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Abstract
The main ambition of this thesis is to contribute to the development of cooperative
game theory towards combinatorics, algorithmics and discrete geometry. Therefore, the
first chapter of this manuscript is devoted to the highlighting of the geometric nature
of the coalition functions of transferable utility games, and spotlights the existing
connections with the theory of submodular set functions and polyhedral geometry.

To deepen the links with polyhedral geometry, we define a new family of polyhe-
dra, called the basic polyhedra, on which we can apply a generalized version of the
Bondareva-Shapley Theorem to check their nonemptiness. To allow a practical use of
these computational tools, we present an algorithmic procedure generating the minimal
balanced collections, based on Peleg’s recursive method. Subsequently, we apply the
generalization of the Bondareva-Shapley Theorem to design a collection of algorithmic
procedures able to check properties or generate specific sets of coalitions.

In the next chapter, the connections with combinatorics are investigated. First, we
prove that the balanced collections form a combinatorial species, and we construct the
one of k-uniform hypergraphs of size p, as an intermediary step to construct the species
of balanced collections. Afterwards, a few results concerning resonance arrangements
distorted by games are introduced, which gives new information about the space of
preimputations and the facial configuration of the core.

Finally, we address the question of core stability using the results from the previous
chapters. Firstly, we present an algorithm based on Grabisch and Sudhölter’s nested
balancedness characterization of games with a stable core, which extensively uses the
generalization of the Bondareva-Shapley Theorem introduced in the second chapter.
Secondly, a new necessary condition for core stability is described, based on the appli-
cation of the aforementioned generalization to a specific cone. Finally, we study the
domination relation between preimputations using projectors, and we provide explicit
formulas and algorithms to project on polytopes and intersections of affine subspaces.
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Résumé en français

La totalité est plus que la somme des parties.

Aristote, Métaphysique

Les mathématiques des sciences sociales ont ceci de particulier que l’objet d’étude
de leurs équations sont ceux qui les écrivent. En particulier, le comportement décrit
par ces équations peut changer uniquement parce qu’elles sont explicitement écrites,
s’il y a un intérêt pour quelqu’un à s’en écarter. De plus, les problèmes d’optimisation
rencontrés dans la théorie des jeux sont souvent subjectifs, et les paramètres de la
fonction objectif d’une personne peuvent être les variables de la fonction objectif de
quelqu’un d’autre.

À cet égard, Émile Borel a déclaré que la théorie des jeux « sera une nouvelle science,
où la psychologie ne sera pas moins utile que les mathématiques ».1 Il est l’un des rares,
avec Nicolas de Condorcet et Antoine Augustin Cournot, à avoir développé une théorie
mathématique des interactions stratégiques avant la seconde guerre mondiale et John
von Neumann. L’objectif des travaux de Borel sur la théorie des jeux était de trouver,
pour tout jeu à somme nulle entre deux joueurs (le gain de l’un est la perte de l’autre),
la « meilleure » stratégie pour chaque joueur.2

Sans surprise, Borel s’est appuyé sur la théorie des probabilités dans sa recherche
de la stratégie parfaite, affirmant que, quelle que soit la qualité d’une stratégie unique
et déterministe, si l’adversaire la connaît, il peut jouer une stratégie qui peut être
mauvaise en général, mais qui contre parfaitement la « meilleure » stratégie utilisée
par le premier joueur. Ceci s’illustre parfaitement lors de parties d’échecs ou de poker,
où l’un peut s’écarter de la « meilleure » stratégie pour profiter des faiblesses apparentes
de l’adversaire. Borel a insisté sur les limites des mathématiques dans la théorie des
jeux, compte tenu de la complexité psychologique des jeux réels.2,3

L’importance de la psychologie dans la théorie des jeux distinguait von Neumann de
Borel. Dans une note envoyée à Borel en 1928, et présentée par ce dernier à l’Académie
des Sciences4, von Neumann a expliqué qu’il travaillait indépendamment sur la même
question, sans avoir connaissance des travaux de Borel. Dans cette note, von Neumann

1Borel, É., “A propos d’un traité de probabilités,” Revue Philosophique de la France et de
l’Étranger, vol. 98, pp. 321–336, 1924

2Leonard, R., Von Neumann, Morgenstern, and the Creation of Game Theory: From Chess to
Social Science, 1900–1960. Cambridge University Press, 2010

3von Neumann, J. and Fréchet, M., “Le rôle d’Émile borel dans la théorie des jeux,” Revue
d’Économie Politique, vol. 69, no. 2, pp. 139–167, 1959

4von Neumann, J., “Sur la théorie des jeux,” Comptes Rendus de l’Académie des Sciences, vol. 186,
no. 25, pp. 1689–91, 1928
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affirme également avoir trouvé la solution au problème de la « meilleure » stratégie,
avec le théorème du Minimax, publié plus tard la même année.5

Le théorème du Minimax, parfois appelé théorème fondamental de la théorie des
jeux à deux joueurs, est le premier d’une longue série de théorèmes du minimax en
analyse fonctionnelle. Il a probablement inspiré le théorème de la dualité forte en
programmation linéaire et les travaux de Nash sur les jeux à somme nulle à n personnes,
qui ont abouti au concept bien connu d’équilibre de Nash.

Le théorème du Minimax. Soient X ⊆ Rp et Y ⊆ Rq deux ensembles compacts et
convexes, et f : X × Y → R une fonction continue telle que

• pour tout y ∈ Rq, la fonction f(·, y) : X → R est concave,
• pour tout x ∈ Rp, la fonction f(x, ·) : Y → R est convexe.

Alors la fonction f satisfait

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

Le théorème du Minimax est beaucoup plus général que nécessaire pour résoudre les
jeux à somme nulle à deux joueurs, car x et y n’ont besoin que d’être des distributions
de probabilités discrètes, et f bilinéaire. Dans ce contexte, on peut simplement réécrire
f(x, y) comme y>Ax, où A représente f dans les bases canoniques de Rp et Rq. Si le
joueur 1 a p stratégies possibles, et le joueur 2 a q stratégies, le coefficient aij de A
représente le gain du joueur 1 lorsqu’il choisit la stratégie i ∈ {1, . . . , p} et que le joueur
2 choisit la stratégie j ∈ {1, . . . , q}. Comme il s’agit d’un jeu à somme nulle, le gain
du joueur 2 est −aij. Les joueurs sont autorisés à jouer des combinaisons convexes
de leurs stratégies, ce qui peut être interprété comme une randomisation du jeu, ou
comme des fréquences si le jeu est répété, et les coefficients des combinaisons convexes
sont les entrées des vecteurs x et y, ce qui nous rappelle le point de vue de Borel sur
ce que devrait être une bonne stratégie.

Une conséquence du théorème du Minimax est que, pour chaque joueur, il existe
toujours une « meilleure » stratégie dans un jeu à somme nulle à deux joueurs. Ex-
pliquons enfin ce que nous entendons par « meilleure » stratégie. Comme il s’agit d’un
jeu à somme nulle, le joueur 1 essaiera toujours de maximiser l’image de f , tandis que
le joueur 2 essaiera toujours de la minimiser. Ainsi, un bon début pour le joueur 1
est d’avoir une stratégie x0 qui lui assure une certaine valeur, indépendamment des
actions du joueur 2, pour qui l’objectif est de minimiser f(x0, ·) : Y → R. Désignons
par γ la valeur assurée par la stratégie x0, donnée par γ = maxx∈X miny∈Y f(x, y). Le
joueur 2 suit exactement le même processus, et trouve une stratégie y0 lui assurant
δ = −miny∈Y maxx∈X f(x, y). Par le théorème du Minimax, nous avons que

γ + δ = max
x∈X

min
y∈Y

f(x, y)−min
y∈Y

max
x∈X

f(x, y) = 0,

ce qui confirme l’optimalité des stratégies x0 et y0. En effet, si le joueur 1 n’applique
plus x0, sa stratégie ne maximisera plus la fonction miny∈Y f(·, y) : Y → R, et son gain

5von Neumann, J., “On the theory of games of strategy,” trans. by Bargmann, S., Contributions
to the Theory of Games, vol. 4, pp. 13–42, 1959, trans. of “Zur Theorie der Gesellschaftsspiele,”
Mathematische Annalen, vol. 100, no. 1, pp. 295–320, 1928
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sera alors inférieur à γ. De plus, comme γ+δ vaut zéro, il n’y a pas de gain supplémen-
taire à partager entre les deux joueurs et, comme nous l’avons montré précédemment,
tout écart par rapport aux stratégies x0 ou y0 peut être sanctionné par l’adversaire.
Parce que le nombre γ détermine complètement le gain du jeu lorsque les deux joueurs
jouent les stratégies définies plus tôt, γ est appelé la valeur du jeu. Ce résultat est con-
sidéré par beaucoup comme le point de départ de la théorie des jeux et a été généralisé
par John Nash6 aux jeux à somme non nulle à n joueurs. Un équilibre de Nash est
le choix d’une stratégie par chaque joueur de telle sorte qu’aucun joueur n’a intérêt à
dévier unilatéralement de la stratégie choisie.

Dans le même article, von Neumann a discuté de la possibilité d’étendre ce résultat
à un ensemble plus grand de n joueurs, noté N . Suivant la même idée que pour le
cas à deux personnes, von Neumann voulait donner à chaque ensemble S ⊆ N de
joueurs une valeur, similaire à γ dans l’exemple précédent, interpreté comme un gain
qu’ils pourraient s’assurer si nous supposons que les joueurs formant l’ensemble S
coordonnent leurs actions. L’idée a été développée quelques années plus tard, avec son
collègue de l’Institute of Advanced Study Oskar Morgenstern, dans le célèbre ouvrage
intitulé Theory of Games and Economic Behavior.7

À partir de maintenant, nous commençons à nous écarter des définitions de von
Neumann et Morgenstern, qui ont fait de fortes hypothèses sur les valeurs des ensem-
bles de joueurs. La seule hypothèse que nous conservons est que la valeur de l’ensemble
vide de joueurs est de 0, et nous abandonnons toutes les hypothèses de somme nulle.
Nous pouvons interpréter la valeur d’un ensemble de joueurs S comme étant le max-
imum qu’ils peuvent s’assurer lorsque tous les joueurs du complément de S essaient
de minimiser leur gain. Nous désignons par N l’ensemble de tous les sous-ensembles
non vides de N , que nous appelons coalitions et par v la fonction associant à chaque
coalition S ∈ N sa valeur v(S). La fonction v est appelée fonction coalitionnelle du jeu
(N, v). Nous supposons également que les valeurs des coalitions sont toutes exprimées
dans la même unité et qu’elles peuvent être transférées d’un joueur à l’autre, d’une
coalition à l’autre.

La question est maintenant de savoir, en fonction de v, quelles coalitions se for-
meront. Une condition nécessaire à la formation de la grande coalition N est que nous
puissions diviser sa valeur v(N) en n réels x1, . . . , xn tels que, pour chaque coalition
S ∈ N , nous ayons ∑i∈S xi ≥ v(S). En effet, si les joueurs de S reçoivent au total
moins que ce qu’ils peuvent obtenir seuls, ils n’ont aucun intérêt à rejoindre la grande
coalition N . Par commodité, nous désignons par RN le produit cartésien de n copies
de R, indexées par les éléments de N . Nous avons alors x ∈ RN et le réel xi est appelé
le paiement en x du joueur i. Le paiement en x d’une coalition S ∈ N , noté x(S) est
défini par x(S) = ∑

i∈S xi. Le vecteur de paiement x ∈ RN est appelé préimputation
s’il satisfait x(N) = v(N), c’est-à-dire s’il divise exactement la valeur de la grande
coalition N en n paiements, un pour chaque joueur. Enfin, nous appelons le cœur du
jeu (N, v), noté C(v), le sous-ensemble de RN constitué de toutes les préimputations
donnant à toute coalition un paiement au moins aussi important que sa valeur.

6Nash, J. F., “Non-cooperative games,” Annals of Mathematics, vol. 54, no. 2, pp. 286–295, 1951
7von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior. Princeton

University Press, 1944
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La définition intuitive et pertinente du cœur en fait l’un des concepts de solution
les plus étudiés en théorie des jeux et en économie. Même si sa définition moderne et
sa reconnaissance en tant que concept de solution, pour la première fois par Shapley,8,9
n’a que 70 ans,10 l’idée d’allocations mutuellement profitables issus d’un marché ou
d’une coopération a déjà été étudiée depuis au moins la fin du XIXe siècle. En 1881, le
philosophe et économiste politique anglo-irlandais Francis Edgeworth11 a étudié les ré-
sultats d’un marché d’échange de deux biens et a défini un concept de solution similaire,
appelé courbe des contrats.

En 1963, Olga Bondareva a trouvé une condition nécessaire et suffisante12 pour que
le cœur d’un jeu soit non vide, impliquant un ensemble d’objets appelés recouvrements,
découlant naturellement de l’application du théorème de dualité de la programmation
linéaire à la définition du cœur. Pour chaque recouvrement, nous pouvons construire
une forme linéaire sur l’espace vectoriel des jeux, et l’image du jeu pour chacune de
ces formes linéaires doit être inférieure ou égale à la valeur de la grande coalition.
Indépendamment, mais en suivant la même idée, Lloyd Shapley a publié en 1967 un
article13 présentant la même condition nécessaire et suffisante, les recouvrements étant
appelées collections équilibrées. Il a également prouvé que seul un petit sous-ensemble
de ces collections était nécessaire, les collections équilibrées minimales.

Intuitivement, une collection équilibrée représente la façon dont les joueurs de N
peuvent être organisés en une ou plusieurs coalitions afin de maximiser leur valeur
totale. Les joueurs peuvent former toutes les coalitions possibles, en répartissant leur
temps entre plusieurs coalitions si nécessaire, à condition de respecter deux règles :

1.) Chaque joueur est « actif » pendant exactement une unité de temps ;
2.) Si certains joueurs forment une coalition, ils y passent tous le même temps.

Dans une collection équilibrée, chaque coalition est associée à un poids correspondant
au temps individuel passé par les joueurs dans la coalition. Les joueurs peuvent égale-
ment faire partie de coalitions unipersonnelles, travaillant seuls pendant une certaine
fraction du temps. Comme chaque joueur doit être actif pendant exactement une unité
de temps, la somme des poids des coalitions auxquelles appartient un joueur donné
doit être égale à un. Plus formellement, nous avons la définition suivante.
Definition. Une collection de coalitions B ⊆ N B est une collection équilibrée s’il
existe un ensemble λ = {λS | S ∈ B} de réels positifs tels que∑

S∈B
λS1S = 1N ,

8Shubik, M., “Game theory at princeton, 1949–1955: A personal reminiscence,” Toward a History
of Game Theory, vol. 152, 1992

9Zhao, J., “Three little-known and yet still significant contributions of Lloyd Shapley,” Games
and Economic Behavior, vol. 108, pp. 592–599, 2018

10Shapley, L. S., “Markets as cooperative games,” RAND Corporation, Santa Monica, CA, Tech.
Rep., 1955

11Edgeworth, F. Y., Mathematical Psychics: An Essay on the Application of Mathematics to the
Moral Sciences. CK Paul, 1881, vol. 10

12Bondareva, O., “Some applications of linear programming methods to the theory of cooperative
games,” Problemy Kibernetiki, vol. 10, no. 119, p. 139, 1963

13Shapley, L. S., “On balanced sets and cores,” Naval Research Logistics Quarterly, vol. 14, no. 4,
pp. 453–460, 1967
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avec 1Si = 1 si i ∈ S et 1Si = 0 sinon. Une collection équilibrée minimale est une
collection équilibrée qui ne contient pas de sous-collections équilibrées.

La définition d’une collection équilibrée est étroitement liée à celle de hypergraphes
réguliers. Les partitions de N sont des exemples de collections minimales équilibrées,
dans lesquelles tous les joueurs restent dans la même coalition pendant toute l’unité
de temps. Lorsque les joueurs de N sont organisés selon la collection équilibrée B, la
valeur totale est égale à ∑

S∈B
λSv(S).

Si, pour une collection équilibrée B, la valeur totale∑S∈B λSv(S) est supérieure à v(N),
les joueurs préfèrent être organisés comme décrit par B plutôt que comme décrit par
la collection triviale {N}. Naturellement, les joueurs de N recherchent la collection
équilibrée qui maximise la somme pondérée des valeurs, et la grande coalition N n’est
formée que si, pour toutes les collections équilibrées B ⊆ N , nous avons∑

S∈B
λSv(S) ≤ v(N),

qui ressemble à la citation d’Aristote « La totalité est plus que la somme des parties ».
Cette condition est également équivalente à la non-vacuité du cœur.

Le théorème de Bondareva-Shapley. Soit (N, v) un jeu. Le cœur C(v) est non-vide
si et seulement si, pour toute collection équilibrée minimale B ⊆ N , nous avons∑

S∈B
λSv(S) ≤ v(N).

Ce théorème affirme qu’il existe des préimputations partageant la valeur de la
grande coalition N parmi les joueurs et donnant un paiement supérieur à leur valeur
à toutes les coalitions si et seulement si la plus grande valeur réalisable par les joueurs
dans N est obtenue en formant N . De plus, ce théorème établit un lien entre les pro-
priétés géométriques de polytopes particuliers et les propriétés des fonctions d’ensemble.

Le lien entre les polytopes et les fonctions d’ensemble a été largement étudié dans
le domaine de l’optimisation combinatoire, plus particulièrement dans la théorie des
fonctions sous-modulaires, notamment par Jack Edmonds, Satoru Fujishige, László
Lovász et Alexander Schrijver parmi d’autres. À chaque fonction d’ensemble ξ sur N
satisfaisant ξ(∅) = 0, on associe un polytope, appelé polytope de base, noté B(ξ) et
défini par B(ξ) = {x ∈ RN | x(N) = ξ(N) and x(S) ≤ ξ(S), ∀S ∈ N}. La fonction
d’ensemble ξ est souvent supposée être sous-modulaire, c’est-à-dire que pour tout S et
T dans N , nous avons

ξ(S ∪ T ) + ξ(S ∩ T ) ≤ ξ(S) + ξ(T ).

Jack Edmonds a étudié une classe particulière de fonctions d’ensemble sous-modulaires,
les fonctions de rang des matroïdes.14 Il a défini une famille de polytopes héritant de
propriétés similaires à celles des matroïdes, appelés polymatroïdes, sur lesquelles il a

14Edmonds, J., “Submodular functions, matroids and certain polyhedra,” Combinatorial Structures
and Their Applications, 1970
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développé de célèbres algorithmes d’optimisation. Il donne également une description
détaillée de la structure faciale de ces polytopes, qui a inspiré certains résultats sur les
cœurs des jeux convexes15 de Shapley. Tout polytope de base est un polymatroïde à
une translation près, et les deux sont des cœurs de jeux convexes.

Des polytopes similaires ont attiré l’attention des combinatoriciens au cours des
quinze dernières années. Les permutoèdres generalisés,16 définis par Postnikov, sont
une généralisation du permutoèdre, qui a déjà été utilisé dans les mathématiques des
sciences sociales par Guilbaud and Rosenstiehl,17 qui l’ont nommé ainsi. Le permutoè-
dre, noté ΠN , est l’enveloppe convexe d’un ensemble de n! points définis en permutant
les coordonnées du vecteur (1, . . . , n) ∈ RN . Cependant, certains auteurs définissent le
permutoèdre comme l’enveloppe convexe des permutations de n’importe quel vecteur
dont les coordonnées sont distinctes, ce qui donne un polytope ayant les mêmes pro-
priétés combinatoires : ils ont le même treillis de faces et le même « normal fan ».

À tout permutoèdre, on peut appliquer une déformation qui consiste en des transla-
tions parallèles de certaines de ses facettes sans croiser aucun sommet, c’est-à-dire sans
changer la direction des arêtes. Ces déformations sont les permutoèdres généralisés.
Il s’avère que les permutoèdres généralisés,18 les polytopes de base des fonctions sous-
modulaires, et les polymatroïdes (à une translation près), sont les mêmes polytopes.
Ils coïncident tous avec des cœurs de jeux convexes, et grâce à cela la théorie des jeux
a souvent tiré parti des résultats de la combinatoire ou de l’optimisation combinatoire.

Le but de cette thèse est de contribuer au développement de la théorie des jeux
(coopératifs) dans la direction décrite ci-dessus, vers la combinatoire et la géométrie.
Cette thèse se compose de quatre chapitres distincts, couvrant différents aspects de
mon travail effectué lors de mon doctorat.

Le premier chapitre est consacré principalement aux notations et définitions utilisées
dans cette thèse. En particulier, les principaux sous-espaces affines de RN d’intérêt sont
définis, et une nouvelle extension continue de jeux dans RN est présentée, sous la forme
d’un polynôme tropical, qui renforce encore les connections entre la théorie des jeux
coopératifs et la géométrie discrète. Cette extension s’applique à tous les jeux dits «
totalement équilibrés », c’est-à-dire les jeux pour lesquels le cœur est non-vide, et dont
tous les sous-jeux ont également un cœur non-vide. Les sous-jeux d’un jeu (N, v) sont
définis en restreignant la fonction coalitionelle v à un sous-ensemble de N .

Le deuxième chapitre s’inspire en grande partie de l’article que j’ai rédigé avec mes
deux directeurs de thèse,19 dans lequel nous construisons un algorithme générant les col-
lections équilibrées minimales récursivement sur N , à partir d’une méthode décrite par

15Shapley, L. S., “Cores of convex games,” International journal of game theory, vol. 1, no. 1,
pp. 11–26, 1971

16Postnikov, A., “Permutohedra, associahedra, and beyond,” International Mathematics Research
Notices, vol. 2009, no. 6, pp. 1026–1106, 2009

17Guilbaud, G. T. and Rosenstiehl, P., “Analyse algébrique d’un scrutin,” Mathématiques et Sci-
ences Humaines, vol. 4, pp. 9–33, 1963

18Castillo, F. and Liu, F., “Deformation cones of nested braid fans,” International Mathematics
Research Notices, vol. 2022, no. 3, pp. 1973–2026, 2022

19Laplace Mermoud, D., Grabisch, M., and Sudhölter, P., “Minimal balanced collections: Gener-
ation, applications and generalization,” Documents de travail du Centre d’Économie de la Sorbonne,
2023
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Bezalel Peleg.20 Deuxièmement, nous décrivons une collection d’outils algorithmiques
basés sur des implémentations du théorème de Bondareva-Shapley. Nous étendons le
champ d’application de ces méthodes algorithmiques à une nouvelle classe de polyè-
dres, appelée polyèdres basiques. Ces polyèdres, qui généralisent les polytopes évoqués
plus tôt, apparaissent fréquemment en théorie des jeux, et leur non-vacuité implique
souvent l’existence de solutions, ou de certaines propriétés satisfaites par un certain
nombre d’objets, en particulier par les coalitions de N . Plus formellement, un polyèdre
basique est un polyèdre P ⊆ RN qui peut s’écrire comme

P :=
{
x ∈ RN | x(N) = bN , A1x ≤ b1, A2x < b2, A3 ≥ b3, and A4x > b4

}
,

avec les coefficients des matrices {Ai}i=1,...,4 appartenant à {0, 1}. L’un des résul-
tats principaux de ce chapitre est l’adaptation du théorème de Bondareva-Shapley
à ces polyèdres, qui permet ensuite de développer des outils algorithmiques vérifiant
l’existence de certains types de solutions, ou la satisfaction de certaines propriétés.

Dans le troisième chapitre, les liens entre la combinatoire et les fonctions des ensem-
bles sont étudiés. Tout d’abord, certaines similitudes entre les collections équilibrées
et d’autres objets étudiés en combinatoire, en particulier les hypergraphes uniformes et
réguliers, sont mises en évidence. Ensuite, il est démontré que les collections équilibrées
(minimales) forment une espèce combinatoire, concept introduit par André Joyal21 afin
de fournir une méthode abstraite et systématique pour identifier les fonctions généra-
trices des structures discrètes. Par la suite, je construis l’espèce des hypergraphes k-
uniformes de taille p, pour k et p deux entiers strictement positifs donnés, comme étape
intermédiaire pour construire l’espèce des collections équilibrées. Dans la deuxième
partie de ce chapitre, j’étudie les liens entre la théorie des arrangements d’hyperplans,
dont l’arrangement de résonance, et la théorie des jeux coopératifs.

Le dernier chapitre est consacré aux applications des deux chapitres précédents.
Tout d’abord, un algorithme basé sur une caractérisation de Grabisch et Sudhölter22

pour la stabilité du cœur d’un jeu donné est présentée. Deuxièmement, une nouvelle
condition nécessaire pour la stabilité du cœur est donnée, basée sur la vérification de
la non-vacuité d’un cône particulier. Enfin, une collection d’outils est présentée pour
étudier les projections entre les préimputations, sur des sous-espaces affines d’intérêt.
Une formule explicite est donnée, ainsi que quelques procédures algorithmiques. Nous
terminons ce chapitre par une application de ces projecteurs aux défaillances du marché,
en utilisant le modèle des jeux de marché introduits par Shapley et Shubik.23

20Peleg, B., “An inductive method for constructing minimal balanced collections of finite sets,”
Naval Research Logistics Quarterly, vol. 12, no. 2, pp. 155–162, 1965

21Joyal, A., “Une théorie combinatoire des séries formelles,” Advances in Mathematics, vol. 42,
no. 1, pp. 1–82, 1981

22Grabisch, M. and Sudhölter, P., “Characterization of TU games with stable cores by nested
balancedness,” Mathematical Programming, pp. 1–26, 2021

23Shapley, L. S. and Shubik, M., “On market games,” Journal of Economic Theory, vol. 1, no. 1,
pp. 9–25, 1969
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Introduction

The whole is more than the sum of its parts.

Aristotle, Metaphysics

The mathematics of social sciences has this particularity that the object of study
of its equations are those who write them. It means that the behavior captured in the
equations can change only because these equations are explicitly written down, if there
is an interest for someone to deviate from it. Moreover, the optimization problems
found in game theory are often subjective, and the parameters of someone’s objective
function can be the variables of someone else’s objective function.

To this regard, Émile Borel said that game theory ‘will be a new science, where
psychology will be no less useful than mathematics’.24 He is one of the few, with Nicolas
de Condorcet and Antoine Augustin Cournot, to have developed a mathematical theory
of strategic interactions between people in the pre-von Neumann era. The goal of
Borel’s work with game theory was to find, for any two-person zero-sum game (the
gain of one is the loss of the other), the ‘best’ strategy for each player.25

Unsurprisingly, Borel relied on probability theory in his pursuit of the perfect strat-
egy, saying that, no matter how good a unique, deterministic strategy was, if the op-
ponent knows it, she can play a strategy which can be bad in general, but perfectly
counters the ‘best’ one used by the first player. This is perfectly illustrated by the mind
game between two players in chess or in poker, where one could deviate from the ‘best’
strategy to take advantage of the opponent’s apparent weaknesses. Borel insisted on
the limitation of mathematics in game theory, given the psychological complexity of
real games.25,26

The importance of psychology distinguished von Neumann from Borel. In a note
sent to Borel in 1928, and presented by the latter to the French Académie des Sciences27,
von Neumann explained that he was independently working on the same question,
without being aware of the work of Borel. In this note, von Neumann also claimed

24Borel, É., “A propos d’un traité de probabilités,” Revue Philosophique de la France et de
l’Étranger, vol. 98, pp. 321–336, 1924

25Leonard, R., Von Neumann, Morgenstern, and the Creation of Game Theory: From Chess to
Social Science, 1900–1960. Cambridge University Press, 2010

26von Neumann, J. and Fréchet, M., “Le rôle d’Émile borel dans la théorie des jeux,” Revue
d’Économie Politique, vol. 69, no. 2, pp. 139–167, 1959

27von Neumann, J., “Sur la théorie des jeux,” Comptes Rendus de l’Académie des Sciences, vol. 186,
no. 25, pp. 1689–91, 1928
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that he found the solution to the ‘best’ strategy problem, with the Minimax Theorem,
published later in the same year.28

The Minimax Theorem, sometimes called the fundamental theorem of two-person
game theory, is the first of a long sequence of ‘minimax’ theorems in functional analysis,
and has probably inspired the strong duality theorem in linear programming and the
works of Nash on n-person zero-sum games, leading to the well-known concept of Nash
equilibrium.

The Minimax Theorem. Let X ⊆ Rp and Y ⊆ Rq be compact convex sets, and let
f : X × Y → R be a continuous function such that

• for all y ∈ Rq, the map f(·, y) : X → R is concave,
• for all x ∈ Rp, the map f(x, ·) : Y → R is convex.

Then we have that
max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y).

The Minimax Theorem is a lot more general than required to solve two-person zero-
sum games, because x and y need only to be discrete probability distributions, and f
bilinear. In this context, we can simply rewrite f(x, y) as y>Ax, where A represents f
in the canonical bases of Rp and Rq. If player 1 has p possible strategies, and player
2 has q strategies, the coefficient aij of A represents the payoff of player 1 when she
chooses strategy i ∈ {1, . . . , p} and player 2 chooses strategy j ∈ {1, . . . , q}. Because
it is a zero-sum game, the payoff of player 2 is −aij. Players are allowed to play
convex combinations of their strategies, which can be interpreted as a randomization
of the play, or as frequencies if the game is repeated, and the coefficients of the convex
combinations are the entries of the vectors x and y, which reminds us of Borel’s view
on what a good strategy should be.

A consequence of the Minimax Theorem is that, for each player, there always ex-
ists a ‘best’ strategy in a two-person zero-sum game. Let us finally explain what
we understand by ‘best’ strategy. Because it is a zero-sum game, player 1 will al-
ways try to maximize the image of f , while player 2 will always try to minimize it.
So, a good start for player 1 is to have a strategy x0 that ensures him a certain
value, independently of the actions of player 2, for whom the objective is to minimize
f(x0, ·) : Y → R. Let us denote by γ the value ensured by strategy x0, given by
γ = maxx∈X miny∈Y f(x, y). The player 2 follows exactly the same process, and finds
a strategy y0 ensuring δ = −miny∈Y maxx∈X f(x, y). By the Minimax Theorem, we
have that

γ + δ = max
x∈X

min
y∈Y

f(x, y)−min
y∈Y

max
x∈X

f(x, y) = 0,

which asserts the optimality of the strategies x0 and y0. Indeed, if player 1 deviates
from x0, its strategy will no longer maximize the map miny∈Y f(·, y) : Y → R, and
then her payoff will be lower than γ. Moreover, because γ and δ sum to zero, there
is no extra payoff left to split between the two players, and, as we have previously
showed, any deviation from x0 or y0 could be punished by the opponent. Because the

28von Neumann, J., “On the theory of games of strategy,” trans. by Bargmann, S., Contributions
to the Theory of Games, vol. 4, pp. 13–42, 1959, trans. of “Zur Theorie der Gesellschaftsspiele,”
Mathematische Annalen, vol. 100, no. 1, pp. 295–320, 1928
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number γ completely determines the payoff of the game when both players play the
strategies defined above, γ is called the value of the game. This result is considered by
many as the starting point of game theory, and has been generalized by John Nash29

to n-person non-zero-sum games. A Nash equilibrium is the choice of a strategy by
each player such that no player has an interest to unilaterally deviate from her chosen
strategy.

In the same paper, von Neumann discussed the possibility to extend this result to
a larger set of n players, denoted by N . Following the same idea as for the two-person
case, von Neumann wanted to give to each set S ⊆ N of players a worth, similar
to the value γ in the previous example, that they could ensure for themselves, if we
assume that the players forming the set S are coordinating their actions. The idea was
developed a few years later, with his colleague from the Institute of Advanced Study
Oskar Morgenstern, in the well-known Theory of Games and Economic Behavior.30

Starting from now, we deviate from the definitions of von Neumann and Morgen-
stern, who made strong assumptions on the values of the sets of players. The only
assumption we keep is that the value of the empty set of players is 0, and we drop all
the zero-sum assumptions. We can interpret the worth of a set of players S as being
the maximum they can ensure for themselves when all the players in the complement
of S try to minimize their payoff. We denote by N the set of all nonempty subsets
of N , which we call coalitions and by v the map associating to each coalition S ∈ N
its worth v(S). The map v is called the characteristic function of the game (N, v).
Also, we assume that the worths of the coalitions are all in the same unit, and can be
transferred from one player to another, from one coalition to another.

