
HAL Id: tel-04538137
https://theses.hal.science/tel-04538137

Submitted on 9 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Domain Decomposition Approach for
Deterministic/Stochastic EMC Time-Domain Numerical
and Experimental Applications. Alleviating the Curse of

Dimensionality
Imane Massaoudi

To cite this version:
Imane Massaoudi. Domain Decomposition Approach for Deterministic/Stochastic EMC Time-Domain
Numerical and Experimental Applications. Alleviating the Curse of Dimensionality. Electronics.
Université Clermont Auvergne, 2023. English. �NNT : 2023UCFA0150�. �tel-04538137�

https://theses.hal.science/tel-04538137
https://hal.archives-ouvertes.fr


UNIVERSITÉ CLERMONT AUVERGNE

École Doctorale Sciences pour l’ingénieur

Institut Pascal - Département "Compatibilité ÉlectroMagnétique"

Year : 2023

Doctoral dissertation

in fulfillment of the requirements for the degree

DOCTOR OF CLERMONT AUVERGNE UNIVERSITY

Discipline : Electronics and Systems

Presented by

Imane Massaoudi

Domain Decomposition Approach for

Deterministic/Stochastic EMC Time-Domain Numerical and

Experimental Applications

Alleviating the Curse of Dimensionality

Defended on the 19th of December 2023 and reviewed by the committee composed of:

M. Christian Vollaire Professeur des Universités, Laboratoire Ampère, Lyon, Président du jury

M. Alain Reineix Directeur de Recherche CNRS, Xlim, Limoges, Rapporteur

M. Mohammed Ramdani Enseignant-chercheur HDR, ESEO, Angers, Rapporteur

Mme. Elodie Richalot Professeure des Universités, Univ. Gustave Eiffel, Paris, Examinatrice

Mme. Isabelle Junqua Ingénieure de Recherche, ONERA, Toulouse, Examinatrice

M. Marc Olivas Directeur de Recherche Technologique, WiN MS, Paris, Examinateur

M. Pierre Bonnet Professeur des Universités, IP, Clermont-Fd, Directeur de thèse





Dedication

À mes très chers parents Mohammed et Naima,

À chaque chapitre de ma vie, votre amour inconditionnel, soutien inestimable et vos

encouragements permanents ont été mes compagnons de route à chaque triomphe et à chaque

épreuve. Cette thèse est un témoignage de votre dévouement sans fin et des valeurs de

persévérance et de détermination que vous m’avez inculquées. Votre confiance en moi a

nourri mes aspirations et m’a propulsé vers l’avant, et je vous en serai éternellement

reconnaissante. Avec ma plus profonde gratitude et mon amour, je vous dédie ce travail, en

hommage du rôle indispensable que vous avez joué dans l’élaboration de mon parcours et

mes accomplissements.

i





Acknowledgments

This accomplishment would not have been possible without the guidance and support of

colleagues, family, and close friends. To them, I extend my deepest appreciation and heartfelt

thanks for their belief in me and their willingness to share their expertise. This work stands as

a testament to the collective efforts and collaborative spirit of all those involved, and I am truly

humbled by the privilege of having them by my side.

First and foremost, I owe my sincere gratitude to my thesis supervisor Professor Pierre

Bonnet for providing guidance, support, and mentorship throughout this work. Your expertise,

patience, and dedication have been invaluable in shaping both the direction and quality of my

thesis. Your willingness to share your knowledge and insights, as well as your constructive

feedback, have greatly contributed to my growth and development as a researcher. I am truly

grateful for the time and effort you have invested in me, and I feel privileged to have had

the opportunity to learn from you. Thank you for believing in my abilities and for providing

me with the encouragement and resources needed to succeed. Your mentorship has not only

enriched my academic experience but has also inspired me to strive for excellence in my future

projects.

I am deeply grateful to the members of my thesis committee. Thank you Professor Alain

Reineix, research director CNRS at Xlim, Limoges, and Professor Mohammed Ramdani,

teacher-researcher HDR at ESEO, Angers, for accepting to be the reviewers of my thesis

manuscript. Your insightful comments and constructive feedback significantly improved the

quality of this work. I extend my sincere gratitude to the examiners Professor Christian

Vollaire, professor of universities at Laboratoire Ampère, Lyon, Professor Elodie Richalot,

professor of universities at University Gustave Eiffel, Paris, Professor Isabelle Junqua,

research engineer at ONERA, Toulouse, and Professor Marc Olivas, technology research

director at Win MS, Paris, who dedicated their time and expertise to critically evaluate this

thesis. Their thorough examination, insightful comments, and constructive feedback have

immensely contributed to the refinement of this work.

I extend my heartfelt gratitude for the pivotal role the ANR project ECOCES played in

inspiring the initial idea for this research work. Their support and resources were indispensable

in bringing this thesis to fruition. I am deeply grateful to the director of the project, Professor

Christian Vollaire, for his unwavering belief in my abilities and for allowing me to be part

of this research work. I extend my heartfelt appreciation to all the project’s members for

iii



their thoughtful comments, invaluable guidance, and unwavering support. Their expertise and

dedication have been essential in overcoming challenges and achieving the goals of this thesis.

I want to thank Professor Evelyne Gil, the head of Institut Pascal, Vanessa Chaudron,

Charlènes Fernandes and Pierre Servoir, the administrative secretaries. I would like to

express my sincere appreciation to the entire CEM team for their invaluable support and

collaboration throughout my thesis duration. Thank you Françoise, your willingness to take

me in and mentorship have been an invaluable gift. I am deeply grateful for your support and

encouragement. Thank you Christophe for trusting me with the responsibility of teaching and

your support over these 3 past years. Thank you Sébastien for your help with the measurement

set-up, Khalil for helping extend the scope and depth of a part of my research, Kofi for pushing

me constantly to publish, and all the good memories I keep from my first conference. Thank

you for all the scientific and nonscientific discussions we had and for maintaining the best

cordial working environment for me.

Many thanks to the trainees, doctoral and postdoctoral students that I met in the CEM group,

Ali, Fatima, Mincui, Liza, Lana, Hassan, Eric, Brahim and Veevek. Thanks for being real daily

supporters. I wish you more success in your future career.

I want to take the opportunity to heartwarmingly thank all my friends, especially Mincui with

whom not only did we have lunch and coffee/tea breaks together, but also helped me through

the last stages of my thesis. I am forever grateful for your unconditional love and support

during some of the difficult times of this thesis. Thank you for all the laughs we have shared, it

will always be engraved in my memory. Thank you Fatima Ezzahra, for being the best friend I

could ever ask for. You made my toughest moments easier with your kind and lovely words.

Thank you for being a good listener and giving me valuable advice when I needed it the most.

Thank you Lana, for all the laughs we had, for believing in me, and for pushing me to be as

happy as I could be. Thank you Lisa for all the times we have shared, your friendship has

undoubtedly made a positive difference in my life. Thank you Zineb for your support and kind

words in times of doubt, for the funny talks we have frequently but also the tough ones, our

friendship keeps growing and I am so appreciative of your presence in my life. Thank you

Karim for being as supportive as you are. Our funny talks always made my days better. Thank

you Nadir, Clovis and Abdivall for your support and encouragement. Thank you Ali for your

help in times of need and kindness.

I am profoundly grateful to my family for their unwavering love, encouragement, and support

iv



throughout the journey of completing this thesis. Their belief in me has been my strongest

pillar, providing me with the motivation and determination to persevere through the challenges

and uncertainties of academic pursuit. Words cannot fully express the depth of my gratitude for

everything you have done for me. Your unwavering love, support, and sacrifices have been the

cornerstone of my life’s journey. I am forever grateful to my dearest father Mohammed, for his

support and encouragement, and my lovely mother Naima for her love and prayers. Thank you

both for everything you did for me, for providing me with the best education and helping me

pursue my dreams. I would like also to thank my sisters, Nour el Houda and Asmae, for their

unwavering support and understanding throughout the process of completing this thesis. Your

love and kindness have kept me going through hard times along this journey. I thank also my

brothers-in-law, Taha and Oussama, for their support and encouragement. And of course, thank

you Soujoud (Swija), Lina (Layouna), Mohammed-Taha (m-taha), and the new baby boy, my

lovely nieces and nephews for love, light, and the endless smiles they’ve brought to my days.

And lastly, I want to thank my Lila, my everyday companion, my best pet friend, you’ve been

a constant source of comfort, warmth, and companionship.

v





List of Contents

List of Contents

List of Acronyms xi

Abstract xiii

Résumé xv

Résumé Etendu en Français xvi

General Introduction and Context 1

1 Domain Decomposition Methods and Stochastic Analysis: State of the Art and

Context 7

1.1 Domain Decomposition methods . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 History of DD methods and their theoretical foundations . . . . . . . . 8

1.1.2 Domain decomposition methods for electromagnetic applications . . . 11

1.1.3 Co-simulation approaches . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.4 Kron’s formalism and Diakoptics . . . . . . . . . . . . . . . . . . . . 16

1.1.5 Electromagnetic topology . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.6 Positioning of thesis work . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Stochastic analysis: Uncertainty Quantification and Sensitivity Analysis . . . . 20

1.2.1 Introduction and motivations . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 Uncertainty Quantification in the EMC field . . . . . . . . . . . . . . . 22

1.2.3 Sensitivity analysis methods . . . . . . . . . . . . . . . . . . . . . . . 25

2 Domain Decomposition Method for Linear Problems in Time-Domain 29

2.1 Decomposition domain method . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Formulation of the DD method . . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 Computational cost of the DD method . . . . . . . . . . . . . . . . . . 34

2.2 Transmission line theory fundamentals . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Transmission line model (RLCG) and Telegraph’s equations . . . . . . 36

2.2.2 Modeling of a branched transmission line network . . . . . . . . . . . 39

2.2.3 Modeling 1-D FDTD transmission lines . . . . . . . . . . . . . . . . . 40

2.2.4 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Numerical applications of the proposed DD method . . . . . . . . . . . . . . . 46

2.3.1 First case scenario: perfect matching at the interface level . . . . . . . 47

vii



List of Contents

2.3.2 Second case scenario: mismatch at the interface level . . . . . . . . . . 57

2.3.3 General explicit formulation of the DD method . . . . . . . . . . . . . 62

2.4 Adapting the DD method for practical applications . . . . . . . . . . . . . . . 67

2.4.1 Formulation for two interconnected systems . . . . . . . . . . . . . . . 67

2.4.2 Formulation for a branched transmission line network . . . . . . . . . 70

2.5 Synthesis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 DD Method and Numerical Applications 81

3.1 Domain decomposition through two interfaces or more . . . . . . . . . . . . . 82

3.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.2 DD method application and results . . . . . . . . . . . . . . . . . . . . 84

3.2 Decomposition domain application for different time steps . . . . . . . . . . . 88

3.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.2 DD method application and results . . . . . . . . . . . . . . . . . . . . 90

3.3 Domain decomposition application to different numerical softwares . . . . . . 94

3.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.2 DD method application and results . . . . . . . . . . . . . . . . . . . . 94

3.4 Domain decomposition application to a multiconductor transmission line network100

3.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4.2 DD method application and results . . . . . . . . . . . . . . . . . . . . 102

4 Experimental Validation of the DD Method 109

4.1 Experimental DD method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.1.1 Experimental impulse response extraction . . . . . . . . . . . . . . . . 110

4.1.2 Transposition of the DD method experimentally . . . . . . . . . . . . . 112

4.2 Experimental DD method in wiring networks . . . . . . . . . . . . . . . . . . 113

4.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.2 Extraction of the impulse responses experimentally . . . . . . . . . . . 114

4.3 Experimental applications of the DD method . . . . . . . . . . . . . . . . . . 117

4.3.1 First scenario: measurement with a single scope . . . . . . . . . . . . . 117

4.3.2 Second scenario: measurement with different scopes . . . . . . . . . . 122

4.3.3 Parametric study using experimental DD method . . . . . . . . . . . . 129

5 DD Method for Stochastic EMC Applications 135

5.1 Elements of probability theory and stochastic modeling . . . . . . . . . . . . . 137

5.1.1 Assessement of mean and standard deviation . . . . . . . . . . . . . . 138

5.1.2 Global sensitivity analysis: Sobol’ indices . . . . . . . . . . . . . . . . 144

viii



List of Contents

5.2 Domain Decomposition method for stochastic analysis . . . . . . . . . . . . . 150

5.2.1 Uncertainty quantification based on stochastic DD method . . . . . . . 151

5.2.2 Sensitivity analysis based on stochastic DD method . . . . . . . . . . . 152

5.3 Stochastic DD method for uncertainty quantification and sensitivity analysis . . 153

5.3.1 Propagation of uncertainties within sub-systems . . . . . . . . . . . . . 153

5.3.2 DD method for stochastic-parametric analysis . . . . . . . . . . . . . . 170

5.3.3 Stochastic DD method for sensitivity analysis . . . . . . . . . . . . . . 177

5.4 Alleviating the Curse of dimensionality . . . . . . . . . . . . . . . . . . . . . 182

5.4.1 Computational cost for SC-DD association . . . . . . . . . . . . . . . 183

5.4.2 Optimal configuration of the SC-DD association . . . . . . . . . . . . 186

General Conclusion and Perspectives 189

Bibliography 193

List of Personal Publications 209

A APPENDIX : 1D FDTD Modeling of the Transmission Line Equations 211

A.1 Transmission lines theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.1.1 Background and history . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.1.2 ’RLCG’ Transmission lines’ model . . . . . . . . . . . . . . . . . . . 212

A.2 Numercial modeling of the transmission lines . . . . . . . . . . . . . . . . . . 214

A.2.1 Finite Difference Approximations . . . . . . . . . . . . . . . . . . . . 214

A.2.2 Explicit time update solution of the Telegraph’ equations . . . . . . . . 214

A.3 Discretization of the voltage at the source and load levels of a transmission line 217

ix





List of Acronyms

EMC ElectroMagnetic Compatibility

EMI ElectroMagnetic Interference

DD Domain Decomposition

SC Stochastic Collocation

CEM Computational ElectroMagnetic

UQ Uncertainty Quantification

SA Sensitivity Analysis

RV Random Variable

MC Monte Carlo

PC Polynomial Chaos

SR Sample Rate

SC-DD Stochastic Collocation Domain Decomposition





Abstract

This thesis introduces a novel domain decomposition (DD) method to solve linear stochastic

electromagnetic problems in time domain. Temporal decomposition approaches are already

widely used to manage models’ complexity by performing computations at a local level,

however, they often require the exchange of information and simulation results for each

time iteration. The proposed technique consists of splitting a global linear system into non-

overlapping sub-systems via one or several one-point exchange interfaces. It is based on the

evaluation of impulse responses of each sub-system independently (partial solutions) and their

linear combination through convolution products. As no sensitive or proprietary information

of each sub-system is required for exchange, the confidentiality of the models is preserved.

The method was extensively applied for several configurations of transmission line networks

based on computational simulations and experimental set-ups to assess its performance and

limitations. This comprehensive validation demonstrated the method’s efficiency and potential

for more complex linear EMC problems. However, another level of complexity, translated

by the uncertainty dimension, adds to real-world problems. Although the efficiency of the

DD technique is demonstrated for stochastic analysis by propagating the uncertainty in the

sub-models, the computational cost grows exponentially with the increasing number of random

variables in the system. To tackle this challenge, known as the curse of dimensionality, the

stochastic collocation method was associated with the domain decomposition approach, based

on an offline–online strategy motivated by the asynchronous nature of the DD technique

allowing random variable separation. Numerical validations obtained for transmission line

network applications highlight the interest of this original approach with the dramatic reduction

of the evaluation cost of the model.

Keywords: domain decomposition, asynchronous, time-domain, linear, EMC, stochastic anal-

ysis, curse of dimensionality.





Résumé

Cette thèse introduit une nouvelle méthode de décomposition de domaine (DD) pour résoudre

des problèmes électromagnétiques stochastiques linéaires dans le domaine temporel. Les

approches de décomposition temporelles sont déjà largement utilisées pour gérer la complexité

des modèles en effectuant des calculs à un niveau local, mais elles nécessitent souvent

l’échange d’informations et de résultats de simulation pour chaque itération temporelle. La

technique proposée consiste à diviser un système linéaire global en sous-systèmes qui ne

se chevauchent pas via une ou plusieurs interfaces d’échange ponctuelles. Elle est basée

sur l’évaluation des réponses impulsionnelles de chaque sous-système indépendamment

(solutions partielles) et sur leur combinaison linéaire par le biais de produits de convolution.

Comme aucune information sensible ou propriétaire de chaque sous-système n’est requise

pour l’échange, la confidentialité des modèles est préservée. La méthode a été extensivement

appliquée à plusieurs configurations de réseaux de lignes de transmission sur la base de

simulations numériques et de set-ups expérimentaux afin d’évaluer ses performances et ses

limites. Cette validation complète a démontré l’efficacité de la méthode et son potentiel pour

des problèmes CEM linéaires plus complexes. Cependant, un autre niveau de complexité,

traduit par la dimension d’incertitude, s’ajoute aux problèmes du monde réel. Bien que

l’efficacité de la technique DD soit démontrée pour l’analyse stochastique en propageant

l’incertitude dans les sous-modèles, le coût de calcul croît de manière exponentielle avec

l’augmentation du nombre de variables aléatoires dans le système. Pour relever ce défi, connu

sous le nom de malédiction de la dimensionnalité, la méthode de collocation stochastique a

été associée à l’approche de décomposition de domaine, basée sur une stratégie hors ligne et

en ligne motivée par la nature asynchrone de la technique DD permettant la séparation des

variables aléatoires. Les validations numériques obtenues pour des applications de réseaux

de lignes de transmission soulignent l’intérêt de cette approche originale avec la réduction

spectaculaire du coût d’évaluation du modèle.

Mots clès: décomposition de domaine, asynchrone, domaine temporel, linéaire, CEM, analyse

stochastique, malédiction de la dimensionnalité.
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Introduction et contexte

AVEC l’intégration rapide de technologies avancées dans les véhicules de demain, la

sécurité et la fiabilité constituent des véritables enjeux, tant pour la sécurité des

passagers que pour le bon fonctionnement des équipements électriques/électroniques. Il est

donc indispensable d’assurer la conformité aux normes limitant les émissions parasites du

véhicule et respectant l’exposition des personnes aux champs électromagnétiques à l’intérieur

du véhicule. La prise en compte de la Compatibilité ElectroMagnétique (CEM) dès le début

de la phase de conception garantira la sécurité, la fiabilité, la fonctionnalité et la conformité.

L’utilisation de la simulation numérique pour l’analyse CEM des systèmes devient de plus en

plus populaire, en raison de la difficulté et/ou non accessibilité aux mesures expérimentales,

mais aussi grâce aux progrès des technologies informatiques et naissance de nouvelles

techniques mathématiques. Malgré le progrès de ces méthodes numériques (efficacité à

modéliser les phénomènes physiques, rapidité de convergence et modélisation de système de

grande échelle), elles ne sont pas adaptées pour résoudre des problèmes intégrant plusieurs

niveaux de complexité: multi-échelles et multi-modèles. Il est donc impératif d’échanger

les différents modèles des sous-ensembles pour parvenir à une modélisation complète d’un

système industriel. La confidentialité des modèles n’est donc pas respectée, et représente un

réel défi dans le secteur industriel, où aucun des partenaires (assembleur ou intégrateur dans le

contexte automobile) n’est disposé à échanger son modèle.

En plus de ces contraintes industrielles et techniques, l’évolution des technologies ajoute un

nouveau niveau de complexité de multi-incertitudes. Ces incertitudes peuvent avoir de sérieux

impact sur les performances CEM d’un système, et leur prise en compte est de plus en plus

importante. Que l’on connaisse les multiples sources d’incertitudes existantes, liées à leur

conception (propriétés géométriques et physiques), à leur environnement (paramètres externes

ou systèmes voisins), ou non (pas de connaissance exacte sur les incertitudes du système), leurs

quantifications requièrent l’utilisation de techniques adaptées, non-intrusives, pour prendre en

compte la diversité et la multitude d’échelles et de méthodes.

Les méthodes de décomposition de domaine en général et d’hybridation dans le domaine tem-

porel en particulier, ont été proposées pour résoudre ces problèmes complexes en découpant le
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système global en plusieurs sous-systèmes plus simples. Généralement, la méthode numérique

la plus appropriée est appliquée à chaque sous-domaine. Cependant, l’échange des modèles de

chaque sous-système nécessite de partager des résultats et/ou données qui leur sont propres.

Les techniques de co-simulation, connues aussi sous le nom de simulation coopérative, sont

aussi des solutions alternatives à la simulation globale. Elles nécessitent néanmoins des

échanges synchronisés entre les différents partenaires à chaque itération temporelle.

À ce jour, il n’existe pas de méthode permettant de résoudre un problème CEM complexe

dans son intégralité (conduite et rayonnement) et dans sa diversité. Ces contraintes à la fois

techniques et industrielles, rencontrées dans plusieurs domaines y compris l’automobile, ont

inspiré le projet ANR ECOCES (Electromagnetic Compatibility Co-simulation Of Complex

Electrical Systems), dans lequel s’inscrit les travaux de cette thèse. Le projet intègre trois

sujets de thèse (Laboratoire Ampère de Lyon, Institut Pascal de Clermont-Ferrand et l’IETR

d’Angers) et implique des partenaires académiques (GeePs) et industriels (Stellantis et

Chiastek). Le défi pour tous les partenaires du projet est de développer une méthodologie

de co-simulation pour évaluer les phénomènes CEM dans les systèmes complexes par le

biais d’une simulation indépendante de tous les sous-systèmes. Dans cette approche, les

différents modèles ne sont ni partagés entre les partenaires ni intégrés dans un outil unique,

mais communiquent en temps réel via leurs interfaces.

Pour surmonter ces limitations, nous proposons au travers cette thèse, une méthode de décom-

position de domaine pour résoudre des problèmes CEM linéaires dans le domaine temporel.

L’objectif est de pouvoir modéliser les sous-systèmes de manière indépendante, sans échange

itératif, tout en conservant la confidentialité des modèles de chaque sous-système. Différentes

applications numériques et expérimentales ont été réalisées pour valider la méthode et prou-

ver son efficacité. L’association de la technique proposée avec une approche stochastique, en

l’occurrence la méthode de collocation stochastique, permet de prendre en compte les incer-

titudes dans des problèmes stochastiques complexes. Pour différentes configurations stochas-

tiques, les multiples avantages de cette association sont mis en avant.

La Méthode de décomposition de domaine

Nous supposons que le système électrique linéaire global G, représenté dans la Figure (1a),

a z terminaisons représentant soit des entrées (sources physiques injectées Vs), soit des sorties

mesurées Vout .

xviii
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(a) (b)

Figure 1: Représentations schématiques du système électrique linéaire global G de α entrées

et β sorties (a), et de la subdivision du système électrique linéaire global G en m sous-systèmes

disjoints (b).

La méthode de décomposition de domaine (DD) proposée consiste à diviser le problème global

G en m sous-problèmes disjoints via une ou plusieurs interfaces d’échange (Figure (1b)). La

méthode est appliquée en tenant compte de deux hypothèses : 1) le système est divisé au niveau

d’une interface ponctuelle (1D), 2) les propriétés électriques du système sont conservées au

niveau de l’interface. Par conséquent, aucune réflexion de part et d’autre de l’interface (niveau

de subdivision) n’est mesurée, et une parfaite adaptation au niveau de l’interface est assurée.

Parmi les sorties β du système G, nous nous intéressons à la sortie Vj mesurée à la terminaison

j, localisée dans le sous-réseau k (n terminaison). La sortie V k
j est obtenue en considérant la

contribution directe de chaque source dans le sous réseau k, et les contributions indirectes de(s)

autre(s) source(s) dispersée(s) dans les sous-système voisins, comme représenté sur la Fig-

ure (2a). Suivant le principe de la convolution, la sortie V k
j est exprimée par

V k
j = ∑

{i}
hk

i j ∗V k
si +∑

{l}
hk

l j ∗V k
∼l (1)

Le premier terme du membre de droite de l’équation (1) traduit la contribution des p sources

réelles V k
s{i}, {i}⊆{1,...,α} avec p < α , de l’ensemble initial des α sources. Tandis que le second

terme donne la contribution des q sources équivalentes V k
∼{l}, {l}⊆{1,...,n}, pour l ⩽ n. Celles ci

représentent explicitement l’effet des autres sources dispersées dans les sous-systèmes voisins,

ramené aux interfaces d’échange (point de découpage).

Les termes hk
i j, respectivement hk

∼l , sont les réponses impulsionnelles reliant les sources

physiques injectées V k
s{i} à la sortie, respectivement les réponses impulsionnelles reliant les

sources équivalentes V k
∼{l} à la sortie mesurée au point j.

Les sources équivalentes V k
∼l traduisent l’effet indirect des sources dispersées dans les sous-

xix



Résumé Etendu en Français

(a) (b)

Figure 2: Représentations schématiques du sous-système k de p sources physiques injectées

V k
s{i}, q sources équivalentes V k

∼{l} et de la sortie V k
j (a), et des réponses impulsionnelles hk

si et

hk
∼l reliant les sources V k

s{i}, respectivement, V k
∼{l} à la sortie V k

j (b).

systèmes voisins au découpage. Chacune de ses sources représente la réponse du sous-système

k (où l’observable est localisée) à l’onde incidente d’un sous-système voisin, mesurée à

l’interface.

L’équation (1) considère uniquement la contribution de chaque système voisin au sous-système

k à l’interface, or, pour retrouver le comportement physique du système global G comme s’il

n’y avait pas eu de décomposition, il faut considérer les rétro-actions entre les différents sous-

système. Cet effet est reconstitué à travers la ré-injection des sources équivalentes au niveau

des interfaces l du sous-système k dans les m sous-systèmes voisins, à partir des nouvelles

réponses impulsionnelles hv
ll , v ∈ {1, ..,m}. La formule finale permettant de retrouver les mul-

tiples réflexions des α sources entre les sous-systèmes pour un ordre q donné, est exprimée

par

V k
j = ∑

{i}
hk

i j ∗V k
si +∑

{l}
hk

l j ∗V k
∼l,1 +

q

∑
i=2

hk
l j ∗
(

∏
{v}

hv
lvlv ∗V k

∼l,i

)
(2)

La source V k
∼l,i est définie comme l’ordre i de la source équivalente, et est donnée par

V k
∼l,i = ∏

{v}
hv

lvlv ∗V k
∼l,i−1 (3)

Le terme V k
∼l,1 dans l’équation (2) fait référence au premier ordre de la source V k

∼l .

En pratique, cet ordre q n’est pas connu à l’avance et dépendra de la topologie du réseau

(longueur, impédances caractéristiques et résistances de charge des lignes), de l’observable,
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du choix de la décomposition ainsi que de l’intervalle de temps pour l’enregistrement de

la sortie. Un critère d’arrêt, basé sur l’erreur calculée en incrémentant l’ordre q, peut être défini.

La méthodologie proposée présente l’avantage majeur de permettre la modélisation séparée et

indépendante de chaque sous-système. Alors que d’autres approches dans le domaine temporel

nécessitent un échange itératif pour chaque pas de temps, la méthode DD permet des simu-

lations temporelles asynchrones basées sur l’évaluation des réponses impulsionnelles unique-

ment. Cet aspect particulier présente l’avantage supplémentaire de préserver la confidentialité

de chaque modèle. Les informations sensibles ou propriétaires relatives à chaque sous-système

restent inconnues car aucune autre information ou résultat ne sont requis pour l’échange. Cet

avantage supplémentaire s’avère particulièrement important dans un contexte industriel, car il

permet de conserver la propriété intellectuelle.

Validations numériques de la méthode de domaine de décom-

position

La méthode DD proposée dans cette thèse est illustrée au travers des applications 1D de

réseaux de lignes de transmission, sans pertes de généralité et à des fins d’illustration. Son as-

pect général permet d’étudier différentes configurations de réseaux de lignes indépendemment

de la topologie du réseau, types de câbles et leurs caractéristiques mais aussi de l’observable.

D’après le principe général de la DD décrit dans la section précédente, les propriétés physiques

au niveau de l’interface de découpage doivent être conservées. Dans le cas des lignes de

transmission, deux conditions sont à respecter: 1) la somme des longueurs des deux lignes

résultantes au découpage doit être égale la longueur de la ligne initiale, 2) chacune de ses

lignes doit être chargée par une résistance de valeur égale a l’impédance caractéristique de la

ligne où le découpage a eu lieu pour assurer une continuité d’impédance.

L’illustration numérique de la méthode proposée est réalisée pour 3 cas:

1. plusieurs interfaces: afin de généraliser la méthode à plus d’une interface, une appli-

cation de réseau de lignes pour laquelle la décomposition se produit à deux niveaux est

étudiée. Le principe de l’approche est inchangé, mais sa formulation générale donnée

par l’équation (2) est adaptée pour prendre en compte les sources équivalentes aux deux

interfaces d’échange, ainsi que leurs réflexions dans les trois sous-réseaux.

2. plusieurs outils: la nature asynchrone de la méthode DD proposée permet de modéliser
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chaque sous-système de manière entièrement indépendante. Par conséquent, différents

outils numériques peuvent être utilisés pour caractériser chaque sous-réseau, i.e. évaluer

ses réponses impulsionnelles. Dans ce contexte, la méthode de DD a été appliquée sur

un réseau de ligne de transmission découpé en deux sous-réseaux, tel que le sous-réseau

1 est modélisé par la méthode numérique différences finies (FDTD: Finite Difference

Time Domain en anglais), et le sous-réseau 2 par le logiciel commercial CST Cable

Studio®. Étant donné que les deux outils emploient des pas de discrétisation temporels

différents, une interpolation des réponses impulsionnelles est donc nécessaire avant leurs

combinaison linéaire dans l’équation (2).

3. plusieurs interfaces ponctuelles: pour démontrer l’efficacité de la méthode à résoudre

des réseaux de lignes plus complexes, nous proposons d’étudier un réseau multifilaire tel

que chaque ligne est constituée de m conducteurs. Dans ce cas, l’interface de découpage

est représentée par m interfaces ponctuelles. L’équation (2) est adaptée pour prendre

en compte la contribution des sources équivalentes à chacune des m interfaces, et leurs

multiples réflexions dans les sous-réseaux.

Pour les trois cas d’étude, la méthode de décomposition de domaine est comparée au résultat

global. En général, le recourt à la méthode de DD est une alternative à la simulation glob-

ale à cause de sa difficulté et/ou non accessibilité. Nous considérons dans cette thèse que le

résultat global est connu et servira comme référence pour valider notre approche. Les config-

urations des réseaux étudiés, la formulation adaptée de l’équation (2) selon l’observable, ainsi

que le résultat de la DD comparé à la référence sont donnés dans la suite pour chacun des trois

cas précédents. La source d’excitation pour toutes les configurations est un signal gaussien

d’amplitude 1V .

Cas 1: plusieurs interfaces

On propose d’étudier le réseau de lignes représenté sur la Figure (3a). On s’intéresse à la

tension V5 aux bornes de la résistance RL5 quand le réseau global est découpé au milieu de la

ligne L2 et L6. Suivant le principe de la méthode de décomposition de domaine, l’observable est

localisée dans le sous-réseau k = 2. Aucune source physique n’est injectée dans ce dernier, par

conséquent, uniquement les contributions des sources équivalentes aux deux interfaces l = 2 et

l = 6 sont évaluées. A partir de la formule générale donnée par l’équation (2), la tension V 2
5 est
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(a)

(b)

Figure 3: Réseau global de lignes de transmission divisé au milieu des lignes L2 et L6 (a),

sous-réseaux 1, 2 et 3 après la subdivision du réseau global (b).

exprimée par

V 2
5 = h2

25 ∗V 2
∼2 +h2

65 ∗V 2
∼6 +h2

25 ∗V 2
∼2,1 +h2

65 ∗V 2
∼6,1

+
q

∑
i=2

h2
25 ∗
(
h1

22 ∗ (h2
22 ∗V 2

∼2,i)
)
+

q

∑
j=2

h2
25 ∗
(
h3

66 ∗ (h2
66 ∗V 2

∼6, j)
)

+
q3

∑
k=2

h2
65 ∗
(

h1
22 ∗
(

h2
22 ∗
(
h3

66 ∗ (h2
66 ∗V 2

∼2,k)
))
)

(4)

avec V 2
∼2,i, respectivement V 2

∼6, j sont définis comme le i-ème, respectivement le j-ème ordre de

la source équivalente à l’interface l = 2, respectivement l’interface l = 6. Leurs expressions

respectives sont données par

V 2
∼2,i = h1

22 ∗ (h2
22 ∗V 2

∼2,i−1) (5)

V 2
∼6, j = h3

66 ∗ (h2
66 ∗V 2

∼6, j−1) (6)
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La source V 2
∼2,k est quand à elle définie comme le k-ième ordre de la source équivalente V 2

∼6, et

exprimée par

V 2
∼2,k = h1

22 ∗ (h2
22 ∗V 2

∼6,k−1) (7)

En évaluant la tension V 2
5 donnée par l’équation (4) pour les ordres q1 = 6, q2 = 2 et q3 = 1,

la méthode de décomposition permet de retrouver le résultat attendu, comme représenté sur la

Figure (4).

Figure 4: Comparaison de la tension V5 aux bornes de la résistance RL5 évaluée pour le réseau

global (référence) et le réseau divisé (méthode DD).

En synthèse, le principe de la méthode DD reste inchangé, mais la complexité de la formulation

augmente avec le nombre d’interfaces considérées. Nous soulignons que l’ordre requis pour

une bonne précision est relatif à la topologie du réseau, à la décomposition elle-même et à

l’intervalle de temps pour l’enregistrement du signal. La formule finale peut être automatisée

pour tenir compte des différentes décompositions et topologies du système étudié.
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Cas 2: différents outils de simulation

On propose d’étudier le réseau de lignes représenté sur la Figure (5). On s’intéresse à la

tension V6 aux bornes de la résistance RL6 quand le réseau global est découpé au milieu de la

ligne L2 en deux sous-réseaux, comme représenté sur la Figure (5b).

(a)

(b)

Figure 5: Réseau global de lignes de transmission divisé au milieu de la ligne L2, sous-réseaux

1 et 2 après la subdivision du réseau global (b).

Le sous-réseau 1 est modélisé à l’aide du logiciel commercial CST Cable®, tandis que le sous-

réseau 2 est évalué à l’aide de la méthode numérique des différences finies. Dans ce cas, le

pas de discrétisation temporel utilisé dans CST Cable®, noté dt1, est supérieur à dt2, le pas de

discrétisation temporel utilisé pour la simulation FDTD.

La tension V 2
6 déduite à partir de l’équation générale (2) est exprimée comme suit en utilisant

la méthode de décomposition de domaine proposée:

V 2
6 = h2

26 ∗ (h1
12 ∗V 1

s1)+h2
26 ∗
(

h2
22 ∗
(
h1

22 ∗ (h1
12 ∗V 1

s1)
︸ ︷︷ ︸

V 2
∼2,1

))

+
q

∑
i=2

h2
26 ∗
(
h2

22 ∗ (h1
22 ∗V 2

∼2,i)
)

(8)

avec V 2
∼2,i est défini comme le i-ième ordre de la source équivalente au niveau de l’interface et
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est donné par

V 2
∼2,i = h2

22 ∗ (h1
22 ∗V 2

∼2,i−1) (9)

Après l’interpolation des réponses impulsionnelles h2
... du sous-réseau 2 sur la base temporelle

t1 utilisée dans la modélisation du sous-réseau 1, la tension V 2
6 est évaluée pour l’ordre q = 5.

Le résultat obtenu est présenté dans la Figure (6).

Figure 6: Comparaison de la tension V6 à travers la résistance RL6 évaluée pour le réseau

global (référence) et le réseau divisé (application de la méthode DD pour deux outils

numériques différents).

Dans cette configuration, le résultat de la DD est comparé aux deux références, obtenue chacune

en considérant une simulation globale en utilisant un seul outil numérique. Nous précisons

encore que cette étape sert à valider note méthode, en pratique la référence n’est pas donnée.

La méthode DD donne des résultats satisfaisants, et démontre son applicabilité avec des outils

commerciaux d’une part, et son efficacité à approcher le résultat global de l’autre.
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Cas 3: interfaces ponctuelles multiples

Nous étudions le réseau de lignes de transmission de la Figure (7a) composé de 5 multi-

conducteurs (MTL) et de 2 jonctions. Chaque MTL se compose de trois câbles monofi-

laires importés directement de la bibliothèque CST Cable®: ’LIFY_0qmm5’, ’LIF_0qmm8’

et ’LIFY_0qmm10’, correspondant respectivement aux lignes L1, L2 et L3, dont les longueurs

sont supposées égales. Pour cette configuration, nous proposons de diviser le réseau global au

milieu de la ligne MTL4 en 2 sous-réseaux comme représenté dans la Figure (7b).

(a)

(b)

Figure 7: Réseau multi-conducteur global divisé au milieu de la ligne MT L4, sous-réseaux 1

et 2 après la subdivision du réseau global (b).

La formulation finale permettant de retrouver la tension V 2
5, 1 mesurée au niveau de la résistance

de charge du conducteur 1 de la ligne multifilaire MTL5 est donnée par

V 2
5, 1 =

3

∑
m=1

(

h2
45,m ∗V 2

∼4,m +h2
45,m ∗V 2

∼4,m,1 +
qm

∑
im=2

h2
45,m ∗

(
h1

44,m ∗ (h2
44,m ∗V 2

∼4,m,im)
))

(10)

avec V 2
∼4,m,im

est défini comme le i-ème ordre des sources équivalentes à l’interface m de la

ligne L2
4,m. Leurs expressions sont déduites à partir de

V 2
∼4,m,im = h1

44,m ∗ (h2
44,m ∗V 2

∼4,m,im−1) (11)

En évaluant l’équation (10) pour les ordres i1 = 5, i2 = 1 et i3 = 1, le résultat obtenu est reporté

sur la Figure (8).
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Figure 8: Comparaison de la tension V5, 1 aux bornes de la résistance RL5,1 évaluée pour le

réseau global (référence) et le réseau divisé (application de la méthode DD pour deux outils

numériques différents).

Le résultat de la DD est en très bon accord avec la référence. La technique se généralise donc

facilement à des cas avec plusieurs interfaces ponctuelles, indépendemment de la topologie

du réseau, des types de câbles, du nombre de conducteurs dans la MTL, de la décomposition

elle-même et de l’observable.
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Validation expérimentale de la méthode de décomposition de

domaine

La méthode DD proposée se distingue par sa caractéristique intrinsèque asynchrone

permettant une modélisation indépendante de chaque sous-système. Cette indépendance est

à la fois temporelle, puisqu’il n’y a pas d’échange itératif dans le temps, et spatiale, puisque

le système est physiquement divisé. Sa transposition dans des expériences pratiques peut

sembler du plus grand intérêt, compte tenu des difficultés à réaliser les mesures (limitations

des ressources disponibles), d’une part, et de la multitude des partenaires impliqués dans les

composants ou les parties du système étudié, d’autre part. Dans ce cas, la confidentialité des

modèles est un véritable problème pour les différentes parties, et la méthode de décomposi-

tion proposée semble être une solution appropriée pour préserver la confidentialité des modèles.

A partir des résultats numériques démontrés dans la section précédente, la méthode de décom-

position de domaine est générale et peut s’appliquer pour tout problème linéaire. Son principe

reste inchangé pour les configurations expérimentales également, mais sa formulation, basée

principalement sur l’évaluation des réponses impulsionnelles, n’est pas adaptée pour des ap-

plications pratiques en raison de limitations physiques. Une méthode alternative permettant

d’extraire la réponse impulsionnelle d’un système linéaire à partir de n’importe quel signal

temporel non nul réalisable expérimentalement est proposée. La transposition de la technique

DD expérimentalement est étudiée pour deux réseaux de lignes de transmission. L’efficacité de

la méthode à résoudre des applications dans un environnement réel est démontrée à partir des

résultats obtenus.

Extraction expérimentale de la réponse impulsionnelle

La méthode DD est principalement basée sur l’évaluation des réponses impulsionnelles

de chaque sous-système. En pratique, leurs extractions est un vrai défi étant donné la

difficulté d’injection d’une impulsion de Dirac. Pour surmonter cette limitation physique, nous

proposons une méthode alternative visant à retrouver la réponse impulsionnelle à partir de

n’importe quel signal temporel et de sa réponse. L’approche a été initialement développée au

sein de l’équipe CEM de l’Institut Pascal dans le cadre de la thèse d’Ali Al Ibrahim [128].

La réponse d’un système à un signal α(t) peut être obtenue soit directement en la mesurant,

ou par l’intermédiaire du produit de convolution de la réponse impulsionnelle du système avec

cette source, donnée par le produit R(α(t)) = h∗α(t). A partir de cette définition, une écriture
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matricielle de ce produit de convolution peut être déduite, et réécrite de manière à faire appa-

raître une matrice P construite à partir de la source α(t). Cette matrice, appelée matrice de

passage, permet de passer de la base canonique B = {e0, ...,em} de l’espace vectoriel Rm+1, à

une nouvelle base C = {α(0), ...,α(m)}, construite à partir du signal α(t). La réponse impul-

sionnelle h est donc évaluée en résolvant le nouveau système linéaire, telle que

h = (P⊤ P+ ε Id)
−1

P⊤ R(α) (12)

où Id est la matrice d’identité. Le paramètre de Tikhonov ε > 0 est choisi suffisamment petit

pour ne pas fausser la solution, par exemple ε = 1e−8. Cette technique de régularisation [129]

est utilisée pour s’affranchir de l’instabilité numérique du produit P⊤P (qui est en général due

au mauvais conditionnement).

Application de la méthode de décomposition expérimentale

La méthode DD permet de modéliser chaque sous-système de manière totalement

indépendante. Comme indiqué précédemment, cette caractéristique est très importante pour les

applications industrielles, où les partenaires ne partagent pas leurs systèmes (topologie, types

de lignes, charges, etc.) pour des raisons de propriété et de confidentialité. Il est donc fort

probable que les outils de mesure disponibles pour les différents partenaires ne soient pas les

mêmes non plus. Les caractéristiques générales et asynchrones de la méthode DD permettent

de s’affranchir de cette contrainte, les équipements utilisés pour l’injection et/ou l’acquisition

sont totalement indépendants de la méthode.

Nous étudions le réseau de la Figure (9) composé de 7 câbles, tels que les lignes L1
4 et L2

4 sont

interconnectées par un connecteur BNC-T. L’injection de la source se fait avec l’AWG (Arbitary

Figure 9: Représentation schématique du réseau de lignes de transmission étudié.

Wave Generator) à l’entrée de la ligne L1 et l’acquisition de la tension V5 est effectuée par les

deux oscilloscopes (deux mesures globales sont réalisées), comme representé sur la Figure (10).

xxx



Résumé Etendu en Français

Figure 10: Montage expérimental pour le réseau de câbles étudié, y compris les deux oscillo-

scopes utilisés pour l’application de la méthode DD.

