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Abstract. In this thesis, one concentrates on solving the reflected backward stochastic
differential equations via penalization approach and its applications in finance. A complete
non-asymptotic convergence result is investigated around penalized BSDE. The rate of penal-
ized solution converging to reflected solution is presented in the first place and it follows by
the rate of discrete penalized solution converging to the continuous penalized one. For solving
numerically PBSDEs, we provide an implicit scheme using least-squares regression Monte-
Carlo method. The non-asymptotic error analysis is deduced for this numerical scheme,
in which both linear and non-linear least-squares regression are considered as optimization
method. The thesis is completed by an application of RBSDEs on American Put/Call options
in the non-linear market. The change of numéraire is investigated on reflected diffusions. We
find, as in the perfect market, the pricing equivalence between an American Put option and
an American Call option is achieved by exchanging the interest rates with dividend rates,
and swapping the spot price with the strike price, in a imperfect market with 2 interest rates
and 2 dividend rates.

Résumé. Dans cette these, on se concentre sur la résolution des équations différentielles
stochastiques rétrogrades réfléchies par I'approche de pénalisation et ses applications en fi-
nance. Un résultat complet de convergence non asymptotique est étudié autour des EDSR
pénalisées. La vitesse de convergence de la solution pénalisée vers la solution réfléchie est
présenté en premier lieu, suivi de la vitesse de convergence de la solution pénalisée discrete
vers la solution pénalisée continue. Pour la résolution numérique des EDSR pénalisées, on
propose un schéma implicite utilisant la méthode de Monte-Carlo avec régression des moin-
dres carrés. Une analyse d’erreur non asymptotique est déduite pour ce schéma numérique,
dans laquelle a la fois la régression linéaire et non linéaire des moindres carrés sont consid-
érées comme méthodes d’optimisation. La these se conclut par une application des EDSR
pénalisées aux options d’achat /vente américaines sur un marché non linéaire. Le changement
de numéraire est étudié sur les diffusions réfléchies. On constate, comme sur le marché par-
fait, que I’équivalence de prix entre une option de vente américaine et une option d’achat
américaine est obtenue en échangeant les taux d’'intérét avec les taux de dividende, et en
échangeant le prix spot avec le prix d’exercice, sur un marché imparfait avec 2 taux d’intérét
et 2 taux de dividende.
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Chapter 1

Introduction

In this thesis, we focus on the penalization approach to approximate the solution of
Reflected Backward Stochastic Differential Equations (RBSDEs in short). These equations
typically arise in the context of obstacle control problem such as optimal stopping. We
study the convergence of penalized BSDEs (PBSDEs in short) in the sense of continuous and
discrete solutions, and of numerical approximation.

1.1 Reflected BSDE

1.1.1 Review

Backward Stochastic Differential Equation (BSDE for short) is a type of stochastic
differential equation where the evolution of a process is described backward in time. In
BSDE, the solution is determined by specifying a terminal condition and a generator function
that relates the solution to the driving processes. BSDEs have applications in various fields,
including mathematical finance, optimal control, and stochastic control problems. One key
feature of BSDEs which makes this type equation particularly suitable for problems where
the objective is to evaluate contingent claims or derivative securities at a given terminal
time, is that the backward time evolution allows for incorporating future information into
the analysis. We start by recalling that a BSDE is an equation taking the following form

T T
n_§+/ f(s,YS,Zs)ds—/ Z.dB,, VO0<t<T, (1.1.1)
t t

where {B; : 0 <t < T} is a d-dimensional Brownian motion defined on a probability space
(Q, F,P). This probability space is endowed with the filtration (F;)o<i<r generated by B
where Fy contains all the P-null sets. The data of such equation are given by the terminal
condition £ which is Fp-measurable and a generator f which can depend on w. We say (Y, Z)
is the solution to BSDE with respect to (&, f) if (Y, Z) satisfies (I.1.1)). This kind of equation

1



Chapter 1: Introduction 2

with linear generator f was first introduced by Bismut ([13]) as the self-adjoint equation of
the stochastic control problem. Then Pardoux and Peng ([114]) presented the well-posedness
result of BSDEs with Lipschitz generator. Let us recall this result.

Theorem 1.1.1 (|114]). Suppose £ is square integrable and Fr-measurable. Suppose the
generator f is C{ip—Lipschitz continuous in (y, z), namely, dt ® dP, a.e.
lf(t,w,y,2) — f(t,w,y, )] < Czip(\y — |+ 1z —2|),Vy,y €R,z 2 € R%

IfE [|£|2 + fOT |f(8,0,0)]2d5] < 00, then there exists an unique solution to BSDE (1.1.1]) in
H? x H2, with

T
H? = {{¢; : 0 <t < T} is a predictable process such that E [/ |¢s|2ds] < o0}
0

and | - | denoting the Euclidean norm with respect to the dimension of process.

Since then, in this developing domain, numerous works have emerged, among which,
El Karoui, Peng and Quenez ([54]) linked this equation to the pricing problem of European
options in both complete and incomplete markets, with identifying the value process as Y
and the hedging strategy as Z.

Reflected backward stochastic differential equations (RBSDEs in short) were introduced
right after by El Karoui, Kapoudjian, Pardoux, Peng and Quenez (]|52]). The word 'reflected’
means that the value process cannot go below a certain lower boundary or exceed a certain
upper boundary. Therefore, RBSDEs are frequently used to model situations where there are
constraints or barriers on the evolution of a stochastic process, such as in finance applications
where prices or values are lower-bounded. As different as non-reflected equations, RBSDEs
admit an obstacle process S in inputs and we require that the value process Y is always
superior or equal than obstacle S. A standard RBSDE writes as follows:

Yi=¢+ [T f(s,Ys, Z)ds + Kp — K, — [ Z,dB,, VO0<t<T,
foT(Y;f - St)th =0,

where K consisting part of solution of RBSDE (¢, f,S), is a non-decreasing process in order
to push Y above S on [0,7]. The third equation in is so-called "Skorohod condition”
which demands that the increment of K can only happens on {(t,w) : Y; = S;}. We say that
(Y, Z, K) is the solution of RBSDE (¢, f, S) if (Y, Z, K) satisfies (1.1.2)).

Except the standard RBSDE as (1.1.2), there are also many works inspired by the
pioneering work [52]. The doubly reflected BSDEs are studied by Cvitanic and Karatzas ([40])
and by Hamadene and Lepeltier ([81]), see also [48,[79,/97] for related topics; the obliquely
reflected equations are studied by Hamadene and Jeanblanc (|80]) for 2 processes and then
by Hu and Tang ([|87]) for multiple processes, see also [35,/125]; equations with quadratic
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growth in Z are studied by Biand and Hu [21,22]; recently, mean reflected equations are
investigated by Briand, Elie and Hu ([19]) and by Hamadéne and his co-authos ([36,/46]).
The well-posedness of BSDEs under some weak conditions is also a popular topic. For
example, the (LP,p < 2)-existence is first studied by Briand et al. (|23]) for BSDEs with
monotone generator and this is developed for RBSDEs with Lipschitz generator by Hamadene
and Popier ([82]).

One recalls the following principal results in [52].

Well-posedness One first defines the square-integrable space .#? for processes:

S? ={{¢; : 0 <t < T} is a predictable process such that E [ sup |¢t|2} < 00}
0<t<T
Theorem 1.1.2 ([52, Theorem 5.2 and Proposition 3.5]). Suppose S is a continuous stochas-
tic process with SV 0 =: St € %2, the generator f is Cgip—Lipschz'tz continuous and
f(-,0,0) € H2, the terminal condition & is Fr-measurable, square-integrable and & > Sr,
then there exists a unique solution (Y, Z,K) € /% x H? x .#? satisfying that Y, K are con-
tinuous. Moreover we have the following a priori estimate:

T T 2
E{sup W+( / \Zﬁdt)mﬂ < CE 15|2+( / \f(t,O,O)!dt) T sup <st+>2]
0 0

0<t<T 0<t<T

where C' is a constant depending only on T, C}jip.

Equivalence to optimal stopping problem

Proposition 1.1.1 ([52]|[Proposition 2.3]). Under the same assumptions as Theorem
let (Y, Z, K) be the solution of RBSDE w.r.t. (£, f,S), then

}/;f = Ssup E |:/ f(uv Yu7 Zu)du + S’T]—{T<T} + 51{T=T}|‘E )
t

T€T,T

where Ty r contains all the stopping times which are lower bounded by t and upper bounded
by T.

Density of increasing process K. Proposition reveals the absolute continuity of K
with respect to Lebesgue measure. It is particularly useful when one needs to handle some
convex Markovian obstacle processes S, where a local time term (which is non-decreasing)
will be produced due to Ito-Tanaka formula. See Chapter

Proposition 1.1.2 ([52, Proposition 4.2 and Remark 4.3]). Under the same assumptions as
in Theorem[1.1.9 and assume S is a generalized semi-martingale of the form

¢ t
Sy =50+ / Usds + / VidBs + A
0 0
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where U, V, A are, respectively, R, R% R-valued and F;-progressively measurable processes sat-
1sfying
T
|l Wit < s, as,
0

and A is continuous and non-decreasing. Let (Y, Z, K) be a solution of the RBSDE (&, f, S),
then

— Z; =V, dt @ dP a.e. on the set {Y; = S;};

— 0 S th S 1{)/15:575} (f(S, St, ‘/;5) + Ut)_ dt.

Increasing limit of penalized BSDEs. Another important result is the existence of
solution of RBSDE proved via penalization. The penalized version of (1.1.2)) writes as, for
any penalty parameter A > 0,

T T T
Y =¢ +/ f(s, Y2, Z))ds + /\/ (Y} — S,)"ds — / ZXdB,, (1.1.3)
t t t

which is a BSDE with Lipschitz constant depending on A\. We say (Y, Z%) is the solution of
penalized BSDE with respect to (&, f,5) and A, if (Y*, Z*) satisfies (1.1.3). We denote by
K} =\ [(Y)) — S,)~ds the penalized version of K. The well-posedness of (Y*, Z*) comes
from Theorem [L.1.1]

Theorem 1.1.3 ([52][Section 6]). Under the same assumptions as Theorem|1.1.2, let (Y*, Z*)
be the solution of (1.1.3), then there exists a constant depending on T, Ctip» such that, for
any A > 0,

T T
E[sup VP + / |Zﬁ|2dt+\K%|2}50E {m% / (L0, 0)Pdt + sup <Sr>2],
0 0

0<t<T 0<t<T

where (YA, Z*) be the solution of PBSDE with respect to (&, f,S) and X\. Moreover, let
(Y, Z, K) be the solution of RBSDE with respect to (€, f,S), then,

T
hmE[/ (1Y; =Y+ |2, — Z}|*) dt + sup |Kt—Kﬁ]2} = 0.
0

A—00 0<t<T

Obstacle PDEs. Let b: [0, 7] xR? — R and o : [0, 7] x R? — R4 satisfying the uniform
Lipschitz continuity, i.e. for any z,2’ € R¢,

|b(t,z) = b(t,z")| + |o(t,2) — o(t,2)| < Ch lv — 2’|, for any ¢ € [0,T].

For each (t,x) € [0,T] x R%, let X** be the solution of following SDE:

X =x +/ b(u, X5*)du +/ o(u, Xv")dB,, t<s<T.
t t
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Consider the Markovian data of RBSDE, namely,
ézg(X;}‘x)7 f<87y7 Z) :f<S7X§’z7y7'Z)7 S:S(S7X;7m)7 t S S ST
and denote (Y'* Z5* K%*) the solution of related RBSDE.

Theorem 1.1.4 ([52|[Theorem 8.5 and Theorem 8.6]). Under the same assumptions as in
Theorem[1.1.3, assume

— b, 0 are uniformly Lipschitz;
— g € C(RY) and g, f(t,-,0,0),S(t,-) have at most polynomial growth at infinity uni-
formly in t;
— f(-,0,0,0) and S(-,0) are bounded on [0, T].
For each (t,x) € [0,T] x R%, let u(t,z) = Y;"*, then u is the unique continuous viscosity
solution of following PDE,

min {u(t, x) — S(t,x),
— Owu(t,x) — Lyu(t,x) — f(t, z,ult, z), (Vuo)(t, 93))} =0, (t,z) €eR xR

d 2 d
where Ly = 1 > i1 (oo(t, x))m%&% + > bilt, a:)a%i.

1.1.2 Discrete solution

Beside of the above beautiful properties admit by BSDEs, the numerical approximation
is another essential topic where various techniques have been developed. The very first step
of establishing an error analysis is providing a reasonable discrete solution and prove its
convergence. In this subsection, we recall some classical results about the discrete solutions
under a uniform time discretization as

O=tg<---<t,=ih<ty=T. (1.1.4)

1.1.2.1 Review for BSDEs

The discrete solution of BSDE (Y, Z") usually writes as follows

Y =&

zh = %]E YL ABF,], 0<i<N-1,

Y =E [Ytglmi} Rt Y Zh), 0<i<N -1, (1.1.5)
where AB,, = B;,., — By,.

Zhang ([132]), Bouchard and Touzi ([16]) prove that the convergence from Y" to Y is
at order h'/? under Markovian framework. Let us recall this result.
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Theorem 1.1.5 ([16][Theorem 3.1). Under the same assumptions as Theorem for g
and f, then

T
lim sup h_l{ sup E[|Y) - Y,|’] +E [/ |z — Zt|2dt} } < 00,
0

h—0 0<t<T

where (Y}r, ZI") is defined as ([1.1.5)) for any t; € {to, - ,tn_1} and for any t € (t;,t;41],
(Y, Zl") is solution of forward SDE w.r.t. (£ =Y/, f = f.,):

t
Y=Y~ (t—t)fs +/ Z'dB;,
t;
and f,, = f(t;, X[, Y, Z}).

Malliavin weight The approximation for Z” in (1.1.5]) is deduced by It6 isometry, never-
theless, Fournié et al. ([64]) establish a formulation with Malliavin calculus under a financial
background. Ma and Zhang [104] extend this to the standard BSDE. Generally, this is due
to the similar consequence of Feynman-Kac formula, where Z can be considered as the first
derivative of Y in the Markovian function sence. Let (Y, Z) be the solution of BSDE (|1.1.1),
we have the following result.

Theorem 1.1.6 ([104][Theorem 4.2]). Under Markovian assumptions in Theorem[1.1.], as-
sume in addition,
— 0 is elliptic in the sense that, there exists a constant ¢ > 0 s.t. a'o(t,x)o(t,z) a >
clal?, for any a,z € RY, vt € [0, T];
— f and g are uniformly Lipschitz w.r.t. x;
— b(+,0),0(-,0), f(-,0,0,0), g(-) are uniformly bounded;

then we have
T
Z,=E {g(XT)wgp —|—/ fu, Xy, Y, Zu)deu\}"t} o(t,Xy), Vtel0,T),
¢

where the Malliavin weight (w! : 0 <t < s <T) is defined by:

1/ !
wl = ( / (al(u,Xu)DtXu)TdBu) L 0<t<s<T
t

s—t

with D, X is the Malliavin derivative of X, at time t.

The above representation is considered as a discrete solution of numerical approxima-
tions in [17], [71].
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1.1.2.2 Review for RBSDEs

The most popular approach for the discrete solution of RBSDE should be Snell enve-
lope. The Snell envelope is a concept from the field of stochastic control theory and optimal
stopping theory. It is defined as the smallest super-martingale that dominates a given stochas-
tic process, in other words, it represents the best lower bound on the process at each time
step, considering all stopping times.

For RBSDE, Proposition provides the continuous version of Snell envelop, while
the discrete version, which incorporates the Dynamic Programming Principle, is typically

formulated based on that of BSDEs in ((1.1.5)),

Y =¢,
Zh_z]E[YthHABti } 0<i<N-—1,
VE=E V) 4 hf Y 2R, 0<i<N -1

Yti?:max{st.,ffﬁ}, 0<i<N—1,

K{%_Z -YM, 0<i<N-1. (1.1.6)

k3

Ma and Zhang ([105]) prove that the convergence rate from (Y" Z" K") to (Y, Z,K) is
hY/* in the following sense. See also the similar discrete scheme for doubly reflected BSDEs
in [32,47,129] and the one for obliquely reflected equations in [33,34].

Theorem 1.1.7 ([105][Theorem 7.1]). Under the Markovian assumptions in Theorem [1.1.4]
and in Theorem [1.1.6, assume

— S € CY2([0,T] x RY) with bounded derivatives;

— b,o, f are %—H()’lder continuous in t.

We have

T
E | sup (IK—WI2+IKt—Kf|2)+/ |Zt—Zth|2dt} < v,
0

0<t<T

where fort € (t;,t;1), (Y*, Z]') is defined as the solution of SDE w.r.t. (€& = t1+1’ f=fo):

tit1
Y Yth+1 (i1 — t>fti+1 - / ngBm
t

and fti+1 = f( l+17Xth+17Y;h+17 ZthH)

Bouchard and Chassagneux ([15]) get the same result without the condition of ellipticity
assumed on o and improve this rate to h'/? for some f with bounded second order derivatives.
The similar results can also be found in [34] for obliquely reflected BSDEs.
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Malliavin weight Ma and Zhang ([105]) also provide a representation for Z in reflected
case.

Theorem 1.1.8 ([105][Theorem 4.2]). Under the same assumptions as in Theorem ex-
cept the Holder continuity, let (Y, Z, K) be the solution of RBSDE (1.1.2)) w.r.t. the Marko-
vian &, f, S as assumed in Theorem |1.1.4. The martingale integrand Z can be written as

T T
Z,=E {g(XT)th +/ flu, X, Yy, Z)w! du +/ deKt} o(t,Xy), Vtel0,T),
¢ ¢

where the Malliavin weight (w: : 0 <t < s <T) is defined by:

T

1 S
wz — ( ” / (a_l(u,Xu)DtXu)TdBu) , 0<t<s<T
§—=1J4

with Dy X being the Malliavin derivative of X, at time t.

As far as the author knows, there is no available result for the discrete solution of
RBSDESs based on this representation.

1.1.3 Contributions

In the realm of mathematical optimization, penalization methods serve as techniques
for integrating constraints into an optimization problem. This is achieved by augmenting
the objective function with penalty terms, which penalize constraint violations and guide the
optimization algorithm towards feasible solutions.

One is motivated by studying the convergence rate from the solution of PBSDE to the
one of related RBSDE because of two main raisons. On the one hand, Theorem shows
that the solution of PBSDE is a natural approximation to the one of RBSDE, however, the
utilization of this method as a practical computational approximation approach is rarely seen
in works related to BSDEs. On the other hand, the penalty method is well studied in the
domain of obstacle related linear parabolic PDEs (see [45,63,/134]).

Denote (Y*,Z*) the solution to (1.1.3) and (Y, Z, K) the one to (1.1.2). Given a
generator f not depending on z, we define the discrete solution Yt)‘h of PBSDE by implicit
projection as follows:

=g,
Y =E [YA’hLEZ} R Y, 0<i< N -1, (1.1.7)

tit1

where fA(t,y) := f(t,y) + My — S;)~ is the penalized generator.

Our main contributions in Chapter [3] are,



Chapter 1: Introduction 9

— taking advantages of the absolute continuity of K as in [52|[Proposition 4.2], the
convergence rate from Y;* to Y; can attain % in LL°° norm under some boundedness
conditions; or Y* — Y at \%\ in .2 norm under more general conditions.

— the convergence rate for scheme from the discrete solution Y;*" to the con-
tinuous one Y;* is O(h'/? + Ah¥*) in L? under mild regularities of f and S.
Precisely, we have following results. The complete assumptions are detailed later in Chapter
B3] and some additional conditions may be required.

Theorem 1.1.9 (Rate of convergence 1/2, Theorem in Chapter [3). Let (Y, Z, K) be
the solution of in P x HP x P, p>2 and (Y*, Z*) be the solution of in
P x HP. Under hypothesis of Theorem [3.3.3. If the barrier S satisfies some boundedness
conditions and f(-,0,0) € /P, then

T p/2 C
| swp 0=y ([ 120 20Bar) o+ swp (- 12| <
0

—_— )
0<t<T 0<t<T A\P/2

where C' is a constant depending on &, f, S, T, p.

Theorem 1.1.10 (Rate of convergence 1, Theorem in Chapter [3). Assume hypothesis
of Theorem where the process S is supposed to have the same form as in Proposition
ie. Sy =S+ [y Uds+ [ VidB, + A, as., if

Roo := esssup (f(t,5,V;)+U)” = esssup ki(w) < o0,
(t,w)€[0,T] (tw)€[0,T]x

then we have

0<Yi—Y)<5F, Vo<t<T.

Remark 1.1.3. The existence of kK, is not a demanding condition. It can be found in the
linear or non-linear market for many types of options. A table is provided in Chapter [3]

Theorem 1.1.11 (Convergence of discrete solution, Theorem [3.4.1)). Let (Y;*, ZMo<i<r be
the continuous solution of PBSDE and (Yti"h, Zt>;7h)0§i§N—l be the discrete solution of
scheme of PBSDE . Under hypothesis of Theorem for the case where generator
f does not depend on Z, we have

sup B | = ¥22| = 0 (h+ X072,

0<i<N—1

as h — 0.

Combine with Theorem [1.1.10] and Theorem [1.1.11] we conclude with the following
global error estimate of RBSDEs.

Corollary 1.1.4 (global error estimations, Corollary [3.4.2)in Chapter[3)). Let (Y, Zy, Ki)o<i<r
be the continuous solution of RBSDE (1.1.2)). Under same hypotheses as Theorem let
A= h73/%, for f not depending on Z, we get the estimation of global error as h — 0,

sup E (M - v,,)?] o,

0<i<N—1
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1.2 Computational methods

1.2.1 Review

An efficient numerical scheme for solving BSDEs is always worthy to be studied due to
the significant role played by BSDEs in risk management and option pricing under various
market conditions. In order to solve discrete solutions (L.1.5]), (1.1.6)) and (1.1.7)), one needs
to compute the conditional expectation E [Yti +1’~7:ti]> where Monte-Carlo method is widely
applied.

1.2.1.1 Random walk

Instead of simulating the i.i.d Gaussian variable as the increment of Brownian motion,
the method random walk provides an easier idea with simulating binomial or other random
variable to represent the ’finite’ direction of increment. So the conditional expectation is
estimated by the empirical average of realizations in finite possible directions. This simplify
the implementation of algorithm but this method suffers heavily from the so-called curse of
dimensionality, i.e. its space complexity increases exponentially as the dimension increases.
Briand, Deylon and Mémin ([18]) and Ma, Protter, San Martin and Torres ([102]) apply
this method in BSDEs, then Mémin, Peng and Xu ([109]) and Martinez, San Martin, Torres
([107]) extend this method to penalized BSDEs, see also [129] for doubly reflected equations
and [20] for convergence rate analysis of BSDEs in Wasserstein distance.

1.2.1.2 Quantization

Bally and Pages ([3]) present a quantization tree algorithm for solving numerically
RBSDE:s in the case of generator f not depending on z based on the discrete solution (|1.1.6]).
The quantization provide a spatial discretization both on time and on space. Based on the
uniform discretization as supposed in (1.1.4), this method proposes to engage continuously
some discrete time in special length as an epoch. Given the length of epochs, the space
discretization are optimized in the sense that its Markovian realizations of X on this time-
space grid have the minimal error in ILP-spaces and the transition weight from each grid is
given in the form of conditional expectation. Delarue and Menozzi ([42]) also utilize this
method in coupled FBSDEs. See also [62,/99}/100,/113] for quantization method.

1.2.1.3 Regression

Kernel. Bouchard and Touzi ([16]) considers the discrete solution as in ((1.1.5)) and they use
kernel function to establish a ratio representation for conditional expectation. The nominator
and denominator of ratio are estimated empirically by a Monte-Carlo Dirac mass. The rate
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of convergence of the estimator of discrete solution is proved at h~®+9) M ~2 in [16][Theorem
6.2], where M is the number of i.i.d paths simulated.

Least-squares projection. The conditional expectation has an important property that
it is minimizer of mean square errors in the following sense: given a square-integrable random
variable R and a g-algebra G, then

]E [7_2|g:| B RelL2 :2’%r%qre}afsurable]]E [|7_2 a R‘Q] ‘

So it is reasonable to consider the approximation of conditional expectation as a least-squares
optimization problem.

Longstaff and Schwartz ([101]) popularize the application of Monte-Carlo regression
method where they use the linear least-squares basis projection regressor for computing the
conditional expectation. Gobet, Lemor and Warin ([69]) first generalize this idea to the
standard BSDEs as . They propose a scheme based on iterative regression functions
which are approximated by projections on a reduced dimension set of functions, with the
coefficients of the projection being evaluated using Monte Carlo simulations. Recall their
numerical scheme. Based on discrete solution described in under Markovian framework
as in Theorem we denote by (Y Z) the numerical approx1mat10n to discrete BSDE
solution For sunulatmg (Y, Z), in [69], one first prepares

— M i.i.d trajectories of Brownian motions B along with the time partition 0 =ty <
ty <---<t;=1h <ty =T and its Markovian realizations X ;
— a reduced dimension of functions as basis of projection ¥ = Span{y; : 1 < j < k}.

It follows by the numerical scheme in dynamic programming,
}A/t};; = g(XthN>7
Zl=af (X, Yr=al (X)), 0<i<N-1. (1.2.1)

The optimal parametrizations a? € R¥4 oY € R¥ are such that the empirical mean squares
error is minimum, i.e.

al o

= arg min

tit1 tit1
(a¥,a%)eRIxREXd

2
(Yhm+hf t“Xhm Yh,m thzm)_ay 77b( hm)_a 1/}( hm)ABZ,m> :

ﬁM:

(1.2.2)

which can be solved explicitly by Singular-Value-Decomposition (SVD in short). The explicit
error order of scheme (|1.2.1))-(1.2.2)) is deduced in [69][Theorem 1-3]. The similar results can
be found in |72 for multi-steps scheme.

The case where f does not depend on z is always considered as the first step when one
wants to develop an error analysis. Particularly, in financial engineering, this corresponds



Chapter 1: Introduction 12

with the pricing problem under risk neutral market (see the next subsection). Gobet [66]
presents the following results. Analogously, the optimal parametrization o) € RF is such
that the empirical mean squares error is minimum, i.e.

Vi =g(XP), Y=ol (X!, 0<i<N-1,
M

1 ~ . 2
o) i=argmin - " (Yt?jf B (t, X[ Vi) oy w(X[;m)> . (123)
a¥€eR m=1
Denote u(t, z) = Y;"* for each pair (¢,2) € [0,T] x R? as in Theorem and respectively
a(ti, o) ==Yy = af () for (t;,z) € {to, - ,tn_1} x R% we have the following results.

Theorem 1.2.1 (|66][Theorem 8.3.2]). Under the assumptions as in Theorem and
assume u is bounded by L uniformly in (t,x), for enough small h, there ezists a constant C

depending on L,T, C’}jip, C’ii»p such that,
N-1 1
. 2 2 . 2
E |[[a(t;, ) — u(ts, ')HM(MM)} <C (;Zz [(1 + N)4L 77 T i — ulty, ')|]L2(uXthj):|> :

2 M h,m 2 .
where [[9() oy = 37 et [9XE™ ) Mo,y = Joa l9(@)Prixg (d) and pyy s
tj
the law othhj.

Theorem 1.2.2 (|66][Theorem 8.3.4]). Under assumptions as in Theorem and assume
w is bounded by L uniformly in (t,z), for enough small h, there exists a constant C' depending

on L, T, C'L-p, Cfgp such that,
N-1 2
E it ) = ult Mg, | < C( X [0+ ML 4 minlo = ey I,
tj =i t
k4 1)log(6M)
! _
- M

Neural network. Gyorfi et al.([78]) present their result about non-linear regression. This
result gives us insight on how does the error propagate especially when we do not have the
concept of 'basis’ to describe the size of regression space. Given random variables R, O where
R is bounded by L and given a set of data {(R™, O™):1<m < M}, we set

fev

M(z) =E[R|IO=2], M"¥(z)=-LvV <arg min Z (R™ — f((?m))2> (x) AL

m=1

Theorem 1.2.3 (|78, Theorem 11.5 ]). Assume 1 < L < oo and let yu be the law of O, then

B | [ M) - M)t

Cq Co + C3 lOg<M>U\I/+ . 2
< — 2 inf - d
<4t A +2inf | 1f(z) - M@)[u(de),
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where c1, co, c3 are constants depending on L and vg+ represents the Vapnik-Chervonenkis
dimension (VC dimension in short) of set U* = {{(z,y) e R¢ xR :y < o(x)} : p € ¥},

In Chapter [4, we have fully interpreted this theorem to neural network regression space
with identifying vg+ and }n\fl’l Jga |f (@) = M(z)[*(dx) by recent works in machine learning.
€

1.2.2 Contributions

We complete Chapter I by this error analysis for discrete solution of PBSDE (1.1.7)
developed in Chapter I Denote our target function to be simulated by u™" and

u%hcwzz(»ﬂ)‘1<xJE[ ?ﬁ(xﬁgg]), VO<i<N -1 (1.2.4)

Compared with (|1.2.3]), we present the implicit numerical scheme as follows

iy () = g(x),
WM (z) = (U )— ( [ut+1(Xt“x):|>’ VO<i<N-—1, (1.2.5)

tit1
where the implicit projection V;* from the discrete solution in (TI.1.7)) is written as,

o, [RIXRSR
t (:E,y) =Y — fA(tzal.ay)h‘ =Y - f(tz,x,y)h - )\h<y - S(tiax»_a

and (V))~! is the approximation of the inverse of V;*. We also denote

~Ah i
E|a(xi)| = el ). (12.6)
The function ®(«,-) in the context of linear regression equals to « - 9(-), while in non-
linear case, it would be a network with some trained weights and biases a. Under some
conditions, V;* is continuous, increasing and invertible in the sense that (V;*)~!(z,w) := y if

V’\(:c y) = w. For each discrete time ¢;, the regression will still be applied in approximating

conditional expectation E [ ;\+h1 (X tm)} and the final estimation u is done by tracking

(Vi*)~! using Picard fixed point argument. Our contributions are the non-asymptotic error

estimations of (1.2.5))- -

— Extend Theorem [[.2.1] and Theorem [1.2.2] to penalized BSDEs in case of linear
regression and prove that the penalty does not change the convergence rate for

scheme (T23);

— Develop the error analysis of non-linear regression realized by neural network and
deduce the tuning of Monte-Carlo parameters and neural network parameters.
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Let us first clarify our notations. For both linear and non-linear regression, we prepare M i.i.d
simulations of d-Brownian motion and its realizations of X along with time partition. As-
sume the approximation space for simulating conditional expectation fulfills one of following
conditions.
— WU := Span{t; : 1 < j < k} where for any 1; : R — R and k is the size of bases
{¢j:1<j <k}
— the class of functions computed by a feed-forward neural network with the rectified
linear unit( ReLU for short),

‘P:{¢3Rd—>R’¢:¢£ o p_1-+-0 Py,

where V1 <j < L—-1,9; € fd’;hdj and ¢, € fdﬁl,l}

with
b dar = {¢> 'RY — RY* V0 <i<djy, ¢(z); = plb +w/ ),
where b € R4+ w; € R% }
Z4;,d;, being defined in the same way as .27 ;  with p(z) = =,

the function p being the RelLU activation function which is defined by p(xz) = x™
and £ being the number of layers of neural networks.

In this way, we define our estimator aj’h respectively. Define operators {P; : 0 <i < N — 1}
which satisfy

tit1

Pay() =E [ﬁ?ﬁ(X“" )] NVO<i<N-1.
Given a priori estimator ﬁj\ihl’ with ([1.2.6), the function Hﬁ;‘fl is approximated by regression

on ¥, namely,

M
2
PZﬁ;\Jrhl() ~ ®(a) ) where o) = argerjin Z <ﬂ;\jrhl(Xgl+l) — @(a,X{?)) )
@ m=1

Since the choice of a depends absolutely on regression space ¥ and Monte-Carlo parame-

. . . Ak N\, M, . :

ters M, h, in general, we denote the simulation u;" by ;""" . Particularly for the linear
. A\ R, Mk . . . .

regression, we use ; to emphasize its dependance with the size of basis.

Precisely, we have following results for linear and non-linear regression.

Theorem 1.2.4 (global in-sample error, Theorem in Chapter[d]). Under assumptions of
Theorem let '&f"h’M’k be defined in (1.2.5)) for linear regression space and uf"h be defined

- 1
in (1.2.4). If h < 1A YT then we have,

f
Lip
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— the function sequence {uM" -0 < i < N} is uniformly bounded by L on [0,T] x R?
with L not depending on X, i, h;
— Jfor the linear regression on k-dimensional basis functions, there exists a constant C
depending on T, Cfip, L, such that, for any 0 <1 < N —1,
A)\,h,M,k(_) . 'U/)\’h(')

2
L2 ()

C’Z [i—i-(l%—Ch ) inf ng Pu;\fl()

2 ]

L2(ux,) ]’

where P; is conditional expectation operator such that P 1(x) = E [uZH(XtZﬁ)}
and X, 15 the law of X, .

Theorem 1.2.5 (global out-sample error7 Theorem 4.4.3|in Chapter {4)). Under assumptions
i Theorem |4.4. ﬂ, let u’\h be deﬁned n and u;"™" * be estimator by linear regression
defined in (1.2.5). If h < 1 A 3 f , then we ha,ve for the linear regression on k-dimensional

L'Lp
2 :|
L2 (.U‘th )

basis, there exists a constant C’ depending on T, C’L forany 0 <1< N—1,

ip’

2

E ||[a}"5 ) — udh()

7 7

N-1
k : Ah
SC;[W—l—(l-I—C’h);g\prgo( — Pjuj(+)

L2(pxy,)

(k+1)log(6M)
i ;

+101(1 +Oh)L2\/

where L is defined as in Theorem .

Theorem 1.2.6 (Tuning of parameters, Theorem in Chapter 4| ). Under hypothesis of
Theorem[{.5.1 and assume the integrability for ¢ > 2 is satisfied by coefficients of X. Let NN
be a feedforward neural network which has the architecture as follows: there are W parameters
(weights and biases) to estimate, L layers, one input unit, one output unit and U non-zero
computation units with ReLU activation. Let ¥ be the function class computed by NN and
denote U A’\hM\I' the approximation of uf"h by non-linear regression. For any ¢ € (0,1), if
pammeters of network NN satisfies,

(a) max(W,U) = (5_d(1+¥)log %) ;

(b) LLO (logé).
Then, for 0 <i < N — 1, there exists a constant C' depending only on Cf- such that,

ip?
<(1+Ch)E ‘ u
L2(Mxti) ]LQ(MXtHl)

4
+ 0 <logM€_d(1+d;r2) <1og 1) +5) )
M €

E ||| % () — ()

’ @) ) )\,h,M,\II(_) ,\h( )

i+1 H—l
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as € = 0 (O depending on d,q); for the global error, we have, for 0 <i < N —1,

4
E <0 (ng—d(lﬂq“) (log 1) + Ne) ’
M €

3 (2

~ N, MU Ak
@M ) ()|

L2(pxy,)

as e — 0 (O depending on d,q).

