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Résumé

Les phénomènes complexes et instationnaires au sein des cavités rotor/stator des tur-
bopompes spatiales sont renommées en raison de leur capacité à engendrer des problèmes
de vibrations ayant un impact dangereux sur le fonctionnement des moteurs. Cette
problématique a en effet considérablement compliqué le développement et l’exploitation
des moteurs de fusées. Ces dynamiques, couramment désignées sous le terme de "ban-
des de pression", résultent d’un mouvement oscillatoire du fluide, induisant un couplage
avec la structure environnante, posant ainsi un risque significatif sur le fonctionnement
de la turbopompe. L’objectif principal de cette thèse est de comprendre et de prédire
numériquement l’origine de ces "bandes de pression" dans un contexte multiphysique.
Dans cette optique, cette étude initie une investigation numérique et théorique des prob-
lèmes de vibrations forcées au sein d’une cavité académique, ainsi que des problèmes
d’interaction fluide-structure, en mettant l’accent sur les instabilités hydrodynamiques et
aéroélastiques. Ces écoulements se caractérisent intrinsèquement par leur tridimension-
alité, principalement en raison de la présence de couches limites sur le rotor, le stator et
le carénage de la cavité. En conséquence, et bien que les nombres de Reynolds de ces
écoulements soient élevés, l’instabilité se manifeste sous forme de structures cohérentes,
à la fois axisymétriques et/ou sous formes de spirales, qui peuvent être influencées par
des forces dynamiques générées soit par la fusée elle-même soit par la turbopompe. Des
expériences ont démontré que les écoulements dans les cavités axiales des turbopom-
pes présentent un autre type d’instabilité provoquant un phénomène de flottement du
rotor. Ces deux problèmes sont abordés dans cette étude en utilisant une simulation
des grandes échelles (SGE), une approche dynamique des fluides numériques instation-
naire. Cet outil a en effet révélé que la dynamique sous-jacente de l’écoulement peut être
retrouvée, contrairement aux approches stationnaires telles que les simulations de type
Navier-Stokes moyennées de Reynolds (RANS), qui ont échoué dans le passé à prédire de
tels phénomènes. Grâce à la prédiction basée sur la SGE de l’écoulement, il est démontré
que l’instabilité de l’écoulement à l’intérieur d’une turbopompe à hydrogène à échelle ré-
duite est liée à des tourbillons qui présentent le potentiel de se coupler avec le rotor, ainsi
qu’avec l’acoustique de la cavité. Ce couplage tripartite entre le fluide, le rotor et la cavité
est spécifiquement traité en développant un code de mécanique des structures basé sur la
méthode des éléments finis, permettant des analyses modales ainsi que des calculs élas-
todynamiques. Grâce à l’ensemble de ces outils numériques, des problèmes de vibrations
forcées peuvent être abordés et sont d’abord étudiés en utilisant une configuration simple
comprenant une géométrie cylindrique. Ce premier volet de l’étude est ensuite étendu
aux écoulements de cavité en rotation, où la vibration du rotor provoque un décalage des
modes hydrodynamiques et, dans certains cas, une suppression totale de ces modes. En
réaction à ces réponses de l’écoulement seul, et pour aborder le context multiphysique, le
solveur de mécanique des structures est couplé au code LES grâce à une chaîne de cou-
plage numérique. Cette approche permet de résoudre des problèmes instationnaires et
couplés fluide-structure. La stratégie de couplage adoptée est d’abord validée avec succès
à l’aide de deux cas test: une poutre vibrante immergée dans un fluide immobile et un
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cas de vibration induite par les tourbillons (VIV), où une allée de tourbillons de Kármán
se détache d’un carré rigide et provoque des vibrations d’amplitude élevée d’une plaque
élastique. Le solveur couplé est ensuite utilisé pour simuler l’interaction fluide-structure
entre le rotor et l’écoulement interne de la turbopompe. Les résultats confirment le cou-
plage vibroacoustique entre le fluide, le disque du rotor et la cavité, tel qu’observé lors des
expériences. Cette simulation multiphysique a également permis de calculer la quantité
nécessaire d’amortissement pour stabiliser un tel système, démontrant ainsi l’efficacité du
couplage développé. Enfin, un cadre d’analyse de stabilité linéaire globale (GLSA) est
détaillé et mis en œuvre pour fournir un aperçu des modes propres dominants et de leurs
taux de croissance correspondants à l’intérieur de ces systèmes.
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Abstract

Complex unsteady phenomena within rotor/stator cavities of space turbopumps have
gained notoriety because of their propensity to induce vibration issues that are clearly
detrimental to the operation of the engine. This problem has indeed rendered the de-
velopment and operation of rocket engines a formidable undertaking. These dynamics,
referred to as "pressure bands", are a consequence of a self-sustained oscillatory motion
of the working fluid, thereby engendering a coupling with the solid structure posing a
paramount risk to the operation of the turbopump and the structural integrity of its
components. Understanding and predicting the source of "pressure bands" in a multi-
physics context is the primary objective of this thesis. For instance, this work provides a
numerical and theoretical investigation of forced vibration problems in enclosed rotating
flows as well as fluid-structure interaction problems with a focus on hydrodynamic and
aeroelastic instabilities. Note that these flows are inherently three dimensional due to
the presence of boundary layers on the impeller, stator and cylindrical shroud. Conse-
quently, at high Reynolds numbers, the flow instability is manifested through coherent
axisymmetric and/or spiral structures that can be affected by dynamic loads either gen-
erated by the rocket or the turbopump itself. Experiments have shown that axial cavity
flows also exhibit a different type of instability that lead to a flutter-like phenomena of
the rotor. Both problems are addressed in this work using Large Eddy Simulation, an
unsteady CFD approach, in conjunction to multiple predictive numerical strategies like
Power Spectral Density (PSD) and Dynamic Mode Decomposition (DMD). All tools show
that the underlying dynamics of the flow can be retrieved contrarily to steady approaches
like Reynolds Averaged Navier-Stokes Simulations (RANS) that failed in the past to pre-
dict such phenomena. Thanks to LES flow only prediction, the flow instability inside a
reduced scale hydrogen turbopump is retrieved and has the potential of coupling with
the rotor as well as the acoustics of the cavity. To address this problem, a structural
mechanics code based on the finite element method is developed to perform modal anal-
yses as well as elastodynamic calculations. Thanks to all these numerical tools, forced
vibration problems are first investigated using a bluff body configuration where a "lock-in"
phenomenon is identified whenever a vortex shedding frequency converges to the forced
vibration frequency. This first content of this study is later extended to enclosed rotating
cavity flows where the vibration of the rotor causes a shift in the hydrodynamic modes
and in some cases, a total suppression of these modes. Following these flow only responses
and to go further, the structural mechanics solver is further developed and coupled to
the LES code thanks to a numerical coupling chain that allows to solve fully unsteady
and fully coupled fluid-structure interaction problems. The adopted coupling strategy is
first successfully validated through two test cases: a vibrating beam immersed in a still
fluid demonstrating that the fluid viscosity dampens the structure motion and brings it
back to its initial position, and a Vortex Induced Vibration (VIV) case where a Kármán
vortex street sheds from a rigid square and causes large amplitude vibrations of an elastic
plate. The coupled solver is then used to simulate the fluid-structure interaction between
the rotor disk and working fluid of the turbopump. Results confirm the vibroacoustic
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coupling between the fluid, rotor disk and cavity obtained by experiments. This multi-
physics simulation also allowed the calculation of the necessary amount of damping to
stabilize such system demonstrating the capability of the developed coupling. To finish,
a Global Linear Stability Analysis (GLSA) framework is detailed and performed to give
more insight about the leading eigenmodes and their corresponding growth rate inside
such systems.
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2 Chapter 1 : Foreword

In recent years, the space market has witnessed a staggering increase in demand of
low orbit satellites and a clear explosion during the last decade. In parallel, the con-
tinuous increase of the number of space actors with different visions and objectives
has undoubtedly pushed forward the scientific and technological race as well as the
economic and political one. In this context, the European market clearly plays a key
role with two major players: the French Space Agency (CNES) and ArianeGroup.
This work is the result of a joint collaboration between these two actors which aim at
addressing the muliphysical aspect of fluid/structure instabilities in space turbopumps.
Indeed, mastering and if possible overcoming such problems is a major milestone to-
wards building durable and reusable rocket engines. This foreword chapter introduces
the topic of this Ph.D. with a brief history of rocketry and the major breakthroughs
of the space sector that lead to today’s turbopump technology. To finish, a detailed
overview of the work performed in this context and for the past years is proposed
through the description of each chapter of the present dissertation.

1.1 Space industry
Historical perspective

One of the most significant breakthroughs in space in the last century was the
launch of the first artificial satellite, Sputnik 1, by the Soviet Union on October 4th,
1957. This event not only marked the inception of the "Space Age" but also ignited
a technological and ideological competition between the Soviet Union and the United
States, commonly referred to as the "Space Race." The launch of Sputnik 1 unequivocally
demonstrated that a man-made object could be propelled into orbit around the Earth
which had a profound impact on the world. It sent shockwaves throughout the world
at large, leading to a heightened emphasis on science, technology and education.
Additionally, it served as the catalyst for the creation of NASA, the United States’ space
agency, in 1958. Similarly in Europe, The French space agency, CNES (Centre National
d’Etudes Spatiales), was created few years later in 1961 as part of France’s efforts to
develop its own independent space capabilities. Since its inception, CNES has played
a major role in shaping the French space program and has contributed significantly to
space science and exploration. One of CNES’s most notable achievements is its role in
the development of the Ariane rocket, which has become one of the most reliable and
successful launch vehicles in the world. This successful achievement stems from a joint
collaboration with Arianegroup, a European aerospace company that specializes in the
production and operation of space launchers, particularly the Ariane family of rockets.
These rockets have been a cornerstone of Europe’s space launch capabilities and have
played a crucial role in placing satellites, spacecraft, and payloads into various orbits
including geostationary, polar, and Sun-synchronous orbits. The first member of the
family, Ariane 1, made its maiden flight in 1979. It was a four-stage rocket and was
primarily used for launching communication satellites into geostationary orbit. It had a
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payload capacity of around 1.7 to 2.2 metric tons to geostationary transfer orbit (GTO).
Sequential improvements led to Ariane 2 and 3, with enhanced capabilities through
added strap-on boosters, followed by the highly versatile Ariane 4, operational in various
configurations during the 1980s and 1990s for missions spanning communication, earth
observation and scientific purposes. The introduction of Ariane 5 in 1996 marked a
significant leap renowned for its heavy-lift capacity and accommodating multiple pay-
loads including commercial satellites, scientific instruments and ISS supplies. Evolving
further, Ariane 6, available in Ariane 62 and Ariane 64 variants, emerged as a modern,
cost-effective successor, aiming to sustain Europe’s competitive edge in the dynamic
global launch market. The Ariane rockets have been used to launch numerous satellites
and other spacecraft, including the European Space Agency’s (ESA) Herschel Space
Observatory and Planck Satellite, as well as many commercial payloads. CNES has also
been active in the field of satellite technology. The agency has developed a number of
Earth observation satellites, including the Spot series and the Pleiades series, which
provide high-resolution imagery and are used for a wide range of applications, such as
mapping, natural resource management and disaster monitoring. Additionally, CNES
has also been involved in the development of a number of scientific satellites, such
as the CNES-ESA Corot satellite, which was used to search for exoplanets and the
CNES Microscope satellite which was dedicated to test the equivalence principle with
unprecedented accuracy. In addition to its contributions to space technology, CNES has
also played an important role in human spaceflight. The French astronaut Jean-Loup
Chrétien was the first non-American or Soviet astronaut to conduct a spacewalk and
the first Western European astronaut to visit space. Another monumental breakthrough
in space during the past century was the landing of the first human on the Moon,
achieved by NASA’s Apollo 11 mission on July 20th, 1969. This achievement was widely
regarded as a triumph of human accomplishment and technology. The Apollo program
not only served as a crowning achievement but also laid the foundation for future space
exploration, including the Space Shuttle program and the International Space Station,
as well as fostering a new era of international cooperation in space.

These remarkable achievements are the result of more than two millennia of invention,
experimentation, and discovery. Indeed, according to Pan (1987) the origins of rocket
technology can be traced back to China, where the invention and utilization of gunpowder
for military purposes occurred as early as the 10th century. In 1897 the Russian mathe-
matics professor Tsiolkovsky (1903) proposed the idea of space exploration by rocket and
who later became known as the founding father of modern rocketry. In his work, he was
the first to advocate the use of liquid propellant rocket engines. He also published his
famous rocket equation which allows one to determine the maximum velocity of a rocket
given a weight and fuel supply. The equation reveals that the relationship between speed
and fuel is exponential. Despite the revolutionary nature of this equation, Tsiolkovsky
(1903) did not convert his mathematical equations into an actual model. Nevertheless, his
equation later helped the American physicist Goddard (1920) in building the first liquid
fueled rocket in 1926 that flew for only two and a half seconds, climbed 12.5 meters and
landed 56 meters away. Thereafter, Goddard published a pamphlet entitled "A Method
of Reaching Extreme Altitudes" which is a mathematical analysis of what is today called
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the meteorological sounding rocket. At the same period, Oberth (1924) published a book
about rocket travel into outer space. This and other books inspired the development of
the V-2 rocket which was the first long range guided ballistic missile and the first rocket
ever to leave the boundary of the atmosphere and enter outer space. The German V-2
(Vergeltungswaffe 2, "Vengeance Weapon 2") was developed and built during the second
world war in Germany by a team lead by Wernher Von Braun. This rocket witnessed its
first successful launch in 1942. The V-2 rocket used a 75% C2H6O/O2 (ethanol/water)
mixture for fuel and liquid oxygen (LOX) as oxidizer as shown in Figure. 1.1. It was also
the first rocket ever to make use of a turbopump, the main topic of this thesis that will
be explained in the next section.

(a) (b)

Figure 1.1: (a) Schematic diagram of the V-2 rocket, (b) V-2 rocket turbopump
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Space propulsion systems and launcher technologies

Propulsion is the result of the force that propels an object through the air or into
space. There are two predominant forms of propulsion solutions: solid and liquid based
propellants. Solid rocket propulsion systems use solid propellants, while liquid rocket
propulsion systems use liquid propellants (see Fig. 1.2). Each form of propulsion pos-
sesses its unique advantages and disadvantages, and the choice depends on the specific
application and mission requirements.

Figure 1.2: Cross section views of liquid and solid propellant rockets

Solid propellants are compounds containing the fuel and an oxidizer that are embedded
within a solid casing. The propellant mixture is ignited at the base of the rocket and burns
through the entire length of the casing, thereby generating thrust. Solid rocket propulsion
systems are relatively simple to design and reliable in operation. They do not necessitate
pumps, injectors, or other mechanical devices. They can be stored for prolonged periods
without deterioration, making them particularly well-suited for military applications like
missiles. Solid rocket propulsion is also frequently utilized as strap-on boosters, to increase
thrust during the initial phase of flight, when a launch vehicle is still near the ground
and atmospheric drag is significant.

Liquid propellants are chemical substances that are stored in tanks in their liquid
form and pumped into the combustion chamber of the engine, where they are mixed
and ignited to produce thrust. They are more intricate than solid rocket propulsion
systems, but they also possess greater flexibility and efficiency. They provide more precise
control over thrust and specific impulse. They can be shut off and restarted, allowing
for multi-stage space launches. Finally, they have a higher specific impulse (a measure
of the efficiency of the engine). They are usually preferred for high thrust and high-
performance applications: i.e., the main engines of heavy lift launch vehicles and upper
stage propulsion engines. Note that there exist several types of liquid propellant rocket
engine cycles, all have great implications for the turbomachines:

• Pressure-fed cycle, Fig. 1.3(a): It is a relatively simple type of liquid rocket engine
cycle that is used primarily for small spacecraft and missiles. The fuel and oxidizer
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are stored in tanks at high pressure and the pressure of the stored propellants is
used to feed them into the engine combustion chamber. The pressure-fed cycle has
the advantage of being relatively simple, reliable and lightweight, but it has lower
thrust than other types of liquid rocket engine cycles. This system is similar to the
one used by Goddard (1920).

• Pump-fed cycle, Fig. 1.3(b): It is a more complex type of liquid rocket engine
cycle that is used for larger spacecraft and launch vehicles. The fuel and oxidizer
are stored in tanks and pumped into the engine combustion chamber using external
fuel dedicated pumps. This allows for greater flexibility in engine design and allows
for a higher mass flow rate of propellants into the engine, which can result in higher
thrust. The pump-fed cycle is more complex than the pressure-fed cycle, but it can
provide much higher thrust and specific impulse.

• Expander cycle, Fig. 1.3(c): also known as the open cycle, it uses a gas generator
to heat the propellants and drive a turbine that powers the pumps which are used
to feed the propellants into the engine. The combustion products are then expelled
directly into the nozzle to provide thrust. This cycle is simpler than the closed
cycle, more reliable and easy to maintain. It’s mostly used for low thrust and high
specific impulse applications such as upper stage engines.

• Gas generator cycle, Fig. 1.3(d): The gas generator cycle, is similar to the
expander cycle but with an additional combustion chamber that burns a small
portion of the propellants to drive the turbine, while the rest of the propellants
are expelled directly into the nozzle to provide thrust. This type of cycle is also
considered as a reliable design, but less efficient than the closed cycle. It is mostly
used for low thrust and high specific impulse applications such as upper stage engine
or spacecraft propulsion.

Unlike the pressure-fed cycle, all other cycles possess a fuel and oxidizer pump to feed
the propellants to the combustion chamber.
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(a) (b)

(c) (d)

Figure 1.3: Schematic of a (a) pressure-fed cycle (b) staged/pumped combustion cycle
(c) expander cycle (d) gas generator cycle.

Coming back to the historical perspective, the V-2 rocket operated using a gas gen-
erator cycle and a dedicated turbopump. The turbopump marked an inflection point in
the design of modern rocketry. Indeed, this revolutionary device enabled rockets to reach
unprecedented performance compared to any previous rocket. Thanks to this device,
the V-2 rocket was able to sustain a maximum velocity of 1600 m/s and a flight range
of 320 km. The propellants were fed directly from the missile’s tanks and injected at
high pressure into the combustion chamber to ensure high thrust levels. The fuel and
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oxidizer pumps were in this case steam turbines driven by exhaust gases from a steam
generator, which catalyzed hydrogen peroxide into superheated steam and oxygen. The
turbine wheels in turn powered the pump impellers for the two main propellants. The
Vulcain 2 engine powering the Ariane 5 rocket for example possesses two different tur-
bopumps: The TPH for the liquid hydrogen LH2 and the TPO for the liquid oxygen
LO2 both shown on Fig. 1.4. Both systems are equipped with two stage turbines fed by
exhaust gases coming from a single gas generator chamber. Different designs have since
then been used for the assembly of rocket turbopumps. In the past, gears were commonly
used in some engines but have since been replaced by pumps that are driven directly by
turbines. It is possible to have one turbine driving both the fuel and oxidizer pump on a
single shaft, and the decision of which design to use depends on a balance between cost,
complexity and efficiency. For the pumps, both axial and radial designs are present in
different configurations, radial pumps being the most prevalent and often equipped with
an inducer to prevent cavitation.

(a) (b)

Figure 1.4: Schematic of (a) a liquid hydrogen turbopump and (b) a liquid oxygen
turbopump

Such turbopumps are part of the Vulcain engine that has powered the Ariane 5
launcher, one of the most reliable heavy-lift launch vehicle in space history that is capa-
ble of launching large payloads, such as telecommunications satellites, into geostationary
transfer orbit (GTO) and low Earth orbit (LEO). Ariane 5 has a payload capacity of up
to 10 tons to GTO and up to 21 tons to LEO. The next generation of launcher, Ariane 6,
will provide increased flexibility, reliability, and competitiveness for all types of missions,
from small to heavy payloads and from low to highly elliptical and geostationary orbits.
Ariane 6 will come in two versions: Ariane 62 with two P120 solid rocket boosters and
Ariane 64 with four P120 solid rocket boosters (See Fig. 1.5). The main core stage will be
powered by the Vinci re-ignitable cryogenic engine ensuring Ariane 6 to have a payload
capability of up to 11 tons. Re-ignitable engines have also been developed by SpaceX
with the Merlin engine series. The objective was here to develop the first reusable first
stage launcher since it is the most expensive component. Reusability is considered to
be the "holy grail" in rocket technology. Currently, exploited and reusable rockets are
developed by SpaceX: i.e., the Falcon 9 as well as Falcon Heavy rockets. In Europe,
a joint collaboration between the European Space Agency (ESA) and the French space
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agency (CNES) is aimed to build a single-stage reusable vehicle. With this goal in mind,
the objective of the demonstrator is to test and demonstrate the feasibility of reusable
rocket technology for use in future missions. Typically, the Themis demonstrator is a
suborbital rocket that is designed to take off and land vertically, similar to the SpaceX’s
Falcon 9 rocket. Its first stage is designed to be reusable, meaning it can be used multiple
times to reduce the cost of launches. This demonstrator has indeed be used for several
test flights as well as research flights, but it is not used for commercial purposes.

(a) (b) (c)

Figure 1.5: (a) Ariane 5 launcher (b) Ariane 64 (c) Themis demonstrator
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1.2 PhD context
A major task in the development of rocket turbopumps is to ensure that the moving
components, such as the blades or discs, as well as the static components do not have to
sustain extreme vibration and associated structural problems. This means that during the
design phase, the structural integrity of the different components should be maintained
at the target operating point. This involves frequency calculations and stress analyses. A
standard practice is to avoid disc and blade frequencies that are integral multiples of the
harmonics of the rotation speed. The result is a so called Campbell diagram where the
frequencies for different running conditions are plotted versus the rotor speed. According
to Smith (1965), vibrations in turbomachinery can be split into two types: local vibrations
and machine vibrations. The former refers to the vibrations that occur in a specific part
or a component of a machine. It is usually caused by a problem or malfunction within
the part or component, such as an unbalanced rotor or a malfunctioning bearing. The
latter involves widespread motion throughout the entire machine which induces periodic
reactions at the bearings, hence causing the static components to vibrate. It is caused
by a variety of factors, like the interactions of multiple components, the alignment of
the machine and the dynamic forces acting on the machine. Note that Baumgartner
et al. (1995) have also classified the origin of these vibrations into two classes: forced or
self-excited (see Fig. 1.6).

Forced Vibration Self -Excited
Vibration

Rotating in-
stability Flutter

Flow Induced Vibration

Acoustic
Resonance

Rotating Stall

Figure 1.6: Classification of flow-induced vibration

Forced vibration refers to vibrations that are externally applied to a system, such as
a rotor experiencing a cyclic pressure fluctuation due to the rotation of the blades in a
steady non-uniform field. On the contrary, self-excited vibrations, also called autonomous
or self-sustained vibrations are a type of vibration generated by the inherent dynamic
characteristics of a system, such as flutter or an aeroelastic instability which occurs at
or near the natural frequency of the rotor blade. Acoustic resonance is also a result of
self-excited vibrations. High pressure levels can only be generated if the acoustic resonant
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frequencies match the geometrical length of bleed cavities in turbomachinery devices. The
frequency is determined primarily by the geometry. For example, the acoustic frequency
of a Helmholtz-Resonator is affected by the resonator volume, the speed of sound and
neck/hole diameter (Woodhouse (1991)). In terms of fluid dynamics, the excitation is
caused by a vortex shedding frequency from the inlet hole. Parker & Stoneman (1985)
found that vortex shedding from rotor/stator blades or support struts is a potential source
of acoustic resonance and excitation in turbomachines. However, vortex shedding does
not always excite an acoustic field; pressure fluctuations can be generated near blades with
a different propagation speed. Rotating instabilities are a type of self induced vibration
widely regarded as rotating stall. It happens when a section of the rotating blade row
loses its ability to extract energy from the air flow, causing the air to separate from the
blade surface and creating a region of low pressure. This leads to a stall condition where
the blades are no longer able to produce the required lift and begin to stall, creating
pulsations in the airflow and potentially damaging the machine. The onset of rotating
stall can be caused by a number of factors, including changes to the inlet flow conditions,
reductions in rotational speed, or an increase in the incidence angle of the blades. The
reader can refer to Kameier (1994) and Kameier & Neise (1997) for more information on
this topic.

Experimental campaigns have highlighted the presence of unsteady phenomena in
rotor/stator cavities of turbopumps. Such features are referred to as "Pressure band
phenomenon" which is a self-sustained oscillatory motion of the fluid characterized by
constituent frequencies. This phenomenon has been first studied by Bridel-Bertomeu
(2016a) at CERFACS. In his thesis, he focused on enclosed rotating flows in academic
as well as industrial cases where he was able to identify the "Pressure band phenomenon"
that manifests through dominant frequencies. This was possible by virtue of an unsteady
CFD approach: i.e., Large Eddy Simulation (LES). He later confirmed the inherent three
dimensional nature of these modes through two predictive numerical strategies: Dynamic
Mode Decomposition (DMD) and Local Linear Stability Analysis (LSA). Finally he was
able to compute the sensitivity of these modes to geometric and temperature changes.

This initial project was then carried on through a second Ph.D. by Queguineur (2020)
at CERFACS who put up different control strategies to suppress the "Pressure band phe-
nomenon": i.e., either by shifting the frequencies found away from the natural frequency
of the critical components of the turbopump or in some cases suppress them if possible.
To do so, first a Large Eddy Simulation (LES) was carried out on an academic rotor/sta-
tor cavity as well as an industrial first stage turbine of a turbopump in order to extract
the modes found in the "Pressure band phenomenon". Then, a global linear stability anal-
ysis was used to identify the stability of these modes. The control strategy developed by
Queguineur (2019) called Dynamic Mode Tracking and Control (DMT) was in this case
shown to be an efficient method to compute a steady state flow by filtering the unstable
temporal frequencies, essential to conduct stability analysis. One key advantage of the
DMT over SFD (Selective frequency Damping) (Åkervik et al. (2006)) is that it enables
the identification of modes present in periodic flows as well as their spatial and temporal
evolution even in the nonlinear regime.

The main objective of this Ph.D. work is to extend the investigation of rotor/stator
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cavities initiated by the previous two Ph.D’s to take into account multiphysics aspects
involving the fluid and the structure. Both LES and LSA are used in the following
to address forced vibration and fluid-structure interaction (FSI) problems of enclosed
rotating flows and axial cavity flows respectively. To this aim, a structural mechanics
code is developed to perform modal analyses as well as elastodynamic calculations. This
solver is then used as a basis to produce a fully coupled fluid-structure LES solver able
to address FSI problems. Finally, a linear stability analysis is conducted to analyze fluid
modes in all the addressed problems.

1.3 Overview of the thesis content and objectives

This Ph.D. work is divided into four main parts and focuses on the multiphysics phe-
nomena of vibrations in axial flow and rotating flow cavities. The first part lays the
groundwork of this thesis by demonstrating that LES is able to capture flow instabilities
in a reduced-scale liquid hydrogen turbopump. An acoustic analysis of the cavity as well
as a modal analysis of the rotor show that there is a risk of vibroacoustic coupling in this
specific case. The second part is dedicated to forced vibration flow problems: i.e., how the
"Pressure Band phenomenon" reacts to external vibrations. The third part encapsulates
a development work oriented to solve numerically fluid-structure interaction problems.
Two test cases are considered to validate the approach which is then followed by a fully
coupled FSI simulation of the turbopump. The last part of this document contains all
the Global Linear Stability Analyzes (GLSA) used to retrieve hydrodynamic modes. All
parts are composed of chapters, the details of which are as follows:

Chap 1, Foreword

The space market has witnessed a massive increase in competition throughout the
past years. This trend will likely continue during the next few years to fulfill the demand
for commercial satellites and to accelerate projects related to reusable launchers. A brief
history of space achievements has been discussed at the beginning of this first chapter
in addition to a presentation of the different types of launcher technologies that have
been developed or are still under development. The key component of these launchers is
also discussed in details: the turbomachinery device called turbopump. To this day, the
turbopump remains a critical component with a tough scientific challenge for researchers
and engineers to design and manufacture. In this context, the major problem that faces
the development of these machines is referred to as "Pressure Bands", also discussed in
this chapter. It results in self-sustained oscillatory motions of the fluid that can couple
to the surrounding structural parts of the cavity jeopardizing the structural integrity of
the whole engine.

PART 1 Large eddy simulation of a reduced scale liquid hydrogen turbopump
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Chap 2, Flow dynamics of the first stage rotodynamic pump using large eddy
simulation

This chapter focuses on the hydrodynamic modes that arise inside the first-stage
rotodynamic pump of a turbopump. First, the Large Eddy Simulation (LES) framework
is established to identify the formation and distribution of these modes within such a
cavity. The analysis is supported by Power Spectral Density (PSD) and Dynamic Mode
Decomposition (DMD) techniques to reconstruct the spatial organization of the modes
and their corresponding frequencies. To complement the flow analysis, an acoustic modal
analysis is conducted on the cavity, likewise, a structural modal analysis is conducted
on the rotor. To do so, a new in-house tool, developed to perform modal analysis
on both fixed and rotating structures, is used to identify the natural frequencies of
these components. Such structural frequencies are indeed an important indicator for
designers to avoid resonance. Both structural and acoustic frequencies are found to
match experimentally reported results from ping-tests as well as acoustic excitations,
indicating the likelihood of a fluid-structure coupling with the first acoustic mode of the
cavity.

PART 2 Forced vibration

Chap 3, Flow dynamics of forced vibration problems through large eddy
simulation

This chapter addresses the first category of machine vibration, known as imposed
vibration. First, two test cases are examined for illustration and preliminary validation
of the code capacities: the flow past a vibrating cylinder and an academic rotor/s-
tator cavity subject to periodic rotor oscillations. The first case identifies a lock-in
phenomenon, where the vortex shedding frequency past a circular cylinder converges
towards the forced frequency. This phenomenon occurs only within a specific range
defined by the amplitude and frequency of vibration at a given Reynolds number. The
second part of the chapter deals with the numerical investigation of the flow in an
academic rotor/stator cavity subject to periodic rotor oscillations. The objective is to
accurately capture the dynamics of such high Reynolds number rotating flows when
subject to external forcing at a frequency equal to the two dominant modes found in the
non-forced case. The results indicate that the periodic forcing in the flow indeed affects
the stability of the modes retrieved, with new unstable modes emerging in the system
while other modes present in the non-forced case completely disappears.

PART 3, Fluid-structure interaction using large eddy simulation

Chap 4, Development of a structural mechanics solver

This chapter addresses the development of a structural mechanics solver which is
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a key element for simulating fluid-structure interaction problems. The solver is de-
veloped in FreeFEM++, an open source partial differential solver based on the finite
element method. The steady and transient equations are both developed and evaluated
using two numerical schemes: the Newmark beta method and the Generalized alpha
method. The solver is then verified through a series of test cases from the literature.
In the first test case, the static deflection of a rectangular beam subject to a constant
loading is studied. The second test case consists in evaluating the dynamic response of
a beam when subject to a time dependent loading. linear and quadratic elements are
considered in each case to asses their capabilities in dealing with such problems. To
enhance computational efficiency, direct solving methods are implemented when the size
of the problem is relatively small and indirect methods with preconditioning are used
for large problems whenever the memory requirement of the direct problem becomes a
bottleneck.

Chap 5, Development of a numerical fluid-structure interaction chain

This chapter is the main focus of this thesis and involves a significant amount of
numerical developments. Despite the fact that LES is not frequently used in FSI (Fluid-
Structure Interaction) problems, the capacity of a flow solver to interact with a structure
code is essential for understanding such a multiphysics phenomenon involving complex
flow dynamics and structure motion. This is particularly critical in turbomachinery
applications. To address this challenge, a structure mechanics solver is developed using
FreeFEM++ to solve the transient elasticity equation. The solver is then coupled to
the LES code through a Multiple Program Multiple Data (MPMD) communication
model. MPMD is a type of parallel computing model in which multiple independent
programs are executed simultaneously on multiple processors or computing nodes, each
working on its own set of data. The communication between the two codes is achieved
through the Coupling With Interpolation Parallel Interface (CWIPI), an open-source
library developed by ONERA that handles data transfer and interpolation between
codes through a non-conforming mesh interface. For our context, a CWIPI interface is
also developed for FreeFEM++. To efficiently deform the mesh at the fluid-structure
interface, a mesh management method called Laplacian smoothing is developed in the
LES code to handle the mesh deformation of any structure. The coupled solver is then
validated through two test cases: an immersed beam in a still fluid and a Vortex Induced
Vibration (VIV) case. The first case demonstrates that, regardless of the fluid and solid
parameters chosen, a vibrating beam in a still fluid returns to its equilibrium position
after a certain time due to the fluid viscosity acting as a damper for the motion of
the structure. The second case successfully captures the eigenmode and amplitude of
vibration of a thin elastic plate proving that fluid-structure modes can be retrieved by
the proposed LES-based solution.

Chap 6, Investigation of the coupled fluid-structure phenomena in a reduced
scale LH2 turbopump
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This chapter investigates the fluid-structure interaction phenomena inside the first-stage
rotodynamic pump. The coupled FSI solver is used to simulate the fluid-structure
interaction between the working fluid the rotor disk to identify potential multiphysics
phenomena that are responsible for the detrimental vibration levels of the turbopump.
Results show that the coupled FSI mode retrieved is responsible for destabilizing the
axial balancing system of the turbopump. This mode causes the fluid and structure
to oscillate at an identical frequency that is close to the natural frequency of the
rotor as well as the natural acoustic frequency of the cavity leading to a vibroacoustic
phenomenon between the two. In response to this issue, the required damping level
necessary to stabilize the axial balancing system is meticulously calculated. This
parameter is crucial for manufacturers to design a stable configuration. Finally, the
undamped configuration is simulated and results show that the axial balancing system
does indeed become unstable under certain operating conditions. Overall, these findings
exhibit strong alignment with experimental data affirming the potential of the coupled
solver to effectively simulate an industrial configuration.

PART 3, Mode identification of hydrodynamic instabilities

Chap 7, Global linear stability analysis

This chapter discusses both hydrodynamic and aeroelastic instabilities. A litera-
ture review covering both topics is presented first. Then, linear stability analysis is
conducted on simple flow problems and enclosed rotating flow cavities. The method
is also applied to forced vibration problems, demonstrating its capacity to reveal the
underlying dynamics of the flow from a purely hydrodynamic perspective. Subsequently,
the hydrodynamic based method is applied to fluid-structure interaction problems
revealing certain limitations in these cases. The hydrodynamic analysis requires solving
the linearized Navier-Stokes and continuity equations, which lack information about
the structure dynamics. Nevertheless, the method can extract fluid modes of the
fluid-structure coupling and display their spatial organization.
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Self-induced vibrations are detrimental to the operation of space turbopumps.
The origin of this phenomenon depends on multiple factors such as the static, the
dynamic forces and moments acting on the system, the gas flow and the mechani-
cal components. The purpose of the current investigation is to elucidate this phe-
nomenon through numerical simulations. To do so, Large Eddy Simulation (LES)
is used to retrieve the flow dynamics of the first stage of a reduced scale liquid hy-
drogen turbopump, for which unsteady phenomena are reported. Results show that
the flow dynamics retrieved by LES can be attributed to pressure fluctuations in the
fluid as confirmed by Power Spectral Density (PSD) and Dynamic Mode Decomposi-
tion (DMD). The instability takes the form of vortices forming near the upper valve
clearance of the cavity and propagating downstream the housing. Acoustic and Modal
analyses are then performed to complement this pure flow analysis. To do so, the
Helmholtz and natural structural frequencies of the various components of this ideal
turbopump are detailed. Good agreement is found with acoustic and ping tests ob-
tained from experiments. The results suggest that the first acoustic frequency of the
cavity is very close to the first natural structural frequency (or zero nodal diameter
node) of the disc, indicating a possible three way coupling between the fluid, rotor
disk and cavity acoustic and the appearance of a vibroacoustic phenomenon.

2.1 Introduction
Controlling the vibration and stability of turbopumps is an important factor that is re-
quired and considered in the design and operational phases. Vibrations in a turbopump
can be caused by static as well as dynamic forces and moments, such as impeller rotation,
flow oscillation. Mechanical components are also in this context to be addressed. These
vibrations can cause wear and tear of the system and reduce its efficiency. Self-induced
instabilities are particularly critical due to their detrimental effect on the structural in-
tegrity of the turbopump. One such instability is the flutter-like phenomenon of the
rotor shaft designed with an Axial Balancing System (ABS). Such an axial balancing
system is a mechanism used to balance the forces acting on the two faces of the rotor
as shown on Fig. 2.1. In a self-balancing system, a piston is located at the back of the
impeller and an inlet orifice of variable axial gap is present at the outer radius. When
axial thrust on the rotating parts becomes important, the impeller moves in the axial
direction (to the right of the figure) so that the clearance of the inlet orifice is adjusted
resolving the imbalance through a pressure differential in the balance piston chamber.
This Axial Balancing System (ABS) can however become unstable under certain condi-
tions. For instance Shimura et al. (2012, 2013) have conducted many studies on such
systems where they evaluate their dynamic stability by varying the chamber volume of
the piston chamber, the clearance height of each orifice and the working fluid. They con-
cluded that large axial vibrations can be suppressed by reducing the chamber volume and
that fluid compressibility can destabilize the system. The problem is exacerbated when
the acoustic frequencies of the cavity have the same order of magnitude as the natural
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frequencies of the rotor which lead to resonance. Pereboom et al. (2016) have conducted
experimental investigations on coupled acoustic-structural modes and the effect of fluid
density and speed of sound. Within the same framework, a reduced scale liquid hydrogen

Figure 2.1: Schematic of a self-balancing system

turbopump has been developed by ArianeGroup and CNES to investigate the stability
of an ABS (Edeline et al. (2002, 2004)). In that case, the ABS and turbopump can be
tuned to mimic certain operating conditions including stable or unstable configurations.
More details on this device can be found in Martin et al. (2022). As a complement, they
also developed a coupled model between the shaft dynamics (modal analysis), the fluid
inside the ABS and a linear model for the valves. A different test bench has also been
developed within the same scope of study to investigate certain unstable configurations
(see Fig. 2.2). The objective here is to investigate possible coupling between acoustic
modes of the cavity and natural frequencies of the rotor. The associated experimental
campaign is also of great interest from a numerical point of view since its geometrical
simplicity allows for CFD computations. Brunier-Coulin et al. (2022) and Deneuve et al.
(2020) conducted exhaustive experimental and numerical studies to investigate unsteady
ABS configurations that exhibit a fluid-structure coupling. They found that for a set of
flow rates and axial gap clearances, the ABS is unstable. They also pointed out a poten-
tial fluid-structure coupling between the first natural frequency of the disc and the first
acoustic frequency of the cavity forming a type of Helmholtz oscillator and a hydraulic
oscillator created by the upper valve. In order to address this particular configuration, a
modal analysis is first conducted on the cavity as well as the rotor and results are com-
pared to the experimental results of Brunier-Coulin et al. (2022). Then, LES is performed
to investigate the potential appearance or need for a fluid-structure coupling.
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(a) (b)

Figure 2.2: (a) Test bench model (source: Deneuve et al. (2020)) (b) rotor disc

2.2 Cavity characteristics
The cavity of interest is designed to replicate the test bench geometry used for experi-
mental studies. Only the ABS is considered here and represented on Fig. 2.3. The test
bench design consists of a radial cavity of radius ϕin with a disk of height ϕin < ϕdisk

and thickness h mounted on its shaft. The upper valve clearance, noted a0, is secured
by a steel ring that separates the housing from the upstream cavity. This clearance can
be modified by using rings of variable thicknesses. However only one value is taken into
account in this work. The CAD model used for all simulations is obtained by perform-
ing a 1◦ azimuthal extrusion of the complete axisymmetric model resulting in a similar
configuration used by Deneuve et al. (2020) for their RANS and URANS calculations.
The rotor is also fixed in this case to address the instabilities that arise from an axial
flow. If the disk is rotating various instabilities may indeed appear. Their structure are
discussed by Kang & Raman (2004) and D’Angelo & Mote (1993). In this configuration,
the flow enters the first cavity and exits the second cavity at atmospheric pressure. The
flow is laminar in the first cavity as well as through the upper valve as highlighted by
experimental campaigns for the different inlet flow rates used and upper valve clearance
heights. Instabilities may appear in the second cavity downstream the housing depend-
ing on the aforementioned parameters. The flow dynamics will be analyzed using the
geometric parameters summed up in Tab. 2.1. Note that the geometric parameters of
the cavity as well as the macroscopic quantities are normalized by their corresponding
maximum values for confidentiality purposes.
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(a) (b)

Figure 2.3: (a) Test bench geometry (source:) (b) CAD model used for the simulation

Geometric parameters
ϕdisk Disk Diameter
ϕin Cavity Diameter
h Disk thickness
a0 Upper valve clearance

Table 2.1: Characteristic parameters of the cavity shown on Fig. 2.3.

2.2.1 Acoustic analysis
The propagation of acoustic waves in a medium is described by a second order partial dif-
ferential equation called the acoustic wave equation (Helmholtz equation). It is typically
written in the form:

∂2pac

∂xi
2 − 1

c2
∂pac

2

∂t2 = 0, (2.2.1)

where pa is the acoustic pressure, xi is a space direction described using Einstein’s notation
and c is the speed of sound. When dealing with linear acoustic, it is suitable to introduce
p̂(xi, ωac) the frequency domain counterpart of pac. The two quantities are related through
the Fourier transform:

pac(xi, t) =
∫ +∞

−∞
eiωactp̂(xi, ωac)dω. (2.2.2)

Applying the Fourier transform and injecting it back in the Helmholtz equation yields a
linear real eigenvalue problem and the angular frequencies of oscillation of a system.

To predict the natural acoustic frequencies of the cavity: i.e., solve the resulting
eigenvalue problem, a 3D Helmholtz solver called AVSP (Nicoud et al. (2007)) is used in
the following. Note that this code solves the discretized wave equation on unstructured
meshes in the spectral domain. The acoustic domain considered is illustrated on Fig. 2.4.
For boundary conditions, infinite impedance is applied on walls (V⃗ac · n⃗ where n⃗ is the
unit normal vector to the wall pointing outward). Zero velocity fluctuation (uac = 0) is
imposed at the inlet and zero pressure fluctuation (pac = 0) is set at the outlet.
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Figure 2.4: CAD model used for the acoustic calculations. The inlet condition is a
velocity node and the outlet condition is a pressure node.

The first three acoustic frequencies are then calculated by solving the appropriate
eigenvalue problem for a mean pressure of 101325 Pa. Their frequencies and correspond-
ing mode shapes and phase angles are shown on Tab. 2.2 and Fig. 2.5 respectively. Note
that the tabulated frequencies are normalized by the first acoustic mode of the cavity fac1

obtained by the experiments of Deneuve et al. (2020) using a microphone and speaker
integrated in the balancing cavity. The first resulting acoustic mode is an axisymmetric
one that pulsates in the axial direction and has a frequency of 1fac1 matching the ex-
perimental value. All the characteristic frequencies related to this study are normalized
by the first acoustic frequency of the cavity serving as a base reference and are denoted
by the superscript (∗). The second and third modes are azimuthal modes that pulsate
at higher frequencies. Note however that the study is restricted to the first mode as to
address instabilities that arise from an axial flow.

