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Résumé
Cette thèse porte sur l’analyse des institutions économiques et des comportements
de coopération sous-jacents à ces institutions. Cette analyse de la coopération est
conduite en considérant une approche dite “par la justice”. Il s’agit de considérer
des agents économiques qui produisent une valeur monétaire en coopérant, puis
d’identifier des mécanismes de partage de cette valeur. En partant de l’hypothèse
que la coopération est effective, on propose des arbitrages entre plusieurs principes
désirables et raisonnables à partir desquels ces institutions sont construites. Cette
méthode, qualifiée d’axiomatique, permet d’aborder de manière conceptuelle ces
institutions coopératives. Elle consiste à traduire ces principes désirables en ax-
iomes, puis d’étudier les conséquences de la combinaisons de différents ensembles
d’axiomes. Ce travail s’inscrit dans le cadre de la théorie des jeux coopératifs à
choix multiples (ou jeux multi-choix). Contrairement aux jeux coopératifs tradition-
nels, les jeux à choix multiples supposent que les agents peuvent choisir plusieurs
niveaux de coopération. De ce point de vue, une institution coopérative est une so-
lution pour les jeux coopératifs à choix multiples qui décrit la manière dont la valeur
engendrée par la coopération de tous est partagée entre ses membres. En particulier,
ce travail vise à souligner que cette approche est pertinente pour analyser des prob-
lèmes économiques en présence d’externalités négatives (la pollution). Après avoir
introduit les notions fondamentales qui seront utilisées dans ce document, quatre
contributions originales sont présentées.

Dans une première partie constituée de deux chapitres, l’étude porte sur la théorie
des jeux coopératifs à choix multiples. Comme suite à une introduction et à un
chapitre préliminaire, le troisième chapitre, co-écrit avec David Lowing, examine
l’arbitrage entre les principes marginaliste et égalitariste. Le principe marginal-
iste repose sur l’idée que l’évaluation de la coopération d’un agent doit résulter
des contributions marginales de cet agent en matière de coopération. Par contri-
bution marginale, on entend la contribution de l’agent lorsqu’il rejoint une coalition.
En ce sens la valeur de Shapley est-elle la plus populaire des solutions marginal-
istes dans les jeux coopératifs. L’égalitarisme renvoie à la fois à l’idée que tous les
agents doivent être traités de la même façon et que les inégalités entre ces agents
doivent être réduites au maximum au sein de l’institution. Un cas extrême de ce
principe revient à distribuer à chaque agent la même part de la valeur engendrée
par la coopération de tous. Le compromis entre marginalisme et égalitarisme est
ensuite appréhendé via les combinaisons convexes entre la valeur de Shapley et la
valeur de division égale. Dans le cadre des jeux à choix multiples il existe plusieurs
manières d’étendre les principes marginaliste et égalitariste. Nous proposons une
nouvelle facon d’étendre ces principes dans les jeux à choix multiples. Puis nous
réalisons un compromis entre ces deux principes. Enfin, nous procédons à l’étude
axiomatique.

Le quatrième chapitre, co-écrit avec David Lowing, considère des situations de
coopération entre des agents hétérogènes. Deux types d’hétérogénéité sont prises en
compte. Premièrement, chaque agent peut avoir différentes possibilités de coopéra-
tion représentées par des ensembles de niveaux d’activité différents. Deuxième-
ment, les agents sont différenciés par rapport à une structure de priorité qui reflète
les asymétries entre les agents au-delà des asymétries inhérentes au processus de
coopération. Ces asymétries peuvent refléter des droits exogènes, des besoins dif-
férents, le mérite ou des contraintes hiérarchiques. Pour analyser ces situations, nous
enrichissons le modèle des jeux à choix multiples d’une structure de priorité. Une
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nouvelle valeur sur la classe des jeux à choix multiples avec une structure de pri-
orité est introduite. Pour tenir compte à la fois des différents niveaux d’activité et
des asymétries entre les agents, cette valeur est construite à l’aide d’une procédure
lexicographique. Nous introduisons de nouveaux axiomes pour les jeux à choix mul-
tiples avec une structure de priorité. Ces axiomes déterminent de manière endogène
la procédure lexicographique utilisée pour définir la valeur. Deux caractérisations
axiomatiques de cette valeur sont fournies.

Dans une seconde partie constituée de deux chapitres, le travail porte sur des
applications qui traitent des problèmes de pollution. Précisément, le cinquième
chapitre considère le transport des déchets dangereux. En raison de leur nature
dangereuse, le transport de ces déchets implique un risque d’incident ayant des
conséquences irréversibles sur l’environnement. Ce problème a conduit à la mise
en place d’un ensemble de réglementations qui encadrent la production et le trans-
port des déchets dangereux. Ces réglementations mettent en œuvre des mesures
qui visent à réduire le risque associé aux déchets dangereux. En supposant que ces
mesures sont coûteuses, ce chapitre étudie le partage de ce coût entre les agents. Plus
précisément, un ensemble d’agents, localisés sur un réseau, transportent une quan-
tité maximale de déchets (qui peut varier d’un agent à l’autre) vers une installation
de traitement. Afin de maintenir le réseau aussi fiable que possible, une autorité cen-
trale définit certaines mesures préventives qui entraînent un coût de maintenance et
d’opération du réseau. L’objectif est d’identifier la responsabilité de chaque agent
sur le risque qu’il fait peser au réseau, et d’allouer le coût du réseau en conséquence.
Pour ce faire, on introduit plusieurs axiomes inspirés de différents principes de
droit environnemental, dont le principe du pollueur-payeur. En conformité avec
ces principes de droit environnemental, les axiomes décrivent la responsabilité de
chaque agent par rapport au risque qu’il fait peser sur le réseau. Ensuite, on mon-
tre qu’il existe une unique règle d’allocation qui satisfait à ces axiomes. Cette règle
répartit la variation du coût de chaque portion du réseau (lorsque la quantité de
déchets augmente) de manière égale entre les agents responsables de cette portion.

Le dernier chapitre s’intéresse aux situations dans lesquelles l’activité d’un agent
a des conséquences néfastes sur d’autres agents. Ce problème, identifié par Ronald
Coase, est celui du “coût social”. La solution préconisée par Coase écarte le principe
du pollueur-payeur pour laisser la place à des négociations des droits à polluer en-
tre le pollueur et une victime potentielle. Dans ce chapitre, on reprend l’intuition
de Coase en supposant qu’il existe un grand nombre de victimes potentielles. Le
pollueur dispose de plusieurs niveaux d’activité qui correspondent à des niveaux
de pollution différents. Une nouveauté de ce modèle est de distribuer des droits
non seulement aux agents, mais à des groupes d’agents. Si une coalition d’agents
incluant le pollueur possède des droits, alors ces membres peuvent négocier avec
le pollueur une réduction du niveau d’activité. Dans le cas ou cette coalition pos-
sède des droits et ne contient pas le pollueur, alors les victimes peuvent se prémunir
de toute pollution, et c’est au pollueur de proposer un accord avec les victimes po-
tentielles. A partir de ce problème, on considère un jeu à choix multiples, puis on
fournit une caractérisation de la distribution des droits qui assurent que le coeur de
ce jeu est non vide.
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Abstract
This thesis analyses economic institutions and the underlying cooperative behav-
iors of these institutions. This analysis of cooperation is conducted by considering
a "justice" approach. The aim is to consider economic agents who produce mone-
tary value by cooperating, and then to identify mechanisms for sharing this value.
Assuming that cooperation is effective, we propose trade-offs between several desir-
able and reasonable principles from which these institutions are built. This method,
called axiomatic, allows for a conceptual approach to these cooperative institutions.
It consists of translating these desirable principles into axioms, and then studying
the consequences of combining different sets of axioms. This work fits in the frame-
work of multi-choice cooperative game theory. In contrast to traditional cooperative
games, multi-choice games assume that agents can choose different levels of cooper-
ation. From this point of view, a cooperative institution is a solution for multi-choice
cooperative games that describes how the value generated by the cooperation of all
is shared among its members. Specifically, this work aims to emphasize that this
approach is relevant for analyzing economic problems in the presence of negative
externalities (pollution). After introducing the basic concepts that will be used in
this thesis, four original contributions are presented.

A first part studies multi-choice cooperative games. Following an introduction
and a preliminary chapter, the third chapter, co-authored with David Lowing, exam-
ines the trade-off between marginalism and egalitarianism. Marginalism is based on
the idea that the evaluation of an agent’s cooperation must result from that agent’s
marginal contributions to cooperation. In this sense the Shapley value is the most
popular marginalist solution in cooperative games. Egalitarianism refers both to
the idea that all agents should be treated equally and that inequalities among those
agents should be minimized within the institution. An extreme case of this prin-
ciple is to distribute to each agent the same amount of the value generated by the
cooperation of all. The trade-off between marginalism and egalitarianism is then
obtained via the convex combinations between the Shapley value and the equal di-
vision value. In the context of multi-choice games there are several ways to extend
the marginalist and egalitarian principles. We propose a new way to extend these
principles in multi-choice games. Then we realize a compromise between these two
principles. Finally, we proceed to the axiomatic study.

The fourth chapter, co-written with David Lowing, considers situations of coop-
eration between heterogeneous agents. Two types of heterogeneity are considered.
First, each agent may have different cooperation options represented by different
sets of activity levels. Second, agents differ with respect to a priority structure that
reflects the asymmetries between agents beyond the asymmetries inherent in the co-
operative process. These asymmetries may reflect exogenous rights, different needs,
merit, or hierarchical constraints. To analyze these situations, we enrich the model
of multi-choice games with a priority structure. A new value on the class of multi-
choice games with a priority structure is introduced. To account for both the dif-
ferent activity levels and the asymmetries between agents, this value is constructed
using a lexicographic procedure. We introduce new axioms for multi-choice games
with a priority structure and show that they endogenously determine the lexico-
graphic procedure used to define the value. Two axiomatic characterizations of this
value are provided.

In a second part consisting of two chapters, the work focuses on applications
that deal with pollution problems. Specifically, the fifth chapter deals with the trans-
portation of hazardous waste. Because of their hazardous nature, the transportation
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of such waste involves the risk of an incident with irreversible environmental con-
sequences. This problem has led to the establishment of a set of regulations govern-
ing the generation and transport of hazardous waste. These regulations implement
measures to reduce the risk associated with hazardous waste. Assuming that these
measures are costly, this chapter explores how to share this cost among the agents.
More precisely, a set of agents, located on a network, transport a maximum quantity
of waste (which may vary from one agent to another) to a treatment facility. In order
to keep the network as safe as possible, a central authority defines certain preven-
tive measures that result in a cost to maintain and operate the network. The goal
is to identify each agent’s responsibility for the risk it poses to the network, and to
allocate the cost accordingly. This is done by introducing several axioms inspired
by different principles of environmental law, including the polluter-pays principle.
Accordingly, the axioms describe the responsibility of each agent with respect to the
risk it poses to the network. Then we show that there is a single allocation rule
which satisfies these axioms. This allocation rule distributes the variation of the cost
of each portion of the network (when the quantity of waste increases) equally among
the agents responsible for that portion.

The last chapter is concerned with situations in which the activity of one agent
has adverse effects on other agents. This problem, identified by Ronald Coase, is
called the problem of the "social cost". The solution proposed by Coase rejects the
polluter-pays principle and leaves room for negotiation of rights to pollute between
the polluter and a potential victim. In this chapter, we take up Coase’s intuition by
assuming that there are a large number of potential victims. A novelty of this model
is to distribute the rights not only to agents, but to groups of agents. If a coalition of
agents including the polluter has the rights, then these members can negotiate with
the polluter in order to reduce the activity level. In the case where this coalition has
the rights and does not contain the polluter, then the victims can protect themselves
from any pollution, and it is up to the polluter to propose an agreement with the
potential victims. From this problem, we consider a multi-choice game, and then we
provide a characterization of the distribution of rights which ensures that the core of
this game is non-empty.
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Chapter 1

General introduction

Most of economic institutions can be thought through a cooperative point of view.
The exchange or production of a private commodity involves a cooperative insti-
tution (see Moulin [1995b]) formed by the concerned parties. Such an institution
arises as a market in which exchanging a commodity can be thought as a cooper-
ative agreement between the agents. This is even more concrete if one considers a
public commodity with common property rights. When choosing the appropriate
level of a public good, one often requires a consensus, which can be seen as a coop-
erative institution. For the provision of such good, it is desirable that the concerned
parties coordinate themselves regarding their contributions to the public good. A
cooperative institution is also involved when it comes to share some scarce resource
(when there is not enough to fulfill each agent’s demand). For instance, consider a
firm going bankrupt that has several creditors. Each creditor may have a claim on
the remaining asset of the bankrupt firm, which is not enough to fulfill each claim.
In such a case, an appropriate cooperative institution provides a consensus by as-
signing a share to each creditor. Such a cooperative institution also arises when one
wants to share the surplus (respectively the cost) generated by a set of agents. For
instance, consider several agents involved in a common venture. By cooperating,
the set of agents generates some surplus. A cooperative institution then describes
the share that each agent receives for its cooperation.

In the recent years, our understanding of cooperative institutions has steadily
increased, highlighting the main patterns that underlie the cooperative processes in
economics. According to Moulin [1995b], three modes of cooperation mainly take
place in economic situations. The direct agreement mode in which agents voluntarily
engage in face-to-face agreement; the decentralized mode in which the agents interact
strategically and a collective authority rules the interactions; and the justice mode in
which a collective authority enforces a cooperative agreement.

This thesis is concerned exclusively with the justice mode. In this mode of coop-
eration, a cooperative institution takes the form of a systematic method that select
one or several cooperative agreements that should overcome any potential conflict
of interests. Actually, the justice mode of cooperation appears to be particularly
suitable in distributive (or allocation) problems. Accordingly, an agreement usually
consists of an allocation method that should be understandable for the concerned
parties, and that allows to evaluate the participation of each agent in the coopera-
tion. However, the way one operates in mediating conflicts of interest and reconcil-
ing conflicting values is far from consensual, leading to several competing coopera-
tive institutions that deserve careful analysis. This is remarkably highlighted by the
words of Amartya Sen:1

1See the foreword in Moulin [1991].
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“Most problems of social interactions involve both conflict and congruence of interests. The
elements of congruence make it important to have cooperation, but there are many forms

that cooperation can take, and the interests between the parties may diverge in the choice of
the different cooperative arrangements.”

From this point of view, a benevolent central authority, involved in the justice mode
of cooperation, aims to enforce a cooperative agreement considering principles as
“equity”, “consistency”, “priority”, or “efficiency” as essential requirements for such
agreement. Thus, the justice mode of cooperation leaves aside the problem of setting
up cooperation. Instead, it analyzes cooperative institutions that are based on the
arbitration of several ethical notions.

In analyzing cooperation through the scope of the justice mode, the strategic di-
mension of the concerned parties is usually set aside. Therefore, it is often assumed
that cooperation holds, so that the agents can only take part in the cooperation or not.
Yet, when one takes a more concrete look at cooperative situations, it appears that the
agents can choose the intensity (or effort) with which they cooperate. When several
agents are involved in a common venture, the intensity with which each agent coop-
erates influences the outcome of the venture. Indeed, the agents can participate in
the venture by working a certain number of hours, which can vary according to the
agent. Thus, the worth generated by cooperation depends on the number of hours
worked by the cooperating agents. Such aspect is particularly relevant for coopera-
tive institutions dealing with pollution issues. To illustrate the situation, consider a
waste treatment facility owned by some community. Each member of the commu-
nity may generate a certain amount of waste to be treated by the facility at a certain
cost. Let say that such cost depends on the amount of waste to be treated rather
than only on the members of the community that are cooperating. The presence
of such different cooperation intensities then involves a new dimension to consider
while trying to overcome a potential conflict of interest. Indeed, how should a co-
operative institution take into account the different intensities that agents can put in
cooperation? How should such institution evaluates the agents’ participation and
cooperation intensities?

These questions constitute the main concern of the thesis. In order to consider a
broader scope of the justice mode of cooperation, the analysis is developed around
a formal framework (briefly introduced in the next section) in which agents can co-
operate at several activity levels. Here, the cooperation intensities (or activity levels)
are not considered as part of a strategic interaction between the agents. Instead, one
can think of cooperation intensities as actions that an agent would implement if it
received the decision-making power. Since I stick to the justice mode of coopera-
tion, it is assumed that the decision-making power is given to the community or to
a planner. Thus, this thesis has a twofold objective. First, it aims at designing un-
derstandable cooperative institutions that define explicit agreements regarding each
agent’s intensity of cooperation. The second goal is to investigate the potential of
such cooperative institutions in concrete situations related to pollution issues. To
meet these goals, this thesis takes place within the framework of game theory and
more precisely cooperative game theory.

1.1 Game theory

Game theory has emerged as one of the most fruitful tools when it comes to analyze
economic behavior, social cooperation, and the resulting conflicts of interest. In its



1.2. Cooperative game theory 3

broadest sense, game theory provides a mathematical framework to study the situ-
ations of conflict and cooperation. It provides general mathematical techniques for
analyzing situations in which several agents interact and may influence each other.
The foundations of the field were laid by Morgenstern and Von Neumann [1944].
Since then, game theoretic analysis have been getting more and more popular, be-
ing used in several and diverse research fields and specifically in economics. There
are two branches of game theory that allow to address situations of conflict in two
distinct ways: the branch of non-cooperative games and the branch of cooperative
games. In non-cooperative games, the agents are the basic decision making units.
Each agent has a set of actions it can choose, and each combination of actions in-
volves a corresponding payoff vector. The objective is then to study the strategic
interactions between the agents. In cooperative games, the agents aim to accom-
plish a common task and generate some worth by forming a coalition. The basic
decision units become the coalitions that agents can form. The objective is then to
determine a reasonable way to allocate the worth generated by cooperation among
the agents. In this way, cooperative game theory naturally fits in the justice mode of
cooperation described in the previous section.

1.2 Cooperative game theory

Consider a group of “agents” (that can be individuals, firms, or states) allowed to
cooperate by forming coalitions. By cooperating, it is assumed that the agents join
their abilities and coordinate their actions (in an efficient way) in order to accomplish
some common task. In cooperative game theory, it is assumed that such coopera-
tion can be enforced by any binding agreement among the agents. Thus, the agents
are supposed to cooperate whatever the conflicting interests that may exist among
them. By cooperating, each coalition can generate some worth, usually referred to
as utility. It is interpreted as the worth a coalition can generate on its own, i.e., re-
gardless of the agents outside the coalition. This worth generated by each coalition
is represented by a characteristic function. It is generally supposed that utility is in-
terpersonnally comparable across the agents, and can be transferred between them.
Thus, the agents in a coalition can make side payments to each other. Thereof, such
cooperative game is called a transferable utility game (henceforth TU-game). The
analysis of cooperative games is then centered around two main issues: what coali-
tion will form? How to divide the worth generated by cooperation?

A solution concept is a map that assigns to each game (of a certain set of games)
a set of payoff vectors, i.e., vectors that describe the payoff of each agent. It can be
considered as a systematic method for selecting payoff vectors. Whenever a solution
concept is single-valued, it is simply called a value. This term, introduced by Shap-
ley [1953], refers to the evaluation of agents’ participation in cooperation. There are a
multiplicity of solution concepts that have been studied in cooperative game theory.
This multiplicity is mainly due to the diversity of conflict situations that cooperative
game theory deals with, and the several possibilities to evaluate the agents’ coop-
eration as reasonable. The distinction between the several solution concepts can be
made through the axiomatic analysis that we further discuss in Section 1.5. Such
analysis focuses on the properties that are desirable for solution concepts. Thus, the
choice or recommendation for a solution concept is based on the trade-off between
desirable properties for the solutions.
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1.3 Extending the model of cooperative games

Depending on the situation at hand, the model of TU-game may appear unrealisti-
cally simple. Still, it enables to improve our understanding of situations of conflict
and cooperation in a broad sense. In order to consider more realistic situations, var-
ious extensions of the base model of TU-games have been proposed. Below, I briefly
presents some of these extension, and conclude the section with the model of multi-
choice games investigated in this thesis.

A first extension of the model of TU-games was introduced by Thrall and Lu-
cas [1963]. This model considers that the worth of a coalition can depend on the
actions of players outside the coalition. More specifically, it takes into account how
the agents outside this coalition are partitioned. Because the worth of a coalition
depends on the behavior of outsiders, these games are often considered to model
situations with externalities.

A second extension, introduced by Aumann and Dreze [1974] and Owen [1977],
enriches the model of TU-games with a partition of the player set, called a coalition
structure. This model allows to investigate situations where agents belong to certain
a priori alliances, which may represent some affinities among the agents.

Another extension, introduced by Myerson [1977], enriches the model of TU-
games with a graph. Such graph structure aims to represent partial communications.
Each link relating two agents in the graph indicates that direct communication is
possible between them. Accordingly, communication can occur between agents that
are related through some path in the graph. Then, the evaluation of a coalition (its
worth) depends on whether its members are connected or not.

At least three other notable extensions of TU-games have been proposed that
enrich the model with a partial order on the player set. Each extension can be dif-
ferentiated with respect to the interpretation of the partial order. Specifically, Gilles
et al. [1992] consider hierarchical relations represented by a permission structures.
This structure, generally represented by a directed graph, is mathematically equiva-
lent to a partial order on the player set whenever it is acyclic. It describes situations
where some agents need the permission from other agents before they cooperate.
Then, the evaluation of a coalition depends on whether this coalition needs the per-
mission of some agents outside the coalition or not. Alternatively, Faigle and Kern
[1992] interpret the partial order on the player set as a precedence constraint. In
this model, a coalition is feasible, i.e., it can form, only if it contains all its down set.
Notice that unfeasible coalitions are not considered in the analysis. Hence, the prece-
dence constraint influences the formation of the coalition. Béal et al. [2022] interpret
the partial order on the player set as a priority relation. These priority relations aim
to describe the most deserving agents in an allocation problem. Accordingly, the
priority structure influences the allocation process, but neither the formation nor the
evaluation of coalitions.

Hsiao and Raghavan [1992] introduce the model of multi-choice cooperative
games. This extension considers that the agents can cooperate at several intensities
(or activity levels) within a coalition. Then, the worth of a coalition depends on the
intensity of cooperation of each agent. Since the purpose of the thesis is to evaluate
agents cooperation when they have different intensity of cooperation, multi-choice
cooperative game appears to be a suitable framework for the analysis.2

2Another notable extension, introduced by Aubin [1974, 1981], considers that players have gradual
degree of membership in a coalition. This model, called cooperative game with fuzzy coalitions, can
be viewed as the continuous counterpart of cooperative multi-choice games.
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It is clear that the class of multi-choice games contains the class of TU-games as
a subclass, a TU-game being a multi-choice game in which the agents have only two
activity levels (being active in the cooperation or not). Thus, most of the concepts
and notions that have been developed in TU-games can be extended in multi-choice
games. However, because of the multi-dimensional nature of cooperation in multi-
choice games, extending some notions from TU-games to multi-choice becomes a
non-trivial exercise since numerous extensions can be discussed. Such discussion
appears, for instance, when one wants to evaluate the agents’ cooperation by means
of a payoff. While it is desirable to distinguish each agent’s activity level, the ques-
tion arises on how to interpret such payoff for each agent’s activity level. Another
discussion appears when one wants to compare the performance of two agents in
a multi-choice game: on what basis should we distinguish the agents’ performance
when they cooperate? Is it relevant to compare two different agents cooperating at
different activity levels? More importantly, such a discussion arises when one wants
to extend a solution from TU-games to multi-choice games. I address these discus-
sions in Chapter 2 in which the formal material of the thesis is presented.

1.4 Applications related to pollution issues

Since its beginning, cooperative game theory has aimed to shed lights to concrete
situations by developing several applications. Here, by applications, it is meant a
situation that arises from some activities and that is formally modeled. As argued
by Forgó et al. [1999]:

“If a game theoretic analysis helps to shed lights on the nature of a problem coming from a
broad spectrum of activities (economics, business, military, politics, etc.), leads to grasping
its essential elements and helps to pinpoint the difficulties involved, then it deserves to be

called a successful application.”

Well known applications of cooperative game theory encompass, among others,
exchange or production economies with a market structure, political interactions,
firms going bankrupt, cost allocation, or common pool resource management. Of
a particular interest in this thesis, are the applications of cooperative game theory
related to pollution issues, explored since at least the last 1960’s. To cite a few: Shap-
ley and Shubik [1969] investigate several situations such as discharging garbage in
some agent’s yard, or sharing the cost of purifying a polluted lake. Chander and
Tulkens [1997] study an economy in which the agents can be both polluter and re-
cipient of the pollution. Such situation can be thought as a transboundary pollution
problem.3 Ni and Wang [2007] investigate the cost sharing problem of cleaning a
polluted river. Recently, Ambec and Kervinio [2016] consider the problem of sitting
an undesirable facility that generates pollution spreading among its neighborhood.
Finally, Gonzalez et al. [2019] investigate the property rights regimes that allow to
resolve a negotiation problem between one polluter and several potential victims.

As awareness of environmental problems has grown in the recent decades, the
literature on pollution issues (in its broadest sense) has steadily increased.4

Actually, economists have been concerned with situations involving pollution
since at least the end of the 19th century. Several studies starting by Sidgwick [1887],
Pigou [1920], Meade [1952] have recognized the implications of the pollution (more

3Earlier related models can be found in Starrett [1973] and Laffont [1977].
4To illustrate this aspect, the number of items labeled as pollution-related scientific articles on Sci-

enceDirect has increased from 4, 844 in 2000 to 57, 068 in 2022.
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generally of externalities) arising from economic activities. Among these implica-
tions, one important point is the gap between the cost of the polluting activity for
the society and the cost of this activity for the polluter. This gap leads to an ineffi-
cient allocation (of goods) in competitive economies, and is known as the problem of
the social cost. For the illustration, Stigler [1942] inventories several activities whose
costs to the society are different to the costs to the agents undertaking them.

In order to solve such situations, two longstanding traditions have emerged. On
the one hand, Pigou [1920] argues that a central authority should impose a tax paid
by the polluter, which result in the well known polluter pays principle. This ap-
proach has been the basis for the regulation of polluting activities for quite some
time. On the other hand, Coase [1960] advocates negotiated solutions to the prob-
lem. Indeed, Coase argued that the concerned parties can solve the problem of the
social cost through a bargaining process provided that there is a clear and well de-
fined regime of rights. This approach has been the basis of market for liability rights
proposed in the “Kyoto protocol”, or in the “European Emissions Trading Schemes”.

The main point in Coase’s reasoning is the necessary consideration of pollution
liability. This liability is depicted through property rights. Thus, two interpretations
of the rights arise depending on the concerned agent. From the polluter point of
view, property rights describe whether or not a polluter is allowed to pollute, in
which case it is not liable for the pollution. From a victim point of view, property
rights describe whether or not a potential victim can legitimately prevent pollution.
In this view, Pigou’s tradition considers that the liability for the pollution lies to
the polluter. Coase’s tradition, instead, argues that the liability should be clearly
defined, but may lie to the polluter or to the victim.

These two approaches are focal points of two dedicated chapters (Chapter 5 and
6). Both chapters develop applications related to multi-choice games and incorpo-
rate the dimension of liability towards pollution. The first application considers
the transport of hazardous waste on a given network following Pigou’s tradition.
It is known that tons of hazardous waste are generated and traded both interna-
tionally and locally each year, involving massive waste movements.5 Because of
the hazardous nature of these waste, a wide range of environmental regulations
have emerged over the past decades. Among these regulations, one can cite: the
“Basel convention” that regulates the international movements of hazardous waste
and their disposal; the “Comprehensive Environmental Response, Compensation,
and Liability Act” (CERCLA or Superfund Act) that regulates the storage sites of
hazardous waste in the United States; the “Treaty on the Functioning of the Euro-
pean Union” that incorporates a regulation on the movements of hazardous waste
within its borders. Each of these regulations relies on the polluter pays principle,
and provide the legal framework defining the liabilities towards hazardous waste.
Based on these environmental regulations, several costly measures to reduce the risk
associated to hazardous waste can be considered. The question then becomes how
to allocates this cost among the concerned parties.

The second application deals with the problem of the social cost in a broad sense
(as described above) and investigates the Coase theorem. Introduced by Coase
[1960] and formalized by Stigler [1966], the Coase theorem asserts that: if there is
no transaction costs and property rights are well-defined, then the agent can always bar-
gain to reach an optimal allocation of resources, and this allocation is independent of the
initial distribution of rights. Therefore, a cooperative institutions can always assign
the rights and foster an efficient allocation of conflicting resources. This conclusion

5A recent study of the international waste trade network can be found in Martínez et al. [2022].
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of Coase constitutes one of these economic concepts with an extensive use outside of
economics.6 It is often used as a justification to apply economic principles in judicial
decision making. It is considered as one of the foundation of Law and Economics
movement. It has also been investigated through the scope of political theory.7 It
can also be found as a justification of tradable emission permits markets.

In economics, the Coase theorem has fostered a broad literature, mainly focused
on three types of models. It has been considered in terms of competitive equilib-
rium (see for instance Hurwicz [1995] and Chipman and Tian [2012]), in terms of
Nash equilibrium of a strategic/bargaining game (see for instance Anderlini and
Felli [2001]), and in terms of cooperative game theory (see for instance Aivazian and
Callen [1981] and Gonzalez et al. [2019]). Following this latter literature, the problem
is to investigate cooperative institutions that assign property rights (in the sense of
Coase) to the agents based on some desirable properties.

1.5 Methodology: the axiomatic analysis

The method or approach used all along the thesis is the axiomatic method. This
method has been fruitfully applied in many economic situations, and specifically in
fair allocation problems. Fair allocation problems arise in many situations in which
several agents with conflicting interests compete for a certain resource. For a cen-
tury, mathematicians, game theorists, and economists have come up with normative
solutions to the question of how to avoid litigious allocation/division. The primary
method that has emerged to solve these problems is the axiomatic method, or ax-
iomatic analysis. The origins of axiomatic analysis in allocation problems go back to
at least three seminal models: the axiomatic theory of bargaining due to Nash [1950],
the value for n-person games due to Shapley [1953], the model of fair division intro-
duced by Foley [1966]. Since then, a broad literature involving the axiomatic analysis
has flourished encompassing several generalizations of the seminal models and new
problems. To cite a few examples one can refers to: bankruptcy problems introduced
in O’Neill [1982] (for a recent survey see Thomson [2015]); fair allocation in economic
environment developed in Roemer [1988], Fleurbaey and Maniquet [1996] among
others (see Moulin and Thomson [1997] for an overview); the different extensions of
TU-games discussed in Section 1.3. For each of these models, the axiomatic analy-
sis appears to be a guide helping for collective decision making (see Moulin [1991]
for a broad overview). Indeed, each model allows for several acceptable solutions.
The axiomatic analysis constitutes a mean to distinguish among these solutions, and
provides a formal justification for a solution by eliciting the desirable properties that
characterize it. In the following, we provide a description of the axiomatic analysis
of allocation problems.

The axiomatic program

Thomson [2001] highlights the main features of what is called “the axiomatic pro-
gram”. Following this description, an axiomatic analysis starts with the definition of
the domain or class of the problems to be considered. The representation of the class
of the problems can range from an abstract and general domain, to context specific
domains. A problem consists of a set of agents, some of their relevant characteristics

6The reader is referred to Medema [2020] for a recent discussion on the Coase theorem and its
developments since 1960.

7Such investigation can be found in Acemoglu [2003].
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(e.g. agents’ preferences or utilities, rights entitlements), and some contextual data
(e.g. some exogenous rights, a network structure). As an example, a multi-choice co-
operative game consists of a set of agents, a set of activity levels for each agents, and
a set of attainable utility vectors (regarding each combination of the agents’ activity
level). Given a class of problems, a solution on this class is a map that assigns a set
of feasible alternatives (a set of payoff vectors in multi-choice cooperative games).

Once the domain of the problems has been rigorously defined, the axiomatic
analysis proceeds by setting out a list of desirable properties, called axioms, for so-
lutions on the domain. These axioms are mathematical expressions of norms that
a solution should follow. They can be based on some ethical or fairness condition
translated into an appropriate formalization, or on an appealing technical condi-
tion. The objective of the axiomatic analysis is then to understand and describe the
possible implications of the listed properties, and to distinguish between the plau-
sible combination of properties. This is done by investigating the logical relations
between the properties, considering alternative specification of the class of the prob-
lems, or studying whether some properties can be replaced by natural variants of
them. By doing so, one obtains a description of solutions satisfying diverse combi-
nations of the axioms of interest. The analysis further investigates that no axioms
is redundant for describing the solution, i.e., the axioms are logically independent.
These steps are mainly followed in all the chapters.

1.6 Outline of the thesis

This thesis is divided into two parts. The first part, Chapter 2, 3 and 4, is concerned
with cooperative games in a quite general setting, and more specifically multi-choice
cooperative games. Part two, Chapter 5 and 6, investigates some applications related
to pollution problems.

Chapter 2 provides a formal overview of cooperative game theory notions that
are used along the thesis. First, I present the mathematical model of transferable util-
ity game (TU-games for short), and discuss several solution concepts for this class of
games. This is followed by the axiomatic foundations of several solution concepts.
The main focus is on values for TU-games presented before. Subsequently, I present
TU-games enriched with a priority structure. The notion of a priority structure, the
Priority value introduced by Béal et al. [2022] and its axiomatic characterizations are
briefly discussed.

Finally, I present the model of multi-choice games. Specifically, I present several
notions that have their counterpart in the base model of TU-games. Several solution
concepts that generalize the same named concepts from TU-games are presented.
A specific attention is paid to the different extensions of the Shapley value. These
different extensions are compared based on the axioms they satisfy. This enables to
highlight the different visions that have been explored to evaluate the performance
of the agent’s cooperation in the multi-choice setting.

Chapter 3 is based on a joint work with David Lowing (Lowing and Techer
[2022a]). In this chapter, we investigate the trade-off between marginalism and egal-
itarianism in multi-choice games. Marginalism relies on the idea that the evaluation
of an agent’s cooperation should result from that agent’s marginal contributions to
the cooperation. By marginal contribution, it is meant the contribution that agent
makes when it joins a coalition. In this sense, the Shapley value is often considered as
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the embodiment of marginalism in cooperative games. Egalitarianism relies on the
idea that each agent should obtain the same evaluation in the cooperation process.
Thus, the equal division value is considered as the embodiment of egalitarianism
in cooperative games. The compromise between marginalism and egalitarianism is
then obtained by considering the convex combinations between the Shapley value
and the equal division value.

While extending this compromise to the multi-choice game setting, one might
wonder what extension of the Shapley value and the equal division value to con-
sider. To do so, we propose to consider a necessary condition for a payoff vector to
be in the core of à la Grabisch and Xie [2007] that we call multi-efficiency. Accord-
ingly, we introduce new extensions of the Shapley value (the multi-choice Shapley
value) and the equal division value (the multi-choice Equal division value) that sat-
isfy this condition. With a particular interest on the multi-choice Shapley value, we
provide two expressions of this solution. We also relate it to the serial cost shar-
ing method introduced in the context of discrete cost sharing problems. Then, we
compromise between these two solutions by considering their convex combinations.
Finally, we investigate the axiomatic foundations of these new multi-efficient solu-
tions.

Chapter 4 is based on Lowing and Techer [2022b]. We investigate the influence
of a priority structure on allocations in multi-choice games. In many allocation prob-
lems, there are exogenous asymmetries between the agents, which may reflect some
exogenous rights, different needs or merit, hierarchical constraints or a combina-
tions of several factors. The priority principle is an ordinal equity principle often
required in such situations. This principle usually results in lists describing the most
deserving agents regarding the circumstances and the allocation problem. Based on
this principle, a priority structure is a partial order on the agent set that reflect the
asymmetries between the agents.

It appears that the use of such partial order brings several possibilities in the
multi-choice games setting. First, the different activity levels of the agents pro-
vide an “intra-agent” information. This information comes from the fact that the
activity levels of a given players are ordered (linearly). Then, the priority structure
provides an “inter-agents” information. Depending on the cooperative situation at
hand, these two pieces of information can be aggregated in order to define a relevant
allocation process. In this chapter, we propose to combine these two pieces of infor-
mation in a lexicographic manner. This enables us to compare the agents at different
activity levels. We consider the activity level as the most significant criterion. When
considering two agents with different activity levels, the one with a higher activity
level ends up with the higher position in the lexicographic order. Then, two agents
at the same activity level are compared according to their position in the priority
structure.

Accordingly, we introduce a new value called the multi-choice Priority value,
and provide two axiomatic characterizations of it. This value shares the net sur-
plus generated by a coalition equally among the agents with the highest position
in the lexicographic order. Such allocation process seems particularly relevant in
situations dealing with scarce resources. Finally, we consider priority relations in
which the set of agents can be partitioned into several classes. Precisely, each class
contains incomparable agents (with respect to the priority relation) that have the pri-
ority over agents in the next classes. When considering such priority structured by
classes, we show that the multi-choice Priority value can be interpreted as a sequen-
tial procedure involving specific TU-games. We provide an algorithm to compute
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the multi-choice Priority value in these cases.

The last two chapters constitute the second part of the thesis. Both chapters in-
vestigate applications related to a pollution problem.

Chapter 5 studies the problem of transporting hazardous waste. The genera-
tion of these wastes has been steadily increasing in recent years, involving extensive
movements of wastes on a local and global scale. Due to their dangerous nature,
the transportation of these waste implies a risk of incident having irreversible con-
sequences on the environment. This problem has lead to a body of legal statutes that
monitor the generation and transportation of hazardous waste (examples of such
regulations are presented in Section 1.4). These regulations all aim at implement-
ing measures to reduce the risk associated with hazardous waste, and to manage it
appropriately. Assuming that the transport of hazardous waste is done in a coop-
erative manner, this chapter investigates how to share the cost of maintaining and
operating the network among the involved agents.

To my knowledge, there is no study on how to share the cost of the network
maintenance and operation in the context of hazardous waste. Chapter 5 aims to in-
vestigate cooperative institutions (formalized through a cost sharing method) grounded
on certain principles required by environmental regulations. Such a cooperative in-
stitution, based on the polluter pays principle, clearly describes the liability of each
agent with respect to the risk it poses to the network. It also assigns to each agent a
cost share accordingly.

More precisely, the chapter considers a finite set of agents involved in a haz-
ardous waste transport network. Each agent is shipping a maximal amount of waste
(which may differ from one agent to another) to a treatment facility. I assume that a
central authority is in charge of maintaining the network as safe as possible and op-
erating it. This entails a cost defined for each portion of the network, which depends
on the amount of waste passing through the portion. By providing an axiomatic
analysis, the objective is then to identify each agent’s responsibility on the risk it
poses to the network, and to allocate the cost for maintaining the network accord-
ingly. To do so, I introduce several axioms derived from different environmental law
principles, with the polluter pays principle as a center piece. As a result of interpret-
ing environmental rights principles, the axioms describe the responsibility of each
agent with respect to the risk it poses to the network. Then, it is shown that there is
a unique allocation rule that satisfies the axioms, called the responsibility rule. The
responsibility rule allocates the variation in cost of each portion (when the amount
of waste increase) equally among the agents responsible for this portion. Finally, I
show that the responsibility rule is related to the multi-choice Shapley value intro-
duced in Chapter 3.

Chapter 6 is based on Techer [2021], and investigates the problem of the social
cost. A social cost problem is a situation in which the activity of some agents has
harmful effects on others. Such situations, that highlights market imperfections,
have fostered two traditions while it comes to their resolution (see Section 1.4). In
this chapter, I follow the approach introduced by Coase who advocates negotiated
solutions, and generalizes the framework introduced by Gonzalez et al. [2019] to the
context of multi-choice games.

Accordingly, this chapter considers a class of social cost problems in which one
polluter interacts with an arbitrary number of potential victims. The polluter is en-
dowed with a finite set of activity levels it wishes to implement. Each victim can
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choose whether or not it cooperates. The whole set of agents is supposed to cooper-
ate and negotiate an optimal pollution level together with monetary transfers with
respect to a mapping of rights.

This mapping of rights describes which coalition is allowed to negotiate an agree-
ment or not. Specifically, a mapping of rights is a function that assigns to each (multi-
choice) coalition either the value 0, meaning that the coalition is not allowed to ne-
gotiate, or the value 1 if the coalition is allowed to negotiate an agreement. These
mappings of rights rely on four reasonable conditions. The two first conditions,
effectivity of rights and sovereignty of the grand coalition, can be found in Gonza-
lez et al. [2019]. The main novelty here, comes from the following new conditions.
First, if a coalition in which the polluter is active at a certain activity level receives
the rights, then the coalition retains the rights whenever the polluter decreases its
activity level. Second, whenever a coalition is allowed to form and negotiate an
agreement, it retains the rights while the number of cooperating victims increases.
These two new conditions allow that the rights depend on the activity level of the
polluter.

Then, the study considers the multi-choice cooperative games associated with a
social cost problem and an assignment (or mapping) of rights. I introduce a new
class of mappings of rights that assigns the rights to the polluter up to a fixed and
regulated level. These mapping of rights reflect the existence of a pollution quota
regulating the activity of the polluter. Three properties on mappings of rights are
considered: core compatibility which requires that the core of the associated multi-
choice game be non-empty, Kaldor-Hicks core compatibility which requires that a
payoff in the core is non-negative for each agent, and no veto power for a victim
which requires that no victim can individually veto an agreement reach by the other
agents. The analysis then aims to characterize the mappings of rights that satisfy
different combinations of these properties.





13

Part 1. Cooperative games and extensions
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Chapter 2

Preliminaries

This chapter provides the formal material: concepts and notation used along the
thesis. Section 2.1 presents the standard model of transferable utility games. Be-
sides the basic concepts, I present some well-known solutions and discuss some of
their properties. Section 2.2 presents the transferable utility games enriched with a
priority structure. I also present the Priority value and its axiomatic foundations in-
troduced by Béal et al. [2022]. Section 2.3 presents the model of multi-choice games,
introduced by Hsiao and Raghavan [1993]. Despite most of the concepts for multi-
choice games has its counterpart in transferable utility games (especially solution
concepts), it appears that several extensions of these concepts are possible. I discuss
the different approaches that extend a particular concept whenever it seems nec-
essary. I also present several solutions for multi-choice games and compare them
based on the properties they have.

2.1 TU-games and solution concepts

Cooperative game theory studies situations in which a (finite) set of agents cooper-
ate in order to collectively generate payoffs, whatever the conflicting interests that
could exist among them. Since it is assumed that agents cooperate, the basic decision
making units are the coalitions that agents can form. Each coalition then generates a
worth that can be interpreted as the utility that the agents in the coalition can obtain
on their own. If utility is transferable, so that agents can make side payments to each
other, then one speaks about transferable utility games. The objective of cooperative
game theory is then to study the coordination between coalitions with respect to
their actions and the distribution of the gains generated by cooperation among the
agents. This section presents the model of transferable utility games and several
solutions that arise in the literature.

2.1.1 Basic definitions

Let U be a countably infinite universe of agents, and let N be the set of all finite
subsets of U. For N ∈ N , denote by 2N the power set of N. An element S ∈ 2N is
referred to as a coalition. For each coalition S ∈ 2N , denote by |S| ∈ N its cardi-
nality. Observe that each finite set N ∈ N endowed with the inclusion relation ⊇
forms a (complete) lattice denoted by the pair (N,⊇), where the greatest element is
the grand coalition N, and the least element is the empty coalition ∅. Consider the
sign function sign : R → {−1, 0, 1}, given by sign(x) = −1 if x < 0, sign(0) = 0,
and sign(x) = 1 if x > 0. Let A be any finite set. For each B ⊆ A : B 6= ∅, let
eB ∈ R|A| be the vector such that eB

i = 1 if i ∈ B and eB
i = 0 otherwise.
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A transferable utility game (henceforth TU-game) on N ∈ N is a pair (N, v) where
N is a (finite) set of agents and v : 2N → R is a characteristic function. By convention,
v(∅) = 0. For a coalition of agents S ⊆ N, the real number v(S) ∈ R is interpreted as
the worth the members of the coalition can generate by themselves. Let GTU

N denote
the set of all TU-games on N. The set of all TU-games is denoted by

GTU =
⋃

N∈N
GTU

N .

Below, I present several subsets of TU-games. A TU-game (N, v) ∈ GTU is called:
Non-negative if,

∀S ⊆ N, v(S) ≥ 0.

Monotonic if,
∀S ⊆ N, T ⊆ N : S ⊆ T, v(S) ≤ v(T).

Simple if,
∀S ⊆ N, v(S) ∈ {0, 1}.

Essential if ,
∀S ⊆ N, v(N) > ∑

i∈N
v({i}).

Additive if,

∀S ⊆ N, T ⊆ N : S ∩ T = ∅, v(S ∪ T) = v(S) + v(T).

Super-additive if,

∀S ⊆ N, T ⊆ N : S ∩ T = ∅, v(S ∪ T) ≥ v(S) + v(T).

Sub-additive if,

∀S ⊆ N, T ⊆ N : S ∩ T = ∅, v(S ∪ T) ≤ v(S) + v(T).

Super-modular (or Convex) if,

∀S ⊆ N, T ⊆ N, v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T),

or equivalently (see Shapley [1971], Ichiishi [1981]),

∀i ∈ N, ∀S ⊆ N \ {i}, ∀T ⊆ N \ {i} : S ⊆ T, v(S∪{i})− v(S) ≤ v(T∪{i})− v(T).

Sub-modular (or Concave) if,

∀S ⊆ N, T ⊆ N, v(S ∪ T) + v(S ∩ T) ≤ v(S) + v(T).

Observe that a super-modular (respectively sub-modular) TU-game is super-additive
(respectively sub-additive). A TU-game (N, v) ∈ GTU is additive if it is both super-
modular and sub-modular. Given a TU-game (N, v) ∈ GTU and a coalition S ⊆ N,
the sub-game of (N, v) induced by S is the pair (S, vS) ∈ GTU such that

∀T ⊆ S, vS(T) = v(T).

The TU-game (N, v0) ∈ GTU such that for each S ⊆ N, v0(S) = 0 is called the null
game.
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Let N ∈ N be a finite set of agents. For any two TU-games (N, v) ∈ GTU
N and

(N, w) ∈ GTU
N , and any α ∈ R, the TU-game (N, av + w) ∈ GTU

N is given by:

∀S ⊆ N, (av + w)(S) = av(S) + w(S).

Moreover, since 2N is a finite set, for any TU-game (N, v) ∈ GTU
N the characteristic

function v is fully described by the vector (v(S))S∈2N ∈ R|2
N |. Since v(∅) = 0, any

characteristic function v, on 2N , can be generated by a linear combination of |2N | − 1
linearly independent elements. So, GTU

N corresponds to a linear subspace of R|2
N | of

dimension 2|N| − 1. A first basis for GTU
N is given by the set of specific simple games,

called Dirac TU-games, {δS : S ⊆ N, S 6= ∅}, such that

∀S ⊆ N, ∀T ⊆ N, δS(T) =
{

1 if T = S,
0 otherwise.

(2.1)

For each TU-game (N, v) ∈ GTU
N , the characteristic function v admits a unique linear

decomposition in terms of Dirac TU-games given by:

v = ∑
S⊆N
S 6=∅

v(S)δS. (2.2)

A second basis of GTU
N that has been recognized particularly useful to analyze so-

lutions for TU-games consists of the set of well-known unanimity games (Shapley
[1953]), {uS : S ⊆ N, S 6= ∅}, such that

∀S ⊆ N, ∀T ⊆ N, uS(T) =
{

1 if T ⊇ S,
0 otherwise.

(2.3)

For each TU-game (N, v) ∈ GTU
N , the characteristic function v admits a unique linear

decomposition in terms of unanimity games given by:

v = ∑
S⊆N
S 6=∅

∆S(v)uS, (2.4)

where the real number ∆S(v) called the dividend of coalition S, which was introduced
by Harsanyi [1959], is computed recursively as follows:

∆S(v) = v(S)− ∑
T⊂S

∆T(v). (2.5)

This recursive formula allows to interpret the dividends as the surplus a coalition
generates net of the surpluses generated by sub-coalitions. An equivalent expression
of the dividend is given by:1

∀S ⊆ N, S 6= ∅, ∆S(v) = ∑
T⊆S

(−1)|S\T|v(T). (2.5’)

Given a TU-game (N, v) ∈ GTU and its sub-game (N, vS), each dividend ∆T(vS) in
(S, vS) coincides with the dividend ∆T(v), T ⊆ S, in (N, v).

Let (N, v) ∈ GTU be a TU-game. Each agent may have different contributions in

1Note that the dividend corresponds to the Möbius transform (or inverse) of the characteristic func-
tion v.
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the cooperation. These contributions are measured by the agent’s marginal contri-
butions to coalitions and assess the individual performance of the agent while coop-
erating. Formally, the marginal contribution of agent i ∈ N to a coalition S ⊆ N \ {i}
in (N, v) is given by:

v(S ∪ {i})− v(S).

Two distinct agents i ∈ N and i′ ∈ N are called equals in (N, v) if they have the same
marginal contributions to coalitions not containing them, i.e.,

∀S ⊆ N \ {i, i′}, v(S ∪ {i}) = v(S ∪ {i′}).

An agent i ∈ N is called null in (N, v) if it has null marginal contributions to coali-
tions in this game, i.e.,

∀S ⊆ N \ {i}, v(S ∪ {i}) = v(S).

It is clear that two null agents in (N, v) are equals. An agent i ∈ N is called nullifying
in (N, v) if each coalition agent i joins has a null worth, i.e.,

∀S ⊆ N \ {i}, v(S ∪ {i}) = 0.

An agent i ∈ N is called necessary in (N, v) if each coalition that does not contain this
agent generates a null worth, i.e.,

∀S ⊆ N \ {i}, v(S) = 0.

It should be noted that any two necessary agents in (N, v) are also equal agents in
this game. The reverse implication is not true.