1.3 Financial Applications

For a long period in history, the pricing problem for European options in a complete
and perfect market is usually represented by some linear parabolic PDEs, if one assumes the
underlying asset is in Black-Scholes models (BS model in short). Thanks to the Feynman-
Kac formula, the solution of the related PDE has a probabilistic representation in the form of
conditional expectation. This conditional expectation is always written as E@ [e*”(T*t)g |]-"t}
for a contingent claim £ and interest rate r, especially for European Call and Put options,
the solution is in closed form. We call the probability measure Q the risk neutral probability
such that the price of European option with any payoff £ at time ¢ could be expressed as the
conditional expectation of the discounted contingent claim.

For the American option, the pricing problem is posed in Snell envelop formulation
with combining the risk neutral probability, namely, the price of an American option Y with
payoff process S is usually written as

Y; = esssup E¢ [e”’(T’t)ST\}}} , 0<t<T.

TETt,T

The risk neural probability is also called by the pricing probability, which is used in
financial modeling, particularly in options pricing, to simplify calculations and make them
consistent with observed market prices in the perfect and complete market. However, in the
imperfect market, it is not reasonable to apply this. If one assumes in the market, there are
2 interest rates (deposit/loan) and 2 dividend rates (shorting/longing), the completeness of
this market is not evident and the risk-free rate is not applicable. The case with 2 interest
rates are first presented by [92] and [9]. Right after these pioneering works, many researchers
investigate on the attainability of hedging strategy in this type of market, see [39] and [55].
Indeed, in the incomplete market, one can only define the so-called upper price corresponding
to the super-hedging strategy. The super hedging strategy is usually composed by a self-
financing portfolio (V,7) and a consumption fee process C, such that, VT — Cr = £. The
process C' is positive and increasing on [0, T]. The upper price for European options is hence
defined by inf{V € R* : 3(m, C) such that VJT—Cr = £}. The attainability is used to identify
if there exists a super-hedging strategy with C' = 0, which is equivalent to the perfect hedging
Vr=¢&.

With the development of BSDEs/RBSDESs, the attainability in the non-linear market
is no longer a problem since it corresponds to the well-posedness of solutions, which can be
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easily solved by verifying if the generator satisfies the Lipschitz condition. Moreover, the non-
linear market corresponds with a non-linear parabolic PDEs which can not be solved by the
standard Feynman-Kac formula. So the backward equations not only solve the attainability
and also provide the form of solutions for the non-linear case.

1.3.1 Contributions

In Chapter |5, the Put/Call symmetry (PCS in short) is concerned. PCS is a funda-
mental relationship between the prices of put options and call options with the exchanged
underlying asset, strike price, along with exchanged market coefficients such as interest rate
and dividend rate. Under the Black-Scholes model, when the market coefficients such as the
interest rate r, the dividend ¢, the volatility o, are constants, one has the symmetry formula
between the American Call option and Put option (e.g [93, Proposition 4.2.2]), i.e. with
exchanging r and ¢,

Call(t,z;T,K;r,q,0) = xPut(t, K/z;T,1;q,7,—0).

Our contributions of Chapter [5 lie in developing the PCS of American options in the non-
linear market with 2 interest rates and 2 dividend rates taking advantages of RBSDESs, when
the underlying assets in the market are assumed to be It0 processes.

Precisely, in the market with 2 interest rates r, R and 2 dividend rates ¢, @, the driver is
written as

ft oy, 2) == —ry— 20, (e + g —rila) + (Re— 1) (y — 20y ' 14) " + (20, 1) 7 (Qe — 1) (1.3.1)
Then our main result in this chapter is as follows.
Theorem 1.3.1 (change of numéraire for RBSDEs, Theorem in Chapter [5)). Let

(Y, Z,K) be the solution of RBSDE w.r.t. (£ = Sr, f,S) where f is as (1.3.1) and S; =
g(t, (Xs)o<s<t), under hypothesis in Theorem [5.4.1, we have that

I AN Y, Z wm Y. [TdK,
2k = (5 - )
is the solution of RBSDE w.r.t. (S'T, £, 8) with S, = % and

f(ty,2) = —Foy — 26, (fu + G — 7ela)
+ (B = )y — 267 1) ™ + (267 1) 7 (Qr — @)
HereF € R, ReR, i € R, 6 € Myyy, G € RY, Q € RY are defined by 7, := qt(l), R, = le),
and
e ot . 7,
(2) 1) (2 _ @) ) Q§2)

- My " — Ly - - Oy o - qs ~
fi = . O, : . : Q=

) ) (.d) .(d)
:ulg)_:ulg) dx1 0-15)_0-15) dxd q Qt
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From the above result, we deduce PCS for multidimensional basket options.

Corollary 1.3.1 (Multidimensional PCS). Under assumptions in Corollary in the
non-linear market described by (1.3.1)), for American Options, we have the symmetry relation
for the Call option with the pay-off S; = (C"X, — K)* and the Put Option with pay-off
S, = (Cl — C’TX}), where C,C € R are constants. Precisely

Ca]‘l(t7 'r; C7 T7 K; /’67 r’ R7 Q7 Q7 O-) = leut<t7 i’; é? T7 Cl; ﬂ? f? R? 67 Q? 6)7
and
Cal]‘(t7 I; C7 T? K; /’L7 T? R? q? Q? 0-) - Put(t7 xl‘%; C’“’7 T7 Clxl; ﬂ? 7:7 é? 67 Q? 5-)7

d ~

where X = <%,§—f, ,ﬁ—f), T = (ﬁ,i—f, ,253),C = (K,—Cy,--- ,—Cy), and the X1
market coefficients (fi, 7, R, §,Q,5) are as defined in Theorem m

More examples of PCS for American type options can be founded in Chapter

1.4 Conclusions and Perspectives

In Chapter , the convergence rate from penalized BSDE to reflected BSDE
is studied and this can attain at order 1 with respect to penalty parameter. When
the generator f does not depend on z, the convergence from the discrete solution of PBSDE
to the continuous one is also given at O(h'/2 + AR%/4).

Chapter [4 completes Chapter [3|as error analysis for solving numerically penalized BSDE
by least-squares Monte-Carlo regression method, where both linear and non-linear regression
are discussed. For the linear case, we have the error estimations in empirical norm and in
distribution measure; for non-linear regression, only the estimations in distribution measure
is available.

Chapter [5| presents the change of numéraire of RBSDEs and Put/Call symmetry in the
non-linear market as the financial applications, where various types of American options are
provided as examples of applications.

Prospectives. For Chapter , the convergence rate of Z» — Z is only available at %

under the general assumptions while the rate % is applicable to Y* — Y under stronger
assumptions. A better convergence rate for Z can lead to an extension of our actual results
about the convergence of discrete solution because we do not assume f depending on z for

instant.

For Chapter [4] the tuning of parameters of neural networks still suffers from the curse
of dimensionality, i.e. the size of network should increase exponentially when the dimension
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d increases. The empirical error for non-linear regression is also worthy to be investigated,
which is difficult because dominating the covering number of the multi-layers neural network
is complicated.

For Chapter b the applications of RBSDEs are not evident in some non-Markovian
payoff cases, such as Lookback option, barrier options with sequential barriers etc.



Chapter 2

Introduction (en Francais)

Dans cette these, nous nous concentrons sur I’approche de pénalisation pour approximer
la solution des équations différentielles stochastiques a rebours réfléchies (EDSRRs en abrégé).
Ces équations apparaissent typiquement dans le contexte de problemes de controle d’obstacles
tels que 'arrét optimal. Nous étudions la convergence des EDSRs pénalisées (EDSRPs en
abrégé) dans le sens des solutions continues et discretes, et de I'approximation numérique.

2.1 EDSR Réfléchie

2.1.1 Révision

L’Equation Différentielle Stochastique Retrograde (EDSR) est un type d’équation dif-
férentielle stochastique dans laquelle I’évolution d’un processus est décrite a retrograde dans
le temps. Dans une EDSR, la solution est déterminée en spécifiant une condition terminale
et une fonction génératrice qui relie la solution aux processus moteurs. Les EDSRs ont des
applications dans divers domaines, notamment la finance mathématique, le controle optimal
et les problemes de controle stochastique. L'une des principales caractéristiques des EDSR,
qui rend ce type d’équation particulierement adapté aux problemes dont 1’objectif est d’éva-
luer des créances conditionnelles ou des titres dérivés a un moment terminal donné, est que
I’évolution temporelle retrograde permet d’incorporer des informations futures dans 1’analyse.

Nous commencons par rappeler qu'une EDSR est une équation de la forme suivante :
T T
Y, = ¢ +/ £(s, Y2, Z,)ds — / Z.dB,, VO0<t<T, (2.1.1)
t t

ou {B; : 0 <t <T} est un mouvement Brownien de dimension d défini sur un espace de
probabilité (€2, F,P). Cet espace de probabilité est doté de la filtration (F;)o<i<7 générée par
B ou Fy contient tous les ensembles P nuls. Les données d'une telle équation sont données
par la condition terminale £ qui est Fr-mesurable et un générateur f qui peut dépendre

20
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de w. On dit que (Y, Z) est la solution d’'une EDSR par rapport a (&, f) si (Y, Z) satisfait
(2.1.1)). Ce type d’équation avec un générateur linéaire f a été introduit pour la premiere fois
par Bismut ([13]) en tant qu’équation auto-adjointe du probléme de controle stochastique.
Ensuite, Pardoux et Peng ([114]) ont présenté le résultat de bien-posé des EDSRs avec un
générateur Lipschitz. Rappelons ce résultat.

Théoréeme 2.1.1 ([114]). Supposons que & soit carrément intégrable et Fr-mesurable. Sup-
posons que le générateur [ soit C’}jip—Lipschitz continu en (y,z), a savoir, dt @ dP, p.p.

lf(t,w,y,2) — ft,w,y, 2")] < C’{ip(|y — |+ |z =2, Vy,y €R,z 2 € R

Si E [|£|2 + fOT |f(8,0,())]2d5] < 00, alors il existe une solution unique & la EDSR (2.1.1))

dans H? x H?, avec
T
H? = {{¢; : 0 <t < T} est un processus prévisible tel que E {/ |¢5|2ds] < o0}
0

et | - | représentant la norme euclidienne par rapport a la dimension du processus.

Depuis lors, de nombreux travaux ont vu le jour dans ce domaine, parmi lesquels El
Karoui, Peng et Quenez ([54]) ont lié cette équation au probleme de I’évaluation des options
européennes sur les marchés complets et incomplets, en identifiant le processus de valeur
comme Y et la stratégie de couverture comme 7.

Les Equations Différentielles Stochastiques Retrogrades Réfléchies (EDSRR en abrégé)
ont été introduites juste apres par El Karoui, Kapoudjian, Pardoux, Peng et Quenez ([52]).
Le terme "réfléchi” signifie que le processus de valeur ne peut pas descendre en dessous d’une
certaine limite inférieure ou dépasser une certaine limite supérieure. Par conséquent, les ED-
SRRs sont fréquemment utilisées pour modéliser des situations ou 1’évolution d’un processus
stochastique est soumise a des contraintes ou a des barrieres, comme dans les applications
financieres ou les prix ou les valeurs sont soumis a des limites inférieures. Contrairement aux
équations non réfléchies, les EDSRR admettent un processus obstacle S en entrée et nous
exigeons que le processus valeur Y soit toujours supérieur ou égal a ’obstacle S. Une EDSRR
standard s’écrit comme suit :

Yi=¢+ [1 f(s,Ys, Z)ds + Kp — K, — [ Z,dB,, Y0O<t<T,
I (Y, = SpdE; =0,

ou K, qui fait partie de la solution de 'EDSRR (¢, f,S), est un processus non décroissant qui
pousse Y au-dessus de S sur [0, T]. La troisieme équation de est ce que 'on appelle la
“condition de Skorohod” qui exige que l'incrémentation de K ne puisse se produire que sur
{(t,w) : Y; = S;}. Nous disons que (Y, Z, K) est la solution de 'EDSRR (¢, f,S) si (Y, Z, K)
satisfait (2.1.2)).
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Hormis 'EDSRR standarde comme (2.1.2)), il existe également de nombreux travaux
inspirés par le travail pionnier [52]. Les EDSR doublement réfléchies sont étudiées par Cvitanic
et Karatzas (J40]) et par Hamadeéne et Lepeltier ([81]), voir aussi [48][79,97] pour des sujets
connexes ; les équations a réflexion oblique sont étudiées par Hamadene et Jeanblanc ([80])
pour 2 processus et ensuite par Hu et Tang (|87]) pour des processus multiples, voir aussi
[35,125] ; les équations a croissance quadratique en Z sont étudiées par Biand et Hu [21,22] ;
récemment, les équations a réflexion moyenne sont étudiées par Briand, Elie et Hu (|19]) et
par Hamadene et ses co-authos ([36,46]). La possibilité de bien poser les EDSRs sous certaines
conditions faibles est également un sujet populaire. Par exemple, I'existence de (L?,p < 2) a
été étudiée pour la premiere fois par Briand et al. (|23]) pour les EDSR avec un générateur

monotone, puis développée pour les EDSRs avec un générateur Lipschitz par Hamadene et
Popier ([82]).

On rappelle les principaux résultats suivants dans [52].

Bien-posé. On définit d’abord I'espace carré-intégrable .2 pour les processus :
? ={{¢;: 0 <t < T} est un processus prévisible tel que E [ sup |¢t\2} < 00}
0<t<T

Théoréme 2.1.2 (|52, Theorem 5.2 and Proposition 3.5]). Supposons que S est un processus
stochastique continu avec SV 0 =: ST dans .72, le générateur f est C’iip—Lz'pschitz continu
et f(-,0,0) dans H?, la condition terminale & est Fp-mesurable, carré-intégrable et & > Sr,
alors il existe une solution unique (Y, Z, K) dans ? x H? x #? satisfaisant que Y, K sont
continus. De plus, nous disposons de [’estimation a priori suivante :

T
E { sup |Y;]* + (/ |Zt|2dt) +K%] < CE
0

0<t<T

e ( "o o>|dt)2 + sup <s:>2]

0<t<T

ou C' est une constante dépendant uniquement de T C{ip.

Equivalence avec le probleme de ’arrét optimal

Proposition 2.1.1 ([52][Proposition 2.3]). Sous les mémes hypothéses que le théoréme[2.1.5,
supposons que (Y, Z, K) soit la solution de RBSDE par rapport a (&, f,S), alors

Y, = sup K |:/ f(ua Yuv Zu>du + ST]-{T<T} + 51{T=T}’E )
t

T€7;T

ot Ty contient tous les temps d’arrét dont la borne inférieure est t et la borne supérieure
est T
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Densité du processus croissant K. La proposition [2.1.2] révéle la continuité absolue
de K par rapport a la mesure de Lebesgue. Elle est particulierement utile lorsqu’il s’agit de
traiter des processus d’obstacles markoviens convexes S, pour lesquels un terme temps locaux
(non décroissant) sera produit grace a la formule d’It6-Tanaka. Voir le Chapter [3|

Proposition 2.1.2 (|52, Proposition 4.2 and Remark 4.3]). Sous les mémes hypothéses que
dans le théoréme[2.1.9 et en supposant que S est une semi-martingale généralisée de la forme

t t
St :S()—i—/ Usds+/ V,dBs + Ay
0 0

ou U, V, A sont, respectivement, R, R? R processus mesurables progressivement et F, satisfai-
sant a

T
/(lUt|+|Vt|2)dt<oo, s
0

et A est continu et non-décroissant. Soit (Y, Z, K) une solution de la RBSDE (&, f,S), alors
— Zy =V, dt @ dP p.p. sur l'ensemble {Y; = S;};
— 0 S th S 1{}/)5:575} (f(S, St, W) + Ut)_ dt.

Limite croissante des EDSR pénalisés. Un autre résultat important est ’existence
d’une solution de 'EDSRR prouvée par pénalisation. La version pénalisée de (2.1.2)) s’écrit,
pour tout parametre de pénalité A > 0,

T T T
Y =¢ +/ f(s, Y2, Z))ds + /\/ (Y2 — S,)"ds — / ZXdB,, (2.1.3)
t t t

qui est une EDSR avec une constante de Lipschitz dépendant de A. Nous disons que (Y*, Z*)
est la solution d’une EDSR pénalisée par rapport a (£, f,S) et A, si (Y*, Z?) satisfait (2.1.3)).
Nous désignons par K} = A fg (Y2 — S,)~ds la version pénalisée de K.

Le fait que (Y*, Z?) soit bien posé provient du théoreme [2.1.1}

Théoréme 2.1.3 ([52][Section 6]). Sous les mémes hypothéses que le théoréme soit
(YA, Z*) la solution de (2.1.3)), il existe une constante dépendant de T, C’{

tout X > 0, 1l existe une constante dépendant de T, C’{

i telle que, pour

f
i telle que, pour tout Cy,, > 0,

T T
E[sup VAP 4 / |Z$|2dt+|K%|2}s0E [|§|2+ / F(6,0,0)Pdt + sup <sr>2},
0 0

0<t<T 0<t<T
ot (Y* ZA) est la solution de EDSRP par rapport a (&, f,S) et . De plus, si (Y,Z,K) est
la solution de EDSRR par rapport a (&, f,S), alors,

T
lim E [/ (| =Y +12, — Z)*) dt + sup ]Kt—Kt/\’?] = 0.
0 0<t<T

A—00
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EDP d’obstacles. Soit b: [0,7] x R — R and o : [0,T] x R? — R4 satisfaisant a la
continuité Lipschitz uniforme, i.e. pour tout z, 2’ € R%,

|b(t,z) = b(t, a")| + |o(t,x) — o(t,2')| < Cylw — 2’|, pour chaque t € [0,T].

Pour chaque (t,z) € [0,T] x R?, soit X la solution de 'EDS suivante :
X =x +/ b(u, X5*)du +/ o(u, X!*)dB,, t<s<T.
t t

Considérons les données markoviennes de la EDSRR, a savoir,

E=g(X5), f(s,y,2) = f(s, X% y,2), S=8(s,X"), t<s<T

et notons (Y** Z%* K®*) la solution de 'EDSR correspondante.

Théoréme 2.1.4 ([52][Theorem 8.5 and Theorem 8.6]). Sous les mémes hypothéses que dans
le théoreme SUpposons que

— b, 0 sont uniformément Lipschitz;

— g € C(RY) and g, f(t,-,0,0), S(t,-) ont une croissance au plus polynomiale a l'infini

uniformément en t ;

— f(-,0,0,0) et S(-,0) sont bornées sur [0,T].
Pour chaque (t,x) € [0,T] x R?, soit u(t,x) = Y;"*, alors u est l'unique solution continue de
viscosité de I’EDP suivante,

min {u(t,x) — S(t,2),

— owu(t,x) — Loyu(t,x) — f(t, z,u(t,x), (Vuo)(t, :c))} =0, (t,z)€R xR
ou Ly = 330 (007 (8, 2))i 5 + i bilt,w)

2.1.2 Solution discrete

En plus des propriétés admises par les EDSRs, 'approximation numérique est un autre
sujet essentiel pour lequel de nombreuses techniques ont été développées. La toute premiere
étape de 'établissement d’une analyse d’erreur consiste a fournir une solution discrete raison-
nable et a prouver sa convergence. Dans cette sous-section, nous rappelons quelques résultats
classiques concernant les solutions discretes sous une discrétisation temporelle uniforme sous
la forme suivante

O=ty<--<t;=th<ty=T.
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2.1.2.1 Révision pour EDSRs

La solution discrete de la BSDE (Y, Z") s’écrit généralement comme suit

Yh =¢,
1 .
Zt}i zE [Y;tthlABti 7,:| ) 0 S ? S N — 17
V=R V)R] + b 20, 0<i< N1, (2.1.4)

ot ABy, = By,,, — By,. Zhang ([132]), Bouchard et Touzi ([16]) prouvent que la convergence
de Y vers Y est d’ordre h'/? dans un cadre markovien. Rappelons ce résultat.

Théoréme 2.1.5 ([16][Theorem 3.1). Sous les mémes hypothéses que le théoreme pour
g et f, alors

T
lim sup h_l{ sup E[|Y) - Y] +E [/ |z — Zt|2dt} } < 00,
0

h—0 0<t<T

ou (Y, ZI') est défini comme ([2.1.4) pour tout t; € {to, -+ ,txy_1} et pour tout t € (t;,t;11],
(Y[, Z]") est la solution de UEDS par rapport a (§ =Y, f = fi,) :

t
Y=Y}l —(t—-t)f, +/ Z"dB,,
t;

et fr, = f(ti, X2, Y0, Z0).

2.1.2.2 Révision pour EDSRRs

L’approche la plus populaire pour la solution discrete de TEDSRR devrait étre 'enve-
loppe de Snell. L’enveloppe de Snell est un concept issu de la théorie du controle stochastique
et de la théorie de I'arrét optimal. Elle est définie comme la plus petite sur-martingale qui do-
mine un processus stochastique donné. En d’autres termes, elle représente la meilleure limite
inférieure du processus a chaque pas de temps, en tenant compte de tous les temps d’arrét.

Pour les EDSRRs, la proposition fournit la version continue de ’enveloppe de
Snell, tandis que la version discrete, qui incorpore le principe de programmation dynamique,
est typiquement formulée sur la base de celle des EDSRs dans (2.1.4)),

Yo =
Z — E]E[YthHABti } 0<i<N-1,
Yh_E[YthH+hf(t YthH,ZZ)\]ii}, 0<i<N-1

n?zmax{si,ﬁ’?}, 0<i<N-—1,

KZ_Z -Y/"), 0<i<N-1 (2.1.5)
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Ma et Zhang ([105]) prouvent que la vitesse de convergence de (Y" Z" K") vers (Y, Z, K)
est h'/* dans le sens suivant. Voir aussi le schéma discret similaire pour les EDSR & double
réflexion dans [32,47,/129] et celui pour les équations a réflexion oblique dans [33},34].

Théoréme 2.1.6 ([105][Theorem 7.1]). Sous les hypothéses markoviennes de Theorem [2.1.4]
and in Theorem[1.1.0, supposons que

— S € CY2([0,T] x RY) avec dérivées bornées ;

— b,o, f sont %—H(')'lder continus en t.
Nous avons

T
E | sup (|Yt—Yth|2+|Kt—K:|2)+/ |Zt—Zth|2dt} <ovi,
0

0<t<T

ot pour t € (ti tiv1), (Y, Z) est défini comme la solution de EDS par rapport a (£ =
Y;?H’f = frin) -

tit1
V=Y 4t =) frp, — / Z!dB;,
t
et fti+1 - f(ti-i-l? XZ+17 Y;?+1’ Z£+1>.

Bouchard et Chassagneux (]|15]) obtiennent le méme résultat sans la condition d’el-
lipticité supposée sur o et améliorent ce taux & h'/? pour certains f avec des dérivées du
second ordre bornées. Des résultats similaires peuvent également étre trouvés dans [34] pour
les EDSR a réflexion oblique.

2.2 Meéthodes numériques

Un schéma numérique efficace pour résoudre les EDSRs mérite toujours d’étre étudié
en raison du role important joué par les EDSRs dans la gestion du risque et I’évaluation des
options dans diverses conditions de marché. Afin de résoudre les solutions discretes (2.1.4),
(2.1.5)), il est nécessaire de calculer I'espérance conditionnelle E [V, |F,], ol la méthode de
Monte-Carlo est largement appliquée.

2.2.0.1 Marche aléatoire

Au lieu de simuler la variable gaussienne i.i.d comme 'incrément du mouvement Brow-
nien, la méthode de la marche aléatoire offre une idée plus simple en simulant une variable
binomiale ou une autre variable aléatoire pour représenter la direction "finie” de l'incré-
ment. Ainsi, ’espérance conditionnelle est estimée par la moyenne empirique des réalisations
dans les directions finies possibles. Cela simplifie la mise en ceuvre de l'algorithme, mais
cette méthode souffre fortement de ce que 'on appelle la malédiction de la dimensionnalité,
c’est-a-dire que sa complexité spatiale augmente de maniere exponentielle a mesure que la
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dimension augmente. Briand, Deylon et Mémin (]|18]) et Ma, Protter, San Martin et Torres
([102]) appliquent cette méthode aux EDSR, puis Mémin, Peng et Xu ([109]) et Martinez,
San Martin, Torres ([107]) étendent cette méthode aux EDSB pénalisées, voir aussi [129] pour
les équations a double réflexion et [20] pour 'analyse du taux de convergence des EDSR dans
la distance de Wasserstein.

2.2.0.2 Quantization

Bally et Pages ([3]) présentent un algorithme d’arbre de quantification pour résoudre
numériquement les EDSRRs dans le cas du générateur f ne dépendant pas de z, basé sur la
solution discrete . La quantification fournit une discrétisation spatiale a la fois dans
le temps et dans I'espace. Sur la base de la discrétisation uniforme telle que supposée dans
, cette méthode propose d’engager continuellement un temps discret d’une longueur
spéciale en tant qu’époque. Etant donné la longueur des époques, la discrétisation de I'espace
est optimisée dans le sens ou les réalisations markoviennes de X sur cette grille spatio-
temporelle ont I’erreur minimale dans [LP-espaces et le poids de transition de chaque grille est
donné sous la forme d’une espérance conditionnelle. Delarue et Menozzi ([42]) utilisent éga-
lement cette méthode dans les FBSDE couplées. Voir aussi [62,99}/100,/113] pour la méthode
de quantification.

2.2.0.3 Régression

Kernel. Bouchard et Touzi ([16]) considerent la solution discréte comme dans et
ils utilisent la fonction noyau pour établir une représentation de rapport pour l'espérance
conditionnelle. Le nominateur et le dénominateur du rapport sont estimés empiriquement par
une masse de Dirac de Monte-Carlo. Le taux de convergence de l'estimateur de la solution
discréte est prouvé & A=+ M2 dans [16][Théoreme 6.2], ot M est le nombre de chemins
i.i.d simulés.

Projection des moindres carrés. L’espérance conditionnelle a la propriété importante
d’étre un minimiseur de l'erreur quadratique moyenne au sens suivant : étant donné une
variable aléatoire intégrable au carré R et une o-algebre G, alors

E[RIG] =  arginf  E[|[R-R[].
REL? est mesurable G

Il est donc raisonnable de considérer 'approximation de I’espérance conditionnelle comme un
probleme d’optimisation des moindres carrés.

Longstaff et Schwartz (|[101]) popularisent I’application de la méthode de régression de
Monte-Carlo dans laquelle ils utilisent le régresseur de projection linéaire des moindres carrés
pour calculer I'espérance conditionnelle. Gobet, Lemor et Warin (|69]) généralisent d’abord
cette idée aux EDSR standarde comme . [ls proposent un schéma basé sur des fonctions
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de régression itératives qui sont approximées par des projections sur un ensemble de fonctions
de dimension réduite, les coefficients de la projection étant évalués a ’aide de simulations de
Monte Carlo.

2.3 Applications financieres

Depuis longtemps, le probleme de I’évaluation des options européennes sur un marché
complet et parfait est généralement représenté par des EDP paraboliques linéaires, si 1’'on
suppose que l'actif sous-jacent est un modele de Black-Scholes (modele BS en abrégé). Grace
a la formule de Feynman-Kagc, la solution de 'EDP correspondante a une représentation pro-
babiliste sous la forme d’une espérance conditionnelle. Cette espérance conditionnelle s’écrit
toujours E? [e"’(T_t)ﬁ \.7-}} pour une créance contingente £ et un taux d’intéréet r, en particu-
lier pour les options Européennes d’achat et de vente, la solution est en forme fermée. Nous
appelons la mesure de probabilité QQ la probabilité de risque neutre telle que le prix de I'op-
tion Européenne avec n’importe quel gain & au temps t peut étre exprimé comme ’espérance
conditionnelle de la créance contingente actualisée.

Pour l'option Américaine, le probleme d’évaluation est posé dans la formulation de
I’enveloppe de Snell en combinant la probabilité de risque neutre, c’est-a-dire que le prix
d’une option américaine Y avec un processus de paiement S s’écrit généralement comme suit

Y; = esssup E¢ [e‘r(T_t)ST\.E} , 0<t<T.

T€T,T

La probabilité de risque neutre est également appelée probabilité de tarification, qui est
utilisée dans la modélisation financiere, en particulier dans la tarification des options, pour
simplifier les calculs et les rendre cohérents avec les prix observés sur le marché dans le cas
d’un marché parfait et complet. Cependant, dans un marché imparfait, il n’est pas raisonnable
de lappliquer. Si I'on suppose qu'il existe sur le marché deux taux d’intérét (dépot/prét) et
deux taux de dividende, ’exhaustivité de ce marché n’est pas évidente et le taux d’intérét
sans risque n’est pas applicable. Le cas avec 2 taux d’intérét a été présenté pour la premiere
fois par [92] et [9]. Juste apres ces travaux pionniers, de nombreux chercheurs ont étudié la
possibilité d'une stratégie de couverture dans ce type de marché, voir [39] et [55]. En effet,
sur le marché incomplet, on ne peut définir que le prix dit supérieur correspondant a la
stratégie de super-couverture. La stratégie de super-couverture est généralement composée
d’un portefeuille autofinancé (V) et d'un processus de frais de consommation C, tel que,
VFE — Cr = £. Le processus C' est positif et croissant sur [0, T]. Le prix supérieur des options
européennes est donc défini par inf{V € R* : 3(7,C) tel que VT — Cr = &}

L’accessibilité est utilisée pour identifier s’il existe une stratégie de super-couverture
avec C' = 0, qui est équivalente a la couverture parfaite Vp = &.

Avec le développement des EDSRs/EDSRRs, 'accessibilité dans le marché non linéaire
n’est plus un probleme puisqu’elle correspond a l'aspect bien-posé des solutions, qui peut
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étre facilement résolu en vérifiant si le générateur satisfait la condition de Lipschitz. De plus,
le marché non linéaire correspond a une EDP parabolique non-linéaire qui ne peut pas étre
résolue par la formule standard de Feynman-Kac. Les équations rétrospectives permettent
donc non seulement de résoudre la question de 'accessibilité, mais aussi de fournir la forme
des solutions pour le cas non-linéaire.

2.4 Conclusions et perspectives

Dans le chapitre , le taux de convergence de 'EDSR pénalisée (1.1.3) vers 'EDSR
réfléchie est étudié et peut atteindre I'ordre 1 en ce qui concerne le parametre de
pénalité. Lorsque le générateur f ne dépend pas de z, la convergence de la solution discrete
de la EDSRP vers la solution continue est également donnée a O(h'/2 + \h3/%).

Le chapitre 4] complete le chapitre |3 en tant qu’analyse d’erreur pour la résolution de
I’EDSR pénalisée numériquement par la méthode de régression de Monte-Carlo des moindres
carrés, ou les régressions linéaires et non linéaires sont discutées. Pour le cas linéaire, nous
disposons des estimations d’erreur dans la norme empirique et dans la mesure de distribution ;
pour la régression non linéaire, seules les estimations dans la mesure de distribution sont
disponibles.

Le chapitre |5| présente le changement de numéraire des EDSRR et la symétrie Put/Call
sur le marché non-linéaire en tant qu’applications financieres, ou divers types d’options amé-
ricaines sont fournis en tant qu’exemples d’applications.

Perspectives. Pour le chapitre , le taux de convergence de Z» — Z n’est disponible
qu’a %\ sous les hypotheses générales alors que le taux % est applicable & Y — Y sous des
hypotheses plus fortes. Un meilleur taux de convergence pour Z peut conduire a une extension
de nos résultats actuels sur la convergence de la solution discrete car nous ne supposons pas

que f dépend de z pour l'instant.

Pour le chapitre [4] le réglage des parametres des réseaux neuronaux souffre toujours de
la malédiction de la dimensionnalité, c’est-a-dire que la taille du réseau devrait augmenter de
maniere exponentielle lorsque la dimension d augmente. L’erreur empirique pour la régression
non-linéaire mérite également d’étre étudiée, ce qui est difficile car il est compliqué de dominer
le nombre de recouvrement du réseau neuronal multicouche.

Pour le chapitre [5, les applications des EDSRR ne sont pas évidentes dans certains
cas non-markoviens, tels que l'option Lookback, les options a barriere avec des barrieres
séquentielles, etc.



Chapter 3

Improved convergence rate for
Reflected BSDEs by penalization
method

Abstract We investigate the convergence of numerical solution of Reflected Backward
Stochastic Differential Equations (RBSDEs) using the penalization approach in a general
non-Markovian framework. We prove the convergence between the continuous penalized so-
lution and the reflected one, in full generality, at order 1/2 as a function of the penalty
parameter; the convergence order becomes 1 when the increasing process of the RBSDE has
a bounded density, which is a mild condition in practice. The convergence is analyzed in
a.s.-sense and LP-sense (p > 2). To achieve these new results, we have developed a refined
analysis of the behavior of the process close to the barrier. Then we propose an implicit
scheme for computing the discrete solution of the penalized equation and we derive that the
global convergence order is 3/8 as a function of time discretization under mild regularity
assumptions. This convergence rate is verified in the case of American Put options and some
numerical tests illustrate these results.[]

3.1 Introduction

Context and model. The Backward Stochastic Differential Equations, BSDEs in short,
were first introduced in the case of linear generator by Bismut in [13] as the adjoint equations
of some stochastic control problem and later in the general case by Pardoux and Peng [115].
It was then widely studied in stochastic finance (see [54]) in view of its natural formulation to
model the problem of option pricing and hedging. See [103], |[116], [133] for a broad overview
on BSDE and applications in stochastic control. The Reflected BSDE is one of the most

1. This chapter is based on the paper "Improved convergence rate for Reflected BSDEs by penalization
method”, [73], joint work with E. Gobet.
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important branch of BSDE, which was first introduced by El Karoui et al. [52] as follows:
given a terminal condition £, a generator f and a barrier (S;)o<t<r, the RBSDE is written as

(

T T
Y;f:g—i_/ f(say:%Zs)dS_‘_KT_Kt_/ stBsa VOStST,
t t

V,>S, 0<t<T, (3.1.1)

T
/Xﬁ—&mmzo
\ Jo

where the process (K})o<i<r is continuous and non-decreasing, Ky = 0. Here, Y, K are scalar
processes and Z is a d-dimensional process (written as a row vector). The triple of processes
{(Ys, Zy, K),0 < ¢t < T} is solution of RBSDE with respect to the data (&, f,.S) where the
relative assumptions will be clarified later.