Normalized acoustic frequencies f ∗
ac = f/fac1

Mode 1 (axial) 1
Mode 2 (azimuthal) 1.82
Mode 3 (azimuthal) 2.03

Table 2.2: First three natural acoustic frequencies of the cavity.
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(a)

(b)

(c)

Figure 2.5: acoustic pressure mode shapes (left) and phase angles (right) of the first
three natural acoustic frequencies: (a) Mode 1 (b) Mode 2 and (c) Mode 3

2.2.2 Structural modal analysis
Modal analysis is a technique also used to determine the dynamic characteristics of a
structure: i.e., its natural frequencies and modes of vibration. The goal is to identify the
specific modes of vibration of the structure and to understand how the structure responds
to different types of excitation. The mathematical model describing the dynamic response
of a structure is written as,

ρs
∂2ξ

∂t2 = ∇ · P + ρsf . (2.2.3)

This equation is known as the elastodynamic equation where ξ represents the displace-
ment, P is the second Piola-Kirchoff stress tensor and f are the resultant external forces.
This equation is derived in details in Chap. 5. For simplicity, the elastodynamic equation
can be recast in a matrix form to model a multiple degrees of freedom (MDOF) linear
mechanical system with viscous damping,

MÜs + DU̇s + KUs = Fext, (2.2.4)
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where Üs, U̇s and Us are vectors of the generalized acceleration, velocity and displacement
while Fext is the vector of the generalized (external forces) acting on the system. M, D
and K represent the matrices of inertia, viscous damping and stiffness coefficients respec-
tively. In most conservatives systems, the inertia and stiffness matrices are symmetric,
meaning M = MT, K = KT. In systems with multiple degrees of freedom, a natural
state implies a certain configuration or shape taken by the system during motion. Note
that a MDOF system possess not one but a finite number of states known as natural
modes of vibration. Depending on the initial conditions or external forcing excitation,
the system can vibrate following any of these modes or a combination of them. How-
ever, each mode corresponds to a unique frequency known as natural frequency. There
are as many natural frequencies as natural modes. In the modeling of a n coupled 2nd

order ordinary differential equation, the motion in the direction of one degree of freedom
depends on the coupling with other degrees of freedom. In the analysis below, the prin-
cipal or natural coordinates are chosen to represent the system of n ordinary differential
equations because in this particular generalized coordinate the equations become inde-
pendent of each other (uncoupled). The natural coordinates are linear combinations of
the (actual) physical coordinates. Hence, the motion in physical coordinates can be con-
strued or interpreted as the superposition or combination of the motions in each natural
coordinate. For the structure model to be studied one first considers an undamped case
without external forces, so Eq. (2.2.4) reduces to,

MÜs + KUs = 0. (2.2.5)

This is a second order homogeneous differential equation that can be solved by assuming
the solutions to be of the form,

us = ûse
iωst. (2.2.6)

Solving Eq. (2.2.5) yields the free vibrational responses of the system each being associ-
ated to the set of natural frequencies ωs. This equation is in the following solved using
FreeFEM++ (Hecht (2012)), an open source tool focused on solving partial differential
equations using the finite element method.

To do so, one transforms the PDE into its variational or weak form. It results in
the mass matrix M which corresponds to the unsteady term and the stiffness matrix
K which corresponds to the stress tensor term. After taking into account the Fourier
decomposition of Eq. (2.2.6), the weak form of Eq. (2.2.5) for the displacement us(xi) ∈
Ψs is,

−
∫

Ωs

(σ(us) : ϵij(Ψs))dΩ = ω2
s

∫
Ωs

ρs((us) · (Ψs))dΩ, (2.2.7)

−
∫

Ωs

(λs∇ · us∇ · Ψs + 2µsϵij(us) : (Ψs))dΩ = ω2
s

∫
Ωs

ρs((us) · (Ψs))dΩ ∀Ψs ∈ V.

(2.2.8)

Ψs is a linear closed subspace of H1(Ω2
s), ρs is the density of the structure and λs and µs

are the Lamé coefficients. Solving this eigenvalue problem yields the natural frequencies
associated to a structure fixed in a certain reference frame.
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For problems involving a rotating structure such as a disc in rotation, additional
terms are required. Indeed, while the structure is rotating it is subject to the Coriolis
and centrifugal effects that are non-negligible forces where the former acts as a damping
mechanism on the system while the latter acts as a stiffener. In a system of polar
coordinates (r, θ, x) these forces are expressed as,

F ext = −2ρsωs∂t(ureθ − uθer)︸ ︷︷ ︸
Coriolis

+ ρsω
2
s(rer + urer + uθeθ)︸ ︷︷ ︸

Centrifugal

. (2.2.9)

The variational form of this damped system after Fourier decomposition hence becomes,∫
Ωs

(ω2
sρs(us) − λs∇ · us∇ · Ψs − 2µsϵij(us) : (Ψs) + 2ρsωs∂t(ureθ − uθer)

−ρsω
2
s(rer + urer + uθeθ)).(Ψs)dΩ

(2.2.10)

where ωs = λs + ωr is split into a growth rate and pulsation term. Such a quadratic sys-
tem can be solved using the shift-invert transformation in conjunction with the subspace
iteration method to track the fastest growing eigenmodes. To do so, the generalized
eigenvalue problem Au = ωBu is solved by first defining the matrix OP = A − sB
where s is the shift value (the eigenvalues computed are close to this value), A is the
mass-normalized stiffness matrix and B is the mass-normalized damping matrix. The
validation of the modal analysis solver is detailed in App. A.

In the present study, the mechanical eigenmodes of the rotor are of particular in-
terest to investigate potential coupling with the acoustic modes of the cavity. In other
words, check if the elastic wave pulsation of the disc is near the acoustic wave pulsation
of the cavity. To do so, the rotor of Fig. 2.2 is modeled and meshed in FreeFEM++.
It is a non-bladed hollow disc characterized by an internal radius ri, an external radius
ro and a thickness h. Regarding boundary conditions, zero displacement and velocity
are imposed at the inner radius (Us = 0, U̇s = 0). The resolution of the corresponding
problem provides the mode shapes of the disc for a fixed and rotating case (see Fig. 2.6).
Their matching frequencies are presented in Tab. 2.3. The two modes correspond to
the first eigenmode found exhibiting an axial vibration around its initial position and
for which the nodal diameter is set equal to zero (axisymmetric deformation). The
difference in natural frequencies is attributed to the added damping and stiffness effects
of the rotating disc. Indeed, the Coriolis effect is an added term to the damping matrix
while the centrifugal effect is an added term to the stiffness matrix. Hence, the resulting
natural frequency is expected to be slightly modified due to the new nature of the
system.
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(a) (b)

Figure 2.6: (a) 1st mode shape of the fixed disc (b) 1st mode shape of the rotating disc

Modal analysis Ping test
ω∗

d0ND
(fixed) 0.97 (0.97fac1) 0.99 (0.99fac1)

ω∗
d0ND

(spinning) −0.0002 + 0.95i (0.95fac1) −

Table 2.3: Natural frequencies of the disc calculated via modal analysis and ping test
experiments.

It is finally noted that the natural frequency of the disc in the fixed case matches the
frequency obtained via ping test experiments from Brunier-Coulin et al. (2022) corrob-
orating the probability of a fluid-structure coupling with the first acoustic mode of the
cavity at f ∗

d0ND
≈ f ∗

ac1

2.3 Large Eddy Simulation
The inherent unsteady nature of flows in turbomachines requires advanced modeling ca-
pabilities to successfully capture both large-scale flow structures and small-scale unsteady
features. These small-scale structures are defined on a scale known as the Kolmogorov
scale (Kolmogorov (1991)) while the large-scales are usually of the order of the domain
size in which the flow proceeds. Large Eddy Simulation (LES) is often a suitable can-
didate for such cases (Sagaut (2006)), as it is a compromise between Direct Numerical
Simulation (DNS) and Reynolds-Averaged Navier-Stokes (RANS) methods. While DNS
can resolve all turbulence scales (either in time or space) thereby resulting in highly ac-
curate flow predictions, it requires very fine mesh cells to capture small eddies and has
a very high computational cost. On the other hand, although RANS does not require
fine meshes, it does not resolve any scales of the turbulent spectrum but models it. As a
result, only averaged quantities of the governing equations are obtained. These describe
the statistically stationary mean flow and thus is limited to a steady vision of these flows.

LES equations
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The system of equations describing LES is obtained by applying a spatial filer de-
pendent on the mesh grid size to enable the separation of the large and small turbulent
scales. This operation is mathematically described using a convolution product between
a non filtered quantity Φ and a spatial filter G∆ of a characteristic size ∆. The filtered
quantity Φ̄ is then obtained from,

Φ̄(x,t) =
∫

Ω
G∆(x, x′)(x, x′)Φ(x′, t)dx′. (2.3.1)

Applying this filter results in the distinction of the unresolved or sub-grid scales Φ′

which can be obtained by subtracting the filtered scale Φ̄ from the exact multi scale field
Φ,

Φ′ = Φ − Φ̄. (2.3.2)

This decomposition is similar to the Reynolds decomposition for statistical methods
and leads to the same problems when the flow is compressible. Thus, by analogy with
the Favre average, the Favre filtered variable Φ̃ (Favre (1983)) is usually introduced,

Φ̃ = ρΦ
ρ̄

. (2.3.3)

The filtered LES system of equations describing a compressible multispecies flow can
then be written (using Einstein’s notation where i, j and l represent the 3 space directions)
as follows,

Filtered mass flow conservation:

∂ρ̄

∂t
+ ∂

∂xj

(ρ̄ũj) = 0. (2.3.4)

Filtered Momentum conservation:

∂ρ̄ũi

∂t︸ ︷︷ ︸
I

+ ∂

∂xj

(ρ̄ũiũj)︸ ︷︷ ︸
II

= − ∂P̄ δij

∂xj︸ ︷︷ ︸
III

+ ∂τ̄ij

∂xj

+
∂τ̄ t

ij

∂xj︸ ︷︷ ︸
IV

, (2.3.5)

The terms highlighted in Roman numerals in Eq. (2.3.5) denote: the unsteady filtered
term (I), the resolved convective term (II), the filtered pressure gradient (III) and the
resolved viscous as well as turbulent stress tensor gradient (IV). The resolved viscous
stress tensor τ̄ij is given by,

τ̄ij = 2µ(S̃ij − 1
3δijS̃ll), (2.3.6)
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where S̃ij is the rate of the strain tensor defined as,

S̃ij = 1
2(∂ũj

∂xi

+ ∂ũi

∂xj

). (2.3.7)

Similarly the unresolved stress tensor, τ̄ij
t is given by models that are detailed later.

Filtered species conservation:

∂ρ̄Ỹk

∂t︸ ︷︷ ︸
I

+ ∂

∂xj

(ρ̄Ỹkũj)︸ ︷︷ ︸
II

= − ∂

∂xj

[Jk,j + Jk,j
t]︸ ︷︷ ︸

III

. (2.3.8)

This transport equation is needed for all chemical species k. Each term represents:
an unsteady filtered term (I), a resolved convective term (II) and a filtered resolved and
turbulent diffusion term (III).

Filtered Energy conservation:

∂ρ̄Ẽ

∂t
+ ∂

∂xj

(ρ̄Ẽũj) = − ∂

∂xj

[uj(Pδij − τij) + q̄j + q̄t
j], (2.3.9)

where E is to the total energy and qj is the heat flux.

To close this system of equations, an equation of state linking pressure, temperature
and density is required. Assuming an ideal gas, this equation of state translates into,

P̄ = ρ̄rT̄ with r = R

W
, (2.3.10)

where R = 8.3143J/mol/K is the universal gas constant and W is the mean molecular
weight of the mixture: i.e., summed over all the species so that,

1
W

=
N∑

k=1

Yk

Wk

. (2.3.11)

One key component that remains to be detailed is turbulence modeling. As said above,
filtering induces a closure problem which is in our context modeled using gradient based
approaches and the use of a so-called turbulent viscosity. Such sub-grid scale models are
a type of turbulence models used to represent the effects of the small-scale unresolved
turbulence that cannot be resolved by the numerical grid. These terms are τ̄ t

ij, q̄t
j and

Jk,j
t in Eqs.(2.3.4-2.3.9).

The subgrid-scale Reynolds stress tensor can be expressed as,

τ̄ij
t = 2ρ̄νt(S̃ij − 1

3δijS̃ll) with S̃ij = 1
2( ∂ũi

∂xj

+ ∂ũj

∂xi

), (2.3.12)
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where νt is the turbulent viscosity. To close this term, there exists many eddy viscosity
models implemented in AVBP (CERFACS (2008)) that can be used.

One of the most commonly used eddy viscosity models for LES is the Smagorinsky
model,

νt = (CS∆)2
√

2S̃ijS̃ij, (2.3.13)
where ∆ is the filter length (square root of the node volume). This model assumes that
the eddy viscosity is proportional to the square of the local strain rate and is scaled by
a constant Cs, known as the Smagorinsky constant. The Smagorinsky model constant
Cs is an a priori input usually set to 0.18. This model is capable of providing the right
amount of dissipation of turbulent kinetic energy in homogeneous isotropic turbulent
flows. However it presents some drawbacks because it introduces too much diffusion
into the flow (Hoffman & Johnson (2006)) and the eddy viscosity does not vanish for a
laminar flow.

To overcome these problems, Lilly (1967) introduced the dynamic Smagorinsky model
that uses local flow information to calculate a local eddy viscosity that varies spatially and
temporally. The key idea is to relate the magnitude of the subgrid-scale stresses to the
resolved-scale quantities (through double filtering) in order to determine an appropriate
value for the eddy viscosity. To do so, the closure coefficient CSD is adjusted based on lo-
cal flow conditions and is no more a user defined variable. By dynamically estimating the
eddy viscosity based on local flow information, the dynamic Smagorinsky model provides
a more accurate representation of the unresolved turbulence and improves the fidelity
of the simulation compared to the original Smagorinsky model with a constant coefficient.

For wall bounded flows, Nicoud & Ducros (1999) proposed the WALE model to cap-
ture the effect of the wall boundaries on the turbulence, particularly in regions close to
the walls where the turbulence is strongly influenced by the presence of the solid surface.
In the following, the turbulent viscosity is expressed as,

νt = (Cw∆)2 (sd
ijs

d
ji)3/2

(S̃ijS̃ij)5/2 + (sd
ijs

d
ji)5/4

, (2.3.14)

where ∆ is the filter length and Cw = 0.325 is the closure coefficient. Neveretheless,
locality is lost with this model and only global quantities are to be trusted similar to the
Smagorinsky model.

There exists a model that combines the best features of the dynamic Smagorinsky
model as well as the WALE model which is the sigma model written as,

νt = (Cσ∆)2 σ3(σ1 − σ2)(σ2 − σ3)
σ2

1
. (2.3.15)

This model is suitable for performing 3D computations however the Wall-adapting local
eddy-viscosity model (WALE) model is preferred in this work.
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2.4 Numerical model
For the LES, a mesh is generated on the CAD model of Fig. 2.3 by use of CENTAUR1.
It is a fully unstructured tetrahedral mesh as shown on Fig. 2.7. Three elements in the
azimuthal direction are used along the shaft and shroud to accurately capture the physics
between the two periodic in-plane faces. In the upper cavity, the mesh size increases
linearly starting from the inlet to the rotor. Since the underlying physics of the flow is
dictated by the upper valve clearance, a particular attention is given to this region by
enforcing five nodes in the gap. Note that a second mesh has also been generated with
eight nodes in this region for validation purposes. All mesh characteristics are given in
Tab. 2.4.

Figure 2.7: Fluid domain and its associated mesh

In order to evaluate the quality of the mesh at the walls, the non-dimensional wall
distance z+ = z1uτ /ν is computed. In this case, uτ is the friction velocity at the nearest
wall and ν is the local kinematic viscosity of the fluid while z1 is the physical distance
to wall of the first mesh point off the wall. For both cases, z+

max ≈ 15 or 10 is found in
the clearance walls where the fluid experiences the highest wall shear stress. While this
value is relatively large to ensure a wall resolved approach, it is important to underline
that the flow in the gap does not reach a turbulent regime and always remains laminar.
This is further discussed in the next section where the dynamics of the flow in the cavity
is analyzed.

The LES is performed with the AVBP code (Gourdain et al. (2009)) developed by
CERFACS. This massively parallel code is widely used in both academia and industry

1https://www.centaursoft.com/
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Mesh 1 Mesh 2

hmin [m] 1.46 × 10−5 4.62 × 10−6

hmax [m] 4.8 × 10−3 4.46 × 10−3

Nnodes 2.14 × 105 3.24 × 105

Ncells 9 × 105 1.5 × 106

z+
max 15 10

Table 2.4: Mesh characteristic parameters of the cavity shown on Fig. 2.7.

Numerical parameters

Solver type Navier-Stokes

Convection scheme Law-Wendroff

Sub-grid scale model WALE

Laminar viscosity Sutherland’s law (µref = 1.716 × 10−5Kg/m/s, Tref = 2324K)

Artificial viscosity Colin sensor (ϵ2 = 0.01, ϵ4 = 0.005)

Table 2.5: Characteristic parameters of the cavity shown on Fig. 2.3.

(Seguí et al. (2018)). In this simulation, the second order Lax-Wendroff scheme is used.
The time step is not fixed, but is dictated by the acoustic Courant Friedrichs Lewy
number (CFL). In the present simulation, the CFL number is set to 0.7. The laminar
viscosity of the flow is determined by Sutherland’s law with the constants µref and Tref

defined in Tab. 3.3, and the sub-grid turbulence model used is the WALE model (pre-
sented in section 2.3). It is more adequate than the classical Smagorinsky or dynamic
Smagorinsky-Lilly (Lilly (1966)) models when dealing with wall bounded flows and low
Reynolds number problems. To avoid small-scale numerical oscillations, a second-order
artificial viscosity is introduced to smooth unresolved gradients and a fourth-order vis-
cosity to dissipate potential wiggles. The artificial viscosity is applied based on the Colin
sensor (Colin & Rudgyard (2000b); Colin (2000)) with a low level second-order coefficient,
ϵ2 = 0.01 along with a fourth-order coefficient value of ϵ4 = 0.005. All the numerical pa-
rameters used for the simulation are reported in Tab. 2.5.

Regarding the numerical boundary treatments, a no-slip boundary condition is applied
on all surfaces defining the shroud, hub and housing. This translates mathematically to
ux = ur = uθ on these surfaces where u = (ux, ur, uθ) are the three velocity compo-
nents in the cylindrical coordinate system (x, r, θ). A periodic condition is enforced in
the azimuthal direction between the two faces of the cavity. This greatly reduces the
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computational domain size and reduces the number of grid points needed to accurately
model the flow. Finally, all walls are treated as fully adiabatic walls.

(a)

0 2 4Time [s]
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Figure 2.8: (a) Time evolution of the pressure and (b) average volumetric kinetic energy
used to determine numerical convergence.

In terms of process, the simulation is first started with a no flow cavity using Mesh 1.
The flow then establishes progressively through the imposition of the inflow conditions.
Numerical convergence is attained when the volume average kinetic energy inside the
domain reaches its maximum value and when the slope of the volume-average mean
static temperature becomes almost constant. This specific evolution is shown on Fig. 2.8
for various macroscopic quantities as a function of time. Note that, the kinetic energy
appears to fluctuate when approaching the flow limit cycle as indicated by Fig. 2.9 hinting
that an unsteady behavior of the fluid inside the cavity effectively arises.

Figure 2.9: Time evolution of the dimensionless volume-averaged kinetic energy.
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2.5 LES results and discussion
The LES results are presented in more details and discussed in the present section. The
mean flow is first evaluated, followed by a thorough discussion of the instantaneous flow
activity. To do so, use of Power Spectral Density (PSD) and Dynamic Mode Decompo-
sition (DMD) is done.

2.5.1 Mean flow
At convergence, a pressure differential is created between the upstream and downstream
cavities as demonstrated on Fig. 2.10(a). Indeed, since the two cavities are only separated
by a small cross sectional area, a pressure build-up occurs in the upstream cavity to push
the fluid through the upper valve clearance. In addition, this leads to an increase of
the fluid velocity magnitude in this region. This observation is consistent with the fluid
continuity equation. The continuity equation implies here that for a decrease in the
cross-sectional area, the exit velocity (inlet of the upper valve) of the flow increases to
conserve mass. Conversely, when the flow enters the housing, the cross sectional area
increases and the flow velocity magnitude decreases. Figure. 2.10(b) shows the mean
velocity magnitude at steady state. A small recirculating region is observed near the
upper valve, along with slightly weaker velocity magnitude structures propagating within
the housing. In the next section, a particular attention is given to this flow dynamics by
analyzing instantaneous fields and dedicated post-processing tools.

(a) (b)

Figure 2.10: (a) Mean pressure and (b) mean velocity magnitude at steady state

2.5.2 Flow activity
Instantaneous 2D cuts of the axial and radial velocities ux and ur are presented on
Fig 2.11. The axial velocity is null in the upper valve clearance where the flow direction
is purely radial and attains its maximum velocity. The rotor is fixed in this case rendering
the azimuthal velocity negligible compared to the other two components. The flow hence
runs through the parallel plates formed by the rotor and cavity walls. In this region the
flow Reynolds number can be estimated to be,
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Re = ρDU

µ
= ρa0ūr

µ
= 898, (2.5.1)

(a) (b)

Figure 2.11: (a) Instantaneous axial velocity and (b) instantaneous radial velocity

confirming that the flow is laminar in this region. However, as the flow enters the
second cavity, the abrupt change in cross section area occurs resulting in a variation of the
shear stress of the fluid. The flow which carries high momentum along the upper cavity
wall then hits the shroud at a 90◦ angle at the exit of the valve. This creates a strong
recirculation zone shown on Fig. 2.12 consistent with the observed mean field. However
and as a result of non-linearity, vortical structures shed and propagate downstream the
housing.

Figure 2.12: Instantaneous vorticity field

Figure. 2.13 combines different instantaneous snapshots of the velocity field focusing
specifically on the housing. A recirculating flow clearly dominates positioned in the
spacing located between the rotor and shroud. The corresponding unsteady activity
appears such that: first, vortices are shed from the bigger bubble issued by the rotor gap
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flow. Later downstream vortices appear to combine creating a periodic vortex shedding
with a recombination phenomenon. This phenomenon is seen to occur once every 5 ×
10−3 s or for a frequency of f ∗ = 0.328.

Figure 2.13: Snapshots of the velocity stream plot constituting one period of vortex
shedding.

To identify the driving modes of the above described unsteady activity, numerical
probes are placed in the upper valve clearance and housing to gather temporal data.
Figure. 2.14 highlights the probes distribution inside the cavity. Multiple positions are
placed near the upper valve as well as in the housing similarly to the instrumented test
bench. For a clear identification the notations UV − P and H − P are introduced.
They refers to the Upper Valve Probes (UV-P) and Housing Probes (H-P) respectively.
Temporal data is then extracted during the flow limit-cycle. The pressure discrete signal
is first used for the PSD and results are illustrated on Fig. 2.15(a) and Fig. 2.15(b) for the
upper valve and housing respectively. Significant variation in energy across the spectra
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are present as indicated by the multiple peaks. Two dominant peaks, respectively noted
f ∗

1 and f ∗
2 , are observed in the spectrum, irrespective of the region indicating that the

flow oscillates as a whole at f ∗
1 = 0.157 and f ∗

2 = 0.314. All other peaking frequencies
are harmonics of these two hence their decreasing energy content. One also notes that
the energy content of the frequencies increases as a function of distance from the upper
valve then decreases in the housing. This is demonstrated by the difference in signal
strength of UV − P1 and UV − P6 and H − P1 and H − P4 indicating that the source
of the instability appears near the gap between the rotor and cavity and then dissipates
in the housing. Note also that while both frequencies are predominant in both regions, a
slight difference in amplitude can be observed. Near the upper valve, the highest peaking
frequency corresponds to f ∗

1 = 0.314 while f ∗
2 = 0.314 corresponds to the secondary

instability. Conversely, in the housing, the opposite phenomenon is observed with f ∗
2

being the primary instability and f ∗
1 the secondary instability indicating a potential

transfer of energy: i.e., mode interaction. Note that additional mesh refinements did not
alter the behavior of these instabilities nor their constituent frequencies, subsequently
only the post processing results of mesh 1 are described.

Figure 2.14: Repartition of the numerical probes inside the cavity. UV − P and H − P
refer to the probes located near the upper valve and housing respectively. (Figure not to
scale)

Based on the observed instantaneous fields and the spectral analysis, two different
flow activities can be evidenced; the recirculaion zone oscillation and the corresponding
vortex shedding downstream. Complemented by the fact that, as vortices start to shed,
a larger vortex appear and form beneath the recirculation zone in a periodic fashion
exhibiting a vortex pairing phenomenon.
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(a) (b)

Figure 2.15: Pressure power spectral densities computed at (a) upper valve and (b)
housing.

Unlike PSD, modal decomposition techniques based on data-driven methods can ex-
tract coherent patterns as well as their frequencies thereby providing better insight to
the underlying dynamics of the system. The most commonly used methods in the field
of fluid dynamics are: Proper Orthogonal Decomposition (POD), Spectral Proper Or-
thogonal Decomposition (SPOD) and Dynamic Mode Decomposition (DMD). POD is
based on the singular value decomposition (SVD) of the data matrix; it extracts spa-
tially orthogonal and time independent energy ranked modes (Schmidt & Towne (2019);
Brouzet et al. (2020)). This may lead to a merging of the modes of distinct frequencies
in the same POD mode (Sieber et al. (2016)). DMD decomposes a time-series into a
set of modes each of which is a combination of spatial patterns and temporal dynamics.
In other words, each mode is associated with a certain frequency and growth rate, its
stability being dictated by the sign of the latter (Brouzet et al. (2020)). Note that modes
are in that case not ranked based on their energy content. SPOD is a variation of the
POD method used to identify and analyze the dominant frequency dependent modes in
a system while preserving the energy ranking feature of POD. The frequency dependent
modes correspond to the optimally averaged DMD modes for a statistically stationary
flow (Towne et al. (2018)). This last element represents one key advantage over DMD
because of its inherent spatio-temporal consideration as well as its ability to rank modes
based on energies. This is however at the expense of the notion of stability criterion.
Consequently , it is chosen from here on to use the DMD (Schmid (2010)) approach so
that results can be compared to a Global Linear Stability Analysis as detailed in the last
chapter of the thesis.

DMD is thus applied by collecting a sequence of 100 equi-spaced snapshots from
the unsteady predictions. To do so, the flow data is sampled at twice the maximum
frequency of the signal to satisfy the Nyquist criterion and an overall duration of 0.25 s.
Figure. 2.16 shows the spectrum found by DMD which confirms the PSD findings with
two dominant peaking frequencies at f ∗

1 = 0.164 and f ∗
2 = 0.328. However, the second

mode f ∗
2 constitutes the main instability inside the cavity. Figure 2.17 illustrates the

perturbed velocity magnitude corresponding to the two frequencies. These two modes
are seen to co-exist in the upper-valve region and entrance of the housing, the first mode
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Figure 2.16: DMD signal spectrum.

being the most dominant in the former. This is attributed to the fact that the mode is
stronger when the instability arises: i.e., near the upper valve. The second mode f ∗

2 is
spatially active in two regions. The first one locates between the upper valve and rotor
while the second appears downstream beneath the rotor indicating that this mode can be
attributed to the vortex shedding of the flow from the cavity. The spatial organization of
these modes are in agreement with the PSD findings indicating that two hydrodynamic
instabilities f ∗

1 and f ∗
2 interact with each other between the upper valve clearance and

the housing. The dynamic of the flow is however dictated by the mode f ∗
2 as seen by the

instantaneous snapshots and confirmed by the DMD signal amplitude.

(a) (b)

Figure 2.17: Perturbed velocity magnitude mode shapes of the two most dominant
modes in the cavity (a) f ∗

1 and (b) f ∗
2 .
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2.6 Conclusion
The preliminary investigations of the single stage rotodynamic pump by LES evidences
the presence of hydrodynamic, acoustic as well as structural modes with the potential
convergence of all such processes in terms of frequency. Post-processing the LES results
using techniques like PSD and DMD, show that for a fixed rotor, a flow instability arises
near the upper valve which then propagates downstream creating vortex shedding. Two
modes are effectively identified as responsible for the observed unsteady prediction. Their
frequencies differ from the reported acoustic frequency of the cavity or natural frequency
of the rotor. This indicates that such a flow only analysis may be insufficient to model
the true response of an axial balancing system. This could have been anticipated since
no prior knowledge guarantees that systems instabilities are purely hydrodynamic or
acoustically driven, and the previous prediction confirms that is a priori not the case.
To address this, the remainder of the thesis focus is on developing numerical tools to
solve such multiphysics problem, specifically fluid-structure interaction. The next chapter
examines first how hydrodynamic modes react to external vibrations, the first class of
machine vibration. This is a preliminary step towards investigating fully coupled fluid-
structure problems.
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Imposed vibration is the first class of machine vibration that can lead to
structural fatigue and eventually failure. This periodic oscillatory motion can also
affect the flow dynamics and alters its behavior by modifying the existing features of
the system. To evaluate such a phenomenon while validating the approach, two test
cases are considered: the flow past an oscillating cylinder and an academic/rotor
stator cavity subject to rotor oscillations. In the former case, a "lock-in" behavior
is observed: i.e., the frequency of the vortex shedding from the cylinder wake equals
the imposed frequency of vibration. This particularity occurs for a certain range of
frequencies and amplitudes of vibration at a given Reynolds number. In the following,
multiple values of amplitude and frequency are considered for the same Reynolds
number and results from simulations are found in agreement with experiments. In
the second case, the external forcing is equal to the frequency of the two most unstable
modes found in a non forced case. The objective is to mimic the rotor response at
these frequencies. However, due to non-linearities and the high Reynolds number
flow, flow modes are anticipated to respond differently. Indeed, the mode of the rotor
boundary layer manifests with a very low energy content, as for the other modes in
the system, new unstable modes have emerged in the cavity. Thanks to the previously
established predictive numerical tools, LES in conjunction with DMD and PSD are
proven to recover such dynamics when external forcing is applied.

3.1 Introduction
The flow past a circular cylinder is perhaps one of the most classical fluid mechanics
problem and has been the prototype of many numerical as well as experimental studies as
outlined in the reviews of Morkovin (1964), Norberg (1987) and Beaudan & Moin (1994).
In fact, it is a main component to understand flow dynamics while being of interest
to a large number of applications in many engineering fields. The flow configuration
is in this case governed by a single non-dimensional parameter: the Reynolds number,
ReD = U∞d

ν
, where U∞ is the free-stream velocity, d is the cylinder diameter and ν

the kinematic viscosity of the fluid. Vastly different behaviors appear as the Reynolds
number increases. For ReD < Rec, where Rec is the critical Reynolds number roughly
equal to 47, the flow is asymptotically steady with a pair of symmetric counter-rotating
vortices forming behind the cylinder for ReD > 5. At Re = Rec, the flow undergoes
the first instability through a Hopf bifurcation and becomes unstable leading to a vortex
street as identified by Bernard (1908) and Kármán (1911). This laminar vortex shedding
also referred to as Kármán vortex street, is seen for flows up to ReD ≈ 190. A second
instability indeed arises near ReD = 188.5, characterized by spanwise structures. Barkley
& Henderson (1996) identified this instability by performing a 3D floquet analysis. Past
this Reynolds number, the regime is referred to as the Williamson regime (Williamson
(1996)) or mode A instability and occurs for 190 < ReD < 260. Beyond this interval,
three dimensional spanwise structures become more predominant, which is known as
mode B instability. As a result, the flow becomes more chaotic when the Reynolds
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number continues to increase as pointed by Prasad & Williamson (1996) and Beaudan
& Moin (1994). At around ReD ≈ 1200, a shear layer transition occurs followed by a
boundary layer transition at ReD ≈ 105 accompanied by a dramatic decrease of the drag
coefficient of the cylinder. The classification of these regimes was primarily based on
experiments rendering the transition between them a difficult task to accurately define.
Nevertheless, two non-dimensional parameters known as the Strouhal number and the
base pressure coefficient curve allowed a classification of those regimes. When a periodic
vortex shedding is established, the vortex shedding frequency fs can be represented by the
non-dimensional Strouhal (1878) number St = fs

U∞
. The relationship between St and Re

has been a subject of intense scrutiny for a long time. Indeed, both Norberg (1987) and
Fey et al. (1998) have reported a St−Re relationship starting from Rec where St = 12 to
Re = 2 × 105, the onset for boundary layer transition. All of the aforementioned studies
have been conducted for a fixed cylinder. There are however cases where the cylinder is
not fixed. In such cases, it can interact with the vortex shedding process. The present
study is focused on two parts: first, the forced vibration of a 2D cylinder is analyzed for a
Reynolds number of 100 by varying the amplitude and frequency of vibration. It appears
that there is a complex relationship between the amplitude of the cylinder vibration
and the flow Reynolds number for which a "lock-in" phenomenon is observed; i.e., the
frequency of the vortex shedding converges towards the imposed frequency of vibration.
This preliminary study is done to validate all the necessary numerical tools required to
solve such problems. Then, the analysis is extended to 3D enclosed rotating flows at high
Reynolds number representing turbomachinery applications. In this context, the effect
of the rotor vibration on the inherent flow instabilities inside an academic rotor/stator
cavity is assessed. Such flow instabilities manifest through three dimensional structures
at multiple locations inside the cavity and are sensitive to geometry as well as boundary
conditions. Subsequently, any external perturbation can alter the dynamics of the flow.
The aim of this study is to mimic real life problems where imposed vibrations can alter
the flow behavior inside a turbomachinery device and eventually shift its operating point.

3.2 2D Cylinder test case description
The problem and computational domain retained for the upcoming analyzes is repre-
sented on Fig. 3.1. As indicated, d is the diameter of the cylinder and for all simulations
to come, the height of the computational domain H is 20d. The upstream distance, Lu,
between the inlet flow boundary and the center of the cylinder is chosen to be 10d to
minimize inflow induced interaction. Likewise, the downstream distance, Ld, between the
center of the cylinder and the outlet boundary is 20d for a total axial length, L, of 30d.
Note that the size of the domain can be critical and to avoid any errors caused by the
effect of the boundary conditions, it needs to be addressed with care. Indeed, when ReD

is small, the flow is mainly governed by viscous effects whose region of influence varies
with Re−1

D . In such a regime Persillon & Braza (1998) showed that the aspect ratio of the
domain should not be smaller than H

d
= 22 for ReD = 100 and the effects of the outlet

boundary condition become negligible if L
d
≥34. Although the actual size of the domain



44 Chapter 3 : Forced vibration problem in axial and rotating flows

is slightly smaller than the one advocated by Persillon & Braza (1998), the primary
objective is to limit the number of cells in the domain and since Placzek et al. (2009) used
a smaller configuration that provided accurate results, the above dimensions are retained.

Regarding boundary conditions, slip wall conditions are applied on the two lateral
opposing walls. Only the streamwise velocity u = U∞ is imposed at the inlet, and
pressure is imposed at the outlet. For the cases with a moving cylinder, a zone delimited
by two fictive horizontal lines is defined as shown on Fig. 3.1 to facilitate the moving
mesh procedure. The size of this block is 6d and is chosen to maintain the quality of the
mesh around the cylinder as well as upstream and downstream the flow. When it comes
to the mesh, it is fully unstructured and composed of triangular elements with 33 285
cells and 16 220 nodes. The mesh stretching is also introduced along the streamwise and
axial directions around the cylinder, so that the mesh is finer near the cylinder wall and
becomes coarser away from it. A probe P1(2d;d) is added in the vicinity of the cylinder
(relative to the origin of the coordinates which coincides with the cylinder center) to
extract all the information needed for post-processing. Note that this point is slightly
outside of the wake to minimize the influence of the upper vortex street and minimize
the influence of the opposite vortex street in the measurement. When the cylinder is
moving, a new formalism is introduced to account for the moving mesh: the Arbitrary
Lagrangian-Eulerian method (ALE) developed by Hirt et al. (1974) and implemented
in the code by Moureau et al. (2005). The ALE is a technique that combines the best
features of both the Lagrangian and Eulerian approaches. In this framework, the nodes
move in the continuum in a normal Lagrangian arbitrary way to provide a continuous
banding capability. This computational framework allows greater deformation of the
continuum compared to a Lagrangian approach with a superior resolution than the one
allowed by a purely Eulerian method. This method has been extensively validated on
piston engine simulations (Misdariis (2015)) and in rotating channels (Fransen et al.
(2013)). Particular attention is however needed to maintain conservation around the
moving block. Typically, the continuity of the velocities imposes the following equality
at a walls,

v = ẏc on Γ, (3.2.1)
where v is the fluid velocity while ẏc is the cylinder wall velocity and Γ denotes the
moving interface. More details around the numerical implementation of the moving
mesh is discussed thereafter.

All simulations discussed hereafter are performed with AVBP (Gourdain et al. (2009))
using a finite-element scheme TTGC (Colin & Rudgyard (2000b)) based on a two steps
Taylor-Galerkin formulation. This scheme has very low diffusion and dispersion properties
making it appropriate for LES by providing a third order accuracy in time and space.
The flow field is governed by the Navier–Stokes equations described in Chap. 2. However,
the cylinder motion which is taken into account by the fluid model written in the ALE
formulation introduced previously, slightly modifies the convective term in the Navier-
Stokes equations by introducing an additional term related to the mesh velocity. Hence
the Navier-Stokes equation becomes,
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Figure 3.1: Mesh configuration of the computational domain highlighting the different
boundary conditions

∂u
∂t

= ((u − w).∇)u = −∇p + 1
Re

∇2u, (3.2.2)

∇ · u = 0, (3.2.3)
where u = (u, v) is the velocity vector containing the streamwise and transverse compo-
nents u and v, p is the pressure, ρ and ν are the fluid density and kinematic viscosity.
In the cases considered, the Reynolds number is inferior to 190 meaning that the flow is
assumed to be laminar and two-dimensional according to the description of Williamson
(1996). The mesh velocity represented by w is here equal to ẏc, the motion of the cylinder
imposed as a forced vibration whenever needed. Even though the nodes of the domain
have the same velocity as the cylinder velocity ẏc, their corresponding displacement varies
according to their location. For such simulations, it is chosen that the cells inside the
moving block do not deform so their displacement is a pure translation. All remaining
nodes in the domain are then made so that they move according to a linear deformation
law, their displacement being maximal near the moving block and stationary at the wall
of the channel. For the cases involving forced oscillations, the motion is known a priori
and can be directly imposed in the code for the moving mesh. In this case the motion of
the cylinder is simply characterized by the following sinusoidal velocity equation,

yc(t) = ycmaxsin(2πf0t), (3.2.4)

where ymax is the maximum amplitude of displacement and f0 is the forced oscillation
frequency. The cylinder hence oscillates independently from the flow.
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3.3 Fixed cylinder problem
The flow dynamics past a fixed cylinder is investigated in this section for two Reynolds
numbers ReD = 40 and ReD = 100. The goal of such cases is to validate the simulations
by checking several characteristic parameters. Simulations are carried out until the total
kinetic energy of the system has converged as shown on Fig. 3.2. Note that simulations
have been carried out well beyond the convergence time to collect sufficient data for
post-processing purposes.
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Figure 3.2: Evolution of the total volumetric kinetic energy in function of time for (a)
ReD = 40 and (b) ReD = 100.

During the transient state, the wake behind the cylinder establishes and at first starts
to oscillate with a small amplitude without any vortex shedding for both cases. In the
second case however, when the flow reaches its limit cycle, the amplitude of oscillations
start increasing until vortices start to shed downstream. For the first case, the Reynolds
number is below the critical Reynolds number (≈ 47) for which no bifurcation should
occur. The wake is characterized by two strong re-circulation zones attached to the
rear cylinder wall. In this region, the vorticity is large and the pressure levels are low.
When the Reynolds number rises past the first critical value, the flow undergoes a Hopf
bifurcation leading to vortex shedding. At ReD = 100, the wake becomes fully unsteady
while two staggered rows of vortices shed alternately from either side of the cylinder
as shown by Fig. 3.3. At the flow limit cycle, the wake is characterized by a shedding
frequency and Strouhal number as explained in the first section.

For the second simulations, the fundamental shedding frequency fs can be obtained
by performing a Fast Fourier Transform of the stream-wise velocity temporal recording
of the established flow at probe P1. The corresponding Strouhal number yields a value of
St = 0.1656 for the second case which agrees with the numerical calculations of Placzek
et al. (2009) and the experiments of Williamson (1988). Results also agree with the direct
numerical simulations (DNS) in 2D and 3D of Persillon & Braza (1998) confirming that
the flow did not develop a three dimensional structure at this Reynolds number. Indeed,
it is the second critical Reynolds number Rec2 that dictates this condition meaning that
for ReD < Rec2 3D effects are not present. For further diagnostics, drag, CD, and lift, CL,
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Figure 3.3: vorticity contours plots in the wake for (a) ReD = 40 and (b) ReD = 100.

coefficients have also been recorded numerically and are reported on Fig. 3.9. For case
ReD = 40, the lift coefficient, CL, remains null because of the perfect symmetry of the flow
field . For case ReD = 100, the vortex shedding leads naturally to the fluctuation of the
aerodynamic coefficients. The expressions of the aerodynamic coefficients are reminded
below:

CD = FD

1/2ρU2
∞d

CL = FL

1/2ρU2
∞d

where FD and FL are the drag and lift forces expressed by unit of length and U∞ is the free
stream velocity. The aerodynamic coefficients can be evaluated by calculating the mean
value of the drag and the average maximum lift over multiple periods. The mean drag and
maximum averaged lift obtained for this case are C̄D = 1.36 and C̄Lmax = 0.32. These
values are in good agreement with Placzek et al. (2009) and Tuann & Olson (1978), and
they are slightly different from the values obtained by Henderson (1997). Indeed, Placzek
et al. (2009) highlighted the effect of the aspect ratio on such aerodynamic coefficients
and with an aspect ratio similar to the one adopted in the present study (H/D/ ≈ 0.3)
which resulted in a slight overestimation of these coefficients as seen here. Overall, the
relative error is however acceptable since it is below 5%.
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Figure 3.4: Magnitude of the Fast Fourier transform (FFT) of the lift coefficient at
point P1 at ReD = 100
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Figure 3.5: Evolution of the aerodynamic fluctuating coefficients (the time is normalized
by the domain aspect ratio L/D) at ReD = 100.

3.4 Forced Vibration cylinder test cases

In this section, results from simulations of cylinder subject to forced vibration are pre-
sented. The forcing frequency is conveniently represented using the ratio F = f0/fs,
where f0 is the forcing frequency and fs is the natural frequency of the flow instability.
This allows a direct comparison between the flow natural frequency of oscillation for a
forced case and the fixed cylinder problem. The objective is in the following to determine
the effect of forcing on the vortex shedding of a flow at ReD = 100. Computations are
started using a previously established solution for the fixed case. For comparison Koop-
man (1967) experiments are used. In his experimental work, a cylinder is forced to vibrate
at a frequency different from the flow Strouhal frequency and as a result, he established
a region where for some values of ycmax and f0, the flow oscillation converges towards the
imposed frequency f0. While performing the same experiment but at different Reynolds
numbers (ReD = 100, ReD = 200 and ReD = 300) whereby extending his analysis to the
Williamson regime, modes A and B, he observed similar behaviors. This phenomenon ,
where the flow oscillation frequency converges to the forced one, is usually named "lock-
in" vortex shedding: when the frequency of the vortex street becomes the same as the
one imposed by the vibration. In the present study, the amplitude of vibration is fixed
and set to A = 0.25 where A = ycmax/d is the normalized amplitude. This value corre-
sponds to the upper range of value for which "lock-in" appears as observed by Koopman
(1967). This specific choice indeed helps highlighting the different response regimes of
the cylinder while maximizing the vibration effect on the flow wake. Even though the
"lock-in" region is defined by both the amplitude and the frequency of vibration, it is
easier to fix one quantity and vary the other to cross in or out of the region of interest.
In the present case, the lock-in region is evidenced on Fig. 3.6 in the (A, F ) plane. It is
characterized by two almost symmetric limits, blue lines defined using the data points of
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Koopman (1967). Test cases simulated hereafter are added to Fig. 3.6 by triangles: i.e.,
for a fixed amplitude of A = 0.25 and varying the forcing frequency f0.

Figure 3.6: Lock-in zone for forced oscillations. The solid lines in blue represent the
limits of the lock-in region at ReD = 100 according to the data points (+) of Koopman
(1967). The simulations performed here are represented with triangles: (△) correspond
to locked configurations and (▲) correspond to unlocked ones.