2.1.2 Solution concepts for TU-games

When analyzing a TU game, the main objective is to determine whether there are rea-
sonable ways of sharing the worth generated from the cooperation of all the agents,
i.e., the worth of the grand coalition. Given a TU-game (N, v) ∈ GTU , a payoff vector
is a |N|-dimensional vector x ∈ R|N| representing the payoffs that each agent i ∈ N
can obtain when cooperating.2 A payoff vector x ∈ R|N| is efficient if it fully allocates
the worth of the grand coalition N between all the agents, i.e., ∑i∈N xi = v(N). A
payoff vector is individually rational if no agent can be better off by itself, i.e., for each
i ∈ N, xi ≥ v({i}). A payoff vector is coalitionally rational if no coalition can be better
off by itself, i.e., for each S ⊆ N, ∑i∈S xi ≥ v(S).

A set-valued solution on GTU is a mapping F : GTU ⇒ R|N| that assigns a (possibly
empty) set of payoff vectors F(N, v) ⊆ RN to each TU-game (N, v) ∈ GTU . A single-
valued solution f on GTU is a function f : GTU → R|N|. A single-valued solution is
also called a value. Historically, the first main solution that arises in the literature
is the Imputation set, introduced by Morgenstern and Von Neumann [1944]. This
solution refers to the (possibly empty) set of payoff vectors that are efficient and
individually rational. Formally, the Imputation set, I, is defined as: for each (N, v) ∈
GTU ,

I(N, v) =
{

x ∈ R|N| : ∑
i∈N

xi = v(N) and ∀i ∈ N, xi ≥ v({i})
}

. (2.6)

2Observe that a payoff vector x ∈ R|N| can be thought as an additive TU-game (N, vx), where the
characteristic function vx is defined as: ∀S ⊆ N, vx(S) = ∑i∈S xi.
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Obviously, the Imputation set is non-empty if and only if ∑i∈N v({i}) ≤ v(N). Be-
low, I present other well-known solutions on GTU and elaborate on some of their
properties.

The core of TU-games

The most popular set-valued solution on GTU is probably the Core, introduced inde-
pendently by Gillies [1953] and Shapley [1955]. This solution refines the Imputation
set by considering only coalitionally rational imputations. Thus, the core embodies
a stability principle since no coalition can generate by itself a payoff greater than
that assigned by a Core element. The Core appears as a very appealing solution in
many economic situations. Whenever non-empty it is then interpreted as the set of
agreements that are stable and likely to occur. Among the wide range of articles
analyzing the Core in economic situations, one can cite Shapley and Shubik [1969],
who study the Core of market games in which the agents exchange a set of infinitely
divisible goods; Scarf [1961] studies the relation between the Core and the Walrasian
equilibria in a competitive market environment; Funaki and Yamato [1999] study an
economy with a common pool resource and interpret the tragedy of the commons (see
Hardin [1968]) as the emptiness of the Core of such an economy. A broad study of
the Core and its application to economics can be found in Moulin [1995b] or in Telser
[2012].

Formally, the Core, C, is defined as: for each (N, v) ∈ GTU ,

C(N, v) =
{

x ∈ R|N| : ∑
i∈N

xi = v(N) and ∀S ⊆ N, ∑
i∈S

xi ≥ v(S)
}

(2.7)

As the Imputation set, the Core of a TU-game may be empty.3 A necessary and suf-
ficient condition which ensures the non-emptiness of the Core relies on the concept
of balancedness (see Bondareva [1962], Shapley [1967]). Let N ∈ N be a finite set
of agents, and let B ⊆ 2N \ ∅ be a collection of non-empty sets. The collection B is
called a balanced collection if for each S ∈ B there exists µS ∈ R+ such that

∀i ∈ N, ∑
S∈B:
i∈S

µS = 1.

The real numbers µS are called balancing weights. A TU-game (N, v) ∈ GTU is called
balanced if for each balanced collection B ⊆ 2N \∅ it holds that:

∑
S∈B

µSv(S) ≤ v(N). (2.8)

Theorem 2.1.1 (Bondareva [1962], Shapley [1967]). A TU-game (N, v) ∈ GTU has a
non-empty core if and only if it is balanced.

The Weber set of TU-games

A second well-known set valued solution on GTU is the Weber set, introduced by
Weber [1988]. To define this solution, I first present the notion of marginal vectors.
Recall that the main hypothesis formulated by the cooperative game theory is that
the agents form the grand coalition. Shapley [1953] first interpreted the formation of
the grand coalition as the following bargaining process. The agents are admitted one

3Observe that the Core is a convex closed polyhedron.
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by one, following a given order of the agent set, until the grand coalition is formed.
On its admission to the coalition, each agent is assigned its marginal contribution to
the coalition formed by the already admitted agents. Given an order on the agent
set, the payoff vector resulting from this bargaining process is called the marginal
vector. Formally, let N ∈ N be a finite set of agents. An order on N, is a bijection
σ : N → {1, . . . , |N|}. For each i ∈ N, σ(i) is agent i’s position in the order σ. Denote
by ON the set of all orders on N. For each σ ∈ ON and each k ∈ {0, . . . , |N|}, the
coalition Sσ,k is the coalition formed by the agents joining up to k in σ, i.e.,

Sσ,k = {i ∈ N : σ(i) ≤ k}.

Given a TU-game (N, v) ∈ GTU and an order σ ∈ ON , the marginal vector mσ(N, v) ∈
R|N| is defined as:

∀i ∈ N, mσ
i (N, v) = v(Sσ,σ(i))− v(Sσ,σ(i)−1). (2.9)

For each TU-game (N, v) ∈ GTU , the Weber set, W, is defined as the convex hull of
all marginal vectors, i.e.,

W(N, v) = co{mσ(N, v) : σ ∈ ON}.

It is known that the core of a game is included in the Weber set.

Theorem 2.1.2 (Weber [1988] and Derks [1992]). For each TU-game (N, v) ∈ GTU ,

C(N, v) ⊆W(N, v).

The converse inclusion holds whenever the game is super-modular, which makes
explicit the structural properties of the core of super-modular games. In particular
it is known that the core of a super-modular TU-game is large, and its extreme rays
coincide with the set of marginal vectors.

Theorem 2.1.3 (Shapley [1971], Ichiishi [1981]). For each (N, v) ∈ GTU super-modular
game,

C(N, v) = W(N, v).

The Shapley value and the Equal division value

Regarding single-valued solutions (henceforth value) on GTU , one of the most pop-
ular solutions is the Shapley value, introduced by Shapley [1953]. This value has been
extensively studied highlighting the several desirable properties that this value has.
Moreover, the scope of applications of the Shapley value is very broad and keeps
expanding. For instance: Aumann and Shapley [1974] apply the Shapley value to
exchange economies and shows that it coincides with the Walrasian equilibrium of
such economy; Shubik [1962], Moulin [1992], or Sprumont [2005], among others, ap-
ply the Shapley value to the so-called cost sharing model and add robustness to the
original work of Shapley. A recent detailed analysis of the Shapley value and its
applications in various fields can be found in Algaba et al. [2019].

The Shapley value has several mathematical expressions along with several in-
terpretations that I describe below. Interpreted within the bargaining process used
to define the marginal vectors (see (2.9)), the Shapley value relies on the assump-
tion that each order on the agent set can occur with the same probability. Thus,
the expected payoff of an agent is exactly its payoff assigned by the Shapley value.
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Therefore, Shapley [1953] argues that “the value is best regarded as an a priori assess-
ment of the situation, based on either ignorance or disregard of the social organization of the
agents.”

Formally, the Shapley value, Sh, is defined as: for each (N, v) ∈ GTU ,

∀i ∈ N, Shi(N, v) =
1
|N|! ∑

σ∈ON

mσ
i (N, v). (2.10)

A second mathematical expression of the Shapley value relies on the marginal
contribution. According to this expression, the Shapley value assigns to each agent
a weighted average of its marginal contributions to the coalitions this agent can join.
Formally, the Shapley value, Sh, is defined as: for each (N, v) ∈ GTU ,

∀i ∈ N, Shi(N, v) = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!

[
v(S ∪ {i})− v(S)

]
. (2.11)

The weight |S|!(|N|−|S|−1)!
|N|! , called the Shapley coefficient, can be interpreted as the

probability for an agent to join a coalition S containing |S| agents.
A third mathematical expression, proposed by Shapley [1953], is as follows: for

each (N, v) ∈ GTU ,

∀i ∈ N, Shi(N, v) = ∑
S⊆N:
i∈S

∆S(v)
|S| . (2.12)

Thus, the Shapley value divides the net surplus of a coalition equally among its
members. From the expression (2.10), it is clear that the Shapley value is the centroid
of the Weber set. Thus, it belongs to the Core of super-modular games. This point
is of particular interest in many economic applications that can often be described
by a super-modular TU-game. Some notable examples are bankruptcy games intro-
duced by O’Neill [1982], cooperative games associated with a river sharing problem
introduced by Ambec and Sprumont [2002], or its pollution counter-part introduced
by Ni and Wang [2007]. In such cases, the Shapley value ensures that no coalition
has an interest to split off from the grand coalition.

Another well-known value on GTU is the Equal division value that equally di-
vides the worth of the grand coalition between the agents. While the Shapley value
reflects the individual performance of the agents, the Equal division value only
refers to the grand coalition. This value conveys the fact that each agent has an equal
claim on the value generated by the cooperation. In this sense, it is the embodiment
of egalitarianism in TU-games.

The Equal division value, ED, is defined as: for each (N, v) ∈ GTU ,

∀i ∈ N, EDi(N, v) =
v(N)

|N| . (2.13)

The Egalitarian Shapley values

The search for a compromise between individual based performance and egalitar-
ianism is one of the main issues in economic allocation problems. In TU-games,
this compromise takes the form of convex combinations between the Shapley value
and the Equal division value. This class of solutions, called the Egalitarian Shapley
values, has been introduced by Joosten [1996].
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Let α ∈ [0, 1], the Egalitarian Shapley value, EShα, is defined as: for each (N, v) ∈
GTU ,

∀i ∈ N, EShα
i (N, v) = αShi(N, v) + (1− α)EDi(N, v). (2.14)

2.1.3 Axiomatic foundations of solutions

In this section, I present several axioms for solutions on GTU . I discuss the relations
between these axioms and present some axiomatic characterization of solutions that
result from their combinations.

General properties

A value f on GTU satisfies:
Efficiency if, for each (N, v) ∈ GTU ,

∑
i∈N

fi(N, v) = v(N).

Additivity if, for each (N, v), (N, w) ∈ GTU ,

f (N, v + w) = f (N, v) + f (N, w).

Linearity if, for each (N, v), (N, w) ∈ GTU and each α ∈ R,

f (N, αv + w) = α f (N, v) + f (N, w).

The three above axioms are very common in axiomatic analysis. Efficiency asserts
that the worth of the grand coalition is fully shared among the agents. Therefore,
the payoff assigned by the value is feasible, i.e., ∑i∈N fi(N, v) ≤ v(N), and no agent
can increase its payoff without decreasing another agent’s payoff (while keeping the
payoff feasible). In this sense, the Efficiency axiom can be seen as the well-known
Pareto optimality. The Additivity (respectively Linearity) axiom simply asserts that
the value is additive (respectively linear) with respect to the characteristic functions.

Equal treatment principles

The next five axioms are related to a basic equal treatment principle widely invoked
in axiomatic analysis. Let σ ∈ ON be an order on the agent set and define σv ∈ GTU

such that for each S ⊆ N, σv(S) = v(
⋃

i∈S σ(i)). A value f on GTU satisfies:
Anonymity if, for each (N, v) ∈ GTU and each order σ ∈ ON ,

∀i ∈ N, fi(N, σv) = fσ(i)(N, v).

Equal treatment of equals if, for each (N, v) ∈ GTU , and each two distinct equal agents
i, i′ ∈ N,

fi(N, v) = fi′(N, v).

Equal treatment of necessary agents if, for each (N, v) ∈ GTU , and each two distinct
necessary agents i, i′ ∈ N,

fi(N, v) = fi′(N, v).
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Sign symmetry of equals if, for each (N, v) ∈ GTU , and each two distinct equal agents
i, i′ ∈ N,

sign( fi(N, v)) = sign( fi′(N, v)).

Desirability if, for each (N, v) ∈ GTU and each two distinct agents i, i′ ∈ N such that
for each S ⊆ N \ {i, i′} : v(S ∪ {i}) ≥ v(S ∪ {i′}),

fi(N, v) ≥ fi′(N, v).

Anonymity is a strong requirement that a solution be invariant to the agents’ renam-
ing. Observe that Equal treatment of equals, Sign symmetry of equals and Desir-
ability all consider agents’ marginal contributions to coalitions. This feature enables
to formulate punctual axioms that compare the agents’ payoffs. Precisely, Equal
treatment of equals is a weaker requirement than Anonymity relying on the individ-
ual performance of the agents. It ensures that two agents with the same individual
performance in the game (measured by their marginal contributions to coalitions)
have the same payoff. Equal treatment for necessary agents, introduced by Béal and
Navarro [2020] relaxes Equal treatment of equals by strengthening its hypothesis.
It requires that two necessary agents receives the same payoff. Sign symmetry of
equals, introduced by Casajus [2018], relaxes Equal treatment of equals by weaken-
ing its implication. It requires that equal agents obtain a payoff of the same sign
instead of the same payoff. Finally, Desirability, introduced by Maschler and Peleg
[1966], ensures that an agent with a greater individual performance than another
agent receives a greater payoff.

The relations between the axioms are as follows. It is clear that Anonymity im-
plies Equal treatment of equals. While the converse is not true, Malawski [2020]
shows that the combination of Efficiency, Additiviy and Equal treatment of equals
implies Anonymity. Moreover Equal treatment of equals implies both Equal treat-
ment of necessary agents and Sign symmetry of equals. Finally, Desirability implies
Equal treatment of equals.

Fairness principles related to null and nullifying agents

Next, I present four axioms related to fairness concepts. Each axiom takes into ac-
count the individual performance of the agents. Specifically, the axioms are con-
cerned with null and nullifying agents. A value f on GTU satisfies:
The null agent axiom if, for each (N, v) ∈ GTU and each null agent i ∈ N,

fi(N, v) = 0.

The null agent out axiom if, for each (N, v) ∈ GTU and each null agent i ∈ N,

∀i′ ∈ N \ {i}, fi′(N, v) = fi′(N \ {i}, vN\{i}).

Null agent in productive environment if for each (N, v) ∈ GTU such that v(N) ≥ 0, and
each null agent i ∈ N,

fi(N, v) ≥ 0.

The nullifying agent axiom if, for each (N, v) ∈ GTU and each nullifying agent i ∈ N,

fi(N, v) = 0.
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The null agent axiom requires that an agent which does not contribute receives a
null payoff. Thus, a null agent does not benefit from more than its marginal contri-
butions. The null agent out axiom, introduced by Derks and Haller [1999], requires
that the withdrawal of a null agent should not impact the payoff of the remaining
agents. Observe that there is no implication between the null agent axiom and the
null agent out axiom. However, the combination of Efficiency and the null agent
out axiom implies the null agent axiom. Null agent in a productive environment,
introduced by Casajus and Huettner [2013], requires that a null agent can benefit
from more than its marginal contributions whenever the worth of the grand coali-
tion is non-negative. Finally, the nullifying agent axiom, introduced by van den
Brink [2007], considers nullifying agents instead of null agents. Thus, an agent that
drops the worth of each coalition containing it to zero receives a null payoff.

Monotonicity principles

Monotonicity is a general principle widely used in the axiomatic analysis. This prin-
ciple hypothesizes a change in some parameter (or data) of the game between two
situations, and requires a change of the same fashion in the solution. Below, I present
some relational axioms for values on GTU that relies on this principle. A value f on
GTU satisfies:
Strong monotonicity if, for each (N, v), (N, w) ∈ GTU and each i ∈ N such that for
each S ⊆ N \ {i} : v(S ∪ {i})− v(S) ≥ w(S ∪ {i})− w(S), then

fi(N, v) ≥ fi(N, w).

Marginality if, for each (N, v), (N, w) ∈ GTU and each i ∈ N such that for each
S ⊆ N \ {i} : v(S ∪ {i})− v(S) = w(S ∪ {i})− w(S),

fi(N, v) = fi(N, w).

Aggregate monotonicity if, for each (N, v), (N, w) ∈ GTU such that for each S ⊂ N :
v(S) = w(S) and v(N) ≥ w(N),

∀i ∈ N, fi(N, v) ≥ fi(N, w).

Coalitional monotonicity if, for each (N, v), (N, w) ∈ GTU and each i ∈ N such that for
each S ⊆ N \ {i} : v(S ∪ {i}) ≥ w(S ∪ {i}),

fi(N, v) ≥ fi(N, w).

Weak monotonicity if, for each (N, v), (N, w) ∈ GTU and each i ∈ N such that for each
S ⊆ N \ {i} : v(S ∪ {i})− v(S) ≥ w(S ∪ {i})− w(S) and v(N) ≥ w(N),

fi(N, v) ≥ fi(N, w).

Strong monotonicity, introduced by Young [1985], hypothesizes an increase in an
agent’s marginal contributions from one game to another. Then, this agent should
receive at least the same payoff in the game in which it has a greater individual
performance. Obviously, Strong monotonicity implies Marginality, so that the pay-
off of an agent depends only on its marginal contributions to coalitions. Aggregate
monotonicity, introduced by Megiddo [1974], states that the payoff of each agent
should not decrease whenever the worth of the grand coalition increases (the worth
of the sub-coalitions remaining the same). Coalitional monotonicity, introduced by
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van den Brink [2007], hypothesizes a change in the worth of each coalition con-
taining an agent. The payoff this agent obtains should not decrease whenever the
coalitions containing it better perform. Finally, Weak monotonicity, introduced by
van den Brink et al. [2013] weakens Stong monotonicity by strengthening its hypoth-
esis. It requires that the worth of the grand coalition should not decrease in addition
to the hypothesis of Strong monotonicity. Recently, Yokote and Funaki [2017] focus
on several parameters of a TU-game and formulate the corresponding monotonicity
axioms.

Balanced contributions principles

The principle of balanced contributions is based on how an agent’s payoff varies
when another agent leaves the game. Such variation in payoffs is often interpreted
as a claim of an agent on a remaining agent. For instance, let f be a value on GTU

and i, i′ ∈ N be two distinct agents. The claim of agent i against i′ is given by
fi′(N, v) − fi′(N \ {i}, vN\{i}), which can be interpreted as i’s contribution to the
payoff of i′. A value f on GTU satisfies:
Balanced contributions if, for each (N, v) ∈ GTU and each two agents i, i′ ∈ N,

fi(N, v)− fi(N \ {i′}, vN\{i′}) = fi′(N, v)− fi′(N \ {i}, vN\{i}).

The axiom of Balanced contributions, introduced by Myerson [1980], states that for
any two agents the amount that each agent gains or losses by the other withdrawing
from the game should be equal. Thus, this axiom expresses the fairness requirement
that any two agents should have balanced claims on each other. In other words,
two agents should affect each other’s payoff in the same way. Recently, Kamijo
and Kongo [2010] study a weaker axiom called Balanced cycle contributions. This
weaker axiom requires that the balancedness of the claims be achieved across the
members of N. Recently, Casajus [2017] introduces the Weak balanced contributions
axiom that weakens the Balanced contributions by weakening its implication. In-
stead of imposing that any two agents have equal claim on each other, it imposes
that the claims should be of the same sign. Other relaxations of Balanced contribu-
tions can be found in Yokote and Kongo [2017] and Yokote et al. [2018].

Based on the above list of axioms, I list some well-known characterizations re-
sulting from their combination. I first present the most well-known axiomatic char-
acterizations of the Shapley value, then those of the Equal division value, and finally
those of the Egalitarian Shapley values.

The first axiomatic result presented is due to Shubik [1962] and provides a char-
acterization of the Shapley value.

Theorem 2.1.4 (Shapley [1953], Shubik [1962]). A value on GTU satisfies Efficiency, Ad-
ditivity, the null agent axiom and Equal treatment of equals if and only if it is the Shapley
value.

Recently, Casajus [2019] shows that Equal treatment of equals can be replaced by
Sign symmetry of equals in the above characterization.

Theorem 2.1.5 (Casajus [2019]). A value on GTU satisfies Efficiency, Additivity, the null
agent axiom and Sign symmetry of equals if and only if it is the Shapley value.

In the same line, Béal and Navarro [2020] show that Equal treatment of equals can
be replaced by Equal treatment of necessary agents.



26 Chapter 2. Preliminaries

Theorem 2.1.6 (Béal and Navarro [2020]). A value on GTU satisfies Efficiency, Additiv-
ity, the null agent axiom and Equal treatment of necessary agents if and only if it is the
Shapley value.

The Additivity axiom has been often criticized in the literature as being too tech-
nical and lacking in economic interpretation. I should point out that many other
characterizations of Shapley value exist that replace this axiom with less controver-
sial ones. In this line, Young [1985] characterizes the Shapley value by replacing
Additivity and the null agent property by Strong monotonicity.

Theorem 2.1.7 (Young [1985]). A value on GTU satisfies Efficiency, Equal treatment of
equals and Strong monotonicity if and only if it is the Shapley value.

Recently, Casajus [2018] and Béal and Navarro [2020] respectively show that Equal
treatment of equals can be replaced by Sign symmetry of equals or Equal treatment
of necessary agents in the above characterization.

Another approach to characterize the Shapley value is proposed in Myerson
[1980] and Hart and Mas-Colell [1989]. This approach consists in using Balanced
contributions.

Theorem 2.1.8 (Myerson [1980], Hart and Mas-Colell [1989]). A value on GTU satis-
fies Efficiency and Balanced contributions if and only if it is the Shapley value.

Since Balanced contributions can be interpreted as a fair requirement regarding what
agents can claim to the other agents, the Shapley value is then the unique efficient
value on GTU that satisfies this fairness requirement.

While the Shapley value captures the individual performance of the agents, the
Equal division value reflects a strong egalitarian principle concerned with the grand
coalition only. Despite this conceptual difference, van den Brink [2007] highlights
the similarities (and differences) between the Shapley value and the Equal division
value by providing parallel axiomatic characterizations. Specifically, van den Brink
[2007] shows that replacing the null agent axiom by the nullifying agent axiom in
Theorem 2.1.4 yields a characterization of the Equal division value.

Theorem 2.1.9 (van den Brink [2007]). A value on GTU satisfies Efficiency, Additivity,
the nullifying agent axiom and Equal treatment of equals if and only if it is the Equal division
value.

In the same line, van den Brink [2007] shows that replacing Strong monotonicity
by Coalitional monotonicity in Theorem 2.1.7 yields a characterization of the Equal
division value.

Theorem 2.1.10 (van den Brink [2007]). A value on GTU satisfies Efficiency, Coalitional
montonicity and Equal treatment of equals if and only if it is the Equal division value.

Actually, Equal treatment of equals can be weakened by imposing the same payoff
for all agents in TU-games where all agents are equals.

Several studies focus on the class of Egalitarian Shapley values and reveal the
desirable properties that characterize it. Originally, Joosten [1996] proposes three ax-
iomatic characterizations of the Egalitarian Shapley values. Each characterization is
in line with the main characterizations of the Shapley value. The main difference lies



2.2. TU-games with a priority structure 27

in how to treat null agents, requiring a weak egalitarian (or solidarity) principle that
allows a null agent to benefit from the worth generated cooperatively. Thus, Joosten
[1996] replaces the null agent axiom by an axiom called the α-egalitarian in Theo-
rem 2.1.4 yielding a characterization of the Egalitarian Shapley values. In the same
way, replacing Strong monotonicity by α-marginality in Theorem 2.1.7 yields a sec-
ond characterization of the Egalitarian Shapley values. One of the main drawback of
these characterizations is the explicit use of a parameter α in both α-egalitarian and
α-marginality. Other characterizations of the Egalitarian Shapley values exist that
overcome this drawback. Casajus and Huettner [2013] show that, replacing the null
agent axiom and Equal treatment of equals by Null agent in a productive environ-
ment and Desirability in Theorem 2.1.4 yields a characterization of the Egalitarian
Shapley values.

Theorem 2.1.11 (Casajus and Huettner [2013]). A value f on GTU satisfies Efficiency,
Additivity, Desirability and Null agent in a productive environment if and only if there
exists α ∈ [0, 1] such that f = EShα.

Moreover replacing Additivity and Null agent in a productive environment by Weak
monotonicity, yields a characterization of the Egalitarian Shapley value for games
with more than two agents. Let GTU

6=2 = {(N, v) ∈ GTU : |N| 6= 2}.

Theorem 2.1.12 (Casajus and Huettner [2014]). A value f on GTU
6=2 satisfies Efficiency,

Desirability and Weak monotonicity if and only if there exists α ∈ [0, 1] such that f = EShα.

Theorem 2.1.13 (van den Brink et al. [2013]). A value f on GTU satisfies Efficiency, Lin-
earity, Anonymity and Weak monotonicity if and only if there exists α ∈ [0, 1] such that
f = EShα.

Other recent insights into the analysis of the Egalitarian Shapley values can be found
in Wang et al. [2017], Yokote and Funaki [2017], Béal et al. [2021].

2.2 TU-games with a priority structure

The model of TU-games can be enriched in a variety of ways aiming at describing
more accurate situations. In several situations, there exists asymmetries between the
agents that are not captured by the parameters of a TU-game. These asymmetries
may reflect exogenous rights, different needs, merit, or hierarchical constraints that
should be conveyed by an allocation process. To account for such situations, Béal
et al. [2022] enriched the model of TU-game with a priority structure. A priority
structure, modeled by a partial order on the agent set, reflects the fact that some
agents may have the priority over other agents in the allocation process. It should
be noted that several studies have considered a partial order on the agent set un-
der different interpretation (see for instance Faigle and Kern [1992], and Gilles et al.
[1992]). In addition, Béal et al. [2022] introduces the Priority value for TU-games
with a priority structure. This value shares the dividend of each coalition between
the priority agents in the coalition.

In this section, I present the model of TU-games enriched with a priority struc-
ture along with the Priority value. I also present the axiomatic foundations of the
Priority value provided by Béal et al. [2022].
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2.2.1 The model

Let N ∈ N be any finite set of agents, and let � be a binary relation on N. The
relation � is called: reflexive if, for each i ∈ N, i � i; transitive if, for each i, j, k ∈ N
such that i � j and j � k then i � k; antisymmetric if, for each i, j ∈ N such that i � j
and j � i then i = j; complete if, for each i, j ∈ N, either i � j or j � i.

A priority structure on N is a partially ordered set (henceforth a poset) � on N.
Recall that a poset (N,�) is a reflexive, antisymmetric and transitive binary relation.
The relation i � i′ means that agent i has priority over agent i′. Two distinct agents
i and i′ are incomparable in (N,�) if neither i � i′ nor i � i′. The poset (N,�0)
containing no priority relation between two distinct agents is called the trivial poset.
In some situations, each pair of agents in N are comparable. In this case, the poset
(N,�) is a linear order, i.e., (N,�) is complete. The poset (N,�′) contains (N,�) if
for each i, i′ ∈ N, i � i′ implies i �′ i′. Then, (N,�′) is referred to as an extension of
(N,�).

A poset (N,�) gives rise to the asymmetric binary relation (N,�): i � i′ if i � i′

and not i′ � i. For an agent i ∈ N, define the priority group of i, denoted by ↑� i, as
the set of agents having priority over i in (N,�), i.e.,

↑� i =
{

i′ ∈ N : i′ � i
}

.

For each nonempty A ⊆ N, the subposet (A,�A) of (N,�) induced by A is such
that for each i ∈ A and i′ ∈ A, i �A i′ if i � i′. An agent i ∈ A is a priority agent in
(A,�A) if, for k ∈ A, k � i implies i = k. Denote by T(A,�A) the nonempty subset
of priority agents in (A,�A). Denote by PN the set of all posets (on N) and sub-
posets that one can generate from N. Given (N,�) ∈ PN , and two distinct agents
i, i′ ∈ N such that i′ ∈ N\ ↑� i, let (N,�i→i′) be the poset defined as:

∀k, l ∈ N, l �i→i′ k ⇐⇒
{

either l ∈↑� i ∪ {i} and k ∈↓� i′ ∪ {i′},
or l � k.

(2.15)

Given N ∈ N , a TU-game enriched with a priority structure is the triple (N, v,�),
where (N, v) ∈ GTU and (N,�) ∈ PN . For S ⊆ N, denote by (S, vS,�S) the sub-
game of (N, v,�) induced by S. Denote by GPTU

N the set of all TU-games with a
priority structure that can be constructed from GTU and PN .

2.2.2 The Priority value and its axiomatic foundations

Whenever agents are heterogeneous, it seems reasonable that a solution account
for these differences when allocating the value generated by cooperation. Below, I
present the Priority value, introduced by Béal et al. [2022], which shares the dividend
of each coalition equally between the priority agents in the coalition.

Formally, the Priority value, Pr, is defined as: for each (N, v,�) ∈ GPTU
N ,

∀i ∈ N, Pri(N, v,�) = ∑
S⊆N:

i∈T(S,�S)

∆S(v)
|T(S,�S)| . (2.16)

Observe that the Priority value is close in spirit to the Shapley value. Whenever the
priority structure is the trivial poset, the Priority value coincides with the Shapley
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value. Béal et al. [2022] study the influence of the priority structure on TU-games
through an axiomatic study. The authors invoke both standard axioms (see Section
2.1.3) and new axioms related to the priority structure that I present below. A value
f on GPTU

N satisfies:
Equal treatment of necessary agents with equal priority group if, for each (N, v,�) ∈
GPTU

N , each two distinct necessary agents i, i′ ∈ N such that ↑� i =↑� i′,

fi(N, v,�) = fi′(N, v,�).

Necessary and priority agent if, for each (N, v,�) ∈ GPTU
N , and each two necessary

agents i, i′ ∈ N such that i′ � i,

fi(N, v,�) = 0.

Priority agent out if, for each (N, v,�) ∈ GPTU
N , each two agents i, i′ ∈ N such that

i′ � i,
fi(N, v,�) = fi(N \ {i′}, vN\{i′},�).

Invariance to unproductive priority extension if, for each (N, v,�) ∈ GPTU
N , each two

incomparable agents i, i′ ∈ N such that each k ∈↑� i ∪ {i} is a null agent,

f (N, v,�) = f (N, v,�i→i′).

Equal treatment of necessary agents with the same priority group weakens the ax-
iom of Equal treatment of necessary agents by considering the priority structure. It
requires that both necessary agents should have the same priority groups in order
to obtain the same payoff. Necessary and priority agent asserts that a first agent that
has the priority over a second agent can force the payoff of the second agent to be
zero. This indicates the fact that the priority relation comes over the economic rela-
tion between two necessary agents. Priority agent out relies on the same idea that
the priority comes over the economic performance. It indicates that the payoff of
an agent is invariant to the presence of an agent having the priority over it. Finally,
Invariance to unproductive priority extension indicates that the payoff of an agent
is not affected if a group of unproductive agents takes priority over it.

The relations between the axioms are as follows. The authors show that the com-
bination of Priority agent out and the null game axiom implies Necessary and pri-
ority agent. The combination of Efficiency and the null agent out axiom implies
Invariance to unproductive priority extension.

Based on the above axioms and straightforward generalizations of standard ax-
ioms from TU-games to TU-games enriched with a priority structure, Béal et al.
[2022] provides the two following characterization of the Priority value.

Theorem 2.2.1 (Béal et al. [2022]). A value on GPTU
N satisfies Efficiency, Additivity, Pri-

ority agent out, Equal treatment of necessary agents with equal priority group and Invari-
ance to unproductive priority extension if and only if it is the Priority value.

A second characterization of the Priority value can be obtained by replacing Pri-
ority agent out and Invariance to unproductive priority extension by the null agent
out axiom and Necessary and priority agent.

Theorem 2.2.2 (Béal et al. [2022]). A value on GPTU
N satisfies Efficiency, Additivity, the

null agent out axiom, Equal treatment of necessary agents with equal priority group and
Necessary and priority agent if and only if it is the Priority value.
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2.3 Multi-choice games

In TU-games (as presented in Section 2.1), agents can either join a coalition and fully
cooperate or abstain. Multi-choice games, introduced by Hsiao and Raghavan [1992,
1993], constitute a natural extension of TU-games in which agents can cooperate
at different intensities (or activity levels) within a coalition.4 Then the worth of a
coalition depends on the intensity of cooperation of each agent. This section presents
the model of multi-choice games and several solutions.

2.3.1 The model

Fix N ∈ N the set of agents and K ∈ N. Each agent i ∈ N has a finite set of pairwise
distinct activity levels Mi := {0, 1, . . . , mi} where mi ≤ K. For each agent i ∈ N, the
set Mi is linearly ordered from its lowest activity level 0 (i does not cooperate) to its
maximal activity level mi. Moreover, denote M+

i = Mi \ {0} the set of i’s positive
activity levels. For each S ⊆ N, S 6= ∅, let MS be the cartesian product ∏i∈S Mi.
I will sometimes write M instead of MN , and −i instead of N \ {i}. An element
s = (s1, . . . , sn) ∈ M is referred to as a (multi-choice) coalition, which indicates each
agent’s activity level when cooperating. The notation (sS, sN\S) ∈ MS ×MN\S will
be used to specify the activity levels played by the set of agents S and N \ S respec-
tively. The coalition m = (m1, . . . , mn) ∈ M stands for the grand coalition in which
each agent cooperates at its maximal activity level, whereas 0 = (0, . . . , 0) stands for
the empty coalition in which no agent cooperates. Observe that the setM endowed
with the usual binary relation ≥ on N|N| forms a (complete) lattice (M,≥) where
the greatest element is m and the least element is 0. For any two coalitions s, t ∈ M,
s ∨ t and s ∧ t denote their least upper bound and their greatest lower bound over
M, respectively. Given the grand coalition m, one sometimes denotes s ≤ m instead
of s ∈ M. For S ⊆ N, define eS = (1S, 0N\S) ∈ MS×MN\S as the coalition in which
only agents in S cooperate at activity level 1.

A (cooperative) multi-choice game on N and m is a pair (m, v), where m ≤ (K, . . . , K) ∈
N|N| is the vector describing the maximal activity level of each agent, and v :M→
R is a characteristic function. By convention, one sets v(0) = 0. For each s ∈ M,
the real number v(s) ∈ R specifies the worth that agents generate by cooperating at
s. Denote by Gm the set of all multi-choice games on N and m ≤ K. Observe that
the set of TU-games GTU

N on N can be viewed as the subset of multi-choice games
on N and m where m = (1, . . . , 1). The set of all multi-choice games on N is given
by G =

⋃
m≤(K,...,K) Gm.5 I sometimes consider the subset of multi-choice games on

N in which each agent has the same maximal activity level, denoted by G. Below,
I present several subsets of multi-choice games. Each subset generalizes the corre-
sponding concept from TU-game to multi-choice games, therefore I retain the same
name.6

A multi-choice game (m, v) ∈ G is called:

4Originally, Hsiao and Raghavan [1992] refers to an activity level as the action of cooperating at a
certain level. I use indifferently action and activity level since the two terms have the same meaning.

5Observe that (K, . . . , K) ∈N|N| is an upper bound on the vector of maximal activity, where K ∈N

is arbitrarily chosen.
6Calvo and Santos [2000] introduce another extension of the TU-games called multi-level coopera-

tive games. The main difference with multi-choice games lies in the assumption that in a multi-choice
game (m, v), M is a comprehensive subset of N|N|, i.e., if s ∈ M then for all 0 ≤ t ≤ s it holds that
t ∈ M. This assumption is relaxed in the model of multi-level games.
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Non-negative if,
∀s ≤ m, v(s) ≥ 0.

Monotonic if,
∀s ∈ M, t ∈ M : s ≤ t, v(s) ≤ v(t).

Simple if,
∀S ∈ M, v(s) ∈ {0, 1}.

Additive if,
∀s ∈ M, t ∈ M : s ∧ t = 0, v(s ∨ t) = v(s) + v(t).

Super-additive if,

∀s ∈ M, t ∈ M : s ∧ t = 0, v(s ∨ t) ≥ v(s) + v(t).

Sub-additive if,

∀s ∈ M, t ∈ M : s ∧ t = 0, v(s ∨ t) ≤ v(s) + v(t).

Super-modular (or Convex) if,

∀s ∈ M, t ∈ M, v(s ∨ t) + v(s ∧ t) ≥ v(s) + v(t).

Sub-modular (or Concave) if,

∀s ∈ M, t ∈ M, v(s ∨ t) + v(s ∧ t) ≤ v(s) + v(t).

The null game, (m, v0) ∈ G is the multi-choice game such that for each s ∈ M, v0(s) =
0.

Given a multi-choice game (m, v) ∈ G and a coalition t ∈ M, the sub-game of
(m, v) induced by t is the multi-choice game (t, vt) ∈ G such that vt is the restriction
of v to the subset of coalitionsMt = {s ∈ M | ∀i ∈ N, si ≤ ti}, such that

∀s ∈ Mt, vt(s) = v(s).

When no confusion arises, simply denote the sub-game (t, vt) by (t, v). It should be
noted that the sub-game (t, vt) describes the situation in which the agents’ maximal
activity reduces to ti ≤ mi.

Consider m ≤ (K, . . . , K). For any two multi-choice games (m, v) ∈ Gm, (m, w) ∈
Gm and any α ∈ R, the multi-choice game (αv + w) ∈ Gm is given by:

∀s ∈ M, (αv + w)(s) = αv(s) + w(s).

Moreover, observe that M is a finite set whose cardinal is |M| = ∏i∈N(mi + 1).
Thus, for any multi-choice game (m, v) ∈ Gm the characteristic function v is fully de-
scribed by the vector (v(s))s∈M ∈ R|M|. Since v(0) = 0, any characteristic function
v onM can be generated by a linear combination of |M| − 1 linearly independent
elements. Thus, the set Gm is a linear subspace of R|M| of dimension |M|− 1. A first
basis for Gm is given by the analogue of Dirac TU-games for multi-choice games,
{δs : 0 < s ≤ m}, such that

∀s ∈ M\ {0}, t ∈ M\ {0}, δs(t) =
{

1 if t = s,
0 otherwise.

(2.17)
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For each (m, v) ∈ Gm, the characteristic function v admits a unique linear decompo-
sition in terms of Dirac games given by:

v = ∑
s∈M:
s 6=0

v(s)δs. (2.18)

A second basis for Gm is given by an analogue of unanimity games in multi-choice
games called minimal (effort) games (Hsiao and Raghavan [1993]), {us : 0 < s ≤ m},
such that

∀s ∈ M\ {0}, t ∈ M\ {0}, us(t) =
{

1 if t ≥ s,
0 otherwise.

(2.19)

For each (m, v) ∈ Gm, the characteristic function v admits a unique linear decompo-
sition in terms of minimal games given by:

v = ∑
s∈M:
s 6=0

∆s(v)us. (2.20)

The real number ∆s(v), called the dividend of s, is a straightforward generalization
of the concept of dividend from TU-games to multi-choice games. The following
definition arises from (2.5). For each coalition s ∈ M, the dividend of s is computed
recursively as follows:

∆s(v) = v(s)−∑
t<s

∆t(v). (2.21)

Just as in TU-games, expression (2.21) allows to interpret the Harsanyi dividend of
a coalition as the net surplus obtained by subtracting the surpluses generated by its
smaller coalitions. An alternative definition of the dividend is provided in Hsiao
and Raghavan [1992] as follows. For each coalition s ∈ M, the dividend of s is given
by:

∆s(v) = ∑
T⊆S(s)

(−1)|T|v(s− eT), (2.22)

where S(s) = {i ∈ N : si 6= 0} denotes the (possibly empty) set of active agents in
the coalition s. Given a multi-choice game (m, v) ∈ G and its sub-game (t, vt), each
dividend ∆s(vt) in (t, vt) coincides with the dividend ∆s(v) in (m, v).

Since each agent has multiple actions when cooperating in a multiple-choice
game, it is desirable, when evaluating an agent’s performance, to distinguish be-
tween the agent’s different actions. For this purpose, consider the set of pairs com-
posed of an agent and one of its (positive) activity levels. Let (m, v) ∈ G be a multi-
choice game. Define M =

⋃
i∈N({i} × Mi) and M+ =

⋃
i∈N({i} × M+

i ). A pair
(i, j) ∈ M represents an agent and one of its activity levels. The individual perfor-
mance of an agent cooperating at a certain (non-null) activity level is assessed by its
marginal contribution when playing that activity level. This marginal contribution
is computed as the surplus generated in a coalition when the agent increase its ac-
tivity level by one unit, all else being equal. Formally, let (m, v) ∈ G, (i, j) ∈ M+,
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and s ∈ M such that si = j− 1. The marginal contribution of (i, j) to s is given by:7

v(s + ei)− v(s),

or equivalently:
v((s−i, j))− v((s−i, j− 1)).

Two distinct pairs containing the same activity level (i, j) ∈ M+ and (i′, j) ∈ M+ are
called equal pairs if they have the same marginal contribution to coalitions, i.e.,

∀s ∈ M : si = si′ = j− 1, v(s + ei) = v(s + ei′). (2.23)

A pair (i, j) ∈ M+ is called level null in (m, v) if it has a null marginal contribution to
coalitions, i.e.,

∀s ∈ M : si = j− 1, v(s + ei) = v(s), (2.24)

or equivalently:
∀s−i ∈ M−i, v((s−i, j)) = v((s−i, j− 1)).

A pair (i, j) ∈ M+ is called null if agent i becomes unproductive beyond the activity
level j, i.e.,

∀j ≤ l ≤ mi, ∀s ∈ M : si = j− 1, v(s + (l − j + 1)ei) = v(s), (2.25)

or equivalently:

∀j ≤ l ≤ mi, ∀s−i ∈ M−i, v((s−i, l)) = v((s−i, j− 1)).

Thus, if a pair (i, j) ∈ M+ is null in (m, v), then each pair containing i and a greater
activity level is also null. It is clear that any null pair is a level null pair, the converse
is not true. A pair (i, j) ∈ M+ is necessary if each coalition in which i plays an activity
level lower than j generates zero worth, i.e.,

∀s ∈ M : si < j, v(s) = 0.

For (m, v) ∈ G and i ∈ N, define the (possibly empty) set of necessary pairs contain-
ing agent i,

Nci(m, v) = {(i, j) ∈ M+ : ∀s ∈ M : si < j, v(s) = 0}.

2.3.2 Solutions for multi-choice games

The main objective in multi-choice games remains to determine reasonable ways of
sharing the worth generated by cooperation. Since the agents have several activ-
ity levels, each agent should be aware of what it might obtain by cooperating at a
certain level. Therefore, a solution allocates a payoff to each activity level of each
agent. There exist two interpretations of a payoff in multi-choice game. First, Hsiao
and Raghavan [1992] interpret a payoff as an agent’s gain for a certain activity level.
This interpretation can also be found in Grabisch and Lange [2007] and Grabisch and
Xie [2007]. A second interpretation, provided in van den Nouweland et al. [1995],
considers the variation of gain when an agent increases its activity level from the

7One can imagine different extensions of the marginal contribution from TU-games to multi-choice
games. For instance, one can measure the surplus generated when an agent increases its activity level
from 0, i.e., for s ∈ M : si = 0. An alternative definition of the marginal contribution is then given by:
v(s + jei)− v(s), where s ∈ M is such that si = 0.
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level just below. I will mainly rely on this second interpretation, which is most of-
ten used in the literature. To avoid confusion, I distinguish both interpretations by
referring to a payoff à la Hsiao and Raghavan [1992] as a level payoff, while a payoff
à la van den Nouweland [1993] is referred to as a payoff.

Given a multi-choice game (m, v) ∈ G, a payoff vector is a |M+|-dimensional vec-
tor x ∈ R|M

+|, where xij ∈ R is the payoff distributed to the pair (i, j) ∈ M+. By
convention, for each i ∈ N set xi0 = 0. Following the interpretation of van den
Nouweland [1993], xij ∈ R corresponds to a change in payoff to agent i correspond-
ing to a change of activity level from j− 1 to j. Given a payoff vector x ∈ R|M

+|, the
corresponding level payoff vector (à la Hsiao and Raghavan [1992]), x ∈ R|M

+|, is such
that for each (i, j) ∈ M+, xij = ∑l≤j xij.8 A payoff vector x ∈ R|M

+| is efficient if it
fully allocates the worth of the grand coalition v(m) among all the agents’ activity
levels in the game, i.e., ∑i∈N ∑j≤mi

xij = v(m). Since one assumes that each agent
cooperates at its maximal activity level, one obtains ∑i∈N ximi = v(m). A payoff vec-
tor is called increase rational if no agent can be better off when it increases its activity
level from one unit, i.e., for each i ∈ N and each j ∈ M+

i , xij ≥ v(jei)− v((j− 1)ei),
or equivalently xij ≥ v((0−i, j))− v((0−i, j− 1)). It is clear that increase rationality
implies that an agent obtains a better level payoff than the worth it generates alone,
i.e., xij ≥ v(jei). A payoff vector is coalitionally rational if no coalition can be better
off by itself, i.e., for each s ∈ M, ∑i∈N ∑j≤si

xij ≥ v(s). While coalitional rationality
is a straightforward generalization from TU-games to multi-choice games, increase
rationality generalizes the notion of individual rationality by relying on the inter-
pretation of a payoff in multi-choice games.

A set-valued solution on G is a mapping F : G ⇒ R|M
+| that assigns a (possibly

empty) set of payoff vectors F(m, v) ⊆ R|M
+| to each game (m, v) ∈ G. A single-

valued solution, or a value, on G is a function f : G → R|M
+|. A first set-valued

solution concept aims at generalizing the Imputation set from TU-games to multi-
choice games. This solution, introduced by van den Nouweland et al. [1995], refers
to the (possibly empty) set of payoff vectors that are efficient and increase rational.
Formally, the Imputation set, I, is defined as: for each (m, v) ∈ G,

I(m, v) =
{

x ∈ R|M
+| :

∑i∈N ∑j∈M+
i

xij = v(m),
∀i ∈ N, ∀j ∈ M+

i , xij ≥ v(jei)− v((j− 1)ei)

}
. (2.26)

It can be shown that the Imputation set is non-empty if and only if ∑i∈N v(miei) ≤
v(m). It appears that each solution presented in Section 2.1.2 has several reasonable
extensions to mutli-choice games. Below, I present some of these extensions on G
and elaborate on their properties.

Extensions of the Core

As developed in Section 2.1.2, the stability principle underlying the Core makes this
solution particularly appealing for several economic situations. Below, I present
three extensions with a special attention to the last one. A first natural extension,
called the pre-Core, is introduced by Grabisch and Xie [2007]. This solution refers to
the (possibly empty) set of efficient and coalitionally rational payoff vectors.

8It is clear that each payoff vector determines a unique level payoff vector.
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Formally, the pre-Core, pC, is defined as: for each (m, v) ∈ G,

pC(m, v) =
{

x ∈ R|M
+| :

∑i∈N ∑j∈M+
i

xij = v(m),
∀s ∈ M, ∑i∈N ∑j≤si

xij ≥ v(s)

}
. (2.27)

Whenever non-empty, the pre-Core may be an unbounded convex polyhedron. This
point is the major drawback of this solution. It means that a pre-Core element may
assign an arbitrarily large payoff to some agent’s activity level.

A second extension of the core, which avoids this drawback, is introduced by
van den Nouweland et al. [1995]. This solution refines the Imputation set by impos-
ing coalitional rationality. Formally, the Core à la van den Nouweland et al. [1995],
CvN , is defined as: for each (m, v) ∈ G,

CvN(m, v) =
{

x ∈ R|M
+| :

∑i∈N ∑j∈M+
i

xij = v(m),
∀i ∈ N, ∀j ∈ M+

i , xij ≥ v(jei)− v((j− 1)ei),
∀s ∈ M, ∑i∈N ∑j≤si

xij ≥ v(s)

}
.

(2.28)
Observe that, the Core à la van den Nouweland et al. [1995] is closed thanks to
the specification of increase rationality. van den Nouweland et al. [1995] provide a
necessary and sufficient condition that ensures the non-emptiness of their Core.9

A third extension of the core, introduced by Grabisch and Xie [2007], also avoids
the drawback of the pre-Core by considering a normalization (provided by the ef-
ficiency condition) at each activity level. Formally, the Core à la Grabisch and Xie
[2007], C, is defined as: for each (m, v) ∈ G,

C(m, v) =
{

x ∈ R|M
+| :

∀h ≤ max
i∈N

mi, ∑
i∈N

∑
j≤h

xij = v((h ∧mi)i∈N),

∀s ∈ M, ∑i∈N ∑j≤si
xij ≥ v(s)

}
. (2.29)

Despite its technical use, the normalization at each activity level also has an appeal-
ing interpretation. Assume that all agents agree on forming a coalition in which they
all play the same activity level, for instance h ≤ maxi∈N mi. The agents that are not
able to cooperate at this level play their maximal activity level. Such coalition is
called a h-synchronized coalition. The normalization requires that the worth of each
synchronized coalition is fully allocated among the agents’ activity level needed to
reach this coalition. This condition drives the agents to align on their activity level as
far as possible. A necessary and sufficient condition that ensures the non-emptiness
of the Core relies on the extension of the concept of balancedness from TU-games to
multi-choice games. Let M\ {0} be the set of coalitions and let B ⊆ M \ {0} be
a collection of coalitions. The collection B is called a balanced collection if, for each
s ∈ B there exists µs ∈ R+ such that

∀i ∈ N, ∑
s∈B:
si=mi

µs = (max
k∈N

mk)−mi + 1,

∀i ∈ N, ∀j < mi ∑
s∈B:
si=j

µs = 1.

