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Résumé

La relation entre la masse du trou noir supermassif (SMBH) situé au centre des galaxies et
la masse de leur bulbe ou leur dispersion de vitesse centrale est bien connue. Cela suggère une
coévolution entre les SMBH et leurs galaxies hôtes. Les mécanismes détaillés d’alimentation et
de rétroaction des Noyaux Actifs de Galaxies (AGN) ne sont pas encore bien compris, et pour
les AGN de faible luminosité, les AGN occultés et les galaxies de type tardif, il est difficile de
déterminer précisément les masses des trous noirs centraux (BH).

L’objectif de cette recherche de doctorat est d’étudier différents aspects des AGN et leur
lien avec les SMBH dans différents environnements galactiques. L’étude présentée s’est con-
centrée sur deux projets de recherche distincts visant à contribuer à notre compréhension de
l’alimentation des AGN, des mécanismes de rétroaction et de la détermination des masses des
SMBH.

Le premier projet consistait à examiner la relation entre la masse des SMBH et les propriétés
des galaxies radio-bruyantes, en mettant l’accent sur l’évolution en fonction du décalage vers
le rouge. Un échantillon de 42 galaxies radio et d’AGN présentant des raies d’émission larges
sur une plage de décalage vers le rouge de 0,3 à 4 a été constitué . En croisant les sources du
relevé radio FIRST du Very Large Array (VLA) avec des galaxies confirmées spectroscopique-
ment provenant de relevés à grand champ, tels que SDSS, DES, WISE et GAMA, un ensemble
de données complet a ainsi pu être obtenu. Les propriétés analysées comprenaient la masse
stellaire, les taux de formation d’étoiles et les caractéristiques des trous noirs tels que la masse
des SMBH, le rapport d’Eddington et la puissance du jet. Les résultats ont été comparés à
des relations d’échelle existantes dans la littérature, fournissant des informations précieuses sur
l’évolution des AGN radio-bruyants et leur lien avec les SMBH.

Le deuxième projet faisait partie du relevé Galaxy Activity, Torus and Outflow Survey
(GATOS). Il s’est concentré sur l’étude des mécanismes d’alimentation et de rétroaction des
AGN, en particulier dans les AGN de faible luminosité, les AGN occultés et les galaxies de
type tardif. La détermination précise des masses des trous noirs centraux dans ces systèmes est
difficile du fait de la présence de tores moléculaires sur la ligne de visée.

Cette étude a utilisé l’échantillon principal de GATOS et a utilisé des observations haute
résolution de l’Atacama Large Millimeter/submillimeter Array (ALMA) pour étudier les ré-
gions circum-nucléaires de galaxies sélectionnées. En analysant l’émission CO(3-2) dans une
région d’environ 100 parsecs autour du SMBH, l’étude réalisée visait à utiliser la haute réso-
lution des données pour permettre des estimations de masse des trous noirs pouvant etre plus
précises que celles obtenues via les relations d’échelle traditionnelles. Une approche novatrice
a été développée en utilisant des techniques d’apprentissage supervisé pour estimer les masses
des trous noirs en se basant sur des diagrammes position-vitesse et des cartes de moments is-
sues d’observations CO(3-2) d’ALMA. La méthode a été entraînée, validée et testée à l’aide
de simulations numériques avec une large gamme de paramètres. Les résultats ont ensuite été
appliqués à l’échantillon principal de GATOS, révélant des estimations cohérentes de la masse
des trous noirs et fournissant des estimations d’erreur fiables. Ce travail pose les bases d’une
approche automatisée pour l’estimation de la masse des trous noirs en utilisant l’apprentissage
machine.
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Abstract

The relationship between the mass of the supermassive black hole (SMBH) at the center of
galaxies and the mass of their bulge or central velocity dispersion is well established, indicating
coevolution between SMBHs and their host galaxies. However, the detailed feeding and feed-
back mechanisms of Active Galactic Nuclei (AGN) remain poorly understood, particularly for
low-luminosity AGN, obscured AGN, and late-type galaxies, which makes the precise determi-
nation of central black hole masses challenging.

This Ph.D. research aimed to investigate various aspects of AGN and their connection to
SMBHs in different galactic environments. Two separate research projects were conducted
to contribute to our understanding of AGN feeding, feedback mechanisms, and SMBH mass
determination.

The first project focused on examining the relationship between SMBH mass and the prop-
erties of radio-loud galaxies, with a specific emphasis on redshift evolution. A sample of 42
radio galaxies and AGN with broad emission lines spanning a redshift range of 0.3 to 4 was
compiled. A comprehensive dataset was obtained by cross-matching radio sources from the
Very Large Array (VLA) FIRST survey with spectroscopically confirmed galaxies from wide-
field surveys, including SDSS, DES, WISE, and GAMA. The analyzed properties included
stellar mass, star formation rates, and black hole characteristics such as SMBH mass, Edding-
ton ratio, and jet power. The findings were compared with existing scaling relations from the
literature, providing valuable insights into the evolution of radio-loud AGN and their connection
to SMBHs.

The second project was part of the Galaxy Activity, Torus, and Outflow Survey (GATOS)
and aimed to study the feeding and feedback mechanisms of AGN, particularly in low-luminosity
AGN, obscured AGN, and late-type galaxies. The precise determination of central black hole
masses in these systems is challenging due to the presence of molecular tori along the line
of sight. This study utilized the core sample of GATOS and employed high-resolution ob-
servations from the Atacama Large Millimeter/submillimeter Array (ALMA) to investigate the
circum-nuclear regions of selected galaxies. By analyzing the CO(3-2) emission within approx-
imately 100 parsecs around the SMBH, the study aimed to obtain more accurate estimates of
black hole masses compared to traditional scaling relations. A novel approach was developed
using supervised machine learning techniques to estimate black hole masses based on position-
velocity diagrams and ALMA CO(3-2) observations. The method was trained, validated, and
tested using numerical simulations with a wide range of parameters. The results were then ap-
plied to the core sample of GATOS, revealing consistent estimations of black hole masses and
providing reliable error estimations. This work lay the foundation for an automated approach
to black hole mass estimation using machine learning.
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CHAPTER 1

INTRODUCTION TO AGN PHYSICS

In this chapter, I will provide the necessary astrophysical background to comprehend the re-
search conducted in this work. I will begin by discussing the fundamental characteristics of
galaxies and exploring their various types. Next, I will delve into the concept of Active Galactic
Nuclei (AGN), including their classification and key properties. Subsequently, I will focus on
the circumnuclear region and its dusty torus. Following that, I will delve into the topic of AGN
feedback, understand why it is crucial, and examine its different manifestations. I will then
investigate the connection between Super Massive Black Hole (SMBH) and galaxies, explor-
ing how their evolution are intricately linked. Lastly, I will examine several of the most used
methods to estimate a SMBH mass.

Contents

1.1 Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Active Galactic Nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 The different types of AGN . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 The unification model of AGN . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Global spectrum SED . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 SMBH accretion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.5 Radio galaxies excitation . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.6 Jets formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 The Circumnuclear Region . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 The dusty torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.2 Molecular torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.3 Polar biconical outflows . . . . . . . . . . . . . . . . . . . . . . . . 16

1



CHAPTER 1. INTRODUCTION TO AGN PHYSICS

1.4 AGN Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 The need for feedback . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4.2 The two modes of AGN feedback . . . . . . . . . . . . . . . . . . . 19

1.4.3 Energy or momentum conservation . . . . . . . . . . . . . . . . . . 21

1.5 Co-Evolution of Galaxies and SMBH . . . . . . . . . . . . . . . . . . . . 22

1.6 Classical methods for estimating MBH . . . . . . . . . . . . . . . . . . . . 24

1.6.1 Dynamical estimation . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6.2 MBH - σ relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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1.6.4 Single epoch method . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6.5 Fundamental Plane of BH Activity . . . . . . . . . . . . . . . . . . . 27

1.1 Galaxies

Galaxies are systems of stars, gas, dust, and dark matter bound together by gravity. They can be
classified based on their morphological features using the Hubble sequence, or Hubble tuning
fork diagram (Hubble 1936). It separates galaxies into three categories: elliptical, spiral, and
irregular galaxies. These categories are further subdivided into more specific types based on
their characteristics.

On the left of the diagram, we find elliptical galaxies, also called early-type galaxies. They
are composed of older, red, low-mass stars and contain a sparse interstellar medium, resulting
in little or no ongoing star formation within them. Nevertheless, they can experience short but
intense episodes of star formation during mergers with other galaxies (Pearson et al. 2019).
Elliptical galaxies tend to be found at the center of globular clusters (Dressler 1980) and they
are not the most abundant type of galaxies in the Universe (Loveday 1996; Dalya et al. 2021).
They are characterized by their ellipsoidal or nearly spherical shape. They are denoted by the
letter "E" followed by a number between 0 and 7 representing their degree of elongation. This
number is defined as 10η where η = (a − b)/a. Here, a is the length of the major axis, and b is
the one of the minor axis. The greater the number is, the more elongated the galaxy is.

Late-type galaxies, or spiral galaxies are placed on the right of the Hubble sequence. They
are composed of a central concentration of stars called bulge, a disk-like structure, and spiral
arms that wind outwards from the center. The bulge is a compact, spherical, or ellipsoidal
structure located at the center of a galaxy. The bulge can vary in size and shape, ranging from
small and nearly spherical to large and elongated. The central bulges of spiral galaxies consist
of aging, red stars similar to those found in elliptical galaxies. However, within the rotating disk,
there are much younger stars as well as gas and dust, which promote active star formation in the
disk. In some cases, dense central components that resemble classical bulges can be formed.
They result from the slow transformation of disk gas. These central components, referred to

2



CHAPTER 1. INTRODUCTION TO AGN PHYSICS

Figure 1.1: Hubble sequence/tuning fork diagram. On the left side, we observe the elliptical
galaxies, while on the right side, we have the spiral galaxies. Among the spiral galaxies, we find
on top the galaxies without bars whereas the barred galaxies are located at the bottom. Image
made by Ville Koistinen.

as pseudobulges, exhibit similar characteristics to bulges that originate from galaxy mergers,
despite having a distinct formation mechanism. Most galaxies in the Universe are spiral ones
(Loveday 1996; Dalya et al. 2021) and most of them have bars (Melvin et al. 2014). Spiral
galaxies are denoted by the letter "S". They are characterized by the tightness of their spiral
arms and the size of the bulge using the letters "a", "b" or "c". The letter "a" describes spiral
galaxies with tighter spiral arms and brighter bulge while "c" describes the ones with looser
arms and fainter bulge. They are further divided into two branches based on the presence of a
spiral bar (denoted with "B").

At the center of the diagram, between elliptical and spiral galaxies, the lenticular galaxies
(S0) can be found. These galaxies have a similar appearance to elliptical while having a bright
central bulge but no spiral arms. Some galaxies have irregular structures and do not fit into the
Hubble diagram. They are called irregular galaxies.

The Hubble sequence initially offered a fundamental framework for understanding various
galaxy morphologies. Still, over time, it has been revised and refined to provide a more compre-
hensive explanation for the diverse array of galaxies astronomers observe today (de Vaucouleurs
1959; van den Bergh 1976; Kormendy & Bender 1996, 2012; Cappellari et al. 2011; Graham
2019). For example, in 1959, de Vaucouleurs introduced a classification system for barred
lenticular galaxies (de Vaucouleurs 1959). This system was primarily based on the contrast and
strength of the bars observed in these galaxies. He began by introducing a category for galaxies
with weak bars, labeled as the "AB" class. This classification was applied to both spiral and
lenticular galaxies and occupied a middle ground between galaxies with distinct and strong bars
(designated as "B") and those without bars altogether (designated as "A").
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Figure 1.2: EHT pictures of the shadow of M87 (left) and Sagittarius A∗ (right) (The Event
Horizon Telescope Collaboration et al. 2019, 2022).

1.2 Active Galactic Nuclei

1.2.1 The different types of AGN

The nucleus of a galaxy can go through bright activity phases and become brighter than the
rest of the galaxy (Padovani et al. 2017). This phenomenon is called AGN. A galaxy with
such a nucleus is called an active galaxy. The luminosity of an AGN cannot be explained
with only thermal emission. Most of the luminosity comes from the gas being accreted by a
central SMBH. The AGN was the strongest proof of the existence of SMBH until more direct
observations were made. Today’s best proof of the existence of SMBH is the direct observations
of the SMBH’s shadow of Sagittarius A* and M87 by the Event Horizon Telescope (The Event
Horizon Telescope Collaboration et al. 2019, 2022, , see Fig. 1.2).

Since the first observation by Carl Seyfert in 1943 (Seyfert 1943), numerous types of AGN
have been discovered, each with their unique features. The primary characteristics of AGN are
listed below (Peterson 1997; Beckmann & Shrader 2012):

• The AGN nucleus appears star-like when compared to the host galaxy. They can emit
up to L∼ 1015L⊙, which can exceed the radiation of the entire host galaxy by up to 1000
times.

• Intense and extremely wide emission lines are present in the optical spectrum, with a
Full-Width Half Maximum (FWHM) of up to ∼ 10000 km.s−1.

• Both their continuum and emission lines can vary. The timescales of variability are gen-
erally on the order of months or years, although they can be as short as days for the most
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luminous AGN, and even minutes for AGN at smaller wavelengths, such as X-ray or
gamma rays.

• In some cases, extended jets made of matter ejected at high velocities can be observed,
with lengths ranging from 10−5pc to 100 kpc. See Mickaelian (2015) for a more detailed
review of the different type of AGN.

All the different types of AGN can be classified into two main classes: Radio-Quiet AGN
(RQAGN) and Radio-Loud AGN (RLAGN). RLAGN have strong emissions in the radio wave-
lengths and constitute about 10% of the AGN population. Quasars, Fanaroff-Riley radio galax-
ies (FRI, FRII), and blazars (BL-Lacs and FS-RQs- Flat Spectrum Radio Quasars) are classified
as RLAGN. On the contrary, RQAGN have a fainter emission in this domain. Seyfert galaxies,
Ultra-Luminous Infrared Galaxy (ULIRG), and Low-Ionization Nuclear Emission-Line Region
galaxy (LINER) are classified as RQAGN.

1.2.2 The unification model of AGN

As previously discussed, a wide variety of AGN types exist. However, there must be some
shared characteristics among them. The discovery of a dusty torus located in the sub-parsec
region, which obscures the central region when viewed edge-on, has contributed to the develop-
ment of an improved classification system for AGN based on their orientation (Urry & Padovani
1995).

In addition to the accretion disk, AGN have two distinct gas regions with differing velocities:
the Narrow Line Region (NLR) and the Broad Line Region (BLR). These regions are classified
based on the width of their optical emission lines. The BLR is typically less than 1 pc in
size and is too small to be resolved. It has gas velocities that can reach up to 40,000 km.s−1

and a temperature of 103 K. In contrast, the NLR can be as large as kiloparsecs in Seyfert
galaxy (Sy1, Sy2) and has gas velocities lower than 1000 km.s−1.

Recombination lines, including hydrogen Lyman and Balmer lines, are considered permit-
ted lines. They are named so because they can be observed in laboratory conditions. In contrast,
forbidden lines do not appear in laboratory settings. This is due to their extremely low coeffi-
cient of spontaneous emission, which causes the upper energy levels to be de-excited primarily
through collisions with other ions (Zuckerman & Ball 1974). However, in interstellar space,
where the density is significantly lower, collisions are rare, allowing for the observation of
spontaneous emission. Nevertheless, there is a threshold density beyond which these forbidden
lines cannot be observed. In regions with high gas density near the nucleus, these lines are not
visible. In the BLR, the gas density exceeds the critical density for forbidden lines, resulting in
the observation of only permitted lines. On the other hand, the low density of the NLR permits
the presence of forbidden emission lines such as [OIII] (Vrtilek & Carleton 1985).

In the unification model, AGN can be classified into two main classes:

• Type 1 AGN when the observer is looking face-on and can see both the BLR and the
NLR.
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arising from gas situated near the SMBH. These are known as changing-obscuration AGN
(Mereghetti et al. 2021). In the optical/UV domain, such events are commonly associated with
rapid changes in the radiation field driven by accretion. These changes result in the suppres-
sion, enhancement, or even the disappearance of the characteristic blue continuum and broad
optical/UV lines typical of Type 1 AGNs. These are referred to as "changing-state AGN" (Gra-
ham et al. 2020). The fundamental spectral states of AGN is shown in Fig.1.4, illustrating their
potential transitions between these states in both the X-ray and optical spectral domains.

1.2.3 Global spectrum SED

The Spectral Energy Distribution (SED) of non-active galaxies is characterized by a continu-
ous thermal distribution coming from the stars of the galaxies. In the case of active galaxies,
the AGN emits strongly in many wavelengths which makes their SED very distinct from the
non-active ones (Kauffmann et al. 2003; Lacy et al. 2015; Brandt & Alexander 2015; Tadhunter
2016). In the low-frequency, from the radio to the IR domain, a power law can be observed.
Then, in the mid to near-IR, the black-body emission coming from the accretion disk begins.
According to AGN luminosity, non-stellar radiation dominates more or less over the host stel-
lar and interstellar radiation. This domination is observed when considering a small aperture
around the center.

The various physical processes responsible for generating different parts of the spectrum are
well established. At low frequencies, particularly in the radio, synchrotron emission is responsi-
ble for the observed power law. The spectral slope of the power law provides information about
the age of the emission. The spectrum is almost flat close to the AGN, owing to the high-energy
electrons present in the vicinity. However, as electrons with higher energy levels lose energy
first, the spectrum slopes steepen. In some cases, the synchrotron emission can persist into the
optical and X-ray wavelengths.

Near the accreting SMBH, the intense UV-X-ray radiation emitted by the AGN heats the
dust up to temperatures exceeding 100 K. Consequently, the dusty molecular torus thermal
emission is anticipated to strongly dominate the millimeter part of the spectrum, within the
wavelength range of 3-20 µm (Nenkova et al. 2002). Nonetheless, the continuum emission
around 10 µm may primarily emanate from the inner, hotter region of the torus, possibly failing
to provide a comprehensive representation of the entire torus structure (Schartmann et al. 2008).
Additionally, observations of nearby AGN like NGC 1068 have shown that the detected mid-
IR continuum frequently results from radiation coming from polar dust or is influenced by
scattering, rather than originating directly from the presumed torus itself (Bock et al. 2000;
Tristram et al. 2014; Hönig & Kishimoto 2017).

The findings from the IRAS indicated that numerous AGN exhibit robust emissions in the
far-IR spectrum, displaying spectral energy distributions akin to those observed in non-AGN
star-forming galaxies (Soifer et al. 1987). The resemblance between the emission patterns and
the large IRAS beams led to the initial attribution of this emission to star formation occurring
within the galaxies hosting AGN. These results convincingly indicated that the IR emissions
in the near- and mid-IR range in Seyfert galaxies are mainly produced by dust heated by the
central engine, while the far-IR emissions are likely powered by young stars.
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Figure 1.5: Example of a typical unobscured AGN X-ray spectrum (0.1-1000 keV). The full
spectrum is represented by the solid black line while its component are plotted in dashed (the
powerlaw up to the high-energy cutoff, the soft excess in green, the iron Kα line and the reflec-
tion hump). Figure from (Ricci 2011).
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In the UV domain, the spectrum is dominated by the black-body emission coming from
the accretion disk, creating a big blue bump (Gierliński & Done 2004; Porquet et al. 2004;
Piconcelli et al. 2005) which contains most of the bolometric luminosity. Within the X-ray
spectrum of AGNs, characteristic components are commonly observed, which encompass: a
soft excess appearing below 2 keV, a power-law continuum extending up to roughly 10 keV, a
complex of Fe Kα emission lines typically at around 6.4 keV and a Compton scattering bump
that occurs near 20–30 keV (see Fig.1.5).

For the majority of AGN, the soft X-ray excess is not an extension of the black-body emis-
sion from the accretion disk (Gierliński & Done 2004; Porquet et al. 2004; Piconcelli et al.
2005), except potentially in low-mass Narrow Line Seyfert 1 galaxies (Done et al. 2012). Var-
ious theories have been proposed to explain the origin of this soft excess: possibilities include
photo-ionized emission affected by relativistic motion in the accretion disk (Crummy et al.
2006), Comptonization of soft photons by a corona above the disk (Czerny & Elvis 1987), and
an effect caused by strong, smeared, partially ionized absorption (Gierliński & Done 2004).
While these models offer reasonable explanations for the soft excess, current simulations of
line-driven AGN accretion disk winds are unable to replicate the smooth, soft X-ray excess
(Schurch et al. 2009), leaving its origin an unresolved matter.

The Fe Kα emission comes from the neutral material in the BLR and the molecular torus.
Its analysis provides crucial insights into the physical and dynamic conditions of AGN central
engines, ranging from the inner accretion disk to the more distant molecular torus. However,
the physical understanding of the broad Fe Kα lines in observations is still not clear. This is
mainly due to the frequent presence of a warm absorber (Porquet et al. 2004; Piconcelli et al.
2005; Blustin et al. 2005) which may substantially complicate the analysis of X-ray data by
distorting the underlying continuum of the Fe Kα line (Turner & Miller 2009).

Similarly, various sources for the hard X-ray spectra beyond 10 keV in Sy1 have been sug-
gested. These potential sources include relativistic reflection, intricate absorption, Comptoniza-
tion, or a combination of these factors (Nardini et al. 2011; Noda et al. 2011; Walton et al.
2014; Mehdipour et al. 2015; Bartels et al. 2015). At the highest energies, γ-rays are emitted by
non-thermal processes such as inverse Compton scattering in beamed relativistic jets and pair
annihilation in the jets.

1.2.4 SMBH accretion

The luminosity of an AGN comes from the accretion of matter by an SMBH. As material falls
towards the Black Hole (BH), it forms an accretion disk. The SMBH can accrete material from
the dense central region of its host galaxy. As material orbits around the SMBH, the friction
generated due to the viscosity of the gas causes it to lose angular momentum and spiral towards
the SMBH. A substantial portion of the rest mass energy acquired through accretion is emitted
in the vicinity of the BH event horizon, resulting in an accretion luminosity L expressed as

L = η ˙MBHc2 (1.1)

Here, ˙MBH denotes the BH accretion rate, c represents the speed of light in a vacuum, and
η stands for the radiative efficiency of the BH. The radiative efficiency typically falls within the
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range of 0.05 to 0.42, contingent on the spin of the BH. Comparative analyses of observed AGN
luminosities and the deduced BH mass density propose an average value of η = 0.1−0.2 (Soltan
1982; Fabian & Iwasawa 1999; Yu & Tremaine 2002), aligning with the characteristics of mod-
erately spinning BH. The theoretical maximum luminosity produced by this phenomenon de-
pends on the BH mass (MBH) and is given by:

LEdd = 4πGc
mp

σT

(

MBH

M⊙

)

erg s−1 . (1.2)

where G is the gravitational constant, c is the speed of light, σT is the Thomson scattering
cross-section for the electron and mp is the mass of a proton. When the SMBH accretes matter
quickly enough to reach LEdd, the radiation pressure caused by the accretion balances the grav-
itational force of the SMBH, stopping the accretion. The Eddington ratio compares the nucleus
bolometric luminosity to the LEdd:

η =
Lbol

LEdd
(1.3)

This ratio indicates the accretion rates of an SMBH. The closer to 1 the Eddington ratio
is, the more efficiently the SMBH accretes matter. By definition, a nucleus is active when
its Eddington ratio is greater than 10−5. When the Eddington ratio is higher than 0.01, the
accretion rate is sufficient to build a geometrically thin, optically thick, and radiatively efficient
disk. When the Eddington ratio is much lower than 0.01, the accretion becomes inefficient.
This regime is called Radiatively Inefficient Accretion Flow (RIAF) or Advection Dominated
Accretion Flow (ADAF). The gas heats and inflates, creating a hot corona around the accretion
disk, and most of the energy is advected into the BH. This state is often accompanied by a
relativistic radio jet, which ejects most of the energy of the AGN through kinetic energy.

