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Resumé

Même si l’optimisation non linéaire semble (a priori) être un domaine mature, de nouveaux
schémas de minimisation sont proposés ou redécouverts pour les problèmes modernes à grande
échelle. A titre d’exemple et en rétrospective de la dernière décennie, nous avons vu une vague
de méthodes du premier ordre avec différentes analyses, malgré le fait que les limitations
théoriques bien connues de ces méthodes ont été discutées en profondeur auparavant.

Cette thèse explore deux lignes principales de recherche dans le domaine de l’optimisation
non-convexe avec un accent particulier sur les méthodes de second ordre et d’ordre supérieur.
Dans la première série [114, 116], nous nous concentrons sur les algorithmes qui ne calculent
pas les valeurs des fonctions et opèrent sans connaissance d’aucun paramètre, car les méthodes
du premier ordre les plus adaptées pour les problèmes modernes appartiennent à cette dernière
catégorie. Dans [114], nous commençons par redéfinir l’algorithme bien connu d’Adagrad
dans un cadre de région de confiance et utilisons ce dernier paradigme pour étudier deux
classes d’algorithmes OFFO (Objective-Free Function Optimization) déterministes du premier
ordre. Pour permettre des algorithmes OFFO exacts plus rapides, nous proposons ensuite une
méthode de régularisation adaptative déterministe d’ordre p qui évite le calcul des valeurs de
la fonction [116]. Cette approche permet de retrouver la vitesse de convergence bien connu du
cadre standard lors de la recherche de points stationnaires, tout en utilisant beaucoup moins
d’informations.

Dans la deuxième série d’articles [118, 117], nous analysons les algorithmes adaptatifs dans
le cadre plus classique où les valeurs des fonctions sont utilisées pour adapter les paramètres.
Dans [118], nous étendons les méthodes de régularisation adaptatives à une classe spécifique
d’espaces de Banach en développant un algorithme de descente du gradient de Hölder. En
plus, nous étudions un algorithme de second ordre qui alterne entre la courbure négative et les
étapes de Newton avec un taux de convergence quasi optimal [117]. Pour traiter les problèmes
de grande taille, nous proposons des versions sous-espace de l’algorithme qui montrent des
performances numériques prometteuses.

Dans l’ensemble, cette recherche couvre un large éventail de techniques d’optimisation
et fournit des informations et des contributions précieuses aux algorithmes d’optimisation
adaptatifs et sans paramètres pour les fonctions non convexes. Elle ouvre également la voie
à des développements théoriques ultérieurs et à l’introduction d’algorithmes numériques plus
rapides.
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Thesis Abstract

Even though nonlinear optimization seems (a priori) to be a mature field, new minimization
schemes are proposed or rediscovered for modern large-scale problems. As an example and
in retrospect of the last decade, we have seen a surge of first-order methods with different
analysis, despite the fact that well-known theoretical limitations of the previous methods have
been thoroughly discussed.

This thesis explores two main lines of research in the field of nonconvex optimization
with a narrow focus on second and higher order methods. In the first series [114, 116], we
focus on algorithms that do not compute function values and operate without knowledge of
any parameters, as the most popular currently used first-order methods fall into the latter
category. In [114], we start by redefining the well-known Adagrad algorithm in a trust-
region framework and use the latter paradigm to study two first-order deterministic OFFO
(Objective-Free Function Optimization) classes. To enable faster exact OFFO algorithms,
we then propose a pth-order deterministic adaptive regularization method that avoids the
computation of function values [116]. This approach recovers the well-known convergence
rate of the standard framework when searching for stationary points, while using significantly
less information.

In the second set of papers [118, 117], we analyze adaptive algorithms in the more classical
framework where function values are used to adapt parameters. In [118], we extend adaptive
regularization methods to a specific class of Banach spaces by developing a Hölder gradient
descent algorithm. In addition, we investigate a second-order algorithm that alternates be-
tween negative curvature and Newton steps with a near-optimal convergence rate [117]. To
handle large problems, we propose subspace versions of the algorithm that show promising
numerical performance.

Overall, this research covers a wide range of optimization techniques and provides valuable
insights and contributions to both parameter-free and adaptive optimization algorithms for
nonconvex functions. It also opens the door for subsequent theoretical developments and the
introduction of faster numerical algorithms.
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pour tous vos conseils, remarques et soutiens fournis durant ces trois années.
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parents paternels et maternels qui ont su apporter des havres de joie que ce soit à Kairouan,
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Notation Index

IRn n-tuples of real numbers

In Idendity matrix of dimension n

λmin(M), λmax(M) Minimum and maximum eigenvalues of a symmetric matrix M

� Hadmard product

ei ith column of In for 1 ≤ i ≤ n

[x]+ max(x, 0) for x ∈ IR

xᵀy Scalar product between two vectors of IRn

V Infinite dimensionnal Banach space

V ′ Dual of V

〈., .〉 Dual pairing between V ′ and V

‖.‖V Primal norm in V

‖.‖V ′ Dual norm in V ′

f(x) Objective function

∇jxf Derivative tensor of f of order j

O(.) No-larger-than orders of its argument

k Iteration counter; as a subscript indicates a quantity at iteration k

xk kth iterated version of vector k

sk Step at iteration k

Tf,p pth order Taylor serie approximation

∆k Trust-region radii

σk Regularization parameter at iteration k

mk Model at x = xk

gk, Hk Gradient and Hessian at the iterate xk respectively
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Cp,β(V; IR) The class of p times Fréchet differentiable function with β-Hölder pth derivative

α, αk Stepsize along a descent direction

E.∼D[.] Excpectation of . under a distribution D

f Inexact approximation of a specfic quantity

L`(V⊗`) space of multilinear continuous functionals from V × V × · · · × V to IR

L`sym(V⊗`) subspace of L`(V⊗`) that is m-linear symmetric
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Chapter 1

Introduction

In computational mathematics, engineering, or finance, many problems can be reformulated
as optimization problems. The variable to be optimized might be restricted to a vector space
or a discrete set. Additionally, the objective function can have specific structures, such as
being convex, nonconvex, linear, or quadratic. If there is no prior knowledge about the
structures the problem possesses, and the optimization space is continuous, such problems
are categorized under Non-Linear Programming (NLP) terminology.

However, to achieve efficiency in devising minimization schemes, it’s crucial to exploit the
inherent structure of the given problem. For example, when the objective function is convex
and the decision variable is unconstrained, efficient numerical methods can be applied. This
is because every local minimum in such scenarios is also a global minimum [165, 168]. In the
following, we will primarily focus on the unconstrained problem

min
x∈IRn

f(x), (P)

where f is both differentiable and nonconvex. Unlike the convex scenario, achieving global
optimization for the aforementioned problem is usually unattainable. Moreover, verifying that
a feasible point is a local minimum of (P) becomes an NP-hard challenge, as demonstrated
in [161]. Consequently, for the unconstrained nonconvex NLP category, we might primarily
aim for local improvements from a given starting point.

Algorithms for solving (P) have a lengthy history predating modern computers. As early
as 1830, Cauchy introduced the steepest descent method, which relies solely on the gradient
[139]. Such optimization schemes, utilizing only gradient-related information, are termed first-
order optimization methods. However, these methods often fall short in effectively navigating
the loss landscape, leading to slow convergence, even for toy problems. The slow pace becomes
evident when using the gradient of an ill-conditioned quadratic function.

To accelerate the optimization process, one could consider employing Newton’s method.
Originally, Newton applied this method to solve polynomial equations, but it was later
adapted to address broader issues. For a historical perspective on the Newton-Raphson
algorithm, [217] offers comprehensive insights. Building on these methods, another pivotal
development was the Gauss-Newton method, tailored specifically for a certain class of (P)
problems. Since these schemes utilize the Hessian or its efficient approximation, they fall
under the category of second-order methods. Variations of Newton’s method typically achieve
rapid convergence as they near the solution. However, if they start far from the optimal

17
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point, these algorithms might converge slowly or, in the worst-case scenario, even diverge.
These pitfalls can be mitigated using step-length control techniques, commonly referred to as
‘’globalization” techniques.

First, we will provide an overview of past and recent globalization techniques and how
their theoretical analysis are performed. To begin, we shall propose a comprehensive survey
encompassing historical and contemporary globalization techniques. Our review of recent
methodologies will underscore issues necessitating attention. Moving forward, we shall em-
bark upon an examination of the incompatibility between traditional globalization approaches
and the requirements posed by modern large-scale optimization problems. A new globaliza-
tion paradigm, developed specifically for first-order methods and distinct from conventional
strategies, has emerged to address these issues. We will examine a representative algorithm
from this class, followed by a discussion on the potential of extending this paradigm to second-
order optimization techniques.

1.1 Standard Globalization Strategies

An algorithm that proceeds along the direction of the gradient can be globalized under ap-
propriate assumptions. The most straightforward method hinges on knowing the Lipschitz
constant of the gradient for step-length control, which may not be easy to compute. More
effective globalization techniques have been proposed and developed in the literature.

1.1.1 Line Search

Line search methods involve iteratively exploring different step sizes along a selected search
direction and evaluating the objective function at those points. The goal of the algorithm
is to find the step size that leads to the most significant reduction in the objective function
value by comparing function values at various step sizes. This step size is then used to update
the current solution. The algorithm’s general framework is presented below.

Algorithm 1.1.1: Generic Line Search Algorithm

Step 0: Initialization An initial point x0 ∈ IRn, an initial stepsize α0 > 0 as well as
line search hyperparameters.

Step 1: Compute descent direction and initial stepsize Compute a descent di-
rection dk.

Step 2: Step length computation Compute step length αk satisfying specific re-
quirements.

Step 3:Iterate update Set xk+1 = xk + αkdk.
Increment k by 1 and go to Step 1.

For the sake of comprehensiveness, we present here a more elaborate account of Algo-
rithm 1.1.1. The algorithm’s framework demonstrates the importance of Steps 1 and 2 for
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the algorithm to be successful. The selection of dk involves choosing between a pure gradient
descent step (dk = −∇1

xf(xk)) or a Newton-type direction (dk = B−1
k ∇1

xf(xk)), where Bk is
a definite positive approximation of the Hessian.

The conditions in Step 2 are necessary to ensure the algorithm convergence because the
simple requirement (f(xk +αkdk) ≤ f(xk)) is insufficient. To address this issue, we introduce
the Armijo condition for the step, which is expressed as follows

f(xk)− f(xk + αkdk) ≥ −c1 αk∇1
xf(xk)ᵀdk, (1.1.1)

where c1 ∈ (0, 1). It should be noted that as dk represents a descent direction, ∇1
xf(xk)ᵀdk

is negative, resulting in a decrease in function values in accordance with (1.1.1). Since f
is differentiable, values of αk that are small enough will meet the inequality. However, the
algorithm’s convergence may be slow. To address this issue, another requirement is added
and expressed as follows

dᵀk∇
1
xf(xk + αkdk) ≥ c2 d

ᵀ
k∇

1
xf(xk), (1.1.2)

with c2 in the interval of (c1, 1). The Wolfe conditions, described in [205] and [206], comprise
of two conditions denoted by (1.1.1) and (1.1.2). The second one (1.1.2) limits the step length
to a minimum value. If the gradient is Lipschitz, this condition forces a lower-bound on αk
scaling in 1

L1
. By implementing these conditions, the need for precise derivative information

to achieve convergence is eliminated.
To uphold the aforementioned conditions, a widely used approach is to employ a back-

tracking line search, which is briefly described here. Initially, a large step length is taken,
which is then iteratively decreased until condition (1.1.1) is satisfied.

To elaborate, the step size is reduced using the formula

αk = τmαk,0,

where τ ∈ (0, 1) is a constant and m is the smallest integer that satisfies (1.1.1). The
scalar αk,0 represents the initial step length at iteration k. The advantage of employing this
method lies in its ability to implicitely guarantee a step size that is large enough through
the mechanism for updating αk, thereby removing the necessity of explicitly considering the
curvature condition (1.1.2).

Note that while our primary focus is restricted to the unconstrained problem (P), the
line search approach is extensively employed in constrained optimization scenarios. In these
settings, the line search technique plays a pivotal role in identifying appropriate steps while
maintaining the constraints. An excellent example of this is the Interior-Point Optimizer
(IPOPT) [201], which implements the line search strategy for computing valid steps. For
further details on executing the line search, such as choosing hyperparameters and conduct-
ing theoretical analysis, additional information can be found in Chapter 4 of [172]. We
now present an alternative paradigm that utilizes more extensively second-order information,
which we detail below.

1.1.2 Trust-region and related methods

In this subsection, we give a brief overview of trust-region techniques, starting with a descrip-
tion of their paradigm. At each iteration x, trust-region methods construct a model for the



20 CHAPTER 1. INTRODUCTION

objective function. This model can be either linear or quadratic. The model is minimized
within a trust-region of a certain radius, which is updated according to the acceptance rate.
The basic framework of the algorithm is presented below.

Algorithm 1.1.2: Basic Trust-Region Algorithm (BTR)

Step 0: Initialization An initial point x0 ∈ IRn, an initial stepsize ∆0 > 0 are given,
as well as the parameters 0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1. Compute f(x0)
and set k = 0.

Step 1: Compute current model Build a first or second-order model mk(s).

Step 2: Step computation Compute sk such that

sk ' arg min
‖s‖≤∆k

mk(s) (1.1.3)

with mk defined in (1.1.6).

Step 3: Acceptance of the trial point Compute f(xk + sk) and define

ρk
def= f(xk)− f(xk + sk)

(mk(0)−mk(sk))
. (1.1.4)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Trust-region radius update Set

∆k+1 ∈


[∆k,+∞) if ρk ≥ η2,

[γ2∆k,∆k] if ρk ∈ [η1, η2),
[γ1∆k, γ2∆k] if ρk < η1.

(1.1.5)

Increment k by 1 and go to Step 2.

We will now discuss the procedure for the aforementioned algorithm. In Step 1, the used
model is usually a quadratic function, as shown below

mk(s) = f(xk) + sᵀ∇1
xf(xk) + 1

2s
ᵀBks. (1.1.6)

Note that ∇1
xf(xk) represents the exact gradient of the function f while Bk is either an

efficient approximation or exact curvature information (∇2
xf(xk)).

To compute the trial step sk, we must approximately minimize (1.1.6) subject to ‖sk‖ ≤
∆k. Indeed, from the structure of problem (1.1.3), the condition on the exact minimize can
be written as

(Bk + λkIn)sk = −∇1
xf(xk), λk(∆k − ‖sk‖) = 0. (1.1.7)
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with λk a positive constant. Using the last inequality, we can develop methods that employ
the factorization of matrix Bk to calculate the trial step sk or use iterative conjugate gradient
methods to compute the step. For further information on step computation, please refer to
[68, Chapter 7].

We remark also from the characterization (1.1.7) that trust-region can be related to the
Levenberg-Marquardt method [140, 150] that were initially proposed to globalize Gauss-
Newton where the regularization is applied directly to the local quadratic approximation
model

mk(s) = f(xk) + sᵀ∇1
xf(xk) + 1

2s
ᵀBks+ λk

2 ‖s‖
2. (1.1.8)

The λk parameter is updated in a comparable manner to ∆k in (1.1.5), but it is incremented
when the model does not result in a decrease in the objective function value. We conclude
this short digression on Levenberg-Marquardt methods and resume the examination of Algo-
rithm 1.1.2.

After computing the trial step, we compare the reduction achieved in the objective function
to that derived from the model. If the step satisfies the condition ρk ≥ η1, it is deemed
sufficiently large and the iteration is considered successful. If not, the step is unsuccessful
and the trust region is contracted. In order to ensure algorithm convergence, it is common
practice to enforce the trial step decrease sk to be greater than that obtained from the steepest
descent direction. Mathematically, it writes as

mk(sk) ≤ arg min
t∈IR+

mk(−t∇1
xf(xk)). (1.1.9)

Trust-region methods enjoy computationally efficient variant suited for large scale opti-
mization instances. They can be easily combined with quasi-Newton approximation of the
Hessian, where first-order information is used to provide efficient second-order approxima-
tions. A commonly used approach is the L-BFGS method [39], which, when combined with a
trust-region method, can tackle large-scale problems. For further discussion of quasi-Newton
methods, we refer the reader to [172, Chapter 6] and the references therein. Trust-region
methods have also been successful in a variety of numerical optimization domains, includ-
ing Derivative-Free Optimization (DFO) [69] and Augmented Lagrangian methods [25]. For
a comprehensive analysis of trust-region methods for both constrained and unconstrained
optimization problems, see [68]. Recent advances in the field are reviewed in [208].

From the two previously mentioned frameworks of line search and trust-region methods,
convergence of the iterate sequence can be ensured under mild conditions. Either by per-
forming a line-search along a gradient-related direction or by upholding requirement (1.1.9)
for trust-regions. Local analyses that retrieve the behavior of Newton’s method were inves-
tigated [68, 172]. Of course, these algorithms have also been tested on standard nonlinear
optimization benchmarks. One of the most popular is CUTEst with its various developments
over the years [34, 106].

Various numerical simulations have been devised for both algorithms and different pa-
rameters may affect the numerical capability of the implemented variance. For instance, the
problem’s structure can be utilized to create a sparse estimate of the curvature matrix. Var-
ious preconditioning matrices can speed up the resolution of (1.1.3). Practitioners prioritize
computational CPU time, which depends on the hardware and its configuration. Therefore,
extensive experiments should be conducted to guarantee a just comparison of different non-
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convex optimization techniques. Below, we focus on the evaluation complexity of various
algorithms. Complexity analysis is a central theme throughout this thesis. In the subsequent
sections, we outline its definition for problem (P) and explore this notion in the context of
standard nonlinear optimization techniques.

1.2 Evaluation complexity

The evaluation complexity is determined for a given algorithm, like steepest descent or trust-
region, within a general problem class with a specific termination condition. Based on the
required criticality level and other function characteristics, a bound is established on the
number of iterations, objective function and derivative evaluations. The evaluation complexity
comes also under different names. It is also recognized as the worst-case complexity of an
algorithm for a given class of problem or its global convergence rate. We now give detailed
examples and convergences rates of standard methods.

1.2.1 Evaluation complexity for convex problems

We take a brief detour and shift focus to the convex problem (P) for which we provide an
overview of the major results. Assume f is convex and problem (P) is well-defined, thus, an
optimal value f? exists. The optimization routines introduced in Section 1.1 may be used to
address the problem. Given ε > 0, the algorithm would have completed if

f(xk)− f? ≤ ε. (1.2.1)

If a steepest descent method with a backtracking line search mechanism as described
in Algorithm 1.1.1 is employed for a function with Lipschitz gradient, it will take O

(
ε−1)

iterations to reach (1.2.1). The dependence on the Lipschitz constant and the distance to the
optimal point is concealed in O. However, faster optimization methods that utilize previous
gradient information can yield a faster convergence rate at O(ε−1/2) for convex problems. In
the case of strongly convex problems, where the Hessian satisfies

µ‖s‖2 ≤ sᵀ∇2
xf(x)s ≤ L1‖s‖2 (1.2.2)

and µ is a strictly positive constant, the criterion for convergence is typically the distance to
the optimal point ‖xk−x?‖ ≤ ε. In this scenario, the rate of convergence isO

(
L1
µ log(ε)

)
. Em-

ploying rapid convex optimization algorithms allows us to enhance the constants toO
(√

L1
µ log(ε)

)
.

Therefore, in addition to the dependence on ε, one has to take also into account dependencies
on other problem constants. The detailed findings and extensive analysis of convex optimiza-
tion algorithms are available in [165]. Hereafter, we will focus solely on non-convex settings
for the rest of the present thesis.

1.2.2 Evaluation complexity for nonconvex problems

For nonconvex optimization (P), global optima are generally not achievable: only approximate
stationary points can be reached in practice. In the case of the unconstrained nonconvex
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problem, the associated first-order optimality condition is expressed as

‖∇1
xf(xε)‖ ≤ ε (1.2.3)

where ε ∈ (0, 1] is the requested gradient threshold. Note that this criterion, that is an
approximate necessary condition for optimality, has also been examined for the convex case
and can be applied to stochastic optimization problems where (1.2.3) holds in expectation.
For second-order approximate necessary optimality condition for problem (P) is given by

‖∇1
xf(xε)‖ ≤ ε1, max

(
0,−λmin(∇2

xf(xε))
)
≥ −ε2, (1.2.4)

where ε1 and ε2 are in (0, 1]. The reader may be more familiar with (1.2.3) as it is related
to the optimality condition of convex optimization, and gradient descent schemes algorithms
generally reach an iterate satisfying only (1.2.3). However, it may be worthwhile to enforce
more stringent requirements on the final iterate. Indeed, several important problems such as
phase retrieval [41], matrix completion [97] or specific regression tasks [144], a local minima
satisfying (1.2.4) with (ε1 = 0 and ε2 = 0) yields a global minima.

We will now restate previously established convergence rate of standard optimization
methods with globalization strategies previously exposed in Section 1.1. For the backtrack-
ing line search steepest descent method applied to a Lipschitz gradient function, achieving a
point satisfying (1.2.3) requires O

(
ε−2) evaluations of the function and its derivative. The

O() term conceals dependencies with respect to both the Lipschitz gradient constant L1, and
the value of f(x0). The final bound is sharp, as there exists a function, f , within the class
of interest that attains the worst-case bound [57]. It is hoped that nonlinear optimization
techniques which exploit curvature information will achieve rates faster than first-order rates,
thereby providing an explanation for their outstanding practical performance on a wide range
of problems. Unfortunately, when globalized, the plain Newton’s method has the same rate as
the steepest descent method for Lipschitz Hessian nonconvex functions. Indeed, [57, Theorem
3.1.1] proposes a function in IR2 that reaches the same rate. Similarly, other efficient global-
ization techniques encounter the same issue, whether the generalization strategy is line search
or trust-region, efficient approximation of the Hessian, or exact information. The same rate
O
(
ε−2) occurs. The book [57] offers a detailed and comprehensive presentation of the results

just mentioned. When seeking a second-order stationary point, it is necessary to utilize in-
formation pertaining to the curvature and perform potentially costly numerical computations
with the Hessian. Specifically, a direction of negative curvature may be employed. For a wide
range of second-order algorithms, the convergence rate required to ensure the second part of
(1.2.4) is O

(
ε−3
2

)
. See [57] for more discussions on second-order algorithms that can reach

(1.2.4).
While the second-order optimization schemes introduced earlier have demonstrated re-

markable efficacy in terms of rapid local convergence, as exemplified in past comprehensive
reviews [172, 68], their global convergence rates have remained comparable to those achieved
by first-order methods. However, recently, a notable breakthrough has emerged in the form
of an efficient second-order optimization technique known as ’cubic regularization’. It is to
this method that we now turn our attention, aiming to provide a comprehensive discourse on
its principles and applications.
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1.3 Optimal Second-Order methods

1.3.1 Cubic Regularization

First, we briefly outline the main mechanism behind the convergence of first-order optimiza-
tion schemes of the Lipschitz gradient function, which depends on the following local quadratic
bound

f(x+ s) ≤ f(x) + sᵀ∇1
xf(x) + L1

2 ‖s‖
2, (1.3.1)

where the last bound is derived from standard Taylor bounds. For example, for steepest
descent, the decrease of the function value is ensured whenever α ≤ 1

2L . The cubic regulariza-
tion method extends this idea to the second-order, using a quadratic model augmented by a
cubic regularization term to obtain a local upper bound. For function with Lipschitz Hessian,
the latter bound becomes cubic and is written as

f(x+ s) ≤ mk(s) = f(x) + sᵀ∇1
xf(x) + 1

2s
ᵀ∇2

xf(x)s+ L2
6 ‖s‖

3. (1.3.2)

Thus, at each iteration xk, [169] proposes to minimize exactly the local cubic upper bound
s 7→ mk(s) and thus assumes knowledge of Lipschitz smoothness. For this new optimization
scheme, the numerical routine proposed in [169] requires O

(
ε−3/2

)
iterations to reach a point

where (1.2.3) holds. We also get a guarantee of convergence to the second-order stationary
point. The number of iterations required is written as O

(
max

(
ε
−3/2
1 , ε−3

2

))
. As a matter of

historical fact, the use of (1.3.2) was first proposed by [120] in a technical report and later
independently rediscovered by [169]. The latter routine, however, requires precise information
about the Lipschitz function. [51, 50] propose an adaptive cubic regularization method that
adapts to the local Lipschitz smoothness. We give a detailed outline of the proposed algorithm
on the next page.

It is natural that the condition imposed in Step 2 of Algorithm 1.3.1 will play a crucial
on the final convergence rate. We detail below some conditions and their associated rates.
Similar to trust-region methods, we can impose a Cauchy condition on the computed step,
which is expressed as

mk(sk) ≤ arg min
t∈IR+

mk(−t∇1
xf(xk)). (1.3.7)

Unfortunately, under this condition, the convergence rate of ARC is the same as that of stan-
dard gradient descent to approximate the first-order critical point, i.e: O

(
ε−2). To obtain

the improved convergence rate proved by [169], the authors impose the following condition
on the step

‖∇1
smk(sk)‖ ≤ κθ min (1, ‖sk‖) ‖gk‖ (1.3.8)

with κθ > 0. Note that the previous condition only requires computing an approximate
minimum of the cubic model (1.3.4). We leave the discussion of subroutines that compute a
trial step for later in the manuscript.
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Algorithm 1.3.1: Adaptative Regularization Algorithm (ARC)

Step 0: Initialization An initial point x0 ∈ IRn, a regularization parameter σ0 is given.
The constants η1, η2, γ1, γ2, γ3, and σmin are also given such that

σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3. (1.3.3)

Compute f(x0) and set k = 0.

Step 1: Check for termination Evaluate gk = ∇1
xf(xk) and Hk = ∇2

xf(xk). Termi-
nate with xε = xk if either (1.2.3) or (1.2.4) is satisfied.

Step 2: Step calculation Compute a step sk which sufficiently reduces the model mk

defined below
mk(s) = f(xk) + gᵀks+ 1

2s
ᵀHks+ σk

6 ‖s‖
3. (1.3.4)

Step 3: Acceptance of the trial point Compute f(xk + sk) and define

ρk = f(xk)− f(xk + sk)
mk(0)−mk(sk)

. (1.3.5)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(1.3.6)

Increment k by one and go to Step 1.

1.3.2 Other ARC Related Variants

Other subsequent modifications have been proposed for easier analysis [29] or to tackle more
complicated problems [111]. For example, [29] proposes a second-order (among a larger class
of optimization methods) algorithm that follows the layout of the ARC algorithm and only
changes the gradient method requirement, writing it as

‖∇1
smk(sk)‖ ≤ κθ

σk
2 ‖sk‖

2. (1.3.9)

In [111], another requirement was devised to extend cubic regularization for a boarder class
of problems

‖gk +Hksk‖ ≤ κθ
σk
2 ‖sk‖

2 (1.3.10)

where κθ ≥ 1. Note that we can consider a modification of the denominator in (1.3.5) and
consider the local quadratic approximation instead (gᵀksk + 1

2s
ᵀ
kHksk).

Since the development of the algorithm 1.3.1, several extensions have been proposed, each
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striving to achieve this increased convergence rate.
Some of these innovative approaches use line search with different steps at each iteration

[184, 22]. Others exploit the underlying structure of linear conjugate methods [75, 146].
Meanwhile, a separate set of algorithms proposes trust-region techniques that use specific
schemes, as shown in the work of [74] and [121]. These algorithms are well suited to address
the challenges posed by large-scale problems.

In addition, a parallel research path consider potentially more computationally intensive
methods. These algorithms require the factorization of the Hessian matrix, as shown in
[26, 27, 90] and related references. However, all of these methods rely on finely tuned sub-
routines to enforce descent of the desired order [26, 27]. Even for the standard ARC presented
in Algorithm 1.3.1, computing a step involves more sophisticated subroutines. Indeed, com-
puting a trial step of (1.3.4) can not be reformulated as a linear system since the first-order
condition writes as

(∇2
xf(xk) + σk

2 ‖sk‖In)sk = −∇1
xf(xk). (1.3.11)

The additional σk2 ‖sk‖ introduces implicitness in the linear system. As noted by [156], the im-
provement in complexity has been achieved by trading the simple Newton step, which requires
only the solution of a single single linear system for more complex or slower procedures, such
as secular iterations, possibly using Lanczos preprocessing [50, 51] (see also [57, Chapters 8
to 10]) or (conjugate) gradient descent [43]. In contrast, for the Newton step (where we only
need to solve a linear system), a wide range of numerical tools are available, including direct
methods [76], iterative approaches [186], and parallel computing variants [180]. And so a first
question arises

Question 1 Can a second-order method that ”mostly” employs a regularized Newton
method for all iterations be developed for nonconvex optimization with convergence rate
close to the one of ARC method?

In addition to the development of new efficient second-order methods, there have been
efforts to achieve the O

(
ε−3/2

)
rate under milder conditions. Such extensions have incor-

porated inexact derivatives [211, 214], though they necessitate an exact function value for
adjusting the regularization parameter σk. Non-Euclidean geometries have been proposed in
[111] and [1] devised an extension to Riemannian geometry. Probabilistic variants [15, 46]
and stochastic ones [195] have also been studied. Other extensions of the cubic regulariza-
tion methods have focused on adding well-established paradigms of nonlinear optimization to
the ARC algorithm. To name a few, non-montone acceptance schemes of the trial iterates sk
[24, 170, 171], quasi-Newton approximation of curvature [19], the use of an iteration depen-
dent norm [21, 152]. Extensions specific to the convex case only, such as acceleration schemes,
have also been studied in [164] and [64].

To pursue faster algorithms, higher-order derivatives are employed to improve the quality
of the local trial step. As higher-order algorithms represent an emerging area in nonlinear
optimization, we briefly deviate from this introduction to outline definitions pertaining to
higher-order derivatives and their associated approximation bounds.
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1.3.3 Higher Order Models

1.3.3.1 High-Order Tensors and approximation bounds

L(V⊗m; IR) denotes the space of multilinear continuous functionals from V × V · · · × V to
to IR and Lmsym(V⊗m; IR) is the subspace of Lm(V⊗m; IR), which is m-linearly symmetric.
For a functional f defined from V to IR, that is p times Fréchet differentiable, ∇kxf(x) ∈
Lksym(V⊗k; IR). For S ∈ Lmsym, S[v1, v2 . . . , vm] ∈ IR denotes the result of applying S to
v1, . . . , vm. S[v]m is the result of applying result of applying S to m copies of v and S[v]l ∈
Lm−lsym (V⊗m−l; IR) is the result of applying to l copies of v.
We define the norm in Lmsym(V⊗m; IR) as

‖S‖ def= sup
‖v1‖V=···=‖vm‖V=1

|S[v1, . . . , vm]| (1.3.12)

= sup
‖v‖V=1

|S[v]p|.

The last inequality is true for any S ∈ Lmsym(V⊗m; IR), see [168, Appendix 1] for a proof.
The pth derivative tensor ∇pxf(x) ∈ L(Vp; IR) is globally Hölder continuous, that is, there

exist constants Lp > 0 and β ∈ (0, 1] such that

‖∇pxf(x)−∇pxf(y)‖ ≤ Lp‖x− y‖βV , for all x, y ∈ V. (1.3.13)

with some positive continuous Lp. For p = 1 and β = 1, we get the class of Lipschitz
continuous gradient function, and for p = 2 and β = 1, the Lipschitz continuous Hessian
one. We remind that the class of p times Fréchet differentiable function with β-Hölder pth
derivative is denoted as Cp,β(V; IR).

The pth order Taylor series at x writes as

Tf,p(x, s)
def= f(x) +

p∑
l=1

1
l!∇

l
xf(x)[s]l. (1.3.14)

We now restate error bound between the function f and its polynomial approximation, the
latter being standard tools of Numerical Analysis.

Lemma 1.3.1 Suppose that f ∈ Cp,β(V; IR) holds. Then

|f(x+ s)− Tf,p(x, s)| ≤
Lp

(p+ β)!‖s‖
p+β
V , (1.3.15)

‖∇1
xf(x+ s)−∇1

sTf,p(x, s)‖V ′ ≤
L

(p+ β − 1)!‖sk‖
p+β−1
V , (1.3.16)

and
‖∇2

xf(x+ s)−∇2
sTf,p(x, s)‖ ≤

L

(p+ β − 2)!‖sk‖
p+β−2
V . (1.3.17)
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Proof. By Taylor’s theorem applied to ψ : t ∈ [0, 1] 7→ f(x + ts) of order p, we derive
that

f(x+ s) = f(x) +
p−1∑
i=1

1
i!∇

i
xf(x)[s]i +

∫ 1

0

∇pxf(x+ ts)[s]p

(p− 1)! (1− t)p−1 dt

Using the expression of Tf,p in (1.3.14) and the fact that
∫ 1
0 (1 − t)p−1 dt = 1

p , we derive
that

|f(x+ s)− Tf,p(x, s)| =
∣∣∣∣∣
∫ 1

0

(1− t)p−1

(p− 1)! ∇
p
xf(x+ ts)[s]p dt− 1

p!∇
p
xf(x)[s]p

∣∣∣∣∣
=
∣∣∣∣∣
∫ 1

0

(1− t)p−1

(p− 1)! (∇pxf(x+ ts)[s]p −∇pxf(x)[s]p) dt
∣∣∣∣∣

≤ Lp‖s‖p+β
∫ 1

0

(1− t)p−1tβ

(p− 1)! dt = Lp
(p+ β)!‖s‖

p+β.

Where we used (1.3.14) for the inequality thus obtaining (1.3.15). For the last idendity∫ 1
0

(1−t)p−1tβ

(p−1)! dt = 1
(p+β)! , we refer the reader to [55, Equation (A.1)]. As for the identi-

ties (1.3.16) and (1.3.17), we apply the previous reasoning to functions 〈∇xf(.), v〉 and
∇2
xf(.)[v]2 with the direction v fixed. 2

1.3.3.2 High Order methods

In pursuit of an enhanced convergence rate, one can turn to the usage of higher-order deriva-
tives also denominated as tensors. These techniques, commonly known as tensor methods in
the convex optimization literature [166], or as pth adaptive regularization methods [29] for
nonconvex optimization. We now briefly present the mechanism of the adaptive regularization
algorithms denominated ARp.

At iteration k, we construct a surrogate model of the objective function by adding a
regularization term to the pth order Taylor approximation. For example, when dealing with
f ∈ Cp,β(IRn; IR), we apply regularization to the Taylor series as follows

mk(s)
def= Tf,p(xk, s) + σk

(p+ β)!‖s‖
p+β. (1.3.18)

Tf,p(x, s) is the pth order Taylor expansion of functional f at x truncated at order p defined at
(1.3.14). The σk term guarantees that mk(s) is bounded below and thus makes the procedure
of finding a step sk by (approximately) minimizing mk(s) well-defined. The σk constant aims
at matching the Hölder parameter of the tensor derivative ∇pxf . When p = 1 and β = 1, we
obtain a line search algorithm with a step size equal to 1/σk. The following figure illustrates
the need for regularization when p = 3 and β = 1. In this case, the local third order is a loose
approximation of the function plotted in blue, while the quartic model plotted in green gives
a tighter approximation.

When computing a step sk, it is necessary to ensure that the computed step provides local
decrease, namely that

mk(sk) < mk(0) = f(xk). (1.3.19)
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Figure 1.1: Plot of mk and Tf,2 for the function f(x) = sin(πx) + 10(x − 0.5)41(0.5,+∞) +
10(x+ 0.5)41(−∞,0.5) with σk = 240.

To ensure convergence to an approximate first-order stationary point, it is also required that

‖∇1
smk(sk)‖ ≤

θ‖sk‖p+β−1

(p+ β − 1)! , (1.3.20)

with θ strictly positive. Note that this condition only imposes an approximate minima of
mk. After computing the trial step, we compute an acceptance ratio as in the trust-region
Algorithm 1.1.2 which write as

ρk = f(xk)− f(xk + sk)
mk(0)−mk(sk)

. (1.3.21)

If the ratio is positive, the step produces a decrease in the function value, it is accepted and
we move on by forming a new model. Otherwise, we have not sufficiently regularized the
problem and we increase σk in a similar fashion to (1.3.6).

Under the previous conditions on the step, computation of (1.3.21) and a suitable update
rule of the regularization parameter σk, convergence rate to reach an iterate that verifies
(1.2.3) is O

(
ε−(p+β)/(p+β−1)

)
for f ∈ Cp,β(IRn; IR) [29]. Therefore, when designing new pth

adaptive regularization methods, we aim to recover the aforementioned rate, as its optimality
was shown in [45]. Several extensions of adaptive regularization have been developed. For
example, when convergence to a second order stationary point is required, another condition
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is imposed on the curvature model, which is written as

max
(
0,−λmin(∇2

smk(sk))
)
≤ θ‖sk‖p+β−2

(p+ β − 2)! (1.3.22)

with θ > 0. This new condition gives a O
(
ε
−(p+β)/(p+β−1)
1 , ε

−(p+β)/(p+β−2)
2

)
in the worst

case to reach an iterate that satisfies (1.2.4) [54]. In the context of convex optimization,
subsequent efforts have focused on the introduction of inexact variants [80, 167], acceleration
schemes adapted to uniformly convex functions [96, 37], extension to the case of composite
objective functions [128, 127, 108] and further to ”general composite” optimization problems
[162, 81]. Even ”super-universal” schemes that are able to adapt to both the smoothness of
the function and the Hölder exponent associated with it [84, 107]. The usage of high-order
tensors have also been to tackle the boarder class of variational inequalities problems, see
[38, 142, 129] and the references therein.

In the nonconvex case, the paradigm has been extended to tackle a larger class of problems
including multiobjective minimization [40], constrained optimization under various assump-
tions [151, 63] and probabilistic or inexact derivatives as done in [12, 15]. Practical imple-
mentations of regularized third-order method for nonconvex function have been proposed in
[31, 47] with promising initial numerical results. Coordinate variant where only a subset of
variables are updated at each iteration have been considered in [28, 3].

For all the proposed NLP contributions, the algorithm’s analysis is performed under the
usage of the Euclidean norms in the primal space. However, we know that standard Eu-
clidean norm may be ill-suited for a certain class of problems. As an example, in convex
optimization, Bregman divergence [36] can be used to measure the smoothness of the gradi-
ent of the function. One popular algorithm proposed in that framework is Mirror Descent,
see [10]. Moreover, choosing another norm than the usual Euclidean one may enhance the
dependency of smoothness constant w.r.t the input dimension n. For high-order methods,
this issue has been tackled by [111] where adaptive regularization algorithms are studied with
V = (IRn, ‖.‖p). The proposed analysis hinges crucially on a new acceptance condition instead
of the usual (1.3.20). It therefore seems a natural extension to extend the high-order tensor
method to other types of V. Of course, the following questions arise

Question 2 Can a high-order tensor method be developed for Banach space? In partic-
ular, How to ensure the existence of a suitable step at a given iteration?

After this broad overview of past and recent nonlinear optimization techniques and some
plausible extensions that may be proposed, we now expose some pitfalls of the optimization
techniques that have been presented for problems arising in modern applications.
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1.4 On the necessity of new approaches

1.4.1 An Overview of Modern Optimization Challenges

Context For modern optimization problems, especially Machine Learning [32], (P) becomes

min
x∈IRn

1
p

p∑
i=1

fi(x, yi, ai) (P-ML)

where both p and n may exceed to millions and fi may be nonconvex. The pairs (aj , yj) are
independent and identically distributed random variables coming from an a priori unknown
distribution D. The formulation of (P-ML) encompasses supervised learning. A particular
subclass of interest are Deep Learning DL problems where fi simulates the output of an
artificial neural network. Deep Learning has achieved great empirical success in various fields
such as computer vision [138], linguistics [199], physics simulation [181] and biology [131]. For
a deeper understanding of neural networks, we direct readers to the comprehensive monograph
[101] and the references therein. We give below some examples arising in (P-ML).

• Mean Least Square Regression For j ∈ {1, . . . , p}, we define fj as

fj(x, yj , aj) = (yj − g(x, aj))2

where g takes both the parameter the and feature as input and outputs a scalar. g can
be either the scalar product in IRn yielding the least-square problem or the output of a
multilayer perceptron.

• Binary Regression For j ∈ {1, . . . , p}, define

fj(x, yj , aj) = −yj log
(

1
1 + exp(g(x, aj))

)
− (1− yj) log

(
1

1 + exp(g(x, aj))

)
.

In the previous case, yj ∈ {0.1} encodes the class to be predicted. Again, g returns a
scalar. It can be either the dot product in IRn, which gives binary logistic regression,
or the output of an artificial neural network.

We now discuss some of the challenges of using classical nonlinear optimization techniques to
solve problems of the form (P-ML).

The first point is that access to the exact gradient and Hessian is impossible due to
the sheer amount of memory required. In fact, one of the first successful neural network
Alexnet [138] has p in (P) scaling up to 12 million input images. In addition, the variable x
to be optimized has up to 60 million components. The approximate Hessian would require
thousands of terabytes just for storage. To tackle this problem, we can sample a gradient
{∇1

xfj(x, yj , aj)} for j ∈ {1, . . . , p}, and since (aj , yj) are assumed to be i.i.d. samples from
the same distribution, we get that

E(aj ,yj)∼D
[
∇1
xfj(x, aj , yj)

]
= ∇1

xf(x). (1.4.1)

From the previous characterization, we can use the SGD method developed in [183] which
writes as
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xk+1 = xk − αk∇1
xfj(xk, yj , aj) and

∞∑
i=0

αi =∞,
∞∑
i=0

α2
i <∞. (1.4.2)

Under appropriate conditions, this algorithm can converge to a first-order stationary point.
However, its rate of convergence is than the first-order deterministic method. To obtain an
iteration that verifies (1.2.3) in expectation, O

(
ε−4) iterations are required in the worst case.

