à remercier également : Matthieu Aussal, Juliette Chevallier, Fedor Goncharov, Baptiste
Kerleguer, Pierre Lavigne, Aude Sportisse, Amandine Véber. À nouveau, je dois faire une mention
spéciale pour Matthieu qui nous as chuchoté l’idée d’organiser ce congrès pour les jeunes par les
jeunes et qui nous a fait profiter de son expérience dans le domaine, c’était dans la salle à café
du CMAP, nous sortions du confinement et nous avions faim d’interactions sociales ! Je n’oublie
pas Oliver Goubet, le Président de la SMAI qui a accepté de soutenir notre projet et qui nous a
fait confiance. Pour concrétiser cette conférence, nous avions évidemment besoin de l’accord du
Président du CMAP, Thierry Bodineau ; merci pour ta bienveillance.

Pendant presque un an, un an de confinement, le bureau 2010 était passablement vide, et je me
retrouvais seul à chaque fois que j’y allais. À la longue, c’était “longuet”. Mais un matin, lorsque je
suis arrivé dans le bureau, Manon était là. J’ai essayé de la mettre à l’aise comme j’ai pu ... mais je
crois qu’elle m’a pris pour un ours. Par la suite, elle m’a avoué être allée vérifier auprès des bureaux
voisins que je n’étais pas un fou furieux. Au prix d’un grand effort sur elle-même, elle a finalement
réussi à s’adapter à mon humeur décalée et ma bonhommie. À la fin, entre deux séances de piscine,
de théâtre ou de boxe, nous étions même devenus les psychologues attitrés l’un de l’autre ! Manon,
je te dédicace un merci spécial pour avoir accepté de suivre mes “cours de boxe” !

Remerciements iii

Une thèse est une succession de hauts et de bas, mais fort heureusement, on peut toujours compter
sur les doctorants du CMAP pour égayer nos idées entre deux confinements, deux preuves coriaces
ou deux rer en panne par des discussions stratosphériques, des jeux de sociétés endiablés ou des clubs
de lectures méditatifs : Mehdi Abou El Quassime, Naoufal Acharki, Leila Bassou, Dorinel Bastide,
Thomas Bellotti, Guillaume Bonnet, Wassim Bouaziz, Guillaume Chennetier, Amin Dhaou, Clément
Mantoux, Pierre Clavier, Benedicte Colnet, Claire Ecotière, Celia Escribe, Orso Forghieri, Armand
Gissler, Louis Grenioux, Corentin Houpert, Tom Huix, Pablo Jimenez, Baptiste Kerleguer, Madeleine
Kubasch, Paul Lartaud, Pierre Lavigne, Jessie Levillain, Kang Liu, Arthur Loison, Apolline Louvet,
Ignacio Madrid-Canales, Maxence Noble, Gregoire Pacreau, Vincent Plassier, Solange Pruilh, Louis
Reboul, Benjamin Riu, Emmanouil Sfendourakis, Dominik Stantejsky, Josué Tchouanti, Achille
Thin, Antoine Van-Biesbroeck, Gabriel Victorino-Cardoso, Wanqing Wang.

Maroc 2022 m’a laissé un souvenir particulièrement fort. J’y ai vécu une expérience unique en
compagnie de Vincent Plassier, Pablo Jimenez, Maxence Noble et Benjamin Riu. Je me souviens
en particulier d’un restaurant sur les terrasses de Marrakech face à la grande place et savourant
du chameau confit au citron, d’un retour en taxi où nous avons eu peur de nous faire détrousser
et laisser sur la route de la Mort au milieu du désert, d’un bain turc dans la grande mosquée de
Casablanca et d’une visite guidée de sa Médina avec Akram Benazzou. Merci à vous tous !

À tous mes professeurs qui ont façonné ma trajectoire intellectuelle en m’initiant à la quête
du savoir ou en m’aidant à en passer les différentes étapes : Madame Hijazi, Messieurs Cailhol,
Leborgne, Dusuel, Sollogoub, Meignen, Gaudoin, Strijov.

À mes amis des JPO qui permettent de faire vivre cette belle aventure : Antoine Doucet,
Dimitri Goudkoff, Matthieu Jurconi, Pierre Rehbinder, Soline Renard, Dimitri Sollogoub et P. Serge
Ciolkovitch ! À chacun de nos évènements, c’est une vraie joie de voir les fruits de notre initiative ...
et une bouffé d’oxygène d’en profiter !

Дорогие Тётя Маша, Дядя Дима, Аня, Серёжа, Анна и Лиза! Знали ли вы, что именно в
Москве мне открылась область машинного обучения? Эта диссертация, можно сказать, частично
благодаря вам. Я провёл замечательные 6 месяцев в Москве, и в моей памяти остались яркие
и тёплые воспоминания. Спасибо вам за всё!

Aux Doucet, ces fidèles amis générations après générations : Christian, Catherine, Paul, Géraud,
Antoine, Jean, Nicolas, Marie, Catherine, et à présent aussi Lionel.

Au soutien fraternel de ma grande et bruyante famille : Katia, David, Vika, Gilbert, Natacha,
Christian, Nastia, Omar, Artémis, Adam, Marie, Marie, Sacha, Roman, Vera, Vassiliok, Daniil,
Tania, Ivan, Mélania, Sandra, Petia, Théophane, Lara, Alex, Nina, Séraphim, Anna, Maria, Lena,
Vincent, Varvara, Kolia, Ambroise, Oxana, Kyp, Silouan, Dorothée, Iovan, Elie, Nicolas, Petia,
Alexandra, Grigou, Antou, Marina et Sachok. Je vous aime et j’ai besoin de vous.

À tous mes frères et sœurs Xénia, Anne, Elisabeth, Matthieu, Daniel et Clément. Sans le constant
soutien de ma fratrie pour me donner du pétillement et du rebond, je ne pas sais ce que je ferais.
Vous êtes une des plus grandes richesses de ma vie.

Un mot spécial pour ma grande soeur Xioucha qui a toujours été là pour me soutenir et
m’encourager à viser plus haut. Elle a ouvert la voie et je m’y suis engouffré à sa suite. C’est toi,
qui en commençant une thèse, a planté une petite graine dans mon esprit, qui en grandissant, m’a
montré qu’il fallait que je t’emboîte le pas.

Дорогие мои бабушки и дедушки! Хочу выразить вам глубокую благодарность! Без вас
я бы не смог стать таким, каким я есть. Вы передали мне - несмотря на все те трудности, в
которые вас бросили исторические обстоятельсва - корни, культуру, ценности, стремление к
самосовершенствованию и интеллектуальное любопытство.

Remerciements iv

Avant de finir, un mot pour mes parents. C’est vous qui avaient été les forgerons de ma vie par
ce que vous m’avez transmis. Vous avez été tout les deux des exemples pour moi, et vous l’êtes
toujours. J’admire votre maximalisme, vos efforts, vos choix et j’essaye de les imiter. Au cours de
mes études, quand c’était difficile, quand il fallait s’accrocher, quand il fallait travailler et se donner
du mal, c’est votre exigence et votre parcours intellectuel qui m’a donné de la force pour perséverer
et croire que, moi aussi, je pouvais parvenir à avoir la même exigence que vous. Pour cet exemple
que vous avez été chaque jour de ma vie et que vous serez encore, pour les valeurs que vous m’avez
transmises, pour l’identité que vous m’avez léguée, pour le goût de l’effort que vous m’avez fait
cultiver, je vous suis infiniment reconnaissant.

À Hedwige, qui m’a donné sa lumière quand j’étais dans l’obscurité.

Слава в вышних Богу, и на земле мир, в человеках благоволение!

Abstract / Résumé v

Abstract

The last two decades have witnessed an unprecedented increase in computational power, leading to a
vast surge in the volume of available data. Datasets can include billions of observations, models can
involve millions of parameters. As a consequence, machine learning algorithms have evolved to adapt
to this new situation. Especially, stochastic algorithms, which were first introduced in the 1950s,
have recently received renewed attention due to their ability to handle large-scale datasets with
millions of parameters. These algorithms use first-order information to alleviate the computational
cost associated with high-dimensional data. Additionally, they efficiently process a large number of
observations by computing stochastic gradients. These methods are key to the remarkable progress
in machine learning over the last two decades.

However, many modern applications now use a network of clients to store the data and compute
the models: efficient learning in this framework is harder, especially under communication constraints.
This is why, a new approach has been proposed, federated learning, which considers a distributed
setting: the data is kept on the original server and a central server orchestrates the training process
across multiple clients.

This thesis aims to address two fundamental aspects of federated learning. The first goal is to
analyze the trade-offs of distributed learning with communication constraints, with the objective of
reducing its energy cost and environmental footprint. The second goal is to tackle problems resulting
from heterogeneity among clients, which hinders the convergence toward an optimal solution. This
thesis focuses on bidirectional compression and summarizes my contributions to this field of research.

In our first contribution, we focus on the intertwined effect of compression and client (statistical)
heterogeneity. We introduce a framework of algorithms, named Artemis, that tackles the problem of
learning in a federated setting with communication constraints. To alleviate the communication cost,
Artemis enables to compress the information sent in both directions (from the clients to the server
and conversely) combined with a memory mechanism. We highlight the key impact of memory on
convergence in the heterogeneous setting.

In our second contribution, we move the focus toward feedback loops to reduce the impact of
compression. We introduce an algorithm, coined MCM; it builds upon Artemis and introduces a
new paradigm that preserves the central model from down compression. This mechanism allows
to carry out bidirectional compression while asymptotically achieving the rates of convergence of
unidirectional compression.

In our third contribution, we go beyond the classical worst-case assumption on the variance of
compressors and provide a fine-grained analysis of the impact of compression within the fundamental
learning framework of least-squares regression. Within this setting, we highlight differences in
convergence between several unbiased compression schemes having the same variance increase.

Overall, this thesis proposes contributions to the field of federated learning by addressing
central challenges and proposing solutions for efficient and sustainable learning in a distributed
and heterogeneous framework. This work aligns with a global effort to make the use of large-scale
federated learning viable by minimizing its environmental impact. Although benefits are expected,
at least with respect to energy concerns, cautiousness is still required, as a rebound effect could
occur: having faster and less energy-consuming algorithms could lead to a sharp increase in their
applications, reducing or even canceling out the gains made by progress in their design.

Key-words: Federated learning, optimization, bidirectional compression, heterogeneity.

Résumé
Les deux dernières décennies ont été marquées par une augmentation sans précédent de la puissance
de calcul et du volume de données disponibles. Les ensembles de données peuvent comprendre
des milliards d’observations et les modèles peuvent comporter des millions de paramètres. En
conséquence, les algorithmes d’apprentissage automatique ont évolué pour s’adapter à cette nouvelle
situation. En particulier, les algorithmes stochastiques, qui ont été introduits pour la première fois
dans les années 1950, ont récemment bénéficié d’un regain d’attention en raison de leur capacité
à traiter des ensembles de données à grande échelle comportant des millions de paramètres. Ces
algorithmes utilisent des informations de premier ordre pour réduire les coûts de calcul associés aux
données en haute dimension. En outre, ils traitent efficacement un grand nombre d’observations en
calculant des gradients stochastiques. Ces méthodes sont la clé des remarquables progrès réalisés au
cours des deux dernières décennies dans le domaine de l’apprentissage automatique.

Cependant, beaucoup d’applications modernes utilisent désormais des réseaux de clients pour
stocker les données et calculer les modèles : l’apprentissage devient plus complexe, en particulier
en raison des contraintes de communication. C’est pourquoi, une nouvelle approche a été proposé,
l’apprentissage fédéré, où les données sont gardées sur leur support d’origine tandis qu’un serveur
central est mis en place pour orchestrer l’entraînement.

Cette thèse vise à aborder deux aspects fondamentaux de l’apprentissage fédéré. Le premier
objectif est d’analyser les compromis de l’apprentissage distribué sous contraintes de communication ;
le but étant de réduire le coût énergétique et l’empreinte environnementale. Le second objectif est
d’aborder les problèmes résultant de l’hétérogénéité des clients qui complexifie la convergence de
l’algorithme vers une solution optimale. Cette thèse se concentre sur la compression bidirectionnelle
et résume mes contributions à ce domaine de recherche.

Dans notre première contribution, nous nous concentrons sur l’effet entremêlé de la compression
et de l’hétérogénéité (statistique) des clients. Nous introduisons un framework d’algorithmes, appelé
Artemis, qui s’attaque au problème des coûts de communication de l’apprentissage fédéré. Pour les
réduire, Artemis permet de compresser les informations envoyées dans les deux sens (des clients vers
le serveur et inversement) en combinaison avec un mécanisme de mémoire. Dans le cas de clients
hétérogènes, nous mettons en lumière l’impact clé de la mémoire sur la convergence.

Dans notre deuxième contribution, nous mettons l’accent sur les boucles de rétroaction afin
de réduire l’impact de la compression. Nous introduisons un algorithme, MCM, qui s’appuie sur
Artemis et propose un nouveau paradigme qui préserve le modèle central lors de la compression
descendante. Ce mécanisme permet d’effectuer une compression bidirectionnelle tout en atteignant
asymptotiquement des taux de convergence identiques à ceux de la compression unidirectionnelle.

Dans notre troisième contribution, nous allons au-delà de l’hypothèse classique du pire cas
sur la variance et fournissons une analyse fine de l’impact de la compression dans le cadre de la
régression des moindres carrés. Dans cette configuration, nous mettons en évidence les différences de
convergence entre plusieurs schémas de compression sans biais ayant pourtant la même variance.

Cette thèse apporte des contributions au domaine de l’apprentissage fédéré en relevant des défis
importants et en proposant des solutions pour un apprentissage efficace et durable dans un cadre
distribué et hétérogène. Ce travail s’inscrit dans un effort global visant à rendre viable l’utilisation
de l’apprentissage fédéré à grande échelle en minimisant son impact sur l’environnement. Bien
que des bénéfices soient attendus, du moins en ce qui concerne les préoccupations énergétiques,
la prudence reste indispensable, car un effet de rebond pourrait survenir : disposer d’algorithmes
énergétiquement moins chers et plus rapides pourrait entraîner une forte augmentation de leurs
applications, réduisant voire annulant les gains réalisés par le progrès de leur conception.

Mots-clés : Apprentissage fédéré, optimisation, compression bidirectionnelle, hétérogénéité.

vi

Contents vii

Contents

Remerciements i

Abstract / Résumé v

Contents vi

Notations ix

Thesis outline 1

Vue d’ensemble de la thèse 3

1 Introduction 5
1.1 Statistical learning . 6
1.2 Optimization for machine learning . 10
1.3 Federated learning . 16
1.4 Motivation of using bidirectional compression . 21
1.5 Summary of the contributions of this thesis . 23

2 Artemis: bidirectional compression with heterogeneous clients 29
2.1 Introduction . 30
2.2 Problem statement . 32
2.3 Theoretical results . 36
2.4 Experiments . 39
2.5 Conclusion . 42

3 MCM: preserved central model for faster bidirectional compression 43
3.1 Introduction . 44
3.2 Problem statement . 46
3.3 Assumptions and theoretical analysis . 49
3.4 Extension to Rand-MCM . 54
3.5 Experiments . 56
3.6 Conclusion . 58

4 Distributed, compressed and averaged least-squares regression 59
4.1 Introduction . 60
4.2 Non asymptotic convergence result for (LSA) . 64
4.3 Application to Algorithm 2: compressed LSR on a single worker 67
4.4 Application to federated learning . 77
4.5 Conclusion . 81

5 Conclusion and perspectives 83
5.1 Conclusion . 83
5.2 Perspectives . 84

Contents viii

A Technical preliminaries 87
A.1 Identities and inequalities . 88
A.2 Classical results for random vectors . 89
A.3 Classical results in optimization . 89

B Appendix to Artemis 91
B.1 Experiments . 92
B.2 Filtrations . 99
B.3 Technical results . 101
B.4 Proofs of Theorems . 108

C Appendix to MCM 125
C.1 Experiments . 126
C.2 Two lemmas . 132
C.3 Proof for Ghost . 134
C.4 Proofs for MCM (and Rand-MCM) . 137
C.5 Proofs in the quadratic case for MCM and Rand-MCM 148

D Appendix to Distributed, compressed and averaged LSR 157
D.1 Technical results . 158
D.2 Generalization of Bach and Moulines (2013). 161
D.3 Generalisation of Bach and Moulines (2013) for linear multiplicative noise. 167
D.4 Validity of the assumptions made on the random fields 174
D.5 Compression operators . 178
D.6 Technical results on federated learning. 189

Bibliography 197

Notations ix

Notations

:= Defined as

1 Indicator/characteristic function

R,N,N∗, Sets of real, natural number, and natural without zero

Rd Set of d-dimensional real-valued vectors

⟨x, y⟩ Inner product of vectors x, y ∈ Rd

x⊗ y Kronecker product of vectors x, y ∈ Rd

x⊙ y Element-wise product of vectors x, y ∈ Rd

x ∧ y Minimum of x and y in Rd

∥x∥ Euclidean norm of vector x ∈ Rd

xK−1 :=
∑K−1

k=0 xk/K Average of any sequence of vector (xk)k∈{0,...,K−1}

ei Vector in Rd with zero everywhere except at coordinate i

Rn×d Set of real matrices of size n× d

Sd(R) Set of real symmetric matrices of size d× d

S+d (R),S++
d (R) Set of real symmetric positive (semi)-definite matrices of size d× d

Od(R) Group of orthogonal matrices

Id Identity matrix of size d× d

A⊤ Transpose of matrix A

A† := A⊤(AA⊤)−1 Moore–Penrose pseudo-inverse of A in Rd×n s.t. AA⊤ inversible

Tr (A) Trace of matrix A

eig(A) Set of eigenvalues of matrix A

∥A∥2 := Tr
(
A⊤A

)
Frobenius norm for matrix A in Rn×d

|||A||| :=
√
max eig(A⊤A) Operator norm for matrix A in Rn×d

A ≼ B B −A positive semi-definite (p.s.d.)

A1/2 The p.s.d. square root of any symmetric p.s.d. matrix A

Jr The d× d diagonal matrix whose r first diagonal elements are equal
to one and all other matrix’s coefficients equal to zero

B(Rn) Borel set of Rn

P(A) Probability of an event A

E[X] Expectation of a random variable X

V[X] Variance of a random variable X

Notations x

X ∼ P Random variable X has distribution P

Unif(X) Uniform distribution on set X

Bern(p) Bernouilli distribution with parameter p

N (µ,Σ) Gaussian distribution with mean µ and covariance matrix Σ

Pk({1, . . . , n}) Set of all subset of {1, . . . , n} with k elements

Lp(Ω,A,P) Set of random vectors defined on the probability space (Ω,A,P)
such that E[∥X∥p] <∞

C p(Rd) Set of p times continuously differentiable functions from Rd into R

∇F Gradient function of F : Rd → R

∇2F Hessian matrix of F : Rd → R

Cup, Cdwn Uplink and downlink compressors

w∗ Optimal model minimizing F (if there exists at least one)

wk, w
i
k Model held by the central server (resp. local client i in {1, . . . , N})

at iteration k in N

Thesis outline

This summary assumes that the reader knows about optimization, federated learning and compression
mechanisms. The reader may choose to read the introduction (Chapter 1) first, and then come back
to this summary.

Chapter 1. The opening Chapter of this thesis provides an overview of the key areas that are
necessary for the understanding of the subsequent chapters. Firstly, we introduce the general setting
of statistical learning, including its historical development, mathematical formulation, and examples
of real-life use cases. We then delve into convex optimization, which is the cornerstone of the
theoretical findings presented in this thesis. We furthermore present the case of federated learning,
which is the main motivation of this thesis, and more particularly the bidirectional compression
setting which is the focus of Chapters 2 and 3. Next, we motivate our choice to analyze bidirectional
compression, highlighting its relevance in federated learning. As a conclusion of this introductive
Chapter, we provide a mathematical summary of the three Chapters of this manuscript and shed
light on the key messages of this thesis.

Chapter 2. In this Chapter, we focus on the intertwined effect of compression and client (statistical)
heterogeneity. We introduce a framework – Artemis – to tackle the problem of learning in a distributed
or federated setting with communication constraints. Several clients perform the optimization
process using a central server to aggregate their computations. To alleviate the communication
cost, Artemis allows to compress the information sent in both directions (from the clients to the
server and conversely) combined with a memory mechanism. It improves on existing algorithms
that only consider unidirectional compression (to the server), or use very strong assumptions on
the compression operator. We provide fast rates of convergence (linear up to a threshold) under
weak assumptions on the stochastic gradients (noise’s variance bounded only at optimal point) in
non-i.i.d. setting, highlight the impact of memory for unidirectional and bidirectional compression,
and analyze Polyak-Ruppert averaging. We use convergence in distribution to obtain a lower bound of
the asymptotic variance that highlights the practical limits of compression. We provide experimental
results to demonstrate the validity of our analysis.

Chapter 3. In this Chapter, we move the focus toward feedback loops to reduce the impact
of compression. We develop a new approach to tackle communication constraints in distributed
learning problems with a central server. We propose and analyze an algorithm that performs
bidirectional compression and achieves asymptotically the same convergence rate as algorithms using
only uplink (from the local clients to the central server) compression. This algorithm, MCM, is such

1

Thesis outline 2

that the downlink compression only impacts local models, while the global model is preserved. As a
result, and contrary to previous works, the gradients on local servers are computed on perturbed
models. Consequently, convergence proofs are more challenging and require a precise control of this
perturbation. To ensure it, MCM additionally combines model compression with a memory mechanism.
This analysis opens new doors, e.g. incorporating worker dependent randomized-models and partial
participation.

Chapter 4. In this Chapter, we go beyond the classical worst-case assumption on the variance of
compressors and provide a fine-grained analysis of the impact of compression within the fundamental
learning framework of least-squares regression (LSR). Within this setting, we underline differences
in terms of convergence rates between several unbiased compression operators, that all satisfy the
same condition on their variance, thus going beyond the classical worst-case analysis. To do so, we
analyze a general stochastic approximation algorithm for minimizing quadratic functions relying
on a random field. We consider weak assumptions on the random field, tailored to the analysis
(specifically, expected Hölder regularity), and on the noise covariance, enabling the analysis of various
randomizing mechanisms, including compression. We then extend our results to the case of federated
learning.

More formally, we highlight the impact on the convergence of the covariance Cania of the
additive noise induced by the algorithm. We demonstrate that despite the non-regularity of the
stochastic field, the limit variance term depends on Tr

(
CaniaH

−1
F

)
/K (where HF is the Hessian of

the optimization problem and K the number of iterations) as opposed to the vanilla LSR case where
it is σ2Tr

(
HFH

−1
F

)
/K = σ2d/K [Bach and Moulines, 2013]. Then, we analyze the dependency of

Cania on the compression strategy and ultimately its impact on convergence.

Chapter 5. This Chapter concludes the thesis by summarizing our contributions and describing
possible extensions.

Publications and preprints related to this manuscript are listed below:

1. Chapitre 2 is based on Bidirectional compression in heterogeneous settings for distributed or
federated learning with partial participation: tight convergence guarantees [Philippenko and
Dieuleveut, 2020].

2. Chapitre 3 is based on our work Preserved central model for faster bidirectional compression
in distributed settings [Philippenko and Dieuleveut, 2021] published at Neurips 2021.

3. Chapitre 4 is based on our work Convergence rates for distributed, compressed and averaged
least-squares regression: application to federated learning [Philippenko and Dieuleveut, 2023]
submitted at JMLR.

In this thesis, I did not include my contribution to [du Terrail et al., 2022], published at Neurips
2022. This project was a collaborative effort involving researchers from various worldwide institutions.
The aim was to establish a benchmark for cross-silo federated learning with natural partitioning.
The resulting benchmark, called FLamby, is focused on healthcare applications and is available on
this repository. My contribution to the project consisted of two parts. First, I implemented some
classical federated algorithms, and second, I conducted an analysis of the heterogeneity of the Flamby
datasets, which can be found in Appendix M of the corresponding article.

https://github.com/owkin/FLamby

Vue d’ensemble de la thèse

Ce résumé suppose que le lecteur possède une bonne connaissance de l’optimisation, de l’apprentissage
fédéré et des mécanismes de compression. Si nécessaire, le lecteur peut choisir de lire d’abord
l’introduction (Chapitre 1), puis de revenir à ce résumé.

Chapter 1. Le premier Chapitre de cette thèse donne une vue d’ensemble des domaines clés
nécessaires à la compréhension des chapitres subséquents. Tout d’abord, nous présentons le cadre
général de l’apprentissage statistique. Nous y incorporons une courte fresque historique de son
développement, une formulation mathématique du problème et quelques exemples d’applications
réels. Nous nous penchons ensuite sur l’optimisation convexe, qui est la pierre angulaire des résultats
théoriques présentés dans cette thèse. Nous présentons enfin le cas de l’apprentissage fédéré, qui
est la principale motivation de cette thèse, et plus particulièrement le cadre de la compression
bidirectionnelle. Nous motivons dans la section suivante notre choix d’analyser la compression
bidirectionnelle et montrons sa pertinence dans le contexte de l’apprentissage fédéré. En conclusion
de ce Chapitre introductif, nous fournissons un résumé mathématique des trois Chapitres de ce
manuscrit et soulignons les messages clés de cette thèse.

Chapter 2. Dans ce Chapitre, nous présentons Artemis, un paradigme permettant d’aborder le
problème de l’apprentissage distribué ou fédéré avec des contraintes de communication. Plusieurs
clients effectuent un processus d’optimisation et communiquent avec un serveur central qui agrége
le résultat de leurs calculs. Pour réduire les coûts de communication, Artemis compresse les
informations envoyées dans les deux sens (des clients vers le serveur central et inversement) en
utilisant un mécanisme de mémoire, améliorant ainsi les algorithmes existants qui prennent en
compte uniquement la compression unidirectionnelle (vers le serveur central), ou bien qui utilisent
des hypothèses fortes sur les opérateurs de compression. Cela nous permet de fournir des taux
de convergence rapides (linéaires jusqu’à un seuil) sous des hypothèses faibles sur les gradients
stochastiques (variance du bruit limitée seulement au point optimal) dans un contexte non i.i.d., et de
mettre en évidence l’impact de la mémoire pour la compression unidirectionnelle et bidirectionnelle,
en outre, nous analysons le scénario où nous utilisons la moyenne de Polyak-Ruppert. Enfin, nous
utilisons la convergence en loi pour obtenir une borne inférieure de la variance asymptotique, ce qui
met en évidence les limites pratiques de la compression. Nous fournissons des résultats expérimentaux
pour démontrer la validité de notre analyse.

Chapter 3. Dans ce Chapitre, nous développons une nouvelle approche pour faire face aux
contraintes de communication dans un problème d’apprentissage distribué utilisant un serveur

3

Vue d’ensemble de la thèse 4

central. Nous proposons et analysons un algorithme qui effectue une compression bidirectionnelle
en atteignant asymptotiquement un taux de convergence identique à ceux d’algorithmes utilisant
uniquement la compression ascendante (des clients vers le serveur central). Cet algorithm, MCM, est
tel que la compression de la liaison descendante impacte seulement les modèles locaux, tandis que le
modèle global est lui préservé. Par conséquent, et contrairement aux travaux existants, les gradients
sur les serveurs locaux sont calculés sur des modèles perturbés. Pour cette raison, les preuves de
convergence sont plus difficiles à obtenir et nécessitent un contrôle précis de cette perturbation.
Pour garantir la convergence, MCM ajoute un mécanisme de mémoire lors de l’étape de compression
descendante. Cette analyse ouvre de nouvelles portes, par exemple l’incorporation de modèles
aléatoires qui dépendent des clients, ou le cas de la participation partielle.

Chapter 4. Dans ce Chapitre, nous allons au-delà de l’hypothèse classique du pire cas sur la
variance des compresseurs et fournissons une analyse fine de l’impact de la compression dans le
cadre de la régression des moindres carrés (LSR). Nous soulignons les différences en termes de taux
de convergence entre plusieurs opérateurs de compression sans biais, qui satisfont tous la même
condition sur leur variance, allant ainsi au-delà de l’analyse classique du pire cas. Pour ce faire, nous
donnons une analyse générale d’un problème d’approximation stochastique reposant sur un champ
aléatoire. Nous considérons des hypothèses faibles sur le champ aléatoire (en particulier la régularité
de Hölder en espérance) et sur la covariance du bruit, ce qui permet l’analyse de divers mécanismes
de compression. Nous étendons ensuite nos résultats au cas de l’apprentissage fédéré.

Plus formellement, nous mettons en évidence l’impact sur la convergence de la covariance Cania

du bruit additif induit par l’algorithm stochastique. Nous démontrons, que malgré la non-régularité
du champ stochastique, le terme de variance limite dépend de Tr

(
CaniaH

−1
F

)
/K (où HF est la

Hessienne du problème d’optimisation et K le nombre d’itérations) par opposition au cas LSR
canonique où il dépend de σ2Tr

(
HFH

−1
F

)
/K = σ2d/K [Bach and Moulines, 2013]. Ensuite, nous

mettons en lumière la façon dont la matrice Cania dépend du choix du compresseur et enfin, la façon
dont elle impacte la convergence.

Chapter 5. Ce Chapitre conclut la thèse en résumant nos contributions et en décrivant des
extensions possibles.

Les publications et pré-publications liées à ce manuscrit sont énumérées ci-dessous.

1. Le Chapitre 2 se fonde sur notre travail Bidirectional compression in heterogeneous settings for
distributed or federated learning with partial participation: tight convergence guarantees [Philip-
penko and Dieuleveut, 2020].

2. Le Chapitre 3 est basé sur notre article Preserved central model for faster bidirectional
compression in distributed settings [Philippenko and Dieuleveut, 2021] publié à Neurips 2021.

3. Le Chapitre 4 utilise les résultat de notre travail Convergence rates for distributed, compressed
and averaged least-squares regression: application to federated learning [Philippenko and
Dieuleveut, 2023] soumis à JMLR.

Dans cette thèse, je n’ai pas inclus ma contribution à [du Terrail et al., 2022], publié à Neurips
2022. Ce projet était une collaboration impliquant des chercheurs de diverses institutions venant du
monde entier. L’ojectif était de créer un benchmark pour l’apprentissage fédéré inter-silo avec des
jeux de données naturellement partitionné entre différentes entités. Ce benchmark, appelé FLamby,
est composé de données provenant du domaine de la santé ; il est disponible sur ce dépôt. Ma
contribution au projet a consisté en deux parties : j’ai implémenté quelques algorithmes fédérés
considérés comme classiques, et deuxièmement, j’ai effectué une analyse de l’hétérogénéité des sept
jeus de données inclus dans FLamby qui peut être trouvée dans l’annexe M de l’article correspondant.

https://github.com/owkin/FLamby

1
Introduction

“Luminous beings are we, not this crude matter.”

Yoda to Luke, Episode V: The Empire Strikes Back, George Lucas.

The opening Chapter of this thesis provides an overview of the key areas that are necessary for
the understanding of the subsequent Chapters. Firstly, we introduce the general setting of statistical
learning, including its historical development, mathematical formulation, and examples of real-life
use cases. We then delve into convex optimization, which is the cornerstone of the theoretical
findings presented in this thesis. We furthermore present the case of federated learning, which is the
main motivation of this thesis, and more particularly the bidirectional compression setting which is
the focus of Chapters 2 and 3. Next, we motivate our choice to analyze bidirectional compression,
highlighting its relevance in federated learning. As a conclusion of this introductive Chapter, we
provide a mathematical summary of the three chapters of this manuscript and shed light on the key
messages of this thesis.

5

Chapter 1. Introduction 6

Contents
1.1 Statistical learning . 6

1.1.1 Historical overview . 6
1.1.2 Supervised machine learning . 7
1.1.3 Risk decomposition . 8
1.1.4 Least-squares regression . 8
1.1.5 Real-life application of machine learning. 9

1.2 Optimization for machine learning . 10
1.2.1 Gradient descent . 11
1.2.2 Regularity assumption . 12
1.2.3 Stochastic gradient descent . 14

1.3 Federated learning . 16
1.3.1 Framework . 16
1.3.2 Compression . 18
1.3.3 Client statistical heterogeneity . 20

1.4 Motivation of using bidirectional compression . 21
1.4.1 Bandwidth speed . 22
1.4.2 Communication cost: an example using the quantization scheme 22

1.5 Summary of the contributions of this thesis . 23
1.5.1 Contributions of Chapter 2 . 24
1.5.2 Contributions of Chapter 3 . 24
1.5.3 Contributions of Chapter 4 . 26
1.5.4 Key messages of this thesis . 27

1.1 Statistical learning

“A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E.” [Mitchell, 1997, see p. 2, chapter 1]

1.1.1 Historical overview

Statistical learning is the science of developing and analyzing methods for making predictions or
decisions based on data. Its roots can be traced back to the 19th century, with early pioneers
such as Legendre and Gauss, who introduced independently the method of least-squares regression
[Legendre, 1806, Gauss, 1809], or Laplace, who introduced the concept of conditional probability
[Laplace, 1820].

In the mid-20th century, the field of statistics experienced a surge of interest in machine learning
and artificial intelligence, with the development of methods such as the perceptron algorithm
[McCulloch and Pitts, 1943, Rosenblatt, 1958] and decision trees [Hunt et al., 1966]. However,
progress in statistical learning was hindered by the limitations of computing power and the availability
of large datasets, leading to a “AI winter” in the 1970s and 1980s.

The 1990s saw a resurgence of interest in statistical learning, with the development of new
methods that could handle large datasets and complex models. These methods include support
vector machines [Cortes and Vapnik, 1995], boosting [Freund and Schapire, 1996], random forests

Chapter 1. Introduction 7

[Breiman, 2001] and neural networks [LeCun et al., 1998, 1999]. The rise of the internet and the
availability of massive amounts of data then contributed to the growth of statistical learning.

Today, statistical learning is an extremely dynamic field, with applications in many areas,
including climate studies, finance, healthcare, robotics, social media, to name just a few. Researchers
continue to develop methods for analyzing data and making predictions, including deep learning
[LeCun et al., 2015], reinforcement learning [Sutton and Barto, 2018], explainable AI [Ribeiro et al.,
2016] and distributed learning [Konečný et al., 2016, McMahan et al., 2017].

1.1.2 Supervised machine learning

In this thesis, we consider only supervised learning [Duda et al., 1973, Vapnik, 1982, 1999, Hastie
et al., 2009] and formalize the problem as follows. Suppose we have access to a pair (x, y) in (X ×Y),
where X and Y are supposed to be two measurable spaces. The vector x is the explanatory variable
or features, and y is the variable of interest or output. The set Y, which describes the outputs, can
be either quantitative (Y ⊂ R), or categorical (Y is a finite set, typically {−1, 1} if there are two
possible categories). This leads to the two main tasks of supervised learning:

• Regression, when one predicts a quantitative outcome.

• Classification, when one predicts a categorical outcome, e.g., with Y = {−1, 1}.

The aim of supervised machine learning is to find a predictor (a measurable function) f : X → Y
which predicts an output y in Y for any new input x in X . The set of possible predictors is
denoted F(X ,Y).

Quality of the predictor. To measure the quality of a predictor we choose a loss function (or
cost function) ℓ : Y × Y → R, supposed measurable, such that, intuitively, for any (y, y′) in Y2,
ℓ(y, y′) is small if y and y′ are similar, and large otherwise. For the two tasks above, classical loss
functions are:

• for regression, the squared loss ℓ(y, y′) = 1
2(y − y′)2,

• for classification, the logistic loss ℓ(y, y′) = log(1 + exp(−yy′)) (this model is know as logistic
regression) or the hinge loss ℓ(y, y′) = max{0, 1− yy′}.

We then define the risk R of a predictor f in F(X ,Y) as the averaged loss under the distribution D
of the observations:

R(f) := E(x,y)∼D[ℓ(f(x), y)] .

The learning process seeks to find the best predictor f∗ that minimizes the risk R. Such a predictor
is called the Bayes predictor when it exists. In most situations, the quality of a predictor f is in fact
not measured w.r.t. its loss, but rather using the excess risk R(f)−R(f∗). To approximate f∗, the
learning process consists first in choosing an (often parametric) family F ⊂ F(X ,Y) of predictors
and then minimizing the risk over it, hence finding fF = argminf∈F R(f).

Empirical risk minimization. In practice the observations’ distribution D is unknown and we
only have access to a dataset D of cardinal K, composed of pairs (xk, yk)k∈{1,...,K} in (X × Y)K .
This is why we define the empirical risk error (ERM):

RK(f) =
1

K

K∑
k=1

ℓ(f(xk), yk) . (ERM)

Chapter 1. Introduction 8

One approach is to minimize it instead of the true risk R, which leads to considering fK :=
argminf∈F RK(f). One of the major pitfalls of such an approach is overfitting : it corresponds to a
scenario where the empirical risk error is very low, but the excess risk is large. In this case, the true
risk is also called generalization error as it measures how accurately the predictor fK trained on a
dataset D is able to predict output values for unseen data.

1.1.3 Risk decomposition

Trade-off between approximation and estimation errors. The starting point of the learning
process is to choose a family F of candidate predictors and to find fK that minimizes the empirical
risk RK . However, first, the optimal predictive function f∗ is unlikely to belong to the family F ,
and secondly, the goal is not to find the predictor fK that minimizes RK , but the predictor fF that
minimizes R over F . This is why, it is useful to decompose the excess risk error as follows [e.g.
Bottou and Bousquet, 2007]:

E = R(fK)−R(f∗) = R(fK)−R(fF)︸ ︷︷ ︸
estimation error

+ R(fF)−R(f∗)︸ ︷︷ ︸
approximation error

.

The approximation error measures how closely functions in F can approximate the optimal solution
f∗; it can be reduced by choosing a larger family of function F . The estimation error measures
the effect of minimizing the empirical risk RK instead of the expected risk R. The estimation error
depends on the number of training examples and on the capacity of the family of functions; to
reduce it, one can increase the number of points or choose a smaller family of functions F . It thus
appears that large families of functions have smaller approximation errors (bias) but lead to higher
estimation errors (variance), therefore leading to the well-known “bias-variance” trade-off.

Optimization error. After having chosen a family F of predictors, the next step of the learning
process consists in approximating fK . Since fK is itself an approximation, there is no need to carry
out a minimization with the highest possible accuracy. Instead, all algorithms run the minimization
for several steps and then return a predictor f̂K . Therefore, an additional term R(f̂K) − R(fK)
appears in the decomposition of the excess risk E ′ = R(f̂K)−R(f∗) [Bottou and Bousquet, 2007]:

E ′ = R(f̂K)−R(f∗) = R(f̂K)−R(fK)︸ ︷︷ ︸
optimization error

+R(fK)−R(fF)︸ ︷︷ ︸
estimation error

+ R(fF)−R(f∗)︸ ︷︷ ︸
approximation error

.

This optimization error reflects the approximation made during the optimization process, when
minimizing the empirical risk. In this thesis, we provide bounds on the optimization error, either
computed using the excess risk Eopt. := R(f̂K)−R(fK), either computed using the empirical excess
risk EKopt. := RK(f̂K)−RK(fK). These bounds guarantee the convergence of our algorithms.

1.1.4 Least-squares regression

One of the simplest models of supervised learning is least-squares regression (LSR). Suppose that we
have a dataset (xk, yk)k∈{1,...,K} in (X ×R)K with K in N∗. We consider the squared loss ℓ : (y, y′) 7→
1
2(y − y′)2, and the parameterized family of functions Fϕ = {fw : z 7→ ⟨ϕ(z), w⟩ with w ∈ Rd} and
ϕ : X → Rd a function transforming the input features. It leads to the following ERM:

argmin
fw∈Fϕ

RK(fw) = argmin
w∈Rd

1

2K

K∑
k=1

(
yk − ϕ(xk)

⊤w
)2

.

Noting y = (y1, . . . , yK)⊤ and Φ in RK×d the matrix of inputs whose k-th row is ϕ(xk)
⊤, we can

rewrite the ERM as argminw∈Rd
1
2K ∥y − Φw∥2.

Chapter 1. Introduction 9

(a) Object detection using YoLo V2, tested on James
Bond (Skyfall) [YoloV2, 2023].

(b) Generated with Dall-E: “An old castle on a cloud
in a Miyazaki style” [Dall-E, 2023].

Figure 1.1: Some applications of machine learning.

When Φ has full column rank, there exists a unique closed-form solution to this problem given
by the ordinary least-square (OLS) estimator: ŵ = (Φ⊤Φ)−1Φ⊤y. Geometrically, the vector of
prediction Φŵ = Φ(Φ⊤Φ)−1Φ⊤y is the orthogonal projection of y in RK onto Im(Φ) ⊂ RK .

But in high dimension, this exact approach is computationally too expensive and cannot be
applied. This is why, in practice, LSR is solved using stochastic gradient descent, which is often
referred to as the Least-Mean-Squares (LMS) algorithm [Bershad, 1986, Macchi, 1995].

This framework will be the starting point of Chapter 4. We will consider a model where we have
access to K in N∗ i.i.d. observations (xk, yk)k∈{1,...,K} ∼ D⊗K , such that there exists a well-defined
model w∗ in Rd:

∀k ∈ {1, . . . ,K}, yk = ⟨ϕ(xk), w∗⟩+ εk, with εk ∼ N (0, σ2) , (1.1)

for an i.i.d. sequence
(
(εk)k∈{1,...,K}

)
independent from

(
(xk)k∈{1,...,K}

)
. We assume that the inputs’

second moment is bounded to define E[ϕ(x1)⊗ ϕ(x1)] = H; it is the features’ covariance.

1.1.5 Real-life application of machine learning.

Supervised machine learning has applications in a wide range of domains; we provide a selection of
examples here.

Image recognition. It is one of the most popular applications of supervised learning [Felzenszwalb
et al., 2009, Krizhevsky et al., 2009, LeCun et al., 2010, Girshick, 2015, Simonyan and Zisserman,
2015, Szegedy et al., 2015, Ren et al., 2015, Xiao et al., 2017, Redmon et al., 2016, He et al., 2016,
Szegedy et al., 2016, Redmon and Farhadi, 2017]. From a dataset of labeled images, we train a
neural network to distinguish a picture from another; once trained to recognize particular items,
the model can be deployed in real-life applications. In Figure 1.1a, we give an example of object
detection tested on Jame Bond1 based on version 2 of Yolo [Redmon et al., 2016, Redmon and
Farhadi, 2017], three known labels are being detected: ties, persons, and umbrellas.

Synthethic image generation. In the same vein, a recent line of work has focused on generating
synthetic images [Mirza and Osindero, 2014, Radford et al., 2015, Salimans et al., 2016, Arjovsky
et al., 2017, Karras et al., 2019, Goodfellow et al., 2020]. This field of research has enabled the
creation of high-quality and realistic images that can be used for a wide range of applications,
including art, entertainment, and scientific research. For instance, we provide on Figure 1.1b an
example of an image generated using Dall-E V2 with the prompt: “An old castle on a cloud in a

1Screenshot from [YoloV2, 2023]

Chapter 1. Introduction 10

Miyazaki style”. Note that usually these techniques are considered to be unsupervised learning, but
they use a supervised loss as part of the training, hence their mention in this section.

Medicine. Supervised learning has also a major impact in medicine [Gulshan et al., 2016, Ting
et al., 2017, Rajkomar et al., 2019, Esteva et al., 2019, Choi et al., 2016, Shickel et al., 2017, Miotto
et al., 2016, Chen and Asch, 2017], for instance, to improve medical diagnosis, treatment planning,
or patient outcomes. A recent line of research [Sheller et al., 2020, Rieke et al., 2020, Dayan et al.,
2021, Pati et al., 2021, du Terrail et al., 2021, 2022] has additionally considered the case of private
and sensitive datasets that are split across various clients. These clients cannot share their data
but aim to collaborate with others to improve the training. This line of research has unlocked the
ability to take advantage of these previously out-of-reach datasets and doing so, to improve the
development of new clinical research.

Product recommendations. Recommender systems are ones of the most successful and widespread
applications of machine learning technologies [Resnick and Varian, 1997, Huang et al., 2004, Ziegler
et al., 2005, Bell et al., 2007, Koren, 2008, 2009, Zhou et al., 2010, Lü et al., 2012, Covington
et al., 2016, Cheng et al., 2016, Zhang et al., 2019]. Many companies rely on this business model:
Amazon, Google, Meta, Tiktok, Netflix, Criteo, to name just a few. The goal is to increase customer
satisfaction or consumption by analyzing their interests and extrapolating relevant information from
other people’s behavior. Such a framework requires two kinds of recommender models: (1) a global
one minimizing the empirical risk over all clients and (2) a personalized one that is adapted to each
user’s singularity.

Applications based on sensors. A wide variety of supervised tasks use datasets gathered from
sensors: cameras, microphones, accelerometers, thermometers... Considering that sensors are today
deployed at a large scale - for instance, in smartphones, buildings, cars, boats, drones, planes,
satellites - a lot of initiatives have emerged to benefit from these new sources of data. It has led, for
instance, to develop autonomous cars [Kanade et al., 1986, Campbell et al., 2010, Bitam et al., 2015,
Contreras-Castillo et al., 2017, Hussain and Zeadally, 2018, Badue et al., 2021] or smart buildings
[Morvaj et al., 2011, Albino et al., 2015, Ghayvat et al., 2015, Plageras et al., 2018, Brandi et al.,
2020].

All of these examples share two characteristics. First, the data may originate from various
sources, for instance, sensors, cameras, smartphones, hospitals, user accounts ... As a result, the
datasets are inherently heterogeneous, raising significant challenges in developing a general model.
Second, it might not be feasible to collect all the data from all these sources on a single server,
requiring the design of a distributed learning process and leading to a high cost of communication.

In this thesis, we focus on supervised learning problems where the dataset is heterogeneously split
across several clients. Our aim is to address the challenge of reducing the communication cost of
the training while finding a global consensus among these statistically heterogeneous data sources.

Therefore, we present in Section 1.2 the framework of optimization for machine learning which
allows finding a minimizer of the expected/empirical risk error. Then, we introduce the more specific
setting of interest, namely distributed and heterogeneous learning, in Section 1.3.

1.2 Optimization for machine learning

The goal of the learning process is to find a solution to the (ERM) problem, which corresponds to
a minimization problem. In order to solve it, we rely in this thesis on the widely studied gradient
descent (GD) procedure. We denote C p(Rd) the set of p times continuously differentiable functions
from Rd into R.

Chapter 1. Introduction 11

1.2.1 Gradient descent

Let F a function from Rd to R. The goal of optimization [see e.g. for introductory lectures, Nesterov,
2004, Boyd et al., 2004, Bubeck, 2015] is to find an optimal point w∗ (not necessarily unique) that
minimizes F :

w∗ = argmin
w∈Rd

F (w) . (1.2)

Solving this problem with an accuracy ε > 0 means finding an approximate solution ŵ after K in
N∗ iteration, such that the error F (ŵ) − F (w∗) is smaller than ε. The relationship between the
number of iterations K is determined by the complexity function T : R 7→ N s.t. K = T (ε); we say
that the optimization error has a worst-case complexity of O(T (ε)). In other words, it represents
the maximum number of iterations K in N∗ to reach a given precision ε. In the next chapters, we
analyze algorithms through the lens of convergence rate analysis, and use the results to get insights
into their practical performance.

In practice, to find the optimal point w∗ minimizing the objective function, we use a method that
is able to collect specific information about F depending on its regularity. The process of collecting
this information is called an oracle. In accordance with the degree of smoothness of F , we can rely
on different types of oracles. Let w in Rd,

1. zeroth-order oracle returns the value F (w);

2. first-order oracle returns the value F (w) and the gradient ∇F (w), if F is differentiable;

3. second-order oracle returns the value F (w), the gradient ∇F (w), and the Hessian ∇2F (w), if
F is twice differentiable.

Exhaustive-search – an example of zeroth-order method. A naive approach to find the
optimal point w∗ by using a zeroth-order oracle is to build a grid over the search-space and then
evaluate the function over each node of the grid. Of course, this approach is extremely costly. For
instance, suppose we want to find the optimum on a grid [0, 1]; to achieve an ε-accuracy, we need
⌊1/ε⌋ evaluations of F , but in dimension d, we need ⌊1/ε⌋d evaluations! Thereby, this method is
never used in practice, except to tune the hyper-parameters.

Gradient descent – an example of first-order method. For F in C 1(Rd), first-order methods
rely on the gradient ∇F and take advantage of the fact that gradients are orthogonal to the level
sets, therefore pointing toward the steepest direction. At each step, the algorithm’s complexity is
thus O(d) (cost of the gradient computation in Rd). These algorithms start from a random point w0

and take repeated steps in the opposite direction of the gradient. Mathematically, its leads to a
sequence (wk)k>0 defined by:

wk = wk−1 − γ∇F (wk−1) , (GD)

with γ > 0 a step-size (also known as learning rate) that controls the update’s magnitude. The
choice of the step-size rate is fundamental and has been one of the most studied questions: taking γ
too small slows down convergence and γ too big leads to divergence.

Newton method – an example of second-order method. For F in C 2(Rd), second-order
methods use the Hessian ∇2F to update the model, thus the complexity of the algorithm is now

Chapter 1. Introduction 12

−4
−2

0
2

4
6

−4

−2

0

2

4

6

10

20

30

40

50

60

70

F1 : x, y 7→ x2 + y2

−4
−2

0
2

4
6

−4

−2

0

2

4

6

0

1

2

3

4

F2 : x, y 7→ (1− sin(x))2 + cos(y)

(a) Left convex function, right non-convex function.

−5.0 −2.5 0.0 2.5 5.0

−4

−2

0

2

4

F1 : x, y 7→ x2 + y2

5

10

15
20

25
30 30

30

30

35

35

35

35

40 40

40

40

45

45

45

45
−5.0 −2.5 0.0 2.5 5.0

−4

−2

0

2

4

F2 : x, y 7→ (1− sin(x))2 + cos(y)

−
0.6

−
0.6

−0
.6

−0.6

0.0

0.
0

0.
0

0.
0

0.60.6
0.6

0.6

1.
2

1.
2

1.
2

1.81.
8

1.8

2.4

2.4

2.4

3.
0

3.
0

3.
0

3.0

3.
0

3.6

3.
6

3.6
3.6

3.6

3.
6

4.24.2 4.
8

4.8

(b) Corresponding examples of gradient descent.

Figure 1.2: GD with a convex function and a non-convex function.

increased to O(d2) per iteration. Mathematically, the Newton method results to a sequence of model
(wk)k>0 updated as follows:

wk = wk−1 −∇2F (wk−1)
−1∇F (wk−1) ,

The intuition behind the second-order Newton method is to use the 2nd-order Taylor approximation
of the function to approximate it, and at each iteration to minimize this quadratic function.

The difficulty of the optimization process, i.e., of finding the optimal point w∗, depends on
various properties that are verified or not by F . The knowledge of these properties has a key impact
on the choice of the optimization algorithm and on its convergence rate.

• Problem’s dimensionality. An evident difficulty comes from the problem’s dimensionality.
As the dimension d increases, the computational’s complexity of each iteration grows, making
it harder to retrieve the first and second oracles on the function F . In high-dimension, the
prohibitive computational cost of Newton’s method makes it unusable.

• Dataset’s size. In supervised learning, we are optimizing not the expected risk R but the
empirical risk RK , the objective function F is hence defined by the dataset. It follows that
the complexity of evaluating the function, the gradient, or the Hessian is proportional to the
dataset size. This is why the cost of computing the oracle can become prohibitive if the dataset
size increases exponentially. To circumvent this issue, we will consider in Subsection 1.2.3 (and
throughout this thesis) an oracle g that computes an approximation of the gradient ∇F with
a computational cost independent of the dataset size K.

• Regularity of F . The regularity of the objective function F is important in optimization as
it ensures the success of learning and its speed, in particular, the (GD) method and Newton’s
method require respectively that F belongs to C 1(Rd) and C 2(Rd). In contrast, a non-regular
function may have discontinuities, singularities, or oscillations that can cause optimization
algorithms to get stuck or to converge slowly, see Figure 1.2 for illustration (more details
are given below). This is why, regularity is a desirable property for objective functions in
optimization; we provide additional details in Subsection 1.2.2.

1.2.2 Regularity assumption

An important regularity condition to guarantee the convergence of (GD) is the convexity of F .

Assumption 1.1 (Convexity). F is differentiable and convex, that is for all vectors z, z′ in Rd, it
verifies:

F (z′) ≥ F (z) + (z′ − z)T∇F (z) .

Chapter 1. Introduction 13

z0

F (z)

F (z0) +∇F (z0)>(z − z0)

F (z0) +∇F (z0)>(z − z0) + L
2‖z − z0‖2

F (z0) +∇F (z0)>(z − z0) + µ
2‖z − z0‖2

Figure 1.3: Illustration of the quadratic upper bound and lower bound provided respectively by
L-smoothness (in red) and µ-strong-convexity (in orange) at a point z0 for a function F .

The main reason why convex functions are attractive in optimization is that every stationary
point is also a global minimum. This property ensures that the optimization process does not become
trapped in a local optima or saddle point. Note first that it does not guarantee the existence of a
global minimum (take for instance F : z 7→ z) and secondly, that the existence of a global minimum
does not ensure its uniqueness.

On Figure 1.2a we give two examples of functions: on the left F1 : x, y 7→ x2 + y2 is convex, on
the right F2 : x, y 7→ (1− sin(x))2 + cos(y) is not. Then on Figure 1.2b we run for each function a
gradient descent procedure using γ = 0.1. Observe that for F1, the gradient procedure converges
quickly to the optimal point while for F2 the gradient descent is stuck into a saddle point, illustrating
the difficulty of finding a local minimum in this setting.

A stronger assumption on convexity is to assume that the function is strongly-convex, which
in turn, guarantees the unicity of the optimal point w∗. Geometrically, strong-convexity can be
interpreted as the possibility to lower bound F at any point with a quadratic function (see Figure 1.3).

Assumption 1.2 (Strong convexity). F is differentiable and µ-strongly convex (with µ ≥ 0), that is
for all vectors z, z′ in Rd:

F (z′) ≥ F (z) + (z′ − z)T∇F (z) +
µ

2
∥z′ − z∥22 .

Note that we recover the convex case if µ = 0.

Additionally, a classical desirable property of F is its L-smoothness which corresponds considering
that F can be upper-bounded at any point by a quadratic function (see Figure 1.3).

Assumption 1.3 (Smoothness). F is in C 1(Rd) and is L-smooth (with L ≥ 0), that is for all
vectors z, z′ in Rd:

∥∇F (z)−∇F (z′)∥ ≤ L∥z − z′∥ .

Condition number κ. Two quantities are then of particular importance when minimizing F : the
strongly-convexity constant µ and the smoothness constant L. These two coefficients directly impact
the speed of convergence of algorithms based on gradient descent. This is why, under Assumptions 1.2
and 1.3, we define the condition number κ = L/µ: the bigger κ, the slower the convergence towards
the optimal point. Note also that if F is in C 2(Rd), smoothness and strong-convexity are equivalent
to having for any point z in Rd: µId ≼ ∇2F (z) ≼ LId.

Chapter 1. Introduction 14

These assumptions enable to give two theorems of convergence for (GD) in the smooth convex
setting, and in the smooth strongly-convex setting.

Theorem 1.1 (Theorem 2.1.15 from Nesterov [2004]). Consider Assumptions 1.2 and 1.3, the
sequence of iterates (wk)k>0 produced by (GD) initialized at w0 in Rd and using a step-size γ = 1/L
verifies for any K in N:

F (wK)− F (w∗) ≤ (1− κ−1)K (F (w0)− F (w∗)) .

Taking γ = 2/(µ+ L) leads to a slightly more powerful result:

F (wK)− F (w∗) ≤
(
1− 2(κ+ 1)−1

)2K L ∥w0 − w∗∥2
2

.

This theorem states that the sequence (wk)k>0 converges at an exponential rate to the optimal
point w∗, we say that the convergence of (GD) is linear. And in the smooth convex setting, we
obtain the following.

Theorem 1.2 (Corollary 2.1.2 from Nesterov [2004]). Consider Assumptions 1.1 and 1.3, the
sequence of iterates (wk)k>0 produced by (GD) initialized at w0 in Rd and using a step-size γ = 1/L
verifies for any K in N:

F (wK)− F (w∗) ≤
2L∥w0 − w∗∥2

K + 4
.

These two theorems show that the choice γ = 1/L is very powerful as a unique algorithm is
adapted to both convex and strongly-convex functions, although the convergence is faster in the
latter case. Hence, this step-size does not require the knowledge of µ which can be arbitrarily small,
as opposed to γ = 2/(µ+L). Moreover, in the latter case, if µ tends to zero, the algorithm does not
converge, since κ tends to infinity.

1.2.3 Stochastic gradient descent

As mentioned earlier, one of the major difficulties of machine learning comes from the fact that the
dataset size can be extremely large, making it impossible to evaluate the function F . Stochastic
gradient descent (SGD) introduced by Robbins and Monro [1951], solves this issue and has become
one of the most popular tools of machine learning because of its practical efficiency and its theoretical
performance. In this manuscript, we focus on stochastic methods and we consider that at any
iteration k in N∗, we have access to an oracle gk that evaluates an unbiased approximation of the
true gradient ∇F (that is gk is a random field), hence updating (GD) as following:

wk = wk−1 − γgk(wk−1) . (SGD)

In addition to the condition number κ, two quantities dictate the behavior of SGD: the initial
distance (bias) ∥w0 − w∗∥2 and the variance σ2 associated with the stochastic gradient, it leads to
a “bias/variance decomposition” [see Hsu et al., 2012, Bach and Moulines, 2013]. Therefore, we
consider the following assumption on the stochastic gradients.

Assumption 1.4 (Noise over stochastic gradients computation). The noise over stochastic gradients
is zero-centered and its variance is uniformly bounded by a constant σ ∈ R+, such that for all k in N,
for all z in Rd we have: E[∥gk(z)−∇F (z)∥2] ≤ σ2.

Using these stochastic oracles (gk)k∈N∗ of the true gradient ∇F leads to the below upper bound.

Chapter 1. Introduction 15

0.8

1.6

2.4

3.2 3.2

3.2

4.0

4.0 4.8 5.6
6.4

0 10 20 30 40
−8

−6

−4

−2

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

Epochs k

GD γ = 1/L

GD γ = 2/(µ + L)

SGD γ = 1/L

Figure 1.4: Left: level set of F and iterates (wk)k∈N∗ resulting from the three gradient descents.
Right: logarithm excess loss w.r.t. the number of epochs.

Theorem 1.3. Consider Assumptions 1.2 to 1.4, the sequence of iterates (wk)k>0 produced by (SGD)
initialized at w0 in Rd and using a step-size γ in R∗

+ verifies for any K in N:

∥wK − w∗∥2 ≤ (1− γµ)K∥w0 − w∗∥2 +
γσ2

µ
.

We illustrate Theorems 1.1 and 1.3 on Figure 1.4: on the left we represent the iterates (wk)k∈N∗

obtained after some iterations and on the right the logarithm excess loss. The objective function
F is quadratic and the dataset is generated using Equation (1.1) with w∗ = (0, 0.6)⊤, σ2 = 1 and
H =

(
1 1
1 10

)
. We run GD with the two step-sizes proposed in Theorem 1.1: both converge linearly

to the optimal point, but we observe the superiority of choosing γ = 2
µ+L in the convex scenario.

On the contrary, SGD with constant step-size first converges linearly, and then saturates at a level
depending on σ2. This is due to the oscillations of the iterates around the optimal point.

However, Assumption 1.4 is in fact very restrictive and is not verified even by the simple setting
of LSR (presented in Subsection 1.1.4). This is why we sometimes instead only assume that the
variance is bounded by a constant σ2

∗ at the optimal point w∗ (hence requiring its existence which
excludes non-convex setting). In Chapter 2, following the work of Gower et al. [2019], Dieuleveut
et al. [2020], Assumption 1.5 will result in a linear convergence rate up to a threshold proportional
to σ2

∗.

Assumption 1.5 (Noise over stochastic gradients computation at optimal points). The noise over
stochastic gradients at the global optimal point is zero-centered and its variance is bounded by a
constant σ∗ ∈ R+, such that for all k in N, we have: E[∥gk(w∗)−∇F (w∗)∥2] ≤ σ2

∗.

But then instead of assuming the smoothness of F , we will assume the cocoercivity [see Zhu and
Marcotte, 1996, for more details about this hypothesis] of gradients, which implies the smoothness.

Assumption 1.6 (Cocoercivity of stochastic gradients (in quadratic mean)). We suppose that for all
k in N, stochastic gradient functions gk are L-cocoercive (with L ≥ 0) in quadratic mean. That is, for
k in N, and for all vectors z, z′ in Rd, we have E[∥gk(z)− gk(z′)∥2] ≤ L ⟨∇F (z)−∇F (z′), z − z′⟩.

Using Assumptions 1.5 and 1.6 enables to recover the same results as Theorem 1.3 but with σ2

replaced by σ2
∗ [Gower et al., 2019].

Note that various methods have been proposed to reduce the variance induced by the stochastic
gradient: Polyak-Ruppert averaging [Polyak and Juditsky, 1992], mini-batch or tail-averaging (see
for instance [Jain et al., 2018b, Muecke et al., 2019]), variance-reduction methods [Johnson and
Zhang, 2013, Schmidt and Roux, 2013, Defazio et al., 2014]. In particular, in Chapters 2 to 4, we
provide theorems on the Polyak-Ruppert iterate wK−1 = 1

K

∑K−1
k=0 wk. This iterate can be computed

online, since for any K in N∗, we have:

w̄K =
1

K + 1
wK +

K

K + 1
w̄K−1 .

Chapter 1. Introduction 16

Central
Server

Client 1

Client 2

Client 3

Client 4

Client 5

Client 6

(a) Topology of federated learning.

Client 1 Client 2 Client 3

Client 4 Client 5 Client 6

Client 7 Client 8 Client 9

(b) Decentralized topology, e.g. clients are on a grid.

Figure 1.5: Example of two topologies in distributed learning.

In this thesis, we design algorithms that are based on stochastic gradient descent. We provide
theoretical analysis in strong-convex, convex, and non-convex scenarios and give theorems

guaranteeing the convergence of the proposed algorithms.

We next introduce the setting of federated learning which is the main motivation of this thesis
and present the challenge of reducing the cost of communication.

1.3 Federated learning

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or
whole organizations) collaboratively train a model under the orchestration of a central server (e.g.

service provider), while keeping the training data decentralized. [Kairouz et al., 2019, see p.4]

1.3.1 Framework

In Sections 1.1 and 1.2, we supposed that the learning process has permanent access to a dataset D
and that at any moment, it can access any of its points. However, nowadays problems are often not
valid for such an assumption, considering that in most situations data are generated from various
sources (see examples given Subsection 1.1.5). In this setting, it is not always possible to centralize
the data coming from these different sources on a single server and to exploit them. This can happen
for various reasons.

• The datasets are too large to be stored on a single server.

• The cost/time of data communication is too high to send all at once.

• The datasets are private or sensitive and can not leave their source.

• The data is obtained in a streaming fashion and hence is constantly changing.

This is why a new approach has been developed in the last years and considers a distributed
setting instead. In such a setting, the data is kept on its origin server. We call client (or worker) a
server holding a dataset and participating in the training. Then, either a central server is put in

Chapter 1. Introduction 17

place to orchestrate the training, this is federated learning (FL), either clients communicate in a
peers-to-peers fashion, this is decentralized learning. On Figure 1.5 we plot two possible topologies
of distributed learning. On Figure 1.5a we present a federated network with a central server, and on
Figure 1.5b we present an example of topology without a central server where clients are placed on
a grid and can communicate only with their neighborhoods.

In this thesis, we consider the FL setting [Konečný et al., 2016, McMahan et al., 2017, Kairouz
et al., 2019], where N clients communicate with a central server that aggregates all updates and
then broadcasts back a message to all clients. Formally, we have a number of features d ∈ N∗, and a
convex cost function F : Rd → R. We want to solve the following distributed convex optimization
problem using stochastic gradient algorithms [Robbins and Monro, 1951, Bottou, 2010]:

min
w∈Rd

F (w) with F (w) =
1

N

N∑
i=1

Fi(w) ,

where (Fi)i∈{1,...,N} are the local objective functions on client i in {1, . . . , N} (they could be either
the local empirical risk or the local expected risk).

The starting point of the algorithms presented in this thesis is Distributed SGD where at each
iteration k ∈ N∗ and for each client i in {1, . . . , N}, a local gradient gik+1 is computed using a single
batch and then sent to the central server which aggregates the information from all clients before
updating the model. It results in the below update equation:

wk+1 = wk − γ
1

N

N∑
i=1

gik+1(wk) . (Dist. SGD)

Algorithm 1: Federated Averaging
(FedAvg)

Input: Initial model w0, number of
communication rounds K, local
epochs E, learning rate γ, batch
size b, and the proportion p of
active workers at each round.

Output: Global model wK

for k = 1, 2, ...,K do
Sk ← (random set of ⌊pN⌋ clients)
for each client i in Sk do
Bi ← (split dataset Di in batch of
size b)
wi = wk−1

for each local epoch e = 1, 2, ..., E
do

for each batch B in Bi do
wi = wi − γgiB(w

i)

wi
k = wi

wk = 1
N

∑N
i=1 niw

i
k

In this distributed setting, the main chal-
lenge is the communication cost which has been
identified as an important bottleneck [e.g. Strom,
2015, Kairouz et al., 2019]. Firstly, exchanging
information can slow down the whole training
process. Secondly, sharing high volumes of data
can be problematic for the users in terms of band-
width usage (for instance ResNet-50 proposed
in He et al. [2016] has over 23 million param-
eters, and VGG16 designed by Simonyan and
Zisserman [2015] has 138 million). Thirdly, the
energy cost of the communication process is also
significant and should be considered alongside
other classical constraints in machine learning,
as seen in studies such as Henderson et al. [2020]
or Anthony et al. [2020]. Three approaches can
be used to reduce the cost: (1) increase the num-
ber of local updates, (2) reduce the frequency
of communication between the clients and the
central server or (3) compress the information
exchanged from the clients to the central server
and conversely.

1. Local updates. Local update algorithms involve performing multiple updates on each client
before transmitting the final update to the central server; the server then applies these updates to
its global state, and the process is repeated [McMahan et al., 2017, Karimireddy et al., 2020, 2021,
Ghadikolaei et al., 2021, Koloskova et al., 2020, Lin et al., 2018, Stich, 2019, Malinovskiy et al., 2020,

Chapter 1. Introduction 18

Gao et al., 2021]. One of the most influential algorithms is FedAvg proposed by McMahan et al.
[2017], we give its pseudo-code in Algorithm 1 because of its founding role. It selects at each round
k in N∗ a random subset Sk ⊂ {1, . . . , N} of ⌊pN⌋ clients with p in]0; 1]; each client i in Sk run E
in N∗ iterations of gradient descent by splitting their dataset Di in a set Bi of batches of size b in
N∗. We note giB the stochastic gradient computed on client i in {1, . . . , N} when using the batch B
in Bi.

2. Partial participation (PP). In federated optimization, it is classical to consider that at each
round, all participants are not used for the training [e.g. Zhao and Zhang, 2015, Csiba and Richtárik,
2018, Mishchenko et al., 2018, Chen et al., 2020, Yang et al., 2021, Wang et al., 2022, Luo et al.,
2022, Wang and Xu, 2022, Jhunjhunwala et al., 2022, Eichner et al., 2019, Fraboni et al., 2021a,
2022, Yang et al., 2021, Rodio et al., 2023]. For instance, it is common to consider mobile devices to
be ready to participate only when idle, charging and connected to a fast network, leading a client to
be regularly switched on/off during the training process. This setting results in new constraints;
for instance how to synchronize the training, how to design efficient sampling strategies, how to
guarantee convergence to a global optimum ...

3. Compression. Compression is a critical aspect of distributed learning, as it addresses the three
issues mentioned above that hinder the practical implementation of distributed learning. Therefore,
compression for distributed learning is an important subject of research. It has led to a significant
effort of the community to design the best algorithms, either by compressing only the uplink channel
[Seide et al., 2014, Alistarh et al., 2018, Khirirat et al., 2018, Karimireddy et al., 2019, Wu et al.,
2018, Chraibi et al., 2019, Mishchenko et al., 2019, Horvath et al., 2022, Reisizadeh et al., 2020,
Gorbunov et al., 2020a, Li et al., 2020b, Haddadpour et al., 2021, Richtarik et al., 2021, Kovalev
et al., 2021, Li and Richtárik, 2021], either both uplink and downlink channels [Tang et al., 2019,
Liu et al., 2020, Zheng et al., 2019, Philippenko and Dieuleveut, 2020, 2021, Gorbunov et al., 2020b,
Sattler et al., 2019, Horvath et al., 2022, Fatkhullin et al., 2021].

In this thesis, we have considered the last solution, and in particular, we have designed two
algorithms doing bidirectional compression. Note that the scenario of partial participation is naturally
covered by our analysis by being considered as a particular case of compression where is sent either
the complete gradient, either 0. We give more details about compression and review related work in
the next Subsection 1.3.2.

1.3.2 Compression

We consider a compressor C : Rd → Rd as a random function that verify the below assumption:

Assumption 1.7 (Compression). There exists a constant ω ∈ R∗
+, such that the random operator C

satisfies for all z in Rd the following two properties:

E[C(z)] = z and E[∥C(z)− z∥2] ≤ ω∥z∥2 .

In other words, the compression is unbiased and its variance is relatively bounded by a constant ω.
Another common assumption, that is not considered in this thesis is that the compressor is contractive,
i.e. for any z in Rd, ∥C(z)− z∥2 < (1− δ)∥z∥2 with δ ∈]0; 1[[almost surely or in expectation, see
for instance Seide et al., 2014, Stich et al., 2018, Karimireddy et al., 2019, Ivkin et al., 2019,
Koloskova et al., 2019, Gorbunov et al., 2020b, Beznosikov et al., 2020, Richtárik et al., 2022]. We
use unbiased operators because they allow reducing by a factor N the variance, while the bias is
kept independent of N : suppose we have N clients compressing independently the same vector
z in R using compressors (Ci)Ni=1 that verify Assumption 1.7, then 1

N

∑N
i=1 Ci(z) also verifies this

assumption but with a constant ω/N .

Chapter 1. Introduction 19

In the following, we define several unbiased compression operators that verify Assumption 1.7.
These operators are classical in the literature and will be considered throughout this thesis.

Definition 1.1 (Compression operators). Let z in Rd.

1. 1-quantization is defined as Cq(z) = ∥z∥sign(z)⊙ χ ∈ Rd with χ ∼ (Bern(|z|/∥z∥2))di=1 .

2. Rand-h is defined as Crdh(z) := d
hB(S)⊙ z with S ∼ Unif(Ph({1, . . . , d})) and B(S)i = 1i∈S.

3. Sparsification is defined as Cs(z) = 1
pB ⊙ z ∈ Rd with B ∼ (Bern(p))di=1 .

4. Partial participation can also be seen as a technique of compression as it reduces the cost of
communication. We define CPP(z) = 1

pbz with b ∼ Bern(p).

5. Sketching, also known as Random Projection, is defined as CΦ(z) = 1
pΦ

†Φz, where h≪ d in
N, p = h/d and Φ ∈ Rh×d is a random projection matrix into a lower-dimension space.

While we consider only unidirectional compression (from clients to central server) in Chapter 4,
we focus on bidirectional compression in Chapters 2 and 3. It consists in compressing communications
in both directions between the central server and remote devices. We use two different compression
operators, respectively Cup and Cdwn, to compress the message in each direction. In its simplest form,
Equation (Dist. SGD) becomes:

wk+1 = wk − γCdwn

(
1

N

N∑
i=1

Cup(gik+1(wk))

)
. (1.3)

From an abstract standpoint, we can introduce three quantities: (1) gik := gik+1(wk) the gradient
computed at iteration k in N∗ on client i in {1, . . . , N}, (2) ĝik the effective gradient shared by
the client i to the central server, and (3) Ĝk the effective gradient used to update the model wk.
In the context of bidirectional compression defined in Equation (1.3), we have: ĝik = Cup(gik) and
Ĝk = Cdwn(

1
N

∑N
i=1 Cup(gik)).

One of the main challenges of compression is to attenuate its inherent error that might lead
the training process to diverge. For this purpose, two mechanisms have been introduced: (1)
error-feedback (EF) by Seide et al. [2014], and (2) memory by Mishchenko et al. [2019]. We briefly
describe hereafter how these choices affect ĝik and Ĝk.

Error-feedback. Error-feedback (or error-compensation) is a mechanism that accumulates errors
of compression and corrects the gradient computation at each step. This approach was applied
mainly to biased operators of compression (which excludes the compressors considered in this thesis)
and has been successfully used in various works, for instance in [Seide et al., 2014, Stich et al., 2018,
Zheng et al., 2019, Karimireddy et al., 2019, Tang et al., 2019, Zheng et al., 2019, Beznosikov et al.,
2020, Liu et al., 2020, Stich and Karimireddy, 2020, Gorbunov et al., 2020b, Qian et al., 2021]. In
the setting of unidirectional compression, it is mathematically described as:{

ĝik = Cup(γgik + eik)/γ
eik+1 = eik + γ(gik − ĝik) .

In the context of double compression, it has been shown to improve convergence for a restrictive
class of contracting compression operators (which are generally biased) by Zheng et al. [2019], Tang
et al. [2019]. But for unbiased operators, it did not lead to any theoretical improvement [see Remark
2 in Sec. 4.1., Liu et al., 2020].

Memory. Memory has been introduced in Diana by [Mishchenko et al., 2019] for unbiased
compressors. It consists in compressing the difference between the gradients and a local memory

Chapter 1. Introduction 20

term, making the compression error tends to zero, and thus improving the convergence. In the
setting of unidirectional compression, it corresponds mathematically to having:{

ĝik = Cup(gik − hik−1) + hik−1

hik = hik−1 + αCup(gik − hik−1) ,

where α is the memory’s learning rate. It corresponds to a client-wise control-variate, as already
used by Schmidt et al. [2017] for variance-reduction.

This approach has later been analyzed in many papers. Horváth et al. [2022], Condat and
Richtarik [2022] have added a variance-reduction approach. It has been combined with acceleration
in the strongly-convex regime by Li et al. [2020b] and in the non-strongly-convex setting by Li and
Richtárik [2021]. Gorbunov et al. [2021] has used it to develop Marina an algorithm using a biased
stochastic estimator of the gradient in a non-convex setting. Memory and EF have been combined
together in the unidirectional case by Gorbunov et al. [2020b], and for bidirectional compression by
Liu et al. [2020]. Still in the bidirectional setting, Safaryan et al. [2021] has developed an algorithm
based on Newton method to compress the Hessian shift. Zhao et al. [2021] have used successfully
memory to reduce client-variance in the case of partial participation. Li et al. [2022b] has used
memory to design an algorithm that applies compression directly to differentially-private stochastic
gradients. The memory mechanism has also been applied for α = 1 to biased compressors by
Richtarik et al. [2021], Fatkhullin et al. [2021], Gruntkowska et al. [2022]. Memory-like ideas have
also been used beyond ERM, for instance for Langevin Stochastic Dynamics by Vono et al. [2022],
or for Expectation-Maximization algorithms by Dieuleveut et al. [2021].

Memory versus EF. Memory and EF are motivated by two different goals. EF is doing a
retro-compensation of the past errors of compression accumulated over iterations in order to remove
them, and thus (ek)k∈N tends to zero. Therefore, the quantity that is compressed corresponds
to a compensated gradient. Memory (aka “control-variate”) is put in place to compensate the
clients’ heterogeneity by learning the specificity of each client, thus all memories (hik)

N
i=1 tends to

(∇Fi(w∗))Ni=1. Therefore, the quantity that is compressed with this mechanism corresponds to the
innovation of the new iteration. In other words, EF leads to a “feedback loop” providing information
from the past that helps to correct the drift induced by the error of compression, while on the other
hand, memory reduces the variance induced by the statistical heterogeneity of clients; this last point
being shown in Chapter 2.

The setting of clients’ statical heterogeneity setting is introduced in the following Subsection 1.3.3.

1.3.3 Client statistical heterogeneity

The natural setting of federated learning [see e.g. Kairouz et al., 2019] is the case of statistical
heterogeneous2 clients, i.e., each client i in {1, · · · , N} holds its own data distribution Di potentially
different from the others. Below, we use the following assumption to quantify the heterogeneity of
clients in the network; this assumption is considered in Chapter 2 for the convex setting.

Assumption 1.8 (Bounded gradient at w∗). There exists an optimal parameter w∗ minimizing F
(not necessarily unique) and a constant B ∈ R+, such that

1

N

N∑
i=1

∥∇Fi(w∗)∥2 = B2 .

2Note that it can be found in the literature that clients are said heterogeneous when they face variability in
hardware (CPU, memory) and power (battery level). In this thesis are considered only statistical heterogeneity and
not a system heterogeneity.

Chapter 1. Introduction 21

−∇F1(w∗)

−∇F2(w∗)

−∇F3(w∗)
4.25

4.50

4.75

0.25

0.50

1.00

1.50

2.00

2.00

0.75

1.00

1.50

2.00

1.25

1.50

2.00

2.50

3.0
0

3.00

Optimal point of F

Level set of F

Optimal point of Fi
Level set of Fi

Figure 1.6: Illustration of heterogeneity on
three clients, the objective functions are
quadratic. We represent the optimal points,
the level set, and the opposite gradient at the
optimal point.

In fact, this is merely an assumption, but rather
a definition of the constant B. In the streaming
i.i.d. setting – D1 = · · · = DN and F1 = · · · = FN –
the assumption is satisfied with B = 0. On Figure 1.6,
we illustrate an example of three heterogeneous clients
with a local objective function of the form Fi : w ∈
R2 7→ (w − wi

∗)
⊤HF (w − wi

∗) + Fi(w
i
∗), i.e. with the

same Hessian HF but with different optimal points
(wi

∗)i∈{1,...,3}. In green, we represent the level sets of
the global objective function and its optimal point
w∗. The gradient of F1, F2, F3 evaluated at w∗ are
not null.

In this scenario, as analyzed by Li et al. [2019b],
the simple FedAvg algorithm works very poorly and
results to a model whose performance may vary signif-
icantly across the clients. Therefore, a lot of studies
are investigating this problem in order to find efficient
ways to handle it. To tackle this challenge, two strate-
gies can be considered: (1) finding a global consensus
between clients [Smith et al., 2017, Li et al., 2019a,
Karimireddy et al., 2019, Hsu et al., 2019, Li et al.,
2022a, Marfoq et al., 2022, Pillutla et al., 2022a,b,
Laguel et al., 2020, 2021, du Terrail et al., 2022, Caldas et al., 2019, Li et al., 2020a, Mitra et al.,
2021, Collins et al., 2021, Li et al., 2021, Mansour et al., 2020, Zhang et al., 2021] or (2) personalizing
the model for each client [Deng et al., 2020, Grimberg et al., 2020, Beaussart et al., 2021, Even et al.,
2022, Fallah et al., 2020, Li et al., 2021].

In this thesis, we focus on the first strategy and aim to design effective algorithms tackling the
clients’ heterogeneity. The challenge under this setting is to make the algorithm converge with the
best possible limit variance.

The goal of this thesis is to focus simultaneously on two challenges of federated learning: reducing
the cost of communication in a heterogeneous setting by doing bidirectional compression.

Next, in Section 1.4, we motivate our choice to analyze bidirectional compression rather than
simply unidirectional. Many research papers assume that downlink speed is higher than uplink,
therefore resulting in a lower communication cost that can be neglected. However, we show that this
is not the case in practice and we highlight scenarios where downlink speed should not be ignored.

1.4 Motivation of using bidirectional compression

There are several reasons to consider downlink compression, and not simply compressing the uplink
signal. First, the difference between upload and download speeds is not significant enough to ignore
the impact of the downlink direction (see Subsection 1.4.1 for an analysis of bandwidth). Moreover,
if we consider for instance a small number N of clients training a very heavy model – the size of
deep learning models generally exceeds hundreds of MB [Dean et al., 2012, Huang et al., 2019] – the
training speed will be limited by the exchange time of the updates, thus using downlink compression
is key to accelerate the process. Secondly, in a different setting in which a network of smartphones
collaborate to train a large-scale model in a federated framework, participants to the training would
not be eager to download hundreds of MB for each update on their phone. Here again, downlink
compression appears to be necessary.

Chapter 1. Introduction 22

In Subsection 1.4.1, we present an analysis of the bandwidth speeds for download/upload on
fixed/mobile broadband relying on a study made in 2020 over the six continents by Index [2020].
Then in Subsection 1.4.2, we show with the concrete example of quantization, how bidirectional
compression helps to reduce the communication cost compared to unidirectional.

1.4.1 Bandwidth speed

Afric
a

S
th Americ

a

N
th Americ

a
Ocea

nia Asia
Europe

Continents

10

20

30

40

50

60

70

80

90

sp
ee

d
(M

b
p

s)

Download - Fixed

Upload - Fixed

Download - Mobile

Upload - Mobile

Ratio - Fixed

Ratio - Mobile

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ra
ti

o
d

ow
n

lo
ad

/u
p

lo
ad

Figure 1.7: Left axis: upload and download speed
for mobile and fixed broadband. Left axis: speeds
(in Mbps), right axis: ratio (green bars). The
dataset is gathered from Speedtest.net , see Index
[2020].

Africa
South America

North America Oceania Asia Europe

Continents

1

2

3

4

5

6

7

R
at

io
d

ow
n

lo
ad

/u
p

lo
ad

Fixed

Mobile

Figure 1.8: Distribution of the download/upload
speeds ratio by continents.