This low state is mostly encountered in early-type galaxies with very massive SMBH and
with low gas density available in their circumgalactic medium. On the contrary, a high state is
frequently found in late-type galaxies rich in gas and with a smaller SMBH. This correlation
appears to be true even at high redshift. Thus, the co-evolution of galaxy bulges and SMBH
is likely due to secular evolution more than mergers (Kormendy & Ho 2013; Heckman & Best
2014).

Indirect observation of the AGN accretion disk is possible by studying X-rays that are re-
flected off it. These reflection characteristics, which include phenomena like fluorescent emis-
sions from iron and the scattering of photons through Compton scattering, leave their mark
on the original X-ray spectrum. They can provide insights into the geometry of the accretion
process (Ross & Fabian 2005; García & Kallman 2010; Wilkins & Fabian 2012; Dauser et al.
2016; Taylor & Reynolds 2018).

In theory, the accretion of matter with an Eddington ratio exceeding one is considered im-
possible, assuming spherical accretion and the dominance of Thomson scattering in opacity.
However, practical observations reveal that this theoretical limit can be surpassed due to fac-
tors like non-spherical geometries and the presence of various instabilities. When an object
accumulates matter at a rate surpassing the Eddington limit, this phenomenon is referred to as
super Eddington accretion. Rare examples of SMBH accreting above the Eddington limit have
been observed (Lanzuisi et al. 2016; Tsai et al. 2018). Still, our understanding of the Super
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Eddington regime is still limited and the next generations of instruments will be required to
better investigate this regime (Brightman et al. 2019).

1.2.5 Radio galaxies excitation

Radio galaxies can be categorized between High-Excitation Radio Galaxy (HERG) and Low-
Excitation Radio Galaxy (LERG) (Best & Heckman 2012). In general, HERG exhibit a higher
radio luminosity than LERG. The Eddington ratios for HERG range from 0.1 to 0.01 while for
LERG it remains below 0.01. Moreover, the HERG are known for their feedback mechanism
and triggering of gas outflow. They are usually found in quasar mode, where the radiation
pressure ejects wind from the disk. In contrast, the LERG are usually in radio mode, where the
gas forms radio jets via shocks.

These two classes are based on the optical lines diagnostic and Baldwin, Phillips, and Ter-
levich diagram (Baldwin et al. 1981) (Fig.1.6). The presence of the permitted lines Hα and Hβ

is also a separating parameter since they exist almost only in HERG. The separation criteria be-
tween HERG and LERG works well in most cases but is not absolute since there exist powerful
LERG.
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1.3 The Circumnuclear Region

1.3.1 The dusty torus

As seen previously in Sect. 1.2.2, AGN exhibit different characteristics. Class 1 AGN have their
BLR directly observable while class 2 AGN have their BLR hidden from view. This obscuration
arises due to the presence of a thick and approximately axisymmetric structure known as the
dusty torus. The dusty torus extends over a spatial scale of 1 − 10 pc (Jaffe et al. 2004; López-
Gonzaga et al. 2016; Leftley et al. 2018) and resides just outside the dust-free accretion disk and
the BLR. This dust absorbs a important part of the AGN radiation and, reprocesses it to radiate
in the IR (Pier & Krolik 1992). It effectively obstructs our line of sight, if it passes through
it, preventing direct observation of the BLR and contributing to the obscured nature of class 2
AGN (see Fig. 1.3).

The sublimation radius is the location where dust grains evaporate. This temperature is
reached at 1400K for silicate grains and at 1800K for graphite ones. This radius is typically
in the order of 1 pc for nearby Seyferts and varies with the square root of the AGN luminosity
(Minezaki et al. 2004; Suganuma et al. 2006). At the sublimation radius, the dusty torus must
have a doughnut shape (Krolik & Begelman 1988; Urry & Padovani 1995). It must be thick and
clumpy, fragmented in clouds. To maintain its thickness, the torus must have a high-velocity
dispersion in the vertical direction (50 − 100 km.s−1) and the clouds inside it must have a low
collision rate. These clouds experience heating and surface evaporation on the side facing the
nucleus. This implies that they must be dense enough to shield the cold, dense gas at their core
against the radiation emitted by the AGN. The collision process, although weak, leads to the
necessary dissipation, resulting in the clouds spiraling inward towards the central region. This
promotes the accretion of material into the nucleus (Nenkova et al. 2008).

The torus should possess column densities of sufficient magnitude to obscure the optically
visible BLR completely. Specifically, a gas column density of at least 1023 cm−2 is necessary. At
such densities, a portion of X-ray radiation can still be detected. However, if the gas density sur-
passes 1024 cm−2, the X-ray emissions in the 2-10 keV range are obstructed (Kudoh et al. 2023).
Moreover, with a density of 1025 cm−2, even X-ray emissions above 10 keV become obscured.
AGNs characterized by these conditions are referred to as mildly and heavily Compton-thick,
respectively.

Continuing from the dusty torus, two other structures arise: a molecular torus and polar
biconical outflows (see Fig. 1.7).
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disk and torus, frequently interacting with the extended gaseous disks of the galaxies. Such in-
teractions enhance the connection between the jets and galaxies, facilitating AGN feedback in
the radio mode. Moreover, in cases where the kinematics of the molecular disks remain undis-
turbed by counter-rotating gas or outflows, their dynamics can provide a more reliable means to
estimate the MBH.

1.3.3 Polar biconical outflows

High-resolution interferometric observations conducted using the Very Large Telescope Inter-
ferometer and the Keck Observatory on nearby Seyfert galaxies have provided evidence that
the torus exhibits an elongated morphology along the perpendicular direction. This elongated
shape can be attributed to the heating of dust particles by the central nucleus, which initiates
from the sublimation radius. As a result, the heated dust particles join a wind that moves due
to the radiation pressure pushing on them. This leads to the formation of a distinctive hollow
polar cone structure (Antonucci & Miller 1985), as illustrated in Fig. 1.7.

These outflows are commonly detected through X-ray and UV absorption, as well as optical
emission lines (Crenshaw et al. 2003). The central engine has the capability to eject gas to
distances of a few hundred parsecs, even photo-ionizing it up to 20-30 kpc (Unger et al. 1987).

Low-luminosity nearby AGN often exhibit a relatively low Eddington ratio, which may limit
their ability to generate powerful winds from the accretion disk, as discussed in Sect. 1.4.2.
However, as outlined in Sect. 1.2.2, observational evidence still supports the presence of an
obscuring structure to account for the high fraction of type 2 AGN, even when the doughnut
torus is not directly observed. An alternative explanation proposes that the obscuration arises
from dusty outflows, which have been observed in mid-IR images of polar dust (Asmus et al.
2016). IR radiation has a much larger radiation cross-section on dust compared to the Thom-
son cross-section on dust-free ionized gas. This implies that radiation-driven winds can still
be launched beyond the sublimation radius. Radiative hydrodynamical simulations, such as
those conducted by Venanzi et al. (2020), have been employed to quantify this phenomenon.
Comparisons with nearby Seyferts observed within the Galaxy Activity, Torus, and Outflow
Survey (GATOS) project show approximate agreement with predictions regarding the strength
of the wind, which depends on both the Eddington ratio and the density column of the dust
(Alonso-Herrero et al. 2021).

1.4 AGN Feedback

1.4.1 The need for feedback

The interconnected growth of SMBHs at the center and their host galaxies indicates that the
energy released by the AGN influences the physical properties of the host galaxies in some
manner. Further proof of how this was given by Baugh (2006). In his study, he compared the
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observed mass function of galaxies to the one of simulated galaxies. The simulation he used
has for principle that, in the ΛCDM (cold dark matter) cosmological model, galaxy formation
happens in two steps. First, dark matter halos form by collapsing and becoming virialized.
Then, just after their formation, the atomic hydrogen gas collapsed, forming stars and galaxies.
Simulations based on this model can predict a mass function of matter inside the dark halos
but do not take into account any interference from AGN. Then, using a calibrated mass-to-light
ratio, he compared the mass function to the observed luminosity function of galaxies, which
can be fitted as a Schechter function (Schechter 1976):

dn

dL
= ϕ∗

(

L

L∗

)

e−L/L∗ (1.4)

where L∗ is a characteristic galaxy luminosity and ϕ∗ is the normalization.
By comparing the results from the simulations and the observations (see Fig. 1.8), it appears

that they are not in agreement for the low and high mass ends. In the simulations, baryons inside
the dark halos have formed too many stars or galaxies to fit the observations. This result implies
that some phenomenon must impact the formation of stars/galaxies.

In low-mass galaxies, the differences observed between simulations and observations can
be explained by the influence of supernova explosions and stellar winds. These mechanisms
can expel a considerable fraction of the gas from the galaxy’s gravitational potential, leading
to a reduction in the rate of star formation. This process is commonly known as stellar feed-
back. In the case of more massive galaxies, stellar feedback alone is insufficient to explain the
discrepancies between simulations and observations. Instead, a more potent form of feedback,
known as AGN feedback, is necessary. The outflows and winds generated by the AGN can ex-
pel a significant amount of gas from the galaxy, thereby reducing the available fuel for both star
formation and black hole accretion. Additionally, AGN feedback can heat the gas, preventing
its collapse and thereby reducing the overall star formation rate of the galaxy.

These phenomena are called feedback mechanisms because they are self-regulating (Fig. 1.9).
Both AGN and star formation rely on cold gas derived from the same gas reservoir within the
galaxy’s halo. This reservoir gets its supply from gas-rich mergers, recycled material within the
galaxy, and gas accretion from the intergalactic medium. The volume and cooling efficiency of
this gas determine the available fuel for powering both SMBH growth and star formation. In the
case of fueling SMBH growth, the material encounters an additional obstacle in releasing suf-
ficient angular momentum to reach the galaxy’s inner region. Both processes emit energy and
momentum, affecting the gas availability through ionization, heating, shocking, or expulsion,
forming self-regulating feedback mechanisms (Behroozi et al. 2013). These two processes can
either positively or negatively affect the available fuel supply for the other process.
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1.4.3 Energy or momentum conservation

The physical processes able to provide energy and momentum to a gas wind or outflow are
numerous (Veilleux et al. 2020). Taking into account all of these phenomena would require
sophisticated numerical simulations. However, simple considerations suffice to distinguish the
different regimes of the flows. By taking the wind as spherical, it is possible to describe the
characteristic shock wave as the one used in supernova models (Weaver 1976; Fukue 2019).

Wind ejected inside the galactic nucleus can reach speeds of up to 10% of the speed of light
(Tombesi et al. 2010). The highly supersonic nature of the gas wind compels it to generate a
robust shock within the interstellar medium, giving rise to a forward shock wave that penetrates
the surrounding ambient interstellar medium, while concurrently experiencing substantial de-
celeration in an inner reverse shock directed towards the BH. This results in the categorization
of three distinct zones in the flow pattern, organized by increasing distance from the AGN (see
Fig. 1.11): the unshocked highly supersonic inner wind (zone a); the shocked inner wind mate-
rial (zone b), having traversed the reverse shock; and a shell composed of interstellar gas, swept
up by the forward shock (zone c).

If the forward shock is sufficiently strong, the influence of pressure from the ambient inter-
stellar medium, located just beyond zone c, can be disregarded. In such cases, the dynamics
of the shell of swept-up gas (zone c) are entirely dictated by the disparity between the outward
pressure force exerted by the shocked inner wind (zone b) and the gravitational inward pull
acting on the shell. The latter is contingent on the total mass encompassed by the shell’s ra-
dius. The thermal energy present in the shocked inner wind may undergo either transfer to the
interstellar medium or dissipation through radiative cooling. The subsequent flow pattern’s dy-
namics and the conservation of energy or momentum within the outflow hinge critically on the
fate of the thermal energy contained in the hot shocked inner wind. It was first assumed by Silk
& Rees (1998) that this cooling mechanism was an adiabatic expansion (energy-conserving).
Later, it was argued that the gas is cooled by inverse Compton from the quasar radiation (King
2003; Reeves & Braito 2019) and so it is only a momentum-conserving mechanism.

If the reverse shock efficiently undergoes cooling, the gas in the shocked inner wind within
zone b experiences a radiative region until its temperature reverts to its pre-shock value. This
process, involving an initially adiabatic shock followed by a cooling region, constitutes an
isothermal shock. Due to the effectiveness of cooling, the size of the region of the order of
the cooling (Rc − Rsw) is considerably smaller than the radius at which its temperature returns
to its pre-shock value (Rc), resulting in a very thin zone b. The post-shock gas subsequently
propels an outer shock into the unperturbed interstellar medium, exerting pressure equivalent to
the ram-pressure of the pre-shock inner wind. In this scenario, the inner wind can be conceptu-
alized as colliding directly with the interstellar medium, fully transferring its momentum in the
interaction. This configuration is termed momentum-driven outflow, as the driving force equals
the momentum flux of the inner wind (Costa et al. 2014).

On the contrary, if the reverse shock fails to radiate away its thermal energy, the shell is pro-
pelled by the adiabatic expansion of the hot shocked wind bubble. In situations where the entire
energy of the inner wind is conserved, the resulting outflow pattern is labeled energy-driven.
In this context, a significant portion of the AGN-produced energy is dedicated to transferring
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Figure 1.12: MBH−σ relation for a sample of 72 galaxies. Each galaxy type is represented
by a distinct color: green for Brightest Cluster Galaxies (BCGs), red for other elliptical and
S0 galaxies, and blue for late-type spiral galaxies. The symbols used to indicate the measure-
ment methods are as follows: stars for MBH measurements obtained through stellar dynamics,
triangles for measurements derived from maser dynamics, and circles for measurements based
on gas dynamics. The color-coded power law fits indicate the corresponding relationships for
galaxies of the same color. Figure from McConnell & Ma (2013)
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tion of main sequence galaxies suggests that the evolution of star formation is mainly regulated
by a balance between gas accretion and feedback mechanisms. By comparing the star formation
history with BH accretion history from X-ray and IR data, it was discovered that the growth rate
of BHs closely mirrors the cosmic star formation history, implying that the two processes are
closely linked.

There is, however, still a number of related open issues. For example, it appears that barred
galaxies have lower MBH than unbarred ones (Graham 2008; Brown et al. 2013). Furthermore,
local ellipticals with over-massive SMBH has been observed (Kormendy et al. 1997; van den
Bosch et al. 2012; Savorgnan & Graham 2016; Dullo et al. 2021). These over-massive SMBH
preferentially occur in galaxy clusters and in brightest cluster galaxies (McConnell & Ma 2013),
in particular where it is believed that the environmental effects strip the galaxies from their
gas and stop star formation and the growth of bulges. These galaxies are then called massive
relics and have particularly old stellar populations (Trujillo et al. 2014; Martín-Navarro et al.
2015; Ferré-Mateu et al. 2015, 2017). Another issue is the very discovery of massive SMBH
(MBH ≳ 109 M⊙) in bright quasars at the epoch of reionization (e.g., Bañados et al. 2018;
Farina et al. 2022). These observations are puzzling as they show that extreme SMBH can
form within 1 Gyr after the Big Bang. The rapid formation of these high-z SMBH might be
explained by invoking some extreme scenarios such as the growth of a 102−5 M⊙ seed via super-
Eddington accretion (Valiante et al. 2016b; Pezzulli et al. 2017), the direct collapse of an initial
gas condensation into a BH of ∼105 M⊙ (Visbal et al. 2014; Regan et al. 2017), or the merger
of massive protogalaxies (e.g., Mayer et al. 2010, 2015; Ferrara et al. 2013; Bonoli et al. 2014).

1.6 Classical methods for estimating MBH

As they are described in general relativity (Einstein 1916), BH are the simplest objects in the
Universe. They are defined by only three quantities: their masses, their spins, and their charges.
Thus, determining the MBH furnishes us with one-third of the complete information about a BH.
This, in conjunction with our prior observation regarding the correlated evolution of SMBH
and their host galaxies, emphasizes the increased importance of acquiring accurate measure-
ment of the SMBH mass. However, because BH does not emit or reflect light, it is impossible
to directly observe them. Up until the EHT pictures of SMBH shadows (The Event Horizon
Telescope Collaboration et al. 2019, 2022), SMBH were detected via their gravitational effects
on nearby systems. We present in this section several commonly used methods to estimate the
MBH.

1.6.1 Dynamical estimation

The estimation of SMBH mass through dynamical models involves studying the movements of
celestial objects, like stars or gas, around the SMBH. These observed motions, often referred
to as tracers, serve as constraints for the dynamical models. These models discern the con-
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tribution of the BH to the potential from that of the surrounding galaxy, thus facilitating the
inference of the SMBH mass by fitting these models to observations (Kormendy & Richstone
1995; Ferrarese & Merritt 2000; Kormendy 2004; Gebhardt et al. 2000; Kormendy & Ho 2013).

A notable constraint of this methodology is its reliance on resolving the kinematics of ob-
jects situated near the SMBH. Consequently, it becomes impractical for galaxies located at
considerable distances. Therefore, alternative methodologies are required to estimate SMBH
masses in such distant galaxies.

Across various dynamical models, an essential consideration is the necessity for a realistic
representation of the gravitational potential of the galaxy. Additionally, the data characterizing
the tracers motions must be robust enough to detect the presence of a BH (Gebhardt et al. 2003;
Ferrarese & Ford 2005; Kormendy & Ho 2013). Among the multitude of intricate processes
connected to SMBHs and their immediate surroundings, the study of stellar phenomena proves
more amenable to analysis and modeling. This feasibility arises from stars often being treatable
as point masses, predominantly influenced by gravity. The substantial mass disparity between
stars and MBH simplifies the problem further, allowing stars to be considered test masses on in-
termediate scales. Here, they operate within the MBH potential, where gravitational interactions
among stars are negligible, yet they are distant enough to avoid significant tidal effects from the
MBH.

The molecular gas surrounding the SMBH serves as another dynamical tracer for estimating
the MBH. Gas-dynamical mass measurements present distinct advantages compared to stellar-
dynamical modeling. The simplicity inherent in gas-dynamical modeling stems from the gas
Keplerian rotation within a dynamically cold disk. Unlike the intricate orbit-based computations
necessary for treating stars, analyzing gas dynamics in a rotating disk proves computationally
less demanding. The reduced complexity allows neglecting factors such as orbital anisotropy,
triaxiality, or the influence of the dark matter halo. The gas-dynamical approach assumes a thin,
rotating disk following circular orbits within the principal plane of the galaxy potential (Marconi
et al. 2001; Marconi & Hunt 2003). This methodology aims to calculate a model velocity
field aligning with observed velocities, velocity dispersions, and the line emission’s surface
brightness distribution. The gravitational potential of the galaxy comprises contributions from
stars, measured by the projected stellar surface brightness, and assumes a mass-to-light ratio
along with the presence of a BH (Melchior & Combes 2011; Combes et al. 2019).

However, gas dynamics introduce several complications (Kormendy & Ho 2013). Properly
sampling the BH Sphere of Influence (SoI) necessitates distributing gas across radii. Simulta-
neously, the gas kinematics must display sufficient orderliness for interpretation. Furthermore,
gas differs from stars as it behaves like a collisional fluid, responsive to non-gravitational distur-
bances such as turbulence, shocks, radiation pressure, and magnetic fields. Another challenge in
gas dynamics involves dust absorption potentially rendering the gas distribution opaque. Con-
sequently, assumptions about observing through the gas in projection may not hold under such
circumstances. Each galaxy requires meticulous examination to confirm whether the gas has
reached an equilibrium configuration, influenced mainly by gravitational effects, considering
the opacity caused by dust absorption.
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1.6.2 MBH - σ relation

The tight correlation between BH and bulge masses drawn from the MBH -σ relation (e.g. Fer-
rarese & Merritt 2000; Gebhardt et al. 2000) suggests that there is a mechanical and/or radiative
feedback from the AGN on the star formation in galaxies, all along their growth through accre-
tion and mergers. The origin of this coupling is not yet fully understood but there are analytic
and numerical models created to constrain the physical mechanism and reproduce the MBH - σ
relation (e.g. Silk & Rees 1998; Granato et al. 2004). Nevertheless, the observational MBH -
σ relation is not well constrained for low-mass galaxies (M < 109 M⊙). The tight correlation
is mostly derived from biased galaxy samples with a high MBH, which have a larger SoI easier
to resolve with common angular resolutions (e.g. Silk & Rees 1998; Costa et al. 2014). In this
work we used the Kormendy & Ho (2013) correction of the MBH - σ relation:

logMBH(M⊙) = 8.5 ± 0.05 + (4.41 ± 0.29)log

(

σ

200km/s

)

, (1.5)

where σ is the stellar central velocity dispersion. For our sample, it was taken from the Hyper-
leda compilation (e.g. Makarov et al. 2014). This relation has an intrinsic error of 0.3 dex.

1.6.3 Reverberation mapping

BLRs have a radius of light days to light weeks radii which makes them too small to be spatially
resolved. However, they can be resolved temporarily with the Reverberation Mapping technique
(Blandford & Payne 1982; Bahcall et al. 1972; Lyutyi & Cherepashchuk 1972; Cherepashchuk
& Lyutyi 1973). The SMBH accretion disk emits UV radiation that heats the BLR gas clouds,
ionizing them and creating emission lines. Thus, when the UV continuum source varies, the
emission lines vary too (’reverberate’) but with a delay of RBLR/c. Therefore, the BLR radius
can be estimated by measuring the time delay between the change in emission from the central
source and its impact on the BLR. Then, assuming that the width of the emission lines of the
BLR is due to the gravitational influence of the central SMBH, we can derive the following
relation from the Virial theorem:

MBH =
f (∆V2)R

G
(1.6)

where MBH is the mass of the central BH, G is the gravitational constant, ∆V is the virial
velocity of the BLR, R is the BLR radius and f is a factor depending on the BLR geometry. The
fact that the BLR velocity is dominated by the BH was validated by Gaskell (1988).

Most of the uncertainties of this method come from the factor f . Kollatschny & Zetzl
(2011) observed that the BLR structure changes with the emission-line turbulent dispersion and
rotational width, implying that f depends on these two factors. The findings of Gaskell (2008,
2011) indicate another inherent constraint, which suggests that the continua of AGN can exhibit
localized flares in off-center regions situated relatively close to the inner boundary of the BLR
radius.