On s’intéresse à la tension V5 mesurée à l’extrémité de la ligne L5 par la méthode de DD en

découpant le réseau global au niveau de l’interconnexion liant les lignes L1
4 et L2

4. L’observable

est localisé dans le sous-réseau 2 (k = 2), son expression est déduite à partir de la formule (2),

et exprimée par

V 2
5 = h2

45 ∗V 2
∼4,1 +

q

∑
i=2

h2
45 ∗
(
h1

44 ∗ (h2
44 ∗V 2

∼4,i)
)

(13)

où V 2
∼4,1 est le premier ordre de la source équivalente au niveau de l’interface donné par le

produit (h1
14 ∗V 1

s1). Le i-ième ordre de cette source est exprimé par

V 2
∼4,i = h1

44 ∗ (h2
44 ∗V 2

∼4,i−1) (14)

Les réponses du sous-réseau 1 sont mesurées à l’aide de l’oscilloscope Tektronix MSO46 4-

BW-35 et d’un signal sinusoïdal pour α(t). Les réponses du sous-réseau 2 quant à elles sont
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mesurées avec l’oscilloscope LeCroy 640Zi et une impulsion à double gaussienne pour α(t).

Le dispositif expérimental pour l’extraction des réponses h1
14 et h2

45 est illustré dans les fig-

ures (11) et (12). L’évaluation des réponses hk
ll au niveau de l’interface (l = 4) est similaire aux

applications précédentes.

Figure 11: Mesures expérimentales pour l’évaluation de la réponse h1
14 du sous-réseau 1.

En utilisant la méthode alternative, proposée dans la section précédente, pour construire les

réponses impulsionnelles de chaque sous-réseau et en suivant une technique d’interpolation de

ces résultats, l’évaluation de l’équation (13) à l’ordre q = 4 donne le résultat reporté sur la

Figure (13).

Les résultats mesurés avec les deux oscilloscopes pour le réseau global sont très proches,

malgré leurs différences d’amplitude expliquées par le caractère aléatoire du bruit propre

à chaque oscilloscope. La tension V5 mesurée par la méthode DD est très proche de ces

références. Les petites différences d’amplitude sont dues à des erreurs numériques dans

l’interpolation des résultats ainsi que par le lissage des réponses mesurées hk
....

En synthèse, la méthode DD s’est avérée efficace dans les environnements de mesure. La

technique a d’abord été adaptée pour la rendre expérimentalement réalisable, en proposant une

méthode alternative d’extraction des réponses impulsionnelles qui surmonte les contraintes ex-

périmentales. Conformément aux objectifs de la thèse, et pour mieux représenter une situation

réelle dans laquelle la technique DD peut être utile, l’utilisation de différents oscilloscopes

pour l’acquisition de données pour chaque sous-système a été étudiée. La caractéristique asyn-
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Figure 12: Mesure expérimentale pour l’évaluation de la réponse h2
45 du sous-réseau 2.

chrone de la méthode permet de réaliser des études paramétriques, en ré-évaluant les sous-

systèmes modifiés uniquement. Ce nouvel avantage semble prometteur pour les applications

industrielles, où la plupart du temps, les expériences sont difficiles et coûteuses. Dans ce cadre,

la méthode préserve la confidentialité du sous-système et n’échange aucune information sur sa

topologie ou ses caractéristiques autres que ses réponses impulsionnelles.
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Figure 13: Comparaison de la tension mesurée V5 pour le réseau global (les deux références)

et le résultat obtenu à l’aide de la méthode DD (réponses partielles mesurées) pour le réseau

divisé.

Association de la méthode de décomposition de domaine avec

la technique de collocation stochastique

LA nature asynchrone de la méthode DD présente un avantage majeur pour les études

paramétriques. Que les réponses impulsionnelles soient calculées numériquement,

à l’aide d’un code numérique ou d’un logiciel commercial, ou qu’elles soient mesurées

expérimentalement, la modélisation des sous-systèmes modifiés offre des gains de temps et

de ressources significatifs. Cette caractéristique particulière est encore plus marquée pour la

dimension stochastique. Au cours des dernières années, la quantification de l’incertitude pour

les problèmes de CEM a continué d’évoluer en fonction des progrès technologiques et des

exigences industrielles. L’un des défis rencontrés réside dans la complexité des problèmes,

reflétée par leur caractère multi-physique et multi-échelle. Un autre niveau de difficulté

apparaît avec la dimension de l’incertitude. L’analyse stochastique devient difficile et coûteuse

en termes de calcul, en particulier pour les systèmes à haute dimension. La méthode DD peut

constituer une solution efficace à ces contraintes, car elle permet de passer de la résolution

d’un système complexe global à des sous-systèmes plus simples ne se chevauchant pas et
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d’une dimension stochastique inférieure.

La méthode DD est étendue aux applications CEM stochastiques linéaires dans le domaine

temporel. Dans le cadre de ces travaux de thèse, la méthode de DD sera associée avec la

technique de collocation stochastique, choisie pour ses multiples avantages (formulation sim-

plifiée, caractère non-intrusif, et taux de convergence rapide). Le concept de la méthode DD

stochastique est mis en pratique à travers des applications de réseaux de lignes de transmis-

sion. L’efficacité de la technique à propager les incertitudes entre les sous-systèmes est d’abord

démontrée. Sa caractéristique asynchrone est ensuite mise en évidence avec différentes config-

urations d’intensités et de lois de distribution de variables aléatoires (VA). Étant donné qu’une

analyse stochastique complète nécessite l’étude de toutes les combinaisons possibles, cela se

traduit par un coût d’évaluation important du modèle. Ce coût est encore plus important lorsque

le nombre de paramètres d’entrée stochastiques est élevé. Pour relever ce défi, appelé la malé-

diction de la dimensionnalité, une association offline-online de la méthode SC avec la stratégie

DD est proposée.

Méthode de décomposition de domaine pour l’analyse stochastique

La méthode DD déterministe, telle que présentée jusqu’à présent, est basée sur

l’évaluation des réponses impulsionnelles des sous-systèmes. La solution du système global

est ensuite construite par une combinaison linéaire de ces solutions partielles, évaluées une

seule fois et appelées déterministes. Dans le cas stochastique, les variations autour des

valeurs nominales des VA dans un sous-système nécessitent une réévaluation des réponses

impulsionnelles qui le caractérisent.

La formulation de la méthode DD stochastique est obtenue en projetant la sortie V k
j de m en-

trées, donnée par

V k
j (x1, ...,xM) = ∑

{i}
hk

i j

(
x1, ...,xM

)
∗V k

si

(
x1, ...,xM

)
+∑

{l}
hk

l j

(
x1, ...,xM

)
∗V k

∼l

(
x1, ...,xM

)
(15)

sur la base des polynômes de Lagarange, tel que

V k
j (x1, ...,xM)≈

n1

∑
t1=0

...
nM

∑
tM=0

V k
j

(
x1

(t1), ...,xM
(tM)
)(

L1
t1 ⊗ ...⊗LM

tM

)

≈
n1

∑
t1=0

...
nM

∑
tM=0

[

Ck
Rs

(
x1

(t1), ...,xM
(tM)
)
+Ck

∼s

(
x1

(t1), ...,xM
(tM)
)](

L1
t1 ⊗ ...⊗LM

tM

)

(16)
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avec Ck
Rs

(
x1, ...,xM

)
, respectivement Ck

∼s

(
x1, ...,xM

)
, sont des termes décrivant la contribution

des sources réelles, respectivement des sources équivalentes.

En se basant sur la propriété des polynômes de Lagrange (symbole de Kronecker) et sur les

règles de quadrature, la moyenne et la variance de la sortie V k
j sont exprimées par

E

[

V k
j (X1, ...,XM)

]

≈
n1

∑
t1=0

...
nM

∑
tM=0

ωt1 ...ωtMV k
j

(
x(t1)1 , ...,x(tM)

M

)

≈
n1

∑
t1=0

...
nM

∑
tM=0

ωt1 ...ωtM

[

Ck
Rs

(
x1

(t1), ...,xM
(tM)
)
+Ck

∼s

(
x1

(t1), ...,xM
(tM)
)]

≈
n1

∑
t1=0

...
nM

∑
tM=0

[

Ck′
Rs

(
x1

(t1), ...,xM
(tM)
)
+Ck′

∼s

(
x1

(t1), ...,xM
(tM)
)]

(17)

avec

Ck′
Rs

(
x1

(t1), ...,xM
(tM)
)
= ωt1 ...ωtMCk

Rs

(
x1

(t1), ...,xM
(tM)
)

(18)

Ck′
∼s

(
x1

(t1), ...,xM
(tM)
)
= ωt1 ...ωtMCk

∼s

(
x1

(t1), ...,xM
(tM)
)

(19)

De même, la variance est exprimée comme suit

Var
[

V k
j (X1, ...,XM)

]

=
n1

∑
t1=0

...
nM

∑
tM=0

ωt1 ...ωtMV k
j

(
x(t1)1 , ...,x(tM)

M

)2 −E

[

V k
j (X1, ...,XM)

]2

=
n1

∑
t1=0

...
nM

∑
tM=0

[

Ck”
Rs

(
x1

(t1), ...,xM
(tM)
)2

+Ck”
∼s

(
x1

(t1), ...,xM
(tM)
)2
]

−E

[

V k
j (X1, ...,XM)

]2

(20)

avec

Ck”
Rs

(
x1

(t1), ...,xM
(tM)
)2 ≈ ωt1 ...ωtMCk

Rs

(
x1

(t1), ...,xM
(tM)
)2

(21)

Ck”
∼s

(
x1

(t1), ...,xM
(tM)
)2 ≈ ωt1 ...ωtMCk

∼s

(
x1

(t1), ...,xM
(tM)
)2

(22)

Le calcul des indices de Sobol à l’aide de la méthode SC repose sur l’évaluation du modèle pour

toutes les combinaisons possibles de VA. La variance conditionnelle pour une entrée donnée

est obtenue en adaptant la formulation et en combinant le modèle déjà évalué pour l’entrée

correspondante.

xxxvi



Résumé Etendu en Français

Les indices de sensibilité principaux et totaux de Sobol’ sont donc récupérés selon leur défini-

tion

Su =
Vu

V
(23)

ST,u = ∑
u⊆v⊆U

Vv

V
(24)

avec Vu est la variance partielle liée à la VA Xu évaluée à l’aide de la méthode DD, et donnée

par

Vu =
n1

∑
i1=1

...
nk

∑
ik=1

(V k
j )u′

(x1
i1 ...x

k
ik)

2ωu − ∑
w⊂u

Vw (25)

La nouvelle sortie (V k
j )u′

fait référence au modèle évalué pour l’ensemble complémentaire u′.

Son expression dépend des nouveaux termes (Ck
Rs)u′ et (Ck

∼s)u′ traduisant respectivement la

contribution des sources réelles et équivalentes dans le sous-système k pour l’ensemble com-

plémentaire u′. Leurs expressions respectives sont données par

(Ck
Rs)u′

(
x1, ...,xk

)
= ∑

{i}
(hk

i j)u′
(
x1, ...,xk

)
∗ (V k

si)u′
(
x1, ...,xk

)
(26)

(Ck
∼s)u′

(
x1, ...,xk

)
= ∑

{l}
(hk

l j)u′
(
x1, ...,xk

)
∗ (V k

∼l)u′
(
x1, ...,xk

)
(27)

Application de la méthode de domaine de décomposition stochastique

Dans le cadre de l’analyse de fiabilité, l’analyse de la valeur seuil (threshold en anglais)

peut être envisagée pour évaluer les risques potentiels les plus élevés de dysfonctionnement

d’un système. La conséquence la plus critique des incertitudes des paramètres d’entrée peut

concerner les valeurs de surtension et de surintensité de la sortie du système. Ces dernières

peuvent causer de graves dommages aux équipements électriques et électroniques sensibles,

entraînant la défaillance du système.

Dans ce contexte, nous étudions le réseau de lignes de transmission de la Figure (14) composé

de 6 câbles coaxiaux RG-58 et de 2 jonctions et modélisé à l’aide du logiciel commercial CST

Cable Studio®.

Sur la base de la méthode SC, on s’intéresse à la réponse stochastique (moyenne et variance)

de la tension V4 aux bornes de la résistance de charge RL4, lorsque les longueurs L3, L5 et L6

sont considérées comme des VA. Pour simplifier la notation dans la suite, ces VA L3, L5 et L6

seront appelées R1, R2 et R3 dans le même ordre. Chacun de ses paramètres suit une loi normal
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Figure 14: Caractéristiques du réseau global étudié.

∼N (0,1), et varie avec des intensités 20%, 10% et 10%, dans le même ordre de leur définition.

Nous supposons que ce problème est maintenant résolu par la méthode DD, de sorte que le

réseau est divisé au milieu de la ligne L2 en deux sous-réseaux comme le montre la figure (5.16).

En suivant le principe de la technique DD, la tension V 2
4 , située au niveau du sous-réseau k = 2,

est exprimée comme suit

V 2
4 = h2

24 ∗V 2
∼2 +h2

24 ∗
(
h2

22 ∗ (h1
22 ∗V 2

∼2)
)

︸ ︷︷ ︸

V 2
∼2,1

+
q

∑
i=2

h2
24 ∗
(
h2

22 ∗ (h1
22 ∗V 2

∼2,i)
)

(28)

où V 2
∼2 est la tension équivalente à l’interface d’échange donnée par le produit (h1

12 ∗V 1
s1), et

V 2
∼2,i est défini comme son i-ème ordre et exprimé comme suit

V 2
∼2,i = h2

22 ∗ (h1
22 ∗V 2

∼2,i−1) (29)

Suite à la décomposition, la VA R1 représentée par la longueur L3 est située dans le sous-réseau

1, tandis que les deux VA R2 et R3 sont isolées dans le sous-réseau 2. La moyenne et l’écart-type

de la tension stochastique V 2
4 sont respectivement donnés par

E

[

V 2
4 (R1,R2,R3)

]

=
n

∑
t1=0

n

∑
t2=0

n

∑
t3=0

ωt1ωt2ωt3 ∗
(

h2
42(r2

(t2),r3
(t3))∗

(
h1

12(r1
(t1))∗V 1

s1

))

Var
[

V 2
4 (R1,R2,R3)

]

=
n

∑
t1=0

n

∑
t2=0

n

∑
t3=0

ωt1ωt2ωt3 ∗
(

h2
42(r2

(t2),r3
(t3))∗

(
h1

12(r1
(t1))∗V 1

s1

))2

−E

[

V 2
4 (r1,r2,r3)

]2

(30)

En évaluant la tension V 2
4 à l’ordre q= 4, les valeurs de moyenne et d’écart-type sont en très bon

accord avec la référence donnée par la simulation du réseau global. La technique DD prouve

sa capacité à propager les incertitudes au sein du sous-réseau lorsque leurs deux paramètres ont

été modifiés.
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Figure 15: Comparaison des valeurs moyennes et de l’écart-type de la tension V3 pour les

réseaux global (référence) et découpé (méthode DD pour q = 4).

Conclusion et perspectives

Ces travaux de thèse sont principalement orientés vers le développement d’une ap-

proche de décomposition de domaine pour l’analyse CEM des systèmes linéaires complexes.

L’évaluation de la réponse du système est garantie par les solutions partielles des sous-

systèmes, modélisés indépendamment les uns des autres. La nécessité de développer de telles

méthodes est principalement motivée par les limitations des approches existantes, l’hybridation

des outils numériques temporels par exemple, pour 1) permettre des simulations totalement

indépendantes des sous-systèmes, 2) préserver la confidentialité des modèles, et 3) dépasser

la complexité d’adaptation de leur interface (pour la discrétisation temporelle et/ou spatiale)

pour s’adapter à des applications générales concernant la géométrie et/ou les propriétés des

matériaux des systèmes étudiés.

La méthode DD proposée est une technique facile à mettre en œuvre, basée sur une stratégie

offline-online caractérisant des sous-systèmes moins complexes uniquement par leurs réponses

impulsionnelles, à partir desquelles la solution globale est obtenue sur la base d’une combinai-

son linéaire. La technique offre trois avantages majeurs :

• la décomposition est générale, elle est indépendante du cas et peut être automatisée pour

toute application linéaire,

• la formulation est asynchrone, ce qui signifie que les sous-systèmes sont modélisés in-
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dépendamment au niveau hors ligne. Leurs réponses sont combinées dans la phase en

ligne, afin de prendre en compte les propriétés physiques du problème initial et les cou-

plages existants entre les sous-systèmes,

• la confidentialité des modèles est préservée, étant donné qu’aucune information pro-

priétaire et/ou résultat n’est échangé.

Ces avantages ont été démontrés par des applications numériques pour différentes configura-

tions (plusieurs interfaces, différents outils de modélisation, réseaux complexes à des interfaces

ponctuelles multiples) de réseaux de lignes de transmission. La caractéristique asynchrone de

la méthode DD est mise en évidence par les applications expérimentales, en particulier pour

des équipements de mesure différents pour chaque sous-système. La configuration fournit

non seulement une démonstration pratique de la véritable signification de la décomposition

asynchrone, basée sur une caractérisation indépendante (à la fois temporelle et spatiale) à l’aide

de différents instruments, mais elle s’approche également de situations réelles impliquant des

fournisseurs et des assembleurs, dans le contexte automobile. Étant donné que les expériences

ont tendance à être coûteuses (en termes de temps et de ressources humaines), la méthode DD

permet des gains de coûts significatifs pour les études paramétriques.

Cet avantage supplémentaire présente un potentiel considérable pour des applications plus coû-

teuses : l’analyse stochastique. Les résultats obtenus ont démontré la capacité de l’approche

de décomposition du domaine à propager les incertitudes au sein des sous-systèmes, tout en

préservant la confidentialité des modèles stochastiques. En outre, la méthode DD stochastique

atténue la malédiction de la dimensionnalité découlant des problèmes de dimension stochas-

tique élevée. Elle réduit considérablement le nombre d’évaluations du modèle, généralement

très coûteux à évaluer. Cette caractéristique est très prometteuse et maintient l’efficacité de

techniques telles que SC et PC sans compromettre le coût de calcul.

Dans la continuité de cette thèse, nous proposons quelques perspectives pour des travaux futurs,

concernant :

1. l’aspect numérique:

• la technique de DD peut être intégrée dans une plate-forme de simulation impli-

quant plusieurs partenaires. Chaque partenaire modélise un sous-système m, et

n’échange que deux informations: la réponse impulsionnelle de son système au

niveau de l’interface et la tension d’onde entrante des sources physiques dans ce

système au niveau de l’interface.
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• la méthode de DD peut être appliquée aux problèmes de CEM en mode rayonné,

ainsi qu’au couplage électromagnétique/électrique dans des cas particuliers (cavités

électromagnétiques avec ouvertures).

2. l’aspect expérimental : la méthode DD peut être entièrement expérimentale, en com-

mençant par l’évaluation des réponses impulsionnelles, en prenant en compte les ordres

supérieurs, et en terminant par l’évaluation de la formulation finale. Cette nouvelle vision

nécessite la mise en place d’un banc d’essai plus complexe, et le développement d’un sys-

tème de contrôle des différents outils de génération et d’acquisition pour automatiser le

processus de mesure.

3. la dimension d’incertitude : l’aspect d’incertitude peut être poussé plus loin en combinant

la méthode DD avec différentes méthodes stochastiques, autres que SC et PCE, où le défi

se pose avec des échantillons différents de part et d’autre de l’interface. La méthode

devra donc être adaptée pour surmonter cette contrainte, mais l’idée et le principe de

base restent les mêmes.
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Context

SAFETY standards in the automotive field are of paramount importance due to the inherent

risks associated with transportation. In the ElectroMagnetic Compatibility (EMC)

context, the rapid integration of advanced technologies into tomorrow’s vehicles raises

concerns about their safety and reliability. While these innovations offer numerous benefits,

including improved efficiency and connectivity, they also introduce new complexities and

potential vulnerabilities to electromagnetic interferences (EMI). It is therefore crucial to ensure

compliance with standards limiting parasitic emissions from the car and respecting people’s

exposure to electromagnetic fields inside the vehicle while guaranteeing the proper operation

of all equipments. Deploying new technologies requires therefore a thorough analysis of the

electromagnetic performance of the complex vehicle systems. Considering electromagnetic

compatibility in the early design phase will ensure safety, reliability, functionality, and

compliance.

Nowadays, numerical simulation is an indispensable tool for automotive EMC modeling. It

allows electric/electronic architecture validation in the early stage of design. These numer-

ical computational methods have improved significantly over the past years. Their features

(accurate modeling of the physical phenomena), speed (fast simulations) and size (large-scale

problems) have evolved in response to advances in computer technologies and the emergence

of new mathematical techniques. However, their use for full-system EMC simulations has not

progressed proportionally due to both technical and industrial issues. Although assemblers and

suppliers require a collaborative and interdependent exchange, neither of them is willing to

provide their numerical model. Intellectual property protection is thus challenging, and alter-

native solutions should be proposed to preserve the confidentiality of models of all involved

parts. The computation time and memory size for large system simulations are additional con-

straints to the established problem. Its complexity is reflected at different levels and requires

an innovative approach compared with conventional strategies:

• Multi-scale: a single numerical method seems unable to cover the differences in scale

(from system to component level). Despite the efficiency of hybridization methods (Fi-

nite Difference, Finite Volume), they still require to adapt their numerical time step and

meshing parameters, making the conditions at the interfaces difficult to handle,
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• Multi-methods/models: given the complexity of the configurations (geometries, materi-

als, etc.), different specialized tools can be combined such that each sub-system is mod-

eled with the most appropriate solver.

Up to this day, there is no software solution to solve a complex EMC problem in its entirety

(conducted and radiated), and diversity. The challenge for all the ANR ECOCES project

partners is to develop a co-simulation methodology for assessing EMC phenomena in complex

systems through independent simulation of all sub-systems. In this approach, the various

models are neither shared between partners nor integrated into a single tool, but communicate

in real-time via their interfaces.

With the continuous evolvement of connected vehicles, their complexity goes beyond the

established constraints with the uncertainty dimension, adding a multi-uncertainties level.

EMC problems are growing needs for an accurate consideration of their randomnesses.

Whether the multiple existing sources of uncertainties are known, related to their design

(geometric and material properties), their environment (external parameters or neighboring

systems), or unknown (no grip on system uncertainties), their quantification in co-simulation

techniques requires the use of adapted techniques, intended to be non-intrusive to consider the

diversity and multitude of scales and methods.

The aim of this thesis is to propose a domain decomposition approach to solve complex EMC

problems in the time domain. Each sub-system is modeled independently from the others,

and the exchange at the interface level should preserve the confidentiality of each model. Our

work focuses on the quantification of uncertainties for EMC domain decomposition applica-

tions as well. The emphasis of the stochastic analysis is on the adaptability of the proposed

methodology to take into account the uncertainties between the different sub-systems while

acknowledging the diversity and complexity of the problem. The proposed technique should

be general regarding the random variations in input data (intensities and distribution laws), the

choice of stochastic methods, and the choice of observable parameters.

Academic and industrial partners

This thesis work was developed within the framework of the ANR1 project ECOCES

(Electromagnetic Compatibility Co-simulation Of Complex Electrical Systems) integrating

three thesis subjects and involving academic and industrial partners. The project idea was

1https://anr.fr/Projet-ANR-19-CE05-0016

2
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originally suggested by the automotive industrial partner STELLANTIS2, according to the

encountered problems.

Figure 16: Academic and industrial partners.

The first thesis was launched in October 2020, in the Ampère laboratory3, whose research

activities focus on the EMC of power systems, mainly extensive modeling of converters. The

thesis work developed by Diallo Amadou Bayaghiou was devoted to setting up a co-simulation

method for assessing the electromagnetic compatibility of power electronics systems. His

thesis defense took place in Lyon on September 21st, 2023.

The second Ph.D. subject, whose work is presented in this manuscript, started in October

2020, in Institute Pascal4 within the EMC team. Its main focus is put into deterministic

and stochastic numerical models for solving electromagnetic problems (s.g. networks of

multi-wire transmission lines, three-dimensional structures, etc.). These numerical simulations

are complemented by experimental measurement using reverberant and anechoic chambers.

The third thesis is launched at IETR5 and aims at proposing a co-simulation method at the

2https://www.stellantis.com/fr
3http://www.ampere-lab.fr/
4http://www.institutpascal.uca.fr/
5https://www.ietr.fr/

3
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component level. The team’s EMC research activities focus on innovative modeling strategies

for the analysis of complex statistical systems, as well as statistical analysis.

The GeePs6 laboratory is an active partner in the co-direction of A.-B. Diallo thesis. Its main

areas of research are energy conversion systems and electromagnetic coupled problems. The

laboratory combines a three-fold approach: theory, numerical modeling and experimental

validation.

Chiastek7, a co-simulation platform editor, provides high-value-added solutions for systems

engineering based on complex product models in aerospace, automotive and other industries.

Thesis outline

The following thesis is composed of five chapters:

Chapter 1: This chapter starts with a non-exhaustive state-of-the-art of domain decomposition

methods for computational electromagnetic applications, in both frequency and time domains.

The thesis work developed in Ampère laboratory is briefly presented. Our work is positioned

regarding the existing methods in the time domain while identifying the complementary our

technique adds with respect to the ANR project specifications. The focus is later put on the

stochastic analysis dimension and the motivations behind the necessity of considering the

uncertainties in electromagnetic problems. The main used stochastic techniques for EMC

applications for uncertainty quantification and sensitivity analysis are reviewed.

Chapter 2: This chapter presents the general principle of the Domain Decomposition (DD)

method and its mathematical foundations to solve linear systems. After explaining its theory,

the DD technique is illustrated by numerical applications in wiring networks. A different

point-of-view of the DD method, regarding its implementation, is proposed for realistic

real-world configurations. The new formulation of the technique is given, with numerical

illustrations.

Chapter 3: This chapter proposes to extend the application of the DD method for different

scenarios, and proves its efficiency for each of these configurations. The technique is general-

ized to more than one interface exchange to prove its efficiency for complex wire networks.

6https://www.geeps.centralesupelec.fr/
7https://www.chiastek.com/
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For different simulation parameters of the numerical tool of each sub-system, the method

still gives satisfactory results. Based on this, the robustness of the approach is demonstrated

by using commercial software and numerical codes. Lastly, the DD methodology is applied

to a multi-one-point interface decomposition problem. Its new formulation is detailed and

implemented for a multi-wire network application.

Chapter 4: This chapter aims to validate the DD method experimentally to test its robustness

in a measurement environment. The DD technique is first adapted to overcome some

experimental constraints. It is then applied to different wiring network configurations. The

DD technique is tested using different equipments for each sub-system. The demonstration,

very close to reality, gives satisfactory results. Additional advantages of the DD technique are

proved through parametric studies. The significant cost gain in terms of required measurement

time is an additional advantage of the methodology.

Chapter 5: This chapter deals with the uncertainty dimension for electromagnetic problems

solved using the proposed DD methods. After recalling some elements of probability, the

focus is put on second-moment methods for the assessment of mean and variance, and global

sensitivity analysis for the evaluation of Sobol’ indices. The DD methodology’s ability to

propagate uncertainty between the sub-systems is demonstrated through two different EMC

applications. The stochastic DD technique’s aptitude in preserving the stochastic confidentiality

of the models is later demonstrated. Finally, a discussion based on the dramatic reduction of

the evaluation cost resulting in the association of the stochastic collocation method with the

proposed DD methodology is carried out.
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Chapter 1 – Domain Decomposition Methods and Stochastic Analysis: State of the Art and
Context

WE begin this first chapter by reviewing the state-of-the-art of the different Domain

Decomposition (DD) methods developed earlier for Computational ElectroMagnetic

(CEM) problems. The adapted DD techniques for the ElectroMagnetic Compatibility (EMC)

field, for frequency-domain analysis, are recalled. However, as this thesis focuses on the time

domain, a literature review of the existing temporal DD methods, including the hybridization of

numerical methods is presented. Both advantages and limitations of these proposed techniques

will be discussed,with the aim of positioning our work within these existing techniques, regard-

ing the specifications of the ANR project and the first thesis’ objective. Within this framework,

the research work developed in "Ampère laboratory" by Amadou Bayaghiou Diallo in his thesis

focused on cooperative simulation methods referred to as co-simulation techniques. This new

term will be defined in the following, along with the approach proposed by A.-B. Diallo. As the

second thesis and initial main objective is to carry out a stochastic analysis for DD problems,

the second section of this chapter starts by giving the motivation of stochastic studies for EMC

problems. A non-exhaustive state-of-the-art of some of the most used stochastic techniques

will be presented later.

1.1 Domain Decomposition methods

Domain Decomposition methods are powerful techniques used in the field of computational

mathematics and scientific computing. The fundamental strategy of the DD methods is to

decompose the entire computational domain into many subregions based on the local material

properties and geometrical features. Subsequently, the most suitable numerical technique for

each of the subregions is used. They address information exchange between subdomains in

shared regions (field continuity, fluxes, etc.).

1.1.1 History of DD methods and their theoretical foundations

DD techniques were originally proposed by H. A. Schwarz who gave it its name [1], to

determine the solution of a partial differential equation (equation of Poisson) on a domain of

non-trivial form. Since analytical solutions could only be found for domains of a particular

shape (disk and rectangle), he came up with the idea of decomposing the non-trivial domain

into elementary domains to solve the equation separately (see Figure (1.1a)). The challenge, of

course, is to link the solutions calculated on the sub-domains in order to reconstruct the solution

on the whole domain. While assuming that g defined on ∂Ω is known, the aim is to retrieve the
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(a) (b)

Figure 1.1: Example of domain decomposition methods with overlap (a) and without overlap

(b).

solution of the equation of Poisson on the domain Ω, such that






−∆u = 0 in Ω = Ω1 ∪Ω2

u = g in ∂Ω
. (1.1)

Shwarz proposes to alternately solve the problem in each of the sub-domains with transmission

conditions based on the solution just computed in the neighboring subdomain. More precisely,

Schwarz demonstrates that the alternating Schwarz algorithm initialized by u0
2 and updated

according to

−∆un+1
1 = 0 in Ω1

−un+1
1 = g in ∂Ω1 ∩∂Ω

−un+1
1 = un

2 in ∂Ω1 ∩Ω2

(1.2)

−∆un+1
2 = 0 in Ω2

−un+1
2 = g in ∂Ω2 ∩∂Ω

−un+1
2 = un+1

1 in ∂Ω2 ∩Ω1

(1.3)

converges to the solution of the Poisson problem (1.1) and therefore that this solution exists.

If the convergence is not achieved for a given ε , an additional iteration is performed. This way

of iterating is known as the multiplicative Schwarz method. The convergence is controlled by

the choice of overlap. The greater the overlap, the faster the algorithm will converge [2]. The

alternating Schwarz method can be generalized to several subdomains. However, it is possible

that some sub-domains are linked to several others, and care needs to be taken with the order

in which the problems on the subdomains are solved. The disadvantage of the alternating
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Schwarz method is its sequential nature since each sub-domain depends on the solution just

obtained in the neighboring sub-domains via the boundary condition.

In order to overcome this limitation, P.-L. Lions has proposed a fully parallel version [3],

which takes advantage of the power of the computer to increase computing speed. Instead of

performing successive calculations at each iteration, each sub-domain is calculated in parallel.

This translates simply into an index change in equations (1.2) and (1.3). The solutions un
1

and un
2 known at the iteration n are used in parallel to determine un+1

1 and un+1
2 . This new

formulation is referred to as additive Schwarz method. The parallel version can also be

generalized to more than two sub-domains. However, the convergence for multiple overlaps

may be difficult to achieve (it requires finding the right sequence for applying boundary

conditions in multiple overlaps). In addition, the number of elementary operations is doubled

for these methods.

Various methods have been developed on the basis of the Schwarz method to extend this

type of approach to a non-overlapping method and increase its algorithmic efficiency. In the

follow-up work developed by Lions, a non-overlapping version of the Schwarz approaches

was proposed in [4] (see Figure (1.1b)), based on Robin boundary conditions1 [5].

In general, it is important to be able to handle domain decomposition methods without overlap,

especially for heterogeneous problems. The non-overlapping domain decomposition tech-

niques, also known as substructuring methods, overcome these constraints by new conditions

(Schur’s complement [6]) at the interfaces. They were initially introduced by Janusz Stanisław

Przemieniecki in 1963 [7], and can be classified into two categories: the Balancing Domain

Decomposition (BDD) [8], and the iterative Finite Element Tearing and Interconnect (FETI)

[9].

In summary, DD methods can be categorized into two main families:

• overlapping methods also known as Schwarz methods, divide the global domain into

overlapping regions. The local problems are solved on each sub-domain. The coupling

between the solutions of the different sub-domains is ensured by the common overlapping

region [1].

• non-overlapping methods or Schur’s complement methods, separate the unknowns vari-

1For Ω a domain in which an equation is to be solved, and ∂Ω its edge, the Robin boundary condition is defined

by αv+β∇v = g.
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(a) (b)

Figure 1.2: Example of Schur domain decomposition of the global domain Ω (a) into two sub-

domains Ω1 and Ω2 (b).

ables due to the decomposition into two subsets: one formed by the unknowns located

on the interface and the other by the unknowns located inside the subdomains. Once the

Schur complement has been formed with respect to the inner variables, a system involv-

ing the interface variables is solved first, the interior unknowns are later deduced [7].

1.1.2 Domain decomposition methods for electromagnetic applications

Throughout the years, the use of domain decomposition methods has been extended

to many engineering fields, including computational electromagnetics. These methods aim

to divide the computational domain into smaller subdomains to solve the electromagnetic

equations efficiently. They allow for efficient parallelization and can handle large and complex

geometries.

Domain decomposition techniques have been proposed for a wide array of applications.

In [10], a non-overlapping DD method for electromagnetic radiation and scattering analysis of

multi-target problems was presented. Lu and al. proposed in [11] an efficient algorithm based

on a domain decomposition method and partial basic solution vectors technique for solving

three-dimensional large-scale finite periodic electromagnetic problems. They introduced

Robin-type conditions at interfaces between subdomains to enforce field continuity. Authors

in [12] demonstrated the accuracy and flexibility of an embedded domain decomposition

method in handling non-conformal geometries. Other researchers associated the DD method

with other numerical tools. For instance, Diego M. Solís and al. [13] investigate the efficiency

and accuracy of a surface integral equation domain decomposition approach for realistic

electromagnetic compatibility engineering. The method provides an accurate and fast solution

for real-life EMC/EMI studies. Other researchers have also been interested in combining
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a domain decomposition approach with integral equations to solve electromagnetic wave

scattering from non-penetrable objects. The method relieves the burden of mesh generation

and is proved to be efficient and robust for solving multi-scale electromagnetic problems.

In [14], the DD method was associated with a multi-solver for modeling multiple antennas

conformally mounted on a large platform. The authors validated their association through

numerical applications and measurements.

Broadly speaking, overlapping DD methods are known to be iterative techniques. They

require local solvers at the transmission condition level to ensure convergence between the

sub-models. In [15], the authors propose an iterative domain decomposition method (IDDM)

for large-scale full-wave analysis of electromagnetic fields. This iterative solution may be

computationally expensive, consequently, researchers focused on overcoming this cost by

adapting the DD techniques to be independent from the iterations. In [16], the authors

propose an iteration-free domain decomposition method, with Robin-type transmission

conditions, for fast finite element analysis of electromagnetic problems. The approach does

not suffer from the issue of convergence rate and avoids redundant computations. The use of a

high-performance computing scheme and domain decomposition method, proposed by Wang

and al. in [17], overcomes the convergence deficiency of conventional iterative solvers for

large-scale electromagnetic problems.

Most of the existing DD methods are proposed for frequency-domain applications. How-

ever, few works in time-domain have emerged. A domain decomposition finite-difference

time-domain (FDTD) technique has been proposed for solving large electromagnetic prob-

lems [18]. This method divides the computational domain into manageable subdomains

with overlapping regions and uses perfectly matched layer (PML) layers to absorb outgoing

waves. The tangential electric fields are stored on an interface plane to generate the field in

the adjacent subdomain. The technique considers the effect of multiple reflections between

the subdomains, allowing for accurate simulation of large electromagnetic problems that are

difficult to handle using direct FDTD methods. Another dual-field time-domain finite-element

domain-decomposition method for efficient computational electromagnetics was proposed

by Lou and al. in [19]. The method divides the computation domain into non-overlapping

subdomains and solves second-order vector wave equations to compute the electric and

magnetic fields in each subdomain. The method requires minimum communication between

subdomains, making it suitable for parallel computations.

One of the most widely used sub-categories of DD methods in the time domain are hy-
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bridization of numerical tools [20–27]. Several works are based on the hybridization of the

FDTD [28] method with other techniques. Q. Sun and al. [22] introduced a new hybrid method

that combines the computational efficiency of finite-difference time-domain (FDTD) and

the meshing flexibility of finite-element time-domain (FETD) for electromagnetic modeling

with non-conformal meshes, to facilitate electromagnetic modeling by exploiting both the

computational efficiency of FDTD and the meshing flexibility of FETD. The proposed hybrid

method allows nonconformal meshing and overcomes late-time instability. The authors

in [29] developed a 3-D hybrid implicit explicit single-field finite-difference time-domain

(FDTD) method for the electromagnetic simulation of structures with fine details in one or

two Cartesian directions. It requires the solution of tridiagonal matrices and explicit updates

at each time step. The computational efficiency and accuracy of the method have been

demonstrated through numerical examples and comparisons with other methods. Another

hybrid time-domain technique that combines the finite element, finite difference, and method

of moment techniques used to solve complex electromagnetic problems was proposed in [26].

This technique brings together the ability of the finite difference time domain (FDTD) scheme

to handle arbitrary material properties, the versatility of the finite element time domain

(FETD) to accurately model curved geometries, and the method of moments (MoM) to analyze

thin-wire structures. It operates in the time domain, providing wide-band information from

a single execution and simplifying the interfacing of different methods. In [27], the hybrid

Finite Difference Time Domain (FDTD) - Partial Element Equivalent Circuit (PEEC) method

is used to analyze the electromagnetic compatibility (EMC) of multilayer printed circuit

boards (PCBs). This method combines the advantages of FDTD and PEEC techniques to

reduce simulation times and improve computational efficiency. A similar EMC problem of

PCBs and metallic antenna structures was solved through hybridization of the partial-element

equivalent-circuit (PEEC) method and the method of moments (MoM) [23]. The PEEC

technique is used to model the coupling from a homogeneous electric field into a system of

conductors in the presence of a substrate, while the MoM is applied as a full-wave method for

metallic scatterers such as antennas. This hybrid approach allows for a significant reduction

in numerical complexity and computational effort while maintaining accuracy. Its validity has

been demonstrated through numerical examples and measurements. In [25], L. Zhang and al.

also studied the electromagnetic interference of PCBs. They proposed a modeling approach

using an equivalent magnetic dipole array deduced from near-field scanning results obtained at

a certain height over the PCB surface under test and the finite-difference time-domain (FDTD)

algorithm.

Other researchers combined finite difference/finite volume methods, including P. Bonnet
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and al. [30], who combined a finite-volume method with an unstructured conformal mesh to

represent the scatterer and its immediate neighborhood, while using a classical finite-difference

method with an efficient boundary condition, such as the PML formalism, for the remaining

part of the computational domain. He and al. [31] proposed a new local time-step scheme

that combines the finite difference and cell-centered finite volume methods and aims to

improve the computational efficiency of the method. In [21], the authors propose a hybrid

spectral finite-difference time-domain (FDTD) with the discrete-time time-domain vector

fitting (TD-VFz) algorithm to analyze three-dimensional periodic structures excited by oblique

incident plane waves over a wide frequency band.

Alternative hybridization methods to FDTD have also been proposed. In [32], the authors pro-

pose a fast time-domain finite element-boundary integral (FE-BI) method for electromagnetic

analysis. The approach combines finite element and boundary integral field representations to

achieve a sparse system matrix and solutions free of spurious modes. It utilizes higher-order

vector basis functions and curvilinear tetrahedral elements to accurately model the geometry

and represent the fields. To handle problems involving large electrical dimensions, a multilevel

plane-wave time-domain (PWTD) algorithm is used to accelerate the evaluation of the

boundary integrals. The proposed method demonstrates superior accuracy and efficiency

in analyzing electromagnetic scattering phenomena in both two-dimensional (2-D) and

three-dimensional (3-D) cases. An improved vector wave equation-based discontinuous

Galerkin time-domain (IDGTD-WE) method has been proposed in [24] to efficiently solve

electromagnetic problems. This method solves the electric field using the primal form of the

discontinuous Galerkin time-domain (DGTD) technique based on vector wave equation, while

the magnetic field is obtained using a weak form auxiliary equation related to the electric fields.

In summary, the growing interest in DD methods translates through the multitude of its appli-

cations for a wide panel of electromagnetic problems. Whether it concerns developing new

approaches or improving existing techniques to overcome the new challenges that may arise

with technological advances, the DD method’s significance and relevance in current research

and applications are demonstrated. This non-exhaustive state-of-the-art offers first insights into

the existing DD approaches and helps position our work regarding the literature while meeting

the ANR ECOCES project specifications. In this context, the main project idea is developing

a co-simulation method for solving complex systems involving a multitude of system scales

and physics. The term co-simulation, referring to cooperative simulation, may exhibit varying

interpretations, and it necessitates a precise definition to avoid ambiguity. In the following sec-

tion we distinguish between co-simulation in its real sense, and co-simulation as defined in the
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context of this project. We further position the work developed by A.-B. Diallo, as one of the

other theses of the project, regarding DD methods generally and our proposed DD technique

specifically.

1.1.3 Co-simulation approaches

Co-simulation methods are simulation techniques that allow complex systems comprised

of sub-systems to be easily simulated. These sub-systems behave conceptually like black

boxes. They accept inputs, advance in time with a built-in solver routine up to the next

communication point, and finally output some results. Co-simulation can be considered as

the joint simulation of the already well-established tools. These co-simulation methods are

different from other simulation techniques known as hybrid or parallel.

In his thesis [33], A.-B. Diallo defines the co-simulation as the interaction between two sim-

ulation tools. A detailed and comprehensive review of the co-simulation methods and their

principles is presented. Broadly, the focus is put on three points:

1. co-simulation methods: the basic principle of the techniques as well as their classification

depending on the coupling (generic or specific) are presented,

2. concepts of interoperability: the main causes of interoperability are definied. Other con-

straints such as model heterogeneity, the multiplicity and confidentiality of simulation

tools are detailed,

3. literature review of co-simulation methods: the contributions in the automotive and elec-

tric power generation and distribution fields are reviewed.

After a thorough study of the difficulties encountered, and the limitations of existing solutions,

regarding his thesis objectives, A. Diallo proposed an iterative co-simulation for strongly

coupled, wide-frequency band sub-systems for the EMC study of electrical systems.

The approach is based on a Norton equivalent source and an iterative co-simulation algorithm

based on the waveform relaxation method. The idea is to consider a high-level graphical parti-

tioning, in which each sub-system studied is surrounded by simplified equivalent circuits rep-

resenting adjacent sub-systems. The method has been proposed and tested on different appli-

cations modeled by electrical circuits (linear and non-linear), and extended to more complex

EMC applications:

15



Chapter 1 – Domain Decomposition Methods and Stochastic Analysis: State of the Art and
Context

• for the evaluation of conducted electromagnetic disturbances (common mode and dif-

ferential mode) in power electronics and validated by experimental measurements on

physical prototypes,

• for the study of coupling between the sub-parts of a complex multiphysical system (in-

duction power transfer system for electric vehicles) which is modeled on the one hand by

electrical circuits and on the other by a 3D finite element model.

The proposed technique was also validated by experimental measurements and proved efficient

in terms of intellectual property protection and computation time savings.