In a network configuration where download
would be much faster than upload, bidirectional
compression would present no benefit over uni-
directional, as downlink communications would
have a negligible cost. However, this is not the
case in practice: to assess this point, we gathered
broadband speeds, for both download and up-
load communications, for fixed broadband (cable,
T1, DSL ...) or mobile (cellphones, smartphones,
tablets, laptops ...) from studies carried out in
2020 over the 6 continents by Speedtest.net [see
Index, 2020]. Results are provided in Figure 1.7,
comparing download and upload speeds. The
ratios (averaged by continents) between upload
and download speeds stand between 1 (in Asia,
for fixed broadband) and 3.5 (in Europe, for
mobile broadband): there is thus no apparent
reason to simply disregard the downlink com-
munication, and bidirectional compression is un-
avoidable to achieve substantial speedup. More
precisely, if we denote vd and vu the speed of
download and upload (in Mbits per second), we
typically have vd = ρvu, with 1 < ρ < 3.5. Using
quantization with s = 1 (see Definition 1.2), for
unidirectional compression, each iteration takes
O
(

Nd
ρvu

)
seconds, while for a bidirectional one

it takes only O
(
N
√
d log2(d)
vu

)
seconds.

In Figures 1.8, 1.9a and 1.9b, unlike Fig-
ure 1.7, we do not aggregate data by countries
of the same continents. This allows us to analyze the speed ratio between upload and download
with the proper value of each country. Looking at Figures 1.8, 1.9a and 1.9b, it is noticeable that in
the world, the ratio between upload and download speed is between 1 and 5, and not between 1 and
3.5 as Figure 1.7 was suggesting since we were aggregating data by continents. There are only nine
countries in the world having a ratio higher than 5. In Europe: Malta, Belgium, and Montenegro.
In Asia: South Korea. In North America: Canada, Saint Vincent and the Grenadines, Panama, and
Costa Rica. In Africa: Western Sahara. The highest ratio is 7.7 observed in Malta.

1.4.2 Communication cost: an example using the quantization scheme

In the following, we define the s-quantization operator Cs which we use in most of the experiments
in Chapters 2 and 3. After giving its definition, we explain [based on Alistarh et al., 2017] how it
helps to reduce the number of bits to broadcast at each iteration.

Definition 1.2 (s-quantization operator). Given z ∈ Rd, the s-quantization operator Cs is de-
fined by Cs(z) := sign(z) × ∥z∥2 × χ

s . χ ∈ Rd is a random vector with j-th element defined as:

https://www.speedtest.net/global-index
https://www.speedtest.net/global-index

Chapter 1. Introduction 23

Africa
South America

North America Oceania Asia Europe

Continents

0

20

40

60

80

100

S
p

ee
d

s(
M

b
p

s)

Download

Upload

(a) Mobile broadband.

Africa
South America

North America Oceania Asia Europe

Continents

0

50

100

150

200

S
p

ee
d

s(
M

b
p

s)

Download

Upload

(b) Fixed broadband.

Figure 1.9: Upload/download speed (in Mbps).

χ :=

{
l + 1 with probability s

|zj |
∥z∥2 − l ,

l otherwise
where the level l is such that s|zj |

∥z∥2
∈ [l, l + 1[.

The s-quantization scheme verifies Assumption 1.7 with ω = min(d/s2,
√
d/s). Proof can be

found in [Alistarh et al., 2017, see Appendix A.1].

Now, for any vector v ∈ Rd, we are in possession of the tuple (∥v∥2, ϕ, χ), where ϕ is the vector
of signs of (vj)dj=1, and χ is the vector of integer values (χj)j=1. To broadcast the quantized value,
we use the Elias encoding Elias [1975]. Using this encoding scheme, it can be shown (Theorem 3.2
of Alistarh et al. [2017]) that:

Proposition 1.1. For any vector v, the number of bits needed to communicate Cs(v) is upper
bounded by: (

3 +

(
3

2
+ o(1)

)
log2

(
2(s2 + d)

s(s+
√
d)

))
s(s+

√
d) + 32 .

With s = 1, it means that we will employ O(
√
d log2 d) bits per iteration instead of 32d, which

reduces by a factor
√
d

log2 d
the number of bits used by iteration. Now, in a FL settings, at each

iteration we have a double communication (device to the main server, main server to the device) for
each of the N clients. It means that at each iteration, we need to communicate 2×N × 32d bits
if compression is not used. Obviously, unidirectional compression can at best result in a factor 2
reduction in term of total number of bits, while for bidirectional compression, we need to broadcast
O(N

√
d log2 d) bits using the Elias encoding [defined in Elias, 1975]. Denoting vd and vu the speed

of download and upload (in bits per second), we typically have vd = ρvu, 3.5 > ρ > 1. Then for
unidirectional compression, each iteration takes O

(
Nd
vd

+ N
√
d log2(d)
vu

)
= O

(
Nd
ρvu

)
seconds, while for

a bidirectional one, it takes only O
(
N
√
d log2(d)
vu

)
seconds.

In other words, unless ρ is really large (which is not the case in practice as stressed by Fig-
ure 1.7), double compression reduces by several orders of magnitude the global time complexity, and
bidirectional compression is superior to unidirectional.

1.5 Summary of the contributions of this thesis

The naive way of doing bidirectional compression has been given in Equation (1.3), it consists in
simply compressing the local gradients, and then compressing their average on the central server

before using it to update the model: wk+1 = wk − γCdwn

(
1
N

∑N
i=1 Cup(gik+1(wk))

)
.

In a such setting – considering that the compressors are random processes whose variance are
constants ωup, ωdwn – it is possible to prove that the variance of SGD iterates is increased by a
factor ωup × ωdwn.

Chapter 1. Introduction 24

In the next subsection, we summarize the key contributions of this thesis to address the challenge
of compression, we include the most representative theorems of each chapter. Our results are
validated by numerical experiments and the code is provided on our GitHub repositories:

• see this repository for the implementation of both Artemis and MCM used in Chapters 2 and 3,

• see this repository for the code of Chapter 4.

1.5.1 Contributions of Chapter 2

In Chapter 2, we propose Artemis, a framework that encompasses 6 algorithms (with or without
up/down compression, with or without memory), the update being given for any k N∗ by:

∀i ∈ J1, NK , ∆̂i
k = Cup

(
gik − hik−1

)
, and then hik = hk−1 + α∆̂i

k ,

Ωk = C
dwn

(
1
N
∑N

i=1(∆̂
i
k + hik−1)

)
wk = wk−1 − γΩk .

Constants γ, α ∈ R∗ × R+ are learning rates for respectively the iterate sequence and the memory
sequence (hik)k∈N∗,i∈{1,...,N}. The consequence of introducing the memory is that at iteration k in N∗,
instead of compressing the gradient gik which expectation tends to ∇Fi(w∗) ̸= 0 (Assumption 1.8),
we compress a difference which tends now to zero in expectation like in the homogeneous scenario.
We provide a fast rate of convergence – exponential convergence up to a threshold proportional to
σ2
∗, the noise at the optimal point –, obtaining tighter bounds than in other works on compression.

Theorem 1.4 (Convergence of Artemis). Under Assumptions 1.2 and 1.5 to 1.8, for a step size γ
satisfying some conditions, for a learning rate αup verifying some conditions, and for any k in N,
the mean squared distance of wk to w∗ decreases at a linear rate up to a constant of the order of E:

E
[
∥wk − w∗∥2

]
≤ (1− γµ)k

(
∥w0 − w∗∥2 + 2γ2CB2

)
+

2γE

µN
,

for constants C and E depending on the variant (independent of k) of Artemis.

We explicitly tackle heterogeneity using Assumption 1.8, proving that the limit variance of
Artemis with memory is independent from the difference between distributions (as for SGD). Indeed,
we prove that memory makes the saturation threshold E independent of B2. This is one of the first
theoretical guarantee for double compression that explicitly quantifies the impact of non-i.i.d. data.

We prove convergence in distribution of the iterates, and subsequently provide a lower bound on
the asymptotic variance. This sheds light on the limits of (double) compression, which results in
an increase of the algorithm’s variance, and can thus only accelerate the learning process for early
iterations and up to a “moderate” accuracy. It also means that the upper bound on the saturation
level is tight w.r.t. σ2

∗, ωup, ωdwn, B
2, N and γ.

Theorem 1.5 (Convergence in distribution and lower bound on the variance). Under Assumptions 1.2
and 1.5 to 1.8, for γ, αup, E satisfying some condition, when k goes to infinity, the second order
moment E[∥wk − w∗∥2] converges to a limit variance lower bounded by Ω(γE/µN), with E depending
on the variant of Artemis.

1.5.2 Contributions of Chapter 3

Artemis has a drawback, in order to be able to broadcast back the aggregate of the received local
gradient, it compresses it before applying the update, resulting in a waste of valuable information.
The advantage is that the model held on the central server and the one used on the local workers (to

https://github.com/philipco/artemis-bidirectional-compression
https://github.com/philipco/structured_noise

Chapter 1. Introduction 25

query the gradient oracle) are identical. However, this means that the model on the central server
has been artificially degraded: instead of using all the received information, it is updated with the
compressed information. We propose a new algorithm MCM which updates the global model wk+1

independently of the downlink compression, hence leading to a non-degraded update. MCM is
entirely defined by the following uplink and downlink equations.

“Server-to-client” equations “Clients-to-server” equations
Ωk = wk −Hk−1 ,
ŵk = Hk−1 + Cdwn(Ωk)
Hk = Hk−1 + αdwnCdwn(Ωk).

∀i ∈ J1, NK,∆i

k = gik(ŵk−1)− hik−1

wk = wk−1 − γ
N
∑N

i=1 Cup(∆i
k) + hik−1

hik = hik−1 + αupCup(∆i
k).

This implies that the local models are different from the central model. The local gradients
are thus measured on a “perturbed model” (or “perturbed iterate”). Such an approach requires a
more involved analysis and the deviation between the local and global models must be carefully
controlled [Mania et al., 2016].

In this thesis, for the sake of simplicity, we summarize results in a homogeneous setting [see our
paper for results in heterogeneous setting, Philippenko and Dieuleveut, 2021, Appendix G]. Therefore,
we set αup to zero; indeed we show in Chapter 2 that uplink memory is useful only in the heterogeneous
setting. Additionally, we choose αdwn = (8ωdwn)

−1 and denote Φ(γ) := (1 + ωup)
(
1 + 64γLω2

dwn

)
.

We show that MCM achieves the same rate of convergence as single compression in strongly-convex,
convex and non-convex regimes. Note that this behavior has later been also recovered by Zou et al.
[2022] for the special case of Top-K compression. We consider γmax and L̃, two constants defined in
Chapter 3, then we have the following bounds of convergence.

Theorem 1.6 (Convergence of MCM in the homogeneous and strongly-convex case). Under Assump-
tions 1.2 to 1.4 and 1.7 with µ > 0, for k in N, if σ2 = 0 (noiseless case), for γk = γmax we recover
a linear convergence rate: E[∥wk − w∗∥2] ≤ (1− γmaxµ/2)

k∥w0 − w∗∥2.
Furthermore, if σ2 > 0, taking for all K in N, γK = 4/(µ(K + 1) + L̃), for the weighted

Polyak-Ruppert average w̄K =
∑K

k=1 λkwk−1/
∑K

k=1 λk, with λk := (γk−1)
−1, we have:

E [F (w̄K)− F (w∗)] ≤
□

µK2 ∥w0 − w∗∥2 +
8σ2(1 + ωup)

µKN

(
1 +

□′ω2
dwn

µK
ln(µK +□′′)

)
,

where □,□′,□′′ are three constants given in Chapter 3.

0 50 100 150 200
Number of passes on data

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

Figure 1.10: MCM and Rand-MCM on
quantum, they achieves a rate of
convergence identical to unidirec-
tional compression.

On Figure 1.10, we observe that MCM meets Diana (unidirec-
tional compression) while Artemis saturates at a higher level
(scaling as ωup × ωdwn), which illustrates the behavior stated
in Theorem 1.6.

We also propose a variant, Rand-MCM incorporating diversity
into models shared with the local clients and show that it
improves convergence for quadratic functions. Rand-MCM simply
consists in applying independent downlink compressions for
each client.

Theorem 1.7 (Convergence in the quadratic case). Under
Assumptions 1.2 to 1.4 and 1.7 with µ = 0, if the function is
quadratic, after running K > 0 iterations, for any γ ≤ γmax,
we have:

E[F (w̄K)− F∗] ≤
∥w0 − w∗∥2

γK
+

γσ2(1 + ωup)

N

(
1 +

4γ2L2ωdwn

K
(
1

C
+

ωup

N
)

)
,

with C = N for Rand-MCM and C = 1 for MCM.

Chapter 1. Introduction 26

1.5.3 Contributions of Chapter 4

The goal of this Chapter is to provide an in-depth analysis of compression within a fundamental
learning framework, namely least-squares regression (see Subsection 1.1.4), in order to highlight the
differences in convergence between several unbiased compression schemes having the same variance
increase. More precisely, we consider linear stochastic approximation recursion, to find a zero of the
linear mean field ∇F .

Definition 1.3 (Linear Stochastic Approximation, LSA). Let w0 ∈ Rd be the initialization, the
linear3 stochastic approximation recursion is defined as:

wk = wk−1 − γ∇F (wk−1) + γξk(wk−1 − w∗), k ∈ N, (LSA)

where γ > 0 is the step size and (ξk)k∈N∗ is a sequence of i.i.d. zero-centered random fields that
characterizes the stochastic oracle on ∇F (·). For any k ∈ N∗, we denote by Fk = σ (ξ1, . . . , ξk), such
that the filtration (Fk)k≥0 is adapted to (wk)k≥0.

We assume that F is quadratic, we denote HF its Hessian. For any k in N, with ηk = wk − w∗,
we get equivalently:

ηk = (I− γHF)ηk−1 + γξk(ηk−1), k ∈ N.

Although there is abundant literature on the study of (LSA), the application to the case of
federated least-mean-squares poses novel challenges. Especially, most analyses of LSA assume
that the field ξk is linear (i.e. for any z, z′ ∈ Rd, ξk(z) − ξk(z

′) = ξk(z − z′)). More general
non-asymptotic results on stochastic approximation with a Lipschitz mean field (i.e. SGD with a
smooth objective) also assume that the noise-field is Lipschitz in squared expectation i.e. for any
z, z′ ∈ Rd,E[∥ξk(z) − ξk(z

′)∥2] ≤ C∥z − z′∥2. One major specificity and bottleneck in the case of
compression is the fact that the resulting field does not satisfy such an assumption. Instead, we
consider the following Hölder-type assumption on the compressor:

Assumption 1.9 (Compression.). We suppose that there exists two constants ω,Ω ∈ R∗
+, such that

the random operator C satisfies for all z in Rd the following property:

E[∥C(z)− C(z′)∥2] ≤ Ωmin(∥z∥, ∥z′∥)∥z − z′∥+ 3(ω + 1)∥z − z′∥2 .

It enables to provide a non-asymptotic analysis of (LSA) under weak regularity assumptions of
the noise field (ξk)k. We show that the asymptotically dominant term depends on the covariance
matrix Cania of the additive noise induced by the algorithm (nicknamed the ania’s covariance), as
expected from the classical asymptotic literature Polyak and Juditsky [1992]. The backbone theorem
of the chapter generalizes the results from Bach and Moulines [2013] obtained in the scenario of
centralized LMS. It shows that the variance term scales with Tr

(
CaniaH

−1
F

)
, which highlights the

interaction between the Hessian of the optimization problem HF , and the ania’s covariance Cania.

We then consider the simple configuration of compressed central LMS, it enables to describe
the impact of the compressor choice on the dependency between the features’ covariance H (which
is also the Hessian HF of the optimization problem) and the ania’s covariance Cania. Contrary to
the classical scenario without compression for which the noise is said to be structured, i.e., the
ania’s covariance is proportional to the Hessian HF , applying a random compression mechanism
on the gradient breaks this structure. This phenomenon is noteworthy: for an ill-conditioned HF ,
it may lead to a drastic increase in Tr

(
CaniaH

−1
F

)
and thus, to a degradation in convergence. By

calculating the ania’s covariance for various compression mechanisms, we identify differences that
classical literature was unable to capture.

3While in LSA literature, both the mean-field ∇F and the noise-field (ξk) are linear, we do not here consider the
noise fields to be linear.

Chapter 1. Introduction 27

0 1 2 3 4 5 6 7

log10(k)

−5

−4

−3

−2

−1

0

lo
g 1

0
(F

(w
k
)
−
F

(w
∗)

)

no compr.

1-quantiz.

sparsif.

sketching

rand-1

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-1

partial part.

(a) Features’ covariance diagonal
with high eigenvalues’ decay.

0 1 2 3 4 5 6 7

log10(k)

−5

−4

−3

−2

−1

0

lo
g 1

0
(F

(w
k
)
−
F

(w
∗)

)

no compr.

1-quantiz.

sparsif.

sketching

rand-1

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-1

partial part.

(b) Features’ covariance not diago-
nal with high eigenvalues’ decay.

0 1 2 3 4 5 6 7

log10(k)

−5

−4

−3

−2

−1

0

lo
g

10
(F

(w
k
)
−
F

(w
∗)

)

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

(c) Features’ covariance not diago-
nal with slow eigenvalues’ decay.

Figure 1.11: Logarithm excess loss of the Polyak-Ruppert iterate after K = 107 iterations for a
single client (N = 1).

For instance, we show that Rand-h and partial participation (see definitions in Chapter 4) with
probability (h/d) satisfy the same variance condition. Yet the convergence of compressed least-mean-
squares for PP is more robust to ill-conditioned problems. To illustrate these findings, we run a
gradient descent on a LSR problem and plot the logarithm excess loss of the Polyak-Ruppert iterate
on Figure 1.11 in three scenarios: when the features’ covariance is diagonal or not in the case of an
ill-conditioned problem, i.e., with high eigenvalues’ decay (Figures 1.11a and 1.11b, µ = 10−8); when
the features’ covariance is not diagonal and with slow eigenvalues’ decay (Figure 1.11c, µ = 10−2).

Finally, we study the case of federated learning with heterogeneous clients. We examine two
different sources of heterogeneity. First, the case of heterogeneous features’ covariances (Hi)

N
i=1

(covariate-shift), second, the case of heterogeneous local optimal points (wi
∗)

N
i=1 (concept-shift). In

the covariate-shift case, most insights from the centralized case remain valid and we explain how to
compute the ania’s covariance. On the contrary, despite that the concept-shift scenario keeps the
noise structured (without compression), it hinders the limit convergence rate, suffering from the
dispersion of the optimal points.

1.5.4 Key messages of this thesis

Throughout the chapters of this thesis, three key take-away messages can be identified.

1. The relationship between compression and heterogeneity is non-trivial. Our research has shown
that the primary factor that affects convergence is the noise on the gradient computed on the
optimal point. Based on this finding, we have developed an algorithm that performs variance
reduction for compressed SGD in scenarios where clients are heterogeneous. Our algorithm
is specifically designed to cancel the impact of heterogeneity and improve the accuracy of
compressed SGD in these scenarios. With our algorithm, we aim to address the challenges
posed by the interaction between compression and heterogeneity.

2. During downlink compression, two quantities are typically observed: x in Rd and Cdwn(x),
however, only one of these quantities Cdwn(x) is transmitted. If Cdwn(x) is used to update the
central model, as in Artemis-like algorithms, it results in an increase by a factor ωdwn of the
variance. If x is used to update the central model, it implies that the local models are different
from the central model. This leads to compute the local gradients on a “perturbed model”,
which is more challenging. Taking advantage of this scenario, we have developed an algorithm
that asymptotically cancels the impact of downlink compression.

3. Compression has a significant impact on the regularity of the optimization problem. For
example, quantization is neither linear nor Lipschitz in squared expectation. Despite this
challenge, we have conducted an analysis in the fundamental learning framework of LSR. Using
a Hölder-type condition, we have identified differences in convergence rates between several
unbiased compression operators that all satisfy the same condition on their variance, thus
going beyond the classical worst-case analysis.

2
Artemis: tight convergence guarantees for bidirectional

compression with heterogeneous clients

“C’est la nuit qu’il est beau de croire à la lumière.”

Chantecler, Edmond Rostand.

In this Chapter, we focus on the intertwined effect of compression and client (statistical)
heterogeneity. We introduce a framework – Artemis – to tackle the problem of learning in a
distributed or federated setting with communication constraints. Several clients perform the
optimization process using a central server to aggregate their computations. To alleviate the
communication cost, Artemis allows to compress the information sent in both directions (from
the clients to the server and conversely) combined with a memory mechanism. It improves on
existing algorithms that only consider unidirectional compression (to the server), or use very strong
assumptions on the compression operator. We provide fast rates of convergence (linear up to a
threshold) under weak assumptions on the stochastic gradients (noise’s variance bounded only at
optimal point) in non-i.i.d. setting, highlight the impact of memory for unidirectional and bidirectional
compression, and analyze Polyak-Ruppert averaging. We use convergence in distribution to obtain
a lower bound of the asymptotic variance that highlights the practical limits of compression. We
provide experimental results to demonstrate the validity of our analysis.

This chapter is based on our work Bidirectional compression in heterogeneous settings for
distributed or federated learning with partial participation: tight convergence guarantees [Philippenko
and Dieuleveut, 2021].

29

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 30

Contents
2.1 Introduction . 30
2.2 Problem statement . 32

2.2.1 Assumptions . 34
2.2.2 Related work on compression . 36

2.3 Theoretical results . 36
2.3.1 Convergence in distribution and lower bound 39

2.4 Experiments . 39
2.5 Conclusion . 42

2.1 Introduction

In modern large scale machine learning applications, optimization has to be processed in a distributed
fashion, using a potentially large number N in N of clients. In the data-parallel framework, each
client only accesses a fraction of the data: new challenges have arisen, especially when communication
constraints between the workers are present.

In this chapter, we focus on first-order methods, especially stochastic gradient descent [Bottou,
1999, Robbins and Monro, 1951] in a centralized framework: a central machine aggregates the
computation of the N workers in a synchronized way. This applies to both the distributed [e.g. Li
et al., 2014] and the federated learning [introduced in Konečný et al., 2016, McMahan et al., 2017]
settings.

Formally, we consider a number of features d ∈ N∗, and a convex cost function F : Rd → R. We
want to solve the following convex optimization problem:

min
w∈Rd

F (w) with F (w) =
1

N

N∑
i=1

Fi(w) , (2.1)

where (Fi)
N
i=1 is a local risk function for the model w on the worker i. Especially, in the classical

supervised machine learning framework, we fix a loss ℓ and access, on a worker i, ni observations
(zik)1≤k≤ni

following a distribution Di. In this framework, Fi can be either the (weighted) local
empirical risk, w 7→ (n−1

i)
∑ni

k=1 ℓ(w, z
i
k) or the expected risk w 7→ Ez∼Di [ℓ(w, z)]. At each iteration

of the algorithm, each client can get an unbiased oracle on the gradient of the function Fi (typically
either by choosing uniformly an observation in its dataset or in a streaming fashion, getting a new
observation at each step).

Our goal is to reduce the amount of information exchanged between workers, to accelerate
the learning process, limit the bandwidth usage, and reduce energy consumption. Indeed, the
communication cost has been identified as an important bottleneck in the distributed settings [e.g.
Strom, 2015]. In their overview of the federated learning framework, Kairouz et al. [2019] also
underline in Section 3.5 two possible directions to reduce this cost: (1) compressing communication
from workers to the central server (uplink) (2) compressing the downlink communication.

Most of the papers considering the problem of reducing the communication cost [Alistarh et al.,
2017, Agarwal et al., 2018, Wu et al., 2018, Karimireddy et al., 2019, Mishchenko et al., 2019, Horváth
et al., 2022, Li et al., 2020b, Horváth and Richtárik, 2020] only focus on compressing the message
sent from the workers to the central node. This direction has the highest potential to reduce the
total runtime given that (i) the bandwidth for upload is generally more limited than for download,
and that (ii) for some regimes with a large number of workers, the downlink communication, that

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 31

corresponds to a “one-to-N ” communication, may not be the bottleneck compared to the “N -to-one”
uplink.

Nevertheless, there are several reasons to also consider downlink compression. First, the difference
between upload and download speeds is not significant enough at all to ignore the impact of the
downlink direction (see Section 1.4 for an analysis of bandwidth). If we consider for instance a small
number N of workers training a very heavy model – the size of Deep Learning models generally
exceeds hundreds of MB [Dean et al., 2012, Huang et al., 2019] –, the training speed will be limited
by the exchange time of the updates, thus using downlink compression is key to accelerating the
process. Secondly, in a different framework in which a network of smartphones collaborate to train
a large scale model in a federated framework, participants to the training would not be eager to
download a hundreds of MB for each update on their phone. Here again, downlink compression
appears to be necessary. To encompass all situations, our framework implements compression in
either or both directions with possibly different compression levels.

Bidirectional compression (i.e. compressing both uplink and downlink) raises new challenges.
In the downlink step, if we compress the model, the quantity compressed does not tend to zero.
Consequently the compression error significantly hinders convergence. To circumvent this problem
we compress the gradient that may asymptotically approach zero. Prior to this work, bidirectional
compression had been considered by Tang et al. [2019], Zheng et al. [2019], Liu et al. [2020], Yu et al.
[2019]. In particular, Liu et al. [2020] developed (concomitantly and independently to our work)
an algorithm called Dore, which combines error compensation, a memory mechanism, and model
compression, and assumes a uniform bound on the gradient variance. In this chapter, we provide
new results on Dore-like algorithms, considering a framework without error-feedback using tighter
assumptions, and quantifying precisely the impact of data heterogeneity on the convergence.

Indeed, we focus on a heterogeneous setting: the data distribution depends on each worker (thus
non i.i.d.). We explicitly control the differences between distributions. In such a setting, the local
gradient at the optimal point ∇Fi(w∗) may not vanish: to get a vanishing compression error, we
introduce a “memory” process [Mishchenko et al., 2019].

Assumptions made on the gradient oracle directly influence the convergence rate of the algorithm:
in this Chapter, we neither assume that the gradients are uniformly bounded [as in Zheng et al.,
2019] nor that their variance is uniformly bounded [Assumption 1.4, as in Alistarh et al., 2017,
Mishchenko et al., 2019, Liu et al., 2020, Tang et al., 2019, Horváth et al., 2022]: instead we only
assume that the variance is bounded by a constant σ2

∗ at the optimal point w∗, and provide linear
convergence rates up to a threshold proportional to σ2

∗ (as in [Dieuleveut et al., 2020, Gower et al.,
2019] for non distributed optimization). This is a fundamental difference as the variance bound
at the optimal point can be orders of magnitude smaller than the uniform bound used in previous
work: this is striking when all loss functions have the same critical point, and thus the noise at
the optimal point is null! This happens for example in the interpolation regime, which has recently
gained importance in the machine learning community [Belkin et al., 2019]. As the empirical risk
at the optimal point is null or very close to zero, so are all the loss functions with respect to one
example. This is often the case in deep learning [e.g., Zhang et al., 2017] or in large dimension
regression [Mei and Montanari, 2019].

Overall, we make the following contributions:

1. We describe a framework – Artemis – that encompasses 6 algorithms (with or without
up/down compression, with or without memory). We provide and analyze in Theorem 2.1 a fast
rate of convergence – exponential convergence up to a threshold proportional to σ2

∗, the noise at
the optimal point –, obtaining tighter bounds than in [Alistarh et al., 2017, Mishchenko et al.,
2019].

2. We explicitly tackle heterogeneity using Assumption 2.4, proving that the limit variance of
Artemis with memory is independent from the difference between distributions (as for SGD).

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 32

Table 2.1: Comparison of frameworks for main algorithms handling (bidirectional) compression. By
“non i.i.d.”, we mean that the theoretical framework encompasses and explicitly quantifies the impact
of data heterogeneity on convergence (Assumption 2.4), e.g., Dore does not assume i.i.d. workers but
does not quantify differences between distributions. References: see Alistarh et al. [2017] for QSGD,
Mishchenko et al. [2019] for Diana, Horváth and Richtárik [2020] for [HR20], Liu et al. [2020] for
Dore and Tang et al. [2019] for DoubleSqueeze.

QSGD Diana [HR20] Dore Double
Squeeze

Dist
EF-SGD

Artemis
(new)

Data i.i.d. non i.i.d. non i.i.d. i.i.d. i.i.d. i.i.d. non i.i.d.

Bounded variance Uniformly Uniformly Uniformly Uniformly Uniformly Uniformly At optimal
point

Compression One-way One-way One-way Two-way Two-way Two-way Two-way
Error-feedback ✓ ✓ ✓ ✓

Memory ✓ ✓ ✓

Partial part. ✓ ✓

This is the first theoretical guarantee for double compression that explicitly quantifies
the impact of non i.i.d. data.

3. In the non-strongly-convex case, we prove the convergence using Polyak-Ruppert averaging in
Theorem 2.2.

4. We prove convergence in distribution of the iterates, and subsequently provide a lower bounds
on the asymptotic variance. This sheds light on the limits of (double) compression, which
results in an increase of the algorithm’s variance, and can thus only accelerate the learning process
for early iterations and up to a “moderate” accuracy. Interestingly, this “moderate” accuracy has
to be understood with respect to the reduced noise σ2

∗.

Furthermore, we support our analysis with various experiments illustrating the behavior of
our new algorithm and we provide the code to reproduce our experiments, see this repository. In
Table 2.1, we highlight the main features and assumptions of Artemis compared to recent algorithms
using compression.

The rest of the chapter is organized as follows: in Section 2.2 we introduce the framework
of Artemis. In Subsection 2.2.1 we describe the assumptions, and we review related work in
Subsection 2.2.2. We then give the theoretical results in Section 2.3, we present experiments in
Section 2.4, and finally, we conclude in Section 2.5.

2.2 Problem statement

We consider the problem described in Equation (2.1). In the convex case, we assume that there exist
at least one optimal point which we denote w∗, we also denote hi∗ = ∇Fi(w∗), for i in J1, NK. To
solve this problem, we rely on a stochastic gradient descent (SGD) algorithm.

A stochastic gradient gik is provided at iteration k in N∗ to the client i in J1, NK. This function is
then evaluated at point wk−1: to alleviate notation, we will use gik = gik(wk−1) and gik,∗ = gik(w∗) to
denote the stochastic gradient vectors at points wk−1 and w∗ on client i. In the classical centralized
framework (without compression), SGD corresponds to:

wk = wk−1 − γ
1

N

N∑
i=1

gik (2.2)

where γ is the learning rate.

https://github.com/philipco/artemis-bidirectional-compression

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 33

However, computing such a sequence would require the nodes to send either the gradient gik or the
updated local model to the central server (uplink communication), and the central server to broadcast
back either the averaged gradient gk or the updated global model (downlink communication). Here,
in order to reduce communication cost, we perform a bidirectional compression. More precisely,
we combine two main tools: (1) an unbiased compression operator C : Rd → Rd that reduces the
number of bits exchanged, and (2) a memory process that reduces the size of the signal to compress,
and consequently the error [Mishchenko et al., 2019, Li et al., 2020b]. That is, instead of directly
compressing the gradient, we first approximate it by the memory term and, afterwards, we compress
the difference. As a consequence, the compressed term tends in expectation to zero, and the error of
compression is reduced. Following Tang et al. [2019], we only broadcast gradients, or difference of
gradients, and never models. To distinguish the two compression operations we denote Cup and C

dwn

the compression operator for uplink and downlink. At each iteration, we thus have the following
steps:

1. First, each active local node sends to the central server a compression of gradient differences:
∆̂i

k = Cup(gik − hik−1), and updates the memory term hik = hik−1 + αup∆̂
i
k with αup ∈ R∗. The

server recovers the approximated gradients’ values by adding the received term to the memories
kept on its side.

2. Then, the central server sends back the compression of the sum of compressed gradients: Ωk =

C
dwn

(
1
N
∑N

i=1 ∆̂
i
k + hik−1

)
. No memory mechanism needs to be used, as the sum of gradients

tends to zero in the absence of regularization.

The update is thus given by:
∀i ∈ J1, NK , ∆̂i

k = Cup
(
gik − hik−1

)
Ωk = C

dwn

(
1
N
∑N

i=1(∆̂
i
k + hik−1)

)
wk = wk−1 − γΩk .

(2.3)

Constants γ, αup ∈ R∗ × R+ are learning rates for respectively the iterate sequence and the memory
sequence.

Partial participation. As underlined in Subsection 1.3.1, an important setting of FL is the partial
participation (PP) of clients at each round: clients only participate in a fraction p of the training
steps. This can be addressed theoretically by modelizing it as a compression scheme CPP, which
compresses a vector z as either z/p or 0. As such, our analysis of uplink compression naturally
encompasses the PP scenario. In the PP setting, the main difficulty is to keep all clients synchronized
when they return to the training process. This requires sharing any updates they missed or the
latest iterate, depending on which option is more efficient. This step is commonly referred to as a
“catching-up” process. This approach has also been proposed by Sattler et al. [2019, see the remark
preceding Equation (20) in Section VI.C] or by Tang et al. [2019, v2 on arxiv for the distributed case],
who use a buffer. We present the pseudo-code of Artemis with the catching-up step in Algorithm 2.

As a summary, the Artemis framework encompasses, in particular, these four algorithms: the
variant with unidirectional compression (ωdwn = 0) w.o. or with memory (αup = 0 or αup ̸= 0)
recovers QSGD defined by Alistarh et al. [2017] and DIANA proposed by Mishchenko et al. [2019]. The
variant using bidirectional compression (ωdwn ̸= 0) w.o memory (αup = 0) is called Bi-QSGD. The
last and most effective variant combines bidirectional compression with memory and is the one we
refer to as Artemis if no precision is given. It corresponds to a simplified version of Dore without
error-feedback, but this additional mechanism did not lead to any theoretical improvement in the
case of unbiased compressors [Remark 2 in Sec. 4.1., Liu et al., 2020].

Remark 2.1 (Local steps). An obvious independent direction to reduce communication is to increase
the number of steps performed before communication. This is the spirit of Local-SGD [Stich, 2019].

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 34

Algorithm 2: Pseudocode of Artemis – set αup > 0 to use memory.

Input: Mini-batch size b, learning rates αup, γ > 0, initial model w0 ∈ Rd, operators Cup and
C
dwn

, M1 and M2 the sizes of the full/compressed gradients.
Initialization: Index of last participation: ki = 0. Local memory:

∀i ∈ {1, . . . , N}, hi0 = gi1(w0) (smart initialization). Central memory:
h0 =

∑N
i=1 h

i
0/N .

Output: Model wK

for k = 1, 2, . . . ,K do
Get the set of active devices Sk ⊂ {1, . . . , N}
for each device i ∈ Sk do

Catching up.
If k − ki > ⌊M1/M2⌋, send the model wk−1

Else receive (Ω̂j)
k
j=ki+1 and update local model: ∀j ∈ Jki + 1, kK, wj = wj−1 − γΩj

Update index of its last participation: ki = k
Local training.
Compute stochastic gradient gik = gk(wk−1) (with mini-batch)
Set ∆i

k = gik − hik−1, compress it ∆̂i
k = Cup(∆i

k)

Update memory term: hik = hik−1 + αup∆̂
i
k

Send ∆̂i
k to central server

Compute ĝk = hk−1 +
1
N
∑N

i=1 ∆̂
i
k

Update central memory: hk = hk−1 + αup
1
N
∑N

i=1 ∆̂
i
k

Back compression: Ωk = C
dwn

(ĝk)
Broadcast Ωk to all workers.
Update model on central server: wk = wk−1 − γΩk

It is an interesting extension to incorporate this into our framework. We do not consider it in order
to focus on the compression insights.

In the following section, we present and discuss assumptions over the function F , the data
distribution and the compression operator.

2.2.1 Assumptions

We make classical assumptions on F : Rd → R.

Assumption 2.1 (Strong-convexity). F is µ-strongly-convex, that is for all vectors z, z′ in Rd:
F (z′) ≥ F (w) + (z′ − z)T∇F (z) + µ

2∥z′ − z∥22 .

Note that we do not need each Fi to be strongly convex, but only F . Also remark that we only
use this inequality for z′ = w∗ in the proof of Theorems 2.1 and 2.2.

Below, we introduce cocoercivity [see Zhu and Marcotte, 1996, for more details about this
hypothesis]. This assumption implies that all (Fi)i∈J1,NK are L-smooth.

Assumption 2.2 (Cocoercivity of stochastic gradients in quadratic mean). We suppose that for all
k in N, stochastic gradients functions (gik)i∈J1,NK are L-cocoercive in quadratic mean. That is, for k

in N, i in J1, NK and for all vectors z, z′ in Rd, we have:

E[∥gik(z)− gik(z
′)∥2] ≤ L

〈
∇Fi(z)−∇Fi(z

′), z − z′
〉
.

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 35

E.g., this is true under the much stronger assumption that stochastic gradients functions
(gik)i∈J1,NK are almost surely L-cocoercive, i.e.: ∥gik(z)− gik(z

′)∥2 ≤ L
〈
gik(z)− gik(z

′), z − z′
〉
. Next,

we present the assumption on the stochastic gradient’s noise. Again, we highlight that the noise
is only controlled at the optimal point. To carefully control the noises process (gradient oracle,
uplink, and downlink compression), we introduce three filtrations (Hk,Gk,Fk)k≥0, such that wk is
Hk-measurable for any k ∈ N. Detailed definitions are given in Section B.2.

Assumption 2.3 (Noise over stochastic gradients computation). The noise over stochastic gradients
at the global optimal point, for a mini-batch of size b, is bounded: there exists a constant σ∗ ∈ R,
s. t. for all k in N, for all i in J1, NK , we have a.s.:E[∥gik,∗ −∇Fi(w∗)∥2|Hk−1] ≤ σ2

∗
b .

The constant σ2
∗ is null, for example, if we use deterministic (batch) gradients, or in the

interpolation regime for i.i.d. observations, as discussed in the Introduction of this Chapter. As we
have also incorporated here a mini-batch parameter, this reduces the variance by a factor b.

Unlike Diana [Mishchenko et al., 2019, Li et al., 2020b], Dore [Liu et al., 2020], Dist-EF-SGD
[Zheng et al., 2019] or Double-Squeeze [Tang et al., 2019], we assume that the variance of the noise
is bounded only at optimal point w∗ and not at any point w in Rd. It results that if the variance
is null (σ2

∗ = 0) at the optimal point, we obtain a linear convergence while previous results obtain
this rate solely if the variance is null at any point (i.e. only for deterministic GD). Also remark that
Assumptions 2.2 and 2.3 both stand for the simplest Least-Square Regression (LSR) setting, while
the uniform bound on the gradient’s variance does not. Next, we give the assumption that links the
distributions on the different machines.

Assumption 2.4 (Bounded gradient at w∗). There exists a constant B ∈ R+, s.t.:

1

N

N∑
i=0

∥∇Fi(w∗)∥2 = B2 .

This assumption is used to quantify how different the distributions are on the different clients. In
the streaming i.i.d. setting – D1 = · · · = DN and F1 = · · · = FN – the assumption is satisfied with
B = 0. Combining Assumptions 2.3 and 2.4 results in an upper bound on the averaged squared norm

of stochastic gradients at w∗: for all k in N, we have a.s. 1
N

∑N
i=1 E[∥gik,∗∥2|Hk−1] ≤ σ2

∗
b

+ B2. In

fact, Assumption 2.4 only requires that for any i ∈ J1, NK, E[∥gik,∗ −∇Fi(w∗)∥2 | Hk−1] ≤
σ2
∗,i
b , and

the results then hold for σ∗ = 1
N

∑N
i=1 σ

2
∗,i. In other words, the bounds do not need to be uniform

over workers, only the average truly matters.

Finally, compression operators can be classified in two main categories: quantization [as in
Rabbat and Nowak, 2005, Alistarh et al., 2017, Seide et al., 2014, Zhou et al., 2018, Wen et al.,
2017, Reisizadeh et al., 2020, Horváth et al., 2022] and random projection [as in Vempala, 2005,
Rahimi and Recht, 2008, Stich et al., 2018, Alistarh et al., 2018, Khirirat et al., 2020b]. Theoretical
guarantees provided in this chapter do not rely on a particular kind of compression, as we only
consider the following assumption on the compression operators Cup and Cdwn:

Assumption 2.5. There exist two constants ωup, ωdwn ∈ R∗
+, such that for dir ∈ {up, dwn}, the

compression operators Cdir verify the two following properties for all z in Rd:{
E[Cdir(z)] = z ,

E[∥Cdir(z)− z∥2] ≤ ωdir ∥z∥2 .

In other words, the compression operators are unbiased and their variances are relatively bounded.
Note that Horváth and Richtárik [2020] have shown that using an unbiased operator leads to better
performances. Unlike us, Tang et al. [2019] assume uniformly bounded compression error, which is

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 36

a much more restrictive assumption. We now provide additional details on related papers dealing
with compression. Also note that ωup/dwn can be considered as parameters of the algorithm, as the
compression levels can be chosen.

Remark 2.2 (I.i.d. compressions). Assumption 2.5 requires in fact to access a sequence of i.i.d. com-
pression operators Cup/dwn,k for k ∈ N; but for simplicity, we generally omit the k index.

2.2.2 Related work on compression

Quantization is a common method for compression and is used in various algorithms. For instance,
Seide et al. [2014] are one of the first to propose to quantize each gradient component by either −1
or 1. This approach has been extended in Karimireddy et al. [2019]. Alistarh et al. [2017] define
a new algorithm – QSGD – which instead of sending gradients, broadcasts their quantized version,
getting robust results with this approach. On top of gradient compression, Wu et al. [2018] add
an error-compensation mechanism that accumulates quantization errors and corrects the gradient
computation at each iteration. In the case of quadratic problems, Khirirat et al. [2020a] have further
shown that contrary to the simple error-compensation mechanism, it is possible, when considering
compressors with uniformly bounded variance, to remove all of the accumulated error using instead
a Hessian-aided error compensation mechanism. Diana [introduced in Mishchenko et al., 2019]
introduces a “memory” term in the place of accumulating errors. Li et al. [2020b] extend this
algorithm and improve its convergence by using an accelerated gradient descent. Reisizadeh et al.
[2020] combine unidirectional quantization with client sampling, leading to a framework closer to
federated learning settings where clients can easily be switched off. In the same perspective, Horváth
and Richtárik [2020] detail results that also consider PP. Tang et al. [2019] are the first to suggest
a bidirectional compression scheme for a decentralized network. For both uplink and downlink,
the method consists in sending a compression of gradients combined with an error compensation.
Later, Yu et al. [2019] choose to compress models instead of compressing gradients. This approach
is enhanced by Liu et al. [2020] who combine model compression with a memory mechanism and an
error compensation drawing from Mishchenko et al. [2019]. Both Tang et al. [2019] and Zheng et al.
[2019] compress gradients without using a memory mechanism. However, as proved in the following
Section, memory is key to reducing the asymptotic variance in the heterogeneous case. Beyond
compressing down communications, Grishchenko et al. [2021] proposed an algorithm that reduces
the down communication by using a proximal operator which, combined with a ℓ1-regularisation
and a sparsification of ascending communications, produces sparse iterates after some steps of
communication.

We now provide theoretical results about the convergence of bidirectional compression.

2.3 Theoretical results

In this Section, we present our main theoretical results on the convergence of Artemis and its variants.
To ensure clarity, the most complete and tightest versions of theorems are given in Appendices, while
offering simplified versions here.

The main linear convergence rates are given in Theorem 2.1, and in Theorem 2.2 we show that
Artemis combined with Polyak-Ruppert averaging reaches a sub-linear convergence rate. We denote
δ20 = ∥w0 − w∗∥2.

Theorem 2.1 (Convergence of Artemis). Under Assumptions 2.1 to 2.5, for a step-size γ satisfying
the conditions in Table 2.3, for a learning rate αup and for any k in N, the mean squared distance to

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 37

Table 2.2: Details on constants C and E defined in Theorem 2.1. C = 0 for αup = 0, see Th. B.2 for
αup ̸= 0.

αup E

0 (ωdwn + 1)

(
(ωup + 1)

σ2
∗
b

+ ωupB
2

)
̸= 0

σ2
∗
b

(
(2ωup + 1)(ωdwn + 1) + 4α2

upC(ωup + 1)− 2αupC
)

w∗ decreases at a linear rate up to a constant of the order of E:

E
[
∥wk − w∗∥2

]
≤ (1− γµ)k

(
δ20 + 2Cγ2B2

)
+

2γE

µN
,

for constants C and E depending on the variant (independent of k) given in Table 2.2 or in the
appendix. Variants with αup ̸= 0 require αup ∈ [1/2(ωup + 1), αmax], the upper bound αmax is given
in Theorem B.2.

This theorem is derived from Theorems B.1 and B.2 which are respectively proved in Subsec-
tions B.4.1 and B.4.2.

We can make the following remarks:

1. Linear convergence. The convergence rate given in Theorem 2.1 can be decomposed into
two terms: a bias term, forgotten at linear speed (1− γµ)k, and a variance residual term which
corresponds to the saturation level of the algorithm. The rate of convergence (1− γµ) does not
depend on the variant of the algorithm. However, the variance and initial bias do vary.

2. Bias term. The initial bias always depends on ∥w0 − w∗∥2, and when using memory (i.e. αup ≠ 0)
it also depends on the difference between distributions (constant B2).

3. Variance term and memory. On the other hand, the variance depends (1) on both σ2
∗/b,

and the distributions’ difference B2 without memory (2) only on the gradients’ variance at the
optimum σ2

∗/b with memory. Similar theorems in related literature [Liu et al., 2020, Alistarh et al.,
2017, Mishchenko et al., 2019, Yu et al., 2019, Tang et al., 2019, Zheng et al., 2019] systematically
had a worse bound for the variance term depending on a uniform bound of the noise variance or
under much stronger conditions on the compression operator. This work and [Liu et al., 2020] are
also the first to give a linear convergence up to a threshold for bidirectional compression.

4. Impact of memory. To the best of our knowledge, this is the first work on double compression
that explicitly tackles the non i.i.d. case. We prove that memory makes the saturation threshold
independent of B2 for Artemis.

5. Variance term. The variance term increases with a factor proportional to ωup for the unidirec-
tional compression, and proportional to ωup × ωdwn for bidirectional. This is the counterpart of
compression, each compression resulting in a multiplicative factor on the noise. A similar increase
in the variance appears in [Mishchenko et al., 2019] and [Liu et al., 2020]. The noise level is
attenuated by the number of clients N , to which it is inversely proportional.

6. Link with classical SGD. For variant of Artemis with αup = 0, if ωup/dwn = 0 (i.e. no
compression) we recover SGD results: convergence does not depend on B2, but only on the noise’s
variance.

Conclusion: Overall, it appears that Artemis is able to efficiently accelerate the learning during
first iterations, enjoying the same linear rate as SGD with lower communication complexity, but it
saturates at a higher level, proportional to σ2

∗ and independent of B2.

The range of acceptable learning rates is an important feature for first order algorithms. In
Table 2.3, we summarize the upper bound γmax on γ, to guarantee a (1−γµ) convergence of Artemis.

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 38

Table 2.3: Upper bound on γmax to guarantee convergence. For unidirectional compression (resp. no
compr.), ωdwn = 0 (resp. ωup/dwn = 0, recovering classical rates for SGD).

Memory αup = 0 αup ̸= 0

N ≫ ωup

1
(ωdwn + 1)L

1
2(ωdwn + 1)L

N ≈ ωup

1
3(ωdwn + 1)L

1
5(ωdwn + 1)L

ωup ≫ N
N

2ωup(ωdwn + 1)L
N

4ωup(ωdwn + 1)L

These bounds are derived from Theorems B.1 and B.2, in three main asymptotic regimes: N ≫ ωup ,
N ≈ ωup and ωup ≫ N . Using bidirectional compression impacts γmax by a factor ωdwn + 1 in
comparison to unidirectional compression. For unidirectional compression, if the number of machines
is at least of the order of ωup, then γmax nearly corresponds to γmax for vanilla (serial) SGD.

We now provide a convergence guarantee for the averaged iterate without strong-convexity.

Theorem 2.2 (Convergence of Artemis with Polyak-Ruppert averaging). Under Assumptions 2.2
to 2.5 (convex case) with constants C and E as in Theorem 2.1 (see Table 2.2 for precision), after

running K in N∗ iterations, for a learning rate γ = min

(√
Nδ20
2EK ; γmax

)
, with γmax as in Table 2.3,

we have a sublinear convergence rate for the Polyak-Ruppert averaged iterate wK−1 =
1
K

∑K−1
k=0 wk:

E [F (wK−1)− F (w∗)] ≤ 2max

(√
2δ20E

NK
;

δ20
γmaxK

)
+

2γmaxCB2

K
.

This theorem is proved in Subsection B.4.3. Several comments can be made on this theorem:

1. Importance of averaging This is the first theorem given for averaging for double compression.
In the context of convex optimization, averaging has been shown to be optimal [Rakhlin et al.,
2012].

2. Speed of convergence, if σ∗ = 0, B ̸= 0, K → ∞. For αup ̸= 0, E = 0, while for αup = 0,
E ∝ B2. Memory thus accelerates the convergence from a rate O(K−1/2) to O(K−1).

3. Speed of convergence, general case. More generally, we always get a K−1/2 sublinear speed
of convergence, and a faster rate K−1 when using memory and if E ≤ δ20N/(2Kγ2max) – i.e. in the
context of a low noise σ2

∗, as E ∝ σ2
∗. Again, it appears that bi-compression is mostly useful in

low-σ2
∗ regimes or during the first iterations: intuitively, for a fixed communication budget, while

bi-compression allows to perform min{ωup, ωdwn}-times more iterations, this is no longer beneficial
if the convergence rate is dominated by

√
2δ20E/NK, as E increases by a factor ωup × ωdwn.

4. Memoryless case, impact of minibatch. In the variant of Artemis without memory, the
asymptotic convergence rate is

√
2δ20E/NK with the constant E ∝ σ2

∗/b+B2: interestingly, it
appears that in the case of non i.i.d. data (B2 > 0), the convergence rate saturates when the
size of the mini-batch increases: large mini-batches do not help. On the contrary, with memory,
the variance is, as classically, reduced by a factor proportional to the size of the batch, without
saturation.

The increase in the variance (in Item 3) is not an artifact of the proof: indeed we provide a
corresponding (algorithm-specific) lower bound based on proving the existence of a limit distribution
for the iterates of Artemis, and analyzing its variance, see Theorem 2.3 in next Section.

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 39

2.3.1 Convergence in distribution and lower bound

The increase in the variance (in Item 3) is not an artifact of the proof: we prove the existence
of a limit distribution for the iterates of Artemis, and analyze its variance. More precisely, we
show a linear rate of convergence for the distribution Θk of wk (launched from w0), w.r.t. the
Wasserstein distance W2 [Villani, 2009]: this gives us a lower bound on the asymptotic variance.
Here, we further assume that the compression operator C is linear (i.e. for any z, z′ in R, we have
C(z)− C(z′) = C(z − z′), it is the case for instance for sparsification, sketching, rand-h, PP).

Theorem 2.3 (Convergence in distribution and lower bound on the variance). Under Assumptions 2.1
to 2.5, for γ, αup, E given in Theorem 2.1 and Table 2.3:

1. There exists a limit distribution πγ,v depending on the variant v of the algorithm, s.t. for any
k ≥ 1, W2(Θk, πγ,v) ≤ (1− γµ)kC0, with C0 a constant.

2. When k goes to infinity, the second order moment E[∥wk − w∗∥2] converges to Ew∼πγ,v [∥w − w∗∥2],
which is lower bounded by Ω(γE/µN) as in Theorem 2.1 as γ → 0, with E depending on the
variant.

Interpretation. The second point (2.) means that the upper bound on the saturation level
provided in Theorem 2.1 is tight w.r.t. σ2

∗, ωup, ωdwn, B
2, N and γ. Especially, it proves that there is

indeed a quadratic increase in the variance w.r.t. ωup and ωdwn when using bidirectional compression
(which is itself rather intuitive). Altogether, these three theorems prove that bidirectional compression
can become strictly worse than usual stochastic gradient descent in high precision regimes, a fact of
major importance in practice and barely (if ever) even mentioned in previous literature. To the best
of our knowledge, only Mayekar and Tyagi [2020] are giving a lower bound on the asymptotic variance
for algorithms using compression. Their result is more general, i.e., valid for any algorithm using
unidirectional compression, but weaker (worst case on the oracle does not highlight the importance
of noise at the optimal point and is incompatible with linear rates).

Proof and assumptions. This theorem also naturally requires, for the second point, Assump-
tions 2.3 to 2.5 to be “tight”: that is, e.g., Var(gik,∗) ≥ Ω(σ2

∗/b); more details and the proof are given
in Subsection B.4.4. Extension to other types of compression reveals to be surprisingly non-simple,
and is thus out of the scope of this chapter and a promising direction.

2.4 Experiments

In this Section, we illustrate our theoretical guarantees on both synthetic and real datasets. The
goal of this section is to confirm the theoretical findings in Theorems 2.1 to 2.3, and to underline
the impact of the memory. Therefore, we focus on five of the algorithms covered by our framework:
Artemis with bidirectional compression (simply denoted Artemis), QSGD, Diana, Bi-QSGD, and
usual SGD without any compression. In the end of this Section, we compare Artemis with other
existing benchmarks: Double-Squeeze, Dore, FedSGD and FedPAQ [see Reisizadeh et al., 2020]. In
the Appendix, we also perform experiments with optimized learning rates (Figure B.13).

In all experiments, we display the logarithm excess loss log10(F (wk−1) − F (w∗)) w.r.t. the
number of iterations k or the number of communicated bits. For w in R, in the case of linear
regression, we have F (w) = 1

N

∑N
i=1

∑
(x,y)∈Di

x⊤w − y, and in the case of logistic regression
we have F (w) = −1

N

∑N
i=1

∑
(x,y)∈Di

log(Sigm(yx⊤w)). We use a quantization scheme (defined in
Definition 1.2, see Chapter 1) with s = 20. Curves are averaged over 5 runs, we plot error bars on
all figures. These error bars correspond to ± the standard deviation of the logarithm excess loss
over the five runs. For each figure, the model is initialized at zero and we plot the corresponding
excess loss such that all algorithms start at the same point.

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 40

0 25 50 75 100
Number of passes on data

−4

−2

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LSR (i.i.d.): σ2
∗ ̸= 0

0 100 200 300 400
Number of passes on data

−15

−10

−5

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) LR (non-i.i.d.): σ∗ = 0.

Figure 2.1: Left: illustration of the saturation when σ∗ ̸= 0 and data is i.i.d., right: illustration of
the memory benefits when σ∗ = 0 but with non-i.i.d. data.

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) Quantum

105 107

Communicated bits

−1.5

−1.0

−0.5
lo

g 1
0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) Superconduct

Figure 2.2: Real dataset (non-i.i.d.): σ∗ ̸= 0, N = 20 workers, p = 1, b > 1 (150 iter.). X-axis in #
bits.

We first consider two simple synthetic datasets: one for least-squares regression (with the same
distribution over each machine), and one for logistic regression (with varying distributions across
clients). More details are given in Section B.1 on the way data is generated. We use N = 20 clients,
each holding 200 points of dimension d = 20, and run algorithms over 100 epochs.

To illustrate theorems on real data and higher dimension, we then consider two real-world
dataset: superconduct [see Hamidieh, 2018, with 21 263 points and 81 features] and quantum [see
Caruana et al., 2004, with 50 000 points and 65 features] with N = 20 workers. To simulate
non-i.i.d. and unbalanced workers, we split the dataset in heterogeneous groups, using a Gaussian
mixture clustering on the TSNE representations (defined by Maaten and Hinton [2008]). Thus, the
distribution and number of points hold by each worker largely differs between clients, see Figure B.6.

Convergence. Figure 2.1a presents the convergence of each algorithm w.r.t. the number of
iterations k. During first iterations all algorithms make fast progress. However, because σ2

∗ ≠ 0, all
algorithms saturate; and the saturation level is higher for double compression (Artemis, Bi-QSGD),
than for simple compression (Diana, QSGD), or than for SGD. This corroborates findings in Theorem 2.1
and Theorem 2.3.

Complexity. On Figure 2.2, the loss is plotted w.r.t. the theoretical number of bits exchanged
after k iterations for the quantum and superconduct dataset. This confirms that double compression
should be the method of choice to achieve a reasonable precision (w.r.t. σ∗), whereas for high
precision, a simple method like SGD results in a lower complexity.

Linear convergence under null variance at the optimum. To highlight the significance

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 41

0 50 100 150 200
Number of passes on data

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)
SGD

FedAvg

FedPAQ

Diana

Artemis

Dore

DblSqz

(a) Quantum

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

FedAvg

FedPAQ

Diana

Artemis

Dore

DblSqz

(b) Quantum

0 50 100 150 200
Number of passes on data

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

FedAvg

FedPAQ

Diana

Artemis

Dore

DblSqz

(c) Superconduct

105 107

Communicated bits

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

FedAvg

FedPAQ

Diana

Artemis

Dore

DblSqz

(d) Superconduct

Figure 2.3: Artemis compared to other existing algorithms. γ = 1/(2L), X-axis in # epoch
or in # bits.

of our new condition on the noise, we compare σ2
∗ ̸= 0 and σ2

∗ = 0 on Figure 2.1. Saturation is
observed in Figure 2.1a, but if we consider a situation in which σ2

∗ = 0, and where the uniform
bound on the gradient’s variance is not null (as opposed to experiments in Liu et al. [2020] who
consider batch gradient descent), a linear convergence rate is observed. This illustrates that our new
condition is sufficient to reach a linear convergence. Comparing Figure 2.1a with Figure B.3a sheds
light on the fact that the saturation level (before which double compression is indeed beneficial) is
truly proportional to the noise variance at optimal point i.e. σ2

∗. And when σ2
∗ = 0, bidirectional

compression is much more effective than the other methods (see Figure B.3 in Subsection B.1.1.1).

Heterogeneity and real datasets. While in Figure 2.1a, data is i.i.d. on machines, and
Artemis is thus not expected to outperform Bi-QSGD (the difference between the two being the
memory), in Figures 2.1b and 2.2 we use non-i.i.d. data. None of the previous papers on
compression directly illustrated the impact of heterogeneity on simple examples, neither compared it
with i.i.d. situations.

Comparing Artemis with other existing algorithms. On Figure 2.3 we compare Artemis with
FedAvg, FedPAQ, Diana, Dore and Double-Squeeze. We take γ = 1/(2L) because otherwise FedAvg
and FedPAQ diverge. These two algorithms present worse performance because they have not been de-
signed for non-i.i.d. datasets. We can observe that Double-Squeeze (which only uses error-feedback)
is outperformed by Artemis. Besides, we observe that Dore (which combines EF with memory)
has an identical rate of convergence than Artemis, which underlines that for unbiased operators of
compression, in a heterogeneous setting, the enhancement comes from the memory and not
from the error-feedback. FedPAQ (unidirectional compression) has a very fast convergence during
first iterations, but then saturates at a level higher than for Artemis-like algorithms.

Chapter 2. Artemis: bidirectional compression with heterogeneous clients 42

2.5 Conclusion

We propose Artemis, a framework using bidirectional compression to reduce the number of bits
needed to perform distributed or federated learning. On top of compression, Artemis includes
a memory mechanism which improves convergence over non-i.i.d. data. We provide three tight
theorems giving guarantees of a fast convergence (linear up to a threshold), highlighting the impact of
memory, analyzing Polyak-Ruppert averaging and obtaining lowers bound by studying convergence in
distribution of our algorithm. Altogether, this improves the understanding of compression combined
with a memory mechanism and sheds light on challenges ahead.

3
MCM: a preserved central model for faster bidirectional compression

in distributed settings

“Where sky and water meet,
Where the waves grow sweet,
Doubt not, Reepicheep,
To find all you seek,
There is the utter East.”

The voyage of the Dawn Treader, C.S. Lewis.

In this Chapter, we move the focus toward feedback loops to reduce the impact of compression.
We develop a new approach to tackle communication constraints in distributed learning problems
with a central server. We propose and analyze an algorithm that performs bidirectional compression
and achieves asymptotically the same convergence rate as algorithms using only uplink (from the
local clients to the central server) compression. This algorithm, MCM, is such that the downlink
compression only impacts local models, while the global model is preserved. As a result, and contrary
to previous works, the gradients on local servers are computed on perturbed models. Consequently,
convergence proofs are more challenging and require a precise control of this perturbation. To ensure
it, MCM additionally combines model compression with a memory mechanism. This analysis opens
new doors, e.g. incorporating worker dependent randomized-models and partial participation.

This chapter is based on our work Preserved central model for faster bidirectional compression in
distributed settings [Philippenko and Dieuleveut, 2021] published at Neurips 2021.

43

Chapter 3. MCM: preserved central model for faster bidirectional compression 44

Contents
3.1 Introduction . 44
3.2 Problem statement . 46

3.2.1 Bidirectional compression framework . 46
3.2.2 The randomization mechanism, Rand-MCM 48
3.2.3 The Ghost algorithm . 49

3.3 Assumptions and theoretical analysis . 49
3.3.1 Theoretical results: Ghost algorithm . 50
3.3.2 Results for MCM . 51

3.4 Extension to Rand-MCM . 54
3.4.1 Communication and convergence trade-offs 54
3.4.2 Theoretical results . 55

3.5 Experiments . 56
3.6 Conclusion . 58

3.1 Introduction

Large scale distributed machine learning is widely used in many modern applications [Abadi et al.,
2016, Caldas et al., 2019, Seide and Agarwal, 2016]. The training is distributed over a potentially
large number N of clients that communicate either with a central server [see Konečný et al., 2016,
McMahan et al., 2017, on federated learning], or using peer-to-peer communication [Colin et al.,
2016, Vanhaesebrouck et al., 2017, Tang et al., 2018].

In this work, we consider a setting using a central server that aggregates updates from remote
nodes. Formally, we have a number of features d ∈ N∗, and a convex cost function F : Rd → R.
We want to solve the following distributed convex optimization problem using stochastic gradient
algorithms [Robbins and Monro, 1951, Bottou, 2010]:

min
w∈Rd

F (w) with F (w) =
1

N

N∑
i=1

Fi(w) ,

where (Fi)
N
i=1 is a local risk function (empirical risk or expected risk in a streaming framework).

This applies to both instances of distributed and federated learning.

An important issue of those frameworks is the high communication cost between the clients and
the central server [Kairouz et al., 2019, Sec. 3.5]. This cost is a concern from several points of view.
First, exchanging information can be the bottleneck in terms of speed. Second, the data consumption
and the bandwidth usage of training large distributed models can be problematic; and furthermore,
the energetic and environmental impact of those exchanges is a growing concern. Over the last few
years, new algorithms were introduced, compressing messages in the upload communications (i.e.,
from remote devices to the central server) in order to reduce the size of those exchanges [Seide et al.,
2014, Alistarh et al., 2017, Wu et al., 2018, Agarwal et al., 2018, Wangni et al., 2018, Stich et al.,
2018, Stich and Karimireddy, 2020, Mishchenko et al., 2019, Li et al., 2020b]. More recently, a new
trend has emerged to also compress the downlink communication: this is bidirectional compression.

The necessity for bidirectional compression can depend on the situation. For example, a single
uplink compression could be sufficient in asymmetric regimes in which broadcasting a message to
N clients (“one to N ”) is faster than aggregating the information coming from each node (“N to
one”). However, in other regimes, e.g. with few machines, where the bottleneck is the transfer

Chapter 3. MCM: preserved central model for faster bidirectional compression 45

time of a heavy model (up to several GB in modern deep learning architectures) the downlink
communication cannot be disregarded, as the upload and download speed are of the same order (see
an analysis of bandwidth usage in Section 1.4) Furthermore, in a situation in which participants have
to systematically download an update (e.g., on their smartphones) to participate in the training,
participants would prefer to receive a small size update (compressed) rather than a heavier one. To
encompass all situations, we consider algorithms for which the information exchanged is compressed
in both directions.

To perform downlink communication, existing bidirectional algorithms [Tang et al., 2019, Zheng
et al., 2019, Sattler et al., 2019, Liu et al., 2020, Philippenko and Dieuleveut, 2020, Horváth and
Richtárik, 2020, Xu et al., 2021, Gorbunov et al., 2020b] first aggregate all the information they have
received, compress them and then carry out the broadcast. Both the main “global” model and the
“local” ones perform the same update with this compressed information. Consequently, the model
hold on the central server and the one used on the local clients (to query the gradient oracle) are
identical. However, this means that the model on the central server has been artificially degraded :
instead of using all the information it has received, it is updated with the compressed information.

Here, we focus on preserving (instead of degrading) the central model: the update made on its
side does not depend on the downlink compression. This implies that the local models are different
from the central model. The local gradients are thus measured on a “perturbed model” (or “perturbed
iterate”): such an approach requires a more involved analysis and the algorithm must be carefully
designed to control the deviation between the local and global models [Mania et al., 2016]. For
example, algorithms directly compressing the model or the update would simply not converge.

We propose MCM - Model Compression with Memory - an algorithm that 1) preserves the central
model, and 2) uses a memory scheme to reduce the variance of the local model. We prove that the
convergence of this method is similar to the one of algorithms using only unidirectional compression.

Potential Impact. Proposing an analysis that handles perturbed iterates is the key to unlock
three major challenges of distributed learning run with bidirectionally compressed gradients. First,
we show that it is possible to improve the convergence rate by sending different randomized models
to the different clients, this is Rand-MCM. Secondly, this analysis also paves the way to deal with
partially participating clients: the adaptation of Rand-MCM to this framework is straightforward;
while adapting existing algorithms to partial participation is not practical (see the “catching-up”
process described in Section 2.2). Thirdly, this framework is also promising in terms of business
applications, e.g., in the situation of learning with privacy guarantees and with a trusted central
server. We detail those three possible extensions in Subsection 3.4.1.

Contributions. We make the following contributions:

1. We propose a new algorithm MCM, combining a memory process to the “preserved” update. To
convey the key steps of the proof, we also introduce an auxiliary hypothetical algorithm, Ghost.

2. For those algorithms, we carefully control the variance of the local models w.r.t. the global
one. We provide a contraction equation involving the control on the local model’s variance and
show that MCM achieves the same rate of convergence as single compression in strongly-convex,
convex and non-convex regimes. We give a comparisons of MCM’s rates with existing algorithms in
Table 3.2.

3. We propose a variant, Rand-MCM incorporating diversity into models shared with the local clients
and show that it improves convergence for quadratic functions.

This is the first algorithm for double compression to focus on a preserved central model. We
underline, both theoretically and in practice, that we get the same asymptotic convergence rate for
simple and double compression - which is a major improvement. Our approach is one of the first to
allow for client dependent model, and to naturally adapt to client dependent compression levels.

Chapter 3. MCM: preserved central model for faster bidirectional compression 46

Table 3.1: Features of the main existing algorithms performing compression. eik (resp. Ek) denotes
the use of error-feedback at uplink (resp. downlink). hik (resp. Hk) denotes the use of a memory
at uplink (resp. downlink). Note that Dist-EF-SGD is identical to Double-Squeeze but has been
developed simultaneously and independently.

Compr. eik hik Ek Hk Rand. update point

Qsgd [AGL+17] one-way
ECQ-sgd [WHHZ18] one-way ✓

Diana [MGTR19] one-way ✓

Dore [CL11] two-way ✓ ✓ degraded
Double-Squeeze [TYL+19], Dist-EF-SGD [ZHK19] two-way ✓ ✓ degraded
Artemis [see Chapter 2] two-way ✓ degraded

MCM two-way ✓ ✓ non-degraded
Rand-MCM two-way ✓ ✓ ✓ non-degraded

The rest of the chapter is organized as follows: in Section 3.2 we present the problem statement
and introduce MCM and Rand-MCM. Theoretical results on these algorithms are successively presented
in Sections 3.3 and 3.4. Finally, we present experiments supporting the theory in Section 3.5.

3.2 Problem statement

We consider the minimization problem described in Section 3.1. In the convex case, we assume
there exists an optimal parameter w∗, and denote F∗ = F (w∗). To solve this problem, we rely on a
stochastic gradient descent (SGD) algorithm. A stochastic gradient gik+1 is provided at iteration k
in N to the device i in J1, NK. This gradient oracle can be computed on a mini-batch of size b. This
function is then evaluated at point wk. In the classical centralized framework (without compression),
for a learning rate γ, SGD corresponds to:

wk = wk−1 − γ
1

N

N∑
i=1

gik(wk−1) . (3.1)

We now describe the framework used for compression.

3.2.1 Bidirectional compression framework

Bidirectional compression consists in compressing communications in both directions between the
central server and remote devices. We use two different compression operators, respectively Cup and
Cdwn to compress the message in each direction. Roughly speaking, the update in Equation (3.1)
becomes:

wk = wk−1 − γCdwn

(
1

N

N∑
i=1

Cup(gik(wk−1))

)
.

However, this approach has a major drawback. The central server receives and aggregates information
1
N

∑N
i=1 Cup(gik(wk−1)). But in order to be able to broadcast it back, it compresses it, before applying

the update. We refer to this strategy as the “degraded update” approach. Its major advantage is
simplicity, and it was used in all previous papers performing double compression. Yet, it appears to
be a waste of valuable information. In this Chapter, we update the global model wk+1 independently
of the downlink compression:{

wk = wk−1 − γ 1
N

∑N
i=1 Cup

(
gik(ŵk−1)

)
ŵk = Cdwn(wk) .

(3.2)

Chapter 3. MCM: preserved central model for faster bidirectional compression 47

However, bluntly compressing wk in Equation (3.2) hinders convergence, thus the second part
of the update needs to be refined by adding a memory mechanism. We now describe both
communication stages of the real MCM, which is entirely defined by the following “clients-
to-server” and “server-to-client” equations.

“Server-to-client” equations “Clients-to-server” equations
Ωk = wk −Hk−1

ŵk = Hk−1 + Cdwn(Ωk)
Hk = Hk−1 + αdwnCdwn(Ωk)

∀i ∈ J1, NK,∆i

k = gik(ŵk−1)− hik−1

wk = wk−1 − γ
N
∑N

i=1 Cup(∆i
k) + hik−1

hik = hik−1 + αupCup(∆i
k) .

(3.3)

Downlink Communication. We introduce a downlink memory term (Hk)k, which is available
on both clients and central server. The downlink memory term is initialized at the same point
on the server and the clients and then follows the same update process, therefore it does not lead
to any additional communication cost. The difference Ωk between the model wk and the memory
Hk−1 is compressed and exchanged, and the memory term is then used to compute the model
ŵk = Cdwn(Ωk) +Hk−1 held on each client. Next, the memory is updated with a learning rate αdwn

using the compressed term Cdwn(Ωk) sent from the server to the client, as given on the left part of
Equation (3.3).

Introducing this memory mechanism is crucial to control the variance of the local model ŵk.
To the best of our knowledge, MCM is the first algorithm that uses such a memory mechanism for
downlink compression. This mechanism was introduced by Mishchenko et al. [2019] for the uplink
compression but with the other purpose of mitigating the impact of heterogeneity, while we use it
here to avoid divergence of the local model’s variance.

Uplink Communication. The motivation to introduce an uplink memory term hik for each
device i ∈ J1, NK is different, and better understood. Indeed, for the uplink direction, this mechanism
is only necessary (and then crucial) to handle heterogeneous clients (i.e., with different data
distributions, see Chapter 2). Here, the difference ∆i

k between the stochastic gradient gik(ŵk−1)
evaluated at the local model ŵk−1 (as defined in Equation (3.3)) and the memory term is compressed
and exchanged. The memory is then updated as defined on right part of Equation (3.3) with a
rate αdwn.

Remark 3.1 (Rate αdwn). It is necessary to use αdwn < 1. Otherwise, the compression noise tends
to propagate and is amplified, because of the multiplicative nature of the compression. In Figure 3.1
we compare MCM, with 3 other strategies: compressing only the update, compressing wk − ŵk−1,
(i.e., αdwn = 1), and compressing the model (i.e., Hk = 0), showing that only MCM converges.

Remark 3.2 (Memory vs Error Feedback). Error feedback is another technique, introduced by Seide
et al. [2014]. In the context of double compression, it has been shown to improve convergence for a
restrictive class of contracting compression operators (which are generally biased) by Zheng et al.
[2019], Tang et al. [2019]. However, we note several differences to our approach. (1) For unbiased
operators - as considered in Dore, it did not lead to any theoretical improvement [Remark 2 in Sec.
4.1., Liu et al., 2020]. (2) Moreover, only a fraction (namely (1+ωdwn)

−1) of the “error” wk−ŵk can
be preserved in the EF term (see line 18 in algo 1 in Liu et al.). It is thus impossible to recover the
central preserved model as a function of the degraded model and the EF term. (3) Zheng et al. [2019]
consider a biased operator and the same compression level for uplink and downlink compression.
They also rely on stronger assumptions on the gradient (uniformly bounded) and only tackle the
homogeneous case.

In Table 3.1 we summarize the main algorithms for compression in distributed training. As
downlink communication can be more efficient than uplink, we consider distinct operators Cdwn, Cup
and allow the corresponding compressions levels to be distinct: those quantities are defined in
Assumption 3.1.

Chapter 3. MCM: preserved central model for faster bidirectional compression 48

Assumption 3.1. There exist two constants ωup, ωdwn ∈ R∗
+, such that for dir ∈ {up, dwn}, the

compression operators Cdir verify the two following properties for all z in Rd: E[Cdir(z)] = z, and
E[∥Cdir(z)− z∥2] ≤ ωdir∥z∥2. The higher is ωdir, the more aggressive the compression is.

In general, compression operators can be biased or unbiased, and their effects on convergence can
vary widely (a detailed analysis of the impact of compressors on convergence is given in Chapter 4).
For instance, algorithms with error-feedback may diverge if the operator is not contracting. While
Horváth and Richtárik [2020] have proposed a method to unbiase biased operators, and Beznosikov
et al. [2020] have conducted a general study of biased operators, our focus in this chapter is solely
on unbiased operators; which includes sparsification, quantization, and sketching.

The choice of the operator of compression is crucial when compressing data. Operators of
compression may be classified into two mains categories: quantization [as in Rabbat and Nowak,
2005, Alistarh et al., 2017, Seide et al., 2014, Zhou et al., 2018, Wen et al., 2017, Reisizadeh et al.,
2020, Horváth et al., 2022] and random projection [as in Vempala, 2005, Rahimi and Recht, 2008,
Stich et al., 2018, Alistarh et al., 2018, Khirirat et al., 2020b].

Remark 3.3 (Extension to biased operator of compression). Our analysis could be extended to
biased uplink operators, following similar lines of proof given in [Beznosikov et al., 2020]. However,
the extension for the downlink operator seems more difficult as our analysis relies on numerous
occurrences on the fact that the expectation of ŵk−1 knowing wk−1 is wk−1.

Remark 3.4 (Related work on Perturbed iterate analysis). The theory of perturbed iterate analysis
was introduced by Mania et al. [2016] to deal with asynchronous SGD. More recently, it was used by
Stich and Karimireddy [2020], Gorbunov et al. [2020b] to analyze the convergence of algorithms with
uplink compressions, error feedback and asynchrony. Using gradients at randomly perturbed points
can also be seen as a form of randomized smoothing [Scaman et al., 2018], a point we discuss below.

Our approach can also be related to randomized smoothing. Formally, ∇F (ŵk−1) can be
considered as an unbiased gradient of the smoothed function Fρ at point wk−1, with Fρ : w 7→
E[F (w + ŵk−1 − wk−1)]. Then E ⟨∇F (ŵk−1), wk−1 − w∗⟩ = E ⟨∇Fρ(wk−1), wk−1 − w∗⟩. One key
aspect is that the condition number µρ/Lρ of Fρ is always larger (better) than the one for F .
However, the minimum of Fρ is different and moving, thus the proof techniques from randomized
smoothing are not adapted to a varying noise which distribution is unknown. Providing a theoretical
result that quantifies the smoothing impact of MCM is an interesting open direction.

Randomized smoothing has been applied to non-smooth problems by Duchi et al. [2012]. The
aim is to transform a non-smooth function into a smooth function, before computing the gradient.
This is achieved by adding a Gaussian noise to the point where the gradient is computed. This
mechanism has been applied by Scaman et al. [2018] to convex problems. We consider in this work
a randomized version of compression: at iteration k in N each client i in J1, NK receives a noisy
estimate ŵi

k of the global model wk kept on central server. Thus, we compute the local gradient at a
perturbed point wk + δik. Unlike the randomization process as defined by Duchi et al. [2012], the
noise here is not chosen to improve the function’s regularity but results from the compression.

3.2.2 The randomization mechanism, Rand-MCM

In this subsection, we describe the key feature introduced in Rand-MCM: randomization. It consists
in performing an independent compression for each device instead of performing a single one for
all of them. As a consequence, each client holds a different model centered around the global one.
This introduces some supplementary randomness that stabilizes the algorithm. Formally, we will
consider N mutually independent compression operators Cdwn,i instead of a single one Cdwn, and
the central server will send to the device i at iteration k the compression of the difference between

Chapter 3. MCM: preserved central model for faster bidirectional compression 49

Algorithm 3: Pseudocode of Rand-MCM - set αup/dwn > 0 to use memory

Input: Mini-batch size b, learning rates αup, αdwn, γ > 0, initial model w0 ∈ Rd (on all
devices), operators Cup and C

dwn
.

Initialization: ∀i ∈ J1, NK, hi0 = gi1(w0) (smart initialization) and Ω̂i
−1 = H i

−1 = w0

Output: Model wK

for k = 1, 2, . . . ,K do
for each device i = 1, 2, 3, . . . , N do

Receive Ω̂i
k−1, and set: wi

k−1 = Ω̂i
k−1 +H i

k−2

Update down memory: H i
k−1 = H i

k−2 + αdwnΩ̂
i
k−1

Compute gik(w
i
k−1) (with mini-batch)

Set ∆i
k = gik(w

i
k−1)− hik−1, compress it: ∆̂i

k = Cup(∆i
k)

Update uplink memory: hik = hik−1 + αup∆̂
i
k

Send ∆̂i
k to central server

Receive (∆̂i
k)

N
i=1 from all remote clients

Compute ĝk = 1
N
∑N

i=1 ∆̂
i
k + hik−1

Update uplink memory: ∀i ∈ J1, NK, hik = hik−1 + αup∆̂
i
k

Non-degraded update: wk = wk−1 − γĝk

Down compression: ∀i ∈ J1, NK, Ω̂i
k = C

dwn,i(wk −H i
k−1)

Update downlink memory: H i
k = H i

k−1 + αdwnΩ̂
i
k

Send (Ω̂i
k)

N
i=1 to all remote clients

its model and the local memory on client i: Cdwn,i(wk −H i
k−1). The trade-offs associated with this

modification are discussed in Section 3.4.

The pseudocode of Rand-MCM is given in Algorithm 3. It incorporates all components described
above: 1) the bidirectional compression, 2) the model update using the non-degraded point, 3) the
two memories, 4) the up and down compression operators, 5) the randomization mechanism.

3.2.3 The Ghost algorithm

To convey the best understanding of the theorems and the spirit of the proof, we define a ghost
algorithm (that is impossible to implement in practice). Ghost is introduced only to get some
intuition of the theoretical insight.

Definition 3.1 (Ghost algorithm). The Ghost algorithm is defined as follows, for k ∈ N, for all
i ∈ J1, NK we have:

wk = wk−1 − γ
1

N

N∑
i=1

ĝik(ŵk−1) and ŵk = wk−1 − γCdwn

(
1

N

N∑
i=1

ĝik(ŵk−1)

)
. (3.4)

While the global model is unchanged (1st line), the local model ŵk (2nd line) is updated using the
global model wk−1 at the previous step, which is not available locally.

3.3 Assumptions and theoretical analysis

We make standard assumptions on F : Rd → R. We first assume that the loss function F is smooth.

Chapter 3. MCM: preserved central model for faster bidirectional compression 50

Assumption 3.2 (Smoothness). F is twice continuously differentiable, and is L-smooth, that is for
all vectors z, z′ in Rd: ∥∇F (z)−∇F (z′)∥ ≤ L∥z − z′∥.

Results in Section 3.3 are provided in a convex, strongly-convex and non-convex setting.

Assumption 3.3 (Strong convexity). F is µ-strongly convex (or convex if µ = 0), that is for all
vectors z, z′ in Rd: F (z′) ≥ F (z) + (z′ − z)T∇F (z) + µ

2∥z′ − z∥22 .

Next, we present the assumption on the stochastic gradients.

Assumption 3.4 (Noise over stochastic gradients computation). The noise over stochastic gradients
for a mini-batch of size b, is uniformly bounded: there exists a constant σ ∈ R+, such that for all k
in N, for all i in J1, NK and for all w in Rd we have: E[∥gik(w)−∇F (w)∥2] ≤ σ2/b.

Unlike in Chapter 2, we do not assume the noise over stochastic gradients to be bounded only at
the optimal point w∗. However, our results could be extended to this setting.

To prove the convergence of MCM, we combine two results: a control of the variance of the
local model, E[∥wk − ŵk∥2 |wk]

1, and then the convergence under this result. Proposition 3.1 and
Theorem 3.1 below provide those results for Ghost algorithm.

3.3.1 Theoretical results: Ghost algorithm

Proposition 3.1. Consider the Ghost update in Equation (3.4), under Assumptions 3.1, 3.2 and 3.4,
for all k in N with the convention ∇F (w−1) = 0:

E
[
∥wk − ŵk∥2

∣∣∣ ŵk−1

]
≤ γ2ωdwn

(
1 +

ωup

N

)
∥∇F (ŵk−1)∥2 +

γ2ωdwn(1 + ωup)σ
2

Nb
.

This proposition is proved in Subsection C.3.1. From Equation (3.4) and Assumption 3.1, it
appears that ∥wk − ŵk∥2 ≤ ωdwn∥γ

∑N
i=1 ĝik(wk−1)∥2: the result follows from controlling the variance

of ĝik(wk−1). The take-away from this Proposition is that we are able to bound the variance of the
local model by an affine function of the squared norm of the previous stochastic gradients ∇F (ŵk−1).
For Ghost only the previous gradient is involved, while for MCM, we obtain an additional recursive
process.

