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“La neuvième forme tue à coup sûr le chameau. Elle
blesse à mort le lion. Mais l’enfant que tu sauras
peut-être devenir pourrait lui survivre. Ces trois mé-
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amour, d’une quête...
Penses-y quand tu seras sur le bord du monde,...”

Alain Damasio, La Horde du contrevent
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0
Notation & Lecture guide

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mathematical notation

SPACES

• Ω is the definition domain of the image. In general, images are seen as functions defined
on a subset of Rd, where d ∈ {2, 3} is the dimension. Depending on the context, Ω
can be seen as the image set of pixels or voxels. H,W ,D are respectively the number
of pixels in height, width and depth. (i.e.: Ω = H ×W in 2D and Ω = H ×W ×D
for 3D pictures as the ones acquired from MRI.)

• I is the space of images I : Ω → R.

• G is the group of deformation. By default, G is set to be Diff the group of C 1(Ω,Ω)
diffeomorphisms.

• H is any Hilbert space, and L2 is the space of 2 times integrable functions.

OPERATORS:

• v · w: where v,w : Ω 7→ Rd and · is the Euclidean scalar product.

• g . m: where g ∈ G a group and m ∈M a Manifold, g . m is the action of g on m

• v � f : where v is a vector fields, and f a differentiable function, � is a differential
operator.
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PRODUCTS:

• We will note 〈•, •〉A the scalar products with the corresponding norms ‖a‖2A =
〈a, a〉A where A is a functional space

• We will note (•|•) the dual product of an Hilbert space H given by the Riesz
representation theorem, such as for every continuous linear functional g ∈ H ′, there
exists a unique vector fg ∈ H written as g(x) = 〈x, fg〉H = (fg|x) for all x ∈ H.

DERIVATION:

• We will use ∂xf = ∂f
∂x for the the partial derivative in the direction x to lighten

notations, where f is a differentiable function. Depending on the context we can use
one or the other.

• We will use ḟ = ∂tf = ∂f
∂t for the time derivative to lighten notations, where f is a

time differentiable function. Depending on the context we can use one or the other.

LETTERS:

• L: Lagrangian (c.f., Section 2.3.1)

• L : Lie derivative (c.f., Section 2.1)

• L,K: differential operator for RKHS, L,K corresponding kernels (c.f., Section 2.2.3.c)

DIFFEOMORPHISMS:

• v is a temporal vector field, v = (vt)t∈[0,1].

• ϕv
t,s, 0 ≤ t < s ≤ 1 is the diffeomorphism integrated from v, from t to s.

• ϕv
t =̇ϕ

v
0,t. When only one value is passed, the integration is implied as starting from 0.

Similarly, ϕv=̇ϕv
1 is the complete forward integration from 0 to 1.

You can find more details on the definition in Section 2.2.3.b.

In text

• functions and Classes are always written with this font and the source code can be
found in one of the Github repositories Demeter_metamorphosis or gliomaSegmenta-
tion_TDA

• Math using the ‘mathtt’ font is the discretisation analogue of the same continuous
function. For example, the temporal image is I : [0, 1] → R and its discretisation with
N step is I : [[0, N − 1]] → [0, 1] (the image is normalised to have values in between 0
and 1).

3
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Figure 1: Image comparison color codeTop- Two images to compare. Bottom- (left) ‘old’ colour code used in
Chapter 3, (right) ‘new’ colour code used in Chapter 2.

Colour Code

Numerous techniques have been developed for comparing images, among which one of the
most efficient is the method of displaying two images alternately. However, due to the
limitations of the pdf format, this technique cannot be used for image comparison. In the
case of grayscale images, it is possible to utilize the RGB format for comparative analysis
of images. At the outset of my thesis, I employed a rudimentary technique which involved
assigning each image to the first (red) and second (green) colour channels. The resulting
images are depicted in the lower-right corner of Figure 1, with yellow representing similar
pixel values and green and red representing diverging pixel values. However, I observed
confusion among the audience while presenting my results, which prompted me to devote
more effort to image comparison. This led me to develop an improved technique that results
in images similar to the one depicted in the lower-left corner of Figure 1, where similar pixel
values are displayed in green and diverging ones in red and blue, with slightly enhanced values
for low and non-zero values. It should be noted that the figures presented in Chapter 3 were
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created using the old convention of assigning red and green channels to the first and second
images, respectively. However, in Chapter 2, the improved technique of displaying similar
pixel values in green and diverging ones in red and blue was employed. Unfortunately, due
to time constraints, it was not feasible to redo all the experiments with the new convention.
As a result, a mix of both conventions may be present in the figures presented throughout
this thesis. Nonetheless, the comparative analysis of images remains valid and informative
for the purposes of this research.
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The primary duty of a researcher is to generate knowledge that is verifiable and reproducible.
However, it is also important for the researcher to communicate their research findings to
the wider public. As someone with a passion for comic books, I decided to try my hand at
making my research more accessible by creating two short stories that summarise key ideas
of my thesis. You can find these stories in sections 1.7 and 2.6. I was fortunate to have the
help of Salomé Govignon, an illustrator and friend, who lent a touch of magic to my work
through her delicate drawings. Her contribution was invaluable in bringing the two stories
to life, and I am grateful for her assistance.
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Ce projet de doctorat se trouve à l’intersection de plusieurs disciplines. Nous appliquons
nos travaux à la recherche médicale sur les glioblastomes, qui sont un genre de tumeurs
du cerveau. À partir de données radiologiques, nous voulons inférer une forme moyenne
en fonction de leurs positions dans le cerveau. Pour cela, nous utilisons les mathématiques
appliquées, plus particulièrement la théorie des espaces de formes, domaine qui est lui-même
à l’intersection de plusieurs champs des mathématiques et de la physique. Il se base sur la
géométrie différentielle mais possède des liens forts avec la dynamique des fluides, tout en
dépendant beaucoup de techniques d’optimisation. Dans cette introduction, nous prenons
le temps de détailler la pertinence de l’application et introduisons les concepts d’espaces de
formes ainsi que du recalage.

1.1 Motivation médicale et aperçu des données . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1.1 À propos des Glioblastomes

GÉNÉRALITÉS SUR LES TUMEURS. Une tumeur est une masse de cellules anormales qui se
développe dans le corps. Ces cellules anormales se multiplient de manière incontrôlée, for-
mant une masse qui peut envahir les tissus et les organes environnants. Les tumeurs peuvent
être bénignes, ce qui signifie qu’elles ne sont pas cancéreuses et ne se propagent pas à d’autres
parties du corps. Si une tumeur n’est pas bénigne, on dit qu’elle est maligne. Les premières
tumeurs peuvent gêner la fonction corporelle en redirigeant les nutriments à leur seul béné-
fice, privant potentiellement d’autres tissus essentiels. Les cancers (avec une emphase sur
le pluriel) peuvent prendre de nombreuses formes et sont extrêmement hétérogènes en ter-
mes de forme, de composition et de symptômes. En effet, leur origine est souvent due à
une mutation malheureuse survenue pendant la division cellulaire, altérant leurs fonctions
normale.

Malgré cette variabilité, on peut distinguer plusieurs parties d’une tumeur, notamment la
principale masse tumorale, qui est composée de cellules anormales, et le tissu environnant,
qui peut être normal ou peut contenir un mélange de cellules normales et anormales. La
tumeur peut également avoir une couche de cellules appelée capsule tumorale, qui entoure
la principale masse tumorale et la sépare du tissu sain. La tumeur peut également avoir des
vaisseaux sanguins et lymphatiques, qui peuvent l’aider à se développer et à se propager à
d’autres parties du corps. À l’intérieur de la masse tumorale, une nécrose peut se produire.
La nécrose est un type de mort cellulaire qui se produit lorsque les cellules sont endommagées
ou blessées au-delà de toute réparation. Contrairement à d’autres formes de mort cellulaire,
comme l’apoptose, la nécrose est un processus chaotique et incontrôlé qui peut être nuisible
pour le corps. La nécrose peut se produire dans n’importe quel type de tissu, mais elle est
le plus souvent associée aux dommages tissulaires causés par une blessure ou une infection.
Lorsque la nécrose se produit, les cellules affectées gonflent et éclatent, causant des œdèmes
en libérant leur contenu dans les tissus environnants, ce qui peut causer une inflammation
et des dommages aux cellules voisines. Dans les cas graves, la nécrose peut conduire à la
mort des tissus ou des organes.

Aux frontières de la tumeur cancéreuse, les cellules sont plus actives et peuvent se propager
dans les tissus environnants de manière diffuse, dans ce cas, on parle de cancer infiltrant.
Le mélange de cellules saines et cancéreuses à la frontière rend ce type de cancer difficile
à traiter chirurgicalement. Lorsque ces tumeurs atteignent les vaisseaux sanguins ou le
système lymphatique, elles peuvent également se propager à d’autres parties du corps, ce
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qui les rend plus agressives et plus difficiles à contrôler. Le traitement du cancer infiltrant
implique souvent une combinaison de chirurgie, de radiothérapie et de chimiothérapie pour
tuer les cellules cancéreuses et les empêcher de se propager.

PLUS SUR LES GLIOMES Il n’y a que deux types de cellules dans le système nerveux central
(SNC) : les neurones qui sont considérés comme le support de la cognition et les cellules
gliales qui sont toutes les autres cellules du SNC qui répondent à tous les besoins des
neurones. Les neurones ont une grande variété de formes et de fonctions, par exemple les
astrocytes fournissent des nutriments, régulent le flux sanguin et protègent les neurones des
anticorps.

Les tumeurs cérébrales sont le plus souvent des gliomes, un terme général utilisé pour
décrire les tumeurs cérébrales primaires. Les tumeurs neuronales sont très rares et sont
surtout bénignes. En effet, les neurones ont un processus de reproduction complexe très
différent des autres cellules. Les gliomes prennent leur origine dans les cellules gliales et
leurs noms spécifiques proviennent du nom de leur cellule (e.g., : astrocytome) [Hanif et al.,
2017]. Le glioblastome multiforme est le type d’astrocytome primaire le plus grave et le
plus fréquent. Il représente plus de 60% de toutes les tumeurs cérébrales chez l’adulte [Rock
et al., 2012]. Leurs causes ne sont pas bien comprises, l’exposition à des doses élevées
de rayonnement ionisant étant le seul facteur de risque confirmé [Hanif et al., 2017]. Le
traitement souvent recommandé est une chirurgie précise qui peut améliorer la qualité de
vie du patient en réduisant la charge tumorale, et de fait aide à contrôler les convulsions ou
même inverser les déficits neurologiques.

La localisation de la tumeur est un paramètre clé dans les soins des patients atteints de
glioblastome car elle est corrélée aux caractéristiques démographiques ainsi qu’aux symp-
tômes. De fait elle affecte le pronostic du patient et influence la prise en charge chirurgicale
[Roux and et al., 2019].

De précédentes études sur la pathogenèse ont montré que l’emplacement le plus fréquent
pour les GB sont les hémisphères cérébraux. 95% des GB apparaissent dans la région
sus-tentorielle (partie supérieure de l’encéphale), tandis que seulement quelques-uns dans
le cervelet, le tronc cérébral et la moelle épinière [Nakada et al., 2011]. À une échelle
macroscopique, les GB sont assez hétérogènes en forme. S’ils sont irrégulièrement formés,
ils se développent généralement dans la substance blanche. Il a été démontré que selon le
lobe où la tumeur apparaît, les symptômes varient. Par exemple, les patients atteints de GB
situé dans la région du lobe temporal montrent souvent des problèmes auditifs et visuels,
tandis que ceux qui ont une tumeur dans le lobe frontal peuvent présenter un changement
de personnalité [Hanif et al., 2017]. De plus, la distribution de l’œdème/nécrose entraîne
différents effets secondaires chez le patient : une augmentation progressive de la taille de la
tumeur et une augmentation de l’œdème entourant la tumeur entraînent un déplacement du
contenu intracrânien, ce qui provoque des maux de tête. Une tumeur localisée dans des sites
tels que le cortex éloquent, le tronc cérébral ou le ganglion basal ne peut pas être opérée et
ces patients ont généralement un pronostic plus sombre [Mrugala, 2013].

La classification de l’organisation mondiale de la santé (OMS) des glioblastomes est un
système utilisé pour classer et décrire différents types de glioblastome [Villa et al., 2018;
Berger et al., 2022]. Cette classification est basée sur l’apparence microscopique des cellules
cancéreuses, ainsi que sur les caractéristiques génétiques et moléculaires de la tumeur. C’est
un outil important pour les cliniciens et les chercheurs, car elle permet de caractériser les
caractéristiques spécifiques d’une tumeur particulière et de guider les décisions de traitement.
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Le grade OMS des glioblastomes est généralement déterminé en analysant un échantillon
de tissu prélevé lors d’une biopsie ou d’une intervention chirurgicale. Cependant, l’IRM
peut également être utilisée pour identifier certaines caractéristiques du glioblastome qui
peuvent être indicatives de son grade OMS. Les glioblastomes de haut grade ont tendance
à être plus grands, avoir une forme irrégulière et diffuse, tout en étant très intenses sur les
images d’IRM avec contraste, être associés à des zones de nécrose et infiltrer le tissu cérébral
environnant. Il est important de noter que l’IRM seule n’est pas suffisante pour classer avec
précision un glioblastome. Un échantillon de tissu doit être analysé par un pathologiste pour
déterminer définitivement le grade OMS de la tumeur.

Le premier diagnostic est toujours basé sur la visualisation de la tumeur et est réalisé à
l’aide de techniques d’imagerie radiologique, la plus courante étant l’IRM.