1.1.4 Kron’s formalism and Diakoptics

Within the framework of circuit analysis, one of the first techniques in the literature is

Kron’s formalism. Initially, Gabrial Kron, an American engineer, developed a theory to apply

tensor network analysis to the resolution of electrical circuits in the 1930s [34]. This method,

mainly used to model electrical machines was nevertheless limited by the computing resources

available at that time. Olivier Maurice was one of the first researchers who proposed using

this tensor mathematical tool to solve complex EMC problems [35–37]. Kron’s formalism

extended to multiple EMC applications and several works have been proposed in the past

years. In [38], Kron’s method is applied to the study of electromagnetic interference in

aerospace systems. The method involves using spacecraft and aircraft mock-ups to simulate

the performance of Kron-based tools. These tools aim to evaluate the EM disturbances

between antennas, electronic equipment, and portable electronic devices found in large

systems. Authors in [39] proposed a Kron simulation of field-to-line coupling using both a

meshed Taylor cell and a modified Taylor cell. Modified Kron’s method has been applied

to optimize the response of an LC filter and validate its use and benefits in [40]. Stojanovic

and al. [41] proposed more recently a methodology for designing EMI filters based on the

modified Kron’s method for electromagnetic compatibility for filter attenuation calculation by

considering magnetic couplings between components.

Broadly speaking, Kron’s method is specifically focused on simplifying complex electrical

circuits by dividing them into repetitive sub-circuits. A more general approach, known as

Diakoptics, has been proposed by Kron in 1957 [42], and collected in his book "The piecewise

solution of large scale system". The term Diakoptics, of Greek origin, (dia: systems, kopto: to

cut) also known as the "Method of tearing", is a method that decomposes a system containing

several variables into p sub-systems solved separately. The method uses the solutions of the i
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sub-systems, i ∈ {1, . . . , p}, to find the solution to the initial global problem [43, 44].

To introduce the Diakoptics method, Kron begins by explaining the different points of view

from which a "system" can be described. In this case, for electrical systems, a network is

made up of branches and impedances. On the one hand, according to Kron, the branches

constitute meshes, representing the "graph" according to a combinatorial (algebraic) topology

schematized by plane surfaces and lines; on the other hand, the representation of impedances

follows a "point" topology described by equations. Physically, the network can only be

realized in the presence of branches and impedances. Diakoptics is therefore based on a theory

combining a graph and equations associated with a physical system.

In [45], F. Uriarte begins with a simplified explanation of the Diakoptics method. A linear

system can be written in matrix form AX = B. The solution to the system X can be obtained

by inverting the matrix A, but for systems with a large number of variables, calculating the

inverse matrix can be very costly. By dividing the initial system into p sub-systems, the matrix

A can be decomposed into p-block matrices, each describing the corresponding subsystem.

Using algebraic calculations, F. Uriarte finds a formulation of the system solution based on

the block matrices of the sub-systems, while respecting the physical conditions of the initial

system (coupling between variables, boundary conditions, adaptation conditions). The new

formulation of the solution shows the interest of the diakoptics method in the case where a

sub-part of the global system varies, the solution of the problem only requires the calculation

of the block matrix of this sub-system. The principle of the diakoptics method was taken up

by A. Klos [46]. The author explains the matrix formulation of the diakoptics method. For an

electrical network where voltages and currents can be expressed from Kirchhoff’s laws, the

equations at the network nodes and meshes are solved from the new matrix formulation using

the diakoptics method.

The use of Diakoptics for electromagnetic problems gained prominence in the early 1990s [47–

50]. A resurgence of interest in Diakoptics techniques for EMC applications occurred lately.

In [51], the authors used a Diakoptics approach to a magnetic skin-effect problem. Another

application of Diakoptics method using Volume Integral Equation (VIE) modeling of subsys-

tems is proposed for 3D electromagnetic analysis in [52]. The technique combines the VIE and

surface integral equation formulations, in conjunction with the method of moments (MoM).

The authors in [53] used a discrete Green’s function approach to couple disjoint domains in

the FDTD grid based on the Diakoptics principle.
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Overall, the principle of the Diakoptics technique seems very similar to the Domain Decom-

position approaches. Although in the literature, many researchers consider the two approaches

to be equivalent, there is a subtle difference between the two approaches. An early work pro-

posed by C.-H. Lai in [54], discusses the common grounds between diakoptics and domain

decomposition methods and their relation to parallel computing.

1.1.5 Electromagnetic topology

As part of the ongoing efforts to resolve complex electrical circuits and electromagnetic

systems, the electromagnetic topology approach is a promising resolution method within the

realm of electromagnetic inquiry. The approach was developed several years ago initially for

aeronautics by C.-E. Baum in the USA [55], and was extended later for different electromag-

netic applications. Its concept is to divide the space of interest into volumic zones to break

down a total complex electromagnetic problem into a group of small problems independent of

each other. The topological diagram is a helpful abstract vision of the geometry of a system,

taking into account the electromagnetic interactions between the different volumes. With this

diagram, an inventory of all the penetration paths into the previous volumes can be made

and then an interaction graph is drawn. The formalism allows potential approximations to be

introduced from graphs describing coupling situations and can lead to a singular simplification

of the model to be simulated within the framework of computational structures.

Based on the decomposition into distinct but interconnected volumes, the topology approach

was applied to the processing of cable harnesses. Through the thesis conducted by Jean-

Philippe Parmantier [56], the first promising results have been obtained by applying this

formalism and its experimental validation. As the method’s potential arises for complex wiring

systems, the research work carried out by J.-P Parmantier [56] and P. Besnier [57] has led to

the development of numerical tools and has given birth to the software CRIPTE (referring to

Calcul sur Réseaux des Interactions Pertubatrices en Topologie Electromagnétique in French)

developed by the French Aerospace Lab ONERA. Several works based on the software were

proposed for different electromagnetic applications. For instance, in [58] I. Junqua and al.

discuss the analysis and evaluation of high-frequency electromagnetic wave penetration in

complex oversized systems using the Power Balance approach and electromagnetic topology.

In [59], the authors used the CRIPTE software to estimate the effect induced by loads on

the conducted propagation of a spurious compromising signal that emanates from electronic

devices.
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The extension of the electromagnetic topology formalism for other EMC applications was

demonstrated by various works, including shielding effectiveness estimation [60], dipole an-

tenna design [61], intentional electromagnetic interference risk analysis [62] and reflectometry

simulation for an aircraft harness [63].

Throughout this non-exhaustive state-of-the-art regarding electromagnetic topology formalism,

we aimed to acknowledge the existence of the approach and its efficiency in resolving a wide

range of electromagnetic complex problems. However, our methodology is distinguished by a

different positioning, which will be presented in the section section.

1.1.6 Positioning of thesis work

Following the definition of DD methods generally, and hybridization of numerical tools

especially, we can conclude on their different formulations regarding the method proposed by

A.-B. Diallo. An upgraded non-overlapping iterative domain decomposition method with new

boundary conditions may lead to similarities in formulation to A.-B. Diallo’s thesis work. This

aspect is out of the scope of our thesis.

The wide range of literature on DD methods proves how valuable tools they are for solving

large-scale problems. However, they have some limitations, including

• problem dependency: the effectiveness of the DD method may depend on the studied

problem (complex geometry, physical properties, strong coupling),

• convergence and iteration: overlapping DD methods require iterative solvers to achieve

convergence.

• preconditioning: for iterative solvers, the choice of efficient preconditioners can be chal-

lenging.

This research field is active in addressing some of these limitations and making DD methods

more accessible and efficient for a wider range of applications.

With the established state-of-the-art, we notice that the mainly existing DD methods are

proposed for frequency domain applications. Their transposition to the time domain, however,

is not straightforward. Despite few works proposed in the time domain, the majority of

temporal DD techniques concern the hybridization of numerical methods. They proved their

efficiency for different applications, however, they mainly depend on the numerical tools
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themselves. A specific adaptation of the time step between sub-domains (FDTD methods),

the spatial step (FVTD tools), or both in the case of hybridization of these two techniques,

is required. The implementation of the hybrid method may be complex to achieve, as the

numerical schemes need to be adapted or extended for the studied application while ensuring

stability and consistency of the association of the different techniques.

In this thesis, we propose a domain decomposition technique in time domain for EMC linear

applications that overcome most of these constraints. It is based on the evaluation of the impulse

responses of the sub-systems, exchanged at the interface level(s). These partial solutions are

associated through a linear combination (product of convolution) to retrieve the global solution.

The main advantages of the technique are related to the following elements:

1. it is iteration-free: the method allows fully asynchronous simulations of the sub-systems,

2. it preserves the confidentiality of the models: no other information (data and/or result)

other than the impulse responses of each sub-system is required for the exchange,

3. it is case-independent: the approach considered the studied systems as black boxes. It is

general and may be applied with different numerical tools,

4. it is experimentally reproducible: its easy implementation can be also considered through

measurement.

Moreover, within the framework of this thesis and its objectives, the proposed DD method is

associated with a stochastic technique. It proved its efficiency for uncertainty propagation and

allows significant computation cost gains.

1.2 Stochastic analysis: Uncertainty Quantification and Sen-

sitivity Analysis

Probabilistic engineering aims at taking into account the uncertainties appearing in the

modeling of physical systems and studying the impact of those uncertainties on the system

response. This field combines the branches of physics on the one hand and applied mathe-

matics on the other (e.g. statistics, probability theory and computer simulation). Ever since it

emerged in electromagnetic engineering, various methods for introducing uncertainty analysis

in models of physical systems have been proposed. In the framework of this thesis, we focus

on uncertainty quantification and sensitivity analysis aspects for the stochastic study.
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1.2.1 Introduction and motivations

Uncertainty quantification and its propagation are key elements for stochastic analysis

in many engineering fields including EMC. They are crucial for understanding the reliability

and limitations of models and simulations in the presence of uncertain inputs. Uncertainty

Quantification (UQ) is the process of quantifying and analyzing the uncertainties in math-

ematical models, simulations, and data. The primary aim is to account for the effects of

variability, randomness, and misspecification in models while helping with decision-making,

risk assessment, and improvement of models’ robustness.

With the increasing complexity of electromagnetic systems, computer models are required to

design, simulate and predict their behavior since real experiments are, most of the time, nearly

impossible to carry out. These numerical simulators feature a number of parameters character-

istic of the physical phenomena under consideration. Due to a lack of knowledge or their intrin-

sic nature, the input parameters are subject to uncertainty. It is therefore essential to assess how

these uncertainties affect the outputs of the calculation code, through uncertainty propagation

studies and sensitivity analysis (SA). The interdisciplinary nature of UQ can be summarized in

a few fundamental steps gathered in the “UQ methodology” framework [64, 65] represented in

Figure (1.3).

Figure 1.3: The uncertainty quantification (UQ) framework [64, 65].

The UQ methodology can be divided into four basic steps detailed below:

• Step A consists in defining the model that accurately represents the physical behavior of
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the system. It can be either an analytical formula or a full multidisciplinary computa-

tional model. The modeling of the problem requires a clear definition of the input(s) and

output(s) of the model.

• Step B consists in quantifying the sources of uncertainty affecting the input variables.

They are usually classified as follows:

– epistemic uncertainty: refers to uncertainty arising from a lack of knowledge or

information. It is often associated with the limited understanding of a system or

phenomenon,

– aleatory uncertainty: arises from inherent variability or randomness in a system.

It is gathered from observations/measurements showing a natural variability in the

values of a given parameter.

Several tools are available to model uncertain input variables depending on their nature.

This step is beyond the scope of this thesis work, consequently, we consider that the input

parameters follow a given distribution law and are modeled as random variables.

• Step C consists in propagating the uncertainty in the input parameters through the model.

As a result, the response of the model is also random. Depending on the objectives of the

stochastic analysis, different statistics of the output may be of interest: mean, standard

deviation, other higher-order statistical moments, probability density function (PDF), etc.

• Step C’ consists of carrying the sensitivity analysis, whose aim is to study how the input

variables impact the variability of the output(s). The main SA methods will be outlined

further.

1.2.2 Uncertainty Quantification in the EMC field

The interest of UQ in the EMC field, first and foremost, is enabling better control

of electromagnetic compatibility margins by taking into account the random nature of the

studied systems. For industrial needs, the probabilistic EMC analysis reinforces certain

specifications upstream or relaxes others, depending on the level of safety required or any

other constraints (financial, technical, ...). The stochastic analysis can also help determine the

critical components of a piece of equipment, or the critical equipment within a system. In this

case, reducing the uncertainties can be envisaged.
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The first uncertainty propagation methods used in EMC focused on evaluating the statistical

moments of the random response of systems [66]. The Monte Carlo (MC) method, for

instance, is one of the most used approaches. It is based on the use of random processes to

obtain numerical approximations, hence the name taken from the famous Monte Carlo casino,

renowned for its games of chance. The method was invented and used during the World

War II, for the nuclear weapon Manhattan Project. Its application then spreads to several

engineering fields including EMC to model and analyze electromagnetic interference and

compatibility. Researchers have used Monte Carlo methods to simulate electromagnetic wave

propagation [67], scattering [68], and probabilistic risk analysis [69], making it an invaluable

tool for predicting EMC performance. One of the many applications of the technique was

the computation of the probabilistic-statistical model of a reverberation chamber [70], [71].

The technique was implemented for other applications, such as assessing the susceptibility of

printed-circuit-board trace [72], designing antennas [73] or constructing electromagnetic field

distribution for field-to-transmission line coupling in reverberation chamber [74].

To ensure good accuracy of the results, the MC method requires a relatively large number

of realizations. Its slow convergence ( 1√
N
), where N is the number of evaluations, often

leads to prohibitive computation time. To overcome this limitation, several variants of the

MC itself have been developed, commonly known as variance reduction methods such as the

Quasi-Monte Carlo (QMC) [75]. Other alternative methods including the Kriging, polynomial

chaos expansion and the stochastic collocation technique have been also proposed to reduce

the number of evaluations of the model.

The Kriging technique, also known as Gaussian process regression, is a linear estimation

method that guarantees minimum variance [76]. The main idea behind it is to generate a

prediction or estimation of a variable of interest at a specific location based on a weighted

average of nearby observed data points, taking into account the spatial relationships and

correlations among the data points. The method was implemented for different applications in

the EMC field [77]. For instance, authors in [78] proposed an algorithm based on the Kriging

surrogate model to estimate extreme quantiles in electromagnetic compatibility risk analysis.

In another application, the Kriging was combined with Monte Carlo simulation for efficient

reliability analysis of radiated susceptibility in coaxial shielded cables [79].

The Stochastic Collocation (SC) method is a non-intrusive numerical approach used to

solve stochastic differential equations (SDEs) or stochastic partial differential equations

(PDEs) [80]. The technique projects the model’s random response onto a base of Lagrange

23



Chapter 1 – Domain Decomposition Methods and Stochastic Analysis: State of the Art and
Context

polynomials. By using weighted sums, it is simple to approximate the statistical moments

of the random quantity of interest. Its easy formulation increased its use by researchers in

the EMC community. The method’s versatility is proved by different applications, including

the optimization of stochastic EMC/EMI experiments using resampling techniques [81],

the probabilistic modeling evaluation of the reverberation chamber [82], and the stochastic

modeling of the electrical parameters in the field of bio-electromagnetic compatibility [83].

Jointly implemented with the FDTD method, the SC technique is used to tackle complex

stochastic problems for a dielectric resonator antenna [84].

Polynomial Chaos (PC) expansion is a probabilistic method that consists of developing a

summable square function on a base of orthogonal polynomials (Hermite, Legendre, Laguerre,

...). Polynomial chaos theory was first introduced by Wiener in [85]. Its use in uncertainty

propagation came along with the work of Roger Ghanem [86]. The general principle is to

develop a physical system, described by the numerical model, on a basis called polynomial

chaos. Over the years, it has been used in several EMC applications [87–91]. In [92], the

authors used the polynomial chaos to model transmission lines in the time domain. The

technique was employed in [93] to quantify uncertainty due to stochastic variation of material

properties. Bdour and Reineix [94] considered the UQ of radiated susceptibility testing for

randomized geometrical and electrical parameters of a printed circuit board (PCB).

The evaluation of the first and second statistical moments is essential for UQ, especially for

variance-based sensitivity analysis. However, as previously mentioned UQ is not uniquely

defined by mean trends, the assessment of PDF tail properties and high-level quantiles is

required to compute the probability of failure for the studied system, in relation to a given

failure criterion or set of criteria, e.g. threshold values. These methods are known as reliability

analysis such as FORM/SORM techniques [95].

In the EMC field, reliability analysis are designed to take into account reliability or normative

requirements imposed on systems potentially subject to EMI. In these cases, we are interested

in the probability that an item of equipment or an electrical and/or electronic system will fail in

relation to a given threshold values for currents, voltages or powers that must not be exceeded

[95–97]. This approach aims to define the best compromise between the emission level of the

electromagnetic environment and the immunity level of the system under study, either to satisfy

requirements imposed by governmental or standards organizations or to define the best EMC

sizing of equipment in terms of reliability and cost [98–100]. Within this context, the use of

extreme values (quantiles) of an electromagnetic model subject to uncertainties was explored
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in several works [101–103].

1.2.3 Sensitivity analysis methods

Broadly speaking, sensitivity analysis (SA) aims at quantifying the relative importance of

each input parameter of a model. Methods of sensitivity analysis are usually classified into two

categories [104]:

• local sensitivity analysis concentrates on the local impact of input parameters on the

model [105]. It focuses on understanding the sensitivity of the model near a specific point

in the parameter space. The simplest and most common way to study the sensitivity of

inputs is to modify them one by one ("One-At-a-Time": OAT), while the others remain

fixed at a nominal value,

• global sensitivity analysis looks at the variability of the model’s output within its range of

variation. It studies how the variability of the inputs affects the variability of the output,

by determining how much of the variance of the output is due to a particular input or set

of inputs [106–108].

In [109], Saltelli et al. (2000) gathered the global sensitivity analysis methods into two groups:

• regression-based methods: they involve fitting a linear regression to the model response

on the input parameters. The standardized regression coefficients are then used as direct

measures of sensitivity. The regression is required to be linear with respect to the data,

otherwise, it is difficult to interpret the standardized coefficients [110],

• variance-based methods: these methods aim at decomposing the variance of the model

response as the sum of the contribution of each input variable, as well as all possible

combinations of interaction between them. They are also known as ANOVA techniques

for “ANalysis Of VAriance” [111]. Several sensitivity indices have been created with

this method including FAST (Fourier Amplitude Sensitivity Test) indices [112–115] and

Sobol’ indices [106, 110, 116]. In the work of our thesis, we base the SA on the Sobol’

indices.

Other global sensitivity analysis techniques are available, including a qualitative type of global

SA known as the screening methods [117]. Morris analysis is one of the most known screening

methods. It is based on the “One At a Time” (OAT) design, where each input is varied while

fixing the others. The approach allows to establish a hierarchy within the input variables
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according to their influence on the variability of the response. However, this ranking is not

quantifiable and doesn’t consider the interactions between the input variables.

In the past few years, sensitivity analysis has become crucial for the assessment of stochastic

analysis for many EMC problems. The SA identifies the factors that have the greatest influence

on the electromagnetic performance of the studied system. This helps determine which

design elements are most likely to cause electromagnetic interference (EMI) or susceptibility

problems. By understanding which parameters have the greatest impact on the quantity of

interest QoI, the optimization of the design will help minimizing electromagnetic interference,

and consequently improving the overall EMC of the system. From an industrial point-of-view,

the identification and quantification of potential influent input parameters in the design phase

is of major interest in terms of the production cost.

For both classes, i.e. qualitative (screening methods) and quantitative (global SA approaches),

SA has been applied to a wide range of EMC problems. For instance, authors in [95] ad-

dressed the safety assessment of transmission lines under uncertain radiated electromagnetic

constraints, based on a global sensitivity analysis. Another application of SA for transmission

lines was presented in [118] to analyze the risk of EMC failure in transmission lines. Sev-

eral works evaluating the Sobol indices based on the polynomial chaos technique have been

proposed, including antennas and electromagnetic structures modeling [119, 120] and investi-

gating the stochastic response of a printed circuit board (PCB) due to an external plane wave

excitation [94]. Other research works implemented Morris indices for the sensitivity analysis,

including Yildiz and al. in [121] for EMC risk analysis of PCB, and Bdour and al. in [122] for

electromagnetic risk assessment due to external electromagnetic waves in a coaxial shielded

cable. The SA has also been implemented for bioEMC application in [123], where the authors

examined how the variability in the brain morphology and the tissue properties affect the as-

sessment of the homogeneous human brain exposed to high-frequency electromagnetic (EM)

field.

Conclusion

Domain decomposition methods in computational electromagnetics play an important role

in solving complex electromagnetic problems, especially in scenarios where traditional solvers

may face limitations. These methods enable efficient parallel computations, accurate interface

treatment, and the ability to tackle large-scale and intricate electromagnetic simulations. In this
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chapter, we defined the fundamentals of DD techniques and discussed their main classifications

in the first section. A non-exhaustive state-of-the-art of DD techniques for electromagnetic

applications is given. It allowed to position our work, regarding the existing time-domain

DD methods generally and the hybridization of numerical temporal tools particularly. As part

of the ANR ECOCES project, we briefly highlighted the contribution of the research work

of A.-B. Diallo, regarding co-simulation techniques. In the second section, we presented a

comprehensive study of uncertainty quantification and sensitivity analysis in the context of

EMC problems. In the next chapter, the formulation of the proposed DD technique will be

given for a general linear electric system. Its implementation through numerical applications

will enhance its understanding and practical implementation.
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AFTER conducting a non-exhaustive analysis of the state-of-the-art regarding domain

decomposition techniques generally, and in the time domain precisely, our proposed

method is positioned within this framework to ensure its complementary to existing efforts

while meeting the specifications of the ANR ECOCES project.

In this chapter, we present in detail the proposed Domain Decomposition (DD) method for

solving linear electromagnetic problems in the time domain. In the first section, the theo-

retical basics of the approach are presented for general 1D electric systems with a one-point

exchange interface. The method is illustrated with numerical 1D applications of transmission

line networks, for which the subdivision occurs at the level of a transmission line. In practice,

the decomposition must be carried out "naturally" while maintaining the physical meaningful-

ness of the initial problem. Consequently, the decomposition of a branched transmission lines

network should happen at the junction level. In this context, the DD method is adapted for

branched transmission line networks in the second section. The new formulation is illustrated

with different configurations of networks. To conclude this chapter, both viewpoints of the

proposed technique are compared to highlight their advantages, but also their limitations.

2.1 Decomposition domain method

In the upcoming section, we provide a thorough and detailed presentation of the proposed

DD method. This will involve a comprehensive explanation of the underlying principles and

the step-by-step procedure of the approach.

By definition, the output y of a linear system1 of x inputs can be obtained based on its impulse

response h. Based on the convolution product, defined by the operator (*), the output y is given

by

y = h∗ x (2.1)

The convolution is defined as a mathematical operation on two functions ( f and g) that produces

a third function ( f ∗ g) that expresses how the shape of one is modified by the other. It is

expressed by

( f ∗g)(t) :=
∫ +∞

−∞
f (τ)g(t − τ)dτ (2.2)

1The inputs x may be voltage/current sources or electric/magnetic fields, and the output y may be a voltage,

current or an electromagnetic field.
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and represents a fundamental concept in linear time-invariant systems theory and is used

extensively to analyze and predict their behavior for different inputs [124].

We suppose that the global electric linear system G, represented in Figure (2.1a), has z termi-

nations representing either inputs (physical injected sources Vs) or measured outputs Vout .

(a) (b)

Figure 2.1: Schematic representation of the global linear electric system G of α inputs and β

outputs (a), and the impulse responses hi j linking the sources Vsi, i∈{1,...,α} to the output Vj.

Among the β outputs of the system G, we are interested in the voltage Vj referring to

the output voltage Vout, j measured at the termination j. It is obtained by considering the

inherent contribution of each source Vsi, i∈{1,...,α}, following the principle of the convolution in

equation (2.1) such as

Vj =
α

∑
i=1

hi j ∗Vsi (2.3)

where hi j refers to the impulse response evaluated between the points i and j, as shown in

Figure (2.1b).

For the other outputs, a similar equation to the expression (2.3) can be written.

2.1.1 Formulation of the DD method

The process of the method’s application starts by dividing the global system G into m non-

overlapping sub-systems. We focus on the sub-system k in which the variable of interest, i.e.

the output Vj, is located, as shown in Figure (2.2a). It is important to mention that while other

outputs may be featured in the sub-system k, our attention is directed towards one output only,

which is the output Vj in our case.

31



Chapter 2 – Domain Decomposition Method for Linear Problems in Time-Domain

The method is applied with careful consideration of two hypotheses: 1) the system is divided

at a one-point interface (1D), 2) the electrical properties of the system are conserved at the

interface level. Consequently, no reflections on both sides of the interface (subdivision level)

are recorded, and a perfect matching at the interface level is ensured.

In the remainder of this manuscript, all upcoming variables denoted with a k exponent refer to

the sub-system k. Consequently, the observable Vj will be denoted V k
j when the DD method is

applied.

(a) (b)

Figure 2.2: Schematic representation of the subdivision of the global linear electric system G

into m non-overlapping sub-systems using the DD method (a), and the incoming waves Vin,V ′
in

and V ′′
in from the neighboring sub-systems to the sub-system k (b).

As a result of this decomposition, the physical injected sources Vsi, i∈{1,...,α} are dispersed in

different sub-systems. However, to maintain the physical behavior of the system, the contribu-

tions of each of these sources to the interface should be considered. At each one-point interface

of the sub-system k, we define an equivalent source V∼ translating the contribution of the in-

coming waves from the neighboring sub-systems, as shown in Figure (2.2b). For instance, the

equivalent source V∼ at the interface (1) refers to the response of the sub-system to the incoming

wave Vin. Its expression is given on the basis of equation (2.1) as follows:

V∼ = h∗Vin (2.4)

with h is the impulse response measured between the injection point of the input Vin and the

interface.

Up to this point, we have only mentioned the contribution of each neighboring sub-system to the

interface, whereas to recover the physical behavior of the global system as if no decomposition
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has occurred, both retro-actions from each neighboring sub-system and the sub-system k must

be considered. This exchange occurring at the interface level will be detailed later in this

chapter. In the meantime, only the contributions of the neighboring sub-systems to the sub-

system k are evaluated.

To establish the expression of the output V k
j , we assume that the sub-system k featuring

the observable V k
j of n terminations includes p sources V k

s{i}, {i}⊆{1,...,α} with p < α , of the

initial set of α sources as shown in Figure (2.3a). The contributions of the other sources

(dispersed in the other sub-systems) are implicitly considered with the q equivalent sources

V k
∼{l}, {l}⊆{1,...,n}, with l ⩽ n. Note that {i} ⊆ {1, ...,α}, respectively, {l} ⊆ {1, ...,n}, are

(a) (b)

Figure 2.3: Schematic representation of the sub-system k of p physical injected sources V k
s{i}, q

equivalent sources V k
∼{l} and the output V k

j (a), of the impulse responses hk
si and hk

∼l linking the

sources V k
s{i}, respectively, V k

∼{l} to the output V k
j (b).

sub-sets of p sources indices, respectively, of q exchange interface indices. The first condition

p < α ensures that at least one of the n terminations refers to the output j2. Whereas the

condition l = n translates the possibility of having equivalent sources only, with l referring to

the index of termination in which the decomposition has occurred3. In addition, the number

of terminations n of the sub-system k must be lower than the number of terminations z of the

global system G.

Similarly to (2.3), the output V k
j is assessed on the basis of the impulse responses hk

i j of the

sub-system k as follows:

V k
j = ∑

{i}
hk

i j ∗V k
si +∑

{l}
hk

l j ∗V k
∼l (2.5)

2If i = n, a physical voltage source is associated with each of the n terminations of the sub-system k. It means

that the decomposition has not occurred.
3Depending on the network’s topology and decomposition, the sub-network k may not feature any physical

source. Its only contributions are retrieved from the equivalent sources at its interfaces.
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with hk
i j, respectively hk

∼l , are the impulse responses linking the physical injected sources V k
s{i}

to the output, respectively, the impulse responses linking the equivalent sources V k
∼{l} to the

output.

To summarise, the proposed DD method retrieves the output V k
j by considering the contribu-

tions of the physical sources and the equivalent ones at the exchange interfaces. The following

algorithm recaps the key steps of the methodology.

Algorithm 1 Key steps to apply the DD method

1: Subdivide the global linear system G into m non-overlapping sub-systems.

2: Focus on the sub-system k in which the variable of interest V k
j is located.

3: Evaluate the impulse responses hk
{i} j and hk

∼{l} in equation (2.5).

4: Compute the output V k
j through the convolution products of the evaluated impulse re-

sponses with the corresponding sources using equation (2.5).

The proposed methodology presents a major advantage of enabling the separate and inde-

pendent modeling of each distinct sub-system. While other time-domain approaches require

an iterative exchange for each time step, the DD method enables asynchronous temporal

simulations based on the evaluation of impulse responses only. This particular attribute holds

the additional benefit of preserving the confidentiality of each model. Sensitive or proprietary

information pertaining to each sub-system remains unknown as no other information or result

is required for exchange. This additional advantage proves especially significant within an

industrial context ensuring that valuable intellectual property remains shielded.

2.1.2 Computational cost of the DD method

Generally speaking, DD techniques aim at reducing the overall computational cost for

complex large-scale problems. It is therefore important to investigate whether our proposed

DD method achieves a computational gain. In computer science, it is essential to differentiate

between computational complexity and cost. The term cost, is used for precise measures

as the actual amount of resources, primarily time and memory, that an algorithm uses.

Whereas complexity is a mathematical measure usually described in terms of big O notation4.

While they are related concepts, computational cost is more practical and specific, whereas

computational complexity is more abstract and theoretical. Both are important for assessing

4Big O, also called Landau’s symbol, is a symbolism used in complexity theory, computer science, and math-

ematics to describe the asymptotic behavior of functions [125].
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and designing algorithms, however, it’s possible to reduce the computational cost without

reducing the computational complexity.

In our study, we define the computational cost as the summation of the cost of evaluation of the

model, which is often the most expensive, and the computational complexity. In this thesis, we

focus mainly on the cost of evaluation of the model itself and assume that the computational

complexity is negligible.

We define the impulse responses as well as the sources in equation (2.5) as N-dimensional

discrete vectors evaluated for each discrete time t ∈ [0,(N −1)∆t], (N ∈ N
∗), where ∆t is the

time step used for the simulation. The product of convolution in equation (2.5) becomes then a

matrix product. The matrix form of the impulse responses hk
.., denoted Hk

.., is built using only

the impulse response to the unit impulse δ = [1,0, . . . ,0]N×1, delayed by one step of time for

each column, and expressed as follows:

Hk
.. =




















hk
..(0) 0 . . . 0

hk
..(1) hk

..(0)
. . .

...
... hk

..(1)
. . . 0

hk
..(N −1)

...
. . . hk

..(0)

0 hk
..(N −1) hk

..(1)
... 0

. . .
...

0 0 . . . hk
..(N −1)




















(2.6)

The computational complexity of the matrix product of the impulse response Hk
.. with the

source V k
.. is of the order ∼ O(N2). For p sources featured in the sub-network k where the

variable of interest is located, this product is evaluated ∼ O(p×N2). On the other hand, for q

equivalent sources, the complexity cost is given by ∼ O(q×N2). However, as the equivalent

sources V k
∼l feature the other dispersed sources of the initial set of α sources in the neighboring

sub-systems, its computational complexity should also be added. This aspect will be detailed

later in this chapter.

Although the computational complexity seems high with the DD method, the evaluation of the

output V k
j through the impulse responses of smaller and less complex sub-systems is the real

advantage5. Each sub-system v, {v} ⊆ {1, ...,m}, is characterised by τv impulse responses.

5It may not be immediately obvious for 1D systems, but the DD approach allows important computational gain
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This number is a constant parameter that depends only on the topology and subdivision of the

system under study.

Throughout this manuscript, the proposed DD method is illustrated with transmission line net-

work examples. It is therefore necessary to understand transmission line theory. The complete

theory can be found in [126]. In the following, we recall the hypothesis on which transmission

lines are based, as well as the Telegrapher’s equations that underline them.

2.2 Transmission line theory fundamentals

The transmission line theory is based on the resolution of Maxwell’s equations while con-

sidering a Transverse Electromagnetic (TEM) mode for the wave propagation along the line.

More precisely, the electromagnetic fields are all restricted to directions normal to the direction

of propagation. This assumption implies that the transverse dimensions of the line are small

compared to the wavelength.

2.2.1 Transmission line model (RLCG) and Telegraph’s equations

At high frequencies, a transmission line can be modeled by the cascading of quadrupoles

of length dx, where dx is an infinitesimal length. Each of these quadrupoles is described by an

RLCG model made up of the line’s primary parameters: linear resistance (R in Ω.m−1), linear

inductance (L in Hm−1), linear capacitance (C in F.m−1), and linear conductance (G in S.m−1)

as shown in Figure (2.4).

Figure 2.4: Schematic representation of the elementary component of a transmission line

(RLCG model).

The propagation and coupling phenomena are represented by the distributed components: the

inductance L and the capacitance C, whereas the losses phenomena are represented by the

for more complex structures (3D) and stochastic analysis, presented later in this manuscript.
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resistance R and the conductance G.

For dx defined as an infinitesimal length, applying the Kirchhoff’s equations to the cir-

cuit in Figure (2.4) gives the differential equations describing the instantaneous evolution of

the voltage V and the current I in the transmission line.

∂v(x, t)
∂x

=−Ri(x, t)−L
∂ i(x, t)

∂ t
(2.7)

∂ i(x, t)
∂x

=−Gv(x, t)−C
∂v(x, t)

∂ t
(2.8)

These equations, known as the telegrapher’s equations, predict the voltage and current distri-

butions on a linear electrical transmission line. By successively deriving equations (2.7) and

( 2.8) with respect to x (space) and t (time), they can be combined to get two partial differen-

tial equations, each with only one dependent variable, either the voltage V or the current I, as

follows:

∂ 2v(x, t)
∂ 2x

= LC
∂ 2v(x, t)

∂ t
+(RC+LG)

∂v(x, t)
∂ t

+RGv(x, t) (2.9)

∂ 2i(x, t)
∂ 2x

= LC
∂ 2i(x, t)

∂ t
+(RC+LG)

∂ i(x, t)
∂ t

+RGi(x, t) (2.10)

Their resolution in the harmonic mode for a sine wave with pulsation ω = 2π f (rad/s−1),

allows the voltage and current to be written as follows:

V (x,ω) =V (+)e−γx +V (−)eγx (2.11)

I(x,ω) = I(+)e−γx + I(−)eγx (2.12)

with γ =
√

(R+ jωL)(G+ jωC) is the propagation constant.

The voltage V (x, t) and current I(x, t) waves, given respectively by equations (A.1.7) and

(A.1.8), are linked by a characteristic impedance of the line Zc line expressed by

Zc =

√

R+ jωL
G+ jωC

(2.13)

Let’s suppose that a transmission line of length L and characteristic impedance Zc, is supplied

at one end by a voltage generator Vs and loaded at the other end by an impedance ZL, as shown

in Figure (2.5).
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Figure 2.5: Model of a transmission line of length L and characteristic impedance Zc, excited

by a voltage source g and loaded with an impedance ZL.

The voltage wave in equation (A.1.7) decomposes into a two-wave: an incident wave V (+) e−γx

(represented by the green arrow in Figure 2.5) and a reflected wave V (−) eγx (represented by the

red arrow in Figure 2.5). The ratio between these two components is called the reflection coef-

ficient and translates the discontinuity of the impedance (impedance variation). Its expression,

depending on the position on the line x, is given by

Γx =
reflected wave
incident wave

=
V (−)eγx

V (+)e−γx
=

V (−)

V (+)
e2γx (2.14)

For sake of simplification, the reflection coefficient Γx can be expressed based on the impedance

Z(x) defined any point x on the line. The later links the voltage V (x) to the current I(x) at any

given point x such as

Z(x,ω) =
V (x,ω)

I(x,ω)
= Zc

V (+)e−γx +V (−)eγx

V (+)e−γx −V (−)eγx
(2.15)

Based on the definition of the reduced impedance z(x,ω) of Z(x,ω) given by

z(x,ω) =
Z(x,ω)

Zc
(2.16)

Its expression is deduced from equation (2.15) as follows:

z(x,ω) =
V (+)e−γx +V (−)eγx

V (+)e−γx −V (−)eγx
=

1+
V (−)eγx

V (+)e−γx

1− V (−)eγx

V (+)e−γx

=
1+

V (−)

V (+)
e2γx

1− V (−)

V (+)
e2γx

(2.17)

By replacing the reflection coefficient Γx given by the expression (2.14) in the previous equa-

tion (2.17), we obtain the relationship between the latter and the reduced impedance for any

point x of the line, such that
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z(x,ω) =
1+Γx

1−Γx
; Γx =

z(x,ω)−1
z(x,ω)+1

(2.18)

At the load level x = L, the reflection coefficient ΓL is expressed by

ΓL =
z(L)−1
z(L)+1

=
ZL −Zc

ZL +Zc
(2.19)

For the case of impedance matching, i.e. ZL = Zc, no reflections are measured at the injection

point (ΓL = 0). For the mismatch scenario, a part of the wave is reflected back to the injection

point, while the other part of the wave continues to propagate in the transmission line. We

define the transmission coefficient TL as the ratio between the voltage wave transmitted to a

load and the incident voltage wave, expressed as follows:

TL =
V (L,ω)

V (+)e−γL
=

V (+)e−γL +V (−)eγL

V (+)e−γL
= 1+ΓL (2.20)

The transmission coefficient Tx can also be defined at any point x on the transmission line,

based on its definition

Tx =
V (x,ω)

V (+)e−γx
(2.21)

and the expression of the reflection coefficient Γx given by (2.18). Its final formulation is given

by

Tx = 1+Γx (2.22)

2.2.2 Modeling of a branched transmission line network

As the basic principle of the transmission lines has been recalled for the case of a line

with two uniform conductors, the focus is now put on branched networks. In this case, new

conditions at the junction, allowing the interconnection between the multiple branches of the

network, should be defined.

At the current node p, we can write Kirchhoff’s laws such as

M

∑
m=1

im(p) = 0 (2.23)

Vm(p) =Vm′(p), m′ ∈ {1, ...,m−1} (2.24)
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Figure 2.6: Schematic representation of a network of m branches interconnected through a

junction (node) p.

with M is the number of branches arriving at the node p and m, m′ two of these lines.

At the junction level, an impedance discontinuity occurs. As a consequence, reflections

at the node appear. For instance, we suppose that a source is located at the input of the branch

B1 of the network in Figure (2.6). The signal propagating within the network observes an

equivalent impedance Zp. This latter is obtained by considering the parallel impedance of the

characteristic impedances of the branches Bi, i∈{2,..,m}. This parallel impedance is considered

as the load impedance Zp of the branch B1. Based on the definition of the reflection coefficient

given by equation (2.14), its expression at the node (junction) is given by

Γ1 =
Zp −Zc1

Zp +Zc1
(2.25)

2.2.3 Modeling 1-D FDTD transmission lines

While numerous numerical methods exist to model transmission lines, we have chosen

the Finite-Difference Time-Domain method (FDTD) to solve the Telegrapher’s equations and

illustrate the phenomenon of signal propagation in a wired network [127].

One-dimensional Finite Difference Time Domain (FDTD) scheme

The finite-difference principle is based on the approximation of differential operators. Ac-

cording to the "Leap-Frog" scheme, the currents I are placed in the middle of the segments and

the voltages V at the ends, as shown in Figure (2.7).

For a given space step ∆x and a time step ∆t, we define the voltage V |np and current I|np as

follows:
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Figure 2.7: Spatial discretization of transmission line equations.

V |np = v(p∆x, n∆t) (2.26)

I|np = i(p∆x, n∆t) (2.27)

Assuming that the primary parameters of the transmission line (R, L, C and G) are constant

along the line, the discretization of the telegraph equations (2.7) and (2.8) according to the

FDTD scheme allows us to write the following system

V |n+1
p =− 2∆t

(G∆t +2C)∆x

(
I|n+1/2

p+1/2 − I|n+1/2
p−1/2

)
− G∆t −2C

G∆t +2C
V |np (2.28)

I|n+1/2
p+1/2 =− 2∆t

(R∆t +2L)∆x

(
V |np+1 −V |np

)
− R∆t −2L

R∆t +2L
I|n−1/2

p+1/2 (2.29)

These equations (2.28) and (2.29) are valid for all meshes (segments ∆x) of the line, except for

the first and last meshes, where boundary conditions are defined.

Based on Figure (2.8), the voltage V1 at the first mesh is deduced from the voltage source Vs.

This latter, representing a Thevenin source, is replaced by a Norton equivalent source.

The voltage V1 is obtained based on Kirchhoff’s laws and is expressed as follows:

V |n+1
1 =

(∆x
∆t

RsC+1
)−1{(∆x

∆t
RsC−1

)

V n
1 −2RsI

n+1/2
1 +V n+1

s +V n
s

}

(2.30)

Similarly, the voltage Vndx+1 corresponding to the last mesh of the line (load-side) is given by

V |n+1
ndx+1 =

(∆x
∆t

RLC+1
)−1{(∆x

∆t
RLC−1

)

V n
ndx+1 +2RLIn+1/2

ndx +V n+1
L +V n

L

}

(2.31)

The previous equations (2.30) and (2.31) are obtained considering that the transmission line

is lossless (R = 0 and G = 0) for simplification purposes only. Their generalized expressions

considering the presence of losses (R and G are non-null), as well as their demonstration can

be found in the appendix Tranmission lines theory.
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Figure 2.8: Spatial and temporal discretization of voltages and currents along the transmission

line.

Branched transmission lines modeling using Finite Difference Time Domain (FDTD)

Method

The FDTD method offers the possibility to model complex networks such as branched

transmission lines interconnected through junction conditions in the time domain.

At the node level, the centered spatial discretization of the voltage equation can not be operated.

Therefore, the half-spatial discretization (in left or right) is introduced.

Figure 2.9: Equivalent schematic for a three-branch current node.

We extract the current I|p,m at the node p for each branch m as follows:

−I|n+1/2
p,m =V |n+1

p,m

(
Gm +2Cm

4

)
∆xm

∆t
+V |np,m

(
Gm −2Cm

4

)
∆xm

∆t
− I|n+1/2

p−1/2,m (2.32)

Following equation (2.24), the voltages at the node p are equal for all the branches m. Based

on equation (2.23) and by factoring V |p,m, we obtain the equation at the node, expressed as

follows:
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V |n+1
p,m

M

∑
m=1

Am =−V |np,m
M

∑
m=1

Bm +
M

∑
m=1

I|n+1/2
p−1/2,m (2.33)

with:

Am =

(
Gm∆t +2Cm

4

)
∆xm

∆t
, Bm =

(
Gm∆t −2Cm

4

)
∆xm

∆t
(2.34)

defined for each branch m.

The detailed demonstration of equations (2.32) and (2.33) is reported in the appendix Tranmis-

sion lines theory.

Let’s consider that the network shown in Figure (2.6) consists of 3 branches forming a Y

transmission line network. We assume that an excitation source Vs is injected at the input of the

line L1 and that lines L2 and L3 are respectively loaded by impedances ZL2 and ZL3, as shown

in Figure (2.10).

Figure 2.10: Discretization of voltages at the junction level for a Y transmission line network.

