
HAL Id: tel-04538813
https://theses.hal.science/tel-04538813

Submitted on 9 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural Module Networks for Compositional Visual
Reasoning

Wafa Aissa

To cite this version:
Wafa Aissa. Neural Module Networks for Compositional Visual Reasoning. Neural and Evolutionary
Computing [cs.NE]. HESAM Université, 2023. English. �NNT : 2023HESAC033�. �tel-04538813�

https://theses.hal.science/tel-04538813
https://hal.archives-ouvertes.fr

ÉCOLE DOCTORALE Sciences des Métiers de l’Ingénieur

Centre d’études et de recherche en informatique et communications

THÈSE

présentée par : Mme Wafa AISSA
soutenue le : 18 décembre 2023

pour obtenir le grade de : Docteur d’HESAM Université

préparée au : Conservatoire national des arts et métiers

Discipline : Informatique

Spécialité : Informatique

NEURAL MODULE NETWORKS FOR COMPOSITIONAL

VISUAL REASONING

Réseau de modules neuronaux pour un raisonnement visuel

compositionnel

THÈSE dirigée par :
M. Michel CRUCIANU Professeur, Cnam

et co-encadrée par :
M. Marin FERECATU Mâıtre de conférences, Cnam

M. Souheil HANOUNE Chief technology officer, XXII Group

Jury
M. Camille KURTZ Professeur, LIPADE, Univ. Paris Cité Rapporteur
M. Désiré SIDIBE Professeur, IBISC, Univ. d’Evry Rapporteur
Mme Valérie GOUET-BRUNET Directrice de recherche, LaSTIG, IGN Examinatrice
Mme Anissa MOKRAOUI Professeur, L2TI, Univ. Sorbonne Paris Nord Examinatrice
M. Michel CRUCIANU Professeur, CEDRIC, Cnam Directeur de thèse
M. Marin FERECATU Mâıtre de conférences, CEDRIC, Cnam Co-encadrant
M. Souheil HANOUNE Chief technology officer, XXII Group Co-encadrant

Acknowledgements

Je tiens à exprimer ma profonde gratitude envers mes encadrants du CEDRIC, M. Michel Crucianu

et M. Marin Ferecatu, pour leurs conseils éclairés qui ont guidé mes travaux de recherche, leur soutien

et leur disponibilité constante. Un merci particulièrement chaleureux à mon directeur de thèse,

M. Michel Crucianu, pour sa sagesse et sa bienveillance.

Mes remerciements vont également à M.Souheil Hanoune pour m’avoir offert l’opportunité de

rejoindre XXII. Une opportunité qui m’a permis de découvrir le monde de l’entreprise. J’exprime ma

reconnaissance envers XXII et l’ANRT pour avoir soutenu financièrement mes trois années de thèse.

Je suis reconnaissante envers Mme Valérie GOUET-BRUNET, Mme Anissa MOKRAOU, M. Camille

KURTZ et M. Désiré SIDIBE d’avoir accepté d’être membres du jury lors de ma soutenance de thèse.

Un sincère remerciement à mes collègues du CEDRIC qui ont grandement contribué à enrichir

mon expérience au sein du laboratoire, faisant de cette période une opportunité d’épanouissement

professionnel et personnel.

Un sincère merci à mes amis que j’aime beaucoup.

Je remercie aussi ma famille.

Mes remerciements s’étendent à toutes les personnes qui, de près ou de loin, m’ont inspirée dans

ma trajectoire pour devenir chercheuse en intelligence artificielle.

Enfin, un grand merci à tous ceux qui oeuvrent pour la paix.

ii

Abstract

The context of this PhD thesis is compositional visual reasoning. When presented with an image

and a question pair, our objective is to have neural networks models answer the question by following

a reasoning chain defined by a program. We assess the model’s reasoning ability through a Visual

Question Answering (VQA) setup. Compositional VQA breaks down complex questions into modular

easier sub-problems. These sub-problems include reasoning skills such as object and attribute detection,

relation detection, logical operations, counting, and comparisons. Each sub-problem is assigned to a

different module. This approach discourages shortcuts, demanding an explicit understanding of the

problem. It also promotes transparency and explainability. Neural module networks (NMN) are used

to enable compositional reasoning. The framework is based on a generator-executor framework, the

generator learns the translation of the question to its function program. The executor instantiates an

NMN where each function is assigned to a specific module. We also design a neural modules catalog

and define the function and the structure of each module. The training and evaluations are conducted

using the pre-processed GQA dataset, which includes natural language questions, functional programs

representing the reasoning chain, images, and corresponding answers. The research contributions

revolve around the establishment of an NMN framework for the VQA task. One primary contribution

involves the integration of vision and language pre-trained (VLP) representations into modular VQA.

This integration serves as a “warm-start” mechanism for initializing the reasoning process. The

experiments demonstrate that cross-modal vision and language representations outperform uni-modal

ones. This utilization enables the capture of intricate relationships within each individual modality

and the alignment between different modalities, consequently enhancing the overall accuracy of our

NMN. Moreover, we explore various training techniques to enhance the learning process and improve

cost-efficiency. In addition to optimizing the modules within the reasoning chain to collaboratively

produce accurate answers, we introduce a teacher-guidance approach to optimize the intermediate

iii

ABSTRACT

modules in the reasoning chain. This ensures that these modules perform their specific reasoning

sub-tasks without taking shortcuts or compromising the reasoning process’s integrity. We propose and

implement several teacher-guidance techniques, one of which draws inspiration from the teacher-forcing

method commonly used in sequential models. Comparative analyses demonstrate the advantages of

our teacher-guidance approach for NMNs.

We also introduce a novel Curriculum Learning (CL) strategy tailored for NMNs to reorganize the

training examples and define a start-small training strategy. We begin by learning simpler programs

and progressively increase the complexity of the training programs. We use several difficulty criteria

to define the CL approach. Our findings demonstrate that by selecting the appropriate CL method,

we can significantly reduce the training cost and required training data, with only a limited impact on

the final VQA accuracy.

Keywords: deep learning, visual reasoning, computer vision, natural language processing, multi-

modal representations.

iv

Résumé

Cette thèse de doctorat porte sur le raisonnement visuel compositionnel. Lorsqu’on présente une

paire image-question à un modèle de réseau de neurones, notre objectif est que le modèle réponde

à la question en suivant une châıne de raisonnement définie par un programme. Nous évaluons la

capacité de raisonnement du modèle dans le cadre de la Question Réponse Visuelle (QRV). La QRV

compositionnelle décompose les questions complexes en sous-problèmes modulaires plus simples. Ces

sous-problèmes incluent des compétences de raisonnement telles que la détection d’objets et d’attributs,

la détection de relations, les opérations logiques, le dénombrement et les comparaisons. Chaque

sous-problème est attribué à un module différent. Cette approche décourage les raccourcis, exigeant

une compréhension explicite du problème. Elle favorise également la transparence et l’explicabilité. Les

réseaux de modules neuronaux (NMN) sont utilisés pour permettre un raisonnement compositionnel.

Ils sont basés sur un cadre de générateur-exécuteur, le générateur apprend la traduction de la question

vers son programme de fonctions. L’exécuteur instancie un NMN où chaque fonction est attribuée à

un module spécifique. Nous développons également un catalogue de modules neuronaux et définissons

leurs fonctions et leurs structures. Les entrâınements et les évaluations sont effectués sur l’ensemble

de données GQA, qui comprend des questions, des programmes fonctionnels, des images et des

réponses. L’une des principales contributions implique l’intégration de représentations pré-entrâınées

multi-modales dans la QRV modulaire. Cette intégration sert à initialiser le processus de raisonnement.

Les expériences démontrent que les représentations multimodales surpassent les unimodales. Ceci

permet de capturer des relations complexes intra-modales tout en facilitant l’alignement entre les

différentes modalités, améliorant ainsi la précision globale du NMN. De plus, nous explorons différentes

techniques d’entrâınement pour améliorer le processus d’apprentissage et l’efficacité du coût de calcul.

En plus d’optimiser les modules au sein de la châıne de raisonnement pour produire collectivement des

réponses correctes, nous introduisons une approche d’apprentissage guidé pour optimiser les modules

v

RÉSUMÉ

intermédiaires de la châıne de raisonnement. Ceci garantit que ces modules effectuent leurs sous-tâches

de raisonnement spécifiques sans prendre de raccourcis ou compromettre l’intégrité du processus de

raisonnement. L’une des techniques proposées s’inspire de la méthode “teacher-forcing” couramment

utilisée dans les modèles séquentiels. Des analyses comparatives démontrent les avantages de cette

approche pour les NMN. Nous introduisons également une nouvelle stratégie d’apprentissage par

Curriculum (CL) adaptée aux NMN pour réorganiser les exemples d’entrâınement et définir une

stratégie d’apprentissage progressif. Nous commençons par apprendre des programmes plus simples et

augmentons progressivement la complexité des programmes d’entrâınement. Nous utilisons plusieurs

critères de difficulté pour définir l’approche du CL. Nos résultats montrent qu’en sélectionnant la

méthode de CL appropriée, nous pouvons réduire considérablement le coût de l’entrâınement et la

quantité de données d’entrâınement requise, avec un impact limité sur la précision finale de la QRV.

Mots-clés : apprentissage profond, raisonnement visuel, vision par ordinateur, traitement automa-

tique de langage naturel, représentations multi-modales.

vi

Contents

Acknowledgements ii

Abstract iii

Résumé v

List of Tables xi

List of Figures xiii

Chapters

1 Introduction 1

2 Related work 6

2.1 Introduction . 7

2.2 Visual reasoning architectures . 9

2.2.1 Monolithic approaches . 9

2.2.2 Compositional approaches . 11

2.2.2.1 Multi-step approaches . 11

2.2.2.2 Neural module networks . 12

2.3 Executor training strategies . 18

2.3.1 Knowledge guidance . 18

2.3.2 Teacher forcing . 19

2.3.3 Curriculum learning . 20

2.4 Datasets for compositional visual reasoning . 21

vii

CONTENTS

2.4.1 VQA and VQA 2.0 . 21

2.4.2 CLEVR . 22

2.4.3 GQA . 24

3 Multi-modal Neural Module networks 29

3.1 Introduction . 30

3.2 Multi-modal representations . 31

3.3 Neural modules . 34

3.3.1 Pre-processing . 35

3.3.2 Attention modules . 38

3.3.3 Boolean modules . 39

3.3.4 Answer modules definition . 41

3.4 Program examples . 42

3.5 Generator . 48

3.5.1 From questions in natural language to functional programs 48

3.5.2 Arguments prediction . 49

3.5.3 Generator optimisation . 50

3.5.4 Program inference . 50

3.5.5 Experimental validation . 52

3.6 Executor . 52

3.6.1 Module initialisation . 52

3.6.2 Weight sharing . 53

3.6.3 Modular network instantiation . 54

3.6.4 Reasoning process . 54

3.6.5 Answer prediction . 55

3.7 Evaluations . 55

3.7.1 Experimental settings . 56

3.7.2 Unimodal vs crossmodal representations . 56

3.8 Conclusion . 58

4 Guided-Training of neural module networks 59

viii

CONTENTS

4.1 Introduction . 59

4.2 Input guidance . 60

4.3 Output feedback . 62

4.3.1 Attention loss . 62

4.3.2 Boolean loss . 63

4.4 Intermediate targets coding . 63

4.4.1 Attention targets . 63

4.4.2 Boolean targets . 66

4.5 Experiments . 66

4.5.1 Evaluated methods . 66

4.5.2 Results analysis . 67

4.5.3 Implementation details . 69

4.5.4 Modules training evolution . 70

4.5.5 Qualitative analysis of the modular approach 71

4.6 Conclusion . 73

5 Curriculum learning for neural module networks 75

5.1 Introduction . 76

5.2 Curriculum Learning setup . 76

5.2.1 Difficulty criterion . 76

5.2.2 Scheduler . 78

5.2.3 Sampling function . 78

5.2.4 Performance evaluator . 79

5.3 Experiments . 79

5.3.1 Evaluated methods . 80

5.3.2 Results analysis . 81

5.3.3 Modules performances . 84

5.3.4 Implementation details . 85

5.3.5 Additional experiments . 86

5.4 Conclusion . 87

ix

CONTENTS

6 Conclusion and Perspectives 88

Bibliography 92

Synthèse de la thèse en français 104

x

List of Tables

2.1 GQA dataset partitioning . 26

2.2 GQA dataset function counts and precentage of frequencies in descending order. . . . 27

2.3 Accuracy results on the GQA dataset validation and testdev splits from [Nguyen et al., 2022]. 28

3.1 Module functions counts and frequencies after preprocessing. 36

3.2 Attention module definitions. σ: Activation function, r: RELU, W: weight matrix,

a: attention vector (36 × 1), V: visual features (768 × 36), t: text features (768 × 1),

o: attention vector (36 × 1) ⊙: Hadamard product, min: element-wise minimum. . . . 38

3.3 Boolean module definitions. σ: Sigmoid, r: RELU, W: weight matrix, a: attention

vector (36×1), b: boolean scalar, V: visual features (768×36), t: text features (768×1),

⊙: Hadamard product, [a∥b]: concatenation, min: element-wise minimum. 40

3.4 Answer module definitions. S: softmax, r: RELU, W: weight matrix, a: attention vector

(36 × 1), b: boolean scalar, V: visual features (768 × 36), t: text features (768 × 1), ⊙:

Hadamard product. 41

3.5 Program examples . 48

3.6 Language and vision representation comparison on testdev-all. 57

4.1 Performance of various training methods and encodings on the testdev-all set. . . . 67

5.1 Results on testdev-all for several CL strategies. 81

5.2 Results on testdev-all with program length as a refinement for the CL difficulty

measure. Computation cost is the number of seen examples per iteration times the

number of iterations. 82

5.3 Comparaison of our CL model (CL+W.a+P+R) with no-CL models (Unbalanced,

Balanced, and Random) on the testdev-all set. 83

xi

LIST OF TABLES

6.1 Définitions de certains modules. σ: fonction d’activation non-linéraire, r: RELU,

W: matrice de poids, a: vecteur d’attention (36 × 1), b: scalaire booléen (1 × 1),

V: représentations visuelles (768 × 36), t: représentations textuelles (768 × 1), ⊙:

produit matriciel de Hadamard. 108

xii

List of Figures

1.1 Image from the GQA dataset [Hudson and Manning, 2019b]. 3

2.1 VQA task: Given an image and a question, a model learns to predict an answer. . . . 7

2.2 LXMERT architecture [Tan and Bansal, 2019], self: self-attention, FF: feed forward,

cross: cross-attention . 10

2.3 Modules architectures from [Andreas et al., 2016b]. 14

2.4 Modules architecture from [Li et al., 2019a]. 16

2.5 Model from [Johnson et al., 2017b]. Generator on the right and executor on the left. . 17

2.6 RNN without and with teacher forcing. 19

2.7 VQA dataset examples. 22

2.8 CLEVR Example: Image on the Left, Functional Program and Question in the center

and function catalog in the right. 23

2.9 Top: Statistics for CLEVR per split. Bottom left: Comparison of question lengths for

different VQA datasets. Bottom right: Distribution of question types in CLEVR. . . . 24

2.10 GQA Example: Image on the Left, Functional Program and Question on the middle

and image graph on the right. 25

2.11 GQA Examples based on their structural and semantic types 25

2.12 Dataset statistics from [Hudson and Manning, 2019b]: structural types, semantic types,

number of reasoning steps and questions length distribution compared to other datasets. 26

3.1 The proposed modular VQA framework: The (question, image) pair is used by a

transformer model to generate aligned cross-modal embeddings for words and objects

(3.2). These are used by a Program Generator (3.5) module to produce a program

(represented as a sequence of sub-task modules), which will be then applied by the

Program Executor (3.6) module to the image to answer the question. 31

xiii

LIST OF FIGURES

3.2 A-taxonomy-of-word-embeddings, from [Wang et al., 2021] 32

3.3 LXMERT architecture [Tan and Bansal, 2019], self: self-attention, FF: feed forward,

cross: cross-attention. 33

4.1 The teacher guidance for the program execution process related to the question ‘On

what is the animal to the right of the laptop sleeping?’. Plain arrows represent input

guidance 4.2, dotted arrows represent the output feedback 4.3 and bounding boxes

represent the GT intermediate targets. 60

4.2 Comparison between the ground-truth bounding boxes and the LXMERT bounding

boxes. 64

4.3 Raw program structure. 64

4.4 Object identifiers, names and coordinates from the image graph data. 65

4.5 Modules’ training loss curves plotted every 10 epochs. 71

4.6 Visualization of the reasoning process. 73

4.7 Visualization of the reasoning process for some incorrect answers. 74

5.1 GQA dataset samples with different difficulty levels. 77

5.2 Accuracy histograms for the structural types of the questions. 84

5.3 Accuracy histograms for the semantic types of the questions. 85

5.4 The program (represented as a sequence of sub-task modules) is applied by the Program

Executor module to the image to answer the question. The proposed work focuses on

improving the Program Executor by using several curriculum learning (CL) strategies. 86

6.1 Image extraite de la base de données GQA [Hudson and Manning, 2019b]. 106

6.2 Architecture du modèle LXMERT [Tan and Bansal, 2019]. 107

6.3 Le cadre QRV modulaire proposé : La paire (question, image) est utilisée par un modèle

de Transformer pour générer des représentations alignés pour les mots et les objets.

Celles-ci sont utilisées par un générateur pour produire un programme (une séquence

de modules de sous-tâches), qui sera ensuite appliqué par un exécuteur de programmes

sur l’image pour répondre à la question. 109

xiv

LIST OF FIGURES

6.4 L’apprentissage guidé pour l’exécution du programme relatif à la question ‘ Sur quoi

l’animal à droite de l’ordinateur portable est en train de dormir? ’. Les flèches continues

représentent l’échantillonnage planifié (voir Section 4.2), les flèches discontinues représen-

tent l’erreur multi-tâches (voir Section 4.3), et les bôıtes englobantes représentent les

cibles intermédiaires. 110

xv

Chapter 1

Introduction

Artificial intelligence (AI) aims to make machines smarter, so they can do things like humans do,

such as learning, thinking, and behaving. This pursuit has encountered challenges, particularly in

tasks that are intuitive for humans but challenging to formally describe—those that appear automatic,

such as recognizing spoken words or discerning faces in images. This frontier in AI has been greatly

influenced by the advent of connectionist neural networks, which excel in pattern recognition and

learning, as mentioned in [Goodfellow et al., 2016].

Visual reasoning in the context of AI encompasses the ability of machines to interpret and make sense

of visual data, much like how humans do. It involves the comprehension, analysis and manipulation

of visual information to derive meaningful insights or make informed decisions. Visual reasoning

goes beyond mere object recognition; it entails the capacity to understand complex scenes, infer

relationships between objects, and answer questions based on visual input. This multifaceted cognitive

process often involves tasks such as object localization, attribute identification, spatial reasoning,

and even higher-level reasoning involving context and semantics. In essence, visual reasoning aims

to bridge the gap between raw visual data and meaningful understanding, enabling AI systems to

interact with the visual world in a manner akin to human perception and cognition.

A notable application of visual reasoning is Visual Question Answering (VQA) [Goyal et al., 2017,

Hudson and Manning, 2019b], a field that merges computer vision (CV) with natural language pro-

cessing (NLP). VQA systems are designed to comprehend complex visual scenes and respond to

questions about them, bridging the gap between visual data and human-like understanding. However,

comprehending the intricate reasoning processes of such systems is challenging, as demonstrated by

1

the case of Clever Hans—an early 20th-century horse that appeared to answer arithmetic questions. A

closer investigation unveiled that Hans was, in reality, responding to subtle cues from human observers,

rather than engaging in genuine arithmetic calculations [Pfungst and Hans, 1965].

To enable machines to perform a transparent reasoning about the visual world, our focus lies in

achieving explicit reasoning, mirroring the symbolic reasoning processes evident in humans. This entails

breaking down complex reasoning tasks into a sequence of defined program steps, akin to the modular

processes humans employ [Fodor, 1983, Clune et al., 2013]. For that purpose, we draw inspiration

from the field of compositional semantics in natural language understanding [Partee et al., 1984]. Just

as compositional semantics explores how sentence meaning emerges from the meanings of its parts

and their structure, compositional Visual Question Answering (VQA) [Hudson and Manning, 2019b]

aims to dissect complex visual reasoning problems into more digestible components. In VQA, these

components are elements like objects, attributes, and relations within a question related to an image.

By following compositional semantics principles, we seek to understand how these visual elements are

combined to reason about the visual world, ultimately allowing us to provide meaningful answers to

image-related questions.

For compositional reasoning, various modular techniques have been proposed. One prominent and

central to our work is the Neural Module Network (NMN) [Andreas et al., 2016b, Johnson et al., 2017b,

Li et al., 2019a]. In NMN, the reasoning process is divided into smaller, specialized modules that work

collaboratively to solve complex tasks. Each module is designed for a specific sub-task and modules can

be combined to address diverse questions and problems. For example, consider the task of answering

questions about an image containing objects, attributes and relations. NMN employs different modules

for sub-tasks like object recognition, attribute identification, and relation understanding. These

modules are chained in a sequential step-by-step manner to answer questions.

The power of NMN lies in its flexibility and modularity. It is a dynamic architecture that allows to

define specialized modules that can be flexibly combined to tackle a wide array of questions, making it

a valuable tool in compositional reasoning tasks. For example, given the question “What color is the

fruit on the right side, red or green?” about the image presented in Fig. 1.1, to successfully answer

this question in a compositional manner we need three different modules: one to focus on the right

side of the image, another to recognize the fruit, and an additional module to decide between red or

green as the fruit’s color.

2

Figure 1.1: Image from the GQA dataset [Hudson and Manning, 2019b].

The NMN framework operates within a generator-executor framework, a two-component process

that enables efficient reasoning. For the first component, the generator learns to translate a given

question into its corresponding functional program. This program represents a series of operations to

execute to answer the question accurately. For the second component, the executor instantiates an

NMN, where each function within the program is assigned to a specific module. These functions are

derived from a predefined neural modules taxonomy, which categorizes various reasoning sub-tasks

into distinct modules. Importantly, each function corresponds to a neural network block, designed to

adhere to the structure and requirements of the specific input data for that function. This structured

approach ensures that the NMN can effectively execute the functions within the program in a sequential

manner, ultimately leading to predicting answers to the posed questions.

The research contributions revolve around the establishment of an NMN framework for the VQA

task. One primary contribution involves the integration of vision and language pre-trained (VLP)

representations [Tan and Bansal, 2019] into modular VQA [Andreas et al., 2016b]. This integration

serves as a “warm-start” mechanism for initializing the reasoning process. It also addresses a notable

weakness of the NMN framework, which has been observed in prior works. Specifically, NMN has

faced challenges in effectively modeling prior knowledge about answers, as highlighted in earlier

studies [Andreas et al., 2016a, Andreas et al., 2016b]. The experiments demonstrate that cross-modal

vision and language representations outperform uni-modal ones. This utilization enables the capture

of intricate relationships within each individual modality while also facilitating alignment between

different modalities, consequently enhancing overall accuracy of the NMN.

3

Moreover, we explore various training techniques to enhance the learning process and improve

cost-efficiency. In addition to optimizing the modules within the reasoning chain to collaboratively

produce accurate answers, we introduce a teacher-guidance approach to optimize the intermediate

modules in the reasoning chain. This ensures that these modules perform their specific reasoning

sub-tasks without taking shortcuts or compromising the reasoning process’s integrity. We propose and

implement several teacher-guidance techniques, one of which draws inspiration from the teacher-forcing

method commonly used in sequential models. Comparative analyses demonstrate the advantages of

our teacher-guidance approach for NMNs, as detailed in our paper [Aissa et al., 2023b].

We also introduce a novel Curriculum Learning (CL) strategy tailored for NMNs to reorganize the

training examples and define a start-small training strategy. We begin by learning simpler programs

and progressively increase the complexity of the training programs. We use several difficulty criteria

to define the CL approach. Our findings demonstrate that by selecting the appropriate CL method,

we can significantly reduce the training cost and required amount of training data, with only a

limited impact on the final VQA accuracy. This significant contribution forms the core of our paper

[Aissa et al., 2023a].

Visual reasoning occupies an important position in academia on a global level. Efforts are made

to bridge the gap between academic advancements and practical industry applications. This aims

to unleash the potential of acquired skills in real-world scenarios. Such practical implementations

span diverse domains, exemplified by the application of visual reasoning in video analysis for urban

settings. This includes functions like crowd analysis [Tomar et al., 2022], efficient parking manage-

ment [Singh et al., 2018], and robust intrusion detection systems [Zablocki et al., 2014]. Furthermore,

the scope extends to scene analysis for autonomous vehicles, where visual reasoning contributes to

essential tasks such as vehicles recognition [Tsai et al., 2018, Arinaldi et al., 2018], trajectory predic-

tion [Wang et al., 2022a], and environmental understanding [Palanisamy, 2020], ultimately fostering

advancements in the field of self-driving cars. Enhancing the transparency of AI model decision-

making through a modular approach significantly improves explainability and helps model debugging.

Employing extra supervision for the model components enables the monitoring of their behavior,

ensuring they adhere to their specific tasks. Furthermore, the incorporation of a curriculum learning

training strategy ensures gradual model training, paving the way for a more effective continual learning

roadmap.

4

This thesis is structured as follows: we commence with this introduction chapter, followed by an

exploration of related work in Chapter 2, encompassing both monolithic and compositional techniques

in Visual Question Answering (VQA). We delve into the various training strategies employed in

Neural Module Networks (NMN) and discuss the available datasets pertinent to VQA. In Chapter 3,

we present and motivate the NMN architecture that we have designed and implemented. We then

proceed to the first significant contribution of this thesis, centered around teacher forcing for NMN

in Chapter 4. Subsequently, we delve into curriculum learning for NMN in the dedicated Chapter 5.

Finally, we summarize our findings and insights in the concluding Chapter 6.