1.1.2 Imagerie par Résonance Magnétique pour la visualisation de cerveaux

Une machine d’imagerie par résonance magnétique (IRM) utilise des champs magnétiques
puissants et des ondes radio pour créer des images détaillées de l’intérieur du corps. Le
patient est allongé sur une table qui est déplacée dans la machine IRM, qui contient un
grand et puissant aimant. L’aimant aligne les particules atomiques dans le corps, et des
ondes radio sont utilisées pour décaler ces particules de leur alignement initial. Lorsque
les particules reviennent à leur alignement initial, elles émettent un signal qui est détecté
par la machine IRM et utilisé pour créer une image de l’intérieur du corps. Les images
produites par une machine IRM peuvent être utilisées pour diagnostiquer une large gamme
de conditions médicales.

Figure 1.1: Glossaire succinct de l’anatomie du cerveau.

La figure 1.1 illustre une IRM T1 d’un cerveau sain avec le crâne. Le crâne est générale-
ment retiré lors du pré-traitement, cependant, des résidus peuvent subsister. Les tissus
cérébraux peuvent être divisés en quatre régions :

1. Les ventricules sont des chambres dans le cerveau, remplies de liquide céphalo-
rachidien (LCR). Il y a quatre ventricules dans le cerveau, deux dans le cerveau (les
ventricules latéraux gauche et droit) et deux dans le tronc cérébral (le troisième et le
quatrième ventricule). Dans cette thèse, nous nous référerons principalement aux ven-
tricules latéraux gauche et droit. La fonction principale des ventricules est de produire
et de faire circuler le liquide céphalo-rachidien, un liquide clair et aqueux qui entoure
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et amortit le cerveau et la moelle épinière. Il remplit plusieurs fonctions importantes,
notamment la protection du cerveau et de la moelle épinière contre les lésions mé-
caniques, le maintien de l’équilibre correct des nutriments et des déchets dans le SNC,
ainsi que la régulation de la pression à l’intérieur du crâne.

2. La matière blanche correspond aux grandes zones plus claires de la figure 1.1. Elle
est composée de longs axones, entourés d’une substance grasse constituée de cellules
gliales appelées myéline. La matière blanche doit son nom à l’apparence blanche de la
gaine de myéline, qui contraste avec l’apparence grise des corps cellulaires des neurones
qui constituent la matière grise. Notez que ces tons ne sont pas conservés par l’IRM
(voir le paragraphe suivant).

3. La matière grise est principalement composée de corps cellulaires de neurones et
de synapses et est principalement responsable du traitement et de l’interprétation des
informations.

4. Le cervelet est une région plus petite située à l’arrière de la tête sous le cerveau. Il
est constitué de deux hémisphères et est relié au tronc cérébral et à la moelle épinière.
La partie extérieure contient des neurones et la partie intérieure communique avec le
cortex cérébral. Il est responsable de la coordination des mouvements, de l’équilibre et
de la posture. Il reçoit des entrées des systèmes sensoriels du corps, y compris les yeux,
les oreilles et les muscles. Il utilise ces informations pour effectuer des ajustements de
mouvement afin de maintenir l’équilibre et la précision. De nouvelles études explorent
les rôles du cervelet dans la pensée, les émotions et le comportement social, ainsi que
son possible rôle dans l’addiction, l’autisme et la schizophrénie.

Plusieurs séquences sont généralement nécessaires pour évaluer de manière adéquate un
tissu, et la combinaison de séquences est appelée protocole d’IRM. En particulier pour le
diagnostique des gliomes, les radiologues réalisent au moins quatre modalités d’IRM aux
patients suspectés, qui aident à distinguer différents organes [Villanueva-Meyer et al., 2017;
Ginsberg et al., 1998] :

• T1 ou pondéré en T1, rend les graisses brillantes et l’eau sombre. En particulier, le
liquide céphalorachidien dans les ventricules apparaît plus sombre. Sur la figure 1.1,
on peut voir une première IRM pondérée en T1.

• T1ce ou pondéré en T1 avec injection de produit de contraste, est une IRM où le
patient reçoit une injection d’agents intraveineux. Ces agents augmentent le contraste
des tissus des zones où ils ont fui la barrière hémato-encéphalique vers les tissus inter-
stitiels. Dans les gliomes diffus, l’augmentation de contraste est positivement corrélée
au grade de la tumeur, bien que certains gliomes de haut grade et certains gliomes de
bas grade puissent ne montrer aucune ou une amélioration minimale.

• T2 ou pondérées en T2, chaque tissu a une valeur T2 intrinsèque, mais des facteurs
externes (comme l’inhomogénéité du champ magnétique) peuvent diminuer le temps
de relaxation T2, diminuant ainsi la valeur. Les liquides sont lumineux et les graisses
sont intermédiaires.

• T2-FLAIR ou inversion récupérée pondérée en T2 des fluides est un balayage T2
avec un processus qui supprime le signal du liquide céphalo-rachidien dans les images
qui en résultent. Les tissus cérébraux sur les images FLAIR apparaissent similaires
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aux images pondérées en T2 avec de la matière grise plus lumineuse que de la matière
blanche. Ainsi, contrairement à la pondération en T1, le liquide céphalo-rachidien
et les ventricules apparaissent sombres. Le glioblastome induit des hyperintensités
T2 corticales cérébrales. FLAIR a une intensité élevée dans l’œdème péri-tumoral
(vasogénique et infiltrant) ainsi que dans les lésion de la matière blanche et la gliose.
À noter cependant que dans de nombreux gliomes, l’anomalie du signal hyper-intense
T2/FLAIR peut ne pas être dissociable de la lésion tumorale principale.

Figure 1.2: Exemples de segmentation de glioblastomes : Chaque ligne contient des coupes d’images IRM
dans quatre modalités différentes pour le même patient à la même date. On peut comparer les différences entre

les modalités d’image et la variation de couleur inter-sujets au sein des mêmes modalités. Légende de la
segmentation : rouge - Noyau nécrotique (TC) ; orange - Tumeur active (ET) ; bleu - œdèmes (WT).

Nous avons vu que chaque modalité d’imagerie est utile pour visualiser des structures
cérébrales spécifiques. Cependant, il est important de noter que la qualité et l’apparence
des IRM peuvent varier considérablement en raison d’un certain nombre de facteurs, no-
tamment la machine IRM spécifique utilisée et les conditions d’acquisition. De plus, la
pathologie spécifique observée peut également avoir un impact sur l’apparence des images.
Par conséquent, il est courant que les images IRM de la même modalité obtenues à partir de
différents patients présentent des différences significatives, voir Figure 1.2. Dans la dernière
colonne, on peut voir un exemple de segmentation du glioblastome. Une segmentation en
trois classes a été acceptée [Baid and et al., 2021]. Cette figure montre une segmentation
manuelle effectuée par des experts. Les annotations comprennent la tumeur en prise de
contraste avec le gadolinium (ET), le tissu envahi, l’œdéme péri-lésionnel (WT) et le cœur
tumoral nécrotique (TC). Notez tout de même que WT veut dire ‘Whole tumour’ ou "toute
la tumeur" en anglais, comme pour le challenge BraTS2021. Ainsi, dans ce document nous
allons l’utiliser pour désigner les ‘tissus tumoraux qui ne sont pas la nécrose’.
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1.2 Des Atlas pour cartographier le cerveau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Avec l’IRM, nous disposons d’un outil pour visualiser des cerveaux individuels, cependant,
pour comparer les images prises par des radiologues à une référence, un cerveau représentatif
est nécessaire. En général, les atlas sont un outil pour étudier la forme des objets. Quelques
définitions de ce terme coexistent en fonction de leurs domaines respectifs. Il se trouve que
dans cette thèse, nous sommes à l’intersection d’au moins trois d’entre eux. Nous donnons
ici des définitions courtes et nous en détaillerons deux dans les sous-sections suivantes :

• Les Atlas de l’espace de formes est l’une des notions principales de cette thèse
et sera expliquée plus en détail dans la section 1.2.2. Un espace de formes est une
représentation mathématique des formes, où chaque point dans l’espace représente
une forme différente. Dans un espace de formes, la distance entre deux points reflète à
quel point les formes sont similaires. En étudiant les formes dans un espace de formes,
les chercheurs peuvent analyser et comparer les formes, et comprendre comment elles
changent et évoluent au fil du temps. La théorie des espaces de formes est un outil
important dans des domaines tels que l’imagerie médicale et la biomécanique. Dans
cette thèse, à l’exception de cette section, l’espace de formes fait référence à l’espace de
formes difféomorphique. Il s’agit d’un type spécifique d’espace de formes qui est utilisé
pour représenter des formes qui sont continûment déformables l’une dans l’autre, en
préservant leur topologie. Cela signifie que les formes sont transformées de manière à
ce que leur structure sous-jacente soit préservée et que la transformation soit inversible.
Dans l’espace de formes difféomorphique, les formes sont représentées par des points,
et les transformations difféomorphes correspondent à des chemins entre les points. Une
fois que cet espace est construit, on peut estimer une forme moyenne appelée template.

• En biologie, les atlas font souvent référence aux Atlas statistiques. Un atlas statis-
tique est une collection de cartes ou d’images qui montrent la distribution d’une vari-
able ou d’une caractéristique particulière dans une population définie. Ces cartes
peuvent être utilisées pour visualiser et analyser des données dans un contexte spa-
tial, permettant aux chercheurs de voir des motifs et des tendances qui ne seraient
pas apparents à partir de données tabulaires seules. Les atlas statistiques sont sou-
vent utilisés dans le domaine médical pour visualiser et comparer les données liées à la
santé et à la maladie. Par exemple, un atlas statistique du cerveau pourrait montrer la
distribution des structures cérébrales ou de la fonction cérébrale dans une population,
ou la prévalence d’un trouble cérébral particulier dans différentes régions du cerveau.
Nous détaillerons cette méthode dans la sous-section 1.2.1.

• En mathématiques, l’Atlas topologique est utilisé pour la description d’objets ab-
straits comme les variétés. Il est composé d’individus cartes décrivant localement
la variété. Les cartes juxtaposées doivent décrire leurs régions de chevauchement de
manière équivalente. Bien que ce soit une notion importante en géométrie différentielle,
nous n’aurons pas besoin de travailler directement avec cette notion.

Si le traitement d’un patient est toujours à traiter au cas par cas, il est nécessaire d’avoir
une représentation d’un sujet sain. Les atlas peuvent servir à comparer des sujets sains et
malades. Par exemple, Le modèle cérébral de l’Institut neurologique de Montréal (MNI) est
un système de référence standard utilisé dans la recherche en neuroimagerie pour aligner et
comparer des images cérébrales de différents individus Fonov et al. [2009, 2011]. Il est basé
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sur un ensemble d’images cérébrales qui ont été moyennées pour créer un cerveau "moyen",
qui représente l’anatomie moyenne d’un grand groupe de personnes.

Le modèle de cerveau MNI est créé en alignant un grand nombre d’images cérébrales
à l’aide d’un logiciel spécialisé, puis en moyennant les images pour créer un cerveau com-
posite qui représente l’anatomie moyenne du groupe. Ce modèle est ensuite utilisé comme
système de référence pour aligner d’autres images cérébrales, ce qui permet aux chercheurs
de comparer l’anatomie et la fonction cérébrales entre différents individus. Le modèle de
cerveau MNI est largement utilisé dans le domaine de l’imagerie cérébrale et est devenu un
système de référence standard pour de nombreux chercheurs. Il est particulièrement utile
pour aligner des images cérébrales provenant de différentes modalités d’imagerie, et pour
comparer des images cérébrales provenant de différentes populations ou groupes. Dans la
littérature, il est souvent appelé l’Atlas MNI de manière trompeuse. En effet, il peut être
obtenu à partir d’Atlas d’espace de forme (mais n’en est qu’une partie, voir la section 1.2.2)
et est souvent utilisé comme arrière-plan dans les Atlas statistiques.

1.2.1 Les Atlas Statistiques pour l'études du positionnement des Glioblastomes

Figure 1.3: Emplacement et fréquence des
glioblastomes de type sauvage pour l’isocitrate

déshydrogénase (IDH) (n = 392). La carte de fréquence
de couleur illustre l’emplacement et le nombre de

patients atteints de glioblastome de type sauvage pour
l’IDH. Les images sont affichées selon la convention
d’affichage neurologique. Figure issue de Roux and

et al. [2019].

Les glioblastomes peuvent apparaître dans
n’importe quelle partie du cerveau, mais
ils sont le plus souvent situés dans les
hémisphères cérébraux, qui sont les moitiés
gauche et droite du cerveau. Comme nous
l’avons mentionné précédemment, l’em-
placement du glioblastome peut influencer
les symptômes ressentis par un patient,
ainsi que les options chirurgicales et de
traitement disponibles. Par exemple, un
glioblastome situé dans les hémisphères
cérébraux peut causer des symptômes tels
que des maux de tête, des nausées, des
vomissements et des convulsions, tandis
qu’un glioblastome dans le tronc cérébral
peut causer des symptômes tels que des
difficultés d’équilibre, une faiblesse ou des
changements dans la parole ou la vision
[Bilello et al., 2016; Parisot et al., 2016].
Simpson et al. [1993] n’a observé aucune dif-
férence de survie pour les différentes tailles
de tumeurs et a constaté que les patients at-
teints de tumeurs du lobe frontal survivaient
plus longtemps que ceux ayant des lésions
du lobe temporal ou pariétal, concluant que
la localisation est un indicateur crucial du
pronostic.

Pour obtenir de tels résultats, les neu-
rochirurgiens doivent étudier l’emplacement
moyen des glioblastomes et donc construire
un atlas statistique : une carte où l’arrière-plan est un modèle cérébral moyen et sur laquelle
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chaque voxel est associé à sa fréquence d’apparition de gliome [De Witt Hamer et al., 2013;
Bilello et al., 2016; Parisot et al., 2016; Roux and et al., 2019; Sagberg et al., 2019]. En
d’autres termes, pour chaque région, ils portent la probabilité estimée d’apparition de la
tumeur.