3.4.1 Results and discussion
Locked configurations

The cases presented here are the locked-in configurations highlighted by an open
triangle △ on Fig. 3.6: i.e., F = 0.9 and F = 1.1. Figures 3.7 and 3.8 show first the
vorticity contours in the wake at successive instants over one period of vibration (the
values have been normalized with respect the maximum vorticity value in each case for
comparison). Although the vortex structures are still aligned and parallel to the cylinder,
their topology and spatial organization differ from the fixed case of 3.3(b). Indeed, a
vibration of the cylinder at a frequency lower than the flow Strouhal frequency causes
the street to expand, meaning that the longitudinal extent covered by the oscillating
wake and the size of the vortices increase. The vortices composing the wake near the
cylinder wall are also elongated in the y direction, i.e., in the direction of vibration.
On the opposite, imposing higher frequency of vibration causes the compression of the
street yielding a decrease in the longitudinal extent of all these vortices. The vortices are
also seen to shrink in the axial direction. As a result of these aerodynamics changes,
all aerodynamic coefficients are affected in such cases. Both these coefficients depict
a pure sinusoidal response as indicated by Fig. 3.9. For F = 0.9, the drag coefficient
experiences a strong increase reaching a mean value C̄D = 1.52 compared to C̄D = 1.36
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Figure 3.7: vorticity contours plots over one amplitude of vibration for F = 0.9. (a)
t = T/4, (b) t = T/2, (c) t = 3T/4, (d) t = T where T stands for the case period of
forced oscillation.
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Figure 3.8: Vorticity contours plots over one amplitude of vibration for F = 1.1 for
F = 0.9. (a) t = T/4, (b) t = T/2, (c) t = 3T/4, (d) t = T where T stands for the case
period of forced oscillation.

for the fixed case. Likewise, the peak value of the lift coefficient reaches C̄L = 0.32 when
it was C̄L = 0.2 in the fixed case. For F = 1.1, the drag increases yielding C̄D = 1.8
and the peak lift coefficient increases to C̄L = 0.7. All results are seen to be in good
agreement with the numerical predictions of Placzek et al. (2009). Finally, the Fast
Fourier transforms of the signal retrieved from probe P1 and shown on Fig. 3.10 clearly
demonstrate that lock-in has indeed happened in both configurations. Since the new
vortex shedding frequency f ∗

s equals the imposed frequency of vibration f0. As a result,
during this regime, the aerodynamic forces are controlled by the frequency of vibration,
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Figure 3.9: Evolution of the fluctuating lift coefficients for F = 0.9 ((a)) and F = 1.1
((b)).

f0.
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Figure 3.10: Magnitude of the Fast Fourier transform (FFT) of the lift coefficient at
point P1 for (a) F = 0.9 and (b) F = 1.1

Unlocked configurations

The focus is now brought to the unlocked configurations of Fig. 3.6 evidenced by
filled triangles, and for which F = 0.5 and F = 1.5. The respective vorticity contour
are illustrated on Fig. 3.11. For F = 0.5, the structure of the wake seems to be
coherent with the one formed in the fixed case. This similarity however does not
guarantee a fully similar flow dynamics. This similarity also does not apply to the second
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unlocked configuration, F = 1.1, which displays a completely different vortex shedding
phenomenon and wake structure. Indeed, vortices are no longer purely symmetric with
respect to the cylinder and their periodic release is no longer truly present.
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Figure 3.11: Instantaneous vorticity contours plots for (a) F = 0.5 and (b) F = 1.5

A careful examination of the time series of the fluctuating lift coefficients is provided
for both cases by Fig. 3.12. As suspected by Fig. 3.11, both time series do not exhibit
pure sinusoidal shape. Although they appear periodic over several cycles of oscillation
as observed by Placzek et al. (2009), a beating or standing wave behavior arises. Such a
cycle-to-cycle period clearly evidenced by Fig. 3.12 has also been pointed out by Anag-
nostopoulos (2000) who emphasized that this behavior is typical of cases F > 1 or F < 1
outside the lock-in region leading to quasi periodic vortex shedding patterns. This re-
sulting behavior is often reported in the case of surge when aerodynamic coefficients are
compared to the fixed case. In our case, the lift coefficient attains a maximum value of
CL = 0.36 for F = 0.5 and CL = 2.2 for F = 1.5. Similarly for the drag (not shown), the
mean values obtained are C̄D = 1.35 for F = 0.5 and C̄D = 1.54.
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Figure 3.12: Evolution of the fluctuating lift coefficients for (a) F = 0.5 and (b) F = 1.5
.

The corresponding Fourier transforms shown on Fig. 3.13 confirm the presence of a
beating behavior for both cases. Indeed, the FFT’s display two peaking frequencies equal
to the imposed vibration frequency f0 and one corresponding to the flow frequency of
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oscillation of the fixed case, fs. The presence of these two peaks has also been identified
by Nobari & Naderan (2006) and Mittal & Kumar (2001) for transverse vibrations. In
our predictions, the flow frequency for F = 1.5 looks slightly shifted with a relative error
of ≈ 5.7%. This case however still demonstrates an unlocked configuration. While both
spectra clearly depict two dominant peaks, small amplitude peaks are also present which
do not appear to affect the flow structure nor the aerodynamic coefficients. Note that
Placzek et al. (2009) did not observe such low magnitude modes of oscillation. He also
found that forcing frequency at f0 results into a main peak for F = 1.5 and a secondary
one for F = 0.5, while both vortex shedding frequencies fs remain dominant in these
cases.

(a) (b)

Figure 3.13: Magnitude of the Fast Fourier transform (FFT) of the lift coefficient at
point P1 for (a) F = 0.5 and (b) F = 1.5

Overall, the results confirm that forced vibrations do indeed affect the flow struc-
ture and its underlying dynamics. Lock-in must however satisfy certain criteria which
apply to the frequency and the amplitude of vibration for a given Reynolds number.
Although, the flows simulated are all laminar in this preliminary study for which one
leading hydrodynamic mode is attributed to a vortex shedding (to be confirmed with a
linear stability analysis in the last chapter), the tool is confirmed to be capable of ad-
dressing such problems. However, complex rotating flows in enclosed cavities might react
differently to forcing. The next part of this chapter is hence dedicated to the effect of
imposed vibrations in rotor/stator cavities and with higher Reynolds numbers.

3.5 Enclosed cavity rotating flows
Flow instabilities are known to arise in rotating flows at high Reynolds numbers. Iden-
tifying and controlling the stability of these flows and their source remain a numerical
and experimental challenge as pointed out by Queguineur (2020) and Bridel-Bertomeu
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(2016a). Although the problem is exacerbated by the complexity of real world indus-
trial applications, numerous experimental and numerical studies have been dedicated to
enclosed rotor/stator cavities which serve as a preliminary model for turbomachinery
devices (Serre et al. (2004); Tuliszka-Sznitko et al. (2009); Bridel-bertomeu & Gicquel
(2017); Queguineur (2019)).

It is now known that the dynamics of these flows is heavily influenced by the cavity’s
geometric parameters and shape. Indeed, rotating flows on simple discs or even complex
cavity flows can be classified under the BEK (Ekman (1905); Karman (1921); Bödewadt
(1940)) flow family. This type of flows characterizes different possible configurations of
a rotating boundary layer over a disc, and the reader can refer to the thesis of Bridel-
Bertomeu (2016a) for a thorough description of these types of flows. The Ekman (1905)
and Bödewadt (1940) type of flows are of special interest in this case since they describe
enclosed cavity rotating flows. The Bödewadt (1940) layer arises when the disc is station-
ary and the fluid is rotating hence representing the boundary layer near the stator. The
Ekman (1905) layer on the other hand arises on the surface of the rotor where both the
rotor and the fluid hold the same rotational velocity. Lance et al. (1962) demonstrated
numerically that laminar flows inside these cavities can be classified into two distinct
categories depending on the length h between the stator and the rotor. If the gap is large
enough, the stator and rotor boundary layers are separated. Otherwise the two boundary
layers merge and the flow behaves like a ’torsional Couette flow". Daily & Nece (1960)
extended this classification to turbulent flows by defining four regimes governed by two
dimensionless parameters: the global Reynolds number and the aspect ratio of the cavity,

Re = Rermax = R2
1Ωd

ν
, G = h/R1,

where R1 is the outer disc radius, Ωd is the rotational frequency of the rotor and G is the
aspect ratio of the cavity. Figure 3.14 shows the different regimes plotted in the (Re, G)
plane for cavities with G << 1. It evidences four distinct regimes:

• Regime I: Laminar flow with merged boundary layers,

• Regime II: Laminar flow with separated boundary layers,

• Regime III: Turbulent flow with merged boundary layers,

• Regime IV: Turbulent flow with separated boundary layers.

Note that the two laminar regimes are separated by a curve following the expression
Re G11/5 ≈ 2.9, while the two turbulent regimes are separated by the relationship
Re G16/3 ≈ 7.8 × 10−3. The transition to turbulence for flows with separated boundary
layers (Regime II and IV) occurs at Re ≈ 1.58 × 105 and the two regimes with merged
boundary layers (Regime I and III) are separated with a curve following Re G10/9 ≈ 366.

Owen & Rogers (1989) highlighted flow structures that can be found in enclosed cav-
ities and confirmed that they are a source of complex phenomena affecting the dynamics
of the fluid in rotation. This dynamics is furthermore heavily dependent on the geomet-
rical parameters and shape of the cavity itself. In fact, two geometric parameters can
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Figure 3.14: Map of the different flow categories of enclosed rotor/stator cavities in the
(Re, G) plane.

alter the behavior of the flow: the finite disc radius rmax and end wall effect due to the
presence of a shroud and/or hub. The finite disc radius is a crucial aspect that affects
the parallel flow approximation introduced for infinite disc studies. This approximation
allowed the auto-similar solutions to be proposed by Batchelor (1951) finding an axially
symmetric solution to the Navier-Stokes equations for a steady incompressible and vis-
cous fluid between two radially infinite discs. From the same perspective, a finite disc
length can induce disturbances arising from its circumference and traveling inward. This
feature can greatly alter the frequencies and mode shapes of the flow in the cavity as
demonstrated by the experiment of Pier (2013) who confirmed that if the local Reynolds
number Rer = rmax/h becomes greater than the critical Reynolds number Rec, (in other
words a local bifurcation of the flow), a global mode will be imposed by the boundary
condition at r = rmax. Similarly, for an annular cylindrical cavity, if the local Reynolds
number at the hub is greater than the critical Reynolds number, then the flow instability
near the stator is transmitted to the rotor boundary layer. Queguineur (2019) confirmed
such claims through control strategies using a method called Dynamic Mode Tracking
and control (DMTC). He found that the suppression of the unstable mode near the stator
prevented the emergence of a different unstable mode near the rotor.

In the context of the present Ph.D. work, a simple enclosed rotor/stator cavity taking
the form of a cylindrical shape is analyzed. In particular, one wants to study what
happens when the rotor is subject to forced vibration. This question is here addressed
based on the above approach since validated on a simpler problem. Without forcing
the flow developed in the cavity of interest corresponds to the Batchelor (1951) type of
flow with two separated boundary layers (regime IV) and the frequencies of vibration
to be imposed for analysis are equal to the two most dominant hydrodynamic modes
found in the non forced case. These express respectively in the mid-cavity and near
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stator. Although this configuration has been subject to many experimental (Itoh et al.
(1992); Schouveiler (2001)) and numerical (Queguineur (2020); Bridel-Bertomeu (2016a))
studies, the objective therein is to asses the effect of the imposed vibration on the obtained
hydrodynamic modes for a complex rotating flow at high Reynolds number. Recall that
what we refer to here are modes corresponding to flow activities taking the form of
circular waves around the hub and spiral vortices around the rotor and stator. The flow
dynamics of the non forced case is first briefly presented then a detailed investigation of
forced vibration cases is given.

3.5.1 Description of the geometric configuration

The geometric model considered is illustrated in Fig. 3.15. It represents an enclosed
cylindrical rotor/stator cavity of height h composed of two smooth discs: the rotor and
the stator. The rotor rotates at a constant angular velocity Ωd = 2πF0, F0 being the
frequency of rotation of the rotor around the z-axis. The stator, on the other hand,
remains stationary and is delimited by a cylindrical shroud of radius r = R1. The cavity
also includes an annulus of radius R0 that rotates at the same speed as the rotor. The
curvature parameter Rm is usually used to define such annular cavities. In the present
case, Rm = 1.8 and equals to value used by Séverac et al. (2007) experimentally and by
Tuliszka-Sznitko et al. (2009) numerically. The mean flow inside the cavity is controlled
by the aspect ratio G defined as G = h/∆R where ∆R = R1−R0 and the global Reynolds
number ReG = ΩR2

1/ν where ν is the kinematic viscosity of the fluid. G is often used
in the literature and its value is here fixed so it is a first order approximation of a real
turbomachine model (Tuliszka-Sznitko & Zielinski (2007); Serre et al. (2001)). All the
geometric and physical parameters are summarized in Tab. 3.1.

Figure 3.15: Schematic drawing representing the annular rotor/stator cavity. (Figure
not to scale)



3.5 Enclosed cavity rotating flows 57

Geometric parameters
Internal Radius R0 71 mm
External Radius R1 250 mm
Cavity height h 35 mm
Aspect ratio G 0.2 -
Curvature parameter Rm 1.8 -
Global Reynolds number ReG 105 -
Angular velocity F0 50 Hz

Table 3.1: Characteristic parameters of the Tuliszka cavity.

3.5.2 Numerical Setup
Mesh and boundary conditions

To create the mesh of the configuration shown on Fig. 3.15, a 2D annular disk
made of fully unstructured triangular elements is built and then extruded in the axial
direction. Mesh clustering is carefully taken into consideration to minimize errors at
walls where interactions are important. Note that the final 3D mesh is consequently
made of only prismatic elements that are equally distant in the z direction. All the
resulting mesh characteristic parameters are summed up in Tab. 3.2 below and where z1
corresponds to the thickness of an element and is taken to be of the same order as the
boundary layer thickness. Note that Nlayers represents the number of mesh layers used
for extrusion while z+ is the dimensionless wall normal coordinate.

Mesh characteristics
z1 5.14 × 10−4 m
Nlayers 70 -
Nnodes 5.51 × 106 -
Ncells 10.9 × 106 -
z+

max 5.45 -

Table 3.2: Mesh Characteristic parameters of the cavity shown on Fig. 3.15.

Regarding the imposed oscillating movement of the rotor, the Arbitray Lagrangian
Eulerian (ALE) description given by Hirt et al. (1974) and implemented by Moureau et al.
(2005) is used. The ALE is implemented in this case by first defining three zones in the
numerical domain shown on Fig. 3.16. The zones are defined in such a way as to facilitate
the use of the moving mesh procedure when the rotor oscillates as well as to preserve
the quality of the mesh at walls by maintaining a first grid node wall normal coordinate
z+ < 5 as advised for wall resolved LES. Likewise the objective is to limit mesh distortion
as much as possible. Grid dependency tests have already been performed for the same
cavity by Bridel-Bertomeu et al. (2016a) using the same strategy and LES solver. The
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(a)

(b)

Figure 3.16: (a) 3D sector cut of the mesh, (b) axial cut of the mesh with the different
blocks used.

configuration of the zones and cells have been built according to these observations. The
zone containing the rotor has therefore 5 times the cell thickness and moves in translation
along the z direction according to the following imposed velocity signal,

z(t) = zmaxsin(2πf0t), (3.5.1)

where z(t) is the instantaneous position of the rotor in space, zmax is the maximum
amplitude of vibration and f0 is the imposed frequency of vibration in Hertz (Hz). Note
that the rotor moves as a block without distortion. In the compression zone, all mesh
elements also move in translation and deform linearly according to the position of the
rotor. Finally, the zone around the stator is fixed meaning that the nodes do not move
inside this region. This zone is defined by taking the first five mesh elements relative to
the stator in the z direction to maintain the quality of the mesh at the wall. The nodes
displacement in each zone is mathematically described as:

• Translation zone:
znodes = znodes + zmaxsin(2πf0t), (3.5.2)
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where znodes is a vector containing the z coordinate values for all the nodes in the
domain.

• Compression zone:

znodes = znodes + zmaxsin(2πf0t) × (znodes − ZC

ZR − ZC

), (3.5.3)

with ZR and ZC representing the boundary limits of the rotor and stator mesh
zones respectively.

• Fixed zone:
znodes = znodes (3.5.4)

The boundary limit or coordinates of the rotor are finally also displaced in time to
conserve the height of the translation zone following,

ZR = ZR + zmaxsin(2πf0t). (3.5.5)

Large eddy simulation modeling

The code chosen to perform the LES is AVBP (Gourdain et al. (2009)). The
convective Two-Step Taylor Galerkin (TTGC) (Colin & Rudgyard (2000a)) scheme
based on the finite element method is used. The low diffusion and dispersion properties
makes it appropriate for LES by providing a third order accuracy in time and space.
The time step of the simulation is dictated by the Courant Friedrichs Lewy number
(CFL) and it is set to 0.7. As introduced in Chap. 2, the sub-grid turbulence model
used is here the WALE model since adequate for wall resolved simulations. Artificial
viscosity is applied based on the Colin sensor (Colin & Rudgyard (2000b); Colin (2000))
to damp non-physical oscillations with a low level second order coefficient ϵ2 = 0.01 and
forth order coefficient ϵ4 = 0.001. All the numerical parameters used for the simulation
are reported in Tab. 3.3.

Numerical parameters
Solver type Navier-Stokes
Convection scheme Law-Wendroff
Sub-grid scale model TTGC
Laminar viscosity constant (µref = 2.23442 × 10−4Kg/m/s, Tref = 300K)
Artificial viscosity Colin sensor (ϵ2 = 0.01, ϵ4 = 0.001)
Time step (fixed case) ∆t 7.6 × 10−7s

Table 3.3: Numerical parameters used for the LES.

Regarding the treatment of the boundary conditions, all walls are treated as adiabatic.
Radial and axial no slip conditions are applied on the rotating disc and shaft. This
translates in the system of cylindrical coordinates (r, θ, z) to ur = uz = 0 and uθ = rΩd.
A slip-wall condition is enforced on the stationary disc and shroud.
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3.5.3 Results and discussions
Non-forced case

This type of study has already been realized and validated by Séverac et al. (2007),
Bridel-Bertomeu (2016b) and Queguineur (2020). However since it lays as the reference
case for the forced vibration cases it is briefly covered hereafter. Note that only the main
results focusing on the instantaneous flow dynamics are discussed, the reader can refer
to the aforementioned references for additional details.

In this section the fluid is initially at rest and the rotor is at its initial position. At
time t = 0 the rotor is brought to its rotation speed Ω = 2πF0 rad/s and the fluid
accelerates due to viscous entrainment. The flow organization at its limit cycle is shown
on Fig. 3.17 where 2D cuts near the rotor, mid-cavity and stator highlight the axial
velocity fluctuation. The fluctuating axial velocity u′

z is obtained by subtracting the
mean axial velocity (ūz) from the instantaneous axial velocity: i.e., u′

z = uz − ūz. It is an
important parameter because when instability arises in the flow, the base flow which is
stable departs from a purely parallel flow and the perturbations around it can be measured
using the magnitude of u′

z (Lopez et al. (2009); Serre et al. (2001)). Vortex structures
clearly dominate the cavity with distinct patterns near the rotor, the mid-cavity and
the stator. Indeed, the rotating disc boundary layer exhibits spiral-like structures with
increasing radial magnitude outward starting from the hub to the shroud. In the mid-
cavity, the spiral vortices are also active near the hub. The stator boundary layer depicts
a different form of patterns highlighted by the presence of spiral vortices as well as annular
ring structures near the hub. The spiral vortices appear to stem from the outmost ring
with a shorter span compared to the two other vortices. Overall the patterns recovered
demonstrate a coherent azimuthal organization throughout the cavity.

(a) (b) (c)

Figure 3.17: Axial velocity fluctuation u′
z > 0 normalized by its maximum amplitude

at different locations inside the cavity.

To identify the driving modes responsible for these instabilities, a DMD (Schmid
(2010)) is performed using instantaneous 2D solutions in (r, θ) planes from LES. The
DMD solutions retrieved are shown on Fig. 3.19 and represent the three most dominant
modes found in the system that correspond to: F = 0.35F0; F = 3.24F0 and F = 3.61F0.
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DMD confirms the LES findings thus indicating that these vortex structures are indeed
associated with an instability synchronized at a unique frequency. The three modes
have distinct wavenumbers resulting from a single bifurcation in the flow. The mode
F = 3.24F0 is characterized by the formation of annular rings around the hub, so its
wavenumber is zero. The lowest and highest modes exhibit a different form of instability
through the existence of 12 and 29 spiral arms respectively. The wavenumber of these
modes are hence respectively noted m = 12 and m = 29. Note that based on these LES
results, modes m = 0 and m = 29 appear to coexist near the stator boundary layer where
both instabilities have been identified.

(a) (b) (c)

Figure 3.18: DMD axial velocity fluctuation modes in the (r, θ) plane near the stator
boundary layer: (a) F = 0.35F0 (b) F = 3.24F0 (c) F = 3.61F0. (only the positive part
is shown)

These dominant modes have been identified by Bridel-Bertomeu (2016a) and
Queguineur (2020). These studies also demonstrated through PSD that each of these
modes originated from a certain location inside the cavity. For instance, mode m = 0
originates from the mid-cavity whereas modes m = 12 and m = 29 originate from the ro-
tor and stator boundary layers respectively. They furthermore indicate that these modes
are not only three dimensional in space but their magnitude also changes according to
the axial position inside the cavity. The present DMD performed in the (r, z) plane
corroborates these claims.

All three modes display clear three dimensional shapes and organizations inside the
cavity with each dominating a certain region. The mode F = 0.35F0 is present near the
stator at R0 < r < 0.13 with a stronger amplitude near the rotor at 0.22 < r < R1. The
annular mode dominates the entire cavity with annular rings forming near the stator at
R0 < r < 0.15 and vortex structures close to the hub as well as near the rotor boundary
layer. The highest frequency mode F = 3.61F0 is strongly present near the stator with
spiral vortex structures forming at mid radius.

The present simulation although reconducted from previous works on this academic
rotor/stator cavity sheds light on the various forms of rotational instabilities that can
occur in turbomachinery applications. However, external vibrations may also occur and
impact observed features potentially disrupting the operating point of the turbomachinery
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(a)

(b)

(c)

Figure 3.19: Axial velocity fluctuation DMD modes in the (r, z) normalized by their
respective maximum amplitude : (a) F = 0.35F0 (b) F = 3.24F0 (c) F = 3.61F0.

device. In the following, one examines this phenomenon by inducing a periodic oscillation
of the rotor. To do so, one considers two cases each with a unique forcing frequency that
corresponds either to the annular or stator modes identified in the non-forced case.

Forced cases

Two different Large Eddy simulations are carried out for the annular academic
cavity introduced earlier. For both cases, one imposes an axial motion as if the rotor
exerted an axial vibration (see Eq. (3.5.1)). All discussed simulations hence start from
the previously established solution. In the first case, the imposed frequency f0 equals the
annular mode frequency, f0 = 3.24F0, while for the second case, the imposed frequency
equals the stator mode frequency f0 = 3.61F0. The amplitude of vibration imposed is
fixed in the study and corresponds to A = 0.05h. Such a motion can for instance, be
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representative of a forced vibration issued from mistuned bladed disks which can lead
to an axial vibration 0.035h − 0.057h depending on the operating conditions of the
turbomachine and structural properties of the rotor as reported by Zhao et al. (2019).
The effect of amplitude change is not studied in the following. However preliminary tests
indicate that for small values of A the flow dynamics is not altered while for large values
of A, the flow structure is completely modified indicating the existence of a relationship
between the frequency and amplitude of vibration similar to the "lock-in" region identified
in the first part of this chapter. The objective is thus here to understand the behavior
of the flow when subject to an external forcing at frequencies corresponding to its
predetermined hydrodynamic modes prior to the use of more advanced approaches. For
the coming predictions recall that all numerical parameters introduced in the previous
section are maintained for all current simulations with the exception of the moving mesh
procedure. With such settings, 438 time steps are approximately needed for each cycle
of vibration of Case 1 while only 397 are needed for Case 2 to reach the flow limit cycle.
Numerical convergence is obtained similarly to the first reference simulation: i.e., when
the average volumetric kinetic energy inside the cavity reaches a plateau. The new limit
cycles are illustrated on Fig. 3.20 and for which each case is seen to be characterized by
an oscillation attributed to the imposed frequency of vibration.

(a) (b)

Figure 3.20: Evolution of the normalized volume-averaged kinetic energy at the flow
limit cycle for (a) Case 1 and (b) Case 2.

Figures 3.21 and 3.22 show 2D cuts of the axial velocity fluctuation u′
z relative to

the rotor and removing the mean local flow velocity. The boundary layer height δ is
now measured based on the mean flow relative to the rotor average position after one
period of oscillation: i.e., at the fixed case position. Near the stator boundary layer, both
cases feature the same instability patterns as demonstrated by the outward propagation
of spiral vortices starting at r ≈ 0.13 towards the shroud up to r ≈ 0.2. Near the hub for
R0 < r < 0.13, a set of dislocated circular patterns are identified. The former instability
is clearly three dimensional and is referred to as a type I instability, whereas the latter can
be interpreted as a type II instability Pikhtov & Smirnov (1993) . These two instabilities
arise due to two distinct bifurcations that yield this system of spiral rolls coexisting
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with the circular one Schouveiler (1998). The statoric boundary layer features 28 and
30 arms spiral structures for Case 1 and Case 2 respectively. These exist at high radii
whereas near the hub, spirals turn into quasi-concentric annular ones. For the rotating
boundary layer, the magnitude of u′

z is small near the hub due to important viscous forces
at the wall which damp the axial velocity fluctuation. However, at high radii and near
the shroud, inertial forces dominate the viscous forces at the wall and the magnitude of
the instability is higher. The spiral patterns are also identified in this case as co-winding
rotating vortices that propagate outward toward the shroud. The mid-height of the cavity
exhibits low amplitude variations of the axial velocity fluctuations with a slightly higher
activity near the hub where the flow appears to be spatially organized similarly to the
rotor boundary layer.

(a) (b) (c)

Figure 3.21: Axial velocity fluctuation u′
z > 0 normalized by its maximum amplitude

at different locations inside the cavity for Case 1.

(a) (b) (c)

Figure 3.22: Axial velocity fluctuation u′
z > 0 normalized by its maximum amplitude

at different locations inside the cavity for Case 2.

To further investigate the underlying structures and their stability, DMD is applied
again to these cases. To do so, a signal of duration of 1s containing all the necessary
flow data is taken at steady state after approximately 196 cycles of vibration for Case 1
and 216 cycles for Case 2. Such a signal contains therefore a sequence of 120 equi-spaced
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snapshots which is sufficient for the solution to converge. Figure 3.23 presents the most
energetic modes constituting Case 1. Two modes appear to be dominant inside the cavity.
At the stator boundary layer, the first one has a temporal frequency of F = 3.64F0 and
a wavenumber of m = 28. It is made of counter-winding vortices starting at r ≈ 0.13 m,
where approximately 3 cylindrical vortices exist around the hub, and propagate outward.
This mode appears to coexist with the second one that has a temporal frequency of
F = 4.64F0 and the same cylindrical vortices as found in the first mode. In the core of
the cavity the two modes appear to shift to a different radial location mainly around the
hub and shroud. Overall their amplitude is low compared to the modes found near the
statoric boundary layer. Mode F = 3.64F0 appears to mark the middle of the cavity with
6 spiral vortices compared to 5 for mode F = 4.64F0. At the rotor boundary layer the flow
seems to exhibit modal patterns at the same radial interval as for the core of the cavity.
Nevertheless, for the two modes, the axial velocity fluctuation appears stronger near the
shroud as demonstrated by the seen 12 spiral arms for mode F = 3.64F0 and 10 spiral
arms for the mode F = 4.64F0. As previously shown on Fig. 3.21, the LES predictions
appear to match the patterns found by DMD for the mode F = 3.64F0. This mode was
also retrieved in the non-forced case, however the annular mode found previously has its
frequency shifted by 1.4F0.

(a)

Figure 3.23: DMD axial velocity fluctuation modes at (a) z = h − δ (b) z = h/2 (c)
z = δ constituting Case 1.

Figure 3.24 shows the amplitude of the axial velocity DMD modes ûz constituting
Case 2. The most energetic modes retrieved correspond in that case to F = 3.26F0 and
F = 5F0. The former has also been identified in the non-forced case; whereby the latter
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has emerged and appears to dominate the cavity as shown in the LES predictions of
Fig. 3.21. Both modes exhibit the same radial distribution at the rotor boundary layer
and the core of the cavity. Near the stator, mode F = 5F0 is characterized by 30 spiral
vortices with less dominant cylindrical ones near the hub. The second mode coincides
with the opposite structural organization, a quasi-concentric dislocated circular waves
near the hub and spiral arms of negligible magnitude. These preliminary results indicate
that the hydrodynamic modes responsible for the flow instability did react due to the
forcing of the flow at a matching frequency.

(a)

Figure 3.24: DMD axial velocity fluctuation modes at (a) z = h − δ (b) z = h/2 (c)
z = δ constituting Case 2

The spectral content of the flow and the frequencies responsible for the underlying
instabilities can be directly monitored through point-wise power spectral densities carried
out on multiple numerical probes spread radially and in azimuth at the rotor and stator
boundary layer, as well as throughout the core of the cavity. The objective is to confirm
that the driving modes present in the flow are coherent with the DMD results. Due to
the inherent three dimensional structures of the present patterns (azimuthal and axial
distribution); only the spectral content of the modes present near the stator boundary
layer is presented. The core cavity and the rotating boundary layer indeed express the
same spectral content in terms of frequency but with a slightly different amplitude. A
total of 5 circles consisting of 60 probes each are spread in the axial direction between
the two discs at z = δ and z = h − δ as well as the mid section of the cavity at z = h/2.
Figures 3.25 and 3.26 show the location of the numerical probes in the cavity and used to
extract all the relevant data and the power spectral densities (PSD) of the axial velocity
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fluctuation u′
z. Note that the nomenclature CiPj is used to refer to the current probes

where i ∈ [1, 5] denotes the number of the circle and j ∈ [0, 15] the number of the probe
point.

Figure 3.25: Location of the numerical probes in the cavity associated with Case 1 and
Case 2 (figure not to scale). Numbering of the circles match the color of the probes and
the corresponding PSD signal.

Multiple peaking frequencies can be identified on both spectra. However, not all these
frequencies are associated with a unique hydrodynamic mode. Using the PSD confirms
the presence of the modes retrieved by DMD. Three main frequencies can be identified
in Case 1, i.e., 3.24F0, 3.61F0 and 4.7F0, and in Case 2, i.e., 3.24F0, 3.61F0 and 5F0.
All other frequencies are either harmonics or linear combinations of these modes that
contribute to a much lesser extent to the system. As a consequence, their respective
mode shapes are considered irrelevant. Note that Queguineur (2020) also pointed out
the presence of such additional frequencies that were disregarded in the non-forced study.
The magnitude of the peaks appear to be consistent with the radial distribution of the
three dimensional patterns inside the cavity. For Case 1, mode 3.61F0 appears to be the
same mode as identified by DMD at 3.64F0 and the main driver of the statoric instability
shown by LES predictions on Fig. 3.21. Indeed, this mode is present at 0.13 < r < 0.2
where the highest peak of axial velocity PSD are identified by C3P0. The emerging
mode at 4.7F0 that is mostly concentrated around the hub, has also its highest axial
velocity PSD magnitude present in that region as shown by the point C1P0. Finally
the frequency of vibration imposed f0 = 3.24F0 is clearly retrieved. It perturbs the
flow the most in the region between C1P0 and C3P0. The constituent frequencies of
Case 2 also match the ones retrieved by DMD with three major peaking frequencies i.e.,
3.24F0, 3.61F0 and 5F0. Mode 3.24F0 corresponds in this case to the hydrodynamic
mode characterized by circular spirals near the hub therefore yielding the highest peak
at point C1P0 with a magnitude of 40 dB. The forcing frequency f0 = 3.61F0 is also
present alongside a built up of a frequency at 4F0. This frequency does not appear to
have any contribution to the DMD spectrum hence it might be linked to noise inside
the system. The dominant frequency found in the stationary disc by LES is identified
by the PSD at a peak at 5F0 with a magnitude of 60 dB between C2P0 and C3P0. In
general, both PSD spectra exhibit a similar magnitude range, ranging from 60dB to
95dB, with the latter showing a slightly higher order of magnitude. Finally, the rotor
mode at 0.35F0 identified in the non-forced study is barely discernible in both spectra
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which explains why DMD does not recover this mode. That said, it implies that forcing
has effectively suppressed the rotor mode. Similarly, Queguineur (2020) discovered that

(a) (b)

Figure 3.26: Power spectral densities of the axial velocity fluctuation u′
z in the statoric

boundary layer (z = h − δ) registered by probes C1P0 to C5P0 for (a) Case 1 and (b)
Case 2.

this specific mode can be mitigated through control strategies. His developed dynamic
mode tracking and control (DMTC) strategy revealed that the rotor mode is dependent
on the presence of the stator mode. Consequently, by suppressing the latter mode, the
former mode can be effectively suppressed as well. However, this was not the case for
the mid-cavity mode, as suppressing it allowed the other two cavity modes to persist.
Nonetheless, to regulate the additional peaking frequencies observed in the spectra, a
base flow modification was required. This modification involved conducting a wavemaker
analysis to identify the region that is the source of the instability. By applying injection
and suction processes from the wavemaker region to a different area inside the cavity, the
base flow was modified accordingly. The results demonstrated successful suppression of
the cavity modes, although new modes emerged in the system. These cavity modes are
susceptible to external perturbations as well as flow disturbances. The former scenario
is more likely to occur in real-life applications, while the latter is employed to prevent
resonance of the structural components by shifting the hydrodynamics mode away from
the natural frequency modes.
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3.6 Conclusions
The first class of machine vibration has been studied numerically in this chapter through
two series of test cases. In the first series, the flow past an oscillating bluff body is inves-
tigated at Re = 100 using Large Eddy Simulation. The objective is here to validate the
tools and proposed strategy prior to a more complex turbopump like problem. In this
test, the vortex shedding frequency and the imposed frequency of vibration are linked ac-
cording to the so called "lock-in" region where the natural Strouhal frequency of the flow
vortex shedding converges to the imposed one. Attention is brought in this case to both
locked and unlocked configurations that are backed by a Fourier transform analysis in
each regime. The second part of this chapter deals with rotating flow instabilities. These
are intrinsic phenomena of enclosed cavities that depend on the Reynolds number, the
geometric configuration of the cavity and its boundary conditions. Such instabilities can
furthermore significantly impact the structural integrity of a turbomachine and must be
understood for real-life applications. The objective of produced simulations is to investi-
gate the effect of an imposed vibration on such a flow. To do so, and to mimic the effect
of external vibrations, the local vibration of a rotor for an academic rotor/stator cavity
is assessed by imposing two frequencies that correspond to the most unstable fluid modes
inside the cavity for the non-forced case. Large Eddy simulations of the flow responses of
these two forced cases show that new instabilities emerge in the system whereas others
disappear. This confirms the possibility of using dedicated control strategies as proposed
by Queguineur et al. (2019) where the same shifting behavior of the various frequencies
involved has been observed for the same cavity. The Dynamic Mode Decomposition then
successfully sees the perturbation of the flow providing views of the shape of these new
instabilities. Complemented by pointwise spectral density analyses performed at different
locations inside the cavity, these reveal a broad spectrum of frequencies including hydro-
dynamic and mechanical modes, making it challenging to identify the flow instabilities.
To address this issue and further validate the findings of DMD, a global linear stability
analysis is proposed later on to study both forced cases. Such results are to be discussed
in the final chapter of the thesis.
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This chapter presents the structural mechanics solver developed during this
Ph.D work and which is a key element towards fluid-structure interaction simula-
tions. A state of the art review is first provided to lay the foundation of the theories
and methods usually used in such a field followed by a thorough description of the
concerned equations. Both steady and unsteady (time dependent) problems are con-
sidered, the latter being evaluated using two numerical schemes: the Newmark-Beta
and the Generalized-alpha algorithms. Two reference problems are then used to verify
the obtained solver using linear and quadratic elements. Furthermore, precondition-
ing methods are also addressed to speed up calculations for various problem sizes
.

4.1 Structural mechanics
There exists several possible approaches to build a system of equations describing a mate-
rial domain. One of them is to decompose the volume of interest into a sum of elementary
particles. With a set of assumptions, it is then possible to conceive a description of the
physical behavior of these particles. The main work then consists in using this elemen-
tary description to construct valid behavioral laws at the macroscopic scale. The kinetic
theory of gases is a typical example of such an approach. A continuum approach can
also be used to describe large scale dynamics. In that case, instead of describing every
single particle, only the average properties at the macroscopic scale are observed. Math-
ematically, a material domain can be considered as continuous if, at any fixed time t,
the physical properties considered are continuous and differentiable with respect to the
space variables. In other words, during the modeling process of the material, the discon-
tinuous aspect of matter at the molecular scale is not taken into account. In the current
description, the material volume is denoted by Ωs(t) ∈ R3 and assumed to be entirely
occupied by some material. The non-deformed or initial sate is thus denoted by Ωs(t0).
For every particle x̃ ∈ Ωs(t0), the location of any particle at t ̸= t0 will be denoted by
x(x̃, t) ∈ Ωs(t). The hypothesis of the continuum makes it possible to ensure that the
path between the position of a material particle in Ωs(t0) and its instantaneous position
Ωs(t) is biunivocal and continuous. Hence the mapping function ζ which associates the
coordinates x̃ of a certain particle in Ωs(t0) with a particle x in Ωs(t) is invertible,

ζ(x̃, t) = x, (4.1.1)
ζ−1(x, t) = x̃. (4.1.2)

The displacement field can then be defined as the difference between the positions in
the instantaneous configuration and the reference configuration,

ξ̃(x̃, t) = x(x̃, t) − x̃. (4.1.3)
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Differentiating the previous equation with respect to time, one obtains the material
velocity,

∂x

∂t
= ∂tx(x̃, t) = ∂tξ̃(x̃, t). (4.1.4)

Note that the particle system viewpoint used to describe the evolution of the contin-
uum Ωs(t) is the Lagrangian coordinate system. Figure. 4.1 illustrates the dynamics of
such a system. The particles x̃ follow a certain path ξ̃(x̃, t) over time. This approach is
typically used in structural mechanics where particles in the reference system are closely
linked to each other. From a practical point of view, the numerical study of a physical
system requires a spatial discretization of the system and the mesh used for this purpose
is deformable, meaning that the nodes of the mesh are attached to the material volumes
defined by the discretization.

Figure 4.1: Schematic of a Lagrangian reference system.

The deformation gradient is a fundamental quantity in the study of continuum me-
chanics, It is a tensor that relates the initial and final configurations of a material volume
and expresses how much a body has deformed under a given loading,

F̃(x̃, t) = I + ∇̃ξ̃(x̃, t), (4.1.5)

where I is the identity matrix and ∇̃ is the nabla operator applied to the deformation in
the reference configuration. Using the deformation gradient, the strain tensor describing
the relative length change of location of a material point can be defined as,

Ẽ = 1
2(F̃T F̃ − I), (4.1.6)

where Ẽ is the Green-Lagrange strain tensor which does not contain rigid body deforma-
tions. The strain therefore measures the difference of the squared length of a line-segment
under deformation. The term F̃T F̃ is called the right Cauchy-Green tensor and is de-
noted by C̃. This tensor is symmetric and positive definite. In addition, both tensors
C̃ = F̃T F̃ and Ẽ = 1

2(C̃ − I) are non-linear functions that can be expressed in terms of
the deformaton gradient,

C̃ = I + ∇̃ξ̃ + ∇̃ξ̃T + ∇̃ξ̃∇̃ξ̃T
, Ẽ = 1

2(∇̃ξ̃ + ∇̃ξ̃T + ∇̃ξ̃∇̃ξ̃T ). (4.1.7)
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If the deformations are assumed to be small (
∥∥∥∇̃ξ̃∥∥∥ << 1), the non-linear term ∇̃ξ̃∇̃ξ̃T

can be dropped and the linearized strain tensor is obtained,

c = I + ∇̃ξ̃ + ∇̃ξ̃T
, ϵ = 1

2(∇̃ξ̃ + ∇̃ξ̃T ). (4.1.8)

Generally speaking, the Green-Lagrange strain tensor is sufficient to describing non-
linear structural deformations, while the linearized version of this tensor, ϵ, is adequate
to approximate linear deformations.

Deformation and strain are kinematic principles that describe the motion and amount
of deformation of a solid body without considering the forces that cause the deformation.
Stress on the other hand is not a kinematic principle, it measures the internal forces
within a material that arise when it is subject to an external force or load and is defined
as the force per unit area that a material experiences. There exist different approaches
to describe the stress in a material and Cauchy’s stress theorem implies that there exists
a unique second order tensors σs and P̃ so that,

t⃗s(x, t, n⃗s) = σs(x, t)n⃗s,
˜⃗ts(x̃, t, ˜⃗ns) = P̃(x̃, t)n⃗s. (4.1.9)

where n⃗s is the unit normal vector acting on a surface and pointing outward. The tensor
σs is symmetric and called the Cauchy stress tensor. It describes the stress in the current
or deformed configuration. In matrix form, and using Einstein’s notation, the three
dimensional form of σs can be written as:

σs =

σii σij σik

σji σjj σjk

σki σkj σkk

 , (4.1.10)

where the normal and shear stresses constitute the diagonal and off-diagonal terms re-
spectively. The stress tensor is useful when describing simple linear elasticity models.
Note that the first Piola-Kirchhoff stress tensor, P̃, is a more useful quantity than the
Cauchy stress tensor in some cases, such as when analyzing non-linear material behavior,
large deformations, and problems involving coordinates that are not orthogonal. The
second order tensor P̃ is usually not symmetric and consists of nine independent entries.
There exists a relationship between this tensor and the Cauchy stress tensor,

σsn⃗sdΩs = P̃˜⃗nsdΩ̃s. (4.1.11)

Note that it is often convenient for numerical purposes to define a symmetric stress tensor
S̃ that relates the Green-Lagrange strain tensor to the Cauchy stress tensor. This tensor
is called the second Piola-Kirchhoff stress tensor and is expressed as,

S̃ = det(F̃)F̃−1σ̃sF̃−T . (4.1.12)

For the sake of simplicity, the structure solver to be developed hereafter is limited to
hyperelastic solid models for which the stress-strain relationship is based on the Saint-
Venant-Kirchhoff model so only geometric non-linearities are considered. The second
Piola-Kirchhoff stress tensor S̃ then writes:

S̃ = λstr(Ẽ)I + 2µsẼ. (4.1.13)
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In this last expression, the non-dimensional Lamé coefficients are related to the Poisson
ratio, νs, which is a measure of the material’s compressibility, as well as the Young’s
modulus, Es, which is a measure of the material’s stiffness,

λs = Esνs

(1 + νs)(1 − 2νs)
, µs = Es

2(1 + νs)
. (4.1.14)

Again, if deformations are assumed to be small (
∥∥∥∇̃ξ̃∥∥∥ << 1), linearizing this tensor

yields,
S̃ = σ̃s = c : ϵ, (4.1.15)

where the Cauchy stress tensor becomes equal to the second Piola-Kirchhoff stress tensor.
In other words, for linear problems, the two stress measures are equivalent. Ultimately,
the first Piola-Kirchhoff stress tensor P̃ can be used to relate the force acting on the
current configuration Ωs(t) to the surface element in the reference configuration Ωs(t0).
This tensor is written as a function of the second Piola-Kirchhoff stress tensor S̃ so that,

P̃ = F̃S̃. (4.1.16)

Having defined the behavior o a material, one of the most fundamental conservation
principles in the context of fluid dynamics and structural mechanics to be used are the
conservation of mass and momentum. The former states that mass can neither be created
nor destroyed, whereas the latter implies that the change in momentum is equal to the
sum of external forces. Note that, a distinction has to be made in the case of compressible
and incompressible solids. In the current framework, the assumption of a uniform solid
density ρs is adopted in absence of external forces acting on the solid body. When a
certain load is applied, the density varies in compressible materials according to the
following relation:

ρs(t) = J̃ρs(t0), (4.1.17)
where J̃ = det F̃ is the deformation gradient determinant that measures the volumetric
change of a solid. For incompressible materials that conserve the same density over time,
the volumetric change is zero so,

J̃ = 1. (4.1.18)
For t ≥ 0, the Reynolds Transport Theorem is then used to derive the conservation
of mass and the conservation of momentum equations. For a certain material volume
Ωs(t), let Φ(x, t) be a sufficiently smooth scalar function defined on Ωs(t), the transport
theorem then writes,

d

dt

∫
Ωs(t)

Φ(x, t)dΩs =
∫

Ωs(t)

∂Φ(x, t)
∂t

dΩs +
∫

dΩs(t)
Φ(x, t)

∂ξ

∂t
(x, t) · n⃗sdS (4.1.19)

Note that Ωs(t) is bounded by a closed regular surface dΩs with outward normal n⃗s.
Making use of the Transport Theorem, the law of Mass Conservation writes for the

scalar value Φ(x, t) = ρs(x, t):∫
Ωs(t)

∂ρs

∂t
+ ∇ · (ρs

∂ξ

∂t
)Ωs = 0. (4.1.20)
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Assuming that the term under the integral is continuous which is a valid assumption for
the physical property of a solid, the following equation holds,

∂ρs

∂t
+ ∇ · (ρs

∂ξ

∂t
) = 0. (4.1.21)

Similarly, the conservation of momentum equation derived for the scalar value
Φ(x, t) = ρs(x, t)∂ξ

∂t
(x, t) and combined with the mass-conservation equation yields:

ρs
∂2ξ

∂tt
+ ρs(

∂ξ

∂t
· ∇)∂ξ

∂t
= ρsf + ∇ · (σs). (4.1.22)

The above equation is the non-conservative form of the momentum equation where f is
the external body force and σs is the Eulerian stress tensor. These conservation equations
are valid in the Eulerian framework.