To obtain the convergence, we then follow the classical approach of Mania et al. [2016], expanding
E[∥wk − w∗∥2] as E[∥wk−1 − w∗∥2]− 2γE[⟨∇F (ŵk−1), wk−1 − w∗⟩] + γ2E[∥ĝk(ŵk−1)∥2]. The critical
aspect is that the inner product does not directly result in a contraction, as the support point of the
gradient differs from wk−1. Using the fact that E [ŵk−1 | wk−1] = wk−1, we further decompose it as

−2γE ⟨∇F (ŵk−1), ŵk−1 − w∗⟩+ 2γE ⟨∇F (ŵk−1)−∇F (wk−1), wk−1 − ŵk−1⟩ . (3.5)

The first part of Equation (3.5), corresponds to a “strong contraction”: by (strong-)convexity, we
can upper bound it by −2γ(µ ∥ŵk−1 − w∗∥2 + F (ŵk−1) − F∗), which is on average larger than
−2γ(µ ∥wk−1 − w∗∥2 + F (wk−1)− F∗) (Jensen’s inequality). Moreover, as the function is smooth
and convex, it can also be upper bounded by −2γ ∥∇F (ŵk−1)∥2 /L. This is a crucial term: we “gain”
something of the order of a squared norm of the gradient at ŵk−1, which will in fine compensate
the variance of the local model. The second part of Equation (3.5), corresponds to a positive
residual term, proportional to the variance of the compressed model, that can be controlled thanks
to Proposition C.1 (at wk−1!). Putting things together, we get, in the convex case (µ = 0):

1For clarity here, we use E [· | wk−1] to denote the conditioning w.r.t. all randomness before wk−1.

Chapter 3. MCM: preserved central model for faster bidirectional compression 51

Theorem 3.1 (Contraction for Ghost, convex case). Under Assumptions 3.1 to 3.4, with µ = 0, if
γL(1 + ωup/N) ≤ 1

2 .

E∥wk − w∗∥2 ≤ E ∥wk−1 − w∗∥2 − γE(F (wk−1)− F∗)−
γ

2L
E
[
∥∇F (ŵk−1)∥2

]
+ 2γ3ωdwnL

(
1 +

ωup

N

)
E ∥∇F (ŵk−2)∥2 + γ2

(1 + ωup)σ
2

Nb
(1 + 2γLωdwn) .

We can make the following observations:

1. At step k, the residual can be upper bounded by a constant times squared norm of the gradient
at point ŵk−2. When using recursively this upper bound, if 2γ3ωdwnL(1 + ωup/N) ≤ γ/(2L),
then these terms cancel out. This is equivalent to 2γL

√
ωdwn (1 + ωup/N) ≤ 1. It is natural to

chose γ ≤ 1/(2Lmax(1 + ωup/N, 1 + ωdwn)).
2. The bound is in fact proved conditionally to wk−1, recursive conditioning is required to propagate

the inequality. We carefully handle conditioning in the proofs.

Theorem 3.2 (Convergence of Ghost, convex case). Under Assumptions 3.1 to 3.4 with µ = 0
(convex case), for all k in N, defining Vk := E [wk − w∗] +

γ
2LE[∥∇F (ŵk−1)∥2] + 2γLE[∥ŵk − wk∥2],

we have:

Vk ≤ Vk−1 − γE [F (wk−1)− F (w∗)] +
γ2σ2ΦG(γ)

Nb
,

with ΦG(γ) := (1 + ωup)(1 + 2γLωdwn).

3.3.2 Results for MCM

We here provide guarantees of convergence for MCM which incorporates an uplink memory term,
designed to handle heterogeneous clients. But to highlight our main contribution, that concerns the
downlink compression, we present the results in the homogeneous setting, that is with Fi = Fj and
αup = 0. In the heterogeneous setting, similar results (almost identical, up to constant numerical
factors) are obtained [see our paper Philippenko and Dieuleveut, 2021, Appendix G]. Experiments
are performed on heterogeneous clients. We provide here convergence results in the strongly-convex,
convex and non-convex cases.

Notations and settings. For k in N, we denote Υk = ∥wk −Hk−1∥2, and define Vk =
E[∥wk − w∗∥2] + 32γLω2

dwnE[Υk], which serves as Lyapunov function. Vk is composed of two terms:
the first one controls the quadratic distance to the optimal model, and the second controls the
variance of the local models ŵk. For both theorems, we choose αdwn = (8ωdwn)

−1. We denote
Φ(γ) := (1 + ωup)

(
1 + 64γLω2

dwn

)
.

Limit learning rate. There exists a maximal learning rate to ensure convergence. More
specifically, we define γmax := min(γupmax, γdwn

max, γ
Υ
max), where γupmax := (2L (1 + ωup/N))−1 corresponds

to the classical constraint on the learning rate in the unidirectional regime [see Mishchenko et al.,
2019, Philippenko and Dieuleveut, 2020], γdwn

max := (8Lωdwn)
−1 is a similar constraint coming from

the downlink compression, and γΥmax :=
(
8
√
2Lωdwn

√
8ωdwn + ωup/N

)−1 is a combined constraint
that arises when controlling the variance term Υ.2 Overall, this constraints are weaker than in
the “degraded” framework Liu et al. [2020], Philippenko and Dieuleveut [2020], in which γDore

max ≤(
8L(1+ωdwn)(1+ωup/N)

)−1. Especially, in the regime in which ωup,dwn →∞ and ωdwn ≃ ωup ≃: ω,
the maximal learning rate for MCM is (Lω3/2)−1, while it is (Lω2)−1 in Liu et al. [2020], Philippenko
and Dieuleveut [2020]. Our γmax is thus larger by a factor

√
ω, see Table 3.2. We define L̃ such that

γmax = (2L̃)−1.
2The dependency in ω3/2 is similar to the one obtained by Horváth et al. [2022] in unidirectional compression in

the non-convex case (Theorem 4).

Chapter 3. MCM: preserved central model for faster bidirectional compression 52

Theorem 3.3 (Convergence of MCM in the strongly-convex case). Under Assumptions 3.1 to 3.4
with µ > 0, for k in N, for any sequence (γk)k≥0 ≤ γmax we have:

Vk ≤ (1− γkµ

2
)Vk−1 − γkE [F (ŵk−1)− F (w∗)] +

γ2kσ
2Φ(γk)

Nb
, (3.6)

Consequently, (1) if σ2 = 0 (noiseless case), for γk ≡ γmax we recover a linear convergence rate:
E[∥wk − w∗∥2] ≤ (1− γmaxµ/2)

kV0; (2) if σ2 > 0, taking for all K in N, γK = 4/(µ(K + 1) + L̃),
for the weighted Polyak-Ruppert average w̄K =

∑K
k=1 λkwk−1/

∑K
k=1 λk, with λk := (γk−1)

−1,

E [F (w̄K)− F (w∗)] ≤
(µ+ L̃)L̃

16µK2 ∥w0 − w∗∥2 +
8σ2(1 + ωup)

µKNb

(
1 +

256Lω2
dwn

µK
ln(µ(K + 1) + L̃)

)
.

(3.7)

Limit Variance (Equation (3.6)). For a constant γ, the variance term (i.e., term proportional
to σ2) in Equation (3.6) is upper bounded by γ2σ2

Nb (1 + ωup)(1 + 64γLω2
dwn). The impact of the

downlink compression is attenuated by a factor γ. As γ decreases, this makes the limit variance
similar to the one of Diana, i.e. without downlink compression [Mishchenko et al., 2019, Eq. 16 in
Th. 2], and much lower than the variance for previous algorithms using double compression for which
the variance scales quadratically with the compression constants as γ2σ2(1 + ωup)(1 + ωdwn)/N :
(1) for Dore, see Corollary 1 in Liu et al. [2020] (who indicate (1− ρ)−1 ≥ (1 + ωup/N)(1 + ωdwn)),
(2) for Artemis see Table 2.2 and point 2 of Theorem 2.3 in Chapter 2, (3) for Gorbunov et al.
[2020b], see Theorem I.1. (with γD′

1 ∝ γ2σ2(1 + ωup)(1 + ωdwn)/N).

Bound 3.7 has a quadratic dependence on ωdwn, but the corresponding term is divided by an
extra factor K, the number of iterations. For example in experiments, for w8a using quantization
with s = 20, we have ωdwn ≃ 17, and after only 50 epoch with a batch size b = 12, we have K ≃ 2500.
Hence, the term ω2/K is vanishing through iterations and we asymptotically recover a rate of
convergence equivalent to algorithms using unidirectional compression.

Convergence and complexity: With a decaying sequence of steps, we obtain a convergence
rate scaling as O(K−1) in Equation (3.7), without dependency on the ωdwn in the dominating term,
which only appears in faster decaying terms scaling as K−2. The iteration complexity (i.e., number
of iterations to achieve ϵ expected error) is thus at first order Oϵ→0(

σ2(1+ωup)
µϵNb). Again, this matches

the complexity of Diana [Horváth et al., 2022, see Theorem 1 and Corollary 1] and is smaller by a
factor 1 + ωdwn than the one of Artemis, Dore, DIANAsr-DQ (see Corollary I.1. in Gorbunov et al.
[2020b]). Next, we give a convergence result in the convex case.

Theorem 3.4 (Convergence of MCM, convex case). Under Assumptions 3.1 to 3.4 with µ = 0. For
all k > 0, for any γ ≤ γmax, we have, for w̄k = 1

k

∑k−1
i=0 wi,

γE [F (wk−1)− F (w∗)] ≤ Vk−1 − Vk +
γ2σ2Φ(γ)

Nb
=⇒ E[F (w̄k)− F∗] ≤

V0

γk
+

γσ2Φ(γ)

Nb
. (3.8)

Consequently, for K in N large enough, a step-size γ =

√
∥w0−w∗∥2Nb
(1+ωup)σ2K

, we have:

E[F (w̄K)− F∗] ≤ 2

√
∥w0 − w∗∥2 (1 + ωup)σ2

NbK
+O(K−1). (3.9)

Moreover if σ2 = 0 (noiseless case), we recover a faster convergence: E[F (w̄K)− F∗] = O(K−1).

Limit Variance (Eq. (3.8)). The variance term is identical to the strongly-convex case.

Chapter 3. MCM: preserved central model for faster bidirectional compression 53

Convergence and complexity (Equation (3.9)). The downlink compression constant only
appears in the second-order term, scaling as 1/K. In other words, the convergence rate is equivalent
to the convergence rate of Diana, in the non-strongly-convex. As K increases, this complexity scales
as (1+ωup)

nϵ2
independently of the downlink compression. Again, for previous algorithms with double

compression the complexity is at least O
(
(1+ωup)(1+ωdwn)

nϵ2

)
(see Corollary I.2 in Gorbunov et al.

[2020b]).

0 50 100 150 200
Number of passes on data

−2

−1

0

1

2

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

Artemis-ND

MCM - α = 0

MCM - α = 1

MCM

0 50 100 150 200
Number of passes on data

−2

−1

0

1

2

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

Artemis-ND

MCM - α = 0

MCM - α = 1

MCM

Figure 3.1: Comparing MCM on two datasets (left quantum,
right a9a) with three other algorithms using a non-degraded
update, γ = 1/L. Artemis-ND stands for Artemis with a
non-degraded update.

Control of the variance of the
local model. We here present the
backbone Lemma of MCM’s proof. It
allows to control the variance of the lo-
cal model E[∥ŵk − wk∥2 |wk] (which is
upper-bounded by ωdwnE[∥Υk∥2 |wk])
and to build the Lyapunov function
defined in Theorems 3.3 and 3.4.

This result highlights the impact
of the downlink memory term. With-
out memory, i.e., with αdwn = 0, the
variance of the local model ∥ŵk−wk∥2
increases with the number of iterations.
On the other hand, if αdwn is too large
(close to 1), this variance diverges. In fact, Theorem 3.5 states that αdwn must be lower than
αmax = (8ωdwn)

−1 in order to obtain a (1 − αdwn/2)-contraction, which later allows convergence.
However, it also involves an additional term E[∥∇F (ŵk−1)∥2] depending on α−1

dwn which results in a
bound γΥmax on the admissible step-size. Therefore, this term must be as small as possible and we
chose αdwn as the maximal possible memory’s learning rate. This is why, Theorems 3.3 and 3.4 are
presented with αdwn = (8ωdwn)

−1. This trade-off is illustrated on two real datasets on Figure 3.1.
This phenomenon is similar to the divergence observed in frameworks involving error-feedback, when
the compression operator is not contractive.

Theorem 3.5. Consider the MCM update as in Equation (3.2). Under Assumptions 3.1, 3.2 and 3.4
with µ = 0, if γ ≤ (8ωdwnL)

−1 and αdwn ≤ (8ωdwn)
−1, then for all k in N:

E [Υk] ≤
(
1− αdwn

2

)
E [Υk−1] + 2γ2

(
1

αdwn
+

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

]
+

2γ2σ2(1 + ωup)

Nb
.

This bound provides a recursive control on Υk. Beyond the (1− αdwn) contraction, the bound
comprises the squared norm of the gradient at the previous perturbed iterate, and a noise term.

Summary of rates. In Table 3.2, we summarize the rates and complexities, and maximal
learning rate for Diana, Artemis, Dore and MCM. For simplicity, we ignore absolute constants, and
provide asymptotic values for large ωup, ωdwn, and complexities for ϵ→ 0.

The last important theorem of this section ensures the convergence of MCM in the non-convex
settings. The demonstration is given in Subsection C.4.4 and follows a different approach than the
one presented in Subsection 3.3.1.

Theorem 3.6 (Convergence of MCM in the non-convex case). Under Assumptions 3.1, 3.2 and 3.4
(non-convex case), for a learning rate αdwn = 1

8ωdwn
, for any step-size γ s.t. γ ≤ γmax, after

running K in N∗ iterations, we have:

1

K

K∑
k=1

E
[
∥∇F (wk−1)∥2

]
≤ 2 (F (w0)− F (w∗))

γK
+

γLσ2Φnon−cvx(γ)

Nb
,

Chapter 3. MCM: preserved central model for faster bidirectional compression 54

Table 3.2: Summary of rates on the initial condition, limit variance, asympt. complexities and γmax.

Problem Diana Artemis, Dore MCM, Rand-MCM

Lγmax ∝ 1/(1 + ωup) 1/(1 + ωup)(1 + ωdwn) 1/(1 + ωdwn)
√
1 + ωup ∧ 1/(1 + ωup)

Lim. var. ∝
γ2σ2/n×

(1 + ωup) (1 + ωup)(1 + ωdwn) (1 + ωup)(1 + γLω2
dwn)

Str.-convex Rate on init. cond.
(SC)

(1− γµ)k (1− γµ)k (1− γµ)k

Complexity (1 + ωup)/µϵN (1 + ωdwn)(1 + ωup)/µϵN (1 + ωup)/µϵN

Convex Complexity (ωup + 1)/ϵ2 (1 + ωup)(1 + ωdwn)/ϵ
2 (ωup + 1)/ϵ2

with Φnon−cvx(γ) := (1 + ωup)
(
1 + 32γLω2

dwn

)
. Consequently, for K in N∗ large enough, we have

taking γ =
√

2Nb(F (w0)−F (w∗))
σ2L(1+ωup)K

:

1

K

K∑
k=1

E
[
∥∇F (wk−1)∥2

]
≤ 2

√
2Lσ2(1 + ωup) (F (w0)− F (w∗))

NbK
+O(K−1) .

Proofs. To convey the best understanding of the theorems and the spirit of the proof, we have
introduced the Ghost algorithm in Subsection 3.2.3. The sketch of the proof of Ghost and MCM are
similar. Proofs of Theorems 3.1 and 3.2 is given in Section C.3. Proofs of Theorems 3.3 to 3.5
are given in Section C.4. And Theorem 3.6 is proved in Subsection C.4.4. Note that the proof for
non-convex follows a different approach than the one in Theorems 3.3 and 3.4.

Proof in the heterogeneous case. To extend Theorems 3.3 to 3.5 in the heterogeneous
setting for a convex objective, as in Chapter 2, we assume that there exists a constant B in R+,
s.t.: 1

N

∑N
i=0 ∥∇Fi(w∗)∥2 = B2 . We further define Ξk = 1

N2

∑N
i=1

∥∥hik −∇Fi(w∗)
∥∥2, where for all

i in J1, NK. This term is recursively controlled and combined into the Lyapunov function, as in
Chapter 2 For sake of the manuscript brevity, we have not included the demonstration and refer to
[Philippenko and Dieuleveut, 2021, see Appendix G].

Remark 3.5 (Communication budget). How to split a given communication budget between uplink
and downlink to optimize the convergence is an open question that is intrinsically related to the
situation. Indeed it depends on many factors like the selected operators of compression, the up-
load/downlink speed or the number of participating clients at each iteration. However, our approach
provides some insights on this question. Because asymptotically the impact of double compression is
marginal, for a fixed budget, Theorem 3.4 suggests to strongly compress on the downlink direction
(which leads to a large ωdwn), but to perform a weaker compression in the uplink direction.

As mentioned in the introduction, our analysis of perturbed iterate in the context of double
compression opens new directions: in particular, it opens the door to handling a different model
for each client. In the next section, we detail those possibilities, and provide theoretical guarantees
for Rand-MCM, the variant of MCM in which instead of sending the same model to all clients, the
compression noises are mutually independent.

3.4 Extension to Rand-MCM

3.4.1 Communication and convergence trade-offs

In Rand-MCM, we leverage the fact that the compressions used for each client need not to be identical.
On the contrary, it is possible to consider independent compressions. By doing so, we reduce the
impact of the downlink compression.

Chapter 3. MCM: preserved central model for faster bidirectional compression 55

The relevance of such a modification depends on the framework: while the convergence rate will
be improved, the computational time can be slightly increased. Indeed, N compressions need to be
computed instead of one: however, this computational time is typically not a bottleneck w.r.t. the
communication time. A more important aspect is the communication cost. While the size of each
message will remain identical, a different message needs to be sent to each client. That is, we go from
a “one to N ” configuration to N “one to one” communications. While this is a drawback, it is not
an issue when the bandwidth/transfer time are the bottlenecks, as Rand-MCM will result in a better
convergence with almost no cost. Furthermore, we argue that handling client dependent models is
essential for several major applications. Rand-MCM can directly be adapted to those frameworks.

1. client dependent compression. A first simple situation is the case in which clients are
allowed to choose the size (or equivalently the compression level) of their updates.

2. Partial participation (PP). Similarly, having N different messages to send to each client
may be unavoidable in the case of partial participation of the clients. This is a key feature in
federated learning frameworks, see Subsection 1.3.1. In the classical distributed framework (without
downlink constraints) it is easy to deal with it, as each available client just queries the global model
to compute its gradient on it [see for example Horváth and Richtárik, 2020]. On the other hand,
for bidirectional compression, to ensure that all the local models match the central model, the
adaptation to partial participation relies on a synchronization step. During this step, each client that
has not participated in the last S steps receives the last S corresponding messages as long as it costs
less to send this sequence than a full uncompressed model, see the pseudo-code of Artemis given in
Algorithm 2 in Chapter 2.

On the contrary, Rand-MCM naturally handles a different model, memory, and update per client.
The adaptation to partial participation is thus straightforward, without the need to catch up on
missed updates or to synchronize memory. This is because the partial participation of clients is
modeled as a compression scheme CPP, which compresses a vector z as either z/p or 0 (see Section 2.2).
Consequently, our theoretical analysis covers the case of partial participation. For sake of clarity, we
present below the equations defining the downlink stage of Rand-MCM.

Ωk+1 = wk+1 − H̄k ,
ŵi
k+1 = H i

k + Cdwn,i(Ωk+1)
H i

k+1 = H i
k + αdwnCdwn,i(Ωk+1)

H̄k+1 = H̄k +
αdwn
N

∑N
i=1 Cdwn,i(Ωk+1).

(3.10)

Remark 3.6 (Protecting the global model from honest-but-curious clients). Another business
advantage of MCM and Rand-MCM is that providing degraded models to the participants can be used to
guarantee privacy, or to ensure the clients participate in good faith, and not only to obtain the model.
This issue of detecting ill-intentioned clients (free-riders) that want to obtain the model without
actually contributing has been studied by Fraboni et al. [2021b].

3.4.2 Theoretical results

In this Section, we provide two main theoretical results for Rand-MCM. First, Theorem 3.7 ensures
that the theoretical guarantees are at least as good for Rand-MCM as for MCM. Then, in Theorem 3.8,
we provide convergence result for both MCM and Rand-MCM in the case of quadratic functions.

Theorem 3.7. Theorems 3.3 to 3.5 are valid for Rand-MCM

The improvement in Rand-MCM comes from the fact that we are ultimately averaging the gradients
at several random points, reducing the variance coming from this aspect. The goal is obviously to
reduce the impact of ωdwn. Keeping in mind that the dominating term in the rate is independent of

Chapter 3. MCM: preserved central model for faster bidirectional compression 56

ωdwn, we can thus only expect to reduce the second-order term. Next, the uplink compression noise
increases with the variance of the randomized model, which will not be directly reduced by Rand-MCM.
As a consequence, we only expect the improvement to be visible in the part of the second-order term
that does not depend on ωup (that is, the effect would be the most significant if ωup is small or 0).

This intuition is corroborated by the following result, in which we show that the convergence is im-
proved when adding the randomization process for a quadratic function. Extending the proof beyond
quadratic functions is possible, though it requires an assumption on third or higher order derivatives of
F (e.g., using self-concordance [Bach, 2010]) to control of E

[
||∇F (ŵk−1)− E[∇F (ŵk−1)]||2

∣∣ wk−1

]
.

Theorem 3.8 (Convergence in the quadratic case). Under Assumptions 3.1 to 3.4 with µ = 0, if
the function is quadratic, after running K > 0 iterations, for any γ ≤ γmax, and we have

E[F (w̄K)− F∗] ≤
V0

γK
+

γσ2ΦRd(γ)

Nb
,

with ΦRd(γ) = (1 + ωup)
(
1 + 4γ2L2ωdwn

K (1
C +

ωup

N)
)

and C = N for Rand-MCM, C = 1 for MCM.

This result is derived in Section C.5. We can make the following comments. (1) The convergence
rate for quadratic functions is slightly better than for smooth functions. More specifically, the right
hand term in Φ is multiplied by an additional γ

(
1
C +

ωup

N

)
(w.r.t. Theorem 3.4), which is decaying

at the same rate as γ. Besides, the proof for Rand-MCM is substantially modified, as E[∇F (ŵk−1)] is
an unbiased estimator of ∇F (wk−1). (2) Moreover, the randomization in Rand-MCM further reduces
by a factor N this term. Depending on the relative sizes of ωup and N , this can lead to a significant
improvement up to a factor of N . In practice, the impact of Rand-MCM is noticeable, as illustrated in
the following experiments.

3.5 Experiments

In this section, we illustrate the validity of the theoretical results given in the previous section on
both synthetic and real datasets, on (1) least-squares regression (LSR), (2) logistic regression (LR),
and (3) non-convex deep learning. We compare MCM with classical algorithms used in distributed
settings: Diana, Artemis, Dore and of course the simplest setting - SGD, which is the baseline.

In these experiments, we provide results on the log of the excess loss F (wk) − F∗, averaged
on 5 runs (resp. 2) in convex settings (resp. deep learning), with errors bars displayed on each
figure, corresponding to the standard deviation of log10(F (wk)− F∗). On Figure 3.3, the X-axis is
respectively the number of iterations and the number of bits exchanged.

Each experiment has been run with N = 20 clients using stochastic scalar quantization [Alistarh
et al., 2017], w.r.t. 2-norm. To maximize compression, we always quantize on a single level (s = 20),
unless for neural network (the value of s depends on the dataset).

We used 9 different datasets.

• One toy dataset devoted to linear regression in an homogeneous setting. This toy dataset allows
to illustrate MCM properties in a simple framework, and in particular to ilustrate that when σ2 = 0,
we recover a linear convergence3, see Figure 3.2b.

• Five datasets commonly used in convex optimization (a9a, quantum, phishing, superconduct and
w8a); see Table C.1 for more details. Experiments were conducted with heterogeneous clients
obtained by clustering (using TSNE [Maaten and Hinton, 2008], as in Chapter 2) the input points.

3Even stronger, we show in experiments that we recover a linear rate if we have σ∗ = 0 (the noise over stochastic
gradient computation at the optimum point w⋆).

Chapter 3. MCM: preserved central model for faster bidirectional compression 57

Table 3.3: Summary of experiment results for MCM - convex experiments, b is the batch size

.

Excess loss after 450 epochs SGD Diana MCM Dore Ref
a9a (b = 128) −3.5 −2.7 −2.7 −1.8 Chang and Lin [2011]
quantum (b = 256) −3.4 −3.2 −3.2 −2.6 Caruana et al. [2004]
phishing (b = 64) −3.7 −3.5 −3.4 −2.7 Chang and Lin [2011]
superconduct (b = 64) −1.6 −1.6 −1.55 −1.45 Hamidieh [2018]
w8a (b = 12) −3.5 −3.0 −2.5 −1.75 Chang and Lin [2011]
Compression no uni-dir bi-dir bi-dir

104 105 106

Communicated bits

−4

−2

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) σ2 ̸= 0, γ= (L
√
k)−1

105 107

Communicated bits

−10

−5

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) σ2=0, γ=L−1

107 109

Communicated bits

−1.5

−1.0

−0.5

0.0

lo
g(

T
ra

in
lo

ss
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(c) MNIST with a CNN

107 109

Communicated bits

−1.5

−1.0

−0.5

0.0

lo
g(

T
ra

in
lo

ss
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(d) FEMNIST with a CNN

Figure 3.2: Convergence on synthetic datasets (left) and neural networks (right).

0 50 100 150 200
Number of passes on data

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) a9a in #iter.

105 107

Communicated bits

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) a9a in #bits

0 50 100 150 200
Number of passes on data

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(c) quantum in #iter.

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(d) quantum in #bits

Figure 3.3: Experiments on real datasets with γ = 1/L, quantization with s = 1 (LR, for LSR see
superconduct on Figure 2.2a).

• Four datasets in a non-convex settings (CIFAR10, Fashion-MNIST, FE-MNIST, MNIST); see
Table C.2 for more details.

All experiments are performed without any tuning of the algorithms, (e.g., with the same learning
rate for all algorithms and without reducing it after a certain number of epochs). Indeed, our goal is
to show that our method achieves a performance close to the unidirectional-compression framework
(Diana), while performing an important downlink compression. More details about experiments can
be found in Section C.1.

On Figure 3.3, we display the excess loss for quantum and a9a w.r.t. the number of iteration and
number of communicated bits. The plots of phising, superconduct and w8a are not provided but can
be found on our github repository. We only report their excess loss after 450 iterations in Table 3.3.

Saturation level. All experiments are performed with a constant learning rate γ to observe
the bias (initial reduction) and the variance (saturation level) independently. Stochastic gradient
descent results in a fast convergence during the first iterations, and then reaches a saturation at
a given level proportional to σ2. Theorem 3.4 states that the variance of MCM is proportional to
ωup, this is experimentally observed on Tables 3.3 and 3.4 and Figures 3.2 and 3.3: MCM meets
Diana while Artemis and Dore saturate at a higher level (scaling as ωup × ωdwn). These trade-offs
are preserved with optimized learning rates.

Linear convergence when σ2 = 0. The six algorithms present a linear convergence when

https://github.com/philipco/mcm-bidirectional-compression/notebook

Chapter 3. MCM: preserved central model for faster bidirectional compression 58

σ2 = 0. This is illustrated by Figure 3.2b: we ran experiments with a full gradient descent. Note that
in these settings MCM has a slightly worse performance than other methods; however, this slow-down
is compensated by Rand-MCM.

Deep learning. Table 3.4 and Figures 3.2c and 3.2d illustrate experiments with neural networks,
details on dataset settings and networks architecture are given in Subsection C.1.2. Again, MCM meets
Diana rates as stated by Theorem 3.6 (non-convex case).

Table 3.4: Accuracy and train loss in non-convex experiments, detailed settings can be found in
Table C.2.

Algorithm MNIST Fashion MNIST FE-MNIST CIFAR-10

Accuracy after SGD: 99.0% 92.4% 99.0% 69.1%
300 epochs Diana: 98.9% 92.4% 98.9% 64.0%

MCM: 98.8% 90.6% 98.9% 63.5%
Artemis: 97.9% 86.7% 98.3% 54.8%
Dore: 97.9% 87.9% 98.5% 56.3%

Train loss after SGD: 0.025 0.093 0.026 0.909
300 epochs Diana: 0.034 0.141 0.031 1.047

MCM: 0.033 0.209 0.030 1.096
Artemis: 0.075 0.332 0.052 1.342
Dore: 0.072 0.300 0.048 1.292

Impact of randomization. The impact of randomization is noticeable on Figures 3.2b and C.5b.
Randomization helps to stabilize convergence, it reduces the variance over the runs, and when σ2 = 0,
it performs identically to SGD.

Overall, these experiments show the benefits of MCM and Rand-MCM, that reach the saturation
level of Diana while exchanging at 10x to 100x fewer bits. All the code is provided on our github
repository.

3.6 Conclusion

In this work, we propose a new algorithm to perform bidirectional compression while achieving the
convergence rate of algorithms using compression in a single direction. One of the main application
of this framework is federated learning. With MCM we stress the importance of not degrading the
global model. In addition, we add the concept of randomization which allows to reduce the variance
associated with the downlink compression. The analysis of MCM is challenging as the algorithm
involves perturbed iterates. Proposing such an analysis is the key to unlocking numerous challenges
in distributed learning, e.g., proposing practical algorithms for partial participation, incorporating
privacy-preserving schemes after the global update is performed, dealing with local steps, etc. This
approach could also be pivotal in non-smooth frameworks, as it can be considered as a weak form of
randomized smoothing.

https://github.com/philipco/mcm-bidirectional-compression/
https://github.com/philipco/mcm-bidirectional-compression/

4
Convergence rates for distributed, compressed and averaged
least-squares regression: application to Federated Learning

“Бог уже потому мне необходим, что это единственное существо,
которое можно вечно любить ...”

Бесы, Федор Михайлович Достоевский.

In this Chapter, we go beyond the classical worst-case assumption on the variance of compressors
(Assumption 2.5 in Chapter 2 or Assumption 3.1 in Chapter 3) and provide a fine-grained analysis
of the impact of compression within the fundamental learning framework of least-squares regression
(LSR). Within this setting, we underline differences in terms of convergence rates between several
unbiased compression operators, that all satisfy the same condition on their variance, thus going
beyond the classical worst-case analysis. To do so, we analyze a general stochastic approximation
algorithm for minimizing quadratic functions relying on a random field. We consider weak assumptions
on the random field, tailored to the analysis (specifically, expected Hölder regularity), and on the
noise covariance, enabling the analysis of various randomizing mechanisms, including compression.
We then extend our results to the case of federated learning.

More formally, we highlight the impact on the convergence of the covariance Cania of the additive
noise induced by the algorithm. We demonstrate despite the non-regularity of the stochastic field, that
the limit variance term scales with Tr

(
CaniaH

−1
F

)
/K (where HF is the Hessian of the optimization

problem and K the number of iterations) generalizing the rate for the vanilla LSR case where it is
σ2Tr

(
HFH

−1
F

)
/K = σ2d/K [Bach and Moulines, 2013]. Then, we analyze the dependency of Cania

on the compression strategy and ultimately its impact on convergence, first in the centralized case,
then in two heterogeneous FL frameworks.

This Chapter is based on our work Convergence rates for distributed, compressed and aver-
aged least-squares regression: application to federated learning [Philippenko and Dieuleveut, 2023]
submitted at JMLR.

59

Chapter 4. Distributed, compressed and averaged least-squares regression 60

Contents
4.1 Introduction . 60
4.2 Non asymptotic convergence result for (LSA) . 64

4.2.1 Definition of the additive noise’s covariance and assumptions on the random
fields . 64

4.2.2 Convergence rates for (LSA), general case 65
4.2.3 Convergence rates for (LSA), linear case 66

4.3 Application to Algorithm 2: compressed LSR on a single worker 67
4.3.1 Compression operators . 67
4.3.2 Applicability of the results on (LSA) from Section 4.2 68
4.3.3 Impact of the compression on the additive noise covariance 69
4.3.4 Numerical experiments on Algorithm 2 . 75
4.3.5 Conclusion . 76

4.4 Application to federated learning . 77
4.4.1 Heterogeneous covariance . 77
4.4.2 Heterogeneous optimal point . 78
4.4.3 Numerical experiments . 80

4.5 Conclusion . 81

4.1 Introduction

Large-scale optimization [Bottou and Bousquet, 2007] has become ubiquitous in today’s learning
problems due to the incredible growth of data collection. It becomes computationally extremely
hard to process a full dataset or even, to store it on a single device [Abadi et al., 2016, Seide and
Agarwal, 2016, Caldas et al., 2019]. This led practitioners to either process each observation only
once in a streaming fashion and to design distributed algorithms. This Chapter is part of this line of
work and considers in particular stochastic federated algorithms [Konečný et al., 2016, McMahan
et al., 2017] that use a central server to orchestrate the training over a network of N in N∗ clients.

A well-identified challenge in this framework is the communication cost of the learning process
[Seide et al., 2014, Chilimbi et al., 2014, Strom, 2015] based on stochastic gradient algorithms. Indeed,
iteratively exchanging gradient or model information between the local workers and the central server
generates a huge computational and bandwidth bottleneck. To reduce this communication cost, two
strategies have been widely implemented and analyzed: performing local updates [see e.g. McMahan
et al., 2017, Karimireddy et al., 2020], or reducing the size of the exchanged messages by passing
them through a compression operator, on the uplink channel [Seide et al., 2014, Alistarh et al.,
2017, 2018, Mishchenko et al., 2019, Karimireddy et al., 2019, Wu et al., 2018, Horvath et al., 2022,
Mishchenko et al., 2019, Khirirat et al., 2020a, Grishchenko et al., 2021, Richtarik et al., 2021], or on
both uplink and downlink channels [Harrane et al., 2018, Tang et al., 2019, Liu et al., 2020, Zheng
et al., 2019, Philippenko and Dieuleveut, 2020, 2021, Gorbunov et al., 2020b, Sattler et al., 2019,
Fatkhullin et al., 2021]. These two strategies, although typically analyzed independently, are often
combined. We focus on compression; to reduce the cost of exchanging a vector, three techniques
are combined: (1) sending the message to only a few clients, (2) sending only a fraction of the
coordinates, (3) sending low-precision updates.

Most analyses of the impact of compression schema rely on generic assumptions on the compression
operator C, typically either contractive, i.e. for any z in Rd, ∥C(z)− z∥ < (1− δ)∥z∥ with δ ∈]0; 1[
[almost surely or in expectation, see for instance Seide et al., 2014, Stich et al., 2018, Karimireddy et al.,

Chapter 4. Distributed, compressed and averaged least-squares regression 61

2019, Ivkin et al., 2019, Koloskova et al., 2019, Gorbunov et al., 2020b, Beznosikov et al., 2020], or
unbiased with bounded variance increase, i.e., for any z in Rd, E[C(z)] = z and E[∥C(z)−z∥2] ≤ ω∥z∥2
for a parameter ω > 1 [see among others Alistarh et al., 2017, Wu et al., 2018, Mishchenko et al.,
2019, Chraibi et al., 2019, Gorbunov et al., 2020a, Reisizadeh et al., 2020, Horvath et al., 2022,
Kovalev et al., 2021, Philippenko and Dieuleveut, 2020, 2021, Haddadpour et al., 2021, Li and
Richtárik, 2021, Khirirat et al., 2018]. Unlike biased – and often deterministic – operators, unbiased
operators typically benefit from a variance reduction proportional to the number of clients (e.g.,
Gorbunov et al., 2020b vs Horváth et al., 2019).

In parallel, a line of work has thus focused on the design of compression schemes satisfying one of
these two assumptions [Bernstein et al., 2018, Dai et al., 2019, Beznosikov et al., 2020, Horvath et al.,
2022, Xu et al., 2020, Leconte et al., 2021, Gandikota et al., 2021, Ramezani-Kebrya et al., 2021,
Horvath et al., 2022]. Two fundamental strategies are typically combined: (1) quantization [Rabbat
and Nowak, 2005, Gersho and Gray, 2012, Alistarh et al., 2018], and (2) random projection [Vempala,
2005, Rahimi and Recht, 2008, Nesterov, 2012, Nutini et al., 2015]. These methods are compared
based on (1) the number of bits required for storing or exchanging a d dimensional vector and (2)
the resulting variance increase ω or contractiveness constant δ. Consequently, convergence results
are worst-case results over the class of compression operators: two compression operators satisfying
the same variance assumption are regarded as producing the same convergence rate.

The goal of this Chapter is to provide an in-depth analysis of compression within a fundamental
learning framework, namely least-squares regression [LSR, Legendre, 1806], in order to highlight
the differences in convergence between several unbiased compression schemes having the same
variance increase.

Especially, this analysis will highlight the impact of (1) the compression scheme’s regularity
(Lipschitz in squared expectation or not) and of (2) the correlation between the compression of the
different coordinates. We highlight three examples of possible take-aways from our analysis, that
will be detailed in Section 4.3.

Take-away 1. Quantization-based compression schemes do not have Lipschitz in squared expectation
regularity but satisfy a Hölder condition. Because of that, their convergence is degraded, yet they
asymptotically achieve a rate comparable to projection-based compressors, in which the limit covariance
is similar.

Take-away 2. Rand-h and partial participation with probability (h/d) satisfy the same variance
condition. Yet the convergence of compressed least mean squares algorithms for partial participation
is more robust to ill-conditioned problems.

Take-away 3. The asymptotic convergence rate is expected to be at least as good for quantization
than for sparsification or randomized coordinate selection, if the features are standardized. On the
contrary, if the features are independent and the feature vector is normalized, then quantization is
worse than sparsification or randomized coordinate selection.

We consider a random-design LSR framework and make the following assumption on the input-
output pairs distribution

Model 1 (Federated case). We consider N clients. Each client i in {1, . . . , N} accesses K in N∗

i.i.d. observations (xik, y
i
k)k∈{1,...,K} ∼ D⊗K

i , such that there exists a well-defined client-dependent
model wi

∗:

∀k ∈ {1, . . . ,K}, yik =
〈
xik, w

i
∗
〉
+ εik, with εik ∼ N (0, σ2) , (4.1)

Chapter 4. Distributed, compressed and averaged least-squares regression 62

for an i.i.d. sequence
(
(εik)k∈{1,...,K},i∈{1,...,N}

)
independent from

(
(xik)k∈{1,...,K},i∈{1,...,N}

)
. We use

the generic notation (xi, yi, εi) for such an input-output-noise triplet on client i. Moreover, we
assume that the inputs’ second moment1 is bounded to define E[xi ⊗ xi] = Hi and E[∥xi∥2] = R2

i ;
such that E[∥xi∥2xi ⊗ xi] ≼ R2

iHi. For any i ∈ {1, . . . , N}, we consider the expected squared loss on
client i of a model w as Fi(w) :=

1
2E(xi,yi)∼Di

[(
〈
xi, w

〉
− yi)2].

Remark 4.1 (Almost surely bounded features). In the case of linear compressors, we will also
assume that for each client i in {1, . . . , N}, features are almost surely bounded by R2

i .

This model is classical in the single worker case [e.g. Hsu et al., 2012, Bach and Moulines, 2013]:

Model 2 (Centralized case). We consider Model 1 with N = 1 client. For simplicity, we then omit
the i superscript.

We focus on the problem of minimizing the global expected risk F : Rd → R, thus finding the
optimal model w∗ in Rd such that:

w∗ = argmin
w∈Rd

{
F (w) :=

1

N

N∑
i=1

Fi(w)

}
. (OPT)

The (Fi)
N
i=1 are the squared loss defined on each client defined in Model 1. Note that we assume

that Span{Supp(xi), i ∈ {1, . . . , N}} = Rd to ensure the existence and uniqueness of w∗.

The empirical version of the risk minimization admits an explicit formula, yet is computationally
too expensive to compute for large problems. This is why, in practice, LSR is solved using iterative
stochastic algorithms, for example Stochastic Gradient Descent [SGD, see Robbins and Monro,
1951]. SGD for LSR is often referred to as the Least Mean Squares (LMS) algorithm [Bershad, 1986,
Macchi, 1995]. Analysis of LMS [Györfi and Walk, 1996, Bach and Moulines, 2013] and its variants
received a lot of interest over the last decades. Indeed despite its simplicity, LSR is a model of choice
for practitioners because of its efficiency to train good and interpretable models [see e.g. Molnar,
2018, chapter 5.1]. Moreover, its simplicity enables to isolate and analyze challenges faced in specific
configurations, for instance, non-strong convexity [Bach and Moulines, 2013], interaction between
acceleration and stochasticity [Dieuleveut et al., 2017, Jain et al., 2018a, Varre and Flammarion,
2022], non-uniform iterate averaging [Jain et al., 2018b, Neu and Rosasco, 2018, Muecke et al.,
2019], infinite-dimensional frameworks [Dieuleveut and Bach, 2016], biased compression and error-
compensation mechanism [Khirirat et al., 2020a], or over-parametrized regimes and double descent
phenomena [Belkin et al., 2019].

Our approach follows this line of work: our goal is to analyze the impact of compression in FL
algorithms, by providing a careful study of compressed LMS, based on a fine-grained analysis of
Stochastic Approximation (SA) under weak assumptions on the random field. More precisely, we
consider linear stochastic approximation recursion, to find a zero of the linear mean-field ∇F .

Definition 4.1 (Linear Stochastic Approximation, LSA). Let w0 ∈ Rd be the initialization, the
linear2 stochastic approximation recursion is defined as:

wk = wk−1 − γ∇F (wk−1) + γξk(wk−1 − w∗), k ∈ N, (LSA)

where γ > 0 is the step-size and (ξk)k∈N∗ is a sequence of i.i.d. zero-centered random fields that
characterizes the stochastic oracle on ∇F (·). For any k ∈ N∗, we denote Fk = σ (ξ1, . . . , ξk), such
that the filtration (Fk)k≥0 is adapted to (wk)k≥0.

1In the following, we may refer to this matrix H as the covariance (in the case of centered features, covariance is
equal to the second moment)

2While in LSA literature, both the mean-field ∇F and the noise-field (ξk) are linear, we do not here consider the
noise fields to be linear.

Chapter 4. Distributed, compressed and averaged least-squares regression 63

We assume that F is quadratic, we denote HF its Hessian, R2
F := Tr (HF) its trace and µ its

smallest eigenvalue. For any k in N, with ηk = wk − w∗, we get equivalently:

ηk = (I− γHF)ηk−1 + γξk(ηk−1), k ∈ N.

As underlined by Bach and Moulines [2013], (LSA) corresponds to a homogeneous Markov chain.
A study of stochastic approximation using results and techniques from the Markov chain literature
can be found for instance in Freidlin and Wentzell [1998] or more recently in Dieuleveut et al. [2020].

(LSA) encompasses three examples of interest, the first one is the classical LMS algorithm.
Indeed, with the observations in Models 1 and 2, for any client i ∈ {1, . . . , N}, any iteration k in
{1, . . . ,K}, any model w ∈ Rd,

gik(w) := (
〈
xik, w

〉
− yik)x

i
k (4.2)

is an unbiased oracle of ∇Fi(w). This can be used to define the following three algorithms.

Algorithm 1 (LMS). For LMS algorithm, with a single worker, we have for all k ∈ N, wk =
wk−1 − γgk(wk−1) = wk−1 − γ(⟨xk, wk−1⟩ − yk)xk, thus equivalently ξk(·) = (xkx

⊤
k − E[x1x⊤1])(·) +

(⟨w∗, xk⟩ − yk)xk.

Second, the case of a single client compressed LMS algorithm.

Algorithm 2 (Centralized compressed LMS). A single client (N = 1) observes at any step
k ∈ {1, . . . ,K} an oracle gk(·) on the gradient of the objective function F , and applies a random
compression mechanism Ck(·). Thus, for any step-size γ > 0 and any k ∈ N∗, the resulting sequence
of iterates (wk)k∈N satisfies: wk = wk−1 − γCk(gk(wk−1)) .

And finally, the extension to the distributed case.

Algorithm 3 (Distributed compressed LMS). In our motivating example, each client i ∈ {1, . . . , N}
observes at any step k ∈ {1, . . . ,K} an oracle gik(·) on the gradient of the local objective function Fi,
and applies a random compression mechanism Cik(·). Thus, for any step-size γ > 0 and any k ∈ N∗,
the resulting sequence of iterates (wk)k∈N satisfies: wk = wk−1 − γ

N

∑N
i=1 Cik(gik(wk−1)) (we consider

the randomization made on clients (Cik(·))i∈{1··· ,N} to be independent)

Remark 4.2. The analysis naturally covers any randomized postprocessing Cik(·), beyond the com-
pression case.

Challenges, contributions and structure of the Chapter. Although there is abundant
literature on the study of (LSA), the application to Algorithms 2 and 3 poses novel challenges.
Especially, most analyses of LSA [Blum, 1954, Ljung, 1977, Ljung and Söderström, 1983] assume
that the field ξk is linear [i.e. for any z, z′ ∈ Rd, ξk(z)− ξk(z

′) = ξk(z− z′), see Konda and Tsitsiklis,
2003, Benveniste et al., 2012, Leluc and Portier, 2022]. More general non-asymptotic results on SA
with a Lipschitz mean-field (i.e. SGD with a smooth objective) also assume that the noise-field is
Lipschitz-in-squared-expectation i.e. for any z, z′ ∈ Rd,E[∥ξk(z)− ξk(z

′)∥2] ≤ C∥z − z′∥2 [Moulines
and Bach, 2011, Bach, 2014, Dieuleveut et al., 2020, Gadat and Panloup, 2023]. One major specificity
and bottleneck in the case of compression is the fact that the resulting field does not satisfy such
an assumption. The rest of the Chapter is thus organized as follows:

1. In Section 4.2, we provide a non-asymptotic analysis of (LSA) under weak regularity assumptions of
the noise field (ξk)k. We show that the asymptotically dominant term depends on the covariance
matrix Cania of the additive noise induced by the algorithm, as expected from the classical
asymptotic literature [Polyak and Juditsky, 1992]. The backbone results of our Chapter are
Theorems 4.1 and 4.2 which generalize the results from Bach and Moulines [2013] for Algorithm 1.
The limit convergence rate term scales with Tr

(
CaniaH

−1
F

)
/K, which highlights the interaction

between the Hessian of the optimization problem HF , and the additive noise’s covariance Cania.

Chapter 4. Distributed, compressed and averaged least-squares regression 64

General result on LSA Section 2

Section 3.2

Algorithm 2

Figure 7

Corollary 2

Section 4

Algorithm 3

Figure 8

Corollary 4 and 5

Theorem 1 and 2
Corollary 1

Impact of C on Cania Section 3.3

Figures 3, 4, 5, 6

Proposition 2

Corollary 3

Proposition 4

Proposition 3

Figure 4.1: Flow chart summarizing our results.

2. In Section 4.3, we prove that assumptions made in Section 4.2 are valid for Algorithm 2 with
classical compression schemes. Although this single-client case is a simple configuration, it enables
to describe the impact of the compressor choice on the dependency between the features’ covariance
H (which is also the Hessian HF of the optimization problem) and the additive noise’s covariance
Cania. Contrary to Algorithm 1, for which the noise is said to be structured, i.e. the additive
noise’s covariance is proportional to the Hessian HF , applying a random compression mechanism
on the gradient breaks this structure. This phenomenon is noteworthy: for an ill-conditioned
HF , it may lead to a drastic increase in Tr

(
CaniaH

−1
F

)
and thus, to a degradation in convergence.

By calculating the additive noise’s covariance for various compression mechanisms, we identify
differences that classical literature was unable to capture.

3. In Section 4.4, we study the distributed Algorithm 3 with heterogeneous clients. We examine
two different sources of heterogeneity for which we show that Theorems 4.1 and 4.2 remain valid.
First, the case of heterogeneous features’ covariances (Hi)

N
i=1 in Subsection 4.4.1; second, the case

of heterogeneous local optimal points (wi
∗)

N
i=1 in Subsection 4.4.2.

These results are validated by numerical experiments which help to get an intuition of the
underlying mechanisms. The code is provided on our GitHub repository. We summarize the
structure of the Chapter in Figure 4.1.

Notations. We denote by ≼ the order between self-adjoint operators, i.e., A ≼ B if and only if
B −A is positive semi-definite (p.s.d.) and A

∼
≼ B if A ≼ B and A = B +O(1d). We denote by A1/2

the p.s.d. square root of any symmetric p.s.d. matrix A. For two vectors x, y in Rd, the Kronecker
product is defined as x⊗ y := xy⊤, the element-wise product is denoted as x⊙ y, and the Euclidean
norm is ∥x∥2 :=∑d

i=1 x
2
i . For any rectangular matrix A in Rn×m s.t. AA⊤ is inversible, we denote

A† := A⊤(AA⊤)−1 the Moore–Penrose pseudo inverse. For x, y in Rd, we use x∧ y for the minimum
between two values, and x

∼≤ y if x ≤ y and x = y +O(1d). For any sequence of vector (xk)k∈{0,...,K}
we denote xK−1 =

∑K−1
k=0 xk/K. We use ei to denote the vector in Rd with zero everywhere except

at coordinate i, and Od(R) the group of orthogonal matrices. Finally, all random variables are
defined on a probability space (Ω,A,P),E is the expectation associated with the probability P and
A is a σ-algebra. We define the set of probability distribution function PM whose second moment is
equal to M in Rd×d: PM = {probability distribution pM over Rd s.t.,Eε∼pM [ε⊗2] = M} . Any such
distribution pM is indexed with its matrix of covariance.

4.2 Non asymptotic convergence result for (LSA)

4.2.1 Definition of the additive noise’s covariance and assumptions on the
random fields

For any k in N∗, we define the additive noise ξaddk and the multiplicative noise ξmult
k (·).

Chapter 4. Distributed, compressed and averaged least-squares regression 65

Definition 4.2 (Additive and multiplicative noise). Under the setting of Definition 4.1, for any k
in N∗, we define:

ξaddk := ξk(0) and ξmult
k : z ∈ Rd 7→ ξk(z)− ξaddk .

Remark 4.3. Observe that (ξaddk)k∈N∗ is an i.i.d. sequence of random variables and (ξmult
k)k∈N∗ is

an i.i.d. sequence of random field. The following assumptions, made for k = 1, are thus equivalently
valid for any k ≥ 1.

Assumption 4.1 (Second moment). ξadd1 admits a second order moment. We note A in Rd s.t.
E[∥ξadd1 ∥2] ≤ A.

Assumption 4.1 and Remark 4.3 enable us to define the covariance of the additive noise induced
by the algorithm.

Definition 4.3 (Additive noise’s induced by the algorithm’s covariance.). Under the setting of
Definition 4.1, we define the additive noise’s covariance as the covariance of the additive noise:
Cania = E[ξadd1 ⊗ ξadd1] .

Secondly, we state our assumptions on the multiplicative part of the noise, especially its regularity
around 0 (note that ξmult

1 (0) = 0).

Assumption 4.2 (Second moment of the multiplicative noise). There exist two constantsM1,M2 >
0 such that, for any η in Rd, the following hold:

A4.2.1: E[∥ξmult
1 (η)∥2] ≤ 2M2∥H1/2

F η∥2 + 4A .

A4.2.2: E[∥ξmult
1 (η)∥2] ≤M1∥H1/2

F η∥+ 3M2∥H1/2
F η∥2.

The main originality of this section is the analysis under Assumption 4.2.2. This Hölder-type
condition will appear naturally for compression in Section 4.3. Up to our knowledge, (LSA) has not
been analyzed under this particular condition.

Under these assumptions, asymptotic results from Polyak and Juditsky [1992] can be applied.
Especially, we establish the asymptotic normality of (

√
KηK−1)K>0, with an asymptotic variance

equal to H−1
F CaniaH

−1
F .

Proposition 4.1 (CLT for (LSA)). Under Assumptions 4.1 and 4.2, consider a sequence (wk)k∈N∗

produced in the setting of Definition 4.1 for a step-size (γk)k∈N∗ s.t. γk = k−α, α ∈]0, 1[. Then
(
√
KηK−1)K>0 is asymptotically normal and converge in distribution to N (0, H−1

F CaniaH
−1
F).

The proof of this result is almost straightforward and is recalled in Subsection D.1.3. In the
following, we establish non-asymptotic results in Theorems 4.1 and 4.2, that highlight the impact of
Assumption 4.2.2.

4.2.2 Convergence rates for (LSA), general case

In this section, we present non-asymptotic convergence rates for (LSA) under the assumptions above.
These results build upon the work of Bach and Moulines [2013]. Our first result is the main result,
under the Hölder assumption on the noise field, it is demonstrated in Section D.2.

Theorem 4.1 (Non-linear multiplicative noise). Under Assumptions 4.1 and 4.2, consider a
sequence (wk)k∈N∗ produced in the setting of Definition 4.1 for a constant step-size γ such that

Chapter 4. Distributed, compressed and averaged least-squares regression 66

γ(R2
F + 2M2) ≤ 1/2. Then for any horizon K, we have:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√

Tr
(
CaniaH

−1
F

)
+ (10Aγ)1/4

√
M1µ−1

+ (30Aγ)1/2
√
M2µ−1

)2

.

The first two terms of the RHS correspond respectively to the impact of the initial condition η0
and the impact of the additive noise. The dependency on these two terms is similar to the one
established in Bach and Moulines [2013] in the case of LMS. Note that following Defossez and Bach

[2015], we improve the dependency on the initial condition to ∥η0∥2
γK ∧ ∥H−1/2

F η0∥2
γ2K2 . Regarding the noise

term, the dependency on Tr(CaniaH
−1
F)

2K corresponds to the classical asymptotic noise term in CLT for
Stochastic Approximation [e.g., Delyon, 1996, Duflo, 1997, Györfi and Walk, 1996]. In fact, for a
sequence of step sizes γt decreasing to zero, we recover the variance from Proposition 4.1. Remark
that in [Bach and Moulines, 2013] and several follow up works, the algorithm under consideration
is LMS (Algorithm 1, which enables to ensure that Cania ≼ σ2HF : the variance term thus scales
as σ2d/K. On the contrary, Algorithms 2 and 3 do not always satisfy Cania ≼ σ2HF : in such case,
Tr
(
CaniaH

−1
F

)
may scale as 1/µ.

The third and fourth term, that scale respectively as √γ/K and γ/K, are asymptotically
negligible for γ = o(1). Those terms are proportional to the Hölder-regularity constantsM1,M2,
and also increase with µ−1. The dominant term is M1

√
10Aγ

µK . Interestingly, when γ is constant (not
decreasing with K), then the limit variance of the algorithm is affected. Moreover, contrary to [Bach
and Moulines, 2013], we do not recover a convergence rate independent of µ. This dependency is
un-avoidable as the multiplicative noise is only controlled around w∗: without strong-convexity, the
iterates may not converge to w∗. While these additional terms in the variance may be considered as
a drawback, it can be mitigated by taking a step-size γ proportional to 1/Kα with α > 0 small (γ is
horizon dependent, but constant).

Corollary 4.1. Under the assumptions of Theorem 4.1, with γ = 1/Kα, and α ∈]0, 1/2[, we have:

E[F (wK−1)− F (w∗)] ≤
60

K

(
Tr
(
CaniaH

−1
F

)
+
∥H−1/2

F η0∥2

K(1−2α)
+
M1

√
A

µKα/2
+
M2A
µKα

)
.

The decrease of the second order terms is then optimized for α = 2/5. To highlight the impact
of the non-linearity in compression schemes, we provide for comparison the result for a linear
multiplicative noise.

4.2.3 Convergence rates for (LSA), linear case

Alternatively, to cover the particular case of a linear multiplicative noise (e.g., to recover LMS or
projection-based compressed LMS) we make the following stronger hypothesis:

Assumption 4.3. The multiplicative noise is linear i.e. there exists a random matrix Ξ1 in Rd×d

s.t. for any η in Rd, we have a.s. ξmult
1 (η) = Ξ1η. Moreover E[∥ξmult

1 (η)∥2] ≤M2∥H1/2
F η∥2.

Remark 4.4. Note that Ξ1 is not necessarily symmetric (in Algorithms 2 and 3, this results from
the compression).

In addition to Assumption 4.3, in the case of linear multiplicative noise, we also consider the
following assumption.

Chapter 4. Distributed, compressed and averaged least-squares regression 67

Assumption 4.4. The following hold.

A4.4.1: There exists a constant3 Xadd > 0 s.t. Cania ≼ XaddHF .

A4.4.2: There exists a constant Xmult > 0, such that E
[
Ξ1Ξ

⊤
1

]
≼ XmultHF .

Remark 4.5 (Link between Assumptions 4.1, 4.2 and 4.4). Assumption 4.1 (resp. Assumption 4.2)
corresponds to an assumption on the second order moment of the additive noise (resp. multiplicative),
while Assumption 4.4.1 (resp. Assumption 4.4.2) is a (stronger) assumption on its covariance.

Theorem 4.2 (Linear multiplicative noise). Under Assumptions 4.1, 4.3 and 4.4, i.e., with a linear
multiplicative noise. Consider a sequence (wk)k∈N∗ produced in the setting of Definition 4.1, for a
constant step-size γ such that γ(R2

F +M2) ≤ 1 and 4Xmultγ ≤ 1. Then for any horizon K, we have

E[F (wK−1)− F (w∗)] ≤
1

2K

(∥η0∥√
γ

+
√
Tr
(
CaniaH

−1
F

)
+ 2 (γdXaddXmult)

1/2

)2

.

Theorem 4.2 generalizes Theorem 1 from Bach and Moulines [2013]. It also highlights the impact
of additive noise’s covariance, and the comparison between Theorem 4.1 and Theorem 4.2 shows
the advantage of linear compression schemes. Indeed the variance scales as K−1(Tr

(
CaniaH

−1
F

)
+

4γdXaddXmult). As before, the first term Tr
(
CaniaH

−1
F

)
corresponds to the asymptotic variance

given in Proposition 4.1, and the second term is negligible: (i) for all 4Xmultγ ≤ 1 it can be
upper bounded by dXadd, and for LMS [see Bach and Moulines, 2013], the variance term is
Tr
(
CaniaH

−1
F

)
= dσ2, which is thus at least as large, (ii) it scales with γ thus is asymptotically

negligible as γ tends to 0. Overall, depending on Cania, the algorithm may or may not suffer from the
lack of strong-convexity (µ tending to 0). More precisely, in the case of linear multiplicative noise,
we can obtain a O(K−1) rate independent of µ if and only if Cania ≼ aHF , with a in R. The proof
of Theorem 4.2 is given in Section D.3, and follows the line of proof of Bach and Moulines [2013].

Conclusion: we established rates for (LSA) for both the Hölder-noise case and the linear noise
case. In the former, convergence requires strong convexity while in the latter, we can achieve O(K−1)

for Cania ≼ aHF . In both cases, the dominant term for an optimal choice of γ scales as Tr(CaniaH
−1
F)

K .

In the following section, we turn to the analysis of Algorithm 2: we show how the choice of the
compression impacts both the linearity of the noise and the structure of Cania.

4.3 Application to Algorithm 2: compressed LSR on a single worker

In this section, we analyze Algorithm 2, i.e. compressed LSR. In Subsection 4.3.1, we introduce
the compression operators of interest and verify in Subsection 4.3.2 that Theorems 4.1 and 4.2
can be applied. Then, in Subsection 4.3.3, we provide explicit formulas of Tr

(
CaniaH

−1
)

for
various compression schemes. Finally, in Subsection 4.3.4, we validate our findings with numerical
experiments.

4.3.1 Compression operators

Our analysis applies to most unbiased compression operators.

Definition 4.4 (Compression operators). Let z ∈ Rd.

1. 1-quantization is defined as Cq(z) := ∥z∥sign(z)⊙ χ with χ ∼ ⊗d
i=1(Bern(|zi|/∥z∥2)).

3This letter X is the Russian upper letter “sha”.

Chapter 4. Distributed, compressed and averaged least-squares regression 68

2. Stabilized 1-quantization is defined as Csq(z) := U⊤Cq(Uz), with U ∈ Unif(Od).

3. Rand-h is defined as Crdh(z) := d
hB(S)⊙ z with S ∼ Unif(Ph([d])) and B(S)i = 1i∈S.

4. Sparsification is defined as Cs(z) := 1
pB ⊙ z ∈ Rd with B ∼ ⊗d

i=1 (Bern(p)) .

5. Partial participation is defined CPP(z) := b0
p z with b0 ∼ Bern(p).

6. Random Projection, also referred to as sketching, is defined as CΦ(z) := 1
pΦ

†Φz, where
h ≪ d ∈ N, p = h/d and Φ ∈ Rh×d is a random projection matrix onto a lower-dimension
space [Vempala, 2005, Li et al., 2006]. In the following, we consider Gaussian projection, where
each element i, j ∈ J1, hK× J1, dK follows an independent zero-centered normal distribution.

We refer to the introduction for related work on compression. Operators Cq, Csq are quantization-
based schemes while Crd1, Cs, CPP, CΦ are projection-based. Indeed sparsification can be seen as a
random projection (for h≪ d, p = h/d and h randomly sampled coordinates I from J1, dK such that
for any i ∈ I, the ith lines of Φ are equal to ei ∈ Rd, and equal to zero otherwise). For CPP, the
motivation is distributed settings, in which the intermittent availability of clients prevents them
from systematically participating in the training. This can be modeled through partial participation:
clients only participate in a fraction p of the training steps. In theoretical analyses, this can be
handled as a compression scheme CPP, in which the compression of a vector z is either z/p or 0.
Observe that in the centralized case, this is slightly artificial as it actually means that no update
is performed at most steps and that the step-size is scaled at the other steps. Finally, we denote
CId : z ∈ Rd 7→ z the operator that does not carry out any compression.

Remark 4.6. The analysis of random projection is related to Random features [Rahimi and Recht,
2008], usually used for Kernel learning in infinite dimensions. Nyström method [introduced by Kumar
et al., 2009] is another similar technique of compression often used in this setting, it consists of
removing a subset S ⊂ {1, · · · , d} of lines and columns in the kernel matrix K. Both techniques
have been extensively studied in the context of linear and non-linear kernel learning [Rudi et al.,
2015, 2017, Rudi and Rosasco, 2017, Lin and Rosasco, 2017]. Recently, the combination of SGD
and random features has been analyzed by Carratino et al. [2018]. However, their results cannot be
directly applied to our setting for two reasons. Firstly, their analysis is for infinite dimensions, where
they obtain a O(1/

√
K) rate of convergence. Secondly, the compressions used in their approach are

not independent at each iteration.

Remark 4.7. Diffusion LMS (i.e. distributed learning without a central server) has also been studied
from the perspective of low-cost training by Arablouei et al. [2015], Harrane et al. [2018], but using
only clients’ partial participation or sparsification. Contrary to our work they use biased compression
and an adaptive correction step to compensate for the induced error. They provide results guarantying
asymptotic convergence [Harrane et al., 2018, see Equations (28)-(37)].

4.3.2 Applicability of the results on (LSA) from Section 4.2

We first show that our results from Section 4.2 can be applied for Algorithm 2 with a random
compression operator C, in the case of Model 2.

Lemma 4.1. For any compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, there exists constants ω,Ω ∈ R∗
+,

such that the random operator C satisfies the following properties for all z, z′ ∈ Rd.

L.1: E[C(z)] = z and E[∥C(z)− z∥2] ≤ ω∥z∥2 (unbiasedness and variance relatively bounded),
L.2: E[∥C(z)− C(z′)∥2] ≤ Ωmin(∥z∥, ∥z′∥)∥z − z′∥+ 3(ω + 1)∥z − z′∥2(Hölder-type bound),

with ω =
√
d and Ω = 12

√
d (resp. ω = (1−p)/p and Ω = 0) for Cq and Csq (resp. Crdh, Cs, CΦ, CPP).

Chapter 4. Distributed, compressed and averaged least-squares regression 69

We note C the set of unbiased compressors verifying Lemma 4.1. Item L.1 is frequently established
in the literature and corresponds to the worst-case assumption, see the introduction for references.
On the other hand, Item L.2 is the Hölder-type bound, which is not used in the literature up to our
knowledge. The expected squared distance between the compression of two nearby points scales
with the non-squared norm of the distance. Moreover, the distance is multiplied by an unavoidable
coefficient scaling with z, z′. Remark that in Item L.2, we assume the compression randomness to
be the same for the compression of z and z′: formally, we control W2(C(z), C(z′))2, with W2 the
Wassertein-2 distance. This lemma is demonstrated in Subsection D.5.1.

Remark 4.8. For a given ω, note that the communication cost c for quantization-based and
projection-based compressors is not always equivalent. For 1-quantization we have c ≈ 3

2

√
d log2 d+32

while for projection-based we have c ≈ 32
√
d, for

√
d-quantization we have c ≈ 3d + 32 while for

projection-based we have c = 16d.

Lemma 4.1 enables to show that Theorems 4.1 and 4.2 Algorithm 2 are valid in the context of
Model 2.

Corollary 4.2. Consider Algorithm 2 in the context of Model 2, with a compressor C ∈ {Cq, Csq, Crdh, Cs,
CΦ, CPP}. With Lemma 4.1 above, Assumptions 4.1 and 4.2 on the resulting random field (ξk)k∈N∗

are valid, with in particular HF = H, R2
F = R2, A = (ω + 1)R2σ2, M2 = (ω + 1)R2, M1 = ΩR2σ.

Therefore, it follows that Theorem 4.1 holds.

Moroever for any linear compressor C ∈ {Crdh, Cs, CΦ, CPP}, under Remark 4.1, we also have that
Assumptions 4.3 and 4.4 are valid with Xadd = σ2XH and Xmult = R2XH , with XH given below.
Therefore, it follows that Theorem 4.2 holds.

Compressor Crdh Cs CPP CΦ
XH

h−1
p(d−1) + (1− h−1

d−1)
τ
p 1 + (1−p)τ

p
1
p

α−β
p + βτ

p

XH (if H diagonal) 1
p

1
p

1
p

α−β
p + βτ

p

Where p = h/d, τ = Tr (H) /µ, and for sketching α = h+2
d+2 and β = d−h

(d−1)(d+2) .

This corollary is proved in Section D.4. We observe that a first difference in terms of convergence
exists between quantization-based compression and projection-based: for the former, only Theorem 4.1
can be applied and the lower-order terms always have a poorer dependency on µ while for the latter,
Theorem 4.2 is applicable and lower-order terms do not necessarily depends on µ. Indeed, the
constants XH do not depend on µ for CPP, and for Crd1, Cs, when the features’ covariance H is
diagonal. On the contrary, there is always a dependency on µ for CΦ, and for Crd1, Cs when H is not
diagonal. In practice, this means that, among projection-based compressors, regarding lower-order
terms, the convergence is expected to be slower for random Gaussian projection.

We now turn to the analysis of the impact of the choice of the compression on the dominant
asymptotic term Tr

(
H−1

F Cania

)
.

4.3.3 Impact of the compression on the additive noise covariance

In this section, we illustrate how distinct compressors lead to different covariances for the additive
noise. This shows how Tr

(
H−1

F Cania

)
is impacted by the choice of a compressor.

First recall that for Algorithm 2 in the context of Model 2, with any compressor C, the additive
noise writes for any k ∈ {1, . . . ,K}, as:

ξaddk
def. 4.2
= ξk(0)

algo 2
= ∇F (w∗)− Ck(gk(w∗))

eq. 4.2
= −Ck((⟨xk, w∗⟩ − yk)xk)

model 2
= Ck(εkxk) .

Chapter 4. Distributed, compressed and averaged least-squares regression 70

Also recall that Cania is defined as Cania := E[(ξaddk)⊗2] = E[C(εkxk)⊗2]. Moreover, note that
C(εkxk) a.s.

= εkC(xk) for all operators under consideration (this is immediate for linear operators and
results from the scaling for quantization-based ones). Consequently

Cania = E[ε2kC(xk)⊗2] = σ2E[C(xk)⊗2], (4.3)

as E[ε2k|xk] = σ2. Ultimately, we have to study the covariance of C(xk), for xk a random variable
with second-moment H.

We thus generically study the covariance of C(E), for E a random vector with distribution pM
with second moment4 E[E⊗2] = M .

Definition 4.5 (Compressor’ covariance on pM). We define the following operator C which returns
the covariance of a random mechanism C acting on a distribution pM ∈ PM ,

C :
C× PM → Rd×d

(C, pM) 7−→ E[C(E)⊗2] ,

where E ∼ pM and the expectation is over the joint randomness of C and E, which are considered
independent, that is E[C(E)⊗2] =

∫
Rd E[C(e)⊗2]dpM (e).

−1 0 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Normal distribution

−1 0 1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Diamond distribution

C(C∅, pI2/2)

C(Cqtzt, pI2/2)

No compression

Compression

C(C∅, pI2/2)

C(Cqtzt, pI2/2)

Figure 4.2: Illustration of Remark 4.9

Using a compressor C ∈ C, we therefore have by Equa-
tion (4.3):

Cania = σ2C(C, pH), (4.4)

where pH is the marginal distribution of xk (for any k).

Remark 4.9 (Dependence on pM , not only M). Note that,
for C = Cq, there exist two distributions pM , p′M with the
same covariance M , such that C(C, pM) ̸= C(C, p′M). This is why we cannot simply denote C(C,M).

Indeed, consider d = 2 and (1) a normal distribution E1 ∼ N (0, I2/2), vs (2) a diamond
distribution E2 ∼ P⋄, such that P⋄{(1, 0)} = P⋄{(−1, 0)} = P⋄{(0, 1)} = P⋄{(0,−1)} = 1/4 ,
and thus Cov [E1] = Cov [E2] = I2/2. Then Cov [E1] ≺ Cov [Cq(E1)], but Cq(E2)

a.s.
= E2 thus

Cov [E2] = Cov [Cq(E2)]. We illustrate this on Figure 4.2: we represent Ei in blue and Cq(Ei) in
orange for i = 1 (left) and i = 2 (right). We also represent the covariance matrices by plotting the
ellipses ECov[Ei] and ECov[Cq(Ei)], where EM = {x ∈ Rd, x⊤M−1x = 4} (see Definition A.1)5.

We now compute for the compression operators, the value or an upper bound on C(C , pH).

Proposition 4.2 (Compression and covariance). The following formulas hold:

C(CId , pM) = M

C(Cq, pM) ≼ C̃(Cq,M) := M +
√
Tr (M)

√
Diag (M)−Diag (M)

(with equality if ∥E∥ is a.s. constant under pM)

C(Cs, pM) = M + (1− p)p−1Diag (M)

C(CΦ, pM) = p−1
(
(h+1
d+2 + δhd)M +

(
1− h−1

d−1

)
Tr(M)
d+2 Id

)
, with δhd = h−1

(d−1)(d+2) = O(1d)

C(Crdh, pM) = p−1
(
h−1
d−1M +

(
1− h−1

d−1

)
Diag (M)

)
C(CPP, pM) = p−1M .

4Remark that we do not assume E[E] = 0. Indeed, all computations only depend on the second-order moment
M of E, not on its variance (and the convergence depends of the second-order moment H of x, not its variance).
It is clear, that E[C(E)⊗2] does not depend on the fact that E is centered: indeed, for R a Rademacher 1/2

independent of E, we have E[C(E)⊗2] = E[R2]E[C(E)⊗2]
⊥
= E[(RC(E))⊗2] = E[C(RE)⊗2] and RE is (1) centered (2)

has the same second-moment as E. Remark that centering the covariates before learning does impact H: indeed
H = E[(x)⊗2] = E[(x− E[X])⊗2] + (E[X])⊗2). Centering subtracts (E[X])⊗2 to the second moment, which is a rank-1
matrix, typically does not affect the smallest eigenvalue, but it can affect the top-eigenvalue.

5The constant 4 is chosen so that for Gaussian distributions, the expected fraction of points within the ellipse is
86, 4% ≃ 1− Fχ2(2)(4)

Chapter 4. Distributed, compressed and averaged least-squares regression 71

Conclusion and interpretation. Most compression operators induce both a structured noise
[Flammarion and Bach, 2015] which covariance scales with H and an unstructured noise, which
covariance scales with Diag (H) or Id – thus corresponding to an isotropic noise.

From the convergence standpoint, the asymptotic convergence rate scales with Tr
(
CaniaH

−1
)
=

σ2Tr
(
C(C , pH)H−1

)
. Therefore, the un-structured part in the noise is problematic as Tr

(
CaniaH

−1)
)

will strongly depends on the smallest eigenvalue µ. This comes from the fact that the compression
induces a significant noise in directions in which the Hessian curvature is very limited (thus directions
onto which the contraction towards the optimum in the algorithm is weak).

A particular case is when H is diagonal (e.g. the features are centered and independent), we get
the following corollary.

Corollary 4.3 (Compression and covariance, diagonal case). If M is diagonal, then Proposition 4.2
is simplified to the following (with the same δhd):

C(CId , pM) = M C(CΦ, pM) = p−1
(
(h+1
d+2 + δhd)M + (1− h−1

d−1)
Tr(M)
d+2 Id

)
C(Cq, pM) ≼

√
Tr (M)

√
M C(Crdh, pH) = p−1M

C(Cs, pM) = p−1M C(CPP, pM) = p−1M.

Remark 4.10 (Composition of compressors). For all compression schemes but Cq, we observe that
C(C , pM) is a function of M , which complements Remark 4.9. In that particular case, we can then
denote C(C,M). This means that the lemma can be extended to any composition of compression
schemes, for example to compute C(C1 ◦ C2,M) = C(C1,C(C2,M)).

From Proposition 4.2 and Corollary 4.3 we can deduce certain generic comparisons between the
asymptotic convergence rates, depending on the compression operator (for compression operators
having the same variance bound). They are proven in Subsection D.5.3. In the following, for
any a, b ∈ R, we use the notation a

∼≤ b, to denote a systematic inequality (i.e., a ≤ b) with a
negligible difference as d→∞ (i.e., a = b+O(1/d)), and similarly for any two symmetric matrices
A,B ∈ Sd(R), A

∼
≼ B, for A ≼ B and A = B +O(1/d) as d→∞.

Proposition 4.3 (Comparison between CPP, Cs, Crdh, CΦ, ω = d/h− 1). We consider C ∈ {CPP, Cs,
Crdh, CΦ} with p = h/d, such that C always satisfies Lemma 4.1 with ω = d/h − 1. For any
matrix M ∈ Rd×d:

1. If M is diagonal, then:

• C(CPP, pM) = C(Cs, pM) = C(Crdh, pM) = d
hM ,

• Tr
(
C(CPP/s/rdh, pM)M−1

)
≤ Tr

(
C(CΦ, pM)M−1

)
.

This means that the asymptotic convergence rate does not depend on the choice of the compressor
between CPP, Cs, Crd1 in the diagonal case.

2. Moreover, for any matrix M with a constant diagonal (e.g., we standardize6 the data in the
pre-processing step, such that Diag (M) = Id), we have:

Tr(C(CPP, pM)M−1) ≤ Tr(C(CΦ, pM)M−1) ≤ Tr(C(Cs, pM)M−1) ≤ Tr(C(Crdh, pM)M−1) .

With strict inequalities if M is not proportional to Id. This means that we expect the asymptotic
convergence rate to be faster for PP than Sparsification, Sketching, or Rand-h (illustrated in
experiments).

In the next proposition, we compare compressors Cs, CPP to Cq for equal ω =
√
d (we exclude Crdh

and CΦ for which h must be an integer and that are shown to be worse than Cs in Proposition 4.3).
6That means we center and rescale to get a variance of one for each feature.

Chapter 4. Distributed, compressed and averaged least-squares regression 72

-5.5 -2.8 0.0 2.8 5.5

-6.2

-4.1

-2.1

0.0

2.1

4.1

6.2

Qtzd

-5.5 -2.8 0.0 2.8 5.5

StabilizedQtz

-5.5 -2.8 0.0 2.8 5.5

Sketching

-5.5 -2.8 0.0 2.8 5.5

Sparsification

-5.5 -2.8 0.0 2.8 5.5

Rand1

-5.5 -2.8 0.0 2.8 5.5

PartialParticipation

Figure 4.3: H not diagonal. Scatter plot of (xk)Ki=1/ (C(xk))Ki=1 with its ellipse ECov[xk]/ECov[C(xk)].

-5.6 -2.8 0.0 2.8 5.6

-6.3

-4.2

-2.1

0.0

2.1

4.2

6.3

Qtzd

-5.6 -2.8 0.0 2.8 5.6

StabilizedQtz

-5.6 -2.8 0.0 2.8 5.6

Sketching

-5.6 -2.8 0.0 2.8 5.6

Sparsification

-5.6 -2.8 0.0 2.8 5.6

Rand1

-5.6 -2.8 0.0 2.8 5.6

PartialParticipation

Figure 4.4: H diagonal. Scatter plot of (xk)Ki=1/(C(xk))Ki=1 with its ellipse ECov[xk]/ECov[C(xk)].

Proposition 4.4 (Comparison between CPP, Cq, Cs, ω =
√
d). We consider C ∈ {CPP, Cq, Cs} with

p = (
√
d+ 1)−1, such that C always satisfies Lemma 4.1 with ω =

√
d.

1. For any symmetric matrix M diagonal, we have:

Tr
(
C(CPP, pM)M−1

)
= Tr

(
C(Cs, pM)M−1

) possib. ≪
≤

(
1 +

1√
d

)
Tr
(
C̃(Cq,M)M−1

)
.

2. If M is not necessarily diagonal but with a constant diagonal (e.g., after standardization), then

• C̃(Cq,M) ≼ C(Cs, pM)

• Tr
(
C(CPP, pM)M−1

)
≤
(
1 + 1√

d

)
Tr
(
C̃(Cq,M)M−1

)
This means that sparsification is expected to always result in a poorer asymptotic convergence rate
than quantization. Moreover, the upper bound on the covariance C̃(Cq,M) for quantization itself
leads to a worst bound than for PP.7

We now propose a detailed illustration of the results of Proposition 4.2 and Corollary 4.3, first in
a low-dimensional setting (d = 2) and then in higher dimension on synthetic and real datasets.

4.3.3.1 Illustration of Proposition 4.2 and Corollary 4.3 in dimension 2.

In order to build intuition, we illustrate Proposition 4.2 and Corollary 4.3 in Figures 4.3 and 4.4,
showing how compression affects the additive noise covariance, in a simple 2-dimensional case, for
both a non-diagonal matrix M (Figure 4.3) and a diagonal one (Figure 4.4).

More specifically, we consider features (xk)k∈{1,...,K} sampled from N (0,M) where M = QDQ,
D = Diag (1, 10) and Q is rotation matrix with angle π/8 (resp. 0) in Figure 4.3 (resp. 4.4). We
represent the values of xk and C(xk), unit-ellipses of the corresponding covariance matrices ECov[xk]

and ECov[C(xk)] (see Definition A.1 – recall that ECov[xk] ⊂ ECov[C(xk)] ⇔ Cov [xk] ≼ Cov [C(xk)]), as
well as their two eigenvectors; we take p = (1 +

√
d)−1 = 0.41, hence for C ∈ {Cq, Csq, Cs, CPP} we

have ω = 1.41 but for sketching and rand-1, we have p = 1/2 and ω = (1− p)/p = 1.

We make the following observations:
7Note that the behavior for quantization, apart from the upper bound C̃(Cq,M) is not quantified, it is thus possible

that quantization performs even better than PP.

Chapter 4. Distributed, compressed and averaged least-squares regression 73

0 1 2
log(i), ∀i ∈ {1, ..., d}

−8

−6

−4

−2

0

lo
g(

ei
g(

C
an

ia
) i

)

Empirical eigenvalues

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

0 1 2
log(i), ∀i ∈ {1, ..., d}

Theoretical eigenvalues

empirical

theoretical

empirical

theoretical

(a) M diagonal, d = 100

0 1 2
log(i), ∀i ∈ {1, ..., d}

−8

−6

−4

−2

0

lo
g(

ei
g(

C
an

ia
) i

)

Empirical eigenvalues

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

0 1 2
log(i), ∀i ∈ {1, ..., d}

Theoretical eigenvalues

empirical

theoretical

empirical

theoretical

(b) M non-diagonal, d = 100

0.5 1.0 1.5 2.0
log(i), ∀i ∈ {1, ..., d}

0

2

4

6

8

lo
g(

T
r(

C
an

ia
H
−

1
))

M diagonal

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

0.5 1.0 1.5 2.0
log(i), ∀i ∈ {1, ..., d}

M non-diagonal

(c) Tr
(
CaniaM

−1
)
, d ∈ J2, 100K

Figure 4.5: Figures 4.5a & 4.5b: Eigenvalues of C(C , pM). Figure 4.5c:
Tr
(
C(C , pM)M−1

)
. K = 104, ω = 10, M = QDiag

(
(1/i4)di=1

)
QT and Q = Id (on 4.5a & 4.5c-l) or

Q ∼ Unif(Od) (on 4.5b & 4.5c-r). Plain lines: empirical values; dashed lines: theoretical formula or
upper bound given by Proposition 4.2.

[Qtz] For quantization and stabilized quantization, in the non-diagonal case, the eigenvectors of
ECov[xk] and ECov[C(xk)] are slightly8 different (as

√
Diag (M) and M are not jointly diagonal-

izable, as well as if Diag (M) is constant, although this case is not presented here, but in
Figure D.5 in Subsection D.5.3). They are equal for the diagonal case (as

√
Diag (M) and M

are both diagonal so the eigenvectors are aligned with the axis). In both cases, the eigenvalue
decay is reduced (from λ2/λ1 = 1/10 without compression to 1/

√
10 with compression, which

visually corresponds to a “wider” ellipse).
This slower eigenvalue decay results from the unstructured-noise, i.e., large noise on the
weak-curvature direction, which is particularly visible on Figure 4.4. This is critical as it
results in a potentially much larger limit rate, as Tr

(
C(Cq, pM)M−1

)
≃ Tr

(
M−1/2

)
.

[Skt] For sketching, the eigenvectors remain the same for ECov[xk] and ECov[C(xk)] (as I2 and M are
jointly diagonalizable, see Corollary 4.3), both in the diagonal and non-diagonal case. However,
the isotropic noise with covariance I2 is visible (wide ellipse), also drastically impacting
Tr
(
C(CPP, pM)M−1

)
∝ Tr

(
M−1

)
.

[Sp] For p-sparsification, eigenvectors are not aligned with the ones of M in the non-diagonal case,
but are in the diagonal case. In this latter case, the covariance C(Cs, pM) is proportional to M .

[Rd] Same remarks hold for Rand-1 than for sparsification. We see that C(Crd1, pM) is diagonal, as
expected. Again, both operators induce an unstructured-noise in the non-diagonal case.