5

Chapter 2

Related work

Contents

2.1 Introduction . 7

2.2 Visual reasoning architectures . 9

2.2.1 Monolithic approaches . 9

2.2.2 Compositional approaches . 11

2.3 Executor training strategies . 18

2.3.1 Knowledge guidance . 18

2.3.2 Teacher forcing . 19

2.3.3 Curriculum learning . 20

2.4 Datasets for compositional visual reasoning . 21

2.4.1 VQA and VQA 2.0 . 21

2.4.2 CLEVR . 22

2.4.3 GQA . 24

6

2.1. INTRODUCTION

Figure 2.1: VQA task: Given an image and a question, a model learns to predict an answer.

2.1 Introduction

Visual scene understanding transcends mere visual recognition, object detection, and segmentation

[Redmon and Farhadi, 2016, Anderson et al., 2018, Wu et al., 2019, Kirillov et al., 2023].It requires

a model’s ability to emulate human-like reasoning processes to attain a profound comprehension of

complex scenes. This entails identifying not only the visual elements but also comprehending the

intricate relationships and properties of objects within the scene. In contrast to the established domain

of visual recognition, visual reasoning remains in its early stages, offering a ground for exploration and

innovation. The challenge lies in enabling machines to engage in nuanced reasoning, akin to human

cognition, to extract meaningful insights from visual data.

At the forefront of visual reasoning tasks stands Visual Question Answering (VQA) [Ren et al., 2015a,

Goyal et al., 2017, Hudson and Manning, 2019b], a benchmark that tests a model’s ability to perform

complex reasoning about the visual world. In VQA, a model is tasked with comprehending the content

of an image and responding accurately to a posed question, effectively bridging the gap between textual

and visual data, examples extracted from [Hudson and Manning, 2019b] are given in Figure 2.1. This

task not only underscores the complexity of visual reasoning but also underscores the potential of AI

systems to understand, interpret, and interact with the visual world.

To effectively engage in visual reasoning with deep neural networks, two fundamental components

are imperative: first, robust vision and language representations and, second, a transparent reasoning

7

2.1. INTRODUCTION

process.

Robust vision and language representations imply the capacity to seamlessly fuse and interpret

diverse forms of data, ensuring that the model comprehends the patterns embedded within visual

scenes and textual queries. Significant progress has been made in the development of multi-modal

Vision-Language Pretrained (VLP) models, which serve as foundational frameworks for extracting

features from both images and textual questions in various downstream tasks. These models are integral

in bridging the gap between vision and language, enabling the fusion of visual and textual information

for better understanding. One category of such models consists of Cross-Attention Transformer

models, which have demonstrated interesting capabilities. Within this category, some models employ

a Region-based Cross-Attention approach. These models begin by passing the image through an

object detector, such as Faster R-CNN [Girshick, 2015] or Vinvl [Zhang et al., 2021], to identify and

localize objects. Subsequently, they learn region-based features that encapsulate information about the

objects. Examples of such models include LXMERT [Tan and Bansal, 2019], OSCAR [Li et al., 2020],

and UNITER [Chen et al., 2020]. In contrast, another set of models divides the image into smaller

patches and employs a Vision Transformer (ViT) [Dosovitskiy et al., 2021] to encode these patches.

This approach has gained prominence and is implemented in models like ViLT [Kim et al., 2021],

AlBef [Li et al., 2021], and TCL [Yang et al., 2022]. Furthermore, a noteworthy model in this domain

is CLIP [Radford et al., 2021], which adopts a dual-encoder transformer architecture. CLIP represents

a significant advancement as it simultaneously encodes both images and text, enabling cross-modal

understanding and reasoning. In the subsequent section we focus on VLP models that are designed

for the specific task of VQA.

Transparency in the reasoning process is equally important [Andreas et al., 2016b,

Mascharka et al., 2018, Li et al., 2019a]. It signifies the model’s ability to provide clear and

interpretable steps in its decision-making process. This transparency empowers not only end-users but

also researchers to understand, analyze, and trust the outputs of these neural networks, ensuring

that the AI-driven conclusions align with human intuition and expectations. Incorporating these

foundational elements is pivotal in advancing the capabilities of deep neural networks for complex

reasoning tasks.

This chapter is structured as follows: We begin by elucidating various visual reasoning approaches,

encompassing integrated multi-modal approaches [Li et al., 2019b, Lu et al., 2019a, Tan and Bansal, 2019]

8

2.2. VISUAL REASONING ARCHITECTURES

and compositional approaches [Chen et al., 2021, Johnson et al., 2017b, Li et al., 2019a]. As the focus

of this research centers on compositional reasoning, we delve into the training strategies specific to

these approaches. Lastly, we discuss the datasets utilized in the VQA context.

2.2 Visual reasoning architectures

The first category embodies the monolithic approach [Li et al., 2019b, Lu et al., 2019a,

Tan and Bansal, 2019], where both the image and the question are cohesively encoded within a

static architecture through the use of attention and fusion mechanisms. This approach seeks to

integrate visual and linguistic information within a fixed framework for scene understanding.

In contrast, the second category, which is the primary focus of our research, adopts a compositional

approach and views reasoning as a multi-step process. In this dynamic paradigm, we utilize Neural

Module Networks (NMNs) [Andreas et al., 2016b] as the underlying architecture. Here, the model’s

structure adapts to the specific demands of each question, enabling it to assemble and reconfigure its

components for problem-specific reasoning processes.

2.2.1 Monolithic approaches

Among the recent advancements in deep learning techniques applied to the VQA task, monolithic

networks, notably transformers [Vaswani et al., 2017, Devlin et al., 2019, Dosovitskiy et al., 2021],

have emerged as exceptional performers in both natural language processing (NLP) and computer

vision (CV) domains. These models harness attention mechanisms to effectively capture long-range

dependencies and contextual relationships.

Prior to the emergence of Transformers, VQA models like [Antol et al., 2015, Goyal et al., 2017,

Kim et al., 2018, Kim et al., 2016] typically encoded questions using LSTM-like models and images

using CNN-like models and used fusion modules or attention mechanisms to assess the correlation

among the two information sources. Transformer-based methods take the form of a one stream self-

attention combining the visual and textual inputs like in [Li et al., 2019b] or two streams co-attention

[Tan and Bansal, 2019, Lu et al., 2019a], to align the elements between the two sources of information,

combining visual and textual inputs, while accommodating the distinct processing requirements for

each modality.

9

2.2. VISUAL REASONING ARCHITECTURES

The training strategy employed in models like [Li et al., 2019b, Lu et al., 2019a, Tan and Bansal, 2019]

draws inspiration from BERT pre-training [Devlin et al., 2019]. It involves pre-training on a vast

amount of data collated from several language and/or vision pretraining tasks to obtain task-agnostic

representations and subsequently fine-tuning the model by using the data of the downstream task.

Figure 2.2: LXMERT architecture [Tan and Bansal, 2019], self: self-attention, FF: feed forward, cross:
cross-attention

To provide a more detailed understanding of a monolithic architecture, we focus on LXMERT

(Figure 3.3). This architecture implements BERT-like encoder blocks [Devlin et al., 2019] and utilizes

self-attention mechanisms for intra-modal relationships and cross-attention mechanisms for inter-modal

alignment. In LXMERT, images are represented through region-based features, which are extracted

via an object detector from [Ren et al., 2015b]. These regions are represented by their bounding box

coordinates (Pos Feat) and spatial features (RoI Feat), and are subsequently passed through the

object-relationship encoder. On the other hand, the textual input, which is the question, is represented

using word embeddings (Word Emb) along with their positional embeddings (Idx Emb). These

embeddings are processed by the language encoder. The outputs from these single-modal encoders are

then directed to the Cross-modality encoder, which uses two unidirectional cross-attention mechanisms:

one from language to vision and one from vision to language. This serves to contextualize the features

in one modality based on the information from the other, enabling a better understanding of the

relationships between visual and textual data. This model serves as the multi-modal encoder for our

work, details about LXMERT usage are in Section 3.2

Despite the benefits of the integrated approaches, these models have notable drawbacks. One

prominent limitation is their lack of interpretability, making it challenging to understand—and

10

2.2. VISUAL REASONING ARCHITECTURES

debug, when necessary—the underlying reasoning process. Moreover, these models often rely on

“shortcuts” in the reasoning, which means learning biases present in the training data. Consequently,

their performance tends to suffer when confronted with out-of-distribution data, as shown on GQA-

OOD [Kervadec et al., 2021], where the authors perform a distribution shift in the validation and test

sets of a common VQA dataset [Hudson and Manning, 2019b] and observed that state of the art VQA

models still learn from biases in the training data and fail to generalize on rare question-answer pairs.

2.2.2 Compositional approaches

Compositionality in reasoning is defined by the intrinsic structure of the reasoning problems, where

a complex problem is composed of multiple smaller, interconnected sub-problems. Compositional VQA

takes this approach by breaking down complex questions into simpler, modular sub-problems. This

allows the model to focus on basic tasks like recognizing objects, attributes, relationships, counting,

and making comparisons. Importantly, this method discourages taking shortcuts and requires a clear

understanding of each sub-problem. It also makes the model’s decision-making process more explicit

and transparent.

Compositional VQA approaches can be categorized into two groups. The first group utilizes implicit

reasoning and is characterized by recurrent approaches. These methods leverage attention-based

mechanisms to perform iterative reasoning. Notably, these multi-step approaches [Yang et al., 2016,

Perez et al., 2018, Hudson and Manning, 2018] maintain the same recurrent unit for each reasoning

step. The second group, which includes Neural Module Networks (NMN), embraces explicit reasoning.

In this approach, reasoning is guided by a program that dictates the different reasoning steps, providing

a more structured and programmatic way of addressing the VQA task.

2.2.2.1 Multi-step approaches

Stacked attention [Yang et al., 2016] leverages a multi-step soft attention mechanism

[Bahdanau et al., 2015, Xu et al., 2015], which locates at each step the image regions that are relevant

to the question for answer prediction. When trained on the VQA dataset, the model typically employs

a low number of attention layers, often one or two stacked attention layers.

Augmented CNN approaches, exemplified by [Perez et al., 2018], employ Feature-wise Linear

Modulation (FiLM) to modify image feature maps. This modulation involves scaling and shifting

11

2.2. VISUAL REASONING ARCHITECTURES

these feature maps according to the specific question, akin to a generalized form of convolutional

normalization. The scaling and shifting parameters used in this feature-wise affine operation are

predicted based on the continuous representation of the question, and they are unique for each input

and feature map. The model is structured as a stack of residual blocks, and a FiLM layer is integrated

into each of these blocks to enable feature map manipulation. The model exhibits robustness in terms

of the number of residual blocks required, typically falling within the range of 2 to 12 blocks.

MAC network [Hudson and Manning, 2018] breaks down the problem by decomposing the question

into a series of attention-based reasoning operations derived directly from the question. The recurrent

MAC cell segregates control and memory functions. Control determines the reasoning operation by

selecting relevant question words via soft attention. Memory stores intermediate results, combining past

memories with image-derived information. The model’s number of reasoning steps is a hyperparameter

set to 20 during training. Questions exhibit varying complexities and demand different numbers of

reasoning steps. To accommodate this, a gating mechanism is incorporated, enabling the model to

bypass unnecessary reasoning steps.

While these approaches offer the advantage of implicit multi-step reasoning, they lack task-

specialized modules because they rely on a shared recurrent reasoning block for all the different

sub-tasks. This drawback is effectively addressed by the Neural Module Networks (NMNs) presented

in the following sub-section.

2.2.2.2 Neural module networks

Neural Module Networks (NMNs) represent a distinctive class of models tailored for VQA. They

leverage the innate compositional structure [Partee et al., 1984] found in linguistic questions and

the potent capabilities of neural networks for representation learning. NMNs rely on the functional

program format of a question to construct a dynamic NMN architecture, subsequently employing it to

perform reasoning tasks on the associated image data in a step-by-step manner.

Originally introduced by [Andreas et al., 2016b], NMN emerged from the premise that visual

reasoning fundamentally involves compositionality. NMN seeks to establish a framework for modular,

composable, and jointly trained neural networks. Over time, NMNs have undergone various devel-

opments and evolutions, encompassing changes in its definition, functional structure, and training

techniques. An example of the NMN architecture is presented in the Figure 2.5.

12

2.2. VISUAL REASONING ARCHITECTURES

At a high level, an NMN comprises three key components:

• Modules taxonomy: NMN relies on a set of predefined modules, each representing a different

function or operation that can be applied to process the input information.

• Generator: This component is responsible for transforming a natural language question into a

program format that is used to build the NMN structure.

• Executor: The executor takes the program generated by the generator and instantiates it into

an NMN. This NMN is then executed on the provided image to perform the required visual

reasoning and answer the question.

In the following subsections, we delve into the related work that laid the foundation for NMNs

and contributed to their evolution. This section is organized based on the different components of

NMNs, where we introduce related work and various approaches for each component, and also present

their various training techniques.

Module Taxonomy

Module taxonomy encompasses the primitive operations that represent various reasoning sub-

tasks within NMN. Defining a universal module taxonomy is a complex challenge, with most NMN

papers, such as [Andreas et al., 2016b, Li et al., 2019a, Chen et al., 2021], creating their own unique

taxonomies. Notably, [Mascharka et al., 2018] is an exception, as it adopts the module taxonomy used

in [Johnson et al., 2017b].

Several factors contribute to the diversity in module taxonomy. First, it’s influenced by the

dataset type. Synthetic datasets like Shapes [Andreas et al., 2016b] or CLEVR [Johnson et al., 2017a]

necessitate a smaller set of primitives as they primarily involve questions about a small set of

geometric objects and their relations. In contrast, real-world datasets like [Goyal et al., 2017,

Hudson and Manning, 2019b] present a broader range of objects and relations, demanding a more ex-

tensive module taxonomy. The taxonomy is also subject to the specific design choices of the respective

conceptors, given the absence of a universally perfect way to define module taxonomy. Lastly, the

generalization capacity of chosen operations to different objects, attributes and relations significantly

influences the structure of module taxonomy. This capacity is closely tied to the architectural design

13

2.2. VISUAL REASONING ARCHITECTURES

of the modules and has contributed to the ongoing evolution of NMN, as elaborated upon in the

following.

Specific modules. Based on the methodology outlined in [Andreas et al., 2016b], the primitive

sub-tasks are organized into a set of modules, each module being designed to address a specific

sub-task. The module types encompass several attention and classification functions and each module

type has several instances that describe the precise context or entity associated with the module’s

function. For example, within the scope of an attend module, instances could represent the object

or property deserving of attention, as in attend[cat] or attend[dog]. The architectures of the

various modules from the taxonomy are intentionally distinct from one another. This architectural

diversity allows each module to be tailored to the unique characteristics of its inputs, such as image

features or outputs from other modules, enabling them to perform heterogeneous computations. The

[Andreas et al., 2016b] work presented different sets of modules for the Shapes dataset and for the VQA

dataset [Antol et al., 2015]. An alternative approach, as presented in [Johnson et al., 2017b], adopts

a more uniform module structure for all modules, which are based on residual blocks [He et al., 2016].

However, these modules still exhibit variations in their instantiations based on the specific instances

similar to [Andreas et al., 2016b, Mascharka et al., 2018]. The paper primarily conducts experiments

on the CLEVER dataset [Johnson et al., 2017a] and features modules customized to this particular

(a) attend : Image → Attention. (b) re-attend : Attention → Attention

(c) combine : Attention × Attention → Attention (d) measure : Attention → Label

(e) classify : Image × Attention → Label

Figure 2.3: Modules architectures from [Andreas et al., 2016b].

14

2.2. VISUAL REASONING ARCHITECTURES

dataset. While designing specific modules tailored to their respective functions and instances offers

unparalleled adaptability, it simultaneously engenders a large number of module instances. Conse-

quently, the total number of distinct module instances can fluctuate in correspondence with the array

of instances encountered in the dataset. According to [Andreas et al., 2016b], this variance results in

a substantial number of unique module instances, reaching a count of 1995 during the experiments on

the real-world VQA dataset [Antol et al., 2015]. Figure 2.3 shows the different modules architectures

from [Andreas et al., 2016b]. The modules process the input image features, or attention maps from

previous modules. They are composed of non-linear layers or convolutional layers based on the modules

sub-tasks.

Generic modules. In contrast to the specific modules approach, there has been a shift towards

designing more versatile modules capable of addressing real-word reasoning problems. For example,

a single attend module can now be flexibly used to attend to various objects, eliminating the need

for a dedicated attend module for each individual object. This enhanced versatility is achieved by

introducing “textual arguments” into the module definitions, allowing the modules to adapt their

behavior as needed. In works such as [Hu et al., 2017] and [Li et al., 2019a], the generator not only

learns the mapping between a question and its functional program but also predicts a textual argument

for each module token within the functional program. This is achieved through the attention mechanism

of the seq2seq model. At each module prediction step, the attention LSTM generates an attention map

over the question words, identifying the most relevant words from the question to serve as arguments

for the NMN’s modules.

To illustrate a sample taxonomy of generic modules, we reference Figure 2.4 from the [Li et al., 2019a]

paper. In this taxonomy, modules are categorized into four groups and operate with three distinct

data types: att for attention type, bool for boolean type and ans for answer type. Modules that

accept textual parameters (xtxt) are indicated with a checkmark (✓). Additionally, modules utilize

image features (xvis) and question features (xq) during their execution. The ⊙ operation represents

element-wise multiplication, and vec is an operation that flattens attention maps while introducing

extra dimensions (e.g., max, min, average over attention maps). P (b) denotes the probability of a

given statement b being true. Lastly, the padding operation transforms logical outputs into answers.

In [Chen et al., 2021], the modules are attention based Transformers where the “queries” are the

mixed embedding of each module function name with its argument to leverage the attention based

15

2.2. VISUAL REASONING ARCHITECTURES

Figure 2.4: Modules architecture from [Li et al., 2019a].

mechanism. The experiments were conducted on the GQA dataset, and the set of modules in this

context comprises a total of 48 modules.

Generator

Let’s now provide an overview of the various generators employed in NMN architectures.

Parser. The initial generator component from [Andreas et al., 2016b] relies on semantic lin-

guistic parsers like the Stanford Parser [Klein and Manning, 2003] and the dependency parser

[De Marneffe and Manning, 2008] to extract an abstract structure from the input question. This

symbolic representation of the question then undergoes a sequence of pre-processing operations to

shape it into a suitable network structure. For example, a question such as “What color is the cat?” is

converted into a logical format like color(cat), which is subsequently transformed into a network

structure like classify[color](attend[cat]).

RNN. In an alternative approach to the parser-based generator, the generator employs a sequence-

to-sequence (seq2seq) generation mechanism to learn a mapping of questions to module functions.

This method leverages recurrent deep networks, akin to those utilized in natural language processing

tasks like language translation. Specifically, the works of [Hu et al., 2017, Johnson et al., 2017b,

Mascharka et al., 2018, Li et al., 2019a] implement an attention LSTM [Sutskever et al., 2014] to

16

2.2. VISUAL REASONING ARCHITECTURES

Figure 2.5: Model from [Johnson et al., 2017b]. Generator on the right and executor on the left.

convert the question into its corresponding function program sequence. Figure 2.5 represents the

NMN model from [Johnson et al., 2017b]. On the left side of the image, the program generator, which

is an LSTM model that inputs the question and decodes it into the program.

Transformer. In the research conducted by [Chen et al., 2021], they use a Trans-

former [Vaswani et al., 2017]. The set of argument tokens and the set of module tokens are merged

to form the output domain vocabulary of the decoding process, and the program tokens and the

arguments are inferred by the Transformer generator.

Executor

Across various proposals [Andreas et al., 2016b, Hu et al., 2017, Li et al., 2019a], the execution

process follows a consistent pattern. The function program is used to call the different modules

instantiation and assemble an NMN. This network is subsequently executed in a sequential manner

on the image. Notably, the modules communicate with each other by passing messages, wherein the

output of one module becomes the input for subsequent modules, creating a directed graph-like flow

of information. This process culminates in the network delivering an answer to the posed question.

Detailed NMN training strategies are discussed in the following section.

17

2.3. EXECUTOR TRAINING STRATEGIES

2.3 Executor training strategies

Jointly training the modules of a NMN for VQA using only the answer loss has shown promising

results on synthetic datasets like CLEVR [Johnson et al., 2017a] and moderately complex questions

from VQA datasets [Antol et al., 2015, Goyal et al., 2017]. However, it faces challenges when dealing

with high-complexity and compositional questions, particularly those found in the GQA dataset

[Hudson and Manning, 2019b]. To address these challenges, additional supervision and enhanced

training processes are required. These training techniques will be discussed in the following subsections.

2.3.1 Knowledge guidance

To ensure that the modules within an NMN align with their specific sub-tasks, stay true to the

reasoning process dictated by the functional program, and ultimately enhance the NMN’s performance,

techniques involving knowledge guidance have been incorporated [Li et al., 2019a, Chen et al., 2021].

These techniques provide additional supervision to the modules during the joint-training process,

enabling them to learn distinct functionalities while collaboratively executing complex reasoning

sub-tasks.

The modules in NMN serve different roles, ranging from attention modules that pinpoint relevant

image regions to boolean modules performing logical operations and answer modules responsible for

classification. These modules are sequentially interconnected to form the NMN, allowing information

to flow through this reasoning chain to arrive at a final answer. Knowledge guidance intervenes by

offering targets for the modules at intermediate steps of the NMN, enabling the modules to optimize

their parameters to better align with their respective subtasks.

For instance, in works like [Li et al., 2019a] and [Chen et al., 2021], knowledge guidance is derived

from the scene graph and the question’s answer provided by the dataset. These methods involve

pre-executing modular networks symbolically to identify intermediate targets.

In the case of [Li et al., 2019a], knowledge guidance involves matching target regions to the outputs

of attention modules using a grid-based matching technique. Attention modules are then optimized to

minimize the discrepancy between their outputs and the matched knowledge guidance. For boolean

modules, their knowledge guidance comes from subsequent answer modules that are optimized to

predict correct answers.

18

2.3. EXECUTOR TRAINING STRATEGIES

In [Chen et al., 2021], the forms of attention and boolean module outputs are unified, and knowledge

guidance relies on Intersection over Union (IOUs) to measure the alignment between target regions

and module outputs. A multi-layer fully connected network is employed to align the projections of

module outputs with the knowledge guidance.

2.3.2 Teacher forcing

Teacher forcing (TF) [Williams and Zipser, 1989] is a widely used technique in sequence prediction

or generation tasks, especially in RNNs with an encoder-decoder architecture. It involves training the

model using the true output as novel input (2.6b), which helps improve prediction accuracy. However,

during inference, the model relies on its own predictions without access to ground-truth information

(2.6a), leading to a discrepancy known as “exposure bias”.

(a) RNN w/o TF. (b) RNN w/ TF.

Figure 2.6: RNN without and with teacher forcing.

Scheduled sampling (SS) is a notable approach to mitigating the train-test discrepancy in sequence

generation tasks [Bengio et al., 2015]. It introduces randomness during training by choosing between us-

ing ground truth tokens or the model’s predictions at each time step. This technique, initially developed

for RNN architectures, has also been adapted for transformer networks [Mihaylova and Martins, 2019],

aiding to align the model’s performance during training and inference.

NMNs, on the other hand, are trained using only the output of a module as input for the next

module, which has drawbacks. Errors made by an intermediate module can propagate to subsequent

modules, leading to cumulative bad predictions. This effect is particularly prominent during the early

stages of training when the model’s predictions are close to random.

In Chapter 4 we show that NMNs can leverage the TF strategy to enhance their training process.

19

2.3. EXECUTOR TRAINING STRATEGIES

Initially, training begins with a fully guided schema, where the true previous targets are used as input.

As training progresses, the model gradually transitions to a less guided scheme, relying more on the

predicted outputs from previous steps as input. This gradual reduction in guidance and increased

reliance on the model’s own predictions, named “decaying TF”, helps NMNs better learn and adapt to

the complexity of the task. With decaying TF, modules can conform to their expected behavior for

their respective sub-tasks.

2.3.3 Curriculum learning

Curriculum learning was introduced in [Elman, 1993] where the author shows that successful learn-

ing may depend on “starting small” by first learning a simple grammar with a recurrent network and

then gradually learning more complex tasks such as relative clauses, number agreement, etc. CL was

later applied to various machine learning tasks and recently adapted to textual question answering (QA)

in [Liu et al., 2018]. The authors use a sampling function that gives higher selection weights to simple

QA pairs and then, as the training advances, it selects more complex QA pairs. A term frequency selec-

tor and a grammar selector assess the difficulty of the training examples. In [Sachan and Xing, 2016],

CL is reframed as a self-paced learning (SPL) algorithm [Kumar et al., 2010] and the question loss

is taken as the measure of difficulty. The authors implement several heuristics reminding of active

learning [Ren et al., 2021] in order to improve the SPL performance.

Curriculum Learning for VQA. The definition of relevant difficulty criteria to order the training

examples of VQA is challenging and this may explain why there is little work on the use of CL for the

VQA field.

Preliminary experiments conducted by [Lechat, 2021] on incremental VQA have underscored the

challenge of establishing a clear and effective difficulty criterion for VQA tasks. While question

length might appear as an intuitive measure of difficulty, their experiments utilizing the BUTD

model [Anderson et al., 2018], trained on the GQA dataset, revealed an intriguing inverse correlation.

Specifically, they found that on the longer questions, measured by the number of reasoning steps

required, the model’s performance is better than the models’ performance on shorter questions. It’s

worth noting that the BUTD model used in their experiments is not compositional, in contrast to the

one employed in our work. Nevertheless, these findings emphasize the complexity of defining a robust

and reliable CL strategy for VQA tasks.