The question now is to find out, according to the coalition function v, which coali-
tions will form. A necessary condition for the grand coalition N to form is that we can
split its value v(N) into n numbers x1, . . . , xn such that, for every coalition S ∈ N ,
we have ∑i∈S xi ≥ v(S). Indeed, if the players in S received in total less than what
they achieve on their own, they have no interest to join the grand coalition N . For
convenience, we denote by RN the Cartesian product of n copies of R, indexed by the
elements of N . Then, we have x ∈ RN and the real number xi is called the payment
at x of player i. The payment at x of a coalition S ∈ N , denoted by x(S) is defined
by x(S) = ∑

i∈S xi. The payment vector x ∈ RN is called a preimputation if it satis-
fies x(N) = v(N), i.e., if it splits exactly the worth of the grand coalition N into n
payments, one for each player. Finally, we call the core of the game (N, v), denoted
by C(v), the subset of RN consisting of all preimputations giving to any coalition a
payment at least as large as its worth.

The intuitive and meaningful definition of the core makes it one of the longest-
studied solution concepts. Even if its modern definition and its consideration as a

29Nash, J. F., “Non-cooperative games,” Annals of Mathematics, vol. 54, no. 2, pp. 286–295, 1951
30von Neumann, J. and Morgenstern, O., Theory of Games and Economic Behavior. Princeton

University Press, 1944
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solution concept, first by Shapley,31,32 is only 70 years old,33 the idea of mutually
profitable outcomes coming from a market or cooperation was already studied since at
least the end of the XIXth century. In 1881, the Anglo-Irish philosopher and political
economist Francis Edgeworth34 studied the outcomes of an exchange market of two
commodities and defined a similar solution concept, called the contract curve.

In 1963, Olga Bondareva found a necessary and sufficient condition35 for the core
of a game to be nonempty, involving a set of objects called coverings, arising naturally
from the application of the duality theorem of linear programming to the definition
of the core. From each covering, we can construct a linear form on the vector space
of games, and the image of the game for each of these linear forms should be lower
than or equal to the worth of the grand coalition. Independently but following the
same idea, Lloyd Shapley published in 1967 a paper36 presenting the same necessary
and sufficient condition, with the coverings being called balanced collections. He also
proved that only a small subset of these was required, the minimal balanced collections.

Roughly speaking, a balanced collection represents how the players in N can be
organized in one or several coalitions in order to maximize their total worth. The
players can form any possible coalition, even split their time in several coalitions if
needed, as long as they follow two natural rules:

1. Each player is ‘active’ for exactly one unit of time,
2. If some players form a coalition, they all spend the same time in it.

In a balanced collection, each coalition is associated to a weight corresponding to the
individual time spent by the players in that coalition. Players can also be in one-person
coalitions, working on its own for a certain fraction of time. Because each player must
be active for exactly one unit of time, the sum of the weights of the coalitions to which a
particular player belongs must be one. More formally, we have the following definition.
Definition. Let B ⊆ N be a collection of coalitions. We say that B is a balanced
collection if there exists a set λ = {λS | S ∈ B} of nonnegative real numbers such that∑

S∈B
λS1S = 1N ,

where 1Si = 1 if i ∈ S and 1Si = 0 otherwise. A minimal balanced collection is a
balanced collection for which no subcollection is balanced.

The definition of a balanced collection is closely related to the one of regular hyper-
graphs. Notice that the partitions of N are minimal balanced collections, in which all

31Shubik, M., “Game theory at princeton, 1949–1955: A personal reminiscence,” Toward a History
of Game Theory, vol. 152, 1992

32Zhao, J., “Three little-known and yet still significant contributions of Lloyd Shapley,” Games
and Economic Behavior, vol. 108, pp. 592–599, 2018

33Shapley, L. S., “Markets as cooperative games,” RAND Corporation, Santa Monica, CA, Tech.
Rep., 1955

34Edgeworth, F. Y., Mathematical Psychics: An Essay on the Application of Mathematics to the
Moral Sciences. CK Paul, 1881, vol. 10

35Bondareva, O., “Some applications of linear programming methods to the theory of cooperative
games,” Problemy Kibernetiki, vol. 10, no. 119, p. 139, 1963

36Shapley, L. S., “On balanced sets and cores,” Naval Research Logistics Quarterly, vol. 14, no. 4,
pp. 453–460, 1967
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players stay in the same coalition during the whole unit of time. When the players in
N are organized according to the balanced collection B, the total worth is equal to∑

S∈B
λSv(S).

If, for a balanced collection B, the total worth ∑S∈B λSv(S) is greater than v(N), the
players prefer to be organized as described by B rather than as described by the trivial
collection {N}. Naturally, the players in N are looking for the balanced collection
which maximizes the weighted sum of worths, and the grand coalition N is formed
only if, for all balanced collections B ⊆ N , we have∑

S∈B
λSv(S) ≤ v(N),

which resembles Aristotle’s “The whole is more than the sum of its parts”. This condi-
tion is also equivalent to the nonemptiness of the core.

The Bondareva-Shapley Theorem. Let (N, v) be a game. Then the core C(v) is
nonempty if and only if, for all minimal balanced collections B ⊆ N , we have∑

S∈B
λSv(S) ≤ v(N).

This theorem states that there exist preimputations sharing the worth of the grand
coalition N and giving a payment greater than their worth to all coalitions if and
only if the greatest worth achievable by the players in N is obtained by forming N .
Moreover, this theorem establishes a connection between geometrical properties of
specific polytopes, and properties of set functions.

The connection between polytopes and set functions was extensively studied in the
field of combinatorial optimization, more specifically in submodular functions theory,
notably by Jack Edmonds, Satoru Fujishige, László Lovász and Alexander Schrijver
among others. For each grounded set function ξ on N , i.e., ξ : 2N → R satisfying
ξ(∅) = 0, we associate a polytope, called the base polytope, denoted by B(ξ) and
defined by

B(ξ) = {x ∈ RN | x(N) = ξ(N) and x(S) ≤ ξ(S),∀S ∈ N}.

The set function ξ is often assume to be submodular, i.e., for all S and T in N , we have

ξ(S ∪ T ) + ξ(S ∩ T ) ≤ ξ(S) + ξ(T ).

Jack Edmonds studied a particular class of submodular set functions, the matroid rank
functions.37 He defined a family of polytopes inheriting properties similar to those of
matroids, called the polymatroids, on which he developed well-known optimization algo-
rithms. He also gives a detailed description of the facial structure of these polytopes,

37Edmonds, J., “Submodular functions, matroids and certain polyhedra,” Combinatorial Structures
and Their Applications, 1970
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which inspired some results about cores of convex games38 from Shapley. Any base
polyhedron is a polymatroid up to a translation, and both are cores of convex games.

Similar polytopes have attracted the attention of the combinatorialists for the last
fifteen years. The generalized permutohedra,39 defined by Postnikov, are a general-
ization of the permutohedron, which has already been used in the mathematics of
social sciences by Guilbaud and Rosenstiehl,40 who gave it its name. The (standard)
permutohedron, denoted by ΠN , is the convex hull of a set of n! points defined by
permuting the coordinates of the vector (1, . . . , n) ∈ RN . However, some authors de-
fine the permutohedron to be the convex hull of the permutations of any vector with
distinct coordinates, which yields a polytope with the same combinatorial properties:
they have the same face lattice and the same normal fan.

To any permutohedron, a deformation can be applied, which consists of parallel
translations of some of its facets without crossing any vertices, i.e., without changing
any edge direction. These deformations are the generalized permutohedra. It turns
out that generalized permutohedra,41 base polytopes of submodular functions, and
polymatroids (up to translation), are the same polytopes. They all coincide with
cores of convex games, and game theory has often taken advantage of the results in
combinatorial optimization or combinatorics.

The aim of this thesis is to contribute to the development of (cooperative) game
theory in the direction described above, towards combinatorics and geometry. This
thesis consists of four distinct chapters, covering different aspects of my doctoral work.

The first chapter consists of the preliminaries, where the vocabulary and the nota-
tion are presented. The second chapter is based on the paper written with my supervi-
sors,42 in which we construct an algorithm generating the minimal balanced collections,
based on a method described by Bezalel Peleg.43 Secondly, we describe a collection of
computational tools based on algorithmic implementations of the Bondareva-Shapley
Theorem. We extend the scope of applications of these computational tools to a new
class of polyhedron, called the basic polyhedra.

In the third chapter, the links between combinatorics and set functions are investi-
gated. First, some similarities with the balanced collections and other objects studied
in combinatorics, in particular the uniform and regular hypergraphs, are highlighted.
Then, I prove that the (minimal) balanced collections form a combinatorial species,
concept introduced by André Joyal44 to provide an abstract, systematic method for

38Shapley, L. S., “Cores of convex games,” International journal of game theory, vol. 1, no. 1,
pp. 11–26, 1971

39Postnikov, A., “Permutohedra, associahedra, and beyond,” International Mathematics Research
Notices, vol. 2009, no. 6, pp. 1026–1106, 2009

40Guilbaud, G. T. and Rosenstiehl, P., “Analyse algébrique d’un scrutin,” Mathématiques et Sci-
ences Humaines, vol. 4, pp. 9–33, 1963

41Castillo, F. and Liu, F., “Deformation cones of nested braid fans,” International Mathematics
Research Notices, vol. 2022, no. 3, pp. 1973–2026, 2022

42Laplace Mermoud, D., Grabisch, M., and Sudhölter, P., “Minimal balanced collections: Gener-
ation, applications and generalization,” Documents de travail du Centre d’Économie de la Sorbonne,
2023

43Peleg, B., “An inductive method for constructing minimal balanced collections of finite sets,”
Naval Research Logistics Quarterly, vol. 12, no. 2, pp. 155–162, 1965

44Joyal, A., “Une théorie combinatoire des séries formelles,” Advances in Mathematics, vol. 42,
no. 1, pp. 1–82, 1981
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deriving the generating functions of discrete structures. Subsequently, I build the
species of k-uniform hypergraphs of size p, for k and p two given positive integers, as
an intermediary step to construct the species of balanced collections. In the second
part of this chapter, I present and study the links between the theory of hyperplane
arrangements, in particular the resonance arrangement, and cooperative game theory.

The last chapter is devoted to the applications of the two previous chapters. First,
an algorithm based on a characterization of Grabisch and Sudhölter45 for stablity of the
core of a given game is presented. Secondly, a new necessary condition for core stability
is given, based on the verification of the nonemptiness of a specific cone. Finally, a
collection of tools is introduced to study projections between preimputations, onto
affine subspaces of interest. An explicit formula is given, as well as a few algorithmic
procedures. We finish the chapter with an application of these projection operators to
market failures, using the model of market games introduced by Shapley and Shubik.46

45Grabisch, M. and Sudhölter, P., “Characterization of TU games with stable cores by nested
balancedness,” Mathematical Programming, pp. 1–26, 2021

46Shapley, L. S. and Shubik, M., “On market games,” Journal of Economic Theory, vol. 1, no. 1,
pp. 9–25, 1969
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Chapter 1

The geometry of a game

This chapter mainly consists of the preliminaries of the thesis. First, we recall some
common notation from game theory, linear algebra, polyhedra theory and Euclidean
geometry. We also introduce some new notation of geometric nature, in the aim of
spatially representing specific features of a game.

In the second part, we introduce the core and the balanced collections, which are the
main subjects of study in this thesis. We highlight deep connections between the core of
convex games and polytopes defined in neighboring areas of cooperative game theory,
such as combinatorial optimization or combinatorics. Following this idea, we introduce
and give some examples of totally balanced games, and investigate the connections
between these and discrete mathematics, as has been done for convex games.

1.1 The Euclidean space of payment vectors

Let N be a finite nonempty set of cardinality n, and denote by 2N its power set, i.e.,
the set of all subsets of N . A (real) set function on N is a mapping ξ : 2N → R,
assigning a real number ξ(S) to any subset S of N . According to von Neumann [101],
a (cooperative transferable utility) game is an ordered pair (N, v), with N a finite set
whose elements are called the players, and v is a set function satisfying v(∅) = 0 called
the coalition function, or the characteristic function of the game.

We denote by N the set of nonempty subsets of N , called coalitions. The number
v(S) is called the worth of S ∈ N . Throughout this thesis, we denote by ξ a typical set
function and by v a typical coalition function of a game. In this manuscript we follow
the interpretation of Peleg and Sudhölter [69] of a coalition function: if a coalition S
forms, then its members get the amount v(S) of money.

A large part of cooperative game theory is interested in the rules of allocation of
v(S) among the members of S. Another question in cooperative game theory, which
interests us in this thesis, is to know at which scale the cooperation may occur. More
specifically, we want to know at which level the commonly acquired money can benefit
any subcoalition, and subsequently whether the players in specific subcoalitions can
threaten to stop cooperating to ensure a quantity that satisfies them. These two
properties, called balancedness and stability, are defined in the sequel.

In this manuscript, we denote by RN the Euclidean vector space built as the Carte-
sian product of n copies of R, one for each player in N . We use the same notation RS
which only considers the players belonging to the coalition S. An element x ∈ RN is
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called a payment vector and associates a real number xi to any player i ∈ N . We denote
by x(S) the sum of the coordinates associated with the players of S: x(S) = ∑

i∈S xi,
which is called the payment of S at x.

Definition 1.1.1. A payment vector x ∈ RN is called

• a preimputation if N is effective for x, i.e., if x(N) = v(N). We denote the set of
preimputations by X(v).

• an upper vector if, for all S ∈ N , we have x(S) ≥ v(S). We denote the set of
upper vectors by U(v).

The set X(v) forms a hyperplane of RN , and the set U(v) is a polyhedral set
unbounded from above [98]. We denote by X≤(v) the set of affordable payment vectors
for N , i.e., X≤(v) := {x ∈ RN | x(N) ≤ v(N)}. An element of X≤(v) represents an
allocation which can be achieved with the worth of N . A preimputation represents
an allocation of the worth of the grand coalition N among its players, while an upper
vector is an allocation that benefits any coalition. Let S ∈ N \{N} be a coalition. We
denote by AS(v) the set of preimputations for which S is effective, i.e.,

AS(v) := {x ∈ X(v) | x(S) = v(S)}.

If there is no risk of confusion about the game, we denote these sets by AS. Notice
that these sets are affine subspaces of dimension n− 2, and have the same normals for
any game v, i.e., they are always orthogonal to the same set of vectors. The game is
only responsible for the relative positions of these affine subspaces, as increasing the
worth v(S) of a coalition will solely shift the subspace along their normals.

Each affine subspace AS cuts the hyperplane X(v) in two halves, denoted by

A≥S := {x ∈ X(v) | x(S) ≥ v(S)} and A≤S := {x ∈ X(v) | x(S) ≤ v(S)}.

A≥S is the set of preimputations benefiting S, and A≤S is the set of preimputations
affordable for S. The preimputations that benefit every coalition, i.e., preimputations
being also upper vectors, are said to be coalitionally rational, and their set, denoted by

C(v) :=
⋂
S∈N

A≥S = X(v) ∩ U(v),

is called the core [81]. The core is a bounded convex polyhedral set, i.e. a polytope,
lying in the hyperplane X(v).

A game with a nonempty core, i.e., a game for which there exists a preimputation
benefiting every coalition, is called a balanced game for a reason that will be discussed
in Section 1.3 (see Theorem 1.3.1). In particular, there exists no coalition structure
(see Aumann and Drèze [4]), i.e., partition of N , such that the sum of the worths
of the element of the coalition structure is strictly greater than the worth of N . For
illustration, let v be a game v : N = {a, b, c} → R defined by:

S {a} {b} {c} {a, b} {a, c} {b, c} N

v(S) 5 0 0 8 8 8 10
.
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Let x ∈ X(v) be a preimputation. If x satisfies x({b, c}) ≥ 8, then x({a}) ≤ 2.
Therefore, the inequalities x({b, c}) ≥ 8 and x({a}) ≥ 5 are incompatible, and C(v) is
empty. Dually, we see that the players prefer to be organized according to the coalition
structure {{a}, {b, c}}, to obtain 13, rather than form the grand coalition N and get
only 10. But it is not sufficient to look at coalition structures to know whether the
core is nonempty. Let (N, v′) be another game v′ : N = {a, b, c} → R defined by:

S {a} {b} {c} {a, b} {a, c} {b, c} N

v′(S) 0 0 0 8 8 8 10
. (1.1.2)

The only difference between these games is v({a}), but it is sufficient for the play-
ers to prefer the grand coalition over the coalition structure {{a}, {b, c}}. Never-
theless, the core is still empty. Indeed, let x ∈ U(v) be an upper vector. Then
x({a, b}), x({a, c}), x({b, c}) ≥ 8, hence 2x(N) = x({a, b}) + x({a, c}) + x({b, c}) ≥ 24,
so that x(N) ≥ 12. Then, no upper vector can be a preimputation, and C(v) = ∅.
Let us relax the notion of coalition structure, and consider the three 2-player coali-
tions: {{a, b}, {a, c}, {b, c}}. Each player is included in two of these coalitions. We can
imagine that players are able of spending half of their time in each coalition. Because
each coalition exists only for half of the time, the worth of it is also halved. Then, the
players get a total of

1
2v({a, b}) + 1

2v({a, c}) + 1
2v({b, c}) = 3 · 8

2 = 12,

that is still greater than 10, which they can get if they form the grand coalition.
The collection B = {{a, b}, {a, c}, {b, c}} together with the systems of weights λB =
(λ{a,b} = 1

2 , λ{a,c} = 1
2 , λ{b,c} = 1

2), as well as the collection B′ = {{a}, {b, c}} with the
weights λB′ = (λ{a} = 1, λ{b,c} = 1) are examples of balanced collections of coalitions.

Definition 1.1.3. Let B ⊆ N be a collection of coalitions. We say that B is a balanced
collection if there exists, for each S ∈ B, a positive weight λS such that, for each player
i ∈ N , we have ∑S∈Bi λS = 1, with Bi = {S ∈ B | i ∈ S}. The quantities {λS | S ∈ B}
form a system of balancing weights.

Balanced collections were introduced by Bondareva [18] under the name of ‘(q, θ)-
covering’, renamed later by Shapley [82]. They both independently gave a characteri-
zation of the set of balanced games based on the balanced collections. The balanced
games are exactly those games for which the weighted sum of the worths of the coali-
tions of any balanced collection does not exceed the worth of the grand coalition, i.e., for
any balanced collection B with a system of weights λB, we have ∑S∈B λ

B
Sv(S) ≤ v(N).

In the same paper, Shapley identified a subset of the set of balanced collections, on
which the characterization of balanced games remains valid. This characterization is
now known as the Bondareva-Shapley Theorem, and is undoubtedly a fundamental
theorem for the study of cooperative behavior. The Bondareva-Shapley Theorem will
be discussed in Section 1.3.

Now, let us focus on a given coalition S  N . If the proposed preimputation
x ∈ X(v) satisfies x(S) < v(S), the coalition S can get a higher payment by leaving the
grand coalition and getting its worth v(S). Let y ∈ X(v) be a second preimputation.
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Definition 1.1.4. We say that y dominates x via S, denoted y domS x, if

• y is affordable, i.e., y(S) ≤ v(S),
• y improves x on S, i.e., for all i ∈ S, we have yi > xi, .

We say that y dominates x, noted y dom x, if a coalition S exists such that y domS x.

For illustration, consider the game described in Table (1.1.2). Then the payment
vectors x = (5, 3, 2), y = (3, 2, 5) and z = (2, 5, 3) are preimputations. We have
that x dom{a,b} y, also y dom{a,c} z and z dom{b,c} x. We see in particular that the
domination relation is not transitive. However, the relation of being dominated via a
specific coalition is transitive.

According to Gillies [37], a coalition S is called vital is there exists two preimputa-
tion x and y such that y domS x, and this domination is not achieved via any subset of
S. He also proved that, when studying stability, we can ignore all nonvital coalitions.
We will discuss more about vital coalition in Chapter 2.

The first condition for domination, affordability of y, expresses that the members
of coalition S are able to realize y|S when forming a coalition. The second condition, y
improves x on S, requires that everyone in the coalition S benefits from his payment
according to y compared to his payment according to x. According to our interpretation
of the coalition function, this is what v(S) represents: the amount of money the players
of S require to accept the cooperation.

In the more recent literature, a solution is a map associating to each game a subset
of X≤(v). But von Neumann and Morgenstern [103], when they made the first proposal
for a solution concept in the broad sense, defined a solution as being a subset of X≤(v)
that we today call stable set, or von Neumann-Morgenstern stable set.

Definition 1.1.5 (von Neumann and Morgenstern [103], Shapley [80]).
A subset K of V ⊆ X≤(v) is a V -stable set if it is

• internally stable, i.e., for all x ∈ K, there is no y ∈ K such that y dom x,
• externally stable, i.e., for all x ∈ V \K, there exists y ∈ K such that y dom x.

We simply call stable sets the X≤(v)-stable sets.

This definition is the one of Shapley [80], who extended the definition of von Neu-
mann and Morgenstern [103]. Originally, von Neumann and Morgenstern defined their
solutions of a game on a smaller set of payment vectors. Let us denote by I(v) the set
of individually rational preimputations, i.e,

I(v) := {x ∈ X(v) | xi ≥ v({i}), for all i ∈ N}.

The elements of I(v) are called imputations. The solutions of von Neumann and Mor-
genstern were defined as I(v)-stable sets. Conveniently, an I(v)-stable set K such that,
for each i ∈ N , there exists an element x ∈ K satisfying xi = v({i}) is a stable set.
Indeed, a preimputation y satisfying yi < v({i}) is dominated by x via {i}, as already
detected by Shapley [80].

Notice that no preimputation can be dominated via N , no imputation can be dom-
inated by a singleton, and that the core elements can not be dominated at all.
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The definition of stable sets is very appealing, however there may be no stable sets,
several stable sets, or even a continuum of them, and it is difficult to identify them [60,
61]. Thus, the concept of stable sets was not very successful till now. Therefore, the
main solution has become the core.

Indeed, when nonempty, the core is unique, it consists of all coalitionally rational
preimputations and is a polytope defined by a finite number of inequalities. Also,
because no core element is undominated, the core is always internally stable and is
contained in all the stable sets. However, the core is not necessarily externally sta-
ble: there can exist preimputations that are dominated solely by preimputations not
belonging to the core. Nevertheless, if the core is externally stable, it is the unique
stable set [29]. Studying core stability is the initial motivation of this thesis and will
be discussed in Chapter 4.

By definition, a preimputation x can be dominated via a coalition S only if the
coalition can improve upon x by leaving the grand coalition, i.e., x(S) < v(S). In
the sequel, we denote by e(S, x) the additional quantity of money that coalition S can
acquire by itself, i.e., e(S, x) := v(S) − x(S), that we call the excess of S at x. Let
Q ⊆ N be a collection of coalitions. We denote by XQ(v) the set of preimputations
upon which a coalition can improve if and only if it belongs to Q, i.e.,

XQ(v) := {x ∈ X(v) | x(S) < v(S) if and only if S ∈ Q}.

We say that the collection Q is feasible if its associated region XQ(v) is nonempty. Note
that the core is the region associated with the empty collection of coalitions Q = ∅,
hence the nonempty regions form a partition of X(v).

Throughout this manuscript, we equip the Euclidean vector space RN , and therefore
X(v), with the usual scalar product, denoted by 〈·, ·〉 and the associated norm, denoted
by ‖·‖ defined, for all x, y ∈ RN , by

〈x, y〉 =
∑
i∈N

xiyi, and ‖x‖ =
√
〈x, x〉.

We say that a vector x ∈ RN is a normal of a subset Y ⊆ RN if, for every element
y ∈ Y , we have 〈x, y〉 = 0.

Theorem 1.1.6 (Hilbert projection theorem).
For every x ∈ RN and every nonempty closed convex K ⊆ RN , there exists a unique
element z ∈ K for which ‖x− z‖ is equal to infy∈K‖x− y‖.

The element z is called the projection of x onto K. We denote by πK : RN 7→ K
the map that assigns to x ∈ RN its projection πK(x) onto K. The map πK is called the
projector onto K, or the projection operator onto K. The following result is formulated
by Bauschke and Combettes [7].

Theorem 1.1.7 (Projection Theorem).
Let K be a nonempty closed convex subset of RN . Then, for all x and y in RN ,

y = πK(x) if and only if
[
y ∈ K and for all z ∈ K, 〈z − y, x− y〉 ≤ 0

]
.
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If K is an nonempty affine subspace of RN , for all x and y in RN ,

y = πK(x) if and only if
[
y ∈ K and for all z ∈ K, 〈z − y, x− y〉 = 0

]
.

1.2 The affine geometry of preimputations

This subsection focuses on the affine subspace X(v) ⊆ RN . The linear subspace of RN
parallel to X(v) is denoted by Σ, and its elements are called side payments. A side pay-
ment represents a translation in the space of preimputations, which is a redistribution
of money between the players. Indeed, a preimputation x must satisfy x(N) = v(N),
hence a side payment σ satisfies σ(N) = 0. Recall that the affine subspace AS and the
affine halfsubspace A≥S are defined by

AS = {x ∈ X(v) | x(S) = v(S)}, and A≥S = {x ∈ X(v) | x(S) ≥ v(S)}.

Proposition 1.2.1. Let S be a coalition. The vector ηS, defined by

ηS = 1S − |S|
n

1N , with 1Si =
{

1, if i ∈ S,
0, otherwise.

is a side payment and a normal of AS.

Proof. For any coalition S, we have ηS(N) = 1S(N)− |S|
n

1N(N) = |S|− |S| = 0, hence
ηS is a side payment. Let x and y be two elements of AS. We have

〈ηS, x− y〉 = 〈ηS, x〉 − 〈ηS, y〉 = x(S)− |S|
n
x(N)− y(S) + |S|

n
y(N).

As x(S) = y(S) = v(S) and x(N) = y(N) = v(N), 〈ηS, x− y〉 = 0.

We extend the definition above by setting η∅ = ~o, which coincides with ηN . The
set of vectors {ηS | S ∈ N} and the subspace Σ do not depend on the game we are
considering, and the coalition function only defines the position of AS along the line
generated by ηS. We now define the projectors used in this manuscript.
Proposition 1.2.2. Let S ∈ N \ {N} be a coalition and x be a preimputation. Then

πAS(x) = x+ γS(x)ηS,

where γS(x) := e(S, x)/‖ηS‖2. Moreover, if x(S) < v(S), we have πAS(x) domS x.

Proof. First, notice that ‖ηS‖2 = 〈ηS, ηS〉 = ηS(S). Following the Projection Theorem,
we first prove that πAS(x) belongs to AS.

(x+ γS(x)ηS)(S) = x(S) + γS(x)ηS(S) = x(S) + e(S, x)
‖ηS‖2 ‖η

S‖2 = v(S).
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Let z be an element of AS. We have

〈z − (x+ γS(x)ηS), x− (x+ γS(x)ηS)〉 = 〈z − x− γS(x)ηS,−γS(x)ηS〉
= −γS(x)

(
〈z, ηS〉 − 〈x, ηS〉 − γS(x)〈ηS, ηS〉

)
= −γS(x)

(
z(S)− x(S)− γS(x)‖ηS‖2

)
= −γS(x) (e(S, x)− e(S, x)) = 0.

We use the Projection Theorem to conclude the construction of the projector. To end
this proof, notice that, if e(S, x) > 0, for all i ∈ S, we have ηSi = 1− |S|

n
> 0.

AS

x

πAS(x)

ηS
e(S, x)
‖ηS‖

Figure 1.1: Projection of x onto AS .

If a coalition S can improve upon a preimputation x ∈ X(v), the projection πAS(x)
shares the excess of S at x equally among the players in S, and therefore the pro-
jection dominates x via S. This fact motivates the use of these projectors in this
work to study the domination relations between payment vectors and, more specifi-
cally, between preimputations and core elements. Moreover, γS(x)ηS is the shortest
side payment able to map the preimputation x onto a preimputation that benefits the
coalition S (see Figure 1.1). It is the solution to the problem consisting of satisfying
coalition S with the shortest side payment.

The idea of projections between preimputations was already existing in the transfer
scheme defined by Cesco [24]. A transfer scheme, first defined and used by Stearns [95],
is a sequence of preimputations defined by a sequence of transfers, i.e., translation by a
side payment. The sequence of preimputations defined by Cesco is defined recursively
by projecting onto AS the last preimputation produced. His projector is defined, for
every preimputation x, by

πAS(x) = x+ e(S, x)
(

1S

|S|
− 1N\S

|N \ S|

)
.

Cesco’s projectors are identical to ours, but the choice of normals is different. He chose
to have a normal of a different norm to have a formulation depending explicitly on the
excess e(S, x). Our choice of normals is motivated by the following theorem.
Theorem 1.2.3. Let S and T be coalitions. We have

ηS + ηT = ηS∪T + ηS∩T and 〈ηS, ηT 〉 = ηS(T ).
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Proof. Notice that if S and T are disjoint, we have

ηS + ηT = 1S − |S|
n

1N + 1T − |T |
n

1N = 1S∪T − |S|+ |T |
n

1N = ηS∪T .

Otherwise we decompose ηS = ηS\T + ηS∩T , similarly for ηT , and we have

ηS + ηT = ηS\T + ηS∩T + ηT\S + ηS∩T = ηS∪T + ηS∩T .

For the second property, the fact that ηS is a side payment leads to

〈ηS, ηT 〉 = 〈ηS,1T 〉 − |T |
n
〈ηS,1N〉 = ηS(T )− |T |

n
ηS(N) = ηS(T ).

From this theorem, we can derive several properties on the set {ηS | S ∈ N}, in
particular, the repartition of the ηS is balanced around the origin of Σ.
Corollary 1.2.4. Let B be a balanced collection with balancing weights {λS | S ∈ B}.
We have ∑

S∈B
λSη

S = ~o.

Proof. First, remark that

∑
S∈B

λS|S| =
∑
S∈B

λS1S(N) =
(∑
S∈B

λS1S
)

(N) = 1N(N) = n.

Then ∑
S∈B

λSη
S =

∑
S∈B

λS1S − 1
n

∑
S∈B

λS|S|1N = 1N − 1
n
n1N = ~o.

Another surprising result following from the theorem is that, for any coalition S
and T both distinct from N , if n is a prime number, ηS and ηT cannot be orthogonal,
because

〈ηS, ηT 〉 = ηS(T ) = 1S(T )− |S|
n

1N(T ) = |S ∩ T | − |S| · |T |
n

,

and |S| · |T | cannot be a multiple of n. The combinatorial properties of the normals
ηS and their associated affine subspaces will be studied in greater detail in Chapter 2.

By Proposition 1.2.2, we know that for a preimputation x, if x(S) < v(S), we have
πAS(x) domS x. But we have no control on where the projection will be. For any
preimputation x, the relative position of πAS(x) with respect to AT depends on the
excesses e(S, x) and e(T, x), but also on the scalar product ηS(T ) = 〈ηS, ηT 〉.

The value and the sign of 〈ηS, ηT 〉 indicate how correlated the payments of coalitions
S and T are, how much their interest overlap. Adding the side payment ηS to a
preimputation x necessarily benefits coalition S, and the value of 〈ηS, ηT 〉 indicates
how much the translation by ηS benefits coalition T . Indeed,(

x+ ηS
)

(T ) = x(T ) + ηS(T ) = x(T ) + 〈ηS, ηT 〉.
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To summarize all this information, we define

χS(T, x) := e(S, x)〈ηS, ηT 〉 − e(T, x)‖ηS‖2.

Proposition 1.2.5. Let S and T be two coalitions, and let x ∈ X(v). Then

πAS(x) ∈ A≥T if and only if χS(T, x) ≥ 0.

Proof. First, we study the excess of T at the projection onto AS:

e(T, πAS(x)) = v(T )− x(T )− γS(x)ηS(T )

= e(T, x)− e(S, x)
‖ηS‖2 〈η

S, ηT 〉

= 1
‖ηS‖2

(
e(T, x)‖ηS‖2 − e(S, x)〈ηS, ηT 〉

)
= −1
‖ηS‖2χS(T, x).

The projection lies into A≥T if and only if e(T, πAS(x)) is non-positive and therefore if
and only if χS(T, x) is non-negative.

AS

AT

x

πAS(x)

πAT (x)

ηS

ηT

(a) Case χS(T, x) < 0.

AS

AT

x

πAS(x)

ηS

ηT

(b) Case χS(T, x) > 0.

Figure 1.2: Illustrative example of Proposition 1.2.5.

There are intuitive implications for this result. If 〈ηS, ηT 〉 ≥ 0, increasing the
payment of coalition S by translating a given preimputation along ηS also increases
the payment of coalition T . Therefore, assuming that e(S, x) is sufficiently large, the
side payment σ between x and πAS(x) increases the payment of S as well as the payment
of T , and we have πAS(x)(T ) = x(T ) + σ(T ) ≥ v(T ), as we can see on Figure 1.2.