[PP] For PP, the covariances are always proportional (with factor p−1), i.e., the ellipses have the
same axis and ECov[C(xk)] is a scaled version of ECov[xk].

We highlight the following points regarding pairwise comparisons:

• In the diagonal case, as stated by Item 1 in Proposition 4.3, Cov [Cs(xk)] and Cov [CPP(xk)]
are identical. Cov [Crd1(xk)] would have been identical too if p = 1/d (but here we observe
C(Crd1, pM) ≼ C(Cs/PP, pM) because the variance of rand-1 is smaller that for sparsifica-
tion/PP).

• In the non-diagonal case, from Item 2 in Proposition 4.3, we have Tr
(
C(CPP, pM)M−1

)
≤

Tr
(
C(Cs, pM)M−1

)
, however we do not have C(CPP, pM) ≼ C(Cs, pM), hence we can not

conclude anything on Cov [CPP(xk)] and Cov [Cs(xk)].
• In the non-diagonal scenario, we observe on Figure 4.3, that C(Cq, pM) ≼ C(Cs, pM) (as in

Item 2 in Proposition 4.4).

4.3.3.2 Illustration of Proposition 4.2 and Corollary 4.3 in dimension d > 2

Another way of visualizing the structured and isotropic parts of the noise is by plotting the eigenvalues
of C(C , pM) in dimension d = 100. This is done in Figure 4.5, in which we plot the eigenvalues in

8On the figure, there are nearly aligned, but actually differ.

Chapter 4. Distributed, compressed and averaged least-squares regression 74

102

103

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

102

103

lo
g
(T

r(
C

a
n

ia
H
−

1
))

w. std

w. pca

raw data

w. std

w. pca

raw data

10−1 100 101

Value of ω

103

105

107

109

(a) quantum (tabular dataset)

103

104

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

103

104

lo
g
(T

r(
C

an
ia
H
−

1
))

w. std

w. pca

raw data

w. std

w. pca

raw data

100 101

Value of ω

103

104

105

(b) cifar10 (images)

Figure 4.6: Tr
(
C(C , pM)M−1

)
w.r.t the level of ω for quantum and cifar10. X/Y-axis are in log

scale. Note that the plots may have different magnitudes.

decreasing order for both M and C(C , pM), with Gaussian pM = N (0,M) and Sp(M) = {(1/i4)di=1}.
We see that in the diagonal case, in Figure 4.5a, all operators but Cq, CΦ have a covariance proportional
to M (thus a slope −4 on a log/log scale), while Cq is proportional to

√
M (thus a slope −2) and

CΦ has an isotropic component (thus eigenvalues not decreasing to 0). In Figure 4.5b we see that
only CPP has a covariance proportional to M while all other ones have an isotropic component
(thus eigenvalues not decreasing to 0). We plot both empirical values and the ones obtained in
Proposition 4.2, which shows that the upper bound on quantization is reasonable in practice and
acts as a safety check for other compression schemes.

We plot on Figure 4.5c the theoretical and empirical Tr
(
C(C , pM)M−1

)
again in two cases,

diagonal and non-diagonal. In the diagonal case, PP, sparsification, and rand-h have the same
behavior; their traces have the smallest value among all compressors. However, in the general case
of non-diagonal features’ covariance, all compression operators have similar slow performance except
for PP. For d = 100, all the compressors have ω = 10, but Tr

(
C(C , pM)M−1

)
varies by several orders

depending on the compressor, illustrating again that compressors satisfying Lemma 4.1 with the
same ω may have vastly different behaviors.

Lastly, we perform the same experiments on Tr
(
C(C , pM)M−1

)
, but on non-simulated datasets,

namely quantum [Caruana et al., 2004] and cifar-10 [Krizhevsky et al., 2009]: in Figure 4.6 we
plot Tr

(
C(C , pM)M−1

)
w.r.t. the worst-case-variance-level ω of the compression in three scenarios:

(top-row) – with data standardization, thus Diag (M) is constant equal to 1; (middle-row) – with
a PCA, thus with a diagonal covariance M (note that this is for illustration purpose: performing a
PCA would be more expensive computationally than running Algorithm 2); and (bottom-row)
– without any data transformation. As a pre-processing, we have resized images of the cifar-10
dataset to a 16× 16 dimension. We adjust the level s ∈ Cq, h ∈ Crdh, CΦ, and p ∈ CPP, Cs to make ω
vary.

Interpretation. (Top-row): with standardization, the order predicted from Proposition 4.3.2
(large ω), and Proposition 4.4.2 (low ω) is obtained for both quantum and cifar-10: CPP ≤ Cq ≤

Chapter 4. Distributed, compressed and averaged least-squares regression 75

Cs ≃ Crdh ≃ CΦ. For quantization, we observe two regimes: 1) when ω tends to zero, quantization
and PP outperform sketching, sparsification, and rand-h, that are equivalent. 2) when ω increases,
quantization changes from scaling as PP to scaling as the second group. (Middle-row): in the
diagonal regime, comments made for Figure 4.5c-l are still valid. (Bottom-row): We observe that
for a generic matrix M (obtained from raw-data) there is no systematic order between compression
schemes. This is un-avoidable as the order for a “M diagonal” and “M with constant-diagonal” is
not the same. We observe that:

• for quantum, CPP ≤ Cs
∼≤ Crdh ≪ Cq ≪ CΦ

• for cifar-10, CPP ≪ Cq ≪ Cs ≃ Crdh ≃ CΦ.

We also observe that CΦ, which is the only operator to always induce an isotropic component, may
be much worse than all other compressors (e.g., on quantum). Ultimately, the order depends on
the covariance matrix M . Here we observe that the raw-data behavior is close for cifar-10 to the
standardized version, while for quantum the order between compressors is the same for raw-data
and diagonal (although the ratios are different). In Subsection D.5.4 (Table D.3), we provide an
illustration of the covariance matrices, that supports such interpretation.

4.3.4 Numerical experiments on Algorithm 2

In this section, we run Algorithm 2 on both synthetic and real datasets to illustrate the combined
theoretical results of Sections 4.2 and 4.3. In Figure 4.7, we compare the compression operators to
the baseline of no-compression. We plot the excess loss of the Polyak-Ruppert iterate F (wk)−F (w),
versus the index in log/log scale. Each experiment is conducted 5 times, with a new dataset generated
from a new seed. The standard deviation of log10(F (wk)− F (w)) is indicated by the shadow-area.

Setting: (a) Synthetic dataset generation: The dataset is generated using Model 2 with K = 107,
σ2 = 1, an optimal point w∗ set as a constant vector of ones and a geometric eigenvalues decay
of D1 = Diag

(
(1/i4)di=1

)
(resp. D2 = Diag

(
(1/i)di=1

)
). For i ∈ {1, 2}, the covariance matrix is

H{i} = QD{i}QT , where Q is either orthogonal matrix, or Q = Id in the case of a diagonal features’
matrix. (b) Real datasets processing: We resize images of the cifar-10 dataset to a 16 × 16
dimension, and then for both datasets, we apply standardization. To compute the optimal point
(and so to compute the excess loss), we run SGD over 200 passes on the whole dataset and consider
the last Polyak-Ruppert average as the optimal point w∗. (c) Algorithm 2: We take a constant
step-size γ = 1/(2(ω + 1)R2) with R2 the trace of the features’ covariance, and w0 = 0 as initial
point. We set the batch-size b = 1 (resp. b = 16) and the compressor variance ω = 10 (resp. ω = 1,
thus a factor 4 compression for quantum and factor 2 for cifar-10) for synthetic datasets (resp. for
real datasets). For cifar-10 and quantum, we run Algorithm 2 for 5× 106 iterations (it corresponds
to 100 passes on the whole dataset). These settings are summarized in Tables D.1 and D.2 in
Subsection D.1.1. Additionally, to illustrate Corollary 4.1, we plot on Figure 4.7d the final excess
loss after running Algorithm 2 with an horizon-dependent step-size γ = K−2/5, computed for seven
values of K ∈ {10i, i ∈ J1, 7K}.

Interpretation – H diagonal (Figure 4.7a). For sparsification, rand-h, and PP (linear
compressors), the rate of convergence is given by Theorem 4.2. As stated by Corollary 4.3, the
covariance Cania is proportional to H leading to a O(1/K) rate. We indeed observe in Figure 4.7a
that excess loss is linear in a log/log scale.

For non-linear compression operators, the rate is given by Theorem 4.1. On the one hand,
1-quantization results in a slower eigenvalues’ decay, leading to a larger Tr

(
CaniaH

−1
)
, thus a slower

convergence than linear compressors. On the other hand, for sketching, covariance has a purely
isotropic part scaling with Id, which causes Tr

(
CaniaH

−1
)

to strongly depend on the strong-convexity
coefficient µ resulting in an extremely large constant. Both behaviors are observed in Figure 4.7a.

Interpretation – H not diagonal (Figures 4.7b and 4.7e). In the case of the high eigenvalues’

Chapter 4. Distributed, compressed and averaged least-squares regression 76

Synthetic dataset Real datasets

0 1 2 3 4 5 6 7

log10(k)

−5

−4

−3

−2

−1

0

lo
g

1
0
(F

(w
k
)
−
F

(w
∗)

)

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

(a) H1 diagonal.

0 1 2 3 4 5 6 7

log10(k)

−5

−4

−3

−2

−1

0

lo
g

1
0
(F

(w
k
)
−
F

(w
∗)

)

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

(b) H1 not diagonal.

1 2 3 4 5 6

log10(k)

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

lo
g

1
0
(F

(w
k
)
−
F

(w
∗)

)

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

(c) quantum

1 2 3 4 5 6 7

log10(k)

−4

−3

−2

−1

0

lo
g

1
0
(F

(w
k
)
−
F

(w
∗)

)

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

(d) H1 not diagonal, γ = K−2/5.

0 1 2 3 4 5 6 7

log10(k)

−5

−4

−3

−2

−1

0

lo
g

1
0
(F

(w
k
)
−
F

(w
∗)

)
no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

(e) H2 not diagonal.

1 2 3 4 5 6

log10(k)

−2.50

−2.25

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

lo
g

10
(F

(w
k
)
−
F

(w
∗)

)

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

(f) cifar10

Figure 4.7: Logarithm excess loss of the Polyak-Ruppert iterate for a single client (N = 1).

decay of H1 (µ = 10−8), the only compressor that shows in Figure 4.7b a linear rate of convergence
in the log/log scale is PP. All others exhibit a saturation phenomenon after a certain number of
iterations. This is again due to the unstructured part of the noise for all other compressors, as
given by Proposition 4.2. Besides, we also note an increase of the excess loss after some iterations
that is likely caused by the accumulation of noise on axis onto which the curvature of H is weak
(but the isotropic noise is not). However, taking the optimal horizon-dependent step-size given
by Corollary 4.1, we recover on Figure 4.7d for all compressor C the sub-linear convergence rate
of PP shown at Figure 4.7b, reducing by a factor 100 the excess loss w.r.t. to the scenario where
γ = 1/2(ω + 1)R2). While using a small step-size is slightly worse for SGD, it reduces the second
and third term of the variance in Theorem 4.1 that depends on µ for other compressors. And in the
scenario of a slow eigenvalues’ decay (µ = 10−2), we observe on Figure 4.7e that all compressors
reach the sub-linear rate (same slope -1 on the log/log plot), but with different constants. This
illustrates Theorems 4.1 and 4.2 in the case of moderate coefficient µ where we expect the second
and third parts of the variance term to be negligible.

Interpretation - real datasets (Figures 4.7c and 4.7f). We observe that quantization performs
competitively with PP and outperforms all other compressors. The asymptotic behavior is consistent
with Figure 4.6 (top-row) for ω = 1, where the order CPP ≃ Cq ≪ Cs ≃ Crdh ≃ CΦ is observed. This
experience is going beyond Proposition 4.2 which only applies to 1-quantization.

4.3.5 Conclusion

In this section, we investigated how the compression scheme choice impacts the convergence rate, first
by showing that quantization-based and projection-based methods respectively satisfy Theorem 4.1
and Theorem 4.2, resulting in different non-asymptotic behaviors. In the asymptotic regime, in
both cases, the averaged excess loss scales as Tr

(
H−1Cania

)
/K. We then analyzed the impact of

the most-used schemes on this limit rate. Overall, it appears that all compression schemes typically
generate an unstructured-noise, which covariance does not scale with H, contrarily to the classical
un-compressed Algorithm 1. The one exception is PP, which corresponds (on a single worker) to
performing fewer iterations. For other compression schemes, we show the impact of the covariance H:
depending on the correlation between features (H diagonal or not) and on the pre-processing (e.g.,
standardization for which H has diagonal constant), the ordering between compression scheme varies.

Chapter 4. Distributed, compressed and averaged least-squares regression 77

In many cases, this highlights the need for an additional regularisation when running Algorithm 2:
all compression schemes (but PP) result in a significant noise that accumulates along the low
curvature directions. Our results can be extended to the ridge (a.k.a., Tikhonov) regularized case [see
Dieuleveut et al., 2017], which creates an additional bias but changes the rate Tr

(
H−1Cania

)
/K into

Tr
(
(H + λI)−1Cania

)
/K. The theoretical optimal choice for λ depending on H and the compression

scheme could be obtained from our analysis but is left as future work.

We now turn to the distributed/federated case, which motivates the study of compression schemes
for practical applications.

4.4 Application to federated learning

In this section, we consider Algorithm 3 under Model 1, which corresponds to heterogeneous federated
learning on a network composed of N clients. We hereafter consider two particular cases of Model 1.
First, in Subsection 4.4.1, the covariate-shift case, i.e., Model 1 with wi

∗ = w∗ for all i (thus the
distribution of yi conditional to xi does not change between workers), but on the other hand, the
features’ marginal distributions are different, in particular, Hi ̸= Hj . Second, in Subsection 4.4.2,
the optimal-point-shift case, i.e., for each client i, j ∈ {1, . . . , N}, their optimal points are different
wi
∗ ̸= wj

∗, but Hi = Hj . In the rest of the section, we denote H := 1
N

∑N
i=1Hi, R

2
:= 1

N

∑N
i=1R

2
i ,

and we have F (wk)− F (w∗) = 1
2

〈
ηk−1, Hηk−1

〉
.

4.4.1 Heterogeneous covariance

In this section, we first show that Theorems 4.1 and 4.2 on (LSA) from Section 4.2 can be applied
to the federated learning case within the scenario of covariate-shift. Corollary 4.4 is proved in
Subsection D.6.1.

Corollary 4.4 (Algorithm 3 with covariate-shift). Consider Algorithm 3 under Model 1 with wi
∗ = wj

∗
(and potentially Hi ̸= Hj).

1. For a compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, Theorem 4.1 holds, with HF = H, R2
F = R

2,
A = (ω + 1)R

2
σ2/N , M2 = (ω + 1)maxi∈{1,...,N}(R2

i)/N , M1 = Ωσmaxi∈{1,...,N}(R2
i)/N .

2. Moreover for any linear compressor C ∈ {Crdh, Cs, CΦ, CPP}, Theorem 4.2 holds, with the
same constants and Xadd = σ2maxi∈{1,...,N}(XHi)/N and Xmult = maxi∈{1,...,N}(R2

iXHi)/N ,
with (XHi)

N
i=1 given in Corollary 4.2.

The Hessian of the objective function is now H, and Theorems 4.1 and 4.2 still hold. The
proof consists in showing that with Lemma 4.1, Assumptions 4.1 to 4.4 on the resulting random
field (ξk)k∈N∗ are valid, with the constants given above.

In order to understand the impact of the compressor on the limit convergence rate, we establish
a formula for Cania similar to Equation (4.4). In the setting of covariate-shift, we have for any clients
i, j ∈ {1, . . . , N}, wi

∗ = wj
∗, thus

ξaddk
def. 4.2
= ξk(0)

algo 3
= ∇F (w∗)−

1

N

N∑
i=1

Cik(gik(w∗))

eq. 4.2
= − 1

N

N∑
i=1

Cik((
〈
xik, w∗

〉
− yik)x

i
k)

model 1
=

with wi∗=wj
∗

1

N

N∑
i=1

Cik(εikxik) .

Chapter 4. Distributed, compressed and averaged least-squares regression 78

Next for all operators under consideration we have Cik(εikxik)
a.s.
= εikCik(xik), thus, with pHi denoting

the distribution of xik with covariance Hi, we have:

Cania = E
[
(ξaddk)⊗2

]
= E

(1

N

N∑
i=1

Cik(εikxik)
)⊗2

 indep. of (Ci
k)

d
i=1=

1

N2

N∑
i=1

E
[
Cik(εikxik)⊗2

]
=

σ2

N2

N∑
i=1

E
[
Cik(xik)⊗2

] Def. 4.5
=

σ2

N2

N∑
i=1

C(Cik, pHi)
notation
=:

σ2

N
C((Ci, pHi)

N
i=1) . (4.5)

The operator C((Ci, pHi)
N
i=1) generalizes the notion of compressor’s covariance (Definition 4.5) to

the case of multiple clients, and Equation (4.5) corresponds to Equation (4.4).

Remark 4.11 (All clients use the same linear compressor). If for all i ∈ {1, . . . , N}, Ci (d)
= C and

C ∈ {CPP, Cs, Crdh, CΦ}, leveraging Remark 4.10, we have

C((Ci, pHi)
N
i=1) = C(C, H) .

The analysis of (LSA) on a single worker made in Section 4.3 is still valid in this setting with now the
Hessian of the problem being equal to the average of covariance H. Corollary 4.4 and Equation (4.5)
prove that the case of covariate-shift is identical to the centralized setting with a variance reduced by
a factor N .

Remark 4.12 (Varying compressor, or compression level, or non-linear compression). In most
other cases, the computation of σ2

N C((Ci, pHi)
N
i=1) =

σ2

N2

∑N
i=1 C(Cii , pHi) is possible using the results

of Subsection 4.3.3

Overall, in the covariate-shift case, most insights from the centralized case remain valid, especially,
client sampling (i.e., PP) is the safest way to limit the impact of compression. Moreover, the trade-
offs and ordering between compressors remain preserved, especially regimes in which quantization
outperforms other competitors.

4.4.2 Heterogeneous optimal point

Hereafter, we focus on the case of heterogeneous optimal points and consider that all clients share
the same covariance matrix, i.e. for any i, j ∈ {1, . . . , N}, Hi = H, but potentially wi

∗ ̸= wj
∗. This

can be seen as a case of concept-shift [Kairouz et al., 2019], and we also refer to the situation as
optimal-point-shift. This setting could eventually be combined with the covariate-shift case. Similarly,
Theorems 4.1 and 4.2 on (LSA) from Section 4.2 can be applied.

Corollary 4.5 (Algorithm 3 with concept-shift). Consider Algorithm 3 under Model 1 with Hi = Hj

(and potentially wi
∗ ̸= wj

∗).

1. For a compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, Theorem 4.1 holds, with HF = H, R2
F = R2,

A = R2(ω+1)
N (κTr (HCov [W∗]) + σ2) with W∗ ∼ Unif({wi

∗, i ∈ {1, . . . , N}}), M2 = (ω + 1)2/N ,
and M1 = ΩR2σ/N .

2. Moreover for any linear compressor C ∈ {Crdh, Cs, CΦ, CPP}, Theorem 4.2 holds, with the same
constants and Xadd = σ2XH/N and Xmult = R2XH/N , with XH given in Corollary 4.2.

Corollary 4.5 can be proved reusing computation made for Corollary 4.4 and using below
Proposition 4.5. We next aim at computing the additive noise covariance. We note gik,∗ = gik(w∗)
the local stochastic gradient evaluated at optimal point w∗. We have, in Model 1, for any w ∈ Rd,

Chapter 4. Distributed, compressed and averaged least-squares regression 79

Fi(w) := E(⟨xik, w − wi
∗⟩ − xikε

i
k)

2, thus ∇F (w) = 1
N

∑N
i=1H(w − wi

∗), and w∗ =
∑N

i=1w
i
∗/N . The

setting of Definition 4.1 is verified with HF = H, and for any w ∈ Rd, that the random field ξk can
be computed as:

ξk(w − w∗)
Def. 4.1&Alg.3

= HF (w − w∗)−
1

N

N∑
i=1

Ci(gik(w)), thus ξaddk
Def. 4.2
= − 1

N

N∑
i=1

Ci(gik,∗),

with gik,∗ = (xik ⊗ xik)(w∗ − wi
∗) + xikε

i
k. We thus have, for any k ∈ N:

Cania = E
[
(ξaddk)⊗2

] ∇F (w∗)=0
= E

(1

N

N∑
i=1

Ci(gik,∗)−∇Fi(w∗)

)⊗2

∀i ̸=j, Ci
k⊥Cj

k=
ECi

k(g
i
k,∗)=∇Fi(w∗)

1

N2

N∑
i=1

E
[(
Cik(gik,∗)−∇Fi(w∗)

)⊗2
]

=
1

N2

N∑
i=1

(
E[Cik(gik,∗)⊗2]−∇Fi(w∗)⊗2

)
=

σ2

N2

N∑
i=1

C(Ci, pΘi)−
1

N2H
N∑
i=1

(w∗ − wi
∗)

⊗2H ≼
σ2

N
C((Ci, pΘi)

N
i=1) ,

where pΘi is the distribution of gik,∗ (for any k). In the last inequality, we simply discarded the
non-positive term −H∑N

i=1(w∗ − wi
∗)

⊗2H. For linear compressors, by Proposition 4.2, Cania is a
linear function of 1

N

∑N
i=1Θi – the averaged second-order moment of the local gradients (gik,∗)

N
i=1. In

order to bound this quantity, following Dieuleveut et al. [2017], we make the following assumption.

Assumption 4.5. The kurtosis for the projection of the covariates xi1 (or equivalently xik for any k)
is bounded on any direction z ∈ Rd, i.e., there exists κ > 0, such that:

∀i ∈ {1, . . . , N}, ∀z ∈ Rd, E
[〈
z, xi1

〉4] ≤ κ⟨z,Hz⟩2

For instance, it is verified for Gaussian vectors with κ = 3. By Cauchy-Schwarz inequality, it
implies that E[

〈
z, xi1

〉2
(xi1)

⊗2] ≼ κ⟨z,Hz⟩H for all z ∈ Rd. We obtain the following proposition.

Proposition 4.5 (Impact of client-heterogeneity.). Let W∗ be a random variable uniformly distributed
over {wi

∗, i ∈ {1, . . . , N}}, thus such that, Cov [W∗] = 1
N

∑N
i=1(w∗ − wi

∗)
⊗2, then:

1

N

N∑
i=1

Θi ≼ (κTr (HCov [W∗]) + σ2) H .

Proof We have:

Θi = E[((xik ⊗ xik)(w∗ − wi
∗) + xikε

i
k)

⊗2]
(εik)⊥(xi

k)= E[(xik ⊗ xik)(w∗ − wi
∗)

⊗2(xik ⊗ xik)] + σ2H

Ass. 4.5
≼ κ

〈
w∗ − wi

∗, H(w∗ − wi
∗)
〉
H + σ2H = κTr

(
H(w∗ − wi

∗)
⊗2
)
H + σ2H .

In words, we have the following two main observations.

Remark 4.13 (Structured noise before compression.). Before compression is possibly applied,
the noise remains structured, i.e., with covariance proportional to H, in the case of concept-shift. As
a consequence, the rate for un-compressed Equation (LSA) will remain independent of the smallest
eigenvalue of H. This remark extends to the case where CPP is applied.

Chapter 4. Distributed, compressed and averaged least-squares regression 80

Remark 4.14 (Heterogeneous vs homogeneous case). Compared to the homogeneous case,
in which Θi = σ2Hi and Cania = σ2

N C((Ci, pHi)
N
i=1), the averaged second-order moment increases

from σ2H to (κTr (HCov [W∗]) + σ2)H, showing the impact of the dispersion of the optimal points
(wi

∗)
N
i=1. This corresponds to the typical variance increase in the compressed heterogeneous SGD case,

see Section 2.3.

Concept-shift thus hinders the limit convergence rate. To limit this effect, in Chapter 2, we
introduced a control-variate term (hik)k∈N∗,i∈{1,...,N}, that is subtracted to the gradient before
compression and asymptotically approximate ∇Fi(w∗) for any i ∈ {1, . . . , N}. We explore the
impact of memory on the asymptotic convergence in Subsection D.6.2.

4.4.3 Numerical experiments

We support the theoretical results from Subsections 4.4.1 and 4.4.2 by performing experiments in
the FL framework that extend the ones from Section 4.3.

On figures Figure 4.8, we present the results of the excess loss of the Polyak-Ruppert iterate
F (wk)− F (w∗) versus the number of iterations in log/log scale. The experiments were run 5 times,
each time with different datasets (dispersion is shown by shaded area).

Settings. (a) Synthetic dataset generation: The dataset is generated using Model 1 with
N = 10, K = 106 on each client, σ2/N = 1. For any clients i in {1, . . . , N}, the covariance matrix is
Hi = QiDiQ

T
i , where Qi is an orthogonal matrix. For heterogeneous clients, the dataset generation is

as follows. Covariate shift: The rotation matrix Qi is sampled independently for each client and the
diagonal matrix Di is Diag

(
(1/jβi)dj=1

)
where βi ∼ Unif({3, 4, 5, 6}). Concept-shift: The optimal

models of the clients i ∈ {1, . . . , N} were drawn from a zero-centered normal distribution with a
variance of 100Id, that is, wi

∗ ∼ N (0, 100Id). We also take for all client i in {1, . . . , N}, Hi = QDQT ,
with D = Diag ((1/j))dj=1. (b) Real-dataset and covariate-shift: To simulate non-i.i.d. clients, we
split the dataset in heterogeneous groups (with equal number of points) using a K-nearest neighbors
clustering on the TSNE representations [defined by Maaten and Hinton, 2008]. Thus, the marginal
feature distribution significantly varies between clients, providing a covariate-shift, while keeping
the same distribution for the output conditional to the features on all clients. (c) Algorithm 3: We
take a constant step-size γ = 1/(2(ω + 1)R2) with R2 = Tr (H) and w0 = 0 as initial point. We set
the batch-size b = 1 for synthetic datasets and b = 16 for real datasets, the compressor variance is
ω = 10. (d) Algorithm 3 vs Algorithm 4: We take a bigger constant step-size γ = (2R2)−1 in order
to emphasize the difference between the case w./w.o. control variate, we set w0 = 0 as initial point
and the compressor variance is ω = 10. We set the batch-size b = 32 for Figure 4.8c and b = K for
Figure 4.8f.

Interpretation – homogeneous case and covariate-shift case (Figures 4.8a, 4.8b, 4.8d
and 4.8e). These experiments extend those presented in Subsection 4.3.4 in the case of a single
client. The observations made in the centralized case (Figure 4.7), especially on the impact of the
compressor choice on the convergence and the ordering between limit convergence rates remain valid.
This illustrates Corollary 4.4 and Remark 4.11: Theorems 4.1 and 4.2 hold in the case of homogeneous
client or in the case of heterogeneous covariance and the only compressor that ensures that the noise
is structured is client sampling (partial participation). On the real datasets, quantization is also
competitive.

Interpretation – concept-shift case (Figures 4.8c and 4.8f). These experiments extend
those presented on Figure 4.7e (slow eigenvalues’ decay with µ = 10−2) to the scenario of concept
shift. First, we observe on Figure 4.8c that for all compressors the convergence rate remains in
O(1/K), (though vanilla SGD converges faster during the first iterations). Second, we observe
that control-variates improve convergence for compressors inducing un-structured noise ; this is

Chapter 4. Distributed, compressed and averaged least-squares regression 81

Covariate-shift Concept-shift

Synthetic dataset Real datasets Synthetic dataset

0 1 2 3 4 5 6

log10(k)

−4

−3

−2

−1

0

lo
g

1
0
(F

(w
k
)
−
F

(w
∗)

)

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

(a) No shift: ∀i ∈ {1, . . . , N}, Hi =
H

1 2 3 4 5 6

log10(k)

−6

−5

−4

−3

−2

−1

lo
g

1
0
(F

(w
k
)
−
F

(w
∗)

)

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

(b) quantum

2 3 4 5 6 7

log10(k)

−3

−2

−1

0

1

lo
g

1
0
(F

(w
k
)
−
F

(w
∗)

)

w.o. control variate.

w. control variate.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

w.o. control variate.

w. control variate.

(c) Batch stochastic gradient

0 1 2 3 4 5 6

log10(k)

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

lo
g

1
0
(F

(w
k
)
−
F

(w
∗)

)

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

(d) ∀i, j ∈ {1, . . . , N}, Hi ̸=Hj

1 2 3 4 5 6

log10(k)

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5
lo

g
1
0
(F

(w
k
)
−
F

(w
∗)

)

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

no compr.

s-quantiz.

sparsif.

sketching

rand-h

partial part.

(e) cifar-10

2 3 4 5 6 7

log10(k)

−4

−3

−2

−1

0

1

lo
g

1
0
(F

(w
k
)
−
F

(w
∗)

)

w.o. control variate.

w. control variate.

no compr.

1-quantiz.

sparsif.

sketching

rand-h

partial part.

w.o. control variate.

w. control variate.

(f) True gradient gik = ∇Fi

Figure 4.8: Logarithm excess loss of the Polyak-Ruppert iterate iterations for N = 10 clients.

predicted by theory, see Theorem D.3. Third, on Figure 4.8f, at each iteration k ∈ {1, . . . ,K}, we
use deterministic gradients gik = ∇Fi which leads to having a.s. ξaddk = 0, and in the absence of
compression, we obtain a O(1/K2) convergence rate for wK which corresponds in Theorem 4.1 to

the case where the dependency on the initial condition is dominated by ∥H−1/2
F η0∥2
γ2K2 . Overall, these

experiments illustrate and support our theoretical insights.

4.5 Conclusion

Conclusion. In short, we investigate the impact of the choice of compression scheme on the
convergence of the Polyak-Ruppert averaged iterate. By analysing the case of compressed least-
squares regression, we shed light on the interplay between the Hessian of the optimization problem
HF , the features’ distribution, the additive noise’s covariance Cania, and the compression scheme.
This shows fundamental differences between compression that deemed equivalent under the classical
worst-case-variance assumption. We extend our analysis to the case of heterogeneous federated
learning, a setting in which compression is widely used and its impact not fully understood.

More precisely, first, the analysis of the generic stochastic approximation algorithm (LSA)
provides (1) the fact that projection based compressions achieve a faster convergence rate than
quantization based, and that yet, their asymptotic rate is similar; (2) the analysis of quantization-
based compression requires introducing a new Hölder-type regularity assumption for the analysis
of the stochastic approximation scheme, and showing that such an assumption is satisfied for
quantization.

Second, the computation of the additive noise’s covariance Cania reveals the impact of the
compression scheme and the data distribution on the asymptotically dominant term. We obtain
that (1) partial participation (i.e., client sampling in the federated case) is the only method that
systematically ensures a convergence without a dependency on the strong-convexity constant; (2)
other compressors may all induce an un-structured noise, with covariance scaling with I or

√
H, that

strongly hinders convergence by accumulating noise on low curvature directions; (3) the relative

Chapter 4. Distributed, compressed and averaged least-squares regression 82

performance or various schemes changes depending on the pre-processing applied to the data, making
quantization the best method (apart from PP) when standardization is applied, but one of the
worst (with random Gaussian projection) when the features are independent and the eigenvalues of
the covariance decay rapidly (4) in that particular last setting, all projection based methods (but
Gaussian projection) behave similarly.

Third, we discuss how these results apply to the federated case, that corresponds to the initial
motivation. We show that we encompass two particular heterogeneity situations and how our analysis
applies. Overall, these results are a step towards a better understanding of the impact of a widely
used tool.

Open directions. This analysis can be extended to include various aspects that are beyond the
scope of this work. First, one natural improvement for application in FL would be to consider also
the scenario where each client runs several local iterations [McMahan et al., 2017, Karimireddy et al.,
2020] before sending their updates, reducing further the cost of communication. Similar approach
can be used, although the additive noise field would be more complicated, which potentially implies
a different additive noise’s covariance. Second, as mentioned in Subsection 4.3.5, our analysis could
also be extended to the case of stochastic approximation with ridge regularization [e.g., following
Dieuleveut et al., 2017] which in practice is helpful to mitigate the impact of the lack of strong
convexity. Third, an obvious direction is to extend beyond quadratic functions and considering other
objective functions, such as logistic regression or even shallow neural networks. Several results in the
literature can be leveraged to tackle non quadratic but self-concordant losses Bach [2010], Gadat and
Panloup [2023]. Fourth, our analysis still only relies on second moments (variance and covariance) of
the stochastic field. One major drawback of partial participation is to induce a significant increase
on higher order moments. Incorporating higher order bounds may also bring novel insights to the use
of compression in FL. Finally, all our analysis is made in finite dimension and our asymptotic focuses
on K → ∞: further works should analyze the case of infinite dimension: within the reproducing
kernel Hilbert space [Dieuleveut and Bach, 2016] framework or within the overparametrized setting
[Belkin et al., 2019].

5
Conclusion and perspectives

‘᾿Εν ἀρχῇ ἦν ὁ λόγος, καὶ ὁ λόγος ἦν πρὸς τὸν θεόν, καὶ θεὸς ἦν ὁ λόγος.’

᾿Ιωάννην 1:1.

5.1 Conclusion

In this thesis, we investigated several aspects of stochastic optimization for federated learning with
the objective of reducing the cost of communication in a setting of heterogeneous clients.

In the opening Chapter of this thesis, we provide an overview of the general setting of statistical
learning, convex optimization, stochastic approximation, and federated learning, which is the main
motivation of this thesis. More particularly, we introduce the bidirectional compression setting,
which is the focus of Chapters 2 and 3, and highlight its relevance for distributed algorithms.

In our first contribution, we focus on the intertwined effect of compression and client (statistical)
heterogeneity. We introduce a framework – Artemis – to tackle the problem of learning in a
distributed or federated setting with communication constraints. To alleviate the communication
cost, Artemis allows to compress the information sent in both directions (from the clients to the
server and conversely) combined with a memory mechanism. We provide three tight theorems giving
guarantees of a fast convergence (linear up to a threshold), highlighting the impact of memory,
analyzing Polyak-Ruppert averaging, and obtaining lowers bounds by studying convergence in
distribution of our algorithm. Altogether, this improves the understanding of compression combined
with a memory mechanism and sheds light on the challenges ahead.

In our second contribution, we move the focus toward feedback loops to reduce the impact
of compression. We propose and analyze an algorithm that performs bidirectional compression
and achieves asymptotically the same convergence rate as algorithms using only uplink (from the
local clients to the central server) compression. This algorithm, MCM, is such that the downlink
compression only impacts local models, while the global model is preserved. As a result, and contrary
to previous works, the gradients on local servers are computed on perturbed models. Proposing
such an analysis is the key to unlocking numerous challenges in distributed learning, e.g., proposing
practical algorithms for partial participation, incorporating privacy-preserving schemes after the
global update is performed, dealing with local steps, etc.

In our third contribution, we go beyond the classical worst-case assumption on the variance of
compressors and provide a fine-grained analysis of the impact of compression within the fundamental
learning framework of least-squares regression. More precisely, we analyze a general stochastic

83

Chapter 5. Conclusion and perspectives 84

algorithm for minimizing quadratic functions relying upon a random field. We consider weak
assumptions on the random field, tailored to the analysis (specifically, expected Hölder regularity),
and on the noise covariance, enabling the analysis of various randomizing mechanisms, including
compression. It underlines differences in terms of convergence rates between several unbiased
compression operators, that all satisfy the same condition on their variance. We then extend our
results to two heterogeneous FL frameworks.

Overall, this thesis proposes contributions to the field of Federated Learning by addressing
central challenges and proposing solutions for efficient and sustainable learning in a distributed
and heterogeneous framework. This work aligns with a global effort to make the use of large-scale
Federated Learning viable by minimizing its environmental impact. Although benefits are expected,
at least with respect to energy concerns, cautiousness is still required, as a rebound effect could
occur: having faster and less energy-consuming algorithms could lead to a sharp increase in their
applications, reducing or even canceling out the gains made by progress in their design.

5.2 Perspectives

From a theoretical point of view, several questions were triggered by our results, I think they are
worth exploring in order to delve deeper into the understanding of the effects of compression in a
heterogeneous environment.

1. In Chapter 2, we have modeled heterogeneity by considering that local gradients evaluated at
the optimal point are not zero, which explicitly assumes the existence of such a point. This
raises three questions. Firstly, how to extend results on Artemis to non-convex scenarios where
such an optimal point does not exist? Following Karimireddy et al. [2020], an approach is to
consider bounded gradient dissimilarity which consists in assuming that there exist constants
B ≥ 0 and G ≥ 1 such that for any w in Rd, we have 1

N

∑N
i=1 ∥∇Fi(w)∥2 ≤ B2+G2∥∇F (w)∥2.

Note that this recovers our Assumption 1.8 if F is convex and if there exists at least one optimal
point w∗. Secondly, is this assumption on the gradient relevant to describe any statistical
heterogeneity? Indeed such an assumption is closely related to the optimization process and
not to the dataset itself; for instance, in Chapter 4 we consider clients with heterogeneous
features’ covariances, yet simultaneously, we have ∇Fi(w∗) = 0 for any client i in {1, . . . , N}.
In another example, in Chapter 4, we consider clients with heterogeneous optimal models,
which indeed leads to having ∇Fi(w∗) ̸= 0, but it also has an impact on the constant σ∗ that
bounds the variance of stochastic gradient evaluated at optimal points (Assumption 1.5), it
depends on the distance ∥w∗ − wi

∗∥2 between the global and local optimal models. Beyond
the scope of optimization, the question of statistical heterogeneity is complex as it may be of
different kinds [Kairouz et al., 2019], e.g., covariate-shift, concept-shift, prior-probability-shift,
or unbalancedness. Thereby, the issue of modeling all these types of heterogeneity is important
in order to design algorithms adapted to each scenario. Thirdly, from a practical point of
view, the question is next how to provide a measure that evaluates the type and degree of
heterogeneity within a network of clients in order to select the algorithm accordingly? Our
joint contribution to [du Terrail et al., 2022] which aims to provide such metrics, paves the
way to solve this challenge.

2. In Chapter 2, we have shown the key role of memory in the setting of heterogeneous clients,
and in Chapter 3 we have combined it with a model-preservation mechanism (corresponding
to a feedback-loop with three sequences (wk, ŵk, Hk)k∈N), enabling to recover the rate of
convergence of unidirectional compression for unbiased compressors. But as model-preservation
mechanism is to be compared with the historical EF mechanism, a question triggered our
attention: what is the relationship between EF and model-preservation, and in which scenario,

Chapter 5. Conclusion and perspectives 85

one will outperform the other? This question is open and emphasizes that the relationship
between these two mechanisms is not yet completely understood. A first answer can be given
based on Theorem 3.5 of Chapter 3 where we show that the third sequence (Hk)k∈N involved
in model-preservation (and not in EF) enables controlling the variance of the degraded model
(ŵk)k∈N. However, a unified theory regrouping EF [Seide et al., 2014], EF 21 [Richtarik
et al., 2021, Fatkhullin et al., 2021], memory [Mishchenko et al., 2019] and model-preservation
[Philippenko and Dieuleveut, 2021] appears to be necessary in order to fully leverage the
potential of each of this mechanism and to understand the impact of each of the involved
sequence. Such an analysis could lead to the design of better algorithms taking advantage of
all the properties of these four mechanisms. This is a topic of great interest as underlined
by the recent works of Gorbunov et al. [2020a] and Condat et al. [2022], which propose a
unified framework recovering various algorithms (but not MCM), enabling their analysis under
very general assumptions [e.g., Gorbunov et al., 2020a, see Assumption 2.3, 4.1 and 4.2, see
Table 2].

3. In Chapter 4, we have provided a fine-grained analysis of the impact of compression within
the fundamental learning framework of least-squares regression, highlighting the key role of
the covariance induced by the additive noise. A relevant perspective would be to go beyond
quadratic functions. A first step could be to extend our analysis to logistic regression following
the line of proof given in Bach and Moulines [2013]. To extend the result of Chapter 4 to the
non-convex case (a starting point could be to consider a neural network with one hidden layer),
it appears necessary to investigate the distribution followed by the gradients evaluated at a local
optimum. In particular, it would be relevant to highlight the relationship between the features’
covariance, the structure of the network, the covariance of the stochastic gradients evaluated at
a local optimum point, and the compression scheme. The goal of such an analysis would be to
(1) generalize the results of Chapter 4 to neural networks, in particular, to describe the impact
of the covariances of the additive noise, and (2) select at each step the optimal compressor for
each layer. But then the results on asymptotic normality given in Proposition 4.1 can not be
applied anymore. To overcome this difficulty, one solution could be to take inspiration from
the recent work of Gadat and Gavra [2022] (Theorems 1 and 2). In this article, the authors
have studied asymptotic properties of adaptive algorithms (Adagrad and Rmsprop) in the
non-convex setting; their assumptions can be compared with those presented in Section 4.2.

4. Results presented in Chapter 4 can be extended to the ridge (a.k.a., Tikhonov) regular-
ized case [see Dieuleveut et al., 2017], it creates an additional bias but changes the rate
Tr
(
H−1Cania

)
/K into Tr

(
(H + λI)−1Cania

)
/K. From our analysis, one could obtain the

optimal theoretical choice for λ depending on H and the compression scheme. Adding regular-
ization will help in the case of ill-conditioned problems and will make quantization-based and
sparsification-based compressors compete with PP.

5. The analysis of compressors in Chapter 4 shed to light that PP is the most robust compressor to
ill-conditioned problems. This is due to the fact that, unlike other compressors, the coordinates
are not compressed independently. This property enables the induced noise to be structured
and suggests designing compressors where the compression of coordinates is not independent.
For example, for 1-quantization, a simple modification could be to choose the same seed for
each coordinate to build a coordinate-dependent compressor, but experimentally, we find that
this naive approach does not help in practice, leaving the door open for further refinements
and improvements.

A
Technical preliminaries

In this Chapter, we provide some classical results that are used throughout this thesis. In particular,
we recall some classical inequalities, or some classical results for random vectors and optimization.

87

Appendix A. Technical preliminaries 88

Contents
A.1 Identities and inequalities . 88
A.2 Classical results for random vectors . 89
A.3 Classical results in optimization . 89

A.1 Identities and inequalities

In this Subsection, we recall some very classical inequalities; for all a, b ∈ Rd, β > 0 we have:

⟨a, b⟩ ≤ ∥a∥
2

2β
+

β ∥b∥2
2

, (A.1)

∥a+ b∥2 ≤ (1 +
1

β
) ∥a∥2 + (1 + β) ∥a∥2 , (A.2)

∥a+ b∥2 ≤ 2
(
∥a∥2 + ∥b∥2

)
, (A.3)

| ⟨a, b⟩ | ≤ ∥a∥ · ∥b∥ (Cauchy-Schwarz’s inequality) , (A.4)

⟨a, b⟩ = 1

2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
(Polarization identity). (A.5)

Inequality 1. Let N ∈ N and d ∈ N. For any sequence of vector (ai)
N
i=1 ∈ Rd, we have the following

inequalities: ∥∥∥∥∥
N∑
i=1

ai

∥∥∥∥∥
2

≤
(

N∑
i=1

∥ai∥
)2

≤ N
N∑
i=1

∥ai∥2 .

The first part of the inequality corresponds to the triangular inequality, while the second part is
Cauchy’s inequality.

Inequality 2. Let x in Rd and A in Md,d(R), then we have ∥Ax∥ ≤ |||A|||∥x∥.
Lemma A.1. Let α ∈ [0, 1] and x, y ∈ (Rd)2, then:

∥αx+ (1− α)y∥2 = α ∥x∥2 + (1− α) ∥y∥2 − α(1− α) ∥x− y∥2 .

This is a norm’s decomposition of a convex combination.

Lemma A.2. Let X be a random vector of Rd, then for any vector x ∈ Rd:

E[∥X − EX∥2] = E[∥X − x∥2]− ∥E[X]− x∥2 .

This equality is a generalization of the well know decomposition of the variance (with x = 0). A
consequence is the next lemma which will be used several times in the proofs.

Lemma A.3. Let a probability space (Ω,A,P) with Ω a sample space, A a σ-algebra, P a probability
measure, and F a σ−algebra. For any a ∈ Rd and for any random vector in Rd we have:

E
[
∥X − EX∥2

]
≤ E

[
∥X − a∥2

]
,

indeed E[X] = argmina∈Rd E[∥X − a∥2]. Similarly, for any random vector Y in Rd which is F-
measurable, we have:

E
[
∥X − E [X | F]∥2

∣∣∣ F] ≤ E
[
∥X − Y ∥2

∣∣∣ F] .

Appendix A. Technical preliminaries 89

In Chapter 4, we use ellipses to visual quadratic functions, therefore we provide in Definition A.1
the mathematical definition.

Definition A.1 (Representing positive matrices through ellipsoids). Any symmetric positive definite
matrix M in S++

d (R) defines an ellipsoid EM = {x ∈ Rd, x⊤M−1x = 1} centered around zero. The
eigenvectors of M are the principal axes of the ellipsoid, and the squared root of the eigenvalues are
the half-lengths of these axes. The ellipse corresponds to the sphere of radius 1 associated with the
norm NM−1 =

√
x⊤M−1x.

A.2 Classical results for random vectors

Below, we recall Minkowski’s and Jensen’s inequalities. Additionally, we recall the Cauchy-Schwarz’s
inequality for conditional expectations. Let a probability space (Ω,A,P) with Ω a sample space, A
a σ-algebra, and P a probability measure.

Minkowski’s inequality. Let p > 1 and suppose that X,Y are two random variables in Lp(Ω,A,P)
(i.e. their pth moment is bounded), we have the following triangular inequality:

E[∥X + Y ∥p]1/p ≤ E[∥X∥p]1/p + E[∥Y ∥p]1/p . (A.6)

Jensen’s inequality. Suppose that X : Ω −→ Rd is a random variable, then for any convex
function f : Rd −→ R we have:

f (E(X)) ≤ Ef(X) . (A.7)

Cauchy-Schwarz’s inequality for conditional expectations. Suppose that X,Y are two
random variables in L2(Ω,A,P) (i.e. their second moment is bounded), then for any σ-algebra
F ⊂ A we have a.s.:

E [XY | F]2 ≤ E
[
X2

∣∣ F]E
[
Y 2
∣∣ F] . (A.8)

Convergence in Lp-norm. Suppose that (Xn)n∈N is a sequence of random variables in Lp(Ω,A,P),
and that X is a random variable in Lp(Ω,A,P). We say that (Xn)n∈N converges in Lp-norm
towards X, if the p-th absolute moments E(∥Xn∥p) and E(∥X∥p) of Xn and X exist, and if
E(∥Xn −X∥p) −−−−−→

n→+∞
0. This type of convergence is denoted by:

Xn
Lp

−−−−−→
n→+∞

X . (A.9)

A.3 Classical results in optimization

In this section, we provide classical inequalities used in optimization that can be found in Nesterov
[2004]. We use these inequalities in the demonstrations given in Chapters B and C.

Proposition A.1. If F : X ⊂ Rd → R is strongly convex, then the following inequality holds:

∀(x, y) ∈ Rd, ⟨∇F (x)−∇F (y), x− y⟩ ≥ µ ∥x− y∥2 .

This inequality is a consequence of strong convexity and can be found in [Nesterov, 2004, equation
2.1.22]. The next proposition presents two inequalities used in Chapter 3 when invoking convexity
or strong-convexity.

Appendix A. Technical preliminaries 90

Proposition A.2. If a function F is convex, then it satisfies for all w in Rd [Nesterov, 2004, see
equation 2.1.7]:

⟨∇F (w), w − w∗⟩ ≥
1

2
(F (w)− F (w∗)) +

1

2L
∥∇F (w)∥2 . (A.10)

If a function F is strongly-convex, then it satisfies for all w in Rd [Nesterov, 2004, see equation
2.1.8 and 2.1.16]:

⟨∇F (w), w − w∗⟩ ≥
1

2
(F (w)− F (w∗)) +

µ

4
∥w − w∗∥2 +

1

2L
∥∇F (w)∥2 . (A.11)

Polyak and Juditsky [1992] show the following theorem guaranteeing the asymptotic normality
of the Polyak-Ruppert iterate. This result is used in Chapter 4.

Theorem A.1. From Polyak and Juditsky [1992, see Theorem 1].

For k in N∗, we denote ηk = wk − w∗ and we define wk = wk−1 − γk∇F (wk−1) + γkξ(ηk−1). If
we assume that:

• γk −−−−→
k→+∞

0 and γ−1
k (γk − γk+1) = o

k→+∞
(γk),

• F is strongly convex and
∥∥∇2F

∥∥
∞ <∞,

• the convergence in probability of the conditional covariance to a matrix Σ holds, i.e. we have
a.s.:

E
[
ξ(ηk−1)ξ(ηk−1)

⊤
∣∣∣ Fk−1

]
P−−−−→

k→+∞
Σ .

Then for any K in N∗, we have the asymptotic normality of
√
KηK−1:

√
KηK−1

L−−−−−→
K→+∞

N (0,Σ∗) with Σ⋆ =
{
∇2F (w∗)

}−1
Σ
{
∇2F (w∗)

}−1
.

B
Appendix to Artemis

In this Chapter, we provide additional details to our work. First, in Section B.1, we present the
detailed framework of our experiments and give further illustrations to our theorems. Secondly, in
Section B.2, we define the filtrations used in the following demonstrations. In Section B.3, we gather
a few technical results and introduce the lemmas required in the proofs of the main results. Those
proofs are given in Section B.4. More precisely, Theorem 2.1 follows from Theorems B.1 and B.2,
which are proved in Subsections B.4.1 and B.4.2, while Theorems 2.2 and 2.3 are respectively proved
in Subsections B.4.3 and B.4.4.

91

Appendix B. Appendix to Artemis 92

Contents
B.1 Experiments . 92

B.1.1 Synthetic dataset . 92

B.1.2 Real datasets: Quantum and Superconduct 96

B.1.3 CPU usage and carbon footprint . 99

B.2 Filtrations . 99

B.3 Technical results . 101

B.3.1 Lemmas for the case without memory . 104

B.3.2 Lemmas for the case with memory . 105

B.4 Proofs of Theorems . 108

B.4.1 Proof of main Theorem for Artemis - variant without memory 109

B.4.2 Proof of main Theorem for Artemis - variant with memory 111

B.4.3 Proof of Theorem 2.2 - Polyak-Ruppert averaging 114

B.4.4 Proof of Theorem 2.3 - convergence in distribution 117

B.1 Experiments

In this section we provide additional details about our experiments. We recall that we use two kind
of datasets: 1) toy-ish synthetic datasets and 2) real datasets: superconduct [Hamidieh, 2018, 21263
points, 81 features] and quantum [Caruana et al., 2004, 50,000 points, 65 features]. The aim of using
synthetic datasets is mainly to underline the properties resulting from Theorems 2.1 to 2.3. We
estimate in Subsection B.1.3 the carbon footprint of the experiments presented in this chapter.

We use the same 1-quantization scheme (see Definition 1.2, s = 1 is the most drastic compression)
for both uplink and downlink, and thus, we consider that ωup = ωdwn. In addition, we choose
αup = 1

2(1 + ωup)
.

For each figure, we plot the convergence w.r.t. the number of iteration k or w.r.t. the theoretical
number of bits exchanged after k iterations. On the Y-axis we display log10(F (wk−1)−F (w∗)), with k
in N. All experiments have been run 5 times and averaged before displaying the curves. We plot error
bars on all figures. To compute error bars we take the standard deviation of log10(F (wk−1)−F (w∗)),
we then plot the curve ± this standard deviation.

All the code is available on GitHub.

B.1.1 Synthetic dataset

We build two different synthetic dataset for i.i.d. or non-i.i.d. cases. We use linear regression to tackle
the i.i.d case and logistic regression to handle the non-i.i.d. settings. As explained in Section 2.1,
each worker i holds ni observations (zij)1≤j≤ni = (xij , y

i
j)1≤j≤ni = (Xi, Y i) following a distribution

Di.

We use N = 20 devices, each holding 200 points of dimension d = 20 for least-square regression and
d = 2 for logistic regression. We ran algorithms over 100 epochs.

Choice of the step-size for the synthetic datasets. For stochastic descent, we use a decreasing
step-size γk = 1

L
√
k

with k in N, and for the full gradient descent we choose γ = 1
L .

Appendix B. Appendix to Artemis 93

−2 0 2
x2
i

−2

−1

0

1

2

3
Logistic regression simulation

yi = 1

yi = −1

(a) Dataset 1

−2 0 2
x2
i

−2

−1

0

1

2

3
Logistic regression simulation

yi = 1

yi = −1

(b) Dataset 2

Figure B.1: Data distribution for logistic regression to simulate non-i.i.d. data. Half of the device
holds the first dataset, and the other half the second one.

For i.i.d. setting, we use a linear regression model without bias. For each worker i, data points
are generated from a normal distribution (xij)1≤j≤ni ∼ N (0,Σ). And then, for all j in J1, niK, we

have: yij =
〈
w, xij

〉
+ ei with ei ∼ N (0, λ2) and w the true model.

To obtain σ∗ = 0, it is enough to remove the noise ei by setting the variance λ2 of the dataset
distribution to 0. Indeed, using a least-square regression, for all i in J1, NK, the cost function evaluated
at point w is Fi(w) = 1

2∥XiTw − Y i∥2. Thus the stochastic gradient j in J1, niK on device i in J1, NK
is gij(w) = (Xi

j
T
w − Y i

j)X
i
j . On the other hand, the true gradient is ∇Fi(w) = EXiXiT (w − w∗).

Computing the difference, we have for all device i in J1, NK and all j in J1, niK:

gij(w)− Fi(w) = (Xi
jX

i
j
T − EXiXiT)(w − w∗)︸ ︷︷ ︸

multiplicative noise equal to 0 in w∗

+(Xi
j
T
w∗ − Y i

j)︸ ︷︷ ︸
∼N (0,λ2)

Xi
j (B.1)

This is why, if we set λ = 0 and evaluate Equation (B.1) at w∗, we get back Assumption 2.3 with
σ∗ = 0, and as a consequence, the stochastic noise at the optimum is removed. Remark that it
remains a stochastic gradient descent, and the uniform bound on the gradients noise is not 0. We
set λ2 = 0(⇔ σ2

∗ = 0) in Figure B.3. Otherwise, we set λ2 = 0.4.

For non-i.i.d. setting, we generate two different datasets based on a logistic model with two
different parameters: w1 = (10, 10) and w2 = (10,−10). Thus the model is expected to converge to
w∗ = (10, 0). We have two different data distributions x1 ∼ N (0,Σ1) and x2 ∼ N (0,Σ2), and for
all i in J1, NK, for all k in J1, niK , yik = R

(
Sigm

(〈
w(i mod 2)+1, x

k
(i mod 2)+1

〉))
∈ {−1,+1}. That

is, half the machines use the first distribution N (0,Σ1) for inputs and model w1 and the other
half the second distribution for inputs and model w2. Here, R is the Rademacher distribution and
Sigm is the sigmoid function defined as Sigm: x 7→ ex

1 + ex
. These two distributions are presented

on Figure B.1.

B.1.1.1 Least-squares regression

In this section, we present all figures generated using Least-squares regression. Figure B.2 corresponds
to Figure 2.1a.

As explained in Chapter 2, in the case of σ∗ ̸= 0 (Figure B.2), algorithms using memory (i.e
Diana and Artemis) are not expected to outperform those without (i.e QSQGD and Bi-QSGD). On

Appendix B. Appendix to Artemis 94

0 25 50 75 100
Number of passes on data

−4

−2

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LSR: σ2
∗ ̸= 0

104 105 106

Communicated bits

−4

−2

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bits.

Figure B.2: Synthetic dataset, Least-Square Regression with noise (σ∗ ̸= 0). In a situation
where data is i.i.d., the memory does not present much interest and has no impact on the convergence.
Because σ2

∗ ̸= 0, all algorithms saturate; and saturation level is higher for double compression
(Artemis, Bi-QSGD), than for simple compression (Diana, QSGD) or than for SGD. This corroborates
findings in Theorem 2.1 and Theorem 2.3.

0 25 50 75 100
Number of passes on data

−10.0

−7.5

−5.0

−2.5

0.0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LSR: σ2
∗ = 0

104 105 106

Communicated bits

−10.0

−7.5

−5.0

−2.5

0.0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bits.

Figure B.3: Synthetic dataset, Least-Square Regression without noise (σ∗ = 0). Without
surprise, with i.i.d data and σ∗ = 0, the convergence of each algorithm is linear. Thus, in i.i.d. settings,
the impact of the memory is negligible, but this will not be the case in the non-i.i.d. settings as
underlined by Figure B.4.

the contrary, they saturate at a higher level. However, as soon as the noise at the optimum is 0
(Figure B.3), all algorithms (regardless of memory), converge at a linear rate exactly as classical
SGD.

B.1.1.2 Logistic regression

In this section, we present all figures generated using a logistic regression model. Figure B.4
corresponds to Figure 2.1b. Data is non-i.i.d. and we use a full batch gradient descent to get σ∗ = 0
to shed light on the impact of memory on convergence.

Figure B.5 is using same data and configuration as Figure B.4, except that it is combined with a
Polyak-Ruppert averaging. Note that in the absence of memory the variance increases compared to
algorithms using memory. To generate these figures, we didn’t take the optimal step-size. But if we
took it, the trade-off between variance and bias would be worse and algorithms using memory would
outperform those without.

Appendix B. Appendix to Artemis 95

0 100 200 300 400
Number of passes on data

−15

−10

−5

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LR: σ2
∗ = 0

104 106

Communicated bits

−15

−10

−5

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bits.

Figure B.4: Synthetic dataset, Logistic Regression on non-i.i.d. data using a full batch
gradient descent (to get σ∗ = 0). The benefit of memory is obvious, it makes the algorithm converge
linearly, while algorithms without are saturating at a higher level. This stresses the importance of
using the memory in non-i.i.d. settings.

0 100 200 300 400
Number of passes on data (Avg)

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) LR: σ2
∗ = 0

104 106

Communicated bits (Avg)

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bits.

Figure B.5: Polyak-Ruppert averaging, synthetic dataset. Logistic regression on non-i.i.d. data
using a full batch gradient descent (to get σ∗ = 0) and a Polyak-Ruppert averaging. The convergence
is sublinear as predicted by Theorem 2.2 because σ∗ = 0.

−50 0 50

−60

−40

−20

0

20

40

60

(a) Quantum dataset: 20 clusters. Each
cluster has between 900 and 10500 points
with a median at 2300 points.

−100 −50 0 50 100
−100

−50

0

50

100

(b) Superconduct dataset: 20 cluster.
Each cluster has between 250 and 3900
points with a median at 750 points.

Figure B.6: TSNE representations.

Appendix B. Appendix to Artemis 96

Table B.1: Settings of experiments.

Settings quantum superconduct
references Caruana et al. [2004] Hamidieh [2018]
model LR LSR
dimension d 66 82
training dataset size 50, 000 21, 200
batch size b 256 64
compression rate s 20 (i.e. two levels)
norm quantization ∥ · ∥2
momentum m no momentum
step-size γ 1/L

B.1.2 Real datasets: Quantum and Superconduct

In this Section, we present details about experiments conducted on real-life datasets: superconduct
(from Caruana et al. [2004]) where we use least-squares regression, and quantum (from Hamidieh
[2018]) with logistic regression. All figures can be found in the notebooks provided on our GitHub
repository.

In the following, we present results on superconduct and quantum in the setting of full device
participation. Next, we address in Subsection B.1.2.1 the issue of the optimal step-size.

In order to simulate non-i.i.d. data and to make the experiments closer to real-life usage, we split
the dataset in heterogeneous groups using a Gaussian mixture clustering on TSNE representations
(defined by Maaten and Hinton [2008]). Thus, the data are highly non-i.i.d. and unbalanced over
devices. We plot on Figure B.6 the TSNE representation of the two real datasets.

There are N = 20 devices for superconduct and quantum datasets. For superconduct, there are
between 250 and 3900 points by worker, with a median at 750 ; and for quantum, there are between
900 and 10500 points, with a median at 2300. On each figure, we indicate which step-size γ has
been used.

Convex settings are given in Table B.1. Experiments have been performed with 200 epochs in the
stochastic regime, and 400 epochs in the full batch regime. We use quantization [defined in Alistarh
et al., 2017] with s = 20 for all experiments.

Figures B.7 to B.10 underline the benefit of using memory in the stochastic and full batch regime for
non-i.i.d. datasets. Figures B.7 and B.9 correspond to Figure 2.2. We observe on these figures the
benefit of the memory. The level of saturation of algorithms using memory is much lower than those
without memory. Additionally, Theorem 2.1 highlights that the level of saturation (see constant
E of Table 2.2) is proportional to the level of compression ωup/dwn. This is indeed observed on
Figures B.7 to B.10.

In the case of the quantum dataset (see Figure B.7), Artemis is not only better than Bi-QSGD,
but in fact, as good as QSGD. That is to say, we achieve to make an algorithm doing bidirectional
compression, as good as an algorithm doing unidirectional compression.

On Figures B.8 and B.10, we run the five algorithms with full gradient descent, resulting in σ∗ = 0.
In this case, as the dependency on B2 is removed, Theorem 2.1 predicts that we must have a linear
convergence for algorithms using memory. This is experimentally observed.

Memory trade-off: batch size, noise at the optimum, and heterogeneity. Because the
variance of the algorithm (see constant E of Table 2.2) is divided by the batch size b, the choice of
this hyperparameter is not without importance. Indeed, reducing the batch size will increase the
impact of σ∗ on the convergence’s rate, while the impact of B2 will remain constant. Thus, there is

Appendix B. Appendix to Artemis 97

0 50 100 150 200
Number of passes on data

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) X-axis in # epoch

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bit

Figure B.7: Quantum . Least-squares regression, σ∗ ̸= 0, γ = 1/L, b = 256, non-i.i.d..

0 100 200 300 400
Number of passes on data

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) X-axis in # epoch

105 107

Communicated bits

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bit

Figure B.8: Quantum . Least-squares regression, σ∗ = 0, γ = 1/L, full gradient descent, non-i.i.d..

a trade-off : if the batch-size is too small, the quantity σ∗/b will become larger than B2, and the
impact of the memory will be hidden by the second term depending on the dataset heterogeneity.
This will lead Artemis-like algorithms to fail: the memory term is canceled by the high heterogeneity.
On the other hand, if the dataset does not present enough heterogeneity, the constant B2, will be
negligible making memory useless, or even penalizing.

B.1.2.1 Optimized step-size

In this section, we want to address the issue of the optimal step-size. On Figure B.11 we plot the
minimal loss after 250 iterations for each of the 5 algorithms. We can see that algorithms with
memory clearly outperform those without. Then, on Figure B.12 we present the loss of Artemis after
250 iterations for various step-size: N=20

2L , 5
L , 2

L , 1
L , 1

2L , 1
4L , 1

8L and 1
16L . This helps to understand

which step-size should be taken to obtain the best accuracy after k in J1, 150K iterations. Finally, on
Figure B.13, we plot the loss obtained with the optimal step-size γopt of each algorithms (found with
Figure B.11) w.r.t the number of communicated bits.

On Figure B.11, it is interesting to note that the memory allows to increase the maximal step-size.
So, the optimal step-size is γopt =

1
L for Artemis , but is γopt =

1
2L for BiQSGD.

We plot the loss of Artemis after 250 iterations for different step-size on Figure B.12. As stressed
by Figure B.11, after 250 iterations, the best accuracy for both datasets is indeed obtained with
γopt =

1
L . And we observe that (as for Vanilla SGD), the optimal step-size of Artemis decreases with

the number of iterations (e.g., for quantum, it is 1/L before 50 iterations and 1/2L after). This is
consistent with Theorem 2.1.

Appendix B. Appendix to Artemis 98

0 50 100 150 200
Number of passes on data

−1.5

−1.0

−0.5
lo

g 1
0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) X-axis in # epochs

105 107

Communicated bits

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bit

Figure B.9: Superconduct . Least-squares regression, σ∗ ̸= 0, γ = 1/L, b = 64, non-i.i.d..

0 100 200 300 400
Number of passes on data

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) X-axis in # epochs

105 107

Communicated bits

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) X-axis in # bit

Figure B.10: Superconduct . Least-squares regression, σ∗ = 0, γ = 1/L, full batch gradiend descent,
non-i.i.d..

N/L
N/2

L
5/

L
2/

L
L
−1

2L
−1

4L
−1

8L
−1

16
L
−1

32
L
−1

Step size

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) Quantum

N/L
N/2

L
5/

L
2/

L
L
−1

2L
−1

4L
−1

8L
−1

16
L
−1

32
L
−1

Step size

−2.0

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

) SGD

QSGD

Diana

BiQSGD

Artemis

(b) Superconduct

Figure B.11: Searching for the optimal step-size γopt for each algorithm. X-axis - value on
step-size, Y-axis - minimal loss after running 250 iterations

Appendix B. Appendix to Artemis 99

0 60 120 180 240
Number of passes on data

−3

−2

−1

0

1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

N/L

N/2L

5/L

2/L

L−1

2L−1

4L−1

(a) Quantum

0 60 120 180 240
Number of passes on data

−2

−1

0

1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

N/L

N/2L

5/L

2/L

L−1

2L−1

4L−1

(b) Superconduct

Figure B.12: Loss w.r.t. step-size γ.

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(a) Quantum

105 107

Communicated bits

−2.0

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

QSGD

Diana

BiQSGD

Artemis

(b) Superconduct

Figure B.13: Optimal step-size for each of the algorithms. X-axis in # bits.

Figure B.13 plots the loss of each algorithm obtained with its optimal step-size γ i.e. the step-size
that attains the lowest error after 150 iterations. For instance γ = 1

L for Artemis, but γ = 2
L for

SGD. For both superconduct and quantum datasets, taking the optimal step-size leads Artemis to
superior performance than other variants w.r.t. both accuracy and number of bits.

In conclusion of this subsection, Figures B.11 to B.13 allow to conclude on the significant impact of
memory in a non-i.i.d. settings, and to claim that bidirectional compression with memory is by far
superior (up to a threshold) to the four other algorithm: SGD, QSGD, Diana and BiQSGD.

B.1.3 CPU usage and carbon footprint

As part as a community effort to report the amount of experiments that were performed, we estimated
that overall our experiments ran for 220 to 270 hours end to end. We used an Intel(R) Xeon(R)
CPU E5-2667 processor with 16 cores.

The carbon emissions caused by this work were subsequently evaluated with Green Algorithm built
by Lannelongue et al. [2021]. It estimates our computations to generate 30 to 35 kg of CO2, requiring
100 to 125 kWh. To compare, it corresponds to about 160 to 200km by car. This is a relatively
moderate impact, matching the goal to keep the experiments for an illustrative purpose.

B.2 Filtrations

In this section, we provide some explanations about filtrations - especially a rigorous definition - and
how it is used in the proofs of Theorems 2.1 to 2.3. We recall that we denote by ωup and ωdwn the

Appendix B. Appendix to Artemis 100

wk−1

ξik−−−−−→ gik
ϵik−−−−−→ ĝik −−−→ ĝk =

N∑
i=1

ĝik
ϵk−−−−−→ Ωk = C (ĝk)

Figure B.14: The sequence of successive noises in the algorithm.

variance factors for respectively uplink and downlink compression.

Let a probability space (Ω,A,P) with Ω a sample space, A a σ-algebra, and P a probability measure.
We recall that the σ-algebra generated by a random variable X : Ω→ Rm is

σ(X) = {X−1(A) : A ∈ B(Rm)} ,

where B(Rm) is the Borel set of Rm.

Furthermore, we recall that a filtration of (Ω,A,P) is defined as an increasing sequence (Fn)n∈N of
σ-algebras:

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ F .

Randomness in our algorithm comes from three sources, therefore, we define three sequences of i.i.d.
zero-centered random fields (ξik)k∈N,i∈{1,...,N}, (ϵik)k∈N,i∈{1,...,N}, (ϵk)k∈N.

1. Stochastic gradients. It corresponds to the noise associated with the computation of the
stochastic gradient on device i at epoch k. We have:

∀k ∈ N∗ , ∀i ∈ J0, ..., NK, gik = ∇Fi(wk−1) + ξik(wk−1) .

2. Uplink compression: this noise corresponds to the uplink compression when local gradients are
compressed. Let k ∈ N and i ∈ J0, ..., NK, suppose, we want to compress ∆i

k ∈ Rd, then:

∀k ∈ N∗, ∀i ∈ J0, ..., NK, ∆̂i
k = ∆i

k + ϵik(∆
i
k)⇐⇒ ĝik = gik + ϵik(∆

i
k) .

3. Downlink compression. This noise corresponds to the downlink compression when the global
model parameter is compressed. Let k ∈ N, suppose we want to compress ĝk ∈ Rd, then:

∀k ∈ N∗, Ωk = Cs(ĝk) = ĝk + ϵk(ĝk) .

This “succession of noises” in the algorithm is illustrated in Figure B.14. In order to handle these
three sources of randomness, we define three sequences of nested σ-algebras.

Definition B.1. We note (Fk)k∈N the filtration associated to the stochastic gradient computation
noise, (Gk)k∈N the filtration associated to the uplink compression noise and (Hk)k∈N the filtration
associated to the downlink compression noise. For k ∈ N∗, we define:

Fk = σ
(
Γk−1, (ξ

i
k)

N
i=1

)
Gk = σ

(
Γk−1, (ξ

i
k)

N
i=1, (ϵ

i
k)

N
i=1

)
Hk = σ

(
Γk−1, (ξ

i
k)

N
i=1, (ϵ

i
k)

N
i=1, ϵk

)
with Γk = {(ξit)i∈J1,NK, (ϵ

i
t)i∈J1,NK, ϵt}t∈J1,kK and Γ0 = {∅}.

We can make the following observations for all k ≥ 1:

• From these three definitions, it follows that our sequences are nested.

F1 ⊂ G1 ⊂ H1 ⊂ F2 ⊂ · · · ⊂ Hk .

Appendix B. Appendix to Artemis 101

• wk−1 is Hk−1-measurable.

• gk is Fk-measurable.

• ĝk is Gk-measurable.

As a consequence, we have Propositions B.1 to B.5. Below Proposition B.1 gives the expectation
over stochastic gradients conditionally to σ-algebras Hk−1 and Fk.

Proposition B.1 (Stochastic Expectation). Let k ∈ N∗ and i ∈ J1, NK. Then on each local device
i ∈ J1, NK we have almost surely (a.s.) E[gik | Fk] = gik and E[gik | Hk−1] = ∇Fi(wk−1).

Proposition B.2 gives expectation of uplink compression (information sent from remote devices to
central server) conditionally to σ-algebras Fk and Gk.

Proposition B.2 (Uplink Compression Expectation). Let k ∈ N∗ and i ∈ J1, NK. Recall that
ĝik = gik + ϵik, then on each local device i ∈ J1, NK, we have a.s. E[ĝik | Gk] = ĝik and E[ĝik | Fk] = gik.

From Assumption 2.5, it follows that variance over uplink compression can be bounded as expressed
in Proposition B.3.

Proposition B.3 (Uplink Compression Variance). Let k ∈ N∗ and i ∈ J1, NK. Recall that ∆i
k =

gik + hik−1, using Assumption 2.5 following hold a.s.:

E
[
∥∆̂i

k −∆i
k∥2

∣∣∣ Fk

]
≤ ωup∥∆i

k∥2 (B.2)

(⇐⇒ E
[
∥ĝik − gik∥2

∣∣ Fk

]
≤ ωup∥gik∥2 when no memory) . (B.3)

Concerning downlink compression (information sent from central server to each node), Proposition B.4
gives its expectation w.r.t σ-algebras Gk and Hk.

Proposition B.4 (Downlink Compression Expectation). Let k ∈ N∗, recall that Ωk = Cdwn(ĝk) =
ĝk + ϵk, then a.s. E[Ωk | Hk] = Ωk and E[Ωk | Gk] = ĝk.

The next proposition states that downlink compression can be bounded as for Proposition B.3.

Proposition B.5 (Downlink Compression Variance). Let k ∈ N, using Assumption 2.5, we have
a.s. E

[
∥Ωk − ĝk∥2

∣∣ Gk] ≤ ωdwn∥ĝk∥2.

B.3 Technical results

In this section, we introduce a few technical lemmas that will be used in the proofs of Theorems B.1
to B.3. We first present lemmas common to the proofs with/without memory and which are needed
to prove the contraction of the Lyapunov function. Then, in respectively Subsections B.3.1 and B.3.2,
we give lemmas adapted to the cases without and with memory.

The first lemma is very simple and straightforward from the definition of ∆i
k. We remind that ∆i

k is
the difference between the computed gradient and the memory hold on device i. It corresponds to
the information which will be compressed and sent from device i to the central server.

Lemma B.1 (Bounding the compressed term). The squared norm of (∆i
k)k∈N∗,i∈{1,...,N}, the term

sent by each node to the central server, can be bounded as follows:

∀k ∈ N∗ , ∀i ∈ J1, NK ,
∥∥∆i

k

∥∥2 ≤ 2
(∥∥gik − hi∗

∥∥2 + ∥∥hik−1 − hi∗
∥∥2) .

Appendix B. Appendix to Artemis 102

Proof

Let k ∈ N and i ∈ {1, . . . , N}, we have by definition:∥∥∆i
k

∥∥2 = ∥∥gik − hik−1

∥∥2 = ∥∥(gik − hi∗) + (hi∗ − hik−1)
∥∥2 .

Applying Inequality 1 gives the expected result.

Below, we show up a recursion over the memory term hik−1 involving the stochastic gradients. This
recursion will be used in Lemma B.8. This recursion has been first shed into light by Mishchenko
et al. [2019].

Lemma B.2 (Expectation of memory term). The memory term hik can be expressed using a recursion
involving the stochastic gradient gik:

∀k ∈ N∗ , ∀i ∈ J1, NK , E
[
hik
∣∣ Fk

]
= (1− αup)h

i
k−1 + αupg

i
k .

Proof Let k ∈ N and i ∈ {1, . . . , N}. We just need to decompose hik using its definition:

hik = hik−1 + αup∆̂
i
k = hik−1 + αup(ĝ

i
k − hik−1) = (1− αup)h

i
k−1 + αupĝ

i
k ,

and considering that E
[
ĝik
∣∣ Fk

]
= gik (Proposition B.2), the proof is completed.

In Lemma B.3, we rewrite ∥gk∥2 and
∥∥gk − hi∗

∥∥2 to make appears:

1. the noise over stochasticity,

2. ∥gk − gk,∗∥2 which is the term on which will later be applied cocoercivity (see Assumption 2.2).

Lemma B.3 is required to correctly apply cocoercivity in Lemma B.9.

Lemma B.3 (Before using co-coercivity). Let k ∈ J0,KK and i ∈ J1, NK. The noise on the stochastic
gradients as defined in Assumptions 2.3 and 2.4 can be controlled as following:

1

N

N∑
i=1

E
[∥∥gik∥∥2 ∣∣∣ Hk−1

]
≤ 2

N

N∑
i=1

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+ (

σ2
∗
b

+B2)

)
, (B.4)

1

N

N∑
i=1

E
[∥∥gik − hi∗

∥∥2 ∣∣∣ Hk−1

]
≤ 2

N

N∑
i=1

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

σ2
∗
b

)
. (B.5)

Proof Let k ∈ N and i in {1, . . . , N}. We obtain Equation (B.4) using Inequality 1:∥∥gik∥∥2 = ∥∥gik − gik,∗ + gik,∗
∥∥2 ≤ 2

(∥∥gik − gik,∗
∥∥2 + ∥∥gik,∗∥∥2) .

Taking expectation with regards to filtration Hk−1 and using Assumptions 2.3 and 2.4 gives the first
result.

For Equation (B.5), we use again Inequality 1 and we write (by definition, hi∗ = ∇Fi(w∗)):∥∥gik − hi∗
∥∥2 = ∥∥(gik − gik,∗

)
+
(
gik,∗ −∇Fi(w∗)

)∥∥2 ≤ 2(
∥∥gik − gik,∗

∥∥2 + ∥∥gik,∗ −∇Fi(w∗)
∥∥2) .

Taking expectation, we have:

E
[∥∥gik − hi∗

∥∥2 ∣∣∣ Hk−1

]
≤ 2

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+ E

[∥∥gik,∗ −∇Fi(w∗)
∥∥2 ∣∣∣ Hk−1

])
≤ 2

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

σ2
∗
b

)
using Assumption 2.3.

Appendix B. Appendix to Artemis 103

Demonstrating that the Lyapunov function is a contraction requires to bound ∥gk∥2 which needs
to control each term (∥gik∥2)Ni=1 of the sum. This leads to invoke smoothness of F (consequence of
Assumption 2.2).

Lemma B.4. Regardless if we use memory, we have the following bound on the squared norm of the
gradient, for all k in N∗:

E
[
∥gk∥2

∣∣∣ Hk−1

]
≤ 1

N2

N∑
i=1

E
[∥∥gik − hi∗

∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

Proof

Let k ∈ N∗, taking expectation w.r.t the σ-algebra Hk−1:

E
[
∥gk∥2

∣∣∣ Hk−1

]
= E

∥∥∥∥∥ 1

N

N∑
i=1

gik −∇Fi(wk−1) +
1

N

N∑
i=1

∇Fi(wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ Hk−1

 .

Decomposing the squared norm:

E
[
∥gk∥2

∣∣∣ Hk−1

]
= E

∥∥∥∥∥ 1

N

N∑
i=1

gik −∇Fi(wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ Hk−1

+ 2E

[〈
1

N

N∑
i=1

gik −∇Fi(wk−1),
1

N

N∑
i=1

∇Fj(wk−1)

〉 ∣∣∣∣∣ Hk−1

]

+ E

∥∥∥∥∥ 1

N

N∑
i=1

∇Fi(wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ Hk−1

 .

Moreover, ∀i, j ∈ {1, . . . , N}2,E
[〈
gik −∇Fi(wk−1),∇Fj(wk−1)

〉 ∣∣ Hk−1

]
= 0 and ∇F (wk−1) is

Hk−1-measurable, hence:

E
[
∥gk∥2

∣∣∣ Hk−1

]
≤ E

∥∥∥∥∥ 1

N

N∑
i=1

gik −∇Fi(wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ Hk−1

+ ∥∇F (wk−1)∥2 . (B.6)

To compute ∥∇F (wk−1)∥2, we apply cocoercivity (Assumption 2.2):

∥∇F (wk−1)∥2 ≤ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

We note □k =
∥∥∥ 1
N

∑N
i=1 g

i
k −∇Fi(wk−1)

∥∥∥2, then expending the squared norm:

E [□k | Hk−1] =
1

N2

N∑
i=1

E
[∥∥gik −∇Fi(wk−1)

∥∥2 ∣∣∣ Hk−1

]
+

1

N2

∑
i,j∈{1,...,N}/i̸=j

E
[〈

gik −∇Fi(wk−1), g
j
k −∇Fj(wk−1)

〉 ∣∣∣ Hk−1

]
︸ ︷︷ ︸

=0 by independence of (gik)
N
i=0

=
1

N2

N∑
i=1

E
[∥∥(gik −∇Fi(w∗)) + (∇Fi(w∗)−∇Fi(wk−1))

∥∥2 ∣∣∣ Hk−1

]
.

Appendix B. Appendix to Artemis 104

Developing the squared norm a second time:

E [□k | Hk−1] =
1

N2

N∑
i=1

E
[∥∥gik −∇Fi(w∗)

∥∥2 ∣∣∣ Hk−1

]
+

2

N2

N∑
i=1

E
[〈
gik −∇Fi(w∗),∇Fi(w∗)−∇Fi(wk−1)

〉 ∣∣ Hk−1

]
+

1

N2

N∑
i=1

∥∇Fi(wk−1)−∇Fi(w∗)∥2

=
1

N2

N∑
i=1

E
[∥∥gik −∇Fi(w∗)

∥∥2 ∣∣∣ Hk−1

]
− 1

N2

N∑
i=1

∥∇Fi(wk−1)−∇Fi(w∗)∥2

≤ 1

N2

N∑
i=1

E
[∥∥gik −∇Fi(w∗)

∥∥2 ∣∣∣ Hk−1

]
.

Recall that we note hi∗ = ∇Fi(w∗), returning to Equation (B.6), we have:

E
[
∥gk∥2

∣∣∣ Hk−1

]
≤ 1

N2

N∑
i=1

E
[∥∥gik − hi∗

∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ ,

which allows to conclude.

B.3.1 Lemmas for the case without memory

In this subsection, we give lemmas that are used only to demonstrate Theorem B.1 (i.e. without
memory).

Lemma B.5 is used to remove the uplink compression noise.

Lemma B.5 (Expectation of the squared norm of the compressed gradient when no memory).
In the case without memory, we have the following bound on the squared norm of the compressed
gradient, for all k in N∗:

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ ωup

N2

N∑
i=0

E
[∥∥gik∥∥2 ∣∣∣ Hk−1

]
+

1

N2

N∑
i=0

E
[∥∥gik − hi∗

∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

Proof Let k in N∗, first, we write as following:

∥ĝk∥2 = ∥ĝk − gk∥2 + 2 ⟨ĝk − gk, gk⟩+ ∥gk∥2 .

Taking stochastic expectation (recall that gk is Fk-measurable and that Hk−1 ⊂ Fk):

E
[
E
[
∥ĝk∥2

∣∣∣ Fk

] ∣∣∣ Hk−1

]
= E

[
E
[
∥ĝk − gk∥2

∣∣∣ Fk

] ∣∣∣ Hk−1

]
+ 2× E [E [⟨ĝk − gk, gk⟩ | Fk] | Hk−1]

+ E
[
∥gk∥2

∣∣∣ Hk−1

]
.