We refer the reader to the two papers [134, 98] that obtained the aforementioned rate for
stochastic gradient descent under various conditions on the variance of the sampled first-order
derivatives. Even though (1.4.2) is slower than Algorithm 1.1.1 (with dk = −∇1

xf(x)) in the
worst case, the trade-off offers significant advantages due to the substantial cost savings per
iteration and the fact that low accuracy solutions are often sufficient. To reduce the variance
of the algorithm and to obtain a more accurate estimate of the current gradient, we consider
a minibatch in the update rule of (1.4.2). Minibatch training involves partitioning the data
set into smaller subsets or batches. During each optimization iteration, a batch is randomly
selected and its approximate loss and gradients are computed. Let i1, · · · , im denote a batch
of size m. The approximate gradient is then given by

∇1
xf(x) ' 1

m

∑
i∈{i1,··· ,im}

∇1
xfi(x, aj , yj),

where the last inequality would hold in expectation as (1.4.1). Even if modern processors
allow the use of larger batches or the use of multiple communicating devices [136, 202], there
is still the problem of computing αk. In practice, several runs are performed under different
αk to ensure good final performance with the use of other heuristics. A popular one is the
cosine schedule [148] of the parameter αk. One may wonder if it is possible to use classical
nonlinear optimization schemes for problems in the class (P-ML) to adjust the stepsize αk.
Unfortunately, we expose some failures of this strategy in the next paragraph.

1.4.2 On the Usage of Function Value in Inexact Optimization

First, from the presentation of the BTR algorithm 1.1.2, it is clear that Step 3 plays a pivotal
role in determining whether to accept a trial step, thereby ensuring progress, or to reject it,
thereby reducing the trust region step. One critical assumption that has been thoroughly
examined is the use of a fully quadratic model, which we formally state below.

Definition 1.4.1 Given a function and constants κef, κeg > 0, an iteration k of the BTR,
a model function mk is a (κef, κeg)− fully linear model, if for all ‖s‖ ≤ ∆k,

|mk(s)− f(xk + s)| ≤ κef∆2
k, (1.4.3)

‖∇1
smk(s)−∇1

xf(xk + s)‖ ≤ κeg∆k. (1.4.4)

The latter condition was first proposed in the work of [7] to prove the convergence of
probabilistic trust-region methods to a first-order stationary point. The aforementioned anal-
ysis was subsequently extended and refined in a number of following works [113, 33, 62, 42]
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to derive the complexity rates. For example, to ensure second-order convergence, the in-
equalities (1.4.4) and (1.4.3) are strengthened to ∆3

k and ∆2
k, respectively. Furthermore, a

condition is imposed on the error bound between the model and function Hessians, which
should be of the order of ∆k [113]. Of course, when these conditions are extended to the
stochastic settings, we require that (1.4.3) and (1.4.4) hold with some probability [33]. The
requirements of Definition 1.4.1 have shown their versatility and have been incorporated into
other nonlinear optimization paradigms. As an example, the series of papers [14, 16, 17] used
conditions (1.4.3) and (1.4.4) with inexact restoration ideas [30] to analyze numerical routines
taylormade for problem (P-ML).

The conditions proposed in Definition 1.4.1 have also been adapted to the case where a
gradient descent is performed, namely that ∆k = αk‖∇1

xf(xk)‖ where αk is the current step
size. The two conditions are called stochastic gradient norm conditions [42] write for the
approximate gradient ∇1

xf(xk) and function f(xk) values as

|f(xk)− f(xk)| ≤ κefα
2
k‖∇1

xf(xk)‖2, ‖∇1
xf(xk)−∇1

xf(xk)‖ ≤ κegαk‖∇1
xf(xk)‖. (1.4.5)

From Definition 1.4.1 or the bounds of (1.4.5), we see some of the challenges associated
with using standard trust-region or line search methods for modern problems. It becomes
clear that as ∆k decreases to match the local smoothness of the function, the error required
on the function, as given in (1.4.3), must be an order of magnitude higher than that in the
gradient (1.4.4). The same reasoning applies to αk as shown in (1.4.5). In addition, in certain
analyses, the value of κef in (1.4.3) must be adjusted to fit within a certain range of values,
as shown in the analyses in [62, 175].

We now present a figure that visually illustrates the challenges posed by the two require-
ments outlined in Lemma 1.4.1. We have considered a simple line search method that satisfies
the conditions for all iterations (1.4.5) for a one-dimensional real function. We set κef and
κeg to 0.05 and 10 respectively.

As can be seen in Figure 1.2, the required error on the function quickly decreases to
a small value. This phenomenon is a consequence of both the choice of κef and the role
played by α2

k in the bound given in (1.4.3). The error on the gradient, on the other hand,
remains approximately of the same order as the true gradient value. This property proves to
be advantageous in practical applications, as it makes sense that the error on the gradient
should match the desired level of accuracy.

Even within a fully stochastic framework, where we only impose inequalities that hold in
expectation for the function value, the requirements are still constraining. This is because it
necessitates the consideration of all values of {1, . . . , p} when computing the function value
of (P-ML). An illustrative example can be found in [175].

It’s worth noting that a new line of work has recently proposed to analyze probabilistic line
search under less restrictive assumptions on the function value approximation. For example,
[130] studied a probabilistic gradient descent line search with a ”light-tail” error bound on
the function proxy and a bounded expectation error. The analysis by [200] examines an
Armijo line search under the assumption that each fi has a Lipschitz gradient, which is a
significantly stronger assumption. Another approach that uses the function value to compute
αk is the Polyak stepsize [178], which assumes that knowledge of the optimal function value
is available. This approach has recently gained attention, resulting in a number of papers
[147, 187, 174] that adapt the Polyak stepsize to problems of the form (P-ML). It’s important
to note, however, that this analysis is limited to convex functions.
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Figure 1.2: an optimization run that satisfies both conditions (1.4.3) and (1.4.4).

As we can see from this overview, vanilla optimization schemes are not well suited for
problems of the form (P-ML), and modern attempts often leave a significant gap between
theory and practice, or focus only on the restrictive convex settings. Therefore, it became
necessary to develop optimization schemes capable of making progress even without access to
function values. The class of adaptive gradient methods satisfies this requirement, which we
outline below.

1.4.3 A New Analysis of Adaptive Gradient Methods

To tackle problems of form (P-ML), the algorithm Adagrad [88, 154] was first proposed in
online learning. The latter topic is not a focus of this thesis, for more details we refer the
reader to the recent survey of [125]. In the following, we present the Adagrad algorithm when
used to solve (P-ML) and give some reasons for its success, perform a survey of other adaptive
gradient methods, and discuss our contributions.

Notice from the above algorithm that, unlike Algorithm 1.1.2, there is no calculation of an
acceptance ratio, and the step is always accepted. Therefore, all the required conditions
on the function values (such as (1.4.3) for trust-region methods) are unnecessary. Thus,
only assumptions about the inexact gradient are required. Based on this observation, we
coin the term OFFO (Objective Free Function Optimization) for the class of algorithms
that do not evaluate the objective function and achieve convergence. These algorithms don’t
require strict assumptions about the function values used. They also differ from standard
nonlinear optimization [172, 68] in that they are inherently nonmonotone. It turns out that
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Algorithm 1.4.1: AdaGrad

Step 0: Initialization An initial point x0, a parameter ς ∈ (0, 1), a step size α. Set
k = 0 and wk ∈ IRn to zero.

Step 1: Sample gradient Sample stochastic gradient ∇1
xf(xk) from (P-ML).

Step 2: Update weights Set

wk =

√√√√√ς +
k∑
j=0
∇1
xf(xj)�∇1

xf(xj). (1.4.6)

Step 3: Iterate update Set

xk+1 = xk − α(diag(wk))−1∇1
xf(xk). (1.4.7)

Increment k by one and go to Step 1.

first-order OFFO methods (i.e., OFFO methods that use only gradients) have been around
for some time and have proven to be popular and useful in fields such as machine learning
or sparse optimization, and all adaptive gradient methods, including Adagrad presented in
Algorithm 1.4.1, belong to this class.

The shown component-wise weighting of the gradient descent direction has proven re-
markably successful in practice and has led to the to the proposal of many variants. Among
them, RMSprop [192], ADADELTA [219], Adam [135] uses an exponentially decreasing mov-
ing average when updating the weights instead of the non-decreasing technique proposed in
[88]. In particular, Adam [88] has shown excellent performance in deep learning applications,
as shown in a recent numerical study by [189]. Closely related variants have also been shown
to be practically competitive in [61]. However, its potential divergence was shown in [182]
where AMSGrad, a non-decreasing convergent scheme, was proposed as an alternative. The
original theoretical analysis of Adagrad [88, 154] was subsequently refined for strongly convex
functions [160] with a slight modification of the update rule, extended for minmax problems
[213], further adapted for online use [173], modified to ensure privacy [4] enhanced with a line
search for specific machine learning problems [200], or with an accelerated gradient-like up-
date [133]. Adagard norm where a global (rather than component-wise, as in algorithm 1.4.1)
weight is used for all components. As a final word for this review, we emphasize that we have
not provided here a comprehensive and thorough review of all adaptive gradient methods and
their different settings of application. In fact, for deep learning alone, [189] has found up to
50 papers, each developing their own variants each one with their specific subtleties.

However, and despite its excellent performance, an analysis of Adagrad in the nonconvex
setting has appeared only relatively recently in [141] and [204]. [141] requires a-priori knowl-
edge of the Lipschitz constant while [204] is parameter agnostic. Both assume boundedness of
the gradients for stochastic problems and conclude that Adagrad’s global convergence rate is
comparable to that of well-tuned stochastic gradient methods, with a complexity of O

(
ε−4) to
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achieve (1.2.3). Other proofs, still requiring a uniform bound on the sampled gradient, were
subsequently developed using simpler arguments and better dependence for Adam [77], giv-
ing improved convergence rates under ’gradient sparsity’ [222]. The assumption of bounded
stochastic gradient has finally been removed, see [93, 94, 5] and the references therein. A
complexity analysis of the Adagard norm for deterministic nonconvex optimization has been
established in [204]. This analysis demonstrates a global convergence rate of O

(
ε−2), achieved

without the need to assume bounded gradients. Building on this foundation, [194] introduced
a new analysis for (component-wise) Adagrad in the convex scenario. Their analysis exhibits
an explicit1 dependence on the problem size, a feature not present in the study by [204]. Yet,
as observed in algorithm 1.4.1, there’s no utilization of curvature information. Furthermore,
no theoretical guidelines for scaling alpha have been provided in the literature, especially for
the nonconvex setting.

Question 3 Can Adagrad be reformulated to allow the use of Hessian information?
How to devise a theoretical scaling rule for the stepsize α in this case?

To obtain faster OFFO algorithms than gradient-based ones, it is necessary to use other
derivatives be it Hessian or higher-order tensors. In the next section, we review some con-
ditions that have been proposed in the literature for the analysis of stochastic cubic and
high-order methods.

1.5 OFFO High-Order Adaptive Regularization

Although the proposed framework of Definition 1.4.1 is no longer valid as it depends crucially
on the trust-region paradigm, the conclusions drawn in Subsection 1.4.1 are still valid in this
case. Indeed, even in deterministic inexact settings [214, 211], errors are only imposed on the
derivatives and access to the exact function value is required. We will now give the conditions
that have been proposed in a probabilistic adaptive cubic algorithm [11] as an illustration. In
the above reference, the inaccurately sampled gradient and the Hessian satisfy

‖∇1
xf(xk)−∇1

xf(xk)‖ ≤ κ(1− β)2
(
‖∇1

xf(xk)‖
σk

)2

,

‖∇2
xf(xk)−∇2

xf(xk)‖ ≤ ck,
‖∇1

xf(xk)‖ ≤ κg, ‖∇2
xf(xk)‖ ≤ κB. (1.5.1)

κ, κg, κB and β are fixed constants, while ck is a constant that depends on ∇1
xf(xk).

Despite that approximation procedures to generate imprecise derivatives that satisfy
(1.5.1) are provided in [211, 11] and that the theoretical analysis of [11] allows (1.5.1) to
hold in probability, the algorithm proposed in [11] still uses exact function values to adapt
its regularization parameter. The latter conclusion also hold for tensors methods.

1Here, ’explicit’ implies disregarding the potential dependence of the problem’s Lipschitz constant on its
dimension.
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Indeed, the probabilistic high-order minimization algorithm proposed in [15] allows only
stochasticity on the derivatives and error bounds on f(xk) and f(xk+sk) hold for all iterations.
For the sake of brevity, we will not detail the imposed conditions but we refer the reader to
the aforementioned references for more details.

In other developments, the assumption that the noise on the function values must be
controlled at a level lower than that allowed for the derivatives is a common thread in various
works. This requirement is emphasized in studies such as [46, 62, 33, 91, 20, 12, 13, 11].
More recently, a ”fully” probabilistic cubic regularization has been proposed by [188]. The
function oracles verify conditions similar to those of [130] for stochastic first-order gradient
line search with a probabilistic ”light-tail” error. Other fully stochastic variants [221, 195,
83, 203, 60] require knowledge of Lipschitz constants and thus do not fall within our thesis
analysis framework.

Since the success of first-order methods in Machine Learning is due to the existence of
OFFO algorithms, it is natural to develop higher-order OFFO methods to tackle large-scale
noisy problems. Regarding second-order OFFO methods, [109] proposed an exact OFFO
trust-region. However, as a vanilla trust-region method, the proposed variant suffers from
a O

(
ε−2) convergence rate as a first-order method. Therefore, there is a significant gap

between the best known convergence rate of second-order methods [169, 50, 48] and the already
developed second-order OFFO method. Thus, if we are interested in using the Hessian to
solve (P-ML) while retaining the improved rate of standard adaptive regularization methods,
devising an OFFO variant of the latter seems a natural extension to obtain a robust high-order
algorithm that is not sensitive to the value of the function.

Question 4 Can an exact second-order OFFO algorithm be developed? Can the
paradigm be extended to higher order methods?

We now conclude our brief review of past optimization methods and summarize the
main questions that naturally arise from this review, and that will be central to the present
manuscript.

1.6 Main contributions of subsequent Chapters

We provide answers to the fours above question, using material that has been or is being
published in various continuous optimization journals. Each chapter will summarize elements
presented in the following series of papers [117, 114, 118, 116]. When needed, we implement
modifications to the original material for the sake of consistency with the rest of the thesis
as we describe now.

1.6.1 A New Analysis of Deterministic Adagrad

Regarding Question 3, we take a new look at the Adagrad algorithm and consider it in a
weighted trust-region framework. The Algorithm 1.4.1 is then interpreted as a box trust-
region scaled with certain weights. In this new framework, one can naturally use curvature
information to estimate the step size α in (1.4.7). Within this new approach, we propose
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two classes of methods; A first class containing ”Adagrad”-like variants and a second class
containing a ”divergent” stepsize. For both classes, we also propose a further normalization of
the weights to improve the dependencies on the Lipschitz constant compared to the first anal-
ysis of nonconvex Adagrad developed in [204]. These developments are detailed in Chapter 2
of the thesis and are based on [114], to which we added convincing large-scale experiments.

Novelty The main contribution of this chapter lies mainly in the proof technique. Whereas
vanilla convergence rate analysis relies on a local decrease property. In this case, we directly
bound

∑k
j=0 ‖gj‖2, by proving that

k∑
j=0
‖gj‖2 ≤ κ (1.6.1)

where κ is a problem dependent constant. The last inequality also implies that

min
j∈{0,...,k}

‖gj‖2 = O
( 1

(k + 1)

)
. (1.6.2)

which yields the O
(
ε−2) rate of convergence to a point satisfying (1.2.3).

1.6.2 On High-order Objective Free Methods

In Chapter 3 of the thesis, we provide an answer to the Question 4 by developing an exact
adaptive regularization algorithm that does not utilize function values. For p = 1 and β = 1,
our proposed algorithm recovers a previous adaptive gradient method (WNGrad) developed
in [207]. When exact function values, are used standard ARC methods [51, 29] outperform
our OFFO variants as it adapts more easily to the local smoothness of the function. However,
even for small noise level on function evaluation, the performance of standard ARC deteriorates
dramatically whereas our OFFO variant is more robust. The content is based on the journal
paper [116] with extension to Hölder smooth tensors functions whereas the original dealt only
with Lipschitz ones. We also develop a more sophisticated analysis for a particular algorithmic
variant.

Novelty For the update rule of σk, we don’t use the ratio (1.3.21) and, for f ∈ Cp,β(IRn; IR),
we update the regularization parameter as

σk+1 = σk + σk‖sk‖p+β,

where the step verifies the local decrease condition (1.3.19) and a first-order condition related
to (1.3.20). At first glance, it may seem that σk would be divergent. Below is an illustration
of the convergence mechanism of the algorithm.

• Before reaching the first iteration k1 where σk1 ≤ 2Lp, no decrease is guaranteed and
the objective function may increase. We just prove that the required number of it-
erations to reach 2Lp is of the required order. Namely, for f ∈ Cp,β(IRn; IR), it is
O
(
ε−(p+β)/(p+β−1)

)
with ε the tolerance on the gradient norm (1.2.3).
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Figure 1.3: Sketch of the evolution of the regularization parameter σk

• At iteration k1, some specific constants need to be bounded. The proof depends crucially
on a bound on the step ‖sk‖. We therefore proof a bound on the step in adaptive
regularization methods. We believe that this bound might be useful in other settings.

• For the numerical experiments, we propose to use past-information in order to better
estimate the local Lipschitz smoothness and incorporate it within our new update rule
of σk.

1.6.3 Fast Newton Method

Recently, both [82] and [156], independently proposed to change the implicit term σk
2 ‖sk‖

by the explicit
√
σk‖∇1

xf(xk)‖, resulting in a formulation that is both efficient and effective.
This substitution simplifies the computation and leads to a more straightforward approach
for tackling the optimization problem, which can be expressed as

(∇2
xf(xk) +

√
σk‖∇1

xf(xk)‖In)s = −∇1
xf(xk). (1.6.3)

The two papers, [82] and [156], also proved that the update rule of (1.6.3) lead to known
optimal complexity rates for convex optimization methods. This new globalization trick
spurred work on super-universal schemes [84], algorithms in which the Hessian is updated
only for specific iterates [85], and adaptations for a class of self-concordant functions [79].
Unfortunately, all these works focus on the convex case.

In order to answer Question 1, we develop an adaptive algorithm that employs a step of
type (1.6.3) in a convex region. In the proposed algorithm, a term accounting for negative
curvature is added to

√
σk‖∇1

xf(xk)‖. To avoid computing precise Hessian information, we
also propose subspace implementations and trial step where only gradient regularization is
considered. This new method enjoys a complexity rate that differs only by a logarithmic term
from the standard ARC [50, 51]. At variance with previously mentioned optimal second-order
methods [27, 26, 184, 74], our proposed algorithm does not involve complex inner iterations,
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and initial numerical results show the merits of our approach. The details and developments
are based on elements present [117] and are found in Chapter 4.

Novelty Our proposed algorithm combines a Newton step with a negative curvature
direction in a sophisticated way. The complexity analysis proof is also more involved than
of standard second-order methods [29, 50]. Indeed, some steps do not provide the required
decrease. We circumvent this difficulty by using a well-chosen division of the sequence of
successful steps.

1.6.4 Adaptive Regularization in Banach Spaces

Regarding Question 2 and the development of an adaptive high-order methods in infinite
dimensional Banach space, the main difficulty lies in the fact that a minimizer of (1.3.18) is
no longer guaranteed to exist. To tackle this problem, we develop a Hölder gradient descent
method that can reach an approximate first-order point of a specific class of minimization
problems This class naturally includes functions of the form (1.3.18). The Hölder gradient
descent is endowed with a backtracking line search mechanism and can be easily implemented
in practice. Afterwards, the theory subsequently follows the lines developed in [29] with only
slight modifications to (1.3.20). This line of work is presented in the published paper [118].

Novelty The contributions in this chapter lie in the development of a backtracking line
search for a particular class of functions. The gradient of a function φ in this class verifies a
two terms bound which write as

‖∇1
xφ(x)−∇1

xφ(y)‖V ′ ≤ Lf‖x− y‖β1 + Ls‖x− y‖β2 (1.6.4)

for x, y ∈ V and β1, β2 ∈ (0, 1]. We also provide some characterization on the derivative of a
power of ‖.‖V for a wide choice of Banach spaces. Further arguments regarding the necessity
of studying nonlinear optimization algorithms in Banach spaces are given in Chapter 5.



Chapter 2

Complexity of First-Order OFFO
Algorithms

Chapter Abstract

A parametric class of trust-region algorithms for unconstrained nonconvex optimiza-
tion is considered where the value of the objective function is never computed. The class
contains a deterministic version of the first-order Adagrad method typically used for mini-
mization of noisy function, but also allows the use of (possibly approximate) second-order
information when available. The rate of convergence of methods in the class is analyzed
and is shown to be identical to that known for first-order optimization methods using
both function and gradients values, recovering existing results for purely-first order vari-
ants and improving the explicit dependence on problem dimension. This rate is shown
to be essentially sharp. A new class of methods is also presented, for which a slightly
worse and essentially sharp complexity result holds. Limited numerical experiments show
that the new methods’ performance may be comparable to that of standard steepest de-
scent, despite using significantly less information, and that this performance is relatively
insensitive to noise.

Reference: The theory in the chapter and some experiments are taken from [114]. Additional
large-scale numeric on image recognition are also provided.

2.1 Introduction

In the following, we consider the deterministic Adagrad algorithm [88] using a trust-region
point [68] of view. We remind the reader that a review of Adagrad and the class of Adaptive
gradient methods was provided at Subsection 1.4.3. Although this approach has not been used
much in the machine learning context, trust region techniques have been investigated in the
framework of noisy optimization problems. The method proposed in [92] uses function values
but updates the radius bounding the steplength as a function of the gradient norm, which is
also the case of [73]. The algorithm of [33] and [18] also uses the (noisy) objective function’s
value while also allowing noise in the derivatives. In contrast, the algorithms described in [109]
and [91] do not evaluate the objective function. They differ from the proposal we are about
to describe both in the technique of proof and the fact that they do not subsume Adagrad
or many of its variants. Moreover, the analysis of [91] requires the explicit knowledge of the
problem’s Lipschitz constant in the algorithm for obtaining the best complexity estimate.

41
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The purpose of the present chapter is to bridge the gap between standard first-order
OFFO methods such as Adagrad and OFFO trust-region algorithms by considering a unified
framework. More specifically,

1. we re-interpret the deterministic Adagrad as a particular member of a fairly general
parametric class of trust-region methods (Sections 2.2 and 2.3). This class not only con-
tains purely first-order algorithms such as Adagrad, but also allows the use of (possibly
approximate) second-order information, should it be available using a Barzilai-Borwein
approach [8], a limited-memory BFGS technique [143] or even exact second derivatives.

2. We then provide, for our proposed class, an essentially sharp global1 bound on the
gradient’s norm as a function of the iteration counter, which is identical to that known
for first-order optimization methods using both function and gradients values. This
complexity result does not assume bounded gradients and extends that of [204] only valid
for Adagrad-Norm to the complete class. It also uses one of the available parameters of
the class to mitigate the explicit dependence of that bound on the problem’s dimension.

3. We next exploit the proposed OFFO trust-region framework of Section 2.2 to propose (in
Section 2.4) a new class class of such methods, for which an essentially sharp complexity
result is also provided.

4. We finally illustrate our proposals by discussing some numerical experiments in Sec-
tion 2.5, suggesting that the considered OFFO methods may indeed be competitive
with steepest descent in efficiency and reliability while being much less sensitive to
noise.

Additional notation. wi,k denotes the ith component of a vector wk ∈ IRn.

2.2 A class of first-order minimization methods

We consider the problem (P) where f is a smooth function from IRn to IR. In particular, we
will assume in what follows that

AS.1: the objective function f(x) is continuously differentiable and its gradient is Lipschitz
continuous with Lipschitz constant L1. i.e: f ∈ C1,1(IRn; IR).

AS.2: there exists a constant flow such that, for all x, f(x) ≥ flow.

AS.1 and AS.2 are standard for the complexity analysis of optimization methods seeking
first-order critical points. We stress once more that we do not assume that the gradient are
uniformly bounded, at variance with [207, 77, 222, 114].

The class of methods of interest here are iterative and generate a sequence of iterates
{xk}k≥0. The move from an iterate to the next directly depends on the gradient at xk and
algorithm-dependent scaling factors {wk = w(x0, . . . , xk)} whose main purpose is to control
the move’s magnitude. In our analysis, we will assume that

AS.3: for each i ∈ {1, . . . , n} there exists a constant ςi ∈ (0, 1] such that, wi,k ≥ ςi for all
k ≥ 0.

1I.e., valid at every iteration.
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Since scaling factors are designed to control the length of the step, they are strongly rem-
iniscent of the standard mechanism of the much studied trust-region optimization methods
(see [68] for an extensive coverage and [208] for a more recent survey). In trust-region algo-
rithms, a model of the objective function at an iterate xk is built, typically using a truncated
Taylor series, and a step sk is chosen that minimizes this model with a trust-region, that is a
region where the model is assumed to represent the true objective function sufficiently well.
This region is a ball around the current iterate, whose radius is updated adaptively from
iteration to iteration, based on the quality of the prediction of the objective function value
at the trial point xk + sk. For methods using gradient only, the model is then chosen as the
first two terms of the Taylor’s expansion of f at the iterate xk. Although, we are interested
here in methods where the objective function’s value is not evaluated, and therefore cannot
be used to accept/reject iterates and update the trust-region radius, a similar mechanism
may be designed, this time involving the weights {wk}, the choice of which will detailed in
the following two sections for two algorithmic subclasses of interest. The resulting algorithm,
which we call ASTR1 (for Adaptively Scaled Trust Region using 1rst order information) is
stated on the following page.

The algorithm description calls for some comments.

1. Observe that we allow the use of second-order information by effectively defining a
quadratic model

gᵀks+ 1
2s

ᵀBks (2.2.9)

where Bk can of course be chosen as the true second-derivative matrix of f at xk
(provided it remains bounded to satisfy (2.2.2)) or any approximation thereof. Choosing
Bk = 0 results in a purely first-order algorithm.
The condition (2.2.2) on the Hessian approximations is quite weak, and allows in par-
ticular for a variety of quasi-Newton approaches, limited-memory or otherwise. In a
finite-sum context, sampling bounded Hessians is also possible.

2. Conditions (2.2.4)–(2.2.7) define a “generalized Cauchy point” (GCP), much in the
spirit of standard trust-region methodology (see [68, Section 6.3] for instance), where
the quadratic model (2.2.9) is minimized in (2.2.7) along a good first-order direction
(sLk ) to obtain a “Cauchy step” sQk . Any step sk can then be accepted provided it
remains in the trust region (see (2.2.3)) and enforces a decrease in the quadratic model
which is a least a fraction τ of that achieved at the Cauchy step (see (2.2.4)).

3. At variance with many existing trust-region algorithms, the radius ∆k of the trust-region
(2.2.1) is not recurred adaptively from iteration to iteration depending on how well the
quadratic model predicts function values, but is directly defined as a scaled version
of the local gradient. This is not without similarities with the trust-region methods
proposed by [92], which corresponds to a scaling factor equal to ‖gk‖−1, or [91] where
the trust-region radius depends on ‖gk‖.

4. As stated, the ASTR1 algorithm does not include a termination rule, but such a rule can
easily be introduced by terminating the algorithm in Step 1 if ‖gk‖ ≤ ε, where ε > 0 is
a user-defined first-order accuracy threshold.
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Algorithm 2.2.1: ASTR1

Step 0: Initialization. A starting point x0 is given. Constants κB ≥ 1 and τ ∈ (0, 1]
are also given. Set k = 0.

Step 1: Define the TR. Compute gk = g(xk) and define

∆i,k = |gi,k|
wi,k

(2.2.1)

where wk = w(x0, . . . , xk).

Step 2: Hessian approximation. Select a symmetric Hessian approximation Bk
such that

‖Bk‖ ≤ κB. (2.2.2)

Step 3: GCP. Compute a step sk such that

|si,k| ≤ ∆i,k (i ∈ {1, . . . , n}), (2.2.3)

and
gᵀksk + 1

2s
ᵀ
kBksk ≤ τ

(
gᵀks

Q
k + 1

2(sQk )ᵀBksQk
)
, (2.2.4)

where
sLi,k = −sign(gi,k)∆i,k, (2.2.5)

sQk = αks
L
k , (2.2.6)

with

αk =

 min
[
1, |gᵀks

L
k |

(sLk )ᵀBksLk

]
if (sLk )ᵀBksLk > 0,

1 otherwise.
(2.2.7)

Step 4: New iterate. Define
xk+1 = xk + sk, (2.2.8)

increment k by one and return to Step 1.
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5. It may seem to the reader that we have introduced two algorithmic parameters typically
not present in existing OFFO methods. As it turns out, this is standard practice for
trust-region methods and it is widely acknowledged that the behaviour of the algorithm
is relatively insensitive to the choice made. Typically values are

τ = 1
10 and κB = 105,

the last one being possibly adapted to reflect the problem scaling. Note that these
values are constant throughout the execution of the algorithm. At variance, αk is
the iteration dependent stepsize, a quantity present in every first-order minimization
method. Observe that we do not impose restrictions of the stepsize (beyond being
positive), thereby covering most standard choices. Note that αk = 1 and sQk = sLk
whenever Bk = 0.

The algorithm being defined, the first step of our analysis is to derive a fundamental property
of objective-function decrease, valid for all choices of the scaling factors satisfying AS.3.

Lemma 2.2.1 Suppose that AS.1, AS.2 and AS.3 hold. Then we have that, for all
k ≥ 0,

f(xj+1) ≤ f(xj)−
n∑
i=1

τςming
2
i,j

2κBwi,j
+ 1

2(κB + L1)
n∑
i=1

g2
i,j

w2
i,j

(2.2.10)

and

f(x0)− f(xk+1) ≥
k∑
j=0

n∑
i=1

g2
i,j

2κBwi,j

[
τςmin −

κBBL

wi,j

]
(2.2.11)

where ςmin
def= mini∈{1,...,n} ςi and κBBL

def= κB(κB + L).

Proof. Using (2.2.5) and AS.3, we deduce that, for every j ≥ 0,

|gᵀj s
L
j | =

n∑
i=1

g2
i,j

wi,j
=

n∑
i=1

wi,jg
2
i,j

w2
i,j

≥
n∑
i=1

ςig
2
i,j

w2
i,j

≥ ςmin‖sLj ‖2. (2.2.12)

Suppose first that (sLj )ᵀBjsLj > 0 and αj < 1. Then, in view of (2.2.6), (2.2.7), (2.2.12)
and (2.2.2),

gᵀj s
Q
j + 1

2(sQj )ᵀBjsQj = αjg
ᵀ
j s
L
j + 1

2α
2
j (sLj )ᵀBjsLj = −

(gᵀj sLj )2

2(sLj )ᵀBjsLj
≤ −

ςmin|gᵀj sLj |
2κB

.

Combining this inequality with the first equality in (2.2.12) then gives that

gᵀj s
Q
j + 1

2(sQj )ᵀBjsQj ≤ −
ςmin
2κB

n∑
i=1

g2
i,j

wi,j
. (2.2.13)
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Suppose now that (sLj )ᵀBjsLj ≤ 0 or αj = 1. Then, using (2.2.6), (2.2.13) and (2.2.5),

gᵀj s
Q
j + 1

2(sQj )ᵀBjsQj = gᵀj s
L
j + 1

2(sLj )ᵀBjsLj ≤ 1
2g

ᵀ
j s
L
j < 0

and (2.2.13) then again follows from the bound κB ≥ 1. Successively using AS.1 and
gradient Lipschitz bound, (2.2.4), (2.2.13), (2.2.2) and (2.2.1) then gives that, for j ≥ 0,

f(xj+1) ≤ f(xj) + gᵀj sj + 1
2s

ᵀ
jBjsj − 1

2s
ᵀ
jBjsj + 1

2L‖sj‖
2

≤ f(xj) + τ
(
gᵀj s

Q
j + 1

2(sQj )ᵀBjsQj
)

+ 1
2(κB + L)‖sj‖2

≤ f(xj)−
n∑
i=1

τςming
2
i,j

2κBwi,j
+ 1

2(κB + L)
n∑
i=1

∆2
i,j

≤ f(xj)−
n∑
i=1

τςming
2
i,j

2κBwi,j
+ 1

2(κB + L)
n∑
i=1

g2
i,j

w2
i,j

.

This is (2.2.10). Summing up this inequality for j ∈ {0, . . . , k} then yields (2.2.11). 2

Armed with Lemma 2.2.1, we are now in position to specify particular choices of the scaling
factors wi,k and derive the convergence properties of the resulting variants of ASTR1.

2.3 An Adagrad-like variant of ASTR1 using second-order
models

We first consider a choice of scaling factors directly derived from the definition of the Adagrad
algorithm [88]. For given ς ∈ (0, 1], ϑ ∈ (0, 1], θ > 0 and µ ∈ (0, 1), define, for all i ∈ {1, . . . , n}
and for all k ≥ 0,

wi,k ∈
[√
ϑ vi,k, vi,k

]
where vi,k

def= θ

(
ς +

k∑
`=0

g2
i,`

)µ
. (2.3.1)

The Adagrad scaling factors are recovered by µ = 1
2 , θ = 1 and ϑ = 1, and ASTR1 with (2.3.1)

and Bk = 0 is then the standard (deterministic) Adagrad method. The formulation (2.3.1)
allows a parametric analysis of methods “in the neighbourhood” of Adagrad, using not only
first-order but also second-order information. The ϑ parameter is introduced for flexibility,
in particular allowing non-monotone scaling factors2 The additional scaling parameter3 θ is
introduced as a technique to improve the convergence rate of the resulting algorithm and so
devising an approach can give the appropriate scale to the stepsize αk and hence give an
answer to the second part of Question 3. Such a scaling has been considered and may be
useful when the gradient is sparse [89] or when designing a private Adagrad version [4] in
order to improve the complexity bound with respect to the problem’s parameters. The above
parametrization with θ = 1 has also been considered in [58] in the context of a continuous
Ordinary Differential Equations analysis and, with θ depending on problem’s constants, in
[141] where the sum on ` in (2.3.1) is terminated at ` = k−1 and µ is restricted to the interval

2Typical values are ςi = 1
100 and ϑ = 1

1000 .
3Which can be viewed as a stepsize/learning rate parameter when Bk = 0.
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[1
2 , 1) in the stochastic regime. In what follows, we consider the discrete deterministic case for

the interval (0, 1). For modern deep Learning problems, practitioners often use an exponential
moving average in order to estimate vi,k defined at (2.3.1) as to put more emphasis on recent
information, this however lead to an algorithm that is divergent even for the simple convex
case as shown by [182]. Therefore, we restricted ourselves to the aforementioned case (2.3.1)

Before stating the global rate of convergence of the variant of ASTR1 using (2.3.1), we first
prove a lemma, partly inspired by [204, 77].

Lemma 2.3.1 Let {ak}k≥0 be a non-negative sequence, µ > 0, ξ > 0 and define, for
each k ≥ 0, bk =

∑k
j=0 aj. Then if µ 6= 1,

k∑
j=0

aj
(ξ + bj)µ

≤ 1
(1− µ)((ξ + bk)1−µ − ξ1−µ). (2.3.2)

Otherwise (i.e. if µ = 1),

k∑
j=0

aj
(ξ + bj)

≤ log
(
ξ + bk
ξ

)
. (2.3.3)

Proof. Consider first the case where µ 6= 1 and note that 1
(1−µ)x

1−µ is then a non-
decreasing and concave function on (0,+∞). Setting b−1 = 0 and using these properties,
we obtain that, for j ≥ 0,

aj
(ξ + bj)µ

≤ 1
1− µ

(
(ξ + bj)1−µ − (ξ + bj − aj)1−µ

)
= 1

1− µ
(
(ξ + bj)1−µ − (ξ + bj−1)1−µ

)
.

We then obtain (2.3.2) by summing this inequality for j ∈ {0, . . . , k}.
Suppose now that µ = 1, we then use the concavity and non-decreasing character of the
logarithm to derive that

aj
(ξ + bj)µ

= aj
(ξ + bj)

≤ log(ξ + bj)− log(ξ + bj − aj) = log(ξ + bj)− log(ξ + bj−1).

The inequality (2.3.3) then again follows by summing for j ∈ {0, . . . , k}. 2

From (2.3.2), we also obtain that, for µ < 1,

k∑
j=0

aj
(ξ + bj)µ

≤ 1
(1− µ)(ξ + bk)1−µ (2.3.4)
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while, for µ > 1,
k∑
j=0

aj
(ξ + bj)µ

≤ ξ1−µ

(µ− 1) . (2.3.5)

Note that both the numerator and the denominator of the right-hand side of (2.3.2) tend to
zero when µ tends to one. Applying l’Hospital rule, we then see that this right-hand side
tends to the right-hand side of (2.3.3) and the bounds on

∑k
j=0 aj/(ξ + bj)µ are therefore

continuous at µ = 1.
Lemma 2.3.1 is crucial in the proof of our main complexity result, which we now state.

The proof hinges crucially on proving that
∑k
j=0 ‖gj‖2 is bounded.

Theorem 2.3.2 Suppose that AS.1 and AS.2 hold and that the ASTR1 algorithm is
applied to problem (P) with its scaling given by (2.3.1). If we define

Γ0
def= f(x0)− flow,

then,

(i) if 0 < µ < 1
2 ,

average
j∈{0,...,k}

‖gj‖2 ≤
κ1
k + 1 , (2.3.6)

with

κ1 = max

ς,
[

22µϑ(1− 2µ)θ2Γ0
n(κB + L)

] 1
1−2µ

,

[
4nκBBL

(1− 2µ)τθςµϑ
3
2

] 1
µ

 ; (2.3.7)

(ii) if µ = 1
2 ,

average
j∈{0,...,k}

‖gj‖2 ≤
κ2
k + 1 , (2.3.8)

with

κ2 = max

ς, 1
2e

2Γ0ϑθ
2

n(κB+L) ,
1
2ς

(8nκB(κB + L)
τϑ

3
2 θ

)2 ∣∣∣∣∣W−1

(
− τςθϑ

3
2

8nκB(κB + L)

)∣∣∣∣∣
2 ,
(2.3.9)

where W−1 is the second branch of the Lambert function [70];

(iii) if 1
2 < µ < 1,

average
j∈{0,...,k}

‖gj‖2 ≤
κ3
k + 1 (2.3.10)

with

κ3
def== max

ς,
[

21+µκB

τςµ
√
ϑ

(
Γ0θ + n(κB + L)ς1−2µ

2ϑθ(2µ− 1)

)] 1
1−µ
 (2.3.11)
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Proof. We see from (2.3.1) that wi,k verifies AS.3. We may thus use Lemma 2.2.1.
Moreover, (2.3.1) also implies that

ςµ
√
ϑθ ≤ wi,j ≤ θ

ς +
j∑
`=0
‖g`‖2

µ (2.3.12)

for all j ≥ 0 and all i ∈ {1, . . . , n}. We now deduce from (2.2.1) and (2.2.11) that, for
k ≥ 0,

f(xk+1) ≤ f(x0)−
k∑
j=0

τςµ
√
ϑ ‖gj‖2

2κB max
i∈{1,...,n}

wi,k
+ 1

2(κB + L)
n∑
i=1

k∑
j=0

∆2
i,j . (2.3.13)

For each i ∈ {1, . . . , n}, we then apply Lemma 2.3.1 with a` = g2
i,`, ξ = ς and 2µ < 1, and

obtain from (2.2.1) and (2.3.1) that,

k∑
j=0

∆2
i,j ≤

1
θ2ϑ(1− 2µ)

(ς +
k∑
`=0

g2
i,`

)1−2µ

− ς1−2µ

 ≤ 1
θ2ϑ(1− 2µ)

(
ς +

k∑
`=0

g2
i,`

)1−2µ

.

(2.3.14)
Now

n∑
i=1

k∑
j=0

∆2
i,j ≤

n∑
i=1

1
θ2ϑ(1− 2µ)

(
ς +

n∑
i=1

k∑
`=0

g2
i,`

)1−2µ

≤ n

θ2ϑ(1− 2µ)

(
ς +

k∑
`=0
‖g`‖2

)1−2µ

(2.3.15)
and thus substituting this bound in (2.3.13) and using AS.2 gives that

k∑
j=0

τςµ
√
ϑ‖gj‖2

2κB max
i∈{1,...,n}

wi,k
≤ Γ0 + n(κB + L)

2θ2ϑ
(1− 2µ)

ς +
k∑
j=0
‖gj‖2

1−2µ

. (2.3.16)

Suppose now that

k∑
j=0
‖gj‖2 ≥ max

ς,
[

22µθ2ϑ(1− 2µ)Γ0
n(κB + L)

] 1
1−2µ

 , (2.3.17)

implying

ς +
k∑
j=0
‖gj‖2 ≤ 2

k∑
j=0
‖gj‖2 and Γ0 ≤

n(κB + L)
2θ2ϑ(1− 2µ)

2
k∑
j=0
‖gj‖2

1−2µ

.

Then, using (2.3.16) and (2.3.12),

τςµ
√
ϑ

21+µ κBθ
[∑k

`=0 ‖g`‖2
]µ k∑

j=0
‖gj‖2 ≤

21−2µ n (κB + L)
ϑθ2(1− 2µ)

 k∑
j=0
‖gj‖2

1−2µ

.
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Solving this inequality for
∑k
j=0 ‖gj‖2 gives that

k∑
j=0
‖gj‖2 ≤

[
4n κBBL

(1− 2µ)θτςµϑ
3
2

] 1
µ

and therefore

average
j∈{0,...,k}

‖gj‖2 ≤
[

4nκBBL

(1− 2µ)θτςµϑ
3
2

] 1
µ

· 1
k + 1 . (2.3.18)

Alternatively, if (2.3.17) fails, then

average
j∈{0,...,k}

‖gj‖2 < max

ς,
[

22µϑ(1− 2µ)θ2Γ0
21−2µn(κB + L)

] 1
1−2µ

 · 1
k + 1 . (2.3.19)

Combining (2.3.18) and (2.3.19) gives (2.3.6).
Let us now consider the case where µ = 1

2 . For each i ∈ {1, . . . , n}, we apply Lemma 2.3.1
with ak = g2

i,k, ξ = ς and 2µ = 1 and obtain that,

n∑
i=1

k∑
j=0

∆2
i,j ≤

1
ϑθ2

n∑
i=1

log
(

1
ς

(
ς +

k∑
`=0

g2
i,`

))
≤ n

ϑθ2 log
(

1 + 1
ς

k∑
`=0
‖g`‖2

)
.

and substituting this bound in (2.3.13) then gives that

k∑
j=0

τ
√
ςϑ‖gj‖2

2κB max
i∈{1,...,n}

wi,k
≤ Γ0 + n(κB + L)

2ϑθ2 log

1 + 1
ς

k∑
j=0
‖gj‖2

 .
Suppose now that

k∑
j=0
‖gj‖2 ≥ max

[
ς,

1
2e

2ϑθ2Γ0
n(κB+L)

]
, (2.3.20)

implying that

1 + 1
ς

k∑
j=0
‖gj‖2 ≤

2
ς

k∑
j=0
‖gj‖2 and Γ0 ≤

n(κB + L)
2ϑθ2 log

2
ς

k∑
j=0
‖gj‖2

 .
Using (2.3.12) for µ = 1

2 , we obtain then that

τ
√
ςϑ

2
√

2 θ κB

√√√√ k∑
`=0
‖g`‖2

k∑
j=0
‖gj‖2 ≤

n(κB + L)
ϑθ2 log

2
ς

k∑
j=0
‖gj‖2

 ,

that is
τ
√

2ςϑ
3
2 θ

4κB

√√√√√ k∑
j=0
‖gj‖2 ≤ 2n(κB + L) log


√√√√√2
ς

k∑
j=0
‖gj‖2

 . (2.3.21)
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Now define

γ1
def= τςϑ

3
2 θ

4κB
, γ2

def= 2n(κB + L) and u
def=

√√√√√2
ς

k∑
j=0
‖gj‖2 (2.3.22)

and observe that that γ2 > 3γ1 because τ√ςϑ
3
2 ≤ 1 and κB ≥ 1. The inequality (2.3.21)

can then be rewritten as
γ1u ≤ γ2 log(u). (2.3.23)

Let us denote by ψ(u) def= γ1u − γ2 log(u). Since γ2 > 3γ1, the equation ψ(u) = 0 admits
two roots u1 ≤ u2 and (2.3.23) holds for u ∈ [u1, u2]. The definition of u2 then gives that

log(u2)− γ1
γ2
u2 = 0

which is
u2e
− γ1
γ2
u2 = 1.