20

2.4. DATASETS FOR COMPOSITIONAL VISUAL REASONING

The recent work in [Askarian et al., 2021] applies CL in a modular VQA context to the synthetic

CLEVR dataset [Johnson et al., 2017a]. The base model is from [Johnson et al., 2017b], with an LSTM

generator and generic residual blocks for the executor modules. The experiments were conducted on

the executor alone, using as input the ground-truth programs directly. Several difficulty criteria were

evaluated, including program length, answer hierarchy, and question loss. The results demonstrated

that CL with a question loss difficulty criterion has a positive impact in a low data setting. However, the

study in [Askarian et al., 2021] was focused on the CLEVR dataset [Johnson et al., 2017a] consisting

of synthetic images of simple 3D objects, with a limited number of object classes and attributes. In

our work (Chapter 5), we employ the GQA dataset that is based on real-world images with many

object classe and attributes, as well as more complex relations and more challenging object detection.

We thus have to completely redefine the candidate CL strategies.

2.4 Datasets for compositional visual reasoning

Training neural networks in a supervised manner demands a substantial collection of annotated

training data. Various datasets have been introduced to serve as benchmarks for assessing a model’s

capacity to answer questions related to images and perform visual reasoning tasks. These datasets

include [Antol et al., 2015, Goyal et al., 2017, Kafle and Kanan, 2017a, Malinowski and Fritz, 2014,

Krishna et al., 2017, Johnson et al., 2017a, Hudson and Manning, 2019b, Ren et al., 2015a].

This thesis concentrates on compositional questions that demand a multi-step reasoning process,

particularly for complex questions. In this context, we will provide details about several notable

datasets: an early VQA dataset [Antol et al., 2015], a synthetic image dataset known as CLEVR

[Johnson et al., 2017a], and a dataset encompassing real-world images [Hudson and Manning, 2019b],

which we utilize in our research.

2.4.1 VQA and VQA 2.0

The VQA dataset [Antol et al., 2015, Goyal et al., 2017] was one of the early datasets created for

the task of VQA. It consists of real images from the COCO (Common Objects in Context) dataset

[Lin et al., 2014] paired with questions about the content of those images. The goal is to develop

models that can understand both the visual content of an image and the textual content of a question in

21

2.4. DATASETS FOR COMPOSITIONAL VISUAL REASONING

order to provide accurate answers. Figure 2.7 provides examples of images and their related questions

that can be found in the VQA dataset.

Figure 2.7: VQA dataset examples.

VQA 2.0 [Goyal et al., 2017] is an extended version of the original VQA dataset [Antol et al., 2015].

It addresses some of the limitations of the first dataset, including language biases in the questions that

allowed models to answer correctly without understanding the images. For instance, questions that start

with the n-gram “Do you see a...” often result in models blindly answering “yes” without considering

the rest of the question or even looking at the image. This alone could lead to a high VQA accuracy of

87%, which clearly indicated a problem. Another example highlighting this bias is the question, “What

covers the ground?”. A model could easily answer correctly not because it comprehended the scene but

because the dataset frequently posed questions about the ground when it was snow-covered. The issue

of dataset bias was raised by several works including [Agrawal et al., 2016, Kafle and Kanan, 2017b,

Cadene et al., 2019]. VQA 2.0 contains more balanced and less biased questions, making it a more

challenging benchmark for VQA systems. It also has a larger number of questions and answers. While

datasets like VQA and VQA 2.0 are widely used in the field of VQA, they are not ideally suited for

compositional reasoning approaches like ours. This is because our approach necessitates a structured

program that explicitly represents the sequence of the reasoning steps required to answer questions

in a modular and interpretable manner. These traditional datasets typically lack such fine-grained

programmatic representations of the reasoning processes.

2.4.2 CLEVR

The CLEVR (Compositional Language and Elementary Visual Reasoning) dataset, introduced

in [Johnson et al., 2017a], is a popular dataset used for evaluating the visual reasoning and the

question-answering capabilities of models. This dataset consists of synthetic images containing simple

3D objects and scenes, along with questions that require reasoning about the objects and their

22

2.4. DATASETS FOR COMPOSITIONAL VISUAL REASONING

relationships.

The CLEVR dataset stands as a pioneering initiative, being the first public dataset to introduce

functional programs as a means to explicitly represent the required reasoning steps for answering

questions. Its primary objective is to assess the reasoning capabilities of VQA systems and their

capacity to really understand a scene, rather than relying on dataset biases for answers. CLEVR’s

questions encompass a broad spectrum of visual reasoning challenges, including tasks like attribute

identification, counting, comparison, handling multiple attention, and logical operations. The dataset

features three object types: cubes, spheres, and cylinders, each characterized by two distinct sizes

(“small” and “large”), two material properties (shiny “metal” and matte “rubber”), and a palette of

eight colors. Moreover, objects within CLEVR scenes exhibit spatial relationships defined by four key

orientations: “left”, “right”, “behind”, and “in front”. The images, questions and functional programs

are generated based on randomly sampled scene graphs. Figure 2.8 showcases an example image from

the CLEVR dataset and two questions with their functional programs. A function catalog on the right

of the image, represents the set of the atomic operations used for the reasoning skills.

Figure 2.8: CLEVR Example: Image on the Left, Functional Program and Question in the center and
function catalog in the right.

As shown in the top table of Figure 2.9, the dataset is composed of various key elements. This

includes a training set that contains 70,000 images, accompanied by 699,989 questions. Additionally,

there is a validation set comprising 15,000 images with 149,991 corresponding questions. The test

set, used for evaluation, consists of 15,000 images and 14,988 questions. Answers are provided for

all questions in both the training and validation sets. Furthermore, scene graph annotations are

23

2.4. DATASETS FOR COMPOSITIONAL VISUAL REASONING

Figure 2.9: Top: Statistics for CLEVR per split. Bottom left: Comparison of question lengths for
different VQA datasets. Bottom right: Distribution of question types in CLEVR.

available for the training and validation images, providing ground-truth details about object locations,

attributes, and relationships. Notably, functional program representations are included for all training

and validation images, although this information is not provided for the test set.

2.4.3 GQA

The Question Answering on Image Scene Graphs (GQA) dataset [Hudson and Manning, 2019b]

features compositional questions over real-world images. GQA is widely used for benchmarking and

advancing the capabilities of VQA models, particularly those that employ compositional reasoning

and complex language understanding. It’s considered one of the standard datasets in the field of VQA.

The GQA dataset builds upon the Visual Genome dataset [Krishna et al., 2017], refining the scene

graphs associated with the images. Visual Genome provides a structured representation of images

based on their objects, attributes, and their relations. Object locations are delineated using bounding

boxes, contributing to a richer understanding of the image content.

The image graphs serve as inputs for a question engine, which generates questions and functional

programs. These programs outline a sequence of steps representing the reasoning process required

to answer the questions. Figure 2.10, extracted from [Hudson and Manning, 2019b], illustrates an

example of the data provided by the GQA dataset. In the center of the figure, the question engine

combines scene graphs with predefined structural patterns and program templates. Additionally, it

24

2.4. DATASETS FOR COMPOSITIONAL VISUAL REASONING

Figure 2.10: GQA Example: Image on the Left, Functional Program and Question on the middle and
image graph on the right.

utilizes synonyms and alternate expressions to generate a diverse set of questions.

Figure 2.11: GQA Examples based on their structural and semantic types

To showcase the diversity of the generated compositional questions, Figure 2.11 presents examples

of questions along with their type annotations. These questions possess both semantic and structural

types. The structural type is inferred from the final operation in the question’s functional program,

while the semantic type pertains to the primary subject of the question. Additionally, each question

has a detailed type, which combines its semantic and structural types, as represented in the first

column of the table in Figure 2.11.

GQA features over 18M compositional questions and 113K real-world images. These questions

encompass a multitude of reasoning skills and demand various multi-hop reasoning steps. They also

exhibit varying lengths, determined by the number of words used in their composition. Relevant

25

2.4. DATASETS FOR COMPOSITIONAL VISUAL REASONING

Figure 2.12: Dataset statistics from [Hudson and Manning, 2019b]: structural types, semantic types,
number of reasoning steps and questions length distribution compared to other datasets.

Split Train Val Testdev Test Challenge

Balanced 943.000 132.062 12.578 95.336 50.726

Unbalanced 14.305.356 2.011.853 172.174 1.340.048 713.449

Table 2.1: GQA dataset partitioning

statistics regarding these questions are available in Figure 2.12. The dataset has two versions: an

unbalanced version and a more balanced one resulting from the application of a tunable smoothing

technique. This technique works to equalize the answer distribution across question groups, resulting

in a more uniform dataset. Table 2.1 reports the number of examples per split. For the unbalanced

version, the train-all split has over 14M examples and the testdev-all has 172,174 examples,

while the balanced version has over 943,000 examples for train, 132,062 for val and a testdev of

12,578 examples.

Regarding the provided programs for the balanced training and validation splits, there are a total

of 136 distinct functions, with a combined total occurrence count of 3,365,899. Table 2.2 displays the

module counts in descending order. The most frequently occurring module is select, with 1,207,994

instances in the dataset, accounting for 35.9% of the total module occurrences. It’s responsible for

identifying the bounding box of a specified object.

26

2.4. DATASETS FOR COMPOSITIONAL VISUAL REASONING

Function Count Freq Function Count Freq Function Count Freq

select 1207994 35.9 filter pattern 1560 0.05 filter depth 118 0.004

query 556119 16.5 choose place 1557 0.05 choose thickness 112 0.003

relate 555482 16.5 different 1434 0.04 filter room 108 0.003

exist 288378 8.6 verify pattern 1343 0.04 verify race 103 0.003

filter color 130407 3.9 filter sportActivity 1281 0.04 filter liquid 100 0.003

or 77120 2.3 verify place 1221 0.04 verify gender 100 0.003

verify rel 64456 1.9 verify cleanliness 945 0.03 verify realism 93 0.003

and 53005 1.6 choose weather 890 0.03 verify weight 79 0.002

verify color 52559 1.6 filter cleanliness 726 0.02 verify company 73 0.002

choose rel 42939 1.3 verify state 722 0.02 choose age 69 0.002

filter 23870 0.7 choose younger 712 0.02 filter realism 63 0.002

filter material 23492 0.7 verify activity 673 0.02 filter weight 62 0.002

filter hposition 22402 0.7 verify thickness 654 0.02 choose width 61 0.002

choose vposition 19413 0.6 filter sport 653 0.02 filter company 57 0.002

choose color 18895 0.6 choose older 647 0.02 choose face expression 55 0.002

filter size 17099 0.5 choose length 636 0.02 filter orientation 49 0.001

verify hposition 16710 0.5 choose activity 583 0.02 choose tone 45 0.001

filter vposition 16390 0.5 choose pose 549 0.02 same shape 44 0.001

choose hposition 16230 0.5 filter weather 546 0.02 different shape 42 0.001

choose name 15450 0.5 filter state 519 0.02 choose depth 34 0.001

verify size 10787 0.3 choose height 438 0.01 choose gender 32 0.001

same color 10068 0.3 verify age 435 0.01 verify type 26 0.001

different color 10049 0.3 verify tone 429 0.01 choose race 25 0.001

verify 10033 0.3 filter thickness 343 0.01 filter event 23 0.001

filter pose 9794 0.3 choose healthier 312 0.01 choose fatness 23 0.001

verify vposition 7176 0.2 verify sportActivity 303 0.01 verify flavor 16 0.0005

common 5670 0.2 filter tone 293 0.01 choose company 13 0.0004

verify material 5419 0.2 filter flavor 293 0.01 choose weight 13 0.0004

choose 5391 0.2 choose less healthy 285 0.01 verify texture 9 0.0003

verify location 4590 0.1 filter gender 262 0.01 choose flavor 9 0.0003

verify length 3816 0.1 verify width 255 0.01 choose opaqness 8 0.0002

verify weather 3729 0.1 filter width 252 0.01 choose taller 4 0.0001

filter activity 3603 0.1 verify face expression 242 0.01 verify room 4 0.0001

choose location 3125 0.1 filter opaqness 221 0.01 choose shorter 4 0.0001

choose material 3121 0.1 choose cleanliness 220 0.01 filter brightness 3 0.0001

filter shape 3097 0.1 choose shape 216 0.01 verify brightness 3 0.0001

filter age 2687 0.1 filter fatness 212 0.01 filter texture 3 0.0001

filter height 2610 0.1 choose sportActivity 195 0.01 choose hardness 2 0.0001

verify shape 2592 0.1 filter race 175 0.01 choose smaller 2 0.0001

same 2272 0.1 verify fatness 153 0.005 choose larger 1 0.00003

verify height 2271 0.1 verify opaqness 150 0.004 choose brightness 1 0.00003

same material 2117 0.1 choose pattern 138 0.004 choose lower 1 0.00003

filter length 2054 0.1 choose state 137 0.004 choose realism 1 0.00003

choose size 2030 0.1 verify hardness 133 0.004 choose higher 1 0.00003

verify pose 1936 0.1 verify depth 131 0.004

filter face expression 1563 0.05 filter hardness 121 0.004

Table 2.2: GQA dataset function counts and precentage of frequencies in descending order.

27

2.4. DATASETS FOR COMPOSITIONAL VISUAL REASONING

Some functions exhibit a very low level of granularity, making them highly specific with very

few occurrences, such as choose realism and choose higher that only appear one time in the

programs. Instead of removing these infrequent functions, a pre-processing step is applied to group

them into higher granularity functions. For instance, choose functions can be aggregated into broader

categories like choose relation and choose attributes. Additional details regarding this function

preprocessing can be found in Section 3.3.1.

Model validation testdev

BAN [Kim et al., 2018] 61.5 55.2

CTI [Do et al., 2019] 61.7 54.9

MCAN [Yu et al., 2019] - 57.4

MMN [Chen et al., 2021] - 60.4

NMS [Hudson and Manning, 2019a] - 63.2

HAN [Kim et al., 2020] - 69.5

LXMERT [Tan and Bansal, 2019] 59.8 60.0

OSCAR [Li et al., 2020] - 61.6

CFR [Nguyen et al., 2022] 73.6 72.1

Table 2.3: Accuracy results on the GQA dataset validation and testdev splits from [Nguyen et al., 2022].

GQA is the testbed for several visual reasoning architectures, including the ones mentioned above

as well as others like graph neural networks-based architectures [Kim et al., 2020]. In general, we

observe that monolithic approach tend to have better performances than NMN-based approaches. Yet,

they lack the step-by-step explicit reasoning offered by NMNs. Table 2.3 showcases the performance

of state-of-the-art models on the GQA dataset [Hudson and Manning, 2019b].

For additional details about the dataset, we refer the reader to the GQA website.

28

https://cs.stanford.edu/people/dorarad/gqa/vis.html

Chapter 3

Multi-modal Neural Module networks

Contents

3.1 Introduction . 30

3.2 Multi-modal representations . 31

3.3 Neural modules . 34

3.3.1 Pre-processing . 35

3.3.2 Attention modules . 38

3.3.3 Boolean modules . 39

3.3.4 Answer modules definition . 41

3.4 Program examples . 42

3.5 Generator . 48

3.5.1 From questions in natural language to functional programs 48

3.5.2 Arguments prediction . 49

3.5.3 Generator optimisation . 50

3.5.4 Program inference . 50

3.5.5 Experimental validation . 52

3.6 Executor . 52

3.6.1 Module initialisation . 52

3.6.2 Weight sharing . 53

3.6.3 Modular network instantiation . 54

3.6.4 Reasoning process . 54

3.6.5 Answer prediction . 55

3.7 Evaluations . 55

3.7.1 Experimental settings . 56

3.7.2 Unimodal vs crossmodal representations . 56

3.8 Conclusion . 58

29

3.1. INTRODUCTION

3.1 Introduction

Visual reasoning models face the challenge of effectively reasoning about complex scenes in a

transparent manner. While recent state-of-the-art models [Tan and Bansal, 2019, Lu et al., 2019b,

Li et al., 2019b] leverage attention-based mechanisms and some even incorporate multi-step attention-

based reasoning [Hudson and Manning, 2018, Perez et al., 2018], they often lack the modular aspect

that characterizes human-like reasoning [Fodor, 1983, Clune et al., 2013].

To address this limitation, we focus on Multi-modal Neural Module Networks (Multi-modal NMN),

combining two essential components. The first component involves the utilization of multi-modal

representations, which allows for the integration of language and vision representations to capture their

relationship using pretrained cross-modal encoders. The second component involves the implementation

of neural module networks, which enable modular reasoning on the cross-modal representations and

decomposes complex tasks into interpretable and reusable components.

As mentioned in the previous section, our model takes an image, a question, and a program triplet

as input and predicts an answer. We extract aligned language and vision features for the image and

question using a cross-modal transformer [Tan and Bansal, 2019]. The program, represented as a

sequence of modules, is used to build an NMN, which is then executed on the image to answer the

question.

Throughout this chapter we describe the core architecture of our model (Figure 3.1). We begin in

Section 3.2 by explaining the process of extracting multi-modal representations and how we adapt them

to our modular approach. We also detail the pre-processing steps applied to the functional programs

from the GQA dataset [Hudson and Manning, 2019b] in Section 3.3.1, which involves consolidating

infrequent functions into a condensed dictionary. In Section 3.3 we define the functional dictionary

of our modular approach. To translate the question to a program, we use a generator described in

Section 3.5. Then, in Section 3.6 we explain how the executed program operates on the image to

produce the final answer. Finally, we proceed to evaluation experiments to compare the impact of

multi-modal vs. unimodal representations on our NMN architecture in Section 3.7.

30

3.2. MULTI-MODAL REPRESENTATIONS

Figure 3.1: The proposed modular VQA framework: The (question, image) pair is used by a transformer
model to generate aligned cross-modal embeddings for words and objects (3.2). These are used by
a Program Generator (3.5) module to produce a program (represented as a sequence of sub-task
modules), which will be then applied by the Program Executor (3.6) module to the image to answer
the question.

3.2 Multi-modal representations

Compositional visual reasoning aims to perform logical and geometrical inferences involving several

related objects in a complex scene. Under the modular VQA paradigm, we handle three types of

inputs: Question (Q), Image (I), and Program (P). In this section, we focus on the encoding of the

questions and the images.

We want to incorporate a compositional aspect into the representation of questions and images.

As opposed to holistic representations where the question is condensed into a single hidden vector,

typically achieved by aggregating word embeddings from models like word2vec [Mikolov et al., 2013]

or fasttext [Bojanowski et al., 2016], or by employing more advanced techniques such as recurrent

neural networks like GRU [Cho et al., 2014] or LSTM [Sutskever et al., 2014]. Simultaneously, the

image representation typically involves using CNN spatial feature maps, like those extracted by

popular models such as VGG [Simonyan and Zisserman, 2015] or ResNet [He et al., 2016]. In our

approach, we represent the question using its word embeddings and the image using its object

descriptors. The utilization of image region-based features known as “bottom-up features”, have shown

to significantly boost VQA performance, as demonstrated in previous studies [Anderson et al., 2018].

31

3.2. MULTI-MODAL REPRESENTATIONS

To obtain region-based representations for the images, we employ the features provided by Faster

R-CNN [Ren et al., 2015b], an object detection model designed to recognize objects from specific

classes and determine their locations by bounding box detection. The pipeline of this region proposal-

based framework can be summarized as follows: 1) a region proposal network (RPN) generates region

proposals identified by their bounding box coordinates, and 2) an object detection network, namely Fast-

RCNN [Girshick, 2015], uses the region proposals to label the objects. These two components are based

on a shared convolutional neural network such as [He et al., 2016, Simonyan and Zisserman, 2015,

Zeiler and Fergus, 2014]. It is worth noting that the provided features in the GQA dataset are based

on the Faster-RCNN with ResNet-101 version.

The question word embeddings can be categorized into two major groups, as illustrated in the

“embeddings taxonomy” figure 3.2 sourced from [Wang et al., 2021]. The first category comprises

context-independent representations. In this category, each word possesses a unique learned vector rep-

resentation that remains consistent regardless of the specific textual context in which the word is used

during feature extraction. Notable examples of this category include word2vec [Mikolov et al., 2013],

GloVe [Pennington et al., 2014], and FastText [Bojanowski et al., 2016]. The second category encom-

passes context-dependent representations. Here, the representation of a word is influenced by the

textual context that surrounds it during feature extraction. This category includes embeddings based

on Recurrent Neural Networks (RNN) [Sutskever et al., 2014], such as CoVe [McCann et al., 2017]

and ELMo [Sarzynska-Wawer et al., 2021], as well as Transformer-based embeddings like BERT

[Devlin et al., 2019], ALBERT [Lan et al., 2020] and GPT4 [OpenAI, 2023].

Figure 3.2: A-taxonomy-of-word-embeddings, from [Wang et al., 2021]

The VQA task is inherently multi-modal, necessitating an understanding of both textual and

visual information. It involves the comprehension of language semantics, grounding of concepts within

images, and the consideration of cross-modal interactions. This task requires an understanding of the

32

3.2. MULTI-MODAL REPRESENTATIONS

relationships within each individual modality as well as an alignment between different modalities.

Recent research has addressed the challenge of Vision and Language Pre-training (VLP) with

the goal of introducing a cross-modal foundation for encoding both textual and visual information.

This approach builds upon the previously described unimodal encoding techniques for language

and vision, incorporating an element that merges cross-modal information. State-of-the-art VLP

models have yielded substantial improvements across various tasks, including image captioning

[Zhou et al., 2020], Image-Text-Matching (ITM) [Yang et al., 2022], and Visual Question Answering

(VQA). For instance, in the VQA domain, models like ViLBERT [Lu et al., 2019b], VisualBERT [?],

and LXMERT [Tan and Bansal, 2019] achieved good performance on widely recognized VQA datasets,

such as VQA2.0 [Goyal et al., 2017] and GQA [Hudson and Manning, 2019c].

Capitalizing on the advancements and performance of publicly accessible pre-trained VLP models,

we employ a transfer learning strategy that leverages such models as the backbone for encoding both

text and image data. This approach offers the dual benefits of reducing computational cost and

eliminating the need to train a feature extractor from scratch. Moreover, it allows us to benefit from

the knowledge and information embedded within these pre-trained representations, enabling us to

concentrate our efforts on the downstream task of modular reasoning.

Figure 3.3: LXMERT architecture [Tan and Bansal, 2019], self: self-attention, FF: feed forward, cross:
cross-attention.

In this study, we utilize LXMERT [Tan and Bansal, 2019] as our framework for extracting cross-

modal language and vision representations (Figure 3.3). LXMERT is a transformer model pretrained

on various unimodal and multi-modal tasks, including masked cross-modality predictions, masked

object predictions, cross-modality matching, and VQA. LXMERT has demonstrated good performance

33

3.3. NEURAL MODULES

across various tasks and the fine-tuned model on GQA is publicly available. For the representation

of images, LXMERT takes advantage of Faster-RCNN [Ren et al., 2015b] object regions, effectively

capturing the visual information. Furthermore, word embeddings are learned in a manner similar

to BERT [Devlin et al., 2019], providing a contextual representation of textual data. It is worth

mentioning that we only use the cross-modality encoder representations and discard the answer

classification component. More precisely, we freeze LXMERT weights and we pass the image I

through the object-relationship encoder and the question Q through the language encoder. Then, the

Cross-modality Encoder aligns the representations using co-attention mechanism to finally output

the object bounding box features vj of each object oj in the image I and the embedding hi of each

word qi in the question Q. The LXMERT encoders operate with a hidden dimension of 768 and the

Faster-RCNN object detection system consistently identifies 36 objects. The language output is a

matrix L of size (max len × 768) where max len is the maximum question length in the dataset.

Each row in this matrix corresponds to the word embeddings of a particular word in the question.

The vision output is a matrix V of size (36 × 768) each line represents the features of an object region

identified in the image.

3.3 Neural modules

Our NMN approach tackles complex reasoning tasks by decomposing them into simpler sub-

tasks, inspired by visual reasoning skills like object detection, attribute identification, object relation

recognition, comparison, logical inference, etc.

Modules are designed to be functional and generic, each module has dependencies dm to get

information from the previous one(s) and arguments am to condition its behavior.

To allow the flow of information and enhance effective collaboration among modules in the reasoning

chain, we utilize dependencies. This enables the output of a given module to serve as input to the

next modules in the chain. Modules can exhibit different dependency patterns based on their position

in the reasoning chain. Modules at the beginning of the chain have no dependencies, while unary

modules rely on a single dependency and binary modules have two dependencies. These dependency

patterns allow the modules to interact and build upon each other’s output, fostering a coherent and

dynamic reasoning process. The management of the modules’ dependencies is addressed in Section 3.6.

34

3.3. NEURAL MODULES

To make the modules generic and have them adapt their behavior based on the specific context, we

use a generic type modules as described in Section 2.2.2.2. These modules employ textual arguments

that determine their specific behavior. These textual arguments act as “queries”, similar to how

attention mechanisms use “queries” to determine which information to focus on.

We developed a library of modules tailored to address specific sub-tasks. These modules are

designed to be intuitive and interpretable, using simple building blocks like dot products and MLPs.

They are categorized into three groups based on their output type: attention, boolean, and answer

modules. in the following subsections, we discuss the preprocessing of the GQA dataset modules and

provide detailed explanations for each of the modules types.

3.3.1 Pre-processing

The purpose of pre-processing the GQA dataset programs is to create a more manageable and

concise catalog. As mentioned in Section 2.4, the original dataset has 136 functions (Table 2.2) that

lack generality, with some modules being exceptionally rare for the model to be able to learn their

functionalities. To address this, we define a shorter list of 29 modules by grouping similar modules

under more generic ones, the resulting modules functions and their counts are in Table 3.1. Each

resulting module possesses its own distinct canonical structure and definition, implying that we can

only merge functions that correspond to the same canonical structure in terms of dependencies and

arguments.

For attention modules (details in Section 3.3.2), we start by clustering them based on their

functional types: select, filter, and relate. Subsequently, we proceed with their preprocessing.

We maintain the select module in its original format. However, the filter module has several

specific instances that are attribute related such as filter color, filter size, filter material,

filter width, and more. We group all these filter instantiations under the filter attribute

module. Moreover, the filter modules related to spatial positions, such as filter vposition and

filter hposition, are collectively categorized as filterPos. Lastly, filter modules that involve

negation in their arguments, like filter(Not red), are combined into the filterNot module.