A natural extension of the standard interpretation of a balanced collection can be
given as follows. Suppose there are maxk∈N mk working days, where each day is

9This condition extends the Bondareva-Shapley Theorem (see Theorem 2.1.1). I refer the reader to
van den Nouweland et al. [1995] for further details.
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dedicated to one activity level j = 1, . . . , maxi∈N mi. For each day j < mi, ∑s∈B:
si=j

µs =

1 holds. Agent i allocates one unit of time in coalitions s ∈ M \ {0} such that
si = j. From day j = mi, ∑ s∈B:

si=mi

µs = (maxk∈N mk) − mi + 1 holds and it remains

(maxk∈N mi)−mi + 1 days to work. Then, agent i allocates the rest of its time in the
coalitions s ∈ M \ {0} such that si = mi. A collection of elements of M\ {0} is
balanced if each agent i ∈ N fully allocates these maxi mi units of time as described.
A multi-choice game (m, v) ∈ G is called balanced if for each balanced collection
B ⊆ M\ {0} it holds that:

∑
s∈B

µsv(s) ≤
maxi∈N mi

∑
h=1

v((h ∧mi)i∈N). (2.30)

Theorem 2.3.1 (Grabisch and Xie [2007]). A multi-choice game (m, v) ∈ G has a non-
empty Core if and only if it is balanced.

The relations between the three above extensions of the Core can be described as
follows.10 It can be shown that the intersection of the Imputation set with the Core
à la Grabisch and Xie [2007] is included in the Core à la van den Nouweland et al.
[1995], which is itself equal to the intersection between the Imputation set and the
pre-Core:

C∩ I ⊆ CvN = pC∩ I.

Extensions of the Weber set

Two extensions of the Weber set have been proposed in the literature. The first one,
the pre-Weber set, is a natural extension introduced by van den Nouweland et al.
[1995].11 This solution relies on the concepts of admissible orders and the correspond-
ing marginal vectors described as follows. Assume that the grand coalition m ∈ M
forms step by step starting from the empty coalition 0. At each step, one agent
increases its activity level by one unit, and demands the marginal contribution gen-
erated at this level. Given an admissible order, the payoff vector resulting from
this process is called the marginal vector. Formally, let m ≤ (K, . . . , K) be the vector
describing the agents’ maximal activity levels, and let M+ be the set of pairs. An
admissible order on M+ is a bijection σ : M+ → {1, . . . , ∑i∈N mi} such that for each
i ∈ N and j ∈ M+

i , σ((i, j)) < σ((i, j + 1)). For each (i, j) ∈ M+, σ(i, j) denotes the
pair (i, j)’s position in the order σ. Denote by Om the set of all admissible orders on
M+. For each σ ∈ Om and each k ∈ {1, . . . , ∑i∈N mi}, the coalition sσ,k is the coalition
formed by the agents that reached a certain activity level before step k in σ, i.e.,

∀i ∈ N, sσ,k
i = max{j ∈ M+

i : σ(i, j) ≤ k} ∪ {0}.

Given a multi-choice game (m, v) ∈ G and an admissible order σ ∈ Om, the marginal
vector, mσ(m, v) ∈ R|M

+| is defined as:

∀(i, j) ∈ M+, mσ
ij(m, v) = v(sσ,σ(i,j))− v(sσ,σ(i,j)−1). (2.31)

10Another extension of the Core, called the unit-level Core, can be found in Hwang and Liao [2010].
11Originally, van den Nouweland et al. [1995] called this solution the Weber set. The term pre-

Weber set is introduced by Grabisch and Xie [2007]. I retain this term to distinguish it with the second
extension presented below.
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For each multi-choice game (m, v) ∈ G, the pre-Weber set, pW, is defined as the
convex hull of all marginal vectors, i.e.,

pW(m, v) = co{mσ(m, v) : σ ∈ Om}. (2.32)

A second extension of the Weber set is introduced by Grabisch and Xie [2007].
This solution relies on the concept of restricted orders and the corresponding marginal
vectors. A restricted order is an admissible order such that an agent can increase its
activity level provided that all the agents that are able to play the level just below
have reached it. Formally, let m ≤ (K, . . . , K) be the vector describing the agents’
maximal activity levels, and let M+ be the set of pairs. A restricted order on M+ is a
bijection σ : M+ → {1, . . . , ∑i∈N mi} such that for each (i, j) ∈ M+ and (i′, j′) ∈ M+,
j′ < j implies σ(i′, j′) < σ(i, j). Denote by Om the set of all restricted orders on M+.
For each σ ∈ Om and each k ∈ {1, . . . , ∑i∈N mi}, the coalition sσ,k is the coalition
formed by the agents that reached a certain activity level before step k in σ, i.e.,

∀i ∈ N, sσ,k
i = max{j ∈ M+

i : σ(i, j) ≤ k} ∪ {0}.

I use the convention sσ,0 = 0. Given a multi-choice game (m, v) ∈ G and an admis-
sible order σ ∈ Om, the marginal vector, mσ(m, v) ∈ R|M

+| is defined as:

∀(i, j) ∈ M+, mσ
ij(m, v) = v(sσ,σ(i,j))− v(sσ,σ(i,j)−1). (2.33)

For each multi-choice game (m, v) ∈ G, the Weber set, W, is defined as the convex
hull of all marginal vectors, i.e.,

W(m, v) = co{mσ(m, v) : σ ∈ Om}. (2.34)

Grabisch and Xie [2007] extend Theorem 2.1.3 (Shapley [1971], Ichiishi [1981]), show-
ing that the Core coincides with the Weber set on the class of super-modular multi-
choice games. Such result does no longer holds if one invokes the Core à la van den
Nouweland et al. [1995].

Theorem 2.3.2 (Grabisch and Xie [2007]). For each super-modular multi-choice game (m, v) ∈
G,

C(m, v) = W(m, v).

Observe that there is no similar coincidence when one considers the Core à la
van den Nouweland et al. [1995] and the pre-Weber set.

Extensions of the Shapley value

Regarding single-valued solutions, there is a significant part of the literature that
focuses on extensions of the Shapley value. To paraphrase van den Nouweland
[1993], “there is more than one reasonable extension of the Shapley value to multi-choice
games”. Below, I present four commonly studied extensions. Each of these extensions
has desirable properties that I will discuss in the next section.

While considering the process defining the marginal vectors (see Section 2.1.2,
definition (2.9)), one of the most natural extension of the Shapley value to multi-
choice games is probably the one introduced by van den Nouweland et al. [1995],
denoted by φvN . Consider a multi-choice game, the set of admissible orders in this
game, and the process that defines the marginal vectors (see (2.31)). Assume that
each admissible order can occur with the same probability. The value φvN assigns
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to each agent’s activity level (or to each pair composed of an agent and one of its
activity level) its expected payoff with respect to the probability on the admissible
orders.

Formally, the value φvN is defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, φvN
ij (m, v) = ∏i∈N(mi!)

(∑i∈N mi)!
∑

σ∈Om

mσ
ij(m, v). (2.35)

Below, I present a second mathematical expression of φvN . According to this expres-
sion, φvN assigns to each agent’s activity level a weighted average of its marginal
contributions to the coalitions this agent joins at this activity level. In order to define
this alternative expression, one needs the following definition. Given a multi-choice
game (m, v) ∈ G, for each s ∈ M and each (i, j) ∈ M+ such that j ≤ si, the hierarchi-
cal strength hvN

ij (s) is defined as:

hvN
ij (s) = ∏k∈N(mk!)

(∑k∈N mk)!
|{σ ∈ Om : σ(i, j) = max

(k,l)∈M+

l≤sk

σ(k, l)}|. (2.36)

One interpretation of hvN
ij (s) is as follows. Consider the notion of admissible orders

introduced in the previous section. The weight hvN
ij (s) is the average number of

admissible orders σ ∈ Om such that the pair (i, j) ∈ M+ has the highest position in
the order σ among all the pairs (k, l) ∈ M+ with l ≤ sk. Observe that this number
depends on the total number of activity levels leading to the coalition s, i.e., ∑k∈N sk
but also on the total number of activity levels of an agent.

Formally, the value φvN is defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, φvN
ij (m, v) = ∑

s≤m
si=j

hvN
ij (s)

[
v(s)− v(s− ei)

]
. (2.37)

Remark 1. One interesting property of the hierarchical strength arises when one
considers the decisive activity levels in a minimal effort game.12 In this case, Faigle
and Kern [1992] show that the hierarchical strength depends monotically on the ac-
tivity level. Let (m, us) ∈ G be a minimal effort game with s ∈ M and i, i′ ∈ S(s). It
holds that

hvN
isi

(s) = hvN
i′si′

(s) if si = si′ ,
hvN

isi
(s) > hvN

i′si′
(s) if si > si′ .

Remark 2. An alternative interpretation of the weight hvN
ij (s) is as follows. Consider

a pair (i, j) ∈ M+ and a coalition s ∈ M such that si = j. Let I(s) := ∑k∈N sk be the
“total intensity” in coalition s. Then, hij(s) corresponds to the probability that i joins
a coalition with the total intensity I(s) by playing its activity level j. Whenever for
each agent i ∈ N, mi = 1, hvN

ij (s) is the Shapley coefficient (see (2.11)).

Three other extensions of the Shapley value stand out in the literature. I first
present the value introduced by Peters and Zank [2005]. The authors consider the
subclass of multi-choice games in which each agent has the same activity level. They

12By decisive, it is meant a necessary pair such that the player featuring this pair becomes null when
playing a higher activity level.
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propose a value that shares the dividend of each coalition equally among the active
agents. Below, I consider a definition of the extension proposed by Peters and Zank
[2005] on G.

Formally, the value φPZ is defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, φPZ
ij (m, v) = ∑

s≤m
si=j

∆s(v)
|S(s)| . (2.38)

An alternative expression of this extension relies on the marginal contributions. In
order to introduce this second expression, a definition is needed. Consider any
multi-choice game (m, v) ∈ G, and any pair (i, j) ∈ M+. Define the subset of coali-
tions Cm

ij ⊆ M in which i is playing at the level j− 1 and the remaining agents are
either active at their maximal activity or inactive, i.e.,

Cm
ij = {s ∈ M : si = j− 1, ∀k 6= i, sk ∈ {0, mk}}.

The value φPZ is defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, φPZ
ij (m, v) = ∑

s∈Cm
ij

γs

[
v(s + ei)− v(s)

]
, (2.39)

where

γs =
(|{k ∈ S(s) : k 6= i}|)!(|N| − S(s)− 1)!

|N|! .

Thus, φPZ
ij can be interpreted as a weighted average of the marginal contributions to

the coalitions in Cm
ij . By considering only coalitions in Cm

ij , the value φPZ considers
less information than φvN .

Another extension is due to Hsiao and Raghavan [1992, 1993]. The authors also
consider the subclass of multi-choice games in which each agent has the same max-
imal activity level. Then, they consider an exogenous weight system on the activity
levels. This value shares the dividend of a coalition proportionally to these weights.
Below, I consider a definition of the value introduced by Hsiao and Raghavan [1992]
on G.

Let m ≤ (K, . . . , K) be a vector of maximal activity levels and (wj)
maxi∈N mi
j=1 ∈

Rmaxi∈N mi+1 be a weight system on the activity levels with w0 = 0. The value φHR,w,
is defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, φHR,w
ij (m, v) = ∑

s∈M
si=j

wj

∑k∈N wsk

∆s(v). (2.40)

Whenever wj = wj′ for each j ≤ maxi∈N mi and j′ ≤ maxi∈N mi, φHR,w coincides
with φPZ. Thus, the value φHR,w generalizes the value φPZ.

A second expression of this extension relies on the marginal contributions. Given
a coalition s ∈ M and an agent i ∈ S(s), define the set of agents (different from i)
that are not playing their maximal activity level in s as:

LHR
i (s) = {k ∈ N : sk 6= mk and k 6= i}.
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Given a weight system on the activity levels (wj)
maxi∈N mi
j=1 ∈ Rmaxi∈N mi+1, the value

φHR,w, is defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+,

φHR,w
ij (m, v) = ∑

s∈M
si=j

[
∑

T⊆LHR
i (s)

(−1)|T|
wj

∑k∈N wsk + ∑h∈T wsh

][
v(s + ei)− v(s)

]
.

(2.41)

Remark 3. It should be noted that the weights (wj)
maxi∈N mi
j=1 ∈ Rmaxi∈N mi−1 are inde-

pendent of the agents. When considering a multi-choice game in which each agent
i ∈ N has a maximal activity level mi = 1, the value coincides with the Shapley
value (see Section 2.1.2, definition (2.12)). This constitutes a main departure from
the idea of the weighted Shapley values introduced by Shapley [1953] and studied
in Kalai and Samet [1987].

The last extension of the Shapley value that I present is proposed by Derks and
Peters [1993] and further studied by Klijn et al. [1999]. This value strongly relies on
the linearly ordered sets of activity levels. Consider any agent and one of its activity
level j ∈ Mi. Derks and Peters [1993] argue that this agent need to pass each lower
activity level in order to reach its level j. Based on this interpretation, the value φDP

shares the dividend of each coalition among the agent’s activity levels that have lead
to this coalition.

Formally, the value φDP is defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, φDP
ij (m, v) = ∑

s≤m
si≥j

∆s(v)
∑i∈N si

. (2.42)

A second expression of the value φDP relies on an alternative definition of the marginal
vectors in multi-choice games. Consider any multi-choice game (m, v) ∈ G. An or-
der on M+ is a bijection π : M+ → {1, . . . , ∑i∈N mi}. Let O be the set of all orders
on M+. Denote by Sπ,k := π−1({1, . . . , k}) ⊆ M+ the subset of pairs present after k
steps according to π. Moreover, define the map ρ that assigns to each subset S ⊆ M+

the maximal feasible coalition ρ(S) = (t1, . . . , tn) where

ti =

{
max{k ∈ M+

i : (i, 1), . . . , (i, k)} if (i, 1) ∈ S,
0 otherwise.

The value φDP is defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, φDP
ij =

1
(∑i∈N mi)!

∑
π∈O

v(ρ(Sπ,π(i,j)))− v(ρ(Sπ,π(i,j)−1)). (2.43)

2.3.3 Axiomatic foundations of extensions of the Shapley value on G
In this section, I present several axioms for solutions on G. I discuss the relations
between these axioms and some axiomatic characterizations resulting from their
combinations. While some axioms can be seen as generalizing some axioms from
TU-games to multi-choice games, others do not have their counterpart in TU-games.
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General properties

A value f on G satisfies:
Carrier if, for each (m, v) ∈ G and each t ∈ M carrier, i.e., for each s ∈ M: v(t) =
v(s ∧ t),

∑
i∈S(t)

ti

∑
j=1

fij(m, v) = v(t).

Efficiency if, for each (m, v) ∈ G,

∑
i∈N

mi

∑
j=1

fij(m, v) = v(m).

Additivity if, for each (m, v), (m, w) ∈ G,

f (m, v + w) = f (m, v) + f (m, w).

Linearity if, for each (m, v), (m, w) ∈ G and each α ∈ R,

f (m, αv + w) = α f (m, v) + f (m, w).

The null game axiom if, for each (m, v0) ∈ G,

∀(i, j) ∈ M+, fij(m, v0) = 0.

The five above axioms are straightforward generalizations of the same named ax-
ioms from TU-games to multi-choice games (see Section 2.1.3). Observe that Effi-
ciency relies on the specific definition of a payoff vector in multi-choice games. In
this sense, the worth of the grand coalition, v(m), is fully allocated among all the
agents’ activity levels. Obviously, Carrier implies Efficiency.

Equal treatment principles

The next axioms are related to the basic equal treatment principle. First, I present an
axiom that considers the subset of multi-choice games in which each agent has the
same maximal activity level, i.e., on G. The other axioms presented consider the set
of all multi-choice games.

Given a multi-choice game (m, v) ∈ G, an order on the agent set σ ∈ ON , and
a mutli-choice coalition s ∈ M define σs ∈ M as: σsσ(i) = si for each i ∈ N, and
σv(σs) = v(s) for each s ∈ M. A value f on G satisfies:
Anonymity if, for each (m, v) ∈ G and each σ ∈ ON ,

∀i ∈ N, fij(m, σv) = fσ(i)j(m, v).

Hierarchical strength if, for each (m, βus) ∈ G multiple of a minimal effort game, with
β ∈ R,

∀(i, j), (i′, j′) ∈ M+, hvN
ij (s) fij(m, βus) = hvN

i′ j′ (s) fi′ j′(m, βus).

Weight axiom if, for a given weight system (wj)
maxi∈N
j=1 ∈ Rmaxi∈N mi , for each (m, βus) ∈

G multiple of a minimal effort game, with β ∈ R,

wsi′ fij(m, βus) = wsi fi′ j′(m, βus).
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Given a multi-choice game (m, v) ∈ G, a coalition t ∈ M is called a veto coalition if,
v(s) = v(t) for each s ≥ t, and v(s) = 0 otherwise. A value f on G satisfies:
Hierarchical symmetry if, for each (m, v) ∈ G, each veto coalition t ∈ M, and each
two distinct pairs (i, ti), (i′, ti′) ∈ M+,

∑
s≥t

si′=ti′

hvN
i′ti′

(s) fiti(m, v) = ∑
s≥t

si=ti

hvN
iti

(s) fi′ti′
(m, v).

The necessary pair axiom if, for each (m, v) ∈ G and each two distinct necessary pairs
(i, j), (i′, j′) ∈ M+,

fij(m, v) = fi′ j′(m, v).

Consider i ∈ N, and two of its activity levels j, j′ ∈ M+
i . The pairs (i, j)(i, j′) are

called level symmetric if, for each s, s′ ∈ M such that si = j− 1, s′i = j′ − 1, sk = s′k for
k 6= i,

v(s + ei)− v(s) = v(s′ + ei)− v(s′).

A value f on G satisfies:
Level symmetry if, for each (m, v) ∈ G, for each i ∈ N and j, j′ ∈ M+

i such that
(i, j), (i, j′) are level symmetric,

fij(m, v) = fij′(m, v).

Anonymity, introduced by Peters and Zank [2005], generalizes the same named ax-
iom from TU-games to multi-choice games. It states that a solution should be invari-
ant to the agent’s renaming. However, such renaming would make sense only if all
the agents have the same maximal activity level, i.e., one have to restrict the domain
to G. Hierarchical strength, introduced by van den Nouweland [1993], asserts that a
pair’s payoff depends only on its hierarchical strength in minimal games. Whenever
two pairs have the same hierarchical strength they should obtain the same payoff.
This idea can be found in the same named axiom introduced by Faigle and Kern
[1992] in the context of TU games with hierarchical constraints. The weight axiom,
introduced by Hsiao and Raghavan [1993] relies on a close idea. In this case, the
payoff of the pairs depend on the exogenous weight system w. The necessary pair
axiom, introduced by Klijn et al. [1999], requires that two necessary pairs have the
same payoff. If one considers a minimal game (m, us) ∈ G, any pair (i, j) ∈ M+ such
that j ≤ si is a necessary pair. The necessary pair axiom implies that each necessary
pair that leads to the coalition s are treated equally. Level symmetry, introduced by
Peters and Zank [2005], compares two pairs featuring the same agent. It requires
that two activity levels of an agent that have the same impact on the coalitions, i.e.,
the same marginal contributions, should have the same payoff.

Fairness principles related to null contributions

Next, I present three axioms related to fairness requirements. Each axiom relies on
the individual performance of an agent at a certain activity level. Specifically, two
axioms are concerned with level null pairs, and null pairs. A value f on G satisfies:
Minimal effort axiom if, for each (m, v) ∈ G, each t ∈ M such that v(s) = 0 for each
s 6≥ t,

∀(i, j) ∈ M+ : j < ti, fij(m, v) = 0.



2.3. Multi-choice games 43

Zero contributions if, for each (m, v) ∈ G, each level null pair (i, j) ∈ M+,

fij(m, v) = 0.

The null pair axiom if, for each (m, v) ∈ G, each null pair (i, j) ∈ M+,

fij(m, v) = 0.

The minimal effort axiom, introduced by Hsiao and Raghavan [1993], considers
multi-choice games that require a minimal exertion from agents to generate some
worth. Then, an agent that does not meet this required activity level should receive a
null payoff. Zero contributions, introduced by Peters and Zank [2005], requires that
an agent which does not contribute at a certain activity level receives a null payoff for
this level. Thus, a pair does not benefit from more than its marginal contributions.
The null pair axiom, introduced by Klijn et al. [1999], weakens Zero contributions by
strengthening its hypothesis. Let (i, j) ∈ M+ be a pair. Instead of considering only
the performance of agent i’s activity level j, it considers the performance of each of
its activity levels above j. Therefore, such condition leaves room for an agent’s ac-
tivity level to benefit from the contributions of that agent’s higher activity levels. It
should be noted that the combination of Efficiency and the null pair axiom implies
Carrier.

Monotonicity principle

Next, I present two axioms that rely on the marginal contributions of an agent’s
activity level. A value f on G satisfies:
Strong monotonicity if, for each (m, v), (m, w) ∈ G and each (i, j) ∈ M+ such that for
each s ∈ M where si = j− 1: v(s + ei)− v(s) ≥ w(s + ei)− w(s),

fij(m, v) ≥ fij(m, w).

Marginality if for each (m, v), (m, w) ∈ G and each (i, j) ∈ M+ such that for each
s ∈ M where si = j− 1: v(s + ei)− v(s) = w(s + ei)− w(s),

fij(m, v) = fij(m, w).

Strong monotonicity, introduced by van den Nouweland [1993], generalizes the same
named axiom from TU-game to multi-choice games. Obviously, Strong monotonic-
ity implies Marginality, introduced by Peters and Zank [2005]. It can be shown that
the combination of Efficiency and Marginality implies Zero contributions.

Fairness and balanced contribution principles

The principle of balanced contributions has been extensively studied in the multi-
choice games literature. Because an agent has several activity levels, it can influence
the payoff of another agent from different viewpoints, which gives rise to several
axioms that are briefly discussed below. A value f on G satisfies:
Upper balanced contributions if, for each (m, v) ∈ G, and each distinct pairs (i, mi), (i′, mi′) ∈
M+,

fimi(m, v)− fimi(m− ei′ , v) = fi′mi′
(m, v)− fi′mi′

(m− ei, v).
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Lower balanced contributions if, for each (m, v) ∈ G, and each distinct pairs (i, 1), (i′, 1) ∈
M+,

fi1(m, v)− fi1(m−mi′ei′ , v) = fi′1(m, v)− fi′1(m−miei, v).

General balanced contributions if, for each (m, v) ∈ G and each distinct pairs (i, j), (i′, j′) ∈
M+,

fij(m, v)− fij(m− (mi′ − j′ + 1)ei′ , v) = fi′ j′(m, v)− fi′ j′(m− (mi − j + 1)ei, v).

Equal loss axiom if, for each (m, v) ∈ G, each agent i ∈ N,

∀j < mi, fij(m, v)− fij(m− ei, v) = fimi(m, v).

Recall that the balanced contributions principle states that any two agents should
have the same claim on each other payoff. Although each above axioms relies on this
principle, each one considers a different claim. Upper balanced contributions states
that two agents should have the same claim on each other at their maximum activ-
ity level. Lower balanced contributions consider the impact of an agent’s maximal
activity level on the payoff of another agent’s first activity level. General balanced
contributions weakens this requirement by considering an equal claim for any ac-
tivity level, say j, on another agent’s activity level, j′. Such claim is measured when
one removes all activity levels above j. Equal loss axiom focuses on a given agent. It
implies that the presence of the maximal activity level of agent influences its lower
activity level’s payoff in the same manner. Obviously, General balanced contribu-
tions implies Upper balanced contributions and Lower balanced contributions.

Independence principle

A value f on G satisfies:
Independence of the maximal activity level if, for each (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) = fij(m− ei, v).

This axiom, introduced independently by Hwang and Liao [2009] and Béal et al.
[2012], implies that the variation of an agent’s maximal activity level should have no
impact on the payoff of its remaining activity levels.

Based on the above axioms, I present some characterization results that can be
found in the literature on multi-choice games. The first axiomatic characterization is
due to van den Nouweland [1993].

Theorem 2.3.3 (van den Nouweland [1993]). A value f on G satisfies Carrier, Additiv-
ity, and Hierarchical strength if and only if f = φvN .

Recently, Tang et al. [2019] provide a second characterization of φvN by replacing
Carrier by Efficiency and the null pair axiom, and by replacing Hierarchical strength
by Hierarchical symmetry.

Theorem 2.3.4 (Tang et al. [2019]). A value f on G satisfies Efficiency, Additivity, the
null pair axiom and Hierarchical symmetry if and only if f = φvN .

Peters and Zank [2005] provides an axiomatic characterization of the value φPZ

mainly inspired by the characterization of the Shapley value for TU-games proposed
by Shapley [1953] and Shubik [1962]. However, this characterization holds on the
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subset of multi-choice games in which each agent has the same maximal activity
level.

Theorem 2.3.5 (Peters and Zank [2005]). A value f on G satisfies Efficiency, Additivity,
Anonymity, Zero contributions, and Level symmetry if and only if f = φPZ.

By replacing Additivity and Zero contributions by Marginality, Peters and Zank
[2005] propose a second characterization of the value φPZ.13

Theorem 2.3.6 (Peters and Zank [2005]). A value f on G satisfies Efficiency, Marginal-
ity, Anonymity, and Level symmetry if and only if f = φPZ.

Similarly, Hsiao and Raghavan [1993] propose a characterization of the value
φHR that relies on Additivity and Carrier. As above, this characterization holds on
the subset of multi-choice games in which each agent has the same maximal activity
level.

Theorem 2.3.7 (Hsiao and Raghavan [1993]). Let m ≤ (K, . . . , K) be a vector of maxi-
mal activity levels and (wj)

maxi∈N mi
j=1 ∈ Rmaxi∈N mi+1 be a given weight system on the activity

levels and w0 = 0. A value f on G satisfies Carrier, Additivity, the minimal effort axiom
and the weight axiom if and only if f = φHR,w.

Klijn et al. [1999] characterize the extension of the Shapley value introduced in
Derks and Peters [1993]. They consider two approaches: the first one relies on Ad-
ditivity and the null pair axiom, the second one relies on the Balanced contributions
principle.

Theorem 2.3.8 (Klijn et al. [1999]). A value f on G satisfies Efficiency, Additivity, the
null pair axiom and the necessary pair axiom if and only if f = φDP.

Theorem 2.3.9 (Klijn et al. [1999]). A value f on G satisfies Efficiency, the Equal loss
axiom and Upper balanced contributions if and only if f = φDP.

Theorem 2.3.10 (Klijn et al. [1999]). A value f on G satisfies Efficiency, the Equal loss
axiom and Lower balanced contributions if and only if f = φDP.

The last axiomatic characterization holds only on the subset of multi-choice games
such that for each s ∈ M with v(s) 6= 0, |S(s)| ≥ 2. Denote by G∗ this subset of
multi-choice games.

Theorem 2.3.11 (Klijn et al. [1999]). A value f on G∗ satisfies Efficiency, the null game
property and General balanced contributions if and only if f = φDP.

Based on the above characterization results, one can observe that the main dif-
ference between different extensions of the Shapley values in multi-choice games
lies in the equity axiom they satisfy. Below, I summarize the axiomatic comparison
between the different extensions of the Shapley values.

13Observe that such characterization may be generalized on G by replacing Anonymity by an appro-
priate axiom.
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Axioms φvN φPZ φHR φDP

Carrier X X X X
Efficiency X X X X
Additivity X X X X
Linearity X X X X

The null game axiom X X X X
Anonymity (on G) X X X X

Hierarchical strength X ◦ ◦ ◦
Weight axiom ◦ ◦ X ◦

Hierarchical symmetry X ◦ ◦ ◦
The necessary pair axiom ◦ ◦ ◦ X

Level symmetry ◦ X ◦ ◦
Minimal effort X X X ◦

Zero contribution X X X ◦
the null pair axiom X X X X

Strong monotonicity X X X ◦
Upper balanced contributions ◦ X ◦ X
Lower balanced contributions ◦ ◦ X

General balanced contributions ◦ ◦ ◦ X
Equal loss axiom ◦ ◦ ◦ X

Independence of the maximal activity level ◦ X X ◦
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Chapter 3

Marginalism, Egalitarianism and
Efficiency in Multi-Choice Games

3.1 Introduction

One of the main issues in economic allocation problems is the trade-off between
marginalism and egalitarianism. Marginalism supports allocations based on an agent’s
individual performances, while egalitarianism is in favor of an equal allocation at
the expense of the differences between the agents’ performances. In the context of
TU-games, this trade-off can be seen as a compromise between the Shapley value
and the Equal division value since the two values are often seen as the embodiment
of marginalism and egalitarianism, respectively (see Chapter 2, Section 2.1.2).

This chapter aims to investigate the trade-off between marginalism and egali-
tarianism in the context of multi-choice games. To capture marginalism, one can
think of the several values that extend the Shapley value from TU-games to multi-
choice games (see Chapter 2, Section 2.3.2). In contrast, the Equal division value
did not receive the same attention. To our knowledge, the only single-valued so-
lution extending the Equal division value from TU-games to multi-choice games is
the multi-choice constrained egalitarian solution introduced by Branzei et al. [2014].
In addition, we study a specific efficiency condition defining the Core à la Grabisch
and Xie [2007] (see Chapter 2, (2.29)). Precisely, we focus on a necessary condition
for a payoff vector to be in the Core called Multi-efficiency. This condition extends
Efficiency from TU-games to multi-choice games by considering each synchronized
coalition (see Chapter 2, Section 2.3.2). It requires that the worth of each synchro-
nized coalition is fully allocated among the agents’ activity levels needed to reach
this coalition. A solution on multi-choice games satisfies the Multi-Efficiency axiom
if it assigns a multi-efficient payoff vector to each game in this class. It appears that
Multi-Efficiency can be obtained by combining two axioms for solutions on the class
of all multi-choice games: Efficiency and Independence of higher activity levels. On
the one hand, Efficiency is a classical axiom weaker than Multi-Efficiency (see Chap-
ter 2, Section 2.3.3). On the other hand, Independence of higher activity levels is a
new axiom. It ensures that the payoff distributed to an agent’s activity level is inde-
pendent of any higher activity levels. In particular, this axiom protects agents with
low activity levels from being influenced by agents with high activity levels. Axioms
similar to Independence of higher activity levels already exist in the economic liter-
ature. The serial cost sharing method for discrete cost sharing problems introduced
by Moulin and Shenker [1992] satisfies a similar axiom if we interpret activity levels
as demands. Recently, Albizuri et al. [2020] study solutions for bargaining problems
that satisfy a similar axiom if we interpret activity levels as claims. We show that if
a value satisfies Independence of higher activity levels and Efficiency, then it satis-
fies Multi-Efficiency (Proposition 3.4.1). Therefore, Multi-Efficiency can be seen as a
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desirable axiom since: it is implied by two desirable axioms; and from a technical
point of view, it is a necessary condition to be in the Core.

Among all the single-valued solutions introduced in the literature, none of them
satisfies Multi-Efficiency. For this reason, we propose several solution concepts for
multi-choice games satisfying this axiom. This allows us to discuss the trade-off
between marginalism and egalitarianism by means of a compromise between multi-
efficient solutions.

We introduce a multi-efficient extension of the Shapley value, which we call the
multi-choice Shapley value. This value is computed by means of restricted orders
(see Chapter 2, Section 2.3.2). It assigns to each agent’s activity level its expected
marginal contribution (see (2.33)) assuming that each restricted order occurs with
equal probability. This value is the centroid of the Weber set (see (2.34)) and there-
fore belongs to the Core of super-modular multi-choice games. As an additional
remark, we show that the multi-choice Shapley value is closely related to the dis-
crete serial cost sharing method for discrete cost sharing problems introduced by
Moulin and Shenker [1992].

Next, we introduce the multi-choice Equal division value. This value divides the
variation in worth between two consecutive synchronized coalitions (e.g. the j-
synchronized and the (j+ 1)-synchronized coalitions) equally among the agents able
to play the required activity levels. Whenever there are only two activity levels (0
and 1), this value coincides with the Equal Division value for TU-games.

Then, we address the trade-off between marginalism and egalitarianism by com-
promising between the multi-choice Shapley value and the multi-choice Equal di-
vision value. To that end, we introduce the multi-choice Egalitarian Shapley values
for multi-choice games. This family of values is composed of convex combinations
of the multi-choice Shapley value and the multi-choice Equal division value. Ob-
viously, the multi-choice Egalitarian Shapley values are multi-efficient. Since we
consider multi-choice games, we can define a specific convex combination at each
activity level. This allows for different types of compromise, depending on the ac-
tivity level. To our knowledge, this work is the first to address this trade-off in the
context of multi-choice games.

We provide several axiomatic characterizations of these new multi-efficient so-
lution concepts. To that end, we invoke classical axioms as well as new axioms for
multi-choice games. Among the new axioms, we introduce Sign symmetry for equal
pairs, which is an extension of Sign symmetry for equal agents originally introduced
by Casajus [2018] for TU-games. Additionally, we propose Equal treatment for equal
pairs, which strengthens Sign symmetry for equal pairs. Furthermore, we introduce
Weak monotonicity. This axiom relaxes the axiom of Strong monotonicity for multi-
choice games originally introduced by Klijn et al. [1999]), but also boils down to the
axiom of Weak monotonicity as introduced by van den Brink et al. [2013] for TU-
games. Combining classical and new axioms for multi-choice games, we provide
two characterizations of the multi-choice Shapley value, one that relies on a classical
Additivity axiom for multi-choice games (Theorem 3.4.1) and another one that does
not (Theorem 3.4.2). Furthermore, we show that the multi-choice Shapley value can
be obtained by a dividends sharing process (Corollary 3.4.1). Next, we provide an
axiomatic characterization of the multi-choice Equal Division value (Theorem 3.4.3).
Finally, we provide an axiomatic characterization of the Egalitarian Shapley values
(Theorem 3.4.4).
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The remainder of the chapter is as follows. In Section 3.2 we introduce some ad-
ditional notations for multi-choice games. We introduce multi-efficient solution con-
cepts in Section 3.3. Subsection 3.3.2 introduces the multi-choice Shapley value, Sub-
section 3.3.3 the multi-choice Equal division value and Subsection 3.3.4 the multi-
choice Egalitarian Shapley values. We provide the axiomatic characterizations in
Section 3.4. We make some additional remarks regarding the multi-choice Shapley
value in Section 3.5. Finally, Section 3.6 concludes the chapter.

3.2 Notation

Let N = {1, . . . , n} be a fixed set of agents and K ∈N. We consider G the class of all
multi-choice games on N. Denote by Q(j) ⊆ N the set of agents able to play activity
level j. Formally, it is defined as

∀j ≤ K, Q(j) =
{

i ∈ N : mi ≥ j
}

.

Without loss of generality, we assume that Q(1) = N. We introduce the set of top
pairs, T(s), containing agents playing the highest activity levels in a coalition s ∈ M.
Formally, the set of top pairs is defined as

∀s ∈ M, T(s) =
{
(i, si) ∈ M+ : si ≥ sk, ∀k ∈ N

}
. (3.1)

Finally, for each s ∈ M, denote by sT the highest activity level played in s, i.e.,
sT = maxi∈N si.

Remark 4. For t ∈ M, t 6= 0, we formulate two distinct remarks regarding minimal
effort games (see (2.19)). Take any (m, ut) ∈ G. Each pair (i, j) ∈ M+, such that
j > ti, is a null pair in (m, ut). Let (i, j), (i′, j) ∈ M+ be two distinct pairs such that
j ≤ ti and j ≤ ti′ . Both pairs are equal (see (2.23)) in (m, ut).

Remark 5. For t ∈ M, t 6= 0, we formulate two distinct remarks regarding Dirac
games (see (2.17)). Take any (m, δt) ∈ G. Each pair (i, j) ∈ M+, such that j > ti + 1,
is a null pair in (m, δt). If there exists two distinct agents i, i′ ∈ N such that ti = ti′ ,
then (i, ti) and (i′, ti′) are equal (see (2.23)) in (m, δt).

3.3 Multi-efficient solution concepts

In this section, we discuss a necessary condition for a payoff vector to be in the Core
of multi-choice games à la Grabisch and Xie [2007], which we call Multi-Efficiency.
We propose new multi-efficient solution concepts for multi-choice games. We first
provide a new extension of the Shapley value (Shapley [1953]) from TU-games to
multi-choice games. Next, we provide new extensions of the Equal division value
and the Egalitarian Shapley values from TU-games to multi-choice games.

3.3.1 Multi-Efficiency

Among the several solutions introduced on the class of multi-choice games, the Core
à la Grabisch and Xie [2007] is of particular interest. Beyond embodying the appeal-
ing stability principle, it also considers a normalization that ensures the Core to be
unbounded. This normalization constitutes the main departure with the other ex-
tensions of the core in multi-choice games. It can be seen as requiring the efficiency
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condition at each activity level. Let (m, v) ∈ G be a multi-choice game. Recall that
the Core (see Chapter 2, Section 2.3.2, definition (2.29)) is defined as the set of coali-
tionally rational payoff vectors satisfying

∀h ≤ max
i∈N

mi, ∑
i∈N

∑
j≤h

xij = v((h ∧mi)i∈N). (3.2)

Let us reformulate (3.2) as an axiom for solutions on G. A value f on G satisfies:
Multi-Efficiency (ME) if, for each (m, v) ∈ G,

∀h ≤ max
k∈N

mk, ∑
i∈N

h∧mi

∑
j=1

fij(m, v) = v((h ∧mi)i∈N). (3.3)

Remark 6. For each (m, v) ∈ G, one can reformulate (3.3) as

∀h ≤ max
k∈N

mk, ∑
i∈Q(h)

fih(m, v) = v((h ∧mk)k∈N)− v(((h− 1) ∧mk)k∈N). (3.4)

The sum of the payoffs of all pairs (i, h) containing activity level h is equal to the sur-
plus generated between the h-synchronized coalition and the (h− 1)-synchronized
coalition.

3.3.2 The multi-choice Shapley value

In this section, we define a multi-efficient value that extends the Shapley value from
TU-games to multi-choice games. This value belongs to the Core of super-modular
multi-choice games. Take any (m, v) ∈ G, and consider O the set of all restricted
orders over the set of pairs M+ (see Chapter 2, Section 2.3.2). Observe that, the
number of restricted orders over the set of pairs is given by

∏
j≤ max

k∈N
mk

|Q(j)|!

Based on the process defining the marginal vectors according to the restricted orders,
we introduce the multi-choice Shapley value. This value assigns to each pair (i, j) ∈
M+ its expected marginal contribution assuming that each restricted order over the
set of pairs occurs with equal probability.

Formally, the multi-choice Shapley value, ϕ, is defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, ϕij(m, v) =
1

∏j≤ max
k∈N

mk |Q(j)|! ∑
σ∈O

mσ
ij(m, v). (3.5)

Whenever m = (1, . . . , 1), this value coincides with the Shapley value on GTU .

Remark 7. Following Grabisch and Xie [2007], for each (m, v) ∈ G, the Weber set
W is the convex hull of all marginal vectors (see Chapter 2, Section 2.3.2, definition
(2.34)). The multi-choice Shapley value is the centroid of the Weber set. By Grabisch
and Xie [2007], the Weber set coincides with the Core on the class of super-modular
multi-choice games. Therefore, for each super-modular multi-choice game (m, v) ∈
G, it holds that ϕ(m, v) ∈ C(m, v).

Next results highlights that the multi-choice Shapley value admits an alterna-
tive expression that requires less restricted orders to be computed. For each j ≤



3.3. Multi-efficient solution concepts 51

maxk∈N mk, denote by M+,j = {(i, j) ∈ M+ : i ∈ Q(j)} the subset of pairs containing
the activity level j. We define orders over the set of pairs M+,j. An order over M+,j

is a bijection σj : M+,j → {1, . . . , |Q(j)|}. Denote by Oj the set of all orders over
M+,j. These orders can also be interpreted as orders over the set of agents in Q(j).
For each σj ∈ Oj and h ∈ {0, . . . , |Q(j)|}, define sσj,h as

∀i ∈ N, s
σj,h
i =


j if i ∈ Q(j) and σj(i, j) ≤ h,
j− 1 if i ∈ Q(j) and σj(i, j) > h,
mi if i /∈ Q(j).

(3.6)

Observe that sσj,|Q(j)| = (j ∧ mk)k∈N and sσj,0 = ((j − 1) ∧ mk)k∈N . The coalition
sσj,h ∈ M represents a situation in which each agent able to play at j and ordered
prior to step h, with respect to σj, participates at its activity level j, whereas each
agent able to play j but not ordered prior to step h, with respect to σj, participates at
its activity level j− 1. Agents unable to play j participate at their maximal activity
level.

Proposition 3.3.1. For each (m, v) ∈ G, the multi-choice Shapley value ϕ admits an
alternative expression given by

∀(i, j) ∈ M+, ϕij(m, v) =
1

|Q(j)|! ∑
σj∈Oj

[
v(sσj,σj(i,j))− v(sσj,σj(i,j)−1)

]
. (3.7)

Proof. We show that the multi-choice Shapley value admits an alternative expression
given by (3.7). Observe that there are |Ol | = |Q(l)|! ways to order the pairs in M+,l ,
for each l ≤ maxk∈N mk. Additionally, there are ∏l<j |Q(l)|! ways to order the pairs
in M+,1, then the pairs in M+,2, and so on, until the pairs in M+,l−1. Similarly, there
are ∏l>j |Q(l)|! ways to order the pairs in M+,j+1, then the pairs in M+,j+2, and so
on. Observe that, for each σ ∈ O, there exists exactly one order σj ∈ Oj such that
sσ,σ(i,j) = sσj,σj(i,j). Additionally, for each σj ∈ Oj, there are ∏l<j |Q(l)|!×∏l>j |Q(l)|!
orders σ ∈ O such that sσ,σ(i,j) = sσj,σj(i,j). It follows that, for each (m, v) ∈ G and
(i, j) ∈ M+,

ϕij(m, v) =
1

∏l≤ max
k∈N

mk |Q(l)|! ∑
σ∈O

[
v(sσ,σ(i,j))− v(sσ,σ(i,j)−1)

]

=
(∏l<j |Q(l)|!)(∏l>j |Q(l)|!)

∏l≤ max
k∈N

mk |Q(l)|! ∑
σj∈Oj

[
v(sσj,σj(i,j))− v(sσj,σj(i,j)−1)

]
.

The first line comes from the definition of the multi-choice Shapley value, the second
line follows from (3.6) and the fact that there are ∏l<j |Q(l)|! ×∏l>j |Q(l)|! orders
σ ∈ O such that sσ,σ(i,j) = sσj,σj(i,j), for each σj ∈ Oj. Since ∏l≤maxk∈N mk

|Q(l)|! =

∏l<j |Q(l)|!× |Q(j)|!×∏l>j |Q(l)|!, we obtain the desired result:

∀(i, j) ∈ M+, ϕij(m, v) =
1

|Q(j)|! ∑
σj∈Oj

[
v(sσj,σj(i,j))− v(sσj,σj(i,j)−1)

]
.

�

In the sequel, we will retain expression (3.7) of the multi-choice Shapley value.
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Example 1. To illustrate the multi-choice Shapley value, consider the following ap-
plication borrowed from van den Nouweland et al. [1995]. Consider a large firm
with several departments, where the firm’s revenue depends on the performance of
the departments. Let N = {1, 2} be the finite and fixed set of departments. Each
i ∈ N has a finite set of activity levels, which can be interpreted as workdays. For
the sake of simplicity, assume that each department can work at most 2 days, i.e.,
mi = 2 for each i ∈ N. A characteristic function v describes the revenue generated
when each department works during a certain number of days. Such characteristic
function is given by

s (1, 0) (2, 0) (0, 1) (0, 2) (1, 1) (2, 1) (1, 2) (2, 2)
v(s) 3 5 3 3 4 5 4 5

Clearly, the couple (m, v) forms a multi-choice game. Assuming that both depart-
ments work during 2 days, the firm’s revenue is given by v(2, 2) = 5. The problem
is then to divide this revenue among each workday of each department. The payoff
obtained by a department for a given workday can be interpreted as its budget for
this specific day. The multi-choice Shapley value applied to (m, v) is given by

ϕ11(m, v) = 2, ϕ21(m, v) = 2, ϕ12(m, v) = 1, ϕ22(m, v) = 0.

Observe that both departments are equally productive for their first workday, so
the pairs (1, 1) and (2, 1) are equal in (m, v). It appears that, the multi-choice Shap-
ley value allocates an equal budget to both departments for their first workday, i.e.,
ϕ11(m, v) = ϕ21(m, v). Department 2 does not produce anything during its second
workday, so the pair (2, 2) is a null pair in (m, v). It turns out that the multi-choice
Shapley value allocates it a null budget for this workday, i.e., ϕ22(m, v) = 0. All in
all, the multi-choice Shapley value leads to a budget allocation based on the indi-
vidual performances of the departments. Finally, the total budget allocated to the
two departments for a given workday is equal to the revenue generated coopera-
tively on this workday, e.g., ϕ11(m, v) + ϕ21(m, v) = v(1, 1). This comes from the
multi-efficiency of the multi-choice Shapley value.

3.3.3 The multi-choice Equal division value

In this section, we propose a new multi-efficient value that extends the Equal divi-
sion value from TU-games to multi-choice games. This value is referred to as the
multi-choice Equal division value. This value shares the surplus generated between
two consecutive synchronized coalitions (3.4) equally among the pairs containing
the activity level on which the agents in the larger of the two coalitions are synchro-
nized.

Formally, the multi-choice Equal division value, ξ, is defined as: for each (m, v) ∈
G,

∀(i, j) ∈ M+, ξij(m, v) =
1

|Q(j)|

[
v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N))

]
. (3.8)

Whenever m = (1, . . . , 1), the multi-choice Equal division value boils down to the
Equal division value on TU-games.
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Example 2. Consider again the revenue distribution problem introduced in Exam-
ple 1. The multi-choice Equal division value applied to (m, v) is given by

ξ11(m, v) = 2, ξ21(m, v) = 2, ξ12(m, v) = 0.5, ξ22(m, v) = 0.5.

Department 2 receives a budget of ξ22(m, v) = 0.5 for its second workday, which is
higher than ϕ22(m, v) = 0. This increase is at the expense of the budget allocated to
department 1 for its second work day since ξ12(m, v) = 0.5, while ϕ12(m, v) = 1. To
put it simply, the multi-choice Equal division value is in favor of an egalitarian allo-
cation of the budget per workday. The budget of a department for a given workday
depends on the overall performance of the firm to date, rather than on the individual
performance of that department.

3.3.4 The multi-choice Egalitarian-Shapley values

In this section, we propose a trade-off between marginalism and egalitarianism by
considering convex combinations of the multi-choice Shapley value and the multi-
choice Equal division value.

Let α = {αj}1≤j≤K be a parameter system such that αj ∈ [0, 1] for each 1 ≤ j ≤ K.
For each (m, v) ∈ G, a multi-choice Egalitarian Shapley value, χα, is defined as

∀(i, j) ∈ M+, χα
ij(m, v) = αj ϕij(m, v) + (1− αj)ξij(m, v). (3.9)

Whenever m = (1, . . . , 1), these values boil down to the Egalitarian Shapley values
on TU-games. We illustrate the possibilities offered by multiple convex combina-
tions with an example.

Example 3. In the context of revenue distribution problems (Example 1), a multi-
choice Egalitarian Shapley value proposes a compromise between a budget alloca-
tion based on individual performances and an egalitarian allocation of the budget.
Moreover, such value allows for different types of compromises depending on the
workday one considers. For instance, take a parameter system α such that α1 = 0.1
and α2 = 0.9. In this case, the multi-choice Egalitarian Shapley value χα proposes a
budget allocation closer to the multi-choice Equal division value for the first work-
day of the departments. Then, the budget allocated to the departments for their sec-
ond workday becomes closer to the multi-choice Shapley value. A firm may have
an interest in choosing such parameter system α if it wants to favor an egalitarian
allocation of the budget on the first workday, but also wants to encourage individual
performance on the second workday.

3.4 Axiomatic characterizations

In this section, we discuss new axioms for multi-choice games. We also provide
axiomatic characterizations of each solution introduced in Section 3.3.

3.4.1 Characterizations of the multi-choice Shapley value

We provide two axiomatic characterizations of the multi-choice Shapley value. The
first characterization relies on a Linearity axiom, whereas the second does not. We
also provide an expression of the multi-choice Shapley value in terms of dividends.

First, we introduce an axiom based on the independence principle. This axiom
requires that if the maximal activity level of each agent reduces to a certain level,



54 Chapter 3. Marginalism, Egalitarianism and Efficiency in Multi-Choice Games

then the payoff of each agent for this activity level remains unchanged. In the context
of Example 1, this axiom guarantees that the budget of a department for a given
workday does not depend on future workdays. A value f on G satisfies:

Independence of higher activity levels (IH) if ,for each (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) = fij((j ∧mk)k∈N , v).

It turns out that the combination of Independence of higher activity levels and
Efficiency (see Chapter 2 Section2.3.3) implies Multi-Efficiency.

Proposition 3.4.1. If a value f on G satisfies Efficiency and Independence of higher activity
levels, then it satisfies Multi-Efficiency.

Proof. Let (m, v) ∈ G, h ≤ maxk∈N mk and f a value satisfying Efficiency and In-
dependence of higher activity levels. Consider the sub-game ((h ∧ mk)k∈N , v). By
Efficiency, it holds that

∑
i∈N

h∧mi

∑
j=1

fij((h ∧mk)k∈N , v) = v((h ∧mk)k∈N). (3.10)

By Independence of higher activity levels, it holds that

∑
i∈N

h∧mi

∑
j=1

fij((h ∧mk)k∈N , v) = ∑
i∈N

h∧mi

∑
j=1

fij(m, v). (3.11)

Combining (3.10) with (3.11), we obtain the desired result. �

Remark 8. The converse of Proposition 3.4.1 is not true. Indeed, consider the value
d defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+,

dij(m, v) =


v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N)

|{h ∈ N : mh ≥ mk, ∀k ∈ N}| if mi ≥ mk, ∀k ∈ N,

0 otherwise.

The value d satisfies Multi-Efficiency, but does not verify Independence of higher
activity levels. To see this, consider N = {1, 2, 3} and (m, v) ∈ G such that m =
(3, 2, 3). Observe that d1,1((2, 2, 2), v) = 1

3 v(1, 1, 1) 6= d1,1(m, v) which shows that d
violates Independence of higher activity levels.