Setting z = −γ1
γ2
u2, we obtain that

zez = −γ1
γ2

Thus z = W−1(−γ1
γ2

) < 0, where W−1 is the second branch of the Lambert function defined
over [−1

e , 0). As −γ1
γ2
≥ −1

3 , z is well defined and thus

u2 = −γ2
γ1
z = −γ2

γ1
W−1

(
−γ1
γ2

)
> 0.

As a consequence, we deduce from (2.3.23) and (2.3.22) that

k∑
j=0
‖gj‖2 = ς

2 u
2
2 = 1

2ς

(8nκB(κB + L)
τϑ

3
2 θ

)2 ∣∣∣∣∣W−1

(
− τςϑ

3
2 θ

8nκB(κB + L)

)∣∣∣∣∣
2

.

and

average
j∈{0,...,k}

‖gj‖2 ≤
1
2ς

(8nκB(κB + L)
τϑ

3
2 θ

)2 ∣∣∣∣∣W−1

(
− τςϑ

3
2 θ

8nκB(κB + L)

)∣∣∣∣∣
2

· 1
k + 1 . (2.3.24)

If (2.3.20) does not hold, we have that

average
j∈{0,...,k}

‖gj‖2 < max
{
ς,

1
2 e

2Γ0ϑθ
2

n(κB+L)

}
· 1
k + 1 . (2.3.25)

Combining (2.3.24) and (2.3.25) gives (2.3.8).
Finally, suppose that 1

2 < µ < 1. Once more, we apply Lemma 2.3.1 for each i ∈ {1, . . . , n}
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with a` = g2
i,`, ξ = ς and 2µ > 1 and obtain that

k∑
j=1

∆2
k,j ≤

1
θ2ϑ(1− 2µ)

((
ς +

k∑
`=0

g2
i,`

)1−2µ
− ς1−2µ

)
≤ ς1−2µ

ϑθ2(2µ− 1) . (2.3.26)

Substituting the bound (2.3.26) in (2.3.13) and using (2.3.12) and AS.2 gives that

k∑
j=0

1
(ς +

∑k
j=0 ‖gj‖2)µ

τςµ
√
ϑ‖gj‖2

2κBθ
≤ Γ0 + n(κB + L)ς1−2µ

2θ2ϑ(2µ− 1) .

If we now suppose that
k∑
j=0
‖gj‖2 ≥ ς, (2.3.27)

then

average
j∈{0,...,k}

‖gj‖2 ≤
[

21+µκB

τςµ
√
ϑ

(
Γ0θ + n(κB + L)ς1−2µ

2ϑ(2µ− 1)θ

)] 1
1−µ

· 1
k + 1 . (2.3.28)

If (2.3.27) does not hold, we derive that

average
j∈{0,...,k}

‖gj‖2 ≤
ς

(k + 1) . (2.3.29)

Thus, (2.3.28) and(2.3.29) finally imply (2.3.10). 2

These result suggest additional remarks.

1. That the bounds given are not continuous as a function µ at µ = 1
2 is a result of our

bounding process within the proof of Theorem 2.3.2 (for instance in the last inequality
of (2.3.14)). Continuous bounds have been proved (see [115]) if one is ready to assume
that the objective functions’ gradients remain uniformly bounded.

2. If the algorithm is terminated as soon as ‖gk‖ ≤ ε (which is customary for deterministic
algorithms searching for first-order points), it must stop at the latest at iteration

k = κ2
?ε
−2, (2.3.30)

where κ? = κ1 for µ ∈ (0, 1
2), κ? = κ2 for µ = 1

2 and κ? = κ3 for µ ∈ ( 1
2 , 1). It is

truly remarkable that there exist first-order OFFO methods whose global complexity
order is identical to that of standard first-order methods using function evaluations (see
[163, 112, 49] or [57, Chapter 2]), despite the fact that the latter exploit significantly
more information. As mentionned in the introduction, this complexity rate was also
derived for the analysis of Adagrad-Norm in [204].

3. It is possible to give a weaker but more explicit bound on κ2 by finding an upper bound
on the value of the involved Lambert function. This can be obtained by using [59,
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Theorem 1] which states that, for x > 0,∣∣∣W−1(−e−x−1)
∣∣∣ ≤ 1 +

√
2x+ x.

Remembering that, for γ1 and γ2 given by (2.3.22), log
(
γ2
γ1

)
≥ log(3) > 1 and taking

x = log
(
γ2
γ1

)
− 1 > 0 in (2.3.31) then gives that

∣∣∣∣W−1

(
−γ1
γ2

)∣∣∣∣ ≤ log
(
γ2
γ1

)
+
√

2
(

log
(
γ2
γ1

)
− 1

)
. (2.3.31)

4. It is also possible to extend the definition of sLk in (2.2.5) by premultiplying it by a
stepsize αk ∈ [αmin, 1] for some αmin ∈ (0, 1]. Our results again remain valid (with
modified constants). Covering a deterministic momentum-less Adam would require
extending the results to allow for (2.3.1) to be replaced by

wi,k = ς +
k∑
j=0

βk−j2 g2
i,j (i ∈ {1, . . . , n}) (2.3.32)

for some β2 < 1. This can be done by following the argument of Theorem 2 in [77].
However, as in this reference, the final bound on the squared gradient norms does not
tend to zero when k grows4, illustrating the (known) lack of convergence of Adam. We
therefore do not investigate this option in detail.

5. Focusing on the choice of the parameter µ independently of ϑ and θ, we verify that
the choice µ = 1

2 is best, yielding an upper complexity bound for the deterministic
Adagrad algorithm and recovering a similar result obtained in [204] for the Adagrad-
Norm algorithm.
The choice µ = 1 is not covered by our theory but has been considered in [160], where a
specific choice of the constant θ with µ = 1 is used to derive a first order method with
optimal regret for strongly convex problems. Unfortunately, the proposed SC(Strong
Convex)-Adagrad algorithm requires the knowledge of the problem’s Lipschitz constant
and noise characteristics.

We now discuss the dependence of the bounds given by Theorem 2.3.2 as a function of
the problem’s constants L, n and Γ0 and recall that if n is known a priori, this is generally
not the case for the Lispchitz constant L, while the gap Γ0 may be available for some classes
of problems (such as nonlinear regressions where Γ0 ≤ f(x0)). We are mostly interested in
the explicit dependence of the bounds on n, taking into account that the unknown L often
varies little with dimension –such as in problems arising from discretizations– but admittedly
ignoring the fact it may also depend on n, sometimes severely [57, p. 14]. As we are allowed
to do so, we would like to choose the scaling parameter θ in order to offset this dependence as
much as possible. In view of (2.3.7), (2.3.9) and (2.3.11), and noting that (2.3.31) indicates
that the |W−1|2 term in (2.3.9) can be summarized as O

(
log(nL)2), we attempt to balance

the impact of the various terms involving both θ and n and, in the absence of additional
4A constant term in − log(β2) refuses to vanish.
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information on the problem, select

θ? =
{ √

n/Γ0 when Γ0 is known,√
n otherwise. (2.3.33)

We may then compare the bounds obtained by reinjecting this value in (2.3.9) (µ = 1
2) with

the results for deterministic Adagrad-Norm [204] and Adagrad [194]. This comparison is
summarized in the following table.

Regime Algorithm Constant dependence

Non-Convex [204] wi,k =
√
ς +

∑k
j=0 ‖gj‖2 O

(
L2 log(L)2)

Convex [194] (2.3.1) with (θ = 1, ϑ = 1) O
(
n2L2 log(L)2)

Non-convex (2.3.9) (2.3.1) with (θ =
√
n, ϑ = 1) O

(
nL2 log(

√
nL)2)

Are the (good) upper bound given Theorem 2.3.2 sharp?

Theorem 2.3.3 The bounds (2.3.6), (2.3.8) and (2.3.10) are essentially sharp in that,
for each µ ∈ (0, 1) and each η ∈ (0, 1], there exists a univariate function fµ,η satisfying
AS.1 and AS.2 such that, when applied to minimize fµ,η from the origin, the ASTR1
algorithm with (2.3.1), Bk = 0 and ϑ = θ = 1 produces a sequence of gradient norms
given by ‖gk‖ = 1

k
1
2 +η

.

Proof. Following ideas of [57, Theorem 2.2.3], we first construct a sequence of iterates
{xk} for which fµ,η(xk) = fk and ∇1

xfµ,η(xk) = gk for associated sequences of function
and gradient values {fk} and {gk}, and then apply Hermite interpolation to exhibit the
function fµ,η itself. We start by defining

g0
def= −2, gk

def= − 1
k

1
2 +η

(k > 0), (2.3.34)

s0
def= 2

(ς + 4)µ , sk
def= 1

k
1
2 +η(ς +

∑k
j=0 g

2
j )µ

(k > 0) (2.3.35)

yielding that

|g0s0| =
4

(ς + 4)µ , |gksk| =
1

k1+2η(ς +
∑k
j=0 g

2
j )µ
≤ 1
k1+2η (k > 0) (2.3.36)

(remember that g2
0 = 4). We then define Bk

def= 0 for all k ≥ 0,

x0 = 0, xk+1 = xk + sk (k > 0) (2.3.37)
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and
f0 = 4

(ς + 4)µ + ζ(1 + 2η) and fk+1 = fk + gksk (k ≥ 0), (2.3.38)

where ζ(·) is the Riemann zeta function. Observe that the sequence {fk} is decreasing
and that, for all k ≥ 0,

fk+1 = f0 −
k∑
k=0
|gksk| ≥ f0 −

4
(ς + 4)µ −

k∑
k=1

1
k1+2η ≥ f0 −

4
(ς + 4)µ − ζ(1 + 2η)

where we used (2.3.38) and (2.3.36). Hence (2.3.38) implies that

fk ∈ [0, f0] for all k ≥ 0. (2.3.39)

Also note that, using (2.3.38),

|fk+1 − fk − gksk| = 0, (2.3.40)

while, using (2.3.35),
|g0 − g1| = 1 ≤ 1

2(ς + 4)µ s0.

Moreover, using the fact that 1/x
1
2 +η is a convex function of x over [1,+∞), and that

from (2.3.35) sk ≥ 1
k

1
2 +η(ς+4+k)µ

, we derive that, for k > 0,

|gk+1 − gk| =
∣∣∣∣∣ 1
(k + 1)

1
2 +η
− 1
k

1
2 +η

∣∣∣∣∣
≤
(1

2 + η

) 1
k

3
2 +η

≤ 3
2

(ς + 4 + k)µ

kk
1
2 +η(ς + 4 + k)µ

≤ 3
2

(ς + 4 + k)µ

k
sk

≤ 3
2 (ς + 5)µ sk.

These last bounds and (2.3.39) allow us to use standard Hermite interpolation on the data
given by {fk} and {gk}: see, for instance, Theorem A.9.1 in [57] with p = 1 and

κf = max
[3

2(ς + 5)µ, f0, 2
]

(2.3.41)

(the second term in the max bounding |fk| because of (2.3.39) and the third bounding
|gk| because of (2.3.34)). We then deduce that there exists a continuously differentiable
function fµ,η from IR to IR with Lipschitz continuous gradient (i.e. satisfying AS.1 and
AS.2) such that, for k ≥ 0,

fµ,η(xk) = fk and ∇1
xfµ,η(xk) = gk.



56 CHAPTER 2. COMPLEXITY OF FIRST-ORDER OFFO ALGORITHMS

Moreover, the range of fµ,η and ∇1
xfµ,η are constant independent of η, hence guaranteeing

AS.1 and AS.2. The definitions (2.3.34), (2.3.35), (2.3.37) and (2.3.38) imply that the
sequences {xk}, {fk} and {gk} can be seen as generated by the ASTR1 algorithm (with
(2.3.1), Bk = 0 and ϑ = θ = 1) applied to fµ,η, starting from x0 = 0 and the desired
conclusion follows. 2

The bounds (2.3.6), (2.3.8) and (2.3.10) are therefore essentially sharp (in the sense of [52])
for the ASTR1 algorithm with (2.3.1) and ϑ = θ = 1, which is to say that the lower complexity
bound for the algorithm is arbitrarily close to its upper bound. Interestingly, the argument
in the proof of the above theorem fails for η = 0, as this choice yields that

k∑
j=0

gᵀj sj ≥
k∑
j=0

1
k(ς + log(k + 1))µ .

Since ∫ k

1

dt

t(log(t+ 1))µ >
∫ k

1

dt

(t+ 1)(log(t+ 1))µ = (log(k + 1))1−µ

1− µ − log(2)1−µ

1− µ

tends to infinity as k grows, this indicates (in view (2.3.38)) that AS.2 cannot hold. Also note
that (2.3.34) implies that the gradients remain uniformly bounded.

2.4 A further “diminishing stepsizes” variation on this theme

We now use a different proof technique to design new variants of ASTR1 with a fast global k-
order. This is achieved by modifying the definition of the scaling factors wi,k, requiring them
to satisfy a fairly general growth condition explicitly depending on k, the iteration index.
More specifically, we will assume, in this section, that the scaling factors wi,k are chosen
such that, for some power parameter 0 < ν ≤ µ < 1, all i ∈ {1, . . . , n} and some constants
ςi ∈ (0, 1] and θ > 0,

θmax[ςi, vi,k] (k + 1)ν ≤ wi,k ≤ θmax[ςi, vi,k] (k + 1)µ (k ≥ 0), (2.4.1)

where, for each i, the vi,k satisfy the properties that

vi,k+1 > vi,k implies that vi,k+1 ≤ |gi,k+1| (2.4.2)

and
vi,k ≥ |gi,k|/h(k) (2.4.3)

for some positive function h(k) only depending on k. Of particular choices where

vi,k = max
j∈{0,...,k}

|gi,j | and vi,k = 1
k + 1

∑
j∈{0,...,k}

|gi,j |

which both satisfy (2.4.2) and (2.4.3) (with h(k) = 1 for the first and h(k) = k + 1 for the
second). We further illustrate this in Section 2.5.

We start by proving a useful technical result.



2.4. A FURTHER “DIMINISHING STEPSIZES” VARIATION ON THIS THEME 57

Lemma 2.4.1 Consider and arbitrary i ∈ {1, . . . , n} and suppose that there exists a jς
such that

min
[
g2
i,j

ςi
,
g2
i,j

vi,j

]
≤ ςi for j ≥ jς . (2.4.4)

Then
min

[
g2
i,j

ςi
,
g2
i,j

vi,j

]
≥
g2
i,j

2ςi
for j ≥ jς . (2.4.5)

Proof. Suppose that there exists a j > jς such that vi,j > 2ςi. Assume, without loss
of generality that j is the smallest such index. Then vi,j > vi,j−1 and (2.4.2) implies that
|gi,j | ≥ vi,j ≥ 2ςi. As a consequence,

min
[
g2
i,j

ςi
,
g2
i,j

vi,j

]
≥ min[4ςi, 2ςi] > ςi,

which contradicts (2.4.4). Thus no such j can exists and vi,j ≤ 2ςi for all j > j∗ and
(2.4.5) follows. 2

We are now in position to state our complexity result for the ASTR1 algorithm using weight
defined by (2.4.1), (2.4.2) and (2.4.3).

Theorem 2.4.2 Suppose that AS.1 and AS.2 hold and that the ASTR1 algorithm is
applied to problem (P), where the scaling factors wi,k are chosen in accordance with
(2.4.1), (2.4.2) and (2.4.3). Then, for any η ∈ (0, τ ςmin) and

jη
def=
(

κB(κB + L)
θςmin(τςmin − η)

) 1
ν

, (2.4.6)

there exist a constant κ�, a subsequence {k`} ⊆ {k}∞jη+1 and an index kς (where κ� and
kς only depend on the problem and the algorithmic constants) such that, for all k` ≥ kς ,

min
j∈{0,...,k`}

‖gj‖2 ≤ κ�
(k` + 1)µ

k` − jη
≤ 2κ�(jη + 1)

k1−µ
`

. (2.4.7)

Proof. From (2.2.11) and AS.2, using wmin,j
def= mini∈{1,...,n}wi,k ensures that

Γ0 ≥ f(x0)− f(xk+1) ≥
k∑
j=0

n∑
i=1

g2
i,j

2κBwi,j

[
τςmin −

κBBL

wmin,j

]
. (2.4.8)
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Consider now an arbitrary η ∈ (0, τ ςmin) and suppose first that, for some j,[
τςmin −

κBBL

wmin,j

]
≤ η, (2.4.9)

i.e., using (2.4.1),
θςmin j

ν ≤ wmin,j ≤
κBBL

τςmin − η
.

But this is impossible for j > jη for jη given by (2.4.6), and hence (2.4.9) fails for all
j > jη. As a consequence, we have that, for k > jη,

f(xjη+1)− f(xk) ≥ η
k∑

j=jη+1

n∑
i=1

g2
i,j

2κBwi,j

≥ η

2κB

k∑
j=jη+1

n∑
i=1

g2
i,j

max[ςi, vi,j ] θ (j + 1)µ

≥ η

2κB(k + 1)µθ

k∑
j=jη+1

n∑
i=1

min
[
g2
i,j

ςi
,
g2
i,j

vi,j

]

≥ η(k − jη)
2κB(k + 1)µθ min

j∈{jη+1,...,k}

(
n∑
i=1

min
[
g2
i,j

ςi
,
g2
i,j

vi,j

])
(2.4.10)

But we also know from (2.2.10), (2.4.1) and (2.4.3) that

f(x0)− f(xjη+1) ≥
jη∑
j=0

n∑
i=1

τςming
2
i,j

2κBwi,j
− 1

2(κB + L)
jη∑
j=0

n∑
i=1

g2
i,j

w2
i,j

≥ − 1
2(κB + L)

jη∑
j=0

n∑
i=1

g2
i,j

w2
i,j

≥ − 1
2(κB + L)

jη∑
j=0

n∑
i=1

g2
i,j

max[ς, vi,k]2(j + 1)2νθ2

≥ − 1
2

(κB + L)
θ2

jη∑
j=0

n∑
i=1

g2
i,j

v2
i,k(j + 1)2ν

≥ − 1
2

(κB + L)n
θ2

jη∑
j=0

h(j)2. (2.4.11)

Combining (2.4.10) and (2.4.11), we obtain that

Γ0 ≥ f(x0)−f(xk+1) ≥ − 1
2

(κB + L)n
θ2

jη∑
j=0

h(j)2+ η(k − jη)
2κB(k + 1)µθ min

j∈{jθ+1,...,k}

(
n∑
i=1

min
[
g2
i,j

ςi
,
g2
i,j

vi,j

])
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and thus that

min
j∈{jθ+1,...,k}

(
n∑
i=1

min
[
g2
i,j

ςi
,
g2
i,j

vi,j

])
≤ 2κB(k + 1)µ

η(k − jη)

Γ0θ + 1
2

n(κB + L)
θ

jη∑
j=0

h(j)2


and we deduce that there must exist a subsequence {k`} ⊆ {k}∞jη+1 such that, for each `,

n∑
i=1

min
[
g2
i,k`

ςi
,
g2
i,jk`

vi,k`

]
≤ 2κB(k` + 1)µ

η(k` − jη)

Γ0θ + 1
2

n(κB + L)
θ

jη∑
j=0

h(j)2

 . (2.4.12)

But

(k` + 1)µ

k` − jη
<

2µkµ`
k` − jη

<
2kµ`

k` − jη
= 2kµ` k`

(k` − jη)k`
= k`
k` − jη

· 2
k1−µ
`

≤ 2(jη + 1)
k1−µ
`

, (2.4.13)

where we used the facts that µ < 1 and that k`
k`−jθ is a decreasing function for k` ≥ jθ + 1.

Using this inequality, we thus obtain from (2.4.12) that, for each `,

n∑
i=1

min
[
g2
i,k`

ςi
,
g2
i,jk`

vi,k`

]
≤ 4κB(jη + 1)

η k1−µ
`

Γ0θ + 1
2n

(κB + L)
θ

jη∑
j=0

h(j)2

 .
As a consequence,

kς
def=

4κB(jη + 1)
[
Γ0θ + 1

2
n(κB+L)

θ

∑jη
j=0 h(j)2

]
ηςmin


1

1−µ

is such that, for all k` ≥ kς ,

min
[
g2
i,k`

ςi,
,
g2
i,`

vi,k`

]
≤ ςmin.

Lemma 2.4.1 then yields that, for all k` ≥ kς ,

n∑
i=1

g2
i,k`

2ςi
≤ 2κB(k` + 1)µ

η(k` − jη)

Γ0θ + 1
2

n(κB + L)
θ

jη∑
j=0

h(j)2


which, because ςi ≤ 1, gives that, for all k` ≥ kς ,

‖gk`‖
2 ≤ (k` + 1)µ

k` − jη

(4κB

η

)Γ0θ + 1
2n

(κB + L)
θ

jη∑
j=0

h(j)2

 , (2.4.14)

finally implying (2.4.7) because of (2.4.13). 2

We again provide some comments on this last result.

1. The choice (2.4.1) is of course reminiscent, in a smooth and nonconvex setting, of the “di-
minishing stepsize” subgradient method for stochastic problems (see [23, Theorem 1.2.4]
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or [9, Theorems 8.25 and 8.40] and the many references therein), for which a O(1/
√
k)

global rate of convergence is known.

2. Theorem 2.4.2 provides information on the speed of convergence for iterations that are
beyond an a priori computable iteration index. Indeed jθ and kς only depends on ν
h(`) and problem’s constants and, in particular do not depend on k. However, the
formulation of the theorem is slightly weaker than that of Theorem 2.3.2. Because
(2.4.7) only holds for iterates along the subsequence {k`}, there is no guarantee that
the bounnd given by the right-hand-side is valid at other iterations. But note that this
right-hand side depends on k`, which is an index in the complete sequence of iterates,
rather than on ` (the subsequence index).
This slightly weaker formulation is no longer necessary if one is ready to assume bounded
gradients, as can be seen in Theorem 4.1 in [115].

3. As the chosen values of µ and ν approach zero, then the k-order of convergence beyond
jθ tends to O(1/

√
k`), which the order derived for the methods of the previous section

and is the standard k-order for first-order methods using evaluations of the objective
function, albeit the value of jθ might increase.

4. As in Section 2.3 and considering (2.4.14), we may choose θ according to (2.3.33) in
an attempt to balance the two terms of the left-hand side and improve the explicit
dependence of the complexity bound on n.

We are now again interested to estimate how sharp the k-order bound (2.4.7) in O( 1
k(1−µ)/2 )

is.

Theorem 2.4.3 The bound (2.4.7) is essentially sharp in that, for any ω > 1
2(1− ν),

there exists a univariate function fω(x) satisfying AS.1 and AS.2 such that the ASTR1
algorithm with (2.4.1), Bk = 0 and θ = 1 applied to this function produces a sequence of
gradient norms given by ‖gk‖ = 1

(k+1)ω .

Proof. Consider the sequence defined, for some ω ∈ ( 1
2(1− ν), 1] and all k ≥ 0, by

gk = − 1
(k + 1)ω wk = max

[
ς, max
`∈{0,...,k}

|g`|
]

(k + 1)ν = (k + 1)ν , (2.4.15)

sk = 1
(k + 1)2ω−ν < 1 and fk+1 = fk + gksk, (2.4.16)

where we have chosen ς ∈ (0, 1) and f0 = ζ(2ω + 1
2) where ζ(·) is the Riemann zeta

function. Immediately note that
lim
k→∞

|gk| = 0,

and |gk| ≤= 1 = κg for all k. We now verify that, if

x0 = 0 and xk = xk−1 + sk−1 for k ≥ 1,
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then exists a function fω(x) satisfying AS.1 and AS.2 such that, for all k ≥ 0,

fω(xk) = fk, and gω(xk) = gk,

and such that the sequence defined by (2.4.15)-(2.4.16) is generated by applying the ASTR1
algorithm using Bk = 0 and θ = 1. The function fω(x) is constructed using Hermite
interpolation on each interval [xk, xk+1] (note that the xk are monotonically increasing),
which known (see [49] or [57, Th. A.9.2]) to exist whenever there exists a constant κf ≥ 0
such that, for each k,

|fk+1 − fk − gksk| ≤ κf |sk|2 and |gk+1 − gk| ≤ κf |sk|.

The first of these conditions holds by construction of the {fk}k≥0. To verify the second,
we first note that, because 1/(k + 1)ω is a convex function of k and |1/(k + 1)| ≤ 1,

|gk+1 − gk|
|sk|

≤ ω(k + 1)2ω−ν

(k + 1)1+ω = ω

(k + 1)ν−ω+1 ≤ ω (k ≥ 0), (2.4.17)

where ν − ω + 1 ≥ ν > 0, so that the desired inequality holds with κf = ω.
Moreover, Hermite interpolation guarantees that fω(x) is bounded below whenever |fk|
and |sk| remain bounded. We have already verified the second of these conditions in
(2.4.16). We also have from (2.4.16) that

f0 − fk+1 =
k∑
j=0

1
(j + 1)2ω(j + 1)ν (2.4.18)

which converges to the finite limit ζ(2ω + ν) because we have chosen ω > 1
2(1− ν). Thus

fk ∈ (0, ζ(2ω + ν)] for all k and the first condition is also satisfied and AS.2 holds. This
completes our proof. 2

The conclusions which can be drawn from this theorem parallel those drawn after Theo-
rem 2.3.3. The bound (2.4.7) is essentially sharp (in the sense of [52]5) for the ASTR1 algorithm
with (2.4.1).

2.5 Numerical illustration

We now provide some numerical illustration on problems which are commonly used for the
evaluation of optimization algorithms. For the sake of clarity and conciseness, we needed to
keep the list of algorithmic variants reported here reasonably limited, and have taken the
following considerations into account for our choice.

1. Both weights’ definitions (2.3.1) and (2.4.1) are illustrated. Moreover, since the Adam
algorithm using (2.3.32) is so commonly used the stochastic context, we also included
it in the comparison.

5Observe that f0 now tends to infinity when ω tends to 1
2 (ν− 1) and hence that AS.2 fails in the limit. As

before, the structure of (2.4.7) implies that the complexity bound deteriorates when the gap Γ0 = f(x0)− flow
grows.



62 CHAPTER 2. COMPLEXITY OF FIRST-ORDER OFFO ALGORITHMS

2. Despite Theorems 2.3.2 and 2.4.2 covering a wide choice of the parameters µ and ν,
we have chosen to focus here on the most common choice for (2.3.1) and (2.3.32) (i.e.
µ = 1

2 and β2 = 9
10 , corresponding to Adagrad, Adagrad-Norm and Adam). When using

(2.4.1), we have also restricted our comparison to the single choice of µ and ν namely
µ = ν = 1

10 . By contrast, we have included results for the variants of the weights’
definitions for values of θ = 1 (the standard choice) and θ =

√
n suggested in (2.3.33)

for unknown Γ0.

3. In order to be able to test enough algorithmic variants on enough problems in reasonable
computing time, we have decided to focus our experiments on low-dimensional problems
in the case where ϑ = 1. We have nevertheless considered a few large-scale instance for
the purpose of illustrating the effect of the scaling θ =

√
n which is only expected to be

significant for such instances.

4. We have chosen to define the step sk in Step 3 of the ASTR1 algorithm by approximately
minimizing the quadratic model (2.2.9) within the `∞ trust-region using a projected
truncated conjugate-gradient approach [158, 159] which is terminated as soon as

‖gk +Bksk‖2 ≤ max
[
10−12, 10−5‖gk‖2

]
.

We also considered an alternative, namely that of minimizing the quadratic model in
an Euclidean `2 trust region (with the same accuracy requirement) using a Generalized
Lanczos Trust Region (GLTR) technique [102].

5. We thought it would be interesting to compare “purely first-order” variants (that is
variants for which Bk = 0 for all k) with methods using some kind of Hessian ap-
proximation. Among many possibilities, we selected three types of approximations of
interest. The first is the diagonal Barzilai-Borwein approximation [8]

Bk+1 = ‖sk‖
2
2

yᵀksk
In (2.5.1)

where In is the identity matrix of dimension n, yk = gk+1 − gk and yᵀksk ≥ 10−15‖sk‖22.
The second is limited-memory BFGS approximations [143], where a small number (3) of
BFGS updates are added to the matrix (2.5.1), each update corresponding to a secant
pair (yk, sk) with yᵀksk ≥ 10−15‖sk‖22. The third is not to approximate the Hessian at
all, but to use its exact value, that is Bk = ∇2

xf(xk) for all k.

Given these considerations, we have selected the algorithmic ASTR1 variants using αk = 1
and detailed in Table 2.1, where the second column indicates the norm used to define the
trust-region.

Note that all variants for which Bk+1 = 0 are ”purely first-order” in the sense discussed
above. Note also that, under AS.3, maxgnorm and maxg satisfy (2.4.1) with µ = ν = 1

10 ,
ςi = ς = 1

100 and κw = κg. All algorithms were run6 on the low dimensional instances of
the problems7 of the OPM collection [110] (April 2023), a subset of widely used CUTEst
testing environment [106]. The instances are listed with their dimension in Table 1, until

6In Matlab R© running under Ubuntu on a Dell Precision with 16 cores and 64 GB of memory.
7From their standard starting point.



2.5. NUMERICAL ILLUSTRATION 63

Name Norm wi,k definition (i ∈ {1, . . . , n}) Bk+1 params

adagnorm ‖ · ‖2 wi,k =
[

1
100 +

∑k
j=0 ‖gj‖22

] 1
2 0

adagrad ‖ · ‖∞ wi,k =
[

1
100 +

∑k
j=0 g

2
i,j

] 1
2 0

adamnorm ‖ · ‖2 wi,k =
[

1
100 +

∑k
j=0 β

k−j
2 ‖gj‖22

] 1
2 0 β = 9

10

adam ‖ · ‖∞ wi,k =
[

1
100 +

∑k
j=0 β

k−j
2 g2

i,j

] 1
2 0 β = 9

10

maxgnorm ‖ · ‖2 wi,k = (k + 1)
1
10 max

[
1

100 , max
j∈{0,...,k}

‖gj‖2
]

0

maxg ‖ · ‖∞ wi,k = (k + 1)
1
10 max

[
1

100 , max
j∈{0,...,k}

|gi,j |
]

0

adagbb ‖ · ‖∞ wi,k =
[

1
100 +

∑k
j=0 g

2
i,j

] 1
2 (2.5.1)

adagbfgs3 ‖ · ‖∞ wi,k =
[

1
100 +

∑k
j=0 g

2
i,j

] 1
2 LBFGS(3)

adagH ‖ · ‖∞ wi,k =
[

1
100 +

∑k
j=0 g

2
i,j

] 1
2 ∇2

xf(xk+1)

adagrads ‖ · ‖∞ wi,k =
√
n
[

1
100 +

∑k
j=0 g

2
i,j

] 1
2 0

adams ‖ · ‖∞ wi,k =
√
n
[

1
100 +

∑k
j=0 β

k−j
2 g2

i,j

] 1
2 0 β = 9

10

maxgs ‖ · ‖∞ wi,k =
√
n(k + 1)

1
10 max

[
1

100 , max
j∈{0,...,k}

|gi,j |
]

0

adagbbs ‖ · ‖∞ wi,k =
√
n
[

1
100 +

∑k
j=0 g

2
i,j

] 1
2 (2.5.1)

adagbfgs3s ‖ · ‖∞ wi,k =
√
n
[

1
100 +

∑k
j=0 g

2
i,j

] 1
2 LBFGS(3)

adagHs ‖ · ‖∞ wi,k =
√
n
[

1
100 +

∑k
j=0 g

2
i,j

] 1
2 ∇2

xf(xk+1)

sdba standard steepest-descent with backtracking (e.g. [57, Algorithm 2.2.1])

Table 2.1: The considered algorithmic variants.

either ‖∇1
xf(xk)‖2 ≤ 10−6, or a maximum of 100000 iterations was reached, or evaluation of

the derivatives returned an error.
Before considering the results, we make two additional comments. The first is that very

few of the test functions have bounded gradients on the whole of IRn. While this is usually not
a problem when testing standard first-order descent methods (because it may then be true
in the level set determined by the starting point), this is no longer the case for significantly
non-monotone methods like the ones tested here. As a consequence, it may (and does) hap-
pen that the gradient evaluation is attempted at a point where its value exceeds the Matlab
overflow limit, causing the algorithm to fail on the problem. The second comment is that the
(sometimes quite wild) non-monotonicity of the methods considered here has another prac-
tical consequence: it happens on several nonconvex problems8 that convergence of different

8broyden3d, broydenbd, curly10, gottfr, hairy, indef, jensmp, osborneb, sensors, wmsqrtals, wmsqrtbls,
woods.
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Method πalgo ρalgo algo πalgo ρalgo
adagbfgs3 0.75 69.75 adagrad 0.69 73.11
sdba 0.73 68.91 adagbfgs3 0.75 69.75
adagH 0.72 69.75 adagH 0.72 69.75
adagrad 0.69 73.11 sdba 0.73 68.91
maxg 0.66 66.39 adagHs 0.63 67.23
adagHs 0.63 67.23 maxg 0.66 66.39
adagbb 0.63 64.71 adagrads 0.60 65.55
adagbfgs3s 0.62 63.87 adagbb 0.63 64.72
maxgs 0.60 62.18 adagbfgs3s 0.62 63.87
adagrads 0.59 65.55 maxgs 0.60 62.18
adagnorm 0.58 61.34 adagnorm 0.58 61.34
maxgnorm 0.56 57.98 adagbbs 0.56 60.50
adagbbs 0.56 60.50 maxgnorm 0.56 57.98
adamnorm 0.55 34.45 adamnorm 0.55 34.45
adam 0.54 30.25 adams 0.52 33.61
adams 0.52 33.61 adam 0.54 30.25

Table 2.2: Performance and reliability statistics for deterministic OFFO and steepest descent
algorithms on small OPM problems (ε1 = 10−6).

algorithmic variants occurs to points with gradient norm within termination tolerance (the
methods are thus achieving their objective), but these points can be quite far apart and may
have very different function values.

We discuss the results of our tests from the efficiency and reliability points of view. Ef-
ficiency is measured in number of derivatives’ evaluations (or, equivalently, iterations)9: the
fewer evaluations the more efficient the algorithm. Because the standard performance profiles
[86] for our selection of 16 algorithms would be too crowded to read, we follow [179] and
consider the derived “global” measure πalgo to be 1

50 of the area below the curve correspond-
ing to algo in this performance profile, for abscissas in the interval [1, 50]. The larger this
area and closer πalgo to one, the closer the curve to the right and top borders of the plot
and the better the global performance. When reporting reliability, we say that the run of an
algorithmic variant on a specific test problem is successful if the gradient norm tolerance has
been achieved.

In what follows, ρalgo denotes the percentage of successful runs taken on all problems.
Table 2.2 presents the values of these statistics in two columns: for easier reading, the variants
are sorted by decreasing global performance (πalgo) in the first, and by decreasing reliability
(ρalgo) in the second. A total of 18 problems10 could not be successfully solved by any of the
above algorithms, we believe mostly because of ill-conditioning.

The authors are of course aware that the very limited experiments presented here do
not replace extended numerical practice and could be completed in various ways. They
nevertheless suggest the following (very tentative) comments.

9For sdba, gradient and objective-function evaluations.
10biggs5, brownbs, cliff, genhumps, gulf, heart6ls, heart8ls, himm29, mexhat, meyer3, nondquar, osbornea,

penalty2, powellbs, powellsg, scurly10, watson, yfitu.
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1. There often seems to be a definite advantage in using the ‖ · ‖∞ norm over ‖ · ‖2, as can
be seen by comparing adagnorm with adagrad and maxgnorm with maxg. While this
may be due in part to the fact that the trust region in `∞ norm is larger than that in `2
norm (and thus allows larger steps), it is also the case that the disaggregate definition
of the scaling factors wi,k ((2.3.1), (2.3.32) or (2.4.1)) used in conjunction with the `∞
norm may allow a better exploitation of differences of scale between coordinates.

2. Among the ”purely first-order” methods, sdba, maxg and adagrad are almost indistin-
guishable form the performance point of view, with a reliability advantage for adagrad
(the most reliable method in our tests). This means that, at least in those experiments,
the suggestion resulting from the theory that OFFO methods may perform comparably
to standard first-order methods seems vindicated.

3. The Adam variants (adamnorm and adam) are clearly outperformed in our tests by the
Adagrad ones (adagnorm and adagrad). We recall that analytical examples where Adam
fails do exist, while the convergence of Adagrad is guaranteed.

4. The theoretical difference in global rate of convergence between adagrad and maxg does
not seem to have much impact on the relative performance of these two methods.

5. The use of limited memory Hessian approximation (adagbfgs3) appears to enhance the
performance of adagrad, but this is not the case of the Barzilai-Borwein approximation
(adagbb) or, remarkably, for the use of the exact Hessian (adagH). When these methods
fail, this is often because the steplength is too small to allow the truncated conjugate-
gradient solver to pick up second-order information in other directions than the negative
gradient. What favours the limited memory approach remains unclear at this stage.

We also note that the variants scaled with (2.3.33) (with Γ0 unknown) did not perform
better on small dimensional problems; possibly because the factor n does not dominate the
complexity bounds in this case. To illustrate the impact of this scaling in larger cases, we
ran a subset of six methods which performed well in Table 2.2 (namely adagnorm, adagrad,
adagrads, maxgnorm, maxg and maxgs) on the broyden3d and nlminsurf problems with in-
creasing problem dimension (we used ε1 = 10−3). The results are reported in Table 2.3.

Method broyden3d nlminsurf
n 10 100 1000 10000 100000 256 1034 4096 16384 65536

adagnorm 37 71 467 4257 43400 166 503 1791 6038 19239
adagrad 200 37809 37809 37809 37809 7966 30795 121164 482025 NR
adagrads 134 190 1452 13042 125503 138 532 2981 19414 121934
maxgnorm 46 76 285 1138 4520 1699 3978 3867 5355 19424
maxg 458 410 462 3362 36609 NC NC NC NC NR
maxgs 76 155 567 2048 7370 1142 1155 5049 6407 30661

Table 2.3: Number of iterations for convergence on the broyden3d and nlminsurf problems as
a function of dimension (ε1 = 10−3, NC = more than 106 iterations, NR = not run).

Despite the improvement in complexity due to choosing θ > 1 being theoretical (and
applies to the worst-case performance), we may still note some positive (if not completely
uniform) effect in this table. The interpretation is also blurred somewhat by the fact that
maxg and adagrad converged to local minimas of broyden3d rather than the global one. We
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nevertheless note the consistently better performance of adagnorm compared to adagrad and
adagrads, possibly illustrating the fact that its complexity bound does not explicitly involve
n.

Finally, and although this is a slight digression from the paper’s main topic, we report in
Table 2.4 how reliability of our selection of OFFO variants is impacted by noise. To obtain
these results, we ran the considered methods on all test problems where the evaluations
(function11 and derivatives) are contaminated by 5, 15, 25 or 50 % of relative Gaussian
noise with unit variance. In mathematical terms, the i-th entry of the noisy gradient is set to
[gk]i = [∇x(xk)]i(1+φξi) where ξi is drawn from N (0, 1)) and φ is the relative noise level. The
reliability percentages in the table result from averaging results obtained for ten independent
runs.

ρalgo/relative noise level
algo 0% 5% 15% 25% 50%
adagH 83.19 84.96 84.20 84.71 82.18
adagHs 81.51 81.85 81.91 80.50 77.82
adagbfgs3 78.15 80.50 80.50 80.84 80.18
adagrad 77.31 80.50 80.25 80.17 80.17
adagbb 75.69 80.08 80.17 79.58 79.41
adagbfgs3s 78.99 79.50 70.67 79.41 78.66
adagbbs 73.95 78.15 78.40 78.49 77.06
adagrads 78.15 78.07 78.66 78.74 77.23
maxgs 75.63 76.39 75.46 76.05 74.54
adagnorm 75.63 75.21 75.80 75.71 74.03
maxg 74.79 74.37 75.55 78.15 78.07
maxgnorm 69.75 68.74 69.75 70.84 71.01
adams 42.86 37.98 40.25 44.79 50.84
adamnorm 42.02 37.56 44.96 50.84 55.29
adam 40.34 35.55 36.30 44.03 45.80
sdba 81.51 30.92 31.85 34.87 29.58

Table 2.4: Reliability of OFFO algorithms and steepest descent as a function of the level of
relative Gaussian noise (ε1 = 10−3)

As can be seen in the table, the reliability of the sdba methods dramatically drops as
soon as noise is present, while that of the other OFFO methods is barely affected and remains
globally unchanged12 for increasing noise level. This is consistent with widespread experience
in the deep learning context, where noise is caused by sampling among the very large number
of terms defining the objective function. This observation vindicates the popularity of methods
such as Adagrad in the noisy context and suggests that the new OFFO algorithms may have
some practical potential.

