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CHAPTER 1. PREFACE

1.1 Context

For the past decade, Artificial Intelligence (AI) has been at the forefront of a potential eco-

nomic revolution. This field can be defined as a collection of theories and techniques

that aim to perceive, synthesize, and infer information from machines [Wik23]. While AI

initially fell short of industry expectations, it is now becoming increasingly prevalent in

our daily lives through the use of facial recognition software, chatbots, automatic speech

recognition, social media filters, and more.

The focus of this work lies within the subdomain of AI known as Computer Vision (CV),

which deals with the processing of images or videos obtained from various sensors.

Specifically, this work is focused on Deep Learning (DL) methods, where AI is imple-

mented using artificial neural networks.

A Feedforward Neural Network (NN) consists of interconnected layers of neurons that per-

form computations. These computations begin with an input, such as images or videos in

the case of CV, and pass through the NN to produce an output. To enable the network to

perform a specific task, its neurons are trained to provide outputs that are relevant to that

particular task. Examples of such tasks include image recognition (e.g., recognizing cats

or dogs), image generation (e.g., creating a fictional Monet painting of a Star Wars space-

ship), action spotting (e.g., detecting the timestamp at which a goal is scored in a football

match), and various other tasks like action recognition, action localization, depth predic-

tion, facial recognition, reidentification, and object detection.

To train a NN in a supervised manner to solve a specific task such as image classification of

cats and dogs, a labeled dataset is used. This dataset contains two elements: A collection

of input data, the images, and the corresponding labels associated with that data, e.g. if

the image contains a dog or a cat.

Since a NN trained is specialized to the specific task it is taught on, it would be necessary

to train an entirely new network for each different task one wishes to solve. However,

even though the final tasks may be different, two NNs trained, for example, to solve action

spotting and action recognition, respectively, are likely to learn similar features in some

layers of their neural architecture, such as edges, object structures, the arrow of time, or

interactions.

Building upon this observation, a subfield of CV has emerged to explore methods for pre-

training a NN. Pretraining involves training a neural network to acquire a general repre-

sentation in its layers, which can then be utilized as part of a broader network that is spe-

cialized in a particular task. By pretraining a network to learn a general representation,

subsequently, specialized networks can focus on learning task-specific features without

the need to learn general semantic information from scratch.

This approach significantly reduces the cost of solving tasks for three main reasons:

6



CHAPTER 1. PREFACE

1. Pretraining is performed once and the learned backbone can be reused for subse-

quent specialized training sessions.

2. Specializing a pretrained network for a specific task can be accomplished through

faster training.

3. Less labeled data is required for specialized tasks since the pretrained model has

already learned some general concepts [CTM+21].

To achieve the most general representation for a pretrained network, the task chosen for

pretraining should be as general as possible. This can be accomplished through two dif-

ferent approaches: the type of objective used for pretraining and the amount and quality

of data seen during the pretraining process.

Regarding the type of objective, two general directions are commonly pursued: super-

vised learning (SL) and self-supervised learning (SSL). In SL, the network has access to

labeled data for a given task and is pretrained by learning to predict these labels. On the

other hand, SSL involves providing unlabeled data and designing a pretext task to provide

supervision. This pretext task leverages the entire input or a portion of it to create an as-

sociated label. For example, one can rotate images [GSK18] or videos [JT18] by a certain

angle and train a network to predict the rotation angle as the output. After pretraining,

the task-specific part of the network, usually the last layer, is discarded, while the rest is

retained for specializing in other tasks.

Regardless of the learning paradigm, a larger dataset generally leads to better learning

of a general representation [DBK+21, ODM+23]. Having more data reduces bias toward

the data used for training and helps to generalize to unseen data by learning concepts

contained in a larger dataset.

While SSL has demonstrated its superiority over SL in producing general features for text-

based tasks [DCLT19], its effectiveness in image and video tasks is still being researched.

However, the gap between SSL and SL pretraining has narrowed over the last few years,

and SSL shows better generalizability to unseen data [CTM+21, FFX+21, TSWW22]. Fur-

thermore, obtaining labeled data can be extremely expensive, both in terms of financial

costs for hiring annotators and time costs for datasets containing a large number of im-

ages, or requiring expert annotation for domains like medical or satellite data. Therefore,

SSL appears to be the most promising approach for learning general representations for

NNs at scale [ODM+23], as it is data-efficient and demonstrates better generalization to

unseen data.

Our work lies in this context and proposes original SSL approaches for both image and

video modalities. It takes part in a several years collaboration between CEA List, more

specifically the Laboratoire de Vision et d’Apprentissage pour l’analyse de scène (LVA),

and Normandie Université, more specifically the Laboratoire d’Informatique, de Traite-

7



CHAPTER 1. PREFACE

ment de l’Information et des Systèmes (LITIS). Both laboratories are interested in image

and video analysis for various applications via Deep Learning approaches and success-

fully led a previous PhD thesis to completion defended by Guillaume Lorre on the subject

of self-supervised representation learning for video analysis.

Given that videos are more complex than images, and DL methods already consume

significant computational resources for images, our work also focuses on developing

resource-efficient methods for pretraining.

1.2 Structure of the manuscript and Contributions

1.2.1 Structure of the manuscript

This Manuscript has been organized to show our work as follows.

• Chapter 1: We present the context of this thesis, the structure of the manuscript and

the contributions.

• Chapter 2: We introduce Representation Learning (RL) in the context of Deep

Learning for Computer Vision from the basics to Machine Learning to why pretrain-

ing matters and how Self-Supervised Learning (SSL) is an interesting approach. It

also raises the different challenges faced by the different SSL families. Finally, the

different downstream tasks used in this work are presented.

• Chapter 3: We dwelve into the related work of SSL to highlight the consequent re-

search that has been produced in SSL for Images and Videos but also the remaining

challenges and issues that necessitate further studies.

• Chapter 4: We introduce Similarity Contrastive Estimation (SCE) a Soft Contrastive

Learning objective to perform Image RL. It bridges the gap between CL and Rela-

tional Learning (ReL) to consider relations between negative pairs. We show theo-

retically that our approach aims to solve both objectives and empirically prove the

superiority of our approach over the two.

• Chapter 5: We extend SCE to perform Video RL and more specifically to learn one

output representation for a short clip of a few seconds. In this study, we showed that

for videos, our approach is superior to only CL or ReL, especially for generalization.

• Chapter 6: We present COMEDIAN, a SSL and Knowledge Distillation (KD) ap-

proach to perform Video RL of transformers and more specifically to output several

local temporal representations in a long clip of half or one minute. It is evaluated

on the Action Spotting task. We showed that not only pretraining a transformer is

necessary for this task but it also considerably reduced time convergence.
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• Chapter 7: We conclude our work and offer perspectives for future work and re-

search directions.

1.2.2 Contributions

The contributions presented in this thesis led to the following peer-reviewed and pub-

lished works:

• International Conferences:

– Julien Denize, Jaonary Rabarisoa, Astrid Orcesi, Romain Hérault, Stéphane

Canu. "Similarity Contrastive Estimation for Self-Supervised Soft Contrastive

Learning". In the Proceedings of the IEEE/CVF Winter Conference on Applica-

tions of Computer Vision (WACV), 2023. [DRO+23]

• International Journals:

– Julien Denize, Jaonary Rabarisoa, Astrid Orcesi, Romain Hérault. "Similarity

Contrastive Estimation for Image and Video Soft Contrastive Self-Supervised

Learning". In Machine Vision and Applications (MVAP), 2023. [DROH23]

– Adrien Maglot, Astrid Orcesi, Julien Denize, Quoc-Cuong Pham. ”Individ-

ual locating of soccer players from a single moving view”. In Sensors, 2023.

[MODP23]

• National Conferences:

– Julien Denize, Jaonary Rabarisoa, Astrid Orcesi, Romain Hérault and Stéphane

Canu. "Estimation Contrastive de la Similarité pour un Apprentissage Flou

Auto-Supervisé". In the Conférence sur l’Apprentissage automatique (CAp),

2022. [DRO+22]

• International challenges and Workshops:

– Julien Denize, Mykola Liashuha, Jaonary Rabarisoa, Astrid Orcesi, Romain

Hérault. ”Long-Context Transformer Pretraining Through Spatio-Temporal

Knowledge Distillation for Action Spotting”. Action Spotting SoccerNet Chal-

lenge 2023, 5th out of 12 teams.

– Julien Denize, et al. "COMEDIAN: Self-Supervised Learning and Knowledge

Distillation for Action Spotting using Transformers". IEEE/CVF Winter Confer-

ence on Applications of Computer Vision Workshops (WACVW), 2024.[DLR+24]
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• Under review:

– Anthony Cioppa, Julien Denize, et al. "SoccerNet 2023 Challenges Results".

arXiv, abs/2309.06006, 2023. [CGS+23]

It also led to technical contributions some of which were made publically available:

• SCE [Den23a]: Repository to reproduce SCE results on images. Available on

GitHub1.

• Eztorch [Den23b]: library to perform SSL learning and finetuning to downstream

tasks. Our 3 main academic contributions are reproducible thanks to this repo.

Available on GitHub2.

• Torchaug [Den23c]: Library to compute efficient CPU/GPU and per-

sample/batched data augmentations. Available on GitHub3.

1SCE repository: https://github.com/CEA-LIST/SCE.
2Eztorch repository: https://github.com/juliendenize/eztorch.
3Torchaug repository: https://github.com/juliendenize/torchaug.
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CHAPTER 2. INTRODUCTION TO REPRESENTATION LEARNING

2.1 Machine Learning basics

2.1.1 What does learning mean in AI ?

Machine learning (ML) is a set of algorithms that aim to learn from data. To design such

algorithms, it is necessary to understand the concept of "learning."

"A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P if its performance at tasks in T, as

measured by P, improves with experience E." - Tom Mitchell [Mit97].

This definition provides a general understanding of learning for a computer program. In

practice, when designing machine learning algorithms, one must determine the task, ex-

perience, and performance measure to be used.

In the subsequent subsections, we will formally define general concepts of machine learn-

ing algorithms applied to Computer Vision (CV) focusing specifically on our work.

2.1.2 Datasets

Dataset

Train Dataset
Test Dataset

Uniform subsampling

Train Evaluate

Machine
Learning 
Algorithm

Figure 2.1: A dataset is split into train and test sets. The training set is used to train a Machine
Learning algorithm evaluated on the test set.

ML algorithms operate on examples, also referred to as input data, to produce an output

and solve a specific task. An example is represented as a d-dimensional vector, denoted

as x ∈ Rd , where d represents the number of features.

A dataset is a collection of examples. A dataset consisting of n examples, each of dimen-

sion d , can be described as a matrix X ∈ Rn,d . Each example can be associated with a

vector label of dimension m, denoted as y ∈ Rm , and all labels can be represented as a

matrix Y ∈Rn,m .
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Typically, the dataset (X,Y) is divided into at least two splits: the training split

(X(tr ai n),Y(tr ai n)) and the test split (X(test ),Y(test )). This separation is illustrated in Fig. 2.1.

The ML model is first trained on the training split and then evaluated on the test split.

The purpose of this split is to study the generalization capability of the ML algorithm to

unseen data. The evaluation and associated metrics depend on the specific task for which

the algorithm is designed.

In this work, our focus is on tasks within the CV domain, specifically image and video

analysis, therefore the datasets contain images or videos. We do not consider audio for

videos and solely concentrate on the visual aspect. Consequently, videos can be viewed

as sequences of consecutive images. In Computer Science (CS), images are represented

as two-dimensional arrays of pixels, which are finite discrete quantities that describe the

local intensity of an image. In the context of images and videos, each pixel is typically con-

sidered as one feature. Thus, a full HD RGB image would have 3×1920×1080 = 6,220,800

features, and a full HD video with 10 frames would have 62,208,000 features.

Figure 2.2: RGB Pixel art of Nyan Cat associated to its corresponding red pixel value grid.

An image is commonly represented in the Red Green Blue (RGB) format, as shown in

Fig. 2.2, which utilizes three channels to represent the visible spectrum. Each pixel is

associated with three values, one for each of the red, green, and blue channels. By lever-

aging the additive color property, a single pixel can represent a wide range of colors. Each

value for each channel is encoded using one byte, allowing for 256 different values. Con-

sequently, a pixel can describe 2563 = 1,677,216 different colors.

Concerning the labels, they can be broadly categorized into two categories:

• discrete labels: They are labels that can only take a discrete number of values. They

are used for classification tasks such as image recognition, image segmentation,

video action recognition...

13
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• continuous labels: They are labels that can take values from a continuous distribu-

tion. They are used for regression tasks such as object detection, action localization

and detection...

2.1.3 Machine Learning frameworks

ML algorithms can be classified into two main frameworks: supervised learning and un-

supervised learning (UL). In SL, the dataset is labeled, and the algorithm is trained to as-

sociate each input with its corresponding label or target value. On the other hand, UL

involves learning from unlabeled data, where the algorithm aims to extract structures or

patterns from the dataset, such as probability distributions or clusters.

In a supervised setting, the goal of ML is to find a function fθ :X→Y, parametrized by a

set of parameters θ, that maps input data from X to appropriate labels in Y.

x1

x2

...

xd

θ1

θ2

...

θd

o = θTx ŷ =
{

1, if o ≥ 0

0, otherwise

Figure 2.3: Perceptron with parameters θ and the threshold 0 that receives x as input.

Let’s consider the example of a supervised ML algorithm called the Perceptron [SB58],

as illustrated in Fig. 2.3. The Perceptron is used for binary classification, which involves

assigning one of two different labels (0 or 1) to each input data point. The goal of the

Perceptron is to associate each example xi with its corresponding label yi using a function

fθ that is parameterized by a set of parameters θ= (θ1,θ2, ...,θd ), where d is the dimension

of the input features X, along with a threshold ε. The output ŷi for a given input xi is

computed using the following operations:

oi = fθ(xi ) = θTxi =
d∑

j=1
θ j xi , j , (2.1)

ŷi =
1, if oi ≥ ε

0, otherwise
. (2.2)

The output ŷi is then used as the predicted label by the perceptron model.
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2.1.4 Risk minimization

In previous sections, we mentioned what an ML supervised algorithm is used for. Now we

will formally define what they seek to learn.

Recall that supervised ML algorithms seek to find a function, also known as a hypothe-

sis or model, fθ : X→ Y, parameterized by θ ∈ Θ. Depending on the assumptions about

the parameters θ, there can be numerous possible functions, and the set of all possible

functions is called the hypothesis space H = { fθ|θ ∈Θ}.

The goal of ML is to find the best fθ̂ from H . However, to define what constitutes the

best model, we need to introduce the concepts of risk and loss function. The loss function

L , denoted as L
(

fθ̂ (x) , y
)
, where

(
x , y

) ∈ (X,Y), quantifies the discrepancy between the

predicted output fθ̂ (x) and the actual target output y .

The risk, denoted as R
(

fθ
)
, is the expected value of the loss function over the input space

X and the output space Y, and it can be expressed as:

R
(

fθ
)= E[

L
(

fθ(x), y
)]= ∫

L
(

fθ(x), y
)

,∂P
(
x , y

)
. (2.3)

Since we do not have access to the true distribution (X,Y) of inputs and outputs, but only

to observed data stored in datasets (X,Y) as defined in Sec. 2.1.2, the risk is estimated by

the empirical risk, which averages the loss function over the training set as follows:

Remp
(

fθ
)= 1

ntr ai n

ntr ai n∑
i=1

L
(

fθ
(

x (tr ai n)
i

)
, y (train)

i

)
. (2.4)

The Empirical Risk Minimization (ERM) principle [Vap91] states that the learning algo-

rithm should choose fθ̂ that minimizes the empirical risk:

fθ̂ = argmin
fθ∈H

Remp ( fθ). (2.5)

Therefore, the goal of ML is to solve the optimization problem defined in Equation 2.5.

In practice, we are interested in having a model that is capable of generalizing to unseen

data. Thus, the ERM principle is applied to the testing error, or generalization error, which

averages the loss on the test dataset. Consequently, the best model is selected based on

its ability to not only fit the training data but also perform well on new data.

2.1.5 Capacity

The capacity of an ML algorithm refers to its ability to represent patterns or relationships

in the data. For the Perceptron, its capacity is determined by the number of parameters
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it has. Models with high capacity are capable of learning complex patterns in the training

data. However, when the ML algorithm becomes too specialized on the training set, it may

result in overfitting. Overfitting occurs when the model learns irrelevant features specific

to the training data, leading to lower performance on unseen data which is estimated on

a testing set.

Figure 2.4: Relationship between capacity and error illustrated by [GBC16]. Underfitting happens
when the model has low capacity so it cannot fit properly training data and has both high training
and generalization error, the latter estimated on a testing set. Overfitting happens when the model
has too much capacity that leads to learning irrelevant training features that minimize training
error but increase generalization error causing a wide generalization gap.

On the other hand, a low capacity can lead to underfitting, where the algorithm is unable

to learn patterns that are complex enough to solve the task effectively, both on the training

set and the test set. The relationship between capacity and fitting regimes is illustrated in

Fig. 2.4.

2.1.6 Regularization

Regularization is a technique used to prevent overfitting of models and improve their

generalization to unseen data. It introduces a penalty term P (θ), with θ the model pa-

rameters, in addition to the loss function L
(

fθ (x)
)
, to encourage the Machine Learning

algorithm to learn simpler and more general models from a global objective J
(

fθ (x) ,θ
)

such as:

J
(

fθ (x) ,θ
)=L

(
fθ (x)

)+P (θ). (2.6)

The most common form of regularization is known as L2 regularization, Ridge regression,

or Weight Decay (WD) [KH91]. It involves adding the L2 norm of the model parameters to

the loss function such as:

Jwd
(

fθ (x) ,θ
)=L

(
fθ (x)

)+λ|θ|22, (2.7)
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where λ is a parameter that controls the strength of the regularization. A higher value of

λ corresponds to a stronger regularization.

2.2 Deep Learning

2.2.1 Neuron

In Sec. 2.1.3, we defined the Perceptron model. In DL, a neuron is based on the Perceptron

model. A neuron is composed of weights W = (W1, . . . ,Wd ) ∈Rd , as well as a bias parame-

ter b ∈ R. Sometimes, the bias parameter is denoted as W0 and combined with the other

parameters in W′′′ = (W0, . . . ,Wd ).

The neuron performs two mathematical operations. First, it multiplies its weights with

the input and adds the bias. Then, it applies an activation function to produce an out-

put. In the case of the Perceptron, as defined in Sec. 2.1.3, the activation function is a

characteristic function that returns 1 for all values greater than 0.

2.2.2 Multi-Layer Perceptrons

x1

x2

x3

xd

...

h(1)
1

h(1)
2

h(1)
3

h(1)
4

h(1)
m

...

h(2)
1

h(2)
2

h(2)
3

h(2)
4

h(2)
m

...

h(3)
1

h(3)
2

h(3)
3

h(3)
4

h(3)
m

...

ŷ1

ŷ2

ŷk

...

input
layer

hidden layers

output
layer

Figure 2.5: Multi-Layer Perceptron composed of an input layer, three hidden layers, and an out-
put layer. It contains fully connected layers, therefore, neurons of each layer are connected to all
neurons of the previous layer and all the neurons of the next layer.

Feedforward NNs are composed of stacked layers of neurons. The most basic type of NN

is called a Multi-Layer Perceptron (MLP) [Mur91], which consists of Fully Connected (FC)

layers as illustrated in Fig. 2.5. The neural network is structured into three types of layers:

the input layer, the hidden layers, and the output layer.
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The input layer is the initial input data that is fed to the hidden layers. The hidden layers,

as the name suggests, are intermediate layers that perform computations on their input

representation. Each hidden layer incorporates weights, bias, and an activation function

for each of their neurons. Activation functions introduce non-linearity into the network,

allowing it to learn and model complex relationships between inputs and outputs. Finally,

the output layer produces the final representation or prediction based on its weights and

activation function.

For hidden layers, the main used activation functions are Rectified Linear Unit (ReLU)

and its variants (Leaky ReLU, PReLU, GeLU, ...) but others have been proposed such as

Tanh, and Threshold, ... For the output layer, the activation function depends on the task

at hand, for binary or multi-label classification the Sigmoid, for multi-class classification

the Softmax ...

Each layer of a NN can be viewed as a function that is parameterized by the weights or

parameters contained within its neurons. The combination of these functions across all

layers forms the complete NN, allowing it to transform input data into desired output

predictions.

More formally if each layer l (i ) is parametrized by its weights W(i ) and bias b(i ), and acti-

vation function a(i ) the forward pass of a neural network of n layers denoted fθ(x) is the

following:

h(0) = x, (2.8)

h(i ) = a(i )(W(i )h(i−1) +b(i )), i = 1, . . . ,n, (2.9)

fθ(x) = ŷ = h(n), (2.10)

with θ is the set of all W(i ) and b(i ) parameters.

2.2.3 Gradient Descent

During the training process, gradient descent [C+47] is commonly used to optimize the

neural network’s parameters. This optimization algorithm relies on backpropagation

[RHW86] and the chain rule from calculus to compute the gradients of the loss function

concerning the parameters using the entire dataset. By iteratively updating the parame-

ters in the direction of the steepest descent, the NN gradually improves its performance

and minimizes the loss. The parameters are updated by subtracting a fraction of the gra-

dients from the current parameter values, multiplied by a learning rate. The learning rate

determines the step size taken in the parameter update. This process is repeated itera-

tively until convergence or a predefined stopping criterion is met. It’s important to note

that NNs being non-linear functions can have multiple local minima, and convergence to

the global minimum is not guaranteed.
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In practice, using the entire training dataset for each parameter update is often compu-

tationally expensive and not feasible due to limited computational resources. Therefore,

two different variants of gradient descent have been developed: online gradient descent

and batch gradient descent.

Online gradient descent [RM51], computes the gradient and updates the parameters for

each training example, one example at a time. This approach introduces more random-

ness into the parameter updates but can converge faster and is suitable for large datasets.

Algorithm 1 Batch gradient descent

1: Randomly initialize W(i )
0 and b(i )

0 for i ∈ {1, . . . ,n}
2: for t ∈ {1, . . . ,ni ter } do
3: Select a batch B from

(
X(tr ai n),Y(tr ai n)

)
shuffled

4: Update W(i )
t using the formula W(i )

t = W(i )
t−1 − λ

#B

∑
(x ,y)∈B

∂L ( fθ(x),y)

∂W(i )
t−1

for i ∈ {1, . . . ,n}

5: Update b(i )
t using the formula b(i )

t = b(i )
t−1 − λ

#B

∑
(x ,y)∈B

∂L ( fθ(x),y)

∂b(i )
t−1

for i ∈ {1, . . . ,n}

6: end for

Batch gradient descent, also known as vanilla gradient descent, uses a batch of several

samples from the training dataset in each iteration to compute the gradient and update

the parameters. Its pseudo-code is in Algorithm 1 with the standard stochastic gradient

descent optimizer that shuffles the dataset before training. It provides a more accurate

estimation of the gradients compared to online gradient descent but can be computa-

tionally expensive, especially for large batches. Several optimizers have been proposed

to improve convergence such as Adam [KB14] or LAMB [YLR+19] and LARS [YGG17a] for

large batch size.

Batch gradient descent suffers from instabilities, especially in deep architectures. Up-

dates from gradient computation can be either very small causing vanishing gradients

which prevent a good update or very large causing exploiding gradients which prevent

convergence to a local optima.

2.2.4 Convolutional Networks

Dense MLPs have certain limitations that hinder their performance in certain scenarios.

One significant drawback is its inefficiency when dealing with high-dimensional input.

As the input dimensionality increases, the computational requirements of the MLP grow

substantially, making it computationally expensive and challenging to scale. This limi-

tation can be particularly problematic in applications where large amounts of data with

high-dimensional features need to be processed promptly. This is particularly relevant in

this work in which we dealt with images and videos that contain lots of pixels.

Another limitation of MLP is its inability to effectively leverage the inherent structure of

certain types of data, such as grids in images. Traditional MLPs treat input data as flat
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vectors, disregarding the spatial relationships and patterns that may exist within the data.

For example, in image data, neighboring pixels often hold valuable information that con-

tributes to understanding the content and context of the image. However, MLPs fail to ex-

ploit this structural information, resulting in suboptimal performance for image-related

tasks.

Convolutional Neural Networks (CNNs) are neural networks that use convolution in place

of general matrix multiplication in at least one of their layers [GBC16]. CNNs deal with

data arranged according to a grid by applying convolution on input data using different

filters or kernels and pass the result to subsequent data. The convolution is defined for a

two-dimensional input I and a two dimensional kernel K as:

(K∗ I)i , j =
∑
m

∑
n

Im,nKi−m, j−n . (2.11)

Figure 2.6: Cross-correlations of a 3×4 input with a 2×2 kernel. Figure from [GBC16].

It holds the following properties: commutativity, distributivity, and associativity. In prac-

tice CNNs do not use convolutions but cross-correlations, illustrated in Fig. 2.6, and de-

fined as :

(K∗ I)i , j =
∑
m

∑
n

Ii+m, j+nKm,n . (2.12)

Cross-correlations lose the commutativity property that is not required to train a NN

whilst making the operation more efficient. Later we refer to cross-correlations as con-

volutions as it is standard in the field of this work.
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Over MLPs, CNNs have the following advantages:

• Sparse connectivity: The kernels are smaller than the input which requires fewer

parameters and connections.

• Parameter sharing: The kernels perform a sliding window over the input meaning

the same parameters are used on different locations.

• Equivariance to translation: By definition, convolutions are equivariant to trans-

lation meaning that applying a translation to the input results in an output after

convolution with the same translation.

Figure 2.7: Filters learned by successive convolutional layers by AlexNet [KSH12].

Deep CNNs contain stacks of convolutional layers followed by at least one final fully con-

nected layer to make the predictions of the network. Its filters learn more and more com-

plex patterns as the depth grows from detecting edges to body parts, and flowers as illus-

trated in Fig. 2.7. Convolutions with stride which are generally followed by pooling have

an output at lower resolution than the input per construction which permits the final MLP

to use fewer features.

For the rest of this section, we will briefly introduce the main architectures that paved the

way for current CNN architectures.

LeNet

LeNet [LBBH98], illustrated in Fig. 2.8, was designed to deal with handwritten bank checks

and has paved the way to the basics of Deep Learning. It is composed of several con-

volutional layers that are followed by an averaged pooling and a non-linearity to extract

features used by MLP layers to perform digit classification.

ALexNet

AlexNet [KSH12], illustrated in Fig. 2.9, is one of the first Deep Neural Network (DNN)

and the origin of the Deep Learning era as it won the ImageNet [DDS+09] 2012 compe-
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Figure 2.8: LeNet architecture [LBBH98].

Figure 2.9: AlexNet [KSH12] architecture.

tition with a large margin in comparison with hand-crafted features coupled with ML al-

gorithms. It extended LeNet by using larger images and wider convolutions as well as

dropout [SHK+14] to regularize the network.

Blocks

Figure 2.10: VGG [SZ15] architecture. Each block maintains a resolution.

Based on this success, subsequent CNNs were built to improve results by stacking several

Convolutional Blocks containing several convolutional layers that maintain the resolution

within each block such as VGG [SZ15] illustrated in Fig. 2.10. This allows to perform more

subsequent convolutions as the resolution does not decrease too fast.
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ResNet

As CNNs grew deeper, some training instabilities appeared such as vanishing gradients

and exploding gradients. To avoid this phenomenon, several approaches were proposed

such as having several classification layers at different locations in the network [SLJ+15].

layer 1 a(~x)

activation

layer 2 ⊕
add

F (~x)+~x

a(~x)

activation
~x

skip connection
(identity)

~x

F (~x)

Figure 2.11: Residual connection [HZRS16].

The approach that has been most widely used, even in modern architectures, is imple-

menting residual connection, or shortcut connection that concatenate the output of a

block with its input as illustrated in Fig. 2.11. In particular, it is at the core of the widely

used ResNet architecture [HZRS16].

Other image architectures

Newer architectures since ResNet have been proposed such as EfficientNet [TL19],

DenseNet [HLVDMW17] that seek to increase the depth or the connections across the

backbone. This comes to the cost of increased time for training and inference and dedi-

cated approaches for edge devices have been proposed such as MobileNet [HZC+17].

Video architectures

CNN video architectures have also been developed to deal with sequences of images. Be-

cause of the temporal dimension, the convolutions have been extended to 3D convo-

lutions such as ResNet3D [HKS18] and X3D [Fei20]. However such convolutions have

a larger computational cost and some approaches developed decoupled spatial and

temporal convolutions such as P3D [QYM17], I3D[CZ17], S3D [XSH+18], ResNet(2+1)D

[TWT+18].