Nous allons prendre l’exemple de l’étude récente de Roux and et al. [2019] pour expliquer
la méthode de construction d’un atlas statistique. Les auteurs ont construit un tel atlas pour
aider au pronostic des patients en fonction de l’âge, du sexe et d’autres données cliniques.
La méthode de construction peut être divisée en trois étapes :
1. Tout d’abord, un expert a manuellement segmenté les composantes de nécrose et de re-
haussement des glioblastomes à l’aide de l’interface graphique utilisateur Multi-image Anal-
ysis GUI Mango, qui permet une visualisation et une transformation simples des images en
3D. 2. Ensuite, ils ont utilisé le modèle MNI comme référence de cerveau sain pour enreg-
istrer chaque image de patient malade dessus. Pour ce faire, ils ont utilisé des méthodes de
recalage difféomorphique Ripollés et al. [2012] basée sur l’algèbre de Lie exponentielle (voir
Section 2.1.2) et le masquage de coût. 3. Avant de construire l’atlas, la segmentation et
l’enregistrement ont été vérifiés par un autre expert formé, et les auteurs affirment qu’au-
cune correction n’a été nécessaire. Enfin, toutes les segmentations ont été superposées dans
toutes les régions d’intérêt, obtenant ainsi une carte de fréquence 3D basée sur différents
paramètres.

Les chercheurs ont découvert que les glioblastomes IDH de type sauvage étaient le plus
souvent situés dans la substance blanche sous-corticale des zones sous-ventriculaires (i.e :
fine couche de cellules située près des ventricules latéraux) dans les deux hémisphères du
cerveau. Il y avait des différences dans l’emplacement du glioblastome en fonction de la zone
sous-ventriculaire concernée. Chez les patients atteints de glioblastomes près des ventricules,
les tumeurs étaient plus susceptibles de se trouver dans la corne antérieure, l’atrium droit
et gauche, et la corne temporale droite et gauche des ventricules latéraux. Ils ont également
établi des liens entre les symptômes observés et l’emplacement. Par exemple, ils affirment
que, parmi les 81 patients chez qui le glioblastome a été détecté en raison de symptômes de
pression intracrânienne élevée, il était plus probable que les glioblastomes soient situés dans
les lobes frontaux droits.

L’emplacement est donc un facteur très important. Cependant, des analyses ultérieures
ont montré que la relation entre l’emplacement de la tumeur et l’incidence des convulsions
préopératoires dépend du grade de malignité du gliome [Pallud et al., 2016]. De plus, les
médecins cherchent également à établir des liens avec la forme de la tumeur mais manquent
d’un test facile à utiliser pour leur hypothèse. Par exemple, les cellules tumorales infiltrantes
ont tendance à suivre les vaisseaux sanguins et sont plus susceptibles de se propager à
d’autres régions du cerveau. Pour ce faire, on pourrait construire un atlas de l’espace de
forme ("Shape-space Atlas").

1.2.2 Introduction aux espaces de formes

La notion d’espace de formes n’est pas très intuitive pour le lecteur non initié. Dans cette
section, on commence par expliquer deux espaces de formes classiques et élémentaires pour
introduire l’espace de formes difféomorphique, qui est notre objet d’intérêt principal. Si
vous êtes plus généralement intéressés par les espaces de formes, vous pouvez vous référer à
Bauer et al. [2014].
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1.2.2.a L'espace de Kendall

Figure 1.4: L’espace de forme de Kendall pour les triangles en deux dimensions. Le diagramme montre la vue
depuis le "pôle nord" correspondant à un triangle équilatéral (au centre) sur un hémisphère. Le cercle pointillé
extérieur correspond à l’équateur et contient les triangles colinéaires, où les trois sommets se trouvent sur une
ligne droite. Les six méridiens représentés par des lignes pointillées droites contiennent des triangles isocèles.

Figure de Klingenberg [2020]

L’espace de Kendall est un espace mathématique utilisé pour représenter une forme
comme une collection de points et toutes ses variations naturelles possibles. Il est nommé
d’après le mathématicien David G. Kendall, qui a introduit le concept dans son travail sur
l’analyse de la forme [Kendall, 1984; Kendall et al., 2009]. Dans cet espace, chaque élément
est une forme.

Par exemple, Klingenberg [2020] a réalisé une étude très intéressante sur la forme des
ailes de la drosophile. Dans cet article, il donne l’exemple de l’espace de formes pour les
triangles qui peut être représenté sur une sphère, donc en deux dimensions (voir Figure
1.4). Plus précisément, il s’agit du quotient de l’espace des configurations de trois points
dans R2 (donc avec une dimension de base de 6) par les similarités de R2 (un groupe avec
une dimension de 4 : 2 paramètres de translation, un de rotation, un d’homothétie), ce
qui explique la dimension de 2. Deux points voisins représentent deux formes ou triangles
différents qui sont proches, au sens où l’un est égal à l’autre par une petite déformation.
Pour des ensembles de points plus complexes, les formes sont réparties sur une hypersphère,
fournissant une représentation des formes pratique. Cela fournit un cadre pour effectuer des
manœuvres statistiques telles que l’estimation des formes moyennes ou la caractérisation
de la variation des formes autour de ces moyennes. Cela peut être fondamental pour les
applications biologiques de morphométrie géométrique.

Cependant, l’espace de Kendall convient uniquement à la comparaison d’un ensemble de
points par l’analyse de Procruste et ne prend pas en compte l’arrière-plan. Il n’est donc pas
adapté à nos applications d’imagerie.

1.2.2.b Espaces de formes à contour actifs

Un espace de formes plus adapté aux images pourrait être l’espace de formes à contours
actifs [Cootes et al., 2000], qui est basé sur des modèles de contours actifs (parfois appelés
"snakes") [Kass et al., 1988]. Les modèles de contours actifs sont des méthodes visant à
délimiter les contours d’un objet dans une image en ajustant une courbe donnée à ses bords.
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(a) Exemples de visages
annotés de landmarks (points

de repères)

(b) Variations des trois paramètres
principaux d’un modèle de visage, d’une

variance de ±3.

Figure 1.5: Espaces de formes à contours actifs appliqués aux visages. Figures issue de Cootes et al. [2000]

Ces méthodes ne résolvent pas tout le problème de la détection de contours dans les images,
car la méthode nécessite la connaissance de la forme de contour souhaitée au préalable.

L’espace de formes à contours actifs est appris à partir d’une collection de courbes
obtenues par l’application d’une méthode de contour actif, puis les axes sont déduits à l’aide
d’une analyse en composantes principales (PCA). Tout d’abord, un ensemble de repères
connectés définis par un utilisateur est augmenté par une méthode de contour actif, puis
grossièrement aligné dans un cadre de coordonnées commun (voir Figure 1.5a). Ensuite,
une réduction dimensionnelle est appliquée à l’ensemble des repères en utilisant une PCA.
Dans ce processus, on récupère les axes principaux et donc une représentation de l’espace de
forme. Une fois que le modèle est appris, on peut représenter la variation de forme sur ses
différents axes ou modes (voir Figure 1.5b). Ces ’modes’ expliquent la variation globale due
aux changements de posture 3D, qui provoquent le mouvement de tous les points de repère
les uns par rapport aux autres. Les modes moins significatifs provoquent des changements
plus petits et plus locaux.

Cependant, ils sont dérivés directement des statistiques d’un ensemble d’apprentissage et
ne séparent pas toujours de manière évidente la variation de forme. Même s’il est considéré
comme un ’espace de formes d’image’ dans la littérature, c’est un espace de formes pour
les repères avec une métrique L2 utilisant des techniques de contour actif pour trouver
les points. De plus, ces modèles ne sont pas évidents à généraliser en 3D car une courbe
deviendrait une surface, nécessitant l’utilisation de la triangulation. Plus important encore,
l’arrière-plan n’est pas pris en compte au cours du processus, ne permettant pas d’avoir une
carte de déplacement directe entre les points de cet espace.

Nous devrions également noter le modèle d’apparence active (active appearance model
en anglais) [Edwards et al., 1998] qui correspond à un modèle statistique de la forme et
de l’apparence d’un objet dans une nouvelle image en prenant en compte l’arrière-plan. Un
ensemble d’images avec des repères est utilisé pendant la phase de formation pour construire
le modèle. L’algorithme utilise des techniques des moindres carrés pour faire correspondre
rapidement deux nouvelles images.
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TemplateDiffeomorphic Shape-Space
Figure 1.6: Vue schématique d’un Espace de Forme difféomorphique. Chaque cerveau représente un point de

données, la surface est la variété de Riemann sur laquelle se trouvent les déformations (flèches noires). Les
déformations sont entièrement décrites par leur vitesse initiale (flèches colorées). En trouvant le centre de cet

espace, on peut déduire le modèle de référence (cerveau noir).

1.2.2.c Espace de Formes Difféomorphique

L’espace de formes difféomorphique trouve ses racines dans le travail de D’Arcy-Thompson
[Thompson, 1942] et a été développé ultérieurement dans la théorie des motifs de Grenander
[Grenander, 1993]. La spécificité de ce cadre est que la déformation met en correspondence
la forme observée à la forme modèle, appelée template. En effet, ces espaces sont construits
à partir de la structure induite par des groupes de difféomorphismes agissant sur les formes
par déformation. Le template peut être choisi fixe ou être estimé, dans les deux cas, il
prends le rôle de centroïde de l’espace. De plus, nous supposons que toutes les formes dans
cet espace peuvent être assorties de transformations bijectives. En effet, théoriquement, on
défini des difféomorphismes sur tout le domaine, ce sont donc des fonctions continues qui
cartographient non seulement les objets mais également l’arrière-plan ou l’espace ambiant.

Ainsi, le modèle est extrêmement polyvalent, les modèles récents de templates déformables
se concentrant spécifiquement sur les déformations représentées par des difféomorphismes
agissant sur des repères, des courbes, des surfaces, des images ou même un mélange de ces
objets. Plus précisément, l’espace des difféomorphismes induit une métrique riemannienne
à droite invariante sur l’espace des formes de l’espace ambiant, donnant un sens de distance
entre les objets. [Dryden and Mardia, 2016; Miller and Younes, 2001; Trouvé and Younes,
2003; Charon, 2013]

Cet espace des formes possède plusieurs propriétés intéressantes. En raison de sa nature
de variété riemannienne de dimension infinie, la déformation minimale reliant deux points de
l’espace peut être vue comme une géodésique, et la quantité de déformation sert de métrique
riemannienne sur l’espace. Cela permet l’application de diverses opérations statistiques,
telles que le calcul de moyennes et la réalisation d’interpolations entre formes en trouvant
un chemin entre leurs points correspondants dans l’espace.

Par construction, l’espace des formes difféomorphique est similaire à une variété de Ba-
nach. Une variété de Banach est une généralisation d’un espace de Banach. Il s’agit d’un
espace de dimension infinie avec un atlas topologique. Ainsi, c’est un espace topologique
dans lequel chaque voisinage d’un point est homéomorphe à un ensemble ouvert. Plus
formellement, cela signifie qu’il est localement "lisse et se comporte bien".

On peut construire un template à partir d’un ensemble de données donné en trouvant
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de masse riemannien de l’espace, qui est analogue au centre de masse en dimension finie.
En particulier, l’atlas MNI est obtenu par des processus similaires et peut être appelé un
template.

Il est aussi théoriquement possible de classifier des points appartenant à un tel espace.
Il va sans dire que réaliser une classification dans un espace de formes difféomorphiques
n’est pas une tâche évidente. Malgré cela, des recherches ont déjà été menées. Par exemple,
Srivastava et al. [2005] ont présenté une telle approche dans un espace de formes pour les
courbes. Ils ont opté pour une approche stochastique pour regrouper une collection de
formes en k clusters en minimisant la variance totale "à l’intérieur du cluster". De manière
intéressante, ils organisent les formes dans une structure d’arbre de telle sorte que les formes
affichent une résolution croissante à mesure que l’on descend dans l’arbre, avec une stratégie
ascendante.

Dans la suite, lorsque nous nous référerons à l’espace de formes, il sera toujours sous-
entendu que nous faisons référence à l’espace de formes difféomorphique.

1.2.3 Motivation originale : Un nouveau genre d'atlas

La motivation initiale de mon projet de thèse était de construire un nouveau genre d’atlas
pour représenter le glioblastome. Cependant, son principe doit être précisément défini et de
nombreuses questions doivent être résolues. Cette section présente quelques idées spécula-
tives, et bien que cette thèse ne couvre qu’une partie de celles-ci, elles peuvent esquisser un
objectif de recherche à long terme.

Ce nouvel atlas combinerait les avantages des atlas statistiques et des atlas difféomor-
phiques, satisfaisant les objectifs du premier tout en incorporant des informations du sec-
ond. On pourrait construire un espace de formes difféomorphique pour étudier les formes du
glioblastome en elles-mêmes. Cependant, cela nécessiterait d’étudier les formes déconnectées
du cerveau, sans tenir compte de la localisation des tumeurs dans le cerveau, qui est une
information cruciale comme discuté précédemment dans la Section 1.2.1.

Déterminer l’emplacement exact de l’origine de la tumeur peut être difficile en raison
du déplacement causé par l’effet de masse de la tumeur et de la variabilité inhérente de
l’anatomie cérébrale. Avec une méthode disponible qui fournit de telles informations, il
serait possible de regrouper les formes de gliomes en fonction de leur origine (e.g. : frontal,
temporal, etc.) ou de la structure anatomique avec laquelle elles sont en contact (e.g. :
ventricules, cervelet, etc.). De plus, nous pourrions calculer des atlas difféomorphiques en
parcelles définis, par exemple, les lobes. L’analyse serait alors effectuée indépendamment
dans chaque parcelle où l’on pourrait étudier des cartes de fréquence sur le point d’origine des
tumeurs et en même temps utiliser les diffeomorphismes pour étudier l’évolution et la forme
finale des tumeurs qui naissent dans cette parcelle. Cela améliorerait considérablement les
limites des atlas statistiques, qui agrègent simplement des voxels contenant des tumeurs et
ne peuvent pas différencier la source du cancer.