We conclude by noting that the algorithms’ reliability (ρalgo is (expectedly) better for
ε1 = 10−3 (first column of Table 2.4) than for ε1 = 10−6 (Table 2.2), but that the improvement
remains modest, the reliability of Adagrad decreasing marginally slower.

11For sdba.
12It is interesting that reliability is slightly better for the noisy cases and the better OFFO methods.
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2.5.1 Deep Learning experiments

We now provide some numerical illustrations of the algorithmic variants discussed in the
previous sections in the context of image recognition with artificial neural networks. We
trained a simple convolutional network from [99] (denoted in the paper as cifar10-nv) and a
small resnet18 model [122] on the CIFAR-10 and CIFAR-100 image classification datasets,
on the SVHN dataset. For these experiments, we used Haiku [124] and optax [6] two JAX
[35]-based libraries on a workstation with four GTX 1080TI. We now compare the numerical
performance of (2.3.1) for different µ values in (0.1, 0.5, 0.9) in with both ϑ and θ equal to
one. We also consider two algorithms from the ”divergent step-size” class, denoted as avrgi
and maxgi, which we describe in detail in Table 2.5. Of course, we can no longer compute the
true gradient in (2.2.1), so we need to compute an approximate one. The experimental setup
is briefly outlined here, and more detailed explanations on the objective function, datasets,
and terminology can be found in the appendix A.1 and B.2.
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Figure 2.1: CIFAR10: Training (top) and test (bottom) accuracies for adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with α = 5.10−4 (left) and α = 5.10−5 (right) on
the cifar-nv architecture

Name Norm wi,k definition (i ∈ {1, . . . , n}) Bk+1 params

maxgi ‖ · ‖∞ wi,k = (k + 1)
1
10 max

[
1

100 , max
j∈{0,...,k}

|gi,j |
]

0

avrgi ‖ · ‖∞ wi,k = (k + 1)
1
10 max

[
1

100 ,
1

k+1

k∑
j=0
|gi,j |

]
0

Table 2.5: algorithmic variants for Deep Learning.
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Figure 2.2: CIFAR10: Training (top) and test (bottom) accuracies for adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with α = 5.10−4 (left) and α = 5.10−5 (right) on
the resnet18 architecture

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

tra
in

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

0 20000 40000 60000 80000 100000
step

0.0

0.2

0.4

0.6

0.8

1.0

te
st

_a
cc

avrgi
maxgi
mu0.1
mu0.5
mu0.9

Figure 2.3: CIFAR100: Training (top) and test (bottom) accuracies for adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with α = 5.10−4 (left) and α = 5.10−5 (right) on
the cifar-nv architecture

For all experiments, we also used a fixed learning rate policy with αk = α = 5.10−4, 10−5

for all k ≥ 0. We used the same random initialization for all scaling choices and followed the
data augmentation procedure from [99], for training dataset. We trained the models for a
total of 100000 steps with a batch size of 128 using the mean cross entropy loss function. We
report the training and testing accuracies (the latter on a sample of size 128 from the test
dataset) every 500 steps.

The results of these experiments (averaged over three random runs) are shown in Fig-
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Figure 2.4: CIFAR100: Training (top) and test (bottom) accuracies for adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with α = 5.10−4 (left) and α = 5.10−5 (right) on
the resnet18 architecture
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Figure 2.5: SVHN: Training (top) and test (bottom) accuracies for adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with α = 5.10−4 (left) and α = 5.10−5 (right)
on the cifar-nv architecture

ures 2.1–2.8. In each figure, the top panel shows the evolution of the training accuracy (as a
function of the number of steps), and the bottom panel shows the evolution of the test accu-
racy. The average values are shown as thick lines, and the shaded areas of the corresponding
color give the 67% confidence intervals.

Obviously, these numerical experiments are not intended to replace significant numerical
tests, but, while caution must be exercised in extrapolating from limited data, they do suggest
some tentative comments.
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Figure 2.6: SVHN: Training (top) and test (bottom) accuracies for adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with α = 5.10−4 (left) and α = 5.10−5 (right)
on the resnet18 architecture
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Figure 2.7: FMNIST: Training (top) and test (bottom) accuracies for adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with α = 5.10−4 (left) and α = 5.10−5 (right) on
the cifar-nv architecture

• For fixed learning rates, the methods maxgi and avrgi of the class introduced in Sec-
tion 2.4 seem to produce relatively good results on our example, both in training and
in testing, often outperforming the adagirad variants of the first class.

• The relative behavior of the tested variants does not differ significantly between the two
network architectures, although the test accuracy is slightly lower for the resnet18 case.

• Among the adagrad variants, those with a larger µ handle smaller learning rates better
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Figure 2.8: FMNIST: Training (top) and test (bottom) accuracies for adagrad-like (µ ∈
(0.1, 0.5, 0.9)), maxgi and avrgi variants with α = 5.10−4 (left) and α = 5.10−5 (right) on
the resnet18 architecture

for these examples.

Of course, a more comprehensive numerical analysis is essential to thoroughly evaluate
the potential of these methods within modern machine learning paradigms. Specifically, with
regard to determining the optimal power µ for adagrad, it is worth noting that [61] discovered
that an exponent of 1

8 yielded the best results when applied to the adam variant of Table 2.1.
It is worth noting that our initial findings have also been corroborated to some extent by the
research of [119] in the context of multiobjective OFFO settings.

2.6 Discussion

We have presented a parametric class of deterministic “trust-region minded” extensions of
the Adagrad method, allowing for the use of second-order information, should it be available.
We then prove that, for OFFO algorithms in this class, minj∈{0,...,k} ‖gj‖ = O(1/

√
k + 1).

We have also shown that this bound, which does not require any uniform bound on the
gradient, is essentially sharp. It is identical to the global rate of convergence of standard
first-order methods using both objective-function and gradient evaluations, despite the fact
that the latter exploit significantly more information. Thus, if one considers the order of
global convergence only, evaluating the objective-function values is an unnecessary effort. We
have also considered another class of OFFO algorithms inspired by the “diminishing stepsize”
paradigm in non-smooth convex optimization and have provided an essentially sharp (but
slighlty worse) global rate of convergence for this latter class. Limited numerical experiments
suggest that the above theoretical conclusions may translate to practice and remain, for OFFO
methods, relatively independent of noise.

Although discussed here in the context of unconstrained optimization, adaptation of the
above OFFO algorithms to problems involving convex constraints (such as bounds on the



72 CHAPTER 2. COMPLEXITY OF FIRST-ORDER OFFO ALGORITHMS

variables) is relatively straightforward and practical: one then needs to intersect the trust-
region with the feasible set and minimize the quadratic model in this intersection (see [68,
Chapter 12]).



Chapter 3

Higher Order
Objective-Function-Free
Optimization

Chapter Abstract

We develop an adaptive regularization algorithm for unconstrained nonconvex opti-
mization in which the objective function is never evaluated, but only derivatives are used.
It is shown that these excellent complexity bounds are also valid for the new algorithm,
despite the fact that significantly less information is used. In particular, it is shown that,
if derivatives of degree one to p are used and with the assumption that the pth derivative
is β Hölder smooth, the algorithm will find an ε1-approximate first-order minimizer in at
most O(ε−(p+β)/(p−1+β)

1 ) iterations, and an (ε1, ε2)-approximate second-order minimizer
in at most O(max(ε−(p+β)/(p−1+β)

1 , ε
−(p+β)/(p−2+β)
2 )) iterations. Initial experiments with

noisy derivatives demonstrate the benefits of the objective-free optimization framework
compared to standard adaptive regularization algorithms.

Reference: This chapter builds upon a publication in the SIAM Journal on Optimiza-
tion [116]. In comparison to the aforementioned work, we extend our scope to encompass
the broader class of Hölder-smooth derivatives. Furthermore, our analysis has been refined
to eliminate the prerequisite of a negative curvature condition for Hölder-smooth Hessian
functions.

3.1 Introduction

In this chapter, we delve deeper into the elements mentioned in Section 1.5 regarding high-
order OFFO algorithms that were previously introduced.

The theory developed here combines elements of standard adaptive regularization methods
such as ARp [29] and of the OFFO approaches of [207] and [109]. We exhibit an OFFO
regularization method whose iteration complexity is identical to that obtained when objective
function values are used. In particular, we consider convergence to approximate first-order
and second-order critical points, and provide sharp complexity bounds depending on the
degree of derivatives used.

73
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The Chapter is organized as follows. After introducing the new algorithm in Section 3.2,
we present and discuss a first-order worst-case complexity analysis in Section 3.3, while con-
vergence to approximate second-order minimizers is considered in Section 3.4. Some numerical
experiments showing the impact of noise are then presented in Section 3.5. Discussions are
outlined in Section 3.6.

3.2 An OFFO adaptive regularization algorithm

We now consider the problem of finding approximate minimizers of the unconstrained non-
convex optimization problem (P) where f is a sufficiently smooth function from IRn into IR.
As motivated in the introduction, our aim is to design an algorithm in which the objective
function value is never computed. Our approach is based on regularization methods. In
such methods, a model of the objective function is build by “regularizing” a truncated Taylor
expansion of degree p ≥ 1. We now detail the assumption on the problems that ensure this
approach makes sense.
AS.1 f is a function of the Cp,β(IRn; IR) class. To revisit the definition, we refer to para-
graph 1.3.3.1 in the Introduction.
AS.2 There exists a constant flow such that f(x) ≥ flow for all x ∈ IRn.

AS.3 If p > 1, there exists a constant κhigh ≥ 0 such that

min
‖d‖≤1

∇ixf(x)[d]i ≥ −κhigh for all x ∈ IRn and i ∈ {2, . . . , p}, (3.2.1)

(For notational convenience, we set κhigh = 0 if p = 1.)
We note that AS.3 is weaker than assuming uniform boundedness of the derivative tensors

of degree two and above (there is no upper bound on the value of ∇ixf(x)[d]i), or, equivalently,
Lipschitz continuity of derivatives of degree one to p− 1.

3.2.1 The OFFARp algorithm

Our proposed algorithm follows the outline line of existing ARp regularization methods [51, 29,
57] that were showcased in Subsubsection 1.3.3, with the significant difference that the objec-
tive function f(xk) is never computed, and therefore that the ratio of achieved to predicted
reduction (a standard feature for these methods) cannot be used to accept or reject a poten-
tial new iterate and to update the regularization parameter. Instead, such potential iterates
are always accepted and the regularization parameter is updated in a manner independent of
this ratio. We now state the resulting OFFARp algorithm in detail on the next page.

The test (3.2.7) follows [111] and extends the more usual condition where the step sk is chosen
to ensure that

‖∇1
smk(sk)‖ ≤ θ1‖sk‖p−1+β.

It is indeed easy to verify that (3.2.7) holds at a local minimizer of mk with θ1 ≥ 1 (see [111]
for details). The motivation for the introduction of µ1,k in (3.2.4) and (3.2.5) will become
clearer after Lemma 3.3.3.

We emphasize the fact that our algorithm and subsequent development assume knowledge
of the Hölder exponent, unlike the approaches proposed in [53] or [84].
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Algorithm 3.2.1: OFFO adaptive regularization of degree p (OFFARp)

Step 0: Initialization: An initial point x0 ∈ IRn, a regularization parameter ν0 >
0 and a requested final gradient accuracy ε1 ∈ (0, 1] are given, as well as the
parameters

θ1 > 1 and ϑ ∈ (0, 1]. (3.2.2)

Set k = 0.

Step 1: Check for termination: Evaluate gk = ∇1
xf(xk). Terminate with xε = xk

if
‖gk‖ ≤ ε1. (3.2.3)

Else, evaluate {∇ixf(xk)}pi=2.

Step 2: Step calculation: If k > 0, set

µ1,k = (p− 1 + β)!‖gk‖
‖sk−1‖p−1+β − θ1σk−1 (3.2.4)

and select
σk ∈

[
ϑνk,max (νk, µ1,k)

]
. (3.2.5)

Otherwise (i.e. if k = 0), set σ0 = µ1,0 = ν0.
Then compute a step sk which sufficiently reduces the model mk defined in (1.3.18)
in the sense that

mk(sk)−mk(0) < 0 (3.2.6)

and
‖∇1

sTf,p(xk, sk)‖ ≤ θ1
σk

(p− 1 + β)!‖sk‖
p−1+β. (3.2.7)

Step 3: Updates: Set
xk+1 = xk + sk (3.2.8)

and
νk+1 = νk + νk‖sk‖p+β. (3.2.9)

Increment k by one and go to Step 1.
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3.3 Evaluation complexity for the OFFARp algorithm

Before discussing our analysis of evaluation complexity, we first restate some classical lemmas
for ARp algorithms, starting with Lipschitz error bounds.
We start by stating a simple lower bound on the Taylor series’ decrease.

Lemma 3.3.1

∆Tf,p(xk, sk)
def= Tf,p(xk, 0)− Tf,p(xk, sk) >

σk
(p+ β)!‖sk‖

p+β. (3.3.1)

Proof. The bound directly results from (3.2.6) and (1.3.18). 2

This and AS.2 allow us to establish a lower bound on the decrease in the objective function
(although it is never computed).

Lemma 3.3.2 Suppose that AS.1 holds and that σk ≥ 2Lp. Then

f(xk)− f(xk+1) > σk
2(p+ β)!‖sk‖

p+β. (3.3.2)

Proof. From (1.3.15) and (3.3.1), we obtain that

f(xk)− f(xk+1) > σk − Lp
(p+ β)!‖sk‖

p+β

and (3.3.2) immediately follows from our assumption on σk. 2

The next lemma provides a useful lower bound on the step length, in the spirit of [29,
Lemma 2.3] or [111].

Lemma 3.3.3 Suppose that AS.1 holds. Then, for all k ≥ 0,

‖sk‖p−1+β ≥ (p− 1 + β)!
Lp + θ1σk

‖gk+1‖, (3.3.3)

µ1,k ≤ max(ν0, Lp) (3.3.4)

and
σk ≤ Lp + νk. (3.3.5)

Proof. Successively using the triangle inequality, condition (3.2.7) and (1.3.16), we
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deduce that

‖gk+1‖ ≤ ‖gk+1 −∇1
sTf,p(xk, sk)‖+ ‖∇1

sTf,p(xk, sk)‖

≤ 1
(p− 1 + β)!Lp‖sk‖

p−1+β + θ1
σk

(p− 1 + β)!‖sk‖
p−1+β.

The inequality (3.3.3) follows by rearranging the terms. Combining this inequality with
(3.2.4) and the identity µ1,0 = ν0 then gives (3.3.4), from which (3.3.5) directly follows
using (3.2.5). 2

Observe that (3.3.4) motivates our choice in (3.2.5) to allow the regularization parameter to
be of size µ1,k.

Inspired by [109, Lemma 7], we now establish an upper bound on the number of iterations
needed to enter the algorithm’s phase where Lemma 3.3.2 applies and thus all iterations
produce a decrease in the objective function.

Lemma 3.3.4 Suppose that AS.1 holds, and that the OFFARp algorithm does not termi-
nate before or at iteration of index

k ≥ k∗
def=


( 2Lp
ε1ϑ(p− 1 + β)!

(
(1 + θ1)Lp

σ0
+ θ1

)) p+β
p−1+β

 . (3.3.6)

Then for k ≥ k∗,
νk ≥

2Lp
ϑ

(3.3.7)

which implies that
σk ≥ 2Lp. (3.3.8)

Proof. Note that (3.3.8) is a direct consequence of (3.2.5) if (3.3.7) is true. Suppose
the opposite and that for some k ≥ k∗, νk < 2Lp

ϑ . Since νk is a non-decreasing sequence,
we have that νj < 2Lp

ϑ for j ∈ {0, . . . , k}. Successively using the form of the νk update
rule (3.2.9), (3.3.3), (3.3.5) and the fact that, if the algorithm has reached iteration k∗, it
must be that (3.2.3) has failed for all iterations of index at most k∗, we derive that

νk
(3.2.9)
>

k−1∑
j=0

νj‖sj‖p+β
(3.3.3)
≥

k−1∑
j=0

νj

(
(p− 1 + β)!‖gj+1‖

Lp + θ1σj

) p+β
p−1+β

(3.2.5)
≥

k−1∑
j=0

νj

(
(p− 1 + β)!‖gj+1‖
Lp + θ1(Lp + νj)

) p+β
p−1+β

=
k−1∑
j=0

ν
− 1
p−1+β

j

(p− 1 + β)!‖gj+1‖
(1 + θ1)Lpνj + θ1


p+β
p−1+β

>
k−1∑
j=0

ν
− 1
p

j

(p− 1 + β)!‖gj+1‖
(1 + θ1)Lpσ0

+ θ1


p+β
p−1+β

>
k∗ ϑ

1
p−1+β ((p− 1 + β)!ε1)

p+β
p−1+β

(2Lp)
1

p−1+β

(
(1 + θ1)Lp

σ0
+ θ1

) p+β
p−1+β

.



78 CHAPTER 3. HIGHER ORDER OBJECTIVE-FUNCTION-FREE OPTIMIZATION

Substituting the definition of k∗ in the last inequality, we obtain that

2Lp
ϑ

< νk∗ <
2Lp
ϑ
,

which is impossible. Hence no index k ≥ k∗ exists such that νk < 2Lp
ϑ and (3.3.7) and

(3.3.8) hold. 2

Observe that (3.3.6) depends on the ratio Lp
σ0

which is the fraction by which σ0 underestimates
the Lipschitz constant. This ratio will percolate in the rest of our analysis. We now define

k1 = min
{
k ≥ 1 | νk ≥

2Lp
ϑ

}
, (3.3.9)

the first iterate such that significant objective function decrease is guaranteed. The next
series of Lemmas provides bounds on f(xk1) and σk1 , which in turn will allow establishing an
upper bound on the regularization parameter. An initial step is to provide an upper-bound
on ‖sk‖. But first let us proof a bound on the root of a polynomial where the degree is not
an integer. The latter resuly will be useful to derive an upper-bound on ‖sk‖.

Lemma 3.3.5 Let (a0, · · · , an) ∈ IRn+1 with an 6= 0, n ≥ 1 and β ∈ (0, 1]. Define

κm
def= max

{(
an−i
an

) 1
i−1+β

; 1 ≤ i ≤ n
}

(3.3.10)

and let anxn−1+β + an−1x
n−1 + · · ·+ a1x+ a0 = 0. Then

|x| ≤ 2κm (3.3.11)

which directly implies that

|x| ≤ 2
n∑
i=1

(
an−i
an

) 1
i−1+β

. (3.3.12)

Proof. The proof closely follows the approach presented in [216, Lecture VI, Lemma 5]
with minor adjustments and is therefore deffered to the Appendix. 2

Equipped with the last lemma, we are now able to proof the following bound on the
stepsize length.
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Lemma 3.3.6 Suppose that AS.1 and AS.3 hold. At each iteration k, we have that

‖sk‖ ≤ 2η + 2
((p+ β)!‖gk‖

σk

) 1
p−1+β

, (3.3.13)

where

η =
p∑
i=2

[
κhigh(p+ β)!

i!ϑν0

] 1
p−i+β

. (3.3.14)

Proof. If p = 1, we obtain from (3.2.6) and the Cauchy-Schwarz inequality that

1
(β+1)σk‖sk‖

β+1 < −gᵀksk ≤ ‖gk‖ ‖sk‖

and (3.3.13) holds with η = 0. Suppose now that p > 1. Again (3.2.6) and (3.2.1) of AS.3
give that

σk
(p+ β)!‖sk‖

p+β ≤ −gᵀksk −
p∑
i=2

1
i!∇

i
xf(xk)[sk]i ≤ ‖gk‖‖sk‖+

p∑
i=2

κhigh

i! ‖sk‖
i.

Applying now Lemma 3.3.5 with x = ‖sk‖, n = p + 1, a0 = 0, a1 = ‖gk‖, β = β,
ai = κhigh/i! i ∈ {2, . . . , n − 1} and an+1 = −σk/(p + β)!, we know from (3.2.6) that the
equation

∑n−1
i=0 aix

i + anx
p+β = 0 admits at least one strictly positive root, and we may

thus derive that

‖sk‖ ≤ 2
((p+ β)!‖gk‖

σk

) 1
p−1+β

+ 2
p∑
i=2

[
κhigh(p+ β)!

i!σk

] 1
p−i+β

≤ 2
((p+ β)!‖gk‖

σk

) 1
p−1+β

+ 2
p∑
i=2

[
κhigh(p+ β)!

i!ϑνk

] 1
p−i+β

≤ 2
((p+ β)!‖gk‖

σk

) 1
p−1+β

+ 2
p∑
i=2

[
κhigh(p+ β)!

i!ϑν0

] 1
p−i+β

,

and (3.3.13) holds with (3.3.14). 2

Our next step is to prove that νk1 is bounded by constants only depending on the problem
and the fixed algorithmic parameters.



80 CHAPTER 3. HIGHER ORDER OBJECTIVE-FUNCTION-FREE OPTIMIZATION

Lemma 3.3.7 Suppose that AS.1 and AS.3 hold. Let k1 be defined by (3.3.9). We have
that,

νk1 ≤ νmax = max

σ0 + σ0

2η + 2
((p+ β)!‖g0‖

σ0

) 1
p−1+β

p+β , 2κ1Lp
ϑ

 (3.3.15)

where η is defined in (3.3.14) and

κ1
def= 1 + 22p+2β−1ηp+β + 22p+2β−1

[
p+ β

ϑ

(
(1 + θ1)Lp

σ0
+ θ1

)] p+β
p−1+β

. (3.3.16)

Proof. If k1 = 1, we have that ν1 = σ0 + σ0‖s0‖p+β. Using Lemma 3.3.6 to bound
‖s0‖p+β, we derive the bound corresponding to the first term in the maximum of (3.3.15).
Suppose now that k1 ≥ 2. Successively using (3.2.9), Lemma 3.3.6, the fact that by
convexity (x+ y)p+β ≤ 2p+β−1(xp+β + yp+β) for non-negative x, y, the updates rule for νk
(3.2.9) and σk (3.2.5), we derive that

νk1 = νk1−1 + νk1−1‖sk1−1‖p+β

(3.3.13)
≤ νk1−1 + νk1−1

2
(

(p+ β)!‖gk1−1‖
σk1−1

) 1
p−1+β

+ 2η

p+β

≤ νk1−1 + 2p+β−1νk1−1

2p+βηp+β + 2p+β
((p+ β)!‖gk1−1‖

σk1−1

) p+β
p−1+β

 (3.3.17)

(3.2.5)
≤ νk1−1 + 22p+2β−1νk1−1

ηp+β +
((p+ β)!‖gk1−1‖

ϑ νk1−1

) p+β
p−1+β


(3.3.18)

Rearranging the last inequality and using (3.3.3)

νk1 ≤ νk1−1 + 22p+2β−1νk1−1η
p+β + 22p−2β+1

((p+ β)!
ϑ

) p+β
p−1+β ‖gk1−1‖

p+β
p−1+β

νk1−1
1

p−1+β

(3.3.3)
≤ νk1−1 + 22p+2β−1νk1−1η

p+β

+ 22p+2β−1
[ (p+ β)!
ϑ (p− 1 + β)! (Lp + θ1σk1−2)

] p+β
p−1+β

ν
− 1
p−1+β

k1−1 ‖sk1−2‖p+β.
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Now νk is a non decreasing sequence and using (3.3.5),

νk1

(3.3.5)
≤ νk1−1 + 22p−2β+1νk1−1η

p+β

+ 22p+2β−1
[
p+ β

ϑ

(
(1 + θ1)Lp + θ1νk1−2

)] p+β
p−1+β

ν
− 1
p−1+β

k1−2 ‖sk1−2‖p+β

≤ νk1−1 + 22p+2β−1νk1−1η
p+β

+ 22p+2β−1
[
p+ β

ϑ

(
(1 + θ1) Lp

νk1−2
+ θ1

)] p+β
p−1+β

ν
− 1
p−1+β

k1−2 ν
p+β
p−1+β
k1−2 ‖sk1−2‖p+β

From the fact that νk1−2 ≥ ν0 = σ0 and the update rule of νk (3.2.9)

νk1 ≤ νk1−1 + 22p+2β−1νk1−1η
p+β+

22p+2β−1
[
p+ β

ϑ

(
(1 + θ1)Lp

σ0
+ θ1

)] p+β
p−1+β

νk1−2‖sk1−2‖p+β+

(3.2.9)= νk1−1 + 22p+2β−1νk1−1η
p+β[

p+ β

ϑ

(
(1 + θ1)Lp

σ0
+ θ1

)] p+β
p−1+β

(νk1−1 − νk1−2)

≤ νk1−1 + 22p−2β+1νk1−1η
p+β+

22p+2β−1
[
p+ β

ϑ

(
(1 + θ1)Lp

σ0
+ θ1

)] p+β
p−1+β

νk1−1.

We then obtain the second part of (3.3.15) by observing that νk1−1 ≤
2Lp
ϑ . 2

This result allows us to establish an upperbound on f(xk1) as a function of νmax.

Lemma 3.3.8 Suppose that AS.1 and AS.3 hold. Then

f(xk1) ≤ f(x0) + Lpνmax
(p+ β)!σ0

. (3.3.19)

Proof. From (1.3.15) and (3.3.1), we know that

f(xj+1)− f(xj) ≤ (Lp − σj)
‖sj‖p+β

(p+ β)! . (3.3.20)

Using now the identity σ0 = ν0, (3.2.9) and the fact that νk is a non-decreasing function,
we derive that

νk1 ≥ σ0 + σ0

k1−1∑
j=0
‖sj‖p+β. (3.3.21)
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Summing the inequality (3.3.20) for j ∈ {0, . . . , k1−1}, ignoring negative terms, and using
(3.3.21), (3.2.9) and (3.2.5), we deduce that

f(xk1) ≤ f(x0) + Lp
(p+ β)!

k1−1∑
j=0
‖sj‖p+β −

1
(p+ β)!

k1−1∑
j=0

σj‖sj‖p+β

≤ f(x0) + Lp
(p+ β)!

(
νk1 − σ0
σ0

)
.

We then obtain (3.3.19) by using Lemma 3.3.7 to bound νk1 . 2

The two bounds in Lemma 3.3.8 and Lemma 3.3.7 are useful in that they now imply an upper
bound on the regularization parameter, a crucial step in standard theory for regularization
methods.

Lemma 3.3.9 Suppose that AS.1, AS.2 and AS.3 hold. Suppose also that k ≥ k1. Then

σk ≤ σmax
def= max

(2(p+ β)!
ϑ

(
f(x0)− flow + Lpνmax

(p+ β)!σ0

)
+ νmax, Lp, ν0

)
. (3.3.22)

Proof. Let j ∈ {k1, . . . , k}. By the definition of k1 in (3.3.9), σj ≥ 2Lp. From
Lemma 3.3.2, we then have that

f(xj)− f(xj+1) ≥ σj
2(p+ β)!‖sj‖

p+β ≥ ϑ νj
2(p+ β)!‖sj‖

p+β.

Summing the previous inequality from j = k1 to k−1 and using the νj update rule (3.2.9)
and AS.2, we deduce that

f(xk1)− flow ≥ f(xk1)− f(xk) ≥
ϑ

2(p+ β)! (νk − νk1).

Rearranging the previous inequality and using Lemma 3.3.7,

νk ≤
2(p+ β)!

ϑ
(f(xk1)− flow) + νmax. (3.3.23)

Combining now Lemma 3.3.8 (to bound f(xk1)), (3.2.5) and (3.3.4) gives (3.3.22). 2

We may now resort to the standard “telescoping sum” argument to obtain the desired evalu-
ation complexity bound.



3.3. EVALUATION COMPLEXITY FOR THE OFFARP ALGORITHM 83

Theorem 3.3.10 Suppose that AS.1–AS.3 hold. Then the OFFARp algorithm requires
at most [

κOFFARp

(
f(x0)− flow + Lpνmax

(p+ β)!σ0

)

+
( 2Lp
ϑ(p− 1 + β)!

(
Lp
σ0

(1 + θ1) + θ1

)) p+β
p−1+β

]
ε
− p+β
p−1+β

1 + 2

iterations and evaluations of {∇ixf}
p
i=1 to produce a vector xε ∈ IRn such that

‖∇1
xf(xε)‖ ≤ ε1, where

κOFFARp
def= 2(p+ β)!σ1/(p−1+β)

max

( 1
ϑ(p− 1 + β)!

(
Lp
σ0

+ ϑθ1

)) p+β
p−1+β

where σmax is defined in Lemma 3.3.9 and νmax is defined in Lemma 3.3.7.

Proof. Suppose that the algorithm terminates at an iteration k < k1, where k1 is given
by (3.3.9). The desired conclusion then follows from the fact that, by this definition and
Lemma 3.3.4,

k1 ≤ k∗ ≤
( 2Lp
ε1ϑ(p− 1 + β)!

(
Lp
σ0

(1 + θ1) + θ1

)) p+β
p−1+β

+ 1. (3.3.24)

Suppose now that the algorithm has not terminated at iteration k1 and consider an itera-
tion j ≥ k1. From k1 definition (3.3.9) and Lemma 3.3.9, we have that 2Lp ≤ σj ≤ σmax.
Since σj ≥ 2Lp, Lemma 3.3.2 is valid for iteration j. Combining Lemma 3.3.2, inequality
(3.3.3) of Lemma 3.3.3, the fact that σj ∈ [ϑσ0, σmax] because of Lemma 3.3.9 and that
‖gj+1‖ ≥ ε1 before termination, we therefore deduce that

f(xj)− f(xj+1) ≥ σj‖sj‖p+β

2(p+ β)! ≥
σj(p− 1 + β)!

p+β
p−1+β ‖gj+1‖

p+β
p−1+β

2(p+ β)!(Lp + θ1σj)
p+β
p−1+β

≥ (p− 1 + β)!
p+β
p−1+β ε

p+β
p−1+β
1

2(p+ β)!σ
1

p−1+β
max

(
Lp
ϑσ0

+ θ1
) p+β
p−1+β

. (3.3.25)

Summing this inequality from k1 to k ≥ k1 and using AS.3, we obtain that

f(xk1)− flow ≥ f(xk1)− f(xk) ≥
(k − k1)
κOFFARp

ε
p+β
p−1+β
1 . (3.3.26)

Rearranging the terms of the last inequality and using (3.3.24) and Lemma 3.3.8 then
yields the desired result. 2

While this theorem covers all model’s degrees, it is worthwhile to isolate the most commonly



84 CHAPTER 3. HIGHER ORDER OBJECTIVE-FUNCTION-FREE OPTIMIZATION

used cases.

Corollary 3.3.1 Suppose that both AS.1 and AS.2 hold and that p = 1 with β = 1.
Then the OFFAR1 algorithm requires at most[

4σmax
ϑ2

(
L1
σ0

+ ϑθ1

)2[
f(x0)−flow+L1νmax

2σ0

]

+
(2L1
ϑ

(
L1
σ0

(1 + θ1) + θ1

))2
]
ε−2
1 + 2

iterations and evaluations of the gradient to produce a vector xε ∈ IRn such that
‖∇1

xf(xε)‖ ≤ ε1, where σmax is defined in Lemma 3.3.9 and νmax is defined in
Lemma 3.3.7. If p = 2, β = 1 and AS.3 holds, the OFFAR2 algorithm requires at most[

12σ1/2
max

(2ϑ)
3
2

(
L2
σ0

+ ϑθ1

) 3
2
[
f(x0)−flow+L2νmax

6σ0

(
L2
σ0
νmax + ϑσ0

)]

+
(
L2
ϑ

(
L2
σ0

(1 + θ1) + θ1

)) 3
2
]
ε
− 3

2
1 + 2

iterations and evaluations of the gradient and Hessian to achieve the same result.

We now prove that the complexity bound stated by Corollary 3.3.10 is sharp in order.

Theorem 3.3.11 Let ε1 ∈ (0, 1], β = 1 and p ≥ 1. Then there exists a p times
continuously differentiable function fp from IR into IR such that the OFFARp applied to fp
starting from the origin takes exactly kε = dε

− p+1
p

1 e iterations and derivative’s evaluations
to produce an iterate xkε such that |∇1

xfp(xkε)| ≤ ε1.

Proof. To prove this result, we first define a sequence of function and derivatives’ values
such that the gradients converge sufficiently slowly and then show that these sequences can
be generated by the OFFARp algorithm and also that there exists a function fp satisfying
AS.1–AS.3 which interpolate them.
First select ϑ = 1 , some σ0 = ν0 > 0 and define, for all k ∈ {0, . . . , kε},

ωk = ε1
kε − k
kε

∈ [0, ε1] (3.3.27)

and
gk = −(ε1 + ωk) and Di,k = 0, (i = 2, . . . , p), (3.3.28)
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so that
|gk| ∈ [ε1, 2ε1] ⊂ [0, 2] for all k ∈ {0, . . . , kε}. (3.3.29)

We then set, for all k ∈ {0, . . . , kε},

sk =
(
p!|gk|
σk

) 1
p

, (3.3.30)

Using (3.3.30), we compute µ1,k for k > 0, yielding that

µ1,k = p!|gk|
|sk−1|p

− θ1σk−1 =
( |gk|
|gk−1|

− θ1

)
σk−1 < 0, (3.3.31)

where the last inequality results from the fact that |gk| is a non-increasing sequence and
that θ1 > 1. Using (3.3.31) and the equality ϑ = 1, we obtain that σk = νk for all k.
Computing now an upper-bound on σk

σk
def= σ0 +

k−1∑
j=0

σj |sj |p+1 (3.3.32)

= σ0 +
k−1∑
j=0

σj

(
p!|gj |
σj

) p+1
p

= σ0 + (p!)
p+1
p

k−1∑
j=0

(ε1 + ωj)
p+1
p

σ
1
p

j

≤ σ0 +
(

(2p!)p+1

σ0

) 1
p k−1∑
j=0

ε
p+1
p

1 ≤ σ0 +
(

(2p!)p+1

σ0

) 1
p

kεε
p+1
p

1 ≤ σ0 + 2
(

(2p!)p+1

σ0

) 1
p

def= σmax,

where we successively used (3.3.30), (3.3.28), (3.3.27) and the definition of kε. We finally
set

f0 = 2
2p+1
p

(
p!
σ0

) 1
p

and fk+1
def= fk + gksk +

p∑
i=2

1
i!Di,k[sk]i = fk −

(
p!
σk

) 1
p

(ε1 + ωk)
p+1
p ,

yielding, using (3.3.32) and the definition of kε, that

f0 − fkε =
kε−1∑
k=0

(
p!
σk

) 1
p

(ε1 + ωk)
p+1
p ≤ 2

p+1
p

(
p!
σ0

) 1
p

kεε
p+1
p

1 ≤ 2
2p+1
p

(
p!
σ0

) 1
p

= f0.

As a consequence
fk ∈ [0, f0] for all k ∈ {0, . . . , kε}. (3.3.33)

Observe that (3.3.30) satisfies (3.2.6) (for the model (1.3.18)) and (3.2.7) for θ1 = 1.
Moreover (3.3.32) is the same as (3.2.9)-(3.2.5). Hence the sequence {xk} generated by

x0 = 0 and xk+1 = xk + sk
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may be viewed as produced by the OFFARp algorithm given (3.3.28). Defining

Tk,p(s) = fk + gks+
p∑
i=2

1
i!Di,ks

i,

observe also that
|fk+1 − Tk,p(sk)| = 0 ≤ 2σmax

p! |sk|p+1 (3.3.34)

and

|gk+1−∇1
sTk,p(sk)| = |gk+1−gk| ≤ |ωk−ωk+1| =

ε1
kε
≤ ε

2p+1
p

1 ≤ σmax
σk

(ε1 +ωk) = σmax
p! |sk|

p

(3.3.35)

(we used kε ≤ ε
− p+1

p

1 + 1 and ε1 ≤ 1), while, if p > 1,

|Di,k+1 −∇isTk,p(sk)| = |Di,k+1 −Di,k| = 0 ≤ σmax
p! |sk|

p+1−i (3.3.36)

for i = 2, . . . , p. In view of (3.3.29), (3.3.33) and (3.3.34)-(3.3.36), we may then apply
classical Hermite interpolation to the data given by {(xk, fk, gk, D2,k, . . . , Dp,k)}kεk=0 (see
[57, Theorem A.9.2] with κf = max(2, f0, 2σmax/p!), for instance) and deduce that there
exists a p times continuously differentiable piecewise polynomial function fp satisfying
AS.1–AS.3 and such that, for k ∈ {0, . . . , kε},

fk = fp(xk), gk = ∇1
xfp(xk) and Di,k = ∇ixfp(xk), (i = 2, . . . , p).

The sequence {xk} may thus be interpreted as being produced by the OFFARp algorithm
applied to fp starting from x0 = 0. The desired conclusion then follows by observing that,
from (3.3.27) and (3.3.28),

|gk| > ε1 for k ∈ {0, . . . , kε − 1} and |gkε | = ε1.

2

It is remarkable that the complexity bound stated by Theorems 3.3.10 and 3.4.5 are identical
(in order) to that known for the standard setting where the objective function is evaluated
at each iteration. Moreover, the O(ε−3/2) bound for Lipschitz Hessian objective function
was shown in [52] to be optimal within a very large class of second-order methods. One
then concludes that, from the sole viewpoint of evaluation complexity, the computation of
the objective function’s values is an unnecessary effort for achieving convergence at optimal
speed.

One may also ask, at this point, if keeping track of νk is necessary, that is, when considering
OFFAR2, if a simplified update of the form

σk = max(σk−1, µ1,k) (3.3.37)

would not be sufficient to ensure convergence at the desired rate. As we show in appendix, this
is not the case, because µ1,k only measures change in second derivatives along the direction
sk−1, thereby producing an underestimate of Lp. As a result, σk may fail to reach this
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value and a simplified OFFAR2 algorithm using (3.3.37) instead of (3.2.5) may fail to converge
altogether. Another mechanism (such as that provided by νk) is thus necessary to force the
growth of the regularization parameter beyond the Lipschitz constant.

3.4 Second-order optimality

If second-derivatives are available and p ≥ 2, it is also possible to modify the OFFARp algorithm
to obtain second-order optimality guarantees. We thus assume in this section that p ≥ 2 and
restate the algorithm on the following page. In this following, we improve on the previous
result of [116, Section 4] by introducing a milder AS.3, denoted AS.3bis, which will be stated
later on.

The modified algorithm only differs from that of page 75 by the addition of the second part of
(3.4.2), the inclusion of µ2,k (whose purpose parallels that of µ1,k) and condition (3.4.7) on the
step sk. As was the case for (3.2.7)/(3.4.6), note that (3.4.7) holds with θ2 = 1 at a second-
order minimizer of the model mk(s), and is thus achievable for θ2 > 1. Moreover, because the
modified algorithm subsumes the original one, all properties derived in the previous section
continue to hold. In addition, As now p ≥ 2, (1.3.17) of Lemma 1.3.1 also holds.

Now that the computed step sk satisfies the second-order requirement (3.4.7), we introduce
the new assumption AS.3bis for the analysis of the MOFFARp algorithm.
AS.3bis if p > 2, there exists a constant κhigh ≥ 0 such that

min
‖d‖≤1

∇ixf(x)[d]i ≥ −κhigh for all x ∈ IRn and i ∈ {3, · · · , p}, (3.4.10)

We note that for the practical numerical case p = 2, no condition on the negative curvature
is imposed whereas (3.2.1) bounds it.

We now derive a second-order analog of the step lower bound of Lemma 3.3.3.

Lemma 3.4.1 Suppose that AS.1 holds and that the modified algorithm is applied.
Then, for all k ≥ 0,

‖sk‖p−2+β ≥ (p− 2 + β)!
Lp + θ2σk

[
− λmin(Hk+1)

]
+

(3.4.11)

and
µ2,k ≤ max(ν0, Lp). (3.4.12)
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Algorithm 3.4.1: Modified OFFO adaptive regularization of degree p
(MOFFARp)
Step 0: Initialization: An initial point x0 ∈ IRn, a regularization parameter ν0 > 0,

a requested final gradient accuracy ε1 ∈ (0, 1] and a requested final curvature
accuracy ε2 ∈ (0, 1] are given, as well as the parameters

θ1, θ2 > 1 and ϑ ∈ (0, 1] (3.4.1)

Set k = 0.

Step 1: Check for termination: Evaluate gk = ∇1
xf(xk) and Hk = ∇2

xf(xk). Ter-
minate with xε = xk if

‖gk‖ ≤ ε1 and λmin(Hk) ≥ −ε2. (3.4.2)

Else, evaluate {∇ixf(xk)}pi=3.

Step 2: Step calculation: If k > 0, set

µ1,k = (p− 1 + β)!‖gk‖
‖sk−1‖p−1+β − θ1σk−1, µ2,k =

(p− 2 + β)!
[
− λmin(Hk)

]
+

‖sk−1‖p−2+β − θ2σk−1

(3.4.3)
and select

σk ∈
[
ϑνk,max (νk, µ1,k, µ2,k)

]
. (3.4.4)

Otherwise (i.e. if k = 0), set σ0 = µ1,0 = µ2,0 = ν0.
Then compute a step sk which sufficiently reduces the model mk defined in (1.3.18)
in the sense that

mk(sk)−mk(0) < 0, (3.4.5)

‖∇1
sTf,p(xk, sk)‖ ≤ θ1

σk
(p− 1 + β)!‖sk‖

p−1+β (3.4.6)

and λmin
(
∇2
sTf,p(xk, sk)

)
≥ −θ2

σk
(p− 2 + β)!‖sk‖

p−2+β. (3.4.7)

Step 3: Updates. Set xk+1 = xk + sk, (3.4.8)

and νk+1 = νk + νk‖sk‖p+β. (3.4.9)

Increment k by one and go to Step 1.
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Proof. Successively using the triangle inequality, (1.3.17) and (3.4.7), we obtain that

λmin(Hk+1) = min
‖d‖≤1

∇2
xf(xk+1)[d]2

= min
‖d‖≤1

(
∇2
xf(xk+1)[d]2 −∇2

sTf,p(xk, sk)[d]2 +∇2
sTf,p(xk, sk)[d]2

)
≥ min
‖d‖≤1

(
∇2
xf(xk+1)[d]2 −∇2

sTf,p(xk, sk)[d]2
)

+ min
‖d‖≤1

∇2
sTf,p(xk, sk)[d]2

= min
‖d‖≤1

(
(∇2

xf(xk+1)−∇2
sTf,p(xk, sk))[d]2

)
+ λmin

(
∇2
sTf,p(xk, sk)

)
≥ −‖∇2

xf(xk+1)−∇2
sTf,p(xk, sk)‖ − θ2

σk
(p− 2 + β)!‖sk‖

p−2β

≥ − Lp
(p− 2 + β)!‖sk‖

p−2+β − θ2
σk

(p− 2 + β)!‖sk‖
p−2+β,

which proves (3.4.11). The bound (3.4.12) then results from the identity µ2,0 = ν0, (3.4.4)
and (3.4.12). 2

Observe that (3.4.4), (3.3.4) and (3.4.12) ensure that (3.3.5) continues to hold.
We now have to adapt our argument since the termination test (3.4.2) may fail if either

its first or its second part fails. Lemma 3.3.3 then gives a lower bound on the step if the first
part fails, while we have to use Lemma 3.4.1 otherwise. This is formalized in the following
lemma.