The RBSDE topic was quickly developed since it provides a new framework to study
stochastic control problems and optimal stopping problems involving one obstacle (the bar-
rier). After the pioneer work [52], the Dynkin game and its related doubly RBSDE is studied
in [40]; the switching problem is discussed in [83]; the starting and stopping problem is ad-
dressed in |80]. But among all of its various applications, the pricing of American option —
which writes as an optimal stopping problem in the probabilistic language or as a variational
inequality in the PDE terminology — is considered as one of the most fundamental appli-
cations. Similarly to the link between BSDE solutions and European option prices, there
also exists a relation between RBSDE and American option: when the market is complete
without market imperfection, the relation is standard using a linear generator. But this
relation can also be extended in several cases with modified equation or even reformulated
problem, accounting for imperfections, or for market incompleteness or for other financial
specificities. For example, when the market is complete, different settings have been studied
for the pricing problem: using a convex risk measure in [58]; with asymmetric information
in [59]; in the presence of 2 interest rates (for borrowing and lending) and default in [49].
Moreover, when the market is incomplete, the American option pricing turns out to be a
problem of superhedging (see [53]) leading to the design of a special RBSDE. The equation,
with superlinear and quadratic f is presented in [91], with an extra constraint in [117], or
with imperfect market and default in [75].

Besides, regarding the mathematical analysis of existence and uniqueness of solutions,
there are many theoretical results for RBSDE under either standard or general assumptions.
Here we refer to the hypotheses in [52] as the standard ones, i.e. with Lipschitz generator
f, continuous barrier S and under I (p > 2) integrability properties. First, under standard
assumptions, the existence and uniqueness are usually deduced either by the Picard’s fixed
point argument or by the penalization method which builds a monotone convergent sequence
of approximations. The Penalized BSDE (PBSDE in short) related to writes as, for
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the penalty parameter A > 0,

{th =&+ [ f(s Y2 Z0ds + A [T (V) = S)ds — [ 22dB., (3.1.2)

K} =X [ (Y}~ S,)ds.

The variational inequality is also studied in [2]. Second, under more general assumptions, the
well-posedness is widely studied, using the similar approaches based on fixed point argument
or penalization. The reader can find the well-posedness of RBSDE via penalization, with
cadlag S in [96], with driving Lévy process in [56], with L? (p € [1,2)) integrability in [82].
The well-posedness via fixed point argument of RBSDE, with superlinear and quadratic f is
identified in [91], the case with monotone f is addressed in [95], the model with resistance is
given in [120]. As we can see, the penalization method is usually applied as a tool for solving
some existence problem, and seldom for effective numerical approximations. In this paper,
we focus on the numerical solution of the one barrier’s RBSDEs under standard assumptions,
via the penalization method, and our goal is to establish some convergence rate results.

State of the art on numerical methods. Before we introduce our contributions to
the penalization approach, let us have a look at the existing results in the literature. Due
to the important and various applications of RBSDE, particularly in optimal stopping, it
is essential to investigate effective numerical schemes. However, in comparison with the
numerous contributions to the theoretical aspects of RBSDE, there are only a few available
results about the numerical methods. Indeed, because of the barrier and as a big difference
with BSDE, the RBSDE can hardly admit an explicit representation even in the case with
linear generator. As a consequence, designing an efficient numerical solution turns out to be
quite challenging.

Among all the available approaches, presumably the most usual one is the Snell envelop,
consisting in taking the maximum between the barrier and a conditional expectation, the
latter being the main difficulty regarding computations. In the Markovian framework, Bally
and Pages [3, Theorem 4] proposed a quantization tree algorithm for RBSDE with f not
depending on z and proved the discrete approximation Y converges to the continuous solution
Y with a L? error of order h'/? + h~(0+1/dN-1/d where N denotes the size of quantization
grid and h denotes the time step; Bouchard and Touzi [16, Theorem 7.2] proposed a kernel
regression algorithm and deduced a rate in L? of order h'/? 4 p~(1+d/(4p) Ay =1/Cp) for RBSDE
with f not depending on Z, where M denotes the number of Monte-Carlo simulations. Ma
and Zhang [105, Theorem 4.2 and Corollary 3.4] provided a semi- explicit representation
for Z, using Malliavin calculus, and derived that, if the barrier S := ¢(X) with ¢ € C?
and the forward process X is an uniformly elliptic diffusion, their pseudo time-discretization
(Yh Zh K™) converges in IL? to the continuous solution (Y, Z, K) is at rate h'/4. Bouchard
and Chassagneux [15, Theorem 4.1] extended the previous result without uniform ellipticity
condition, and improved the rate to h'/? (for Y only) if ¢ € C? with a Lipschitz second
derivative. Gobet and Lemor [68, Theorem 4] investigated empirical regression algorithms
for solving discretized RBSDEs.
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The regularization approach is an alternative to Snell Envelop techniques. Bally et

al. [2] designed a new way to simulate the process K, more precisely, K admits a semi-
explicit density of the form ayk; where o is an unknown process valued in [0, 1] and & is a
known function of (¢,.5;). An empirical regression method based on this principle is investi-
gated in [68], and gives good numerical results, but without theoretical guarantee.
Last, in another series of works, numerical methods based on penalization like have
been developed. Mémin et.al [109] developed a discrete random walk solution with penal-
ization, they showed (Y?*,Z*) — (Y,Z) and (YN, ZM) — (Y Zh) at A=Y/* in L2, the
convergence rate with respect to the time step h is lacking. Martinez et al. |[107, Theorem 1
& 2] proposed a numerical random walk scheme combining Picard iteration and penalization
and they proved the convergence (YAi ZMhi) — (Y, Z) in L2 without identifying conver-
gence order, where ¢ denotes i-th Picard iteration. Nevertheless, the complexity of random
walk schemes is known to increase quite fast with the Brownian motion dimension and with
the number of time steps, and in many situations, we may prefer to avoid random walk ap-
proximations. As an alternative, it is reasonable to take into consideration the Monte-Carlo
method (a.k.a. empirical regression methods), which is one of the ingredients of this work.
For BSDE without reflection, see [70,71,94], for an account on empirical regression methods,
including error analyses. Last, Bernhart et al. [11, Theorem 3.1] presented a discrete scheme
for BSDE with constrained jump and proved the quadratic convergence w.r.t. A and h, but
the global rate is unfortunately quite slow (logarithmic rate).

Last, for the sake of having a complete state of the art, let us briefly discuss the use
of penalization approach to derive schemes for other equations. Let us start with Reflected
Forward SDEs (RSDEs in short). For RSDE in a convex set, Menaldi |[110, Remark 3.1]
deduced that the penalized continuous solution converges in L2 to the reflected one at rate
AY24 for any € > 0. Liu [98] showed the penalized discrete solution converges to the
continuous reflected one at h'/4= if A ~ O(h~'/2). Petterson [118, Theorem 3.1] derived the
rate (hlog +)'/* in L? provided that A ~ O(1/h) and Slominski [124, Theorem 4.2] proved the
same rate but uniformly in time. These results show that the convergence order is more or
less 1/4 w.r.t. the time step h for appropriate choice of penalization parameter A, this shows
also the necessary entanglement between h and \; however, though inspiring, establishing
error bounds for backward equation is usually more difficult than for forward one, due to the
adaptedness condition. In this paper, we will show that, if the barrier is a generalized Ito
process under mild conditions, our backward discrete penalized solution converges in L2 to
the reflected continuous one at rate h%/® if X ~ ch=%/®: this is strictly better than for forward
equation.

Regarding PDEs with variational inequality (related to optimal stopping problem), the
penalty approach is also commonly used when it comes to design numerical schemes. This
is restricted to Markovian cases, as a difference with our general setting. The discretization
of PDE is both in space (with a mesh size Az) and in time (with a time step h), but as a
usual difference with stochastic equations, the spatial mesh is deterministic. Zvan et.al. [134]
Section 5.3] designed a #-scheme using penalty method for identifying the early exercise region
in a stochastic volatility model for the forward component and showed at each time step,
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the penalization term where the approximation is smaller than the barrier is at O(%), a.e..
Forsyth and Vetzal |63, Theorem 4.1] discussed the quadratic convergence of #-schemes for
pricing Put option as h, Az — 0 for a fixed A and proved a similar result to [134] but with
the discretization constraint A = o(Ax). They also showed numerically that the uniform
discretization can not ensure the quadratic convergence near the exercise boundary, hence
advocating for a time step selector. d’Halluin et.al. |45, Theorem 4.2] designed a iterative
scheme for pricing American derivatives in jump models and proved the global convergence of
the iterative procedure as the number of iteration goes to infinity at each time step for a fixed
A and time discretization. Howison et.al [86, Theorem 4.3 & Section 6] showed in the convex
Markovian barrier , the penalized PDE converges to the exact solution at 1/A and presented
a detailed error analysis about the convergence order of the penalized approximation to the
penalized PDE solution, which is at v A(k + (Az)?) in L2([0, T] x R).

Our contributions. In this paper, since the PBSDE provides a natural continuous ap-
proach to the RBSDE, we first concentrate on the rate of Y* — Y and we show that this
convergence can hold at 1/X a.s. or 1/v/A in L”(Q) depending on the behavior of (€, S),
see Theorem and Theorem for a precise statement. As far as we know (see the
previous state-of-the-art), this is the first time that the rate of continuous PBSDE converging
to RBSDE is investigated. Second, when f does not depend on Z, we design an implicit dis-
crete representation for Y»" and show theoretically that the discretization error, Y — YA,
converges to 0 at order '/2 + Ah3/* in 1.2, see Theorem [3.4.1] Finally, we conclude that the
global discretization error between YV and Y is at h%/® if A ~ ch=3/8, which is a significant
improvement compared to [11]. The order h%® is faster than h'/* in [15] for another RBSDE
scheme obtained when S = ¢(X) with ¢ € C?, which is stronger than our mild Hélder-
continuity condition [(Hy-ii)} but our rate is lower than A'/2 in [15] obtained under the even
stronger assumption ¢ is C*. The numerical experiment based on Monte-Carlo empirical re-
gression is attached in the end and we show numerically the simulation of Y** may converge
quicker to Y than the rate upper bound, at least in the example of pricing one-dimensional
Put option in the linear market.

Plan of the paper. In Section [3.2] we define the model, state standing assumptions and
exemplify some applications. In Section , a priori estimates in LP(€2), p > 2 and the rate of
(Y} — S;)~ — 0 are given. The discretization error of YA — Y in L2(€2) is well investigated
in Section [3.4f The numerical results are presented at the end of Section [3.4]

3.2 Model, assumptions, examples

3.2.1 Notation

— For a vector x € R?, we simply denote its transpose by 2" and its i-th component
by x'. Tts Euclidean norm is denoted by |z|.
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— Let (Q,F,P) be the probability space where a d-dimensional Brownian motion
(Bt)o<t<r is defined and (F;)o<i<r is the canonical filtration of (By)o<i<r where
Fo contains all P—null sets of F. Denote the expectation under P by E and the
conditional expectation given F; by E; .

— The following set of random variables and stochastic processes are useful for our
subsequent study. Let p > 2 :

L>* = {random variables ( s.t. esssup |[((w)] < oo} :

weN
L? = {random variables ¢ s.t. E[|(?] < o0},

ISP = {stochastic processes ¢ = {¢;,0 <t < T} that are predictable

<o},

with E { sup [P

0<t<T

L= {stochastic processes ¢ € .7 that are continuous},
HP = {stochastic processes ¢ = {¢;,0 <t < T} that are predictable

with E {(/T|¢t|2dt)p/2} < oo}.

0

The above random objects take values in an Euclidean space R or R? whose dimen-
sion is not indicated for the sake of simplicity, this will be clear in the context.
— The set of (F;)o<t<r stopping times larger than ¢ and bounded by T is defined by:

Tir = {7;7 is a stopping time s.t. t <7 < T'}.

3.2.2 Reflected BSDE

We work on the model of RBSDE (4.1.1]) and its penalized version (4.1.2)).

3.2.3 Assumptions

In our paper, we always consider p > 2.
(H;): General Assumptions of Equation (4.1.1)).
(H;-i) The scalar random variable £ is Fr-measurable and & € LP;
(H;-ii) The generator f : Qx [0, T]xRxR? — R is such that V(y, 2) € RxRY, f(-,y,2) € HP;
(H;-iii) The generator f is Cfip—Lipschitz continuous with respect to (y, z) uniformly in
(w,t), ie. Vy,y/ €R, 2,2 €R? as.

f(ty.2) = F(Ly 2 < CLy (ly — o/l + 12 = 2]);
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(Hy-iv) The barrier S := {S;,0 <t < T} is a F;-adapted scalar process s.t. Sp < £ a.s. and
S S ‘Spczc)mt.'

From [52, Theorem 5.2], for p = 2, under|(H;)| the equation (4.1.1]) admits an unique solution
{(Y}, Z;, K),0 <t < T} in the space %2, x H? x #2 .. The case when p > 2 is proved in

con cont.*
Appendix [3.5.4.1]

We now justify that, up to a simple change of variable, we can still assume that the

generator satisfies, in addition to [(H;-iii), the monotone property [(H,,), the latter will be
widely used in our work (especially for better controlling the penalization term, see Theorem

3.3.4) Theorem and Section |3.4)).

(H,,) The generator f is non-increasing with respect to y i.e. V(w,t,z) € Q x [0,T] x R4,
[y, 2) < f(ty,2), Yy 2 v
Indeed, under , for each v € R, define
& =g, fY(ty,2) =" f(t, e ™y, e 2) — vy, Sy =S,
The assumption Hj is also fulfilled by (£, f¥, S"), then the solution of RBSDE Y x Z¥ x K"

associated with (£, f,S¥) is also well and uniquely defined in (.2 , HP P ) and it can
be expressed as following,
t
(Y)Y, Z) K Jo<t<T = (e”tY},e”tZt,/ e”SdKS) : (3.2.1)
0 0<t<T

We now justify that a proper choice of v allows f* to fulfill [(H,, )]
Proposition 3.2.1. Assume|(H;-iii) holds for f: for any v > C’{ip, 1Y satisfies |(H,y, ).

Proof. Let v as above, then for all y; > 5 and (w,t,2) € Q x [0,T] x R,

Frltyn,2) = e flt ey e™2) — vy < CF (g — y2) + € f(t, e o, e72) — vy
< vy — ) + e f(t ey, eV 2) — vy
= ["(t,y2, 2).
]

Hence, for each f satisfying|(H;-iii)| one can always identify f by f* and assume

for f without loss of generality.

(Hy): Extra assumptions for the barrier S

(Hy-i) The barrier S admits a generalized semi-martingale decomposition as

t t
Sy =50+ / Usds + / V,dBs + Ay
0 0

where U,V € P, A is continuous, non-decreasing and Ar € P, Ag = 0.
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(Hy-ii) The barrier S satisfies a 1/2-Holder continuity condition:

E; [|Ss — S|\
e k| (=) | < 622

We know that, from [52, Proposition 4.2 and Remark 4.3, if is satisfied by S, then K
is absolutely continuous with respect to Lebesgue measure, namely,

{th S Ht]-{Yt:St}dta

ke = (f(t, 5, V) +Up)~. (3:2:3)

The process (k¢)o<i<7 is essential to derive the rate of Y* — Y a.s. and in LLP.

Lemma 3.2.2. Assume the barrier S is of the form Sy = g(t, Xy), where (Xy)o<i<r 1S an
Ité process valued in RY satisfying the following SDE: d X, = j,dt + 0,d By, with predictable,
bounded stochastic processes (11, @), and where g : [0, T] x RY — R is -Hélder continuous in t
and locally Lipschitz continuous inx: |g(t,z)—g(t',2")| < C (|t = |"? + |z — 2| (e“I] 4 eClol)) |
with some finite constant C. Then |(Hy-ii) is fulfilled by S.

Proof. See Section [3.5.1 O

Remark 3.2.3. The immediate application in finance is American option pricing problem.
If the barrier is the payoff of American Put Option and X is the asset log-price process (1t6
process as in Lemma , ie. S = (K% — eX)T with K** represents the strike price,
then it satisfies both [[Ho-i)| and [[Hs-ii)| In fact, applying It6-Tanaka formula on S;:

1 1 S
dSt = _1{eXtSK5tk} |:(,ut + §|O't|2>extdt + O'textdBt + Ede tk(GX)

where L%(eX) is the local time process of eX at level a. Thanks to the boundedness of u, o

and E [ sup ep|Xt|] < 00,Vp > 2, we can easily deduce that the corresponding processes
0<t<T

(U, V) € .#P. The arguments and results are similar for American Call Option.

3.3 Penalization

In this section, we present our main result about the rate of convergence Y* — Y with
respect to the penalty parameter A, where the order relies critically on the convergence rate
of penalization term, namely, (Y;* — S;)~ — 0. Using several times the absolutely continuity
as , we first introduce a priori estimate for all general .#? . barrier and derive the

cont.
first bound for )\fOT(YtA — S¢)~dt in L? which gives a order 1/2 for Y* — Y in .#?. Then
we focus on the uniform boundedness in ¢ of (Y} —S;)~ in L™ and in .#% , where we can
derive Y;* — Y; at order 1 in .
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3.3.1 The convergence rate in continuous case

We first investigate the convergence order between the PBDSE and the RBSDE, this
is based on the following a priori estimate.

Theorem 3.3.1. Under[(Hy), let (Y, Z, K) be the solution of (£.1.1)) in %, x HP x S
and (Y, Z*) be the solution of (4.1.2)) in 72 . x HP. First, the norm of (Y*,Z* K?*) in
ISP X HP x P is bounded uniformly in X\, in particular

supE KA /OT(Y;A — SS)_ds)p] < +o0. (3.3.1)

A>0

Second, we have the following a priori estimate

E

T p/2
sap =P+ ([ 12—z s (K- Kmp]
0<t<T 0 0<t<T

(/OT(YSA - Ss)sz>p/2] : (3.3.2)

where C' is a constant depending only on &, f, S, T, p.

< CE

The proof is postponed to Appendix [3.5.4 Whenever necessary, a priori LP-estimates
on (Y, Z, K) are available in Proposition [3.5.2]

Theorem 3.3.2. Under[(Hy), let (Y, Z, K) be the solution of (A.1.1)) in %, x HP x S
and (Y*, Z*) be the solution of (A.1.2) in 2 . x HP. If the barrier S satisfies and
f(-,0,0) € P, then

T p/2
up (V-2 ([ 1zi-zipar) 4 s (K- Ky
0

0<t<T 0<t<T

C
<

E \p/2’

where C' is a constant depending on &, f, S, T, p.

Proof. Let (Y, Z*) be the solution (in .7,

con

. x HP) of the linear BSDE

T T T
v :g+/ f(s, Y2, ZMds + /\/ (Sy — Y Mds —/ Z)dB,
! . ! - (3.3.3)
=E, {G_A(T_t)f +/ e AT f(s, Y, Z0)ds + /\/ e_’\(s_t)Ssds} .
t t

By the classical comparison theorem as [54, Theorem 2.2], for 0 < ¢ < T, Y > Y}, a.s., we
just need to prove

- - ¥ o
A P
. |:Oiltl£T‘ <Yt - St> | ] = vV
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> Step 1: We rewrite the formula of }7;)‘ — S, with term e 2795

T
— S, =F, {e—MT—” (€ = Sp) + e MD(Sp — S)) + / e N f(s, Y, Z20)ds
t

T
+ AE; [ / e AT (g, — St)ds] :
t

Taking negative part on both side, and applying the Jensen inequality, it gives
(V) = 87 < By [eT0(€ = Sp)7] + B, [eT9]Sp — 8]

T T
+E, [ / eV f (s, Y, Zﬁ)|ds] + AR, [ / e |8, — st|ds} ,
t t

since £ > S, we have
_ T
(Y = 8)" S B [e M7[Sr — Sif] + AE, [ / e IS5, — St\ds}
t

T
+E [ / e M| (s, Y2, Z§)|ds} : (3.3.4)
t

> Step 2: We take supremum on these conditional expectations in (3.3.9)), and consider the
[LP-norms of terms, which follows

pl/P |ST_S|171/P
E| sup E; [e”\(T’t)|ST — St|] } =E [ sup [E; [e’\(Tt) v — t—t] }

0<t<T 0<t<T T—1

_ p71/p
<8 [ s (VT o, (RS

0<t<T 0<t<T T —t

< Lsup( ~Vx) C’l/p (3.3.5)

x>0

Taking again the advantage of Holder continuity of S in Assumption |(Hs-ii), we get

T p
AE [ sup E, { / e A8, —St|ds} }
0<t<T t

T AP
—E B | [ AeXe0ys— 22ty
Lg% t[/t ¢ i Vs—1 S] }

|S _St’ p T N t)\/— p1/p
<E| sup E, | —=—= e VTV s — tds
- L<t<£)<T ' [ Vs—1 } (/t ) }

< Oy ( o 6\/;\/5@) . (3.3.6)

1/p
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Moreover, by Cauchy-Schwarz inequality, we have

T pq1/p
E [ sup E, {/ e MY (s, Y Z’\)]dsl }
0<t<T
pq1/p
sup \// e~ 6-tds x B, \// f(s, Y, Z))|?ds
0<t<T
pq 1/p

1 ! 2d (3.3.7)
<—E | sup E / s, Y2, Z))|?ds . 9.
< k| g By |/ ( )|

> Step 3 Set My = /i |f(s, Y2, Z2)[*ds. Under |(H,)}(ii-iii) and combined with A-

uniform a priori estimate for (Y, Z*) in (3.5.3)), we claim that My € LP uniformly in .
Indeed,
T p/2
([ 1 zeas)
0

T p/2 T p/2
sup |Yﬁ|p+</ |Z§|2ds) +(/ |f<s,o,o>r2ds) ]<oo,
0<t<T 0 0

for some constant C), ;7 which does not depend on A. Hence, M; := E,[My] defines a
martingale in I” and the right-hand side of (3.3.12]) becomes

1 [ sup M, ;p} oL (L) B (| My
V2N lo<t<T ! TV \p—1

in view of the Doob inequality. All in all, the right-hand side of (3.3.12)) is of order 1/ V.
Finally, combine (3.3.9), (3.3.10)), (3.3.11)), (3.3.12)), we have the desired result. O

E[|Mr]"] =

< Cp,f,TE

3.3.2 Advanced estimation for Y* below the semi-martingale bar-
rier

In the previous subsection, we used the convergence of integral of penalization term,
namely, fOT(Yt’\ — S¢)~dt — 0 in L. In this subsection, we focus on the uniform convergence
intie sup (Y} =S~ — 0, as. and in L.

0<t<T
Theorem 3.3.3. Under let (Y* Z*) be the solution of PBSDE in P X
HP, if the barrier S satisfies then there exists a constant C' whzch depends only on
& f,S, T, p such that

sy C
E Y*r -5 < —.
oi?%’(t )| <5



Chapter 3: Convergence rate of PBSDEs 41

Proof. Let (Y, Z*) be the solution (in .7,

con

.. X HP) of the linear BSDE

" T T _ T _

YA =¢ +/ f(s, Y2, ZM)ds + )\/ (Sy — Y M)ds — / Z>dB,

! . ! - (3.3.8)

=E, [eA(Tt)ﬁ —i—/ e A F(s Y, ZMds + )\/ e’\(St)Ssds} :
t t

By the classical comparison theorem as [54, Theorem 2.2], for 0 < ¢ < T,Y > Y}, a.s., it

suffices to prove
v A p Vp C
oo |62 5) 1] "=
|:0<t£T‘ ! ! | VA

> Step 1: We rewrite the formula of 17{\ — S, with term e AT=Y S,

T
Yt/\ - St - Et [S_A(T;j) <§ - ST) + e_A(T_t)(ST - St) + / e_k(s_t)f(s’ }/s>\7 Z?>d8:|
+ AR, { / e (S, — St)ds] . t

t

Taking negative part on both side, and applying the Jensen inequality, it gives
(V) =S~ <E, [eMT (¢ — Sp)7] + By [e Y]S5 — Sy]

T T
+E, [ / eI f (s, V), Zﬁ>|ds] + AR, [ / e M| S, — strds} ,
t t

since £ > St, we have
_ T
(Y = S)” < Eq [e?T918r - Si|] + AE, {/ e YIS, — St|d3]
t

T
+ E, [/ e)‘(St)]f(s,Y;\,Z;\)\ds] : (3.3.9)
t

> Step 2: We take supremum on these conditional expectations in the right side of (3.3.9)),
and consider the LLP-norm of each term, which follows

» 1/p
E [ sup E; [e_’\(T_t)\ST — StH }

0<t<T

_ p11/p
<8 [ s (VT o, (RS

0<t<T 0<t<T T—1t

1 —x
< - sup (e~ "\/z) C’. (3.3.10)

x>0
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Taking again the advantage of Holder continuity of S in Assumption |(Hs-i1), we get

T pq1/p
AE [ sup E; {/ e_’\(s_t)|Ss — S,st} }
t

0<t<T

1Se =S ( [T\ —xos "
<E| sup E, | ——=— e~ S_t\/s—tds)]
o {0<t<£)<T t{ Vs—1 } (/t

+oo g
<Oy ( o ° ﬁd:ﬂ) (3.3.11)

Moreover, by Cauchy-Schwarz inequality, we have

E { sup E, UT A=) f (s, Y ZA)|dsr}

0<t<T
sup \// e~ 26t ds x By \// (s, Y, Z))|>ds
0<t<T

p1 1/p

1 T
<—E | sup E s, Y2, Z))|?ds . 3.3.12
= Van |omer \//0 I ) ( )

1/p

p1 1/p

> Step 3: Set Mp = \/fOT|f(5,}Q’\,ZS)‘)|2ds. Under |[(Hy)p(ii-iii) and combined with A-
uniform a priori estimate for (Y, Z%) in , we claim that My € P uniformly in A.
Indeed, E [|Mr|P] is bounded by

T p/2 T p/
sop P+ ([ 122Pas) o ([ s 0.0kas)
0<t<T 0 0

for some constant C), ;7 which does not depend on A. Hence, M; := E;[My| defines a
martingale in I” and the right-hand side of (3.3.12)) becomes

L E [ sup |M, |p} . < L ( b ) E[|MT|p]1/p
_— f < (=
V2X  lo<i<T V2A\p—1

in view of the Doob inequality. All in all, the right-hand side of (3.3.12) is of order 1/ V.
Finally, combine (3.3.9), (3.3.10)), (3.3.11)), (3.3.12)), we have the desired result. O

Theorem 3.3.4. Suppose are fulfilled; in addition, suppose holds true,

i.e. f(t,y,z) is non-increasing on y, assume

Roo = esssup (f(t, 5, Vi) +Uy)” = esssup ke(w) < oo (3.3.13)
(tw)€[0,T]x (tw)€[0,T]x 0

2

Cp’f,TE < 00,

then the penalization term is upper bounded as follows

(Y2 —8) < %, VO<t<T, a.s.
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Proof. The strategy of proof relies on comparison arguments between BSDEs but the fact
that S can not be decomposed as a standard BSDE, forbids us to apply standard comparison
results (where drivers are compared only along one solution, see [54, Theorem 2.2]). Instead,
we could invoke a comparison between RBSDEs but it usually requires to compare the gener-
ator everywhere ( [52, Theorem 4.1]) which is a too stringent requirement in our case. Hence,
we proceed with a direct proof.

Write the dynamic of S; — %I_ioo and the one of Yt’\ as follows:

1 1 T T T
St——/%oo:ST——ROO—/ Usds—/ dAs—/ V.dB.,
A A ¢ ¢ t

T T
YA =4 / P, YA, 20 ds — / 7:dB.,
t t

where fA(s,y,2) = f(s,y,2) + Ay — Ss) . Set AY, =S — $hoe — Y} and AZ, =V, — Z}:

we have
T T T
AYt:AYT—/ (U5+fA(S,Y;A,Z§))ds—/ dAS—/ AZ,dB,
t t t

T
1
=AYy — / (U + (s, S5 — XROO, Vo) + A, fA(8)AY, + AL fA(s) - AZ,)ds
t

T T
- / d, - / AZdB,,
t t

A A ZAV_ FA s _lR A i i
here A, fA(s) = oY %) ];}EQ’SS A oo,ZS)].AYS;éO and similarly for A, f*(s) (see e.g. |54, Proof

of Theorem 2.5]). Because f is Lipschitz in y and z, the coefficients A, f*(s) and A, fA(s)
are bounded. Thus, using T := exp([f," (A, f(s) — 3|A.fA(s)]?)ds + [ A, fA(s)dB,) and
Ito formula, we easily get

T 1 T
AY, = E, [FtTAYT —/ Ti(Us + (5,5~ 1w Va))els —/ F;fdAs} |
t t
We claim that

1
Us + f(s, S5 — 1 Fioer V,) > 0,ds @ dP a.c. . (3.3.14)
Since AYy = Sy — i/?;oo —¢< —%ROO < 0 and A is non-decreasing, we get AY; < 0, which
implies the desired result. To justify (3.3.14), we write

1 1 1
Us + fA(Sa SS - _Rooa ‘/s) = Us + f(S7Ss - X’%oovvts) + )\(Ss - XROO - Ss)_

A
> Us + [(s, 55, Vs) + Feo = 0,

where, in the last line, we used that f is non-increasing on y together with the definition of
Foo- [
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Theorem 3.3.5. Assume the same hypotheses hold as in Theorem[3.3.4], we have

0<Yi-Y) < == WO<t<T,

where Koo 15 defined as in Theorem |3.3.4].

Proof. The left hand side of inequality is an immediate result from comparison theorem
(see [52, Section 6]). For the right hand side, our strategy is to apply again a comparison
result to Y and Y’ :=Y* 4+ &= Denote

t
K) = /\/ (Y2 — S,)"ds.
0

Then (Y’, Z*, K*) can be considered as the solution of the following BSDE with barrier S
and increasing process K*,

Y =&+ [T f(s,Y! = B= ZMds + [T dK} — [ Z)B,,
Y/ =5, (3.3.15)
Sy (Y] = SpdE} > 0

with & := £ 4+ £=. The second and the third conditions of (3.3.15)) hold thanks to Theorem
m where the third can’t be replaced by the equality, which means that (3.3.15)) is not a
real RBSDE because the Skorokhod condition is not fulfilled by (Y”, S, K*).

Nevertheless, following the arguments of |52, Theorem 4.1], we are going to establish a
comparison theorem dedicated to our specific setting. Apply Itd formula on |(Y; —Y/)|?, we
get, since £ > &,

T
E[|(Y: - Y))" ] + E [ / Liv.svylZs = Z?Ist}
t

<o [ [0 vz 65 - 2]

+ 2E MT(YS — YT (dK, - ng)] :

It still holds that

S

T i T i
/ (Y, =Y} = =)T(dK, — dK)) = —/ (Y, =Y} - %")*dKj <0
t t

because on the set {s : Y, = S,} where K increases, Y, — Y} — &= = S, — Y} — £= < 0
thanks to Theorem [3.3.4L Moreover, since ko > 0 and f is non-increasing in y, we get,
V(y,z) € R x RY,

/ (t,y— %,Z> > f(t,y,2),dt @ dP, a.e. .
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Hence,

T

E[|(Y;— Y{)" "] +E { / Loyl Ze — Z?IQdS]

t
T
< om [ [ R RS ARY zi>]ds}
t
T T

< (2Cf, +2(CL, P)E [ Ja n'>+|2ds] {E [ | tovalz - 2Pas).

t t

Conclude that |(Y; —Y/)T|> = 0,0 <t < T,a.s. using Gronwall’s lemma. O

Remark 3.3.1. Theorems |3.3.4[and [3.3.5| are valid without assuming |(H,, ) up to modifying
the upper bounds in their statements. Namely, if £, in (3.3.13)) is finite, then we have

s C{'LpT
(Y}~ S,) < % VO<t<T, as., (3.3.16)
O<Y—YA<M VO<t<T 3.3.17
<Y, < S , <t<T, as.. (3.3.17)

Indeed, due to the change of variable in Proposition|3.2.1} we can always assume the generator
to be non-increasing in y. For v = Cﬂ.p, with (Y”, Z¥, K¥) as defined in (3.2.1)), the generator
fY satistfies |(H,, ), then Theorems |3.3.4] and |3.3.5| yield

SR - S)T= (P ST TE YY) =Y - s

where after a few computations, we easily justify

> |8mt‘

R. = esssup e”'(f(t,S, Vi) +U)" < TR
(t,w)€[0,T]xQ

Then we can conclude with (3.3.16) and (3.3.17]).

Remark 3.3.2. Let us exemplify the above results in the case of the pricing of an American
put in finance with two interest rates (r; for lending, R; for borrowing), see [54, Example
1.1]. Indeed, assume in the complete and perfect market, d-risky assets X = (X! ... X9)T
satisfy the following SDE:

dx;

N pidt + od By,

where the stochastic process = (ut,-- -, u?)" is bounded in R? and the matrix of volatility
o € R™? is bounded, invertible and elliptic a.s.
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type pay-off Koo order (5)
Call (X, — K)* [rlo | 1 (r <0)
Put (K — Xt) [r o | 1 (r>0)
Call on spread | (X} — K)* ek 1
Put on spread | (K — ( X' | Il 1
Call on max (X}!v X2 K)" | r K 1
Put on min (K — X1 ANXD)T | rt oK 1
Call on basket (Z X — K)* r oo K 1

Table 3.1 — Ko, in linear market

where elliptic is in the sense that there exists a strictly positive constant ¢ such that a oo/ a >
clal?, for any a € R4t € [0,T]. Assume the interest rates r, R are bounded scalar stochastic
processes and there is no dividend paid by X, then in the market with 2 interest rates r and
R, the driver

f(ty,2) = —ry — 207 (e — rela) + (Re — 1) (y — 20, '14)~

and S; = (K% — X;1,4)" where 1, is a column vector filled by 1 in RY. From Remark [3.2.3} -
in unidimensional market (d = 1), a direct computation leads to x; = r;m K1 [Xp<kon) (see

Appendix [3.5.5)). Obviously, if we assume r is upper bounded, then <, < +00 and therefore
CFoo

0<Y,-Y <
b A

for some constant C'.