However, such CNN architectures tend to overfit the spatial dimensions and less on the

motion of the videos. To circumvent this issue, two stream architectures [SZ14, FPZ16]

have been developed to fuse predictions from two neural networks. Often, one branch

is learned on RGB frames and the other one on a motion modality such as Optical Flow

to enforce predictions taking into account movement. To avoid dealing with multiple

modalities and handling multiple neural networks, SlowFast [FFMH19], illustrated in

Fig. 2.12, proposed a two-stream end-to-end approach that solely relies on RGB with one
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Figure 2.12: SlowFast architecture, from [FFMH19]. The slow path receives a low frame rate video
and has wide convolutions while the fast path receives the same video at a fast frame rate with
shallow convolutions. The predictions of both paths are fused at their output and the fast path
distills motion information in the slow path at different depths.

slow path branch that receives few frames but has wide convolutions to focus on the spa-

tial aspect and a fast branch that receives lots of frames but with shallow convolutions to

focus on the temporal aspect. The fast branch has connections with the slow branch at

different depths to distill motion information.

2.2.5 Transformers

Transformers [VSP+17] have first been introduced for NLP tasks and have been extended

to Vision transformers (VTs) [DBK+21] as a promising alternative to CNNs. CNNs have

struggled to scale well. Indeed, as the size of the input images increases or the deeper the

architecture is, CNNs have difficulties increasing their performance. On the other hand,

Vision transformers have shown remarkable scalability, allowing them to handle larger

images and huge networks.

The main feature of VTs is the use of the attention mechanism [VSP+17]. Attention mecha-

nisms enable the model to capture long-term dependencies within the input data, which

is essential for understanding context and relationships between different elements. Un-

like CNNs, which rely on local receptive fields and convolutional operations, attention

mechanisms allow VTs to attend to the entire image, giving them a global context and

facilitating the integration of information across different parts of the image.

Formally, the Scaled Dot-Product Attention Mechanism, illustrated in Fig. 2.13, is defined

with three matrices a query Q, a key K and a value V as well as three matrices of weights

Wq , Wk and Wv :
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Figure 2.13: From [VSP+17]. (left) Attention mechanism implemented via a Scaled Dot-Product
Attention. (right) Multi-head attention consists of several attention layers running in parallel.

AttentionWq ,Wk ,Wv (Q,K,V) = softmax

(
(Wq ·Q) · (Wk ·K)T

p
d

)
· (Wv ·V), (2.13)

with d the dimension of the keys K. In case of self-attention Q = K = V.

Figure 2.14: From [DBK+21]. The Vision Transformer (ViT) architecture. It is composed of a tok-
enizer that handles patches of images to form tokens. Then the tokens are passed to a Transformer
encoder composed of multiple self-attention layers to output the results.

A Vision Transformer, illustrated in Fig. 2.14, is composed of two main parts:

• a Tokenizer: It is generally implemented as a single Convolutional Layer that di-

vides the input image into patches of data to compute input tokens. For videos, the

patches are spatio-temporal parallelepiped that spans the 2D patches across mul-

tiple frames which is often set to 2. These tokens serve as the basic units of com-
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putation for the subsequent layers in the model that output as many tokens as they

take as input. To maintain positional information lost during the tokenization, a

positional embedding is added to the tokens.

• an Encoder: It is the core of VTs and comprises several stacks of self-attention lay-

ers. Each self-attention layer contains multiple attention heads, as illustrated in

Fig. 2.13, which learn different features from its input tokens. By attending to vari-

ous regions, the attention heads can capture different aspects of the image and ex-

tract meaningful representations. Additionally, the self-attention layers incorporate

residual connections and layer normalization, allowing the model to retain impor-

tant features and mitigate the vanishing gradient problem.

Self-attention can be computationally expensive, especially as the input resolution size

increases and alternative attention mechanisms have been proposed such as Shifted Win-

dow Attention [LLC+21]. While VTs have shown impressive performance in computer vi-

sion tasks, they require lots of training data which makes them prone to benefits from

pretraining [DBK+21].

Depending on the task and the transformer architecture, a class token is added during the

tokenization process. The goal of this class token is to contain general information on

the input data to perform from the output class token task-related supervision such as

classification.

2.3 Representation Learning

Figure 2.15: (left) Representation learning of a NN separated in two-parts, the backbone that learns
representation and the predictor that solve the pretraining task. (right) Finetuning of the backbone
or/and training of an NN to specialize in a task.
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2.3.1 Definition

Representation learning [BCV13] consists in learning features, or a latent space of the data

to easily extract information for various tasks. A good representation captures the distri-

bution of explanatory factors of the observed input and should be enough to pass to a

supervised predictor for downstream tasks as illustrated in Fig. 2.15.

Therefore, Deep Representation Learning seeks to learn a backbone, or an encoder that

projects its input data to a latent space that meets the criteria of a good representation.

Training such backbone is commonly referred to as pretraining and can be performed by

SL or SSL. For specialization, the backbone can be fine-tuned to perform transfer learning

meaning its weights are updated via the supervised task or fixed, and a new NN is learned

on its output representation.

Pretraining a Neural Network has the following advantages:

• Data efficiency: Pretraining can be performed on a large dataset to learn general

representations which can be fine-tuned on smaller, task-specific datasets.

• Faster convergence: Pretraining initializes the network with weights that contain

general concepts and permits faster convergence to optimize the network for a spe-

cific task.

• Generalization: Initializing NN weights from a source domain, or source dataset,

offers a better starting point to the target domain, even if it is "far" from the source.

Also by pretraining on a large source dataset, general concepts are learned that are

beneficial for multiple domains.

• Feature extraction: For limiting the cost of fine-tuning to a specific task, using the

pretrained network to extract features from the input data and then train on these

features instead of the raw images or videos mitigates the cost of latter training.

• Cost-efficient: Pretraining once for multiple specializations drastically reduces the

time, computational, and environmental resources required to achieve good results

in DL.

2.3.2 Supervised Pretraining

For Supervised pretraining, we suppose we have access to a (large) labeled source dataset

D(SL) = (X(SL),Y(SL)) and a NN composed of an encoder f (SL) and a predictor g (SL). The

goal of supervised pretraining is to learn the best representation for its input data from

its encoder via a supervised task based on the labels that the predictor estimates. For the

latter specialization, the predictor is ditched.
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Most commonly, supervised representation learning is accomplished via a classification

task on a large dataset such as ImageNet [KH09] for images and Kinetics [KCS+17] for

videos. Therefore the objective functions for a batch B ∈D(SL) is:

L (SL) =− 1

#B

∑
(x ,y)∈B

C∑
c=1

yc log
(
g (SL) ( f (SL) (x)

)
c

)
, (2.14)

with C the number of classes and y a one hot label over the c classes, meaning yc =
1(class of x is c). It is a softmax loss function that is commonly used for classification.

Having a large enough source dataset is essential to learning a general representation,

especially for DNN. This has several drawbacks that prevent such learning paradigm from

scaling well:

• Cost of labelisation: Labeling data necessitates the efforts of several annotators

which not only takes time but requires computational resources and money. De-

pending on the type of data, hiring experts such as in medical data can be necessary

which engenders supplementary cost.

• Label bias: Annotators as all human beings are prone to biases. This can be reflected

in the data which has a detrimental effect on model performance and/or fairness.

Having multiple annotators can help reduce some form of bias but increase costs.

Moreover, data bias is present and inherent to the collection of data.

• Error of annotation: Annotators are subject to making errors that will affect the

dataset quality and later performance. Having multiple annotators can help reduce

some form of bias but increases costs.

• Difficulty in scaling: As the rise of DL approaches on various tasks increase and

models become more and more complex, scaling the datasets becomes a necessity

that is hard to achieve for labeled ones.

• Limited availability: Not only do some datasets require some expert knowledge that

is hard to obtain, but some kinds of data can be scarce. Also, because of the cost of

obtaining a labeled dataset, several actors prefer keeping them private or accessible

with financial compensation.

2.3.3 Self-Supervised Pretraining

SL dependences on labels have multiple issues as explained in precedent Sec. 2.3.2. How-

ever, standard Unsupervised Learning algorithms that involve density estimation, dimen-

sionally reduction such as PCA [Pea01] or t-SNE [VdMH08] and clustering like K-means

[M+67] are meant to explore and extract the intrinsic structure of the data but do not in-

volve learning a representation for downstream supervised tasks.

28



CHAPTER 2. INTRODUCTION TO REPRESENTATION LEARNING

Self-supervised learning is a UL approach that seeks to learn a good representation of data

from an unlabeled (large) source of data by creating labels from the data and forming the

dataset D(SSL) = (X(SSL),Y(SSL)). The model is trained to solve a pretext task by predict-

ing certain parts of the data itself from which the labels have been designed. Hence the

name Self-supervised learning, as the network is supervised by the data itself. As for SL

pretraining, the NN is composed of an encoder f (SSL) and a predictor g (SSL).

The advantages of SSL are multiple in comparison to SL:

• No labelisation: Not needing labelisation completely removes the cost of labelisa-

tion and the error of annotations mentioned for SL. However, it does not completely

remove the underlying data bias caused by the discretization of the domain via the

creation of a dataset that cannot completely represent the domain and by the choice

of the pretext task.

• Immediat scaling: Virtually there is no limitation to the scaling of unlabeled

datasets. In practice, there is a need for enough storage but also availability for some

types of data such as satellite images or submarine videos, and some domains are

easier to obtain than others.

• Broad availability: A lot of data are available on the internet and continue grow-

ing. But also more and more devices are equipped with cameras such as phones or

houses, ...

Image and video SSL have shown tremendous success and narrowed the gap with weak

SL baselines [RLA+21, CXH21, CTM+21], however, they have yet to surpass Supervised

Learning when compared with fairer baselines [SKAL23]. Because of the promising results

achieved in NLP and the continuous breakthrough also observed in SSL for CV, this area

of research is a hot topic that has gained a lot of attention in recent years.

Over the years different pretext tasks have been proposed that can be divided into several

categories. In this thesis, we chose to separate them into 4 main categories:

• Geometric and Intensity pretext tasks

• Contrastive Learning

• Clustering

• Masked Modeling

Below, we describe quickly the different categories which will be more thoroughly dis-

cussed in Chapter 3.
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Neural 
Network Predictor

Predict rotation

Rotation

Figure 2.16: Rotation prediction pretext task. Input is rotated and the NN followed by a predictor
seeks to predict the rotation applied.

Pretext tasks

Geometric and Intensity pretext tasks perform a transformation of the input and the ob-

jective function is designed to predict what transformation has been applied as illustrated

in Fig. 2.16. Over the years, multiple transformations have been designed for images and

videos such as:

• Color Inpainting [ZIE16]

• Predicting shuffling of image patches [NF16] or video frame order [MZH16]

• Predicting Rotation [GSK18]

These methods have been successful in learning a representation as the NNs, to fulfill

the objective function, have to learn the inherent structure and conceptual information

among the input. For example, to successfully predict the order of frames, the NN needs

to learn the arrow of time. However, since these pretext tasks are hand-crafted, they fail to

learn a general representation for two main reasons. First, handcrafted transformations

have a discrete support that does not allow for generating a scalable number of transfor-

mations. Second, as the NNs are learned to become invariant to one kind of transforma-

tion, they cannot generalize to downstream tasks requiring to not be invariant to it and

cannot grasp concepts not involved in solving the pretext task used to pretraining.

Clustering

Clustering is an unsupervised task that groups similar objects into clusters. In the context

of SSL, the similarity is computed on the latent representation of the dataset from the NN

to be pretrained generally via a norm function [CBJD18, ARV20]. After the computation of

the similarities, a clustering algorithm is applied to the similarity matrix such as K-means

to create pseudo-labels. The NN followed by a predictor is then trained to predict these

pseudo-labels as illustrated in Fig. 2.17.
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Figure 2.17: Clustering based on a NN representation from a dataset or a batch of data. The
SSL task is to predict the pseudo-labels. The clustering can be performed once or multiple times
throughout training.

Throughout the training, as the NN learns a better representation, the clustering is per-

formed several times to update pseudo-labels with expected fewer errors. This simple

process provides a good data representation in best cases, however, it suffers from several

issues. First, passing the clustering algorithm can be quite costly to perform and even

intractable for large-scale datasets. Second, the errors on pseudo-labels can harm the

representation and not be recovered during training as the NN is trained to predict wrong

information. Finally, clustering algorithms generally rely on hyper-parameters that can

be difficult to tune and highly depend on the data distribution.

Contrastive Learning

Contrastive Learning [GH10, vdOLV18] aim to align latent representations from the same

based input data, or instance while implicitly or explicitly pushing representations of

other instances. Whilst several ways of doing that emerged, the most common one is

based on instance discrimination and a siamese architecture [CKNH20] as illustrated in

Fig. 2.18. In this family of approaches, an instance is transformed twice by one or two

distributions of data augmentations to form positive views of the instance. Positive pairs

are to be contrasted with negatives which are representations of other instances. To do

so, two branches are designed. The first branch contains the encoder and the predictor.

The second branch contains an encoder that can be the same as the first branch or not.

The contrastive objective functions seek to align the feature representations of the two

branches.
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Figure 2.18: Instance discrimination CL. An image is augmented twice and passes through a
Siamese NN architecture. The first branch contains the NN to pretrain and a predictor that seeks
to predict the representation output of the NN in the second branch. The latter can have the same
architecture and weights as the first branch or different.

Two families of contrastive learning emerged which are objective functions taking into

account negatives explicitly [CKNH20, HFW+20] or without negatives [GSA+20, CMM+20,

CTM+21]. The two families were successful in learning a good general data representa-

tion. However, they face different challenges. First, the choice of the data augmenta-

tion distributions needs to be carefully designed to maintain enough mutual informa-

tion between the two views but not too much to make the model learn relevant features

[TSP+20]. Second, contrastive with negatives have to sample a lot of negatives to perform

best [CKNH20, HFW+20] and among these negatives, there should be hard ones which are

difficult to distinguish from positives [CFSM20]. Also, some hard negatives can be seen as

False Negatives (FN) that need to be dealt with to avoid damaging the representation. For

contrastive learning without negatives, the main challenge is to design an approach that

does not collapse to a trivial solution that prevents the network from learning a relevant

data representation [GSA+20, CTM+21]. Finally, CL approaches tend to successfully learn

a global representation of its input but negligate local information.

Masked Modeling

Masked Modeling (MM) consists of corrupting the input by masking some part of it and

predicting the missing pieces as illustrated in Fig. 2.19. It is inspired by the success of

Masked Language Modeling for pretraining NLP transformers [RNS+18, DCLT19]. The

idea is that it forces the model to learn the context and relationship between different

parts of an image to make an insightful representation. It has similarities with some geo-

metric and intensity pretext tasks that also corrupt the input such as inpainting [ZIE16].
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Figure 2.19: Input data is corrupted by masking part of it. The SSL task is to reconstruct the missing
parts.

We made the distinction as masked modeling approaches strongly rely on the transformer

architecture that makes possible the tokenization followed by the masking process. Also,

we make the distinction based on its success and wide use since this family emerged

whereas the aforementioned pretext tasks perform poorly in comparison with MM.

As for Language, MM approaches successfully learn a good data representation for Vision-

related tasks but face several challenges. First of all, generally, they suppose a lot of redun-

dancies [HCX+22, FFLH22] are present in the input image and video, meaning that several

image or video patches contain highly common conceptual information. This is the case

for object-centric datasets but this is not true for datasets with sparse visual information

such as football matches. Also, because predicting patches can be performed relatively

easily with close patches, NN trained via Masked Modeling tends to learn local features

but is less efficient in learning more global information.

2.4 Downstream Tasks

In this section, we will discuss several downstream tasks for images and videos that we

used as evaluation in our work. Indeed, the goal of Representation Learning is to provide

an initialization to a network to later be fine-tuned to a specific task.

2.4.1 Images

Classification

Image classification is a fundamental task in computer vision aimed at categorizing an

input image into one or multiple predefined categories or classes, capturing the overall

information of the entire image and emphasizing global characteristics rather than local

details. Therefore, the task of image classification encompasses various forms, includ-

ing binary, multi-class, or multi-label classifications, with corresponding loss functions

such as binary cross-entropy (BCE) and categorical cross-entropy (CE) as described in
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Figure 2.20: Illustration of classification, OD, semantic and instance segmentations. From [RV19].

Eq. (2.14) commonly used. As in standard machine learning, addressing unbalanced data

distributions necessitates employing techniques like data rebalancing or class weighting

to ensure quality prediction for all classes.

Some applications such as medical data are hard to collect which drastically reduces the

number of training samples available. This makes the image classification task more chal-

lenging and some special training domains have been developed such as zero-shot and

few-shot learning to deal with these cases. The former involves training on some classes

and evaluation on never-seen classes and the latter sees a limited number of training sam-

ples.

Object detection

Object detection (OD) is a computer vision task in deep learning that involves identify-

ing and localizing multiple objects of interest within an image as illustrated in Fig. 2.20.

Unlike image classification, where the goal is to assign a single label to the entire image,

object detection aims to draw bounding boxes around individual objects and predict their

corresponding class labels. Therefore the object detections’s prediction task is composed

of two objectives: classification and regression of the boxes.

Object detection approaches can be broadly separated into two categories:

• Two-stages approaches [RHGS15] first use an algorithm or a Region Proposal Net-

work (RPN) that proposes a set of candidate regions that are likely to contain an

object. It is followed by a second stage involving a NN that refines the regions and

makes the actual classification. Whilst these approaches obtain the best perfor-

mances, they come at a cost of inference time that might not be tolerable.

• One-stage approaches [RDGF16] directly predict the bounding boxes and class la-

bels in a single step, without the need for a separate region proposal stage. They
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generate a dense set of bounding box predictions across the image and classify them

into different object classes. These methods are designed for simplicity, efficiency,

and real-time performance.

Segmentation

Segmentation is a computer vision task that involves partitioning an image into multiple

segments or regions by assigning each pixel in the image to a specific class label. The label

can be a category, an identity of an object or the background it belongs to as illustrated in

Fig. 2.20.

Unlike object detection, where bounding boxes are used to localize objects, segmentation

provides a more detailed and fine-grained understanding of the image’s content as Each

pixel is individually classified. Common classes may include various objects identities,

and background regions following the three types of segmentation:

• Semantic segmentation considers broad categories and assigns each pixel to one

category.

• Instance segmentation involves identifying and separating individual images from

an image.

• Panoptic segmentation is a combination of semantic and instance segmentations

that not only segment objects and the background but also assign identities to the

objects.

2.4.2 Videos

Downstream tasks for images can be extended to video. Also, because this modality in-

corporates time, it allows for new tasks to be created based on this dimension. We will

describe a few below.

Action Recognition

Action recognition is a classification task for which categories are actions. For this task,

the action is considered to cover a whole video [KCS+17] that lasts a few seconds. As for

images, having a large dataset is important to properly train a highly performant network.

However, collecting and annotating videos is more challenging than images as their stor-

age is costly and annotations take more time than images for the same number of sam-

ples.
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Temporal Action Detection, Spotting and Localization

Temporal Action Detection (TAD) is a task that involves detecting the starting and end

points of actions. Therefore, it requires predicting the timestamps of the edge of the ac-

tions as well as their categories. It can be seen as a special case of OD where the "object"

is the action. Hence as for OD, two-stage [LLL+19] and one-stage [LZS17] methods have

been developed.

Figure 2.21: Illustration of Action Spotting. From [AIm23].

Action Spotting (AS), illustrated in Sec. 2.4.2, is a specific form of TAD for which the action

is short and even collapsed to a specific timestamp-labeled action that has been intro-

duced for football matches by [GADG18]. This requires the NN to provide a precise TAD

which brought specific methods.

Temporal Action Localization (TAL) involves first performing a TAD but also predicting

the coordinates of where an action occurs by providing bounding boxes as in OD. This

requires the NN to not only perform well on the temporal dimension but also learn spatial

features capable of solving this task.

The difficulty of these tasks is first to annotate because the starting and endpoint of an ac-

tion are quite subjective. Then, having a cost-efficient method that allows the detection

of the required precision of the actions, and their localization, whilst staying computa-

tionally tractable is difficult to manage and often a compromise is made.

The evaluation also suffers from difficulties as the neural network makes predictions at

different timestamps that are sometimes not aligned with the truths but shifted and of-

ten require the predictions of the same timestamps with different temporal contexts, e.g.

past or future. Therefore evaluation often relies on multiple tricks to achieve the best

performance such as sampling clips via a sliding window with overlap to make multiple

predictions at the same timestamp but from different temporal contexts and applying

post-processing to eliminate and shift some predictions.
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Video Retrieval

Video Retrieval is a task whose goal is to retrieve videos from a bank with respect to a

query. To perform this retrieval, a similarity measure is computed between the query and

all the elements of the bank. The N highest similar required by the user are retrieved with

the expected same class as the query if the model performs well.

2.4.3 Metrics

To evaluate the Downstream tasks introduced in Sec. 2.4 metrics have been designed that

depend on the task and we describe the ones used in this work below.

Accuracy

Accuracy@k is a classification metric that measures the number of correct class predic-

tions over the number of total predictions. For a problem of C classes, with Ŷ ∈ RN,C the

prediction distribution of the model over the C classes and Y ∈ RN,1 the actual labels the

accuracy is computed as follows:

Accuracy@k =
∑N

i=11
(
Yi ∈ argmax

(
Ŷi ,k

))
N

, (2.15)

where argmax
(
y,k

)
returns the k indices of the k maximum values of y .

K-Nearest Neighbors (K-NN) accuracy is a special case of the accuracy that evaluates the

accuracy of a K-NN algorithm applied to the output features of the data representation.

mAP

mean Average Precision is a metric used to evaluate dense predictions in OD, Segmenta-

tion, TAD, TAL. It is built upon several sub-metrics.

False Negatives True Negatives

True Positives False Positives

Predicted Negative

Actual Positive

Predicted Positive

Actual Negative

Figure 2.22: Illustration of a confusion Matrix.
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First, for handling the predictions the confusion matrix, as illustrated in Fig. 2.22, is cre-

ated. It is constituted of the following elements:

• True Positives (TP): The model predicted the class that is the target.

• False Positives (FP): The model predicted a class that is not the target.

• True Negatives (TN): The model does not predict a class that is not the target.

• False Negatives (FN): The model does not predict the class that is the target.

Figure 2.23: Detection examples for (up) a good bird object detection with high IOU with the
ground truth from [ope23] (down) temporal action detection with green ground truth, blue good
detection and red bad detections from [XZW+17].

Depending on the task, the positives and negatives are assigned differently. For classifi-

cation, it is the maximum prediction from a set of categories. For regression tasks such

as OD, TAD, TAL, an Intersection over Union (IoU) is computed between the bound of the

predictions and the actual target. Indeed in these tasks, either a bounding box or a tem-

poral segment is regressed as illustrated in Fig. 2.23. To measure the quality of predictions

the IoU is used to assign a prediction as a positive or a negative with a bounding box. It is

computed as follows:

IoU = Area of Overlap

Union of Overlap
, (2.16)

and a threshold is used over the IoU such as 0.5 to assign a prediction as a positive or

negative. Assigned predictions are then used to make the confusion matrix.

AP is computed through the precision and recall metrics as follows:

precision = TP

TP + FP
, (2.17)

recall = TP

TP+FN
, (2.18)
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Figure 2.24: Precision given Recall from [Anw23]. AP is the area under the curve. Each point cor-
responds to a different threshold to consider predictions from 0 to 1.

which measures the model’s capacity to predict correct positives. Precision and recall

depend on a threshold, different from IoU, and only take into account predictions above

this threshold. Therefore it is possible to draw a curve of Precision and Recall given the

threshold such as illustrated in Sec. 2.4.3. AP is the Area Under the Curve (AUC) for one

class and mAP is the average of AP over all classes.
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Chapter 3

Self-Supervised Representation Learning

for Images and Videos
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3.1 Self-Supervised Representation Learning

Figure 3.1: Illustration of a good representation. Similar semantic images are grouped whilst pos-
itive pairs are aligned closely and unrelated images are contrasted in separate clusters.

Representation learning (RL) [BCV13] consists in learning representations, or a latent

space of the data to easily extract information for various tasks. A good representation

captures the distribution of explanatory factors of the observed input and should be

enough to pass to a supervised predictor for downstream tasks.

A good data representation, illustrated in Fig. 3.1 should meet the following criteria:

• Aligning positives: A small perturbation of input data should have a representation

close to the original input.

• Clustering similar instances: Similar instances should be grouped in the same clus-

ters, or groups, as they share highly similar characteristics.

• Contrasting negatives: unrelated instances should be contained in different clusters.

Meeting these criteria forces the NNs to learn general concepts such as structures in the

data but also relationships between different instances. It allows for later downstream

tasks to avoid learning these general concepts and reduce fine-tuning time.

Self-Supervised Learning (SSL) is one approach to performing RL where the model is

trained to solve a pretext task by predicting certain parts of the data itself. Therefore it

does not require prior labelisation. Several families of approaches have been created and

this section will cover them and highlight the different challenges they face.
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3.2 Geometric and Intensity Pretext-tasks

Geometric and Intensity Pretext-tasks consist of applying a Hand-Crafted transforma-

tion on the input data and making a prediction based on this transformation. Geomet-

ric pretext-tasks are transformations that change the structure aspect of the image such

as rotating, cropping and intensity transformations change the value of pixels such as

turning RGB images to gray. More formally, for a batch input X ∈ Rn,d and parameters

{θ1, ...θn} ∈Θn for a transformation t drawn for each element in X, with Θ the set of possi-

ble parameters, an atomic loss function l , the objective function for a model f is:

L pretext =
n∑

i=1
l
(
θi , f (t (Xi ;θi ))

)
. (3.1)

Specific pretext tasks have been designed for image and video modalities that we will de-

scribe in the next subsections.

3.2.1 Image pretext-tasks

Figure 3.2: Illustration of jigsaw shuffling of image patches from [NF16].

First Self-Supervised approaches on images used position information of patches.

[DGE15] takes pairs of patches and predicts where the second one is located based on

the first one. To avoid trivial solutions that easily find where is located the second patch

just by aligning low-level information such as lines, the patches are data augmented via

padding, color jittering, ... Later [NF16], proposed an SSL approach based on the Jig-

saw puzzle problem illustrated in Fig. 3.2. An image is randomly cropped in 9 different

patches of the same size and shuffled and the objective function is to predict what is the

position of each patch. The idea is that to solve these tasks the NN has to learn contextual

information and how structural shapes are formed.

Colorization, illustrated in Fig. 3.3, is another approach developed by [ZIE16, LMS16].

First, images are grayscaled meaning the color pixels are transformed to gray values. The

pretext task is to predict the missing colors. A close approach [PKD+16] inpaints a part of

an image that has been masked. If the NN becomes successful at colorizing or inpaint-

ing, it means that it successfully learned semantic information on high-level structures.
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Figure 3.3: Illustration of colorization pretext task from [ZIE16].

However, some objects can have multiple colors which might be detrimental to the su-

pervision because the model will be punished even if it predicted a relevant color.

In [DFS+16], each image in the dataset is considered as a class and the objective func-

tion is instance discrimination. To create multiple instances per class, the images are first

cut in patches and data augmented following various transformations. Then the Neural

network learns to predict the class of passed patches.

For [NPF17], the objective task is counting. It is done by splitting the image into separate

patches and passing in the neural network all the patches as well as the global image. The

representation of the local patches is summed and the objective function seeks to match

the global representation and the summed representation.

RotNet [GSK18] rotates an image from a discrete set of 4 angles: {0°,90°,180°,270°}. The

objective function is to predict the rotation applied via a classification task. The Neural

Network to solve this task has to recognize the original orientation of the objects.

Geometric Intensity Both

Patches order [DGE15, NF16]
Rotation [GSK18]
Counting [NPF17]

Colorization [ZIE16, LMS16]
Inpainting [PKD+16]

Instance discrimination [DFS+16]

Table 3.1: Image geometric and intensity pretext-tasks methods.

Although these approaches sum up in Tab. 3.1 were capable of learning a representation

sufficiently to perform well on downstream tasks, they failed to achieve results compara-

ble to SL for two main reasons. First, these hand-crafted pretext tasks can only make NN

learn as much as they create informative transformation. For example, rotation is capable

of making the network learn the original orientation of the objects, but over time this task

becomes quite easy to solve and does not enforce the good representation criteria. Also,

the risk of these objective functions is to learn a network that is invariant to some trans-

formations which might be important for downstream tasks. To alleviate these problems

some approaches were developed to either learn from several pretext tasks [LLY+21] or

combine it with contrastive learning [MvdM20, LLY+21] described in Sec. 3.4.
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3.2.2 Video pretext-tasks

Geometric Intensity

Rotation [JT18]
Cubic patches order [KCK19]
Frames order [MZH16, LHSY17]
Clips order [XXZ+19]
Speed prediction [WJL20, BEL+20]

Future prediction [LKC17]
Features prediction [WJB+19, WJB+22]

Table 3.2: Video geometric and intensity pretext-tasks methods.