Pour obtenir des informations de localisation, une technique d’enregistrement qui cor-
respond à un cerveau sain avec un cerveau cancéreux, en tenant compte des différences
topologiques, peut être utilisée. Cependant, à notre connaissance, il n’existe actuellement
aucune technique de recalage capable de réaliser une mise en correspondance efficace et
robuste à de telles variations topologiques et de construire un espace de formes difféomor-
phique. C’est le sujet principal de cette thèse.
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1.3 Une brève revue des techniques de recalage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Comme nous l’avons vu dans les parties précédentes, les médecins ont besoin de techniques
de recalage anatomique précises à des fins de diagnostic ou de recherche. En pratique, cela
est réalisé en mettant en correspondance les images voxel par voxel avec une transformation
géométrique anatomiquement plausible.

Ces mises en correspondance sont généralement modélisées comme des difféomorphismes,
car elles permettent de créer une déformation réaliste voxel-à-voxel sans modifier la topologie
de l’image source. Il existe une vaste littérature traitant de ce sujet. Certains auteurs ont
proposé d’utiliser des champs de vecteurs stationnaires, en utilisant l’exponentielle de champ
de vecteurs de l’algèbre de Lie [Arsigny et al., 2006; Ashburner, 2007; Lorenzi et al., 2013] ou
plus récemment, des méthodes basées sur l’apprentissage profond [Rohé et al., 2017; Yang
et al., 2017; Balakrishnan et al., 2019; Mansilla et al., 2020; Niethammer et al., 2019; Mok
and Chung, 2020]. Nous n’utiliserons pas ces méthodes, cependant, une brève présentation
de l’exponentielle d’algèbre de Lie peut être trouvée dans la partie 2.1.2. Par exemple, Roux
and et al. [2019] recale des images en utilisant DARTEL, qui est basé sur les exponentielles
de Lie.

D’autres auteurs ont utilisé les Large Diffeomorphic Deformation Metric Mapping(LDDMM)
qui utilisent des champs de vecteurs variant dans le temps pour définir une métrique rieman-
nienne invariante à droite sur le groupe des difféomorphismes. En particulier, cette métrique
peut être utilisée pour construire un espace de formes difféomorphiques, fournissant des no-
tions utiles de géodésiques, de plus courts chemins et de distance entre les images [Avants
et al., 2008; Beg et al., 2005; Younes, 2019; Zhang and Fletcher, 2018]. Dans cette méthode,
le champ de déformation est représenté comme un flux de champs de vecteurs, et le problème
de trouver le champ de déformation est réduit à trouver une courbe ou un chemin dans un
certain espace qui représente le flux de champs de vecteurs. Il faut intégrer le long de la
courbe en utilisant des schémas empruntés à la dynamique des fluides. Une partie signi-
ficative des performances de LDDMM vient du choix du schéma. Bien que ce ne soit pas
un nouvel algorithme, des travaux récents continuent d’étudier son implémentation, visant
à améliorer à la fois la qualité de l’appariement et la vitesse/complexité [Hernandez, 2018;
Mang et al., 2019; Brunn et al., 2021b; Hernandez, 2021].

Pour trouver la géodésique, l’algorithme LDDMM utilise une approche de minimisation
d’énergie. La fonctionnelle d’énergie se compose de deux parties : un terme de régularisation,
qui encourage le champ de déformation à être régulier en conservant le moment, et un terme
de similarité, qui mesure la similarité entre l’image transformée et l’image cible. Le terme
de régularisation est généralement mis en œuvre en utilisant un terme de régularisation, tel
qu’un flou gaussien, et le terme de similarité est généralement mis en œuvre en utilisant
une mesure telle que la différence quadratique moyenne entre l’image transformée et l’image
cible.

Le recalage optimal peut être vu comme un chemin optimal qui est une géodésique.
Une ressemblance théorique avec la dynamique des fluides confère à LDDMM plusieurs
propriétés physiques avantageuses. En particulier, des théorèmes de conservation assurent
que certaines quantités, comme le moment, sont conservées le long des chemins géodésiques.
La définition du moment dans le cadre de LDDMM est difficile à introduire sans équations.
Nous explorerons ce concept dans les sections 2.2.3.c et 2.3.3.

Une approche pour implémenter LDDMM consiste à utiliser le tir géodesique (geodesic
shooting), où un champ de vitesse est propagé le long de la courbe et le champ de vecteur
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initial est mis à jour de manière itérative. Nous introduisons scrupuleusement tous les détails
dans la section 2.2.

1.4 Contribution de ma thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4.1 Schémas semi-Lagrangiens pour l'implémentation de LDDMM et des Méta-
morphoses

Même si de nombreuses publications ont présenté des résultats avec l’algorithme des Méta-
morphoses, contrairement à LDDMM, aucune implémentation publique n’était disponible.
La première contribution de cette thèse est l’implémentation des Métamorphoses et de LD-
DMM pour des images en 2D et 3D.

Pour calculer les Métamorphoses, il faut intégrer un système PDE géodésique en utilisant
un schéma numérique à partir d’une condition initiale. L’enregistrement est réalisé via
le "shooting" en mettant à jour cette condition initiale ou résiduelle. C’est un défi car
les schémas classiques nécessitent beaucoup d’itérations pour respecter les conditions CFL
(CourantFriedrichsLewy) et donc converger, ce qui rend l’optimisation subséquente longue.
J’ai choisi d’utiliser un schéma semi-lagrangien sur les images et les résidus pour pouvoir
garder le nombre d’itérations raisonnable et donc réduire le temps d’optimisation.

L’implémentation est orientée objet, ce qui permet une grande polyvalence et des modifi-
cations faciles. Nous l’avons développée en utilisant PyTorch et tirons parti de l’accélération
GPU pour accélérer les calculs.

Le code est entièrement disponible sur GitHub pour que tout le monde puisse l’utiliser et
contribuer à l’adresse suivante : https://github.com/antonfrancois/Demeter_metamorphosis.

POUR EN SAVOIR PLUS RENDEZ-VOUS DANS LE CHAPITRE 2, PARTIE 2.5

1.4.2 Métamorphose contrainte : un modèle étendu

Si la Métamorphose permet des recalages de très bonne qualité, la dissociation entre les
changements géométriques et d’intensité n’est pas unique et dépend fortement des hyper-
paramètres définis par l’utilisateur. Cela rend l’interprétation des résultats difficile, limitant
son utilisation clinique. Par exemple, pour aligner un modèle sain sur une image avec
une tumeur, on pourrait s’attendre à ce que la méthode ajoute des intensités uniquement
pour créer de nouvelles structures (e.g., des tumeurs) ou pour compenser les changements
d’intensité dus à la pathologie (e.g., l’œdème). Toutes les autres structures devraient être
correctement alignées uniquement par les déformations. Cependant, en fonction des hyper-
paramètres, l’algorithme peut décider de tenir compte des différences morphologiques (e.g.,
l’effet de masse des tumeurs) en modifiant l’apparence plutôt qu’en appliquant des déforma-
tions. Cette limitation vient principalement du fait que les changements d’intensité peuvent
théoriquement être appliqués dans tout le domaine de l’image. Cependant, dans de nom-
breuses applications cliniques, on dispose généralement de connaissances préalables sur la
position des variations topologiques entre une image saine et une image pathologique (e.g.,
la position de la tumeur et de l’œdème).

Dans cette partie de la thèse, nous abordons les difficultés associées à l’algorithme des
Métamorphoses en proposant un cadre pour incorporer des connaissances préalables dans
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le modèle. Notre approche consiste à modifier le problème d’enregistrement de manière
à préserver la capacité de déduire le système d’EDP qui sous-tend l’algorithme des Mé-
tamorphoses. La théorie de la Métamorphose est assez délicate à gérer, mais dans le cas
des images, le principe est de définir un problème de recalage, potentiellement inspiré d’un
problème de contrôle optimal [Miller et al., 2015], et de déduire un système d’EDP à partir
de celui-ci. Nous proposons un ajustement de la Métamorphose qui permet d’ajouter des
contraintes sur le problème d’enregistrement en concordance avec certains priors préalables.
Nous appelons ce cadre Métamorphose contrainte. Nous présentons deux types spécifiques
de priors préalables qui peuvent être incorporées dans le modèle : (1) un masque de crois-
sance généré à partir d’une segmentation donnée, et (2) un champ qui guide la déformation
dans une direction souhaitée.

Notre implémentation de l’algorithme des Métamorphoses contraintes repose sur notre
implémentation précédente des Métamorphoses et est conçue pour être suffisamment flexible
pour permettre à tout utilisateur d’incorporer ses propres contraintes supplémentaires. Nous
démontrons l’efficacité de notre approche à travers des expériences sur des glioblastomes, en
utilisant des ensembles de données BraTS, en comparant avec des méthodes de pointe.
POUR EN SAVOIR PLUS RENDEZ-VOUS DANS LE CHAPITRE 3,

CADRE MATHÉMATIQUE : SECTION 3.2.3
VALIDATION SUR UN EXEMPLE JOUET : SECTION 3.2
VALIDATION SUR DES DONNÉES RÉELLES : SECTION 3.3

1.4.3 Segmentation utilisant l'Analyse de Données Topologiques (TDA)

En collaboration avec Raphaël Tinarrage, nous avons développé un outil de segmentation de
tumeurs utilisant l’Analyse de Données Topologiques (TDA). Nous cherchons à détecter des
composants caractéristiques dans les modalités FLAIR et T1ce en prenant des hypothèses
sur leurs topologies. En utilisant la TDA, nous sommes capables de sélectionner et de
trouver des composants connectés et des cycles qui composent un gliome sans l’utilisa-
tion d’outils statistiques. De plus, en automatisant le processus de segmentation, nous
acquérons une compréhension plus approfondie des caractéristiques des glioblastomes en
termes de leur emplacement, leur forme et leur intensité dans les images IRM. En effet,
en ayant une méthode de segmentation robuste, nous posons les bases pour construire un
atlas difféomorphique des glioblastomes. Le code est entièrement disponible sur GitHub
pour que chacun puisse l’utiliser et y contribuer : https://github.com/antonfrancois/
gliomaSegmentation_TDA.
POUR EN SAVOIR PLUS RENDEZ-VOUS DANS LE CHAPITRE 4

1.4.4 Outil de visualisation

Les algorithmes LDDMM et des Métamorphoses produisent une séquence d’images ou une
image temporelle, qui peut être interprétée comme une représentation visuelle du déplace-
ment de l’image source vers l’image cible. Cependant, en raison des défis liés à la manipu-
lation d’images 3D et du manque de plugins Python facilement disponibles pour visualiser
à la fois des images temporelles et des déformations simultanément lors du débogage, nous
avons développé un outil qui résout ces problèmes.
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Notre outil, implémenté à l’aide de la bibliothèque vedo [Musy et al., 2023], permet
d’afficher:

• une seule image temporelle 3D

• la comparaison de deux images temporelles en les affichant côte à côte et en les super-
posant d’un simple clic.

• le résultat d’une optimisation LDDMM, Métamorphose ou Métamorphose Contrainte
(CM), comprenant des informations utiles telles que les paramètres utilisés ou le nom-
bre de pixels où la déformation a déchiré l’arrière-plan (si la déformation n’est pas
difféomorphique)

• En plus du recalage, on peut également visualiser la déformation sous la forme d’une
collection de vecteurs 3D.

On peut voir une démonstration dans cette vidéo: https://www.youtube.com/watch?
v=-qzQ1B6DdSg et retrouver le code sur le GitHub antonfrancois/Demeter_metamorphosis.

1.5 Organisation des chapitres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPITRE 2: couvre toutes les connaissances de base sur LDDMM et les Métamorphoses, en
commençant par un petit détour donnant des éléments d’algèbre de Lie qui sont utiles pour
comprendre les concepts clés de la géométrie différentielle. Nous en profitons pour expliquer
brièvement l’exponentielle de Lie comme outil pour le recalage. Ensuite, nous donnons une
démonstration scrupuleuse de LDDMM, introduisant lentement les nombreuses propriétés.
Nous continuons en expliquant en détail les propriétés de conservation de la quantité de
mouvement et comment cela nous permet d’utiliser le tir géodésique. Après avoir digéré toute
cette théorie, nous sommes prêts à comprendre le cadre Métamorphique et ses dérivations
géodésiques avec facilité. Nous terminons le chapitre en expliquant notre mise en œuvre des
deux méthodes susmentionnées en utilisant des schémas semi-lagrangiens (voir Contribution
1.4.1) et en donnant quelques premiers résultats.

CHAPITRE 3: introduit le cadre des Métamorphoses contraintes (CM) (voir Contribution
1.4.2). Après la formulation mathématique, nous présentons l’exemple jouet (voir Contribu-
tion 1.4.4) que nous avons utilisé pour le débogage et pour une première validation. Ensuite,
nous présentons les performances des CM sur des séquences d’IRM sur deux applications
différentes. Tout d’abord, dans la continuité de la motivation originale de cette thèse, nous
le présentons comme un outil pour l’enregistrement d’un modèle de cerveau sain sur un
cerveau avec un glioblastome. Ensuite, nous avons profité du défi BraTSReg 2022 [Baheti
and et al., 2021] pour tester CM sur l’alignement de chirurgies de suivi.

CHAPITRE 4: présente une méthode de segmentation de glioblastomes en utilisant TDA.
Nous commençons par faire une brève revue des méthodes de segmentation de glioblastomes
en utilisant l’apprentissage automatique. Ensuite, nous couvrons quelques articles utilisant
TDA pour l’analyse d’IRM. Ensuite, dans la sous-section 4.2, nous faisons une brève in-
troduction aux différents concepts de TDA utiles pour l’analyse d’IRM avec TDA. Nous
sommes maintenant prêts à présenter notre algorithme de segmentation dans la sous-section
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4.3. Enfin, nous présentons nos résultats et discutons des améliorations que nous voulons
implémenter, dans la sous-section 4.4.