On the other hand, if r, < 0 for any ¢ then Ko, = 0: combining and gives
Y; = Y} > S;; thus we retrieve that the increasing process K is zero, i.e. American and
European put prices coincide when the interest rate remains non-positive.

The rate of convergence % can also be founded in the perfect market, i.e. in the market
where the self-financing portfolio is a linear combination of assets. In this case, under the
same [t6 models assumed on X and the boundedness conditions, the generator writes as

f(t7 Y, Z) =y = ZO-_IO'Lt - rt]-d)~

Table [3.1] present some examples (see its proof in Appendix [3.5.5)).

3.4 Error of implicit scheme

In this section, we aim at assessing the discretization error of the numerical solution of
PBSDE using the estimations from the previous section. When applying a time discretization
to YA in (4.1.2)), the difficulty lies in the fact that the Lipschitz constant of the generator



Chapter 3: Convergence rate of PBSDEs 47

part f* goes to infinity as A — oo. To overcome this, we use an implicit scheme Y*" defined
in (3.4.1). In our analysis, we first quantify the error of YA — Y* w.r.t. the time step h
and \; and second, we use the order 1-bound of ¥ — Y* in Theorem to get a global
convergence rate of YA — Y. Since we do not have a tight enough rate for Z — Z* (order %
in IL” norm, see Theorem , we restrict our study to a case where the generator f does
not depend on z.

3.4.1 Main result

Consider the equidistant time discretization 0 = tg < t; < -+ < ty = T with t; =
i%,‘v’o <i¢ < N. Let h := % For all 0 < i < N — 1, we propose the piecewise implicit

scheme for the discrete solution of Y* as follows,

VM =By [V P, Y]

it (3.4.1)
YO = Y;;\’haw € [ti, tit1),
where fA(t,y) == f(t,y) + ANy — S;)~ and E,, [-] := E[-|F,] . The continuous solution of
[A.1.2) Y, at each t;, can be represented as,
Y2 =By |V, P Y+
where the perturbation is defined by
N tit1
g = (s, Y)ds — fA(t, Y)he (3.4.2)

t;

Before presenting the result of discretization error of PBSDE, let us denote D the Malliavin
derivative operator (see [112]) and define the following integral space (see [54, p.58]):

D2 ::{random variables ¢ that are Malliavin differentiable with

T
(cLAE [|<|2 -/ |D9<|2d0} < oo},

0

H!2 ::{scalar predictable process ¢ = {¢;,0 <t < T} s.t.

for a.e. t € [0,7], ¢, € D2
t € [0,T] — D¢, has a progressively measurable version
in Ly([0,T],R%), and

E [/0T|gbt|2dt+/0T/0T|D9q5t|2d0dt} <oo}.

Theorem 3.4.1. Suppose [, ), [(H,,) and [(H; ) are satisfied. In addition, assume
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— the terminal condition & satisfies ¢ € DY and esssup [E;[|Di€]] < oo;

(t,w)€[0,T]xQ
— the generator f satisfies:
0 F(ty,2) = f(ty);
b 1(-,0) € #2;
c. Vt €[0,T], f(t,-) is differentiable with uniformly bounded and continuous deriva-
tives;
d. f(-,y) is +-Hélder continuous s.t. E { sup w < 00;
0<t<s<T,yeR

e. Yy €R, f(-,y) € HY? and esssup [E; sup  |Dif(s,9)]?| < oo
(t,w)€[0,T]xQ (s,y)€lt,TIxR

Iy Dof(t,y) is Lipschitz continuous uniformly on t,0,w;
— the barrier S satisfies:

a. esssup |Vi| < oo;
(t,w)€[0,T]xQ

b. S € HY? and ess sup | Dy Si| < o0
(t,0,w)€[0,T]x[0,T]xQ2

— Roo defined by (3.3.13)) is finite.

Then, we have

sup B (" = ¥22| = 0 (h+ X272

0<i<N-1

Remark 3.4.1. Notice that if A = 0 in [(Hs-1)} then V; = D;S;, so the hypothesis of the
boundedness of V' on the barrier S' can be removed.

Combining the above Theorem [3.4.1 with Theorem [3.3.5, we immediately deduce a
bound on the global error.

Corollary 3.4.2. Under same hypotheses hold as Theorem let X =h=>%% we get the
estimation of global error

1/2

sup B[V =Y,

0<i<N-1

— 0 (%),

Notice that this convergence is better than that in [105] (order 1/4) and compared
with |15], although this convergence holds at a slightly slower rate (order 3/8 instead of 1/2):
however, instead of assuming high regularity of the Markovian barrier, we require milder
regularity conditions for the barrier and for generator, which allows for a wider scope of
applications in option pricing. The tightness of the upper bound in Corollary [3.4.2] is an
open question: numerical tests on American Put option in the following section shows that
the rate may be faster than h3/% in some situations.

Corollary 3.4.3. Assume the same assumptions as Theorem [3.4.1] except Fo, = 400, then

sup B[ = 22| = 0 (A + 20202 4 N30

0<i<N—1
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Letting A\ = h™'/2, the global error is upper bounded as follows:

sup B |(V] = Y,)?] P _ommy.

0<i<N-—-1

We retrieve the global rate from [105], but using this time a penalized scheme.

3.4.2 Numerical experiments

In this section, we provide a numerical test built for American Put in a risk neutral
setting. Precisely, we lock the parameters of Put as following: the underlying asset is under
Black-Scholes model with the constant interest rate r = 3% and volatility o = 0.2, the strike
price is fixed at K = 100, the maturity 7" = 1. About the approximation approach, we
apply Monte-Carlo method with empirical regression as in [69]. The number of trajectories
M = 10%, the number of discretization times N = 103, the degree [ = 7 of global polynomials
as basis functions.

In the first subsection, we focus on simulating the penalized price function u*(t,-) given
by urt, X;) = Y and the behavior of penalization error with increasing . We also
give 2 different illustrations with constant initial process value Xy, = 100 and random one
Xo ~ U(50,150), where the latter brings robustness to the numerical scheme. Here the time
step is h = T/N with N = 103.

In the second subsection, we show that, with fixed order of penalty A = O(h~3/%), changing
only the time discretization step h, the error of MC simulation decreases in h more rapidly
than the rate proved in Corollary [3.4.2] The reference value is given by a 1000-steps Binomial
tree.

Price function of American Put In Figure , the global simulation of u* is very close
to the reference value for large A. Theorems [3.3.5| and [3.3.4] are verified numerically in the
following sense: the RMSE at bottom-left shows effectively the tracking error decreases as
A increases; at the top-right, the penalisation term remains bounded (with small oscillations
around the exercise boundary), it explodes for small x but this is due to the lack of samples
in that region (see the sample distribution at bottom-right).

In Figure (3.2 we report the same quantities but with random Xj: in comparison with Figure
3.1, we observe that the penalisation term behaves much better, for a wide range of values
of x, and we have noticed that the simulation scheme is globally more robust.

Global discretization error We take X, = 100, M = 10*, A = h3/%, and we change time
discretization step h = T'/N. We monitor the simulation error by MC regression, namely, we
track

M

1 A A
sup — Z(Y;},L”\(h)’m — Yt?m’m)2 (3.4.3)

0<i<N !
== m=1
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Price Function uA(t, x) A(Y}—50-

50 —— Binomial reference
Exercise boundary 129

40 1

301

204

10 1

60 80 100 120 140 50 60 70 80 90 100
RMSE(A) x Distribution of X¢ x

0.50 4 0.030 7

0.025 1

0.020 q

0.30 4 0.015

0.010 4

0.005 q

0.10 1— - T T - - - - 0.000 - - - - T
0.0 25 5.0 75 100 125 150 17.5 60 80 100 120 140

Figure 3.1 — The 4 panels are as following: at ¢t = 0.5, the price function u*(¢,-) at top-left,
the penalisation term A\[u*(¢, ) — (K —-)]~ at top-right, the RMSE (compared with binomial
reference) as a function of A at bottom-left, the distribution of MC samples of X; at ¢t = 0.5
at bottom-right.

as a function of h. The reference value is given by a 1000-steps Binomial tree. The numer-
ical results are reported in Figure This shows, in this example, our penalized scheme
converges to the reference value more rapidly than what we have proved theoretically in
Corollary [3.4.2} the error turns out to be roughly constant below h = 0.01 due to the limit
of capacity of other chosen simulation parameters (e.g. M and [). On the one hand, these
experiments show that our numerical scheme is efficient and accurate. On the other hand,
the convergence order seems to be close to 1 in this specific case, which can not be explained
by our current analysis. Further improvement is left to future works.

3.4.3 Proof of Theorem [3.4.1]

In this subsection, we focus on the error w.r.t. the time step h, while the penalty
parameter \ is fixed. To alleviate notations, we remove the notation A in the processes, i.e.
we write Y, Z,Y", Eif instead of YA, Z*, Y M, SZ-f’A, it will be clear in the context. Besides, it
is essential to keep track of the impact of A on the different constants arising in the error
analysis. For this, we will use a C' as a generic constant (changing from line to line), whose
values do depend on T f, £, S and other universal parameters, but not on A. W.l.o.g, we
assume in the following h < 1.
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Price Function uA(t, x) A(Y}—50-

50 —— Binomial reference 51
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Figure 3.2 — The 4 panels are as following: at ¢t = 0.5, the price function u*(¢,-) at top-left,
the penalization term A[u*(¢,-) — (K —-)™]~ at top-right, the RMSE (compared with binomial
reference) as a function of A at bottom-left, the distribution of MC samples of X; at ¢t = 0.5
at bottom-right.

> Step 1: For any 0 < i < N — 1, define the function
Vit OxR = R,y =y — f(ti, y)h.

To avoid any confusion, we will keep writing f* to insist on the dependence of X. Observed
that V; is a F;,-adapted stochastic mapping since the generator f* is random. Then one has

tit1

V(Y = K, [Yh } . V(Y. =E, [Y,;Z.H +&f } :

v =yt (Eti [YJHD Y, =y (Eti [th &l ]) . (3.4.4)

The invertibility of V; (in the y-variable) is justified in the following lemma.

Lemma 3.4.4. Suppose f fulfills |(H-111) and |(H,,), then V; is invertible. In addition,

Vh < @, the function V; ' is (1 + ZC’iiph)—Lz'pschz’tz continuous uniformly in 1, namely

VO<i<N—1 andVw,w € R,
[V (w) =V ()] < (14201, h)|w — .

Proof. We first consider the simple case where f = 0 and denote V?(y) =y — Ay — S;,) " h.
Then (V? )71 is well defined since 1) is continuously increasing in y. Without loss of generality,
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R h3’ﬁ = hD.3E +
—— pln
+ RMSE
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Figure 3.3 — For 4 < N < 100, we report the estimation error (3.4.3). The solid blue line
represents the expected rate h3/% and the dashed blue line is fitted by linear regression based
on the tracked errors, the later is at around C' h'-'1.

suppose y > '

y_y/7 lf yvy, Z Stw
0<V)(y) = V()= 1A+ M)y —y), if y,y' < S,
y— (L + Ay + ARS;, ify>S, >v.

In the third case, y — (1 4+ Ah)y' + AhSy, >y — (1 + Ah)y + Ahy' =y — . It follows that
Vi) = V) =y —y Yy >,

so (V?)~! is 1-Lipschitz uniformly in .
Now let fAt,y) = f(t,y) + Ay — S;,)~ with CJ

Lip

-Lipschitz continuous f . Under |(H,,),

V; preserves the same monotonicity as VP, so V; ' is also well defined. Observe that the
advertised result is equivalent to prove that for any y,vy" € R,

(142C1,MVily) = Vi)l = ly - ¢/l.
We start by writing the decomposition of V;:
Vily) = Vi)l =y = ftip)h = My = Su)"h = (¥ = f(ti, ¥ )h = My = Si)7h)|
> (1= Cph)ly =yl

Now it’s easy to show that, (1 + ZCiiph)(l - C{iph) > 1, forall h < Qle : O

Lip
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> Step 2: From (3.4.4) and the previous lemma, the sequence (IE [(Y;h — Y;Z,)QDO cicN
satisfies -

B [0 =¥ - B | (07 (B [¥.]) - v (B [ + 7))
< (1+Ch)’E [(Et [Yt +1 Ytz‘+1] — K, [&f})ﬂ

<aronp{asns v, - v i+ (1+1) |5 []) ]
< (1+Ch)E [( tise Yt”l)z] + %E [Eti [éﬂ 2}

where we have used Young inequality at the third line and A < 1 A # at the last line.
Lip
Gronwall lemma combined with Y* =Y, = ¢ gives,

E (Y} - Y,,)? <C’Z {E%[,ﬂ.

Hence, for h small enough,

sup E[(V; —Y,,)? <CZ E{Et [ } } (3.4.5)

0<i<N

> Step 3: In this step, we prove the above upper bound is O(h + A\2h%/2). Globally, we will
separate the sum into several parts and then investigate each of them. The general integrals
are easy to deal with. The term with (Y, — S,)~ will give rise to a local time contribution
which is the hardest to analyze. We first divide the perturbation Eif into I; and II;: from
(13.4.2)),

e = [ ()~ f s+ [ (=) - (= 5.)7) ds

i i

=:I; + M\ I,.

In the following calculus, we will deduce that,

N-1

Z %E ] < 0(h), (3.4.6)
- %E [E,, [I1)7] < O (h/?). (3.4.7)

With (3.4.6) and (3.4.7) at hand and in view of (3.4.5), we directly complete the proof of
Theorem [3.4.1]
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> Step 4: Estimation for I;. In fact, we have

L= ) - (il + / 1Y) - f0 Yl
For all s € [t;, t;11), | |
|f(t:, Ys) — f(ti, Y2,
<cf, (/t |f(u, Yy)|du + A /:(Yu = 8,) du+

/ Z,dB, )

t;

/ Z,dB, ) .
t;

Thanks to the bound of f(-,0), the estimate (3.5.3) and Theorem [3.3.4, we have

<o sw (S04 NI+ -8)) bt sw

t;<s<tijt1 t;<s<tit1

supE { sup (|f(s,0)] + [Ys| + A(Y; — SS)_)2 + /T |ZS|2ds} < o0. (3.4.8)
0

A>0 0<s<T

Therefore, by Burkholder-Davis-Gundy (BDG in short) inequality, we obtain

tit1 2
K, [/t | f(ti, Ys) — f(t’i7)/ti)|ds:| ]

<C hE [ sup |f(ti,Ys) — f(t:,Y2)

2:|
ti<s<tit+1

tit1
<C h(h2+]EU \ZquduD
t;

1=0

< Ch (1 +E [/OT |Zt]2dtD — O(h).

In addition, thanks to %—Hélder continuous in t of f, clearly
1
—-E
2
We have proved (3.4.6]).

> Step 5: Estimation for II;. We apply Tanaka’s formula and denote L the local time of
Y — S at level 0, by taking the conditional expectation, it follows

Eti [(Y; - SS)i - (Y;fz - Stz')i}

=E, [/ 1y, <5 (f(u,Yy) + Uy)du + )\/ (Y, — Su)_du}
ti t;

E: | / ey - f(ti,y;>|dsr —om)

1 s
-+ ]Eti |:§[L5 — Ltl] ‘l‘ / 1{Yu<5u}dAu:|
t;
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where A is the non-decreasing process of S in|(Hs-i)l Consider the integral on small interval
[ti,tiv1), we get:

tit1
B | [ (0= 807 - (i - 5 as)
t;
tit1
<, | [ el Y + U]
t;
tit1 h
+ ARE, [ / (Y, — Su)_du} + o, [AL]+ hE, [AA],
t;
where AL; := Ly, — Ly, AA; := Ay, — Ay,. We denote, for 0 <i < N — 1,
tir1 tit1
Foim [yl @) + Uildu, B [ (Y- 8. du
ti t;

All in all, we get

i=0 %E [Et II Z:: %{ ] ] + N’h*E []Et [E] }
Mele, anp) e AP} G4

For the first term of right hand side, by Jensen’s inequality and Cauchy-Schwarz inequality,
it follows

N— 1

tit1
> LRI <Oh?ZEU Lo [, OF + IV + 057
=0

< CRA(IF (-, 0)llg + 1Y Iz + 1Ulg) < CB? (3.4.10)

using again . For the second sum in , we use again the bound in Theorem m

2
=2
E [E, [E)’] < hE ( sup (Y, —Su)> < p2li=
ue

2 )
[titit1] A

which implies

NZ_: %)‘Q}RE [E., [E]"] = O(n?). (3.4.11)
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Now we deal with the third term and the fourth in sum (3.4.9)), applying Lemma m

i%hQE [E., [AL)?] + Z_: —h’E [E,, [AA)]7]

1=0 i=0

S| =

1/2
< V6hE [L%]”QE[ sup K [ALZ»]Q]

0<i<N—1

1/2
+ V6hE [AQT]I/Q]E{ sup E, [AAi]Q} . (3.4.12)

0<i<N—1

An easy computation leads to E [L2 + A2] < oo thanks to f(,0),U,V,S € .#? and Theorem

1/2 1/2
3.3.1} Thus it remains to estimate E [ sup E, [|ALi\]Q] +E { sup E, HAAi]]z] :
0<i<N-1 0<i<N—1

Denote A(Y; —5;) := Y4, — St,., — (Y, = S,). From Ito-Tanaka formula, we have, V0 <4 <
N1,

35 (AL =By [A% - 5)] < B | [ Inealf(0 Y0 + Uldy

tit1 tit1
t; ti

7

S Eti “A(Y; — SZ)” — Eti |:/ it+1 ]_YuSSu [f(u, Yu) + Uu]du} ,
A(Y;— S;) = — /tm(f(s, Y.) + U.)ds — )\/ti+1(Y; —S.) ds

tit1
— AA; + / (Z, — V.)dB.
t.

7

So, using Theorem [3.3.4] we deduce

E, [ALJ] < c{hmi [ sup (1f(t,0)] + Vil + |Ut|>] bR, (A4
0<t<T

I}

Thanks to the assumptions f(-,0),U, £, S € .2, the random variable ¢ := sup (|f(¢,0)] + |Y:| + |Uy])

0<t<T

FE, |

tit1
/ (Zs - V;)st
t;

belongs to L? and {E;, [(],0 <4 < N — 1} is a L?>-martingale, so

E| sup E, [ALZ-]Q} gc{h2+h2E[ sup [y, [C]Q] +E{ sup  Ey [AAZ-]Q}

0<i<N-—1 0<i<N-—1 0<i<N-—1

T

+E

}. (3.4.13)

tit1
sup E [/ (Zs — Vi)d B,
t;

0<i<N-1
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We handle the terms at the right-hand side of (3.4.13|) separately. First, applying Doob’s
inequality and Jensen’s inequality,

E{ sup [, [gﬂ <4 sup E[E,[(]’] <4E[¢?] < . (3.4.14)

0<i<N-—1 0<i<N-1

Second, denote AS; := S, ., —S5;,, then AA; = AS; — ft?“ Usds — ft?“ VidB,. With |(Ha-ii)}
we get similarly,

0<i<N-1 0<i<N-1

E[ sup B, [AAZ-]Z} §2<E{ sup [y, [IASZ-IF}

2
+R’E| sup E, {Sup |Ut|} )
0<i<N-1 0<t<T
< C(h+h U 42)- (3.4.15)

Third, introduce the following notation of regularized PBSDE solution:
For any fized X > 0, assume (Y, Z*¢) be the solution of (£.1.2) with respect to (€, f2<,)
and

Ay, 2) = f(ty) + Aoe(y — St) (3.4.16)

where e >0, §. : R = RT s.t. d.(x) = % for x € [—¢,¢] and 0.(x) = x~ for |x| > €.
In the following context, we use (Y, Z¢) to denote (Y ¢, Z*¢) for the fixed X. Notice that the
bound of Z¢ in Proposition holds uniformly in t,w, A, €, thus applying BDG inequality

we obtain
} 2

tit1
|- voas,
t;

E

sup [
0<i<N-1

=lmE

e—0

tit1
/ (Zs — V,)dB,
t;

}2
tit1 1/272

(/ |Z§—V;|2ds> ] < Ch. (3.4.17)
t;

So, with (34.13), (3.4.14), (B4.15), (B.4.17), we get,

sup [
0<i<N-1

<ClmE | sup E;
=0 0<i<N—1

E [ sup E, [ALi]zl +E [ sup E, [AAi]Q] < Ch. (3.4.18)

0<i<N-1 0<i<N-1

Back to (3.4.12)), we finally have
N-1 N-1

1 1
; ﬁ;ﬂa [E, [AL)] + ZO EhQIE [E, [AA]?] < CR*2. (3.4.19)

All in all, combining with (3.4.10)), (3.4.11)), (3.4.19)), we prove successfully (3.4.7)). Wrapping
up our arguments, the proof of Theorem [3.4.1]is finished. O
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Proof of Corollary [3.4.3, Using the estimation E | sup |(Y* —5;)7|*| = O(5) in The-

0<t<T
orem the estimation of I; in (3.4.6)) becomes
N1
> +E [E,, [L]°] = O(AR).
i=0
Regarding (3.4.7]) we obtain
N-1
> LE[E, [1L]] <O (VAR +12)
i=0
because the estimation in (3.4.11)) becomes
N1
SNWE [E, [E]°] = O(VAR?);
i=0
and (3.4.19) turns to
N-1y N-1
> hE [E, [ALF] + Y T HE [E,, [AAJ"] = O (\/’W + h3/2> .
i=0 i=0

3.4.4 Alternative approach for estimating martingales

There are also some alternative estimations for (3.4.13)) in Step 5 of Proof of Theorem
using different method, namely, we can also prove,

tit1 2 tiy1 2
sup ( / (Zs = Vs)st> sup ( / Vsst)
0<i<N-1 \Jt; 0<i<N-1 \J¢;

which yields a slower convergence rate compared with (3.4.18)) in L? as follows

E +E

T
< Chlog (1 + E)

E [ sup [, [ALZ-]Q} +E [ sup [y, [AAi]Q} <C (h + h® + hlog (1 + %)){3.4.20)

0<i<N-1 0<i<N—1

This proof is given by a changing view: Maximal inequality and the Orlicz norm (which
is also known as the extended IL» norm). In fact, in the calculation of (3.4.13)), instead of

2
focusing on E { sup E [ ﬁi+1( Z, — V;)st] }, we dominate, by Jensen inequality,

0<i<N-1
tit1 2
sup (/ (Zs — Vs)dBS)
0<i<N—1 \J4,

For estimating the above martingale term, we introduce the following result:

E
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2
Proposition 3.4.5. For some x € H?, define M := { (ftt“ Xsst> ,0<i<N-— 1}. If
one of the following conditions is satisfied:

(a): esssup |xi| < x for some constant x;
(t,w)€[0,T]

(b): there exists a family ((x5)o<t<T)es0 S-t. Ve > 0,x° € H?, lir(l)q+ X = x|z — 0 and
E—

sup esssup |x;| < X,
£>0 (tw)e[0,T]xQ

62 log(2) ( T)
E| s M| < —=——"Lhlog|(1+—|.
[Oﬁi;l]g—l ] log(3/2) & h

then we have,

Thus, we apply first, |[(a)|for estimating E [ sup ( ftt_"“ %dBS)2} which is direct thanks
0<i<N-1 "

to the uniform bound of V. Second, with notation (3.4.16)), we apply @ for estimating the
other integral of Z. In Proposition |3.6.4, we have proved the convergence in H? of Z¢ — Z
and the uniform boundedness of Z¢ on [0,7] x . Again with the boundedness of V| let us

denote y :=supesssup |Z; — V;| < co. It follows
T
=0 <hlog (1 + E)) :

E +E

e>0 [0,T]xQ2
tit1 2
sup </ (Zs — Vs)st>
0<i<N—1 \J4,

tit1 2
sup ( / Vsst)
0<i<N—1 \Jy,

Notice that y is a uniform upper bound on A due to the uniform boundedness of Z¢, so
in general we apply Proposition for each fixed A > 0 and the independence of y in
A allows us to show a uniform estimate for all A > 0. As a consequence, combine with
(3.4.13), (3.4.14)),(3.4.15)), for some constant C' depending on 7', f, S, we have (3.4.20)). Back

to (3.4.12),

N-l 1 N-1 1 -
2 2
; B By [AL]] + ; IR [Ey, [AA]T] < C (h3/2 log (1 + E)) . (3421)

All in all, combining with [B4.10), (3-4.11), (3.4.21), we can prove > .~ ' iE [E, [Ifiﬂ =

@) <h3/2 log (1 + %)) Wrapping up our arguments, we can have

T
sup E [(Y;?h - Yt;\)z} =0 (h + A2h3/2, [log (1 + E))

0<i<N-1

as an alternative result of Theorem B.4.1] O
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Proof of Proposition m Here we give the proof for @ since one can always use y as

an approximation for itself.

> Step 1: Prove E [ sup |MZ|} =limE [ sup |/\/lf|] In fact, Ve > 0, since x* — x in
0<i<N-1 =0 Jo<i<N-1

H?2, applying Cauchy-Schwarz and Jensen inequality and Ito isometry, we have

[N-1 Lit1 2 Lit1 2
IE[ sup |M,-—Mﬂ] <E|> (/ Xsst> - (/ X;d&,)
0<i<N-1 | iso ti t;
N1 , oty 212 IN-1 271/2
<E ( / (xs+xi)st> E[) ( / (Xs—xi)st)
L i=0 t; =0 ti

= ||X + XE||H2 ||X - XSHHz — 0, as ¢ — 0.
> Step 2: Orlicz norm estimation.

Lemma 3.4.6 (|31, Section 4]). For ¢ : Rt — Rt x — e” — 1, define the Orlicz norm
[[],, := inf {c >0:E [w (l—c‘)} < 1}, then for any family (X;)i1<i<n of measurable positive
random variables s.t. sup [|X;|,, < oo, we have,

1<i<n
E| sup [X]| < 282 log(1+n) sup X
su < —=—1o n) su il
1<itn log(3/2)  ° <izn v
2
Applying Lemma [3.4.6| to (Mf = (ftt“ X‘:Z,dBS> > , we have
' 0<i<N-1

log 2 T
E| sup M| <———log|1l+—) su M|, -
L<i<zlv)—1 Z] = log(3/2) ° ( h) O<IEN-1 M,

> Step 3: It only leaves us to compute sup [M;][,. Since <ftt Xist) is a

0<i<N—1 t<t<tisi
continuous martingale and thanks to the bound y, the Bernstein inequality implies (see [122]
p. 153 Exercise 3.16]),

t
]P)(Mme)SIP’( sup ]/)@dBJZM) < 2exp <—27_r;h>.
t X

1, <t<t;41

Then, with choosing ¢ = 6x2h, we have
Z i 1 m 2
o (40)] = ] 21 [ cteiaa s mpam s
R+

C C
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The Orlicz norm of M, is dominated by a constant ¢ s.t. E [z/J (MT)} < 1 which implies

sup || M|, < 6x*h, Ve > 0 since y is a uniform in . Therefore, we get the desired result
0<i<N-1

. 62 log 2 ( T)
E| sup M;| =ImE| sup M| < —=—FT<hlog(1+—].
|:0<i<]\€—1 ] e—0 L<i<1€_1 ] log(3/2) & h

3.5 Appendix

3.5.1 Proof of Lemma 3.2.2

Let us denote by C' any finite positive constant occurring in the proof: it will depend
only on T', the bounds on u, o and the regularity constant of g. For any 0 <t < s < T,

E, (1S, — Sil) < € (Is =t} + By [(9%) 4 X x, - X,[])

Since i and o are bounded, it is standard to show that

E, |i sup eCX'rI‘| < C€C|Xt|,
t<r<T

with a possible increase of C'. Besides,
(B, [|X: — X,"])? <Ot — 53

for some new constant C'. Therefore, using Cauchy-Schwarz inequality gives

E.[|Ss — S
sup —t 5 tl < C sup e“Xl,
0<t<s<T VS —t 0<t<T
Take the power p and the expectation gives the advertised result. O

3.5.2 A priori estimates for general BSDEs

In this subsection, we will give some result of a priori estimate for general BSDEs.

Proposition 3.5.1 (|116, Proposition 5.2, p.358, with p > 2]). Suppose (Y, Z) € #? x H?

satisfying the scalar equation
T T
}/tzg—}_/ dFS_/ stBs
t t
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where £ € 1.2, F € .%? and F is a scalar process with bounded variation a.s..

Let p > 2, we assume there exist stochastic processes (D, R, N, ) satisfying

dD; + Y,dF, < dR, + |Vi|dN, + |Y;|2d T, + g|Zt|2dt, (3.5.1)
where
— D, R, N are progressively mesurable, increasing, continuous processes with Dy =
Ro = No = O,’
— T is a progressively mesurable process with bounded variation and Ty = 0;
—n<l1.

IfE [ sup |YteTt|p} < 00, then one has the a priori estimate,

0<t<T
T p/2 T p/2
(/ eQTSdDS) (/ e?Ys| 7, ds) ]
0 0
T p/2 T p
leXTY [P 4 ( / e”sts> - < / eTsts) ] :
0 0

for some constant Cy,,, depending only on p,n.

+E

E [ sup |eTth|p1 +E

0<t<T

<Cp,E

3.5.3 A priori L’-estimates for RBSDE

Proposition 3.5.2 (A priori estimate for p > 2). Let p > 2 and let {(Ys, Zy, K;),0 <t < T}
be a solution in L, x HP x S . of the RBSDE w.r.t. (&, f,S). If[(Hy) is fulfilled, then
there exists a constant C' (depending only on T, f,p) such that

T p/2
sup i+ ([ 1zkar) o+ wg
0

0<t<T

<cmfiep s ([ 1rwo.0iar) + s (5]

0<t<T

E

Proof. The proof will be done in several steps.
>>Step 1: Apply Proposition 3.5.1} on (4.1.1]) using obvious notations, we get

YdF, = Y, f(t,Y;, Z)dt + Y,dK,
< Sidi + [Vl (1£(4,0,0) + CF vi] + Cf, |z )at

< (S)TAK, + |Y|£(£,0,0)dt + (CF

so (3.5.1)) holds with

D=0, dR,=(S)*tdK,, dN,=|f(t,0,0)dt, dT,=(C +

sz

+(CL) )Yl dt+—|Ztl2dt

Lip

1
(C£Zp>2)d n= 5
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For the rest of proof, let us denote by C any generic constant which value may change from
line to line, but it depends only on T, f,p. Therefore, from Proposition [3.5.1] we get the
intermediate a priori estimate for Y and Z, with p > 2, and for any € > 0,

([

E { sup \Yt\p] +E

0<t<T
T p T p/2

< CE|jefr + (/ yf(t,o,o>|dt> + (/ (S»*th)
0 0
T V4 02

< CE [|§|p + (/ |f(t,0,0)|dt> ] + 4—E [ sup |St+|p} + eE[|Kr|"]. (3.5.2)
0 € 0<t<T

>Step 2: We now estimate Kp, simply by rewriting the formulae,
T T
KT:}/E)_g_/ f(tvytvzt)dt+/ thBt
0 0

T T
g/ F(£,0,0)|dt + C sup m|+c/ Z,|dt +
0 0<t<T 0

T
/ Z,dB;
0
Then we take the expectation on both sides and get

(/OT \Zt\2dt>p/2 +CE K/OT |f(t,0,0)\dt)p} |

where we use BDG inequality at the last step. Combining with (3.5.2) and the above, and
taking € small enough, we get the desired result. O]

E[|Kr|’] < CE [ sup |Yt|p} + CE

0<t<T

3.5.4 Proof of Theorem [3.3.1]
3.5.4.1 Existence, uniqueness for (Y, Z, K) and a priori estimates for (Y*, Z* K*)

We follow a standard routine to prove the existence of penalized BSDE with increasing
penalty parameter A\. The case of p = 2 is given in [52, Section 6] and the case of 1 < p < 2
is stated in [82]. Here we extend their results to p > 2.
> Step 0: Define fAt,y,2) := f(t,y,2) + My — S;)~. The existence and uniqueness of
(YA, Z*) in LL? is obvious thanks to the Lipschitz generator f*. The difficult part is related
to prove A-uniform bounds. We could try to use estimates from [23]: on the one hand, f*
satisfies the monotonicity condition [23, Assumption (H3)]

(y - yl)(f/\(tv Y, Z) - f)\<t7 y/7 Z)) < Cizp(y - y/)2
uniformly in A, but on the other hand, the condition [23, Assumption (A)] writes as

Sign(y) fA(t,y, 2) < |2 (,0,0)] + C,lyl + CF, |2
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where |fA(¢,0,0)| does strongly depend on the penalty parameter A\. So although the mono-
tonicity condition is satisfied, we can not get an uniform upper bound in A for PBSDE using
the argument of [23]. Instead, we establish a simple proof as in Proposition using
Proposition |3.5.1}

> Step 1: Given (Y*, Z*, K*) the solution of (4.1.2), since

YK} < S,dK)

(K* increases only when Y;* < S;) we can use again the argument in Proposition by
replacing the process K by K*. Note that all generic constants C' do not depend in A. Then
we get the desired a priori estimate

E

T p/2
sup Y7 + ( / |Z§\2ds) T uc}rp] <e (3.5.3)
0<t<T 0

where ¢ depends only on f, S, &, T, p.

From the comparison theorem for standard BSDE (see [52, Theorem 2.2]), we have
Y;)‘ < YtX,O <t<T,a.s. for any 0 < XA < ); so there exists a process Y s.t. Y;’\ —
Yi, as A — 00,0 <t < T, a.s.. By Fatou’s lemma and estimation (3.5.3)), we easily get

E { sup |Yt|p] <c
0<t<T

using again the convention of generic constant C' independent on A\. Then, from the dominated

convergence, we have E [fOT YA — Yt|pdt] — 0 as A — +oo.

> Step 2: Let us justify that (Y, Z*, K*) is a Cauchy sequence in .7

e, X HP x #P. We
apply again Proposition on Y — Y. In fact, define

AY) =YY — YN AZ) = 7Y — 20 Af = YN, Z)) = f(6LY), 20, AK) = KY — KD,

then, we have

1
AYMAfdt +dAK)) < (Cf, + (CL)%) [AY) Pt + 71AZ) Pdt
+ (Y = S)"dK) + (Y — 5,)"dK}. (3.5.4)

Let n = 1/2 and

D=0, dR,=(Y}-S) dK} +(¥}" —8,)"dK}), N=0, dY,= (c{ip + (C{ip)2> dt.
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Then we deduce the a priori estimate for (AY, AZ}):

T p/2
(/ |AZQ|2dt> ]
0

T p/2
( | o7 soary + o —StrdK?) ]
0

< C\/E [|K3P] \/ sup (Y, —St)_|p}

0<t<T

+C ]E KX|p — S|Pl 3.5.5
VEL 'J 07 = sy 422

Assume for a while that the following limit holds, its proof is postponed afterwards.