(B.7)

Appendix B. Appendix to Artemis 105

We need to find a bound for each of the terms of above Equation (B.7). The second term is zero
in expectation and the last term is handled in Lemma B.4. It follows that we just need to bound
∥ĝk − gk∥2:

E
[
∥ĝk − gk∥2

∣∣∣ Fk

]
= E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik − gik

∥∥∥∥∥
2
∣∣∣∣∣∣ Fk

=

1

N2

N∑
i=0

E
[∥∥ĝik − gik

∥∥2 ∣∣∣ Fk

]
+

1

N

∑
i ̸=j

E
[〈

ĝik − gik, ĝ
j
k − gjk

〉 ∣∣∣ Fk

]
︸ ︷︷ ︸

=0 because (ĝik)
N
i=1 are independents

=
1

N2

N∑
i=1

E
[∥∥ĝik − gik

∥∥2 ∣∣∣ Fk

]
.

Combining with Proposition B.3, we hold that E
[
∥ĝk − gk∥2

∣∣∣ Fk

]
≤ ωup

N2

∑N
i=1

∥∥gik∥∥2. Furthermore,
we have that:

• E [⟨ĝk − gk, gk⟩ | Fk] = 0 (Proposition B.2)

• E
[
∥gk∥2

∣∣∣ Hk−1

]
≤ 1

N2

∑N
i=0 E

[∥∥gik − hi∗
∥∥2 ∣∣∣ Hk−1

]
+L ⟨∇F (wk−1), wk−1 − w∗⟩ (Lemma B.4).

Thus, we obtain from Equation (B.7):

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ ωup

N2

N∑
i=1

E
[∥∥gik∥∥2 ∣∣∣ Hk−1

]
+

1

N2

N∑
i=1

E
[∥∥gik − hi∗

∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

Lemma B.6. In the case without memory, we have the following bound on the squared norm of the
local compressed gradient, for all k in N∗, for all i in J1, NK: E[∥ĝik∥2 | Fk] ≤ (ωup + 1)∥gik∥2

Proof Let k in N∗ and i in J1, NK:

E
[∥∥ĝik∥∥2 ∣∣∣ Fk

]
= E

[∥∥ĝik − gik + gik
∥∥2 ∣∣∣ Fk

]
= E

[∥∥ĝik − gik
∥∥2 ∣∣∣ Fk

]
+ 2E

[〈
ĝik − gik, g

i
k

〉 ∣∣ Fk

]︸ ︷︷ ︸
=0

+E
[∥∥gik∥∥2 ∣∣∣ Fk

]

We obtain the result because
∥∥gik∥∥2 is Fk+1-measurable and using Proposition B.5.

B.3.2 Lemmas for the case with memory

In this Subsection, we give lemmas that are used only to demonstrate Theorems B.2 and B.3 (i.e.
with memory).

In order to derive an upper bound on the squared norm of ∥wk − w∗∥2, for k in N∗, we need to
control ∥ĝk∥2. This term is decomposed as a sum of three terms depending on:

1. the recursion over the memory term (hik−1)

Appendix B. Appendix to Artemis 106

2. the difference between the stochastic gradient at the current point and at the optimal point
(later controlled by co-coercivity)

3. the noise over stochasticity.

Lemma B.7. In the case with memory, we have the following upper bound on the squared norm of
the compressed gradient, for all k in N∗:

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ 2(2ωup + 1)

N2

N∑
i=1

E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

2ωup

N2

N∑
i=1

E
[∥∥hik−1 − hi∗

∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩+

2(2ωup + 1)σ∗
Nb

.

Proof

Let k in N∗. We take the expectation w.r.t. the σ-algebra Hk−1, with a bias-variance decomposition
and we obtain E[∥ĝk∥2 | Hk−1] = E[∥gk∥2 | Hk−1] + E[∥ĝk − gk∥2 | Hk−1]. The first term is handled
with Lemma B.4:

E
[
∥gk∥2

∣∣∣ Hk−1

]
≤ 1

N2

N∑
i=1

E
[∥∥gik − hi∗

∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

Furthermore, by the independence of the “N” compressions:

E
[
∥ĝk − gk∥2

∣∣∣ Hk−1

]
=

1

N2

N∑
i=1

E

[∥∥∥∆̂i
k −∆i

k

∥∥∥2 ∣∣∣∣ Hk−1

]
,

because Hk−1 ⊂ Fk, we can use Proposition B.3 to obtain E
[
∥ĝk − gk∥2

∣∣∣ Hk−1

]
≤ ωup

N2

∑N
i=1

∥∥∆i
k

∥∥2
and next with Lemma B.1, we have:

E
[
∥ĝk − gk∥2

∣∣∣ Hk−1

]
≤ 2ωup

N2

N∑
i=1

E
[∥∥gik − hi∗

∥∥2 ∣∣∣ Hk−1

]
+ E

[∥∥hik−1 − hi∗
∥∥2 ∣∣∣ Hk−1

]
.

At the end:

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
=

2ωup + 1

N2

N∑
i=1

E
[∥∥gik − hi∗

∥∥2 ∣∣∣ Hk−1

]
+

2ωup

N2

N∑
i=1

E
[∥∥hik−1 − hi∗

∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

We can now apply Lemma B.3 to conclude the proof:

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ 2(2ωup + 1)

N2

N∑
i=1

E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

2ωup

N2

N∑
i=1

E
[∥∥hik−1 − hi∗

∥∥2 ∣∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩+

2(2ωup + 1)σ∗
Nb

.

Appendix B. Appendix to Artemis 107

To show that the Lyapunov function is a contraction, we need to find a bound for each terms.
Bounding ∥wk − w∗∥2, for k in N, flows from update schema (see Equation (2.3)) decomposition.
However the memory term

∥∥hik − hi∗
∥∥2 involved in the Lyapunov function doesn’t show up naturally.

The aim of Lemma B.8 is precisely to provide a recursive bound over the memory term to highlight
the contraction. Like Lemma B.2, the following lemma comes from Mishchenko et al. [2019].

Lemma B.8 (Recursive inequalities over memory term). Let k ∈ N∗ and let i ∈ J1, NK. The memory
term used in the uplink broadcasting can be bounded using a recursion:

E
[∥∥hik − hi∗

∥∥2 ∣∣∣ Hk−1

]
≤
(
1 + 2α2

upωup + 2α2
up − 3αup

) ∥∥hik−1 − hi∗
∥∥2

+ 2(2α2
upωup + 2α2

up − αup)E
[
∥gk − gk,∗∥2

∣∣∣ Hk−1

]
+

2σ2
∗

b

(
2α2

up(ωup + 1)− αup

)
.

Proof

Let k ∈ N∗ and let i ∈ J1, NK, using Lemma A.2 we have:

E
[∥∥hik − hi∗

∥∥2 ∣∣∣ Fk

]
=
∥∥E
[
hik
∣∣ Fk

]
− hi∗

∥∥2 + E
[∥∥hik − E

[
hik
∣∣ Fk

]∥∥2 ∣∣∣ Fk

]
,

and now with Lemma B.2:

E
[∥∥hik − hi∗

∥∥2 ∣∣∣ Fk

]
=
∥∥(1− αup)h

i
k−1 + αupg

i
k − hi∗

∥∥2 + E
[∥∥hik − E

[
hik
∣∣ Fk

]∥∥2 ∣∣∣ Fk

]
.

Now recall that hik = hik−1 + αup∆̂
i
k, with E[∆̂i

k | Fk] = ∆i
k and hik−1 being Fk-measurable:

E
[∥∥hik − hi∗

∥∥2 ∣∣∣ Fk

]
=
∥∥(1− αup)(h

i
k−1 − hi∗) + αup(g

i
k − hi∗)

∥∥2 + α2
upE

[∥∥∥∆̂i
k −∆i

k

∥∥∥2 ∣∣∣∣ Fk

]
.

Using Lemma A.1 of Section A.1 and Proposition B.3:

E
[∥∥hik − hi∗

∥∥2 ∣∣∣ Fk

]
≤ (1− αup)

∥∥hik−1 − hi∗
∥∥2 + αup

∥∥gik − hi∗
∥∥2

− αup(1− αup)
∥∥hik−1 − gik

∥∥2 + α2
upωup

∥∥∆i
k

∥∥2 .
Because hik−1 − gik = ∆i

k:

E
[∥∥hik − hi∗

∥∥2 ∣∣∣ Fk

]
≤ (1− αup)

∥∥hik−1 − hi∗
∥∥2 + αup

∥∥gik − hi∗
∥∥2 + αup (αup(ωup + 1)− 1)

∥∥∆i
k

∥∥2 ,

and using Lemma B.1:

E
[∥∥hik − hi∗

∥∥2 ∣∣∣ Fk

]
≤ (1− αup)

∥∥hik−1 − hi∗
∥∥2 + αup

∥∥gik − hi∗
∥∥2

+ 2αup (αup(ωup + 1)− 1)
(∥∥hik−1 − hi∗

∥∥2 + ∥∥gk − hi∗
∥∥2)

≤
(
1 + 2α2

upωup + 2α2
up − 3αup

) ∥∥hik−1 − hi∗
∥∥2

+ αup(2αupωup + 2αup − 1)
∥∥gk − hi∗

∥∥2 .

Appendix B. Appendix to Artemis 108

Finally taking expectation w.r.t. the σ-algebra Hk−1 (Hk−1 ⊂ Fk) and using Equation (B.5) of
Lemma B.3, we have:

E
[∥∥hik − hi∗

∥∥2 ∣∣∣ Hk−1

]
≤ (1 + 2α2

upωup + 2α2
up − 3αup)

∥∥hik−1 − hi∗
∥∥2

+ 2(2α2
upωup + 2α2

up − αup)E
[
∥gk − gk,∗∥2

∣∣∣ Hk−1

]
+

2σ2
∗

b

(
2α2

up(ωup + 1)− αup

)
,

which concludes the proof.

After successfully invoking all previous lemmas, we will finally be able to use co-coercivity. Lemma B.9
shows how Assumption 2.2 is used to do it. After this stage, proof will be continued by applying
strong-convexity of F .

Lemma B.9 (Applying co-coercivity). This lemma shows how to apply co-coercivity on stochastic
gradients. For all k in N∗, we have 1

N

∑N
i=1 E

[∥∥gik − gk,∗
∥∥2 ∣∣∣ Hk−1

]
≤ L ⟨∇F (wk−1), wk−1 − w∗⟩.

Proof Let k ∈ N∗, using Assumption 2.2, we have:

1

N

N∑
i=1

E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
≤ 1

N

N∑
i=1

L
〈
E
[
gik − gik,∗

∣∣ Hk−1

]
, wk−1 − w∗

〉
≤ L

〈
1

N

N∑
i=1

∇Fi(wk−1)−∇Fi(w∗), wk−1 − w∗

〉
.

B.4 Proofs of Theorems

In this Section, we give demonstrations of all our theorems, that is to say, first the proofs of
Theorems B.1 and B.2 from which flow Theorem 2.1. Their demonstration sketch is drawn from
Mishchenko et al. [2019]. And in a second time, we give a complete demonstration of theorems
stated in Chapter 2: Theorems 2.2 and 2.3.

For the sake of demonstration, we define a Lyapunov function Vk [as in Mishchenko et al., 2019, Liu
et al., 2020], for k in N:

Vk = ∥wk − w∗∥2 + 2γ2C
1

N

N∑
i=1

∥∥hik − hi∗
∥∥2 ,

with C in R∗
+. The Lyapunov function is defined by combining two terms.

1. The distance from parameter wk to optimal parameter w∗.
2. The memory term, the distance between the next element prediction hik and the true gradi-

ent hi∗ = ∇Fi(w∗).

The aim is to proof that this function is a (1− γµ) contraction for each variant of Artemis. To show
that it’s a contraction, we need three stages:

1. we develop the update schema defined in Equation (2.3) to get a first bound on ∥wk − w∗∥2,
2. we find a recurrence over the memory term

∥∥hik − hi∗
∥∥2,

3. and finally we combines the two equations to obtain the expected contraction using co-coercivity
and strong-convexity.

Appendix B. Appendix to Artemis 109

B.4.1 Proof of main Theorem for Artemis - variant without memory

Theorem B.1 (Unidirectional or bidirectional compression without memory). Considering that
Assumptions 2.1 to 2.5 hold. Taking γ such that

γ ≤ N

L(ωdwn + 1) (N + 2(ωup + 1))
,

then running Artemis with αup = 0 (i.e without memory), we have for all k in N∗:

E ∥wk − w∗∥2 ≤ (1− γµ)k ∥w0 − w∗∥2 + 2γ
E

µN
,

with E = (ωdwn +1)

(
(ωup + 1)σ2

∗
b

+ ωupB
2

)
. In the case of unidirectional compression (resp. no

compression), we have ωdwn = 0 (resp. ωup/dwn = 0).

Proof

In the case of the variant of Artemis with αup = 0, we don’t have any memory term, thus C = 0
and we don’t need to use the Lyapunov function.

Let k in N∗, we start by writing that by definition of Equation (2.3):

∥wk − w∗∥2 = ∥wk−1 − γΩk − w∗∥2

= ∥wk−1 − w∗∥2 − 2γ ⟨Ωk, wk−1 − w∗⟩+ γ2 ∥Ωk∥2 ,

with Ωk = C
dwn

(ĝk) and ĝk = 1
N
∑N

i=1 ĝ
i
k. First, we have E [Ωk | Gk−1] = ĝk (Proposition B.4)

secondly considering that E[∥Ωk∥2 | Gk−1] = V(Ωk) + ∥E [Ωk | Gk−1]∥2 = (ωdwn + 1) ∥ĝk∥2 leads to:

E
[
∥wk − w∗∥2

∣∣∣ Gk−1

]
= E

[
∥wk−1 − w∗∥2

∣∣∣ Gk−1

]
− 2γ ⟨ĝk, wk−1 − w∗⟩+ γ2(ωdwn + 1) ∥ĝk∥2 .

Now, we take expectation w.r.t σ-algebra Hk−1 ⊂ Gk−1, (with use of Propositions B.1 and B.2, we
obtain :

E
[
∥wk − w∗∥2

∣∣∣ Hk−1

]
= E

[
∥wk−1 − w∗∥2

∣∣∣ Hk−1

]
− 2γ ⟨∇F (wk−1), wk−1 − w∗⟩ (B.8)

+ γ2(ωdwn + 1)E
[
∥ĝk∥2

∣∣∣ Hk−1

]
.

Lemma B.5 gives:

E[∥ĝk∥2 | Hk−1] ≤
ωup

N2

N∑
i=0

E[
∥∥gik∥∥2 | Hk−1] +

1

N

N∑
i=0

E[
∥∥gik − hi∗

∥∥2 | Hk−1]

+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

Lets introducing the noise at optimal point w∗ with the two equations of Lemma B.3:

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ ωup

N2

N∑
i=1

2

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+ (

σ2
∗
b

+B2)

)

+
1

N2

N∑
i=1

2

(
E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

σ2
∗
b

)
+ L ⟨∇F (wk−1), wk−1 − w∗⟩ .

Appendix B. Appendix to Artemis 110

Invoking cocoercivity (Assumption 2.2):

E
[
∥ĝk∥2

∣∣∣ Hk−1

]
≤ 2(ωup + 1)

N2

N∑
i=1

E
[
L
〈
gik − gik,∗, wk−1 − w∗

〉 ∣∣ Hk−1

]
+ L ⟨∇F (wk−1), wk−1 − w∗⟩+

2

N

(
(ωup + 1)σ2

∗
b

+ ωupB
2

)
≤ 2(ωup + 1)L

N
⟨∇F (wk−1), wk−1 − w∗⟩ (B.9)

+ L ⟨∇F (wk−1), wk−1 − w∗⟩+
2

N

(
(ωup + 1)σ2

∗
b

+ ωupB
2

)
.

Finally, we can inject Equation (B.9) in Equation (B.8) to obtain:

E
[
∥wk − w∗∥2

∣∣∣ Hk−1

]
≤ ∥wk−1 − w∗∥2

− 2γ

(
1− γL(ωdwn + 1)(ωup + 1)

N
− γL(ωdwn + 1)

2

)
⟨∇F (wk−1), wk−1 − w∗⟩

+

2γ2(ωdwn + 1)

(
(ωup + 1)σ2

∗
b

+ ωupB
2

)
N

. (B.10)

We note:

1. □ = 1− γL(ωdwn+1)(ωup+1)
N − γL(ωdwn+1)

2

2. E = (ωdwn + 1)

(
(ωup + 1)σ2

∗
b

+ ωupB
2

)
.

We need □ ≥ 0 in order to further apply strong-convexity. However, in order to later obtain a
convergence in (1− γµ), we will use a stronger condition and, instead, state that we need □ ≥ 1/2,
which is equivalent to:

1

2
≥ γL(ωdwn + 1)(ωup + 1)

N
+

γL(ωdwn + 1)

2
⇐⇒ γ ≤ N

L(ωdwn + 1) (N + 2(ωup + 1))
,

Using strong-convexity of F (Assumption 2.1), we rewrite Equation (B.10) as follows:

E
[
∥wk − w∗∥2

∣∣∣ Hk−1

]
≤ ∥wk−1 − w∗∥2 − 2γµ□ ∥wk−1 − w∗∥2 + 2γ2

E

N
, equivalent to:

≤ (1− 2γµ□) ∥wk−1 − w∗∥2 + 2γ2
E

N
.

To guarantee a (1− γµ) convergence, we need □ ≥ 1/2, which is already verified, hence taking full
expectation, we are allowed to write:

E[∥wk − w∗∥2] ≤ (1− γµ)E[∥wk−1 − w∗∥2] + 2γ2
E

N

⇐⇒ E[∥wk − w∗∥2] ≤ (1− γµ)k ∥w0 − w∗∥2 + 2γ2
E

N
× 1− (1− γµ)k

γµ

⇐⇒ E[∥wk − w∗∥2] ≤ (1− γµ)k ∥w0 − w∗∥2 + 2γ
E

µN
,

and the proof is complete.

Appendix B. Appendix to Artemis 111

B.4.2 Proof of main Theorem for Artemis - variant with memory

Theorem B.2 (Unidirectional or bidirectional compression with memory). Considering that As-
sumptions 2.1 to 2.5 hold. We use w∗ to indicate the optimal parameter such that ∇F (w∗) = 0, and
we note hi∗ = ∇Fi(w∗). We define the Lyapunov function for any k in N:

Vk = ∥wk − w∗∥2 + 2γ2C
1

N

N∑
i=1

∥∥hik − hi∗
∥∥2 .

We defined C ∈ R∗
+, such that:

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ C ≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
. (B.11)

Then, using Artemis with a memory mechanism (αup ̸= 0), the convergence of the algorithm is
guaranteed if:

1. 1
2(ωup + 1)

≤ αup < min

(
3

2(ωup + 1)
,

3N − γL(ωdwn + 1) (3N + 8ωup + 6)
2(ωup + 1)(N − γL(ωdwn + 1)(N + 2))

)
2.

γ < min

1

(ωdwn + 1)

(
1 +

2

N

)
L

, 3

(ωdwn + 1)

(
3 +

8ωup + 6

N

)
L

,

N
(ωdwn + 1) (N + 2(2ωup + 1))L

 .

And we have a bound for the Lyapunov function:

EVk ≤ (1− γµ)k
(
∥w0 − w∗∥2 + 2Cγ2B2

)
+ 2γ

E

µN
,

with E =
σ2
∗
b

(
(2ωup + 1)(ωdwn + 1) + 2C

(
2α2

up(ωup + 1)− αup

))
. In the case of unidirectional

compression (resp. no compression), we have ωdwn = 0 (resp. ωup/dwn = 0).

Proof Let k ∈ N∗, by definition of the update schema (Algorithm 2), we have: wk = wk−1 − γΩk,
with Ωk = C

dwn
(ĝk) and ĝk = hk−1 + 1

N
∑N

i=1 ∆̂
i
k, thus ∥wk − w∗∥2 = ∥wk−1 − w∗ + γΩk∥2 =

∥wk−1 − w∗∥ − 2γ ⟨Ωk, wk−1 − w∗⟩+ γ2 ∥Ωk∥2. Taking expectation w.r.t. the σ-algebra Gk−1:

E
[
∥wk − w∗∥2

∣∣∣ Gk−1

]
= E

[
∥wk−1 − w∗∥2

∣∣∣ Gk−1

]
− 2γ ⟨ĝk, wk−1 − w∗⟩+ γ2(ωdwn + 1) ∥ĝk∥2 .

We take expectation w.r.t σ-algebra Hk−1 ⊂ Gk−1 and invoke Lemma B.7:

E
[
∥wk − w∗∥2

∣∣∣ Hk−1

]
≤ ∥wk−1 − w∗∥2 − 2γE [⟨ĝk, wk−1 − w∗⟩ | Hk−1]

+
2(2ωup + 1)(ωdwn + 1)γ2

N2

N∑
i=1

E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

2ωup(ωdwn + 1)γ2

N2

N∑
i=1

E
[∥∥hik−1 − hi∗

∥∥2 ∣∣∣ Hk−1

]
+ γ2(ωdwn + 1)L ⟨∇F (wk−1), wk−1 − w∗⟩

+
2(2ωup + 1)(ωdwn + 1)γ2σ∗

Nb
. (B.12)

Appendix B. Appendix to Artemis 112

Note that in the case of unidirectional compression, we have Ωk = ĝk, and the steps above are more
straightforward. Recall that according to Lemma B.8 (and taking the sum), we have:

1

N2

N∑
i=1

E
[∥∥hik − hi∗

∥∥2 ∣∣∣ Hk−1

]
≤
(
1 + 2α2

upωup + 2α2
up − 3αup

) 1

N2

N∑
i=1

∥∥hik−1 − hi∗
∥∥2

+ 2(2α2
upωup + 2α2

up − αup)
1

N2

N∑
i=1

E
[∥∥gik − gik,∗

∥∥2 ∣∣∣ Hk−1

]
+

2σ2
∗

Nb

(
2α2

up(ωup + 1)− αup

)
.

(B.13)

With a linear combination (B.12) + 2γ2C (B.13):

E
[
∥wk − w∗∥2

∣∣∣ Hk−1

]
+ 2γ2C

1

N2

N∑
i=1

E
[∥∥hik − hi∗

∥∥2 ∣∣∣ Hk−1

]
≤ ∥wk−1 − w∗∥2 − 2γE [⟨ĝk, wk−1 − w∗⟩ | Hk−1]

+ 2γ2
(2ωup + 1)(ωdwn + 1) + 2C(2α2

upωup + 2α2
up − αup)

N2

N∑
i=1

E
[∥∥gik − gik,∗

∥∥ ∣∣ Hk−1

]
+ 2γ2C

(
ωup(ωdwn + 1)

C
+ 1 + 2α2

upωup + 2α2
up − 3αup

)
× 1

N2

N∑
i=1

∥∥hik−1 − hi∗
∥∥2

+ γ2(ωdwn + 1)L ⟨∇F (wk−1), wk−1 − w∗⟩

+
2γ2

N

(
σ2
∗
b

(
(2ωup + 1)(ωdwn + 1) + 2C

(
2α2

up(ωup + 1)− αup

)))
.

We transform ∥gik − gik,∗∥2 applying co-coercivity (Lemma B.9) and note:

• □ = 1− γL(ωdwn + 1)/2− γL
(
(2ωup + 1)(ωdwn + 1) + 2C(2α2

upωup + 2α2
up − αup)

)
/N

• ♢ =
ωup(ωdwn + 1)

C + 1 + 2α2
upωup + 2α2

up − 3αup

• E =
σ2
∗
b

(
(2ωup + 1)(ωdwn + 1) + 2C

(
2α2

up(ωup + 1)− αup

))
.

Now, because E [ĝk | Hk−1] = E
[
hk−1 +

1
N
∑N

i=1 ∆̂
i
k

∣∣∣ Hk−1

]
= ∇F (wk−1), we have:

E [Vk | Hk−1] ≤ ∥wk−1 − w∗∥2 − 2γ□ ⟨∇F (wk−1), wk−1 − w∗⟩

+
2γ2♢
N2

N∑
i=1

∥∥hik−1 − hi∗
∥∥2 + 2γ2E

N
.

(B.14)

Now, the goal is to apply strong-convexity of F (Assumption 2.1) using the inequality presented in
Proposition A.1. But then we must have □ ≥ 0. However, in order to later obtain a convergence
in (1 − γµ), we will use a stronger condition and, instead, state that we need □ ≥ 1/2, which is

Appendix B. Appendix to Artemis 113

equivalent to:

ωdwn + 1

2
+

1

N

(
(2ωup + 1)(ωdwn + 1) + 2C(2α2

upωup + 2α2
up − αup)

)
≤ 1

2γL

⇐⇒ (2ωup + 1)(ωdwn + 1) + 2C(2α2
upωup + 2α2

up − αup) ≤
(1− γL(ωdwn + 1))N

2γL

⇐⇒ C ≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
.

This holds only if the numerator and the denominator are positive: N − γL(ωdwn + 1) (N + 2(2ωup + 1)) > 0⇐⇒ γ < N
(ωdwn + 1) (N + 2(2ωup + 1))L

2αup(ωup + 1)− 1 ≤ 0⇐⇒ αup ≥ 1
2(ωup + 1)

.

strong-convexity is applied, and we obtain:

E [Vk | Hk−1] ≤ (1− 2γµ□) ∥wk−1 − w∗∥2 +
2γ2C♢

N

N∑
i=1

∥∥hik−1 − hi∗
∥∥2 + 2γ2E

N
. (B.15)

To guarantee a (1− γµ) convergence, constants must verify: (1) □ ≥ 1/2 and (2) ♢ ≤ 1− γµ. The
first condition is already verified, and the second one leads to:

♢ ≤ 1− γµ⇐⇒ ωdwn + 1

C
ωup ≤ 3αup − 2α2

upωup − 2αup − γµ

⇐⇒ C ≥ ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))− γµ
.

In the following we will consider that γµ
αup

= o
µ→0

(1) which is possible because αup is independent of

µ (it depends only of ωup and ωdwn) and it result to:

αup (3− 2αup(ωup + 1))− γµ ∼
µ→0

αup (3− 2αup(ωup + 1))

Thus, the condition on C becomes ωup(ωdwn + 1)
αup (3− 2αup(ωup + 1))

≤ C, which is correct only if αup ≤
3

2(ωup + 1)
. And we obtain the following conditions on C:

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ C ≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
.

It follows, that the above interval is not empty if:

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
.

For sake of clarity we denote momentarily γ̃ = (ωdwn + 1)γL, hence the above condition becomes:

8αupωup(ωup + 1)γ̃ − 4ωupγ̃ ≤ 3N − 3γ̃ (N + 2 + 2(2ωup + 1)))

− 2αup(ωup + 1)N + 2αupγ̃(ωup + 1) (N + 2(2ωup + 1))

⇐⇒ 2αup(ωup + 1)(N − γ̃(N + 2)) ≤ 3N − γ̃ (3N + 8ωup + 6) .

Appendix B. Appendix to Artemis 114

And at the end, we obtain:

αup ≤
3N − γL(ωdwn + 1) (3N + 8(ωup + 6))

2(ωup + 1)(N − γL(ωdwn + 1)(N + 2))
.

Again, this implies two conditions on γ:
3N − γL(ωdwn + 1) (3N + 8ωup + 6) > 0⇐⇒ γ < 3

(ωdwn + 1)

(
3 +

8ωup + 6

N

)
L

N − γL(ωdwn + 1)(N + 2) > 0⇐⇒ γ < 1

(ωdwn + 1)

(
1 +

2

N

)
L

.

The constant C exists, and from Equation (B.15), taking full expectation, we are allowed to
write E[Vk] ≤ (1− γµ)E[Vk−1] + 2γ2 E

N . Unrolling the inequality we obtain:

E[Vk] ≤ (1− γµ)kEV0 + 2γ2
E

N
× 1− (1− γµ)k

γµ

=⇒ E[Vk] ≤ (1− γµ)kV0 + 2γ
E

µN
.

Because V0 = E ∥w0 − w∗∥2 + 2γ2C 1
N

∑N
i=0

∥∥hi∗∥∥2 ≤ ∥w0 − w∗∥2 + 2Cγ2B2 (Assumption 2.4), we
can write:

E[Vk] = (1− γµ)k
(
∥w0 − w∗∥2 + 2Cγ2B2

)
+ 2γ

E

µN
.

Thus, we highlighted that the Lyapunov function Vk is a (1− γµ) contraction if C is taken in a given
interval, with γ and αup satisfying some conditions. This guarantees the convergence of the Artemis
using version 1 or 2 with αup ̸= 0 (algorithm with uni-compression or bi-compression combined with
a memory mechanism).

B.4.3 Proof of Theorem 2.2 - Polyak-Ruppert averaging

Theorem B.3 (Unidirectional or bidirectional compression using memory and averaging). Consid-
ering now that F is convex, thus µ = 0 and considering that Assumptions 2.2 to 2.5 hold. We use w∗
to indicate the optimal parameter such that ∇F (w∗) = 0, and we note hi∗ = ∇Fi(w∗). A Lyapunov
function is defined for any k in N:

Vk = ∥wk − w∗∥2 + 2γ2C
1

N

N∑
i=1

∥∥hik − hi∗
∥∥2 .

We defined C ∈ R∗
+, such that:

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ C ≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
.

Then running the variant of Artemis with αup ̸= 0, hence with a memory mechanism, and using
Polyak-Ruppert averaging, the convergence of the algorithm is guaranteed if:

Appendix B. Appendix to Artemis 115

1. 1
2(ωup + 1)

≤ αup < min

(
3

2(ωup + 1)
,

3N − γL(ωdwn + 1) (3N + 8ωup + 6)
2(ωup + 1)(N − γL(ωdwn + 1)(N + 2))

)
2.

γ < min

1

(ωdwn + 1)

(
1 +

2

N

)
L

, 3

(ωdwn + 1)

(
3 +

8ωup + 6

N

)
L

,

N
(ωdwn + 1) (N + 2(2ωup + 1))L

 . (B.16)

And we have the following bound for the Polyak-Ruppert averaged iterate wK−1 =
1
K

∑K−1
k=0 wk:

E [F (wK−1)− F (w∗)] ≤
∥w0 − w∗∥2 + 2Cγ2B2

γK
+ 2γ

E

N
, (B.17)

with E =
σ2
∗
b

(
(2ωup + 1)(ωdwn + 1) + 2C

(
2α2

up(ωup + 1)− αup

))
. Equation (B.17) can be written

as in Theorem 2.2 if we take γ = min

(√
Nδ20
2EK ; γmax

)
, where γmax is the maximal possible value

of γ as precised by Equation (B.16):

E [F (wK−1)− F (w∗)] ≤ 2max

(√
2δ20E

NK
;

δ20
γmaxK

)
+

2γmaxCB2

K

Proof

Let k in N∗, starting from Equation (B.14) from the proof of Theorem B.2, we have:

E [Vk | Hk−1] ≤ ∥wk−1 − w∗∥2 − 2γ□ ⟨∇F (wk−1), wk−1 − w∗⟩+
2γ2♢
N2

N∑
i=1

∥∥hik−1 − hi∗
∥∥2 + 2γ2E

N
.

But this time, instead of applying strong-convexity of F , we apply convexity (Assumption 2.1 but
with µ = 0):

EVk ≤ ∥wk−1 − w∗∥2 − 2γ□ (F (wk−1)− F (w∗)) +
2γ2C♢
N2

N∑
i=1

∥∥hik−1 − hi∗
∥∥2 + 2γ2

N
E (B.18)

As in Theorem B.2, we want □ ≥ 1/2, which is equivalent to:

ωdwn + 1

2
+

1

N

(
(2ωup + 1)(ωdwn + 1) + 2C(2α2

upωup + 2α2
up − αup)

)
≤ 1

2γL

⇐⇒ C ≤ N − γL(ωdwn + 1) (N + 8ωup + 6)

4γLαup (2αup(ωup + 1)− 1)
. (B.19)

It holds only if the numerator and the denominator are positive: N − γL(ωdwn + 1) (N + 8ωup + 6) > 0⇐⇒ γ < N
(ωdwn + 1) (N + 8ωup + 6)L

2αup(ωup + 1)− 1 ≤ 0⇐⇒ αup ≥ 1
2(ωup + 1)

.

Returning to Equation (B.18), taking benefit of Equation (B.19) and passing F (wk−1)− F (w∗) on
the left side gives:

γ(F (wk−1)− F (w∗)) ≤ ∥wk−1 − w∗∥2 +
2γ2C♢
N2

N∑
i=1

∥∥hik−1 − hi∗
∥∥2 − EVk +

2γ2

N
E .

Appendix B. Appendix to Artemis 116

If ♢ ≤ 1, we have γE [F (wk−1)− F (w∗)] ≤ EVk−1 − EVk + 2γ2E/N , and summing over all K in N∗

iterations gives:

γ

(
1

K

K∑
k=1

E [F (wk−1)− F (w∗)]

)
≤ 1

K

K∑
k=1

(
EVk−1 − EVk + 2γ2

E

N

)
≤ EV0 − EVK

K
+ 2γ2

E

N
because E is independent of K.

Thus, by convexity:

E

[
F

(
1

K

K∑
k=1

wk−1

)
− F (w∗)

]
≤ 1

K

K∑
k=1

E [F (wk−1)− F (w∗)] ≤
V0

γK
+ 2γ

E

N
.

Last step is to extract conditions over γ and αup from requirement ♢ ≤ 1:

♢ < 1⇐⇒ 2ωup(ωdwn + 1)

2C
< 3αup − 2α2

upωup − 2αup ⇐⇒ C >
ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
,

and the second inequality is correct only if αup ≤ 3
2(ωup + 1)

. From this development follows the

following conditions on C, which are equivalent to those obtain in Theorem B.2

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ C ≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)
.

This interval is not empty:

ωup(ωdwn + 1)

αup (3− 2αup(ωup + 1))
≤ N − γL(ωdwn + 1) (N + 2(2ωup + 1))

4γLαup (2αup(ωup + 1)− 1)

⇐⇒ αup ≤
3N − γL(ωdwn + 1) (3N + 8ωup + 6)

2(ωup + 1)(N − γL(ωdwn + 1)(N + 2))
.

Again, this implies two conditions on γ:
3N − γL(ωdwn + 1) (3N + 8ωup + 6) > 0⇐⇒ γ < 3

(ωdwn + 1)

(
3 +

8ωup + 6

N

)
L

N − γL(ωdwn + 1)(N + 2) > 0⇐⇒ γ < 1

(ωdwn + 1)

(
1 +

2

N

)
L

.

which guarantees the existence of C and thus the validity of the above development. In conclusion:

E [F (wK−1)− F (w∗)] ≤
V0

γK
+ 2γ

E

N
≤ ∥w0 − w∗∥2 + 2Cγ2B2

γK
+ 2γ

E

N

≤ ∥w0 − w∗∥2
γK

+ 2γ

(
E

N
+

CB2

K

)
.

Next, our goal is to define the optimal step-size γopt. With this aim, we bound 2γCB2

K by 2γmax
CB2

K .
This leads to ignore this term when optimizing the step-size and thus to obtain a simpler expression
of γopt. This approximation is relevant, because B2/K is “small”. And we obtain:

Appendix B. Appendix to Artemis 117

E [F (wK−1)− F (w∗)] ≤
∥w0 − w∗∥2

γK
+ 2γ

E

N
+ 2γmax

CB2

K
.

This is valid for all variants of Artemis, with step-size in Table 2.3 and E in Theorem 2.1. Subse-
quently, the “optimal” step-size (at least the one minimizing the upper bound) is

γopt =

√
∥w0 − w∗∥2N

2EK
,

resulting in a convergence rate as 2

√
2∥w0−w∗∥2E

NK + 2γmaxCB2

K , if this step-size is allowed. If√
∥w0−w∗∥2N

2EK ≥ γmax

(
=⇒ 2γmaxE

N ≤ ∥w0−w∗∥2
γmaxK

)
, then the bias term dominates and the upper bound

is 2∥w0−w∗∥2
γmaxK

+ 2γmaxCB2

K . Overall, the convergence rate is given by:

E [F (wK−1)− F (w∗)] ≤ 2max

√2 ∥w0 − w∗∥2E
NK

;
∥w0 − w∗∥2

γmaxK

+
2γmaxCB2

K
.

B.4.4 Proof of Theorem 2.3 - convergence in distribution

In this Section, we give the proof of Theorem 2.3. The theorem is decomposed into two main points,
that are respectively derived from Propositions B.6 and B.7, given in Subsections B.4.4.2 and B.4.4.3.
Throughout this Section, we consider a linear compression operator C, for instance, sparsification
(Definition 1.1), then for any z, z′ ∈ Rd, we have that C(z)− C(z′) = C(z − z′). We first introduce a
few notations in Subsection B.4.4.1.

B.4.4.1 Background on distributions and Markov chains

We consider Artemis iterates (wk−1, (h
i
k−1)i∈J1,NK)k∈N ∈ Rd(1+N) with the following update equation:{

wk = wk−1 − γCdwn

(
1
N
∑N

i=1 Cup
(
gik − hik−1

)
+ hik−1

)
∀i ∈ J1, NK, hik = hik−1 + αupCup

(
gik − hik−1

) (B.20)

We see the iterates, for a constant step-size γ, as a homogeneous Markov chain, and denote Rγ,v

the Markov kernel, which is the equivalent for continuous spaces of the transition matrix in finite
state spaces. Let Rγ,v be the Markov kernel on (Rd(1+N),B(Rd(1+N))) associated with the SGD
iterates (wk−1, τ(h

i
k−1)i∈J1,NK)k≥0 for a variant v of Artemis, as defined in Algorithm 2 and with τ a

constant specified afterwards, where B(Rd(1+N)) is the Borel σ-field of Rd(1+N). Meyn and Tweedie
[2009] provide an introduction to Markov chain theory. For readability, we now denote (hik−1)i for
(hik−1)i∈J1,NK.

Definition B.2. For any initial distribution ν0 on B(Rd(1+N)) and k ∈ N∗, ν0R
k
γ,v denotes the

distribution of (wk−1, τ(h
i
k−1)i) starting at (w0, τ(h

i
0)i) distributed according to ν0.

We can make the following comments:

1. Initial distribution. We consider deterministic initial points, i.e., (w0, τ(h
i
0)i) follows a Dirac

at point (w0, τ(h
i
0)i). We denote this Dirac δw0 ⊗⊗N

i=1δτhi
0

not.
= δw0 ⊗ δτh1

0
⊗ · · · ⊗ δτhN

0
.

Appendix B. Appendix to Artemis 118

2. Notation in the main text: In the main text, for simplicity, we used Θk to denote the
distribution of wk−1 when launched from (w0, τ(h

i
0)i). Thus Θk corresponds to the distribution

of the projection on first d coordinates of ((δw0 ⊗⊗N
i=1δτhi

0
)Rk

γ).

3. Case without memory: In the memory-less case, we have (hik−1)k∈N ≡ 0, and could restrict
ourselves to a Markov kernel on (Rd,B(Rd)).

For any variant v of Artemis, we prove that (wk−1, (h
i
k−1)i)k≥0 admits a limit stationary distribution

Πγ,v = πγ,v,w ⊗ πγ,v,(h) (B.21)

and quantify the convergence of ((δw0 ⊗⊗N
i=1δτhi

0
)Rk

γ)k≥0 to Πγ,v, in terms of Wasserstein metric
W2.

Definition B.3. For all probability measures ν and λ on B(Rd), such that
∫

Rd ∥w∥2 dν(w) < +∞
and

∫
Rd ∥w∥2 dλ(w) ≤ +∞, define the squared Wasserstein distance of order 2 between λ and ν by

W2
2 (λ, ν) := inf

ζ∈Γ(λ,ν)

∫
∥x− y∥2ζ(dx, dy), (B.22)

where Γ(λ, ν) is the set of probability measures ζ on B(Rd × Rd) satisfying for all A ∈ B(Rd),
ζ(A× Rd) = ν(A), ζ(Rd × A) = λ(A).

B.4.4.2 Proof of the first point in Theorem 2.3

We prove the following proposition:

Proposition B.6. Under Assumptions 2.1 to 2.5, for any linear compression operator C, for any
variant v of the algorithm, there exists a limit distribution Πγ,v, which is stationary, such that for
any k in N, for any γ satisfying conditions given in Theorems B.1 and B.2:

W2
2 ((δw0 ⊗⊗N

i=1δτhi
0
)Rk

γ ,Πγ,v) ≤

(1− γµ)k
∫
(w′,h′)∈Rd(1+N)

∥∥(w0, τ(h
i
0)i)− (w′, τ(hi)′i)

∥∥2 dΠγ,v(w
′, (hi)′i).

Point 1 in Theorem 2.3 is derived from the proposition above using πγ,v = πγ,v,w, with πγ,v,w as in
Equation (B.21), the limit distribution of the main iterates (wk−1)k∈N and the observation that:

W2
2 (Θk, πγ,v) ≤ W2

2 ((δw0 ⊗⊗N
i=1δτhi

0
)Rk

γ,v,Πγ,v)

≤ (1− γµ)k
∫
(w′,h′)∈Rd(1+N)

∥∥(w0, τ(h
i
0)i)− (w′, τ(hi)′i)

∥∥2 dΠγ,v(w
′, (hi)′i)

= (1− γµ)kC0.

The sketch of the proof is simple:

• We introduce a coupling of random variables following respectively νa0R
k
γ,v and νb0R

k
γ,v, and

show that under the assumptions given in the proposition:

W2
2 (ν

a
0R

k
γ,v, ν

b
0R

k
γ,v) ≤ (1− γµ)W2

2 (ν
a
0R

k−1
γ,v , νb0R

k−1
γ,v).

This proof follows the same line as the proof of Theorems B.1 and B.2.

• We deduce that ((δw0 ⊗ ⊗N
i=1δτhi

0
))Rk

γ,v) is a Cauchy sequence in a Polish space, thus the
existence and stability of the limit, we show that this limit is independent from (δw0⊗⊗N

i=1δτhi
0
))

and conclude.

Appendix B. Appendix to Artemis 119

Proof We consider two initial distributions νa0 and νb0 for (w0, τ(h
i
0)i) with finite second moment and

γ > 0. Let (wa
0 , τ(h

i,a
0)i) and (wb

0, τ(h
i,b
0)i) be respectively distributed according to νa0 and νb0. Let

(wa
k, τ(h

i,a
k)i)k≥0 and (wb

k, τ(h
i,b
k)i)k≥0 the Artemis iterates, respectively starting from (wa

0 , τ(h
i,a
0)i)

and (wb
0, τ(h

i,b
0)i), and sharing the same sequence of noises, i.e.,

• built with the same gradient oracles gi,ak = gi,bk for all k ∈ N, i ∈ J1, NK.

• the compression operator used for both recursions is almost surely the same, for any iteration
k, and both uplink and downlink compression. We denote these operators C

dwn,k and Cup,k the
compression operators at iteration k for respectively the uplink compression and downlink
compression.

We thus have the following updates, for any u ∈ {a, b}: wu
k = wu

k−1 − γC
dwn,k

(
1
N
∑N

i=1 Cup,k
(
gik − hi,uk−1

)
+ hi,uk−1

)
∀i ∈ J1;nK hi,uk = hi,uk−1 + αupCup,k

(
gik − hi,uk−1

)
.

(B.23)

The proof is obtained by induction. For a k in N, let
(
(wa

k, τ(h
i,a
k)i), (w

b
k, τ(h

i,b
k)i)

)
be a coupling

of random variable in Γ(νa0R
k
γ,v, ν

b
0R

k
γ,v) – as in Definition B.3 –, that achieve the equality in the

definition, i.e.,

W2
2 (ν

a
0R

k
γ,v, ν

b
0R

k
γ,v) = E

[∥∥∥(wa
k, τ(h

i,a
k)i)− (wb

k, τ(h
i,b
k)i)

∥∥∥2] . (B.24)

Existence of such a couple is given by [Villani, 2009, theorem 4.1]. Then
(
(wa

k, τ(h
i,a
k)i), (w

b
k, τ(h

i,b
k)i)

)
obtained after one update from Equation (B.23) belongs to Γ(νa0R

k
γ,v, ν

b
0R

k
γ,v), and as a consequence:

W2
2 (ν

a
0R

k
γ,v, ν

b
0R

k
γ,v) ≤ E

[∥∥∥(wa
k, τ(h

i,a
k)i)− (wb

k, τ(h
i,b
k)i))

∥∥∥2]
= E

[∥∥∥wa
k − wb

k

∥∥∥2]+ τ2
N∑
i=1

E

[∥∥∥hi,ak − hi,bk

∥∥∥2]

= E

[∥∥∥wa
k − wb

k

∥∥∥2]+ 2γ2
C

N

N∑
i=1

E

[∥∥∥hi,ak − hi,bk

∥∥∥2] ,
with τ2 = 2γ2 C

N , where C depends on the variant as in Theorem 2.1. We now follow the proof of
the previous theorems to control respectively E[∥wa

k − wb
k∥2] and E[∥hi,ak − hi,bk ∥2]. First, following

the proof of Equation (B.12), we get, using the fact that the compression operator is linear, thus
that C(x)− C(y) = C(x− y):

E

[∥∥∥wa
k − wb

k

∥∥∥2 |Hk−1

]
≤
∥∥∥wa

k − wb
k

∥∥∥2 − 2γ
〈
∇F (wa

k−1)−∇F (wb
k−1), w

a
k − wb

k

〉
+

2(2ωup + 1)(ωdwn + 1)γ2

N2

N∑
i=1

E

[∥∥∥gik(wa
k−1)− gik(w

b
k−1)

∥∥∥2 ∣∣∣∣ Hk−1

]

+
2ωup(ωdwn + 1)γ2

N2

N∑
i=1

E

[∥∥∥hi,ak−1 − hi,bk−1

∥∥∥2 ∣∣∣∣ Hk−1

]
+ γ2(ωdwn + 1)L

〈
∇F (wa

k−1)−∇F (wb
k−1), w

a
k − wb

k

〉
.

Appendix B. Appendix to Artemis 120

This expression is nearly the same as in Equation (B.12), apart from the constant term depending
on σ2

∗ that disappears. Note that with a more general compression operator, for example for
quantization, it is not possible to derive such a result. Similarly, we control E[∥hi,ak − hi,bk ∥2] using
the same line of proof as for Equation (B.13), resulting in:

1

N2

N∑
i=0

E

[∥∥∥ha,ik − hb,ik

∥∥∥2 ∣∣∣∣ Hk−1

]
≤ (1 + p

(
2α2

upωup + 2α2
up − 3αup)

) 1

N2

N∑
i=0

E

[∥∥∥ha,ik − hb,ik

∥∥∥2 ∣∣∣∣ Hk−1

]

+ 2(2α2
upωup + 2α2

up − αup)
1

N2

N∑
i=0

E

[∥∥∥gik(wa
k−1)− gik(w

b
k−1)

∥∥∥2 ∣∣∣∣ Hk−1

]
.

Combining both equations, and using Assumptions 2.1 and 2.2 and Equation (B.24) we get, under
conditions on the learning rates αup, γ similar to the ones in Theorems B.1 and B.2, that

W2
2 (ν

a
0R

k
γ,v, ν

b
0R

k
γ,v) ≤ (1− γµ)W2

2 (ν
a
0R

k−1
γ,v , νb0R

k−1
γ,v).

And by induction:
W2

2 (ν
a
0R

k
γ,v, ν

b
0R

k
γ,v) ≤ (1− γµ)kW2

2 (ν
a
0 , ν

b
0).

From the contraction above, it is easy to derive the existence of a unique stationnary limit distribution:
we use Picard fixed point theorem, as in Dieuleveut et al. [2020]. This concludes the proof of
Proposition B.6.

B.4.4.3 Proof of the second point of Theorem 2.3

To prove the second point, we first detail the complementary assumptions mentioned in the text,
then show the convergence to the mean squared distance under the limit distribution, and finally
give a lower bound on this quantity.

Complementary assumptions.
To prove the lower bound given by the second point, we need to assume that the constants given in
the assumptions are tight, in other words, that corresponding lower bounds exist in Assumptions 2.3
to 2.5.

Assumption B.1 (Lower bound on noise over stochastic gradients computation). The noise over
stochastic gradients at optimal global point for a mini-batch of size b is lower bounded. In other
words, there exists a constant σ∗ ∈ R, such that for all k in N, for all i in J1, NK , we have a.s:

E
[
∥gik,∗ −∇Fi(w∗)∥2

∣∣ Hk−1

]
≥ σ2

∗
b
.

Assumption B.2 (Lower bound on local gradient at w∗). There exists a constant B ∈ R, s.t.:

1

N

N∑
i=1

∥∇Fi(w∗)∥2 ≥ B2.

Assumption B.3 (Lower bound on the compression operator’s variance). There exists a constant
ω ∈ R∗ such that the compression operators Cup and C

dwn
verify the following property:

∀∆ ∈ Rd ,E[
∥∥Cup/dwn(∆)−∆

∥∥2] = ωup/dwn ∥∆∥2 .

Appendix B. Appendix to Artemis 121

This last assumption is valid for sparsification, sketching, rand-h, PP.

Moreover, we also assume some extra regularity on the function. This restricts the regularity of
the function beyond Assumption 2.2 and is a purely technical assumption in order to conduct the
detailed asymptotic analysis. It is valid in practice for least-squares or logistic regression.

Assumption B.4 (Regularity of the functions). The function F is also times continuously differen-
tiable with second to fifth uniformly bounded derivatives: for all k ∈ {2, . . . , 5}, supw∈Rd ∥F (k)(w)∥ <
∞.

Convergence of moments.
We first prove that E[∥wk−1 − w∗∥2] converges to Ew∼πγ,v [∥w − w∗∥2] as k increases to ∞.

We have that the difference satisfies, for random variables wk−1 and w following distributions δw0R
k
γ,v

and πγ,v, and coupled such that they achieve the equality in Equation (B.22):

∆E,k−1 : = E[∥wk−1 − w∗∥2]− Ew∼πγ,v [∥w − w∗∥2]
= Ewk−1,w∼πγ,v

[
∥wk−1 − w∗∥2 − ∥w − w∗∥2

]
= Ewk−1,w∼πγ,v [(∥wk−1 − w∗∥ − ∥w − w∗∥)(∥wk−1 − w∗∥+ ∥w − w∗∥)]
C.S
≤
(
Ewk−1,w∼πγ,v

[
(∥wk−1 − w∗∥ − ∥w − w∗∥)2

]
Ewk−1,w

[
(∥wk−1 − w∗∥+ ∥w − w∗∥)2

])1/2
T.I.
≤
(
Ewk−1,w∼πγ,v

[
(∥wk−1 − w∥)2

]
Ewk−1,w∼πγ,v

[
(∥wk−1 − w∗∥+ ∥w − w∗∥)2

])1/2
(i)
≤
(
Ewk−1,w∼πγ,v

[
(∥wk−1 − w∥)2

]
2L
)1/2

(ii)
≤
(
W2

2 (δw0R
k−1
γ,v , πγ,v)2L

)1/2
(iii)→ 0.

Where we have used Cauchy-Schwarz inequality at line C.S., triangular inequality at line T.I., the
fact that the moments are bounded by a constant L at line (i), the fact that the distributions are
coupled such that they achieve the equality in Equation (B.22) at line (ii), and finally Proposition B.6
for the conclusion at line (iii).

Overall, this shows that the mean squared distance (i.e., saturation level) converges to the mean
squared distance under the limit distribution.

Evaluation of Ew∼πγ,v [∥w − w∗∥2].
In this section, we denote ξ(wk−1, hk−1) the global noise, defined by

ξ(wk−1, hk−1) = ∇F (wk−1)− Cdwn

(
1

N

N∑
i=1

Cup(gik(wk−1)− hik−1) + hik−1

)
,

such that wk = wk−1 − γ∇F (wk−1) + γξ(wk−1, hk−1). In fact, (ξ)k∈N∗ is a zero-centered random
field characterizing the stochastic oracle on ∇F (·), same notation is used in Chapter 4.

In the following, we denote a⊗2 := aaT the second order moment of a. We define Tr the trace
operator and Cov the covariance operator such that Cov(ξ(w, h)) = E

[
(ξ(w, h))⊗2

]
, where the

expectation is taken on the randomness of both compressions and the gradient oracle. We make a
final technical assumption on the regularity of the covariance matrix.

Assumption B.5. We assume that:

1. Cov(ξ(w, h)) is continuously differentiable, and there exists constants C and C ′ such that for
all w, h ∈ Rd(1+N), maxo=1,2,3Cov

(o)(w, h) ≤ C + C ′||(w, h)− (w∗, h∗)||2.

Appendix B. Appendix to Artemis 122

2. (ξ(w∗, h∗)) has finite order moments up to order 8.

Remark: with the linear operators, this assumption can directly be translated into an assumption
on the moments and regularity of gik, this is done in Assumptions 4.1 and 4.2 in the setting of LSR.
Note that Point 2 in Assumption B.5 is an extension of Assumption 2.3 to higher order moments,
but still at the optimal point. Under this assumption, we have the following lemma:

Lemma B.10. Under Assumptions 2.1 to B.5, we have that

Eπγ,v

[
∥w − w∗∥2

]
=

γ→0
γTr (A Cov(ξ(w∗, h∗))) +O(γ2), (B.25)

with A := (F ′′(w∗)⊗ I + I ⊗ F ′′(w∗))−1.

The intuition of the proof is natural: using the stability of the limit distribution, we have that if we
start from the stationary distribution, i.e., (w0, h0) ∼ Πγ,v, then (w1, h1) ∼ Πγ,v.

We can thus write:

Eπγ,v

[
(w − w∗)⊗2

]
= E

[
(w1 − w∗)⊗2

]
= E

[
(w0 − w∗ − γ∇F (w0) + γξ(w0, h0))

⊗2
]
.

Then, expanding the right hand side and using the fact that E[ξ(w0, h0)|H0] = 0, then the fact that
E
[
(w1 − w∗)⊗2

]
= E

[
(w0 − w∗)⊗2

]
, and expanding the derivative of F around w∗ (this is where we

require the regularity assumption Assumption B.4), we get that:

γ
(
F ′′(w∗)⊗ I + I ⊗ F ′′(w∗) +O(γ)

)
Eπγ,v

[
(w − w∗)⊗2

]
=

γ→0
γ2E(w,h)∼Πγ,v

[
ξ(w, h)⊗2

]
.

Thus:

Eπγ,v

[
(w − w∗)⊗2

]
=

γ→0
γAE(w,h)∼Πγ,v

[
ξ(w, h)⊗2

]
+O(γ2).

⇒ Eπγ,v

[
∥(w − w∗)∥2

]
=

γ→0
γTr

(
AE(w,h)∼Πγ,v

[
ξ(w, h)⊗2

])
+O(γ2).

Finally, we use that E(w,h)∼Πγ,v
[Cov(ξ(w, h))] =

γ→0
Cov(ξ(w∗, h∗)) + O(γ) (which is derived from

Assumption B.5) to get Lemma B.10. More formally, we can rely on Theorem 4 in Dieuleveut et al.
[2020]: under Assumptions 2.1 to 2.5 and Assumptions B.4 and B.5, all assumptions required for the
application of the theorem are verified and the result follows.

To conclude the proof, it only remains to control Cov(ξ(w∗, h∗)). We have the following Lemma:

Lemma B.11. Under Assumptions B.1 to B.3, we have that, for any variant v of the algorithm,
with the constant E given in Theorem 2.1 depending on the variant:

Tr (Cov(ξ(w∗, h∗))) = Ω

(
γE

µN

)
. (B.26)

Combining Lemmas B.10 and B.11 and using the observation that A is lower bounded by 1
2L

independently of γ,N, σ∗, B, we have proved the following proposition:

Proposition B.7. Under Assumptions B.1 to B.5, we have that

E[∥wk−1 − w∗∥2] →
k→∞

Eπγ,v

[
∥w − w∗∥2

]
=

γ→0
Ω

(
γE

µN

)
+O(γ2), (B.27)

where the constant in the Ω is independent of N, σ∗, γ, B (it depends only on the regularity of the
operator A).

Before giving the proof, we make a couple of observations:

Appendix B. Appendix to Artemis 123

1. This shows that the upper bound on the limit mean squared error given in Theorem 2.1 is
tight with respect to N, σ∗, γ, B. This underlines that the conditions on the problem that we
have used are the correct ones to understand convergence.

2. The upper bound is possibly not tight with respect to µ, as is clear from the proof: the tight
bound is actually Tr (ACov(ξ(w∗, h∗))). Getting a tight upper bound involving the eigenvalue
decomposition of A instead of only µ is an open direction.

3. In the memory-less case, h ≡ 0 and all the proof can be carried out analyzing only the
distribution of the iterates (wk−1)k and not necessarily the couple (wk−1, (h

i
k−1)i)k.

We now give the proof of Lemma B.11.

Proof With memory, we have the following:

Tr (Cov(ξ(w∗, h∗))) = E

∥∥∥∥∥Cdwn

(
1

N

N∑
i=1

Cup(gi1(w∗)− hi∗) + hi∗

)∥∥∥∥∥
2

(i)
= (1 + ωdwn)E

∥∥∥∥∥ 1

N

N∑
i=1

Cup(gi1(w∗)− hi∗) + hi∗

∥∥∥∥∥
2

(ii)
=

(1 + ωdwn)

N2

N∑
i=1

E
[∥∥Cup(gi1(w∗)− hi∗)

∥∥2]
(iii)
=

(1 + ωdwn)

N2

N∑
i=1

(1 + ωup)E
[∥∥gi1(w∗)− hi∗

∥∥2]
(iv)
≥ (1 + ωdwn)

N
(1 + ωup)

σ2
∗
b
.

At line (i) we use Assumption B.3 for the downlink compression operator with constant ωdwn.
At line (ii) we use the fact that

∑N
i=1 h

i
∗ = ∇F (w∗) = 0, the independence of the random vari-

ables Cup(gi1(w∗) − hi∗), Cup(gj1(w∗) − hj∗) for i ̸= j and the fact that they have 0 mean. We use
Assumption B.3 for the uplink compression operator with constant ωup in line (iii); and finally
Assumption B.1 at line (iv) to lower bound the variance of the gradients at the optimum. This proof
applies to both simple and double compression with ωdwn = 0 or not.

Remark that for the variant 2 of Artemis, the constant E given in Theorem 2.1 has a factor
α2
upC(ω + 1): combining with the value of C, this term is indeed of the order of (1 + ωdwn)(1 + ωup).

Without memory, we have the following computation:

Tr (Cov(ξ(w∗, 0))) = E

∥∥∥∥∥Cdwn

(
1

N

N∑
i=1

Cup(gi1(w∗))

)∥∥∥∥∥
2

(i)
= (1 + ωdwn)E

∥∥∥∥∥ 1

N

N∑
i=1

Cup(gi1(w∗))− hi∗

∥∥∥∥∥
2

(ii)
=

(1 + ωdwn)

N2

N∑
i=1

E
[∥∥Cup(gi1(w∗))− hi∗

∥∥2]
(iii)
=

(1 + ωdwn)

N2

N∑
i=1

E
[∥∥Cup(gi1(w∗))− gi1(w∗)

∥∥2 + ∥∥gi1(w∗)− hi∗
∥∥2]

Appendix B. Appendix to Artemis 124

At line (i) we use Assumption B.3 for the downlink compression operator with constant ωdwn and
the fact that

∑N
i=1 h

i
∗ = ∇F (w∗) = 0, then at line (ii) the independence of the random variables

Cup(gi1(w∗))− hi∗ with mean 0, then a Bias Variance decomposition at line (iii).

Tr (Cov(ξ(w∗, 0)))
(iv)
=

(1 + ωdwn)

N2

N∑
i=1

E
[
ωup

∥∥(gi1(w∗))
∥∥2 + ∥∥gi1(w∗)− hi∗

∥∥2]
(v)
=

(1 + ωdwn)

N2

N∑
i=1

E
[
ωup

(∥∥gi1(w∗)− h∗i
∥∥2 + ∥h∗i ∥2)+ ∥∥gi1(w∗)− hi∗

∥∥2]
(vi)
=

(1 + ωdwn)

N

(
(ωup + 1)

σ2
∗
b

+ ωupB
2

)
.

Next we use Assumption B.3 for the uplink compression operator with constant ωup at line (iv).
Line (v) is another Bias-Variance decomposition and we finally conclude by using Assumptions B.1
and B.2 at line (vi) and reorganizing terms.

We have showed the lower bound both with or without memory, which concludes the proof.

C
Appendix to MCM

In this Chapter, we provide additional details about our work. First, in Section C.1, we enlarge
figures provided in Section 3.5 and complete them with a comparison between MCM and other
algorithms using non-degraded updates. The next sections are all devoted to theoretical results.
In Section C.2, we detail some technical results required to demonstrate Theorems 3.3 to 3.5, 3.7
and 3.8, in Section C.3, we highlight the key stages of the demonstration in the easier case of Ghost,
in Section C.4, we completely prove the given guarantees of convergence in three regimes: convex,
strongly-convex and non-convex. In Section C.5, we show the benefit of Rand-MCM compared to
MCM in the context of quadratic functions.

125

Appendix C. Appendix to MCM 126

Contents
C.1 Experiments . 126

C.1.1 Convex settings . 127
C.1.2 Experiments in deep learning . 130
C.1.3 Hardware and Carbon footprint . 132

C.2 Two lemmas . 132
C.3 Proof for Ghost . 134

C.3.1 Control of the Variance of the local model for Ghost (Proposition 3.1) . . 134
C.3.2 Convergence of Ghost, complete proof (Theorem 3.2) 135

C.4 Proofs for MCM (and Rand-MCM) . 137
C.4.1 Control of the Variance of the local model for MCM (Theorem 3.5) 138
C.4.2 Convex case (Theorem 3.4) . 140
C.4.3 Strongly-convex case (Theorem 3.3) . 142
C.4.4 Non-convex case (Theorem 3.6) . 145
C.4.5 Proof for Rand-MCM (Theorem 3.7) . 148

C.5 Proofs in the quadratic case for MCM and Rand-MCM 148
C.5.1 Two other lemmas . 149
C.5.2 Control of the Variance of the local model for quadratic function (both

MCM and Rand-MCM) . 152
C.5.3 Proof for quadratic function (Theorem 3.8) 155

C.1 Experiments

In this Section, we provide additional details about our experiments. We first give the settings of
our experiments in Tables C.1 and C.2. Next, we describe the numerical results obtained on our 9
datasets. Finally, we provide an estimation of the carbon footprint required by this Chapter.

We use the same operator of compression for uplink and downlink, thus we consider that ωup = ωdwn.
In addition, we choose αup = αdwn = 1

2(1 + ωup/dwn)
.

Convex settings are given in Table C.1. We obtain non-i.i.d. data distributions by computing a
TSNE representation [defined in Maaten and Hinton, 2008] followed by a clustering. Experiments
have been performed with 200 epochs, we use quantization [defined in Alistarh et al., 2017] with
s = 20.

Table C.1: Settings of experiment in the convex mode.

Settings a9a quantum phishing superconduct w8a
references [CL11] [CTL04] [CL11] [Ham18] [CL11]
model LR LR LR LSR LR
dimension d 124 66 69 82 301
training dataset size 32, 561 50, 000 11, 055 21, 200 49, 749
batch size b 218 256 64 64 12
compression rate s 20 (i.e. two levels)
norm quantization ∥ · ∥2
momentum m no momentum
step-size γ 1/L

Appendix C. Appendix to MCM 127

0 25 50 75 100
Number of passes on data

−4

−2

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) X axis in # iterations.

104 105 106

Communicated bits

−4

−2

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) X axis in # bits.

Figure C.1: Least-squares regression, toy dataset: γ = (L
√
k)−1, σ ̸= 0.

Deep-learning settings are provided in Table C.2. All experiments have been performed with 300
epochs

Table C.2: Settings of experiments in the non-convex mode.

Settings MNIST Fashion-MNIST FE-MNIST CIFAR10
references [LBBH98] [XRV17] [CJB+19] [Kri09]
model CNN Fashion CNN CNN LeNet
trainable parameters d 20× 103 400× 103 20× 103 62× 103

training dataset size 60, 000 60, 000 805, 263 60, 000
compression rate s 22 22 22 24

momentum m 0 0 0 0.9
norm quantization ∥ · ∥2
batch size b 128
step-size γ 0.1
loss Cross Entropy

C.1.1 Convex settings

In this section, we provide the plot of excess loss for the toy dataset, for quantum and for a9a
datasets. For results on superconduct, phishing and w8a, see our github repository. For these last
three datasets, we give only the excess loss w.r.t. number of iteration in the basic settings of full
participation on Figure C.5. At the left side (resp. right side) we display the result w.r.t. the number
of iterations (resp. number of communicated bits).

We provide results on the log of the excess loss F (wk)− F∗, with error bars displayed on each figure,
corresponding to the standard deviation of log10(F (wk) − F∗). Figures C.1b, C.2b, C.3 and C.4
correspond to Figures 3.2a, 3.2b and 3.3 given in Section 3.5. Additionally, we provide results for the
synthetic dataset (Figures 3.2a and 3.2b) w.r.t to the number of iterations in Figure C.1 (stochastic
gradient) and Figure C.2 (full batch gradient). As predicted by Theorem 3.4, when σ = 0, we observe
a linear convergence.

On Figure C.6, we present a9a, quantum and phishing with a different operator of compression
than in all other experiments. We use sparsification: each coordinate has a likelihood p = 0.1 to be
selected. Unlike experiences with quantization for which ω =

√
d, hence depending on the datasets’

dimensionality, we have ω = (1− p)/p = 9 for all datasets. A deeper analysis of the impact of each
compressor is given in Chapter 4.

https://github.com/philipco/mcm-bidirectional-compression

Appendix C. Appendix to MCM 128

0 100 200 300 400
Number of passes on data

−10

−5

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) X axis in # iterations.

105 107

Communicated bits

−10

−5

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) X axis in # bits.

Figure C.2: Least-squares regression, toy dataset: γ = 1/L, σ2
∗ = 0.

0 50 100 150 200
Number of passes on data

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) X axis in # iterations.

105 107

Communicated bits

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) X axis in # bits.

Figure C.3: a9a with b = 128, γ = 1/L.

0 50 100 150 200
Number of passes on data

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) X axis in # iterations.

105 107

Communicated bits

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) X axis in # bits.

Figure C.4: quantum with b = 256, γ = 1/L.

0 50 100 150 200
Number of passes on data

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) phishing – b = 64.

0 50 100 150 200
Number of passes on data

−1.5

−1.0

−0.5

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) superconduct – b = 64.

0 50 100 150 200
Number of passes on data

−4

−3

−2

−1

0

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(c) w8a – b = 12.

Figure C.5: X axis in # iterations.

Appendix C. Appendix to MCM 129

0 50 100 150 200
Number of passes on data

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)
SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) a9a - b = 128.

0 50 100 150 200
Number of passes on data

−4

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) quantum – b = 256.

0 50 100 150 200
Number of passes on data

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(c) phishing – b = 64.

Figure C.6: X axis in # iterations using random sparsification with p = 0.1.

C.1.1.1 Comparing MCM with other algorithm using non-degraded update

The aim of this section is to show the importance to set α < 1, for this purpose we compare MCM with
three other algorithms:

1. Artemis with a non-degraded update i.e. unlike the version proposed in Chapter 2, we do
not update the global model with the compression sent to all remote nodes. It means that we
compress only the update that has already been performed on the global server. It corresponds
to:

∀i ∈ J1, NK,∆i
k = gik+1(ŵk)− hik

wk+1 = wk − γ
N
∑N

i=1 Cup(∆i
k) + hik

ŵk+1 = ŵk − γCdwn

(
1
N
∑N

i=1 Cup(∆i
k) + hik

)
hik+1 = hik + αupCup(∆i

k).

2. MCM with α = 0, thus without memory.

3. MCM with α = 1, in other words, for k in N∗ it corresponds to the case Hk+1 = ŵk+1. Indeed
by definition we have Hk+1 = Hk + αΩ̂k+1, and furthermore, when we rebuild the compressed
model on remote device, we have: ŵk+1 = Ω̂k+1 +Hk. In this case, we use the compressed
model as memory.

Figures C.7a and C.7b clearly show the superiority of MCM over the three other variants. Some
conclusions can be drawn from the observation of these figures.

• MCM without downlink memory (orange curve, α = 0) does not converge. As stressed in
Subsection 3.2.1, this mechanism is crucial to control the variance of the local model wk+1, for
k in N.

• Intuitively, while it appears reasonable to consider as memory the model that has been
compressed at the previous step, experiments (green curves) show that this is not the case in
practice and that α must be small enough to ensure convergence.

• Compressing only the update (blue curve) gives results similar to MCM with α = 1. It means
that combining model preservation and Artemis-like algorithms is not enough to guarantee
convergence.

Appendix C. Appendix to MCM 130

0 50 100 150 200
Number of passes on data

−2

−1

0

1

2

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

Artemis-ND

MCM - α = 0

MCM - α = 1

MCM

(a) a9a - b = 128.

0 50 100 150 200
Number of passes on data

−2

−1

0

1

2

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

)

Artemis-ND

MCM - α = 0

MCM - α = 1

MCM

(b) quantum - b = 256.

Figure C.7: Comparing MCM with three other algorithms using a non-degraded update, γ = 1/L.
Artemis-ND stands for Artemis with a non-degraded update.

0.2
5 0.5 1 2 4 8

α−1
dwn × (ωc + 1)−1

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

) Artemis

MCM

R-MCM

(a) a9a – b = 256.

0.2
5 0.5 1 2 4 8

α−1
dwn × (ωc + 1)−1

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

) Artemis

MCM

R-MCM

(b) quantum – b = 256.

0.2
5 0.5 1 2 4 8

α−1
dwn × (ωc + 1)−1

−3

−2

−1

lo
g 1

0(
F

(w
k
)
−
F

(w
∗)

) Artemis

MCM

R-MCM

(c) phishing – b = 64

Figure C.8: On X axis is displayed different values of 1
α(ωdwn + 1)

. On Y axis is given the excess

loss after 250 epochs. In all other experiments, we choose αdwn = 1
2(ωdwn + 1)

(= αup).

C.1.1.2 Impact of the learning rate α

On Figure C.8, we plot the value of the excess loss obtained after 250 epochs w.r.t. to the value of
1

2(1+ωup/dwn)
. We observe that if α is too big, MCM converges slowly; but after reaching a threshold,

the value of α does not impact anymore the rate of convergence. This confirms theory that suggests
to use the largest possible αdwn but smaller than a given value. The condition αdwn ≤ 1

4(ωdwn+1)
results from the proofs of Theorem C.3. But because the constant 4 is partially an artifact of the
proof, in experiments we used αdwn = 1

2(ωdwn+1) as in Chapter 2 (Theorem B.2), and this choice is
confirmed by Figure C.8.

C.1.2 Experiments in deep learning

In this section, we show the robustness of MCM in high dimension using more complex data and
applying the algorithm to non-convex problems (see Theorem C.6 for a guarantee of convergence in
this scenario). We carried out experiments on MNIST/FE-MNIST/Fashion-MNIST using a CNN
(Figures C.9 to C.11), and on CIFAR using the LeNet model (Figure C.12). We plot the logarithm
of the train loss w.r.t the number of iterations and the number of communicated bits. The accuracy
has been given in Section 3.5, see Table 3.4. Settings of the experiments can be found in Table C.2,
all experiments are averaged over 2 runs.

As for experiments in convex case, MCM presents identical rates of convergence than Diana but with
a small shift that makes Artemis better during the first iterations.

Appendix C. Appendix to MCM 131

0 80 160 240
Number of passes on data

−1.5

−1.0

−0.5

0.0

lo
g(

T
ra

in
lo

ss
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) X axis in # iterations.

107 109

Communicated bits

−1.5

−1.0

−0.5

0.0

lo
g(

T
ra

in
lo

ss
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) X axis in # bits.

Figure C.9: Convergence on MNIST using a CNN.

0 80 160 240
Number of passes on data

−1.0

−0.5

0.0

lo
g(

T
ra

in
lo

ss
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) X axis in # iterations.

108 1010

Communicated bits

−1.0

−0.5

0.0

lo
g(

T
ra

in
lo

ss
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) X axis in # bits.

Figure C.10: Convergence on Fashion-MNIST.

0 80 160 240
Number of passes on data

−1.5

−1.0

−0.5

0.0

lo
g(

T
ra

in
lo

ss
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) X axis in # iterations.

107 109

Communicated bits

−1.5

−1.0

−0.5

0.0

lo
g(

T
ra

in
lo

ss
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) X axis in # bits.

Figure C.11: Convergence on FE-MNIST.

0 80 160 240
Number of passes on data

0.0

0.2

lo
g(

T
ra

in
lo

ss
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(a) X axis in # iterations.

108 1010

Communicated bits

0.0

0.2

lo
g(

T
ra

in
lo

ss
)

SGD

Diana

Artemis

Dore

MCM

R-MCM

(b) X axis in # bits.

Figure C.12: Convergence on CIFAR10.

Appendix C. Appendix to MCM 132

C.1.3 Hardware and Carbon footprint

As part as a community effort to report the carbon footprint of experiments, we describe in this
subsection the hardware used and the total computation time.

We have two kind of experiments : for deep learning models we ran experiments on a GPU, and for
linear/logistic regression on a CPU. We used an Intel(R) Xeon(R) CPU E5-2667 processor with 16
cores; and we used an Nvidia Tesla V100 GPU with 4 nodes.

To generate all figures in this chapter and in Chapter 3, our code ran (if run in a sequential mode)
for 150 hours on a CPU. In overall, we consider that the whole chapter writing process required
(code development, debugging, exploring settings ...) at least 600 hours end to end on the CPU.
The carbon emissions caused by this work were subsequently evaluated with the Green Algorithm,
built by Lannelongue et al. [2021]. It estimates our computations to generate around 100kg of CO2,
requiring 2.5MWh. To compare, this corresponds to about 570km by car.

Overall, we consider that the full chapter writing process required at least 280 hours end to end on
the GPU. The Green Algorithm estimates our computations to generate 220kg of CO2, requiring
5.7MWh. To compare, this corresponds to about 1, 270km by car.

C.2 Two lemmas

In this subsection, we give two lemmas required to prove the convergences of Ghost1, MCM and
Rand-MCM.

In Sections C.3 and C.4, for ease of notation we denote, for k in N∗, g̃k = 1
N
∑N

i=1 ĝik(ŵk−1).
Furthermore we use the convention ∇F (w−1) = 0.

The first lemma will be used to show that MCM indeed satisfies Theorem 3.5. The proof is straightfor-
ward from the definition of wk and Hk−1.

Lemma C.1 (Expectation of wk − Hk−1). For any k in N∗, the expectation of (wk − Hk−1)
conditionally to wk−1 can be decomposed as follows:

E [wk −Hk−1 | wk−1] = (1− αdwn)(wk−1 −Hk−2)− γE [∇F (ŵk−1) | wk−1] .

Proof Let k in N∗, by definition and with Assumption 3.1:

E [wk −Hk−1 | wk−1] = E [wk−1 − γĝk(ŵk−1)− (Hk−2 + αdwnC(wk−1 −Hk−2)) | wk−1]

= (wk−1 −Hk−2)− αdwnE [C (wk−1 −Hk−2) | wk−1]− γE [g̃k | wk−1] ,

from which the result follows.

The following lemma provides a control of the impact of the uplink compression. It decomposes
the squared-norm of stochastic gradients into two terms: 1) the true gradient 2) the variance of the
stochastic gradient σ2.

Lemma C.2 (Squared-norm of stochastic gradients). For any k in N∗, the second moment and

1Ghost is defined in Subsection 3.2.3.

Appendix C. Appendix to MCM 133

variance of the compressed gradients can be bounded a.s.:

E
[
∥g̃k∥2

∣∣∣ ŵk−1

]
≤
(
1 +

ωup

N

)
∥∇F (ŵk−1)∥2 +

σ2(1 + ωup)

Nb
,

E
[
∥g̃k −∇F (ŵk−1)∥2

∣∣∣ ŵk−1

]
≤ ωup

N
∥∇F (ŵk−1)∥2 +

σ2(1 + ωup)

Nb
.

Interpretation:

• If ωup = 0 (i.e. no up compression), the variance corresponds to a mini-batch.

• If σ = 0 and N = 1 (i.e. full batch descent with a single device), it becomes:

E
[
∥C(∇F (wk−1))−∇F (wk−1)∥2

]
≤ ωup ∥∇F (wk−1)∥2 ,

which is consistent with Assumption 3.1.

Proof Let k in N∗, then E
[
∥g̃k∥2

∣∣∣ ŵk−1

]
= ∥∇F (ŵk−1)∥2 + E

[
∥g̃k −∇F (ŵk−1)∥2

∣∣∣ ŵk−1

]
.

Secondly:

E
[
∥g̃k −∇F (ŵk−1)∥2

∣∣∣ ŵk−1

]
= E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵk−1)− gik(ŵk−1) + gik(ŵk−1)−∇F (ŵk−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1

= E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵk−1)− gik(ŵk−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1

+ E

∥∥∥∥∥ 1

N

N∑
i=1

(
gik(ŵk−1)−∇F (ŵk−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ ŵk−1

 ,

the inner product being null.

Next expanding the squared norm again, and because the two sums of inner products are null as the
stochastic oracle and uplink compressions are independent:

E
[
∥g̃k −∇F (ŵk−1)∥2

∣∣∣ ŵk−1

]
=

1

N2

N∑
i=1

E
[∥∥ĝik(ŵk−1)− gik(ŵk−1)

∥∥2 ∣∣∣ ŵk−1

]
+

1

N2

N∑
i=1

E
[∥∥gik(ŵk−1)−∇F (ŵk−1)

∥∥2 ∣∣∣ ŵk−1

]
.

Then using Assumption 3.1 we have:

E
[
∥g̃k −∇F (ŵk−1)∥2

∣∣∣ ŵk−1

]
=

ωup

N2

N∑
i=1

E
[∥∥gik(ŵk−1)

∥∥2 ∣∣∣ ŵk−1

]
+

1

N2

N∑
i=1

E
[∥∥gik(ŵk−1)−∇F (ŵk−1)

∥∥2 ∣∣∣ ŵk−1

]
.

Furthermore E
[∥∥gik(ŵk−1)

∥∥2 ∣∣∣ ŵk−1

]
= E

[∥∥gik(ŵk−1)−∇F (ŵk−1)
∥∥2 ∣∣∣ ŵk−1

]
+ ∥∇F (ŵk−1)∥2, and

using Assumption 3.4:

E
[
∥g̃k −∇F (ŵk−1)∥2

∣∣∣ ŵk−1

]
=

ωup

N
∥∇F (ŵk−1)∥2 +

σ2(1 + ωup)

Nb
,

Appendix C. Appendix to MCM 134

from which we derive the two inequalities of the lemma.

C.3 Proof for Ghost

C.3.1 Control of the Variance of the local model for Ghost (Proposition 3.1)

The proof of Proposition 3.1 is straightforward using Definition 3.1 that defines the Ghost algorithm.

Proposition C.1. Consider the Ghost update in Equation (3.4), under Assumptions 3.1, 3.2 and 3.4,
for all k in N with the convention ∇F (w−1) = 0:

E
[
∥wk − ŵk∥2

∣∣∣ ŵk−1

]
≤ γ2ωdwn

(
1 +

ωup

N

)
∥∇F (ŵk−1)∥2 +

γ2ωdwn(1 + ωup)σ
2

Nb
.

Proof The proof of Proposition C.1 is straightforward using Definition 3.1. Let k in N, by
Definition 3.1 we have:

∥wk − ŵk∥2 =
∥∥∥∥∥
(
wk−1 − γCdwn

(
1

N

N∑
i=1

ĝik(ŵk−1)

))
−
(
wk−1 − γ

1

N

N∑
i=1

ĝik(ŵk−1)

)∥∥∥∥∥
2

= γ2

∥∥∥∥∥Cdwn

(
1

N

N∑
i=1

ĝik(ŵk−1)

)
− 1

N

N∑
i=1

ĝik(ŵk−1)

∥∥∥∥∥
2

.

Taking expectation w.r.t. down compression, as 1
N

∑N
i=1 ĝik(ŵk−1) is wk-measurable:

E
[
∥wk − ŵk∥2

∣∣∣ wk

]
= γ2ωdwnE

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk

 = γ2ωdwn ∥g̃k∥2 ,

and Lemma C.2 gives the upper bound E[∥g̃k∥2 | ŵk−1].

Theorem C.1 (Contraction for Ghost, convex case). Under Assumptions 3.1 to 3.4, with µ = 0, if
γL(1 + ωup/N) ≤ 1

2 .

E[∥wk − w∗∥2] ≤ E[∥wk−1 − w∗∥2]− γE[(F (wk−1)− F∗)]−
γ

2L
E
[
∥∇F (ŵk−1)∥2

]
+ 2γ3ωdwnL

(
1 +

ωup

N

)
E[∥∇F (ŵk−2)∥2] + γ2

(1 + ωup)σ
2

Nb
(1 + 2γLωdwn) .

We can make the following observations:

1. At step k, the residual can be upper bounded by a constant times squared norm of the gradient
at point ŵk−2. When using recursively this upper bound, if 2γ3ωdwnL(1 + ωup/N) ≤ γ/(2L),
then these terms cancel out. This is equivalent to 2γL

√
ωdwn (1 + ωup/N) ≤ 1. It is natural to

chose γ ≤ 1/(2Lmax(1 + ωup/N, 1 + ωdwn)).
2. The bound is in fact proved conditionally to wk−1, recursive conditioning is required to propagate

the inequality. We carefully handle conditioning in the proofs.

Appendix C. Appendix to MCM 135

C.3.2 Convergence of Ghost, complete proof (Theorem 3.2)

In this Subsection, we provide the complete proof of convergence for Ghost. Thus, in the following
demonstration, we give the key concepts required to later prove the convergence of MCM.

Theorem C.2 (Convergence of Ghost, convex case). Under Assumptions 3.1 to 3.4 with µ = 0
(convex case), for all k in N, defining Vk := E[wk−w∗]+

γ
2LE[∥∇F (ŵk−1)∥2]+2γLE[∥ŵk − wk∥2],

we have:

Vk ≤ Vk−1 − γE [F (wk−1)− F (w∗)] +
γ2σ2ΦG(γ)

Nb
,

with ΦG(γ) := (1 + ωup)(1 + 2γLωdwn).

Remark C.1. This result is similar to Equation (3.8) but with a different function ΦG that has a
weaker dependency on ωdwn.