CONCLUSION GÉNÉRALE & PERSPECTIVES : nous élaborons davantage sur le nouveau type
d’atlas présenté dans la sous-section 1.2.3. Nous expliquons comment le travail que nous
avons présenté dans cette thèse peut servir à développer un tel atlas.

1.6 Articles publiés et Préprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. A. François, P. Gori, and J. Glaunès. Metamorphic image registration using a semi-lagrangian
scheme. In SEE GSI, 2021

2. A. François, M. Maillard, C. Oppenheim, J. Pallud, I. Bloch, P. Gori, and J. Glaunès.
Weighted metamorphosis for registration of images with different topologies. In WBIR,
pages 8–17, 2022

3. M. Maillard, A. François, J. Glaunès, I. Bloch, and P. Gori. A deep residual learning
implementation of metamorphosis. In IEEE ISBI, 2022
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medical research on glioblastomas (brain tumours). From radiological data, we aim to infer
an average shape based on its position in the brain. To do this, we use applied mathematics,
specifically the theory of shape spaces. This field is itself at the intersection of several areas
of mathematics and physics. It is based on differential geometry but has strong links with
fluid dynamics while relying heavily on optimisation techniques. In this introduction, we
take the time to detail the relevance of the application and introduce the concepts of shape
spaces and registration.

1.1 Medical motivation & data overlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1.1 About Glioblastomas

GENERALITIES ABOUT TUMOURS. A tumour is a mass of abnormal cells that grows in the
body. These abnormal cells grow and divide in an uncontrolled way, forming a mass that
can invade surrounding tissues and organs. Tumours can be benign, which means they are
not cancerous and do not spread to other parts of the body. If a tumour is not benign, we
say it is malignant. The former type of tumours can impede body functions by redirecting
nutrients to their only benefit, potentially depriving other essential tissues. Cancers (with
an emphasis on the plural) can take many forms and are extremely heterogeneous in shape,
composition and symptoms. Indeed their origin is often due to an unfortunate mutation
that occurred during cell division, altering their normal function.

Despite the variability, one can distinguish several parts of a tumour, including the main
tumour mass, which is composed of the abnormal cells, and the surrounding tissue, which
may be normal or may contain a mix of normal and abnormal cells. The tumour may also
have a layer of cells called the tumour capsule, which surrounds the main tumour mass and
separates it from healthy tissues. The tumour may also have blood and lymph vessels, which
can help it grow and spread to other parts of the body. Inside the tumour mass, necrosis
can happen. Necrosis is a type of cell death that occurs when cells are damaged or injured
beyond repair. Unlike other forms of cell death, such as apoptosis, necrosis is a chaotic and
uncontrolled process that can be harmful to the body. Necrosis can occur in any type of
tissue but is most commonly associated with tissue damage caused by injury or infection.
When necrosis occurs, the affected cells swell and rupture causing Oedemas by releasing
their contents into the surrounding tissues. This can cause inflammation and damage to
nearby cells. In severe cases, necrosis can lead to tissue or organ death.

At the cancerous tumour borders, cells are more active and may spread into surrounding
tissues in a diffusive way. In this case, it is called Infiltrative cancer. Healthy and cancerous
cells being mixed together at the frontier, make this type of cancer difficult to treat surgically.
When these tumours reach blood vessels or the lymphatic system, they can also spread
to other parts of the body, which can make them more aggressive and harder to control.
Treatment for infiltrative cancer often involves a combination of surgery, radiation therapy,
and chemotherapy to kill the cancer cells and prevent them from spreading.
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MORE ON GLIOMAS There are only two types of cells in the central nervous system (CNS):
neurons are channels for cognition and Glial cells are the other CNS cells that fulfil all neu-
ron needs. The former has a high variety of forms and functions. For example, Astrocytes
provide nutrients, and regulate blood flow, while protecting neurons from antibodies. Brain
tumours are most of the time Glioma, which is a generic term describing primary brain
tumours. Neuronal tumours are very rare and mostly benign. Glioma roots in glial cells
and their specific names come from their cell’s name (e.g., astrocytoma) [Hanif et al., 2017].
Glioblastoma (GB) multiform is the most malignant and frequently occurring type of pri-
mary astrocytoma. It accounts for more than 60% of all brain tumours in adults [Rock et al.,
2012]. Their causes are not well understood, with exposure to high-dose ionizing radiation
as the only confirmed risk factor [Hanif et al., 2017]. The often recommended treatment is
precise surgery which can help improve the patient’s quality of life by reducing the tumour
burden, controlling seizures or even reversing neurological deficits.

Tumour location is a key parameter in the care of patients with Glioblastoma because
it correlates with demographic characteristics, symptoms, surgical management, delivery of
subsequent oncologic treatments, and, ultimately affects the patient’s prognosis. [Roux and
et al., 2019]. Previous pathogenesis research has shown that the most frequent location
for GB is the cerebral hemispheres. 95% of GB arise in the supratentorial region (upper
part), while only a few in the cerebellum, brainstem and spinal cord [Nakada et al., 2011].
At a macroscopic scale, GBs are quite heterogeneous in form and irregularly shaped but
usually arise in white matter. It has been shown that depending on the lobe where the
tumour arises, symptoms vary. For example, patients with a GB located in the temporal
lobe area often show hearing and visual problems, while those who have one in the frontal
lobe might demonstrate personality change [Hanif et al., 2017]. Also, the distribution of
oedema/necrosis leads to different secondary effects in the patient: a gradual increase in
tumour size and increased oedema surrounding the tumour leads to a shift in intracranial
contents, resulting in headaches. A tumour that resides in sites like the eloquent cortex
brain stem or basal ganglia cannot go through surgery and these patients usually have
worse prognoses [Mrugala, 2013].

The World Health Organisation (WHO) classification of glioblastomas is a system used
to classify and describe different types of glioblastoma [Villa et al., 2018; Berger et al., 2022].
This classification is based on the microscopic appearance of the cancer cells, as well as on
the genetic and molecular characteristics of the tumour. It is an important tool for clinicians
and researchers, as it helps to characterise the specific features of a particular tumour and
to guide treatment decisions.

The WHO grade of glioblastoma is typically determined by analysing a tissue sample
taken during a biopsy or surgery. However, magnetic resonance imaging (MRI) can also be
used to identify certain characteristics of glioblastoma that may be indicative of its WHO
grade. High-grade glioblastomas tend to be larger, have an irregular, diffuse shape, show
strong enhancement on contrast-enhanced MRI scans, be associated with areas of necrosis,
and infiltrate surrounding brain tissue. It is important to note that MRI alone is not
sufficient for accurately grading a glioblastoma. A tissue sample must be analysed by a
pathologist to definitively determine the WHO grade of the tumour.

The first diagnosis is always based on tumour visualisation and is made using radiological
imaging techniques, the most common being MRI.
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1.1.2 Magnetic Resonance Imaging for brain visualisation

A magnetic resonance imaging (MRI) machine uses strong magnetic fields and radio waves
to create detailed images of the inside of the body. The patient lies on a table that is moved
into the MRI machine, which contains a large, powerful magnet. The magnet aligns the
hydrogen atomic particles in the body, and radio waves are used to knock these particles out
of alignment. As the particles return to their original alignment, they emit a radio-frequency
signal that is detected by the MRI machine and used to create an image of the inside of the
body. The images produced by an MRI machine can be used to diagnose a wide range of
medical conditions.

Figure 1.1: A short glossary of brain organs visible in MRIs, (T1)

Figure 1.1 illustrates a T1 MRI of a healthy brain, including the skull. The skull is
usually removed during preprocessing, however, leftovers may remain. Brain tissues can be
split into four regions:

1. Ventricles are chambers in the brain, filled with cerebrospinal fluid (CSF). There are
four ventricles in the brain, two in the cerebrum (the left and right lateral ventricles)
and two in the brainstem (the third and fourth ventricles). In this thesis, we will
mostly refer to the left and right ones. The primary function of the ventricles is to
produce and circulate cerebrospinal fluid, a clear, watery fluid that surrounds and
cushions the brain and spinal cord. It provides several important functions, including
protecting the brain and spinal cord from mechanical injury, maintaining the correct
balance of nutrients and waste products in the CNS as well as regulating the pressure
inside the skull.

2. The White Matter corresponds to the large lighter areas in Figure 1.1. It is composed
of long axons, surrounded by a fatty substance made of glial cells called myelin. White
matter is so named because of the white appearance of the myelin sheath, which
contrasts with the grey appearance of the nerve cell bodies that make up Gray matter.
Note that these tones are not conserved by MRI (see next paragraph).

3. Gray Matter is mostly composed of neurons somas and synapses and is primarily
responsible for processing and interpreting information.

4. Cerebellum is a smaller region located at the back of the head under the cerebrum.
It is made up of two hemispheres and is connected to the brainstem and the spinal
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cord. The outer portion contains neurons, and the inner area communicates with the
cerebral cortex. It is responsible for coordinating movement, balance, and posture. It
receives input from sensory systems in the body, including the eyes, ears, and muscles,
It uses this information to make adjustments to movement in order to maintain balance
and accuracy. New studies are exploring the cerebellums roles in thought, emotions
and social behaviour, as well as its possible involvement in addiction, autism and
schizophrenia.

Multiple sequences are usually needed to adequately evaluate a tissue, and the combi-
nation of sequences is referred to as an MRI protocol. In particular, for Glioma diagnosis,
most suspected patients undergo at least four MRIs modalities, that help distinguish differ-
ent organs [Villanueva-Meyer et al., 2017; Ginsberg et al., 1998]:

• T1 or T1-weighted make fats appear bright and water dark. In particular, the CSF
in the ventricles appears darker. In Figure 1.1, one can see a first T1 MRI scan.

• T1ce or T1-weighted contrast-enhanced is an MRI, where the patient got injected
with intravenous agents, that increase tissue contrast by accentuating areas where
contrast agents have leaked out of the bloodbrain barrier into the interstitial tissues.
Within diffuse gliomas, contrast enhancement is positively correlated with tumour
grade, although a few high-grade gliomas and some lower-grade gliomas may show no
or minimal enhancement.

• On T2 or T2-weighted images, each tissue has an inherent T2 value, but external
factors (such as magnetic field inhomogeneity) can decrease the T2 relaxation time,
thus diminishing the value. Fluids are bright and fats are intermediate.

• T2-FLAIR or T2-fluid-attenuated inversion recovery is a T2 scan with a process that
removes the signal from the cerebrospinal fluid in the resulting images. Brain tissues
on FLAIR images appear similar to T2 weighted images with grey matter brighter than
white matter. Thus, unlike T2, CSF and ventricles appear dark. Glioblastoma induces
Cerebral cortical T2 hyper-intensities. FLAIR has a high intensity in peritumoral
oedema (vasogenic and infiltrative), non-enhancing tumour, white matter injury and
gliosis. Vasogenic oedema represents a reactive increase in extracellular water due
to leakage of plasma fluid. In many gliomas, the T2/FLAIR hyper-intense signal
abnormality may be indistinguishable from the primary mass lesion.

We have seen that each imaging modality is useful in visualising specific brain structures.
However, it is important to note that the quality and appearance of MRI images may vary
greatly due to a number of factors, including the specific MRI machine being used and the
acquisition conditions. Additionally, the specific pathology being observed can also impact
the appearance of the images. As a result, it is common for MRI images of the same modality
obtained from different patients to exhibit significant differences, see Figure 1.2. In the last
column, one can see an example of glioblastoma segmentation. A segmentation in three
classes is commonly used for glioma: the necrotic tumour core (TC), the GD-enhancing
tumour (ET) and the peritumoral edematous/invaded tissue (WT) [Baid and et al., 2021].
Note that WT stands for ‘Whole tumour’ as for the BraTS2021 challenge, in this dissertation
we use it to refer to ‘Tumoural tissues that are not the tumoural core’. This figure displays
manual segmentation done by experts.
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Figure 1.2: GB segmentation examples: Each row contains MR Images slices in four modalities of the same
patient at the same time. One can see both the tendencies between different image modalities and the

inter-subject colour variation within the same modalities. Segmentation legends: Red - Necrotic Core (TC);
Orange - Enhancing Tumour (ET); Blue - Oedemas (WT).

1.2 Atlases to map the brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With MRI, we have a tool for visualising individual brains, however, to compare images
taken by radiologists to a reference, a representative brain is needed. In general Atlases are
a tool for object shape studies. A few definitions of this term co-exist depending on their
respective fields. It happens that in this thesis we are at the intersection of at least three
of them. We give here short definitions and we will detail two of them in the following
subsections :

• Shape-space Atlases is one of the main notions for this thesis and will be explained
with more details in Section 1.2.2. A shape space is a mathematical representation of
shapes, where each point in the space represents a different shape. In a shape space,
the distance between two points reflects how similar the shapes are. By studying
shapes in a shape space, researchers can analyse and compare shapes, and understand
how they change and evolve over time. The theory of shape spaces is an important
tool in fields such as computer vision, medical imaging, and biomechanics, among
others. In this dissertation, with the exception of Section 1.2.2, Shape-space refers
to the diffeomorphic shape-space. It is a specific type of shape space that is used to
represent shapes that are continuously deformable into one another, preserving the
topology of the shapes. This means that the shapes are transformed in a way such
that their underlying structure is preserved and the transformation invertible. In
the diffeomorphic shape space, shapes are represented as points, and diffeomorphic
transformations correspond to paths between points. Once this space is constructed,
one can estimate an average shape called template.
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• In biology and medicine, atlases often refer to Statistical Atlases. A statistical atlas
can be seen as a frequency map that shows the distribution of a particular variable or
feature within a defined population. These maps can be used to visualise and analyse
data in a spatial context, allowing researchers to see patterns and trends that may not
be apparent from tabular data alone. Statistical atlases are often used in the medical
field to visualise and compare data related to health and disease. For example, a
statistical atlas of the brain might show the distribution of brain structures or brain
function across a population, or the prevalence of a particular brain disorder in different
regions of the brain. We will detail this concept further in Subsection 1.2.1.