In this case, the node condition is translated through the following equation:

V1(ndx1+1)
=V2(1) =V3(1) (2.35)

The reflection coefficient at the junction Γ1 is given based on equation (2.14), such as

Γ1 =
Zp,23 −Zc1

Zp,23 +Zc1
(2.36)

with Zp,23 represents the equivalent parallel impedance of Zc2 and Zc3.
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The transmission coefficients T2 and T3 are deduced from equation (2.20) and equal 1+Γ1.

To synthesize, modeling a Y-network using the FDTD method consists of evaluating the

voltages and currents along the branches using equations (2.28) and (2.29). At the junction

level, new boundary conditions are implemented to ensure voltage equality through equa-

tion (2.33). The principle of the method can be easily generalized for complex networks with

several branches and junctions.

Stability criterion

The stability criterion CFL (Courant–Friedrichs–Lewy) is a necessary condition for the

stability of explicit time-stepping algorithms such as the FDTD method.

The condition expresses that a physical wave needs to propagate slower than the speed of the

numerical dependency speed. The CFL condition is defined as the relation between the time

and space steps given, for the 1D scheme, by

∆t ≤ ∆x
c

(2.37)

where c is the speed of the wave propagation in the considered medium.

2.2.4 Numerical illustrations

For numerical illustrations, we first propose to evaluate the propagation of a Gaussian

signal along a uniform and lossless transmission line (R = 0,G = 0), on the basis of equa-

tions (2.28), (2.29), (2.30) and (2.31). The Gaussian function, defined by equation (2.38), is

implemented in the FDTD method.

G(t) = Ae

−(t − tc)
2

(2σ2) (2.38)

with A and tc are respectively the magnitude and the position of the center of the peak. Mean-

while σ controls the width of the Gaussian pulse.

The FDTD method is implemented considering a spatial discretization step dx = 0.1m and a

temporal discretization step dt = 0.31µs6.

6The temporal discretization step dt is defined in compliance with the stability criterion CFL such as dt =

0.95× dx
c0

, with c0 refers to the speed of light.
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For a length L = 1.5m and characteristic impedance Zc = 50Ω, three configurations of the load

resistance RL are considered: matched (RL = Zc), short-circuit and open circuit, as represented

in Figure (2.11).

Figure 2.11: A transmission line of length L and characteristic impedance Zc, excited by a

voltage source Vs and loaded with a resistance RL.

Considering that the source Vs is a Gaussian signal of magnitude A = 2V , tc = 0.12µs and

σ = 1.26ns, the voltage at the entrance of the line is recorded for the three configurations of

the load resistance RL, as reported in Figure (2.12).

Figure 2.12: Voltage at the entrance of the line evaluated for three load resistance configura-

tions.

The direct propagation of the Gaussian pulse is recorded for all three configurations with

a total transmission (the line is matched on the generator side, Rs = Zc). Their effects

however are retrieved afterwards, through the reflection coefficients. In the matching case,
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no reflection is measured. In the short-circuit and open-circuit cases, the wave is reflected

with a negative sign (Γ = −1) and a positive sign (Γ = 1) respectively. Moreover, the mea-

sured time ∆t between the two peaks (incident and reflected) corresponds to the required time

to cross twice the length of the line, assuming a propagation speed equal to the speed of light c0.

For the second application, we consider a Y transmission line network represented by three

lossless and uniform lines as shown in Figure (2.13). The voltage Vs at the input of line L1 is

the Gaussian pulse defined with the same previous parameters.

Figure 2.13: Characteristic of the studied transmission line network.

The voltage V3 measured across the load resistance of line L3, reported in nFigure (2.14), is

obtained considering the direct propagation of the source Vs within lines L1 and L3 with a total

transmission (matching at the generator level, Γs = 0). At the junction level, the impedance

discontinuity is translated with the reflection coefficient Γ j. In this case, as the characteristic

impedances of the three lines are equal (50Ω), the reflection coefficients at the node for the

three lines are equal (Γ j = −1/3). Consequently, the Gaussian signal is transmitted to the

other branches with a transmission coefficient T = 1+Γ j = 2/3. Due to the mismatch at the

extremity of line L2 (open circuit), a first reflection of the signal of positive sign (ΓL2 = 1) is

retrieved at the observable level. The junction effect appears later with the second negative

reflection (Γ j =−1/3).

2.3 Numerical applications of the proposed DD method

Having established the general formulation of the DD method and recalled the fundamen-

tals of the transmission lines theory, we can now proceed to apply the proposed DD technique

for transmission line networks. By showcasing two applications, we will provide a step-by-

step breakdown of the DD approach. This detailed walkthrough will offer a clear and tangible
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Figure 2.14: Voltage V3 across the load resistance RL3 of line L3.

understanding of how the method applies in practice, highlighting the key stages involved.

2.3.1 First case scenario: perfect matching at the interface level

First, we propose to study the transmission line network in Figure (2.15). The net-

work consists of 5 uniform and lossless transmission lines of equal characteristic impedance

Zci, i∈{1,...,5} = 50Ω. The two voltage sources Vs1 and Vs4 are Gaussian signals defined by equa-

tion (2.38) of parameters A = 1V , σ = 1,26ns and tc = 7,91ns.

Figure 2.15: Characteristic of the transmission line network.

Based on equation (2.3), the voltage V5 across the load resistance RL5 is retreived by considering
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the inherent contribution of both sources Vs1 and Vs4, such as

V5 =
α=2

∑
i=1

hi5 ∗Vsi

= h15 ∗Vs1 +h45 ∗Vs4 (2.39)

with h15, respectively h45, the impulse response linking the voltage Vs1, respectively, the voltage

Vs4 to the output V5.

(a)

(b)

Figure 2.16: Global transmission line network split at the middle of the line L2 (a), sub-

networks Y 1 and Y 2 after the subdivision of the global network (b).

We aim to retrieve the voltage V5, using the proposed DD method by splitting the global network

at the middle of the line L2 into two sub-networks Y 1 and Y 2, as shown in Figure (2.16). This

decomposition results in the appearance of two lines L1
2 and L2

2, associated respectively to

the sub-networks Y 1 and Y 2, whose length’s sum is equal to the length of the initial line L2

(L1
2 + L2

2 = L2). In addition, since the subdivision occurs at the level of the line itself, the

physical properties must be preserved. To maintain the impedance continuity of the intial line

L2, lines L1
2, respectively L2

2 are loaded with the resistances R1
L2, respectively R2

L2, both equal to

the characteristic impedance Zc2 of the line L2, as shown in Figure (2.17).

In the following, for each sub-network Y k, k ∈ {1,2}, its characteristics (lengths, voltage

sources and load resistance), are denoted with a k exponent. By identification, the lines L1

and L3 of the left-hand network are given by L1
i, i ∈ {1,3} (k = 1). On the other hand, the lines
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Figure 2.17: Sub-networks Y 1 and Y 2 with load resistances R1
L2 and R2

L2 at the interface level

of lines L1
2 and L2

2.

L4 and L5 are expressed with the exponent k = 2 as a reference to sub-network Y 2. The output

V5 is denoted V 2
5 (k = 2), measured across the load resistance R2

L5, when the DD method is

applied.

Figure 2.18: Schematic representation of the contribution of the physical voltage source V 2
s4

and the equivalent source at the interface level V 2
∼2 to the output through the corresponding

impulse responses.

Following the steps of the DD method given in the algorithm (1), the voltage V 2
5 of sub-network

Y 2 (k = 2), recorded at the line L2
5 ( j = 5), is expressed on the basis of equation (2.5) as follows:

V 2
5 = h2

45 ∗V 2
s4 +h2

25 ∗V 2
∼2 (2.40)

The first term of the right-hand member represents the contribution of the physical voltage

source V 2
s4 injected at the line L2

4 (i = 4), whereas the right-hand term gives the contribution of

the equivalent voltage source V 2
∼2 measured at the interface level (l = 2) at the line L2

2 of sub-

network Y 2. The latter represents the incoming wave from the sub-network Y 1 at the exchange

interface as previously explained in section (2.1.1). Its explicit expression is given by

V 2
∼2 = h1

12 ∗V 1
s1 (2.41)
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where h1
12 is the impulse response linking the voltage source V 1

s1 of sub-network Y 1 injected at

line L1
1 (i = 1), to the interface (l = 2).

Figure 2.19: Impulse responses hk
i j for each sub-network Y k, k ∈ {1,2}.

Using the FDTD method, whose principle is recalled in (2.2.3), the voltage V 2
5 is computed and

compared to the reference, given by the global network’s result7.

Remark 1 Note that the proposed DD method is interesting when the global result is either dif-

ficult to access or simply not given. Throughout this manuscript, the DD approach is compared

to the global result, assumed given and serving as a reference, for validation purposes.

The obtained result using the DD technique, by computing equation (2.40), is compared to

the reference in Figure (2.20). Only the first peak, translating the direct propagation of the

source V 2
s4 within lines L2

4 and L2
5 with a magnitude equal 0.66V (1×T = 2/3), and the second

peak reflecting the direct propagation of the source V 1
s1 translated by the right-hand term of

equation (2.40), are recovered. The DD approach does not retrieve the expected result from the

instant t = 6.2.10−8s. In the upcoming section, a comprehensive investigation will be directed

to understand the divergence of the obtained outcome.

Identification of the multiple orders in the DD’s formulation

Upon the previous results, it is necessary to delve deeper into the method’s formulation for

a better understanding of the obtained outcome. In the initial formulation of the DD technique,

7The spatial and temporal discretization steps used for the FDTD method are respectively given by

dx = 0.1m

dt = 0.95× dx
c0

= 0.31ns
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Figure 2.20: Comparison of the voltage V5 across the resistance RL5 evaluated for the global

network (reference) and the split network (DD method).

given by equation (2.40), only the direct propagation of the source V 2
s4 within sub-network 2 is

considered. Meanwhile, a part of this source is transmitted to the interface level.

(a) (b)

Figure 2.21: Propagation path of the voltage source V 2
s4 in the sub-network Y 2 in black and its

re-injection in red (a), propagation path of the equivalent voltage V 2
∼2 within the sub-network

Y 2 (b).

This new incoming wave voltage, represented by the path (a) in Figure (2.21a) in black, is

given by the product (h2
42 ∗V 2

s4). Its re-injection into the sub-network 2 on the other hand,

represented by the path (b) in Figure (2.21b) in red, is given through the impulse response
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h2
22. The contribution of this new equivalent source at the interface is obtained based on the

additional term A in equation (2.42).

Moreover, as previously mentioned in section (2.1.1), equation (2.40) considers only the retro-

action of the sub-network Y 1 to the sub-network Y 2, through the incoming wave voltage V 2
∼2. In

practice, the retro-actions between the two sub-networks should be evaluated. The retro-action

of sub-network Y 2 to Y 1 is translated through the re-injection of the equivalent source, coming

from sub-network Y 2 to the interface level, into sub-network Y 1.

V 2
5 = h2

45 ∗V 2
s4 +h2

25 ∗ (h1
12 ∗V 1

s1)+h2
25 ∗
(
h1

22 ∗ (h2
42 ∗V 2

s4)
)

︸ ︷︷ ︸

A

(2.42)

From equation (2.42), the term A is based on a new impulse response h1
22. This impulse re-

sponse characterizes its corresponding sub-network when no physical voltage source is in-

jected. For each sub-network k ∈ {1,2}, the impulse response hk
ll is evaluated for the same

injection and recording point, that is the interface level l.

(a) (b)

Figure 2.22: Schematic representation of the evaluation of the impulse responses h2
22, total (a),

and h2
22, in f (b) of sub-network Y 2.

Note that the obtained impulse response contains actually the sum of the injected source and

the sub-network’s response. Therefore, an additional step is required to subtract the voltage

source’s transmission. For instance, for the sub-network Y 2, we first evaluate the impulse

response denoted h2
22, total for which both the source and the response are recorded. Then, the

line L2
2 is supposed infinite (in practice very long), to ensure that no reflections are recorded.

The evaluated impulse response h2
22, in f , in this case, will retrieve only the transmission of the

source. Subtracting both these impulse responses will give the impulse response h2
22 of the

sub-network Y 2.

As time progresses the multiple reflections of both voltage sources V 1
s1 and V 2

s4 within the net-

work appear. The following equation yields the multiple round-trips of these sources to the
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q− th order, such as

V 2
5 = h2

45 ∗V 2
s4 +h2

25 ∗ (h1
12 ∗V 1

s1
︸ ︷︷ ︸

V 2 (1)
∼2,1

)+h2
25 ∗
(
h1

22 ∗ (h2
42 ∗V 2

s4
︸ ︷︷ ︸

V 2 (2)
∼2,1

)
)

+
q1

∑
i=2

h2
25 ∗
(

h2
22 ∗
(
h1

22 ∗V 2 (1)
∼2,i

))

+
q2

∑
j=2

h2
25 ∗
(

h2
22 ∗
(
h1

22 ∗V 2 (2)
∼2, j

))
(2.43)

with V 2 (1)
∼2, i , respectively V 2 (2)

∼2, j are defined as the i-th order, respectively the j-th order of the

equivalent source at the interface level of sub-network Y 2 referring to the contribution of the

voltage source V 1
s1, respectively V 2

s4 and expressed as follows:

V 2 (1)
∼2,i = h2

22 ∗ (h1
22 ∗V 2 (1)

∼2,i−1) (2.44)

V 2 (2)
∼2, j = h2

22 ∗ (h1
22 ∗V 2 (2)

∼2, j−1) (2.45)

The equivalent sources V 2 (1)
∼2 and V 2 (2)

∼2 , of equation (2.43) refer to the first order of the

multiple reflections of physical sources V 1
s1 and V 2

s4.

The voltage V 2
5 expressed by equation (2.43) is retrieved following two steps:

• The first step consists of evaluating the contribution of each of the real and equivalent

sources in the sub-network of interest k = 2 (where the observable is located). The ob-

tained result translates the direct propagation of each of the physical voltage source V 2
s4

within the sub-network 2 and the equivalent sources V 2 (1)/(2)
∼2 . The contribution of the

latter, given by equation (2.42), is referred to as first-order since it translates the first

retro-action of the neighboring sub-network 1 to the interface level.

• The second step evaluates the higher-orders of the equivalent sources obtained consider-

ing the recursive formulation given by the summation in equation (2.43). The additional

terms translate the retro-actions of each sub-network on the other and retrieve the multi-

ple reflections of the physical source V 2
s4 due to the mismatches of the network (junction

and loads level).

Presenting the voltage V 2
5 in equation (2.43) by starting the summation of the recursive terms

from i = 2 and j = 2 aligns with our philosophy of presentation, following the previous steps.

The formulation can be however generalized such that the first-order term is integrated directly

into the additional summation from i = 1 and j = 1, as follows:
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V 2
5 = h2

45 ∗V 2
s4 +

q1

∑
i=1

h2
25 ∗
(
h1

22 ∗h2
22

)(i−1) ∗V 2 (1)
∼2,1 +

q2

∑
j=1

h2
25 ∗
(
h1

22 ∗h2
22

)( j−1) ∗V 2 (2)
∼2,1 (2.46)

Remark 2 Note that in the remainder of this manuscript, the formulation of the observable will

be written considering the summation from order 2. This choice is justified, once again, by the

philosophy based on which the proposed DD approach is presented. It allows the identification

of the multiple retro-actions between the sub-networks at the interface level(s).

By computing the new equation (2.46) to the orders q1 = 4 and q2 = 4, the DD method recovers

the multiple reflections of both voltage sources V 1
s1 and V 2

s4. The obtained result is reported in

Figure (2.23) and superimposes perfectly the reference8.

Figure 2.23: Comparison of the voltage V5 across the resistance RL5 evaluated for the global

network (reference) and the split network (DD method applied for the orders q1 = 4 and q2 = 4).

Based on this first result, we can already highlight the main advantages of the method: allowing

fully asynchronous simulations for each sub-network, and preserving the confidentiality of the

models by exchanging the impulse responses only.

8For this application, the orders q1 and q2 are equal. However, for other configurations, these orders may be

different.
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Application of the DD method for a specific case

To go even further on the validation of the DD technique, we propose a second application

based on the same transmission line network in Figure (2.15). We consider that the only physi-

cal voltage source in the network is the voltage Vs4. Following the principle of the DD method,

and by splitting the network at the middle of the line L2, the voltage V 2
5 is retrieved on the basis

of equation (2.5) such as

V 2
5 = h2

45 ∗V 2
s4 +h2

25 ∗V 2
∼2

= h2
45 ∗V 2

s4 +h2
25 ∗
(
h1

22 ∗ (h2
42 ∗V 2

s4)
)

(2.47)

Similarly to the previous case, the first term of the right-hand member of equation (2.47) trans-

lates the direct propagation of the voltage source V 2
s4 in sub-network Y 2. The equivalent voltage

source at the interface on the other hand is expressed differently. In this case, no physical

voltage source is injected in the sub-network Y 1, its contribution is thus only given through its

impulse response h1
22. Its product with the term (h2

42 ∗V 2
s4) gives the equivalent voltage V 2

∼2.

Finally, the contribution of this latter to the output is recovered via its product of convolution

with the impulse response h2
25.

Equation (2.48) gives both contributions from each sub-network and their multiple round-trips

for the q-th order.

V 2
5 = h2

45 ∗V 2
s4 +h2

25 ∗V 2
∼2,1 +

q

∑
i=2

h2
25 ∗
(
h2

22 ∗ (h1
22 ∗V 2

∼2,i)
)

(2.48)

with V 2
∼2,i is defined as the i-th order of the equivalent source and is given by

V 2
∼2,i = h2

22 ∗ (h1
22 ∗V 2

∼2,i−1) (2.49)

The voltage V 2
∼2,1 refers to the voltage V 2

∼2 in equation (2.47). This new notation designates

the first order of the multiple round trips.

By applying equation (2.48) to the order q = 3, the voltage V 2
5 obtained with the DD method is

in very good agreement with the reference as reported in Figure (2.24).

To summarize, for both applications, the essence of the method remains unchanged: evaluating

the contributions of the physical and equivalent sources of the considered sub-network given

by the general equation (2.5). The explicit formulation, however, depends on the studied case.

The flow chart in Figure (2.25) gives the principle of the DD method for the two previously
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Figure 2.24: Comparaison of the voltage V 2
5 across the resistance R2

L5 for the global network

(reference) and for the split network (DD method applied for the order q = 3).

studied examples. Since the reference is not available in practice, a stopping criterion, based

on the error calculated by incrementing the order q, can be defined.

Based on the previous results for both applications, the DD technique achieves the desired

result for a given order q. In practice, this order q is not known in advance and will depend

on the topology of the network (length, characteristic impedances and load resistances of the

lines), the observable, the choice of the decomposition as well as the time interval for the

output’s recording.

To illustrate this statement, we consider the same network in Figure (2.15) with an open-circuit

load at the line L1
3 and only the voltage source V 2

s4, new reflections due to the mismatch (ΓL3 =

1) appears in the network. By applying equation (2.48) to the order q = 2, the DD method

superimposes the reference result for the time interval [0.0.1µs], as reported in Figure (2.26a).

As time progresses, the method doesn’t align with the reference, so a higher order (q = 3) is

required to obtain the result reported in Figure (2.26b).

56



Chapter 2 – Domain Decomposition Method for Linear Problems in Time-Domain

Figure 2.25: Flow chart of the key steps of the DD method to evaluate the voltage V 2
5 across

the load resistance R2
L5 of the line L2

5 in Figure (2.19) for two different configurations: the sub-

network Y 1 features or does not feature a voltage source.

2.3.2 Second case scenario: mismatch at the interface level

In general, each sub-network Y k, k ∈ {1,2}, can be seen as a sub-system k for which an

equivalent resistance Rk
eq appears at the exchange interface, as schematized in Figure (2.27).

So far, these equivalent resistances were considered equal to the characteristic impedance of

the line at which occurred the subdivision. Consequently, the hypothesis of preserving the

electrical properties of the system at the interface level given in section (2.1.1) was verified.

If this assumption is not respected, the equivalent resistances Rk
eq are no longer equal. The

coefficient of reflection Γk, for each sub-network k, thus appears at the interface level, which

expression is based on equation (2.14) such as







Γk =
Rs

eq −Rk
eq

Rs
eq +Rk

eq
, with s ∈ {1,2} and s ̸= k

Tk = Γk +1

(2.50)

These reflection coefficients must be considered in the output’s formulation.

We propose in the following to explore this configuration on the basis of the transmission line
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(a) (b)

Figure 2.26: Comparaison of the voltage V5 across the resistance RL5 for the global network

(reference) and the split network (DD method applied for the order q = 2 (a), for the order

q = 3 (b)).

Figure 2.27: Schematic representation of sub-systems 1 (sub-network Y 1) and 2 (sub-network

Y 2) after splitting the global system (global network).

network in Figure (2.28a). The latter consists of 6 uniform and lossless transmission lines and

a voltage source Vs4. The latter is represented by the Gaussian signal in equation (2.38), such

as A = 1V , tc = 7,91ns and σ = 1,26ns. We apply the DD method to the network at the node

level connecting the lines L1
2 and L2

2, with the aim to evaluate the voltage V 2
5 across the load

resistance R2
L5. At the interface level appears the load resistances Rk

L2, k ∈ {1,2}, for each line

Lk
2 as shown in Figure (2.28b). Each of these resistances equals the characteristic impedance of

the corresponding line (Rk
L2 = Zk

c2).

By identification, sub-systems 1 and 2 in Figure (2.27) are represented by sub-network 1 and

2 respectively. Due to the mismatch at the interconnection of lines L1
2 and L2

2 (Z1
c2 ̸= Z2

c2),

transmission Tk and reflection Γk coefficients at the interface level of each sub-network k, k ∈
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(a)

(b)

Figure 2.28: Global transmission line network split at the node level connecting the lines L1
2

and L2
2 (a), sub-networks Y 1 and Y 2 after the subdivision of the global network (b).

{1,2}, appear. Their respective expressions, deduced from equations (2.50), are given by

Γ1 =
R2

L2 −R1
L2

R2
L2 +R1

L2

, T1 = 1+Γ1 (2.51)

Γ2 =
R1

L2 −R2
L2

R1
L2 +R2

L2

, T2 = 1+Γ2 (2.52)

Figure 2.29: Schematic representation of sub-networks 1 and 2 and their corresponding trans-

mission and reflection coefficients at the interface level.

Following the general principle of the DD method given by algorithm (1), we focus on the

sub-network k = 2, where the observable V 2
5 is located. The latter is deduced from the general

formulation given by equation (2.5), as follows:
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V 2
5 = h2

45 ∗V 2
s4 +h2

25 ∗V 2
∼2 (2.53)

where V 2
∼2, the equivalent source at the interface level of sub-network 2, is given by

V 2
∼2 = h1

22 ∗ (h2
42 ∗V 2

s4) (2.54)

The product (h2
45 ∗V 2

s4) in equation (2.53) gives the direct propagation of the voltage source

V 2
s4 in the network, represented by the path (a) in Figure (2.30a). Whereas the product (h2

42 ∗
V 2

s4) translates the retro-action of the neighboring sub-network 1 to the interface level l = 2,

represented by the path (b) in Figure (2.30b).

(a) Schematic representation of the direct propagation of the voltage source V 2
s4 in

the sub-network Y 2.

(b) Schematic representation of the propagation of the equivalent source V 2
∼2 in the

sub-network Y 2.

Figure 2.30: Schematic representation of the propagation paths of the voltage source V 2
s4 within

the sub-network Y 2.

The equivalent source V 2
∼2 is obtained at first by considering the transmission of the physical

voltage source V 2
s4 to the interface level l = 2, through the product (h2

42 ∗V 2
s4). However, due to

the mismatch at the interface, the transmission from sub-network 2 to sub-network 1 is made

with the factor T2. The contribution of sub-network 1 on the other hand is given through its

impulse response h1
22, since it has no physical source. Its product with the term (h2

42 ∗V 2
s4)
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gives the final contribution to the observable ( j = 5, k = 2) is then retrieved through the prod-

uct, with a transmission factor T1 to physically consider the mismatch at the interconnection.

The new expression of the voltage V 2
5 , taking into account the impedance discontinuity at the

interconnection level, is thus given by

V 2
5 = h2

45 ∗V 2
s4 +T1 ∗T2 ∗

(

h2
25 ∗
(
h1

22 ∗ (h2
42 ∗V 2

s4)
))

(2.55)

By computing the previous equation, we observe the result reported in Figure (2.31), where the

direct propagation of the source V 2
s4 (first gaussian peak of positive sign) and the first-order of

the retro-action of sub-network 1 to 2 (first gaussian peak of negative sign) are retrieved. How-

ever, the obtained outcome doesn’t yield the expected output, due to the incomplete evaluation

of the voltage V 2
5 given by equation (2.55).

Figure 2.31: Comparaison of the voltage V5 across the resistance RL5 evaluated for the global

network (reference) and the split network (DD method).

Contrary to the general principle of the DD method where the decomposition occurs at a per-

fectly matched interface, the impedance discontinuity in this configuration causes a reflection

of the incident wave (h2
24 ∗V 2

s4) with the factor Γ2. Its contribution to the output is considered

through the additional term in equation (2.56).

V 2
5 = h2

45 ∗V 2
s4 +T1 ∗T2 ∗

(

h2
25 ∗
(
h1

22 ∗ (h2
42 ∗V 2

s4)
))

+Γ2 ∗
(
h2

25 ∗ (h2
42 ∗V 2

s4)
)

(2.56)
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For a better understanding of the previous equations, we focus on the transmission and reflec-

tion phenomena at the interface level on both sides of sub-networks 1 and 2, as schematized in

Figure (2.32).

Figure 2.32: Schematization of the transmission and reflection phenomena at the interface level

l = 2 of each sub-network k, k ∈ {1,2}.

Similarly to the previous examples, the retro-actions between both sub-network and the mul-

tiple reflections of the source V 2
s4 within the network should be considered with the additional

term featuring the q-th order.

V 2
5 = h2

45 ∗V 2
s4+T1 ∗T2 ∗

(

h2
25 ∗
(
h1

22 ∗ (h2
42 ∗V 2

s4)
))

+Γ2 ∗
(
h2

25 ∗ (h2
42 ∗V 2

s4)
)

+
q

∑
i=2

T1 ∗
(

h2
25 ∗
(
Γ1 ∗h2

22 ∗ (h1
22 ∗V 2

∼2,i)
)) (2.57)

with V 2
∼2,i is defined as the i-th order9 of the equivalent source and is given by

V 2
∼2,i = Γ1 ∗

(
h2

22 ∗ (h1
22 ∗V 2

∼2,i−1)
)

(2.58)

By applying equation (2.57) to the order q = 5, the DD method retrieves the expected result as

reported in Figure (2.33).

Although the formulation of the output is updated and requires consideration of the correspond-

ing reflection and transmission coefficients, the core idea behind the DD method is unchanged

and the obtained results are satisfying.

2.3.3 General explicit formulation of the DD method

Based on the previous numerical applications, and for different configurations, the initial

general formula of the DD method given by equation (2.5) was insufficient to retrieve the

9The first order of the equivalent voltage source V 2
∼2,1 is given by: Γ1 ∗

(
h1

22 ∗ (h2
12 ∗V 2

s4)
)
.
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Figure 2.33: Comparaison of the voltage V5 across the resistance RL5 evaluated for the global

network (reference) and the split network (DD method).

expected result. Before giving the general explicit formulation of the DD technique, allowing

to retrieve the multiple round trips of the physically injected sources into the network, we give

the detailed expression of the equivalent sources V k
∼{l}. The latter reflects implicitly the effect

of the dispersed sources in the {u} neighboring sub-systems of k, where {u} ⊆ {1, ...,m}\{k}
is a subset of all the m sub-systems expect for the sub-system k. As demonstrated with the

previous numerical applications, two configurations can be encountered: 1) the neighboring

sub-system(s) may not feature any physical source, 2) the neighboring sub-system(s) features

one or more physical sources. We give in the following the possible combinations arising from

these configurations:

1. 1st case: if the {u} neighboring sub-systems feature a physical source V u
si :

V k
∼lu = hu

ilu ∗V u
si (2.59)

2. 2nd case: if the {u} neighboring sub-systems does not feature a physical source:

V k
∼lu = ∏

{u}
hu

lulu ∗ (h
k
i j ∗V k

si) (2.60)
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where lu is the index of termination in which the decomposition has occurred between the

sub-networks k and u.

The final formula of the voltage V k
j given for the order q, is written as follows:

V k
j = ∑

{i}
hk

i j ∗V k
si +∑

{l}
hk

l j ∗V k
∼l,1 +

q

∑
i=2

hk
l j ∗
(

∏
{v}

hv
lvlv ∗V k

∼l,i

)
(2.61)

where {v} ⊆ {1, ...,m} is a subset of all the m sub-systems, and V k
∼l,i is defined as the i-th order

of the equivalent source such as

V k
∼l,i = ∏

{v}
hv

lvlv ∗V k
∼l,i−1 (2.62)

The term V k
∼l,1 refers to the first order of the source V k

∼l .

We specify that the given expressions (2.59) and (2.60) translate the incoming wave from

the neighboring sub-systems to the interface level of the sub-system of interest k. In other

configurations (see the application in (2.3.1)), a new equivalent source from the physical

source itself in the sub-system k appears at the exchange interface. Equation (2.60) is given

with the assumption that the sub-network k features a physical source V k
si.

With the explicit expression of the equivalent sources, their computational complexity, whose

principle was established earlier in (2.1.2), is evaluated in detail in Table (2.1).

Case Computational complexity

1st case ∼ O(card(u)×N2)

2nd case ∼ O(card(u)×N3 +N2)

Table 2.1: Computational complexity of the evaluation of the equivalent sources for both cases.

The quantity card(u) refers to the number of elements in the subset {u}.

The total computational complexity of the output V k
j of equation (2.5) can be deduced for both

cases. It is of the order of ∼ O(p×N2 + q× card(u)×N3) for the first case, and the order

∼ O(p×N2 +q× card(u)×N4 +q×N3) for the second.

The computational complexity is given for information purposes for a complete assessment

of our approach. However, as mentioned in the section (2.1.2), we are more interested in the
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potential gain of the evaluation cost, of the model itself, with our technique.

For illustration purposes and a better understanding of how the previous expressions can be

practically implemented, we apply these generated equations for the two configurations men-

tioned above.

• 1st case: we suppose that the global linear system G in Figure (2.34a) has z = 7 termina-

tions, of α = 3 physical sources and β = 4 outputs, among these we are interested in the

output at the termination j = 6. Using the DD method, the network is split at two levels

into m= 3 non-overlapping sub-systems. Consequently, new terminations l = 4 and l = 7

appear at the decomposition levels as shown in Figure (2.34b). Following this decompo-

sition, each source is located in a given sub-system, whereas the output is located in the

sub-system 2 (k = 2) as represented in Figure (2.34c).

(a) (b) (c)

Figure 2.34: Schematic representation of the studied system (a), its decomposition (b), and

dispersion of physical sources and isolation of the output (c) for the first configuration.

In this configuration, both {u} ∈ {1,3} neighboring sub-systems feature a physical

source (V 1
s3 and V 3

s9). The equivalent sources at the interface levels of the sub-system

2, l = 4 and l = 7, are deduced from equation (2.59) as follows:

V 2
∼4 = h1

34 ∗V 1
s3 (2.63)

V 2
∼7 = h3

97 ∗V 3
s9 (2.64)

The voltage V 2
6 is thus evaluated based on the general DD formula given by equa-

tion (2.61) and the above explicit expressions of the equivalent sources at the two in-
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terfaces.

V 2
6 = h2

56 ∗V 2
s5 +h2

46 ∗V 2
∼4 +h2

76 ∗V 2
∼7

= h2
56 ∗V 2

s5 +h2
46 ∗ (h1

34 ∗V 1
s3)+h2

76 ∗ (h3
97 ∗V 3

s9)
(2.65)

• 2nd case: we consider the global linear system G in Figure (2.35a), of z = 8 terminations

(α = 1 and β = 7 ). The decomposition occurs at 2 levels l = 4 and l = 7, and the

output, i.e. the voltage V6, is located in sub-system 2 as schematized in Figure (2.35b).

Contrary to the previous case, none of the neighboring sub-systems u, {u} ∈ {1,3},

feature a physical source and thus they exchange only their inherent impulse response

hu
lulu

as shown in Figure (2.35c).

(a) (b) (c)

Figure 2.35: Schematic representation of the studied system (a), its decomposition (b), and

dispersion of physical sources and isolation of the output (c) for the second configuration.

The equivalent sources at the exchange levels, deduced from equations (2.60), are ex-

pressed by

V 2
6 = h2

56 ∗V 2
s5 +h2

46 ∗V 2
∼4 +h2

76 ∗V 2
∼7

= h2
56 ∗V 2

s5 +h2
46 ∗
(

h1
44 ∗
(
h2

54 ∗V 2
s5

))

+h2
76 ∗
(

h3
77 ∗
(
h2

57 ∗V 2
s5

)) (2.66)

An additional combination can be encountered, where sub-system 1 features a source V 1
s3 and

sub-system 3 doesn’t. In this case, the equivalent source translating the contribution of sub-

system 2 is given by equation (2.63), whereas the contribution of sub-system 3 is retrieved

through its impulse response h3
77. The output V 2

6 is thus given by
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V 2
6 = h2

56 ∗V 2
s5 +h2

46 ∗V 2
∼4 +h2

76 ∗V 2
∼7

= h2
56 ∗V 2

s5 +h2
46 ∗
(
h1

34 ∗V 1
s3

)
+h2

76 ∗
(

h3
77 ∗
(
h2

57 ∗V 2
s5

)) (2.67)

The general nature of the proposed decomposition method enables its automation for: 1) the

evaluation of multiple outputs for different configurations (terminations, distribution of α in-

puts and β outputs, and the decomposition itself), 2) the realization of domain decomposition in

industrial context without loss of models’ confidentiality. Typically, a graphical user interface

(GUI) can be developed such that each sub-system v is characterized by a block in the GUI.

They each exchange both their inherent impulse response hv
ll and the equivalent source, whose

expressions were detailed earlier. The exchange of the incoming wave from one sub-system

to the interface, reveals neither the source of excitation in this sub-system, nor its topology.

This is an additional advantage of the DD method and is easier to implement, especially for a

third-party user of the interface.

2.4 Adapting the DD method for practical applications

So far, the DD method is based on the decomposition of the network at the transmission

line itself. The method has been validated through the first numerical applications. However,

the subdivision at the cable itself is a rather special case. In practice, the decomposition will

take place at an interconnection, which is, in the case of lines, a junction. The last application

of the DD method in the previous section (2.3.2) introduces a new take on the DD method

for more practical and realistic applications. In this section, we progressively demonstrate the

principle of the DD method when the decomposition takes place at the level of the junction

itself.

2.4.1 Formulation for two interconnected systems

To reiterate the method’s formulation, we consider the linear electric system for which the

subdivision occurs at the node level in Figure (2.27). Let’s suppose that this system under study

is represented by two transmission lines, uniform and lossless, as schematized in Figure (2.36).

At the entrance of the line L1
1 is injected the source V 1

s1, represented by the Gaussian signal of

equation (2.38) with A = 1V , tc = 8ns and σ = 1.26ns. The two lines are interconnected by a

node at which the subdivision occurs. The modeling of the network is implemented using the

FDTD technique, with a time step dt = 0.31ns chosen in compliance with the stability criterion

of the numerical tool.
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Figure 2.36: Schematic representation of sub-systems 1 and 2, represented each by a transmis-

sion line, after splitting the global system.

This decomposition separates the two transmission lines into two distinct and non-overlapping

sub-networks. At the interface level appears an equivalent resistance Rk
eq, for each line Lk

k, equal

to its characteristic impedance Zck.

Figure 2.37: Impulse responses hk
.. for each sub-system k, k ∈ {1,2}.

The voltage V 2
2 across the resistance R2

L2 of the line L2
2 of sub-system 2 is retrieved based on

the general principle of the DD method given by equation (2.5), such as

V 2
2 = h2

12 ∗V 2
∼1 (2.68)

The sub-network 2 has no physical voltage source, consequently, only the right-hand term of

equation (2.5), translating the contribution of the neighboring sub-network 1 to the interface,

is considered. As previously detailed in the section (2.1.1), the incoming wave voltage to the

interface V 2
∼1 is expressed by

V 2
∼1 = h1

12 ∗V 1
s1 (2.69)

As the system’s decomposition occurred at the node, its physical property (impedance continu-

ity) must be considered in the formulation of the DD. In contrast to line-level decomposition

previously presented where the impulse responses contain the network characteristics and take
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into account its mismatches, the decomposition at the node level does not. In this new configu-

ration, each line is loaded by a load resistance equal to its characteristic line, at the decomposi-

tion level a perfect match is then recorded. Consequently, the physical behavior of the junction

is not included. On this basis, we consider the coefficient of transmission T1 on a second step

at the linear combination of the partial solutions (i.e. the impulse responses), to translate the

propagation of the incoming wave (the equivalent source V 1
∼1) from the neighboring sub-system

1 to the interface level. The voltage V 2
2 is thus given by

V 2
2 = h2

12 ∗V 2
∼1

= h2
12 ∗
(
T1 ∗ (h1

12 ∗V 1
s1)
)

(2.70)

Let’s consider that the lines L1(1m) and L2(2m) have respectively a characteristic impedance

equal to 50Ω and 100Ω. The voltage across the resistance RL2 = 50Ω, retrieved based on

equation (2.70) with T1 =
4
3 , is reported on Figure (2.38).

Figure 2.38: Comparaison of the voltage V2 across the resistance RL2 evaluated for the global

network (reference) and the split network (DD method).

We observe the excellent agreement of the DD method’s result with the reference for the first

direct propagation of the Gaussian pulse within the system. However, from the instant t =

3.23.10−8s, the approach is unable to recover the desired result. In fact, its formulation given
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by equation (2.70), considers only the transmission of the injected source to the measuring

point. Its reflection, due to the mismatch at the node, should be considered through the impulse

response h2
11 of sub-network 2 multiplied by the reflection coefficient Γ2 =

−1
3 . Its contribution

to the output is thus retrieved by the additional term in equation (2.71) such as

V 2
2 = h2

12 ∗
(
T1 ∗ (h1

12 ∗V 1
s1)
)
+h2

12 ∗
(

Γ2 ∗
(
h2

11 ∗T1 ∗ (h1
12 ∗V 1

s1)
))

(2.71)

As previously outlined, the multiple reflections of the injected voltage source within the net-

work must be considered through the impulse responses hk
ll of each sub-network k. The final

formulation retrieving the multiple round-trips of the voltage source to the q-th order is given

by

V 2
2 = h2

12 ∗
(
T1 ∗ (h1

12 ∗V 1
s1)
)
+h2

12 ∗
(

Γ2 ∗
(
h2

11 ∗T1 ∗ (h1
12 ∗V 1

s1)
))

︸ ︷︷ ︸

V 2
∼1,1

+
q

∑
i=2

h2
12 ∗
(

Γ2 ∗
(
h2

11 ∗T1 ∗ (h1
22 ∗V 2

∼1,i)
))

(2.72)

with V 2
∼1,i is defined as the i-th order of the equivalent source and is given by

V 2
∼1,i = Γ2 ∗

(
h2

11 ∗T1 ∗ (h1
22 ∗V 2

∼1,i−1)
)

(2.73)

and V 2
∼1,1 refers to the first order of the equivalent source at the interface.

By applying equation (2.72) for the order q = 3, the desired result is yielded as reported in

Figure (2.39).

In summary, the principle of the DD method remains unchanged, but the discontinuity effects

at the junction must be taken into account. The transmission coefficient allows us to take into

account the direct propagation of the contribution of the neighboring network at the observable

level, while the reflection coefficients are needed to recover the higher orders that reflect the

multiple reflections.

2.4.2 Formulation for a branched transmission line network

Now that we have established the principle of the method and detailed its formulation for

two interconnected transmission lines, we extend its application to a branched transmission

line network. In this case, the decomposition at the interconnection level (junction) makes
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Figure 2.39: Comparaison of the voltage V2 across the resistance RL2 evaluated for the global

network (reference) and the split network (DD method).

even more sense and represents more realistic cases. In this section, we consider a Y trans-

mission line network consisting of three uniform and lossless transmission lines, as shown in

Figure (2.40a). Following this decomposition appears the equivalent load resistance Rk
eq, equal

to the characteristic impedance of the line Lk
k, k ∈ {1,2,3}, at the interface level of each sub-

system as shown in Figure (2.40b). We assume that all three lines have equal characteristic

impedance Zck = 50Ω, k ∈ {1,2,3}. The reflection coefficient at the junction level is thus equal

for three lines10. In the following, we propose to study three configurations according to which

the loads of the lines and the observable will be modified. This study aims to demonstrate the

applicability of the technique for different cases. For all the cases, the source Vs1 injected at

the entrance of the network at line L1 is a Gaussian signal of equation (2.38) (with A = 1V ,

tc = 1.2ns and σ = 1.26ns), and the results are obtained with the FDTD method implemented

for dt = 0.31ns.

10The reflection coefficient Γi at the junction level of the line Lk, {1,2,3} is evaluated on the basis of equa-

tion (2.25) such as

Γk =
Zp −Zck

Zp +Zck

with Zp is the equivalent impedance of parrallel characteristic impedances Zcs, s ̸=k.
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(a)

(b)

Figure 2.40: Global Y transmission line network and its characteristics (a), isolation of each

line in a distinct sub-system after the subdivision at the junction level (b).

First case study

To begin with, we evaluate the voltage V 3
3 across the load resistance R3

L3 for the network

in Figure (2.41). In this case, the contribution of sub-network 1 to the interface is given by

the product (h1
12 ∗V 1

s1), denoted V 3
∼1, whereas sub-network 2 is characterized by its inherent

impulse response h2
11 since no physical voltage source is featured.

Following the principle of the DD technique, the voltage V 3
3 is expressed by

V 3
3 = T ∗ (h3

13 ∗V 3
∼1)+T ∗

(

h3
13 ∗
(
T ∗ (h2

11 ∗V 3
∼1)
))

+T ∗
(

h3
13 ∗
(
Γ∗h2

11 ∗T ∗ (h2
11 ∗V 3

∼1)
︸ ︷︷ ︸

V 3
∼1,1

))

+
q

∑
i=2

T ∗
(

h3
13 ∗
(
Γ∗h2

11 ∗T ∗ (h2
11 ∗V 3

∼1,i)
))

(2.74)
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Figure 2.41: Schematic representation of the impulse responses of each sub-network after the

subdivision of the global network at the junction level - first case study.

with V 3
∼1,i is defined as the i-th order of the equivalent source at the interface level and is given

by

V 3
∼1,i = Γ∗ (h2

11 ∗V 3
∼1,i−1) (2.75)

The first term of the right-hand member of equation (2.74) gives the direct transmission of

the equivalent voltage at the interface V 3
∼1 to the output. The second term translates the

propagation of the source V 1
s1 within lines L1

1 and L2
2 before their transmission to sub-network

3. The third term considers the reflection at the junction level through the re-injection of the

equivalent source in sub-network 2. Finally, the right-hand term yields the multiple reflections

of the voltage source V 1
s1 to the q-th order.

By applying equation (2.74) for the order q = 2, the DD method retrieves the multiple reflec-

tions of the voltage source V 1
s1 as reported in Figure (2.42).