E [ sup |AYt’\|p] +E

0<t<T

< CE

Lemma 3.5.3. Under the assumptions of Theorem we have, forp > 2,

lim E [ sup |(Y — St)]p} = 0.
A—00 0<t<T

Then, from (3.5.5)), we get, as A\, \' — oo, the following convergence:

T p/2
(/ yAZm?dt) ]—>0.
0

E [ sup \AY;}‘VD] +E

0<t<T

Moreover, set
t t
AK} = AYy — AY) — / Af.ds + / AZ}d B,
0 0

we have the following estimation for AK?,

E [ sup ]AKNP} <C {E { sup \AY?lp] +E

0<t<T 0<t<T

(/OT \AZ?Pdt)p/Q] } . (3.5.6)

So we deduce that (Y*, Z*, K*), is a Cauchy sequence in .72 , x HP x .#P, denote by
(Y, Z, K) its limit (for Y, it coincides with the previous monotone limit).

> Step 3: it remains to verify (Y, Z, K) is the solution to , this can be done by
applying exactly the same arguments as [52, p.722]. We are done with the first result

of Theorem B.3.1].
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3.5.4.2 Proof of the bound (3.3.2) on penalisation error

We use again Proposition as for Inequality . Before, we analysed the dif-
ference Y — Y*; now we handle Y — Y*, the decomposition of which is really similar just
doing as if ' = +o0 in the algebra of equations. Replacing (Y, ZY, K*) by (Y, Z,K) in
the formulas of (AY* AZ* AK?), we get

Lip + (C’gzp

1
AYMAf,dt + dAKD) < (cf )2) AVt + FAZ) Pt + (V) = $)7dEK.

Then, applying Proposition with n = 1/2 and D = 0,dR; = (Y} — S;)"dK,, N =

0,dY,; = <C£ip + (Cf )2) dt, we get
T p/2
< CE (/ (Y — St)‘th) ]
0

Lip
T p/2
( / |Azg|2dt)
0

for some constant C' independent on . We obtain a similar estimate on AK* by considering

the analogous of (3.5.6). The proof of (3.3.2)) is complete. O

E { sup |AY}|”} +E

0<t<T

3.5.4.3 Proof of Lemma [3.5.3

We extend the proof of [52, Lemma 6.1] when p = 2 to the case p > 2. As in the proof
of Theorem [3.3.3, let (Y*, Z*) be the solution (in .#7,, x HP) of the linear BSDE (3.3.8)
which has the explicit representation

T T
Y} =E, {e’\(Tt)f + / e AV f(s Y, ZMds + )x/ e’\(St)Ssds} :
t t

> Step 1: We first prove that, as A — oo, }N/TA — {17y + S:1lzory in P, for any 7 € To 7.
In fact, we consider the following convergences, which hold in both a.s. and in L?,

: “ANT-7)¢ _ _ 5.
Jim e §=El=my, (3.5.7)
! A=)
: —A(t—7 _
)\1_1)1300 )\/T e Sidt = S: 1oy (3.5.8)

The first identity (3.5.7)) is trivial since £ € L. To prove (3.5.8]), write
T
S, =(1— e—A(T—T))ST + 6—/\(T—T)ST _ ST)\/ e M=)t + e—)\(T—T)Sﬂ

T T
A / e MG dt — Silprery = A / e NS = Sp)dt + e M8 Ly,
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Obviously, since S € .#2 . from the dominated convergence theorem, /\Er}rloo e"\(T_T)STl{T<T} —

0 holds a.s. and in L.”. Moreover, on {7 < T}, we have

T (o]
A / e MT|S, — S ]dt < / ™ |Stacresn — S| ds.
i 0

Therefore, thanks to the continuity of S, letting A — 400, the right-hand converges to 0 a.s.;

thus, from the dominated convergence theorem, with S € .2 . we get

T
lim A / e MEDIS, — S |dt =0, in L2

A—400

We have proved ({3.5.7))-(3.5.8). Hence, Jensen inequality ensures that the conditional expec-
tation of e MT=7¢ 4 ) fTT e M=7)5,dt given F, converges to {1i—7y + S, 1<y in LP.

To complete our proof, we only have to justify that fTT e =T f(t, Y, Z))dt converges
to 0 in IL”. Indeed, from the Holder inequality,

T p 1\ 71 T
E{ / e N £ YA, 20l } < (—A) E{ / |f(, Y, Z))Pdt
, q 0

with %%—% = 1. The expectation on the right-hand side is bounded uniformly in A, because of

the uniform bounds and the assumptions on f; thus the expectation on the left-hand

goes to 0 as announced.

> Step 2: From [43| p. 220], we pass from Y, > S, a.s. for any stopping time 7”7 to ”Y; > S,

for all times ¢ € [0,77,a.s.”

Notice that from the comparison theorem [54, Theorem 4.1], we have Y; > Y;* > }2)‘, 0<t<T, a.s.,
so (Y} — ;)™ | 0 a.s.; Dini’s theorem yields the convergence uniformly in ¢, and owing to

the dominated convergence theorem, we obtain the statement of Lemma [3.5.3 [

3.5.5 Appendix: Proof of Table
3.5.5.1 Example: Call and Put in the market with 2 interest rates

Suppose the lending rate » and the borrowing rate R with r;, < R;,0 <t <T. The
generator f is defined as following

f(ta Y, Z) =Ty — ZU{l(Ht - Tt) + (Rt - Tt)(y - 20'71)7-

For unidimensional Call (resp. Put) option, we have the following It6-Tanaka expansion: a.s.

1 st
dSt — d(Xt _ Kstk)+ — 1{Xt>KStk}MtXtdt + 1{Xt>KStk}Xt0-tdBt + éde k(X),

(resp. for Put option,

1 st
ds, = d(Kstk _ Xt)+ = _1{Xt§Kstk}MtXtdt — 1{Xt§Kstk}XtO-tdBt + §de< ’“(X),)
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where L¥™(X) is the local time process of X at level K. So the decompositions of Call
(resp. Put) option are as follows:
1

U, = 1{Xt>Kstk},utXta Vi= l{Xt>Kstk}XtUt> A = §L55tk(X)'

(resp. for Put option,

1 st
Ut = _1{Xt§Kstk}MtXt7 ‘/t = _1{XtSKStk}Xt0-t’ At = éLf( k(X)) (359>

Denote ¢, k2 the bound in Theorem for Call, Put option respectively and Let v =
|Rloo V |07 (1 = 7)[oc, then

RS, = esssup e’ (f(t,5, V) + Uy)~
[0,T]xQ

= esssup e”t( — (X, — K¥F) T — 1{Xt>Kstk}<,UJt — 1) Xy
[0,T]xQ

—+ (Rt — 7}) ((Xt — KStk>+ - Xt]-{Xt>Kstk}>_ + ]-{Xt>Kstk}/~LtXt)

— esssup et (frtKStkl Corony + (B = r)((X = K = X1 {XQW})*>
[0,T]x

= esssup e (R, K1 (xoxe}) < e"TIR™ | K5,
[0,7]x$2

For Put Option,

kL = esssup e”t< — (K — X))t + 1{Xt<KS”€}('ut — 1) Xy
[0,T]xQ -

+ (Rt — Tt) ((KStk - Xt)+ + th{XtSK‘Stk}> - lutXt]‘{thKka})

= esssup Gyt(—TtKStkl{XtSKstk} + (Rt - Tt)((KStk - Xt)+ + thXtSKStk)_)_
[0,T]x$2

= esssup e”t(—rtKStkl{Xt<K})_ < e"T|r+]ooK8tk.
[0,T]xQ B

3.5.5.2 Example in dim = 1: Call and Put in perfect market

Suppose d = 1. Here we discuss the case with » > 0 and r < 0, so for convenience, we
will work with Y with v = esssup |r¢| V o, ' (s — )| and the linear self-financing generator
[0,7]1x$2
flty,z) = —ry — zo; (e — 14).
The decompositions of Call and Put option as (3.5.9) remain true in the perfect market. So,
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for Call Option, Ut = ,utthXt>K5tk7 ‘/t = O-tthXt>KStk7
R, = esssupe” (f(t, S, V) + Uy)~

oo

[0,T]x

= e[ss ]Sup e”t(—rt(Xt — KStk)+ — 1{Xt>KStk}Xt(Mt — Tt) + ]_{Xt>Kstk},utXt>_
0,T]xQ

= esssup €Vt (TtKStk]_{Xt>Kstk})i
[0,T]xQ

= esssup €”|(ry) T |[K** 1y, o georny < €7 [r7 | K.
[0,7]x$2

For Put Option, Ut = _ILLtth.XtSKStk7 ‘/2 = _O-tthXtSKStk

Ri = e[SS }SUp eyt(—’l"t(KStk - Xt)+ + 1{Xt§Kszk}Xt<,ut - Tt) - 1{Xt§Kstk}lutXt)_
0,T]xQ
= ess sup e”t(—rtK‘Stkl{XKKstk})’
[0,T]x$ B
= esssup e[ (r,) T |1 x, < geor < 7T |1t | o K5
[0,T)x N

3.5.5.3 Examples in multi dimension: Call and Put in perfect market

Define
— the inner product of column vectors z -y 1= z " y;
— the product of column vectors (ax) = (a'z!, -, a%2?)" where a,r € R? and a’ is

i-th component of a.
Denote the vector 14 = (1,---,1)] € R, dX;, = (dX}, - ,dX)" € R% See more multidi-
mensional options in [24,(127].

Call on spread. Consider the pay-off S; = (X} — X2 — K**)T then S is a generalised
semi-martingale with a local time L such that

dS, =1y _xauxya-dXo+ %dL{f“’“ (X' — X?)
with vector a := (1,—1)" € R% Then
Uy .= 1{X3_X§>K5tk}(aXt) g, Vo= 1{X3_X?>K5tk}(aXt) o
and with this (f,S), ks is well defined. Indeed,
ft, S, Vi) + Uy = —1,S; — Vioy Yy — re1s) + Uy
= —rifa- X; — KStk)l{xg_X§>Kstk} - 1{Xg_xg>Kstk}(aXt) (e — 112)
+ l{thth2>KS”“}(aX) A
= —ra- X, — KStk)]'{th—XtQ>KStk} + rtl{th_Xt2>Kstk}(aXt) . P

_ stk
= 1ds 1{X§—X§>Kstk} :
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Hence, o 1= css sup e (KL o)) S €T KO
T x

Call on maximum. Consider the pay-off S; = (max(X}, X?)— K**)*. Apply It6-Tanaka,
1
d(X} Vv X7) =dX! +d(X} — X?)” =dX/ - 1{Xt1SXt2}d(Xt1 - X7) + §dL?(X1 - X7
1
= (1{X3>Xt2}v l{thng})dXt + §dLg(X1 - XQ)
and

1 stk
dS; = 1{Xt1vXt2>Kstk}d(th Vv X7) + §de{ X'V X?)
1

= (uX) - (udt + o, dBy) + 5[1{ngxg>Kstk}dLg(X1 X%+ dLgmk (X'v X2)]

-
with matrix a; 1= <1{ngX3>Kstk,X,}>X3}7 1{ngXt2>Ksm’Xg§th}> . So S is also a generalised
semi-martingale with an increasing process where

U = (atXt) ey V= (atXt) * O¢.
Hence

[, S, Vi) + Uy = —ry( X[} V X7 — K™t — Vo™ (e — 1e1s) + U,
= —T't(Gt . Xt — KStk) — (CltX) . (,U/t — T't]_g) + (atXt) Lt
= —TiQ¢ * (Xt — KStk].Q) + Tt(atXt) . 12

= TtKStkat . 12 = TtKStletletZ>K5tk.

It follows by R := PESST]SB}; e”t(rtKStkl{thvx3>Kstk})7 < eTKS|r .

Put on minimum. Consider S; = (K** — min(X}, X?))*. Similarly,

1
d(X!AX?) =dX! —d(X} - X)T =dX, — 1{th>Xt2}d(Xt1 — X2 — 5cng(Xl - X?)

1
= Ly} A0 + L oy dX7 — Sd L (X = X7),
then
1 st
ds; = _1{X3AX§§Kstk}d(th A th) + §LtK k(Xl A Xz)

1 st
= —(atXt> . (Mtdt + UtdBt) + 5[1{Xt1/\Xt2§thk}dLg(X1 _ X2) + Lf( k(Xl AN X2)]
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with matrix a; := <1{X§AXESKS”“,X§§XE}’ 1{{X§AX3§Kstk,Xt1>Xt2}}>T- So Uy = —(a; Xy) - g and
Vi = —(a;X}) - 04. Hence,
f(ta St, V;t) + Uy = —Tt(KStk - th A th)+ - Vta_th - 7“t12) + Uy
= —Tag - (KStklz - Xt) + (atXt) : (,Ut - T't12) - (atXt) © Mt
= —r K% a, - 1y 4 ray - Xy — (0 X)) - 19
= —r, K%, -1, = —’r‘tKStk]_le/\XtQSKstk;

it follows Roo = esssup e’ (—r K" 1yipxo cpeer) ™ < T K[|
[0,T]xQ

3.6 Appendix: Proof of Section 4

We first introduce some results from [54, Proposition 5.3] and we restrict to the case
where f does not depend on z.

Lemma 3.6.1. Assume & € DY“2, f is continuously differentiable in y, with uniformly
bounded and continuous derivatives and such that
— for each y € R, f(-,y) is in HYZ;
— fOTIE [fOT \Dgf(t,Y;)|2dt] df < oo and there exists a constant C s.t. for any 6 €
[0,T] a.e., for any t € [0,T] and any (y1,y2) € R?,

|D9f<t7w7y1) - Dgf(t,w,y2)| < C'|y1 - y2"

Then for V1 < i < d, a version of the Malliavin derivatives {(D}Y;, DyZy) Yo<os<T Satisfies
the following linear BSDE,

DY, = Di¢ + [718,f(u, Ya) DY, + Dif(u, Y,)|du
T
- / DyZ,dB,, 0<0<t<T; (3.6.1)

t

DY, =0, DiZ, =0, 0<t<0<T.
Moreover, {D;Y;}o<i<r defined by (3.6.1) gives a version of {Z;}}o<i<r-

From [54, Proposition 2.2], (3.6.1]) has closed form.

Lemma 3.6.2. Let (3,7) be bounded (R, RY)-valued predictable processes, ¢ be an element
of H2, and & be an element of L2. Then the linear BSDE

—dY; = (¢ + Vb + Zyyi]dt — Z,d By, Yr =&,
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has a unique solution (Y,Z) in H? x H? and Y; is given by the following formula

T
Y,=E {grl} +/ F§¢Sds|]-"t} ,a.s.,
t

where T is the adjoint process defined for s >t by the linear FSDE
dI' =T%[B,ds +~/dB,], Ti=1.

Lemma 3.6.3. Given an adapted and non-decreasing process L starting from Lo = 0, for
some time discretization 0 =ty < t; < --- <ty =T, define AL; := Ly, , — L4,,V0 <7 <
N — 1. Assume that L1 is square integrable. Then we have

141

N-1 1/2
S E[E, (ALY < VOE [£3]°E [ sup B, [Aﬁﬂ :
— 0<i<N-1

Proof. Because L is non-decreasing, the square integrability of L7 easily propagates to each
L;,. By Cauchy-Schwarz inequality, the above left hand side satisfies

E[E, [AL)] <E sup K, [AL] Et [AL;]
[ ] .

0<i<N-1

=2

-1

<.
Il
o

97 1/2

| 0<i<N-1

- 1/2 N-1
<E| sup E, [Aﬁi]Q] E (Z E,, [A.ci]>
=0

From Jensen’s inequality and Young’s inequality, and using that £ is non-decreasing, we get

N-1 2 TN—1 N-1 N-1
(Z E,, [Azi]> —E B, [ALP | +2E | Y ) Ey, [AL]E, [AL)]
=0 L i=0 1=0 j=i+1
[N—1 N-1

Nzl E[E, [AL] AL;]

IN
=
Iz
>
D

>3
=0

=0 J=i+1
[ /N1 2 N-1

<E (Z A£i> +2E | Y By, [AL] (Lr - Eml)]
=0 =0

<E[L£}] +2E

Ly <Ni E,, [Aci]>

=0
< 3E [£%] (ZEt (AL )

from where we get the desired result. ]
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Proposition 3.6.4. Under|(H,) and|H,), let (Y}, Z}) be solution of PBSDE [4.1.2) and
(Y2, Z2€) be the solution of BSDE with f»¢ as defined in (3.4.16)). First, we have

T
lim E l sup [V — VP + / |Z)} — Zf’5|2dt] =0. (3.6.2)
e—0 0<t<T 0

Second, for any fived X > 0 and for all 0 <i < N — 1, denote M} := ﬁi_i“(Z;\ — V;)dB; and
MM = ftii“(Z’\fE — V;)d B, then we have

S

E[ sup [, [

0<i<N-1

MZ)‘HQ} = limE[ sup E, H.Mi’\’€

e=0  |o<i<N-1

ﬂ . (3.6.3)

Moreover, suppose the same assumptions as Theorem then there exists a constant C
which depends only on &, f, T s.t.

supsup esssup |Z°| < C. (3.6.4)
A>0 >0 (tw)el0,T]xQ

Proof. Since ) is fixed, we simplify the notations (Y*, Z*), (Y, Z%¢), M*, M*¢ into (Y, Z),
(Ye,Z9), M, Me.

Proof of (3.6.2). The existence and uniqueness of (Y*,7¢) € %2 , X H? come from the
Lipschitz continuity of f*¢ since the regularization does not change the bound of derivatives
(0 is 1-Lipschitz continuous). The proof of is straightforward from a priori estimate

(see [54, Proposition 2.1]), combined with the easy bound sup |d.(z) — 27| < §: it gives
zeR
T
IV = Y412 - 271 < GE | [ 02105 - 5 = 6.0 - )
0

S )\20)\62

with changing constants C'y depending on A and 7', f, S, €.
Proof of (3.6.3). We have

‘E[ sup Ky, [|M;]]P — sup Ey |

0<i<N-1 0<i<N—1

M|

<E { sup | By, [|[M;]])* — B, HMiSHQ‘}

0<i<N—1

SE[ sup {Ey, [|M; — ME|JEs, [|MZ-|+|M5|J}]
0<i<N-1
r 1/2

<E

1/2
E{ sup By, [ M|+ |MF|)°| .(3.6.5)

0<i<N—-1

sup ]Eti |:

0<i<N-1

tit1
t;
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To the first factor in (3.6.5)), apply BDG’s inequality and Doob’s inequality, it gives
} 2

i titr1 1/2 2
<CE | sup E, (/ | Zs — Z§|2ds) ]
0<i<N—1 4

E

sup B,
0<i<N-1

tit1
|z -z,
t;

[ T 1/27 2
<CE| sup E,; (/ |ZS—Z§|2ds) ]
0<i<N-1 0

T
SC’E{/ |ZS—Z§|2d8:| —0ase—0.
0

We now handle the second factor in (3.6.5)), by showing that it is uniformly bounded in €. We
only need to consider the term M. Proceeding with similar arguments as before, combined

with (3.6.4) and (3.5.3), we get

T
limsup E l sup K, [|Mf|]2} < ClimsupE {/ |Z5 — VS|2d3} < 400
e—0 0

=0 0<i<N-—1

from where we deduce (3.6.3)).

Proof of (3.6.4). Apply Lemmal[3.6.1]and Lemma to (Y, Z¢), so we can solve Z in an
explicit form. For any 1 <4 < d, a version of the Malliavin derivatives {(DjY;, Dy Z5) }o<o 1<t
satisfies the following linear BSDE,

DyYE = Dy + [, 10, (w, Y) DYs + Dj f<(u, V)l du
— [ DiZ:dB,, 0<6<t<T,;
DiYF =0, DiZi =0, 0<t<6O<T.

Observe that the formula is similar for each coordinate 7, thus we can suppose d = 1. We
have

Oy [ (u, V) = 0, fu, Yi) + A (Y — Su),
Dy f*(u,y) = Do f(u,y) + ADgd=(y — Su) = Do f(u,y) — A" (y — Su) DpS.

Let B, := 0, f*(u, Y), ¢% := Dy f ¢ (u, YY) and let

I = exp {/S[E)yf(u, YS) + N6 (Y — Su)]du} :

then

T
t
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Under the assumption esssup |0, f(t,Y;)| < oo, since Vo € R,d./(x) < 0, I't is bounded
(t.w)
uniformly in A, ¢, s,w. In the following, without dedicated explanation, the generic constant

C can vary from line to line and it does not depend on A. Moreover, as for ftT I"o.ds, we
first write

T
/ _)\58/(}/;5 o Ss)efts Aés'(Yj—Su)duds -1 @ftT Ao/ (YE—Su)du <1,
t
then we get,

E[LTry@ul

T
<E, |:/ |th(8, Y;E) - )\(55/<Y;,€ o SS)DtSS]ef:[ayf(“’yf)“‘sfl(yfS“)d“ds]
t

§C<Et

In addition, we have

sup |th(say>| + E;

(s,y)€t,TIxR

sup |DtSs| :
s€[t,T]

Edmﬂﬂ‘SE{J”MmﬁﬁmgﬂSCEHam.

As a consequence, Z; is dominated by some bounded terms independent on A, thus

supsup esssup |Zf] < oc.
A>0 >0 (t,w)€[0,T]xQ



Chapter 4

Error analysis of backward Implicit
scheme using Empirical Regression
Monte-Carlo method

abstract In this paper, we investigate on the numerical analysis of implicit scheme for
solving penalized Backward Stochastic Differential Equations (BSDEs in short). We focus
particularly on the empirical regression method where both the linear and the non-linear least
squares regressions are studied. For the linear case, we show that, even with the penalty term,
the convergence of the Monte-Carlo implicit scheme for penalized BSDE has the same rate
as that for solving the standard BSDE without penalty via explicit scheme in I.? space. For
the non-linear case, the fixed-architecture Neural Network with piecewise linear activation
function (ReLU) is investigated and we establish the convergence rate with respect to the
parameters of neural networks and of the Monte-Carlo method, from which we deduce the
optimal tuning of parameters.

4.1 Introduction

In financial engineering, the Monte-Carlo method (MC method in short) plays an essen-
tial role thanks to its natural advantage for computing expectations arising in option pricing.
Then Carriere [30] employs MC method in backward induction schemes to compute the early
exercise premium for American option pricing; Longstaff and Schwarz [101] popularize the
application of regression MC method in option pricing and they use the linear least-squares
basis projection regressor for computing the conditional expectation. A lot of works follow
afterwards since MC method suffers less the so called curse of dimensionality compared to
traditional PDE method.

76
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State of the art. Bally and Pages [3] develop the error analysis for the quantization
method; Bouchard and Touzi [16] study the convergence rate of approximations by regression
considering the kernel and the Malliavin approaches; Del Moral et al. [41] present an estimator
preserving the convexity and monotonicity for American options; Gobet and Labart [67]
propose a BSDE solver where an adaptive control variate is added making use of the link
between linear BSDEs and linear parabolic PDEs; Guyon and Henry-Labordere [77] provide a
regression-based approximation for the optimal covariance matrix in the uncertain volatility
model.

Among all above different approaches for applying MC method, the most popular one
is presumably the ordinary linear least-squares regression (OLS in short) as in [101] (see
also [38]) thanks to its facility of computing optimizer explicitly. Under this framework, a
finite time horizon is considered, one first discretizes the time and then simulates some paths
by MC method. The estimator will be computed backwardly as a linear combination of
a reduced set of functions where the coefficients are optimal in the empirical least-squares
sense; Gobet, Lemor and Warin [69] first extend OLS for the standard BSDE and give
the convergence rate of dynamic programming explicit scheme depending on the simulation
parameters; Gobet and Lemor [68] show the approximation of BSDE with Jump process and
of Reflected BSDE; Bender and Steiner [7] use a 'martingale basis function’ to reduce the
propagation error when computing conditional expectation; Bouchard and Warin [17] suggest
to use an adaptive local basis where the support of the function basis is adapted to the density
of samplings; Bernhart et al. [11] apply this procedure to approximate the penalized solution
of BSDE with constrained jump and they show a slow logarithmic convergence rate; Gobet
and its co-authors present the error analysis of many different numerical estimators: the
multi-step explicit scheme is studied in [72], the stratification sampling with parallelization
on GPU is considered to improve the computational performance in [70], the hedging strategy
with Malliavin weight is presented in [71].

As the computational capacity of computer develops, many researchers tend to employ
deep learning method in order to solve some high dimension problems. E, Han and Jentzen
[50] first apply the so-called 'deep BSDE’ method where a forward scheme is considered and
the parameters of network are optimized subject to minimize Mean Square Error (MSE in
short) on terminal condition by stochastic gradient descent; then Han and Long [84] extend
the deep BSDE method to solve the coupled Forward BSDE; recently Carmona and Lauriere
[26] present their result in Mean field control problem where the related approximation of a
specific decoupled FBSDE of McKean-Vlasov type is computed by deep BSDE, see also [119)
for the suggestion of network architecture.

The so-called ’expression rates’ in the context of the curse of dimensionality, namely,
the complexity of neural network w.r.t. e-accuracy such as the number of parameters W
and the number of layers £, is a popular topic. There are already some results for PDEs.
Reisinger and Zhang [121]|[Theorem 2.1] prove the expression rate W = cd°c™¢ with ¢ a
constant not depending on d, € for the game options in IL?; Gonon and Schwab [74][Theorem
5.1] get the similar expression result for linear BSDE driven by Lévy process in L>°; E,
Han and Jentzen [51][Theorem 4] propose a multilevel Picard approximation with 3 types of
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optimizers and give the expression rate W = O(¢~%) on compacts up to a polynomial growth
factor in dimension d in IL?; Jentzen et al. [57][Theorem 1.1] get W = O(d**°c~¢) for the
rates on compacts in IL>° where ¢ is an arbitrary small positive constant.

Nevertheless, the Monte-Carlo least-squares regression method particularly profit from
its nature as empirical minimizer, but few research works are concerned with the expression
rate combining with MC method. Berner et al. [10][Theorem 1.1] show the lower bound of
MC paths M > O(de=*(1 + log(de~1671)) and W = O(de~?) with high probability 1 — § for
the one-step regression from the terminal time 7" without performing the dynamic program
on non-reflected backward scheme.

Our method. In our case, we are given a probability space (€2, F,P) where F contains all
P-null sets and where (F;)o<¢<r is the natural filtration generated by a R¢-Brownian motion

B. Then we define a Reflected BSDE as the solution of
Yi=¢+ [1 f(s,X,,Yo)ds + Kp — K, — [ Z,dB,, Y0<t<T,
[ (Y; = S,)dK; =0,

where (S;)o<t<r is the obstacle. We want to solve it numerically by penalization method,
namely, PBSDE:

T T T
Y =¢ +/ f(s, Xs, YN)ds + A/ (Y2~ 8,)"ds — / Z)d B, (4.1.2)
t t t

where A is the penalization parameter (A — 00). Due to the fact that the solution of PBSDE
(YA, Z*) converges increasingly to (Y, Z) the solution of RBSDE (see [52, Section 6]), the
explicit scheme is not a good choice for developing the convergence analysis since it requires
a much finer time step to achieve convergence. Therefore, we aim at solving numerically
PBSDE problem by some implicit schemes. We first study Markovian equations i.e. the
terminal condition is in form of £ = g(X7), the generator f is Lipschitz in y and Markovian
in x, the barrier process S; = S(t, X;), where the process X satisfies SDE:

Consider an uniform time discretization 0 = tg < --- < t; :=ih <ty = T. Then, for A > 0,
define the discrete solution Y by implicit scheme:

Y;f?\r = g(‘XtN)’
Y =BV A YRIF, | V0 <i <N - L. (4.1.4)

tit1
If we define the implicit projection function V;* as follows:
Y R? x R — R,
(l’, y) =y — f)\(tia z, y)h =Y — f(tivra y>h - /\h(y - S(tlv m))iv
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then the implicit scheme can be written as:
Y;j\\;h = g(X7,),
VAX,,, Y = [Ymm] - [Y”\Xt } VO <i< N 1. (4.1.5)

tiy1 tir1

We will see later that V,* is continuous, increasing and invertible, therefore, one can define,
for0<i< N —1,
Ah - Ah
= ) (B[N (4.1.6)
where
VA Nz, w) ==y s.t. V(2,y) = w.
It has been proved the convergence rate of Y — Y in [73, Theorem 4.1],

1/2
sup B [(1 =7

0<i<N-1

= O (h+ AR*®)

and (V*)~!is (1 4+ Ch)-Lipschitz, see Lemma m

Our main ingredient is to use regression to approximate the conditional expectation.

At time ¢;, E [Y’\ P | X, } is simulated by linear or non-linear regression with the observations

tiv1
X, then the solution of PBSDE Y)‘ " can be represented by some Markovian functions u>‘ h

valued on X;,. Indeed, denoting the conditional expectation at time ¢; by P;, precisely,
Pip(z) = E [o(Xe, )| Xy, = 2],
then, by denoting Y;"" = u}" (X;,) for 0 < i < N — 1, from (&1.5) and (£.1.), it follows,

u?\}h<XtN) = g<XtN)
W (X)) = ()7 (X, P} (X)) VO <0 < N - 1,

where each u;"" (-) depends on the conditional distribution of X, ,|X;,. Let us define the
sequence of functions {ukh() = (V)! ( Puz’\ﬁl (- )) 0<i< N}, we have generally

)

Ah
uy'r = g(x),
W (@) = ) (2 Py (0) VO <P S N -1, (4.1.7)

Hence, for solving PBSDE, one only needs to solve (u;\’h)ogig ~N—1. We are going to analyze the
error occurring with linear regression and that with non-linear regression by Neural Networks.
In the linear case, the coefficient of regression is computed by Singular-Value-Decomposition.
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Contributions. As far as we know, there is no available convergence result for computing
the obstacle-related penalized equation using MC regression method. We propose a backward
implicit scheme for the penalized reflected BSDE whose Lipschitz constant tends to infinity
and we give the error analysis for this scheme both for linear and non-linear regression. The
main difficulty lies in how to handle the implicit projection and how to eliminate the effect
of penalty in the analysis. Our results complete the previous work [73] in which a theoretical
analysis is done for the discrete solution without MC scheme. We compare our result with [69)
and [10] (all these references are for pure BSDE).

Organization. The discrete scheme of penalized BSDE is presented in Section [£.2] In
Section [4.3] we introduce some properties of our target function. In Section [4.4] for the
linear regression, we give the empirical and distributional estimation of error propagation
and also the global error estimates. In Section 4.5, we present our results about non-linear
regression by neural networks.

4.2 Notations and Assumptions

4.2.1 Notations

— Denote the terminal time T'; denote (X;)o<;<7 the stochastic process (2, F,P) — R?
which is F;-adapted;

— Denote the number of path simulations by M; the uniform time discretization step
by h; the approximation space by W; the degree used for linear regression K;

— Forany 0 <i< N —1, Xt(ile) = (X{")1<m<m is the MC sampling at time ;;

— Denote the conditional expectation E [-|F;] by E, [-]; set E [-|XSZM)} = EEM)[;

— Denote X;"* the value of X at time ¢ starting from X, = x with s < ¢;

— Define the spaces: (for p > 2):

L> = {random variables ( s.t. esssup |((w)| < oo} ,

weN
L = {random variables ¢ s.t. E[|(|?] < oo},

ISP = {stochastic processes ¢ = {¢;,0 <t < T} that are predictable

with E [ sup |¢t\p} < oo},

0<t<T
HP = {stochastic processes ¢ = {¢;,0 <t < T} that are predictable

with E {(/T|¢t|2dt)p/2} < oo},

0
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— Given a measure space (R', B(R!), 1), for any B(R')-measurable deterministic func-
tion ¢ : R! — R, set ||<,0||12L2(“) = [u le(@)?p(dz); given a probability space
(Q, F,P), for any FRB(R')-measurable random variable ¢ : QxR? — R, ||¢(w, -)Hiz(#) =
Jai lo(w, z)[*u(dz). For example, if one considers a 2-steps discrete scheme, then
[ = 2d;

— OLS: Ordinary Least Squares for linear regression and we say a* solves OLS(R, ¥, 1),
i.e. a* solves the linear least squares regression w.r.t. the response R : 2 x R¢ — R,

the observation O, the space of linear approximation ¥ and the law p of O, if, a.s.
Yw € €,

OLS(R(w;-), ¥, p) := arg Inf IR(w; ) = #()llLeqyy = Pl (W), 1) = a*(w) - ¥()

with U = Span(y), where o* = arginf [ R(w, ) — a - 9(-)[| 2, with A = R¥, K
acA
being the number of elements of 1. If there are several minimizers for a*, we

choose the one with minimum Euclidean norm (it is obtained using Singular-Value-
Decomposition), see also |72] and the SVD-optimal a* can be computed explicitly.

— GLS: General Least Squares for non-linear regression. Analogously, we say o
solves GLS(R, V¥, 1), i.e. a* solves the general least squares regression w.r.t. the
response R : 2 x R? — R, the observation O, the space of non-linear approximation
U and the law p of O, if; a.s. Yw € €,

GLS(R(w,"), ¥, p) = afoge'{pnf R(w,) = ¢( )2y = 2" (w), ")

with ¥ = {®(a, ") : @ € A}, where o* = arginf | R(w, ) — ®(a, -)||12(,y With A C R’
acA

and 0 is to be defined. For example, in the case of Neutral Network, ®(«,-) =
NN(a,-) where NN is a neural network with a given architecture. Similarly, if
there are many choices for a*, we choose the one with minimum Euclidean norm:
we are aware that it might be difficult in practice.