Proof Let k in N∗, by definition ∥wk − w∗∥2 ≤ ∥wk−1 − w∗∥2−2γ ⟨g̃k, wk−1 − w∗⟩+γ2 ∥g̃k∥2. Next,
we expend the inner product as following:

∥wk − w∗∥2 ≤ ∥wk−1 − w∗∥2 − 2γ ⟨g̃k, ŵk−1 − w∗⟩ − 2γ ⟨g̃k, wk−1 − ŵk−1⟩+ γ2 ∥g̃k∥2 .

Taking expectation conditionally to wk−1, and using E [g̃k | wk−1] = E [E [g̃k | ŵk−1] | wk−1] =
E [∇F (ŵk−1) | wk−1], we obtain:

E
[
∥wk − w∗∥2

∣∣∣ wk−1

]
≤ ∥wk−1 − w∗∥2 − E [2γ ⟨∇F (ŵk−1), ŵk−1 − w∗⟩ | wk−1]

− 2γE [⟨∇F (ŵk−1), wk−1 − ŵk−1⟩ | wk−1]

+ γ2E
[
∥g̃k∥2

∣∣∣ wk−1

]
.

Then, invoking Lemma C.2 to upper bound the squared norm of the stochastic gradients, and
noticing that E [⟨∇F (wk−1), ŵk−1 − wk−1⟩ | wk−1] = 0 leads to:

E
[
∥wk − w∗∥2

∣∣∣ wk−1

]
≤ ∥wk−1 − w∗∥2 − 2γE [⟨∇F (ŵk−1), ŵk−1 − w∗⟩ | wk−1]

− 2γE [⟨∇F (ŵk−1)−∇F (wk−1), wk−1 − ŵk−1⟩ | wk−1] (C.1)

+ γ2
((

1 +
ωup

Nb

)
E
[
∥∇F (ŵk−1)∥2

∣∣∣ wk−1

]
+

σ2 (1 + ωup)

Nb

)
.

In the upper inequality:

1. the term E [⟨∇F (ŵk−1), ŵk−1 − w∗⟩ | wk−1] allows the “strong contraction”

2. the terms E [⟨∇F (ŵk−1)−∇F (wk−1), wk−1 − ŵk−1⟩ | wk−1] and E[∥∇F (ŵk−1)∥2 | wk−1] are two
positives terms that we treat as residuals.

3. the last term σ2 (1 + ωup) /(Nb) is due to the stochastic noise.

Now using Cauchy-Schwarz’s inequality (Equation (A.4)) and smoothness:

− E [2γ ⟨∇F (ŵk−1)−∇F (wk−1), wk−1 − ŵk−1⟩ | wk−1]

= 2γE [⟨∇F (ŵk−1)−∇F (wk−1), ŵk−1 − wk−1⟩ | wk−1]

≤ 2γLE
[
∥ŵk−1 − wk−1∥2

∣∣∣ wk−1

]
,

Appendix C. Appendix to MCM 136

and thus:

E
[
∥wk − w∗∥2

∣∣∣ wk−1

]
≤ ∥wk−1 − w∗∥2 − 2γE [⟨∇F (ŵk−1), ŵk−1 − w∗⟩ | wk−1]

+ 2γLE
[
∥ŵk−1 − wk−1∥2

∣∣∣ wk−1

]
+ γ2

(
1 +

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

∣∣∣ wk−1

]
+

γ2σ2(1 + ωup)

Nb
.

(C.2)

Now, using convexity with Proposition A.2:

E
[
∥wk − w∗∥2

∣∣∣ wk−1

]
≤ ∥wk−1 − w∗∥2

− γE

[(
F (ŵk−1)− F (w∗) +

1

L
∥∇F (ŵk−1)∥2

) ∣∣∣∣ wk−1

]
+ 2γLE

[
∥ŵk−1 − wk−1∥2

∣∣∣ wk−1

]
+ γ2

(
1 +

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

∣∣∣ wk−1

]
+

γ2σ2(1 + ωup)

Nb
.

Taking the full expectation (without conditioning over any random vectors), and because invoking
Jensen’s inequality (A.7) leads to E [F (ŵk−1)] ≥ E [F (wk−1)], we finally obtain this intermediate
result:

E
[
∥wk − w∗∥2

]
≤ E

[
∥wk−1 − w∗∥2

]
− γ (E [F (wk−1)]− F (w∗))

− γ

2L
E
[
∥∇F (ŵk−1)∥2

]
+ 2γLE

[
∥ŵk−1 − wk−1∥2

]
+

γ2σ2(1 + ωup)

Nb
,

(C.3)

where we considered that γL(1 + ωup/N) ≤ 1/2, which implies that γ
(
1− γL

(
1 +

ωup

N

))
≥ γ

2 .

Remark that Equation (C.3) is valid for both Ghost and MCM, and that the proof of MCM will follow
the same initial line. Now, because E

[
∥wk−1 − ŵk−1∥2

]
= E

[
E
[
∥wk−1 − ŵk−1∥2

∣∣∣ ŵk−2

]]
, we can

use Proposition 3.1 which is specific to Ghost and we recover Theorem 3.1:

E∥wk − w∗∥2 ≤ E ∥wk−1 − w∗∥2 − γE(F (wk−1)− F∗)−
γ

2L
E
[
∥∇F (ŵk−1)∥2

]
+ 2γ3ωdwnL

(
1 +

ωup

N

)
E ∥∇F (ŵk−2)∥2 + γ2

(1 + ωup)σ
2

Nb
(1 + 2γLωdwn) .

As a reminder, Proposition 3.1 gives the following contraction; we use it now to define a Lyapunov
function:

E
[
∥wk − ŵk∥2

∣∣∣ ŵk−1

]
≤ γ2ωdwn

(
1 +

ωup

N

)
∥∇F (ŵk−1)∥2 +

γ2ωdwn(1 + ωup)σ
2

Nb
. (C.4)

Defining Vk := E [wk − w∗] +
γ
2LE

[
∥∇F (ŵk−1)∥2

]
+CE[∥ŵk − wk∥2] with C = 2γL, and combining

this two equations as following (C.3) + C(C.4) leads to:

E
[
∥wk − w∗∥2

]
+ CE

[
∥ŵk−1 − wk−1∥2

]
+

γ

2L
E
[
∥∇F (ŵk−1)∥2

]
≤ E

[
∥wk−1 − w∗∥2

]
− γ (E [F (wk−1)]− F (w∗))

+ 2γLE
[
∥ŵk−1 − wk−1∥2

]
+

γ2σ2(1 + ωup)

Nb

+ 2γL× γ2ωdwn

(
1 +

ωup

N

)
∥∇F (ŵk−1)∥2 + 2γL× γ2ωdwn(1 + ωup)σ

2

Nb
.

Appendix C. Appendix to MCM 137

To ensure a contraction of the Lyapunov function we require:

γ2ωdwn

(
1 +

ωup

N

)
≤ γ

2L
⇐⇒ γL ≤ 1

2

√
ωdwn

(
1 +

ωup

N

)

Under this condition, we obtain Vk ≤ Vk−1 − γE [F (wk−1)− F (w∗)] +
γ2σ2ΦG(γ)

Nb with ΦG(γ) :=
(1 + ωup)(1 + 2γLωdwn). By recurrence and for k = K:

VK ≤ V0 −
K∑
k=1

γE [F (wk−1)− F (w∗)] +
K∑
k=1

γ2σ2ΦG(γ)
Nb

,

which leads to: 1
K
∑K

k=1 E [F (wk−1)− F (w∗)] ≤ V0 − Vk
γK + γσ2ΦG(γ)

Nb . Finally, for any K in N∗,

with γL ≤ min

{
1

2
(
1 +

ωup

N

) , 1

2

√
ωdwn

(
1 +

ωup

N

)} we have:

γ

K

K∑
t=1

E [F (wt)− F (w∗)] ≤
∥w0 − w∗∥2

K
+

γσ2ΦG(γ)
Nb

.

Note that the bound of γL encompasses the case ωdwn = 0 (i.e. no downlink compression), but in the
general case of bidirectional compression, we nearly always have ωdwn > 1, and thus the dominant
term is, in fact, 1

2

√
ωdwn

(
1 +

ωup

N

) . And by Jensen, it implies that:

E [F (w̄K)− F (w∗)] ≤
∥w0 − w∗∥2

γK
+

γσ2Φ(γ)

Nb
with ΦG(γ) := (1 + ωup)(1 + 2ωdwnγL) .

C.4 Proofs for MCM (and Rand-MCM)

In this Section, we provide the proofs for MCM in the convex, strongly-convex, and non-convex cases
in respectively Theorems C.4 to C.6. The proofs for Rand-MCM (see Theorem 3.7) are identical and
only require to adapt notations as explained in Subsection C.4.5.

We denote for γ in R, Φ(γ) := (1 + ωup)
(
1 + 8γLωdwn

αdwn

)
, for k in N, Υk = ∥wk −Hk−1∥2 and we

define γmax such that:

γmaxL ≤ min

{
1

8ωdwn
,

1

2
(
1 +

ωup

N

) , 1

4

√
ωdwn

αdwn

(
1

αdwn
+

ωup

N

)} .

Note that this is equivalent to notations given in Section 3.3 if we take αdwn = 1/8ωdwn.

Appendix C. Appendix to MCM 138

C.4.1 Control of the Variance of the local model for MCM (Theorem 3.5)

In this Subsection, we provide a control of the variance of the local model for MCM, as done previously
in Proposition C.1 for Ghost: this corresponds to Theorem 3.5. The demonstration is more complex
than for Ghost and it highlights the trade-offs for the learning rate αdwn. The demonstration builds
a bias-variance decomposition of ∥Ωk∥2 = ∥wk −Hk∥2. The variance is then decomposed in three
terms, as a result we will need to compute four terms:

∥wk −Hk−1∥2 = Bias2 + 2γ2(Var11 + Var12) + 2α2
dwnVar2 . (C.5)

Theorem C.3. Consider the MCM update as in Equation (3.2). Under Assumptions 3.1, 3.2
and 3.4 with µ = 0, if γ ≤ (8ωdwnL)

−1 and αdwn ≤ (8ωdwn)
−1, then for all k in N:

E [Υk] ≤
(
1− αdwn

2

)
E [Υk−1] + 2γ2

(
1

αdwn
+

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

]
+

2γ2σ2(1 + ωup)

Nb
.

Proof Let k in N, we recall that by definition:
Ωk = wk −Hk−1

Ω̂k = Cdwn(Ωk)

ŵk = Ω̂k +Hk−1 .

We start the proof by introducing ∥Ωk∥2: E[∥wk − ŵk∥2 | wk] = E[
∥∥∥Ω̂k − Ωk

∥∥∥2 | wk] ≤ ωdwn ∥Ωk∥2 .

Next, we perform a bias-variance decomposition:

∥Ωk∥2 = ∥wk −Hk−1∥2 = ∥wk −Hk−1 − E [wk −Hk−1 | wk−1]∥2

+ ∥E [wk −Hk−1 | wk−1]∥2

+ 2 ⟨wk −Hk−1 − E [wk −Hk−1 | wk−1] ,E [wk −Hk−1 | wk−1]⟩ ,

taking expectation w.r.t. wk−1:

E [Υk | wk−1] = E
[
∥wk −Hk−1 − E [wk −Hk−1 | wk−1]∥2

∣∣∣ wk−1

]
︸ ︷︷ ︸

Var

+ ∥E [wk −Hk−1 | wk−1]∥2︸ ︷︷ ︸
Bias2

.

The first term is the variance Var, and the second term corresponds to the squared bias Bias2.

Let’s handle first the variance, by definition:

Var = E
[
∥wk −Hk−1 − E [wk −Hk−1 | wk−1]∥2

∣∣∣ wk−1

]
= E [∥wk−1 − γg̃k −Hk−2 − αdwnC(wk−1 −Hk−2)

−wk−1 − γE [g̃k | wk−1]−Hk−2 − αdwnE [C(wk−1 −Hk−2 | wk−1])∥2
∣∣wk−1

]
.

After simplification and using Equation (A.3):

Var = E [∥ − γ (g̃k + E [∇F (ŵk−1) | wk−1]) + αdwn (C(wk−1 −Hk−2))

−(wk−1 −Hk−2)∥2
∣∣wk−1

]
≤ 2γ2E

[
∥g̃k − E [∇F (ŵk−1) | wk−1]∥2

∣∣∣ wk−1

]
+ 2α2

dwnE
[
∥C(wk−1 −Hk−2)− (wk−1 −Hk−2)∥2

∣∣∣ wk−1

]
≤ 2γ2 E

[
∥g̃k − E [∇F (ŵk−1) | wk−1]∥2

∣∣∣ wk−1

]
︸ ︷︷ ︸

Var1

+2α2
dwn ωdwn ∥wk−1 −Hk−2∥2︸ ︷︷ ︸

Var2

≤ 2γ2Var1 + 2α2
dwnVar2 .

Appendix C. Appendix to MCM 139

An interpretation of the above decomposition is that:

• Var1 is the part of the downlink compression caused by the increment g̃k, it is similar to Ghost.
• Var2 is the impact of the propagation of the previous noise.

We compute the first term by introducing ∇F (ŵk−1), the second being kept as it is:

Var1 = E
[
∥g̃k − E [∇F (ŵk−1) | wk−1]∥2

∣∣∣ wk−1

]
= E

[
∥g̃k −∇F (ŵk−1) +∇F (ŵk−1)− E [∇F (ŵk−1) | wk−1]∥2

∣∣∣ wk−1

]
= E

[
∥g̃k −∇F (ŵk−1)∥2

∣∣∣ wk−1

]
︸ ︷︷ ︸

Var11

+E
[
∥∇F (ŵk−1)− E [∇F (ŵk−1) | wk−1]∥2

∣∣∣ wk−1

]
︸ ︷︷ ︸

Var12

= Var11 + Var12 ,

the inner product is null given that E [∇F (ŵk−1)− E [∇F (ŵk−1) | wk−1] | wk−1] = 0. Moreover:

Var11 = E
[
∥g̃k −∇F (ŵk−1)∥2

∣∣∣ wk−1

]
= E

[
E
[
∥g̃k −∇F (ŵk−1)∥2

∣∣∣ ŵk−1

] ∣∣∣ wk−1

]
,

so, we can use Lemma C.2: Var11 = E

[
σ2

Nb
(1 + ωup) +

ωup

N ∥∇F (ŵk−1)∥2
∣∣∣∣ wk−1

]
. And now we

use smoothness for the second term:

Var12 = E
[
∥∇F (ŵk−1)− E [∇F (ŵk−1) | wk−1]∥2

∣∣∣ wk−1

]
≤ E

[
∥∇F (ŵk−1)−∇F (wk−1)∥2

∣∣∣ wk−1

]
by Lemma A.3,

≤ L2E
[
∥ŵk−1 − wk−1∥2

∣∣∣ wk−1

]
using smoothness,

≤ L2ωdwnΥk−1 with Assumption 3.1 .

At the end:

Var ≤ 2γ2
(
σ2(1 + ωup)

Nb
+

ωup

N
E
[
∥∇F (ŵk−1)∥2

∣∣∣ wk−1

]
+ L2ωdwnΥk−1

)
+ 2α2

dwnωdwnΥk−1 .

(C.6)

Now we focus on the squared bias Bias2, with Lemma C.1:

Bias2 = ∥E [wk −Hk−1 | wk−1]∥2

= ∥(1− αdwn)(wk−1 −Hk−2)− γE [∇F (ŵk−1) | wk−1]∥2 , and with Equation (A.2) ,

≤ (1− αdwn)
2 (1 + αdwn)Υk−1 + γ2(1 +

1

αdwn
) ∥E [∇F (ŵk−1) | wk−1]∥2 .

And because (1− αdwn)(1 + αdwn) < 1, we finally get that:

Bias2 ≤ (1− αdwn)Υk−1 + γ2
(
1 +

1

αdwn

)
∥E [∇F (ŵk−1) | wk−1]∥2 . (C.7)

Combining all Equations (C.6) and (C.7) into Equation (C.5):

E [Υk | wk−1] ≤ (1− αdwn)Υk−1 + γ2
(
1 +

1

αdwn

)
∥E [∇F (ŵk−1) | wk−1]∥2

+ 2γ2
(
σ2(1 + ωup)

Nb
+

ωup

N
E
[
∥∇F (ŵk−1)∥2

∣∣∣ wk−1

])
+ 2γ2

(
L2ωdwnΥk−1

)
+ 2α2

dwnωdwnΥk−1 ,

Appendix C. Appendix to MCM 140

that is:

E [Υk | wk−1] ≤
(
1− αdwn + 2γ2L2ωdwn + 2α2

dwnωdwn

)
∥wk−1 −Hk−2∥2

+ γ2
(
1 +

1

αdwn

)
∥E [∇F (ŵk−1) | wk−1]∥2

+
2γ2ωup

N
E
[
∥∇F (ŵk−1)∥2

∣∣∣ wk−1

]
+

2γ2σ2(1 + ωup)

Nb
.

Next, we require:
2α2

dwnωdwn ≤ 1
4αdwn ⇐⇒ αdwn ≤ 1

8ωdwn
,

2γ2L2ωdwn ≤ 1
4αdwn = 1

32ωdwn
, by taking αdwn = 1

8ωdwn
⇐⇒ γ ≤ 1

8ωdwnL
,

1 + 1
αdwn

≤ 2
αdwn

which is not restrictive if ωdwn ≥ 1.

Thus, it leads to:

E [Υk | wk−1] ≤
(
1− αdwn

2

)
Υk−1 +

2γ2

αdwn
∥E [∇F (ŵk−1) | wk−1]∥2

+
2γ2ωup

N
E[∥∇F (ŵk−1)∥2 | wk−1] +

2γ2σ2(1 + ωup)

Nb
.

Next, we bound ∥E [∇F (ŵk−1) | wk−1]∥2 with E[∥∇F (ŵk−1)∥2 | wk−1], and we obtain:

E [Υk | wk−1] ≤
(
1− αdwn

2

)
Υk−1 + 2γ2

(
1

αdwn
+

ωup

N

)
E[∥∇F (ŵk−1)∥2 | wk−1]

+
2γ2σ2(1 + ωup)

Nb
.

Taking the unconditional expectation gives the result.

C.4.2 Convex case (Theorem 3.4)

In this section, we give the demonstration of MCM in the convex case (Theorem 3.4).

Theorem C.4 (Convergence of MCM in the convex case). Under Assumptions 3.1 to 3.4 with
µ = 0, for a learning rate αdwn ≤ 1

8ωdwn
, for all k > 0, for any γ ≤ γmax, defining Vk :=

E[∥wk − w∗∥2] + 32γLω2
dwnE[Υk], for w̄k = 1

k

∑k−1
i=0 wi, we have:

γE [F (wk−1)− F (w∗)] ≤ Vk−1 − Vk +
γ2σ2Φ(γ)

Nb
=⇒ E[F (w̄k)− F∗] ≤

V0

γk
+

γσ2Φ(γ)

Nb
.

Consequently, for K in N large enough, a step-size γ =

√
∥w0−w∗∥2Nb
(1+ωup)σ2K

and a learning

rate αdwn = 1
8ωdwn

, we have:

E[F (w̄K)− F∗] ≤ 2

√
∥w0 − w∗∥2 (1 + ωup)σ2

NbK
+O(K−1).

Moreover if σ2 = 0 (noiseless case), we recover a faster convergence: E[F (w̄K)− F∗] = O(K−1).

Appendix C. Appendix to MCM 141

Proof Let k in N∗, the proof follows the one for Ghost, and we start from Equation (C.3):

E
[
∥wk − w∗∥2

]
≤ E

[
∥wk−1 − w∗∥2

]
− γ (E [F (wk−1)]− F (w∗))−

γ

2L
E
[
∥∇F (ŵk−1)∥2

]
+ 2γLE

[
∥ŵk−1 − wk−1∥2

]
+

γ2σ2(1 + ωup)

Nb
,

with Assumption 3.1, it easily becomes:

E
[
∥wk − w∗∥2

]
≤ E

[
∥wk−1 − w∗∥2

]
− γ (E [F (wk−1)]− F (w∗))−

γ

2L
E
[
∥∇F (ŵk−1)∥2

]
+ 2γLωdwnE [Υk−1] +

γ2σ2(1 + ωup)

Nb
.

Theorem 3.5 which is specific to MCM gives:

E [Υk] ≤
(
1− αdwn

2

)
E [Υk−1] + 2γ2

(
1

αdwn
+

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

]
+

2γ2σ2(1 + ωup)

Nb
.

Defining: Vk := E
[
∥wk − w∗∥2

]
+γLCE [Υk] with C = 4ωdwn

αdwn
, and, combining the two last equations:

E
[
∥wk − w∗∥2

]
+ γLCE [Υk] ≤ E

[
∥wk−1 − w∗∥2

]
− γE [F (wk−1)− F (w∗)]

+ 2γLωdwnE [Υk−1]

− γ

2L
E
[
∥∇F (ŵk−1)∥2

]
+

γ2σ2(1 + ωup)

Nb

+
(
1− αdwn

2

)
γLCE [Υk−1]

+ 2γ3LC

(
1

αdwn
+

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

]
+

2γ3Lσ2(1 + ωup)C

N
,

and reordering the terms gives:

Vk ≤ E
[
∥wk−1 − w∗∥2

]
+
(
2γLωdwn +

(
1− αdwn

2

)
γLC

)
E
[
∥wk−1 −Hk−1∥2

]
+

(
2γ3LC

(
1

αdwn
+

ωup

N

)
− γ

2L

)
E
[
∥∇F (ŵk−1)∥2

]
− γE [F (wk−1)− F (w∗)]

+ (2γLC + 1)
γ2σ2(1 + ωup)

Nb
.

We observe that:

2γLωdwn +
(
1− αdwn

2

)
γLC ≤ γLC ⇐⇒ C ≥ 4ωdwn

αdwn
which is true by definition of C.

Secondly, to get the contraction requires

2γ3LC

(
1

αdwn
+

ωup

N

)
− γ

2L
≤ 0⇐⇒ γ2L ≤ 1

4LC

(
1

αdwn
+

ωup

N

)
⇐⇒ γL ≤ 1

4

√
ωdwn

αdwn

(
1

αdwn
+

ωup

N

) ,

Appendix C. Appendix to MCM 142

because C = 4ωdwn/α. Thus, we have that Vk ≤ Vk−1 − γE [F (wk−1)− F (w∗)] +
γ2σ2Φ(γ)

Nb , de-

noting Φ(γ) := (1 + ωup)
(
1 + 8γLωdwn

αdwn

)
, and then for k = K ∈ N∗, by recurrence: VK ≤

V0 − γ
∑K

k=1 E [F (wk−1)− F (w∗)] +
γ2σ2Φ(γ)

Nb
, which implies:

1

K

K∑
k=1

E [F (wk−1)− F (w∗)] ≤
V0 − VK

γK
+

γ2σ2Φ(γ)

Nb
,

Finally, by Jensen, for any K in N∗ such that γL ≤ min

{
1

8ωdwn
, 1
2(1+ωup

N)
, 1

4

√
ωdwn
αdwn

(
1

αdwn
+

ωup
N

)

}
, we

have E [F (w̄K)− F (w∗)] ≤ V0
γK +

γσ2Φ(γ)
Nb

, which concludes the proof.

C.4.3 Strongly-convex case (Theorem 3.3)

In this section, we give the demonstration for MCM in the strongly-convex case (Theorem 3.3).

Theorem C.5 (Convergence of MCM in the strongly-convex case). Under Assumptions 3.1 to 3.4
with µ > 0, for k in N, for a learning rate αdwn ≤ 1

8ωdwn
, for any sequence (γk)k≥0 ≤ γmax,

defining Vk := E[∥wk − w∗∥2] + 32γLω2
dwnE[Υk], we have:

Vk ≤ (1− γkµ/2)Vk−1 − γkE [F (ŵk−1)− F (w∗)] +
γ2kσ

2Φ(γk)

Nb
,

Consequently,

1. if σ2 = 0 (noiseless case), for γk ≡ γmax we recover a linear convergence rate:
E[∥wK)− w∗∥2] ≤ (1− γmaxµ)

kV0;

2. if σ2 > 0, defining L̃ such that γmax = (2L̃)−1, taking for all k in N, γk = 4/(µ(k + 1) + L̃),
for the weighted Polyak-Ruppert average w̄K =

∑K
k=1 λkwk−1/

∑K
k=1 λk, with λk := γ−1

k−1,
we have:

E [F (w̄K)− F (w∗)] ≤
(µ+ L̃)L̃

16µK2 ∥w0 − w∗∥2 +
8σ2(1 + ωup)

µKNb

(
1 +

256Lω2
dwn

µK
ln(µ(K + 1) + L̃)

)
.

Proof Let k in N∗, the proof starts like the one for Ghost, and we start from Equation (C.2) but
we consider a variable step-size γk = 2/(µ(k + 1) + L̃) that depends of the iteration k in N.

E
[
∥wk − w∗∥2

]
≤ E

[
∥wk−1 − w∗∥2

]
− 2γkE [⟨∇F (ŵk−1), ŵk−1 − w∗⟩]

+ 2γkLE
[
∥ŵk−1 − wk−1∥2

]
+ γ2k

(
1 +

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

]
+

γ2kσ
2(1 + ωup)

Nb
.

Now we apply strong-convexity (Equation (A.11) of Proposition A.2):

E
[
∥wk − w∗∥2

]
≤ E

[
∥wk−1 − w∗∥2

]
+ 2γkLE

[
∥ŵk−1 − wk−1∥2

]
− γkE [F (ŵk−1)− F (w∗)]− γk

(
µ

2
∥ŵk−1 − w∗∥2 +

1

L
∥∇F (ŵk−1)∥2

)
+ γ2k

(
1 +

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

]
+

γ2kσ
2(1 + ωup)

Nb
.

Appendix C. Appendix to MCM 143

As γk ≤ 2
L̃
≤ 1

2L
(
1 +

ωup

N

) , and thus
(
1− γkL

(
1 +

ωup

N

))
≥ 1/2; this allows to simplify the

coefficient of E[∥∇F (ŵk−1)∥2]:

E
[
∥wk − w∗∥2

]
≤ (1− γkµ

2
) ∥wk−1 − w∗∥2 − γkE [F (ŵk−1)− F (w∗)]

− γk
2L

E
[
∥∇F (ŵk−1)∥2

]
+ 2γkLE

[
∥ŵk−1 − wk−1∥2

]
+

γ2kσ
2(1 + ωup)

Nb

equivalent to:

E
[
∥wk − w∗∥2

]
≤ (1− γkµ

2
) ∥wk−1 − w∗∥2 − γkE [F (ŵk−1)− F (w∗)]

− γk
2L

E
[
∥∇F (ŵk−1)∥2

]
+ 2γkLωdwnE

[
∥wk−1 −Hk−1∥2

]
+

γ2kσ
2(1 + ωup)

Nb
.

(C.8)

Theorem 3.5 adapted to the case of decaying steps gives:

E [Υk] ≤
(
1− αdwn

2

)
E [Υk−1] + 2γ2k

(
1

αdwn
+

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

]
+

2γ2kσ
2(1 + ωup)

Nb
. (C.9)

Defining Vk := E
[
∥wk − w∗∥2

]
+ γkLCE [Υk] with C = 4ωdwn/α, combining the two later equations

(A.11) + γkLC (C.9):

E
[
∥wk − w∗∥2

]
+γkLCE [Υk] ≤ (1− γkµ

2
) ∥wk−1 − w∗∥2 − γkE [F (ŵk−1)− F (w∗)]

− γk
2L

E
[
∥∇F (ŵk−1)∥2

]
+ 2γkLωdwnE

[
∥wk−1 −Hk−1∥2

]
+

γ2kσ
2(1 + ωup)

Nb

+
(
1− αdwn

2

)
γkLCE [Υk−1] + 2γ3kLC

(
1

αdwn
+

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

]
+

2γ3kLσ
2(1 + ωup)C

Nb
,

and reordering the terms gives:

Vk ≤ (1− γkµ

2
) ∥wk−1 − w∗∥2 − γkE [F (ŵk−1)− F (w∗)]

+

(
1− αdwn

2
+

2ωdwn

C

)
γkLCE

[
∥wk−1 −Hk−1∥2

]
+

(
2γ3kLC

(
1

αdwn
+

ωup

N

)
− γk

2L

)
E
[
∥∇F (ŵk−1)∥2

]
+ (2γkLC + 1)

γ2kσ
2(1 + ωup)

Nb
,

To reach a (1− γkµ
2)-convergence we first need

(
1− αdwn

2 + 2ωdwn
C

)
γkLC ≤ (1− γkµ

2)γk−1LC i.e

1− αdwn
2 + 2ωdwn

C ≤ (1− γkµ/2)γk−1
γk

.

We need that for all k ∈ N, 1− γkµ/2
γk

≤ 1
γk−1

i.e., 1− γkµ
2 ≤

γk
γk−1

, but:

γk
γk−1

=
µk − µ+ L̃

µk + L̃
= 1− µ

µk + L̃
and 1− γkµ

2
= 1− µ

µk + L̃
,

Appendix C. Appendix to MCM 144

and so, the inequality is always true. Thus we must have 2ωdwn/C ≤ αdwn/2 which is true by
definition of C. Secondly, it requires:

2γ2kC

(
1

αdwn
+

ωup

N

)
− γk

2L
≤ 0⇐⇒ γkL ≤

1

4C

(
1

αdwn
+

ωup

N

)
⇐⇒ γkL ≤

1

4

√
ωdwn

αdwn

(
1

αdwn
+

ωup

N

) ,

by definition of C. And it follows that the first part of the theorem is proved:

Vk ≤ (1− γkµ

2
)Vk−1 − γkE [F (ŵk−1)− F (w∗)] +

γ2kσ
2Φ(γk)

Nb
,

where Φ(γk) := (1 + ωup)
(
1 +

8γkLωdwn
αdwn

)
. We now prove the second part, which requires carefully

handling the term of noise. By definition γk = 2
µ(k + 1) + L

, we denote λk = γ−1
k−1 and we sum the

above equation weighted with the sequence of (λk)
K
k=1:

1∑K
k=1 λk

K∑
k=1

λkE [F (ŵk−1)− F (w∗)] ≤
1∑K

k=1 λk

K∑
k=1

(1− γkµ/2)λk

γk
Vk−1 −

λk

γk
Vk

+
1∑K

k=1 λk

K∑
k=1

λk
γkσ

2Φ(γk)

Nb
.

The weights are chosen to ensure that the sum of (Vk)
K
k=1 is telescopic. Because 1− γkµ/2

γk
= γ−1

k−2,
we have:

1∑K
k=1 λk

K∑
k=1

λkE [F (ŵk−1)− F (w∗)] ≤
1∑K

k=1 λk

K∑
k=1

1

γk−2γk−1
Vk−1 −

1

γkγk−1
Vk

+
1∑K

k=1 λk

K∑
k=1

λk
γkσ

2Φ(γk)

Nb
,

and because for K ∈ N∗ big enough 1∑K
k=1 λk

= 1
µ(K + 1)K/8 + (L̃K)/4

≤ 8
µK2 , it results that:

1∑K
k=1 λk

K∑
k=1

λkE [F (ŵk−1)− F (w∗)] ≤
V0

γ0γ−1µK
2 +

8

µK2

K∑
k=1

λk
γkσ

2Φ(γk)

Nb
. (C.10)

At the end, using the Jensen’s inequality - F (wk−1) = F (E [ŵk−1 | wk−1]) ≤ E [F (ŵk−1) | wk−1], see
Equation (A.7) - we have for all K in N:

1∑K
k=1 λk

K∑
k=1

λkE [F (wk−1)− F (w∗)]

≤ V0

γ0γ−1µK
2 +

8

µK2

K∑
k=1

1

γk−1

(
1 +

8γkLωdwn

αdwn

)
γkσ

2(1 + ωup)

Nb

≤ V0

γ0γ−1µK
2 +

8

µK2

K∑
k=1

(
1 +

8γkLωdwn

αdwn

)
σ2(1 + ωup)

Nb
,

Appendix C. Appendix to MCM 145

because for all k in N∗, γk ≤ γk−1. We need to compute the following classical sum:

K∑
k=1

1

µ(k + 1) + L̃
≤
∫ K

x=0

1

µ(x+ 1) + L̃
dx ≤ 1

µ
ln
(
µ(K + 1) + L̃

)
.

At the end, using again the Jensen inequality, defining L̃ = max

{
4L

√
ωdwn
αdwn

(
1

αdwn
+

ωup

N

)
, 4L

(
1 +

ωup

N

)}
,

taking for all k in N, γk = 4(µ(k+1)+L̃−1, for all k in N∗, λk = γ−1
k−1 and denoting w̄K =

∑K
k=1 λkwk−1∑K

k=1 λk
,

then for any K in N∗, we have:

E [F (w̄K)− F (w∗)] ≤
(µ+ L̃)L̃

16µK2 ∥w0 − w∗∥2 +
(
1 +

256Lω2
dwn

µK
ln
(
µ(K + 1) + L̃

))
· 8σ

2(1 + ωup)

µKNb
.

C.4.4 Non-convex case (Theorem 3.6)

In this section, we detail the convergence guarantee given for MCM in the non-convex case. In this
scenario, the theorem hold on the average of gradients after K in N∗ iterations. The structure of the
proof is different from the one used for Ghost and MCM in convex and strongly-convex case. Instead,
the demonstration starts from the equation resulting from smoothness and use the polarization
identity to handle the inner product of gradients taken at two different points.

Theorem C.6 (Convergence of MCM in the non-convex case). Under Assumptions 3.1, 3.2 and 3.4
(non-convex case), for a learning rate αdwn = 1

8ωdwn
, for any step-size γ s.t.

γL ≤ min

 1

8ωdwn
,

1

2
(
1 +

ωup

N

) , 1

8
√
ω2
dwn

(
8ωdwn +

ωup

N

)
 ,

after running K in N∗ iterations, we have:

1

K

K∑
k=1

E
[
∥∇F (wk−1)∥2

]
≤ 2 (F (w0)− F (w∗))

γK
+

γLσ2Φnon−cvx(γ)

Nb
,

with Φnon−cvx(γ) := (1 + ωup)
(
1 + 32γLω2

dwn

)
. Thus, for K in N∗ large enough, taking γ =√

2Nb (F (w0)− F (w∗))
σ2L(1 + ωup)K

:

1

K

K∑
k=1

E
[
∥∇F (wk−1)∥2

]
≤ 2

√
2Lσ2(1 + ωup) (F (w0)− F (w∗))

NbK
+O(K−1) .

Proof Let k in N∗, then smoothness (see Assumption 3.2) implies:

F (wk) ≤ F (wk−1) + ⟨∇F (wk−1), wk − wk−1⟩+
L

2
∥wk − wk−1∥2

⇐⇒ F (wk) ≤ F (wk−1)− γ ⟨∇F (wk−1), g̃k⟩+
γ2L

2
∥g̃k∥2 .

Appendix C. Appendix to MCM 146

The inner product is not easy to handle because it implies two gradients computed at two different
points: wk−1 and ŵk−1. To turn around this difficulty, we use the polarization identity, and so we
have:

−E [⟨∇F (wk−1), g̃k⟩ | wk−1] = −⟨∇F (wk−1),E [∇F (ŵk−1) | wk−1]⟩

=
1

2

(
−∥∇F (wk−1)∥2 − E

[
∥∇F (ŵk−1)∥2

∣∣∣ wk−1

]
+ E

[
∥∇F (wk−1)−∇F (ŵk−1)∥2

∣∣∣ wk−1

])
.

where we used the Polarization identity (Equation (A.5)), and next with smoothness:

−E [⟨∇F (wk−1), g̃k⟩ | wk−1] ≤
1

2

(
−∥∇F (wk−1)∥2 − E

[
∥∇F (ŵk−1)∥2

∣∣∣ wk−1

]
+L2E

[
∥wk−1 − ŵk−1∥2

∣∣∣ wk−1

])
.

Combining with Lemma C.2, we obtain:

F (wk) ≤ F (wk−1)−
γ

2
∥∇F (wk−1)∥2 −

γ

2
E
[
∥∇F (ŵk−1)∥2

∣∣∣ wk−1

]
+

γL2

2
E
[
∥wk−1 − ŵk−1∥2

∣∣∣ wk−1

]
+

γ2L

2

((
1 +

ωup

N

)
∥∇F (ŵk−1)∥2 +

σ2(1 + ωup)

Nb

)
.

Taking the full expectation and re-ordering the terms gives:

E [F (wk)] ≤ E [F (wk−1)]−
γ

2
E
[
∥∇F (wk−1)∥2

]
− γ

2

(
1− γL

(
1 +

ωup

N

))
E
[
∥∇F (ŵk−1)∥2

]
+

γL2

2
E
[
∥wk−1 − ŵk−1∥2

]
+

γ2L

2
× σ2(1 + ωup)

Nb
.

Exactly like the convex case, we consider that γL(1+ωup/N) ≤ 1/2 and because E[∥wk−1 − ŵk−1∥2] =
E[E[∥wk−1 − ŵk−1∥2 | ŵk−2]] we can use Assumption 3.1:

E [F (wk)] ≤ E [F (wk−1)]−
γ

2
E
[
∥∇F (wk−1)∥2

]
− γ

4
E
[
∥∇F (ŵk−1)∥2

]
+

ωdwnγL
2

2
E [Υk] +

γ2L

2
× σ2(1 + ωup)

Nb
.

(C.11)

Next, Theorem 3.5 gives:

E [Υk] ≤
(
1− αdwn

2

)
E [Υk−1] + 2γ2

(
1

αdwn
+

ωup

N

)
E
[
∥∇F (ŵk−1)∥2

]
+

2γ2σ2(1 + ωup)

Nb
.

We iterate over k and compute the resulting geometric sum, it gives:

E [Υk] ≤
(
1− αdwn

2

)k
∥Υ0∥2 + 2γ2

(
1

αdwn
+

ωup

N

) k∑
t=1

(
1− α

2

)k−t
E
[
∥∇F (ŵt−1)∥2

]
+

4γ2σ2(1 + ωup)

αdwnNb
,

Appendix C. Appendix to MCM 147

where we considered for the last term of the above equation that
∑k

t=1

(
1− αdwn

2

)k
≤ 2

αdwn
. This

is equivalent to:

E [Υk] ≤ 2γ2
(

1

αdwn
+

ωup

N

) k∑
t=1

(
1− αdwn

2

)k−t
E
[
∥∇F (ŵt−1)∥2

]
+

4γ2σ2(1 + ωup)

αdwnNb
.

We apply this last result to Equation (C.11):

γ

2
E
[
∥∇F (wk−1)∥2

]
≤ E [F (wk−1)− F (wk)]−

γ

4
E
[
∥∇F (ŵk−1)∥2

]
+

γL2

2

(
4ωdwnγ

2σ2(1 + ωup)

Nbαdwn

+2ωdwnγ
2

(
1

αdwn
+

ωup

N

) k∑
t=1

(
1− αdwn

2

)k−t
E
[
∥∇F (ŵt−1)∥2

])

+
γ2L

2
× σ2(1 + ωup)

Nb

≤ E [F (wk−1)− F (wk)]−
γ

4
E
[
∥∇F (ŵk−1)∥2

]
+ γ3L2ωdwn

(
1

αdwn
+

ωup

N

) k∑
t=1

(
1− αdwn

2

)k−t
E
[
∥∇F (ŵt−1)∥2

]
+

γ2σ2L(1 + ωup)

2Nb

(
1 +

4γLωdwn

αdwn

)
.

Summing this equation, for k in range 1 to K:

γ

2

K∑
k=1

E
[
∥∇F (wk−1)∥2

]
≤ E [F (w0)− F (wk)]−

γ

4

K∑
k=1

E
[
∥∇F (ŵk−1)∥2

]
+ γ3L2ωdwn

(
1

αdwn
+

ωup

N

) K∑
k=1

k∑
t=1

(
1− αdwn

2

)k−t
E
[
∥∇F (ŵt−1)∥2

]
+

γ2σ2L(1 + ωup)

2Nb

(
1 +

4γLωdwn

αdwn

)
K .

We need to invert the double-sum and we obtain:

γ

2

K∑
k=1

E
[
∥∇F (wk−1)∥2

]
≤ γF (w0)− F (wk)−

γ

4

K∑
i=1

E
[
∥∇F (ŵk−1)∥2

]
+

2

αdwn
× γ3L2ωdwn

(
1

αdwn
+

ωup

N

) K∑
k=1

E
[
∥∇F (ŵk−1)∥2

]
+

γ2σ2L(1 + ωup)

2Nb

(
1 +

4γLωdwn

αdwn

)
K

≤ E [F (w0)− F (wk)]

+

(
2γ3L2ωdwn

αdwn

(
1

αdwn
+

ωup

N

)
− γ

4

) K∑
k=1

E
[
∥∇F (ŵk−1)∥2

]
+

γ2σ2L(1 + ωup)

2Nb

(
1 +

4γLωdwn

αdwn

)
K .

Appendix C. Appendix to MCM 148

Now we consider that 2γ3L2ωdwn
αdwn

(
1

αdwn
+

ωup

N

)
≤ γ/4, and because for all k in N, F (w0)−F (wk) ≤

F (w0)− F (w∗):

1

K

K∑
k=1

E
[
∥∇F (wk−1)∥2

]
≤ 2 (F (w0)− F (w∗))

γK
+

γσ2L(1 + ωup)

Nb

(
1 +

4γLωdwn

αdwn

)
.

Finally, for any K in N∗, such that γL ≤ min

1

8ωdwn
, 1

2
(
1 +

ωup

N

) , 1

2

√
2
ωdwn

αdwn

(
1

αdwn
+

ωup

N

)

and αdwn ≤ 1
8ωdwn

, we have:

1

K

K∑
k=1

E
[
∥∇F (wk−1)∥2

]
≤ 2 (F (w0)− F (w∗))

γK
+

γLσ2Φnon−cvx(γ)

Nb
,

denoting Φnon−cvx(γ) := (1 + ωup)
(
1 +

4γLωdwn
αdwn

)
.

Thus, for K in N∗ large enough, taking γ =

√
2Nb (F (w0)− F (w∗))

σ2L(1 + ωup)K
and αdwn = 1/(8ωdwn):

1

K

K∑
k=1

E
[
∥∇F (wk−1)∥2

]
≤ 2

√
2Lσ2(1 + ωup) (F (w0)− F (w∗))

NbK
+O(K−1) .

C.4.5 Proof for Rand-MCM (Theorem 3.7)

The proof for Rand-MCM is almost identical to the MCM-scenario. It only requires to modify some
notations because each device i in J1, NK holds a unique model ŵi

k−1.

For k in N:

1. g̃k is now defined as g̃k = 1
N
∑N

i=1 ĝik(ŵi
k−1),

2. for all i in J1, NK, ĝik(ŵk−1) and ∇F (ŵk−1) must be replaced by ĝik(ŵi
k−1) and ∇F (ŵi

k−1),

3. instead of having a unique memory Hk, there is N memories (H i
k)

N
i=1 that keep track of the

updates done on each worker,

4. furthermore the notation wk−1−Hk−2 is no more correct as we have N different memories. Thus,
it must be replaced by 1

N
∑N

i=1wk−1 −H i
k−2.

C.5 Proofs in the quadratic case for MCM and Rand-MCM

In this section, for ease of notation we denote for k in N∗, g̃k = 1
N
∑N

i=1 ĝik(ŵi
k−1).

MCM has a unique memory Hk, and Rand-MCM has N different memories (H i
k)

N
i=1. But for the sake of

factorization, we will consider that both algorithm have N memories, thus we will always consider the

Appendix C. Appendix to MCM 149

quantity 1
N
∑N

i=1

∥∥wk−1 −H i
k−2

∥∥2, while we should consider the quantity 1
N
∑N

i=1 ∥wk−1 −Hk−2∥2
for MCM. However this notation is correct considering that for MCM, for all i in J1, NK, H i

k = Hk.

Unlike the previous sections where the proofs for MCM and Rand-MCM do not require any distinction,
here in the quadratic case, we will on the contrary stress on the difference between the two.
The difference appears in Lemma C.3 and comes from the way we handle the expectation of∥∥∥ 1
N
∑N

i=1∇F (ŵi
k−1)−∇F (wk−1)

∥∥∥2 for k in N∗. For this purpose we define a constant C such that
C = 1 in the MCM-case and C = N in the Rand-MCM-case.

The proofs for quadratic functions relies on the fact that for any k in N∗, E [∇F (ŵk−1) | wk−1] =
∇F (wk−1).

Definition C.1 (Quadratic function). A function f : Rd 7→ R is said to be quadratic if there exists
a symmetric matrix A in Md,d(R) such that for all x in Rd: f(x)− f(x∗) = 1

2(x− x∗)TA(x− x∗).
And then its gradient is defined for all x in Rd as: ∇f(x) = A(x− x∗).

C.5.1 Two other lemmas

In this section, we detail two lemmas required to prove the convergence of MCM and Rand-MCM in the
case of quadratic functions.

The first lemma allows to factorize all the results obtained for both MCM and Rand-MCM algorithms.
For k in N∗ and i in J1, NK, the difference between the MCM-case and the Rand-MCM-case results from
the tigher control of ∥∑N

i=1∇F (ŵi
k−1)−∇F (wk−1)∥2.

Lemma C.3. We define C such that C = 1 in the MCM-case and C = N in the Rand-MCM-case.
Then for any k in N∗, we have:

E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵi
k−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 ≤ L2ωdwn

C

1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 .

Proof Let k in N∗, we apply smoothness (Assumption 3.2), and then we upper bound the variance of
the quantization operator with Assumption 3.1. But we must distinguish MCM and Rand-MCM because
in the first case we have ŵi

k−1 equal to ŵk−1 for all i in J1, NK.

In the MCM-case:

E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵi
k−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 = E
[
∥∇F (ŵk−1)− F (wk−1)∥2

∣∣ wk−1

]
≤ L2E

[
∥ŵk−1 − wk−1∥2

∣∣∣ wk−1

]
≤ L2ωdwn ∥Ωk−1∥2

≤ L2ωdwn
1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 ,

because we consider that ∥Ωk−1∥2 = ∥wk−1 −Hk−2∥2 = 1
N
∑N

i=1

∥∥wk−1 −H i
k−2

∥∥2.

Appendix C. Appendix to MCM 150

In the Rand-MCM-case, by independence of the compressions on the downlink direction:

E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵi
k−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 =
1

N2

N∑
i=1

E
[∥∥∇F (ŵi

k−1)−∇F (wk−1)
∥∥2 ∣∣∣ wk−1

]

≤ L2

N2

N∑
i=1

∥∥ŵi
k−1 − wk−1

∥∥2
≤ L2ωdwn

N
× 1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2
≤ L2ωdwn

N

1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 .

We factorize the two results and define C such that C = 1 in the MCM-case and C = N in the
Rand-MCM-case, and the result follows.

E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵi
k−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 ≤ L2ωdwn

C

1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 .

The next lemma replaces Lemma C.2 in the context of randomization and quadratic functions. Note
that the conditioning in Lemma C.2 is w.r.t. to ŵk−1 while here we take the expectation w.r.t. wk−1.
This is because we remove ŵk−1 from the gradient and give a result which depends of ∥∇F (wk−1)∥2
instead of ∥∇F (ŵk−1)∥2. This is made possible by the fact that for all k in N, for quadratic functions,
we have E [∇F (ŵk−1)] = ∇F (wk−1).

Lemma C.4 (Squared-norm of stochastic gradients). For any k in N∗, the squared-norm of gradients
can be bounded a.s.:

E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵ
i
k−1)−∇F (ŵi

k−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 ≤ ωup

N
∥∇F (wk−1)∥2 +

σ2(1 + ωup)

Nb

+
ωupωdwnL

2

N

1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 ,

(C.12)

E
[
∥g̃k∥2

∣∣∣ wk−1

]
≤
(
1 +

ωup

N

)
∥∇F (wk−1)∥2 +

σ2(1 + ωup)

Nb

+ L2ωdwn

(
1

C
+

ωup

N

)
1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 .

(C.13)

The demonstration will be in two stages. We first show Equation (C.12), and in a second time, we
show Equation (C.13).

Proof Let k in N∗.

Appendix C. Appendix to MCM 151

First part (Equation (C.12)). We can decompose the squared-norm in two terms:

E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵ

i
k−1)−∇F (ŵi

k−1)
)∥∥∥∥∥

2
∣∣∣∣∣∣ wk−1

= E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵ

i
k−1)− gik(ŵ

i
k−1)

)∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

+ E

∥∥∥∥∥ 1

N

N∑
i=1

(
gik(ŵ

i
k−1)−∇F (ŵi

k−1)
)∥∥∥∥∥

2
∣∣∣∣∣∣ wk−1

 ,

the first term is bounded by Assumption 3.1 and the last term by Assumption 3.4:

E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵ

i
k−1)−∇F (ŵi

k−1)
)∥∥∥∥∥

2
∣∣∣∣∣∣ wk−1

≤ ωup

N2

N∑
i=1

E
[∥∥gik(ŵi

k−1)
∥∥2 ∣∣∣ wk−1

]
+

σ2

Nb

≤ ωup

N2

N∑
i=1

E
[∥∥gik(ŵi

k−1)−∇F (ŵi
k−1)

∥∥2 ∣∣∣ wk−1

]
+

ωup

N2

N∑
i=1

E
[∥∥∇F (ŵi

k−1)
∥∥2 ∣∣∣ wk−1

]
+

σ2

Nb
.

And again applying Assumption 3.4 on E
[∥∥gik(ŵi

k−1)−∇F (ŵi
k−1)

∥∥2 ∣∣∣ wk−1

]
for i in {1, · · ·N}:

E

∥∥∥∥∥ 1

N

N∑
i=1

(
ĝik(ŵ

i
k−1)−∇F (ŵi

k−1)
)∥∥∥∥∥

2
∣∣∣∣∣∣ wk−1

 =
ωup

N2

N∑
i=1

E
[∥∥∇F (ŵi

k−1)
∥∥2 ∣∣∣ wk−1

]
+

σ2(1 + ωup)

Nb
.

Now, we have:

ωup

N2

N∑
i=1

E
[∥∥∇F (ŵi

k−1)
∥∥2 ∣∣∣ wk−1

]
=

ωup

N2

N∑
i=1

E
[∥∥∇F (ŵi

k−1)−∇F (wk−1)
∥∥2 ∣∣∣ wk−1

]
+

ωup

N2

N∑
i=1

E
[
∥∇F (wk−1)∥2

∣∣∣ wk−1

]
,

using smoothness (Assumption 3.2) gives:

ωup

N2

N∑
i=1

E
[∥∥∇F (ŵi

k−1)
∥∥2 ∣∣∣ wk−1

]
=

ωupωdwnL
2

N

1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 + ωup

N
∥∇F (wk−1)∥2 ,

and putting everythings together allows to conclude for Equation (C.12).

Appendix C. Appendix to MCM 152

Second part (Equation (C.13)). We start by introducing ∥∇F (wk−1)∥2:

E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵ
i
k−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 = E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵ
i
k−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

+ ∥∇F (wk−1)∥2

= E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵ
i
k−1)−∇F (ŵi

k−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

+ E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵi
k−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

+ ∥∇F (wk−1)∥2 .

The second term of the previous line is controlled by Lemma C.3 which distinguish the MCM and
Rand-MCM-cases by defining a constant C such that C = 1 for MCM and C = N for Rand-MCM:

E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵi
k−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 ≤ L2ωdwn

C

1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 .

Thus, we have:

E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵ
i
k−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 = E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵ
i
k−1)−∇F (ŵi

k−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

+

ωdwnL
2

C

1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 + ∥∇F (wk−1)∥2 ,

and Equation (C.12) allows to conclude.

C.5.2 Control of the Variance of the local model for quadratic function (both
MCM and Rand-MCM)

The next theorem replaces the Theorem 3.5 in the case of quadratic functions. The results are almost
identical except that in these settings we control the variance using non-degraded points (wt)t∈N.
This is necessary because, for quadratic functions, the analysis is slightly different. Previously, we
upper-bounded the inner product in the decomposition (Equation (C.1)) by a “strong contraction”
that was allowing to subtract ∥∇F (ŵk−1)∥2 and an extra residual term. Here we instead directly
get a smaller contraction proportional to ∥∇F (wk−1)∥2 (but without any residual!). Indeed for all k
in N, we have E [∇F (ŵk−1)] = ∇F (wk−1). This difference will appear in Subsection C.5.3.

As a consequence, we need to also control the variance of the local iterates that will appear when
expanding the expected squared gradient E∥g̃k∥2 by an affine function of the squared norms of the
gradients at the non perturbed points. This is what Theorem C.7 provides.

Appendix C. Appendix to MCM 153

Theorem C.7. Consider the MCM update as in Equation (3.2) or the Rand-MCM update as described
in Subsection 3.2.2. Under Assumptions 3.1 to 3.4 with µ = 0, if γ ≤ 1

8Lωdwn

√
(1/C+ ωup/N)

and αdwn ≤ 1/(8ωdwn), then for all k in N:

1

N

N∑
i=1

E
[∥∥wk −H i

k−1

∥∥2 ∣∣∣ wk−1

]
≤ 2γ2

(
1

αdwn
+

ωup

N

) k∑
t=1

(1− αdwn

2
)k−tE

[
∥∇F (wt−1)∥2

∣∣∣ wt−1

]
+

4γ2σ2(1 + ωup)

αdwnNb
.

Proof Let k in N∗ and i in {1, . . . N}, from Theorem C.3 we have:

E[∥wk −H i
k−1∥2 | wk−1] = Var + Bias2 = 2γ2Var1 + 2α2

dwnVar2 + Bias2 ,

with
Var1 = E

[∥∥∥ 1
N
∑N

i=1 ĝik(ŵi
k−1) + E

[
∇F (ŵi

k−1)
∣∣ wk−1

]∥∥∥2 ∣∣∣∣ wk−1

]
Var2 = ωdwn

1
N
∑N

i=1

∥∥wk−1 −H i
k−2

∥∥2
Bias2 = ∥E [wk −Hk−1 | wk−1]∥2 .

Recall that in the case of quadratic functions, we have for all i in J1, NK: E
[
∇F (ŵi

k−1)
∣∣ wk−1

]
=

∇F (wk−1). And so, for the first term of variance, we can decompose as follows:

Var1 = E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵ
i
k−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

= E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵ
i
k−1)−∇F (ŵi

k−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

+ E

∥∥∥∥∥ 1

N

N∑
i=1

∇F (ŵi
k−1)−∇F (wk−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 .

The first part is handled by Equation (C.12) of Lemma C.4:

E

∥∥∥∥∥ 1

N

N∑
i=1

ĝik(ŵ
i
k−1)−∇F (ŵi

k−1)

∥∥∥∥∥
2
∣∣∣∣∣∣ wk−1

 =
ωupωdwnL

2

N

1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2
+

ωup

N
∥∇F (wk−1)∥2 +

σ2(1 + ωup)

Nb
,

and the second part is tackled by Lemma C.3 where is defined a constant C such that C = 1 in
the MCM-case, and C = N in the Rand-MCM-case: E[∥ 1

N

∑N
i=1∇F (ŵi

k−1) − ∇F (wk−1)∥2 | wk−1] ≤
L2ωdwn

C
1
N
∑N

i=1

∥∥wk−1 −H i
k−2

∥∥2.
Finally, given that Var = 2γ2Var1 + 2α2

dwnVar2 we have:

Var ≤ 2γ2L2ωdwn

(
1

C
+

ωup

N

)
1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 + 2α2
dwnωdwn

∥∥wk−1 −H i
k−2

∥∥2
+

2γ2ωup

N
∥∇F (wk−1)∥2 +

2γ2σ2(1 + ωup)

Nb
.

Appendix C. Appendix to MCM 154

Now we focus on the squared bias Bias2 exactly like in Theorem C.3 and we obtain:

Bias2 ≤ (1− αdwn)
∥∥wk−1 −H i

k−2

∥∥2 + γ2(1 +
1

αdwn
) ∥∇F (wk−1)∥2 .

In the end:

E
[∥∥wk −H i

k−1

∥∥2 ∣∣∣ wk−1

]
≤ 2γ2L2ωdwn

(
1

C
+

ωup

N

)
1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2
+ γ2(1 +

1

αdwn
+

2ωup

N
) ∥∇F (wk−1)∥2

+
(
(1− αdwn) + 2α2

dwnωdwn

) ∥∥wk−1 −H i
k−2

∥∥2 + 2γ2σ2(1 + ωup)

Nb
.

Summing this last equation over the N devices gives:

1

N

N∑
i=1

E
[∥∥wk −H i

k−1

∥∥2 ∣∣∣ wk−1

]
≤
(
1− αdwn + 2α2

dwnωdwn + γ2L2ωdwn

(
1

C
+

ωup

N

))
1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2
+ γ2(1 +

1

αdwn
+

2ωup

N
) ∥∇F (wk−1)∥2 +

2γ2σ2(1 + ωup)

Nb
.

Exactly like in Theorem C.3, we need and by taking αdwn = 1/(8ωdwn):
2α2

dwnωdwn ≤ 1
4αdwn ⇐⇒ αdwn ≤ 1

8ωdwn
,

2γ2L2ωdwn

(
1
C +

ωup

N

)
≤ 1

4αdwn = 1
32ωdwn

⇐⇒ γ ≤ 1

8Lωdwn

√
(1/C+ ωup/N)

,

1 + 1
αdwn

≤ 2
αdwn

which is not restrictive.

Thus, we can write:

1

N

N∑
i=1

E
[∥∥wk −H i

k−1

∥∥2 ∣∣∣ wk−1

]
≤
(
1− αdwn

2

) 1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2
+ 2γ2(

1

αdwn
+

ωup

N
) ∥∇F (wk−1)∥2 +

2γ2σ2(1 + ωup)

Nb
.

Finally, we take the full expectation without any conditioning, we iterate over k and compute the
geometric sums:

1

N

N∑
i=1

E
[∥∥wk −H i

k−1

∥∥2] ≤ (1− αdwn

2
)k ∥w0 −H−1∥2 +

4γ2σ2(1 + ωup)

αdwnNb

+ 2γ2(
1

αdwn
+

ωup

N
)

k∑
t=1

(1− αdwn

2
)k−tE

[
∥∇F (wt−1)∥2

]
.

and the result follows.

Appendix C. Appendix to MCM 155

C.5.3 Proof for quadratic function (Theorem 3.8)

Theorem C.8. Under Assumptions 3.1 to 3.4 with µ = 0, if the function is quadratic, for
γ = 1/(L

√
K) and a given learning rate αdwn = 1/(8ωdwn), after running K iterations:

E [F (w̄K)− F∗] ≤
∥w0 − w∗∥2 L√

K
+

σ2Φ(γ)

NbL
√
K

.

with Φ = (1 + ωup)
(
1 + 32

ω2
dwn√
K
× 1√

K

(
1
C +

ωup

N

))
and C = N for Rand-MCM, and 1 for MCM.

The structure of the proof is different from the one used in Sections C.3 and C.4.

Proof Let k in N, by definition: ∥wk − w∗∥2 ≤ ∥wk−1 − w∗∥2 − 2γ ⟨g̃k, wk−1 − w∗⟩ + γ2 ∥g̃k∥2.
Because F is quadratic, we have E [∇F (ŵk−1) | wk−1] = ∇F (wk−1), thus taking expectation gives:

E[∥wk − w∗∥2 | wk−1] ≤ ∥wk−1 − w∗∥2 − 2γ ⟨∇F (wk−1), wk−1 − w∗⟩+ γ2E[∥g̃k∥2 | wk−1] .

We can directly apply convexity with Equation (A.10) from Proposition A.2:

E
[
∥wk − w∗∥2

∣∣∣ wk−1

]
≤ ∥wk−1 − w∗∥2 − γ

(
F (wk−1)− F (w∗) +

1

L
∥∇F (wk−1)∥2

)
+ γ2E

[
∥g̃k∥2

∣∣∣ wk−1

]
.

Now, with Equation (C.13) of Lemma C.4:

E
[
∥wk − w∗∥2

∣∣∣ wk−1

]
≤ ∥wk−1 − w∗∥2 − γ(F (wk−1)− F (w∗))−

γ

L
∥∇F (wk−1)∥2

+ γ2
((

1 +
ωup

N

)
∥∇F (wk−1)∥2

+ L2ωdwn

(
1

C
+

ωup

N

)
1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 + σ2(1 + ωup)

Nb

)
,

which gives:

E
[
∥wk − w∗∥2

∣∣∣ wk−1

]
≤ ∥wk−1 − w∗∥2 − γ(F (wk−1)− F (w∗))−

γ

L
∥∇F (wk−1)∥2

+ γ2
(
1 +

ωup

N

)
∥∇F (wk−1)∥2

+ γ2L2ωdwn

(
1

C
+

ωup

N

)
1

N

N∑
i=1

∥∥wk−1 −H i
k−2

∥∥2 + σ2γ2(1 + ωup)

Nb
.

Taking full expectation, we use the inequality controlling 1
N
∑N

i=1

∥∥wk−1 −H i
k−2

∥∥2 (Theorem C.7):

E
[
∥wk − w∗∥2

]
≤ E

[
∥wk−1 − w∗∥2

]
− γE [F (wk−1)− F (w∗)]

− γ

L

(
1− γL

(
1 +

ωup

N

))
E
[
∥∇F (wk−1)∥2

]
+ γ2L2ωdwn

(
1

C
+

ωup

N

)
× 2γ2

(
1

αdwn
+

ωup

N

) k∑
t=1

(1− αdwn

2
)k−tE

[
∥∇F (wt−1)∥2

]
+

σ2γ2(1 + ωup)

Nb
+ γ2L2ωdwn

(
1

C
+

ωup

N

)
× 4σ2γ2(1 + ωup)

αdwnNb
.

Appendix C. Appendix to MCM 156

Next, we consider – as in previous proofs – that γL(1+ωup/N) ≤ 1/2, and thus γ
L

(
1− γL

(
1 +

ωup

N

))
≥

γ
2 . Next we carry out the “top-down recurrence”:

E
[
∥wk − w∗∥2

]
≤ ∥w0 − w∗∥2 − γ

k∑
j=1

E [F (wk−j)− F (w∗)]−
γ

2L

k∑
j=1

E
[
∥∇F (wk−j−1)∥2

]

+
k∑

j=1

2γ4L2ωdwn

(
1

C
+

ωup

N

)(
1

αdwn
+

ωup

N

) k−j∑
t=1

(
1− αdwn

2

)k−j−t
E
[
∥∇F (wt−1)∥2

]

+
k∑

j=1

γ2σ2(1 + ωup)

Nb

(
1 +

4γ2L2ωdwn

αdwn

(
1

C
+

ωup

N

))
.

We invert the double-sum, it leads to:

E
[
∥wk − w∗∥2

]
≤ ∥w0 − w∗∥2 − γ

k∑
j=1

E [F (wj−1)− F (w∗)]−
γ

2L
E
[
∥∇F (wk−1)∥2

]
+

2

αdwn
× 2γ4L2ωdwn

(
1

C
+

ωup

N

)(
1

αdwn
+

ωup

N

)
E
[
∥∇F (w−1)∥2

]
+

k−1∑
j=1

(
2

αdwn
× 2γ4L2ωdwn

(
1

C
+

ωup

N

)(
1

αdwn
+

ωup

N

)
− γ

2L

)
E
[
∥∇F (wj−1)∥2

]
+

γ2σ2(1 + ωup)

Nb

(
1 +

4γ2L2ωdwn

αdwn

(
1

C
+

ωup

N

))
× k .

Now, we consider that 4ωdwnγ
4L2

αdwn

(
1
C +

ωup

N

)(
1

αdwn
+

ωup

N

)
<

γ
2L , thus we have:

γ

k

k∑
t=1

E [F (wt−1)− F (w∗)] ≤
∥w0 − w∗∥2

k
+

γ2σ2(1 + ωup)

Nb

(
1 +

4γ2L2ωdwn

αdwn

(
1

C
+

ωup

N

))
.

Finally, by Jensen, for any K in N∗, taking γ such that:

γL ≤ min

1

8ωdwn

√
1
C +

ωup

N

,
1

2
(
1 +

ωup

N

) , 1

3

√
8ωdwn
αdwn

(
1
C +

ωup

N

) (
1

αdwn
+

ωup

N

)

and with αdwn ≤ 1
8ωdwn

, we recover Theorem 3.8 E [F (w̄K)− F (w∗)] ≤ ∥w0 − w∗∥2
γK +

γσ2ΦRd(γ)
Nb

denoting ΦRd(γ) = (1 + ωup)

(
1 +

4γ2L2ωdwn
K

(
1
C +

ωup

N

))
.

D
Appendix to Distributed, compressed and averaged LSR

In this Chapter, we provide additional information to supplement our work. We begin by detailing
technical results, by introducing an auxiliary lemma in Section D.1 and by proving Proposition 4.1
which gives a CLT for (LSA). Secondly, in respectively Section D.2 and Section D.3, we give the
proof of Theorems 4.1 and 4.2. Thirdly, in Section D.4, we verify that the setting of single-client
compressed LSR fulfills the setting presented in Section 4.2. In Section D.5 we prove that Lemma 4.1
hold and compute the compressors’ covariance to establish Proposition 4.2 and Corollary 4.3. Finally,
in Section D.6, we provide demonstrations for the federated learning case, including verifying
assumptions (covariate-shift scenario) on random fields in Subsection D.6.1, and proving a Central
Limit Theorem D.3 in Subsection D.6.2 for the concept-shift scenario.

157

Appendix D. Appendix to Distributed, compressed and averaged LSR 158

Contents
D.1 Technical results . 158

D.1.1 Settings of experiments . 158

D.1.2 An auxiliary inequality . 159

D.1.3 Asymptotic results: central limit theorem for (LSA) 160

D.2 Generalization of Bach and Moulines (2013). 161

D.2.1 Proof principle . 161

D.2.2 Two bounds . 162

D.2.3 Final theorem . 166

D.3 Generalisation of Bach and Moulines (2013) for linear multiplicative noise. . . . 167

D.3.1 Proof principle . 167

D.3.2 Lemmas for the noise process . 168

D.3.3 Final theorem . 172

D.4 Validity of the assumptions made on the random fields 174

D.5 Compression operators . 178

D.5.1 Computation of the variance and covariance of the compression operators 179

D.5.2 Variance and covariance of sketching . 182

D.5.3 Proof of Propositions 4.3 and 4.4 . 186

D.5.4 Empirical covariances computed on quantum and cifar10 189

D.6 Technical results on federated learning. 189

D.6.1 Validity of the assumptions made on the random fields in the case of
covariate-shift . 189

D.6.2 Heterogeneous optimal point . 193

D.1 Technical results

Additional notations. We use the Frobenius norm ∥A∥2 := Tr
(
A⊤A

)
, which is the same notation

as the vector euclidean norm (no ambiguity in general), Jr to denote the d × d diagonal matrix
whose r first diagonal elements are equal to one and all the other matrix’s coefficients equal to
zero, S++

d (R) the cone of positive definite symmetric matrices, and Lp(Ω,A,P) the set of random
vectors defined on the probability space (Ω,A,P) such that E[∥X∥p] < ∞. We define also the
operator norm |||A||| :=

√
max eig(A⊤A).

D.1.1 Settings of experiments

In Tables D.1 and D.2, we summarize the settings of experiments presented in Subsection 4.3.4.

Table D.1: Settings of experiments for a single client (N = 1) on synthetic data (Figures 4.7a
and 4.7b).

Parameter K d eig(H)i w∗ σ2 ω γ−1 w0 #runs

Values 107 100 1/i4 (1)di=1 1 10 2(ω + 1)R2 0 5

Appendix D. Appendix to Distributed, compressed and averaged LSR 159

Table D.2: Settings of experiments for a single client (N = 1) on real data (Figures 4.7c and 4.7f).

Dataset d standardization b ω γ−1 w0 #runs reference

quantum 65
✓ 16 1 2(ω + 1)R2 0 5 [CTL04]

cifar-10 256 [Kri09]

D.1.2 An auxiliary inequality

In this Section, we provide an auxiliary lemma that is specific to the framework considered in
Section 4.2. It will be used in the proof of Theorem 4.1 and corresponds to an adaptation of Lemma
1 from Bach and Moulines [2013].

Lemma D.1 (Auxiliary inequality on
∑K

k=1 E[∥H1/2
F ηk∥2]/K). Under Assumptions 4.2.1 and 4.1,

for any K in N∗ and any step-size γ ∈ R+ s.t. γ(R2
F +2M2) ≤ 1, the sequence (wk)k∈N∗ produced

by a setting such as in Definition 4.1, verifies the following bound:

1

K

K−1∑
k=0

E[∥H1/2
F (wk − w∗)∥2] ≤

∥η0∥2
2γK(1− γ(R2

F + 2M2))
+

5Aγ
1− γ(R2

F + 2M2)
.

Proof Let k in N∗, we start writing that by Definition 4.1, we have wk = wk−1 − γ∇F (wk−1) +
γξk(ηk−1). Thus taking the squared norm and developing it, gives:

∥ηk∥2 = ∥ηk−1∥2 − 2γ ⟨ηk−1,∇F (wk−1)− ξk(ηk−1)⟩+ γ2 ∥∇F (wk−1)− ξk(ηk−1)∥2 . (D.1)

We need to bound the last term. By Definition 4.2, we have ξk(ηk−1) = ξmult
k (ηk−1) + ξaddk , hence

using Inequality 1, we have:

∥∇F (wk−1)− ξk(ηk−1)∥2 ≤ 2
∥∥∥∇F (wk−1)− ξmult

k (ηk−1)
∥∥∥2 + 2

∥∥∥ξaddk

∥∥∥2 ,

taking expectation w.r.t the σ-algebra Fk−1, developping
∥∥∇F (wk−1)− ξmult

k (ηk−1)
∥∥2 and because

E
[
ξmult
k (ηk−1)

∣∣ Fk−1

]
= 0 (the random fields (ξk)k∈N∗ are zero-centered, see Definition 4.1), we

have:

E
[
∥∇F (wk−1)− ξk(ηk−1)∥2

∣∣∣ Fk−1

]
≤ 2E

[
∥∇F (wk−1)∥2

∣∣∣ Fk−1

]
+ 2E

[∥∥∥ξmult
k (ηk−1)

∥∥∥2 ∣∣∣∣ Fk−1

]
+ 2E

[∥∥∥ξaddk

∥∥∥2 ∣∣∣∣ Fk−1

]
.

Now, we use Definition 4.1 and Assumptions 4.2.1 and 4.1: it leads to:

E
[
∥∇F (wk−1)− ξk(ηk−1)∥2

∣∣∣ Fk−1

]
≤ 2R2

F

∥∥∥H1/2
F ηk−1

∥∥∥2 + 4M2

∥∥∥H1/2
F ηk−1

∥∥∥2 + 8A+ 2A

≤ 2(R2
F + 2M2)

∥∥∥H1/2
F ηk−1

∥∥∥2 + 10A

Because the sequence of random field (ξk)k∈N∗ is zero-centered (Definition 4.1), we have:

E [⟨ηk−1,∇F (wk−1)− ξk(ηk−1)⟩ | Fk−1] = ⟨ηk−1, HF ηk−1⟩ =
∥∥∥H1/2

F ηk−1

∥∥∥2 ,

hence back to Equation (D.1), we obtain:

E
[
∥ηk∥2

∣∣∣ Fk−1

]
≤ ∥ηk−1∥2 − 2γ(1− γ(R2

F + 2M2))
∥∥∥H1/2

F ηk−1

∥∥∥2 + 10Aγ2 . (D.2)

Appendix D. Appendix to Distributed, compressed and averaged LSR 160

It follows that if γ(R2
F + 2M2) ≤ 1, summing the previous bound and taking full expectation gives:

1

K

K∑
k=1

E
∥∥∥H1/2

F ηk−1

∥∥∥2 ≤ ∥η0∥2 − E ∥ηK∥2
2γK(1− γ(R2

F + 2M2))
+

5Aγ
1− γ(R2

F + 2M2)
,

which allows concluding.

D.1.3 Asymptotic results: central limit theorem for (LSA)

The demonstration of Proposition 4.1 uses the following theorem from guaranteeing the asymptotic
normality of the Polyak-Ruppert iterate.

Below we present our CLT that gives the asymptotic normality of (
√
KηK−1)K∈N∗ in the case of

strongly-convex case and decreasing step size, it is based on Theorem A.1 [Polyak and Juditsky,
1992].

Proposition D.1 (CLT for (LSA) in the strongly convex-case and deacreasing step-size). Under
Assumptions 4.1 and 4.2, consider a sequence (wk)k∈N∗ produced in the setting of Definition 4.1
using a step-size (γk)k∈N∗ s.t. γk = k−α, α ∈ (0, 1). Then (ηK)K≥0 converges in L2-norm to 0,

i.e. ηK
L2

−−−−−→
K→+∞

0.

Furthermore, (
√
KηK−1)K≥0 is asymptotically normal with mean zero and covariance such that:

√
KηK−1

L−−−−−→
K→+∞

N (0, H−1
F CaniaH

−1
F).

Proof

First, we have that in the case of decreasing step size s.t. for any k in N, γk = k−α, we have:

ηK
L2

−−−−−→
K→+∞

0. This is a classical computation for SGD with bounded variance (Assumptions 4.2.1

and 4.1.). Detailed computations are for instance given in lectures notes of Bach [2022, pages 164-167
and 182], and Kushner and Yin [2003].

To apply Theorem 1 from Polyak and Juditsky [1992, recalled in Theorem A.1], which gives the
desired result, it suffices to prove the convergence in probability of the covariance of the noise
ξk(ηk−1) towards Cania, as k →∞.

In the following, we show that lim
k→+∞

E
[
ξk(ηk−1)ξk(ηk−1)

⊤ ∣∣ Fk−1

] P
= Cania. We start writing:

ξk(ηk−1)ξk(ηk−1)
⊤ = (ξaddk − ξmult

k (ηk−1))(ξ
add
k − ξmult

k (ηk−1))
⊤

= (ξaddk)⊗2 − ξaddk ξmult
k (ηk−1)

⊤ − ξmult
k (ηk−1) (ξ

add
k)⊤ + ξmult

k (ηk−1)
⊗2 .

(i) First, from Definition 4.2, it flows that E
[
ξaddk ⊗ ξaddk

∣∣ Fk−1

]
= Cania.

(ii) Second, we show that E[ξmult
k (ηk−1)

⊗2 | Fk−1] converges to 0 in probability: it is sufficient to show
that: E[∥ξmult

k (ηk−1)
⊗2 ∥F | Fk−1] −−−−→

k→+∞
0 . To do so, we use the fact that ∥ξmult

k (ηk−1)
⊗2 ∥F =

∥ξmult
k (ηk−1) ∥22, then with Assumption 4.2.2: E[∥ξmult

k (w − w∗)∥2 | Fk−1] ≤ M1∥H1/2ηk−1∥ +
M2∥H1/2ηk−1∥2. And we have the result as we showed that ηk−1

L2

−−−−→
k→+∞

0.

(iii) Third, it remains to show that E[ξmult
k (ηk−1) (ξ

add
k)⊤ | Fk−1]

L1

−−−−→
k→+∞

0. We use the Cauchy-

Appendix D. Appendix to Distributed, compressed and averaged LSR 161

Schwarz inequality’s A.8 for conditional expectation:

E
[
∥ξmult

k (ηk−1) (ξ
add
k)⊤∥F

∣∣∣ Fk−1

]2
= E

[
∥ξmult

k (ηk−1) ∥2∥(ξaddk)⊤∥2
∣∣∣ Fk−1

]2
≤ E

[
∥ξmult

k (ηk−1) ∥22
∣∣∣ Fk−1

]
E
[
∥ξaddk ∥2

∣∣∣ Fk−1

]
.

The sequence of random vectors (ξaddk)k∈N∗ is i.i.d., and moreover we have shown previously that
E[∥ξmult

k (ηk−1) ∥2 | Fk−1] tends to 0, hence E[ξmult
k (ηk−1) (ξ

add
k)⊤ | Fk−1] converges to 0 in probability.

Consequently, we can state that E[ξk(ηk−1)
⊗2 | Fk−1]

P−−−−→
k→+∞

Cania .

D.2 Generalization of Bach and Moulines (2013).

In this section, we give the demonstration of Theorem 4.1 which extends Theorem 1 from Bach and
Moulines [2013]; the demonstration is close to the original one.

D.2.1 Proof principle

For k in N∗, the proof relies (1) on decomposing E[∥H1/2
F ηK−1∥2] in two terms using the Minkowski

inequality A.6 to make appear a recursion (η0k)k∈N∗ without multiplicative noise, and another
(αk)k∈N∗ without additive noise, (2) on an expansion of η0k and η0k as polynomials in γ, and (3) on
using the Hölder-type Assumption 4.2.2 to bound αk. We define the sequence (η0k)k∈N∗ such that it
involves only an additive noise:

η0k = (Id − γHF)η
0
k−1 + γξaddk . (D.3)

Then, we decompose E[∥H1/2
F ηK−1∥2] in the following way using Minkowski inequality A.6:

E
[
∥H1/2

F ηK−1∥2
]
≤
(

E
[
∥H1/2

F η0K−1∥2
]1/2

+ E
[
∥H1/2

F (ηK−1 − η0K−1)∥2
]1/2)2

. (D.4)

The goal is then to establish a bound for the two above quantities.

1. Bounding E[∥H1/2
F η0K−1∥2].

The bound on E[∥H1/2
F η0K−1∥2] is given in Lemma D.2. For k in N∗, the proof relies on an

expansion of η0k and η0k as polynomials in γ. The recursion defining the sequence (η0k)k∈N∗ is
η0k = (Id − γHF)η

0
k−1 + γξaddk . If we denote Mk

i = (Id − γHF)
k−i and M i−1

i = Id, we have:

η0k = Mk
1 η

0
0 + γ

k∑
i=1

Mk
i+1ξ

add
k .

For K in N∗, it leads to η0K−1 = 1
K

∑K−1
k=0 Mk

1 η
0
0 +

γ
K

∑K−1
k=1

(∑K
i=k M

i
k+1

)
ξaddk , and with Minkowski

inequality A.6 to:

E
[
∥H1/2

F η0K−1∥2
]1/2
≤ E

∥∥∥∥∥H
1/2
F

K

K−1∑
k=0

Mk
1 η

0
0

∥∥∥∥∥
2
1/2

+ E

∥∥∥∥∥γH
1/2
F

K

K−1∑
k=1

K∑
i=k

M i
k+1ξ

add
k

∥∥∥∥∥
2
1/2

. (D.5)

Appendix D. Appendix to Distributed, compressed and averaged LSR 162

Equation (D.4)

Equation (D.5)

Equation (D.6)

(ξ
ad
d

k
) k
∈N

∗
un
ifo
rm
ly

eq
ua
l t
o
ze
ro

Equation (D.7)

Lemma D.2

η
0 =

0

Po
lyn

om
ial

ex
pe
ns
ion

in
γ

M
in
ko
ws
ki’
s i
ne
qu
ali
ty

Equation (D.8)

Lemma D.3

Theorem D.1

Assumption 4.2.2

and Lemma D.1

C
om

puting
exact

expression

of
α
K
−
1

E
[
∥H1/2

F ηK−1∥2
] Minkowski’s inequality

Figure D.1: Proof principle of Theorem D.1

The left term depends only on initial conditions η00 (= η0) and the right term depends only on the
additive noise. This is why, in the proof, we expend η0k−1 and η0k−1 separately for the noise process
(i.e., when assuming η0 = 0) and for the noise-free process that depends only on the initial conditions
(i.e. when assuming that the additive noise (ξaddk)k∈N∗ is uniformly equal to zero). In the end, the
two bounds computed separately may be added.

2. Bounding E[∥H1/2
F (ηK−1 − η0K−1)∥2].

The bound on E[∥H1/2
F (ηK−1 − η0K−1)∥2] is given in Lemma D.3. For k in N∗, the demonstration is

based on an exact expression of αk = ηk − η0k and αk computed by unrolling the recursion from αk

to α0. Because α0 = 0 and because there is no additive noise involved in αk, we obtain for K in N∗,
an expression of αK−1 that depends only on the multiplicative noise at iteration k in {1, · · · ,K}:

αK−1 =
γ

K

K−1∑
k=1

(Id − (Id − γHF)
K−k)(γHF)

−1ξmult
k (ηk−1) .

We then show (Equation (D.8)) that bounding E[∥H1/2
F (ηK−1−η0K−1)∥2] leads to bound the following

sum 1
K2

∑K−1
k=1 E[∥H−1/2

F ξmult
k (ηk−1)∥2 | Fk−1], and this bound is established using the Hölder-type

Assumption 4.2.2; which concludes this part of the proof.

D.2.2 Two bounds

In this subsection, we give two lemmas that provide a bound on E[∥H1/2
F η0K−1∥2] and E[∥H1/2

F (ηK−1−
η0K−1)∥2]. These bounds are required due to the decomposition of E[∥H1/2

F ηK−1∥2] done in Equa-
tion (D.4).

• The bound on E[∥H1/2
F η0k∥2] is given in Lemma D.2. It is established by decomposing the noise

process and the noise-free process. The bound on the noise process comes from Lemma 2 [Bach
and Moulines, 2013] and involves the additive noise’s covariance Cania.

• The bound on E[∥H1/2
F (ηK − η0K)∥2] is established in Lemma D.3.

Appendix D. Appendix to Distributed, compressed and averaged LSR 163

Note that in order to demonstrate Lemma D.3, we need to bound
∑K

k=1 ∥H
1/2
F ηk∥2/K. This is

done in Lemma D.1 which is an adaptation of Lemma 1 from Bach and Moulines [2013] to random
mechanisms. This auxiliary lemma holds for any kind of multiplicative noise – linear or non-linear.

Below lemma provides a bound on E[∥H1/2
F η0k∥2].

Lemma D.2 (Bound on E[∥H1/2
F η0k∥2]). Under the setting considered in Definition 4.1, under

Assumption 4.1, for any K in N∗ and any step-size γ ∈ R+ s.t. γR2
F ≤ 1, the sequence (η0k)k∈N∗

defined in Equation (D.3) verifies the following bound:

E
[
∥H1/2

F η0K−1∥2
]1/2
≤ 1√

K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√
Tr
(
CaniaH

−1
F

))
.