Some Self-Supervised pretext tasks directly took inspiration from images such as apply-

ing rotations on the frames [JT18] or solving the jigsaw puzzle on Space-Time Cubic Puz-

zles [KCK19], but also specifically designed video pretext tasks have been designed and

summed up in Tab. 3.2.

Figure 3.4: Illustration of middle frame shuffling from [MZH16].

First, some approaches focused on changing the order of the frames to make the NN learn

the arrow of time. [MZH16] generates positives by reversing the frame order and negatives

by changing the middle frame coming from another part of the video as illustrated in

Fig. 3.4 and predicts which ones are correct or incorrect. [LHSY17] also creates shuffled

frame sequences and seeks to predict what is the order of the frames. Another approach

[XXZ+19] focused on predicting sub-clips order from a video. It passes several shuffled

sub-clips in a 3D-CNN and concatenates the computed representation. Then a classifier

seeks to predict the order of the subclips. The goal is also to learn the arrow of time and

expect the NN to learn spatio-temporal relationships across time.

Some other approaches were designed on motion. [WJB+19, WJB+22] make use of spatial

and motion characteristics from the RGB frames as well as the Optical Flow (OF) by ex-

tracting statistical features. The goal of the Network is to predict these multiple features

as illustrated in Fig. 3.5.
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Figure 3.5: Illustration of appearance and motion statistcs prediction from [WJB+19]. Motion and
RGB patterns of interest are first extracted to provide supervision to the network.

Notably, other pretext-tasks have been designed such as future prediction [LKC17] which

consists of predicting from a subclip the future frames of the video. Therefore, to solve

this task the NN has to learn spatio-temporal context to infer what comes next. Also,

[WJL20, BEL+20] changes the speed of the sub-clip and predicts what is the speed used

which makes the NN learn how fast objects are supposed to move.

However, as for images these SSL approaches failed to compete with SL because of the

aforementioned issues, and as images, several approaches were proposed to increase the

number of pretext tasks [LLZ+20, JMF20, PAR20, LLY+21, DZCL22] or combine them with

Contrastive Learning [YZQ+21, CHH+21, SNTS21, HWHQ21, JJ21, HWH+21, NZQ+22].

3.3 Clustering

3.3.1 Clustering algorithms

Clustering is an unsupervised task that groups similar objects into clusters. It can be

achieved by different kinds of algorithms operated directly on the input data or on fea-

tures whether hand-crafted or learned via a NN.

k-Means algorithm [S+56, M+67], illustrated in Fig. 3.6, aims to partition n observations

into k clusters. Therefore it strongly relies on the number of clusters. Each observation

is assigned to the nearest mean cluster or centroid. The algorithm minimizes squared

Euclidian distances between an observation and its assigned centroid. More formally,

given the inputs X ∈ Rn,d and the k sets S = {S1, . . . ,Sk } with centroids {µ1, · · · ,µk } the
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Figure 3.6: (a) k-Means algorithm. (b) DBSCAN algorithm. From [HAM+18].

objective to minimize is:

argmin
S

k∑
i=1

∑
x∈Si

||x −µi ||2, (3.2)

with µi = 1

#Si

∑
x∈Si

x . (3.3)

k-Means suppose that the clusters are spherical, of the same size but other algorithms

do not rely on these assumptions. DBSCAN [EKSX96], illustrated in Fig. 3.6, is a density-

based clustering algorithm that groups points close to each other and marks as outliers

the ones that lie alone. It relies on three hyper-parameters, the minimum number of

points to consider a cluster, the distance function, and the distance between two points

to consider them related.

One of the main issues of the clustering algorithms is to find the optimal parameters that

strongly depend on the shape of the data distribution and the difficulty of scaling to high-

dimensional spaces and a large number of data.

3.3.2 Self-Supervised Clustering

Self-supervised clustering approaches rely on clustering algorithms applied to their rep-

resentation and predicting the assigned clusters. They can be separated into two broad

categories:

• offline clustering: In this approach, the features of the whole dataset are first ex-

tracted. Then a clustering algorithm is applied to assign clusters, or pseudo-labels

to each example from the dataset. It is feasible when the whole dataset is avail-
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able offline, its representation fits in memory and the number of optimal clusters is

tractable for performing classification.

• online clustering: In this approach, the features of the current passed batch are

clustered. Therefore the clusters are continuously updated with data as they ar-

rive. These methods are more memory efficient but not as precise as clustering the

whole dataset.

[CN12] introduces an iterative offline clustering approach based on k-means with several

tricks to make it work on large-scale data. These tricks involve proper preprocessing of

the data and a good initialization of the clusters. It learns sequentially its layers from the

first ones to the last ones.

Figure 3.7: Illustration of Deep Cluster from [CBJD18]. Clusters are computed iteratively from the
Neural Network image representations.

Deep Cluster [CBJD18] illustrated in Fig. 3.7 introduces an iterative offline clustering ap-

proach to pretrain an NN end-to-end, meaning all layers at the same time. At each epoch,

meaning a complete dataset pass, or at a certain frequency, the whole dataset is passed

through the NN to extract features. The k-means algorithm is then applied on top of these

features to assign to each image a pseudo-label that is the centroid it has been assigned

to.

In parallel, several approaches have been proposed to learn the representations as well

as the clusters in an online fashion [YPB16, XGF16, LSZU16]. These approaches learned

good data representation for small networks and datasets but were not scalable. [ZXL+20]

scaled online clustering by storing in memory features of instances as well as centroids of

clusters updated at each iteration.

[ARV20] looked at online clustering as an optimal transport problem. It is composed of

two steps at each iteration. First, representation learning is based on the online cluster

assignments of the batched instances. Then, self-labeling of the instances to update the

clusters based on a fast version of the Sinkhorn-Knopp algorithm [Cut13].

For videos, another direction of work was to cluster the data based on multi-modality

such as audio [AMK+20] or optical flow [CZM+22]. The idea is to make use of the different
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modalities to denoise labels by making better cluster assignments because they disam-

biguate assigned clusters using different information about the input data.

Finally several works on images [LZXH21, LHL+21, TZB+22] and videos [AMK+20,

CRD+21] combined contrastive learning and clustering to improve contrastive methods

by making better use of negatives, or prevent collapse of contrastive without negative.

It also helps clustering by learning more discriminative features, producing more robust

pseudo-labels, and preventing clustering approaches from being stuck in an error loop.

3.4 Contrastive Learning

3.4.1 Towards Self-Supervised Contrastive Learning

Noise Contrastive Estimation (NCE) has been introduced by [GH10] as a new estimation

principle to learn parametrized statistical models. The raw idea is to learn from real input

data by contrasting it with generated noise and relies on the fact that if a model is capable

of doing that, it has learned the data distribution.

From the NCE principle, one can derive a binary loss function used for classifying whether

the input data comes from the true or noisy distributions. Suppose we have two sets, the

true data X ∈ Rn,d and a generated source of noise Y ∈ Rn,d and U ∈ R2n,d the union of

the two sets. We assign to each sample in U a binary class ci = 1 (Ui ∈ X) that is 1 if the

instance is from X and 0 if it is from Y. The objective function to minimize for the model

f and binary classifier g :

LNCE =− 1

2n

2n∑
i=1

ci log
(
g

(
f (Ui )

))+ (1−ci ) log
(
1− g

(
f (Ui )

))
. (3.4)

Following works on Metric Learning [CSSB10, SC11] were based on the NCE principle to

propose a triplet loss. It is based on the representations of queries {zi }i∈Nn , their positive

pair representations {pi }i∈Nn and the negative representations {ni }i∈Nn . The concepts of

positives and negatives depend on the task and learning paradigm, we define them for

instance discrimination which is at the basis of modern contrastive learning at the end

of this subsection. The triplet loss forces the positive pair of representations {zi }i∈Nn and

{pi }i∈Nn to lie in a close margin C and push negatives {ni }i∈Nn further from this margin:

Ltr i pl et =
n∑

i=1
max(d(zi ,pi )−d(zi ,ni ),C), (3.5)

with d a measure distance.
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Later, [SXJS16] introduces the (N+1)-tuple loss or InfoNCE loss that contrasts a positive

pair with several negatives. To do so it uses a categorical cross-entropy loss to identify a

positive sample amongst a set of several negative samples.

It has been applied for Self-Supervised Learning by CPC [vdOLV18] which stands for Con-

trastive Predicting Coding. The InfoNCE loss is defined as follows for a batch of represen-

tation {zi }i∈Nn , their positive {pi }i∈Nn and a set of negatives {ni }i∈Nl that can be the same

or different for each sample:

LIn f oNCE =− 1

n

n∑
i=1

log

(
ed(zi ,pi )/τ

ed(zi ,pi )/τ+∑m
j=1 ed(zi ,n j )/τ

)
, (3.6)

where d(k, l) is the cosine similarity between k and l.

Figure 3.8: From [vdOLV18], a context is built from representations of input data. The generated
context is used to predict the future representation and contrasted with negative representations
from other instances.

It builds a context with an auto-regressive encoder on top of an encoder, as illustrated

in Fig. 3.8, that encodes sequentially parts of input data that can be audio, image, video,

... The goal of CPC is to predict future representations based on the similarities between

them and the context contrasted with other instance representations.

CPC by outperforming previously proposed pretext tasks paved the way for plenty of con-

trastive methods described in the next sub-sections. The main challenges these methods

face are:

• How to generate positives.

• How to deal with negatives (for methods using them explicitly).

• Avoid representation collapse.
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Figure 3.9: Illustration of a query cat (blue circle), its positive (green circle) which is the same cat
as the query after some data augmentations, and all the negatives (red shapes). Because there are
no labels, even highly similar images are considered as negatives.

Self-supervised contrastive learning methods are built upon Instance Discrimination to

construct positives meaning that a positive representation pair is two representations

computed from a part of the same based image. In most approaches, negatives are con-

sidered as all representations coming from other instances as illustrated in Fig. 3.9.

3.4.2 Contrastive Learning with Negatives

As introduced in the previous sub-section, CPC [vdOLV18] is one of the first methods to

employ Contrastive Learning with negatives. It also proves that minimizing LIn f oNCE also

minimizes the lower bound of mutual information [Sha48] MI between the input repre-

sentation z and its positive representation p:

MI(z,p) ≥ log(N)−LIn f oNCE, (3.7)

where N stands for the number of negatives. The mutual information measures the de-

pendence between two variables. Therefore, to learn a good data representation, this

should be maximized. Eq. (3.7) shows that minimizing the InfoNCE loss as well as in-

creasing the number of negatives helps to do that.

To increase the variety of positives and learn a more general data representation

[CKNH20] proposes a siamese contrastive learning approach called SimCLR. It first intro-

duced the basics of modern contrastive learning via several steps, illustrated in Fig. 3.10,

and listed here:

• Data augmentations, to construct the positive pair of views.
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Figure 3.10: Siamese architecture to perform contrastive learning. An input goes through two
branches that contain the same architecture: a data augmentation to form positive views, a neural
network and a projector. Optionally the first branch can contain a predictor. Depending on the
method, the second branch can share the same weights as the first branch or be updated by an
Exponential Moving Average (ema) of the first branch. The contrastive loss function is applied to
the output positive representations of both branches. The neural network of the first branch is
kept at the end of training.

• Non-linear projector to avoid invariant representation to data augmentations.

• Siamese architecture to process the pairs.

Figure 3.11: Several data augmentations from [CKNH20].

First, data augmentations, some illustrated in Fig. 3.11, have an important role in ob-

taining the best performance. [CKNH20] show that the crucial one is cropping to avoid

complete overlap between the two views that allow the neural network to converge to an

easy solution. Increasing the strength of the data augmentations by applying for exam-
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ple color jittering, grayscaling, and blurring decreases the mutual information between

the positive pairs forcing the neural network to learn high-level concept information to

align them. InfoMIN [TSP+20] further pushed this idea by theoretically and empirically

proving positive views should have low mutual information to improve generalization and

propose a new set of data augmentations. Other works also took interest in the data aug-

mentations strategy to maintain the right amount of mutual information between posi-

tive pairs by performing a better cropping strategy than random [PWZ+22] or maintaining

task-relevant information [WGDL22].

Second the projector introduced by [CKNH20] is a MLP network that has several pur-

poses. The first one as they empirically show, is that it allows the pretrained neural net-

work to maintain semantic information that could be lost because of the data augmen-

tations and alignment of positive pairs. For example, if color jittering is applied, to align

positive pairs a part of the network has to become invariant to the color. This is where

the non-linear projector shines as it becomes invariant to the color which helps the pre-

trained neural network to keep color information. Its second interest is to project to a

small dimension the output representations which reduces the computational cost of the

similarity matrix between the representations as well as the risk of the curse of dimension-

ality [Bel66]. Several works studied the effect of the projector and show that the projec-

tor is useful when the self-supervised learning task and downstream task are not aligned

[BBG+23] and to handle noisy image augmentations [BIS+23].

Finally, the siamese architecture introduced by [CKNH20] involves two branches to han-

dle the input data by augmenting it, passing the augmented input through the neural net-

work, a projector and applying the contrastive loss on the output representations. Sim-

CLR uses share weights between the two branches but other approaches such as MoCo

[HFW+20] update the second branch according to an Exponential Moving Average (ema)

of the first one. To improve performance MoCov2 [CFGH20] has been developed that fol-

lows the projector and augmentations guidelines from SimCLR.

As shown in Eq. (3.7), having a large number of negatives has a role in optimizing the lower

bound of the mutual information between the positive pairs. To increase the number of

negatives, NPID [WXYL18] uses a bank of representations for all the images contained in

the dataset. The positive pair of an image passed in the neural network is the represen-

tation of the same instance contained in the bank. MoCo [HFW+20] (v2 [CFGH20]) also

makes use of a bank but from a smaller momentum bank of representations that is filled

by its second branch data representations to keep relevant fresher representations as il-

lustrated in Fig. 3.12. SimCLR [CKNH20] (v2 [CKS+20]) removes the need for a memory

bank by using large batches followed by MoCov3 [CXH21] that keeps nonetheless a mo-

mentum encoder to increase performance and adds a predictor to its first branch.
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Figure 3.12: Siamese architecture to perform contrastive learning with a momentum memory
buffer. It is the same architecture as in Fig. 3.10 with an Exponential Moving Average (ema) up-
date for the second branch and its output of the second branch feeds a momentum memory via a
First In First Out (FIFO) update. The momentum memory buffer serves as a collection of negatives
for the contrastive loss.

Figure 3.13: Illustration from [WMZ+21] to compare (a) standard contrastive learning negative
sampler and (b) Ring negative sampler [WMZ+21]. In black the representation of an example xi ,
in gray the representation of its positive and in red the representation of its negative. The gray area
is the support of the distribution to sample negatives. Ring only considers negatives further away
from the query than its positive and closer than a margin whilst standard contrastive learning does
not have a constraint.

However, not all negatives are equal as shown by [CFSM20] and the most difficult, also

called hard negatives, defined by the ones most similar to the query, are the most crucial

to improve performance. Indeed, to learn interesting information by contrasting positives

with negatives, they should be sufficiently similar to positives to learn fine-grained infor-

mation. However, False Negatives (FN), which are instances with the same semantic in-

formation as the query can degrade performance if they are contrasted on various down-

stream tasks, which is also called the class collision problem [CFSM20, WWSY21, CRL+20].

Several samplers have been designed to deal with such negatives. Some focus on gener-

ating hard ones by using mixup [ZCDL18], a data interpolation strategy, to mix positives

and negatives [KSP+20, ZHH+21] at the latent representation. Other works debiase the

contrastive learning strategy to mitigate the effect of FN [CRL+20] and select the hard

negatives [RCSJ21, JW23]. Truncated-triplet [WWW+21] optimizes a triplet loss using the
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k-th similar element as a negative. It also proposes to build a soft negative that is an aver-

age of the most similar negatives. Ring [WMZ+21], proposes to remove from the negatives

the one closer to the query than its positive as they are probably FN and only keep the one

close enough to convey useful information and are not too easy as illustrated in Fig. 3.13.

Other works focused on properly using positives. i-Mix [LZS+21] considers semi-positive

by applying mixup on the input data and applying a contrastive loss with a soft positive

class. NNCLR [DAT+21] does not use directly the positive to perform contrastive learn-

ing but the most similar negative to the positive from a queue of representation. AdCo

[HWHQ21] performs adversarial learning to generate positive views. RCL [TZB+22] uses a

hierarchical clustering algorithm to consider several positives at different levels to either

push or pull other instances.

To further regularize the contrastive loss, various strategies have been explored. Some

added a regularization objective along the contrastive loss that considers the similarities

among instances. CO2 [WWSY21] and RELIC [MMW+21] add a consistency regulariza-

tion term that matches the distribution of similarity for a query and its positive. PCL

[LZXH21] and WCL [ZWY+21] combine unsupervised clustering with contrastive learn-

ing to tighten representations of similar instances. To do so the regularization objective

function is a contrastive learning objective that considers other instances in the same

clusters as positives. In a close direction, other works [YLH+21, YLH+23] proposed a de-

noised contrastive loss that reduces or reverses the gradient for medium and highly sim-

ilar negatives. They use hard margins between different categories of negatives. Also,

DCL [YHH+22] proposes to remove from the denominator the positive term to enforce

negative-positive-decoupling in the objective function:

LDCL =− 1

n

n∑
i=1

log

(
ed(zi ,pi )/τ∑m

j=1 ed(zi ,n j )/τ

)
=− 1

n

n∑
i=1

(
d(zi ,pi )/τ− log

(
m∑

j=1
ed(zi ,n j )/τ

))
. (3.8)

[LAG+21] uses the Conditional Entropy Bottleneck to control the amount of compression

learned in the data representation via SimCLR to improve performance on downstream

tasks.

Contrastive learning optimizes two different objectives [WI20, CLL21], alignment of pos-

itive views and maximizing the entropy of a prior distribution. Because the majority of

contrastive objective functions deal with representations that lie on the hypersphere, the

second objective seeks to make the representation fill the whole surface of the hyper-

sphere. The alignment prevents the collapse to a uniform distribution by learning high-

level concepts such as structures, and relationships between different parts of an image.

Therefore, contrastive learning learns the relations, also called semantic similarity, be-

tween instances based on the meaning or semantics they convey by optimizing. A dif-

ferent kind of learning emerged to directly learn these relations which is relational learn-
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ing. ReSSL [ZYW+21] introduces this explicit relational learning objective by maintain-

ing consistency of pairwise similarities between strong and weak augmented views. As

contrastive learning, it is based on a Siamese architecture with the second branch that

receives as input the weak augmented view to estimate the relations via pairwise simi-

larities. The first branch objective is to predict the distribution of pairwise similarities be-

tween instances via the strong view. Close approaches to relational learning relied on self-

supervised knowledge distillation [PKLC19, FWW+21, KTP20] for which a student model

seeks to predict the distribution of similarities among instances computed by a larger pre-

trained teacher.
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Figure 3.14: Overview of the general concepts and main methods for image contrastive learning
using negatives.

We summarize in Fig. 3.14 the different concepts introduced for Contrastive Learning with

Negatives associated with the main papers introducing or working on the concepts.
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3.4.3 Contrastive Learning without Negatives

To avoid dealing with negatives, several contrastive learning approaches have been de-

veloped with an objective function that deals explicitly with only the positive. Whilst the

objective function does not explicitly make use of the negatives, they are considered im-

plicitly either from a regularization term or the architecture.

Raw image Global crops Local crops

Figure 3.15: Multi-crop strategy. Two global views are formed from a raw image as well as several
local views.

SwaV [CMM+20] is the first to propose such an objective by combining online clustering

and contrastive learning. To do so it adopts a Siamese architecture with shared weights

for two views from the same base image. The output representations are multiplied by

a prototype matrix to compute codes for each view which correspond to a soft assign-

ment to each prototype. The objective function seeks to predict from one view what it is

the code of the other view by contrasting the prototypes. To make sure the distribution

does not collapse to one prototype, the online clustering algorithm enforces a uniform

repartition of the data onto the prototypes. SwaV also introduced the multi-crop strat-

egy, illustrated in Fig. 3.15 that creates multiple local views, smaller than traditional views

(96×96 resolution instead of 224×224), to learn a representation with local information.

BYOL [GSA+20] also adopts a Siamese architecture with asymmetries to avoid collapse

[TCG21]. First, the distributions of data augmentations of the two branches are different.

Second, it performs self-knowledge distillation as MoCo [HFW+20] by updating the sec-

ond branch parameters, called target branch via ema updates of the first branch param-

eters, called online branch or student branch. Thirdly, a predictor is added to the online

branch to map the output of the online branch to the target branch. The objective func-

tion is simply a l2-normalized reconstruction loss between the output representations qs

and zt of the online and target branches respectively:

LBYOL = ||qs − zt ||22. (3.9)
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Several works studied what makes BYOL work and what are its critical components.

[FA20] showed that originally BYOL could be cast as an implicit contrastive learning

method through normalization and it was key to its success. This claim has been re-

futed by [RGA+20] that instead shows proper initialization is required for BYOL to work.

[PZN+22] showed that the momentum weight update of the target branch could only be

located on the projector. SimSiam [CH21] replaces the momentum encoder with a stop-

gradient which was enough to remove collapse but at the cost of worse performance than

BYOL for long pretraining.

Figure 3.16: Illustration of DINO from [CTM+21]. The target branch produces a soft prediction
over a set of pseudo-classes regularized by centering to avoid collapses. The student branch seeks
to predict the target distribution.

DINO [CTM+21] illustrated in Fig. 3.16 also relies on a self-knowledge distillation siamese

pipeline. Both branches contain an encoder and a projector that in opposition to con-

trastive learning approaches with negatives and BYOL does not compress the representa-

tion but projects to a space with high dimensions that are considered pseudo-classes after

a softmax operation is applied. For the target branch, a centering operation is performed

before softmax to force the batch representations to lie on various pseudo-classes and

not collapse on a single class. Hence, this centering operation is an implicit contrastive

learning regularization. The student branch seeks to predict the distribution of the target

branch for each instance.

W-MSE [ESSS21] and Barlow-Twins [ZJM+21] are based on the idea that the matrix of cor-

relations of the representations of two positives should reach the identity. This would

mean that ideally, the representations would learn informative information about the

input without redundancies. W-MSE applies a whitening operation on the batch and

Barlow-Twins a batch normalization of the inputs which causes implicit contrastive learn-
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ing. VicReg [BPL22] free Barlow-Twins from this normalization but add a loss that forces

a variance across the batches maintaining the implicit contrastive objective.

3.4.4 Contrastive Learning for Videos

After their success in learning image representation, CL approaches have been extended

to videos to learn one global representation of a video clip.

[LRO+20] extended CPC to videos by applying a 2D CNN on each image and building

a context on the global representation of the successive images. The objective function

seeks to predict the feature representation among a set of representations. Similarly,

Mem-DPC [HXZ20a] also extended CPC but used sub-clips and 3D CNNs to compute cu-

bic representations and build the context.

Siamese contrastive learning approaches have also been extended to videos to learn rep-

resentations. The pipeline illustrated in Fig. 3.10 is essentially the same for videos with

the differences being:

• Input modality: inputs are sequences of images instead of single images.

• Data augmentations: applied on sequences of images and the time dimension of-

fers new types of data augmentations such as changing the speed.

• The NN architecture: dedicated architectures have been developed for handling

videos such as S3D [ZDWW18], ResNet3D [HKS18], SlowFast [FFMH19], ...

... ... ...

Sample clips

Transform clips

Figure 3.17: Two clips sampled randomly from a video and independently transformed to form
positive views.

To form positive views several approaches have been studied to sample two sub-clips

from the same videos, as illustrated in Fig. 3.17, and apply a contrastive learning pipeline

afterward. CVRL [QMG+21] extended SimCLR to videos and proposed a temporal sam-

pler for creating temporally overlapped views to maintain common information. Yet, the

overlap is not total which can avoid spatial redundancy further reduced with different re-

sized crops. Similarly, [FFX+21] extended SimCLR, MoCo, SwaV and BYOL to videos. To

form positive views they randomly sample clips from a video uniformly which means that
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there might not be overlap. They also generalized the multi-crop procedure introduced

for images by [CMM+20] by sampling more than two sub-clips per video. Whilst this con-

siderably improves their results, it comes with a high computational cost.

Figure 3.18: Illustration of BraVe from [RLA+21]. Contrastive Learning is applied from an asym-
metric pipeline via a high-resolution view with a narrow temporal context and a low-resolution
view with a broad temporal context. It supports multi-modality.

Other approaches also made use of the time dimension to build positives with differ-

ent width temporal contexts. VideoMoCo [PSY+21] adopts a generative contrastive ap-

proach where one view is generated and a certain amount of frames of the generated

frame are masked removing temporal information. VTHCL [YXDZ20], BraVe [RLA+21]

and LSTCL [WBTT22] adopt an asymmetric Siamese pipeline with differently sampled

views. VTHCL samples the same clip but with a fast framerate and a low framerate that

are passed through the slow and fast networks of the SlowFast architecture. BraVe illus-

trated in Fig. 3.18 has a broad temporal view with low spatial resolution and one broad

temporal view sampled with high resolution. LSTCL as BraVe samples one view with a

large temporal context and another with a small temporal context but is applied on trans-

formers whilst Brave was on 3D CNN. Also, LSTCL uses NN-shared weights but different

projectors and predictors. Similarly, TCLR [DGRS22] has a global-local contrastive loss

that considers part of features from a global view and global features from a local view.

VCLR [KZZ+21] explores using intra and inter-contrastive losses by using multiple clips

from the same video as positive or negative depending on the loss to learn local and global

contexts. SVT [RNK+22] made use of transformers with global spatiotemporal views and

local spatiotemporal views that it sought to align.

As for images, different variants of contrastive learning have been proposed such as hier-

archical contrastive learning to learn features at different scales [QLL+21] and cascade re-

trieval [WLHK22]. Provico [PLKS22] proposed a stochastic contrastive loss that constructs

positive and negative pairs based on a probabilistic distribution. The loss is weighted

by the certainty of positiveness. IIC [TWY20, TWY22] proposes to use multiple views of

the same data to form positives. Different clips of the same video are considered intra-
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positives but if a temporal transformation such as shuffling the frames is applied, they

become hard intra-negatives. [WGL+21] and [DLY+22] propose to change the background

of the videos to make the representation less focused on irrelevant spatial information.

Previously mentioned methods focused on building representations from videos to per-

form global video representation and are evaluated on tasks that focus on general patterns

such as Action Recognition on a whole clip. In the opposite direction, CARL [CWLC22]

followed by [ZLZS23] proposes a sequence contrastive learning approach to learn frame-

wise representations to evaluate fine-grained frame retrieval tasks. Their objective is to

capture fine-grained representations whilst aligning close-frame representations. These

local-temporal representations are later fine-tuned to tasks taking advantage of such fea-

tures such as TAD.

Although in our work we solely focused on making use of the RGB video stream, differ-

ent approaches have been developed to make use of different modalities. These modal-

ities are used in two different ways with contrastive learning: a total replacement of the

RGB views or one view from RGB and its positive from another modality. For pretrain-

ing, the main idea of using these modalities is that they provide another perspective of

the data which permits modeling a better data representation. For example Optical Flow

contains only motion direction and intensity which require the model to focus on move-

ments rather than spatial information. During fine-tuning and inference for downstream

tasks, the predictions of the NNs using the different modalities can be fused, or aggregated

to improve results. The different modalities used are:

• The text data [SBMS19, MAS+20] available or generated by Automatic Speech

Recognition (ASR) solutions.

• The Optical Flow (OF) [HXZ20a, LRO+20, HXZ20b, PAR20, HSL+21, HLW+21,

RLA+21, TGSH22, XTM22, NZQ+22, CZM+22] of the video which is the 2D map of

pixels’ movement between successive images. OF requires a computational cost

and a model for preprocessing the RGB data before training and obtaining for each

video its corresponding OF. To alleviate this issue, some works approximate the

magnitude of the OF by computing the RGB difference between frames and use it

instead of OF. It can be computed at each iteration with negligible cost.

• The audio [AMK+20, PAR20, RLA+21] of the video.

The key concepts of video contrastive learning along with principal methods are summa-

rized in Fig. 3.19.
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Figure 3.19: Overview of the general concepts and main methods for video contrastive learning.

3.5 Masked Modeling

Masked Modeling (MM) is a generative approach that masks part of an input and tries

to predict the missing data. It has first shown tremendous success in NLP representa-

tion learning [RNS+18, DCLT19] for the transformer architectures [VSP+17]. For example,

BERT [RNS+18] replaces some input tokens with a learned mask token and the objective

function is a classification loss to recover the correct token. However, directly applying

masked tokenization and positional embeddings on images fails to learn a representa-

tion of good quality [CRC+20].