As discussed at the beginning of this section, it is better to describe the dynamics of a
structure in a Lagrangian framework. Transforming equation (4.1.22) to the Lagrangian
coordinate system and finding the exact form of the Piola Kirchhoff stress tensor in this
reference system, the momentum equations becomes,

ρs
∂2ξ̃

∂t2 = ∇̃ · P̃ + ρsf̃ . (4.1.23)

This last expression is the so-called elastodynamic equation which describes the behav-
ior of a structure in response to external forces. It expresses the fact that the acceleration
of a material point is given by the second derivative of its displacement which is equal
to the change in momentum due to the internal stresses that develop in the material as
it deforms, plus the external forces that act on the material from the outside, such as
gravity or applied loads. Note that the convective term in the conservation of momentum
equation (4.1.22) has been dropped, this is due to the change of Eulerian to Lagrangian
coordinates. The reader can refer to (Richter (2017)) for the complete derivation of this
equation.

4.2 Numerical methods and solid mechanics
While the derivation of the governing equations are not unduly difficult, finding their
exact solution with existing mathematical methods is often challenging due to geometric
and physical parameter complexities. To circumvent this difficulty, there exists numerical
methods and as for other fields of physics, the finite difference approximation, finite
volume method, spectral methods can be used. In structural mechanics however, the
finite element method (FEM) has been widely used for the design and analysis of a variety
of structures. Indeed, its flexibility and efficiency have proven to be applicable to a wide
range of structural problems, from simple beams to complex three-dimensional structures.
In addition to being computationally efficient, FEM can handle large-scale problems as it
allows for the use of parallel processing techniques to reduce the time required for solving
large-scale problems. The mathematical theory behind the finite element method is out
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of the scope of this work and readers can refer to the books of J N Reddy (2005), Sadd
(2009) and Becker & Becker (2004) for more details. The basic idea of this method is to
approximate the solution of a partial differential equation by dividing the problem domain
into a finite number of smaller regions known as finite elements. Then, polynomials or
piecewise polynomial functions are used to approximate the solution over each element.
These functions are typically defined by a set of nodal values, which are determined
by imposing boundary conditions and matching the solutions at the interfaces between
neighboring elements. This process is known as meshing or discretization. The equations
for each element are then assembled into a global system of equations that describes
the behavior of the entire structure which can be solved numerically to obtain the nodal
values of the solution.

To break down these steps into a coherent example, only one finite element is con-
sidered below. Assuming a continuous function u(x, y) within an isolated element Ωe

possessing a certain number of nodes n, the general form of the polynomial function ue
h

used to approximate u takes the form,

u(x, y) ≈ ue
h =

n∑
a=1

ue
aN e

a(x, y) over Ωe, (4.2.1)

where ue
a is the nodal value of u at node a within element e and Na is the interpolation

function associated to node a. The interpolation function is also called shape function in
the literature and verifies the two following properties,{

N e
a(x, y, z) = 1,

N e
a(x, y, z) = 0, a ̸= b.

(4.2.2)

This property implies that these functions are continuous piecewise affine and are equal
to 1 on one node of a mesh and 0 on all others. The number of nodes or positions where
unknowns are to be obtained in an element depends on its geometry and the polynomial
order. In our context and for simplicity, one retains 2D triangular and 3D tetrahedral
elements. Regarding the polynomial order, only first order P1 and second-order P2 el-
ements will be considered as recommended by the literature. These are also known as
linear elements and quadratic elements. Figure 4.2 shows two 2D triangular finite
elements used in this work and highlight the notion of order of a polynomial in each. The
number of nodes in each element equals the number of parameters required to define a
certain order of a polynomial. These elements are defined using Pascal’s triangle, whereas
for 3D tetrahedral elements, a Pascal’s pyramid is used. Assuming a 2D Cartesian coor-
dinate system (x, y), a P1 element is defined using three terms: a constant a, b for the x
dependency and c for the y dependency. Subsequently, the corresponding shape function
is generated over the discretized domain or the so called reference elements. For each
vertex ua, the first-order polynomial function Na is thus given by,

Na = aa + bax + cay. (4.2.3)

where aa, ba and ca are constants to be determined while constructing the system of
equations that satisfies each shape function Na. In particular, for N1 the corresponding
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ua2 ua3

ua1

Te

(a) P1 degree of freedom on
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(b) P2 degree of freedom on
triangle Te

Figure 4.2: 2D triangular finite elements .

requirements are formulated to be,
N1(x1, y1) = a1 + b1x1 + c1y1 = 1,

N1(x2, y2) = a1 + b1x2 + c1y2 = 0,

N1(x3, y3) = a1 + b1x3 + c1y3 = 0,

(4.2.4)

where N1 is considered to be the home node for which ua1(x1, y1) = 1 and N2 and N3 are
the distant nodes. This system of equations is then solved to retrieve the three unknowns
a1, b1 and c1. That is,

a1 = x2y3 − x3y2

2Ae

, b1 = y2 − y3
2Ae

, c1 = x3 − x2

2Ae

, (4.2.5)

where Ae is the area of the triangular element that can be obtained using,

Ae = 1
2det

∣∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣∣ = 1
2[(x2y3 − x3y2) + (y2 − y3)x1 + (x3 − x2)y1] (4.2.6)

Substituting Eq. (4.2.5) into the system of Eq. (4.2.4), N1 can be re-written as:

N1 = 1
2Ae

[(y2 − y3)(x − x2) + (x3 − x2)(y − y2)]. (4.2.7)

The same procedure can be applied to the remaining shape functions N2 and N3. For
the sake of conciseness, the shape functions are summarized below in the following form:

Ni = ai + bix + ciy,

ai = 1
2Ae

(xjyk − xkyj),

bi = 1
2Ae

(yj − yk),

ci = 1
2Ae

(xk − xj),

(4.2.8)
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where the subscript i varies from 1 to 3, and j and k are determined by the cyclic
permutation in the order of i, j, k. The methodology developed for the design of Linear
Lagrange elements can be extrapolated to quadratic elements. A P2 element however
requires 6 parameters to be defined, explaining the 6 nodes shown on Fig. 4.2. The shape
function describing such an element is made of second-order polynomials defined using
the following expression,

Na = aa + bax + cay + dax2 + eaxy + fay2. (4.2.9)

The same derivation procedure as before requires that for any node a of an element, the
corresponding shape function Na is equal to unity at this node and zero at the remaining
nodes. The shape function is then generated. Note that 3D tetrahedral elements used in
this thesis are defined using Pascal’s pyramid. Their derivation is not provided here due
to the lengthy procedure.

4.2.1 Steady-state linear elasticity problem
In this section, the particular case of solving numerically the steady-state elasticity prob-
lem is first detailed. Since the problem is no longer time dependent, the elastodynamic
Eq. (4.1.23) reduces to,

−∇̃ · P̃ = ρsf̃ . (4.2.10)
In addition, and as a first step towards solving this equation, small deformations are
assumed so that only the steady-state linear elasticity equation is addressed. That is,

−∇̃ · σ̃s = ρsf̃ . (4.2.11)

To complete the problem formulation, this partial differential equation needs to come
with appropriate boundary conditions. To do so, the boundary of the solid domain
Γ̃s = ∂Ω̃s is split into a Dirichlet boundary Γ̃D

s = ∂Ω̃D
s and a Neumann boundary on

segment Γ̃N
s = ∂Ω̃N

s so that Γ̃s = Γ̃D
s ∪ Γ̃N

s . On the Dirichlet boundary, the following
condition is enforced for the deformation,

ξ̃ = ξ̃
D

on Γ̃D
s . (4.2.12)

Contrarly, the Neumann condition implies the specification of boundary stresses to be,

σ̃s · n⃗s = gs on Γ̃N
s , (4.2.13)

where gs is the normal force applied on Γ̃N
s .

The equations and assumptions listed above result in a system of equations that
describe the stead-state linear elasticity problem:

− ∇̃ · σ̃s = ρsf̃ in Ω̃s,

σ̃s = λstr(ϵ)I + 2µs(ϵ) in Ω̃s,

ξ̃ = ξ̃
D

on Γ̃D
s ,

σ̃s · n⃗s = gs on Γ̃N
s .

(4.2.14)
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This system of equations is often referred to as the strong form of the linear elasticity
equation.

As stated earlier, exact mathematical methods are often impractical to solve partial
differential equations. As discussed previously, an alternative technique consists in con-
structing approximation functions including piecewise functions and the notion of the
variational method, also called the weak form of a PDE. This context is obtained by
multiplying the strong form by a test function and integrating over the domain. This
mathematical manipulation leads to a set of integral equations involving integrals of the
functions themselves as well as their derivatives. The weak form is a more general state-
ment of the problem that requires weaker assumptions on the regularity of the function
and offers several advantages that will be revealed shortly after. There are several types of
weak form methods that can be then used to solve partial differential equations (PDEs),
e.g. the Ritz, Galerkin, colocation, least-squares, weighted-residual methods... These
methods differ in the choice of the test functions and in the way they approximate the
solution of the PDE. In particular, the Galerkin method used in this chapter introduces
test functions and basis functions to be the same to approximate the solution of the PDE.
This method leads to a symmetric, positive definite system of linear equations for the
problem at hand. Before proceeding to the derivation of the weak form, it is however
necessary to define an appropriate test function.

To do so, let ψ̃s be a test function from the function space Ũ s = {ψ̃s ∈ H1(Ω̃s), ψ̃s = 0
on Γ̃D

s } with H1(Ω̃s) being the space of continuous functions such as H1(Ω) = {ξ̃ ∈
L2(Ω) : ∇ξ̃ ∈ L2(Ω)} where L2(Ω) is the Hilbert space. The weak form of the steady-
state linear elasticity equation can then be formulated as,∫

Ω̃s

f̃ · ψ̃s =
∫

Ω̃s

−∇̃ · σ̃s(ξ̃) · ψ̃s ,

=
∫

Ω̃s

σ̃s(ξ̃) : ∇ψ̃s −
∫

Γ̃N
s

ψ̃s · gs ,

=
∫

Ω̃s

σ̃s(ξ̃) : ϵ(ψ̃s) −
∫

Γ̃N
s

ψ̃s · gs ,

=
∫

Ω̃s

λs∇(ξ̃)∇(ψ̃s) +
∫

Ω̃s

2µsϵ(ξ̃) : ϵ(ψ̃s) −
∫

Γ̃N
s

ψ̃s · gs .

(4.2.15)

This weak form has several advantages compared to the strong form. First, it enables
the use of discontinuous or non-smooth functions as solutions, which is not possible
for the strong form where solutions must be at least twice differentiable. The order of
differentiation of the dependent variable ξ̃ is furthermore reduced in the weak form. This
feature makes it easier to numerically solve the partial differential equations, since higher-
order derivatives are often difficult to approximate accurately. The weak form also allows
for a more natural incorporation of the boundary conditions. These can be included as
part of the weight function, which simplifies the problem formulation.

The above equation holds for any test function ψ̃s for the solution of the model
PDE to be found. However, to actually solve this equation, an infinite number of
test functions ψ̃s ∈ Ũ s is required since Ũ s is an infinite-dimensional space. Instead
of tackling this infinite-dimensional problem, it is sufficient to use a finite number of
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test functions, provided they form a complete subset of the solution space H1(Ω̃s).
Therefore if one defines ⊓̃s a finite-dimensional space such that ⊓̃s ∈ Ũ s, this allows the
definition of a finite element basis {N1, N2, ..., NN} of ⊓̃s to exist. The Galerkin approach
consists in taking the weak form of the problem and replace the dependent variable ξ̃
by its approximation ũh = ∑N

a=1 ũaNa over the solid domain Ω̃s. The Lagrange shape
function N is in particular used as test function. The resulting equation hence reduces to,

For each i = 0, 1... N ,∫
Ω̃s

λs∇(ũh)∇(Ñi)dΩ +
∫

Ω̃s

2µsϵ(ũh) : ϵ(Ñi)dΩ =
∫

Γ̃N
s

Ñi · gsdΓ +
∫

Ω̃s

f̃ · ÑidΓ ,

N∑
a=1

[(λs

∫
Ω̃s

∇(Ña)∇(Ñi) + 2µs

∫
Ω̃s

ϵ(Ña) : ϵ(Ñi))ũa] =
∫

Γ̃N
s

Ñi · gs +
∫

Ω̃s

f̃ · Ñi .

(4.2.16)
Note that the last algebraic relationship can be recast in a compact matrix form so,

n∑
a=1

K̃iaũa = F̃i for n = 1, 2, ..., N , (4.2.17)

where,
K̃ia = [(λs

∫
Ω̃s

∇(Ña)∇(Ñi) + 2µs

∫
Ω̃s

ϵ(Ña) : ϵ(Ñi))ũa] ,

F̃i =
∫

Γ̃N
s

Ñi · gs +
∫

Ω̃s

f̃ · Ñi ,
(4.2.18)

or, 

K11 K12 · · · K1a · · · K1n

K21 K22 · · · K2a · · · K2n
... ...

Ka1 Ka2 · · · Kaa · · · Kan
... ...

Kn1 Kn2 · · · Kna · · · Knn





u1
u2
...

ua
...

un


=



F1
F2
...

Fa
...

Fn


.

The most compact form being,
{K̃}{ũ} = {F̃} , (4.2.19)

where {K̃} is the stiffness matrix and {F̃} is the force vector representing the external
forces acting on the structure. To incorporate the Dirichlet boundary conditions, a matrix
penalization is usually applied to the stiffness matrix, adding a large value to the diagonal
terms Kaa if the node a is on the boundary and a zero value otherwise.

The full methodology to derive and solve the steady-state linear elasticity equation
using the finite element method has been presented. There exists however some cases
that involve large structure deformations. These cases cannot be addressed using the
linear elasticity theory, instead the full non-linear elasticity equation must be solved. In
such cases, the following is to be considered.



82 Chapter 4 : Development of a structural mechanics solver

4.2.2 Steady-state non-linear problem
The final linear system is valid only for small strains as stated at the beginning of this
section. For large deformations, the non-linear term issued bu the Green-Lagrange
strain tensor must be taken into account. Subsequently, the non-linear problem
is formulated by transforming Eq. (4.2.10) into a minimization problem (a type of
optimization) where the goal is to find the minimum value of a given function subject
to certain constraints. In this particular case, one seeks the displacement ξ̃(ux, uy)
minimizing a certain objective function F . In mathematical terms, the problem writes as,

For g ∈ C2;
min J (ξ̃) =

∫
Ω̃s

g(F)dΩ −
∫

Γ̃N
s

f̃u2dS , (4.2.20)

where F = A(Ẽ(ξ̃), Ẽ(ξ̃)) and A is a bilinear symmetric positive function that takes two
matrices as input and returns a scalar value.

To do so, if one let ṽ(vx, vy) and w̃(wx, wy) be two auxiliary displacement functions
used to compute the first and second differentials of the bilinear form F , taking the first
and second derivatives of J (ξ̃) yields,

DJ (ξ̃)(v) =
∫

Ω̃s

DF(ξ̃)(v)g′(F(ξ̃))dΩ −
∫

Γ̃N
s

f̃v2dS ,

D2J (ξ̃)((v), (w)) =
∫

Ω̃s

DF(ξ̃)(v)DF(ξ̃)(w)g′′(F(ξ̃))dΩ

+
∫

Ω̃s

D2F(ξ̃)((v), (w))g′(F(ξ̃))dΩ ,

(4.2.21)

where D2F(ξ̃)((v), (w)) = 2A(D2Ẽ[ξ̃](v, w), Ẽ[ξ̃])) + 2A(DẼ[ξ̃](v), DẼ[ξ̃](w))) and
D2Ẽ is the second differential of Ẽ. The first derivative of J gives insight on the di-
rection which changes J the most for a small perturbation v of the displacement field
ξ̃ while the second order differential of J , also called the Hessian of J , measures the
curvature of J at the point ξ̃ in the directions v and w. This curvature provides infor-
mation about the stability of the minimizer of J at ξ̃. If D2J (ξ̃)((v), (w)) is positive,
then ξ̃ is a local minimum of J in the direction of v and w, and hence a stable minimizer.
If it is negative, then ξ̃ is a local maximum and hence an unstable minimizer. If it is
zero, then further analysis is needed to determine the nature of the minimizer. Given
the gradient and Hessian of J , a Newton minimization method can be applied to find
the displacement field ξ̃ that minimizes J . Such a Newton method involves iteratively
solving the linear system:

D2J (ξ̃k)(dξ̃) = DJ (ξ̃k) , (4.2.22)
where ξ̃k is the current estimate of the displacement field, dξ̃ is the displacement update,
while D2J (ξ̃k) and DJ (ξ̃k) are the Hessian and gradient evaluated at ξ̃k respectively.
The solution of this linear system gives the displacement update dξ̃ that is added to the
current estimate ξ̃k to obtain a new estimate ξ̃k+1. This process is then repeated until
convergence is achieved, i.e., when the norm of the gradient DJ (ξ̃) becomes smaller than
a certain tolerance. Figure 4.3 illustrates a Newton optimization problem. In this case,
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the Newton update step can be interpreted as creating a quadratic approximation of F
around point x. Note that second-order optimization methods tend to converge faster
and with greater accuracy than first-order methods because they take into account the
curvature of the function. However, they are more computationally expensive since they
require the computation of the second derivative. In some cases, quasi-Newton methods
can be used as an alternative to approximate the Hessian matrix without explicitly com-
puting it. In that case, such methods are first-order methods and only require the value
of the error function and its gradient with respect to the parameters.

x

y

F (x)

slope F ′(xk)

xkxk+1

Figure 4.3: Illustration of the Newton minimization method.

While the stead-state elasticity theory can retrieve the correct displacements when
dealing with static loads, it will fail to model cases involving dynamic or time dependent
problems. This is owed to the fact that the time component is not present in the equation.
To address this issue, and to model dynamic problems, the transient elasticity equation
is solved in space and time as detailed in the next section.

4.2.3 Dynamic or time dependent problems
In this section, the elastodynamic equation derived section 4.1 in both space and time
using the finite element method and a direct numerical integration. To do so, the equation
is written in the form of a n-DOF mechanical system with viscous damping. That is,

Mü + Cu̇ + Ku = F , (4.2.23)

where M, C and K are the mass, damping and stiffness matrices; F is the vector of
externally applied loads; and ü, u̇, u are the discrete acceleration, velocity and displace-
ment vectors. The idea behind a direct integration method is to assume a variation of
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displacements, velocities, and accelerations within a time interval. To do so, suppose
that the displacement, velocity, and acceleration vectors at time t0 denoted by u(0), u̇(0)
and ü(0) are known so the solution of Eq. (4.2.23) advances this state from time t0 to
time T . To achieve this, the time interval of interest is divided into equal sub-intervals
∆t and the integration scheme employed provides a solution approximations at times ∆t,
2∆t,...,t,t + ∆t,...,T . As the solution at each instant is calculated based on the solutions
at the previous times, the algorithms are derived by assuming that the solutions at times
0, ∆t...,t are known, and that the solution at time t + ∆t is required next. A simple
widely used numerical resolution method is in this context the central difference scheme
in which Eq.(4.2.23) is discretized as,

M
1

∆t2 (ut−∆t − 2ut + ut+∆t) + C
1

2∆t
(ut−∆t + ut+∆t) + Kut = Ft , (4.2.24)

from which one can solve for ut+∆t. This method is effective for very small time steps
which is why it is said to be conditionally stable. Indeed, the scheme can become unstable
for a time step larger than a certain critical value that can be calculated for a given
problem. Another disadvantage is that the solution might yield spurious oscillations.
The reader can refer to the book of Bathe (2014) for more details on this method and
other integration schemes.

Implicit integration schemes can also be used to solve the dynamic elasticity equation.
These methods are unconditionally stable meaning that the choice of the time step does
not affect the stability of the scheme. The first of such integration scheme used to solve
the above described problem is the Newmark-beta method. This approach is a type
of implicit integration scheme that is commonly used for time integration of dynamic
systems. It was first introduced by Newmark (1959) and has since become one of the most
widely used time integration methods in the field of structural dynamics. The Newmark-
beta method is a two-parameter family of algorithms that allows for adjustable levels of
numerical damping, which can improve the stability and accuracy of the solution. One
of the main strength of this scheme is its ability to handle problems that involve stiff
differential equations or use large time steps. This makes it particularly useful in the
analysis of structures subject to transient and impulsive loads. The Newmark integration
scheme uses the following estimates for the acceleration and velocity,

üt+∆t = m1(ut+∆t − ut) − m2u̇t − m3üt ,

u̇t+∆t = c1(ut+∆t − ut) − c2u̇t − c3üt ,
(4.2.25)



4.2 Numerical methods and solid mechanics 85

where, 

m1 = 1
α∆t2 ,

m2 = 1
α∆t

,

m3 = 1
2α

− 1 ,

c1 = δ

α∆t
,

c2 = δ

α
− 1 ,

c3 = ∆t

2 ( δ

α
− 2) ,

(4.2.26)

and α and β are Newmark integration parameters that can be determined to obtain
integration accuracy and stability. These parameters must meet the following criteria,

α ≥ 1
4(1

2 + δ)2 ,

δ ≥ 1
2 .

(4.2.27)

When α = 1
6 and δ = 1

2 , relations (4.2.25) correspond to the linear acceleration method.
Newmark initially proposed an unconditionally stable scheme called the constant-average
acceleration method, also called the trapezoidal rule for which α = 1

4 and δ = 1
2 . In

addition to Eq. (4.2.25), to solve for the displacement at t+∆t the equilibrium Eq. (4.2.23)
is expressed through,

Müt+∆t + Cu̇t+∆t + Kut+∆t = Ft+∆t. (4.2.28)

Considering the trapezoidal rule and replacing Eq. (4.2.25) in Eq. (4.2.23) yields,

(m1M+c1C+K)ut+∆t = M(m1u+m2u̇t+a3üt)+C(c1ut+c2ut+c3üt)+Ft+∆t. (4.2.29)

This last equation is then solved at every iteration to retrieve ut+∆t. In such a case,
velocity and acceleration vectors are computed using Eq. (4.2.25).

The Newmark-beta method is commonly used along with the finite element methods
for fluid-structure interaction applications. But it has some disadvantages that make it
less desirable in some cases. To circumvent these issues, several alternatives have been
proposed. One significant drawback of the Newmark method is that it does not allow for
the introduction of numerical damping when δ = 1

2 . It results in high-frequency modes
or in the predicted dynamics of such systems, motions that have no physical meaning,
resulting in large phase errors. Using other values for α and δ induces non-zero numer-
ical damping that suppresses such high-frequency noise but then care is needed. The
Hilber-Hughes-Taylor (HHT) time integration procedure, for example, is a variation of
the Newmark method that effectively damps high-frequency noise especially for struc-
tural dynamics problems. Another effective numerical scheme is the Generalized-alpha
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algorithm. Chung & Hulbert (1993) introduced this method to solve hyperbolic equa-
tions that arise in structural dynamics. It has become widely used in engineering and
sciences due to its second-order accuracy in time, unconditional stability and user control
of high-frequency numerical dissipation. The generalized-alpha method involves solving
the dynamic evolution equation at an intermediate time between t and t + 1 noted as,

Müt+∆t−αm + Cu̇t+∆t−αf
+ Kut+∆t−αf

= Ft+∆t−αf
, (4.2.30)

where 

üt+∆t−αm = (1 − αm)üt+∆t + αmüt ,

u̇t+∆t−αf
= (1 − αf )u̇t+∆t + αf u̇t ,

ut+∆t−αf
= (1 − αf )ut+∆t + αfut ,

Ft+∆t−αf
= (1 − αf )Ft+∆t + αfFt.

(4.2.31)

Complementarily, the approximations for the displacement and velocity at t + ∆t should
hold so,

üt+∆t = m1(ut+∆t − ut) − m2u̇t − m3üt ,

u̇t+∆t = c1(ut+∆t − ut) − c2u̇t − c3üt ,
(4.2.32)

where: 

m1 = 1 − αm

α∆t2 ,

m2 = 1 − αm

α∆t
,

m3 = 1 − αm

2α
− 1 ,

c1 = (1 − αf)δ
α∆t

,

c2 = (1 − αf )δ
α

− 1 ,

c3 = (1 − αf )∆t

2 ( δ

α
− 2).

(4.2.33)

It can be seen that these constraints are equivalent to the relations of the Newmark
method. The latter is therefore obtained for a particular case αm = αf = 0. After
plugging these relations into the evolution Eq. (4.2.32), the problem can be formulated
in terms of the unknown displacement at t + ∆t as,

(m1M + c1C + (1 − αf )K)ut+∆t =
M(m1u + m2u̇t + a3üt) + C(c1ut + c2ut + c3üt) + (1 − αf )Ft+∆t + αfFt − αfKut.

(4.2.34)
Following the same paradigm as for the Newmark method, the displacement field Ut+∆t

can be solved iteratively and the new velocity and acceleration are computed using the
previous formulae.
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4.2.4 Direct vs iterative methods
Partial differential equations describing complex problems are often solved by discretizing
them in time and space as detailed in the previous sections. This process typically
involves solving a linear system of size N >> 1, which can be done once or at multiple
successive instants. When using a finite element discretization, the problem is usually
sparse, with few non-zero matrix entries. When it comes to inverting these linear systems
of equations, two broad categories of methods are viable: direct and indirect methods,
also known as iterative methods. Direct methods are algorithms that compute the exact
solution to the linear system of equations by performing a finite sequence of mathematical
operations. These methods work well for small to moderate-sized problems and are
typically used when accuracy is of utmost importance. Nowadays there are many packages
available to invert such systems, like MUMPS, SUPERLU and PETSc. PETSc (Portable,
Extensible Toolkit for Scientific computing), for example, is a software library for parallel
numerical computation that provides a range of solvers and preconditioners for linear and
nonlinear systems of equations. It includes several direct solvers for solving sparse linear
systems of equations such as: LU factorization, Cholesky factorization, QR factorization,
Schur complement. For instance PETSc can use the LU factorization to solve linear
systems of the form Ax = b, where A is a square sparse matrix. The LU decomposition
factorizes the matrix into a lower triangular matrix L and an upper triangular matrix
U, so that the original matrix can be represented as the product of these two matrices:
A = LU. The factorization is then performed using partial pivoting to ensure stability.
Partial pivoting involves selecting the pivot element in each column as the element with
the largest magnitude. If necessary, the rows of the matrix are interchanged to place
the pivot element on the diagonal. Once the LU factorization is complete, the solver
uses forward substitution to solve the lower triangular system Ly = b, followed by a
backward substitution to solve the upper triangular system Ux = y. These steps yield
the solution x to the original linear system Ax = b. Direct methods are able to find
the exact solution of a problem while computationally efficient for small to moderate-
sized problems. However, they can be computationally expensive for large-scale problems
and require significant amounts of memory. Indeed, the LU decomposition scales barely
better than O(N 3) operations, making it unsuitable for large-scale problems. For this
purpose, iterative methods such as conjugate gradient (CG), generalized minimal residual
(GMRES) and bi-conjugate gradient stabilized (BiCGSTAB) are often used instead for
large-scale problems where the memory requirements of direct methods are considered a
bottleneck. These methods involve calculating a sequence of vectors that, under certain
conditions, converge towards the solution for the linear system so that,

xk+1 = F(A, xk)bk. (4.2.35)
The convergence of these schemes depends on the distribution of the eigenvalue ma-

trix A. In general, the more eigenvalues are clustered, the better the convergence. To
clusterize those eigenvalues and accelerate the convergence rate of these iterative tech-
niques, preconditioning is typically used. Preconditioning can be applied to a system by
re-expressing it into,

(ML
−1AMR

−1)(MRx) = ML
−1b , (4.2.36)
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where ML and MR are the left and right preconditioning matrices. If ML = I, right
preconditioning applies and the residuals of Eq. (4.2.36) is preserved,

r ≡ b − Ax = b − AMR
−1MRx. (4.2.37)

In contrast, for the left part, if MR = I the residual becomes,

rL ≡ ML
−1b − ML

−1Ax = ML
−1r. (4.2.38)

4.2.5 Code implementation and validation
As said before, for the purpose of the present Ph.D work, a structural mechanics code
is needed as a preliminary demonstrator and applicability of the proposed numerical
resolution strategy. To do so, the steady and dynamic elasticity equations are developed
using FreeFEM++ Hecht (2012). It is an open-source finite element software package
specifically designed for solving partial differential equations (PDEs) numerically. It
provides a high-level programming language allowing the definition and resolution of a
wide range of PDE problems using the finite element method. Both problems are then
validated separately in the next sections. In addition, linear and quadratic elements
are assessed to evaluate their accuracy and impact for such numerical tools. Finally,
a comparative study of direct and iterative methods is conducted to determine their
performance with respect to the problem size.

4.2.6 Steady state problem validation
In the following and in order the ensure the correct derivation and implementation of
the steady-state linear elasticity solver, a simple 2D test case is considered. This test
consists in computing the deformation of an elastic beam subject to a gravitational field
gs = 2 m/s2 as proposed by Turek & Hron (2007) and referred to as CSM1. For this
problem, note that the geometry is identical to the one used in fluid-structure interaction
benchmark cases for which a laminar incompressible flow interacts with a beam clamped
to the back of a fixed cylinder.

Figure 4.4: Sketch of the 2D elastic beam used by Turek & Hron (2007) (Figure not to
scale).

All the geometric parameters and material properties are shown on Fig. 4.4. The
structure consists of a L×H = 0.35 m×0.02 m beam fixed at one end and free to deform
elsewhere. The material is characterized by a Young modulus of Es = 1.4 MPa, a density
of ρs = 1000 Kg/m3 and a Poisson’s ratio of νs = 0.4. For validation, computations are
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carried out using three meshes, all composed of triangular elements as shown by Fig. 4.5.
Note also that both types of elements P1 and P2 are used to verify their impact and
accuracy on obtained results.

Figure 4.5: Triangular meshes used for mesh convergence study. From top to bottom,
the mesh cell size is respectively 0.004 m, 0.002 m and 0.0013 m.

The problem is solved separately using the linear and non-linear methods. The former
employs Eq. (4.2.15) while the latter uses Eq. (4.2.20). Figure 4.6 displays the deforma-
tion magnitude of the structure using P1 elements. As expected, the structure deflects
downward in the direction of the gravitational field. The results obtained for the different
meshes and methods are compiled in Tab. 4.1. For the non-linear problem, six Newton
iterations are necessary for the solution to converge for mesh 1, whereas five iterations
are required for the remaining meshes. Convergence is achieved when the residuals of
the deformation magnitude becomes smaller than the tolerance set to be 10−10. The
two components of the displacement ξ̃(ũx, ũy) are recorded through the numerical probe
S1(0.35, 0) and the associated error is determined using the actual displacement magni-
tude and the reference displacement magnitude from the benchmark case CSM1: where
ξ̃(ũx, ũy) = (−0.007187, −0.066). A significant error difference is found for the first mesh
which then decreases as the mesh becomes finer. Note that the additional mesh refine-
ment of mesh 3 does not improve results, indicating that mesh convergence is attained.
Although the error computed for the linear method is relatively small compared to the
non-linear method, a discrepancy is found between the magnitude of the transverse de-
formation. This is explained by the axial deflection of the beam where the displacement
is large but the strains are small. The linear theory is thus sufficient to capture the cor-
rect deformation. The deformation of the structure in the transverse direction is however
more important indicating that a non-linear method is necessary to retrieve the correct
deformation.
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(a) (b)

(c) (d)

Figure 4.6: Steady state problem solved using P1 elements. Structures are colored
by magnitude of the deformation. (a) Mesh 1, (b) Mesh 2, (c) Mesh 3, (d) Mesh 3 (linear
assumption).

mesh Ncells ũx[m] ũy [m] Linear/Non-linear Error
∥∥∥ξ̃∥∥∥ (%)

Mesh 1 850 -0.00483 -0.0542 non-linear 22.12%
Mesh 2 3400 -0.00638 -0.0622 non-linear 6.19%
Mesh 3 7650 -0.00675 -0.0640 non-linear 3.18%
Mesh 3 7650 -0.0000014 -0.0657 linear 0.99%

Table 4.1: Results obtained using triangular P1 Elements .

Simulations are reconducted using P2 elements, the corresponding structural defor-
mations being shown on Fig. 4.7 and Tab. 4.2. In this case, results are more accurate
compared to the previous simulations where triangular linear P1 elements were used.
Since quadratic P2 elements introduce higher degrees of freedom, the correct deforma-
tion is captured for the same mesh sizes. Good agreement is found for all the different
meshes, although the relative error decreases as the mesh becomes finer. The linear
method exhibits the same behavior as before, with an underestimation of the transverse
deformation ũx and an accurate prediction of the axial deformation ũy. While both trian-
gular linear P1 and quadratic P2 elements are able to predict the correct deformations,
quadratic P2 elements provide more accurate results, albeit with a higher computational
cost.

4.2.7 Dynamic problem validation
In the current study, the discretized unsteady elasticity equation is evaluated using both
direct and indirect approaches to determine their capabilities. The former employs a
classical LU decomposition, while the latter involves two Krylov subspace methods based
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(a) (b)

(c) (d)

Figure 4.7: Steady state problem solved using P2 elements. Structures are colored
by magnitude of the deformation. (a) Mesh 1, (b) Mesh 2, (c) Mesh 3, (d) Mesh 3 (linear
assumption).

mesh Ncells ũx[m] ũy [m] Linear/Non-linear Error
∥∥∥ξ̃∥∥∥ (%)

Mesh 1 850 -0.00707 -0.0655 non-linear 0.83%
Mesh 2 3400 -0.00708 -0.0653 non-linear 0.73%
Mesh 3 7650 -0.00708 -0.0655 non-linear 0.7%
Mesh 3 7650 -0.0000012 -0.0657 linear 1.53%

Table 4.2: Results obtained using triangular P2 Elements.

on GMRES with left preconditioning and conjugate gradient. In the next section, the
performance of each method is discussed.

The dynamic problem resolution procedure is verified through a test case proposed
by Helfer et al. (2020) and solved in FEniCS (Alnaes et al. (2015); Logg et al. (2012)), a
popular open-source software framework for solving partial differential equations (PDEs)
numerically. This solver is based on the generalized alpha scheme and is analyzed by
Erlicher et al. (2002).

For this validation and test case, the geometry consists of a 3D L × B × H = 1 m ×
0.1 m×0.5 m rectangular beam that is fixed on one end and is subject to a time-dependent
loading, F, at the other extremity. Body forces are equal to zero and the imposed loading
consists of a uniform vertical traction applied at the right extremity as shown on Fig. 4.8.
The total simulation time is T = 10 s and the loading amplitude varies linearly from 0 to
1 over the time interval [0; tc = 0.8] where tc is the cut-off duration, meaning that at this
time the loading is removed. When the loading F is removed the beam is free to oscillate
around its initial position and a numerical probe, S2 identified on Fig. 4.8, is used to
track the trajectory of the beam. The material is characterized by a Young modulus of
Es = 1000 Pa, a density of ρs = 1 Kg/m3 and a Poisson’s ratio of νs = 0.3.
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For the simulation, three meshes composed of tetrahedral elements as shown on
Fig. 4.9 are generated with different cell sizes and both linear P1 and quadratic P2
elements are tested. All mesh properties are given in Table 4.3.

Figure 4.8: Sketch of the 3D elastic beam (Figure not to scale).

Figure 4.9: Tetrahedral meshes used for mesh convergence study. From top to bottom,
the mesh cell size is respectively 0.01 m, 0.0067 m and 0.004 m.

Mesh 1 Mesh 2 Mesh 3
∆z [m] 0.01 0.0067 0.004
Ncells 9600 32400 150000
Nnodes (P1) 2255 6832 28886
Nnodes (P2) 15309 48763 215271

Table 4.3: Characteristics of the three meshes shown on Fig. 4.9.

Simulations are carried using the Generalized alpha method for a total time of T = 10s
and a fixed time-step of ∆t = 0.08s. For now, the structure is assumed to be undamped,
hence the elastodynamic equation reduces to two left hand side terms that are the mass
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and stiffness matrices. Figure 4.10 shows the time evolution of the axial displacement
of the beam for point S2 and for the three different meshes. Excellent agreement is
found between the two solvers for all meshes with P1 elements. As expected, once the
traction loading is released, the beam starts to oscillate about its initial position with a
constant amplitude since external forces and damping are not present. The amplitude
attained varies according to the mesh size, the displacement being underestimated for
a coarse mesh. Table 4.4 provides a comparative summary of the results obtained by
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Figure 4.10: Time evolution of the tip displacement S2 of the beam obtained with
different tetrahedral P1 meshe: (a) Mesh 1, (b) Mesh 2, (c) Mesh 3.

the two solvers FreeFEM++ and FEniCS. The error is very low for all cases considered
indicating that the correct deformation has been captured. Note however that mesh
convergence does not seem to be achieved for this P1 based simulation as highlighted
by the differences of the transverse component of the deformation ũx across the three
meshes. This is explained by the fact that this case exhibits complex large deformations,
linear P1 elements failing to capture the correct strains as well as the underlying stresses
even for very fines meshes. Subsequently, higher order elements are used specifically to
capture this specific dynamics.

mesh Amp.
ũx[m]

Amp.
ũy [m]

Amp.
ũx[m](Ref)

Amp.
ũy[m](Ref) Error

∥∥∥ξ̃∥∥∥ (%)

Mesh 1 0.00057 0.383 0.00053 0.382 0.26%
Mesh 2 0.00025 0.396 0.00025 0.397 0.25%
Mesh 3 0.00011 0.405 0.00012 0.406 0.25%

Table 4.4: Results obtained using tetrahedral P1 Elements.

To do so, computations are performed again using P2 elements and results are highlighted
in Tab. 4.5. The global behavior of the structure remains almost unchanged as shown
on Fig. 4.11. However, mesh convergence can be noticed with the first mesh. The higher
degree of freedoms of P2 elements enables an accurate computation of the deformation
as indicated by the axial and transverse components. Such results clearly illustrate the
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need for quadratic elements to have better results compared to linear elements even for
a smaller size mesh cells. This confirms their efficiency when dealing with complex large
deformations.
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Figure 4.11: Time evolution of the tip displacement S2 of the beam obtained with
different tetrahedral P2 meshes: (a) Mesh 1, (b) Mesh 2, (c) Mesh 3.

mesh Amp.
ũx[m]

Amp.
ũy [m]

Amp.
ũx[m](Ref)

Amp.
ũy[m](Ref) Error

∥∥∥ξ̃∥∥∥ (%)

Mesh 1 1.36 × 10−6 0.413 1.3 × 10−6 0.412 0.24%
Mesh 2 1.34 × 10−6 0.413 1.28 × 10−6 0.412 0.24%

Table 4.5: Results obtained using triangular P2 Elements.

Until now the effect of damping was disregarded. Adding the damping matrix C for a
given material can be however a challenging task. The method called Rayleigh damping
is often used to model such specifities of materials. This method consists in using a linear
combination of the mass and stiffness matrices so that the damping matrix is expressed
as,

C = ηMM + ηKK , (4.2.39)

where ηM and ηK are two positive parameters that can be fitted against experimental
data, usually by measuring the damping ratio of two natural modes of vibration (Chopra
(1995); Chopra (2007)).

Based on the results obtained earlier, and to evaluate the effect of damping on the
structure motion, Rayleigh damping is added to the initial problem with ηK = ηM = 0.01.
A direct consequence of such a change is a structure that exhibits a new dynamic behavior
as shown by Fig. 4.12. The amplitude of motion is no longer constant and as expected
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Figure 4.12: Time evolution of the tip displacement S2 of the beam obtained with mesh
1 (P2 elements) with Rayleigh damping.

decays in time since the structure is now dissipating energy. To further understand the
effect of damping on the whole system, various energies can be computed on the fly during
simulations. However, the total energy of the system should be conserved so the sum of
kinetic Ekin, elastic Eelas and damping energies Edamp which follow,

Etot = Ekin + Eelas + Edamp , (4.2.40)

should hold at any instant with the definitions,

Ekin =
∫

Ω̃s

1
2ρsu̇ · u̇ dΩ ,

Eelas =
∫

Ω̃s

1
2σs(u) : ϵ(u) dΩ ,

Edamp = ηM

∫
Ω̃s

1
2ρsu̇ · u̇ dΩ + ηK

∫
Ω̃s

1
2σ(u) : ϵ(u) dΩ.

(4.2.41)

The evolution of these energies as a function of time is shown on Fig. 4.13. In the
absence of Rayleigh damping, the kinetic and elastic energies oscillate between zero and
a certain maximal value. When the maximum displacement amplitude is reached by S2,
the kinetic energy of the beam is zero since at that point the structure switches to the
opposite direction so its axial velocity is zero. In contrast, the elastic energy follows the
opposite behavior: it reaches its maximum value when S2 reaches its peak displacement
value and is equal to zero when S2 passes through the initial position. When Rayleigh
damping is added to the system, the damping energy is seen to increase with time at the
expense of the elastic and kinetic energies. Looking at the total energy of the system,
although it should be conserved at every time step, it appears to slightly decrease with
time at a very slow rate indicative of numerical damping.

Recall that when setting the generalized alpha parameters to zero (αm = αf = 0),
the Newmark beta scheme is recovered. In such a case, the scheme is known to be
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Figure 4.13: Variation of the elastic, kinetic, damping and total energy in function of
time. (a) undamped, (b) damped. (Generalized alpha)

conservative as highlighted by the constant total energy that remains constant in time
and corresponds to the value reached when the loading is removed (se Fig. (4.14). In
both cases the scheme is unconditionally stable and these differences disappear when
decreasing the simulation time step.
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Figure 4.14: Variation of the elastic, kinetic, damping and total energy in function of
time. (a) undamped, (b) damped. (Newmark Beta scheme)

It is worth noting that these simulations have been carried out using a direct de-
composition method. In order to justify the choice of this method, a comparative study
is conducted between a direct LU decomposition and an iterative Krylov method. The
ultimate aim is to select an appropriate solver that would optimize the performance of
the code. Performance is measured by calculating the number of iterations required for
each solving method. Figure. 4.15 shows the computational speed of both direct (LU
decomposition) and iterative (GMRES and CG) methods measured in terms of number
of iterations per second as a function of the mesh used for P1 and P2 elements. As the
number of unknowns in the problem increases, the computational speed naturally de-
creases for all methods used. Furthermore, for the same mesh, there is a tenfold decrease
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in performance from P1 to P2 elements, regardless of the method employed. However,
the performance of each solver differs from one another for the same number of elements.
Indeed, in the current test case, the LU decomposition has the fastest solving time for
both linear and quadratic elements. The performance gap between direct and indirect
solvers decreases as the mesh became finer since this method is suitable for small-scale
problems. It can be observed that the breaking point is reached for mesh 3 when LU at-
tains a similar solving time as the other indirect solvers. Regarding the iterative methods
used, both conjugate gradient (CG) and generalized minimal residual (GMRES) meth-
ods exhibit similar performances, with CG outperforming GMRES slightly. This gain in
performance is attributed to the nature of the problem itself, where all matrices solved
are symmetric and positive definite. In fact CG is designed specifically for such problems,
whereas GMRES is a more general algorithm that can also solve non-symmetric or pos-
itive definite matrices. The choice of solver is hence highly dependent on the nature of
the problem and the size of the domain. Therefore, one must try different solvers and/or
preconditioners to achieve the desired performance.
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Figure 4.15: Performance of direct and indirect solvers obtained with the different
meshes used: (a) P1 elements (b) P2 elements.
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4.3 Conclusion
This chapter focuses on the numerical development of a structural mechanics solver, which
is a crucial step towards developing a fully coupled fluid-structure interaction solver. This
tool is capable of solving both the steady and transient elasticity equations. Additionally,
it can handle the elastodynamic equation for a rotating structure, similar to the equation
used in Chap. 2, where it is solved in the frequency domain. In this case, Coriolis and
centrifugal effects are considered in the calculations due to the rotation, and the equation
is solved using the polar coordinate reference frame. Such a feature allows the calculation
of the dynamic response of rotating components such as turbine blades or discs, which
is important in the context of turbomachinery applications. However, due to the lack of
validation cases for rotating structure, the solver has been verified using available test
cases found in the literature.
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A self-excited vibration is a flow induced-vibration that involves a complex,
two-way interaction between a fluid and a solid. This multiphysical phenomenon is
challenging to model due to the interplay of multiple physical effects. While simple
aeroelastic problems can be solved analytically, large-scale fluid-structure interaction
problems pose significant challenges in terms of mathematical modeling, numerical
discretization, and solution techniques, even with today’s advanced computer archi-
tectures. Commercial computational fluid dynamics (CFD) and computational struc-
tural mechanics packages have made progress and simulating industry relevant fluid-
structure interaction (FSI) problems is possible today but it primarily relies on steady
or quasi-steady CFD approaches such as RANS or URANS. The aim of this chapter is
to develop a numerical fluid-structure interaction framework using Large Eddy Simu-
lation (LES) along with the structural dynamics code to tackle complex multiphysical
problems as encountered in turbomachinery devices. To do so, the framework must
be computationally efficient, able to run on parallel computer systems and capable of
high-resolution simulations. To achieve this, the structural mechanics code presented
in the previous chapter is coupled to the LES solver using a Multiple Program Mul-
tiple Data (MPMD) approach through the library CWIPI resulting in a partitioned
solver that combines the strengths of both codes. Two test cases are then considered
to demonstrate the capabilities of the framework: an immersed beam in a still fluid,
and a Vortex Induced Vibration (VIV) case. The first case shows that a vibrating
beam in a still fluid eventually returns to its equilibrium position due to the damping
effect of fluid viscosity. The second case successfully captures the eigenmode and am-
plitude of vibration of a thin elastic plate, demonstrating that fluid-structure modes
can be captured using LES.