— Regression measures, for any 0 < i < N — 1:
— pM,,: the empirical measure on (Q, B(R*®)) at time t;, u,, = L 32 Oixp xpe )i

— M1 the distribution of Xy, and Xi, ., p; i1 =Po (Xti, Xtm)*l;

— uM: the empirical measure on (Q, B(R?)) at t;, M = L >SN Oxpmy;
— px,,: the distribution of X, uy, =Po thl;
— Coefficients: for 0 < i < N — 1, ignoring A, h in the superscripts of «,
— &M is the optimal coefficient of GLS with predicted response ajfl“’() and
with the empirical regression measure p1, |, i.e. ®(@M4,-) = GLS(ay™" (1), ¥, 1, );
— aM# is the optimal coefficient of GLS with the true response u™"(-) and with
the empirical measure '}, i.e. ®(a"’,.) = GLS(ug\fl(-), U, 140);
— For some positive constant L, define the Clipping operator Cy: for any real function

b, Cro(-) := —LAG(-)V L.
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Procedure 4.2.1. In this procedure, we drop A, h in superscripts which are fixed in the
context (e.g. u,u¥ for uM uMMY) For 0 < i < N — 1, given u;,4(+), we want to solve

> Step 1: Regression for simulating P;. Find the minimizer of following GLS problem:

M
~ : 1 . m m 2
GLS (alfi! (), % pifs1) = argind 3 D7 (alf (X7,) —o(X])
©

= d(aM) ).

Since OLS is a special case of GLS, the same minimizing process works for OLS.

> Step 2: Clipping. Assume sup |u;]e < L as in Lemma [4.3.3] for the stability of
0<i<N-1

simulation, we take C;,®(&*?,-) as the approximation of Pzﬁﬁl‘y () forany 0 <i < N — 1.
> Step 3: Implicit step by fired point. Denote the final estimation of u(-) by @Y (-):

QMY (z) = V7! <x,CLGLS (Mﬁff (-),q:,u;‘gﬂ) (1:)) V7 (2,0 0(@M ) (4.2.1)

(2 3 2

where V; ! is tracked by some fixed point argument. Indeed, for some given z, € R? and
w = Cr®(&M*, 24), we want to find yo s.t. Vi* (20, yo) = wo, which is equivalent to solve the
fixed point problem F'(zg,yo) = yo where

F(.To, y) = f)\<ti7 Zo, y)h +w.
Without doubt, F'is a contraction map in y i.e.

|[F(x0,y) = F(z0,4)] < (CLiy, + Mhly = /|

Lip

with the proper choice of A, h such that (C’iip + A)h < 1. Notice that for ensuring the

convergence of discrete penalized solution to the continuous reflected one, we require \ =
O(h=/8) (see [73, Corollary 4.3]). Hence, for small enough h, (C’}jl-p + A)h < 1 and we can
track yo by Picard’s fixed point argument.

4.2.2 Assumptions

(H,) For RBSDE:
Hy-1: € = g(X7) with g : R? — R bounded;
H1-2: the generator f is Markovian in x, f is non-increasing and C’gip—Lipschitz in y;
Hl_3: HfO”oo ‘= Sup |f(ta 7O)|OO < 0905
0<t<T
H;-4: the barrier process S; = S(t, X;) is bounded with |S| = sup  |S(t,z)| <
(t,)€[0,T] xRd
05
H-5: the coefficients b, o are uniformly Lipschitz continuous in z, i.e.

|b<t, .Z'l) — b(t,l'g)’ + ’O'(t,l’l) - O'(t,iC2)| < Cl)fip|x1 - SCQ’,V.I’l,SUQ € Rd,Vt S [O,T],
and b(-,0),0(+,0) are bounded on [0, 7.
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H,-6: the function g is Lipschitz on R? and S(¢, ) is uniformly Lipschitz on R

The monotonicity assumed in is not a restricted condition once the Lipschitz continuity
is given (see |73, Proposition 2.1]).
(H,) For regression:
Hy-1: For OLS, assume the function space ¥ = Span()) where ¢ := {¢; € L*(ux, ) :
R? — R,1 < j < K} with K being the size of W.
Hy-2: Consider the following GLS regression problem:
— we are given a set of M i.i.d copies of O, ©2, which we denote OL(1:M) O2(1:M).
— the set of real functions to be regressed LY(£2 x R?) i.e. all measurable and
bounded functions  x R? — R;
— we want to approximate R(O?) based on the observations O' with R € LY( x
R%).
The approximation space W is such that, for any R;, Ry € L)(2 x RY), for any
square integrable random variables O, O?, we have,

E [HGLS(T\)&(W, .)7 v, y{vé) — GLS(RQ( ) v 7/12 H]L2 ]
< E[[Ri(w.) = Raw. )z

where

— 1% is the joint empirical measure of (O%() O2(1:M)) e M = L oM d(orm o2m);
— y; is the law of O, i.e. v; =P o (07! for i € {1,2}.

The non-expanding error assumed in is especially verified in OLS (see [72]
Proposition 4.12 (ii)]), in the following sense,

E [HOLS(Rl(w, ), W, 11%) — OLS(Ra(w, ), ¥, 1% ”]L? M) |

<E [[Ri(w,) = Ra(w, ey
E [||OLS(R1(w, ), W, 1) — OLS(Ry(w, -), ¥, m)HV

(1) ]
<E [[Ri(w,) = Ra(w: iz

where

— vy is the joint law of O, 0%, i.e. v :=Po (O, 07!

— vM is the empirical measure of O, i.e. VM := Z%:l doim for i € {1,2};

which is an easy consequence of Pythagoras Theorem. Proving for GLS is part
of our future investigation.
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4.3 Preliminary estimates

Lemma 4.3.1. Assume |(Hy}(1-4) and h < 2~ A1 and L > (14 C{,h)|S|e + | foll b,
we have, V0 <1 < N — 1,

Lip

L — |l follo P - L+ |[follo n
Sl < S0l < ()1 ) < 0l
1+ Cyh 1=Cp,h
—L— h
H‘]Z?Hoo < (WM N, —L) <150 (4.3.1)
1—Cp,h
Here C’gip is the Lipschitz constant of f.

Proof. Notice that

VM, [S)oe) > (1= CLyh)[Slso — 1 f (8,2, 0)|h > ~L,

Lip
which implies (Vi) "(z, —L) < |S] < (W) w, L) since V;* is continuous and non-

decreasing. Moreover, for any y > |S|,,, we have

(1= CLph)y = |f(ti2,0)[h < VNa,y) < (1+ CLyh)y + | f(ti, 2, 0)|h

Lip

which yields

L—1f(t h L t; h
|f( ’fo’0>| S (Vi)\)fl(x’L) S + |f( Zafx70)| )

So we have proved the first inequalities in (4.3.1) and the left one in the second. For the
inequality at the right side in the second ones, use the argument that V;°(z,-) > Vi*(z,-) on
R. Notice that

V(x,0) = —f(ti,z,00h > =L = 0> (V") (2, -L),
and for any y < 0, we have

(L+CLyh)y = |f (i, 0)[h < VEO(a,y) < (1= CL )y + | f(t, 2, 0)[h.

Lip
Thus
- - —L — ol P
VM Y, —L) > V) Yz, —L) > o0
A =) 2 ) a0 2 =2 s
where we get the desired result. O]

An immediate result from the previous lemma is the following:
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Lemma 4.3.2. Under the same assumptions as Lemma we have, for any ¢ € ¥,

_ L+ foll
sup |V Nz, Cro(z))] < —fe
meRgl( ) (2, Crp(z))] =

Proof. For fixed 2 € RY, V;*(x,-) is non-decreasing, then clearly
VM) Ha, —L) < (V) Ha, Copla) < (V) H(a, L),

]

Lemma 4.3.3. Under|(Hi)-(1-4), if h < chf A1, there exists a scalar sequence {L;,0 <
Lip

i < N} and a constant L depending only on T, f,S,g s.t. Y0 <i < N —1,

sup |u}" (z)| < L; < L,
z€R4

Proof. > Step 1: Comparison. Given & = ¢1(Xr) and & := go(X7), consider the discrete
solution of penalized BSDEs Y and Y2M wrt. (€1, £,5) and (€2, f, S) respectively; we
denote the functions u' ", u?M st. for any 0 <i < N — 1,

Y = wlM(X,) = (VNN X, Pull (X)), for g€ {1,2).

A easy induction shows that, if g; < g on R?, then we have a comparison-like theorem in
the discrete case, namely, VO < i < N, uil”\’h < u?M on R? because P, and (Vi)‘)*l are
non-decreasing.

> Step 2: Let |g2]oo = |9]oo + ClinT {(1 +

) loll, + (14 CL YISk,

1
f
CLip

92(+) = 192loo,  91(+) = —[92/oo-
Therefore,
uM () < uM(x) < M), (4.3.2)

For proving ufkh() is bounded: denote V0 <i < N,

2 S VI e e Y N VA S 99 o e 1)
’ (1+ CL )N~ ’ (1= CLph)¥=

We claim that, with the definition of g, V0 < i < N, Vo € R,

1+ CL ISl + 1 follo b < yi <™ (@) <5y —3 < ui™M(@). (4.3.3)

)
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Hence, if h <3 f , with (| -,

g P L 1
;™ (@) < 7 < < etbi |92|oo+CT||f0||oo ;
Lip

(1—thw
1 fol )
Lip

thus, we have the desired result by denoting

Lip
Li=g, L:=cT (|92|oo of -

> Step 3: For proving (4.3.3), with A < 1, an easy computation leads to

Ogyﬂvyz_.(1*-C§MJUISLn—+HfbHa;h‘ (4.3.4)
Indeed,
1
I e L 1/ R Y N VT
WETECL g, S aschpy d,
—of Jolloo
> bl = Lol > g+ (14 OIS ke 2 Ioll o (0 LIS e

Lip

For another inequality in (4.3.3)), we use the backward induction. First,

Ah Ah
Uy (@) = go(w) = lgaloe,  uy™"(2) = ~ g2l

which verifies (4.3.3) for ¢ = N. Then, assume that (4.3.3)) is true for some ¢ + 1 < N.
Applying Lemma (4.3.1, with (4.3.4)), we obtain,

) 2 00 o) 2 P

WM (@) < (W)@, gis) < Yir1 +g§?p”;oh o

) 2 02 ) 2 T =
i.e. we have proved for the index i. The proof is complete. O
Corollary 4.3.4. Assume|(Hy)-(1-4) and h < - or A1, letting L be the same as in Lemma

[4.3.9, then there exists L depending on T, S, g, f s.t.

sup (Vﬁ)_l(x,CLgo(a:)) <L, Vpeu.

z€R4
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Proof. With the same argument 0<iI'1<fN L > (1+ C’{iph)|5’]oo + | foll /2, we can apply Lemma
1.3.2 with o

7. L+h ||f0Hoo Z;V:_Ol(l - Ciiphyv_l cf T 1
L= f < (L4 Il ).
(1= L r,

O

Proposition 4.3.5. Assume |(Hy)-(1-6) and suppose [ is C{ip—Lipschitz in x, we have, for
any finite \, Plu;\fl() is Lipschitz on R?, for any 0 <i < N — 1.

Proof. From (4.1.4)), we have, for any fixed A\ > 0,

-4

- Etwrl [Yh?thxl + f)\(tiH? Xtml Y;h,n,;ﬁ)h} H

tiyo tiv1 “ti

h,t;,x h,t;,x’
Y;fi+1 _}/ti-&-l tito tigr1) *tig1

E|

K.\ [Yh’ti’x + i, X0 Yh’ti’w)h]

<E[|vir v
o RE (| (b, XU Vi") = Pl X0 V)|
<E|[|viir - vihe|] + ol e || xis - Xt ||
+(CLy + NRE ||V = Yo || ARE (|8 (8, XE07) = St X1

since S(t,-) is assumed to be uniformly Lipschitz, so

h,t;,x h,t;,x’ h,t;,x h,t;,x’
(1 - (C}jip + )\)h)E [ Y;fi-si - Y;fi-s-tl ] <E [ }/ti-&-tQ - Y;fz'-s-tz ]
ht;,x h,t;,x’
B [ yhtir hitia! ] E [ Yti+2 - Ytz‘+2 ]
e T of, + M
f
(OLip + )\CEZp)hE HXti,x . ti,x’ :| )
1— (Cgip + )\)h Lit1 tit1
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The Gronwall’s lemma tells us

o 2,7w/ f 3y i,x/
B[y - || < el TR [|g0xt) - o0t
N-1
j=i+1 (1— (Ciip + A)h)i— ’ ’

|

N-1 f s
Cy. AC?. Vh ,
< (e(cﬂp“)TC’g + g ( Lip T L) > sup E HX;I —Xf;’x

Lip e (1= (Ogip + Ah)Tt Jisisn
/ S

< e(C’£ip+)\)T0iip +( (LT _ 1>CLipf+ ACTip sup E H Xl _ xh } '
Crip T A ) i<j<n ’ ’

From the a priori estimates of SDE (see |[133, Theorem 3.2.4]), there exists a constant Cspp

depending only on T, Ci(ip, d s.t.

sup E HX;’I - Xf;’gcl

9 1/2
:| S CSDE|ZL"—$/|.
1<j<N

] <E [ sup ’Xf]”" - ij’f’$l

i<j<N

We conclude with, Yz, 2’ € R,

Yh,ti,$ . Yh,ti,z‘/

tit1 tit1

|Piui+1(37) . Piui-i-l(x/)’ _ ’]E [Yh,ti7x _ Yh’tim] ‘ S E [

tit1 tit1

)

< Chrgx.flo — 2|
Il

Remark 4.3.6. In the above, we get the Lipschitz constant depends on the penalty A. This
result, though not optimal, serves as a starting point, and we intend to demonstrate this
uniform Lipschitz continuity in our future investigations.

We give a result of exponential moment of the solution to (4.1.3) on finite horizon, see
more in [90].

Definition 4.3.7. Define the BMO norm for the continuous martingale (X )o<i<r as follows,
¥ | syo = sup [E[[Xr — X || 77 ][] e ,
7'676”1”
and we say X satisfies BMO condition if || X||gyo < 00.

For any 0 < i < N — 1, we define martingales X* := {E [X,,|F.] : T € Toy, }-
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Proposition 4.3.8. Under[H,-J, assume

sup HX’
0<i<N-1

HBMO < 09,

then there exists a universal constant ¢ such that,

sup E [eC|Xti|] < 0.
0<i<N-1

Proof. For a small enough positive constant ¢ such that

Sup HCXZHBMO:C Sup ”‘)(Z
0<i<N—1 0<i<N-1

<5

HBMO

A~ =

apply John-Nirenberg inequality (see [90][Theorem 2.1]), we have,

B [ecwg‘iq <E [ed){é‘ec"‘ffxﬂ < E[X g [ecwg‘fxg\]

S eC]EI:‘Xt.L‘:I 1 - ,
1= 4{[eX[gyo

where we complete the proof. O

4.4 Linear Regression

In this section, we give the estimates of in-sample error (w.r.t. p) and out-sample
error (w.r.t. pux, ). Here the function space is linear: W = Span(¢)). To clarify the distinction
from GLS, we will replace the approximation space W in superscripts by its degree K, i.e.
we denote aMMY by gMME e,

4.4.1 In sample error

Theorem 4.4.1. Under|(H, }-(1-4) and[Hs-1, for the implicit scheme (L.1.5)) and its approz-
imation in (4.2.1]), we have the following estimation of in-sample error: if h < 1A ﬁ, then

Lip
in L22(Q x RY F @ B(RY)), there exists a constant C depending only upon f,T, S, g, X such
that,

2 MK AR

M) — )

B a0 - )

]§(1+C’h)E[

2
Lz(“iw) Lz(ﬂ££1):|
CK

2
. )‘7h .
o T (L Ch) inf HSO(') — P )‘

L2 (px,,)
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and in LY*(Q x R%, F @ B(RY)), let L be the bound as in Lemma[{.3.3,

B a0 - ) () ()

Uiy

s

L2 (udf) L2 (uﬁl)}
VK
+ = inf () Pufi()

VM eV L2(ux,,) }
Proof. In the proof, we drop the fixed A, h. For any fixed M, ¥, K, for 0 <i < N — 1, given

u;11(+), we want to compute u;(+). Recall that

u;(r) = V! (2, Pittiy1 ()

7

and denote &M s.t.
OLS(uir1 (), U, i) = (@M, ) = @& - ().
Thanks to the linearity of SVD-optimal coefficient (see |72, Proposition 4.12]), we have

a™* solves OLS (uit1(+), ‘I’W%Jrl) —

E [aMﬂ\XS:M)} solves OLS (P (+), ¥, i) (4.4.1)
because
1 2
_ M 1:M . m 1:M m

B[] =i 3 (B o (L)X - e v3)

1 M 2

= arginf — > (P (X") — a0 (X)°.

arg in Mm:l( Ui (X77) — a- (X))

> Step 1: Pythagoras decomposition. With ({.2.1), since V; ! is (1 + Cigggh)-Lipschitz in w
uniformly in z, A (see Lemma [4.6.1]) and the clipping function Cy, is 1-Lipschitz, we have

S

(W (o (@M (X)) = Vi (X Pussa (X))

(4.4.2)

The Pythagoras decomposition provides, with (4.4.1]),
AMA (Y — P (D1 M aMi @ [aMip @]
@ V() = P )”L?‘(u?”) - H <a E [a X ]) v() L2(p)

. 2
+ 0t o) = Pt Ol 2 (143)

2
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Thus, we have, for (4.4.2),

2 2

MK N
a0 (1) — u(Y) L2

< (04 G [ (4 - B [0 ) -u)

L2 (")
. 2
08 160) = Patsn (s |- (144

> Step 2: Young’s inequality. For the estimation of the right side of (4.4.4]) in L*?(Q x
R? F ® B(R?)): using Young’s inequality for the norm of L?(u), we get

2

O |

2 1 ~M,i ~M,i| 3 (1:M)
e = (107 (& ) w0

+ (L +n) [[(aM —aM) - W')”i%u% '

L2 ()

1
f
CLip

not on A, h, i, M, K, ® which can vary from line to line, we have, from (4.4.4))

So, with assuming h < 1 A and using the generic constant C' depending on T, f, S, £ but

~M,K 2 . 2
;7 (1) — i) L2 ) < (1 + Cggzh)? éfel\fp () — Bui-&-l('))HL?(ugi)
2 l ~M,i _ My (M) 2
+ (1+ Cizgh) (1 + h) |(a* =B @XM 0]) - ) )
(1 G (14 ) [ (@ = @) - ()|
< (1+Cn) [[(@MF = ™) - ()|
Q ~Mji =My (M) 2
+ h H(a E [a X D () L2(uM)
+ (L Gt inf [0() = Pt () (4.4.5)

Alternatively, we can also have the estimation in LY(Q x B(RY), F @ B(R?)). Indeed, from

and (I13).

i ()~ ()

< (04 G [ (4% - 2 [0 ) v

L2 (1) L2 (i)
30 1) = P Ol |-
Similarly, for the first term, applying triangular inequality, we get

- o) v, < e B 0 ]) o

(@M’i - O_CMJ) ) w('>HL2(uZM)

L2 L2 ()

+|
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which yields

?|

;" () = wil)

} < (1+Omh){E [’ R 'w(')Hw(u%}
([ R R

FE | e0) — PaaOllg| |- (449

> Step 3: Analyse each component in (4.4.5) and (4.4.6). We start from the first term in
(4.4.5) (respectively in (4.4.6)), due to the fact that the OLS coefficient is a linear map with
respect to the response i.e.

L2(u}M)

At — @M solves OLS <ﬁ%1}{() —uir1(+), ¥, M%Jrl) :
and the non-expanding assumption which is verified by OLS, we get
~Mi =M MK
(8% = &) - 5y < [[B25C) = ()

For the second term in (4.4.5)), we introduce the following result

Lemma 4.4.1 ([78, Theorem 11.1]). Consider the computation of E[R|O] by linear regres-
ston. Let

(4.4.7)

L2 (“%1)

My(w, ) := OLS(R(w, ), U, /™)

where W is generated by at most K functions and pu* is the law of O. If 0? := sup Var [R|O = o] <
o€R4
oo, then

2

K

E MMM B0 [y o<1:M>] <K

=

L2(p?)

With Lemma|.3.3] we have sup sup Var [u;\fl (X b )} < L2, so applying the above

tit1
0<i<N—1 gecRd

result, we get

< LA (4.4.8)

o [J(w - i) o) < S

2 C K
L2(u)

( resp, with Cauchy-Schwarz inequality:

E [H (@Mﬂ' _E [@M’WXS:M)]) () LQ(MMJ

< \/E B 1@ a0 )y ][] < 1) 0
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To handle the last term in (4.4.5) (resp. in (4.4.6))), take expectation, since inf is concave on
peV,

i 2 . 9
E L;gg () — Pmm(.)HLg(u%} < inf B [||¢(.) - H“m(')HLzW)}

— 3 2
= ;Iel\fp () = Piui-i-l(')”[LQ(,uXti) : (4.4.10)

i

((resp B |t 100) = PssaOllspn | < inf B [I0) = Psa Ol

< i ) = Ruir s, ) (0410

All in all, combine (4.4.5)),(4.4.7)),(4.4.8), (4.4.10) (resp. (4.4.6), (4.4.7), (4.4.9), (4.4.11))) we
have the desired results. O

4.4.2 Out sample error

Proposition 4.4.2 (deviation between empirical mean and exact mean). Under (1-4)
and [Hy-1 and let L be the constant as in Corollary[4.3.4, we have

E ALK () _uf\’h(.) ? I (L _u?"h(.) ? ‘ (4.4.12)
‘ L2(uM) ’ L2(ux,,)
_ K+1)1 M
§101(1+Om:|;|h)L2\/( i )Mogw )
and
B SARME (y o Ak gAML (N ARy 4.4.13
‘ L | I L CRSCl B (4.4.13)

< 11/(1+ Omh)ii*/u( + 1)Mlog(6M)

A h,M

Proof. For simplifying notations, we ignore A, h universally in ;"™ K and u;\ " Denote

2 2

@ () = i) ;" () = i)

L2 ()

Y

ni -=
‘ L2 (k)

qbz\lj = {QSZD = (Vi_l('?CLigp) - Vi_l('vpiui+1))2 tpe \Ij}
Then, since 7; is a positive random variable, we have

E [n:] = /]R+ P(n; > €)de
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and from Corollary [£.3.4] we have,
sup |97 (+)]oo < 4L%.

pevr

> Step 1: Estimate P(n; > €) using the boundedness of space C;W. We first have,

Then, with assuming h < 1, use again the Lipschitz continuity of ;' and the bound as in
Lemma {4.3.3, we have, for any ¢, ¢’ € ¥, € {p}, pux, },

oz —o'c)| V7 Cag) =V Patss)]” = V7€) = Vi P

IP’(m>€)§IP’(EI<pE\IJs.t. ‘MZW’ / of (x)px, (dr)| >

2

L) H L)

= H‘Vfl(‘vcm@) + V(- Cry) —QVJI(',R‘WHH X ‘Vf Crp) =V (-, Cry) |HL1(#)

< AL(1 + Gagh) ICoe — Cri' Il

If we compare the covering number of ¢ and the one of C;, ¥ in ' (u), we have, for any fixed

0 <& <2LL(1+ Grzgh),

r T g 24ZL(1+quh) 2(K+1)
Ni(e, 87, 1) < M (4E(1+1 h),CL\I/ M)S( = )

where the last inequality comes from Theorem u for any fixed 0 < ¢’ < 2LL(1 + Cgzgh),
there exists {Crp; : 1 < j < n}a 4L(1+Z] VYA ET =] -covering of Cp ¥ and its covering number is

dominated. Apply Theorem m (uniform deviation probability), for all ¢ < 16L2, then
| M
P(soc ol |5 Y otx - [ otun,(an) > <)
m=1 R

M
< 8E [Nl(f,qbf’,ué”)} exp (‘mi—w)

(K+1)
<8 (192LL(1 + %h)) exp <_ M )

e 2048L*

192L2(1 + CGggh) \ 25 M
<8 exXp | —s—o5a
£ 2048L*

since L < L: if this condition on ¢ is not satisfied, the upper bound still remains true since
the probability to bound is then equal to 0 in view of the ®¥-bounds equal to 4L2.
> Step 2: Adjusting €9. Plugging this inequality into that for E [n;], we obtain for any ¢ > 0:

192L2(1 + CGggh) \ 2 e2M
exp | —5——= | de.
€ 2048 L

E[ni]SEO—FS/

€0
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T2
For ¢y > w, we deduce

VoM
o V6Me e2M
E[n] < 86MK+1/ = —s—-=;/d
i} < €0 +8OMT | 90 m0 + Caggg) O \ 20817 )
T2 2
oy (oaryir 12VOLE (MY
3(1 + Camrh) vV M 2048.L"
The choice g9 = W\/ZO%(K + 1) log(6M) verifies (6 M )5+ exp (—ﬁ%) <1 and
g0 > %\/—Xfm). Hence,
128612
Efn] < co+ ——2Y0
3(1 + Cgsph) VM
L*(1 12
_ L0+ Cigh) V(K + 1)log(6M) | /2048 + 3v6
VM 3V (K + 1)1log(6M)(1 + Cigzgh)?

< 101L%(1 + Omh)\/(K i 1)Mlog(6M).

> Step 3: Proof of (4.4.13). The proof for (4.4.13)) is quite similar with that of (4.4.12))

because for any a,b € RT,

Va—vb| < /a—bl.

so, by Jensen’s inequality, we have

<
\
< 11L+/(1 + Gz \/ (K +1 6M)

E

L2 (1)

4.4.3 Global error estimation

We are ready to state our main results of this section in the case of OLS.

Theorem 4.4.2 (global 1n—sarnple error) Underm(l 4) and let ™" be defined
n and uAh be defined in , ifh <1 A% f , let C' be the constant as in Theorem
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then we have, V0 <i < N — 1, in L2%(Q x R? F ® B(RY))

B |20 - )

and in LY*(Q x RY F @ B(RY)), let L be the bound as in Lemma[{.3.3,

E { ) — () ] < B (1 + Girazh) Nif [L\/§+ inf Hsﬁ( = Py ()

L2(u") peV

pew

] < CTZ|: + (1 + Cigggh) inf H(p Pu])\ﬁ() ;(M.)];

L2 (x, )] '

j=i

Proof. From Theorem [1.4.1], applying the Gronwall’s lemma,

MM () Ak

E |: i U A)\,h,M,K(.) _ U)\7h(')

2 2
<e“TIE||a N N
L2(ul) L2(u}f)

-I—Z { + (1 + Cggph) inf H(p Pu;\fl()

pew

()

2
LZ()QJ.)])’

thanks to (4.1.7)), the first term at the right side of the above inequality yields to 0, where
we have the desired result. The proof for estimation in L?(Q x R?, F @ B(R?)) also follows
immediately from Gronwall’s lemma. O]

From Theorem and Proposition [4.4.2] we immediately have the following results.

Theorem 4.4.3 (global out-sample error) Under m-(l 4) and let w)" be defined
m and ﬁ)‘hMK be defined in , , let C be the constant as in

Theorem_ then we have, V0 < i < N — 1, in L*?*(Q x Rd F @ B(RY)),

E a)\,h,M,K<.) _ U)\7h(')

% )

pew

2
oCT “2 h) inf H _ Pt
L2(ux, )] Z [ + (1 + Ggggh) inf ||o(- uj+1( ) L2(Mth)

(K +1)log(6M)
i ;

+101(1 +Omh)i2\/
and in L12(Q x R4, F @ B(RY)),

N-1
K
E | [[a 5 ) = udh() » )] < BT (1 4+ Cgph) Z[ @/ + mf ng — Pyl ()
/‘Xti

)

L2(ux,. )]
J

+11y/(1 + Cirah)

(K +1)log(6M)
W ean)
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4.5 Non-Linear Regression

In this section, we introduce the error analysis with respect to the probability measure
p on R? for the non-linear regression as Procedure 4.2.1 namely, how to dominate

W\ h, MU Mh
@ () — ()

1

E

L2 (pxy, )]

with respect to the M, N and the complexity of neural network. Differently from the linear
case, we directly introduce the global error without analyzing the empirical error. We first
give the following discussion:

Discussion 4.5.1. we drop A, h in superscripts and recall that

ui(z) = V7 (z, Pui(2)),
" (@) =V (v, CoGLS @Y (), 0, u ) () = Vi (e, Co (@™, ),

(2

Thaid () = A (x,CLGLS(qu(-), v, u%+1)(x)) = Vi_l(x,CL@(dM’i, x)).

(2

For estimating out-sample error, at time t;, we have

~ M,V
ui ’ o) — U/’i .
() = w() )

A () =t (o)

<

L2(pxy,) ’

<(1 +omh>(||q><@w, )= @M ) |2y, @@ ) = Piui+1<->||wt.))

L2(pxy,)

M,

Wt () = ua () 4 Hq)(@M,z” ) - Pz’Ui+1<')HL2(“Xt') >;

< (1 + Cgzsgh) (
L2(kxy,, )

the last inequality holds if Assumption is true. For the second term, [78, p. 201,
Theorem 11.5] shows that,
E {||<I>(07M’i, ) — ]Diuiﬂ(')HLz(#XJ =K [”GLS(WH(')a ‘ICM%H) - PiuiJrl(')H]Lz(#Xt_)]

P (ca + c3log(M))vg+
- M M

+2 inf lo() = Prttir (llzguy, ) -

where
— ¢y, C9, 3 are universal constants without depending on the simulation parameters
(e.g. M,h, A p);
— U= {{(z,y) eER*xR:y < p(x)}: p € U}
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— the response u;41 is dominated by L V 1 from Lemma [4.3.3] which verifies the as-
sumption of Theorem 11.5;
— vy~ defined in Definition [4.7.1]is the Vapnik-Chervonenkis dimension(VC dimension
in short) of ¥+ which is detailed in the following subsection.
Then we have,

M,

E WM ()~ H
() = ul) Lzmij

i () = ()|

L2 (rxy,)

] g(1+th){m

1+ (1 4+ log M)vg+ .
i + 2 ;Iel\fp () — PiuiJrl(')H]L?(,uxti)

(4.5.1)

+C

where the first term is going to be cumulated by Gronwall’s lemma, and the complexity
measure vg+ will be analyzed in Proposition for the case of neural network and the
approximation error will be stated in Proposition [£.5.3

4.5.1 Complexity measure vg+

The linear approximation space:

U(K) = { éwiwi@) LWLy ey Wi E R}. (4.5.2)

Proposition 4.5.1 ([78, Theorem 9.5]). Assume[[Hs-i), for the approzimation space ¥(K)
defined in (4.5.2), we have,
Uy (K)+ < K+1.

The multi-layer neural network approximation space. Let
(L) = {wiRd—ﬂR‘@:%Uﬁ o thr1---0 1y,
where V1 <j<L—1,9;€ gd?l’dj and ¢, € fdﬁ_hl} (4.5.3)
with

L] ay = {gb RY = RY V0 < i < djy, ¢(x); = p(bi + w] z),

where b € R4+ w; € Rdﬂ},

Z4;.4;,, being defined in the same way as fjj with p(z) = =,

aderl
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where dy = d and p is the activation functions such as ReLU, Sigmoid etc. In order to show
how vy(zy+ is dominated, we introduce the following notations of neural network: the depth
of network £ + 2 and the number of parameters to be estimated, namely the number of the
weights and bias W where we use the convention that a network with one hidden layer has
depth 3 (see also [1] for the use of these parameters).

We give our estimation of VC dimension, see its proof in Appendix

Proposition 4.5.2. Consider the architecture of neural network for computing V(L) as
(4.5.3) which has W parameters and L layers, and suppose all the non-output units have the
piecewise-linear activation function p, then

vy(o)r < O(WLIog(W)), (4.5.4)

where O 1s up to a universal constant.

4.5.2 The approximation error by Neural Network in L2(u)

In this section, we handle the error in\fp llp — Pugyq|| in (4.5.1). For the multi-layer
e

neural network as with piecewise linear activation p, many works have contributed to
analyze this error especially on compact sets of R?. Hornik [85] first proves the approximation
built on a compact set is dense in C(R? R) under L?,p > 1 metrics; Barron [4] shows the
rate of convergence of the approximation on the compact with or without the constraint of
parameters; Voigtlaender and Petersen [128] give a survey on recent results on compacts in
LP-metrics. The LL*° error is also much investigated. Yarotsky [130, Theorem 1] illustrates
the approximation on unit ball [0,1]? converges at O(W /%) up to a logarithmic factor
with n denoting the differentiability order of target function; then he improves this result to
O(W~=2/4) in [131, Theorem 2] for a Lipschitz continuous target; Montanelli and Yang [111]
also extend the result on any [0, R]? by replacing the differentiability by the generalized
"Lipschitz’-kind condition. Some similar results can also be found in [10, Theorem 6.3] and 76,
Theorem 3.14] for some special PDEs. For now, we use the IL>° norm on compact to get the
estimation of norm LP(u).

Proposition 4.5.3 (Deep Network). Assume|(H; ) with|H,-5 being satisfied with some q > 2
and assume Piu;\fl is uniformly Lipschitz with respect to A and toi € {0,--- , N—1}. Suppose
ujh() is bounded by L on R? as in Lemma then for any fized d > 0, for any e € (0,1),

there exists a network NN with ReLU activation satisfying
(a): the number of weights and biases W and the number of computation units U :

1
max{W,U} < (5d(1+d§2) log ) ;

3

(b): the depth £ < O (log 1),
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as € = 0 (with O depending on d,q), such that,

<e

inf ng Pqu

pevr

L2 ()

where U contains all the functions ¢ : R* — R computed by NIN which can be written as
o(-) == P(a, ) with a == {a; : 1 < j < W} the weights and biases, p is the law of X;,.

Proof. See Appendix [4.7.3 O

An alternative analyze for the complexity of neural network is provided in the following,
in which a 'very deep’ network is considered, namely, £ = O(W). The proof is provided in

Appendix [£.7.4]

Proposition 4.5.4 (Very Deep network). Assume|(H;) wzthn bemg satzsﬁed with some
q>2 and Pqu 1s uniformly Lipschitz with respect to )\ and to i € {0, - —1}. Suppose

u;\h() is bounded by L on R as in Lemma then for any fixed d > 0, for any e € (0,1),

there ezists a network NN with ReLU activation satisfying
(a): the number of weights and biases W and the number of computation units U:

max{W,U} < O ( T2 1+d+2)>;
(b): the depth £ < O (a‘a 1+%),
as € = 0 (with O depending on d), such that

<e

— Y

L2(p)

1nf ng PulJr1

where U contains all the functions ¢ : RY — R simulated by NN which can be written as
o(-) == O(a, ) with o :={a; : 1 < j < W} the weights and biases, p is the law of X, .

4.5.3 Approximation by Deep Neural Network

With Discussion Proposition and Proposition [£.5.3, we have the following

estimate of approximation errors.