The introduction of Vision Transformers [DBK+21] allowed for Masked Image Modeling

(MIM) and Masked Video Modeling (MVM) approaches to emerge and perform competi-

tively with CL approaches as explained in the next sections and summarized in Tab. 3.3.
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3.5.1 Masked Modelling for Images and Videos

Figure 3.20: Illustration of BEiT [BDPW22] from its paper. The input image is tokenized to input
patches, each associated with a visual token computed by a tokenizer. Some patches are corrupted
and replaced with a learned masked token. The tokens pass through a transformer encoder and
the objective function is to predict the visual tokens of the masked patches.

BEiT [BDPW22], illustrated in Fig. 3.20, is a direct extension of BERT [RNS+18] to im-

ages. It consists of first training an image tokenizer via a discrete variational autoencoder

(dVAE) [Rol17], trained via a reconstruction loss, to assign to an input image a visual to-

ken for each of its patches. Some of the token patches are masked according to blockwise

masking, e.g. mask multiple patches according to blocks, and the objective function of

BEiT is to predict the visual tokens of the corrupted tokens. Several works built on BEiT to

improve the tokenizer, mc-BEiT [LGY+22] soften the classification problem by assigning

soft labels instead of hard labels to patches. PeCo [DBZ+23] enforces during the training

of the tokenizer perceptual similarity between the original and the reconstructed images.

Using tokenizers has the disadvantage of having two pretraining steps that require care-

ful attention to design choices. Moreover, dVAEs discretize the visual space whereas the

visual space is continuous and therefore suffers from information loss. Consequently,

end-to-end approaches have been designed to remove the need for a tokenizer.

Masked Autoencoder (MAE) [HCX+22], illustrated Fig. 3.21, proposes an encoder-decoder

architecture. Some patches of the input are masked and the visible tokens are passed

through a transformer encoder. The output tokens are completed with learnable mask

tokens at the positions of the masked patches. The complete set of tokens is fed to a

transformer decoder and the objective function predicts the pixels of the masked patches

from the output mask tokens. Although this pipeline involves two components, the en-

coder and the decoder, the cost of pretraining is alleviated by the fact that only visible to-
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Figure 3.21: Illustration of MAE [HCX+22] from its paper. Some patches are masked. The visible
tokens pass through an encoder and its output is complemented by learnable mask tokens at the
positions of masked patches. These tokens are fed to a decoder and The objective function is to
predict the pixels of the original masked patches.

kens are passed to the encoder and the decoder depth is less significant than the encoder

depth. Moreover, the authors point out that the optimal masking ratio is high, around

75%, which further reduces the cost. This high masking ratio is because redundancies

make it too easy for the network to predict the masked patches. This is because a lot of re-

dundancies are present in the images from the pretraining dataset, ImageNet [DDS+09],

which is object-centric. The decoder is dropped after pretraining as the encoder is the

one learning representations.

Similarly, SimMIM [XZC+22] proposes an encoder-decoder pipeline to reconstruct

masked images but the encoder takes visible and masked tokens and the decoder only

involves one prediction layer. This significantly increases the computational cost in com-

parison with MAE but it allows the design to be used by hierarchical transformers such as

Swin [LLC+21] whereas MAE does. However, some works built upon MAE aim to solve this

issue [HYZ+22, LWYY22, ZTH+22]. Hierarchical transformers are useful to reduce com-

putational usage and replace the standard self-attention used in VTs but also to increase

performance on local downstream tasks such as Object Detection. As for MAE, SimMIM

finds that a high masking ratio is important and investigates several masking strategies to

find that its optimal one is big block masking.

As for CL, MIM has been extended to MVM for approaches using tokenizers such as BEVT

[WCW+22] and MaskFeat [WFX+22] but also end-to-end approaches such as MAEs video-

based models [FFLH22, TSWW22]. Notably, MaskFeat replaces the tokenizer and directly

predicts the handcrafted HOG features of the videos. It achieves comparable perfor-

mance to using a tokenizer, relieving video representation learning to pretrain a tokenizer.

[SCC+23] also found that reconstructing motion trajectory hand-crafted features helps to

improve performance. As for images, videos require a masking strategy but offer an ad-
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ditional dimension that allows for more configurations. Indeed tokens instead of repre-

senting a 2D square patch for images, represent a 3D parallelepiped from patches of one

or multiple frames for videos. The masking strategies developed are generally uniform

masking on all patches or uniform masking of blocks of parallelepiped or masking multi-

ple spatiotemporal tubes in the video. For MAE-based approaches, the masking ratio that

performs best for datasets having action-centric videos is very high, around 90% because

of the high redundancies present in such videos. This considerably reduces the cost of

pretraining.

Figure 3.22: Illustration of high-attention teacher-guided masking from [KGP+22].

The question of how and what to mask is inherent to all MIM approaches [BDPW22,

HCX+22, XZC+22]. Generally, the masking is random with different strategies such as uni-

form masking on all patches, or uniform masking on blocks of patches. However, patches

in an image have different levels of semantics and some might contain more information

than others. For example for a picture of a cat with a grass background, the level of un-

derstanding of the scene gained by looking at the cat tokens with more attention than

the background tokens is important. Therefore, some methods [LCY+21, KGP+22] devel-

oped self-supervised masking strategies. The idea is to use student-teacher supervision

of masking. The teacher takes as input the image and computes the attention map of the

input tokens to produce the output representation. This attention map is used to mask

the tokens according to their attention values. [LCY+21] masks the tokens that have low

attention to avoid masking semantically important tokens whilst [KGP+22] illustrated in

Fig. 3.22 built upon iBoT [ZWW+22b] introduced in the next subsection, finds that mask-

ing tokens with the highest attention improves results as it forces the encoder to exhibit

high semantics understanding with short context.
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As for CL, several approaches improved performance by using multi-modal inputs. It

can be combining images and videos [GES+23, WCW+23] or images, depth and semantic

[BMAZ22]...

3.5.2 Mixing Contrastive Learning and Masked Modelling

Masked Modeling approaches performed better than CL on downstream tasks [HCX+22,

FFLH22] that require learning local features such as OD and TAL, but they fall short of

marking a gap on downstream tasks that require a more global understanding of the

scene. This led to methods that sought to combine CL and MM to learn representation

good for global and local representations described in this section.

Figure 3.23: Illustration of iBoT from [ZWW+22b]. Some patches going through the student
branches are masked to perform Masked features prediction of the teacher’s outputs. A global
contrastive loss is applied to the class tokens.

iBoT [ZWW+22b] illustrated in Fig. 3.23 combines DINO [CTM+21] and MM by masking

some parts of the images going through the student branch. Instead of predicting a visual

token or pixels, on top of the DINO global objective function between two positive views.

Another objective related to mask modeling enforces the model to predict the token fea-

tures outputted by the teacher for the respective output tokens from the student for the

same view. Therefore, iBoT does not depend on a tokenizer per se, although the authors

refer to the teacher as an online tokenizer. DINO-v2 [ODM+23] showed that SSL ViTs can

be scaled by pushing objectives similar to iBoT to very large neural networks and datasets.

MSN [ACM+22] combines SwaV [CMM+20] and MM by masking part of the student input

and does not associate a new loss to deal with MM. This allows that the masked tokens

are not passed through the student encoder which reduces considerably the training time

and memory cost. Although it showed great performance for low-shot image classifica-

tion, it has lower results than iBoT for large-scale data. i-JEPA [ADM+23] proposes a vari-

ant of masked feature predictions where the student encoder seeks to predict from one

view masked by several blocks, the features computed by the teacher encoder for each

masked block via a L2 loss function as BYOL [GSA+20].
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Similarly to iBoT, ConMIM [YGL+23] adopts a teacher-student siamese architecture with

asymmetric data augmentations. The teacher receives strongly augmented images, e.g.

with more perturbations, without masking and the student receives weakly augmented

images that are partially masked. The objective function is a contrastive learning one and

is applied on each output masked token from the student to retrieve its aligned target

representation among the output target tokens for the same image. Whilst the number of

negatives is fairly low, it is compensated by their hardness as they share semantics with the

positives and ConMIM achieved better performance than standard Contrastive Learning

and iBoT for local and global downstream tasks.

Methods Tokenizer Mask in Prediction Decoder Contrast

BEiT, BEVT [BDPW22, WCW+22] dVAE X Visual tokens
MaskFeat [WFX+22] X HOG One layer
MAE, VideoMAE [HCX+22, TSWW22] Pixels Transformer
SimMIM [XZC+22] X Pixels One-layer
iBoT, Dinov2 [ZWW+22b, ODM+23] Teacher X Features X
MSN [ACM+22] X

Table 3.3: Overview of the main Masked Modeling approaches. For Tokenizer column, "Teacher"
means updated via the exponential moving average of the neural network learned via backpropa-
gation. Mask in column is checked if the methods pass the masked patch tokens in the encoder. If
not, the methods considerably reduce the computational cost of an iteration. Prediction column
refers to the modality to predict for the MM task. Decoder column describes the decoder archi-
tecture if relevant. If the Contrast column is checked, then a contrastive learning objective is also
applied which requires a siamese network and data augmentations to create positive pairs.

Although these approaches improve performance over optimizing only Masked Mod-

elling or only Contrastive Learning for general and local representation-dependent down-

stream tasks, these methods have the disadvantages of Contrastive Learning, meaning de-

signing data augmentations to form positive pairs as well as a Siamese architecture that

increases computational cost. In Tab. 3.3 we summarize the main MM approaches to get

a grasp of the various methods and their advantages or disadvantages.

3.6 Toward our contributions

This chapter highlighted the various approaches to perform image and video self-

supervised learning and the challenges they face. Our works mainly took place in the

context of contrastive self-supervised learning and more specifically with approaches in-

volving negatives. As we discussed in the dedicated section, one of its biggest challenges

is to deal with hard and false negatives. We proposed to develop a new contrastive learn-

ing paradigm that is referred to as soft contrastive learning. It generalizes standard con-

trastive learning, which can be referred to as hard contrastive learning, and relational

learning. Instead of pushing and pulling instances based solely on positiveness, it es-

timates relations between instances and pulls instances based on the strength of these
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relations as well as positives. We introduced a practical implementation of this soft con-

trastive learning paradigm called Similarity Contrastive Estimation (SCE) in Chapter 4. We

applied it to image global representation learning evaluated on image classification, OD,

low-shot settings and sports-field registration. We then extended SCE to video global rep-

resentation in Chapter 5 learning mainly evaluated on action recognition. As discussed

in this chapter, some applications rely on local features and our last contribution intro-

duced in Chapter 6 called COMEDIAN proposes a self-supervised learning pipeline that

combines SCE, knowledge distillation and temporal mask modeling to pretrain a hier-

archical transformer architecture to output local spatiotemporal features enriched in a

more global context and study its effectiveness to the action spotting task.
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4.1 Introduction to Representation Learning

We discussed in Sec. 3.4.2, how contrastive learning approaches with negatives face sev-

eral issues. Pairs of views from the same images are generated by carefully designed data

augmentations [CKNH20, TSP+20]. Elements from the same pairs are called positives and

their representations are pulled together to learn view-invariant features. Other images

called negatives are considered as noise and their representations are pushed away from

positives. The negatives are difficult to handle as some of them are semantically false neg-

atives but increasing their number is required to achieve the best performance [vdOLV18]

which enhances the probability of retrieving false ones.

Based on the weakness of contrastive learning using negatives, we introduce a self-

supervised soft contrastive learning approach called Similarity Contrastive Estimation

(SCE), which contrasts positive pairs with other instances and leverages the push of neg-

atives using the inter-instance similarities. Our method computes relations defined as a

sharpened similarity distribution between augmented views of a batch. Each view from

the batch is paired with a differently augmented query. Our objective function will main-

tain for each query the relations and contrast its positive with other images. A mem-

ory buffer is maintained to produce a meaningful distribution. Experiments on several

datasets show that our approach outperforms our contrastive and relational baselines

MoCov2 [CFGH20] and ReSSL [ZYW+21].

Our contributions [DRO+23, MODP23] can be summarized as follows:

• We propose a self-supervised soft contrastive learning approach called Similarity Con-

trastive Estimation (SCE) that contrasts pairs of augmented images with other instances

and maintains relations among instances.

• We demonstrate that our framework SCE outperforms on several benchmarks its base-

lines MoCov2 [CFGH20] and ReSSL [ZYW+21] for a shared architecture and can further

be improved using more recent architectures with a larger batch size and a predictor.

• We show that our proposed SCE is competitive with the state of the art on the ImageNet

linear evaluation protocol and generalizes to several downstream tasks.

4.2 Related Work

We summarize here the related work to our proposed SCE that has been thoroughly de-

tailed in the contrastive learning section Sec. 3.4. As we performed a study using convo-

lutional networks, we did not perform a comparison with Masked Modeling approaches

described in Sec. 3.5 which rely on transformers that require supplementary computa-

tional resources.
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Contrastive Learning. Contrastive learning is a learning paradigm whose most success-

ful methods rely on instance discrimination with a positive pair of views from the same

image contrasted with all other instances called negatives. Retrieving lots of negatives is

necessary for contrastive learning [vdOLV18] and various strategies have been proposed

such as maintaining a queue of representations [HFW+20, CFGH20] or large batches

[CKNH20, CXH21]. Hard negatives are the most important to sample to improve per-

formance, however, they are potentially harmful to the training because of the “class col-

lision" problem [CFSM20, WWSY21, CRL+20]. Several samplers have been proposed to

alleviate this problem such as debiasing negatives sampling [CRL+20], and selecting hard

negatives [RCSJ21] or denoising [YLH+21, YLH+23]. Instead, we propose a soft contrastive

loss that seeks to estimate relations between instances and consider all negatives equally.

Regularized Contrastive Learning and Relational Learning. Several works regularize

contrastive learning by optimizing a contrastive objective along with an objective that

considers the similarities among instances [WWSY21] or clusters of close representations

[WWSY21, LZXH21, ZWY+21]. ReSSL [ZYW+21] introduces an explicit relational learning

objective by maintaining consistency of pairwise similarities between strong and weak

augmented views. The pairs of views are not directly aligned which harms the discrimi-

native performance.

In our work, we optimize a contrastive learning objective using negatives that alleviate

class collision by pulling related instances. We do not use a regularization term but di-

rectly optimize a soft contrastive learning objective that leverages the contrastive and re-

lational aspects.

4.3 Methodology

In this section, we will introduce our baselines: MoCov2 [CFGH20] for the contrastive

aspect and ReSSL [ZYW+21] for the relational aspect. We will then present our self-

supervised soft contrastive learning approach called Similarity Contrastive Estimation

(SCE). All these methods share the same architecture illustrated in Fig. 4.1. We provide

the pseudo-code of our algorithm in Appendix A.2.

4.3.1 Contrastive and Relational Learning

Consider x = {xk }k∈{1,...,N} a batch of N images. Siamese momentum methods based on

Contrastive and Relational learning, such as MoCo [HFW+20] and ReSSL [ZYW+21] re-

spectively, produce two views of x, x1 = t 1(x) and x2 = t 2(x), from two data augmentation

distributions T1 and T2 with t 1 ∼ T1 and t 2 ∼ T2. For ReSSL, T2 is a weak data augmen-

tation distribution compared to T1 to maintain relations. x1 passes through an online

network fs followed by a projector gs to compute z1 = gs( fs(x1)). A parallel target branch
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Figure 4.1: Illustration of the siamese pipeline shared by MoCov2 [CFGH20], ReSSL [ZYW+21] and
SCE. A batch x of images is augmented with two different data augmentation distributions T1 and
T2 to form x1 = t 1(x) and x2 = t 2(x) with t 1 ∼ T1 and t 2 ∼ T2. The representation z1 is computed
through an online encoder fs , projector gs and optionally a predictor hs such as z1 = hs(gs( fs(x1))).
A parallel target branch updated by an exponential moving average of the online branch, or ema,
computes z2 = g t ( ft (x2)) with ft and g t the target encoder and projector. The representations are
passed to the objective function that is different for each method.

containing a projector g t and an encoder ft computes z2 = g t ( ft (x2)). z1 and z2 are both

l2-normalized.

The online branch parameters θs are updated by gradient (∇) descent to minimize a loss

function L . The target branch parameters θt are updated at each iteration by the expo-

nential moving average of the online branch parameters with the momentum value m,

also called keep rate, to control the update such as:

θs ← opti mi zer (θs ,∇θs L ), (4.1)

θt ← mθt + (1−m)θs . (4.2)

MoCo uses the InfoNCE loss, a similarity-based function scaled by the temperature τ that

maximizes agreement between the positive pair and pushes negatives away:
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LIn f oNCE =− 1

N

N∑
i=1

log

(
exp(z1

i ·z2
i /τ)∑N

j=1 exp(z1
i ·z2

j /τ)

)
. (4.3)

ReSSL computes a target similarity distribution s2, that represents the relations between

weak augmented instances, and the distribution of similarity s1 between the strongly aug-

mented instances with the weak augmented ones. Temperature parameters are applied to

each distribution: τ for s1 and τm for s2 with τ> τm to eliminate noisy relations. Indeed,

as the temperature decreases, it exponentially increases softmax values for highly similar

instances and decreases exponentially values for low similar instances which makes them

negligible in the target distribution. The loss function is the cross-entropy between s2 and

s1:

s1
i k = 1i 6=k ·exp(z1

i ·z2
k /τ)∑N

j=11i 6= j ·exp(z1
i ·z2

j /τ)
, (4.4)

s2
i k = 1i 6=k ·exp(z2

i ·z2
k /τm)∑N

j=11i 6= j ·exp(z2
i ·z2

j /τm)
, (4.5)

LReSSL =− 1

N

N∑
i=1

N∑
k=1
k 6=i

s2
i k log

(
s1

i k

)
. (4.6)

A memory buffer of size M >> N filled by z2 is maintained for both methods and is used

in place of negatives in previous equations.

4.3.2 Similarity Contrastive Estimation

Contrastive Learning methods damage relations among instances, which Relational

Learning correctly builds. However, Relational Learning lacks the discriminating features

that contrastive methods can learn. If we take the example of a dataset composed of cats

and other animals, we want our model to be able to understand that two different cats

share the same appearance but we also want our model to learn to distinguish details

specific to each cat. We illustrated in Fig. 4.2 the issues of Contrastive and Relational

Learning. Based on these requirements, we propose our approach called Similarity Con-

trastive Estimation (SCE).

We argue that there exists a true distribution of similarity w∗
i between a query qi and

the instances in a batch of N images x = {xk }k∈{1,...,N}, with xi a positive view of qi . If we

had access to w∗
i , our training framework would estimate the similarity distribution pi

between qi and all instances in x, and minimize the cross-entropy between w∗
i and pi

which is a soft contrastive learning objective:
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(a) Contrastive Learning (b) Relational Learning

Figure 4.2: Illustration of (a) Contrastive Learning and (b) Relational Learning. Contrastive Learn-
ing correctly pushes negatives away and learns positive discriminative features but lacks modeling
relations among instances. Relational Learning correctly models relations among instances but
lacks discriminative positive features.

LSCE∗ =− 1

N

N∑
i=1

N∑
k=1

w∗
i k log

(
pi k

)
. (4.7)

LSCE∗ is a soft contrastive approach, illustrated in Fig. 4.3 that generalizes InfoNCE and

ReSSL objectives. InfoNCE is a hard contrastive loss that estimates w∗
i with a one-hot

label and ReSSL estimates w∗
i without the contrastive component.

We propose an estimation of w∗
i based on contrastive and relational learning. We consider

x1 = t 1(x) and x2 = t 2(x) generated from x using two data augmentations t 1 ∼ T1 and t 2 ∼
T2. Both augmentation distributions should be different to estimate different relations for

each view as shown in Sec. 4.4.1. We compute z1 = hs(gs( fs(x1))) from the online encoder

fs , projector gs and optionally a predictor hs [GSA+20, CXH21]. We also compute z2 =
g t ( ft (x2)) from the target encoder ft and projector g t . z1 and z2 are both l2-normalized.

The similarity distribution s2
i that defines relations between the query and other instances

is computed via the Eq. (4.5). The temperature τm sharpens the distribution to only keep

relevant relations. A weighted positive one-hot label is added to s2
i to build the target

similarity distribution w2
i :

w2
i k = λ ·1i=k + (1−λ) · s2

i k . (4.8)

The online similarity distribution p1
i between z1

i and z2, including the target positive rep-

resentation in opposition with ReSSL, is computed and scaled by the temperature τ with

τ> τm to build a sharper target distribution:
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Figure 4.3: Illustration of Similarity Contrastive Estimation (SCE). SCE correctly aligns positives to
learn discriminative features and models relations among instances.

p1
i k = exp(z1

i ·z2
k /τ)∑N

j=1 exp(z1
i ·z2

j /τ)
. (4.9)

The objective function illustrated in Fig. 4.4 is the cross-entropy between each w2 and p1:

LSCE =− 1

N

N∑
i=1

N∑
k=1

w2
i k log

(
p1

i k

)
. (4.10)

The loss can be symmetrized by passing x1 and x2 through the momentum and online

encoders and averaging the two losses computed.

A memory buffer of size M >> N filled by z2 is maintained to better approximate the sim-

ilarity distributions and is used in place of negatives in previous equations.

The following proposition explicitly shows that SCE optimizes a contrastive learning ob-

jective while maintaining inter-instance relations:

Proposition 1. LSCE defined in Eq. (4.10) can be written as:

LSCE = λ ·LIn f oNCE +µ ·LReSSL +η ·LCei l , (4.11)
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Figure 4.4: Objective function of SCE. The representations from the target branch z2 are used to
compute the inter-instance target distribution by applying a sharp softmax to the cosine simi-
larities between z2 and a memory buffer of representations from the momentum branch. This
distribution is mixed via a 1−λ factor with a one-hot label factor λ to form the target distribution.
Online similarities between z1 and the memory buffer plus its positive in z2 are also computed.
The online distribution is computed via softmax applied to the online similarities. The objective
function is the cross entropy between the target and the online distributions.

with µ= η= 1−λ and

LCei l =− 1

N

N∑
i=1

log

(∑N
j=11i 6= j ·exp(z1

i ·z2
j /τ)∑N

j=1 exp(z1
i ·z2

j /τ)

)
. (4.12)

The proof separates the positive term and the negatives. It can be found in Appendix A.3.

LCei l leverages how similar the positives should be with hard negatives. Because our

approach is a soft contrastive learning objective, we optimize the formulation in Eq. (4.10)

and have the constraintµ= η= 1−λ. It frees our implementation from having three losses

to optimize with two hyperparameters µ and η to tune. Still, we performed a small study

of the objective defined in Eq. (4.11) without this constraint to check if LCei l improves

results in Sec. 4.4.1.

It is also possible to show that SCE optimizes the DCL [YHH+22] defined by:

LDCL =− 1

N

N∑
i=1

(
z1

i ·z2
i /τ− log

(
N∑

j=1
1i 6= j exp(z1

i ·z2
j /τ)

))
. (4.13)

and ReSSL losses [ZYW+21] as well as the Ceil loss defined in Eq. (4.12).
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Proposition 2. LSCE defined in Eq. (4.10) can be written as:

LSCE = λ ·LDCL + (1−λ) ·LReSSL +LCei l . (4.14)

The proof available in Appendix A.4 highlights that LDCL +LCei l = LIn f oNCE. In their

papers, DCL authors [YHH+22] empirically prove the superiority of DCL over InfoNCE

but in our case as shown in Sec. 4.4.1 we obtain best performances when having LDCL and

LCei l with LReSSL. We believe that the three losses play complementary roles required for

the neural network to converge to a better data representation.

4.4 Empirical study

In this section, we first make an ablative study of our approach SCE to find the best hyper-

parameters on images. Secondly, we compare SCE with its baselines MoCov2 [CFGH20]

and ReSSL [ZYW+21] for the same architecture. Finally, we evaluate SCE on the ImageNet

Linear evaluation protocol and assess its generalization capacity on various tasks.

4.4.1 Ablation study

To make the ablation study, we conducted experiments on ImageNet100 which has a close

distribution to ImageNet, studied in Sec. 4.4.1, with the advantage of requiring fewer re-

sources to train. We keep implementation details close to ReSSL [ZYW+21] and MoCov2

[CFGH20] to ensure a fair comparison.

Dataset. ImageNet [DDS+09] is a large dataset with 1k classes, almost 1.3M images in the

training set and 50K images in the validation set. ImageNet100 is a selection of 100 classes

from ImageNet whose classes have been selected randomly. We took the selected classes

from [TKI20] referenced in Appendix A.1.

Implementation details for pretraining. We use the ResNet-50 [HZRS16] encoder and

pretrain for 200 epochs. We apply by default strong and weak data augmentations defined

in Tab. 4.1. We do not use a predictor and we do not symmetry the loss by default. Specific

hyper-parameter details can be found in Appendix A.5.1.

Evaluation protocol. To evaluate our pretrained encoders, we train a linear classifier fol-

lowing [CFGH20, ZYW+21] that is detailed in Appendix A.5.1.

Leveraging contrastive and relational learning. SCE defined in Eq. (4.8) leverages con-

trastive and relational learning via the λ coefficient. We studied the effect of varying the

λ coefficient on ImageNet100. Temperature parameters are set to τ = 0.1 and τm = 0.05.

We report the results in Tab. 4.2. Performance increases with λ from 0 to 0.5 after which it

starts decreasing. The best λ is inside [0.4,0.5] confirming that balancing the contrastive
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Parameter weak strong strong-α strong-β strong-γ

Random crop probability 1 1 1 1 1
Flip probability 0.5 0.5 0.5 0.5 0.5
Color jittering probability 0. 0.8 0.8 0.8 0.8
Brightness adjustment max intensity - 0.4 0.4 0.4 0.4
Contrast adjustment max intensity - 0.4 0.4 0.4 0.4
Saturation adjustment max intensity - 0.4 0.2 0.2 0.2
Hue adjustment max intensity - 0.1 0.1 0.1 0.1
Color dropping probability 0. 0.2 0.2 0.2 0.2
Gaussian blurring probability 0. 0.5 1. 0.1 0.5
Solarization probability 0. 0. 0. 0.2 0.2

Table 4.1: Different distributions of data augmentations applied to SCE. The weak distribution
is the same as ReSSL [ZYW+21], strong is the standard contrastive data augmentation [CKNH20].
The strong-α and strong-β are two distributions introduced by BYOL [GSA+20]. Finally, strong-γ is
a mix between strong-α and strong-β.

λ 0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Top-1 81.5 81.8 82.5 82.8 82.9 82.9 82.2 81.6 81.8 81.8 81.1

Table 4.2: Effect of varying λ on the Top-1 accuracy on ImageNet100. The optimal λ is in [0.4,0.5]
confirming that learning to discriminate and maintaining relations is best. Results style: best,
second best.

and relational aspects provides better representation. In the next experiments, we keep

λ= 0.5.

Method Loss coefficients Top-1
λ µ η τm = 0.05 τm = 0.07

InfoNCE 1. 0. 0. 81.1 81.1
0.5 0.5 0. 82.8 82.5

SCE 0.5 0.5 0.5 82.9 83.4
ReSSL 0. 1. 0. 80.8 78.4

0. 1. 1. 81.5 79.6

Table 4.3: Effect of loss coefficients in Eq. (4.11) on the Top-1 accuracy on ImageNet100. LCei l

consistently improves performance that varies given the temperature parameters. Results style:
best, second best.

We performed a small study of the optimization of Eq. (4.11) by removing Lcei l (η = 0)

to validate the relevance of our approach for τ= 0.1 and τm ∈ {0.05,0.07}. The results are

reported in Tab. 4.3. Adding the term Lcei l consistently improves performance, empiri-

cally proving that our approach is better than simply adding LIn f oNCE and LReSSL. This

performance boost varies with temperature parameters and our best setting improves by

+0.9 percentage points (p.p.) in comparison with adding the two losses.

Asymmetric data augmentations to build the similarity distributions. Contrastive

learning approaches use strong data augmentations [CKNH20] to learn view-invariant

features and prevent the model from collapsing. However, these strong data augmen-

78



CHAPTER 4. SIMILARITY CONTRASTIVE ESTIMATION FOR IMAGE REPRESENTATION
LEARNING

Online aug Teacher aug Sym top-1

strong weak no 82.9
strong-γ weak no 83.0

weak strong no 73.4
strong strong no 80.5

strong-α strong-β no 80.7

strong weak yes 83.7
strong strong yes 83.0

strong-α strong-β yes 84.2

Table 4.4: Effect of using different distributions of data augmentations for the two views and of the
loss symmetrization on the Top-1 accuracy on ImageNet100. Using a weak view for the teacher
without symmetry is necessary to obtain good relations. With loss symmetry, asymmetric data
augmentations improve the results, with the best obtained using strong-α and strong-β. Results
style: best, second best.

tations shift the distribution of similarities among instances that SCE uses to approxi-

mate w∗
i in Eq. (4.8). We need to carefully tune the data augmentations to estimate a

relevant target similarity distribution. We listed different distributions of data augmen-

tations in Tab. 4.1. The weak and strong augmentations are the same as described by

ReSSL [ZYW+21]. strong-α and strong-β have been proposed by BYOL [GSA+20]. strong-γ

combines strong-α and strong-β.