Lemma 3.4.2 Suppose that AS.1 holds, and that the MOFFARp algorithm has reached
iteration of index

k ≥ k∗∗
def=
⌈

2Lp
κp+βboth ϑ

max
((2Lp

ϑ

) 1
p−1+β

,

(2Lp
ϑ

) 2
p−2+β

)
max

(
ε
− p+β
p−1+β

1 , ε
− p+β
p−2+β

2

)⌉
,

(3.4.13)
where

κboth
def= min


 (p− 1 + β)!

(1 + θ1)Lpσ0
+ θ1

 1
p−1+β

,

 (p− 2 + β)!
(1 + θ2)Lpσ0

+ θ2

 1
p−2+β

 . (3.4.14)

Then, for k ≥ k∗∗,
νk ≥

2Lp
ϑ
, (3.4.15)

which implies that, for k ≥ k∗∗,
σk ≥ 2Lp. (3.4.16)

Proof. As in Lemma 3.3.4, (3.4.16) is a direct consequence of (3.4.4) if (3.4.15) is
true. In order to adapt the proof of Lemma 3.3.4, we observe that, at iteration k, (3.3.3)
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and (3.4.11) hold and

‖sk‖ ≥ min

((p− 1 + β)!
Lp + θ1σk

‖gk+1‖
) 1
p−1+β

,

(
(p− 2 + β)!
Lp + θ2σk

max
[
− λmin(Hk+1)

]) 1
p−2+β


which, given (3.3.5), that termination has not yet occured and that νk > ν0 = σ0, implies
that

‖sk‖ ≥ min

ν− 1
p−1+β

k

 (p− 1 + β)!
(1 + θ1)Lpσ0

+ θ1

 1
p−1+β

, ν
− 1
p−2+β

k

 (p− 2 + β)!
(1 + θ2)Lpσ0

+ θ2

 1
p−2+β


min

(
ε

1
p−1+β
1 , ε

1
p−2+β
2

)
≥ κboth min

(
ν
− 1
p−1+β

k , ν
− 1
p−2+β

k

)
min

(
ε

1
p−1+β
1 , ε

1
p−2+β
2

)
.

(3.4.17)

Suppose now that (3.4.15) fails, i.e. that for some k ≥ k∗∗, νk < 2Lp
ϑ . Since νk is a non-

decreasing sequence, we have that νj < 2Lp
ϑ for j ∈ {0, . . . , k}. Successively using (3.4.9)

and (3.4.17), we obtain that

νk >
k−1∑
j=0

νj‖sj‖p+β ≥
k∗∗−1∑
j=0

νj‖sj‖p+β ≥
k∗∗−1∑
j=0

κp+βboth min
(
ν
− 1
p−1+β

j , ν
− 2
p−2+β

j

)
min

(
ε

1
p−1+β
1 , ε

1
p−2+β
2

)p+β

≥
k∗∗−1∑
j=0

κp+βboth min
((2Lp

ϑ

)− 1
p−1+β

,

(2Lp
ϑ

)− 2
p−2+β

)
min

(
ε

1
p−1+β
1 , ε

1
p−2+β
2

)p+β

= k∗∗κ
p+β
both min

((2Lp
ϑ

)− 1
p−1+β

,

(2Lp
ϑ

)− 2
p−2+β

)
min

(
ε

1
p−1+β
1 , ε

1
p−2+β
2

)p+β
.

Using the definition of k∗∗ in the last inequality, we see that

2Lp
ϑ

< νk∗∗ <
2Lp
ϑ
,

which is impossible. Hence no index k ≥ k∗∗ exists such that νk < 2Lp
ϑ and (3.4.15) and

(3.4.16) hold. 2

Up until now, we have not utilized our newly introduced AS.3bis assumption. Since AS.3
played a crucial role in establishing both Lemma 3.3.6 and Lemma 3.3.7, we need to establish
new variants of these lemmas with AS.3bis instead. We begin by proving a new bound on
the step, taking into account negative curvature this time.
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Lemma 3.4.3 Suppose that AS.1 and AS.3bis hold. At each iteration k, we have that

‖sk‖ ≤ 2ηbis + 2
((p+ β)!‖gk‖

σk

) 1
p−1+β

+ 2
(

(p+ β)! [−λmin(Hk)]+
2σk

) 1
p−2+β

(3.4.18)

where

ηbis =
p∑
i=3

[
κhigh(p+ β)!

i!ϑσ0

] 1
p−i+β

. (3.4.19)

Proof. As the proof is similar in essence to the one in Lemma 3.3.6, it will be left in
the appendix. 2

With the help of the previously established lemma, we are now able to proof a bound on
νk1 under AS.3bis assumption.

Lemma 3.4.4 Suppose that AS.1 and AS.3bis hold. Let k1 be defined by (3.3.9). There
exists a νmax depending on problem constants such that

νk1 ≤ νmax, (3.4.20)

where

νmax
def= max

(
σ0 + σ0

[
2ηbis + 2

(
(p+ β)!‖g0‖

σ0

) 1
p−1+β

+ 2
(

(p+ β)! [−λmin(H0)]+
2σ0

) 1
p−2+β

]p+β
,

(3.4.21)

(
κ2 + 2p+β3p−1+β((p− 1 + β)(p+ β))

p+β
p−2+β

(
Lp
σ0

+ θ2

2ϑ

) p+β
p−2+β )2Lp

ϑ

)
.

where κ2 is defined in (3.B.5).

Proof. As the proof is similar to that of Lemma 3.3.7, but with the usage of (3.4.18)
instead, we have deferred it to the appendix for clarity and brevity. 2

We then continue to use the theory of the previous section as Lemma 3.3.8
and Lemma 3.3.9 still apply but with νmax given by (3.4.21). Moreover, the value of k1 now
satisfies the improved bound

k1 ≤ k?? (3.4.22)

instead of k1 ≤ k?. This directly leads us to the following strengthened complexity result.
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Theorem 3.4.5 Suppose that AS.1, AS.2 and AS.3bis hold and that p > 1. Then the
MOFFARp algorithm requires at most[
κMOFFARp

(
f(x0)− flow + Lpνmax

(p+ β)!σ0

)

+ 2Lp
κp+βboth ϑ

max
((2Lp

ϑ

) 1
p−1+β

,

(2Lp
ϑ

) 2
p−2+β

)]
max

(
ε
− p+β
p−1+β

1 , ε
− p+1
p−2+β

2

)
+ 2

iterations and evaluations of {∇ixf}
p
i=1 to produce a vector xε ∈ IRn such that

‖∇1
xf(xε)‖ ≤ ε1 and λmin(∇2

xf(xε)) ≥ −ε2, where

κMOFFARp
def= 2(p+ β)! max

(
σ1/(p−1+β)

max

 Lp
σ0

+ ϑθ1

ϑ(p− 1 + β)!


p+β
p−1+β

,

σ2/(p−2+β)
max

 Lp
σ0

+ ϑθ2

ϑ(p− 2 + β)!


p+β
p−2+β )

and where σmax is defined in Lemma 3.3.9, νmax is defined in Lemma 3.4.4 and κboth in
(3.4.14).

Proof. The bound of Theorem 3.3.10 remains valid for obtaining a vector xε ∈ IRn

such that ‖g(xε)‖ ≤ ε1, but we are now interested to satisfy the second part of (3.4.2)
as well. Using (3.4.11) instead of (3.3.3), we deduce (in parallel to (3.3.25)) that before
termination,

f(xj)− f(xj+1) ≥ σj‖sj‖p+β

2(p+ β)!

≥ σj((p− 2 + β)!)
p+β
p−2+β max(0,−λmin(Hk+1))

p+β
p−2+β

2(p+ β)!(Lp + θ2σj)
p+β
p−2+β

≥ ((p− 2 + β)!)
p+β
p−2+β ε

p+β
p−2+β
2

2(p+ β)!σ
2

p−2+β
max

(
Lp
ϑσ0

+ θ2
) p+β
p−2+β

,

so that, summing this inequality from k1 to k ≥ k1 and using AS.3 now gives (in parallel
to (3.3.26)) that, before the second part of (3.4.2) is satisfied,

f(xk1)− flow ≥ f(xk1)− f(xk) ≥
(k − k1)
κ2nd

ε
p+β
p−2+β
2

where

κ2nd
def= 2(p+ β)!σ2/(p−2+β)

max

 Lp
σ0

+ ϑθ2

ϑ(p− 2 + β)!


p+β
p−2+β

.
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As a consequence, we deduce, using (3.4.22) and Lemma 3.3.8 to bound f(xk1), that the
second part of (3.4.2) must hold at the latest after

κ2nd

(
f(x0)− flow + Lpνmax

(p+ β)!σ0

)
ε
− p+β
p−2+β

2 + k∗∗ + 2

iterations and evaluations of the derivatives, where k∗∗ is defined in (3.4.13). Combining
this result with that of Theorem 3.3.10 then yields the desired conclusion. 2

Focusing again on the case where p = 2 and upperbounding complicated constants, we
may state the following corollary.

Corollary 3.4.1 Suppose that AS.1 (with β = 1) and AS.2 hold and that p = 2. Then
there exists constants κ∗ such that the MOFFAR2 algorithm requires at most

κ∗max
(
ε
−3/2
1 , ε−3

2

)
iterations and evaluations of the gradient and Hessian to produce a vector xε ∈ IRn such
that ‖∇1

xf(xε)‖ ≤ ε1 and λmin(∇2
xf(xkε)) ≥ −ε2.

We finally prove that the complexity for reaching approximate second order points, as stated
by Theorem 3.4.5, is also sharp.

Theorem 3.4.6 Let ε1, ε2 ∈ (0, 1], β = 1 and p > 1. Then there exists a p times
continuously differentiable function fp from IR into IR with Lipschitz pth derivative such

that the MOFFARp applied to fp starting from the origin takes exactly kε = dε
− p+1
p−1

2 e iter-
ations and derivative’s evaluations to produce an iterate xkε such that |∇1

xfp(xkε)| ≤ ε1
and λmin(∇2

xf(xkε)) ≥ −ε2.

Proof. The proof is very similar to that of Theorem 3.3.11, this time taking a uniformly
zero gradient but a minimal eigenvalue of the Hessian slowly converging to −ε2 from below.
It is detailed in appendix. 2

3.5 The effect of noise

We have mentioned in the introduction that OFFO algorithms like that presented above are
interesting not only because of their remarkable theoretical properties covered in the previous
sections, but also because they show remarkable insensitivity to noise1. This section is devoted
to illustrating this statement while, at the same time, proposing a more detailed algorithm

1A similar behaviour was observed in [114] for first-order OFFO methods.
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which exploits the freedom left in (3.2.5) (or (3.4.4)). Focusing on the OFFAR2 and MOFFAR2
algorithms (that is (M)OFFARp for p = 2), we rewrite (3.2.5) as

σk = max(ϑνk, ξkµ1,k)

for some factor ξk ∈ [ϑ, 1] which we adaptively update as follows. We first define, for some
power β ∈ (0, 1], an initial gradient-norm “target” t0 = 9

10‖gk‖β and an initial factor ξ0 = 1.
For k > 0, we then update tk and ξk, according to the rules

ξk =


max(ϑ, 1

2ξk−1) if ‖gk‖ ≤ tk−1,
1
2(1 + ξk−1) if ‖gk‖ > max(tk−1, ‖gk−1‖) and ξk−1 < 1,
ξk−1 otherwise

(3.5.1)

and
tk =

{
9
10‖gk‖β if ‖gk‖ ≤ tk−1,
tk−1 otherwise. (3.5.2)

Thus the factor ξk decreases when the gradient’s norms converge to zero at a sufficiently fast
rate (determined by the power β), while ξk increases to one if the gradient norms increase2.
In addition, we choose the value of ν0 = σ0 with the objective of getting ‖s0‖ of the order of
unity3, and set

ν0 = max (ς, 6‖g0‖) .

Finally, we use ϑ = 0.001 and ς = 0.0001.
In what follows, we compare the standard second-order regularization algorithms AR24

with three variants of the OFFAR2 and MOFFAR2 methods we just described. The first variant,
(M)OFFAR2a , uses β = 1 in the definition of t0 and (3.5.2), the second, (M)OFFAR2b, uses β = 2/3
and the third, (M)OFFAR2c, uses β = 1/2. The MAR2 algorithm is identical to AR2 except that
it uses the more stringent second-order conditions (3.4.5)-(3.4.7) for the step computation.
All on the algorithms were run5 on the low dimensional instances of the problems6 of the
OPM collection [110, January 2022] listed with their dimension in Table 1 of Section 1. The
specified algorithmic variant is iterated until either ‖∇1

xf(xk)‖2 ≤ ε1, or a maximum of 50000
iterations was reached, or evaluation of the gradient or Hessian returned an error.

Before considering the results, we recall an important comment made in [114]. Very few
of the test functions satisfy AS.3 on the whole of IRn. While this is usually not a problem
when testing descent methods (because AS.3 may then be true in the level set determined by
the starting point), this is no longer the case for significantly non-monotone methods like the
ones tested here. As a consequence, it may (and does) happen that the gradient evaluation is
attempted at a point where its value exceeds the Matlab overflow limit, causing the algorithm
to fail on the problem.

We first consider the noiseless case, in which all algorithms were terminated as soon as
an iterate xk was found such that ‖∇1

xf(xk)‖ ≤ 10−6. Figure 3.1 shows the corresponding
2The constants 1

2 and 9
10 were chosen somewhat arbitrarily, but we found these to work well in our tests

and the algorithm to be quite insensitive to their precise values.
3Making the second ratio in the right-hand side of (3.3.13) equal to one.
4See [57, page 65] and MAR2 with η1 = 10−4, η2 = 0.95, γ1 = 2 = 1/γ2,γ3 = 1020. σmin = 10−4, θ1 = 1.1

and θ2 = +∞.
5In Matlab on a Dell portable computer under Ubuntu 20.04 with sixteen cores and 64 GB of memory.
6From their standard starting point.
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performance profile [86] for the algorithms, but we also follow [179] and consider the derived
“global” measure πalgo to be 1

50 of the area below the curve corresponding to algo in the
performance profile, for abscissas in the interval [1, 50]. The larger this area and closer πalgo
to one, the closer the curve to the right and top borders of the plot and the better the
global performance. In addition, ρalgo denotes the percentage of successful runs taken on all
problems. Table 3.1 presents the values of the πalgo and ρalgo statistics. Failure7 of a given
(M)OFFAR2 variant essentially occurs on ill-conditioned problems.

5 10 15 20 25 30 35 40 45 50
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MOFFAR2c
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Figure 3.1: Performance profile for deterministic OFFO algorithms on noiseless OPM prob-
lems. We report on the vertical axis the proportion of problems for which the number of
iterations of each algorithm is at most a fraction (given by the horizontal axis) of the smallest
among all algorithms (see [86]).

AR2 OFFAR2a OFFAR2b OFFAR2c MAR2 MOFFAR2a MOFFAR2b MOFFAR2c
πalgo 0.97 0.79 0.81 0.81 0.97 0.79 0.81 0.81
ρalgo 95.8 88.24 87.39 87.39 95.80 88.24 87.29 87.39

Table 3.1: Performance and reliability statistics on OPM problems without noise

Notice that the second-order variants (M*) are, in these statistics, undistinguishable from
their first-order counterparts, although (very minor) differences in performance occur for
some nonconvex examples. For the AR2 and the OFFAR2 variants, this seems to vindicate
the folklore observation that second-order optimality is most often obtained by first-order
algorithms, although no guarantee can be provided.

Obviously, if we were to consider noiseless problems only, our results provide little mo-
tivation (beyond theoretical curiosity) to consider the (M)OFFAR2 algorithms. This is not
unexpected since (M)AR2 does exploit objective function values and we know that identical
global convergence orders may not directly translate into similar practical behaviour. We
nevertheless note that the global behaviour of the (M)OFFAR2 algorithms is far from poor on
reasonably well-conditioned cases.

7On biggs5, brownbs, cliff, chebyqad, cosine, curly10, himm32, eg2s, genhumps, gulf, meyer3, osbornea,
osborneb, powellbs, scurly10, scosine, vibrbeam.
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However, as we have announced, the situation is quite different when considering the noisy
case. When noise is present and because the value of µ1,k (which is crucial to the performance
of the OFFAR2 algorithm) directly depends on the now noisy gradient, we have modified (3.2.4)
slightly in an attempt to attenuate the impact of noise. We then use the smoothed update

δk = 9
10δk−1 + 1

10

( 2‖gk‖
‖sk−1‖2

)
, µ1,k = δk − θ1σk−1,

where δ0 = max(ς, ‖g0‖), instead of (3.2.4). Similarly we use a smoothed version of the
gradient’s norm

τk = 9
10τk−1 + 1

10‖gk‖

(with τ−1 = ‖g0‖) instead of ‖gk‖ in (3.5.1) and (3.5.2).
Table 3.2 shows the reliability score ρalgo of the three algorithms averaged over 10 runs for

four increasing percentages of relative random Gaussian noise added to the derivatives (and
the objective function for AR2). By “relative random Gaussian noise”, we mean that the i-th
entry of the noisy gradient is set to [gk]i = [∇x(xk)]i(1 +φξi) where ξi is drawn from N (0, 1))
and φ is the relative noise level, the definition for the noisy Hessian (and noisy function value
when relevant) being similar. The tolerance ε1 was set to 10−3 for these runs.

φ 0.05 0.15 0.25 0.50
AR2 43.70 31.26 26.30 10.00
OFFAR2a 86.05 82.10 79.83 68.99
OFFAR2b 86.89 79.08 73.45 62.18
OFFAR2c 87.90 78.49 73.53 61.18
MAR2 44.20 31.51 25.38 9.08
MOFFAR2a 84.03 81.60 79.92 68.24
MOFFAR2b 85.38 77.39 71.93 61.43
MOFFAR2c 85.63 77.06 71.43 60.92

Table 3.2: Reliability statistics ρalgo for 5%, 15%, 25% and 50% relative random Gaussian
noise (averaged on 10 runs)

As announced, the reliability of (M)AR2 decreases sharply when the noise level increases,
essentially because the decision to accept or reject an iteration, which is based on function
values, is strongly affected by noise. By contrast, the reliability of the (M)OFFAR2 variants
decreases remarkably slowly. That the (M)OFFAR2 variants are able to solve more that 60% of
the problems with 50% relative Gaussian noise is quite encouraging.

3.6 Discussions

We have presented an adaptive regularization algorithm for nonconvex unconstrained mini-
mization where the objective function is never calculated and which has, for a given degree of
used derivatives, the best-known worst-case complexity order, not only among OFFO meth-
ods, but also among all known optimization algorithms seeking first-order critical points. In
particular, the algorithm using gradients and Hessians requires at most O(ε−(p+β)/(p−1+β)

1 )
iterations to produce an iterate such that ‖∇1

xf(xk)‖ ≤ ε1, and at most O(ε−(p+β)/(p−2+β)
2 )
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iterations to additionally ensure that λmin(∇2
xf(xk)) ≥ −ε2. Moreover, all stated complexity

bounds are sharp.
These results may be extended in different ways, which we have not included in our

development to avoid too much generality and reduce the notational burden. The first is to
allow errors in derivatives of orders 2 to p. If we denote by ∇ixf the approximation of ∇ixf ,
it is easily seen in the proof of Lemma 3.3.3 that the argument remains valid as long as, for
some κD ≥ 0,

‖∇ixf(xk)−∇ixf(xk)‖ ≤ κD‖sk‖p+1−i. (3.6.1)

Since, for first-order analysis, the accuracy of derivatives of degree larger than one only occurs
in this lemma, we conclude that Theorem 3.3.10 still hold if (3.6.1) holds.

Further likely generalizations include imposing convex constraints on the variables [57,
Chapter 6]. An extension to guarantee third-order optimality conditions (in the case where
third derivatives are available) may also be possible along the lines discussed in [57, Chapter 4].

We also observe that the lower bound σk ≥ max(µ1,k, µ2,k) has not yet, to the best of our
knowledge, been used in implementations of the standard AR2 algorithm. Its incorporation in
this method is clearly possible and worth investigating.

More extensive numerical experiments involving both regularization and trust-region meth-
ods using a variety of approximate derivatives are the subject of future work and will be
reported separately.





Appendices

3.A Proof of Lemma 3.3.5

Proof. The proof closely follows the approach presented in [216, Lecture VI, Lemma 5].
However, minor adjustments are introduced to accommodate the scenario where n− 1 + β
is not an integer, as is the case when β < 1. Let us consider first

|x| > κm (3.A.1)

Where κm is defined in (3.3.10). Since anxn−1+β = −an−1x
n−1 − · · · − a1x− a0. Taking

the absolute value in the last equality and using κm definition (3.3.10) and (3.A.1),

1 ≤
n∑
i=1

|an−i||x|n−i

|an||x|n−1+β ≤
n∑
i=1

|an−i|
|an||x|i−1+β ≤

n∑
i=1

(
κm
|x|

)i−1+β

1 ≤
(
κm
|x|

)−1+β
κm
|x|

1− κm
|x|
≤

(
κm
|x|

)β
1− κm
|x|

.

Rearranging the last inequality, (3.A.1) and the fact that β ∈ (0, 1], we obtain that

1 ≤
(
κm
|x|

)β
+ κm
|x|
≤ 2

(
κm
|x|

)β
Using the last inequality to bound |x| and use again the fact that β ∈ (0, 1]

|x| ≤ 2
1
β κm ≤ 2κm (3.A.2)

Combining (3.A.2) and the fact that we supposed at first that |x| verifies (3.A.1), we
derive (3.3.11). 2
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3.B Proof of Lemmas and Theorem from Section (3.4)

3.B.1 Proof of Lemma 3.4.3

Proof. Suppose now that p > 1. Again (3.4.5) gives that

σk
(p+ β)!‖sk‖

p+β ≤ −gᵀksk −
1
2s

ᵀ
kHksk −

p∑
i=3

1
i!∇

i
xf(xk)[sk]i

≤ ‖gk‖‖sk‖+ 1
2 max (0,−λmin(Hk)) ‖sk‖2 +

p∑
i=3

κhigh

i! ‖sk‖
i.

Where we used the definition of λmin(Hk) and AS.3bis to obtain the last inequality.
Applying now Lemma 3.3.5 with x = ‖sk‖, n = p + 1, a0 = 0, a1 = ‖gk‖, a2 =
1
2 [−λmin(Hk)]+, β = β, ai = κhigh/i! i ∈ {2, . . . , p} and ap+1 = σk/(p + β)!, we know
from (3.2.6) that the equation

∑n
i=0 aix

i = 0 admits at least one strictly positive root,
and we may thus derive that

‖sk‖ ≤ 2
((p+ β)!‖gk‖

σk

) 1
p−1+β

+ 2
((p+ β)![−λmin(Hk)]+

2σk

) 1
p−2+β

+ 2
p∑
i=3

[
κhigh(p+ β)!

i!σk

] 1
p−i+β

≤ 2
((p+ β)!‖gk‖

σk

) 1
p−1+β

+ 2
((p+ β)![−λmin(Hk)]+

2σk

) 1
p−2+β

+ 2
p∑
i=3

[
κhigh(p+ β)!

i!ϑνk

] 1
p−i+β

≤ 2
((p+ β)!‖gk‖

σk

) 1
p−1+β

+ 2
((p+ β)![−λmin(Hk)]+

2σk

) 1
p−2+β

+ 2
p∑
i=3

[
κhigh(p+ β)!

i!ϑν0

] 1
p−i+β

,

and (3.4.18) holds with (3.4.19). 2

3.B.2 Proof of Lemma 3.4.4

if k1 = 1, we have that
ν1 = σ0 + σ0‖s0‖p+β.

Using Lemma 3.4.3 to bound ‖s0‖p+β, we derive that

ν1 ≤ σ0 + σ0

2ηbis + 2
((p+ β)!‖g0‖

σ0

) 1
p−1+β

+ 2
(

(p+ β)! [−λmin(H0)]+
2σ0

) 1
p−2+β

p+β .
(3.B.1)

The last inequality gives the first part in (3.4.21). Suppose now that k1 ≥ 2. Successively
using (3.4.9), Lemma 3.4.3 and the fact (x + y + z)p+β ≤ 3p+β−1(xp+β + yp+β + zp+β) for
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non-negative x, y, z with the latter holding by convexity, we obtain that

νk1 ≤ νk1−1 + νk1−1‖sk1−1‖p+β

≤ νk1−1 + νk1−1

2ηbis + 2
((p+ β)!‖gk1−1‖

σk1−1

) 1
p−1+β

+ 2
(

(p+ β)! [−λmin(Hk1−1)]+
2σk1−1

) 1
p−2+β

p+β

≤ A+ 3p+β−12p+βνk1−1

(
(p+ β)! [−λmin(Hk1−1)]+

2σk1−1

) p+β
p−2+β

, (3.B.2)

where A is defined as

A
def= νk1−1 + 3p+β−12p+βηp+βbis νk1−1 + 3p+β−12p+βνk1−1

((p+ β)!‖gk1−1‖
σk1−1

) p+β
p−2+β

. (3.B.3)

Up to a 2p−1+β

3p−1+β in the second and third term of A and with ηbis instead of η, an upper-bound
has been derived on A in in the proof of Lemma 3.3.7 (see inequality (3.3.17) ). Hence there
exists κ2 > 0 that can be deduced from (3.3.16) accordingly such that

A ≤ 2κ2Lp
ϑ

. (3.B.4)

where

κ2 = 1 + 2p+β3p−1+βηp+βbis + 2p+β3p−1+β
[(p+ β)

ϑ

(
(1 + θ1)Lp

σ0
+ θ1

)] p+β
p−1+β

. (3.B.5)

We will focus in this proof only on the νk1−1
( [−λmin(Hk1−1)]+

2σk1−1

) p+β
p−2+β term in (3.B.2). Using

the fact that σk1−1 ≥ ϑνk1−1, (3.4.11) and that σk1−2 ≤ νk1−2, we obtain

νk1−1

( [−λmin(Hk1−1)]+
2σk1−1

) p+β
p−2+β

≤ νk1−1

( [−λmin(Hk1−1)]+
2ϑνk1−1

) p+β
p−2+β

≤ ν
−2

p−2+β
k1−1

(
Lp + θ2σk1−2

2(p− 2 + β)!ϑ‖sk1−2‖p−2+β
) p+β
p−2+β

≤

 Lp
νk1−2

+ θ2

2ϑ(p− 2 + β)!


p+β
p−2+β

(νk1−1)
−2

p−2+β ν
p+β
p−2+β
k1−2 ‖sk1−2‖p+β

Using now that νk is a non-decreasing sequence and that νk1−2‖sk1−2‖p+β = νk1−1 − νk1−2 ≤
νk1−1 in the last inequality, we derive

νk1−1

( [−λmin(Hk1−1)]+
2σk1−1

) p+β
p−2+β

≤

 Lp
σ0

+ θ2

2ϑ(p− 2 + β)!


p+β
p−2+β

νk1−2‖sk1−2‖p+β

≤

 Lp
σ0

+ θ2

2ϑ(p− 2 + β)!


p+β
p−2+β

νk1−1.
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Using now the fact that νk1−1 ≤ 2Lp
ϑ in the last inequality, we obtain that

3p−1+β2p+β(p+ β)!
p+β
p−2+β νk1−1

( [−λmin(Hk1−1)]+
2σk1−1

) p+β
p−2+β

≤ 2p+β3p−1+β((p− 1 + β)(p+ β))
p+β
p−2+β

 Lp
σ0

+ θ2

2ϑ


p+β
p−2+β 2Lp

ϑ
. (3.B.6)

Combining the last inequality with (3.B.4) in (3.B.2) gives the second term in (3.4.21).

3.B.3 Proof of Theorem 3.4.6

Proof. The proof of this result closely follows that of Theorem 3.3.11. First select
ϑ = 1, some σ0 = ν0 > 0 and define, for all k ∈ {0, . . . , kε},

ωk = ε2
kε − k
kε

∈ [0, ε2] (3.B.7)

and
gk = 0, Hk = −(ε2 + ωk) and Di,k = 0, (i = 3, . . . , p), (3.B.8)

so that
|Hk| ∈ [ε2, 2ε2] ⊂ [0, 2] for all k ∈ {0, . . . , kε}. (3.B.9)

We then set, for all k ∈ {0, . . . , kε},

sk =
(
p!|Hk|
σk

) 1
p−1

. (3.B.10)

Since gk = 0, µ1,k < 0 for k > 0, µ1,k is irrelevant in (3.4.4). Computing now µ2,k by using
(3.B.10)

µ2,k = (p− 1)!|Hk|
‖sk−1‖p−1 − θ2σk−1 =

( |Hk|
p|Hk−1|

− θ2

)
σk−1 < 0

where the last inequality results from (3.B.9) and p ≥ 2. Hence, as ϑ = 1, σk = νk. So
that

σk
def= σ0 +

k−1∑
j=0

σj |sj |p+1 (3.B.11)

= σ0 +
k−1∑
j=0

σj

(
p!|Hj |
σj

) p+1
p−1

= σ0 + (p!)
p+1
p−1

k−1∑
j=0

(ε2 + ωj)
p+1
p−1

σ
2
p−1
j

≤ σ0 +
(

(2p!)p+1

σ2
0

) 1
p−1 k−1∑

j=0
ε
p+1
p−1
2 ≤ σ0 +

(
(2p!)p+1

σ2
0

) 1
p−1

kεε
p+1
p−1
2 ≤ σ0 + 2

(
(2p!)p+1

σ2
0

) 1
p−1

def= σmax,

where we successively used (3.B.10), (3.B.8), (3.B.7) and the definition of kε. We finally
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set

f0 = 2
p+1
p−1

(
p!
σ0

) 2
p−1

and fk+1
def= fk+ 1

2Hks
2
k+

p∑
i=2

1
i!Di,k[sk]i = fk− 1

2

(
p!
σk

) 2
p−1

(ε2+ωk)
p+1
p−1 ,

yielding, using (3.3.32) and the definition of kε, that

f0 − fkε = 1
2

kε−1∑
k=0

(
p!
σk

) 2
p−1

(ε2 + ωk)
p+1
p−1 ≤ 2

2
p−1

(
p!
σ0

) 2
p−1

kεε
p+1
p

2 ≤ 2
p+1
p−1

(
p!
σ0

) 2
p−1

= f0.

As a consequence
fk ∈ [0, f0] for all k ∈ {0, . . . , kε}. (3.B.12)

Observe that (3.B.10) satisfies (3.4.5) (for the model (1.3.18)), (3.4.6) for θ1 = 1 and
(3.4.7) for θ2 = 1. Moreover (3.B.11) is the same as (3.4.9)-(3.4.4). Hence the sequence
{xk} generated by

x0 = 0 and xk+1 = xk + sk

may be viewed as produced by the modified OFFARp algorithm given (3.B.8). Observe also
that, for

Tk,p(s) = fk + gks+ 1
2Hks

2
k +

p∑
i=3

1
i!Di,ks

i
k,

one has that
|fk+1 − Tk,p(sk)| = 0 ≤ σmax

p! |sk|
p+1, (3.B.13)

|gk+1 −∇1
sTk,p(sk)| = |Hksk| =

1
p! |sk|

p, (3.B.14)

and

|Hk+1 −∇2
sTk,p(sk)| = |Hk+1 −Hk| ≤ |ωk − ωk+1|

= ε2
kε
≤ ε

2p
p−1
2 ≤ σmax

σk
(ε2 + ωk) = σmax

p! |sk|
p−1

(3.B.15)

(we used kε ≤ ε
− p+1
p−1

2 + 1 and ε2 ≤ 1), while, if p > 2,

|Di,k+1 −∇isTk,p(sk)| = 0 ≤ σmax
p! |sk|

p+1−i (3.B.16)

for i = 3, . . . , p. In view of (3.B.9), (3.B.12) and (3.B.13)-(3.B.16), we may then apply clas-
sical Hermite interpolation to the data given by {(xk, fk, gk, Hk, D3,k, . . . , Dp,k)}kεk=0 (see
[57, Theorem A.9.2] with κf = max(2, f0, σmax/p!), for instance) and deduce that there
exists a p times continuously differentiable piecewise polynomial function fp satisfying
AS.1–AS.4 and such that, for k ∈ {0, . . . , kε},

fk = fp(xk), gk = ∇1
xfp(xk), Hk = ∇2

xfp(xk) and Di,k = ∇ixfp(xk), (i = 3, . . . , p).

The sequence {xk} may thus be interpreted as being produced by the OFFARp algorithm
applied to fp starting from x0 = 0. The desired conclusion then follows by observing that,
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from (3.B.7) and (3.B.8), gk = 0 < ε1 for all k while

λmin[Hk] = Hk < −ε2 for k ∈ {0, . . . , kε − 1} and λmin[Hkε ] = Hkε = −ε2.

2

3.C Divergence of the simplified OFFAR2 algorithm using
(3.3.37)

We now prove that a modified simplified OFFAR2 algorithm using (3.3.37) instead of (3.2.5)
may diverge. We again proceed by constructing an example, now in IR2, where this undesirable
behaviour occur. To this aim, we first define sequences of function, gradient and Hessian values
which we will subsequently interpolate to produce the function itself. For k ≥ 0 and some
constants H ≥ 1 and θ1 ≥ 1, define

fk = 1, gk = −
(

1
1

)
, Hk =

(
0 0
0 H

)
(3.C.1)

and
σk = 2(H + 1)√

1 + (H + 1)2 < 2. (3.C.2)

We may now seek the step sk which minimizes the regularized model built from these values
for given k, that is satisfying

gk +Hksk + 1
2σk‖sk‖sk = 0.

Setting [sk]1 = 1, the first equation of this system gives that

σk‖sk‖
2 = σk‖sk‖

2 [sk]1 = −[gk]1 = 1, (3.C.3)

which we may substitute in the second equation to obtain that

(H + 1)[sk]2 = −[gk]2 = 1.

This gives that

sk =

 1
1

H + 1

 and thus ‖sk‖ =
√

1 + 1
(H + 1)2 , (3.C.4)

which is consistent with (3.C.2) and (3.C.3), and we may construct a sequence {xk} by setting

x0 = 0 and xk+1 = xk + sk (k ≥ 0).
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Note that both {[xk]1} and {[xk]2} are strictly increasing. We also verify, using (3.2.4),
(3.C.1), (3.C.3) and the bound θ1 ≥ 1, that

µ1,k = 2‖gk‖
‖sk−1‖2

− θ1σk−1 = 2
√

2(H + 1)2

1 + (H + 1)2 − θ1σk−1

=
σ2
k−1√

2
− θ1σk−1 = σk−1

(
σk−1√

2
− θ1

)
< σk−1(

√
2− 1) < σk−1,

where we used the fact that σk < 2 and θ1 ≥ 1 to obtain the last inequality. As a consequence,
(3.3.37) gives that σk = σk−1, in accordance with (3.C.2) and the process we have just
described may be interpreted as a divergent run of the simplified OFFAR2 algorithm (note that
fk = 1 and ‖gk‖ =

√
2 for all k ≥ 0), provided (3.C.1) can be interpolated by a function from

IR2 to IR satisfying AS.1–AS.4. This is achieved by defining fk,1 = fk,2 = 1
2 for k ≥ 0 and

using unidimensional Hermite interpolation on the two datasets

{([xk]1, fk,1, [gk]1, [Hk]1,1)}k≥0, and {([xk]2, fk,2, [gk]2, [Hk]2,2)}k≥0.

Thus we once more invoke [57, Theorem A.9.2] with κf = (H + 1)2 for each dataset, which is
possible because

|fk+1,1 − Tk,1,2([sk]1)| = |[gk]1[sk]1| = 1 = |[sk]1|3,

|[gk+1]1 −∇
1
sTk,1,2([sk]1)| = |[gk+1]1 − [gk]1| = 0 < 1 = |[sk]1|2,

|[Hk+1]1,1 −∇2
sTk,1,2([sk]1)| = |0− 0| = 0 < 1 = |[sk]1|,

and

|fk+1,2 − Tk,2,2([sk]2)| =
∣∣∣∣∣− 1
H + 1 + H

2(H + 1)2

∣∣∣∣∣ ≤ 1
2(H + 1) < (H + 1)2|[sk]2|3,

|[gk+1]2 −∇1
sTk,2,2([sk]2)| = |[Hk]2,2[sk]2| =

H

H + 1 < (H + 1)2|[sk]2|2,

|[Hk+1]2,2 −∇2
sTk,2,2([sk]2)| = |[Hk+1]2,2 − [Hk]2,2| = 0 < 1

H + 1 = |[sk]2|,

where we have defined

Tk,j,2(s) = fk,j + [gk]js+ 1
2 [Hk]j,j [sk]2j , (j = 1, 2).

We therefore deduce that there exist twice continuously differentiable piecewise polynomial
functions f1(x1) and f2(x2) satisfying AS.1–AS.4 such that

f(x) = f1(x1) + f2(x2)

is also twice continuously differentiable, satisfies AS.1–AS.4 and interpolates (3.C.1). This
completes the argument.





Chapter 4

Yet Another Fast Variant of
Newton’s Method

Chapter Abstract

A class of second-order algorithms is proposed for minimizing smooth nonconvex func-
tions that alternates between regularized Newton and negative curvature steps in an
iteration-dependent subspace. In most cases, the Hessian matrix is regularized with the
square root of the current gradient and an additional term taking moderate negative cur-
vature into account, a negative curvature step being taken only exceptionally. Practical
variants have been detailed where the subspaces are chosen to be the full space, or Krylov
subspaces. In the first case, the proposed method only requires the solution of a single
linear system at nearly all iterations. We establish that at most O

(
| log ε| ε−3/2) evalua-

tions of the problem’s objective function and derivatives are needed for algorithms in the
new class to obtain an ε-approximate first-order minimizer, and at most O

(
| log ε| ε−3) to

obtain a second-order one. Encouraging initial numerical experiments with two full-space
and two Krylov-subspaces variants are finally presented.

Reference: This chapter is based upon the work submitted for publication [117].

4.1 Introduction

The objective of this chapter is to extend the new regularization technique proposed by
[156, 82] in the convex case. At an iterate xk, the step sk is computed as

s = −(∇2
xf(xk) + λkIn)−1∇1

xf(xk) (4.1)

where λk ∼
√
‖∇1

xf(xk)‖. This new approach exhibits the best complexity rate of second-
order methods for convex optimization and retains the local superlinear convergence of stan-
dard Newton method, while showing remarkable numerical promise [156]. Devising an al-
gorithm for nonconvex functions that can use similar ideas whenever possible appears as a
natural extension.

In the nonconvex case, the Hessian may be indefinite and it is well-known that negative
curvature can be exploited to ensure progress towards second-order points. Mixing gradient-
related (possibly Newton) and negative curvature directions has long been considered and
can be traced back to [153], which initiated a line of work using curvilinear search to find a
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step combining both types of directions. The length of the step is typically tuned using an
Armijo-like condition [153, 157]. Improvements were subsequently proposed by incorporating
the curvilinear step in a nonmonotone algorithm [95], allowing the resolution of large-scale
problems [149] or by choosing between the two steps based on model decrease [103]. Al-
ternatively, negative curvature has also been used to regularize the Hessian matrix, yielding
the famous Goldfeld-Quandt-Trotter (GQT) method [100]. Unfortunately, this method also
involves more complex computation to find the step and has the same global convergence rate
as first-order algorithms [197]. The negative curvature regularization was also the subject of
the more recent paper [26], in which various Newton steps are tried at each iteration in order
to ensure the optimal ARC [50, 51] global rate of convergence.

One may then wonder if it is possible to devise an adaptive second-order method using
a single explicitly regularized Newton step when possible and a negative curvature direction
only when necessary, with a near-optimal complexity rate. The objective of this paper is
to show that it is indeed possible (and efficient). To this aim, we propose a fast Newton’s
method that exploits negative curvature for nonconvex optimization problems and generalizes
the method proposed in [156, 82] to the nonconvex case. The new algorithm automatically
adjusts the regularization parameter (without knowledge of the Hessian’s Lipschitz constant).
The method either uses an appropriately regularized Newton step taking the smallest negative
eigenvalue of the Hessian also into account or simply follows the negative curvature otherwise.
It first attempts a step along a direction regularized by the square root of the gradient
only, as in the convex setting [82, 156]. In that sense, it is inspired by the “convex until
proved guilty” strategy advocated by [44]. If this attempt fails, it obtains negative curvature
information of the Hessian, which is then used either for regularization or to define a step
along a negative-curvature direction. In what follows, all these operations are carried out in
a specific, iteration-dependent subspace, whose choice leads to different algorithmic variants.
We prove that these methods require at most O

(
| log ε| ε−3/2

)
iterations and evaluations of

the problem data to obtain an ε-approximate first-order critical point, which is very close to
the optimal convergence rate of second-order methods for Lipschitz Hessian functions [52].
We also introduce an further algorithmic variant which is guaranteed to find a second-order
critical point in at most O

(
| log ε| ε−3) iterations.

The Chapter is organized as follows. Section 4.2 describes the general algorithmic frame-
work and compares it with recent work on second-order methods. Section 4.3 states our
assumptions and derives a bound on its worst-case complexity for finding first-order critical
points. Section 4.2 presents the second-order algorithmic variant and states its complexity,
the corresponding analysis being detailed in appendix. Section 4.5 then discusses some choices
of the iteration-dependent subspace, including Krylov spaces. Section 4.6 finally illustrates
the numerical behavior of the proposed methods. Conclusions are drawn in Section 4.7.