For most of the preimputations, projecting onto an affine subspace AS is not suf-
ficient to be projected on the core. To do so, we need to be able to define projectors
on any intersection of affine subspaces, to simultaneously improve the payment of all
the coalitions that can improve upon the considered preimputation. This investigation
continues in Section 4.3 of Chapter 4.
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1.3 Games, balanced collections, and certain polyhedra

In this section, we discuss the core, its properties, what it represents in economics or any
cooperative environment, and how this particular object can be found somewhere else
in mathematics, in particular in theory of set functions and combinatorial optimization.
The modern definition and usage of the core comes from Shapley [81] (see [92, 104]).
For a game (N, v), the core, denoted by C(v), is the intersection between the set of
preimputations and the set of upper vectors, i.e., the set of preimputations benefiting
every coalition:

C(v) = X(v) ∩ U(v) =
⋂
S∈N

A≥S .

Let v and w be two set functions on the same domain 2N . We write w ≥ v if, for every
S ∈ 2N , we have w(S) ≥ v(S). Then, the core of v can be seen as the set of additive
set functions w such that w ≥ v under the constraint w(N) = v(N).

Figure 1.3: Graphical illustrations of cores from Shapley [83].

In this thesis, we interpret the nonemptiness of the core as a necessary condition
for the grand coalition N to form, but not as a sufficient condition. It is necessary
because if the core is empty, there exists no preimputation that benefits every coalition,
and then some players will prefer to form other coalitions than N . However, even if
the core is nonempty, there may exist no mechanism for the players to reach these
coalitionally rational preimputations, as nothing indicates that all the players and
coalitions will succeed to defend their interests. This mechanism can be the result
of external intervention, for instance, a planner that has the power to choose which
preimputations will be used to share the worth v(N) among the players, in which case
the nonemptiness of the core is a sufficient condition.

Nevertheless, if there is no external mediation between the players, a coalition S that
could improve upon the current preimputation can threaten to leave the grand coalition
N . Due to the balancedness of the game, there is no balanced collection containing
coalition S which induces a total worth greater than v(N), and then all players outside
S will be harmed by the departure of players in S. Hence, the players in N never
agree on a dominated preimputation. If the core is stable, every preimputation outside
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the core is dominated by a core element, and then the bargaining process eventually
converges to a core element, and cooperative behaviour will emerge.

1.3.1 Polyhedra and polytopes

Before going into the details of the properties of the core, let us recall some notation
and basic results about convex polytopes. Most of the notation in this subsection comes
from the well-known textbook of Ziegler [105]. First, in this manuscript, we consider
a polytope P in RN as a convex bounded polyhedron, and a polyhedron is defined as
a set of elements of RN satisfying a finite set of linear inequalities.

A polyhedron defined by a single linear inequality is called a half-space, and a
polyhedron defined by a set of linear inequalities which can all become tight (i.e.,
equalities) with an element x ∈ RN is called a (affine) cone, and x is called an apex of
this cone. A polyhedron P ′ obtained from P by tightening a possibly empty subset of
the set of inequalities defining P is called a face of P .

Alternatively, a polytope is characterized by a set of extreme points, each element
of the polytope being a convex combination of these points. Because we do not assume
that the linear inequalities are weak or strict, a polytope is not necessarily topologically
closed, nor open, and some extreme points may not belong to the polytope. For a
polytope P ⊆ RN , its affine hull aff(P ) is defined as the smallest affine subspace of
RN in which P is included, and the dimension dim(P ) of P is defined as the dimension
of its affine hull aff(P ).

Polytopes are very popular in combinatorial optimization, especially in linear pro-
gramming where they represent the set of feasible solutions, i.e., the set of elements
satisfying all the constraints of the optimization problem. A face F of a polytope P is
a subset of P where some linear form L on RN achieves its minimum on P , i.e.,

F =
{
x ∈ P

∣∣∣∣ L(x) = min
y∈P

L(y)
}
.

We consider the empty set as a face of any polytope, which we call the empty face.
Faces that consists of a single point are called vertices of P , and correspond with the
extreme points of the polytope. The 1-dimensional faces are called edges of P , and the
(d− 1)-faces are called facets of P , where d is the dimension of P .

We call poset a finite partially ordered set, that is, a finite set equipped with a
binary relation which is reflexive, transitive and antisymmetric. A poset is a lattice
if every pair of elements of the poset has a supremum in the poset, called the join
and an infimum, called the meet. The set of faces of a polytope P ⊆ RN , ordered by
inclusion, defines a lattice called the face lattice and is denoted by L(P ). We say that
two polytopes are combinatorially equivalent if their face lattices are isomorphic. We
use interchangeably the notation L(P ) to denote the set of faces or the face lattice.

Let F be a face of a polytope P ⊆ RN . We denote by KF the normal cone of F
defined as the set of elements y ∈ RN such that minx∈P 〈y, x〉 is achieved on F , i.e.,

KF :=
{
y ∈ RN

∣∣∣∣ F ⊆ arg min
x∈P
〈y, x〉

}
.

The set KP := {KF | F ∈ L(P )}, is called the normal fan of P .
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F

G

(a) A polytope P . The dashed rays go through
the vertices and are orthogonal to the facets of P .

KF

KG

(b) The normal fan KP .

Figure 1.4: A polytope P and its normal fan KP .

Let P be a polytope, let F,G ∈ L(P ), and denote by KP its normal fan. Then:

• every nonempty face of a cone in KP is also a cone in KP ,
• the intersection of any two cones in KP is a face of both,
• if F ⊆ G, then KF ⊇ KG,
• the cone KF ∩KG is the normal cone of the supremum of F and G in L(P ).

1.3.2 The minimal balanced collections

Let (N, v) be a game. Recall that a balanced collection on N is a collection B of
coalitions of N together with a set of positive weights {λS}S∈B, called the balancing
weights, such that, for every player i ∈ N , the sum ∑

S∈Bi λS is equal to one, with Bi
being the collection of coalitions of B containing player i. In other words, we have∑

S∈B
λS1S = 1N .

From a geometrical point of view, the set B is balanced if 1N lies in the relative interior
of the conical hull of {1S | S ∈ B}. Using the balanced collections, Bondareva [18],
and then Shapley [82] have found a characterization of games with nonempty cores.
Theorem 1.3.1 (Bondareva-Shapley Theorem, first version).
A game (N, v) has a nonempty core if and only if for every balanced collection B on N
together with any balancing weights {λS}S∈B, we have∑

S∈B
λSv(S) ≤ v(N). (1.3.2)

This well-known theorem provides the adjective balanced to name games having a
nonempty core. The interpretation of the result is very natural: a balanced collection is
a possible organization for the players, possibly spending fractions of their time among
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different coalitions. The weighted sum is the total amount of money gathered by the
players in N at the end of the game. Then, if the inequality (1.3.2) is not satisfied,
there exists a balanced collection which is a more profitable organization for the players
than {N}, therefore N will not form. Notice that the nonexistence of a preimputation
which benefits all coalitions is equivalent to the existence of a better organization for
the players than {N}. This fact is a game-theoretical interpretation of the duality
theorem of linear programming, which can be used to prove this theorem.

Indeed, consider the linear program minx∈U(v) x(N). Replacing U(v) by its defini-
tion leads to the following formulation:

(P )
{

min x(N)
s.t. x(S) ≥ v(S), for all S ∈ N .

Remark that this program is always feasible and that the core of the game is nonempty
if and only if the value of the program is v(N). The dual program is:

(D)



max
∑
S∈N

λSv(S)

s.t.


∑
S∈N

λS1S = 1N , and

λS ≥ 0, for all S ∈ N .

The constraints of the dual program define the aforementioned balanced collections.
Because the vector λ∗ defined by λ∗S = 0 for all S ∈ N and λ∗N = 1 satisfies the
constraints, the program has a solution. Furthermore, the value of the objective func-
tion for λ∗ is v(N). It follows from the duality theorem that the core of the game is
nonempty if and only if the value of (D) is v(N), i.e., for all balanced collections B on
N with balancing weights {λS}S∈B,∑

S∈B
λSv(S) ≤ v(N).

In practice, this characterization cannot be used for algorithmic purposes because
most of the balanced collections can have an infinity of balancing weights. Notice that
the balancing weights form a polytope in RN , described by

F =
{
λ ∈ RN+

∣∣∣∣∣ ∑
S∈N

λS1S = 1N
}
. (1.3.3)

Each point λ ∈ F represents a balanced collection B corresponding to the support
of λ, and the balancing weights of B are the corresponding positive coefficients of λ.
Similarly, we can identify each coalition function v with an (2n−1)-dimensional vector;
therefore, the vector space RN can be seen as the space of games. Then, the ambient
space of the polytope of balancing weights and the vector space of games, together
with the usual scalar product is a dual pairing, studied in functional analysis.

Because the balanced collections and their weights are associated with a polytope,
they are determined by convex combinations of its vertices.
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Definition 1.3.4. A balanced collection is minimal if it does not contain a proper
subcollection that is balanced.

Shapley proved that the set of minimal balanced collections corresponds to the set
of extremal points of F , therefore a minimal balanced collection B has a unique set of
balancing weights λB. From this, he stated this sharp version of the Bondareva-Shapley
Theorem. For more details about this, see the monograph of Grabisch [39].
Theorem 1.3.5 (Bondareva-Shapley, sharp version).
The core of a game (N, v) is nonempty if and only if for every minimal balanced col-
lection B, we have ∑

S∈B
λBSv(S) ≤ v(N).

Furthermore, none of these inequalities is redundant except for B = {N}.
The sharpness of the result comes from the fact that, if we choose a minimal bal-

anced collection B, we can find a game that satisfies all the inequalities for minimal
balanced collections different from B, but not the one corresponding to B. This new
characterization requires a much smaller number of inequalities to be checked, provided
that we know the minimal balanced collections on N .

In chapter 2, we present an algorithm checking the nonemptiness of the core, and
show that it is significantly faster than the usual algorithms used in linear programming.
The only requirement to use a Bondareva-Shapley-like algorithm is to know the set
of minimal balanced collections. To do so, we completed and slightly improved the
inductive method developed by Peleg [68], and implemented it into a working computer
program. We are able to compute the set of minimal balanced collections on |N | = 7
and any subsets of N . This generation is discussed in Section 2.1.

1.3.3 Cores of convex games

So far, we have studied games in a very general framework, coming from arbitrary
grounded set functions. In this thesis, we are mainly focused on the core and the
domination relation between the preimputations. Moreover, a lot of economic problems
modeled with a game-theoretic framework as described here have some common and
handy properties to use.
Definition 1.3.6. Let ξ : 2N → R be a set function. We say that ξ is

• grounded if ξ(∅) = 0,
• supermodular if, for all S, T ∈ N , we have ξ(S) + ξ(T ) ≤ ξ(S ∪ T ) + ξ(S ∩ T ),
• submodular if, for all S, T ∈ N , we have ξ(S) + ξ(T ) ≥ ξ(S ∪ T ) + ξ(S ∩ T ).

Games with supermodular coalition functions are called convex [83]. Many inter-
action situations can be modeled by these, for instance: production economy with
landowners [86, 29], bankruptcy games [5, 29], common pool games with linear cost
functions [65, 29], etc. Shapley [83] studied in great depth the properties of convex
games, thanks to the extensive study of submodular set functions, and more specifically
polymatroids, by Edmonds [32]. In particular, convex games have nonempty cores, and
their cores are (externally) stable. The result of the nonemptiness of the core comes
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from the theory of submodular set functions. For an exposition of this theory, see the
monograph of Fujishige [36].

Let ξ : 2N → R be a grounded submodular set function. We denote by P(ξ) the
submodular polyhedron of ξ, defined by

P(ξ) := {x ∈ RN | x(A) ≤ ξ(A), for all A ∈ N},

and by B(ξ) the base polyhedron of ξ, defined by B(ξ) := {x ∈ P(ξ) | x(N) = ξ(N)}.
Denote by ξ# the conjugate set function of ξ, defined, for all S ⊆ N , by

ξ#(N \ S) = ξ(N)− ξ(S).

Remark 1.3.7. It is known that the conjugate set function ξ# of a submodular set
function ξ is supermodular, and that B(ξ) = C(v) where v = ξ# (see [36, Lemma 2.4],
[39]). The last identity does not require submodularity nor supermodularity to hold.

x2

x1~o

U(v)

P(ξ)

B(ξ)

C(v)

Figure 1.5: Example of the submodular and base polyhedra of a set
function ξ and of the core and the set of upper vectors of v = ξ#.

Then the theory of submodular functions [32, 36, etc] is, to some extent, dual
to Shapley’s theory of convex games. There remains an important difference between
these two theories: the concept of external stability of the core/base polyhedron. There
is no analogue in the set function theory.

Originally, Edmonds studied what he called a polymatroid, which is a polytope. His
definition differs from the one of Fujishige, who defined a submodular set function under
the same name of polymatroid. These two definitions are however deeply connected.
For two vectors x, y ∈ RN , we write x ≤ y if, for all i ∈ N , we have xi ≤ yi.
Definition 1.3.8 (Edmonds [32], Schrijver [78]).
A polymatroid P in RN+ is a compact nonempty subset of RN+ such that

1. if ~o ≤ y ≤ x ∈ P , then y ∈ P ,
2. for each z ∈ RN+ there exists a number ρ(z) such that each maximal vector x of
P ∩ {x | x ≤ z} satisfies x(N) = ρ(z).
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This definition resembles a polytopal equivalent of the following definition of a
matroid: a matroid is a pair M = (N,B) with N a finite set and B a nonempty set of
so-called independent subsets of N such that

1. every subset of an independent set is an independent set,
2. for every A ⊆ B, every maximal independent subset of A has the same cardinality,

called the rank, r(A), of A (w.r.t. M).

Definition 1.3.9 (Fujishige [36]).
Let ρ : 2N → R be a grounded set function satisfying

1. A ⊆ B ⊆ N implies ρ(A) ≤ ρ(B),
2. for all A,B ⊆ N , we have ρ(A) + ρ(B) ≥ ρ(A ∪B) + ρ(A ∩B).

The pair (N, ρ) is called a polymatroid and ρ is called rank function of the polymatroid.
The two definitions are connected thanks to the forthcoming theorem.

Theorem 1.3.10 (Edmonds [32]).
Let ξ : 2N → R be a grounded, non-decreasing, submodular set function. Then P (ξ) =
{x ∈ RN+ | x(A) ≤ ξ(A), for all A ∈ N} is a polymatroid.

Another interesting polytope in the polyhedral combinatorics literature linked to
the core is the (generalized) permutohedron, derived from the permutohedron.
Definition 1.3.11 (Postnikov [71]).
Let x ∈ RN such that, for all i, j ∈ N , xi 6= xj. The permutohedron ΠN(x) is the
convex polytope in RN defined as the convex hull of all vectors obtained from x by
permutation of the coordinates:

ΠN(x) := conv {xσ | σ ∈ SN} ,

where SN is the group of permutations of N and xσ = (xσ(1), . . . , xσ(n)).
However, for some authors, the standard permutohedron is defined as ΠN(x) with

x = (n, n − 1, . . . , 2, 1). In polyhedral combinatorics, since Postnikov [71], people are
studying deformations of permutohedra to deal with a more general type of polytopes.
A generalized permutohedron is a polytope obtained from a permutohedron by trans-
lating facets so that the directions of edges are preserved (i.e., are parallel), while some
of the edges may accidentally degenerate into a single point.

More formally, we have the following definition.
Definition 1.3.12 (Postnikov [71]).
A generalized permutohedron is the convex hull of n! points xw labeled by w ∈ SN such
that, for any w ∈ SN and any adjacent transposition τi = (i, i+ 1), we have

xw − xτi(w) = αw,i
(
1{w(i)} − 1{w(i+1)}

)
where αw,i ≥ 0.

Postnikov proved that all permutohedra are combinatorially equivalent (i.e., have
isomorphic face lattices), and reformulated the inequality of Rado [72] to show that
there exists a bijection between the facets of any permutohedron ΠN and N . Then,
generalized permutohedra are parameterized by sets of 2n − 1 coordinates {zS}S∈N ,
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(a) Standard permutohedron. (b) Generalized permutohedra.

Figure 1.6: Three generalized permutohedra. The lines represent the
symmetry axis of coordinate transpositions.

one for each coalition. However, not all the sets of 2n − 1 numbers can generate a
generalized permutohedron. Each generalized permutohedron is of the form{

x ∈ RN | x(N) = zN , and x(S) ≥ zS for all S ∈ N
}
.

Here, we recognize the definition of the core, where the parameters {zS | S ∈ N} are
the worths v(S). Castillo and Liu [21] called these parameters deforming vectors.
Example 1.3.13 (Lancia and Serafini [55]).
The standard permutohedron is the core of the strictly convex game (N, v) defined, for
all S ∈ N , by v(S) = |S|(|S|+1)

2 . Figure 1.7 illustrates the case n = 3.

(0, 0, 6)

(0, 6, 0)

(6, 0, 0)

(1, 1, 4)

(1, 4, 1)

(4, 1, 1)

(1, 2, 3)

(2, 1, 3)
(3, 1, 2)

(3, 2, 1)

(2, 3, 1)
(1, 3, 2)

Figure 1.7: Drawing of the core (gray) of (N, v). In white is the set
X(v) ∩ RN+ , and in light gray is the set of imputations I(v).

♦
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A convex game induces a deformation of the standard permutohedron. Moreover,
generalized permutohedra are deeply connected to submodular functions by the Sub-
modularity Theorem [21].
Theorem 1.3.14 (Submodularity Theorem).
There exists a bijection between generalized permutohedra P with dim(P ) ≤ n− 1 and
grounded submodular set functions on 2N .

Another proof of the Submodularity Theorem can be found in Rehberg [75]. The
relations between these polytopes are summarized in the following table.

Set functions Polymatroids Permutohedra Convex games

Submodular
polyhedron

Extended
polymatroid - Upper vectors

- Polymatroid - -

Base polyhedron Base polytope Generalized
permutohedron Core

- - Permutohedron C(v) with
v : S 7→ |S|(|S|+1)

2

Schrijver [78],
Fujishige [36]

Edmonds [32],
Schrijver [78]

Postnikov [71],
Castillo and Liu [21]

Shapley [83],
Grabisch [39]

Figure 1.8: Similarly defined polyhedra in different theories.

To conclude this part on convex games, let us give some properties of their cores.
We denote by FS the face of the core defined by FS := C(v) ∩ AS. The game is said
to be exact (Schmeidler, [77]) if FS is nonempty for all coalition S ∈ N . We say the
core of a balanced game (N, v) has a regular configuration if, for all S, T ∈ N , we have
FS ∩ FT ⊆ FS∩T ∩ FS∪T .
Proposition 1.3.15 (Shapley [83]).
A balanced game is convex if and only if its core has a regular configuration. Moreover,
a convex game is exact.

To any balanced game, we can associate a unique exact game with the same core.
Definition 1.3.16. Let (N, v) be a balanced game. The lower envelope, or exact cover,
of (N, v) is the game (N, v∗) defined, for all S ∈ N , by v∗(S) = minx∈C(v) x(S).

Geometrically, the lower envelope of a game is constructed by “pushing” the hy-
perplanes AS towards the core until they touch it. Indeed, the core of a game and the
core of its lower envelope coincide [39].
Proposition 1.3.17. The lower envelope of a game (N, v) is convex if and only if
C(v) is a generalized permutohedron.

Proof. It is a corollary of the Submodularity Theorem. Because C(v) is a generalized
permutohedron, there exists a unique submodular function ξ for which B(ξ) = C(v).
Using Remark 1.3.7, we convert this set function ξ into the coalition function v′ ≡ ξ#

of a convex game. Then C(v′) = C(v) and because (N, v′) is convex, it is exact. Yet,
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the core being a compact polyhedron, the lower envelope of a game is unique, thus
(N, v′) is the lower envelope of (N, v).

As a conclusion, the theory of convex games and their cores is well developed. But a
supermodular coalition function is a restrictive condition, and many social interactions
or economic situations can not be modeled by convex games. To model these problems,
we need a more general theory.

1.3.4 Totally balanced games

The theoretical model of a game, and the mathematical concept of a coalition function
without any specific structure, are hardly applicable in practice due to the tedious
enumeration of the worths of all coalitions. However, the theory of cooperative games
encompasses several more precise theories, with explicitly defined coalition functions,
arising from concrete situations. These more precise theories makes the study of co-
operative games relevant, because each of these inherits the results and the properties
from a larger, abstract theory we study here.

In this subsection, we present the linear production games, the market games and
the flow games. More details about these games can be found in the survey of Tijs about
combinatorial optimization games [97]. Subsequently, we recall that each balanced
game is “equivalent” to a game in each of these classes, while explaining what we
mean by equivalent. Any balanced game showing no a priori structure can therefore
be converted into a game belonging to one of these three classes. There are many
more classes of games that are equivalent to these three, which we can’t study in depth
here, for instance the glove-market games defined by Apartsin and Holzman [3], or risk
allocation games defined by Csóka, Herings and Kóczy [26].
Definition 1.3.18. Let (N, v) be a game, and let S ∈ N be a coalition. The sub-
game (S, v|S) is the game on S whose coalition function v|S coincides with v on the
subcoalitions of S. A game is totally balanced if all of its subgames are balanced.

Kroupa and Studený [52] have studied the cone formed by the totally balanced
games, and identified the ones forming the facets of it.

Linear production games. The definition of a linear production games is due to
Owen [67]. Let N be a finite nonempty set of players, and let bi ∈ Rm be a nonnegative
vector of resources assigned to player i ∈ N . From these resources, players can produce
p different goods which can be sold at a given market price. For any suitable (j, k), the
j-th good requires akj > 0 units of the k-th resource, and can be sold at a price cj ≥ 0.
We denote by A the matrix formed by the coefficients akj. The players included in a
coalition S pool their resources, represented by bS := ∑

i∈S b
i, to produce finished goods

in order to maximize their profit. Then the linear production game (N, v) associated
with (A, b = {bi}i∈N , c) is defined by

v(S) = max
x∈Rp

{
〈c, x〉 | Ax ≤ bS

}
.

Theorem 1.3.19 (Rosenmüller [76]).
A nonnegative game is a linear production game if and only if it is totally balanced.
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Market games. The definition of a market game comes from Shapley and Shubik
[87]. Let N be a finite set of players, or traders, let G be the non-negative orthant of a
finite-dimensional vector space, called the commodity space, let A = {ai | i ∈ N} ∈ GN

be an indexed set of elements in G, called the initial endowments, and let U = {ui |
i ∈ N} be an indexed set of continuous, concave functions ui : G → R called the
utility functions. For any coalition S ∈ N , a set of endowments {xi}i∈S ⊆ G such that∑
i∈S x

i = ∑
i∈S a

i is called a feasible S-allocation of the market (N,G,A, U), and we
denote their set by XS. The market game generated by this market is a game (N, v)
such that, for all S ∈ N ,

v(S) = max
x∈XS

∑
i∈S

ui(xi).

Theorem 1.3.20 (Shapley and Shubik [87]).
A game is a market game if and only if it is totally balanced.

For a specific subclass of market games, called assignment games, Solymosi and
Raghavan [94] found the set of games with a stable core.

Flow games. Another class of games with a wide range of applications is the class
of flow games. These games are described by Kalai and Zemel [48] as being useful for
modeling problems of profit sharing in an integrated production system with alternative
production routes. Let G = (V,E) be a directed graph, with V being the set of vertices
containing an initial node s and a terminal node t, E being the set of edges, and let N
be a finite set of players. Let u : E 7→ R associate each edge with its capacity and let
p : E 7→ N associate each edge with a player which owns it.

s 1

2

3

4 t

3, a

3, b

3, b

2, a

2, c

2, a
4, c

3, a

Figure 1.9: Directed graph describing a flow game with N = {a, b, c}.

For a coalition S ∈ N , let GS be the subgraph restricted to the edges owned by a
player in S. Then the coalition function v of the flow game (N, v) associated with G
maps the coalitions S to the maximal amount of flow carried throughout GS between
the node s and the node t. Following the example depicted in Figure 1.9, the coalition
function of the associated flow game is

S {a} {b} {c} {a, b} {a, c} {b, c} N

v(S) 0 0 0 2 2 0 5
.

The flow corresponding to the coalition N is
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s 1

2

3

4 t

3

2

3

2

21

3

with the dashed link not carrying any flow. The number associated to each edge is the
flow transiting through the edge, and respects the capacity constraint of each of them.
Theorem 1.3.21 (Kalai and Zemel [48]).
A nonnegative game is a flow game if and only if it is totally balanced.

As these examples have shown, totally balanced games represent a much wider
class of economic situations than convex games and are solely defined as games having
nonempty cores independently of the choice of the grand coalition. There are at least
two other strong assets for totally balanced games which we present below.

In the sequel, we want to show that any balanced game can be transformed into
a totally balanced game in a way that preserves the domination relations between
preimputations. To study transformations of games we need to specify according to
which coalition function we are considering the domination relation. Let v and w be
two coalition functions defined on the same domain N such that X(v) = X(w). Let x
and y be two preimputations. We write x domv y if there exists a coalition S ∈ N
such that x(S) ≤ v(S) and, for all i ∈ S, we have xi > yi. Let f : RN → RN be a map
from the space of coalition functions into itself. We say that f is dominion-preserving
if, for all pairs of preimputations x and y, we have x domv y if and only if x domf(v) y.
Definition 1.3.22. Two games (N, v) and (N,w) are called equivalent if v(N) = w(N)
and there exists a dominion-preserving map f such that w = f(v).

Two equivalent games have precisely the same stable sets, or both have none. Also,
if they are balanced, they have the same cores. The notion of equivalence comes from
Gillies [37], although he worked on different sets of payment vectors.

In their paper on market games, Shapley and Shubik [87] defined the totally bal-
anced cover of a game.
Definition 1.3.23. Let (N, v) be a game, and denote by B(S) the set of minimal
balanced collections on S. The (totally balanced) cover of (N, v) is the game (N, v)
defined, for all S ∈ N , by v(S) = maxB∈B(S)

∑
T∈B λ

B
Tv(T ).

Proposition 1.3.24 (Shapley and Shubik [87]).
A balanced game is equivalent to its totally balanced cover.

This result reduces the study of the external stability of cores of balanced games
to the study of the external stability of cores of totally balanced games. Therefore,
studying totally balanced games allows us to study a very broad class of games, but also
through the d-equivalence, all the balanced games. This is why in this thesis we always
consider if needed, totally balanced games. Unlike the convex games, it is not clear
which type of set functions characterizes the totally balanced games, however Kalai
and Zemel [48] found a very interesting and useful characterization while studying flow
games. Let us call those games that have an additive coalition function inessential.
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A game (N, v) is said to have a finite representation [76] if there exists a finite set of
inessential games {(N,wi) | i ∈ I} such that v = ∧

i∈I w
i, i.e., for all S ∈ N , we have

v(S) = min
i∈I

wi(S).

Theorem 1.3.25 (Kalai and Zemel [48]).
A game is totally balanced if and only if it has a finite representation.

This characterization links totally balanced games with tropical polynomials.
Definition 1.3.26. A tropical polynomial is a map ψ : RN → R defined as the mini-
mum of finitely many affine maps, whose linear parts have rational coefficients, i.e.,

ψ : x ∈ RN 7→ min
i∈I
{ci + 〈zi, x〉} ∈ R,

where the coefficients of all zi are rational.
In the standard definition of a tropical polynomial, the coefficients ci are usually

allowed to take the value +∞, provided that there is at least one finite coefficient.
Because the term ci + li(x) is not taken into account by the min operator if ci is
infinity, it plays no role in the map ψ.

We say that a game (N, v) is rational if its coalition function only takes rational
values. Assuming that a game is rational should not limit much its range of economic
applications, because a quantity of money is rarely expressed with irrational numbers,
or can be approximated by rational numbers.
Proposition 1.3.27. For every rational, totally balanced game (N, v), there exists a
tropical polynomial ψ : RN → R such that, for all S ∈ N , we have ψ

(
1S
)

= v(S). If
ψ is a tropical polynomial such that, for all i ∈ I, we have ci = 0, then there exists a
totally balanced game which can be extended to it.

Proof. It is a corollary of Theorem 1.3.25 and the Riesz-Fréchet representation theorem.
Let v be the coalition function of a totally balanced game. By Theorem 1.3.25, there ex-
ists a finite set of additive coalition functions {ai | i ∈ I} such that v(S) = mini∈I ai(S).
Then we extend each ai using the representation theorem, and we obtain a tropical
polynomial. Let now ψ be a tropical polynomial with all the coefficients ci being
zero. Then it is defined as the minimum of linear forms, which are associated with
n-dimensional vectors, themselves being associated with inessential games forming a
representation of a totally balanced game.

In the game-theoretical literature, different concepts of game extensions already
exist. Back in 1972, Owen [66] defined a multilinear extension for any game (N, v).
Algaba, Bilbao, Fernández, and Jimenez [2], studied the Choquet integral (also called
the Lovász extension, see Grabisch [39]) in the context of cooperative game theory.
The Choquet and the Sugeno integrals are also used as extensions of capacities in
decision theory [39]. But this extension into a tropical polynomial aims to build deeper
connections with combinatorial optimization and discrete geometry.

To summarize, in this chapter, we have presented the foundations on which this
thesis is built. First, we have introduced the main objects that we will investigate: the
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preimputations, the stable sets, the core and the (minimal) balanced collections. Next,
we provided the notation we use to study the Euclidean space of payment vectors and
the affine subspace of preimputations, and we showed that these are relevant in the
study of projections, which will be a substantial part of our contribution to cooperative
game theory. Subsequently, we presented a few results about cores of convex games, as
well as some similarities they share with other objects studied in other fields of mathe-
matics, in particular in combinatorial optimization and discrete geometry. The results
about cores of convex games are the starting point of the investigation of cores of totally
balanced games, in particular their coincidence with the von Neumann-Morgenstern
stable sets, which is the primary goal of this thesis.
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Chapter 2

Balancedness for nonemptiness

The aim of this chapter is three-fold: to describe the generation of minimal balanced
collections, to implement the Bondareva-Shapley Theorem as an algorithm and com-
pare this method with well-known linear programming algorithms, and finally to extend
the range of applications of these algorithms to a larger class of polyhedra. A significant
part of these results comes from Laplace Mermoud, Grabisch, and Sudhölter [56].

Our algorithm generating the minimal balanced collection is based on Peleg’s in-
ductive method [68]. From the set of minimal balanced collections on a set of players
N , we can construct the minimal balanced collections on N∪{p}, with p being a player
not included in N , by means of four construction procedures. Three of these proce-
dures consist of finding a specific set of coalitions in the collection, in which we can
add the new player, possibly adding a singleton {p} to the new collection. The fourth
procedure generates minimal balanced collections on N ∪ {p} from pairs of collections
on N , and ensures to have built all the collections. Thanks to this algorithm, we are
able to give the numbers of minimal balanced collections till n = 7, which coincide for
n ≤ 4 with the numbers given by Shapley [82]. The list of these numbers is accessible
under the number A355042 of the Online Encyclopedia of Integer Sequences [93].

In a second part, we show that our algorithm is relevant because it outspeeds the
previous methods to generate the minimal balanced collections. Indeed, this generation
is equivalent to the vertex enumeration of a specific polytope. We use the Avis-Fukuda
algorithm to compare its performance with our algorithm. Using the minimal balanced
collections, we implement the Bondareva-Shapley Theorem as a computer program,
and compare it to classical linear programming algorithms. It turns out that our
implementation of Bondareva-Shapley Theorem is more than seven times faster than
the revised simplex method natively implemented in Python.

Finally, we define a new class of polyhedra, called basic polyhedra, on which it
is possible to apply our generalization of the Bondareva-Shapley Theorem (Theorem
2.2.3). Roughly speaking, a basic polyhedron is a polyhedron the adherence of which
is the core of a well-chosen coalition function. These polyhedra are very common in
cooperative game theory, as they are usually either defined as a set of solutions with
specific properties, like the core, or their nonemptiness is equivalent to the satisfaction
of a property. For the latter, exactness is a good example, because the nonemptiness of
the basic polyhedron consisting of core elements giving a payment of v(S) to a coalition
S is equivalent to the exactness of S. Moreover, all the properties equivalent to the
nonemptiness of a basic polyhedron are prosperity properties.



34 Chapter 2. Balancedness for nonemptiness

2.1 The algorithm

So far, there are two known methods for generating minimal balanced collections. The
first one, due to Peleg [68], is specifically devoted to the generation of minimal balanced
collections and proceeds by induction on the number of players n. The second one uses
any vertex enumeration method for convex polyhedra, applied on the specific polytope
described in equation (1.3.3). One popular algorithm for vertex enumeration is the one
of Avis and Fukuda [6], which we will use for performance comparisons.