We performed a study in Tab. 4.4 on which data augmentations are needed to build a

proper target distribution for the non-symmetric and symmetric settings. We report the

Top-1 accuracy on Imagenet100 when varying the data augmentations applied on the on-

line and target branches of our pipeline. For the non-symmetric setting, SCE requires

the target distribution to be built from a weak augmentation distribution that maintains

consistency across instances.

Once the loss is symmetrized, asymmetry with strong data augmentations has better per-

formance. Indeed, using strong-α and strong-β augmentations is better than using weak

and strong augmentations, and the same strong augmentations have lower performance.

We argue that symmetrized SCE requires asymmetric data augmentations to produce dif-

ferent relations for each view to make the model learn more information. The effect of

using stronger augmentations is balanced by averaging the results on both views. Sym-

metrizing the loss boosts the performance as for [GSA+20, CH21].

Sharpening the similarity distributions. The temperature parameters sharpen the distri-

butions of similarity exponentially. SCE uses the temperatures τm and τ for the target and

online similarity distributions with τm < τ to guide the online encoder with a sharper tar-

get distribution. We made a temperature search on ImageNet100 by varying τ in {0.1,0.2}

and τm in {0.03, ...,0.10}. The results are in Tab. 4.5. We found the best values τm = 0.07

and τ = 0.1 proving SCE needs a sharper target distribution. In Appendix A.6, this pa-
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τ= 0.1 τ= 0.2
τm Top-1 τm Top-1

0.03 82.3 0.03 81.3
0.04 82.5 0.04 81.2
0.05 82.9 0.05 81.2
0.06 82.5 0.06 81.2
0.07 83.4 0.07 81.1
0.08 82.7 0.08 80.9
0.09 82.5 0.09 81.2
0.10 82.1 0.10 81.2

Table 4.5: Effect of varying the temperature parameters τm and τ on the Top-1 accuracy on Ima-
geNet100. τm is lower than τ to produce a sharper target distribution without noisy relations. SCE
does not collapse when τm → τ. Results style: best, second best.

rameter search is done for other datasets used in comparison with our baselines. Unlike

ReSSL [ZYW+21], SCE does not collapse when τm → τ thanks to the contrastive aspect.

Hence, it is less sensitive to the temperature choice.

4.4.2 Comparison with our baselines

We compared on 6 datasets how SCE performs against its baselines. We keep similar im-

plementation details to ReSSL [ZYW+21] and MoCov2 [CFGH20] for a fair comparison.

Small datasets. Cifar10 and Cifar100 [KH09] have 50K training images, 10K test images,

32×32 resolution and 10-100 classes respectively. Medium datasets. STL10 [CNL11] has a

96×96 resolution, 10 classes, 100K unlabeled data, 5k labeled training images and 8K test

images. Tiny-Imagenet [AR19] is a subset of ImageNet with 64×64 resolution, 200 classes,

100k training images and 10K validation images.

Implementation details. Architecture implementation details can be found in Ap-

pendix A.5.1. For MoCov2, we use τ = 0.2 and for ReSSL their best τ and τm reported

[ZYW+21]. For SCE, we use the best temperature parameters from Sec. 4.4.1 for ImageNet

and ImageNet100 and from Appendix A.6 for the other datasets. The same architecture

for all methods is used except for MoCov2 on ImageNet which kept the ImageNet100 pro-

jector to improve results.

Results are reported in Tab. 4.6. Our baselines reproduction is validated as results are

better than those reported by the authors. SCE outperforms its baselines on all datasets

proving that our method is more efficient to learn discriminating features on the pre-

trained dataset. We observe that our approach outperforms more significantly ReSSL on

smaller datasets than ImageNet, suggesting that it is more important to learn to discrimi-

nate among instances for these datasets. SCE has promising applications to domains with

few data such as in medical applications.
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Method ImageNet ImageNet100 Cifar10 Cifar100 STL10 Tiny-IN

MoCov2 [CFGH20] 67.5 - - - - -
MoCov2 [*] 68.8 80.5 87.6 61.0 86.5 45.9
ReSSL [ZYW+21] 69.9 - 90.2 63.8 88.3 46.6
ReSSL [*] 70.2 81.6 90.2 64.0 89.1 49.5
SCE (Ours) 70.5 83.4 90.3 65.5 89.9 51.9

Table 4.6: Comparison of SCE with its baselines MoCov2 [CFGH20] and ReSSL [ZYW+21] on the
Top-1 Accuracy on various datasets. SCE outperforms on all benchmarks its baselines. [*] denotes
our reproduction. Results style: best, second best.

Method 100 200 300 800-1000

SimCLR [CKNH20] 66.5 68.3 - 70.4
MoCov2 [CH21] 67.4 69.9 - 72.2
SwaV [CMM+20] 66.5 69.1 - 71.8
BYOL [GSA+20] 66.5 70.6 72.5 74.3
Barlow-Twins[ZJM+21] - - 71.4 73.2
AdCo [HWHQ21] - 68.6 - 72.8
ReSSL [ZYW+21] - 71.4 - -
WCL [ZWY+21] 68.1 70.3 - 72.2
VICReg [BPL22] - - - 73.2
UniGrad [TWZ+22] 70.3 - - -
MoCov3 [CXH21] 68.9 - 72.8 74.6
NNCLR [DAT+21] 69.4 70.7 - 75.4
Triplet [WWW+21] - 73.8 - 75.9
SCE (Ours) 72.1 72.7 73.3 74.1

Table 4.7: State-of-the-art results on the Top-1 Accuracy on ImageNet under the linear evaluation
protocol at different pretraining epochs: 100, 200, 300, 800+. SCE is Top-1 at 100 epochs and Top-2
for 200 and 300 epochs. For 800+ epochs, SCE has lower performance than several state-of-the-art
methods. Results style: best, second best.

4.4.3 ImageNet Linear Evaluation

We compare SCE on the widely used ImageNet linear evaluation protocol with the state

of the art. We scaled our method using a larger batch size and a predictor to match state-

of-the-art results [GSA+20, CXH21].

Implementation details. We use the ResNet-50 [HZRS16] encoder, apply strong-α and

strong-β augmentations defined in Tab. 4.1. We follow the same training hyperparameters

used by [CXH21] and detailed in Appendix A.5.2. The loss is symmetrized and we keep the

best hyperparameters from Sec. 4.4.1: λ= 0.5, τ= 0.1 and τm = 0.07.

Multi-crop setting. We follow [HWHQ21] setting and sample 6 different views detailed in

Appendix A.5.2.

Evaluation protocol. We follow the protocol defined by [CXH21] and detailed in Ap-

pendix A.5.2.
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We evaluated SCE at epochs 100, 200, 300 and 1000 on the Top-1 accuracy on ImageNet

to study the efficiency of our approach and compare it with the state of the art in Tab. 4.7.

At 100 epochs, SCE reaches 72.1% up to 74.1% at 1000 epochs. Hence, SCE has a fast

convergence and a few epochs of training already provide a good representation. SCE

is the Top-1 method at 100 epochs and Top-2 for 200 and 300 epochs proving the good

quality of its representation for a few epochs of pretraining.

At 1000 epochs, SCE is below several state-of-the-art results. We argue that SCE suffers

from maintaining a λ coefficient to 0.5 and that relational or contrastive aspects do not

have the same impact at the beginning and at the end of pretraining. A potential improve-

ment would be using a scheduler on λ that varies over time.

Method Epochs Top-1

200 epochs
SwaV [CMM+20] 200 72.7
AdCo [HWHQ21] 200 73.2
WCL [ZWY+21] 200 73.3
Triplet [WWW+21] 200 74.1
ReSSL [ZYW+21] 200 74.7
SCE (ours) 200 75.4

800+ epochs
WCL [ZWY+21] 800 74.7
SwaV [CMM+20] 800 75.3
DINO [CTM+21] 800 75.3
UniGrad [TWZ+22] 800 75.5
NNCLR [DAT+21] 1000 75.6
AdCo [HWHQ21] 800 75.7

Table 4.8: State-of-the-art results on the Top-1 Accuracy on ImageNet under the linear evaluation
protocol with multi-crop. SCE is competitive with the best state-of-the-art methods by pretraining
for only 200 epochs instead of 800+. Results style: best, second best.

We added multi-crop to SCE for 200 epochs of pretraining. It enhances the results but it is

costly in terms of time and memory. It improves the results from 72.7% to our best result

75.4% (+2.7p.p.). Therefore, SCE learns from having local views and they should maintain

relations to learn better representations. We compared SCE with state-of-the-art methods

using multi-crop in Tab. 4.8. SCE is competitive with top state-of-the-art methods that

trained for 800+ epochs by having slightly lower accuracy than the best method using

multi-crop (−0.3p.p) and without multi-crop (−0.5p.p). SCE is more efficient than other

methods, as it reaches state-of-the-art results for fewer pretraining epochs.

4.4.4 Transfer Learning

We study the generalization of our proposed SCE on several tasks using our multi-crop

checkpoint pretrained for 200 epochs on ImageNet.
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Method K = 16 K = 32 K = 64 full

MoCov2 [CFGH20] 76.1 79.2 81.5 84.6
PCLv2 [LZXH21] 78.3 80.7 82.7 85.4
ReSSL [ZYW+21] 79.2 82.0 83.8 86.3
SwAV [CMM+20] 78.4 81.9 84.4 87.5
WCL [ZWY+21] 80.2 83.0 85.0 87.8
SCE (Ours) 79.5 83.1 85.5 88.2

Table 4.9: Transfer learning on low-shot image classification on Pascal VOC2007. All methods have
been pretrained for 200 epochs. SCE is Top-1 when using 32-64-all images per class and Top-2 for
16 images. Results style: best, second best.

Method Food CIFAR10 CIFAR100 SUN Cars Air. VOC DTD Pets Caltech Flow. Avg.

SimCLR 72.8 90.5 74.4 60.6 49.3 49.8 81.4 75.7 84.6 89.3 92.6 74.6
Supervised 72.3 93.6 78.3 61.9 66.7 61.0 82.8 74.9 91.5 94.5 94.7 79.3
BYOL 75.3 91.3 78.4 62.2 67.8 60.6 82.5 75.5 90.4 94.2 96.1 79.5
NNCLR 76.7 93.7 79.0 62.5 67.1 64.1 83.0 75.5 91.8 91.3 95.1 80.0
SCE (Ours) 77.7 94.8 80.4 65.3 65.7 59.6 84.0 77.1 90.9 92.7 96.1 80.4

Table 4.10: Linear classifier trained on popular many-shot recognition datasets in comparison
with SimCLR [CKNH20], supervised training, BYOL [GSA+20] and NNCLR [DAT+21]. SCE is Top-1
on 7 datasets and on average. Results style: best, second best.

Low-shot evaluation. Low-shot transferability of our backbone is evaluated on Pascal

VOC2007. We followed the protocol proposed by [ZYW+21]. We select 16, 32, 64 or all

images per class to train the classifier. Our results are compared with other state-of-the-

art methods pretrained for 200 epochs in Tab. 4.9. SCE is Top-1 for 32, 64 and all images

per class and Top-2 for 16 images per class, proving the generalization of our approach to

few-shot learning.

Linear classifier for many-shot recognition datasets. We follow the same proto-

col as [GSA+20, EGH21] to study many-shot recognition in transfer learning on the

datasets FGVC Aircraft [MRK+13], Caltech-101 [FFP07], Standford Cars [KSDF13], CIFAR-

10 [KH09], CIFAR-100 [KH09], DTD [CMK+14], Oxford 102 Flowers [NZ08], Food-101

[BGG14], Oxford-IIIT Pets [PVZJ12], SUN397 [XHE+10] and Pascal VOC2007 [EGW+10].

These datasets cover a large variety of number of training images (2k-75k) and number of

classes (10-397). We report the Top-1 classification accuracy except for Aircraft, Caltech-

101, Pets and Flowers for which we report the mean per-class accuracy and the 11-point

MAP for VOC2007.

We report the performance of SCE in comparison with state-of-the-art methods in

Tab. 4.10. SCE outperforms on 7 datasets all approaches. On average, SCE is above all

state-of-the-art methods as well as the supervised baseline, meaning SCE can generalize

to a wide range of datasets.

Object detection and instance segmentation. We performed object detection and in-

stance segmentation on the COCO dataset [LMB+14]. We used the pretrained network

to initialize a Mask R-CNN [HGDG17] up to the C4 layer. We follow the protocol of
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[WWW+21] and report the Average Precision for detection APBox and instance segmen-

tation APMask .

Method APBox APMask

Random 35.6 31.4
Supervised 40.0 34.7
Rel-Loc [DGE15] 40.0 35.0
Rot-Pred [GSK18] 40.0 34.9
NPID [WXYL18] 39.4 34.5
MoCo [HFW+20] 40.9 35.5
MoCov2 [CFGH20] 40.9 35.5
SimCLR [CKNH20] 39.6 34.6
BYOL [GSA+20] 40.3 35.1
SCE (Ours) 41.6 36.0
Triplet [WWW+21] 41.7 36.2

Table 4.11: Object detection and Instance Segmentation on COCO [LMB+14] training a Mask R-
CNN [HGDG17]. SCE is Top-2 on both tasks, slightly below Truncated-Triplet [WWW+21] and
better than supervised training. Results style: best, second best.

We report our results in Tab. 4.11 and observe that SCE is the second best method after

Truncated-Triplet [WWW+21] on both metrics, by being slightly below their reported re-

sults and above the supervised setting. Therefore our proposed SCE is able to generalize

to object detection and instance segmentation task beyond what the supervised pretrain-

ing can (+1.6p.p. of APBox and +1.3p.p. of APMask ).

4.4.5 Sports-field registration

Sports-field registration is a task that consists of mapping image pixels of a sports field

to their corresponding real-world location via generally a projection thanks to homogra-

phies. In this subsection, we pretrain a ViT Tiny encoder [DBK+21] to this task.

Pretraining dataset. We pretrained on the training split of SoccerNetv2 dataset [DCG+21]

for action spotting which contains 300 football matches that last around 90 minutes each.

The videos are the broadcast live version of the matches. The dataset is extracted at 2 Fps

which creates about 3.3M images.

Sports-field registration dataset. We evaluate our approach on the TS-WorldCup dataset

[CSH+22] that contains 43 video clips which corresponds to 3812 field images with 2925

images for training and 887 for testing.

Implementation details. Pretraining implementation details are available in Ap-

pendix A.5.3. For task-specific implementation details, we refer to the original paper

[MODP23].

Metrics. We use four metrics to evaluate the performance of our approach:
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• IoUwhole is the intersection over union of the binary mask of the whole pitch trans-

formed by the ground truth and the estimated homographies.

• IoUpar t is the intersection over union of the binary mask of the visible part of the

pitch transformed by the ground truth and the estimated homographies,

• projection error is the average distance in meters between points randomly sampled

in the frame on the visible part of the pitch and projected with the ground truth and

the estimated homography,

• re-projection error is the average of the distances in pixels, normalized by the frame

height, between points randomly sampled on the visible part of the pitch and re-

projected with the ground truth and the estimated homography.

Encoder Encoder IoUwhole ↑ (%) IoUpart ↑ (%) proj. error ↓ (m.) re-proj. error ↓
architecture pretraining mean median mean median mean median mean median

ViT-tiny SoccerNet 95.7 96.2 98.3 98.5 0.26 0.23 0.008 0.006
ViT-tiny ImageNet 95.4 95.9 98.0 98.4 0.29 0.24 0.008 0.007

Table 4.12: Ablation studies on the TS-WorldCup dataset [CSH+22]. The SoccerNet pretraining
stands for our self-supervised pretraining on the SoccerNet action spotting dataset [DCG+21]
while the ImageNet pretraining stands for a supervised pretraining on the ImageNet 21k dataset
[DDS+09]. The metrics show that the ViT-tiny encoder and the self-supervised pretraining im-
prove the homography estimation performance.

We compare our pretrained backbone in 4.12 with a supervised learned one on Im-

ageNet21k [DDS+09] that contains 14 million labeled diverse images. Therefore our

domain-specific dataset contains fewer images but from a closer domain as our pretrain-

ing datasets contain soccer-related data. Results show that our SCE model consistently

provides better-suited initialized weights than an ImageNet supervised on all metrics to

evaluate sports-field registration.

4.5 Conclusion

In this chapter, we introduced a self-supervised soft contrastive learning approach called

Similarity Contrastive Estimation (SCE). It contrasts pairs of asymmetrical augmented

views with other instances while maintaining relations among instances. SCE leverages

contrastive learning and relational learning and improves performance over optimizing

only one aspect. We showed that it is competitive with the state of the art on the linear

evaluation protocol on ImageNet, on video representation learning and to generalize to

several image and video downstream tasks. We proposed a simple but effective initial es-

timation of the true distribution of similarity among instances. An interesting perspective

would be to propose a finer estimation of this distribution.

This work has been published in:
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• Julien Denize, Jaonary Rabarisoa, Astrid Orcesi, Romain Hérault, Stéphane Canu.

"Similarity Contrastive Estimation for Self-Supervised Soft Contrastive Learning".

In the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer

Vision (WACV), 2023. [DRO+23]

• *Adrien Maglot, *Astrid Orcesi, Julien Denize, Quoc-Cuong Pham. ”Individual lo-

cating of soccer players from a single moving view”. In Sensors, 2023. [MODP23]
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5.1 Introduction

In Chapter 4, we introduced SCE for image representation SSL to improve contrastive

learning and fasten its convergence. Video contrastive self-supervised learning faces sim-

ilar challenges as images as discussed in Sec. 3.4.4. For videos pairs of views from the

same videos are generated by sampling two clips from a video, with or without over-

laps, on which are applied carefully designed data augmentations that are spatiotemporal

[FFX+21, QMG+21]. Negatives are difficult to handle and require dedicated sampling and

selection.

Based on the weaknesses of contrastive learning using negatives introduced in Sec. 3.4.2,

we extend our self-supervised soft contrastive learning approach called Similarity Con-

trastive Estimation (SCE) to video global representation learning, that contrasts positive

pairs with other instances and leverages the push of negatives using the inter-instance

similarities. It shares the same underlying architecture as images but with changes ap-

plied to the data pipeline as well as the neural networks to handle videos.

Our contributions [DROH23] in this chapter can be summarized as follows:

• We extend the concept of relations and our proposed self-supervised soft contrastive

learning approach SCE to video representation learning.

• We show that our proposed SCE reaches state-of-the-art results for video representation

learning by pretraining on the Kinetics400 dataset as we beat or match previous top-1

accuracy for finetuning on HMDB51 and UCF101 for ResNet3D-18 and ResNet3D-50.

We also demonstrate it generalizes to several video downstream tasks.

5.2 Related Work

Video Self-Supervised Learning follows the advances of Image Self-Supervised Learning

and often picks ideas from the image modality with adjustment and improvement to

make it relevant for videos and make the best use of it. We discussed the state of the art in

Sec. 3.4.4 and summarized the related work here for reminder. As for images, we did not

perform a thorough comparative study with Mask Modeling as these methods described

in Sec. 3.5 rely on transformers and we worked with convolutional networks.

Contrastive Learning. Video Contrastive Learning has been widely studied in re-

cent years as it gained interest after its better performance than standard pretext

tasks in videos. Several works studied how to form positive views from different clips

[HXZ20a, QMG+21, FFX+21, PSY+21] to directly apply contrastive methods from images.

Some works focused on combining contrastive learning and predicting a pretext task

[PAR20, WJL20, CHH+21, HSL+21, HWH+21, JJ21]. To help better represent the time
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dimension, several approaches were designed to use different temporal context widths

[PSY+21, RLA+21, DGRS22] for the different views.

Multi-modal Learning. To improve self-supervised representation learning, several ap-

proaches made use of several modalities to better capture the spatio-temporal informa-

tion provided by a video. It can be from text [SBMS19, MAS+20], audio [AMK+20, PAR20,

RLA+21], and optical flow [HXZ20a, LRO+20, HXZ20b, PAR20, HSL+21, RLA+21, TGSH22].

In our work, we extend our soft contrastive learning objective SCE introduced in Chapter 4

to global video representation learning using only RGB frames. It directly generalizes our

approach from images with only changes related to data processing and architectures. To

the best of our knowledge, we are the first to introduce the concept of soft contrastive

learning using relations for video self-supervised representation learning.

5.3 Methodology

Our methodology is the same as for images explained in Sec. 4.3 with changes related

to the modality difference. Therefore they concern the data pipeline, e.g. how views are

formed, and what kind of backbone that outputs the global representation is used, and

the changes are detailed in Sec. 5.4. Because the ablation study for images revealed that

the best setting is to use an asymmetric architecture with a predictor for the online branch

and a different set of data augmentations for the branches, we keep this setting for videos.

More formally, consider x = {xk }k∈{1,...,N} a batch of N videos. Two views are created by

sampling two clips per video of T frames. The sampling of clips follows a strategy that

can be two views with or without overlap [FFX+21, QMG+21]. As for images, we con-

sider x1 = t 1(x) and x2 = t 2(x) generated from x using two data augmentations t 1 ∼ T1

and t 2 ∼ T2. Then, the online and target branches compute the z1 = hs(gs( fs(x1))) and

z2 = g t ( ft (x2)) representations that are l2-normalized. Because we handle videos the on-

line encoder fs , and target encoder ft are designed to deal with such modalities to learn

spatiotemporal features. We estimate the target distribution w2 defined in Eq. (4.8) and

the online distribution defined in Eq. (4.9) and compute the LSCE loss function defined

in Eq. (4.10).

The loss is symmetrized by passing x1 and x2 through the momentum and online en-

coders respectively and averaging the two losses computed. A memory buffer of size

M >> N filled by z2 is maintained to better approximate the similarity distributions.

89



CHAPTER 5. SIMILARITY CONTRASTIVE ESTIMATION FOR GLOBAL VIDEO
REPRESENTATION LEARNING

5.4 Empirical study

In this section, we first make an ablation study of our approach SCE to find the best hy-

perparameters on videos. Then, we compare SCE to the state of the art after pretraining

on Kinetics400 and assess generalization on various tasks.

5.4.1 Ablation study

Pretraining Dataset. To make the ablation study, we perform pretraining experiments

on Mini-Kinetics200 [XSH+18], later called Kinetics200 for simplicity. It is a subset of Ki-

netics400 [KCS+17] meaning they have a close distribution with fewer resources required

on Kinetics200 to train. Kinetics400 is composed of 216k videos for training and 18k for

validation for 400 action classes. However, it has been created from YouTube and some

videos have been deleted. We use the dataset hosted1 by the CVD foundation. Kinetics200

is then formed from Kinetics400 and contains 200 classes with a selected of 400 videos per

class for train and 25 for validation.

Evaluation Datasets. To study the quality of our pretrained representation, we perform

linear evaluation classification on the Kinetics200 dataset. Also, we finetune on the first

split of the UCF101 [SZS12] and HMDB51 [KJG+11] datasets. UCF101 is an action clas-

sification dataset that contains 13,300 different videos for 101 classes and has 3 different

training and validation splits. HMDB51 is also an action classification dataset that con-

tains 6,700 different videos from 51 classes with 3 different splits.

Pretraining implementation details. We used the ResNet3D-18 network [HKS18] follow-

ing the Slow path of [FFMH19]. We kept hyperparameters close to the ones used for Ima-

geNet in Sec. 4.4.3. More details can be found in Appendix B.1. We pretrain for 200 epochs

with a batch size of 512. The loss is symmetrized. To form two different views from a

video, we follow [FFX+21] and randomly sample two clips from the video that last 2.56

seconds. Then, we uniformly keep 8 frames from these clips.

Linear evaluation and finetuning evaluation protocols. We follow [FFX+21] and details

can be found in Appendix B.1. For finetuning on UCF101 and HMDB51 we only use the

first split in the ablation study.

Method K200 UCF101 HMDB51

SCE Baseline 63.9 86.3 57.0
Supervised 72.0 87.5 60.1

Table 5.1: Comparison of our baseline and supervised training on the Kinetics200, UCF101 and
HMDB51 Top-1 accuracy. Supervised training is consistently better.

1Link to the Kinetics400 dataset hosted by the CVD foundation: https://github.com/
cvdfoundation/kinetics-dataset.
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λ K200 UCF101 HMDB51

0.000 64.2 86.2 57.5
0.125 64.8 86.9 58.2
0.250 64.3 86.7 58.2
0.375 64.7 86.3 56.8
0.500 63.9 86.3 57.0
0.625 63.4 86.2 55.7
0.750 63.1 85.8 56.2
0.875 62.1 85.7 55.3
1.000 61.9 85.0 55.4

Table 5.2: Effect of varying λ on the Kinetics200, UCF101 and HMDB51 Top-1 accuracy. The best
λ is 0.125 meaning contrastive and relational leverage increases performance. Results style: best,
second best.

τm K200 UCF101 HMDB51

0.03 63.4 86.1 56.9
0.04 63.8 86.6 56.6
0.05 64.3 86.4 57.1
0.06 64.1 86.2 56.4
0.07 63.9 86.3 57.0
0.08 63.8 85.9 55.8

Table 5.3: Effect of varying τm on the Top-1 accuracy on Kinetics200, UCF101 and HMDB51 while
maintaining τ = 0.1. The best τm is 0.05 meaning that a sharper target distribution is required.
Results style: best, second best.

Baseline and supervised learning. We define an SCE baseline that uses the hyperparam-

etersλ= 0.5, τ= 0.1, τm = 0.07. We provide the performance of our SCE baseline as well as

supervised training in Tab. 5.1. We observe that our baseline has lower results than super-

vised learning with −8.1p.p for Kinetics200, −1.2p.p for UCF101 and −3.1p.p for HMDB51

which shows that our representation has a large margin for improvement.

Leveraging contrastive and relational learning. As for the image study, we varied λ from

the equation Eq. (4.8) in the set {0,0.125, ...,0.875,1} to observe the effect of leveraging the

relational and contrastive aspects and report results in Sec. 5.4.1. Using relations during

pretraining improves the results rather than only optimizing a contrastive learning ob-

jective. The performance on Kinetics200, UCF101 and HMDB51 consistently increases

by decreasing λ from 1 to 0.25. The best λ obtained is 0.125. Moreover λ = 0 performs

better than λ = 1. These results suggest that for video pretraining with standard image

contrastive learning augmentations, relational learning performs better than contrastive

learning and leveraging both further improves the quality of the representation.

Target temperature variation. We studied the effect of varying the target temperature

with values in the set τm ∈ {0.03,0.04, ...,0.08} while maintaining the online temperature
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Figure 5.1: Illustration of an RGB video and its corresponding Optical Flow and RGB difference for
two videos from UCF101 [SZS12]. Optical Flow is predicted by the large RAFT architecture [TD20].
For each video, row 1 is RGB, row 2 is Optical Flow and row 3 is RGB difference. The Optical Flow
color indicates motion direction and the intensity its strength. RGB difference does not contain
the motion direction information but approximates the motion of Optical Flow.

τ= 0.1. We report results in Sec. 5.4.1. We observe that the best temperature is τm = 0.05

indicating that a sharper target distribution is required for video pretraining. We also

observe that varying τm has a lower impact on performance than varying λ.

Spatial and temporal augmentations. We tested varying and adding some data augmen-

tations to generate the pairs of views. As we are dealing with videos, these augmentations

can be either spatial or temporal. We define the jitter augmentation that jitters by a factor

of the duration of a clip, reverse that randomly reverses the order of frames and diff that

randomly applies RGB difference on the frames. RGB difference consists of converting

the frames to grayscale and subtracting them over time to approximate the magnitude

of optical flow. We illustrate in Fig. 5.1 the difference between the RGB frames, OF, and

RGB difference. In this work, we consider RGB difference as a data augmentation that is

randomly applied during pretraining. In the literature it is often used as a modality to

provide better representation quality than RGB frames [JT18, LRO+20, DZCL22]. Here, we
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only apply it during pretraining as a random augmentation. Evaluation only sees RGB

frames.

strength K200 UCF101 HMDB51

0.50 63.9 86.3 57.0
0.75 64.6 86.8 57.8
1.00 64.8 87.0 58.1

Table 5.4: Effect of strength for color jittering for strong-α and strong-β augmentations on the Ki-
netics200, UCF101 and HMDB51 Top-1 accuracy. Strong color jittering improves performance.
Results style: best, second best.