4.2 Adaptive Newton with Negative Curvature

We consider the problem of finding approximate first-order critical points of the smooth
unconstrained nonconvex optimization problem (P) and discuss our algorithm called AN2C (for
Adaptive Newton with Negative Curvature) on the next page. The algorithm, whose purpose is
to compute first-order critical points, is presented in the framework of adaptive regularization
methods [29, 51] [57, Section 3.3] and proceeds as follows, using two subroutines RegStep and
NewtonEigenStep.
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Algorithm 4.2.1: Adaptive Newton with Negative Curvature (AN2C)

Step 0: Initialization An initial point x0 ∈ IRn, a regularization parameter σ0 > 0
and a gradient accuracy threshold ε ∈ (0, 1] are given, as well as the parameters

σmin > 0, κC , κθ > 0, κa, κb ≥ 1, ς1 ∈ (0, 1), ς2 ∈ [0, 1
2), ς3 ∈ [0, 1), θ ∈ (0, 1],

0 < γ1 < 1 < γ2 ≤ γ3 and 0 < η1 ≤ η2 < 1.

Set k = 0.

Step 1: Check termination Evaluate gk
def= ∇1

xf(xk). Terminate if ‖gk‖ ≤ ε.

Step 2: Compute subspace derivatives Choose p ∈ {1, . . . , n} and form Vp ∈ IRn×p.
Compute ĝk

def= V ᵀ
p gk and Ĥk

def= V ᵀ
p HkVp where Hk

def= ∇2
xf(xk).

Step 3 (Optionnal): Attempt a regularization step

sk = sdefk = RegStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κa, κb, κθ, ς1, ς2 ). (4.2)

If sdefk has been successfully defined, go to Step 5.

Step 4 : Newton Step Computation

sk = NewtonEigenStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κC , κb, κθ, ς3, θ ). (4.3)

Step 5: Acceptance ratio computation Evaluate f(xk + sk) and compute the ac-
ceptance ratio

ρk = f(xk)− f(xk + sk)
−(gᵀksk + 1

2s
ᵀ
kHksk)

. (4.4)

If ρk ≥ η1, set xk+1 = xk + sk else xk+1 = xk.

Step 6: Regularization parameter update Set

σk+1 ∈


[max (σmin, γ1σk) , σk] if ρk ≥ η2,

[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(4.5)

Increment k by one and go to Step 1.

The selection of the iteration-dependent subspace defined as the range of Vp in Step 2 is
of course crucial for the algorithm. At this stage of the algorithm description, cycling may
possibly occur between Step 2 and (4.13) in Step 4, should the choice of the subspace be
consistently inadequate. We will however discuss some practical choices in Section 4.5, for
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Algorithm 4.2.2: RegStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κa, κb, κθ, ς1, ς2 )
Attempt to solve the linear system

(Ĥk +
√
κaσk‖gk‖Ip)ydefk = −ĝk. (4.6)

If a solution ydefk of this system can be obtained such that

(ydefk )ᵀ(Ĥk +
√
κaσk‖gk‖Ip)ydefk > 0, (4.7)

‖ydefk ‖ ≤
(1 + κθ)

ς1

√
‖gk‖
κaσk

, (4.8)

‖HkVpy
def
k + gk‖ ≤ κb‖Ĥky

def
k + ĝk‖, (4.9)

‖rdefk ‖ ≤ min
(
ς2

√
κaσk‖gk‖‖ydefk ‖, κθ‖ĝk‖

)
(4.10)

where rdefk = (Ĥk +
√
κaσk‖gk‖Ip)ydefk + ĝk, then return sdefk

def= Vpy
def
k .

which this situation cannot happen. For our subsequent analysis, we therefore assume the
following.
AS.0 For each iteration k, condition (4.13) is satisfied after finitely many choices of Vp.
Moreover, there exists a constant Vmax ≥ 1 such that

‖Vp‖ ≤ Vmax for all p ∈ {1, . . . , n}. (4.16)

After selecting the subspace1 and projecting the current gradient and Hessian, we first attempt
a step that avoids computing negative curvature information. Indeed, the sdefk notation, where
def stands for “definite”, in (4.6) makes the connection with the two conditions (4.6) and
(4.7). The condition (4.7) is significantly less restrictive than checking the positive-definess of
the regularized matrix in (4.6). This is at variance with the work of [27] where a factorization
is required at each step, and coherent with the ’capped-CG’ subroutine proposed at [215] and
[185]. Should the problem be (locally) convex, (4.7) would automatically hold (see [156, 82]).
The test (4.8) is required as to avoid steps whose magnitude is too large compared to the
gradient (the motivation for its particular form of the test will become clear in Section 4.3).

When computing a vector sdefk satisfying (4.7) to (4.10) is not possible, we (approximately)
solve a linear system in IRp (4.11) whose definition involves [−λmin(Ĥk)]+. Even if an exact
solution can be obtained at a marginal cost for small p, we still allow an approximate so-
lution satisfying (4.12). We note that [−λmin(Ĥk)]+ could have been replaced in (4.11) by
κC
√
σk‖gk‖ and the remainder of the complexity analysis would remain valid. However, di-

rectly using the gradient only as a regularizer is not possible, because theoretically a negative
curvature computation is needed to know if a Newton step can be used or not. An interesting
connection can also be established between the regularization in (4.11) for Ĥk = Hk and
the GQT method [100], as the regularization parameter (

√
σk‖gk‖ + [−λmin(Hk)]+) is very

1Since we do not specify at this point how to make this selection, AN2C may be viewed as a class of
algorithms depending on the choice of Vp.
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Algorithm 4.2.3: NewtonEigenStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κC , κb, κθ, ς3, θ )

Step 1: Test negative curvature If λmin(Ĥk) ≤ −κC
√
σk‖gk‖, go to Step 4.

Step 2: Newton Step Solve(
Ĥk + (

√
σk‖gk‖+ [−λmin(Ĥk)]+)Ip

)
yneigk = −ĝk (4.11)

to ensure the residual condition

‖rneigk ‖ def=
∥∥∥(Ĥk + (

√
σk‖gk‖+ [−λmin(Ĥk)]+)Ip

)
yneigk + ĝk

∥∥∥
≤ min

(
ς3
√
σk‖gk‖‖yneigk ‖, κθ‖ĝk‖

)
.

(4.12)

Step 3: Check global quality of the solution If

‖HkVpy
neig
k + gk‖ ≤ κb‖Ĥky

neig
k + ĝk‖ then set sk = sneigk

def= Vpy
neig
k . (4.13)

Else, go back AN2C[Step 2].

Step 4: Eigenvector direction Compute uk such that

ĝᵀkuk ≤ 0, ‖uk‖ = 1, uᵀkĤkuk ≤ θλmin(Ĥk) and uᵀkĤ
2
kuk ≤

λmin(Ĥk)2

θ2 (4.14)

and set
sk = scurvk

def= θκC
√
σk‖gk‖
σk

Vpuk. (4.15)

similar in spirit to that used in this method. We should note that a complexity analysis of
the GQT technique has only been provided when the algorithm is equipped with an Armijo
linesearch. And it naturally retrieves the suboptimal standard rate of linesearch gradient
descent, see [196] for more details. In the closely related algorithm of [26], a term µ is added
to [−λmin(Hk)]+ and multiple µ’s are tested so as to ensure ’cubic’ descent. In our case,√
σk‖gk‖ directly yields a regularization of the desired order. Also observe that, in most

cases, the “approximate minimum curvature direction” uk is already available when comput-
ing λmin(Ĥk). It can be also retrieved via a Lanczos procedure as proposed in [184, Lemma
9].

We now provide some comments that apply to the definition of both sdefk and sneigk .
Specifically, focusing on the latter, condition (4.13) or condition (4.9) serves to ensure the
appropriateness of the subspace spanned by Vp. This condition guarantees that the projected
residual (4.12) is sufficiently small compared to both the projected and unprojected gradients.
In a more standard setting, where Vp = In, this condition simplifies to

‖(Hk + (
√
σk‖gk‖+ [−λmin(Hk)]+)In)sk + gk‖ ≤ min(ς3

√
σk‖gk‖‖sk‖, κθ‖gk‖), (4.17)
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where the κθ‖gk‖ term is standard when devising truncated CG algorithms. The other term
ensures the typical condition required for the approximate minimization of the cubic model
mk, namely that

‖∇1
smk(sk)‖ ≤ O(‖sk‖2). (4.18)

This condition is typically used to derive the optimal complexity rate O
(
ε−3/2

)
, see [51, 29]

and the references therein.
Regarding the negative curvature step, even though the last condition in (4.14) is not

usually required when using negative curvature, it will be needed later on in our analysis.
Note that a properly chosen eigenvector associated to λmin(Ĥk) satisfy the requirements of
(4.14). Finally we note that the condition of Step 1 in the NewtonEigenStep algorithm, which
forces the negative curvature step (4.15), can be interpreted as the comparison of the minimal
curvature of the quadratic (λmin(V ᵀ

p HkVp)) with the quantity σk
√
‖gk‖/σk, which itself can be

viewed as the curvature of the regularization term 1
6σk‖s‖3 for some s whose length

√
‖gk‖/σk

is of the order order of the analog of the trust-region radius for standard cubic regularization
(see [50, Lemma 2.1], for instance). The test thus ensures a “regularization-like” step when
the quadratic’s negative curvature is strong enough to dominate that of the regularization for
too small steps (see (4.29) below).

Once the step has been computed, the mechanisms for accepting/rejecting the new it-
erate (Step 5) and updating the regularization parameter (Step 6) are typical of adaptive
regularization algorithms (see [29, 51] or [57, Section 3.3.1], for instance).

Before delving into the complexity analysis of AN2C, we further explore its fundamental
properties and discuss its relationships with closely related nonconvex optimization algo-
rithms. The method presented in [71] differs from AN2C in that it employs a gradient step
followed by a negative curvature step. On the other hand, [145] adopts a condition-based
approach to choose between gradient descent and negative curvature directions, relying on
known smoothness parameters, while our methods remain fully adaptive. Another related
approach is presented in [184], which, unlike AN2C, examines various conditions to select a
specific direction (gradient, Newton, negative curvature) and performs a linesearch. Fur-
thermore, [75] proposes a trust-region algorithm (in contrast to adaptive regularization) that
tackles the trust-region subproblem using a combination of conjugate gradients and negative
curvature. Notably, their condition on the residuals of this subproblem [75, Inequality (3.2)]
can be related to (4.17). A final work worth mentioning before we begin our analysis is that
of [72]. The latter extended the exact trust-region of [74] to large scale settings by allowing
inexact step computation and the use of Krylov methods. Two conditions are proposed in
the theoretical analysis on the residuals and one of them shares some similarity with (4.17).

Following well-established practice, we now define

S def= {k ≥ 0 | xk+1 = xk + sk} = {k ≥ 0 | ρk ≥ η1},

the set of indexes of “successful iterations”, and

Sk
def= S ∩ {0, . . . , k},

the set of indexes of successful iterations up to iteration k. We further partition Sk in three
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subsets depending on the nature of the step taken, so that

Sneigk
def= Sk ∩ {sk = sneigk }, Scurvk

def= Sk ∩ {sk = scurvk }, Sdefk
def= Sk ∩ {sk = sdefk }.

We also recall a well-known result bounding the total number of iterations of adaptive regu-
larization methods in terms of the number of successful ones.

Lemma 4.2.1 Suppose that the AN2C algorithm is used and that σk ≤ σmax for some
σmax > 0. Then

k ≤ |Sk|
(

1 + | log γ1|
log γ2

)
+ 1

log γ2
log

(
σmax
σ0

)
. (4.19)

Proof. The proof can be found in [57, Lemma 2.4.1]. We restate here for the sake of
completeness. The regularization parameter update (4.5), we derive that

γ1σi ≤ max(γ1σi, σmin) ≤ σi+1, i ∈ Sk, and γ2σi ≤ σi+1, i ∈ {0, . . . , k} \ Sk.

By induction, we deduce that
σ0γ

|Sk|
1 γ

k−|Sk|
2 ≤ γk,

since σk ≤ σmax, we deduce

|Sk| log γ1 + (k − |Sk|) log γ2 ≤ log
(
σmax
σ0

)
.

Rearranging the last inequality and using that γ1 < 1 yields (4.19). 2

This result implies that the overall complexity of the algorithm can be estimated once
bounds on σk and |Sk| are known, as we will show in the next section.

We now state three simple relations between the size of the stepsize sk in all three cases
(‖sneigk ‖, ‖sdefk ‖, ‖scurvk ‖), σk, ‖gk‖ and other algorithmic constants.
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Lemma 4.2.2 For all iterations k where sneigk is computed, we have that

‖sneigk ‖ ≤ Vmax‖yneigk ‖ (4.20)

ĝk = −
(
Ĥk + (

√
σk‖gk‖+ [−λmin(Ĥk)]+)Ip

)
yneigk + rneigk (4.21)

and

‖sneigk ‖ ≤ (1 + κθ)V
3
2max

√
‖gk‖
σk

. (4.22)

Similarly, when sdefk is computed,

ĝk = −
(
Ĥk +

√
κaσk‖gk‖Ip

)
ydefk + rdefk , (4.23)

and
‖sdefk ‖ ≤ Vmax‖ydefk ‖. (4.24)

At last, when scurvk is computed,

‖scurvk ‖ ≤ Vmax
θκC

√
σk‖gk‖
σk

. (4.25)

Proof. First note from the second part of (4.13) and (4.16),

‖sneigk ‖ = ‖Vpyneigk ‖ ≤ Vmax‖yneigk ‖

yielding (4.20). A similar proof can be followed to derive (4.24).
Equation (4.21) results from (4.11), (4.13) and the definition of the residual (4.12). Let
us rewrite now (4.21) in function of ĝk and Ĥk,

ĝk = −
(
Ĥk + (

√
σk‖gk‖+ [−λmin(Ĥk)]+)Ip

)
yneigk + rneigk .

From (4.21), the facts that Ĥk +(
√
σk‖gk‖+[−λmin(Ĥk)]+)Ip is a positive definite matrix

with
λmin(Ĥk + (

√
σk‖gk‖+ [−λmin(Ĥk)]+)Ip) ≥

√
σk‖gk‖

and that ‖rneigk ‖ ≤ κθ‖ĝk‖ because of (4.12). We thus obtain that

‖yneigk ‖ ≤ (1 + κθ)
√
‖ĝk‖
σk
≤ (1 + κθ)

√
Vmax‖gk‖

σk
, (4.26)

where the last inequality follows from (4.16). This last inequality and (4.20) give (4.22).

If k ∈ Sdefk , (4.23) is obtained from (4.6) and the definition of the residual rdefk .
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Else if k ∈ Scurvk , (4.16), the fact that ‖uk‖ = 1 and (4.15) give (4.25). 2

The next lemma gives a lower bound on the decrease of the local quadratic approximation.
In standard adaptive regularization algorithms, this decrease automatically results from the
minimization of the model (See [29] for instance). In our case, we need to use the properties
of sdefk , scurvk and sneigk to obtain the desired result.

Lemma 4.2.3 Let k be a successful an iteration of AN2C. If k ∈ Sdefk , we have that

−
(
gᵀksk + 1

2s
ᵀ
kHksk

)
≥ 1− 2ς2

2

√
κaσk‖gk‖‖ydefk ‖

2 ≥ 1− 2ς2
2

√
κaσk‖gk‖

‖sk‖2

V 2
max

. (4.27)

If k ∈ Sneigk , then

−
(
gᵀksk + 1

2s
ᵀ
kHksk

)
≥ (1− ς3)

√
σk‖gk‖‖yneigk ‖2 ≥ (1− ς3)

√
σk‖gk‖

‖sk‖2

V 2
max

. (4.28)

Else, if k ∈ Scurvk ,

−
(
gᵀksk + 1

2s
ᵀ
kHksk

)
≥ 1

2θ
3κ3
C

‖gk‖
3
2

√
σk
≥ 1

2σk
‖sk‖3

V 3
max

. (4.29)

Proof. Suppose first that k ∈ Sdefk . We then obtain from (4.2), (4.10) and (4.8) that

gᵀks
def
k + 1

2(sdefk )ᵀHks
def
k = (V ᵀ

p gk)ᵀy
def
k + 1

2(ydefk )ᵀV ᵀ
p HkVpy

def
k

= (rdefk )ᵀydefk − (ydefk )ᵀ(Ĥk +
√
κaσk‖gk‖Ip)ydefk

+ 1
2(ydefk )ᵀĤky

def
k

= −
√
κaσk‖gk‖‖ydefk ‖

2 + (rdefk )ᵀydefk − 1
2(ydefk )ᵀĤky

def
k

≤ −
√
κaσk‖gk‖‖ydefk ‖

2 + ς2

√
κaσk‖gk‖‖ydefk ‖

2

+ 1
2

√
κaσk‖gk‖‖ydefk ‖

2.

Hence (4.27) follows froms (4.24).
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Suppose now that k ∈ Sneigk . By using (4.21) and the fact that Ĥk + [−λmin(Ĥk)]+Ip � 0,

gᵀks
neig
k + 1

2(sneigk )ᵀHks
neig
k = (V ᵀ

p gk)ᵀy
neig
k + 1

2(yneigk )ᵀV ᵀ
p HkVpy

neig
k

= (rneigk )ᵀyneigk − (yneigk )ᵀ(Ĥk + [−λmin(Ĥk)]+Ip)yneigk

+ 1
2(yneigk )ᵀ(Ĥk + [−λmin(Ĥk)]+Ip)yneigk

− 1
2[−λmin(Ĥk)]+‖yneigk ‖2 −

√
σk‖gk‖‖yneigk ‖2

= (rneigk )ᵀyneigk − 1
2(yneigk )ᵀ(Ĥk + [−λmin(Ĥk)]+Ip)yneigk

− 1
2[−λmin(Ĥk)]+‖yneigk ‖2 −

√
σk‖gk‖‖yneigk ‖2

≤ ς3
√
σk‖gk‖‖yneigk ‖2 − 1

2[−λmin(Ĥk)]+‖yneigk ‖2 −
√
σk‖gk‖‖yneigk ‖2,

where we have used (4.12) to obtain the last inequality. Rearranging, ignoring the
1
2 [−λmin(Ĥk)]+‖yneigk ‖2 term and using (4.20) yield (4.28).
Suppose finally that k ∈ Scurvk . As (4.14) and (4.15) hold and that Step 4 of NewtonEigenStep
is taken when λmin(Ĥk) ≤ −κC

√
σk‖gk‖, we deduce that

gᵀks
curv
k + 1

2(scurvk )ᵀHks
curv
k = θκC

√
σk‖gk‖
σk

gᵀkVpuk + 1
2(scurvk )ᵀHks

σk
k

≤ 1
2
θ2κ2

C‖gk‖
σk

uᵀkĤkuk ≤
1
2
θ3κ2

C‖gk‖
σk

λmin(Ĥk)

≤ −1
2θ

3κ3
C

‖gk‖
3
2

√
σk

, (4.30)

yielding the first inequality in (4.29). For the second inequality, remark that from (4.25),
we derive that

θ3κ3
C

‖gk‖
3
2

√
σk

= σkθ
3κ3
C

‖gk‖
3
2

σ
3
2
k

≥ σk
‖sk‖3

V 3
max

,

injecting the last bound in (4.30) gives the second inequality in (4.29). 2

4.3 Complexity analysis for the AN2C algorithm

We now turn to analyzing the worst-case complexity of the AN2C algorithm. Our analysis is
conducted under AS.0 and the following assumptions.
AS.1 The function f is in the C2,1(IRn; IR) class with LH the Hessian Lipschitz constant.
AS.2 There exists a constant flow such that f(x) ≥ flow for all x ∈ IRn.
AS.3 There exists a constant κB > 0 such that

max(0,−λmin(∇2
xf(x))) ≤ κB for all x ∈ {y ∈ IRn | f(y) ≤ f(x0)}.
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AS.1-AS.2 are standard assumptions when analyzing algorithms that utilize second-order in-
formation [51, 29]. AS.3 is weaker than assuming bounded Hessians, a condition often used
when theoretically analyzing second-order methods that combines negative curvature and
gradient based directions [184, 71, 145]. The left-hand side of the inequality is sometimes
called the ”convex deviation”, ”modulus of nonconvexity” [137] or ”weak-convexity” constant
[176]. As it turns out, AS.4 is only needed for x being any iterate xk produced by the algo-
rithm and these iterates all belong to the level associated with the starting point x0 because
the acceptance condition in Step 5 ensures that the sequence {f(xk)} is non-increasing. If
this level set is bounded or if the sequence {xk} remains bounded for any other reason, we
immediately obtain that

max(0,−λmin(Hk)) ≤ κB for all k ≥ 0 (4.31)

for some κB ≥ 0, and both AS.2 and AS.3 automatically hold for an open bounded convex
set containing all line segments [xk, xk + sk]. Having established a lower bound on the de-
crease ratio in Lemma 4.2.3, we next proceed to derive an upper bound on the regularization
parameter. This is a crucial step when analyzing adaptive regularization methods.

Lemma 4.3.1 Suppose that AS.1 holds. Then, for all k ≥ 0,

σk ≤ σmax
def= γ3 max

(
σ0, ςmax

LH
6(1− η2)

)
, (4.32)

where

ςmax
def= max

(1 + κθ)V
7
2max

(1− ς3) ,
2(1 + κθ)V 3

max
κaς1(1− 2ς2) , 2V 3

max

 . (4.33)

Proof. Let us compute the ratio ρk for k ∈ Sneigk . By using AS.1 and the stan-
dard error bound for Lispschitz approximation of the function (see inequality (1.3.15) of
Lemma 1.3.1), that ς3 < 1, (4.28) and (4.22), we obtain that

1− ρk =
f(xk + sk)− f(xk)− gᵀksk −

1
2s

ᵀ
kHksk

−(gᵀksk + 1
2s

ᵀ
kHksk)

≤
LHV

2
max‖s

neig
k ‖3

6(1− ς3)
√
σk‖gk‖‖sneigk ‖2

≤
LHV

2
max‖s

neig
k ‖

6(1− ς3)
√
σk‖gk‖

≤ LH(1 + κθ)V
7
2max

6(1− ς3)σk
. (4.34)

Hence, if σk ≥ LH(1+κθ)V
7
2

max
6(1−ς3)(1−η2) , then ρk ≥ η2, which implies that iteration k is successful and
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σk+1 ≤ σk because of (4.5). The mechanism of (4.5) in the algorithm then ensures that

σk ≤ γ3 max

σ0,
LH(1 + κθ)V

7
2max

6(1− ς3)(1− η2)

 . (4.35)

Similarly, if k ∈ Sdefk , we use AS.1, the Lipschitz approximation error bound, the fact that
ς2 <

1
2 , (4.27), (4.8) and (4.24) to deduce that

1− ρk ≤
LH‖sdefk ‖V 2

max
3(1− 2ς2)

√
κaσk‖gk‖

≤ LH(1 + κθ)V 3
max

3κaς1(1− 2ς2)σk
.

Using the same argument as above, we now obtain that

σk ≤ γ3 max
(
σ0,

LH(1 + κθ)V 3
max

3κaς1(1− 2ς2)(1− η2)

)
. (4.36)

Consider finally the case where k ∈ Scurvk . Again using AS.1, the Lipschitz approximation
error bound and (4.29) lower-bound, we derive that

1− ρk =
f(xk + sk)− f(xk)− gᵀksk −

1
2s

ᵀ
kHksk

−gᵀksk −
1
2s

ᵀ
kHksk

≤ LH‖scurvk ‖3V 3
max

61
2σk‖s

curv
k ‖3

= LHV
3

max
3σk

,

so that
σk ≤ γ3 max

(
σ0,

LHV
3

max
3(1− η2)

)
. (4.37)

Combining (4.35), (4.36) and (4.37) gives (4.32) with ςmax defined by (4.33). 2

We now prove a lower bound on the decrease at a successful iteration k using negative curva-
ture. We will also bound the change in the norm ‖gk+1‖ in term of ‖gk‖, which will be useful
later to bound the cardinality of a subset of Sneigk ∪ Scurvk .

Lemma 4.3.2 Suppose that AS.1 and AS.3 hold and that k ∈ Scurvk before termination.
Then

f(xk)− f(xk+1) ≥ η1θ
3κ3
C

2√σmax
ε

3
2 , (4.38)

and
‖gk+1‖ ≤

(
LHV

2
max

2σk
κ2
Cθ

2 + κBκC√
εσk

+ 1
)
‖gk‖. (4.39)

Proof. Let k ∈ Scurvk . From (4.4) and (4.29), we obtain that

f(xk)− f(xk+1) ≥ η1

(
−gᵀksk −

1
2s

ᵀ
kHksk

)
≥ η1θ

3κ3
C

2√σk
‖gk‖

3
2 .
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Since ‖gk‖ ≥ ε before termination and that σk ≤ σmax by Lemma 4.3.1, we obtain (4.38).
Let us now prove (4.39). By using the Lipschitz error bound for the gradient (see (1.3.16)
from Lemma 1.3.1), the triangular inequality, the fact that k ∈ Scurvk , (4.14), (4.15), and
(4.25), we obtain that

‖gk+1‖ ≤ ‖gk+1 − gk −Hksk‖+ ‖Hksk + gk‖

≤ LH
2 ‖sk‖

2 + ‖gk‖+ ‖Hksk‖

= LH
2 ‖s

curv
k ‖2 + ‖gk‖+ ‖Hks

curv
k ‖

≤ LHV
2

max
2σk

κ2
Cθ

2‖gk‖+ ‖gk‖+ ‖Hks
curv
k ‖. (4.40)

Now, using (4.14), (4.15) again,

‖Hks
curv
k ‖ = θκC

√
‖gk‖
σk
‖HkVpuk‖ = θκC

√
‖gk‖
σk

√
uᵀkĤ

2
kuk

≤ κC

√
‖gk‖
σk
|λmin(Ĥk)| ≤ κC

√
‖gk‖
σk
|λmin(Hk)|.

Hence (4.40) together with AS.4 and the fact ‖gk‖ ≥ ε before termination, give that

‖gk+1‖ ≤
LHV

2
max

2σk
κ2
Cθ

2‖gk‖+ ‖gk‖+ κBκC

√
‖gk‖
σk

=
(
LHV

2
max

2σk
κ2
Cθ

2 + κBκC√
σk‖gk‖

+ 1
)
‖gk‖

≤
(
LHV

2
max

2σk
κ2
Cθ

2 + κBκC√
σkε

+ 1
)
‖gk‖,

yielding (4.39). 2

This lemma is the only result requiring AS.3 or its weaker formulation (4.31). Note that this
assumption is only required along directions of negative curvature, which we expect to occur
rarely in practice for suitably large choices of κC .

After proving a lower bound on the quadratic’s decrease when k ∈ Sdefk , we now exhibit
a relationship between both the decrease in objective function and that in gradient norm at
iteration k and k+ 1 for k ∈ Sneigk ∪Sdefk . This is also where the two global conditions (4.13)
and (4.9) on the subspace Vp will be useful. Moreover, we also prove an inequality between
the norms of the gradient at two successive iterations, similar to (4.39).
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Lemma 4.3.3 Suppose that AS.1 holds and that k ∈ Sneigk ∪ Sdefk before termination.
Then

‖gk+1‖ ≤
(
LHV

3
max(1 + κθ)
2ς2

1σk
+ 2κb

√
Vmax
ς1

+ κbκC
√
Vmax

)
(1 + κθ)‖gk‖ (4.41)

and

f(xk)− f(xk+1) ≥ η1 ςmin

√
σk‖gk‖(

−(2 + κC)κb
√
κaσk‖gk‖+

√
(κb(2 + κC))2κaσk‖gk‖+ 2V 2

maxLH‖gk+1‖
LHV 2

max

)2

(4.42)

where
ςmin

def= min
(1− 2ς2

2 , 1− ς3
)
. (4.43)

Proof. Consider first the case where k ∈ Sneigk . By using the Lipschitz error bound for
the gradient ((1.3.16) from Lemma (1.3.1)), that (4.13) holds, rneigk expression (4.21), the
condition on ‖rneigk ‖ (4.12) and the fact that [−λmin(Ĥk)]+ ≤ κC

√
σk‖gk‖ for k ∈ Sneigk ,

we deduce that

‖gk+1‖ ≤ ‖gk+1 −Hks
neig
k − gk‖+ ‖Hks

neig
k + gk‖

≤ LH
2 ‖s

neig
k ‖2 + κb‖Ĥky

neig
k + ĝk‖

≤ LH
2 ‖s

neig
k ‖2 + κb(

√
σk‖gk‖+ [−λmin(Ĥk)]+)‖yneigk ‖+ κb‖rneigk ‖

≤ LH
2 ‖s
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k ‖2 + κb(1 + κC)

√
σk‖gk‖‖yneigk ‖+ κbς3

√
σk‖gk‖‖yneigk ‖. (4.44)

Using now (4.26) and (4.22) in the last inequality

‖gk+1‖ ≤
(
LHV

3
max

2σk
(1 + κθ) + κb(1 + κC)

√
Vmax + ς3κb

√
Vmax

)
(1 + κθ)‖gk‖. (4.45)

Consider now k ∈ Sdefk . By arguments similar to those used for (4.44), this time with
(4.23), (4.9) and (4.10), we obtain that

‖gk+1‖ ≤ ‖gk+1 −Hks
def
k − gk‖+ ‖Hks

def
k + gk‖

≤ ‖gk+1 −Hks
def
k − gk‖+ κb‖Ĥky
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√
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2 + κb

√
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√
κaσk‖gk‖‖ydefk ‖. (4.46)
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Bounding ‖sdefk ‖ with (4.24) and utilizing (4.8) yields that

‖gk+1‖ ≤
(
LH(1 + κθ)V 2

max
2ς2

1κaσk
+ κb(1 + ς2)

ς1

)
(1 + κθ) ‖gk‖, (4.47)

so that taking the larger bound for both (4.45) and (4.47) and using the bounds ς1 < 1,
ς2 <

1
2 , ς3 < 1, Vmax ≥ 1 and κb ≥ 1 gives (4.41).

Finally, from (4.46), (4.44), (4.20), (4.24), the bounds max(ς3, ς2) < 1 and κa ≥ 1, we
obtain that, for k ∈ Sdefk ∪ Sneigk ,

LHV
2

max
2 ‖yk‖2 + κb(2 + κC)

√
κaσk‖gk‖‖yk‖ − ‖gk+1‖ ≥ 0.

Hence ‖yk‖ is larger than the positive root of this quadratic and therefore

‖yk‖ ≥
−κb(2 + κC)

√
κaσk‖gk‖+

√
κ2
b(2 + κC)2κaσk‖gk‖+ 2LHV 2

max‖gk+1‖
LHV 2

max
> 0.

We then deduce (4.42) from this inequality, (4.4), the lower bounds on the quadratic
decrease for k ∈ Sneigk or k ∈ Sdefk ((4.28) and (4.27) respectively) and the definition of
ςmin in (4.43). 2

The bound (4.42) is not sufficient for deriving the required O
(
ε−3/2

)
optimal complexity rate

because the decrease depends on both ‖gk+1‖ and ‖gk‖. Indeed, when ‖gk+1‖ � ‖gk‖, the
right-hand side of (4.42) tends to zero. To circumvent this difficulty, the next lemma borrows
some elements of [156, Theorem 1] and partitions Sneigk ∪ Sdefk in two further subsets. The
minimum decrease on the objective function is of the required magnitude in the first one while
no meaningful information can be derived on the decrease on the function value in the second,
albeit the magnitude of the gradient at the next iteration is halved. The bounds (4.41) and
(4.39) are then used to bound the cardinality of the latter set.
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Lemma 4.3.4 Suppose that AS.1 and AS.3 hold and that Sneigk ∪Sdefk is partitioned as

Sneigk ∪ Sdefk = Sdecrk ∪ Sdivgradk (4.48)

where
Sdecrk

def= {k ∈ Sneigk ∪ Sdefk , σk‖gk‖ ≤ κm2LH‖gk+1‖}, (4.49)

Sdivgradk

def= {k ∈ Sneigk ∪ Sdefk , σk‖gk‖ > κm2LH‖gk+1‖} (4.50)

with
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LH
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)
. (4.51)

Then, for all k ∈ Sdecrk ,
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Moreover,

|Sdivgradk | ≤ κn|Sdecrk |+
( 1

2 log(2) | log(ε)|+ κcurv
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(4.53)
where
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+ 1
)
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Proof. Let k ∈ Sdecrk . Injecting the definition of Sdecrk (4.49) in (4.42), we obtain that

f(xk)− f(xk+1) ≥ η1ςmin(σk‖gk‖)
3
2


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2

.

Taking the conjugate both at the denominator and numerator yields (4.52).

Let k ∈ Sdivgradk . Using the definition of κm in (4.51) and that of Sdivgradk in (4.50) gives
that

‖gk+1‖ <
σk

κmLH

‖gk‖
2 ≤ σk

γ3 max
(
σ0
LH
, ςmax

6(1−η2)

)
LH
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2 ≤ ‖gk‖2 , (4.56)

where the last inequality results from the upper bound on σk in (4.32).
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Successively using the fact that Sk = Sdecrk ∪ Sdivgradk ∪ Scurvk , the relationship between
‖gk+1‖ and ‖gk‖ in the three cases ((4.56), (4.41) and (4.39)), the fact that σk ≥ σmin in
(4.41) and (4.39), we then deduce that
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.

Now ς1 ≤ 1 and thus both terms in brackets are larger than one. Moreover, obviously,
|Sdecrk \ {k}| ≤ |Sdecrk | and |Scurvk \ {k}| ≤ |Scurvk |, so that

2|S
divgrad
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Taking logarithms gives that

|Sdivgradk \ {k}| log(2) ≤ log
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We then obtain (4.53) with the values of κn and κcurv stated in (4.54) and (4.55) by
dividing this last inequality by log(2) and using the facts that |Sdivgradk \{k}| ≥ |Sdivgradk |−1
and 1√

ε
≥ 1. 2

Combining the previous lemmas, we are now able to state the complexity of the AN2C al-
gorithm. Our theorem statement relies on the observation that the objective function is
evaluated once per iteration, and its derivatives once per successful iteration.
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Theorem 4.3.5 Suppose that AS.1–AS.3 hold. Then the AN2C algorithm requires at
most

|Sk| ≤
(
κ? + κnegdecr

2 log(2) | log(ε)|
)
ε−

3
2 + | log(ε)|+ log(‖g0‖)

log(2) + 1
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)
evaluations of f to produce a vector xε such that ‖g(xε)‖ ≤ ε, where κ? is defined by

κ?
def= κdecr (1 + κn) + κnegdecr(1 + κcurv), (4.57)
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(4.58)

and
κnegdecr

def=
2(f(x0)− flow)√σmax

η1κ3
Cθ

3 , (4.59)

and where κn and κcurv are given by (4.54) and (4.55).

Proof. First note that we only need to prove an upper bound on |Sdecrk | and |Scurvk | to
derive a bound on |Sk| since

|Sk| = |Sdecrk |+ |Scurvk |+ |Sdivgradk | (4.60)

and a bound on |Sdivgradk | is given by (4.53). We start by proving an upper bound on
|Scurvk |. Using AS.2, the lower bound on the decrease of the function values (4.38) and
that σk ≤ σmax as stated in Lemma 4.3.1, we derive that, for k ∈ Scurvk ,

f(x0)− flow ≥
∑
i∈Sk

f(xi)− f(xi+1) ≥
∑
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f(xi)− f(xi+1) ≥ |Scurvk | η1κ
3
Cθ

3
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3
2

and hence that

|Scurvk | ≤
2(f(x0)− flow)√σmax

η1κ3
Cθ

3 ε−
3
2 = κnegdecr ε

− 3
2 . (4.61)

Similarly for k ∈ Sdecrk , using AS.2, (4.52), the fact that σk ≥ σmin and ‖gk‖ ≥ ε before
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termination yields that

f(x0)−flow ≥
∑

i∈Sdecr
k

f(xi)−f(xi+1) ≥ |Sdecrk |η1 ςmin(σminε)
3
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)
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where κm is defined in (4.51). Rearranging the last inequality yields that

|Sdecrk | ≤
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)
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2
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3
2 = κdecr ε
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(4.62)
Combining now (4.61) and (4.62) with the upper-bound (4.53) on |Sdivgradk |, we deduce
that

|Sdivgradk | ≤ κnκdecrε
− 3

2 +
( | log(ε)|

2 log(2) + κcurv

)
κnegdecrε

− 3
2 + | log(ε)|+ log(‖g0‖)

log(2) +1. (4.63)

By summing equations (4.61), (4.62), and (4.63) to bound |Sk| in (4.61), while also isolating
the terms based on their different orders with respect to ε, we obtain that

|Sk| ≤
(
κ? + κnegdecr

2 log(2) | log(ε)|
)
ε−

3
2 + | log(ε)|+ log(‖g0‖)

log(2) + 1, (4.64)

where κ? is defined in (4.57), thus proving the first part of the theorem. The second part
is then deduced from (4.64) combined with Lemma 4.2.1. 2

Regrouping all the problem’s dependent constant of the last theorem and keeping the worst
dependency w.r.t ε, we derive a O

(
| log(ε)|ε−3/2

)
complexity order in ε that only differs

by the factor | log(ε)| from the optimal order for nonconvex second-order methods [52], a
factor which is typically small for practical values of ε. The AN2C algorithm thus enjoys
a better complexity order than that of past hybrid algorithms [71, 145, 100] for which the
order is O

(
ε−2). However, it is marginally worse than that of the more complex second-

order linesearch of [184] which attains the optimal order. Moreover, we see in the proof of
Theorem 4.3.5 that the | log ε| term appears because of (4.53) and (4.61) and we may hope
that the number of scurvk iterations is typically much less than its worst-case O

(
ε−3/2

)
in

practice. The trust-region algorithm of [75] has the same total complexity as AN2C although
their method requires only O

(
ε−3/2

)
gradient and Hessian calls whereas our algorithm suffers

from an additional | log(ε)| term.

4.4 Finding second-order critical points

Can the AN2C algorithm be strengthened to ensure it will compute second-order critical points?
We show in this section under the same assumptions as that used for its first-order analysis
that approximate second order points can be reached.

The resulting modified algorithm, which we call SOAN2C (for Second-Order AN2C) makes
extensive use of AN2C, and is detailed on the following page.
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Algorithm 4.4.1: Second-Order Adaptive Newton with Negative Curvature
(SOAN2C)

Step 0: Initialization Identical to AN2C[Step 0] with ε ∈ (0, 1] now replaced by ε1 ∈
(0, 1] and ε2 ∈ (0, 1].

Step 1: Compute current derivatives Evaluate gk and Hk. Terminate if

‖gk‖ ≤ ε1 and λmin(Hk) ≥ −ε2. (4.65)

Step 2: Compute subspace derivatives Form ĝk and Ĥk as in AN2C[ Step 2].

Step 3: Step calculation If ‖gk‖ > ε1,

sk = sfok = RegStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κa, κb, κθ, ς1, ς2 ), (Optional). (4.66)

If sfok has been successfully defined, go to Step 4. Else, compute

sk = sfok = NewtonEigenStep( ĝk, Ĥk, Vp, ‖gk‖, σk, κC , κb, κθ, ς3, θ ). (4.67)

Else ( ‖gk‖ ≤ ε1 ), compute uk such that

gᵀkuk ≤ 0, ‖uk‖ = 1 and Hkuk = λmin(Hk)uk, (4.68)

and set
sk = ssok

def= −λmin(Hk)
σk

uk. (4.69)

Step 4: Acceptance ratio computation Identical to AN2C[Step 5].

Step 5: Regularization parameter update Identical to AN2C[Step 6].

Prior to reaching an approximate first-order point, we utilize only the RegStep and New-
tonEigenStep subroutines to generate tentative steps, hence the ’fo’ (first-order) superscripts
in (4.66) and (4.67). Similar to Section 4.2, AS.0 is necessary to obtain a valid step when
NewtonEigenStep is invoked. Once an approximate first-order point is reached, further progress
towards second-order stationarity is obtained by exploiting the negative-curvature direction
(4.68)-(4.69), thereby justifying the ’so’ (second-order) superscript. Note that we make use of
the full Hessian matrix as exact negative curvature is required in order to check if approximate
second-order has been reached.

An upper bound on the evaluation complexity of the SOAN2C algorithm is given by the
following theorem.
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Theorem 4.4.1 Suppose that AS.1–AS.3 hold. Then the SOAN2C algorithm requires at
most

|Sk| ≤ κ?ε
− 3

2
1 + κsoε

−3
2 + | log(ε1)|

2 log(2) κnegdecrε
− 3

2
1 +
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log(2) + 1

)
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successful iterations and evaluations of the gradient and the Hessian and at most
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+
( | log(ε1)|+ log(κgpi)

log(2) + 1
)

(κsoε
−3
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]
+ 1

log γ3
log

(
σmax
σ0

)

evaluations of f to produce a vector xε such that ‖g(xε)‖ ≤ ε1 and λmin(Hxε) ≥ −ε2,
where

κso
def= 2σ2

max(f(x0)− flow)
η1

(4.70)

κgpi is defined in (4.A.5) and κ?, κnegdecr and σmax (defined by (4.57), (4.59) and (4.32),
respectively) depend solely on the problem .

As for Theorem 4.3.5, the bound, in which the ε−3
2 term is likely to dominate, differs from

standard one for second-order algorithms seeking second-order points (in O(max(ε−3/2
1 , ε−3

2 ))
[57, Theorems 3.3.9 and 3.4.6] by a (modest) factor | log(ε1)|.

To prove Theorem 4.4.1, we need to take two main issues into account. The first is that,
because the step may be computed using (4.66), (4.67) but also (4.69), we need to complete
the partition of |Sk| by introducing subsets relevant to this new type of steps. The second
is clearly that negative curvature information must be exploited in order to guarantee a
sufficient decrease of the objective function when it is discovered close to a first-order critical
point. This leads to a development which broadly follows the lines of Section 4.3, extending
the proofs when necessary to handle the more complicated situation. The details of this
development are given in appendix.

4.5 Choosing the subspace

In practice, the algorithm crucially depends on how one chooses the matrix Vp spanning the
iteration-dependent subspace, and we discuss two options. Each of the choices presented
below can be included in both AN2C and SOAN2C, defined in Section 4.2 and Section 4.4,
respectively. For conciseness, we only consider AN2C.