5.1 Introduction
From the flap of a bird’s wings to a flying aircraft, a fundamental physical phenomenon
takes place which is of considerable and technological interest in a broad spectrum of
disciplines such as aerodynamics, civil engineering, biomedical engineering, etc. This
phenomenon is known as Fluid Structure Interaction or FSI. Simply put, FSI studies
the interaction between a deformable structure with a surrounding or internal flow. This
multiphysical phenomenon involves more than one physical effect hence rendering its
complexity rather challenging to model. Indeed, the motion and the deformation of solid
structures are the results of the surrounding fluid stress, while the fluid flow in return
is influenced by the solid movement. The fluid-structure interface is as a result and
very often complex and time-dependent. Given that the interaction is instantaneous
and continuous, representing such a complex interface accurately and efficiently is also
difficult. As a result, the numerical modeling of FSI problems is everything but an
easy task and the reliability of such simulations, the underlying errors and models are
still at the center of many research activities. It is clear that the design of robust and
efficient solvers to solve the resulting non-linear systems still have to be dealt with and
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remains a priority for many engineering problems. The problem at hand is furthermore
exacerbated by the fact that unsteady CFD is to be used. In this context and although
LES is not well established in the FSI context, especially for complex rotating flows, it
still remains the most reliable CFD modeling context since intrinsically unsteady. While
recent advancements around the use of LES for FSI problems has gained some success,
steady CFD became a major tool in the middle of the 90’s (Wolf & Brakkee (1996), Bathe
et al. (1995), Lesoinne & Farhat (1996), Maman & Farhat (1995)). The reason for this
misuse is owed to the computational complexity and cost when moving from steady CFD
like RANS to an unsteady approach like LES.

Note also that the methods and underlying models used to treat fluid-structure in-
teraction problems vary in their complexity. The simplest model is probably the well
known "piston theory" (Holt & Garabed (1956)) which is used to analyze the behavior of
a rigid body moving through a fluid. In this approach one assumes that the fluid moves
around the body without affecting its shape or motion while the body generates pressure
waves in the fluid. Although useful for some engineering applications, this piston theory
is limited: the fluid must be inviscid, incompressible and does not affect the shape or
motion of the body. The body is rigid and moves at a constant speed without causing any
turbulence or disturbance in the fluid and the pressure waves generated by the body move
at the speed of sound in the fluid. These assumptions simplify the problem and make it
easier to analyze the interaction between the fluid and the body, but they also limit the
applicability of the model to certain scenarios. A non-linear version of the piston theory
exists. It is still however bounded by the frequency or Mach number range of the applica-
tion. The full-potential flow theory is a natural extension to consider but it requires the
solution of a non-linear wave equation for the velocity potential. However, if one assumes
that the solid body is small and the profile is thin, the linear convected-wave equation
can be obtained for the velocity potential. The solution of this equation is the basis of
many FSI problems and has been extensively used for the flutter or other phenomena
of aircraft (Dowell (2014)). Sophisticated models based on the Euler or Navier-Stokes
equations provide higher fidelity simulations but require substantial computer resources.
Note also that the solid models should handle all sort of deformations. For the solid part,
the models are usually classified depending on the deformation of the structure i.e., a lin-
ear stress-strain relationship can account for rigid body deformation whereas non-linear
models are needed to account for large body deformations.

Figure 5.1 shows the different developments applied to fluid-structure interaction prob-
lems and classified according to the complexity of the solid and fluid models. Typically,
the spring-mounted wing flutter analysis (a) is a dynamic analysis that is used to study
the flutter phenomenon of aircraft wings. In this case, the wing is modeled as a flex-
ible structure and its motion is coupled to the airflow around it. To do so, the wing
is mounted on a support structure with a spring and a damper allowing for the wing’s
motion to be simulated. This method can also take into account more sophisticated solid
models like a beam model (d) or a membrane model (e). In the vortex method (b), the
deformable structure is represented by a mesh of discrete points or elements, and the
fluid is modeled using a set of discrete vortices. The motion of the fluid or of the struc-
ture are calculated separately and their interaction is accounted for through a coupling
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Figure 5.1: Fluid-structure interaction models classified according to the structure and
fluid model complexity. The example shown include (a) academic spring-mounted wing
flutter problem (Heinrich (1956)), (b) simulation of an airplane using the vortex lattice
method (VLM), (c) vortex-induced vibrations of a spring-mounted cylinder in a Navier-
Stokes flow (Nguyen et al. (2014)),(d) low-order physics-based flutter model using beam
theory (Opgenoord et al. (2019)), (e) aeroelastic investigation on the flutter properties of
supersonic panel using supersonic piston theory for the fluid and thin plate theory for the
solid (Song & Li (2014)), (f) CFD-Based Aeroelastic simulation of an aircraft in Euler
flow (Rozov et al. (2019)), (g) Vortex induced vibration of an elastic plate attached to a
fixed cylinder (Turek & Hron (2007)).

term that transfers forces between the two. The method is particularly well-suited for
problems involving large deformations and complex geometries as it allows the fluid and
the structure to move independently of each other. This makes it possible to simulate
the behavior of flexible structures such as membranes, cables, and flags in a flow, which
can be difficult or impossible to model using other techniques. Sophisticated CFD-based
aeroelastic simulations are used on an aircraft using Euler flow (f) in addition to two vor-
tex induced vibration cases involving a spring-mounted rigid cylinder (c), and an elastic
plate attached to a rigid cylinder (e) simulated by coupling the Navier-Stokes equations
to a non-linear elasticity model.

A third axis can be added to describe the type of coupling between these models.
The choice of coupling depends on the strength of interaction between the solid and the
fluid. For example, the coupling between a fluid represented by the piston theory and an
elastic solid would fail to reproduce the actual physics involved and the time-delay effect
between the two. On the other hand, turbomachinery components such as blades and
discs interact weakly with a turbulent flow around them. Generally speaking, the more
refined the models are, the more feedback loops are required between the fluid and the



5.2 Coupled FSI problem 103

solid, and the interaction becomes more significant.
In this thesis, a general modeling approach is adopted with no restriction on the

complexity of the fluid or solid models. The objective is to develop a fluid-structure
interaction solver specifically tailored to turbomachinery applications. This means that
complex unsteady fluid phenomena are modeled using Large Eddy Simulation (LES),
while the structural components are modeled using a linear or non-linear finite element
model. This chapter details the numerical coupling strategy developed to meet this
purpose. It is organized as follows: first, the coupled FSI problem is thoroughly described
with all necessary details on the theory and equations used. Second, a review of the
state-of-the-art on coupling methods available in the literature is provided, along with
the choice adopted for this work. Interface management and mesh adaptation are also
discussed as part of the coupling. To finish, two coupled cases are presented to validate
the coupling framework and tools.

5.2 Coupled FSI problem
Unlike the structure, the motion of the fluid is described using a Eulerian framework where
the change of quantities of interest (temperature, pressure, velocity...) are observed at
spatially fixed locations. The fluid problem is described using the Navier-Stokes and
continuity equations derived in Chap. 2. These equations can be recast in the following
compact form:

∂(ρfuf )
∂t

+ (uf − w) · ∇(ρfuf ) − ∇ · σ(uf , p) = 0, in Ωf ,

∇ · uf = 0, in Ωf ,
(5.2.1)

where σf is the fluid stress tensor that contains the normal and shear stresses and w is
the grid velocity. The uncoupled fluid-structure system of equations then writes,

∂(ρfuf )
∂t

+ (uf − w) · ∇(ρfuf ) − ∇ · σ(uf , p) = 0, in Ωf ,

∇ · uf = 0, in Ωf ,

ρs
∂2ξ̃

∂t2 = ∇̃ · P̃ + ρsf̃ , in Ω̃s,

(5.2.2)

where each of the fluid and solid problems are solved separately in a Eulerian and La-
grangian reference systems respectively. In order to construct the link between these two
reference systems and hence to couple the fluid and the solid problems, the Arbitrary
Lagrangian Eulerian method introduced in Chap. 3 is used. The ALE viewpoint allows
for the mesh to move with the material while retaining the ability to track the motion of
the fluid. In addition, ALE ensures that the fluid and solid domains never overlap nor
separate, and the flow velocity at the interface must be equal to the solid boundary veloc-
ity (no-slip condition). These two properties of ALE represent the kinematic requirement
that imposes equal displacements and velocities at the wet interface. That is,

xf = ξ, w = ∂ξ

∂t
, on Γ . (5.2.3)
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ALE also enforces an equilibrium requirement at the interface where Γ is the common wet
interface: i.e., the location where the solid domain and fluid domain are in contact. This
equilibrium states that the forces acting on the fluid and the structure must be balanced.
More specifically, the forces acting on the fluid must be equal and opposite to the forces
acting on the structure (see Fig. 5.2). This is because any unbalanced forces would cause
the fluid and/or the structure surfaces to accelerate, which would violate the requirement
of equilibrium and continuity. Mathematically, this requirement can be expressed using
the equation,

σ · n⃗f = P · n⃗s, on Γ. (5.2.4)

where n⃗f and n⃗s are the unit normal vectors acting on the fluid and solid surfaces

Figure 5.2: Schematic drawing of the fluid-structure interface highlighting the different
domains and the outer normals of the fluid and structure.

respectively and pointing outward. Note that despite the choice detailed above, numerous
alternatives have been proposed to handle fluid-structure equations on moving domains.
The Immersed Boundary Method (IBM) proposed by Peskin (1977) for example, is a
numerical technique where the fluid flow equations are solved on a fixed grid, and the
motion of the immersed solid boundaries is represented through a forcing term in the fluid
equations. The IBM approach involves two main steps: interpolating the fluid properties
to the solid interface, and imposing the boundary conditions using the immersed boundary
method. The interpolation step involves assigning the fluid properties at the grid points
near the solid boundary based on the properties of the fluid in the surrounding grid
points. This is typically done using a weighted interpolation scheme such as the distance-
weighted interpolation approach. In the second step, the force exerted by the solid
object on the fluid is represented as a source term in the Navier-Stokes equations. This
forcing term is determined based on the displacement and deformation of the solid object.
The resulting modified Navier-Stokes equations are then solved numerically on the fixed
grid to obtain the fluid flow. A similar technique has been used to solve FSI problems
and is called the Fictitious Domain Method (FDM) (Glowinski et al. (1994)). Here the
fluid equations are solved on a fixed grid and the solid boundaries are represented as
a continuous distribution of forces and velocities, rather than explicitly modeling the
solid geometry. The FDM approach involves adding an additional term to the Navier-
Stokes equations that represents the forces exerted by the solid boundaries on the fluid.
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This term is derived based on the distribution of forces and velocities within the solid,
which is typically determined using a constitutive relation. Both of these techniques are
referred to as non-conforming because the mesh nodes on the fluid and solid sides of the
interface do not coincide, meaning that there is no one-to-one correspondence between
the mesh elements on either side. This type of mesh is less accurate than conforming
mesh approaches because it introduces numerical errors at the interface that can affect
the stability of the simulation.

The ALE method can be considered a mesh conforming technique even though it is
somewhat hybrid in nature. The mesh is moved in such a way that it is always conforming
to the deforming structure, and the governing equations are formulated in a reference
frame that moves with the mesh. This allows the method to capture large deformations of
the solid domain while maintaining the accuracy of a conforming mesh. One requirement
that comes with the ALE method is that node motions should not distort the mesh too
much for computational accuracy. As a consequence, a supplementary equation must
be introduced to propagate efficiently the deformation of the solid boundary into the
fluid domain. There exists many mathematical models that can be used to handle mesh
deformation. These models vary in robustness and efficiency and the choice is usually
based on the application itself and the level of compromise between the two. Typically,
some methods are suitable for large mesh deformations and others are preferred when
dealing with small deformations. The most common methods used in FSI problems are
the mesh connectivity based methods. These can be classified in an increasing order of
efficiency or decreasing order of robustness. For example,

• The linear spring analogy presented by Batina (1990). The idea is to assimilate the
edges of the mesh to linear springs. The resulting system is a linear set of equations
that models a network of springs subject to a deformation on its boundary. The
latter is then solved using iterative methods such as Jacobi or Gauss Seidel.

• The pseudo solid approach is based on the idea of introducing an artificial solid-like
behavior into the fluid mesh. This is achieved by applying the classical laws of
structural mechanics which model the elastic response of the fluid mesh deforma-
tion (Stein et al. (2003); Stein et al. (2004)). The Pseudo-Solid term is based on
the constitutive equations for linear elasticity, and it depends on the deformation
gradient of the fluid mesh. Mathematically this translates to:

∇2w + 1
1 − 2ν

∂

∂x
∇ · w = 0 ,

∇2w + 1
1 − 2ν

∂

∂y
∇ · w = 0 ,

∇2w + 1
1 − 2ν

∂

∂z
∇ · w = 0.

(5.2.5)

with w being the vector field of displacement of the nodes of the mesh and νs

is the Poisson’s ratio of the solid considered. The main advantage of this method
compared to the linear spring analogy method is its inherent ability to avoid drastic
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cell compression. Its major flaw is the associated computational cost. In fact, it
is almost never used in a crude manner to meshes composed of several million
elements. To circumvent this problem, (Lefrançois (2008)) proposes the Moving
Submesh Approach (MSA). It is based on the division of the computational domain
into zones (or super-elements) in which deformations are computed before being
interpolated on the original mesh. Another solution has been recently proposed by
Fabbri (2022) to improve this method by adjusting the Young’s Modulus of cells
according to their quality. This way the method handles large cell deformations
while trying to maintain a minimal skewness.

• Another possible approach consists in simplifying the pseudo-solid relation,
Eq. (5.2.5), to reduce the computational cost by removing the coupling term and
therefore only solving the Laplacian term:

∇2w = 0. (5.2.6)

This is known as the Laplacian smoothing method and belongs to the family of
elliptic smoothing methods. The basic idea is to adjust the position of each vertex
based on the positions of its neighbors, so that the resulting mesh is smoother and
more regular. The Laplacian operator is a differential operator that measures the
amount of curvature at a point on a surface. In the context of mesh processing, the
Laplacian operator is applied to each vertex of the mesh to calculate a new position
that minimizes the amount of curvature

• Biharmonic operators (Helenbrook (2003)) are more sophisticated versions of the
Laplacian smoothing method. The basic idea is to minimize the curvature of the
mesh by smoothing any abrupt change in direction. To do so, the biharmonic
operator, which is a linear differential operator defined as,

∇4w = 0 , (5.2.7)

is usually used.
One advantage of the biharmonic operator over other mesh smoothing techniques
is that it tends to preserve sharp features of meshes, such as edges and corners,
while still producing smoother overall surfaces. However, it can be computationally
expensive and may require careful tuning of its parameters to avoid over-smoothing
or under-smoothing meshes.

In the current study, the Laplacian smoothing method is adopted as a compromise be-
tween robustness and efficiency. It is furthermore noted that this elliptic method con-
verges fast in cases of small deformations which makes it an interesting approach for
turbomachinery applications. The method is applied to the nodal displacements of the
mesh: i.e., each vertex i is moved to the centroid of its surrounding vertices j so that,

xi = xi + 1
n

n∑
j=1

(xj − xi). (5.2.8)
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The Laplacian smoothing problem is then formulated as a set of equations Ax = b and
solved using a standard conjugate gradient approach. Rather than explicitly calculating
the matrix A, only the matrix-vector product Ax is effectively computed. Note also that
the conjugate gradient method is never fully converged but instead is looped until the
residual has been reduced by a factor specified by the user. This approach ensures that
the mesh node displacements caused by the moving boundaries are effectively propagated
throughout the entire mesh. Doing so avoids the appearance of highly deformed cells next
to the moving boundary which would require more frequent re-meshing.

Now that the fluid and solid sub-problems have been coupled using the ALE and mesh
smoothing methods (here based on the Laplacian approach), the coupled fluid-structure
system of equations can be formulated as,

∂(ρfuf )
∂t

+ (uf − w) · ∇(ρfuf ) − ∇ · σ(uf , p) = 0, in Ωf ,

∇ · uf = 0, in Ωf ,

ρs
∂2ξ̃

∂t2 = ∇̃ · P̃ + ρsf̃ , in Ω̃s,

xf = ξ, on Γ,

w = ∂ξ

∂t
, on Γ,

σnf − Pns = 0, on Γ,

∇2w = 0, in Ωf .

(5.2.9)

In order to solve this coupled system of equations, there exists two major approaches that
are distinguished based on how many solvers are used to solve the system: the monolithic
approach or the partitioned approach.

5.3 Monolithic coupling approach
The monolithic approach is a fully coupled FSI approach, where the fluid and structural
equations are solved together in a single solver. This approach involves solving the Navier-
Stokes equations for the fluid and the equations of motion for the structure simultaneously.
In addition, the coupling between the fluid and structure is accounted for in the equations.
The monolithic coupling discretization of a fluid-structure interaction problem yields a
system of equations of the form,

A(yF , yS , yI) = 0 , (5.3.1)
where A is a matrix that contains discrete flow variables yF , discrete structural variables
yS and coupling variables yI related to both the fluid and the structure. Since this system
of equations is usually non-linear, a common approach to seek a numerical solution is to
apply Newton’s based algorithm. This results in the repeated solution of the problem,

J k

∆yF
∆yS
∆yI

 = −Rk (5.3.2)
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where J k stands for the Jacobian, or an approximation of the Jacobian of the coupled
non-linear operator applied to (yF , yS , yI) and Rk, the vector of residuals such that,

J k =

J F(yF) 0 J F(yF)
0 J S(yS) J S(yS)

J I(yI) J I(yI) 0

 , Rk =

rF
rS
rI

 . (5.3.3)

After solving this linear system, the following update procedure applies,yk+1
F

yk+1
S

yk+1
I

 =

yk
F

yk
S

yk
I

+

∆yk
F

∆yk
S

∆yk
I

 . (5.3.4)

The main difficulty in solving such systems lies in the evaluation of the Jacobian ma-
trix and more specifically the evaluation of the cross derivative terms that arise form its
application. Therefore, variations of the Newton method that deal with Jacobian approx-
imations have been used to deal with such problems. For example, Turek et al. (2010)
solved this problem using a damped Newton method. This approach greatly improves
the robustness of the solver when the current approximation yk is not close enough to
the final solution. In this case, the Jacobian matrix is approximated using a finite dif-
ference of the residual vector Rk. Inexact methods have also been used by Heil (2004)
where sub-blocks of J k are neglected using block-triangular approximations. Doing so,
the resulting block-triangular matrix is shown to be an efficient preconditionner for the
solution of the linearized system. Other Newton-based iteration methods have been inves-
tigated by Tezduyar et al. (2006). These include direct, quasi-direct and block-iterative
techniques. The direct method uses the exact Jacobian to solve the coupled system. Con-
trarily, in the block-iterative method, the coupling terms are completely neglected which
leads to a partitioned-like solution algorithm. This method is particularly suitable for FSI
computations where the structure is light, meaning that the structural response is very
sensitive to small changes in the fluid rendering convergence rather difficult to achieve.
In the quasi-direct approach, the coupling terms are partially evaluated by keeping them
in the system without considering the effect of the coupled structural terms on the mesh
motion. This method is also suitable for problems where the solid to fluid feedback is
important. Overall, the coupled monolithic approach results in a very accurate and ef-
ficient solution to FSI problems as it solves the flow equations and structure equations
simultaneously and the interface conditions are implicit in the model. It is thus able
to handle a higher amount of coupling instabilities (Degroote et al. (2009); Heil et al.
(2008)). Nonetheless, such an approach can be computationally expensive, especially for
large-scale FSI problems. It furthermore requires a robust numerical scheme to ensure
stability and accuracy. This is thus typically used only for cases where the fluid and
structure are tightly coupled.

5.4 Partitioned coupling approach
The partitioned approach treats the fluid and solid domains as two distinct computational
fields, with their respective meshes as well as solvers that solve each problem separately.
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This approach offers more versatility in the construction of the FSI solver since two
different codes are used for the fluid and solid. These codes exchange all the necessary
data, such as fluid forces and structural displacements at the interface which implies
that the flow is unchanged while the solution of the structural equations is calculated
and vice versa (Degroote et al. (2009)). The fluid is generally solved with the ALE
description as explained in the previous section allowing to compute the flow variables
on a moving grid. For the solid, the finite element method is most widely used with some
variations regarding the type of application; i.e., beam models, membranes and shells,
non-linear elasticity, etc. The specificity is here due to the fact that boundary values are
exchanged between the fluid and structure interfaces. The partitioned approach therein
requires the use of a third module in addition to the fluid and structure solvers to ensure
the communication of the information between interfaces. This specific coupling module
will be described later in a dedicated section.

The goal of the partitioned approach is to be as accurate as its monolithic counterpart
while providing flexibility in the choice of the solvers and robustness to deal with a wide
range of FSI problems. To achieve those objectives, multiple coupling schemes exist.
They are divided into two categories: implicit (strong) and explicit (weak) coupling
schemes. The idea behind the first set of these coupling schemes is that fluid and solid
equations are solved multiple times for every time step until a convergence criteria is
attained so the obtained solution at this time step is strongly coupled. Conversely, when
the fluid and solid equations are solved only once for every time step that is without
convergence check, the coupling scheme is said weakly coupled. The last approach is
numerically much faster than the former but less stable in some cases. Indeed, an
important issue arising in the partitioned approach concerns the stability of the scheme
due to the significant lag in the transmission of the information at the wet interface. This
lag is owed to the fact that the fluid and structure solutions are solved successively and
not simultaneously which violates the conservation of kinetic and kinematic conditions
at the interface. In the monolithic approach, the coupling terms being implicitly solved
by the fluid and solid equations, such a difficulty is inherently treated. This may not be
the case in the partitioned approach; it depends on the type of coupling used. In weakly
coupled problems, this numerical issue may cause the velocity at the interface to diverge.
Under the same condition, strongly coupled problems exhibit convergence problems
along with an increase in sub-iterations. However, there exist some criteria that have to
be met in order for this instability to occur notably when the density of the structure
approaches the density of the fluid and when the structure is particularly slender (Causin
et al. (2005)). For this reason, the density ratio M = ρs/ρf that dictates the strength
of inertia between the structure and the fluid is often used as indicator to determine the
type of interaction between the fluid and structure. When M >> 1 the interaction is
weak, whereas if M ≈ 1 the interaction is strong. Subsequently, this non-dimensional
parameter gives insight on which coupling should be used for a given application. A low
density ratio requires the use of a strongly coupled or implicit approach whereas a high
density ratio problem can be solved using a weakly coupled or explicit approach.

In the present study, the development of a coupled numerical chain based on a com-
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pressible LES solver (AVBP) and a structural mechanics code aims at investigating mul-
tiphysical phenomena in turbomachinary components. In this context, the mass ratio is
relatively high and the structure is usually bulky. Therefore, a weakly coupled approach is
preferred as it can capture aeroelastic effects in addition to alleviating the computational
cost of such simulations compared to a strongly coupled approach. A brief overview of
the implicit and explicit coupling schemes are discussed hereafter followed by a thorough
description of the coupling scheme developed during this Ph.D.

5.4.1 Implicit coupling schemes
As said previously, partitioned models can solve the FSI problem using an iterative ap-
proach at every time step in order to satisfy a certain convergence criterion and result in
an implicit coupling scheme. This is done to enforce exactly the kinematic and dynamic
conditions, Eq. (5.2.3-5.2.4), at the wet interface and consequently to prevent any nu-
merical stability. In such a case if F and S denote the partitioned operators for the fluid
and solid solvers respectively, the computed solution at the wet interface by each solver
at every time step is obtained such that,

fn+1 = F(dn),
dn+1 = S(fn+1),

(5.4.1)

where fn+1 represents the kinematic variables (stresses or forces) computed by the fluid
solver using the displacement dn (i.e., from the previous iteration) and dn+1 is the new
displacement computed by the structure solver using the kinematic variables fn+1. Fig-
ure 5.3 shows a typical diagram of such an implicit coupling algorithm. Note that the
algorithm operates by first solving the fluid equations and then transfers the kinematic
variables at the interface to the structure solver. The dynamic variables are then com-
puted and passed to the acceleration block. This step is essential to ensure that the
solution at the interface converges before closing the feedback loop. It functions as a sub-
iterative block, whereby the fluid and solid equations are solved multiple times to satisfy
a specific criterion. This sub-iterative block is a crucial component of strongly coupled
schemes. Various methods exist to stabilize such schemes which can still be numerically
unstable: i.e., introducing under-relaxation methods and Newton methods for example.

One way of stabilizing a coupled fluid-structure iteration is to perform an under-
relaxation on the computed displacement dn+1 so that,

d̃k+1
n+1 = ωdk+1

n+1 + (1 − ω)dk
n+1. (5.4.2)

d̃k+1
n+1 in Eq. (5.4.2) is the relaxed displacement at the next time step and k represents the

sub-iteration index of the acceleration block and the under-relaxation factor is noted ω.
This last value can either be a constant (in the range 0 < ω < 1) or can be computed
at every sub-iteration. A value close to 1 is preferred but can cause the computation to
diverge whereas a value close to 0 makes the computation more stable at the expense
of a larger number of sub-iterations. Alternatively, a dynamic relaxation can be used to
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F (d) S(f)

Acceleration

fn+1

d̃n+1dn

Figure 5.3: Implicit coupling scheme

accelerate the convergence of the sub-iterations which is known as the Aitken Relaxation
method. In this approach, the relaxation factor ω is computed at every sub-iteration
using the two previously computed displacements via linear extrapolation (Aitken (1927)).
Under-relaxation methods are direct and intuitive approaches that stabilize most coupled
fluid-structure problems. There exists, however, a set of implicit schemes that outperform
the under-relaxation method when this latter diverges. These schemes fall under the
Newton-Raphson type schemes or more specifically the quasi-Newton type methods. For
the Newton scheme consists in applying a fixed point iteration to the partitioned fluid-
structure problem. This is done by first defining the fluid residual operator RF(f , d) and
the solid residual RS(f , d) such that,

RF(f , d) = f − F (d) = 0
RS(f , d) = d − S(f) = 0

(5.4.3)

Using these equations, the block Newton iteration problem can be expressed as,(
J RF (fk) J RF (dk)
J RS (fk) J RS (dk)

)[
∆fk

∆dk

]
= −

[
RF(fk, dk)
RS(fk, dk)

]
(5.4.4)

along with the update variables,[
fk+1

sk+1

]
=
[
fk

dk

]
+
[
∆fk

∆dk

]
(5.4.5)

In such an approach the residual vectors are first obtained using Eqs. (5.4.3) after commu-
nicating the fluid and solid variables. If the Jacobian of the matrix is known, a Newton
iteration can be performed using Eqs. (5.4.4) and the variables can be updated using
Eqs. (5.4.5). The major issue is that the Jacobian matrix is either not known for a given
problem or numerically expensive to calculate. Subsequently, matrix-free methods have
been developed to account for this difficulty and the approaches become quasi-Newton
methods. For instance, the Interface Block Quasi-Newton Method (IBQN-LS) features
reduced order models for the fluid and structure solvers to get rid of the Jacobian matrix
and hence increase the speed of convergence of the coupled iterations (Vierendeels et al.
(2007)). In such a case, the block Newton system is formulated such that,
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F̂
′

−I
−I Ŝ

′

[∆f̃
∆d̃

]
=
[
RF(f , d)
RS(f , d)

]
, (5.4.6)

where F̂
′ and Ŝ

′ are linear reduced order models for the fluid and solid Jacobians. The
key feature of this scheme is that the fluid and solid variables are not directly computed.
Instead, intermediate variables f̃ and d̃ are computed at every sub-iteration. That said,
∆f̃ and ∆d̃ are output coupling values that are used to form a matrix containing the
corresponding change in stress or force distribution at the interface, and the corresponding
change in displacement respectively. To construct the fluid solver interface Jacobian, the
input coupling variables ∆d and the output coupling variables ∆f̃ are used to form two
distinct vector matrices VF and WF . The new input change in displacement ∆d is then
approximated by a linear combination of the previously computed input displacements
as,

∆d ≈ βFVF , (5.4.7)
with βF being the vector of coefficients. The corresponding change in stress distribution
∆f can thus be approximated by,

∆f ≈ βFWF . (5.4.8)

To solve for βF , a least square problem is usually obtained by minimizing ∥∆d − βFVF∥.
Its solution yields βF = (VF

T VF)−1VF
T ∆d, so that ∆f = F̂

′∆d with F =
WF(VF

T VF)−1VF
T .

Similarly, the solid solver interface Jacobian is constructed using the same procedure
except that the inputs are the change in stresses ∆f and the outputs are the intermediate
change in displacement ∆d̃ . These values are then stored in two distinct vector matrices
VS and WS . Once the least square problem is solved to obtain the optimal coefficients
βS , the resulting reduced order model for the solid problem becomes,

Ŝ
′ = VS(WF

T WS)−1WS
T (5.4.9)

There exists similar algorithm like the one described above. For example, the Interface
Quasi-Newton Method (IQN-ILS) which relies on one reduced order model for the inverse
of the overall interface Jacobian matrix of the Newton system of Eq. (5.4.4). This is done
to avoid solving the Jacobian at every Newton-raphson iteration (Degroote et al. (2009)).
Other algorithms like the block-Newton (Matthies & Steindorf (2002)) or inexact Newton
(Gerbeau & Vidrascu (2003)) have also been used in partitioned approaches. However,
their description goes beyond the scope of this work and a complete description can be
found in the thesis of Gatzhammer (2015).

5.4.2 Explicit coupling schemes
Explicit schemes do not try to enforce a balance of kinetic and kinematic values at
the interface like implicit methods. Instead, an approximation of the monolithic and
implicit coupled problem, Eq. (5.3.2), is done by solving the partitioned problem using



5.4 Partitioned coupling approach 113

Eq. (5.4.1) for a fixed number of iterations per time step (usually once) hence simplifying
the coupling algorithm to two blocks as depicted on Fig. 5.4. This coupling strategy
however yields good results in aeroelastic simulations only if the interaction between the
fluid and the solid is weak: in other words the mass ratio of the problem is very high
(Farhat et al. (2006)). Different algorithms have been developed to solve explicit coupling
schemes such as the conventional serial staggered (CSS) (Piperno et al. (1995)), improved
serial staggered (ISS) (Lesoinne & Farhat (1998)), conventional parallel staggered (CPS)
(Farhat (2000)), improved parallel staggered (IPS) (Farhat (2000)). These algorithms
have been tested in the framework of compressible flow simulations making them good
candidates for the current application.

F (d) S(f)
fn+1

dn+1dn

Figure 5.4: Implicit coupling scheme

The conventional serial staggered algorithm (CSS) (Piperno et al. (1995)) has been
developed and implemented in the present work where the fluid and solid variables are
computed once for every iteration. The time iteration n hence begins with the compu-
tation of the fluid time step, ∆tf , determined by the acoustic Courant Friedrichs Lewy
number (CFL). Thanks to the unconditional stability feature of the Generalized alpha
scheme, the fluid time step, ∆tf , can be passed to the structure solver since the coupling
time step simply becomes ∆tc = ∆tf = ∆ts. AVBP then computes the normal and
shear stresses on the coupled surfaces and transfers them to the structure solver. The
calculated displacement by the structure solver is then sent back to AVBP to first move
the mesh interface so it coincides with the new position of the solid interface and then
calculate the new stresses at the next time step. Figure 5.5 shows a typical diagram of
the CSS procedure highlighting two fluid-structure interaction iterations.

Fn Fn+1 Fn+2

Sn Sn+1 Sn+2

F (dn)

fn+1

F (dn+1)

fn+2
dn

S(fn+1)

dn+1

S(fn+2)

dn+2

Figure 5.5: Diagram representing the Conventional serial staggered (CSS) algorithm.
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It is worth noting that subcycling has also been implemented in this context. The time
step in compressible flow simulations being small compared to the incompressible flow
application, the use of such a small time step for both the fluid and structure components
can be computationally expensive, especially for simulations involving complex geometries
and high Reynolds numbers. Subcycling is in such a case useful to overcome the limitation
by allowing the fluid and structure subsystems to advance using different time steps ∆tf

and ∆ts (Piperno et al. (1995)). In this context, the fluid time step ∆tf is smaller than
the structure time step ∆ts, so the solid solver time step can be divided into multiple
of such sub-steps k so the run-time of the fluid solver before an exchange with the solid
solver is equal to k∆tf . During each sub-step, no exchange of data between the two
solvers takes place. Once the fluid solver has achieved a full run-time cycle, the fluid and
structure solvers are re-synchronized so that ∆ts = k∆tf . Nevertheless, this technique
does not enforce a conservation of energy at the interface at every time step, instead the
energy transferred becomes directly proportional to the time step itself rising stability
issues and errors. For this reason, and to compensate the time lag between the fluid and
structure solvers, the generalized conventional staggered (GCSS) (Farhat & Lesoinne
(1996)) procedure has been implemented in the FSI solver. This procedure works exactly
as the CSS algorithm except that it incorporates a predictor operation for the structural
displacement. The estimated displacement at n + 1 is evaluated using the prediction,

dp
n+1 = dn + α0∆tcvn + α1∆tc(vn − vn−1), (5.4.10)

where α0 and α1 are real coefficients and v is the solid velocity. The combination of α0 = 1
and α1 = 0 yields a first order linear extrapolation whereas for α0 = 1 and α1 = 0.5, a
quadratic extrapolation is obtained. The full GCSS procedure is hence decomposed as
follows:

1. Compute the normal and shear stresses on the coupled surfaces and send them to
the structure solver.

2. If ∆tf ̸= ∆ts subcycle the fluid solver until ∆tf = ∆ts then calculate the corre-
sponding structural displacement and velocity.

3. Predict the structural displacement at time tn+1 using Eq. (5.4.10).

4. Update the position of the fluid mesh according to the predicted displacement dn+1
p

then compute the normal and shear stresses to advance to the next time step.

Piperno & Farhat (2001) conducted an energy analysis of the various instances of parti-
tioned procedures that can be obtained for the different values of α0 and α1 in Eq. (5.4.10).
They concluded that if dp

n+1 = dn and α0 = α1 = 0, the CSS algorithm is recovered and
always lead to a first-order energy-accurate method at the fluid-structure interface. By
setting α0 = 1 and α1 = 0 the GCSS algorithm is recovered that is a second order energy
accurate CSS and for α0 = 1 and α1 = 0.5 the GCSS algorithm is also recovered but it is
a third order energy accurate CSS. Hence by using a simple predictor for the structure
displacement the conservation of energy at the interface can be improved.
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5.5 Implementation, construction and validation of
the LES based FSI solver

So far, the coupled system of fluid-structure equations has been derived and the method
used to solve such a system have been detailed. As stated previously, the weak coupling
is preferred in the current framework since the density ratio is high. Note that this
partitioned approach requires a third module that enables data transfer between the
fluid and structure solvers. Its role is to communicate all the necessary data at the wet
interface on the fly during calculations. Furthermore, for the purpose of validating the FSI
solver, mesh adaptation is needed to improve the quality of the mesh whenever Laplacian
smoothing fails to do so. This section is thus structured as follows: first, the coupling tool
implemented in the current work is presented followed by the mesh adaptation procedure.
Finally, two test cases are presented to validate the coupling.

5.5.1 Interface management and data transfer: CWIPI
The partitioned approach adopted uses a conforming mesh method (ALE) but it is not
node-to-node coincident. Thus, it is crucial to ensure a correct data transfer between the
interface nodes at every time step since the fluid and the solid meshes have different local
refinements. The data transfer procedure allows the exchange of the coupling variables
at the interface, 

wn+1 = dn+1 − dn

∆tc

,

fn+1 =
∫

Γ
(µ∂un+1

∂n
+ pn+1nf )dΓ ,

(5.5.1)

where w is the fluid mesh velocity that is equal to the rate of change of the solid boundary
displacement and f represents the fluid forces obtained by integrating the pressure and
wall shear stresses at the interface. The data transfer is ensured by the coupling library
CWIPI (Coupling With Interpolation Parallel Interface). The CWIPI interface library
provides a set of APIs and tools that enable the coupling of multiple software components
or applications into a larger, integrated system. The APIs are coded in both Fortran and
python and must be used at appropriate locations inside the codes that need to be cou-
pled. Note that, a new API has been developed specifically for FreeFEM++ to handle the
data exchange from the structure solver side. The great advantage of this library is that
it allows the exchange of data between parallel codes based on unstructured meshes by
interpolating them on the fly during calculations. Moreover, CWIPI can handle meshes
composed of different element types such as segments for 1D elements, triangles for 2D
elements, tetrahedra for 3D elements and many others. Figure 5.6 shows a simplified
schematic highlighting the data exchanged between the two coupled solvers AVBP and
FreeFEM++. In this example, the fluid mesh is much finer than its solid counterpart,
and hence, the fluid solver runs on a higher number of processors (m > n). The com-
munication between the coupled solvers is handled by the MPI protocol which must be
launched in the same MPI environment. During initialization, CWIPI determines this
intra-communicator for each solver. When creating the coupling, CWIPI also creates
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Figure 5.6: Schematic drawing of the coupling data exchange process between AVBP
and FreeFEM++.

inter-communicators that link all processes of the two codes and constructs the commu-
nication graph used for exchanges through the geometric interface. Since each process
contains only part of the global mesh interface whether it is the fluid or solid part, once
the mesh interface has been defined and partitioned across all processors, CWIPI locates
the nodes required to interpolate the exchanged information. After completing this step,
CWIPI performs field interpolation by allocating weights based on the barycentric coor-
dinates of the point within the localized mesh. The process of locating and computing
barycentric coordinates is performed at the end of every coupled time step to ensure that
the two meshes are always conforming and to avoid missing nodes that might otherwise
induce accuracy errors.

5.5.2 Mesh adaptation

As explained earlier, the ALE method allows the mesh interface to deform in the fluid
domain after receiving the corresponding displacements from the structure solver. The
motion of the interface is then propagated in the whole fluid domain using a Laplacian
smoothing method. However, even with a mesh smoothing approach, limitations are
reached when deformations become large. The only solution to overcome this problem
is as of today re-meshing techniques. Re-meshing consists in performing one or several
operations such as refinement, coarsening and swapping to improve the quality of a mesh.
Refinement operations are employed when certain elements of a mesh become too coarse,
i.e., an edge becomes too long or an element volume becomes too large. These operations
are important to maintain a minimum mesh density to adequately capture the flow physics
in a specific mesh region. Usually refinement is performed by splitting the longest edge
in an element by adding a new node at its midpoint. Coarsening on the other hand is
employed when the mesh becomes too fine, i.e., an edge becomes too short or an element
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volume falls below a certain threshold. This operation is important to avoid the presence
of small cell volumes which will then decrease the time step of the simulation and hence
increase the overall simulation time. Coarsening is usually performed through an edge
collapse operation: where the two nodes forming an edge are collapsed to a single node
consequently eliminating small cell volumes. The swapping operation does not involve
any suppression or addition of new elements, instead it affects the local connectivity of an
element. It involves replacing certain edges to satisfy a certain criterion such as skewness
or the maximum tolerated dihedral angle. The current mesh adaptation technique used
in the present work relies on the triangular (2D) and tetrahedral (3D) fully automatic
MMG library (Dobrzynski & Frey (2008); Dapogny et al. (2014)). Re-meshing is however
not performed at every iteration. Instead the user can trigger it based on a certain metric.
The user can also limit the resulting gradient in mesh size after application of the metric
if necessary. Figure 5.7 illustrates an adapted mesh when a cell volume near the interface
fells below a certain threshold. Once the re-meshing is triggered, the field values are
interpolated on the new mesh and the simulation is carried on.

(a) (b)

Figure 5.7: Mesh adaptation using MMG. (a) old mesh, (b) improved mesh.

5.5.3 Oscillating beam immersed in a fluid at rest
Case presentation

The aim of this first test case is to evaluate the mechanical equilibrium of an
elastic plate immersed in a static fluid by varying the structure’s density and/or the
viscosity of the fluid. The idea is similar to the test case studied by Sigüenza et al.
(2016) which was used to validate their fluid-structure interaction coupling based on
the immersed thick boundary method. In this problem, the 2D plate is defined by its
length L and width l as shown on Fig. 5.8. It is fixed at one end: i.e., the bottom of the
fluid domain and free to deform elsewhere. The fluid domain consists of a rectangular
20L × 200l box containing a still fluid. A t = 0s, a time dependent loading is applied
to the structure consisting of a body force F⃗x normal to its initial position. During
this period, the coupling between the fluid and the structure is not active, only mesh
deformation is active. Once the loading is removed, the coupling is activated and
the beam starts to oscillate. In the absence of structural damping, the beam should
oscillate indefinitely. The presence of a viscous fluid however acts as a damping force
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on the motion of the structure bringing the latter back to its initial position after some
time. Although it may seem trivial, this test presents a significant challenge to verify
the operation of the fluid-structure interaction and coupling. The oscillating beam
indeed perturbs the initially still fluid, generating vortices and strong pressure gradients
that, in turn, interact with the moving structure. The objective is here first to assess
the mechanical equilibrium of the beam since for any fluid/structure parameters, the
vibrating beam should eventually return to its equilibrium position. The dynamics of
the structure is then analyzed by varying the density of the structure and the viscosity
of the fluid.

Figure 5.8: Geometrical parameters of the fluid domain and elastic beam. The force
Fx is applied over all the left surface of the beam.

Numerical model

The fluid mesh is generated based on Fig. 5.8. It is a fully unstructured and
composed of tetrahedra as shown on Fig. 5.9. It is made of 11 630 elements, with a
minimum cell resolution of hmin = 0.0017 m near the moving walls. The structure is
on the other hand meshed using 250 triangular elements with a constant resolution
of h = 0.002 m resulting in a fluid to solid node resolution ratio of 3 at the interface.
Regarding the numerical boundary treatments, a no-slip boundary condition is applied on
all walls on the fluid side. Note also that the ALE description is active for these moving
walls. For the fluid simulation, the third order convective (Colin & Rudgyard (2000a))
finite-element scheme based on a two steps Taylor-Galerkin (TTGC) formulation is used.
The timestep ∆tf is evaluated on the fly following the Courant-Friedrichs-Levy (CFL)
constraint of 0.7 to ensure numerical stability. This leads to a time step value around
1.5 × 10−5s. Once the coupling is activated, this time-step is passed to the structure
solver so that ∆tf = ∆ts = ∆tc. Recall that the structure is fixed to the bottom of the
channel by its lower extremity. This translates mathematically into ξ = 0 and ∂ξ

∂t
= 0

at this surface. The structure dynamics is modeled using the elastodynamic equation
(4.1.23) discretized in time using the Generalized alpha scheme with α = 0.25 and
δ = 0.5. Since the size of the solid domain is relatively small, a direct method based on
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LU decomposition is used to speed up calculations.