The next two axioms compare the payoffs of equal pairs (see Chapter 2, Section
2.3.1, definition (2.23)). First, we introduce the Equal treatment for equal pairs axiom,
which states that two equal pairs should receive the same payoff. In the context of
Example 1, two equal pairs may represent two departments in a firm that are equally
productive on a given workday. Equal treatment for equal pairs ensures that these
departments receive the same budget allocation for such a workday. We also suggest
a relaxation of Equal treatment for equal pairs into Sign symmetry for equal pairs.
This axiom states that two equal pairs should receive a payoff of the same sign. As a
generalization of the Sign symmetry for equal agents axiom introduced by Casajus
[2018] (see Chapter 2, Section 2.1.3). A value f on G satisfies:
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Equal treatment for equal pairs (ET) if, for each (m, v) ∈ G and two distinct equal pairs
(i, j)(i′, j) ∈ M+,

fij(m, v) = fi′ j(m, v).

Whenever m = (1, . . . , 1), Equal treatment for equal pairs conforms to the classical
axiom of Equal Treatment of Equal agents for TU-games.

Sign symmetry for equal pairs (SS) if, for each (m, v) ∈ G and two distinct equal pairs
(i, j), (i′, j) ∈ M+,

sign( fij(m, v)) = sign( fi′ j(m, v)).

Whenever m = (1, . . . , 1), Sign symmetry for equal pairs conforms to the Sign
symmetry of equal agents axiom originally introduced by Casajus [2018].

As our first main result, we obtain the following axiomatic characterization of
the multi-choice Shapley value that relies on Linearity and the null pair property
(see Chapter 2, Section 2.3.3).

Theorem 3.4.1. A value f on G satisfies Efficiency, Independence of higher activity levels,
Linearity, Sign symmetry for equal pairs and the null pair axiom if and only if f = ϕ.

Proof. The proof is divided in two steps.

Step 1: We show that ϕ satisfies all the axioms of the statement of Theorem 3.4.1. For
each (m, v) ∈ G, it holds that

∑
i∈N

∑
j∈M+

i

ϕij(m, v) = ∑
j≤ max

k∈N
mk

∑
i∈Q(j)

ϕij(m, v)

(3.7)
= ∑

j≤ max
k∈N

mk

1
|Q(j)|! ∑

σj∈Oj

∑
i∈Q(j)

[
v(sσj,σj(i,j))− v(sσj,σj(i,j)−1)

]
.

Observe that, for each σj ∈ Oj,

∑
i∈Q(j)

[
v(sσj,σj(i,j))− v(sσj,σj(i,j)−1)

]
= v(sσj,|Q(j)|)− v(sσj,0).

By (3.6), for each σj ∈ Oj, it holds that

sσj,|Q(j)| = (j ∧mk)k∈N , and sσj,0 = ((j− 1) ∧mk)k∈N .

It follows that

∑
i∈N

∑
j∈M+

i

ϕij(m, v) = ∑
j≤ max

k∈N
mk

1
|Q(j)|! ∑

σj∈Oj

[
v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N)

]
.

(3.12)

Since the quantity v((j ∧ mk)k∈N) − v(((j − 1) ∧ mk)k∈N) is independent from any
order σj ∈ Oj, it follows that it is summed as many times in (3.12) as there are orders
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in Oj. Therefore, it holds that

∑
i∈N

∑
j∈M+

i

ϕij(m, v) = ∑
j≤ max

k∈N
mk

1
|Q(j)|! Q(j)!

[
v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N

]

= ∑
j≤ max

k∈N
mk

[
v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N)

]
= v(m),

which shows that the value satisfies Efficiency. By the definition of the multi-choice
Shapley value (see (3.7)), the payoff of a pair is independent of any activity level
different from the activity level contained in this pair. Therefore, we have that ϕ
satisfies Independence of higher activity levels. Linearity follows directly from (3.7).
By the definition of equal pairs (see Chapter 2, Section 2.3.1, definition (2.23)), ϕ sat-
isfies Equal treatment for equal pairs, which implies that ϕ satisfies Sign symmetry
for equal pairs. By the definition of null pairs (see Chapter 2, Section 2.3.1, definition
(2.25)), we have that ϕ satisfies the null pair axiom. This concludes Step 1.

Step 2: To complete the proof, it remains to show that there is at most one value
satisfying all the axioms of the statement of Theorem 3.4.1. Take any f satisfying
all the axioms of the statement of Theorem 3.4.1. Consider any (m, v) ∈ G. We
know that each multi-choice game admits a unique linear decomposition in terms
of minimal effort games {us}s∈M (see Chapter 2, Section 2.3.1, definition (2.19)).
Consider s ∈ M such that s 6= 0. The set of top pairs T(s) (see the definition (3.1))
can be re-written as

T(s) = {(i, sT) ∈ M+,sT
: si = sT},

where sT = maxi∈N si. Let us show that f (m, us) is uniquely determined. We divide
this Step into several sub-steps.
Step 2.1. Let us show that, for each (i, j) ∈ M+ such that j 6= sT, fij(m, us) is uniquely
determined.
Step 2.1.1. If j < sT, then (j ∧mk)k∈N � s. It follows that ((j ∧mk)k∈N , us) is the null
game since us(t) = 0 for each t ≤ (j ∧ mk)k∈N . Recall that each pair is a null pair
in the null game. Combining these observations with the null pair axiom, for each
(i, j) ∈ M+ such that j < sT, we obtain

fij(m, us)
(IH)
= fij((j ∧mk)k∈N , us)

(N)
= 0.

Step 2.1.2. If j > sT then, by Remark 4, (i, j) is a null pair in (m, us). By the null pair
axiom, for each (i, j) ∈ M+ such that j > sT, it holds that

fij(m, us)
(N)
= 0.

We have shown that fij(m, us) = 0, and so is uniquely determined for each (i, j) ∈
M+ such that j 6= sT.
Step 2.2. Now, we show that, for each pair (i, j) ∈ M+ such that j = sT i.e. each pair
(i, sT) ∈ M+,sT

, fisT (m, us) is uniquely determined. To that end, consider the game
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(m, w) ∈ G defined as

∀t ≤ m, w(t) = us(t)− ∑
(i,sT)∈T(s)

ϕisT (m, us)u(0−i ,sT)(t). (3.13)

Step 2.2.1. We show that
∑

(i,sT)∈M+,sT

fisT (m, w) = 0.

We consider pairs in M+,sT
. By definition of M+,sT

, observe that

∑
i∈Q(sT)

fisT (m, w) = ∑
(i,sT)∈M+,sT

fisT (m, w).

We have that any pair (i, sT) ∈ M+,sT
is either in T(s) or not. Since f satisfies Effi-

ciency and Independence of higher activity levels, by Proposition 3.4.1, f also satis-
fies Multi-Efficiency. Therefore, it holds that

∑
(i,sT)∈M+,sT

fisT (m, w)
(ME)
= w((sT ∧mk)k∈N)− w(((sT − 1) ∧mk)k∈N)

(3.13)
= us((sT ∧mk)k∈N)− ∑

(i,sT)∈T(s)

ϕisT (m, us)u(0−i ,sT)((s
T ∧mk)k∈N)

−us(((sT − 1) ∧mk)k∈N)

+ ∑
(i,sT)∈T(s)

ϕisT (m, us)u(0−i ,sT)(((s
T − 1) ∧mk)k∈N). (3.14)

Observe that ((sT ∧mk)k∈N) ≥ s ≥ ((0−i, sT), (((sT − 1) ∧mk)k∈N) 6≥ s and (((sT −
1)∧mk)k∈N) 6≥ (0−i, sT), where (i, sT) ∈ T(s). By definition of a minimal effort game
(2.19), it holds that

us((sT ∧mk)k∈N) = 1, and, ∀(i, sT) ∈ M+,sT
, u(0−i ,sT)((s

T ∧mk)k∈N) = 1,

us(((sT − 1) ∧mk)k∈N) = 0, and, ∀(i, sT) ∈ M+,sT
, u(0−i ,sT)(((s

T − 1) ∧mk)k∈N) = 0.

It follows that (3.14) becomes

∑
(i,sT)∈M+,sT

fisT (m, w) =1− ∑
(i,sT)∈T(s)

ϕisT (m, us)− 0 + 0. (3.15)

Observe that, since (i, sT) /∈ T(s) if and only if sT > si, then each (i, sT) /∈ T(s) is a
null pair in (m, us). Since ϕ satisfies the null pair axiom, we have that ϕisT (m, us) = 0
for each (i, sT) /∈ T(s). Since ϕ satisfies Efficiency, Independence of higher activity
levels, by Proposition 3.4.1 the value satisfies Multi-Efficiency. Therefore, it holds
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that

∑
(i,sT)∈T(s)

ϕisT (m, us)
(N)
= ∑

(i,sT)∈T(s)

ϕisT (m, us) + ∑
(i,sT)/∈T(s)

ϕisT (m, us)

= ∑
(i,sT)∈M+,sT

ϕisT (m, us)

(ME)
= us((sT ∧mk)k∈N)

=1.

Therefore, (3.15) becomes

∑
(i,sT)∈M+,sT

fisT (m, w) =1− 1 = 0, (3.16)

which concludes Step 2.2.1.
Step 2.2.2. We show that, for each (i, sT) ∈ M+,sT

,

fisT (m, w) = 0.

We know that each pair (i, sT) /∈ T(s) is a null pair in (m, us). Moreover, each pair
(i, sT) /∈ T(s) is a null pair in each (m, u0−i′ ,sT ), (i′, sT) ∈ T(s). Indeed, in (m, u0−i′ ,sT ),
(i′, sT) is the only productive pair and all other pairs are null pairs. It follows that
each pair (i, sT) /∈ T(s) is a null pair in (m, w). By the null pair axiom, for each
(i, sT) /∈ T(s), it holds that

fisT (m, w) = 0. (3.17)

It follows that

∑
(i,sT)∈M+,sT

fisT (m, w) = ∑
(i,sT)∈T(s)

fisT (m, w) + ∑
(i,sT)/∈T(s)

fisT (m, w)

(N)
= ∑

(i,sT)∈T(s)

fisT (m, w) + 0

(3.16)
= 0. (3.18)

To complete the proof of Step 2.2.2, it remains to show that if there exist two dis-
tinct pairs (i, sT), (i′, sT) ∈ T(s), then these pairs are equal. By Remark 4 two distinct
pairs (i, sT), (i′, sT) ∈ T(s) are equal in (m, us). Since ϕ satisfies Equal treatment
for equal pairs, it follows that ϕisT (m, us) = ϕi′sT (m, us). By definition of a minimal
effort game, for each t ∈ M such that ti = ti′ = sT − 1, it holds that

u(0−i ,sT)(t) = u(0−i′ ,sT)(t) = 0, (3.19)

and u(0−i ,sT)(t + ei) = u(0−i′ ,sT)(t + ei′) = 1. (3.20)
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Therefore, for each t ∈ M such that ti = ti′ = sT − 1, we have that

∑
(k,sT)∈T(s)

ϕksT (m, us)u(0−k ,sT)(t + ei) = ∑
(k,sT)∈T(s)

ϕksT (m, us)u(0−k ,sT)(t) + ϕisT (m, us)

= ∑
(k,sT)∈T(s)

ϕksT (m, us)u(0−k ,sT)(t) + ϕi′sT (m, us)

= ∑
(k,sT)∈T(s)

ϕksT (m, us)u(0−k ,sT)(t + ei′).

Where the first equality and third equality follow from (3.19) and (3.20), and the sec-
ond equality follows from ϕisT (m, us) = ϕi′sT (m, us), since ϕ satisfies Equal treatment
for equal pairs. It follows that

w(t + ei) = w(t + ei′),

for each t ∈ M such that ti = ti′ = sT − 1, showing that (i, sT), (i′, sT) ∈ T(s) are
equal pairs in (m, w). By Sign symmetry for equal pairs, we have that

sign( fisT (m, w)) = sign( fi′sT (m, w)).

It follows from (3.18) that, for each (i, sT) ∈ T(s),

fisT (m, w) = 0. (3.21)

Combining (3.17) with (3.21), the proof of Step 2.2.2 is complete.
Step 2.2.3. We show that, for each (i, sT) ∈ M+,sT

,

fisT (m, us) = ϕisT (m, us).

By (3.13), (3.21) and Linearity, for each (i, sT) ∈ M+,sT
, it holds that

fisT (m, w)
(3.13),(L)

= fisT (m, us)− fisT

(
m, ∑

(k,sT)∈T(s)

ϕksT (m, us)u(0−k ,sT)

)
⇐⇒ fisT (m, us)

(3.21)
= fisT

(
m, ∑

(k,sT)∈T(s)

ϕksT (m, us)u(0−k ,sT)

)
(L)
= ∑

(k,sT)∈T(s)

ϕksT (m, us) fisT

(
m, u(0−k ,sT)

)
.

Additionally, by the null pair axiom and Multi-Efficiency, we have that

fisT (m, u(0−i ,sT)) = 1

since (i, sT) is the only productive pair in (m, u(0−i ,sT)). Therefore, for each (i, sT) ∈
M+,sT

, it holds that

ϕksT (m, us) fisT

(
m, u(0−k ,sT)

)
=

{
ϕksT (m, us) if k = i,
0 otherwise.

It follows that, for each (i, sT) ∈ M+,sT
,

fisT (m, us) = ϕisT (m, us).
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Thus, fisT (m, us) is uniquely determined. This concludes Step 2.2.3.
From Step 2.1 and Step 2.2, we conclude that f (m, us) is uniquely determined. By

Linearity, we have that f (m, v) is uniquely determined, which concludes the proof
of Theorem 3.4.1. �

Logical independence The axioms invoked in Theorem 3.4.1 are logically inde-
pendent, as shown by the following alternative solutions.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) = 0,

satisfies all the axioms except Efficiency.

- The value f defined as:

fij(m, v) =



ϕij(m, v) +
∆(2∧mk)k∈N

(v)
|Q(1)| if j = 1 and mT > 1,

ϕij(m, v)−
∆(2∧mk)k∈N

(v)
|Q(2)| if j = 2 and mT > 1,

ϕij(m, v) otherwise,

satisfies all the axioms except Independence of higher activity levels.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+,

fij(m, v) = ∑
s≤m

(i,j)∈T(s)

(v((j− 1∧mh)h∈N) + ei)
2 + 1

∑(k,sk)∈T(s) v((j− 1∧mh)h∈N) + ek)2) + 1
∆s(v),

satisfies all the axioms except Linearity.

- The multi-choice Equal division value, ξ, satisfies all the axioms except the null
pair axiom.

- Take any (m, v) ∈ G, and for each (i, j) ∈ M+ fix any arbitrary βij ∈ R++. The
value f β defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, f β
ij (m, v) = ∑

s≤m
(i,j)∈T(s)

βij

∑(k,l)∈T(s) βkl
∆s(v),

satisfies all the axioms except Sign symmetry for equal pairs.

�

By Theorem 3.4.1, we provide alternative expression of the multi-choice Shapley
value in terms of dividends (see Chapter 2, Section 2.3.1, definition (2.21)).
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Corollary 3.4.1. For each game (m, v) ∈ G, the multi-choice Shapley value, ϕ, can be
written as

∀(i, j) ∈ M+, ϕij(m, v) = ∑
s∈M

(i,j)∈T(s)

∆s(v)
|T(s)| . (3.22)

Proof. By the the proof of Theorem 3.4.1, ϕ satisfies Efficiency, Independence of
higher activity levels, Linearity, the null pair axiom and Equal treatment for equal
pairs. Consider any minimal game (m, us) ∈ G, s ∈ M such that s 6= 0. Similarly to
(3.17), for each (i, j) /∈ T(s), the null pair axiom and Multi-Efficiency imply

ϕij(m, us) = 0. (3.23)

All pairs in T(s) pairs are equal pairs in (m, us). Thus, by Equal treatment for equal
pairs, it holds that

ϕisT (m, us) = . . . = ϕi′sT (m, us). (3.24)

By Efficiency and Linearity, we obtain the desired result. �

In the following, we look for an alternative characterization of the multi-choice
Shapley value without resorting to Linearity. In line with Young [1985] and Casajus
[2018], we use the Strong monotonicity axiom for multi-choice games solutions (see
Chapter 2, Section 2.3.3). As our second main result, we obtain an alternative char-
acterization of the multi-choice Shapley value by replacing Linearity and the null
pair axiom in Theorem 3.4.1 by Strong monotonicity (see Chapter 2, Section 2.3.3).

Theorem 3.4.2. A value f on G satisfies Efficiency, Independence of higher activity levels,
Strong monotonicity and Sign symmetry for equal pairs if and only if f = ϕ.

Proof. From Theorem 3.4.1, we know that ϕ satisfies Efficiency, Independence of
higher activity levels and Sign symmetry for equal pairs. By definition (see (3.7)),
the multi-choice Shapley value satisfies Strong monotonicity.

Next, we show that ϕ is the unique value satisfying all the axioms of the state-
ment of Theorem 3.4.2. Take any f as hypothesized and consider any (m, v) ∈ G.
Recall that (m, v) ∈ G can be rewritten as (m, ∑t∈M ∆t(v)ut). We define the set of
coalitions for which the Harsanyi dividend is non null as

T (v) = {t ∈ M | ∆t(v) 6= 0}.

By induction on the cardinality of T (v), we show that

f (m, v) = ϕ(m, v).

Initialization: If |T (v)| = 0, then each dividend is null. The only game (m, v) ∈ G
such that |T (v)| = 0 is the null game. Recall that M+,j = {(i, j) ∈ M+ : i ∈ Q(j)}.
Since f satisfies Efficiency, Independence of higher activity levels, by Proposition
3.4.1, it satisfies Multi-Efficiency. It follows that, for each j ≤ maxk∈N mk,

∑
(i,j)∈M+,j

fij(m, v)
(ME)
= v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N)

=0. (3.25)
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Recall that any two distinct pairs (i, j)(i′, j) ∈ M+,j are equal pairs in the null game
(m, v). Therefore, by Sign symmetry for equal pairs, we obtain

sign( fij(m, v)) = sign( fi′ j(m, v)). (3.26)

Combining (3.25) and (3.26), for each j ≤ maxk∈N mk and each (i, j) ∈ M+,j, we
obtain

fij(m, v) = 0.

Recall also that each pair is a null pair in the null game. Since ϕ satisfies the null pair
axiom, for each j ≤ maxk∈N mk and each (i, j) ∈ M+,j, it holds that

ϕij(m, v)
(N)
= 0 = fij(m, v).

This concludes the initialization.
Hypothesis: Fix r ∈ N such that r < |M| − 1. We assume that, for each (m, v) ∈ G
such that |T (v)| ≤ r,

f (m, v) = ϕ(m, v).

Induction step: Consider any (m, v) ∈ G such that |T (v)| = r + 1. Let us show that

f (m, v) = ϕ(m, v).

We define the minimum of the set T (v) as

p =
∧

t∈T (v)
t.

Two cases can be distinguished. First, assume that p 6= 0. Consider any pair
(i, j) ∈ M+ such that j > pi. By definition of p, there exists a t ∈ T (v) such that
j > ti. For such t, consider the game (m, v − ∆t(v)ut). By definition of a minimal
effort game (2.19) and Remark 1, we have that (i, j) is a null pair in (m, ∆t(v)ut).
Therefore (i, j) has the same marginal contributions in (m, v) and in (m, v−∆t(v)ut).
Moreover, observe that |T (v)| > |T (v − ∆t(v)ut)|. Therefore, we have that r ≥
|T (v − ∆t(v)ut)|. By the induction hypothesis and Strong monotonicity, for each
(i, j) ∈ M+ such that j > pi, we obtain

fij(m, v) SM
= fij(m, v− ∆t(v)ut)

Hyp
= ϕij(m, v− ∆t(v)ut)

SM
= ϕij(m, v). (3.27)

Next, we assume that p = 0. For each (i, j) ∈ M+, there exists a t ∈ T (v) such
that j > ti. In this case, (3.27) holds for each (i, j) ∈ M+ and the proof is complete.

It remains to show that, if p 6= 0, then for each (i, j) ∈ M+ such that j ≤ pi,

fij(m, v) = ϕij(m, v).

We proceed in two steps.
Step 1. We define the game (m, w) ∈ G as

w = v− ∑
(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i ,j), (3.28)
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and we show that, for each (i, l) ∈ M+ such that l ≤ pi,

fil(m, w) = 0. (3.29)

Step 1.1. To that end, we show that

∑
(i,l)∈M+,l

l≤pi

fil(m, w) = 0.

By Proposition 3.4.1, f satisfies Multi-Efficiency. By Multi-Efficiency and (3.28), for
each l ≤ maxk∈N mk, it holds that

∑
(i,l)∈M+,l

fil(m, w)
(ME)
= w((l ∧mk)k∈N)− w((l − 1∧mk)k∈N

⇐⇒ ∑
(i,l)∈M+,l

l≤pi

fil(m, w) =w((l ∧mk)k∈N)− w((l − 1∧mk)k∈N − ∑
(i,l)∈M+,l

l>pi

fil(m, w)

(3.28)
= v((l ∧mk)k∈N)− v((l − 1∧mk)k∈N

− ∑
(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i ,j)((l ∧mk)k∈N)

+ ∑
(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i ,j)((l − 1∧mk)k∈N)

− ∑
(i,l)∈M+,l

l>pi

fil(m, w). (3.30)

Before proceeding further into the computation of (3.30), observe that

− ∑
(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i ,j)((l ∧mk)k∈N) + ∑
(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i ,j)((l − 1∧mk)k∈N)

=− ∑
(i,j)∈M+

j≤pi
j<l

ϕij(m, v)u(0−i ,j)((l ∧mk)k∈N)− ∑
(i,j)∈M+

j≤pi
j=l

ϕij(m, v)u(0−i ,j)((l ∧mk)k∈N)

− ∑
(i,j)∈M+

j≤pi
j>l

ϕij(m, v)u(0−i ,j)((l ∧mk)k∈N)

+ ∑
(i,j)∈M+

j≤pi
j<l

ϕij(m, v)u(0−i ,j)((l − 1∧mk)k∈N)

+ ∑
(i,j)∈M+

j≤pi
j≥l

ϕij(m, v)u(0−i ,j)((l − 1∧mk)k∈N)
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By definition, pi ≤ mi, for each i ∈ N. For each i ∈ N and j ≤ pi ≤ mi, it holds that

u(0−i ,j)((l ∧mk)k∈N) =

{
1 if j ≤ (l ∧mi),
0 otherwise.

It follows that

− ∑
(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i ,j)((l ∧mk)k∈N) + ∑
(i,j)∈M+

j≤pi

ϕij(m, v)u(0−i ,j)((l − 1∧mk)k∈N)

=− ∑
(i,j)∈M+

j≤pi
j<l

ϕij(m, v)− ∑
(i,j)∈M+

j≤pi
j=l

ϕij(m, v) + ∑
(i,j)∈M+

j≤pi
j<l

ϕij(m, v)

=− ∑
(i,j)∈M+

j≤pi
j=l

ϕij(m, v) = − ∑
(i,l)∈M+,l

l≤pi

ϕil(m, v). (3.31)

By (3.31), (3.30) becomes

∑
(i,l)∈M+,l

l≤pi

fil(m, w) = v((l ∧mk)k∈N)− v((l − 1∧mk)k∈N − ∑
(i,l)∈M+,l

l≤pi

ϕil(m, v) (3.32)

− ∑
(i,l)∈M+,l

l>pi

fil(m, w). (3.33)

By (3.27), for each (i, l) ∈ M+,l such that l > pi, it holds that

fil(m, w) = ϕil(m, w). (3.34)

Combining (3.32) and (3.34), we obtain

∑
(i,l)∈M+,l

l≤pi

fil(m, w) = v((l ∧mk)k∈N)− v((l − 1∧mk)k∈N − ∑
(i,l)∈M+,l

l≤pi

ϕil(m, v)

(3.35)

a − ∑
(i,l)∈M+,l

l>pi

ϕil(m, w). (3.36)

Moreover, each (i, l) ∈ M+,l , such that l > pi, is a null pair in (m, u0−i ,j), for each
(i, j) ∈ M+ such that j ≤ pi. By definition of (m, w) (see (3.28)), it follows that each
pair (i, l), such that l > pi, has the same marginal contributions in (m, w) and in
(m, v). Since ϕ satisfies Strong monotonicity, for each (i, l) ∈ M+,l such that l > pi,
it holds that

ϕil(m, w) = ϕil(m, v). (3.37)
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Combining (3.35), (3.37) and the fact that ϕ satisfies Multi-Efficiency, we obtain

∑
(i,l)∈M+,l

l≤pi

fil(m, w) =v((l ∧mk)k∈N)− v((l − 1∧mk)k∈N − ∑
(i,l)∈M+,l

ϕil(m, v)

(ME)
= 0. (3.38)

This concludes Step 1.1.
Step 1.2. We show that all the pairs (i, l) ∈ M+,l , such that l ≤ pi, are equal in (m, w).

By definition of M+,l , we have that l ≥ 1. Consider two pairs (i, l), (i′, l) ∈ M+,l

such that l ≤ pi and l ≤ pi′ . Since p =
∧

t∈T (v) t, we have that each t ∈ T (v) verifies
ti ≥ l and ti′ ≥ l. In other words, for each s ∈ M, such that si < l or si′ < l, we have
that ∆s(v) = 0. Therefore, for each s ∈ M such that si = si′ = l − 1, we obtain

v(s + ei) = v(s + ei′) = 0. (3.39)

Therefore, (i, l) and (i′, l) are equal in (m, v). Since ϕ satisfies Equal treatment for
equal pairs and by (3.28), for each s ∈ M such that si = si′ = l − 1, it holds that

w(s + ei)
(3.28)
= v(s + ei)− ∑

(h,j)∈M+

j≤ph

ϕhj(m, v)u(0−h,j)(s + ei)

= v(s + ei)− ∑
(h,j)∈M+

j≤ph
h 6=i,i′

ϕhj(m, v)u(0−h,j)(s + ei)− ∑
j≤pi′

j≤l−1

ϕi′ j(m, v)u(0−i′ ,j)(s + ei)

− ∑
j≤pi

j≤l−1

ϕij(m, v)u(0−i ,j)(s + ei)− ϕil(m, v)u(0−i ,l)(s + ei)

= v(s + ei)− ∑
(h,j)∈M+

j≤ph
h 6=i,i′

ϕhj(m, v)u(0−h,j)(s + ei)− ∑
j≤pi′

j≤l−1

ϕi′ j(m, v)u(0−i′ ,j)(s + ei)

− ∑
j≤pi

j≤l−1

ϕij(m, v)u(0−i ,j)(s + ei)− ϕil(m, v)

(ET),(3.39)
= v(s + ei′)− ∑

(h,j)∈M+

j≤ph
h 6=i,i′

ϕhj(m, v)u(0−h,j)(s + ei′)− ∑
j≤pi′

j≤l−1

ϕi′ j(m, v)u(0−i′ ,j)(s + ei′)

− ∑
j≤pi

j≤l−1

ϕij(m, v)u(0−i ,j)(s + ei′)− ϕi′ l(m, v)

(3.28)
= w(s + ei′).

Therefore, two pairs (i, l) and (i′, l), such that l ≤ pi and l ≤ pi′ , are equal in
(m, w). This concludes Step 1.2.

By Sign symmetry for equal pairs, it holds that

sign( fil(m, w)) = sign( fi′ l(m, w)). (3.40)
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Combining (3.38) and (3.40), for each (i, l) ∈ M+ such that l ≤ pi, we obtain

fil(m, w) = 0,

which concludes Step 1.
Step 2. For each (i, j) ∈ M+, such that 0 < j ≤ pi, we define the game (m, wij) ∈ G
as

wij = v− ϕij(m, v)u(0−i ,j). (3.41)

In this step, we first show that, for each (i, j) ∈ M+ such that j ≤ pi,

ϕij(m, v) = fij(m, v)− fij(m, wij).

The game (m, wij) is defined in such a way that the pair (i, j) has the same marginal
contribution in (m, w) as in (m, wij). Indeed, observe that the pair (i, j) has null
marginal contributions to coalition in each game (m, u(0−i′ ,j′)) such that i′ 6= i or
i′ = i and j′ 6= j. Therefore, by Strong monotonicity, for each (i, j) ∈ M+ such that
j ≤ pi, it holds that

fij(m, w) = fij(m, wij). (3.42)

Additionally, by Multi-Efficiency, (3.41) and the definition of a minimal effort game
(see (2.19)), it holds that

∑
(k,j)∈M+,j

fkj(m, wij)
(ME)
= wij((j ∧mk)k∈N)− wij(((j− 1) ∧mk)k∈N)

(3.41)
= v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N)

− ϕij(m, v)u(0−i ,j)((j ∧mk)k∈N)

+ ϕij(m, v)u(0−i ,j)(((j− 1) ∧mk)k∈N)

(2.19)
= v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N)− ϕij(m, v). (3.43)

Each pair in M+,j \ {(i, j)} is null in (m, u0−i ,j). Therefore, by (3.41), each pair in
M+,j \ {(i, j)} has the same marginal contribution in (m, wij) and in (m, v). It follows
that, by Strong monotonicity, each pair in M+,j \ {(i, j)} receives the same payoff in
(m, wij) and in (m, v). Then, we obtain

∑
(k,j)∈M+,j

fkj(m, wij) = ∑
(k,j)∈M+,j

k 6=i

fkj(m, wij) + fij(m, wij)

(SM)
= ∑

(k,j)∈M+,j

k 6=i

fkj(m, v) + fij(m, wij)

(ME)
= v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N

− fij(m, v) + fij(m, wij). (3.44)

Combining (3.43) and (3.44), for each (i, j) ∈ M+ such that j ≤ pi, we obtain

ϕij(m, v) = fij(m, v)− fij(m, wij), (3.45)
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which concludes Step 2.
We have the material to conclude the proof of the Induction step. By (3.42), we

have that fij(m, wij) = fij(m, w) and by (3.29) we have that fij(m, w) = 0, for each
(i, j) ∈ M+ such that j ≤ pi. By (3.45), for each (i, j) ∈ M+ such that j ≤ pi, it holds
that

fij(m, v) = ϕij(m, v).

Therefore, for each (m, v) ∈ G and each (i, j) ∈ M+, it holds that fij(m, v) =
ϕij(m, v). The proof of the theorem is complete. �

Logical independence The axioms invoked in Theorem 3.4.2 are logically inde-
pendent, as shown by the following alternative solutions.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) = 0,

satisfies all the axioms except Efficiency.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+,

fij(m, v) =


ϕij(m, v) + mT if (i, j) = (1, 1) and ϕij(m, v) > mT,
ϕij(m, v)−mT if (i, j) = (n, 1) and ϕij(m, v) > mT,
ϕij(m, v) otherwise,

satisfies all the axioms except Independence of higher activity levels.

- The multi-choice Equal division value ξ satisfies all the axioms except Strong
monotonicity.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) =


ϕij(m, v) + 1 if (i, j) = (1, 1),
ϕij(m, v)− 1 if (i, j) = (n, 1),
ϕij(m, v) otherwise,

satisfies all the axioms except Sign symmetry for equal pairs.

3.4.2 Characterization of the multi-choice Equal Division value

In this section, we characterize the multi-choice Equal Division values. To that end,
we introduce the Sign preservation axiom. This axiom is a stronger version of Sign
symmetry for equal pairs. It requires that two pairs featuring the same activity level
receive a payoff of the same sign. In presence of Multi-Efficiency, this requirement
can be seen as a solidarity condition with respect to the surplus generated between
two successive synchronized coalitions. A value f on G satisfies:

Sign preservation (SP). For each (m, v) ∈ G and each (i, j), (i′, j) ∈ M+,

sign( fij(m, v)) = sign( fi′ j(m, v)).

The next result provides an axiomatic characterization of the multi-choice Equal
Division value.
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Theorem 3.4.3. A value f on G satisfies Efficiency, Independence of higher activity levels,
Linearity, Sign preservation and Equal treatment for equal pairs if and only if f = ξ.

Proof. The proof is divided in two steps.

Step 1: We show that ξ satisfies all the axioms of the statement of Theorem 3.4.3. For
each (m, v) ∈ G, it holds that

∑
i∈N

∑
j∈M+

i

ξij(m, v) = ∑
j≤ max

k∈N
mk

∑
i∈Q(j)

1
|Q(j)|

[
v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N)

]

= ∑
j≤ max

k∈N
mk

v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N)

= v(m).

This shows that the value satisfies Efficiency. By definition of the Equal Division
value (see (3.8)), the payoff of a pair does not depend on activity levels different
from the one contained in this pair. Therefore, ξ satisfies Independence of higher
activity levels. By definition of ξ, it is straightforward to see that ξ satisfies Linearity,
Sign preservation and Equal treatment for equal pairs. This concludes Step 1.
Step 2: We show the uniqueness part of the theorem. Let f be a value satisfying
all the axioms of the statement of Theorem 3.4.3. We know that each characteristic
function v admits a linear decomposition in terms of Dirac games (see 2.17). By
Linearity, for each (m, v) ∈ G, it holds that

f (m, v) = ∑
s≤m

v(s) f (m, δs).

For each s ∈ M, we show that

f (m, δs) = ξij(m, δs).

We consider two cases.
Case 1. Suppose that s ∈ M is not a synchronized coalition, that is s 6= ((l∧mk)k∈N),
for each l ≤ maxk∈N mk. Since f satisfies Efficiency and Independence of higher
activity levels, by Proposition 3.4.1 it satisfies Multi-Efficiency. Therefore, by Multi-
Efficiency, for each j ≤ maxk∈N mk,

∑
(i,j)∈M+,j

fij(m, δs) = δs((j ∧mk)k∈N)− δs(((j− 1) ∧mk)k∈N).

Since s 6= ((j ∧mk)k∈N) and s 6= (((j− 1) ∧mk)k∈N), by definition of a Dirac game,

∑
(i,j)∈M+,j

fij(m, δs) = 0. (3.46)

Since δs((j ∧ mk)k∈N)− δs(((j− 1) ∧ mk)k∈N) ≥ 0, by Sign preservation and (3.46),
for each (i, j) ∈ M+,j, it holds that

fij(m, δs) ≥ 0. (3.47)
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Combining (3.46) and (3.47), for each (i, j) ∈ M+,j, we obtain

fij(m, δs) = 0 = ξij(m, δs).

Case 2. Suppose that s ∈ M is a synchronized coalition, that is s = (l ∧ mk)k∈N ,
where l ≤ maxk∈N mk.
Case 2.1. Take any activity level j such that j < l. By Multi-Efficiency, it holds that

∑
(i,j)∈M+,j

fij(m, δs) = δs((j ∧mk)k∈N)− δs(((j− 1) ∧mk)k∈N).

Since s 6= ((j ∧mk)k∈N) and s 6= (((j− 1) ∧mk)k∈N), by definition of a Dirac game,
we have that

∑
(i,j)∈M+,j

fij(m, δs) = 0.

Observe that δs((j ∧ mk)k∈N) − δs(((j − 1) ∧ mk)k∈N) = 0. Similarly to Case 1, by
Sign preservation and (3.46), for each pair (i, j) ∈ M+,j such that j < l,

fij(m, δs) = 0 = ξij(m, δs).

Case 2.2. Take any activity level j > l + 1. Similarly to Case 2.1, for each (i, j) ∈ M+

such that j > l + 1
fij(m, δs) = 0 = ξij(m, δs).

Case 2.3. Consider the pairs (i, j) ∈ M+ such that j = l, that is the pairs in M+,l . By
Multi-Efficiency and the definition of a Dirac game, it holds that

∑
(i,l)∈M+,l

fil(m, δs) = δs((l ∧mk)k∈N)− δs((l − 1∧mk)k∈N)

= 1. (3.48)

Two distinct pairs (i, l), (i′, l) ∈ M+,l are equal in (m, δs). By Equal treatment for
equal pairs, one obtains

fil(m, δs) = fi′ l(m, δs). (3.49)

From (3.48) and (3.49), it follows that

fil(m, δs) =
1

|Q(l)| = ξij(m, δs).

Case 2.4. Consider the pairs (i, l + 1) ∈ M+,l+1. By Multi-Efficiency and the defini-
tion of a Dirac game, it holds that

∑
(i,l+1)∈M+,l+1

fi(l+1)(m, δs) = δs(((l + 1) ∧mk)k∈N)− δs((l ∧mk)k∈N) = 0− 1 = −1.

Similarly to Case 2.3, for each (i, l + 1) ∈ M+,l+1,

fi(l+1)(m, δs) = −
1

|Q(l + 1)| = ξi(l+1)(m, δs).
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Therefore, for each s ∈ M, we have that f (m, δs) = ξ(m, δs). By Linearity, we
conclude the proof of Theorem 3.4.3. �

Logical independence The axioms invoked in Theorem 3.4.3 are logically inde-
pendent, as shown by the following alternative solutions.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) = 0,

satisfies all the axioms except Efficiency.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) =
1

|Q(j)| ∑k≥j

v((k ∧mh)h∈N)− v(((k− 1) ∧mh)h∈N)

k

satisfies all the axioms except Independence of higher activity levels.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) =
(v(((j− 1) ∧mh)h∈N + ei)

2) + 1

∑
k∈Q(k)

((v(((j− 1) ∧mh)h∈N + ek)
2) + 1

×
[
v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N

]
,

satisfies all the axioms except Linearity.

- The multi-choice Shapley value ϕ satisfies all the axioms except Sign preserva-
tion.

- Take any (m, v) ∈ G and for each (i, j) ∈ M+ fix any arbitrary integer βij ∈
{1, 2}. The value f β defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, f β
ij (m, v) =

βij

∑k∈Q(j) βkj

[
v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N)

]
,

satisfies all the axioms except Equal treatment for equal pairs.

3.4.3 Characterization of the multi-choice Egalitarian Shapley values

In this subsection we provide an axiomatic characterization of the multi-choice Egal-
itarian Shapley values. To that end, we introduce two new axioms.

In presence of Multi-Efficiency, the surplus generated between two consecutive
synchronized coalitions is what must be allocated among the pairs containing the
required activity level (see Remark 6). This surplus can eventually be negative.
Requiring that the payoff of a pair varies according to its marginal contributions
to coalitions regardless of the surplus to be shared is then a strong requirement in
Strong monotonicity. To the contrary, it seems reasonable that the payoff of a pair,
let us say (i, j) ∈ M+,j, does not decrease from one game, let us say (m, v) ∈ G, to
another, let us say (m, w) ∈ G, if the surplus generated between the j-synchronized
coalition and the (j − 1)-synchronized coalition does not decrease from (m, v) to
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(m, w). The next axiom strengthens the hypothesis of Strong monotonicity by re-
quiring that the surplus generated between two synchronized coalitions should not
decrease from one game to another. A value f on G satisfies:

Weak monotonicity (WM). Take any two (m, v), (m, w) ∈ G. If there exists a pair
(i, j) ∈ M+ such that

v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N) ≥ w((j ∧mk)k∈N)− w(((j− 1) ∧mk)k∈N),

and such that

∀s ∈ M, si = j− 1, v(s + ei)− v(s) ≥ w(s + ei)− w(s),

then, it holds that fij(m, v) ≥ fij(m, w).

Whenever m = (1, . . . , 1), Weak monotonicity corresponds to the Weak Monotonic-
ity axiom for TU-games introduced by van den Brink et al. [2013]. Obviously, Strong
monotonicity implies Weak monotonicity.

Consider (m, v) ∈ G and two distinct pairs (i, j), (i′, j) ∈ M+,j. We say that
the pair (i, j) is more desirable than the pair (i′, j) in (m, v) if its has better marginal
contributions to coalitions. Formally, (i, j) is more desirable than (i′, j) if for each
s ∈ M, such that si = si′ = j− 1, we have that

v(s + ei) ≥ v(s + ei′).

The next axiom requires that a pair receives a greater payoff than other less desirable
pairs. In the context of Example 1, this axiom ensures that if one department per-
forms better than the other department on a given workday, then the former receives
a higher budget than the latter for this workday. A value f on G satisfies:

Level desirability (LD). Take any (m, v) ∈ G. If there exists two distinct pairs (i, j), (i′, j) ∈
M+, such that (i, j) is more desirable than (i′, j) in (m, v), then, it holds that

fij(m, v) ≥ fi′ j(m, v).

Whenever m = (1, . . . , 1), Level desirability corresponds to the classical Desirability
axiom for TU-games. We have the material to provide a characterization of the multi-
choice Egalitarian Shapley values.

Theorem 3.4.4. A solution f on G satisfies Efficiency, Independence of higher activity lev-
els, Linearity, Weak monotonicity and Level desirability if and only if f = χα, for some
parameter system α.

Proof. Before starting the proof, which is divided in two steps, we provide a useful
remark.

Remark 9. By definition, Level desirability implies Equal treatment for equal pairs.
If (m, v) ∈ G is the null game, then Multi-Efficiency and Level desirability imply
fij(m, v) = 0 for each (i, j) ∈ M+.

Observe that ϕ and ξ both satisfy Level desirability and Weak monotonicity. Con-
sider any parameter system α. Since that multi-choice Egalitarian Shapley values are
convex combinations of the multi-choice Shapley value and the multi-choice Equal
division value (see (3.9)), χα, inherits all the axioms of the statement of Theorem
3.4.4.
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Next, we show that the multi-choice Egalitarian Shapley values are the only val-
ues satisfying all the axioms of the statement of Theorem 3.4.4. Consider a value f
satisfying all the axioms of the statement of Theorem 3.4.4. To prove the uniqueness
part, we show that, for each (m, v) ∈ G, there exists a parameter system α such that

f (m, v) = χα(m, v).

By Linearity, for each (m, v) ∈ G,

f (m, v) = ∑
t≤m

∆t(v) f (m, ut).

Recall that tT = maxi∈N ti denotes the highest activity level played in coalition t ∈
M. Take any 1 ≤ l ≤ mT. We show that, for each (m, ut) such that tT = l, f can be
written as

∀(i, j) ∈ M+,

fij(m, ut) =

{
αl ϕil(m, ut) + (1− αl)ξil(m, ut) if j = l,
0 otherwise,

for some 0 ≤ αl ≤ 1. To that end, consider all pairs (i, j) ∈ M+ such that j < l. By
Independence of higher activity levels,

fij(m, ut) = fij((j ∧mk)k∈N , ut).

Since ((j ∧mk)k∈N , ut) is the null game, by Remark 9, for each (i, j) ∈ M+ such that
j < l,

fij(m, ut) = 0. (3.50)

Consider all pairs (i, j) ∈ M+ such that j > l. Observe that these pairs are null
pairs in (m, ut) and thus are equal. From Remark 9 and Multi-Efficiency, for each
(i, j) ∈ M+ such that j > l,

fij(m, ut) = 0. (3.51)

Now, consider any pair (i, l) ∈ M+. We show that f can be written as

fil(m, ut) = αl ϕil(m, ut) + (1− αl)ξil(m, ut),

for some 0 ≤ αl ≤ 1. We proceed by induction on qt(l) the number of agents that
play l in coalition t.
Initialization: Pick any minimal effort game (m, ut) ∈ G such that tT = l and qt(l) =
1. In such game, there is exactly one agent, say k ∈ N, that plays the activity level l
in t.

Before proceeding further into the initialization step, we prove the following
claim.
Claim: Pick any minimal effort game (m, ut) ∈ G, where tT = l and qt(l) = 1. Then,
there exists cl ∈ R such that

∀(i, l) ∈ M+, i 6= k, fil(m, ut) = cl , (3.52)

where k refers to the only agent that plays the activity level l in t. In other words, the
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payoff assigned to the pair (i, l) ∈ M+, i 6= k, does not depend on the agent k that
plays tT = l in (m, ut). To prove this claim, we distinguish three cases.
Case 1. If |Q(mT)| ≥ 3, then there is at least three agents in Q(l). Consider any
three distinct agents in Q(l) denoted by k, i and i′. Consider the three coalitions
t, t′, t′′ ∈ M defined as

tk = l, and ∀h ∈ N \ {k}, th < l,
t′i = l, and ∀h ∈ N \ {i}, t′h < l,
t′′i′ = l, and ∀h ∈ N \ {i′}, t′′h < l.

Consider the minimal effort games (m, ut), (m, ut′) and (m, ut′′). Observe that:

- (i, l) ∈ M+ is a null pair in (m, ut) and (m, ut′′), and (i, l) is the only non null
pair in (m, ut′);

- (i′, l) ∈ M+ is a null pair in (m, ut) and (m, ut′), and (i′, l) is the only non null
pair in (m, ut′′);

- (k, l) ∈ M+ is a null pair in (m, ut′) and (m, ut′′), and (k, l) is the only non null
pair in (m, ut);

- (i, l), (i′, l) ∈ M+ are equal pairs in (m, ut);

- (i, l), (k, l) ∈ M+ are equal pairs in (m, ut′′);

- (i′, l), (k, l) ∈ M+ are equal pairs in (m, ut′).

Moreover, observe that

ut((l ∧mh)h∈N) = ut′((l ∧mh)h∈N)

= ut′′((l ∧mh)h∈N)

and ut(((l − 1) ∧mh)h∈N) = ut′(((l − 1) ∧mh)h∈N)

= ut′′(((l − 1) ∧mh)h∈N). (3.53)

By (3.53), the fact that (i, l) ∈ M+ is a null pair in (m, ut) and (m, ut′′), and Weak
monotonicity, one obtains

fil(m, ut) = fil(m, ut′′). (3.54)

Similarly,

fi′ l(m, ut) = fi′ l(m, ut′) and fkl(m, ut′) = fkl(m, ut′′). (3.55)

By the fact that (i, l), (i′, l) ∈ M+ are equal pairs in (m, ut) and Level desirability, one
obtains

fil(m, ut) = fi′ l(m, ut). (3.56)

Similarly,

fi′ l(m, ut′) = fkl(m, ut′) and fil(m, ut′′) = fkl(m, ut′′). (3.57)
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Combining (3.54), (3.55), (3.56) and (3.57), one obtains

fil(m, ut)
(3.54)
= fil(m, ut′′)

(3.57)
= fkl(m, ut′′)

(3.55)
= fkl(m, ut′)

(3.57)
= fi′ l(m, ut′)

(3.55)
= fi′ l(m, ut) = cl ,

for some cl ∈ R.
We have shown that there exists a unique cl ∈ R such that, for any minimal effort

game (m, ut) ∈ G, |Q(mT)| ≥ 3, tT = l, qt(l) = 1, (3.52) holds.
Case 2. If |Q(mT)| = 2, then there is at least two agents in Q(l). If there are at least
three agents in Q(l), then the proof is identical to the one in Case 1. Therefore, let us
assume that Q(l) = {i, k}. Consider the two coalitions t, t′ ∈ M defined as

ti = l, and ∀h ∈ N \ {i}, th < l,
t′k = l, and ∀h ∈ N \ {k}, t′h < l.

Consider the minimal games (m, ut) ∈ G, (m, ut′) ∈ G, and (m, ut + ut′) ∈ G.
Observe that (i, l), (k, l) ∈ M+ are equal pairs in (m, ut + ut′). Therefore, by Level
desirability, it holds that

fil(m, ut + ut′) = fkl(m, ut + ut′). (3.58)

By Linearity, (3.58) becomes

fil(m, ut) + fil(m, ut′) = fkl(m, ut) + fkl(m, ut′)

⇐⇒ fil(m, ut) = fkl(m, ut) + fkl(m, ut′)− fil(m, ut′). (3.59)

Since f satisfies Efficiency and Independence of higher activity, by Proposition 3.4.1,
f satisfies Multi-Efficiency. Since i and k are the only two agents in Q(l), by Multi-
Efficiency, it holds that

fil(m, ut) + fkl(m, ut) = 1 and fil(m, ut′) + fkl(m, ut′) = 1.

It follows that

fil(m, ut) + fkl(m, ut) = fil(m, ut′) + fkl(m, ut′) (3.60)

Combining (3.59) and (3.60), one obtains

fkl(m, ut) + fkl(m, ut′)− fil(m, ut′) + fkl(m, ut)

= fil(m, ut′) + fkl(m, ut′)

⇐⇒ fkl(m, ut)− fil(m, ut′) + fkl(m, ut) = fil(m, ut′)

⇐⇒ fkl(m, ut) = fil(m, ut′) = cl ,

for some cl ∈ R.
We have shown that there exists a unique cl ∈ R such that, for any minimal effort

game (m, ut) ∈ G, |Q(mT)| = 2, tT = l, qt(l) = 1, (3.52) holds.
Case 3. Finally, assume that |Q(mT)| = 1. If there is only one agent in Q(l), then
there is nothing to show. If there are two agents in Q(l), then (3.52) holds according
to Case 2. If there three agents or more in Q(l), then (3.52) holds according to Case
1.

We have shown that there exists a unique cl ∈ R such that, for any minimal effort
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game (m, ut) ∈ G, tT = l and qt(l) = 1, (3.52) holds. This concludes the proof of the
claim.

Next, pick any minimal effort game (m, ut) ∈ G such that tT = l and qt(l) = 1.
Observe that the pair (k, l) is the only pair featuring the activity level l which is non
null in (m, ut), and ut(m) ≥ 0. By (3.52), the fact that null pairs featuring the activity
levels l are equal pairs in (m, ut) and Multi-Efficiency, it holds that

fkl(m, ut) = 1− (|Q(l)| − 1)cl .

Define αl = 1− cl |Q(l)| so that we obtain

cl =
1− αl

|Q(l)| .

Now, we show that αl ≤ 1. By Remark 9, each pair receives a zero payoff in the null
game. Observe that each pair in M+ has better marginal contributions to coalitions
in (m, ut) than in the null game. Moreover, it holds that

ut((l ∧mk)k∈N)− ut(((l − 1) ∧mk)k∈N) ≥ 0.

Thus, by Weak monotonicity, fil(m, ut) ≥ 0 for each (i, l) ∈ M+. It follows that

cl =
1− αl

|Q(l)| ≥ 0 =⇒ αl ≤ 1.

Therefore, for each (i, l) ∈ M+,

fil(m, ut) =



1− αl

|Q(l)| if j = l and i 6= k,

1− αl

|Q(l)| + αl if j = l and i = k,

(3.61)

for some 0 ≤ αl ≤ 1. Observe that, for each (i, l) ∈ M+,

ξil(m, ut) =
1

|Q(l)| , ϕil(m, ut) =

{
0 if i 6= k,
1 if i = k.