Peleg’s method constructs, from the minimal balanced collections defined on a set
N , all those that are defined on the set N ′ = N ∪ {p}, with p a new player that
was not included in N . As far as we know, Peleg’s inductive method has never been
implemented as an algorithm, perhaps due to the rather abstract way it is described, far
from any algorithmic considerations. For this reason, we translate Peleg’s methods and
results from an algorithmic point of view, reproving his results in our new formalism
for the sake of clarity and completeness. In the following, the main result is divided
into four cases where the fourth one is slightly generalized compared to Peleg’s method.

Let C = {S1, . . . , Sk} be a balanced collection of k coalitions on N and p be a new
player not in N . Denote by [k] the set {1, . . . , k} for any positive integer k. If λC is a
system of balancing weights for C and I ⊆ [k] is a subset of indices, denote by λCI the
sum ∑

i∈I λ
C
Si
. Also, denote by AC the incidence (n×k)-matrix formed by the k column

vectors 1S1 , . . . ,1Sk . Denote by rk
(
AC
)
the rank of the matrix AC, i.e., the dimension

of the Euclidean space spanned by its columns viewed as n-dimensional vectors.

First case. Let C be a minimal balanced collection on N . Take I ⊆ [k] such that
λCI = 1. Denote by C ′ the new collection in which the coalitions {Si | i ∈ I} contain
the new player p as an additional member and the other coalitions {Sj | j ∈ [k] \ I}
are kept unchanged.
Lemma 2.1.1. C ′ is a minimal balanced collection on N ′.

Proof. Because C is a minimal balanced collection, the equalities ∑S∈C′,S3i λ
C
S = 1

are already satisfied for any player i ∈ N . By definition of I, we also have that∑
S∈C′,S3p λ

C
S = λCI = 1. Then, C is balanced. Moreover, the minimality of C ′ implies

the minimality of C ′.

Second case. Let C be a minimal balanced collection on N . Take I ⊆ [k] such that
λCI < 1. Denote by C ′ the new collection in which the coalitions {Si | i ∈ I} contain
the new player p as an additional member and the other coalitions {Sj | j ∈ [k] \ I}
are kept unchanged, and to which the coalition {p} is added:

C ′ = {Si ∪ {p} | i ∈ I} ∪ {Sj | j ∈ [k] \ I} ∪ {{p}}.

Lemma 2.1.2. C ′ is a minimal balanced collection on N ′.

Proof. Because C is a minimal balanced collection, the equalities ∑S∈C′,S3i λ
C
S = 1 are

already satisfied for any player i ∈ N . Define λC′ such that λC′S = λCS for S ∈ C and
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λC
′

{p} = 1− λCI . Therefore,∑
S∈C′
S3p

λC
′

S = λC
′

{p} + λCI = 1− λCI + λCI = 1.

Then C ′ is balanced. We cannot obtain a balanced subcollection of C ′ by discarding
one element of {Si | i ∈ I} because C is minimal, nor can we discard coalition {p}
because λCI < 1. So C ′ is minimal.

Third case. Let C be a minimal balanced collection on N . Take a subset I ⊆ [k]
and an index δ ∈ [k] \ I such that 1 > λCI > 1− λCSδ . Denote by C ′ the new collection
in which the coalitions {Si | i ∈ I} contain the new player p as an additional member,
the other coalitions {Sj | j ∈ [k] \ I} are kept unchanged, and to which the coalition
Sδ ∪ {p} is added:

C ′ = {Si ∪ {p} | i ∈ I} ∪ {Sj | j ∈ [k] \ I} ∪ {Sδ ∪ {p}}.

Lemma 2.1.3. C ′ is a minimal balanced collection on N ′.

Proof. Define λC′ by λC′S = λCS for S ∈ C \ {Sδ}, and

λC
′

Sδ∪{p} = 1− λCI and λC
′

Sδ
= λCSδ − λ

C′
Sδ∪{p} > 0 (by assumption).

Let i ∈ N be a player. If i 6∈ Sδ, by balancedness of C, ∑S∈C′,S3i λ
C′
S = 1. If i ∈ Sδ,

then ∑
S∈C′
S3i

λC
′

S = λC
′

Sδ∪{p} + λC
′

Sδ
+

∑
S∈C\{Sδ}

S3i

λC
′

S = λCSδ +
∑

S∈C\{Sδ}
S3i

λCS =
∑
S∈C
S3i

λCS,

that is equal to 1 by balancedness of C. Concerning player p,∑
S∈C′
S3p

λC
′

Sδ∪{p} = λC
′

Sδ∪{p} + λC
′

I = 1− λCI + λCI = 1.

Then C is balanced. Because none of the coalitions S ∈ C or Sδ ∪{p} can be discarded
to obtain a balanced subcollection, the proof is finished.

Fourth case. Let C1 and C2 be two distinct minimal balanced collections on N such
that C = C1∪C2 satisfies |C| = k and rk

(
AC
)

= k−1. Define two systems of balancing
weights for C, defined, for all S ∈ C, by

µS =
λ
C1 if S ∈ C1,

0 otherwise,
νS =

λ
C2 if S ∈ C2,

0 otherwise.

Assume that there exists I ⊆ [k] such that µI = ∑
i∈I µSi 6= νI = ∑

i∈I νSi and

tI = 1− µI
νI − µI

∈ (0, 1).
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Denote by C ′ the new collection in which the coalitions {Si | i ∈ I} contain the new
player p as an additional member and the other coalitions {Sj | j ∈ [k] \ I} are kept
unchanged.
Lemma 2.1.4. C ′ is a minimal balanced collection on N ′.

Proof. Define λC′ , for all S ∈ C ′, by λC′ = (1 − tI)µS + tIνS. Because λC′ is a convex
combination of two systems of balancing weights of C, for all players i ∈ N we have∑
S∈C′,S3i λ

C′
S = 1. Concerning player p,

∑
S∈C′
S3p

λC
′

S = λC
′

I =
(
1− tI

)
µI + tIνI = µI + tI (νI − µI) = µI + 1− µI = 1.

Then C ′ is a balanced collection. Now, we prove the minimality of C ′ as a balanced
collection, i.e., the uniqueness of λC′ as a system of balancing weights for C ′. The system
of balancing weights for C, denoted by Λ(C), is the convex set Λ(C) = conv(µ, ν), and
then Λ(C ′) ⊆ Λ(C). More precisely, to satisfy the balancedness for player p we have
Λ(C ′) ⊆ {λ ∈ Rk+1 | λI = 1} ∩ conv(µ, ν). Because it is the intersection between two
non-parallel one-dimensional sets, λ(C ′) contains at most one solution, which is λC′ .

Final algorithm. It is now possible to construct, from the set of minimal balanced
collections on a set N , the set of minimal balanced collections on another set N ′ =
N ∪ {p} (see Algorithm 1: AddNewPlayer).

Algorithm 1 AddNewPlayer

Require: A set of minimal balanced collections B(N) on a set N
Ensure: A set of minimal balanced collections B(N ′) on a set N ′ = N ∪ {p}
1: procedure AddNewPlayer(BN , p)
2: for (C1, C2) ∈ BN × BN do
3: C ← C1 ∪ C2 and k ← |C|
4: if rk(AC) = k − 1 then
5: for I ⊆ [k] such that tI ∈ ]0, 1[ do
6: for i ∈ I do add Si ∪ {p} with weights (1− tI)µSi − tIνSi to C ′
7: for i 6∈ I do add Si with weights (1− tI)µSi − tIνSi to C ′
8: add C ′ to B(N ′)
9: for C ∈ BN do

10: k ← |C|
11: for I ⊆ [k] such that λCI ≤ 1 do
12: C ′ ← ∅
13: for i ∈ I do add Si ∪ {p} with weights λCSi to C

′

14: for i 6∈ I do add Si with weights λCSi to C
′

15: if λCI < 1 then add {p} with weight 1− λCI to C ′
16: add C ′ to B(N ′)
17: for δ ∈ [k] \ I such that λSδ > 1− λCI do
18: C ′ ← ∅
19: for i ∈ I \ {δ} do add Si ∪ {p} with weights λCSi to C

′

20: for i 6∈ I ∪ {δ} do add Si with weights λCSi to C
′
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21: add Sδ ∪ {p} with weight 1− λCI to C ′
22: add Sδ with weight λCSδ + λCI − 1 to C ′
23: add C to B(N ′)
24: return B(N ′)

Theorem 2.1.5. Let N be a finite set. Algorithm 1 AddNewPlayer, which takes
as an input the set of all minimal balanced collections on N , generates all the minimal
balanced collections on N ′ = N ∪ {p}.

Proof. Thanks to the four previous lemmas, the algorithm generates only minimal
balanced collections on N ′. It remains to prove that every minimal balanced collection
is generated by this algorithm. Let B be a minimal balanced collection on N ′. If the
player p is removed from each coalition of B, the collection is still balanced. Denote
by B−p this new collection.

If {p} 6∈ B and B−p is a minimal balanced collection, then B is generated by the
first case (Lemma 2.1.1)

If {p} ∈ B: since B has a unique system of balancing weights, B−p has only one
system of balancing weights, and so it is a minimal balanced collection, and B is
generated by the second case (Lemma 2.1.2).

If {p} 6∈ B and there are two identical coalitions in B−p: the minimality of B implies
the minimality of B−p when the two identical coalitions are merged and their weights
added. Then B is generated by the third case (Lemma 2.1.3).

Assume that {p} 6∈ B, no coalitions in B−p are identical, and B−p is not a mini-
mal balanced collection. Because B is a minimal balanced collection of k coalitions,
rk(AB) = k, and then rk(AB−p) = k − 1. Consequently, the set of solutions of the
following system of inequalities

AB−pλ = 1N , λ ≥ ~o, (2.1.6)

is one-dimensional and has the form λ = λ0 + tλ1, where λ0 is a system of balanc-
ing weights for B−p, where t is a real number and λ1 is a non-zero solution of the
homogeneous system

AB−pλ = ~o, λ ≥ ~o.

The set of solutions of (2.1.6) being bounded and one-dimensional, it is a nondegenerate
segment [α, β]. Let Uα = {i | αi > 0} and Uβ = {i | βi > 0}. Clearly, Uα and Uβ
are subsets of [k] and Uα ∪ Uβ = [k]. Let Bα = {Si ∈ B | i ∈ Uα} and Bβ = {Si ∈
B | i ∈ Uβ}. α∗, the restriction of α to Uα is a system of balancing weights for Bα,
and β∗, the restriction of β to Uβ, is a system of balancing weights for Bβ. Since α
and β are extremal solutions of the system (2.1.6), Bα and Bβ are minimal balanced
collections. Then B is the union of Bα and Bβ and is generated by the fourth case
(Lemma 2.1.4).

With the procedure AddNewPlayer used recursively, all the minimal balanced
collections on N are generated from the ones of {1, 2}.
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Example 2.1.7. Let N = {a, b, c, d} and N ′ = N ∪ {e}. Let S1 = {a, b}, S2 = {a, c},
S3 = {a, d} and S4 = {b, c, d}. Then, C = {S1, S2, S3, S4} is a minimal balanced set
with the system of weights λ =

(
1
3 ,

1
3 ,

1
3 ,

2
3

)
.

First case. Remark that the set I = {1, 4} satisfies the equation λI = 1. Therefore,
we construct the minimal balanced set:

C1 = {{a, b, e}, {a, c}, {a, d}, {b, c, d, e}}, with λC1 =
(1

3 ,
1
3 ,

1
3 ,

2
3

)
.

Second case. Let I = {4}. Then λI = 2
3 < 1. Therefore, we construct the minimal

balanced set:

C2 = {{a, b}, {a, c}, {a, d}, {b, c, d, e}, {e}}, with λC2 =
(1

3 ,
1
3 ,

1
3 ,

2
3 ,

1
3

)
.

Third case. Let I = {1, 2} and δ = 4. Then λI = 2
3 and 1 − λSδ = 1

3 . Therefore,
1 > λI > 1− λSδ and the following minimal balanced set can be constructed:

C3 = {{a, b, e}, {a, c, e}, {a, d}, {b, c, d}, {b, c, d, e}} with λC3 =
(1

3 ,
1
3 ,

1
3 ,

1
3 ,

1
3

)
.

Fourth case. For the last case, we consider another framework. Let N = {a, b} and
C1 = {{a}, {b}}, C2 = {{a, b}} be the only two minimal balanced sets on N . Let C be
the union C = C1 ∪ C2 = {{a}, {b}, {a, b}}. Let µ = (1, 1, 0) and ν = (0, 0, 1). We have

rk
(
AC
)

= rk
((

1 0 1
0 1 1

))
= 2 = k − 1.

Finally, let I = {1, 2}. Then, µI = 2, νI = 0, and tI = 1−µI
νI−µI

= 1
2 ∈ (0, 1). The

following set can be constructed:

C = {{a, b}, {b, c}, {a, c}} with λC = 1
2µ+ 1

2ν =
(1

2 ,
1
2 ,

1
2

)
.

♦

Remark 2.1.8. It is possible to adapt Algorithm 1 to compute the minimal balanced
collections on every set system F ⊆ 2N on which the game is defined. We start again
at N = {a, b} and B(N) = {{{a, b}}, {{a}, {b}}}, and for each minimal balanced
collection generated, we check if this is a subset of a coalition in F .

Results and performance. We implemented the above algorithm in Python1, and
found the following results and performance, given in Table 2.1.

The four first numbers correspond to the ones found by Shapley [82]. None of the
sequences already known in the OEIS [93] shared the same first numbers, so this one

1Computing device: Intel Xeon W-1250, CPU 3.30 GHz, 32 GB RAM.
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n 2 3 4 5 6 7
k 2 6 42 1,292 200,214 132,422,036
t 0s 0s 0s 1s 244s 63 hours

Table 2.1: Number k of minimal balanced collections and CPU time t
according to the number n of players.

was added to the Encyclopaedia, and it can be accessed under the number A3550422.
Moreover, the lists of minimal balanced collections3 have been stored till n = 7.

The second method to compute the minimal balanced collections is by finding the
vertices of a specific polytope. Let F be the polytope defined by

F =
{
λ ∈ RN+

∣∣∣∣∣ ∑
S∈N

λS1S = 1N
}
.

It is easy to check that the vertices of F are in bijection with the minimal balanced
collections on N . Indeed, an element λ ∈ F is a vertex if and only if its support is
a minimal balanced collection with the corresponding balancing weights [see, e.g., 69,
Corollary 3.1.9]. The reason is the following. Consider λ an element of F . By definition,
B = {S ∈ N | λS > 0} is a balanced collection with balancing weight system λ. If
λ is a vertex, it cannot be obtained as a convex combination of other vectors in F ,
hence the balancing weight system is unique and the corresponding balanced collection
is minimal.

Consequently, generating all minimal balanced collections on N amounts to finding
all vertices of F . We have used the well-known Avis-Fukuda algorithm [6] for vertex
enumeration, available in the pycddlib package in Python. Running it for n = 6 yields
the following performance (the one of our algorithm is recalled), see Table 2.2. The
comparison indicates that our algorithm outperforms the Avis-Fukuda algorithm.

Algorithm used CPU time
Our algorithm 244 seconds
Avis-Fukuda algorithm 1764 seconds

Table 2.2: Comparison of the CPU times with n = 6.

Now that we know the minimal balanced collections, we can use an algorithmic im-
plementation of the Bondareva-Shapley Theorem for games defined with at most seven
players. An important general remark for this implementation and the subsequent ap-
plications is that the minimal balanced collections do not depend on the game under
consideration, but only on n. Therefore, there is no need to generate them for each
application, but just to export them from some storage device. Until n = 7, this gives
a computational advantage compared to other methods based on linear programming
and polyhedra, as it is shown in Table 2.3.

2see https://oeis.org/A355042.
3Available on request from the author.

https://oeis.org/A355042
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Let (N, v) be a game. The question is whether the core C(v) of this game is
nonempty. Consider the following linear program:{

min x(N)
s.t. x(S) ≥ v(S), ∀S ∈ N .

Clearly, C(v) is nonempty if and only if the optimal value of this program is x(N) =
v(N) (see the discussion following Theorem 1.3.1). Therefore, one simple way to check
the nonemptiness of the core is to solve this program and compute its optimal value.

Another way is to take the dual program of the previous one. This was done by
Bondareva and Shapley independently, as we have discussed in Section 1.3. It directly
leads to minimal balanced collections and the Bondareva-Shapley Theorem (Theorem
1.3.5), which states that C(v) is nonempty if and only if, for any minimal balanced
collection B on N , we have ∑

S∈B
λBSv(S) ≤ v(N). (2.1.9)

This result shows that the nonemptiness of the core can be checked by a simple al-
gorithm inspecting inequality (2.1.9) for each minimal balanced collection. The test
terminates once we have found a minimal balanced collection not satisfying (2.1.9).

In order to compare both approaches, we fixed n = 6 and generated 5,000 different
games in the following way: for all coalitions S ∈ N \ {N}, the worths v(S) are drawn
at random in the interval [0, 5], while v(N) is fixed to 50. Doing so, each generated
game has a nonempty core, as

(
50
6 , . . . ,

50
6

)
is a core element for any generated game.

Therefore, in the algorithm based on the Bondareva-Shapley Theorem, all inequal-
ities have to be checked in order to conclude the nonemptiness of the core (which is
the most unfavorable case). To solve the linear program, we have used the revised
simplex method, already programmed in Python. Similar to the comparison with the
Avis-Fukuda algorithm, both algorithms are implemented in the same language, so the
comparison is fair. The results are given in Table 2.3.

Algorithm used Accumulated CPU time
Our algorithm 0.96 seconds
Revised simplex method 24.85 seconds

Table 2.3: Comparison of the CPU time for checking the balancedness
of 5,000 games with n = 6, for both methods.

We conclude that the algorithm based on minimal balanced collections (provided
that they are available) is much faster than an approach based on linear programming.

Additionally, the minimal balanced collections permit us to check whether the core
is full-dimensional, i.e., if its affine space is X(v). A coalition S is effective (for (N, v)) if,
for all x ∈ C(v), we have x(S) = v(S). We denote by E(v) the collection of coalitions
which are effective for (N, v). Equivalently, S ∈ E(v) if and only if C(v) ⊆ AS(v).
Therefore, if E(v) is different from {N}, the core is not full-dimensional. The following
result allows for obtaining all effective coalitions of a game.
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Proposition 2.1.10. Let (N, v) be a balanced game. E(v) is the union of all minimal
balanced collections B satisfying ∑

S∈B
λBSv(S) = v(N). (2.1.11)

Proof. Let B be a minimal balanced collection satisfying (2.1.11) and let x ∈ C(v).
Then,

v(N) = x(N) =
∑
S∈B

λBSx(S) ≥
∑
S∈B

λBSv(S) = v(N).

For all S ∈ B, we have λBS > 0, then x(S) = v(S), and B ⊆ E(v).
For the reverse inclusion, let S ∈ E(v). As {N} is a minimal balanced collection,
assume that S 6= N . It remains to show that S is contained in some minimal balanced
collection satisfying (2.1.11). Assume the contrary. Then, by the Bondareva-Shapley
Theorem, there exists ε > 0 such that the game (N, vε) that differs from (N, v) only
inasmuch as vε(S) = v(S) + ε is still balanced. Hence, for x ∈ C(N, vε), it follows that
x(S) > v(S) and x ∈ C(v), then the desired contradiction has been obtained.

Notice that, because E(v) is a union of minimal balanced collections, it is itself a
balanced collection. To compute it, we simply need to run over all the minimal balanced
collections and store the ones that satisfy (2.1.11). This procedure can therefore be
used at the same time we check the balancedness of a game, with a negligible additional
time. Table 2.3 certifies that this method is considerably faster than any other linear
programming method to check whether the core is full-dimensional.

The output of this computation also defines the affine span of the core, that is

aff (C(v)) =
⋂

S∈E(v)
AS(v).

However, there may be some redundant hyperplanes in the definition of the affine span.

2.2 Nonempty polyhedra and set functions

The Bondareva-Shapley Theorem and its algorithmic implementation can be used in
a wider range of applications than cooperative game theory. Any polytope satisfying
a few conditions, quite natural in mathematical economics and combinatorics, can be
studied using minimal balanced collections.
Definition 2.2.1. A basic polyhedron P ⊆ RN is defined as the set of solutions of a
system of linear inequalities of the form

∑
j∈N xj = bN ,∑
j∈N aijxj ≥ bi, for all i ∈ U1,∑
j∈N aijxj > bi, for all i ∈ U2,∑
j∈N aijxj ≤ bi, for all i ∈ D1,∑
j∈N aijxj < bi, for all i ∈ D2.

where all the coefficients aij belong to {0, 1}.
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For convenience, we denote the following indices sets U = U1∪U2, D = D1∪D2 and
I = U ∪D. Because each coefficient aij is either 0 or 1, we can identify any index with
a coalition S ∈ N , via the map i 7→ S = {j ∈ N | aij = 1}. The coalition associated
with each index being unique, we keep the same notation U and D to denote the sets
of coalitions and the sets of indices.

Let S ∈ D1. We have that ∑j∈S xj = x(S) ≤ bS. By adding bN and multiplying
both sides by −1, we obtain x(N) − x(S) ≥ bN − bS, which can be rewritten as
x(N \ S) ≥ bN − bS. The same procedure can be performed for indices in D2. We
obtain the following system of linear inequalities:

x(N) = bN ,
x(S) ≥ bS, ∀S ∈ U1,
x(S) > bS, ∀S ∈ U2,

x(N \ S) ≥ b′N\S := bN − bS, ∀S ∈ D1,
x(N \ S) > b′N\S := bN − bS, ∀S ∈ D2.

Denote by Dc the set of complements of elements of D, i.e., Dc = {N \ S | S ∈ D}.
For any basic polyhedron P ⊆ RN , we denote

FP := {∅, N} ∪ U ∪ Dc, and,

βS =


0 if S = ∅,
max{bS, b′S} if S ∈ U ∩ Dc,
bS if S ∈ (U \ Dc) ∪ {N},
b′S if S ∈ Dc \ U .

(2.2.2)

Becuase there is one βS for each S in FP , we can define a set function on FP by
vP (S) = βS. The pair (FP , vP ) defines a game associated with P , with vP only defined
on the coalitions included in the set system FP . We can interpret a game defined on
a set system as modeling a situation where the formation of coalitions that are not
FP is impossible. To read more about games on set systems, we refer to the survey of
Grabisch [38]. See also the core of incomplete games [23].

The Bondareva-Shapley Theorem on games defined on set systems still operates, we
only have to consider the minimal balanced collections included in the given set system.
As previously discussed in Remark 2.1.8, our algorithm also functions to compute these
minimal balanced collections.

However, if we already know all the minimal balanced collections on N , it is more
efficient to proceed to an inclusion check when running through all the minimal bal-
anced collections on N . By Remark 1.3.7, we know that the base polyhedron of the
set function ξP ≡ v#

P defined on the domain F cP is the same set as the core of (FP , vP ),
which is the adherence of P in RN .

We are now able to present the main result of Chapter 2. Denote by QP the
collection QP = U2 ∪ Dc2 of all coalitions implying strict inequalities.
Theorem 2.2.3. Let P be a basic polyhedron. P is nonempty if and only if, for all
minimal balanced collections B ⊆ FP , we have∑

S∈B
λBSβS ≤ βN and

∑
S∈B

λBSβS 6= βN if B ∩ QP 6= ∅.
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Equivalently, P is nonempty if and only (FP , vP ) is balanced and QP ∩ E(FP , vP ) = ∅.

Proof. By construction of vP , we have that

P = C(vP ) \
⋃

S∈QP
AS(vP ).

Assume that (FP , vP ) is balanced and that QP ∩ E(FP , vP ) = ∅. Then, C(FP , vP )
is nonempty and, for all S ∈ QP , there exists a core element xS ∈ C(vP ) such that
xS(S) > vP (S). Let xQP denote the convex mid-points of these points, i.e.,

xQP = 1
|QP |

∑
S∈QP

xS.

Because the core is convex, we have xQP ∈ C(vP ), and because all the xS are in the
core, we have, for all S ∈ QP , that xQP (S) > vP (S). Then xQP ∈ P .

Assume now that P 6= ∅. Let x ∈ P . We have x ∈ C(vP ), and therefore (FP , vP )
is balanced by the Bondareva-Shapley Theorem. Also, for all S ∈ QP , we have x(S) >
vP (S) because x is a core element and does not belong to any of the AS(vP ). Therefore,
none of the S ∈ QP can belong to E(vP ), and then QP ∩ E(vP ) = ∅.

This result is relevant because many properties or solutions in cooperative game
theory depend on the existence of one, or many, specific preimputations forming a basic
polyhedron. The simplest example is the basic polyhedron of coalitionally rational
preimputations, i.e., the core. Let us consider a second example.
Example 2.2.4. Let x be a preimputation, let S be a coalition and denote IS = {{i} |
i ∈ S}. Then, the set of preimputations dominating x via S is the basic polyhedron

∆S(x) := {y ∈ X(v) | y(S) ≤ v(S) and, for all i ∈ S, yi > xi}.

We have |S| + 1 inequalities indexed by U = U2 = IS, and D = D1 = {S} using the
same notation as in Definition 2.2.1. Then

F∆S(x) = {∅, N,N \ S} ∪ IS.

The only non-trivial minimal balanced collection included in F∆S(x) is the partition
B = IS ∪ {N \ S}. The set function v∆S(x) is defined on F∆S(x) by

v∆S(x)(T ) =


v(N)− v(S) if T = N \ S,
xi if T ∈ IS,
0 if T = ∅.

The conditions of Theorem 2.2.3 become ∑i∈S v∆S(x)({i}) + v∆S(x)(N \ S) < v(N),
which is equivalent to x(S) + v(N)− v(S) < v(N) and we retrieve that x is dominated
via S if and only if x(S) < v(S). ♦

Definition 2.2.5. Let (N, v) be a game and denote by v0 the restriction of v to
2N \ {N}. A property P on games is a prosperity property if for each v0 there exists a
real number α0 ≥

∑
i∈N v({i}) such that (N, v) has property P if and only if v(N) ≥ α0.
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Proposition 2.2.6. All properties on games which are equivalent to the nonemptiness
of a closed basic polyhedron are prosperity properties.

Proof. Denote by P the closed basic polyhedron whose nonemptiness is equivalent to
the property we study. Denote by (FP , vP ) the game associated with P , as defined in
Equation 2.2.2. Then, P is nonempty if and only if v(N) ≥ maxB∈B(N)

∑
S∈B λ

B
Sv(S)

because P is closed, and α0 = maxB∈B(N)
∑
S∈B λ

B
Sv(S).

In the next section, we introduce a few properties of coalitions and collections of
coalitions, that are equivalent to the nonemptiness of a basic polyhedron. We show now
that basic polyhedra are a generalization of generalized permutohedra. For a polytope
P ⊆ RN , we denote by AP and bP a matrix AP ∈ Rk×n and a vector bP ∈ Rk such that
P = {x ∈ RN | APx ≤ bP}.
Definition 2.2.7. A polytope Q ⊆ RN is a deformation of another polytope

P = {x ∈ RN | APx ≤ bP}

if there exists a vector bQ ∈ RN such that the following two conditions are satisfied:

• The polytope Q can be written as Q = {x ∈ RN | APx ≤ bQ},
• For any vertex x of P , if {Fi}i∈I are the facets of P containing x, then

⋂
i∈I

y ∈ RN
∣∣∣∣∣∣
∑
j∈N

aPijyj = bQi

 is a vertex of Q.

We call bQ a deforming vector ofQ. IfQ′ is a polytope only satisfying the first condition,
we call it a distortion of polytope P , and bQ′ is called a distorting vector of Q′.

A distortion Q of a polytope P is a transformation consisting of translations of its
facets along their normals. During this process, some faces can disappear, and the
set of the normals of the facets of Q is a subset of the set of normals of the facets of
P . Notice that the combinatorial structure of the polytope, as described by its face
lattice, can be completely different. On the contrary, a deformation is a distortion that
preserves the direction of the edges of the initial polytope.

Core of (N, v) with

N = {1, 2, 3, 4}, and

v(S) = |S|(|S|+ 1)
2 .

Figure 2.1: The standard permutohedron.

The core of the game defined in Figure (2.1) is the standard permutohedron.
In Figure (2.2), a convex game is defined and its core is drawn. We remark that any

facet is parallel to its corresponding facet on the standard permutohedron, and that the
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Core of (N,w) with

N = {1, 2, 3, 4}, and

w(S) =
(∑
i∈S

i

)2

.

Figure 2.2: A generalized permutohedron.

directions of the edges are preserved. Therefore the game describes a deformation of
the standard permutohedron, and its core is a generalized permutohedron. Notice that
the core drawn in Figure (2.2) is the core drawn on the left of Figure (1.3), rotated.

Core of (N,w′) with

N = {1, 2, 3, 4}, and

w′(S) =


30, if S = {2, 3},
20, if S = {1, 3},
w(S), otherwise.

Figure 2.3: A general basic polyhedron.

In Figure (2.3), the game only describes a distortion of the standard permuto-
hedron, because the bold edge does not have the same direction as in the standard
permutohedron. Indeed, the worths of the coalitions corresponding to the gray facets
increased such that the facets are pushed too much inwards. We see that the coalition
function is no longer supermodular:

w′({2, 3}) + w′({1, 3}) = 30 + 20 = 50 > 45 = 36 + 9 = w′({1, 2, 3}) + w′({3}).

The core is therefore a general basic polyhedron and not a generalized permutohedron.
The Submodularity Theorem together with Remark 1.3.7 state that generalized

permutohedra are deformations of the standard permutohedron induced by convex
games. If the game is not convex, but only balanced, the generated polytope is a
general basic polyhedron. If the game is not even balanced, the polytope is no longer
nonempty. Then, basic polyhedra are a generalization of generalized permutohedra,
much more adequate to study cooperative games as we will see in the next subsection.

2.3 Various applications in cooperative game theory

In this section, we are looking at specific aspects of cooperative games, such as coali-
tions, or collections of coalitions, which carry important information about the game,
and at a transitive sub-relation of domination called outvoting. The properties satisfied
by these coalitions, or collections of coalitions, are called exactness, feasibility, vitality,
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Polytopes Games
Standard permutohedron v : S 7→ |S|(|S|+ 1)/2
Generalized permutohedron convex games
Nonempty basic polyhedron (totally) balanced games
Empty set not balanced games

Table 2.4: Typology of the basic polyhedron.

strict vital-exactness and extendability. They are equivalent to the existence of specific
preimputations, that, for each property, define a basic polyhedron.

Throughout the section let (N, v) be a balanced game. For a coalition S, denote by
(S, v|S) the subgame on S, in which only the subcoalitions of S are considered, and by
(N, vS) the game that may differ from (N, v) only inasmuch as vS(N \S) = v(N)−v(S).
This definition can be extended to a collection of coalitions Q such that, for all S ∈ Q,
we have vQ(N \ S) = v(N)− v(S) and vQ(T ) = v(T ) otherwise.

Exactness. A coalition S is exact (for (N, v)) if there exists a core element x ∈ C(v)
such that x(S) = v(S). Hence, a coalition S is exact if and only if AS intersects the
core. The following result permits us to build an algorithm that checks exactness.
Proposition 2.3.1. Let (N, v) be a balanced game. A coalition S is exact if and only
if (N, vS) is balanced.

Proof. By definition, S is exact if there exists a core element x ∈ C(v) such that
x(S) = v(S). Because the inequality x(S) ≥ v(S) is already involved in the definition
of the core, by adding the inequality x(S) ≤ v(S) we have defined the basic polyhedron
of preimputations that we are looking for, which we denote by P . By balancedness,
we have that v(S) + v(N \ S) ≤ v(N) and thus v(N \ S) ≤ v(N)− v(S) = vS(N \ S).
Therefore, the inequality x(N \ S) ≥ v(N \ S) is redundant in the definition of P , and
then the set function associated with P is vS. Theorem 2.2.3 finishes the proof, its
second condition being superfluous in this case because there is no strict inequality.

The proof of Proposition 2.3.1 resembles the methods used in the paper of Lohmann,
Borm and Herings [59], of Csóka, Herings and Kóczy [27] and of Studený and Kratochvíl
[96]. Indeed, the negative weight that is used in the definition of so-called min-semi-
balanced collections, and the exceptional coalition associated to it, corresponds to the
coalition of which we are cheking the exactness. Flipping the inequality x(S) ≥ v(S)
to x(S) ≤ v(S) leads to the same computations than taking a negative weight. Then,
using min-semi-balanced collections, or checking the balancedness of (N, vS) for each
S ∈ N is completely equivalent. However, the main idea in this thesis is to always
use the same set of minimal balanced collections, which are actually computed, to deal
with any situation. That is why we prefer to alter the game rather than the collections.