Second case study

We focus now on the voltage V 2
2 across the load resistance R2

L2 in Figure (2.43). The

evaluation of the voltage V 2
2 is very similar to the previous case11. The equivalent source to the

11Configurations 2 and 3 are symmetrical. The aim is to demonstrate that the method is valid regardless of the

observable. The values of the load resistances of the lines at which the observable is located are chosen so as to

ensure reflection, so the impulse response hp
ll of the corresponding sub-network p, p ∈ {2,3}, can be evaluated.
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Figure 2.42: Comparaison of the voltage V2 across the resistance RL2 evaluated for the global

network (reference) and the split network (DD method).

interface, denoted V 2
∼1, is unchanged and is given by the product (h1

12 ∗V 1
s1).

Figure 2.43: Schematic representation of the impulse responses of each sub-network after the

subdivision of the global network at the junction level- second case study.
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The final expression of the voltage V 2
2 is inspired from equation (2.74) and expressed as follows:

V 2
2 = T ∗ (h2

12 ∗V 2
∼1)+T ∗h2

12 ∗
(
T ∗h3

11 ∗V 2
∼1

)
+T ∗

(

h2
12 ∗
(
Γ∗h3

11 ∗T ∗h3
11 ∗V 2

∼1
︸ ︷︷ ︸

V 2
∼1,1

))

+
q

∑
i=2

T ∗
(

h2
12 ∗Γ∗h3

11 ∗T ∗h3
11 ∗V 2

∼1,i

)
(2.76)

with V 2
∼1,i is defined as the i-th order of the equivalent source at the interface level and is given

by

V 2
∼1,i = Γ∗ (h3

11 ∗V 2
∼1,i−1) (2.77)

Following the same reasoning as above, each term translates the contribution of a sub-network

to the output. The result obtained with the DD method for the order q = 2 superimposes

perfectly the reference as reported in Figure (2.44).

Figure 2.44: Comparaison of the voltage V2 across the resistance RL2 evaluated for the global

network (reference) and the split network (DD method).

Third case study

For the third configuration, represented in Figure (2.45), the impulse response h2
11 of the
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sub-network 2 is added to the voltage formulation V 2
2 .

Figure 2.45: Schematic representation of the impulse responses of each sub-network after the

subdivision of the global network at the junction level - third case study.

In fact, as the line L2
2 is unmatched at its end (R2

L2 ̸= Z2
c2)12, its reflection must thus be considered

through the impulse response h2
11. The new formulation of the voltage V 2

2 is expressed as

follows:

V 2
2 = T ∗ (h2

12 ∗V 2
∼1)+T ∗

(

h2
12 ∗
(
Γ∗h2

11 ∗V 2
∼1

︸ ︷︷ ︸

V 2
∼1,1

))

+
q

∑
i=2

T ∗
(

h2
12 ∗
(
Γ∗h2

11 ∗V 2
∼1,i

))

(2.78)

with V 2
∼1,i is defined as the i-th order of the equivalent source at the interface level and is given

by

V 2
∼1,i = Γ∗ (h2

11 ∗V 2
∼1,i−1) (2.79)

By applying this equation to the order q = 4, the DD method gives the result reported in Fig-

ure (2.46), for which the direct transmission of the signal V 1
s1 as well as its multiple reflections

are recovered.

To summarize, for both applications (matched or unmatched lines at their ends), the core idea

of the method remains unchanged. Depending on the configuration, the inherent impulse re-

12This confugration can be considered as generalisation of the 2nd confiuration. To generalize, the formula of

the output can be written by integrating the responses hp
ll , if no reflections are measured these are thus null.
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Figure 2.46: Comparison of the voltage V2 across the resistance RL2 obtained for the reference

(global system) and the DD method (split system).

sponses hi
11, i ∈ {1,2,3}, may be required in the explicit formulation. The key steps for evalu-

ating the observable using the new decomposition method (junction-level subdivision), for the

Y transmission lines network in Figure (2.40a), are given in the flow chart in Figure (2.47).

For the studied cases, the proposed technique retrieves the desired result by integrating the

coefficients of reflection and transmission (due to the mismatch at the junction) in its formu-

lation. The method is independent of the configuration studied (topology, line characteristics,

and observable), its formulation can thus be generalized and automatized.

2.5 Synthesis and Discussion

Throughout the various applications, we bring together the key findings from the proposed

DD method for 1D linear applications. We discuss whether the method answers the objectives

related to the research project. By highlighting the strengths of this approach and acknowledg-

ing its inherent limitations, we aim to provide a well-rounded evaluation.

Firstly, the DD technique meets the ANR ECOCES project’s specifications and thus the first

objective of the thesis:

1. The DD method allows fully asynchronous temporal simulations: it bypasses the iterative
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Figure 2.47: Flow chart of the DD method’s steps to evaluate the voltage V k
k across the load

resistance Rk
Lk for two different configurations when the subdivision occurs at the junction level

for a Y-network only.

exchanges at each time step required for the existing co-simulation methods, or numerical

temporal hybridization methods,

2. The confidentiality of the models is preserved: the exchange of the impulse response at
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the interface level is sufficient to retrieve the output through a specific linear combination,

without revealing the sub-system’s topology or characteristics.

Without loss of generality, the method is mainly illustrated for transmission line networks but

its general formulation and easy-to-implement nature allow different linear applications. These

main advantages enable further use of the DD technique for different applications whose focus

is put in the next chapter. A new point-of-view of the DD method is presented in the second

section for which the decomposition occurs at the interconnection. This new subdivision

choice, aligning with the requirements of real-world applications, calls for adapting the general

formula of the DD technique.

The core of both approaches remains unchanged, but their points of view differ. A comparative

analysis of these methodologies is thus valuable to ascertain the suited applications for each.

In this comparison, both approaches have their own strengths and limitations. The DD method

based on the decomposition of the network at the junction is more practical, making it suit-

able for real-world scenarios. However, any mismatches at the junction are considered in a

later stage. Depending on the studied configuration, the output expression can be tricky to re-

cover, especially with higher orders. In addition to exchanging impulse responses, reflection

and transmission coefficients are also essential to the exchange. This additional information

can therefore undermine one of the primary advantages of the DD method: preserving the

confidentiality of the models.

The initial formulation of the DD method based on the subdivision at the line itself, on the

other hand, is exempt from this constraint, as the junction’s mismatches are implicitly taken

into account within the evaluated impulse responses of the sub-networks.

For both standpoints of the DD methodology, no convergence criterion is defined upstream. In

other words, the higher orders considered to obtain the reference are not known in advance.

The latter is increased until the desired result is found, which is also only assumed to be given.

In practice, no reference is available and convergence criteria should be defined.

Conclusion

In this chapter, the general principle of the proposed domain decomposition method is

given for 1D linear electric systems. Its detailed formulation is given for transmission line

network applications using the FDTD numerical tool. The approach is detailed when the global

network is subdivided at one of its lines. The obtained results validate the technique as the

higher orders (multiple round-trips of the physical voltage sources) are considered in the final
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formulation. The general nature of the method allows a generalized expression of the output,

for which different configurations can be studied. As part of our analysis, the complexity

cost of the DD technique was established for a rounded analysis. Despite the method’s ability

to achieve the desired outcome (compared to the reference given by the global result), the

application under consideration demonstrates the method’s feasibility for academic cases. Its

subdivision choice remains less realistic, given the choice of subdividing the system at the level

of the line itself.

To overcome this limitation, we propose a different point-of-view of the proposed method, in

which the subdivision takes place at a natural interconnection level, the junction in the case

of a branched transmission lines network. This new choice of decomposition represents more

realistic cases, especially in the industrial context. Although the subdivision principle has been

modified, the essence of the decomposition method itself remains unchanged. Isolating the

sub-network in which the observable is located first and then identifying the different contri-

butions from the neighboring sub-networks are still the key steps to evaluate the output. With

the new approach, the impact of the junction should be considered through the reflection and

transmission coefficients in the final formulation. The new formulation of the DD technique

is illustrated with different configurations of a Y-transmission lines network. The results ob-

tained, considering the q-th order, are very satisfying. In conclusion, both viewpoints of the

DD method produced very good results. For each, we discussed the advantages and limitations

for an accurate portrayal of our proposed approach. In the remainder of this manuscript, for the

sake of simplicity, we base our analysis on the DD method when the decomposition happens at

the line itself.
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WITH general formulation and simple mathematical foundations, the DD method is highly

promising for more complex cases. To this end, we aim to demonstrate throughout this

chapter, the robustness of the decomposition method proposed in the section (2.1.1) for new

numerical study cases. In the first section, we consider that a global transmission line network

is divided along two interfaces. The new formulation of the DD approach is explicitly given for

this configuration. We then later utilize one of its major advantages, which is its asynchronous

aspect, to model each sub-system with a different numerical tool. To begin with, the same

method FDTD is used for each sub-system but implemented with different discretization time

steps. The principle as well as the numerical results are presented in section 2. In section 3,

two different numerical tools (numerical code based on the method FDTD and the commercial

software CST Cable®) are considered for modeling each sub-system. Finally, the approach is

generalized for a 3-one-point interface for a multiconductor transmission line network. The

numerical application and the obtained result are presented in section 4.

3.1 Domain decomposition through two interfaces or more

The proposed DD method is based on the evaluation of the impulse responses of each

sub-network asynchronously, from which their linear combination yields the desired result.

The method is indeed general, but its final formulation depends on the network’s topology,

subdivision and observables. In this section, we aim at retrieving the observable when the

global network is divided into 3 sub-networks. The core of the DD technique is unchanged, but

its formulation must consider the contributions of the equivalent sources at both interfaces.

3.1.1 Problem statement

Let’s consider the global transmission line network in Figure (3.1) consisting of 8 uniform

and lossless transmission lines and three junctions. The system is excited by the voltage source

Vs1, injected at the entrance of the line L1. This excitation source is the Gaussian pulse ex-

pressed by equation (2.38) whose parameters are: A = 1V , tc = 12ns and σ = 0,95ns. The

problem is modeled using the FDTD method, with careful attention to the choice of the time

step to respect the CFL criterion (dt = 0.3ns).

We aim to retrieve the voltage V5 across the load resistance RL5 when the global network is

subdivided simultaneously at the middle of the lines L2 and L6, as shown in Figure (3.2a).

As a result, three sub-networks, whose properties (lengths L, characteristic impedances Zc and

load resistances RL) are denoted with the exponent k ∈ {1,2,3}, are distinguished as shown in

Figure (3.2b). The impedance continuity at both interfaces is ensured by adapting the ends of
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Figure 3.1: Characteristic of the transmission line network.

(a)

(b)

Figure 3.2: Global transmission line network split at the middle of lines L2 and L5 (a), sub-

networks 1, 2 and 3 after the subdivision of the global network (b).

the lines L2 and L6, such as lines L1
2 and L2

2 (resp. lines L2
6 and L3

6) are loaded with resistances

equal to the characteristic impedance Zc2 (resp. Zc6) of the line L2 (resp. L6).

83



Chapter 3 – DD Method and Numerical Applications

3.1.2 DD method application and results

To evaluate the voltage V 2
5 across the load resistance R2

L5, the focus is put on the sub-

network 2 (k = 2), where the observable is located.

Figure 3.3: Schematic representation of the equivalent voltage sources V 2
∼2 at the line L2

2 and

V 2
∼6 at the line L2

6.

Based on the general principle of the DD approach given by equation (2.5), the voltage V 2
5

reads

V 2
5 = ∑

{l}
h2

l5 ∗V 2
∼l

= h2
25 ∗V 2

∼2 +h2
65 ∗V 2

∼6 (3.1)

where {l} ∈ {2,6}.

As no physical voltage source is injected into sub-network 2, only the contributions of the

equivalent voltage sources at each interface given by V 2
∼2, respectively, V 2

∼6 are considered

through the left-hand term, respectively the right-hand term of equation (3.1).

The next step is to retrieve these equivalent voltage sources V 2
∼2 and V 2

∼6. As explained in the

section (2.1.1), these voltages are the incoming waves from the neighboring sub-networks to

the exchange interfaces1. This configuration is a particular case of the 2nd scenario in sec-

1In our study, these sources are explicitly given for academic studies. In practice, these quantities are supplied

by sub-system integrators. Either a global external "master" or one of the involved partners collects and assembles

the data.
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tion (2.3.3), for which the sub-network of interest (k = 2) doesn’t feature a physical source.

The voltage V 2
∼2 is the incoming voltage wave from sub-network 1 to the first interface (l = 2)

and is expressed as follows:

V 2
∼2 = h1

12 ∗V 1
s1 (3.2)

Its product with the impulse response h2
25 translates the direct propagation of the physical volt-

age source V 1
s1 within lines L2

1, L1
2, L2

2 and L2
5, while considering the effect of the mismatch at

the junctions of both sub-networks 1 and 2.

Figure 3.4: Impulse responses hk
.. characterizing each sub-network k, k ∈ {1,2,3}.

On the other hand, the second equivalent source V 2
∼6 is obtained by considering the contribution

from the sub-network 3 and the "secondary " propagation of the voltage source V 1
s1 within the

sub-network 22. The final expression of the incoming voltage wave to the second interface is

given by

V 2
∼6 = h3

66 ∗ (h2
26 ∗V 2

∼2) (3.3)

The impulse response h3
66 characterizes the sub-network 3 as the latter has no physical voltage

source.

Equation (3.1) can only recover the direct propagation of the Gaussian source in the network.

New additional terms are evaluated in equation (3.4) to recover the multiple round-trips of the

voltage source V 1
s1.

2In this configuration, second-order effects may appear before first-order. This depends on the reflections in

the network, the decomposition and the observable.
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V 2
5 = h2

25 ∗V 2
∼2 +h2

65 ∗V 2
∼6 +h2

25 ∗
(
h1

22 ∗h2
22 ∗V 2

∼2
︸ ︷︷ ︸

V 1
∼2,1

)
+h2

65 ∗
(
h3

66 ∗h2
66 ∗V 2

∼6
︸ ︷︷ ︸

V 2
∼6,1

)

+
q1

∑
i=2

h2
25 ∗
(
h1

22 ∗h2
22 ∗V 2

∼2,i

)

︸ ︷︷ ︸

A

+
q2

∑
j=2

h2
65 ∗
(
h3

66 ∗h2
66 ∗V 2

∼6, j

)

︸ ︷︷ ︸

B

(3.4)

with V 2
∼2,i, respectively V 2

∼6, j are defined as the i-th, respectively the j-th order of the equivalent

source at the first interface level (l = 2), respectively the second interface level (l = 6) of the

sub-network 2. Their respective expressions are given by

V 2
∼2,i = h1

22 ∗ (h2
22 ∗V 2

∼2,i−1) (3.5)

V 2
∼6, j = h3

66 ∗ (h2
66 ∗V 2

∼6, j−1) (3.6)

The equivalent voltage V 2
∼2 at the first interface at the line L2

2 is re-injected within sub-networks

1 and 2. Their contributions to the output are thus considered through their inner impulse

responses h1
22 and h2

22. The multiple reflections are retrieved to the order q1 by evaluating the

term A in equation (3.4). Similarly, the voltage V 2
∼6 at the second interface at the line L2

6 is

re-injected within sub-networks 2 and 3, characterized each by their inner impulse responses

h2
66 and h3

66. The additional term B in equation (3.4) allows retrieving the multiple round-trips

of the equivalent source V 2
∼6 to the q2-th order.

By computing equation (3.4) to the orders q1 = 6 and q2 = 2, the DD method retrieves the

direct propagation of the source V 1
s1 within lines sub-networks 1 and 2 (translated by the first

gaussian peak), as well as some of its reflections (due to the mismatch at the junctions) within

the three sub-networks, as reported in Figure (3.5).

This difference in results is due to the incompleteness of equation (3.4). In fact, the latter

considers the retro-actions between sub-networks 1 and 2 (through the term A), and the retro-

actions between sub-networks 2 and 3 (through the term B). The retro-actions between sub-

networks 1 and 3 however are missing3. The complete formulation considering all the retro-

actions between the three sub-networks is expressed by

3In this configuration, the retro-actions between sub-networks 1 and 3 are necessary, it may not be the case in

other applications depending of the studied network (lengths, loads and characteristic impedances of the lines),

the observable and the considered time interval. Due to the attenuation of the signal, these retro-actions may be

negligible and thus not necessary.
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Figure 3.5: Comparison of the voltage V5 across the resistance RL5 evaluated for the global

network (reference) and the split network (DD method).

V 2
5 = h2

25 ∗V 2
∼2 +h2

65 ∗V 2
∼6 +h2

25 ∗V 2
∼2,1 +h2

65 ∗V 2
∼6,1

+
q

∑
i=2

h2
25 ∗
(
h1

22 ∗h2
22 ∗V 2

∼2,i

)
+

q

∑
j=2

h2
25 ∗
(
h3

66 ∗h2
66 ∗V 2

∼6, j

)

+
q3

∑
k=2

h2
65 ∗
(
h1

22 ∗h2
22 ∗h3

66 ∗h2
66 ∗V 2

∼2,k

)

(3.7)

with V 2
∼2,k is defined as the k-th order of the equivalent source V 2

∼6, and expressed by

V 2
∼2,k = h1

22 ∗ (h2
22 ∗V 2

∼6,k−1) (3.8)

By re-evaluating the voltage V 2
5 for q1 = 6, q2 = 2 and q3 = 1, the DD method yields the

excepted result as reported in Figure (3.6).

In synthesis, the principle of the DD method remains unchanged, however, the complexity of

the formulation increases with the number of interfaces considered. We again emphasize that

the required order for good accuracy is relative to the network’s topology, the decomposition

itself and the time interval for signal recording. It is also important to mention that there is
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Figure 3.6: Comparison of the voltage V5 across the resistance RL5 evaluated for the global

network (reference) and the split network (DD method applied for the orders q1 = 6, q2 = 2

and q3 = 1).

no order to follow when evaluating the final output. In other words, some reflections of the

signal may appear earlier than the complete direct propagation of the injected signal (for the

considered time interval). In this configuration, the higher orders should be considered from

the early stages of the computation of the output. The final formula can be automatized to take

into account the different decompositions and topologies of the system under study.

3.2 Decomposition domain application for different time

steps

For all the previously studied examples, and without loss of generality, the same numerical

method was used to model each sub-network. The latter is only a "tool" for evaluating impulse

responses and is not related to the decomposition method itself. In this section, we propose a

new application for which different discretization time steps will be considered for each sub-

network.
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3.2.1 Problem statement

We propose to study the following transmission line network represented in Figure (3.7),

of 5 transmission lines supposed uniform and lossless.

Figure 3.7: Characteristic of the transmission line network.

The voltage source V 1
s1, injected at the entrance of the network at the line L1, is a Gaussian

pulse given by equation (2.38) of parameters 1V , tc = 15ns and σ = 1,3ns.

We suppose that the global network is subdivided at the middle of the line L2 into two sub-

network Y k, k ∈ {1,2}. To maintain the physical condition at the interface, both lines Lk
2 are

loaded with a resistance Rk
L2 equal to the characteristic impedance Zc2 of the line L2.

(a)

(b)

Figure 3.8: Global transmission line network split at the middle of the line L2 (a), sub-networks

1 and 2 after the subdivision of the global network (b).
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3.2.2 DD method application and results

Following the principle of the DD method given in the algorithm (1), the focus is put on

the sub-network Y 1 where the variable of interest, i.e. the voltage V 1
3 across the load resistance

R1
L3, is located.

Figure 3.9: Schematic representation of the contribution of the physical voltage source V 1
s1 and

the equivalent source at the interface level V 1
∼2 to the output through the corresponding impulse

responses.

Based on equation (2.5), the voltage V 1
3 reads as follows:

V 1
3 = h1

13 ∗V 1
s1 +h1

23 ∗V 1
∼2

= h1
13 ∗V 1

s1 +h1
23 ∗
(
h2

22 ∗ (h1
12 ∗V 1

s1)
)

(3.9)

We identify the contribution of the voltage source V 1
s1 to the output given by the left-hand term.

The right-hand term, on the other hand, gives the contribution of the equivalent source V 1
∼2 at

the interface. The latter is obtained by considering the propagation of the voltage source V 1
s1

to the interface level, expressed by the product (h12 ∗V 1
s1), first, then its multiplication with the

inner impulse response h2
22 of the sub-network Y 2.

The final formula of the voltage V 1
3 is retrieved by considering both the retro-action of the

sub-network Y 1 on sub-network Y 2 and the multiple round-trips of the source V 1
s1 within the

network. The re-injection of the equivalent source V 1
∼2 within the sub-network Y 1 first, and the

sub-network Y 2 second, allows recovering the reflections of the signal V 1
s1 due to the mismatch

at both junctions and the open-circuit at the end of the line L2
4.

V 1
3 = h1

13 ∗V 1
s1 +h1

23 ∗
(
h2

22 ∗ (h1
12 ∗V 1

s1)
︸ ︷︷ ︸

V 1
∼2,1

)
+

q

∑
i=2

h1
23 ∗
(
h2

22 ∗ (h1
22 ∗V 1

∼2,i)
)

(3.10)

90



Chapter 3 – DD Method and Numerical Applications

Figure 3.10: Impulse responses hk
.. characterizing each sub-network k, k ∈ {1,2}.

with V 1
∼2,i−1 is defined as the i-th order of the equivalent source at the interface level and is

given by

V 1
∼2,i = h2

22 ∗ (h1
22 ∗V 1

∼2,i−1) (3.11)

As we’ve mentioned earlier, each sub-network will be modeled based on a discretization time

step for the FDTD numerical method. In other words, the impulse responses hk
.., k ∈ {1,2} of

the sub-network k will be evaluated considering a time step dti, i ∈ {1,2}. Both these temporal

discretization steps are defined in compliance with the FDTD method’s stability criterion, such

as:

dt1 = 0,90× dx
v

(3.12)

dt2 = 0,99× dx
v

(3.13)

with dx(0,1m), respectively v, are the spatial discretization step, respectively the speed of prop-

agation, assuming to be equal to the speed of light c0 = 3×108m.s−1 in this case.

The output will be then obtained after a post-processing interpolation of the responses of one

sub-network with respect to the time step of the other.

Nevertheless, as the result obtained with the DD method is verified using the global simulation

(as a reference), the choice of temporal discretization step is an issue that emerges. In practice,

the decomposition method is relevant when the global result is not available, either because it

is difficult or impossible to access, or for confidentiality reasons of the models. In the context

of this thesis, we consider that the global result is given for both time steps, as reported in

Figure (3.11). While both results follow the same pattern, the difference in their time step

discretization reveals subtle variations, more precisely a time shift.

Initially, we consider that both sub-networks are evaluated with the same temporal discretiza-

tion step dt1, then dt2 for validation purposes. The results obtained by applying equation (3.10)
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Figure 3.11: Voltage V3 across the resistance RL3 evaluated for the global network for both

temporal discretization steps.

for q = 3, reported in Figure (3.12), validates the DD method as they retrieve the expected

result.

(a) (b)

Figure 3.12: Comparison of the voltage V3 across the resistance RL3 for the global network

(reference) and the split network (using the DD method with the temporal discretization step

dt1 (a), with the temporal discretization step dt2 (b)).
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In the following, we suppose that the impulse responses of the sub-network Y 1 are evaluated

considering the temporal discretization step dt1. Whereas, the sub-network Y 2 is modeled with

the temporal discretization step dt2.

In the post-processing stage, we interpolate the impulse responses of the sub-network Y 1 on

the basis of the time for which the impulse responses of sub-network Y 2 are evaluated. In other

words, the interpolation of the signals (impulse responses h2
..) with the larger time step (dt2) to

match the time instances of the signals (impulse responses h1
..) with the smaller time step (dt1)

is required to ensure that the resulting combined output is synchronized.

By evaluating equation (3.10) for the order q = 3, and based on a linear interpolation method,

the obtained result with the DD approach is compared to the references, evaluated for both

steps dt1 and dt2, as shown in Figure (3.13).

Figure 3.13: Comparison of the voltage V3 across the resistance RL3 evaluated for the global

network for both temporal discretization steps and the split network (using the DD method with

interpolation of the impulse responses of each sub-network).

The obtained result resembles the expected outcome. However, we observe slight differences

between the reference and the DD method result. First, achieving a precise comparison com-

parable to the reference is challenging, since we have two references slightly different. In ad-

dition, the interpolation introduces a certain degree of approximation, and may thus introduce

errors. These small differences do not undermine the use of different solvers.
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3.3 Domain decomposition application to different numeri-

cal softwares

As demonstrated earlier, the DD method provides very good results with different temporal

discretization steps of the FDTD method for each sub-network. These results are promising and

introduce new possibilities for the use of two different numerical tools. This specific aspect of

the DD technique will be a major advantage, especially in the industrial context where the

deployed tools are not necessarily the same.

3.3.1 Problem statement

In this section, we study a new transmission line network whose topology and character-

istics are represented in Figure (3.14). The excitation source Vs1, injected at the entrance of

the network at the line L1, is the same Gaussian pulse used in the previous application. We are

interested in the voltage V6 across the load resistance RL6 when the global network is split at

the middle of the line L2, as shown in Figure (3.15a).

Figure 3.14: Characteristic of the transmission line network.

The line L1
2 referring to the sub-network 1, (resp. L2

2 referring to the sub-network 2) is loaded

with a resistance R1
L2 (resp. R2

L2) equal to the characteristic impedance Zc2 of the line L2 to

ensure the impedance continuity at the subdivision level.

3.3.2 DD method application and results

The voltage V6 is now denoted V 2
6 as a reference to the sub-network 2 (k = 2). In this case,

only the contribution of the incoming wave voltage from the sub-network 1 to the interface

level given by the product (h1
12 ∗V 1

s1), is considered since no physical voltage source is featured

in the sub-network 2. The explicit voltage V 2
6 is evaluated on the basis of equation (2.5) and

reads
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(a)

(b)

Figure 3.15: Global transmission line network split at the middle of the line L2, sub-networks

1 and 2 after the subdivision of the global network (b).

V 2
6 = h2

26 ∗V 2
∼2

= h2
26 ∗ (h1

12 ∗V 1
s1) (3.14)

Figure 3.16: Schematic representation of the contribution of the equivalent source at the inter-

face level V 2
∼2 to the output through the corresponding impulse response.

The higher q-th orders of the multiple reflections of the source V 1
s1 within the network are

retrieved by re-injecting the equivalent source V 2
∼2 at the sub-network 1 (through its impulse
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response h1
22) and then the sub-network 2 (through its impulse response h2

22).

Figure 3.17: Impulse responses hk
.. characterizing each sub-network k, k ∈ {1,2}.

The following expression yields the direct propagation of the voltage V 1
s1 as well as its multiple

reflections (due to the mismatch at the junctions and the load R1
L3 at the end of the line L1

3):

V 2
6 = h2

26 ∗ (h1
12 ∗V 1

s1)+h2
26 ∗
(

h2
22 ∗
(
h1

22 ∗ (h1
12 ∗V 1

s1)
︸ ︷︷ ︸

V 2
∼2,1

))

+
q

∑
i=2

h2
26 ∗
(
h2

22 ∗ (h1
22 ∗V 2

∼2,i)
)

(3.15)

with V 2
∼2,i is defined as the i-th order of the equivalent source at the interface level and is given

by

V 2
∼2,i = h2

22 ∗ (h1
22 ∗V 2

∼2,i−1) (3.16)

In the following, the DD method will be evaluated using two numerical tools: the finite-

difference method (FDTD code) and the commercial software CST Cable®.

CST Cable Studio®

CST Cable Studio® is an electromagnetic simulation tool designed for real-world cables

in complex electromagnetic problems. The software combines transmission lines theory, elec-

tric/electronic circuits and 3D full-wave simulations for fast and accurate analysis.

The software offers the possibility to model a variety of types of cables (single wires, twisted

cables, ribbon cables and coaxial cables with different shieldings) stored in a pre-defined li-

brary. More complex cable harnesses can also be built with the help of the 3D components.

CST Cable Studio® generates equivalent circuits from the cable harness based on classical

transmission line theory. It automatically meshes the cable harness along its length and calcu-

lates the transmission line parameters on these segments.
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The schematic model enables the circuit simulation of the whole system in time and frequency

domains while maintaining a tight interface with the 3D transient solvers to easily exchange

impressed currents and voltages.

The software enables two types of transmission line modeling: lumped and modal. The lumped

modeling approach approximates a transmission line by a series of discrete (or lumped) R, L,

C and G devices. Each RLCG combination models a short section of the transmission line.

The valid frequency range for the whole model is therefore limited by the length of this unit

because the length of the section must be considerably smaller than the shortest wavelength of

the propagating signal. The modal approach on the other hand describes a transmission line

by its secondary characteristics (wave impedance Z and propagation delay v). Throughout this

manuscript, the software is used with the lumped modeling approach.

For this application, we will consider the ideal model of transmission lines pre-defined in the

schematic tab of the software. This choice is to approach in the best way the numerical code

(FDTD) which is also given for RLCG uniform and lossless transmission lines.

The modeling of the network of Figure (3.14) using the CST Cable® ideal transmission line

model is represented in Figure (3.18).

Figure 3.18: Schematic modeling of the global transmission line network using the CST Cable®

software.

The left-hand block (1) represents an external port serving to define the simulation type (Tran-

sient, AC, S-parameters...). In our case, we consider a transient analysis for time-domain sim-

ulation, its parameters are:

• simulation time duration = 0.3µs,
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• total frequency = 300MHz.

We first compare the result of the global network using both numerical tools: the FDTD method

and the software CST Cable®.

From the results represented in Figure (3.19), we can notice very similar patterns for the two

methods. Peak magnitudes are very close as they only depend on the characteristic impedances

of the lines and load resistances. The temporal shift on the other hand is due to the different

time steps considered in the two modeling methods. In fact, the time step in the FDTD method

is defined according to the stability criterion and therefore depends on the spatial discretization

step.

Figure 3.19: Comparison of the voltage V6 across the resistance RL6 evaluated for the global

network using two different numerical tools: the FDTD method and the software CST Cable®.

Initially, the DD method will be evaluated using the CST Cable® software, i.e both sub-

networks are modeled with the software. The goal is to demonstrate the robustness of the

method and its applicability with commercial software. We model the sub-networks 1 and 2

with respect to the decomposition at the middle of the line L2 as represented in Figure (3.20).

After evaluating the required impulse responses hk
.. for each sub-network k, k ∈ {1,2} (schema-

tized in Figure 3.17), the voltage V 2
6 in equation (3.15) is assessed. Based on the obtained result

for q = 5, reported in Figure (3.21), the DD method yields the expected output.

98



Chapter 3 – DD Method and Numerical Applications

(a)

(b)

Figure 3.20: Schematic modeling of the sub-network 1 (a) and the sub-network 2 (b) using the

CST Cable ® software after splitting the global network at the middle of the line L2.

The DD method is, therefore, valid and can be applied with other commercial tools4.

In the following, each sub-network will be modeled by a different numerical tool. An after-

processing based on data interpolation is required to retrieve the output. Let’s consider that sub-

network 1 is modeled with the commercial software CST Cable®, whereas sub-network 2 is

evaluated using the numerical finite difference method. In this case, the temporal discretization

step used in CST Cable® denoted dt1, is greater than dt2, the temporal discretization step

employed for the FDTD simulation.

After interpolating the impulse responses h2
.. of sub-network 2 on the time basis t1 employed in

the modeling of the sub-network 1, the voltage V 2
6 is evaluated. The obtained result is reported

4Commercial software often do not share their numerical models.
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Figure 3.21: Comparison of the voltage V6 across the resistance RL6 evaluated for the global

network (reference) and the split network (DD method) using the commercial software CST

Cable®.

in Figure (3.22).

The DD method yields satisfactory results; however, once again, the comparison lacks preci-

sion, since we have two references.

3.4 Domain decomposition application to a multiconductor

transmission line network

With the validation of the DD method using the commercial software CST Cable®, we

utilize its modeling of real cables to study multiconductor transmission lines. In this case,

the DD technique is applied for m one-point interfaces, with m the number of conductors in

one multiconductor bundle. In this section, we implement the DD technique for 3 one-point

interfaces (m = 3 conductors). The new output formulation and the obtained results will be

presented.
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Figure 3.22: Comparison of the voltage V6 across the resistance RL6 evaluated for the global

network (reference) and the split network (DD method application for two different numerical

tools).

3.4.1 Problem statement

Let’s consider the transmission line network in Figure (3.23) consisting of 5 multiconduc-

tors (MTL) and 2 junctions.

Figure 3.23: Characteristic of the transmission line network.

Each MTL consists of three single-wire cables imported directly from the CST Cable® library:

’LIFY_0qmm5’, ’LIF_0qmm8’ and ’LIFY_0qmm10’, corresponding respectively to the lines

L1, L2 and L3, whose lengths are supposed equal.

For improved identification, we give the following notation to facilitate comprehension for

readers:
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• the MTL is denoted with a n indice: MTLn with n ∈ {1,2,3,4,5,6},

• the lines constituting the MTLn, are denoted Ln,m with m ∈ {1,2,3},

• the load resistance of a line Lt,m is denoted RLt,m, with t = n\{4}.

In Figure (3.24a), we present a close-up view of each MTL5. At the MTL1 level, we suppose

that an excitation voltage source Vs1,1 is injected at the entrance of the line L1,1. The other two

conductors, i.e lines L1,2 and L1,3 are loaded with the resistance RL1,2, respectively RL1,3.

The load resistance values are summarized in Table (3.1).

t = 1 t = 2 t = 3 t = 5 t = 6

L1 Rs1,1 = 37Ω RL2,1 = 35Ω RL3,1 = 37Ω RL5,1 = 35Ω RL6,1 = 35Ω

MT Lt L2 RL1,2 = 35Ω RL2,2 = 42Ω RL3,2 = 37Ω RL5,2 = 35Ω RL6,2 = 35Ω

L3 RL1,3 = 42Ω RL2,3 = 35Ω RL3,3 = 37Ω RL5,3 = 35Ω RL6,3 = 35Ω

Table 3.1: Values of the load resistances RLt,m for each line Lm for the MTLt .

Based on the cross-section of one MTL of the network, represented in Figure (3.24b), we

identify the three conductors, the isolator (in blue) and the screen (in green) to ensure the

ground connection.

For this configuration, we propose to split the global network at the middle of the MTL4 into

2 sub-networks as represented in Figure (3.25a). To ensure this impedance continuity at the

subdivision level, each line Lk
4,m of the sub-network k ∈ {1,2} is loaded with a resistance equal

to the characteristic impedance of the corresponding line of the initial MTL4, such as Rk
L4,m =

Zc4,m.

3.4.2 DD method application and results

We aim to evaluate the voltage V 2
5,1 measured across the load resistance R2

L5,1 of conductor 1

of the MTL2
5. In this case, the interface is represented by 3 one-point interfaces. Consequently,

the voltage V 2
5,1 is retrieved on the basis of the general formulation of the DD method, given by

equation (2.5), updated for three interfaces.

V 2
5,1 =

3

∑
m=1

h2
45,m ∗V 2

∼4,m

= h2
45,1 ∗V 2

∼4,1 +h2
45,2 ∗V 2

∼4,2 +h2
45,3 ∗V 2

∼4,3

(3.17)

5In the schematic representation in Figure (3.24a), the exponent p refers to the MTL 2 or 3, whereas the

exponent q refers to the MTL 5 or 6.
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(a)

(b)

Figure 3.24: Conductors Ln,t and their load resistance for each MTLt (a), the cross-section of

the cable group used for the multiconductor lines of the studied network (b).

At each one-point interface, at the line m ∈ {1,2,3} of the MTL2
4, appears an equivalent source

V 2
∼4,m. Each one of these sources represents the incoming voltage wave from the sub-network

1 to each interface of the line L1
4,m. Their explicit expression is given by
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(a)

(b)

Figure 3.25: Global multiconductor network split at the middle of the line MT L4, sub-networks

1 and 2 after the subdivision of the global network (b).

Figure 3.26: Schematic representation of the contribution of the equivalent sources V 2
∼4,m at

the m interface to the output through the corresponding impulse response.

V 2
∼4,1 = h1

14,1 ∗V 1
s1,1 (3.18)

V 2
∼4,2 = h1

14,2 ∗V 1
s1,1 (3.19)

V 2
∼4,3 = h1

14,3 ∗V 1
s1,1 (3.20)

with h1
14,m is the impulse response measured between the termination i = 1 (source) and l = 4

(interface) for each line L2
4,m.

Equation (3.17) gives the contribution of each equivalent source V 2
∼4,m to the output, through
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the impulse response h2
45,m.

Figure 3.27: Impulse responses hk
i j,m for each sub-network Y k, k ∈ {1,2}.

However, the formulation is incomplete as multiple reflections of the voltage V 1
s1, 1 within the

network aren’t considered yet. At each interface m, the equivalent source V 2
∼4,m is re-injected

at the sub-network Y 1 first and the sub-network Y 2 second through the corresponding impulse

responses h1
44,m and h2

44,m. The first order of reflection of these equivalent sources, denoted

V 2
∼4,m,1, is expressed as follows:

V 2
∼4,m,1 = h1

44,m ∗ (h2
44,m ∗V 2

∼4,m)

= h1
44,m ∗

(
h2

44,m ∗ (h1
14,m ∗V 1

s1,1)
) (3.21)

Their contributions to the output ( j = 5, m = 1 and k = 2) are given by the product of convolu-

tion of each of these sources with the corresponding impulse response h2
45,m.

The final formulation allowing to retrieve the multiple round-trips of the source to the orders

q1, q2 and q3 is expressed as follows:

V 2
5, 1 =

3

∑
m=1

(

h2
45,m ∗V 2

∼4,m +h2
45,m ∗V 2

∼4,m,1 +
qm

∑
im=2

h2
45,m ∗

(
h1

44,m ∗ (h2
44,m ∗V 2

∼4,m,im)
))

(3.22)

with V 2
∼4,m,im

is defined as the i-th order of the equivalent sources at the interface m of the line

L2
4,m. Their respective expressions are given by

V 2
∼4,m,im = h1

44,m ∗ (h2
44,m ∗V 2

∼4,m,im−1) (3.23)

By evaluating equation (3.22) for the orders i1 = 5, i2 = 1 and i3 = 1, the obtained result is

reported in Figure (3.28).

The first Gaussian pulse represents the direct propagation of the source V 1
s1, 1 within the first

conductors (L1) of the multiconductors 1,2 and 5. Starting from the instant t = 1.45e− 7s,
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Figure 3.28: Comparison of the voltage V5, 1 across the resistance RL5,1 evaluated for the global

network (reference) and the split network (DD method application for two different numerical

tools).

the crosstalk effect appears due to the closeness of the conductors. In fact, the terms in equa-

tion (3.22) referring to conductor 1 (line L1) for the corresponding MTL translate the direct

transmission of the source to the output, meanwhile the terms referring to the other two con-

ductors (lines L2 and L3) give the crosstalk effect. Although the different interactions between

the interfaces themselves are not considered in the formulation, the DD result approaches very

well the reference. Their effect is small and may be negligible, however in different configura-

tions depending on the topology of the network, types of cables, number of conductors in the

MTL, the decomposition itself and the observable, their effect may be required to retrieve the

expected output.

Conclusion

In this chapter, the proposed DD method was applied to a diverse range of cases to ascer-

tain its effectiveness and versatility. The obtained results underscored the method’s robustness

and its potential to address a wide spectrum of real-world EMC applications. In the first

section, the DD technique was applied for two exchange interfaces. Although the formulation
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of the output is more challenging and requires the evaluation of more impulse responses, the

method demonstrated its applicability for more than one exchange interface. In the second

and third sections, the aim was to utilize the asynchronous nature of the method allowing

independent simulations for the use of different numerical tools for the characterization of the

sub-systems. In addition to showcasing its applicability with commercial software, the DD

approach provided meaningful results and promises a wide array of potential future applica-

tions. In the last section, another dimension of the method is analyzed, for which the exchange

interface is represented by multiple one-point interfaces. The new formulation of the DD

method achieved the intended objectives and affirms its efficacy for more complex applications.

For different configurations, the method remains effective. Its underlying theoretical princi-

ple allows easy implementation for different study cases. The obtained results emphasize the

practical utility it offers for future work.
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THE proposed DD method stands out through its asynchronous intrinsic feature allowing

independent modeling of each sub-system. This independence is both temporal, as

no iterative exchange in time is involved, and spatial since the system is physically split

up. Different configurations of the applicability of the DD method can be envisaged, but

its transposition into practical experiments may seem of the biggest interest. In real-world

applications, experimental realizations may be difficult to achieve given the available resources

on one hand, and the multitude of involved partners for either component(s) or part(s) of the

system under study on the other. The confidentiality of the models in this case is a real issue of

the different parties, referred to as equipment manufacturer (component level) and assembler

(system level) in the industrial field. The proposed decomposition method appears to be a

suitable solution as it meets the requirements: preserving the confidentiality of the models.

From the previous chapters, we concluded on the general aspect of the DD approach for dif-

ferent numerical configurations. Its core remains unchanged for experimental configurations

too, however, it is not ready for practical applications yet due to physical limitations. The aim

of this chapter is to put the DD method into practice after upgrading its principle to satisfy the

encountered physical limitations. In the first section, a proposed method for extracting impulse

responses experimentally is presented. The transposition of the DD technique onto practical ap-

plication is later detailed. Different configurations of wiring networks, using the experimental

DD technique are studied to demonstrate its efficiency in the second section.

4.1 Experimental DD method

Within the scope of this thesis and in line with its objectives, the experimental realization

is intended to validate the DD method when the impulse responses are measured experimen-

tally. The combination of the latter through the general equation (2.61) is post-processed later

numerically. We therefore refer to the experimental realization as the characterization of the

sub-systems through their impulse responses. However, we can also consider the whole process

(characterization of impulse responses and their association) in a totally experimental setting.

This approach will be discussed further in this chapter.

4.1.1 Experimental impulse response extraction

The DD method is mainly based on the evaluation of impulse responses of each sub-

system. In practice, their extraction is challenging given the difficulty of injection of a Dirac

pulse. To overcome this physical limitation, we propose an alternative method aimed at
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recovering the impulse response from any temporal signal and its response. The approach

was initially developed within the EMC team of Institute Pascal as part of the thesis of Ali al

Ibrahim [128].

By definition, the excitation of a linear system by the Dirac impulse δ (t) gives its impulse

response h(t).
{

Vin = δ (t)→Vout = h(t)

Vin = α(t)→Vout = R(α(t))
(4.1)

where Vin is the excitation source.

The response Vout of this linear system to any time signal α(t) ̸= 0, denoted R(α(t)), can also

be retrieved from the product of convolution of the impulse response h with the signal α(t),

expressed by

R(α(t)) = h(t)∗α(t) (4.2)

or 


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
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...
...
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
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. (4.3)

based on the matrix form of the impulse response.

From this expression, the linear system is deduced






R(α(0)) = h(0)α(0)

R(α(1)) = h(0)α(1)+h(1)α(0)

. . .

R(α(m)) = h(0)α(m)+ . . .+h(m)α(0).

(4.4)

This system is re-arranged differently where a new matrix P, constructed uniquely from the

signal α(t), is revealed.


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h

(4.5)
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We define B = {e0, ...,em} as the canonical basis of the vector space Rm+1. By supposing that

C = {α(0), ...,α(m)} also forms a basis for Rm+1, the matrix P is then inversible and is called

the transition matrix of C à B.