The Relate modules needed refinement to distinguish the direction of the relations and grasp the

semantic nuances between the subjects (the doer of an action) and the objects (the entity receiving

the action). In scenarios where the subject and the relation are given, the RelateObj needs to focus

35

3.3. NEURAL MODULES

Module count frequency

select 1776383 37.3

fusion 433842 9.1

relateSub 413964 8.7

queryName 388118 8.2

answerLogic 378648 8.0

exist 288378 6.1

filterAttr 203294 4.3

relateObj 148103 3.1

queryAttr 115167 2.4

verifyAttr 106027 2.2

or 77120 1.6

verifyRelObj 56434 1.2

and 53005 1.1

queryPos 52834 1.1

chooseRel 42939 0.9

filterPos 38792 0.8

chooseAttr 38624 0.8

choosePos 35643 0.7

filterNot 27863 0.6

verifyPos 23886 0.5

chooseName 15450 0.3

same 12229 0.3

different 10091 0.2

verifyRelSub 8022 0.2

common 5670 0.1

relateAttr 3012 0.1

sameAll 2272 0.05

compare 1969 0.04

differentAll 1434 0.03

Table 3.1: Module functions counts and frequencies after preprocessing.

on the object of the relation, a question example is “What is the girl wearing?”. Conversely, when

provided with the object and the relation, the RelateSub must focus on the subject (“Who is wearing

a dress?”). This separation of concerns has also been explored in prior research, as demonstrated in

works such as [Li et al., 2019a, Chen et al., 2021]. This essential information is extracted from the

unprocessed modules arguments. Additionally, another category of undirected relations is identified

by the RelateAttr modules, which inquire about objects sharing common attributes like color or

material with a given object. For instance, “What is the name of the object having the same color as

the cat?”.

36

3.3. NEURAL MODULES

A new module function, labeled fusion, was developed to address a particular type of questions

where a function is needed to merge two object inputs. For instance, consider the question, “What is

the name of the vehicle that is made of the same material as the lock?”. In this scenario, the NMN

must classify the object’s name, which is a vehicle and shares the same material as the lock.

For the boolean modules described in Section 3.3.3, we retain the and, or an exist modules

in their original format. However, we differentiate the same and different modules based on the

number of input objects they process. As such, the same and different modules now specifically

handle comparisons involving two input objects, while sameAll and differentAll modules have been

introduced to accommodate comparisons between multiple input objects.

Furthermore, when it comes to the verify modules, we followed a similar preprocessing strategy

as employed for the relate modules. Attribute-related verify modules are collectively grouped under

verifyAttr, spatial position verify modules are consolidated under verifyPos, and verify modules

dealing with object relations are categorized into verifyRelObj and verifyRelSubj modules. This

categorization is based on the direction of the relation being examined.

For answer modules (detailed in Section 3.3.4), we keep the common module as it is. Within the

choose modules category, we organize them based on the type of argument they address: ‘attribute’,

‘position’, ‘name’, and ‘relation’. Specifically, choose hposition and choose vposition modules

are grouped under choosePos. For modules related to attributes, such as choose location, choose

material, and choose size, they fall under the chooseAttr category. Choose modules associated

with object categories are consolidated within the chooseName module. Each of these modules taking a

single object as input. The choose modules that involve two objects and query about the relation type

between these two objects are gathered under chooseRel. Additionally, we introduce a distinct choose

module labeled compare. This module is designed for the purpose of comparing two input objects

based on a specified attribute, encompassing functionalities such as chooseHealthier or chooseOlder.

In the case of query modules, we’ve made it more structured. Attribute-related query modules are

now grouped under queryAttr, object category query modules are unified under QueryName, and

spatial position Query modules are consolidated into QueryPos. To project the outputs from the

boolean modules into the answer vocabulary, we’ve introduced a new module called answerLogic.

This grouping approach helps to simplify the programs and reduces redundancy by consolidating

functions with similar behaviors. Additionally, it aids in handling rare modules more efficiently by

37

3.3. NEURAL MODULES

bringing them together under a common module. The result is a streamlined set of modules that are

easier to interpret and work with for a better reasoning and understanding of the data.

Indeed, the final modules list is inspired by previous works such as [Li et al., 2019a] and [?]. While

these previous works serve as valuable references and inspiration, the module list in our study also

incorporates some distinct design choices. It is worth emphasizing that there is no unique or definitive

way to define the module dictionary.

3.3.2 Attention modules

Name Dependencies Definition

Select − x = r(W t), Y = r(WV),
o = σ(W(Y ⊙ x))

FilterAttr [a]
x = r(W t), Y = r(WV), z = σ(W(Y ⊙ x)),

o = min(a, z)

FilterNot [a]
x = r(W t), Y = r(WV), z = σ(W(Y ⊙ x)),

o = min(a, 1 − z)

FilterPos [a]
x = r(W t), Y = r(WV), z = S(W(Y ⊙ x)),

o = min(a, z)

RelateSub [a]
x = r(W t), y = r(W(Va)), Z = r(WV),

o = σ(W(x ⊙ y ⊙ Z))

RelateObj [a]
x = r(W t), y = r(W(Va)), Z = r(WV),

o = σ(W(x ⊙ y ⊙ Z))

RelateAttr [a]
x = r(W t), y = r(W(Va)), Z = r(WV),

o = σ(W(x ⊙ y ⊙ Z))
Fusion [a1,a2] o = min(a1, a2)

Table 3.2: Attention module definitions. σ: Activation function, r: RELU, W: weight matrix,
a: attention vector (36 × 1), V: visual features (768 × 36), t: text features (768 × 1), o: attention
vector (36 × 1) ⊙: Hadamard product, min: element-wise minimum.

Attention modules highlight relevant object regions from the image and output an attention vector

o of size 1 × 36 over the image regions. The modules definitions are given in the Table 3.2. Attentions

are probabilities representing the relevance of each bounding box in the image. For example, the

Select module, implements an object detection function select : txt ↦→ bbox. It identifies the most

relevant object from the image based on a textual argument representing the object name. The module

assesses the likelihood of each object bounding box bbox in the image I being the visual representation

of the textual concept txt. The probability is represented as p(bbox|txt, I, θ), where θ denotes the

model’s parameters. The Filter modules essentially singles out and attend to the objects that match

38

3.3. NEURAL MODULES

the given textual criteria. The textual arguments can encompass attributes such as colors, sizes, or

spatial positions such as left or right.

The RelateSub and RelateObj modules facilitate reasoning about the subject-object relationships

within the given context. They encapsulate two relation types: actions (wearing, eating, etc.) and

spatial relations (to the left of, to the right of, next to, on, etc.). The relateAttr module directs

attention to objects that share a specified attribute with the input object. This attribute is determined

by the argument, such as “same material” or “same color”.

The fusion module merges two input attentions into a single attention output. This merging

process is implemented using a min function, which retains only the regions that are highly relevant

based on the information from both attention inputs.

The activation function (σ in Table 3.2) of the output layer W for each attention module can

be a Sigmoid function when dealing with Binary cross-entropy or a Softmax function for multi-class

cross-entropy.

3.3.3 Boolean modules

Boolean modules (Table 3.3) produce boolean-valued outcomes represented by a single bit. The

output can take on values like yes/true/one with a probability of p and no/false/zero with a probability

of 1−p. The And and Or modules are designed to handle boolean operations such as logical conjunction

(AND) and logical disjunction (OR), and utilize probabilities to reason about the occurrence of

the two input dependencies. These modules operate in a way that closely resembles probability

theory applied to events in boolean reasoning, for example given two independent events A and B,

p(A and B) = p(A) × p(B) and p(A or B) = p(A) + p(B). For example, “Are there both snow and

grass in the photo?”.

The Verify modules are responsible for asserting a specific property about the inputs. For instance,

the VerifyAttr module verifies whether the input object possesses a particular attribute or not. For

example, “Is the planter that is to the left of the fence made of clay?”.

The Same and Different modules make comparisons and determine if specific properties are

common between two objects. The Same module determines whether the two given objects share a

similar property (same color or same material). For example, “Do the shirt and the jar have the same

39

3.3. NEURAL MODULES

Name Dependencies Definition

And [b1,b2] o = b1 × b2
Or [b1,b2] o = b1 + b2 − b1 × b2

Same [a1,a2]
x = r(W t), y = r(W(V a1)), z = r(W(V a2)),

o = σ(W(x ⊙ y ⊙ z))

SameAll [a]
x = r(W t), y = r(W(V a)),

o = σ(W(x ⊙ y))
Different [a1,a2] o = 1 − same(a1, a2)
DifferentAll [a] o = 1 − same(a)
Exist [a] o = σ(W([a ∥ max(a) ∥ min(a) ∥ mean(a)]))

VerifyRelSub [a1,a2]
x = r(W t), y = r(W(V a1)), z = r(W(V a2)),

o = σ(W(x ⊙ y ⊙ z))

VerifyRelObj [a1,a2]
x = r(W t), y = r(W(V a1)), z = r(W(V a2)),

o = σ(W(x ⊙ y ⊙ z))

VerifyAttr [a]
x = r(W t), y = r(W(V a)),

o = σ(W(x ⊙ y))

VerifyPos [a]
x = r(W t), y = r(W(V a)),

o = σ(W(x ⊙ y))

Table 3.3: Boolean module definitions. σ: Sigmoid, r: RELU, W: weight matrix, a: attention vector
(36 × 1), b: boolean scalar, V: visual features (768 × 36), t: text features (768 × 1), ⊙: Hadamard
product, [a∥b]: concatenation, min: element-wise minimum.

color?”. while the Different module, as the name suggests, does the opposite, it assesses whether the

two objects have different property (different color, different material).

40

3.3. NEURAL MODULES

3.3.4 Answer modules definition

Name Dependencies Definition

ChooseName [a]
x = r(W t), y = r(W(V a),

o = S(W(x ⊙ y))

ChooseAttr [a]
x = r(W t), y = r(W(V a),

o = S(W(x ⊙ y))

Compare [a1,a2]
x = r(W t), y = r(W(V a1)), z = r(W(V a2)),

o = S(W(x ⊙ y ⊙ z))

ChoosePos [a]
x = r(W t), y = r(W(V a)),

o = S(W(x ⊙ y))

ChooseRel [a1,a2]
x = r(W t), y = r(W(V a1)), z = r(W(V a2)),

o = S(W(x ⊙ y ⊙ z))

Common [a1,a2]
x = r(W(V a1)), y = r(W(V a2)),

o = S(W(x ⊙ y))

QueryName [a]
x = r(W(V a)),

o = S(W(x))

QueryAttr [a]
x = r(W(V a)),

o = S(W(x))

QueryPos [a]
x = r(W(V a)),

o = S(W(x))
AnswerLogic [b] oyes = b, ono = 1 − b

Table 3.4: Answer module definitions. S: softmax, r: RELU, W: weight matrix, a: attention vector
(36 × 1), b: boolean scalar, V: visual features (768 × 36), t: text features (768 × 1), ⊙: Hadamard
product.

The last type of modules is the answer modules (Table 3.4). They are learned to maximize the

likelihood of the correct answer given the question, program and image triplet. The choose modules

predict an answer by choosing between two terms given in the textual argument. For instance,

the chooseRel module classifies the relation between two given objects using a textual argument

representing two relations to choose from, as in “Is the cooked pizza to the left or to the right of the

knife?”, the textual argument is an aggregation of the two terms “to the left | to the right”.

The query modules classify the name, attribute or position of the input attention vector. For

example, the queryName module classifies the category of the object given by the input dependency,

as in “What is the laptop on?”.

Lastly, the AnswerLogic module does not have trainable parameters and its purpose is to map a

boolean intput b to the answer vocabulary domain. The “yes” class is assigned the b value and the “no”

41

3.4. PROGRAM EXAMPLES

class is assigned the 1 − b value.

3.4 Program examples

To demonstrate the practical application of the modules in real-world scenarios, we provide a table

containing examples of natural language questions, their corresponding programs, answers and related

images.

Question & Program prototype & Answer Image

What is the fence made of?

[select(fence), queryAttr(material)]

wood

Which kind of furniture is green?

[select(furniture), filterAttr(green), queryName()]

desk

What is the color of the plate on the right?

[select(plate), filterPos(right), queryAttr(color)]

white

Is it outdoors or indoors?

[select(scene), chooseAttr(outdoors indoors)]

outdoors

42

3.4. PROGRAM EXAMPLES

Is the person on the left or on the right?

[select(person), choosePos(left right)]

left

What do the field and the palm have in common?

[select(field)’, select(palm tree)’, common()]

color

Is the color of the gloves different than the color of the leaves?

[select(leaves), select(gloves), different(color), an-

swerLogic()]

yes

Are there both cats and whales in this photo?

[select(cat), exist(), select(whale), exist(), and(),

answerLogic()]

no

43

3.4. PROGRAM EXAMPLES

What device is the water behind of?

[select(water), relateObj(behind), select(device), fu-

sion(), queryName(name)]

cell phone

What is the size of the giraffe?

[select(giraffe), queryAttr(size)]

large

Is the small table made of metal?

[select(table), filterAttr(small), verifyAttr(metal),

answerLogic()]

no

Which side is the house on?

[select(house), queryPos(hposition)]

left

44

3.4. PROGRAM EXAMPLES

Is the laptop to the right or to the left of the small papers?

[select(papers), filterAttr(small), select(laptop),

chooseRel(to the left of to the right of)]

left

Is the wheel chair in the bottom part of the image?

[select(wheelchair), verifyPos(bottom), answerLogic()]

no

What type of clothing is not white, the shirt or the hat?

[select(clothing), filterNot(white), chooseName(shirt

hat)]

hat

Are both the seat and the life preserver the same color?

[select(life preserver), select(seat), same(color),

answerLogic()]

no

45

3.4. PROGRAM EXAMPLES

Are the people the same gender?

[select(person), sameAll(gender), answerLogic()]

no

Does the mat have a different color than the flower?

[select(flower), select(mat), different(color), ’an-

swerLogic()]

yes

Do these animals have different types?

[select(animal), differentAll(type), answerLogic()]

yes

What is the name of the vehicle that is made of the same material

as the lock?

[select(lock), relateAttr(same material), se-

lect(vehicle), fusion(), queryName(name)]

carriage

46

3.4. PROGRAM EXAMPLES

Is the man to the left of a spectator?

[select(spectator), select(man), verifyRelSub(to the

left of), answerLogic()]

no

Is the woman that is to the left of the bus wearing shorts?

[select(bus), relateSub(to the left of), select(woman),

fusion(), select(shorts), verifyRelObj(wearing), an-

swerLogic()]

yes

Which is younger, the lady or the baby?

[select(baby), select(lady), compare(younger)]

baby

Are there either stop signs or fire hydrants that are not white?

[select(stop sign), filterNot(white), exist(?), se-

lect(fire hydrant), filterNot(white), exist(?), or(),

answerLogic()]

no

47

3.5. GENERATOR

Are the grapes on top of the table and the fruits inside the box

both red?

[select(table), relateSub(on top of), select(grapes),

fusion(), verifyAttr(red), select(box), relate-

Sub(inside), select(fruit), fusion(), verifyAttr(red),

and(), answerLogic()]

yes

Table 3.5: Program examples

3.5 Generator

As detailed in the related-work Chapter 2, the NMN framework consists of two primary components:

the generator and the executor. In this section, our focus lies on the generator, which translates the

input question into a corresponding program representation. In subsection 3.5.1 we delve into the

intricate process of generating modules, providing an explanation of how the program’s sequence of

modules is constructed based on the input question and image. The next subsection 3.5.2 sheds light

on the textual arguments generation process and we elucidate how the model predicts and incorporates

textual arguments into the generated program sequence.

3.5.1 From questions in natural language to functional programs

The generator takes as input the question features wi (and the image) and outputs an autoregressive

sequence of instructions to follow P = [m1, ..., mn] from the modules dictionary 3.1. This task

necessitates a sequence-to-sequence generation model, such as recurrent neural networks (GRU

[Cho et al., 2014], LSTM [Sutskever et al., 2014]) or transformers [Devlin et al., 2019]. To adhere to

the architecture employed by LXMERT [Tan and Bansal, 2019], we choose the transformer network in

a decoder form. The problem at hand can be viewed as a language translation task, akin to translating

a sequence from French to English. However, in this context we perform translation from the natural

language domain to the modules tokens domain. The goal is to convert a question expressed in natural

language into a corresponding sequence of modules, which can then be executed to infer an answer.

The output is a sequence, therefore the decoder form of a transformer is employed.

48

3.5. GENERATOR

The sequence derived from the final layer of the LXMERT cross-modality encoder serves as the

“memory” input to the transformer decoder. These representations encompass the features of each

word from the question, aligned with their corresponding object features extracted from the image.

The loss function is given by Equation 3.1, with Lm being the average of the cross-entropy losses of

the generated modules and the target expected modules. In this equation, T represents the number of

tokens in the program, reflecting the length of the generated module sequence that is being compared

to the target modules.

Lm = 1
T

T∑︂
t=1

LCE(m̂t, m∗
t) (3.1)

3.5.2 Arguments prediction

In order to enhance the precision and relevance of the generated program sequence, and enable the

model to incorporate pertinent information from the input question into the textual arguments, we

establish a functional representation of the modules’ arguments in relation to the input question.

For modules that require a textual argument, we represent these textual arguments as a function

of the input question. The arguments used by the modules in the program are directly derived from

the words present in their related questions.

To capture the textual arguments for each module m, the generator g outputs the argument a as

a function of the words w1, w2, ..., wn in the input question Q:

a = g(Q) = g(w1, w2, ..., wn) (3.2)

In a technical sense, the predicted argument features are computed using a weighted sum of the

encoder output values. The weight for each value is determined by the transformer attention weights

generated by the encoder-decoder attention layer.

The preliminary experiments revealed that the attention mechanism may not consistently exhibit

the expected behavior, as commonly observed in language translation tasks. In typical translation

scenarios, the encoder-decoder attention maps tend to demonstrate a strong and relevant correlation

between the English words and their corresponding French words.

To fine-tune the textual argument predictions, we supervise the attention mechanism to attend on

49

3.5. GENERATOR

the desired question words. The CE metric is used to quantify the similarity between the module’s

attention distribution and the target question words. Concretely, for each module mt requiring a

textual argument, we extract the corresponding argument from the dataset. Subsequently, we create a

one-hot vector a∗
k where the position of the argument in the question is marked as 1 and the rest of

the vector elements are 0s. We then compute the cross-entropy between this one-hot vector a∗
k and the

output attention weights vector âk of the respective module token as formulated by the equation 3.3.

La = 1
K

K∑︂
k=1

LCE(âk, a∗
k) (3.3)

3.5.3 Generator optimisation

The objective function aims to 1) maximize the likelihood of generating the correct program given

the input question, and 2) maximize the likelihood of attending on the target word from the question

when predicting a module. The final generation loss, denoted as LG is represented by the equation:

LG = α · Lm + β · La (3.4)

Here, α and β are weighting terms that balance the importance of the respective objectives.

During training, we have the question and program pairs and we train the decoder in an auto-

regressive manner. This training process makes use of the PyTorch Transformer decoder layer

implementation and is automatically parallelized for time efficiency.

3.5.4 Program inference

During inference, the Transformer decoder operates in an open loop without accessing the ground-

truth program, so it is essential to ensure that the generated program adheres to the structural

constraints and produces plausible programs. Inspired by [Hu et al., 2017], we define a set of affine

inequality constraints for each module m of the form St · Xm ≥ bm to control the decoding process,

where St represents the current decoding state, Xm is a vector and bm is a scalar representing the

constrains applied of the module m. This allows to mask the modules that do not respect their

constraints. For instance, a module that requires a certain type dependency can only be predicted if

and only if a module, which provides that type of dependency, was predicted before it.

50

3.5. GENERATOR

To control the generation process and ensure that the generated modules adhere to consistency

constraints, we employ a state vector St that keeps track of the program characteristics for each

generation step t. This state vector is represented as: St =
(︂
|att| |bool| |ans| Υ

)︂
, where |att| and

|bool| are the number of unconsumed attention and Boolean outputs, while |ans| specifies whether the

answer module is present in the generated program. Υ represents the number of remaining steps in

the generation process, defined as Υ = T − t, where T is the maximum allowed program length.

We’ve established four constraints to control the decoding process:

• For predicting a module, it’s essential to ensure that there are more available outputs in St−1

than the predicted module can consume.

• The prediction of an answer module is permissible only when there are no unconsumed attention

or boolean outputs remaining in St−1.

• Predicting an attention or boolean module is only feasible if no answer module has already been

predicted in St−1.

• Adhere to the remaining time constraint T by refraining from predicting modules whose outputs

cannot be fully processed within the remaining Υ time.

We create a state-transition matrix P to update the generation state at each time step. P has a

shape of (N × 4) where N is the number of modules in the dictionary M. Each row in the matrix P

corresponds to a specific module in the dictionary, and the elements in that row denote the expected

impact on the program characteristics when the corresponding module is predicted. For example,

the row of index 1 in the matrix P , which corresponds to the Select module, has the value of

P1,. =
(︂
1 0 0 −1

)︂
. This indicates that when the Select module is predicted, the value of |att|

will be increased by one, as the module generates an attention vector without consuming one as a

dependency. However, there will be no change in the values of |bool| and |ans|, as the Select module

does not consume any Boolean or answer dependencies, nor does it output any Boolean or answer

values. Additionally, the number of remaining steps Υ will be decreased by 1.

The transition operation leading to the new state is represented by the equation: St = St−1 + Pm,.

where m is the index of the module chosen at step t.

51

3.6. EXECUTOR

3.5.5 Experimental validation

To assess the performance of the program generation task, we track the decreasing value of

the training loss function and calculate accuracy. We consider as accurate the generated programs

that exactly match their ground-truth programs in a token-wise-manner. The training performance

for program prediction attains an accuracy of 74%. It’s worth noting that the generator task is

relatively easy in comparison to the executor task. Consequently, similar to the approach outlined in

[Askarian et al., 2021], the experiments in this research primarily center around the executor training

by using the ground truth programs as inputs to the executor.

3.6 Executor

As described in the previous section, a functional program consists of a sequence of modules and

their textual arguments. It represents the reasoning structure to employ in order to answer a question

related to an image. The executor is responsible of instantiating the NMN and executing it on the

related image in a sequential manner to answer the question. It is also responsible of managing the

module dependencies.

3.6.1 Module initialisation

To implement the modules based on the modules’ list M and their definitions from the previous

section, we utilize PyTorch. The W matrices representing the Linear layers are initialized using the

He initialization method [He et al., 2015]. These layers are followed by a RELU activation function

for introducing non-linearity into the model. In the case of modules sharing their weights (Weights

sharing is detailed in Section 3.6.2), we follow a specific initialization process to ensure weight sharing

among them. The shared layer is initialized in one of the modules, and then the rest of the modules

that share this layer receive it as a dependency during their initialization. We give more details on the

weight sharing in the following subsection 3.6.2. To efficiently manage and retrieve the modules when

constructing the NMNs, we store them in a dictionary, with the module names as the keys.

Below is an implementation example of the select module in Python:

52

3.6. EXECUTOR

Algorithm 1 Python-style pseudocode for select module.

dim_txt: hidden dimension size of the input argument
dim_vis: hidden dimension size of the bounding box
dim: hidden dimension size of the module
vis: Image features (36 x dim_vis)
txt: textual argument (1 x dim_txt)

class Select(nn.Module):

def __init__(self , dim_txt =768, dim_vis =768, dim=768, nb_obj =36):
super (). __init__ ()
self.linear_txt = nn.Linear(dim_txt , dim)
self.linear_vis = nn.Linear(dim_vis , dim)
self.linear_out = nn.Linear(dim , 1)
nn.init.kaiming_normal_(self.linear_txt.weight)
nn.init.kaiming_normal_(self.linear_vis.weight)
nn.init.kaiming_normal_(self.linear_out.weight)
self.sigmoid = nn.Sigmoid ()

def forward(self , txt , vis):
txt = F.relu(self.linear_txt(txt))
vis = F.relu(self.linear_vis(vis))
eltwise_mul = torch.mul(txt , vis)
output = self.linear_out(eltwise_mul). transpose(0, 1)
return self.sigmoid(output)

3.6.2 Weight sharing

Despite the modules being shallow with few parameters, their cumulative number of parameters

significantly increases when they are chained together. To remedy this, we use a weight sharing

technique to reduce the total number of model parameters. This also allows the shared layers to have

a better learned behavior and to be updated based on a larger number of training examples. The

overall principle is that a sharing is made only between some of the textual and visual layers, each

module having a distinct output layer to guarantee its fine-tuning to the module’s sub-task.

The decision regarding parameter sharing among layers in different modules is determined through

an assessment of module similarities. This assessment involves the analysis of functional and archi-

tectural properties of the modules. The former is derived from the module reasoning sub-task and

the latter is derived from the module layer architectures. The strategy is exemplified in the following

by conducting a comparison of several modules, wherein their inherent similarities and differences

are explained. The modules include several types of non-linear layers: textual layers, visual layers

and output layers. Textual layers take word embeddings as input, while visual layers take bounding

box features as input. Both types of layers produce hidden vectors, which are then combined using

element-wise multiplication (Hadamard product). The resulting vector is then passed to the output

layer, which maps the hidden vector to the module’s output space.

Specifically, the Select module and the FilterAttr module are two examples of such modules.

53

3.6. EXECUTOR

The Select module detects a relevant bounding box given the name of an object, while the FilterAttr

detects a relevant bounding box given an attribute. Functionally, they both solve a perceptual problem

but have different textual argument semantics. Architecturally, they both have the same layer structure:

a textual layer, a visual layer, and an output layer. We decide to share the visual layer between these

two modules but use different textual layers to respect the semantic differences between their textual

arguments.

However, FilterAttr can share its textual layer with other modules having an attribute as a

textual argument, like VerifyAttr or FilterNot.

The Same and Different boolean modules assess whether or not two selected objects share the

same characteristic (provided by the textual argument). The probability p of two objects being similar

is one minus the probability of them being different. Therefore, they share the same layers including

the output layer and we use the function p(Different) = 1 − p(Same) to differentiate them.