The exact coalitions represent the coalitions that are critical in the situation we
model. First, they form a core-describing collection of coalitions, i.e.,

C(v) = {x ∈ X(v) | x(S) ≥ v(S), for all S exact}.
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Moreover, they are the coalitions via which a preimputation can be dominated by a
core element. Indeed, if a coalition S is exact, then there exists a core element x ∈ C(v)
such that x(S) = v(S). Therefore, this element x is affordable for the coalition S and
is in the core. Algorithm 2 checks whether a coalition is exact for a given game.

Algorithm 2 Exactness checking subroutine

Require: A coalition S, a balanced coalition function v, the set B(N)
Ensure: The Boolean value: ‘S is exact’
1: procedure IsExact(S, v, B(N))
2: Define vS
3: for B ∈ B(N) do
4: if ∑T∈B λ

B
Tv

S(T ) > v(N) then
5: return False
6: return True

Furthermore, Gillies found a necessary condition for the core to be a stable set,
based on exactness.
Proposition 2.3.2 (Gillies [37]).
A balanced game has a stable core only if each singleton is exact.

This condition is also a sufficient conditions on different classes of games, for ex-
ample: matching games, minimum coloring game [91].

As the set of exact coalitions can be computed (see Proposition 2.3.1 and Algo-
rithm 2), the necessary condition of Gillies can be easily checked. Another interesting
consequence of this result is the expansion of the space in which the core is externally
stable (see discussion following Definition 1.1.4).

Feasibility. Let (N, v) be a balanced game and F ⊆ N be a core-describing collection
of coalitions, i.e.,

C(v) = {x ∈ X(v) | x(S) ≥ v(S),∀S ∈ F}.
Let us consider a subcollection Q ⊆ F , and consider the following subset of X(v):

XQ = XFQ(v) := {x ∈ X(v) | x(S) < v(S) ⇐⇒ S ∈ Q}.

We call XFQ(v) the region associated with Q, w.r.t. F and v.
Definition 2.3.3. The collection Q is F -feasible if the region XFQ(v) is nonempty.

The regions form a partition of X(v), with XF∅ (v) = C(v). If no confusion occurs,
the collection is simply said to be feasible and the region is simply denoted by XQ.
Next, we provide some properties of the feasible collections.
Definition 2.3.4. A collection of coalitions Q ⊆ N is said to be unbalanced if it does
not contain a balanced collection.
Lemma 2.3.5 (Grabisch and Sudhölter [40]).
Let (N, v) be a balanced game and let Q ⊆ F . The following holds.
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1. If Q is feasible, then it is an unbalanced collection.
2. For S, S ′ ∈ Q such that S ∪ S ′ = N , no x ∈ XQ is dominated via S or S ′.

We postpone to Chapter 3 the discussions about unbalanced collections. A fea-
sible collection Q that only contains coalitions satisfying the second condition above
is called a blocking feasible collection. A characterization that can be translated into
an algorithm is needed to compute the feasible collections. Recall that we denote
Qc = {N \ S | S ∈ Q} and FQ = (F \ Q) ∪Qc.
Lemma 2.3.6. A collection Q ⊆ F is feasible (w.r.t. F) if and only if (FQ, vQ) is
balanced and Qc ∩ E(vQ) = ∅.

Proof. The proof is straightforward because the region XQ is a basic polyhedron. Let
S ∈ Q. For any element x ∈ XQ, if any, we have that x(S) < v(S). Multiplying both
sides by −1 and adding v(N) leads to the strict inequality x(N \ S) > v(N)− v(S) =
vQ(N \ S). Then, for all elements x ∈ XQ, if any, and for all S ∈ FQ, we have
x(S) ≥ vQ(S), with strict inequalities for coalitions in Qc. We apply Theorem 2.2.3 to
conclude the proof.

Algorithm 3 Feasibility checking algorithm

Require: A balanced coalition function v, a set system F , a set Q ⊆ F , the set B(N)
Ensure: The Boolean value: ‘Q is feasible’
1: procedure IsFeasible(Q, F , v, B(N))
2: for B ∈ B(N) such that B ⊆ (F \ Q) ∪Qc do do
3: if B ∩ Qc 6= ∅ and ∑S∈B λ

B
Sv
Q(S) ≥ v(N) then

4: return False
5: else if B ∩ Qc = ∅ and ∑S∈B λ

B
Sv
Q(S) > v(N) then

6: return False
7: return True

Extendability. A coalition S is called extendable (w.r.t. (N, v)) if, for any x ∈ C(v|S),
there exists y ∈ C(v) such that x = yS, where yS is the restriction of y to coordinates
in S. Extendability was defined by Kikuta and Shapley [51] to study the stability of
the core. Indeed, they prove that, if a game is extendable, i.e., if all coalitions are
extendable, then its core is a stable set. It comes from the fact that any preimputation
that is dominated via an extendable coalition, is dominated by a core element.

To check whether a coalition is extendable, by convexity of the core, it is sufficient
to check if each vertex of C(v|S) can be extended to a core element. Let z ∈ C(v|S).
Recall that IS = {{i} | i ∈ S} and denote by vS,z the set function defined by

vS,z(T ) =


zi if T ∈ IS, T = {i},
max{v(N)− z(N \ T ), v(T )} if T ∈ {{N \ {i}} | i ∈ S},
v(T ) otherwise.

Proposition 2.3.7. Let (N, v) be a balanced game, let S be a coalition and let z ∈
C(v|S). There exists x ∈ C(v) such that xS = z if and only if (N, vS,z) is balanced.
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Proof. The question is whether the polytope, denoted by P , and defined by

P = {x ∈ C(v) | for all i ∈ S, xi = zi},

is nonempty. For all i ∈ S, the equality xi = zi can be rewritten as a set of two
inequalities, xi ≥ zi and xi ≤ zi. In the last inequality, we can multiply both sides by
−1, and add v(N) to obtain x(N \ {i}) ≥ v(N) − zi. Moreover, because z ∈ C(v|S),
we have that zi ≥ v({i}), implying that the inequalities xi ≥ v({i}) are redundant in
the definition of P . Therefore, the polyhedron P is the set of elements satisfying

xi ≥ zi, for all i ∈ S,
x(N \ {i}) ≥ v(N)− zi, for all i ∈ S,

x(T ) ≥ v(T ), for all T ∈ N \ IS.

By Theorem 2.2.3, P is nonempty if and only if (N, vS,z) is balanced. The second
condition of the theorem is superfluous since no strict inequality is involved.

Proposition 2.3.7 gives us a necessary and sufficient condition for the existence of
an extension of a vertex of C(v|S) to an element of C(v), based upon a balancedness
check. If there exists an extension for each extreme point of C(v|S), by convexity of
the core, any element of C(v|S) can be extended. Algorithm 4 checks if each vertex of
C(v|S) can be extended to an element of C(v).

Algorithm 4 Extendability checking algorithm

Require: A coalition S, a balanced coalition function v
Ensure: The Boolean value: ‘S is extendable’
1: procedure IsExtendable(S, v, B(N))
2: for ξ ∈ ext(C(v|S)) do
3: define vS,ξ
4: for B ∈ B(N) do
5: if ∑T∈B λ

B
TvS,ξ(T ) > v(N) then

6: return False
7: return True

Kikuta and Shapley [51] have provided a sufficient condition for a game to have a
stable core via extendability.
Theorem 2.3.8 (Kikuta and Shapley [51]).
An extendable game has a nonempty and stable core.

The extendability of a game can be checked by using Algorithm 4, but it is time-
consuming. However, this property can be considerably weakened as follows. Say that
a game (N, v) is F-weakly extendable if each F -feasible collection of coalitions contains
a minimal (w.r.t. inclusion) coalition that is extendable.
Proposition 2.3.9. A F-weakly extendable game has a nonempty and stable core.
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Proof. Let Q be a F -feasible collection and S be extendable and minimal w.r.t. inclu-
sion in Q. Take y ∈ XQ. Then y(S) < v(S) and, for all T ∈ F ∩

(
2S \ {S}

)
, we have

y(T ) ≥ v(T ). Define zS ∈ RS by

zS = yS + v(S)− y(S)
|S|

1S.

Notice that zS is the projection of yS in RS onto X(v|S). Clearly, zS ∈ C(v|S) and for
all i ∈ S we have (zS)i > yi. As S is extendable, there exists x ∈ C(v) such that
xS = zS. Then x domS y.

Vitality. A coalition S is vital (for (N, v)) if there exists x ∈ C(v|S) such that
x(T ) > v(T ), for all T ∈ 2S \ {∅, S}. Originally, Gillies [37] defined a vital coalition
as a minimal coalition via which domination between two given preimputations can be
achieved, and showed that domination between two given preimputations can always
be achieved via a vital coalition. Moreover, setting the worth v(S) of all non-vital
coalitions to 0 generates a new game that is d-equivalent to the original one. He also
provided a characterization of vital coalitions in terms of minimal balanced collections.
Lemma 2.3.10 (Gillies [37]).
A coalition S is vital if and only if, for any minimal balanced collection B 6= {S} on S
together with its system of balancing weights λB, we have∑

T∈B
λBTv(T ) < v(S).

Equivalently, a coalition S is vital if and only if the core C(v|S) is full-dimensional in
RS, i.e., if and only if (S, v) is balanced and E(v|S) = {S}, a formulation that reminds
us of Theorem 2.2.3.
Remark 2.3.11. The essential coalitions [20, 46] play a similar role to the one of
vital coalitions, in the sense that nonessential coalitions are redundant when studying
domination. We can use Lemma 2.3.10 to find the essential coalitions as well, by
replacing the minimal balanced collections by the partitions. Moreover, the essential
coalitions are core-defining, and characterize the nucleolus [46].

Strict vital-exactness. A coalition S is strictly vital-exact (for (N, v)) if there exists
a core element x ∈ C(v) such that x(S) = v(S) and, for all T  S, we have x(T ) >
v(T ). Strict vital-exactness, defined by Grabisch and Sudhölter [40], implies vitality
and exactness. In particular, an exact singleton is strictly vital-exact. Denote the
collection of strictly vital-exact coalitions by VE(v).

From the definition, we see that a coalition S is strictly vital-exact if and only if a
certain basic polyhedron is nonempty.
Proposition 2.3.12. A coalition S is strictly vital-exact if and only if it is exact and

E(vS) ∩
(
2S \ {S}

)
= ∅.
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Proof. The coalition S is strictly vital-exact if and only if the following polyhedron

P = {x ∈ C(v) | x(S) = v(S) and, for all T  S, x(T ) > v(T )}.

is nonempty. As P is a basic polyhedron, we can apply Theorem 2.2.3 to have that
P is nonempty if and only if (N, vS) is balanced and E(vS) ∩

(
2S \ {S}

)
= ∅. By

Proposition 2.3.1, we reformulate: P is nonempty if and only if S is exact and

E(vS) ∩
(
2S \ {S}

)
= ∅.

Algorithm 5 checks whether a coalition is strictly vital-exact for a given game.

Algorithm 5 Strict vital-exactness checking algorithm

Require: A coalition S, a balanced coalition function v, the set B(N)
Ensure: The Boolean value: ‘S is strictly vital-exact’
1: procedure IsStrictlyVitalExact(S, v, B(N))
2: for B ∈ B(N) do
3: if ∑T∈B λ

B
Tv

S(T ) > v(N) then
4: return False
5: else if ∑T∈B λ

B
Tv

S(T ) = v(N) then
6: for T ∈ B do
7: if T ∩ Sc = ∅ then
8: return False
9: return True

Example 2.3.13 (Biswas, Parthasarathy, Potters and Voorneveld [16]).
Let N = {a, b, c, d, e} and v(S) = min{x(S), y(S)} with

x = (2, 1, 0, 0, 0) y = (0, 0, 1, 1, 1).

The game is exact, and the set of strictly vital-exact coalitions is

VE(v) = {{i} | i ∈ N} ∪ {{b, c}, {b, d}, {b, e}, {a, c, d}, {a, c, e}, {a, d, e}}.

Let S = {a, c}. It is exact because the game is exact. It is also vital, becauce v(S) =
1 > 0 = v({a}) + v({c}) and {{a}, {c}} is the only minimal balanced collection on
{a, c} which differs from {{a, c}}. But S is not strictly vital-exact. ♦

The following result presents a necessary condition for the core to be a stable
set based on strictly vital-exact coalitions, as well as an opportunity to reduce the
algorithmic complexity of the study of core stability.
Proposition 2.3.14. Let (N, v) be a balanced game. The core is a stable set only if
VE(v) is core-describing, i.e.,

C(v) = {x ∈ X(v) | x(S) ≥ v(S), for all S ∈ VE(v)}.
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Proof. Assume that the core is stable, and suppose by contradiction that there exists
y ∈ X(v) \ C(v) such that, for all S ∈ VE(v), we have y(S) ≥ v(S). Because the core
is stable, there exists x ∈ C(v) such that x dom y. Choose a minimal (w.r.t. inclusion)
coalition S such that x domS y. Then, v(S) = x(S) > y(S), and for all T ∈ 2S \{∅, S},
we have x(T ) > v(T ). Therefore, S is strictly vital-exact, which is a contradiction.

This important result shows that checking core stability should begin by finding all
strictly vital-exact coalitions (using Algorithm 5), and check whether these coalitions
determine the core. If they do, one should work on F = VE(v) instead of 2N , as this
considerably reduces the complexity.

Outvoting. We now introduce the definition of outvoting, a transitive sub-relation of
domination defined by Grabisch and Sudhölter [40], that was inspired by a definition
given by Kulakovskaja [54]. In view of Proposition 2.3.14, let (N, v) be a balanced
game for which the collection VE(v) of strictly vital-exact coalitions is core-describing.
Therefore, we work on the game (VE(v), v).
Definition 2.3.15. A preimputation y outvotes another preimputation x via S ∈
VE(v), written y �S x, if y domS x and, for all T ∈ VE(v) \ 2S, we have y(T ) ≥ v(T ).
Also, y outvotes x (y � x) if there exists a coalition S ∈ VE(v) such that y �S x.

Denote by M(v) = {x ∈ X(v) | y 6� x, ∀y ∈ X(v)} the set of preimputations that
are maximal w.r.t. outvoting.
Proposition 2.3.16 (Kulakovskaja [54], Grabisch and Sudhölter [40]).
Let (N, v) be a balanced game. Then C(v) = M(v) if and only if C(v) is a stable set.

This new characterization of the stability of the core using the two binary relations
is very useful. We already know that the core is internally stable, and we have that
M(v) is externally stable [40]. Then, the core C(v) is a stable set if and only if all
preimputations x ∈ X(v) \ C(v) are outvoted. By definition of outvoting, the set
of preimputations outvoting x via a given coalition S is a basic polyhedron, whose
nonemptiness can be determined using Theorem 2.2.3. The following result has been
already proved by Grabisch and Sudhölter [40] in a different way.

Let x be a preimputation and let S ∈ VE(v). Let vSx be a set function defined on

FS :=
(
VE(v) \ 2S

)
∪ {N \ S} ∪ IS

by vSx (T ) =
{
xi if T ∈ IS, T = {i},
vS(T ) if T ∈ FS \ IS,

when IS denotes the collection IS = {{i} | i ∈ S}.
Proposition 2.3.17. Let x be a preimputation, and let S ∈ Fv. Then x is outvoted by
some preimputation via S if and only if (FS, vSx ) is balanced and IS ∩ E(FS, vSx ) = ∅.

Proof. Let OS(x) denote the polyhedron of preimputations which outvote x via S. By
flipping the inequality z(S) ≤ v(S) into z(N \ S) ≥ v(N) − v(S) as we usually do, a
preimputation z ∈ OS(x) satisfies{

zi > xi, for all i ∈ S,
z(T ) ≥ vS(T ), for all T ∈ Fv \ 2S ∪ {N \ S}.
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We see that OS(x) is a basic polyhedron. By Theorem 2.2.3, OS(x) is nonempty if and
only if (FS, vSx ) is balanced and IS ∩ E(FS, vSx ) = ∅.

To summarize, in this chapter, we have presented an algorithm to compute the set
of minimal balanced collections on any finite set of players, and on any set system.
The Python implementation of the algorithm and the minimal balanced collections
up to 7 players can be provided upon request. Next, a new family of polyhedra is
introduced, the basic polyhedra, as well as a characterization of their nonemptiness.
These polyhedra are ubiquitous in mathematical economics, especially in cooperative
game theory, as our many examples have revealed.
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Chapter 3

The combinatorial structure of a game

In this chapter, we discuss some interactions between combinatorics and cooperative
game theory which have been relatively unexplored. First, we study the similarities
between the balanced collections and some hypergraphs, regular or uniform. Secondly,
we investigate how a hyperplane arrangement, called the resonance arrangement, can
be a powerful tool in the study of cooperative games.

A hypergraph is a generalization of a graph, where edges can contain more than two
nodes. In the first connection we make between balanced collections and hypergraphs,
we will interpret the edges as coalitions, and then show that a balanced collection is
a regular hypergraph, i.e., a hypergraph for which each node is contained in the same
number of edges. After, we reverse the incidence between edges and nodes, to study
hypergraphs the edges of which have all the same cardinality. These hypergraphs are
said to be uniform and are in a duality relation with the regular hypergraphs. We
therefore explain how the uniform hypergraphs, which are rather simple to study and
generate, can help us to generate (minimal) balanced collections. To study them, we
use the theory of combinatorial species developed by Joyal [47], which is an abstract
and systematic method for deriving generating functions of discrete structures. We
construct the species of k-uniform hypergraphs of size p, as an intermediary step to
construct the species of (minimal) balanced collections.

In the second part, we study how hyperplane arrangements can be useful in the
study of cooperative games. A hyperplane arrangement is a set of hyperplanes in a
specific vector space. The one we are interested in is the resonance arrangement of the
vector space of side payments, where each hyperplane is the set of side payments leav-
ing the payment of a specific coalition fixed. We notice that the connected components
of the complement of the union of the hyperplanes, called the chambers of the arrange-
ment, are in bijection with the maximal unbalanced collections, where a collection is
said to be unbalanced if it does not contain a balanced collection. Later, we show that
a coalition function can be seen as a distortion of the resonance arrangement. The
combinatorial properties of this distorted arrangement are closely related to the set
of feasible regions and the facial structure of the core, and a few results about these
connections are presented.

3.1 The combinatorics of balanced collections

Balanced collections are known in other scientific areas under different names, especially
in combinatorics and mathematical physics. We start with combinatorics.
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3.1.1 Hypergraph theory

Most of the notation and the definitions of this subsection are due to Berge [11]. A
(undirected) hypergraph H is a pair H = (N,E) where N is the set of elements called
nodes and E is a spanning collection of nonempty subsets of N , called hyperedges or
simply edges, i.e., the union of all edges coincides with the set of nodes.

We call |N | the order of H and |E| the size of H. The degree of a node x ∈ N ,
denoted by δ(x), is the number of edges that contain x. If each node has the same
degree d, the hypergraph is said to be d-regular. If each edge has cardinality k, the
hypergraph is said to be k-uniform. For a hypergraphH, we denote by AH its incidence
matrix, defined by

AHij =
{

1, if the i-th node lies in the j-th edge,
0, otherwise.

The hypergraph H′ which has an incidence matrix AH′ being the transpose matrix of
AH is the dual hypergraph of H. Counting the non-zero entries of each row and column
shows that the dual hypergraph of a k-uniform hypergraph is k-regular, and the dual
hypergraph of a d-regular hypergraph is d-uniform.

In the sequel, we denote with Greek letters the nodes of hypergraphs, and by Roman
letters the players in balanced collections. Because a hypergraph can have more than
one occurence of the same edges, the collection of edges is a multiset, and not a set in
the usual sense. However, we will denote multisets like sets, meaning with braces, as
we can see in the following example.
Example 3.1.1. Let us consider two dual hypergraphs

H =
(
{α, β, γ},

{
{β}, {α, γ}

})
H′ =

(
{α, β},

{
{β}, {α}, {β}

})
.

The adjacency matrices are

AH =

0 1
1 0
0 1

 AH
′ =

[
0 1 0
1 0 1

]

We see that H is simple, i.e., no two edges are identical, and regular, while H′ is
uniform and not simple. Also, they are not defined on the same node set. ♦

Shapley [82] defined the depth of a minimal balanced collection B, denoted by
depth(B), as the least common multiple of the denominators of the elements of the
system of balancing weights associated with B. We extend here his definition to pairs
(B, λ) of balanced collections together with one compatible system of balancing weights,
as the smallest least common multiple of the denominators of the elements of λ.
Example 3.1.2. Consider the following balanced collection on N = {a, b, c, d, e, f, g}.

{a, b} {a, c} {a, d} {b, c, d} {e, f} {e, g} {f, g}
1⁄3 1⁄3 1⁄3 2⁄3 1⁄2 1⁄2 1⁄2
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The denominators of the weights are 2 and 3, hence its depth is 6. Consider now the
balanced collection on N = {a, b, c} defined by B = {abc, ab, c}. Two possible systems
of balancing weights are

λ =
(1

2 ,
1
2 ,

1
2

)
and λ′ =

(1
3 ,

2
3 ,

2
3

)
.

The depth of (B, λ) is 2, and the depth of (B, λ′) is 3. ♦

Proposition 3.1.3. The set of d-regular hypergraphs of order |N | = n is in bijection
with the set of pairs (B, λ) with B a balanced collection of depth d with n players and
λ a system of balancing weights of B.

Proof. Let H = (N,E) be a d-regular hypergraph of order n. Denote by B the set of
edges of E, with only one occurrence of each element. Define a function λ that assigns
to each element S of B the number of occurrences of S in E divided by d. Then, B
forms a balanced collection with the system of balanced weights defined by λ.
Now, let B be a balanced collection with a system of balancing weights {λS}S∈B of
depth d. Denote by E the multiset constructed by including dλS occurrences of each
coalitions S in B. By definition of the depth, dλS is always an integer. Set H = (N,E).
For all x ∈ N , the sum of the occurrences of the edges containing x is∑

S∈E
S3x

dλS = d
∑
S∈B
S3x

λS = d.

Therefore, H is a d-regular hypergraph.

Let H be a uniform hypergraph of order n. For its associated balanced collection,
an edge represents the collection of coalitions a given player belongs to. Then, because
each player belongs to the same number of coalitions, counted with multiplicities, the
collection is balanced.

balanced
collection

hypergraph
regular uniform

depth (d) d-regularity k-uniformity
players nodes edges
d ·∑S∈B λS size order

Table 3.1: Equivalences between hypergraphs and balanced collec-
tions.

Example 3.1.4. Let H be the 2-uniform hypergraph on N = {α, β, γ, δ, ε} with the
collection of edges: {{α, β}, {β, γ}, {α, γ}, {δ, ε}}. Because H is uniform, we know that
its dual is a balanced collection, which we construct now. The size of H is 4 and its
order is 5. Then the balanced collection involves 4 players, and the sum of the integer
multiplicities of the coalitions is 5. Because H is 2-uniform, the depth of the balanced
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collection is 2. To know the coalitions and their integer weights, i.e., their weights
multiplied by the depth of the collection, we must know the dual of H, which is

H′ =
(
{α′, β′, γ′, δ′},

{
{α′, γ′}, {α′, β′}, {β′, γ′}, {δ′}, {δ′}

})
.

Therefore, the pair (B, λ) associated with H is

B =
{
{a, c}, {a, b}, {b, c}, {d}

}
, λ =

(1
2 ,

1
2 ,

1
2 ,

2
2 = 1

)
.

♦

Writing a program generating uniform hypergraphs of a given size is extremely
easy: it suffices to take arbitrary sets of same cardinality, and relabel their elements
to fit in the notation N = {1, . . . , n}. This may be a lead for a more efficient way
to generate minimal balanced collections. The main drawback of this approach is the
difficulty to anticipate the minimality of the collection, which makes the apparent ease
of the method vanish.
Definition 3.1.5. Let H = (N,E) be a hypergraph, let A ⊆ N and X ⊆ E. The
hypergraph denoted by HA and defined by

HA =
(
A,
{
S ∩ A

∣∣∣∣ S ∈ E and S ∩ A 6= ∅
})

.

is the subhypergraph of H induced by A. The hypergraph HX = (N,X) is the partial
hypergraph of H generated by X.

Notice that the subhypergraph of a hypergraph corresponds to a partial hypergraph
of its dual. Let H = (N,E) be a uniform hypergraph. If there exists A  N such
that HA is uniform, then HN\A is also a uniform hypergraph. We say that a uniform
hypergraph isminimal if no proper subhypergraph is uniform, and we say that a regular
hypergraph is minimal if no proper partial hypergraph is regular.
Theorem 3.1.6. The balanced collection associated with a minimal uniform hypergraph
is minimal.

Proof. Let H = (N,E) be a minimal k-uniform hypergraph of size n. First, let us
prove that H′, the dual hypergraph of H, is minimal k-regular of order n. Consider
AH the incidence matrix of H. We have that the sum of the entries of each of the n
columns is k. By minimality, it is impossible to remove a row of AH and still have all
the columns having the same sum of their entries. Then, it is impossible to remove a
column to its transpose matrix such that the sum of the entries of its n rows remains
constant, so its dual is minimal k-regular of order n. We have already shown that from
each regular hypergraph H′ we have a balanced collection B together with a system
of balancing weights, and the minimality of H′ as a regular hypergraph implies the
minimality of B as a balanced collection.

Example 3.1.7. Consider the hypergraph H defined on N = {α, β, γ, δ, ε, ζ, η, ι} with
the collection of edges:

E = {{α, β, γ, η, ι}, {α, δ, ε, ζ, ι}, {β, δ, ε, ζ, η}, {γ, δ, ε, η, ι}}.
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It is a 5-uniform hypergraph of size 4 and order 8. Its associated balanced collection
is defined on {a, b, c, d}, has 8 coalitions counted with multiplicities, and is of depth 5:

{a, b} {a, c} {a, d} {b, c, d} {b, c} {a, c, d} {a, b, d}
1⁄5 1⁄5 1⁄5 2⁄5 1⁄5 1⁄5 1⁄5

Let A = {α, β, γ, δ, ε}. Then, the subhypergraph HA is still uniform. We have

HA =
(
A,
{
{α, β, γ}, {α, δ, ε}, {β, δ, ε}, {γ, δ, ε}

})
,

and HN\A =
(
N \ A,

{
{η, ι}, {ζ, ι}, {ζ, η}, {η, ι}

})
.

None of these two hypergraphs has a subhypergraph which is uniform, therefore they
are minimal uniform hypergraphs. Their associated minimal balanced collections are{

{a, b}, {a, c}, {a, d}, {b, c, d}
}

and
{
{b, c}, {a, c, d}, {a, b, d}

}
.

Notice that the union of these two minimal balanced collections is the balanced collec-
tion B associated with the initial hypergraph H. ♦

The systems of balancing weights of a balanced collection can also be seen as a
matching. As in graph theory, a matching is a collection of disjoint edges spanning N .
There also exists a fractional analog to a matching.
Definition 3.1.8. A fractional matching in a hypergraph H = (N,E) is a function
µ : E → [0, 1] such that, for every node x ∈ N , we have∑

S∈E
S3x

µ(S) ≤ 1.

A fractional matching is said to be perfect if, for every node x ∈ N , we have∑
S∈E
S3x

µ(S) = 1.

It is easy to see that a simple hypergraph on N admitting a perfect fractional
matching µ induces a balanced collection on N , which is {S ∈ E | µ(S) > 0}. The
converse holds as well.

3.1.2 Enumeration of uniform hypergraphs

Let us now study the uniform hypergraphs. To do so, we use the species of structures,
and the corresponding operations on formal power series developed by Joyal [47]. Most
of the following definitions come from Bergeron, Bergeron, Labelle, and Leroux [12].

Informally, a species of structures is a rule, F, associating with each finite set U ,
a finite set F[U ] which is “independent of the nature” of the elements of U . The
members of F[U ], called F-structures, are interpreted as combinatorial structures on
the set U given by the rule F. The fact that the rule is independent of the nature
of the elements of U is expressed by invariance under relabeling. More precisely, to
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any bijection σ : U → V , the rule F associates a bijection F[σ] : F[U ] → F[V ], which
transforms each F-structures on U into an (isomorphic) F-structure on V .
Example 3.1.9. Let Gr be the rule associating to each finite set U the set of graphs
with U as a set of nodes. For any set V such that there exists a bijection σ : U → V
between them, the structures obtained from the graphs on U by relabeling the nodes
with σ is a graph on V . The important combinatorial information carried by a graph is
the number of nodes and the set of edges, not the nodes themselves. The same remark
applies to hypergraphs, trees, balanced collections, etc. ♦

Let us now give the formal definition of a combinatorial species of structures.
Definition 3.1.10. A species (of structures) is a rule F which

• produces, for each finite set U , a finite set F[U ],
• produces, for each bijection σ : U → V , a function F[σ] : F[U ]→ F[V ].

The functions F[σ] should further satisfy the following functorial properties:

• for all bijections σ : U → V and τ : V → W , we have F[τ ◦ σ] = F[τ ] ◦ F[σ],
• for the identity map IdU : U → U , we have F[IdU ] = IdF[U ].

An element s ∈ F[U ] is called an F-structure on U . The function F[σ] is called the
transport of F-structures along σ.

Define the rule Sh which assigns to a set U the set of minimal balanced collections
on U , and which assigns to a bijection σ : U → V , a function Sh[σ] : Sh[U ]→ Sh[V ],
acting on a minimal balanced collection B ∈ Sh[U ] as follows:

Sh[σ](B) =
{
{σ(u) | u ∈ S} | S ∈ B

}
.

Theorem 3.1.11. The rule Sh defines a species of structures.

Proof. First, for any finite set U , the number of Sh-structures is finite because it is
bounded by 22n . Let σ be a bijection σ : U → V , and let B ∈ Sh[U ] be a minimal
balanced collection on U . Let u be an element of U , and denote by Bu the collection
Bu = {S ∈ B | u ∈ S}. Then, we have ∑S∈Bu λS = 1, which implies ∑S∈Sh[σ](Bv) λS = 1
with v = σ(u). Then Sh[σ](B) ∈ Sh[V ]. Now, we prove the functoriality of the
functions Sh[σ]. Let σ : U → V and τ : V → W , and let B ∈ Sh[U ].

Sh[σ ◦ τ ](B) = {{τ(σ(u)) | u ∈ S} | S ∈ B},
= {{τ(v) | v = σ(u), u ∈ S} | S ∈ B},
= {{τ(v) | v ∈ T} | T ∈ Sh[σ](B)},
= (Sh[τ ] ◦ Sh[σ]) (B).

Finally, let IdU be the identity map on U . Then, for all B ∈ Sh[U ],

Sh[IdU ](B) = {{IdU(u) | u ∈ S} | S ∈ B} = B,

and Sh[IdU ] = IdSh[U ].
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To each species of structures F is associated a formal power series related to the
enumeration of F-structures. They are enumerated by the generating series of F,
denoted F(x). For all sets U of cardinality n, the number of F-structures on U only
depends on n. This property follows from the functoriality of F because all the F[σ] are
bijections. Hence, the cardinalities |F[U ]| are completely characterized by the sequence
of numbers {fn = |F[{1, . . . , n}]| | n ∈ N}.
Definition 3.1.12. The generating series of a species of structures F is the formal
power series

F(x) =
∑
n≥0

fn
xn

n! .

With formal series we are not concerned by the convergence rules, as they only
are a handy notation to denote a sequence of integers. For instance, the sequence
(1, 2, 4, 8, . . .) is denoted by e2x.
Example 3.1.13. Let ς [p] be the species of p-multisets, associating to each finite set
U , the set of multisets of cardinality p on U . By definition of the multisets coefficients,
we have

ς [p](x) =
∑
n≥0

np

p!
xn

n! , with np =
p−1∏
i=0

(n+ i) = n(n+ 1) . . . (n+ p− 1).

♦

With the correspondence between species and formal power series, it is possible to
perform combinatorial constructions on species, and to report them into power series,
and vice versa. Let ℘[2] denote the species of 2-subsets, associating to each finite
set U the set of subsets of 2 elements of U , and let ℘ denote the species of subsets,
associating to each finite set U the collection of subsets of U . Then, we can compose
the two species in the following way: we first apply ℘[2] to U , to obtain the set of all
subsets of cardinality 2 of U , and in a second step we apply ℘, to take a subset of
the set of 2-subsets of U . This operation, called the functorial composition of species
of structures, permits the construction of the species of simple graphs Gr from the
species of 2-subsets and the species of subsets.
Example 3.1.14. The generating series of the species ℘[2] of 2-subsets and the species
℘ of subsets are, respectively,

℘[2](x) =
∑
n≥0

(
n

2

)
xn

n! and ℘(x) =
∑
n≥0

2nx
n

n! = e2x,

we obtain the generating series of simple graph by composing the two previous ones
according to the combinatorial construction we performed:

Gr(x) =
∑
n≥0

2(n2)x
n

n! .