4.5.1 A full-space variant

A simple choice of Vp is to consider Vp
def= In, that is the subspace is in fact the whole space.

We note that, in this case, conditions (4.9) or (4.13) automatically hold. We define two
variants in this context. The first is called AN2CER (for AN2C Exact using RegStep) exploits
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the RegStep algorithm in order to limit the need of possibly costly second-order information.
The second, potentially more costly, is called AN2CE and does not use the optional RegStep
algorithm, therefore making no attempt to avoid eigenvalue computations.

These variants may be useful for problems in which systems (4.6) and (4.11) may effectively
be solved (for instance using Cholesky factorizations). As we will see below, they require on
average a single such solution/factorization per iteration. AN2CER and AN2CE may thus be
attractive in the large class of applications for which off-the-shelf linear solvers are available.
The computation of λmin(Hk) also needs to be feasible but, due to Algorithm RegStep, this
occurs only rarely in AN2CER.

4.5.2 A Krylov variant

When the dimension of the problem grows and factorizations become impractical, one can
turn to exploiting Krylov subspaces, as we now show. The resulting algorithmic variant will
be called AN2CK, where K stands here for Krylov, and is obtained by replacing Steps 3 and 4
of the AN2C algorithm by Algorithm AN2CKStep on the next page. In this variant, the subspace
generation and step computation are combined in order to best exploit the structure of the
resulting subproblem. As is common in Krylov-based methods, we assume the availability of
a ’preconditioner’, that is a positive-definite matrix Mk approximating the Hessian Hk in the
sense that M−1

k Hk is close to the identity. For clarity, we ignore the iteration subscript k in
what follows.

Each iteration of the AN2CKStep algorithm has a moderate cost (a few vector assignments,
one matrix-vector product and –possibly– the computation of the smallest eigenvalue of a
tridiagonal matrix, see [67] and the references therein for details). We observe that (4.71)-
(4.72) amounts to using the standard preconditioned Lanczos process for building an or-
thonormal (in the 〈·,M ·〉 inner product) basis Vp of successive Krylov subspaces generated
by the preconditioned gradient and Hessian. We therefore build on existing theory for this
process (see [68, Section 5.2], for instance). We note that the use of the full Lanczos basis
Vp is only requested at the end of the process (in (4.77) and (4.79)). As a consequence two
options are available for its detailed implementation: one can store the Lanczos basis vectors
as the iterations proceed and use them at the end of the step computation, or one can forget
them but re-run the necessary Lanczos process to re-generate them (as has been done in the
GALAHAD library [104] for the GLTR and GLRT algorithms for trust-region and regularization
subproblems, respectively). Obviously, Vp and Tp may be updated incrementally in (4.73) and
(4.74). When updating Tp, it is also easy to check if it remains positive definite by recurring
the pivots of its Cholesky factorization, which are given by

π1 = δ1 and πp = δp − β2
p/πp−1 (p > 1).

As long as πp stays positive, it is thus unnecessary to compute λmin(Tp) since [−λmin(Tp)]+
is then identically zero in (4.75). Finally, should a preconditioner M be unavailable, setting
M = In is possible, in which case wp and zp can be dispensed of because they are identical
to rp and vp, respectively.

We now verify that, as stated, Algorithm AN2CK is a correct instantiation of Algorithm AN2C
(without the optional Step 3).
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Algorithm 4.5.1: AN2CKStep( g,H, σ,M, κC , κb, θ )

Step 0: Initialization Set p = 1, r1 = g, w1 = M−1r1, β1 =
√
wᵀ

1r1 and z0 = 0.

Step 1: Form the orthonormal basis Compute

zp = rp
βp
, vp = wp

βp
, δp = vᵀpHvp, (4.71)

rp+1 = Hvp − δpzp − βpzp−1, wp+1 = M−1rp+1, βp+1 =
√
wᵀ
p+1rp+1, (4.72)

and define
Vp = (v1, v2, . . . , vp) ∈ IRn×p. (4.73)

Step 2: Newton step computation Form the subspace Hessian

Tp
def= V ᵀ

p HVp =


δ1 β2
β2 δ2 β3

. . . . . . . . .
δp−1 βp
βp δp

 (4.74)

and compute its minimum eigenvalue.
If λmin(Tp) ≤ −κC

√
σ‖g‖, go to Step 4.

Otherwise, solve (
Tp + (

√
σ‖g‖+ [−λmin(Tp)]+)Ip

)
yp = −β1e1. (4.75)

Step 3: Check global quality of the solution If√
β2
p+1(eᵀpyp)2 + ‖Tpyp + β1e1‖2 ≤ κb‖Tpyp + β1e1‖, (4.76)

then return
s = sneig = Vpyp. (4.77)

Else increment p by one and go back to Step 1.

Step 4: Eigenvector direction Compute u such that

eᵀ1u ≤ 0, ‖u‖ = 1, uᵀTpu ≤ θ λmin(Tp) and uᵀTpu ≤
λmin(Tp)2

θ2 (4.78)

Return

s = scurv = θκC

√
‖g‖
σ

Vpu. (4.79)
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Theorem 4.5.1 Suppose that

µ1 ≤ λmin(M) and λmax(M) ≤ µ2 (4.80)

for some µ2 ≥ µ1 > 0. Then the definitions and conditions (4.78), (4.76) and (4.75) of
Algorithm AN2CKStep are equivalent to (4.14), (4.13) (with κb redefined as max(1, κb

√
µ2))

and (4.11) of Algorithm 4.2.3, respectively. Moreover, AS.0 holds and (4.74) is valid.

Proof. If Zp is the matrix whose columns are z1, . . . , zp, we deduce from (4.71) and
(4.72) that

HVp = ZpTp + βp+1zp+1e
ᵀ
p = MVpTp + βp+1Mvp+1e

ᵀ
p. (4.81)

Using that V ᵀ
pMvp+1 = 0 yields (4.74). Note also that as v1 = w1

β1
= M−1z1 from (4.71)

and V ᵀ
pMVp = Ip,

V ᵀ
p g = β1V

ᵀ
p z1 = β1V

ᵀ
pMv1 = β1e1. (4.82)

The last identity with the fact that Tp = V ᵀ
p HVp ensures that (4.78) and (4.75) are

reformulations of (4.14) and (4.11). We now prove that (4.76) implies (4.13). Using
(4.75), (4.82), (4.81), we obtain that

Hs+ g = HVpyp + β1Mv1 = HVpyp + β1MVpe1

= HVpyp −MVpTpyp − (
√
σ‖g‖+ [−λmin(Tp)]+)MVpyp

= βp+1(eᵀpyp)Mvp+1 − (
√
σ‖g‖+ [−λmin(Tp)]+)MVpyp.

Since V ᵀ
pMVp = Ip and V ᵀ

pMvp+1 = 0, we deduce, using (4.75) and (4.76), that

‖Hs+ g‖2 ≤ λmax(M) (Hs+ g)ᵀM−1(Hs+ g)

= λmax(M)
[
β2
p+1(eᵀpyp)2 + (

√
σ‖g‖+ [−λmin(Tp)]+)2‖yp‖2

]
= λmax(M)

[
β2
p+1(eᵀpyp)2 + ‖Tpyp + β1e1‖2

]
≤ κ2

b λmax(M)‖Tpyp + β1e1‖2,

and (4.13) follows with the redefined κb. We finally verify that AS.0 holds. Because

1 = ‖M
1
2Vp‖ ≥ λmin(M

1
2 )‖Vp‖ =

√
λmin(M)‖Vp‖

(4.16) holds with Vmax = 1/
√
λmin(M) ≤ µ−1/2

1 , where we again used (4.80) to derive the
last inequality. Moreover, given that κb ≥ 1, termination necessarily occurs when p = n,
V ᵀ
nMVn = In, Vn spans the whole space and βp+1 = 0 in (4.76). 2

The optional Step 3 of Algorithm 4.2.1 is in fact implicitly contained in Algorithm 4.5.1
since convexity along the current step (condition (4.7)) is verified at each step of the Lanczos
process by checking the positive-definiteness of Tp.

Returning now to the complete sequence of minimization iterates, we see that, when-
ever the AN2CK algorithm is used with iteration-dependent preconditioners Mk 6= In, Theo-
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rems 4.3.5 and 4.4.1 remain valid provided (4.80) holds uniformly for all iterations.

4.6 Numerical illustration

We now illustrate the behaviour of our proposed algorithms on three sets of test problems
from the freely available OPM collection2 [110]. The first set contains 119 small-dimensional
problems, the second contains 74 medium-size ones, while the third contains 59 “largish”
ones. The list of problems and their dimensions are listed in Tables 1, 2 and 3 in the Thesis
appendix.

4.6.1 Using the full-space variants

We use Matlab implementations of AN2CE and AN2CER where the involved linear systems are
solved by using the Matlab sparse Cholesky factorization, and where we have set

κC = 103, κa = 50 (AN2CE) or 100 (AN2CER) , κθ = 1, ς1 = 1
2 , ς2 = ς3 = 10−10, θ = 1

σ0 = 1, σmin = 10−8, γ1 = 1
2 , γ2 = γ3 = 10, η1 = 10−4 and η2 = 0.95.

The values of κC and κa were obtained from a hyper-parameter search3 on the set of small
problems. The values of ς2 and ς3 are given here for consistency, but are irrelevant since
factorizations are used to solve the linear systems. Other parameters values are typical of
regularization algorithms.

We compare AN2CE and AN2CER with implementations of the standard adaptive regu-
larization AR2 and trust-region TR2M, two well-regarded methods. All these algorithms use
quadratic approximations of the objective function (i.e. gradients and Hessians). The first
three also use the same acceptance thresholds η1 and η2 and values of γ1, γ2 and γ3. The
TR2M methods shrinks the trust-region radius by a factor

√
10 and expands it by a factor 2

(see [57, Section 11.2] for a discussion of the coherence of these factors between trust-region
and adaptive regularization methods). The authors are aware that further method-dependent
tuning would possibly result in improved performance, but the values chosen here appear to
work reasonably well for each method. The step computation is performed in AR2 follow-
ing [57, page 67] or [29] using an (unpreconditioned) Lanczos approach while a standard
Moré-Sorensen method4 is used in TR2M (see [57, Chapter 9] for details). For AR2, the step
computation is terminated as soon as

‖gk +Hksk‖ ≤ 1
2θsubσk‖sk‖

2 (4.83)

which slightly differs from the test ‖∇1
xmk(sk)‖ ≤ 1

2θsubσk‖sk‖2 used in [57, page 65] and
[29] while maintaining the desired O(ε−3/2) evaluation complexity bound (see [111] for a
justification of (4.83) –including the fact that it more often allows the pure Newton step to
be accepted– or [57, page 67]). The Moré-Sorensen iterations in TR2M are terminated as soon
as ‖sk‖ ∈ [(1− θsub)∆k, (1 + θsub)∆k], where, in both cases, θsub = 10−3 for n ≤ 100 and 10−2

for n > 100. All experiments were run on a Dell Precison computer with Matlab 2022b.
2This collection is a subset of the CUTEest [106] collection where the test problems are described in Matlab.
3Covering the choice {1030, 108, 105, 103, 102, 10} for κC and {100, 50, 10} for κa.
4Given that our version of AN2C uses matrix factorizations, it seems more natural to compare it with a

Moré-Sorensen-based trust-region than to one using truncated conjugate gradients.
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We discuss our experiments from the efficiency and reliability points of view. Efficiency is
measured, in accordance with the complexity theory, in number of iterations (or, equivalently,
function and possibly derivatives’ evaluations): the fewer the more efficient the algorithm. In
addition to presenting the now standard performance profiles [86] for our four algorithms in
Figure 1, we follow [179, 115] and consider the derived “global” measure πalgo to be 1

10 of the
area below the curve corresponding to algo in the performance profile, for abscissas in the
interval [1, 10]. The larger this area and the closer πalgo to one, the closer the curve to the
left and top borders of the plot and the better the global performance.

When reporting reliability, we say that the run of an algorithmic variant on a specific
test problem is successful if the gradient norm tolerance ε = 10−6 has been achieved in the
allotted cpu-time (1h) and before the maximum number of iterations (5000) is reached. The
ρalgo statistic denotes the percentage of successful runs taken on all problems in each of the
three classes.
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Figure 1: Full-space variants: iteration performance profiles for OPM problems (left: small,
center: medium, right: largish). We report on the vertical axis the proportion of problems for
which the number of iterations of each algorithm is at most a fraction (given by the horizontal
axis) of the smallest across all algorithms (see [86]).

small pbs. medium pbs. largish pbs.
algo πalgo ρalgo πalgo ρalgo πalgo ρalgo
AN2CER 0.88 96.64 0.85 93.24 0.85 94.92
AN2CE 0.91 96.64 0.91 95.95 0.81 86.44
AR2 0.92 97.48 0.85 93.24 0.84 93.22
TR2M 0.91 94.96 0.86 93.24 0.83 91.53

Table 1: Efficiency and reliability statistics for the OPM problems (full-space variants).

Figure 1 and AN2CER is comparable to that of AR2 and TR2M for all problem sizes. They
also indicate that AN2CER is somewhat slower iteration-wise than AR2 and TR2M , but AN2CE
is very comparable. The fact that the computationally more expensive AN2CE is often faster
than AN2CER in terms of iteration numbers is not surprising. Indeed, the regularization term
in (4.11) becomes

√
σk‖gk‖ in convex regions, recovering the analysis of [156, 82], whereas

AN2CE regularizes the problem more strongly in (4.6) (by a factor 10 in our numerical settings)
and therefore may further restricts the steplength. AN2CE may however be computationally
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more intensive5 than AN2CER. Which of the two algorithms is preferable in practice is likely
to depend on the CPU cost of calculating the Hessian’s smallest eigenvalue.

As expected, the call to NewtonEigenStep in AN2CER is typically performed on very few
iterations (for less 6.4% of them for the small-problems testset) and, when used, results
in a negative-curvature step (4.15) even more exceptionally (less than 1%). This means
in particular that a single linear-system solve was necessary for approximately 93% of all
iterations. The AN2CE variant of course called NewtonEigenStep at every iteration, but (4.15)
was never actually used.

We also ran the SOAN2CE and SOAN2CER variants with ε1 = 10−6 and ε2 = 10−4, but
their results are undistinguishable (for our test sets) from those obtained with AN2CE and
AN2CER, except for a final eigenvalue analysis at the found approximate first-order point,
which confirmed in all cases that the second-order condition (4.65) did also hold at this point.
No step of the form (4.69) was ever taken in our runs, despite the fact that such steps are
necessary in theory (think of starting the minimization at a first-order saddle point).

4.6.2 Using the Krylov-based variants

We ran two variants of the AN2CK algorithm on our three problem sets, which differ in how
the vector u is chosen in (4.78). In the first, called AN2CKU, u is chosen as the eigenvector
associated with the eigenvalue λmin(Tp). In the second, called AN2CKYU, u is chosen as the
sum of the current vector yp plus a multiple of the eigenvector associated with λmin(Tp) chosen
to ensure that the last inequality in (4.78) holds as an equality. An hyper-parameter search
on a subset of the medium-sized test set yielded the values

κC = 3, κb = 50 and θ = 1
2 .

None of the tested methods used preconditioning (that is the choice M = In was made
throughout). The matrices Vp were stored explicitly.

We again compared these two variants with AR2 and with TR2K, an implementation of the
trust-region close to TR2M, but in which the step is computed by minimizing the quadratic
model in the intersection of the trust-region and the successive Krylov spaces until

‖gk +Hksk‖ ≤ 1
10‖gk‖. (4.84)

The results of our comparison (using the same metrics as in the previous subsection) are given
in Figure 2 and Table 2.

small pbs. medium pbs. largish pbs.
algo πalgo ρalgo πalgo ρalgo πalgo ρalgo
AN2CKU 0.86 96.64 0.81 93.24 0.77 86.44
AN2CKYU 0.91 96.64 0.90 95.95 0.85 91.53
AR2 0.92 97.48 0.87 93.24 0.89 93.22
TR2K 0.94 96.64 0.85 87.84 0.77 84.75

Table 2: Efficiency and reliability statistics for the OPM problems (Krylov-space variants).

5Most failures of this algorithm on large problems occured because the time limit was reached.
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Figure 2: Krylov-space variants: iteration performance profiles for OPM problems (left: small,
center: medium, right: largish). We report on the vertical axis the proportion of problems for
which the number of iterations of each algorithm is at most a fraction (given by the horizontal
axis) of the smallest across all algorithms (see [86]).

We observe that AN2CKU significantly trails the other variants and is in particular both less
efficient and less reliable than AN2CKYU, which we explain by the fact that, should a negative
curvature step occur, the former strategy does not exploit the decrease of the quadratic model
already obtained by the “convex step” yp. By contrast, AN2CKYU appears to be competitive
with both AR2 and TR2K, irrespective of problem size.

For the AN2CKYU variant, the average ratio of the number of matrix-vector products di-
vided by the product of the number of iterations and the problem size (a ratio which is one
if every Lanczos process takes n iterations) is below 0.5 for small problems, below 0.15 for
medium ones and below 0.03 for large ones. Negative curvature directions (4.79) are also
used, for this variant, by 0.25% of the iterations for small problems, 0.23% of iterations for
medium ones and never for large ones.

Finally, we also tested SOAN2CKU and SOAN2CKYU, the versions of AN2CKU and AN2CKYU
which enforce second-order optimality. As for full-space methods, the results obtained are
undistinguable from those for AN2CKU and AN2CKYU, except for a final eigenvalue analysis
confirming the approximate second-order optimality of the computed solution.

These early results are encouraging but the authors are aware that only further experi-
ments will allow a proper assessment of the method’s true potential, both from the number
of function/derivatives evaluations and CPU-usage points of view. Several further algorith-
mic developments within the new algorithms are also of interest, including a possibly better
balance between NewtonEigenStep and RegStep in the full-space version, as well as refinements of
the regularization parameter update (4.5), possibly in the spirit of [105].

4.7 Discussions

We have proposed AN2C and AN2CK, two second-order minimization methods for nonconvex
problems that alternate, in an iteration dependent subspace, between Newton and negative-
curvature directions. These methods differ from the more standard trust-region and adaptive-
regularization techniques in that the involved step computation is free of further inner itera-
tive processes and only requires the approximate solution of at most two (but typically one)
linear systems per iteration. We have also proved that these algorithms require at most



4.7. DISCUSSIONS 135

O
(
| log(ε)|ε−3/2

)
iterations to obtain an ε-approximate first-order critical point. Our proof

builds on some elements of [156, 82] for the convex case and arguments for adaptive regu-
larization [29] and other nonconvex optimization methods [71, 184]. At each iteration, the
algorithms either take an explicit Newton step or negative curvature when it is sufficiently
large compared to the square root of the gradient. The norm of the residuals of the Newton
step are adjusted dynamically and different types of solvers can be used to solve the linear
systems, depending on how subspaces are chosen.

An extension of the algorithmic framework ensuring approximate second-order optimality
has also been introduced, and we have proved that the resulting methods require at most
O
(
| log(ε)|ε−3) iterations to achieve their goals.
A first set of numerical experiments with full-space variants AN2CE and AN2CER as well

as Krylov-subspaces iterative ones AN2CKU and AN2CKYU indicates that they are very reliable
and competitive with standard techniques in terms of number of iterations.

The reader may wonder why we haven’t considered selecting iteration-dependent low-
dimensional random subspaces, as has been advocated in [56, 190] for instance. The main
reason is that using the Johnson-Lindenstrauss lemma (the basic tool is such an approach) is
possible for defining a probabilistically accurate approximate gradient in the subspace, but,
as far we know, this is problematic for the full Hessian matrix unless it is assumed to be of low
rank. We could therefore attempt to follow the Cauchy-point-based analysis of [56, 190], and
hopefully obtain a probabilistic complexity bound in O(ε−2). However, we do not see at this
point how to design a low-dimensional random-subspace algorithm with an O(| log(ε)|ε−3/2)
probabilistic complexity bound for minimizing functions with general (possibly full-rank)
Hessians. A promising line is the use of the subspace embeddings proposed in both [66, 155],
as they came with stronger guarantees and have already been successfully used to develop
subspace ARC algorithm [191]. It would be also be interesting to extend the criteria (4.13)
for the standard cubic regularization [50, 51] and higher-order tensor methods [29].





Appendices

4.A Proof of Theorem 4.4.1

As we noted in Section 4.4, the step in the SOAN2C algorithm may be computed using (4.66),
(4.67) or (4.69). The notations defining the partition of |Sk| remain relevant, but we complete
them by introducing

Sso def= S ∩ {sk = ssok }, Ssok
def= Sk ∩ {sk = ssok }, Sfo def= S \ Sso and Sfok

def= Sk \ Ssok .

In addition, for m ≥ ` ≥ 0, we define

S`,m
def= S ∩ {`, . . . ,m}

and we naturally extend this notation using superscripts identifying the subsets of S`,m cor-
responding to the different iteration types identified above. We also introduce two index
sequences whose purpose is to keep track of when sk = sfok (4.66)-(4.67) or sk = ssok (4.69)
are used, in the sense that

sk = sfok for k ∈
⋃

i≥0,pi≥0
{pi, . . . , qi − 1} and sk = ssok for k ∈

⋃
i≥0
{qi, . . . , pi+1 − 1}.

Formally,

p0 =
{

0 if ‖g0‖ > ε1
−1 if ‖g0‖ ≤ ε1,

and q0 =
{

inf{k > 0 | ‖gk‖ ≤ ε1} if ‖g0‖ > ε1
0 if ‖g0‖ ≤ ε1.

(4.A.1)
Then

pi
def= inf{k > qi−1 | ‖gk‖ > ε1} and qi

def= inf{k > pi | ‖gk‖ ≤ ε1} for i ≥ 1. (4.A.2)

The following lemma states an important decrease property holding when (4.69) is used. We
also verify that the bound on the regularization parameter derived in Section 4.3 still applies.

137
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Lemma 4.A.1 Suppose that AS.1 and AS.3 hold. Let k ∈ Sso. Then

−gᵀksk −
1
2s

ᵀ
kHksk ≥

1
2σk‖sk‖

3. (4.A.3)

Moreover, the upper bound (4.32) still holds for all k ≥ 0.

Proof. We obtain from (4.68) and (4.69) that

gᵀks
so
k + 1

2(ssok )ᵀHks
so
k ≤

1
2‖s

so
k ‖2u

ᵀ
kHkuk = 1

2‖s
so
k ‖2λmin(Hk) ≤ −

1
2σk‖s

so
k ‖3,

which gives (4.A.3). As in Lemma 4.3.1, we now use AS.3, the standard Lipschitz error
bound for the function (see [55, Lemma 2.1]) and (4.A.3) to deduce that

1− ρk =
f(xk + sk)− f(xk)− gᵀksk −

1
2s

ᵀ
kHksk

−gᵀksk −
1
2s

ᵀ
kHksk

≤ LH‖ssok ‖3

6(1
2σk‖s

so
k ‖3)

= LH
3σk

.

Thus, if σk ≥ LH
3(1−η2) , we have that ρk ≥ η2 and k is a successful iteration. We may then

use the argument of Lemma 4.3.1 and the fact that ςmax introduced in (4.33) is larger than
two as Vmax ≥ 1. Therefore, we deduce that (4.32) also holds for the SOAN2C algorithm.
2

We now prove an analogue of Lemma 4.3.1, now using the negative-curvature step as described
in (4.68)-(4.69). We also bound the sequence of ‖gpi‖.

Lemma 4.A.2 Suppose that AS.1, AS.3 and AS.4 hold. Then, for k ∈ Sso,

f(xk)− f(xk+1) ≥ η1
2σ2

max
ε32. (4.A.4)

We also have that

‖gpi‖ ≤ κgpi
def= max

(
‖g0‖,

(
LHκ

2
B

2σ2
min

+ κ2
B

σmin
+ 1

))
, (4.A.5)

for all pi ≥ 0 as defined in (4.A.1)-(4.A.2).

Proof. Let k ∈ Sso. From (4.4) and (4.A.3), we obtain that

f(xk)− f(xk+1) ≥ η1

(
−gᵀksk −

1
2s

ᵀ
kHksk

)
≥ η1

2 σk‖s
so
k ‖3.
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Using now that ‖ssok ‖3 = |λmin(Hk)|3
σ3
k

(see (4.69)) in the previous inequality gives that

f(xk)− f(xk+1) ≥ η1
2σk2 |λmin(Hk)|3.

Now |λmin(Hk)| ≥ ε2 when ssok is computed and σk ≤ σmax by Lemma 4.A.1, from which
(4.A.4) follows. Observe now that (4.A.5) trivially holds if pi = p0 = 0. Consider now
pi > 0. From the definition of pi and qi in (4.A.2), we see that pi − 1 ∈ Sso. Using the
Lipschitz error bound for the gradient ([55, Lemma 2.1]), the triangular inequality, (4.68),
(4.69), (4.31) (resulting from AS.4), we obtain that

‖gpi‖ ≤ ‖gpi − gpi−1 −Hpi−1s
so
pi−1‖+ ‖Hpi−1s

so
pi−1 + gpi−1‖

≤ LH
2 ‖s

so
pi−1‖2 + ‖gpi−1‖+ ‖Hpi−1s

so
pi−1‖

≤ LH |λmin(Hpi−1)|2

2σ2
pi−1

+ ‖gpi−1‖+ |λmin(Hpi−1)|‖Hpi−1upi−1‖
σpi−1

≤ LH |λmin(Hpi−1)|2

2σ2
pi−1

+ ‖gpi−1‖+ |λmin(Hpi−1)|2

σpi−1

= LH(−λmin(Hpi−1))2

2σ2
pi−1

+ ‖gpi−1‖+ (−λmin(Hpi−1))2

σpi−1

≤ LHκ
2
B

2σ2
pi−1

+ ‖gpi−1‖+ κ2
B

σpi−1
.

But ‖gpi−1‖ ≤ ε1 ≤ 1 since pi − 1 ∈ Sso and σk ≥ σmin for all k ≥ 0, which then implies
(4.A.5). 2

In addition to this lemma, all properties of the different steps derived in Section 3 remain
valid because these steps are only computed for ‖gk‖ > ε1. In particular, (4.39) still applies
with ε = ε1. However, (4.53) in Lemma 4.3.4 may no longer hold because its proof relies on
the fact that ‖gk‖ ≥ ε1, which is no longer true. The purpose of the next lemma is to provide
an analogue of (4.53) for the case where SOAN2C is used.

Lemma 4.A.3 Suppose that AS.1, AS.3 and AS.4 hold and the SOAN2C algorithm is
used. Consider the partition of Sneigk ∪Sdefk into Sdecrk ∪Sdivgradk defined in Lemma 4.3.4
with the same κm (defined in (4.51)). Then (4.52) holds for all k ∈ Sdecrk . Moreover,

|Sdivgradk | ≤ κn|Sdecrk |+
( 1

2 log(2) | log(ε1)|+ κcurv

)
|Scurvk |

+
( | log(ε1)|+ log(κgpi)

log(2) + 1
)

(|Ssok |+ 1) (4.A.6)

where κn and κcurv are defined in (4.54) and (4.55) and κgpi is given by (4.A.5).

Proof. The proof of (4.52) is identical to that used in Lemma 4.3.4. Moreover, we
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still obtain (4.56) for k ∈ Sdivgradk , because the definition of κm in (4.51) is unchanged and
Lemma 4.A.1 ensures that (4.32) continues to hold for the SOAN2C algorithm.

We now prove (4.A.6). If Sfok is empty, then so is its subset Sdivgradk and (4.A.6) trivially
holds. If Sfok is not empty, we see from the definitions (4.A.1)-(4.A.2) that, for some m ≥ 0
depending on k,

Sfok = {0, . . . , k} ∩ {‖gk‖ > ε1} =

 m−1⋃
i=0,pi≥0

{pi, . . . , qi − 1}

 ∪ {pm, . . . , k}. (4.A.7)

Note that the last set in this union is empty unless k ∈ Sfo, in which case pm ≥ 0. Suppose
first that the set of indices corresponding to the union in brackets is non-empty and let i
be an index in this set. Moreover, suppose also that pi < qi − 1. Using (4.A.5) and the
facts that ‖gqi−1‖ > ε1, that the gradient only changes at successful iterations and that
Spi,qi−2 = Scurvpi,qi−2 ∪ S

divgrad
pi,qi−2 ∪ Sdecrpi,qi−2, we now derive that

ε1
κgpi

≤ ‖gqi−1‖
‖gpi‖

=
qi−2∏
j=pi

‖gj+1‖
‖gj‖

=
∏

j∈Spi,qi−2

‖gj+1‖
‖gj‖

=
∏

j∈Sdecrpi,qi−2

‖gj+1‖
‖gj‖

∏
j∈Scurvpi,qi−2

‖gj+1‖
‖gj‖

∏
j∈Sdivgradpi,qi−2

‖gj+1‖
‖gj‖

≤
((

LH(1 + κθ)V 3
max

2ς2
1σmin

+ 2κb
√
Vmax
ς1

+ κCκb
√
Vmax

)
(1 + κθ)

)|Sdecrpi,qi−2|

×

1

2|S
divgrad
pi,qi−2 |

×
(
LHV

2
max

2σmin
κ2
Cθ

2x+ θ2κBκC√
ε1σmin

+ 1
)|Scurvpi,qi−2|

where we used (4.41), (4.39) and (4.56) to derive the last inequality. Rearranging terms,
taking the log, using the inequality |Sdivgradpi,qi−2 | ≥ |S

divgrad
pi,qi−1 | − 1 and dividing by log(2) then

gives that

(|Sdivgradpi,qi−1 | − 1) + log(ε1)− log(κgpi)
log(2) ≤ κn|Sdecrpi,qi−2|+

( | log(ε1)|
2 log(2) + κcurv

)
|Scurvpi,qi−2|

with κn and κcurv given by (4.54) and (4.55). Further rearranging this inequality and
using the fact that |Spi,qi−2| ≤ |Spi,qi−1| for the different types of step, we obtain that

|Sdivgradpi,qi−1 | ≤ κn|S
decr
pi,qi−1|+

( | log(ε1)|
2 log(2) + κcurv

)
|Scurvpi,qi−1|+

| log(ε1)|+ log(κgpi)
log(2) +1. (4.A.8)

If now pi = qi − 1, then clearly |Sdivgradpi,qi−1 | ≤ 1 and (4.A.8) also holds. Using the same
reasoning when {pm, . . . , k} is non-empty, we derive that,

|Sdivgradpm,k
| ≤ κn|Sdecrpm,k|+

( | log(ε1)|
2 log(2) + κcurv

)
|Scurvpm,k|+

| log(ε1)|+ log(κgpi)
log(2) + 1, (4.A.9)

and this inequality also holds if {pm, . . . , k} = ∅ since Sdivgradpm,k
⊆ {pm, . . . , k}. Adding now
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(4.A.8) for i ∈ {0, . . . ,m} and (4.A.9) to take (4.A.7) into account gives that

|Sdivgradk | ≤ κn|Sdecrk |+
( | log(ε1)|

2 log(2) + κcurv

)
|Scurvk |+

( | log(ε1)|+ log(κgpi)
log(2) + 1

)
(m+ 1).

As (4.A.7) divides Sfok into m+1 consecutive sequences, these sequences are then separated
by at least a second-order step, so that m ≤ Ssok and (4.A.6) follows. 2

Equipped with this last lemma and the results of Sections 4.2 and 4.3, we may finally es-
tablish the worst-case iteration/evaluation complexity of the SOAN2C algorithm and prove
Theorem 4.4.1 itself.

Proof. Note that the bounds (4.61) and (4.62) derived in the proof of Theorem 4.3.5
are still valid because they only cover steps computed using AN2C, so that we now need to
focus on bounding Ssok . Using AS.2 and the lower bound on the decrease of the function
values (4.A.4), we derive that, for k ∈ Sso,

f(x0)− flow ≥
∑
i∈Sk

f(xi)− f(xi+1) ≥
∑
i∈Sso

k

f(xi)− f(xi+1) ≥ |Ssok |
η1

2σ2
max

ε32,

and therefore that
|Ssok | ≤

2σ2
max(f(x0)− flow)

η1
ε−3
2 = κsoε

−3
2 . (4.A.10)

Injecting now (4.A.10), (4.62) and (4.61) in the bound (4.A.6) on Sdivgradk yields that

|Sdivgradk | ≤ κnκdecrε
−3
2

1 +
( | log(ε1)|

2 log(2) + κcurv

)
κnegdecrε

−3
2

1

+
( | log(ε1)|+ log(κgpi)

log(2) + 1
)

(κsoε
−3
2 + 1).

Combining the last inequality with (4.A.10), (4.62) and (4.61) in |Sk| = |Sdivgradk | +
|Scurvk |+ |Ssok |+ |Sdecrk | and the definition of (4.57) gives that

|Sk| ≤ κ?ε
−3
2

1 + κsoε
−3
2 + | log(ε1)|

2 log(2) κnegdecrε
−3
2

1 +
( | log(ε1)|+ log(κgpi)

log(2) + 1
)

(κsoε
−3
2 + 1).

This proves the first part of the theorem. The second part follows from the last inequality
and Lemma 4.2.1. 2

The factor | log(ε1)| by which the bound of Theorem 4.4.1 differs from O(max(ε−3/2
1 , ε−3

2 )
occurs as a consequence of (4.A.6), (4.A.10) and (4.61) and one expects that, in practice,
(4.A.10) is smaller than O

(
ε−3
2

)
so that Newton steps are taken most often.





Chapter 5

Hölder Gradient Descent and
Adaptive Regularization in Banach
Spaces

Chapter Abstract

This chapter considers optimization of nonconvex functionals in smooth infinite di-
mensional spaces. It is first proved that functionals in a class containing multivariate
polynomials augmented with a sufficiently smooth regularization can be minimized by a
simple linesearch-based algorithm. Sufficient smoothness depends on gradients satisfying
a novel two-terms generalized Lipschitz condition. A first-order adaptive regularization
method applicable to functionals with β-Hölder continuous derivatives is then proposed,
that uses the linesearch approach to compute a suitable trial step. It is shown to find an
ε-approximate first-order point in at most O(ε−

p+β
p+β−1 ) evaluations of the functional and

its first p derivatives.

Reference: This chapter is based on a publication in Optimization Methods and Softwares [118].

5.1 Introduction

Evaluation complexity results obtained for AR methods and nonconvex problems have been
obtained, to the best of the author’s knowledge, in the context of IRn. It is the purpose of
this chapter to show that this need not be the case, and that evaluation complexity bounds
for computing approximate first-order critical point can be derived in infinite-dimensional
Banach spaces.

The main motivation for this generalization is twofold. Our first aim is to cover a number
of infinite-dimensional applications in optimal control and variational analysis, and show that
adaptive regularization methods do make sense in that context. Indeed, our developement
covers optimization problems in Lp(IRn), `p and Sobolev spaces Wm,p(IRn) [212] for p ∈ (1,∞)
as well as in all Hilbert spaces.

Our second aim is to investigate the necessary methodological coherence when optimiza-
tion algorithms are applied to large-scale discretized problems: it is then important to show
that AR methods continue to make sense in the limit, as the discretization mesh converges
to zero. This coherence, sometimes called “mesh independence”, has long been considered

143
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as an important feature of numerical optimization methods [132, 2, 78, 123, 198]. For trust-
region methods, this was studied in [193] in the Hilbert space context, and developed for
Hilbert and Banach spaces in [68, Section 8.3]. Considering the question for AR algorithms
therefore seems a natural development in this line of research. One might argue that most
evaluation complexity results are “dimensionless”, making this effort unnecessary. This ar-
gument however ignores an important point: problems in infinite dimension (and thus their
discretizations) are often defined in spaces whose norms (and inner products when they exist)
are not the standard Euclidean one. As a consequence, gradients must be measured in dual
norms and thus approximate first-order points detected using these norms. This makes most
existing complexity results applicable only though the use of norm-equivalence constants in
large-scale finite dimensional approximations, whose value may significantly increase with
dimension. The complexity estimates obtained using this approach can thus be severe over-
estimates for large-dimensional discretizations of infinite-dimensional variational problems.
Considering the norm adapted to the problem may therefore provide substantially more ro-
bust evaluation complexity bounds, which is the point of view developed in this chapter.

Our second objective however raises specific technical difficulties. While the outline of
adaptive regularization methods is today quite well-known for finite dimensional spaces (see
[29], for instance), its simple generalization to infinite dimensions is impossible. Indeed, the
existence of a suitable step at a given iteration of the method in finite dimensions typically
hinges on approaching a minimizer of a regularized model, which may no longer exist in infinite
dimensions. Our analysis circumvents that problem by proposing a specialized optimization
technique which guarantees an acceptable step for a class of function that, at variance with
existing Lipschitz approaches, includes regularized polynomials.

Contributions. Having set the scene, we now make our contribution more precise.

• We first analyse the convergence of a first-order method for minimizing a regularized
differentiable functions on a bounded set, where the first-order approximation error for
the objective function’s and the regularization’s gradients satisfy a two-terms generalized
Hölder condition. Significantly, this class includes regularized multivariate polynomials.
To our knowledge, no such regularization has been considered before, even in finite
dimensional spaces.

• Exploiting this result, we then propose an adaptive regularization algorithm whose step
is found by minimizing a regularized polynomial and whose objective is to find first-order
points of nonconvex functions having Hölder continuous pth derivative (in the Fréchet
sense). We analyze its evaluation complexity and show that the sharp complexity bound
known [52] for the finite-dimensional case is recovered, in that the algorithm requires at
most O

(
ε
− p+β
p+β−1

)
evaluations of the function and its first p derivatives to compute such

a point.

Outline. The chapter is organized as follows. Section 5.2 considers the minimization of
smooth regularized functionals in Banach spaces. Section 5.3 then introduces the class of
Banach spaces of interest and details our general adaptive regularization algorithm for first-
order minimization in these spaces, while Section 5.4 analyzes its evaluation complexity. We
conclude the Chapter in Section 5.5 with a brief discussion of the new results and perspectives.
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5.2 Gradient descent with a Hölder regularization

We start by considering the minimization, for x in the Banach space V, of the regularized
objective functional

φ(x) def= ψ(x) + h(x), (5.1)

where h is a general regularization term. This is motivated by the need to replace the
problematic condition that the step of our yet to be defined regularization method is close to
a minimizer by some more appropriate condition for infinite dimensional spaces, where ψ will
play the role of the regularized model.

The space V and the functionals φ, ψ and h in (5.1) are assumed to satisfy the following
properties.
AS.1

(i) There exists φmin ∈ IR such that, for all x ∈ V, φ(x) ≥ φmin. Moreover, the set
D def= {x ∈ V , φ(x) ≤ φ(0)} is bounded in the sense that supx∈D ‖x‖V ≤ ω for some
ω <∞.

(ii) ψ is a Fréchet differentiable function that satisfies the local two-terms Hölder condition

∀δ > 0, ∀x ∈ B(0, δ), ∀y ∈ V, ‖∇1
xψ(x)−∇1

xψ(y)‖V ′ ≤ L1,δ‖x− y‖β1
V + L2,δ‖x− y‖β2

V ,

where β1 > 0 and β2 > 0, L1,δ > 0 and L2,δ > 0 are constants, the latter two depending
on δ.

(iii) h is a convex Fréchet differentiable function whose gradient satisfies the local two-terms
Hölder condition

∀δ > 0, ∀x ∈ B(0, δ), ∀y ∈ V, ‖∇1
xh(x)−∇1

xh(y)‖V ′ ≤ L3,δ‖x− y‖β3
V + L4,δ‖x− y‖β4

V ,

where β3 > 0 and β4 > 0, L3,δ > 0 and L4,δ > 0 are constants, the latter two depending
on δ. Moreover, min[β3, β4] ≤ 1

(iv) the space V is reflexive.

The conditions stated in AS.1(ii) and (iii) are verified by functionals with Hölder continuous
gradient as proven in [55, Lemma 2.1] (β1 is then equal to the Hölder exponent and L1,δ equal
to the Hölder constant). We use the more slightly more general conditions of AS.1(ii) in order
to widen the class of allowed functionals and, in particular, to cover multivariate polynomials.
Observe also that, should β3 and β4 both exceed one, then h must be affine and, since we do
not exclude an affine ψ, AS.1(i) could then be violated. This potential contradiction justifies
our assumption that min[β3, β4] ≤ 1.

The conditions stated in AS.1(ii) (for ψ) and (iii) (for h) are identical, and they obvioulsy
combine to yield that

∀δ > 0, ∀x ∈ B(0, δ), ∀y ∈ V, ‖∇1
xφ(x)−∇1

xφ(y)‖V ′ ≤ L′1,δ‖x− y‖
δ1
V + L′2,δ‖x− y‖

δ2
V , (5.2)

where δ1 = min(β1, β2, β3, β4) ≤ 1, δ2 = max(β1, β2, β3, β4) and L′1,δ = L′2,δ =
∑4
i=1 Li,δ. We

could clearly have assumed this condition on the gradient of φ directly, but we have preferred
separate statements because AS.1(ii) and (iii) will be proved separately for the functionals of
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interest. We immediately verify that multivariate polynomials satisfy AS.1(ii). This result is
crucial for our purposes, as it will allow us to compute a step in the ARp-BS algorithm defined
below.

Lemma 5.2.1 Consider a multivariate polynomial functional ψ : V → IR given, for
x ∈ V, by

ψ(x) = ψ0 +
p∑
`=1

1
l!S`[x]`, (5.3)

where S` ∈ L`sym(V⊗`) for ` ∈ {1, . . . , p}. Then, ψ satisfies AS.1(ii).

Proof. First observe that ∇1
xψ(x) =

∑p
`=1

1
(`−1)!S`[x]`−1. Suppose first that p = 1.

Then ‖∇1
xψ(x)−∇1

xψ(y)‖V ′ = 0 for all x, y and the condition of AS.1(ii) holds for arbitrary
positive values of L1,δ, L2,δ, β1 and β2. Suppose therefore that p > 1. For x ∈ B(0, δ),
y ∈ V and u ∈ V, ‖u‖V = 1 we then derive that

〈∇1
xψ(y)−∇1

xψ(x), u〉 =
p∑
`=1

1
(`− 1)!〈S`[x+ (y − x)]`−1 − S`[x]`−1, u〉,

=
p∑
`=1

1
(`− 1)!