Even in the absence of the expensive and time-consuming monitoring observations, it is
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possible to use this method, thanks to the AGN-Luminosity vs BLR-size scaling relation, cal-
ibrated from reverberation mapping measurements (Wandel et al. 1999). Refining the method
with a large reverberation mapping database, and comparing it to the other methods, Peterson
et al. (2004) find that the precision of the method is ∼ 30%, comparable to the gas or stellar
kinematical method. This difference can be explained by considering that the reverberation
mapping technique is notably influenced by the inclination angle of the BLR region, in contrast
to the gravitational method. As demonstrated in the study by Liu et al. (2017), the substantial
disparity between gravitational and virial mass estimates can be reconciled by adjusting the
parameter f to a value between 8 and 16 for the virial measurement. This adjustment of f is
contingent upon the inclination of the BLR. The conventional value of f ∼ 1 corresponds to an
inclination angle of around 30 degrees.

1.6.4 Single epoch method

The single epoch method uses the relation between the BLR size and the AGN optical/UV con-
tinuum luminosity empirically found from reverberation mapping (Peterson et al. 2004; Kaspi
et al. 2007; Bentz et al. 2009), as well as the tight correlation between the continuum luminosity
and that of broad emission lines (e.g., Shen et al. 2011). With these considerations, the MBH can
be expressed as

log

(

MBH

M⊙

)

= a + b log

(

L

1044 erg s−1

)

+ c log

(

FWHM

km s−1

)

, (1.7)

where the coefficients a, b, and c are empirically calibrated against local AGN with reverber-
ation mapping masses or using different lines. L and FWHM are the line luminosity and width.
At low redshift, below 0.75, the Hβ is the most commonly used line. For redshift between 0.75
and 2, the Mg ii λ2800 line is a common choice (McLure & Jarvis 2002). And for z ≳ 2, the
best line to use is C iv λ1549 Vestergaard (2002). Since their first estimation, the relation for
these lines had been revised by Vestergaard & Peterson (2006); Wang et al. (2009); Shen et al.
(2011); Xiao et al. (2011) and others.

The single epoch method has the advantage of being inexpensive in telescope times since it
can estimate the SMBH mass from just a spectrum. However, it is a more indirect method than
reverberation mapping and does not contain as many indicators that the measured velocities are
virialized ones. This method has an uncertainty of ∼ 0.3 dex.

1.6.5 Fundamental Plane of BH Activity

The Fundamental Plane of BH activity (FPBH) is a strong correlation between the MBH, its
5 GHz radio continuum luminosity, and its 2-10 keV X-ray power-law continuum (Merloni
et al. 2003). When accretion disks go through episodes of low-luminosity advection-dominated
accretion flow, they are observed to be in a hard state (hard X-ray radiation). In this state, they
are often accompanied by relativistic jets (Gallo et al. 2003; Narayan 2005). During this state
of inefficient radiation, the accreting material stops flowing in a disk at some distance from
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the accreting object. This new configuration results in the creation of a hot, optically-thin gas
corona around the BH. Photons, from the now truncated disk, are Compton-upscattered to tens
to hundreds of keV when they traverse this corona. Furthermore, the synchrotron mechanism in
the relativistic jets produces emission primarily in the radio band (Blandford 1984). The entire
broadband combined emissions of the accretion disk, corona, and relativistic jets range from
the radio to the X-ray bands. This emission can also be dominated by the jet itself, particularly
if accretion rates are higher than ∼ 0.01ṀEdd (Falcke et al. 2004). A fainter thermal component
emanating from the shortened accretion disk may also be identifiable alongside the primary
non-thermal corona emission. The jet is linked to the accretion process and it has been shown
that the luminosity of the X-ray and radio emissions are correlated and the disk-jet mechanism
is independent of the MBH. By considering these arguments, Merloni et al. (2003) and Falcke
et al. (2004) probed a large sample of galactic BH and SMBH and found a strong correlation
between the X-ray luminosity (between 2 et 10 keV), the radio luminosity (5 GHz) and the
MBH. This correlation is called the fundamental plane of BH activity. According to Gültekin
et al. (2019) the MBH can be estimated with the relation:

log

(

MBH

108M⊙

)

= 0.55 ± 0.22 + (0.19 ± 0.10)log

(

LR

1038erg/s

)

+ (−0.59+0.16
−0.15)log

(

Lx

1040erg/s

)

,

(1.8)

where Lx is the 2-10 keV X-ray power-law continuum and L5 the 5 GHz radio luminosity
calculated as LR = νLν = (ν = 5 GHz) × 4πD2F5, F5 being the 5 GHz radio flux density. This
relation has an intrinsic error of ∼0.40 dex.

This FPBH scaling relation is a useful method to distinguish between X-ray binaries, inter-
mediate mass BH, and SMBH, and to determine the MBH in a Type 2 AGN, or in a host galaxy
with disturbed morphology, where the MBH-σ method is unusable. The only requirement to es-
timate the MBH is to have X-ray and radio data of sufficient quality to resolve the central source
and also confirm its spectral characteristics (i.e. that it is indeed in the hard state). The data
must have a high angular resolution to avoid contamination from other sources and the host.
This is especially important to distinguish low luminosity AGN from X-ray binaries.
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SMBH AND GALAXY CO-EVOLUTION IN

RLAGN AT z ∼ 0.3 − 4

This chapter outlines my research focusing on the co-evolution of galaxies and central SMBH
within a sample of RLAGN. The results are published in Poitevineau et al. (2023). The re-
search presented here represents the first sample of distant RLAGN with both robust M⋆ and
MBH estimates and acts as a benchmark for future studies with a larger sample, more statisti-
cally representative of the RLAGN population characteristics.

I begin by providing the motivation behind this study and explaining the rationale for in-
vestigating this topic. Next, I detail the methodology employed to obtain the RLAGN sample
I studied, including the collection of multiwavelength data and the characterization of their
properties. I then describe the process of estimating properties such as MBH, jet characteristics,
accretion rates, and stellar properties. Furthermore, I discuss the inclusion of different samples
from existing literature, which serve as a basis for comparison with our findings. Finally, I
present our results by examining the scaling relations documented in previous studies, shedding
light on the implications of our research.

In this work, the first part of the RLAGN sample selection (from Sect. 2.2 to 2.2.3) as well
as the SED fitting and the stellar mass (M⋆) estimation was made by Dr. Gianluca Castignani.
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2.1 Motivations

Altogether, while existing studies show tight coevolution of SMBH, AGN, and their host galax-
ies with cosmic time, this interplay is still debated and unconstrained. This is at least partially
due to the difficulty of building large samples of distant AGN with well-characterized stellar
and BH properties and there are still a number of related open issues. One example of these
issues are the local ellipticals with overmassive SMBH (Kormendy et al. 1997; van den Bosch
et al. 2012; Savorgnan & Graham 2016; Dullo et al. 2021). These overmassive SMBH preferen-
tially occur in galaxy clusters (McConnell & Ma 2013), in particular where environment effects
strip the galaxies from their gas and stop star formation and the growth of bulges. Galaxies
are then called massive relics and have particularly old stellar populations (Trujillo et al. 2014;
Martín-Navarro et al. 2015; Ferré-Mateu et al. 2015, 2017).

Another example is the very discovery of massive SMBH (MBH ≳ 109 M⊙) in bright quasars
at the epoch of reionization (e.g., Bañados et al. 2018; Farina et al. 2022) is a mystery, as it
shows that extreme SMBH can form within 1 Gyr after the Big Bang. The rapid formation
of these high-z SMBH might be explained by invoking some extreme scenarios such as the
growth of a 102−5 M⊙ seed via super-Eddington accretion (Valiante et al. 2016b; Pezzulli et al.
2017), the direct collapse of an initial gas condensation into a BH of ∼105 M⊙ (Visbal et al.
2014; Regan et al. 2017), or the merger of massive protogalaxies (e.g., Mayer et al. 2010, 2015;
Ferrara et al. 2013; Bonoli et al. 2014).

In order to better understand the growth of SMBH with cosmic time and their coevolution
with their host galaxies, we have built a sample of distant RLAGN spanning about 9 Gyr of
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cosmic time, between z ∼ 0.3 − 4, with available radio to UV spectrophotometric data. Based
on this multiwavelength dataset, I assess the properties of the AGN sample, for example, in
terms of MBH and M⋆, jet power, and Eddington ratio. As RLAGN are associated with the
most massive BHs and host galaxies (e.g., Best et al. 2005; Chiaberge & Marconi 2011; Shen
et al. 2011; Shaw et al. 2012), they are excellent sources in which to investigate the galaxy,
AGN, and SMBH coevolution in the high-mass regime.

Throughout this work, we adopt a flat ΛCDM cosmology with matter density Ωm = 0.30,
dark energy density ΩΛ = 0.70, and Hubble constant h = H0/100 km s−1 Mpc−1 = 0.70.

2.2 RLAGN sample

We selected a sample of RLAGN by cross-matching the Very Large Array Faint Images of
the Radio Sky at Twenty-centimeters (VLA FIRST) source catalog (Becker et al. 1995) with
IR to optical spectrophotometric surveys. As further described in the following, the use of IR
to UV photometry enables modeling the SED, which ultimately allows us to obtain a good
characterization of the galaxy properties, such as the M⋆ and the SFR.

2.2.1 Dark Energy Survey

We began by examining the Dark Energy Survey (DES) (DES; Collaboration 2005; Dark En-
ergy Survey Collaboration et al. 2016), which is composed of two distinct multiband imaging
surveys. The first is a wide-area grizY survey covering ∼5000 deg2, while the second is a deep
supernova griz survey consisting of six distinct deep fields (Hartley et al. 2021). The DES data
release 2 (Abbott et al. 2021)1 has recently made the coadded source catalog and images pub-
licly available, encompassing six years of DES wide-area survey observations and five years of
DES supernova survey observations.

To construct our sample of distant RLAGN, we specifically focused on DES supernova
fields located in the equatorial region that overlapped with the VLA FIRST survey conducted
at low radio frequencies. The selection procedure closely followed that of Dr. Castignani’s
previous work (Castignani et al. 2019), which we refer to for additional details. However, his
previous study only concentrated on two radio sources, exploring their molecular gas content,
cluster environment, as well as stellar and star formation properties. In contrast, the present
study considers a more extensive sample, as further elucidated in the subsequent sections.

2.2.2 Radio, optical, and spectroscopic selection

In order to construct a sample of extragalactic radio sources, our analysis incorporated data
from the VLA FIRST survey (Becker et al. 1995), which observed 10,000 deg2 of the North and

1https://des.ncsa.illinois.edu/releases/dr2

31









CHAPTER 2. SMBH AND GALAXY CO-EVOLUTION IN RLAGN AT z ∼ 0.3 − 4

2.2.6 Radio and IR properties

I proceed to examine the low-frequency radio luminosities and the IR colors of our sources.
To accomplish this, I adopt a similar approach as previous studies (Condon 1989; Chiaberge
et al. 2009; Castignani et al. 2014) and assume a power-law for the radio spectrum, given by
S ν ∝ ν−α, where S ν represents the radio flux density at the observer frequency ν, and the spectral
index α is fixed at α = 0.8. Subsequently, I convert the 1.4GHz VLA radio fluxes S 1.4GHz into
rest-frame 1.4 GHz luminosity densities using the following formula:

L1.4 GHz = 4π S 1.4 GHz DL(z)2 (1 + z)α−1 , (2.2)

where DL is the luminosity distance. Figure 2.2 displays our sources in the L1.4 GHz versus
redshift plane. They all have L1.4 GHz ≳ 3 × 1030 erg s−1 Hz−1 , which is typical of RLAGN,
while purely starburst galaxies have lower L1.4 GHz < 1030 erg s−1 Hz−1 (Chiaberge et al. 2009).

Moreover, the majority (71%, i.e., 30/42) of our sources exhibit high radio powers exceed-
ing L1.4GHz = 2 × 1032ergs−1Hz−1. This criterion is employed to distinguish between Low-
Luminosity Radio Sources (LLR) and High-Luminosity Radio Sources (HLR), following the
approach adopted in previous studies (e.g., Chiaberge et al. 2009; Castignani et al. 2014). It
is worth noting that the radio galaxy population exhibits a bimodal distribution in terms of ra-
dio power, and the chosen LLR to HLR luminosity threshold corresponds to the fiducial radio
power that effectively separates FRI from FRII radio galaxies (Fanaroff & Riley 1974; Zirbel
1996). Furthermore, it is important to consider the influence of the Malmquist bias associated
with the VLA FIRST flux limit of ∼ 1 mJy, which results in an increased fraction of HLR at
higher redshifts, reaching unity for z > 1.

Fig 2.3 presents the sources in our sample plotted on the WISE color-color diagram, with
sources categorized according to the color-based classification by Jarrett et al. (2017), as de-
picted in the figure. Notably, our sample is observed to populate only three distinct regions
within the diagram. The majority (28 out of 42) of our sources are classified as AGN based on
their WISE colors. This outcome is anticipated since these sources were specifically selected
as distant and high-powered radio sources at z > 0.3. Based on WISE colors, the remaining
sources are reasonably distributed between the intermediate disk (9 out of 42) and starburst (5
out of 42) classes.

Furthermore, as shown in Fig. 2.2, the WISE IR colors of the vast majority of z > 1 sources
are consistent with AGN contribution. They also show high 1.4 GHz radio luminosities typical
of Radio-Loud Quasars (QSOs). The majority (22 out of 42, i.e., 52%) of our sources are in
fact classified as quasars in the NASA/IPAC Extragalactic Database (NED), for instance, with
counterparts in the 2dF–SDSS LRG And QSO (2SLAQ; Croom et al. 2009) catalog, or with
X-ray counterparts (XMM; Rosen et al. 2016), as outlined in Table A.1.
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a b c

Hα 1.24 0.43 2.1
Hβ 1.63 0.49 2.0

Mg ii 1.70 0.63 2.0
C iv 1.52 0.46 2.0

Table 2.1: Coefficients for estimating MBH using broad emission lines and Eq. 1.7. Values for
the Hβ, Mg ii, and C ivlines are from Shaw et al. (2012). The coefficients for Hα come from
Shen et al. (2011)

2.3 BH, jet, accretion, and stellar properties

2.3.1 BH masses

One of the main goals of this work is to investigate the coevolution of central BH with the host
galaxies in our RLAGN sample. To do this, I estimated MBH using the widely used single
epoch method (see Sect. 1.6.4), which is particularly suited for distant type 1 AGN. I used the
coefficients obtained for the Hα, Hβ, Mg ii, and C iv broad emission lines by Shen et al. (2011)
and Shaw et al. (2012). These are widely used lines that are redshifted in the optical domain,
depending on the redshift of the source. These lines indeed enable estimates of MBH over a
wide range of redshifts. Similarly to previous studies (Shaw et al. 2012; Castignani et al. 2013),
I used Hα, Hβ, and Mg ii for sources at z < 1 and the Mg ii and C iv lines for sources at higher
redshifts. When multiple broad emission lines were available for a given source, I adopted
the following order of preference: Hα, Hβ, Mg ii, and C iv (see, e.g., Shen & Liu (2012)). In
Table 2.1 I report the coefficients used in this work, and in Table A.2 I list the MBH.

2.3.2 Jet power

The sources in our sample are RLAGN which are typically characterized by jetted outflows
(see Sect. 1.2.6 for details). By studying jet properties such as its total power, I investigate the
complex interplay between the jet, the BH, and the gas accretion onto it, which is commonly
referred to as radio-mode AGN feedback (see Sect. 1.4.2). Following the previous work of
Willott et al. (1999), I estimate the jet power as:

Q jet = 3 × 1045 ξ3/2

(

L151 MHz

1035 erg s−1 Hz−1 sr−1

)6/7

erg s−1 , (2.3)

where L151 MHz is the extended total radio luminosity density at 151 MHz in the rest frame,
and ξ ranges between 10 and 20. I used an intermediate value ξ = 15. To estimate L151 MHz,
I extrapolated the L1.4 GHz luminosity densities assuming an isotropic emission and a power
law with α = 0.8, as further described in Sect. 2.2.6. The resulting jet powers are reported in
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Table A.2.

2.3.3 Eddington ratio

Our objective is to establish a correlation between the gas accretion onto the BH and the prop-
erties of the AGN. To gauge the Eddington ratio, previously defined in eq.1.3, I previously
determined the MBH (see Section 2.3.1). Thus, the challenge arises when estimating the AGN
bolometric luminosity. When estimating the AGN luminosity, the ideal method would have used
the total bolometric luminosity (Lbol) of the AGN, encompassing X-ray emissions. However,
this data is unavailable to us. Additionally, the entire emission is often primarily influenced
by the host galaxy, typically elliptical, as observed in our SED fits to estimate parameters like
M⋆, SFR, and others (see Sect.2.3.4). Consequently, the bolometric luminosity is not solely
attributable to the AGN.

An alternative approach involves utilizing the disk luminosity (Ldisk) as a proxy, which over-
whelmingly dominates the bolometric emission, particularly in bright Type I AGN (Castignani
et al. 2013). The continuum emission of the accretion disk is correlated with the BLR. In
practice, the BLR reprocesses about 10% of the disk luminosity (Celotti et al. 1997; Müller &
Romero 2020), thus Ldisk ≃ 10LBLR. Furthermore, in the case of jetted AGNs like the one I am
investigating, even after removing the galaxy’s emission, there still exists non-thermal broad-
band emission from the extensive jets. In this scenario, while LAGN seeks to estimate the power
exclusively due to accretion, employing Ldisk as a proxy appears more appropriate.

Hence, to determine the Eddington ratio, I first need to calculate the BLR luminosity, which
will allow us to obtain the disk luminosity. I conducted the estimation of the BLR luminosity
by applying the methodologies outlined in Celotti et al. (1997). In their work, they employed
the line ratios reported in Francis et al. (1991) to determine the BLR luminosity. These line
ratios provided the relative fluxes of emission lines in relation to Lyα, with a reference value of
100. The authors make reference to an optical sample, predominantly comprised of radio-quiet
sources. However, no significant disparities in the fluxes of broad-line emission lines between
radio-quiet and radio-loud objects have been conclusively identified (Corbin 1992; Steidel &
Sargent 1991; Boroson & Green 1992; Wills et al. 1993; Zheng et al. 1997). By following these
established guidelines, the total normalized BLR luminosity can be calculated as follows:

< L∗BLR >= L∗Hα+L∗Hβ+L∗C iv+L∗Mg ii+L∗Lyα+L∗Lyβ+L∗Hγ+L∗Al III+L∗Si IV+L∗C II+L∗O I = 390.3 (2.4)

Hence, considering the summation of observed luminosities across a specific number of
broad lines denoted as Li,obs, the total luminosity of the BLR can be estimated as follows:

LBLR =< L∗BLR >

∑

i Li,obs
∑

i L∗
i,est

, (2.5)

in this expression, Li,obs represents the luminosity of the ith observed line within the BLR, while
L∗

i,est denotes the line ratio corresponding to the ith line as provided in the table presented by
Francis et al. (1991).

37



CHAPTER 2. SMBH AND GALAXY CO-EVOLUTION IN RLAGN AT z ∼ 0.3 − 4

The resulting Eddington ratios are reported in Table A.2. They are mostly in the range
log η ∼ [−4;−1], with a median = -1.9, as typically found for type 1 RLAGN, but lower than
the ratios of type 2 quasars (e.g., Castignani et al. 2013; Kong & Ho 2018). Subsequently, I
will see in Sect.2.5.2) that I achieved consistent values for Ldisk ∼ 0.01, aligning with outcomes
from other studies. This consistency reassures us that our Ldisk estimation isn’t unduly biased
towards lower values.

2.3.4 SED modeling

The radio sources in our sample have a broad multiwavelength photometric coverage from the
UV to the IR, which enables the determination of M⋆ and SFR estimates via SED modeling.
See Sect. 1.2.3 for more details.

For the GAMA sources in our sample, we considered the SED fits by Driver et al. (2018)
performed with MAGPHYS (da Cunha et al. 2008). Photometric data include GALEX (Martin
et al. 2005; Morrissey et al. 2007) in the UV, SDSS (York et al. 2000) in the optical, as well
as the VISTA Kilo-degree IR Galaxy Survey (VIKING, Edge et al. 2013), WISE (Wright et al.
2010), and Herschel-ATLAS (Eales et al. 2010; Valiante et al. 2016a) in the near to far-IR.

For the sources in the DES supernova deep fields, available photometry includes GALEX
in the UV, ugriz (SDSS) and grizY (DES) magnitudes in the optical, WISE data in the near-IR,
as well as IRAS upper limits in the far-IR, which we gathered as in Castignani et al. (2019),
to which we refer for further details. In this previous work, we followed up two radio sources
in molecular gas in dense Mpc-scale environments at z = 0.4 and z = 0.6 within the DES
supernova deep fields, while we enlarge the sample here to investigate the coevolution of BHs
with radio sources.

Analogously to Castignani et al. (2019), we then performed fits to the SEDs using LePhare
(Arnouts et al. 1999; Ilbert et al. 2006). Following the prescriptions provided for the LePhare
code, we fit the far-IR data separately to account for possible dust emission, using the Chary
& Elbaz (2001) library consisting of 105 templates. The remaining photometric data points at
shorter wavelengths were fit using the CE_NEW_MOD library, which consists of 66 galaxy
templates based on linear interpolation of the four original SEDs of Coleman et al. (1980). We
then converted the rest frame (8.0-1000) µm IR (dust) luminosity into an SFR estimate by using
the Kennicutt (1998) relation, calibrated to an initial mass function Chabrier (2003).

SFR(M⊙ yr−1) = 4.5 × 10−44LFIR (ergs s−1) (2.6)

The SEDs of four of our radio sources are shown in Fig. 2.4. RS 81 and 83 have prominent
emission in the optical domain typical of elliptical galaxies, while their IR emission is consistent
with dust emission due to star formation. They are indeed classified as intermediate disks based
on WISE colors. RS 113 and 237 are WISE AGN and show steep SEDs at near-IR to optical
wavelengths, which suggests that the emission is contaminated by nonthermal AGN emission.
The other SEDs are shown in the Appendix (see Fig.A.3)
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Figure 2.4: Examples of SEDs of the radio sources in our sample with MBH estimates. The IDs,
names, and redshifts of the galaxies are shown at the top left of each panel. Data points are from
GALEX (brown dots), SDSS (red pentagons), DES (blue squares), WISE (green triangles), and
IRAS (yellow upper limits). Dashed and solid lines are the best-fit models for the stellar and
dust components, respectively.
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2.3.5 SFR versus M⋆

Figure 2.5 displays the radio sources of our sample in the SFR versus M⋆ plane resulting from
the SED fits. The sources are color-coded according to the redshift, while the different symbols
correspond to the WISE classification.

Overall, the sources are massive, with log(M⋆/M⊙) ≃ 10.3 − 12.0 (median=11.1), which
agrees with them being RLAGN, which are indeed typically hosted by massive ellipticals (Best
et al. 2005). Our galaxies also mostly lie along the star-forming main sequence, although with
a large scatter. The mean specific SFR is sSFR=0.40±0.44 Gyr−1, where the Root Mean Square
(RMS) dispersion is reported as uncertainty.