The impulse response h is the solution of the linear system (4.5)

h = P−1 R(α) (4.6)

However, depending on the signal α(t), the matrix P may be non-square, so its inverse matrix

P−1 may be not be assessable. To overcome this problem, the two terms of equation (4.5) are

multiplied by P⊤, the transpose of P

P⊤ R(α) = P⊤ P h (4.7)

However, the poor conditioning in general of the P⊤P matrix makes its inversion numerically

unstable. Tikhonov’s regularization technique [129] is then used. The system becomes

P⊤ R(α) = (P⊤ P+ ε Id)h (4.8)

where Id is the identity matrix. The Tikhonov parameter ε > 0 is chosen small enough not to

distort the solution, e.g. ε = 1e−8.

Finally, the impulse response h is given by

h = (P⊤ P+ ε Id)
−1

P⊤ R(α) (4.9)

This new alternative method for impulse response extracting will be practically illustrated

through a cable network later in this chapter.

4.1.2 Transposition of the DD method experimentally

The DD method is once again interesting when the global result is difficult if not

impossible to retrieve. This constraint is more accentuated for the experimental measurements,

due to the required resources they involve (equipment, time and operators). Similarly to the

numerical validation of the DD method in Chapters 2 and 3, the global result will be assumed

known for validation purposes of the proposed method.

The essence of the DD method remains unchanged, the exact same steps in algorithm (1)

are followed. In other words, after locating the sub-system featuring the variable of interest

V k
j , the contributions of both real and equivalent sources within this sub-system should be
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assessed. The transposition of the DD method experimentally therefore consists of extracting

the impulse responses in equation (2.61), using the alternative method proposed in section

(4.1.1) first, and combining these partial experimental solutions in a post-processing step

through the convolution product in equation (2.61).

The evaluation of the impulse responses hk
i j in equation (2.61), starts by measuring the response

of the system k at the termination j to the excitation source, that is the signal α , injected at the

termination i. This measured response Rk
i j is thus associated with the matrix P build using the

signal α to retrieve the impulse response hk
i j, following equation (4.9). Similarly, the impulse

response hk
l j is extracted based on the measured response Rk

l j of the system when the source α

is injected at the interface level l, and the matrix P. We will further demonstrate that different

signals α can be used to extract the impulse responses.

In summary, the following algorithm details the key steps for experimental realization of the

DD method:

Algorithm 2 Key steps to apply the experimental DD method
1: Subdivide the global linear system G into m non-overlapping sub-systems.

2: Focus on the sub-system k in which the variable of interest V k
j is located.

3: Measure the response Rk
i j and Rk

l j of the sub-system k to the signal α (non-null signal and

experimentally achievable).

4: Extract the impulse responses hk
{i} j and hk

∼{l} in equation (2.61) based on the alternative

method proposed in section (4.1.1).

5: Compute the output V k
j through the convolution products of the measured impulse re-

sponses with the corresponding sources using equation (2.61).

4.2 Experimental DD method in wiring networks

As part of our experimental validation, the DD experimental technique is put into practice

for transmission line networks. The topology of the studied network and the type of cables

(length, characteristic impedances and loads) is irrelevant to the approach. Its general feature

enables its independence from the type of studied network while ensuring the one and only

hypothesis that is linearity.

4.2.1 Experimental setup

The experimental DD method’s set-up requires an Arbitrary Wave Generator (AWG), a
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scope and the wire network consisting of different types of cables (including coaxial cables

RG58, RG59) connected using BNC-T connectors to create the junctions.

The AWG70002A Tektronix generator allows the generation of arbitrary signals with an am-

plitude of 250mVp-p. To ensure that generation starts after the first trigger, the "trigged and

continuous" mode on the AWG is selected. The trigger signal used is reported in Figure (4.1).

Figure 4.1: Trigger signal used with the AWG.

The measurements are acquired using the scopes LeCroy 640Zi and/or Tektronix MSO46 4-BW-

351. while ensuring synchronization with the generation (one channel is used for triggering,

and another one for the acquisition of the measurement). To avoid sampling problems, the

measuring sampling frequency must be greater than or equal to the sampling frequency of the

waveform generated by the AWG. This sample rate (SR) refers to the rate at which the scope

samples the input signal. It is typically measured in samples per second (S/s). A higher sample

rate allows the oscilloscope to capture and display fast-changing signals with more detail.

4.2.2 Extraction of the impulse responses experimentally

The idea behind the experimental DD method is to evaluate by measurement the partial

solutions (impulse responses) required to yield the global solution. Therefore, we first start by

putting into practice the alternative method proposed in section (4.1.1) to extract the impulse

1Thanks to the ANR ECOCES funding in acquiring this equipment.
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response of a system when the latter is excited by a non-null signal α(t). We propose to study

the Y-transmission line network in Figure (4.2), consisting of three RG-58 coaxial cables of

different lengths. The injection takes place at the entrance of the network at line L1 (blue point)

using the AWG, while the response R(α(t)) is recorded at the end of line L2 (green point) using

the scope Tektronix MSO46 4-BW-35.

Figure 4.2: Experimental bench of the studied line network for the extraction of the impulse

response.

Let’s consider that the excitation source α(t) is the sine-wave signal in Figure (4.3a). The

network’s response to this system is reported in Figure (4.3b). Based on these two signals,

α and R(α), the impulse response h12 measured between the injection (i = 1) and recording

( j = 2) points, is retrieved based on equation (4.9). By definition, the impulse response of a

linear system links whatever input signal to its output. The response of the studied network

to the Gaussian pulse in Figure (4.4a), is given by the product of convolution of the impulse

response h12 with this source, following equation (2.1), such as

RG =V2 = h12 ∗G(t) (4.10)

The perfect agreement of the response RG and the response V2 retrieved based on the impulse

response, reported in Figure (4.4b), demonstrated that the latter is evaluated correctly. The

proposed alternative method is therefore capable of constructing the impulse response from

any signal and its response, based on a change of base. The convolution product, however, is
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(a) (b)

Figure 4.3: Excitation source (sin-wave signal) (a) and its response (b).

verified using a signal with a narrower bandwidth than that of the signal used to construct the

impulse response.

(a) (b)

Figure 4.4: Excitation source (Gaussian pulse) (a), the comparison of the response RG with the

result of convolution of equation (2.1).

We base the extraction of the impulse responses in the following results on this approach. The

asynchronous feature of the DD technique will allow an additional advantage, as it enables

different excitation signals for each sub-system. This aspect will be highlighted in a further

application.
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4.3 Experimental applications of the DD method

With the theoretical foundations of the DD method in place and its upgrading for practical

applications, different configurations of wiring networks will be presented in this section. The

aim is to demonstrate the applicability of the method in a real-world environment, and its

efficiency with additional experimental constraints.

4.3.1 First scenario: measurement with a single scope

We study the network in Figure (4.5), consisting of 6 cables of different types and lengths.

The two lines L1
2 and L2

2 are interconnected through a BNC-T connector, at which the de-

composition will occur later. This configuration is more realistic and closer to reality, as the

subdivision will naturally take place at the level of an interconnection.

Figure 4.5: The studied transmission line network.

The injection of the excitation source using the AWG happens at the input of line L1, whereas

the scope measures the voltage at line L4, as shown in the set-up in Figure (4.6).

For a Gaussian excitation pulse of magnitude 0.25V (limited by the AWG), the voltage V4 of

the global network is measured with a SR of 10GS/s, as reported in Figure (4.7)

We can identify the direct propagation of the Gaussian pulse through lines L1, L1
2, L2

2 and L4 of

the network through the first recorded peak. The impact of the mismatches in the network is

recorded with a positive sign for the open-circuit loads and a negative sign for the mismatch at
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Figure 4.6: Experimental bench of the studied line network.

Figure 4.7: Voltage V4 measured at the termination of line L4 for the global network, using the

scope in Figure (4.6).

the junction.

We aim to retrieve this result by decomposing the global network into two networks at the

level of the interconnection (through the BNC-T connector). The voltage V 2
4 , located at the

sub-network k = 2, is expressed following equation (2.61) as follows:
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V 2
4 = h2

24 ∗ (h1
12 ∗V 1

s1
︸ ︷︷ ︸

V 2
∼2,1

)+
q

∑
i=2

h2
24 ∗
(
h2

22 ∗h1
22 ∗V 2

∼2,i

)
(4.11)

where V 2
∼2,i is defined as the i-th order of the equivalent source at the interface and expressed

by

V 2
∼2,i = h2

22 ∗
(
h1

22 ∗V 2
∼2,i−1

)
(4.12)

Figure 4.8: Impulse responses hk
i j for each sub-network Y k, k ∈ {1,2}.

For this configuration, the only physical injected source is located in sub-network 1, con-

sequently the contribution of the equivalent source at the interface to the output should

considered.

First, we evaluate the response R1
12 based on which the impulse response h1

12 will be constructed

later. From the experimental set-up in Figure (4.9), the injection happens at the input of line L1

(i = 1), and the line L1
2 is connected to the scope for recording (l = 2). Similarly, the response

R2
24 for sub-network 2 is measured at the termination j = 4 when line L2

2 is connected to the

AWG for injection, as shown in the set-up in Figure (4.10). Both responses, in addition to

the source, are used to construct the corresponding impulse responses following the method in

section (4.1.1).

The exact evaluation of the voltage V 2
4 with the DD method requires considering the multiple-

round trips of the injected signal between the two sub-networks to a given order q. This involves

introducing new impulse responses h1
22 and h2

22 characterizing each of the corresponding sub-

networks, when no physical source is injected. The procedure of their evaluation, detailed

in section (2.3.1), requires two steps. The first one measures the impulse response, denoted

hk
22,total , containing both the excitation and the response, represented schematically in Fig-

ure (2.22a). Experimentally, this measure is realized using a BNC-T connector, connected to
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Figure 4.9: Experimental bench of sub-network 1.

Figure 4.10: Experimental bench of sub-network 2.

the AWG, the cable at which the decomposition has occurred (Lk
2), and the scope for measure-

ment, as shown in Figure (4.11). The second step, represented in Figure (2.22b), evaluates the

impulse response hk
22,in f when the line Lk

2 is supposed infinite so that no reflections are recorded.

It translates experimentally either by considering a very long cable or ensuring perfect match-

ing. In our case, a 50Ω-match is loaded to both lines L2
1 and L2

2 given their characteristic
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impedance is of 50Ω (coaxial cables).

Figure 4.11: Experimental set-up for the measurement of the response R1
22,total of sub-network

1.

Figure 4.12: Experimental set-up for the measurement of the response Rk
22,in f of sub-network

k, and the zoom at the BNC-T connector level.

By computing the equation (4.11), to the order q = 4, the DD method retrieves the expected

output. First, we notice that the global result (reference) is noisy, whereas the one obtained

with our method is smoother. In fact, due to the inherent noise of the scope (and its random

nature), the evaluation of the global response is also impacted. To overcome this experimental

constraint, two steps are considered: 1) we calculate the average of the measured responses Rk
..

for 1k acquisition using the scope 2, 2) we smooth the data (in a software post-processing step)

2This feature is proposed by the mathematical mode of the scope. For our measurements, the noise is reduced

by a factor 1e3 with this averaging technique.
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Figure 4.13: Comparison of the measured voltage V4 for the global network and the obtained

result using the DD method (measured partial responses) for the split network.

before evaluating the impulse responses. The same steps will be considered for the upcoming

applications.

4.3.2 Second scenario: measurement with different scopes

With the previous results, the DD method proves its efficiency in recovering the global

solution through measured partial solutions. As mentioned earlier, this feature is very important

for industrial applications, where partners won’t share their systems (topology, types of lines,

loads, etc.) for property and confidentiality reasons. It is therefore highly probable that the

measurement tools available for the different partners are not the same either. The general

and asynchronous features of the DD method overcome this constraint, the equipment used

for injection and/or acquisition is totally independent of the method. Within this context, we

propose to study new configurations where the partial responses of each sub-network will be

measured using a different scope.

4.3.2.1 Acquisition with the same SR

We consider the transmission line network in Figure (4.14), where lines L1
2 and L2

2 are

interconnected with the BNC-T connector (decomposition level). For this configuration, the
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injection at the entrance of line L1 is carried out with the AWG, while the voltage V3 will

be measured using both scopes with an equal SR (25MS/S). In general, the SR is an inherent

parameter to the scope pre-defined by the constructor, the chosen SR in our study is the common

one to both used scopes.

Figure 4.14: Schematic representation of the studied transmission line network.

As mentioned previously through this manuscript, we suppose that the reference (global result)

is given for validation purposes. However, the use of two different scopes requires comparing

our technique with two references, each measured with one scope. Following the decomposi-

tion, at the interconnection level of lines L1
2 and L2

2, two sub-networks can be identified. The

voltage V 1
3 located in sub-network 1 is expressed based on equation (2.61) as follows:

V 1
3 = h1

13 ∗V 1
s1 +h1

23 ∗
(
h2

22 ∗ (h1
12 ∗V 1

s1)
)

︸ ︷︷ ︸

V 1
∼2,1

+
q

∑
i=2

h1
23 ∗
(
h2

22 ∗ (h1
22 ∗V 1

∼2,i)
)

(4.13)

where V 1
∼2,i is the i-th order of the equivalent source at the interface level, expressed by

V 1
∼2,i = h2

22 ∗ (h1
22 ∗V 1

∼2,i−1) (4.14)

We suppose that all the responses R1
.. of sub-network 1 are measured using the scope Textronix

AWG 70002, as shown in Figure (4.17).

The response R2
22 of sub-network 2, on the other hand, is measured using the scope LeCroy

640Zi as shown in Figure (4.18).

The process requires two measurements, the first one measures the total response R2
22,total as

shown in Figure (4.18), and the second one measures the response of the sub-network 2 con-

sidering a perfectly adapted line L2
2. The difference of both acquisitions gives the response R2

22.

The same procedure is followed to measure the response R1
22, at the interface level, when no

equivalent source is injected. The corresponding set-up is shown in Figure (4.19).

The corresponding impulse responses of both sub-networks are extracted upstream through the

proposed method in section (4.1.1), considering that the signal α(t) is a double-gaussian pulse.
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Figure 4.15: Experimental set-up for the studied wire network including both scopes used of

the experimental DD method.

Figure 4.16: Impulse responses hk
i j for each sub-network Y k, k ∈ {1,2}.

In this configuration, sub-network should be characterized through 4 impulse responses. This

is a special case and does not diminish the advantage of the method demonstrated throughout

this chapter.

The obtained result for computing equation (4.13) to the order q= 2 is reported in Figure (4.20).
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(a) Response R1
13 (b) Response R1

12 (c) Response R1
23

Figure 4.17: Experimental measurement for the evaluation of the responses Rk
.. of both sub-

networks k ∈ {1,2}.

Figure 4.18: Experimental measurement for the evaluation of the responses R2
22 of sub-network

2.

The DD method’s result follows the overall pattern of both references, however, in some in-

stances, the differences are more accentuated. In fact, the measured results lack precision due

to the lower SR chosen3. In the next section, we consider two different sampling rates for each

3A low SR can lead to unprecise measures. Timing errors, interpolation artifacts, and missed transient effects
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Figure 4.19: Experimental measurement for the evaluation of the responses R1
22 of sub-network

1.

scope, with respect to the frequency spectrum of the measured signals for a better acquisition.

Figure 4.20: Comparison of the measured voltage V3 for the global network (both references)

and the obtained result using the DD method (measured partial responses) for the split network.

can affect measurements, especially high-frequency signals.
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4.3.2.2 Acquisition with different SR

We utilize for the upcoming application the DD method’s main advantage (asynchronous

feature) to construct the matrices Pk
.. , in equation (4.5), using different signals α(t) for each

sub-network k.

We study the network in Figure (4.22) consisting of 7 cables, such that lines L1
4 and L2

4 are

interconnected with a BNC-T connector. The injection with the AWG of the source is at the

entrance of line L1 and the acquisition of the voltage V5 is carried by both scopes.

Figure 4.21: Experimental set-up for the studied wire network including both scopes used of

the experimental DD method.

The responses R1
.. of sub-network 1 are measured using the scope Tektronix MSO46 4-BW-35

(SR = 10GS/s) and a sine-wave signal for α(t). The responses R2
.. of sub-network 2 on the

other hand, are measured with the scope LeCroy 640Zi (SR = 25GS/s) and a double-gaussian

pulse for α(t). The experimental set-up for the extraction of responses R1
14 and R2

45 are shown
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in Figures (4.24) and (4.25). The evaluation of the responses Rk
ll at the interface level (l = 4) is

similar to the previous applications.

Figure 4.22: Schematic representation of the studied transmission line network.

Figure 4.23: Impulse responses hk
i j,m for each sub-network Y k, k ∈ {1,2}.

The voltage V 2
5 , measured at the termination j = 5, is deduced from equation (2.5) and is

expressed by

V 2
5 = h2

45 ∗V 2
∼4,1 +

q

∑
i=2

h2
45 ∗
(
h1

44 ∗ (h2
44 ∗V 2

∼4,i)
)

(4.15)

where V 2
∼4,1 is the first order of the equivalent source at the exchange level given by the product

(h1
14 ∗V 1

s1). The i-th order of this source is expressed by

V 2
∼4,i = h1

44 ∗ (h2
44 ∗V 2

∼4,i−1) (4.16)

Using the proposed alternative method to construct the impulse responses of each sub-network

and following an interpolation technique of these results, the computation of equation (4.15) to

the order q = 4 gives the result reported in Figure (4.26).

The new choice of SR allows better precision and gives better results. We can see that the re-

sults measured with the two scopes for the global network are very close. The small differences

in amplitude can be explained by the random nature of the noise specific to each scope. The
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Figure 4.24: Experimental measurement for the evaluation of the response R1
14 of sub-network

1.

retrieved voltage V5 using the DD method is very close to these references. The small differ-

ences in amplitude can be explained by numerical errors in interpolating the results as well as

the smoothing of the measured responses Rk
...

4.3.3 Parametric study using experimental DD method

Throughout this chapter, we demonstrate the DD method’s efficiency for practical appli-

cations. Its asynchronous formulation allows characterizing each sub-system independently.

Consequently, modifications in one of them will only require the re-evaluation of its impulse

responses. Experimentally, this aspect enables important gains of cost, due to the difficulty of

measurements and resources they require, mainly time.

We propose to study a new configuration of a cable network in Figure (4.27), for which the

variable of interest is the voltage V3. The decomposition occurs at the interconnection level

of lines L1
2 and L2

2, and resembles the application in section (4.3.2.1). The voltage V 2
3 is thus

retrieved based on equation (4.13). The latter is recorded using the scope LeCroy 640Z for a

sample rate of 10GS/s. In this configuration, the responses of both sub-networks are measured

using the same scope.

By evaluating equation (4.15) to the order q = 3, the DD method gives a satisfactory result, as

reported in Figure (4.28a).
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Figure 4.25: Experimental measurement for the evaluation of the response R2
45 of sub-network

2.

We now exploit the asynchronous nature of the DD method for a parametric study by modify-

ing a parameter of sub-network 1, in this case, the cable representing the line L1
2 is replaced

by another cable of different length and characteristic impedance. This modification requires

the re-evaluation of the impulse responses h1
.. of sub-network 1, however, the response h2

22 of

sub-network 2 is not re-evaluated as the corresponding sub-network is intact. The obtained

result with the new measured impulse response, reported in Figure (4.28b), follows the overall

pattern of the reference. Around 2000 iterations, the impact of the modifications is recorded

as different reflections of different magnitudes appear due to the different characteristic

impedances of the used cables. The DD method enables parametric experimental studies with

a lower cost, as only the modified sub-systems are measured for the new configuration.

The significant gain cost that offers the DD for experimental applications for parametric studies
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Figure 4.26: Comparison of the measured voltage V5 for the global network (both references)

and the obtained result using the DD method (measured partial responses) for the split network.

Figure 4.27: Experimental set-up for the studied wire network for parametric analysis.

offers other possibilities of combining measurements with numerical simulations. This alter-
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(a) Initial configuration (b) Modified configuration

Figure 4.28: Comparison of the measured voltage V3 for the global network (both references)

and the obtained result using the DD method (measured partial responses) for the split network.

native also has the advantage of enabling parametric studies to be carried out upstream of the

measurement, allowing the most influential parameters in the configuration studied to be iden-

tified in advance, for stochastic study.

Conclusion

Throughout this chapter, the DD method proved to be efficient in measuring environments.

The technique was first adapted to make it experimentally feasible, by proposing an alterna-

tive method for impulse responses’ extracting that overcomes experimental constraints. Then,

experimental tests were conducted in wiring networks to demonstrate the applicability of the

technique when the impulse responses were measured. In line with the thesis objectives, and to

better represent a real-life situation where the DD technique can be useful, additional experi-

ments were carried out with the use of different scopes for data acquisition for each sub-system.

From the obtained results, we conclude that the choice of the sampling rate is very crucial for

the precision of the result. The DD method may be unable to retrieve the expected output

when a low SR is chosen, as important data isn’t acquired. In the last section, we utilize the

asynchronous feature of the method for parametric study. We highlighted the significant gain

cost the technique offers as only modified sub-systems are re-measured. This new advantage

seems to be promising for industrial applications, where most of the time, the experiments are

difficult and costly. Within this framework, the method preserves the confidentiality of the sub-

system and doesn’t exchange any information about its topology or characteristics other than
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its impulse responses. As a perspective, the DD method can be fully experimental. In other

words, not only the impulse responses are measured, the injection of the equivalent source

to the sub-system of interest is carried out experimentally. To consider the final formula for

the q-order, the experiment will require re-injection of the equivalent source at the interface

level between the sub-networks. Experimentally, additional equipment will be required with an

automatization of the injection and acquisition of the data.
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WITH the asynchronous nature of the DD method comes a major advantage for para-

metric studies. Whether the impulse responses are computed numerically, through

a numerical code or commercial software or measured experimentally with the proposed

benchmark, re-modeling the modified sub-systems only offers significant time and resource

gains. This particular feature is more emphasized for the stochastic dimension. For the past

years, uncertainty quantification for EMC problems has continued to evolve in line with

technological advances and industrial requirements. One of the encountered challenges lies in

the complexity of the problems, reflected by their multi-physics and multi-scale. Another layer

of difficulty arises with the uncertainty dimension. Stochastic analysis becomes challenging

and computationally expensive, especially for high-dimensional systems. The DD method can

be an effective solution to these constraints, as it goes from solving a global complex system

to simpler non-overlapping sub-systems of a lower stochastic dimension.

The aim of this chapter is to extend the DD approach to stochastic linear time-domain EMC

applications. Before diving into the association of a stochastic method and the proposed DD

technique, it is essential to outline the framework of the stochastic study. The Uncertainty

Quantification principle (UQ) is presented in section 1 while recalling the main theoretical ba-

sis for probabilistic analysis. The mathematical foundation of Monte Carlo (MC), Stochastic

Collocation (SC) and Polynomial Chaos (PC) approaches is described with a focus on mean

and variance assessment. Following the uncertainty quantification, we proceed to define the

Sobol’ indices for global sensitivity analysis. With a solid theoretical foundation in place for

both UQ and SA, the stochastic DD method based on the association of the SC technique

and the deterministic DD approach is formulated in section 2. Its concept is put into practice

through applications of transmission line networks in section 3. Through the different applica-

tions, the stochastic DD method’s ability to propagate uncertainties between the sub-systems

is demonstrated first, then its asynchronous feature is highlighted when different configura-

tions of intensities and distribution laws of RVs are studied. Given that a complete stochastic

analysis will require the study of all possible combinations, it translates into an important eval-

uation cost of the model. This cost is even more important when the number of stochastic

input parameters is high. To tackle this challenge, referred to as the curse of dimensionality, an

offline–online association of the SC method with the DD strategy is proposed. Its advantages,

based on RV separation, are discussed in the last section. Through a theoretical gain for an op-

timal configuration of decomposition, the stochastic DD method proves significant evaluation

cost reduction.
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5.1 Elements of probability theory and stochastic modeling

Physical systems are often represented by mathematical models, ranging from simple ana-

lytical formulas to sets of partial differential equations. The latter may be solved using specific

numerical schemes such as finite difference [130] or finite element methods [131], implemented

as simulation computer codes (step A in Figure (1.3)). The mathematical formulation of this

model can be given by the function

M :
Dx ⊆ R

M → Dy ⊆ R
n

x 7→ y
(5.1)

where x = (x1, ...,xM)T is a set of M input variables and y the response of the model1. In

general, the mapping M(.) can be either defined using an analytical formula or a high-fidelity

computational model. As this model may intricate a chain of multi-physics resulting in

multiple sources of complexity, this computer model can be known only point-by-point. In

this sense, the mapping M can be referred to as a black−box model. It is known only through

pointwise evaluations for each input variable for which the computer program is run.

In the case where uncertainties are associated with the input parameters, the latter are mod-

eled as random variables. Consequently, the model’s output becomes a random variable (RV)

denoted Y , such as

M :
Dx ⊆ R

M → Dy ⊆ R
n

X 7→ Y
(5.2)

where X = (X1, ...,XM)T is a M-dimensional vector of RVs.

For a proper definition, we consider the probability space (Ω,A ,P) where Ω is the sample

space, A is a sigma-algebra (whose elements are called events) and P is a probability on

A . All the random quantities (random variables) considered in this thesis will be assumed as

continuous variables and are defined in this probability space.

A random variable X defined on (Ω,A ,P), with values in R, is an application of Ω in R,

measurable from (Ω,A ) into (R,BR), where BR is a basis in R. For each element ω ∈ Ω,

X(ω) ∈ R is called an ω-realization, or more simply a realization of X denoted x. In the

following, random variables will be denoted by capital letters, and deterministic variables (and

1The input parameters generally include geometric parameters of the studied structure and/or its physical

properties (electric/magnetic). It can also refer to parameters associated with the excitation source(s). In our

study, we consider that the output y is real (∈ R
n), but it may be complex (∈ C) for other configurations.
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in particular realizations of random variables) by lower-case letters.

The distribution of a random vector X can be described using two tools:

• its joint cumulative distribution function (CDF) FX : RM → [0,1] which assigns a proba-

bility to the event {X ≤ x}, such as FX(x) = FX1,...,XM(x1, ...,xM) = P{X ≤ x}= P{X1 ≤
x1, ...,XM ≤ xM},

• its joint probability density function (PDF) (assuming it exists, in the continuous case)

FX : RM →R+ defined such that fX(x) = fX1,...,XM(x1, ...,xM) = ∂ MFX (x)
∂x1...∂xM

. The PDF func-

tion verifies the following property
∫

R
fX(x)dx = 1.

The full probabilistic content of the response Y is contained in its probability density func-

tion. In practice, it is not directly computable except in simple academic cases. Consequently,

methods for uncertainty propagation have to be devised. These methods may be broadly clas-

sified into three categories, according to the specific information on the random response that

is sought:

1. second-moment methods deal with computing the mean value and variance of the model

response. They merely give some information on the central part of the response PDF,

2. structural reliability methods essentially investigate the tails of the response PDF by

computing the probability of exceeding a prescribed threshold (probability of failure),

3. spectral methods represent the complete randomness of the response in an intrinsic way

by using suitable tools of functional analysis. They allow the analyst to solve problems

by a straightforward post-processing of their basic output, namely expansion coefficients

on a suitable basis of functions.

5.1.1 Assessement of mean and standard deviation

In this thesis, we base our UQ on second-moment methods to evaluate the mean and vari-

ance of the response Y. The mean µX refers to the first moment and provides the average or

expected value of a random variable. It gives an idea of the "typical" value we might expect

to observe. By calculating the mean, we can identify the most likely outcome and use it as a

point of reference for decision-making. The standard deviation σX , on the other hand, defined

as the second moment, measures the degree of dispersion or spread of values around the mean.

A higher standard deviation indicates significant variability in outcomes, while a lower stan-

dard deviation suggests more consistency. The respective expressions of mean and standard
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deviation are given by

µX = E[M(X)] =
∫

Dx

M(x) fX(x)dx (5.3)

σ2
X =Var[M(X)] = E

[(
M(X)−µX

)2
]

=
∫

Dx

(
M(x)−µX

)2
fX(x)dx (5.4)

with σX =
√

Var[M(X)] is the standard deviation (std).

From the two first moments, we define the coefficient of variation (CV) as the ratio of the

standard deviation to the mean, expressed as a percentage2. It provides insight into the relative

variability of a dataset. Its expression is given by

δX =
σX

|µX |
, (5.5)

with µX ̸= 0.

The centered moment of order r of X , r ∈ R
∗, can be expressed by the quantity

µr
X = E

[(
M(X)−µX

)r
]

=
∫

Dx

(
M(x)−µX

)r
fX(x)dx (5.6)

While fully acknowledging the numerous existing stochastic methods, we focus within the

framework of this thesis on three methods: Monte Carlo, stochastic collocation and polynomial

chaos.

Monte Carlo method

The Monte Carlo method uses the law of large numbers to evaluate a deterministic quantity,

usually an integral representing the mathematical expectation of a certain random variable X

[132]. MC is regarded as the reference for its simple implementation and its robustness (its

convergence is independent of the dimension of the problem being addressed).

The first and second stochastic moments of the response Y of the model M reads as follows:

E[Y ] = E[M(X)] =
1
N

N

∑
i=1

M(x(i)) (5.7)

Var[Y ] =Var[M(X)] =
1
N

N

∑
i=1

(

M
(
x(i)
)
−E[M(X)]

)2
(5.8)

where (x(i))i=1...N is a N-realization sample of the random variable X .

2The CV can be useful to evaluate before conducting a sensitivity analysis, this step is not carried out in our

context.
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Stochastic collocation method

The stochastic collocation method is based on the projection of the model’s response onto

a basis of Lagrange polynomials of order n, such as

M (x)≈
n

∑
i=0

M(x(i))Li(x) (5.9)

with Li(x) = ∏
k=0, k ̸=i

x−xk
xi−xk

are Lagrange polynomials chosen due to their property Li(x j) = δi j

(δi j is the Kronecker symbol3).

The collocation points xi correspond to the points in the Gauss quadrature rule attached to the

probability distribution of random inputs (e.g., Legendre polynomials for a uniform distribution

and Hermite polynomials for a Gaussian distribution). The choice of an adapted quadrature rule

gives

∫ +∞

−∞
g(u)p(u)du ≈

n

∑
j=0

ω jg(x j) (5.10)

where p is the probability density of random variable X , and g a function with a sufficient

regularity. The collocation weights ω j are chosen in a way to ensure an exact quadrature rule

for polynomials with a degree lower or equal to 2n+1.

From the polynomial projection of the response Y , it becomes easy to approximate its statistical

moments considering Lagrange polynomials and the quadrature rules [133]. The expectation

(mean), is expressed as follows:

E[M (X)] =
∫

Dx

M (x) fX(x)dx

≈
∫

Dx

n

∑
i=0

M(x(i))Li(x) fX(x)dx

≈
n

∑
i=0

ωiM(x(i))

(5.11)

The same approach is used to evaluate the variance Var[M (X)], such as

3The kronecker symbol δi j equals 1 if i = j, and 0 otherwise.
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Var[M (X)] =
∫

Dx

M (x)2 fX(x)dx−E[M (X)]2

≈
∫

Dx

( n

∑
i=0

M(x(i))Li(x)
)( n

∑
j=0

M(x( j))L j(x)
)

fX(x)dx−E[M (X)]2

≈
n

∑
k=0

ωkM(x(k))2 −E[M (X)]2

(5.12)

In general, the number n referring to the collocation points, is low. The rapid convergence rate

of the SC technique is one of its main advantages. Numerical results of a practical application

will compare the convergence of the SC technique and the MC reference method in the

upcoming sections.

For the multivariate case of M input parameters, mean and variance are obtained by general-

izing the principle of the stochastic collocation method, by the projection of the multivariate

model M(x1, ...,xM) on the Lagrange polynomial basis. The multi-dimensional expansion of

the SC method is formed as a weighted tensor product (⊗) of the one-dimensional Lagrange

polynomial Li, such as

M (x) =
n1

∑
i1=1

...
nM

∑
iM=1

M
(
x1

i1 , ...,x
M
iM

)(
L1

i1 ⊗ ...⊗LM
iM

)
(5.13)

where Ls
is, s ∈ {1, ..,M}, previously defined in (5.1.1), is expressed by

Ls
i (x

s) = ∏
k=0, k ̸=i

xs − xs
k

xs
i − xs

k
(5.14)

We can demonstrate that the first two moments are respectively given by

E[M (X)]≈
n1

∑
p=0

...
ni

∑
q=0

...
nM

∑
k=0

ωp...ωq...ωkM(x(p)
1 , ...,x(q)i , ...,x(k)M ) (5.15)

Var[M (X)]≈
n1

∑
p=0

...
ni

∑
q=0

...
nM

∑
k=0

ωp...ωq...ωkM(x(p)
1 , ...,x(q)i , ...,x(k)M )2 (5.16)

−E[M (x(p)
1 , ...,x(q)i , ...,x(k)M )]2

Polynomial chaos method

The Polynomial chaos (PC) method, also called polynomial chaos expansion (PCE),

represents a random variable in terms of a polynomial function of random variables.
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PC methods can be classified as intrusive or non-intrusive [134]. An intrusive approach,

known as the stochastic Galerkin method (SGM), introduces the calculation of PC coefficients

directly into the numerical model [135]. This has the advantage of determining the coefficients

in a single run of the numerical model but may be very delicate to implement. In contrast, the

non-intrusive approach does not require the numerical model itself but considers it as a black

box [136]. In the following, we focus on the formulation of the PC basis and its coefficients

for the non-intrusive methods.

We consider the model in equation (5.2) of M uncertain parameters represented by independent

random variables {X1, ...XM}T . Assuming that its response Y = M(X) has finite variance, it

belongs to the so-called Hilbert space of second-order random variables, which allows for the

following representation

Y = M(X) = ∑
α∈NM

yαΨα(X) (5.17)

The random variable Y is therefore cast as an infinite series, in which {Ψα} is a numerable

set of random variables (which form a basis of the Hilbert space), and {yα} are coefficients,

also referred to as coordinates of Y in this basis. The polynomials Ψα satisfy the orthogonality

property defined by

< Ψi,Ψ j >=
∫

RM
Ψi(x)Ψ j(x) fX(x)dx = ∥Ψi∥2δi j (5.18)

where δi j is the Kronecker symbol and fX(x) =
M
∏
i=1

fXi(xi) is the density function joined to X.

The normalizing factor ∥Ψi∥2 is expressed by

∥Ψi∥2 =
∫

RM
Ψ2

i (x) fX(x)dx (5.19)

For standard distributions, the associated families of orthogonal polynomials are given by the

Askey scheme [137].

For each random variable Xi, we associate the family of orthonormal polynomials {π
(i)
k , k ∈N}

with regard to fXi(xi). While assuming that the degree of {π
(i)
k } is k for k > 0 and π

(i)
0 ≡ 1(1 ≤

i ≤ M), a multivariate polynomial basis {Ψα , α ∈ N
M} is built by tensorizing the M families

of unidimensional polynomials, such as

Ψα
def
=

M

∏
i=1

π
(i)
αi (xi) (5.20)
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where αi is the degree of the univariate polynomial π(αi) in the direction of xi for 1 ≤ i ≤ M.

The representation of the random response in equation (5.17) is exact when the infinite series

is considered. However, in practice, only a finite number of terms may be computed. For this

purpose, a truncation scheme has to be adopted. Since the polynomial chaos basis is made of

polynomials, it is natural to consider a polynomial truncated series up to a certain degree. We

define the total degree of a multivariate polynomial Ψα by

α
def
=

M

∑
i=1

αi (5.21)

The truncation method consists of selecting polynomials in the chaos basis of a degree less than

or equal to a maximum given degree p, such as

A
M,p = {α ∈ N

M : α ≤ p} (5.22)

The truncated series, with P terms, is thus expressed as follows:

Y = M(X)≡ ∑
|α|≤p

yαΨα(X) (5.23)

with P referring to the number of polynomials in the basis [86]. Its expression is given by

P = cardA
M,p =

(

M+ p

M

)

=
(M+ p)!

M!p!
(5.24)

The computation of the polynomial coefficients will depend on the nature of the PC method:

intrusive or non-intrusive [86]. We focus on the projection method for the evaluation of the

coefficients for the non-intrusive approach.

The projection method relies on the orthonormality of the PC basis [138]. Each coefficient yα

is the orthogonal projection of the random response Y onto the corresponding basis function

Ψα(X), such as

yα = E[M(X),Ψα(X)] =
∫

Dx

M(x)Ψα(X) fX(x)dx (5.25)

In practice, the expression below is estimated using numerical integration techniques (quadra-

ture rules), which aim at approximating the multidimensional integral by a weighted sum as

follows:
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yα ≈
N

∑
i=1

ω(i)M(x(i))Ψα(x
(i)) (5.26)

where x(i) =
{

x(i)1 , ...,x(i)M

}

and ω(i) =
{

ω
(i)
1 , ...,ω

(i)
M

}

are the quadratures points and the

corresponding weights.

The projection of the response of a model Y = M on an orthonormal polynomial basis allows

the computation of the statistics of the model response from the coefficients polynomial co-

efficients. The first moments, i.e. the expectation and the variance, are calculated from the

approximation of the system response and the orthogonality property of the polynomials of the

chaos basis. The expectation and variance of the output Y are given by

E[Y ] = ŷ0 (5.27)

var[Y ] =
P−1

∑
α=1

ŷ2
i (5.28)

For the multivariable case, the polynomial basis is constructed so as to keep only the polyno-

mials of degree less than or equal to the order q chosen, using the corresponding polynomials

to each RV chosen according to the distribution law.

5.1.2 Global sensitivity analysis: Sobol’ indices

Let’s consider the output Y of the deterministic model M of a M-dimensionnal set of

random inputs X = (X1, ...,XM)T . This function can be decomposed in the following form

[111, 139]

Y = ∑
u⊆U

Mu(Xu) = M0 +
M

∑
i=1

Mi(Xi)+ ∑
1≤i< j≤M

Mi j(Xi,X j)+ ...+M12...M(X) (5.29)

where U = {1,2, ...,M}. The summation of the constant M0, the univariate functions

{Mi(xi),1 ≤ i ≤ M}, bivariate functions {Mi j(xi,x j),1 ≤ i ≤ j ≤ M}, etc. is called ANOVA

(ANalysis Of VAriance) decomposition, if

∫

Mu(xu)dxu = E[Mu] = 0 (5.30)

is fulfilled for all u ⊆U \ /0. In this case, the functions M0 to M1..M can be written as conditional

expectations as follows:
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M0 = E[M(X)]

Mi(xi) = E[M(X)|Xi = xi]−M0

Mi j(xi,x j) = E[M(X)|Xi,X j = xi,x j]−Mi(xi)−M j(x j)−M0

...

M1...M(x1, ...,xM) = E[M(X1, ...,XM)|X1, ...,XM = x1, ...,xm]− ∑
w⊂U

Mw

(5.31)

The conditional expectation E[M(X)|Xi] is the average of Y where only the values of the

i-th input quantity Xi considered are conditioned (fixed). Similarly for the expectation

E[M(X)|Xi,X j] where only the values of the input quantities Xi and X j considered are

conditioned. They translate their contributions to the variance of the output not considered in

the first-order indices Si and S j.

It may be shown that the summands, except M0, are mutually orthogonal in order to have the

uniqueness of this decomposition and consequently to ensure the decomposition of the total

variance into a sum of partial variances [106, 140]

V
def
= Var[Y ] =

M

∑
i=1

Vi + ∑
1≤i< j≤M

Vi j + ...+V12...M (5.32)

By dividing all the terms in eq. (5.32) by the variance V of the model’s output, the following

expression is obtained

1 =
M

∑
i=1

Vi

V (Y )
+ ∑

1≤i< j≤M

Vi j

V (Y )
+ ...+

V12...M

V (Y )
(5.33)

Therefore, Sobol relies on this decomposition to define all first and higher-order sensitivity

indices of all input quantities Xi, such as

1 =
M

∑
i=1

Si + ∑
1≤i< j≤M

Si j + ...+S12...M (5.34)

This formulation allows retrieving the Sobol’ index of order 1 measuring the main effect for a

given input quantity Xi as follows:

Si =
Vi

V
(5.35)

The second-order sensitivity index of the random variables Xi and X j represents the interaction

between the two variables. The Sobol’ index is given by
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Si j =
Vi j

V
(5.36)

The Sobol’ indices are then defined as the ratio of the partial variances to the total variance so

that the sum of these indices is equal to one.

For M input random variables, the total number of indices is equal to 2M −1. In general, we are

only interested in the indices of order 1, 2 and the total indices noted STi. The latter are defined

as the sum of all the Sobol’ indices containing the index i and expressed by

STi = 1−S∼i (5.37)

where S∼i is the sum of all the Sobol’ indices that do not include the index i.

The Monte Carlo method was one of the first techniques used to compute Sobol’ indices

[109]. However, their computation requires the evaluation of the model for a new set of RVs,

introducing additional computational costs. Alternatively, accelerating methods, as introduced

earlier, overcome not only the expensive computational cost of stochastic moments but also the

Sobol’ indices computation. In the literature, the most commonly used approach to evaluate

these indices is the PC technique. They are deduced directly from the polynomial expansion

coefficients, thanks to their decomposition into sums of orthogonal functions [141].

For any subset variables u = {i1, ..., is} ⊂ {1, ...,M}, one defines the set of multivariate poly-

nomials Ψα which depends only on u, such as

Au = {α ∈ A : αk ̸= 0 if and only if k ∈ u} (5.38)

where Au forms a partition of A .

Note that Ai corresponds to the polynomials depending only on parameter xi. Using this no-

tation, the terms in equation (5.23) may be gathered according to the parameters they depend

on

M(X) = M0 + ∑
u⊂{1,...,m}

Mu(Xu) (5.39)

where

Mu(Xu) = ∑
α∈Au

yαΨα(X) (5.40)
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Consequently, due to the orthonormality of the PC basis, the partial variance reads

Var[Mu(Xu)] = ∑
α∈Au

y2
α (5.41)

The Sobol’ indices at any order may thus be computed by a mere combination of the squares

of the coefficients. The first-order PC-based Sobol’ indices are defined as follows:

Si =

∑
α∈Ai

y2
α

∑
α∈A , α ̸=0

y2
α

; Ai = {α ∈ A : αi > 0 ,α j ̸=i = 0} (5.42)

whereas the total PC-based Sobol’ indices are given by

ST
i =

∑
α∈A T

i

y2
α

∑
α∈A , α ̸=0

y2
α

; A
T

i = {α ∈ A : αi > 0} (5.43)

In this thesis, we propose to evaluate Sobol’ indices using the stochastic collocation method.

This choice is justified by its simple mathematical foundation, non-intrusive nature and rapid

convergence rate. This work has been developed over the last few years within the EMC team

at the Institute Pascal [142]. In the literature, a few researchers elaborated the global sensitivity

analysis on the SC based on Gary’s initial work in [143]. However, as these applications were

mainly dedicated to structural dynamics applications, our contribution to the EMC field is

further emphasized.

The computation of Sobol’ indices using the SC method is driven by its evaluation of the model

for all the possible combinations of RVs. The conditional variance for a given input is obtained

by adapting the formulation and combining the already evaluated model for the corresponding

input. Based on equation (5.31), the conditional variance Vu of the subset variables u is given

by

Vu =Var[Mu(Xu)] = E[M 2
u (Xu)]

= E

[(

E
[
Mu(Xu)

]
− ∑

w⊂u
Mw

)2]

= E

[(

E
[
Mu(Xu)

])2]

−E

[

∑
w⊂u

M
2
w

]

= E

[

E
[
Mu(Xu)

]]2
− ∑

w⊂u
Vw

(5.44)
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We begin by evaluating the conditional expectation E
[
Mu(Xu)

]
, expressed in its integral form

by

E
[
Mu(Xu)

]
=
∫

Mu(Xu)dXu′ (5.45)

where u′ is the complement set of u.