• In mathematics, the topological Atlas is used for the description of abstract objects
like manifolds. It is composed of individuals charts describing locally the manifold.
Juxtaposed charts must ‘describe’ their overlapping regions in ‘equivalent’ ways. While
this is an important notion in differential geometry, we will not need to work directly
with this notion.

If sick patients were always to be treated individually, one would need a representation of
a healthy subject. Atlases can serve the purpose of comparing healthy and ill subjects. The
Montreal Neurological Institute (MNI) brain template is a standard reference system used in
neuroimaging research to align and compare brain images from different individuals Fonov
et al. [2009, 2011]. It is based on a set of brain images that have been averaged together to
create a "mean" brain, which represents the average anatomy of a large group of people.

The MNI brain template is created by aligning a large number of brain images using
specialised software, and then averaging the images together to create a composite brain
that represents the average anatomy of the group. This template is then used as a reference
system to align other brain images, allowing researchers to compare brain anatomy and
function across different individuals. The MNI brain template is widely used in the field
of neuroimaging and has become a standard reference system for many researchers. It is
particularly useful for aligning brain images from different imaging modalities, such as MRI
and PET, and for comparing brain images from different populations or groups. In the
literature, it is often called the MNI Atlas in a misleading way. Indeed, it can be obtained
from shape-space Atlases (but are only a part of it, see section 1.2.2) and are often used as
background in Statistical Atlases.

1.2.1 Statistical Atlases for studying Glioblastoma localisation

Glioblastomas can occur in any part of the brain, but they are most commonly found in the
cerebral hemispheres, which are the left and right halves of the brain. As we have mentioned
earlier, the location of glioblastoma can influence the symptoms a patient experiences, as well
as the surgical and treatment options that are available. For example, a glioblastoma located
in the cerebral hemispheres may cause symptoms such as headache, nausea, vomiting, and
seizures, while a glioblastoma in the brain stem may cause symptoms such as difficulty with
balance, weakness, or changes in speech or vision [Bilello et al., 2016; Parisot et al., 2016].
Simpson et al. [1993] saw no difference in survival for the different tumour sizes and asses
that patients with frontal lobe tumours survived longer than those with temporal or parietal
lobe lesions, concluding that localisation is a crucial prognosis indicator.

To give such results, Neurosurgeons need to study average Glioblastomas location and
therefore build a statistical atlas: A map where the background is an averaged brain template
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and on which each voxel is associated with its glioma apparition frequency [De Witt Hamer
et al., 2013; Bilello et al., 2016; Parisot et al., 2016; Roux and et al., 2019; Sagberg et al.,
2019]. In other words, they carry for each region the tumour apparition estimated proba-
bility.

Figure 1.3: Location and frequency of isocitrate
dehydrogenase (IDH) wild-type glioblastoma (n = 392).
The colour frequency map illustrates the location of and

the number of patients with IDH wild-type
glioblastoma. Images are displayed in the neurologic

display convention. Figure from Roux and et al. [2019]

We will use the recent paper of Roux and
et al. [2019] as an example of the method to
build Statistical Atlases. The authors have
built such an atlas to help the patient prog-
nosis in function of age, sex and other clin-
ical data. The construction method can be
split into three steps:
1. An expert first manually segmented
the enhancing and necrotic components of
glioblastomas with the help of the Multi-
image Analysis GUI Mango, which allows
making simple 3D image visualisation and
transformation.
2. Then they use the MNI template as
a healthy reference to register each ill im-
age on it. To do so they used Diffeomor-
phic Anatomic Registration methods Ripol-
lés et al. [2012] using Lie Algebra Exponen-
tial (see Section 2.1.2) and cost Masking.
3. Before constructing the atlas, segmenta-
tion and registrations were checked by an-
other trained expert, and the authors claim
that no correction needed to be made. Fi-
nally, all segmentation where superimposed
in all regions of interest, obtaining a 3D fre-
quency map based on different parameters.

The researchers found that IDH wild-
type glioblastomas were most commonly lo-
cated in the subcortical white matter of the subventricular zones (i.e: Thin layer of cells
located near the lateral ventricles) in both hemispheres of the brain. There were differences
in glioblastoma location depending on whether the tumour involved the subventricular zone.
In patients with glioblastomas near ventricles, tumours were more likely to be located in the
anterior horn, right and left atrium, and right and left temporal horn of the lateral ventricles.
They also made links between the observed symptoms and the location. For example, they
assert that, among the 81 patients in whom the glioblastoma was detected due to symptoms
of elevated intracranial pressure, there was a greater likelihood of the glioblastomas being
situated in the right frontal lobes.

So location is indeed a very important factor. However, previous analysis has shown that
the relationship between tumour location and preoperative seizure incidence depends on the
glioma grade of malignancy [Pallud et al., 2016]. In addition, physicians are also interested
to seek the links with the tumour shape but lack an easy-to-use test for their hypothesis.
For example, infiltrative tumour cells tend to follow blood vessels and are more susceptible
to spreading to other brain regions. To do so, one could build a Shape-space Atlas.
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1.2.2 Shape-spaces comprehensive introduction

The notion of shape-space is not a very intuitive one for the unfamiliar reader. In this
section, I start by explaining two classical an elementary shape spaces to introduce the
diffeomorphic space-space, which is the focus of our interest. If you are interested more
generally in shape spaces, I advise you to read the review made by Bauer et al. [2014].

1.2.2.a Kendall's space

Figure 1.4: Kendalls shape space for triangles in two dimensions. The diagram shows the view from the north
pole corresponding to an equilateral triangle (centre) onto one hemisphere. The outer dashed circle corresponds

to the equator and contains the collinear triangles, where all three vertices lie on a straight line. The six
meridians shown as straight dashed lines contain isosceles triangles. Figure from Klingenberg [2020]

Kendall’s space is a mathematical space that is used to represent a shape as a collection of
points and all its possible natural variations. It is named after the mathematician David G.
Kendall, who introduced the concept in his work on shape analysis [Kendall, 1984; Kendall
et al., 2009]. In this space, each element is a shape.

For example, Klingenberg [2020] made a very interesting study of the drosophila wing
shape. In this article, he gives the case of the triangle shape space which can be represented
on a sphere, therefore, is two-dimensional (see Figure 1.4). More precisely, it is the quotient
of the space of configurations of three points in R2 (thus with a base dimension of 6) by
the similarities of R2 (a group with a dimension of 4: 2 parameters of translation, one of
rotation, one of homothety), which explains the dimension of 2. Two neighbouring points
represent two different shapes, or triangles, that are close, in the sense that one is equal
to the other by only a small deformation. For more complex point sets, the shapes are
spread on a hyper-sphere, providing a handy representation of the shapes to work with. it
provides a framework to perform statistical manoeuvres such as estimating average shapes
or characterising variation of shapes around those averages. This can be fundamental for
geometric morphometric biological applications.

However, the Kendall space is suitable to compare a set of landmarks only by Procrustes
analysis and does not take the background into account. It is therefore not suitable for our
imaging applications.
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(a) Example face image
annotated with landmarks

(b) Effect of varying each of first three face
model shape parameters in turn between ±3

s.d.

Figure 1.5: Active shape space of faces. Figures from Cootes et al. [2000]

1.2.2.b Active Shape Space

A more suitable shape space for images could be the active Shape Space [Cootes et al., 2000],
which is based on Active contour models (sometimes called snakes) [Kass et al., 1988]. Active
contour models are methods aiming at outlining object boundaries in an image by fitting a
given curve to its edges. These methods do not solve the entire problem of finding contours
in images, since the method requires knowledge of the desired contour shape beforehand.
The Active Shape space is learned using a collection of such obtained curves by applying
Principal Component Analysis (PCA). First, a set of connected landmarks defined by a
user is augmented by an Active contour method and then roughly aligned in a common
coordinate frame (see Figure 1.5a). Then a dimensional reduction is applied to the set of
landmarks using a PCA. In the process, one retrieves the main axes and therefore a shape
space representation. Once the model is learned, one can represent shape variation on its
different axis or modes (see Figure 1.5b). These modes explain global variation due to 3D
pose changes, which cause movement of all the landmark points relative to one another.
Less significant modes cause smaller, more local changes.

However, they are derived directly from the statistics of a training set and will not always
separate shape variation in an obvious manner. Even if it is considered as an ’image shape
space’ by the literature, it is a shape space for landmarks with a L2 metric utilising active
contour techniques to find the points. In addition, these models are not obvious to gener-
alise to 3D as a curve would become a surface, needing the usage of triangulation. More
importantly, the background is not taken into account during the process, not allowing to
have a direct displacement map between points of this space.

We should note also the active appearance model [Edwards et al., 1998] which matches a
statistical model of an object’s shape and appearance to a new image taking the background
into account. A set of images with landmarks is used during the training phase to build the
model. The algorithm uses least squares techniques to quickly match two new images.
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TemplateDiffeomorphic Shape-Space
Figure 1.6: Schematic view of a Diffeomorphic-Shape space. Each brain represents a data point, the surface is
the Riemannian manifold on which lies the deformations (black arrows). The deformations are fully described by
their initial velocity (coloured arrows). By finding the centroid of this space, one can deduce the template (black

brain).

1.2.2.c Diffeomorphic Shape Space

The diffeomorphic shape-space has roots in D’Arcy-Thompson’s work [Thompson, 1942] and
was further developed in Grenander’s Pattern Theory [Grenander, 1993]. The specificity of
this framework is that the deformation maps a reference shape, called a template, to the
observed shape. The template can be chosen fixed or estimated, either way, it serves the
purpose of the space’s centroid. In addition, we take the assumption that all forms in this
space can be matched by bijective transformations. Indeed, these spaces are constructed
from the structure induced by groups of diffeomorphisms acting on shapes through defor-
mation. Theoretically, these diffeomorphisms being defined on the whole domain are thus
continuous functions and map not only the objects but also the background, or the ambient
space.

Thus the model is extremely versatile, recent models of deformable templates focus specif-
ically on deformations represented by diffeomorphisms acting on landmarks, curves, surfaces,
images or even a mixture of these objects. More precisely, the space of diffeomorphisms in-
duces a right-invariant Riemannian metric on the space of shapes of the ambient space,
giving a sense of distance between objects. [Dryden and Mardia, 2016; Miller and Younes,
2001; Trouvé and Younes, 2003; Charon, 2013]

This shape space possesses a number of interesting properties. As a result of its nature
as an infinite-dimensional Riemannian manifold, the minimal deformation connecting two
points in the space can be viewed as a geodesic, and the amount of deformation serves as a
Riemannian metric on the space. This allows for the application of various statistical and
mathematical operations, such as computing means and performing interpolation between
shapes by finding a path between their corresponding points in the space. By construction,
the diffeomorphic shape-space is similar to a Banach manifold. A Banach manifold is a
generalisation of a Banach space. It is an infinite-dimensional space with a topological
atlas. Thus is it a topological space in which each point neighbourhood is homeomorphic to
an open set. More informally speaking, it means that it is locally ‘smooth and well behaved’.

One can build a template from a given data set by finding the average shape. It is
obtained through the Karcher mean, or the Riemannian Centre of Mass of the space, which
is analogous to the centre of mass in finite dimension. In particular, the MNI atlas is
obtained through similar processes and can be called a template [Fonov et al., 2009, 2011].
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It is also theoretically possible to cluster points within a diffeomorphic shape space.
However, it goes without saying that it is not an obvious task as well. Despite this, research
has been already conducted. For example, Srivastava et al. [2005] presented such an approach
in a shape space for curves. They opted for a stochastic approach to cluster a collection
of shapes in k clusters minimising the total "within-cluster" variance. Interestingly, they
organise shapes in a tree structure such that shapes display increasing resolution as we
move down the tree, with a bottom-up strategy.

In the latter when we will refer to shape-space, it would always be assumed that we refer
to the shape space of diffeomorphism.

1.2.3 Original motivation: A new atlas genre

The original motivation for my PhD project was to build a new atlas genre for glioblastoma
representation. However, its principle itself has to be precisely set and a lot of questions
need to be answered. This section presents some speculative ideas, and if this dissertation
covers only a part of those, they can sketch a long time research objective.

This new atlas would combine the advantages of both statistical and diffeomorphic atlases,
satisfying the goals of the former while incorporating information from the latter. One could
build a diffeomorphic shape space to study glioblastoma shapes by themselves. However,
it would require studying the shapes disconnected from the brain, not accounting for the
tumours’ localisation within the brain, which is crucial information as previously discussed
in Section 1.2.1.

Determining the exact location of the tumour origin can be challenging due to the natural
growth of the tumour and the displacement of the surrounding tissue caused by the tumour
mass effect and the inherent variability of brain anatomy. With an available method that
provides such information, it would be possible to cluster glioma shapes based on their origin
(e.g., frontal, temporal, etc. lobes) or the anatomical structure they are in contact with (e.g.,
ventricles, lobes, cerebellum, etc.). In addition, we could compute diffeomorphic atlases into
parcels/clusters defined, for instance, beforehand as the lobes. The analysis would then
be carried out independently in each parcel where one could investigate frequency maps
about the origin point of the tumours and at the same time use diffeomorphisms to study
the evolution and the final shape of the tumours that are born in that parcel. This would
significantly enhance the limitations of statistical atlases, which merely aggregate voxels
containing tumours and cannot differentiate the original location of cancer.