We tested to increase the color jittering strength in Tab. 5.4. Using a strength of 1.0 im-

proved our performance on all the benchmarks suggesting that video pretraining requires

harder spatial augmentations than images.

jitter reverse diff K200 UCF101 HMDB51

0.0 0.0 0.0 63.9 86.3 57.0
0.2 0.0 0.0 64.2 86.4 56.9
0.0 0.2 0.0 64.0 85.7 55.4
0.0 0.0 0.2 65.4 88.3 61.4
0.0 0.0 0.5 64.1 87.7 60.8

Supervised 72.0 87.5 60.1

Table 5.5: Effect of using the temporal augmentations by applying clip duration jittering jitter,
randomly reversing the order of frames reverse or randomly using RGB difference diff on the Ki-
netics200, UCF101 and HMDB51 Top-1 accuracy. The diff augmentation consistently improves
results on the three benchmarks and outperforms supervised pretraining. The other augmenta-
tions unchanged or decreased performance on average. Results style: best, second best.

We tested our defined temporal augmentations with jitter of factor 0.2, meaning sam-

pling clips between 0.80×2.56 and 1.20×2.56 seconds, randomly applying r ever se with

0.2 probability and randomly applying diff with 0.2 or 0.5 probability. We report results

in Tab. 5.5. Varying the clip duration had no noticeable impact on our benchmarks, but

reversing the order of frames decreased the performance on UCF101 and HMDB51. This

can be explained by the fact that this augmentation can prevent the model from correctly

representing the arrow of time. Finally, applying diff with 0.2 probability considerably

improved our performance over our baseline with +1.5p.p. on Kinetics200, +2.0p.p. on

UCF101 and +4.4p.p. on HMDB51. It outperforms supervised learning for generalization

with +0.8p.p. on UCF101 and +1.3p.p. on HMDB51. Applying more often diff decreases

performance. These results show that SCE benefits from using views that are more bi-

ased toward motion than appearance. We believe that it is particularly efficient to model

relations based on motion.
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λ τm diff strength K200 UCF101 HMDB51

0.125 0.05 0.2 1.0 65.0 87.4 61.1
0.125 0.07 0.2 1.0 64.7 88.2 60.6
0.500 0.05 0.2 1.0 66.0 88.4 62.0
0.500 0.07 0.2 1.0 65.4 88.6 61.0

SCE Baseline 63.9 86.3 57.0
Supervised 72.0 87.5 60.1

Table 5.6: Effect of combining best hyper-parameters found in the ablation study which are
λ= 0.125, τm = 0.05, color strength= 1.0 and adding randomly time difference on the Kinetics200,
UCF101 and HMDB51 Top-1 accuracy. Using time difference and stronger color jittering increases
the optimal λ value which indicates contrastive learning is efficient to deal with harder views
and helps relational learning. The best value τm = 0.05 performs favorably for Kinetics200 and
HMDB51. Results style: best, second best.

Bringing all together. We studied varying one hyperparameter from our baseline and

how it affects performance. In this final study, we combined our baseline with the differ-

ent best hyperparameters found which are λ= 0.125, τm = 0.05, color strength = 1.0 and

applying diff with 0.2 probability. We report results in Tab. 5.6 and found out that using

harder augmentations increased the optimal λ value as using λ= 0.5 performs better than

λ= 0.125. This indicates that relational learning by itself cannot learn a better representa-

tion through positive views that share less mutual information. The contrastive aspect of

our approach is proven efficient for such harder positives. We take as best configuration

λ= 0.5, τm = 0.05, diff applied with probability 0.2 and color strength = 1.0 as it provides

best or second best results for all our benchmarks. It improves our baseline by +2.1p.p.

on Kinetics200 and UCF101, and +5.0p.p. on HMDB51. It outperforms our supervised

baseline by +0.9p.p. on UCF101 and +1.9p.p. on HMDB51.

5.4.2 Comparison with the State of the Art

Pretraining dataset. To compare SCE with the state of the art, we perform pretraining on

Kinetics400 [KCS+17] introduced in Sec. 5.4.1.

Evaluation datasets. UCF101 [SZS12] and HMDB51 [KJG+11] have been introduced in

Sec. 5.4.1.

AVA (v2.2) [GSR+18] is a dataset used for spatiotemporal localization of human actions

composed of 211k training videos and 57k validation videos for 60 different classes.

Bounding box annotations are used as targets and we report the mean Average Precision

(mAP) for evaluation.

Something-Something V2 (SSv2) [GKM+17] is a dataset composed of human-object inter-

actions for 174 different classes. It contains 169k training and 25k validation videos.
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Pretraining implementation details. We use the ResNet3D-18 and ResNet3D-50 network

[HKS18] and more specifically the slow path of [FFMH19]. We kept the best hyperparam-

eters from Sec. 5.4.1 which are λ= 0.5, τm = 0.05, RGB difference with a probability of 0.2,

and color strength = 1.0 on top of the str ong −α and str ong −β augmentations. From

the randomly sampled clips, we specify if we keep 8 or 16 frames.

Action recognition. We compare SCE on the linear evaluation protocol on Kinetics400

and finetuning on UCF101 and HMDB51. We kept the same implementation details as

in Sec. 5.4.1. We compare our results with the state of the art in Tab. 5.7 on various ar-

chitectures. To propose a fair comparison, we indicate for each approach the pretraining

dataset, the number of frames and the resolution used during pre-training as well as dur-

ing evaluation. For the unknown parameters, we leave the cell empty. We compared with

some approaches that used the other visual modalities Optical Flow and RGB difference

and the different convolutional backbones S3D [ZDWW18] and R(2+1)D-18 [TWT+18].

On ResNet3D-18 even when compared with methods using several modalities, by using

8× 2242 frames we obtain state-of-the-art results on the three benchmarks with 59.8%

accuracy on Kinetics400, 90.9% on UCF101, 65.7% on HMDB51. Using 16×1122 frames,

which is commonly used with this network, improved by +0.9p.p on HMDB51 and de-

creased by −3.2p.p on kinetics400 and −1.8 on UCF101 and keep state of the art results

on all benchmarks, except on UCF101 with −0.5p.p compared with [DZCL22] using RGB

and RGB difference modalities.

On ResNet3D-50, we obtain state-of-the-art results using 16× 2242 frames on HMDB51

with 74.7% accuracy even when compared with methods using several modalities. On

UCF101, with 95.3% SCE is on par with the state of the art, −0.2p.p. than [FFX+21], but

on Kinetics400 −1.9p.p for 69.6%. We have the same computational budget as they use

4 views for pretraining. Using 8 frames decreased performance by −2.0p.p., −1.2p.p. and

−4.2p.p on Kinetics400,UCF101 and HMDB51. It maintains results that outperform the

three benchmarks ρMoCo and ρBYOL with 2 views. It suggests that SCE is more efficient

with fewer resources than these methods. By comparing our best with approaches on the

S3D backbone that better fit smaller datasets, SCE has slightly lower performance than

the state of the art: −1.0p.p. on UCF101 and −0.3p.p. on HMDB51.

Video retrieval. We performed video retrieval on our pretrained backbones on the first

split of UCF101 and HMDB51. To perform this task, we extract from the training and

testing splits the features using the 30-crop procedure for action recognition, detailed in

Appendix B.1. We query for each video in the testing split the N nearest neighbors (N ∈
{1,5,10}) in the training split using cosine similarities. We report the recall R@N for the

different N in Tab. 5.8.

We compare our results with the state of the art on ResNet3D-18. Our proposed SCE with

16× 1122 frames is Top-1 on UCF101 with 74.5%, 85.6% and 90.5% for R@1, R@5 and
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Method Tp Resp Te Rese Modality Pretrain K400 UCF101 HMDB51

Backbone: S3D / S3D-G

SpeedNet [BEL+20] 64 - 16 2242 R K400 - 81.1 48.8
CoCLR [HXZ20b] 32 1282 32 1282 R K400 - 87.9 54.6
CoCLR [HXZ20b] 32 1282 32 1282 R+F K400 - 90.6 62.9
TEC [JJ21] 32 1282 32 1282 R K400 - 86.9 63.5
ρBYOL (ρ= 4) [FFX+21] 32 2242 32 2562 R K400 - 96.3 75.0

Backbone: R(2+1)D-18

VideoMoCo [PSY+21] 32 1122 - - R K400 - 78.7 49.2
RSPNet [CHH+21] 16 1122 16 2242 R K400 - 81.1 44.6
TransRank [DZCL22] 16 1122 - - R K200 - 87.8 60.1
TransRank [DZCL22] 16 1122 - - R+RD K200 - 90.7 64.2
TEC [JJ21] 16 1122 16 1122 R K400 - 88.2 62.2
ρBYOL (ρ= 4) [FFX+21] 32 2242 32 2562 R K400 - 94.4 72.2

Backbone: ResNet3D-18

ST-Puzzle [KCK19] 16 - 16 1122 R K400 - 65.8 33.7
3D-RotNet [JT18] 16 1122 - - R K400 - 66.0 37.1
3D-RotNet [JT18] 16 1122 - - R+D K400 - 76.7 47.0
VTHCL [YXDZ20] 8 2242 8 2242 R K400 - 80.6 48.6
TransRank [DZCL22] 16 1122 - - R K200 - 85.7 58.1
TransRank [DZCL22] 16 1122 - - R+RD UCF101 - 88.5 63.0
TransRank [DZCL22] 16 1122 - - R+RD K200 - 89.6 63.5
TEC [JJ21] 16 1282 16 1282 R K400 - 87.1 63.6
ProViCo [PLKS22] 16 1122 - - R K400 - 87.2 59.4
ρMoCo (ρ= 2) [FFX+21] 8 2242 8 2562 R K400 56.2 87.1 -
SCE (Ours) 8 2242 8 2562 R K200 − 88.4 62.0
SCE (Ours) 16 1122 16 1282 R K400 56.6 89.1 66.6
SCE (Ours) 8 2242 8 2562 R K400 59.8 90.9 65.7

Backbone: ResNet3D-50

VTHCL [YXDZ20] 8 2242 8 2242 R K400 − 82.1 49.2
CATE [SNTS21] 8 2242 32 2562 R K400 − 88.4 61.9
CVRL [QMG+21] 16 2242 32 2562 R K400 66.1 92.2 66.7
CVRL [QMG+21] 16 2242 32 2562 R K600 70.4 93.4 68.0
CORP f [HSL+21] 16 2242 32 2562 R+F K400 66.6 93.5 68.0
ConST-CL [YQC+22] 16 2242 32 2562 R K400 66.6 94.8 71.9
BraVe [RLA+21] 16 2242 32 2242 R K400 - 93.7 72.0
BraVe [RLA+21] 16 2242 32 2242 R+F K400 - 94.7 72.7
BraVe [RLA+21] 16 2242 32 2242 R K600 - 94.1 74.0
BraVe [RLA+21] 16 2242 32 2242 R+F K600 - 95.1 74.3
ρMoCo (ρ= 2) [FFX+21] 8 2242 8 2562 R K400 65.8 91.0 -
ρMoCo (ρ= 2) [FFX+21] 16 2242 16 2562 R K400 67.6 93.3 -
ρBYOL (ρ= 2) [FFX+21] 8 2242 8 2562 R K400 65.8 92.7 -
ρBYOL (ρ= 4) [FFX+21] 8 2242 8 2562 R K400 70.0 94.2 72.1
ρBYOL (ρ= 4) [FFX+21] 8 2242 16 2562 R K400 71.5 95.5 73.6
SCE (Ours) 8 2242 8 2562 R K400 67.6 94.1 70.5
SCE (Ours) 16 2242 16 2562 R K400 69.6 95.3 74.7

Table 5.7: Performance of SCE for the linear evaluation protocol on Kinetics400 and finetuning
on the three splits of UCF101 and HMDB51. Resp , Rese means the resolution for pretraining and
evaluation. Tp , Te means the number of frames used for pretraining and evaluation. For Modal-
ity, “R" means RGB, “F" means Optical Flow, “RD" means RGB difference. Best viewed in color,
gray rows highlight multi-modal trainings and green rows our results. SCE obtains state of the

art results on ResNet3D-18 and on the finetuning protocol for ResNet3D-50. Results style: best,
second best.
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Method Resp Tp Rese Te Pretrain
UCF101 HMDB51

R@1 R@5 R@10 R@1 R@5 R@10

Backbone: ResNet3D-18

MemDPC [HXZ20a] 40 2242 40 2242 UCF101 20.2 40.4 52.4 7.7 25.7 40.6
RSPNet [CHH+21] 16 1122 16 2242 K400 41.1 59.4 68.4 - - -
MFO [QLL+21] 16 1122 16 1122 K400 41.5 60.6 71.2 20.7 40.8 55.2
TransRank [DZCL22] 16 1122 - - UCF101 46.5 63.7 - 19.4 45.4 59.1
ViCC [TGSH22] 16 1282 16 1282 UCF101 50.3 70.9 78.7 22.7 46.2 60.9
TransRank [DZCL22] 16 1122 - - K200 54.0 71.8 - 25.5 52.3 65.8
TCLR [DGRS22] 16 1122 - - UCF101 56.2 72.2 79.0 22.8 45.4 57.8
TEC [JJ21] 16 1282 16 1282 UCF101 63.6 79.0 84.8 32.2 60.3 71.6
ProViCo [PLKS22] 16 1122 - - UCF101 63.8 75.1 84.8 35.9 55.2 74.3
ProViCo [PLKS22] 16 1122 - - K400 67.6 81.4 90.1 40.1 60.6 75.2
SCE (Ours) 16 1122 16 1282 K400 74.5 85.9 90.5 37.8 62.1 73.8
SCE (Ours) 8 2242 8 2562 K400 74.4 85.6 90.0 40.1 63.3 75.4

Backbone: ResNet3D-50

CATE [SNTS21] 8 2242 32 2562 K400 54.9 68.3 75.1 33.0 56.8 69.4
SCE (Ours) 8 2242 8 2562 K400 81.5 89.7 92.8 43.0 67.0 79.0
SCE (Ours) 16 2242 16 2562 K400 83.9 92.2 94.9 45.9 69.9 80.5

Table 5.8: Performance of SCE for video retrieval on the first split of UCF101 and HMDB51. Resp ,
Rese means the resolution for pretraining and evaluation. Tp , Te means the number of frames
used for pretraining and evaluation. We report the recall R@1, R@5, R@10. We obtain state-of-the-
art results for ResNet3D-18 on both benchmarks and further improve our results using the larger
network ResNet3D-50. Results style: best, second best.

Linear protocol Finetuning accuracy
Method views T K400 UCF101 AVA (mAP) SSv2

Supervised 1 8 74.7 94.8 22.2 52.8

ρSimCLR (ρ= 3) 3 8 62.0 (−12.7) 87.9 (−6.9) 17.6 (−4.6) 52.0 (−0.8)
ρSwAV (ρ= 3) 3 8 62.7 (−12.0) 89.4 (−5.4) 18.2 (−4.0) 51.7 (−1.1)
ρBYOL (ρ= 3) 3 8 68.3 (−6.4) 93.8 (−1.0) 23.4 (+1.2) 55.8 (+3.0)
ρMoCo (ρ= 3) 3 8 67.3 (−7.4) 92.8 (−2.0) 20.3 (−1.9) 54.4 (+1.8)

SCE (Ours) 2 8 67.6 (−7.1) 94.1 (−0.7) 20.3 (−1.9) 53.9 (+1.1)
SCE (Ours) 2 16 69.6 (−5.1) 95.5 (+0.7) 21.6 (−0.6) 57.2 (+4.4)

Table 5.9: Performance of SCE in comparison with [FFX+21] for linear evaluation on Kinetics400
and finetuning on the first split of UCF101, AVA and SSv2. SCE is on par with ρMoCo for fewer
views. Increasing the number of frames outperforms ρBYOL on Kinetics400, UCF101 and SSv2.
Results style: best, second best.
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R@10. Using 8× 2242 frames slightly decreases results that are still state of the art. On

HMDB51, SCE with 8× 2242 frames outperforms the state of the art with 40.1%, 63.3%

and 75.4% for R@1, R@5 and R@10. Using 16× 1122 frames decreased results that are

competitive with the previous state-of-the-art approach [PLKS22] for −2.3p.p., +1.5p.p.

and −1.4p.p. on R@1, R@5 and R@10.

We provide results using the larger architecture ResNet3d-50 which increases our perfor-

mance on both benchmarks and outperforms the state of the art on all metrics to reach

83.9%, 92.2% and 94.9% for R@1, R@5 and R@10 on UCF101 as well as 45.9%, 69.9%

and 80.5% for R@1, R@5 and R@10 on HMDB51. Our soft contrastive learning approach

makes our representation learn features that cluster similar instances even for generaliza-

tion.

Generalization to downstream tasks. We follow the protocol introduced by [FFX+21] to

compare the generalization of our ResNet3d-50 backbone on Kinetics400, UCF101, AVA

and SSv2 with ρSimCLR, ρSwAV, ρBYOL, ρMoCo and supervised learning in Tab. 5.9. To

ensure a fair comparison, we provide the number of views used by each method and the

number of frames per view for pretraining and evaluation.

For 2 views and 8 frames, SCE is on par with ρMoCo with 3 views on Kinetics400, AVA

and SSv2 but is worse than ρBYOL, especially on AVA. For UCF101, results are better than

ρMoCo and on par with ρBYOL. These results indicate that our approach proves more ef-

fective than contrastive learning as it reaches similar results than ρMoCo using one less

view. Using 16 frames, SCE outperforms all approaches, including supervised training,

on UCF101 and SSv2 but performs worse on AVA than ρByol and supervised training.

This study shows that SCE can generalize to various video downstream tasks which is a

criterion of a good learned representation.

5.5 Conclusion

In this chapter, we extended our proposed soft contrastive self-supervised learning ap-

proach called Similarity Contrastive Estimation (SCE) to video global representation

learning. We showed that it is competitive with the state of the art on the widely used

Kinetics400 dataset and to generalize to several video downstream tasks. Experiments

show that emphasizing the motion aspect via RGB difference is a key component to im-

prove performance opening interesting perspectives to compute a target distribution with

more weights applied to motion.

This work has been published in:

• Julien Denize, Jaonary Rabarisoa, Astrid Orcesi, Romain Hérault. "Similarity Con-

trastive Estimation for Image and Video Soft Contrastive Self-Supervised Learning".

In Machine Vision and Applications, 2023. [DROH23]
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6.1 Introduction

Figure 6.1: Illustration of action spotting from [NRSH+21]. The action is located in the middle
frame for each row.

In Chapter 4 and Chapter 5, we introduced SCE for image and video global representa-

tion learning. However, there exist some video tasks that require multiple local temporal

representations rather than a global one. This is the case for Temporal Action Detection

(TAD) which involves the identification of when specific actions occur within a video,

enabling comprehensive understanding and meaningful insights into the dynamics of a

given scenario. Action Spotting [GADG18], illustrated in Fig. 6.1, is a specific TAD task

whose goal is to predict actions at a precise timestamp and therefore requires a temporally

precise prediction. Modeling actions in videos faces several issues such as the sparsity of

actions and the intricate relationships between them.

Pretraining for such tasks is very interesting, especially via SSL as a lot of video data is

readily available but annotating actions presents significant challenges. It suffers from the

inherent subjectivity of annotators to interpret when an action starts or ends. Moreover,

the process of manual annotation requires considerable time and resources, limiting the

scalability of annotating large datasets.

In contrary to previous contributions in Chapter 4 and Chapter 5, this study lies on

the recent advancements in vision Transformers [DBK+21, LLC+21] for video analysis
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[ADH+21, LNC+22, SJE+23] that showed them surpassing the traditionally used Convo-

lutional Neural Networks (CNNs) but required dedicated architecture design to reduce

computational cost [NBZA21, ADH+21, BWT21, XXC+21, WLM+22, YDL+22, MKLF22]. By

capturing long-range dependencies and leveraging global context, Transformers analy-

ses better complex sequences. However, their effectiveness crucially depends on proper

initialization and access to either ample labeled training data [ADH+21, LNC+22] or self-

supervised learning [CTM+21].

In this work, we propose the COMEDIAN approach, which combines self-supervised

learning and Knowledge Distillation to initialize a spatiotemporal transformer for ac-

tion spotting. Knowledge Distillation (KD) [HVD15] initializes a network by transferring

knowledge from another network or a collection of models. Depending on how the net-

works are obtained and the losses used to distill, KD can be considered as SL [TCD+21]

or SSL [GZL+22]. Our method involves two transformers: a spatial transformer, which

learns short context information from frames extracted from small videos, and a tem-

poral transformer, which enriches the local context with global information. The initial-

ization process consists of two stages: the first stage focuses on the spatial transformer

via SSL, while the second stage initializes both spatial and temporal transformers via KD.

KD is employed from a pre-computed bank of representations aligned with each output

temporal token. Notably, COMEDIAN leverages unlabeled video data for initialization,

effectively addressing the aforementioned challenges associated with transformers.

Step 2

Spatial 
Transformer

SSL loss

Step 1

Temporal Transformer

Spatial 
Transformer

Spatial 
Transformer

Spatial 
Transformer

Feature KD loss

... ...

Step 3

Class head

Class loss

Temporal Transformer

Spatial 
Transformer

Spatial 
Transformer

Spatial 
Transformer... ...

Figure 6.2: Overview of COMEDIAN training pipeline. Step 1: Pretraining of the spatial trans-
former. Step 2: Pretraining of the spatial and temporal transformers. Step 3: fine-tuning to the
action spotting task.

To evaluate our approach, we conducted experiments on the action spotting task on the

SoccerNet-v2 [DCG+21] dataset, which contains soccer matches with 17 distinct actions

varying in semantics and occurrence. Our contributions [DLR+24] can be summarized as

follows:

• We propose COMEDIAN a combined self-supervised learning and knowledge distilla-

tion pipeline illustrated in Fig. 6.2 to initialize transformers for action spotting.
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• We demonstrate that COMEDIAN achieves state-of-the-art performance for action

spotting on the SoccerNet-v2 dataset, showcasing the effectiveness of our self-

supervised and knowledge distillation pipeline.

• We provide a comprehensive analysis of the benefits of pretraining with knowledge dis-

tillation, including improved performance and faster convergence compared to non-

pretrained models.

6.2 Related Work

Video Transformers. Vision Transformers [DBK+21] (ViT) capture long-term dependen-

cies better than recurrent models or convolutional networks. It relies on a tokenizer,

that embeds patches of the input, and self-attention [VSP+17]. Standard self-attention

is computationally heavy and several other attention mechanisms have been proposed

such as Swin [LLC+21] or DeIT [TCD+21]. Transformers can be applied to videos by

adapting the tokenizer [ADH+21, BWT21, LNC+22]. However as videos increase the

number of tokens, video transformers are computationally heavy, and various strategies

have been proposed to reduce their cost. VTN [NBZA21] adds a temporal encoder on

top of a ViT while ViViT [ADH+21] and TimeSformer [BWT21] propose several factoriza-

tions of space-time attention. ViViT as VTN found a spatio-temporal hierarchical model

offers the best trade-off between performance and cost which led to several methods

[BPS+21, HHOK21]. Previously mentioned transformers focused on short videos, e.g. ≤ 5

seconds and some architectures have been developed to capture long-range dependen-

cies on longer videos via a sliding window that keeps relevant information from the past

with a memory [XXC+21, WLM+22] or a recurrence [YDL+22, MKLF22] mechanism.

In our work, we consider a spatiotemporal hierarchical model without changing specifi-

cally the architecture to capture long-term dependencies as we also want to capture bidi-

rectional short-term dependencies.

Pretraining. Pretraining has been crucial to unleashing image [DBK+21] and video

[ADH+21] transformers either via Supervised Learning (SL) on a large dataset [DBK+21]

or Self-Supervised Learning (SSL) [CXH21, CTM+21]. We discussed in Sec. 3.4 and Sec. 3.5

contrastive learning [vdOLV18] and masked modeling to learn image and video represen-

tations. We mainly use in our pipeline contrastive learning methods as masked model-

ing approaches assume lots of redundancies are present in the video which is true for

short videos with few view variations but does not hold for complex videos such as soccer

matches. Knowledge distillation (KD) [HVD15] is another approach that distills informa-

tion from teacher models to students and has been successfully applied for SL [TCD+21]

as well as SSL [PKLC19, FWW+21, KTP20, GZL+22]. Most methods learn global represen-

tation without consideration for local-temporal representation even though multiple ap-

proaches emerged to learn spatial and temporal features separately or decoupled to learn

102



CHAPTER 6. COMEDIAN FOR LOCAL TEMPORAL REPRESENTATION LEARNING

a global representation [HLW+21, QDLL22, ZWW+22a, ZWL22]. Closer to our approach,

CARL [CWLC22] followed by [ZLZS23] proposes a sequence contrastive learning approach

to learn frame-wise representations to evaluate fine-grained frame retrieval tasks.

In our work, we pretrain our hierarchical model with a contrastive SSL initialization of

the spatial transformer. Then, our global model is pretrained with a KD loss from an ex-

tracted bank of features aligned with all the output tokens. This loss leverages temporal

masking and soft contrastive learning to maintain local-temporal information enriched

in a global context. Therefore, our goal is to learn multiple local-temporal representa-

tions, not one global. In opposition to CARL, our local-temporal representation does not

concern a frame but a small temporal segment.

Action Spotting. Action Spotting is a timestamp-level Temporal Action Detection (TAD)

first introduced for the dataset SoccerNet [GADG18]. This dataset has been extended to

more videos and more actions in SoccerNet-v2 [DCG+21] and the tight-Average mean

Average Precision (t-AmAP) has been introduced to evaluate precise detection within

thresholds of 1 to 5 seconds. Several approaches have been proposed to tackle this task

that can be divided into two categories. First, most approaches build a temporal archi-

tecture on top of a feature extractor [CDG+20, TBC+20, MHY+21, ZKC+21, MAR21, GG21,

SMY+22, CCL+22, CYZ+22, DS22, SSB22], and second, few others train an end-to-end net-

work [ZLL+22, HZG+22]. The first kind of approach reduces the computational cost of

experiments however makes them rely on a feature extractor for generalization. Notably,

Baidu [ZKC+21] proposed the extraction features of five 3D CNN models pretrained on

Kinetics [KGP+22] and finetuned on SoccerNet-v2. The features are then plugged into a

temporal action detector. Spivak [SSB22] used these Baidu features coupled with features

from a pretrained ResNet-152 to train an anchor-based approach that first classifies ac-

tions falling in a few-second temporal radius and shifts the predictions using a temporal

regressor. For end-to-end approaches, E2E-spot [HZG+22] proposed to train a CNN spa-

tial encoder on top of a simple recurrent model that performed competitively with the

previous approach. As for other domains, the attention mechanism has been studied to

improve performance [MHY+21, ZKC+21, ZLL+22, SMY+22, SSB22].

In our work, we propose an end-to-end transformer-based action spotting approach that

assigns actions that fall in frames in a small temporal radius.

6.3 Method

6.3.1 Overview

Our approach seeks to learn locally precise temporal features enriched with a larger con-

text for action spotting. Therefore our model is composed of three different parts:
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• A spatial transformer embeds the information of a small temporal window and outputs

one token embedding.

• A temporal transformer that takes as input the token outputs of the spatial transformer

on consecutive windows and outputs the same number of tokens. The temporal trans-

former enriches the representation of local windows with the knowledge of a larger con-

text.

• A linear head is applied on each temporal output token to perform the classification of

the action classes.

To train the model, we perform three different training steps described in the latter sub-

sections: (1) pretraining of the spatial transformer on small windows in Sec. 6.3.2, (2)

pretraining of the spatial and temporal transformers on large windows in Sec. 6.3.3, (3)

fine-tuning of the model on the action spotting task in Sec. 6.3.4.

6.3.2 Spatial pretraining

Spatial 
Transformer

Spatial 
Transformer

ema

predictor

MoCo loss
Online

Target 

stop 
gradient 

fs

gs

ft

X

XtXs

zt

zs

Figure 6.3: Pretraining of the spatial transformer.

To train the spatial transformer, we follow the Self-Supervised Contrastive method MoCo

[HFW+20] illustrated in Fig. 6.3. We use a Siamese architecture containing an online and

a target branch. For the online branch, the model contains a transformer fs and a predic-

tor gs . The target branch contains a copy of the transformer updated by the exponential

moving average, or ema, of the online transformer.

Each video X ∈ RTs×H×W×C of Ts frames, width W, height H, and C channels from the

dataset is augmented by two different distributions of data augmentations A1 and A2 to
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form positive views X1 = a1(X), X2 = a2(X) with a1 ∼ A1 and a2 ∼ A2. We pass both views in

both transformers to compute the representations z1s = gs( fs(X1)), z2s = gs( fs(X2)), z1t =
ft (X1) and z2t = ft (X2). A momentum memory buffer Q of size M >> N is maintained on

the target representations to provide negatives.