Galaxies at higher redshifts tend to have higher SFRs, in agreement with the MS model
prescriptions (Speagle et al. 2014). However, as highlighted in Sect. 2.2.6, the fraction of
sources with AGN contamination also increases with redshift, which may result in biased-high
SFRs. The latter may be the case where the optical-IR SED is steep, and thus the IR emission
is likely dominated by the AGN contribution, more than star formation. To overcome this
limitation, we conservatively reconsidered the SFR estimates and assigned upper limits when
the SFRs largely exceeded 100 M⋆/yr or in the cases of steep-spectrum SEDs (e.g., for RS 113
and 237 mentioned above). Namely, we considered as steep spectra those AGN whose optical-
IR SED has a characteristic power-law behavior Fλ ∝ λ−1. I verified a posteriori that these radio
sources are indeed mostly located in the upper part of the MS and are classified as WISE AGN.
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2.4 Comparison sample

To place the AGN in our sample into context, I additionally considered a compilation of sources
with available MBH and M⋆ estimates:

• A selection of 30 galaxies in close proximity was obtained from the research conducted
by Häring & Rix (2004). The determination of galaxy masses was achieved by employing
Jeans modeling or by adopting existing dynamical models. Correspondingly, MBH were
acquired from the comprehensive investigation conducted by Tremaine et al. (2002) and
the associated references.

• An additional set of 35 nearby galaxies was incorporated into the study, derived from
the sample compiled by McConnell & Ma (2013). This particular dataset involved an
extensive revision and expansion of galaxy bulge masses, as well as the inclusion of
refined dynamical measurements pertaining to MBH.

• Furthermore, a selection of 32 types 1 AGN, situated within the redshift range of z = 0.3−
0.9, was included in the investigation from the work of Cisternas et al. (2011). These AGN
were sourced from the XMM-COSMOS survey and their associated M⋆ were determined
through meticulous modeling of HST images, taking into account the contributions from
both the AGN and the host galaxy. The MBH assigned to these AGN were derived from
Hβ emission lines, as reported by Trump et al. (2009).

• In addition, a cohort of 18 broad-line X-ray AGN falling within the redshift range of
0.5 < z < 1.2 was incorporated into the study, sourced from the research conducted by
Schramm & Silverman (2013). The MBH attributed to these AGN were estimated based
on the Mg ii emission lines, while the M⋆ estimates were derived utilizing HST color-
based techniques.

• Furthermore, a cohort of 78 types 1 RQAGN at a redshift range approximately between
z ≃ 1 − 2 was included in the study, sourced from the COSMOS survey conducted by
Merloni et al. (2010). The M⋆ associated with these AGN were determined through SED
fitting techniques, while the MBH were derived based on the analysis of Mg ii emission
lines observed in VIMOS/VLT spectra.

• A total of 10 types 1 AGN, located within the redshift range of 1 < z < 2, were re-
ported from the COSMOS survey as presented by Jahnke et al. (2009). These AGN were
accompanied by M⋆ estimates derived from HST color-based measurements, while the
virial MBH were obtained through spectroscopic analyses conducted by the COSMOS
Magellan/IMACS and zCOSMOS surveys.

• I incorporated a selection of 53 radio-quiet QSOs, all located at redshifts lower than
3, as provided by Decarli et al. (2010). The determination of the MBH was achieved
through virial methods utilizing the Hβ, Mg ii, and C iv emission lines. Additionally, the
estimation of M⋆ involved the assumption of a stellar R-band mass-to-light ratio.
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• I acquired data regarding two luminous quasars at a redshift approximately equal to 4
from Targett et al. (2012). The virial MBH estimates were derived using C iv emis-
sion, while the estimation of M⋆ relied on the evolutionary synthesis models proposed
by Bruzual & Charlot (2003).

• I presented the findings of nine distant quasars observed at redshifts ranging from approx-
imately 1.4 to 6.4, as documented by Shields et al. (2006). The MBH were determined
through analysis of broad emission lines, while the dynamical bulge masses were inferred
from the widths of CO emission lines.

• Finally, I included seven quasars observed at a redshift of approximately 6, as reported
by Wang et al. (2010). The M⋆ was determined by calculating the difference between the
dynamic mass of the bulge and the mass of the CO molecular gas. For these quasars, I
used the MBH adopted by the authors, which were estimated based on the AGN continuum
luminosity (Jiang et al. 2006; Wang et al. 2008).

In addition to the sources listed above, the second group of galaxies that I used as a com-
parison is composed of powerful AGN with available estimates of the MBH, jet power, and
Eddington ratio:

• I incorporated 44 RLAGN into our study, sourced from Le et al. (2018), exhibiting red-
shifts below z < 0.2. These AGN specimens were accompanied by estimations of their
respective jet powers as reported by Le et al. (2018), along with MBH assessments refer-
enced from Allen et al. (2006) and Balmaverde et al. (2008).

• Furthermore, I incorporated a total of 208 γ-ray Fermi blazars into our analysis, sourced
from Xiong & Zhang (2014), with redshifts ranging from 0 < z < 3.1. These blazars were
accompanied by virial MBH estimates, primarily obtained through various broad emis-
sion lines, while some were derived using scaling relations. Notably, the determination
of jet powers Qjet was primarily based on the work of Nemmen et al. (2012), utilizing the
correlation between extended radio emission and jet power. However, an alternative ap-
proach was employed by Xiong & Zhang (2014), whereby Qjet was calculated using the
scaling relation proposed by Nemmen et al. (2012), which relates the γ-ray luminosity to
the kinetic power.

• Finally, I reported a total of 146 radio-loud QSOs sourced from Liu et al. (2006), charac-
terized by redshifts ranging from 0.1 < z < 2.5. These QSOs were further classified as
either flat-spectrum (54%) or steep-spectrum radio quasars (46%). The determination of
virial MBH was accomplished by extracting relevant data from the Hβ, Mg ii, or C iv emis-
sion lines. Additionally, the authors of Liu et al. (2006) employed low-frequency radio
emission, following the methodology outlined in Punsly (2005), to calculate the respec-
tive jet powers associated with the QSOs.

These sources outlined above are RLAGN. However, I verified that none of them are in-
cluded in our sample. While these studies investigated the MBH and jet properties of large
samples of radio sources, they did not characterize their IR to optical SEDs, as we did here for
our smaller sample of radio sources.
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2.5 Results

In this section, I report different scaling relations for the radio sources in our sample, including
MBH and M⋆, jet powers, Eddington ratios, and redshifts. I also include the sources from the
literature as outlined in Sect. 2.4 as a comparison, as well as the scaling relations derived in
previous studies.

2.5.1 MBH - M⋆ relation

I start by considering MBH and M⋆ and their relative evolution with redshift. Fig 2.6 displays
the MBH versus the M⋆. Interestingly, our radio-loud sources nicely follow the trend previously
observed for different samples of both local galaxies and distant AGN, overplotted in the figure,
and for those inferred by the scaling relations, which were also reported (Sani et al. 2011;
Häring & Rix 2004; DeGraf et al. 2015).

In particular, our sources populate the high log(MBH/M⊙) ≃ 7.1−10.0 and high log(M⋆/M⊙) ≃
10.2 − 12.0 region in Fig. 2.6 densely, which agrees with the fact that RLGN are almost invari-
ably associated with the most massive galaxies and BHs. Interestingly, a non-negligible fraction
of our sources, 9/42 (i.e., 21%), have their log(MBH/M⊙) > 9 well above the scaling relations
for both local (Häring & Rix 2004; Sani et al. 2011) and distant sources at the median redshift
z = 0.6 of our sample (DeGraf et al. 2015). These galaxies are highlighted in gold and purple
in function of their stellar mass. This behavior suggests that the growth of MBH in RLAGN
largely occurs at early z > 1 epochs, while the early M⋆ assembly may not be equally effective.
The substantial growth of the M⋆ may take place even at lower redshifts in order to flatten the
observed MBH-M⋆ scaling relation by z = 0. Previous studies indeed suggested that massive
ellipticals may double their M⋆between z = 1 and z = 0 (Ilbert et al. 2010; Lidman et al. 2012).

However, this figure presents a challenge in the comparison between the obtained MBH through
emission-line diagnostics (Fundamental Plane of BHs) and the MBH acquired using dynami-
cal models that account for gravitational influence, stars, or gas motions. These values might
not be identical or directly comparable. To ensure a consistent comparison of MBH using the
same estimation method, I examine the evolutionary scenario in Fig. 2.7. This figure illustrates
the MBH/M⋆ ratio relative to redshift. Estimating MBH using dynamical modeling necessitates
resolved observations of the AGN central region, thus feasible primarily at lower redshifts,
z < 0.3. At higher redshifts, MBH estimation methods rely on BLR emission lines. By exam-
ining the evolution of MBH across cosmic time, I can compare estimations that are similar and
compatible between them.

I observed in Fig.2.7 that the majority (36 out of 42, i.e., 86%) of our radio sources have
MBH/M⋆ ratios that are similar to those of AGN in the comparison sample at similar redshifts,
and they agree, at least partially, with model prescriptions by McLure et al. (2006) (overplotted
as dashed lines in Fig. 2.7). The ultimate fate of these galaxies by z = 0 remains uncertain,
prompting the necessity for conducting high-resolution simulations. It is plausible that these
anomalies are associated with scenarios where the stellar mass continues to increase, while the
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(i.e., 1.6%) AGN with log MBH/M⋆ > −1.69 in our comparison sample, while the proportion is
significantly higher (12%) for our RLAGN.

These results suggest that a non-negligible fraction of RLAGN may experience a different
M⋆ assembly path than RQAGN. I stress that these five radio sources are a subsample of the
nine outliers of Fig. 2.6, as discussed above, and have high S/N line fluxes in Hβ or Mg ii,
which yielded robust MBH estimates. These galaxies were observed as RLAGN, but they may
have transitioned from RQAGN at some stage in their evolution, given the existence of AGN
duty cycles. However, I do observe a distinction within a subset of our sample. Furthermore,
RLAGN typically host the most massive MBH and galaxies, indicating that the RLAGN and
RQAGN populations exhibit intrinsic differences, regardless of the AGN duty cycles.

The excess of overmassive SMBH in RLAGN may suggests that their stellar and SMBH
mass buildup is regulated by their large-scale radio jets. A possible scenario is that SMBH
of the subpopulation with high MBH/M⋆ are mature, that is, their mass has been effectively
assembled already by redshift z = 1 via accretion (e.g., Delvecchio et al. 2018). On the other
hand, their M⋆ growth may not have occurred as effectively as in the overall AGN population,
plausibly because of radio-mode AGN feedback (Fabian 2012). While the accretion of hot gas
onto the SMBH sustains the AGN activity and the SMBH growth, the large-scale radio jets
may prevent the accretion and cooling of the inter-galactic medium gas, which is ultimately
responsible for the stellar mass assembly. Altogether, I suggest that radio-mode AGN feedback
results in the observed high values for MBH/M⋆ in RLAGN.

To investigate further this scenario, I link accretion and jet properties to the MBH in the next
sections by considering both the jet power and Eddington ratio of our radio sources. I stress
that the usual MBH − Mbulge or MBH − σ relations typically refer to the central spheroid and
not to the total M⋆ (e.g., Kormendy & Ho 2013). However, our RLAGN sample is composed
of a large majority of early-type galaxies, where the spheroid constitutes most of the M⋆ and
this approximation is justified. Furthermore, because of the potential AGN contamination to
the SED, the M⋆ may be biased high. This implies that MBH/M⋆ ratios can be even higher
than reported. By considering MBH/M⋆ ratios as lower limits, I would have an even stronger
discrepancy, in particular, for the subsample of high MBH/M⋆ radio sources mentioned above,
with respect to the model prescriptions and the comparison sample of distant AGN at fixed
redshift. All these results seem to corroborate the scenario that SMBH growth is more rapid
than stellar mass assembly, and this is particularly true for distant radio sources, in comparison
to the overall AGN population.

2.5.2 Jet power, BH mass, and accretion

As mentioned in the previous sections, mechanical radio-mode AGN feedback can regulate the
cooling of hot gas in the intergalactic medium, and thus the M⋆ growth of the host galaxy itself
as well as the accretion onto the central SMBH. To better understand the interplay between jet,
BH, and accretion properties, in Fig. 2.8 I show the jet power Qjet (see Sect. 2.3.2), plotted
against the MBH. The radio sources of our sample are highlighted, and I also over-plot the
comparison sources outlined in Sect. 2.4 (Liu et al. 2006; Balmaverde et al. 2008; Xiong &
Zhang 2014; Chen et al. 2015).
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Our RLAGN densely populate the upper right region of the Qjet-MBH plane, which is oc-
cupied by sources with high values of both the MBH (MBH ≳ 108M⊙) and the jet power
(Qjet ≳ 1043 erg s−1). Sources in the comparison sample similarly occupy this region, while
they also extend to lower values of MBH (Liu et al. 2006; Xiong & Zhang 2014) and jet power
(Balmaverde et al. 2008). These results suggest that the distant RLAGN, quite independently
of the redshift, is almost invariably associated with massive BHs and powerful radio jets. This
agrees with the tight connection existing between BH accretion and jet production in powerful
RLAGN (e.g., Ghisellini et al. 2014; Sbarrato et al. 2014; Inoue et al. 2017).

Furthermore, HLR are characterized by a jet power that is typically higher than in LLR. As
discussed in Sect. 2.2.6, these two classes indeed have 1.4 GHz rest-frame luminosity densities
typical of FR II and FR I radio galaxies, respectively. As Qjet increases with the radio luminosity
density (Eq. 2.3), high-luminosity radio sources have higher Qjet values than low-luminosity
sources. Furthermore, the two classes of LLRGs and HLRGs are also delimited in the Qjet-MBH

plane by the relation found in previous studies (Wu & Cao 2008; Chen et al. 2015), originally
used to distinguish between FR I and FR II radio galaxy populations. The smooth separation
of LLRGs and HLRGs in the Qjet versus MBH plane can be explained by combining the MBH

versus Mbulge relation for elliptical galaxies and the relation between Qjet and the host galaxy
optical luminosity (Ledlow & Owen 1996) that separates the FR I and FR II radio galaxies. The
combination of these two relations also implies the observed spread of our sources in Fig. 2.8.
I did not find any significant correlation (as measured with the Spearman test) between Qjet and
MBH for our radio sources.

Figure 2.9 displays instead the jet power, plotted against the Eddington ratio η (see Sect. 2.3.3)
for our radio sources and the galaxies in the comparison sample (Xiong & Zhang 2014; Liu et al.
2006). Despite the high scatter observed in Fig. 2.9, I can observe that the jet power increases
with increasing Eddington ratio, meaning that higher accretion rates favor more powerful jets to
be launched by the central engine. For our sample of radio sources, I find that the two quantities
are well correlated at a level of 2.9-σ (p − 3alue = 3.30 × 10−3) by means of the Spearman test.
No clear distinction in terms of η is found between the two classes of low- and high-luminosity
radio sources, which are distinguished in Fig. 2.9. However, as pointed out in Sect. 2.3.3 our
radio sources have an Eddington ratio of log η = −1.9 on average. This value is typical of
radiatively efficient accretion disks, such as the Shakura & Sunyaev (1973) optically thick and
geometrically thin accretion disk, which is commonly invoked to explain the optical-UV emis-
sion in type I AGN (e.g., Ghisellini et al. 2010; Castignani et al. 2013).

I can then estimate the accretion rate Ṁ = Ldisk/(ϵ c2), where ϵ is the mass-to-light conver-
sion efficiency, for which I adopted the standard value ϵ = 0.1, which is typical of radiatively
efficient disks. For our radio sources, I obtain a median (mean) accretion rate of 0.16 M⊙ yr−1

(0.6 M⊙ yr−1), which corresponds to a substantial SMBH mass growth of ∆MBH = 1.6×106 M⊙

(6.0 × 106 M⊙) over an AGN duty cycle with typical duration of ∼ 107 yr.

Altogether, the fact that the SMBH of the radio sources in our sample accrete at a sub-
Edddington rate, regardless of their redshift, suggests that most of their mass has likely been
built up at an epoch prior to their observation. Furthermore, while on one hand, the observed
accretion state sustains both the nuclear activity and the SMBH growth at subparsec scales, on
the other hand, it also ultimately favors the persistence of large-scale radio jets, which may
prevent the host galaxy from accreting gas at kiloparsec scales and thus form stars effectively.
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This radio-mode AGN feedback may be responsible for the presence of overmassive SMBH in
our sample of RLAGN. It is worth mentioning that the five z ∼ 0.37 − 0.95 radio sources with
high MBH/M⋆ ratios that I discussed in Sect. 2.5.1 accrete a sub-Eddington rate of η ∼ 1%,
while they have a normal jet power Qjet ∼ 1044 erg s−1 on average.

2.5.3 RLAGN and their environments

A non-negligible fraction (17± 5)% of our radio sources have high MBH/M⋆ ratios (Sect. 2.5.1)
and may be early-type galaxies at the center of clusters. For these galaxies, the stellar mass
assembly may have been halted, with reduced star formation activity, as typically found in
cluster core ellipticals, while their BHs continue to grow via accretion. This interpretation is
consistent with earlier studies (e.g., Trujillo et al. 2014) as well as with the substantial fraction
(19%) of radio sources in our sample with low SFR < 5 M⊙/yr, while many others have SFR
upper limits. It is indeed known that cluster-core early-type galaxies tend to be outliers in the
MBH vs Mbulge relation (e.g., McConnell & Ma 2013).

Motivated by these studies, I searched in the literature for clusters around the radio sources
in our sample, searching by coordinates in the NASA/IPAC Extragalactic Database (NED).
NED includes several catalogs of clusters that were identified in wide-field surveys (Goto et al.
2002; Koester et al. 2007; McConnachie et al. 2009; Hao et al. 2010; Durret et al. 2011, 2015;
Wen et al. 2012; Radovich et al. 2017; Rykoff et al. 2012; Oguri et al. 2018). Our search
yielded three matches. Radio sources RS 49, G 372455, and G 748815 are in the cores (at
cluster-centric distances ≲ 0.5 Mpc) of the clusters [LIK2015] J034.16359-04.73395 (z = 0.89;
Lee et al. 2015), WHL J090325.6+011215 (z = 0.31; Wen et al. 2012; Wen & Han 2015),
and HSCS J142538+002320 (z = 0.33; Oguri et al. 2018), respectively. These clusters have
redshifts that are consistent with those of the radio sources as well as richness-based masses
M200 ∼ (0.9 − 3.0) × 1014 M⊙. These are therefore moderately massive clusters at intermediate
to high redshifts. The three associated radio sources instead have moderately overmassive BHs
log(MBH/M⊙) ≃ 8.6 − 9.3, in particular, in comparison to the M⋆ of the systems −2.65 ≲
log(MBH/M⋆) ≲ −2.24 (see Fig. 2.7).

These results support the interpretation described above that the cluster environments tend
to prevent the stellar mass assembly of cluster early-type galaxies, resulting in observed over-
massive SMBH. Nevertheless, it is worth mentioning that only three radio sources of our sample
are found in clusters. However, this is expected as clusters at higher redshifts (z ≳ 1) or with
lower masses M200 ≲ 1 × 1014 M⊙ typical of rich groups are more difficult to find with current
surveys and observational facilities. It is, therefore, possible that additional galaxies are hosted
in clusters, as distant radio sources are often found in dense megaparsec-scale environments
(e.g., Galametz et al. 2012; Castignani et al. 2014; Malavasi et al. 2015; Golden-Marx et al.
2019; Moravec et al. 2020).

These entities could surpass the MBH − M⋆ relation due to various factors such as being
remnants of over-massive BH from the high-redshift universe. They have the potential to grow
through both minor and major mergers. Minor mergers may increase the galaxy’s size with
minimal impact on the mass and SMBH mass, while major mergers are likely to augment both
the galaxy mass and the SMBH mass. Additionally, RLAGN are often situated at the centers of
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intricate galaxy clusters, potentially accelerating the rate of black hole mergers. To investigate
this hypothesis further, in-depth observations using the Hubble Space Telescope and analysis of
stellar populations could shed light on whether these systems are post-merger structures (e.g.,
Morishita et al. 2022).

2.6 Discussion and conclusions

I have investigated the evolution of distant RLAGN, as well as their coevolution with their host
galaxies and the SMBH at their center. To do this, I built a sample of 42 RLAGN with spectro-
scopic redshifts between z ∼ 0.3−3.8 by cross-matching the 1.4 GHz VLA FIRST point-source
catalog with available IR to optical spectrophotometric surveys including SDSS and DES in the
optical, WISE in the IR, and the GAMA spectroscopic survey. As I am interested in assessing
the SMBH masses, the 42 galaxies were further selected by requiring broad emission lines in
Hα, Hβ, Mg ii, or C iv, with an FWHM > 1000 km s−1. Based on the available multiwavelength
photometry, we modeled the SEDs of the sources in the sample, and then derived estimates of
the M⋆ and SFR for all sources, while for GAMA sources, we took them from the literature.
We find that the 42 radio sources are broadly consistent with the star-forming main sequence.

For all sources, I then estimated i) the MBH, based on single-epoch broad-line region spectra,
ii) the ratio of MBH to M⋆, MBH/M⋆, iii) the jet power Qjet, on the basis of the low-frequency
radio continuum emission, and iv) the Eddington ratio η. Although samples of distant AGN with
SMBH mass estimates are rapidly growing (e.g., Shen et al. 2011; Shaw et al. 2012; Dabhade
et al. 2020; Rakshit et al. 2020; Gloudemans et al. 2021; Li et al. 2022), our study still represents
one of the first in which all these quantities are derived simultaneously for a single sample of
distant RLAGN.

Our radio sources have log(MBH/M⊙) ≃ 7.1 − 10.0 and high log(M⋆/M⊙) ≃ 10.2 − 12.0,
which agrees with the fact that RLAGN is almost invariably associated with the most mas-
sive galaxies and BH (e.g., Best et al. 2005; Chiaberge & Marconi 2011). While overall our
sources follow the expected trends previously found in the literature, a substantial fraction of
our sources, 9 out of 42 (i.e., 21%), have log(MBH/M⊙) > 9 well above the values predicted by
the scaling relations (Häring & Rix 2004; Sani et al. 2011; DeGraf et al. 2015). In particular,
five sources out of the nine (12% of the full radio source sample) are overmassive outliers, with
MBH/M⋆ > 2%. This fraction is remarkably higher than that of 1.6% found for RQAGN at
similar redshifts from the literature. These overmassive SMBH are thus the high-z counterparts
of overmassive SMBH found in previous studies of nearby early-type galaxies (e.g., McConnell
& Ma 2013; Trujillo et al. 2014).

Our results imply that the growth of MBH in at least a non-negligible fraction of RLAGN
largely occurs at early epochs, while the early stellar mass assembly may not be so efficient.
This population of RLAGN with high MBH/M⋆ ratios have likely experienced a different M⋆

growth than other types of AGN, and I further investigated this scenario in terms of additional
complementary probes.

Following early studies on nearby galaxies (e.g., McConnell & Ma 2013; Trujillo et al.
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2014), I found that three of our RLAGN with moderately overmassive SMBH are hosted in
clusters from the literature, while clusters and groups around the majority of the remaining
RLAGN will likely be detected with forthcoming surveys such as Euclid (Euclid Collaboration
et al. 2019). These results suggest that the cluster environments tend to prevent the stellar mass
assembly of cluster early-type galaxies, possibly via radio-mode AGN feedback.

I found that the nuclear accretion and jet properties of the SMBH of the radio sources in
our sample accrete at a sub-Eddington rate (η ∼ 1%) on average, where higher accretion rates
favor more powerful jets to be launched by the central engine. I also find that high jet powers
(Qjet ≳ 1045 erg s−1) are invariably associated with high radio luminosity sources (L1.4 GHz > 2×
1032 erg s−1 Hz−1). Altogether, the observed accretion state sustains both the nuclear activity and
the SMBH growth at sub-pc scales, while it ultimately favors the persistence of large-scale radio
jets, which may prevent the host galaxy from accreting gas at kpc scales and thus form stars
effectively. Radio-mode AGN feedback may be responsible for the presence of overmassive
SMBH in our sample of RLAGN.