To obtain localisation information, a registration technique that matches a healthy brain
with a cancerous brain, taking into account topological differences, can be used. However,
to the best of our knowledge, there is currently no registration technique that can perform
efficient registration robust to such topological variations and also construct a diffeomorphic
shape space. This is the main topic of this dissertation.

1.3 A short review of Registration techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

As we have seen in the previous sections, for diagnosis or research purposes, physicians need
accurate anatomical registrations. In practice, this is achieved by mapping images voxel-wise
with a plausible anatomical transformation.
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These mappings are usually modelled as diffeomorphisms, as they allow for the creation of
a realistic one-to-one deformation without modifying the topology of the source image. There
exists a vast literature dealing with this subject. Some authors proposed to use stationary
vectors fields, using the Lie algebra vector field exponential [Arsigny et al., 2006; Ashburner,
2007; Lorenzi et al., 2013], or, more recently, Deep-Learning based methods [Rohé et al.,
2017; Yang et al., 2017; Balakrishnan et al., 2019; Mansilla et al., 2020; Niethammer et al.,
2019; Mok and Chung, 2020]. We will not use these methods, however, a short presentation
of the Lie-Algebra exponential can be found in Section 2.1.2. For example, Roux and et al.
[2019] register images using DARTEL, which is based on Lie-Exponentials.

Other authors used the Large Diffeomorphic Deformation Metric Mapping (LDDMM)
that utilises time-varying vector fields to define a right-invariant Riemannian metric on
the group of diffeomorphisms. Among other advantages, this metric can be used to build a
diffeomorphic shape space, providing useful notions of geodesics, shortest paths and distances
between images [Avants et al., 2008; Beg et al., 2005; Younes, 2019; Zhang and Fletcher,
2018]. In this method, the deformation field is represented as a flow of vectors fields , and the
problem of finding the deformation field is reduced to finding a curve or a path in a certain
space that represents the flow of vector fields. One needs to integrate along the curve using
schemes borrowed from fluid dynamics. A significant part of LDDMM performances comes
from the scheme choice. While it is not a new algorithm, recent works continue to study
its implementation, aiming to improve both the matching quality and speed/complexity
[Hernandez, 2018, 2021; Mang et al., 2019; Brunn et al., 2021b].

To find the geodesic, the LDDMM algorithm uses an energy minimisation approach. The
energy functional consists of two parts: a smoothness term, which encourages the deforma-
tion field to be smooth by conserving the momentum, and a similarity term, which measures
the similarity between the transformed image and the target image. The smoothness term is
typically implemented using a regularisation term, such as a Gaussian blurring, and the sim-
ilarity term is typically implemented using a similarity measure, such as the mean squared
difference between the transformed image and the target image. Optimal registration can
be seen as an optimal path which is a geodesic. The connection with fluid dynamics endows
LDDMM with several advantageous physical properties. In particular, conservation theo-
rems ensure that certain quantities, like momentum, are conserved along geodesic paths.
The momentum definition within the LDDMM framework is challenging to introduce with-
out equations. We will explore this concept in Sections 2.2.3.c and 2.3.3. One approach to
implement LDDMM is through the implementation of geodesic shooting, whereby a velocity
field is propagated along the curve and the initial vector field is iteratively updated. We
introduce scrupulously all details in Section 2.2.

LDDMM has been applied to many data and in various goals. For example, Khan et al.
[2008] and later Kutten et al. [2016] used LDDMM to propagate brain segmentations along
with annotations. However, clinical or morphometric studies often include an alignment step
between a healthy template (or atlas) and images with lesions, alterations or pathologies, like
white matter multiple sclerosis or tumour. In such applications, source and target images
show a different topology, thus making the use of diffeomorphisms problematic, which are by
definition one-to-one mappings. Several solutions have been proposed in order to take into
account such topological variations. One of the first methods was Cost-Function Masking
[Brett et al., 2001], where authors simply excluded the lesions from the image similarity
cost. It is versatile and easy to implement, but it does not give good results when working
with big lesions. Sdika and Pelletier [2009] proposed an inpainting method that only works
on small lesions. Niethammer and et al. [2011] proposed Geometric Metamorphosis, which
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combines two deformations to align pathological images which need to have the same topol-
ogy. Another strategy, when working with brain images with tumours, is to use biophysical
models Gooya et al. [2011a]; Scheufele and et al. [2019] to mimic the growth of a tumour
into a healthy image and then perform the registration (see for instance GLISTR [Ali et al.,
2012]). However, this solution is slow, computationally heavy, specific to a particular kind
of tumour and needs many different imaging modalities. Other works proposed to solve
this problem using Deep-Learning techniques [Bône et al., 2020; Han et al., 2020b; Maillard
et al., 2022; Shu and et al, 2018]. However, these methods strongly depend on the data set
and on the modality they have been trained on, and might not correctly disentangle shape
and appearance changes.

The Metamorphic framework [Holm et al., 2009; Trouvé and Younes, 2005; Younes, 2019]
can be seen as a relaxed version of LDDMM in which residual time-varying intensity vari-
ations are added to the diffeomorphic flow, therefore allowing for topological changes. The
image evolution is not only modelled by deformation, we allow adding intensity at each
time for every voxel, making topological changes possible. We add intensity through the
momentum (the one from the LDDMM formulation). In Metamorphosis, the definition of
momentum is set as the difference between the ideal image evolution and the deformation
induced by the vector fields. In other words, between the partial derivative in time of the
image and the image transport by the field. Thus we also call it the residual. One can read
Section 2.4 for more details.

1.4 My thesis's Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4.1 Semi-Lagrangian schemes for LDDMM and Metamorphosis implementation

Even if a lot of publications displayed results with the Metamorphosis algorithm, unlike
LDDMM, no public implementation was available. The first contribution of this thesis is
the implementation of both Metamorphosis and LDDMM for images in 2D and 3D. To
compute Metamorphosis, one must integrate over a geodesic PDE system using a numerical
scheme from an initial condition. The registration is done via shooting by updating this
initial condition or residual. This is challenging because classical schemes require a lot
of time steps, to respect the CourantFriedrichsLewy (CFL) conditions and therefore to
converge. Making the subsequent optimisation long to converge as well. I choose to use a
semi-Lagrangian scheme on both images and residual to be able to keep the number of times
reasonable and thus the optimisation time.

The implementation is object-oriented, which allows for versatility in usage and easy
modifications. We developed it using PyTorch and makes use of GPU acceleration for speed
gain.

The code is fully available on GitHub for anyone to use and contribute to at
https://github.com/antonfrancois/Demeter_metamorphosis.

MORE ABOUT IN CHAPTER 2, SECTION2.5
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1.4.2 Constrained Metamorphosis: An extended model

If Metamorphosis leads to very good registrations, the disentanglement between geometric
and intensity changes is not unique and it highly depends on user-defined hyper-parameters.
This makes interpretation of the results hard, thus hampering its clinical usage. For instance,
in order to align a healthy template to an image with a tumour, one would expect that the
method adds intensities only to create new structures (i.e.: tumours) or to compensate
for intensity changes due to the pathology (i.e.: oedema). All other structures should be
correctly aligned solely by the deformations. However, depending on the hyper-parameters,
the algorithm might decide to account for morphological differences (i.e.: the mass effect of
tumours) by changing the appearance rather than applying deformations. This limitation
mainly comes from the fact that the additive intensity changes can theoretically be applied
all over the image domain. However, in many clinical applications, one usually has prior
knowledge about the position of the topological variations between a healthy image and a
pathological one (e.g., tumour and oedema position).

In this part of the thesis, we address the difficulties associated with the Metamorphosis
algorithm by proposing a framework for incorporating prior knowledge into the model. Our
approach involves modifying the registration problem in a way that preserves the ability
to deduce the system of PDEs that underlies the Metamorphosis algorithm. The theory
of Metamorphosis is quite delicate to handle, but in the case of images the principle is to
set a registration problem, potentially inspired from an optimal control one [Miller et al.,
2015], and deduce a system of PDE from it. We propose an adjustment to Metamorphosis
that allows adding constraints on the registration problem by also matching some given
priors. We call this framework Constrained Metamorphosis. We present two specific types
of priors that can be incorporated into the model: (1) a growing mask generated from a
given segmentation, and (2) a field that guides the deformation in a desired direction.

Our implementation of the Constrained Metamorphosis algorithm builds upon our previ-
ous implementation of Metamorphosis and is designed to be flexible enough to allow any user
to incorporate its own additional priors. We demonstrate the effectiveness of our approach
through experiments on glioblastomas, using BraTS datasets, comparing with state-of-the-
art methods.
MORE ABOUT IN CHAPTER 3,

MATHEMATICAL FRAMEWORK: SECTION 3.2.3
VALIDATION ON TOY-EXAMPLE: SECTION 3.2
VALIDATION ON REAL DATA: SECTION 3.3

1.4.3 Segmentation using TDA

In collaboration with Raphaël Tinarrage, we developed a tumour segmentation tool using
Topological Data Analysis (TDA). We aim to detect characteristic components within the
FLAIR and T1ce modalities by taking assumptions on their topologies. Using TDA we are
able to select and find connected components and cycles that compose a glioma without
the usage of any statistical tool. Additionally, by automating the segmentation process, we
gain insight into the location, shape, and intensity of glioblastomas in MR images, which
gives us a deeper understanding of glioblastoma characteristics. In fact, by having a robust
segmentation method, we lay the foundation for building a diffeomorphic glioblastoma atlas.
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The code is fully available on GitHub for anyone to use and contribute to at: https:
//github.com/antonfrancois/gliomaSegmentation_TDA.
MORE ABOUT IN CHAPTER 4

1.4.4 Toy-example construction

I proposed a 2D toy example to mimic the registration of cancer growing inside an organ
pushing the surrounding by "mass effect". The process is divided into three steps: first, a
deformation is applied to the initial image using a bspline field generated from randomly
chosen control points; second, a random deformation is generated around a small ball to
mimic the growth of necrosis, using a bspline field again. The process is repeated a number
of times, and the resulting deformation is applied to the image from the first step. Finally,
we add intensity changes around cancer to mimic Oedema infiltration. The toy example can
be customised by randomly selecting four parameters: the control matrix for the background
deformation, the initialisation point for cancer, and the number and amplitude of the bspline
field for the cancer growth deformation.

MORE ABOUT IN CHAPTER 3, SECTION 3.2

1.4.5 Visualisation tool

Both the LDDMM and Metamorphosis algorithms produce a sequence of images or a tem-
poral image, that can be interpreted as a visual representation of the displacement from the
source to the target images. However, due to the challenges associated with handling 3D
images and the lack of readily available Python plugins for visualising both temporal images
and deformations simultaneously during debugging, we developed a tool that addresses these
issues.

Our tool, which is implemented using the vedo library [Musy et al., 2023], enables to
display

• a single 3D temporal image

• the comparison of two temporal images by displaying them side by side and overlaying
them just with a click.

• the result of a Metamorphosis or Constrain metamorphosis (CM) optimisation, includ-
ing useful information like parameters that were used or the number of pixels where
the deformation tore the background (if the deformation is not diffeomorphic)

• In addition to the registration, one can also visualise the deformation as a collection
of 3D vectors.

One can see a demonstration in this video: https://www.youtube.com/watch?v=-qzQ1B6DdSg
and find its code on GitHub at antonfrancois/Demeter_metamorphosis.
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1.5 Chapter organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 2 covers all the Background knowledge about LDDMM and Metamorphosis,
starting with a small hiatus giving elements of Lie algebra which are helpful to understand
core concepts of differential geometry. I take this opportunity to explain briefly Lie Expo-
nential as a tool for registration. Then I give a cautious demonstration of LDDMM, slowly
introducing the numerous properties. I continue by expatiating about the momentum con-
servation properties and how it allows us to use geodesic Shooting. Having digested all this
theory, one is ready to understand the Metamorphic framework and its geodesic derivations
with ease. I finish the Chapter by explaining my implementation of both aforesaid methods
using semi-Lagrangian schemes (see Contribution 1.4.1) and giving some first results.

CHAPTER 3: introduces the Constrained Metamorphosis (CM) framework (see Contribution
1.4.2). After the mathematical formulation, I present the toy example (see Contribution
1.4.4) I used for debugging and making a first validation. Then I present CM performances
on MRI sequences on two different applications. First, in continuation of this thesis’s original
motivation, we present it as a tool for registering a healthy brain template on a brain with
glioblastoma. Second, we took the BraTSReg 2022 Challenge [Baheti and et al., 2021]] as
an opportunity to test CM on follow-up surgeries alignment.

CHAPTER 4: presents a glioblastoma segmentation method using TDA. We first make a
short review of methods doing Glioblastoma segmentation using Machine Learning. Then
we cover some papers using TDA for MRI analysis. Then, in Subsection 4.2, we make a
short introduction to the different TDA concepts useful for analysing MRI with TDA. We
are now ready to present our segmentation algorithm in Subsection 4.3. Finally, we present
our results and discuss the improvement we want to implement, in Subsection 4.4.

GENERAL CONCLUSION & PERSPECTIVES : Finally we elaborate further on the new kind of
atlas presented in Subsection 1.2.3. We elaborate more on how the work we presented in
this thesis can serve to develop such an atlas.

1.6 Published Articles and Preprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. A. François, P. Gori, and J. Glaunès. Metamorphic image registration using a semi-lagrangian
scheme. In SEE GSI, 2021

2. A. François, M. Maillard, C. Oppenheim, J. Pallud, I. Bloch, P. Gori, and J. Glaunès.
Weighted metamorphosis for registration of images with different topologies. In WBIR,
pages 8–17, 2022

3. M. Maillard, A. François, J. Glaunès, I. Bloch, and P. Gori. A deep residual learning
implementation of metamorphosis. In IEEE ISBI, 2022
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In this chapter, we will study the LDDMM and the Metamorphosis frameworks which
are the main theories on which is based most of my work. To give some first definitions and
cover some concepts we start with a short introduction to Lie groups. At the section end,
one will be able to see a way to produce a diffeomorphic map from one manifold to another.
Armed with this knowledge, we explain the LDDMM framework. Rather than defining it
shortly, I decided to construct it slowly giving some insight into most of its many properties.
Then we introduce the Metamorphosis framework in the context of images and present our
implementation that was partially presented in François et al. [2021].