Proof

The proof relies on the proof presented by Bach and Moulines [2013] and is done separately for the
noise process and for the noise-free process that depends only on the initial condition. The bounds
may then be added (see the discussion in Subsection D.2.1).

Noise-free process.

As in section A.3 from Bach and Moulines [2013], we assume in this section that the random
fields (ξaddk)k∈N∗ is uniformly equal to zero and that γR2

F ≤ 1. We thus have for any k in N∗

that η0k = (Id − γHF)η
0
k−1.

First inequality. By recursion, we have η0k = (Id − γHF)
kη00, averaging over K in N∗ and computing

the resulting geometric sum, we have:

η0K−1 =
1

K

K−1∑
k=0

(Id − γHF)
kη00 =

1

K
(Id − (Id − γHF)

K−1)(γHF)
−1η00 ≼

1

γK
H−1

F η00.

And because η00 = η0, it gives E
[〈
η0K−1, HF η

0
K−1

〉]
≤ ∥H1/2

F η0∥2
γ2K2 .

Second inequality. From the expression of η0k flows:

E[∥η0k∥2] = E[∥η0k−1∥2]− 2γ
〈
η0k−1, HF η

0
k−1

〉
+ γ2

〈
η0k−1, H

2
F η

0
k−1

〉
.

Considering that HF ≼ Tr (HF) Id ≼ R2
F Id (Definition 4.1) and that γR2

F ≤ 1, because η00 = η0, by
convexity we have: E[∥H1/2

F η0K−1∥2] ≤ 1
K

∑K
k=1 E[∥H1/2

F η0k−1∥2] ≤
∥η0∥2
γK .

Putting things together.

In the end, we take the minimum of the two above bounds and obtain that:

E[∥H1/2
F η0K−1∥2] ≤

∥H−1/2
F η0∥2
γ2K2 ∧ ∥η0∥

2

γK
. (D.6)

Noise process.

We assume in this part that η00 = η0 = 0. We apply Lemma 2 from Bach and Moulines
[2013] to η0k−1. This sequence of iterates has an i.i.d. noise process (ξaddk)k∈N∗ which is such
that E

[
ξaddk ⊗ ξaddk

]
= Cania (existence guaranteed by Assumption 4.1). Therefore we have:

E[∥H1/2
F η0K−1∥2] ≤

Tr
(
CaniaH

−1
F

)
K

. (D.7)

Appendix D. Appendix to Distributed, compressed and averaged LSR 164

Putting things together. We now take results derived from the part without noise and the part
with noise, and we get from Minkowski inequality:

E
[
∥H1/2

F η0K−1∥2
]1/2
≤ 1√

K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√
Tr
(
CaniaH

−1
F

))
.

Below lemma provides a bound on E[∥H1/2
F (ηK − η0K)∥2].

Lemma D.3 (Bound on E[∥H1/2
F (ηK − η0K)∥2]). Under the setting considered in Definition 4.1

with µ > 0, under Assumption 4.1 , under Assumptions 4.2.1 and 4.2.2, for any K in N∗ and any
step-size γ ∈ R+ s.t. γ(R2

F + 2M2) < 1, the sequence (ηk − η0k)k∈N∗ verifies the following bound:

E
[
∥H1/2

F (ηK − η0K)∥2
]1/2

] ≤ 1√
K

(√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
.

Remark D.1. To demonstrate Lemma D.3, we use the Hölder-type Assumption 4.2.2. This is why
we obtain a term with a square root in the bound.

Proof

Let k in N∗, we denote αk = ηk − η0k, with ηk = (Id − γHF)ηk−1 + γξk(ηk−1) and η0k = (Id −
γHF)η

0
k−1 + γξaddk . First, we write the exact expression of αk−1:

αk = (Id − γHF)αk−1 + γ(ξk(ηk−1)− ξaddk)

= (Id − γHF)
kα0 + γ

k∑
i=1

(Id − γHF)
k−i(ξi(ηi−1)− ξaddi) ,

and because η00 = η0, it follows that α0 = η0 − η00 = 0. Averaging over K in N∗, we have the exact
expression of αK−1:

αK−1 =
γ

K

K−1∑
k=0

k∑
i=1

(Id − γHF)
k−i(ξi(ηi−1)− ξaddi))

=
γ

K

K−1∑
i=1

(
K−1∑
k=i

(Id − γHF)
k−i

)
(ξi(ηi−1)− ξaddi)) .

Computing the geometric sum results in:

αK−1 =
γ

K

K−1∑
k=1

(Id − (Id − γHF)
K−k)(γHF)

−1(ξk(ηk−1)− ξaddk) .

And because for any k in N, 0 ≼ (Id − γHF)
k ≼ Id, we obtain:

αK−1 ≼
1

K

K−1∑
k=1

H−1
F (ξk(ηk−1)− ξaddk) ,

Appendix D. Appendix to Distributed, compressed and averaged LSR 165

hence ∥H1/2
F αK−1∥2 = ∥ 1

K

∑K−1
k=1 H

−1/2
F (ξk(ηk−1) − ξaddk)∥2. We take full expectation, because

for any k in N∗, by Definitions 4.1 and 4.2, ξmult
k (ηk−1) = ξk(ηk−1) − ξaddk is Fk-measurable and

E
[
ξmult
k (ηk−1)

∣∣ Fk−1

]
= 0, we can unroll the sum and we have in the end that the variance of the

sum is the sum of variances:

E

[∥∥∥H1/2
F αK−1

∥∥∥2] ≤ 1

K2

K−1∑
k=1

E

[∥∥∥H−1/2
F ξmult

k (ηk−1)
∥∥∥2 ∣∣∣∣ Fk−1

]
. (D.8)

Computing E[∥H−1/2
F ξmult

k (ηk−1) ∥2 | Fk−1] for k in N, we first have:

∥H−1/2
F ξmult

k (ηk−1) ∥2 ≤ |||H−1/2
F |||

2
∥ξmult

k (ηk−1) ∥2 ,

where we used Inequality 2. Because HF is a symmetric semi-positive matrix, we have |||H−1/2
F |||

2
=

1/µ, hence: ∥H−1/2
F ξmult

k (ηk−1) ∥2 ≤ µ−1∥ξmult
k (ηk−1) ∥2. Taking expectation conditionally to the

σ-algebra Fk−1 and invoking Assumption 4.2.2 gives:

E[∥H−1/2
F ξmult

k (ηk−1) ∥2 | Fk−1] ≤ µ−1(M1∥H1/2
F ηk−1∥+ 3M2∥H1/2

F ηk−1∥2) . (D.9)

Combining equations D.8 and D.9, we obtain:

E[∥H1/2
F αK−1∥2] ≤

M1

µK2

K−1∑
k=1

E[∥H1/2
F ηk−1∥] +

3M2

µK2

K−1∑
k=1

E[∥H1/2
F ηk−1∥2] .

Now using Jensen’s inequality for concave function allows us to write:

1

K

K∑
k=1

E[∥H1/2
F (w − w∗)∥] ≤

1

K

K∑
k=1

√
E[∥H1/2

F (w − w∗)∥2] ≤

√√√√ 1

K

K∑
k=1

E[∥H1/2
F (w − w∗)∥2] ,

thus we have:

E[∥H1/2
F αK−1∥2] ≤

M1

µK

√√√√ 1

K

K−1∑
k=1

E[∥H1/2
F ηk−1∥2] +

3M2

µK2

K−1∑
k=1

E[∥H1/2
F ηk−1∥2] .

Using Lemma D.1 (with η0 = 0), we finally obtain:

E[∥H1/2
F αK−1∥2] ≤

1

K

(
M1µ

−1

√
5Aγ

1− γ(R2
F + 2M2)

+
15AγM2µ

−1

1− γ(R2
F + 2M2)

)
.

In the end, we take the square root (and use that for any a, b in R+,
√
a+ b ≤ √a +

√
b) which

allows concluding:

E
[
∥H1/2

F (ηK − η0K)∥2
]1/2
≤ 1√

K

(√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
.

Appendix D. Appendix to Distributed, compressed and averaged LSR 166

D.2.3 Final theorem

In this section, we gather the pieces of proof required to demonstrate Theorem 4.1.

Theorem D.1 (Non-linear multiplicative noise). Under Assumptions 4.1 and 4.2, considering any
constant step-size γ such that γ(R2

F + 2M2) ≤ 1/2, then for any K in N∗, the sequence (wk)k∈N∗

produced by a setting such as in Definition 4.1 verifies the following bound:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√
Tr
(
CaniaH

−1
F

)
+ (10Aγ)1/4

√
M1µ−1

+ (30Aγ)1/2
√
M2µ−1

)2

.

Proof

As explained in the discussion in Subsection D.2.1 (Equation (D.4)), we define the sequence
(η0k)k∈N∗ which involves only an additive noise η0k = (Id − γHF)η

0
k−1 + γξaddk . Then, we decompose

E[∥H1/2
F ηK−1∥] using Minkowski’s inequality A.6:

E
[
∥H1/2

F ηK−1∥2
]
≤
(

E
[
∥H1/2

F η0K−1∥2
]1/2

+ E
[
∥H1/2

F (ηK−1 − η0K−1)∥2
]1/2)2

. (D.10)

First term.

To bound the first term, we use Lemma D.2 which gives:

E
[
∥H1/2

F η0K−1∥2
]1/2
≤ 1√

K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√
Tr
(
CaniaH

−1
F

))
.

Second term.

From Lemma D.3, we have:

E
[
∥H1/2

F (ηK − η0K)∥2
]1/2
≤ 1√

K

(√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
.

Final bound. Hence, back to Equation (D.10), we get:

E
[
∥H1/2

F ηK−1∥2
]1/2
≤ 1√

K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√
Tr
(
CaniaH

−1
F

)
+
√
M1µ−1

(
5Aγ

1− γ(R2
F + 2M2)

)1/4

+
√
M2µ−1

(
15Aγ

1− γ(R2
F + 2M2)

)1/2
)
,

and considering γ(R2
F + 2M2) ≤ 1/2, it concludes the proof because E[F (wK−1) − F (w∗)] =

Appendix D. Appendix to Distributed, compressed and averaged LSR 167

E[∥H1/2
F ηK−1∥2]/2:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
∥H−1/2

F η0∥
γ
√
K

∧ ∥η0∥√
γ

+
√

Tr
(
CaniaH

−1
F

)
+ (10Aγ)1/4

√
M1µ−1

+ (30Aγ)1/2
√
M2µ−1

)2

.

D.3 Generalisation of Bach and Moulines (2013) for linear multi-
plicative noise.

In this Section, we give the demonstration of Theorem 4.2 which extends Theorem 1 from Bach and
Moulines [2013] to the case of linear multiplicative noise. The demonstration follows the same steps
as the one given by Bach and Moulines [2013]. The minor differences lie in the generality of the form
of the multiplicative noise in our approach. Bach and Moulines [2013] only analyse LMS algorithm,
while we here consider (LSA) with assumptions on the linear multiplicative noise process. Moreover,
our theorem decomposes into 3 terms instead of 2.

D.3.1 Proof principle

For k in N∗, the proof relies on an expansion of ηk and ηk as polynomials in γ. Because we consider
a linear multiplicative noise, there exists a matrix Ξk in Rd×d s.t. for any z in Rd, ξmult

k (z) = Ξkz
(Assumption 4.3); hence the recursion defined in Definition 4.1 can be rewritten as:

ηk = ηk−1 − γ∇F (ηk−1) + γξmult
k (ηk−1) + γξaddk = (Id − γHF + γΞk)ηk−1 + γξaddk .

We denote Mk
i = (Id − γHF + γΞk) · · · (Id − γHF + γΞi) and M i−1

i = Id, then we have that ηk =

Mk
1 η0 + γ

∑k
i=1M

k
i+1ξ

add
k .

For K in N∗, it leads to ηK−1 = 1
K

∑K−1
k=0 Mk

1 η0+
γ
K

∑K−1
k=1

(∑K
i=k M

i
k+1

)
ξaddk , and with Minkowski’s

inequality A.6 to:

√
E

[∥∥∥H1/2
F ηK−1

∥∥∥2] ≤ E

∥∥∥∥∥H
1/2
F

K

K−1∑
k=0

Mk
1 η0

∥∥∥∥∥
2
1/2

+ E

∥∥∥∥∥γH
1/2
F

K

K−1∑
k=1

K∑
i=k

M i
k+1ξ

add
k

∥∥∥∥∥
2
1/2

. (D.11)

The left term depends only on initial conditions and the right term depends only on the noise process.

This is why, in the proof, we expend ηk−1 and ηk−1 separately for the noise process (i.e., when
assuming η0 = 0) and for the noise-free process that depends only on the initial conditions (i.e. when
assuming that the additive noise (ξaddk)k∈N∗ is uniformly equal to zero). In the end, the two bounds
computed separately may be added.

To study the noise process, inspiring from Bach and Moulines [2013], we define the following sequence:{
η0k = (Id − γHF)η

0
k−1 + γξaddk

ηrk = (Id − γHF)η
r
k−1 + γξmult

k

(
ηr−1
k−1

)
with ∀r ≥ 0 , ηr0 = 0 .

(D.12)

Appendix D. Appendix to Distributed, compressed and averaged LSR 168

Lemma D.4 Lemma D.5
Assumption 4.3Recursive expression

of (αr
k)k∈N,r∈N

Lemma D.6
Assumptions 4.3, 4.4.1 and 4.4.2

Equation (D.11)

Equation (D.13)

(ξ
add

k
)k∈N∗ unif

orm
ly

equa
l to

zero

Equation (D.14)

Equation (D.15)

Equation (D.18)

Equation (D.21)

Theorem D.2

r →
+∞

Assumptions 4.3, 4.4.2 and Lemma D.6

Lemma 2 from BM2013

Equation (D.16)

Lemma 2 from
BM

2013

Minko
wsk

i’s in
equa

lity

Equation (D.19)

Equation (D.20)

Assumptions 4.3, 4.4.2

and Lemma D.6

Lemma D.5

η0 = 0 and

Minkowki’s inequality

E
[
∥H1/2

F ηK−1∥2
] Polynomial expension in γ

Minkowski’s inequality

r → +∞

Figure D.2: Proof principle of Theorem D.2.

Then, we decompose E[∥H1/2
F ηK−1∥2] in the following way using Minkowski’s inequality A.6:√

E
[
∥H1/2

F ηK−1∥2
]
≤ E[∥H1/2

F

r∑
i=0

ηiK−1∥2]1/2 + E[∥H1/2
F (ηK−1 −

r∑
i=0

ηiK−1)∥2]1/2.

The goal is then to establish a bound for the two above quantities.

D.3.2 Lemmas for the noise process

In this Subsection, we provide lemmas for the noise process, and thus we suppose that η0 = 0. The
noise-free process is later considered in Subsection D.3.3 and puts together with the results of the
coming Subsection. The sketch of the proof relies on establishing two bounds.

• For r, k in N× N∗, noting αr
k = ηk −

∑r
i=0 η

i
k, the first one is a bound on E[∥H1/2

F αr
K−1∥2] that

tends to zero when r tends to +∞.
• The second one is on

∑r
i=0 E[∥H1/2

F ηiK−1∥2] and is established using Lemma 2 from [Bach and
Moulines, 2013]. It will correspond to the final variance term and it involves the additive noise’s
covariance Cania.

In the following, we provide Lemmas D.4 to D.6. Let r, k in N× N∗.

• Lemma D.4 builds a recursive expression of αr
k = ηk −

∑r
i=0 η

i
k.

• Lemma D.5 provides a bound on E[∥H1/2
F αr

K−1∥2] which involves E∥ξmult
k

(
ηrk−1

)
∥2.

Appendix D. Appendix to Distributed, compressed and averaged LSR 169

• Lemma D.6 bounds the covariance of ηrk−1, this result will be necessary when computing the
expectation of ξmult

k

(
ηrk−1

)⊗2.

Below, we provide the lemma that builds a recursive expression of ηk −
∑r

i=0 η
i
k, with k, r in N∗.

Lemma D.4 (A recursion on ηk −
∑r

i=0 η
i
k). Under the setting given in Definition 4.1, considering

that ξmult
k (·) is linear (Assumption 4.3), for any k in N∗ and any step-size γ > 0, considering (ηrk)r∈N

as given by Equation (D.12), denoting for r in N, αr
k = ηk−

∑r
i=0 η

i
k, we have the following recursive

expression for the sequence of iterate (αr
k)r∈N:

∀r ≥ 0, αr
k = (Id − γHF)α

r
k−1 + ξmult

k

(
αr
k−1

)
+ γξmult

k

(
ηrk−1

)
.

Proof Let k in N∗, the proof is done by recursion. For r = 0, by Definitions 4.1 and 4.2, we have
ηk = ηk−1 − γ∇F (wk−1) + γξk(ηk−1) = (Id − γHF)ηk−1 + γξaddk + γξmult

k (ηk−1), which gives:

α0
k = ηk − η0k =

{
(Id − γHF)ηk−1 + γξaddk + γξmult

k (ηk−1)

}
−
{
(Id − γHF)η

0
k−1 + γξaddk

}
= (Id − γHF)(ηk−1 − η0k−1) + γξmult

k (ηk−1)

= (Id − γHF)(ηk−1 − η0k−1) + γξmult
k

(
ηk−1 − η0k−1

)
+ γξmult

k

(
η0k−1

)
,

which is possible because ξmult
k is linear (Assumption 4.3). To go from r to r + 1, we have

αr+1
k = ηk −

∑r+1
i=0 η

i
k = ηk −

∑r
i=0 η

i
k − ηr+1

k . Then by definition of ηr+1
k and using the hypothesis:

αr+1
k = (Id − γHF)

(
ηk−1 −

r∑
i=0

ηik−1

)
+ ξmult

k

(
ηk−1 −

r∑
i=0

ηik−1

)
+ γξmult

k

(
ηrk−1

)
− (Id − γHF)η

r+1
k−1 − γξmult

k

(
ηrk−1

)
= (Id − γHF)

(
ηk−1 −

r+1∑
i=0

ηik−1

)
+ ξmult

k

(
ηk−1 −

r+1∑
i=0

ηik−1

)
+ γξmult

k

(
ηr+1
k−1

)
,

again by linearity. This concludes the proof.

The next lemma is the adaptation to our settings of Lemma 1 from Bach and Moulines [2013]. We
give a bound on E[∥H1/2

F αr
K−1∥2] with a quantity that tends to 0. This result will be used in the

final demonstration of Theorem D.2.

Lemma D.5 (Bound on ηK −
∑r

i=0 η
i
K). Under the setting given in Definition 4.1, considering that

ξmult
k is linear (Assumption 4.3), for any r,K in N× N∗ and any step-size γ s.t. γ(R2

F +M2) ≤ 1,
the recursion αr

K = ηK −
∑r

i=0 η
i
K verifies the following bound:

∀r ≥ 0, (1− γ(R2
F +M2))E

〈
αr
K−1, HFα

r
K−1

〉
≤ γ

K

K∑
k=1

E∥ξmult
k

(
ηrk−1

)
∥2 .

Proof Let r, k in N× N∗, we denote αr
k = ηk −

∑r
i=0 η

i
k, then we have shown in Lemma D.4 that:

αr
k = (Id − γHF)α

r
k−1 + ξmult

k

(
αr
k−1

)
+ γξmult

k

(
ηrk−1

)
.

Taking the squared norm and developing it:

∥αr
k∥2 =

∥∥αr
k−1

∥∥2 + 2γ
〈
αr
k−1, ξ

mult
k

(
αr
k−1

)
+ ξmult

k

(
ηrk−1

)
−HFα

r
k−1

〉
+ γ2∥ξmult

k

(
αr
k−1

)
+ ξmult

k

(
ηrk−1

)
−HFα

r
k−1∥2 ,

Appendix D. Appendix to Distributed, compressed and averaged LSR 170

and developing the last term with Inequality 1 leads to:

∥αr
k∥2 ≤

∥∥αr
k−1

∥∥2 + 2γ
〈
αr
k−1, ξ

mult
k

(
αr
k−1

)
+ ξmult

k

(
ηrk−1

)
−HFα

r
k−1

〉
+ 2γ2

{
∥ξmult

k

(
ηrk−1

)
∥2 + ∥HFα

r
k−1 − ξmult

k

(
αr
k−1

)
∥2
}
.

Because αr
k−1 is Fk−1-measurable and E[ξmult

k

(
αr
k−1

)
| Fk−1] = 0 (expectation of ξmult

k (·) is zero,
see Definitions 4.1 and 4.2), taking expectation w.r.t. the σ-algebra Fk−1, using Assumption 4.3
and again Definition 4.1 gives:

E[∥HFα
r
k−1 − ξmult

k

(
αr
k−1

)
∥2 | Fk−1] = E[∥HFα

r
k−1∥2 | Fk−1]

+ E[∥ξmult
k

(
αr
k−1

)
∥2 | Fk−1]

≤ (R2
F +M2)∥H1/2

F αr
k−1∥2 .

Hence:

E[∥αr
k∥2 | Fk−1] ≤ ∥αr

k−1∥2 − 2γ(1− γ(R2
F +M2))

〈
αr
k−1, HFα

r
k−1

〉
+ 2γ2E[∥ξmult

k

(
ηrk−1

)
∥2 | Fk−1] ,

which gives when taking full expectation and averaging over K in N∗:

(1− γ(R2
F +M2))

1

K

K∑
k=1

E
〈
αr
k−1, HFα

r
k−1

〉
≤ 1

2γ
(∥αr

0∥2 −
∥∥αr

k−1

∥∥2)
+

γ

K

K∑
k=1

E[∥ξmult
k

(
ηrk−1

)
∥2] ,

and by convexity
〈
αr
K−1, Hαr

K−1

〉
⩽ 1

K

∑K
k=1

〈
αr
k−1, HFα

r
k−1

〉
, which allows to conclude as αr

0 = 0.

In below lemma, we bound E
[
ηrk−1 ⊗ ηrk−1

]
for r, k in N × N∗. It is required because we will use

Lemma 2 from Bach and Moulines [2013] and apply it to the sequence (ηrk−1)k∈N∗,r∈N. The noise
process of this sequence is equal to ξmult

k

(
ηr−1
k−1

)
; and computing the expectation of its covariance

involves knowing E
[
ηrk−1 ⊗ ηrk−1

]
.

Lemma D.6 (Bounding the covariance of ηrk−1). Under the setting in Definition 4.1, under As-
sumptions 4.1, 4.3 and 4.4, i.e. considering that ξmult

k (·) is linear, for any K in N∗, any step-size
γ > 0, and for any r ≥ 0, we have the following bound on the covariance of ηrk−1:

E
[
ηrk−1 ⊗ ηrk−1

]
≼ γr+1XaddXr

multId .

Proof

Let r > 0, we first prove by recursion that we have:

∀k > 0 , ηr+1
k = γ

k∑
i=1

(Id − γHF)
k−iξmult

i (ηri−1) .

For k = 0, we indeed have ηr+1
0 = 0. To go from k to k + 1:

ηr+1
k+1 = (Id − γHF)η

r+1
k + γξmult

k+1 (η
r
k) by definition,

= γ

k∑
i=1

(Id − γHF)
k−iξmult

i (ηri−1) + γ(Id − γHF)
(k+1)−(k+1)ξmult

k+1 (η
r
k) ,

Appendix D. Appendix to Distributed, compressed and averaged LSR 171

by hypothesis, which allows concluding.

We now prove by recursion the main result of the lemma.

Initialization. For r = 0, by definition, we have η0k = (Id − γHF)η
0
k−1 + γξaddk , unrolling the sum

gives η0k = (Id − γHF)
kη00 + γ

∑k
i=1(Id − γHF)

k−iξaddi . Because we consider η00 = 0 and given that
the sequence of noise (ξaddi)i∈J1,kK is independent at each iterations, we have:

E
[
η0k ⊗ η0k

]
= γ2

k∑
i=1

(Id − γHF)
k−iE

[
ξaddi ⊗ ξaddi

]
(Id − γHF)

k−i .

Because the sequence of additive noise (ξaddi)i∈N∗ is i.i.d., for any i in {1, · · · , k}, we have that
E
[
ξaddi ⊗ ξaddi

]
= Cania ≼ XaddHF (Assumption 4.4.1), hence:

E
[
η0k ⊗ η0k

]
≼ γ2

k∑
i=1

(Id − γHF)
k−iXaddHF (Id − γHF)

k−i .

These matrices commute:

E
[
η0k ⊗ η0k

]
≼ γ2Xadd

k∑
i=1

(Id − γHF)
2k−2iHF , and because it is a geometric sum:

≼ γ2Xadd

(
Id − (Id − γHF)

2k−2
) (

Id − (Id − γHF)
2
)−1

HF

≼ γ2Xadd

(
Id − (Id − γHF)

2k−2
) (

2γHF − γ2H2
F

)−1
HF

≼ γXaddH
−1
F HF because γHF ≼ Id,

≼ γXaddId .

Recursion. Let r ≥ 0, to go from r to r + 1, we start writing:

ηr+1
k ⊗ ηr+1

k = γ2
k∑

i=1

(Id − γHF)
k−1−iξmult

i (ηri−1)⊗ ξmult
i (ηri−1)(Id − γHF)

k−1−i .

Now we use linearity of the multiplicative noise (Assumption 4.3), thus there exists a matrix Ξk in
Rd×d s.t. for any z in Rd, we have ξmult

k (z) = Ξkz, and it leads to:

ηr+1
k ⊗ ηr+1

k = γ2
k∑

i=1

(Id − γHF)
k−iΞi(η

r
i−1 ⊗ ηri−1)Ξ

⊤
i (Id − γHF)

k−i .

Taking full expectation, we have:

E
[
ηr+1
k ⊗ ηr+1

k

]
= γ2

k∑
i=1

(Id − γHF)
k−iE

[
E
[
Ξi(η

r
i−1 ⊗ ηri−1)Ξ

⊤
i

∣∣∣ σ(Ξi)
]]

(Id − γHF)
k−i

= γ2
k∑

i=1

(Id − γHF)
k−iE

[
ΞiE[η

r
i−1 ⊗ ηri−1 | σ(Ξi)]Ξ

⊤
i

]
(Id − γHF)

k−i ,

and because for any i in {1, · · · , k}, ηri−1 is independent of Ξi, we have E
[
ηri−1 ⊗ ηri−1

∣∣ σ(Ξi)
]
=

E
[
ηri−1 ⊗ ηri−1

]
≼ γr+1XaddXr

multId, where we use the hypothesis for r. We have in the end:

E
[
ηr+1
k ⊗ ηr+1

k

]
≼ γr+3XaddXr

mult

k∑
i=1

(Id − γHF)
k−iE

[
ΞiΞ

⊤
i

]
(Id − γHF)

k−i .

Appendix D. Appendix to Distributed, compressed and averaged LSR 172

Furthermore, by Assumption 4.4.2 we have E
[
ΞiΞ

⊤
i

]
≼ XmultHF , thus:

E
[
ηr+1
k ⊗ ηr+1

k

]
≼ γr+3XaddXr+1

mult

k∑
i=1

(Id − γHF)
2k−2−2iHF

≼ γr+3XaddXr+1
multγ

−1H−1
F HF ,

because
∑k

i=1(Id − γHF)
2k−2−2i =

(
Id − (Id − γHF)

2k
) (

2γHF − γ2H2
F

)−1
≼ γ−1H−1

F . In the end,
we have E[ηr+1

k ⊗ ηr+1
k] ≼ γr+2XaddXr+1

multId, which concludes the proof.

D.3.3 Final theorem

In this section, we gather the pieces of proof required to demonstrate Theorem 4.2. As done in
Section D.2, we consider separately the noise process and the noise-free process, then put them
together to obtain the final result.

Theorem D.2 (Linear multiplicative noise, convex case). Under Assumption 4.1, under Assump-
tions 4.3 and 4.4 i.e. with a linear multiplicative noise, considering any constant step-size γ such
that γ(R2

F +M2) ≤ 1 and 4γXmultR
2
F ≤ 1, then for any K in N∗, the sequence (wk)k∈N∗ produced

by a setting such as in Definition 4.1, verifies the following bound:

E[F (wK−1)− F (w∗)] ≤
1

2K

(
∥η0∥√

γ
+
√
Tr
(
CaniaH

−1
F

)
+

(γdXaddXmult)
1/2

1−
√
γXmult

)2

.

Proof Let K in N∗, the proof relies on the proof presented by Bach and Moulines [2013] and is
done separately for the noise process and for the noise-free process that depends only on the initial
condition. The bounds may then be added (see the discussion in Subsection D.3.1).

Noise-free process. As in section A.3 from Bach and Moulines [2013], we assume here that the
additive noise (ξaddk)k∈N∗ is uniformly equal to zero and that γ(R2

F +M2) ≤ 1. Using Definitions 4.1
and 4.2, we thus have for any k in N∗ that ηk = ηk−1 − γHF ηk−1 + γξmult

k (ηk−1), it flows:

E[∥ηk∥2] = E[∥ηk−1∥2]− 2γE[⟨ηk−1, HF ηk−1⟩] + γ2E[∥HF ηk−1 − ξmult
k (ηk−1)∥2]

= E[∥ηk−1∥2]− 2γE[⟨ηk−1, HF ηk−1⟩] + γ2E[∥HF ηk−1∥2] + γ2E[∥ξmult
k (ηk−1)∥2] .

Considering that HF ≼ Tr (HF) Id ≼ R2
F Id and using Assumption 4.3, we obtain:

E[∥ηk∥2] ≤ E[∥ηk−1∥2]− 2γE[∥H1/2
F ηk−1∥2] + γ2(R2

F +M2)E[∥H1/2
F ηk−1∥2] .

Because the step-size γ is s.t. γ(R2
F +M2) ≤ 1, we recover that in the absence of noise, we have:

E[∥H1/2
F ηK−1∥2] ≤

∥η0∥2
γK

. (D.13)

Noise process. Now, all the following results comes from Subsection D.3.2 where we assume that
η0 = w0 − w∗ = 0, we start using Minkowski’s inequality A.6:

E
[
∥H1/2

F ηK−1∥2
]1/2
≤ E

[
∥H1/2

F

r∑
i=0

ηiK−1∥2
]1/2

+ E

[
∥H1/2

F (ηK−1 −
r∑

i=0

ηiK−1)∥2
]1/2

. (D.14)

First term.

Appendix D. Appendix to Distributed, compressed and averaged LSR 173

Let r ∈ N, again using Minkowski’s inequality A.6, we have

E[∥H1/2
F

r∑
i=0

ηiK−1∥2]1/2 ≤
r∑

i=0

E[∥H1/2
F ηiK−1∥2]1/2

= E[∥H1/2
F η0K−1∥2]1/2 +

r∑
i=1

E[∥H1/2
F ηiK−1∥2]1/2 . (D.15)

By Equation (D.12), we have η0k = (Id − γHF)η
0
k−1 + γξaddk , hence to bound the first term, we have

to apply Lemma 2 from Bach and Moulines [2013] to the sequence (η0k−1)k∈N∗ and we obtain

E[∥H1/2
F η0K−1∥2] ≤ Tr

(
CaniaH

−1
F

)
/K . (D.16)

Let i in {1, · · · , r}, to bound the second term, we have to apply Lemma 2 from Bach and Moulines
[2013] to the sequence (ηik−1)k∈N∗ . To do so, we bound the covariance of the noise which is here
equal to ξmult

k

(
ηi−1
k−1

)
(by definition of ηik−1, see Equation (D.12)).

Because the multiplicative noise is linear, using Assumption 4.3, there exists a matrix Ξk in Rd×d

s.t. ξmult
k

(
ηi−1
k−1

)
= Ξkη

i−1
k−1. It follows that taking the expectation w.r.t to the σ-algebra σ(Ξk), and

because ηi−1
k−1 is independent of it, using Lemma D.6, we have:

E
[
ηi−1
k−1 ⊗ ηi−1

k−1

∣∣ σ(Ξk)
]
= E

[
ηi−1
k−1 ⊗ ηi−1

k−1

]
≼ γiXaddXi−1

multId .

Thus, the noise ξmult
k

(
ηi−1
k−1

)
is such that:

E[ξmult
k

(
ηi−1
k−1

)
⊗ ξmult

k

(
ηi−1
k−1

)
| σ(Ξk)] = ΞkE

[
ηi−1
k−1 ⊗ ηi−1

k−1

]
Ξ⊤
k ≼ γiXaddXi−1

multΞkΞ
⊤
k .

Taking full expectation, we furthermore consider Assumption 4.4.2 which gives that: E
[
ΞiΞ

⊤
i

]
≼

XmultHF , hence:

E
[
ξmult
k

(
ηi−1
k−1

)
⊗ ξmult

k

(
ηi−1
k−1

)]
≤ γiXaddXi

multHF . (D.17)

Using Lemma 2 from Bach and Moulines [2013] results to:

r∑
i=1

E[∥H1/2
F ηiK−1∥2]1/2 ≤

r∑
i=1

γiXaddXi
multTr

(
HFH

−1
F

)
/K . (D.18)

In the end, we obtain from Equation (D.15):

E[∥H1/2
F

r∑
i=0

ηiK−1∥2]1/2 ≤

√
Tr
(
CaniaH

−1
F

)
√
K

+

√
dXadd√
K

r∑
i=1

γi/2Xi/2
mult

≤

√
Tr
(
CaniaH

−1
F

)
√
K

+

√
γdXaddXmult

(
1− (γXmult)

r/2
)

√
K
(
1−√γXmult

) .

Second term.

If γ(R2
F +M2) ≤ 1, Lemma D.5 gives:

E

〈
ηK−1 −

r∑
i=0

ηiK−1, H(ηK−1 −
r∑

i=0

ηiK−1)

〉
≤ γ

(1− γ(R2
F +M2))K

K∑
k=1

E
[
∥ξmult

k

(
ηrk−1

)
∥2
]
.

(D.19)

Appendix D. Appendix to Distributed, compressed and averaged LSR 174

Furthermore,
∥∥ξmult

k

(
ηrk−1

)∥∥2 = Tr
(
ξmult
k

(
ηrk−1

)⊗2
)
, by reusing what has been written in the

previous paragraph (Equation (D.17)), we obtain:

∥ξmult
k

(
ηrk−1

)
∥2 ≤ γr+1XaddXr+1

multTr (HF)

≤ γr+1XaddXr+1
multR

2
F (Definition 4.1).

It follows that we have:

E

〈
ηK−1 −

r∑
i=0

ηiK−1, H(ηK−1 −
r∑

i=0

ηiK−1)

〉
≤ γr+2XaddXr+1

multR
2
F

(1− γ(R2
F +M2))

. (D.20)

Putting things together. In the end, from the Minkowski decomposition done in Equation (D.14), we
combine the two terms and it leads to:

E
[〈
ηK−1, HF ηK−1

〉]1/2 ≤ (γr+2XaddXr+1
multR

2
F

(1− γ(R2
F +M2))

)1/2

+

√
Tr
(
CaniaH

−1
F

)
√
K

+

√
γdXaddXmult

(
1− (γXmult)

r/2
)

√
K
(
1−√γXmult

) .

This implies that for any γXmult ≤ 1, we obtain, by letting r tend to +∞:

E
[〈
ηK−1, HF ηK−1

〉]1/2 ≤ 1√
K

(√
Tr
(
CaniaH

−1
F

)
+

(γdXaddXmult)
1/2

1−
√
γXmult

)
. (D.21)

Final bound. We now take results derived from the part without noise, and the part with noise, to
get:

E[
〈
ηK−1, HF ηK−1

〉
]1/2 ≤ 1√

K

(
∥η0∥√

γ
+
√
Tr
(
CaniaH

−1
F

)
+

(γdXaddXmult)
1/2

1−
√
γXmult

)
,

which leads to the desired result considering that 4γXmult ≤ 1.

D.4 Validity of the assumptions made on the random fields

In this section, we verify that all the assumptions on the random fields done in Subsection 4.2.1 are
fulfilled in the setting of compressed least-squares regression analyzed in Section 4.3. To do so, we
first need to define the filtrations considered in this section.

For k in N∗, we note uk the noise that controls the randomization Ck(·) at round k. In Section 4.2,
we have denoted by Fk the σ-algebra generated by (x1, ε1, u1, · · · , xk, εk). In particular, wk and wk

are Fk-measurable. We also consider the following filtrations.

Definition D.1. We note (Gk)k∈N the filtration associated with the features noise, (Hk)k∈N the
filtration associated with the output noise, and (Ik)k∈N the filtration associated with the stochastic
gradient noise, which is the union of the two previous filtrations. Thus, we define F0 = {∅} and for
k ∈ N∗:

Gk = σ (Fk−1 ∪ {xk})
Hk = σ (Fk−1 ∪ {εk})
Ik = σ (Fk−1 ∪ {xk, εk})
Fk = σ (Fk−1 ∪ {xk, εk, uk}) .

Appendix D. Appendix to Distributed, compressed and averaged LSR 175

Note that there are two filtrations G and H for the two independent noises that are both involved
to compute the stochastic gradient. This will help us to compute the scalar product of these two
quantities.

We start by providing a bound on the distance between two compressions, this lemma will be used
to prove Property D.3.

Lemma D.7. For any compressor C in C verifying Lemma 4.1, for all x, y in Rd, we have:

E[∥C(x)− C(y)∥2] ≤ 2(ω + 1) ∥x∥2 + 2(ω + 1) ∥y∥2 .

Proof Let a compressor C in C and x, y in Rd, using Inequality 1, we have that:

∥C(x)− C(y)∥2 ≤ 2 ∥C(x)∥2 + 2 ∥C(y)∥2 .

Taking full expectation and using Lemma 4.1 allows to conclude:

E
[
∥C(x)− C(y)∥2

]
≤ 2(ω + 1) ∥x∥2 + 2(ω + 1) ∥y∥2 .

Now we prove that all the assumptions done in Section 4.2 are correct.

Property D.1 (Validity of the setting presented in Definition 4.1). Consider Algorithm 2 in the
context of Model 2, we have that the setting presented in Definition 4.1 is verified.

Proof From Algorithm 2, we have for any k in N∗ and any w in Rd ξk(w−w∗) = ∇F (w)−Ck(gk(w)).
Because (gk)k∈N∗ and (Ck)k∈N∗ are by definition two sequences of i.i.d. random fields (Algorithm 2),
it follows that their composition is also i.i.d., hence (ξk)k∈N∗ is a sequence of i.i.d. random fields.

Taking expectation w.r.t. the σ-algebra Ik, we have E [Ck(gk(w)) | Ik] = gk(w) (Lemma 4.1), next
with the σ-algebra Fk−1, we have E [gk(w) | Fk−1] = ∇F (w) (Equation 4.2). Hence, the random
fields are zero-centered.

From Model 2, we have for any k in N∗ and any w in Rd that:

F (w) =
1

2
E
[
(⟨xk, w⟩ − yk)

2
]
=

1

2
E
[
(w − w∗)⊤(xk ⊗ xk)(w − w∗)− 2εk ⟨xk, w − w∗⟩+ ε2k

]
=

1

2
((w − w∗)⊤H(w − w∗) + σ2) ,

hence F is quadratic with Hessian equal to H whose trace is equal to R2.

Property D.2 (Validity of Assumption 4.1). Considering Algorithm 2 under the setting of Model 2
with Lemma 4.1, for any iteration k in N∗, the second moment of the additive noise ξaddk can be
bounded by (ω + 1)R2σ2, i.e., Assumption 4.1 is verified.

Proof Let k in N∗. Because we consider Algorithm 2, with Definitions 4.1 and 4.2, we first
have ξaddk = −Ck(gk,∗), then with Lemma 4.1 we obtain E[∥Ck(gk,∗)∥2 | Ik] ≤ (ω + 1) ∥gk,∗∥2. Next,
we first have from Model 2 and Equation (4.2) that gk,∗ = εkxk, secondly because

(
(εk)k∈{1,...,K}

)
is

independent from
(
(xk)k∈{1,...,K}

)
(Model 2), we have that E[∥εkxk∥2] ≤ σ2R2, hence it results to:

E[∥ξaddk ∥2 | Fk−1] = E[∥ξaddk ∥2] ≤ (ω + 1)σ2R2 .

Appendix D. Appendix to Distributed, compressed and averaged LSR 176

Property D.3 (Validity of Assumption 4.2.1). Considering Algorithm 2, under the setting of
Model 2 with Lemma 4.1, for any iteration k in N∗, the second moment of the multiplicative noise
ξmult
k (w) can be bounded for any w in Rd by 2(ω + 1)R2

∥∥H1/2(w − w∗)
∥∥2 + 4(ω + 1)σ2R2, i.e.,

Assumption 4.2.1 is verified.

Proof Let k in N∗, we note η = w−w∗. First, because we consider Algorithm 2, with Definitions 4.1
and 4.2, we have ξk(η) = ∇F (w)− Ck(gk(w)) and ξaddk = −Ck(gk,∗), hence:

ξmult
k (η) = ξk(η)− ξaddk = ∇F (w)− Ck(gk(w)) + Ck(gk,∗) ,

thus developing the squared-norm of ξmult
k (η) gives:

∥ξmult
k (η)∥2 = ∥∇F (w)∥2 + 2 ⟨∇F (w), Ck(gk,∗)− Ck(gk(w))⟩+ ∥Ck(gk,∗)− Ck(gk(w))∥2 .

On the first side we have E [E [Ck(gk,∗)− Ck(gk(w)) | Ik] | Fk−1] = −∇F (wk−1). On the second side,
we use Lemma D.7; this allows us to write:

E
[
∥Ck(gk,∗)− Ck(gk(w))∥2

∣∣∣ Ik] ≤ 2(ω + 1) ∥gk(w)∥2 + 2(ω + 1) ∥gk,∗∥2 .

Note that this bound is far from being optimal when gk(w) = gk,∗ or if C is the identity. Next, we
decompose as follows:

E
[
∥Ck(gk,∗)− Ck(gk(w))∥2

∣∣∣ Ik] ≤ 2(ω + 1) ∥gk(w)− gk,∗∥2

+ 4(ω + 1) ⟨gk(w)− gk,∗, gk,∗⟩+ 4(ω + 1) ∥gk,∗∥2 .

Taking expectation w.r.t. the σ-algebra Gk, recalling that gk(w) − gk,∗ is Gk-measurable (Defini-
tion D.1) and considering Model 2 allows to write:

E
[
∥Ck(gk,∗)− Ck(gk(w)∥2

∣∣∣ Gk] ≤ 2(ω + 1) ∥gk,∗ − gk(w)∥2 + 4(ω + 1)σ2R2

≤ 2(ω + 1) ∥(xk ⊗ xk)ηk−1∥2 + 4(ω + 1)σ2R2 ,

and now taking expectation w.r.t the σ-algebra Fk−1 leads to conclude the proof:

E[∥Ck(gk,∗)− Ck(gk(w))∥2 | Fk−1] ≤ 2(ω + 1)R2∥H1/2(wk − w∗)∥2 + 4(ω + 1)σ2R2 .

Property D.4 (Validity of Assumption 4.2.2). Considering Algorithm 2, under the setting of
Model 2 with Lemma 4.1, for any iteration k in N∗, the second moment of the multiplicative noise
ξmult
k (w) can be bounded for any w in Rd by ΩR2σ∥H1/2(w − w∗)∥+ 3(ω + 1)R2∥H1/2(w − w∗)∥2,

i.e. Assumption 4.2.2 is verified.

Proof Let k in N∗, we note η = w − w∗. Because we consider Algorithm 2, with Definitions 4.1
and 4.2, we have the following decomposition:

ξmult
k (η) = ∥∇F (w)∥2 + 2 ⟨∇F (w), Ck(gk,∗)− Ck(gk(w))⟩+ ∥Ck(gk,∗)− Ck(gk(w))∥2 .

We take expectation w.r.t. the σ-algebra Ik and use Item L.2 of Lemma 4.1:

E
[
ξmult
k (η)

∣∣∣ Ik] ≤ ∥∇F (w)∥2 + 2 ⟨∇F (w), gk,∗ − gk(w)⟩
+Ωmin(∥gk,∗∥, ∥gk(w)∥)∥gk,∗ − gk(w)∥+ 3(ω + 1)∥gk,∗ − gk(w)∥2 .

Appendix D. Appendix to Distributed, compressed and averaged LSR 177

Then, we have min(∥gk,∗∥, ∥gk(w)∥)∥gk,∗ − gk(w)∥ ≤ ∥gk,∗∥∥gk,∗ − gk(w)∥, taking expectation
conditionally to the σ-algebra Fk−1, applying the Cauchy-Schwarz’s Equation (A.8) and considering
Model 2, we have:

E[∥gk,∗∥∥gk,∗ − gk(w)∥ | Fk−1]
2 ≤ E[∥gk,∗∥2 | Fk−1]E[∥gk,∗ − gk(w)∥2 | Fk−1]

≤ σ2R4∥H1/2(w − w∗)∥2 .

Therefore,

E
[
ξmult
k (η)

∣∣∣ Fk−1

]
≤ −∥∇F (w)∥2 + σR2Ω∥H1/2(w − w∗)∥+ 3(ω + 1)R2∥H1/2(w − w∗)∥2 ,

which allows concluding.

Property D.5 (Validity of Assumption 4.3). Considering Algorithm 2, under the setting of Model 2
with Lemma 4.1, if the compressor C is linear, then for any iteration k in N∗, the multiplicative noise
ξmult
k is linear, thus there exist a matrix Ξk in Rd×d such that for any w in Rd, ξmult

k (w) = Ξkw.
Furthermore, the second moment of the multiplicative noise can be bounded for any w in Rd by
(ω + 1)R2

∥∥H1/2(w − w∗)
∥∥2, hence Assumption 4.3 is verified.

Proof Let k in N∗, we note η = w−w∗. First, because we consider Algorithm 2, with Definitions 4.1
and 4.2, we have ξk(η) = ∇F (w)− Ck(gk(w)) and ξaddk = −Ck(gk,∗), hence:

ξmult
k (η) = ξk(η)− ξaddk = ∇F (w)− Ck(gk(w)) + Ck(gk,∗) .

Because the random mechanism Ck is linear, there exists a random matrix Πk in Rd×d such that for
any z in Rd, we have Ck(z) = Πkz, it follows that:

ξmult
k (η) = ∇F (w) + Ck(gk,∗ − gk(w)) = (H −Πk(xk ⊗ xk))η .

Hence, the first part of Assumption 4.3 is verified with Ξk = H −Πk(xk ⊗ xk). Now, we compute
the second moment of the multiplicative noise. We start by developing its squared norm:

∥ξmult
k (η) ∥2 = ∥∇F (w)∥2 + 2 ⟨∇F (w), Ck(gk,∗ − gk(w))⟩+ ∥Ck(gk,∗ − gk(w))∥2 .

Taking expectation conditionally to the σ-algebra Ik, and using Lemma 4.1 gives:

E
[
∥ξmult

k (η))∥2
∣∣∣ Ik] = ∥∇F (w)∥2 + 2 ⟨∇F (w), gk,∗ − gk(w)⟩+ (ω + 1) ∥gk,∗ − gk(w)∥2 .

Finally, with σ-algebra Fk−1 and considering Model 2 we have:

E
[
∥ξmult

k (η) ∥2
∣∣∣ Fk−1

]
= −∥∇F (w)∥2 + (ω + 1)R2∥H1/2(w − w∗)∥2 ,

which allows to conclude.

Property D.6 (Validity of Assumption 4.4). Considering Algorithm 2 under the setting of Model 2
with Remark 4.1 and Lemma 4.1, if the compressor C is linear, then for any k in N∗, there exists a
constant XH > 0 s.t. Cania ≼ σ2XHHF and E

[
ΞkΞ

⊤
k

]
≼ R2XHH; Assumption 4.4 is thus verified.

Appendix D. Appendix to Distributed, compressed and averaged LSR 178

Proof

Let k in N∗, we note η = w − w∗. We first need to compute XH in Rd for each compressor C in
{Cq, Csq, Crd1, Cs, CΦ, CPP}, it comes from Proposition 4.2 which results having a constant XH s.t.:

C(C , pH) = EE∼pH [C(E)⊗2] ≼ XHH . (D.22)

Indeed, Diag (H) car be bounded by Tr (H) Id, and then Id by µ−1H. This constant XH can be
computed from Proposition 4.2 for any compressor:

Compressor Crdh Cs CPP CΦ
XH

h−1
p(d−1) + (1− h−1

d−1)
τ
p 1 + (1−p)τ

p
1
p

α−β
p + βτ

p

XH (if H diagonal) 1
p

1
p

1
p

α−β
p + βτ

p

Where p = h/d, τ = Tr (H) /µ, and for sketching α = h+2
d+2 and β = d−h

(d−1)(d+2) .

We now show that the two inequalities given in Assumption 4.4 are valid.

First inequality.

By Definition 4.3, we have Cania = E
[
ξaddk ⊗ ξaddk

]
= E

[
Ck(εkxk)⊗2

]
, because

(
(εk)k∈{1,...,K}

)
is

independent from
(
(xk)k∈{1,...,K}

)
(Model 2) and using compressor linearity and Equation (D.22), it

gives: Cania = σ2E
[
Ck(xk)⊗2

]
= σ2C(C , pH) ≼ σ2XHH .

Second inequality.

Using Property D.6, because the compressor C is linear, there exists two matrices Πk,Ξk in Rd×d s.t.
for any z in Rd, we have Ck(z) = Πkz and ξmult

k (z) = Ξkz, which gives that Ξk = H −Πk(xk ⊗ xk).
It follows that:

ΞkΞ
⊤
k = HH⊤ −HΠk(xk ⊗ xk)−Πk(xk ⊗ xk)H +Πk(xk ⊗ xk)(xk ⊗ xk)Π

⊤
k .

Given that the compression is unbiased (Lemma 4.1) we have E [Πk | Ik] = Id, hence:

E
[
ΞkΞ

⊤
k

∣∣∣ Ik] = HH⊤ −H(xk ⊗ xk)− (xk ⊗ xk)H + E
[
Πk(xk ⊗ xk)(xk ⊗ xk)Π

⊤
k

∣∣∣ Ik] ,
and now taking expectation w.r.t the σ-algebra Fk−1:

E
[
ΞkΞ

⊤
k

∣∣∣ Fk−1

]
= −HH⊤ + E

[
Πk(xk ⊗ xk)(xk ⊗ xk)Π

⊤
k

∣∣∣ Fk−1

]
.

In the end, we have that E
[
ΞkΞ

⊤
k

∣∣ Fk−1

]
≼ E

[
Πk(xk ⊗ xk)(xk ⊗ xk)Π

⊤
k

∣∣ Fk−1

]
, and if we consider

that the second moment of the features (xk)k∈N∗ is almost surely bounded (Remark 4.1), we obtain:

E
[
ΞkΞ

⊤
k

∣∣∣ Fk−1

]
≼ R2E

[
Πk(xk ⊗ xk)Π

⊤
k

∣∣∣ Fk−1

]
≼ R2E

[
Ck(xk)⊗2

∣∣ Fk−1

]
. (D.23)

Thus, using Equation (D.22), we can state that E
[
ΞkΞ

⊤
k

∣∣ Fk−1

]
≼ R2XHH, which concludes the

second part of the verification of Assumption 4.4.

D.5 Compression operators

In this Section, we provide additional details about compression operators. First, we prove in Subsec-
tion D.5.1 that Lemma 4.1 hold and compute the compressor’s covariance given in Proposition 4.2.

Appendix D. Appendix to Distributed, compressed and averaged LSR 179

The specific computations for sketching are given separately in Subsection D.5.2 because they are
more complex. Third, it allows to prove Propositions 4.3 and 4.4 in Subsection D.5.3. And finally,
in Subsection D.5.4, we plot the covariance matrix induced by quantization and sparsification for
quantum and cifar-10.

D.5.1 Computation of the variance and covariance of the compression operators

In this Subsection, we first prove Lemma 4.1. Item L.1 is frequently established in the literature and
corresponds to the worst-case assumption, see the introduction for references. On the other hand,
Item L.2 is the Hölder-type bound, which is not used in the literature up to our knowledge. Next,
we compute the compressors’ covariances that have been given in Proposition 4.2.

Lemma D.8. For any compressor C ∈ {Cq, Csq, Crdh, Cs, CΦ, CPP}, there exists constants ω,Ω ∈ R∗
+,

such that the random operator C satisfies the following properties for all z, z′ ∈ Rd.

L.1: E[C(z)] = z and E[∥C(z)− z∥2] ≤ ω∥z∥2 (unbiasedness and variance relatively bounded),
L.2: E[∥C(z)− C(z′)∥2] ≤ Ωmin(∥z∥, ∥z′∥)∥z − z′∥+ 3(ω + 1)∥z − z′∥2(Hölder-type bound),

with ω =
√
d and Ω = 12

√
d (resp. ω = (1−p)/p and Ω = 0) for Cq and Csq (resp. Crdh, Cs, CΦ, CPP).

Proof

Value of ω (Item L.1 of Lemma 4.1). For projection-based compressors, the proof is straight-
forward, for quantization-based, the proof can be found in Alistarh et al. [2017] and gives ω =

√
d.

Value of Ω (Item L.2 of Lemma 4.1). For linear compressors, it is straightforward to obtain
Ω = 0.

For quantization, we take x, y in Rd, we note (ui)
d
i=1 the vector controlling the randomness of

compression, and we write Cq(x)− Cq(y) = A+B + C, with:

1. A := ∥x∥sign(x)Bern(|x|
∥x∥)− ∥x∥sign(x)Bern(

|x|
∥y∥)

2. B := ∥x∥sign(x)Bern(|x|
∥y∥)− ∥x∥sign(y)Bern(

|y|
∥y∥)

3. C := ∥x∥sign(y)Bern(|y|
∥y∥)− ∥y∥sign(y)Bern(

|y|
∥y∥).

We note ∥ · ∥ the 2-norm and ∥ · ∥1 the 1-norm. By symmetry, we suppose that ∥y∥2 ≥ ∥x∥2.
First term. We have ∥A∥2 = ∥x∥2∑d

i=1(1ui≤ |xi|
∥x∥
− 1

ui≤ |xi|
∥y∥

)2 = ∥x∥2∑d
i=1 12

|xi|
∥y∥≤ui≤ |xi|

∥x∥
because

∥y∥2 ≥ ∥x∥2. Taking expectation, it gives E[∥A∥2] = ∥x∥2∑d
i=1

|xi|
∥x∥ −

|xi|
∥y∥ = ∥x∥2∥x∥1 ∥y∥−∥x∥

∥y∥∥x∥ . Now
with triangular inequality, we have:

E[∥A∥2] ≤ ∥x∥∥y∥∥x∥1∥y − x∥ ≤ ∥x∥1∥y − x∥ ≤
√
d∥x∥∥y − x∥ ,

and by symmetry E[∥A∥2] ≤
√
dmin(∥x∥, ∥y∥)∥y − x∥.

Second term.

We have ∥B∥2 = ∥x∥2∑d
i=1(sign(xi)1ui≤ |xi|

∥y∥
− sign(yi)1ui≤ |yi|

∥y∥
)2. Let i in [d], if sign(xi) = sign(yi),

then:

E
[
∥B∥2

]
= ∥x∥2

d∑
i=1

E

[
12

min(|xi|,|yi|)
∥y∥ ≤ui≤max(|xi|,|yi|)

∥y∥

]
=
∥x∥2
∥y∥

d∑
i=1

|yi − xi| ≤ ∥x∥∥x− y∥1 .

Appendix D. Appendix to Distributed, compressed and averaged LSR 180

If sign(xi) ̸= sign(yi), developping (sign(xi)1ui≤ |xi|
∥y∥
− sign(yi)1ui≤ |yi|

∥y∥
)2, we have:

E
[
∥B∥2

]
= ∥x∥2

d∑
i=1

|xi|
∥y∥ +

|yi|
∥y∥ − 2sign(xi)sign(yi)

min(|xi|, |yi|)
∥y∥

=
∥x∥2
∥y∥

d∑
i=1

max(|xi|, |yi|) + 3min(|xi|, |yi|) .

Next, we have max(|xi|, |yi|) + min(|xi|, |yi|) = |xi| + |yi|
sign(xi)̸=sign(yi)

= |xi − yi|, which results to
E
[
∥B∥2

]
≤ 3∥x∥2

∥y∥
∑d

i=1 |yi − xi| ≤ 3∥x∥∥x− y∥1 ≤ 3
√
d∥x∥∥x− y∥.

Third term. We have ∥C∥2 = (∥x∥ − ∥y∥)2∑d
i=1 12

ui≤ |yi|
∥y∥

, taking expectation, it gives:

E[∥C∥2] = (∥x∥ − ∥y∥)2
d∑

i=1

|yi|
∥y∥ ≤ ∥x− y∥2 ∥y∥1∥y∥ ≤

√
d∥x− y∥2 .

Overall, using Inequality 1, we have:

E[∥Cq(x)− Cq(y)∥2] ≤ 12
√
dmin(∥x∥, ∥y∥)∥x− y∥+ 3

√
d∥x− y∥2 ,

which allows to conclude that Ω = 12
√
d, and the Hölder-type bound is verified as for 1-quantization,

we have ω =
√
d.

We now compute the compressors’ covariance given in Proposition 4.2 and Corollary 4.3. However,
sketching requires more involved computations, they are provided in Subsection D.5.2.

Proposition D.2 (Structure of the compressor’s covariance). The following formulas of compressors’
covariance hold:

• C(C∅, pM) = M

• C(Cq, pM) ≼ M +
√

Tr (M)
√
Diag (M)−Diag (M)

• C(Cs, pM) = M + 1−p
p Diag (M)

• C(CΦ, pM) = 1
p ((α− β)M + βTr (M) Id) with α = h+2

d+2 and β = d−h
(d−1)(d+2)

• C(Crdh, pM) = d(h−1)
h(d−1)M +

(
d
h −

d(h−1)
h(d−1)

)
Diag (M)

• C(CPP, pM) = 1
pM .

Proof

In this proof, we denote F the σ-field generated by the random sampling of E ∼ pM ∈ PM , and G
the σ-field generated by the noise from the compression process. Let E ∼ pM ∈ PM .

Quantization. By definition, we have Cq(E) = ∥E∥2sign(E) ⊙ χ, with χ =
(
Bern(|Ei|

∥E∥2)
)d
i=1

. It

follows that Cq(E)⊗2 = ∥E∥22sign(E)⊗2 ⊙ χ⊗2.

Because:

E
[
χ⊗2

∣∣ F] =

|Ei|
∥E∥2 if i = j

|Ei| |Ej |
∥E∥22

else,

Appendix D. Appendix to Distributed, compressed and averaged LSR 181

and considering that sign(E)⊗2 =

 1 sign(Ei)sign(Ej)
. . .

sign(Ei)sign(Ej) 1

 , we have:

E
[
Cq(E)⊗2

∣∣ F] =
 ∥E∥2 |Ei| if i = j ,

EiEj else.

Taking the complete expectation gives:

E
[
Cq(E)⊗2

]
=

 E [∥E∥2 |Ei|] if i = j

Mij else.

Changing the diagonal to make appear M , we obtain:

E
[
Cq(E)⊗2

]
= M + E

[
∥E∥2Diag (|Ei|)di=1

]
− E

[
Diag

(
E2

i

)d
i=1

]
.

Furthermore, we first have that E
[
Diag

(
E2

i

)d
i=1

]
= Diag (M) and secondly, by Cauchy-Schwarz

Equation (A.8) that:

E
[
∥E∥2Diag (|Ei|)di=1

]2
≼ E

[
∥E∥22

]
E
[
Diag

(
E2

i

)d
i=1

]
= Tr (M)Diag (M) ,

which finally gives E
[
Cq(E)⊗2

]
≼ M +

√
Tr (M)

√
Diag (M)−Diag (M) .

Sparsification. By definition, we have Cs(E) = 1
pB ⊙ E ∈ Rd, with B ∼ (Bern(p))di=1, thus

Cs(E)⊗2 = 1
p2
B⊗2⊙E⊗2. Taking the expectation w.r.t. to the σ-filtration F , we have E

[
Cs(E)⊗2

∣∣ F] =
1
p2
P ⊙ E⊗2 with P =

 p p2

. . .
p2 p

 , because for all i, j in J1, dK, we have E
[
B2

i

∣∣ F] = p and

E [BiBj | F] = p2. This naturally gives: E
[
Cs(E)⊗2

]
= 1

p2
P ⊙M .

Sketching. The proof is more complex and therefore is given separately, in Subsection D.5.2.3.

Rand-h. By definition, we have Crdh(E) := d
hB(S)⊙ E with S ∼ Unif(Ph([d])) and B(S)i = 1i∈S ,

thus Crdh(E)⊗2 = 1
p2
B⊗2 ⊙ E⊗2 (p = h/d). We have that for any i, j in {1, . . . , d}, Bi and Bj

are not independent and that Bi ∼ (Bern(p)), therefore we have that E[B2
i] = p and that: h2 =(∑d

i=1Bi

)2
=
∑d

i=1B
2
i +

∑
i ̸=j BiBj . Taking expectation, it gives h2 = h + d(d − 1)E[BiBj] i.e.

E[BiBj] =
h(h−1)
d(d−1) . Taking the expectation w.r.t. to the σ-filtration F , we have :

E
[
Crdh(E)⊗2

∣∣ F] = d(h− 1)

h(d− 1)
E⊗2 +

(
d

h
− d(h− 1)

h(d− 1)

)
Diag

(
E⊗2

)
.

And taking full expectation allows conclusion.

Partial Participation. This result is straightforward.

Appendix D. Appendix to Distributed, compressed and averaged LSR 182

D.5.2 Variance and covariance of sketching

In this Subsection, we compute the expectation, the variance, and the covariance of sketching.
In Subsection D.5.2.1, we give the proof principle of our computation, in Subsection D.5.2.2, we
compute the expectation and the variance, and in Subsection D.5.2.3, we compute the covariance.

We thank Baptiste Goujaud (École polytechnique, CMAP) who greatly helped to prove the following.

D.5.2.1 Proof principle

Let y in Rd with ∥y∥2 = 1, and x in Rd. By Definition 4.4, for Φ in Rh×d, we have CΦ(x) = 1
pΦ

†Φx

with Φ† = Φ⊤(ΦΦT)−1 and p = h/d.

To compute the expectation, the variance, and the covariance of CΦ(x), the idea is to com-
pute E[y⊤CΦ(x)] and E[(y⊤CΦ(x))

2] by establishing Equation (D.24) which allows controlling
the randomness of sketching by using Equation (D.25). To establish Equation (D.24), first observe
that pCΦ(· · ·) is a projector into a subspace of dimension h, indeed we have (pCΦ⊙pCΦ)(x) = pCΦ(x).
Then there exists a random matrix P in Od s.t. pCΦ(x) = P⊤JhPx. It leads to:

y⊤CΦ(x) =
1

p
y⊤P⊤JhPx =

1

p
(Py)⊤Jh(Px) .

Now we note X = Px/∥x∥ and Y = Py, hence y⊤CΦ(x) =
∥x∥
p Y ⊤JhX, and because P is in Od, we

have:
∥X∥2 = 1

∥Y ∥2 = ∥y∥2 = 1
⟨X,Y ⟩ = ⟨x, y⟩ /∥x∥ .

Furthermore, P is a random projector, it follows that X and Y are sampled uniformly from the
zero-center sphere of radius 1; i.e. X ∼ Unif(Sd(0, 1)) and Y ∼ Unif(Sd(0, 1)). However, X and Y
are not independent, this is why, we consider that X ∼ Unif(Sd(0, 1)) and write Y s.t. Y = aX + bu
with u a random vector in Rd of norm 1 orthogonal to X, that is to say, u|X is uniformly sampled on
a zero-centered hyper-sphere of radius 1 orthogonal to the vector X (see illustration on Figure D.3).
It comes that:

y⊤CΦ(x) =
∥x∥
p

Y ⊤JhX =
∥x∥
p

(aX⊤ + buT)JhX =
∥x∥
p

(aX⊤JhX + bu⊤JhX) . (D.24)

Observe that for any i, j in {1, · · · , d}, Xi, Xj (resp. ui, uj) have the same law, it results to:

∀(i, j) ∈ {1, · · · , d}2, ∀k ∈ N, E[Xk
i] = E[Xk

j] and E[uki] = E[ukj] . (D.25)

This property is the key to compute the expectation, the variance, and the covariance of sketching.

Figure D.3: Sphere zero-center
with radius 1: X and u are or-
thogonal.

We now compute a and b. First, by definition, we have:

⟨x, y⟩
∥x∥ = ⟨X,Y ⟩ = a ∥X∥2 = a ,

then we write that:

1 = ∥Y ∥2 = ⟨x, y⟩
2

∥x∥4 ∥X∥
2 + b2 ∥u∥2 = ⟨x, y⟩

2

∥x∥2 + b2 ,

which gives b =

√
1− ⟨x,y⟩2

∥x∥2 .

At the end, we have: Y = aX + bu = ⟨x,y⟩
∥x∥ X +

√
1− ⟨x,y⟩2

∥x∥2 u.

Appendix D. Appendix to Distributed, compressed and averaged LSR 183

D.5.2.2 Expectation and variance of sketching

In this Subsection, we prove that sketching verifies Item L.1 in Lemma 4.1; for this purpose, we show
that it is unbiased, then we compute its variance.

Proposition D.3. Sketching is unbiased and its variance is relatively bounded, i.e., it verifies
Item L.1 in Lemma 4.1 with ω = (1− p)/p where p = h/d.

Proof Starting from Equation (D.24), we have y⊤CΦ(x) =
∥x∥
p (aX⊤JhX + bu⊤JhX). We first

compute the expectation w.r.t. the σ-algebra σ({X}) generated by the noise involved in the random
vector X, it gives:

E[y⊤CΦ(x) | σ({X})] =
∥x∥
p

h∑
i=1

aX2
i + bXiE [ui | σ({X})] .

Because u is sampled uniformly from the zero-center sphere of radius 1 s.t. it is orthogonal to X, for
any i in {1, · · · , d}, we have E[ui | σ({X})] = 0, hence taking full expectation, we obtain:

E[y⊤CΦ(x)] =
∥x∥
p

h∑
i=1

aE[X2
i] .

Using Equation (D.25), we have E[X2
i] =

1
d

∑d
j=1 E[X2

j], next recalling that p = h/d and ∥X∥2 = 1,
it leads to E[y⊤CΦ(x)] = a∥x∥E[∑d

j=1X
2
j] = a∥x∥E[∥X∥2] = a∥x∥. And because a = ⟨x, y⟩ /∥x∥,

we have at the end that E[CΦ(x)] = x. Now we compute the variance:

E[CΦ(x)
⊤CΦ(x)] =

1

p2
E[x⊤P⊤JhPP⊤JhPx] =

1

p2
E[x⊤P⊤JhPx] =

∥x∥2
p2

E[X⊤JhX] .

E[X⊤JhX] has been computed above and is equal to p, it results that E[CΦ(x)
⊤CΦ(x)] = ∥x∥2 /p.

In the end, sketching verifies Lemma 4.1 with ω = (1− p)/p.

D.5.2.3 Covariance of sketching.

In this Subsection, we compute the covariance of sketching. For the sake of demonstration, we need
to compute the 4th-moment of X1 and the 2nd-moment of u1. For any i in [d] and any vector v in
Rd, we note v−i = (vj)j∈[d],j ̸=i in Rd−1.

Computing the 4th-moment of X1.

The marginal density of X1 is fX1 : x 7→ B(d−1
2 , 12)

−1(1− x2)(d−3)/2 where B is the beta function
defined as B : x, y 7→

∫ 1
0 tx−1(1− t)y−1 = 2

∫ π/2
0 sin2x−1(t) cos2y−1(t)dt. This result can be obtained

either by an application of the formula for the surface area of a sphere [Li, 2010, Sidiropoulos, 2014],
either by writing that X1 =

Z1
∥Z∥ with Z a Gaussian vector with d components. Therefore we have

that:

E[X4
1] =

∫ 1
−1 x

4(1− x2)(d−3)/2dx

2
∫ π/2
0 sind−2(t)dt

(i)
=

2
∫ π/2
0 cos4(t) sind−2(t)dt

2
∫ π/2
0 sind−2(t)dt

(ii)
=

Wd−2 − 2Wd +Wd+2

Wd−2
,

where at (i) we set x = cos(t) and at (ii) we make appears the Wallis’ integrals defined for any n in
N as Wn =

∫ π/2
0 sinn(t)dt. Furthermore, we have the following recursion using integration by parts:

Appendix D. Appendix to Distributed, compressed and averaged LSR 184

Wd+2 =
d+1
d+2Wd, therefore, we have:

E[X4
1] =

(
1− 2(d− 1)

d
+

(d− 1)(d+ 1)

d(d+ 2)

)
=

3

d(d+ 2)
. (D.26)

Computing the 2nd-moment of u1 w.r.t the σ-algebra σ(X).

Figure D.4: Parallel hyperplanes P and P ′ with the
sphera S.

We define three (d− 2)–dimensional man-
ifolds, two parallel hyperplanes P, P ′ and a
sphere S, as follows:

P = {ũ ∈ Rd−1 | ⟨ũ, X−i⟩ = −Xiui}
P ′ = {ũ ∈ Rd−1 | ⟨ũ, X−i⟩ = 0}
S = Sd−1(0,

√
1− u21)

Obviously u−i is in P ∩ S; then we decom-
pose u−i in two terms n + v, with v ∼
Unif(P ′) orthogonal to X and independent
of ui: n is the center of the sphere S ∩ P
and v is its radius, n corresponds also to the normal vector of both P, P ′ with norm equal to the
distance between the two hyperplanes, hence n = ⟨u−i,X−i⟩

∥X−i∥2 X−i = − uiXi
∥X−i∥2X−i.

First, because u−1 ∈ S, we have ∥n+ v∥2 = 1− u21, next by Pythagorean theorem this is equivalent
to ∥v∥2 = 1− u21 − ∥n∥2 = 1− u2

1
∥X−1∥2 . Second, because u−1 ∈ P , we have u1 =

−⟨u−1,X−1⟩
X1

, that is
to say the probability density function of u1 | X is proportional to the number of possible values for
u−1, which corresponds to the surface area of the hypersphere P ∩ S. This surface is proportional to
the radius ∥v∥d−4 = (1− u2

1
∥X−1∥2)

(d−4)/2 given that P ∩S is a (d−3)–dimensional manifold, therefore:

E[u21 | σ({X})] =
∫ ∥X−1∥
−∥X−1∥ x

2
(
1− x2

∥X−i∥2
)(d−4)/2

dx∫ ∥X−1∥
−∥X−1∥

(
1− x2

∥X−i∥2
)(d−4)/2

dx

(i)
=
∥X−1∥2

∫ 1
−1 y

2
(
1− y2

)(d−4)/2
dy∫ 1

−1 (1− y2)(d−4)/2 dy

(ii)
= ∥X−1∥2

Wd−3 −Wd−1

Wd−3
,

where at (i) we set y = x
∥X−1∥ and at (ii) we reuse the previous computations to make appear the

Wallis’ integral. In the end, we obtain:

E[u21 | σ({X})] = (1− d− 2

d− 1
)∥X−1∥2 =

∥X−1∥2
d− 1

. (D.27)

Note that this result is consistent with the fact that
∑d

i=1 E[u2i | σ({X})] =
d−∑d

i=1 X
2
i

d−1 = 1. Now we
can compute the covariance of the sketching operator.

Proposition D.4. Let x in pM , the covariance of sketching is equal to:

E[CΦ(x)⊗2] =
1

p
((α− β)M + βTr (M) Id) ,

with α = h+2
d+2 and β = d−h

(d−1)(d+2) .

Proof

Appendix D. Appendix to Distributed, compressed and averaged LSR 185

Let x in Rd and y in Rd with ∥y∥2 = 1, starting from Equation (D.24), we have:

(y⊤CΦ(x))
2 =
∥x∥2
p2

(aX⊤JhX + bu⊤JhX)2

=
∥x∥2
p2

(
a2(X⊤JhX)2 + 2ab(X⊤JhXu⊤JhX) + b2(u⊤JhX)2

)
.

First term. Taking expectation, we have E[(X⊤JhX)2] =
∑h

i=1

(
E[X4

i] +
∑h

j=1,j ̸=i E[X2
i X

2
j]
)
.

However:

h∑
j=1,j ̸=i

E[X2
i X

2
j] = E

X2
i

h∑
j=1,j ̸=i

X2
j

 (i)
= E

X2
i

h∑
j=1,j ̸=i

1

d− 1

d∑
k=1,k ̸=i

X2
k

(ii)
=

h− 1

d− 1
E
[
X2

i (1−X2
i)
]
,

where we use at line (i) Equation (D.25) and at line (ii)
∑d

i=1X
2
i = 1. It follows that:

E[(X⊤JhX)2] =
h∑

i=1

(
d− h

d− 1
E[X4

i] +
h− 1

d− 1
E
[
X2

i

])
(i)
=

h(d− h)

d− 1
E[X4

1] +
h− 1

d− 1

h∑
i=1

E
[
X2

i

]
(iii)
=

h(d− h)

d− 1
E[X4

1] +
h(h− 1)

d(d− 1)

eq. D.26
=

3h(d− h)

d(d− 1)(d+ 2)
+

h(h− 1)

d(d− 1)
=

h(h+ 2)

d(d+ 2)
:= α′ .

Where we considered at line (i) that for any i in {1, · · · , h}, E[X4
i] = E[X4

1], and at line (ii) that∑h
i=1 E

[
X2

i

]
= h

dE[∥X∥2] = h/d.

Second term. We compute the expectation w.r.t. the σ-algebra σ({X}) generated by the
noise involved in the random vector X. It gives E

[
X⊤JhXu⊤JhX

∣∣ σ({X})] = 0, because
u|X is uniformly sampled on a zero-centered hyper-sphere, and thus for any i in {1, · · · , d}, we
have E[ui | σ({X})] = 0.

Third term. We have (u⊤JhX)2 =
∑h

i=1 u
2
iX

2
i +
∑h

j=1,j ̸=i uiujXiXj . On one side, we compute the
expectation w.r.t. the σ-algebra σ({X}) generated by the noise involved in the random vector X:

h∑
i=1

E
[
u2iX

2
i

∣∣ σ({X})] = h∑
i=1

X2
i E
[
u2i
∣∣ σ({X})] eq. D.27

=
1

d− 1

h∑
i=1

X2
i ∥X−i∥2 .

Taking full expectation, we have
∑h

i=1 E[u2iX
2
i] =

1
d−1

∑h
i=1 E[X2

i (1−X2
i)] =

h
d−1(

1
d−E[X4

1]), because
for any i in {1, . . . , h}, E[X4

i] = E[X4
1] and

∑h
i=1 E

[
X2

i

]
= h

dE[∥X∥2] = h/d.

Let i in [d], on the other side, we compute the expectation w.r.t. the σ-algebra σ({X,ui}) generated
by the noise involved in the random vector X and the random variable ui, hence we requires
to compute E [uj | σ({X,ui})]. To do so, as before, we decompose u−i in two terms n + v (see
Figure D.4), with v ∼ Unif(P ′) orthogonal to X and independent of ui, hence E [v | σ({X,ui})] = 0.
It gives that E [u−i | σ({X,ui})] = − uiXi

∥X−i∥2X−i. Thereby, replacing for any coordinate j ̸= i in [d]

Appendix D. Appendix to Distributed, compressed and averaged LSR 186

the value of u−i and taking expectation w.r.t. the σ-algebra σ({X}), we obtain:

h∑
i=1

h∑
j=1,j ̸=i

XiXjE [uiuj | σ({X})] = −
h∑

i=1

h∑
j=1,j ̸=i

1

∥X−i∥2
X2

i X
2
j E
[
u2i
∣∣ σ({X})]

eq. D.27
= − 1

d− 1

h∑
i=1

h∑
j=1,j ̸=i

X2
i X

2
j

= − 1

d− 1

h∑
i=1

h∑
j=1,j ̸=i

X2
i

1−X2
i

d− 1
.

Finally, we have:
∑h

i=1

∑h
j=1,j ̸=i E[XiXjuiuj] = − h(h−1)

d(d−1)2
(1 −∑d

i=1 E[X4
i]). Putting together the

two terms, we have that:

E
[
(u⊤JhX)2

]
=

h

d− 1
(
1

d
− E[X4

i])−
h(h− 1)

d(d− 1)2
(1− dE[X4

1])
eq. D.26

=
h(d− h)

d(d− 1)(d+ 2)
:= β′ .

In the end, we have E[(y⊤CΦ(x))
2] = ∥x∥2

p2
(a2α′ + b2β′). And because ∥y∥2 = 1, a = ⟨x, y⟩ /∥x∥

and b =
√

1− ⟨x, y⟩2 /∥x∥2, replacing them by their values gives:

y⊤E[CΦ(x))
⊗2]y =

∥x∥2
p2

(
α′ ⟨x, y⟩2
∥x∥2 + β′

(
y⊤y − ⟨x, y⟩

2

∥x∥2

))
,

hence E[CΦ(x))
⊗2] = 1

p2

(
(α′ − β′)xx⊤ + β′ ∥x∥2 Id

)
. To conclude, we consider that x is a random

variable sampled from a distribution pM , then taking expectation on this random variable we have:
ECΦ(x)

⊗2 = 1
p ((α− β)M + βTr (M) Id), with α = α′

p = h+2
d+2 and β = β′

p = d−h
(d−1)(d+2) .

D.5.3 Proof of Propositions 4.3 and 4.4

In this Subsection, we give the proof of Propositions 4.3 and 4.4 which provides generic comparisons
between the asymptotic convergence rate of compressors. We first give a lemma resulting from the
Cauchy-Schwarz’s inequality necessary to establish these proofs.

Lemma D.9 (Cauchy-Schwarz’s inequality on matrices’ traces). For any matrix M in Rd×d, we
have Tr (M) Tr

(
M−1

)
≥ d2, with strict inequalities if M is not proportional to Id. And if M is

with constant diagonal equal to c in R, we have cTr
(
M−1

)
≥ d.

Proof Let M in Rd×d, using the Cauchy-Schwarz inequality, we have:

d2 = Tr (Id)
2 = Tr

(
M1/2M−1/2

)2 C.S
≤ Tr (M) Tr

(
M−1

)
,

and we have equality if M is proportional to Id.

Now we give the demonstration of Propositions 4.3 and 4.4. On Figure D.5, we complete the
numerical illustration provided in Subsection 4.3.3.1 by illustrating the scenario of standardized
features, i.e., when the diagonal of M is the identity.

Proposition D.5 (Comparison between CPP, Cs, Crdh, CΦ, ω = d/h− 1). We consider C ∈ {CPP, Cs,
Crdh, CΦ} with p = h/d, such that C always satisfies Lemma 4.1 with ω = d/h − 1. For any
matrix M ∈ Rd×d:

Appendix D. Appendix to Distributed, compressed and averaged LSR 187

-2.1 -1.0 0.0 1.0 2.1

-2.3

-1.5

-0.8

0.0

0.8

1.5

2.3

Qtzd

-2.1 -1.0 0.0 1.0 2.1

StabilizedQtz

-2.1 -1.0 0.0 1.0 2.1

Sketching

-2.1 -1.0 0.0 1.0 2.1

Sparsification

-2.1 -1.0 0.0 1.0 2.1

Rand1

-2.1 -1.0 0.0 1.0 2.1

PartialParticipation

Figure D.5: H not diagonal, scenario using features standardization. Scatter plot of (xk)
K
i=1/

(C(xk))Ki=1 with its ellipse ECov[xk]/ECov[C(xk)].

1. If M is diagonal, then:

• C(CPP, pM) = C(Cs, pM) = C(Crdh, pM) = d
hM ,

• Tr
(
C(CPP/s/rdh, pM)M−1

)
≤ Tr

(
C(CΦ, pM)M−1

)
.

2. Moreover, for any matrix M with a constant diagonal (e.g., after standardization), we have:

Tr(C(CPP, pM)M−1) ≤ Tr(C(CΦ, pM)M−1) ≤ Tr(C(Cs, pM)M−1) ≤ Tr(C(Crdh, pM)M−1) .

With strict inequalities if M is not proportional to Id.

Proof

Let M in Rd×d and take p = h/d.

Proof of Item 1 in Proposition 4.3. In the diagonal case, the first equalities are straightforward
as we have C(CPP, pM) = C(Cs, pM) = C(Crd1, pM) = d

hM . Next, we have (regardless if M is diagonal
or not):

Tr
(
(C(CΦ, pM)− C(CPP, pM))M−1

)
= (

h+ 1

d+ 2
+ δhd − 1)

Tr (Id)

p
+ (1− h− 1

d− 1
)
Tr (M) Tr

(
M−1

)
p(d+ 2)

Lemma D.9
≥ d

p

(
h+ 1

d+ 2
+ δhd − 1 +

d

d+ 2
(1− h− 1

d− 1
)

)
= 0 .

Proof of Item 2 in Proposition 4.3. Suppose now that Diag (M) = cId, then we have
C(CPP, pM) = d

hM , C(Cs, pM) = M + (dh − 1)cId, C(Crdh, pM) = d(h−1)
h(d−1)M + d

h(1 − h−1
d−1)cId and

C(CΦ, pM) = d
h

(
(h+1
d+2 − δhd)M +

(
1− h−1

d−1

)
Tr(M)
d+2 Id

)
. Firstly, from previous item, we have

Tr
(
C(CPP, pM)M−1

)
≤ Tr (C(CΦ, pM))M−1 .

Secondly, we write:

Tr
(
(C(CΦ, pM)− C(Cs, pM))M−1

)
=

d

p
(
h+ 1

d+ 2
+ δhd −

h

d
)

+
cTr

(
M−1

)
p

(
d

d+ 2
(1− h− 1

d− 1
)− (1− h

d
)

)
=

d

p
(
h+ 1

d+ 2
+ δhd −

h

d
)− cTr

(
M−1

)
p

· (d− 2)(d− h)

d(d− 1)(d+ 2)
Lemma D.9
≤ d

p

(
h+ 1

d+ 2
+ δhd −

h

d
− (d− 2)(d− h)

d(d− 1)(d+ 2)

)
= 0 .

Appendix D. Appendix to Distributed, compressed and averaged LSR 188

Thirdly, we have:

Tr
(
(C(Crdh, pM)− C(Cs, pM))M−1

)
=

h− d

h(d− 1)
Tr (Id) +

d− h

h(d− 1)
cTr

(
M−1

)
Lemma D.9
≥ d

h

(
h− d

d− 1
+

d− h

d− 1

)
= 0 .