Theorem 4.5.1 (Tuning of parameters). Assume with being satisfied with some
q > 2 and ' assume qu?fl is uniformly Lipschitz w.r.t. X\ and toi € {0,--- /N — 1}.
Let NN be a feedforward neural network for computing V(L) as (4.5.3) , which has the
architecture as follows: there are W parameters (weights and biases) to estimate, L layers,
one nput unit, one output unit and U non-zero computation units with ReLU activation.
For any € € (0,1), if parameters of network NN satisfies,

(a) max(W,U) = (=70 og 1) ;
(b) L <O (logl).
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Then we get, for 0 <1< N —1,

E([la =), ] < 0GB | [l O - o)
(xy,) L2(ux,, )
log M 1\°
+0 (%e—dﬂ“ﬁ (log g) + 5> , (4.5.5)

as e = 0 (O depending on d,q); for the global error, we have, for 0 <i < N —1,

log M 1\°
<0 (N%gd(“rdq”) (log —) + NE) , (4.5.6)
5

E [[[a" () - u}()

i u

L2 (pxy,)
as e — 0 (O depending on d, q).

Proof. From Proposition 4.5.3] for € € (0, 1), the network NN is such that,

<e.

inf H ) — Pl (- <
o) = P,

e (L)

Combine the discussion in subsection (4.5.1)) and Proposition 4.5.2, we immediately get, with
O depending on d, q,

B |[|a" " = () < (1+ Grh)E [ [y () = wlfi ()
L2(pxy,) ]L2(#Xti+1 )
log M)W Llog W
—l—O((Og ) °8 —|—£);
M
since logW < O (log %), we have,
d(1+44+2 I
WLlogW <O [ e 50 (log —) ,
€
then we prove (4.5.5)). For the global error, apply Gronwall’s lemma,
E /lfl%vh,M,\I/ . —’U,AJL . < GW{E /lf)l>\7h,M,\I/ . _uA,h .
RS N VO =0,

log M 1\?
o (N 08 M g1z (log_) +N€> }
M €

3
_0 (Nlog Mgfd(1+‘%2) (log 1) + N5> :
M €

where we prove (4.5.6)). O
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Remark 4.5.5 (Tuning of parameters). We are given the expected tolerance tol for the
. . Ah, MU . . .
approximation u; forall 0 <i < N —1, i.e. if one wants to ensure

\h, MW ,
: () — uM()

sup E U u < tol,

0<i<N—1

]L2(H):|
then (4.5.6)) tells us,

log M 2 1\*
O (N%E_d(“rdﬁ) (log g> ) = tol, O(Neg) = tol

which yields the tuning of parameters (ignoring the term log M):
d+1
— the MC paths: M > O ((ﬂ)d(H ot (log N)3>;

tol tol

(142
— the size of network: max(W,U) = O ((t%) A0+5 )log %),
— the depth of network: £ < O (log %)

4.6 Appendix of Section 3.4

Lemma 4.6.1 (|73, Lemma 4.1]). Assume |H,-2, if h < ﬁ N1, there ezists a constant
Lip

Casq, s-t. for allz € R, XA > 0, (WM™ is uniformly (1 + Cggph)-Lipschitz in w € R,

namely

(V) Yz, w) — (V) M, w')| < (1 + Cigggh)|w — w'].
where gz depends only on C{ip.

Definition 4.6.2 (L!-covering numbers). Let G be a class of functions o : R? — R. Consider
M points (Ym)i<m<m in R and denote by v™ = %Zi\le dy,. the associated empirical
measure and ||-|| 1,0y the associated empirical L' norm: for any function o,

1 M
leO Ly =57 D lelum)].
m=1

An e-covering (e > 0) of G with respect to the norm ||-|[ i, is a finite set of functions
01, 0n : RT— R such that for any ¢ € G, we can find an index j € {1,--- ,n} such that
I = @illLagay <e.

The minimal integer n for which an e-covering exists is called the -covering number
and it is denoted by Ny(e,G,vM).

More generally, we can replace the empirical measure v™ by a probability measure v on

R? and similarly define Ni(e,G,v).
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Theorem 4.6.1 (robust upper bound for the L' covering number (see |78, Lemma 9.2,
Theorem 9.4 and 9.5])). In a linear least squares regression problem, consider

— U = Span(y; : 1 < j < K) with ¢; : R — R;

— CpV :={Crp : ¢ € U} the clipping of U (for L > 0);

—  a probability measure on RY.

Then for any € < %, we have,

6L\ 2K+
Ni(e,Cl, ) < (?) |

Theorem 4.6.2 (uniform deviation probability (see |78, Theorem 9.1]). Let G be a countable
set of the functions @ : RT — [0, L] with L > 0. Let (Y,)1<m<nr be a sample of independent
random variables with the distribution i and denote u™ as the associated empirical measure.
Suppose that G can be covered for p™. Then for all ¢ > 0, we have

><)

< 8151[ 1(%,9,,#)} exp (— =M ) .

M

P(itelg %mz:l@(Xm) - /Rd o(r)u(dr)

128172

4.7 Appendix of Section 3.5

We first list the definitions of VC dimension and give the proof of Proposition in
Section [4.7.2

4.7.1 VC dimension and Pseudo dimension

We first give the different definitions around Vapnik-Chervonenkis Dimension (see also
[126] for the original definition):

Definition 4.7.1 (|78, Section 9.4] Version Intersection). Let A be a class of subsets of R
and

va:=max{n € N: S(A,n) =2"} (4.7.1)
where the growth function S is defined by:

S(A,n):= max |{AN{xy, - ,z,}: Ae A}

L1y aneRl

with | -| being the cardinality of sets. If S(A,n) = 2", then we say that there exists a n points
in R! which can be shattered by A. If no maximum exists in (4.7.1)), v4 = 0o,
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Definition 4.7.2 ([5, Definition 1] Version Binary Classification). Let 5 be a class of binary
functions from R" — {0,1} then we define VCdim () by

VCdim(47) := max{n € N: [l »(n) = 2"} (4.7.2)
where the growth function Il is given by:

Iy(n) := max N {(h(x1), -, h(zy)) s h € A}

T1,,Tn€

If no such mazximum exists in (4.7.2)), then we define VCdim(F) = oo.

Definition 4.7.3 (|1, Definition 11.1 and 11.2] Pseudo-Dimension). Suppose F is a set of
functions Rt — R, define the Pseudo dimension by

Pdim(F) := max{n € N: II(F,n) = 2"} (4.7.3)
where the growth function 11 is defined by:
II(F,n) = male H @z Yeazumy) - f € F1H
T1,,TnERY,
Y1, ,Yn€R

If no such maximum exists in (4.7.3), then we define Pdim(F) = oc.

From Definition and Definition [1.7.3] an easy computation leads to vg()+ <
Pdim(V¥(L£)) where Pdim is the pseudo-dimension defined in [1, Definition 11.1 and 11.2]
for the class of the real-valued functions. Then, the argument in |1, Theorem 14.1] shows
that, if U(L) is with fixed architecture (compared with adaptive one), then Pdim(¥ (L)) <
VCDim(¥ (L)"') where the class U(L)" is defined in the following result.

Lemma 4.7.4 (|1, Theorem 14.1]). For any class of real functions F computed by a Neural
Network with the fixed architecture and the right continuous activation function, we have

VCdim(F) := VCdim(sgn(F)) < Pdim(F) < VCdim(F")

where sgn(F) = {sgn(f) : f € F} and we use the convention sgn(x) := Ly>0y. Here F'
is a class of binary functions: R x R — {0,1} and it is computed by NN constructed as
follows: begin with NN the network for computing the function in F, then consider

— Input unit: output unit of NN and one extra unit from R;

— Computation unit: linear threshold unit receiving input only from input unit;

— Qutput unit: the computation unit without activation.

Proof. See also the remark after |5, Definition 2]. The inequality VCdim(sgn(F)) < Pdim(F)
is obvious because

Hegn(r)(n) = max !{(1{fx1 101> Lif@nyzo0}) : f € FI

Tl

< maXé . H(l{f (z1)>y1}s 71{f(:vn)2yn}) : f S ‘F}| = H(‘F> TL)
T1, ,Tn
Y1, yneR

As for VCdim(F’) > Pdim(F), we refer to the argument of |1, Theorem 14.1]. O
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Remark 4.7.5. If the activation function p of the output of NN is non-decreasing and
right-continuous, then {f(z) > y} = {p(g9(z)) > y} = {g(z) > p~'(y)} yields that the extra
linear threshold computation unit in NN’ can be offset by the activation of the output of
NN, namely, we can use the same number of computation units as the network used for
F. Suppose in NN, one has used W parameters and U computation units, then in NN’
Wi=W+2U =UL = L.

From the above results, we can easily prove Proposition [4.5.2]

4.7.2 Proof of Proposition [4.5.2

We first prove vg+ = Pdim(G) for any class of real functions G := {g : R? — R}. Recall
that
Gt = {{(x,y)ERde:ygg(x)}:geg}.
Indeed, from Definition[4.7.1] we have, if S(G*,n) = 2", then there exists a subset of (R?xR)"
Xy = {(z1,91), -, (Tn, yn) } such that: for any subset of X,,, X, = {(@i,, vi,)s -+, (Tir, Yin) 1
there exists g € G s.t.

9(wi;) > yi,, V(w4 y3;) € Xy, and g(wx) <y, V(wp, o) € X N A
which is equivalent to the argument: for any b € {0, 1}", there exists g € G s.t.
Ligai)zyy = bi, V(i 5:) € Xy

and this implies I[1(G, n) = 2" from Definition and vice versa. Thus vy(z)+ = Pdim(¥(L)).

Applying Lemm, we immediately get vygy+ < VCdim(W(L)') where W(L) is
defined as in Lemma [1.7.4 As for (4.5.4), we refer to [5]. We can show, from [5, Theorem
8], there exists a universal constant C' such that, for the piecewise linear activation function
p, Vy(c)y+ < CW LIlog W for the piecewise polynomial p, vy )+ = CWU with U the number
of computation units arranged in £ layers. O

4.7.3 Proof of Proposition 4.5.3

Before we head to the proof of Proposition [£.5.3] we first give the following lemma.
The proof of Proposition is at the end of this section.

Lemma 4.7.6 ([130, Theorem 1]). For any 6 € (0,1), there is a ReLU network architecture
satisfying

(a): max{W,U} < C6%(log; +1);

(b): L=C (log}+1);
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where the constant Cy depends only on d, such that, for any g € C°([—R, R]%,R) with

gll, —RR ‘= max{ esssup |¢'(z)|, esssup |g(z)|} < oo, there exists an approximation ¢
o z€[-R,R]? z€[-R,R]?
computed by NN s.t.
1
2R llg — SOHLOO([—RR}d) <|lg

1,[-R,R] 0.

Proof. We employ the result [130, Theorem 1]. For any 0 < § < 1, there exists a neural
network NN satisfying @, @ and we denote by ¥ the class of functions computed by NN,
such that, for any Lipschitz continuous function g € C°([0, 1]¢, R) satisfying that H9||1,[o,1]d =

max{esssup |¢'(x)|,esssup |g(z)|} < 1, there exists ¢ € ¥, s.t.
€0,1)4 €0,1)4

. B <5
;Tel\fp g 90|’Loo([o,1}d) <9

This result can be easily extended to all compact sets of R? because the linear transformation
on the input or the output does not change the complexity of network. We first show, for all
g with [|g[|; ;o.1j¢ < 0ot for the fixed § € (0,1), there exists ¢ € ¥, s.t.

1 = glliooo.1j0) < 191, j0,170 9 (4.7.4)
(10,1]%) (0,1]

g9
||9H1’[0,1]d

because

satisfies ‘ <1landfor p eV, ¢ H9H1,[0,1]d eV

9
‘|g||17[071]d 17[071](1
Second, we extend to the compact set [—R, R]? with R > 1, suppose g € C°([—R, R]*,R)

and [|lgl, g ga < o0, due to a change of variable, there exists ¢ € U, s.t.

1
3R lg = @l —rre) < N9l —rr o
In fact, letting g(x) = g(2Rz — R),Vz € [0,1]%, from (4.7.4)), there exists ¢ € ¥ s.t.
19 = Pllv o110 < 19ll1 10100 < 2R [lglly, - g rya 0

where the last inequality comes from (|}, 0 < 2R |[g]l; _g pa- Use again G(FE) € ¥ to
get the desired result. O

Proof of Proposition . Apply the lemma with g = Pyu;11, then, for any 6 € (0, 1),
there exists a neural network NN with complexity W, L s.t. there exists a function ¢ € ¥
computed by NN who approximates Pju;q:

1
R lo = Pyttis |0 p,may < L.

Now let us consider the approximation Cp¢ of Pu; 1 by adding one extra computation unit
after the output unit of NN where we clip all the output of NN by L, since Cy, is 1-Lipschitz
and Pju;. is bounded by L, then

1CLe = Prttislly oo p,mjay < 10 = Pittizallpoo (g ey < 2RLO.
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If we call this ’clipped’ neural network by NN, denote by ¥’ for the function class computed
by NN’, for the approximation given from ¥’, we have

Jof 119" = Pitiallye -, ppey < €09 = Pty ey < 2RLS.

Next we dominate the error in L2, for any probability measure ;i on R,
1/2
lese = Pl = ([ 1000l = Pt (0)Putan))
1/2
([ lewta) = Pusi(o)Pu(an)
[~ R,R]?

1/2
+(/ \Qﬂ@—HwM@WM@>
([-R,R]%)°
< (2R)"*2Ls + 2L\/P(|X,,| > R). (4.7.5)

With assuming |H;-5| for some ¢ > 2, then E [ sup | Xy, |9
0<i<N—1
priori estimates of SDE (see |133][Theorem 3.2.2]), it follows by, there exists a constant C,

depending on g, Ci(ip, T s.t.

< oo from the standard a

| X, | -
IP’(|Xti|>R)§IE[ qu < C,R™.

Let C' be a generic constant depending on ¢, L, Ci(ip,

T, d, we have,
ICL — Ptz < (2R)'F2L6 + 2L\/CuR= < C(R:+15 + R°%).

Letting

20 % 2 & d d+2
- (ZZ) < ~3 - - p+3) <« 1+
R (6) <O(EH), =R _o(g )

as € — 0, then

. /
s@llrel\fp/ 6" = Puiallpzy < ICLe — Pivivalliz,) < e

So the network NN’ with specific § = O <5l+¥> is what we want, precisely, from Lemma
M.7.6] for U,W and L,

1 1
L O(og(s) O(ogg),
max(U, W) = O ((5d(log % + 1)) <0 (S_d(prd;z) log é) )

as € = 0 (O depending on d and ¢q). Therefore we complete the proof. O
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Remark 4.7.7. In the above proof, if X}, satisfies the BMO condition in Proposition {4.3.8]
then we can have a better estimation. Indeed, the universal constant ¢ in Proposition
such that

Let ¢ be a generic constant depending on C’ffip, T and C' be a generic constant depending on
L,CX T up to a logarithmic factor of d, we have, from (4.7.5)),

Lip>
ICL — Pt llya < (2R)'F2 L3 + 2Ly /Cpe=R < C(REH16 4 ),
Letting
1. 20 1 € y 1. (.
R=-log=— <O0(log=), d=-=R 172 <O (e(log=)~1+2)
- log — < Oflog ), 50 < 0 {e(log ) ,

as € — 0, then

. /
(pl,Iel\fy, l¢" = Pittisallpzg,y < [1CLe — Pttivallrz,) < e

1 1 1 1
L = O(log 5) =0 ((1 + g) loglogg + log g> <0 (1og E) ,

1 "z a1
max(U, W) =0 <5_d(log 5 + 1)) <O |e™ <log g) (14 5) log B

1 A+ %41
<O |e?|log=- ,

as € — 0 (O depending on d).

4.7.4 Proof of Proposition 4.5.4

We employ the result [131, Theorem 2] and [111, Corollary 3.2] where a L>°([0, R])-
error bound is proved for the approximation of Lipschitz function. For any ¢ > 0 and for any
Lipschitz continuous function g in L?([— R, R]¢), there exists a neural network NN satisfying

— max{W,U} < Cy6~ %2

— L=CyW,
where the constant C; depends only on d, s.t.

1 .
ﬁirelg 19 — @l r.Ryey < O
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Taking exactly the same arguments used in Proposition for estimating in L?(x) norm
and choosing the same tuning for R and ¢, we get, for U, W and L,

max(U, W) = O (5—%) <O (8_%(1+%)) )
£L=0 (5—%) <0 (g*%“*%) :

as € = 0 (O depending on d and ¢q). Therefore we complete the proof. n



Chapter 5

The Put/Call symmetry for the
American option in the non-linear
market

Abstract In this paper, the Put/Call Symmetry relation for the American options is in-
vestigated in the non-linear market. We assume in this imperfect market, there are 2 interest
rates and 2 dividend rates and the assets are in diffusion models. Taking advantages of the
link between RBSDEs and American options, after the change of numéraire, we find that as
in linear pricing case, the exchange between the interest rate and dividend rate still hold in
the numéraire market. The examples with Markovian and path-dependent payoff are pro-
vided. The classical change of measure technique is also applied on the optimal stopping
representation in risk-neutral market in order to compare with the results from RBSDE’s.

5.1 Introduction

The Put/Call symmetry (PCS in short) is a standard relation in the financial market
for both European and American options which facilitates us to transfer from Call option to
Put option. This relation establishes that the price of a Call option is equivalent to the price
of a Put option when the positions of the strike price K and spot value X of the underlying
asset are exchanged, along with the positions of the interest rate r and dividend rate q.
The classical American PCS is talked in [6] and the relation of American Call/Put with
asymmetric jumps is also studied; Carr and Chesney in [28] prove the American PCS under
Black-Scholes model and provide a specific example of PCS when volatility is a particular
deterministic function of the stock price by PDEs.

With the develop of mathematical finance, Geman, El Karoui and Rochet in [65] in-
troduce the techniques of the change of numéraire and the related change of measure which
become an efficient tool to prove PCS in the complete market. Schroder in [123] present a

110



Chapter 5: American PCS in non-linear market 111

wide range of examples for symmetry formula of American options with Markovian payoff
where the model of underlying asset with jump are also considered; Detemple in [44] extend
the results in [123] to the general diffusion models and to multidimensional assets case, where
some path-dependent options are also discussed; Fajardo and Mordecki in [60] and [61] in-
vestigate European and American PCS in the market driven by Lévy process with high jump
and with constant interest and dividend rate.

In addition to the technique employed in PCS, there are also other methods in use.
Byun and Kim in [25] take advantage of the early exercise premium to prove the PCS under
BS model; Carr and Lee in [29] make use of the symmetry of distribution of underlying asset
to get the PCS for European options and a detailed discussion is provided for barrier options.
See also [14], [108§].

We know that under the Black-Scholes model, when the market coefficients the interest
rate r, the dividend ¢, the volatility o, are constants, one has the symmetry formula between
the American Call option and Put option (e.g [93][Proposition 4.2.2]), i.e. with exchanging
r and q,

Call(t,z;T,K;r,q,0) = xPut(t, K/z;T,1;q,7,—0).

Now we extend this relation to the non-linear market with the help of BSDE. We assume in
the imperfect market, for the risk free asset, the deposit rate and the loan rate are different;
for the risky asset, the repo rate gives an extra dividend when the investor is shorting asset.
The pricing problem in the non linear market with 2 interest rates for European options are
well studied, for example, the arbitrage is studied in [8], the existence of hedging strategy
is discussed in [39][Theorem 9.1] and hedging strategy is presented in [92][Section 4], see
also [54][Example 1.1]. The American pricing in the imperfect market with defaults is studied
in [49] by non-linear expectation. In our case, when the deposit/loan rate are different, and
the shorting/longing dividend are different too, we have the similar relation that the loan
rate exchange positions with the shorting dividend.

Contribution: We focus on the symmetry of American option in the non-linear market
from the point of view of BSDE. Most of the literatures rely on the representation of optimal
stopping which limits their results under the risk-neutral probability framework and lose the
symmetry in the non-linear market. We show the general result for different kind of payoff
which can be easily deduced to the case of linear pricing.

Organization: This chapter is organized as follows. Some basic assumptions are in Section
and the well-posedness of non-linear market is discussed in Section [5.3] In Section [5.4]
we first show our main results about the change of numéraire for American option in the
non-linear market. In Section [5.5] we introduce our results of PCS including both vanilla
option and options with path-dependent payoff. In Section we recall the result obtained
from optimal stopping in the complete linear market by change of probability.
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5.2 Notations and Hypothesis

Without specific instructions, for simplification, sometimes we will drop the subscript
t when we refer to processes.

5.2.1 Notations
Set (2, F,P) to be a probability space, let B be the d-Brownian motion defined on this

space and F; is the natural filtration generated by B where Fy contains all P-null sets.
— The following spaces are needed,

LP: = {f : 2 — R is a random variable s.t. E[|£]P] < oo};

ISP = {(b :{¢: 0 <t <T}is a predictable process s.t. E [ sup |o|?

0<t<T

([ 1oat) ]<oo},

where | - | is Euclidean norm whose dimension will be clear from the context.

— Call(t,x; T, K; u,r, R, q,Q,0)(resp. Put(t,z;T, K; u,r, R, q,Q,0)) denotes the price
of the American Call (resp. Put) Option at time ¢ with strike price K, where the
underlying satisfies with (u,r, R, q,Q);

— Except the market coefficients (i, 7, R, q, Q, o), for any vector x € R¢, 2% is the i-th
component of z; for any matrix M € R"™™ except o, M? is the i-th row of M; M
is the transpose matrix of M;

— For the d-dimensional market coefficients 1, ¢, Q, o, we denote u, ¢, QW the i-th
component of R? column vector; denote o the i-th row of R*? matrix o;

— For any vector z € RY, any matrix M € R¥™_ the multiply of z and M is defined
as

HP :

{(b :{¢: 0 <t <T}is a predictable process s.t. E

xtM*
r-M=| - | eR¥m
ded
Ml
where M = | : |, 2'M" = (' MY .-+ 2™ M') and M"¥ is the element in i-th
Md

row and j-th column.
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5.2.2 Assumptions
5.2.2.1 Non-linear Market Assumptions (H-M)

(H-M) Suppose in the 1t6 market, there are 2 different interest rates processes, the
deposit rate r and the loan rate R with r < R. Assume the risk-free saving account m°
satisfies

dr? = r(70)Tdt — R,(7Y)"dt.
Suppose there are d risky assets X', --- , X in the market, which satisfies for 1 <i < d,V 0 <
t<T,
dX; i i
L — 94t + o"dB,.
Xi

And the risky assets pay continuous dividend at 2 levels: at ¢ for longing asset and at @)
for shorting asset, ¢ < Q®, for any 1 < i < d, dt ® dP a.e.. Assume that r, R are the
scalar stochastic processes; u,q, Q@ are the bounded stochastic processes valued in R?; o is
the stochastic process valued in R¥™? and for a.e. t € [0,7T], o, is invertible and elliptic a.s.:

(1) (1) (1) %1)

#7&2) Ot(2) qt(2) (2)
| M |9 |4 - t
B = .l Ot = N B Qi = :
’ 3 ; 3
i A 2 2

Definition 5.2.1. If assets X fulfill all above conditions in the market assumption |(H-M)
we call that the assets X satisfies |(H-M )| with coefficients (u,r, R, q, Q).

5.2.2.2 Related Reflected BSDE and its assumptions (H-E)

In order to solve the pricing problem of American option in the non-linear market
[(H-M)] we introduce the Reflected BSDE as following

Y= Sr+ [ f(s,Ys, Z)ds + Kr — Ky — [ Z,dB,,
Y, > S, V0<t<T, (5.2.1)
Jy (¥i = Sk, =0,

where we call (Y, Z, K) the solution with respect to the data (f, S). The driver f characterizes

the market and the obstacle S identifies the option by letting S be the payoff process. We
use the following assumptions to guarantee the well-posedness of (5.2.1)).

Basic assumptions for RBSDE (H-E): for some p > 2,
(H-E-1): S € .77,
(H-E-2):  f(-,0,0) € H? and f is uniformly Lipschitz in (y, z);
(H-E-3): Y, K are continuous processes on [0, 7], K is non-decreasing and Ky = 0.
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5.3 Preliminaries

In this section, we state that the pricing problem of American option in the market

is equivalent to a RBSDE problem as (5.2.1)) w.r.t. (f,S) where S is the payoff process

of option and its driver is given as follows

fty,2) = —ry—z0, (4@ —1ila) + (R — ) (y — 20, '1a) ™ + (20, ) 7 (Qe — q1). (5.3.1)

It has been proved in [52] that, under (1-2), there exists a unique solution of
(Y, Z,K) € P x HP x .#P satisfying [(H-E-3)| If [[H-M)| is fulfilled by the underlying asset,
then the driver f can be deduced from the dynamic of the self-financing portfolio. It’s easy
to check that f satisfies . In order to show the relation between the pricing problem
of American option and RBSDE, we introduce the following results.

5.3.1 The driver f of the market

In this subsection, we are going to explain the procedure how to deduce the market
driver f shown in . Indeed, consider a self-financing portfolio consisted of the strategy
(the amount invested in the risky asset) 7 which is a row vector valued in R? s.t. the portfolio
is composed in linear way by the risk-free asset and d risky assets, from which, we derive its
corresponding value process V', namely,

d
T .
vt > 0, %:W?—FZYZXE =7} + ™l
i=1

t

Write the dynamics of V;, with the dividends mentioned in [(H-M)|

d
AV, = dr? + Y (dri + ¢ (w)*dt — Q1 (x})~dt)
i=1
d ‘ ' d
= [re(m?)" = Re(nd)7]dt + Y (gi(m)" = Q7 (x))dt + > (dr)-
i=1 =1

d i
e )
= [rim) = (Ry — 7)) (7)) + mae — (m; )(Qr — @) dt + Z YtidX;

i=1 1t
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substituting the dynamics of X;, and the risk-free asset satisfying 70 = V; — w14, we get,

d
dV; = (rend = (Re = 1)(n9)™ + mge — (17 )(Q — @))dt + > mil(ug” + ¢”)dt + o1 d By
=1

= 7’1}(‘/15 — thd)dt — (Rt - Tt)(‘/;g — Ttld)idt + (Wtqlg — (T;)(Qt — qt))dt + Trt/l/tdt + (ﬂ'tO't)dBt
= [reVi + mi(pe + g0 — rela)]dt — (Ry — 1) (Vi — mpla)~dt — (7, )(Qr — q¢)dt + (mi0)d B

= —f(t, ‘/t’ 7Tt0't>dt + (WtUt)dBt,

with f shown in (5.3.1). The decomposition of dynamics of self-financing portfolio reflects
the evolution of the market which explains (5.3.1)). Indeed, the term [r,V; 4+ m¢ (s + g — 74 14))
is the driver in the market with only one interest rate » and one dividend rate ¢; the term
—(Ry—ry)(V;—m14)~dt comes from the extra interest when the investor borrows the risk-free
asset, i.e. when V; — m1y < 0; the term —(m; )(Q: — ¢;)dt is due to the extra dividend when
the investor is shorting some assets, i.e. 7! < 0. In summary we call this f the market driver.

5.3.2 The pricing problem under our settings

In this subsection, we recall the definition of the pricing problem of American contingent
claim in a given Ito market f, among which the American option is one of the special case.
Once the driver covers all informations in the market, we can somehow ignore the dynamics
of underlying assets. So we deviate slightly from the conventional use of superscripts in
representing the process, i.e. we denote V¥ the wealth process V at time s starting with
V, = v where v is F;-measurable.

Definition 5.3.1 ([89, Definition 4.1]). An American Contingent Claim (or ACC)(T,S, s;)
is a financial instrument consisting of an expiration date T € (0,400|, the selection of an
exercise time 0 < 7 < T, a pay-off rate s; per unit time on (0,7) and a terminal payoff S,
at the exercise time T.

Considering the case of American option with a finite expiration date, namely s; =
0,vt € [0,T], T < 400, we have the following definition of hedging strategy. In [12][Definition
5.1], this hedging strategy for American contingent claim is also called the super-hedging
strategy, from which the price is defined by the smallest endowment among all admissible
super-hedging strategies. See also the definition for European option in [54][Definition 1.3].

Definition 5.3.2 ([89 Definition 5.1 and 5.3]). Given the financial market with driver f,
for anyt >0, v >0, (7,C) € H? x .2, the wealth process V , with initial capital v at time
t, strategy ™ and the cumulative withdrawals for consumption C writes as

V;t’”’mczv—/ f(u, VJ’“’”’C,WuJu)du—i—/ WududBu—/ dcC.,. (5.3.2)
¢ t ¢

We call (m,C) is a hedging strategy against the ACC(T,S,0) and write (7,C) € (T, v) if
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— the consumption process (Cs)i<s<r 1S a continuous, non-decreasing process;
— Vst’“’“’c > 8, fort <s<T;
el Z 5y
— Cu(w) = Cr, () (w) a.s. for any fived u € [t,T], with the stopping time T, := inf{s >
u: Ve =S AT.
Namely, 76(T,v) contains all super-hedging strategies starting with capital v at time t. We
define the fair price at time t for the claim S by

Vii=inf{v > 0: 3(n,C) € J4(T,v)}.

With the above definitions, we link the pricing problem of American option to the
RBSDE. Let us consider a RBSDE with driver f and takes the payoff process S to be its
reflected obstacle, we can identify the solution (Y, Z,K) of RBSDE (f,S) to the optimal
hedging portfolio (V,7*,C*) of ACC(T,S,0) in the market involved as ([5.3.2)):

* —1 *
Vi=Yy 7w = Zio, " ,C; =K, a.s.

Indeed, notice that, for any (7,C) € J4(T,v), (V**™C ro,C) satisfies naturally the equation
(5.2.1)) except the Skorohod’s condition since ftT(VZ’”’“’C — 55)dCs > 0 which implies, for any

v>0s.t. 3(m,C) € H(T,v), we have v > Y;. Taking inf on all endowments v, we get V; > Y,.

Meanwhile, for all 0 < ¢ < T, we know the solution of RBSDE (Zo~1,K) € J4(T,Y;), so
necessarily V; =Y.

All in all, we have immediately the following result.

Proposition 5.3.3. Assume |(H-M) and |(H-E-1) hold, the pricing problem of American

option with payoff S in this market is equivalent to solving RBSDE w.r.t. (f,S) where f is
defined by the market driver (5.3.1)).

In this following, we say that (Y, Z, K) solves the pricing problem of American
Option with payoff S in the market f if (Y, Z, K) is the solution of RBSDE (j5.2.1))
w.r.t. (f,9).

5.4 Change of numéraire

We introduce the our principle result about the change of numéraire. Assume we work
always under the historical probability P. Our proof is based on BSDE theories which without
any doubt can be easily generalized to the case with non-linear driver. Some applications
will be provided in the next section.

Theorem 5.4.1. Suppose is fulfilled by (7%, X1 -+ X9) and for some ¢ > 0, the
payoff process Sy = g(t,(Xs)o<s<t) satisfies with p = 2 + €, then there exists
(Y, Z,K) € (L2 x H2"® x /7)) who solves the pricing problem of American option with
payoff S written on X with the market driver f given as in (5.3.1). If one takes the first
asset X1 as numéraire, then we have the following results:
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— Let

5 5 = Y, Z 1 Y /td/Cs
Vi, 2, K S Gl 2
( ) <Xt1 ) th Ut thv 0 Xsl )
then the processes (Y, Z,K) € % x H? x . satisfies RBSDE (5.2.1)) with (f,S),

where

f(ty,2) == Fy — 26, (i + G — 7e1a)
+ (B =)y — 267 1) + (267 )7 (Qe = @), (5.41)
and S; = % Herei € R, ReR, i € R%, 6 € Myya, G € R, Q € R? are defined
by 1y = Qt(l)7 Rt = le), and

- o) " R
(2) (1) (2) (1) (2) (2
~ W — N ~ o, —0 - 4y ~ t
o= | : t — (o) G= | : t Q= @
d 1 PR (@ (@
:LL( ) — /LE ) dx1 Ut( ) — 0-15 : dxd 4t Qt

— In numéraire X', the new risk-free saving account 7° satisfies
)

dﬂ't = Tt< )+dt — Rt( ) dt,

and the d-risky assets (th,f(f, e ,Xﬂ) = (%, thj, e ,§—§> satisfy
t t t

dX: . .
—L =t +57dB;, 0<t<T,
t

and for each asset X’ its continuous dividend is paid at different rate qt (when
longing asset) and Qt (when shorting asset). In the following, we call this setting
X'-market, whose basic numéraire is the asset X'.
Equivalently, (}7, Z, INC) solves the non-linear pricing problem of American option with payoff
S written on X in the X -market f where is fulfilled with coefficients (7, R,q,Q, 7).

Proof. We prove this result in several steps.

> Step 1: Under the market setting , the driver f satisfies automatically
for any p > 2. With the assumptions S € .#?%¢ from [52], we know admits
an unique solution (Y, Z,K) € (S?7° x H*™* x ./ 2+5). The boundedness condition in
implies that X1 e ., for p > 2 and f satisfies Lipschitz condition |( Thus by
Hélder’s inequality, S € 2. Again from [52], there exists a unique solutlon to (5.2.1)) in
(2 x H? x .?) with (f,9) satlsfylng the continuity of the solution in |(H-E-3), We now

verify (Y, Z,K) is the solution to with (f,S).
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The extra integrability of order (2 +¢) of (Y, Z,K) ensures that (Y, Z,K) € .7% x H? x
S?, using again % € YP for p > 2. Notice that, if (Y, Z, K) is the solution to (5.2.1) w.r.t.

(f, S), then S X1 and since X; > 0, for ¢t € [0,T7], a.s.,

T T
L e Y- S,
/0 (}/; - St)d/Ct = \/0 ( (th)2 ) dlCt = O, a.S..