The object relations modules such as RelateSub and RelateObj have similar functionalities and

neural structures. They share their visual layers to get a common scene representation and they share

the textual layer due to the semantic similarity of their arguments (a relation).

3.6.3 Modular network instantiation

In the neural module instantiation, the program is utilized to make function calls to the modules

and execute them over the image representation. This process takes place in the executor’s forward

function, where it iterates through the program module prototypes. The executor is also responsible

for converting the program structure from its language format to the input format required by the

NMN. To do so, module arguments are converted from words to embeddings. The program executor

is responsible of managing module dependencies by using a memory buffer to save the outputs that

serve as inputs for the next modules. The memory buffer is particularly valuable in scenarios involving

two-branch programs. For example, an NMN containing the and module requires a memory buffer to

store the output of the first branch, before executing the modules of the second branch to produce the

second output and later merge them in the computation of the conjunction.

3.6.4 Reasoning process

Algorithm 2 presents the execution loop of a program in an abstract manner.

54

3.7. EVALUATIONS

Algorithm 2 Python-style pseudocode for Program execution.

program: the program
img: image representation
arg: argument word
emb: embedding mapping the words to their representations
executor: dictinnary mapping the modules parameters
output: recurrent output , initialized with zeros

for (module_name , arg) in program: # iterate over the program modules

if arg: txt = emb(arg)
module = executor[module_name]

if module == ‘select ’: # marks the begging of the reasoning branch
memory_buffer = output
output = module.forward(txt , img)

elif module.nb_dependencies = 1:
output = module.forward(txt , output , img)

elif module.nb_dependencies = 2:
output = module.forward(txt , memory_buffer , output , img)

answer = output.argmax ()

3.6.5 Answer prediction

At the end of the reasoning process, the final module provides the answer to the question, it

outputs a probability distribution over the 1842 answer classes. There are two types of questions,

binary (yes/no) and open questions. For binary questions, the answerLogic module is used, while

open questions are managed by one of the other answer modules, which are comprehensively listed in

Table 3.4. The predicted answer, denoted as ŷ, is determined as the answer y with the highest output

probability within the answer set A, as shown by the equation:

ŷ = arg max
y∈A

p(a|Q, P, I, θ) (3.5)

3.7 Evaluations

The experiments outlined in this section are devoted to assessing the influence of multi-modal

representations of vision and language on our NMN architecture, we compare unimodal vs multimodal

representations. This preliminary investigation lays the foundation for subsequent chapters, where we

directly employ multi-modal representations for our experiments.

The executor is optimized using the cross-entropy loss, which involves comparing the predicted

answer with the ground-truth answer for each question, program and answer triplet. We use the

testdev_all set of the GQA dataset.

55

3.7. EVALUATIONS

Le = 1
N

N∑︂
n=1

LCE(ŷn, y∗
n) (3.6)

3.7.1 Experimental settings

Unimodal representations. For unimodal word embeddings we use both non-contextual and

contextual off-the-shelf pretrained embeddings. For non-contextual embeddings, we opt for Fast-

Text [Bojanowski et al., 2016] pre-trained word embeddings, that showcase good performance on

several downstream tasks, and for its ability to compute embeddings for words that did not appear

in the training data. The contextual embeddings, which represent the embedding of a given word

with their context by attending on the surrounding words in the question and mixed with their

positional information, offer a richer representation for our arguments. To achieve this, we employ

Transformer-based BERT pretrained embeddings [Devlin et al., 2019]. This approach allows us to as-

sess the impact of context-aware embeddings on the argument representation. For the unimodal image

region representations we use those provided with the GQA dataset [Hudson and Manning, 2019b]

that are extracted by using the bottom-up Faster-RCNN model.

Cross-modal representations. For cross-modal representations, we encode both the question and

the image with LXMERT as detailed in section 3.2.

3.7.2 Unimodal vs crossmodal representations

In Table 3.6 we show the impact of different question words and image regions encodings on the

performance using two different training setups setup1 and setup2 trained following the best training

strategies from the next Chapter 4. These setups will be detailed in the following chapter and only

serve here as training strategies to be able to measure the impact of using uni-modal representations

against aligned cross-modal representations on the executor performance.

• Setup1: NMN trained using Teacher guidance with soft matching from Section 4.4.

• Setup2: NMN trained using Teacher guidance with hard matching from Section 4.4.

The different evaluated representations in Table 3.6 are:

56

3.7. EVALUATIONS

• FastTextV: Employ unimodal non-contextual fastText embeddings [Bojanowski et al., 2016]

along with Faster-RCNN bounding box features already provided by the GQA

dataset [Hudson and Manning, 2019b].

• BertV: Use unimodal contextual language and vision representions, where contextual text

embeddings are extracted by the BERT model [Devlin et al., 2019] and Faster-RCNN bounding

boxes features are provided by the GQA dataset [Hudson and Manning, 2019b].

• LXV: Employ the cross-modal representations encoded by the LXMERT model [Tan and Bansal, 2019].

Embedding-training Accuracy

FastTextV-setup1 0.495
BertV-setup1 0.506
LXV-setup1 0.630

FastTextV-setup2 0.511
BertV-setup2 0.485
LXV-setup2 0.632

Table 3.6: Language and vision representation comparison on testdev-all.

Cross-modal aligned features provided by LXMERT (denoted as LXV) have shown a significant

increase in accuracy, with a +12.4% improvement when training with setup1 and a +12.1% improve-

ment when training with setup2. This validates our intuition that leveraging cross-modal features

pretrained on diverse tasks and large datasets can greatly benefit NMNs. By incorporating these

features, the modular reasoning process is performed with a better understanding of word embeddings

and bounding box features, leading to enhanced performance and more accurate predictions. In

contrast to related works [Andreas et al., 2016a, Andreas et al., 2016b, Li et al., 2019a], which infer

answers by combining the NMN output with the LSTM hidden representation of the question to

capitalize on linguistic priors regarding questions and answers, our approach refrains from using this

shortcut. Instead, we rely on the cross-modal input representation to address the claimed NMN’s

limitation in effectively capturing prior knowledge about the language modality.

FastText and BERT unimodal representations lead to comparable results, with BERT surpassing

fastText in the setup1 experiments while the opposite is observed when training with setup2. A more

detailed comparison, explaining the differences between setup1 and setup2 and the implications they

have on the model’s training, will be performed in Chapter 4 Section 4.4.

57

3.8. CONCLUSION

3.8 Conclusion

This chapter has provided a foundation for understanding Multi-modal Neural Module Networks

(NMN), shedding light on their operational principles, capabilities, and design choices. NMN is an

effective architecture in tackling complex multi-modal tasks by decomposing them into easier sub-tasks,

each efficiently handled by a dedicated module. The promising potential of NMN makes the visual

reasoning more transparent. The initial inquiry concerned multi-modal representations and their

importance in capturing information from language and vision and aligning them. Experimental

validation was conducted to assess the effectiveness of these representations in handling complex

questions. The core of the chapter revolved around the neural modules that compose the reasoning

process. We delved into the module definitions and their functionalities, emphasizing their roles in

enabling modular reasoning. Additionally, the concept of weight sharing was introduced as a technique

to reduce model complexity. The generator component was presented to convert natural language

questions into functional programs. The process of predicting arguments and optimizing the generator

further demonstrated the flexibility and adaptability of the architecture. Moreover, the executor’s role

in instantiating the NMN based on the program and managing module dependencies was elucidated.

Finally, the chapter provided insights into the reasoning process and the final answer classification.

58

Chapter 4

Guided-Training of neural module networks

Contents

4.1 Introduction . 59

4.2 Input guidance . 60

4.3 Output feedback . 62

4.3.1 Attention loss . 62

4.3.2 Boolean loss . 63

4.4 Intermediate targets coding . 63

4.4.1 Attention targets . 63

4.4.2 Boolean targets . 66

4.5 Experiments . 66

4.5.1 Evaluated methods . 66

4.5.2 Results analysis . 67

4.5.3 Implementation details . 69

4.5.4 Modules training evolution . 70

4.5.5 Qualitative analysis of the modular approach 71

4.6 Conclusion . 73

4.1 Introduction

Neural module networks (NMNs) offer the advantage of conducting explicit and task-specific

reasoning processes based on a given question. However, their training methodology primarily

optimizes the various reasoning sub-tasks that constitute the question based solely on the final answer

accuracy. Nevertheless, both empirical experiments and prior research reveal that the minimization

of the final answer error alone might not consistently ensure that the modules accurately fulfill

59

4.2. INPUT GUIDANCE

their intended sub-tasks. Consequently, the need arises for supplementary guidance to optimize

the intermediate modules, ensuring that they execute the reasoning sub-tasks without resorting to

“shortcuts” or otherwise compromising the integrity of the reasoning process.

This chapter delves into teacher guidance, which addresses the previously mentioned issues to

enhance the performance of NMNs. It commences by elucidating “Input guidance” in Section 4.2,

encompassing its definition and the concept of “Decaying Teacher Forcing”. Subsequently, it introduces

“Output feedback” in Section 4.3, concentrating on attention and boolean losses. The chapter explores

implementation details, delving into the effects of teacher guidance. Finally, we conclude it by

presenting insights gathered from the conducted experiments.

Figure 4.1: The teacher guidance for the program execution process related to the question ‘On what
is the animal to the right of the laptop sleeping?’. Plain arrows represent input guidance 4.2, dotted
arrows represent the output feedback 4.3 and bounding boxes represent the GT intermediate targets.

4.2 Input guidance

The challenge of training NMNs collaboratively lies in the fact that the inputs of subsequent

modules depend on the outputs of previous ones, which can propagate prediction errors. For instance,

imagine the program depicted in Figure 4.1. If the initial module select(laptop) produces an

inaccurate probability distribution, failing to correctly attend to the intended “laptop” object, this

error can extend to subsequent modules, consequently, the module relateSub(to the right of)

may attend to the right side of the incorrect object, leading to inconsistent reasoning. The same issue

60

4.2. INPUT GUIDANCE

applies to other intermediate and final modules in the chain.

Teacher forcing (TF) [Williams and Zipser, 1989] can address this issue by providing intermediate

modules with the correct ground-truth (GT) inputs instead of their previous modules’ outputs. This

helps the intermediate modules to learn their reasoning sub-task in a correct setup.

We adopt a decaying teacher forcing technique, influenced by the concept of scheduled sam-

pling [Bengio et al., 2015]. This approach facilitates a gradual shift in the training of modules,

transitioning from individual optimization to a more cohesive joint training process. In fact, when a

module is provided with its golden (GT) input and expected output, it is independently optimized to

perform its specific sub-task. And when modules are jointly trained in a sequential manner, they learn

to adapt their behaviors to work together and engage in explicit reasoning without taking shortcuts.

This collaborative approach enables the modules to develop a better understanding of the question

composition and enables them to perform compound reasoning operations.

Notably, we provide the modules with input guidance through decaying teacher forcing (TF). As

shown in Fig. 4.1, at each reasoning step t the executor randomly decides whether to use the predicted

output ôt−1 or the ground-truth target o∗
t−1 from the previous module mt−1 as its input. This decision

is made by flipping a coin, where o∗
t−1 is chosen with a probability of ϵe and ôt−1 with a probability of

1 − ϵe. The coin-flipping process for input selection occurs at each reasoning step t during training,

allowing the model to train on various sub-programs. The probability ϵe of selecting o∗
t−1 depends

on the epoch number e. As training progresses and the epoch number increases, ϵe decreases, giving

more preference to the module’s predictions over the ground-truth intermediate targets.

From a back-propagation perspective, during the early stages of training with decaying teacher

forcing the gradients are computed based on the losses of individual modules when processing correct

inputs. As a result, the backward gradient flow of the loss is interrupted at the first ground-truth

input. However, in the case of collaborative module interactions without TF, the full back-propagation

can be computed. The intermediate outputs are preserved in continuous form throughout the program

execution, enabling the flow of backward gradients between modules. Errors and updates can be

back-propagated through the entire network, facilitating effective learning and enhancing the overall

performance of the NMN.

61

4.3. OUTPUT FEEDBACK

4.3 Output feedback

The other facet of teacher guidance is intermediate output feedback. Instead of solely optimizing

intermediate modules based on the final answer classification loss, this approach is reformulated as a

multi-task (MT) objective. Here, individual module performances are considered, providing feedback

based on their outputs errors compared to the groud truth intermediate targets (4.4). This feedback

mechanism aids in regulating module weights and the learning of their corresponding sub-tasks.

In this setup, the overall loss consists of a weighted sum L = αLatt +βLbool +γLanswer of individual

losses for the attention modules, Boolean modules and answer modules, with α, β and γ scaling

factors.

In the following, we provide details on the attention loss and Boolean loss.

4.3.1 Attention loss

The motivation behind the implementation of attention loss is to compel the attention modules

to focus attention on the designated target object. For instance, consider the module prototype

select(laptop) as depicted in Figure 4.1. The aim is to ensure that the generated attention output

distribution has its maximum value closely aligned with the intended target, thereby producing an

attention vector that accurately identifies the “laptop” object. Similarly, for the relateSub(to the

right of) module, the goal is to enforce its output to correspond to the target, effectively identifying

the object positioned to the right of the laptop.

To achieve this, during the forward pass of the reasoning process, we store the intermediate

outputs in a designated memory buffer. This memory buffer is indexed to allow mapping of each

saved intermediate output to its corresponding module function name. At the end of the forward

pass, we access this memory buffer and calculate the Cross Entropy (CE) loss between its content

and the intermediate targets (details are given in Section 4.4). The computation of loss averages is

module-specific, thereby enabling the penalization of each module based on the average of its individual

errors and accounting for variations in their batch occurrences to prevent overemphasis on frequent

modules at the expense of infrequent ones. The attention loss Latt is the accumulation of losses

from all attention modules. It is calculated as the sum of the individual module losses, normalized

by the number of occurrences of each module in the batch. Mathematically, this is represented as

62

4.4. INTERMEDIATE TARGETS CODING

Latt =
∑︁

m∈M
Lm
|m| , where Lm signifies the cumulative losses computed for each instance of module m,

and |m| represents the count of occurrences of module m within the batch.

4.3.2 Boolean loss

In a similar way to the attention loss, we also integrate intermediate losses for Boolean modules.

These modules generate a singular class output that represents the probability of the given premise

being True. Our objective is to drive the probability of true premises output close to 1, while

pushing the probabilities of incorrect premises towards 0. For example, the VerifyAttr(red) module

validates whether the object attended by the input dependency possesses the attribute argument

“red”. Specifically, when the attended object is indeed red, our goal is to enhance the probability of

the module’s output converging towards 1. Conversely, if the attended object is not red, we want to

push the output towards 0. The Lbool follows the same loss computation schema as described for the

attention loss in the previous subsection.

4.4 Intermediate targets coding

Intermediate targets are the ground truth targets of the intermediate modules outputs o∗
t that

serve to compute the intermediate modules losses. To construct the intermediate targets, we rely

on the GQA pre-processed programs to get relevant data and adapt their format to the modules’

structures. In the following sub-sections we detail the coding process of the attention targets and the

Boolean targets.

4.4.1 Attention targets

For attention modules, the target bounding boxes are provided by the image graph. However,

these objects differ from those extracted by the image feature extractor, as illustrated in Figure 4.2.

In Figure 4.2a, the ground-truth bounding boxes framing various objects in the image are more precise

and accurate since they were manually labeled from the Visual Genome dataset [Krishna et al., 2017].

On the other hand, the bounding boxes obtained from the feature extractor are automatically generated

and they are more numerous and overlapping. In fact, the Faster R-CNN model [Ren et al., 2015b],

employed in our feature extractor LXMERT [Tan and Bansal, 2019], requires a fixed hyper-parameter

to determine the number of output bounding boxes, which is set to 36. Subsequently, we delve into

63

4.4. INTERMEDIATE TARGETS CODING

the process of establishing correspondences between the bounding boxes in the image graph and those

generated by Faster R-CNN.

(a) Boxes from the GQA image graph (b) Boxes from LXMERT

Figure 4.2: Comparison between the ground-truth bounding boxes and the LXMERT bounding boxes.

To provide a clearer insight into this process, we present the data pertaining to the NMN of

Figure 4.1. The original program structure can be observed in Figure 4.3, where each row represents

an execution step along with its associated information. The inter_id column indicates the assigned

target object IDs. We cross-reference these IDs with the data from the image graph in Figure 4.4 to

extract the corresponding object coordinates using the object_id column.

Figure 4.3: Raw program structure.

This process of identifying intermediate object targets and retrieving their coordinates from the

graph enables us to perform the necessary computations to determine the nearest bounding box from

the LXMERT bounding boxes. To establish correspondences between the bounding boxes in the image

graph and those obtained from Faster-RCNN, we calculate the intersection over union (IoU) factor.

Specifically, we compute the IoU between the ground-truth bounding box from the image graph and

the 36 Faster-RCNN bounding boxes.

64

4.4. INTERMEDIATE TARGETS CODING

Figure 4.4: Object identifiers, names and coordinates from the image graph data.

As shown in Figure 4.2b, the bounding boxes extracted by LXMERT exhibit overlaps, often causing

an object to be covered by multiple boxes. For instance, the laptop object is encompassed by both a

yellow and a blue bounding box (labelled “laptop” in the top-left corner). The respective Intersection

over Union (IoU) values with the laptop box from the graph are 0.7324 and 0.7027. This situation

raises a question: should we exclusively regard the bounding box with the highest IoU (Top1) as

the target, or should we choose the nearest bounding boxes based on the ranking of IoU measures?

To address this query, we implement and assess both approaches that we call hard matching and

respectively soft matching. It’s worth noting that not all modules have available ground-truth targets

that can be extracted. This situation arises, for instance, when dealing with questions that inquire

about the existence of a particular object in the image, and that object is, in fact, non-existent.

Hard matching. In the hard matching approach, a ground-truth bounding box bg is matched with

the bounding box o∗
i from the feature extractor that has the highest Intersection over Union (IoU)

factor. The produced target vector is a one-hot-like vector. In this case, the Softmax function is

applied to the output of the attention modules, and the resulting probability vector with a sum of 1 is

compared to the target bounding box through Cross Entropy (CE) loss.

Soft matching. The soft mapping matches bg with all o∗
i that have an IoU value above a threshold.

This approach yields multiple target boxes and the target vector can have multiple ones, akin to a

multi-label classification task. We utilize the Sigmoid function on the output attention vector, each

element being transformed into a probability. Subsequently, a comparison is performed between this

65

4.5. EXPERIMENTS

vector and the multi-label vector, employing Binary Cross Entropy (BCE) loss.

4.4.2 Boolean targets

For Boolean modules, we rely on the provided answer to infer the module’s targets and generate the

intermediate Boolean targets. For example, given the question ‘Is the color of the gloves different than

the color of the leaves?’ and its program [select(leaves), select(gloves), different(color),

answerLogic()], the Boolean module different(color) target is inferred from the answer, if the

answer is ‘yes’ then the module target is o∗
i = 1 and if the answer is ‘no’ then o∗

i = 0.

For questions involving two reasoning branches, where the program incorporates an and or or

module, we deduce the intermediate Boolean module targets based on logical Truth tables for AND

and OR operations. While it is true that AND and OR operations are logically irreversible, as their

single outputs cannot uniquely identify their dual inputs, we only build intermediate targets for the

scenarios where reversibility is feasible. In the case of AND, when the output is True, it indicates

that both inputs are necessarily True. Conversely, for OR, if the output is False, it implies that both

inputs are necessarily False. Ambiguous combinations are disregarded, no intermediate targets are

constructed for such cases and these modules don’t have a specific intermediate loss.

4.5 Experiments

As presented in the previous sections, we propose two teacher-guidance techniques to improve

NMNs for VQA. First, we use “input guidance” to prevent the propagation of wrong predictions and

“output feedback” to tweak the modules’ weights in order to perform their assigned sub-task. In this

section, we present the different training variants and analyze their impact on the NMN performance.

We also resume the experiments from Chapter 3 for a more extensive comparison of the usage of

multi-modal representations against uni-modal representations.

4.5.1 Evaluated methods

We design several experiments to evaluate our hypotheses and employ the following notations to

describe the various experimental setups:

• TF: Apply decaying teacher forcing to guide the inputs of the modules. Details in Sec. 4.2.

66

4.5. EXPERIMENTS

• MT: Apply multi-task losses to guide the expected outputs of the modules. Details in Sec. 4.3.

For both TF and MT training strategies, we experiment with the two different matching techniques

described in Sec. 4.4.1:

• Hard: Employ the hard matching technique.

• Soft: Use the soft matching technique.

4.5.2 Results analysis

Model accuracy

LXV-TF-hard 0.548
LXV-MT-hard 0.598
LXV-TF-MT-hard 0.630
LXV-TF-soft 0.536
LXV-MT-soft 0.563
LXV-TF-MT-soft 0.632

FasttextV-TF-MT-hard 0.495
BertV-TF-MT-hard 0.506
BertV-TF-MT-soft 0.485
FasttextV-TF-MT-soft 0.511

Table 4.1: Performance of various training methods and encodings on the testdev-all set.

Training methods. We aim to enable modular reasoning for visual question answering on the GQA

dataset. We evaluate the effectiveness of our approach by measuring the answer accuracy of several

models (described in Sec. 4.5.1), and report the results in Table. 4.1. Overall, our findings demonstrate

that using a combination of input guidance (denoted as TF) and output feedback (MT) achieves the

highest accuracy, with a score of 63.2%.

When comparing LXV-TF (decaying teacher forcing) with LXV-MT (multi-task loss), we observe

that the multi-task loss alone achieves higher accuracy than using decaying teacher forcing alone.

This can be attributed to the fact that when using TF alone, the final loss L is solely determined by

the answer modules loss Lanswer and during early training stages, the application of TF limits the

backpropagation process, preventing it from reaching the first modules of the programs. As a result,

the impact of Lanswer on the first modules of the program is limited.

67

4.5. EXPERIMENTS

Interestingly, the combination of multi-task loss and decaying teacher forcing exhibits complemen-

tary effects, leveraging the strengths of both techniques to enhance training dynamics and overall

performance.

To assess the effectiveness of the decaying teacher forcing guidance, we compare LXV-MT against

LXV-TF-MT. The TF guidance has led to accuracy improvements with both soft and hard matching

settings for NMN. Decaying teacher forcing can be viewed as a form of curriculum learning, where the

model trains on programs of increasing length and complexity. During training, we observed a faster

increase in accuracy for the models using TF compared to those without TF, as the answer modules

receive ground-truth inputs in the early stages. As training progresses, the training performance

continues to improve until it reaches a peak, after which it slightly degrades due to the reduced use of

TF and the modules adjusting to collaborative functioning. Nonetheless, as training continues, the

testing performance surpasses that of the models without TF.

When combining the MT loss with LXV-TF, modules are optimized based on their intermediate

outputs losses and they can benefit from the additional guidance provided by the back-propagation of

Latt and Lbool. We reach the best performances outlined by LXV-TF-MT-soft and LXV-TF-MT-hard.

The increase in accuracy ranges from +8.2% in the hard matching setting to +9.6% in the soft

matching setting.

Input encodings. Next, we measure the impact of different input representations on the performance

as detailed in Chapter 3, Section 3.7. For unimodal embeddings we encode the question with fastText

word embeddings or the BERT language model, and the image with Faster-RCNN features. For

cross-modal representations, we encode the question and the image with LXMERT, denoted as LXV.

The experiments are conducted using the best training strategies based on the previous comparative

analysis, we employ the TF guidance and the MT loss for all the experiments.

When comparing fastText and BERT, empirical observations indicate that BERT tends to achieve

better performance when utilizing hard matching, which involves a focused and selective attention

mechanism. Conversely, fastText demonstrates improved performance with the soft matching mecha-

nism, enabling a multi-label approach. The choice between these matching mechanisms relies on the

inputs of the models and the training strategy, as each model may demonstrate superior performance

in different scenarios.

68

4.5. EXPERIMENTS

LXMERT’s cross-modal aligned features, referred to as LXV, have yielded substantial improvements

in accuracy compared to uni-modal representations. Integrating these features empowers the modular

reasoning process with a deeper comprehension of word embeddings and bounding box characteristics,

resulting in superior performance and more precise predictions.

4.5.3 Implementation details

In our experiments, we utilize the base architecture described in Chapter 3 and enhance it

by incorporating our teacher-guidance techniques, which include both input guidance and output

feedback. Below, we provide the implementation details for each of these teacher-guidance methods.

We implement the code and conduct experiments using PyTorch on Nvidia GPUs.

In the context of input guidance of the decaying teacher forcing, the probability of employing

teacher forcing is calculated as ϵe = ϵe−1 − η. We set the initial teacher forcing probability at ϵ1 = 1

and reduce it by η every epoch. In our initial experiments, we selected a decaying factor of η = 0.1.

Consequently, the teacher forcing guidance was gradually phased out over just 10 epochs, after which

the modules were allowed to train independently in an open-loop manner. However, we observed that

this decaying factor was relatively high, and the modules required more substantial teacher forcing.

Subsequently, we adjusted the factor to η = 0.05, extending the decaying teacher forcing period to 20

epochs. This modification allowed for a more gradual transition, providing the modules with increased

teacher guidance over a more extended training period.

Regarding the output feedback mechanism, we determine distinct weights for each type of loss

when calculating the multi-task loss. Our selection of these weights is based on the observed scales of

each loss type: we assign 0.1 to the answer loss, 0.7 to the attention loss, and 0.2 to the boolean loss.

To calculate the losses for various module functions and compute their average loss, we make use of a

masking mechanism to calculate the averages per module function.

Optimization. As for the optimizer used in training, we utilize the Stochastic Gradient Descent

(SGD) optimizer and conduct experiments with two different learning rates: 0.1 and 0.03. The batch

size employed is 1024.

69

4.5. EXPERIMENTS

4.5.4 Modules training evolution

In this subsection, we provide an analysis of the training loss evolution observed during the training

process of our model. These loss curves serve as invaluable tools for understanding the learning

dynamics of the different modules, especially when integrating the output feedback and the input

guidance as part of our teacher-guidance strategies. The input guidance is used for 20 epochs and

the output feedback is preserved for all the duration of training. The visualizations, as depicted

in Figure 4.5, categorize the modules into three types: attention modules, Boolean modules, and

answer modules. Each type is represented separately to allow for a closer examination of their training

behaviors.