〈
`−1∑
i=0

(
`

i

)
S`[x]`−1−i[(y − x)]i − S`[x]`−1, u

〉
,

=
p∑
`=2

1
(`− 1)!

〈
`−1∑
i=1

(
`

i

)
S`[x]`−1−i[(y − x)]i, u

〉
,

≤
p∑
`=2

`−1∑
i=1

1
(`− 1)!

(
`

i

)
‖S`‖‖x‖l−1−i

V ‖y − x‖iV ,

≤
p∑
`=2

κ`,δ‖y − x‖`−1
V , (5.4)

For ‖y − x‖V ≤ 1, an upper bound on the right hand side of (5.4) is given by

〈∇1
xψ(y)−∇1

xψ(x), u〉 ≤
p∑
`=2

κ`,δ‖y − x‖V , (5.5)

while, for ‖y − x‖V ≥ 1, it is given by

〈∇1
xψ(y)−∇1

xψ(x), u〉 ≤
p∑
`=2

κ`,δ‖y − x‖p−1
V , (5.6)

Combining (5.5), (5.6) and the fact that ‖u‖V = 1 yields AS.1(ii) with β1 = 1, β2 =
p− 1 ≥ 1 and L1,δ = L2,δ =

∑p
`=2 κ`,δ. 2

We now analyze the following very simple first-order linesearch-based algorithm on the facing
page for the minimization of φ.
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Algorithm 5.2.1: A Simple First-Order Algorithm for Minimizing
Regularized Functionals Satisfying (5.2)

Step 0: Initialization. The constants 0 < c1 < c2 < 1 are given. Set x0 = 0 and
k = 0.

Step 1: Compute a search direction. Compute ∇1
xφ(xk) ∈ V ′. If ‖∇1

xφ(xk)‖V ′ = 0,
terminate and return xk. Otherwise, select a direction dk such that ‖∇1

xφ(xk)‖V ′ =
−〈∇1

xφ(xk), dk〉 and ‖dk‖ = 1.

Step 2: Linesearch. Compute αk a stepsize satisfying

φ(xk + αkdk) ≤ φ(xk) + αkc1〈∇1
xφ(xk), dk〉, (5.7)

〈∇1
xφ(xk + αkdk), dk〉 ≥ c2〈∇1

xφ(xk), dk〉. (5.8)

Step 3: Define the next iterate. Set xk+1 = xk + αkdk, increment k by one and
return to Step 1.

Note that the existence of the direction dk in Step 1 is guaranteed by AS.1(iv) and James’
theorem [126]. The reader has undoubtedly recognized the Wolfe linesearch conditions in
(5.7) and (5.8) (see [172]). Unfortunately, the general form of (5.2) prevents extending the
standard convergence theory for such algorithms applied to functions with Lipschitz gradients
[172, Theorem 3.2] to our case. However, a modest modification of the classical argument
allows us to prove the following convergence result.

Theorem 5.2.2 Suppose that ψ, h and V verify AS.1 and let {xk}k≥0 be the sequence
generated by Algorithm 5.2.1. Then

φ(xk+1) < φ(xk) for all k ≥ 0

and either the algorithm terminates in a finite number of iterations with an iterate xk
such that ∇1

xφ(xk) = 0, or
lim
k→∞

‖∇1
xφ(xk)‖V ′ = 0.

Proof. Because of the first Wolfe condition (5.7), the values {φ(xk)} produced by Algo-
rithm 5.2.1 are strictly decreasing, proving the theorem’s first statement. More guarantees
that all xk lie in the level set D. Using now the second Wolfe condition (5.8), we obtain
that

〈∇1
xφ(xk+1)−∇1

xφ(xk), dk〉 ≥ (c2 − 1)〈∇1
xφ(xk), dk〉 = (1− c2)‖∇1

xφ(xk)‖V ′ ,

which, together with the fact that both xk and xk+1 belong to D, (5.2) (with δ = ω) and
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‖dk‖V = 1, ensures that

(1− c2)‖∇1
xφ(xk)‖V ′ ≤ 〈∇1

xφ(xk+1)−∇1
xφ(xk), dk〉 ≤ L′1,ωα

δ1
k + L′2,ωα

δ2
k ,

with δ1 < δ2. If αk ≤ 1, we obtain from the last inequality that

αk ≥
(

(1− c2)‖∇1
xφ(xk)‖V ′

L′1,ω + L′2,ω

) 1
δ1
. (5.9)

Conversely, if αk ≥ 1, then

αk ≥
(

(1− c2)‖∇1
xφ(xk)‖V ′

L′1,ω + L′2,ω

) 1
δ2
. (5.10)

Therefore,

αk ≥ µmin
[
‖∇1

xφ(xk)‖
1
δ1
V ′ , ‖∇

1
xφ(xk)‖

1
δ2
V ′

]
,

where

µ = min

( (1− c2)
L′1,ω + L′2,ω

) 1
δ2
,

(
(1− c2)

L′1,ω + L′2,ω

) 1
δ1

 .
Combining this lower bound on αk with the first Wolfe condition yields that

φ(xk+1) ≤ φ(xk)− c1µmin
(
‖∇1

xφ(xk)‖
1
δ1
V ′ , ‖∇

1
xφ(xk)‖

1
δ2
V ′

)
‖∇1

xφ(xk)‖V ′ , (5.11)

To prove the second theorem statement, we first note that the definition of the algorithm
ensures the identity ∇1

xφ(xk) = 0 whenever termination occurs after a finite number of
iterations. Assume therefore that the algorithm generates an infinite sequence of iterates
and that

‖∇1
xφ(xki)‖V ′ ≥ ε, (5.12)

for some ε > 0 and some subsequence {ki}∞i=1. Summing over all iterations ki and using
AS.1(i), we obtain that

+∞ > φ(0)− φmin ≥
∞∑
i=1

c1µmin
(
‖∇1

xφ(xki)‖
δ1+1
δ1
V ′ , ‖∇1

xφ(xki)‖
δ2+1
δ2
V ′

)
,

≥ c1µ
∞∑
i=1

min[ε
δ1+1
δ1 , ε

δ2+1
δ2 ], (5.13)

which is a contradiction since the right-hand side diverges to +∞. Hence (5.12) cannot
hold and the second conclusion of the theorem holds. 2

Thus a vanilla linesearch gradient-descent algorithm with the standard Wolfe conditions ap-
plied to infinite-dimensional functionals verifying AS.1 yields asymptotic first-order station-
arity. This is significant for our purpose of developing an adaptive regularization algorithm
using a model defined by a regularized polynomial. Note that the iteration complexity of this
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algorithm in terms of ε ∈ (0, 1] can easily be derived from (5.13) since

φ(0)− φmin ≥ c1µ
Nε∑
i=1

min[ε
δ1+1
δ1 , ε

δ2+1
δ2 ] ≥ Nεc1µε

δ1+1
δ1 , (5.14)

where Nε denotes the total number of iterations to achieve the algorithm’s termination condi-
tion. The iteration complexity for the linesearch Algorithm 5.2.1 is therefore O

(
ε
− 1+δ1

δ1

)
as a

function of the requested accuracy ε of the gradient’s norm. Note that δ1 ≤ 1 and hence this
bound cannot be better than O

(
ε−2). This is reminiscent of Theorem 3.2 in [53], where the

evaluation complexity of an adaptive regularization method in IRn is analyzed for functions
with Hölder continuous gradients and a more specific regularization h(x) = ‖x‖r2.

5.3 An adaptive regularization algorithm in Banach spaces

We now consider developing an adaptive regularization method for finding first-order points
for the problem

min
x∈V

f(x), (5.15)

and make our assumptions on the problem more precise.
AS.2 f is a function of the Cp,β(V; IR) class. To revisit the definition, please refer to Subsec-
tion 1.3.3.1 in the Introduction.
AS.3 There exists a constant flow such that f(x) ≥ flow for all x ∈ V.
The gradient ∇1

xf(x) belongs to the dual space V ′ and will be denoted by g(x). Thus, for a
requested accuracy ε ∈ (0, 1], we are interested in finding an ε-approximate first-order critical
point, that is a point xε such that ‖g(xε)‖V ′ ≤ ε.

5.3.1 Smooth Banach spaces

In a generic Banach space, we can only ensure “a decrease principle” as stated in [65, Theorem
5.22]. To obtain more conclusive results, we need to introduce additional assumptions. We
choose to work with the class of uniformly q smooth Banach spaces. For the sake of com-
pleteness, we briefly recall the context. Given a Banach space V, we first define its module of
smoothness, for t ≥ 0, by

ρV(t) def= sup
‖x‖V=1 ,‖y‖V=t

{‖x+ y‖V + ‖x− y‖V
2 − 1

}
, (5.16)

and immediately deduce from the triangular inequality that ρV(t) ≤ t. We now say that V is
a uniformly smooth Banach space if and only if limt→0

ρV (t)
t = 0. Going one step further, we

say that a Banach space V is uniformly q smooth for some q ∈ (1, 2] if and only if

∃κV > 0, ρV(t) ≤ κVtq. (5.17)
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It is easy to see that, if V is uniformly q smooth, it is also uniformly q′ smooth for all
1 < q′ < q. Indeed, one can easily show1 that ρV(t) ≤ max(1, κV)tq′ from definition (5.16)
and inequality (5.17).

We motivate our choice of this particular class of Banach spaces by giving a few examples.
Lp(IRn), 1 < p <∞, are uniformly smooth Banach spaces. In particular, Lp(IRn) is uniformly
2 smooth for p ≥ 2 and uniformly p smooth for 1 < p ≤ 2. The same results apply for `p
and the Sobolev spaces Wm,p(IRn). Moreover, all Hilbert spaces are 2 smooth Banach. See
[212] for more details. One might wonder if it is possible for the q smooth order to be strictly
superior to 2 in (5.17). We now show that this is impossible. Indeed, for any Banach space V,
we have that, ρV(t) ≥ ρH(t) = t2√

1+t2+1 [212]. Suppose now ρV(t) ≤ ctm with m > 2. Using
the last two inequalities, we obtain that: ctm−2 ≥ 1√

1+t2+1 for all t strictly positive. But this
inequality is impossible for small enough t and hence our supposition about m is false and
m ∈ (1, 2].

From here on, we assume that
AS.4 V is a uniformly q smooth space.
Uniformly smooth Banach spaces are also reflexive (See [212, Proposition 1.e.3, p.61]), so that
AS.1(iv) automatically holds. Let us now define the set

Jp(x) def=
{
v∗ ∈ V ′ , 〈v∗, x〉 = ‖x‖pV , ‖v

∗‖V ′ = ‖x‖p−1
V

}
. (5.18)

It is known [210] that Jp(x) is the subdifferential of the functional 1
p‖ · ‖

p
V , p ≥ 1 at x.

We may now introduce another characterization of uniform smoothness.

Theorem 5.3.1 Let

F def= {ψ : IR→ IR | ψ(0) = 0, ψ is convex, non decreasing and ∃κF > 0 | ψ(t) ≤ κFρV(t)}.

Then, for any 1 < p <∞, the following statements are equivalent.

(i) V is a uniformly smooth Banach space.

(ii) Jp is single valued and there exists ϕp(t) = ψp(t)
t where ψp ∈ F and such that

‖Jp(x)− Jp(y)‖V ′ ≤ max(‖x‖V , ‖y‖V)p−1ϕp

( ‖x− y‖V
max(‖x‖V , ‖y‖V)

)
. (5.19)

Proof. [212, Theorem 2]. 2

We define Jp(x) as the unique value in the set (5.18). As the subdifferential of ‖.‖pV reduces
to a singleton for p > 1 and ‖.‖pV is a convex function, ‖.‖pV is Fréchet differentiable for p > 1
since it verifies [65, Condition 4.16]. The reader is referred to [210] or [212] for more extensive
coverage of characterizations of the norm in uniformly smooth Banach spaces.

1If t ∈ [0, 1] this follows from (5.17) and q′ < q. If t > 1, ρV(t) ≤ t ≤ tq
′
.
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For all ` > 1, we now prove an upper bound of the norm of ‖J`(x) − J`(y)‖V ′ in terms
of ‖x − y‖V in a uniform q smooth Banach space. Let us first remind the useful inequality
(x+ y)r ≤ max(1, 2r−1)(xr + yr) for all x, y ≥ 0 and all r ≥ 0, before stating the next crucial
lemma.

Lemma 5.3.2 Suppose that V is a uniformly q smooth Banach space and that x ∈
B(0, ω). Then for all ` > 1, there exist constants κω, κ` > 0 such that

‖J`(x)− J`(y)‖V ′ ≤ κω‖x− y‖
min[q,`]−1
V + κ`‖x− y‖`−1

V , (5.20)

where κω and κ` depend only on ω, `, κF and κV .

Proof. As ` > 1, if q > `, we can use our remark above and decrease the q smooth
order until q′ = min(q, `) ≤ `. We now develop the upper bound (ii) of Theorem 5.3.1 and
use the definition of the set F to derive that

‖Jl(x)− Jl(y)‖V ′ ≤ max(‖x‖V , ‖y‖V)`−1κFκV

( ‖x− y‖V
max(‖x‖V , ‖y‖V)

)q′−1
,

≤ max(‖x‖V , ‖y‖V)l−q′κFκV‖x− y‖q
′−1
V .

Using now the inequalities max(‖x‖V , ‖y‖V) ≤ ‖x‖V +‖x−y‖V and ` ≥ q′, we obtain that

‖Jl(x)− Jl(y)‖V ′ ≤ κFκV(‖x‖V + ‖x− y‖V)`−q′‖x− y‖q
′−1
V ,

≤ κFκV max(1, 2`−q′−1)(‖x‖`−q
′

V + ‖x− y‖`−q
′

V )‖x− y‖q
′−1
V ,

≤ κFκV max(1, 2`−q′−1)ω`−q′‖x− y‖q
′−1
V

+ κFκV max(1, 2`−q′−1)‖x− y‖`−1
V ,

≤ κω‖x− y‖q
′−1
V + κ`‖x− y‖`−1

V .

2

It results from this theorem that the primal representation of the gradient of a regularization
term of the form ‖s‖αV does satisfy the condition of AS.1(iii). This will be crucial as it will
allow applying Algorithm 5.2.1 to a model consisting of a multivariate polynomial (satisfying
AS.1(ii)) augmented by such a regularization term.

5.3.2 The ARp-BS algorithm

In our uniform q smooth setting, mk(s) defined in (1.3.18) is Fréchet differentiable but this is
unfortunately insufficient to derive results on the Lipschitz continuity of its gradient, which
makes the use of more standard gradient-descent methods impossible. We state now our ARp
algorithm for smooth Banach spaces.

The ARp-BS algorithm follows the main lines of existing ARp methods [51, 29]. However, as
we have already mentioned, the existence of a minimizer of mk(s) may not be guaranteed
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Algorithm 5.3.1: pth order adaptive regularization in a uniform q smooth
Banach Space (ARp-BS)

Step 0: Initialization. An initial point x0 ∈ V, a regularization parameter σ0 and a
requested final gradient accuracy ε ∈ (0, 1] are given. The constants η1, η2, γ1, γ2,
γ3, χ ∈ (0, 1), and σmin are also given such that

σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3. (5.21)

Compute f(x0) and set k = 0.

Step 1: Check for termination. Evaluate gk = ∇1
xf(xk). Terminate with xε = xk

if
‖g(xk)‖V ′ ≤ ε. (5.22)

Step 2: Step calculation. Evaluate f(xk) and {∇ixf(xk)}pi=2. Compute a step sk
which sufficiently reduces the model mk defined in (1.3.18) in the sense that

mk(sk) < mk(0), (5.23)

and
‖∇1

smk(sk)‖V ′ ≤ max
(
χε, θ‖sk‖p+β−1

V

)
. (5.24)

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk = f(xk)− f(xk + sk)
Tf,p(xk, 0)− Tf,p(xk, sk)

. (5.25)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(5.26)

Increment k by one and go to Step 1.
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in infinite dimensions and hence a point s? such that ∇1
smk(s?) = 0 may not exist. As a

consequence, standard proofs that a step satisfying both (5.23) and (5.24) exists no longer
apply. We thus need to check that a suitable step can still de found in our context. This is
achieved using Algorithm 5.2.1.

Theorem 5.3.3 Suppose that AS.2 and AS.4 hold. Suppose also that ‖g(xk)‖V ′ > 0.
Then a step satisfying both (5.23) and (5.24) always exists.

Proof. First note that AS.2 imply that p+ β > 1. In order to apply Algorithm 5.2.1
to the problem of minimizing (1.3.18), we just need to prove that mk(s) satisfies AS.1 of
Section 2. We have that

mk(s) ≥ mk(0)−
p∑
i=1
‖∇ixf(x)‖‖s‖iV + σk

(p+ β)!‖s‖
p+β
V →∞ as ‖s‖V →∞,

and thusmk is a coercive functional verifying AS.1(i). Lemma 5.2.1 ensures that the Taylor
series term Tf,p(xk, s) satisfies AS.1(ii). Lemma 5.3.2 (applied with δ = ω, ` = p+ β − 1,
L3,δ = κ`, β3 = min[q, `] − 1 ∈ (0, 1], L4,δ = κω and β4 = ` + β − 1 > 0) then ensures
that ‖.‖p+βV satisfies AS.1(iii). We already noted that, being uniformly smooth, V must be
reflexive, which ensures that AS.1(iv) holds. All the requirements of AS.1 in Section 2 are
therefore met and, since ∇1

smk(0) = g(xk), Theorem 5.2.2 applies to the functional mk(s).
As a consequence, a suitable step sk such that mk(sk) < mk(0) and ‖∇1

smk(sk)‖V ′ ≤ χε
exists. 2

Observe that equation (5.14) and the fact that δ1 = min[q, p+β]−1 and δ2 = p+β−1 (all the
other powers ranging from 2 to p), imply that, for our iterative gradient descent Algorithm
5.2.1,

lim
i→∞

min
[
κA‖∇1

sm(si)‖
min[q,p+β]

min[q,p+β]−1
V ′ , κB‖∇1

sm(si)‖
p+β
p+β−1
V ′

]
= 0.

As a consequence, the first term in the minimum indicates that the smoother the space, the
faster the convergence for p ≥ 2.
Following well-established practice, we now define

S def= {k ≥ 0 | xk+1 = xk + sk} = {k ≥ 0 | ρk ≥ η1},

the set of indexes of “successful iterations”, and

Sk
def= S ∩ {1, . . . , k},

the set of indexes of successful iterations up to iteration k. We also recall a well-known result
bounding the total number of iterations in terms of the number of successful ones.
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Lemma 5.3.4 Suppose that the ARp-BS algorithm is used and that σk ≤ σmax for some
σmax > 0. Then

k ≤ |Sk|
(

1 + | log γ1|
log γ2

)
+ 1

log γ2
log

(
σmax
σ0

)
. (5.27)

Proof. See proof of Lemma 4.2.1. 2

5.4 Evaluation complexity for the ARp-BS algorithm

Before discussing our analysis of evaluation complexity, we remind the reader that the two
first inequalities of Lemma 1.3.1 hold.

From now on, the analysis follows that presented in [29] quite closely.

Lemma 5.4.1

∆Tf,p(xk, sk)
def= Tf,p(xk, 0)− Tf,p(xk, sk) ≥

σk
(p+ β)!‖sk‖

p+β
V . (5.28)

Proof. Direct from (5.23) and (1.3.18). 2

Lemma 5.4.2 Suppose that f ∈ Cp,β(V; IR). Then, for all k ≥ 0,

σk ≤ σmax
def= γ3 max

(
σ0,

Lp
(1− η2)

)
. (5.29)

Proof. See [29, Lemma 2.2]. Using (5.25), (1.3.15), and (5.28), we obtain that

|ρk − 1| ≤ (p+ β)!|f(xk + sk)− Tf,p(xk, sk)|
σk‖sk‖p+βV

≤ Lp
σk
.

Thus, if σk ≥ Lp/(1 − η2), then ρk ≥ η2 ensures that iteration k is successful and (5.26)
implies that σk+1 ≤ σk. The mechanism of the algorithm then guarantees that (5.29)
holds. 2

The next lemma remains in the spirit of [29, Lemma 2.3], but now takes the condition (5.24)
into account.
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Lemma 5.4.3 Suppose that f ∈ Cp+β(V; IR) holds and that k ∈ S before termination.
Then

‖sk‖p−1+β
V ≥ εmin

[
(1− χ)(p+ β − 1)!

Lp + σmax
,

(p+ β − 1)!
Lp + σmax + θ(p+ β − 1)!

]
. (5.30)

Proof. Successively using the fact that termination does not occur at iteration k,
(1.3.16) and condition (5.24), we deduce that

ε < ‖g(xk+1)‖V ′ ,

≤ ‖g(xk+1)−∇1
sTf,p(xk, sk)‖V ′ + ‖∇1

smk(sk)‖V ′ + σk
(p+ β − 1)!‖Jp+β(sk)‖V ′ ,

≤ Lp
(p− β + 1)!‖sk‖

p−1+β
V + max

(
χε, θ‖sk‖p−β+1

V

)
+ σk

(p+ β − 1)!‖sk‖
p+β−1
V .

By treating each case in the maximum separately, we obtain that either

(1− χ)ε ≤
(

Lp
(p+ β − 1)! + σk

(p+ β − 1)!

)
‖sk‖p−1+β

V ,

or
ε ≤

(
Lp

(p+ β − 1)! + σk
(p+ β − 1)! + θ

)
‖sk‖p−1+β

V .

Combining the two last inequalities gives that

‖sk‖p−1+β
V ≥ min

[
(1− χ)ε(p+ β − 1)!

Lp + σmax
,

(p+ β − 1)!ε
Lp + σmax + θ(p+ β − 1)!

]
.

This in turn directly implies (5.30). 2

We may now resort to the standard “telescoping sum” argument to obtain the desired evalu-
ation complexity result.
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Theorem 5.4.4 Suppose that AS.2–AS.4 hold. Then the ARp-BS algorithm requires at
most

κARpBS
f(x0)− f low

ε
p+β
p+β−1

,

successful iterations and evaluations of {∇ixf}i=1,2,...,p and at most

κARpBS
f(x0)− flow

ε
p+β
p+β−1

(
1 + | log γ1|

log γ2

)
+ 1

log γ2
log

(
σmax
σ0

)
,

evaluations of f to produce a vector xε ∈ V such that ‖g(xε)‖V ′ ≤ ε, where

κARpBS = (p+ β − 1)!
η1σmin

min
[

(1− χ)(p+ β − 1)!
Lp + σmax

,
(p+ β − 1)!

Lp + σmax + (p+ β − 1)!θ

] p+β
p+β−1

.

Proof. Let k be the index of an iteration before termination. Then, using AS.3,
the definition of successful iterations, (5.28) and (5.30), and the fact that computing an
appropriate step is of constant order of complexity, we obtain that

f(x0)− flow ≥
k∑

i=0,i∈S
f(xi)− f(xi+1) ≥ η1

∑
i∈Sk

∆Tf,2(xi, si) ≥
|Sk|

κARpBS
ε

p+β
p+β−1 .

Thus
|Sk| ≤ κARpBS

f(x0)− flow

ε
p+β
p+β−1

,

for any k before termination. The first conclusion follows since the derivatives are only
evaluated once per successful iteration. Applying now Lemma 5.3.4 gives the second
conclusion.

2

Theorem 5.4.4 extends the result of [29] in the case β = 1 and some results of [55] to uniform
q smooth Banach spaces. We recall that Lp, `p and Wm,p are uniform q smooth spaces for
1 < p < ∞, and hence that Lemma 5.3.2 and Theorem 5.4.4 apply in these spaces. We
may also consider the finite dimensional case where IRn is equipped with the norm ‖x‖r =
(
∑n
i=1 |xi|r)

1
r . We know that, for all 1 < r < ∞, this is a uniform min(r, 2) smooth space,

and therefore Theorem 3.5 again applies. We could of course have obtained convergence of
the adaptive regularization algorithm in this case using results for the Euclidean norm and
introducing norm-equivalence constants in our proofs and final result, but this is avoided by
the approach presented here. This could be significant when the dimension is large and the
norm-equivalence constants grow.

Finally note that the evaluation complexity of Algorithm 5.2.1 discussed at the end of
Section 5.2 is interesting but irrelevant for the evaluation complexity of the ARp-BS algorithm,
because the former only evaluates the model mk without requiring any evaluations of f or its
derivatives beyond those already performed in ARp-BS.
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5.5 Discussions

We have proposed a generalized Hölder condition and a gradient-descent algorithm for min-
imizing polynomial functionals with a general convex regularization term in Banach spaces,
and have applied this result to show the existence of a suitable step in an adaptive regular-
ization method for unconstrained minimization in q smooth Banach spaces. We have also
analyzed the evaluation complexity of this latter algorithm and have shown that, under stan-
dard assumptions, it will find an ε-approximate first-order critical point in at most O

(
ε
− p+β
p+β−1

)
evaluations of the functional and its first p derivatives, which is identical to the bound known
for minimization in (finite-dimensional) Euclidean spaces. Since these bounds are known to
be sharp [52], so is ours.

It would be interesting to consider convergence to second-order points, but the infinite
dimensional framework causes more difficulties. Indeed, considering second-order derivatives
as in [55] is impossible since we do not know if a power of the norm is twice differentiable.
As an example, consider Lr([0, 1]) for p > 1, where

∇1
f

(‖f‖pLr([0,1])
p

)
= ‖f‖p−rLr([0,1])f |f |

r−2.

The right-hand side of the last equation involves an absolute value which is only differentiable
for specific values of r. It is interesting to study the case of r = 2 with the objective of
extending our analysis to the second order.





Chapter 6

Conclusions

6.1 Summary

In this thesis, we have presented several new results on the theory of unconstrained nonconvex
minimization. We now give a concise review of these past results and mention perspectives
arising from the exposed findings.

In the introduction, we gave an overview of nonlinear optimization methods. We have
provided a summary of old and new nonlinear optimization paradigms with a focus on min-
imization techniques that use second or higher order information. All these methods use
the objective function to adjust a specific parameter (linear search step, radius of the confi-
dence region, etc...). While reviewing the state of the art, we noticed that there is room for
improvement.

First, we pointed out that optimal second-order methods require involved subroutines
and that solving a linear system is not sufficient. To overcome this problem, we proposed
an algorithm that alternates between a regularized Newton method and a negative curvature
step. Since exact curvature information is required, we have developed efficient numerical
variants that avoid this pitfall. Developments related to this algorithm can be found in
Chapter 4.

Next, we considered higher-order methods that provide better convergence speed. Al-
though these methods are covered in various nonlinear optimization frameworks, they have
not yet been extended to infinite-dimensional Banach spaces. In our manuscript, we pro-
pose an extension of derivative tensor methods to the above case. Our algorithm follows the
standard line of analysis of adaptive regularized methods and solves the main difficulty by
developing a gradient descent based on a linear search suitable for a specific class of mini-
mization problems. For further developments and reasons for studying infinite-dimensional
algorithms, we refer the reader to Chapter 5.

We then turned to the study of Machine Learning minimization problems. By analyzing
the algorithms developed for the latter class of problems, we realized that the success of the
specialized algorithms come from the fact that they don’t use the objective function, don’t
need accurate derivative information such as Lipshitz gradient constant and still achieve con-
vergence. This empirical observation was also confirmed by an analysis of the conditions
required in the theory of both stochastic trust-region and probabilistic line search. We pro-
posed a new point-of-view on these methods by including them into the new class of Objective
Function Free Optimization techniques. We developed two significant contributions that we

159
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briefly resumes below

• We proposed a novel view on Adagrad [154, 88], a well-known OFFO algorithm as a
weighted trust-region method which allows the usage of curvature information. With
this new framework, we propose a scaling scheme that uses the iteration counter and
previously computed gradients. For both methods, we propose a stepsize rule resulting
from our theoretical analysis. More details can be found in Chapter 2.

• Since the arguments of the introduction clearly pointed out the advantages of OFFO
optimization techniques for noisy problems, and that no high-order derivative methods
exist, we fill the gap by providing the first tensor methods that do not use function value
while ensuring convergence. We achieve the same rate as previous standard adaptive
methods despite using significantly less information. These novel adaptive regularization
methods have been thoroughly analyzed in Chapter 3.

Numerical experiments show that the proposed methods, especially the OFFO algorithms,
are suitable for the noisy problems. Furthermore, all developed schemes are competitive with
previously well-established methods.

6.2 Perspectives of Further Research

We now discuss potential avenues for further research in the theory and practice of optimiza-
tion methods.

Better Theory of OFFO
The newly introduced OFFO paradigm for second-order or higher methods is still incom-

plete, and there are several possible directions for understanding and improving it. Here
are some avenues to explore. Obviously, a theoretical framework that justifies the success of
second-order OFFO methods in a stochastic setting1 is crucial to shed light on the advantages
and limitations of this approach. As an example for first-order OFFO algorithms, a theory
for the stochastic case has been established in several papers, see [77, 207, 141, 204] and the
references therein. Therefore, developing a theory of the stochastic case is a crucial milestone
for high-order OFFO methods. The development of other variants of adaptive OFFO regu-
larization techniques may also be considered. One that naturally comes to mind is an update
scheme where a component-wise update rule of the regularization is performed a la Adagrad
as presented in Algorithm 1.4.1.

Beyond Lipschitz Assumption
First, we should also mention that well-known algorithms such as gradient descent have

recently been revisited under assumptions that include the usual global Lipschitz continuity
of the gradient, see [220, 177]. For example, [220] considered an additional term that depends
on the norm of the gradient at the current iteration. It is then natural to extend this new
smoothness condition to second-order or pth-order minimization schemes. Another line of
development is to extend these high-order methods to a broader case, such as metrizable
spaces (using Bregman divergence or Wasserstein distance) to ensure better fidelity to the
geometry of the problem. What comes particular to mind is the class of quartic problems
[87].

1See Numerics of Chapter 3
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Further Developments of High-Order Tensors Methods
Although the theory of adaptive regularization algorithms is well established, practical

and efficient developments lag behind and have only recently been proposed in [47] for the
nonconvex case with p = 3. Further practical implementations may also require additional
theoretical developments to allow efficient use of inexact tensor approximations or better
exploitation of modern hardware infrastructure that allows data to be shared across multiple
devices.

As a final word, the work presented in this book has developed the theory of nonlinear
optimization. We have proposed a new view on old and new methods of nonconvex opti-
mization, and we firmly believe that the above analysis is of interest for the optimization
community and paves the way for the development of new algorithms and methods.





Appendix A

Image Classification with Neural
Nets

Chapter Abstract

In this chapter, we provide some brief explanations on image classification with deep
neural networks.

A.1 Neural Network Classification

Mean-Cross Entropy Loss The mean cross-entropy loss is a widely used loss function in
classification tasks, especially in the context of deep learning. Mathematically, given a set of
p samples with C classes, the mean cross-entropy loss is calculated as

L(x;A, Y ) def= −1
p

p∑
i=1

C∑
j=1

yi,j log(f(x, ai)). (A.1)

Where:

• p is the number of samples in the dataset.

• C is the number of classes.

• yi,j is the indicator function that equals 1 if the ith sample belongs to class j, and 0
otherwise.

• f(x, ai,j) is the predicted that the ith sample belongs to class j.

• A is the input dataset and Y its target labels.
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Appendix B

Datasets

Chapter Abstract

In this chapter, we provide an overview of the various datasets utilized for numerical
illustrations across different chapters of the thesis.

B.1 OPM-Datasets

We detail in this section the test nonlinear optimization problems of the freely available OPM
collection [110] in MATLAB. The collection comprises three distinct sets of problems: one set
with small-dimensional problems, a second set with medium-dimensional ones, and a third
set featuring ”larger-scale” ones. Below, we present the specifics of each set.

Problem n Problem n Problem n Problem n Problem n Problem n
argauss 3 chebyqad 10 dixmaanl 12 heart8ls 8 msqrtals 16 scurly10 10
arglina 10 cliff 2 dixon 10 helix 3 msqrtbls 16 scosine 10
arglinb 10 clplatea 16 dqartic 10 hilbert 10 morebv 12 sisser 2
arglinc 10 clplateb 16 edensch 10 himln3 2 nlminsurf 16 spmsqrt 10
argtrig 10 clustr 2 eg2 10 himm25 2 nondquar 10 tcontact 49
arwhead 10 cosine 10 eg2s 10 himm27 2 nzf1 13 tquartic 10
bard 3 crglvy 4 eigenals 12 himm28 2 osbornea 5 trigger 7
bdarwhd 10 cube 2 eigenbls 12 himm29 2 osborneb 11 tridia 10
beale 2 curly10 10 eigencls 12 himm30 3 penalty1 10 tlminsurfx 16
biggs5 5 dixmaana 12 engval1 10 himm32 4 penalty2 10 tnlminsurfx 16
biggs6 6 dixmaanb 12 engval2 3 himm33 2 penalty3 10 vardim 10
brownden 4 dixmaanc 12 expfit 2 hypcir 2 powellbs 2 vibrbeam 8
booth 2 dixmaand 12 extrosnb 10 indef 10 powellsg 12 watson 12
box3 3 dixmaane 12 fminsurf 16 integreq 10 powellsq 2 wmsqrtals 16
brkmcc 2 dixmaanf 12 freuroth 4 jensmp 2 powr 10 wmsqrtbls 16
brownal 10 dixmaang 12 genhumps 5 kowosb 4 recipe 2 woods 12
brownbs 2 dixmaanh 12 gottfr 2 lminsurf 16 rosenbr 10 yfitu 3
broyden3d 10 dixmaani 12 gulf 4 mancino 10 s308 2 zangwill2 2
broydenbd 10 dixmaanj 12 hairy 2 mexhat 2 sensors 10 zangwill3 3
chandheu 10 dixmaank 12 heart6ls 6 meyer3 3 schmvett 3

Table 1: The OPM small test problems and their dimension

B.2 Deep Learning Datasets
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Problem n Problem n Problem n Problem n Problem n Problem n
arglina 400 crglvy 400 dixmaanj 600 fminsurf 400 ncb20c 500 tcontact 400
arglinb 50 cube 500 dixmaank 600 freuroth 500 nlminsurf 400 tquartic 500
arglinc 50 curly10 500 dixmaanl 600 helix 500 nondquar 500 tridia 500
argtrig 50 deconvu 51 dixon 500 hilbert 500 nzf1 520 tlminsurfx 400
arwhead 500 dixmaana 600 dqrtic 500 hydc20ls 99 penalty1 500 tnlminsurfx 400
bdarwhd 500 dixmaanb 600 edensch 500 indef 500 penalty2 100 vardim 500
brownal 500 dixmaanc 600 eg2 400 integreq 500 penalty3 500 wmsqrtals 400
broyden3d 500 dixmaand 600 eg2s 400 lminsurf 400 powellsg 500 wmsqrtbls 400
broydenbd 500 dixmaane 600 eigenals 110 msqrtals 400 powr 500 woods 500
chandheu 500 dixmaanf 600 eigenbls 110 msqrtbls 400 rosenbr 100
chebyqad 150 dixmaang 600 eigencls 110 morebv 500 sensors 100
clplatea 400 dixmaanh 600 engval1 500 ncb20 500 scosine 500
clplateb 400 dixmaani 600 extrosnb 500 ncb20b 500 spmsqrt 997

Table 2: The OPM medium-size test problems and their dimension

Problem n Problem n Problem n Problem n Problem n
arwhead 2000 dixmaand 2400 eg2 1600 integreq 2000 powellsg 2000
bdarwhd 2000 dixmaane 2400 eg2s 1600 lminsurf 4900 powr 2000
broyden3d 2000 dixmaanf 2400 eigenals 2550 msqrtals 1600 rosenbr 2000
broydenbd 2000 dixmaang 2400 eigenbls 2550 msqrtbls 1600 spmsqrt 1498
clplatea 4900 dixmaanh 2400 eigencls 2550 morebv 5000 tcontact 4900
clplateb 4800 dixmaani 2400 engval1 2000 ncb20b 2000 tquartic 2000
crglvy 4000 dixmaanj 2400 extrosnb 2000 ncb20c 2000 tridia 2000
cube 2000 dixmaank 2400 fminsurf 4900 nlminsurf 4900 tlminsurfx 4900
curly10 1000 dixmaanl 2400 freuroth 2000 nondquar 2000 tnlminsurfx 4900
dixmaana 2400 dixon 2000 helix 2000 nzf1 2600 vardim 2000
dixmaanb 2400 dqrtic 2000 hilbert 2000 penalty1 2000 woods 2000
dixmaanc 2400 edensch 2000 indef 2000 penalty3 2000

Table 3: The OPM largish test problems and their dimension

Dataset Classes Images Image Size Channels Train Size Test Size Comments Creator

CIFAR-10 10 60,000 32x32 RGB 50,000 10,000 Common benchmark
A. Krizhevsky

et al.1

CIFAR-100 100 60,000 32x32 RGB 50,000 10,000
Like Cifar-10,

more challenging
A. Krizhevsky

et al.2

SVHN 10 604,388 32x32 RGB 73,257 26,032 House number [218]
Fashion
MNIST 10 70,000 28x28 Grayscale 60,000 10,000 Clothing items Zalando SE[209]

Table 4: Characteristics of Deep Learning Datasets



Bibliography

[1] N. Agarwal, N. Boumal, B. Bullins, and C. Cartis. Adaptive regularization with cubics
on manifolds. Mathematical Programming, 188(1):85–134, 2020.
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nakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J.
Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Pe-
tersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Bergham-
mer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and
D. Hassabis. Highly accurate protein structure prediction with AlphaFold. Nature, 596
(7873):583–589, July 2021.

[132] C. T. Kelley and E. W. Sachs. Quasi-newton methods and unconstrained optimal
control problems. SIAM Journal on Control and Optimization, 25(6):1503–1516, 1987.

[133] L. Kfir, Y. Alp, and C. Volkan. Online adaptive methods, universality and acceleration.
In Advances in Neural Information Processing Systems, volume 31, 2018.
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Titre : Approches du second ordre de d'ordre élevées pour l'optimisation nonconvex avec variantes sans évaluation de la fonction objective
Mots clés : Optimisation nonconvexe, Méthodes d'ordre elevées, Analyse numérique, Méthodes second ordre, calcul hautes performances
Résumé : Même si l'optimisation non linéaire semble (a priori) être un domaine mature, de nouveaux schémas de minimisation sont proposés ou
redécouverts pour les problèmes modernes à grande échelle. A titre d'exemple et en rétrospective de la dernière décennie, nous avons vu une vague
de méthodes du premier ordre avec différentes analyses, malgré le fait que les limitations théoriques bien connues de ces méthodes ont été
discutées en profondeur auparavant.
Cette thèse explore deux lignes principales de recherche dans le domaine de l'optimisation non-convexe avec
un accent particulier sur les méthodes de second ordre et d'ordre supérieur.
 Dans la première série de travaux, nous nous concentrons sur les
algorithmes qui ne calculent pas les valeurs des fonctions et opèrent sans connaissance d'aucun paramètre, car les méthodes du premier ordre les
plus adaptées pour les problèmes modernes apartiennent à cette dernière catégorie. Nous commençons par redéfinir l'algorithme bien connu
d'Adagrad dans un cadre de région de confiance et utilisons ce dernier paradigme pour étudier deux classes d'algorithmes OFFO (Objective-Free
Function Optimization) déterministes du premier ordre. Pour permettre des algorithmes OFFO exacts plus rapides, nous proposons ensuite une
méthode de régularisation adaptative déterministe d'ordre p qui évite le calcul des valeurs de la fonction. Cette approche permet de retrouver la
vitesse de convergence bien connu du cadre standard lors de la recherche de points stationnaires, tout en utilisant beaucoup moins d'informations.
Dans une deuxième série de travaux, nous analysons les algorithmes adaptatifs dans le cadre plus classique où les valeurs des fonctions sont utilisées
pour adapter les paramètres. Nous étendons les méthodes de régularisation adaptatives à une classe spécifique d'espaces de Banach en développant
un algorithme de descente du gradient de Hölder. En plus, nous étudions un algorithme de second ordre qui alterne entre la courbure négative et les
étapes de Newton avec une vitesse de convergence quasi optimal. Pour traiter les problèmes de grande taille, nous proposons des versions sous-
espace de l'algorithme qui montrent des performances numériques prometteuses.
Dans l'ensemble, cette recherche couvre un large éventail de
techniques d'optimisation et fournit des informations et des contributions précieuses aux algorithmes d'optimisation adaptatifs et sans paramètres
pour les fonctions non convexes. Elle ouvre également la voie à des développements théoriques ultérieurs et à l'introduction d'algorithmes
numériques plus rapides.

Title: Second Order and High Order Approaches for Nonconvex Optimization with Objective Function-Free Algorithms
Key words: Nonconvex Optimization, High-order methods, Numerical Analysis, Second order methods, High performances calculus
Abstract: Even though nonlinear optimization seems (a priori) to be a mature field, new minimization schemes are proposed or rediscovered for
modern large-scale problems. As an example and in retrospect of the last decade, we have seen a surge of first-order methods with different
analysis, despite the fact that well-known theoretical limitations of the previous methods have been thoroughly discussed.
This thesis explores two
main lines of research in the field of nonconvex optimization with a narrow focus on second and higher order methods.
In the first series, we focus
on algorithms that do not compute function values and operate without knowledge of any parameters, as the most popular currently used first-
order methods fall into the latter category. We start by redefining the well-known Adagrad algorithm in a trust-region framework and use the latter
paradigm to study two first-order deterministic OFFO (Objective-Free Function Optimization) classes. To enable faster exact OFFO algorithms, we
then propose a pth-order deterministic adaptive regularization method that avoids the computation of function values. This approach recovers the
well-known convergence rate of the standard framework when searching for stationary points, while using significantly less information.
 In the
second set of papers, we analyze adaptive algorithms in the more classical framework where function values are used to adapt parameters. We
extend adaptive regularization methods to a specific class of Banach spaces by developing a Hölder gradient descent algorithm. In addition, we
investigate a second-order algorithm that alternates between negative curvature and Newton steps with a near-optimal convergence rate. To handle
large problems, we propose subspace versions of the algorithm that show promising numerical performance.
Overall, this research covers a wide
range of optimization techniques and provides valuable insights and contributions to both parameter-free and adaptive optimization algorithms for
nonconvex functions. It also opens the door for subsequent theoretical developments and the introduction of faster numerical algorithms.
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