Figure 5.9: Fluid-structure domain and its associated mesh.

Different simulations are now carried out. Three cases named Case 1, Case 2 and
Case 3 are discussed. These differ only by the density of the structure and the dynamic
viscosity of the fluid as detailed in Tab. 5.1. The Young’s modulus and the Poisson’s ratio
of the structure remain fixed and equal to 1.4 MPa and 0.4 respectively. As said before,
at time t = 0, a time dependent loading F⃗x is applied to the structure for the interval
[0; tc]. After that the loading is removed, so the fluid-structure coupling is activated at
t = tc = 0.1 s. The initial position at the beginning of the coupling (t = tc) is the same
for all cases.

Case 1 Case 2 Case 3
ρs [Kg/m3] 100 50 100
µ [Pa.s] 3.716 × 10−3 3.716 × 10−3 7.42 × 10−3

Table 5.1: Parameters used for the different test cases.

Figures 5.10 and 5.11 show a series of instantaneous snapshots of the pressure field and
mesh respectively, for Case 1 starting at the moment when coupling is activated. At the
time of release (t = tc), a pressure gradient forms around the beam as it is pushed away
from its initial position. This pressure gradient results from the force exerted by the beam
on the fluid which is set in motion. Once the mechanical force is released, the beam has
stored the maximum amount of potential energy that will then be converted into kinetic
energy. In simple terms, the beam will oscillate around its equilibrium position dissipating
its kinetic energy by transferring it to the fluid. It is worth to note that re-meshing is
not needed in this application, the Laplacian smoothing method is able to handle mesh
deformation. Note also that while oscillating, vortices are formed near the free end of the
beam indicating an important fluid-structure interaction activity. Figure 5.12 illustrates
such a formation of vorticies near the tip of the structure where the displacement is the
most significant.



120 Chapter 5 : Development of a numerical fluid-structure interaction coupling chain

(a) (b)

(c) (d)

Figure 5.10: Instantaneous snapshots of the pressure field after release: (a) tc (b) tc+T/2
(c) tc + 3T/2.

As the distance from the beam increases, the magnitude of the activity within the
fluid decreases. This phenomenon occurs in all three cases, although the dynamics of the
fluid and the structure differ due to the changes in density and dynamic viscosity. These
differences result in different behaviors in each case, which can be further analyzed by
looking at the dynamic response of the structure or the fluid respectively.

For all cases, the temporal evolution of the tip displacement of the beam is recorded
for all cases using a numerical probe attached to the beam tip and results are depicted on
Fig. 5.13. All cases demonstrate an oscillatory behavior where the displacement fluctuates
between a certain minimum and maximum values. From such a diagnostic, the beam
needs approximately 7s to regain its equilibrium position for Case 1. In contrast, the
equilibrium position is attained after only 5s in Case 2. Indeed, when decreasing the
density of the structure, this latter carries more momentum and dissipates its kinetic
energy faster to the fluid, hence reaching the equilibrium position in a shorter amount
of time. Note that varying the density does not affect the displacement of the beam,
it is strictly linked to the strength of inertia of the structure. An increase in structural
density yields a lower acceleration and hence lower velocity, conversely a lower structural
density leads to a higher acceleration and velocity such as in this case. Case 3 is seen to
have a similar behavior as for Case 1 with larger oscillations than for Case 2. However,
since the fluid viscosity has increased, damping effects become more important leading to
a faster convergence towards the initial position. Overall and in all cases, the structure
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(a) (b)

(c) (d)

Figure 5.11: Instantaneous snapshots of the mesh after release: (a) tc (b) tc + T/2 (c)
tc + 3T/2.

Figure 5.12: instantaneous vorticity streamlines at t = tc + T/2.

is able to re-gain its initial position and shape for various coupling conditions replicating
the expected physical behavior.

As a complement to the previous discussion, flow dynamics can also be analyzed in
time by looking at the volume averaged kinetic energy of the fluid, Fig. 5.14. Again,
large fluctuations are present at the beginning when the kinetic energy reaches its max-
imum value due to the imposed force and beam deflection. Just like the plate which
reaches its initial equilibrium, the fluid returns at rest with time and the kinetic energy
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(a) (b) (c)

Figure 5.13: Time evolution of the tip displacement recorded at point A for Case 1
(a), Case 2 (b) and Case 3 (c)

falls back to zero. The time needed for the fluid to return to rest is influenced by the
same aforementioned structural and flow parameters. Indeed, when the flow viscosity is
increased the kinetic energy stabilizes faster as indicated by Case 3. On the other hand,
Case 2 highlights large kinetic energy fluctuations compared to the other two cases. This
phenomenon is due to the higher momentum carried by the beam as stated previously.
Since a higher momentum implies a beam higher velocity (mass is conserved in this case),
and since the walls push the fluid, a stronger activity is observed and the fluid needs more
time to go to rest which explains the higher frequency of the fluctuating kinetic energy.

1 2 3 4 5 6 7Time [s]01
23
45

Average
 kinetic 

energy [
J
.m

−
3
] 1e 4

(a)

1 2 3 4 5 6 7Time [s]01
23
45

Average
 kinetic 

energy [
J
.m

−
3
] 1e 4

(b)

1 2 3 4 5 6 7Time [s]01
23
45

Average
 kinetic 

energy [
J
.m

−
3
] 1e 4

(c)

Figure 5.14: Time evolution of the total average volumetric kinetic energy for Case 1
(a), Case 2 (b) and Case 3 (c)

This first test case confirms that the mechanical equilibrium of a displaced beam im-
mersed in a still fluid can be retrieved using the developed FSI tool. More specifically, it
provides a clear validation of the numerical coupling developed in this work. The phys-
ical aspects involved in this application are however relatively limited as the Laplacian
smoothing technique is known to be inadequate for handling significant deformations.
To address these limitations, a second application is considered where vortex-induced
vibration causes a thin elastic plate to oscillate with large amplitudes.
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5.5.4 Vortex induced vibration of a thin elastic plate
Case presentation

This second test case was originally proposed by Wall & Ramm (1998) to investi-
gate the coupling between incompressible unsteady flow phenomena and large structure
deformations of a thin elastic plate. It has been since then extensively used to validate
various FSI approaches: a monolithic coupling based on a hybrid Eulerian-ALE method
(Schott et al. (2018)), a monolithic coupling based on space-time finite elements
method (Hübner et al. (2004)), a weak coupling partitioned approach (Debrabandere
et al. (2012)) and strong coupling partitioned approach (Uyttersprot (2014)). The
configuration consists of a thin elastic cantilever beam clamped to the back of a rigid
square cylinder. All dimensions and boundary conditions are shown on Fig. 5.15.
The beam density, Young’s modulus and Poisson’s ratio of the structure are given by
ρs = 2000 Kg/m3, E = 2 × 105 Pa and νs = 0.35. The Density and dynamic viscosity
of the fluid are also given: ρf = 1.18 Kg/m3 and µ = 1.82 × 10−5 Pa.s. This results
in a Reynolds number of Re = 204 and a mass ratio of M = 1700. At this Reynolds
number, the flow is laminar and undergoes a Hopf bifurcation causing von Kármán
vortices to shed from the corner of the cylinder and eventually a vortex induced vibration
phenomenon. Vortex Induced Vibration (VIV) is a phenomenon that may occur when

Figure 5.15: Geometric setup and boundary conditions for the vortex induced vibration
beam (dimensions are in cm).

an object, such as an elastic plate, is placed in a fluid flow. When the fluid flows past
the rigid square, vortices are shed from the corners of the square, causing fluctuations
in pressure and velocity around the square. These fluctuations can cause the plate to
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vibrate in the direction perpendicular to the flow, which is known as vortex-induced
vibration.

In terms of setup, the computation for this process is divided into two parts. First,
the fluid problem is considered independently by computing the flow field until the von
Kármán vortex street develops behind the square. During this phase, there is no coupling
between the fluid and the structure, the latter remaining rigid. Once the flow field is
established, the coupling between the fluid and the structure is activated, so the structure
is allowed to deform.

Fluid only problem

Flow computations are first carried out on the geometric configuration presented
earlier and corresponding to Fig. 5.15. To do so, the geometry is meshed with 22 000
triangular elements with a minimum cell resolution hmin = 1 × 10−3 near the rigid
square and beam. In addition to the boundary conditions indicated on the schematic
of Fig. 5.15, a no-slip condition is applied on all walls of the rigid square and beam.
In this simulation, the third order convective Colin & Rudgyard (2000a) finite-element
scheme based on a two steps Taylor-Galerkin (TTGC) formulation is used. The timestep
∆tf is computed following the Courant-Friedrichs-Levy (CFL) convective time step
constraint to 0.7 to ensure numerical stability. Note that since the test case considers
an incompressible flow, and a Mach number that is very small (≈ 0.00014), a pressure
gradient scaling (PGS) method is used to speed up the simulation by artificially reducing
the speed of sound in order to impose a Mach number of Ma = 0.2 for a velocity
U∞ = 0.315 m/s. Note that the new Mach number is chosen such that compressibility
effects are negligible. This yields a ten folds increase of the time step of the resulting
simulation and a value around 0.4 × 10−4s.

Figure 5.16 shows instantaneous solutions over one shedding period of the pressure
fields issued by AVBP for this problem. Vortex shedding clearly occurs periodically at
the edges of the rigid square. One shedding period is characterized by the appearance of
two vortices on one side of the beam and a large vortex on the other side. The spatial
organization of these vortices then alternates sides with respect to the beam, creating an
alternating pressure differential. As a result of this distribution, if the beam is allowed
to deform, a vortex-induced vibration phenomenon is expected. The vortex shedding
frequency is determined using pressure data collected from a numerical probe placed
near the square wake. The resulting spectrum displayed on Fig. 5.17 clearly indicates
that the shedding frequency obtained is equal to fF = 3.6Hz. Overall, findings are
consistent with the simulations of Hübner et al. (2004) where a similar periodic vortex
shedding behavior is observed at a frequency of 3.7Hz.
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Figure 5.16: Pressure distribution field over one shedding period.
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Figure 5.17: Magnitude of the fast Fourier transform performed using collected pressure
data near the square wake.

FSI problem

In the following the beam is allowed to deform starting with the previously ob-
tained fluid only result. To do so, the ALE description is added to the no-slip boundary
condition to allow the motion of the nodes of the corresponding wall and the coupling
is activated. The numerical domain involving both the fluid and structure is shown on
Fig. 5.18. The beam is meshed using 216 triangular elements resulting in a fluid to
solid node ratio of 4 at the interface. Recall that all nodes at the left extremity of the
beam are fixed so ξ = 0 and ∂ξ

∂t
= 0. The remaining surface nodes of the beam and

present on its surfaces compose the exchange interface and are shared by the fluid and
solid domains. The time integration scheme used to model the dynamic response of the
structure is again the Generalized alpha scheme with direct preconditioning applied to
solve for the assembled matrices. When it comes to the fluid solver parameters, they are
unchanged and correspond to the fluid only simulation.

As anticipated earlier, the vortex street observed in the fluid only problem produces
pressure changes on the surface of the flexible structure, which in turn generates forces
that accelerate the structure and cause vibrations of increasing amplitude. Figure 5.19
shows the time evolution of the tip displacement at the flow limit cycle and as recorded
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Figure 5.18: Fluid-structure numerical domain

Figure 5.19: Time evolution of the axial tip displacement at the flow limit cycle.

using a numerical probe placed on the free end of the beam. The maximum amplitude
attained is uy = 0.77 cm and the obtained coupled fluid-structure frequency fc = 3.2Hz.
Note that this FSI frequency differs from the fluid vortex shedding frequency which
was f = 3.6Hz. Such results and observations are in agreement with the findings of
Hübner et al. (2004), who also observed an amplitude of vibration uy = 0.8 cm and a
coupled motion frequency at fc = 3.1 Hz. Note that depending on the ratio of the vortex
frequency to the natural frequencies of the structure, different structural deformations
can be expected. These deformations can in turn affect the vortex frequency or, more
generally, the dynamic parameters of the flow. Such a complex interaction is at the root of
FSI tools. Wall & Ramm (1998) demonstrated that the change in the modulus of elasticity
or a change in the structure’s density lead to a shift in the coupled structural response
from its second to its first eigenmode. Similarly, Debrabandere et al. (2012) obtained
the structure first eigenmode response, albeit at a smaller Reynolds number. Multiple
coupling methods have been used in the literature to simulate this test case. In that
respect, Table 5.2 provides a comprehensive summary of results obtained using different
codes and coupling types. For almost all reported cases, the coupling software MpCCI
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Codes Structure Model Amp. uy [cm] Coupling type
Fluent-MSC Marc Plane-strain 0.6 partitioned (weak)

Fluent-Nastran Plane-stress 0.8 partitioned (weak)
Fluent-ANSYS Plane-stress 0.65 partitioned (weak)
Fluent-Abaqus Plane-strain 0.6 partitioned (weak)

FEM (Hübner et al. (2004)) Plane-stress 0.8 monolithic
AVBP-FreeFEM++ Plane-stress 0.77 partitioned (weak)

Table 5.2: Comparison between different solvers and coupling methods .

(SCAI (2007)) was used to couple the fluid solver fluent with various Structure solvers.
These partitioned weakly coupled simulations hence differ only in the method used to
model the response of the structure. MSC Marc and Abaqus solvers make use of the
plane-strain model whereas Nastran and Ansys use a plain-stress model for the structure.
The plain-stress assumption implies that the three stress tensor components related to
the in-plane direction (z in this case) are zero. It is an adequate approximation for thin
plates but it is only correct when the thickness approaches zero. Conversely, the plain-
strain formulation does not contain any approximation and refers to a condition where
an object is constrained in the z direction meaning that the displacements or equivalently
strains are null in this direction. Subsequently, the plain-strain model is stiffer than the
plain-stress model which explains the discrepancy in the maximum amplitude recorded
by the different models. To further understand the dynamic response of the structure,
instantaneous snapshots are illustrated on Fig. 5.16. These solutions constitute one full
period of vibration of the beam. From such a view, the series of vortices identified in the
rigid case are observed to behave differently in the coupled simulation. Indeed, as these
vortices exert a pressure force on the beam, the latter deforms and the vortices follow
this deformation in a "roll-off" fashion as highlighted by Wall & Ramm (1998). Their
trajectory is hence impacted and so is the force on the beam. It is worth noting that
re-meshing has been used here since the Laplacian smoothing technique was not able to
compensate for such large mesh deformations. Figure 5.21 shows snapshots of the mesh
at the same instants as the solutions of Fig. 5.20. On average, a total of three mesh
adaptations were needed per period of vibration.
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Figure 5.20: Instantaneous snapshots of the pressure field over one period of vibration.

Figure 5.21: Mesh snapshots corresponding to Fig. 5.20.
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5.6 Conclusion
Overall, observed flow dynamics is correctly retrieved if compared to literature results for
the VIV problem. Similarly, the correct structure dynamics an flow behavior is observed
for the first test case. Note nonetheless that the two test cases evaluated here are 2D
models with relatively low Reynolds numbers. In the next chapter, FSI computations
are carried out on a complex 3D case at a high Reynolds number to demonstrate the
capabilities of the coupling tool assembled in this thesis work and if applied to a real life
industrial problem.
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The second chapter has highlighted the capacity of Large Eddy Simulation
(LES) to retrieve the dynamics of the flow inside a first stage rotodynamic pump, and
in particular, the underlying flow instabilities causing strong pressure fluctuations.
This chapter is a follow-up to this study where a numerical fluid-structure investi-
gation is carried out in order to identify potential multiphysical phenomena that are
responsible for the detrimental vibration levels of the turbopump. The primary goal of
this investigation is to assess the capacity of LES coupled to the structural dynamics
solver to retrieve coupled fluid-structure interaction modes. These modes are highly
sensitive to geometrical parameters, boundary conditions, operating point of the tur-
bopump, etc.. In addition, the physical properties of structural components play a
major role in determining the vibration response of the system. Results show that the
flow dynamics retrieved by LES is attributed to a coupled fluid-structure mode that
causes the fluid and structure to oscillate at an identical frequency that is close to
the natural frequency of the rotor. Finally, this coupled mode is found to match the
acoustic frequency of the cavity leading to a vibroacoustic phenomenon between the
fluid, rotor disk and cavity.

6.1 Introduction
The design of rocket engines remains to this day a formidable challenge to engineers. Each
component must be precisely designed, manufactured and tested due to the tremendous
thermal and dynamic stress levels it should withstand. Moreover, the complex nature of
the fluid mechanisms and their interaction with various components only exacerbate the
task at hand. Flow instabilities responsible for pressure fluctuations inside a first stage
rotodynamic pump have been successfully captured by LES in conjunction to other pre-
dictive numerical strategies as demonstrated in Chap. 2. This unsteady CFD approach
has also proved to be a reliable tool in capturing the pressure band phenomenon inside
a first stage turbine cavity of a turbopump. For instance, Bridel-Bertomeu (2016a) and
Queguineur (2020) have retrieved the modal content of the flow inside such industrial
devices through LES and subsequently proved that contrary to RANS, LES is able to
identify this phenomenon. Nevertheless, the fluid analysis alone is not enough to fully
understand the occurrence of multiphysical phenomena that take place within space tur-
bopumps. Indeed, as stated earlier in this thesis, flow instabilities can couple to the
surrounding structure creating fluid-structure modes of vibration and hence generating
major risks for the operation of the turbopump. To address this particular issue, a
coupled fluid-structure interaction simulation is carried out on the cavity introduced in
Chap. 2. The focal point of this study is to evaluate the stability of the Axial Balancing
System (ABS) under certain working conditions. The ABS is self-balanced meaning that
the axial position of the rotor is determined through pressure equilibrium on its faces.
However, if the rotor oscillates near its natural frequency it exhibits large amplitude of
vibrations. More importantly, since the flow is compressible, if the natural acoustic fre-
quency of the cavity is close to the natural frequency of the rotor, a three way coupling
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between the fluid, the structure and the cavity may appear resulting in an unbalanced
system. Brunier-Coulin et al. (2022) described this type of dynamical system using the
following third order differential equation with u being the variation of the rotor axial
displacement with respect to its equilibrium position:

...
u + λ2ü+ ω2

au̇+ λ0u = 0 (6.1.1)

with ωa the acoustic pulsation of the cavity, and λ0 and λ2 two parameters which depend
on the pressure loss mechanisms inside the cavity so that,

ωa = k2
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(6.1.2)

where kd is the axial wavenumber of the disk of shear modulus G and ρs the density.
λ0 and λ2 are the upstream and downstream pressure loss coefficients that characterize
the stiffness of the upper valve. These coefficients are defined in function of the flow
rate Q passing through the cavity, the rotor displacement u and the pressure loss P .
ωc finally represents the coupled fluid-structure pulsation frequency. The third and first
order terms in Eq. (6.1.1) represent the Helmholtz oscillator while the two remaining
terms represent the upper valve oscillator. The stability of the ABS is thereby dictated
by the competition between two oscillators. In other words, the rotor deformation and
the pressure readjustment control the stability of the system. In order to determine if
such system is stable or not, the Routh-Hürwitz criterion is usually applied. It states
that a dynamical system is stable if all the roots of its characteristic equation lie on the
left-half of the complex plane (i.e., have negative real parts). In this case, the solution
is stable if and only if ω2

d > λ0/λ2, meaning that the ABS is stable if the characteristic
time of the rotor displacement is smaller than the pressure readjustment in the cavity.
Solving Eq. (6.1.1) yields a solution defining the critical flow rate above which the system
becomes unstable for a given acoustic frequency ωa and valve clearance a that is the
sum of the initial valve clearance a0 and the axial displacement of the rotor u (see Fig. 6.1).

Such an analytical approach, although very powerful, is valid only if certain assump-
tions are satisfied. These assumptions state that the rotor disk considered should be very
thin (H << R), the Mach number must be small (Ma << 1), the axial flow rate between
the disk and the cavity is uniform and the acoustic waves are isentropic. Subsequently,
the analytical model alone is not reliable enough to determine accurately the critical flow
rate of a real life application. To overcome this limitation, Deneuve et al. (2020) and
Brunier-Coulin et al. (2022) conducted numerical and experimental tests to calculate the
critical mass flow rate as a function of the upper valve clearance. To do so, five different
initial upper valve clearances were tested: 45µm, 65µm, 95µm, 135µm and 175µm. For
each clearance, the flow rate was increased progressively from 0 m3/h to 35 m3/h to de-
termine the critical limit. Results show that for a given upper valve clearance, increasing
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Figure 6.1: Schematic drawing of the cavity and rotor. The rotor disk is vibrating at
its 0ND mode.

the flow rate beyond the critical threshold causes an exponential increase of the vibra-
tion levels. Furthermore, this allowed the classification of the different operating points
according to their stability. In parallel to these theoretical and experimental studies, a
numerical fluid-structure interaction investigation has been carried out on the cavity and
rotor disk. In this case, RANS and URANS computations have been performed for the
same operating points to detect unstable fluid-structure modes. Although the results
are in agreement with the experimental approach, the FSI computations were limited
to a modal approach where the 0ND structural mode is computed beforehand and the
eventual coupled response is evaluated. In the current study, a fluid-structure interaction
simulation is carried out on the cavity introduced in Chap. 2 with no assumption on the
fluid or modal response of the structure. The objective is to assess the capacity of the
developed numerical coupling chain between AVBP and the structural solver to retrieve
the flow limit cycle corresponding to the correct coupled mode of vibration and damping
rate for this configuration. This step is crucial from a manufacturer’s point of view to
determine the amount of damping required to stabilize this system. In a second step, the
unstable response of the axial balancing system is investigated when damping is removed
to confirm the condition of stability of the ABS.

6.2 Numerical model
The geometric model consists of both the cavity and rotor disk as shown on Fig. 6.2.
The rotor disk is created using a 1◦ axisymmetric cut of the complete configuration,
similar to the cavity, so that the shared boundaries coincide. The rotor is made of steel
with a density ρs = 7720 Kg/m3 and a Young’s Modulus E = 2 × 1011 Pa yielding a
solid to fluid mass ratio of M ≈ 6550 and Lamé coefficients λs = 1.15 × 1011 Pa and
µs = 7.7 × 1010 Pa. All the characteristic parameters of the cavity and disk presented in
Chapter 2 hold for this simulation. Regarding the fluid numerical domain, Mesh 1 is used
to discretize the cavity. The rotor disk section is meshed using 3500 tetrahedral elements
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Figure 6.2: CAD model of the cavity (grey) and rotor disk (red).

which was found sufficient to reach mesh convergence of the solid solution. Three nodes
are placed in the azimuthal direction across all faces of the rotor to correctly capture
the shear and normal stresses where interactions are important (see Fig. 6.3). Note that
subcycling is not activated in the simulation to be discussed as to avoid the potential
energy loss at the interface that would affect the accuracy of the results. The rotor is
fixed at the hub and free to deform elsewhere in all directions. All shared boundaries
in the fluid domain are treated with the ALE description in order to account for the
mesh velocity. In addition, the Laplacian smoothing technique is activated to efficiently
propagate the deforming cells near the interface. All the numerical parameters used for
the fluid simulation are valid for this case. Concerning the structural part computational
details, the generalized alpha scheme with direct LU factorization of matrices is used.
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(a)

(b)

Figure 6.3: (a) fluid-structure domain and its associated mesh , (b) rotor disk compo-
nent.

6.3 Results and discussion

Computations are initialized from a converged solution obtained from the fluid only sim-
ulation. Pressure forces are computed at the beginning of each iteration and sent to the
structure solver, the latter then computes the corresponding velocity and displacement
and sends them back to the fluid solver to advance to the next time step. Figure 6.4 shows
the fluid-structure interface along with two of the exchanged variables: pressure and axial
displacement. At the start of the simulation, the fluid exiting the first cavity exerts a
pressure on the upper face of the rotor that is greater than the pressure exerted at the
back of the rotor. Indeed, since the rotor constitutes an "obstacle" for the fluid between
the first and second cavities, this leads to a pressure build-up on its upper face. This
pressure differential across its two faces creates a net positive force oriented downward
which leads to an axial displacement of the rotor in the same direction. The axial dis-
placement increases radially till it reaches its maximum value at the rotor circumference
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(a) (b)

Figure 6.4: two of the exchanged variables at the fluid-structure interface: (a) presssure
and (b) axial tip displacement.

then switches direction. Figure 6.5 shows snapshots of the disk axial displacement over
one period of vibration. The whole structure is indeed to be in a dynamic motion (except
the right extremity that is fixed to the hub) with a maximum displacement recorded at
the left free end. As illustrated here, the structure does not exhibit any nodal value along
its diameter during the vibration cycle which means that the disk is vibrating at its 0ND
mode. To verify this claim, the 0ND mode of the rotor section is calculated separately

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.5: Snapshots of the rotor disk axial displacement magnified by a factor of 104

over one period of vibration.

via the developed modal analysis tool and is superposed on the axial velocity of the fluid
mesh as shown on Fig. 6.6. The mode shape matches exactly the movement of the fluid
grid axial displacement indicating that the 0ND mode does indeed respond to the fluid
excitation.
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Figure 6.6: rotor mode shape matching the axial grid velocity.

Regarding mesh management and deformation, re-meshing was not necessary as the
Laplacian smoothing method was able to handle the small amplitude of vibration without
compromising the quality of the mesh. Figure 6.7 shows snapshots of the mesh quality
near the upper valve clearance where the amplitude of vibration is important. In this
case, the mesh quality is evaluated based on the cell aspect ratio that is calculated by
dividing the length of the longest edge for a given cell by the length of the shortest edge
of this cell. This criterion measures how stretched or distorted a tetrahedral element is.
For a good-quality mesh, it is desirable to have tetrahedral elements with aspect ratios as
close to 1 as possible. A value of 1 indicates that the tetrahedron is as close to a regular
tetrahedron (equilateral) as possible, and the element is not distorted. In this case more
than 90 % of cells maintain an aspect ratio below 2.5 over one period of vibration. This
means that this quality is maintained between the initial disc position and the maximum
amplitude of vibration indicating that mesh distortion is seen to be negligible. Further
away from the shroud and towards the hub, the cells barely deform and are intact at the
fixed extremity.
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Figure 6.7: Snapshots of the mesh deformation near the upper valve over one period of
disk vibration .
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It is worth noting that in the current geometry the radial and azimuthal displacements
are negligible compared to the axial displacement. Similar to the previous simulations,
the evolution of the axial tip displacement is recorded at the flow limit cycle and shown
on Fig. 6.8. As hinted previously, the axial disk displacement oscillates around its mean
deflection between a maximal UR(max) and minimal value UR(min). For the current operat-
ing conditions, a frequency of vibration is found to be equal to the first natural frequency
of the rotor disk f ∗

d0ND
. Recall that here the amplitude of vibration is stabilized by cal-

culating the amount of material dissipation required by the disk. This damping rate was
determined via trial and error while estimating the appropriate damping stiffness matrix
coefficient ηk. A damping rate of 2.25% was found to be required to stabilize the axial
balancing system. Note that a slightly lower rate of 2.1% was obtained by Brunier-Coulin
et al. (2022) during ping test experiments.
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Figure 6.8: Time evolution of the axial tip displacement of the rotor disk with damping.

Before investigating the undamped process, a close focus is given on the effect of
disk vibration on the flow dynamics. Recall that in the fluid only simulation where the
disk is fixed, the radial component of the flow velocity is constant at the flow limit cycle
since the gap opening is held constant yielding a constant mass flow rate crossing the
upper valve clearance. For the current setting, the disk vibration leads to a fluctuation
of the mass flow rate that is proportional to the gap opening. This phenomenon is then
observed to alter the flow dynamics that is entering the housing. To investigate the
effect of rotor vibration on the flow, instantaneous snapshots of the velocity streamlines
over one period of disc vibration are highlighted on Fig. 6.9. The formation of vortices
near the upper valve and housing are present in this case. However, unlike the fluid
only simulation (Fig. 2.13), the vortices do not seem to interact meaning that only one
instability is present and it is pulsating at a single frequency. To backup this observation,
the pressure field is monitored through the same numerical probes as used in the fluid
only simulation and a power spectral density is performed using the pressure discrete
signals. Results are displayed on Fig. 6.10 showing one dominant frequency f ∗ = 1 across
all spectra recorded near the upper valve and housing indicating that the flow oscillates
as a whole at a frequency nearly equal the vibration frequency of the rotor confirming
the fluid-structure coupling at f ∗

c = f ∗
0ND

where f ∗
c is the coupled fluid-structure mode

frequency.
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Figure 6.9: Snapshots of the velocity stream plot constituting one period of disk vibra-
tion.

It is also noted that the identified fluid-structure mode f ∗
c has a frequency equal to the

first acoustic mode of the cavity, f ∗
ac1 evaluated in Chap. 2. This indicates the likelihood

of a vibroacoustic phenomenon created by the disk oscillation and the acoustic wave
pulsation of the cavity at . To determine the frequency of oscillation that stems from
the acoustic pulsation of the flow, a Fast Fourier transform is performed on the discrete
pressure fluctuation signal P ′ that is obtained by subtracting the mean flow pressure from
the instantaneous flow pressure. In such a case and to specifically target acoustics, the
pressure time data is recorded at two points widely separated from the housing toward
the hub and further downstream close to the outlet when the flow limit cycle has already
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Figure 6.10: Pressure power spectral densities computed at (a) upper valve and (b)
housing.

been attained. Results are shown on Fig. 6.11. Two dominant frequencies are clearly
identified in both spectra and are both equal to 1: i.e., the frequency of the first natural
acoustic mode of the cavity, f ∗

ac1 , confirming the coupling between the hydraulic oscillator
created by the upper valve and the acoustic pulsation of the cavity.
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Figure 6.11: FFT performed on the pressure fluctuation P ′ in the housing near (a) the
hub and (b) near the outlet. (The dashed red line represents the first natural acoustic
frequency of the cavity).

This acoustic mode can be further illustrated by performing a DMD on a set of
instantaneous solutions P ′ sampled from the converged signal. Figure 6.12 shows the
DMD extraction with real and imaginary parts of the DMD mode at f ∗ = 1. The two
fields are shown to be identical to the pressure magnitude and phase shapes of the
natural acoustic frequency of the cavity. This confirms that the acoustic pulsation has
been excited by the coupled fluid-structure mode.
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(a) (b)

Figure 6.12: Dynamic mode decomposition performed on P ′. (a) Magnitude and (b)
Phase

Note that all results to this point have been obtained for vibration levels that are
controlled: i.e., with the presence of damping. This allowed the identification of the
correct flow limit cycle with the 0ND mode recovered for the disk and forming a fluid-
structure mode causing the disk to vibrate at its natural frequency which coincides with
the natural acoustic frequency of the cavity. Note that in this study, the initial upper valve
clearance and the inlet mass flow rate are not varied. The inlet mass flow rate is however
known to be a crucial parameter that dictates the stability the axial balancing system.
Based on the experiments of Brunier-Coulin et al. (2022) and URANS simulations of
Deneuve et al. (2020), it is possible to determine the critical mass flow rate as a function
of the upper valve clearance corresponding to the mean axial deflection of the disk. This
critical mass flow rate indeed constitutes a threshold beyond which the system becomes
unstable. Figure 6.13 summarizes the evolution of the critical mass flow rate values for
each valve opening determined via experiments. All eventual operating points that lie
above the critical mass flow rate curve constitute an unstable configuration, conversely
all the operating points that lie below the critical mass flow rate curve lead to a stable
configuration. URANS and LES operating points for the current case are also added and
are observed to be in close proximity. These two points correspond to damped cases even
though they lie above the experimentally obtained critical mass flow rate curve.

To investigate an unstable operation of this configuration, a simulation is detailed for
which damping is suppressed. To do so, at approximately t = 0.0315 s of the previous
prediction, damping is removed. Figure 6.14 illustrates the corresponding response which
clearly indicates that the amplitude of the vibration starts amplifying in time when the
structure is undamped. This unsteady process will subsequently alter the axial gap
height which can also affect the unsteady loop (unsteady forces leading to unsteady
disk vibration). Such a scenario shares similarities with the labyrinth seal aeroelastic
instability described by Abbott (1981). Indeed, Alford (1965) pointed out that this
phenomenon could also introduce energy into the vibrating system and cause fatigue
and eventually failure. The gradual increase of the disk axial tip displacement beyond its
previously reached maximum amplitude will eventually lead in this case to a contact with
the housing. Such a destabilization of the axial balancing system is in fact expected since
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Figure 6.13: Scatter plot highlighting the critical mass flow rate for each upper valve
clearance determined by the experiments of Brunier-Coulin et al. (2022). Each color
represent an initial valve clearance. Data points marked in (+) correspond to experiments
while (△) and (•) correspond to damped LES and URANS simulations.

no damping is present and the critical flow rate for this configuration Qcrit = 0.37Qmax

is below the current inlet flow rate set to Qin = 0.40Qcrit. This explains the unstable
behavior of the rotor disk. It is thus critical to well estimate such quantities and their
effect on flows.
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Figure 6.14: Time evolution of the axial tip displacement of the rotor disk (the dashed
red line indicates the time at which damping is removed).
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6.4 Conclusion
This chapter presents the significant impact of rotor disk vibration on the axial balancing
system of a first-stage rotodynamic pump. It also emphasizes the crucial need to simu-
late multiphysical phenomena to accurately capture such flow and structure dynamics.
The study also demonstrates the capability of the developed FSI solver to handle com-
plex turbomachinery applications, particularly in the context of the present LES tool.
In terms of industrial use, such a capability allows for the evaluation of the structural
damping rate, a vital parameter in structural design to prevent resonance or potential
mode coupling with the flow. Using the new FSI tool, the study identifies a vibroacoustic
phenomenon as the source of the instability of the axial balancing system. To mitigate
this phenomenon, one can shift the natural frequency of the structure away from the nat-
ural acoustic frequency of the cavity. One approach could be to adjust the disk thickness,
among other ways. However, this adjustment may lead to disk vibrations at higher nodal
diameters which should then be checked to avoid coinciding with the natural acoustic
modes of the cavity. It’s worth noting that in such specific cases, simulating the complete
rotodynamic pump geometry is necessary since the absence of axisymmetry (the 0ND
node is axisymmetric) prohibits the use of periodic boundary conditions. Consequently,
these cases become computationally expensive and fall beyond the scope of the present
work but can be considered for a future study.
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Understanding and predicting flow instabilities are vital for designing efficient
and stable fluid systems. Flow instabilities refer to deviations from a smooth and
predictable fluid motion, often leading to complex and turbulent flow patterns. The
transition from a laminar to a turbulent flow is a common type of instability, occur-
ring when fluid velocity exceeds critical thresholds or encounters disturbances. This
transition is characterized by the formation of eddies, vortices, and fluctuations in
velocity and pressure as seen in LES of the fluid flow of the rotodynamic pump. Ro-
tating enclosed cavity flows at high Reynolds numbers however exhibit different forms
of instabilities that are intrinsically three dimensional and more complex. These fur-
thermore dominate the cavity with the potential apparition of multiple frequencies.
Fluid flows can also exhibit self-sustained oscillations whose origin may differ from
previously discussed ones. Typically, fluid-structure interaction often yields vortex-
induced vibrations seen for example in axial balancing systems. The present chapter
details a global linear stability framework that provides a mean to identify hydrody-
namic instabilities that arise at the flow limit cycle of the aforementioned applica-
tions. Results obtained by the global linear stability analysis confirm the retrieved
dynamics by LES and DMD.

7.1 Historical perspectives around instabilities
Hydrodynamics stability has been recognised as one of the most complex and fundamen-
tal subject in fluid mechanics. The laminar flow breakdown, development and eventual
transition to turbulence intrigued scientists for more than a century to this date. Flow
stability has many applications in engineering, meteorology, astrophysics.. . The core
problem of hydrodynamic stability was formulated and analyzed notably by Helmholtz,
Kelvin, Rayleigh and Reynolds. The latter is famously known for the "Reynolds experi-
ment" Reynolds (1883) where a set of experiments shows that the laminar flow inside a
pipe breaks down when Va/ν exceeds a certain critical value where Va is the fluid veloc-
ity and ν is the kinematic viscosity of the fluid (see Fig. 7.1(a)). This non-dimensional
number is known as the Reynolds Number. Other instabilities were later identified by
scientists. For instance, two fluids flowing at different velocities and densities, one stream
above the other can create a shear velocity leading to an instability (Fig. 7.1(b)). Indeed,
Helmholtz (1868) remarked that "every perfect geometrically sharp edge by which a fluid
flows must tear it asunder and establish a surface of separation, however slowly the rest
of the fluid may move". This type of instability was initially posed and solved by Kelvin
(1871) and it is now known as Kelvin-Helmholtz instability. Similarly, such an instability
can occur at the interface between two fluids of different densities (Fig. 7.1(c)). In such a
case, the instability is driven by the interplay of buoyancy and acceleration and can lead
to the mixing and a transition to turbulence of the fluids. This instability is known as
the Rayleigh-Taylor instability (Rayleigh (1883)), named after Lord Rayleigh and G. I.
Taylor, who independently studied and described the phenomenon.

The hydrodynamic instability of interest to the present thesis is the transition oc-
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(a) (b) (c)

Figure 7.1: Example of hydrodynamic instabilities: (a) The Reynolds experiment, (b)
Kelvin-Helmholtz instability, (c) Rayleigh-Taylor instability.

curring in the so-called oscillator flows for which modes of oscillations can be identified.
Figure 7.2 displays two such forms of this instabilities. For instance, in Fig. 7.2(a) the
conditional stability of a flow around a rigid circular cylinder is determined by its flow
Reynolds number. Indeed, it is now known that a bifurcation occurs at Re ≈ 47 with an
unsteady von Kármán vortex wake, below this Reynolds number, the flow being steady.
Such a transition occurs also in rotodynamic pump housings when the flow exiting the
upper valve clearance becomes unsteady with the creation of large vortex structures
along with fluctuations of velocity and pressure. Rotating flow instabilities occur at high
Reynolds numbers and such instabilities can be observed in galactic spirals as well as
in flows above rotating discs. The transition in these type of flows is governed by in-
stabilities that arise within the rotating boundary layer and are usually identified by
three-dimensional spirals and/or concentric vortices.

(a) (b)

Figure 7.2: (a) von Kármán vortex street forming behind a rigid circular cylinder at
Re = 140 (Gedikli (2014)), (b) Rotational instability observed in galaxies.

Elastic solids can also be subject to instabilities under certain conditions. These arise
due to the interplay between the material properties, geometrical factors and external
loading. Instabilities of elastic solids usually refer to situations where the equilibrium state
of the solid becomes unstable and small perturbations can cause significant changes in the
material’s behavior. One common example of such an instability is buckling. Buckling
occurs when a slender structure, such as a column or beam, is subject to compressive
forces and undergoes sudden, uncontrollable lateral deflection. The critical buckling load
is typically lower than the load required to cause material failure in compression. The
reader can refer to the book of Timoshenko & Gere (2012) for a complete review about
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this phenomenon. Another example is the wrinkling or folding of thin elastic sheets
under compressive or shear forces. This phenomenon is often observed in materials like
paper or metal foils. Wrinkling can occur when the applied forces exceed the material’s
resistance to bending or stretching, leading to the formation of localized deformations and
instability in the sheet. The behavior of elastic solids and the occurrence of instabilities
can be analyzed using various mathematical and computational methods. For example,
finite element and stability analysis, all can help predict and understand the response of
these materials under different loading conditions. Note that solid instabilities tend to
be easier to analyse compared to flow instabilities and can be easily identified.

(a) (b)

Figure 7.3: (a) Structure failure due to buckling, (b) Wrinkling of an elastic shell due
to applied pressure.

When a flow interacts with a deformable structure, Fluid-structure instabilities may
occur. Contrarily to previously discussed cases, these instabilities arise due to the cou-
pling between the fluid and structure, the fluid exerting forces on the structure causing
its deformations which in turn deform the fluid flow. Note that in such a coupled mul-
tiphysics problem, even if the flow and the deformable structure do not express any
unstable behavior for the respective individual conditions, their interaction may yield
a coupled instability. The multiphysics aspect of such instability can occur in various
forms. One of these is the Vortex-Induced Vibrations (VIV) as seen in the FSI case of
the elastic plate attached to the rigid square application and the homogeneous energy
harvesting device of Fig. 7.4(a). As vortices shed from the structure in the wake region,
they create alternating lift and drag forces that cause the structure to vibrate. When it
comes to engineering applications, one of the most classical example of aeroelastic insta-
bility that arises in aerodynamic applications is flutter (Fig. 7.4(b)). It occurs when the
coupling between the fluid forces and the structural deformations leads to self-excited,
limit cycle oscillation which often cause structural damage or even catastrophic failure if
not properly controlled.
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(a) (b)

Figure 7.4: (a) Energy harvesting device via vortex-induced vibration, (b) Wing flutter
test of an airplane model.

7.2 Mathematical framework
A dynamical system can be described by a set of equations that govern the evolution of
its variables over time. In such cases, if one lets q(x, t) be a state vector function of time
t and the space coordinate x, while F is a non-linear operator, the dynamic system can
be simply described by,

∂q

∂t
= F (q), (7.2.1)

In the context of fluid dynamics, the state vector is the vector comprising the Navier-
Stokes variables, i.e., density, velocity components and flow pressure. For such problems,
the first step is the evaluation of the equilibrium state of the system. That is to compute
the base state vector Q which is solution of Eq. (7.2.1), with,

F (Q) = 0, (7.2.2)

Then by using small-amplitude pertubations that are also solution to Eq. (7.2.1), the
state vector q can be decomposed into a steady term Q and a fluctuation term q′ such
that,

q(x, t) = Q(x) + ϵq′(x, t), (7.2.3)

ϵ being an infinitesimal term (ϵ ≪ 1). Injecting this decomposition into the non-linear
evolution Equation (7.2.1), a linearized version can be obtained,

∂q′

∂t
= F ′(Q+ q′), (7.2.4)

where F ′ is the linearized non-linear operator around the base state Q that is approxi-
mated as,

F (Q+ q′) = F (Q) + ∇F (Q) · (q −Q) + O(∥q∥2). (7.2.5)

Neglecting higher order terms, Eq. (7.2.5) can be approximated by,

F (Q+ q′) ≈ ∇F (Q) · q′, (7.2.6)
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so the final linearized form of Eq. (7.2.1) becomes,
∂q′

∂t
= ∇F ′(Q) · q′. (7.2.7)

which can be recast into the following compact form,

B
∂q′

∂t
= Jq′. (7.2.8)

In (7.2.8) B is a matrix and J is the Jacobian operator. Note that Eq. (7.2.8) describes
the evolution of an infinitesimal perturbation in time and the problem can be solved if
appropriate initial and boundary conditions are provided. That is,{

q′(x, t = 0) = q′
0,

Lq′(x0, t) = 0 ∈ ∂D.
(7.2.9)

The stability analysis around the base flow can be achieved by the mean of different
methods depending on the nature of the base flow used: A local stability analysis that
uses the parallel flow assumption or global linear stability analysis that is used for 2D and
3D flows with a non-parallel flow assumption. The linearization process of the equations
involved are presented in the upcoming sections followed by a brief description of the two
theories. Note that these equations describe only the fluid problem since the study is
limited to flow modes. Nevertheless, several case studies already discussed in the thesis
including forced flow problems and fluid structure interaction are considered within the
framework of global stability theory, which is the main scope of this chapter.

7.2.1 flow linearized equations
The linearization process of the incompressible Navier-Stokes equations is considered in
this section. This process relies on the decomposition of the flow quantities into a steady
part, usually called base flow, and an unsteady part such that,{

u(x,y, z, t) = U(x,y, z) + u′(x,y, z, t),
p(x, t) = P (x,y, z) + P ′(x,y, z, t).