Starting with the attention modules (Figure 4.5a), we note some interesting patterns. The

relateAttr module exhibits a positive trend with decreasing loss over time, indicating effective

learning. However, other attention modules show unique behaviors. For instance, select, relateSub,

and relateObj initially demonstrate loss reduction when teacher forcing is at its peak. Still, they

encounter an increase in error as teacher forcing diminishes, showcased by the subsequent dip in

performance. This is explained by the fact that when reducing teacher forcing probability, the modules

start propagating their outputs to subsequent modules that are inherently less accurate than ground

truth targets. Consequently, the subsequent modules receive less accurate inputs, which leads to an

increase in errors during the training process. The modules filterAttr, filterNot, and filterPos

present a different challenge. After approximately 40 epochs, their losses plateau and show a slight

increase as teacher forcing wanes.

Turning to the Boolean modules (Figure 4.5b), they predominantly demonstrate a decreasing loss

trend during training, converging toward minimal errors. Modules like same, sameAll, different,

and differentAll particularly benefit from weight-sharing techniques. Nevertheless, and and or

modules appear to have higher losses compared to the rest. Despite having no trainable parameters

themselves, these modules accumulate the errors from the previous reasoning branches, which can

result in higher losses. The fact that the exist module has a relatively high loss can be attributed to

the inherent difficulty of its task.

Lastly, the answer modules (Figure 4.5c) have a more diverse range of behaviors. Some modules,

like chooseName, queryName, and queryAttr, display steady loss reduction throughout training.

70

4.5. EXPERIMENTS

In contrast, queryPos, chooseRel, and choosePos show quicker loss reduction initially, eventually

reaching a plateau. The compare module presents the most substantial error, primarily due to

the relatively low number of compare questions in the training data, as indicated in the dataset

section 2.4. The use of the Binary Cross-Entropy loss with logits further accentuates these errors.

In contrast, AnswerLogic modules exhibit comparatively lower errors, reflecting the simpler nature

of their task—choosing between “yes” or “no” as answers, compared to the open-ended questions

addressed by other answer modules.

In summary, these training curves provide valuable insights into the learning behaviors and

challenges associated with different modules in the model.

(a) Attention modules losses. (b) Boolean modules losses.

(c) Answer modules losses

Figure 4.5: Modules’ training loss curves plotted every 10 epochs.

4.5.5 Qualitative analysis of the modular approach

In Figure 4.6, we provide a visual representation of the reasoning process for three distinct questions,

showcasing instances where the NMN exhibits the expected behavior. We highlight the bounding

boxes with the highest attention values from the attention output vector. For boolean modules, we

71

4.5. EXPERIMENTS

display the output probability and finally the predicted answer.

The first example, labeled as “Question 1”, queries ‘What color are the tennis shoes, white or red?’

This question falls under the category of attribute choice assessment. It involves a sequence of operations

within the NMN. Initially, the select(shoes) module localizes the shoes object. Subsequently, the

filterAttr(tennis) module is employed to narrow the attention specifically to tennis shoes and

retaining focus on the previously identified object. The resulting attention vector is then fed into the

chooseAttr(white | red) module. This module utilizes the provided input arguments to classify

the answer and predict the correct response, which, in this case, is ‘white’.

In “Question 2”, categorized as an object existence assessment, the task is to identify white

skateboards within the given image, phrased as ‘Do you see any skateboards that are white?’. The

process unfolds as follows: initially, the first step select(skateboard) effectively singles out the

skateboard as the primary object of interest. Subsequently, the second module filterAttr(white)

shifts the focus of attention towards white objects. However, since the skateboard is not white, the

attention pivots towards the white building. The exist module then evaluates whether there is an

object with a notably high attention value. Based on this evaluation, it generates a low probability

score of 0.3, from which the answer module answerLogic predicts the answer ‘no’.

In “Question 3”, which is a query-type question asking ‘What is the item of furniture to the right

of the television called?’, the program execution unfolds as follows. Initially, the select(television)

module identifies the television object within the image. Subsequently, the focus is directed towards

objects positioned to the right of the television, a task performed by the relateSub(to the right

of) module. Among these objects, the select(furniture) module singles out the furniture in

question. The outputs from these two modules, representing the objects to the right of the television

and the selected piece of furniture, are merged by the fusion module to ensure sustained attention on

them. Finally, the queryName module undertakes the classification of the name of the detected object

and predicts it, with the result being ‘couch’ in this particular instance.

These examples demonstrate the explainability of our approach and the ability to trace the model’s

decision-making process.

In Figure 4.7, we provide examples where the NMN fails to predict the correct answer. We have

highlighted the bounding box with the highest attention value from the intermediate attention vectors

72

4.6. CONCLUSION

Figure 4.6: Visualization of the reasoning process.

in each case. For the first question, which inquires about whether the hat is dry or not, the select

module correctly identifies the hat object. However, the verifyAttr module assigns a low probability

value, leading to an incorrect answer. In the second example, a common error occurs where the model

predicts an answer that is semantically close to the correct answer, such as “brown” instead of “orange”.

In the third example, the question about the type of vehicle in front of the flag. The model successfully

detects both the flag and the vehicle but fails to classify the correct type of vehicle, which is a “van”.

It’s important to note that other incorrect predictions in the testdev-all set can also be attributed to

failures in the intermediate states of the reasoning process, ultimately resulting in incorrect answers.

4.6 Conclusion

In this chapter, we presented a teacher-guidance training strategy for NMNs, which has demon-

strated several key contributions. We proposed two techniques to better supervise the program modules

performance. The first technique, known as input guidance, involves supplying ground truth inputs to

intermediate modules instead of their previous module’s outputs. This approach helps prevent error

propagation during the early stages of training. The second technique, intermediate output feedback,

73

4.6. CONCLUSION

Figure 4.7: Visualization of the reasoning process for some incorrect answers.

calculates individual module losses and optimizes them to perform their specific sub-tasks.

Our approach enhances generalization and promotes a transparent reasoning process, as evidenced

by the experimental results on the GQA dataset. By harnessing our proposed approach, the neural

modules acquire the capability to learn their reasoning sub-tasks both independently and in an

end-to-end manner. This not only enhances training efficiency but also increases the interpretability

of the system, allowing for a better understanding of the underlying reasoning processes. In addition

to the aforementioned contributions, our work paves the way to a better understanding of NMNs for

the task of visual reasoning.

74

Chapter 5

Curriculum learning for neural module
networks

Contents

5.1 Introduction . 76

5.2 Curriculum Learning setup . 76

5.2.1 Difficulty criterion . 76

5.2.2 Scheduler . 78

5.2.3 Sampling function . 78

5.2.4 Performance evaluator . 79

5.3 Experiments . 79

5.3.1 Evaluated methods . 80

5.3.2 Results analysis . 81

5.3.3 Modules performances . 84

5.3.4 Implementation details . 85

5.3.5 Additional experiments . 86

5.4 Conclusion . 87

75

5.1. INTRODUCTION

5.1 Introduction

To optimize the training of Neural Module Networks (NMNs) beyond teacher guidance, we develop

a dynamic approach known as Curriculum Learning (CL). This training strategy revisits the learning

process by thoughtfully organizing the training examples before feeding them to the NMN. Given the

inherently modular architecture of NMNs, it may seem obvious that commencing with the acquisition

of shorter programs before gradually advancing to more complex ones is a reasonable approach.

Curriculum Learning (CL) [Elman, 1993, Soviany et al., 2022, Wang et al., 2022b] consists in learning

the easier parts of the task first, before tackling it entirely. In this chapter, we study this training

strategy and elaborate several difficulty criteria based on which we order the training examples. In

Section 5.2, we build on previous works using CL as mentioned in the related work Section 2.3.3

and define the CL strategy we adopted in the context of NMNs. Then, in Section 5.3, we detail the

evaluated approaches and analyse the results. Ultimately, we draw insightful conclusions regarding

the integration of CL principles within the modular framework. This Chapter presents our VISAPP

conference paper [Aissa et al., 2023a].

5.2 Curriculum Learning setup

Our objective is to investigate Curriculum Learning (CL) techniques for Visual Question Answering

(VQA) and identify a CL method that not only reduces training expenses but also optimizes data

utilization through efficient sampling and repetition techniques. Typically, a CL method comprises

several components, including a difficulty criterion, a scheduler and a sampling function. In the

subsequent subsections, we provide insights into each of these elements.

5.2.1 Difficulty criterion

The difficulty criterion allows to characterize the samples: training starts with the “easiest”

samples, then progressively moves toward more “difficult” samples. Different criteria were adopted in

the literature, including program length, answer hierarchy, and question loss. For instance, question

loss was employed with some success as a difficulty criterion in [Sachan and Xing, 2016] for QA and

in [Askarian et al., 2021] for VQA about synthetic CLEVR [Johnson et al., 2017a] images. However,

computing question loss requires a first training iteration over all the training data. Our difficulty

76

5.2. CURRICULUM LEARNING SETUP

criteria is based on the premise that reasoning about a single object and its properties is simpler

than examining the relations between several objects or comparing their attributes. The number of

different objects in the question should then be a good indication of the complexity of reasoning and

thus a relevant a priori difficulty criterion for CL. In Figure 5.1 we showcase four examples, each for a

different difficulty level.

Figure 5.1: GQA dataset samples with different difficulty levels.

Program length is another potentially relevant criterion that takes into account the flow of gra-

dient in the NMN structure. Shorter programs necessitate fewer gradient computation steps, while

longer programs require more extensive gradient computations. This criterion is closely tied to the

number of objects within a question: questions with more objects generally result in longer programs.

However, program length is not solely contingent on the number of objects. Even questions involving

a single object can entail a high number of functions applied to that object. For instance, consider

the question “Is there a rabbit that is white and black in the picture?” which corresponds to the

following program: [select(rabbit), VerifyAttr(black), Exist(), select(rabbit), Verify-

Attr(white), Exist(), and(), answerLogic()]. Despite addressing a single object, this reasoning

chain consists of 8 modules.

Given these considerations, multiple criteria can be combined to establish the increasing difficulty

77

5.2. CURRICULUM LEARNING SETUP

of training samples in CL. As a primary criterion, we sort samples based on the number of objects

and group them according to the number of concepts within the question. A secondary criterion

refines this ordering within each group: for each specific number of objects, we start with shorter

programs, progress to medium-length ones, and conclude with longer programs. This approach enables

a structured and progressively challenging learning process. Next we delve into the specifics of the

scheduler.

5.2.2 Scheduler

The role of the scheduler in Curriculum Learning (CL) is to determine the timing for updating the

curriculum, indicating when to transition from one difficulty level to the next. Various scheduling

strategies can be employed, some of which rely on heuristics derived from factors such as loss values,

training time, or the number of examples seen.

In our approach, we have chosen a systematic and predetermined sample size for each difficulty

level, offering a straightforward controlled solution. Throughout CL, we maintain a consistent sample

size of 1 million examples per CL iteration. The scheduler can also be tasked with repeating a training

setup if specific transition criteria are not met.

5.2.3 Sampling function

The sampling function plays an important role in shaping the selection of training examples across

various difficulty levels by assigning specific weights to individual examples. The effective approach

we propose is to ensure a balanced distribution of occurrence probabilities among different types of

answer modules. This also helps reduce the answer modules classification bias. Another criterion,

which draws inspiration from boosting techniques, involves giving preference to programs (examples)

that have resulted in higher errors during training. This is achieved by computing the average loss for

each module across all previously encountered examples and assigning greater weight to programs

composed of modules with higher loss values. It is important to note, for the number of training

examples, that we employ a sampling approach with replacement. Consequently, the count of distinct

examples processed by the executor is lower than the specified sample size of 1M.

Employing a CL strategy, where training examples are organized by their level of difficulty,

introduces a potential challenge known as “catastrophic forgetting”. This phenomenon, documented

78

5.3. EXPERIMENTS

in the literature [ROBINS, 1995, Greco et al., 2019], entails the loss or interference with previously

acquired knowledge when new information is learned. To prevent the risk of catastrophic forgetting, we

augment the current training sample (reflecting the current difficulty level) with a random selection of

samples from previous levels. This approach ensures that the model continues to learn from a diverse

range of examples, preserving its ability to handle both simple and complex tasks. To provide further

detail, beginning with the second Curriculum Learning (CL) iteration we incorporate a sampling

mechanism where 20% of the training sample is drawn from the examples encountered in the preceding

iterations.

5.2.4 Performance evaluator

The performance evaluator is a component or mechanism that assesses the model’s performance

on the training examples or curriculum at a given difficulty level. Several evaluators are employed to

compare CL and standard learning. Since our focus is on reducing the cost of training, we measure

the total number of example presentations during training as the computational cost (Comp. cost).

We also mention the maximal number of different examples seen during training (# examples), as

different methods can make use of larger or smaller portions of the training set. While we focus on

the cost of training, we also want to reach an accuracy that is close to the one obtained by standard

learning, so we also report the accuracy of the predicted answers.

5.3 Experiments

To expand the pool of examples available for CL, we opted to utilize the unbalanced version of the

GQA dataset [Hudson and Manning, 2019b]. While the balanced version of the dataset maintains a

uniform distribution of answers, it contains a relatively limited number of examples, approximately

one million. By using the unbalanced dataset, we gain access to a larger and more diverse set of

examples, which provides a richer training environment for our CL experiments. This choice allows us

to explore a wider range of question types, difficulties, and answer distributions, ultimately enhancing

the robustness and adaptability of our CL strategy for the VQA task. In the following section, we will

provide a comprehensive overview of the various methods we have evaluated for CL.

79

5.3. EXPERIMENTS

5.3.1 Evaluated methods

When describing the different performed experiments, we use the following notations, which

correspond to different algorithmic choices:

• Unbalanced: We train on all the examples from the unbalanced GQA train split, we use the

traditional random batch training strategy and the model sees all the data examples in every

epoch.

• Balanced: We train on the balanced version of the GQA dataset. At every epoch, the model is

trained on all the balanced dataset training examples.

• Random: Instead of training on all the dataset examples, only 1M random selection of examples

from the unbalanced dataset are presented to the model at every iteration.

• CL: The model is trained using Curriculum Learning and the sampling is driven by the number

of objects in the programs. At every CL iteration the model sees 1M examples filtered from

the unbalanced dataset by the curriculum sampler. The training needs 4 CL iterations to be

complete, where each iteration has an increased difficulty given by the number of objects of its

programs (ranging from 1 to 4).

• Length (L): The curriculum sampler filters the programs by their lengths for each number of

objects, a CL-iteration is defined by a number of objects and a program length (short or medium

or long).

• Weights (W): We use several sampling weights for the filtered programs:

– W.a: To make the answer modules distribution of the resulting sample more uniform we

use the ‘answer module’ weighting; this balances the answer modules occurrences in the

result sample so that the model equally sees all the defined answer modules.

– W.b: The ‘modules loss’ weighting indicates that an example’s weight is proportional to

the sum of the average losses of the modules composing its program, to focus the model on

harder examples.

– Uniform: indicates that the sampling is uniform, so the sampling with replacement results

in a sample that is uniformly distributed over all the dataset.

80

5.3. EXPERIMENTS

• Pretrain (P): The model’s parameters are initialized from a model trained using the Random

variant described above.

• Repeat (R): We repeat the same CL-iteration twice.

5.3.2 Results analysis

Model
CL configuration

Iterations
Number of

Accuracy
weighting pretraining iterations/level examples (≤)

CL+W.a answer − 1 4 4 M 0.642

CL+W.b losses − 1 4 4 M 0.635

CL+W.a+P answer 2 iterations 1 [2] + 3 5 M 0.670

CL+W.a+P+R answer 2 iterations 2 [2] + 5 7 M 0.681

Table 5.1: Results on testdev-all for several CL strategies.

This section presents an analysis of the performance and the cost of our modular VQA framework

with multiple CL training strategies, followed by a comparison with models not using CL to show the

effectiveness of our proposed training approach.

Comparison of CL methods. We start by a comparative analysis of the proposed CL strategies

as described in Sec. 5.3.1. Table 5.1 reports the performance of our model based on the different

CL configurations. The goal of CL is to make the training more effective and to achieve the highest

accuracy while training for fewer iterations. Therefore, for each model are shown the number of

iterations and training examples required to reach the highest accuracy.

From the results, it is clear that the ‘answer module’ weighting is the most effective weighting

function. One can see this as a balancing of the answer modules presence over the training sample.

The CL+W.a model (using the ‘answer module’ weighting) achieves higher accuracy results than

the CL+W.b model (with the ‘loss’ weighting), both reaching their top respective accuracies after 4

training iterations only. The ‘answer module’ weighting also yields better accuracy than the ‘uniform’

weighting after the same number of training iterations. This is shown by comparing CL+L (‘uniform’

weighting by default) and CL+L+W.a in Table 5.2. Moreover, the accuracy of CL+L+W.a continues

to increase after the 11th iteration to achieve its top at iteration 12. The superior performance of the

‘answer module’ weighting function in two different comparable settings makes us select this weighting

for the rest of the experiments.

81

5.3. EXPERIMENTS

Model Computation cost # examples Accuracy

CL+L 11 11 M 0.650

CL+L+W.a 12 12 M 0.655

Table 5.2: Results on testdev-all with program length as a refinement for the CL difficulty measure.
Computation cost is the number of seen examples per iteration times the number of iterations.

The refinement of the CL difficulty (or hardness) measure using the number of question objects

(Length-CL difficulty measure) increases the CL+W.a top accuracy by 1%, see the CL+L+W.a

line in Table 5.2. However, this improvement has a significant cost, as CL+L+W.a requires 12

training iterations (12M examples) unlike CL+W.a which only needs 4 iterations (4M examples). This

reinforces the idea that with a more refined difficulty measure the model has more time to adjust

to difficult examples, and its accuracy gradually increases to achieve a better top accuracy in a CL

setting. But training on 12M examples is expensive since the overall dataset size has 14M examples.

We thus decided to explore different options to obtain comparable results at a lower cost.

A promising finding was that pretraining the models for a few iterations with randomly sampled

1M examples each leads to an accuracy increase of over 1.5%, as shown by the CL+W.a+P model

which was pretrained for only 2 iterations. This “warms up” the model to the modular aspect of our

VQA framework, allowing it to be more general and effective before starting the CL.

An interesting finding was that the model reached peak accuracy before iterating over the full

CL configuration. The accuracy drop resulting after the 4th iteration may be explained by model

overfitting on the questions with 4 objects. Indeed, in the GQA dataset these questions have a

substantially unbalanced answer distribution.

A further finding is that repeating the same CL-iteration twice (as in CL+W.a+P+R) improves

the top accuracy results by 1.1%, while only moderately increasing the number of iterations. This

can be explained by the fact that doubling the number of training iterations helps the model better

understand the structure of problem without augmenting the training data size. As detailed in

Sec. 5.3.1, when sampling with replacement we obtain a number of distinct examples that is slightly

lower than the sample size, therefore the reported number of examples (# examples) is an upper

bound of the number of examples actually employed.

As a general conclusion, we consider the CL+W.a+P+R model as the best modular VQA model

that scores the best accuracy of 68.1% after 7 training iterations using less than 7M distinct examples,

82

5.3. EXPERIMENTS

i.e. less than half of the training data.

Impact of CL. We perform several experiments to assess the impact of the CL on our compositional

visual reasoning framework. We do this by training our model without CL (Unbalanced, Balanced,

and Random configurations described in Sec. 5.3.1), then comparing the accuracy performance and

the experiment cost in terms of both computation cost and number of different training examples. In

Table 5.3 we report the accuracy and cost results of the conducted experiments and compare them to

the performance of our best CL model CL+W.a+P+R.

Model Computation cost # examples Accuracy

Unbalanced 9 × 14 M 14 M 0.702

Balanced 50 × 1.4 M 1.4 M 0.678

Random 12 × 1 M ≤ 12 M 0.694

CL+W.a+P+R 7 × 1 M < 7 M 0.681

Table 5.3: Comparaison of our CL model (CL+W.a+P+R) with no-CL models (Unbalanced, Balanced,
and Random) on the testdev-all set.

The Unbalanced model (trained on the entire unbalanced training set of 14M) achieves the highest

accuracy value of 70.2%. This model also has the highest training cost among the evaluated models.

The Balanced model, trained on the balanced dataset for a large number of epochs, achieves lower

results than the Unbalanced model. This is partly due to the fact that the balancing reduces not only

the number of questions in the dataset, but also the diversity of the programs. Also, to the use of the

unbalanced testdev-all for evaluation.

By comparing our best CL model (CL+W.a+P+R) to the models trained without CL (no-CL), we

find very significant gains in terms of computational cost, e.g. an 18-fold reduction compared to the

top contender, the model trained on the Unbalanced dataset. The price to pay—a drop of only 2%

in accuracy—appears reasonable. The Random model, trained on randomly sampled 12M examples,

performs almost as well as the Unbalanced model, an expected result since both models use a similar

amount of distinct training examples (12M vs. 14M). The Unbalanced model requires an almost 9

times more expensive training than Random, but the improvement in accuracy (70.2 % vs. 69.4%)

hardly justifies it. However, the proposed CL model has an almost 2 times lower computational cost

than Random, confirming the superiority of curriculum learning in this type of application.

83

5.3. EXPERIMENTS

5.3.3 Modules performances

Figure 5.2: Accuracy histograms for the structural types of the questions.

To gain deeper insights into our model’s performance in relation to the structural and semantic

types of questions, we have generated in Figures 5.2 and 5.3 accuracy plots for our best Curriculum

Learning (CL) trained model for each question type.

As described in Section 2.4, the structural type is determined by the final answer module used in

the question program. Notably, questions falling into the “choose”, “verify”, and “compare” structural

types exhibit higher accuracies when compared to the overall average accuracy across all questions.

Among these, “choose” questions, which require selecting between two alternatives, exhibit notably

high accuracy levels. This is primarily attributed to the fact that the alternatives presented in the

choose module’s textual argument directly correspond to the two classes from which the answer must

be chosen. Consequently, this indirectly reduces the number of potential answers and, as a result,

lowers the complexity of these questions in comparison to other structural types.

The logical questions involve the questions requiring logical inferences using dual reasoning branches

inputted to AND or OR operations, these questions have an accuracy of 66.7%.

Conversely, the “query” questions exhibit a lower accuracy of 43.9%. These types of questions

involve open-ended inquiries related to object classification, attribute classification, and relationship

querying, which tend to be more intricate and challenging, resulting in comparatively lower accuracy

levels.

84

5.3. EXPERIMENTS

Figure 5.3: Accuracy histograms for the semantic types of the questions.

Transitioning to an examination of the model’s performance in relation to question semantic types,

which pertain to the primary subject of inquiry in the question:

Global semantic type questions, inquiring about weather or location, exhibit the highest perfor-

mance, achieving an accuracy rate of 75.15%.

Questions that seek information about the subject or object of a described relationship also achieve

a high performance level of 73.5%. It’s worth noting that this is the most prevalent semantic type in

the dataset, encompassing 52% of the questions.

Semantic type questions related to object categorization within a class, exhibit the lowest perfor-

mance in our evaluation. For instance, questions like ‘What kind of fruit is on the table?’ entail not

only localizing the fruit’s bounding box in the image but also classifying it to a more specific category

within a larger class. Despite receiving a higher level of granularity for an object class as indicated in

the question, the model encounters difficulties when attempting to identify the finer details or lower

granularity of the object class.

5.3.4 Implementation details

The CL experiments use the output feedback mechanism from Section 4.3 and we determine

distinct weights for each type of loss when calculating the multi-task loss. Our selection of these

weights is based on the observed scales of each loss type: we assign 0.1 to the answer loss, 0.7 to

85

5.3. EXPERIMENTS

Figure 5.4: The program (represented as a sequence of sub-task modules) is applied by the Program
Executor module to the image to answer the question. The proposed work focuses on improving the
Program Executor by using several curriculum learning (CL) strategies.

the attention loss, and 0.2 to the boolean loss. As for the optimizer used in training, we utilize the

Stochastic Gradient Descent (SGD) optimizer and conduct experiments with the same learning rate of

0.1. The batch size employed is 1024.

5.3.5 Additional experiments

In addition to the weighting mechanisms discussed in Section 5.3.1, we conducted further primary

experiments that were not explicitly mentioned in the research papers or the preceding sections.

Specifically, we explored alternative weighting mechanisms when sampling the training examples

for each difficulty level. One approach was to balance the examples within the samples based on

the occurrences of all program modules, not only the answer module in the program as done using

the weighting “answer module frequency”. Another approach involved proportional weighting based

on the number of parameters associated with the program modules. Programs featuring modules

with a greater number of parameters were assigned higher weights for selection. Although that the

experiments we conducted were not exhaustive in comparison to the other weighting techniques, these

alternative weighting mechanisms yielded lower validation results when compared to the “answer

module frequency” and the “modules loss” weighting mechanisms.

86

5.4. CONCLUSION

5.4 Conclusion

In this chapter we presented several Curriculum Learning (CL) strategies within a Neural Module

Network (NMN) framework for Visual Question Answering (VQA). Our model employs an NMN

architecture composed of multiple neural modules, each capable of performing a reasoning sub-task.

We compare several CL strategies for training our NMN architecture to solve a VQA task. Our model

is evaluated on the GQA dataset [Hudson and Manning, 2019b] and shows very interesting results

in terms of computational cost reduction concerning the required training examples and training

iterations.

To drive the CL strategy, we introduced a difficulty measure based on the number of objects in the

question. Additionally, we examined a difficulty refinement technique based on the program length ,

which, in this context, proved to be less effective. Furthermore, we assessed several weighting techniques

to control the sampling of the programs within the same difficulty group with the observation that

a balance between module samples based on the frequency of answer modules appeared to yield

favorable outcomes in CL. By applying the appropriate CL strategy we achieve close accuracy results

by training on a judiciously sampled 50% of the training data, compared to an NMN model trained

without CL on the entire training set.