Proposition D.6 (Comparison between CPP, Cq, Cs, ω =
√
d). We consider C ∈ {CPP, Cq, Cs} with

p = (
√
d+ 1)−1, such that C always satisfies Lemma 4.1 with ω =

√
d.

1. For any symmetric matrix M diagonal, we have:

Tr
(
C(CPP, pM)M−1

)
= Tr

(
C(Cs, pM)M−1

) possib. ≪
≤

(
1 +

1√
d

)
Tr
(
C̃(Cq,M)M−1

)
.

2. If M is not necessarily diagonal but with a constant diagonal (e.g., after standardization), then

• C̃(Cq,M) ≼ C(Cs, pM)

• Tr
(
C(CPP, pM)M−1

)
≤
(
1 + 1√

d

)
Tr
(
C̃(Cq,M)M−1

)
.

Proof

Let M in Rd×d and take p = 1
1+

√
d
.

Proof of Item 1 in Proposition 4.4. In the diagonal case with p = 1
1+

√
d
, we have C̃(Cq,M) =√

Tr (M)
√
M and C(CPP, pM) = (1 +

√
d)M , hence Tr

(
C̃(Cq,M)M−1

)
=
√

Tr (M)Tr
(√

M−1
)

and Tr
(
C(CPP, pM)M−1

)
= (1 +

√
d)d. Noting (λi)i∈[d] the eigenvalues of M , and using the

Cauchy-Schwarz inequality’s, we have:

d2 =

(
d∑

i=1

1

)2

=

(
d∑

i=1

λ
1/4
i λ

−1/4
i

)2
C.S
≤
(

d∑
i=1

λ
1/2
i

)(
d∑

i=1

λ
−1/2
i

)

C.S
≤

√√√√ d∑
i=1

λi

√√√√ d∑
i=1

1

(
d∑

i=1

λ
−1/2
i

)
=
√
dTr (M)Tr

(
M−1/2

)
=
√
dTr

(
C̃(Cq,M)M−1

)
.

Which follows that Tr
(
C̃(Cq,M)M−1

)
≥ d3/2 =

√
d(1 +

√
d)−1Tr

(
C(CPP, pM)M−1

)
and it allows

to conclude.

Proof of Item 2 in Proposition 4.4. Suppose now that Diag (M) = cId, then we have
C(CPP, pM) = (

√
d + 1)M , C̃(Cq,M) = M + (

√
d − 1)cId, and C(Cs, pM) = M + c

√
dId. Firstly, it

follows that:

C(Cs, pM)− C̃(Cq,M) =
(
M +

√
dcId

)
−
(
M + (

√
d− 1)cId

)
= cId ≽ 0 ,

Secondly, we have (1 + 1√
d
)C̃(Cq,M)− C(CPP, pM) = −(1− 1√

d
)M + (

√
d− 1√

d
)cId, which gives:

Tr

((
(
√
d− 1√

d
)C̃(Cq,M)− C(CPP, pM)

)
M−1

)
= (
√
d− 1√

d
)cTr

(
M−1

)
− (1− 1√

d
)Tr (Id)

≥ (
√
d− 1√

d
)d− (1− 1√

d
)d (Lemma D.9)

≥ d(
√
d− 1) ≥ 0 .

Appendix D. Appendix to Distributed, compressed and averaged LSR 189

Table D.3: (1) Data covariances for quantum and cifar-10. (2) Covariance C(CM , pH) w./w.o.
standardization for quantization and sparsification; see Figure 4.6 to have the corresponding trace of
C(CM , pH)M−1.

M Quantization Sparsification
raw-data standardized ω = 1 ω = 8 ω = 1 ω = 8

qu
an

tu
m

ci
fa

r-
10

And the proof is concluded.

D.5.4 Empirical covariances computed on quantum and cifar10

On Table D.3, for both quantum and cifar-10, we first plot the covariance matrix (1) without any
processing and (2) with standardization. In this latter case, we then plot the covariances induced by
quantization and sparsification for ω = 1 and 8. For quantum, without standardization, only four
points are visible; it is caused by some rows having extremely large values at features 27 and 43,
resulting in a feature mean 100 times greater than the others.

Looking at the covariance induced by the compressors, we observe that for small ω, quantization
better preserves the matrix structure compared to sparsification. This fact is consistent with
Figure 4.6 where is given the trace of C(CM , pH)M−1 for these eight covariances: the traces for
quantization are indeed smaller than for sparsification. This is also consistent with Figures 4.7c
and 4.7f where ω = 1 and where quantization outperforms sparsification.

D.6 Technical results on federated learning.

D.6.1 Validity of the assumptions made on the random fields in the case of
covariate-shift

In this Subsection, we examine the setting of federated and compressed LSR under the scenario of
covariate-shift (Subsection 4.4.1). Specifically, we consider the case where for any i, j in J1, NK, we
have heterogeneous covariances, i.e., Hi ̸= Hj , but a unique optimal model i.e. wi

∗ = w∗. We verify
that all the assumptions on the random fields done in Subsection 4.2.1 are fulfilled in the setting. For
this purpose, we redefine the filtration given in Section D.4 to align them with the FL setting. For k
in N∗ and for i in {1, . . . , N}, we note uik the noise that controls the compression Cik(·) at round k.

Definition D.2. We note (Gk)k∈N the filtration associated with the features noise, (Hk)k∈N the
filtration associated with the label noise, and (Ik)k∈N the filtration associated to the stochastic gradient

Appendix D. Appendix to Distributed, compressed and averaged LSR 190

noise, which is the union of the two previous filtrations. For k ∈ N∗, we define F0 = {∅} and

Gk = σ
(
Fk−1 ∪ {(xik)Ni=1}

)
Hk = σ

(
Fk−1 ∪ {(εik)Ni=1}

)
Ik = σ

(
Fk−1 ∪ {(xik, εik)Ni=1}

)
Fk = σ

(
Fk−1 ∪ {(xk, εik, uik)Ni=1}

)
.

Now we prove that all assumptions done in Section 4.2 are correct in this setting.

Property D.7 (Validity of the setting presented in Definition 4.1). Consider Algorithm 3 in the
context of Model 1, we have that the setting presented in Definition 4.1 is verified.

Proof From Algorithm 3, we have for any k in N∗ and any w in Rd, ξk(w − w∗) = ∇F (w) −
1
N

∑N
i=1 Cik(gik(w)). Because (gik)k∈N∗,i∈J1,NK and (Cik)k∈N∗,i∈J1,NK are by definition two sequences of

i.i.d. random fields (Algorithm 3), it follows that their composition is also i.i.d., hence (ξk)k∈N∗ is a
sequence of i.i.d. random fields.

Taking expectation w.r.t. the σ-algebra Ik we have E
[
Cik(gik(w))

∣∣ Ik] = gik(w) (Lemma 4.1), next
with the σ-algebra Fk−1, we have E

[
gik(w)

∣∣ Fk−1

]
= ∇Fi(w) (Equation (4.2)). And because

1
N

∑N
i=1∇Fi(w) = ∇F (w), we obtain that the random fields are zero-centered.

From Model 1, we have for any k in N∗ and any w in Rd that:

F (w) =
1

2N

N∑
i=1

E
[
(
〈
xik, w

〉
− yik)

2
]

=
1

2N

N∑
i=1

E
[
(w − w∗)⊤(xik ⊗ xik)(w − w∗)− 2εik

〈
xik, w − w∗

〉
+ (εik)

2
]

=
1

2N

N∑
i=1

(w − w∗)⊤Hi(w − w∗) + σ2 =
1

2
((w − w∗)⊤H(w − w∗) + σ2) .

And we have from Model 1: Tr
(
H
)
= 1

N

∑N
i=1Tr (Hi) =

1
N

∑N
i=1R

2
i =: R

2, which concludes the
verification.

Property D.8 (Validity of Assumption 4.1). Consider Algorithm 3 in the context of Model 1 with
Lemma 4.1, for any iteration k in N∗, the second moment of the additive noise ξaddk can be bounded
by (ω + 1)R

2
σ2/N i.e. Assumption 4.1 is verified.

Proof Let k in N∗. Because we consider Algorithm 3, with Definitions 4.1 and 4.2, we first
have ξaddk = − 1

N

∑N
i=1 Cik(gik,∗), hence taking expectation w.r.t the σ-algebra Ik and because the N

compressions are independent (Algorithm 3), using Lemma 4.1, we have that:

E
[
∥ξaddk ∥2

∣∣∣ Ik] = 1

N2

N∑
i=1

E
[∥∥Cik(gik,∗)∥∥2 ∣∣∣ Ik]+ 1

N2

∑
i ̸=j

〈
gik,∗, g

j
k,∗

〉

≤ ω + 1

N2

N∑
i=1

∥∥gik,∗∥∥2 + 1

N2

∑
i ̸=j

〈
gik,∗, g

j
k,∗

〉
.

Next, we first have from Model 1 and Equation (4.2) that for any i in {1, . . . , N}, gik,∗ = −εikxik, sec-
ondly because

(
(εik)k∈{1,...,K},i∈{1,...,N}

)
are independent from

(
(xik)k∈{1,...,K},i∈{1,...,N}

)
(Model 1), we

Appendix D. Appendix to Distributed, compressed and averaged LSR 191

have that E[∥εikxik∥2] ≤ σ2R2
i , hence it results to E

[
∥ξaddk ∥2

∣∣ Fk−1

]
= E[∥ξaddk ∥2] = ω+1

N2

∑N
i=1 σ

2R2
i .

Property D.9 (Validity of Assumption 4.2.1). Consider Algorithm 3 in the context of Model 1 with
Lemma 4.1, for any iteration k in N∗, the second moment of the multiplicative noise ξmult

k (w) can be

bounded for any w in Rd by 2(ω + 1)maxi∈{1,...,N}(R2
i)
∥∥∥H1/2

(w − w∗)
∥∥∥2 /N + 4(ω + 1)R

2
σ2/N i.e.

Assumption 4.2.1 is verified.

Proof Let k in N∗, we note η = w − w∗. Because we consider Algorithm 3, with Definitions 4.1
and 4.2, we write ξmult

k (η) = 1
N

∑N
i=1 ξ

i,mult
k (η), where ξi,mult

k (η) = Hiη − C(gik(w)) + C(gik,∗) is the
multiplicative noise on client i in {1, . . . , N}, hence developing the squared norm gives:

∥∥∥ξmult
k (η)

∥∥∥2 = ∥∥∥∥∥ 1

N

N∑
i=1

ξi,mult
k (η)

∥∥∥∥∥
2

=
1

N2

N∑
i=1

∥∥∥ξi,mult
k (η)

∥∥∥2 + 1

N2

∑
i ̸=j

〈
ξi,mult
k (η), ξj,mult

k (η)
〉
.

Taking expectation w.r.t. the σ-algebra Fk−1, using that the N compressions are independent
(Algorithm 3) and that for any i in {1, . . . , N}, E[ξi,mult

k (η) | Fk−1] = 0 (Lemma 4.1) results to have:

E[∥ξmult
k (η) ∥2 | Fk−1] =

1

N2

N∑
i=1

E[∥ξi,mult
k (η)∥2 | Fk−1] .

Next, we use the result of Property D.3 for each client i in {1, . . . , N} and we obtain:

E
[
∥ξmult

k (η) ∥2
∣∣∣ Fk−1

]
≤ 1

N2

N∑
i=1

(
2(ω + 1)R2

i ∥H1/2
i (w − w∗)∥2 + 4(ω + 1)R2

i σ
2
)

≤
2(ω + 1)maxi∈{1,...,N}(R2

i)

N
∥H1/2

(w − w∗)∥2 +
4(ω + 1)R

2
σ2

N
,

which allows concluding.

Property D.10 (Validity of Assumption 4.2.2). Consider Algorithm 3 in the context of Model 1 with
Lemma 4.1, for any iteration k in N∗, the second moment of the multiplicative noise ξmult

k (w) can be
bounded for any w in Rd by (Ωσmaxi∈{1,...,N}(R2

i)∥H
1/2

(w−w∗)∥+(ω+1)maxi∈{1,...,N}(R2
i)∥H

1/2
(w−

w∗)∥2)/N i.e. Assumption 4.2.2 is verified.

Proof Let k in N∗, we note η = w−w∗. From Property D.9, taking expectation w.r.t. the σ-algebra
Fk−1, decomposing the multiplicative noise results to have:

E[∥ξmult
k (η) ∥2 | Fk−1] =

1

N2

N∑
i=1

E[∥ξi,mult
k (η)∥2 | Fk−1] .

Next we use the result of Property D.4 for each client i in {1, . . . , N} and we obtain:

E[∥ξmult
k (η) ∥2 | Fk−1] ≤

1

N2

N∑
i=1

ΩR2
i σ

√
∥H1/2

i (w − w∗)∥2 + (ω + 1)R2
i ∥H1/2

i (w − w∗)∥2 .

Appendix D. Appendix to Distributed, compressed and averaged LSR 192

With Jensen’s inequality A.7 used for concave function:

E

[∥∥∥ξmult
k (η)

∥∥∥2 ∣∣∣∣ Fk−1

]
≤

Ωσmaxi∈{1,...,N}(R2
i)

N

√√√√ 1

N

N∑
i=1

∥H1/2
i (w − w∗)∥2

+
(ω + 1)maxi∈{1,...,N}(R2

i)

N2

N∑
i=1

∥H1/2
i (w − w∗)∥2

≤
Ωσmaxi∈{1,...,N}(R2

i)

N

√
∥H1/2

(w − w∗)∥2

+
1

N
(ω + 1) max

i∈{1,...,N}
(R2

i)∥H
1/2

(w − w∗)∥2 ,

which allows concluding.

Property D.11 (Validity of Assumption 4.3). Consider Algorithm 3 in the context of Model 1 with
Lemma 4.1, if the compressor C is linear, then for any iteration k in N∗, the multiplicative noise
ξmult
k is linear, thus there exist a matrix Ξk in Rd×d such that for any w in Rd, ξmult

k (w) = Ξkw.
Furthermore the second moment of the multiplicative noise can be bounded for any w in Rd by

(ω + 1)maxi∈{1,...,N}(R2
i)
∥∥∥H1/2

(w − w∗)
∥∥∥2 /N , hence Assumption 4.3 is verified.

Proof Let k in N∗, we note η = w − w∗. Because we consider Algorithm 3, with Definitions 4.1
and 4.2, we write ξmult

k (η) = 1
N

∑N
i=1 ξ

i,mult
k (η), where ξi,mult

k (η) = Hiη − C(gik(w)) + C(gik,∗) is the
multiplicative noise on client i in {1, . . . , N}. And because for any clients i in {1, · · ·N} the random
mechanism Cik is linear, there exists a random matrix Πi

k in Rd×d s.t. for any z in Rd, we have
Cik(z) = Πi

kz, it follows that:

ξmult
k (η) = ∇F (w)− 1

N

N∑
i=1

Cik(gik(w)) + Cik(gik,∗) =
(
H − 1

N

N∑
i=1

Πi
k(x

i
k ⊗ xik)

)
η .

Hence, the first part of Assumption 4.2.2 is verified with Ξk = 1
N

∑N
i=1Hi − Πi

k(x
i
k ⊗ xik). From

Property D.9, taking expectation w.r.t. the σ-algebra Fk−1, decomposing the multiplicative noise
results to have:

E

[∥∥∥ξmult
k (η)

∥∥∥2 ∣∣∣∣ Fk−1

]
=

1

N2

N∑
i=1

E

[∥∥∥ξi,mult
k (η)

∥∥∥2 ∣∣∣∣ Fk−1

]
.

Next we use the result of Property D.5 for each client i in {1, . . . , N} and we obtain:

E

[∥∥∥ξmult
k (η)

∥∥∥2 ∣∣∣∣ Fk−1

]
≤ 1

N

N∑
i=1

(ω + 1)R2
i

∥∥∥H1/2
i (w − w∗)

∥∥∥2
≤

(ω + 1)maxi∈{1,...,N}(R2
i)

N2

∥∥∥∥∥ 1

N

N∑
i=1

H
1/2
i (w − w∗)

∥∥∥∥∥
2

,

which allows concluding.

Appendix D. Appendix to Distributed, compressed and averaged LSR 193

Property D.12 (Validity of Assumption 4.4). Considering Algorithm 3 under the setting of
Model 2 with Remark 4.1 and Lemma 4.1, if the compressor C is linear, then for any k in N∗,
we have Cania ≼ σ2maxi∈{1,...,N}(XHi)H/N and E

[
ΞkΞ

⊤
k

]
≼ maxi∈{1,...,N}(R2

iXHi)H/N , with
(XHi)i∈{1,...,N} given in Corollary 4.2. Overall, Assumption 4.4 is thus verified.

Proof

First inequality.

By Definition 4.3, we have Cania = E[ξaddk ⊗ ξaddk | Fk−1] =
1
N2

∑N
i=1 E[Cik(gik,∗)⊗2 | Fk−1], because

for any client i in {1, . . . , N}
(
(εik)k∈{1,...,K}

)
is independent from

(
(xik)k∈{1,...,K}

)
(Model 1) and

using compressor linearity and Equation (D.22), it gives:

Cania = σ2 1

N2

N∑
i=1

E
[
Cik(xik)⊗2

]
=

σ2

N2

N∑
i=1

C(Ci, pHi) ≼
σ2

N2

N∑
i=1

XHiH ≼
σ2maxi∈{1,...,N}(XHi)

N
H .

Second inequality.

Using Property D.11, because the random mechanism Ci is linear, there exists two matrices Πi
k,Ξ

i
k

in Rd×d s.t. for any z in Rd, we have Cik(z) = Πi
kz and ξmult,i

k (z) = Ξi
kz = (Hi −Πi

k(x
i
k ⊗ xik)z, which

gives that Ξk = 1
N

∑N
i=1Hi −Πi

k(x
i
k ⊗ xik). It follows that:

ΞkΞ
⊤
k =

1

N2

N∑
i=1

(Ξi
k)(Ξ

i
k)

⊤ +
1

N2

∑
i ̸=j

(Ξi
k)(Ξ

j
k)

⊤ .

Taking the σ-algebra Fk−1, using that the N compressions are independent (Algorithm 3) and
that for any i in {1, . . . , N}, E

[
ξi,mult
k

∣∣∣ Fk−1

]
= 0 (Lemma 4.1) results to have E[ΞkΞ

⊤
k | Fk−1] =

1
N2

∑N
i=1 E

[
(Ξi

k)(Ξ
i
k)

⊤ ∣∣ Fk−1

]
. Now, we can reuse the computations given in Property D.6 to

obtain E
[
(Ξi

k)(Ξ
i
k)

⊤ ∣∣ Fk−1

]
≼ R2

iXHiHi. Therefore, we can state that E
[
ΞkΞ

⊤
k

∣∣ Fk−1

]
≼

maxi∈{1,...,N}(R2
iXHi)H/N , which concludes the second part of the verification of Assumption 4.4.

D.6.2 Heterogeneous optimal point

In this Section, we explore further the scenario of concept-shift by adding a memory mechanism, as
in Section 2.3. Indeed, Theorem 2.1 shows that this mechanism improves the convergence in the case
of heterogeneous clients. We give below the updates equation defining the algorithm of distributed
compressed LSR with memory.

Algorithm 4 (Distributed compressed LMS with control variates). Each client i ∈ {1, . . . , N}
maintains a sequence (hik)i∈{1,...,N} in Rd, observes at any step k ∈ {1, . . . ,K} an oracle gik(·) on the
gradient of the local objective function Fi and applies an independent random compression mechanism
Cik(·) to the difference gik − hik. And for any step-size γ > 0, any k ∈ N∗, the sequence of iterates
(wk)k∈N satisfies:

wk = wk−1 −
γ

N

N∑
i=1

Cik(gik(wk−1)− hik−1) + hik−1

hik = hik−1 + αCik(gik(wk−1)− hik−1) ,

(D.28)

with α = 1/2(ω + 1).

Appendix D. Appendix to Distributed, compressed and averaged LSR 194

The counterpart of adding memory is that the random fields are no more identically distributed,
thus Definition 4.1 is not fulfilled, and results from Section 4.2 cannot be applied, especially because
E
[
ξaddk ⊗ ξaddk

]
changes along iterations. To remedy this problem, we define here the limit of the

covariance of the additive noise i.e. C∞
ania = lim

k→+∞
E
[
ξaddk ⊗ ξaddk

]
. In the following result, we establish

an asymptotic result on the convergence, similar to Theorem 4.1.

Theorem D.3 (CLT for concept-shift heterogeneity). Consider Algorithm 4 under Model 1 with
µ > 0 and Lemma 4.1, for any step-size (γk)k∈N∗ s.t. γk = 1/

√
k. Then

1. (
√
KηK−1)K>0

L−−−−−→
K→+∞

N (0, H−1
F C∞

aniaH
−1
F),

2. C∞
ania = C((Ci, pΘ′

i
)Ni=1), where pΘ′

i
is the distribution of gik,∗ −∇Fi(w∗).

Theorem D.3 shows that when using memory, in the settings of heterogeneous optimal points (wi
∗)

N
i=1,

convergence is still impacted by heterogeneity but with a smaller additive noise’s covariance as
Θ′

i ≺ Θi. In particular, in the case of deterministic gradients (batch case), we case Θ′
i ≡ 0. From a

technical standpoint, it shows that we recover asymptotically the results stated by Theorems 4.1
and 4.2 in the general setting of i.i.d. random fields (ξk(ηk−1))k∈N∗ . To prove this theorem, we show
that the assumptions required by Theorem A.1 are fulfilled by this framework.

Proof

For the sake of demonstration, we define a Lyapunov function Vk as in Section B.4, with k in J1,KK:

Vk = ∥ηk∥2 + 2γ2kC
1

N

N∑
i=1

∥∥hik−1 −∇Fi(w∗)
∥∥2 ,

with C in R∗ being a Lyapunov constant that verifies some conditions given in Theorem B.2. For
any k in N, the Lyapunov function is defined combining two terms: (1) the distance from parameter
wk to the optimal parameter w∗, (2) for any client i in {1, . . . , N}, the distance between the memory
term hik−1 and the true gradient ∇Fi(w∗).

First, we have that in the case of decreasing step size s.t. for any k in N, γk = k−α, we

have ηK
L2

−−−−−→
K→+∞

0 and hiK
L2

−−−−−→
K→+∞

∇Fi(w∗).

Let k in N∗, from the demonstration of the Artemis algorithm with memory, we have from Theo-
rem B.2 that (1) combining Equation (B.12) and Equation (B.13) in the form (B.12)+2γ2kC(B.13),
(2) and applying strong-convexity, allows to obtain Equation (B.15) but adapted to decreasing
step-size:

E [Vk | Fk−1] ≤ (1− 2γkµ□k) ∥wk−1 − w∗∥2 +
2γ2kC♢

N

N∑
i=1

∥∥hik−1 −∇Fi(w∗)
∥∥2 + 2γ2kσ△

N
,

with □k,♢,△ being three constants in R whose exact expression is given in the proof of Theorem B.2.
Furthermore, in the same article, they verify that to obtain a (1− γkµ) convergence, the following
condition on □k,♢,△ are fulfilled for any k in N∗: □k ≤ 1/2 and ♢ ≤ 1− γkµ.

These properties are valid under some conditions on the Lyapunov constant C, the step-size γk, and
the learning rate α; these conditions are provided in the statement of Theorem B.2 and we don’t
recall them here. Hence, we can write that we have:

E [Vk | Fk−1] ≤ (1− γkµ)

(
∥wk−1 − w∗∥2 +

2γ2kC

N

N∑
i=1

∥∥hik−1 −∇Fi(w∗)
∥∥2)+

2γ2kσ
2△

N
,

Appendix D. Appendix to Distributed, compressed and averaged LSR 195

and because for any k in N , the step-size is decreasing, we have γk ≤ γk−1, which makes to recover
the Lyapunov function Vk−1 at step k − 1: E [Vk | Fk−1] ≤ (1 − γkµ)Vk−1 +

2γ2
kσ

2△
N . Taking full

expectation and unrolling the sequence (Vk)k∈N, we obtain:

EVk ≤
k∏

i=1

(1− γiµ)V0 +
2σ2△
N

k∑
j=1

γ2j

k∏
i=j+1

(1− γiµ) . (D.29)

To show that each part of the bound given in Equation (D.29) tends to zero when k grows to infinity
is classical computations and can be find for instance in lectures notes of Bach [2022, pages 164-167
and 182], and Kushner and Yin [2003].

To apply Theorem 1 from Polyak and Juditsky [1992, recalled in Theorem A.1], which gives the
desired result, it suffices to prove the convergence in probability of the covariance of the noise
ξk(ηk−1) towards Cania, as k →∞.

In the following, we show that lim
k→+∞

E
[
ξk(ηk−1)ξk(ηk−1)

⊤ ∣∣ Fk−1

] P
= C∞

ania. Let k in N∗, for

this purpose, we consider the following additive/multiplicative noise decomposition:
ξAk,∗ = −

1

N

N∑
i=1

Cik(gik,∗ −∇Fi(w∗))

ξMk (ηk) = HF ηk −
1

N

N∑
i=1

Cik(gik(wk−1)− hik−1) +
1

N

N∑
i=1

Cik(gk,∗ −∇Fi(w∗)) + hik−1 .

(D.30)

Furthermore, we have that ξaddk
L2

−−−−→
k→+∞

ξAk,∗ because of the Hölder-inequality (Lemma 4.1) and

because we shown that hiK
L2

−−−−−→
K→+∞

∇Fi(w∗); thereby E[ξaddk ⊗ ξaddk]
L1

−−−−→
k→+∞

C∞
ania. Next, from

Equation (D.30), we write:

ξk(ηk−1)ξk(ηk−1)
⊤ = (ξAk,∗ − ξMk (ηk−1))(ξ

A
k,∗ − ξMk (ηk−1))

⊤

= ξAk,∗ ⊗ ξAk,∗ − ξAk,∗ξ
M
k (ηk−1)

⊤ − ξMk (ηk−1)(ξ
A
k,∗)

⊤ + ξMk (ηk−1)⊗ ξMk (ηk−1) .

(i) Developing the covariance of the additive noise and considering Model 1 and Algorithm 3 results
to E[ξAk,∗ ⊗ ξAk,∗ | Fk−1] =

1
N2

∑N
i=1 E[Cik(gik,∗ −∇Fi(w∗))⊗2 | Fk−1]. For any iteration k in N∗ and

any client i in {1, . . . , N}, we note Θ′
i the covariance of gik,∗ −∇Fi(w∗), then gik,∗ −∇Fi(w∗) is an

i.i.d. zero-centered random vectors draw from a distribution pΘ′
i
, hence we have for any iteration k

in N∗, C∞
ania = E[ξAk,∗ ⊗ ξAk,∗ | Fk−1] = C(Ci, (pΘ′

i
)Ni=1) .

(ii) Second, we show that E
[
ξMk (ηk−1)

⊗2
∣∣ Fk−1

]
converge to 0 in probability: it is sufficient to show

that ∥ξMk (ηk−1)
⊗2∥F tends to 0. To do so, we use the fact that ∥ξMk (ηk−1)

⊗2∥F = ∥ξMk (ηk−1)∥22, it
results to the following decomposition:

∥ξMk (ηk−1)
⊗2∥ ≤ 3 ∥Hηk−1∥2 + 3

∥∥∥∥∥ 1

N

N∑
i=1

Cik(gik(wk−1)− hik−1)− Cik(gik,∗ −∇Fi(w∗))

∥∥∥∥∥
2

+ 3

∥∥∥∥∥ 1

N

N∑
i=1

hik−1 −∇Fi(w∗)

∥∥∥∥∥
2

.

Considering the Hölder inequality given in Item L.2 from Lemma 4.1, because ηk
L2

−−−−→
k→+∞

0 and

hik
L2

−−−−→
k→+∞

∇Fi(w∗), we deduce that E
[
ξMk (ηk−1)

⊗2
∣∣ Fk−1

]
tends to 0 in L1-norm.

Appendix D. Appendix to Distributed, compressed and averaged LSR 196

(iii) Third, it remains to show that E[ξMk (ηk−1)(ξ
A
k,∗)

⊤ | Fk−1]
P−−−−→

k→+∞
0. We use the Cauchy-Schwarz

inequality’s A.8 for conditional expectation:

E
[
ξMk (ηk−1)(ξ

A
k,∗)

⊤∥F
∣∣∣ Fk−1

]2
= E

[
ξMk (ηk−1)∥2∥(ξAk,∗)⊤∥2

∣∣∣ Fk−1

]2
≤ ∥E

[
ξMk (ηk−1)∥22

∣∣ Fk−1

]
E
[
∥(ξAk,∗)⊤∥22

∣∣∣ Fk−1

]
.

The sequence of random vectors (ξAk,∗)k∈N is i.i.d., and moreover we have shown previously that
ξMk (ηk−1)

⊗2 tends to 0, hence E[ξMk (ηk−1)(ξ
A
k,∗)

⊤ | Fk−1] converges to 0 in distribution. Consequently,
noting Θ′

i = E[gik,∗ −∇Fi(w∗))⊗2] we can state that:

E
[
ξk(ηk−1)

⊗2
∣∣ Fk−1

] P−−−−→
k→+∞

C∞
ania = C(Ci, (pΘ′

i
)Ni=1) .

Bibliography

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: a system for large-scale
machine learning. In Proceedings of the 12th USENIX conference on Operating Systems Design
and Implementation, OSDI’16, pages 265–283, USA, Nov. 2016. USENIX Association. ISBN
978-1-931971-33-1.

N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMahan. cpSGD: Communication-efficient
and differentially-private distributed SGD. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 7564–7575. Curran Associates, Inc., 2018.

V. Albino, U. Berardi, and R. M. Dangelico. Smart cities: Definitions, dimensions, performance,
and initiatives. Journal of urban technology, 22(1):3–21, 2015.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-Efficient SGD
via Gradient Quantization and Encoding. Advances in Neural Information Processing Systems, 30:
1709–1720, 2017.

D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli. The Convergence
of Sparsified Gradient Methods. Advances in Neural Information Processing Systems, 31:5973–5983,
2018.

L. F. W. Anthony, B. Kanding, and R. Selvan. Carbontracker: Tracking and predicting the carbon
footprint of training deep learning models. arXiv preprint arXiv:2007.03051, 2020.

R. Arablouei, S. Werner, K. Doğançay, and Y.-F. Huang. Analysis of a reduced-communication
diffusion lms algorithm. Signal Processing, 117:355–361, 2015.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In International
conference on machine learning, pages 214–223. PMLR, 2017.

F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4(none):
384–414, Jan. 2010. ISSN 1935-7524, 1935-7524. doi: 10.1214/09-EJS521. Publisher: Institute of
Mathematical Statistics and Bernoulli Society.

F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic
regression. The Journal of Machine Learning Research, 15(1):595–627, 2014.

197

Bibliography 198

F. Bach. Lecture notes on statistical machine learning and convex optimization, 2022.

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence
rate O(1/n). In Neural Information Processing Systems (NIPS), pages –, United States, Dec. 2013.

C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi, L. Jesus, R. Berriel,
T. M. Paixao, F. Mutz, et al. Self-driving cars: A survey. Expert Systems with Applications, 165:
113816, 2021.

M. Beaussart, F. Grimberg, M.-A. Hartley, and M. Jaggi. WAFFLE: Weighted Averaging for
Personalized Federated Learning, Dec. 2021. arXiv:2110.06978 [cs].

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine-learning practice and
the classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):
15849–15854, 2019. Publisher: National Acad Sciences.

R. M. Bell, Y. Koren, and C. Volinsky. The bellkor solution to the netflix prize. KorBell Team’s
Report to Netflix, 2007.

A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic approximations,
volume 22. Springer Science & Business Media, 2012.

J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd: Compressed optimisa-
tion for non-convex problems. In International Conference on Machine Learning, pages 560–569.
PMLR, 2018.

N. Bershad. Analysis of the normalized lms algorithm with gaussian inputs. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 34(4):793–806, 1986.

A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan. On Biased Compression for Distributed
Learning. arXiv:2002.12410 [cs, math, stat], Feb. 2020. arXiv: 2002.12410.

S. Bitam, A. Mellouk, and S. Zeadally. Vanet-cloud: a generic cloud computing model for vehicular
ad hoc networks. IEEE Wireless Communications, 22(1):96–102, 2015.

J. R. Blum. Multidimensional stochastic approximation methods. The Annals of Mathematical
Statistics, pages 737–744, 1954.

L. Bottou. Online learning and stochastic approximations. 1999. doi: 10.1017/CBO9780511569920.
003.

L. Bottou. Large-Scale Machine Learning with Stochastic Gradient Descent. In Y. Lechevallier
and G. Saporta, editors, Proceedings of COMPSTAT’2010, pages 177–186, Heidelberg, 2010.
Physica-Verlag HD. ISBN 978-3-7908-2604-3. doi: 10.1007/978-3-7908-2604-3_16.

L. Bottou and O. Bousquet. The Tradeoffs of Large Scale Learning. Advances in Neural Information
Processing Systems, 20:161–168, 2007.

S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

S. Brandi, M. S. Piscitelli, M. Martellacci, and A. Capozzoli. Deep reinforcement learning to optimise
indoor temperature control and heating energy consumption in buildings. Energy and Buildings,
224:110225, 2020.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

S. Bubeck. Convex Optimization: Algorithms and Complexity. arXiv:1405.4980 [cs, math, stat],
Nov. 2015. arXiv: 1405.4980.

Bibliography 199

S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and A. Talwalkar.
LEAF: A Benchmark for Federated Settings. arXiv:1812.01097 [cs, stat], Dec. 2019. arXiv:
1812.01097.

M. Campbell, M. Egerstedt, J. P. How, and R. M. Murray. Autonomous driving in urban environ-
ments: approaches, lessons and challenges. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 368(1928):4649–4672, 2010.

L. Carratino, A. Rudi, and L. Rosasco. Learning with SGD and Random Features. In Advances in
Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

R. Caruana, T. Joachims, and L. Backstrom. KDD-Cup 2004: results and analysis. ACM SIGKDD
Explorations Newsletter, 6(2):95–108, Dec. 2004. ISSN 1931-0145. doi: 10.1145/1046456.1046470.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(3):27:1–27:27, May 2011. ISSN 2157-6904. doi: 10.1145/
1961189.1961199.

J. H. Chen and S. M. Asch. Machine learning and prediction in medicine—beyond the peak of
inflated expectations. The New England journal of medicine, 376(26):2507, 2017.

W. Chen, S. Horvath, and P. Richtarik. Optimal Client Sampling for Federated Learning, Oct. 2020.
arXiv:2010.13723 [cs] version: 1.

H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado,
W. Chai, M. Ispir, et al. Wide & deep learning for recommender systems. In Proceedings of the
1st workshop on deep learning for recommender systems, pages 7–10, 2016.

T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building an efficient
and scalable deep learning training system. In 11th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 14), pages 571–582, 2014.

E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J. Sun. Doctor ai: Predicting clinical
events via recurrent neural networks. In Machine learning for healthcare conference, pages 301–318.
PMLR, 2016.

S. Chraibi, A. Khaled, D. Kovalev, P. Richtárik, A. Salim, and M. Takáč. Distributed fixed point
methods with compressed iterates. arXiv preprint arXiv:1912.09925, 2019.

I. Colin, A. Bellet, J. Salmon, and S. Clémençon. Gossip Dual Averaging for Decentralized Optimiza-
tion of Pairwise Functions. In International Conference on Machine Learning, pages 1388–1396.
PMLR, June 2016. ISSN: 1938-7228.

L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai. Exploiting shared representations for
personalized federated learning. In International Conference on Machine Learning, pages 2089–
2099. PMLR, 2021.

L. Condat and P. Richtarik. Murana: A generic framework for stochastic variance-reduced opti-
mization. In B. Dong, Q. Li, L. Wang, and Z.-Q. J. Xu, editors, Proceedings of Mathematical
and Scientific Machine Learning, volume 190 of Proceedings of Machine Learning Research, pages
81–96. PMLR, 15–17 Aug 2022.

L. Condat, K. Yi, and P. Richtárik. EF-BV: A unified theory of error feedback and variance
reduction mechanisms for biased and unbiased compression in distributed optimization. In A. H.
Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=PeJO709WUup.

https://openreview.net/forum?id=PeJO709WUup

Bibliography 200

J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero Ibáñez. A seven-layered model architecture for
internet of vehicles. Journal of Information and Telecommunication, 1(1):4–22, 2017.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube recommendations. In
Proceedings of the 10th ACM conference on recommender systems, pages 191–198, 2016.

D. Csiba and P. Richtárik. Importance sampling for minibatches. The Journal of Machine Learning
Research, 19(1):962–982, 2018.

X. Dai, X. Yan, K. Zhou, H. Yang, K. K. Ng, J. Cheng, and Y. Fan. Hyper-sphere quantization:
Communication-efficient sgd for federated learning. arXiv preprint arXiv:1911.04655, 2019.

Dall-E. An old castle on a cloud in a miyazaki style. https://labs.openai.com/, 2023. Accessed:
2023-04-01.

I. Dayan, H. R. Roth, A. Zhong, A. Harouni, A. Gentili, A. Z. Abidin, A. Liu, A. B. Costa, B. J.
Wood, C.-S. Tsai, et al. Federated learning for predicting clinical outcomes in patients with
covid-19. Nature medicine, 27(10):1735–1743, 2021.

J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, Q. Le, and A. Ng. Large Scale Distributed Deep Networks. Advances in Neural
Information Processing Systems, 25, 2012.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support
for non-strongly convex composite objectives. Advances in neural information processing systems,
27, 2014.

A. Defossez and F. Bach. Averaged Least-Mean-Squares: Bias-Variance Trade-offs and Optimal
Sampling Distributions. In Proceedings of the Eighteenth International Conference on Artificial
Intelligence and Statistics, pages 205–213. PMLR, Feb. 2015. ISSN: 1938-7228.

B. Delyon. General results on the convergence of stochastic algorithms. IEEE Transactions on
Automatic Control, 41(9):1245–1255, 1996.

Y. Deng, M. M. Kamani, and M. Mahdavi. Adaptive Personalized Federated Learning, Nov. 2020.
arXiv:2003.13461 [cs, stat].

A. Dieuleveut and F. Bach. Nonparametric stochastic approximation with large step-sizes. Ann.
Statist., 44(4):1363–1399, 2016. ISSN 0090-5364. doi: 10.1214/15-AOS1391.

A. Dieuleveut, N. Flammarion, and F. Bach. Harder, better, faster, stronger convergence rates
for least-squares regression. The Journal of Machine Learning Research, 18(1):3520–3570, 2017.
Publisher: JMLR. org.

A. Dieuleveut, A. Durmus, and F. Bach. Bridging the gap between constant step size stochastic
gradient descent and markov chains. Ann. Statist., 48(3):1348–1382, 06 2020. doi: 10.1214/
19-AOS1850. URL https://doi.org/10.1214/19-AOS1850.

A. Dieuleveut, G. Fort, E. Moulines, and G. Robin. Federated-em with heterogeneity mitigation and
variance reduction. Advances in Neural Information Processing Systems, 34:29553–29566, 2021.

J. O. du Terrail, A. Leopold, C. Joly, C. Beguier, M. Andreux, C. Maussion, B. Schmauch, E. W.
Tramel, E. Bendjebbar, M. Zaslavskiy, et al. Collaborative federated learning behind hospitals’
firewalls for predicting histological response to neoadjuvant chemotherapy in triple-negative breast
cancer. medRxiv, pages 2021–10, 2021.

https://labs.openai.com/
https://doi.org/10.1214/19-AOS1850

Bibliography 201

J. O. du Terrail, S.-S. Ayed, E. Cyffers, F. Grimberg, C. He, R. Loeb, P. Mangold, T. Marchand,
O. Marfoq, E. Mushtaq, B. Muzellec, C. Philippenko, S. Silva, M. Teleńczuk, S. Albarqouni,
S. Avestimehr, A. Bellet, A. Dieuleveut, M. Jaggi, S. P. Karimireddy, M. Lorenzi, G. Neglia,
M. Tommasi, and M. Andreux. FLamby: Datasets and benchmarks for cross-silo federated learning
in realistic healthcare settings. In Thirty-sixth conference on neural information processing systems
datasets and benchmarks track, 2022.

J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized Smoothing for Stochastic Optimization.
SIAM Journal on Optimization, 22(2):674–701, Jan. 2012. ISSN 1052-6234. doi: 10.1137/110831659.
Publisher: Society for Industrial and Applied Mathematics.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification and scene analysis, volume 3. Wiley
New York, 1973.

M. Duflo. Random iterative models, volume 34. Springer Science & Business Media, 1997.

H. Eichner, T. Koren, H. B. McMahan, N. Srebro, and K. Talwar. Semi-Cyclic Stochastic Gradient
Descent. Apr. 2019.

P. Elias. Universal codeword sets and representations of the integers, Sept. 1975.

A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado,
S. Thrun, and J. Dean. A guide to deep learning in healthcare. Nature medicine, 25(1):24–29,
2019.

M. Even, L. Massoulié, and K. Scaman. Sample Optimality and All-for-all Strategies in Personalized
Federated and Collaborative Learning, Feb. 2022. arXiv:2201.13097 [math].

A. Fallah, A. Mokhtari, and A. Ozdaglar. Personalized Federated Learning: A Meta-Learning
Approach, Oct. 2020. arXiv:2002.07948 [cs, math, stat].

I. Fatkhullin, I. Sokolov, E. Gorbunov, Z. Li, and P. Richtárik. EF21 with Bells & Whistles: Practical
Algorithmic Extensions of Modern Error Feedback, Oct. 2021. arXiv:2110.03294 [cs, math].

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with
discriminatively trained part-based models. IEEE transactions on pattern analysis and machine
intelligence, 32(9):1627–1645, 2009.

N. Flammarion and F. Bach. From averaging to acceleration, there is only a step-size. In P. Grünwald,
E. Hazan, and S. Kale, editors, Proceedings of The 28th Conference on Learning Theory, volume 40
of Proceedings of Machine Learning Research, pages 658–695, Paris, France, 03–06 Jul 2015. PMLR.
URL https://proceedings.mlr.press/v40/Flammarion15.html.

Y. Fraboni, R. Vidal, L. Kameni, and M. Lorenzi. Clustered Sampling: Low-Variance and Im-
proved Representativity for Clients Selection in Federated Learning. In Proceedings of the 38th
International Conference on Machine Learning, pages 3407–3416. PMLR, July 2021a. ISSN:
2640-3498.

Y. Fraboni, R. Vidal, and M. Lorenzi. Free-rider attacks on model aggregation in federated learning.
In International Conference on Artificial Intelligence and Statistics, pages 1846–1854. PMLR,
2021b.

Y. Fraboni, R. Vidal, L. Kameni, and M. Lorenzi. A General Theory for Client Sampling in Federated
Learning. In International Workshop on Trustworthy Federated Learning in Conjunction with
IJCAI 2022 (FL-IJCAI’22), Vienna, Austria, July 2022.

https://proceedings.mlr.press/v40/Flammarion15.html

Bibliography 202

M. I. Freidlin and A. D. Wentzell. Random perturbations. In Random perturbations of dynamical
systems, pages 15–43. Springer, 1998.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Machine learning:
Proceedings of the thirteenth international conference, pages 148–156. Morgan Kaufmann, 1996.

S. Gadat and I. Gavra. Asymptotic study of stochastic adaptive algorithms in non-convex landscape.
The Journal of Machine Learning Research, 23(1):10357–10410, 2022.

S. Gadat and F. Panloup. Optimal non-asymptotic analysis of the Ruppert–Polyak averaging
stochastic algorithm. Stochastic Processes and their Applications, 156:312–348, Feb. 2023. ISSN
0304-4149. doi: 10.1016/j.spa.2022.11.012.

V. Gandikota, D. Kane, R. K. Maity, and A. Mazumdar. vqsgd: Vector quantized stochastic gradient
descent. In International Conference on Artificial Intelligence and Statistics, pages 2197–2205.
PMLR, 2021.

H. Gao, A. Xu, and H. Huang. On the convergence of communication-efficient local sgd for federated
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
7510–7518, 2021.

C. F. Gauss. Theoria motus corporum coelestium in sectionibus conicis solem ambientium, volume 7.
FA Perthes, 1809.

A. Gersho and R. M. Gray. Vector quantization and signal compression, volume 159. Springer
Science & Business Media, 2012.

H. S. Ghadikolaei, S. Stich, and M. Jaggi. Lena: Communication-efficient distributed learning with
self-triggered gradient uploads. In International Conference on Artificial Intelligence and Statistics,
pages 3943–3951. PMLR, 2021.

H. Ghayvat, S. Mukhopadhyay, X. Gui, and N. Suryadevara. Wsn-and iot-based smart homes and
their extension to smart buildings. Sensors, 15(5):10350–10379, 2015.

R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pages 1440–1448, 2015.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial networks. Communications of the ACM, 63(11):139–144, 2020.

E. Gorbunov, F. Hanzely, and P. Richtárik. A unified theory of sgd: Variance reduction, sampling,
quantization and coordinate descent. In International Conference on Artificial Intelligence and
Statistics, pages 680–690. PMLR, 2020a.

E. Gorbunov, D. Kovalev, D. Makarenko, and P. Richtarik. Linearly Converging Error Compensated
SGD. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 20889–20900. Curran Associates, Inc.,
2020b.

E. Gorbunov, K. P. Burlachenko, Z. Li, and P. Richtárik. Marina: Faster non-convex distributed
learning with compression. In International Conference on Machine Learning, pages 3788–3798.
PMLR, 2021.

R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik. SGD: General
Analysis and Improved Rates. In International Conference on Machine Learning, pages 5200–5209.
PMLR, May 2019. ISSN: 2640-3498.

Bibliography 203

F. Grimberg, M.-A. Hartley, M. Jaggi, and S. P. Karimireddy. Weight erosion: An update aggregation
scheme for personalized collaborative machine learning. In Domain adaptation and representation
transfer, and distributed and collaborative learning, pages 160–169. Springer, 2020.

D. Grishchenko, F. Iutzeler, J. Malick, and M.-R. Amini. Distributed learning with sparse com-
munications by identification. SIAM Journal on Mathematics of Data Science, 3(2):715–735,
2021.

K. Gruntkowska, A. Tyurin, and P. Richtárik. EF21-P and Friends: Improved Theoretical Commu-
nication Complexity for Distributed Optimization with Bidirectional Compression, Sept. 2022.
arXiv:2209.15218 [cs, math].

V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan,
K. Widner, T. Madams, J. Cuadros, et al. Development and validation of a deep learning
algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 316(22):
2402–2410, 2016.

L. Györfi and H. Walk. On the averaged stochastic approximation for linear regression. SIAM
Journal on Control and Optimization, 34(1):31–61, 1996.

F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi. Federated learning with compression:
Unified analysis and sharp guarantees. In A. Banerjee and K. Fukumizu, editors, Proceedings
of The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 2350–2358. PMLR, 13–15 Apr 2021. URL
https://proceedings.mlr.press/v130/haddadpour21a.html.

K. Hamidieh. A data-driven statistical model for predicting the critical temperature of a super-
conductor. Computational Materials Science, 154:346–354, Nov. 2018. ISSN 0927-0256. doi:
10.1016/j.commatsci.2018.07.052.

I. E. K. Harrane, R. Flamary, and C. Richard. On reducing the communication cost of the diffusion
lms algorithm. IEEE Transactions on Signal and Information Processing over Networks, 5(1):
100–112, 2018.

T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements of statistical learning:
data mining, inference, and prediction, volume 2. Springer, 2009.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau. Towards the systematic
reporting of the energy and carbon footprints of machine learning. Journal of Machine Learning
Research, 21(248):1–43, 2020.

S. Horvath, C.-Y. Ho, L. Horvath, A. N. Sahu, M. Canini, and P. Richtárik. Natural compression
for distributed deep learning. In Mathematical and Scientific Machine Learning, pages 129–141.
PMLR, 2022.

S. Horváth, D. Kovalev, K. Mishchenko, P. Richtárik, and S. Stich. Stochastic distributed learning
with gradient quantization and double-variance reduction. Optimization Methods and Software,
pages 1–16, 2022.

S. Horváth and P. Richtárik. A Better Alternative to Error Feedback for Communication-Efficient
Distributed Learning. arXiv:2006.11077 [cs, stat], June 2020. arXiv: 2006.11077.

https://proceedings.mlr.press/v130/haddadpour21a.html

Bibliography 204

S. Horváth, D. Kovalev, K. Mishchenko, S. Stich, and P. Richtárik. Stochastic Distributed Learning
with Gradient Quantization and Variance Reduction. arXiv:1904.05115 [math], Apr. 2019. arXiv:
1904.05115.

D. Hsu, S. M. Kakade, and T. Zhang. Random Design Analysis of Ridge Regression. In Proceedings of
the 25th Annual Conference on Learning Theory, pages 9.1–9.24. JMLR Workshop and Conference
Proceedings, June 2012. ISSN: 1938-7228.

T.-M. H. Hsu, H. Qi, and M. Brown. Measuring the Effects of Non-Identical Data Distribution for
Federated Visual Classification, Sept. 2019. arXiv:1909.06335 [cs, stat].

Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu,
and z. Chen. GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Z. Huang, H. Chen, and D. Zeng. Applying associative retrieval techniques to alleviate the sparsity
problem in collaborative filtering. ACM Transactions on Information Systems (TOIS), 22(1):
116–142, 2004.

E. B. Hunt, M. Marin, and P. J. Stone. Experiments in Induction. Academic Press, 1966.

R. Hussain and S. Zeadally. Autonomous cars: Research results, issues, and future challenges. IEEE
Communications Surveys & Tutorials, 21(2):1275–1313, 2018.

S. G. Index. Speedtest Global Index – Monthly comparisons of internet speeds from around the
world, 2020.

N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora. Communication-efficient
Distributed SGD with Sketching. Advances in Neural Information Processing Systems, 32:13144–
13154, 2019.

P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford. Accelerating Stochastic Gradient
Descent for Least Squares Regression. In Proceedings of the 31st Conference On Learning Theory,
pages 545–604. PMLR, July 2018a. ISSN: 2640-3498.

P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford. Parallelizing Stochastic Gradient
Descent for Least Squares Regression: Mini-batching, Averaging, and Model Misspecification.
Journal of Machine Learning Research, 18(223):1–42, 2018b. ISSN 1533-7928.

D. Jhunjhunwala, P. Sharma, A. Nagarkatti, and G. Joshi. Fedvarp: Tackling the variance due to
partial client participation in federated learning. In Uncertainty in Artificial Intelligence, pages
906–916. PMLR, 2022.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
Advances in neural information processing systems, 26, 2013.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, R. G. L. D’Oliveira, S. E. Rouayheb, D. Evans, J. Gardner, Z. Garrett,
A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchin-
son, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konečný, A. Korolova, F. Koushanfar,
S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, M. Raykova,
H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh, F. Tramèr,
P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao. Advances and
Open Problems in Federated Learning. arXiv:1912.04977 [cs, stat], Dec. 2019. arXiv: 1912.04977.

Bibliography 205

T. Kanade, C. Thorpe, and W. Whittaker. Autonomous land vehicle project at cmu. In Proceedings
of the 1986 ACM Fourteenth Annual Conference on Computer Science, CSC ’86, page 71–80,
New York, NY, USA, 1986. Association for Computing Machinery. ISBN 0897911776. doi:
10.1145/324634.325197. URL https://doi.org/10.1145/324634.325197.

S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error Feedback Fixes SignSGD and
other Gradient Compression Schemes. In International Conference on Machine Learning, pages
3252–3261. PMLR, May 2019. ISSN: 2640-3498.

S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic
controlled averaging for federated learning. In International Conference on Machine Learning,
pages 5132–5143. PMLR, 2020.

S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. Reddi, S. U. Stich, and A. T. Suresh. Breaking the
centralized barrier for cross-device federated learning. Advances in Neural Information Processing
Systems, 34:28663–28676, 2021.

T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 4401–4410, 2019.

S. Khirirat, H. R. Feyzmahdavian, and M. Johansson. Distributed learning with compressed gradients.
arXiv preprint arXiv:1806.06573, 2018.

S. Khirirat, S. Magnússon, and M. Johansson. Compressed gradient methods with hessian-aided
error compensation. IEEE Transactions on Signal Processing, 69:998–1011, 2020a.

S. Khirirat, S. Magnússon, A. Aytekin, and M. Johansson. Communication Efficient Sparsification
for Large Scale Machine Learning. arXiv:2003.06377 [math, stat], Mar. 2020b. arXiv: 2003.06377.

A. Koloskova, S. Stich, and M. Jaggi. Decentralized Stochastic Optimization and Gossip Algorithms
with Compressed Communication. In International Conference on Machine Learning, pages
3478–3487. PMLR, May 2019. ISSN: 2640-3498.

A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich. A unified theory of decentralized sgd
with changing topology and local updates. In International Conference on Machine Learning,
pages 5381–5393. PMLR, 2020.

V. R. Konda and J. N. Tsitsiklis. Linear stochastic approximation driven by slowly varying markov
chains. Systems & control letters, 50(2):95–102, 2003.

J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and D. Bacon. Federated
Learning: Strategies for Improving Communication Efficiency. In NIPS Workshop on Private
Multi-Party Machine Learning, 2016.

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 426–434, 2008.

Y. Koren. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 447–456, 2009.

D. Kovalev, E. Gasanov, P. Richtárik, and A. Gasnikov. Lower Bounds and Optimal Algorithms
for Smooth and Strongly Convex Decentralized Optimization Over Time-Varying Networks.
arXiv:2106.04469 [cs, math], June 2021. arXiv: 2106.04469.

https://doi.org/10.1145/324634.325197

Bibliography 206

A. Krizhevsky, G. Hinton, and others. Learning multiple layers of features from tiny images. 2009.
Publisher: Citeseer.

S. Kumar, M. Mohri, and A. Talwalkar. Ensemble Nystrom Method. In Advances in Neural
Information Processing Systems, volume 22. Curran Associates, Inc., 2009.

H. J. Kushner and G. Yin. Stochastic approximation and recursive algorithms and applications.
2003.

Y. Laguel, K. Pillutla, J. Malick, and Z. Harchaoui. Device Heterogeneity in Federated Learning: A
Superquantile Approach. arXiv:2002.11223 [cs, math, stat], Feb. 2020. arXiv: 2002.11223.

Y. Laguel, K. Pillutla, J. Malick, and Z. Harchaoui. A superquantile approach to federated learning
with heterogeneous devices. In 2021 55th Annual Conference on Information Sciences and Systems
(CISS), pages 1–6. IEEE, 2021.

L. Lannelongue, J. Grealey, and M. Inouye. Green algorithms: Quantifying the carbon footprint of
computation. Advanced Science, page 2100707, 2021. Publisher: Wiley Online Library.

P. S. Laplace. Théorie analytique des probabilités, volume 7. Courcier, 1820.

L. Leconte, A. Dieuleveut, E. Oyallon, E. Moulines, and G. Pages. DoStoVoQ: Doubly Stochastic
Voronoi Vector Quantization SGD for Federated Learning. May 2021.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov. 1998. ISSN 1558-2256. doi:
10.1109/5.726791. Conference Name: Proceedings of the IEEE.

Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio. Object Recognition with Gradient-Based Learning.
In D. A. Forsyth, J. L. Mundy, V. di Gesú, and R. Cipolla, editors, Shape, Contour and Grouping in
Computer Vision, Lecture Notes in Computer Science, pages 319–345. Springer, Berlin, Heidelberg,
1999. ISBN 978-3-540-46805-9. doi: 10.1007/3-540-46805-6_19.

Y. LeCun, C. Cortes, and C. Burges. MNIST handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

A. M. Legendre. Nouvelles méthodes pour la détermination des orbites des comètes. Firmin Didot,
Libraire pour les mathematiques, 1806.

R. Leluc and F. Portier. Sgd with coordinate sampling: Theory and practice. Journal of Machine
Learning Research, 23(342):1–47, 2022.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,
and B.-Y. Su. Scaling distributed machine learning with the parameter server. In Proceedings of
the 11th USENIX conference on Operating Systems Design and Implementation, OSDI’14, pages
583–598, USA, Oct. 2014. USENIX Association. ISBN 978-1-931971-16-4.

P. Li, T. J. Hastie, and K. W. Church. Very sparse random projections. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 287–296,
2006.

Q. Li, Y. Diao, Q. Chen, and B. He. Federated Learning on Non-IID Data Silos: An Experimental
Study. In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pages 965–978,
May 2022a. doi: 10.1109/ICDE53745.2022.00077. ISSN: 2375-026X.

Bibliography 207

S. Li. Concise formulas for the area and volume of a hyperspherical cap. Asian Journal of Mathematics
& Statistics, 4(1):66–70, 2010.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated Optimization in
Heterogeneous Networks. arXiv:1812.06127 [cs, stat], Sept. 2019a. arXiv: 1812.06127.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and future
directions. IEEE signal processing magazine, 37(3):50–60, 2020a.

T. Li, S. Hu, A. Beirami, and V. Smith. Ditto: Fair and robust federated learning through personal-
ization. In International conference on machine learning, pages 6357–6368, 2021. tex.organization:
PMLR.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the Convergence of FedAvg on Non-IID
Data. Oct. 2019b.

Z. Li and P. Richtárik. CANITA: Faster Rates for Distributed Convex Optimization with Communi-
cation Compression. arXiv:2107.09461 [cs, math], July 2021. arXiv: 2107.09461.

Z. Li, D. Kovalev, X. Qian, and P. Richtarik. Acceleration for Compressed Gradient Descent in
Distributed and Federated Optimization. In International Conference on Machine Learning, pages
5895–5904. PMLR, Nov. 2020b. ISSN: 2640-3498.

Z. Li, H. Zhao, B. Li, and Y. Chi. Soteriafl: A unified framework for private federated learning with
communication compression. arXiv preprint arXiv:2206.09888, 2022b.

J. Lin and L. Rosasco. Optimal Rates for Learning with Nyström Stochastic Gradient Methods.
arXiv preprint arXiv:1710.07797, 2017.

T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi. Don’t use large mini-batches, use local sgd. arXiv
preprint arXiv:1808.07217, 2018.

X. Liu, Y. Li, J. Tang, and M. Yan. A Double Residual Compression Algorithm for Efficient
Distributed Learning. In International Conference on Artificial Intelligence and Statistics, pages
133–143, June 2020. ISSN: 1938-7228 Section: Machine Learning.

L. Ljung. Analysis of recursive stochastic algorithms. IEEE transactions on automatic control, 22
(4):551–575, 1977.

L. Ljung and T. Söderström. Theory and practice of recursive identification. MIT press, 1983.

L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and T. Zhou. Recommender systems.
Physics reports, 519(1):1–49, 2012.

B. Luo, W. Xiao, S. Wang, J. Huang, and L. Tassiulas. Tackling system and statistical heterogeneity
for federated learning with adaptive client sampling. In IEEE INFOCOM 2022-IEEE conference
on computer communications, pages 1739–1748. IEEE, 2022.

L. v. d. Maaten and G. Hinton. Visualizing Data using t-SNE. Journal of Machine Learning Research,
9(Nov):2579–2605, 2008. ISSN ISSN 1533-7928.

O. Macchi. Adaptative processing: the least mean squares approach with applications in transmission,
volume 71. New York: John Wiley & Sons, Ltd, 1995.

G. Malinovskiy, D. Kovalev, E. Gasanov, L. Condat, and P. Richtarik. From local sgd to local
fixed-point methods for federated learning. In International Conference on Machine Learning,
pages 6692–6701. PMLR, 2020.

Bibliography 208

H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan. Perturbed
Iterate Analysis for Asynchronous Stochastic Optimization. arXiv:1507.06970 [cs, math, stat],
Mar. 2016. arXiv: 1507.06970.

Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh. Three approaches for personalization with
applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

O. Marfoq, G. Neglia, R. Vidal, and L. Kameni. Personalized federated learning through local
memorization. In International Conference on Machine Learning, pages 15070–15092. PMLR,
2022.

P. Mayekar and H. Tyagi. RATQ: A Universal Fixed-Length Quantizer for Stochastic Optimization.
In International Conference on Artificial Intelligence and Statistics, pages 1399–1409. PMLR,
June 2020. ISSN: 2640-3498.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5:115–133, 1943.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas. Communication-Efficient
Learning of Deep Networks from Decentralized Data. In Artificial Intelligence and Statistics, pages
1273–1282. PMLR, Apr. 2017. ISSN: 2640-3498.

S. Mei and A. Montanari. The generalization error of random features regression: Precise asymptotics
and double descent curve. arXiv:1908.05355 [math, stat], Oct. 2019. arXiv: 1908.05355.

S. Meyn and R. Tweedie. Markov chains and stochastic stability. Cambridge University Press, New
York, NY, USA, 2 edition, 2009. ISBN 0-521-73182-8 978-0-521-73182-9.

R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley. Deep patient: an unsupervised representation to
predict the future of patients from the electronic health records. Scientific reports, 6(1):1–10, 2016.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

K. Mishchenko, F. Iutzeler, J. Malick, and M.-R. Amini. A delay-tolerant proximal-gradient algorithm
for distributed learning. In International Conference on Machine Learning, pages 3587–3595.
PMLR, 2018.

K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik. Distributed Learning with Compressed
Gradient Differences. arXiv:1901.09269 [cs, math, stat], June 2019. arXiv: 1901.09269.

T. Mitchell. Machine Learning. McGraw Hill, 1997.

A. Mitra, R. Jaafar, G. J. Pappas, and H. Hassani. Linear convergence in federated learning: Tackling
client heterogeneity and sparse gradients. Advances in Neural Information Processing Systems, 34:
14606–14619, 2021.

C. Molnar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.
2018.

B. Morvaj, L. Lugaric, and S. Krajcar. Demonstrating smart buildings and smart grid features in a
smart energy city. In Proceedings of the 2011 3rd international youth conference on energetics
(IYCE), pages 1–8. IEEE, 2011.

E. Moulines and F. Bach. Non-asymptotic analysis of stochastic approximation algorithms for
machine learning. Advances in neural information processing systems, 24, 2011.

Bibliography 209

N. Muecke, G. Neu, and L. Rosasco. Beating SGD Saturation with Tail-Averaging and Minibatching.
In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimization.
Springer US, 2004. ISBN 978-1-4020-7553-7. doi: 10.1007/978-1-4419-8853-9.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

G. Neu and L. Rosasco. Iterate averaging as regularization for stochastic gradient descent. In
Conference On Learning Theory, pages 3222–3242. PMLR, 2018.

J. Nutini, M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke. Coordinate descent converges faster
with the gauss-southwell rule than random selection. In International Conference on Machine
Learning, pages 1632–1641. PMLR, 2015.

S. Pati, U. Baid, M. Zenk, B. Edwards, M. Sheller, G. A. Reina, P. Foley, A. Gruzdev, J. Mar-
tin, S. Albarqouni, et al. The federated tumor segmentation (fets) challenge. arXiv preprint
arXiv:2105.05874, 2021.

C. Philippenko and A. Dieuleveut. Artemis: tight convergence guarantees for bidirectional compres-
sion in Federated Learning. arXiv:2006.14591 [cs, stat], Nov. 2020. arXiv: 2006.14591.

C. Philippenko and A. Dieuleveut. Preserved central model for faster bidirectional compression in
distributed settings. Advances in Neural Information Processing Systems, 34, 2021.

C. Philippenko and A. Dieuleveut. Convergence rates for distributed, compressed and averaged
least-squares regression: application to federated learning. arXiv[cs, stat], 2023.

K. Pillutla, Y. Laguel, J. Malick, and Z. Harchaoui. Tackling distribution shifts in federated learning
with superquantile aggregation. In NeurIPS 2022 Workshop on Distribution Shifts (DistShift),
2022a.

K. Pillutla, K. Malik, A.-R. Mohamed, M. Rabbat, M. Sanjabi, and L. Xiao. Federated learning
with partial model personalization. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu,
and S. Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 17716–17758. PMLR, 17–23 Jul
2022b. URL https://proceedings.mlr.press/v162/pillutla22a.html.

A. P. Plageras, K. E. Psannis, C. Stergiou, H. Wang, and B. B. Gupta. Efficient iot-based sensor big
data collection–processing and analysis in smart buildings. Future Generation Computer Systems,
82:349–357, 2018.

B. Polyak and A. Juditsky. Acceleration of Stochastic Approximation by Averaging. SIAM Journal
on Control and Optimization, 30:838–855, July 1992. doi: 10.1137/0330046.

X. Qian, P. Richtárik, and T. Zhang. Error compensated distributed sgd can be accelerated. Advances
in Neural Information Processing Systems, 34:30401–30413, 2021.

M. G. Rabbat and R. D. Nowak. Quantized incremental algorithms for distributed optimization.
IEEE Journal on Selected Areas in Communications, 23(4):798–808, 2005.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

A. Rahimi and B. Recht. Random Features for Large-Scale Kernel Machines. In Advances in Neural
Information Processing Systems, volume 20. Curran Associates, Inc., 2008.

https://proceedings.mlr.press/v162/pillutla22a.html

Bibliography 210

A. Rajkomar, J. Dean, and I. Kohane. Machine learning in medicine. New England Journal of
Medicine, 380(14):1347–1358, 2019.

A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex
stochastic optimization. ICML, 2012.

A. Ramezani-Kebrya, F. Faghri, I. Markov, V. Aksenov, D. Alistarh, and D. M. Roy. Nuqsgd:
Provably communication-efficient data-parallel sgd via nonuniform quantization. The Journal of
Machine Learning Research, 22(1):5074–5116, 2021.

J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7263–7271, 2017.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 779–788, 2016.

A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani. FedPAQ: A Communication-
Efficient Federated Learning Method with Periodic Averaging and Quantization. In International
Conference on Artificial Intelligence and Statistics, pages 2021–2031. PMLR, June 2020. ISSN:
2640-3498.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information processing systems, 28, 2015.

P. Resnick and H. R. Varian. Recommender systems. Communications of the ACM, 40(3):56–58,
1997.

M. T. Ribeiro, S. Singh, and C. Guestrin. "why should i trust you?" explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1135–1144, 2016.

P. Richtarik, I. Sokolov, and I. Fatkhullin. EF21: A New, Simpler, Theoretically Better, and
Practically Faster Error Feedback. In Advances in Neural Information Processing Systems,
volume 34, pages 4384–4396. Curran Associates, Inc., 2021.

P. Richtárik, I. Sokolov, E. Gasanov, I. Fatkhullin, Z. Li, and E. Gorbunov. 3pc: Three point com-
pressors for communication-efficient distributed training and a better theory for lazy aggregation.
In International Conference on Machine Learning, pages 18596–18648. PMLR, 2022.

N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, S. Bakas, M. N. Galtier, B. A.
Landman, K. Maier-Hein, et al. The future of digital health with federated learning. NPJ digital
medicine, 3(1):119, 2020.

H. Robbins and S. Monro. A Stochastic Approximation Method. Annals of Mathematical Statistics,
22(3):400–407, Sept. 1951. ISSN 0003-4851, 2168-8990. doi: 10.1214/aoms/1177729586. Number:
3 Publisher: Institute of Mathematical Statistics.

A. Rodio, F. Faticanti, O. Marfoq, G. Neglia, and E. Leonardi. Federated learning under heterogeneous
and correlated client availability. arXiv preprint arXiv:2301.04632, 2023.

F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958.

A. Rudi and L. Rosasco. Generalization Properties of Learning with Random Features. In Advances
in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Bibliography 211

A. Rudi, R. Camoriano, and L. Rosasco. Less is More: Nyström Computational Regularization. In
Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

A. Rudi, L. Carratino, and L. Rosasco. FALKON: An Optimal Large Scale Kernel Method. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

M. Safaryan, R. Islamov, X. Qian, and P. Richtárik. Fednl: Making newton-type methods applicable
to federated learning. arXiv preprint arXiv:2106.02969, 2021.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques
for training gans. Advances in neural information processing systems, 29, 2016.

F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek. Robust and Communication-Efficient
Federated Learning From Non-i.i.d. Data. IEEE Transactions on Neural Networks and Learning
Systems, pages 1–14, 2019. ISSN 2162-2388. doi: 10.1109/TNNLS.2019.2944481. Conference
Name: IEEE Transactions on Neural Networks and Learning Systems.

K. Scaman, F. Bach, S. Bubeck, L. Massoulié, and Y. T. Lee. Optimal Algorithms for Non-Smooth
Distributed Optimization in Networks. Advances in Neural Information Processing Systems, 31:
2740–2749, 2018.

M. Schmidt and N. L. Roux. Fast Convergence of Stochastic Gradient Descent under a Strong
Growth Condition. arXiv:1308.6370 [math], Aug. 2013. arXiv: 1308.6370.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average
gradient. Mathematical Programming, 162(1):83–112, Mar. 2017. ISSN 1436-4646. doi: 10.1007/
s10107-016-1030-6.

F. Seide and A. Agarwal. CNTK: Microsoft’s Open-Source Deep-Learning Toolkit. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, page 2135, New York, NY, USA, Aug. 2016. Association for Computing Machinery.
ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2945397.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application
to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of the
International Speech Communication Association. Citeseer, 2014.

M. J. Sheller, B. Edwards, G. A. Reina, J. Martin, S. Pati, A. Kotrotsou, M. Milchenko, W. Xu,
D. Marcus, R. R. Colen, et al. Federated learning in medicine: facilitating multi-institutional
collaborations without sharing patient data. Scientific reports, 10(1):1–12, 2020.

B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi. Deep ehr: a survey of recent advances in deep
learning techniques for electronic health record (ehr) analysis. IEEE journal of biomedical and
health informatics, 22(5):1589–1604, 2017.

P. Sidiropoulos. N-sphere chord length distribution. arXiv preprint arXiv:1411.5639, 2014.

K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition,
Apr. 2015. arXiv:1409.1556 [cs].

V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar. Federated multi-task learning. Advances
in neural information processing systems, 30, 2017.

S. U. Stich. Local SGD Converges Fast and Communicates Little. arXiv:1805.09767 [cs, math], May
2019. arXiv: 1805.09767.

S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better rates for SGD with delayed
gradients and compressed updates. Journal of Machine Learning Research, 21:1–36, 2020.

Bibliography 212

S. U. Stich, J.-B. Cordonnier, and M. Jaggi. Sparsified SGD with Memory. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 4447–4458. Curran Associates, Inc., 2018.

N. Strom. Scalable distributed DNN training using commodity GPU cloud computing. In Sixteenth
Annual Conference of the International Speech Communication Association, 2015.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture
for computer vision. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2818–2826, 2016.

H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu. D^2: Decentralized Training over Decentralized
Data. In International Conference on Machine Learning, pages 4848–4856. PMLR, July 2018.
ISSN: 2640-3498.

H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu. DoubleSqueeze: Parallel Stochastic Gradient Descent
with Double-pass Error-Compensated Compression. In International Conference on Machine
Learning, pages 6155–6165. PMLR, May 2019. ISSN: 2640-3498.

D. S. W. Ting, C. Y.-L. Cheung, G. Lim, G. S. W. Tan, N. D. Quang, A. Gan, H. Hamzah,
R. Garcia-Franco, I. Y. San Yeo, S. Y. Lee, et al. Development and validation of a deep learning
system for diabetic retinopathy and related eye diseases using retinal images from multiethnic
populations with diabetes. Jama, 318(22):2211–2223, 2017.

P. Vanhaesebrouck, A. Bellet, and M. Tommasi. Decentralized Collaborative Learning of Personalized
Models over Networks. In Artificial Intelligence and Statistics, pages 509–517. PMLR, Apr. 2017.
ISSN: 2640-3498.

V. Vapnik. Estimation of dependences based on empirical data: Springer series in statistics (springer
series in statistics), 1982.

V. Vapnik. The nature of statistical learning theory. Springer science & business media, 1999.

A. Varre and N. Flammarion. Accelerated SGD for Non-Strongly-Convex Least Squares. In
Proceedings of Thirty Fifth Conference on Learning Theory, pages 2062–2126. PMLR, June 2022.
ISSN: 2640-3498.

S. S. Vempala. The random projection method, volume 65. American Mathematical Soc., 2005.

C. Villani. Optimal transport : old and new. Grundlehren der mathematischen wissenschaften.
Springer, Berlin, 2009. ISBN 978-3-540-71049-3.

M. Vono, V. Plassier, A. Durmus, A. Dieuleveut, and E. Moulines. Qlsd: Quantised langevin
stochastic dynamics for bayesian federated learning. In International Conference on Artificial
Intelligence and Statistics, pages 6459–6500. PMLR, 2022.

H. Wang and J. Xu. Friends to help: Saving federated learning from client dropout. arXiv preprint
arXiv:2205.13222, 2022.

H. Wang, S. Marella, and J. Anderson. Fedadmm: A federated primal-dual algorithm allowing
partial participation. In 2022 IEEE 61st Conference on Decision and Control (CDC), pages
287–294. IEEE, 2022.

Bibliography 213

J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient Sparsification for Communication-Efficient
Distributed Optimization. Advances in Neural Information Processing Systems, 31:1299–1309,
2018.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. TernGrad: Ternary Gradients to
Reduce Communication in Distributed Deep Learning. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 1509–1519. Curran Associates, Inc., 2017.

J. Wu, W. Huang, J. Huang, and T. Zhang. Error Compensated Quantized SGD and its Applications
to Large-scale Distributed Optimization. In International Conference on Machine Learning, pages
5325–5333. PMLR, July 2018. ISSN: 2640-3498.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv:1708.07747 [cs, stat], Sept. 2017. arXiv: 1708.07747.

A. Xu, Z. Huo, and H. Huang. Optimal gradient quantization condition for communication-efficient
distributed training. arXiv preprint arXiv:2002.11082, 2020.

A. Xu, Z. Huo, and H. Huang. Step-ahead error feedback for distributed training with compressed
gradient. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
10478–10486, 2021.

H. Yang, M. Fang, and J. Liu. Achieving linear speedup with partial worker participation in non-iid
federated learning. arXiv preprint arXiv:2101.11203, 2021.

YoloV2. Object detection on James Bond (Skyfall). https://youtu.be/VOC3huqHrss, 2023. Ac-
cessed: 2023-04-01.

Y. Yu, J. Wu, and L. Huang. Double Quantization for Communication-Efficient Distributed
Optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 4438–4449.
Curran Associates, Inc., 2019.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. In 5th international conference on learning representations, ICLR 2017,
toulon, france, april 24-26, 2017, conference track proceedings. OpenReview.net, 2017.

M. Zhang, K. Sapra, S. Fidler, S. Yeung, and J. M. Alvarez. Personalized federated learning with
first order model optimization. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=ehJqJQk9cw.

S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender system: A survey and new
perspectives. ACM computing surveys (CSUR), 52(1):1–38, 2019.

H. Zhao, K. Burlachenko, Z. Li, and P. Richtárik. Faster rates for compressed federated learning
with client-variance reduction. arXiv preprint arXiv:2112.13097, 2021.

P. Zhao and T. Zhang. Stochastic optimization with importance sampling for regularized loss
minimization. In international conference on machine learning, pages 1–9. PMLR, 2015.

S. Zheng, Z. Huang, and J. Kwok. Communication-Efficient Distributed Blockwise Momentum SGD
with Error-Feedback. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. DoReFa-Net: Training Low Bitwidth
Convolutional Neural Networks with Low Bitwidth Gradients. arXiv:1606.06160 [cs], Feb. 2018.
arXiv: 1606.06160.

https://youtu.be/VOC3huqHrss
https://openreview.net/forum?id=ehJqJQk9cw

Bibliography 214

T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, and Y.-C. Zhang. Solving the apparent
diversity-accuracy dilemma of recommender systems. Proceedings of the National Academy of
Sciences, 107(10):4511–4515, 2010.

D. L. Zhu and P. Marcotte. Co-Coercivity and Its Role In the Convergence of Iterative Schemes For
Solving Variational Inequalities, Mar. 1996.

C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through
topic diversification. In Proceedings of the 14th international conference on World Wide Web,
pages 22–32, 2005.

W. Zou, H. De Sterck, and J. Liu. Downlink Compression Improves TopK Sparsification, Sept. 2022.
arXiv:2209.15203 [cs].

Titre: Compression bidirectionnelle pour l’apprentissage fédéré hétérogène

Mots clés: Apprentissage fédéré, optimisation, compression bidirectionnelle, hétérogénéité.

Résumé: Les deux dernières décennies ont été
marquées par une augmentation sans précédent
de la puissance de calcul et du volume de
données disponibles. En conséquence, les al-
gorithmes d’apprentissage automatique ont évolué
pour s’adapter à cette nouvelle situation. En par-
ticulier, beaucoup d’applications modernes utilisent
désormais des réseaux de clients pour stocker les
données et calculer les modèles : un apprentis-
sage efficace dans ce cadre est plus difficile, en
particulier en raison des contraintes de communi-
cation. C’est pourquoi, une nouvelle approche,
l’apprentissage fédéré, a été développée au cours
de ces dernières années : les données sont con-
servées sur leur serveur d’origine et un serveur cen-
tral orchestre l’entraı̂nement. Cette thèse vise à abor-
der deux aspects fondamentaux de l’apprentissage
fédéré. Le premier objectif est d’analyser les com-
promis de l’apprentissage distribué sous contraintes
de communication ; le but étant de réduire le coût
énergétique et l’empreinte environnementale. Le sec-
ond objectif est d’aborder les problèmes résultant
de l’hétérogénéité des clients qui complexifie la con-
vergence de l’algorithme vers une solution optimale.
Cette thèse se concentre sur la compression bidirec-

tionnelle et résume mes contributions à ce domaine
de recherche.
Dans notre première contribution, nous nous concen-
trons sur l’effet entremêlé de la compression et de
l’hétérogénéité (statistique) des clients. Nous intro-
duisons un framework d’algorithmes, appelé Artemis,
qui s’attaque au problème des coûts de communica-
tion de l’apprentissage fédéré. Dans notre deuxième
contribution, nous mettons l’accent sur les boucles
de rétroaction afin de réduire l’impact de la com-
pression. Nous introduisons un algorithme, MCM,
qui s’appuie sur Artemis et propose un nouveau
paradigme qui préserve le modèle central lors de
la compression descendante. Ce mécanisme per-
met d’effectuer une compression bidirectionnelle tout
en atteignant asymptotiquement des taux de conver-
gence identiques à ceux de la compression unidirec-
tionnelle. Dans notre troisième contribution, nous al-
lons au-delà de l’hypothèse classique du pire cas sur
la variance et fournissons une analyse fine de l’impact
de la compression dans le cadre de la régression
des moindres carrés. Dans cette configuration, nous
mettons en évidence les différences de convergence
entre plusieurs schémas de compression sans biais
ayant pourtant la même variance.

Title: Bidirectional compression for federated learning in a heterogeneous setting

Keywords: Federated learning, optimization, bidirectionnel compression, heterogeneity.

Abstract: The last two decades have witnessed
an unprecedented increase in computational power,
leading to a vast surge in the volume of available
data. As a consequence, machine learning algorithms
have evolved to adapt to this new situation. Espe-
cially, many modern applications now use a network
of clients to store the data and compute the models:
efficient learning in this framework is harder, espe-
cially under communication constraints. This is why,
a new approach, federated learning, has been devel-
oped in recent years: the data is kept on the origi-
nal server and a central server orchestrates the train-
ing. This thesis aims to address two fundamental as-
pects of federated learning. The first goal is to ana-
lyze the trade-offs of distributed learning with commu-
nication constraints, with the objective of reducing its
energy cost and environmental footprint. The second
goal is to tackle problems resulting from heterogene-
ity among clients. This thesis focuses on bidirectional
compression and summarizes my contributions to this
field of research.

In our first contribution, we focus on the intertwined
effect of compression and client (statistical) hetero-
geneity. We introduce a framework of algorithms,
named Artemis, that tackles the problem of learning
in a federated setting with communication constraints.
In our second contribution, we move the focus to-
ward feedback loops to reduce the impact of com-
pression. We introduce an algorithm, coined MCM; it
builds upon Artemis and introduces a new paradigm
that preserves the central model from down compres-
sion. This mechanism allows to carry out bidirec-
tional compression while asymptotically achieving the
rates of convergence of unidirectional compression.
In our third contribution, we go beyond the classical
worst-case assumption on the variance of compres-
sors and provide a fine-grained analysis of the im-
pact of compression within the fundamental learning
framework of least-squares regression. Within this
setting, we highlight differences in convergence be-
tween several unbiased compression schemes having
the same variance increase.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Remerciements
	Abstract / Résumé
	Contents
	Notations
	Thesis outline
	Vue d'ensemble de la thèse
	Introduction
	Statistical learning
	Optimization for machine learning
	Federated learning
	Motivation of using bidirectional compression
	Summary of the contributions of this thesis

	Artemis: bidirectional compression with heterogeneous clients
	Introduction
	Problem statement
	Theoretical results
	Experiments
	Conclusion

	MCM: preserved central model for faster bidirectional compression
	Introduction
	Problem statement
	Assumptions and theoretical analysis
	Extension to Rand-MCM
	Experiments
	Conclusion

	Distributed, compressed and averaged least-squares regression
	Introduction
	Non asymptotic convergence result for LSA
	Application to Algorithm 2: compressed LSR on a single worker
	Application to federated learning
	Conclusion

	Conclusion and perspectives
	Conclusion
	Perspectives

	Technical preliminaries
	Identities and inequalities
	Classical results for random vectors
	Classical results in optimization

	Appendix to Artemis
	Experiments
	Filtrations
	Technical results
	Proofs of Theorems

	Appendix to MCM
	Experiments
	Two lemmas
	Proof for Ghost
	Proofs for MCM (and Rand-MCM)
	Proofs in the quadratic case for MCM and Rand-MCM

	Appendix to Distributed, compressed and averaged LSR
	Technical results
	Generalization of Bach and Moulines (2013).
	Generalisation of Bach and Moulines (2013) for linear multiplicative noise.
	Validity of the assumptions made on the random fields
	Compression operators
	Technical results on federated learning.

	Bibliography