By replacing the multi-dimensional expansion of the model M in the Lagrange polynomial

basis given by equation (5.13), in the previous equation, we obtain the following expression

∫

M (Xu)dxu′ =
∫ n1

∑
i1=1

...
nM

∑
iM=1

M
(
x1

i1 , ...,x
M
iM

)(
L1

i1 ⊗ ...⊗LM
iM

)
dxu′ (5.46)

We re-arrange the equation (5.46) by separating the Lagrange polynomials that depend on xu

(i.e. Lu) and those depending on xu′ (i.e. Lu′). Subsequently, the integration over xu′ is con-

ducted, whereby
∫
(

Lu′ ⊗Lu
)

dxu′ = ωu′ ⊗ lu.

∫

M (Xu)dxu′ =
n1

∑
i1=1

...
nM

∑
iM=1

M
(
x1

i1 , ...,x
M
iM

)
∫ (

Lu′ ⊗Lu
)

dxu′

≈
n1

∑
i1=1

...
nM

∑
iM=1

M
(
x1

i1 ...x
M
iM

)(

ωu′ ⊗Lu
)

(5.47)

Similarly, the sums in equation (5.47) can also be split up into terms that are connected to u

and those to u′ as follows:

∫

M (Xu)dxu′ ≈
n1

∑
i1=1

...
nk

∑
ik=1

( nk+1

∑
ik+1=1

...
nM

∑
iM=1

M
(
x1

i1 ...x
M
iM

)(
ωu′)

︸ ︷︷ ︸

M(u′)(x
1
i1
...xk

ik
)

)

Lu (5.48)

Since the model M(.) is evaluated at all the collocation points and given that the weights ωu′

are computed according to the quadrature rule, the quantity M(u′) is known and can be easily

computed. Therefore, for the same cost of evaluation of the mean and variance, the Sobol’

indices are computed based on different combinations of the already evaluated model at the

collocation points.

The expression E

[

E
[
Mu(Xu)

]2
]

in equation (5.44) can thus be expressed as follows:

E

[

E
[
Mu(Xu)

]2
]

=
n1

∑
i1=1

...
nk

∑
ik=1

M(u′)(x
1
i1 ...x

k
ik)

2ωu (5.49)
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The partial variance Vu in equation (5.44) is thus obtained by replacing the integral term with

the equation (5.49), as follows:

Vu =
n1

∑
i1=1

...
nk

∑
ik=1

M(u′)(x
1
i1 ...x

k
ik)

2ωu − ∑
w⊂u

Vw (5.50)

The main and total Sobol’ sensitivity indices are consequently retrieved according to their def-

inition

Su =
Vu

V
(5.51)

ST,u = ∑
u⊆v⊆U

Vv

V
(5.52)

Application for 3 RVs

For illustration purposes, we consider the model M (x1,x2,x3) of m = 3 RVs. The latter

is evaluated for each RV of the set u ⊆ {1,2,3}, following their associated collocation points

nu. Consequently, the model M is evaluated for all the possible combinations of the RVs. The

partial variance Vu defined in equation (5.50), is updated for m = 3 RVs, through a specific

re-arrangement of the evaluations of the M (x1,x2,x3), such as

• for the RV X1: {u}= {1} and {u′}= {2,3}, the partial variance V1 reads

V1 =
n1

∑
i1=1

M(2,3)(x
1
i1)

2ω1 − ∑
w⊂u

Vw (5.53)

where M(2,3) =
n2

∑
i2=1

n3

∑
i3=1

M(x1
i1
,x2

i2
,x3

i2
)ω2ω3.

• for the RV X2: {u}= {2} and {u′}= {1,3}, the partial variance V2 reads

V2 =
n2

∑
i2=1

M(1,3)(x
2
i2)

2ω2 − ∑
w⊂u

Vw (5.54)

where M(1,3) =
n1

∑
i1=1

n3

∑
i3=1

M(x1
i1
,x2

i2
,x3

i2
)ω1ω3.

• for the RV X3: {u}= {3} and {u′}= {1,2}, the partial variance V2 reads

V3 =
n3

∑
i3=1

M(1,2)(x
3
i3)

2ω3 − ∑
w⊂u

Vw (5.55)

where M(1,2) =
n1

∑
i1=1

n2

∑
i2=1

M(x1
i1
,x2

i2
,x3

i2
)ω1ω2.
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Sobol’ indices of first-order S1, S2 and S3, are thus deduced by dividing the associated partial

variance Vi, i ∈ {1,2,3} by the total variance, following their definition in equation (5.51).

The Sobol’ indices are known to be good descriptors of the sensitivity of the model response

to its input parameters. In contrast to Morris indices (qualitative analysis) [117], allowing

hierarchization of the input parameters according to their impact on the output, Sobol’ indices

quantify not only the impact of each RV on the output but all the interactions between the M

input quantities.

5.2 Domain Decomposition method for stochastic analysis

The deterministic DD method, as presented in section (2.1.1), is based on the evaluation

of the impulse responses of the sub-systems. The solution of the global system is built

afterward through a linear combination of these partial solutions, evaluated only once and

referred to as deterministic. For the stochastic case, the variations around the nominal values

of the RVs in a sub-system require a re-evaluation of the impulse responses characterizing it.

Without loss of generality, we base our stochastic analysis on the SC method. While retaining

the core of the DD method, its formulation will be adapted for the stochastic scenario in the

following section.

Based on the theoretical foundations of the stochastic collocation method outlined in sec-

tion (5.1.1), and the DD’s general principle presented in section (2.1.1), the evaluation of the

global stochastic solution V k
j of the linear system G, defined in section (2.1.1), consists mainly

on projecting the general DD’s formula (2.5) on Lagrange polynomial basis of a given order.

Let’s consider the model M of M input variables (x1, ...,xM), whose polynomial approximation

on the Lagrange polynomial basis of orders (n1, ...,nM), is given by equation (5.13). We sup-

pose that the model M (x1, ..,xM) for a given system is represented by the voltage V k
j (x1, ..,xM)

of the sub-system k as follows:

V k
j (x1, ...,xM) = ∑

{i}
hk

i j

(
x1, ...,xM

)
∗V k

si

(
x1, ...,xM

)
+∑

{l}
hk

l j

(
x1, ...,xM

)
∗V k

∼l

(
x1, ...,xM

)
(5.56)

We recall that the first term of the right-hand member of equation (5.56) reflects the contri-

butions of the real sources V k
si, while its second term gives the contributions of the equivalent

sources V k
∼l at the interface(s) level to the output V k

j , through the corresponding impulse re-

sponses hk
i j and hk

∼l . Both these responses depend on the input set (x1, ...,xM) and need to be
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re-evaluated if one or more inputs vary. Similarly, the equivalent sources V k
∼l also depend on

the M input variables. They translate the contributions of the dispersed sources in the neigh-

boring sub-systems and implicitly feature other impulse responses evaluated for the set of M

input parameters. The detailed description of the equation as well as the sub-indices {i} and

{l} are given in section (2.1.1). To lighten the upcoming equations, we introduce the following

notation

Ck
Rs

(
x1, ...,xM

)
= ∑

{i}
hk

i j

(
x1, ...,xM

)
∗V k

si

(
x1, ...,xM

)
(5.57)

Ck
∼s

(
x1, ...,xM

)
= ∑

{l}
hk

l j

(
x1, ...,xM

)
∗V k

∼l

(
x1, ...,xM

)
(5.58)

where Ck
Rs

(
x1, ...,xM

)
, respectively Ck

∼s

(
x1, ...,xM

)
, refers to the contribution of the real

sources, respectively the equivalent sources.

The stochastic DD method’s formulation is thus retrieved by projecting its deterministic for-

mula (5.56) on the Lagrange polynomial basis, following the equation (5.13), such as

V k
j (x1, ...,xM)≈

n1

∑
t1=0

...
nM

∑
tM=0

V k
j

(
x1

(t1), ...,xM
(tM)
)(

L1
t1 ⊗ ...⊗LM

tM

)

≈
n1

∑
t1=0

...
nM

∑
tM=0

[

Ck
Rs

(
x1

(t1), ...,xM
(tM)
)
+Ck

∼s

(
x1

(t1), ...,xM
(tM)
)](

L1
t1 ⊗ ...⊗LM

tM

)

(5.59)

5.2.1 Uncertainty quantification based on stochastic DD method

Due to the Lagrange polynomials property (Kronecker symbol) and based on quadrature

rules, the mean and variance of the M-dimensionnal output V k
j are respectively deducted from

equations (5.11) and (5.12). The expectation of the output V k
j reads

E

[

V k
j (X1, ...,XM)

]

≈
n1

∑
t1=0

...
nM

∑
tM=0

ωt1 ...ωtMV k
j

(
x(t1)1 , ...,x(tM)

M

)

≈
n1

∑
t1=0

...
nM

∑
tM=0

ωt1 ...ωtM

[

Ck
Rs

(
x1

(t1), ...,xM
(tM)
)
+Ck

∼s

(
x1

(t1), ...,xM
(tM)
)]

≈
n1

∑
t1=0

...
nM

∑
tM=0

[

Ck′
Rs

(
x1

(t1), ...,xM
(tM)
)
+Ck′

∼s

(
x1

(t1), ...,xM
(tM)
)]

(5.60)
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where

Ck′
Rs

(
x1

(t1), ...,xM
(tM)
)
= ωt1 ...ωtMCk

Rs

(
x1

(t1), ...,xM
(tM)
)

(5.61)

Ck′
∼s

(
x1

(t1), ...,xM
(tM)
)
= ωt1 ...ωtMCk

∼s

(
x1

(t1), ...,xM
(tM)
)

(5.62)

Similarly, the variance is expressed as follows:

Var
[

V k
j (X1, ...,XM)

]

=
n1

∑
t1=0

...
nM

∑
tM=0

ωt1 ...ωtMV k
j

(
x(t1)1 , ...,x(tM)

M

)2 −E

[

V k
j (X1, ...,XM)

]2

=
n1

∑
t1=0

...
nM

∑
tM=0

[

Ck”
Rs

(
x1

(t1), ...,xM
(tM)
)2

+Ck”
∼s

(
x1

(t1), ...,xM
(tM)
)2
]

−E

[

V k
j (X1, ...,XM)

]2

(5.63)

where

Ck”
Rs

(
x1

(t1), ...,xM
(tM)
)2 ≈ ωt1 ...ωtMCk

Rs

(
x1

(t1), ...,xM
(tM)
)2

(5.64)

Ck”
∼s

(
x1

(t1), ...,xM
(tM)
)2 ≈ ωt1 ...ωtMCk

∼s

(
x1

(t1), ...,xM
(tM)
)2

(5.65)

5.2.2 Sensitivity analysis based on stochastic DD method

The Sobol’ indices, as presented in section (5.1.2), are written in terms of partial variances.

Their evaluation using the SC-DD association consists of deducing the partial variance of the

stochastic output V k
j .

By identification to the equation (5.50), the partial variance related to the RV Xu evaluated using

the DD method is written as follows:

Vu =
n1

∑
i1=1

...
nk

∑
ik=1

(V k
j )u′

(x1
i1 ...x

k
ik)

2ωu − ∑
w⊂u

Vw (5.66)

The new output (V k
j )u′

refers to the model evaluated for the complementary set u′. Its expression

depends on the new terms (Ck
Rs)u′ and (Ck

∼s)u′ translating respectively the contribution of real

and equivalent sources in the sub-system k for the complementary set u′. Their respective

expressions are given by

(Ck
Rs)u′

(
x1, ...,xk

)
= ∑

{i}
(hk

i j)u′
(
x1, ...,xk

)
∗ (V k

si)u′
(
x1, ...,xk

)
(5.67)

(Ck
∼s)u′

(
x1, ...,xk

)
= ∑

{l}
(hk

l j)u′
(
x1, ...,xk

)
∗ (V k

∼l)u′
(
x1, ...,xk

)
(5.68)
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The partial variance Vu can be deducted from the square values of the weighted terms

(Ck
Rs)u′ and (Ck

∼s)u′ , and the Sobol’ indices can thus be retrieved following their definition in

section (5.1.2).

In synthesis, the Stochastic Collocation Domain Decomposition (SC-DD) association assesses

the stochastic response (mean and variance) as well as Sobol’ indices of the global system

based on deterministic partial solutions. In other words, this offline-online strategy evaluates

the model V k
j , through the deterministic terms Ck

Rs and Ck
∼s, n′ number of times4 in the offline

level first. Then, the stochastic response is yielded through the online phase that combines

the interactions between the RV(s) of each sub-system. Depending on the studied system and

the decomposition, a given sub-system can feature one or several input variables. It is also

possible that a sub-system doesn’t feature any of the M inputs or features them all, for which

the equation (5.59) can be further simplified. With the intrinsic advantages of each method, SC

and DD, their association allows easy formulation for both UQ and SA.

5.3 Stochastic DD method for uncertainty quantification and

sensitivity analysis

With the theoretical foundations of the new stochastic DD method in place, different nu-

merical applications will be presented in this section. For different configurations, the aim is to

validate the SC-DD association while demonstrating its main advantages.

5.3.1 Propagation of uncertainties within sub-systems

We begin by demonstrating the DD method’s ability to propagate uncertainties within

the systems, through two applications of transmission line networks featuring uncertainty in

their input parameters. The uncertainty quantification will be assessed based on the theoretical

expressions of mean and variance of the stochastic outcome V k
j , established earlier.

5.3.1.1 First case study: field-to-wire coupling

Resolution of the global system

In EMC real-world problems, field-to-wire coupling is a significant concern as it can result

4This number depends on the number of RVs in the sub-system and the collocation points. For instance, for

the same number of collocation points, n = 3 for instance, n′ equals 3, respectively, 9 for 1, respectively, 2 RVs.
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in electromagnetic interference (EMI), and may potentially disrupt the proper functioning of

electronic devices and/or systems. With uncertainties arising in these systems, it is crucial to

examine whether the variations in the input parameters cause defective functioning. Within

this framework, we study the transmission line network in Figure (5.1), where a part of the

shielded transmission lines go inside a closed electromagnetic cavity (see Figure (5.2a)). Due

to imperfect shielding connection or aging of the electrical wires, the shielding efficiency is

deficient at the localized point P of the line L3. Consequently, a field-to-wire coupling occurs at

this point, and the network is prone to interferences caused by the coupling of the electric field

measured in the cavity. The electric field, measured at the receptor point R in Figure (5.2a), is

Figure 5.1: Schematic of the global transmission line network with the coupling electric field

at the point P.

the response of the cavity to a Gaussian excitation at the emitter E, defined by equation (2.38)

for A = 100V , σ = 1.26ns and tc = 12ns. Its tangential component, evaluated in the time

domain (see the curve in blue in Figure (5.2b)), falls back to 0 due to losses introduced in the

electromagnetic cavity according to the approach described in the thesis by Raphaël Vernet

[144]. The modeling of both the electromagnetic cavity and the transmission line network is

carried out using the FDTD numerical method.

The coupling of this field to the line L3 at the point P creates an induced voltage source denoted

VP,3. At the level of the load resistance RL3, its propagation in the network is recorded with

different magnitudes due to the mismatch at the junction (see Figure (5.3a)). The frequency

spectrum of the voltage V3 is, on the other hand, the image of the coupled field spectrum with

different magnitude levels (see Figure (5.3b)).

We suppose that uncertainties are associated with both the characteristic impedance Zc4 of the

line L4, and the load resistance RL5 of the line L5, they are thus modeled as RVs, following a

uniform distribution law on [−1,1]. Their respective intensities α is equal 5% and 15%. The

electric coupled field Ep at the punctual point P of the line L3 is considered an RV as well
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(a) (b)

Figure 5.2: Schematic 3D representation of the electromagnetic cavity (a), tangential electric

field measured at the receptor point R in both time and frequency domains (b).

(a) (b)

Figure 5.3: Voltage V3 across the load resistance RL3 evaluated in both time (a) and frequency

(a) domains.

due to uncertainties introduced in the shielded electromagnetic cavity related to the excitation

source at the emitter point E. We suppose that the width of mid-height σ of the Gaussian pulse

is uncertain with an intensity of α = 25% following a uniform law on [−1,1]. The induced

voltage source VP,3 at the coupling point P is consequently considered a random variable too.
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To simplify notation in the following, the RVs VP,3, Zc4 and RL5 will be referred to as R1, R2

and R3 in the same order. Each of these input parameters Ri∈{1,2,3} can be defined as follows:

Ri = R0
i (1+αX) (5.69)

where R0
i and α stand respectively for the initial value and the intensity of the RV, and X follows

a certain distribution law.

First, we evaluate the voltage V3 for three cases:

• case 1: refers to the nominal configuration for which each RV equals its initial value R0
i ,

• case 2: refers to the values obtained by considering the lower bound of the interval, such

as Ri = R0
i (1−α),

• case 3: refers to the values obtained by considering the upper bound of the interval, such

as Ri = R0
i (1+α).

From the results in Figure (5.4a), small variations around the initial (nominal) values of the

RVs yield different outputs of the voltage V3. We observe differences in signal magnitudes

with the appearance of new reflections depending on the reflection coefficients at the junction

and the load end of line L5, due respectively to the effect of the characteristic impedance Zc4,

and the load resistance RL5. The effect of the variation of the induced voltage source VP,3 on

the other hand, is better observed in the frequency domain. From the results in Figure (5.4b),

the magnitude levels are different for the three cases. The variation of the electric field, and

subsequently the voltage VP,3, has a strong influence on the output V3. These results demonstrate

the impact of variations of the inputs on the voltage V3 and highlight the interest in conducting

a stochastic analysis to account for the uncertainties in the input parameters.

Based on the equations (5.15) and (5.16), mean and variance values of the QoI, i.e. the voltage

V3, are evaluated to gain insight into its expected value and dispersion.

To begin with, we represent in Figure (5.5) the voltage V3 obtained for the 10 000 realizations

of the considered RVs, i.e. VP,3, Zc4 and RL5.

The multiple outputs, evaluated for N draws, form a distribution that showcases the full range

of variation of the QoI. By overlaying the mean value of these N evaluations within the distri-

bution, a first overview of the central tendency of the output is observed.

To better quantify the dispersion of the values around their mean, we evaluate the standard

deviation, as reported in Figure (5.6).

From the obtained results, the standard deviation varies over the considered time interval. The

dispersion of values around their mean is better observed in the frequency domain in Fig-

ure (5.6b). The small variation of the standard deviation suggests that the values are relatively

156



Chapter 5 – DD Method for Stochastic EMC Applications

(a)

(b)

Figure 5.4: Voltage V3 across the load resistance RL3 for the three cases of parametric study

evaluated in both time (a) and frequency (b) domains.

consistent and don’t deviate significantly from the average value, whereas at some frequencies

its higher values indicate an important variability of the output.

Although the MC method provides accurate results, it is computationally expensive and time-

consuming as it requires a high number of realizations. Note that as part of this study, the

simulations carried out with the software CST Cable® were automated by driving the software

via Matlab®. The tool enables to carry the simulation of each RV and export the corresponding

result. This automation eases the use of the MC method, however, powerful machines are

still required, along with considerable computer storage capacity. Alternatively, the stochastic
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Figure 5.5: Random draws of the output using the MC method (in grey), mean value of the

output (in red), for N = 10 000.

analysis will be held using the SC method. First, both mean and standard deviation values

are evaluated for 5, 7 and 9 collocation points. In Figure (5.7), the output approaches a stable

pattern as the number of points increases. The convergence will be assumed reached with 7

collocation points, as the corresponding result is very close to the one obtained with 9 points.

To ensure that the obtained results with the SC are reliable, we compare the moving average5

at the instant t = 0.14µs using the MC for 10 000 random draws, and the SC method for 5, 7

and 9 points.

Based on Figure (5.8a), the blue curve shows important fluctuation, suggesting significant vari-

ation in the underlying data. As the number of draws increases, the moving average seems

to converge towards a more stable result. This convergence was reached with a very large

number of draws, compared to the SC method for which 7 points allowed leaning towards the

convergence. These first results emphasize the main advantage of the SC technique: its high

convergence rate. However, the method lacks a criterion for convergence and is assumed to

be reached with 7 points because of the closeness of the obtained results with 9 points. This

issue is addressed by evaluating the Leave-One-Out (LOO) error [145]. The LOO is based on

the evaluation of the model when one data is "left out" from the dataset. The model is then

performed using the remaining data points, and the outcome is assessed based on how well

5The moving average is used to analyze most frequently time series by creating a series of averages of different

selections of the full data set.
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(a)

(b)

Figure 5.6: Mean and standard deviation values of the voltage V3 using the MC method in both

time (a) and frequency (b) domains.

the model predicts the left-out data point. If the LOO is close to 1, the metamodel is highly

modified. It is expressed on the basis of the mean-square error between the original model M

and the surrogate model M̂ (evaluated with the new dataset) as follows:

LOO =
1
n

n

∑
i

(
M̂/i(Xi)−Mi

Mi

)

(5.70)

In our case, the surrogate model corresponds to the Lagrange polynomials approximation of

the output V3. The LOO decreases with the increasing of the number of collocation points used

to build the model as reported in Figure (5.8b). The close values obtained for 7 (1.4464e−8),

respectively 9 collocation points (7.9316e−9), confirm that the convergence is reached with 7
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Figure 5.7: Mean and standard deviation values of the voltage V3 of the global network evalu-

ated for 7 and 9 collocation points using the SC technique.

(a) (b)

Figure 5.8: Analysis of the SC method’s convergence according to the collocation points: mov-

ing average of the voltage V3 evaluated for a specific instant using the MC and SC methods (a),

LOO error evaluated for 3, 5, 7 and 9 collocation points (b).

points.

These results offer valuable insights into the variability of the output, i.e. the voltage V3, caused

by the uncertainties related to the inputs (RVs). Due to the randomness of the electric field, the

network is prone to interferences that may exceed threshold values defined either for standard

norms or system validation. In real-world situations, two different operators can study this

system. The first considers the transmission line network alone, while the second is interested
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in the electromagnetic cavity and its coupling with a segment of a line of the network. From

this standpoint, the DD method fits perfectly as it allows each operator to model its sub-system

independently. Our focus is therefore placed now towards the evaluation of the stochastic

response V 1
3 using the DD technique.

Resolution for the split system using the DD technique

We supposed that the global problem in Figure (5.1) is split at the middle of the line L2 into

two sub-networks as represented in Figure (5.9a).

(a)

(b)

Figure 5.9: Decomposition of the global network into two sub-networks at the middle of the

line L2 (a), Schematic representation of the impulse responses of each sub-network (b).

The voltage V 1
3 is located in the sub-network 1, consequently, the deterministic DD method is

applied based on equation (2.5) for k = 1 as follows:

V 1
3 = h1

P3 ∗V 1
P,3 +h1

23 ∗V 1
∼2

= h1
P3 ∗V 1

P,3 +h1
23 ∗
(
h2

22 ∗ (h1
P2 ∗V 1

P,3)
) (5.71)
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The first term (h1
P3 ∗V 1

P,3) gives the direct propagation of the induced voltage source VP,3 to

the output. The term
(
h2

22 ∗ (h1
P2 ∗V 1

P,3)
)

on the other hand, translates the contribution of the

sub-network 2 to the incoming voltage (h1
P2 ∗V 1

P,3) from the sub-network 1 to the interface

level. Its product with the impulse response h1
23 gives the contribution of the equivalent source

at the interface to the output.

Now that we have estimated the voltage V 1
3 using the DD method, we move on to the imple-

mentation of the stochastic DD technique for the stochastic analysis. In our case, the random

response V 1
3 depends on three random variables, consequently, the two first moments are de-

ducted from the general equations (5.60) and (5.63) for M = 3. As they both depend on the

terms C1′
Rs and C1′

∼s, we start by adapting their expression based on the voltage V 1
3 .

Following the decomposition, the RV R1 is located in the sub-network 1, while both RVs R2

and R3 are located in the sub-network 2. The terms C1
Rs and C1

∼s can be simplified further by

considering only the variables on which they depend. More specifically, the term CRs translates

the contribution of the source VP,3 to the output. As this latter is considered an RV (as an image

of the electric field), the term C1
Rs depends only on the RV R1. The term C1

∼s on the other hand,

gives the contribution of both sub-networks to the interface, it thus depends on the three RVs.

By identification of each of these contributions in equations (5.67) and (5.68), we obtain the

explicit expressions of both terms C1
Rs and C1

∼s.

C1
Rs(r1) = h1

P3 ∗V 1
P,3(r1) (5.72)

C1
∼s(r1,r2,r3) = h1

23 ∗
(

h2
22(r2,r3)∗

(
h1

P2 ∗V 1
P,3(r1)

))

(5.73)

Consequently, the terms C1′
Rs and C1′

∼s are deducted from the weighted products:

C1′
Rs

(
r1

(t1)
)
= ωt1C

1
Rs

(
r1

(t1)
)

(5.74)

C1′
∼s

(
r1

(t1),r2
(t2),r3

(t3)
)
= ωt1ωt2ωt3C

1
∼s

(
r1

(t1),r2
(t2),r3

(t3)
)

(5.75)

To simplify the analysis, we assume the same order n of Lagrange polynomials for the projec-

tion of the voltage V 1
3 . We start first by evaluating the expectation (mean) of the voltage V 1

3 , its

expression is given by

E

[

V 1
3 (R1,R2,R3)

]

=
n

∑
t1=0

ωt1

(

h1
P3 ∗V 1

P,3

(
r1

(t1)
))

+
n

∑
t1=0

n

∑
t2=0

n

∑
t3=0

ωt1ωt2ωt3 ∗
(

h1
23 ∗
(

h2
22(r2

(t2),r3
(t3))∗

(
h1

P2 ∗V 1
P,3(r1

(t1))
))
)

(5.76)
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Similarly, the variance is expressed as follows:

Var
[

V 1
3 (R1,R2,R3)

]

=
n

∑
t1=0

ωt1

(

h1
P3 ∗V 1

P,3

(
r1

(t1)
))2

+
n

∑
t1=0

n

∑
t2=0

n

∑
t3=0

ωt1ωt2ωt3 ∗
(

h1
23 ∗
(

h2
22(r2

(t2),r3
(t3))∗

(
h1

P2 ∗V 1
P,3(r1

(t1))
))
)2

−E

[

V 1
3 (r1,r2,r3)

]2

(5.77)

For both mean and variance, the impulse responses h1
.. in sub-network 1 are only evaluated

once since no parameter of the sub-network itself is modified. Its stochastic response however

is given through the n evaluations of the source VP3 associated with the RV R1. Whereas, the

impulse response h2
22 of the sub-network 2 is evaluated n2 times as the latter features two RVs

R2 and R3. This aspect represents a major advantage for the computational cost that will be

discussed later in this chapter.

We first start by computing the equation (5.76) to evaluate the mean of the voltage V 1
3 , and

obtain the results reported in Figure (5.10).

Figure 5.10: Comparision of the mean value of the voltage V3 for both the global (reference)

and split (DD method) networks.

The mean value evaluated with the stochastic DD method seems to approach the expected result

in the first instants. Whereas from time t = 0.82µs onwards, the obtained result doesn’t follow

the reference anymore. In fact, these differences are due to the "incomplete" formulation of
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the voltage V 1
3 , since the orders retrieving the multiple reflection of the induced voltage source

VP,3 are not considered. As we have demonstrated earlier in section (2.1.1), the retro-actions of

each sub-network to the other are yielded through an additional term evaluated to a given order

q. In this case, the differences are not very significant, especially since the reflections are rather

negligible due to signal attenuation. However, in general, this aspect is particularly crucial in

stochastic analysis since the assessment of mean and variance is based on weighted sums of

the outcome V k
j . Depending on the studied configuration, if the latter is not evaluated properly

(missing reflections), the information contained in the two stochastic moments is therefore not

exploratory.

Given that a similar decomposition configuration was previously studied, we refer the reader to

section (3.2) for further details on the formulation. We give the new formulation of the voltage

V 1
3 for which the multiple round trips of the induced voltage VP,3 up to the order q are retrieved:

V 1
3 = h1

P3 ∗V 1
P,3 +h1

23 ∗V 1
∼2,1 +

q

∑
i=2

h1
23 ∗
(
h2

22 ∗ (h2
11 ∗V 1

∼2,i)
)

(5.78)

where V 1
∼2,i is defined as the i-th order of the equivalent source at the interface level and is given

by

V 1
∼2,i = h2

22 ∗ (h1
22 ∗V 1

∼2,i−1) (5.79)

The voltage V 1
∼2 is denoted V 1

∼2,1 in the equation (5.78) as reference to the first order.

By evaluating the equation (5.78) to the order q = 4, the mean and variance of the voltage V 1
3

superimposes perfectly the reference given by the global network’s simulation, as reported in

Figure (5.11).

As a synthesis, the DD method proves its efficiency in propagating the uncertainty between the

two sub-networks when higher orders are considered in the formulation, whether the uncertain-

ties are linked to the excitation source itself or to network parameters. The implementation of

the DD method is more interesting when both operators are different and do not depend on each

other in time or space. Introducing uncertainties into the system represents a challenge, as the

global system would have to be re-evaluated for the different possible combinations of the RVs’

values. The SC-DD association overcomes this constraint, by modeling only the modified sub-

systems (featuring the uncertainties). This aspect allows consideration of different sources for

the study of EMI in the system. It also allows significant time savings and important evaluation

cost reduction.

5.3.1.2 Second case study: threshold analysis

Within the framework of reliability analysis, the threshold analysis may be considered to
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Figure 5.11: Comparison of the mean and standard deviation values of the voltage V3 for both

the global (reference) and split (DD method for q = 4) networks.

assess the highest potential risks of malfunctioning of a system. The most critical consequence

of the uncertainties in the input parameters may concern the overvoltage and overcurrent

values of the system’s output. This latter may cause serious damage to sensitive electrical and

electronic equipment, resulting in system failure.

In this context, we study the transmission line network in Figure (5.12) consisting of 6 RG-

58 coaxial cables and 2 junctions and modeled using the commercial software CST Cable

Studio®. The voltage Vs1 injected at the entrance of line L1 is the Gaussian pulse represented

Figure 5.12: Charastictic of the studied global network.

in Figure (5.13). The parameters of the transient simulation performed with the commercial

software are summarized in Table (5.1).
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Simulation task "Transient"

Simulation duration 0.3µs

Maximum frequency 300MHz

Figure 5.13: The excitation source Vs1. Table 5.1: Simulation parameters.

Based on the SC method, we evaluate the stochastic response (mean and variance) of the QoI

given by the voltage V4 across the load resistance RL4, when each of L3, L5 and L6 as considered

as RVs and defined by (5.69). To simplify notation in the following, the RVs L3, L5 and L6 will

be referred to as R1, R2 and R3 in the same order. Their respective initial value R0
i , intensity α

and the law of distribution are summarized in Table (5.2).

P0 α (%) Distribution law

L3 0,9 20

L5 2,9 10 ∼ N (0,1)

L6 2,9 10

Table 5.2: Mean values, intensities and distribution laws of the RVs.

Based on the results in Figure (5.14), we assume that the convergence of both mean and stan-

dard deviation is reached with 7 collocation points given their closeness with the results ob-

tained with 9 points.

We observe that the first peak of the Gaussian pulse, propagated within lines L1, L2 and L4, is

recorded with the same magnitude with no temporal shift since no uncertainties are associated

with these lines. As time progresses, the stronger impact of the RVs in some instances is

recorded. If we suppose that our generic system represented by the network in Figure (5.12),

is compliant (e.g. for transmission or emission) for only one authorized absolute voltage value

over 0.2V , this condition may no longer be verified due to uncertainties in the input parameters.

This information however isn’t recovered from the mean and standard deviation, as they alone

do not give the complete spectrum for a thorough stochastic analysis. To capture the full range
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Figure 5.14: Mean and standard deviation values of the voltage V4 of the global network eval-

uated for 7 and 9 collocation points.

of values that could accurately represent the underlying parameters, we define the confidence

interval (CI). The latter acknowledges the variability in data by providing a range of values

within which the output values are likely to reside. This interval takes into account the sampling

variability and provides a better assessment of the output’s possible values. We represent the

upper and lower boundary of the confidence interval ]mean− 3std,mean+ 3std[, defined for

a level of confidence equal to 95%. Based on random draws of the voltage V4 as represented

in Figure (5.15b), some RVs combinations result in voltage values that exceed the absolute

threshold value 0.2V at some instants. The condition defined previously is no longer verified

in this case, consequently, uncertainties in the input may cause malfunction or damage to the

system.

We assume that this problem is now solved by the DD method, such that the network is split

at the middle of the line L2 into two sub-networks as shown in Figure (5.16). Following the

principle of the DD technique in section (2.1.1), the voltage V 2
4 , located at the sub-network

k = 2, is expressed as follows:

V 2
4 = h2

24 ∗V 2
∼2 +h2

24 ∗
(
h2

22 ∗ (h1
22 ∗V 2

∼2)
)

︸ ︷︷ ︸

V 2
∼2,1

+
q

∑
i=2

h2
24 ∗
(
h2

22 ∗ (h1
22 ∗V 2

∼2,i)
)

(5.80)

where V 2
∼2 is the equivalent voltage at the exchange interface given by the product (h1

12 ∗V 1
s1),

and V∼2,i is defined as its i-th order and expressed as follows:

V 2
∼2,i = h2

22 ∗ (h1
22 ∗V 2

∼2,i−1) (5.81)

In this case, no physical voltage source is injected in the sub-network k = 2, consequently, the

only contribution to the measurand is retrieved through the direct propagation of the voltage
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(a) (b)

Figure 5.15: Mean and standard deviation values of the voltage V4 using the SC method for

7 collocation points (a), random draws of the voltage V4 at specific instants using the MC

approach (b).

source V 1
s1 given by the product (h2

24 ∗V 2
∼2), and its multiple round trips between the two sub-

networks to the order q expressed by the additional term in equation (5.80).

As a result of the decomposition, the RV R1 represented by the length L3 is located in the sub-

network 1, whereas the two RVs R2 and R3 are isolated in the sub-network 2. The stochastic

term translating the contribution of the equivalent source to the output C2
∼s in equation (5.68)

is explicitly expressed by

C2
∼s(r1,r2,r3) = h2

24(r2,r3)∗
(
h1

12(r1)∗V 1
s1

)
(5.82)

By assuming the same order n of Lagrange polynomials for the projection of the voltage V 2
4 ,

the mean and standard deviation values of the stochastic voltage V 2
4 are respectively given by

E

[

V 2
4 (R1,R2,R3)

]

=
n

∑
t1=0

n

∑
t2=0

n

∑
t3=0

ωt1ωt2ωt3 ∗
(

h2
42(r2

(t2),r3
(t3))∗

(
h1

12(r1
(t1))∗V 1

s1

))

Var
[

V 2
4 (R1,R2,R3)

]

=
n

∑
t1=0

n

∑
t2=0

n

∑
t3=0

ωt1ωt2ωt3 ∗
(

h2
42(r2

(t2),r3
(t3))∗

(
h1

12(r1
(t1))∗V 1

s1

))2

−E

[

V 2
4 (r1,r2,r3)

]2

(5.83)

In contrast to the previous case, the impulse responses h1
.. of sub-network 1 are evaluated n

times, as the latter features the RV R1.

168



Chapter 5 – DD Method for Stochastic EMC Applications

(a)

(b)

Figure 5.16: Decomposition of the global network into two sub-networks at the middle of the

line L2 (a), Schematic representation of the impulse responses of each sub-network (b).

Note that these equations only consider the propagation of the equivalent source V 2
∼2 to the

output for demonstration purposes. The assessment of mean and variance of the voltage V 2
4

given by equation (5.80) can be easily deduced by considering the stochastic expression of the

term C2
∼s(r1,r2,r3).

By computing the voltage V 2
4 to the order q = 4, the mean and standard deviation values are

in very good agreement with the reference given by the global network’s simulation. The DD

technique proves, once again, its ability to propagate uncertainties within sub-network when

both their parameters have been modified.

The stochastic study showed that some RV combinations exceed the defined threshold value

in some instances, and may damage the system. The asynchronous nature of the DD tech-

nique offers a great advantage for RA studies as different combinations of RVs can be studied
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Figure 5.17: Comparision of the mean and standard deviation values of the voltage V3 for both

the global (reference) and split (DD method for q = 4) networks.

without re-evaluating the global system. In this configuration, although both sub-networks

are re-evaluated through their impulse responses, the SC-DD association enables solving less

complex systems with a lower stochastic dimension.

5.3.2 DD method for stochastic-parametric analysis

To go further with the stochastic analysis, different initial values, intensities or distribution

laws of the RVs can be studied to investigate their respective impact on the variability of the

output. In this section, we propose to study different stochastic configurations to highlight the

additional advantage of the DD technique for stochastic parametric studies.

We consider the network of transmission lines of Figure (5.18), composed of 5 multi-conductor

lines and 2 nodes, and modeled using the commercial software CST Cable®, whereas each

bundle associated to the multi-transmission line MT Li, i ∈ {1,2, ...,5} is composed of a group

of single cables (LIFY_0qmm05, 0_AWG and 4_AWG) loaded from the software library, to

which a screen is added serving as a ground plane. The excitation source is a Gaussian pulse of

amplitude 1V injected at the input of conductor 1 of the MT L1. We suppose that all conductors

in each MTLi are of the same lengths, and all their load resistances equal 50Ω.

At the load resistance RL3,2 of the second conductor of the MT L3, we measure the crosstalk,

reported in Figure (5.19a), caused by the proximity of conductors in the MTL.
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Figure 5.18: Global transmission line network and schematic representation of the multicon-

ductor MT L1.

(a) (b)

Figure 5.19: Voltage V3,2 measured across the load resistance RL3,2 of the second conductor L2

of the MT L3 in both time (a) and frequency (b) domains.

We aim to quantify the impact of uncertainties, associated with the length in the multiconductor

MT L1 and the load resistance RL3,2 of the line L2 of the MTL3, on the voltage V3,2 measured

across the load resistance RL3,2 of the second conductor of the MT L3.

Initially, the global network is studied considering several configurations of the distribution

laws and uncertainty intensities for the two RVs. For the first configuration, the distribution

law for both RVs varies while conserving the same intensities α . The second configuration, on

the other hand, considers the same distribution law for each case and varies the intensities α .

The details for both configurations A and B and their corresponding cases are summarized in
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Table (5.3).

L1 RL3,2

configuration A case 1 α = 5% α = 20%

uniform in [-1,1] uniform in [-1,1]

case 2 α = 5% α = 20%

normal ∼ N (0,1) uniform in [-1,1]

case 3 α = 5% α = 20%

uniform in [-1,1] normal ∼ N (0,1)

configuration B case 1 α = 3% α = 20%

uniform in [-1,1] uniform in [-1,1]

case 2 α = 5% α = 1%

uniform in [-1,1] uniform in [-1,1]

case 3 α = 10% α = 5%

uniform in [-1,1] uniform in [-1,1]

Table 5.3: Multiple cases of the variation of either the distribution law (configuration A) or the

uncertainty intensity α (configuration B) for the RVs.

For all the studied cases, the standard deviation of the output is not constant over the considered

time interval as shown in Figures (5.20) and (5.21). For configuration A, with uniform distri-

bution laws for both RVs, the standard deviation is very low. For different laws for each RV,

the mean value of the output is different and the standard variation is more important for case

3. For the second configuration B, the mean value of the output is different than the previous

configuration. The variation of the output is noticeable for case 3 due to the important intensity

(10%) of the random variable MT L1. In summary, the variation of the output is more important

if one of the two considered RVs follows a normal distribution law.

Based on these results, for different configurations of distribution laws and intensity of the RVs,

the stochastic responses are different. For our study, the number of configurations, chosen for

illustration purposes, remains reasonable. In practice, the possible combinations can be nearly

infinite, and consequently hard if not impossible to achieve. At this level, the implementation

of the stochastic DD offers important computational gains for stochastic-parametric studies.

This particular aspect will be later detailed in the next section.

We focus now on the evaluation of the stochastic response of the voltage V 1
3,2 using the DD

method when the global network is split at the middle of the MT L2, as shown in Figure (5.22).

The adopted notations are chosen in compliance with the established definition of the MTL
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(a) case 1

(b) case 2

(c) case 3

Figure 5.20: Mean and standard deviation of the voltage V3,2 evaluated for 7 collocation points

considering different distribution laws of the RVs for each case of configuration A.
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(a) case 1

(b) case 2

(c) case 3

Figure 5.21: Mean and standard deviation of the voltage V3,2 evaluated for 7 collocation points

considering different uncertainty intensities of the RVs for each case of configuration B.
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network studied in section (3.4).

(a)

(b)

Figure 5.22: Decomposition of the global network into two sub-networks at the middle of the

line MT L2 (a), Schematic representation of the impulse responses of each sub-network (b).

In this configuration, the QoI is located in sub-network 1, featuring both real and equivalent

sources. The evaluation of the voltage V 1
3,2 is similar to the studied case in section (3.2) adapted

to three one-point interfaces. Given that the aim is to demonstrate the interest of the stochastic

DD method, we won’t dwell on the details of the formulation, and will give its expression

directly:

V 1
3,2 = h1

13,2∗V 1
s1,1+

3

∑
m=1

h1
23,m∗

(
h2

22,m ∗ (h1
12,m ∗V 1

s1,1)
︸ ︷︷ ︸

V 1
∼2,m,1

)
+

q

∑
i=2

( 3

∑
m=1

h1
23,m∗

(

h2
22,m∗

(
h1

22,m∗V 1
∼2,m,i

))
)

(5.84)

with V 1
∼2,m,i is defined as the i-th order of the equivalent source at the m interface level and is

given by
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V 1
∼2,m,i = h2

22,m ∗ (h1
22,m ∗V 1

∼2,m,i−1) (5.85)

Following this decomposition, each sub-network k ∈ {1,2} features one RV Ri. By identifica-

tion to the equations (5.67) and (5.68), the terms C1
Rs and C1

∼s can be written as follows:

C1
Rs(r1) = h1

13,2(r1)∗V 1
s1,1

C1
∼s(r1,r2) =

3

∑
m=1

h1
23,m(r1)∗

(

h2
22,m(r2)∗

(
h1

12,m(r1)∗V 1
s1,1

))

+
q

∑
i=2

( 3

∑
m=1

h1
23,m(r1)∗

(

h2
22,m(r2)∗

(
h1

22,m(r1)∗V 1
∼2,m,i(r1,r2)

))
)

(5.86)

The mean of the voltage V 1
3,2 can thus be deducted from the general expression given by equa-

tion (5.60), as follows:
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Similarly, the variance is deducted from the equation (5.63) and expressed as follows:

Var
[

V 1
3,2(R1,R2)

]

≈
n

∑
t1=0

ωt1

(

h1
13,2

(
r1

(t1)
)
∗V 1

s1,1

)2

+
n

∑
t1=0

n

∑
t2=0

ωt1ωt2 ∗
{

3

∑
m=1

h1
23,m

(
r1

(t1)
)
∗
(

V 1
∼2,m,1

(
r1

(t1),r2
(t2)
))

+
3

∑
m=1

( q

∑
i=2

h1
23,m

(
r1

(t1)
)
∗
(

h2
22,m

(
r2

(t2)
)
∗h1

22,m

(
r1

(t1)
)
∗V 1

∼2,m,i

(
r(t1)1 ,r(t2)2

))
)}2

−E

[

V 1
3,2(R1,R2)

]2
(5.88)

These expressions can be further simplified by introducing the weighted impulse response (hk
..)