This preliminary investigation serves as a reference point for forthcoming research endeav-
ors utilizing cutting-edge surveys. To delve deeper into the analysis of RLAGN hosting exces-
sively SMBH, two potential approaches stand out. Firstly, a focused examination involving tar-
geted observations of both ionized and molecular gas could significantly contribute to exploring
the radio-mode AGN feedback hypothesis. This scrutiny aims to unravel the intricate physical
processes occurring within RLAGN and how it is coupled with their host galaxies. Secondly, the
advent of upcoming surveys spanning the radio-to-optical spectrum, such as those facilitated by
the Vera Rubin Observatory and the Euclid mission in the IR-optical range, alongside projects
like SKA in radio astronomy and its precursors like LOFAR, ASKAP, and MeerKAT, enables
future investigations on larger and higher-redshift samples of RLAGN. This advancement in
data collection will facilitate comprehensive analyses of a more extensive set of RLAGN, al-
lowing for robust statistical examinations of the AGN population. Additionally, it will better
delineate the distinctive physical attributes distinguishing RLAGN from RQAGN.
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CHAPTER 3

INTRODUCTION TO MACHINE LEARNING

This chapter introduces the theoretical aspects of Artificial Neural Networks (ANNs) and Machine
Learning (ML). I begin by discussing the different types of algorithms used in ML. Next, I
delve into the behavior of a single artificial neuron, covering its mathematical definition, learn-
ing process, and its capabilities and limitations. I then explore how the utilization of multiple
neurons within an ANN enables us to create an algorithm capable of approximating any func-
tion. After that, I introduce a more advanced ANN architecture, known as Convolutional Neural
Network (CNN), which is specifically designed for efficient image processing. I define the con-
volution operation and explain how it can be incorporated into an ANN layer. Subsequently, I
explore the training process of a CNN architecture. Lastly, I will illustrate the relevance of CNN
in astrophysics by showcasing numerous applications within the field. To write this chapter, I
used the following works as references: Hastie et al. (2001), Bishop (2007),Shalev-Shwartz &
Ben-David (2014), and Goodfellow et al. (2016)
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3.1 The different types of ML algorithm

3.1.1 Definitions

Machine learning is a field of artificial intelligence that focuses on developing algorithms that
can automatically learn from data and make predictions or decisions that have not been explic-
itly programmed. The goal of machine learning is to enable computers to learn and improve
their performance on a specific task based on experience. There exist 4 different types of ML
methods that differ in the way the learning part is handled: supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning.

Supervised learning is a type of machine learning where an algorithm learns to map input
data to output labels based on examples of input-output pairs provided in a labeled dataset. The
goal is to create a model that can accurately predict the output label for new input data that
it has not seen before. In supervised learning, the labeled dataset is typically split into two
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parts: a training set and a test set. The algorithm learns from the training set by adjusting its
internal parameters to minimize the difference between its predicted output labels and the true
labels in the training set. The model is then evaluated on the test set to assess its ability to
generalize to new, unseen data. Supervised learning is commonly used in applications such as
image recognition, speech recognition, natural language processing, and many others. Some
popular supervised learning algorithms include linear regression, logistic regression, decision
trees, random forests, support vector machines, and neural networks. One of the advantages of
supervised learning is that it can produce highly accurate models that can generalize well to new,
unseen data. However, it requires labeled data to train the model, which can be time-consuming
and expensive to obtain. It is also important to ensure that the training data is representative of
the real-world distribution of data that the model will encounter in practice.

Unsupervised learning is a type of machine learning where an algorithm learns patterns
and relationships in the data without explicit labels or supervision. In other words, the algo-
rithm is not given specific output values to predict, but instead, it seeks to identify underlying
structures and patterns in the input data on its own. In unsupervised learning, the algorithm
is typically presented with a dataset, and its task is to discover meaningful patterns within the
data. Clustering is a common unsupervised learning technique that aims to group data points
based on their proximity or similarity. In clustering, the programmer defines a notion of prox-
imity, usually based on a distance measure in the input space. The goal is to identify meaningful
clusters or groups within the data. Various clustering algorithms, such as k-means, hierarchical
clustering, and DBSCAN, use different strategies to partition the data into cohesive clusters.
By analyzing the distances or similarities between data points, clustering algorithms enable the
exploration of data structure, identification of subpopulations or patterns, and facilitate further
analysis. The choice of distance measure depends on the specific problem and data character-
istics. Clustering plays a crucial role in data exploration, anomaly detection, clustering, and
many other applications in machine learning and data analysis. Another common technique is
dimensionality reduction, which involves mapping the input space to a lower-dimensional pa-
rameter space. The objective is to simplify the data representation while minimizing the loss of
relevant details. By reducing the dimensionality, the computational complexity of subsequent
analyses can be reduced, and the visual exploration and interpretation of the data become more
feasible. Techniques such as principal component analysis, linear discriminant analysis, and
t-distributed stochastic neighbor embedding are commonly employed for dimensionality reduc-
tion tasks. These methods aim to capture the essential structure and relationships within the
data, allowing for more efficient analysis and visualization in various applications such as data
compression and visualization. One of the benefits of unsupervised learning is that it can help to
uncover hidden structures and relationships in the data that may not be apparent through manual
inspection. However, the lack of explicit labels can make it difficult to evaluate the performance
of the algorithm and determine the relevance of the groups that it constructs.

Semi-supervised learning is a type of machine learning that combines elements of both su-
pervised and unsupervised learning. In semi-supervised learning, the algorithm is given a par-
tially labeled dataset, where only some of the examples have known output labels, and the rest
are unlabeled. The goal of semi-supervised learning is to leverage the small amount of labeled
data to improve the accuracy and generalization of the model, while also utilizing the much
larger amount of unlabeled data to uncover underlying patterns and relationships in the data.
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One common approach to semi-supervised learning is to first train an unsupervised learning al-
gorithm on the unlabeled data to extract features or representations that capture the structure of
the data. These representations can then be used to improve the performance of the supervised
learning algorithm on the labeled data. Semi-supervised learning is commonly used in appli-
cations where it may be difficult or expensive to obtain a fully labeled dataset, but where some
labeled data is available to guide the learning process. Some examples of applications where
semi-supervised learning is used include speech recognition, image classification, and natural
language processing. One of the benefits of semi-supervised learning is that it can improve the
accuracy of the model without requiring a large amount of labeled data. However, it can also
be more complex to implement and may require more computational resources than traditional
supervised or unsupervised learning.

Reinforcement learning is a type of machine learning where an algorithm learns to make
decisions by interacting with an environment and receiving feedback in the form of rewards or
penalties for each action it takes. The goal of the algorithm is to maximize the total reward
it receives over time. The reinforcement learning algorithm learns through trial and error, ex-
ploring different actions in the environment and adjusting its behavior based on the feedback it
receives. The algorithm typically uses a technique called value iteration to estimate the value
of different actions and choose the best one to take in each situation. Reinforcement learning is
commonly used in applications such as robotics, game playing, and autonomous driving, where
the algorithm must learn to make decisions in complex and dynamic environments. It is also
used in recommendation systems, natural language processing, and other fields where the goal
is to optimize a sequence of actions over time. One of the strengths of reinforcement learning is
that it can learn to make decisions in situations where there is no pre-existing dataset or labeled
training examples. However, it can also require a large number of computational resources and
can be difficult to tune and optimize.

3.2 Artificial Neuron

3.2.1 The first Artificial Neurons

The beginning of research on ML and ANN can be attributed to McCulloch & Pitts (1943). They
attempted to find a mathematical model that can describe the behavior of biological neurons.
They modeled a neuron as a node that received an input vector X of N dimensions and calculated
its scalar product with a vector composed of weights W.

s =

N
∑

i=1

XiWi (3.1)

The scalar product result is passed through an activation function to produce the output y.
The simplest example of an activation function is the step function which means that the output
is either 0 or 1, depending on whether the scalar product exceeds a certain threshold θ.
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The second change is to add multiple layers to the algorithm. From the second layer to the
last, each neuron is connected to all of the neuron outputs of the previous layers. We call the
input nodes the input layer, the last layer that computes the desired output is called the output
layer, and every layer in between is called a "hidden layer". A network can be considered deep
when it has at least one hidden layer. The number of hidden layers and the number of neurons
within them can be modified depending on the context. The more complex a problem is, the
more and/or bigger layers can be needed. This kind of neural network is called a Multi-Layer
Perceptron (MLP). An example of MLP is shown in Fig. 3.5.

At each neuron, a sigmoid is applied to a linear combination of the inputs. It means that,
at each layer, a sigmoid function is used on a linear combination of sigmoid functions. The
successive application of sigmoid produces a non-linear result that gains in complexity with
each layer. In 1989, Cybenko demonstrated that the non-linear combination of a finite number
of sigmoidal functions can approximate any continuous function (Cybenko 1989). It means that
this type of network is a "Universal Function Approximator". He also demonstrated the Uni-
versal Approximation Theorem which says that any continuous function can be approximated
by a neural network composed of only one hidden layer with enough neurons.

3.3.3 Back propagation

When adding additional layers to a NN, the weights actualization needs to be changed as the
loss function is only available for the output of the last layer. The "Backpropagation" algorithm
(Rumelhart et al. 1986) computes recursively an error gradient descent from the output layer to
the first layer.

The idea is that starting from the output layer, an error is propagated through the network
then the weights correction of each layer is calculated one by one. Similarly to Eq. 3.4, the
weight Wi j of a layer l is updated by the formula:

W l
i j ← W l

i j − η
∂L

∂W l
i j

(3.9)

where j represents the index on the neurons in the l-th layer, and i is the index on the inputs
for this neuron. The gradient ∂L

∂W l
i j

can be develop such as:

∂L

∂W l
i j

=
∂L

∂ f l
j

∂ f l
j

∂sl
j

∂sl
j

∂W l
i j

(3.10)

Where sl
j

is the weighted sum of the inputs (Eq; 3.5) and f l
j

is the result of its activation
function. If we define the local error of the j-th neuron of a layer l by δl( j) = ∂L

∂sl
j

, we can write

the Wi j update of the same layer by:

W l
i j ← W l

i j − η
∂sl

j

∂W l
i j

δl( j) (3.11)

where δl( j) is:
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δl( j) =
∂L

∂sl
j

=
∂L

∂ f l
j

∂ f l
j

∂sl
j

=
∂ f l

j

∂sl
j

Nl+1
∑

k

W l+1
k j δl+1(k) (3.12)

With Nl+1 is the number of neurons in the l + 1 layer. When the activation function of each
layer is a sigmoid, this can be simplified by

∂sl
j

∂W l
i j

= f l−1
j (3.13)

The activation function is also simplified:

∂L

∂ f N
j

= f N
j − Y j (3.14)

Thus, we obtained:

∂ f l
j

∂sl
j

= β f l
j(1 − f l

j) (3.15)

When a neural network has many layers, the gradients of the loss function have to be prop-
agated back through each layer during the backpropagation using the equations above. As we
can see in Eq. 3.15, the derivative of the activation function will always be smaller than one.
This causes the gradient to diminish as it is multiplied at each layer during error propagation,
making it challenging to update the weights of early layers effectively. This issue is called the
vanishing gradient.

The vanishing gradient problem can lead to slow convergence during training, as well as
poor performance of the neural network on the test data. In extreme cases, the gradients can
become so small that the network stops learning altogether. The vanishing gradient problem is
particularly relevant for deep neural networks that use activation functions that have very small
derivatives, such as the sigmoid function. One way to alleviate this problem is to use activation
functions that have constant derivatives, such as the Rectified Linear Uni (ReLU) function (see
Fig. 3.10 and Sect. 3.5.5). Other techniques that can be used to address the vanishing gradient
problem include batch normalization (Ioffe & Szegedy 2015a; Santurkar et al. 2018; Yang et al.
2019) and skip connections (Qian et al. 2022).

3.3.4 Overfitting

Overfitting occurs when a machine learning model becomes overly complex and fits the training
data too closely, resulting in poor generalization to new data. To mitigate this issue, the dataset
is typically split into three separate sets: a training set, a validation set, and a test set.

• The training set contains the majority of the data and is used to train the neural network.
The validation set is used during training to regularly evaluate the performance of the
neural network on data that was not used for training. The test set is used to assess the
ability of the neural network to generalize to new, unseen data after training has been
completed.
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• During training, both the error on the training set and the validation set are regularly
calculated. Typically, the training and validation error functions will decrease as training
progresses. However, if the neural network starts to overfit the training data, the validation
error function will begin to increase. This is when it is necessary to stop the training to
prevent further overfitting.

• To assure optimal training, most of the data must be contained in the training set. How-
ever, the validation and test set must also be big enough to avoid smaller-number effects
and representative of the feature space coverage of the problem.

3.4 Network optimization

3.4.1 Input normalization

Normalization is a common prepossessing step in ML that involves scaling the input data to
a chosen range. The main reason for normalizing the input is to improve the performance
of ML models. To optimize the learning process of a NN, the data need to have the same
range of values. Otherwise, the model can give more importance to features with larger values,
even if they are not necessarily more important for the prediction task. This can result in sub-
optimal performance and can also make the model more sensitive to the range and units of
measurement of the input data. Furthermore, the input data need to be scaled to the same level
as the layer activation. If not, the weights can become too small or too big and will prevent their
convergence.

There are several methods for normalizing input data. For example, the standardization
method involves subtracting the mean and dividing by the standard deviation of the input fea-
tures, which results in features with zero mean and unit variance. We can also subtract the mean
and divide by the maximum absolute value to get data bounded between -1 and 1 and center
around zero. Another method is the min-max scaling. It involves scaling the input features to
a fixed range, typically between 0 and 1. It is done by subtracting the minimum value of the
input from all values and then dividing the result by the difference between the maximum and
minimum values.

3.4.2 Weight initialization

In ML, initializing weights refers to the process of setting the initial values of the weights in a
NN or other ML model. Initialization is an important step in the training of ML models, as it
can have a significant impact on the performance and convergence speed of the model.

On one hand, if the variance of the distribution of the initial weights is smaller than the
values of the initial weights, the NN will converge more easily to a solution, but the resulting
solution will be more sensitive to the inputs. On the other hand, a higher variance, compared to
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the values of the initial weights, allows the network to explore a wider range of solutions, but
it can make convergence more difficult. Therefore, to ensure an efficient learning process, the
weights are initialized with small random values that have a variance of the same order.

There is no consensus for the best method of weight initialization as it strongly depends on
parameters such as the NN depth or the choice of the activation function. A common method
(Glorot & Bengio 2010) is to initialize the weights by a random value between −1/

√
N and

1/
√

N, where N is the inputs vector dimension for the layers.

Combining randomness in the distribution of the initial weight and the stochastic learning
method introduces randomness in the learning process. Two identical NN training on the same
data will now start at different positions in the phase space, have a different path for optimizing
their loss functions, and find a different local minimum.

3.4.3 Batch size

The frequency to which we update the weights of a NN is a parameter affecting the training
performances. There are 3 common methods that can be used to update the weights during
training: stochastic gradient descent, batch gradient descent, and mini-batch gradient descent.

In stochastic gradient descent, the weights are adjusted after each example is shown. The
example is drawn with replacement, allowing for multiple weight updates per epoch. This
accurate tracking of gradients may lead to noisy convergence. However, this method also allows
the use of a larger learning rate which makes the stochastic gradient method usually faster to
converge than the other two methods (Wilson & Martinez 2003). Nevertheless, having to update
the weights for each example make the method less efficient regarding computational time cost.

The batch gradient method updates the weights once per epoch. It calculates the gradient
of the loss function with respect to the weights using all the training samples at once and then
updates the weights based on the average gradient over the entire dataset. This avoids the
issue of the noisy gradient and requires less calculation time from the hardware. But the batch
gradient descent can only take a single step per epoch, which must be in a straight line. It
estimates the gradient only at a specific point in the weights phase space, and thus cannot
follow curves in the error surface. Furthermore, since the gradient is more stable it is also more
susceptible to getting stuck in local minima. When the training sample gets bigger, the batch
gradient method must use a smaller learning rate in order for its learning to remain stable.

To address the downsides of both methods, we can use mini-batch gradient descent. This
algorithm randomly divides the training set into small batches, called "mini-batches," at the
beginning of each epoch. Then, for each mini-batch, the errors are used to update the weights.
It allows for more frequent weight updates while reducing noise in the gradient descent through
the averaging of multiple errors. This method strikes a balance between the advantages of
stochastic and batch gradient descent, making it a commonly used approach in training neural
networks.
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3.4.4 Learning rate

The learning rate determines the magnitude of the weight updates during training. A high
learning rate results in large weight updates, leading to faster convergence. However, large
weight updates may cause the gradient to oscillate and prevent convergence to the narrow global
minimum. Conversely, a low learning rate slows down the learning process, and the network
may get trapped in a local minimum. Therefore, choosing an appropriate learning rate is crucial
for effective training.

To address this issue, modern optimization algorithms use adaptive learning rates. These
algorithms start with a high learning rate that guides the optimization towards the region of
the weight space with lower error. The learning rate is then gradually reduced, allowing the
optimization to converge towards narrower minima. The use of adaptive learning rates helps
balance the trade-off between convergence speed and optimization stability.

3.4.5 Momentum

In ML, momentum is a technique used during gradient descent optimization to accelerate the
convergence of the learning algorithm (Qian 1999). It is an extension of the standard gradient
descent algorithm that takes into account the previous update steps of the weights. The mo-
mentum parameter, usually denoted by a symbol like β, is a hyperparameter that controls the
contribution of the previous update steps to the current update. A high momentum value means
that the previous updates have a greater influence on the current update, while a low momentum
value means that only the current update is taken into account. A simple way to use this concept
is to add the inertia term to the update equation such as:

W t
i j ← W t−1

i j − ∆W t
i j (3.16)

where W t
i j

is the j-th weight of the i-th neuron of a layer at an epoch t and ∆W t
i j

is the update
of this weight. We can write ∆W t

i j
as:

∆W t
i j = η

∂E

∂W t−1
i j

+ α∆W t−1
i j (3.17)

where E is the layer propagated error and 0 < α < 1 is a hyperparameter used to scale the
momentum.

Momentum can help the optimization algorithm to overcome local minima and saddle points
in the loss landscape, and can also help to smooth out noisy gradients. By incorporating infor-
mation about previous weight updates, momentum can help the optimization algorithm to move
more efficiently toward the optimal solution.

There are several variations of the momentum algorithm, including the Nesterov accelerated
gradient, which is a modification of momentum that takes into account the expected gradient at
the next time step. This can lead to faster convergence and improved performance.
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3.4.6 Dropout

Regularization refers to all the methods that are used to prevent overfitting and regularize learn-
ing from particular neurons. Dropout is a regularization technique introduced by Srivastava
et al. (2014). It works by randomly dropping out (setting to zero) a fraction of the neurons
activations in a given layer during training. This forces the network to learn redundant repre-
sentations and prevents any one neuron from becoming too important. In other words, it helps
to prevent complex co-adaptations between neurons, which can lead to overfitting.

During training, each neuron in the layer is retained with a probability independently of
the other neurons. At test time, all neurons are used, but their outputs are scaled down by the
probability of being kept, to compensate for the fact that more neurons are active during training
than during testing.

3.4.7 MC dropout

An alternative approach to utilizing dropout is to maintain dropout activation during the pre-
diction phase. It is equivalent to an approximation of the probabilistic deep Gaussian process
(Damianou & Lawrence 2013). For each inference, a different set of weights will be active.
This is equivalent to train at the same time multiple networks that partially share their weights.
Thus, each inference will give a different result. So, making multiple inferences for the same
input will give a probability distribution on the predicted value, similar to what is produced by
a Monte Carlo Markov Chain process (Srivastava et al. 2014). This distribution can be studied
to characterize the model uncertainties for that input. This method is called Monte-Carlo (MC)
dropout.

Bayesian NNs (MacKay 1992) also give a probability distribution as an output. They do so
by using probability distributions for the weights. It has been demonstrated that MC dropout
and Bayesian NNs give similar results. However, MC dropout is much more efficient in terms
of computational performance (Blundell et al. 2015; Gal & Ghahramani 2016).

3.5 Convolutional Neural Network

3.5.1 Information in 2D images

Images can be described as two-dimensional arrays of pixels, serving as discrete representations
of decomposed information. The process of image recognition revolves around identifying co-
hesive information within these pixel arrays and associating it with higher-level abstractions
corresponding to the depicted objects. Spatial coherence plays a crucial role in extracting mean-
ingful information from images.
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Having gained an understanding of how ANNs function in the preceding sections, it is
natural to explore their applicability in this task. To do so, a straightforward approach would
involve employing an ANN with a single hidden layer, which takes the flattened image as input
and produces an output vector of the same length (see Fig. 3.7). This configuration allows the
network to learn the precise position of the pattern within the image.

However, such a network has a high number of weights which makes its training very long,
and a lot of examples are needed to properly constrain the weights. Furthermore, it means that
for each pixel, every specific case must be in the training sample, and so the network is very
inefficient at generalizing the problem.

Now, let’s consider a more complicated case (see Fig. 3.8). We still want to recognize and
locate the same pattern on a bigger image where the pattern can appear multiple times. We also
added irrelevant information that can be interpreted as noise or other non-studied patterns. Since
we want our network to only detect the square pattern, we don’t need to show examples of all the
possible cases of irrelevant information combinations on all other pixels. Each output neuron
has the responsibility of identifying whether it should activate or not based on the presence
or absence of the pattern. They have to do this independently, without any assistance from
other neurons, by learning to recognize the pattern at all positions in the image. This means
that the network needs to learn the same task multiple times, once for each possible position
of the pattern in the image. It is essential to have a diverse training dataset where all pixels
are activated and deactivated at least once to cover all possible scenarios. This ensures that the
neural network becomes proficient at detecting the pattern accurately in various positions within
the image. A fully connected network should still be able to perform such a task. However, it
is less likely to be more time efficient time-wise than an algorithm that searches for a square
centered around each pixel of the image.

However, a more clever solution is possible. Since we look for only one pattern, we could
save time and effort by learning this pattern once and searching efficiently for it in the image.
Thus, we want to find an operation capable of detecting the pattern in a smaller part of the image
and that is equivariant by translation. In practice, such operations are called convolutions and
they greatly reduce the number of weights needed to perform pattern recognition by defining a
single "filter" that is applied to all possible locations in the image.
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(Lecun et al. 1995). Thus, putting multiple convolutional layers one after the other is common.
By using multiple convolutional layers, the network can learn hierarchical representations of
the input data, allowing them to capture more complex patterns and relationships. The first
convolutional layers detect low-level features such as edges, lines, and corners.

As the input data is passed through more convolutional layers, the network is able to detect
larger, more abstract, and high-level features that combine the low-level features detected in
previous layers. Additionally, using multiple convolutional layers can help to reduce the spatial
dimensionality of the data, which can make the network more efficient and easier to train. By
gradually reducing the spatial dimensions of the data, the network can learn more compact and
efficient representations of the input data. Moreover, dimensionality reduction is a contributing
factor in constructing more complex patterns. It enables small filters in the deeper layers of
the network to put together information from a larger region of the input image into a single,
smaller filter. This can help to reduce overfitting and improve the generalization performance
of the model. Usually, the convolutional filter is linked to some fully connected layers before
the output layer. This type of NN architecture is called a CNN.