We apply the MoCo loss on each representation as follows:

LMoCo =−1

2

(
lM(z1s ,z2t )+ lM(z2s ,z1t )

)
, (6.1)

lM(z,k) = log

(
exp(z ·k/τ)

exp(z ·k/τ)+∑n
j=1 exp(z ·Q j /τ)

)
. (6.2)

6.3.3 Spatio-temporal pretraining

Temporal Transformer

Spatial 
Transformer

Spatial 
Transformer

Spatial 
Transformer

Tl tokensMM

Tl tokens

Bank of
features 

SCE loss SCE loss SCE loss

Tg frames

Ts frames

... ...

... ...

X

fs fs fs

h

z

PX

P

Tl features

ts

Figure 6.4: Pretraining of the spatial and temporal transformers via knowledge distillation of a
bank of features with the SCE loss. Some spatial output tokens are masked.

To pretrain the spatial transformer fs and the temporal transformer ts , we adapt the Soft

Contrastive Self-Supervised loss SCE to perform knowledge distillation as illustrated in

Fig. 6.4. To do so, we consider the following inputs:
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• A large video X ∈ RTg ,C,H,W of Tg frames that is divisible by Ts with Tl = Tg /Ts sampled

from a dataset.

• A bank of spatio-temporal features P ∈ RMP ,Dt of size MP and dimension Dt that can

be aligned temporally with small window of Ts frames within any sampled large video.

More specifically, each small window is associated with the temporally closest feature

of its middle frame. Therefore for each sample X a set of features PX ∈RTl ,Dt is selected

from P. As a preprocessing stage, this bank of features is extracted from a pretrained

model.

The video is transformed via a data augmentation a3 ∼ T3 such as X3 = a3(X). Each

global window is split into Tl = Tg /Ts smaller windows and the input is reshaped to

(Tl ,Ts ,C,H,W). It passes through the spatial transformer to output h = fs(X3) with

h ∈ RTl×D and D the output dimension of the spatial transformer. A masking ratio α1 is

applied to replace α1 ∗Tl tokens with a learned mask token. The temporal transformer

adds a positional embedding to each token and computes z = ts(h) with z ∈RTl ,Dt and Dt

the dimension of the temporal output tokens.

The SCE loss is applied on each token of z with the associated set of features PX as follows.

First, a target relation distribution s2 is computed on each of the features in PX with the

complete bank. A one-hot label is mixed with this distribution with a coefficient λ to

form the target distribution w2. Then, each token in h predicts this target distribution by

computing its similarity distribution s1 with the complete bank of features. Finally, the

loss is applied:

s1
i k = exp(z1

i ·Pk /τ)∑MP
j=1 ·exp(z1

i ·P j /τ)
, (6.3)

s2
i k =

1PX
i 6=Pk

·exp(PX
i ·Pk /τm)∑MP

j=11PX
i 6=P j

·exp(PX
i ·P j /τm)

, (6.4)

w 2
i k = λ1PX

i =Pk
+ (1−λ)s2

i k , (6.5)

LSCE =− 1

Tl

Tl∑
i=1

w2
i log(s1

i ). (6.6)

The KD enforces that each temporal token contains the information of its corresponding

smaller window while allowing contextual information from the larger window thanks to

the temporal transformer. The SCE loss enables the spatio-temporal token representa-

tion to model the relations among spatio-temporal small windows that the bank of fea-

tures contains. Depending on how the features are extracted, the KD can be considered

as supervised or self-supervised as discussed in Sec. 6.4.2.
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Figure 6.5: Fine-tuning to the action spotting task. Some spatial output tokens are masked.

6.3.4 Fine-tuning

The input video X considered in this section has the same shape as for spatio-temporal

pretraining and passes through the spatial and temporal transformer that outputs z =
ts( fs(a4(X))) with a4 ∼ A4, a data augmentation.

To train the model to the action spotting task with C classes, a classification head cs is

placed upon the temporal transformer and is applied on each of the temporal output

tokens to predict ŷ = cs(z) with ŷ ∈ RTl ,C as illustrated in Fig. 6.5. Each token is associ-

ated with the average timestamp to the corresponding small window they represent. The

masking strategy from the spatiotemporal pretraining is maintained during training by

randomly masking α2 ×Tl spatial output tokens.

For supervision, each ground truth action that falls into the Tg sampled window is associ-

ated with the input frame timestamps that fall into a temporal radius displacement εwith

the action. For each Ts smaller window, if at least one of its frames is associated with an
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action, the label associated with its temporal output token is 1 and otherwise 0 to form

the vector of label y ∈RTl ,C.

The action classes are considered independently, therefore we apply a Sigmoid activation

function to the classifier. During training, the Binary Cross Entropy (BCE) loss is com-

puted for each class at each timestamp as follows:

LBCE =− 1

Tl ×C

Tl∑
t=1

C∑
c=1

ytc log (ŷtc ) (6.7)

During inference, the predictions are assigned to the output timestamps of their temporal

token. A sliding window with overlap is performed on the videos. For overlapped predic-

tions, a strategy is applied to only keep one prediction per class per timestamp, such as

keeping the maximum or the average of predictions.

6.4 Empirical study

In this section, we will first review the implementation details of each step, then perform

an ablation study on the different parts of our pipeline, and finally compare ourselves

with the state of the art.

6.4.1 Implementation details

We launched our experiments on three seeds and averaged the results.

Dataset. We performed our study on the SoccerNet-v2 [DCG+21] action spotting dataset.

It contains soccer matches divided into two halves of about 45 minutes. It has three an-

notated splits of 17 classes with 300 matches for training, 100 for validation, and 100 for

testing. There is also a challenge split that contains 50 videos for which annotations are

not given. The metric used is the tight-Average mean Average Precision, t-AmAP for short,

which evaluates predictions that fall on average between 1-5 seconds. We extracted the

video frames at resolution 398×224 at 2 Frames Per Second (FPS). The dataset provides

pre-computed Baidu [ZKC+21] features at 1 FPS for all splits. We performed a PCA on

these features to reduce the dimension to 512 for distillation.

Spatial and Temporal transformer architectures. For the spatial transformer, two differ-

ent architectures are used: ViT [DBK+21] and Swin [LLC+21]. The temporal transformer

is a stack of 4 attention layers from a ViT architecture. For ViT, the global architecture cor-

responds to the ViViT model 2 [ADH+21]. We keep this name and refer to the Swin-based

architecture as ViSwin. More details can be found in Appendix C.1.1. For optimization, we

used the ADAMW optimizer with a weight decay of 0.05. The initial learning rate depends

on the step as well as the backbone and is detailed in Appendix C.1.2.
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Spatial pretraining. To perform the pretraining of the spatial transformer, we follow the

method MoCo [HFW+20] and hyper-parameters from SCE. More specifically we use a pro-

jector for the online and target branches and a predictor for the online branch. For data

sampling, all sub-videos of 1 second are used. Details can be found in Appendix C.1.3.

Spatio-temporal pretraining. To perform the pretraining of the spatial and temporal

transformers, we follow SCE. We apply a projector on top of each output temporal to-

ken and we distill information from the reduced Baidu features. Details can be found in

Appendix C.1.4. For data sampling, we randomly extract 150 videos of 32 seconds, or 64

frames, per match at each epoch.

Fine-tuning. To perform fine-tuning, common data augmentations are applied as well

as mixup [ZCDL18]. For data sampling, 100 videos per match per epoch are sampled

uniformly. The classifier is first initialized and then the whole backbone is fine-tuned.

Details can be found in Appendix C.1.5.

Inference. During inference, a sliding window with half overlap is applied on all videos.

For multiple timestamp classifications, the maximum of predictions per action is kept. No

data augmentation is applied. A hard Non-Maximum Suppression (NMS) of a 5-second

window is applied. The 6 first and last seconds of each window are ignored to keep pre-

dictions with past or future context.

6.4.2 Ablation study

In this subsection, we will make various ablations to highlight the advantages of our 3-

step approach, our masking strategy, and how the model and data sampling affect perfor-

mance. The majority of the ablation study is performed on ViViT Tiny to reduce the cost

of training. The models in this section are trained on the training split and evaluated on

the validation split.

Model Params (M) GFLOPs t-AmAP (%)

ViViT T 7.5 41.2 64.7
ViViT S 29.1 149.5 65.9
ViSwin T 55.9 145.6 66.1

Table 6.1: Influence of the model architecture on the t-AmAP.

Architectures. We test two architectures for the spatial part, ViT [DBK+21] and Swin

[LLC+21]. Because the output embedding dimension of the spatial transformer is the one

used for the temporal transformer, the number of parameters increases quadratically with

the spatial dimension. As going deeper with Swin increases the token dimension, its out-

put dimension token is large which leads to a larger number of parameters for ViSwin’s

temporal encoder in comparison with ViViT’s. We compare the performance of ViViT and
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ViSwin in Tab. 6.1. ViSwin Tiny shows an improvement over ViViT Tiny with +1.4 percent-

age points (p.p). However, this improvement comes with a price of about 7.5 times more

parameters. Going from Tiny to Small for ViViT improved by+1.2 p.p for about 4 times pa-

rameter. But, its GFLOPs are slightly higher than ViSwin Small suggesting the Swin spatial

transformer is more efficient for larger networks.

Depth Params (M) GFLOPs t-AmAP (%)

4 7.5 41.2 64.7
6 8.3 41.3 65.4
8 9.2 41.3 65.3

Table 6.2: Influence of temporal depth on ViViT-T for the t-AmAP.

We also test a deeper temporal transformer as the majority of computation comes from

the spatial transformer by design [ADH+21]. Indeed for ViT, it sees for a global window

6,272 tokens whereas the temporal transformer only has 32. Therefore, besides increasing

the number of parameters, the cost of making a deeper temporal transformer is compu-

tationally negligible in comparison with a deeper spatial transformer. The baseline is a

depth of 4 blocks of attention and we increase it to 6 and 8. The results are reported in

Tab. 6.2 and show that increasing the temporal depth to 6 increases the t-AmAP by 0.7 p.p

and going deeper decreases performance. In contrast with ViViT applied to action classifi-

cation [ADH+21] we increase performance with a deeper temporal transformer probably

because action spotting requires modeling more complex temporal dependencies.

Window duration (s) t-AmAP (%)

32 64.7
64 66.0

128 65.5

Table 6.3: Influence of temporal length on ViViT-T on the t-AmAP.

Size of context. Intuitively, the size of the temporal context influences how our model

perceives actions. We study this influence in Tab. 6.3 by increasing 2 times and 4 times

the temporal context. To keep the computational cost the same between different sizes,

we adapt the batch size adequately. Increasing it 2 times improved the results by +1.3 p.p

and a larger context shows a slight decrease. This verifies that for a better understanding

of soccer actions, a large temporal context is necessary.

Masking. Steps 2 and 3 of our training pipeline incorporate a temporal masking strategy.

This masking has two goals: limit the overfitting of our model and make the temporal

transformer focus on contextual information instead of just aligning its output with its

input. We show the advantage of this masking strategy in Tab. 6.4 by masking only during

pretraining, only during fine-tuning, or both. First, masking during only fine-tuning dras-

tically decreases performance by −9.2 p.p. Masking during pretraining increases results
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α1 α2 t-AmAP (%)

None
0.00 0.00 64.7

Only fine-tuning
0.00 0.50 55.5

Only pretraining
0.25 0.00 64.9
0.50 0.00 65.1
0.75 0.00 64.8

Both
0.25 0.25 65.2
0.50 0.50 65.0
0.75 0.75 63.5

Table 6.4: Influence of masking ratio during spatio-temporal pretraining (α1) and fine-tuning (α2)
on ViViT-T on the t-AmAP.

by up to 0.4 p.p for 50% tokens masked and masking during both steps increases up to 0.5

p.p for 25% tokens masked. Performance decreases with further masking. These results

suggest it is necessary to initialize the mask token during pretraining. Also, the percent-

age of tokens to mask seems to be different for optimal performance during pretraining

and fine-tuning, and fewer masking during fine-tuning seems better.

Steps. Our training pipeline consists of three steps, each adding complexity. Here, we val-

idate the usefulness of each step. We evaluate the quality of our learned representation in

step 1 by comparing its performance with a supervised pretrained ViT Tiny model on Im-

ageNet 21k that contains 14 million labeled diverse images. To ensure a fair comparison

with spatiotemporal pretrained backbones, when step 2 is not performed, we perform a

longer fine-tuning.

Step 1 Step 2 Step 3 epochs t-AmAP (%)

x x 100F 48.1
SN x 100F 54.7
IN x 100F 57.7

SN X 50F 62.2
x X 30C + 20F 60.0

SN X 30C + 20F 64.7
IN X 30C + 20F 65.0

Table 6.5: Influence of the pretraining steps and the number of fine-tuning epochs on ViViT-T
on the t-AmAP. SN stands for SoccerNet-v2 MoCo self-supervised pretraining, and IN for Ima-
geNet21k supervised pretraining. C stands for training the classifier and F for fine-tuning the
whole model.

We report results in Tab. 6.5. Each step consistently improves performance. Indeed, train-

ing from scratch reaches 48.1% t-AmAP. Adding step 1 increases up to 54.7% for SSL pre-
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training and 57.7 % for ImageNet pretraining. This suggests that the spatial transformer

takes advantage of initialization from a large diversity of data and that our SSL pretraining

can be improved. Step 2 further improves results, even with random spatial initialization

which reached 60.0% t-AmAP. With SoccerNet weights, it increases to 64.7%, and with Im-

ageNet weights, it reaches 65.0%. The gap between SoccerNet and Imagenet pretraining

in step 1 is almost closed in step 2. As our SSL approach was trained on videos, while

ImageNet weights were obtained on images, we argue that our second pretraining stage

benefits from having initial spatiotemporal features. Initializing the temporal transformer

accelerates convergence and improves results compared to training from scratch or step

1. This reduces the cost of pretraining, allowing future work to perform fast experiments

in the fine-tuning phase.

Depth Sequence Masking t-AmAP (%)

x x x 64.7
X x x 65.4
x X x 66.0
x x X 65.2
X X x 66.1
x X X 66.2
X X X 66.6

Table 6.6: Influence of best parameters for temporal depth and length, and the masking strategy
on ViViT-T on the t-AmAP.

All together. In Tab. 6.6, we test adding together the different best hyperparameters for

a deeper temporal transformer, larger temporal context, and temporal masking. Previ-

ously, we showed that the larger improvement came from increasing the temporal con-

text so we add other components to it. Increasing temporal depth adds 0.1% whilst using

the masking strategy adds 0.2% which makes them marginal in comparison with previous

improvements. However, combining the three improves 0.6% to attain our best result of

66.6%. This confirms that a large temporal context is the most determining component

to improve performance and that the masking strategy scales with the number of param-

eters and ensures new information is learned.

Features
Pretraining

t-AmAP (%)
Dataset Fine-tuned

SCE K400 63.6
SCE K400 X 65.7

Baidu [ZKC+21] K400 X 66.6

Table 6.7: Influence of features to perform KD on ViViT-T on t-AmAP. Supervised features provide
the best results and self-supervised features of SCE achieve good performance.

Bank of features. We change the bank of features used from Baidu [ZKC+21], which ne-

cessitates fine-tuning of 5 models pretrained on Kinetics400 [KCS+17] to obtain, with two
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options: extracted features from SCE pretrained R3D50 on Kinetics400, as explained in

Chapter 5, and its fine-tuned version to the action spotting task. The clips used for the

R3D50 last 4 seconds and fine-tuning is performed on the middle frame. We report re-

sults in Tab. 6.7. Baidu features achieve best performance thanks to its 5 aggregated mod-

els, but SCE fine-tuned, which is 1 model, is enough to achieve competitive performance.

Also, using the self-supervised model loses −2.1p.p but opens an interesting perspective

toward pretraining a self-supervised model on a closer domain for feature extraction.

NMS Ignore (s) Window (s) t-AmAP (%)

Default inference
hard 6 5 66.6

Best inference for soft and hard NMS
hard 12 3 67.1
soft 12 10 68.0

Table 6.8: Best inference parameters on ViViT-T on the t-AmAP.

Inference pipeline. The inference has also a huge impact on performance. There are 3

parameters that we take into account: whether to use hard or strong NMS, the number

of seconds to ignore at the beginning and end of each window prediction, and the size of

the NMS window. In Tab. 6.8, we provide the results of the best parameters that we found

for hard and soft NMS which are detailed in Appendix C.2 and we empirically observe a

better performance for soft NMS.

6.4.3 Comparison with the State of the Art

Implementation details. For comparison with the state of the art, we take the best set-

tings found in the ablation study for fine-tuning and inference. The results labeled ens.

means we use the average predictions of 3 seeds. We evaluate on the test split as well as

the challenge split. When we evaluate on the test split, spatiotemporal pertaining and

fine-tuning are performed on the training and validation splits, and for the challenge all

annotated splits are used.

Comparison on test split. We report our results in Tab. 6.9. We compare ourselves with

methods that use a sequence of images as input or a feature extractor. We observe that

COMEDIAN with ViViT Tiny provides a significant improvement over the state of the art

by +5.6 p.p on t-AmAP. ViSwin Tiny increases performance by +0.9 p.p but at a high cost

in terms of computational usage. Finally using an ensemble of our 3 seed, we achieve

72.0% t-AmAP for ViViT Tiny and 73.1 % for ViSwin Tiny. These results empirically prove

that our approach even with a small network produces state-of-the-art results by using

our initializing pipeline. It is worth noting that we perform a simple fine-tuning stage.

Previous approaches only focused on the fine-tuning part and because the two are not
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Method Input t-AmAP (%)

NetVLAD++ [GG21] F 11.5
AImageLab RMSNet [TBC+20] F 28.8
Baidu [ZKC+21] F 47.1
Faster-TAD [CCL+22] F 54.1
SpotFormer [CYZ+22] F 60.9
E2E-Spot [HZG+22] I 61.8
Spivak [SSB22] F 65.1

COMEDIAN (ViViT-T) I 70.7
COMEDIAN (ViSwin-T) I 71.6
COMEDIAN (ViViT-T - ens.) I 72.0
COMEDIAN (ViSwin-T - ens.) I 73.1

Table 6.9: Comparison with the state of the art on the test split of SoccerNet-v2. F stands for
methods using a feature extractor, I for methods end-to-end with image inputs.

mutually exclusive, it opens interesting perspectives for future work to build better fine-

tuning upon our approach.

Method Input t-AmAP (%)

Challenge 2022 leaderboard
Baidu [ZKC+21] F 49.56
Transformer-AS [ZLL+22] I 52.04
Faster-TAD [CCL+22] F 64.88
E2E-Spot [HZG+22] I 66.73
Spivak [SSB22] F 67.81

Challenge 2023 submission
Spivak* [CGS+23] F 68.33
COMEDIAN (ViViT-T - ens.) I 68.38
team_ws_action [CGS+23] ? 69.17
ASTRA [CGS+23] F 70.10
mt_player [CGS+23] F 71.10
SDU_VISLAB [CGS+23] ? 71.31

Table 6.10: Comparison with the state of the art on the challenge split of SoccerNet-v2. F stands for
methods using a feature extractor, I for methods end-to-end with image inputs and ? for unknown.

Comparison on challenge split. We report our results in Tab. 6.10. We compare with

some participants from the Challenge 2022 and the competitors having results over the

baseline Spivak* of the Challenge 2023. Our proposed COMEDIAN achieves 68.38% on

global t-AmAP for ViViT Tiny. Contrary to the test split we do not have a gap with state-

of-the-art methods and achieve +0.56 p.p in comparison with 2022 best result, +0.05 p.p

in comparison with 2023’s baseline and −2,93 p.p compared to the best method. Because

of the opacity of the challenge split’s labels, it is difficult to investigate the discrepancy

between the test and the challenge. Compared with the best 2022 end-to-end methods

E2E-Spot [HZG+22], our approach achieves a more significant improvement of +1.64 p.p

on t-AmAP.
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At the time of this manuscript, we do not have access to the specifics of the competitors

of the 2023 version, making it difficult to compare with COMEDIAN. However, based on

the challenge report [CGS+23], these approaches, like previous ones in the literature, fo-

cused most on designing specific architectures to solve the action spotting task by using

better features than Baidu’s [ZKC+21], proposing multi-scale pyramidal backbones, or us-

ing different encoders based on the action type. An interesting perspective would be to

use these good practices after pretraining an architecture based on COMEDIAN’s first two

steps to perform better fine-tuning to the action spotting task.

6.5 Conclusion

In this chapter, we introduce COMEDIAN a novel approach for Action Spotting that lever-

ages self-supervised learning and knowledge distillation to initialize a spatio-temporal

transformer. It achieves state-of-the-art results on the SoccerNet-v2 action spotting task,

demonstrating the effectiveness of the proposed pipeline. By utilizing unlabeled video

data for pretraining, we address the subjective and resource-intensive manual labeling

processes for action spotting. The pretraining cost is leveraged by a faster and better con-

vergence during fine-tuning. While our approach shows promising results, there are areas

for improvement in the pretraining and fine-tuning steps and we hope that our approach

will open the path to new methods to increase performance on action spotting and tem-

poral action detection with spatio-temporal transformer models.
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CHAPTER 7. CONCLUSION ET PERSPECTIVES

7.1 Conclusion

Self-supervised learning has gained immense popularity in the field of computer vi-

sion for image and video analysis. This enthusiasm stems from its ability to utilize vast

amounts of unlabeled data without the cost of time, computations and bias associated

with manual labeling to pretrain a neural network. Pretrained neural networks contain

general concepts and can be specialized in various downstream tasks, such as image clas-

sification or action recognition, faster with fewer needed annotated instances.

Within self-supervised learning, various approaches have emerged, each with its

strengths and drawbacks. Geometric and intensity pretext tasks are easy to design but

may not provide enough information for complex tasks. Clustering methods offer sim-

plicity and surprisingly good results but can be sensitive to hyperparameters and don’t

scale well. Contrastive learning scales effectively and can produce general representa-

tions but requires careful design of positives and handling of negatives. Masked model-

ing excels at capturing local information but struggles with global context and demands

redundant data and specialized architectures.

This thesis has focused on improving contrastive methods using negatives for self-

supervised image and video representation learning.

In Chapter 4, we introduced our Similarity Contrastive Estimation (SCE) soft contrastive

learning approach which leverages relations among instances to model data structure and

enhance contrastive method performance. SCE outperforms traditional contrastive and

relational learning methods, as shown theoretically and empirically and has fast conver-

gence.

Expanding SCE to video analysis in Chapter 5, we provide a novel approach to self-

supervised video representation learning for global representation learning. This exten-

sion addresses the challenges of creating positive pairs by leveraging multiple data aug-

mentations that take into account the spatiotemporal aspect of the videos, outperforming

traditional contrastive methods on various benchmarks.

Finally, we introduced the COMEDIAN multi-step pretraining approach in Chapter 6 to

propose a self-supervised learning pipeline for temporally localized video tasks. By per-

forming a spatial pretraining using an SSL training objective followed by a spatiotemporal

knowledge distillation of local temporal features using SCE and Temporal Masked Mod-

eling, we improve the performance of transformer architectures and fasten convergence

on action spotting tasks.
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Because pretraining involves a non-negligible computational cost and specific training,

we made our contributions accessible and provided code and model checkpoints in a

single repository1 [Den23b].

In summary, this thesis advances self-supervised learning for image and video analysis

by enhancing contrastive methods via our new soft contrastive learning approach SCE.

Our contributions have proven to reach state-of-art results on various image and video

analysis tasks. As self-supervised learning continues to evolve, we hope our work serves

as a foundation for future research and applications.

7.2 Perspectives

Although our approaches provided results at the state of the art on various image and

video applications there is room for improvement.

To improve our Similarity Contrastive Estimation soft contrastive learning approach we

identify the following leads:

• Better Relation Estimation: Enhance the relation estimation in SCE by improving

positive pair generation. Instead of solely relying on random data augmentations,

make use of IoU (Intersection over Union) to classify a pair as positive if the IoU

is over a threshold and negative otherwise. For images, only consider a spatial IoU

and for negatives a spatiotemporal IoU. This should better capture the relationships

between objects in both image and video domains as it will avoid training instabil-

ities caused by non-overlapping views. For video global representation learning, it

has been shown experimentally that emphasizing motion improves performance,

therefore putting more attention to this aspect for relation estimation is also an in-

teresting perspective.

• Theoretical comparison with dimension reduction: SSL can be seen as a dimensional

reduction technique as the data are encoded thanks to the learned backbone to

a representation that has generally a much smaller dimension than the input. It

could be interesting to study under this prism SCE and in particular its link with

SNE [HR02] and t-SNE [VdMH08].

• Integration with Masked Modeling: Combine SCE with masked modeling tech-

niques on the input data, and not only on temporal input as for COMEDIAN, to

learn better local features. To do so a promising masking strategy is using teacher-

assisted masking to image and video data by examining which tokens the teacher

model attends to during training.

To improve our COMEDIAN pretraining pipeline we thought of the following tracks:

1Eztorch repository: https://github.com/juliendenize/eztorch.
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• Global Objective with Class Token: Integrate a global temporal representation learn-

ing objective alongside the local temporal distillation by introducing a class token

and applying the global objective to it using a standard SSL method such as SCE.

This class token can help the model learn a global representation that takes into

account the entire input sequence, enhancing its understanding of context and re-

lationships within the data. Pretraining such objectives would allow COMEDIAN

to be fine-tuned on downstream tasks that need local temporal representations but

also a global temporal representation such as for action recognition.

• Large-Scale Domain-Specific Pretraining: Launch a large-scale pretraining phase

on domain-specific data for COMEDIAN. This specialized pretraining can help the

model become more effective in handling domain-specific tasks and improve its

performance in specific applications. Because COMEDIAN pretraining pipeline can

be self-supervised entirely, even for the knowledge distillation step, this can be ac-

complished.

• Dedicated Architecture for Temporal Action Detection (TAD) and Loss Functions: We

used a standard ViT architecture that is not the best architecture for TAD-related

tasks. Pretraining a dedicated architecture tailored for TAD should improve the per-

formance but might necessitate some adjustments.
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Supplementary material SCE Image

A.1 Classes to construct ImageNet100

To build the ImageNet100 dataset, we used the classes shared by the CMC [TKI20] authors

in the supplementary material of their publication. We also share these classes in Tab. A.1.

100 selected classes from ImageNet

n02869837 n01749939 n02488291 n02107142 n13037406 n02091831
n04517823 n04589890 n03062245 n01773797 n01735189 n07831146
n07753275 n03085013 n04485082 n02105505 n01983481 n02788148
n03530642 n04435653 n02086910 n02859443 n13040303 n03594734
n02085620 n02099849 n01558993 n04493381 n02109047 n04111531
n02877765 n04429376 n02009229 n01978455 n02106550 n01820546
n01692333 n07714571 n02974003 n02114855 n03785016 n03764736
n03775546 n02087046 n07836838 n04099969 n04592741 n03891251
n02701002 n03379051 n02259212 n07715103 n03947888 n04026417
n02326432 n03637318 n01980166 n02113799 n02086240 n03903868
n02483362 n04127249 n02089973 n03017168 n02093428 n02804414
n02396427 n04418357 n02172182 n01729322 n02113978 n03787032
n02089867 n02119022 n03777754 n04238763 n02231487 n03032252
n02138441 n02104029 n03837869 n03494278 n04136333 n03794056
n03492542 n02018207 n04067472 n03930630 n03584829 n02123045
n04229816 n02100583 n03642806 n04336792 n03259280 n02116738
n02108089 n03424325 n01855672 n02090622

Table A.1: The 100 classes selected from ImageNet to construct ImageNet100.
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A.2 Pseudo-Code of SCE

1 # dataloader : loader of batches

2 # bsz : batch s i z e

3 # epochs : number of epochs

4 # T1 : weak d i s t r i b u t i o n of data augmentations

5 # T2 : strong d i s t r i b u t i o n of data augmentations

6 # f_s , g_s , h_s : online encoder , projector , and optional predictor

7 # f_t , g_t : momentum encoder and projector

8 # queue : memory buffer

9 # tau : online temperature

10 # tau_m : momentum temperature

11 # lambda_ : c o e f f i c i e n t between contrast ive and r e l a t i o n a l aspects

12 # symmetry_loss : i f True , symmetries the l o s s

13

14 def sce_loss ( z1 , z2 ) :

15 sim2_pos = zeros ( bsz )

16 sim2_neg = einsum ( "nc , kc−>nk" , z2 , queue )

17 sim2 = cat ( [ sim2_pos , sim2_neg ] ) / tau_m

18 s2 = softmax ( sim2 )

19 w2 = lambda_ * one_hot ( sim2_pos , bsz +1) + (1 − lambda_ ) * s

20

21 sim1_pos = einsum ( "nc , nc−>n" , z1 , z2 )

22 sim1_neg = einsum ( "nc , kc−>nk" , z1 , queue )

23 sim1 = cat ( [ sim1_pos , sim1_neg ] ) / tau

24 p1 = softmax ( sim1 )

25

26 l o s s = cross_entropy ( p1 , w2)

27 return l o s s

28

29 for i in range ( epochs ) :

30 for x in dataloader :

31 x1 , x2 = T1( x ) , T2( x )

32

33 z1_s , z2_t = h_s ( g_s ( f _ s ( x1 ) ) ) , g_t ( f _ t ( x2 ) )

34 z2_t = stop_grad ( z2_t )

35

36 l o s s = sce_loss ( z1_s , z2_t )

37 i f symmetry_loss :

38 z1_t , z2_s = g_t ( f _ t ( x1 ) ) , h_s ( g_s ( f _ s ( x2 ) ) )

39 z1_t = stop_grad ( z1_t )

40 l o s s += sce_loss ( z2_s , z1_t )

41 l o s s /= 2

42 l o s s . backward ( )

43

44 update ( f _ s . params )

45 update ( g_s . params )

46 update ( h_s . params )

47 momentum_update( f _ t . params , f _ s . params )

48 momentum_update( g_t . params , g_s . params )

49

50 f i fo_update ( queue , z2_t )

51 i f symmetry_loss :

52 f i fo_update ( queue , z1_t )

Algorithm A.1: Pseudo-Code of SCE in Pytorch style
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A.3 Proof Proposition 1.