Comparing ξil(m, ut) and ϕil(m, ut) with (3.61), one obtains

∀(i, l) ∈ M+ and fil(m, ut) = αl ϕil(m, ut) + (1− αl)ξil(m, ut).

for some 0 ≤ αl ≤ 1. This concludes the initialization.
Hypothesis: Consider r ∈ N such that 1 ≤ r < |Q(l)|. Consider any t such that
qt(l) = r. In this case, there are r agents that play l in t. Assume that

∀(i, l) ∈ M+, fil(m, ut) = αl ϕil(m, ut) + (1− αl)ξil(m, ut).

Induction step: Consider any t such that qt(l) = r + 1. Let s = t − eh, for some
h ∈ N such that th = l. Obviously, it holds that qs(l) = r. Recall that (i, l) /∈ T(t) if
ti < l. Observe that if (i, l) /∈ T(t) then (i, l) /∈ T(s). If (i, l) /∈ T(t) then (i, l) is a null
pair in (m, ut) and is also a null pair in (m, us). Therefore, each (i, l) /∈ T(t) has the
same marginal contributions in both games (m, ut) and (m, us). Moreover, it holds
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that

ut((l ∧mh)h∈N)− ut(((l − 1) ∧mh)h∈N) = us((l ∧mh)h∈N)− us(((l − 1) ∧mh)h∈N).

Thus, by double application of Weak monotonicity, the induction hypothesis and the
definitions of ϕ and ξ, for each (i, l) /∈ T(t) it holds that

fil(m, ut) = fil(m, us)

Hyp
= αl ϕil(m, us) + (1− αl)ξil(m, us)

=
(1− αl)

|Q(l)| . (3.62)

By Multi-Efficiency, (3.62) and the definition of a minimal effort game,

∑
(i,l)∈T(t)

fil(m, ut) =ut((l ∧mh)h∈N)− ut(((l − 1) ∧mh)h∈N)

− ∑
(i,l)/∈T(t)

fil(m, ut)

=1− 0− (|Q(l)| − |T(t)|) 1− αl

|Q(l)| . (3.63)

Additionally, any two distinct pairs (i, l), (i′, l) ∈ M+ such that (i, l), (i′, l) ∈ T(t),
are equal in (m, ut). By Remark 9 and by Level desirability, for each (i, l) ∈ T(t),

fil(m, ut) = c′,

for some c′ ∈ R. It follows that

∑
(i,l)∈T(t)

fil(m, ut) = |T(t)|c′. (3.64)

Therefore, combining (3.63) and (3.64), for each (i, l) ∈ T(t), we obtain

c′ =
1− (|Q(l)| − |T(t)|) 1− αl

|Q(l)|
|T(t)| .

It follows that, for each (i, l) ∈ T(t),

fil(m, ut) =

1− (|Q(l)| − |T(t)|) 1− αl

|Q(l)|
|T(t)|

=
αl

|T(t)| +
1− αl

|Q(l)|
= αl ϕil(m, ut) + (1− αl)ξil(m, ut). (3.65)

Combining (3.62) and (3.65), if tT = l then, for each (i, l) ∈ M+,

fil(m, ut) = αl ϕil(m, ut) + (1− αl)ξil(m, ut).

This concludes the induction step.
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We have shown that there exists a parameter system α such that f can be written,
for each (m, ut) such that tT = l, as

∀(i, j) ∈ M+, fij(m, ut) =

{
αl ϕil(m, ut) + (1− αl)ξil(m, ut) if j = l,
0 otherwise.

By definition of multi-choice Egalitarian Shapley values (see (3.9)), for such param-
eter system α, there is a χα such that, for each (m, ut)

f (m, ut) = χα(m, ut).

We conclude by Linearity that there exists a parameter system α such that, for each
(m, v) ∈ G

f (m, v) = χα(m, v).

This concludes the proof of the theorem. �

Logical independence The five axioms of the statement of Theorem 3.4.4 are logi-
cally independent, as shown by the following alternative solutions.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+, fij(m, v) = 0,

satisfies all the axioms except Efficiency.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+,

fij(m, v) =
maxk∈N mk

∑k∈N mk
ϕ(m, v) +

(
1− maxk∈N mk

∑k∈N mk

)
ξ(m, v),

satisfies all the axioms except Independence of higher activity levels.

- Take any (m, v) ∈ G. Denote the difference in worth between the grand coali-
tion and the (mT − 1)-synchronized coalition by

V = v(m)− v(((mT − 1) ∧mk)k∈N .

Let f be the value defined as:

- f (m, v) = ϕ(m, v) if |mT| 6= 2;

- otherwise, for each (i, j) ∈ M+ such that j 6= mT, fij(m, v) = ϕij(m, v),
and for the two remaining pairs (i, mT), (i′, mT) ∈ M+,

( fimT (m, v), fi′mT (m, v)) =

(ϕimT (m, v), ϕi′mT (m, v)) if ϕimT (m, v) ≥ 0 and ϕi′mT (m, v) ≥ 0,
(0, V) if ϕimT (m, v) < 0, ϕi′mT (m, v) > 0 and V ≥ 0,
(V, 0) if ϕimT (m, v) < 0, ϕi′mT (m, v) > 0 and V < 0,
(ϕimT (m, v), ϕi′mT (m, v)) if ϕimT (m, v) ≤ 0 and ϕi′mT (m, v) ≤ 0,
(0, V) if ϕimT (m, v) > 0, ϕi′mT (m, v) < 0 and V ≥ 0,
(V, 0) if ϕimT (m, v) > 0, ϕi′mT (m, v) < 0 and V > 0.
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The value f satisfies all the axioms except Linearity.

- The value f defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+,
fij(m, v) =v(((j− 1) ∧mk)k∈N) + ei)

+
(v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N))

|Q(j)|

−
∑k∈Q(j) v(((j− 1) ∧mk)k∈N) + ek)

|Q(j)| ,

satisfies all the axioms except Weak monotonicity. Observe that this value ex-
tends the Equal surplus division from TU-games to multi-choice games.

- Take any (m, v) ∈ G. For each (i, j) ∈ M+ fix an arbitrary integer βij ∈ {1, 2}.
The value f β defined as: for each (m, v) ∈ G,

∀(i, j) ∈ M+,

f β
ij (m, v) =

βij

∑k∈Q(j) βkj

[
v((j ∧mk)k∈N)− v(((j− 1) ∧mk)k∈N)

]
,

satisfies all the axioms except Level desirability.

Remark 10. In some economic situations, it may be interesting to consider families
of specific parameter systems, for instance parameter systems that operate a progres-
sive compromise between marginalim and egalitarianism. In this case, it is possible
to refine Theorem 3.4.4 in order to characterize multi-choice Egalitarian Shapley val-
ues endowed with such parameter systems.

3.5 Additional remarks

In this section, we make two remarks regarding the multi-choice Shapley value.
First, we discuss the relationship between the multi-choice Shapley value and the
discrete serial cost sharing method introduced by Moulin and Shenker [1992] for
discrete cost sharing problems. Then, we axiomatically compare the multi-choice
Shapley value with the values introduced by Derks and Peters [1993] and Peters and
Zank [2005] for multi-choice games.

The class of discrete cost sharing problems is introduced by Moulin and Shenker
[1992] and studied by Moulin [1995a], Albizuri et al. [2003], Sprumont [2005] and
Bahel and Trudeau [2013] to cite a few. Fix N = {1, . . . , n} a set of n different goods
produced in indivisible units. A discrete cost sharing problem is a couple (q, C),
where q = (q1, . . . , qn). Each qi ∈ N represents the demand in good i, and C is a
non decreasing real-valued function on ∏i∈N{0, 1, . . . , qi} such that C(0) = 0. The
total cost to be shared is given by C(q). As shown by Calvo and Santos [2000] and
Albizuri et al. [2003], one can view discrete cost sharing problems as a sub-class
of multi-choice games. Indeed, q can be interpreted as a vector of maximal activity
levels and C can be interpreted as characteristic function. Since C is a non decreasing
real-valued function, it follows that discrete cost sharing problems can be viewed as
the subclass of multi-choice games with a non decreasing real-valued characteristic
function. We denote by C ⊆ G the class of discrete cost sharing problems. In the cost
sharing literature, a method on C is a map S that associates to each problem (q, C) ∈
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C a vector S(q, C) ∈ Rn satisfying the budget balanced condition i.e. ∑i∈N Si(q, C) =
C(q). In this sense, a method on the class of discrete cost sharing problems differs
from a value, which distributes a payoff to each pair in M+. A popular cost sharing
method for cost sharing problems is the discrete serial cost sharing method (denoted
SCS afterward) introduced by Moulin and Shenker [1992].

In order to present the discrete serial cost sharing method, we define a specific
TU-game on N. Consider (q, C) ∈ C and j ≤ maxk∈N mk. Define the TU-game
(Q(j), w(q,C)

j ) ∈ GTU
N as

∀E ⊆ Q(j), w(q,C)
j (E) = C

(
((j− 1) ∧ qk)k∈N + eE

)
− C

(
((j− 1) ∧ qk)k∈N

)
.

The worth w(q,C)
j (E) can be interpreted as the additional costs generated when each

agent (good) in E increases its activity level (demand) from j − 1 to j while all the
other agents play either the activity level j− 1 or their maximal activity level if they
are unable to do so. We denote by Sh the Shapley value (see Shapley [1953]) for
TU-games. Albizuri et al. [2003] show that the discrete serial cost sharing admits the
following expression

∀i ∈ N, SCSi(q, C) =
qi

∑
j=1

Shi

(
Q(j), w(q,C)

j

)
. (3.66)

The next proposition links the discrete serial cost sharing method proposed by
Moulin and Shenker [1992] with the multi-choice Shapley value. It states that, for
each cost sharing problem, the multi-choice Shapley value captures the variation of
the joint cost distribution caused by a demand increase for each good.

Proposition 3.5.1. For each cost sharing problem (q, C) ∈ C, it holds that

∀i ∈ N, SCSi(q, C)− SCSi(q− ei, C) = ϕiqi(q, C).

Proof. Observe that, for each i ∈ N and j < qi, it holds that

∀E ⊆ Q(j), w(q,C)
j (E) = w(q−ei ,C)

j (E).

Therefore, we obtain

∀i ∈ N, j < qi, Shi

(
N, w(q,C)

j

)
= Shi

(
N, w(q−ei ,C)

j

)
. (3.67)

Additionally, recall that, for each j ≤ maxk∈N mk, the set of orders Oj over M+,j can
be interpreted as the set of orders over the set of agents in Q(j). An order over Q(j)
is a bijection σN

j : Q(j) → {1, . . . , |Q(j)|}. We denote by Q(j) the set of of orders
over Q(j). Consider an order σN

j ∈ Qj and h ∈ {1, . . . , |Q(j)|}. Recall that, for each

B ⊆ N, the vector eB ∈ R|N| is defined by (eB)i = 1 if i ∈ B and (eB)i = 0 otherwise.
We denote by

((j− 1) ∧ qk)k∈N + e
E

σN
j ,h

the coalition in which each agent in Q(j) ordered prior to step h with respect to σN
j ,

participates at its activity level j, whereas each agent in Q(j) ordered after step h
with respect to σN

j , participates at its activity level j − 1. Each agent not in Q(j)
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participates at its maximal activity level. Obviously, this coalition coincides with
sσj,h, where σj is the counterpart of σN

j among the orders in Oj. We use the convention
((j− 1) ∧ qk)k∈N + e

E
σN

j ,0 = ((j− 1) ∧ qk)k∈N . Consider an order σN
j ∈ Qj. For each

i ∈ Q(j), we denote by

µ
σN

j
i (q, C) = C

(
((j− 1) ∧ qk)k∈N + e

E
σN

j ,σN
j (i)

)
− C

(
((j− 1) ∧ qk)k∈N + e

E
σN

j ,σN
j (i)−1

)
,

(3.68)

the marginal contribution of agent i for its activity level j with respect to the order
σN

j . By (3.6), (3.7) and (3.68), for each (q, C) ∈ C, the multi-choice Shapley value can
be re-written as

∀(i, j) ∈ M+,j, ϕij(q, C) =
1

|Q(j)|! ∑
σN

j ∈Qj

µ
σN

j
i (q, C).

By definition of the Shapley value for TU-games (see Shapley [1953]), for each j ≤
maxk∈N mk, it holds that

∀i ∈ Q(j), Shi

(
N, w(q,C)

j

)
=

1
|Q(j)|! ∑

σN
j ∈Qj

µ
σN

j
i (q, C) = ϕij(q, C). (3.69)

It follows that the multi-choice Shapley value is consistent with the discrete serial
cost sharing method since, for each i ∈ N, it holds that

SCSi(q, C)− SCSi(q− ei, C) =
qi

∑
j=1

Shi

(
N, w(q,C)

j

)
−

qi−1

∑
j=1

Shi

(
N, w(q−ei ,C)

j

)
= Shi

(
N, w(q,C)

qi

)
= ϕiqi(q, C),

where the second equality follows from (3.66) and (3.67), and the third equality fol-
lows from (3.69). �

To conclude this section, we briefly compare the multi-choice Shapley value with
the different extensions of the Shapley value for multi-choice games (see Chapter 2,
Section 2.3.2). To do so, we consider the different axioms presented in Chapter 2,
Section 2.3.3 and the new axioms introduced in this Chapter. This comparison is
summarized in the table below.

First of all, observe that all the extensions of the Shapley value, i.e., ϕ, φvN , φPZ,
φHR, φDP satisfy Efficiency, Additivity (or Linearity), and the null pair axiom. How-
ever φvN , φPZ, φHR, φDP do not satisfy Multi-efficiency. By Proposition 3.4.1, it fol-
lows that none of these extension satisfies Independence of the higher activity level.
In the same way, it can be shown that none of these extension satisfies Equal treat-
ment for equal pairs, and therefore Sign symmetry for equal pairs. It can be shown
that the multi-choice Shapley value, ϕ, does not satisfy Anonymity, Hierarchical
strength, the weight axiom, the necessary pair axiom, and Level symmetry. Thus,
the two main difference between ϕ and the previous extensions of the Shapley value
lies in the Independence of higher activity level axiom and the Equity principle they
have.



3.5. Additional remarks 81

Axioms φvN φPZ φHR φDP ϕ

Carrier X X X X X
Efficiency X X X X X
Additivity X X X X X
Linearity X X X X X

The null game axiom X X X X X
Anonymity (on G) X X X X ◦

Hierarchical strength X ◦ ◦ ◦ ◦
Weight axiom ◦ ◦ X ◦ ◦

Hierarchical symmetry X ◦ ◦ ◦ ◦
The necessary pair axiom ◦ ◦ ◦ X ◦

Level symmetry ◦ X ◦ ◦ ◦
Equal treatment for equal pairs ◦ ◦ ◦ ◦ X
Sign symmetry for equal pairs ◦ ◦ ◦ ◦ X

Minimal effort X X X ◦ X
Zero contribution X X X ◦ X

the null pair axiom X X X X X
Strong monotonicity X X X ◦ X

Upper balanced contributions ◦ X ◦ X ◦
Lower balanced contributions ◦ ◦ X X

General balanced contributions ◦ ◦ ◦ X ◦
Equal loss axiom ◦ ◦ ◦ X ◦

Independence of the maximal activity level ◦ X X ◦ X
Independence of higher activity levels ◦ ◦ ◦ ◦ X

TABLE 3.1: Axiomatic comparison of the Shapley like values.
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3.6 Conclusion

In this chapter we proposed several multi-efficient values for multi-choice games.
We introduced the multi-choice Shapley value and the multi-choice Equal Division
values. This chapter is in line with the literature that deals with the trade-off between
marginalism and egalitarianism using cooperative game theory since we introduce
the multi-choice Egalitarian Shapley values for multi-choice games. These values
are computed as the convex combination of the multi-choice Shapley value and the
multi-choice Equal division value. We provided at least one axiomatic characteriza-
tion for each of these solution concepts.

Some questions remain of interest. It would be interesting to characterize multi-
efficient solutions for multi-choice games with a structure. Regarding multi-choice
games with a structure, several studies have already been conducted. Albizuri [2009]
study multi-choice games with a coalition structure, Béal et al. [2012] study multi-
choice games with communication constraints, and Lowing [2022] studies multi-
choice games with a permission structure. The solution concepts proposed in these
studies are not multi-efficient. It can be interesting to look for multi-efficient values
for such games, since non-multi-efficient values cannot belong to the Core.
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Chapter 4

Priority relations and cooperation
with multiple activity levels

4.1 Introduction

In many situations, there exist asymmetries between agents that are not captured
by a standard multi-choice game. These asymmetries may reflect exogenous rights,
different needs, merit, or hierarchical constraints that discriminate between agents.
In such settings, it would be desirable for a value to reflect these exogenous asym-
metries. To this end, this chapter enriches the model of multi-choice games with a
priority structure modeled by a partial order on the agent set (see Chapter 2, Section
2.2).

In the framework of multi-choice games, the use of a partial order on the agent
set brings additional possibilities that would not have been possible in the frame-
work of TU-games. First, the set of activity levels is linearly ordered and provides
an “intra-agent” information. Then, the priority structure provides an “inter-agent”
information. Depending on the cooperative situation, these two pieces of informa-
tion can be useful to define a relevant allocation process. These pieces of information
are aggregated into a relationship on the set of pairs formed by an agent and one of
its activity levels. This relationship is then used to define a new value for multi-
choice games with a priority structure. The following example aims to illustrate this
approach.

Consider a lake commonly owned by a fishing community. Each fisher has a cer-
tain maximal level of fishing effort. Assume that the fishers coordinate their effort
and share the quantity of fish they catch.1 Moreover, suppose that the fishers are par-
tially ordered according to some exogenous rights each fisher has over the fishery.
The problem is then to allocate the fishery among the fishers, taking into account
both their different rights and their effort levels. A possible solution would be to
consider an extension of the Priority value introduced by Béal et al. [2022] to multi-
choice games. In the framework of TU-games, this value allocates the net surplus of
a coalition, i.e., the dividend of a coalition, among the priority agents in the coalition
(see Chapter 2, Section 2.2). A straightforward generalization of the Priority value to
the above example amounts to favor fishers with the higher rights in the allocation
process, regardless of their fishing effort. As a result, the catch may be grabbed by a
fisher with a low effort, thereby reducing the incentive to fish.

We propose to combine the ordered set of the activity levels with the priority
structure in a lexicographic manner. This lexicographic order enables to compare
pairs formed by an agent and one of its activity levels in the following way. Consider

1This assumption is in line with Funaki and Yamato [1999] who study the tragedy of the commons
from a cooperative viewpoint.
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any two agents with a certain activity level, i.e., any two pairs. Similarly to the
common pool resource example, the activity levels of the agents are assumed to be
the most significant criterion. If one of the two pairs has a higher position than the
second in the lexicographic order, then it features a higher activity level than the
second pair. If the two activity levels are equal, then the pair featuring the agent
that has priority over the second agent has a higher position than the other pair in
the lexicographic order. In line with this lexicographic order, a generalization of the
Priority value from TU-games to multi-choice games is introduced: the multi-choice
Priority value. This value equally divides the net surplus of each coalition among the
agent(s) in the coalition with the highest position in the lexicographic order. Such
allocation process especially makes sense when resources are scarce and trade-offs
have to be made among different criteria.

Two axiomatic characterizations of the multi-choice Priority value are provided.
Both characterizations rely on standard axioms for multi-choice games and specific
axioms related to the priority structure.

Regarding the first characterization, the axioms invoked carry a relevant mean-
ing in resources allocation problem. The standard axioms are Efficiency, Indepen-
dence of the maximal activity level and Independence of level reductions. The two
axioms of independence relate to the variation in the payoffs when an agent gets
available a higher activity level. Independence of the maximal activity level requires
that the fishes allocated to a fisher at a certain fishing effort do not depend on its
highest effort level. Thus, the excess caught whenever the effort increases should be
allocated to this new level. Independence of level reductions considers two fishers
with different fishing effort. If the effort of the fisher with the higher effort level
increases, the quantity of fish allocated to the other fisher should not vary. This
ensures that the latter do not support fishers with a higher effort level. Two other
axioms that take into account the priority structure are introduced. The axiom of Pri-
ority relation for the same maximal activity level considers two agents with the same
maximal activity level and comparable in terms of priority. Regarding the common
pool resource allocation problem, consider two fishers with the same maximal effort
level, and such that one has more rights than the other. The axiom requires that the
amount of fishes allocated to the fisher with less rights should not vary whenever the
fishing effort of the other fishers, that has more rights, slightly decreases. Then, the
axiom of Balanced contributions for the same prevailing group is introduced.2 This
axiom relies on a fairness requirement for indistinguishable agents regarding both
the priority structure and their maximal activity level. It indicates that such agents
affect each other payoff in the same manner. Regarding the common pool allocation
problem, consider two indistinguishable fishers in terms of effort level and rights. If
the effort of one of the two fishers increases, then the amount of resources allocated
to the other fisher may vary. This variation is the same no matter which fisher’s ef-
fort increases. As our first main result, we show that the multi-choice Priority value
is characterized by the above list of axioms (Proposition 4.3.2).

The second characterization of the multi-choice Priority value is close to the one
of the multi-choice Shapley value studied in Chapter 3. It invokes Efficiency, Addi-
tivity, Independence of the maximal activity level, Independence of level reductions
as standard axioms. In addition, it invokes the axiom of Independence of null pair:
removing an agent’s maximal activity level does not alter the payoffs of the remain-
ing agent’s activity level if this agent is unproductive in each coalition in which it

2See Chapter 2, Section 2.3.3 for a brief discussion on the different extensions of the balanced con-
tributions principle from TU-games to multi-choice games.
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plays its maximal activity level. Yet, the multi-choice Priority value departs from
the multi-choice Shapley value in one important aspect. Contrary to the latter, it
does not satisfy the axiom of Equal treatment for equal pairs (see Chapter 3, Sec-
tion 3.4). In the presence of exogenous asymmetry, this axiom becomes very strong.
Therefore, it is replaced by two new axioms that take into account the priority struc-
ture. Both axioms deal with decisive agents. An agent is decisive if each coalition in
which it does not play its maximal activity level generates zero worth. This notion
generalizes the notion of a necessary agent from TU-games to multi-choice games.
Consider two decisive agents with the same maximal activity level. First, the axiom
of Priority relation for decisive agents requires that the payoff of the first decisive
agent is zero if the second decisive agent has priority over it. Second, the axiom
of Equal treatment for decisive agents with the same prevailing group deals with
decisive agents that are incomparable in terms of both maximal activity level and
priority. It requires that such agents should be treated equally for their maximal ac-
tivity level. Therefore, this axiom is a relaxation of the axiom of Equal treatment for
equal pairs. As our second main result, we show that the multi-choice Priority value
is the unique value that satisfies this second set of axioms (Proposition 4.3.5).

Finally, we consider priority structures in which the set of agents can be par-
titioned into several priority classes. Precisely, each class contains incomparable
agents that have priority over each agent in the next class. In such priority rela-
tions structured by classes, we show that the multi-choice Priority value can be in-
terpreted as a sequential procedure involving specific TU-games. Consider a given
activity level that is played by at least one agent, and a priority class p. Consider all
agents in this priority class which are able to play the required activity level. These
agents obtain their contribution to the coalition formed by all agents over which this
class has priority (and that are able to play the required activity level). The final pay-
off of agents in this priority class for the required activity level is the Shapley value
applied to a TU-game on the subset of agents in the priority class p, which are able
to play the required activity level (Proposition 4.4.1).

Related literature

This chapter relates to a large literature in cooperative game theory that integrates
economical, communicational, or hierarchical constraints into the allocation pro-
cess. The largest part of this literature relates to TU-games. To cite a few, Myer-
son [1977] introduces communication graph to model communication constraints;
Aumann and Dreze [1974] and Owen [1977] model coalitional constraints by a par-
tition of the agent set; Gilles et al. [1992] model hierarchical constraints by a permis-
sion structure, while Faigle and Kern [1992] consider precedence constraints. In all
these approaches, the Shapley value (see Shapley [1953]) is adapted to account for
the position of the agents in the structure. Recently, Béal et al. [2022] study priority
structures modeled by a partial order on the agent set, and introduce the Priority
value for TU-games with a priority structure. Contrary to the previous structures, a
priority structure aims to influence the allocation process but has no impact either
on the formation or on the evaluation of coalitions (see Chapter 2, Section 2.2).

Only few recent developments have focused on integrating such constraints in
the multi-choice setting. Albizuri [2009] combines multi-choice games with a coali-
tion structure. This model considers that agents meet together in coalitions and
form a family of coalitions or a coalition structure. The author proposes a value that
extends the Owen value (see Owen [1977]) from TU-games to multi-choice games.
Further developments of this model have been provided by Jones and Wilson [2013].
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Béal et al. [2012] consider multi-choice games with limited cooperation possibilities
represented by an undirected communication forest on the agent set. This model
considers that agents can cooperate if they are connected in the forest. They pro-
pose a value that extends the Average-tree solution (see Herings et al. [2008]) from
forest TU-games to forest multi-choice games. Branzei et al. [2021] introduce the
model of two-sided multi-choice market games and consider core like solutions for
this class of games. Moreover, they introduce the Pairwise egalitarian set motivated
by the market structure in which a buyer is paired with a seller. Lowing [2022] en-
riches multi-choice games with a permission structure. The author considers several
combinations of the ordered set of activity levels with the permission structure and
defines several values on the class of multi-choice games with a permission struc-
ture.

Finally, this chapter also relates to the literature that analyzes allocation processes
among heterogeneous agents. A large part of this literature focus on rationing mod-
els. The simplest model describes situations in which agents demand a certain com-
modity, and the available resources fall short of the total demand. In particular,
Moulin [2000] characterizes a large class of priority rules. Each rule in this class con-
siders that agents are linearly ordered according to a priority relation. This model
also arises in a variety of contexts in which a priority relation is relevant as inher-
itance context (see O’Neill [1982]), bankruptcy context (see Aumann and Maschler
[1985], Thomson [2003, 2015]), the river sharing context (see Ansink and Weikard
[2015]) or claim problems (see Thomson [2019]).

The rest of the chapter is organized as follows. Section 4.2 provides basic defini-
tions for multi-choice games and priority structures. Section 4.3 introduces the ax-
ioms and proceeds to the axiomatic study. Section 4.4 discusses multi-choice games
with a priority relation structured by classes. Finally, Section 4.5 concludes the chap-
ter.

4.2 Notation

Let N = {1, . . . , n} be a fixed set of agents and K ∈ N. We consider G the class of
all multi-choice games on N. For s ∈ M, define the set of pairs featuring each agent
and their (non-null) activity level within coalition s as

C(s) = {(i, j) ∈ M+ | j = si}. (4.1)

Let (m, v) ∈ G be a multi-choice game. A pair (i, mi) is decisive if each coalition in
which i plays an activity level lower than mi generates zero worth. Formally, i ∈ N
is decisive if

∀s ∈ M : si < mi, v(s) = 0.

Remark 11. By the definition of the dividend (see Chapter 2, Section 2.3.1, definition
(2.21)), if i is a decisive agent in (m, v), then ∆s(v) = 0 whenever si < mi.

In addition, we consider PN the set of all priority structures (i.e., all partial orders)
that one can generate from N. The notation and notions related to priority structures
are the same as introduced in Chapter 2, Section 2.2. A multi-choice game on N
enriched with a priority structure on N is a triple (m, v,�). Denote by GPN the class
of multi-choice games with a priority structure that one can construct from G and
PN . A value on GPN is a map f : GPN → R|M

+|.
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4.3 Axiomatic study

There are several ways to consider the influence of a priority structure on multi-
choice games. Here, this issue is approached through an axiomatic study. Both
standard axioms and axioms related to the priority structure are considered.

Denote by f a value on GPN . The first three axioms are straightforward gener-
alizations of standard axioms for multi-choice games to multi-choice games with a
priority structure.

Efficiency. For each (m, v,�) ∈ GPN ,

∑
(i,j)∈M+

fij(m, v,�) = v(m).

The next axiom is based on the principle stating that the variation of an agent’s
maximal activity level should have no impact on the payoff of its remaining activity
levels. It was first introduced by Hwang and Liao [2009] and Béal et al. [2012].

Independence of the maximal activity level. For each (m, v,�) ∈ GPN ,

∀(i, j) ∈ M+ : j < mi, fij(m, v,�) = fij(m− ei, v,�).

The following axiom requires that the payoff of an agent’s maximal activity level
is not affected by another agent with a higher maximal activity level. This axiom is
based on the principle stating that an agent should not be affected by activity levels
that it is not able to perform. This principle is discussed by Moulin and Shenker
[1992] in the context of cost sharing problems, and by Albizuri et al. [2020] in the
context of bargaining problems with claims.

Independence of level reductions. For each (m, v,�) ∈ GPN , each i, i′ ∈ N such that
mi > mi′ ,

fi′mi′
(m, v,�) = fi′mi′

(m− ei, v,�).

The above axioms are independent of the priority structure. Below, we introduce
two new axioms that take into account the priority structure.

4.3.1 Balanced contributions principle and priority relations

The next two axioms relate to the payoff of agents’ maximal activity. The first one
considers comparable agents (with respect to the priority structure) with the same
maximal activity level. It is an invariance axiom inspired by the Priority agent out
axiom introduced by Béal et al. [2022]. Originally, the Priority agent out axiom as-
serts that removing any agent does not change the payoff of agents over which it has
priority. The idea is that removing an agent i has a double effect: first the situation
of an agent over which i has priority improves since less agents have priority over
it; second, its situation is getting worse since it has less possibilities to cooperate.
The Priority agent out axiom states that these two effect neutralize each other. We
propose a conceptually similar axiom that applies to agents’ maximal activity level.
Consider two agents i and i′ such that mi = mi′ and i � i′. The axiom states that the
payoff of i′’s maximal activity level remains unchanged if agent i’s maximal activity
level decreases by one unit.

Priority relation for the same maximal activity level. For each (m, v,�) ∈ GPN , each i, i′ ∈
N such that mi = mi′ and i � i′,

fi′mi′
(m, v,�) = fi′mi′

(m− ei, v,�).
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To introduce the next axiom, a definition is needed. An agent i prevails on another
agent i′ if it has priority over i′ and its maximal activity level mi is not lower than mi′ .
Given (m, v,�) ∈ GPN , for each i ∈ N, the set of agents that prevail on i is defined
as

Li(m, v,�) =↑� i ∩
{

k ∈ N \ {i} : mk ≥ mi
}

.

The next axiom is inspired by the well known Balanced contributions axiom in-
troduced by Myerson [1980] for TU-games (see Chapter 2, Section 2.3.3). Due to the
presence of priority relations between the agents, it seems reasonable that this re-
quirement takes the priority structure into account. The next axiom accommodates
this idea by requiring that two agents affect each other payoff in the same manner if
they have the same maximal activity level and the same prevailing group.

Balanced contributions for the same prevailing group. For each (m, v,�) ∈ GPN , each
i, i′ ∈ N such that i 6= i′, mi = mi′ and Li(m, v,�) = Li′(m, v,�),

fimi(m, v,�)− fimi(m− ei′ , v,�) = fi′mi′
(m, v,�)− fi′mi′

(m− ei, v,�).

Our first result shows that the combination of Efficiency, Independence of the
maximal activity level, Independence of level reductions, Priority relation for the
same maximal activity level, and Balanced contributions for the same prevailing
group yields a unique value for multi-choice games with a priority structure.

Proposition 4.3.1. On the class GPN there is at most one value that satisfies Efficiency,
Independence of the maximal activity level, Independence of level reductions, Priority rela-
tion for the same maximal activity level and Balanced contributions for the same prevailing
group.

Proof. Let f be a value on GPN that satisfies Efficiency, Independence of the max-
imal activity level, Independence of level reductions, Priority relation for the same
maximal activity level and Balanced contributions for the same prevailing group.
Let us show that f (m, v,�) is uniquely determined, for each (m, v,�) ∈ GPN . This
is proved by induction on the number of activity levels in a game defined as ∑i∈N mi,
for each (m, v) ∈ GPN .

Initialization. Take any (m, v,�) ∈ GPN such that ∑i∈N mi = 1. There exists a
unique i ∈ N such that mi = 1 and mk = 0, for each k 6= i. By Efficiency and by
definition of a payoff vector, each payoff vector verifies fi1(m, v,�) = v(m). This
shows that f (m, v,�) is uniquely determined.

Induction hypothesis. Assume that f (m, v,�) is uniquely determined for each
(m, v,�) ∈ GPN such that ∑i∈N mi = W ≥ 1.

Induction step. Take any (m, v,�) ∈ GPN such that ∑i∈N mi = W + 1. Let us
show that f (m, v,�) is uniquely determined. Denote by m = maxk∈N mk the highest
maximal activity level in (m, v,�), and denote by

Nm = {i ∈ N | mi = m},

the set of agents that possess the highest maximal activity level. By Independence of
the maximal activity level, for each agent i ∈ N and for each j < mi,

fij(m, v,�) = fij(m− ei, v,�). (4.2)

Observe that there are a total of W activity levels in (m− ei, v,�). Therefore, by the
induction hypothesis, fij(m− ei, v,�) is uniquely determined. By (4.2), fij(m, v,�)
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is uniquely determined, for each i ∈ N and each j < mi. It remains to show that
fimi(m, v,�) is uniquely determined, for each i ∈ N.

First, take any agent k 6∈ Nm, i.e, mk < m. By definition of Nm, there is at least
one agent i ∈ Nm such that mi > mk. By Independence of level reductions,

fkmk(m, v,�) = fkmk(m− ei, v,�). (4.3)

As above, observe that there are a total of W activity levels in (m− ei, v,�). By the
induction hypothesis, fkmk(m− ei, v,�) is uniquely determined. Therefore, by (4.3),
fkmk(m, v,�) is uniquely determined for each k 6∈ Nm.

Second, take any i ∈ Nm. Assume that |Nm| = 1. It follows that mk < mi,
for each k ∈ N. Denote by M+

−ei
= M+ \ {(i, mi)} the set of pairs associated with

(m− ei, v,�). By Independence of level reductions,

∀k ∈ N, j < mi fkj(m, v,�) = fkj(m− ei, v,�)
=⇒ ∑

(k,j)∈M+
−ei

fkj(m− ei, v,�) = ∑
(k,j)∈M+

−ei

fkj(m, v,�). (4.4)

By Efficiency and (4.4),

∑
(k,j)∈M+

−ei

fkj(m− ei, v,�) = v(m− ei)

=⇒ ∑
(k,j)∈M+

−ei

fkj(m, v,�) = v(m− ei)

=⇒ fimi(m, v,�) = ∑
(k,j)∈M+

fkj(m, v,�)− ∑
(k,j)∈M+

−ei

fkj(m, v,�)

= v(m)− v(m− ei).

This shows that fimi(m, v,�) is uniquely determined.
Now, assume that |Nm| > 1. Consider the subposet (Nm,�Nm) of (N,�) and the

priority group ↑�Nm k of agent k ∈ Nm. Two separate cases are considered.
Case 1. Take any k ∈ Nm such that ↑�Nm k 6= ∅. Then, there is at least one i ∈ Nm
such that i � k. By Priority relation for the same maximal activity level,

fk,mk(m, v,�) = fk,mk(m− ei, v,�). (4.5)

Observe that there are a total of W activity levels in (m− ei, v,�). By the induction
hypothesis, fk,mk(m− ei, v,�) is uniquely determined. Therefore, by (4.5), fk,mk(m, v,�
) is uniquely determined.

Case 2. Take any i ∈ Nm such that ↑�Nm i = ∅. Define

Nm = {i ∈ Nm | ↑�Nm i = ∅}

the set of agents with the highest maximal activity level and with an empty priority
group in (Nm,�). Denote by nm = |Nm| the number of agents in Nm. By definition,
for each i ∈ Nm, Li(m, v,�) = ∅. If nm > 1, then by Balanced contributions for the
same prevailing group,

∀i, i′ ∈ Nm, fimi(m, v,�)− fi′mi′
(m, v,�) = fimi(m− ei′ , v,�)− fi′mi′

(m− ei, v,�).
(4.6)

Observe that there are a total of W activity levels in (m− ei, v,�) and (m− ei′ , v,�).
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The right hand-side of (4.6) is uniquely determined by the induction hypothesis.

Applying the same argument for each agent in Nm one generates
(

nm

2

)
equations

of type (4.6). Moreover, by Efficiency

∑
(i,j)∈M+

fij(m, v,�) = ∑
i∈N

mi

∑
j=1

fij(m, v,�)

= v(m)

= ∑
i∈N

mi−1

∑
j=1

fij(m, v,�) + ∑
k 6∈Nm

fkmk(m, v,�) + ∑
i∈Nm

fimi(m, v,�).

This can also be written as

∑
i∈Nm

fimi(m, v,�) = v(m)− ∑
i∈N

mi−1

∑
j=1

fij(m, v,�)− ∑
k 6∈Nm

fkmk(m, v,�)

− ∑
k∈Nm
k 6∈Nm

fkmk(m, v,�).
(4.7)

Let b denote the right-hand side of (4.7). At this step, it has been shown that:

- fij(m, v,�) is uniquely determined for each j < mi;

- fkmk(m, v,�) is uniquely determined for each k 6∈ Nm;

- fkmk(m, v,�) is uniquely determined for each k ∈ Nm and k 6∈ Nm.

Therefore, b is uniquely determined. From (4.7) and (4.6), one generates the system
of (nm

2 ) + 1 equations with nm unknowns

(A) =


∑

i∈Nm

fimi(m, v,�) = b,

∀i, i′ ∈ Nm,
fimi(m, v,�)− fi′mi′

(m, v,�) = fimi(m− ei′ , v,�)− fi′mi′
(m− ei, v,�).

Without loss of generality, relabel each agent in Nm by i1, i2, . . . , inm . By considering
the sequence of agents (i1, i2, . . . , inm), one can reduce (A) to the subsystem (B) of
nm equations with nm unknowns

(B) =


∑

i∈Nm

fimi(m, v,�) = b,

∀k ∈ {1, . . . nm − 1},
fikmik

(m, v,�)− fik+1mik+1
(m, v,�) = fikmik

(m− eik+1 , v,�)− fik+1mik+1
(m− eik , v,�).
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System (B) can be represented by the equation X( fikmk)k∈{1,...nm} = Y, where

X =



1 1 1 . . . 1 1
1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...
0 0 0 . . . −1 0
0 0 0 . . . 1 −1



and Y =


b

fi1mi1
(m− ei1+1 , v,�)− fi1+1mi1+1

(m− ei1 , v,�)
...

finm−1minm−1
(m− einm

, v,�)− finm minm
(m− einm−1 , v,�)


It is clear that X is full rank, and thus is invertible. Therefore, X( fikmk)k∈{1,...nm−1} =
Y admits a unique solution, which is equivalent to say that (X) admits a unique
solution. We conclude that the original system (A) admits at most one solution.
This allows to conclude the induction step. The proof is completed. �

In many economic decision problems, a decision maker has to choose an option
within a finite set of possible alternatives. Often, these alternatives are defined ac-
cording to a finite number of criteria (see Svenson [1979]). A popular decision mak-
ing process is to select the alternatives according to a lexicographic ordering based
on these criteria (see Fishburn [1974]). In other words, one classifies the criteria ac-
cording to their relative significance. Then, the alternative that performs the best on
the first criterion is elected. If more than one alternative is elected, then the second
criterion is used to tiebreak the alternatives. This process continues until there is
only one alternative left, or no criterion left.

We introduce the multi-choice Priority value for multi-choice games with a priority
structure that follows a lexicographic allocation process. The activity levels of the
agents are assumed to be the most significant criterion. The multi-choice Priority
value allocates the surplus of each coalition among a subset of agents within this
coalition. These agents are chosen according to a lexicographic decision process that
selects the agents with the highest activity level in the coalition. In case more than
one agent is selected, the process sorts the agents according to their position in the
priority structure.

Precisely, we derive a lexicographic partial order (M+,�∗) from the total order
on the set of activity levels (M+

i ,≥) of the agents i ∈ N and the priority structure
(N,�). Given a multi-choice game with a priority structure (m, v,�) ∈ GPN , define
the lexicographic partial order �∗ on the set of pairs M+ as

∀(i, j), (i′ j′) ∈ M+, (i, j) �∗ (i′, j′) ⇐⇒
[
(j > j′) or (j = j′ and i � i′)

]
. (4.8)

We now have the material to define the multi-choice Priority value, f P. This
value assigns to a pair (i, j) a share of the dividend of a coalition s if no other pair
has a higher position in the lexicographic order induced by the coalition.
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Formally, the multi-choice Priority value, f P, is defined as: for each (m, v,�) ∈
GPN ,

∀(i, j) ∈ M+, f P
ij (m, v,�) = ∑

s≤m
j=si

(i,j)∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)| , (4.9)

where for each s ∈ M, T(C(s),�∗) is the set of maximal elements of the subposet
(C(s),�∗), and C(s) is the set of pairs featuring agents and their non-null activity
level in s as defined in (4.1).

Remark 12. Whenever m = (1, . . . , 1), this value coincides with the Priority value
on TU-games introduced by Béal et al. [2022] (see 2, Section 2.2, definition 2.16).
Whenever the priority structure is a trivial poset (N,�0), this value coincides with
the multi-choice Shapley value studied in Chapter 3.

Below, we provide a brief illustration of the computation of f P.

Example 4. Let (m, v,�) ∈ GPN be such that N = {a, b, c}, a � b, a � c, and
m = (1, 2, 1). By (4.8), the combination of these elements leads to the lexicographic
partial order (M+,�∗) described by the following Hasse diagram.

a, 1

b, 2

b, 1c, 1

Figure 2: Hasse diagram of (M+,�∗).

Consider the characteristic function v and its associated dividends described in
the following tables.

s = (sa, sb, sc) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1)
v(s) 1 1 1 2 4 4

∆s(v) 1 1 1 0 2 2

s = (sa, sb, sc) (1,1,1) (0,2,0) (1,2,0) (0,2,1) (1,2,1)
v(s) 6 2 2 6 9

∆s(v) -1 1 -1 1 2

Pick s = (1, 1, 0). According to (4.1), C(s) = {(a, 1), (b, 1)} and according to (4.8)
and (M+,�∗), T(C(s),�∗) = (a, 1). Therefore, (a, 1) is the only pair to which the
dividend ∆(1,1,0)(v) should be allocated. More generally, the coalitions s ∈ M such
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that (a, 1) ∈ T(C(s),�∗) are (1, 0, 0), (1, 1, 0), (1, 0, 1) and (1, 1, 1). It follows that

f P
a1(m, v,�) =

∆(1,0,0)(v)
|T(C(1, 0, 0),�∗)| +

∆(1,1,0)(v)
|T(C(1, 1, 0),�∗)| +

∆(1,0,1)(v)
|T(C(1, 0, 1),�∗)|

+
∆(1,1,1)(v)

|T(C(1, 1, 1),�∗)|

=
1
1
+

0
1
+

2
1
+

(−1)
1

= 2,

f P
b1(m, v,�) =

∆(0,1,0)(v)
|T(C(0, 1, 0),�∗)| +

∆(0,1,1)(v)
|T(C(0, 1, 1),�∗)|

=
1
1
+

2
2

= 2.

Similarly, f P
c1(m, v,�) = 2 and f P

b2(m, v,�) = 3.

The next proposition provides an axiomatic characterization of f P on the class of
multi-choice games with a priority structure.

Proposition 4.3.2. On the class GPN a value f satisfies Efficiency, Independence of the
maximal activity level, Independence of level reductions, Priority relation for the same max-
imal activity level and Balanced contributions for the same prevailing group if and only if
f = f P.

Proof. By Proposition 4.3.1, we know that there is at most one value that satisfies
Efficiency, Independence of the maximal activity level, Independence of level re-
ductions, Priority relation for the same maximal activity level and Balanced contri-
butions for the same prevailing group. It remains to show that f P satisfies these
axioms.

Efficiency. Take any (m, v,�) ∈ GPN . By definition of f P, the dividend of a
coalition s ∈ M is equally allocated among the pairs in T(C(s),�∗). Therefore, it
holds that

∑
(i,j)∈M+

f P
ij (m, v,�) = ∑

s≤m
∑

(i,j)∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)|

= ∑
s≤m

∆s(v)

= v(m).

This shows that f P satisfies Efficiency.
Independence of the maximal activity level. Take any (m, v,�) ∈ GPN and any pair

(i, j) ∈ M+ such that j < mi. By definition of f P, the payoff f P
ij (m, v,�) only depends

on the coalitions s ∈ M verifying si = j. Thus, it is straightforward that f P satisfies
Independence of the maximal activity level.

Independence of level reductions. Take any (m, v,�) ∈ GPN , any s ∈ M, and any
two agents i, i′ ∈ N such that mi < mi′ . If (i, mi) ∈ T(C(s),�∗), then we necessarily
have si′ ≤ mi since mi < mi′ . Therefore, the payoff f P

imi
(m, v,�) depends only on

coalitions s ∈ M such that si′ ≤ mi < mi′ . It follows that

f P
imi

(m, v,�) = f P
imi

(m− ei′ , v,�),
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as desired.
Priority relation for the same maximal activity level. Take any (m, v,�) ∈ GPN , any

s ∈ M, and any two agents i, i′ ∈ N such that mi = mi′ and i′ � i. If (i, mi) ∈
T(C(s),�∗), then we necessarily have si′ < mi′ i.e s ≤ m − ei′ . Therefore, it holds
that

f P
imi

(m, v,�) = ∑
s≤m

mi=si
(i,mi)∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)|

= ∑
s≤m−ei′mi=si

(i,mi)∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)|

= fimi(m− ei′ , v,�).

The last equality holds by the last point of Remark 11. This shows that f P satisfies
Priority relation for the same maximal activity level.

Balanced contributions for the same prevailing group. Take any (m, v,�) ∈ GPN and
any two agents i, i′ ∈ N such that mi = mi′ and Li(m, v,�) = Li′(m, v,�). Observe
that, for each s ∈ M, if (i, mi), (i, mi′) ∈ C(s), then

(i, mi) ∈ T(C(s),�∗) ⇐⇒ (i′, mi′) ∈ T(C(s),�∗). (4.10)

Let us compute the payoff of the pair (i, mi). By definition of f P,

f P
imi

(m, v,�) = ∑
s≤m

(i,mi)∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)|

= ∑
s≤m

(i,mi)∈T(C(s),�∗)
si′<mi′

∆s(v)
|T(C(s),�∗)| + ∑

s≤m
(i,mi)∈T(C(s),�∗)

si′=mi′

∆s(v)
|T(C(s),�∗)| .

By (4.10),

f P
imi

(m, v,�) = ∑
s≤m

(i,mi)∈T(C(s),�∗)
si′<mi′

∆s(v)
|T(C(s),�∗)| + ∑

s≤m
(i,mi),(i′,mi′ )∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)| .

Moreover,

f P
imi

((m− ei′), v,�) = ∑
s≤(m−ei′ )

(i,mi)∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)| = ∑

s≤m
(i,mi)∈T(C(s),�∗)

si′<mi′

∆s(v)
|T(C(s),�∗)| .

The same reasoning holds for (i′, mi′), from which one concludes that

f P
imi

(m, v,�)− f P
imi

((m− ei′), v,�) = ∑
s≤m

(i,mi),(i′,mi′ )∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)|

= f P
i′mi′

(m, v,�)− f P
i′mi′

((m− ei), v,�),
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as desired. This concludes the proof. �

Logical independence To illustrate our counter-examples, consider the following
example. Pick N = {a, b} and m = (2, 2). Consider (m, v,�), where (N,�) is a
poset and v is the characteristic function given by

s = (sa, sb) (1,0) (0,1) (1,1) (2,0) (0,2) (1,2) (2,1) (2,2)
v(s) 1 1 2 3 4 6 6 12

∆v(s) 1 1 0 2 3 1 2 2

- Dropping Efficiency. The null value defined as

∀(i, j) ∈ M+, fij(m, v,�) = 0,

satisfies all the axioms except Efficiency.

- Dropping Independence of the maximal activity level. The value f defined as

∀(i, j) ∈ M+, fij(m, v,�) = ∑
s≤m

si≥j>0
(i,si)∈T(C(s),�∗)

∆v(s)
si|T(C(s),�∗)|

,

satisfies all the axioms except Independence of the maximal activity level. To
see this, let us apply f on the above game by fixing a � b. Observe that
fa1(m, v,�) = 4, whereas fa1(m − ea, v,�) = 3. This shows that f violates
Independence of the maximal activity level.

- Dropping Independence of level reductions. The value f defined as

∀(i, j) ∈ M+, fij(m, v,�) = ∑
s≤m
si=j

↑�S(s) i=∅

∆v(s)
|{i′ ∈ S(s)| ↑�S(s) i′ = ∅}| ,

where S(s) = {i ∈ N | si > 0}, satisfies all the axioms except Independence of
level reductions. To see this, let us apply f on the above game by fixing a � b.
Observe that fa1(m, v,�) = 2, whereas fa1(m− eb, v,�) = 1. This shows that
f violates Independence of level reductions.

- Dropping Priority relation for the same maximal activity level. The multi-
choice Shapley value f defined as

∀(i, j) ∈ M+, fij(m, v,�) = ∑
s≤m

j=si=s

∆v(s)
|{i ∈ N|si = s}| ,

where s = maxi∈N si, satisfies all the axioms except Priority relation for the
same maximal activity level. To see this, let us apply f on the above game by
fixing a � b. The value does not satisfy Priority relation for the same maximal
activity level since fa2(m, v,�) = 5 and fa2(m− eb, v,�) = 4.
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- Dropping Balanced contributions for the same prevailing group. Fix ω =

(ωi,j)(i,j)∈M+ ∈ R
|M+|
++ . The value f ω defined as

∀(i, j) ∈ M+, f ω
ij (m, v,�) = ∑

s≤m
si=j

(i,si)∈T(C(s),�∗)

ωi,j

∑(i′,j′)∈T(C(s),�∗) ωi′ j′
∆v(s),

satisfies all the axioms except Balanced contributions for the same prevailing
group. To see this, let us apply f on the above game and assume that (N,�) is
the trivial poset (N,�0). In this case, a and b have the same (empty) prevailing
group. Let us fix ωa,1 = ωa,2 = 1 and ωb,1 = ωb,2 = 2. Observe that

fa2(m, v,�0)− fa2(m− eb, v,�0) =
2
3

and fb2(m, v,�0)− fb2(m− ea, v,�0) =
4
3

.