In a classical CNN architecture, the initial layers typically employ a smaller number of
larger filters. As the network progresses deeper, more filters are added, but the size of the filters
is often reduced. This design choice serves a specific purpose. By using fewer but larger filters
in the early layers, the network can capture low-level features with larger receptive fields. These
larger filters are able to detect broader patterns and simple structures in the input data. As the
network goes deeper, additional filters are introduced, allowing for the detection of more diverse
and fine-grained features. Reducing the size of the filters in deeper layers serves two main
advantages. Firstly, it helps to reduce the computational complexity of the network by reducing
the number of parameters. Smaller filters require fewer computations, making the network more
efficient. Secondly, the first layer can be larger because gradients do not need to propagate
through it, allowing the use of larger filters without significant performance losses in training.
Additionally, the initial filters function as basic image transformers, making the task easier
for subsequent layers. As we move deeper into the network, the filters focus on higher-level
combinations, capturing patterns closer to the objects to classify or detect. Gradually increasing
the number of filters is essential as we approach the output, where specific patterns are needed
for object detection. These patterns become non-sharable, requiring an increased number of
filters. For instance, a pattern detecting sharp teeth is useful for classifying animals but not for
identifying a car. In contrast, at the beginning, filters searching for edges or enhancing contrast
are generally beneficial for all cases. Furthermore, this progressive increase in the number
of filters and decrease in filter size allows the classical CNN architecture to learn hierarchical
representations of the input data, starting with simple features and gradually building up to more
complex and abstract representations. This design choice enables the network to effectively
extract and utilize features at different scales and levels of complexity.

3.5.5 Activation function

Adding convolutional layers before the fully connected network increases the depth of the net-
work which means that the network is more susceptible to the vanishing gradient issue (see
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3.5.7 Weights initialization and bias

As seen previously, in a fully connected network, the weights need to be initialized correctly
to stabilize and increase the network performance. We also saw that the choice of activation
function, bias value, or even network architecture is linked to how the weights are initialized.
The same concept also applies to convolutional layers. In fact, it is even more important in the
context of deep networks where all of these parameters will have more impact on the prediction
performance. When working with a deep network, the sigmoid function is no longer reliable
enough and the ReLU (or Leaky ReLU) becomes a better choice than the sigmoid function.
Furthermore, an inappropriate deep network weight initialization can prevent it from converg-
ing. The primary objective remains to balance the weights, ensuring they are small enough to
maintain precision and stability, yet large enough to bring out distinct behaviors for each neuron
in the network. The performance comparison between various weight initialization methods is
largely based on empirical observations, with each method aiming to achieve a uniform initial
weight variance across all layers of the network, independently of their size.

A common weight initialization for deep network is a uniform distribution scaled to the size
of the previous layer nl−1 (Glorot & Bengio 2010):

√

6
nl−1 + nl

(3.21)

3.5.8 Back propagation in a CNN

The weights of convolutional layers in a CNN need to be adjusted like the weights of a fully
connected NN (LeCun et al. 1998). To understand how it is done, we must look at how convo-
lutional and pooling layers propagate errors.

A pooling layer receives an error with the dimension of its output from the next layer. This
error is propagated through the pooling layer in a manner that assigns it to the input neurons that
correspond to the maximum values within specific sub-regions. To accomplish this, the position
of the neuron with the maximum value needs to be stored in memory. Subsequently, the error
signal is directed to this specific position, while all other neuron errors within the sub-region are
set to zero. As a result, an error signal is generated that has the same dimensions as the input to
the pooling layer. This error signal is then further propagated back to the previous layer of the
network (Fig.3.12).

To propagate an error through a convolutional layer, we need to define an operation called
transposed convolution (Dumoulin & Visin 2018). The goal of this operation is to upsample
the input to a larger spatial size. A transposed convolution consists of sliding the input over the
filter and performing element-wise multiplication and summation. An example of a transposed
convolution of a 2 × 2 input with a 3 × 3 filter is shown in Fig. 3.13. Most of the time, the
projected field of neighboring pixels will overlap. In this scenario, the contribution of each in-
put, weighted by the filter, is summed across overlapping output pixels. During the propagation
of an error through a convolutional layer, a transposed convolution is applied. This operation
enables the error to be propagated with the same dimensions as the output of the convolutional
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3.5.9 Batch normalization

Batch normalization is a standard technique used in CNN and other types of networks to im-
prove their stability (Ioffe & Szegedy 2015b). By normalizing the inputs to each layer, batch
normalization helps to ensure that the network is less sensitive to changes in the distribution
of the input data, which can speed up training and improve the accuracy of the model. It also
helps to reduce the vanishing gradient problem by rescaling the outputs, which enables the use
of deeper network architectures. In a NN, batch normalization layers are layers that normalized
their input as follows:

µ =
1
n

∑

yi (3.22)

σ2 =
1
n

∑

(yi − µ)2 (3.23)

yi,norm =
yi − µ√
σ2 − ϵ

(3.24)

yi,new = γyi,norm + β (3.25)

Initially, the batch normalization layer calculates the mean (µ) and variance (σ2) of the
activation values of the previous layer across the batch using Eqs. 3.22) and 3.23 respectively.
Subsequently, it applies normalization to its input using Eq. 3.24, ensuring a standard normal
deviation across the batch. In this equation, ϵ represents a constant utilized for maintaining
numerical stability. Finally, the batch normalization layer produces the output (yi,new) through
Eq. 3.25, where the normalized activation vector is linearly transformed with two trainable
parameters, γ, and β. The parameter γ allows for adjustment of the standard deviation, while β
allows for adjustment of the bias, shifting the distribution spike horizontally.

3.5.10 The use of CNN in astronomy

Over time, astronomical surveys have yielded increasingly voluminous dataset, with future sur-
veys expected to generate even larger volumes of data. The manual analysis of such extensive
dataset has become increasingly laborious, prompting astrophysicists to explore innovative data
analysis techniques to manage this ever-growing influx of information. ML has emerged as a
pivotal solution in this context, enabling significantly faster analysis by automating data analysis
processes.

CNN excel at automatically extracting hierarchical and complex features from data. In
astrophysics, where dataset often contain intricate spatial or spectral information, CNN can
effectively discern patterns, shapes, or structures in images, spectra, or time-series data. Fur-
thermore, CNN are inherently robust to noise and variations in data, making them suitable for
handling noisy astronomical observations or images affected by instrumental limitations. This
robustness in CNN arises from several architectural aspects. Firstly, CNN utilize local receptive
fields, where individual neurons in a layer are connected to small, localized regions within the
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input data (see Sect. 3.5.1). This architectural design enables the network to emphasize local
patterns and features, thereby diminishing the influence of noise across the entire dataset. Ad-
ditionally, CNN employ weight sharing, employing a consistent set of weights across different
segments of the input data (see Sect. 3.5.2). This shared parameter mechanism empowers the
network to recognize patterns irrespective of their specific locations within the input, enhancing
the model’s resilience to minor variations and noise.

Moreover, CNN architectures frequently integrate pooling layers, such as max pooling, to
downsample the data (see Sect. 3.5.6). These layers reduce sensitivity to minor spatial varia-
tions or small-scale noise, preserving significant features while discarding less pertinent details.
The hierarchical structure of CNN, composed of multiple convolutional layers, aids in learning
hierarchical representations of features (see Sect. 3.5.4). Each layer extracts progressively in-
tricate and abstract features from the input, enabling the network to distill essential patterns and
information from noisy data.

Finally, the use of non-linear activation functions, like the ReLU (see Sect. 3.5.5), intro-
duces non-linearity into the CNN, enabling it to model complex relationships and diminish the
influence of noise on the learned representations. This collective architectural framework equips
CNN with robustness, making them highly effective in handling noise and variations inherent
in astrophysical dataset.

Thus, CNN have been used in diverse fields of astrophysics. One such fields is in the
detection of galaxies (Bonaldi et al. 2021; Hartley et al. 2023). Furthermore, CNN have been
very successful in the classification of galaxy morphology (Walmsley et al. 2020; Cheng et al.
2020, 2021). These networks have also been used to identify of post-merger galaxies (Bickley
et al. 2021). Additionally, CNN have been employed in estimating galaxies properties, like their
photometric redshifts (Pasquet et al. 2019; Schuldt et al. 2021; Zhou et al. 2022).

Within expansive spectroscopic surveys of stars, CNN holds significant promise in enabling
the rapid extraction of physical parameters across millions of spectra. CNN allow for con-
necting observable such as spectra or stellar magnitudes, and fundamental properties including
atmospheric parameters and chemical abundances (Guiglion et al. 2020). Additionally, these
networks demonstrate efficiency in classifying stellar spectra (Hon et al. 2017; Liu et al. 2019;
Sharma et al. 2020; Zheng et al. 2020).

The anticipated future surveys by the SKA are projected to produce extensive datasets com-
prising 21 cm maps covering cosmological scales during the epoch of reionization. To grapple
with the enormity of this data influx, there’s ongoing experimentation on the potential of CNN
process 21cm maps to estimate astrophysical and cosmological parameters using 21 cm maps
generated from semi-numerical simulations (Gillet et al. 2019; Hassan et al. 2020; Prelogović
et al. 2022; Meriot & Semelin 2023).

Detailed understanding of the response of the LIGO and Virgo detectors to true signals
in the presence of environmental and instrumental noise. Particular interest is the study of
anomalous short-lived non-Gaussian instrumental or terrestrial transients. Their occurrence rate
in LIGO and Virgo data can obscure or even mimic true gravitational wave signals. Therefore,
successfully identifying and excising these transient anomalies from gravitational wave data is
important for the detection and characterization of true signals and for the accurate computation
of their significance (George et al. 2018; Fernandes et al. 2023; Bini et al. 2023).
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CHAPTER 4

ESTIMATING SMBH MASS WITH ML FOR

THE GATOS CORE SAMPLE

In this chapter, I will outline our research focused on the GATOS data. Our objective was
to estimate the mass of the SMBH (MBH) within the galaxies comprising the GATOS core
sample. To begin, I will present the motivation behind this work, providing an overview of the
GATOS collaboration and its core sample. Subsequently, I will delve into the theoretical aspects
of the numerical simulation employed in this study, discussing its relevance and implications.
Following that, I will provide a detailed account of how ML techniques were utilized to estimate
the MBH of seven out of ten galaxies within the GATOS core sample. In the subsequent sections,
I will describe our findings, presenting the results obtained and comparing them with other
MBH estimation methods documented in the existing literature.
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4.1 Motivation

For nearby galaxies, dynamics of matter nearby the central SMBH can be used to measure
the MBH from their kinematics when it can be resolved (see Sect. 1.6.1). Historically, stellar
dynamics have been widely used to estimate the MBH (Bender et al. 2005; Kormendy & Ho
2013; Saglia et al. 2016; KrAJnović et al. 2018). More recently, the advent of circumnuclear
disk observations has opened up the opportunity to employ a similar approach for measuring
the mass of SMBH, this time using gas dynamics. The first observation, credited to Harms
et al. (1994), was directed at the 100-pc-scale circumnuclear disk within M87, which had been
detected through Hα emission by Ford et al. (1994)). While the single-aperture of the Hubble
Space Telescope faint object spectrograph offered constrained spatial sampling, these observa-
tions provided compelling evidence that the majority of the observed mass was dark and likely
associated with the central SMBH. Gas-dynamical mass measurements offer distinct advan-
tages over stellar-dynamical modeling. Ionized gas emission lines are more easily detectable
than stellar absorption lines or even molecular lines, and their simpler line profiles simplify the
measurement of velocities and velocity dispersions. In contrast, the stellar-based approach often
involves the challenging task of measuring higher-order moments of the line-of-sight velocity
distributions, particularly in more massive, lower surface brightness galaxies.

When estimating the SMBH from gas dynamics, the goal is to compute a model velocity
field that simultaneously matches the observed velocities and velocity dispersions. Using gas
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The primary objective of the WISDOM studies was to determine SMBH masses within
nearby early-type galaxies exhibiting rapid rotation by applying dynamical models to the obser-
vational data. In the case of NGC 3665, as described by Onishi et al. (2017), the approach in-
volved constructing a three-dimensional model of the stellar mass distribution within the galaxy.
This model was generated through the de-projection of a two-dimensional representation of the
observed surface brightness, assuming a constant M/L. The resultant circular velocity curve,
originating from this mass model and the presence of an SMBH, was incorporated into a simu-
lation code that considered the molecular gas distribution and instrumental effects. The SMBH
mass was subsequently derived by comparing multiple models to the observed data. The selec-
tion of the most appropriate model parameters was determined via Bayesian analysis, wherein
the parameter values minimizing the multidimensional χ2 space were identified (see Fig.4.1).

In parallel investigations, Davis et al. (2017) examined NGC4697, while Davis et al. (2018)
focused on NGC 4429. They leveraged the publicly accessible KINematic Molecular Simula-
tion tool to ascertain optimal model parameters and their associated uncertainties. The Markov
chain Monte Carlo technique was employed to fit the data and generate samples from the
Bayesian posterior probability distributions of the fitted parameters. All three of these stud-
ies reached conclusions aligned with previous SMBH estimations derived from the MBH − σ
relation.

In the study conducted by Combes et al. (2019), the investigation focused on estimating
the masses of SMBH in seven nearby Seyfert galaxies. Their methodology involved utilizing a
dynamical model, which is elucidated in Section 4.3. The estimation of SMBH masses a least-
square fit followed by a visual comparison between the position-velocity diagrams Position-
Velocity Diagram (PVD) and the first three moment maps derived from the ALMA data cube
and those computed from the simulated data cube (see Fig.4.2).

These approaches leverage the exceptional resolution of observations to obtain SMBH mass
estimates that surpass those achieved through scaling relations, which inherently contain asso-
ciated errors. While fitting dynamical models to individual galaxies is effective, this process
is time-consuming and scales linearly with the number of galaxies under investigation. As the
volume of observations and data is anticipated to increase in the future, this scalability presents
a potential concern. Therefore, it becomes crucial to explore alternative methods for SMBH
mass estimation that offer improved time efficiency.

In addressing this challenge, the use of machine learning emerges as a promising solution.
Machine learning algorithms have proven their capability to discern intricate patterns within
extensive datasets, making them well-suited for handling the increasing volume of astronomi-
cal observations. Their adaptability and efficiency in processing vast data sets can significantly
reduce the time required for making multiple SMBH mass estimations, circumventing the linear
scalability limitations that have posed concerns in traditional dynamical modeling. By utilizing
ML capacity to generalize from past data, SMBH mass estimation can be automated and expe-
dited, providing a more time-efficient alternative. Using ML also mitigates the inherent errors
associated with scaling relations.

During the past few years, the domain of ML has widely expanded in the scientific com-
munity. One of the main domains of the application of ML is image analysis. Efficient and
powerful NN architectures, known as CNN, have been developed to effectively handle images.
They are used to classify large numbers of galaxies (Huertas-Company et al. 2020), in view of
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future missions like Euclid. They are also used to classify supernovae (Lochner et al. 2016),
find strong lensing features (Lanusse et al. 2018), transient phenomena (Mahabal et al. 2019),
photometric redshifts (Pasquet et al. 2019) or star clusters (Castro-Ginard et al. 2019). They
have not yet been used to estimate the MBH.

In this chapter, I present a new ML method to estimate the mass of SMBH in galaxies. The
masses obtained with this new method are compared with SMBH masses found in the literature
and with other estimations made using the FPBH and the MBH - σ relation. In Sect. 4.2, the
galaxy sample and the selection criteria are described. Sect. 4.3 focuses on the physics behind
the numerical simulation used later on. Section 4.4 presents how I combine ALMA data cubes,
numerical simulations, and a dedicated ML approach to estimate more precisely MBH from the
CO(3-2) gas dynamics. A large number of simulated models are used to evaluate the quality of
my estimations. In Sect. 4.5, the results found with my ML method are presented. Finally, in
Sect. 4.7 and 4.8, I summarize and discuss my findings and possible future improvements to my
methodology.

4.2 The GATOS core sample

The GATOS international collaboration has for aims to study topics related to the physics taking
place in the nuclear region of AGN. These encompass the gas flow cycle, the emission of polar
dust, the properties of the torus/obscuring material, and the interplay between star formation ac-
tivity and AGN phenomena. Here, I study the 10 galaxies from the GATOS core sample studied
by García-Burillo et al. (2021). The core sample is composed of nearby galaxies (<28Mpc) and
luminous nuclei, LAGN(14− 150keV) ≥ 1042erg/s. The upper limit on the distance is set to have
a sufficient spatial resolution to study molecular tori as small as ∼ 10pc in radius while the limit
on the luminosity is set to avoid overlap with the ongoing ALMA surveys of nearby Seyferts
such as the Nuclei of Galaxies survey (NUGA) (e.g. Combes et al. 2019; Audibert et al. 2019).

The present work uses the CO(3-2) data cubes from ALMA observations. All the details of
my sample and their observations are given in García-Burillo et al. (2021). I do not consider the
three additional GATOS galaxies NGC 1068 (e.g. García-Burillo et al. 2019), NGC 1365 (e.g.
Combes et al. 2019) and NGC 3227 (e.g. Alonso-Herrero et al. 2019).

Not all 10 data cubes are appropriate for the determination of the central kinematics and
MBH estimation. Two of the galaxies, NGC 6814 and NGC 7213 do not present enough CO
emission in the very center; their central pixels are empty or with some emission with a S/N ratio
below 2. For another galaxy, moment maps are not usable for a MBH estimation with my ML
approach; NGC 4941 has too little gas detected and its distribution is too sparse. There remain
therefore 7 galaxies: NGC 4388, NGC 5506, NGC 5643, NGC 6300, NGC 7314, NGC 7465
and NGC 7582.
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4.3 Numerical simulation

In the following section, I will explore the integration of ML techniques with numerical simula-
tions. As stated in the Sect.4.2, the goal of this chapter is to use ML to estimate the MBH of the
GATOS galaxies. To do so, I will need numerical simulations presented to create training, val-
idation, and test datasets to train my NN. Further description of the methodology is described
in the next section (see Sect.4.4). However, for a coherent reading, I will begin by outlining
the theoretical foundation that underlies the numerical simulation in the following section. The
goal is to provide an understanding of how the positions, the velocities, and their dispersions
are initialized and how I make the simulations match the observations. The equations presented
in this section are taken from Binney & Tremaine (2008).

To simulate my data cube I used the model described in Melchior & Combes (2011);
Combes et al. (2019) (see Fig.4.3). I employed a gas model, utilizing static simulations of
dynamical components represented by particles, with various geometric orientations on the ce-
lestial sphere. Our models are axisymmetric homogeneous gas disks (e.g. Miyamoto & Nagai
1975) with gas particles on nearly circular orbits, with low-velocity dispersion, corresponding
to thin cold disks. The sizes of the modeled disks are taken from the observed CO(3-2) disks.
To ensure sufficient statistics, I fixed the number of particles at 106. Since I simulate only the
nuclear disk with a radius of typically ∼ 100pc, the dark matter contribution to the gravitational
potential is negligible. The different parameters of the simulations are: the mass, radius, and
height of the galaxy bulge (Mbulb, Rbulb, Hbulb); the corresponding properties of the stellar disks
(Mgal, R0, Ht); the gas-to-stellar mass ratio within the stellar disk (RAPM); the gas disk radius,
height, inclination angle, and position angle (Rgas,Hgas,IA,PA) and the SMBH mass (MBH).
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With a similar process, one can find the Kuzmin-Plummer disc potential from eq.4.2 and
4.3 by letting b = 0 :

ΦK(R, z) = −
GMK

√

R2 + (a + |z|)2
(4.6)

ΣK(R) =
aMK

2π(R2 + a2)3/2
(4.7)

where MK is the mass of the Kuzmin disk.

The particles in my simulations are influenced by three different gravity potentials: one from
the stellar bulge, one from the stellar disc, and one from the SMBH. I will use the Miyamoto-
Nagai potential to the bulge and the stellar disk.

4.3.2 Analytical velocity dispersion

4.3.2.1 Equations of movements

In my simulation, the particles move in three-dimensional space, allowing their motions to
extend beyond the equatorial plane. However, the study of axially symmetric disks can be
simplified by considering the conservation of z-angular momentum symmetry. This symmetry
is reflected in the potential Φ, which exhibits symmetry about the plane z = 0. The motion of
these particles is described by the Lagrangian (L) and Hamiltonian (H) equations, which are
formulated in cylindrical coordinate systems such as

L =
1
2

(

Ṙ2 + (Rϕ̇)2 + ż2
)

− Φ(R, z) (4.8)

H =
1
2















p2
R +

p2
ϕ

R2
+ p2

z















+ Φ(R, z) (4.9)

where pR = Ṙ, pϕ = R2ϕ̇2 and pz = ż are the momenta. Then, the equations of motion as can
be written as

ṗR =
p2
ϕ

R3
−
∂Φ

∂R
(4.10)

ṗϕ =
d

dt
(R2ϕ̇) = 0 (4.11)

ṗz = −
∂Φ

∂z
(4.12)

here pϕ = Lz is a constant and expresses the conservation of angular momentum of the z-
axis. From here onward, pϕ will be replaced by its numerical value Lz. Equations 4.10 and 4.12
describe the coupled oscillations of the particles in the R and z directions. Then, let us define an
effective potential Φeff such as
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Φeff = Φ(R, z) +
L2

z

R3
(4.13)

R̈ = −
∂Φeff

∂R
(4.14)

z̈ = −∂Φeff

∂z
(4.15)

Thus, the particles motions are now reduced to a 2D motion in the plan (R,z) under the
effective Hamiltonian

Heff =
1
2

(p2
R + p2

z ) + Φeff(R, z) (4.16)

Φeff minimum has physical significance and occur when ∂Φeff
∂R
=

L2
z

R3 and 0 = ∂Φeff
∂z

. These
conditions are satisfied anywhere in the equatorial plane and the first is satisfied at the guiding
radius Rg:

(

∂Φ

∂R

)

(Rg,0)

=
L2

z

R3
g

= Rgϕ̇
2 (4.17)

This is the condition for a circular orbit with an angular speed of ϕ̇ and thus, the minimum
appears at the radius at which the angular momentum is equal to Lz, and the value of Φeff at the
minimum of this circular energy.