87

Chapter 6

Conclusion and Perspectives

To conclude this PhD manuscript, we will provide a comprehensive summary of the work conducted

and the key findings obtained throughout this research. Furthermore, we will delve into the potential

perspectives.

Motivated by the compositional aspect of reasoning and the multimodal nature of inputs and

their interactions in a visual question answering (VQA) setup, we proposed a Neural Module Network

(NMN) architecture that takes as input a question, an image and a functional program representing

the step-by-step reasoning process to follow in order to infer an answer.

We also consider compositional representations of both the image and the question, where the image

is represented by its objects and the question by its words. Exploiting the prowess of Transformer

models in learning cross-modal representations, we use a vision and language pre-trained model as our

features extractors. Specifically, we employ LXMERT [Tan and Bansal, 2019], a model pre-trained on

a large-scale dataset encompassing a variety of unimodal and multi-modal vision and language tasks

to learn vision and language alignments. LXMERT is also fine-tuned on the GQA dataset, the dataset

we use in this research. Through experimental comparisons between uni-modal and multi-modal

representations, we have demonstrated the superior efficacy of multi-modal representations and their

positive impact on our NMN architecture [Aissa et al., 2023b].

We design and develop our module taxonomy, where each module specializes in learning a distinct

reasoning sub-task. These modules fall into three categories based on their functional roles: 1) Attention

Modules: these modules have the objective of highlighting pertinent regions within the image. They

learn tasks such as object detection, attribute detection, and relationship detection. 2) Boolean

88

CONCLUSION AND RESEARCH PERSPECTIVES

Modules: this category encompasses modules that make logical inferences. They perform tasks like

conjunction, disjunction, or verification to assess the veracity of a given property. 3) Answer Modules:

they classify the answer to the question.

For each question and image, a Neural Module Network (NMN) is constructed. This construction

adheres to a predefined functional program, which is executed sequentially on the image to predict an

answer. This process involves the cooperation and information exchange between modules through

dependencies, where the output of one module serves as the input for the subsequent module in the

sequence. To mitigate the inherent complexity of the tasks, we employ a weight-sharing technique

that considers the functional and structural characteristics of the diverse modules.

While NMNs provide a more transparent and interpretable reasoning process compared to mono-

lithic architectures that rely on single, all-encompassing blocks, it does present notable training

challenges. Consequently, we introduce a series of training techniques aimed at boosting NMN’s

performance and reducing training costs.

First, we use teacher guidance techniques to supervise the modules. Aside from training the

modules along the reasoning chain to collectively yield precise answers and optimising them based on

the answer error, we introduce an innovative teacher-guidance method that specifically targets the

enhancement of intermediary modules within the reasoning chain. This approach ensures that these

modules perform their designated reasoning sub-tasks, avoiding shortcuts that might compromise the

overall reasoning process.

Two distinct teacher-guidance techniques are introduced in our work. One of these techniques

is inspired by the widely-used teacher-forcing method, commonly employed in sequence-to-sequence

models. Here, we provide the ground-truth input to subsequent modules rather than relying on the

predicted output from the previous module. This prevents error propagation, especially during the

early training stages. As training progresses, we gradually reduce the usage of teacher forcing. This

approach allows the modules to learn their specific tasks autonomously and adapt to collaborative

reasoning with other modules over time. Another teacher-guidance technique we employ draws

inspiration from prior research and resembles multi-task training. In this approach, our loss function

takes the form of a weighted sum of the losses incurred by individual modules. A thorough comparative

analysis is provided in our publication [Aissa et al., 2023b] elucidating the advantages and efficacy of

our teacher-guidance approach in the context of NMNs.

89

CONCLUSION AND RESEARCH PERSPECTIVES

Another notable contribution centers on the design of a Curriculum Learning (CL) strategy

designed to reorder the training examples in a progressively challenging manner. In essence, the

model commences its training with simpler examples and gradually proceeds to more difficult ones.

This approach is rooted in the proven effectiveness of CL in leveraging available data resources more

effectively. To this end, we formulate a CL training strategy tailored for NMNs that employs the

number of concepts contained in a question as a difficulty metric. In other words, questions with

more concepts are considered more difficult. Furthermore, we conduct experiments exploring various

weighting techniques aimed at refining the ordering of examples within each difficulty level. This helps

to balance the occurrences of answer modules. Our comprehensive experimental results affirm that

the judicious application of CL strategies can significantly reduce the training overhead for NMNs, as

detailed in our research paper [Aissa et al., 2023a].

From a broader point of view, it would be interesting to see if a curriculum learning strategy could

benefit from the compositionality of other tasks, such as compositional action recognition in videos.

Breaking down complex actions into simpler sub-actions and gradually introducing more challenging

combinations could potentially enhance the training of machine learning models for action recognition

problems in visual scenes. This exploration finds particular relevance in the context of benchmarks

like the one proposed by [Luo et al., 2021], which provides a structured hierarchy and compositional

breakdown of complex human activities. By leveraging CL, models could potentially follow a trajectory

from comprehending basic sub-actions to gradually tackling more intricate action compositions. Such

an approach has the potential to advance the recognition and parsing of complex activities in video

data, with applications like surveillance systems, video-games or human-robot interaction.

Recently, due to the rapid advancement of Large Language Models (LLMs) such as ChatGPT

[OpenAI, 2023], BLOOM [Scao et al., 2022] or [Almazrouei et al., 2023], new techniques were pro-

posed aimed at addressing the task of VQA by harnessing the capabilities of these LLMs. These

emerging approaches exploit the power of language and employ guided prompting for multi-step

reasoning in complex VQA tasks. Similar to NMNs, a class of these techniques adopts a code generator

and executor framework, which introduces a novel dimension to VQA. Here, the code generator

translates questions into Python-like modular programs through prompting an LLM. Subsequently,

the generated code is executed on the image, facilitated by a Python interpreter and a set of API calls.

This approach has been explored in recent research works such as ViperGPT, VisProg, and CodeVQA

90

CONCLUSION AND RESEARCH PERSPECTIVES

[Suŕıs et al., 2023, Gupta and Kembhavi, 2023, Subramanian et al., 2023], offering promising avenues

for enhancing VQA capabilities. As described in this work, the planning and executing paradigm offers

a more explainable and traceable decision-making process and can be extended to other domains,

including video games, where an agent has to learn how to navigate complex objectives and missions

within a game environment.

91

Bibliography

[Agrawal et al., 2016] Agrawal, A., Batra, D., and Parikh, D. (2016). Analyzing the behavior of visual

question answering models. arXiv preprint arXiv:1606.07356.

[Aissa et al., 2023a] Aissa, W., Ferecatu, M., and Crucianu, M. (2023a). Curriculum learning for

compositional visual reasoning. In Radeva, P., Farinella, G. M., and Bouatouch, K., editors,

Proceedings of VISIGRAPP 2023, Volume 5: VISAPP, pages 888–897. SCITEPRESS.

[Aissa et al., 2023b] Aissa, W., Ferecatu, M., and Crucianu, M. (2023b). Multimodal representations

for teacher-guided compositional visual reasoning. In Blanc-Talon, J., Delmas, P., Philips, W.,

Popescu, D., and Scheunders, P., editors, Advanced Concepts for Intelligent Vision Systems, 21st

International Conference (ACIVS 2023). Springer International Publishing.

[Almazrouei et al., 2023] Almazrouei, E., Alobeidli, H., Alshamsi, A., Cappelli, A., Cojocaru, R.,

Debbah, M., Goffinet, E., Heslow, D., Launay, J., Malartic, Q., Noune, B., Pannier, B., and Penedo,

G. (2023). Falcon-40B: an open large language model with state-of-the-art performance.

[Anderson et al., 2018] Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., and

Zhang, L. (2018). Bottom-up and top-down attention for image captioning and visual question

answering. In CVPR.

[Andreas et al., 2016a] Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2016a). Learning to

compose neural networks for question answering. In Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Technologies,

pages 1545–1554, San Diego, California. Association for Computational Linguistics.

92

BIBLIOGRAPHY

[Andreas et al., 2016b] Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. (2016b). Neural module

networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

39–48.

[Antol et al., 2015] Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., and Parikh,

D. (2015). Vqa: Visual question answering. In Proceedings of the IEEE international conference on

computer vision, pages 2425–2433.

[Arinaldi et al., 2018] Arinaldi, A., Pradana, J. A., and Gurusinga, A. A. (2018). Detection and

classification of vehicles for traffic video analytics. Procedia computer science, 144:259–268.

[Askarian et al., 2021] Askarian, N., Abbasnejad, E., Zukerman, I., Buntine, W., and Haffari, G.

(2021). Curriculum learning effectively improves low data VQA. In Rahimi, A., Lane, W., and

Zuccon, G., editors, Australasian Language Technology Association Workshop (ALTA) 2021, pages

22–33. ACL.

[Bahdanau et al., 2015] Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation

by jointly learning to align and translate. In Bengio, Y. and LeCun, Y., editors, 3rd International

Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings.

[Bengio et al., 2015] Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling

for sequence prediction with recurrent neural networks. CoRR.

[Bojanowski et al., 2016] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2016). Enriching

word vectors with subword information. Transactions of ACL, 5.

[Cadene et al., 2019] Cadene, R., Dancette, C., Cord, M., Parikh, D., et al. (2019). Rubi: Reducing

unimodal biases for visual question answering. Advances in neural information processing systems,

32.

[Chen et al., 2021] Chen, W., Gan, Z., Li, L., Cheng, Y., Wang, W. Y., and Liu, J. (2021). Meta

module network for compositional visual reasoning. In WACV, pages 655–664.

93

BIBLIOGRAPHY

[Chen et al., 2020] Chen, Y.-C., Li, L., Yu, L., El Kholy, A., Ahmed, F., Gan, Z., Cheng, Y., and

Liu, J. (2020). Uniter: Universal image-text representation learning. In European conference on

computer vision, pages 104–120. Springer.

[Cho et al., 2014] Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,

H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder–decoder for statistical

machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational

Linguistics.

[Clune et al., 2013] Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolutionary origins of

modularity. Proceedings of the Royal Society b: Biological sciences, 280(1755):20122863.

[De Marneffe and Manning, 2008] De Marneffe, M.-C. and Manning, C. D. (2008). The stanford

typed dependencies representation. In Coling 2008: proceedings of the workshop on cross-framework

and cross-domain parser evaluation, pages 1–8.

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,

Minnesota. Association for Computational Linguistics.

[Do et al., 2019] Do, T., Do, T.-T., Tran, H., Tjiputra, E., and Tran, Q. D. (2019). Compact trilinear

interaction for visual question answering. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 392–401.

[Dosovitskiy et al., 2021] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,

Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.

(2021). An image is worth 16x16 words: Transformers for image recognition at scale. ICLR.

[Elman, 1993] Elman, J. L. (1993). Learning and development in neural networks: the importance of

starting small. Cognition, 48(1):71–99.

[Fodor, 1983] Fodor, J. A. (1983). The modularity of mind. MIT press.

94

BIBLIOGRAPHY

[Girshick, 2015] Girshick, R. B. (2015). Fast R-CNN. CoRR, abs/1504.08083.

[Goodfellow et al., 2016] Goodfellow, I. J., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT

Press, Cambridge, MA, USA. http://www.deeplearningbook.org.

[Goyal et al., 2017] Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and Parikh, D. (2017). Making

the V in VQA matter: Elevating the role of image understanding in Visual Question Answering. In

CVPR.

[Greco et al., 2019] Greco, C., Plank, B., Fernández, R., and Bernardi, R. (2019). Psycholinguistics

meets continual learning: Measuring catastrophic forgetting in visual question answering. In

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages

3601–3605, Florence, Italy. Association for Computational Linguistics.

[Gupta and Kembhavi, 2023] Gupta, T. and Kembhavi, A. (2023). Visual programming: Composi-

tional visual reasoning without training. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 14953–14962.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. IEEE International Conference on Computer

Vision (ICCV 2015), 1502.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770–778.

[Hu et al., 2017] Hu, R., Andreas, J., Rohrbach, M., Darrell, T., and Saenko, K. (2017). Learning to

reason: End-to-end module networks for visual question answering. In Proceedings of the IEEE

international conference on computer vision, pages 804–813.

[Hudson and Manning, 2019a] Hudson, D. and Manning, C. D. (2019a). Learning by abstraction:

The neural state machine. Advances in Neural Information Processing Systems, 32.

[Hudson and Manning, 2018] Hudson, D. A. and Manning, C. D. (2018). Compositional attention

networks for machine reasoning.

95

http://www.deeplearningbook.org

BIBLIOGRAPHY

[Hudson and Manning, 2019b] Hudson, D. A. and Manning, C. D. (2019b). Gqa: A new dataset for

real-world visual reasoning and compositional question answering. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 6700–6709.

[Hudson and Manning, 2019c] Hudson, D. A. and Manning, C. D. (2019c). GQA: A new dataset for

real-world visual reasoning and compositional question answering. In CVPR.

[Johnson et al., 2017a] Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., and

Girshick, R. B. (2017a). CLEVR: A diagnostic dataset for compositional language and elementary

visual reasoning. In CVPR, pages 1988–1997.

[Johnson et al., 2017b] Johnson, J., Hariharan, B., Van Der Maaten, L., Hoffman, J., Fei-Fei, L.,

Zitnick, C. L., and Girshick, R. (2017b). Inferring and executing programs for visual reasoning. In

ICCV, pages 3008–3017.

[Kafle and Kanan, 2017a] Kafle, K. and Kanan, C. (2017a). An analysis of visual question answering

algorithms. In ICCV.

[Kafle and Kanan, 2017b] Kafle, K. and Kanan, C. (2017b). Visual question answering: Datasets,

algorithms, and future challenges. Computer Vision and Image Understanding, 163:3–20.

[Kervadec et al., 2021] Kervadec, C., Antipov, G., Baccouche, M., and Wolf, C. (2021). Roses are red,

violets are blue... but should VQA expect them to? In CVPR, pages 2776–2785.

[Kim et al., 2020] Kim, E.-S., Kang, W. Y., On, K.-W., Heo, Y.-J., and Zhang, B.-T. (2020). Hyper-

graph attention networks for multimodal learning. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 14581–14590.

[Kim et al., 2018] Kim, J.-H., Jun, J., and Zhang, B.-T. (2018). Bilinear attention networks. Advances

in neural information processing systems, 31.

[Kim et al., 2016] Kim, J.-H., Lee, S.-W., Kwak, D., Heo, M.-O., Kim, J., Ha, J.-W., and Zhang,

B.-T. (2016). Multimodal residual learning for visual qa. Advances in neural information processing

systems, 29.

96

BIBLIOGRAPHY

[Kim et al., 2021] Kim, W., Son, B., and Kim, I. (2021). Vilt: Vision-and-language transformer

without convolution or region supervision. In International Conference on Machine Learning, pages

5583–5594. PMLR.

[Kirillov et al., 2023] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao,

T., Whitehead, S., Berg, A. C., Lo, W.-Y., Dollár, P., and Girshick, R. (2023). Segment anything.

arXiv:2304.02643.

[Klein and Manning, 2003] Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing.

In Proceedings of the 41st annual meeting of the association for computational linguistics, pages

423–430.

[Krishna et al., 2017] Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S.,

Kalantidis, Y., Li, L.-J., Shamma, D. A., Bernstein, M. S., and Fei-Fei, L. (2017). Visual genome:

Connecting language and vision using crowdsourced dense image annotations. Int. J. Comput.

Vision, 123(1):32–73.

[Kumar et al., 2010] Kumar, M., Packer, B., and Koller, D. (2010). Self-paced learning for latent

variable models. Advances in neural information processing systems, 23.

[Lamb et al., 2016] Lamb, A. M., ALIAS PARTH GOYAL, A. G., Zhang, Y., Zhang, S., Courville,

A. C., and Bengio, Y. (2016). Professor forcing: A new algorithm for training recurrent networks.

In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural

Information Processing Systems, volume 29. Curran Associates, Inc.

[Lan et al., 2020] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. (2020).

ALBERT: A lite BERT for self-supervised learning of language representations. In 8th International

Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

OpenReview.net.

[Lechat, 2021] Lechat, A. (2021). Apprentissage incrémental semi-supervisé pour les applications de

vision artificielle. Theses, Normandie Université.

[Li et al., 2019a] Li, G., Wang, X., and Zhu, W. (2019a). Perceptual visual reasoning with knowledge

propagation. In ACM MM, MM ’19, page 530–538, New York, NY, USA. ACM.

97

BIBLIOGRAPHY

[Li et al., 2021] Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., and Hoi, S. C. H. (2021). Align

before fuse: Vision and language representation learning with momentum distillation. Advances in

neural information processing systems, 34:9694–9705.

[Li et al., 2019b] Li, L. H., Yatskar, M., Yin, D., Hsieh, C.-J., and Chang, K.-W. (2019b). Visualbert:

A simple and performant baseline for vision and language. In Arxiv.

[Li et al., 2020] Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L.,

Wei, F., et al. (2020). Oscar: Object-semantics aligned pre-training for vision-language tasks. In

Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,

Proceedings, Part XXX 16, pages 121–137. Springer.

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,

and Zitnick, C. L. (2014). Microsoft coco: Common objects in context. In Computer Vision–ECCV

2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V

13, pages 740–755. Springer.

[Liu et al., 2018] Liu, C., He, S., Liu, K., and Zhao, J. (2018). Curriculum learning for natural answer

generation. In IJCAI, page 4223–4229. AAAI Press.

[Lu et al., 2019a] Lu, J., Batra, D., Parikh, D., and Lee, S. (2019a). Vilbert: Pretraining task-agnostic

visiolinguistic representations for vision-and-language tasks. In Wallach, H. M., Larochelle, H.,

Beygelzimer, A., d’Alché Buc, F., Fox, E. B., and Garnett, R., editors, NeurIPS, pages 13–23.

[Lu et al., 2019b] Lu, J., Batra, D., Parikh, D., and Lee, S. (2019b). ViLBERT: Pretraining task-

agnostic visiolinguistic representations for vision-and-language tasks. In Wallach, H., Larochelle, H.,

Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, NeurIPS, volume 32. Curran

Associates, Inc.

[Luo et al., 2021] Luo, Z., Xie, W., Kapoor, S., Liang, Y., Cooper, M., Niebles, J. C., Adeli, E., and

Li, F.-F. (2021). Moma: Multi-object multi-actor activity parsing. Advances in neural information

processing systems, 34:17939–17955.

[Malinowski and Fritz, 2014] Malinowski, M. and Fritz, M. (2014). A multi-world approach to question

answering about real-world scenes based on uncertain input. Advances in neural information

processing systems, 27.

98

BIBLIOGRAPHY

[Mascharka et al., 2018] Mascharka, D., Tran, P., Soklaski, R., and Majumdar, A. (2018). Trans-

parency by design: Closing the gap between performance and interpretability in visual reasoning. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4942–4950.

[McCann et al., 2017] McCann, B., Bradbury, J., Xiong, C., and Socher, R. (2017). Learned in

translation: Contextualized word vectors. Advances in neural information processing systems, 30.

[Mihaylova and Martins, 2019] Mihaylova, T. and Martins, A. F. T. (2019). Scheduled sampling for

transformers. In Proceedings of ACL: Student Research Workshop, pages 351–356, Florence, Italy.

Association for Computational Linguistics.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation

of word representations in vector space. Proceedings of Workshop at ICLR, 2013.

[Nguyen et al., 2022] Nguyen, B. X., Do, T., Tran, H., Tjiputra, E., Tran, Q. D., and Nguyen, A.

(2022). Coarse-to-fine reasoning for visual question answering. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 4558–4566.

[OpenAI, 2023] OpenAI (2023). Gpt-4 technical report.

[Palanisamy, 2020] Palanisamy, P. (2020). Multi-agent connected autonomous driving using deep

reinforcement learning. In 2020 International Joint Conference on Neural Networks (IJCNN), pages

1–7.

[Partee et al., 1984] Partee, B. et al. (1984). Compositionality. Varieties of formal semantics, 3:281–

311.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. (2014). GloVe: Global vectors

for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1532–1543, Doha, Qatar. Association for Computational

Linguistics.

[Perez et al., 2018] Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. (2018). Film:

Visual reasoning with a general conditioning layer. In Proceedings of the AAAI conference on

artificial intelligence, volume 32.

99

BIBLIOGRAPHY

[Pfungst and Hans, 1965] Pfungst, O. and Hans, C. (1965). A contribution to experimental animal

and human psychology. Clever Hans (the Horse of Mr. Von Osten).

[Radford et al., 2021] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,

G., Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural

language supervision. In International conference on machine learning, pages 8748–8763. PMLR.

[Redmon and Farhadi, 2016] Redmon, J. and Farhadi, A. (2016). Yolo9000: Better, faster, stronger.

arXiv preprint arXiv:1612.08242.

[Ren et al., 2015a] Ren, M., Kiros, R., and Zemel, R. (2015a). Exploring models and data for image

question answering. Advances in neural information processing systems, 28.

[Ren et al., 2021] Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta, B. B., Chen, X., and

Wang, X. (2021). A survey of deep active learning. ACM computing surveys (CSUR), 54(9):1–40.

[Ren et al., 2015b] Ren, S., He, K., Girshick, R., and Sun, J. (2015b). Faster R-CNN: Towards

real-time object detection with region proposal networks. In Cortes, C., Lawrence, N., Lee, D.,

Sugiyama, M., and Garnett, R., editors, NeurIPS, volume 28. Curran Associates, Inc.

[ROBINS, 1995] ROBINS, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Con-

nection Science, 7(2):123–146.

[Sachan and Xing, 2016] Sachan, M. and Xing, E. (2016). Easy questions first? A case study on

curriculum learning for question answering. In Proc. 54th Annual Meeting of the ACL, pages

453–463, Berlin, Germany. ACL.

[Sarzynska-Wawer et al., 2021] Sarzynska-Wawer, J., Wawer, A., Pawlak, A., Szymanowska, J., Ste-

faniak, I., Jarkiewicz, M., and Okruszek, L. (2021). Detecting formal thought disorder by deep

contextualized word representations. Psychiatry Research, 304:114135.

[Scao et al., 2022] Scao, T. L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R.,

Luccioni, A. S., Yvon, F., Gallé, M., et al. (2022). Bloom: A 176b-parameter open-access multilingual

language model. arXiv preprint arXiv:2211.05100.

100

BIBLIOGRAPHY

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional

networks for large-scale image recognition. pages 1–14. Computational and Biological Learning

Society.

[Singh et al., 2018] Singh, T., Khan, S. S., and Chadokar, S. (2018). A review on automatic parking

space occupancy detection. In 2018 International Conference on Advanced Computation and

Telecommunication (ICACAT), pages 1–5.

[Soviany et al., 2022] Soviany, P., Ionescu, R. T., Rota, P., and Sebe, N. (2022). Curriculum learning:

A survey. Int. J. Comput. Vis., 130(6):1526–1565.

[Subramanian et al., 2023] Subramanian, S., Narasimhan, M., Khangaonkar, K., Yang, K., Nagrani,

A., Schmid, C., Zeng, A., Darrell, T., and Klein, D. (2023). Modular visual question answering

via code generation. In Proceedings of the 61st Annual Meeting of the Association for Compu-

tational Linguistics (Volume 2: Short Papers), pages 747–761, Toronto, Canada. Association for

Computational Linguistics.

[Suŕıs et al., 2023] Suŕıs, D., Menon, S., and Vondrick, C. (2023). Vipergpt: Visual inference via

python execution for reasoning. arXiv preprint arXiv:2303.08128.

[Sutskever et al., 2014] Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning

with neural networks. Advances in neural information processing systems, 27.

[Tan and Bansal, 2019] Tan, H. and Bansal, M. (2019). LXMERT: Learning cross-modality encoder

representations from transformers. In Proceedings of EMNLP-IJCNLP, pages 5100–5111, Hong

Kong, China. Association for Computational Linguistics.

[Tomar et al., 2022] Tomar, A., Kumar, S., and Pant, B. (2022). Crowd analysis in video surveillance:

A review. In 2022 International Conference on Decision Aid Sciences and Applications (DASA),

pages 162–168.

[Tsai et al., 2018] Tsai, C.-C., Tseng, C.-K., Tang, H.-C., and Guo, J.-I. (2018). Vehicle detection

and classification based on deep neural network for intelligent transportation applications. In

2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference

(APSIPA ASC), pages 1605–1608.

101

BIBLIOGRAPHY

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V.,

Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, NeurIPS, volume 30.

Curran Associates, Inc.

[Wang et al., 2021] Wang, C., Nulty, P., and Lillis, D. (2021). A comparative study on word embed-

dings in deep learning for text classification. In Proceedings of the 4th International Conference on

Natural Language Processing and Information Retrieval, NLPIR ’20, page 37–46, New York, NY,

USA. Association for Computing Machinery.

[Wang et al., 2022a] Wang, J., Ye, T., Gu, Z., and Chen, J. (2022a). Ltp: Lane-based trajectory

prediction for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 17134–17142.

[Wang et al., 2022b] Wang, X., Chen, Y., and Zhu, W. (2022b). A survey on curriculum learning.

TPAMI, 44(9):4555–4576.

[Williams and Zipser, 1989] Williams, R. J. and Zipser, D. (1989). A Learning Algorithm for Contin-

ually Running Fully Recurrent Neural Networks. Neural Computation, 1(2):270–280.

[Wu et al., 2019] Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R. (2019). Detectron2.

https://github.com/facebookresearch/detectron2.

[Xu et al., 2015] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and

Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention.

In International conference on machine learning, pages 2048–2057. PMLR.

[Yang et al., 2022] Yang, J., Duan, J., Tran, S., Xu, Y., Chanda, S., Chen, L., Zeng, B., Chilimbi, T.,

and Huang, J. (2022). Vision-language pre-training with triple contrastive learning. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15671–15680.

[Yang et al., 2016] Yang, Z., He, X., Gao, J., Deng, L., and Smola, A. (2016). Stacked attention

networks for image question answering. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 21–29.