This shows that f violates Balanced contributions for the same prevailing group.

Remark 13. Consider the games (m, v,�) ∈ GPN such that for each i ∈ N, mi = 1.
Let us investigate the implication of the axioms invoked in the statement of Propo-
sition 4.3.2 for such games. The following three observations hold. First, the axioms
of Independence of the maximal activity level and Independence of level reductions
become useless. Second, Priority relations for the same maximal activity level boils
down to Priority agent out (see Béal et al. [2022]), which states that if an agent leaves
the game, then the payoff of the agents over whom it had priority are not affected.
Finally, for each i ∈ N, the prevailing group coincides with the priority group. Con-
sequently, Balanced contributions for the same prevailing group becomes Balanced
contributions for the same priority group. Thus, Proposition 2 reduces to Efficiency,
Priority agent out and Balanced contribution for the same priority group. By Re-
mark 12, this leads to a new characterization of the Priority value on the class of
TU-games with a priority structure.

Next, consider the games (m, v,�) ∈ GPN such that (N,�) is the trivial poset.
Let us investigate the implication of the axioms invoked in the statement of Propo-
sition 4.3.2 for such games. First, because there is no priority relations between the
agents, Priority relation for the same maximal activity level becomes useless. An-
other consequence is that the prevailing group of each agent becomes empty so that
Balanced contribution for the same prevailing group becomes Balanced contribu-
tions for agents with the same maximal activity level. Thus, Proposition 2 reduces to
Efficiency, Independence of the maximal activity level, Independence of level reduc-
tions, and Balanced contributions for agents with the same maximal activity level.
By Remark 12, this leads to a new characterization of the multi-choice Shapley value
on the class of multi-choice games.

4.3.2 Equal treatment principle and priority relations

This section provides a second characterization of f P for multi-choice games with a
priority structure. The next four axioms are generalizations of standard axioms for
multi-choice games to multi-choice games with a priority structure.
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Additivity. For each (m, v,�), (m, w,�) ∈ GPN ,

f (m, v + w,�) = f (m, v,�) + f (m, w,�).

Null game. For each (m, v0,�) ∈ GPN ,

∀(i, j) ∈ M+, fij(m, v0,�) = 0.

Independence of null pair. For each (m, v,�) ∈ GPN , for each null pair (i, j) ∈ M+,

∀(i′, j′) ∈ M+ \ {(i, mi)}, fi′ j′(m, v,�) = fi′ j′(m− ei, v,�).

The null pair axiom. For each (m, v,�) ∈ GPN , for each null pair (i, j) ∈ M+,

fij(m, v,�) = 0.

By successive applications of Independence of null pair and Efficiency one ob-
tains the following result.

Lemma 4.3.1. On the class of multi-choice games with a priority structure GPN , Efficiency
and Independence of null pair imply the null pair axiom.

The next two axioms relate to decisive agents with the same maximal activity
level. Recall that an agent is decisive if any coalition in which it does not play its
maximal activity level generates zero worth. Let s ∈ M be a coalition such that
si = j− 1. The surplus v(s + ei)− v(s) refers to the contribution of i for its activity
level j to the coalition s. It is straightforward to see that two decisive agents i, i′

such that mi = mi′ have the same contributions to coalitions, i.e, for each s where
si = si′ = mi − 1 and sk ≤ mk, k 6= i, i′, it holds that v(s + ei) = v(s + ei′).3 Therefore,
the pairs (i, mi), (i′, mi′) are equals. A standard requirement in cooperative games is
that equal agents are treated equally. However, although decisive agents are equal
from an economic perspective, they may not have the same position in the priority
structure. Due to this asymmetry, it seems reasonable to favor the decisive agent
with the highest priority. The next axiom accommodates this feature and requires
that the payoff of a decisive agent is zero if another decisive agent has priority over
it.

Priority relation for decisive agents. For each (m, v,�) ∈ GPN , for each i, i′ ∈ N deci-
sive agents such that mi′ = mi and i′ � i,

fimi(m, v,�) = 0.

Whenever two decisive agents are indistinguishable in terms of both maximal
activity levels and priority, there is no reason to treat them differently. The next
axiom follows this standpoint and ensures an equal payoff for such agents.

Equal treatment for decisive agents with the same prevailing group. For each (m, v,�) ∈
GPN , for each i, i′ ∈ N decisive such that mi = mi′ and Li(m, v,�) = Li′(m, v,�),

fimi(m, v,�) = fimi′
(m, v,�).

3This observation can be extended by considering two decisive agents with different maximal ac-
tivity levels.
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Interestingly, the combination of Priority relation for the same maximal activity
level and Null game implies Priority relation for decisive agents. Moreover, the
combination of Balanced contributions for the same prevailing group and Null game
implies Equal treatment for decisive agents with the same prevailing group.

Proposition 4.3.3. On the class of multi-choice games with a priority structure GPN ,

a. Priority relation for the same maximal activity level and Null game implies Priority
relation for decisive agents;

b. Balanced contributions for the same prevailing group and Null game implies Equal
treatment for decisive agents with the same prevailing group.

Proof. Point a. Let f be a value on GPN that satisfies Priority relation for the same
maximal activity level and Null game. Take any (m, v,�) ∈ GPN and any i′ ∈ N
decisive agent. By Priority relation for the same maximal activity level, for each
decisive agent i ∈ N such that mi′ = mi and i′ � i,

fimi(m, v,�) = fimi(m− ei′ , v,�).

Since (i′, mi′) is decisive in (m, v,�), the sub-game (m − ei′ , v,�) is a null game.
Therefore, by Null game,

fimi(m, v,�) = fimi(m− ei′ , v,�) = fimi(m− ei′ , v0,�) = 0.

This shows that f satisfies Priority relation for decisive agents.
Point b. Let f be a value on GPN that satisfies Balanced contributions for the

same prevailing group and Null game. Take any (m, v,�) ∈ GPN and any two de-
cisive agents i, i′ ∈ N such that mi = mi′ and Li(m, v,�) = Li′(m, v,�). By Balanced
contributions for the same prevailing group,

fimi(m, v,�)− fimi(m− ei′ , v,�) = fi′mi′
(m, v,�)− fi′mi′

(m− ei, v,�).

Since (i, mi) and (i′, mi′) are decisive in (m, v,�), it holds that (m − ei′ , v,�) and
(m− ei, v,�) are null games. By Null game,

fimi(m− ei′ , v,�) = fi′mi′
(m− ei, v,�) = 0.

Thus, we conclude that

fimi(m, v,�) = fi′mi′
(m, v,�).

This shows that f satisfies Equal treatment for decisive agents with the same pre-
vailing group. �

The next result shows that the combination of Efficiency, Additivity, Indepen-
dence of the maximal activity level, Independence of level reductions, Independence
of null pair, Priority relation for decisive agents, and Equal treatment for decisive
agents with the same prevailing group yields a unique value for multi-choice games
with a priority structure.

Proposition 4.3.4. On the class GPN , there is at most one value that satisfies Efficiency,
Additivity, Independence of the maximal activity level, Independence of level reductions, In-
dependence of null pair, Priority relation for decisive agents and Equal treatment for decisive
agents with the same prevailing group.
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Proof. Let f be a value on GPN that satisfies Efficiency, Additivity, Independence of
the maximal activity level, Independence of level reductions, Independence of null
pair, Priority relation for decisive agents and Equal treatment for decisive agents
with the same prevailing group. Let us show that f is uniquely determined. Take
any (m, v,�) ∈ GPN . By Additivity, it is enough to show that, for each t ∈ M,
f (m, ∆t(v)ut,�) is uniquely determined. Take any t ∈ M, and denote by t =
maxi∈N ti the highest activity level in t.

Each pair (i, j) ∈ M+, such that j > ti, is a null pair in (m, ∆t(v)ut,�). Since f
satisfies Efficiency and Independence of null pair, by Lemma 4.3.1 it satisfies the null
pair axiom. Therefore, for each (i, j) ∈ M+ such that j > ti, fij(m, ∆t(v)ut,�) = 0.
By successive applications of Independence of null pair, for each (i, j) ∈ M+ such
that j ≤ ti, we obtain

fij(m, ∆t(v)ut,�) = fij(t, ∆t(v)ut,�).

Take any pair (i, j) ∈ M+ such that j < ti ≤ t. By successive application of
Independence of the maximal activity level, we obtain

fij(t, ∆t(v)ut,�) = fij((t−i, j), ∆t(v)ut,�).

Moreover, by successive application of Independence of level reductions, we obtain

fij((t−i, j), ∆t(v)ut,�) = fij((tk ∧ j)k∈N , ∆t(v)ut,�).

Because j < ti, the sub-game ((tk ∧ j)k∈N , ∆t(v)ut,�) is a null game. Since Additivity
implies Null game,

fij(t, ∆t(v)ut,�) = fij((t−i, j), ∆t(v)ut,�)
= fij((tk ∧ j)k∈N , ∆t(v)ut,�)
= fij((tk ∧ j)k∈N , v0,�)
= 0.

Take any pair (i, j) ∈ M+ such that j = ti < t, By successive applications of Inde-
pendence of level reductions, we obtain

fij(t, ∆t(v)ut,�) = fij((tk ∧ j)k∈N , ∆t(v)ut,�).

Because j < t, the sub-game ((tk ∧ j)k∈N , ∆t(v)ut,�) is a null game. Since Additivity
implies Null game,

fij(t, ∆t(v)ut,�) = 0.

Define the set Nt = {i ∈ N | ti = t}. Observe that any i ∈ Nt is a decisive agent
in the game (t, ∆t(v)ut,�). Take any pair (i, j) ∈ M+ such that j = ti = t, i.e, i ∈ Nt.
Two cases are distinguished. Let Li(t, ∆t(v)ut,�) 6= ∅. Since i’s maximal activity
level in (t, ∆t(v)ut,�) is t, i′ ∈ Li(t, ∆t(v)ut,�) implies i′ � i and ti′ = t. Thus, there
exists another agent i′ ∈ Nt, such that i′ � i. By Priority relation for decisive agents,

fij(t, ∆t(v)ut,�) = 0.

Now suppose that Li(t, ∆t(v)ut,�) = ∅. Consider the set of pairs

M+
L(t) = {(i, j) ∈ M+ | i ∈ Nt, Li(t, ∆t(v)ut,�) = ∅}.
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At this step, we know that fij(m, ∆t(v)ut,�) = 0 for each (i, j) ∈ M+ \ M+
L(t). If

|M+
L(t)| = 1, then fij(m, ∆t(v)ut,�), for (i, j) ∈ M+

L(t), is uniquely determined by
Efficiency. If |M+

L(t)| > 1, then by Efficiency,

∑
(i,j)∈M+

fij(m, ∆t(v)ut,�) = ∑
(i,j)∈M+

L(t)

fij(t, ∆t(v)ut,�) = ∆t(v). (4.11)

By Equal treatment for decisive agents with the same prevailing group,

∀(i, j), (i′, j′) ∈ M+
L(t), fij(t, ∆t(v)ut,�) = fi′ j′(t, ∆t(v)ut,�) = c. (4.12)

From (4.12) and (4.11), fij(m, ∆t(v)ut,�) is uniquely determined for each (i, j) ∈
M+

L(t). Additivity allows to conclude the proof. �

The next result provides a second axiomatic characterization of f P on the class of
multi-choice games with a priority structure.

Proposition 4.3.5. On the class GPN , a value f satisfies Efficiency, Additivity, Indepen-
dence of the maximal activity level, Independence of level reductions, Independence of null
pair, Priority relation for decisive agents and Equal treatment for decisive agents with the
same prevailing group if and only if f = f P.

Proof. Thanks to Proposition 4.3.4, it suffices to show that f P satisfies Efficiency,
Additivity, Independence of the maximal activity level, Independence of level re-
ductions, Independence of null pair, Priority relation for decisive agents and Equal
treatment for decisive agents with the same prevailing group.

By Proposition 4.3.2, we know that f P satisfies Efficiency, Independence of the
maximal activity level, Independence of level reductions. Since f P is a weighted sum
of the dividend, it satisfies Additivity. Observe that, for each null pair (i, j) ∈ M+

and each s ∈ M such that si ≥ j, it holds that ∆s(v) = 0. From this observation,
it follows that f P satisfies Independence of null pair. Since Additivity implies Null
game, by Proposition 4.3.3, f P satisfies Priority relation for decisive agents and Equal
treatment for decisive agents with the same prevailing group. �

Logical independence

- Dropping Efficiency. The null value defined as

∀(i, j) ∈ M+, fij(m, v,�) = 0,

satisfies all the axioms except Efficiency.

- Dropping Additivity. The value f defined as

∀(i, j) ∈ M+, fij(m, v,�) = ∑
s≤m
si=j

(i,j)∈T(C(s),�∗)

(v(0−i, si))
2 + 1

∑(k,sk)∈T(C(s),�∗)(v(0−k, sk))2 + 1
∆v(s)

satisfies all the axioms except Additivity.
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- Dropping Independence of the maximal activity level. The value defined as

∀(i, j) ∈ M+, fij(m, v,�) = ∑
s≤m

si≥j>0
(i,si)∈T(C(s),�∗)

∆v(s)
si|T(C(s),�∗)|

,

satisfies all the axioms except Independence of the maximal activity level.

- Dropping Independence of level reductions. The value f defined as

∀(i, j) ∈ M+, fij(m, v,�) = ∑
s≤m
si=j

↑�S(s) i=∅

∆v(s)
|{i′ ∈ S(s)| ↑�S(s) i = ∅}| ,

where S(s) = {i ∈ N | si > 0}, satisfies all the axioms except Independence of
level reductions.

- Dropping Independence of null pair. The value f defined as

fij(m, v,�) =


v((mk ∧ j)k∈N)− v((mk ∧ j− 1)k∈N)

|T(C((mk ∧ j)k∈N)),�∗)|
if (i, j) ∈ T(C((mk ∧ j)k∈N)),�∗),

0 otherwise.

satisfies all the axioms except Independence of null pair. To see this, pick N =
{a, b}, a � b and m = (1, 1). The characteristic function v is defined in the
following table.

s = (sa, sb) (1,0) (0,1) (1,1)
v(s) 0 1 1

Observe that (a, 1) is a null pair. Since fb1(m, v,�) = 0 and fb1(m− ea, v,�) =
1, f violates Independence of null pair.

- Dropping Priority relation for decisive players. The multi-choice Shapley value
f defined as

∀(i, j) ∈ M+, fij(m, v,�) = ∑
s≤m

j=si=s

∆v(s)
|{i ∈ N|si = s}| ,

satisfies all the axioms except Priority relation for decisive players. To see this,
pick N = {a, b}, a � b and m = (1, 1). Consider the minimal effort game
(m, um). Observe that a and b are both decisive players in (m, um,�). The
fact that fb1(m, um,�) = 0.5 shows that f violates Priority relation for decisive
players.

- Dropping Equal treatment for decisive players with the same prevailing group.
Fix ω = (ωi,j)(i,j)∈M+ ∈ R

|M+|
++ . The value f ω defined as

∀(i, j) ∈ M+, f ω
ij (m, v,�) = ∑

s≤m
si=j

(i,si)∈T(C(s),�∗)

ωi,j

∑(i′,j′)∈T(C(s),�∗) ωi′ j′
∆v(s),
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satisfies all the axioms except Equal treatment for decisive players with the
same prevailing group. To see this, pick N = {a, b}, m = (1, 1) and the trivial
poset (N,�0). Since the priority structure is trivial, then a and b have the same
(empty) priority group. Consider the minimal effort game (m, um). Observe
that a and b are both decisive players in (m, um,�0). Let us fix ωa,1 = 1 and
ωb,1 = 2. We obtain fa1(m, um,�0) = 0.33 and fb1(m, um,�0) = 0.66, which
shows that f violates Equal treatment for decisive players with the same pre-
vailing group.

Remark 14. Consider the games (m, v,�) ∈ GPN such that for each i ∈ N, mi = 1.
Let us investigate the implication of the axioms invoked in the statement of Propo-
sition 4.3.5 for such games. The following observations hold. First, Independence of
null pair axiom boils down to the null agent out axiom (see Derks and Haller [1999]),
which states that the removal of a null agent from a TU-game does not impact the
payoff of the remaining agents. Second, because the decisive agent generalizes the
notion of necessary agent, Priority relation for decisive agents boils down to Priority
and necessary agent (see Béal et al. [2022]). Finally, as observed in Remark 13, for
each i ∈ N the prevailing group coincides with the priority group. Therefore, Equal
treatment for decisive agents with the same prevailing group reduces to Equal treat-
ment for necessary agents with the same priority group (see Béal et al. [2022]). Using
Remark 12, Proposition 4.3.5 reduces to Theorem 2 in Béal et al. [2022].

Next, consider the games (m, v,�) ∈ GPN such that (N,�) is the trivial poset.
Let us investigate the implication of the axioms invoked in the statement of Propo-
sition 4.3.5 for such games. As observed in Remark 13, the prevailing group of each
agent is empty. Consequently, Equal treatment for decisive agents with the same
prevailing group becomes Equal treatment for decisive agents with the same maxi-
mal activity level. Thus, Proposition 4.3.5 reduces to Efficiency, Additivity, Indepen-
dence of the maximal activity level, Independence of level reductions, Independence
of null pair, and Equal treatment for decisive agents with the same maximal activity
level. By Remark 12, this leads to a new characterization of the multi-choice Shapley
value.

4.4 Priority relations structured by classes

This section presents situations in which the set of agents can be partitioned into sev-
eral priority classes (N1,, . . . , Nq). Each priority class contains incomparable agents
that have priority over each agent in the next class. Such priority structures general-
ize the linear priority structures. Formally,

∀i, i′ ∈ N, [i � i′] ⇐⇒ [i ∈ Np, i′ ∈ Np′ =⇒ p < p′].

The set of agents over which agent i ∈ Np has priority is

↓� i =
⋃

p′>p

Np′ .

In the following, N>p stands for
⋃

p′>p Np′ .

Example 5. Let N = {1, 2, 3, 4, 5, 6, 7, 8} be the set of agents and consider (N,�) a
priority structured by classes. Suppose that the set of agents is partitioned into three
cells: N1 = {4, 5, 6}, N2 = {2, 3} and N3 = {1, 7, 8}. Each agent in N1 has priority
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over agents in N2 ∪ N3, and each agent in N2 has priority over agents in N3. Figure
2 represents the Hasse diagram of the poset (N,�).

5

3 2

4

1

6

78

N1

N2

N3

Figure 2: Hasse diagram of (N,�) structured by classes.

To analyze the impact of priority relations structured by classes on multi-choice
games, some useful notations and definitions are introduced. Consider a multi-
choice game (m, v) ∈ G and an activity level j ≤ maxi∈N mi. Denote by Q(j) ⊆ N
the set of agents able to play activity level j. Formally, the set Q(j) is defined as

Q(j) =
{

i ∈ N : mi ≥ j
}

.

Without loss of generality, we assume that Q(1) = N. Recall that, any TU-game
(N, v) can be viewed as a multi-choice game (m, v) where for each i ∈ N, mi = 1.
For each TU-game, the Shapley value (see Shapley [1953]) is defined as

∀i ∈ N, Shi(N, v) = Shi1((1, . . . , 1), v) = ∑
s≤(1,...,1)

si=1

∆s(v)
∑i∈N si

.

The multi-choice Priority value as a sequential allocation process

Consider the class of multi-choice games with priority relations structured by classes.
We define a sequential allocation process denoted by f . First consider an activity
level j ≤ maxi∈N mi and the set of agents that are able to play this activity level,
i.e., Q(j). Then, consider the priority class p ∈ {1, . . . , q}, and agents in Np that
are able to play j, i.e., the subset of agents Np ∩ Q(j). Finally, one assigns to each
pair (i, j) ∈ M+ such that i ∈ Np, the Shapley value obtained by i in a TU-game on
Np ∩Q(j). This sequential allocation process is detailed by the following procedure.
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Allocation process for multi-choice games with a priority relation structured by
classes

1: for j = 1 to maxi∈N mi do
2:
3: for t = 1 to q do
4: p = q− t + 1
5: if Np ∩Q(j) 6= ∅ then
6:

∀E ⊆ Np ∩Q(j), wp
j (E) =v

(
((j− 1) ∧mk)k∈N + e(E∪N>p)∩Q(j)

)
− v
(
((j− 1) ∧mk)k∈N + eN>p∩Q(j)

)
(4.13)

∀i ∈ Np ∩Q(j), fij(m, v,�) = Shi(Np ∩Q(j), wP
j )

7: else
8:
9: end if

10: end for
11: end for

Line 1 highlights that the procedure applies from the smallest activity level j = 1
to the highest activity level in the multi-choice game. Similarly, line 3 emphasizes
that for each level of activity, the procedure applies from the last priority class Nq
to the first priority class N1. Line 6 of the above procedure allows to define the
TU-game (Np ∩ Q(j), wp

j ), whose interpretation is the following. Assume that all
agents in Np ∩ Q(j) play the activity level j. They obtain their contribution to the
coalition in which all agents in N>p ∩ Q(j) play j, while all other agents play j− 1
(or their maximal activity level). To determine how this contribution is allocated, the
TU-game (Np ∩ Q(j), wp

j ) is defined as in (4.13). For each coalition E ⊆ Np ∩ Q(j),
the worth wp

j (E) corresponds to the surplus generated (in the game (m, v,�)) when
each agent in E increases its activity level from j− 1 to j. For an illustration of the
procedure, see Example 6 below.

Remark 15. Observe that, for each priority class p ∈ {1, . . . , q} the TU-game (Np ∩
Q(j), wp

j ), as defined in (4.13), is the sub-game of the TU-game (Q(j), wj) where

∀E ⊆ Q(j), wj(E) = v
(
((j− 1) ∧mk)k∈N + eE

)
− v
(
((j− 1) ∧mk)k∈N

)
. (4.14)

One can interpret wj(E) as follows. Suppose that each agent outside coalition E
plays its activity level j− 1 or its maximal activity level (if it is unable to play j− 1).
Then, the worth wj(E) corresponds to the surplus generated (in the game (m, v,�))
when each agent in E increases its activity level from j− 1 to j.4

Let E ⊆ Q(j), by definition of the dividends given by (2.21),

wj(E) = ∑
t≤((j−1)∧mk)k∈N+eE

∆t(v)− ∑
t≤((j−1)∧mk)k∈N

∆t(v),

4One can also find a similar construction of TU-games in the context of cost sharing problems (for
instance, see Albizuri et al. [2003]).
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that is
∀E ⊆ Q(j), wj(E) = ∑

t≤((j−1)∧mk)k∈N+eE
t 6≤((j−1)∧mk)k∈N

∆t(v). (4.15)

It should be observed that this sum takes in arguments each coalition t ≤ ((j− 1) ∧
mk)k∈N + eE in which at least one agent in E plays activity level j. This observation
will be useful to prove the next results.

Example 6. To illustrate the allocation process, consider (m, v,�) ∈ GPN such that
(N,�) is the priority structured by classes given in Example 5. Let m7 = 1, m1 =
m2 = m6 = 2, m3 = m4 = m5 = m8 = 3. It holds that Q(1) = N, Q(2) = N \ {7}
and Q(3) = {3, 4, 5, 8}. Apply the sequential procedure to determine the payoffs of
the pairs in M+.

1. Consider the activity level j = 1, and the subset of agents Q(1) = N.

1,1. Consider the priority class p = 3 and agents in N3 ∩ Q(1) = {1, 7, 8} = N3.
All agents in this subset cooperate at activity level j = 1. The contribution
v(eN3) − v(0) is allocated among all agents in N3 according to the TU-game
(N3, w3

1) defined as,
∀E ⊆ N3, w3

1(E) = v(eE).

Then, assign Shi(N3, w3
1) to each agent in i ∈ N3, which corresponds to their

payoff for their activity level j = 1.

1,2. Consider the priority class p = 2 and agents in N2 ∩ Q(1) = {3, 2} = N2.
Define the TU-game (N2, w2

1) as

∀E ⊆ N2, w2
1(E) = v(eE + eN3)− v(eN3).

Then, assign Shi(N2, w2
1) to each agent i ∈ N2, which corresponds to their pay-

off for their activity level j = 1.

1,3. The procedure is applied similarly. Thus, one defines the TU-game (N1, w1
1) as

∀E ⊆ N1, w1
1(E) = v(eE + eN2∪N3)− v(eN2∪N3).

Then, each agent i ∈ N1 receives Shi(N1, w1
1) which corresponds to their payoff

for their activity level j = 1.

The total worth allocated to agents in Q(1) is

v(eN1 + eN2∪N3) + v(eN2∪N3) + v(eN3)− v(eN2∩N3)− v(eN3) = v(1, . . . , 1).

2. Consider the activity level j = 2 and the subset of agents Q(2).

2,1. Consider the priority class p = 3 and agents in N3 ∩ Q(2). Then, define the
TU-game (N3 ∩Q(2), w3

2) as

∀E ⊆ N3 ∩Q(2), w3
2(E) = v((1, . . . , 1) + eE)− v((1, . . . , 1)).

Then, assigns Shi(N3 ∩Q(2), w3
1) to each agent i ∈ N3 ∩Q(2).

The next steps are applied similarly.
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The following lemma establishes that the dividend of a coalition E ⊆ Q(j) of
the intermediary TU-game (Q(j), wj), defined as (4.14), has a relevant expression in
terms of the dividends of multi-choice coalitions (of the multi-choice game (m, v,�
)). Specifically, the dividend of a coalition E ⊆ Q(j) is the sum of the dividend of
the multi-choice coalitions t such that for each i 6∈ E, ti ≤ (j− 1) ∧mi and for each
i ∈ E, ti = j.

Lemma 4.4.1. For each TU-game (Q(j), wj) as defined by (4.14), it holds that

∀E ⊆ Q(j), ∆E(wj) = ∑
t≤((j−1)∧mk)k∈N+eE

∀i∈E,ti=j

∆t(v).

Proof. Let (Q(j), wj) be the TU-game derived from (m, v,�) ∈ GPN and the activity
level j ≤ maxi∈N mi. The proof proceeds by induction on the size of coalitions E ⊆
Q(j).

Initialization. Take any coalition E ⊆ Q(j), such that |E| = 1. Let say that
E = {i} ⊆ Q(j). By definition of the dividend of a TU-game,

∆{i}(wj) = wj({i})
= ∑

t≤((j−1)∧mk)k∈N+ei
t 6≤((j−1)∧mk)k∈N

∆t(v).

where the first equality comes from the definition of the dividend in TU-games and
the definition of wj; and the second equality comes from (4.15). Observe that the set
of coalitions t ≤ ((j− 1) ∧mk)k∈N + ei and t 6≤ ((j− 1) ∧mk)k∈N is equal to the set
of coalitions t ≤ ((j− 1) ∧mk)k∈N + ei such that ti = j. Therefore, it holds that

∆{i}(wj) = ∑
t≤((j−1)∧mk)k∈N+ei

ti=j

∆t(v),

the desired result.
Induction hypothesis. Assume that for each E ⊆ Q(j), such that |E| = r with

1 ≤ r < |Q(j)|, we have

∆E(wj) = ∑
t≤((j−1)∧mk)k∈N+eE

∀i∈E:ti=j

∆t(v).

Induction step. Take any coalition E ⊆ Q(j), such that |E| = r + 1. By definition
of the dividend,

∆E(wj) = wj(E)− ∑
T⊂E

∆T(wj).

Observe that, for each T ⊂ E, it holds that |T| ≤ r. By (4.15) and the induction
hypothesis, it follows that

∆E(wj) = ∑
t≤((j−1)∧mk)k∈N+eE

t 6≤((j−1)∧mk)k∈N

∆t(v)− ∑
T⊂E

∑
t≤((j−1)∧mk)k∈N+eT

∀i∈T:ti=j

∆t(v). (4.16)

Note that, each coalition t ≤ ((j− 1)∧mk)k∈N + eE and t 6≤ ((j− 1)∧mk)k∈N is such
that

- for each agent i ∈ N \ E, ti ≤ (j− 1) ∧mi,
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- for some agents in E, ti = j.

Consider a coalition t ≤ ((j− 1) ∧ mk)k∈N + eE and t 6≤ ((j− 1) ∧ mk)k∈N . Denote
by T ⊆ E, the subset of agents such that ti = j. Summing over all coalitions t of this
form, one obtains

∑
T⊆E

∑
t≤((j−1)∧mk)k∈N+eT

∀i∈T:ti=j

∆t(v) = ∑
t≤((j−1)∧mk)k∈N+eE

t 6≤((j−1)∧mk)k∈N

∆t(v).

From this observation, (4.16) now becomes

∆E(wj) = ∑
T⊆E

∑
t≤((j−1)∧mk)k∈N+eT

∀i∈T:ti=j

∆t(v)− ∑
T⊂E

∑
t≤((j−1)∧mk)k∈N+eT

∀i∈T:ti=j

∆t(v)

= ∑
t≤((j−1)∧mk)k∈N+eE

∀i∈E:ti=j

∆t(v).

This concludes the induction step and completes the proof. �

The main result of this section shows that, on the class of multi-choice games
with a priority relation structured by classes, the multi-choice Priority value assigns
to each pair (i, j) ∈ M+ a payoff resulting from the above sequential procedure: the
payoff assigned to an activity level j of the agent i ∈ Np coincides with the Shapley
value obtained by i in the TU-game (Np ∩Q(j), wp

j ).

Proposition 4.4.1. For each (m, v,�) ∈ GPN , where (N,�) is a priority structured by
the classes (N1, . . . , Nq), it holds that for each priority class p ∈ {1, . . . , q}, for each pair
(i, j) ∈ M+ where i ∈ (Np ∩Q(j)),

f P
ij (m, v,�) = Shi((Np ∩Q(j)), wp

j ),

where the TU-game (Np ∩Q(j), wp
j ) is defined as (4.13).

Proof. Take any multi-choice game with priority structure (m, v,�) ∈ GP, where
(N,�) is structured by the classes (N1, . . . , Nq). Take any class p, any activity level
j ≤ maxi∈N mi and consider the TU-game (Np ∩ Q(j), wp

j ) given by (4.13). Adapt-
ing an intermediary result provided by Béal et al. [2022],5 one can show that the
dividends of the TU-game (Np ∩Q(j), wp

j ) are given by

∀E ⊆ Np ∩Q(j), ∆E(w
p
j ) = ∑

T⊆N>p∩Q(j)
∆T∪E(wj).

From, Lemma 4.4.1, one can write

∀E ⊆ Np ∩Q(j), ∆E(w
p
j ) = ∑

T⊆N>p∩Q(j)
∑

t≤((j−1)∧mk)k∈N+eE∪T
∀i∈E∪T:ti=j

∆t(v). (4.17)

5The reader is referred to the proof of Proposition 3 by Béal et al. [2022].
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Next, take any priority class p ∈ {1, . . . , q} and any pair (i, j) ∈ M+ such that i ∈ Np.
The payoff of the pair (i, j) through f P is

f P
ij (m, v,�) = ∑

s≤m
si=j

(i,j)∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)| .

Observe that, if a pair (i′, j′) ∈ C(s) is such that either i′ 6= i and j′ > j or i′ = i
and j′ > j, then we necessarily have (i, j) 6∈ T(C(s),�∗). From this observation,
f P
ij (m, v,�) can be written as

f P
ij (m, v,�) = ∑

s≤(j∧mk)k∈N
si=j

(i,j)∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)| = ∑

s≤((j−1)∧mk)k∈N+eQ(j)
si=j

(i,j)∈T(C(s),�∗)

∆s(v)
|T(C(s),�∗)| .

Because i ∈ Np, for each coalition s ≤ ((j − 1) ∧ mk)k∈N + eQ(j) such that (i, j) ∈
T(C(s),�∗), it holds that

- si = j

- ∀k ∈ N \Q(j): sk ≤ mk < j;

- ∀k ∈ Np′ ∩Q(j), where p′ > p: sk < j;

- ∀k ∈ (Np ∪ N>p) ∩Q(j): sk ≤ j.

These four points imply that the payoff of the pair (i, j) is obtained by summing
the dividends of (m, v,�) over the multi-choice coalitions s ≤ ((j− 1) ∧ mk)k∈N +
e(Np∪N>p)∩Q(j) such that si = j. Moreover, by summing over such multi-choice coali-
tions, one consider all sub-coalitions of agents T ⊆ (Np ∪ N>p) ∩ Q(j) containing
agent i. Thus, we obtain

f P
ij (m, v,�) = ∑

E⊆Np∩Q(j)
i∈E

∑
T⊆N>p∩Q(j)

∑
s≤((j−1)∧mk)k∈N+eE∪T

∀k∈E∪T : sk=j

∆s(v)
|T(C(s),�∗)| .

It should be observed that |T(C(s),�∗)| does not depend on the coalitions T ⊆
N>p ∩ Q(j). More precisely, it can be shown that, for each coalition s ≤ ((j− 1) ∧
mk)k∈N + eE∪T such that ∀k ∈ E ∪ T : sk = j, |T(C(s),�∗)| = |E|. Therefore, it holds
that

f P
ij (m, v,�) = ∑

E⊆Np∩Q(j)
i∈E

1
|E| ∑

T⊆N>p∩Q(j)
∑

s≤((j−1)∧mk)k∈N+eE∪T
∀k∈E∪T : sk=j

∆s(v)

= ∑
E⊆Np∩Q(j)

i∈E

1
|E|∆E(w

p
j )

= Shi((Np ∩Q(j)), wp
j ),

where the second equality comes from (4.17), and the third comes from the definition
of the Shapley value for TU-games. This completes the proof. �
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4.5 Conclusion

This chapter provides an axiomatic study on the class of multi-choice games with a
priority structure. A new value for this class is introduced and characterized: the
multi-choice Priority value. This value takes advantage of a lexicographic partial or-
der resulting from the combination of the ordered set of activity levels of the agents
with the priority structure. The followed approach allows to endogenously deter-
mine the partial lexicographic order on the set of pairs (composed of agents and
their activity levels) from the axioms.

We propose several directions for future research. First, the axioms discussed
in this chapter are conceptually close to those satisfied by the (multi-choice) Shap-
ley value(s) (Additivity, the null agent axiom and Balanced contributions). Another
well-known axiom satisfied by the Shapley value is Strong monotonicity (see Young
[1985]). In Chapter 3, we propose an axiomatic characterization of the multi-choice
Shapley value that invokes a generalization of Strong monotonicity from TU-games
to multi-choice games. It turns out that the multi-choice Priority value satisfies this
generalization of Strong monotonicity. Thus, it might be interesting to investigate
whether the multi-choice Priority value can be characterized by invoking this ax-
iom.

Second, in this chapter, we combine the linearly ordered sets of activity levels
with a priority structure to derive a lexicographic partial order on the set of pairs. It
might be interesting to investigate what happens if the activity levels of the agents
are not linearly ordered, but only partially ordered.
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Part 2. Applications to pollution issues
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Chapter 5

Allocation of hazardous waste
transportation costs

5.1 Introduction

Over the last decades, the generation of hazardous waste from industrial activities
has been steadily increasing. Tons of such waste are traded both internationally and
locally, involving massive waste movements. Because of the nature of such waste,
a threatening incident may occur during transportation causing damage that may
be irreversible. To address the problems of hazardous waste, a variety of environ-
mental regulations have emerged, establishing a body of legal statutes that monitor
their generation and transportation. To cite a few: the “Basel convention” regulates
the international movements of hazardous waste and their disposal; the “Compre-
hensive Environmental Response, Compensation, and Liability Act” (CERCLA or
Superfund Act) regulates the storage sites of hazardous waste in the United States;
the “Treaty on the Functioning of the European Union” regulates the movements of
hazardous waste within its borders. Each of these regulations is based on a preven-
tive approach aimed at implementing measures to reduce the risk associated with
hazardous waste.

In this chapter, we consider a finite set of agents involved in a hazardous waste
transport network.1 The network is modeled by a directed sink tree graph divided
into several portions, and each agent has a certain amount of waste it wishes to ship.
We suppose that a central authority sets preventive measures regarding the envi-
ronmental risk, which entails some costs of maintaining and operating the network.
Two questions then arise: which agent is liable for the risk on the network? How
should the cost be allocated?

To answer these questions, we define a hazardous waste transportation problem
as a tuple consisting of a directed sink tree graph, a vector of maximal amount of
waste and a list of cost functions (one for each portion of the network). The sink of
the tree is a waste treatment facility where the total waste is shipped. The vector of
maximal amount of waste corresponds to the total amount of waste each agent is
shipping to the facility. The cost function of each portion describes the maintenance
and operation cost of the portion when a certain amount of waste is conveyed to it.
An allocation rule is defined as a mapping that associates to each hazardous waste
transportation problem a list of payoffs describing the cost share of each agent for
each of its amount of waste.

1Recently, Martínez et al. [2022] study the hazardous waste trade by considering a network repre-
sentation for the waste movements.
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We analyze the hazardous transportation problem from the viewpoint of ax-
iomatic analysis. We consider several axioms that are derived from different envi-
ronmental law principles. These principles, that we further discuss in Section 5.3.2,
can be distinguished into two subsets. The first subset is specific to environmen-
tal issues and contains: the prevention and precautionary principles, which set the
duty of agents to take appropriate measures to prevent environmental risk; the pol-
luter pays principle, which asserts that the cost associated with a pollution hazard
should be born by those causing the hazard. The second subset of principles inter-
sects with some tort law principles. It contains different liability regimes that set out
the terms under which an agent is liable for certain hazards. Inspired by the Basel
convention, we consider the strict liability, the joint liability and the several liability
regimes. This allows us to clearly define which agent is liable for the risk caused
on which portion of the network. Accordingly, we consider several axioms related
to these environmental law principles. According to the prevention principle, the
maintenance and operation cost of the hazardous waste transport network should
be fully covered by the whole set of agents. We relate this interpretation to the Effi-
ciency axiom widely used in axiomatic analysis in economics. The second axiom is
related to the several liability principle. Several liability is a legal doctrine that de-
picts an agent liable in proportion to its contribution to a damage. Accordingly, we
consider the axiom of Independence of higher waste amount, which requires that
the cost share of an agent for any amount of waste does not depend on a higher
waste amount of any agent, including itself. This implies that an agent does not pay
for the risk associated with waste it is not able to generate. Then, we consider the
axiom of Path consistency, which requires that an agent’s cost share does not depend
on the costs of portions not used by that agent. We relate this axiom to the strict lia-
bility whereby an agent’s liability is tied to the portion it uses. Finally, we introduce
the axiom of Upstream solidarity for a cost increase, which requires that each agent
located upstream a portion should be equally impacted if the marginal cost of this
portion varies. This axiom complements the joint liability principles by removing
any ambiguity that may arise under this liability regime.

We show that there is a unique allocation rule satisfying Efficiency, Independence
of higher waste amount, Path consistency and Upstream solidarity for a cost increase
(Proposition 5.3.4). This rule, called the responsibility rule (Theorem 5.3.1), can be
described as follows. Consider any portion k and suppose that each agent liable
for this portion is shipping the same amount of waste j. If an agent is not able to
ship this amount then it ships its maximum. In this case, we say that the agents
form a j-synchronized waste profile. Then, the agents liable for the portion k, and
that ship the amount j, share equally the variation in cost between shipping the j-
synchronized and shipping the (j− 1)-synchronized waste profiles. By successively
applying this procedure on each portion for which an agent is liable, we obtain its
payoff (for its waste amount j) according to the responsibility rule.

Then, we analyze hazardous waste transportation problems by adopting a coop-
erative game theoretic approach. Specifically, we define a multi-choice game from
a hazardous waste transportation problem. We show that the responsibility rule
coincides with the multi-choice Shapley value, introduced in Chapter 2, of this ap-
propriate multi-choice game (Theorem 5.4.1).

Related literature

This work is closely related to the wide literature on cost sharing problems in net-
works. Specifically, our model generalizes the model of cleaning a polluted river
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introduced in Ni and Wang [2007]. The authors consider a polluted river as a line
divided into several segments. The cost of cleaning each segment is exogenously
given. Ni and Wang [2007] propose and characterize two allocation rules: the lo-
cal responsibility rule and the upstream responsibility rule. Further, they show that
both rules coincide with the Shapley value of an appropriate cooperative TU-game.
This model has been extended by Dong et al. [2012] by considering a polluted river
network modeled by a directed sink tree. Recently, van den Brink et al. [2018] study
the polluter river network problem and show that a polluted river network can be
interpreted as a permission tree structure. They provide different allocation rules
based on solutions for TU-games with a permission structure. Based on the polluter
pays principle, Gómez-Rúa [2013] propose new allocation rules for sharing the cost
of a polluted river inspired by properties of water taxes. Alcalde-Unzu et al. [2015]
consider a transfer rate that measures the proportion of pollutant transferred from
one segment to another. They show that uncertainty on this transfer rate can be re-
duced by using information from the cleaning costs. This allows to define some lim-
its to the liability of agents. Moreover they propose and characterize the Upstream
responsibility rule that takes into account these limits. Although our model can be
related to Ni and Wang [2007] and Dong et al. [2012], our study differs from them
on two points. First, we allow the agents to have multiple amount of waste. Second,
we explicitly consider that the amount of waste flows from one point of network to
another. This leads to a cumulative effect of the waste in the cost of maintaining and
operating a portion. Such effect is not taken into account by Dong et al. [2012].

This work can also be related to the literature on the transport of hazardous ma-
terials. This literature mainly focuses on the reduction of threatening incident that
may arise from the transportation of hazardous materials. Using an operation re-
search point of view, the problem is more about routing-scheduling and network
design than on cost allocation. A recent survey of network design problem can be
found in Mohri et al. [2021].

This chapter is organized as follows. Section 5.2 introduces the notation and
provides a brief presentation of directed graphs. Section 5.3 introduces the haz-
ardous waste transportation problem. Section 5.3.1 presents the model, and Section
5.3.2 discusses the different environmental principles. Our axiomatic analysis is con-
tained in Section 5.3.3, while Section 5.4 develops the cooperative game approach.
Finally, Section 5.5 concludes.

5.2 Preliminaries

Denote by N the set of natural integers containing 0, and fix 0 < K ∈ N. Given an
integer x ≤ K, denote by [[0, x]] the set {0, 1, . . . , x} of successive integers from 0 to
x, i.e., [[0, x]] = {z ∈N : 0 ≤ z ≤ x}.

5.2.1 Directed (tree) graph

A directed graph (henceforth digraph) is a pair g = (N, E) where N is a finite set of
nodes (representing the set of agents) and E ⊆ N× N is a binary irreflexive relation.
This binary relation E induces a collection of ordered pairs, i.e., E ⊆ {(i, i′) ∈ N ×
N : i 6= i′}. The pair (i, i′) ∈ E is interpreted as: there exists a directed link from i
to i′ in g. For each node i ∈ N, define U(i) = {i′ ∈ N : (i′, i) ∈ E} the set of direct
predecessors of i in g. The set U−1(i) = {i′ ∈ N : (i, i′) ∈ E} = {i′ ∈ N : i ∈ U(i′)}
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denotes the set of direct successors of i in g. Given a digraph g, a (directed) path
from i to i′ is a sequence of distinct nodes (i1, . . . , ih) such that i1 = i and for each
t = 1, . . . , h− 1, it+1 ∈ U−1(it), and ih = i′. For each i ∈ N, define Û(i) = {i′ ∈ N :
there exists a path from i′ to i} as the set of agents located upstream i in g. Similarly,
for each i ∈ N define Û−1(i) = {i′ ∈ N : i ∈ Û(i′)} as the set of agents located
downstream i in g. Given a set of agents S ⊆ N, we denote by U(S) =

⋃
i∈S U(i) and

U−1(S) =
⋃

i∈S U−1(i) the set of predecessors, respectively successors, of agents in
S. Similarly, for S ⊆ N we denote Û(S) =

⋃
i∈S Û(i) and Û−1(S) =

⋃
i∈S Û−1(i). For

convenience, we denote ÛS := Û(S) ∪ S, and Û−1
S := Û−1(S) ∪ S, and Ûk instead of

Û{k}.
Let g = (N, E) be a digraph. A directed path (i1, . . . , ih), with h > 2, is a cycle in

g if (ih, i1) ∈ E. A digraph g is called acyclic if there is no cycle in g. A digraph g is a
sink tree if there is exactly one node id ∈ N such that U−1(id) = ∅, Û(id) = N \ {id},
and for each i ∈ N \ {id}, |U−1(i)| = 1. Observe that a sink tree is an acyclic directed
graph. Denote by E the collection of all irreflexive digraphs and by E the collection
of all directed sink trees.

5.3 Hazardous waste transportation problem

5.3.1 The model

Consider a transport network connecting a finite set of agents N (directly or indirectly)
to a special node d called the delivery node. Such transport network structure is mod-
eled by a sink tree g = (N ∪ {d}, E), where d is the sink of the tree. Each element
(i, i′) ∈ E is called a portion. Since g is a sink tree, each agent i ∈ N has exactly one
direct successor in g. When no confusion arises, we simply denote a portion (i, i′)
by i. All the notation introduced for sink trees remain valid for a hazardous waste
transport network.

Each agent i ∈ N is endowed with a given amount of hazardous waste wi ∈
N, 0 < wi ≤ K, to be treated by a treatment facility. We assume that the treatment
facility is located at the delivery node d. Each agent is able to ship any amount
j ≤ wi of waste. However, the actual amount shipped is wi. Consider the product
set W = ∏i∈N [[0, wi]]. An element s = (si)i∈N ∈ W is referred to a waste profile,
which indicates each agent’s amount of waste. The profile of maximal amount of
waste is given by w = (wi)i∈N . Given the set of agents N, the profile of maximal
amount of waste w, and an amount j ≤ maxi∈N wi, define Q(j) as the set of agents
able to ship j amount of waste, i.e., Q(j) := {i ∈ N : wi ≥ j}. For any two distinct
amount of waste j, j′ such that j ≥ j′, we have that Q(j) ⊆ Q(j′). Moreover, given
a waste amount j ≤ maxi∈N wi, define the j-synchronized waste profile, (j ∧ wi)i∈N ,
in which each agent send the waste amount j. If an agent is unable to ship j, then it
sends its maximal amount of waste to the treatment facility.

Example 7. Let N = {1, 2, 3, 4, 5} be the set of agents involved in the transport of
hazardous waste and d the delivery node. Consider the hazardous waste transport
network g = (N ∪ {d}, E) where E = {(1, d), (3, 1), (2, 1), (5, 2), (4, 2)}, depicted
in Figure 1. The direct successor of agent 3 is U−1(3) = {1}. The set of direct
predecessors of agent 2 is U(2) = {4, 5}. The set of agents located upstream agent 1
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is Û(1) = N \ {1}.

d1

4

5

3

2

Figure 1: Hazardous waste transport network.

�

Shipping any amount of waste through a portion carries risks and a cost. This
cost is considered as the cost of maintaining and operating the network. For each
portion i ∈ N, let Ci : R+ → R+ be the cost function of this portion. We assume
that, for each i ∈ N the cost function Ci is non-negative and non-decreasing over R+.
Moreover, we use the convention Ci(0) = 0 for any i ∈ N. For each portion i ∈ N,
it is assumed that the cost function Ci depends on the total amount of waste passing
through the portion, i.e., the sum of the waste sent by all agents located upstream i
including its own waste. Thus, the cost of transporting the waste profile w through
a portion i is given by Ci( ∑

k∈Ûi

wk). The total cost of maintaining the network is then

given by
∑
i∈N

Ci( ∑
k∈Ûi

wk). (5.1)

Let C be the set of such cost functions. Denote by C = (Ci)i∈N ∈ CN a profile of cost
functions. For each i ∈ N, we denote by C0

i ∈ C the null cost function, i.e., C0
i (x) = 0

for all x ∈ R+. A hazardous waste transportation problem on a fixed agent set N and
delivery node d is then a triplet

(g, w, C) ∈ E ×W × CN .

Let PN = E ×W × CN be the set of all hazardous waste transportation problems on
N. Notice that polluted river network problems, introduced in Dong et al. [2012], can
be viewed as a subclass of hazardous waste transportation problem where wi = 1
for each i ∈ N and each cost function is a constant function.2

Consider any hazardous waste transportation problem (g, w, C) ∈ PN . The
question that arises is how to allocate the total maintenance and operation cost of
the hazardous waste transport network. An allocation rule f on PN assigns a non-
negative payoff (or cost share) fij(g, w, C) ∈ R+ to each agent i ∈ N for each of
its waste amount 0 < j ≤ wi. Then, for each i ∈ N and each j ≤ wi the payoff
fij(g, w, C) ∈ R+ is interpreted as the variation of payoff when agent i increases its
transported waste from j− 1 to j. Such interpretation is consistent with the fact that
agent are actually shipping the amount wi.

2We refer the reader to van den Brink et al. [2018] for a recent study of polluted river network
problems.
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5.3.2 Principles from environmental legislation

The transport of hazardous waste is regulated by a set of legal rules and statutes
established both at international and national levels. In this section, we present some
principles invoked in the environmental issues and specifically in the transport of
hazardous waste. We provide a brief interpretation of each principle within our
model. While some principles can be related to tort law principles, others are very
specific to environmental issues and deserve a specific interpretation.

The prevention principle The prevention principle is the most prevalent principle
in environmental law. This principle is at the heart of the preventive approach to the
environment, which aims at anticipating, minimizing and preventing environmen-
tal hazards. Indeed, the damage caused by pollution tends to be very expensive and
even has irreversible consequences. The implementation of preventive measures is
therefore crucial in the protection of the environment. Regarding hazardous waste
management and transportation, the preventive approach is advocated by the Basel
convention. Notably, the convention requires that anyone involved in the manage-
ment or transportation of hazardous waste to take appropriate measures to prevent
any potential pollution from the hazardous waste.