4.3.2.2 Nearly circular environment

In disk, many particles have a nearly circular orbit, so it is useful to approximate solutions to
Eqs. 4.14 and 4.15 that are valid for such orbits. Thus, a x coordinate can be introduced as

x ≡ R − Rg (4.18)

where Rg(Lz) is the guiding center radius for an orbit of angular momentum Lz (see Eq. 4.11).
Thus, (x, z) = (0, 0) are the meridional plane coordinate of the minimum in Φeff. When the Φeff

is expanded in a Taylor series about this point it leads to

Φeff = Φeff(Rg, 0) +
1
2

(

∂2Φeff

∂R2

)

(Rg,0)

x2 +
1
2

(

∂2Φeff

∂z2

)

(Rg,0)

z2 + O(xz2) (4.19)

To simplify this equation, the epicycle approximation can be used, in which all terms Φeff

of order xz2 or higher powers of x and z are neglected (e.g. Toomre 1964). Now, two new
quantities κ and ν can be defined as

κ2(Rg) ≡
(

∂2Φeff

∂R2

)

(Rg,0)

(4.20)

ν2(Rg) ≡
(

∂2Φeff

∂z2

)

(Rg,0)

(4.21)
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By using these new quantities, Eqs. 4.14 and 4.15 become

ẍ = −κ2x (4.22)

z̈ = −ν2z (4.23)

According to these equations, x and z evolve like the displacements of two harmonic oscilla-
tors with frequencies κ, called the epicycle frequency, and ν, called the vertical frequency. Upon
substituting the expression from Eq. 4.15 for Φeff and further developing, the result is obtained
as follows

κ2 =
2Ω
R

d

dR

(

R2Ω
)

(4.24)

ν2 =
∂2Φ

∂z2
(4.25)

where Ω is the circular frequency and is given by L2
z/R

4. The ratio ν2/κ2 is a measure of
the degree to which the particles are concentrated towards the plane. For example, observations
have shown that this ratio is ∼ 4 near the Sun.

4.3.2.3 Toomre’s parameter and velocity dispersion

The Toomre’s stability criterion is a relation in a deferentially rotating gaseous disk that ap-
proximately determined if the system is stable. The Toomre’s criterion, also called the Toomre
parameter, Q is written for a stellar disk as

Q =
σrκ

3.36GΣ
(4.26)

where σr is the radial velocity dispersion, G is Newton’s gravitational constant, Σ is the
surface density of the disk. In order to ensure the stability of an accretion disk, it is necessary
for the value of Q to be greater than or equal to 1. To achieve this condition, σr can be defined
in such a way that it sets the Toomre Q parameter of the disk to 1. Therefore, the value of σr

can directly determined by using Eq. 4.26

σr = 3.36G
Σs + Σg

κ
(4.27)

where Σs is the surface density of the stars in the disk and Σg represents the same quantity
but for the gas. The epicyclic theory gives the ratio between tangential and radial velocity
dispersion (e.g. Toomre 1964), thus, σθ can be fined from σϕ

σθ = κ
σr

2Ω
(4.28)

4.3.2.4 Vertical velocity dispersion

For studying the vertical structure of the thin axisymmetric disk, an assumption can be made
that the z-component of the potential depends solely on z. The equilibrium state is given by
solving
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∇P = −ρ∇Φ (4.29)

The pressure P = ρσ2
z and the potential is given by Poisson’s equation (Eq. 4.1). This allows

for the writing of

d

dz

(

1
ρ

dρ

dz

)

= −4πG
σ2

z

ρ (4.30)

The solution is of the form of

P =
ρ0

ch2(z/H)
(4.31)

with

H =

√

σ2
z

2πGρ0
(4.32)

From that point, it can be demonstrated that

σz =
√

2πGHΣ (4.33)

4.3.3 Analytical velocity

In modeling collisionless systems, the verifiability of many predictions relies on the likeli-
hood of locating a particle within a six-dimensional phase-space volume defined by its position
X(x, y, z) and velocity V(3x, 3y, 3z). As a result, a probability distribution function denoted as f

can be established, representing the likelihood, at a given time t of a random particle having
phase space coordinates within the specified range. At any position, the integral

ν(X) =
∫

d3V f (X,V) (4.34)

gives the probability per unit of volume of finding a particle at X. Therefore, the probability
distribution of stellar velocities at X can be defined by

PX(V) =
f (X,V)
ν(X)

(4.35)

Hence, the mean velocity at X can be defined as

V(X) =
∫

VPX(V)d3V =
1
ν(X)

∫

V f (X,V)d3V (4.36)

A property of f is that it has the same value at a given phase-space point in any canonical
coordinate system. Consequently, it is possible to define W = (X,V) = (Q, P). As f evolves
through time, the probability must be conserved. The equation for the conservation of proba-
bility in phase space is written as
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∂ f

∂t
+
∂

∂W
· ( f Ẇ) = 0 (4.37)

From that point, the collisionless Boltzmann equation can be derived as follows:

∂ f

∂t
+ Q̇ ·

∂ f

∂Q
+ Ṗ ·

∂ f

∂P
= 0 (4.38)

which can be written in cylindrical systems as

∂ f

∂t
+ pR

∂ f

∂R
+

pϕ

R2

∂ f

∂ϕ
+ pz

∂ f

∂z
−















∂Φ

∂R
−

p2
ϕ

R3















∂ f

∂pR

−
∂Φ

∂ϕ

∂ f

∂pϕ
−
∂Φ

∂z

∂ f

∂pz

= 0 (4.39)

Simulating an axisymmetric disk that remains static over time allows for the removal of
derivatives concerning t and ϕ

pR

∂ f

∂R
+ pz

∂ f

∂z
−















∂Φ

∂R
−

p2
ϕ

R3















∂ f

∂pR

− ∂Φ
∂z

∂ f

∂pz

= 0 (4.40)

Subsequently, this equation can be multiplied by pR, pϕ, or pz integrated over the momenta
pR = 3R, pϕ = R3ϕ, pz = 3z, and then the momenta can be expressed in terms of velocities to
yield:
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where ν is the vertical frequency

ν2(R) =

(

∂2Φ

∂z2

)

(R,z=0)

(4.44)

In this case, if f is known to be of the form f (H, Lz), the mixed moments in the equations
above vanish and can be integrated to give

3
2
R
(R, z) = 32z (R, z) =

1
ν(R, z)

∫ ∞

z
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where 3R and 3ϕ are the mean radial and tangent velocities. When computing the tangent
velocities, the consideration of asymmetric drift becomes necessary. This phenomenon refers
to the rotational motion of stars within a galaxy, where the average velocity 3ϕ is smaller than
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the circular velocity 3c at the corresponding radius.
The asymmetry in the drift arises from the exponential density profile of the galactic disk.

The decline of velocity dispersion σR with distance from the center. Consequently, a larger frac-
tion of particles with more eccentric orbits is located closer to the center of the disk, compared
to the fraction of particles originating from orbits further out.

The asymmetric drift is defined as

3a ≡ 3c − 3θ (4.47)

With 3c the circular speed, 32c = R(∂Φ/∂R), and 3a the axisymmetric drift.
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4.3.4 Positions and velocities initialization

I first randomly initialize the particles’ positions in a cylindrical referential center on the SMBH.
The angle θ is picked from a uniform distribution between 0 and 2π. Then, the particles are
distributed r and z following the Miyamoto & Nagai (1975) density distribution (see Eq.4.3).

Then, I calculate the velocity dispersions (Eqs.4.27, 4.28 and 4.33) and the axisymmetric
drift (Eq. 4.48). In my simulation, I want particles to have random velocities within the range
given by the velocities dispersions. For each dimension, I generate independent, standard, nor-
mally distributed random numbers and then, I multiply it by the velocity dispersion.

4.3.5 Matching the ALMA observations

To compare the model with the ALMA observational data, I generated data cubes by projecting
the model onto the sky using the best-fit large-scale inclinations and position angles. I then
computed the line-of-sight velocity distribution. The pixel size in the data cubes was chosen to
match that of the observed data (ranging from 4 to 7 pc, depending on the galaxy), with velocity
channels of 10 km/s. The data were smoothed to match the observed beam, resulting in a cube
of dimensions (250, 250, 60) for each simulation.

Since the gas distribution exhibits asymmetry and patchiness, which affect the mass-weighted
velocity within each observed beam, I applied a normalization process to the model cube.
Specifically, I normalized the model cube pixel by pixel in the 2D projection using the ze-
roth moment map of the CO observations. This normalization serves as a multiplicative filter
for my homogeneous gas disks. Consequently, each CO spectrum at every position in the model
is normalized to the observed integrated flux at that corresponding position. A demonstration of
how the application of a multiplicative filter alters my simulated uniform gas disk to replicate
the observed gas distribution is shown in Fig.4.4.
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4.4 ML approach to estimate the MBH

I have chosen to employ ML techniques to estimate the masses of BH using the ALMA data
cubes of the GATOS core sample. These 3D data cubes can be effectively transformed into
2D images, enabling us to apply CNNs for analysis. Although everyday data tends to be more
complex, CNNs have proven to be highly effective in such cases, leading us to expect their
suitability for astrophysical data as well.

As of now, my sample consists of only 7 galaxies, which implies that applying an ML
method to such a small dataset may not yield the most optimal results. However, I anticipate
the availability of a larger sample in the future. Additionally, the presence of data in the ALMA
archives presents further opportunities for analysis and investigation, thus motivating my efforts
toward automating the BH mass estimation process. Although scaling relations offer a certain
level of automation, their intrinsic errors restrict the full exploitation of the high-resolution data.
The ML method presented in this study serves as a proof of concept that ML can be applied to
ALMA data to estimate MBH with physical significance and is a first step toward an automated
approach that leverages the data resolution to achieve precise MBH estimations.

4.4.1 Supervised learning approach

The principle of my approach is to run a large number of numerical simulations, fitted to each
studied galaxy. With this method, the gravitational potential of the galaxy disk is assumed
to be known from HST images, within some uncertainties. The simulations are subsequently
conducted by systematically varying the parameters within the defined uncertainty ranges. This
includes the mass and scales of the bulge and disk components, as well as the characteristics of
the gas and stellar populations. Inclination and position angles are fixed to the values estimated
from the observations (García-Burillo et al. 2021), except in some cases, where the nuclear disk
is tilted with respect to the large-scale disk. The possible mass of the SMBH is varied in a
large range, compatible with the observations. A large number of numerical simulations with
different MBH is used to train an artificial neural network model for each galaxy. The trained
model can then be used to infer the estimated MBH from the real observation.

Since there is a limited number of different galaxies in my sample, it is not relevant to train a
neural network to infer the MBH from the CO(3-2) molecular gas moment maps of any galaxy.
In contrast, the galaxy sample is small enough to train a CNN for each galaxy. That means
creating a training set, a validation set, and a test set, and then training a different CNN for each
different galaxy. For each observed galaxy, I generated 25,000 simulated data cubes. I divided
my MBH-labeled simulations into three different sets: a training set of 16500 simulations, a
validation set of 3500 simulations, and a test set of 5000 simulations.

The different parameters of the simulations are described at the beginning of Sect. 4.3. For
each simulation, all the parameters are taken randomly from a uniform distribution between the
limits with physical meaning (see Table 4.1), except the IA and the PA. I can deduce from the
moment maps a range for the radial scale of the gas Rgas and since the molecular disk is thin, I
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Parameters Min Max

Mbulb 0.1 1.0
Rbulb 0.1 0.5
Hbulb 0.1 0.5
Mgal 1.0 10.0
R0 3.0 10.0
Ht 0.001 0.003
log MBH 4.0 9.0
RAPM 0.019 0.021
Rgas Robs Robs + 0.7
Hgas Robs/10 (Robs + 0.7)/10

Table 4.1: Lower and upper limits of the simulation parameters used to generate the training,
validation, and test sample for each galaxy. The 12 parameters are described in the second
paragraph of the 4.3. The RAPM parameter has no units, Mbulb and Mgal are in units of 2.259M⊙,
MBH in log(M/M⊙) and Rbulb, Hbulb, R0, Ht, Rgas and Hgas are in kpc. Robs is the molecular disk
observed radius in the data (see Fig.4.11 to Fig.4.17 for the values).

choose to keep the ratio Hgas/Rgas < 0.1. For the stellar disk R0 and Mgal are large with respect
to the scale probed by my observations/simulations, and their possible variations are small. The
IA and PA are set constant in all the simulations for a galaxy. They were taken as estimated by
García-Burillo et al. (2021) based on the gas kinematics.

4.4.2 Preparing the inputs

The GATOS CO(3-2) molecular gas observations are in the form of spectroscopic data cubes
which are three-dimensional arrays that combine spatial and spectral information. Two of the
dimensions represent the spatial coordinates and define the position in the sky. The third di-
mension represents the intensity or flux of light at each spatial position and each wavelength or
frequency.

Gathering information directly from spectroscopic data cubes can be a challenging task,
especially when these data cubes are utilized as inputs in ML processes (Hartley et al. 2023).
The introduction of a third dimension into the input data significantly amplifies data complexity
and can lead to considerable increases in computational requirements. To mitigate the result-
ing computational load and efficiently extract valuable insights from the data cube, it becomes
essential to optimize and fine-tune the ML architectures employed.

However, I can take an easier approach and pre-process the data cubes to put the meaningful
information more straightforwardly in the shape of two-dimensional images. This will make it
easier for the NN to learn how to estimate the MBH from the simulated data cubes. Two
commonly used representations to study the CO(3-2) gas dynamics are the PVD and the moment
maps (see Fig.4.5).

The PVD allows the gas velocity and concentration as a function of the radius in a chosen
direction to be seen in detail. Since the PVD is used to better see the effect of the SMBH
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input, followed by employing the first-moment map as input.

4.4.3 ML architecture

Layer Filters Size Stride

Conv1 16 7x7 2
Conv2 20 7x7 1
Conv3 20 7x7 2
Conv4 24 7x7 1
Conv5 64 5x5 2
Conv6 80 5x5 1
Conv7 80 5x5 2
Conv8 128 5x5 1

Max Pooling 3x3 2
Dense1 2048
Dense2 1024
Dense3 512

Table 4.2: Architecture of the neural network used for the MBH estimations with the PVD as
inputs

To make my MBH estimations via ML I used a CNN-supervised training method (e.g.,
LeCun et al. 2015). Our neural networks were developed using Python’s library Keras (Chollet
et al. 2015). The PVD and the moment maps represent the information differently, so I will use
different neural network architectures to get the best out of their distinct characteristics.

The NN taking the PVD as inputs is composed of a succession of eight convolution layers,
a max pooling layer, and at the end, three dense layers (i.e. Table 4.2). The NN that takes
the first moment maps as inputs are composed of a succession of convolution and max pooling
layers followed by three dense layers (i.e. Table 4.3). These NN are the result of many trials
and errors.

Dropout was added to the second dense layer in both architectures with a drop rate of 20%. It
means that in this layer, 80% of the neurons are randomly selected to remain active at each path
through the network. Usually, the dropout technique is used as a regularization method during
training to help prevent overfitting (Srivastava et al. 2014). It can also improve the predictive
performance of neural networks in several tasks. Another way to use dropout is to keep it
activated at inference time (see Sect. 3.4.7). At each inference, the dropout will randomly
select a different combination of neurons, resulting in a different estimation. It is equivalent to
an approximation of the probabilistic deep Gaussian process. Thus, making multiple inferences
for the same input will not give one value but a probability distribution on the predicted value,
similar to what is produced by a Monte Carlo Markov Chain process. This distribution can be
studied to characterize the model uncertainties for that input.

I used the Root Mean Square Error (RMSE)) as loss function. It is a common loss function
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Layer Filters Size Stride

Conv1 32 11x11 4
Max Pooling 1 3x3 2

Conv2 64 5x5 1
Max Pooling 2 3x3 2

Conv3 64 5x5 1
Max Pooling 3 3x3 2

Conv4 64 5x5 1
Max Pooling 4 3x3 2

Conv5 96 3x3 1
Conv6 96 3x3 1
Conv7 96 3x3 1

Max Pooling 5 3x3 2
Dense1 2048
Dense2 1024
Dense3 512

Table 4.3: Architecture of the neural network used for the MBH estimations with the moment
maps as inputs

used in regression problems:

RMS E =

√

∑n
i=1(Ypred,i − Yreal,i)2

n
(4.51)

with n the number of predictions made, Ypred,i the predicted values and Yreal,i the actual values.
To help stabilize the weights in my models during the training, I normalized the output targets
(i.e., the MBH) by dividing them by the highest value among the output targets.

I trained my models during 2000 epochs and took the weights of the epoch with the lowest
RMSE on the validation set. I used an initial learning rate of 0.0001 and the Adam optimizer
(Kingma & Ba 2014). The training was made with a mini-batch size of 128 images.

4.4.4 Estimating the reliability of models

Multiple statistical indicators can be used to evaluate the quality of a regression model. These
indicators can be used as metrics to help compare the training results of the different models. A
first indication of the quality can be obtained by looking at the value of the loss function on the
test set. However, studying the loss function alone is not enough to evaluate a model because it
can be highly degenerate. Furthermore, the RMSE function goes from 0 (best fit possible) to +∞
(worst fit possible). The lack of an upper bound can make the RMSE interpretation difficult but
in my case, the error directly measures the average difference between the estimated MBH and
the actual ones.

A more reliable indicator would be the coefficient of determination (Wright 1921)1. It is

1https://naldc.nal.usda.gov/download/IND43966364/PDF
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a statistical value that represents the proportion of a dependent variable variance that is pre-
dictable from the independent variables:

R2 = 1 −
∑n

i=1(Ypred,i − Yreal,i)2

∑n
i=1(Ypred − Yreal,i)2

(4.52)

where the notations are the same as the RMSE ones and Ypred is the mean of the predictions. In
a regression problem, the coefficient of determination measures how well the model fits the real
data. It has the advantage of being confined by construction between 0 and 1, 0 being the worst
fit possible and 1 meaning that the model perfectly fits the data. By studying the RMSE and the
R2 I can have a global evaluation of the capacity of a model to make the correct prediction.

To gain more information about the in-depth behavior of a model, I also use the Relative
Errors (RE):

REi =
Ypred,i − Yreal,i

Yreal,i

(4.53)

Studying the distribution of the relative errors of a model when predicting the test set can reveal
any systematic bias during the predictions. Furthermore, since my datasets are made of sim-
ulations, I can check if any of the simulation parameters primarily influence the results of the
predictions by looking at the relations between the parameter values and the relative errors.

4.5 Results on MBH estimation

4.5.1 Reliability of ML models

As described above in Sec 2.2, 7 of the 10 galaxies in my sample have sufficiently robust CO(3-
2) data in the central regions to enable MBH estimations with my ML method: NGC 4388,
NGC 5506, NGC 5643, NGC 6300, NGC 7314, NGC 7465, and NGC 7582. Before comparing
my MBH estimations with those from the literature, I need to verify their reliability with the
tools mentioned in Sect. 4.4.4.

I report in Table 4.4 the measure of the RMSE, the R2, and the mean RE of my models on
their test set for both the ones estimating the MBH via the PVD and the ones using the first-
moment maps. The analysis reveals that the diverse evaluations of the fitting quality exhibit
a high degree of reliability and demonstrate consistency across the various indicators for both
architectures. The RMSE values are at worst 0.0367 and the R2 are all above 0.946, confirming
that all the models are capable of making a reliable estimation of the MBH on simulated data
that were not present during the training process.

I show in Fig 4.6, the models RE distributions estimations on the 5000 simulations that
composed their respective test sets. As shown in Table 4.4, the mean RE is ∼0 for the fourteen
models, two for each galaxy, one with the PVD as input and one with the moment map as
input. The histograms are centered at the value of zero and prominently feature a pronounced
peak at this center point. The locations of the centers around 0 show that there is no systematic
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ID
RMSE R2 RE

PVD Mom PVD Mom PVD Mom

NGC 4388 0.0341 0.0341 0.986 0.946 0.0020 0.0007

NGC 5506 0.0335 0.0367 0.986 0.947 0.0060 -0.0032

NGC 5643 0.0194 0.0178 0.995 0.996 -0.0019 0.0001

NGC 6300 0.0243 0.0180 0.995 0.996 -0.0002 0.0005

NGC 7314 0.0312 0.0277 0.984 0.990 -0.0029 -0.0041

NGC 7465 0.0246 0.0255 0.993 0.992 0.0010 0.0014

NGC 7582 0.0263 0.0220 0.992 0.994 -0.0002 -0.0031

Table 4.4: RMSE, R2 and mean RE of our models on the test sets. The RMSE (> 0), R2

(between 0 and 1), and the RE are defined in Section 4.4.4

bias during the predictions and the relatively symmetrical distributions indicate that there is no
constant over/underestimation of the MBH.

The mock datasets used for training, validation, and testing are produced via a numerical
simulation with 10 free parameters. I can use the relative errors to make sure that the confidence
of my models MBH predictions are not influenced by any other parameters than the MBH. For
each parameter, I plot the relative errors of the MBH predictions as a function of the parameter
values. I observe the same behavior for each galaxy so I present here only the case of NGC 6300
(i.e. Fig 4.7), the rest can be found in the Appendix (see Fig.B.1 to B.6). For every parameter,
except for the MBH, the distribution is uniform and centered around zero. This is strong evidence
for considering that the models prediction does not depend on any other parameter other than
MBH.

To further investigate the behavior of my models, I represent the 2D histograms of the RE as
a function of MBH. I present here the case of NGC 4388 (i.e. Fig.4.8) the rest can be found in the
Appendix (see Fig.B.7 to B.12). All the distributions have the same shape. From log(MBH/M⊙)
of 4.0 to ∼4.5 dex, the distribution means increase linearly from < 0 to ∼0 and their scatter stays
constant. At ∼4.5 dex, the scatters get bigger and I see outliers that are underestimated. Then,
the distribution scatters get thinner and the outliers number decreases as the MBH predicted
increases until ∼6.5 dex or ∼7 dex and stays constant afterward. Let us note the exception of
the NGC 5643 model using the moment maps. Unlike the other models, its mean is already at
0 for MBH=4 dex and stays constant with MBH. Its scatter is also constant and uniform.

As the MBH gets lower, fewer and fewer pixels contains information about it. Thus, it
becomes harder for the neural network to extract meaningful information out of the data. This
may explain why I observe the high scatter below MBH∼6 dex.
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ID logMBH PVD logMBH Mom M - σ Reverberation FPBH Ref

NGC4388 7.18 ± 0.16 6.61 ± 0.02 7.178.16
6.85 — 7.62 3,4,5,6,7,8

NGC4941 — — 6.837.14
6.83 6.34 — 2,3,6,7

NGC5506 6.40 ± 0.14 6.63 ± 0.02 7.618.24
6.65 6.30 8.15 1,3,4,6,7,8,9

NGC5643 6.13 ± 0.10 6.99 ± 0.02 6.737.05
6.44 6.386.45

6.30 — 2,3,5,6,7

NGC6300 7.15 ± 0.12 6.39 ± 0.01 6.637.14
5.45 6.29 — 3,4,5,6,7

NGC6814 — — 6.967.32
6.42 7.28 7.45 1,4,5,7,9

NGC7213 — — 8.498.82
8.06 7.357.99

6.88 — 1,3,7

NGC7314 6.84 ± 0.05 6.41 ± 0.02 6.487.83
5.59 6.70 7.18 1,4,6,7,9

NGC7465 6.75 ± 0.05 6.62 ± 0.02 6.797.07
6.51 — — 6,7

NGC7582 6.62 ± 0.03 6.40 ± 0.01 7.567.76
7.24 5.59 — 2,3,5,6,7

Table 4.5: Table summarizing the different MBH estimations found in the literature and the
one I made in Section 4.2. The MBH is in M⊙, and only the log of values are indicated. When
multiple MBH estimations using the same method were available, I report here their mean, the
highest values in superscript, and the lowest in the subscript. (1) Galaxies ID ; (2) Mean of the
MBH probability distribution obtained with ML and the PVD as input (the errors are at 1σ) ;
(3) Same as the previous column but with the moment maps as input ; (3) Mean of the MBH
estimations with the M - σ (intrinsic errors of 0.3 dex) ; (4) MBH calculated with reverberation
mapping (intrinsic errors of 0.4 dex) ; (5) FPBH masses (intrinsic errors of 0.4 dex) ; (6) MBH
estimations references (1: Peterson et al. (2004), 2: Bian & Gu (2007), 3: Wang et al. (2007), 4:
Beckmann et al. (2009), 5: van den Bosch (2016), 6: She et al. (2017), 7: M-σ estimation made
with the Hyperleda data, 8: FPBH mass estimated from the XMM-Newton and the FIRST data,
9: FPBH mass estimated from the XMM-Newton and the NVSS data).