♦

The calculus of formal power series counts several ‘natural’ combinatorial opera-
tions. We present formally in the next result the operations we need in our construction.
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Definition 3.1.15 ([12]). Let F and G be two species of structures.

• The species F + G, called the sum of F and G, is defined as follows: an (F + G)-
structure on U is an F -structure on U , or (exclusive) a G-structure on U . In
other words, for any finite set U , we have

(F + G)[U ] = F[U ] + G[U ] (disjoint union).

The transport along a bijection σ : U → V is carried out by setting, for any
(F + G)-structure s ∈ (F + G)[U ], by F[σ](s) if s is an F-structure, and by
G[σ](s) otherwise.

• The species F ·G, called the product of F and G, is defined as follows: an (F ·G)-
structure is an ordered pair s = (f, g), where

– f is an F-structure on a subset U1 ⊆ U ,
– g is a G-structure on a subset U2 ⊆ U ,
– {U1, U2} is a partition of U .

The transport along a bijection σ : U → V is carried out by setting, for each
(F ·G)-structure s = (f, g) on U ,

(F ·G)[σ](s) =
(
F[σ|U1 ](f),G[σ|U2 ](g)

)
.

• The species F �G, called the functorial composite of F and G, is defined as
follows: an (F �G)-structure on U is an F-structure on the set G[U ] of all the
G-structures on U , i.e., for any finite set U , (F �G)[U ] = F[G[U ]]. The transport
along a bijection σ : U → V is carried out by setting (F �G)[σ] = F[G[σ]].

The generating series of the newly constructed species of structures are given, from
the generating series of F and G, by the following result.
Proposition 3.1.16 ([12]). Let F and G be two species of structures.

• The generating series of the species F + G satisfies the equality

(F + G)(x) = F(x) + G(x) =
∑
n≥0

(fn + gn) x
n

n! .

• The generating series of the species F ·G satisfies the equality

(F ·G)(x) = F(x)G(x) =
∑
n≥0

(
n∑
k=0

(
n

k

)
fkgn−k

)
xn

n! .

• The generating series of the species F �G satisfies the equality

(F �G)(x) = F(x) �G(x) :=
∑
n≥0

fgn
xn

n! .
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Now, we need to define the species to which we want to apply the operations
described above. Let E be the species of sets defined by E[U ] = U . For each finite set
U , there is a unique E-structure, namely the set U itself. Let Ek be the species of sets
of cardinality k, i.e., Ek[U ] = U if |U | = k, and Ek[U ] = ∅ otherwise. We define the
species of nonempty sets E+ by E+ = ∑

k≥1 Ek. Their generating series are

E(x) =
∑
n≥0

xn

n! = ex, Ek(x) = xk

k! , and E+(x) =
∑
n≥1

xn

n! = ex − 1.

From these, we construct the species of subsets ℘ which satisfies the combinatorial
equation ℘ := E · E. In a similar manner, we construct the species of k-subsets by
℘[k] := Ek · E. Their generating series are therefore ℘(x) = e2x = ∑

n≥0 2n xn
n! and

℘[k](x) = xk

k!
∑
n≥0

xn

n! =
∑
n≥0

xn+k

k!n! =
∑
n≥k

xn

k!(n− k)! =
∑
n≥0

(
n

k

)
xn

n! ,

giving the well-known combinatorial interpretation of binomial coefficients.
Proposition 3.1.17. The species of k-uniform hypergraphs of size p, which we denote
by Hypk,p, satisfies the following combinatorial equation.

E ·Hypk,p = ς [p]
�℘[k].

Proof. The right-hand side of the equation defines the species of p-multisets of k-
subsets. On the left-hand side, we have the product between the species of sets E
and the species of k-uniform hypergraphs of size p. The reason from the presence of
E in the equation is because a hypergraph must be spanning, i.e., every node must
be included in an edge. The construction ς [p] �℘[k] does not ensure that, so for every
(ς [p] �℘[k])-structure, we can partition the set of nodes into nodes which are included
in one k-subset, and the others. Equivalently, for any (E ·Hypp,k)-structure, there is a
partition {U1, U2}, on which the structure is a Hypp,k-structure on U2, and just a set
of nodes on U1.

To solve this equation, and be able to compute the generating series, we need
a species “E−1”. It is an example of virtual species, a solution to a combinatorial
equation which does not necessarily correspond to an actual species. Its purpose is
to solve combinatorial equations like the one of Proposition 3.1.17, or more simply,
F = E ·G, when we want to find G knowing F. In this case, a G-structure is a spanning
F-structure. In the literature, the conversion from F to G, or G to F, is called a
binomial transform, or an Euler transform, and is handled using ‘E−1’ in combinatorial
equations. By decomposing E = E0 + E+, we have

E−1 = (E0 + E+)−1 =
∑
n≥0

(−1)n (E+)n ,

and therefore,

E−1(x) =
∑
n≥0

(−1)n(E+)n(x) =
∑
n≥0

(−1)n(ex − 1)n =
∑
n≥0

(1− ex)n = e−x.
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Recall that np = n(n+ 1) . . . (n+ p− 1).
Theorem 3.1.18. The generating series of the species Hypk,p is

Hypk,p(x) =
∑
n≥0

 n∑
i=0

(−1)n−i
(
n

i

)( i
k

)p
p!

 xn

n! .

Proof. The generating series of the species of k-uniform hypergraphs of size p is

Hypk,p(x) = E−1(x) ·
(
ς [p](x) �℘[k](x)

)
.

Let us first compute ς [p](x) �℘[k](x).

ς [p](x) �℘[k](x) =
∑
n≥0

np

p!
xn

n!

 �

∑
n≥0

(
n

k

)
xn

n!

 =
∑
n≥0

(
n
k

)p
p!

xn

n! .

Then, we have
Hypk,p(x) = E−1(x) ·

(
ς [p]

�℘[k]
)

=
∑
n≥0

(−1)nx
n

n!

 ·
∑
n≥0

(
n
k

)p
p!

xn

n!


=
∑
n≥0

 n∑
i=0

(−1)n−i
(
n

i

)( i
k

)p
p!

 xn

n! .

Finding a way to express ‘minimality’ into combinatorial equations may lead to a
new way to generate and count the minimal balanced collections.
Example 3.1.19. Let us count the spanning 2-uniform hypergraphs of size 3, with no
more than three nodes. Then, because the hypergraphs is 2-uniform, n only goes from
2 to 3. Then the number we are looking for is

3∑
n=2

 n∑
i=2

(−1)n−i
(
n

i

)(i
2

)p
p!

 = (−1)0
(

2
2

)(2
2

)3

3! + (−1)1
(

3
2

)(2
2

)3

3! + (−1)0
(

3
3

)(3
2

)3

3!

= 1− 3 + 10 = 8.

The 8 corresponding hypergraphs are
which generates only 5 balanced collections:

{abc}, {ab, ac, bc}, {abc, ab, c}, {abc, ac, b}, {abc, bc, a},

with the last three appearing twice in the table. Remark that {abc} is not of depth 2,
but the multiset of coalitions {abc, abc} can be seen as an absurd balanced collection
of depth 2. Usually, in a balanced collection we do not consider multiple occurrences
of the same coalition, this is why we changed it into {abc}.
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nodes hypergraphs balanced collections

{α, β}
{
{α, β}, {α, β}, {α, β}

} {
{a, b, c}

}

{α, β, γ}

{
{α, β}, {α, β}, {α, γ}

} {
{a, b, c}, {a, b}, {c}

}{
{α, β}, {α, β}, {β, γ}

} {
{a, b}, {a, b, c}, {c}

}{
{α, γ}, {β, γ}, {α, γ}

} {
{a, c}, {b}, {a, b, c}

}{
{α, γ}, {α, β}, {α, γ}

} {
{a, b, c}, {b}, {a, c}

}{
{α, β}, {β, γ}, {β, γ}

} {
{a}, {a, b, c}, {b, c}

}{
{α, γ}, {β, γ}, {β, γ}

} {
{a}, {b, c}, {a, b, c}

}{
{α, β}, {β, γ}, {α, γ}

} {
{a, c}, {a, b}, {b, c}

}

By carefully inspecting the balanced collections appearing twice in the table, we
see that a pair of players is completely included in a coalition, or not at all. We call
these pairs macro-players [35]. Indeed, {a, b} is a macro-player in {abc, ab, c}, {a, c} is
a macro-player in {abc, ac, b}, and finally {b, c} is a macro-player in {abc, bc, a}. ♦

Thermal quantum field theory and unbalanced collections

A collection of subsets of N which does not contain a balanced collection is said to
be unbalanced. It is maximal if no proper super-collection of it is unbalanced. Strangely
enough, maximal unbalanced collections are also a topic whose importance is rapidly
growing in mathematical physics, especially in quantum field theory [34, 30, 58].

In mathematical physics, thermal quantum field theory is a set of methods to calcu-
late expectation values of physical observables of a quantum field at finite temperature.
Quantum field theory is a theoretical framework that combines classical field theory
(for example, Newtonian gravitation or Maxwell’s equations of electromagnetic fields),
special relativity and quantum mechanics. Quantum field theory treats particles as
excited states of their underlying quantum fields, which are more fundamental than
the particles.

Key objects of this theory are the correlators, also called Green functions, that are
used to calculate various observables, i.e., self-adjoint operators on the Hilbert space of
states H that extract some physical properties from a particular state of the studied
system. These correlators are all encoded in a generating functional, called the partition
function, in the same way a sequence of integers is encoded in a generating function.

With the imaginary time formalism, the difference between the partition function
in thermal quantum field theory and in zero-temperature quantum field theory is a
thermal weight e−βH , which is actually the action of a time-evolution e−iHT , that
operates a shift in time of −iβ. The physicists aim to extract the corresponding
correlators from this new partition function which includes this thermal weight. In the
computation, a function Φ appears, that takes as an input a set of complex energies
{zi}i∈I satisfying ∑i∈I zi = 0, called the imaginary Matsubara energies. Physicists are
interested in the analytic continuations of Φ, which exist only where, for all subsets
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J ⊆ I, we have ∑
i∈J

zi 6∈ R.

We remark that, for J ⊆ I, the set HJ = {z ∈ C|I| | ∑i∈J zi ∈ R} is a hyperplane
of the energy space. It has been proven by Evans [33] that the analytic continuations
of Φ, which produce solutions called (thermal) generalized retarded functions [34], and
the chambers of the hyperplane arrangement {HJ}J⊆I , called the resonance arrange-
ment, or the all-subset arrangement, are in bijection. In the sequel, we will see that
the chambers of the resonance arrangement are in bijection with the set of maximal
unbalanced collections.

3.2 The resonance arrangement

In this section, we discuss the resonance arrangement, which is a very regular struc-
ture in RN , and explore links between this arrangement and cooperative game theory.
The term ‘resonance arrangement’ was coined by Shadrin, Shapiro, and Vainshtein [79]
while studying double Hurwitz numbers in algebraic geometry, but this arrangement
is already considered since at least Evans [34] in the context of quantum field theory.
Surprisingly, resonance arrangements are found in various fields, in psychometrics and
economics under the name of restricted all-subsets arrangements [49, 50], in mathe-
matical physics and quantum field theory [30, 34, 58], in representation theory [13,
15], and mostly in combinatorics [1, 17, 22, 42, 53]. We show in the sequel that the
resonance arrangement appears very naturally in cooperative game theory. For more
details about the resonance arrangement, see Kühne [53]. As often as possible, we
follow the notation and definitions of Aguiar and Mahajan [1].
Definition 3.2.1. The (restricted) resonance arrangement AR of RN is defined by

AR :=
{
HR
S | S ∈ N \ {N}

}
where HR

S :=
{
x ∈ RN | x(N) = 0 and x(S) = 0

}
.

The definitions vary in the literature. Some authors define the resonance arrange-
ment as simply the set of hyperplanes

{
{x ∈ RN | x(S) = 0} | S ∈ N

}
. The next result

shows that the difference between the two definitions is negligible.
Proposition 3.2.2. The restricted resonance arrangement of RN is isomorphic to the
resonance arrangement of an (n− 1)-dimensional Euclidean space.

Proof. Without loss of generality, let N = {1, . . . , n} and N ′ = N \ {n}. Denote by
AR the resonance arrangement defined as in Definition 3.2.1, and let AN ′ be

AN ′ := {HS | S ∈ N \ {N}} where HS :=
{
x ∈ RN ′ | x(S) = 0

}
.

Notice that the linear subspace {x ∈ RN | x(N) = 0} is isomorphic to RN ′ . Let S be
a coalition of N ′. We have

HR
S =

{
x ∈ RN | x(N) = 0 and x(S) = 0

}
'
{
x ∈ RN ′ | x(S) = 0

}
= HS ∈ AN

′
.

Then, AN ′ is isomorphic to a subarrangement of AR. To complete the proof, let S be
a coalition of N such that |S| = n − 1. Then S is not a proper coalition of N ′, but
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N \ S is, and because

HR
S =

{
x ∈ RN | x(N) = 0 and x(S) = 0

}
=
{
x ∈ RN | x(N) = 0 and x(N \ S) = 0

}
= HR

N\S,

we have that HR
S ' HN\S, and then AR ' AN

′ .

Then, the restricted resonance arrangement satisfies all the properties of a non-
restricted resonance arrangement, we thus call simply them resonance arrangement
when no confusion occurs.

Let A be a hyperplane arrangement. Each hyperplane divides the ambient space
RN into two closed half-spaces, the intersection of which is the given hyperplane. We
call faces of the arrangement the subsets of RN obtained by taking the intersection,
for any hyperplane, of itself or one of its closed half-spaces. In other words, for each
hyperplane, two elements of the same face belongs to the same side of the hyperplane,
or are contained by the hyperplane itself. Denote by Σ[A] the set of faces of A, which
is a poset under inclusion. A maximal face of Σ[A] is called a chamber, the set of which
is denoted by Γ[A].

3.2.1 The posets of chambers

The first link between the resonance arrangement and cooperative game theory has
been made by Billera, Moore, Moraites, Wang, and Williams [14], where the authors
show that there exists a bijection between the chambers of AR and the maximal un-
balanced collections. The link is based on a characterization of unbalanced collections
of Billera, Moore, Moraites, Wang and Williams [14].
Proposition 3.2.3 (Billera, Moore, Moraites, Wang and Williams [14]). A collection
Q ⊆ N is unbalanced if there exists a side payment σ ∈ Σ such that, for all S ∈ Q, we
have σ(S) > 0.

It is important to notice that unbalancedness is not equivalent to the negation of
balancedness. The collection {{a, b}, {a, c}, {b, c}, {a}} is not balanced on {a, b, c}, but
contains {{a, b}, {a, c}, {b, c}}, which is balanced. We call the collections that are not
balanced but that contain a balanced collection weakly balanced. The name is motivated
by two aspects: first, by removing some coalitions, a weakly balanced collection can
become balanced. Secondly, relaxing the positivity condition on the balancing weights
in the definition of balancedness leads to weak balancedness.
Example 3.2.4. These two collections are maximal unbalanced collections with σ a
side payment illustrating the previous result:

• for n = 3: {{a, b}, {a, c}, {a}} and, as a side payment, σ = (2,−1,−1);
• for n = 4: {{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}} and, as a side

payment, σ = (3,−1,−1,−1).

The side payment σ represents a direction which improves the payment of all coalitions
included in the unbalanced collection. ♦
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This very simple characterization permits us to see that maximal unbalanced col-
lections are the same as positive set sum systems defined by Björner [17] and that they
are related to the resonance arrangement (see Figure 3.1).

Let C be a chamber of the restricted resonance arrangement, and let x ∈ relint(C).
Because x does not belong to any hyperplane of AR, there is no coalition S ∈ N
for which we have x(S) = 0. Then, for all coalitions S ∈ N , we have that either
x(S) > 0 or x(S) < 0. Also, we see that for any other element y ∈ relint(C) of the
same chamber, the number y(S) will have the same sign as the one of x(S) because
there is no hyperplane of AR separating x and y.

Then, we can identify for each chamber of AR a set of coalitions Q such that, for
all S ∈ Q, and for all x ∈ relint(C), we have x(S) > 0, and for all T 6∈ Q, we have
x(T ) < 0. By Proposition 3.2.3, we have that each chamber is associated with an
unbalanced collection.

The maximality comes from the fact that x ∈ C is a side payment and does not
belong to any hyperplane of AR. For a given coalition S ∈ Q, if x(S) > 0, it implies
x(N \S) < 0, and therefore all unbalanced collections associated with a chamber have
cardinality 2n−1−1, as they include exactly one coalition from any pair of complement,
nonempty and proper coalitions of N .

Then, for any unbalanced collection Q associated with a chamber C, and for any
coalition S such that S 6∈ Q, the collection Q∪{S} will fail to be unbalanced, because
it will contain the balanced collection {S,N \ S}. Then, any unbalanced collection
associated with a chamber is maximal.

xc

xb xa

x(ab) = 0 xc = 0

xa = 0

x(bc) = 0

x(ac) = 0

xb = 0

{a, b, ab}

{c, ac, bc}

{a, ab, ac} {b, ab, bc}

{a, c, ac} {b, c, bc}

Figure 3.1: The restricted resonance arrangement for n = 3 in the
plane x(N) = 0. Arrows indicate the normal vector to the hyperplane.
The 6 maximal unbalanced collections (subsets are written without com-

mas and braces) correspond to the 6 chambers.

The number of chambers for resonance arrangements is known for n ≤ 9, see Table
3.2 and sequence A034997 [93], whereas the number of minimal balanced collections

http://oeis.org/A034997
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is known only for n ≤ 7 [56], see sequence A355042 [93]. Notice that the number
of maximal unbalanced collections increases more slowly than the number of minimal
balanced collections.

n 2 3 4 5 6 7 8 9
k 2 6 32 370 11,292 1,066,044 347,326,352 419,172,756,930
l 2 6 42 1,292 200,214 132,422,036 ? ?

Table 3.2: Number k of maximal unbalanced collections and number
l of minimal balanced collections according to the number n of players.

There are other deep connections between cooperative games and the resonance
arrangement. Let (N, v) be a game, and denote by A(v) the set defined by

A(v) := {AS(v) | S ∈ N \ {N}} .

Let (N, o) be the null game, defined, for all S ∈ N , by o(S) = 0. We can easily
see that A(o) is the restricted resonance arrangement of RN , because for all S ∈ N ,
the hyperplane AS(o) corresponds to HR

S . In the proof of Prop. 3.2.2, we have seen
that AS(o) = AN\S(o), therefore pairs of hyperplanes of the resonance arrangement
associated with complement proper coalitions merge. Let (N, v) be a game and let S
be a coalition. We define the slab of S (or equivalently N \ S) as the subset of X(v)
denoted by slS(v), defined by

slS(v) := {x ∈ X(v) | x(S) ≥ v(S) and x(N \ S) ≥ v(N \ S)}.

Modifying the worth of S such that v(S) + v(N \S) ≤ v(N) will generate a nonempty
slab. Then, a game can be seen as a distortion of the resonance arrangement, creating a
‘slab arrangement’ where any hyperplane AS(o) is translated by v(S) along its normal
vector relatively to X(v), i.e., along ηS.

Aab Ac

Aa

Abc

Ab

Aac

(a) Arrangement A(o).

Aab

Ac

Aa

AbcAac

Ab

(b) Arrangement A(v).

Figure 3.2: Balanced distortion of the resonance arrangement A(o) by
a game (N, v). The core C(v) is the darkest area.

http://oeis.org/A355042
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Because every hyperplane AS(o) passes through the origin ~o, the resonance ar-
rangement is said to be central. Like the hyperplane arrangements, we say that a slab
arrangement is central if the intersection of all the slabs is nonempty. Because the
intersection of all the slabs is a basic polyhedron, a slab arrangement defined from the
resonance arrangement is central if and only if it is generated by a balanced game.

The set Γ[A(v)] obtained by the distortion induced by (N, v) may be radically
different from the original Γ[AR]. Previously, all chambers were cones, pointed at ~o, in
bijection with the set of maximal unbalanced collections. Now, some chambers can be
bounded polyhedra, i.e., polytopes, or non-conic unbounded polyhedra. However, all
these chambers are closely related to the feasible collections. We denote by R(v) the
set of regions of (N, v) corresponding to the feasible collections.
Proposition 3.2.5. Let (N, v) be a balanced game. R(v) is a graded poset.

Proof. We transfer the partial order defined by the inclusion on the feasible collections
to the set of regions. The rank of a region in the poset is the cardinality of the associated
feasible collection.

Example 3.2.6. Consider the game drawn in Figure 3.3.

Ac

AaAb

Aab

Aac

Abc

C(v)

X{b,ab}

X{a,ab,ac}

X{c,ac}

X{ac}

X{ab,ac}

X{a,ab}

X{ab}

X{a,ac}

X{a,c,ac}

X{a,b,ab}

X{c,bc}

X{b,ab,bc}

X{b,c,bc}

X{b,bc}

X{bc}

X{c}

X{c,ac,bc}

X{b}

Figure 3.3: Resonance arrangement distorted by a game (N, v) in X(v)
for N = {a, b, c}. The rank of a region increases with its lightness.
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We see that each region has a specific rank, which is the number of hyperplanes
separating it from the core. Notice that X{b,ab} is neither a polytope, nor a cone. ♦

The set of chambers Γ[A(v)] has a very similar structure.
Proposition 3.2.7. Let (N, v) be a balanced game. Γ[A(v)] is a graded poset.

Proof. First, let us define a partial order on Γ[A(v)]. Let C ∈ Γ[A(v)] be a chamber.
We denote by sep(C) the set of separating hyperplanes between the core and C, i.e.,
hyperplanes for which the core and C lie on different closed half-spaces generated by
the given hyperplane. Let C1 and C2 be two chambers of Γ[A(v)]. We say that C1
is lower than C2, denoted by C1 ≤Γ C2, if sep(C1) ⊂ sep(C2). We end this proof
by defining the rank function of the poset. Let C be a chamber of Γ[A(v)], and let
ρ : Γ[A(v)]→ N be defined by ρ(C) = |sep(C)|. We have that, for all C1, C2 ∈ Γ[A(v)]
such that C1 <Γ C2 we have ρ(C1) < ρ(C2), and if C2 covers C1, i.e., if C1 ≤Γ C2 and
only one hyperplane separates the two chambers, we have ρ(C1) + 1 = ρ(C2), then ρ is
a rank function.

Proposition 3.2.8. Let (N, v) be a balanced game. Then there exists an order-
preserving injection of Γ[A(v)] into R(v). If the core C(v) is full-dimensional, this
injection is a bijection.

Proof. Let C be a chamber C ∈ Γ[A(v)] and let x ∈ int(C). Then, there exists a
collection of coalitions Q ⊆ N such that, for all S ∈ Q we have x(S) < v(S) and, for
all T 6∈ Q, we have x(T ) > v(T ). Then int(C) is the interior of the region XQ, therefore
Q is feasible. Assume now that C(v) is full-dimensional, i.e., that N is vital, and let
Q be a feasible collection. By Lemma 2.3.10, for all minimal balanced collections B on
N , we have ∑

S∈B
λBSv(S) < v(N).

Let us focus on the core C(vQ). By Lemma 2.3.6, we have that Qc ∩ E(N, vQ) = ∅.
Because N is vital, we have that E(v) = {N}, and then E(vQ) = {N}. Therefore, we
have that C(vQ) is full-dimensional, which implies that XQ is also full-dimensional,
and then included in a unique chamber of A(v).

In Example 3.2.6, the core is full-dimensional, hence the regions and the chambers
are in bijections. Even if the chambers of A(v) differ from the one of AR, all the
previous chambers remain in the new Γ[A(v)].
Proposition 3.2.9. Let (N, v) be a balanced game. Then there exists an injection of
Γ[AR] into the set of maximal elements of Γ[A(v)].

Proof. Let C be a chamber of Γ[AR]. Then, there exists a maximal unbalanced col-
lection Q such that, for all x ∈ relint(C) and for all S ∈ Q, we have x(S) < v(S) and
x(N \S) > v(N \S). This defines a basic polyhedron, whose associated set function is
vQ. The domain of vQ is Fv = (N \Q)∪Qc = Qc ∪ {N}. The only minimal balanced
collection included in Fv is {N}, then the condition of Theorem 2.2.3 is always satis-
fied for all (N, v). The maximality of the elements of Γ[AR] in Γ[A(v)] is given by the
maximality of the unbalanced collection associated with these and Lemma 2.3.5.
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In Example 3.2.6, the chambers of AR are the white ones. Let (N, v) be a balanced
game. The face lattice of the core, denoted by LC(v) is the poset of the faces of the core
(including the empty face), partially ordered by inclusion. Let F ∈ LC(v) be a face of
C(v). Denote by E(F ) the collection of coalitions that are efficient for all elements of
F but not for all elements of the core, i.e., E(F ) := {S ∈ N \ E(v) | F ⊆ AS(v)}.
Example 3.2.10. The diagram 3.4 represents the face lattice of the core in Figure 3.3.

F∅ = C(v)

F{ab} F{b} F{bc} F{c} F{ac}

F{ab, ac} F{b, ab} F{b, bc} F{c, bc} F{c, ac}

∅

Figure 3.4: Face-lattice LC(v) of the core of (N, v) from Table 3.3.

Notice that player a is not alone in any collection E(F ), as {a} is not exact. In
particular, this game does not have a stable core. ♦

Proposition 3.2.11. Let (N, v) be a balanced game. Then, there exists an order-
reversing injection of LC(v) \ {∅} into Γ[A(v)].

Proof. Let F ∈ LC(v) be a proper face of the core. We first show that E(F ) is a feasible
collection. To show that, we use Lemma 2.3.6 relative to feasible collections.

Let F =
(
2N \ E(F )

)
∪ E(F )c. The game (F , vE(F )) is balanced because F ⊆

C(F , vE(F )). Let us focus now on the effective coalitions for (F , vE(F )). Let S ∈ E(F )c.
If S ∈ E(F )∩E(F )c, then vE(F )(S)+vE(F )(N \S) = v(S)+v(N)−v(S) = v(N), which
implies S and N \S are included in E(v) and then S can not be in E(F ). So we assume
that S ∈ E(F )c and E(F )∩E(F )c = ∅. We prove by contradiction that S /∈ E(F , vE(F )).
Assume the contrary. Then C(F , vE(F )) ⊆ AS(v), which implies F ∈⊆ AS(v). Then,
S ∈ E(F ), and the desired contradiction is obtained.

The order reversion comes from the fact that a face F included in another face G
is included in more hyperplanes than G. For any coalition in E(G), we have F ⊆ G ⊆⋂
S∈E(G)AS(v), and then E(G) ⊆ E(F ).

To summarize, we have the following inclusion relations between the posets, where
U(N) denotes the set of unbalanced collections onN , Umax(N) the maximal unbalanced
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collections on N , and ↪→ denotes an order-preserving (reversing for LC(v)) injection.

Umax(N) ≡ Γ[AR] ↪→ Γ[A(v)] ↪→ R(v) ↪→ U(N)
and LC(v) ↪→ R(v) ↪→ U(N).

Example 3.2.12. We see in Figure 3.5 that the nonempty faces of the core can be
injected with their order reversed in the poset of regions R(v).

X{b,c,bc} X{c,ac,bc} X{a,c,ac} X{a,ab,ac} X{a,b,ab} X{b,ab,bc}

X{c,bc} X{c,ac} X{a,ac} X{ab,ac} X{a,ab} X{b,ab} X{b,bc}

X{c} X{ac} X{bc} X{ab} X{b}

C(v)

Figure 3.5: Poset R(N, v) of regions of (N, v) from Figure 3.3. In blue
we have the proper-face–semi-lattice of the core, in reverse order.

Notice that the adherence of the blue regions, in bijection with the collections
defining faces of the core, intersects the core. ♦
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Chapter 4

Stability, domination and projections

This chapter is devoted to the study of core stability, i.e., the coincidence between the
core and the von Neumann-Morgenstern stable sets. Determining whether a core is
stable is a long-standing problem, that has been around for more than 70 years. Before
2021 and the theorem of Grabisch and Sudhölter [40], we had no characterization of
stable cores on the general class of balanced games. Notwithstanding, for specific
classes of games, such as assignment games [10, 73, 88, 94], and chain-component
additive games [99], important results exist. Also, convex games, defined by Shapley
[83], have stable cores, as do extendable games [51], games with large cores [90], and
strongly vital-exact extendable games [91]. Deeper investigations on cores and stable
sets of assignment games can be found in [64, 63].

Another approach that has been successfully adopted is to modify the notion of
stable sets in order to encompass similar intuitive properties of domination with a
different set of maximal elements. Usually, this is done by iterating the domination
process between preimputations. The myopic stable set defined by Demuynck, Herings,
Saulle, and Seel [28], which extends the notions developed in Herings, Mauleon, and
Vannetelbosch [44, 45], uses a property called asymptotic external stability, which re-
sembles an iterative equivalent of the external stability as defined by von Neumann and
Morgenstern [103]. A similar approach has been used by Béal, Durieu, and Solal [8] in
their definition of a farsighted stable set and by Ray and Vohra [74]. The number of
iterations and the ‘accessibility’ of the core is discussed in Béal, Rémila, and Solal [9].
In Chapter 1, we already discussed a recursive process of accumulated improvements
of preimputations with the transfer schemes, defined by Stearns [95], and developed
by Cesco [24] using projection operators. We will study in greater details projection
operators between preimputations in Section 4.3.

In the first section of this chapter, we present the new characterization of Grabisch
and Sudhölter [40], which we translated into a working computer program [56]. In
the second section, we study two types of cones, one consisting of preimputations
improving the payments of a specific collection of coalitions, and the other consisting
of preimputations strictly increasing the payment of players in a specific coalition.
By studying their intersection we provide a new necessary condition for core stability,
which can be implemented to increase the efficiency of the algorithm of the first section
of this chapter. In the last two sections, we present a new way to study core stability
and domination relations between preimputation by using projection operators onto
intersections of affine subspaces and polar regions.
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4.1 Nested balancedness

The characterization uses the outvoting relation we introduced in Chapter 2. A preim-
putation x outvotes another preimputation y via a coalition S if x domS y and, for all
T 6⊆ S, we have x(T ) ≥ v(T ). We write it x �S y. The set of preimputations which
are not outvoted is denoted by M(v), and we have that M(v) = C(v) if and only if
C(v) is a stable set [40].

Let (N, v) be a balanced game. In the sequel, we only consider strictly vital-exact
coalitions, as we discussed in Chapter 2, and we assume that VE(v), the set of strictly
vital-exact coalitions, is core-describing (see Proposition 2.3.14). To know whether
the core is a stable set, we are looking for nonoutvoted preimputations. For a given
preimputation x, the set of preimputations outvoting it via S is

P�S (x) :=

y ∈ X(v)

∣∣∣∣∣∣∣
yi > xi for all i ∈ S
y(S) ≤ v(S)
y(T ) ≥ v(T ) for all T 6⊆ S

 .
The name of this method of nested balancedness, developed by Grabisch and Sud-

hölter [40], consists of checking the nonemptiness of a specific polyhedron, composed
of preimputation for which another specific polyhedron is nonempty.

Recall that vS is the coalition function which may differ from v only inasmuch as
vS(N \ S) = v(N)− v(S), and recall that IS = {{i} | i ∈ S}. Using Theorem 2.2.3, a
preimputation x is outvoted via a coalition S if and only if (FP�S (x), vP�S (x)) is balanced
and IS ∩ E(FP�S (x), vP�S (x)) = ∅, where

FS :=
(
VE(v) \ 2S

)
∪ {N \ S} ∪ IS, and

vP�S (x)(T ) =
{
xi if T ∈ IS, T = {i},
vS(T ) if T ∈ FS \ IS.

(4.1.1)

Because S is a strictly vital-exact coalition, it is in particular exact, and therefore
by Proposition 2.3.1 the game (FP�S (x), v

S) is balanced. It implies that many of the
inequalities checked for Theorem 2.2.3 are already satisfied, and need not to be checked.
The only inequalities which need to be checked are the ones involving the new worths
vP�S (x)({i}) = xi for i ∈ S, which are the inequalities corresponding to the minimal
balanced collections B such that B ∩ IS 6= ∅.