The polluter pays principle The polluter pays principle ensures that those caus-
ing pollution must bear the cost it generates. This principle, introduced by Arthur
Cecil Pigou in the 1920’s, aims at internalizing the external costs generated by pol-
luting activities. It can be thought from two complementary standpoints. First, this
principle has a preventive function, assigning the cost of prevention and precau-
tionary measures to agents involved in environmentally hazardous activities. This
is reflected in the recommendations on the pollution control made by the OECD or
the European Union.3 This principle also has a curative function by making the pol-
luter liable in case of environmental damage. From this perspective, it can be seen
as lying at the intersection between tort law principles and environmental statutes
by assigning the liability of a damage to the polluter.

Strict liability Strict liability is a legal doctrine according to which an agent is li-
able for a damage regardless of its intent. Thus, in case of a damage, this legal
regime does not require justification of fault or negligence from the damaging agent.
This doctrine is enforced in situations considered as inherently dangerous. It is
required by the Basel convention, the European Environmental liability Directive
(2004/35/EC), or the CERCLA (Superfund act). It complements the polluter-pays
principle (from the curative standpoint) by defining the conditions ruling the liabil-
ity for environmental hazard.4

Joint liability Joint liability is a second legal doctrine ruling situations with com-
bined causes of damage. According to this doctrine, each agent involved in a dam-
age is responsible for it, and can therefore be charged for it.

3See OECD recommendations 1972, and the Treaty of Functioning of the European Union, Article
192(1).

4We refer the reader to Landes and Posner [1980] for a study of strict liability in economic analysis
of law.
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Several liability The several liability doctrine is another legal doctrine that holds
an agent liable in proportion to its contribution to the damage. This doctrine can be
found in the Basel convention asserting that each liable agent is liable in proportion
to the contribution made by its waste to a damage.

5.3.3 Axiomatic analysis

In this section, we provide an axiomatic analysis on the class of hazardous waste
transportation problems. We discuss several axioms for allocation rules inspired by
the environmental principles introduced in Section 5.3.2.

We first consider the Efficiency axiom widely used in axiomatic analysis in eco-
nomics. This axiom can be related to a major concern in most of the hazardous
waste litigation, which is the damage remediation.5 In our framework, this concern
focuses on paying the cost of the network, leaving room for how to allocate this cost
among the agents. Accordingly, the Efficiency axiom requires that the total cost for
maintaining the network to be fully borne by all agents.

Efficiency For any (g, w, C) ∈ PN ,

∑
i∈N

∑
j≤wi

fij(g, w, C) = ∑
i∈N

Ci( ∑
k∈Ûi

wk).

The second axiom can be thought as limiting an agent’s cost share according to
its waste’s contribution to the risk of damage. In this sense, this axiom is weakly
related to the several liability regime. This liability regime relies on the assumption
that there exists a reasonable basis for determining each agent’s contribution to the
risk it causes to the network. In our framework, since each agent’s waste is of the
same nature, we use the waste amount of each agent to define such a basis. Accord-
ingly, the axiom of Independence of higher waste amount axiom requires that an
agent’s payoff for a given amount of waste j does not depend on any amount higher
than j. This axiom is related to the Independence of maximal activity level intro-
duced in Chapter 3. A similar axiom can be found in Moulin and Shenker [1992]
in the context of cost sharing problems. Regarding hazardous waste transportation
problems, this axiom ensures that no one subsidizes a higher waste amount from
any agent (including its own).

Independence of higher waste amount For any i ∈ N, and any (g, w, C) ∈ PN ,

∀j < wi, fij(g, w, C) = fij(g, (j ∧ wk)k∈N , C).

Next, we consider an intuitive axiom that relates an agent’s cost share to its distance
from the delivery node. Relying on the several liability regime, we consider a second
basis for determining the agents’ contribution to the risk on the network. We argue
that the greater the number of portions used to ship a given amount of waste, the
greater the risk to the network. Distance consistency then requires that the farther an
agent is from the delivery node, the higher its cost share for a given waste amount j.

Distance consistency. For any (g, w, C) ∈ PN , any i ∈ N, j ≤ wi and k ∈ Û−1(i) ∩
Q(j),

fij(g, w, C) ≥ fkj(g, w, C).
5For instance, see the hazardous waste litigation in United States v. Mosanto (1988).
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The next axiom is inspired by the polluter pays principle when considering the strict
liability regime. One interpretation of this liability regime (see Posner [1973]) implies
that an agent insures the network against the risk it causes. In our framework, this
risk is tied to the portion an agent uses. Conversely, an agent does not cause any risk
on a portion it does not use. The next axiom is based on the above interpretation of
strict liability, taking into account the portions an agent is liable for. Path consistency
requires that an agent’s cost share is independent of the cost of portions not used by
that agent. This axiom is closely related to the axiom of Independence of upstream
costs introduced in Dong et al. [2012] in the context of polluted river problems.

Path consistency. For any i ∈ N and any (g, w, C) ∈ PN , (g, w, C′) ∈ PN such that
for each h ∈ Û−1

i , Ch = C′h,

∀j ≤ wi, fij(g, w, C) = fij(g, w, C′).

Actually, Path consistency can be related to several axioms invoked in the literature
on cost sharing problems in networks. To cite a few, one may consider the axioms
of: Independence of unused edges introduced by Bergantiños et al. [2019] in the con-
text of energy networks; Individual independence of outside changes introduced by
Sudhölter and Zarzuelo [2017] in the context of highway problems; No free riding
introduced by Gopalakrishnan et al. [2021] in the context of allocating responsibil-
ity for emissions in a supply chain; Marginal damage independence introduced by
Ferey and Dehez [2016] and Oishi et al. [2023] in the context of liability problems.

The next axiom is based on a fairness principle describing how the cost share
of certain agents vary when only one cost function varies. Under the joint liability
regime, each agent located upstream of a portion is liable for the cost incurred on
this portion. However, the extent to which an agent should be held liable remains
to be determined. Upstream solidarity for a cost increase then requires that agents
located upstream of a portion be equally impacted by a cost increase of this portion.

Upstream solidarity for a cost increase. For any i ∈ N, any (g, w, C), (g, w, C′) ∈ PN

such that

∀s ∈W,

Ci( ∑
h∈Ûi

sh)− Ci( ∑
h∈Ûi

(sh − 1) ∨ 0) ≥ C′i( ∑
h∈Ûi

sh)− C′i( ∑
h∈Ûi

(sh − 1) ∨ 0),

and, for each k ∈ N \ {i}, Ck = C′k, it holds that: for each j ∈ [[0, maxl∈Ûi
wl ]], and

each l, l′ ∈ Ûi ∩Q(j),

fl j(g, w, C)− fl j(g, w, C′) = fl′ j(g, w, C)− fl′ j(g, w, C′).

Upstream solidarity for a cost increase can be seen as a strong application of the prin-
ciple of solidarity discussed in Thomson [2016]. Since the agents are jointly liable for
a portion, any change in the cost function has the same impact on each liable agent’s
cost share.

Below, we analyze the implication of these axioms. We first show that the com-
bination of Efficiency and Path consistency implies that the cost share of an agent is
null whenever the maintenance and operation cost of each portion it is liable for is
null.

Proposition 5.3.1. Let f be an allocation rule on PN . If f satisfies Efficiency and Path
consistency, then for any i ∈ N, any (g, w, C) ∈ PN such that for each k ∈ Û−1

i , Ck = C0
k

it holds that
∀j ≤ wi, fij(g, w, C) = 0.
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Proof. Let f be an allocation rule on PN that satisfies Efficiency and Path consistency.
Consider the waste transportation problem (g, w, C0) ∈ PN . By Efficiency, we have
that

∑
i∈N

∑
j≤wi

fij(g, w, C0) = 0.

Since an allocation rule f assigns a non-negative cost share fij(g, w, C) ∈ R+ to each
agent i ∈ N and each 1 ≤ j ≤ wi, it holds that

∀i ∈ N, ∀j ≤ wi, fij(g, w, C0) = 0.

Consider any i ∈ N and any waste transportation problem (g, w, C) such that for
each k ∈ Û−1

i , Ck = C0
k . By Path consistency, one obtains

∀j ≤ wi, fij(g, w, C) = fij(g, w, C0) = 0,

the desired result. This concludes the proof of the proposition. �

The next result shows the implication of combining Efficiency and Independence of
higher waste amount.6

Proposition 5.3.2. Let f be an allocation rule on PN . If f satisfies Efficiency and Indepen-
dence of higher waste amount, then

∀j ≤ max
i∈N

wi, ∑
k∈Q(j)

fkj(g, w, C) = ∑
i∈N

(
Ci( ∑

l∈Ûi

j ∧ wl)− Ci( ∑
l∈Ûi

(j− 1) ∧ wl)

)
.

Proof. Let f be an allocation rule as hypothesized and consider any waste amount
0 < j ≤ maxi∈N wi. By Independence of higher waste amount, we have that

∀i ∈ Q(j), fij(g, w, C) = fij(g, (j ∧ wk)k∈N , C), (5.2)

∀i ∈ Q(j− 1) fij−1(g, w, C) = fij−1(g, ((j− 1) ∧ wk)k∈N , C). (5.3)

By Efficiency and Independence of higher waste amount, it holds that

∑
i∈N

j∧wi

∑
l=1

fil(g, (j ∧ wk)k∈N , C) = ∑
i∈N

Ci( ∑
l∈Ûi

j ∧ wl) = ∑
i∈N

j∧wi

∑
l=1

fil(g, w, C),

(5.4)

∑
i∈N

j−1∧wi

∑
l=1

fil(g, ((j− 1) ∧ wk)k∈N , C) = ∑
i∈N

Ci( ∑
l∈Ûi

(j− 1) ∧ wl) = ∑
i∈N

j−1∧wi

∑
l=1

fil(g, w, C).

(5.5)

Thus, subtracting (5.5) to (5.4), one obtains

∑
k∈Q(j)

fkj(g, w, C) = ∑
i∈N

(
Ci( ∑

l∈Ûi

j ∧ wl)− Ci( ∑
l∈Ûi

(j− 1) ∧ wl)

)
,

the desired result. �

Our next result shows that Efficiency, Independence of higher waste amount, Path
consistency, and Upstream solidarity for a cost increase implies Distance consistency.

6This result is related to Proposition 3.4.1 (see Chapter 3, Section 3.4).
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Proposition 5.3.3. On the class of hazardous waste transportation problems PN , the com-
bination of Efficiency, Independence of higher waste amount, Path consistency, and Up-
stream solidarity for a cost increase implies Distance consistency.

Proof. Let f be an allocation rule on PN as hypothesized. Take any waste trans-
portation problem (g, w, C) ∈ PN . For each k ∈ N, define the cost profile λk,C ∈ CN

such that λk,C
k = Ck, and λk,C

i = C0
i for each i ∈ N \ {k}. Take a waste amount

j ≤ maxi∈N wi such that |Q(j)| ≥ 2, and fix two agents i, k ∈ N such that: i ∈ Q(j)
and k ∈ Û−1

i ∩Q(j). By Path consistency, we have that

fkj(g, w, C) = fkj(g, w, ∑
h∈Û−1

k

λh,C),

fij(g, w, C) = fij(g, w, ∑
h∈Û−1

i

λh,C).
(5.6)

We show that fij(g, w, ∑h∈Û−1
i

λh,C) ≥ fkj(g, w, ∑h∈Û−1
k

λh,C). To do so, consider the

waste allocation problems (g, w, C0) ∈ PN and (g, w, λk,C) ∈ PN . Observe that, for
each h ∈ N \ {k}, λk,C

h = C0
h. Moreover, since λk,C

k is a non-decreasing function, it
holds that

∀s ∈W, λk,C
k ( ∑

h∈Ûk

sh)− λk,C
k ( ∑

h∈Ûk

(sh − 1) ∨ 0) ≥ C0
k ( ∑

h∈Ûk

sh)− C0
k ( ∑

h∈Ûk

(sh − 1) ∨ 0)

⇐⇒ λk,C
k ( ∑

h∈Ûk

sh)− λk,C
k ( ∑

h∈Ûk

(sh − 1) ∨ 0) ≥ 0.

(5.7)

Therefore, by Upstream solidarity for a cost increase one obtains

fkj(g, w, λk,C)− fkj(g, w, C0) = fij(g, w, λk,C)− fij(g, w, C0).

By Proposition 5.3.1, fkj(g, w, C0) = fij(g, w, C0) = 0. Thus, one obtains

fkj(g, w, λk,C) = fij(g, w, λk,C).

We apply the same reasoning by adding successively each λh,C
h where h ∈ Û−1

k to the
problem. Then, by successive applications of Upstream solidarity for a cost increase
it holds that

fkj(g, w, ∑
h∈Û−1

k

λh,C) = fij(g, w, ∑
h∈Û−1

k

λh,C). (5.8)

Thus, by (5.6) and (5.8), we know that

fkj(g, w, C) = fkj(g, w, ∑
h∈Û−1

k

λh,C) = fij(g, w, ∑
h∈Û−1

k

λh,C).

It remains to show that

fij(g, w, C) = fij(g, w, ∑
h∈Û−1

i

λh,C) ≥ fij(g, w, ∑
h∈Û−1

k

λh,C).



5.3. Hazardous waste transportation problem 123

By Independence of higher waste amount, this can be written as

fij(g, (j ∧ wk)k∈N , C) = fij(g, (j ∧ wk)k∈N , ∑
h∈Û−1

i

λh,C) ≥ fij(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C).

Consider the directed path from i to k denoted by (i1, . . . , it), where i1 = i and it = k.
Pick it−1 ∈ Û−1

i \ Û−1
k located just upstream k on the path from i to k. Consider

the hazardous waste problem (g, (j ∧ wk)k∈N , ∑h∈Û−1
k

λh,C + λit−1,C). Observe that,

for each h′ ∈ N \ {it−1}, λ
it−1,C
h′ = C0

h′ . Since λ
it−1,C
it−1

is non-decreasing, by Upstream

solidarity for a cost increase, there is cit−1
j ∈ R such that:

∀l ∈ Ûit−1 ∩Q(j),

fl j(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C + λit−1,C)− fl j(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C) = cit−1
j .

(5.9)

We now show that cit−1
j ≥ 0. Since f satisfies Efficiency and Independence of higher

waste amount, by Proposition 5.3.2 we have that

∑
l∈Q(j)

fl j(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C + λit−1,C) = ∑
h∈Û−1

k

λh,C
h ( ∑

a∈Ûh

j ∧ wa)

+ λ
it−1,C
it−1

( ∑
a∈Ûit−1

j ∧ wa)

− ( ∑
h∈Û−1

k

λh,C
h ( ∑

a∈Ûh

(j− 1) ∧ wa)

+ λ
it−1,C
it−1

( ∑
a∈Ûit−1

(j− 1) ∧ wa)),

(5.10)

and

∑
l∈Q(j)

fl j(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C) = ∑
h∈Û−1

k

λh,C
h ( ∑

a∈Ûk

j ∧ wa)

− ∑
h∈Û−1

k

λh,C
h ( ∑

a∈Ûk

(j− 1) ∧ wa).
(5.11)

Observe that, for l ∈ Q(j) \ Ûit−1 we have λ
it−1,C
l′ = C0

l′ , where l′ ∈ Û−1
l . This implies

that ∑h∈Û−1
k

λh,C
l′ + λ

it−1,C
l′ = ∑h∈Û−1

k
λh,C

l′ . Therefore, by applying Path consistency to

l ∈ Q(j) \ Ûit−1 one obtains

fl j(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C + λit−1,C) = fl j(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C).
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From this observation, and subtracting (5.10) and (5.11), one obtains

∑
l∈Ûk′∩Q(j)

fl j(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C + λk′,C)− fl j(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C)

= λk′,C
k′ ( ∑

a∈Ûh′

j ∧ wa)− λk′,C
k′ ( ∑

a∈Ûh′

(j− 1) ∧ wa)

= |Ûk′ ∩Q(j)| × ck′
j ,

(5.12)

where the last equality comes from (5.9). Since λ
it−1,C
it−1

is non-decreasing, it holds that

ck′
j ≥ 0. Therefore,

∀l ∈ Ûit−1 ∩Q(j), fl j(g, (j∧wk)k∈N , ∑
h∈Û−1

k

λh,C +λit−1,C) ≥ fl j(g, (j∧wk)k∈N , ∑
h∈Û−1

k

λh,C).

In particular, it holds that

fij(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C + λit−1,C) ≥ fij(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C).

Repeating the same reasoning by considering each agent that belongs to the path
from i to k, one obtains

fij(g, (j ∧ wk)k∈N , ∑
h∈Û−1

i

λh,C) ≥ fij(g, (j ∧ wk)k∈N , ∑
h∈Û−1

k

λh,C). (5.13)

Thus, by (5.6), (5.8), (5.13), and Independence of higher waste amount, one con-
cludes that

fij(g, w, C)
(5.6)
= fij(g, w, ∑

h∈Û−1
i

λh,C)
(5.13)
≥ fij(g, w, ∑

h∈Û−1
k

λh,C)
(5.8)
= fkj(g, w, C),

the desired result. �

We now introduce the main result of this section. We show that the combination
of Efficiency, Independence of higher waste amount, Path consistency and Upstream
cost solidarity yields at most one allocation rule on PN .

Proposition 5.3.4. On the class of hazardous waste transportation problems PN , there is
at most one allocation rule satisfying Efficiency, Independence of higher waste amount, Path
consistency and Upstream cost solidarity.

Proof. Let f be a solution on PN satisfying Efficiency, Independence of higher waste
amount, Path consistency and Upstream cost solidarity. We show that f is uniquely
determined. Take any waste transportation problem (g, w, C) ∈ PN . For each k ∈
N, define the cost profile λk,C ∈ CN such that λk,C

k = Ck, and λk,C
i = C0

i for each
i ∈ N \ {k}. Observe that, for each waste transportation problem (g, w, C) ∈ PN ,
the cost profile C can be written as

C = ∑
k∈N

λk,C.
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For each (g, w, C) ∈ PN , set

K(g, w, C) = {k ∈ N : Ck 6= C0
k}. (5.14)

We proceed by induction on |K(g, w, C)|.
Induction basis. If |K(g, w, C)| = 0, then C = C0. By Efficiency and the definition
of an allocation rule, it holds that

∀i ∈ N, ∀j ≤ wi, fij(g, w, C) = 0.

Induction hypothesis. Assume that, for each (g, w, C) such that |K(g, w, C)| = t,
where 0 ≤ t ≤ n− 1, f (g, w, C) is uniquely determined.

Induction step. Let (g, w, C) ∈ PN be such that |K(g, w, C)| = t + 1. Set

T =
⋂

k∈K(g,w,C)

Ûk, (5.15)

and for each k ∈ K(g, w, C) set
Tk = Ûk \ T. (5.16)

Observe that, T is such that there is a unique agent k ∈ T such that Ck 6= C0
k . Indeed,

if Ck = C0
k for each agent k ∈ T, then a contradiction arises and k 6∈ K(g, w, C). Any

other agent k′ ∈ T is such that Ck′ = C0
k′ . Two cases have to be considered with

respect to T.
Case 1. If T = ∅, then for each agent i ∈ N, there is k ∈ K(g, w, C) such that
k ∈ N \ Û−1

i . By Path consistency, it holds that

∀j ≤ wi, fij(g, w, C) = fij(g, w, C− λk,C).

By the induction hypothesis, fij(g, w, C − λk,C) is uniquely determined. Thus, for
each i ∈ N and each j ≤ wi, fij(g, w, C) is uniquely determined.

Case 2. Now, suppose that T 6= ∅. For each agent i ∈ N \ T, there is k ∈ K(g, w, C)
such that k ∈ N \ Û−1

i . By applying the same reasoning as in case 1, for each agent
i ∈ N \ T and each j ≤ wi, fij(g, w, C) is uniquely determined.
Consider the subset of agents T. Take any waste amount j ≤ K. We show that any
two agents i, i′ ∈ T ∩ Q(j) have the same payoff in (g, w, C) for the waste amount j.
Pick any k ∈ K(g, w, C). Notice that i, i′ ∈ Ûk ∩ Q(j). By Upstream solidarity for a
cost increase and the induction basis, it holds that

fij(g, w, λk,C)− fij(g, w, C0) = fi′ j(g, w, λk,C)− fi′ j(g, w, C0)

fij(g, w, λk,C) = fi′ j(g, w, λk,C).
(5.17)

Now pick any other k′ ∈ K(g, w, C), k′ 6= k (if any). Observe that

∀s ∈W, λk′,C
k′ ( ∑

h∈Ûk′

sh)− λk′,C
k′ ( ∑

h∈Ûk′

(sh − 1) ∨ 0) ≥ 0,
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and for each h ∈ N \ {k′}, λk,C
h + λk′,C

h = λk,C
h . By the definition of T, it holds that

i, i′ ∈ Ûk′ . Thus, by Upstream solidarity for a cost increase

fij(g, w, λk,C + λk′,C)− fi′ j(g, w, λk,C) = fi′ j(g, w, λk,C + λk′,C)− fi′ j(g, w, λk,C)

fij(g, w, λk,C + λk′,C) = fi′ j(g, w, λk,C + λk′,C),
(5.18)

where the last equation comes from (5.17). We apply the same reasoning by adding
successively each λk,C where k ∈ K(g, w, C) to the problem. Therefore, by successive
applications of Upstream solidarity for a cost increase, it holds that

fij(g, w, ∑
k∈K(g,w,C)

λk,C) = fi′ j(g, w, ∑
k∈K(g,w,C)

λk,C)

fij(g, w, C) = fi′ j(g, w, C).
(5.19)

Thus, there exists cj ∈ R+ such that for each i, i′ ∈ T ∩Q(j):

fij(g, w, C) = fi′ j(g, w, C) = cj. (5.20)

Now, we show that for each agent in T ∩Q(j), fij(g, w, C) is uniquely determined.
Since f satisfies Efficiency and Independence of higher waste amount, by Proposi-
tion 5.3.2 we have

∑
k∈Q(j)

fkj(g, w, C) = ∑
k∈N

(
Ck( ∑

l∈Ûk

j ∧ wl)− Ck( ∑
l∈Ûk

(j− 1) ∧ wl)

)

= ∑
k∈K(w,C)

(
Ck( ∑

l∈Ûk

j ∧ wl)− Ck( ∑
l∈Ûk

(j− 1) ∧ wl)

)
.

Equivalently, one can write

∑
i∈(Q(j)∩T)

fij(g, w, C) = ∑
k∈K(w,C)

(
Ck( ∑

l∈Ûk

j ∧ wl)− Ck( ∑
l∈Ûk

(j− 1) ∧ wl)

)
− ∑

l∈Q(j)\T
fl j(g, w, C).

(5.21)

Recall that fij(g, w, C) is uniquely determined for each agent in Q(j) \ T. Therefore,
by (5.17) and (5.21), fij(g, w, C) is uniquely determined for each i ∈ T ∩ Q(j). This
concludes the proof of the induction step. �

5.3.4 The responsibility rule

In the previous section, we have highlighted that at most one allocation rule satisfies
the combination of Efficiency, Independence of higher waste amount, Path consis-
tency, and Upstream solidarity for a cost increase. Below, we investigate the re-
sponsibility rule and show that it is characterized by the above mentioned axioms.
The responsibility rule allocates the variation in cost of portion k between the j and
(j − 1)-synchronized waste profiles equally among the agents located upstream of
this portion.



5.3. Hazardous waste transportation problem 127

Formally, for each hazardous waste transportation problem (g, w, C) ∈ PN , the
responsibility rule, f R, is given by

∀i ∈ N,∀j ≤ wi,

f R
ij (g, w, C) = ∑

k∈Û−1
i

Ck( ∑
l∈Ûk

j ∧ wl)− Ck( ∑
l∈Ûk

(j− 1) ∧ wl)

|Ûk ∩Q(j)|
.

(5.22)

Observe that formula (5.22) relies on the implicit assumption that each agent’s waste
is of the same nature and therefore has the same impact on a portion. Moreover, one
can provide a specific allocation process underlying the responsibility rule. Suppose
that all agents agree to ship at the same moment the same amount of waste. Then, the
variation of cost generated by this shipment on each portion is split equally among
the agents liable for the portion. The responsibility rule can be computed by repeat-
ing this reasoning for each amount of waste.

The next result shows that the responsibility rule is the unique allocation rule
that matches our interpretation of the environmental principles presented in Section
5.3.2. Thus, the responsibility rule ensures that each agent pays a fair part of the cost
of maintaining and operating the hazardous waste network according to its liability
for the risk it poses to the network.

Theorem 5.3.1. On the class of hazardous waste transportation problems PN , an alloca-
tion rule satisfies Efficiency, Independence of higher waste amount, Path consistency, and
Upstream solidarity for a cost increase if and only if it is the responsibility rule.

Proof. By Proposition 5.3.4, we know that there is a unique allocation rule that sat-
isfies Efficiency, Independence of higher waste amount, Path consistency, and Up-
stream solidarity for a cost increase. It remains to show that f R satisfies the axioms
invoked in Theorem 5.3.1.
Consider any waste transportation problem (g, w, C) ∈ PN . By the definition of f R

(see (5.22)), it holds that

∑
i∈N

∑
j≤wi

f R
ij (g, w, C) =

maxi∈N wi

∑
j=1

∑
i∈Q(j)

f R
ij (g, w, C)

=
maxi∈N wi

∑
j=1

∑
i∈Q(j)

[
∑

k∈Û−1
i

Ck( ∑
l∈Ûk

j ∧ wl)− Ck( ∑
l∈Ûk

(j− 1) ∧ wl)

|Ûk ∩Q(j)|

]

=
maxi∈N wi

∑
j=1

∑
k∈N

[
Ck( ∑

l∈Ûk

j ∧ wl)− Ck( ∑
l∈Ûk

(j− 1) ∧ wl)

]
= ∑

k∈N
Ck( ∑

l∈Û(k)

wl).

This shows that f R satisfies Efficiency.
By the definition of the responsibility rule, the payoff of any agent for its waste
amount j does not dependent of any waste amount higher than j. Therefore, f R

satisfies Independence of higher waste amount.
Now consider any agent i ∈ N and any two hazardous waste problem (g, w, C) ∈
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PN , (g, w, C′) ∈ PN such that for each k ∈ Û−1
i , Ck = C′k. It holds that

f R
ij (g, w, C) = ∑

k∈Û−1
i

Ck( ∑
l∈Ûk

j ∧ wl)− Ck( ∑
l∈Ûk

(j− 1) ∧ wl)

|Ûk ∩Q(j)|

= ∑
k∈Û−1

i

C′k( ∑
l∈Ûk

j ∧ wl)− C′k( ∑
l∈Ûk

(j− 1) ∧ wl)

|Ûk ∩Q(j)|

= f R
ij (g, w, C′),

which shows that f R satisfies Path consistency.
Next, consider any agent i ∈ N and any (g, w, C), (g, w, C′) ∈ PN such that

∀s ∈W,

Ci( ∑
k∈Ûi

sk)− Ci( ∑
k∈Ûi

(sk − 1) ∨ 0) ≥ C′i( ∑
k∈Ûi

sk)− C′i ∑
k∈Ûi

(sk − 1) ∨ 0),

and, for each k ∈ N \ {i}, Ck = C′k. Pick any agent l ∈ Ûi. Observe that for any waste
amount j ≤ wl , we have that

f R
lj (g, w, C)− f R

lj (g, w, C′) =

Ci( ∑
k∈Ûi

j ∧ wk)− Ci( ∑
k∈Ûi

(j− 1) ∧ wk)

|Ûi ∩Q(j)|

−

C′i( ∑
k∈Ûi

j ∧ wk)− C′i( ∑
k∈Ûi

(j− 1) ∧ wk)

|Ûi ∩Q(j)|
,

which does not depend on the chosen l ∈ Ûi. Thus, f R satisfies Upstream solidarity
for a cost increase. This concludes the proof of the theorem. �

Logical independence The axioms invoked in Theorem 5.3.1 are logically inde-
pendent, as shown by the following alternative allocation rules on PN .

- The allocation rule f defined as: for each (g, w, C) ∈ PN ,

∀i ∈ N, ∀j ≤ wi, fij(g, w, C) = 0,

satisfies all the axioms except Efficiency.

- The allocation rule f defined as: for each (g, w, C) ∈ PN ,

∀i ∈ N, ∀j ≤ wi, fij(g, w, C) = ∑
k∈Ûi

Ck( ∑
l∈Ûk

wl)

∑l∈Ûk
wl

,

satisfies all the axioms except Independence of higher waste amount.
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- The allocation rule f defined as: for each (g, w, C) ∈ PN ,

∀i ∈ N, ∀j ≤ wi, fij(g, w, C) = ∑
k∈N

Ck( ∑
l∈Ûk

j ∧ wl)− Ck( ∑
l∈Ûk

(j− 1) ∧ wl)

|Q(j)| ,

satisfies all the axioms except Path consistency.

- Take any (g, w, C) ∈ PN . For each i ∈ N and each j ≤ wi fix an arbitrary
αij ∈ R++. The value f α defined as: for each (g, w, C) ∈ PN ,

∀i ∈ N, ∀j ≤ wi,

f α
ij(g, w, C) = ∑

k∈Û−1
i

αij

∑h∈Ûk∩Q(j) αhj ×
[

Ck( ∑
k∈Ûk

j ∧ wk)− Ck( ∑
k∈Ûk

(j− 1) ∧ wk)

]
,

satisfies all the axioms except Upstream solidarity for a cost increase.

5.4 A cooperative game-theoretical interpretation

In this section, we analyze the class of hazardous waste transportation problems by
adopting a cooperative game theoretic approach. For each hazardous waste trans-
portation problem, we define an associate multi-choice game. The notation and no-
tions related to multi-choice games are the same as introduced in Chapter 2 Section
2.3.1.

For each waste transportation problem P = (g, w, C) ∈ PN , define the associated
multi-choice game (w, vP) where w is the grand coalition and vP : W → R+ is the
associated characteristic function. Let s ≤ w be a profile of hazardous waste. Recall
that S(s) is the set of agents that ship a positive amount of waste in the profile s. The
worth vP(s) ∈ R+ then describes the total maintenance and operation cost whenever
the profile s is shipped to the delivery node under the considered liability regime.
Because the polluter pays principle and the strict liability principle (see Section 5.3.2)
hold an agent liable for the costs of downstream portions, we define vP as

∀s ≤ w, vP(s) = ∑
i∈Û−1

S(s)

Ci

(
∑

k∈Ûi

sk

)
. (5.23)

Observe that the worth of the grand coalition vP(w) is equal to the total cost defined
by (5.1). Actually, most properties of the cost functions Ci are inherited by the multi-
choice game (w, vP). Since for each i ∈ N, Ci(0) = 0, it holds that vP(0) = 0. Thus,
for each hazardous waste transportation problem P = (g, w, C) ∈ PN , the associated
multi-choice game (w, vP) is well-defined. Finally, since each cost function Ci, i ∈ N,
is non-negative and non-decreasing, it follows that each multi-choice game (w, vP)
is a non-negative and monotonic game (see Chapter 2).

Remark 16. Suppose that the maximal waste amount of each agent i ∈ N is wi = 1.
Then, the game (w, vP) is a TU-game that coincides with the upstream oriented game
associated with a polluted river network problem introduced in Dong et al. [2012].
Following van den Brink et al. [2018], given P = (g, w, C) ∈ PN , one can interpret
the network g as a permission structure. Moreover, van den Brink et al. [2018] shows
that the upstream oriented game associated with a polluted river network problem
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coincides with the dual of a TU-game with permission structure. However, the def-
inition of the dual of a multi-choice game remains debatable. Thus, it is not so clear
that the same relation holds for the whole class PN .7

The next result states that the responsibility rule coincides with the multi-choice
Shapley value introduced in Chapter 3.

Theorem 5.4.1. For each hazardous waste transportation problem P = (g, w, C) ∈ PN

and its associated multi-choice game (w, vP), it holds that

f R(P) = ϕ(w, vP).

Proof. Let P = (g, w, C) ∈ PN be any hazardous waste transportation problem. For
each k ∈ N, define λk,C = (λk,C

i )i∈N the profile of cost functions such that λk,C
k = Ck,

and λk,C
i = C0

i for each i 6= k. Observe that, for each (g, w, C) ∈ PN , the cost profile
C can be written as

C = ∑
k∈N

λk,C.

Fix any k ∈ N and consider the multi-choice game (w, uk
P), where uk

P is the charac-
teristic function defined as

∀s ≤ w, uk
P(s) = ∑

i∈Û−1
S(s)

λk,C
i ( ∑

l∈Ûi

sl),

=

{
λk,C

k (∑l∈Ûk
sl) if k ∈ Û−1

S(s),
0 otherwise.

Notice that for each P = (g, w, C) ∈ PN and each (w, vP), it holds that

vP = ∑
k∈N

uk
P.

By computing the multi-choice Shapley value (see (3.7)) of the multi-choice game
(w, uk

P), one can make the following observations. For each i ∈ N \ Ûk and each
j ≤ wi, the pair (i, j) ∈ M+ is a null pair in (w, uk

P). Since the multi-choice Shapley
value satisfies the null pair axiom (see Theorem 3.4.1), it holds that

∀i ∈ N \ Ûk, ∀j ≤ wi, ϕij(w, uk
P) = 0.

Moreover, any two pairs (i, j), (i′, j), such that i, i′ ∈ Ûk ∩ Q(j), are equal pairs in
(w, uk

P). Since the multi-choice Shapley value satisfies Equal treatment of equal pairs,
we have that for each j ≤ maxi∈N wi,

∀i, i′ ∈ Ûk ∩Q(j), ϕij(w, uk
P) = ϕi′ j(w, uk

P).

7For a recent study of multi-choice games with a permission structure, we refer the reader to Lowing
[2022].
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Finally, since the Shapley value satisfies Multi-efficiency (see (3.3)), for each j ≤
maxi∈N wi it holds that

∑
i∈Ûk∩Q(j)

φij(w, uk
P) = uk

P((j ∧ wk)k∈N)− uk
P(((j− 1) ∧ wk)k∈N)

= λk,C
k

(
∑

l∈Ûk

j ∧ wl

)
− λk,C

k

(
∑

l∈Ûk

(j− 1) ∧ wl

)
.

By definition of λk,C
k and Equal treatment of equal pairs, we have that

φij(w, uk
P) =


Ck( ∑

l∈Ûk

j ∧ wl)− Ck( ∑
l∈Ûk

(j− 1) ∧ wl)

|Ûk ∩Q(j)|
if i ∈ Ûk ∩Q(j),

0 otherwise.

(5.24)

Recall that, for each P ∈ PN and multi-choice game (w, vP), it holds that

vP = ∑
k∈N

uk
P.

Since the multi-choice Shapley value satisfies Additivity, one concludes that

∀i ∈ N, ∀j ≤ wi, ϕij(w, vP) = ∑
k∈Û−1

i

Ck( ∑
l∈Ûk

j ∧ wl)− Ck( ∑
l∈Ûk

(j− 1) ∧ wl)

|Ûk ∩Q(j)|

= f R
ij (g, w, C).

This concludes the proof of the theorem. �

5.5 Conclusion

In this chapter, we study the problem of sharing the maintenance and operation
cost of a hazardous waste transport network modeled by a directed sink tree. We
propose an axiomatic analysis on the class of hazardous waste transportation prob-
lems. Specifically, we propose several axioms related to environmental law princi-
ples. This allows us to precise the liability of each agent regarding the risk it causes
to the network, and to characterize a specific cost sharing method called the respon-
sibility rule. We also show that this method coincides with the multi-choice Shapley
value of an appropriate multi-choice game.

This work can be extended in several directions. First, it should be noticed that
the delivery node, d, is exogenously given and does not belong to the agent’s set.
Relaxing this hypothesis would mean to choose a location for the treatment facility
among the set of agents. However, due to the nature of the treatment facility, the
agents may be reluctant to host it. This gives rise to a so-called NIMBY problem that
has been studied by Shapley and Shubik [1969], and Ambec and Kervinio [2016],
using cooperative game theory. From a different viewpoint, Sakai [2012] conducts
an axiomatic study for sharing the cost associated with a NIMBY facility. To the best
of our knowledge, no work has addressed the cost allocation of a NIMBY facility in
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a network structure using the axiomatic method. We suggest that such work can be
conducted by adapting our model.

Another interesting direction for further research would be to study how the im-
plementation of the responsibility rule may affect the incentive for agents to decrease
their generation of waste. This could be an important aspect in meeting the goals of
environmental law regarding environmental preservation.
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Chapter 6

Stable agreements through liability
rules: a multi-choice game
approach to the social cost problem

6.1 Introduction

A large literature has been developed to describe and solve situations known as
social cost problems, in which the activity of some agents has harmful effects on
others. This chapter aims at analyzing precisely the conditions for resolving social
cost problems involving one polluter and some potential victims. Two traditions
stand out to solve a social cost problem: the Pigouvian and the Coasean traditions.
The Pigouvian tradition (Pigou [1920]) advocates a central intervention by means
of taxation on the externality. This results in the introduction of the polluter-pays
principle whereby the polluter should bear the cost of pollution control and preven-
tion measures. The Coasean tradition (Coase [1960]) challenges this polluter-pays
principle. This tradition argues that agents can solve a social cost problem through
a bargaining process provided that property rights are well assigned. The Coase
theorem, first formulated by Stigler [1966], summarizes this approach in two prop-
erties: first, the efficiency property states that in the absence of transaction costs, and
if property rights are well defined, agents will always reach an optimal agreement
by bargaining; second, the invariance or neutrality property states that the outcome of
the bargaining process is independent of the assignment of rights. Throughout this
chapter, we follow the Coase perspective, and we use cooperative game theory to
solve social cost problems.

The Coase theorem has been analyzed through the scope of cooperative games
by Aivazian and Callen [1981] and more recently by Gonzalez et al. [2019]. These
articles discuss social cost problems involving more than two agents and consider
the Coase theorem in term of non-emptiness of the core. This chapter extends the
framework introduced by Gonzalez et al. [2019], which investigates situations in
which one polluter interacts with a set of at least two victims. The authors introduce
mappings of rights that describe the legal structure of negotiations among agents.
Specifically, a mapping of rights assigns to each coalition either the value 0, mean-
ing the coalition is not allowed to negotiate, or 1 if the coalition is allowed to form
and negotiate an agreement. This set of mappings of rights can be seen as the set
of winning coalition of a proper voting game.1 They propose three properties for
mappings of rights: core compatibility which requires that the core of the cooperative

1Gonzalez et al. [2019] require three conditions for their mappings of rights: the grand coalition is
sovereign; if a coalition receives the right then any larger coalition containing the former inherits the
right (monotonicity); if a coalition receives the right then nonmembers cannot prevent the coalition to
negotiate (effectivity of rights).
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game associated with any social cost problem is non-empty; Kaldor-Hicks core compat-
ibility which requires that a payoff vector in the core ensures a non-negative payoff
to each agent; no veto power for a victim requires that no victim can individually veto
an agreement reached by the rest of the society. The authors provide two main re-
sults. On the one hand, a mapping of rights satisfies core compatibility if and only if
it assigns the rights either to the polluter or to the whole set of victims. On the other
hand, no mapping of rights satisfies those three properties at the same time.

Nonetheless, the set of mappings of rights introduced by Gonzalez et al. [2019] is
independent of the polluter’s activity level. Either a coalition containing the polluter
can negotiate and choose any activity level, or it cannot negotiate. As a result, the
model does not take into account the more realistic issue of quotas, which may arise
when one wishes to reduce the pollution level. For instance, the US Clean Air Act
defines a pollution quota which is viewed as a limitation on the polluter’s activity.
This means that the rights may impose a restriction on the polluter’s activity level as
a right of use. In this regard, we introduce the possibility that the rights depend on
the polluter’s activity level. This has three main implications for the model: the con-
ditions defining a mapping of rights must be adjusted; the cooperative game must
take into account the different activity levels of the polluter; and the solution concept
that captures the Coase theorem must be adapted in line with the new setting.

To address these points, we modify the conditions defining mappings of rights.
To start with, we impose antitonicity on mappings of rights with respect to the activ-
ity level of the polluter. Precisely, if a coalition containing the polluter is allowed to
negotiate an agreement for a certain activity level, then the coalition retains the rights
whenever the polluter decreases its activity level. Second, we impose monotonicity
of a mapping of rights with respect to the participation of victims. If a coalition is
allowed to form and negotiate an agreement, it retains the rights when the number
of cooperating victims increases. Notice that we can no longer see the set of map-
ping of rights as generating winning coalitions since a coalition may loose its rights
if the activity level increases. Thus we obtain a new class of mappings of rights dif-
ferent from those introduced by Gonzalez et al. [2019]. In this class, we pinpoint
the mappings of rights that assign the rights to the polluter up to a fixed and reg-
ulated activity level. Those mappings of rights reflect the fact that the polluter has
to produce up to a quota. When the pollution problem is severe, the only way for
the polluter to override this quota is to reach an agreement with the set of victims.
For the sake of simplicity, we suppose the polluter has a finite number of activity
levels. Each victim can choose whether to participate or not in the negotiation. If
the coalition has the right to negotiate, then the polluter proposes a certain activity
level and negotiates a binding agreement with victims which agree to participate.
Because agents have more than one way of acting within a coalition, we model the
above situations using multi-choice games. Thus, from each social cost problem en-
dowed with a mapping of rights, we can define a multi-choice game. In the same
vein as Aivazian and Callen [1981] and Gonzalez et al. [2019], we consider the Coase
theorem in terms of non-emptiness of the core of this game. Here we choose to retain
the extension of the core introduced and characterized by Grabisch and Xie [2007]
(see Chapter 2, Section 2.3.2). Finally, we naturally extend the properties of core
compatibility and Kaldor-Hicks core compatibility from TU-games to multi-choice
games. On the other hand, we consider no veto power for a victim regarding the
highest activity level of the polluter to fit our new framework.

Our main result extends the subset of mappings of rights which ensure the non-
emptiness of the core. We first show that these new mappings of rights that assign a
quota on the activity of the polluter are core compatible. Each victim perceives the
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activity of the polluter as a threat which reduces the incentive for victims to free-ride
and ensures the stability of the agreement. Furthermore, any mapping of rights that
exclusively assigns the rights either to a subset of victims or to the grand coalition
(i.e. the set of victims and the polluter) is core compatible. Since not all mapping
of rights are core compatible, this result invalidates the neutrality property of the
Coase theorem. We show that the unique way to satisfy core compatibility and no
veto power for a victim is to assign the rights to the polluter at its highest activity
level. On the contrary, the only mappings of rights that satisfy Kaldor-Hicks core
compatibility are those that assign the rights either to a subset of victims or to the
grand coalition. Finally, we confirm the impossibility result regarding Kaldor-Hicks
core compatibility and no veto power for a victim at the same time.

Related literature:

The Coase theorem has fostered a broad literature, in particular because Coase con-
siders only two agents and does not provide any formal model. That literature has
mainly focused on three types of models. The first type considers the theorem in
terms of competitive equilibrium. For instance Hurwicz [1995] and Chipman and
Tian [2012] provide necessary and sufficient conditions for the validity of the Coase
theorem for situations involving two agents. Both papers highlight the pivotal role
of parallel preferences that ensure the validity of the neutrality property. The second
type incorporates strategic interactions between agents and formulates the Coase
theorem in terms of Nash equilibrium of a strategic/bargaining game: Anderlini and
Felli [2001] analyze negotiations between two agents in the presence of transaction
costs; Ellingsen and Paltseva [2016] highlight the possibility of free-riding behaviors
when more than two agents are involved. This paper aligns with the third type of
models which consider cooperative game theory. A famous instance is the Shapley
and Shubik [1969] garbage game where a finite set of neighbors have to decide on
where to locate their garbage. Using a simple construction authors show that the
core of the associated garbage game is non-empty if and only if no more than two
agents are involved. In the same spirit, Ambec and Kervinio [2016] analyze the Not
In My Back Yard (NIMBY) problem. In comparison to the garbage game, the NIMBY
problem consider the location of a locally undesirable but globally desirable facility.
Authors propose a spatial model with externalities, and analyze the conditions un-
der which the Coase theorem is likely to hold. They also provide an index for testing
the non-emptiness of the core of a game associated with a NIMBY problem. Zhao
[2018] proposes a solution for the empty-core problem introduced by Aivazian and
Callen [1981]. The author argues that the set of agents does not necessarily split the
worth of the grand coalition but can organize themselves into the most beneficial
collection of coalitions.

The rest of the chapter is organized as follows. Section 6.2 presents the formal
framework within which we define the social cost problem and the mappings of
rights along with the corresponding multi-choice game. Section 6.3 presents our
main results, and Section 6.4 concludes the chapter.

6.2 Notation

Let N := {1, . . . , n} be a finite set of agents and K ∈ N. Throughout this chapter N
and m ≤ K are fixed. Thus, we consider the set of multi-choice games Gm. For sim-
plicity, we will denote a multi-choice game by v instead of (m, v). We also consider
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the concept of level payoff vectors (see Chapter 2, Section 2.3.2). Let v ∈ Gm, and
x ∈ R|M

+| be a level payoff vector. For any coalition s ∈ M, the total payoff x(s) is
defined as:

x(s) = ∑
i∈N

xi,si .

6.2.1 Social cost problems

Let p be a polluter and denote by U a finite set of at least two potential victims. The
set N = U ∪ {p} denotes the finite set of agents involved in a social cost problem,
N is supposed to be fixed. The polluter chooses a participation level it wishes to
operate in the fixed set Mp := {0, 1, 2, . . . , mp}which corresponds to its set of activity
levels. Each victim i ∈ U decides whether or not to take part in the cooperation;
hence the action set for each victim is Mi := {0, 1}. LetM := ×i∈N Mi, an element
s := (s1, . . . , su, sp) ∈ M is a multi-choice coalition/participation profile.

The activity of the polluter generates a private benefit. This private benefit is rep-
resented by a non-decreasing function Bp : Mp → R+. Besides, this activity causes
damage for each victim i ∈ U. This damage is represented by a non-decreasing func-
tion Di : Mp → R+. For each i ∈ N, we assume that Bp(0) = Di(0) = 0. We define a
social cost problem as P := (N,M, Bp, (Di)i∈U). Let P be the class of all social cost
problems.

Given a social cost problem P ∈ P , for each participation profile s ∈ M, we
denote by K∗s the non-empty set of optimal activity levels. Formally,

K∗s := arg max
k∈[[0,sp]]

{
1p(s)Bp(k)− ∑

i∈U
si=1

Di(k)
}

,

where [[0, sp]] denotes the set {0, 1, . . . , sp} ⊆ Mp, 1p(s) = 1 if sp > 0 and 1p(s) = 0
otherwise. We denote by k∗s an element of K∗s . Note that 0 ∈ K∗s whenever s ∈ M is
such that sp = 0.

6.2.2 Mapping of rights

Given a participation profile s ∈ M, we consider a right as an authorization for the
group of active agents S(s) to form and negotiate a binding agreement when each
active agent chooses its participation level si ∈ Mi. In this way, rights are related to
the participation profiles rather than to groups of agents exclusively.

A mapping of rights φ : M → {0, 1} assigns to each participation profile s ∈ M
the value 0 or 1. The value φ(s) = 0 means that the group of active agents in this
participation profile does not have the right to negotiate an agreement. The value
φ(s) = 1 means that the group of active agents is allowed to form a coalition and
negotiate an agreement. We impose the following conditions on mappings of rights:

(C1) φ(0) = 0 and φ(1−p, mp) = 1,

(C2) for each sp ∈ Mp, it holds that:

[∀s−p, s′−p ∈ M−p, s−p ≤ s′−p]⇒ [φ(s−p, sp) ≤ φ(s′−p, sp)],

(C3) for each s−p ∈ M−p, it holds that:

[∀sp, s′p ∈ Mp \ {0}, sp ≤ s′p]⇒ [φ(s−p, sp) ≥ φ(s−p, s′p)],
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(C4) for each S ⊆ N, and each (0−S, sS) ∈ M−S ×MS, it holds that:

[φ(0−S, sS) = 1]⇒ [∀s−S ∈ M−S, φ(s−S, 0S) = 0].

(C1) states that if agents do not participate they do not receive any rights. In
contrast, if they fully participate, then they receive the rights. Therefore, full partici-
pation implies sovereignty.

(C2) translates the idea of monotonicity of φ onM−p for any fixed participation
level sp ∈ Mp of the polluter. Any group of active agents that receives the rights
should retain these rights when more victims become active. Notice that, in the
model of Gonzalez et al. [2019], the mapping of rights is monotonic with respect
to set inclusion. On the contrary, we propose that a group of active agents should
preserve its rights only when new victims become active. However, it might be
possible that a group of active agents loose its rights if the polluter becomes active
or if it increases its activity level.

(C3) relates to participation profiles where the polluter is active and translates
the idea of antitonocity of φ on Mp \ {0}. If a group of active agents is not allowed
to form a coalition and negotiate when sp ∈ Mp \ {0}, then this remains true when
the activity level of the polluter increases that is, if φ(s−p, sp) = 0 and sp ≤ s′p then
φ(s−p, s′p) = 0. On the contrary, it may be the case that this group receives the rights
when the polluter decreases its activity level. If a group of agents has the right to
negotiate, then it retains the right when the activity level of the polluter decreases
that is, if φ(s−p, sp) = 1 and s′′p ≤ sp, then φ(s−p, s′′p) = 1.

Finally, (C4) describes the effectivity of the rights. Consider a participation pro-
file s ∈ M \ {0} such that S(s) = S ⊆ N and φ(s) = 1. Whatever the participation
level s−S ∈ M−S of agents in −S, if all agents in S become inactive, then the corre-
sponding participation profile does not receive the rights: φ(s−S, 0S) = 0. Thus, it
cannot hold that S and −S receive the rights at the same time.

Combining (C1) with (C3), the whole society N has the right to negotiate what-
ever the activity level sp ∈ Mp \ {0} chosen by the polluter, φ(1−p, sp) = 1. In other
words, the whole society is always sovereign.