4.6 Individual galaxies

The three moments of the CO(3-2) cubes from ALMA observations (top panel) are compared
with the best fit of my simulations (bottom panel) on the left sides of Figs. 4.11 to 4.17. On
the right side, the observed PV diagram is overlaid with the contours of the second model,
optimized for this. The models are fitted

4.6.1 NGC 4388

The galaxy is almost edge-on (IA of 79◦), and its nuclear molecular disk reveals a ring of ∼ 100
pc radius, which corresponds to the inner Inner Lindblad Resonance (ILR) of the bar. The ring
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data. However, by applying a reverse perspective, as the physical fidelity of the simulations
approaches that of the observations, the probability distributions of MBH become more repre-
sentative of the actual physical uncertainties. Therefore, enhancing the realism of the numerical
simulations serves a dual purpose, it not only improves the accuracy of error estimates but also
confers them with a deeper and more grounded physical significance.

The ML method in itself can also be improved. Here, I chose to work with one galaxy at
a time which means creating a different training sample and training a different model for each
galaxy. This approach has the advantage of simplifying the training set creation and the learning
process but it is also very inefficient time-wise and this approach is effective solely due to the
limited number of galaxies available in my dataset. It take ∼ 8 hours to create a dataset and
∼ 4 hours to train one NN. By creating a training sample with the moment maps of multiple
galaxies, I could generalize the method to make it work for any galaxy. However, the limited
sample of galaxies available allowed us to center the moment maps and PVD around the BH but
this will become impossible when working on too many galaxies. Hence, my goal is to design a
neural network capable of accurately determining the MBH, even when it is not centrally located
within the image. To achieve this, one approach would be to develop a neural network that
performs BH localization, in the data prior to conducting any mass estimations.

To effectively learn and predict additional physical parameters and/or accurately detect the
position of BHs, it is necessary to make modifications to the neural network architecture to ad-
dress these challenges. Moreover, a larger and more diverse training sample will be required.
When aiming to predict multiple parameters, it is essential to ensure that the training sample is
sufficiently extensive to comprehensively map the entire feature space. Furthermore, to success-
fully learn how to localize the BH in the input data, the positional information of the BH must
be known for each example. However, the specific size and diversity requirements of the sample
are empirical and contingent upon the particularities of the problem at hand. At the very least,
several hundred distinct galaxy molecular gas observations are anticipated to be necessary.

Then I can choose to train my NN on the observations or on simulations made from the ob-
servations. Training the NN on the observations has the advantage that I do not have problems
with the realism of the physics used in the numerical simulations. However, it requires to have
MBH estimation for all the observed galaxies. In addition, it’s important to note that a single
galaxy may yield multiple MBH estimations derived from various methods, often resulting in
discrepancies between these estimates. This situation highlights the necessity for methodologi-
cal consistency in estimating MBH across all galaxies in the sample to avoid potential confusion
for the NN. However, this uniformity in estimation methods also implies that the NN is not
learning to estimate MBH per se but is instead learning to estimate MBH based on the prede-
termined method. Consequently, if the selected method contains inherent flaws or inaccuracies,
the NN is likely to incorporate and replicate these shortcomings in its estimations. Working
with numerical simulations does have its disadvantages, particularly concerning the intricacies
of simulating the physics, as elaborated earlier. However, it also presents the advantage of re-
ducing the volume of observations necessary for the method generalization, as it allows for the
creation of multiple simulations per galaxy.

Nevertheless, obtaining the exact position of the BH may not be a prerequisite; instead,
it may suffice to ensure that the BH is contained within the image. This approach offers the
advantage of simplifying the acquisition of the required sample. However, it is important to
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note that training the model using this method may be harder.

4.8 Conclusion

The ALMA high sensitivity and spatial resolution allow us to resolve the CO(3-2) molecular
disks at the center of nearby galaxies. In the case of the GATOS core sample used in this work,
the distances and ALMA angular resolutions allow to resolution of typical physical scales of
10 pc, which probe their SoI. Since the nuclear disks entered the sphere of influence of the BH,
I was able to make MBH estimations. In this article, I provide a proof of concept for a novel
approach to estimate the mass of SMBH using ALMA observations of the circum-nuclear disk.
My method employs supervised ML techniques on data obtained from numerical simulations.

Gas dynamics can be studied by looking at the PVD and/or the moments map calculated
from a spectral data cube. I developed two artificial neural network architectures. The first one
takes the PVD as input, the other one takes the first moment maps, and both of them give an
estimation of the MBH based on the input. To test the reliability of my models, I used three
statistical indicators: the RMSE, the R2, and the RE. These statistical indicators confirmed that
my fourteen models can make reliable MBH estimations on new data. I looked at my models
RE distribution when predicting the MBH of the test sample. I saw that the distributions were
symmetrical and centered around 0, indicating no constant over/underestimation. I also studied
the models RE of their MBH estimations made on the test set as a function of the simulation
parameters values. The resulting distributions are all uniform and center around zero except for
the MBH. This is a strong indication that the models MBH predictions only depend on the MBH.
I studied more in-depth the behavior of the MBH predictions by looking at the predictions RE
versus the MBH.

I managed to make a MBH estimation with both architectures for 7 out of the 10 galax-
ies in the GATOS core sample: NGC 4388, NGC 5506, NGC 5643, NGC 6300, NGC 7314,
NGC 7465, and NGC 7582. I made 105 predictions per galaxy using MC dropout. The resulting
MBH estimations are Gaussian-like probability distributions. The scatter of these distributions
represents the models confidence in their predictions. I observe that the PVD models give
larger scatters from 0.03 dex to 0.16 dex depending on the galaxy. On the other hand, the mo-
ment maps models have a constant scatter of ∼0.02 dex for all galaxies. The narrow error bars
observed in my results are likely indicative of the network’s overconfidence, which can be at-
tributed to its training on numerical simulations that encompass simplified physics compared to
real-world conditions. Nonetheless, all the estimations I made are consistent with the previous
studies except for NGC 7582 where my estimate is between the previous ones.

In this study, I showed that even with training sets simulated with simple physics, with
a fixed IA and PA, and with simple neural network architectures, my approach can produce
results coherent with the literature. This work represents the first step toward an automatized
method for estimating MBH.
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APPENDIX A

RLAGN

A.1 Tables of the parameters of our RLAGN

sample

I report below some tables summarizing the properties of the radio sources in our sample.
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ID RA Dec. z log L1.4 GHz

erg s−1 Hz−1 log(Ldust/L⊙) log(M⋆/M⊙) SFR WISE class Type Name

hh:mm:ss.ss dd:mm:ss.ss (M⊙/yr)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

RS 16 02:23:34.94 -06:37:22.99 1.217 33.65 ± 0.01 11.48 10.40 32 AGN Radio Source SDSS J022334.90-063722.9

RS 49 02:16:40.74 -04:44:04.97 0.875 33.51 ± 0.01 13.65 11.95 <4801 AGN QSO FBQS J0216-0444

RS 52 02:19:38.89 -05:18:05.28 2.207 32.65 ± 0.04 12.34 11.73 <235 AGN QSO 3XMM J021938.8-051805

RS 60 02:19:54.63 -05:49:22.32 0.322 30.63 ± 0.05 9.08 10.15 0.13 AGN QSO SDSS J021954.62-054922.2

RS 62 02:22:47.91 -04:33:31.02 1.635 32.60 ± 0.02 12.43 11.02 <289 AGN QSO XXL-N 027_020

RS 79 02:22:55.95 -05:18:15.85 1.756 34.63 ± 0.01 12.32 11.48 <225 AGN QSO PKS 0220-055

RS 81 02:26:07.42 -05:32:09.52 0.779 32.30 ± 0.01 11.53 10.76 36 Intermediate disk X-ray source XXL-N 062_013

RS 82 02:25:56.39 -05:34:51.44 2.879 33.68 ± 0.01 12.75 11.25 <605 AGN QSO XXL-N 062_009

RS 83 02:25:05.12 -05:36:47.94 0.682 33.60 ± 0.01 9.58 11.11 0.41 Intermediate disk QSO PMN J0225-0536

RS 104 02:27:12.99 -04:46:36.36 0.981 32.32 ± 0.01 12.62 11.15 <448 AGN X-ray source SPIRE 13430

RS 113 02:45:31.51 -00:26:12.32 2.082 32.83 ± 0.02 12.52 11.75 <356 AGN QSO 2SLAQ J024531.53-002612.2

RS 151 02:27:40.56 -04:02:51.16 2.603 32.42 ± 0.07 13.69 11.54 <5265 AGN QSO XXL-N 044_070

RS 159 02:29:15.79 -04:42:15.95 1.074 34.12 ± 0.01 12.29 10.28 <21 AGN QSO 3XMM J022915.7-044216

RS 177 02:51:56.32 +00:57:06.53 0.471 31.80 ± 0.01 11.74 10.45 <59 AGN QSO LBQS 0249+0044

RS 190 02:51:15.50 +00:31:35.45 1.978 33.93 ± 0.01 12.02 11.10 <114 AGN QSO WISEA J025115.50+003135.4

RS 195 02:47:06.66 +00:23:18.10 0.363 30.85 ± 0.03 11.67 10.94 <50 AGN QSO FBQS J0247+0023

RS 197 02:46:16.61 +00:19:53.11 3.791 33.46 ± 0.02 11.61 11.11 44 Starburst/LIRG QSO SDSS J024616.60+001953.6

RS 205 02:53:40.94 +00:11:10.04 1.683 33.04 ± 0.01 12.73 11.23 <577 AGN QSO LBQS 0251-0001

RS 206 02:48:54.80 +00:10:53.84 1.145 33.49 ± 0.01 12.92 11.05 <904 AGN QSO 2SLAQ J024854.80+001053.9

RS 214 02:50:48.66 +00:02:07.46 0.766 32.67 ± 0.01 11.93 10.43 <91 AGN QSO FBQS J0250+0002

RS 237 02:49:23.22 -00:54:38.04 0.953 31.63 ± 0.06 11.69 10.27 <53 AGN QSO 2SLAQ J024923.20-005437.7

G 55673 12:11:55.32 -00:20:19.38 0.436 33.16 ± 0.04 11.55 11.19 23 Starburst/LIRG G SDSS J121155.31-002019.4

G 71277 12:16:12.27 00:04:17.91 0.316 32.29 ± 0.03 10.01 11.23 0.49 Intermediate disk G SDSS J121612.26+000417.8
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ID RA Dec. z log L1.4 GHz

erg s−1 Hz−1 log(Ldust/L⊙) log(M⋆/M⊙) SFR WISE class Type Name

hh:mm:ss.ss dd:mm:ss.ss (M⊙/yr)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

G 165213 12:01:13.77 -02:42:41.34 0.307 31.90 ± 0.08 11.64 11.27 34 AGN QSO SDSS J120113.76-024241.3

G 196970 08:53:52.21 -00:45:31.12 0.323 31.99 ± 0.06 10.00 11.08 0.74 Intermediate disk G SDSS J085352.21-004531.1

G 208794 08:40:44.47 00:03:05.27 0.449 31.84 ± 0.10 11,59 10.92 28 AGN G SDSS J084044.10+000307.2

G 249591 14:08:22.42 02:08:53.70 0.432 32.45 ± 0.02 10.64 11.31 4.3 Intermediate disk G SDSS J140822.76+020853.1

G 251343 14:32:57.38 02:03:24.46 0.761 32.66 ± 0.01 12.22 11.54 <1119 Starburst/LIRG G SDSS J143257.64+020321.3

G 298359 14:37:31.86 01:18:58.14 0.342 34.06 ± 0.01 10.81 10.92 3.1 Intermediate disk Radio Source GAMA J143257.41+020329.1

G 372455 09:03:25.57 01:12:14.86 0.311 32.68 ± 0.01 9.842 11.02 0.75 Intermediate disk Radio Source GAMA J090325.48+011214.1

G 537618 12:23:48.39 -00:52:50.43 0.490 32.57 ± 0.02 12.06 10.79 43 Starburst/LIRG Radio Source SDSS J122347.89-005249.2

G 714133 14:25:33.03 01:07:37.73 0.556 32.48 ± 0.02 12.35 10.80 <238 AGN Radio Source NVSS J142533+010739

G 714228 14:31:20.49 01:14:56.44 0.343 33.10 ± 0.01 10.33 10.67 5.9 AGN G SDSS J143120.07+011459.2

G 720847 08:47:02.80 01:30:01.50 0.417 32.87 ± 0.01 10.45 11.11 30 AGN QSO WISEA J084702.78+013001.5

G 721940 14:21:30.03 02:13:02.43 0.640 32.67 ± 0.01 11.89 10.94 <75 Intermediate disk G SDSS J142130.60+021308.9

G 745066 14:51:22.48 -00:33:41.05 0.377 32.06 ± 0.06 11.81 11.72 45 AGN QSO WISEA J145122.47-003341.0

G 746605 12:21:02.95 -00:07:33.74 0.364 31.78 ± 0.10 12.08 10.70 <131 AGN G SDSS J122103.51-000749.1

G 748144 11:39:54.20 00:13:47.26 0.589 32.37 ± 0.03 12.09 11.67 <109 AGN Radio Source GAMA J113952.95+001348.6

G 748815 14:25:45.91 00:22:42.73 0.326 33.82 ± 0.01 11.31 10.87 14 AGN QSO WISEA J142545.90+002242.7

G 804203 09:20:53.32 00:03:53.94 0.506 32.37 ± 0.03 11.93 10.79 41 Starburst/LIRG G SDSS J092053.32+000353.9

G 835899 08:42:16.99 01:09:17.87 0.762 32.05 ± 0.06 12.19 11.83 <70 AGN G WISEA J084217.25+010834.6

G 887308 14:37:01.00 -01:03:49.03 0.547 32.28 ± 0.03 10.47 11.55 2.4 Intermediate disk G SDSS J143702.15-010357.2

Table A.1: Properties of the radio sources in our sample. Column (1): Galaxy ID; (2-3) RA
and Dec. coordinates; (4) Spectroscopic redshift; (5) 1.4 GHz rest-frame luminosity density; (6-
7) SED-based dust luminosity and stellar mass; (8) SFR; (9) WISE color-based class; (10-11)
source type and name as found in the NED.
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ID z Line FWHM log(Lline/(erg s−1)) log(MBH/M⊙) log(Qjet/(erg s−1)) log(LBLR/(erg s−1)) log η

(103 km s−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

RS 16 1.22 Mg ii 4.08 ± 0.42 42.53 ± 0.07 8.00 ± 0.12 45.81 43.50 -1.60

RS 49 0.88 Hβ 6.77 ± 0.11 44.02 ± 0.01 9.30± 0.04 45.69 45.06 -1.34

RS 52 2.21 Mg ii 6.00 ± 0.43 43.41 ± 0.14 8.88 ± 0.13 44.94 44.51 -1.48

RS 60 0.32 Hα 1.74 ± 0.07 41.88 ± 0.02 7.13 ± 0.04 43.22 42.44 -1.80

RS 62 1.64 Mg ii 3.20 ± 0.11 43.26 ± 0.02 8.25 ± 0.08 44.90 44.27 -1.07

RS 79 1.76 Mg ii 6.48 ± 0.16 43.47 ± 0.03 8.99 ± 0.08 46.60 44.73 -1.30

RS 81 0.78 Mg ii 12.47 ± 2.07 42.14 ± 0.14 8.72 ± 0.18 44.60 43.30 -2.52

RS 82 2.88 C iv 5.26 ± 0.37 43.49 ± 0.12 8.73 ± 0.24 45.83 44.28 -1.55

RS 83 0.68 Hβ 7.03 ± 1.67 41.87 ± 0.14 8.28 ± 0.23 45.70 40.57 -4.80

RS 104 0.98 Hβ 6.31 ± 0.30 43.47 ± 0.03 8.97 ± 0.06 44.60 44.56 -1.52

RS 113 2.08 Mg ii 5.89 ± 0.24 43.62 ± 0.06 9.00 ± 0.09 45.10 44.67 -1.43

RS 151 2.60 Mg ii 7.68 ± 0.30 44.47 ± 0.08 9.76 ± 0.09 44.75 45.13 -1.73

RS 159 1.07 Mg ii 3.95 ± 0.21 42.94 ± 0.03 8.22 ± 0.10 46.21 43.95 -1.37

RS 177 0.47 Hβ 5.31 ± 0.14 42.60 ± 0.01 8.39 ± 0.06 44.22 43.65 -1.84

RS 190 1.98 C iv 14.66 ± 1.29 44.40 ± 0.10 10.03 ± 0.24 46.05 45.05 -2.08

RS 195 0.36 Hβ 2.90 ± 0.03 42.42 ± 0.01 7.78 ± 0.06 43.40 43.89 -0.99

RS 197 3.79 C iv 1.93 ± 0.39 43.64 ± 0.09 7.92 ± 0.28 45.61 44.43 -0.50

RS 205 1.68 Mg ii 7.22 ± 0.18 43.93 ± 0.02 9.38 ± 0.07 45.28 45.19 -1.29

RS 206 1.15 Mg ii 4.12 ± 0.11 43.54 ± 0.01 8.64 ± 0.07 45.60 44.58 -1.10

RS 214 0.77 Hβ 11.05 ± 0.48 43.42 ± 0.02 9.43 ± 0.06 44.96 44.36 -2.10

RS 237 0.95 Mg ii 9.89 ± 0.99 43.24 ± 0.07 9.21 ± 0.12 44.07 44.30 -2.01

G 55673 0.44 Hβ 1.20 ± 0.19 41.66 ± 0.09 8.45 ± 0.16 43.51 33.91 -2.60

G 71277 0.32 Hα 1.05 ± 0.11 41.99 ± 0.05 8.36 ± 0.09 43.35 33.61 -2.85

G 165213 0.31 Hα 1.19 ±0.93 42.79 ± 0.01 8.82 ± 0.71 42.99 34.45 -2.47

G 196970 0.32 Hβ 1.20 ±0.60a 40.89 ± 0.07 8.08 ± 0.45 43.11 32.74 -3.44

G 208794 0.45 Hβ 1.20 ±0.11 41.35 ± 0.04 8.30 ± 0.12 43.26 33.6 -2.80138
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ID z Line FWHM log(Lline/(erg s−1)) log(MBH/M⊙) log(Qjet/(erg s−1)) log(LBLR/(erg s−1)) log η

(103 km s−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

G 249591 0.43 Hβ 1.20 ±0.62 a 41.66 ± 0.14 8.45 ± 0.46 43.75 33.91 -2.64

G 251343 0.76 Hβ 1.19 ±0.15a 43.96 ± 0.02 9.57 ± 0.12 44.42 36.21 -1.46

G 298359 0.34 Hα 1.19 ±0.18 42.07 ± 0.06 8.51 ± 0.14 44.93 33.76 -2.85

G 372455 0.31 Hα 1.19 ±0.60a 42.66 ± 0.08 8.77 ± 0.08 43.67 34.29 -2.58

G 537618 0.49 Hβ 1.10 ± 0.04 43.86 ± 0.02 9.45 ± 0.05 43.96 36.11 -1.44

G 714133 0.56 Hβ 1.20 ±0.19 42.25 ± 0.01 8.74 ± 0.10 43.99 34.50 -2.34

G 714228 0.34 Hβ 1.20 ±0.11 40.86±0.06 8.06 ± 0.13 44.11 33.11 -3.05

G 720847 0.42 Hβ 1.19 ±0.24 41.92 ± 0.02 8.57 ± 0.19 44.07 34.17 -2.5

G 721940 0.64 Hβ 1.20 ±0.60a 43.31 ± 0.04 9.25 ± 0.44 44.26 35.56 -1.79

G 745066 0.38 Hβ 1.19 ±0.60a 41.73 ± 0.02 8.47 ± 0.45 43.30 33.77 -2.8

G 746605 0.37 Hβ 1.24 ± 0.09 43.37 ± 0.04 9.31 ± 0.08 43.03 35.62 -1.79

G 748144 0.59 Hβ 1.22 ± 0.31 43.08± 0.09 9.16 ± 0.23 43.95 35.33 -1.93

G 748815 0.33 Hβ 1.19 ±0.07a 42.05±0.01 8.63 ± 0.09 44.68 33.94 -2.79

G 804203 0.51 Hβ 1.20 ±0.60a 41.44±0.11 8.34 ± 0.45 43.82 33.69 -2.75

G 835899 0.76 Hβ 1.19 ±0.16a 42.24±0.02 8.72 ± 0.13 43.90 34.49 -2.33

G 887308 0.55 Hβ 1.20 ±0.19a 43.17±0.03 9.18 ± 0.15 43.80 35.42 -1.87

Table A.2: Black hole, accretion, and jet properties of the radio sources in our sample. Col-
umn (1): Source ID; (2) spectroscopic redshift; (3-5) broad emission line, FWHM, and line
luminosity; (6) single-epoch SMBH mass; (7) jet power; (8) BLR luminosity; and (9) Edding-
ton ratio. Sources marked with the symbol a in column (4) have uncertain FWHM errors from
GAMA, when the lines were fit with a single Gaussian component. To overcome this limitation,
we considered the GAMA fits that include both narrow and broad components of the emission
line. We then assumed an FWHM relative error equal to that resulting from the fit to the broad
component of the line.
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A.2 Figures with highlighted populations
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A.3 Radio sources SEDs
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APPENDIX B

GATOS

B.1 Moment maps and position-velocity dia-

grams
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PARAMETER NGC4388 NGC5506 NGC5643 NGC6300 NGC7314 NGC7465 NGC7582

Mbulb 0.40 0.20 0.10 0.25 0.10 0.60 0.45

Rbulb 0.10 0.20 0.10 0.10 0.10 0.15 0.10

Hbulb 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Mgal 8.0 4.0 8.0 9.0 3.0 1.0 5.0

R0 3.0 3.0 1.0 3.0 3.0 10.0 8.0

Ht 0.001 0.001 0.001 0.003 0.001 0.002 0.001

log MBH 6.61 6.63 6.99 6.39 6.41 6.62 6.40

RAPM 0.020 0.021 0.020 0.021 0.020 0.020 0.020

Rgas 0.48 0.50 0.55 0.20 0.20 0.20 0.60

Hgas 0.12 0.012 0.011 0.03 0.02 0.12 0.08

PA [10,10] [0,0] [50,150] [160,160] [80,80] [30,30] [110,110]

IA 79 80 29 57 55 55 59

Table B.1: Table of the parameters used to obtain the fits of the observed moment maps shown
in the figures 4.11 to 4.17. The 12 parameters are described in the second paragraph of the 4.3:
RAPM has no units, Mbulb and Mgal are in units of 2.25 × 109M⊙, MBH in log(M/M⊙), PA and
IA are in degrees and Rbulb, Hbulb, R0, Ht, Rgas and Hgas are in kpc.

B.2 Relative errors of the MBH predictions as

a function of free parameters
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