Let φ be the map assigning to each preimputation x the set of coalitions defined by

φ(x) := {S ∈ VE(v) | x(S) < v(S)}.

It is sufficient to check whether x is not outvoted via any S ∈ φ(x), because x cannot
be dominated via a coalition not belonging to φ(x). Hence, a preimputation x is not
ouvoted if for all coalitions S ∈ φ(x), there exists a minimal balanced collection B
satisfying B ∩ IS 6= ∅, such that∑

i∈S
{i}∈B

λB{i}xi ≥ v(N)−
∑

T∈B\IS

λBTv
S(T ). (4.1.2)
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In other words, for all feasible collection Q ⊆ VE(v), we have that M(v) ∩XQ(v) 6= ∅
if and only if there exists S ∈ Q, x ∈ XQ(v) and B satisfying B ∩ IS 6= ∅ such that
equation (4.1.2) holds.

Let Q be a feasible collection, S ∈ Q be a coalition, and B be a minimal balanced
collection intersecting IS. Consider the following linear program.

(
PBS
)


min x(N)

s.t.


x(T ) ≥ v(T ), for all T 6∈ Q,
x(N \ T ) > v(N)− v(T ), for all T ∈ Q,∑
{i}∈B∩IS λ

B
{i}xi ≥ v(N)−∑T∈B\IS λ

B
Tv

S(T ).

The last constraint of the program corresponds to equation (4.1.2), the first two con-
straints ensure that x belongs to the region XQ(v). If the optimal value of the program
is v(N), then there exists a preimputation x ∈ XQ(v) which is not outvoted via S.
Then, if for all S ∈ Q there exists a minimal balanced collection B intersecting IS such
that the optimal values of each program (PBS ) is v(N), we have thatM(v)∩XQ(v) 6= ∅.

Because of the presence of the weights λB{i} on the left-hand side of (4.1.2) and of the
last constraint, we cannot use Theorem 2.2.3 about basic polyhedra, but we still use
the same idea: we check the existence of the preimputations satisfying the constraints
using a linear program, namely (PBS ), and we take the dual program. Because the
polyhedron is no longer basic, the constraints of the dual program do not correspond
to the balanced collections.

To overcome this problem, we use the balanced sets of vectors.
Definition 4.1.3 (Grabisch and Sudhölter [40]).
Let Z ⊆ RN+ \ {~o }. We say that Z is a balanced set if there exists a system of positive
balancing weights λ = {λz | z ∈ Z} such that ∑z∈Z λzz = 1N . The set Z is a minimal
balanced set if it does not contain a proper subset that is balanced.

The geometric interpretation of balancedness still holds: a set Z ⊆ RN+ \ {~o } is
balanced if and only if the vector 1N lies in the relative interior of the conic span of
Z. From a linear algebra point of view, the system AZλ = 1N must have nonnegative
solutions, where AZ is the matrix whose columns are the vectors in Z.

Let Q be a feasible collection and B be a minimal balanced collection. For S ∈ Q,
let zS ∈ RN be given by

zSj =
{
λB{i}, if j = i and {i} ∈ B ∩ IS,
0, otherwise.

Define ΩBQ =
{
1N\S | S ∈ Q

}
∪
{
1T | T 6∈ Q

}
∪
{
zS | S ∈ Q

}
. Moreover, let ε > 0 and

for each z ∈ Z, define aεz := max{Aε ∪B ∪ C}, where

Aε =
{
v(N)− v(S) + ε | 1N\S = z, S ∈ Q

}
,

B =
{
v(T ) | 1T = z, T 6∈ Q

}
,

C =
{
v(N)−∑T∈B\IS λ

B
Tv

S(T ) | z = zS, S ∈ Q
}
.
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Then, the dual program of (PBS ) can be expressed by

(
DBS

) 
max

∑
z∈Z

λza
ε
z

s.t.
{ ∑

z∈Z λzz = 1N and,
λz ≥ 0, for all z ∈ Z.

The constraints of the program (DBS ) correspond to the definition of balanced sets,
more precisely the balanced sets which are subsets of ΩBQ. Using once again the Duality
Theorem, because both feasible sets are nonempty, if the optimal value of (DBQ) is v(N),
it is also the case for (PBQ), which is equivalent to the existence of preimputations not
being outvoted via S. Furthermore, the optimal value of (DBQ) is v(N) if and only if,
for all minimal balanced sets Z ⊆ ΩBQ and for all ε > 0, we have∑

z∈Z
λza

ε
z ≤ v(N).

To get rid of the ε, we can distinguish two cases, as it is done in Theorem 2.2.3.
Denote az := max{A ∪ B ∪ C} where A := {v(N) − v(S) | 1N\S = z, S ∈ Q}. We
denote by B(ΩBQ) the set of minimal balanced sets Z ⊆ ΩBQ, and by B0(ΩBQ) the set of
minimal balanced sets Z ⊆ ΩBQ such that az = v(N) − v(S) for some z ∈ Z. Then,
the optimal value of (DBQ) is v(N) if and only if, for all Z ∈ B(ΩBQ) \ B0(ΩBQ), we have∑
z∈Z λzaz ≤ v(N), and for all Z ∈ B0(ΩBQ), we have ∑z∈Z λzaz < v(N).
We are now able to give the main result of Grabisch and Sudhölter [40].

Theorem 4.1.4 (Grabisch and Sudhölter [40]).
Let (N, v) be a balanced game. Then (N, v) has a stable core if and only if for all
feasible collection Q, for all coalitions S ∈ Q, for all minimal balanced collections B
satisfying B ∩ IS 6= ∅, there exists a minimal balanced set Z ∈ B

(
ΩBQ

)
such that


∑
z∈Z

λzaz ≥ v(N), if Z ∈ B0
(
ΩBQ

)
,∑

z∈Z
λzaz > v(N), otherwise.

(4.1.5)

All the quantifiers in the characterization of Theorem 4.1.4 are taken over finite
sets, so it can be tested algorithmically within in a finite number of computations. In
order to build the most efficient algorithm, it is required to take into account and check
the necessary conditions presented in Chapter 2:

• The game must be balanced (Theorem 1.3.5),
• The singletons must be exact (Proposition 2.3.2),
• The strictly vital-exact coalitions must be core-describing (Proposition 2.3.14),
• No feasible collection can be a blocking feasible collection (Lemma 2.3.5),

and take advantages of the known sufficient conditions:

• A weakly extendable game has a stable core (Proposition 2.3.9),
• A vital-exact extendable game has a stable core (Shellshear and Sudhölter [91]).
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To do so, it is necessary to

• check whether a coalition is exact (Algorithm 2),
• compute the set of strictly vital-exact coalitions (Algorithm 5),
• compute the set of extendable coalitions (Algorithm 4),
• compute the set of feasible collections (Algorithm 3).

The complete algorithm is presented below in pseudocode. Denote by val(P ) the
optimal value of a linear program (P ), and, for a coalition S ∈ N , denote by BS(FS)
the set of minimal balanced collections B ⊆ FS such that B ∩ IS 6= ∅ (see (4.1.1)).

Algorithm 6 Core stability checking algorithm

Require: A coalition function v, the set of minimal balanced collections B(N)
Ensure: The Boolean value: ‘(N, v) has a stable core’
1: procedure IsCoreStable(v, B(N))
2: for B ∈ B(N) do . Checking balancedness
3: if ∑S∈B λ

B
Sv(S) > v(N) then

4: return False
5: for i ∈ N do . Checking exactness of the singletons
6: if not IsExact({i}, v, B(N)) then
7: return False
8: VE(v)← ∅, Ext(v)← ∅
9: for S ∈ 2N \ {∅} do

10: if IsStrictlyVitalExact(S, v, B(N)) then
11: Add S to VE(v)
12: if IsExtendable(S, v, B(N)) then
13: Add S to Ext(v)
14: if not IsCoreDescribing(VE(v), v) then . see Proposition 2.3.14
15: return False
16: for Q ⊆ VE(v) such that Q 6⊆ B(N) do
17: if IsFeasible(Q, VE , v, B(N)) then
18: if Q = {S1, S2} such that S1 ∪ S2 = N then . see Lemma 2.3.5
19: return False
20: else
21: for S ∈ Ext(v) ∩Q do . see Proposition 2.3.7
22: if S minimal (w.r.t. inclusion) in Q then
23: Go to the next feasible collection Q
24: if maxS∈QminB∈BS(FS) val(PBQ) = v(N) then
25: return False
26: return True

Let us illustrate this algorithm with some examples, executed on the following
computing device: Apple M1 chip, CPU 3.2 GHz, 16 GB RAM. We solved the linear
program using the minimal balanced sets.
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Example 4.1.6 (4-person game). Let (N, v) be the game defined by N = {a, b, c, d}
and v(S) = 0.6 if |S| = 3, v(N) = 1 and v(T ) = 0 otherwise. The algorithm returns
that the set E(v) only contains N . The set of strictly vital-exact coalitions is

VE(v) = {{i} | i ∈ N} ∪ {N \ {i} | i ∈ N}.

The collection {{a, c, d}, {a, b, c}} is a blocking feasible collection, so by Lemma 2.3.5
the core is not stable. The CPU time for this example is 0.1 second. ♦

Example 4.1.7 (5-person game). Let (N, v) be the exact game defined by Biswas,
Parthasarathy, Potters and Voorneveld [16], defined on N = {a, b, c, d, e} by v(S) =
min{x(S), y(S)}, with x = (2, 1, 0, 0, 0) and y = (0, 0, 1, 1, 1). The core of this game is
the convex hull of x and y. For this game, the set of effective proper coalitions is

E(v) \ {N} = {{b, c}, {b, d}, {b, e}, {a, c, d}, {a, c, e}, {a, d, e}}.

The set of strictly vital-exact coalitions is VE(v) = E(v) ∪ {{i} | i ∈ N}. The feasible
collections which do not contain a minimal extendable coalition are the nonempty
subsets of {{a, c, d}, {a, c, e}, {a, d, e}}, so there are 7 feasible collections. The collection
{{a, c, e}, {a, d, e}} does not satisfy the condition of Theorem 4.1.4, therefore the core
is not a stable set. The CPU time for this example is 1.5 seconds.

Let (N, v′) be the same game, except that we shift the affine subspace of preimpu-
tations by setting v′(N) = 3.1. The set E(v′) becomes {N}, and the core is the convex
hull of the following points:

C(v′) = conv
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0
1
1
1

 ,


0
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1
1
1
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0
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1
1
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1
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0
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2
1
0

0.1
0
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2
1
0
0
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0.1
0.1
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1
1
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0.1
0.1
1

0.9
1

 ,


0.1
0.1
1
1

0.9




The set of strictly vital-exact coalitions now contains 14 coalitions, while the previ-

ous game had 11 strictly vital-exact coalitions. The additional ones are {a, c}, {a, d},
{a, e}. The set of feasible collections which do not contain a minimal extendable
coalition considerably increases, with 51 feasible collections, but does not contain any
blocking feasible collection. The largest feasible collection contains 6 strictly vital-exact
coalitions. The estimated time for the algorithm to check if this specific collection sat-
isfies the condition of Theorem 4.1.4 is greater that 200 hours. ♦
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Example 4.1.8 (6-person game). Let (N, v) be the game defined by Studený and
Kratochvíl [96] on N = {a, b, c, d, e, f} by v(N) = 10 and

v(S) for all S in

v(S) = 2 {b, e}, {c, e}, {a, b, e}, {b, c, e}, {b, d, e}, {b, e, f}, {a, b, d, e},
{a, b, d, f}, {a, b, e, f}, {b, d, e, f}, {a, b, d, e, f}

v(S) = 3 {c, d, e}

v(S) = 4 {a, c, e}, {a, c, f}, {c, d, f}, {c, e, f}, {a, b, c, e}, {a, c, d, e},
{c, f}, {a, c, d, f}, {a, c, e, f}, {b, c, d, e}, {a, b, c, d, e}

v(S) = 6 {b, c, f}, {a, b, c, f}, {b, c, d, f}, {b, c, e, f},
{a, b, c, d, f}, {a, b, c, e, f}

v(S) = 8 {c, d, e, f}, {a, c, d, e, f}, {b, c, d, e, f}

v(S) = 0 otherwise.

The set E(v) is only composed of N . The set of strictly vital-exact coalitions is

{{i} | i ∈ N} ∪ {{b, e}, {c, f}, {a, c, e}, {b, c, f}, {a, b, d, f}, {b, c, d, e}, {c, d, e, f}},

and the feasible collections which do not contain a minimal extendable coalition are
the nonempty subsets of {{a, c, e}, {c, d, e, f}, {b, c, d, e}}. The core of the game is
not a stable set because the feasible collection {{a, c, e}, {c, d, e, f}} does not satisfy
the condition of Theorem 4.1.4. The CPU time for this example is 18 minutes and 12
seconds, among which 43 seconds for computing the set of minimal balanced collections
on a set of 6 players. ♦

4.2 Domination and augmentation cones

Throughout this section, let (N, v) be a balanced game. Let x be a preimputation
outside of the core. Then, there exists a coalition S ∈ N such that x(S) < v(S).
By redistributing a small enough amount of money from the players outside S among
the players in S, we may be able to construct a preimputation dominating x via S.
Then, any preimputation not in the core is dominated, and the set of dominating
preimputations form a polytope. Moreover, if x is a preimputation belonging to XQ,
then there exists a polytope of dominating preimputations for each coalition S in Q.
If one of these polytopes intersects the core, then any element in this intersection is a
core element dominating x. But if none of these polytopes intersects the core, then the
core cannot be externally stable. This observation briefly presents the characterization
and the algorithm we discuss in this section.

The main objects we are studying in the sequel are the domination cones and the
augmentation cones. When we say cone, we usually mean affine cone, but we omit
the adjective affine when an apex is clearly identifiable from the definition. If needed,
to emphasize that a cone has ~o has an apex, we say that it is a linear cone. Let
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φ : X(v)→ 2N be the map associating to each preimputation x, the set of coalitions

φ(x) := {S ∈ N | x(S) < v(S)}.

In other words, φ(x) is the feasible collection associated with the region to which x
belongs, i.e., for all x ∈ X(v), we have x ∈ Xφ(x).
Definition 4.2.1. Let x be a preimputation and S a coalition. We denote by δS(x)
the domination cone of x with respect to S, defined by

δS(x) := {y ∈ X(v) | yi > xi, for all i ∈ S}.

The domination cone δS(x) does not only include preimputations dominating x
because some of them are not affordable for S, i.e., there exist some y ∈ δS(x) such
that y(S) > v(S). In particular, the set δS(x) contains no preimputation dominating
x whenever S 6∈ φ(x).
Definition 4.2.2. Let x be a preimputation. We denote by Aug(x) the augmentation
cone of x, defined by

Aug(x) := {y ∈ X(v) | y(S) ≥ x(S), for all S ∈ φ(x)}.

The augmentation cone Aug(x) represents all the directions along which we can
translate x to simultaneously increase or preserve the payment of all coalitions in φ(x).
Because a feasible collection is unbalanced, the nonemptiness of Aug(x) is guaranteed
by Proposition 3.2.3.

Aab Aa

Aac

x

δab(x)

δac(x)

Aug(x)

Figure 4.1: Preimputation x ∈ X{ab,ac} with its two domination cones
(in gray) and its augmentation cone (dashed).

In the case of Figure 4.1, the augmentation cone intersects none of the domination
cones, as they are open sets. Then, preimputation x cannot be dominated by a core
element, and the core is not stable. Moreover, as we can see on Figure 4.1, applying a
translation to x such that it stays in X{ab,ac} will not make the cones intersect. Then,
no preimputation of X{ab,ac} will be dominated by a core element. Let ζ(x) be the cone
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defined by

ζ(x) := Aug(x) ∩
 ⋃
S∈φ(x)

δS(x)
 .

Definition 4.2.3. Let Q be a feasible collection. We say that XQ is a blind spot if,
for all x ∈ XQ, we have ζ(x) = ∅.

The feasible collections corresponding to the blind spots regions are called blocking
feasible collections (see Lemma 2.3.5).
Lemma 4.2.4. Let (N, v) be a balanced game. The core C(v) is a stable set only if,
for all preimputations x ∈ X(v), we have ζ(x) 6= ∅.

Proof. Assume that there exists x ∈ X(v) such that ζ(x) = ∅. Then, because C(v) ⊆
Aug(x), x is not dominated by a core element, and the core cannot be stable.

Let x be a preimputation outside of the core. Then, φ(x) 6= ∅. If ζ(x) 6= ∅, there
exists a preimputation ensuring a better payment for all coalitions in φ(x), which is
‘accessible’ for some S ∈ φ(x), through a domination process. It is not always possible
to have a preimputation y dominating x which increases the payment of all coalitions
in φ(x), as we can see in Figure 4.1.
Proposition 4.2.5. Let Q be a feasible collection, and let y ∈ XQ such that ζ(y) 6= ∅.
Then, for all x ∈ XQ, we have ζ(x) 6= ∅.

Proof. Assume that there exists y ∈ XQ, z ∈ X(v) and a coalition S ∈ Q such that
z ∈ Aug(y) ∩ δS(y) ⊆ ζ(y). Let x ∈ XQ. Denote by σ = x− y the side payment from
y to x. For all i ∈ S, we have

(z + σ)i = zi + σi > yi + σi = (y + σ)i = xi.

Hence, z + σ ∈ δS(x). Moreover, for all T ∈ Q, we have

(z + σ)(T ) = z(T ) + σ(T ) ≥ y(T ) + σ(T ) = (y + σ)(T ) = x(T ).

Therefore, z + σ ∈ Aug(x) ∩ δS(x) ⊆ ζ(x).

We therefore know that the impossibility, for a given preimputation x, to be trans-
lated into another preimputation y giving a better payment to all coalitions S ∈ φ(x)
while dominating x only depends on the set φ(x). In other words, the possibility to
content a collection of coalitions with their payment does not depend on the values of
the previous payments, but on the set system formed by the collection of coalitions.
However, the feasibility of a collection depends on the coalition function v.
Theorem 4.2.6. Let Q be a feasible collection. Then XQ is not a blind spot if and
only if there exists a coalition S ∈ Q such that Q∪ IS is unbalanced on N .

Proof. Let x ∈ XQ, and denote by P the polyhedron Aug(x) ∩ δS(x). P being a basic
polyhedron, we denote by (FP , vP ) the game associated to P . Notice that, for all
T ∈ FP , we have vP (T ) = x(T ).
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We assume that P 6= ∅. By Theorem 2.2.3, we have that (FP , vP ) is balanced and
IS∩E(FP , vP ) = ∅. Because Q is feasible, it is unbalanced by Lemma 2.3.5. Therefore,
if there exists a minimal balanced collection B ⊆ FP , it must intersect IS. Moreover,∑

T∈B
λTvP (T ) =

∑
T∈B

λTx(T ) = x(N) = v(N).

Then, by Proposition 2.1.10, we have B ⊆ E(FP , vP ), but this contradicts Theorem
2.2.3. Hence, FP is unbalanced.

Assume now that there is no balanced collection B ⊆ FP . Then by Theorem 2.2.3
the set P = Aug(x)∩ δS(x) is nonempty for all preimputations, and for all x ∈ XQ, we
have ζ(x) 6= ∅.

Example 4.2.7. Let us consider the game depicted in Figure 4.1. The feasible coalition
that we are considering here is Q = {ab, ac}. Take S = ab. Then, the set system is
FS = {ab, ac, a, b}, which contains the balanced collection {ac, b}. For T = ac, the set
system is FT = {ab, ac, a, c}, which contains {ab, c}. Then X{ab,ac} is a blind spot. ♦

This result is useful to solve real-world problems of reallocation of payments without
any external intervention. Usually, trying to satisfy a collection of overlapping coali-
tions complaining about a preimputation can be complicated because of the complexity
of the computation. Also, knowing if there is a way to satisfy everyone is already a
difficult task. If we assume an external intervention, which can force players to agree
on a preimputation without involving domination, there always exists a preimputation
improving the payment of any unbalanced collection of unsatisfied coalitions.

However, if there is no external intervention, we need a coalition S for which the
new preimputation, which increases the payment for all coalitions in Q, dominates
the previous one. Theorem 4.2.6 gives a characterization, easily implementable as a
computer program, provided that we know the set of minimal balanced collections.

Furthermore, this algorithmic procedure can be incorporated into Algorithm 6, to
discard all the blocking feasible collections. Then, the algorithm focuses on the regions
which only include preimputations x satisfying ζ(x) 6= ∅.

Finally, the converse of Lemma 4.2.4 does not hold. Indeed, consider the game
(N, v) defined in Example 4.1.7 on N = {a, b, c, d, e} by v(S) = min{x(S), y(S)} with
x = (2, 1, 0, 0, 0) and y = (0, 0, 1, 1, 1). The collectionQ = {ace, ade} is feasible because
(1, 1, 1⁄2, 1⁄2, 0) ∈ XQ 6= ∅, and not blocking because player b is contained in none of
these coalitions, but does not satisfy the condition of Theorem 4.1.4. Therefore, there
exists x ∈ XQ which is not dominated by a core element, even if ζ(x) 6= ∅.

4.3 Projection onto the core

In the previous section, we described a characterization which allows us to know
whether there exists a side payment simultaneously improving the payment of a collec-
tion of coalitions, and if this side payment could be supported by a domination process
involving one of the coalitions in the collection. In this section, we are looking for the
smallest (according to the Euclidean norm) side payment between an affine subspace
of X(v) and a given preimputation.
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Let us consider a preimputation x, an element y of a given affine subspace V ⊆ X(v),
and the side payment σ such that x+σ = y. Finding the side payment with the minimal
norm is equivalent to, for the given preimputation x, solving this minimization problem
miny∈V ‖y − x‖. By definition of the Euclidean norm, we have

arg min
y∈V
‖y − x‖ = arg min

y∈V

√∑
i∈N

(yi − xi)2 = arg min
y∈V

∑
i∈N

(yi − xi)2 .

By the Hilbert projection theorem (Theorem 1.1.6), the element y is the (orthogonal)
projection of x onto V . The terms (yi − xi) in the formula above are the adjustments
of the individual players’ payments induced by the side payment σ = y − x. Then, σ
is the side payment reorganizing the payments of individual players which minimize
the sum of the square of the adjustments, while preserving the total sum of payments.
Moreover, by the Hilbert projection theorem, it is the only side payment with these
properties. In order to identify these side payments, we study projectors on X(v).
Definition 4.3.1. A projector P is an idempotent linear map, i.e., P ◦ P = P .

The image of P : RN → RN , denoted by im(P ) and called the column space in the
context of linear algebra, is the subspace of RN spanned by the column of P . Then,
P takes as an input any element x of the space RN and associates to it an element
z ∈ im(P ), which is the closest element of im(P ) from x according to the Hilbert
projection theorem (Theorem 1.1.6).
Remark 4.3.2 (Four fundamental subspaces). Each matrix A a size (n × k) defines
four subspaces, called the four fundamental subspaces of A, which are

• the column space of A: im(A) := {Ay | y ∈ Rk} ⊆ Rn,
• the row space of A: im(A>) := {A>x | x ∈ Rn} ⊆ Rk,
• the kernel of A: ker(A) := {y ∈ Rk | Ay = 0},
• the left kernel of A: ker(A>) := {x ∈ Rn | A>x = 0}.

These four subspaces are related in the following way (see Fact 2.25, [7]):

Rn = im(A)⊕ ker
(
A>

)
and Rk = im

(
A>

)
⊕ ker(A).

In our case, we are interested in subspaces defined as subsets of X(v) for which a
collection Q of coalitions is effective. By Proposition 2.3.14, we always assume in this
section collections of strictly vital-exact coalitions. Recall that ηS = 1S − |S|

n
1N and

denote by 〈Q〉 the subspace of Σ ⊆ RN spanned by the set of vectors {ηS | S ∈ Q},
and simply write 〈S〉 whenever Q = {S}. Recall that AQ is the subspace of X(v) ⊆ RN
defined by AQ = {x ∈ X(v) | x(S) = v(S),∀S ∈ Q}.

Each projection in X(v) is naturally decomposed as the sum of two elements: a
preimputation and a side payment. Recall that the set of side payments Σ is the linear
subspace of RN which is parallel to X(v). For each coalition S ∈ Q, the affine subspace
AS has a corresponding linear subspace HS included in Σ with the same dimension as
AS, which was defined by

HS := {σ ∈ Σ | σ(S) = 0}.
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The set {HS | S ∈ N} forms the restricted resonance arrangement of RN , and does
not depend on the game (N, v). Notice also that ηS is a normal to the subspace HS.
For any subspace V of a vector space E, the orthogonal complement of V , denoted by
V ⊥, is defined by

V ⊥ := {x ∈ E | 〈x, y〉 = 0,∀y ∈ V }.
Any subspace V of a finite-dimensional vector space E induces an orthogonal decom-
position of E into E = V ⊕ V ⊥, i.e., for each element x ∈ E, we can write in a unique
way x = y + z with y ∈ V and z ∈ V ⊥.
Remark 4.3.3. Let P be a projector. Because the projection of an element is unique,
any element x ∈ E can be decomposed in a unique way as x = y + z with y = Px and
z = x−Px = (In−P )x, with y ∈ im(P ) and z ∈ im(P )⊥ = ker(P>) by Remark 4.3.2.
Therefore, we have that In − P is the projector onto ker(P>).

Let V be a linear subspace of Σ. Even if it is also a linear subspace of RN , in the
sequel, we always consider the orthogonal complement V ⊥ as a subset of Σ, i.e.,

V ⊥ = {σ ∈ Σ | 〈σ, y〉 = 0, ∀y ∈ V }.

We do not have a well-defined equivalent of the orthogonal complement for affine
subspace, but it is still possible to have an orthogonal decomposition of it.
Remark 4.3.4. Let S be a coalition. Using Proposition 1.2.2, any preimputation x
can be decomposed as x = πAS(x) − γS(x)ηS. Naturally, πAS(x) belongs to AS and
−γS(x)ηS belongs to 〈S〉, hence we have the decomposition X(v) = AS ⊕ 〈S〉.

Our main objective in this section is to compute, for any preimputation not included
in the core, its projection onto the core. According to the Hilbert projection theorem,
the projection of x ∈ X(v) \ C(v) onto the core is the closest preimputation y ∈ C(v)
from x. Then, y belongs to a face F of the core, for which there exists a collection of
coalition Q such that F ⊆ AQ. Then, the first part of this section is devoted to the
study of the nonemptiness of AQ.

In the second part, we construct the projector π〈Q〉 : Σ → 〈Q〉, which associates
to each side payment σ its projection onto 〈Q〉. The problem amounts to finding the
linear combination of the ηS, for S ∈ Q, which is the closest from σ.

From this projector π〈Q〉, we build the projector πAQ : X(v)→ AQ, which associates
to each preimputation its projection onto AQ, by using the fact that 〈Q〉⊥ and AQ
are parallel. The projector is expressed in terms of the ηS for S ∈ Q, with specific
coefficients for which an exact formula is provided.

In another part, we give an alternative formulation of the projector πAQ : X(v) →
AQ, in terms of the excesses of the given preimputation at the coalitions in Q, and a
set of vectors uniquely defined from the set {ηS | S ∈ Q}.

Moreover, we give an algorithm which associate, to any preimputation x, a collection
Q of coalitions for which πAQ(x) belongs to the core.

Finally, we use these formulas and algorithms to compute the distance between a
preimputation and the core of a game, and propose a map X(v)→ R, which associate
to each preimputation x a real value measuring the failure of x to be in the core, which
we apply to market games.
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4.3.1 Nonemptiness of AQ

In general, the nonemptiness of AQ depends only on Q.
Definition 4.3.5. Let Q ⊆ N be a collection of coalitions. We say that Q is an
independent collection if {ηS | S ∈ Q} forms a linearly independent set of vectors.

A collection which is not independent is said to be dependent. We see that AQ is
nonempty if Q is independent. However, it is not sufficient, as depicted in Figure 4.2.

(a) Linearly independent. (b) Empty intersection. (c) Nonempty intersection.

Figure 4.2: Different configurations of hyperplanes in the plane.

Definition 4.3.6. We say that a coalition function v is nonsingular on a collection Q
if, for all nonempty dependent subcollections T ⊆ Q, we have AT = ∅.

Let Q = {S1, . . . , Sk} ⊆ N be a collection of coalitions. We denote by H and G
respectively the matrices defined by

H =
[
ηS1 . . . ηSk

]
and G = H>H.

The matrix G is called the Gram matrix of the collection Q, and its general term sat-
isfies gij = 〈ηSi , ηSj〉. Then, G captures all the information about the interdependence
and the correlations between the payments of coalitions in Q. If needed, we can specify
the considered collection in the notation by writing HQ and GQ.

The symmetry of the scalar product implies the symmetry of the Gram matrix.
Furthermore, for all x ∈ RQ, we have

x>Gx = x>H>Hx = 〈Hx,Hx〉 = ‖Hx‖2 ≥ 0,

hence G is positive semidefinite. We can use the Gram matrix to know whether a
collection is independent.
Proposition 4.3.7. A collection Q is independent if and only if G is nonsingular.

Proof. We have for all x ∈ RQ, x>Gx ≥ 0. Then G is positive semidefinite, i.e., all its
eigenvalues are nonnegative. For G to be nonsingular, we need to have only positive
eigenvalues, i.e., to have G positive definite. Then G is nonsingular if and only if, for
all x ∈ RQ \ {~o },

x>Gx = ‖Hx‖2 =
∥∥∥∥∥∥
∑
S∈Q

xSη
S

∥∥∥∥∥∥
2

> 0,
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i.e., if and only if, for all x ∈ RQ \{~o }, we have ∑S∈Q xSη
S 6= 0, which is the definition

of {ηS | S ∈ Q} being a linearly independent set of vectors.

We now have a sharp characterization of the nonemptiness of AQ when v is nonsin-
gular on the set system on which it is defined. It is consistent with the fact that our
formula for the projector onto AQ involves the inverse of G, as we will see shortly.

4.3.2 Construction of the projector π〈Q〉 : Σ→ 〈Q〉

Because the columns of H are the normal vectors ηS, any element of 〈Q〉 can be written
as Hy, with y ∈ RQ. Intuitively, the side payment between a preimputation x and its
projection onto AQ is a linear combination of the normal vectors ηS, for S ∈ Q. Now,
we are looking for the coefficients of this linear combination. For a given side payment
σ, we want to find the vector of coefficients y ∈ RQ which minimizes

ϕH(y) = ‖σ −Hy‖2 = (σ −Hy)> (σ −Hy) = σ>σ − y>H>σ − σ>Hy + y>Gy.

The critical points of ϕH are the elements y ∈ RQ satisfying ∇ϕH(y) = 0. We have
the three following gradients:

∇
(
y>H>σ

)
= H>σ, ∇

(
σ>Hy

)
= H>σ, ∇

(
y>Gy

)
= 2Gy,

which lead, by linearity of ∇, to

∇ϕH(y) = 2Gy − 2H>σ.

Then, the critical point of ϕH satisfy the so-called normal equation, i.e.,

Gy = H>σ. (4.3.8)

The Hessian of ϕH is Hess(ϕH) = 2G, which is positive definite when Q is independent.
Then there is a unique critical point, which is a global minimum. The unique solution
y of the normal equation determines the projection of σ onto 〈Q〉, which is Hy.

To manipulate matrix equations such as the normal equations, because not all
matrices have an inverse, we need a generalization of usual inverses of matrices.
Theorem 4.3.9 (Penrose [70]).
For any matrix A, there exists a unique matrix X satisfying

AXA = A, XAX = X, (AX)> = AX, and (XA)> = XA.

These equations are called the Penrose equations, and their solution is called the
Moore-Penrose inverse, or generalized inverse, of A and is denoted by A†. We notice
that if A is nonsingular, we have that A† = A−1. Moreover, if the columns of A are
linearly independent, we have

A† =
(
A>A

)−1
A>,
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and if the rows of A are linearly independent, we have

A† = A>
(
AA>

)−1
.

When the columns of A are linearly independent, the matrix A† is a left inverse for
A, because A†A =

(
A>A

)−1
A>A = In. Similarly, when the rows of A are linearly

independent, A† is a right inverse. Then, if Q is independent, the Moore-Penrose
inverse of H is the matrix

H† =
(
H>H

)−1
H> = G−1H>.

Then, we can solve the normal equation (4.3.8), and find π〈Q〉(σ):

y = G−1H>σ = H†σ and π〈Q〉(σ) = Hy = HH†σ.

4.3.3 Construction of the projector πAQ : X(v)→ AQ

We have built the projector onto im(H) = 〈Q〉, from the matrix H and its Moore-
Penrose inverse H†. Our initial goal is to build a projector onto the affine subspace AQ
for all preimputations. We introduce bQ ∈ RQ defined, for all S ∈ Q, by

bQS = v(S)− |S|v(N)
n

.