102

https://github.com/facebookresearch/detectron2

BIBLIOGRAPHY

[Yu et al., 2019] Yu, Z., Yu, J., Cui, Y., Tao, D., and Tian, Q. (2019). Deep modular co-attention

networks for visual question answering. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 6281–6290.

[Zablocki et al., 2014] Zablocki, M., Gościewska, K., Frejlichowski, D., and Hofman, R. (2014). Intel-

ligent video surveillance systems for public spaces – a survey. Journal of Theoretical and Applied

Computer Science, 8:13–27.

[Zeiler and Fergus, 2014] Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolu-

tional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,

September 6-12, 2014, Proceedings, Part I 13, pages 818–833. Springer.

[Zhang et al., 2021] Zhang, P., Li, X., Hu, X., Yang, J., Zhang, L., Wang, L., Choi, Y., and Gao, J.

(2021). Vinvl: Revisiting visual representations in vision-language models. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages 5579–5588.

[Zhou et al., 2020] Zhou, L., Palangi, H., Zhang, L., Hu, H., Corso, J., and Gao, J. (2020). Unified

vision-language pre-training for image captioning and vqa. In Proceedings of the AAAI conference

on artificial intelligence, volume 34, pages 13041–13049.

103

Synthèse de la thèse en français

Introduction

L’intelligence artificielle (IA) vise à rendre les machines plus intelligentes, en leur permettant

d’apprendre, de raisonner et d’effectuer des actions. L’objectif ultime est de permettre aux systèmes

d’IA d’interagir de manière semblable à la perception et à la cognition humaine. Cependant, cette

quête a rencontré des défis, en particulier dans les tâches intuitives pour les humains, mais difficiles

à décrire formellement, comme la reconnaissance de la parole ou la reconnaissance faciale. Cette

frontière de l’IA a été fortement influencée par l’avènement des réseaux neuronaux connexionnistes,

qui excellent dans la reconnaissance de formes et l’apprentissage [Goodfellow et al., 2016].

Le raisonnement visuel dans le domaine de l’IA implique que les machines interprètent des données

visuelles de manière similaire aux humains. Cela inclut des tâches telles que la compréhension de

scènes complexes, la déduction de relations entre objets et la réponse à des questions basées sur des

images. La Réponse aux Questions Visuelles (QRV) est une application pertinente du raisonnement

visuel, combinant la vision par ordinateur et le traitement du langage naturel pour permettre aux

systèmes de comprendre des scènes visuelles complexes et de répondre à des questions à leur sujet.

Cependant, comprendre le raisonnement complexe de ces systèmes peut être difficile, comme illustré par

l’exemple de Clever Hans [Pfungst and Hans, 1965], un cheval qui semblait répondre à des questions

arithmétiques en réagissant en réalité à des indices subtils de la part des observateurs humains.

Dans cette thèse, notre objectif est de permettre aux modèles de réseaux de neurones de réaliser un

raisonnement transparent sur le monde visuel en décomposant les tâches de raisonnement complexes

en une séquences d’étapes constituant un programme, semblables aux processus modulaires que les

humains utilisent [Clune et al., 2013, Fodor, 1983]. En QRV compositionnelle, les composants se

réfèrent à des éléments tels que des objets, des attributs et des relations présents dans une question

104

SYNTHÈSE DE LA THÈSE EN FRANÇAIS

associée à une image. En suivant les principes de la sémantique compositionnelle [Partee et al., 1984],

nous cherchons à comprendre comment ces composants sont combinés pour raisonner sur le monde

visuel et répondre de manière explicite à des questions liées aux images. Diverses techniques modulaires

ont été proposées, l’une des plus importantes et qui est au cœur de notre travail repose sur les réseaux

de modules neuronaux (NMN) [Andreas et al., 2016b, Johnson et al., 2017b, Li et al., 2019a]. Dans

les NMNs, le processus de raisonnement est divisé en modules plus petits spécialisés, et ces modules

sont entrâınés conjointement. Ils travaillent en collaboration de manière séquentielle, où les sorties

des modules sont utilisées comme entrées pour les modules suivants, afin de résoudre des tâches

complexes. Chaque module est conçu pour résoudre une sous-tâche spécifique, et les modules peuvent

être combinés pour aborder diverses questions et problèmes. Par exemple, pour répondre à la question

“De quelle couleur est le fruit du côté droit, rouge ou vert ?” concernant l’image présentée dans la

Figure 6.1, nous avons besoin de trois modules différents: un pour se focaliser sur le côté droit de

l’image, un autre pour reconnâıtre le fruit, et un module supplémentaire pour décider entre le rouge et

le vert en tant que couleur du fruit.

Dans nos travaux, nous utilisons la base de données GQA [Hudson and Manning, 2019b], largement

adoptée pour l’entrâınement et l’évaluation de modèles de raisonnement visuel compositionnel. GQA

présente des questions complexes concernant des images réelles. En plus des triplets question-image-

réponse, cette base de données contient également les programmes représentant la séquence de fonctions

à exécuter pour répondre à la question concernant l’image, ainsi que les graphes des images provenant

de Visual Genome [Krishna et al., 2017]. Cette base de données comprend plusieurs ensembles de

données pour l’apprentissage, la validation et le test. Elle est disponible en deux versions : l’une non

équilibrée comprenant 18 millions d’exemples et l’autre équilibrée avec plus d’un million d’exemples.

Représentations multimodales et réseaux de modules neuronaux

Les modèles de raisonnement visuel sont confrontés au défi de raisonner efficacement sur des scènes

complexes de manière transparente. Bien que les modèles multimodaux récents [Tan and Bansal, 2019,

Lu et al., 2019b, ?] utilisent des mécanismes basés sur l’attention, et certains intègrent même un

raisonnement basé sur l’attention en plusieurs étapes [Hudson and Manning, 2018, Perez et al., 2018,

Yang et al., 2016], ils manquent souvent d’aspect modulaire qui permet un raisonnement plus explicite.

105

SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Figure 6.1: Image extraite de la base de données GQA [Hudson and Manning, 2019b].

Pour remédier à cette limitation, nous nous concentrons sur l’introduction de représentations

multimodales dans les réseaux de modules neuronaux. Les représentations multimodales intègrent

des représentations linguistiques et visuelles pour capturer leurs relations à l’aide d’encodeurs pré-

entrâınés multimodaux [Tan and Bansal, 2019]. Les NMN permettent un raisonnement modulaire sur

les représentations multimodales, décomposant ainsi des tâches complexes en modules interprétables

et réutilisables. De plus, l’utilisation des représentations multimodales dans le cadre des NMNs

permet d’initialiser le processus de raisonnement en fournissant des indices a priori sur les informations

encapsulées dans les concepts et les objets concernés par les problèmes de raisonnement.

Notre modèle prend en entrée une image, une question et un programme et prédit une réponse.

Nous extrayons les encodages textuelles et visuelles alignées pour l’image et la question en utilisant

un Transformer multimodal pré-entrâınés tel que LXMERT [Tan and Bansal, 2019]. Le générateur

traduit la question en une séquence de modules appelée programme, ensuite l’exécuteur utilise le

programme pour construire un NMN, qui est exécuté sur l’image pour répondre à la question.

LXMERT. Pour extraire des représentations multimodales nous employons LXMERT qui est un

modèle de Transformer pré-entrâıné sur diverses tâches uni-modales et multimodales, y compris les

prédictions croisées masquées, les prédictions masquées d’objets, la mise en correspondance entre les

modalités et la QRV. Ce modèle a démontré de bonnes performances sur diverses tâches, et le modèle

affiné sur GQA est publiquement disponible. Pour les représentations visuelles, LXMERT exploite les

régions d’intérêt de Faster-RCNN [Ren et al., 2015b], capturant efficacement les objets présents dans les

106

SYNTHÈSE DE LA THÈSE EN FRANÇAIS

images. De plus, les plongements lexicaux sont appris de manière similaire à BERT [Devlin et al., 2019],

fournissant une représentation contextuelle des données textuelles. Comme montré dans la Figure

6.2, le modèle est composé de trois blocs d’encodeurs de type Transformer [Devlin et al., 2019], le

premier apprend les représentations visuelles, le deuxième apprend les représentation textuelles et

le dernier aligne les deux modalités. Les deux encodeurs uni-modaux appliquent le mécanisme de

l’auto-attention et l’encodeur multimodal applique le mécanisme de l’attention croisée. Il convient de

mentionner que nous figeons les paramètres du modèle, nous utilisons uniquement les représentations

en sortie de l’encodeur multimodal et nous abandonnons le composant de classification des réponses.

Figure 6.2: Architecture du modèle LXMERT [Tan and Bansal, 2019].

NMN. Les NMNs nécessitent en premier lieu l’élaboration et la définition d’un catalogue de modules

représentant les différents modules spécifiques au différentes sous-taches de raisonnement. Pour ce

faire, nous pré-traitons les fonctions des programmes proposées par la base de donnée GQA et nous

nous inspirons des travaux antérieurs pour la définitions des modules. Le pré-traitement nous a permis

de réduire le nombre de fonctions à 29 au lieu des 136 disponibles dans [Hudson and Manning, 2019b].

Les modules se regroupent en trois catégories en fonction de la nature de leurs sorties. Les modules

d’attention sont responsables des sous-tâches perceptuelles telles que la localisation d’objets (select),

d’attributs (filterAttr) ou de relations (relateSub). Ils produisent un vecteur d’attention en sortie,

où chaque valeur indique la pertinence de chaque objet de l’image par rapport à la sous-tâche concernée.

Ensuite, les modules booléens effectuent des opérations logiques telles que les conjonctions (and) ou

les disjonctions (or), ainsi que des vérifications (verifyAttr), et ils produisent en sortie un scalaire

indiquant la probabilité que la sortie soit ‘vraie’. Enfin, les modules de réponse classifient la réponse

finale à la question (queryName). Dans les définitions et implémentations des modules, nous veillons à

107

SYNTHÈSE DE LA THÈSE EN FRANÇAIS

ce que les modules aient une structure peu profonde qui se base sur des multiplications matricielles

et des couches de neurones non linéraires. Le Tableau 6.1 montre la définition de certains modules

de notre NMN. Les définitions de tous les modules sont fournies dans les tableaux 3.2, 3.3 et 3.4 du

manuscrit.

Noms Dépendances Soties Definition

Select − attention x = r(W t), Y = r(WV), o = σ(W(Y ⊙ x))

RelateSub [a] attention
x = r(W t), Y = r(W(Va)), Z = σ(W(Y ⊙ x))

o = σ(W(x ⊙ y ⊙ Z))
VerifyAttr [a] booléen x = r(W t), y = r(W(V a)), o = σ(W(x ⊙ y))

And [b1,b2] booléen o = b1 × b2
ChooseAttr [a] réponse x = r(W t), y = r(W(V a)), o = σ(W(x ⊙ y))
QueryName [a] réponse x = r(W(V a)), o = σ(W x)

Table 6.1: Définitions de certains modules. σ: fonction d’activation non-linéraire, r: RELU, W: matrice
de poids, a: vecteur d’attention (36 × 1), b: scalaire booléen (1 × 1), V: représentations visuelles
(768 × 36), t: représentations textuelles (768 × 1), ⊙: produit matriciel de Hadamard.

Bien que les modules individuels aient une structure peu profonde, leur composition résulte dans une

structure globale profonde, surtout lorsque de nombreux modules sont impliqués dans un programme.

Par conséquent, pour réduire le nombre total de paramètres de notre NMN, nous partageons les poids

entre les couches non linéaires de ces modules. Cette approche se base sur la compatibilité structurelle

et fonctionnelle des modules. Elle a l’avantage de réduire le nombre de paramètres à optimiser, tout

en permettant une meilleure optimisation des poids partagés.

Le cadre des NMNs se base sur un générateur-exécuteur. Le générateur est un mod-

èle séquence-à-séquence qui traduit la question en un programme. Les travaux précé-

dents [Andreas et al., 2016b, Hu et al., 2017, Li et al., 2019a, Chen et al., 2021] employaient des

parseurs linguistiques [Klein and Manning, 2003], des réseaux de neurones récurrents ou des Trans-

formers. Nous utilisons un décodeur de type Transformer pour apprendre une projection de la question

vers l’espace des fonctions modulaires. L’exécuteur se base sur le programme pour instancier un NMN

et l’exécute sur l’image afin de prédire une réponse à la question posée.

Expériences et résultats. Pour évaluer comment les représentations multimodales affectent les per-

formances des NMNs, nous les comparons aux représentations uni-modales. Pour les représentations uni-

modales des questions, nous utilisons les plongements de mots de FastText [Bojanowski et al., 2016] et

les plongements contextuels de mots de BERT [Devlin et al., 2019]. Pour les représentation uni-modales

108

SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Figure 6.3: Le cadre QRV modulaire proposé : La paire (question, image) est utilisée par un modèle
de Transformer pour générer des représentations alignés pour les mots et les objets. Celles-ci sont
utilisées par un générateur pour produire un programme (une séquence de modules de sous-tâches),
qui sera ensuite appliqué par un exécuteur de programmes sur l’image pour répondre à la question.

des images, nous employons les bôıtes englobantes fournies par un Faster-RCNN [Ren et al., 2015b].

Nous comparons ces représentations dans deux stratégies d’apprentissage différentes des NMNs et

nous constatons que les représentations multimodales apportent un gain de précision de 12%.

Apprentissage guidé pour les NMNs

Optimiser les NMNs en se basant uniquement sur la précision des réponses prédites ne garantit

pas que les modules intermédiaires de la châıne de raisonnement respectent leurs sous-tâches spé-

cifiques. Pour remédier à cela, nous utilisons une stratégie d’apprentissage guidée afin de mieux

superviser l’apprentissage des modules intermédiaires. 1) Premièrement, nous nous inspirons du

mécanisme de l’enseignement forcé (teacher forcing) [Williams and Zipser, 1989, Lamb et al., 2016] et

l’échantillonnage planifié [Bengio et al., 2015], des méthodes appliquées pour les réseaux de neurones

récurrents. Le principe consiste à utiliser les vérités terrain en entrée des modules intermédiaires au

lieu d’utiliser les sorties prédites par les modules précédents. Cette approche évite la propagation

des erreurs effectuées par les modules situé en amont de châıne de raisonnement vers les modules en

aval. Pour mettre en œuvre cette idée, nous adaptons un échantillonnage planifié dégressif permettant

une transition progressive vers un entrâınement collaboratif des modules. 2) Deuxièmement, nous

109

SYNTHÈSE DE LA THÈSE EN FRANÇAIS

introduisons une fonction d’erreur multi-tâches qui facilite l’optimisation des paramètres des modules

en fonction de leurs erreurs relatives. Cette fonction d’erreur multi-tâches et une moyenne pondérée

des erreurs des différents types de modules (attention, booléen et réponse).

Figure 6.4: L’apprentissage guidé pour l’exécution du programme relatif à la question ‘ Sur quoi
l’animal à droite de l’ordinateur portable est en train de dormir? ’. Les flèches continues représentent
l’échantillonnage planifié (voir Section 4.2), les flèches discontinues représentent l’erreur multi-tâches
(voir Section 4.3), et les bôıtes englobantes représentent les cibles intermédiaires.

Pour construire les cibles des modules intermédiaires, nous faisons un traitement des données de

GQA [Hudson and Manning, 2019b] pour implémenter les correspondances entre les vérités terrain

disponibles dans les graphes des images et les boites englobantes générées par notre extracteur de

régions d’intérêt Faster-RCNN [Ren et al., 2015b]. Nous utilisons deux techniques de correspondances.

La première, appelée “attention stricte”, cible la bôıte englobante ayant la plus grande intersection

sur union avec l’objet de vérité terrain. La deuxième technique, nommée “attention douce”, inclut

comme cibles toutes les bôıtes englobantes ayant une valeur d’intersection sur union avec l’objet de

vérité terrain supérieure à un seuil défini. Pour l’attention stricte, nous utilisons l’entropie croisée

multiclasse, tandis que pour l’attention douce, nous employons l’entropie croisée binaire, qui est

semblable à un problème d’optimisation multi-labels. Les travaux menées dans cette section ont abouti

à la publication d’un article scientifique [Aissa et al., 2023b].

Expériences et résultats. Nous mettons en place plusieurs expériences afin de comparer les effets des

deux stratégies d’apprentissage guidée mentionnées précédemment. L’ensemble de données équilibré de

110

SYNTHÈSE DE LA THÈSE EN FRANÇAIS

GQA est utilisé pour l’entrâınement de nos modèles proposés. Nous constatons que la fonction d’erreur

multi-tâches donne de meilleures performances que l’échantillonnage planifié. Cette observation

s’explique par le fait que l’utilisation exclusive de l’échantillonnage planifié limite la rétro-propagation

du gradient de l’erreur aux modules en amont de la châıne de raisonnement, en particulier lors des

premières étapes de l’apprentissage lorsque la probabilité d’échantillonnage planifié est élevée. En

combinant la fonction d’erreur multi-tâches avec l’échantillonnage planifié, nous observons un effet

complémentaire qui améliore les performances des NMNs. Cette combinaison donne les meilleures

performances, avec une précision atteignant les 63%. Nous faisons aussi une analyse qualitative des

résultats obtenues en affichant les sorties des différents modules de la châıne de raisonnement pour des

exemples correctement classifiés dans le Tableau 4.6 et des exemples mal classifiés dans le Tableau 4.7.

En résumé, les modules intermédiaires parviennent dans la plupart des cas à bien identifier la bôıte

englobante concernée par le module perceptuel et à suivre correctement le schéma de raisonnement

indiqué par le programme. Les erreurs les plus courantes sont dues à la difficulté intrinsèque des

questions posées et à la diversité des objets et de leurs propriétés. Par exemple, le NMN peut se

tromper sur la couleur d’un objet, même s’il l’a correctement identifié dans l’image. De plus, il peut

également se tromper sur la catégorie de l’objet recherché dans l’image, en prédisant par exemple la

classe “camion” au lieu de la classe “utilitaire”.

Apprentissage curriculum pour les NMNs

L’apprentissage curriculum [Elman, 1993, Soviany et al., 2022, Wang et al., 2022b] est une stratégie

d’entrâınement qui réorganise les exemples des données d’apprentissage dans un ordre de difficulté crois-

sante au lieu de les organiser de manière aléatoire. Cette approche permet aux modèles de réseaux de

neurones d’apprendre à résoudre des problèmes faciles avant de progressivement s’attaquer à des prob-

lèmes de plus en plus difficiles. En conséquence, cela peut réduire le nombre de données d’apprentissage

nécessaires pour atteindre de bonnes performances. Cette stratégie a été rarement appliquées aux

NMNs. À titre d’exemple, [Askarian et al., 2021] emploie cette stratégie pour des NMN mais dans

le cadre de données synthétiques provenant de la base de données CLEVR [Johnson et al., 2017a].

Les résultats obtenus sont prometteurs. Cependant, la nature synthétique des images présente un

niveau de complexité moindre, avec moins de classes et de modules, par rapport aux images réelles de

GQA [Hudson and Manning, 2019b]. Par conséquent, nous développons une stratégie d’apprentissage

111

SYNTHÈSE DE LA THÈSE EN FRANÇAIS

curriculum spécifiquement adaptée à notre NMN pour des données du monde réel.

Nous partons de l’hypothèse selon laquelle le nombre d’objets mentionnés dans la question est un

indicateur de sa difficulté. Ainsi, plus le nombre d’objets concernés par la question est élevé, plus la

question est considérée comme difficile. En conséquence, nous catégorisons les questions en fonction

du nombre de concepts qu’elles contiennent, allant de 1 à 4 concepts, ce qui nous permet de créer

quatre groupes d’exemples. De plus, pour affiner l’ordre des exemples au sein d’un même groupe, nous

utilisons une autre mesure de difficulté basée sur la longueur de la question, c’est-à-dire le nombre

total de mots dans la question.

L’apprentissage curriculum nécessite également une planification pour décider du moment où

passer d’un niveau de difficulté à un autre. Dans notre cas, nous avons choisi une taille d’échantillon

prédéterminée pour chaque niveau de difficulté, offrant ainsi une solution contrôlée simple. Le passage

d’un niveau de difficulté à un autre s’effectue après que le modèle ait vu 1 million d’exemples. De

plus, nous essayons aussi la répétition de l’entrâınement à chaque niveau de difficulté afin de donne

aux modules plus de temps pour optimiser leurs paramètres à ces niveaux de difficultés.

Ensuite, nous définissons une fonctions d’échantillonage pour sélectionner les 1M d’exemples utilisés

pour l’apprentissage à chaque niveau de difficulté. L’échantillonnage est effectué avec remplacement et

la fonctions d’échantillonage attribue des probabilités de sélection à chaque exemple dans le groupe

de difficulté correspondant au niveau en cours. Deux fonctions sont établies: la première a pour but

d’uniformiser la présence des modules de type réponse dans l’échantillon final, tandis que la deuxième

attribue des probabilités de sélection proportionnelles à la moyenne des erreurs d’apprentissage

des modules qui composent le programme de chaque exemple. Ainsi, plus l’erreur des modules du

programme est élevée, plus l’exemple a de chances d’être sélectionné.

L’apprentissage des réseaux de neurones sur un ensemble de données ordonnées comporte le

risque d’oubli catastrophique [ROBINS, 1995, Greco et al., 2019]. Afin d’atténuer ce risque, nous

sélectionnons de manière aléatoire 20% des 1 million d’exemples de chaque niveau de difficulté parmi

les itérations précédentes. Ainsi, le modèle continue à être optimisé en fonction de quelques exemples

du passé ayant une difficulté inférieure à celle du niveau actuel.

Les contributions mentionnées font le centre de notre article scientifique [Aissa et al., 2023a].

Expériences et résultats. Pour évaluer l’impact de l’apprentissage curriculum sur notre NMN,

112

SYNTHÈSE DE LA THÈSE EN FRANÇAIS

nous utilisons l’ensemble non-équilibré de GQA pour accéder à un plus grand nombre d’exemples,

nous permettant d’avoir 1 million d’exemples pour chaque niveau de difficulté. Nous comparons les

différentes stratégies d’apprentissage curriculum entre elles et les comparons aux modèles entrâınés

avec un ordre d’exemples complètement aléatoire. Nous observons que le choix de la bonne stratégie

d’apprentissage curriculum permet d’accélérer le processus d’apprentissage et de réduire le nombre

de données nécessaires pour atteindre une précision comparable à un modèle entrâıné sur deux fois

plus de données sans apprentissage curriculum. La meilleure stratégie consiste à utiliser la mesure

de difficulté basée sur le nombre de concepts dans la question, avec une répétition de l’apprentissage

de chaque échantillon deux fois, en plus de pré-entrâıner le modèle pendant deux itérations sur un

million d’exemples tirés aléatoirement à partir de toute la base d’apprentissage et de remédier à l’oubli

catastrophique en intégrant une petite partie des exemples des itérations précédentes. Cette stratégie

nous permet d’atteindre une précision des réponses de 68%.

Conclusion

Cette thèse se focalise sur le raisonnement visuel compositionnel. Pour obtenir des réponses à des

questions visuelles complexes, nous les décomposons en plusieurs sous-tâches génériques, abordées en

plusieurs étapes de manière explicite. Nous avons introduit une architecture de réseau de modules

neuronaux (NMN) dynamique qui rassemble plusieurs modules, chacun se concentrant sur une sous-

tâche de raisonnement particulière, telle que la détection d’objets, d’attributs ou de relations. Pour

représenter les questions et les images, nous utilisons une approche compositionnelle, en encodant les

mots de la question et les objets de l’image. De plus, nous tirons parti d’un encodeur multimodal

pour aligner les représentations textuelles et visuelles, ce qui s’est avéré avantageux pour notre NMN.

Afin d’améliorer les performances de notre NMN, nous avons mis au point plusieurs stratégies

d’apprentissage. L’une de ces stratégies est l’apprentissage guidé [Aissa et al., 2023b], qui renforce la

supervision des modules intermédiaires de la châıne de raisonnement pour optimiser leur apprentissage.

Cela les rend plus performants dans l’accomplissement de leurs sous-tâches spécifiques et favorise

leur collaboration pour produire des réponses correctes. Nous avons également adopté une stratégie

d’apprentissage en curriculum [Aissa et al., 2023a] qui emploie le nombre de concepts de la question

comme mesure de difficulté afin de permettre une utilisation plus efficace des données disponibles et

réduire les coûts d’apprentissage.

113

	Acknowledgements
	Abstract
	Résumé
	List of Tables
	List of Figures
	Introduction
	Related work
	Introduction
	Visual reasoning architectures
	Monolithic approaches
	Compositional approaches
	Multi-step approaches
	Neural module networks

	Executor training strategies
	Knowledge guidance
	Teacher forcing
	Curriculum learning

	Datasets for compositional visual reasoning
	VQA and VQA 2.0
	CLEVR
	GQA

	Multi-modal Neural Module networks
	Introduction
	Multi-modal representations
	Neural modules
	Pre-processing
	Attention modules
	Boolean modules
	Answer modules definition

	Program examples
	Generator
	From questions in natural language to functional programs
	Arguments prediction
	Generator optimisation
	Program inference
	Experimental validation

	Executor
	Module initialisation
	Weight sharing
	Modular network instantiation
	Reasoning process
	Answer prediction

	Evaluations
	Experimental settings
	Unimodal vs crossmodal representations

	Conclusion

	Guided-Training of neural module networks
	Introduction
	Input guidance
	Output feedback
	Attention loss
	Boolean loss

	Intermediate targets coding
	Attention targets
	Boolean targets

	Experiments
	Evaluated methods
	Results analysis
	Implementation details
	Modules training evolution
	Qualitative analysis of the modular approach

	Conclusion

	Curriculum learning for neural module networks
	Introduction
	Curriculum Learning setup
	Difficulty criterion
	Scheduler
	Sampling function
	Performance evaluator

	Experiments
	Evaluated methods
	Results analysis
	Modules performances
	Implementation details
	Additional experiments

	Conclusion

	Conclusion and Perspectives
	Bibliography
	Synthèse de la thèse en français