(7.2.10)

In Eq. (7.2.10) P and U stand for the base flow solutions of the steady Navier-Stokes
equations while p′ and u′ represent respectively the pressure and velocity perturbations.
Injecting Eqs. (7.2.10) into the Navier-Stokes and continuity equations one obtains,

∇ · (U + u′) = 0,

∂(U + u′)
∂t

+ [(U + u′) · ∇](U + u′) = −∇(P + p′) + 1
Re

∆(U + u′).
(7.2.11)

Developing this system of equations, one obtains the base flow which satisfies the
steady Navier-Stokes and continuity equations and read,

∇ · U = 0,

(U · ∇)U = −∇P + 1
Re

∆U.
(7.2.12)
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The remaining part composes the perturbed Navier-Stokes and continuity equations.
That is, 

∇ · u′ = 0,

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = −∇p′ + 1

Re
∆u′ + (u′ · ∇)u′.

(7.2.13)

Assuming an infinitesimal perturbation, the second-order term (u′ · ∇)u′ can be dropped
and the Linearized Navier-Stokes equations results,

∇ · u′ = 0,

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = −∇p′ + 1

Re
∆u′.

(7.2.14)

Governing equations for a three dimensional flow

Recasting the linearized Navier-Stokes equations (7.2.15) in the normal coordinate
system (x, y, z), one obtains the following scalar equations,
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(7.2.15)

Governing equations for a three dimensional rotating flow

Rotating flow problems are treated in the (r, θ, z) coordinate system. Their corre-
sponding governing equations are constructed following the same procedure as the
previous section. Assuming infinitesimal perturbations, instantaneous flow quantities
are decomposed into the sum of the steady state and deviation so,{

u(r, z, t) = U(r, θ,z) + u′(r,θ, z, t),
p(r,θ, z, t) = P (r,θ, z) + P ′(r,θ, z, t).

(7.2.16)

where p and u′ = (u′
r, u′

θ, u′
z) represent respectively the pressure and velocity pertur-

bations while U = (Ur, Uθ, Uz) stands for the base flow solution of the Navier-Stokes
equations.

After linearizing the Navier-Stokes equations around the base flow and injecting the
above decomposition, the following systems of equations in the cylindrical-polar coordi-
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nates (r, θ, z) is obtained:
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the set of equations can be reformulated in the following linear problem,

B
∂q̂
∂t

= Jq̂, (7.2.18)

where B and J are a matrix and the Jacobian operator respectively and q̂ = (u, p)T

is a vector containing all the perturbed Navier-Stokes variables. The stability analysis
around the base flow U is then given by the spectrum of eigenvalues of the matrix J.
In general, the solution vector q̂ is assumed to be harmonic. This means that a Fourier
decomposition in the complex space is possible. Note that for 3D problems, it is possible
to calculate 3D eigenmodes but it is computationally expensive. That said, if the base
flow is planar i.e., invariant in the z direction, a Fourier decomposition can be applied
in the cross-stream direction z. Similarly, for an axisymmetric rotating flow, a Fourier
decomposition can be applied along θ since the base flow is invariant in the azimuthal
direction. More details on this decomposition in given in the following sections.

7.3 Different types of stability analyses
In this section, the two most prominent flow stability analyses are discussed: Local
stability analysis and global stability analysis. The normal mode or Fourier decomposition
associated to the flow perturbation variables is dependent on the analysis to be conducted.
Indeed, the base flow and infinitesimal perturbation spatial dimensions are directly linked
to the type of linear stability analysis applied as detailed hereafter.

7.3.1 Local stability analysis
Local stability analysis is valid under the parallel flow assumption or when the flow varies
slowly in a given spatial direction (Kleiser & Zang (1991)): i.e., the fluid flows along a
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given path or through a system along parallel streamlines, meaning that there is no
crossflow or significant mixing between adjacent streamlines. This assumption is often
applied in cases where the flow velocities are low to moderate, and the dimensions of the
system are much larger compared to the characteristic length scale of the flow. Under
such an assumption, the base flow takes the form of U = (U(y), 0, 0) (in the normal
coordinate system (x, y, z)). Introducing an infinitesimal perturbation around such base
flow, the following global decomposition can be applied,{

u(x,y, z, t) = U(x) + u′(x,y, z, t),
p(x, t) = P (x) + P ′(x,y, z, t).

(7.3.1)

The resulting linearized Navier-Stokes equations is hence highly simplified and can be
solved by applying the normal mode expansion of the perturbation so that,

[u′
x, u′

y, u′
z, p′]T = [ûx, ûy, ûz, p̂]T (y)ei(αx+βz)+ωt. (7.3.2)

In Eq. (7.3.2) α and β are real parameters (wavenumbers) along the streamwise and
spanwise directions respectively and ω = ωr + ωi is the complex frequency of the normal
mode considered. Recasting the linearized Navier-Stokes equations with the above normal
mode expansion yields a dispersion relation of the form,

DL(ω, α, β, q̂) = 0 (7.3.3)

Which characterizes the local stability of modes. This approach has been widely used well
over a century (Drazin & Reid (1982); Rayleigh (1894)) since it involves few hundreds
degrees of freedom. Based on this approach, several types of analyses can be conducted.

Temporal stability analysis

The temporal stability analysis consists of finding the evolution of an infinitesmal
perturbation in the flow due to a prescribed spatial excitation. In other words the
wavevector k = αx+βz is fixed for a set of streamwise and spanwise wavenumbers along
the unit vectors x and z respectively. In this context, the sought complex eigenvalue
is ω. The corresponding problem is usually simplified using Squire’s theorem (Squire &
Southwell (1933)),

ωBq̂ = J q̂, (7.3.4)
In this case, the linear stability of the base flow is dictated by the sign of Re(ω):

• If Re(ω) < 0 , the perturbation has a negative growth rate hence the base flow is
linearly stable.

• If Re(ω) > 0, the perturbation has a positive growth rate hence the base flow is
linearly unstable.

• If Re(ω) = 0, the perturbation is marginally stable and does not change in time.
The temporal analysis is of a great importance when dealing with parallel shear flows
with no spatial evolution. The problem is furthermore cheap in terms of computational
cost due to the reduced size eigenvalue problem.
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Spatial stability analysis

Unlike the temporal stability analysis, the assumption of a fixed wavenumber is
relaxed here. In this context, the solution of the linearized Navier-Stokes equations is
sought by prescribing a real frequency ω, treating α as the complex eigenvalue hence
dropping β. From a numerical point of view, the resulting problem can be recast into a
non-linear eigenvalue problem in α such that,

Aq̂ + αBq̂ + α2Cq̂ = 0, (7.3.5)

where A, B and C are matrices containing the terms that stem from the linearized
Navier-Stokes equations (the reader can refer to the thesis of Loiseau (2014) for the
complete derivation). Since the eigenvalue problem (7.3.5) is quadratic in α, solving it
is numerically and computationally expensive. To overcome this issue, the problem is
instead re-written in the following form,

B =
A B

0 1

 q̂
αq̂

 = α

0 −C
1 0

 q̂
αq̂

 . (7.3.6)

Again the stability of the perturbation is determined by looking at the sign of the obtained
Re(α). If Re(α) > 0 else if Re(α) < 0 the perturbation decays in space.

Spatio-temporal stability analysis

In the previous two analyses the flow stability was assessed based on an infinitesi-
mal perturbation that grows either in time or space respectively. Nevertheless, there
exists some instances where spatially evolving flows develop self-excited modes without
external forcing. In this case, both α and ω can be complex so the perturbations are
allowed to grow or decay in both time and space. The review of Huerre & Monkewitz
(1990) presents a comprehensive reading of this context. They pointed to the different
types of instabilities that are obtained using this analysis:

• A flow is said to be convectively unstable if the perturbation generated grows up-
stream or downstream from a specific region.

• A flow is absolutely unstable if the impulse response propagates upstream and
downstream.

Mathematically speaking, a convective instability is characterized by positive temporal
growth rate for certain wavenumbers or spatial modes, but there is a critical wavenumber
beyond which the temporal growth rate becomes negative. This critical wavenumber rep-
resents the fastest-growing mode. Note that, the temporal growth rate of perturbations
associated with an absolute instability is positive for all wavenumbers or spatial modes
while large wavenumbers modes usually decay in time. This means that all perturba-
tions, regardless of their wavelength or spatial scale, will grow and amplify over time if
absolutely unstable, leading to a completely unstable flow.
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The eigenvalue problem sought is therein constructed as follows,
ωnBq̂ = Jq̂,

∂ωn

∂α
= 0.

(7.3.7)

where ωn is the eigenvalue solution of the problem for a given complex wavenumber α.
Subsequently, the flow is said to be convectively unstable if Im(ωn) < 0 and absolutely
unstable if Im(ωn) > 0. Extensive details about this method and the associated mathe-
matical procedure is provided by Chomaz et al. (1991a,b). Note that, the local stability
analysis have been the core work of the Ph.D theses of Queguineur (2020) and Bridel-
Bertomeu et al. (2016b) who extensively studied the origin and development of intrinsic
enclosed rotating flows instabilities which lead to the current work. The extension of the
method to the present work leads to the so-called global linear stability analysis which is
the main focus of this chapter. In this context, the parallel flow assumption is relaxed to
take into account non-parallel flows that are present in most applications. This approach
enables the investigation of 2D and 3D instability mechanisms of strongly non-parallel
flows.

7.3.2 Global linear stability analysis
In a global linear stability analysis, the dynamics of a small amplitude perturbations
around the base flow is analyzed while relying on the weakly parallel flow assumption of
Theofilis (2011) and Pierrehumbert, R & Widnall (1982). According to Lyapunov (1992),
a fluid system can be considered stable if infinitesimal perturbations around the base flow
remain infinitesimal over time without growth, or if the perturbed flow remains close to
the base flow. It is important to note that linear stability analysis can also provide in-
formation about the physical characteristics of these small perturbations such as their
frequency and growth rate. These characteristics differ from the ones obtained from a
local stability analysis. Indeed, in such approach the complex frequency ω correspond
to the global characteristics of a certain global mode. Furthermore, the wavenumber
describing a perturbation is strictly a real number meaning that a spatial analysis is not
possible with the global approach. The base flow represents the solution of the Navier-
Stokes equations modeling a specific system. For instance, analytical solutions can be
obtained for simple hydrodynamic problems. Tollmien (1931) and Schlichting (1933)
defined the analytical solutions of the Orr-Sommerfeld equations that are derived from
the full Navier-Stokes equations by making several simplifying assumptions. One such
assumption is that a flat plate boundary layer can be approximated as a parallel flow. If
the analytical solution is difficult to obtain, several numerical approaches can be used to
calculate the base flow of an unstable configuration like the Selective Frequency Damping
method (SFD) proposed by Åkervik et al. (2006). For complex flow problems, the mean
flow solutions (i.e., time averaged CFD predictions) have emerged as useful alternatives
to base flow solutions. In such case, flow non-linearities and the structure of the fluctua-
tions can be predicted by linear stability analyses. Although the mean flow is a statistical
construct without inherent meaning, substantial research has been conducted to predict
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unsteady features of turbulent flows using the mean flow. Indeed, Zielinska et al. (1997)
demonstrated that in the present of flow non-linearities, the mean flow becomes signif-
icantly different from the base flow rendering the linear stability around the base flow
incapable of retrieving flow unsteadiness. As a result, many articles have shown for in-
stance that the mean flow can substitute the base flow under such circumstances (Pier
(2002a); Mittal (2008); Barkley (2006)). Furthermore, in the case of flow around a cylin-
der, Pier (2002b) showed a very good prediction of the vortex shedding frequency, even
far from the critical Reynolds number by using the mean flow. Regarding axisymmetric
rotating flows, Queguineur (2020) also succeeded in performing a global local linear sta-
bility analysis using the mean flow of an academic rotor/stator cavity. Good agreement
was found between the modes predicted by linear stability analysis and the frequencies
extracted by large eddy simulation.

Governing equations

Assuming a three dimensional base flow and perturbation vector solutions of the
linearized Navier-Stokes equations (7.2.15), a general normal mode decomposition can
be applied,

[u′
x, u′

y, u′
z, p′] = [ûx, ûy, ûz, p̂]eωt. (7.3.8)

with [ûx, ûy, ûz, p̂] being the normal mode vector that represents the spatial organization
of each mode in the three dimensional space (x, y, z) and ω is its complex frequency such
that ω = ωr + ωi where ωr and ωi represent the real and imaginary parts respectively.
If the base flow is strongly dependent on two spatial dimensions and is homogeneous in
the third dimension, the global stability analysis can be performed a 2D cross section
plane containing all three velocity components. Hence, the solution of the linearized
Navier-Stokes equations can still be sought in the form of normal modes,

[u′
x, u′

y, u′
z, p′] = [ûx, ûy, p̂]eikz+λt. (7.3.9)

with [ûx, ûy, p̂] being the normal mode in the 2D plane (x, y) and k is its spanwise
wavenumber. Injecting this decomposition into the linearized Navier-Stokes equations, a
linear generalized eigenvalues problem in ω if formed,

ωBq̂ = Jq̂. (7.3.10)

In Eq. (7.3.10), B and J are a matrix and the Jacobian operator respectively given by,

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (7.3.11)
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, and

J =


−∂Ux

∂x
− (U · ∇) + 1

Re
∆ −∂Ux

∂y
0 − ∂

∂x

−∂Uy

∂x
−∂Uy

∂x
− (U · ∇) + 1

Re
∆ 0 − ∂

∂y

0 0 −(U · ∇) + 1
Re

∆ −ik
∂

∂x
∂

∂y
ik 0


(7.3.12)

.
Note that, for an axisymmetric rotating flow, the same procedure applies except that

in this case the normal decomposition satisfies the linearized Navier-Stokes equation in
the cylindrical polar coordinate system (r, θ, z). In this case, the set of equations are
homogeneous in the azimuthal direction, hence the normal decomposition writes,

[ur, uθ, uz, p] = [ûr, ûθ, ûz, p̂](z)e(imθ+ωt). (7.3.13)

The normal modes [ur, uθ, uz, p] are represented by their spatial organization [ûr, ûθ, ûz, p̂]
in the (r, z) plane and by a pair of parameters (m, ω) where m denotes the azimuthal
wavenumber that is inherent to cylindrical problems or flows. If the mode is axisymmetric
then m = 0, if the mode exhibits spiral arms then m corresponds to the number of the
spiral pattern identified. ω is a complex frequency so that ω = ωr + ωi where ωr and
ωi represent the real and imaginary parts respectively. The eigenvalue sought is hence
obtained by solving the linear eigenvalue problem (7.3.10) for every value of m where B
and J are a matrix and the Jacobian operator given by,

B =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (7.3.14)

, and

J =


−∂Ur

∂r
− (U · ∇) + ν∆ −∂Ur

∂θ
0 −1

r
∂
∂r

−∂Uθ

∂r
−∂Uθ

∂r
− (U · ∇) + ν∆ 0 −1

r
∂
∂θ

0 0 −(U · ∇) + ν∆ −im
1
r

∂
∂r

1
r

∂
∂θ

im 0

 (7.3.15)

. The full linearized system of equations is given in App.B. Note that in both cases, the
stability analysis around the base flow U is given by the spectrum of eigenvalues of the
matrix J. The asymptotic time evolution of the perturbation vector q̂ is hence dictated
by the sign of Re(ω):

• If Re(ω) < 0, all the disturbances in the flow decay over time and the base flow
returns eventually to its original state becoming globally stable.
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• If Re(ω) > 0, there exists at least one disturbance that grows in time and destabi-
lizes the flow and the base flow is considered globally unstable leading to significant
changes in the flow behavior.

• If Re(ω) = 0, the perturbations are neither growing nor decaying over time. This
condition is known as "neutral stability."

Global stability flow solver

The linearized Navier-Stokes equations as expressed before constitute a set of par-
tial differential equations that need to be spatially discretized to be solved numerically.
In order to achieve this discretization and subsequently tackle the linear eigenvalue
problem, a solver called GIFIE is used in this Ph.D. work. This code has been initially
developed by Bridel-Bertomeu et al. (2016b) and further advanced by Queguineur (2020)
throughout his Ph.D. The code is implemented using FreeFEM++ (Hecht (2012)), a
partial differential equation solver based on the finite element method. The approach
involves transforming the partial differential equations into their weak formulation and
then discretizing them via the finite element method. The resulting block matrices are
assembled and solved in the same solver. Given that these equations are generally sparse
and the matrix dimensions are notably substantial, indirect techniques are employed to
solve such problems. Specifically, the GMRES method from the PETSc library (Balay
et al. (2019)) is used in conjunction to the library SLEPc (Roman et al. (2019)) to
solve the linear eigenvalue problem based on the shift-invert spectral transformation
method which facilitates the extraction of a set of eigenvalues in close proximity to a
specified complex shift. The advantage of these libraries is that they can efficiently solve
problems on large clusters by leveraging parallelism and distributing computations. It is
worth highlighting that this solver accommodates computations for both incompressible
and compressible scenarios across 2D, 3D, and 2D asymmetric flows. Additionally, the
solver can also handle the computations of adjoint modes.

Note that the code has been enhanced to incorporate structural modal analysis for
both fixed and rotating structures, a development stemming from the present thesis. For
fixed structures with constant or no damping, the modal analysis procedure is rather
simple compared to flow problems since the equation involved is linear. The validation of
this part is detailed in App. A. Conversely, for rotating structures, the equation involved
is non-linear as seen in the case of the rotating disc in Chap. 2. Furthermore, The scope
of work extends to encompassing flow stability analysis for fluid-structure problems. This
also entails for resolving the fully coupled fluid-structure problem to extract aeroelastic
modes.
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7.4 Applications and analysis

7.4.1 Flow around a 2D circular cylinder
The first case involves a flow around a cylinder i.e., the same test case studied in Chap. 3
for a fixed cylinder for ReD = 40 and ReD = 100 using the same computational domain.
This classical problem has been used in multiple modal analyses and dynamics or control
studies (Sipp et al. (2010); Marquet et al. (2008)). It involves an oscillator flow exhibiting
an unsteadiness once the flow undergoes a bifurcation at ReD ≈ 47. The unsteadiness is
due to the presence of an unstable global mode. The objective hereafter is to evaluate
the presence of global modes via a global linear stability analysis. To do so, first, the 2D
mean flow is computed. Then a linear stability analysis is performed around this mean
flow.

Mean flow computation

The mean flow is obtained from the LES by taking the temporal and spatial av-
erage of the flow at its limit cycle. Figure 7.5 shows the obtained mean flows for
ReD = 40 and ReD = 100. As expected, both cases exhibit a streamwise symmetric
pattern with respect to the cylinder. For ReD = 40, the flow is stable and does
not show any significant unsteadiness. The wake is characterized by an elongated
re-circulation zone with a strong vorticity gradient near the cylinder wall that then
decreases downstream. The boundary layer near the cylinder’s surface remains attached
along the entire length of the cylinder. For ReD = 100, a shorter re-circulation zone is
noted with larger spanwise vorticity contours. Such differences in spatial distributions
are due to the unsteady nature of the second case.
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Figure 7.5: Mean vorticity plots for (a) ReD = 40 and (b) ReD = 100.

Normal modes

The 2D normal mode approach is desired by solving the simplified eigenvalue
problem given in Eq. (7.3.10). Figure 7.6 shows the mapping of frequencies obtained
for both mean flows i.e., ReD = 40 and ReD = 100 with their corresponding growth
rates. For ReD = 40 the most unstable mode found has a negative growth rate which
indicates that the flow is stable and remains steady whatever the perturbation injected
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(ReD < Rec). By increasing the Reynolds number above Rec, a mode appears on the
positive part of the real plane and its imaginary part settles at the vortex shedding
frequency fs = 138.5 Hz (Im(ω/2π)).
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Figure 7.6: Scatter plot of the temporal growth rate and frequency obtained for (a)
ReD = 40 and (b) ReD = 100. (the dashed red line indicates the frequency obtained by
LES).

The spatial organization of both most unstable modes is reconstructed and depicted
on Fig. 7.7. As seen, the modes express as a series of zones of alternating sign.
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Figure 7.7: Spatial organization of the vorticity of the most unstable modes for (a)
ReD = 40 and (b) ReD = 100.

7.4.2 Forced flows in an enclosed rotor/stator cavity
In this section, the global stability analysis of the academic rotor/stator cavity studied
in Chap. 3 is discussed. In this case, global modes are sought for forced flow cases to
gain more insight about the underlying dynamics of the flow and the stability of the new
dominant modes inside such a system. The objective is hence to evaluate the response
of the hydrodynamic modes when the flow is subject to a forcing. Recall that two cases
were considered: Case 1 and Case 2 for the LES predictions were respectively obtained
by forcing the flow cavity at the frequency of the rotor vibration equal the two most
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unstable modes in the cavity and found in the unforced case (refer to section 3.5.3). Note
that this study has been published in Noun et al. (2021).

Mean flow computation

The mean field is obtained using AVBP and computing the temporal and azimuthal
averages of the flow prediction considering the average axial position of the rotor at the
flow limit cycle. Figure 7.8 shows the normalized averaged radial velocity component
for Case 1 and Case 2 in the (r, z) plane. It is clearly seen that the radial velocity field
is positive in the rotor boundary layer and negative in the stator as expected. These
boundary layers flows correspond to a Von Kármán and a Bödewadt boundary layer
respectively as retrieved in the non-forced case (Queguineur (2020)). Forcing the flow
however alters the mean flow. For both cases the mean field is affected in different ways.
For the rotor boundary layer, the hub and the shroud, the effect seems to have a stronger
influence on the organization for Case 2. The imposed higher frequency of vibration
generates stronger gradients of the flow contours in those regions for 0.071 < r < 0.8 and
0.22 < r < 0.25 . The two statoric boundary layers also seem affected. The most notable
difference of the base flow organization of the two cases appears for 0.16 < r < 0.24.
In this region, the mean radial velocity component separates from the stator in Case
2. This separation is not seen in the first case. Note that this specific zone has been
shown to have the maximum structural sensitivity for the non-forced case (Queguineur
(2020)). It is the triggering location of a global mode of the system and modifications of
the flow/geometry at this location leads to the largest drift of the eigenvalues (Giannetti
& Luchini (2007)).
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(a)

(b)

(c)

Figure 7.8: Mean flow contours of the time and azimuthal averaged radial velocity
component Ur normalized by its maximum magnitude for (a) Non forced case (b) Case
1 and (c) Case 2. (The stator is located at the top and the rotor at the bottom).

GLSA results

Using previously obtained mean fields, the eigenvalue problem (7.3.10) can be solved
for each case to obtain all the modes along with their frequencies and amplifications at
each wavenumber m. Figure 7.9 shows a plot of the frequency and growth rate of the
most unstable modes at each wavenumber m for Case 1. Four distinct regions can be
identified in such views. The most unstable mode of the first branch corresponds to the
axisymmetric mode m = 0 and has a frequency of 4.71F0. Mode m = 28 can be identified
in the fourth branch and has a frequency of 3.6F0. Even though it does not have the
highest growth rate, it is the only mode that imposes its spatial organization in the
stator boundary layer as shown previously by LES. Similarly for Case 2 (see Fig. 7.10),
the axisymmetric mode m = 0 is the most unstable one for the first branch and has
a frequency of 3.3F0. The second mode with the wavenumber m = 30 is retrieved and
has the highest amplification rate in the system for a frequency of 4.92F0. These modes
obtained clearly reflect the presence of the two distinct rotational instabilities identified
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by LES and DMD in Chap. 3. To go further and understand the results obtained by the
global linear stability analysis, the spatial organization of these modes are presented and
compared to a Dynamic Mode Decomposition (DMD) where each mode is projected on
its corresponding wavenumber. This projected DMD method consists in decomposing
the flow mode shapes according to their azimuthal wavenumber in 2D (in the (r, z)
plane) instead of computing them in 3D which is more expensive in terms of data storage
and numerically. Thanks to this step, the characterization of modes according to their
complex frequency and wavenumber allows a direct comparison with the obtained mode
shapes from linear stability analysis which is not feasible with classical DMD.

(a) (b)

Figure 7.9: Scatter plots of the (a) frequency and (b) growth rate versus the azimuthal
wavenumber m of the linear global modes obtained for Case 1. (The values are normal-
ized by the rotational frequency of the rotor F0).

Figure 7.11 shows the spatial organization of the 2D axisymmetric axial velocity
modes for the wavenumbers m = 0 and m = 28 of Case 1. Good agreement is found
between DMD and the global linear stability. For mode m = 0, the annular vortices
identified by LES and DMD on the circular cuts are highlighted in this region. The
impact of the observed re-circulation zone on the forced mean flow is identified clearly here
near the hub and throughout the cavity. Mode m = 28 is expressed through spiral arms
located at 0.13 < r < 0.21 in the stator boundary layer as shown by Fig. 7.11(b). Indeed,
this mode appears to be dominant within the stationary disc only, which is confirmed
by the global stability analysis and the DMD projection for this specific wavenumber.
Table 7.1 provides a comparative summary of the results obtained by DMD and GLSA
for Case 1. Note that all other frequencies are quite similar as well if comparing DMD to
GLSA but these were found to be of lesser interest.

For Case 2, Fig. 7.12, the 2D mode shape of the axial velocity mode ûz obtained by
the global linear stability analysis and DMD also coincide. The spatial organization of
mode m = 0 seems to comply except for the region near the rotor where GLSA yields a
higher mode amplitude. Retrieved frequencies remain however similar: 3.3F0 and 3.24F0.
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(a) (b)

Figure 7.10: Scatter plots of the (a) frequency and (b) growth rate versus the azimuthal
wavenumber m of the linear global modes obtained for Case 2. (The values are normal-
ized by the rotational frequency of the rotor F0).

Case 1 DMD GLSA
Mode m = 0 4.64F0 4.71F0

Mode m = 28 3.64F0 3.6F0

Table 7.1: Comparison between the modes obtained by DMD and GLSA for Case 1.

Both spatial distributions furthermore agree with the fact that for this mode, the region
with the highest level of fluctuations results from circular vortices concentrated near the
stationary disc: 0.071 < r < 0.12 and near the hub at very low radii. Note that this mode
has also been found by Queguineur et al. (2018) in local and global stability analyses. The
second mode pulsates at 4.92F0 for a wavenumber m = 30 again, close to the one found by
DMD, 5F0. Its presence is essentially found near the stationary disc for 0.13 < r < 0.20
where spiral vortices manifest. All modes retrieved by DMD and GLSA for Case 2 are
summarized in Tab. 7.2.

To conclude, just like the stationary case of Queguineur (2020), the global linear
stability analysis (GLSA) and Dynamic Mode Decomposition (DMD) offer a mean to

Case 2 DMD GLSA
Mode m = 0 3.26F0 3.3F0

Mode m = 30 5F0 4.92F0

Table 7.2: Comparison between the modes obtained by DMD and GLSA for Case 1.
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(a)

(b)

Figure 7.11: 2D shapes of the axial velocity mode ûz obtained by GLSA and compared
with the DMD predictions for the two wavenumbers (a) m = 0 and (b) m = 28 for Case
1.

access flow modes populating a limit-cycle even in forced conditions. Note that the
forcing frequency for both cases is retrieved by the stability analysis. However the study
is here restricted to the fluid modes only.
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(a)

(b)

Figure 7.12: 2D shapes of the axial velocity mode ûz obtained by GLSA and compared
with the DMD predictions for the two wavenumbers (a) m = 0 and (b) m = 30 for Case
2.

7.4.3 Flow stability of the first stage rotodynamic pump

Fluid only simulation

Focus is now brought to the underlying axial instabilities observed in the reduced scale
rotodynamic pump studied in Chap. 2. Recall that through LES, two instabilities have
been identified. The first one stems from a pulsating vortex at a frequency f ∗

1 = 0.157
near the upper valve clearance while the second one corresponds to a set of vortices that
originate from the initial vortex but shed downstream in the housing and at a frequency
f ∗

2 = 0.314. Although both instabilities seem to be mutually exclusive, the second mode
f ∗

2 appears to be the primary instability inside the cavity as evidenced by DMD. A linear
stability analysis is conducted therein on the fluid only simulation of the reduced scale
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rotodynamic pump to investigate the presence of these instabilities and compare them to
the previously obtained numerical simulations.

Mean flow

The mean flow in this case is obtained by computing the temporal and azimuthal
averages of the macroscopic flow properties from the non-coupled simulation. Figure 7.18
shows a 2D slice illustrating the distributions of the mean axial velocity and the mean
vorticity within the cavity. In the upper cavity as well as in the upper valve clearance
the flow does not depict any particular spatial organization. However, the flow mainly
evolves at the entrance of the housing. Indeed, the mean axial velocity contour plot
(Fig. 7.18(a)) reveals two high-magnitude structures of opposing signs at the housing
inlet followed by similar but smaller patterns further downstream. This suggests the
presence of a strong re-circulation zone that is confirmed by looking at the mean vorticity
field of Fig. 7.18(b). A large vortical structure indeed forms just at the inlet of the
housing followed by two elongated structures of opposite signs further downstream. This
flow organization then dissipates as the flow section decreases.

(a)

(b)

Figure 7.13: Mean fields of the fluid only simulation: (a) axial velocity and (b) vorticity.
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Normal modes

The linearized eigenvalue problem of Eq. (7.3.10) is then solved for a fixed az-
imuthal number at m = 0 due to the absence of azimuthal dependency observed in
the LES prediction. In the present scenario, the rotor disc remains stationary through
non-linearities and the flow Reynolds number remains low, consequently simplifying the
problem into a fully axisymmetric flow configuration.
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Figure 7.14: Scatter plot of the temporal growth rate and frequency obtained for the
fluid only simulation. (the dashed red line indicates the frequency obtained by LES).

Figure 7.14 shows a scatter plot of the growth rates and frequencies obtained via such
a linear stability analysis. One unstable mode is found at f ∗ = 0.308 Hz, in agreement
with the second mode observed in LES (f ∗

2 = 0.314). Note that the mode f ∗
1 of LES is not

retrieved by the linear analysis (the secondary instability). This outcome reaffirms that f ∗
2

is indeed the driving mechanism within the cavity, f ∗
1 being most likely a recombination of

the f ∗
2 activity. As anticipated, the spatial shape of this mode, Fig. 7.15, predominantly

mark at the housing inlet, with alternating patches that indicate a spatial propagation
of the structure downstream.



7.4 Applications and analysis 171

Figure 7.15: Real part of the axial velocity mode shape obtained by GLSA.

Fluid-structure simulation

Regarding the fluid-structure simulation, attention is directed towards the hydro-
dynamic mode responsible for the fluid-structure instability found in the rotodynamic
pump (refer to chap. 6). Recall that through the FSI simulation, one fluid-structure
instability has been identified pulsating at around f ∗

c = 1. The aim of this analysis is to
identify this mode from a purely hydrodynamic perspective and compare it to the mode
found in the fluid only simulation.

Mean flow

The mean flow is obtained following the same procedure as in the fluid only sim-
ulation except that for this problem the rotor disk motion must be taken into account.
In this scenario, the mean field is obtained by taking the temporal and azimuthal average
of the flow quantities that correspond to the mean static deflection of the rotor disc.
the mean flow field is hence obtained by averaging the macroscopic quantities across a
sequence of azimuthal cross-sections in the (x, y) plane and projected onto the domain
corresponding to the mean static deflected rotor. This specific situation is obtained by
applying the mean resultant force: i.e., over multiple oscillation cycles to the rotor.
This specific approach ensures consistency for the mean fluid-structure solution and
the principles of linear stability analysis theory. Figure 7.16 shows a 2D cross-section
of the mean axial velocity component ūx and the mean vorticity field. Similar to the
non coupled case, the upper cavity exhibits no distinct activity. The housing entrance,
however exhibit the presence of two structures of opposite axial velocity values that are
larger than the one found in the fluid-only simulation. This observation aligns with the
prior findings of Chap. 6 while examining instantaneous snapshots of velocity magnitude.
Overall, a similar trend persists when inspecting the mean vorticity field. Notably, a
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substantial vortex structure materializes just beyond the upper valve, extending along
the shroud and lower section of the housing. Although differing in shape if compared to
the fluid only solution, this re-circulation zone also exhibits a more pronounced vorticity
magnitude compared to the uncoupled case.

(a)

(b)

Figure 7.16: Mean fields of the fluid-structure simulation: (a) axial velocity and (b)
vorticity.

Normal modes

The same procedure as before is then applied for solving the eigenvalue problem
in the absence of rotation for m = 0. Figure 7.17 shows the retrieved scatter plot of the
temporal growth rates and frequencies thereby obtained. One unstable mode is retrieved
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at f ∗ = 1.01 that is close to the frequency obtained by PSD in the corresponding LES
suggesting that this hydrodynamic mode originates from the fluid-structure coupling
and is indeed different from the one found in the fluid only simulation.
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Figure 7.17: Scatter plot of the temporal growth rate and frequency obtained for the
fluid only simulation. (the dashed red line indicates the frequency obtained by LES).

The mode shape of this mode is visualized on Fig. 7.18. Its spatial organization also
differs from the mode retrieved on the fluid only simulation. Indeed, two re-circulation
zones can be evidenced, a small one near the the upper valve and a larger one just beneath
it both pulsating at the same frequency f ∗ = 1.01. This spatial organization is similar to
the one retrieved by LES confirming the dynamics of the flow in coupled conditions.

Figure 7.18: Real part of the axial velocity mode shape obtained by GLSA.
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7.5 Conclusion
In this chapter, the global linear stability analysis has been performed on fluid problems,
forced vibration problems, as well as fluid-structure interaction problems. The mean flow
is computed separately using LES and the appropriate linearized eigenvalue is solved
separately. Results are compared with the spectral content of LES and Dynamic Mode
Decomposition whereby confirming that this predictive numerical tool can retrieve hy-
drodynamic modes even in forced or coupled conditions. The key in this context is to
have the appropriate mean flow issued from the right simulation. This opens the door
to adjoint based methods to measure the flow sensitivity and qualify its robustness to
changes in order to design efficient control strategies. Nevertheless, to fully investigate
multiphysics modes, a coupled fluid-structure linear stability analysis is necessary. To do
so, the fully coupled system of equations must be linearized and solved around the mean
field. This allows the recovery of coupled fluid-structure modes revealing the mode shapes
of the fluid as well as the structure. Additionally, adjoint method can be used in this
case to optimize the fluid-structure system by modifying the fluid and/or the structure
characteristics allowing the passive control of fluid-structure instabilities.
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Vibration problems in rocket turbopumps are notorious for reducing their lifespan and
compromising the structural integrity of the entire engine. This undesirable phenomenon
results from the self-sustained oscillatory motion of the working fluid, commonly referred
to as "pressure bands", which can couple with the solid structure posing a significant risk
to the operation of the turbopump. Given the inherently intricate and three-dimensional
nature of these flow instabilities especially when encountered within complex configura-
tions, a numerical approach is preferred to address the problem. Specifically, Large Eddy
Simulation, an unsteady Computational Fluid Dynamics (CFD) based approach, has been
proven to accurately model these hydrodynamic instabilities in contrast to steady-state
simulations. Nevertheless, this method alone is not enough to investigate multiphysics
problems hence multiple numerical tools have been developed in this thesis to investigate
forced vibration and self-induced vibration problems.

In this numerical framework, the first type of machine vibration, forced vibration, is
addressed. A simple test case is first considered that consists of a 2D cylinder which
oscillates transversely to the incoming flow stream at a fixed Reynolds number. By vary-
ing the amplitude and frequency of vibration within a specified range, various vortex
shedding patterns are observed. The resulting wake characteristics are then analyzed us-
ing time series data of aerodynamic coefficients. The results indicate that under specific
combinations of predetermined frequency and amplitude of vibration, a "lock-in" phe-
nomenon occurs, where the vortex shedding frequency matches the imposed frequency.
This application serves also to validate the use of the moving mesh technique ALE as well
as the imposed cylinder displacement law under forced conditions. Subsequently, those
tools are used in a second study where an annular rotor/stator cavity subject to imposed
rotor oscillations is investigated. This academic cavity has been the focal point of numer-
ous numerical and experimental studies due to its approximation to real-life industrial
turbomachines making it an appealing research subject. Previous investigations have re-
vealed that the flow within such a cavity exhibits inherent three-dimensionality and, due
to the high Reynolds number of the rotating flow, hydrodynamic instabilities manifest
at three distinct azimuthal wavenumbers. These instabilities dominate the stator, rotor,
and mid-cavity regions, taking the form of annular and/or spiral vortices. Predictive
numerical techniques such as Dynamic Mode Decomposition (DMD) and Power Spectral
Density (PSD) analysis have provided evidence of the presence of these unstable modes.
The critical question arising from this issue is as follows: How do these hydrodynamic
modes respond when the rotor starts oscillating at the same frequency as one of these
modes, essentially replicating a resonance phenomenon? To address this question, two
Large Eddy Simulation (LES) predictions are conducted. In the first instance, the im-
posed vibration frequency is matched with the stator mode, while in the second instance,
it is matched with the mid-cavity mode, both of which are the most dominant modes
within the cavity. The results reveal that the imposed vibration indeed has an impact
on the primary modes within the cavity. In the non-forced scenario, these leading modes
either shift to new frequencies and mode shapes or completely vanish.

Self-induced vibration constitutes the second category of machine vibration addressed
in this thesis. To investigate this multiphysics aspect, a structural mechanics solver is first
developed that is able to perform modal analyses as well as elastodynamic calculations.
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The solver is verified first using a steady approach, followed by verification of the transient
elasticity equation. Results demonstrate excellent alignment with existing literature,
affirming the capability of the developed tool to accurately capture structural modes,
static deformations, and dynamic responses. The structural solver is then coupled to the
LES solver AVBP using a Multiple Program Multiple Data (MPMD) approach. This
allows the exchange of information between the two solver on the fly during calculation.
The resulting partitioned fluid-structure solver adopts a weak coupling strategy, which
proves adequate for simulating scenarios involving high solid-to-fluid density ratios as
commonly encountered in turbomachinery applications. To validate this coupling, two
distinct test cases are examined. The first case consists of a vibrating beam immersed a
closed fluid domain. This test case demonstrates that regardless of the fluid and structural
parameters employed, the structure ultimately returns to its equilibrium position after
a specific duration. The time required to reach equilibrium is influenced by the density
of the structure and the viscosity of the fluid. Both parameters are varied one at a time
and results show that by increasing the solid density or fluid viscosity the time needed
to reach equilibrium increases. Conversely by decreasing those parameters equilibrium is
attained faster. The second test case involves a vortex-induced vibration phenomenon of
an elastic plate clamped behind a rigid cylinder. This complex test case serves to validate
the coupling under more intricate conditions where vortices shed at the cylinder’s corners
induce substantial amplitude vibrations of the plate. Results reveal that the vortex
shedding frequency resulting from the coupling differs from that obtained in a fluid-
only simulation where the plate remains fixed. The coupled frequency and amplitude of
vibration are then compared to results that stem from other coupling strategies from the
existing literature, demonstrating a high degree of agreement with the findings.

This point leads us to the application of the developed FSI solver to an industrial tur-
bomachinery application. The involved configuration represents a first stage rotodynamic
pump. The primary objective is to simulate the axial balancing system and assess its sta-
bility under specific operating conditions. Structure and acoustic modal analyses showed
that the natural frequency of the rotor disk coincide with the first acoustic frequency
of the cavity indicating a potential vibroacoustic phenomenon. To tackle this problem,
an LES prediction is conducted on the reduced scale hydrogen turbopump to investigate
the flow dynamics in non coupled conditions. Results show that the flow dynamics in
the second part of the cavity are driven by two leading hydrodynamic modes that inter-
act with each other. However, their frequencies do not align with either the structural
disk mode or the cavity acoustic mode, suggesting that this approach alone is insuffi-
cient for capturing multiphysics phenomena. Consequently, a fluid-structure interaction
simulation is performed on the same configuration by allowing the rotor disk to deform.
As anticipated, the disk vibrates at its 0ND mode close to its natural frequency, thus
confirming the likelihood of a vibroacoustic phenomenon as observed in experiments and
the capability of the developed tools to predict the phenomenon. Moreover, the coupled
solver allows the calculation of the structural damping ratio required to stabilize this
configuration. Therefore, the designer must strategically adjust the natural frequency of
the rotor disk, accounting for material damping, under specific operating conditions of
the turbopump.
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Finally, a more in-depth investigation is conducted on the configurations of interest
to identify the hydrodynamic instabilities responsible for the flow dynamics. Within this
context, a comprehensive global linear stability analysis (GLSA) framework is established
to analyze oscillating flows in fluid problems, encompassing forced vibration and fluid-
structure interaction scenarios. The key here is to obtain the right mean flow for each
application, meaning that the flow macroscopic quantities are linearized around the base
flow obtained using LES . This methodology enables the identification of vortex shedding
modes for flow problems, such as flow past a fixed rigid cylinder, as well as hydrodynamic
instabilities in axial driven flows in the rotodynamic pump. In the case of forced flow
problems, two primary unstable modes are identified in each of the forced cases within the
academic rotor/stator cavity, thereby corroborating the LES predictions and findings from
techniques like DMD and PSD. Additionally, this method facilitates the identification of
the unstable fluid mode resulting from the fluid-structure coupling between the rotor
disk and axial flow. All those application prove that such a method is able to retrieve
flow modes even in forced or coupled scenarios. Furthermore it lays the foundation for
performing control and sensitivity studies to understand the origin of these fluid modes
and suppress them if necessary. However, it is important to note that the GLSA has
inherent limitations in capturing all the dynamics within multiphysics problems. This
limitation is expected since the equations primarily model the behavior of the fluid alone
(Navier-Stokes and continuity equations). To fully comprehend fluid-structure modes,
ongoing efforts have been initiated to linearize the fully coupled fluid-structure system of
equations. This extension aims to identify coupled and non coupled fluid-structure modes
in both 2D open flows and 2D axisymmetric flows. This next step in research expands
the GLSA framework to encompass fluid-structure problems, enabling the exploitation
of self-sustained coupled instabilities and subsequently control fluid and/or solid modes
responsible for the coupling.
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Appendix A

Structural modal analysis validation

The goal of modal analysis is to determine the natural mode shapes and frequencies of
a structure under free vibration. In the following, an undamped beam mathematically
described by Eq. (1.0.2) is considered. The system is treated as a continuous one in which
the beam mass is distributed along with the stiffness of the shaft. The equation of motion
is expressed as per (Meirovitch (1967)) as follows,

d2Y (x)
dx2 = M(x)

EI
, (1.0.1)

d2

dx2 EI(x)d2Y (x)
dx2 = q. (1.0.2)

Where E is the modulus of rigidity of beam material, I is the moment of inertia of the
beam cross-section, Y (x) is displacement in y direction at distance s from fixed end and
q is the external loading per unit length. This equation is referred to as the static beam
equation also known as the Euler-Bernoulli equation.
For the cantilever beam shown in figure A.1, the following boundary conditions apply,

at x = 0, Y (x) = 0,
dY (x)

dx
= 0, (1.0.3)

at x = l,
d2Y (x)

dx2 = 0,
d3Y (x)

dx3 = 0. (1.0.4)

In the absence of a transverse load q, the free vibration equation can be solved using a
Fourier decomposition on the displacement into the sum of harmonic vibrations of the

Figure A.1: A cantilever beam under free vibration.
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form,

y′(x, t) = Re[Y (x)eiwt]. (1.0.5)

replacing this decomposition in Eq. (1.0.2) and setting the right hand side term to zero,
the equation of motion hence becomes,

d4Y (x)
dx4 − β4Y (x) = 0,

β4 = ω2m

EI
.

(1.0.6)

The mode shapes for a continuous cantilever beam are given in 1D as,

Yn(x) = An(sinβnL − sinhβnL)(sinβnx − sinβnx) + (cosβnL − coshβnL)(cosβnx − coshβnx)
(1.0.7)

Where n = 1, 2, 3...∞ and βnL = nπ.
The closed form of the circular natural frequency ωn from the above equation of motion
and boundary conditions can be written as,

ωn = α2
n

√
EI

mL4 (1.0.8)

Where αn = 1.875, 4.694, 7.885....

One Considers a fixed-free 3D rectangular homogeneous beam. Its dimensions and
mechanical properties summarized in Tables A.1 and A.2. Using the linear beam theory,
the first four natural frequencies are calculated.

Geometric parameters
L 20 m
B 0.5 m
H 1 m

Table A.1: Characteristic parameters of the cantilever beam.

Mechanical properties
E 20 Pa
ρs 10−3 m3/Kg
I 0.0417 Kg.m2

Table A.2: Mechanical properties of the beam.
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Natural frequencies (Theory)
Mode 1 2.019 Hz
Mode 2 4.0385 Hz
Mode 3 12.65 Hz
Mode 4 25.31 Hz

Table A.3: First four natural frequencies of the cantilever beam obtained via linear
theory.