We denote by Φ the class of mapping of rights that satisfy the above conditions.2

Example 8. Consider the mapping which gives the rights to each majority coalition.
In the multi-choice game framework this mapping of rights is denoted φmaj ∈ Φ,
and is defined as follows:

φmaj(s) =
{

1 if |S(s)| > n/2,
0 otherwise.

One can easily verify that φmaj ∈ Φ satisfies each condition defining a mapping of
rights.

�

6.2.3 Multi-choice games and mapping of rights

Given a social cost problem P = (N,M, Bp, (Di)i∈U) ∈ P and a mapping of rights
φ ∈ Φ, we define a multi-choice game which describes the cooperation possibili-
ties between the agents. Due to the presence of externalities and the distribution of

2One can verify that the class of mapping of rights introduced in Gonzalez et al. [2019] can be
defined using our new conditions, therefore our class of mapping of rights constitutes a generalization.
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rights in the society, the worth that a group of agents can obtain in a social cost prob-
lem depends crucially on the expected behavior of the agents outside this group.
Suppose that a group of agents S agree to cooperate. They will form a participation
profile s ∈ M, where S(s) = S, and seek to obtain their maximal social benefit

1p(s)Bp(k∗s )− ∑
i∈U
si=1

Di(k∗s ), k∗s ∈ K∗s .

However, the agents do not necessarily obtain this maximal social benefit because
of externalities and the distribution of rights. If p does not belong to S, that is, if
1p(s) = 0, the damage Di(ks) suffered by each active victim i ∈ U depends crucially
on the behavior of the agents outside S. Furthermore, this behavior is conditioned
by the distribution of rights in the society. In the same manner, if p belongs to S,
that is, if 1p(s) = 1, then the social benefit that the members of S can guarantee
depends on whether members outside S have acquired the right to prevent them
from reaching certain agreements. In others words, both the mapping of rights and
the behavior of the agents outside S exert an externality on the worth that the ac-
tive agents in S can reach. There are many possible cases. The members outside
S may act non-cooperatively or they may cooperate and form one coalition; some
subgroups outside S may have the right to sign agreements whereas some other
subgroups may not have this right. In what follows, we assume that the members of
S have a pessimistic view of the coalition formation of outsiders. Given the mapping
of rights φ, the members of coalition S pessimistically expect that the coalitions of
outsiders form in the worst possible way for S.

To be more precise, let −S(s) be the complementary group of the group S(s)
of active agents in the participation profile s ∈ M. Without any consideration of
the mapping of rights φ, the group −S(s) can choose any participation profile of
the form (0S(s), y−S(s)) ∈ M. From this observation, several cases arise. First, if
the polluter is part of the active agents and the latter have the right to negotiate,
then, by (C4), the complementary group −S(s) does not have the right to negotiate.
Therefore, active agents expect that the behavior of the agents in −S(s) will have
no consequences on the worth they can reach by cooperating. If S(s) does not have
the right to negotiate, then they can not sign a binding agreement. It results that
they guarantee themselves a null worth. Second, if p does not belong to the group
S(s) and S(s) does not have the right to negotiate, then active agents expect that
the remaining agents will choose a participation profile of the form (0S(s), y−S(s)).
Two sub-cases arise. If no subgroups of −S(s) has the right to negotiate, then, as
above, active agents in S(s) expect that the behavior of the agents in −S(s) will
have no consequences on the the worth they can reach by cooperating. If there are
subgroups of −S(s) that have the right to negotiate, then active agents expect the
worst scenario for them. Thus, they expect the largest externality that the members
of −S(s) can generate by reorganizing and signing a binding agreement with the
polluter.

The rationale behind this assumption about the expectations of active agents re-
garding the behavior of outsiders is as follows. Under pessimistic expectations, the
worth of a participation profile will always be smaller than under any other assump-
tion about expectations. Therefore, this worth corresponds to the worth that the
group of active agents can guarantee regardless of the behavior of the remaining
agents. Furthermore, if the core of a multi-choice game is empty under pessimistic
expectations, then it will be empty under any other expectations. In other words, it
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is the most favorable assumption to obtain a non-empty core.3

To formally define the worth of each coalition some definitions are in order. First,
letM′ ⊆ M be a non-empty subset of participation profiles. M′ is said to be trivial
if for each s ∈ M′, φ(s) = 0. Next, for each participation profile s = (0−S, sS) ∈ M,
where S = S(s), we associate the set of complementary participation profiles defined by:

C̄s := {(y−S(s), 0S(s)) ∈ M | y−S(s) ∈ ×i∈−S(s)Mi}.

Each element of C̄s corresponds to a participation profile where each agent i ∈ S
is inactive. The worst response at profile s ∈ M, denoted by ws ∈ C̄s ⊆ M, is a
participation profile such that:

k∗ws
=

{
0 if C̄s is trivial,

max
y∈C̄s : φ(y)=1

{k∗y | k∗y ∈ K∗y} otherwise.

where k∗y ∈ K∗y is the optimal activity level at profile y ∈ C̄s. If φ(s) = 1, then by (C4)
each agent involved in the participation profile s ∈ M knows that the remaining
agents cannot prevent them to negotiate (C̄s is trivial), so that k∗ws

= 0.
Finally, given a social cost problem P ∈ P and a mapping of rights φ ∈ Φ, the

associated multi-choice game vφ,P ∈ Gm is defined as follows:

vφ,P(s) =


max

k∈[[0,sp]]

(
Bp(k)− ∑

i∈S(s)\{p}
Di(k)

)
if φ(s) = 1, and S(s) 3 p,

− ∑
i∈S(s)

Di(k∗ws
) if φ(s) = 0, and S(s) 63 p,

0 otherwise.

(6.1)

To interpret (6.1), let s ∈ M be a participation profile such that φ(s) = 1 and
S(s) 3 p. Active agents can select any socially optimal activity level in K∗s . By (C4)
the rights are effective and active members, S(s), do not have to worry about the
behavior of the remaining agents. Therefore,

vφ,P(s) = max
k∈[[0,sp]]

(
Bp(k)− ∑

i∈S(s)\{p}
Di(k)

)
.

If s ∈ M is such that φ(s) = 0 and S(s) 63 p, that is if only victims participate
S(s) ⊆ U and do not receive the rights. By the pessimistic expectations assumption,
active agents expect the worst scenario from the remaining agents, which includes
the polluter. Therefore each agent in S(s) ⊆ U expects the activity level k∗ws

.
Finally, two last cases arise: either s ∈ M is a participation profile such that

φ(s) = 0 and S(s) 3 p, or s ∈ M is such that φ(s) = 1 and S(s) 63 p. Regarding
the former case, the active agents do not have the right to negotiate an agreement
and the worst scenario active agents expect from the outsiders is k∗ws

= 0. Hence
the worth of the participation profile is vφ,P(s) = 0. For the latter case, by (C4) the
remaining agents cannot prevent S(s) to exercise the rights, so vφ,P(s) = 0.

3In a similar way, Funaki and Yamato [1999] analyze the tragedy of the commons through a coop-
erative game with externalities. The authors prove that the core of a common pool resource game is
always non-empty under the assumption of pessimistic expectations. More recently, Abe and Funaki
[2017] provide a necessary and sufficient condition for the non-emptiness of the core of games with
externalities, and they apply this condition to the tragedy of the commons.
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6.2.4 Properties for mappings of rights

Given a mapping of rights φ ∈ Φ and a social cost problem P ∈ P , the outcome of
the negotiation is given by a level payoff vector x ∈ RM of the multi-choice game
vφ,P. In this section, we present some desirable properties for mappings of rights.
The first one is related to the existence of core elements for the multi-choice game
derived from a mapping of rights φ ∈ Φ and a social cost problem P ∈ P . The
second property relates to the feasibility of payoff vectors in the core and the full
compensation principle. This property strengthen the later imposing a positive pay-
off for each agent whatever the participation level. Finally, the last property indicates
that no victim has the power to veto an agreement reached by the grand coalition.

Definition 1. A mapping of rights φ ∈ Φ satisfies core compatibility if, for each social cost
problem P ∈ P , C(vφ,P) 6= ∅.

This first property is straightforward. The game associated with a mapping of rights
that satisfies core compatibility always has a non-empty core (see Chapter 2, Section
2.3.2) regardless the social cost problem P ∈ P . Therefore whatever the benefit
function Bp or the damage functions Di for each victim i ∈ U, the core of the social
cost game is non-empty.

Definition 2. A mapping of rights φ ∈ Φ satisfies Kaldor-Hicks core compatibility if, for
each social cost problem P ∈ P , C(vφ,P) ∩RM

+ 6= ∅.

The Kaldor-Hicks core compatibility property imposes a non-negative payoff for
each agent at each participation level. In our context, the polluter is the only agent
which can have different activity levels. Hence Kaldor-Hicks core compatibility im-
poses that each victim should receive a non-negative payoff for its participation in
order to be fully compensated for the damage. Also, the polluter should receive a
non-negative payoff for each of its activity level.

Definition 3. A mapping of rights satisfies no veto power for a victim if, for each victim
i ∈ U, φ(1−{i,p}, 0i, mp) = 1.

According to this property, if a victim decides to leave the grand coalition, the re-
maining coalition retains the right to negotiate. Notice that, by (C3) if a mapping
of rights φ ∈ Φ satisfies no veto power for a victim, each participation profile
(1−{i,p}, 0i, sp) ∈ M such that S(1−{i,p}, 0i, sp) = N \ {i} retains the right:

φ(1−{i,p}, 0i, sp) = 1.

By (C4), each victim i ∈ U does not have the power to prevent negotiations among
the remaining agents φ(0−i, 1i) = 0. When we can consider a large set of victims,
this property can be seen as a weak democratic principle across the set of victims.
Indeed, one isolated victim cannot impose its choice to the remaining agents. No
victim should have more power than other victims regarding the legal framework.

Example 9. Consider the following social cost problem P ∈ P defined as follows.
Let N := {1, 2, p} be the set of agents, Mp := {0, 1, 2, 3, 4} is the action set of the
polluter, M1 = M2 = {0, 1}, and

Bp(sp) = 4
√

sp, D1(sp) =
6

10
× 2sp, D2(sp) =

3
10
× 2sp.
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Consider the mapping of rights φmaj ∈ Φ as introduced in Example 8. The associated
multi-choice game vφmaj,P ∈ Gm is as follows:

vφmaj,P(s) =


4
√

k∗s − ∑
i∈U
si=1

Di(k∗s ) if S(s) 3 p, |S(s)| ≥ 2,

0 otherwise.

We can show that C(vφmaj,P) = ∅ by considering the balanced collection B defined as

B := {s ∈ M : |S(s)| = 2},

with the balancing weights:

µ(s) =
4
2

, if x = (1, 1, 0), and µ(s) =
1
2

otherwise.

It should be noticed that the worth of the grand coalition will necessarily be lower
than the worth of any two agents coalition. By simple computations we have that:

∑
x∈B

µ(s)vφmaj,P(s) = 15.64 > 8.8 =
4

∑
k=1

vφmaj,P(1, 1, k).

By Theorem 2.3.1, we conclude that the core of the game is empty. Thus, φmaj ∈ Φ
does not satisfy core compatibility. Moreover, because Kaldor-Hicks core compat-
ibility implies core compatibility φmaj cannot satisfy Kaldor-Hicks core compatibil-
ity. In contrast, because we consider social cost problems with one polluter and at
least two victims, whenever a victim decides to leave the grand coalition we have
n− 1 > n/2. Therefore, φmaj ∈ Φ satisfies no veto power for a victim.

�

6.3 Core compatible mappings of rights

6.3.1 Restriction on the activity level of the polluter

In order to reduce the pollution level, it might be preferable to control the activity of
the polluter. For instance, one can imagine that the agents have a first agreement on
the pollution level that compels the polluter not to exceed a certain activity level. In
this perspective, we consider mappings of rights that allow the polluter to produce
up to a fixed “regulated activity level” k̃p ∈ Mp \ {0}.

The rationale behind this family of mappings of rights is to assess the liability of
the polluter as follows. If sp is low, sp ≤ k̃p, the polluter should not be held liable for
the damage its activity creates. The pollution problem is considered to be less severe
since the activity level is lower than the regulated level. Therefore, each coalition
containing the polluter can negotiate an activity level lower than or equal to k̃p. If sp

is high, sp > k̃p, the polluter is held liable for the resulting damage. Then, only the
grand coalition has the right to negotiate. The reason is that the pollution problem
becomes more severe and requires the participation of all agents in order to reach an
agreement.
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We formally define this type of mapping of rights φk̃p
as follows:

φk̃p
(s) =

{
1 if either S(s) 3 p and 0 < sp ≤ k̃p, or S(s) = N,
0 otherwise.

We denote by Φ̃ ⊆ Φ this family of mapping of rights.
Given a social cost problem P ∈ P , a mapping of rights φk̃p

∈ Φ̃, from equation
(6.1) we obtain the corresponding multi-choice game vφk̃p ,P ∈ Gm, defined as follows:

vφk̃p ,P(s) =



Bp(k∗s )− ∑
i∈U
si=1

Di(k∗s ) if S(s) 3 p and 0 < sp ≤ k̃p, or S(s) = N,

− ∑
i∈U
si=1

Di(k̃p) if S(s) 63 p,

0 otherwise.
(6.2)

Observe that the worst activity level a victim i ∈ U can face is k̃p. Indeed, if a victim
i ∈ U chooses to be active in a coalition that does not contain the polluter, it expects
the remaining agents to organize themselves into the worst scenario for it. On the
other hand, by construction of the game, the polluter is encouraged to be the only
active agent among the remaining ones. Therefore the polluter would choose the
activity level k̃p which maximizes its private benefit.

Proposition 6.3.1. For each k̃p ∈ Mp \ {0}, the mapping of rights φk̃p
∈ Φ̃ satisfies core

compatibility.

Proof. In order to prove Proposition 6.3.1, observe that the conditions to have a bal-
anced collection B (see Chapter 2, Section 2.3.2, definition 2.30) can be rewritten as
follows. A collection B is balanced if there exists positive coefficients µ(s), x ∈ B,
such that:

∀i ∈ U, ∑
x∈B
si=1

µ(s) = mp,

∀k = 1, . . . , mp, ∑
x∈B
sp=k

µ(s) = 1.

Thus, a multi-choice game vφ,P derived from a mapping of rights φ ∈ Φ and a social
cost problem P ∈ P , is balanced if for every balanced collection B of elements of
M\ {0} it holds

∑
x∈B

µ(s)vφ,P(s) ≤
mp

∑
kp=1

vφ,P(1−p, kp). (6.3)

This obervation allows us to derive the following intermediary result regarding
balanced collections.

Lemma 6.3.1. Let B be a balanced collection and µ(s), x ∈ B, the associated balancing
weights. Then, the following holds:

∀i ∈ U, ∑
x∈B
si=1,
sp=0

µ(s) =
mp

∑
k=1

∑
x∈B
si=0,
sp=k

µ(s).
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We interpret this Lemma through time allocation in the same way as for balanced
collections. This Lemma simply indicates that the amount of time each victim spends
in coalitions where the polluter is not active is equal to the total amount of time the
polluter spends in coalitions where the victim is not active. This constitutes the main
argument in order to prove Proposition 6.3.1. Indeed, according to this Lemma we
can consider a victim in terms of participation profiles in which it is not active but
the polluter is.

Proof. By the definition of a balanced collection (see Chapter 2, Section 2.3.2, defini-
tion 2.30) it holds that

∀i ∈ U, mp = ∑
x∈B
si=1

µ(s)

= ∑
x∈B
si=1,
sp=0

µ(s) + ∑
x∈B
si=1,
sp=1

µ(s) + . . . + ∑
x∈B
si=1,

sp=mp

µ(s)

= ∑
x∈B
si=1,
sp=0

µ(s) +
mp

∑
k=1

∑
x∈B
si=1,
sp=k

µ(s)

So we can write

∑
x∈B
si=1
sp=0

µ(s) = mp −
mp

∑
k=1

∑
x∈B
si=1
sp=k

µ(s) (6.4)

By definition, for each k = 1, . . . , mp we have

∑
x∈B
si=1
sp=k

µ(s) = 1− ∑
x∈B
si=0
sp=k

µ(s) (6.5)

By substituting (6.5) in (6.4) we obtain

mp = ∑
x∈B
si=1
sp=0

µ(s) +
mp

∑
k=1

(
1− ∑

x∈B
si=0
sp=k

µ(s)
)

= ∑
x∈B
si=1
sp=0

µ(s) + mp −
mp

∑
k=1

∑
x∈B
si=0
sp=k

µ(s)

and so

∑
x∈B
si=1
sp=0

µ(s) =
mp

∑
k=1

∑
x∈B
si=0
sp=k

µ(s). (6.6)

In order to prove Proposition 6.3.1, consider the modified Bondareva-Shapley
theorem for multi-choice setting (Theorem 2.3.1). We have to show that for any
mapping of rights φk̃p

∈ Φ̃ and for any social cost problem P ∈ P , the corresponding
game is balanced. Let B be any balanced collection of elements of M\ {0} and
µ(s), s ∈ B, the associated balancing weights. First of all, notice that by definition of
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vφk̃p ,P given by (6.2), for each participation profile s ∈ M such that p ∈ S(s) ( N

and sp > k̃p we have: vφk̃p ,P(s) = 0. Therefore, we have to consider three types of

participation profile: s ∈ M such that 0 < sp ≤ k̃p, s ∈ M such that sp > k̃p and
S(s) = N, and finally s ∈ M such that sp = 0. From this point we have:

∑
x∈B

µ(s)vφk̃p ,P(s) =
k̃p

∑
k=1

∑
x∈B
sp=k

vφk̃p ,P(s) +
lp

∑
k′=k̃p+1

∑
x∈B

sp=k′

S(s)=N

µ(s)vφk̃p ,P(s)

+ ∑
x∈B
sp=0

µ(s)vφk̃p ,P(s).

(6.7)

Using (6.2) which gives the corresponding worth of vφk̃p ,P, we have:

∑
x∈B

µ(s)vφk̃p ,P(s) =
k̃p

∑
k=1

∑
x∈B
sp=k

µ(s)
(

Bp(k∗s )− ∑
i∈U
si=1

Di(k∗s )
)

+
mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

S(s)=N

µ(s)
(

Bp(k′∗s )− ∑
i∈U

Di(k′∗s )
)

− ∑
x∈B
sp=0

µ(s)
(

∑
i∈U
si=1

Di(k̃p)

)
.

(6.8)

Let us focus on the last part of the right hand-side of equation (6.8). In other words,
we focus on the worth of participation profiles in which the polluter is inactive. It
holds that

− ∑
x∈B
sp=0

µ(s)
(

∑
i∈U
si=1

Di(k̃p)

)
= −∑

i∈U
Di(k̃p)

(
∑
x∈B
si=1
sp=0

µ(s)
)

.

Using Lemma 6.3.1 we obtain:

−∑
i∈U

Di(k̃p)

(
∑
x∈B
si=1
sp=0

µ(s)
)
= −∑

i∈U
Di(k̃p)

( mp

∑
k=1

∑
x∈B
si=0
sp=k

µ(s)
)

= −
mp

∑
k=1

∑
x∈B
sp=k

µ(s)
(

∑
i∈U
si=0

Di(k̃p)

)
.

(6.9)

Therefore, by Lemma 6.3.1 we can replace the sum of balancing weights for partic-
ipation profiles in which a victim is active while the polluter is inactive by the sum
of balancing weights for participation profiles x ∈ B in which the victim is inactive
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while the polluter is active. By replacing (6.9) in (6.8) we obtain:

∑
x∈B

µ(s)vφk̃p ,P(s) =
k̃p

∑
k=1

∑
x∈B
sp=k

µ(s)
(

Bp(k∗s )− ∑
i∈U
si=1

Di(k∗s )
)

+
mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

S(s)=N

µ(s)
(

Bp(k′∗s )− ∑
i∈U

Di(k′∗s )
)

−
mp

∑
k=1

∑
x∈B
sp=k

µ(s)
(

∑
i∈U
si=0

Di(k̃p)

)

=
k̃p

∑
k=1

∑
x∈B
sp=k

µ(s)
(

Bp(k∗s )− ∑
i∈U
si=1

Di(k∗s )
)

+
mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

S(s)=N

µ(s)
(

Bp(k′∗s )− ∑
i∈U

Di(k′∗s )
)

−
k̃p

∑
k=1

∑
x∈B
sp=k

µ(s)
(

∑
i∈U
si=0

Di(k̃p)

)
−

mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

µ(s)
(

∑
i∈U
si=0

Di(k̃p)

)
.

(6.10)

Notice that for each x ∈ B such that sp = kp ≤ k̃p, the optimal level negotiated by
agents given the participation profile x must be lower than or equal to the regulated
level: k∗s ≤ k̃p, where k∗s ∈ K∗s . Since for each i ∈ U, Di is a non-decreasing function,
we have Di(k̃p) ≥ Di(k∗s ). Therefore we obtain:

∑
x∈B

µ(s)vφk̃p ,P(s) ≤
k̃p

∑
k=1

∑
x∈B
sp=k

µ(s)
(

Bp(k∗s )− ∑
i∈U
si=1

Di(k∗s )
)

+
mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

S(s)=N

µ(s)
(

Bp(k′∗s )− ∑
i∈U

Di(k′∗s )
)

−
k̃p

∑
k=1

∑
x∈B
sp=k

µ(s)
(

∑
i∈U
si=0

Di(k∗s )
)
−

mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

µ(s)
(

∑
i∈U
si=0

Di(k̃p)

)
.

(6.11)

Observe that,

−
mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

µ(s)
(

∑
i∈U
si=0

Di(k̃p)

)
≤ 0.
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So we have:

∑
x∈B

µ(s)vφk̃p ,P(s) ≤
k̃p

∑
k=1

∑
x∈B
sp=k

µ(s)
(

Bp(k∗s )− ∑
i∈U
si=1

Di(k∗s )
)
−

k̃p

∑
k=1

∑
x∈B
sp=k

µ(s)
(

∑
i∈U
si=0

Di(k∗s )
)

+
mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

S(s)=N

µ(s)
(

Bp(k′∗s )− ∑
i∈U

Di(k′∗s )
)

.

(6.12)

For participation profiles x ∈ B such that sp ≤ k̃p, the corresponding optimal activity
level k∗s considers only active victims, but we insert this activity level k∗s for inactive
victims rather than k̃p. Hence, every agents face the activity level k∗s decided by the
active agents in x ∈ B. Therefore we obtain:

∑
x∈B

µ(s)vφk̃p ,P(s) ≤
k̃p

∑
k=1

∑
x∈B
sp=k

µ(s)
(

Bp(k∗s )− ∑
i∈U

Di(k∗s )
)

+
mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

S(s)=N

µ(s)
(

Bp(k′∗s )− ∑
i∈U

Di(k′∗s )
)

.
(6.13)

However, the activity level k∗s is not necessarily optimal when we consider all agents.
Therefore, we have

∑
x∈B

µ(s)vφk̃p ,P(s) ≤
k̃p

∑
k=1

max
h∈[[0,k]]

(
Bp(h)− ∑

i∈U
Di(h)

)(
∑
x∈B
sp=k

µ(s)
)

+
mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

S(s)=N

µ(s)
(

Bp(k′∗s )− ∑
i∈U

Di(k′∗s )
)

.
(6.14)

Recall that, by definition of vφk̃p ,P, for each s ∈ M such that sp = kp ≤ k̃p:

max
h∈[[0,kp]]

(
Bp(h)− ∑

i∈U
Di(h)

)
= vφk̃p ,P(1−p, kp),

and for each s ∈ M such that sp = k′p > k̃p, with S(s) = N:(
Bp(k′∗s )− ∑

i∈U
Di(k′∗s )

)
= vφk̃p ,P(1−p, k′p).
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Therefore, we have:

∑
x∈B

µ(s)vφk̃p ,P(s) ≤
k̃p

∑
k=1

vφk̃p ,P(1−p, kp)

(
∑
x∈B
sp=k

µ(s)
)
+

mp

∑
k′=k̃p+1

∑
x∈B

sp=k′

S(s)=N

µ(s)vφk̃p ,P(1−p, k′p).

(6.15)

Finally, by definition of the balanced collection, for each k ∈ Mp, ∑
x∈B
sp=k

µ(s) = 1. Then

we obtain:

∑
x∈B

µ(s)vφk̃p ,P(s) ≤
k̃p

∑
k=1

vφk̃p ,P(1−p, kp) +
mp

∑
k′=k̃p+1

vφk̃p ,P(1−p, k′p).

Therefore, by equation (6.3) we conclude that the multi-choice game vφk̃p ,P is bal-
anced. By Theorem 2.3.1, C(vφk̃p ,P) 6= ∅. �

Proposition 6.3.1 ensures that it is possible to reach a stable agreement whatever
the regulated level k̃p imposed by the law on the activity of the polluter, and regard-
less the social cost problem. According to the definition of the core, even if the law
imposes a regulated level on the polluter activity that is lower than the optimal level
for the whole society, agents will participate in the negotiation through a participa-
tion profile (1, . . . , 1, kp) ∈ M.

Observe that this result is strongly related to the pessimistic hypothesis regard-
ing the behavior of the remaining agents and the negative externality the polluter
generates. Any mapping of rights in Φ̃ allows the polluter to generate an activity.
By expecting the worst case, victim i ∈ U anticipates that the polluter will run its
activity alone if it deviates from any agreement reached by a coalition containing p.
The negative externality generated by the polluter typically reduces the incentives
for victims to free-ride.

Proposition 6.3.2. A mapping of rights φ ∈ Φ satisfies core compatibility and no-veto
power for a victim if and only if φ = φmp ∈ Φ̃.

Proof. By Proposition 6.3.1, φmp ∈ Φ̃ satisfies core compatibility. By definition of φmp

and conditions (C2) and (C3) defining mappings of rights, for any victim i ∈ U, for
any s ∈ M such that S(s) = N \ {i}, φmp(1−{i,p}, 0i, sp) = 1. Hence, φmp satisfies
no-veto power for a victim. But this is not the case for other mappings of rights in Φ̃.
Indeed, for any φk̃p

∈ Φ̃ \ {φmp} defined with respect to any regulated level k̃p < mp,
we must have φk̃p

(1−{i,p}, 0i, mp) = 0. So, φk̃p
∈ Φ̃ \ {φmp} violates no-veto power

for a victim.
To show that φmp is the only mapping of rights satisfying core compatibility

and no veto power, consider any mapping of rights φ ∈ Φ \ Φ̃ that satisfy no-veto
power. By (C3), it must be the case that for each victim i ∈ U, φ(1−{i,p}, 0i, sp) = 1,
where S(s) = N \ {i}. Combined with (C4), it implies that for each victim i ∈ U,
φ(0−i, 1i) = 0. Furthermore, we have φ(0−p, sp) = 0, otherwise φ ∈ Φ̃. From this,
there exist only two types of mapping of rights for φ ∈ Φ \ Φ̃:

(a) for each i ∈ N, for each s ∈ M such that S(s) = N \ {i}, φ(s−i, 0i) = 1 and
φ(1−p, 0p) = 1,
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(b) for each i ∈ N \ {p}, for each s ∈ M such that S(s) = N \ {i}, φ(s−i, 0i) = 1
and φ(1−p, 0p) = 0.

To prove that φ ∈ Φ \ Φ̃ does not satisfy core compatibility consider the following
social cost problem. Let N := {1, 2, p} be the set of agents. For each agent, the action
sets are M1 = M2 = {0, 1}, Mp = {0, 1, 2, 3}. The benefit function and damage
function for each agent are such that, for each activity level k ∈ Mp:

Bp(k) = 7
√

k, D1(k) = 3k, D2(k) = 2k.

Given the social cost problem P ∈ P and the mapping of rights φ(a), φ(b), we con-
struct the multi-choice game (N, M, vφ,P). Notice that for both types of mapping of
rights we have: vφ,P(1, 1, 0) = 0, for each k ∈ Mp, vφ,P(0, 0, k) = 0 and

vφ,P(1, 0, 1) = 4, vφ,P(1, 0, 2) = 4, vφ,P(1, 0, 3) = 4,
vφ,P(0, 1, 1) = 5, vφ,P(0, 1, 2) = 5.89, vφ,P(0, 1, 3) = 6.12,
vφ,P(1, 1, 1) = 2, vφ,P(1, 1, 2) = 2, vφ,P(1, 1, 3) = 2.

Consider the balanced collection

B := {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 2), (0, 1, 2), (1, 0, 3), (0, 1, 3)},

and the balancing weights µ(1, 1, 0) = 3/2 and for each x ∈ B \ {(1, 1, 0)}, µ(s) =
1/2. Straightforward computation gives

∑
x∈B

µ(s)v(s) = 19.505 > 6 =
3

∑
k=1

vφ,P(1, 1, k).

By Theorem 2.3.1 the multi-choice game constructed from the mapping of rights
φ ∈ Φ \ Φ̃ and the social cost problem P ∈ P has an empty core. This concludes the
proof of the proposition. �

Though all mappings of rights in Φ̃ satisfy core compatibility, only one satisfies
no-veto power for a victim. This confirm the result from Gonzalez et al. [2019] that
identifies only one possibility to conciliate the efficiency property with the require-
ment that no victim can veto an agreement reached by the rest of the society. There-
fore, the only possibility to mitigate the power of isolated victims while imposing
core compatibility is φmp ∈ Φ̃.

6.3.2 Enhancing the role of victims

One can argue that agent i ∈ N has power in negotiations since there exists at least
one participation profile s ∈ M such that φ(s−i, 0i) = 0. In other words, an agent
i has power if it can veto at least one agreement. While mappings of rights in Φ̃
mainly rely on the involvement of the polluter, they may give power to victims in the
negotiation only for participation profiles where the polluter decides to implement
an activity level beyond the regulated level k̃p.

In order to give more power to victims, we introduce a new family of mappings
which assigns the rights to a subset of victims. Notice that conditions (C1)-(C4) do
not precise the behavior of a mapping of rights when the polluter becomes active
while a subset of victims S ⊆ U has already received the rights. Active victims may
either loose the rights or retain them. From that point, we should accurately describe
the behavior of a mapping which assigns the rights to a subset of victims whenever
the polluter becomes active.
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We introduce the subset of mappings which allows only subsets of victims and
the whole society to negotiate. Let ∅ 6= S ⊆ U be any group of victims, we define
φu

S ∈ Φ as follows :

φu
S(s) =

{
1 if S ⊆ S(s) ⊆ U or S(s) = N,
0 otherwise.

Also, we introduce the mapping that gives the rights to the grand coalition only,
denoted by φ′u ∈ Φ:

φ′u(s) =
{

1 if S(s) = N,
0 otherwise.

Let Φu = {{φu
S}S⊆U ∪ φ′u} be the family of mappings which assigns the rights

either to victims or to the whole society.
From (6.1), for each a social cost problem P ∈ P , and each φu ∈ Φu, the multi-

choice game vφu,P ∈ Gm is as follows:

vφu,P(s) =

{
Bp(k∗s )− ∑

i∈U
Di(k∗s ) if S(s) = N,

0 otherwise.
(6.16)

Since the polluter can only negotiate with the whole set of victims, the worth of each
participation profile s ∈ M where S(s) ( N is vφu

S ,P(s) = 0. Finally, only participa-
tion profiles s ∈ M in which each agent is active, S(s) = N, have a non-negative
worth vφu

S ,P(s) ≥ 0. From this, it is straightforward that each mapping of rights
φu ∈ Φu satisfies core compatibility. It should be observed that this family of map-
ping of rights fully captures the idea behind the polluter-pays principle. Indeed,
such assignment of rights always considers the polluter liable for the harmful dam-
age. Besides, there is no configuration in which the polluter can be active except by
contracting with the whole society and thus by compensating each victim.

By Propositions 6.3.1 and 6.3.2, we are now able to introduce our main result
regarding core compatibility.

Theorem 6.3.1. A mapping of rights φ ∈ Φ satisfies core compatibility if and only if φ ∈
Φ̃ ∪Φu.

The intuition of this result is as follows. First, it is clear that any mapping of rights
in Φu satisfies core compatibility. By Proposition 6.3.1 we know that any φk̃p

∈ Φ̃ is
core compatible. Then, we use Proposition 6.3.2 to show that if a mapping of rights
φ ∈ Φ \ Φ̃ is core compatible. This forces φ ∈ Φu. This result aligns with the existing
cooperative game literature which has analyzed the Coase theorem. It highlights the
impossibility to satisfy both the efficiency and neutrality properties.

Proof. According to Proposition 6.3.1 each mapping of rights φk̃p
∈ Φ̃ satisfies core

compatibility. Furthermore it is obvious that any mapping of rights φu ∈ Φu sat-
isfies core compatibility. Indeed, as mentioned in section 6.3.2, only participation
profiles s ∈ M such that S(s) = N may have positive worth. Then, for all balanced
collections B of elements ofM\ {0}, it always holds that:

∑
x∈B

µ(s)vφu,P(s) ≤
mp

∑
kp=1

vφu,P(1−p, kp).
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To prove that there is no other mapping of rights satisfying core compatibility con-
sider any mapping of rights φ ∈ Φ \ Φ̃ that satisfies core compatibility. We have to
show that φ ∈ Φu.

First, for each sp ∈ Mp \ {0}, we have φ(0−p, sp) = 0, otherwise φ ∈ Φ̃. By
Proposition 6.3.2 the only mapping of rights which satisfies core compatibility and
no veto power for a victim is φmp ∈ Φ̃. Define J ⊆ U the subset of victims which do
not have any veto power as:

J = {j ∈ U | ∀sp ∈ Mp \ {0}, φ(1−{j,p}, 0j, sp) = 1}.

Any mapping of rights φ ∈ Φ \ Φ̃ satisfying core compatibility does not satisfy no
veto power for a victim, meaning J 6= U. Hence, there is at least one victim i ∈ U
such that φ(1−{i,p}, 0i, mp) = 0. In other words there is at least one victim i ∈ U
which can veto the highest activity level of the polluter. However it can be the case
that there exists an activity level sp ∈ Mp \ {0, mp} such that φ(1−{i,p}, 0i, sp) = 1.

In order to analyze such mapping of rights, we consider the following partition
of U. Define Ĩ the set of victims which hold a veto power as:

Ĩ := {i ∈ U | ∃si
p ∈ Mp \ {0} such that ∀kp ≥ si

p, φ(1−{i,p}, 0i, kp) = 0}.

For each i ∈ Ĩ, let s̃i
p ∈ Mp \ {0} be the minimum activity level of the polluter such

that φ(1−{i,p}, 0i, s̃i
p) = 0. Either s̃i

p = 1, then victim i has the power to veto any
agreement for any activity level of the polluter; or s̃i

p > 1, then for each activity level
of the polluter 1 ≤ kp < s̃i

p, φ(1−{i,p}, 0i, kp) = 1. Therefore, we decompose Ĩ into
two subsets denoted by I and H defined by:

I = {i ∈ Ĩ | s̃i
p > 1},

H = {h ∈ Ĩ | s̃i
p = 1}.

I ⊆ U is the subset of victims which can veto the highest participation level of the
polluter but not a lower participation level kp < s̃i

p ∈ Mp \ {0}. H ⊆ U is the subset
of victims which can veto any participation level of the polluter. The three subsets
H, I, J allows us to describe every mappings of rights with respect to the veto power
of victims.

1. Suppose that for each i ∈ U, φ(1−{i,p}, 0i, mp) = 0, so J = ∅. We have to
consider three cases:

(a) H = U, so for each i ∈ U, for each sp ∈ Mp \ {0}, φ(1−{i,p}, 0i, sp) = 0.
Then by monotonicity of φ on M−p, (C2) of the definition of mapping of
rights, for any S ⊂ U we have φ(1−S∪p, 0S, sp) = 0. Therefore for each
participation profile s ∈ M in which the polluter is active p ∈ S(s), we
must have φ(s) = 0. Therefore, φ = φu ∈ Φu;

(b) I 6= ∅ and H 6= ∅, so for some i ∈ U, there exists si
p ∈ Mp \ {0, mp} such

that φ(1−{i,p}, 0i, si
p) = 1;

(c) I 6= ∅ and H = ∅, so for each i ∈ U, there exists si
p ∈ Mp \ {0, mp} such

that φ(1−{i,p}, 0i, si
p) = 1.

2. Suppose that for some i ∈ U, φ(1−{i,p}, 0i, mp) = 1, so J 6= ∅. We have to
consider three cases:

(d) H = U \ J, so for each i ∈ U \ J, for each sp ∈ Mp \ {0}, φ(1−i, 0i, sp) = 0;



6.3. Core compatible mappings of rights 151

(e) I = U \ J, so for some i ∈ U \ J, there exists si
p ∈ Mp \ {0, mp} such that

φ(1−{i,p}, 0i, si
p) = 1;

( f ) I 6= ∅ and H 6= ∅, so for some i ∈ U \ J, there exists si
p ∈ Mp \ {0, mp}

such that φ(1−{i,p}, 0i, si
p) = 1

To obtain a contradiction, we have to show that φ is not core compatible for cases
1.(b)-2.( f ). To this end, we have to consider each type of mapping of rights φ1.(b)-
φ2.( f ) corresponding to each case. For each type of mapping of rights we have to
find an instance P ∈ P such that the core of the associated game is empty. We will
consider the social cost problem P = (N, Mp, Bp, (Di)i∈U) ∈ P defined by:

∀k ∈ Mp = {0, 1, 2, 3}, Bp(k) = 7
√

k, D1(k) = 5.5k, D2(k) = 2k,
Di(k) = 0, i ∈ U \ {1, 2}.

Also we will focus on participation profiles s ∈ M where at least n− 1 agents are
active. Therefore we will consider the balanced collection B of elements of L defined
by:

B := {s ∈ M : |S(s)| = n− 1},

with the balancing weights defined as follows:

µ(s) =
mp

n− 1
, if S(s) = U ; and µ(s) =

1
n− 1

otherwise.

Consider any mapping of rights φ1.(b) such that H 6= ∅ and I 6= ∅. Assume that
1 ∈ H, 2 ∈ I and for each i ∈ I, s̃i

p = 2. For participation profiles s ∈ M, such that
|S(s)| = {n− 1, n}, we have:

1. for each sp ∈ Mp \ {0}, vφ1.(b),P(1−p, sp) = 0,

2. vφ1.(b),P(1−p, 0p) = 0,

3. vφ1.(b),P(1−{2,p}, 02, 1p) = 1.5

4. for any sp ∈ Mp \ {0, 1}, vφ1.(b),P(1−{2,p}, 02, sp) = 0,

5. for each h ∈ H, for each sp ∈ Mp \ {0}, vφ1.(b),P(1−{h,p}, 0h, sp) = 0,

6. for each i ∈ I \ {2}, for each sp ∈ Mp \ {0}, vφ1.(b),P(1−{i,p}, 0i, sp) = vφ1.(b),P(1−p, sp) =
0.

Simple computations give:

∑
x∈B

µ(s)vφ1.(b),P(s) =
1.5

n− 1
> 0 =

3

∑
sp=1

v(1−p, sp).

Therefore, by Theorem 2.3.1 we have C(vφ1.(b),P) = ∅.

Consider any mapping of rights φ1.(c), then I = U. Furthermore assume that
s̃i

p = 2 we have:

1. for each sp ∈ Mp \ {0}, vφ1.(c),P(1−p, sp) = 0,

2. vφ1.(c),P(1−p, 0p) = 0,
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3. vφ1.(c),P(1−{2,p}, 02, 1p) = 1.5,

4. vφ1.(c),P(1−{1,p}, 01, 1p) = 5,

5. for each i ∈ I \ {1, 2}, for each sp ∈ Mp \ {0},

vφ1.(c),P(1−{i,p}, 0i, sp) = vφ1.(c),P(1−p, sp) = 0.

By taking the balanced collection B as defined above, simple computations give us:

∑
x∈B

µ(s)vφ1.(c),P(s) =
6.5

n− 1
> 0 =

3

∑
sp=1

v(1−p, sp).

Again, by Theorem 2.3.1 we have C(vφ1.(c),P) = ∅.

Consider any mapping of rights φ2.(d) such that J 6= ∅ and H = U \ J. Assume
that 1 ∈ H and 2 ∈ J. Then we obtain,

1. for each sp ∈ Mp \ {0}, vφ1.(b),P(1−p, sp) = 0,

2. vφ2.(d),P(1−p, 0p) = 0,

3. for each sp ∈ Mp \ {0}, vφ2.(d),P(1−{2,p}, 02, sp) = 1.5,

4. for each h ∈ H, for each sp ∈ Mp \ {0}, vφ2.(d),P(1−{h,p}, 0h, sp) = 0,

5. for each j ∈ J \ {2}, for each sp ∈ Mp \ {0}, vφ2.(d),P(1−{j,p}, 0j, sp) = vφ2.(d),P(1−p, sp) =
0.

By taking the balanced collection B as defined above, simple computations give us:

∑
x∈B

µ(s)vφ2.(d),P(s) =
4.5

n− 1
> 0 =

3

∑
sp=1

v(1−p, sp).

Therefore, by Theorem 2.3.1 we have C(vφ2.(d),P) = ∅.

Consider any mapping of rights φ2.(e) such that J 6= ∅ and I = U \ J. Assume
that 2 ∈ I with s̃i

p = 2 and 1 ∈ J. Then we obtain,

1. for each sp ∈ Mp \ {0}, vφ1.(c),P(1−p, sp) = 0,

2. vφ2.(e),P(1−p, 0p) = 0,

3. vφ2.(e),P(1−{2,p}, 02, 1p) = 1.5,

4. for each sp ∈ Mp \ {0}, vφ2.(e),P(1−{1,p}, 01, sp) = 5,

5. for each i ∈ I \ {2}, for each sp ∈ Mp \ {0},

vφ2.(e),P(1−{i,p}, 0i, sp) = vφ2.(e),P(1−p, sp) = 0.

∑
x∈B

µ(s)vφ2.(e),P(s) =
16.5

n− 1
> 0 =

3

∑
sp=1

v(1−p, sp).
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Therefore, by Theorem 2.3.1 we have C(vφ2.(e),P) = ∅.

Finally, consider any mapping of rights φ2.( f ) such that J 6= ∅, I 6= ∅ and H 6= ∅
. Assume that 2 ∈ I and 1 ∈ H. Then we obtain vφ2.( f ),P = vφ1.(b),P, therefore by
Theorem 2.3.1 we have C(vφ2.( f ),P) = ∅.

From 1(a)-2( f ), we conclude that if φ ∈ Φ \ Φ̃ is core compatible then φ ∈ Φu.
This concludes the proof. �

Theorem 6.3.2. There is no mapping of rights in Φ that satisfies Kaldor-Hicks core com-
patibility and no veto power for a victim.

Proof. Notice that any mapping of rights φu ∈ Φu satisfies Kaldor-Hicks core com-
patibility. But, any of them satisfy no veto power for a victim.

By Proposition 6.3.2, the only mapping of rights satisfying core compatibility
and no veto power for a victim is φmp ∈ Φ̃. By definition of the corresponding game
vφmp ,P given by (6.2), it holds that:

vφmp ,P(0−p, kp) = Bp(kp), and vφmp ,P(1−p, kp) = Bp(k∗s )−∑
i∈U

Di(k∗s ), where kp ∈ Mp.

For each kp ∈ Mp, we have vφmp ,P(0−p, kp) ≥ vφmp ,P(1−p, kp). However, the core
constraints impose for each kp ∈ Mp,

xp,kp ≥ vφmp ,P(0−p, kp), and ∑
i∈U

xi,1 + xp,kp = vφmp ,P(1−p, kp).

We can easily construct a social cost problem P ∈ P such that vφmp ,P(0−p, kp) >

vφmp ,P(1−p, kp) ≥ 0. In this case we have:

∀kp ∈ Mp, xp,kp > ∑
i∈U

xi,1 + xp,kp ≥ 0.

This implies that:
∑
i∈U

xi,1 < 0.

Therefore, the mapping of rights φmp ∈ Φ̃ does not satisfy Kaldor-Hicks core com-
patibility. This concludes the proof.

According to Theorem 6.3.2, it is not possible to conciliate the efficiency property
while imposing full compensation and no veto power for a victim.

6.4 Concluding remarks

In this chapter, we have analyzed the legal structure ruling negotiations among a
finite set of agents when the activity of one agent is harmful for the rest of the society.
Examples include any situation in which agents with conflicting interests aim to
negotiate compensations for the damage.

We contribute to the literature devoted to the Coase theorem by deriving a multi-
choice cooperative game from a social cost problem and a liability rule (defined by
mappings of rights). We identify two specific families of liability rules that satisfy the
efficiency property formalized in terms of non-emptiness of the core. We show that
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any regulation that imposes a quota on the activity level of the polluter is compatible
with the efficiency property, provided that the whole set of potential victims can ne-
gotiate an agreement with the polluter. In the same way we show that any mapping
that exclusively assigns the rights to a set of victim satisfies the efficiency property.
However, we show that it is not possible to conciliate the efficiency property while
requiring the full compensation property and no veto power for a victim. Let us
mention that our construction of the multi-choice game relies on the assumption
that agents form pessimistic expectations regarding the behavior of the remaining
agents. Under other assumptions, a multi-choice game associated with the mapping
of rights which considers quotas on the polluter’s activity level may have an empty
core. Indeed, the pessimistic expectation assumption restricts the incentives for iso-
late victims to benefit from an agreement reached by the rest of the society without
contributing.
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Chapter 7

Conclusion

This thesis has mainly investigated the model of multi-choice cooperative games,
and two relevant applications dealing with pollution issues. As argued in Chapter
1, the model of multi-choice games seems to naturally fit the analysis of cooperative
institutions in which the agents can cooperate at several intensities. Specifically, it
allows to address the problem of evaluating the agents’ participation and coopera-
tion intensities. By sticking to the justice mode of cooperation presented in Chapter
1, the approach followed all along the thesis was the axiomatic method.

In summary, Chapter 3 proposed several values for multi-choice games: the
multi-choice Shapley value, the multi-choice Equal Division values, and the Egalitar-
ian Shapley values for multi-choice games. Each of these values satisfies a necessary
condition to be in the core of a multi-choice games called multi-efficiency. The latter
values allow to address the trade-off between marginalism and egalitarianism in the
context of multi-choice games. These values are computed as the convex combina-
tion of the multi-choice Shapley value and the multi-choice Equal division value.
For each value, at least one axiomatic characterization has been provided. Chapter
4 investigated the class of multi-choice games with a priority structure. The multi-
choice Priority value has been introduced and characterized by two set of axioms.
This value relies on a lexicographic allocation process, which mixes both the linear
order of the agent’s activity levels and the priority structure. Chapter 5 investigated
the problem of transporting hazardous waste. By assuming that this transportation
involves a cost on each portion of the network, the question was to allocate this cost
among the involved agents. Several axioms have been proposed in this context that
have been derived by interpreting environmental regulation regarding the trans-
portation of hazardous waste. Then, an allocation rule has been characterized (the
responsibility rule), which is related to the multi-choice Shapley value introduced
in Chapter 3. Finally, Chapter 6 has investigated the Coase theorem in the context
of multi-choice games. By considering a class of social cost problems in which one
polluter interacts with several potential victims. It has identified new distribution of
rights that ensure stable negotiations, as fostered by Coase. This chapter also con-
firms the incompatibility between the efficiency thesis of the Coase theorem (agents
should always reach an optimal agreement if the property rights are well-defined
and there is no transaction cost) and the neutrality thesis (this optimal agreement is
independent of the assignment of rights).

Discussion and future research The contributions and the results in this thesis es-
tablish the basis for further investigations. First, I want to discuss some possibilities
that can be explored by further axiomatic investigations. Second, I would discuss
modifications of the model of multi-choice games and different interpretations that
can arise from these modifications.
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In Chapter 3, we provided further remarks on the Shapley like values for multi-
choice games. Precisely, we have provided a comparison of the different extensions
of the Shapley value introduced in the literature. As highlighted in this compari-
son, the main difference between the values comes from the axiom formalizing the
concept of equal treatment of equals (see Table 3.1). From an axiomatic perspective,
it would be enlightening to investigate a weaker axiom formalizing the concept of
equal treatment in multi-choice games, which might be satisfied by each Shapley
like value introduced in the literature. On this basis, one could explore the class of
solutions satisfying efficiency, linearity, and such weaker condition of equal treat-
ment. By doing so, the objective would be to provide a complete description of the
solutions satisfying the combination of these axioms.

In the axiomatic analysis of Chapter 4, we considered two axioms that favor
agents with a higher position in the priority structure (Priority relation for the same
maximal activity level and Priority relation for decisive agents). Both axioms con-
sider two agents such that one has the priority over the second. Actually, both ax-
ioms imply that adding one activity level to an agent with the highest position in the
priority structure does not impact the second agent’s payoffs. Such requirement can
become specifically strong depending on the situation at hand. For example, con-
sider agents involved in a sponsorship system. An agent having the priority over
another represents a relation between a sponsor and sponsored. In this case, it can
be too strong demanding that an additional activity level for the sponsor agent has
no impact on the sponsored agent. Indeed, both agents may be affected by such an
additional activity level but at different intensity. Thus, it would be interesting to
investigate the implications of relaxing these axioms in the context of multi-choice
games with a priority structure.

Regarding the model of multi-choice cooperative games, one possible direction
would be to relax the hypothesis that the agents’ activity levels are linearly ordered.
A first relaxation would be to consider a partial order on the set of activity lev-
els. Such case might be relevant to model situations in which the activity levels
represent both qualitative and quantitative data. For example, in Chapter 5 on the
transportation of hazardous waste, one can consider that the different activity levels
represents different hazardous material generated by the agents. These hazardous
materials can be related with respect to their potential for harm. However, two ma-
terials can have the same degree of hazard. Such relaxation can also fit the context
of multi-choice games with a priority structure introduced in Chapter 4. In this case,
this would allow for new combinations of the priority structure and the set of activ-
ity levels. Going further in this direction, one can focus on the case where there is no
relation between the activity levels. In this case, the notion of an activity level would
be closer to the different actions that the agents may have in a non-cooperative set-
ting. While considering such a model, one can let the set of available actions vary. In
this way, a solution can be interpreted as the evaluation of the agent’s cooperation
with respect to its set of actions.
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