Let L = H>. We can describe AQ using the matrix L and bQ, by

AQ =
{
x ∈ X(v) | Lx = bQ

}
.

The linear subspace of Σ parallel to AQ is therefore {σ ∈ Σ | Lσ = 0} = ker(L) ∩ Σ.
From Remark 4.3.2, we know that RN = 〈Q〉 ⊕ ker(L). Then, πker(L) = In − π〈Q〉. To
deduce πAQ from πker(L), we use the following lemma.
Lemma 4.3.10 (Bauschke and Combettes [7]).
Let K be a nonempty closed convex subset of RN , and let x, y ∈ RN . Then

πy+K(x) = y + πK(x− y).

Using Lemma 4.3.10, we have, for any y ∈ AQ, that

πAQ(x) = y + πker(L)(x− y) = y +
(
In −HH†

)
(x− y) = x−HG−1L (x− y) .

Indeed, any element of AQ can be written as y + z with z ∈ ker(L) because the
element of ker(L) do not change the payment of coalitions in Q. Because y ∈ AQ,
we have Ly = bQ. Denote by e(Q, x) ∈ RQ the vector defined, for all S ∈ Q, by
e(Q, x)S = e(S, x).
Theorem 4.3.11. Let Q be an independent collection. For all x ∈ X(v), we have

πAQ(x) = x+
∑
S∈Q

γQS (x)ηS,
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where γQS (x) = (G−1e(Q, x))S.

Proof. To prove this theorem, we use the Projection Theorem for affine subspaces.
Let x be a preimputation. First, let us show that πAQ(x) ∈ X(v). We have that
πAQ(x)(N) = x(N) +∑

S∈Q γ
Q
S (x)ηS(N) = v(N). Also, notice that

L(x− y) = Lx− bQ = −e(Q, x).

Now, let us prove that πAQ(x) belongs to AQ, i.e., that LπAQ(x) = bQ:

LπAQ(x) = L
(
x+HG−1e(Q, x)

)
= Lx− LHG−1

(
Lx− bQ

)
.

Because L = HT , we have that LH = G, and it follows that

LπAQ(x) = Lx−
(
Lx− bQ

)
= bQ,

therefore πAQ(x) ∈ AQ. Let us prove now that x−πAQ(x) is orthogonal to AQ. Denote
by γQS (x) the coordinate (G−1e(Q, x))S. For all y ∈ AQ, we have

−〈y − πAQ(x), x− πAQ(x)〉 =
∑
S∈Q

γQS (x)〈y − πAQ(x), ηS〉.

Because both y and πAQ(x) belong to AQ, we have that y(N) = v(N) = πAQ(x)(N)
and, for all S ∈ Q, that y(S) = πAQ(x)(S). Then, 〈y, ηS〉 = 〈πAQ(x), ηS〉, and finally

−〈y − πAQ(x), x− πAQ(x)〉 =
∑
S∈Q

γQS (x)
(
〈y, ηS〉 − 〈πAQ(x), ηS〉

)
= 0,

which concludes the proof by the Projection Theorem.

We have now found a closed-form formula for the projection of any given preim-
putation x onto an affine subspace AQ, provided that Q is an independent collection.
It requires no iterative computations, and can be implemented within a few lines of
codes. The main algorithmic effort is to compute the inverse the Gram matrix G. One
way to avoid that is to use an existing solver of linear systems to find γQ(x) satisfying

GγQ(x) = e(Q, x). (4.3.12)

Remark 4.3.13 (Cramer’s rule [25]). We can use Cramer’s rule to solve the linear
system (4.3.12), which express the coordinates of γS(x) in terms of the determinant
of G, called the Gramian of Q. Let GS

x denote the matrix form where we replace the
column composed of all the scalar products involving ηS with the vector e(Q, x), i.e.,

GSi
x =



‖ηS1‖2 . . . 〈ηS1 , ηSi−1〉 e(S1, x) 〈ηS1 , ηSi+1〉 . . . 〈ηS1 , ηSk〉
〈ηS2 , ηS1〉 . . . 〈ηS2 , ηSi−1〉 e(S2, x) 〈ηS2 , ηSi+1〉 . . . 〈ηS2 , ηSk〉

... ... ...
〈ηSj , ηS1〉 . . . 〈ηSj , ηSi−1〉 e(Sj, x) 〈ηSj , ηSi+1〉 . . . 〈ηSj , ηSk〉

... ... ...
〈ηSk , ηS1〉 . . . 〈ηSk , ηSi−1〉 e(Sk, x) 〈ηSk , ηSi+1〉 . . . ‖ηSk‖2
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Cramer’s rule gives that

γQS (x) = detGS
x

detG ,

therefore the formula of the projector for any preimputation x is

πAQ(x) = x+ 1
detG

∑
S∈Q

detGS
x · ηS.

The relevance of Cramer’s rule here is mainly for theoretical considerations. Even if
the computational complexity of Cramer’s rule has greatly reduced in the past years
(see Habgood and Arel [43]), the Cholesky decomposition is preferred to solve linear
systems of equations with a symmetric positive definite matrix of coefficients.
Example 4.3.14. Let us apply Theorem 4.3.11 and Cramer’s rule to find the projector
of x ∈ X(v) onto AS, for a coalition S. We have that G =

[
‖ηS‖2

]
, and GS

x =
[
e(S, x)

]
.

It follows that

πAS(x) = x+ 1
detG

∑
S∈{S}

detGS
x · ηS = x+ e(S, x)

‖ηS‖2 η
S,

which coincides with the formula of Proposition 1.2.2. ♦

4.3.4 Alternative formula for πAQ : X(v)→ AQ

It is possible to express the projection of a given preimputation in a simpler way, using
a new set of vectors, uniquely determined from {ηS | S ∈ Q}. Denote by δij the
Kronecker delta, defined by δij = 1 if i = j and δij = 0 otherwise.
Definition 4.3.15. Let {e1, . . . , ek} and {f1, . . . , fk} be two sets of vectors in RN . We
say that they form a biorthogonal system if they satisfy 〈ei, fj〉 = δij.

A common example of a biorthogonal system is the pair formed by a basis of a
Euclidean space together with its dual basis. Then, for simplicity, if the sets are
linearly independent, we say that {f1, . . . , fk} is a dual basis of {e1, . . . , ek}, as it is in
span({e1, . . . , ek}).
Proposition 4.3.16. Let {e1, . . . , ek} be a set of linearly independent vectors in RN ,
and {f1, . . . , fk} be a dual basis of {e1, . . . , ek}. Set E =

[
e1 . . . ek

]
and F =[

f1 . . . fk
]
, as well as GE = E>E and GF = F>F . The following equalities hold.

E>F = F>E = Ik, and
(
GE

)−1
= GF .

Proof. Let us look at the entries of E>F . From the definition of biorthogonal systems,
we deduce

(
E>F

)
ij

= 〈ei, fj〉 = δij, and
(
F>E

)
ij

= 〈fi, ej〉 = δij, then E>F =

Ik = F>E. Let us prove now that
(
GE

)−1
= GF . Denote K = {1, . . . , k} and let

x ∈ span({e1, . . . , ek}). We write the coordinates of x in the bases {e1, . . . , ek} and
{f1, . . . , fk} respectively by x = ∑

i∈K αiei and x = ∑
i∈K βifi. We denote by gEij and

gFij the general terms of GE and GF respectively. We can express the coordinates in
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one basis in terms of the coordinates in the other basis by

αp =
∑
i∈K

αi〈ei, fp〉 = 〈x, fp〉 =
∑
i∈K

βi〈fi, fp〉 =
∑
i∈K

gFipβi, ∀p ∈ K,

and βq =
∑
j∈K

βj〈fj, eq〉 = 〈x, eq〉 =
∑
j∈K

αj〈ej, eq〉 =
∑
j∈K

gEjqαj, ∀q ∈ K.

Combining these two expressions yields

αp =
∑
i∈K

gFip

∑
j∈K

gEjiαj

 =
∑
j∈K

(∑
i∈K

gEjig
F
ip

)
αj =

∑
j∈K

(
GEGF

)
jp
αj, ∀p ∈ K.

Then, we have that
(
GEGF

)
ij

= δij, and doing the same calculations on the β’s gives(
GFGE

)
ij

= δij, hence GF is the inverse of GE.

Let Q = {S1, . . . , Sk} be an independent collection. We denote by {hS1 , . . . , hSk}
the dual basis of {ηS1 , . . . , ηSk}. Set H◦ =

[
hS1 . . . hSk

]
.

Lemma 4.3.17. Let Q be an independent collection of coalitions. Then

hSj =
∑
i∈K

g
[−1]
ij ηSi and H◦ = HG−1 = L†,

where g[−1]
ij denotes the general term of G−1.

Proof. The second fact is simply the translation of the first one in terms of matrices,
we will therefore only prove the first fact. Let x ∈ 〈Q〉, and we write the coordinates
of x in basis {ηS | S ∈ Q} and {hS | S ∈ Q} respectively by x = ∑

S∈Q αSη
S and

x = ∑
S∈Q βSh

S. Using Proposition 4.3.16 gives

αSp =
∑
i∈K

αSi〈ηSi , hSp〉 = 〈x, hSp〉 =
∑
i∈K

βSi〈hSi , hSp〉 =
∑
i∈K

g
[−1]
ip βSi , ∀p ∈ K.

By setting all the coefficients βS to 0 except for βSj = 1, we get αSp = g
[−1]
jp for all

p ∈ K. Then, hSj = x = ∑
i∈K g

[−1]
ij ηSi . We can rewrite it as

hSj = ηS1g
[−1]
1j + ηS2g

[−1]
2j + . . .+ ηSkg

[−1]
kj =

[
ηS1 . . . ηSk

] (
G−1

)col

j
,

with (G−1)col
j denoting the j-th column of G−1, and then we have H◦ = HG−1. Because

the rows of L are linearly independent, we have

L† = L>
(
LL>

)−1
= H

(
H>H

)−1
= HG−1 = H◦,

which concludes the proof.

Using Lemma 4.3.17, we can rewrite the formula of the projector.
Theorem 4.3.18. Let Q be an independent collection. For all x ∈ X(v), we have

πAQ(x) = x+
∑
S∈Q

e(S, x)hS.
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Proof. From Theorem 4.3.11, we already have that πAQ(x) = x + HG−1e(Q, x). By
Lemma 4.3.17, we have HG−1 = H◦, and therefore,

πAQ(x) = x+H◦e(Q, x) = x+
∑
S∈Q

e(S, x)hS.

ηac
ηabAab

Aac

x
γQab(x)ηab

γQac(x)ηac

ηac
ηabAab

Aac

x e(ac, x)hac

e(ab, x)hab

Figure 4.3: Decompositions of the side payment between x and its
projection onto AQ with Q = {ab, ac}.

LetQ ⊆ N be independent. We know that the side payment between the projection
onto AQ and a given preimputation is a linear combination of the normal {ηS | S ∈ Q}
or of {hS | S ∈ Q}, as we can see in Figure 4.3.

4.3.5 Using the appropriate projector on a given preimputation

Assume now that Q is feasible, but not independent. Let (N, v) be a balanced game
nonsingular onQ. Then, the affine subspace AQ is empty, and there is no obvious choice
of independent subcollection T ⊆ Q such that, for all x ∈ XQ, we have πAT (x) ∈ C(v).
Moreover, there may be several independent subcollections satisfying this property,
and they might be nonmaximal with respect to inclusion.

The next result is the first step to the construction of an algorithm finding a proper
independent subcollection T ⊆ Q, and generalize Proposition 1.2.5 to the general case.
Let Q be an independent collection, T 6∈ Q be a coalition and x ∈ X(v). We define

χQ(T, x) =
∑
S∈Q

detGS
x〈ηS, ηT 〉 − e(T, x) detG.

Proposition 4.3.19. Let Q ⊆ N be independent, T ∈ N \ Q and x ∈ X(v). Then

πAQ(x) ∈ A≥T if and only if χQ(T, x) ≥ 0.

Proof. First, we study the excess of T at the projection onto AQ:

e(T, πAQ(x)) = v(T )− x(T )−
∑
S∈Q

γQS (x)ηS(T ).



94 Chapter 4. Stability, domination and projections

Aab Aa

Aac

C(v)

x

Figure 4.4: Projections on AT for all maximal independent collection
T ⊆ {ab, ac, a}, with the projection on the core.

Using Cramer’s rule (see Remark 4.3.13) gives

e(T, πAQ(x)) = e(T, x)−
∑
S∈Q

detGS
x

detG 〈η
S, ηT 〉 = − (detG)−1 χQ(T, x).

The projection lies into A≥T if and only if e(T, πAQ(x)) is nonpositive, and therefore if
and only if χQ(T, x) is nonnegative.

We now have a characterization to check whether the projection onto an affine
subspace AT with T ⊆ Q cross or lies into all the affine hyperplanes AS, for S ∈ Q.

One drawback of this characterization is the frequent use of determinants. But the
computation of detGS

x can be done in terms of Gramians using Laplace’s expansion
formula. To compute determinant of these Gramians, we use the following result.
Proposition 4.3.20. Let Q be an independent collection, and V = {vS | S ∈ Q} be
an orthonormal basis of 〈Q〉. Then,

detG =
∏
S∈Q

vS(S)
2

.

Proof. The proof is based on the QR decomposition ofH by the Gram-Schmidt process.
Indeed, the QR decomposition ofH = QR gives an orthogonal matrixQ whose columns
form an orthonormal basis V = {vS1 , . . . , vSk} of 〈Q〉, and an upper triangular matrix
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R defined by

R =



〈v1, η
S1〉 〈v1, η

S2〉 〈v1, η
S3〉 . . . 〈v1, η

Sk〉
0 〈v2, η

S2〉 〈v2, η
S3 . . . 〈v2, η

Sk〉
0 0 〈v3, η

S3〉 . . . 〈v3, η
Sk〉

... ... ... . . . ...
0 0 0 . . . 〈vk, ηSk〉

 .

Therefore, the determinant of R is detR = ∏
S∈Q〈vS, ηS〉 = ∏

S∈Q vS(S) because, for
all S ∈ Q, vS ∈ 〈Q〉 ⊆ Σ. By the multiplicativity of the determinant, we have that

detG = det
(
H>H

)
= det

(
R>Q>QR

)
= (detR)2 ,

which leads to detG = (∏S∈Q vS(S))2.

Combining this result with the Gram-Schmidt process leads to Algorithm 7, which
has a complexity ofO(nk2), which is slightly slower than the usual ones used to compute
determinants, which have a complexity of O(k3). However, the idea is not to compute
directly a Gramian with this algorithm, but to derive the Gramian of a collection Q
by updating the one of the collection Q\S with S ∈ Q. In the next result, we present
a projector onto lines in Σ that we use in the Algorithm computing the Gramian.
Lemma 4.3.21. Let S be a coalition, and let σ ∈ Σ be a side payment satisfying
‖σ‖ = 1. Then the projection of ηS onto span(σ) is

πspan(σ)(ηS) = σ(S) · σ.

Proof. The usual projector onto lines gives

πspan(σ)(ηS) = 〈η
S, σ〉
〈σ, σ〉

σ = 〈ηS, σ〉σ.

Because σ is a side payment, we have 〈1N , σ〉 = σ(N) = 0. Then, it remains

〈ηS, σ〉σ =
(
〈1S, σ〉 − |S|

n
〈1N , σ〉

)
σ = 〈1S, σ〉σ = σ(S) · σ.

Algorithm 7 Gramian detG computation

Require: The Gramian detG of Q, an orthonormal basis V of 〈Q〉, a coalition S 6∈ Q
Ensure: The Gramian detG∗ of Q∪ {S}, an orthonormal basis V ′ of Q∪ {S}
1: procedure UpdateGramian(Q, S)
2: Set vS ← ηS

3: for vT ∈ V do
4: vS ← vS − vT (S) · vT . see Lemma 4.3.21
5: if ‖vS‖ = 0 then
6: return detG∗ = 0
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7: else
8: vS ← vS/‖vS‖
9: detG∗ = (vS(S))2 · detG . see Proposition 4.3.20

10: Add vS to V
11: return V , detG∗

Because the size of the Gram matrices depends on the size of the collections and
not on the number of players, we need to work with the smallest collections. Moreover,
we see on Figure 4.4 that the projection onto the core is not necessarily the projection
associated with a large independent collection. The following result states that the
projection on the core is the projection onto one of these smallest collections.
Definition 4.3.22. Let x be a preimputation outside of the core. We say that a
collection Q is a reaching collection for x if it is independent and πAQ(x) ∈ C(v).

We denote by ρ(Q, x) the set of reaching subcollections of Q for x. If Q = φ(x),
we simply write ρ(φ(x), x) =: ρ(x).
Proposition 4.3.23. Let x ∈ X(v) \C(v). The projection of x onto the core coincide
with the projection onto AT , with T being minimal in ρ(x).

Proof. Let us first recall the notation we used in the previous chapter. We denote by
LC(v) the face lattice of the core. For any face F ∈ LC(v) of the core, we denote by
E(F ) the set of coalitions E(F ) := {S ∈ N \ E(v) | F ⊆ AS(v)}.

Let x ∈ XQ. The projection of x onto the core is necessarily achieved via a reaching
collection. Let T0 be one of them. Then πAT (x) belongs to a face of the core, denoted
by F0. If there does not exist another face F1 containing F0 such that E(F1) belongs
to ρ(x), then, because the injection of LC(v) into the set of unbalanced collections is
order-reversing by Proposition 3.2.11, T is minimal in ρ(x). Then, we assume that
there exists a face F1 ⊇ F0 such that E(F1) =: T1 ∈ ρ(x), and repeat the same process
with T1. Because the number of players is finite, the number of collection of coalitions
is also finite, therefore there exists a face Fp containing F0 and a collection Tp contained
in T0 such that Tp is minimal in ρ(x). Because πAT0

(x), which is the projection onto
the core, belongs to F0, it also belongs to Fp.

Because the set of independent subcollections of any collection is a matroid, they
form a poset under inclusion of their spanned space. Therefore, to explore this poset
and find a minimal reaching collection for any given preimputation, we use a breadth-
first algorithm, detailed in Algorithm 8.

Algorithm 8 Finding minimal reaching collections

Require: A balanced coalition function v, the set of strictly vital-exact coalitions
VE(v), a preimputation x

Ensure: The set of minimal reaching collections for x
1: procedure FindReachingCollection(v, VE(v), x)
2: Set Q ← ∅
3: for S ∈ VE(v) do
4: if x(S) < v(S) then
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5: Add S to Q
6: K← {{S} | S ∈ Q} . Set of collections to check
7: O← ∅ . Set of outputs
8: for T ∈ K do
9: if maxS∈VE(v) e(S, πAT (x)) ≤ 0 then

10: Add T to O
11: else
12: for S ∈ Q do
13: if T ∪ {S} 6∈ K then
14: if UpdateGramian(T , S) 6= 0 then
15: Add T ∪ {S} to K
16: Store new Gramian
17: Remove T from K
18: return O

We know that Algorithm 8 gives at least one output when the coalition function v is
balanced, because the core has at least a nonempty face. The face corresponding to the
union of all the outputs of the algorithm is the smallest face where lies the projection
onto the core. It is the intersection of the faces corresponding to the collections in O.

During this section, the goal was to project a preimputation onto the core. Because
the objects involved in the formulas are simply the (possible) normals of the facets of
the core, we can apply any of these algorithms and formulas to any basic polyhedron.

4.3.6 Application: measuring and correcting market failures.

In the sequel, we propose a quantification of the failure of a market, for a given payment
vector, using the model of market games defined by Shapley and Shubik [87]. Recall
that a market is a mathematical model, denoted byM = (N,G,A, U), where

• N is a finite set of players, or traders,
• G is the nonnegative orthant of a finite-dimensional vector space, called the

commodity space,
• A = {ai | i ∈ N} ⊆ GN is an indexed set of elements in G, called the initial

endowments,
• U = {ui | i ∈ N} is an indexed set of continuous, concave function ui : G → R,

called the utility functions. Notice that there is no assumption concerning the
monotonicity of the utility functions.

The initial endowments can be interpreted as the belongings of each player at the
initial state of the economy, and they will trade these commodities with other players
to maximize their utility. Let S be a coalition. If the players in S form a market, the
whole quantity of commodities is ∑i∈S a

i. Then, a set of endowments {xi | i ∈ S} ⊆ G
such that ∑i∈S x

i = ∑
i∈S a

i is called a S-feasible allocation of the marketM, and we
denote their set by XS. The market game generated by this market is a game (N, v)
whose coalition function is defined, for all S ∈ N , by

v(S) = max
x∈XS

∑
i∈S

ui(xi).
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As we have seen in Chapter 1, market games are totally balanced, and their core is
referred to as the core of the associated market. The core of a market is then the set
of payment vectors that coalitions cannot achieve by forming a market on their own.

It is well-known that the competitive equilibria of an economy lie in its core. Con-
sistently, Shapley and Shubik [89] proved that the set of competitive outcomes of a
market is included in the core of its associated market game. Therefore, they satisfy
very desirable properties, such as Pareto optimality and coalitional rationality, but the
players of the market do not necessarily reach one of these points as a payment vec-
tor. Following the interpretation we adopted throughout this manuscript, a positive
outcome for the interaction between players leading to the existence of the game must
be a payment vector from the core, to avoid the departure of some players from the
grand coalition. This leads to the following definition.
Definition 4.3.24. Let M be a market, and (N, v) its associated game. Let x be a
preimputation which is not included in the core. We define the failure of the market
M, or equivalently of the game (N, v), at x, denoted by µv(x), as the following quantity

µv(x) := min
y∈∂C(v)

‖x− y‖,

where ∂C(v) denotes the frontier of the core C(v).
The failure of the market at a specific preimputation x is the distance from x to the

core. It represents the volume of the smallest reallocation of money, i.e., the Euclidean
norm of a shortest side payment, needed to go from x to its closest element in the core.

When players join a market, they put in common all their initial endowments, that
they will share later. Players in S, with the sum of their initial endowments, are able
to redistribute them in a way that the sum of their utility after the redistribution is
v(S). Because market games are totally balanced, the larger the grand coalition is, the
better should be the payment of every coalition.

Then, if the allocation of commodities leads to a preimputation not included in the
core, for at least one coalition S we have x(S) < v(S), which is absurd. If there is
a broader range of commodities to distribute, the payments of all the coalitions must
be greater than the payment then can have by themselves. The failure at a specific
preimputation x quantify how much x misses the core and fails to distribute correctly
the payments. The players in S may want to leave this market, together with their
initial endowments, which decreases the other players’ payments by balancedness.

The same interpretation holds for linear production games or flow games. When
several players forming a coalition S join the game, they bring raw materials in the
case of a linear production games, or new edges in the graph for a flow game. By
themselves, they can achieve v(S), but by joining their effort with other players, for
instance to have more diversity of raw materials, or a denser graph, with a greater
capacity, we can expect that everyone is doing better than before joining, which can
be an interpretation of being totally balanced. They cannot accept to have a payment
lower than v(S), and the failure at a given preimputation quantifies the cumulative
and nested inability of the market to give a proper payment to all the coalitions not
satisfied by their payment.
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Proposition 4.3.25. LetM be a market, and (N, v) be its associated game. Let x be
a preimputation not included in the core. Then

µv(x) = min
Q∈ρ(x)

∥∥∥∥∥∥
∑
S∈Q

γQS (x)ηS
∥∥∥∥∥∥ = min

Q∈ρ(x)

∥∥∥∥∥∥
∑
S∈Q

e(S, x)hS
∥∥∥∥∥∥ .

Proof. Because the core is bounded, closed and convex, the projection of x ∈ X(v)\C(v)
lies on the frontier ∂C(v). By the Hilbert projection theorem, the projection is the point
minimizing the distance, then

µv(x) = ‖x− πC(v)(x)‖

By the same argument, the projection onto the core coincides with the projection onto
a face of the core that is the closest from the projected preimputation. Then,

µv(x) = min
S∈ρ(x)

‖x− πAQ(x)‖.

Applying the formula of Theorem 4.3.11 finishes the proof.

It may be possible to use the orthonormal basis of Q computed in the iterative
procedure computing the Gramian of Q to let the norm and the sum commute.

Using the projectors to compute a market failure at a given preimputation also
gives an explicit side payment to redistribute the global worth without changing it.
Moreover, this side payment is the one of smallest norm. We can interpret it as the side
payment with the smallest redistribution cost, and therefore the optimal reallocation
from x to a core element. Let Q be the reaching collection defining the core projection.
Then the optimal reallocation

σopt =
∑
S∈Q

γQS (x)ηS

works as follows: for each coalition S ∈ Q, we collect from each player the worth
|S|
n
γQS (x), and give γQS (x) to each player in S.
All the preimputations belonging to the frontier of the core have a failure of 0,

and we can even extend this function to an element x of the interior of the core by
µv(x) := −miny∈∂C(v)‖x− y‖, and merge these two functions, for all x ∈ X(v), by

µv(x) = (−1)1C(v)(x) min
y∈∂C(v)

‖x− y‖,

with 1C(v) being the indicator function of the core. These quantities are linked to
solutions concepts developed by the same authors, before defining market games. To
read more about it, see Peleg and Sudhölter [69, Chapter 7]. We denote N∗ := N \{N}.
Definition 4.3.26 (Shapley and Shubik [84], [85]).
Let ε be a real number. The ε-core of the game (N, v), denoted by Cε(v), is defined by

Cε(v) := {x ∈ X(v) | e(S, x) ≤ ε, ∀S ∈ N∗}.
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Notice that C0(v) = C(v). They also defined the smallest of these sets, called the
least-core and denoted it by LC(v), as the intersection of all nonempty ε-cores of (N, v).
It is possible to define the least-core as an ε0-core, with ε0 = minx∈X(v) maxS∈N∗ e(S, x).
Then, we have that

LC(v) = arg min
x∈X(v)

max
S∈N∗

e(S, x).

Definition 4.3.27. Let M be a market, and (N, v) its associated game. We define
the failure core, denoted by Cµ(v), by

Cµ(v) = arg min
x∈X(v)

µv(x).

The projection of an element from the interior of a polytope onto its frontier is the
projection onto a facet of the polytope. Indeed, any face of the polytope is the intersec-
tion of some facets, and by the triangle inequality, the distance from an intersection of
facets is longer than the distance from a facet. Then, the distance between an element
x ∈ C(v) and ∂C(v) is given by miny∈∂C(v)‖x− y‖ = minS∈N∗ ‖x− πAS(x)‖. Using the
formula of Proposition 1.2.2 leads to

min
y∈∂C(v)

‖x− y‖ = min
S∈N∗

∥∥∥∥∥e(S, x)
‖ηS‖2 η

S

∥∥∥∥∥ = min
S∈N∗

|e(S, x)|
‖ηS‖

.

Because x belongs to the core, its excess is nonpositive, then

min
y∈∂C(v)

‖x− y‖ = max
S∈N∗

e(S, x)
‖ηS‖

= max
S∈N∗

γS(x),

and we can write
Cµ(v) = arg min

x∈X(v)
max
S∈N∗

γS(x),

which resembles LC(v). Similarly to the least-core, the failure core is never empty.
The difference between the least-core and the failure core is the rescaling factor

‖ηS‖−1. It can be interpreted as a coefficient scaling the excess at the individual level,
because ‖ηS‖ only depends on the cardinality of S. If the excess of a 5-player coalition
S is 4, and the excess of a 2-player coalition T is 2, despite the fact that the excess
for S is bigger than for T , the players in T are more aggrieved than players in S. The
average excess per player in T is 1, while the average excess per player in S is 4

5 < 1.
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Concluding remarks and perspectives

The mathematical idea introduced and developed here (that of a
“balanced set”) promises to be of general interest in the study of
finite sets, zero-one matrices, and nonadditive set functions.

Lloyd S. Shapley, On balanced sets and cores [82]

In this final chapter, I briefly recapitulate the main results of the thesis and suggest
ideas for further research.

First, in Chapter 1, I have defined some new notation to do geometry in the space
of preimputations. In particular, I introduced the vectors {ηS | S ∈ N} which are very
relevant for the geometrical study of cooperative games, as ηS represents the direction
towards which a translation profits the most to coalition S. If we translate the payment
vector x by a side payment σ, then the change of the payment of coalition S is simply
〈ηS, σ〉. This new tool is particularly useful for the construction of projection operators
in Chapter 4. Moreover, I have presented the similarities between cores of convex games
and different polytopes in various areas of study, summarized in Table 1.8.

Eventually, using Kalai and Zemel’s characterization of a totally balanced games
as a flow game, which is the minimum of a finite set of inessential games, I have made
a link between tropical polynomials and cooperative games. This is an interesting
new perspective, as the literature of tropical mathematics is rapidly increasing, and
can influence cooperative game theory the same way polymatroids and submodular set
function theory have inspired the development of convex games theory.

In Chapter 2, mainly based on the paper written with my supervisors [56], we
have shown that minimal balanced collections are a central notion in cooperative game
theory, as well as in other areas of discrete mathematics. As a balanced collection is
merely the expression of an organization of the players in N during one unit of time,
or more generally one unit of resource among subsets, we believe that many more
applications should be possible.

Just focusing on the domain of cooperative games, the consequences of our results
appear to be of primary importance for the computability of many notions like exact-
ness, extendability, etc. Indeed, a blind application of the definition of these notions
leads to difficult problems related to polyhedra, limiting their practical applicability.
Thanks to my results and the new definition of basic polyhedra, provided minimal bal-
anced collections are generated beforehand (which is possible since they do not depend
on the considered game or property), these notions can be checked very easily and
quickly, as most of the required tests reduce to checking simple linear inequalities.
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An interesting perspective would be to study how many minimal balanced col-
lections are generated from each of the four steps of our algorithm based on Peleg’s
method, and especially to know whether a minimal balanced collection is generated
more than once. Also, knowing the set of proper minimal balanced collections, i.e., min-
imal balanced collections not containing two disjoint coalitions, could greatly improve
the speed of the algorithm on proper games, i.e., games with superadditive coalition
functions. Another interesting approach would be to study the 1-skeleton of the poly-
tope of minimal balanced collections, to build efficient optimization algorithms on basic
polyhedra. The 1-skeleton of a polytope is the graph defined on the set of vertices as
nodes, and edges of the polytope as edges of the graph.

In Chapter 3, I am blazing a new trail in my investigations of balanced collections.
Using Joyal’s combinatorial species theory [47], I built the species of k-uniform hy-
pergraphs of size p, which can be of interest in the study of hypergraphic networks,
extremal combinatorics, mechanism design, etc. Noticing that a regular hypergraph is
virtually a balanced collection, this species together with its generating series can be
applied to the study of balanced collections. To continue on these tracks, it would be
interesting to study the action of permutations on balanced collections in more depth,
as well as the concept of weighted species, with bivariate generating series, which may
allow us to deduce the generating series of regular hypergraphs, and therefore balanced
collections, from the one of uniform hypergraphs.

Later, I have presented the notion of hyperplane arrangements, and how these
objects are relevant in the study of cooperative games, seen as distortions of arrange-
ments. A few results about the facial structure of the core, or the feasible regions are
stated, but there is still a lot that could be done in this direction. There can be strong
connections with the tropical polynomial view of a totally balanced games.

Finally, in Chapter 4, I have shown that generating minimal balanced collections
has also permitted to implement an algorithm that tests core stability, i.e., coincidence
between the core and a stable set of a given game. The examples provided have shown
that, even if for many cases the answer can be obtained quickly, there are instances
where the computation time goes beyond tractability. To tackle this, I looked for blind
spots in the space of preimputations. Indeed, using the minimal balanced collections,
it is possible to quickly identify whether some regions will prevent the core to be
stable, and then increase the efficiency of my algorithms. An interesting investigation
to perform would be to know whether we can find a similar result, but ensuring core
domination instead of its impossibility.

To conclude this thesis, I have presented a set of new tools based on projection
operators. I believe that these operators can be interesting by themselves, especially in
the application of cooperative game theory, to know which core element is the closest to
a current allocation of a given resource, and therefore reallocate it in the most efficient
way. The initial ambition of this study of projectors was to build new procedures to
check core stability, or at least subprocedures allowing to exclude some regions from
the computations. The idea would be to know the direction of the projection, a linear
combination of some vectors ηS, and then check if, for a given preimputation x, there
would be a coalition T ∈ φ(x) which can support the projection, in the sense that the
direction of the projection belongs to the domination cone δT (x). This is also one of
the exciting perspectives emerging from this doctoral work, which I intend to continue.
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