So the boundary condition and the Skorohod’s condition are verified by Y, K, thus it just
leaves us to verify the dynamic equation. Apply Itd’s lemma on Y/ X!,

d(ﬁ):_(f(taK,Zt)+”(1)£+(é_a()}@)( ) )dt—id/Ct

X} X} Pxlo\x Tt X} X}
Zy m Ye

equivalently,
~ t,Y:, Z, ~ = =
dy, = — <% + VY, + Zt(at(l))T) dt — dK, + Z,dB,.
t

Notice that the driver f in (5.3.1)) is homogeneous in (y, z), i.e. cf(t,y,2) = f(t, cy, cz) holds
for ¢ > 0, so we can denote the driver of Y; by f!(¢,Y;, Z;) which does not depend on X},
namely

rs 1 1
Pty 2) = fty, 2 +yol™) + uMy + 2(6M)T,

so from the uniqueness of solution of RBSDE~ (see [52][Section 6]), (Y, Z,K) is the unique
solution w.r.t. (f,S) if for any y € R,z € RY, fl(t,y,2) = f(L,y,z), for any t € [0,T], a.s..
> Step 2: It just leaves us to verify f' = fl = f We give some primary results to simplify the

calculations: denote A; := (1,0,---,0) a row vector in RY,
20',51) 2A1
1
o' =6;"60"=6;"]0,— Ot(: | ot =611~ A:1 , at(l)(at)_l = Ay,
;

(1)

then the j-th component of the row vector (z 4 yo; ' )o; !

can be calculated by

(2 +yo )oY = [(y — 26, L) A + (26, — (26, ) M)

{(zétl)f, if j £ 1,

y—Z&;lld’ lf]:17
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thus, we can calculate the terms in f(¢,y,z + yat(l)). For the extra term due to 2 interest
rates, we get,

(Re—r)ly — (2 +yoi)oy ' 1) = (Ry — )y — (y — 26,11 Z 207!
= (Ry —ry)[z0, '1a — Z(Zat "

= (R —ry)l(z, )]

For the extra term from 2 dividends, we have

d
(2 + 5ot o 17 (Qe — @) = (y — 267 10) (@Y — ¢iY) + D (2677 (QF — ¢).
j=1
It comes to the last term with (u,q,7),
(z+yor oy (e + @ — rila)
d
= (y— 26, 1) (Y + i) =)+ (67 () + 0 =)
Jj=2
d d
?/(Ugl) + CIt Z ZUt (1) — 7)) + Z zat q(]) —7)
7j=1 Jj=2
d
~_ 1
=y +a” =) — (o) () + gl =)+ (267 — 1V + g — V).

7j=2
Plugging all aboves into f*, it follows by,

Pty 2) = =1y — (24 yo) o7 (e + g — rila) + (R — )y — (2 + yo oy '14)
(1) (1)

+ (2 + 5o ) (Qr — a) + Py + 2(0f)T

d
1 1 / 1 1
=—qiy+ (o) Y + ) =) =D (267 — 1) + ¢ =gy + (a7
7j=2

+ (B = )57 )T + (v = 207 1) (@17 = a”) + Y[ VI7(@F — ),
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notice that (R, —r,)[(26; ')~ + X7L[(z6, V7 (Q) = ¢”)) = (26,17 (Qu — @), thus

d
P ~ ~_ 1 1 1 1
ity 2) ==y — o)) (=i + = gV) = (267! — i+ =) + 2o
Jj=2

+ (Ry — ) (y — 26, ' 1a)” + (26,1) 7 (Qr — G)
= — Fy — 26, (i + G — 70) + (R — 7)) (y — 26, " 1a)” + (26,1) " (Qe — @).

So we prove f* (t,y,2) = f(t, y,z),dt x dP, a.e. V(y,2) € R x R?. Applying the comparison
theorem [52, Theorem 4.1], we know that (Y, Z,K) is the unique solution in .#* x H? x .&?
of (5.2.1) w.r.t. (f,S). As to the dynamics of X it suffices to apply It6’s lemma. O

Remark 5.4.1 (Well-posedness). In some special case, it suffices to have ¢ = 0 for the
well-posedness of the solution. For example, let Y be the price of an American Call option
with Sy = (X; — K)T, then its price in X-market, i.e. Y//X, corresponds to the price of the
Put option written on 1/X with the pay-off process S; = (1 — —) , which is bounded, so

(Y, Z, K) is square integrable as the solution of (5.2.1) w.r.t. (f,S). Inversely, if Y represents
the price of American Put option with S; = (K — X;)", then Y € .#? for any p > 2, as a
consequence, Y /X the price of Call option with S, = (— — 1)*, is of course in .2, in view

of the integrability of X and + <

Remark 5.4.2. The significant observation with the change of numéraire lies in the ex-
changed position of risk-free asset and risky assets. In fact, before the change of numéraire,
the risk-less asset X, and the d-risky assets (X?!,---, X?) compose the money market, but
after choosing X! as the numéraire, X' becomes the risk-less asset in X! market and the

risk-less asset X in the original market turns out to be a risky asset X! = X1 in X I -market,

so that X!-market is composed by one risk-less account 7y and d-risky assets (X Lo X 4,

This observation explains also the differences of the drivers between the original market
and X!-market. The return rate g is actually the relative returns with respect to X' and
thanks to this log-normal form of the components of X, this relative returns are represented
in the affine terms; the term &t(a,gl))T in ji will be eliminated if one applies the change of
measure; the matrix of volatility & is exactly the difference between two volatilities which is
not surprising due to Ito’s formula; the changes of 7, R, ¢, Q) come from the changes of

the risk-less asset and the risky one, which is quite easy to understand.
The techniques in the proof of Theorem also can be applied to get the symmetry

of European options which is closely related to the BSDEs (see |54, Example 2.1]). We say
(Y, Z) the solution of BSDE w.r.t. (f,Sr) if

T T
Y, =80+ | f(s,Y,, Z,)ds — / Z,dB,. (5.4.2)
t t
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We call that (Y, Z) solves the pricing problem of European option with payoff S
at maturity 7 with the market driver f, if (Y,7) is the solution of BSDE (5.4.2)
w.r.t. (f,S). Notice that, when is supposed to be true, the driver f of BSDE is the
same as , which is the market driver.

Corollary 5.4.3. Suppose is fulfilled by (7%, X1, -+ X9) and suppose at date T, the
payoff S = g(T, (Xs)o<s<r) which is Fr-measurable and St € LP with p = 2 + ¢ for some
e > 0, then there exists (Y, Z) € #**¢ x H*"* who solves the pricing problem of European
option with payoff S written on X with the market driver f as in If one takes the first
asset X1 as numéraire, then we have the following results:

— Let v v
o Sy R ORS
5= (555 ="x)
then the processes (Y, Z) € /2 x H? satisfy the BSDE (5.4.2) w.r.t. (f,St) with f
as in (5.4.1)).
— With numéraire X, the risk-free saving account ©° satisfies

dr? = 7 (70 dt — R,(7%)dt,
the d-risky assets in the X'-market ()N(tl,)?f, e ,Xﬂ) = < LoXE X—g> sat-

X xp X,
isfy

dxi ;
2t = it +694dB, 0<t<T,
X{

and the continuous dividend is paid at different rate ¢, (when longing asset) and Q,
(when shorting asset).
Equivalently, (37, Z) solves the non-linear pricing problem of European option with payoff S
written on X in X -market which fulfills wz’th coefficients (7, R, 4, Q, ).

Remark 5.4.4. All the examples with different payoff of American options in Section 5.5
can be easily verified for the European-type options.

To simplify the explanations of the applications in the following sections, we introduce
a result about the homogeneity of the driver which will help us to understand the symmetry
of the spot value between Put and Call options in the case of the Markovian price function.

Proposition 5.4.5 (Homogeneity). Assume f(t,y, z) is positive homogeneous in y, z i.e.
cf(t,y,z) = f(t,cy,cz) for any constant ¢ > 0,

and S € .2 is continuous.

Let (Y, Z,K) be the solution of RBSDE w.r.t. (f,S) in (? x H? x .#?), then
for any positive constant ¢ > 0, (cY,cZ,cK) solve (5.2.1) w.r.t. (f,cS) in (% x H? x S?);
let (Y, Z) be the solution of BSDE w.r.t. (f,Sr) in (% x H?), then for any positive
constant ¢ > 0, (c¢Y,cZ) solve w.r.t. (f,cSr) in (% x H?).
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Proof. Notice that ¢S has the same integrability as S, so the unique solution of RBSDE
w.r.t. (f,cS) exists in (2 x H? x .#%). We only need to verify that (cY, cZ, cK) satisfying
. An easy computation leads to the results thanks to the homogeneity of f. The proof
for BSDEs is similar. O

Remark 5.4.6. Consider the case of pricing American option with Markovian payoff, then
its price at time ¢t can be formulated as a function of the price of underlying asset at time
t. For example, consider the market [(H-M)| with d = 1, for the American Call option
in this market, set S** = {(Xl* — K)+ : t < s < T}, we know that Y to is
the value process of the American Call option, from Theorem IQ_T_l (Y, Z,K) solves the

pricing problem of S%* = {(1 — KX,*%) : t < s < T} where X,/* = X%’r and T = 1.

Thanks to Proposition [5.4.5, we can also say that (Y, Z, K) solves the pricing problem with
o ~ e\t
SLET — { (1 — Xst’K:”> 1 <s< T}. This will be used frequently afterwards.

5.5 Put/Call Symmetry and Applications

In this section, we are going to present the various applications of our main result in
this chapter, Theorem [5.4.1] The most interesting part is that, with the help of RBSDE,
we can get rid of the linear pricing framework and immediately reach the symmetry result
between the different options without applying the change of measure.

5.5.1 Put/Call Symmetry formula

— Denote {X%* : s > t} the process X after ¢ when X starts at ¢ with X, =
and {S%* : t < s < T} the payoff S from X, = z; denote (Y”,Z”,IC”) th
solution of RBSDE (5.2.1)) w.r.t. (f,S%*) where f is the market driver as
and Y .= {YI* s >t} 207 = {7t <s < T} and K" = {Kb" : t < s g T};

— Denote Call(t, z; C, T, K; u,r, R, q,Q, o) the price at time ¢ of the American Call op-
tion with payoff process St* := {(CT X5*— K)* t < s < T} where the strike price is
K and the maturity is 7', in the non-linear market where C'is a constant column vec-
tor in R? and the underlying assets satisfy with coefficients (i, r, R, q,Q,0);
if we assume with d = 1, we denote Call(t,z; T, K;u,r, R, q,Q,0) the price
of American Call with payoff S"* := {(X{* — K)*,t <5 < T},

— Denote Put(t,z;C, T, K, 7 R,§,Q,6 &) the price at time t of the American Put
Option with payoff process S** := {(K-CTX “’)Jr t < s < T} where the under-
lying assets X satisfy with coeffients (41,7, R, g, Q,6 7); similar with the Call
option, we drop C' in Put(t T, K;i,7 R,§,Q,5) when d = 1;

— Denote © := (1,7, R, q,Q,0) and © := (i, 7, R, §,Q, ) as deﬁned in Theoremm
for simplification.

We first show an application on the Put-Call symmetry (PCS in short) in uni-dimension and
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then generalize to the multidimensional case, which are both applications of Theorem [5.4.1]

Proposition 5.5.1 (PCS). Suppose|(H-M) is fulfilled to d = 1, we have, the relation between
the pricing of American Call option and Put option in the non-linear market with market

driver f as (53,
K 2
Call(t,x; T, K;u,r,R,q,Q,0) = zPut(t,—;T,1;,—pn+0°,¢,Q,r,R,—0), (5.5.1)
x

and the symmetry formula writes as follows
Call(t,z;T,K;u,7, R, q,Q,0) = Put(t, K; T, z; —p + 0*,¢,Q,r, R, —0).  (5.5.2)

Proof. Letting S** := {(X/* — K)* : t < s < T}, with boundedness assumed in
, Ste ¢ 74 Applying Theorem with S%* and using the equivalence between the
American Option and the RBSDE in Proposition [5.3.3] (Y**, Z%* K%*), the solution of
RBSDE w.r.t. (f,S%*) whose existence is guaranteed by , solves the pricing problem
of American Call option S“* in the non-linear market ie.

v = Call(t,z; T, K; 0).

At same time, (Y5%, Z4% %) which is the solution of RBSDE w.r.t. (f, S%%), solves the
pricing problem of American Put option
S = (K — KX Tt <s<T}H ={(K - X T 1 <s<TY,

LK=1

in X-market with market driver in (5.4.1), where 7 = _,
Vi = Put(t, Ki; T, K; ©).

Moreover, Y,"" = xﬁt’i’, when replace © by (fi, T, R, (j,@,&) = (—p—0%4q,Q,r, R, —0), we
prove successfully (5.5.1)).

As for (5.5.2)), we only need to justify that f in (5.4.1]) is homogeneous as in Proposition
, in fact, with an easy calculation, we can prove it. So for any fixed z > 0, zY;"" is the
pricing process of American Put with the payoff process

. - L. - -
xSt’x:{(xK—xKXst’m)J“:tgng}:{(x—XSt’K> :tgng},

which gives us (5.5.2)). O

With similar techniques, we can generalize this result to multidimensional market.
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Corollary 5.5.2 (Multidimensional PCS). Suppose is fulfilled with d > 1, for the
American Option, in the non-linear market with market driver (5.3.1), one has the symmetry
relation for the Call option with the pay-off S; = (CTX; — K)* and the Put Option with

pay-off Sy = (Cl — C’TXt> , precisely

Call(t,z;C, T, K;0) = z'Put(t,#;C, T, Cy; ©),

and
Call(t,z;C, T, K;0) = Put(t, z'#; C, T, Ciz*; ©),
’th@’l"@X - <X17§i7"' 7§_Lli); T = (a%ai_ia 7%611)762 (K7_027”' ,_Cd); (:) = (ﬁaf7éa67éa5)

as defined in Theorem |5.4.1].

In the following, we turn to study the problem of the exercise boundary of American
options. The exercise boundary is the crucial price (see [28] Section 2]) to determine if the
holder of American option should exercise or keep the option at the moment. Unlike the
price function who is tracked backwardly, the exercise boundary is a process on [0, 7] when
we are given the initial value Xy. To avoid confusion, we denote B(t; zo, T, K; ©) the exercise
boundary at time ¢ with Xy = x( for the American option with strike price K in the market
with parameters ©. Denote B¢(t; g, T, K; ©) the exercise boundary of Call(t, X0 T K ©)
which satisfies

Call(t,z;T,K;0) = (x — K)*, if x = B(t; 20, T, K; O)
with easy analysis we can see the crucial price and the exercise boundary play the same
role in A~mezrican pricing problem; and we denote B?(t; 2o, T, K; ©) the exercise boundary of
Put(t, X,%: T, K; ©) respectively which satisfies
Put(t,z;T,K;0) = (K — )", if 2 = BP(t; %, T, K; ©).
Proposition 5.5.3 (Exercise boundary). Assume|(H-M) holds with d = 1. Then we have
K
Br(t; £.7,1;0)
o

Be(t;zo, T, K;0) =

Proof. We consider the relations among the events and the positive homogeneous property
as Remark [5.4.6] for any fixed t € [0, 7],

{XP’“‘“) = BC(t;0, T, K:©)} = {Call(t, X" T, K;0) = (X} ~ K) "}
— {X}7Put (1 KX T, 1,0) = (X0 - K) )

— {Put (t K X0, T,1,@) - (1 —KXtOwo) }
— {Put (t,XtOKoco T, 1; @) (1 XtOKx[)) }
)

= {K X% = BP(t; K&y, T 1
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where we apply the symmetry formula in Proposition [5.2.1] for the second equality. It follows
that for any fixed ¢t € [0,T], let * = B(t;x0, T, K;0), then BP(t; Kz, T,1;0) = %, from
where we get the desired result. O

We also consider the exchange option which is introduced by Magrabe in [106] as an
example of this part. This option plays an important role in the financial market since it
allows the holder to choose between two underlying assets. We will show that the dimension
of this pricing problem can be reduced thanks to the change of numéraire. See also [27],
[65][Section 3.2.(b) |, [37] for related topic.

Example 5.5.4 (Exchange Option). Assume[(H-M) holds for 2 underlying assets (X', X?).
Consider a 2 factor exchange option Sy := (X} — X?)*, its price at time t in the non-linear

market with market driver as (5.3.1)) is denoted by EX (t,x1,22;T;0), then

EX(t,z1,29;T;0) = 1 Put(t, ﬁ; T,1; (:)(2))
I

where Put(t, 22; T, 1; ©2) is the price of American Put option

x’

= (1@ — J ) — (6@ — cW) ()T (O QI 4@ Q) 5@ _ ;1)

2) is the second Tow of &.

and 0@ — o) = 5(

Proof. Apply directly Theorem [5.4.1. Notice that given the American exchange option with

payoff Sy := (X} — X?)* in which the risk-less asset does not involve. If we take X' as

numéraire, the corresponding payoff is S, = (1 — X2/X/)* where the asset <7 is no longer
t

in the replicating portfolio of S, which explains the reduction of dimension. O]

5.5.2 American Exotic options

We apply Theorem to the American binary options and barrier options, and
present related results.

The cash-or-nothing option and asset-or-nothing option are classical binary options
which allows the holder to have either 0 or some quantity of risk-free asset and risky asset
respectively. For example, for American cash-or-nothing Call option, its payoff process is
S = {1lix,>k} : 0 <t < T}, for American asset-or-nothing Put option, its payoff process is
S = {Xt]-{Xt<K} : 0 S t S T}
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Corollary 5.5.5 (Cash-or-Nothing and Asset-or-Nothing). If we set S; to be the pay-off

process of the American Cash-or-Nothing option whose price is denoted by Bin®Y, namely

Si = Lyx,>Kky, and let Sy = X%l{i<i} which is the pay-off process of the American Asset-
. Xy — K

or-Nothing option, then we have

1

Bin“VCall(t, z; T, K;0) = zBin*"Put(t, T,

0).

&I»—*

Inversely,

Bin*"Call(t, z; T, K; 0) = 2Bin“~ Put(t, :0).

&I»—*
NIH

7

Barrier options We consider the symmetry in the case of Barrier option with the strike
price K and the constant barrier of activation H, namely, the option with the payoff process
Out: (X; — K)*1y,, 54 for Call option, if X, > H, this is a down and out Call

(resp. (K — X;)" 1,54 for Put option, if Xo < H, this is a up and out Put );
In: (X¢ — K)"1;,<y for Call Option, if X, > H, this is a down and in Call
(resp. (K — X;)" 1y, <4y for Put option, if Xo < H, this is a up and in Put),
where the stopping time 7y and 7, 5 are given by

rpo=inf{lu>0:X,=H}AT, 7pg=influ>t: X =H}AT.

With assumption with d = 1 and assuming H < K, we know the payoff processes of
Call Option for both out and in are continuous, so 7y and 7 g, Vt € [0,7] are well-defined.
We concentrate on the symmetry between down and in Call and up and in Put, and between
down and out Call and up and out Put. See also [29][Section 5] for the European barrier
options with multiple barriers.

Denote the price at time ¢ knowing X; = @ > H of the down and in Call with S** =
{(Xt* — K)+1{Tt Hés}’t < s < T} by DICall(t,z; T, K, H; ©); denote the price at time ¢ of

down and out Call with S** = {(Xb*— )+1{T s} t <s<T}byDOCall(t,z;T, K, H;O).

Proposition 5.5.6 (down and in Call and up and in Put) Suppose[(H-M) holds with d = 1,
the non-linear market with market driver f as (5.3.1), set H < K, H < x, we have

K K -
DICall(t,z; T, K, H; ©) = zUIPut (h —.T1, 7 @)
x

Ko -~
— UIPut <t, KTz, ?33; @) , (5.5.3)

where UIPut(t, 7; T, f(f[ O) i

X with payoﬁStI ={(K - X,
and X% satisfies

§ the price of the American up and in Put option written on
by + 1{% ass) it <s<T}, 7 g:=inf{t <u:XL* = H}AT,
t’ — b

dXs = ,udt + o0 dB;, t<s<T,
Xt -
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with fi and & are components of © as defined in Theorem .

Proof. Apply Theorem [5.4.1, we only need to treat the change of the stopping time 7 5.
Since X is a continuous process by assumptions, we can replace inf{t <u < T : X.* = H}
to the stopping time inf{t < u < 7T : X5 < H}, then for the following events:

1 1 K K
{rny <s}={inf X”<H}—{sup >—}:{sup >—}

t,x — t —
t<u<s t<u<s Xux H t<u<s Xux H

-1 K -k K .
:{ sup KX%s > E} :{ sup Xb= > E} = {77 < s}

t<u<s t<u<s

where we use homogeneity of X for initial value as in Remark [5.4.6, H = % Apply again
the homogeneity in Proposition we get the second equality of ((5.5.3]). O

As a consequence, the pricing problem of American down and in Call option is symmet-
ric to an American up and in Put option which has a barrier £& - Thanks to the assumption
K > H, we have x < &2 7 which yields, from Proposmon 6l that the payoff process StX of
UIPut remains contmuous because at the time of actlvatlon the payoff (z — ££)* = 0; sim-
ilarly, for the relation between the spot value and the barrier, under the assumption x > H,
we have K < %, which implies that the symmetry does not change the status (active or
not) of the options.

Using the same arguments in Proposition [5.5.6] we can prove the similar result for the
American down and out Call option and up and out Put option. Denote DOCall(t, z; T, K, H; ©)

the price of down and out Call option with payoff S** = {(X, — K)*l{ﬁ s} t<s<T}.

Example 5.5.7 (down and out Call and up and out Put). Under the same assumptions as
i Proposition |5.5.0, we have, for American down and out Call option

K K -
DOCall(t,z; T, K, H;©) = 2UOPut (t, — T, 1, Vi @)

= UOPut <t, K:T,z, %; é) ,

where UOPut(t T, K, H; (:)) is the price of American up and out Put option with payoff

St = {(K — X, f)*l{T Ss) 1t < s < T}, 75 =inf{t <u: X% = HY AT and the

underlying asset X starts from X, = &.

5.5.3 American Quanto options

We present an application of change of numéraire in the international market as in [88],
Section 2.7.3]. Denote XP the underlying in the domestic market, denote X the exchange
rate of the foreign currency price in domestic unit; denote XF the price of the underlying
asset in the foreign market. We have always X° = XF&;, for t € [0, 7.
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Foreign stock option with a strike in a foreign currency: Considering an option
written on X/ with the strike price K in foreign currency, for this contract, we investigate
its pricing problem in domestic market, i.e. an option with payoff S; = X,(XF — K)*. Write
S; = (XP — KX,)* and consider the market composed with (X, XP). Notice that even
though the currency X is not a real asset in the domestic market, but regarding the payoft S,
its hedging portfolio would be composed by XP and the risk-free asset in the foreign market
where the amount invested on the risk-free asset in the foreign market can be considered as
the quantity invested on the ’asset” X'. As a consequence, we can still use the driver in ([5.3.1))
to describe the domestic market for pricing a contract in foreign currency.

From Theorem we take X as the numéraire then we will get the symmetry result
similar to that of exchange option in Example [5.5.4]

Corollary 5.5.8 (Quanto options). Assume holds for (X,XP). Denote the price
EXD(t,x, 2P, T, K;0) of American option with payoff process

Shee® — L((XP)B” — KXY 0 <t < T}

where the underlying assets (X, XP) starting from (X;, XP) = (z,2P). We have
xP ~
EXP(t,z,2°;T,K;0) = zCall* (t, —; T, K; 0?),
x

where CallF(t,ir;T, K; é(z)) 1s the price of the American Call option with payoff process
S = (X¥ — K)T when the underlying asset X¥ starting from XF = &, which is exactly a
pricing process of Call option written in the foreign market and in foreign currency.

An easy verification is performed under the domestic risk neutral probability where
R=7r,Q =q,pu=r—qand we find the dynamics of XF. Let 2, 7F to be the domestic and
foreign interest rate respectively, and ¢ the dividend rate of underlying. The argument of
Absence of Opportunity of Arbitrage yields that the drift of X under the domestic risk neutral
probability should be 7P — r¥. Indeed, assume under the domestic risk-neutral probability
Q, XP and XF satisfy

dXF
= (rP — q)dt + cPdW}, X—I‘E = ppdt +of (pdW}! + /1 — p2dW}?),

t

dxP

XP

where W' W? are 2 independent Brownian motions under Q, the correlation p € [—1,1], u¥

is the expected return rate of X¥ under Q, which will be determined afterwards. Assume X
satisfies

dX,

—t = (rP —rE)dt + o*dW,

X

where W, = (W2, WAT and o = (JP —ofp,—ofy/1— ,02). Thus we can determine p¥

since XP = XFX,, otherwise there will be an arbitrage in the market. Applying It6’s formula,
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we get

dXP  dXF dx  d(XF,x),

xXb — XF + X, + XFx,
= (1 +10 =i +popo] —(07)?)dt + 0P dW,

the argument that the drift of XP should equals to 7P —¢; yields that uf = rF —q,—poPof +

(0F)2. So we can apply Theorem [5.4.1] assuming for (X, XP) with coefficient ©,

T’D—TF, TD, 7,.D’ TF, TF, O_X

O =
TD — 4, TD) rDa q, q, UXD

and take X' as numéraire, then we have, the X-market coefficient 6 = (+F — ¢ — [(¢P,0) —

o®(e®)",7%,7¥,q,q). An easy computation leads to, for the return rate fi® in X-market,

R e R GO
¥ g poPal +(of)? = ",

=7r —q—po,o; +
which implies that X-market is exactly foreign market composed by XF¥. Hence, we can
verify Corollary in the domestic risk neutral market. Moreover, if we apply a change of
measure on it, we enter the foreign risk-neutral market, see Section [5.6.1]

5.6 Change of probability and American-type options

In this section, we interpret our result of non-linear pricing in the previous section
to the optimal stopping problem with changing of probability. The change of probability
plays an important rule in the classical symmetric results where the Girsanov Theorem is
usually applied and the dynamics of the underlyings under the new probability are computed
explicitly.

Consider a simple case of with R =r, Q = q, u = r — g, namely the risk neutral
market with dividend, we also have the symmetry in the representation of optimal stopping
problem so that we can give another time the symmetry of American option pricing. The
risk-neutral pricing can be considered as a special case of this result, thanks to its simple
linear driver f(t,y,z) = —ryy. Let us start with the multidimensional case as in Corollary
and we work with the same notation, under the risk neutral probability Q, the price of
the American Call option Call(t,x; C, T, K;r,q) admits the following representation:

Call(t, X;; O, T, K;r,q) = esssup EV [e‘ Jirsds (C’TXT — K)Jr ].7-}} . (5.6.1)
T€T, T
Define the equivalent probability measure Q*, of which the Radon—Nikodym density process
is strictly positive given as following:

e fO Ts— qg Xl

dQ'|z = LdQl7, Li:= Xl L>0,te(0,T).
0
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Then Girsanov theorem and Baye’s formula for the conditional expectation leads us to

T ~+~\T
Call(t, X;;C, T, K: 7, q) = esssup E [e— J7 rads x1 (01 - CTXT) |]-“t}

TET,T

* T 1 ~ ~ +
— esssup X, E? [e‘ J7 atVds <C1 - CTXT) |}—t}
7’672,7*

X T (1 ~~ ~\T
= X/ esssup E¢ [eft ¢tV ds (C’l — C’TXT> |]-"t]

TET,T
= thPut(t, Xta é’, T, 017 7:7 5)7

Where ’f’ fr q(l)’g = (1"‘7q(2)7 P 7q(d))7Xt = (%7 §—§7 P 7§—§) 7C~' fry ([{v7 —027 e 7_Cd) SO
t t t

in this simple case, we prove that the symmetry of optimal stopping problem by change of

probability and we find again a similar result to Corollary [5.5.2]

Moreover, thanks to the relation between the optimal stopping and RBSDE as in [52,
Proposition 2.3|, we can verify the equation satisfied by the value process obtained from
optimal stopping is the same as RBSDE shown in Theorem [5.4.1} Let’s look at the equations
satisfied by Call(t, X;; C, T, K;r,q) and Put(t, X;; C, T, C1; 7, G): in the right side of (5.6.1]),
for any fixed stopping time 7 < T, let ¥, = E@ [e‘ Jirsds (CTXT — K)+ |.7:t], then Y € .72
and there exists Z € H? such that Y is the solution of the following linear BSDE on [0, 7]

—dY, = —rY,dt — Z,dB,, 0<t<r,
Y, = (CTX, — K)*.

Thus
Y, = E® [e* Jirds (CTX, — K)© \]-"t} = E° [(CTXT — K)"+ / —rsmdsm] .
t

Notice that Y depends on 7, so by taking the supremum on 7 € 7; 7, from |52, Proposition
2.3] and (5.6.1)), we obtain that, the value process Call(t, X;; C, T, K;r,q) is the solution of
RBSDE w.r.t. S = (C"X — K)*, f(t,z,y,z) = —r;y under Q. With the same arguments, we
also deduce that the value process Put(t, X;; C, T, Cy; 7, ) is the solution of RBSDE w.r.t.
S =(C,—CTX)*, f(t,x,y, z) = —rwy under Q*. So this identification allows us to verify
Theorem by applying Girsanov theorem for the change of probability. Without any
doubt, the American exchange option as in Corollary is one of special case of current

discussion.

5.6.1 American Quanto Option

After applying Theorem [5.4.1 on the Quanto option in Section [5.5.3 we consider a
different approach: applying the change of measure on the representation of American option
by optimal stopping to get the symmetry, which provides another observation of the change
of numéraire.
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American type foreign stock option with a strike in a foreign currency: Consider
a payoff S; = X(XF — K)T, in this case, the American type option’s price is given by

Call(t, X2; T, K; 7P, q) = ess sup E [e*ft”?dSXT(Xf - K)*!JEJ
T€Te, T

— esssup KE? [ 102 (XT - K)*|F]

TETt,T
= X,Call(t, XJ; T, K;r¥, q), (5.6.2)
with dQ*|z = L,dQ|x,, L; = e‘fot(’"E_’”f)dS%. Under Q*, XF satisfies

dXxF
o = (7 —@)dt+ o7 (pd W + /1 — p2d W), (5.6.3)
t

where Wy = (W', W) = (W= [ (6P —oF p)ds, W2++/1 — p? [] oFds) are Q*-Brownian
motions from Girsanov theorem. Thus implies that by the change of probability, we
are now working with the foreign risk neutral market and Call(¢, XF; T, K;r¥, ¢) on the right
side of is exactly the price of American Call option in foreign currency and in foreign
risk neutral market.

5.6.2 American Barrier option

We apply the change of probability to prove the same conclusion as in Section for
the American barrier options and we take the same notations as in Section [5.5.2]

Down and In Call Consider the barrier option with payoff S, = (X; — K)*1, <y, the
corresponding optimal stopping problem under the risk-neutral probability Q gives the value
process of American type options, which can be written as

DICall(t, X;; T, K, H; 7, q) = esssup E [e_ JTrsds(x K)+1{TH§T}|]-}] (5.6.4)
7‘67}71“
KX B [e-faas (L _ 1 +1 |7,
= esssu e Jt 1 = — < Ta<T )
! 7-672,Tp K XT trmsryiee

where %\ F =€ I (TS_qS)ds))g—é. Notice that under Q*, X% follows the dynamic

1 1 1
d— = —(¢ —r)dt — atyt

dWw;
Xy Xy b
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where W* is the Brownian motion under Q*. From ([5.6.4)), using the arguments in the proof
of Proposition [5.5.1] we get the same conclusion, i.e.

() g

1 1 1 =~
= KX,UIPut (t, — T ;@) :

DICall(t, X;; T, K, H;0) = KX, esssup EY

TEﬁ,T

X, "K' H

where 71
H

Down and Out Call Consider the payoff process S; = (X; — K)" 17, >4, the only differ-
ence compared to the previous case lies on the symmetry of stopping time: since

: 1 1 -
{TH>S}:{oi%f<sX“>H}_{ sup — < E} = {75 > s}.

0<u<s Xu

So with the same arguments as in the above case, we get that

DOCall(t, X;; T, K, H;r,q) = essﬂ?up EC [e_ Foreds(x K)+1{TH>T}|]-}}
TE T
= KX, esssup R _e_fthSdS 1 " 1 IF
! T€T,T K XT {ra>rtHVt |
o | —fraas (L LY
= KX;esssupE* |e )¢ ¥ S 1{~ }|]:t
T1>T

T€T, T

1 1 1 =
= KX;UOPut (t, —; T, ;@) .
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Résumé : Dans cette thése, on se concentre sur la
résolution des équations différentielles stochastiques
rétrogrades réfléchies par I'approche de pénalisation
et ses applications en finance. Un résultat complet
de convergence non asymptotique est étudié autour
des EDSR pénalisées. La vitesse de convergence
de la solution pénalisée vers la solution réfléchie est
présenté en premier lieu, suivi de la vitesse de conver-
gence de la solution pénalisée discréte vers la solu-
tion pénalisée continue. Pour la résolution numérique
des EDSR pénalisées, on propose un schéma im-
plicite utilisant la méthode de Monte-Carlo avec
régression des moindres carrés. Une analyse d’er-
reur non asymptotique est déduite pour ce schéma

Titre : Approximation et simulation des équations différentielles stochastiques rétrogrades réfléchies, applica-

Mots clés : équations rétrogrades, vitesse de convergence, borne d’erreur,

numérique, dans laquelle a la fois la régression
linéaire et non linéaire des moindres carrés sont
considérées comme méthodes d’optimisation. La
thése se conclut par une application des EDSR
pénalisées aux options d’achat/vente américaines sur
un marché non linéaire. Le changement de numéraire
est étudié sur les diffusions réfléchies. On constate,
comme sur le marché parfait, que I'équivalence de
prix entre une option de vente américaine et une op-
tion d’achat américaine est obtenue en échangeant
les taux d’intérét avec les taux de dividende, et en
échangeant le prix spot avec le prix d’exercice, sur
un marché imparfait avec 2 taux d'intérét et 2 taux de
dividende.

Finance

Abstract : In this thesis, one concentrates on solving
the reflected backward stochastic differential equa-
tions via penalization approach and its applications
in finance. A complete non-asymptotic convergence
result is investigated around penalized BSDE. The
rate of penalized solution converging to reflected so-
lution is presented in the first place and it follows
by the rate of discrete penalized solution converging
to the continuous penalized one. For solving numeri-
cally PBSDEs, we provide an implicit scheme using
least-squares regression Monte-Carlo method. The
non-asymptotic error analysis is deduced for this nu-
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Keywords : backward equations, convergence rate, error bound

merical scheme, in which both linear and non-linear
least-squares regression are considered as optimiza-
tion method. The thesis is completed by an application
of RBSDEs on American Put/Call options in the non-
linear market. The change of numéraire is investiga-
ted on reflected diffusions. We find, as in the perfect
market, the pricing equivalence between an American
Put option and an American Call option is achieved
by exchanging the interest rates with dividend rates,
and swapping the spot price with the strike price, in a
imperfect market with 2 interest rates and 2 dividend
rates.
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