The modal analysis code is developed and solved in FreeFEM++ (Hecht (2012)). To
do so, the generalized elastodynamic equation is recast in matrix form to model a multiple
degrees of freedom linear mechanical system without damping and external forces, that
is,

MÜs + KUs = 0. (1.0.9)
This is a second order homogeneous differential equation that can be solved by assuming
the solutions to be of the form,

us = ûse
iωst. (1.0.10)

Replacing the Fourier decomposition (1.0.10) in Eq. (1.0.9) yields a linear eigenvalue
problem of the form,

[Mω2 +K]U s = 0. (1.0.11)

Solving Eq. (1.0.11) yields the free vibrational responses of the system each being as-
sociated to the set of natural frequencies ωs. To do so, one transforms the PDE into
its variational or weak form. It results in the mass matrix M which corresponds to the
unsteady term and the stiffness matrix K which corresponds to the stress tensor term so,

M =
∫

Ωs

(σ(us) : ϵij(Ψs))dΩ, (1.0.12)

K =
∫

Ωs

ρs((us) · (Ψs))dΩ. (1.0.13)

where Ψs is a linear closed subspace of H1(Ω2
s), ρs is the density of the structure and

λs and µs are the Lamé coefficients. us(xi) is the vector of modal displacements. After
taking into account the Fourier decomposition of Eq. (1.0.10), the weak form of Eq. (1.0.9)
for the displacement us(xi) ∈ Ψs is,

−
∫

Ωs

(σ(us) : ϵij(Ψs))dΩ = ω2
s

∫
Ωs

ρs((us) · (Ψs))dΩ, (1.0.14)

−
∫

Ωs

(λs∇ · us∇ · Ψs + 2µsϵij(us) : (Ψs))dΩ = ω2
s

∫
Ωs

ρs((us) · (Ψs))dΩ ∀Ψs ∈ V.

(1.0.15)

Solving this eigenvalue problem yields the natural frequencies associated to a structure
fixed in a certain reference frame.
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In the following, the natural frequencies and the corresponding mode shapes of the
beam are calculated using FreeFEM++. the computational domain is shown on Fig. A.2
and its characteristics are summarized in Tab. A.4.

Figure A.2: Computational domain of the cantilever beam.

Mesh characteristics
Number of elements in the x direction Nx 20
Number of elements in the y direction Ny 4
Number of elements in the z direction Nz 10
Total number of cells Ncells 4800
Number of P1 nodes 1155
Number of P2 nodes 7749

Table A.4: Mesh characteristics of the cantilever beam.

Table A.5 shows a comparative summary of the mode frequencies obtained by
FreeFEM++ and linear beam theory. Excellent agreement is found between the two
approaches. The first four mode shapes of the cantilever beam are shown on Fig. A.3.
The first and fourth vibration modes constitute a bending around the strong axis y,
whereas the second and third vibration modes constitute a bending moment around the
weak axis z.
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Natural frequencies (FreeFEM++) Natural frequencies (theory)
Mode 1 2.019 Hz 2.019 Hz
Mode 2 4.03 Hz 4.04 Hz
Mode 3 12.64 Hz 12.65 Hz
Mode 4 25.04 Hz 25.3 Hz

Table A.5: First four natural frequencies of the cantilever beam obtained by
FreeFEM++ and linear beam theory.

Figure A.3: The first four eigenmodes of the cantilever beam.
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Appendix B

Global stability equation for a
rotating flow

Linearizing the Navier-Stokes equations in the cylindrical polar coordinate system and
introducing the normal mode decomposition in (r, θ, z), one obtains the following scalar
equations,



(
∂r + 1

r

)
ûr + iβûθ + ∂zûz = 0,

(
−iω + Ub∂r + iβVb + Wb∂z + ∂rUb − 1

Re

(
∂zz − β2 + ∂rr + ∂r

r
− 1

r2

))
ûr

+ 2m

r2Re
ûθ + ∂zUbûz + ∂rp̂ = 0(

−iω + Ub∂r + iβVb + Wb∂z + ∂rUb − 1
Re

(
∂zz − β2 + ∂rr + ∂r

r
− 1

r2

))
ûθ

− 2m

r2Re
ûr + ∂rVbûr + ∂zVbûz + iβp̂ = 0(

−iω + Ub∂r + iβVb + Wb∂z + ∂zWb + 1
Re

(
∂zz + β2 − ∂rr + ∂r

r

))
ûz

∂rWbûr + ∂zp̂ = 0,

(2.0.1)

These equations can be solved numerically for a given azimuthal wavenumber
m.
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ABSTRACT
Complex unsteady phenomena can appear in turbomachin-

ery components and result in the self-sustained oscillatory mo-
tion of the fluid as found in aeronautical engines or rocket tur-
bopumps for example. The origin of these oscillations often re-
sults from the complex coupling between flow non linearities and
structure motion generating major risks for the operation of the
engine and even undermining its components. For instance, in
turbines, the internal components that are most liable to vibrate
are the blades and discs. In this context, it is critical to under-
stand the effect of the vibrating components on the flow stabil-
ity in rotor/stator cavities. In order to address this problem, an
academic rotor/stator cavity subject to periodic wall oscillations
is investigated in the current paper where the frequency of the
vibrations are imposed and correspond to the previously identi-
fied unstable fluid modes inside the cavity. The objective is to
understand the behavior of the flow when subject to a periodic
forcing imposed by the rotor motion. To do so, predictive numer-
ical strategies are established based on Large Eddy Simulation
(LES) in conjunction to a global stability analysis which seem
to be a promising method to capture flow instabilities. Focus
is here brought to the underlying pressure fluctuations found in-
side the cavity using spectral analysis complemented with the
global stability analysis, demonstrating that such tools can ad-
dress forced flow problems. More specifically and for all simula-
tions, the results of the global stability analysis are compared to a
Dynamic Mode Decomposition (DMD) of LES predictions by re-
constructing the corresponding modes through a spatio-temporal

∗Address all correspondence to this author.

approach showing that the new fluid limit cycles present modes
that shift or completely disappear compared to the unforced case,
the forcing mechanism altering the stability of the entire system.

Nomenclature
Acronyms
ALE Arbitrary Langrangian Eulerian Method
CFL Courant Friedrichs Lewis
DMD Dynamic Mode Decomposition
GLSA Global Linear Stability Analysis
LES Large Eddy Simulation
PSD Power Spectral Density
SGS Sub-Grid Scale
TTGC Two-Step Taylor Galerkin C
WALE Wall Adaptive Local Eddy-viscosity
Greek Symbols
δ Boundary layer characteristic scale m
∇ Gradient operator −
∇. Divergence operator −
∇2 Laplace operator −
ν Kinematic viscosity m2.s−1

Ω Angular velocity rad.s1

ω Complex frequency −
Other Symbols
F0 Frequency of rotation Hz
f0 Forcing frequency Hz
G Aspect ratio -
h Cavity height m
m Azimuthal wavenumber −
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p′
i Pressure perturbation Kg.m.s−2

Pb Base flow pressure Kg.m.s−2

r Radial coordinates m
R0 Internal radius m
R1 External radius m
Re Reynolds number -
t time s
u′

i Perturbations velocity components m/s
ui Velocity components m/s
Ub,i Base flow velocity components m/s
z Axial coordinate m
zmax Amplitude of vibration m
zt Instantaneous axial position of the rotor m

INTRODUCTION
A major task in the development of rocket turbopumps is

to ensure that that the moving components, such as the blades
or discs, as well as the static components have no extreme vi-
bration problem. This means that during the design phase of
such devices, the structural integrity of the different components
should be maintained at the operating point. This involves fre-
quency calculations and stress analysis. A standard practice is
to avoid disc and blade frequencies that are close or multiple of
the running speed, the resulting is a Campbell diagram where
the frequencies for different running conditions are plotted ver-
sus rotor speed. Vibrations in turbomachinery can be split into
two types: local vibration and machine vibration. The former
refers to the vibration of local components such as the blades or
discs of a turbine, whereas the latter involves widespread mo-
tion of the rotor and/or stator which induces periodic reactions at
the bearings hence causing the static components to vibrate [1].
The origin of these vibrations can also be classified into two
classes: imposed or self-excited; depending on whether the vi-
bration is the result of an imposed disturbance such as a rotor
experiencing a cyclic pressure fluctuation due to the rotation of
the blades in a steady non-uniform field in the azimuthal direc-
tion [2], or the disturbance is the consequence of an instability
such as flutter or aeroelastic instability which occurs at or near
the natural frequency of the rotor blade. The local vibration of
the simple academic rotor/stator cavity is studied in this paper by
imposing two frequencies previously identified as unstable fluid
modes by Bridel [3] based on the use of Large eddy Simulation
(LES) and local stability analysis . The presence of these un-
stable fluid modes were later confirmed by Queguineur et al. [4]
through a global stability analysis which were the main driver of
the rotational instability. Although the problem is exacerbated
by the complexity of real world industrial applications, numer-
ous experimental and numerical studies have been dedicated to
enclosed rotor/stator cavities which serve as a preliminary model
for turbomachinery devices [5] [6] . From a stability analysis

perspective, enclosed rotating flows at high Reynolds number de-
velop an intrinsic instability at their limit cycle highlighted by the
existence of three dimensional structures taking the form of spi-
ral vortices. Recent experimental and numerical studies (Serre et
al. [5] [7], Sévrac et al. [8], Tuliszka et al. [6]) have revealed the
existence of these three dimensional patterns. Particular atten-
tion is put in the present work on the effect of forced vibration
in an enclosed rotor/stator cavity on flow dynamics with special
focus on the instabilities that arise in the flow. To do so, two
different Large Eddy simulations are carried out on the annu-
lar academic cavity introduced by Tuliszka et al. [9] and used
by Bridel [3] by imposing a certain sinusoidal function for the
displacement of the rotor. The frequencies of vibration chosen
correspond to the previously identified most unstable modes by
Quegineur [4]. Second, a Dynamic Mode Decomposition [10]
(DMD) is used whereby successfully showing that the flow dy-
namics can be captured and the spatial distribution of the spiral
patterns can be reconstructed for such forced case. This is also
corroborated by using pointwise pressure spectral density analy-
sis thanks to the inherent three dimensional structure of the spi-
ral patterns. Finally, a global stability analysis is conducted on
both forced cases subsequently demonstrating that the forcing in
the flow has indeed altered its stability hence showing that new
modes arises and others disappear.

The paper is organised as follow: The geometric configura-
tion as well as the moving mesh technique are presented in Sec-
tion 2. The Large Eddy Simulations are discussed and compared
with the Dynamic Mode Decomposition of the flow at different
heights inside the cavity in section 3. Then, in Section 4, a de-
scription of the base flow obtained from LES is given followed
by a detailed analysis of the global stability results.

THE GEOMETRIC CONFIGURATION
The configuration of interest is presented on Fig. 1. It is an

academic rotor/stator cavity of height h composed of two smooth
discs: the rotor and stator. The former rotates at a constant an-
gular velocity Ω = 2πF0 (F0 is the frequency of the rotor) about
the z-axis whereas the latter is stationary and are delimited by a
cylindrical shroud at r = R1. The cavity also comprises an annu-
lus of radius R0 that rotates at the same speed as the rotor. The
curvature parameter Rm is usually used to define annular cavi-
ties. In the present case Rm = 1.8 and is equal to the one used
by Sévrac et al. [8] experimentally and by Tuliszka et al. [11]
numerically. The mean flow inside the cavity is driven by the
geometrical parameter G that is the aspect ratio of this cavity
where G = h/∆R (∆R = R1 −R0), and the global Reynolds num-
ber ReG = ΩR2

1/ν where ν is the kinematic viscosity of the fluid.
The value of the aspect ratio G is often used in the literature and
its value is here fixed so it is a first order approximation of a
real turbomachine model [7] [6]. All the geometric and physical
parameters are summarized in Table 1.
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FIGURE 1: Scheme of the academic annular rotor/stator cavity.

TABLE 1: Characteristic parameters of the Tuliszka cavity.

Internal Radius R0 71 mm

External Radius R1 250 mm

Cavity Height h 35 mm

Aspect Ratio G 0.2

Curvature parameter Rm 1.8

Angular Velocity Ω 315 rad/s

Global Reynolds Number ReG 105

NUMERICAL METHOD
Boundary conditions and mesh

In order to create the mesh of the configuration shown on
Fig. 1, a 2D annular disk made of fully unstructured triangular
elements is built and extruded in the z direction. Fig. 2a shows
a horizontal cut of the cavity. Mesh clustering is carefully taken
into consideration to minimize errors at the walls where interac-
tions are important. Note that the final 3D mesh is consequently
made of only prismatic elements that are equally distant in the
z direction. Regarding the movement of the rotor, the Arbitray
Langrangian Eulerian (ALE) description given by Hirt et al. [12]
and implemented in the code by Moureau et al. [13] is used. The
ALE is a technique that combines the best features of both the
Lagrangian and Eulerian approaches. In this framework it allows
the nodes to move in the continuum in a normal Langrangian
fashion, or be moved in an arbitrary way to provide a continuous
banding capability. This freedom in the computational allows a

greater deformation of the continuum compared to a Lagrangian
approach with a superior resolution than the one allowed by the
Eularian method. This method has already been validated on pis-
ton engine experiments [14] and in rotating channels [15]. The
ALE is implemented in this case by first defining three zones in
the mesh configuration as shown on figure Fig. 2b.

(a)

(b)

FIGURE 2: Transverse cut of the mesh at mid cavity (a), vertical
cut of the mesh with the different blocks used

The zones are defined in such a way to facilitate the use of
the moving mesh procedure when the rotor oscillates, as well as
to preserve the quality of the mesh at the walls by maintaining
a first grid node wall normal coordinate z+ < 5 as advised for
LES, and by limiting mesh distortion as much as possible. Grid
independence tests have already been by Bridel [16] using the
same configuration and numerical solver. However, the config-
uration of the zones and cells have been built according to the
observations made in this study. The zone containing the rotor
is made of all the first 10 mesh elements in the axial direction
and moves in translation along the z direction according to the
following imposed velocity function:

z(t) = zmax|sin(2π f0t)|, (1)

Where z(t) is the instantaneous position of the rotor in space, zmax
is the maximum amplitude of vibration and f0 is the frequency
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of vibration imposed in Hertz (Hz). In the compression zone all
mesh elements move in translation and deform linearly according
to the position of rotor. Finally, the zone around the stator is fixed
meaning the the nodes do not move inside this region. This zone
is defined by taking the first five mesh elements relative to the
stator in the z direction to also maintain the quality of the mesh
at the wall.

Regarding the treatment of boundary conditions, all walls
are adiabatic. Radial and axial no slip conditions are applied
on the rotating disc and shaft hence in the system of cylindrical
coordinates (r,θ ,z) this translates to ur = uz = 0 and uθ = rΩ. A
slip-wall condition is enforced on the stationary disc and shroud
where ur = uz = uθ = 0.

Large eddy simulation
The code chosen for the simulation is avbp [17] which is a

massively parallel code widely used in theoretical and applied
research capable of solving the full compressible Navier-Stokes
equations using a finite-element scheme TTGC [18] based on a
two steps Taylor-Galerkin formulation. This scheme has very
low diffusion and dispersion properties making it appropriate
for LES by providing a third order accuracy in time and space.
The time step in the simulation is not fixed, therefore it is dic-
tated by the acoustic Courant Friedrichs Lewy number (CFL).
In the present simulations, the CFL number is set to 0.7 hence
438 time steps are approximately needed for each cycle of vibra-
tion for Case 1 and 397 for Case 2. The LES Sub-Grid Scale
(SGS) model used is the Wall Adapting Local Eddy-viscosity
(WALE) [19] which is suitable for wall bounded flows and capa-
ble of yielding better wall stress rate prediction as well as turbu-
lent intensity compared to the classical Smagorinsky [20] model.

The flow field is governed by the Navier–Stokes equations,
which translates the following for a Newtonian incompressible
fluid:

∇ ·u = 0 (2a)
∂u
∂ t

+(u.∇)u = −∇p+
1

Re
∇2u (2b)

This system of differential equations is thereby solved in a cylin-
drical coordinates reference frame (r,θ ,z) where ∇ · x, ∇x and
∇2x denote respectively the divergence gradients and Laplace
operators. It is also worth mentioning that the rotor axial mo-
tion which is taken into account by the fluid model written in
the (ALE) formulation introduced previously, slightly modifies
the convective term in the Navier-Stokes equations by introduc-
ing an additional term related to the mesh velocity. Hence this
term is changed to : [(u − w).∇)]u where w is the mesh veloc-
ity. For both cases used in this study the fluid is initially at rest
and the rotor is at its initial position. At time t = 0 the rotor is

brought to its rotation speed Ω = 2πF0 rad/s and the fluid accel-
erates due to viscous entrainment. At that same instant the stator
starts to vibrate. Numerical convergence is obtained when the
kinetic energy inside the cavity reaches a plateau when the rotor
has completed 30 rotations.

Now that all the computational details are set, the flow in-
side the cavity can be analyzed. As mentioned earlier, the two
cases treated in this study differs only in the forcing frequency
imposed where for the first case f0 = 3.24F0 and for the second
one f0 = 3.61F0. These frequencies correspond to the two most
unstable fluid modes found inside the cavity by [21] through LES
and linear stability analysis. The amplitude of vibration imposed
correspond to A = 0.057h. For instance, forced vibration issued
from mistuned bladed disks can lead to an axial vibration ampli-
tude of the blades in the range of 0.035h−0.057h depending on
the operating conditions of the turbomachine and the structural
properties of the rotor as demonstrated by Zhao et al. [22].

FIGURE 3: Two-dimensional isocontours of the axial velocity
fluctuation u′

z = uz −〈uz〉 of Case 1 f0 = 3.24F0 (a) and Case 2
f0 = 3.61F0 (b) at different heights inside the cavity (the values
are normalized by their corresponding maximum axial velocity
fluctuation.

Figure 3 shows 2D cuts relative to the rotor of the axial ve-
locity fluctuation u′

z = uz − 〈uz〉 where uz is the instantaneous
axial velocity and 〈uz〉 is the mean axial velocity. The boundary
layer height δ is measured for the mean flow relative to the rotor
average position after one period. The axial velocity fluctuation
is an important parameter here because when instability arises in
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the flow, the base flow which is stable departs from a purely par-
allel flow and the perturbations around it can be measured by the
magnitude of u′

z. In both cases LES seems to capture the insta-
bility pattern as demonstrated by Bridel [3] and Serre [7]. Near
the stator boundary layer (z = 0.034) of Figure 3, both cases fea-
ture the same instability patterns as demonstrated by the outward
propagation of spiral vortices starting at r ≈ 0.13 towards the
shroud at r ≈ 0.2, whereas near the hub at 0.071 < r < 0.13 a set
of dislocated circular patterns are identified. The former insta-
bility is three dimensional and is referred to as type I instability,
whereas the latter can be interpreted as a type II instability [23] .
These two instabilities arise in the flow due to two distinct bifur-
cations that yield this system of spiral rolls coexisting with the
circular one [24]. The statoric boundary layer features 28 and 30
arms spiral structures for case 1 and case 2 respectively existing
at high radii whereas near the hub these spiral structures turn into
a quasi-concentric annular ones. For the rotating boundary layer,
the magnitude of u′

z is small in general due to important viscous
forces at the wall that play a role in damping the axial velocity
fluctuation. However, at high radii and near the shroud, inertial
forces appear to overcome the viscous forces at the wall and their
magnitude is relatively higher. The spiral patterns are also iden-
tified in this case as co-winding rotating vortices that propagate
inward toward to inner wall. The mid-height of the cavity ex-
hibits low amplitude of axial velocity fluctuation in general with
a slightly higher activity near the hub and the flow appears to
be spatially organized similar to the rotor boundary layer. It is
worth to note also that at all heights of the cavity the magnitude
of the axial velocity fluctuation is small compared to its maxi-
mum value due to the rotor vibration.

Dynamic Mode Decomposition
To further investigate the underlying structures and their sta-

bility found by numerical simulation, a widely used modal de-
composition in fluid dynamics known as Dynamic Mode De-
composition [10] (DMD) is applied on both cases. The DMD
is able to extract the dynamical features of the flow through a
sequence of snapshots as well as their corresponding frequen-
cies and growth rate. This coupled spatio-temporal analysis acts
like a global stability analysis for linearized flow problems while
accurately describing the motion of the flow. A signal with a
duration of 1s containing all the necessary flow data is taken at
steady state after approximately 196 cycles of vibration for Case
1 and 216 cycles for Case 2. This signal contains a sequence of
120 equi-spaced snapshots that are sufficient for the solution to
converge. Figure 4 represents the most energetic modes consti-
tuting Case 1. Two modes appear to be dominant the inside the
cavity. At the stator boundary layer, the first one has a temporal
frequency of F = 3.64F0 and a wave number of m = 28. It is
made of counter-winding vortices starting at r ≈ 0.13 m, where
approximately 3 cylindrical vortices exist around the hub, and

propagate outward. This mode appears to coexist with the sec-
ond one that has a temporal frequency of F = 4.64F0 and the
same cylindrical vortices as found in the first mode. In the core
of the cavity the two modes appear to shift to a different radial
location mainly around the hub and shroud. Overall their magni-
tude is very low compared to the modes found near the statoric
boundary layer. The mode F = 3.64F0 appears to mark the mid-
dle of the cavity with 6 spiral vortices compared to 5 for the mode
F = 4.64F0. At the rotor boundary layer the flow seems to ex-
hibit modal patterns at the same radial interval as the core of the
cavity. Nevertheless, for the two modes, the axial velocity fluc-
tuation seems to be stronger near the shroud as demonstrated by
approximately 12 spiral arms for the mode F = 3.64F0 and 10
spiral arms for the mode F = 4.64F0. As previously shown on
Fig. 3, the LES predictions appear to match the patterns found
by DMD for the mode F = 3.64F0. this mode was also retrieved
by Bridel [3] and Quegineur [21] for the same cavity excluding
the vibration of the rotor. However, the annular mode found pre-
viously had its frequency shifted by 1.4F0.

FIGURE 4: Isocontours of the mode amplitude ûz ∈ [0,0.5] at
z = 0.034 m (a), z = h/2 (b) and z = δ (c) for the two major
DMD modes constituting Case 1.

Fig. 5 shows the isocontours of the axial velocity mode
amplitude ûz of the DMD modes constituting Case 2. The
most energetic modes retrieved correspond to F = 3.26F0 and
F = 5F0. The former has also been identified by Bridel [3] and
Quegineur [21] in the same cavity as annular mode where the ro-
tor is not vibrating; whereby the latter has emerged and appears
to dominate inside the cavity as shown in the LES predictions
on Fig. 3b. Both modes exhibit the same radial distribution of
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FIGURE 5: Isocontours of the mode amplitude ûz ∈ [0,0.5] at
z = 0.034 m (a), z = h/2 (b) and z = δ (c) for the two major
DMD modes constituting Case 2.

the modal structures at the rotor boundary layer and the core of
the cavity. Near the stator the mode F = 5F0 is characterized
by 30 spiral vortices with less dominant cylindrical ones near
the hub. The second mode yield the opposite structure organi-
zation, a quasi-concentric dislocated circular waves near the hub
and spiral arms of negligible magnitude. These preliminary re-
sults indicate that the hydrodynamic modes responsible for the
flow instability can react due to a forcing of the flow at a match-
ing frequency.

Spectral analysis
The spectral content of the flow and the frequencies respon-

sible for the underlying instabilities can be directly monitored
through a point-wise power spectral density that is carried out
on multiple numerical probes spread radially and in azimuth at
the rotor and stator boundary layer, as well as at the core of the
cavity. The objective is to confirm that the driving modes present
in the flow are coherent with the Dynamic Mode Decomposi-
tion (DMD). Unlike the DMD, this method does not provide the
spatial distribution of the modes but can provide a rich spectral
content of the flow in real time as well as their corresponding in-
tensity whereby validating the previously identified frequencies.
Due to the inherent three dimensional structures of the present
patterns (azimuthal and axial distribution) inside the cavity; only
the spectral content of the modes present near the stator boundary
layer is presented, the core of the cavity and the rotating bound-
ary layer express the same spectral content in terms of frequency
but with a slightly different amplitude. A total of 5 circles of
60 probes each are spread in the axial direction of the two discs

boundary layers at z = δ and z = h−δ as well as the mid section
of the cavity at z= h/2. Figures. 6 and 7 show the location of the
numerical probes in the cavity used to extract all the relevant data
and the power spectral density (PSD) of the axial velocity fluctu-
ation u′

z. The power spectral density (PSD) of a signal provides
the variation of its intensity in terms of power or energy over an
entire range of frequency. The nomenclature CiPj will be used
to refer to the current probes where i ∈ [1,5] denotes the number
of the circle and j ∈ [0,15] the number of the probe point. Three

FIGURE 6: Location of the numerical probes in the cavity asso-
ciated with Case 1 and Case 2 (not to scale). Numbering of the
circles match the color of the probes and the corresponding PSD
signal.

main frequencies can be identified in Case 1, i.e. 3.24F0, 3.61F0
and 4.7F0, and in Case 2, i.e. 3.24F0, 3.61F0 and 5F0, all other
frequencies are either harmonics or linear combination of these
modes that contribute to noise in the system. The magnitude of
the peaks appear to be consistent with the radial distribution of
the three dimensional patterns inside the cavity. For Case 1 the
mode 3.61F0 appears to be the same mode identified in the DMD
as 3.64F0 and the main driver of the statoric instability shown
by LES predictions on Fig. 3 . Indeed, this mode is present at
0.13 < r < 0.2 where the highest peaks of axial velocity PSD are
identified by C3P0. The emerging mode 4.7F0 that is mostly con-
centrated around the hub, has also its highest axial velocity PSD
magnitude present in that region as shown by the point C1P0.
Finally the frequency of vibration imposed f0 = 3.24F0 is re-
trieved which perturbates the flow the most in the region between
C1P0 and C3P0. The constituent frequencies of Case 2 match the
ones retrieved by DMD with three major peaking frequencies i.e.
3.24F0, 3.61F0 and 5F0. The mode 3.24F0 corresponds in this
case to the hydrodynamic mode characterized by circular spi-
rals near the hub subsequently yielding the highest peak at the
point C1P0 with a magnitude of 40 db. The forcing frequency
f0 = 3.61F0 is also present alongside a build up of a frequency
at around 4F0. This frequency does not appear to have any con-
tribution in the DMD spectrum hence it might be linked to noise
inside the system. The dominant frequency found in the station-
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ary disc by LES is identified by the PSD as a peak at 5F0 with a
magnitude of 60 db between C2P0 and C3P0. In general both PSD
spectrums have the same order of magnitude (60db to 95db) with
the second one having it slightly higher.

(a)

(b)

FIGURE 7: Power Spectral densities of the axial velocity fluc-
tuations u′

z in the statoric boundary layer (z = h − δ ) registered
by probes C1P0 to C5P0 of Case 1 ( f0 = 3.24F0) (a) and Case 2
( f0 = 3.61F0) (b).

LINEAR STABILITY ANALYSIS
Base Flow

In order to gain more insight about the underlying dynam-
ics of the flow and the stability of the dominant modes inside
the system, a global linear stability analysis is applied on Case 1
and Case 2. In linear stability theory, the analysis is done around
a base flow which is the solution for the corresponding Navier-
Stokes equations that model a specific system. In this case, the
base flow is defined by the following fields that must be known,
i.e. velocity Ub(r,θ ,z, t), pressure Pb(r,θ ,z, t) and temperature

Tb(r,θ ,z, t). These fields define the basic flow. For instance,
analytical solutions can be taken to solve simple hydrodynamic
problems. Tollmien [25] and Schlichting [26] defined the analyt-
ical solutions of the Orr-Sommerfeld equations that are derived
from the full Navier-Stokes equations by making several simpli-
fying assumptions [26]. One of these assumptions is that a flat
plate boundary layer can be modelled as a parallel flow. How-
ever for complex flow problems the mean flow has proven to be a
good substitute for the base flow, and flow non-linearities and the
structures of the fluctuations can be predicted by linear stability
analysis [27] [28]. Quegineur [4] also succeeded in performing
a global local linear stability analysis on this cavity, excluding
the motion of the rotor in the axial direction, and found good
agreement between the two methods by taking the mean flow as
solution for the Navier-Stokes equations. To alleviate the compu-
tational cost of the problem, the stability analysis is performed in
2D, hence the mean flow is obtained by taking the temporal and
azimuthal averages (the mean flow is not axisymmetric) of the
flow as well as the average position of the rotor during multiple
periods at the flow limit cycle.

(a)

(b)

FIGURE 8: Base flow contour of the time and azimuthal averaged
radial velocity component normalized by its maximum magni-
tude Case 1 (a) and Case 2 (b).

Figure 8 shows the normalized average radial velocity com-
ponent of Case 1 and Case 2 which is positive at the rotor bound-
ary layer and negative in the statoric one. Forcing in the flow has
altered the base flow in both cases and in different ways. Indeed,
at the rotor boundary layer the hub and the shroud seem to have
a stronger effect on the organization of the flow for Case 2, a
higher frequency of vibration generated more turbulence in this
region. The two statoric boundary layer also seem to be affected
by the hub where their thickness is relatively the highest in this
region.
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Global linear stability analysis
In the global stability analysis, the dynamics of the small

amplitude perturbations around the mean flow is analyzed while
relying on the weakly parallel flow assumption [29] [30]. Ac-
cording to Lyapunov [31], a fluid system can be stable if an in-
finitesimal perturbation around the base flow stays infinitesimal
over time and does not grow, or if the perturbed flow stays around
the base flow. Note that linear stability analysis can also yield the
physical features of the small perturbations i.e. frequency and
growth rate. The global governing equations for any azimuthally
periodic flow are obtained provided that:

First the 2D base flow is defined:

Ub = (Ub,r(r,z),Ub,θ (r,z),Ub,z(r,z)), (3a)
Pb = Pb(r,z). (3b)

Flow variables are then decomposed into a steady axisymmetric
base flow and an unsteady three dimensional perturbation follow-
ing the global decomposition:

{
U(r,θ ,z, t) =Ub +u′(r,θ ,z, t),
P(r,θ ,z, t) = Pb + p′(r,θ ,z, t)

(4)

The linear stability analysis is then obtained by linearizing the
Navier-Stokes equations around the base flow. Subsequently, the
equation obtained is linear and homogeneous, so the perturbed
variables can be written in the form:

[u′
r,u

′
θ ,u

′
z, p′] = [ûr, ûθ , ûz, p̂](r,z)exp{[i(mθ −ωt)]} (5)

These global modes are then injected in the linearized Navier-
Stokes equations. The 2D global modes can be obtained by solv-
ing the eigenvalue problem for a given set of boundary condi-
tions. In our case, Dirichlet conditions are applied for the ve-
locity perturbations and Neumann conditions are used the pres-
sure. The global stability analysis is performed using the code
GIFIE [3] which is capable of discretizing the eigenvalue prob-
lem using FreeFem++ [32], an open source tool focused on solv-
ing partial differential equations using the finite element method.

The eigenvalue problem defined earlier is solved to obtain
all the normal modes along with their frequencies and amplifica-
tions at each wavenumber. Figures 9 and 10 show a plot of the
frequency and growth rates of the most unstable modes at each
wavenumber m for Case 1 and Case 2. For the first case, four
distinct regions can be identified on Figure 9. The most unstable
mode of the first branch corresponds to the axisymmetric mode
m = 0 that has a frequency of 4.71F0. The mode m = 28 can
also be identified in the fourth branch as having a frequency of

FIGURE 9: Scatter plot of the temporal growth rate (a) and the
frequency (b) versus the azimuthal wavenumber m of the linear
global modes obtained for Case 1. The ordinate values have been
normalized by the pulse of the rotor 2πF0 .

FIGURE 10: Scatter plot of the temporal growth rate (a) and the
frequency (b) versus the azimuthal wavenumber m of the linear
global modes obtained for Case 2. The ordinate values have been
normalized by the pulse of the rotor 2πF0 .

3.6F0. Even though it does not have the highest growth rate, it is
the only mode that imposes its spatial organization in the stator
boundary layer as shown previously by LES. Similarly for Case
2, the axisymmetric mode m = 0 is the most unstable one for
the first branch and has a frequency of 3.3F0. The second mode
with he wavenumber m = 30 is also retrieved and has the highest
amplification rate in the system for a frequency of 4.92F0. The
normal modes obtained clearly reflect the presence of the two
distinct rotational instabilities identified by LES and DMD. To
further understand the results obtained by the global linear sta-
bility analysis, the spatial organization of these modes are pre-
sented and compared to a dynamic mode decomposition (DMD)
where each mode is projected on its corresponding wavenumber.
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Note that the forcing frequency for both cases is retrieved by the
stability analysis. However the study is here restricted to the fluid
modes only.

For Case 1, the spatial organization for the 2D axial velocity
modes are represented on Fig. 11 for the wavenumbers m= 0 and
m = 28. A good agreement is found between the DMD and the
global linear stability. For the mode m = 0, the annular vortices
identified by LES and DMD on the circular cuts are also high-
lighted in this region. Furthermore, a strong recirculation zone is
identified near the hub throughout the cavity, this was also shown
on the rotor boundary layer and the core of the cavity. The mode
m = 28 is expressed by the spiral arms located at 0.13 < r < 0.21
of the stator boundary layer as shown on Fig. 8a. Indeed, this
mode appears to be dominant within the stationary disc only as
demonstrated by the global stability analysis the DMD projection
on to this specific wavenumber. Note also that the frequencies
retrieved by the GLSA and DMD for the two modes are quite
similar i.e. 4.71F0 and 4.6F0 for m = 0, 3.6F0 and 3.61F0 for
m = 28.

(a)

(b)

FIGURE 11: 2D shape of the axial velocity mode ûz obtained by
GLSA and compared with the DMD for the two wavenumbers
m = 0 (a) and m = 28 (b) (Case 1)

For Case 2 and as shown by Fig. 12, the 2D mode shape
of the axial velocity mode ûz obtained by the global linear sta-
bility analysis and Dynamic Mode Decomposition (DMD) co-
incide. The spatial organization of the mode m = 0 seems to
comply with both methods except for the region near the rotor

(a)

(b)

FIGURE 12: 2D shape of the axial velocity mode ûz obtained by
GLSA and compared with the DMD for the two wavenumbers
m = 0 (a) and m = 30 (b) (Case 2)

where the GLSA yields a higher mode amplitude. However, the
frequencies retrieved remain similar: 3.3F0 and 3.24F0 with the
DMD. Both spatial distributions furthermore agree with the fact
that for this mode, the region with the highest fluctuations ex-
pressed by circular vortices is concentrated near the stationary
disc for 0.071 < r < 0.12 and near the hub at very low radii.
The magnitude of the mode near the rotating disc is relatively
small, this is also valid for the axial velocity fluctuation as ex-
plained in the second section. Note that this mode has also
been found by Quegineur [4] via local and global stability anal-
yses. The second mode pulsates at a frequency of 4.92F0 for a
wavenumber of m = 30, close to the one found by DMD which
is at 5F0. Its presence is essentially found near the stationary
disc for 0.13 < r < 0.20 where the spiral vortices are manifested.
To conclude, just like the stationary case of Quegineur [4], the
global linear stability analysis (GLSA) and Large Eddy Simula-
tion (LES) offer mean to access flow modes populating a limit-
cycle even in forced conditions.

CONCLUSION
Rotating flow instabilities are an intrinsic phenomenon in

enclosed cavities that depend on the Reynolds number Re, the ge-
ometric configuration of the cavity and its boundary conditions.
These instabilities can have a major impact on the structural in-
tegrity of a turbomachine. It is therefore crucial to understand
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how they work in real life applications. To do so, the local vibra-
tion of a rotor for an academic rotor/stator cavity is assessed by
imposing two frequencies that correspond to the most unstable
fluid modes inside the corresponding cavity of the non-forced
case. First Large Eddy simulations are produced to access the
flow responses of these two forced cases, showing that new in-
stabilities emerge in the system whereas others disappear. Dy-
namic Mode Decomposition [10] successfully captured the per-
turbation of the flow confirming the shape of these new instabili-
ties. Furthermore, pointwise spectral density analyses performed
at different locations inside the cavity confirm the wide range of
oscillations inside the system . Finally a 2D global linear stabil-
ity is shown to be able to find the most unstable modes and their
shape for the two cases hereby capturing the new modes in the
system although it is externally forced. To conclude, the present
results confirm that the content, although subject to a external
forcing, can be used to analyze forced limit cycles. This opens
the door to the use of dedicated control strategies as proposed by
Quegineur [21].
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Titre : Prédic�on et mi�ga�on des instabilités de cavités issues de l'interac�on fluide-structure
Mots clés : CFD, stabilité hydrodynamique, interac�on fluide-structure, turbomachines, Aeroélas�cité, SGE
Résumé : Les phénomènes complexes et insta�onnaires au sein des cavités rotor/stator des turbopompes spa�ales sont renommées en raison de
leur capacité à engendrer des problèmes de vibra�ons ayant un impact dangereux sur le fonc�onnement des moteurs. Ces dynamiques,
couramment désignées sous le terme de "bandes de pression", résultent d’un mouvement oscillatoire du fluide, induisant un couplage avec la
structure environnante, posant ainsi un risque significa�f sur le fonc�onnement de la turbopompe. L’objec�f principal de ce�e thèse est de
comprendre et de prédire numériquement l’origine de ces "bandes de pression" dans un contexte mul�physique. Dans ce�e op�que, ce�e étude
ini�e une inves�ga�on numérique et théorique des problèmes de vibra�ons forcées au sein d’une cavité académique, ainsi que des problèmes
d’interac�on fluide-structure, en me�ant l’accent sur les instabilités hydrodynamiques et aéroélas�ques. Ces écoulements se caractérisent
intrinsèquement par leur tridimensionalité, principalement en raison de la présence de couches limites sur le rotor, le stator et le carénage de la
cavité. En conséquence, l’instabilité se manifeste sous forme de structures cohérentes, à la fois axisymétriques et/ou sous formes de spirales, qui
peuvent être influencées par des forces dynamiques générées soit par la fusée elle-même soit par la turbopompe. Des expériences ont démontré que
les écoulements dans les cavités axiales des turbopompes présentent un autre type d’instabilité provoquant un phénomène de flo�ement du rotor.
Ces deux problèmes sont abordés dans ce�e étude en u�lisant une simula�on des grandes échelles (SGE), une approche dynamique des fluides
numériques insta�onnaire. Cet ou�l a en effet révélé que la dynamique sous-jacente de l’écoulement peut être retrouvée, contrairement aux
approches sta�onnaires telles que les simula�ons de type Navier-Stokes moyennées de Reynolds (RANS). Grâce à ce�e prédic�on, il est démontré
que l’instabilité de l’écoulement à l’intérieur d’une turbopompe à hydrogène à échelle réduite est liée à des tourbillons qui présentent le poten�el de
se coupler avec le rotor ainsi qu’avec l’acous�que de la cavité. Ce couplage tripar�te entre le fluide, le rotor et la cavité est spécifiquement traité en
développant un code de mécanique des structures perme�ant des analyses modales ainsi que des calculs élastodynamiques. Grâce à l’ensemble de
ces ou�ls numériques, des problèmes de vibra�ons forcées sont d’abord étudiés en u�lisant une configura�on simple comprenant une géométrie
cylindrique. Ce premier volet de l’étude est ensuite étendu aux écoulements de cavité en rota�on fermée, où la vibra�on du rotor provoque un
décalage des modes hydrodynamiques et, dans certains cas, une suppression totale de ces modes. En réac�on à ces réponses de l’écoulement seul,
et pour aborder le context mul�physique, le solveur de mécanique des structures est couplé au code LES grâce à une chaîne de couplage numérique.
Ce�e approche permet de résoudre des problèmes insta�onnaires et couplés fluide-structure. La stratégie de couplage adoptée est d’abord validée
avec succès à l’aide de deux cas test: une poutre vibrante immergée dans un fluide immobile et un cas de vibra�on induite par les tourbillons (VIV).
Le solveur couplé est ensuite u�lisé pour simuler l’interac�on fluide-structure entre le rotor et l’écoulement interne de la turbopompe. Les résultats
confirment le couplage vibroacous�que entre le fluide, le disque du rotor et la cavité, tel qu’observé lors des expériences. Ce�e simula�on
mul�physique a également permis de calculer la quan�té nécessaire d’amor�ssement pour stabiliser un tel système, démontrant ainsi l’efficacité du
couplage développé. Enfin, un cadre d’analyse de stabilité linéaire globale (GLSA) est détaillé et mis en oeuvre pour fournir un aperçu des modes
propres dominants et de leurs taux de croissance correspondants à l’intérieur de ces systèmes.

Title: Predic�on and mi�ga�on of cavity instabili�es resul�ng from fluid-structure interac�ons
Key words: hydrodynamic stability, CFD, fluid-structure interac�on, turbomachinery, Aeroelas�city, LES
Abstract: Complex unsteady phenomena within rotor/stator cavi�es of space turbopumps have gained notoriety because of their propensity to
induce vibra�on issues that are clearly detrimental to the opera�on of the engine. This problem has indeed rendered the development and opera�on
of rocket engines a formidable undertaking. These dynamics, referred to as ’pressure bands’, are a consequence of a self-sustained oscillatory
mo�on of the working fluid, thereby engendering a coupling with the solid structure posing a paramount risk to the opera�on of the turbopump
and the structural integrity of its components. Understanding and predic�ng the source of ’pressure bands’ in a mul�physics context is the primary
objec�ve of this thesis. For instance, this work provides a numerical and theore�cal inves�ga�on of forced vibra�on problems in enclosed rota�ng
flows as well as fluid-structure interac�on problems with a focus on hydrodynamic and aeroelas�c instabili�es. Note that these flows are inherently
three dimensional due to the presence of boundary layers on the impeller, stator and cylindrical shroud. Consequently, at high Reynolds numbers,
the flow instability is manifested through coherent axisymmetric and/or spiral structures that can be affected by dynamic loads either generated by
the rocket or the turbopump itself. Experiments have shown that axial cavity flows also exhibit a different type of instability that lead to a flu�er-like
phenomena of the rotor. Both problems are addressed in this work using Large Eddy Simula�on, an unsteady CFD approach, in conjunc�on to
mul�ple predic�ve numerical strategies. All tools show that the underlying dynamics of the flow can be retrieved contrarily to steady approaches like
Reynolds Averaged Navier-Stokes Simula�ons (RANS) that failed in the past to predict such phenomena. Thanks to LES flow only predic�on, the flow
instability inside a reduced scale hydrogen turbopump is retrieved and has the poten�al of coupling with the rotor as well as the acous�cs of the
cavity. To address this problem, a structural mechanics code based on the finite element method is developed to perform modal analyses as well as
elastodynamic calcula�ons. Thanks to all these numerical tools, forced vibra�on problems are first inves�gated using a bluff body configura�on
where a ’lock-in’ phenomenon is iden�fied whenever a vortex shedding frequency converges to the forced vibra�on frequency. This first content of
this study is later extended to enclosed rota�ng cavity flows where the vibra�on of the rotor causes a shi� in the hydrodynamic modes and in some
cases, a total suppression of these modes. Following these flow only responses and to go further, the structural mechanics solver is further
developed and coupled to the LES code thanks to a numerical coupling chain that allows to solve fully unsteady and fully coupled fluid-structure
interac�on problems. The adopted coupling strategy is first successfully validated through two test cases: a vibra�ng beam immersed in a s�ll fluid
demonstra�ng that the fluid viscosity dampens the structure mo�on and brings it back to its ini�al posi�on, and a Vortex Induced Vibra�on (VIV)
case where a Kármán vortex street sheds from a rigid square and causes large amplitude vibra�ons of an elas�c plate. The coupled solver is then
used to simulate the fluid-structure interac�on between the rotor disk and working fluid of the turbopump. Results confirm the vibroacous�c
coupling between the fluid, rotor disk and cavity obtained by experiments. This mul�physics simula�on also allowed the calcula�on of the necessary
amount of damping to stabilize such system demonstra�ng the capability of the developed coupling. To finish, a Global Linear Stability Analysis
(GLSA) framework is detailed and performed to give more insight about the leading eigenmodes and their corresponding growth rate inside such
systems.
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