′

as the product of the impulse response hk
..(rk) with the weight ωk

tk, for the sub-network k.
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sub-network 1 sub-network 2

inputs outputs outputs inputs

RV (ω1
1 ×h1,1

.. ) = (h1,1
.. )′

(ω1
2 ×h1,2

.. ) = (h1,2
.. )′

...

(ω1
n ×h1,n

.. ) = (h1,n
.. )′

(h2,1
.. )′ = (ω1

2 ×h2,1
.. )

(h2,1
.. )′ = (ω2

2 ×h2,2
.. )

...

(h2,n
.. )′ = (ω2

n ×h2,n
.. )

RV

distribution law distribution law

intensity of the uncertainty intensity of the uncertainty

n collocation points n collocation points

Table 5.4: Inputs and outputs of each sub-network k ∈ {1,2}, and the weighted impulse re-

sponses (hk,n)′.. exchanged at the interface level.

This new formulation allows to preserve not only the confidentiality of the numerical models

but also the stochastic configuration. By exchanging the n weighted impulse responses of each

sub-network at the exchange interface, evaluated for n collocation points, the mean and variance

of the output are retrieved based on the weighted impulse response (hk,n
.. )′ of each sub-network.

The expression of the expectation of the output V 1
3,2 with this new notation is given by
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(5.89)

Let’s assume that each sub-network k ∈ {1,2} is treated by an operator k. The n exchanged

weighted impulse responses (hk
..)

′ from both sub-networks, can either refer to the actual eval-

uations of an RV evaluated for n collocation points, or the number of possible combinations

evaluated for more than one RV. For instance, for 9 weighted impulse responses exchanged

from one sub-network to the interface level, it can either represent their evaluation for 9 col-

location points of one RV or the 9 possible combinations for 2 RVs evaluated at 3 collocation

points (n2). This additional advantage of the SC-DD association is very valuable in the in-

dustrial context, where uncertainties are not revealed as they may reflect system limitations or

weaknesses.

5.3.3 Stochastic DD method for sensitivity analysis

In the continuity of the previous stochastic study, we carry a variance-based approach for
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global sensitivity analysis. The aim is to identify the inherent impact of each input variable,

and their combined effects on the output, through the first and second-order Sobol’ indices and

total indices.

We base our global sensitivity analysis on the SC technique and PC expansion approach. For

the latter, the evaluation of Sobol’ indices depends on the coefficients ŷα , also used to calculate

the variance of the output. We first start by comparing the standard deviation values using the

PC method and SC technique for case 1 of configuration B in section (5.3.2).

Figure 5.23: Comparison of the standard deviation values of the voltage V3,2 evaluated for 7

collocation points with the SC method and PC technique.

Given that both RVs follow a uniform distribution law, the chaos basis is built using the

Gauss-Legendre polynomials up to a chosen degree q = 3. Both results in Figure (5.23) follow

the same pattern for the standard deviation, meanwhile, the results for the mean of the output

are equivalent, due to their similar formulation for both techniques.

We now proceed to evaluate Sobol’ indices using the SC and PC methods for the three cases of

configuration B. The QoI of this application, represented by the voltage V3,2, is evaluated for

each discrete time step of the interval [0,0.1µs]. For discussion purposes, we evaluate the first

and second orders of Sobol’ indices for different time instants. Both SC and PC techniques give

close results for the first and second order of Sobol’ indices as reported in Figures (5.24), (5.25)

and (5.26). For the same case, first and second-order indices are different for each instant. For

the three cases, the influence of the length of the MT L1 is the most dominant overall. This result

was expected, given the sensitivity of the crosstalk to the length of the conductors. The impact

of the second RV (RL3,2) is important for the first case only, due to its higher intensity α = 20%.
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Figure 5.24: Comparison of the first (L1 and RL3,2) and second orders (L1RL3,2) of Sobol’

indices using SC and PC method for case 1 of configuration B.

Its individual and joint effect is practically non-existent for low intensities α = 5 and 10% for

cases 2 and 3. From these results we conclude that for different intensities, the proper impact

of the RVs as well as their joint influence vary. Given that the distribution law also impacts

the output’s variability, we compare case 1 of configuration B to case 2 of configuration A, for

which both the distribution law and intensity of the first RV are modified.

From the results in Figure (5.27), the impact of the RV MT L1 is once again demonstrated for

both cases. The second RV however has no effect for both configurations at the time instant

t = 0.0949µs.

Depending on the purpose for which the SA is being evaluated, it may be required to evaluate

different configurations of distribution laws and/or intensities variations. The DD method

achieves this goal with no additional evaluations of the output. Its asynchronous feature can

be employed to use two different stochastic techniques to evaluate the Sobol’ indices. For

instance, sub-network 1 can be modeled using the SC technique, whereas sub-network 2 can

be evaluated with the PC expansion. Given that both methods use quadrature rules to evaluate

the collocation points, they are similar for both sub-networks. For 7 collocation points, based

on the evaluated weighted impulse responses, Sobol’ indices computed with the stochastic
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Figure 5.25: Comparison of the first (L1 and RL3,2) and second orders (L1RL3,2) of Sobol’

indices using SC and PC method for case 2 of configuration B.

DD method are retrieved. The total Sobol’ index of the RV MLT L1, measured at the instant

t = 0.0575µs, for case 1 of configuration B equals 0.8754214 with the proposed stochastic DD

method. The yielded result is very close to both references given respectively by 0.882445 and

0.8678451 for SC, respectively PC techniques.

In synthesis, the SC-DD association comes with additional advantages for the global SA anal-

ysis based on Sobol’ indices. The latter are computed through new linear combinations of the

already evaluated model serving for UQ assessment (mean and variance). The variable sep-

aration in the SC-DD’ formulation takes our stochastic analysis a step further with different

stochastic scenarios (different RVS, laws, intensities or initial values) with a local re-evaluation

of the modified sub-systems. The model’s evaluation cost gain is important and will be dis-

cussed further. In addition, the choice of the stochastic method is irrelevant to the SC-DD

association thanks to the asynchronous feature of the DD technique itself. This aspect is very

interesting in an industrial context where the partners don’t necessarily dispose of the same
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Figure 5.26: Comparison of the first (L1 and RL3,2) and second orders (L1RL3,2) of Sobol’

indices using SC and PC method for case 3 of configuration B.

Figure 5.27: Comparison of the total Sobol’ indices using SC and PC method for case 2 of

configuration A and case 1 of configuration B.

stochastic tools.
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5.4 Alleviating the Curse of dimensionality

In computational electromagnetic applications, the computational cost is a real challenge,

especially for multi-scale, multi-system and multi-physics problems. This complexity increases

with the uncertainty dimension, for which the deterministic model M is evaluated a specific

number of times. The MC method, known as the reference, requires a high number of evalua-

tions, resulting in a slow convergence rate. Alternatively, new methods known as accelerating

techniques have been proposed [146–148] including the support vector methods, surrogate-

model and sparse-grid techniques. In our work, we have based our stochastic analysis mainly

on the SC method, chosen for its non-intrusive nature and ease of use. Although, in the case of

a few RVs, the SC technique as well as other methods (Kriging and polynomial chaos) ensure

high computational efficiency for evaluating the statistical moments of the model’s response,

the question of the dimension still arises for a large number of RVs. For n collocation points

and m RVs, the evaluation cost nm increases exponentially with higher values of RVs. Beyond

about 5 RVs, the SC method entails significant computational cost almost the same size as the

MC method (10 000 evaluations typically), as shown in Figure (5.28).

Figure 5.28: Comparison of the typical costs between MC and SC method (evaluated for 7

collocation points).

This phenomenon is called "the curse of dimensionality" and refers to the extraordinarily rapid

growth in the difficulty of problems as the number of variables increases. This term was first

introduced by Richard E. Bellman [149], to describe the explosive nature of increasing data

dimensions for dynamic programming problems. Today, this phenomenon is more and more
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observed in other fields, more specifically, electromagnetic problems [150, 151].

In this thesis, we propose an easy-to-implement solution based on the online-offline SC-DD

strategy motivated by the asynchronous intrinsic nature of the DD method. As a result of the

decomposition, the RVs are isolated in distinct sub-domains, modeled independently from each

other. However, the unavoidable interactions between the RVs are considered in a second step

to obtain the global response of the system under study. The expected interest of the proposed

approach is highlighted as the evaluation cost of the model M is dramatically reduced as shown

in Figure (5.29).

Figure 5.29: Comparison of the typical costs between MC and the association of SC and DD

methods (evaluated for 7 collocation points).

In the literature, few works based on the use of classical DD methods to alleviate the curse

of dimensionality have been proposed in other engineering fields [152, 153]. The approach

within the EMC context is relatively novel. Our contribution in this particular field of research

is translated mainly by the DD method itself and the resolution in the time domain.

This section aims to highlight the advantages of the association of the SC with the DD method.

We begin by defining what we intend by computational cost and distinguish it from the cost

of model evaluations, for the configurations under study. An optimal case configuration for

evaluation cost reduction will be later discussed.

5.4.1 Computational cost for SC-DD association

In section (2.1.2), we have defined the computational complexity and distinguished it from
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the evaluation cost of the model itself. In this section, we establish the latter for deterministic

and stochastic analyses for both global and split systems.

Let’s consider the model M in equation (5.1), translating the relationship between the inputs

and outputs of a system. The latter is only evaluated once for a deterministic study. In this

case, no additional cost is added to compute the model’s response Y . For the deterministic

scenario, the computational cost is thus equivalent to the evaluation cost of the model itself

as previously mentioned in section (2.1.2). On the other hand, the non-intrusive SC method

requires nm times evaluations of the model M in the stochastic configuration, where n is the

number of collocation points and m is the number of RVs, as schematized in Figure (5.30).

Figure 5.30: Diagram of the global model’s output for both deterministic estimation (in black)

and stochastic estimation for n collocation points (in red).

With the DD technique, the decomposition is managed to isolate at best one RV Ri only in a

specific sub-system si, i∈{1,...,m}, thanks to its asynchronous feature allowing parallel modeling.

The process of the SC-DD association, as defined in section (5.3), starts at an offline level

where each RV is evaluated n times independently of other inputs. Then, an online level will

assemble all these combinations through (5.56), (5.60), and (5.63).

The assessment of mean and variance, based on weighted sums evaluated according to the col-

location points, comes at an additional cost. The computational cost for the stochastic analysis

is thus given by the summation of the evaluation cost of the deterministic model and the cost of

computing the stochastic moments, which can be deduced from the complexity cost previously

established in section (2.1.2). The latter is not given in detail as our main focus is to compare

the evaluation cost of the global model and the sub-models with our DD method. For both

deterministic and stochastic analysis, these computational costs are summarized in Table (5.5).

This (SC-DD) approach allows going from nm evaluations of the global complex model M ,

to (n × τ × m) evaluations of smaller and less complex sub-models si
6, as schematized in

Figure (5.31). All the combinations of the RVs are however still considered in the offline

phase for nm applications of equation (2.5). Given that the main time-consuming task is the

6We recall that the parameter τi refers to the number of impulse responses to be evaluated for a given syb-

system si, defined in section (2.1.2).
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Figure 5.31: Diagram of the split model’s output for both deterministic estimation (in black)

and stochastic estimation for n collocation points (in red).

Computational cost

GLOBAL
Deterministic unique evaluation (M )

Stochastic nm evaluations (M ) + equations (5.60) and (5.63)

DD
Deterministic (τ ×m) evaluations (s1, ...,sm) + equations (5.56)

Stochastic
(n× τ ×m) evaluations (s1, ...,sm)

+ (nm times) eq (5.56) + equations (5.60) and (5.63)

Table 5.5: Computational costs for global and split models for both deterministic and stochastic

analysis.

evaluation of the model M , the SC-DD method has a real potential to highly alleviate the

exponential growth arising from the ”curse of dimensionality”.

Following up on our stochastic analysis, we recall that the choice of a global SA, based on

variance decomposition, is mainly focused on the evaluation of the variance for UQ assess-

ment. The computation gain of the Sobol’ indices is already significant, and more emphasized

with our SC-DD method as no additional model evaluations are required. Although additional

computational complexity is added for the Sobol’ indices calculation, it is negligible compared

with the cost of evaluation of the partial variances7.

7The SC-DD allows evaluation gain for the partial variances as well, thanks to the asynchronous feature of the
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5.4.2 Optimal configuration of the SC-DD association

The asynchronous feature of the DD method allows independent modeling of each sub-

system si, i∈{1,...,m}. Following the topology of the system (terminations, distributions of the

α inputs and β outputs and the observable), the number of impulse responses to be evaluated

for each sub-system si, given by τi, is independent of the number of RVs n. Consequently, we

propose an optimal configuration for which the reduction of the evaluation cost of the model is

further emphasized. For this ideal case, two hypotheses must be verified: 1) each sub-system

isolates only one RV, 2) for a set of m sub-systems, the excitation source, respectively, the

observation point (variable of interest), are in sub-system 1, respectively, m. Figure (5.32)

illustrates this optimal configuration for m = 3 sub-systems.

Figure 5.32: Schematic representation of m = 3 sub-systems split at one point exchange inter-

faces and their corresponding impulse responses.

In this case, each sub-network m, characterized by τ = 2 impulse responses, is evaluated only

(2×n) times. We can then define a maximum theoretical gain relative to the evaluation of the

model M , represented by the output V k
j in equation (2.5) for k = m in our case, as follows:

Gain =
nm

2×n×m
=

n(m−1)

2×m
. (5.90)

Table (5.6) shows this gain for different configurations. For a given number of RVs, the pro-

posed SC-DD method leads to a significant gain when the number of collocation points in-

creases. On the other hand, increasing the number of R.V.s for the same number of collocation

points increases the gain as well.

As previously illustrated in Figure (5.28), the dimensionality challenge arises around 5 R.V.s

and 7 collocation points with 16 807 simulations vs 10 000 for the MC. One must be aware

DD technique allowing variable-separation
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Global Split Gain

k=4 n=5 625 40 15,625

n=7 2 401 56 42,875

n=9 6 561 72 91,125

MC 10 000 4 × 10 000

k=5 n=5 3 125 50 62,5

n=7 16 807 70 240,1

n=9 59 049 90 656,1

MC 10 000 5 × 10 000

k=6 n=5 15 625 60 260,41

n=7 117 649 84 1 400,58

n=9 531 441 108 4 290,75

MC 10 000 6 × 10 000

Table 5.6: Number of model evaluations for both the global and split network using the SC-DD

method (for m RVs and n collocation points), and using the MC method.

that the total computational cost for the SC-DD method includes an extra computational cost

(Table 5.5). Yet, once again the main challenge relies on the evaluation of the model M .

Our approach considerably reduces this cost, especially since the models to be evaluated are

smaller and these operations can be done in parallel. In practice, the total gain will depend

on the problem and the topology of its subdivision. But from 5 RVs, we can already expect

a significant gain compared to MC and in all cases, the “curse of dimensionality” is greatly

alleviated.

In synthesis, through the SC-DD association, the proposed domain decomposition method

proved its efficiency in propagating uncertainty between the sub-systems. The second objective

of this thesis is thus fulfilled as the stochastic response of the global system is recovered from

partial deterministic partial solutions. The requirements of the ANR ECOCES project are also

met:

1. The stochastic configuration is not revealed: the RVs, their number, distribution law,

intensities, and initial values are not exchanged. The confidentiality of the stochastic

models is thus preserved,

2. The offline-online stochastic DD approach enables fully asynchronous modeling of the
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sub-systems.

An additional advantage of this association arises with the asynchronous feature of the DD

method, that is the evaluation cost reduction. This particular aspect is very promising for

challenging high-dimensional stochastic EMC applications.

Conclusion

In this chapter, the DD was extended for stochastic linear EMC applications. The new for-

mulation of the stochastic DD method, for both UQ and global SA assessment is established.

The association of both techniques is based on an offline–online strategy, motivated by the asyn-

chronous nature of the DD technique and the non-intrusive feature of the SC method. Through

different configurations of stochastic studies, the various advantages of this association were

highlighted. The DD technique has proved to be efficient in propagating uncertainties within

sub-systems, as long as the q order is considered in the formulation of the output. In addition to

preserving the confidentiality of the numerical models themselves, their stochastic configura-

tion is also preserved by exchanging weighted impulse responses only. The re-evaluation of the

modified sub-systems only is a major advantage for parametric-stochastic studies and offers the

possibility of extending stochastic analysis to multiple configurations. With this advantage, the

SC-DD alleviates the curse of dimensionality arising with high-dimensional stochastic prob-

lems, thanks to its asynchronous feature allowing RV separation. Although the stochastic DD

method was illustrated with the SC technique, the approach is general and can be applied with

different stochastic techniques including PC expansion. The hybridization of different stochas-

tic methods adds to the benefits of this original association. It has great potential for industrial

applications since it preserves the confidentiality of each sub-model employed as well as its

uncertainty features.
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THIS thesis work is mainly oriented towards the development of a domain decomposition

approach for EMC analysis of complex linear systems. The assessment of the system’s

response is guaranteed through the partial solutions of the sub-systems, modeled each

independently. The need to develop such methods is mainly motivated by the shortcomings

of the existing approaches, hybridization of numerical temporal tools for instance, to 1) allow

fully independent simulations of the sub-systems, 2) preserve the confidentiality of the models,

and 3) overpass their interface adaptation complexity (for time and/or space discretization) to

adapt for general applications regarding the geometry and/or material properties of the studied

systems.

Our contribution, regarding the ANR ECOCES project specifications, overcomes these techni-

cal and industrial constraints established in the context section. The proposed DD method is an

easy-to-implement technique, based on an offline-online strategy characterizing less complex

sub-systems through their impulse responses only, from which the global solution is yielded

based on a linear combination. The detailed formulation of the method and its practical imple-

mentation were presented in Chapter 2, from which we deduce three valuable advantages that

offers our methodology:

• the decomposition is general, it is case-independent, and can be automated for any linear

application,

• the formulation is asynchronous, meaning that the sub-systems are modeled indepen-

dently at the offline level. Their responses are combined in the online phase, to take into

account the physical properties of the initial problem and the existing couplings between

the sub-systems,

• the confidentiality of the models is preserved, as no proprietary information and/or

result is exchanged.

These advantages were demonstrated through numerical applications for different configura-

tions of wiring networks in Chapter 3. The method has been generalized for several interfaces

(multiple decomposition levels) paving the way for more complex ramified network line

applications or other linear applications. Its application with different parameters (time step)

or modeling tools demonstrates its robustness and overcomes the multi-models constraint. The
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adjustment of the DD technique to several one-point interfaces is promising for 3D appli-

cations, for which the adaptation of the method is necessary but its essence remains unchanged.

As part of our study, the proposed DD method was experimentally applied in Chapter 4,

with the aim of testing its efficiency in a noisy environment. Its application was carried

out for different wire network configurations, after adapting its theoretical formulation to

match experimental constraints. The asynchronous feature of the DD methods shines through

with the experimental applications, especially for different measurement equipment for each

sub-system. The configuration not only provides a practical demonstration of the true meaning

of asynchronous decomposition, based on independent characterization (both temporal and

spatial) using different instruments, but also approaches real-world situations implying

suppliers and assemblers, in the automotive context. Given that experiments tend to be costly

(in terms of time and human resources), the DD method enables significant cost gains for

parametric studies.

This additional advantage has considerable potential for more costly applications: stochastic

analysis. But first, the association of the SC method and the DD technique, in Chapter 5

was studied. The obtained results demonstrated the ability of the domain decomposition

approach to propagate uncertainties within the sub-systems. Through different stochastic

scenarios, the DD technique’s main advantage (asynchronous and independent modeling)

preserves the confidentiality of stochastic models. The multi-uncertainties constraint with

traditional methods is bypassed. Moreover, the stochastic DD method alleviates the curse

of dimensionality challenge arising from high stochastic dimension problems, as it reduces

significantly the number of evaluations of the model, which are mostly very expensive to

evaluate. This feature is very promising and maintains the efficiency of techniques such as SC

and PC without compromising on the computational cost.

The results of this work have been presented at several conferences, both national [154] and

international [155–157]. In addition, a publication derived from the stochastic analysis was

published at the IEEE-Transactions on Electromagnetic journal, allowing to share our findings

with a wider audience and actively contribute to the research field [158].

Perspectives

We proposed through the presented work in this thesis a non-overlapping domain decompo-
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sition approach to solve EMC linear applications. The technique gave efficient and significant

results for both deterministic and stochastic applications. In the continuity of this thesis, we

propose some perspectives for future works, regarding:

1. the numerical aspect:

• from a computing point of view: the DD technique can be integrated into a sim-

ulation platform involving several partners. Each partner models a sub-system m,

and exchanges two pieces of information only: 1) the impulse response of their sys-

tem at the interface level hm
.. , and 2) the incoming wave voltage from the physical

sources Vsim in this system to the interface level denoted V m
iml . In practice, each sub-

model is able to exchange the first information, contrary to the second one which

may not be available (if no physical sources are featured within this sub-system).

The formula can still be generalized by assuming that all subnetworks exchange

both elements, simply by associating a flag (0 or 1) with the source V m
iml , depending

on its availability.

• for an applicative extension: the DD technique can be applied to radiated EMC

problems, as well as the electromagnetic/electrical coupling for special cases (elec-

tromagnetic cavities with openings).

2. the experimental aspect: the DD method can be fully experimental, starting with the

evaluation of impulse responses, taking into account higher orders, and ending with the

evaluation of the final formulation. This new vision calls for the implementation of a

more complex set-up bench, and the development of a control system for the various

generation and acquisition tools to automate the measurement process.

3. the uncertainty dimension: the uncertainty aspect can be pushed further by combining

the DD method with different stochastic methods, other than SC and PCE, where the

challenge arises with different samples on either side of the interface. The method will

therefore need to be adapted to overcome this constraint, but its core idea and principle

remain the same.

From an industrial application point of view, the proposed DD method can be applied to

the modeling of cable networks for reflectometry analysis [159]. This discipline enables

fault detection while guaranteeing system reliability and proactive intervention to miti-

gate potential risks. Integrating our DD method into these industrial practices promises

to minimize measurement resources and time, thanks to its asynchronous feature. Its
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implementation offers parametric studies with a significant gain of cost for multiple con-

figurations and thus allows comprehensive insights into the behavior, performance, and

underlying mechanisms of the studied wiring systems.
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APPENDIX : 1D FDTD Modeling of the

Transmission Line Equations

IN this appendix, we provide additional elements for a better understanding of the discretiza-

tion of the telegrapher’s equations (2.7) and (2.8), defined in section (2.2.1) of Chapter 2,

using the Finite-Difference-Time-Domain (FDTD) method. The discretized equations of the

voltage (2.28) and current (2.29) have been succinctly given in section (2.2.3), as they serve

primarily to model the propagation phenomenon in transmission lines numerically. We propose

through this appendix to add further details with a complete demonstration of these equations

in the first section. For the first and last meshes of the transmission lines, new boundary condi-

tions are introduced, the voltage (or current) should be therefore updated. The demonstration

of equations (2.30) and (2.31) respectively referring to the voltage at the first and last meshes of

the transmission line will be detailed in the second section. The voltage and current obtained at

the junction level for a Y-branched transmission lines network, given by equations (2.32) and

(2.33) will be detailed in the third section.

A.1 Transmission lines theory

A.1.1 Background and history

The foundations of modern electromagnetic theory were laid by James Clerk Maxwell in

1873, who proved mathematically with four equations the propagation of the electromagnetic

wave and the idea that light is a form of electromagnetic energy. Maxwell’s equations de-

scribe the coupling between electric and magnetic fields. They also show how electromagnetic

waves interact with the surrounding medium. Oliver Heaviside (1880-1887) was the first to

study the guided propagation of electrical signals through pairs of straight, parallel wires of fi-

nite conductivity. Using Maxwell’s electromagnetic theory, Heaviside developed the theory of

transmission lines as we know it today and eliminated many of the mathematical complexities

of Maxwell’s theory. The theory of transmissions establishes the link between Maxwell’s the-

ory of electromagnetics and G. Kirchhoff’s theory of circuits by G. Kirchhoff, so this method is

of significant importance in the analysis of microwave circuits and microwave devices. Heav-

iside obtained his model from a formulation based directly on a quasi-transverse propagation



APPENDIX : 1D FDTD Modeling of the Transmission Line Equations

approximation transverse propagation (quasi-TEM) using Maxwell field theory. The proposed

model is based on the following assumptions following assumptions:

• The quasi-parallel interconnection wires are metals, whose electrical behavior is gov-

erned by Ohm’s law.

• The structure of the electromagnetic fields surrounding the wires is of the quasi-TEM

type.

• The total current flowing through each cross-section is zero.

A.1.2 ’RLCG’ Transmission lines’ model

Transmission lines guide the propagation of electromagnetic energy from a source terminal

to a load terminal. Transmission lines can take on many physical forms, including a twisted

pair line used for telephony or internet connections, coaxial cables, or any of a number of multi-

conductor wave guiding systems. Transmission line modeling is typically a one-dimensional

approximation of the physical model, representing line voltages and currents as a function of

the transmission line axis. A transmission line of elementary length dx is represented schemat-

ically as a two-wire line (since transmission lines always have at least two wires) is shown in

Figure (A.1.1).

Figure A.1.1: Schematic representation of the elementary component of a transmission line

(RLCG model).

The series inductance L (H.m−1) represents the self-inductance of the two conductors, and

the capacitance C (F.m−1) is due to the proximity between the two conductors. R (Ω.m−1)

represents the resistance due to the conductivity of the conductors, and conductance G (S.m−1)

is due to dielectric losses in the material separating the conductors. R and G therefore represent

losses. A finite length of a transmission line can be viewed as a cascade of sections of the form

shown in Figure (A.1.1).
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The voltage and current in a transmission line are functions of two variables, position x and

time t. Based on Figure (A.1.1), Kirchhoff’s laws give the voltage and current equations given

by

v(x+dx, t)− v(x, t) =−Rdxi(x, t)−Ldx
∂ i(x, t)

∂ t
(A.1.1)

i(x+dx, t)− i(x, t) =−Gdxv(x+dx, t)−Cdx
∂v(x+dx, t)

∂ t
(A.1.2)

Dividing both equations (A.1.1) and (A.1.2) by dx, where dx → 0, gives the following trans-

mission line equations also known as the telegrapher’s equations of Heaviside 1880, as follows:

∂v(x, t)
∂x

=−Ri(x, t)−L
∂ i(x, t)

∂ t
(A.1.3)

∂ i(x, t)
∂x

=−Gv(x, t)−C
∂v(x, t)

∂ t
(A.1.4)

where v(x, t) is the line voltage at position x along the transmission line axis at time t and i(x, t)

is the line current.

The two equations can be combined into the familiar wave equation governing the line’s voltage

and current, such as

∂ 2v(x, t)
∂ 2x

= LC
∂ 2v(x, t)

∂ t
+(RC+LG)

∂v(x, t)
∂ t

+RGv(x, t) (A.1.5)

∂ 2i(x, t)
∂ 2x

= LC
∂ 2i(x, t)

∂ t
+(RC+LG)

∂ i(x, t)
∂ t

+RGi(x, t) (A.1.6)

These equations has a well-known solution expressed as a superposition of forward and back-

ward traveling waves, given by

V (x, t) =V (+) f (x− t√
LC

)+V (−) f (x+
t√
LC

) (A.1.7)

I(x,ω) = I(+) f (x− t√
LC

)+ I(−) f (x+
t√
LC

) (A.1.8)

where f (.) is a general function representing the wave, and V+/(−) (and I+/(−)) is the ampli-

tude of the forward and the backward traveling waves, respectively. The actual values of f (.)

and V (+)/(−) (and I+/(−)) are determined by the appropriate initial conditions and boundary

conditions at the terminating ends of the transmission line.
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A.2 Numercial modeling of the transmission lines

A.2.1 Finite Difference Approximations

To study the numerical solution to the coupled first-order transmission line equations ex-

pressed by equations (A.1.3) and (A.1.4), the first-order space and time derivatives will be

approximated via “Finite-Difference” approximations. If the function f (.) is continuous, a

Taylor series expansion of f about the points x± ∆x
2 can be performed

f (x± ∆x
2
) = f (x)± ∂ f (x)

∂x
∆x
2

1
1!

+
∂ 2 f (x)

∂x2

(∆x
2

)2 1
2!

+
∂ 3 f (x)

∂x3

(∆x
2

)3 1
3!

+ ... (A.2.1)

where ∆x is assumed to be small. We then subtract the two expansions and normalize the result

by ∆x, leading to

f (x+ ∆x
2 )− f (x− ∆x

2 )

∆x
=

∂ f (x)
∂x

+∆x2 ∂ 3 f (x)
∂x3

1
24

+ ... (A.2.2)

Note that the terms with even-order derivatives cancel. Rearranging terms, the first-order

derivative with respect to x can be expressed as

∂ f (x)
∂x

≈ f (x+ ∆x
2 )− f (x− ∆x

2 )

∆x
+O(∆x2) (A.2.3)

This is known as the “central difference” approximation of the first-order derivative. The trail-

ing term on the right-hand side represents the leading order error in the approximation. The

error will decay as ∆x2 with decreasing ∆x. The approximation is thus said to be “second-order

accurate.”

A.2.2 Explicit time update solution of the Telegraph’ equations

It would appear that the transmission line equations can be approximated to second-order

accuracy using central differences. To this end, the transmission line equations (A.1.3) and

(A.1.4) are expressed as

v(x+ ∆x
2 , t)− v(x− ∆x

2 , t)

∆x
≈−Ri(x, t)−L

i(x+ ∆x
2 , t)− i(x− ∆x

2 , t)

∆t
(A.2.4)

i(x+ ∆x
2 , t)− i(x− ∆x

2 , t)

∆x
≈−Gv(x, t)−C

v(x+ ∆x
2 , t)− v(x− ∆x

2 , t)

∆t
(A.2.5)
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where ∆x is the spacing between discrete spatial samples, and ∆t is the spacing between discrete

time samples. Both of these equations are second-order accurate at (x, t) in space and time.

These approximate equations can be mapped to a discrete space by sampling V and I at discrete

locations in space and time at uniformly spaced intervals of ∆x and ∆t, respectively. However,

it is observed from equations (A.2.4) and (A.2.4) that the discrete samples of v and i cannot

be co-located in space or time if these two equations are to be consistent. In fact, the discrete

samples of v and i are separated in both space and time by ∆x and ∆t, respectively, as shown in

the spatial-time grid of Figure (A.2.1).

Figure A.2.1: Staggered grid sampling of the voltage V (circle) and the current I (cross) in

space x and time t.

Following this schematic representation, the discrete representation for a uniform, staggered

time and space sampling of the voltage and current of equations (A.1.3) and (A.1.4) are defined

by

V |np = v(p∆x,n∆t) (A.2.6)

I|np = i(p∆x,n∆t) (A.2.7)

where p and n are integers. With this sampling, the discrete transmission line equations (A.2.4)

and (A.2.4) are expressed as follows:

V |np+1 −V |np
∆x

≈−RI|n
p+ 1

2
−L

I|n+
1
2

p+ 1
2
− I|n−

1
2

p+ 1
2

∆t
(A.2.8)

I|n+
1
2

p+ 1
2
− I|n+

1
2

p− 1
2

∆x
≈−GV |n+

1
2

p −C
V |n+1

p −V |np
∆t

(A.2.9)
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By approximating the terms I|n
p+ 1

2
of equation (A.2.8), respectively V |n+

1
2

p of equation (A.2.9),

with the following equations

I|n
p+ 1

2
=

I|n+
1
2

p+ 1
2
+ I|n−

1
2

p+ 1
2

2
(A.2.10)

V |n+
1
2

p =
V |n+1

p +V |np
2

(A.2.11)

We obtain the discrete equation of voltage and current

V |np+1 −V |np
∆x

≈−R
( I|n+

1
2

p+ 1
2
+ I|n−

1
2

p+ 1
2

2

)

−L
( I|n+

1
2

p+ 1
2
− I|n−

1
2

p+ 1
2

∆t

)

(A.2.12)

I|n+
1
2

p+ 1
2
− I|n+

1
2

p− 1
2

∆x
≈−G

(V |n+1
p +V |np

2

)

−C
(V |n+1

p −V |np
∆t

)

(A.2.13)

We strat by expanding the equation (A.2.12) as follows:

V |np+1 −V |np
∆x

≈−R
2

I|n+
1
2

p+ 1
2
− R

2
I|n−

1
2

p+ 1
2
− L

∆t
I|n+

1
2

p+ 1
2
+

L
∆t

I|n−
1
2

p+ 1
2

≈ I|n+
1
2

p+ 1
2

(

−R
2
− L

∆t

)

+ I|n−
1
2

p+ 1
2

(

−R
2
+

L
∆t

)

≈ I|n+
1
2

p+ 1
2

(−2∆t −2L
2∆t

)

+ I|n−
1
2

p+ 1
2

(−R∆t +2L
2∆t

)

(A.2.14)

We then extract the current I|n+
1
2

p+ 1
2

as follows:

I|n+
1
2

p+ 1
2
≈ −2∆t

R∆t +2L

(V |np+1 −V |np
∆x

)

− 2∆t
R∆t +2L

× −R∆t +2L
2∆t

I|n−
1
2

p+ 1
2

≈ −2∆t
(R∆t +2L)∆x

(

V |np+1 −V |np
)

− R∆t −2L
R∆t +2L

I|n−
1
2

p+ 1
2

(A.2.15)

We thus retrieve the discretization of the current I|n+
1
2

p+ 1
2

using the 1D scheme of the FDTD

method, expressed concisely in Chapter 2 by equation (2.29).

We move our attention to the equation (A.2.13), by expanding it as follows:
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I|n+
1
2

p+ 1
2
− I|n+

1
2

p− 1
2

∆x
≈−G

2
V |n+1

p +
G
2

V |np −
C

2∆t
V |n+1

p +
C
∆t

V |np

≈V |n+1
p

(

−G
2
− C

∆t

)

+V |np
(

−G
2
+

C
∆t

)

≈V |n+1
p

(−G∆t −2C
2∆t

)

+V |np
(−G∆t +2C

2∆t

)

(A.2.16)

We deduce the expression of the voltage V |n+1
p such as

V |n+1
p ≈− 2∆t

G∆t +2C

( I|n+
1
2

p+ 1
2
− I|n+

1
2

p− 1
2

∆x

)

− 2∆t
G∆t +2C

× −G∆t +2C
2∆t

V |np

≈− 2∆t
(G∆t +2C)∆x

( I|n+
1
2

p+ 1
2
− I|n+

1
2

p− 1
2

∆x

)

− G∆t −2C
G∆t +2C

V |np (A.2.17)

The obtained expression gives the discretization of the voltage V |n+1
p using the 1D scheme of

the FDTD method, expressed concisely in Chapter 2 by equation (2.28).

The equations (A.2.17) and (A.2.15) are valid for all the segments x of the line except for the

first x = 1 and last x = ndx+ 1 ones corresponding respectively to the source and load levels.

The 1D-FDTD discretization of the voltage at these levels will be detailed in the next section.

A.3 Discretization of the voltage at the source and load levels

of a transmission line

At the terminal conditions, the discretized voltages and currents at each end of the line

are not collocated in space or time. Whereas the terminal conditions relate the voltage and

current at the same position and at the same time. We define Is the current at the first mesh

of the transmission line (x = 0) at the source level, and IL the current at the first mesh of the

transmission line (x = L) at the source level.

First we evaluate the equation (A.1.4), considering the instant t = (n+ 1
2)∆t and the position in

space x = p∆x, as follows:

I|n+
1
2

p − I|n+
1
2

p−1

∆x
=−GV |n+

1
2

p −C
V |n+1

p −V |np
∆t

(A.3.1)
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Then, we write the previous equation for p = 1 corresponding to the first mesh (x = 0)

I|n+
1
2

1 − I|n+
1
2

0
∆x
2

=−GV |n+
1
2

1 −C
V |n+1

1 −V |n1
∆t

(A.3.2)

The current I|n+
1
2

0 is not defined and consequently will be approached by averaging the source

I|s to obtain a value located in time as the same time point I|n+
1
2

1 . Whereas the voltage V |n+
1
2

1 is

deduced from equation (A.2.11). Equation (A.3.2) is now written as follows:

I|n+
1
2

1 − I|n+1
s +I|ns

2
∆x
2

=−G
V |n1 +V |n+1

1

2
−C

V |n+1
1 −V |n1

∆t
(A.3.3)

We extract the voltage V |n+1
1 from the previous equation

V |n+1
1 =

2C−G∆t
2C+G∆t

V |n1 −
4∆t

∆x(2C+G∆t)
I|n+

1
2

1 +
2∆t

∆x(2C+G∆t)
(I|n+1

s + I|ns ) (A.3.4)

In the case of resistive terminations, the terminal characterizations are written in terms of gen-

eralized Thevenin’s equation as V1 =Vs −RsIs, where Rs is the source resistance. By replacing

the current Is in equation (A.3.4) by I|s = −GsV1 +GsVs, where Gs =
1
Rs

, the voltage V |n+1
1 is

given by

V |n+1
1 =

2C−G∆t
2C+G∆t

V |n1 −
4∆t

∆x(2C+G∆t)
I|n+

1
2

1 (A.3.5)

+
2∆t

∆x(2C+G∆t)
(−GsV |n+1

1 +GsV |n+1
s −GsV |n1 +GsV |ns ) (A.3.6)

(A.3.7)

We rearrange the previous equation to group terms depending on the voltage V |n+1
1 as follows:

V |n+1
1

(

1+
2Gs∆t

∆x(2C+G∆t)

)

=V |n1
(2C−G∆t

2C+G∆t
− Gs2∆t

∆x(2C+G∆t)

)

− 4∆t
∆x(2C+G∆t)

I|n+
1
2

1

(A.3.8)

+
2∆tGs

∆x(2C+G∆t)
(V |n+1

s +V |ns ) (A.3.9)

After some simplification, we extract the final expression of the voltage V |n+1
1
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V |n+1
1 =

(

1+
2Gs∆t

∆x(2C+G∆t)

)−1
(

V |n1
((2C−G∆t)∆x−2Gs∆t

∆x(2C+G∆t)

)

− 4∆t
∆x(2C+G∆t)

I|n+
1
2

1

+
2Gs∆t

∆x(2C+G∆t)
(V |n+1

s +V |ns )
)

=
(

1+
2Gs∆t

∆x(2C+G∆t)

)−1( 2Gs∆t
∆x(2C+G∆t)

)(

V |n1
((2C−G∆t)∆x

2Gs∆t
−1
)

− 4∆t
2Gs∆t

I|n+
1
2

1

+V |n+1
s +V |ns

)

(A.3.10)

For the particular case where the transmission line is assumed to be lossless, the losses R and

G are nul, the previous equation can be simplified as follows:

V |n+1
1 =

(

1+
Gs∆t
C∆x

)−1(Gs∆t
C∆x

)(

V |n1
(C∆x

Gs∆t
−1
)

− 2
Gs

I|n+
1
2

1 +V |n+1
s +V |ns

)

=
(

1+
∆x
∆t

RsC
)−1

((∆x
∆t

Rsc−1
)

V |n1 −2RsI|
n+ 1

2
1 +V |n+1

s +V |ns
)

(A.3.11)

The obtained expression corresponds to the discretization of the voltage at the level source of

a lossless transmission line, given directly by equation (2.30) in section (2.2.3) of Chapter 2.

Following the same principle for the evaluation of the voltage at the first mesh of the transmis-

sion line, we deduce the voltage at the load level by writing the equation (A.3.1) for p = ndx

corresponding to the last mesh x = L. In this configuration, the current I|n+
1
2

p is is substituted

by the average current IL such that

I|n+1
L +I|nL

2 − I|n+
1
2

ndx
∆x
2

=−G
V |nndx+1 +V |n+1

ndx+1

2
−C

V |n+1
ndx+1 −V |nndx+1

∆t
(A.3.12)

We then extract the voltage V |n+1
ndx+1 from the previous equation

V |n+1
ndx+1 =

2C−G∆t
2C+G∆t

V |nndx+1 +
4∆t

∆x(G∆t +2C)
I|n+

1
2

ndx − 2∆t
∆x(2C+G∆t)

(I|n+1
L + I|nL) (A.3.13)

Similarly, with the terminal characterizations at the load defined with Thevenin’s equation as

Vndx+1 = VL + RLIL, where RL is the load resistance. By replacing the current IL in equa-

tion (A.3.13) by I|L = GLVndx+1 −GLVL, where GL = 1
RL

, the voltage V |n+1
ndx+1 is given by

219



APPENDIX : 1D FDTD Modeling of the Transmission Line Equations

V |n+1
ndx+1 =

2C−G∆t
2C+G∆t

V |nndx+1 +
4∆t

∆x(2C+G∆t)
I|n+

1
2

ndx (A.3.14)

− 2∆t
∆x(2C+G∆t)

(GLV |n+1
ndx+1 −GLV |n+1

L +GLV |nndx+1 −GLV |nL) (A.3.15)

We rearrange the previous equation to group terms depending on the voltage V |n+1
ndx+1 as follows:

V |n+1
ndx+1

(

1+
2GL∆t

∆x(2C+G∆t)

)

=V |nndx+1

(2C−G∆t
2C+G∆t

− GL2∆t
∆x(2C+G∆t)

)

+
4∆t

∆x(2C+G∆t)
I|n+

1
2

ndx

+
2∆tGL

∆x(2C+G∆t)
(V |n+1

L +V |nL) (A.3.16)

After some simplification, we extract the final expression of the voltage V |n+1
ndx+1

V |n+1
ndx+1 =

(

1+
2GL∆t

∆x(2C+G∆t)

)−1
(

V |nndx+1

((2C−G∆t)∆x−2GL∆t
∆x(2C+G∆t)

)

+
4∆t

∆x(2C+G∆t)
I|n+

1
2

ndx

− 2∆tGL

∆x(2C+G∆t)
(V |n+1

L +V |nL)
)

=
(

1+
2GL∆t

∆x(2C+G∆t)

)−1 2∆tGL

∆x(2C+G∆t)

(

V |nndx+1

((2C−G∆t)∆x
2GL∆t

−1
)

+
4∆t

2GL∆t
I|n+

1
2

ndx

+V |n+1
L +V |nL

)

(A.3.17)

For the particular case where the transmission line is assumed to be lossless, the terms R and G

are null, the previous equation can be simplified as follows:

V |n+1
ndx+1 =

(

1+
GL∆t
C∆x

)−1(GL∆t
C∆x

)(

V |nndx+1

( C∆x
GL∆t

−1
)

+
2

GL
I|n+

1
2

ndx +V |n+1
L +V |nL

)

(A.3.18)

=
(

1+
∆x
∆t

CRL

)−1
((∆x

∆t
CRs −1

)

V |nndx+1 +2RLI|n+
1
2

ndx +V |n+1
L +V |nL

)

(A.3.19)

The obtained expression corresponds to the discretization of the voltage at the level source of a

lossless transmission line, given directly by equation (2.31) in section (2.2.3) of Chapter 2.
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