Proposition. LSCE defined as

LSCE =− 1

N

N∑
i=1

N∑
k=1

w2
i k log

(
p1

i k

)
,

can be written as:

LSCE = λ ·LIn f oNCE +µ ·LReSSL +η ·Lcei l ,

with µ= η= 1−λ and

LCei l =− 1

N

N∑
i=1

log

(∑N
j=11i 6= j ·exp(z1

i ·z2
j /τ)∑N

j=1 exp(z1
i ·z2

j /τ)

)
.

Proof. Recall that:

p1
i k = exp(z1

i ·z2
k /τ)∑N

j=1 exp(z1
i ·z2

j /τ)
,

s2
i k = 1i 6=k ·exp(z2

i ·z2
k /τm)∑N

j=11i 6= j ·exp(z2
i ·z2

j /τm)
,

w 2
i k = λ ·1i=k + (1−λ) · s2

i k .

We decompose the second loss over k in the definition of LSCE to make the proof:

LSCE =− 1

N

N∑
i=1

N∑
k=1

w2
i k log

(
p1

i k

)

=− 1

N

N∑
i=1

w2
i i log

(
p1

i i

)+ N∑
k=1
k 6=i

w2
i k log

(
p1

i k

)
=− 1

N

N∑
i=1

w2
i i

(
p1

i i

)
︸ ︷︷ ︸

(1)

− 1

N

N∑
i=1

N∑
k=1
k 6=i

w2
i k log

(
p1

i k

)
︸ ︷︷ ︸

(2)

.

First we rewrite (1) to retrieve the LIn f oNCE loss.

(1) =− 1

N

N∑
i=1

w 2
i i log

(
p1

i i

)
=− 1

N

N∑
i=1

λ · log
(
p1

i i

)
=−λ · 1

N

N∑
i=1

log

(
exp(z1

i ·z2
i /τ)∑N

j=1 exp(z1
i ·z2

j /τ)

)
=λ ·LIn f oNCE.
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Now we rewrite (2) to retrieve the LReSSL and LCei l losses.

(2) =− 1

N

N∑
i=1

N∑
k=1
k 6=i

w2
i k log

(
p1

i k

)

=− 1

N

N∑
i=1

N∑
k=1
k 6=i

(1−λ) · s2
i k · log

(
p1

i k

)

=− (1−λ) · 1

N

N∑
i=1

N∑
k=1

s2
i k · log

(
p1

i k

)
=− (1−λ) · 1

N

N∑
i=1

N∑
k=1

[
s2

i k · log

(
exp(z1

i ·z2
k /τ)∑N

j=1 exp(z1
i ·z2

j /τ)

)]

=−(1−λ) · 1

N

N∑
i=1

N∑
k=1

[
s2

i k ·
(

log
(
exp(z1

i ·z2
k /τ)

)− log

(
N∑

j=1
exp(z1

i ·z2
j /τ)

))]

=−(1−λ) · 1

N

N∑
i=1

N∑
k=1

[
s2

i k ·
(

log
(
exp(z1

i ·z2
k /τ)

)− log

(
N∑

j=1
exp(z1

i ·z2
j /τ)

)
+

log

(
N∑

j=1
1i 6= j ·exp(z1

i ·z2
j /τ)

)
−

log

(
N∑

j=1
1i 6= j ·exp(z1

i ·z2
j /τ)

))]

=−(1−λ) · 1

N

N∑
i=1

N∑
k=1

[
s2

i k ·
(

log

(
exp(z1

i ·z2
k /τ)∑N

j=11i 6= j ·exp(z1
i ·z2

j /τ)

)
+

log

(∑N
j=11i 6= j ·exp(z1

i ·z2
j /τ)∑N

j=1 exp(z1
i ·z2

j /τ)

))]

=−(1−λ) · 1

N

(
N∑

i=1

N∑
k=1

[
s2

i k · log

(
exp(z1

i ·z2
k /τ)∑N

j=11i 6= j ·exp(z1
i ·z2

j /τ)

)]
+

N∑
i=1

N∑
k=1

[
s2

i k · log

(∑N
j=11i 6= j ·exp(z1

i ·z2
j /τ)∑N

j=1 exp(z1
i ·z2

j /τ)

)])
.
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Because s2
i i = 0 and s2

i is a probability distribution, we have:

(2) =− (1−λ)·
1

N

N∑
i=1

N∑
k=1
k 6=i

[
s2

i k · log

(
1i 6=k ·exp(z1

i ·z2
k /τ)∑N

j=11i 6= j ·exp(z1
i ·z2

j /τ)

)]
−

(1−λ) · 1

N

N∑
i=1

[
log

(∑N
j=11i 6= j ·exp(z1

i ·z2
j /τ)∑N

j=1 exp(z1
i ·z2

j /τ)

)]
=(1−λ) ·LReSSL + (1−λ) ·LCei l .

A.4 Proof Proposition 2.

Proposition. LSCE defined as

LSCE =− 1

N

N∑
i=1

N∑
k=1

w2
i k log

(
p1

i k

)
,

can be written as:

LSCE = λ ·LDCL + (1−λ) ·LReSSL +LCei l .

Proof. As shown in Proposition 1:

LSCE = λ ·LIn f oNCE + (1−λ) ·LReSSL + (1−λ) ·LCei l .

Recall that:

LDCL =− 1

N

N∑
i=1

(
z1

i ·z2
i /τ− log

(
N∑

j=1
1i 6=k exp(z1

i ·z2
j /τ)

))
.

Let us prove that LIn f oNCE =LDCL +LCei l :

LIn f oNCE −LCei l =− 1

N

N∑
i=1

log

(
exp(z1

i ·z2
i /τ)∑N

j=1 exp(z1
i ·z2

j /τ)

)
+ 1

N

N∑
i=1

log

(∑N
j=11i 6= j ·exp(z1

i ·z2
j /τ)∑N

j=1 exp(z1
i ·z2

j /τ)

)

=− 1

N

N∑
i=1

[
z1

i ·z2
i /τ− log

N∑
j=1

exp(z1
i ·z2

j /τ)−

log

(
N∑

j=1
1i 6= j ·exp(z1

i ·z2
j /τ)

)
+ log

(
N∑

j=1
exp(z1

i ·z2
j /τ)

)]

=− 1

N

N∑
i=1

[
z1

i ·z2
i /τ− log

(
N∑

j=1
1i 6= j ·exp(z1

i ·z2
j /τ)

)]
=LDCL.
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Therefore:
LSCE = λ ·LIn f oNCE + (1−λ) ·LReSSL + (1−λ) ·LCei l

= λ · (LIn f oNCE −LCei l )+ (1−λ) ·LReSSL +LCei l

= λ ·LDCL + (1−λ) ·LReSSL +LCei l .

Backbone Dataset
Projector

Input Buffer ema LR Batch WD
Layers Hid dim Out dim BN

R-18 CIFAR 2 512 128 hid 322 4,096 0.900 0.06 256 5e−4

R-18 STL10 2 512 128 hid 962 16,384 0.996 0.06 256 5e−4

R-18 Tiny-IN 2 512 128 hid 642 16,384 0.996 0.06 256 5e−4

R-50 IN100 2 4096 256 no 2242 65,536 0.996 0.3 512 1e−4

R-50 IN1k 3 2048 256 all 2242 65,536 0.996 0.5 512 1e−4

Table A.2: Architecture and hyperparameters used for pretraining on the different datasets. LR
stands for the initial learning rate, WD for weight decay, BN for batch normalization [IS15], Hid for
hidden, Dim for dimension, ema for the initial momentum value used to update the momentum
branch. For BN: “no" means no batch normalization is used in the projector, “hid" means batch
normalization after each hidden layer, “all" means batch normalization after the hidden layer and
the output layer.

A.5 Implementation details

A.5.1 Ablation study and baseline comparison for images

Pretraining Implementation details. We use the ResNet-50 [HZRS16] encoder for large

datasets and ResNet-18 for small and medium datasets with changes detailed below. We

pretrain the models for 200 epochs. We apply by default strong and weak data augmen-

tations, defined in Tab. 4.1, with the scaling range for the random resized crop set to

(0.2,1.0). Specific hyperparameters for each dataset for the projector construction, the

size of the input, the size of the memory buffer, the initial momentum value, the initial

learning rate, the batch size and the weight decay applied can be found in Tab. A.2. We

use the SGD optimizer [SMDH13] with a momentum of 0.9. A linear warmup is applied

during 5 epochs to reach the initial learning rate. The learning rate is scaled using the lin-

ear scaling rule and follows the cosine decay scheduler without restart [LH17]. The mo-

mentum value to update the target branch follows a cosine strategy from its initial value

to reach 1 at the end of training. We do not symmetrize the loss by default.

Architecture change for small and medium datasets. Because the images are smaller,

and ResNet is suitable for larger images, typically 224×224, we follow guidance from Sim-

CLR [CKNH20] and replace the first 7×7 Conv of stride 2 with a 3×3 Conv of stride 1. We

also remove the first pooling layer.

Evaluation protocol. To evaluate our pretrained encoders, we train a linear classifier fol-

lowing [CFGH20, ZYW+21]. We train for 100 epochs on top of the frozen pretrained en-
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coder using an SGD optimizer with an initial learning rate of 30 without weight decay and

a momentum of 0.9. A scheduler is applied to the learning rate that is decayed by a factor

of 0.1 at 60 and 80 epochs. The data augmentations for the different datasets are:

• training set for large datasets: random resized crop to resolution 224×224 with the

scaling range set to (0.08,1.0) and a random horizontal flip with a probability of 0.5.

• training set for small and medium datasets: random resized crop to the dataset

resolution with a padding of 4 for small datasets and the scaling range set to

(0.08,1.0). Also, a random horizontal flip with a probability of 0.5 is applied.

• validation set for large datasets: resize to resolution 256×256 and center crop to

resolution 224×224.

• validation set for small and medium datasets: resize to the dataset resolution.

A.5.2 Imagenet study

Pretraining implementation details. We use the ResNet-50 [HZRS16] encoder and apply

strong-α and strong-β augmentations, defined in Tab. 4.1, with the scaling range for the

random resized crop set to (0.2,1.0). The batch size is set to 4096 and the memory buffer

to 65,536. We follow the same training hyperparameters as [CXH21] for the architecture.

Specifically, we use the same projector and predictor, the LARS optimizer [YGG17b] with

a weight decay of 1.5·10−6 for 1000 epochs of training and 10−6 for fewer epochs. Bias and

batch normalization [IS15] parameters are excluded. The initial learning rate is 0.5 for 100

epochs and 0.3 for more epochs. It is linearly scaled for 10 epochs and it follows the cosine

annealed scheduler. The momentum value follows a cosine scheduler from 0.996 for 1000

epochs, 0.99 for fewer epochs, to reach 1 at the end of training. The loss is symmetrized.

For SCE specific hyperparameters, we keep the best from ablation study: λ = 0.5, τ = 0.1

and τm = 0.07.

Multi-crop setting. We follow [HWHQ21] and sample 6 different views. The first two

views are global views as without multi-crop, meaning resolution of 224× 224 and the

scaling range for random resized crop set to (0.2,1.0). The 4 local crops have a resolution

of 192× 192, 160× 160, 128× 128, 96× 96 and scaling range (0.172, 0.86), (0.143, 0.715),

(0.114, 0.571), (0.086, 0.429) on which we apply the strong-γ data augmentation defined

in Tab. 4.1.

Evaluation protocol. We follow the protocol defined by [CXH21]. Specifically, we train a

linear classifier for 90 epochs on top of the frozen encoder with a batch size of 1024 and

a SGD optimizer with a momentum of 0.9 and without weight decay. The initial learning

rate is 0.1 and scaled using the linear scaling rule and follows the cosine decay scheduler

without restart [LH17]. The data augmentations applied are:
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• training set: random resized crop to resolution 224×224 with the scaling range set

to (0.08,1.0) and a random horizontal flip with a probability of 0.5.

• validation set: resize to resolution 256×256 and center crop to resolution 224×224.

Dataset τ τm = 0.03 τm = 0.04 τm = 0.05 τm = 0.06 τm = 0.07 τm = 0.08 τm = 0.09 τm = 0.1

CIFAR10 0.1 89.93 90.03 90.06 90.20 90.16 90.06 89.67 88.97
CIFAR10 0.2 89.98 90.12 90.12 90.05 90.13 90.09 90.22 90.34

CIFAR100 0.1 64.49 64.90 65.19 65.33 65.27 65.45 64.89 63.87
CIFAR100 0.2 63.71 63.74 63.89 64.05 64.24 64.23 64.10 64.30

STL10 0.1 89.34 89.94 89.87 89.84 89.72 89.52 88.99 88.41
STL10 0.2 88.4 88.23 88.4 88.35 87.54 88.32 88.80 88.59

Tiny-IN 0.1 50.23 51.12 51.41 51.66 51.90 51.58 51.37 50.46
Tiny-IN 0.2 48.56 48.85 48.35 48.98 49.06 49.15 49.66 49.64

Table A.3: Effect of varying the temperature parameters τm and τ on the Top-1 accuracy.

A.5.3 Sports-field registration

We use the ViT tiny [DBK+21] architecture and the temperatures τ = 0.1, τm = 0.07 and

the coefficient λ = 0.5. The projector and predictor are a 2 and 3-layer Multi-Layer Per-

ceptron (MLP) with a hidden size of 1024 and an output size of 256. For data augmen-

tations, we use strong-α and strong-β and symmetrize the loss. The random aspect ratio

for the random resized crop is sampled between [1.33,2.21] to deal with source images

of ratio 1.77 : 1. We use the AdamW optimizer with a batch size of 1024 and the learning

rate follows a warmup during 10 epochs to reach the initial value 2×10−3 and decrease

following a cosine scheduler to 2× 10−5 throughout 100 epochs of training. The weight

decay is set to 0.05.

A.6 Temperature influence on small and medium datasets

We made a temperature search on CIFAR10, CIFAR100, STL10 and Tiny-ImageNet by vary-

ing τ in {0.1,0.2} and τm in {0.03, ...,0.10}. The results are in Tab. A.3. As for ImageNet100,

we need a sharper distribution on the output of the momentum encoder. Unlike ReSSL

[ZYW+21], SCE do not collapse when τm → τ thanks to the contrastive aspect. For our

baselines comparison in Sec. 4.2, we use the best temperatures found for each dataset.
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stage ResNet3d-18 ResNet3D-50

conv1
1×72,64 1×72,64

stride 1,22 stride 1,22

pool1
1×32,max 1×32,max
stride 1,22 stride 1,22

res2

[
1×32,64
1×32,64

]
×2

1×12,64
1×32,64
1×12,256

×3

res3

[
1×32,128
1×32,128

]
×2

1×12,128
1×32,128
1×12,512

×4

res4

[
3×32,256
1×32,256

]
×2

3×12,256
1×32,256
1×12,1024

×6

res5

[
3×32,512
1×32,512

]
×2

3×12,512
1×32,512
1×12,2048

×3

pool global average global average

Table B.1: ResNet3D-18 and ResNet3D-50 networks.

Backbone Dataset
Projector Predictor

Buffer
Layers Hid dim Out dim BN Layers Hid dim Out dim BN

ResNet3D-18 K200 3 1024 256 all 2 1024 256 hid 32768
ResNet3D-18 K400 3 1024 256 all 2 1024 256 hid 65536
ResNet3D-50 K400 3 4096 256 all 2 4096 256 hid 65536

Table B.2: Architecture and hyperparameters used for video pretraining. BN stands for for Batch
Normalization, Hid for hidden, Dim for dimension. For BN: "hid" means batch normalization
after each hidden layer, "all" means batch normalization after the hidden layer and the output
layer.
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B.1 Implementation details

Pretraining implementation details. We used the ResNet3D-18 and ResNet3D-50 net-

works [HKS18] following the Slow path of [FFMH19]. The exact architecture details can

be found in Tab. B.1. We kept the siamese architecture used for ImageNet in Sec. 4.1.3

and depending on the backbone and pretraining dataset, the projector and predictor ar-

chitectures as well as the memory buffer size vary and are referenced in Tab. B.2. The

LARS optimizer with a weight decay of 1.10−6, batch normalization and bias parameters

excluded, for 200 epoch of training is used. The learning rate follows a linear warmup until

it reaches an initial value of 2.4 and then follows a cosine annealed scheduler. The initial

learning rate is scaled following the linear scaling rule and the batch size is set to 512. The

momentum value follows a cosine scheduler from 0.99 to 1 and the loss is symmetrized.

To sample and crop different views from a video, we follow [FFX+21] and sample ran-

domly different clips from the video that lasts 2.56 seconds. For Kinetics it corresponds

to 64 frames for a frame rate per second (FPS) of 25. Out of this clip we keep a number

of frames specified in Sec. 5.4. By default, we sample two different clips to form positives

and we apply the strong-α and strong-β augmentations, defined in Tab. 1 in Tab. 4.1, to

the views.

Linear evaluation protocol details. We follow [FFX+21] and train a linear classifier for 60

epochs on top of the frozen encoder with a batch size of 512. We use the SGD optimizer

with a momentum of 0.9 and without weight decay to reach the initial learning rate 2 that

follows the linear scaling rule with the batch size set to 512. A linear warmup is applied

during 35 epochs and then a cosine annealing scheduler. For training, we sample ran-

domly a clip in the video and random crop to the size 224× 224 after short scaling the

video to 256. An horizontal flip is also applied with a probability of 0.5. For evaluation, we

follow the standard evaluation protocol of [FFMH19] and sample 10 temporal clips with

3 different spatial crops of size 256×256 applied to each temporal clip to cover the whole

video. The final prediction is the mean average of the predictions of the 30 clips sampled.

Finetuning evaluation protocol details. We follow [FFX+21] for finetuning on UCF101

and HMDB51. We finetune the whole pretrained network and perform supervised train-

ing on the 101 and 51 classes respectively for 200 epochs with dropout of probability 0.8

before classification. We use the SGD optimizer with a momentum of 0.9 and without

weight decay to reach the initial learning rate 0.1 that follows the linear scaling rule with

the batch size set to 64 and a cosine annealing scheduler without warmup. For training,

we sample randomly a clip in the video and random crop to the size 224×224 after short

scaling the video to 256. We apply color jittering with the strong augmentation param-

eters, defined in Tab. 1 in Tab. 4.1, and an horizontal flip with a probability of 0.5. For

evaluation, we follow the 30-crops procedure as for linear evaluation. Specific hyperpa-

rameter search for each dataset might improve results.
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Supplementary material COMEDIAN

C.1 Implementation details

C.1.1 Architectures

ViViT Tiny ViViT Small ViSwin Tiny

Input dim C×Tg ×H×W C×Tg ×H×W C×Tg ×H×W

Spatial encoder

Input tokens dim
( H

16 × W
16 +1

)× Tg

2 ×192
( H

16 × W
16 +1

)× Tg

2 ×384 H
4 × W

4 × Tg

2 ×96
Num parameters 5.7M 22.0M 27.5M
GFLOPs 41.19 149.30 144.68

Temporal encoder

Input tokens dim
Tg

2 ×192
Tg

2 ×384
Tg

2 ×768
Num parameters 1.8M 7.1M 28.4M
GFLOPs 0.06 0.24 0.96

Global model
Num parameters 7.5M 29.1M 55.9M
GFLOPs 41.25 149.54 145.64

Table C.1: Comparison of the ViViT Tiny, ViViT small, and ViSwin Tiny spatial and temporal en-
coders and global model in terms of computational usage.

Encoders. For the spatial encoder, two different transformer architectures are used: ViT

[DBK+21] and Swin [LLC+21]. By default, the temporal encoder is a stack of 4 attention

layers as in ViT architecture. For ViT, the global architecture corresponds to the ViViT

model 2 [ADH+21]. We keep this name and refer to the Swin based-architecture as ViSwin.

In Tab. C.1, we provide the input dimension of tokens for the spatial and temporal en-

coders, and their number of parameters and GFLOPs for ViViT Tiny, ViViT Small, and

ViSwin Tiny.
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For all models, the majority of the computations are performed in the spatial encoder

which sees a lot of tokens, and the temporal encoder computational cost is negligible.

However, the number of parameters does not scale well with the output dimension of the

spatial encoder, due to the self-attention mechanism, which is reflected in ViSwin Tiny. It

has 4 times more temporal parameters than ViViT small but only 1.25 times more spatial

parameters. However, as Swin has less reduced computational usage in comparison with

ViT by design [LLC+21] it scales better to deeper spatial architectures.

C.1.2 Optimizers

We use the optimizer ADAMW for pretraining and finetuning with a weight decay of 0.05.

The initial learning rate depends on the training step as well as the backbone as detailed

below. However, the steps follow different linear scaling rules for an initial learning rate η:

• Step 1: ηscaled = η× batch_si ze
256

• Step 2 and 3: ηscaled = η× batch_si ze
256 × Tg

64 with Tg the number of global frames per

video.

Step 1. The initial learning rate is η = 5× 10−4 with 10 epochs of warmup and a cosine

annealing scheduler is applied throughout training.

Step 2. The initial learning rate is η= 0.002 with 10 epochs warmup and cosine annealing

scheduler that ends at 0.01×η.

Step 3. The initial learning rate is η = 5×10−4 for ViViT and η = 3×10−4 for ViSwin that

ends at 0.01×η.

C.1.3 Spatial Pretraining.

To perform the pretraining of the spatial encoder, we follow practices introduced by

ρMoCo [FFX+21] and SCE. More specifically we use a 3-layer Multi-Layer Perceptron

(MLP) on top of the online and target encoders of hidden size 1024 and output size 256

that is discarded after this step. The online predictor is a 2 layers MLP with the same hid-

den and output size as the projectors. The data augmentation distributions are the stan-

dard contrastive ones used on images and the temperature applied is τ = 0.1. The mo-

mentum buffer size is 65,536. For data sampling, all sub-videos of 1 second, or 2 frames,

are used. The model is trained for 100 epochs with a batch size of 1024.

C.1.4 Spatio-temporal pretraining.

To perform the pretraining of the spatio-temporal encoder, we follow practices intro-

duced for SCE. More specifically we use a 3-layer MLP on top of the temporal encoder

of hidden size 1024 and output size 512 to match the dimension of the Baidu [ZKC+21]
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features. The projector is later discarded. For the SCE loss parameters we use τ = 0.1,

τm = 0.07, λ= 0.5. The data augmentation used is the str ongγ without cropping reported

in Tab. 4.1. For data sampling, we randomly extract 150 videos of 32 seconds or 64 frames

per game at each epoch. The batch size for 32-second videos at 2 FPS is 64. For longer

clips, the batch size is inversely proportional to the length and number of windows. For

example, for 64 seconds, the batch size is 32 and the number of windows sampled per

match is 75.

C.1.5 Finetuning.

A linear classifier is applied to each output temporal token to perform fine-tuning. Each

video sampled is augmented by using color jittering with probability 0.8 and of strength

±0.4 on brightness, contrast, and saturation and 0 for hue to avoid changing the color of

cards. Random Gaussian blur is also applied with probability 0.5 and a kernel size of 23

with σ ∈ [0.1,2.]. A horizontal flip of probability 0.5 is also applied followed by a mixup

[ZCDL18] whose mixing coefficient is sampled by a Beta law B(0.1,0.1).

The classifier is first trained during 30 epochs for its initialization and then the whole

architecture is fine-tuned for 20 epochs for ViViT and 10 for ViSwin. The learning rate is

reset for the second part.

For data sampling, 100 videos per match are uniformly sampled whilst enforcing that the

beginning and end of each half are selected to avoid missing kickoffs and last-second

actions. The batch size for 32-second videos at 2 FPS is 128. For longer clips, the batch

size is inversely proportional to the length and number of windows. For example, for 64

seconds, the batch size is 64 and the number of windows sampled is 50 per match.

C.2 Inference hyper-parameters search

During inference, a sliding window with half overlap is applied on all videos. For multiple

timestamp classifications, the maximum of predictions per action is kept. No data aug-

mentation is applied. By default, a hard Non-Maximum Suppression (NMS) of a 5-second

window is applied. The 6 first and last seconds of each window prediction are ignored to

keep predictions that have past and future context.

In Tab. C.2, we study the effect of varying the number of seconds to ignore. Taking all

predictions has the worst result of 66.4% t-AmAP showing that it is interesting to remove

predictions on edge that do not have access to the context from the past or the future.

The results increase up to 66.8% at 10 seconds and are stable for further seconds ignored.

The increase in performance is relatively low and can be explained by the fact that the

inference sliding window allows for some undetected predictions on edges to be retrieved

by past or future windows.
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Seconds t-AmAP (%)

0 66.4
2 66.6
4 66.7
6 66.6
8 66.6

10 66.8
12 66.8
14 66.8
16 66.7

Table C.2: Influence of the number of seconds ignored at the start and end of each window pre-
diction on the t-AmAP.

Figure C.1: Influence of the soft and hard NMS and its window size in second on the t-AmAP.

In Fig. C.1, we study the effect of using Hard or Soft NMS. As for [SSB22], we see an in-

crease in using soft NMS over hard NMS. Depending on the NMS type the optimal tem-

poral window size for NMS is not the same. The best results are achieved for a hard NMS

with a 4-5 seconds window at 66.8% t-AmAP and 68.0% for a soft NMS with an 11-17 sec-

onds window. The results show that not only does soft NMS perform better than hard

NMS but is also more stable.
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Self-supervised representation learning and applications to

image and video analysis

Keywords: Machine learning; Deep learning; Computer vision; Representation learning

(artifical intelligence); Image processing; Video; Self-supervised learning (artificial intelli-

gence); Contrastive

Abstract

In this thesis, we develop approaches to perform self-supervised learning for image and

video analysis. Self-supervised representation learning allows to pretrain neural networks

to learn general concepts without labels before specializing in downstream tasks faster

and with few annotations. We present three contributions to self-supervised image and

video representation learning. First, we introduce the theoretical paradigm of soft con-

trastive learning and its practical implementation called Similarity Contrastive Estima-

tion (SCE) connecting contrastive and relational learning for image representation. Sec-

ond, SCE is extended to global temporal video representation learning. Lastly, we propose

COMEDIAN a pipeline for local-temporal video representation learning for transformers.

These contributions achieved state-of-the-art results on multiple benchmarks and led to

several academic and technical published contributions.



Apprentissage auto-supervisé de représentation et applica-

tions à l’analyse d’images et de vidéos

Mots-clefs: Apprentissage automatique; Apprentissage profond; Vision par ordinateur; Ap-

prentissage de représentations (intelligence artificielle); Traitement d’images; Vidéo; Ap-

prentissage auto-supervisé (intelligence artificielle); Contrastif

Résumé

Dans cette thèse, nous développons des approches d’apprentissage auto-supervisé pour

l’analyse d’images et de vidéos. L’apprentissage de représentation auto-supervisé per-

met de pré-entraîner les réseaux neuronaux à apprendre des concepts généraux sans

annotations avant de les spécialiser plus rapidement à effectuer des tâches, et avec peu

d’annotations. Nous présentons trois contributions à l’apprentissage auto-supervisé de

représentations d’images et de vidéos. Premièrement, nous introduisons le paradigme

théorique de l’apprentissage contrastif doux et sa mise en œuvre pratique appelée Es-

timation Contrastive de Similarité (SCE) qui relie l’apprentissage contrastif et relation-

nel pour la représentation d’images. Ensuite, SCE est étendue à l’apprentissage de

représentation vidéo temporelle globale. Enfin, nous proposons COMEDIAN, un pipeline

pour l’apprentissage de représentation vidéo locale-temporelle pour l’architecture trans-

former. Ces contributions ont conduit à des résultats de pointe sur de nombreux bench-

marks et ont donné lieu à de multiples contributions académiques et techniques publiées.