2.1 A brief background on Lie groups and algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If you read historical papers about Computational Anatomy, you will often encounter Lie
algebras, leading to surprisingly convenient properties. Especially for someone like me, three
years ago, that had no clue what it was about. In this thesis, deformations will be in the
group of diffeomorphisms, which is infinitely dimensional and not smooth enough to be a Lie
group. Therefore, I could avoid talking about the Lie theory. However, many concepts we
will cover, share similarities with Lie groups. I still decided to go through some notions as
their understanding helps grasp the shape space theory. Cédric Villani said, talking about
Grothendieck’s work, that a way of solving complex mathematical problems is to lift them
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to a more general formulation until it is miraculously solved. I found that it is the case here.
This section’s aim is not to give a proper introduction to Lie algebras, but rather to present
some interesting properties and consequences that I find helpful for comprehension.

2.1.1 General Knowledge

Most of this section is a short agglomerate of notions and properties from the book “Intro-
duction to Smooth Manifolds" by John Lee [2012]. I won’t formally cover the definitions
of smooth maps, smooth manifold, and topological atlas, nor give proof here. However, I
strongly advise the unfamiliar reader to take some time manipulating these notions, which
are very well introduced in the cited book.

2.1.1.a Lie Groups

Lie groups are a natural tool for modelling transformations under which an object is in-
variant, endowed with the group operation of composition, called the symmetry group. An
example could be the Lie group of d× d matrices of 3D rotations, modelling the position of
a rigid body with a fixed centre of mass. It is a group under matrix multiplication.

Definition 2.1 (Lie group). A Lie group is a smooth manifold G (without boundary) that
is also a group, with the property that the multiplication map j and inversion map i are both
smooth, where j and i are given by:

j : G×G→G

j(g,h) =gh
i : G→G

i(g) =g−1.
(2.1)

A Lie group is, in particular, a topological group (a topological space with a group
structure such that the multiplication and inversion maps are continuous).

Lie groups also involve group actions, which are external composition laws of the group
on a set. If G is a group and M is a set, a left action of G on M is a map

G×M →M

(g,m) 7→ g . m
(2.2)

that satisfies the usual group action properties:

∀m ∈M , e . m = m

∀(g, g′) ∈ G×G,∀m ∈M g′ . (g . m) = (g′g) . m.
(2.3)

The group action will be written . in this manuscript. The usual notation is g ·m, as for
the scalar product, and sometimes the derivation operator as well. As I find this notation
mix confusing, we will use the dot only for the Euclidean scalar product.

A right action is defined in a similar way as a map M × G → M and appropriate
composition laws are such that:

∀m ∈M , e . m = m

∀(g, g′) ∈ G×G,∀m ∈M (m . g) . g′ = m . (gg′).
(2.4)
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A right action can always be converted to a left action by the trick of defining g . m to be
m . g−1, and a left action can similarly be converted to a right action. This will be used
all along the thesis for composing vector fields and images (see Section 2.5.1.a). We usually
focus our attention on left actions, because their group law has the property that group
elements multiplication corresponds to map composition.

There are many useful properties for Lie groups to study, like isometry groups, transitive
orbits, and free action, but only the notion of orbit will be used in the manuscript.

Definition 2.2 (orbit). For each m ∈ M , the orbit of m, denoted by G . m, is the set of
all images of m under the action by elements of G:

G .m = {g . m : g ∈ G} (2.5)

In other terms the orbit can be seen as the collection of objects attainable from m using
elements of G.

2.1.1.b Vector Fields

A student in mathematics or physics has encountered vector fields in his study of multivariate
calculus. In that setting, a vector field on an open subset Ω ⊂ Rn is simply a continuous
map from Ω to Rn, which can be visualized as attaching an ‘arrow’ to each point of Ω. We
can transpose this idea to smooth manifolds, where we attach to each point m an arrow part
of the tangent space at m. We can see the vector field as a map M → TM .

Definition 2.3 (Vector fields on a smooth manifold). Let be M a smooth manifold, a vector
field v on M is a continuous section of the projection π : TM →M , where TM is the tangent
bundle of M , such that for all m ∈M :

π ◦ vm = m. (2.6)

We will denote V(M) the set of all smooth vector fields on M

We note vm the value of v at m instead of v(m) to be consistent with the notation for
the tangent bundle elements. In other terms, a vector field is such that vm ∈ TmM for each
m ∈M .

As for the vector space case, one should visualise smooth vector fields on manifolds as
arrows attached to each point of M , chosen to be tangent to M , and varying continuously
from point to point. Even if we set a different definition of a vector field, one can still see
a vector field as an order-1 linear differential operator and write v =

∑d
i=1 v

i(x) ∂
∂xi

. The
main difference is that at each point m one has to use the specific local coordinate system
{xi} defined by TmM . We will redefine the vector field in a vector space in Definition 2.10.

In general, it is not obvious to differentiate functions with vector fields or even vector
fields together. Indeed, if F :M → N is a smooth map and v a vector field on M , then for
each point m ∈ M ; we obtain a vector dFm(vm) ∈ TF (m)N by applying the differential of
F to vp. However, this does not in general define a vector field on N. Indeed if F is only
injective, one can not decide which vector to assign to a point without any antecedent. If F
is only surjective, then there might be points without any vector (see Figure 2.1). Thus we
define the relation in between two vector fields defined on different manifolds by F using its
derivative as it is a map such that dF : TM → TN .
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Figure 2.1: The differential of a vector field is not always a vector field

Definition 2.4 (F-related vector fields). Let M and N two manifolds with a vector field v
(resp. w) defined on M (resp. N). Let suppose that it exists F :M 7→ N such that for each
m ∈M , dFm(vm) = wF (m). We say that v and w are F -related.

In particular, if F : M → N is a diffeomorphism, for every v defined on M there is a
unique smooth vector field on N that is F -related to v (see Proposition 8.19 in Lee [2012]).
Conversely, if F is a diffeomorphism, we are sure that objects keep their topology (e.g., in
Figure 2.1 the circle can’t be mapped to a lemniscate).

A natural object generated by smooth vector fields on smooth manifolds are integral
curves: smooth curves within the manifold having a velocity given by the vector field at
each point.

Consider v is a smooth vector field∗ (i.e.: v ∈ V(M)) on M . An integral curve is defined
as a smooth curve γ : [0, 1] → M for all t ∈ [0, 1]† passing at m ∈ M at a time t0 and such
that:

γ(t0) = m; γ̇(t) = vγ(t),∀t ∈ [0, 1]. (2.7)

This means that at every time t ∈ [0, 1] the integral curve has a velocity equal to a vector
in Tγ(t)M and γ̇(t) being the derivative of γ at t is also the “direction in which γ points".

We are now equipped to talk about flows, which one can see as a collection of integral
curves on M associated with a vector field v. For each t ∈ R, we can define a map Φ(t) :
M → M by taking all points m ∈ M and letting them follow the directions given by v on
their respective integral curves. We will use indistinctively the notations Φt(x) = Φ(t,x)
depending on the context. Each map Φt “slides” the manifold along the integral curves. The
Translation lemma implies that t 7→ Φt+s(m) is an integral curve of v starting at m′ = Φs(m)
and thus Φt ◦ Φs(m

′) = Φt+s(m). It is time to define the global flow.

Definition 2.5 (global flow). A global flow on M is a continuous left R-action on M ; that
is, a continuous map Φ : R×M →M satisfying the following properties for all s, t ∈ R and
m ∈M :

Φ(t,Φ(s,m)) = Φ(t+ s,m), Φ(0,m) = m (2.8)

Remarks:
∗Here smooth implies C∞, however in a less restricted domain such as differential geometry, one could

use v ∈ C r−1, r ≥ 2 and M being itself of class C r

†We could have defined the time interval to be any interval T
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1. The global flow is also sometimes called a one-parameter group action to emphasize the
fact that as left R-action on M it depends mostly on time. They were introduced to define
infinitesimal transformation along the flow.
2. As we restricted the time interval to [0, 1] we could have defined Φ : [0, 1]×M →M
3. As is the case for any continuous group action, each map Φt : M → M is a homeomor-
phism, and if the flow is smooth, Φt is a diffeomorphism

2.1.1.c Lie algebra & Lie brackets

Let v and w two smooth vector fields on M . The Lie bracket is an operator that assign
two vector fields defined on M in a way to obtain a vector field as well, and is noted [v,w].
The key intuition being that [v,w] is the derivative of w along the flow generated by v.
Recalling that vector fields are derivative operators, to construct such operation, it would
have been natural to try directly applying vw to a function. Indeed, given a smooth function
f :M 7→ R, vf is still a smooth function (proof in Lee [2012]). It follows that we can apply
w to this smooth function and still obtain a smooth function w(vf). However the map
f 7→ wvf does not follow the product rule for derivation as the Schwartz theorem can not
be generalized to this case (i.e.: the second derivatives w(vf) and v(wf) might differ). There
is few equivalent ways to define the Lie derivative and its brackets, we will see the vector
fields as derivations and start by introducing the Lie derivative noted Lv.

We saw that, each v ∈ V(M) is a map such that M → TM and is a differential operator
acting on smooth functions f . Accordingly, we define, v(f) to be another function whose
value at a point m is the directional derivative of f at m in the direction v(m). In general,
the commutator δ1◦δ2−δ2◦δ1 of any two derivations δ1 and δ2 is again a derivation, where ◦
denotes composition of operators. Getting back on the Lie derivative for vectors, it defines a
derivative in the sense that it is linear and verify the Leibniz formula. Also LvLw −LwLv

is a derivative on M and identify with the definition of a Lie Bracket.

Definition 2.6 (Lie Bracket). We define the Lie Bracket operator [v,w] : V(M)×V(M) 7→
V(M) as

[v,w]f = vwf − wvf .
satisfying:

• bi-linearity

• anti-symmetry, i.e.: [v,w] = −[w, v].

• Jacobi identity, i.e.: [u, [v,w]] + [w, [u, v]] + [v, [w,u]] = 0 with u, v,w ∈ C∞

We have the property that the Lie bracket of any pair of smooth vector fields is still a
smooth vector field. With this definition, the derivative composition rule is respected and
the Lie derivative is a differential operator Ślebodziński [1931] noted �

Lvf(m) = df(m)
d

dt

∣∣∣∣
t=0

Φt(m) = df(m)(v(m)) = v � f . (2.9)

If we put a Riemannian structure on M , then we can write similarly to Equation 2.37:

Lvf(m) = v � f = v · ∇f(m) =

d∑
i=1

vi(m)
∂f

∂xi
(m). (2.10)
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Figure 2.2: Vector field exponential visualisation

with vi(m) being the i-th coordinate of the vector at m.
Note that in general the Lie derivative is defined for a differential form α of degree p but

in this thesis, we only study cases where p ≤ 1, p > 1 begin the tensor case.

Definition 2.7 (Lie Algebra over Rd). A Lie algebra over Rd is a vector space g together
with the binary operation [·, ·] : g× g → g.

To sum up, a Lie group both a geometrical object: a manifold (e.g., A circle) with an
algebraic structure, meaning that for all operations g, g′ ∈ G, will stay in G, g ·g′ ∈ G. They
provide a way to express the concept of a continuous family of symmetries for geometric
objects. By differentiating the Lie group action, you get a Lie algebra action, which is
a linearisation of the group action. As a linear object, a Lie algebra is often a lot easier
to work with than working directly with the corresponding Lie group. For example, the
space of all smooth vector fields on a smooth manifold M is a Lie algebra under the Lie
bracket. Another important example: if G is a finite-dimensional Lie group, the set of all
smooth left-invariant vector fields on G is a Lie subalgebra of the smooth vector field space.
Therefore, G is a Lie algebra. This last example case is called the Lie algebra of G, usually
noted Lie(G). In addition, Lie(G) is finite-dimensional, and in fact, has the same dimension
as G itself.

2.1.2 Vector field exponential

Let us study, as an example, the vector field exponential, which is a way to construct a
diffeomorphism from any vector field v. The idea here is that we build the group G around
v. We assume that the vector field v is part of the tangent space of an abstract manifold G
at identity (i.e.: v ∈ TIdG). Then by following the integral curve associated with v.

Definition 2.8 (Exponential map). Let be v a vector field. The exponential map is a map
from the Lie algebra of G

exp : TIdG→M

exp(v) = γ(1)

where γ : [0, 1] → M is the unique integral curve of M whose tangent vector at the identity
is equal to v.
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Figure 2.3: Exponential map effects on a vector field. Grids show deformations, the red and green scares
behind indicate the sign of the jacobian determinant. Red presence indicates that the deformation is not

diffeomorphic.

In the particular case were M ⊂ Rd we can compute the exponential as described in
Ashburner [2007]; Vercauteren et al. [2009], where a fast algorithm is proposed. The idea
is to take any vector v and scale it down by a factor l such that Id + lv is a bijective
deformation. To obtain a defomation with the same amplitude as Id + v, one can solve the
ordinary differential equation:

ϕ̇t = (lv) ◦ ϕt, l ≤ 1. (2.11)

Indeed the iterative composition of bijective transformations returns a bijective one. The
Lie exponential also have the properties that for t, s ∈ T and t + s ∈ T , exp((t + s)v) =
exp(tv) ◦ exp(sv). Thus for any integer k

exp(v) = exp(k−1v)k (2.12)

where the power operation is the composition of spatial transformations. This leads to the
algorithm and Code 2.1. The main idea behind is that starting from a first approximation
of ϕ0 = exp(2−Nv) ' Id + 2−Nv and then iterating for k < N ∈ N,ϕk = ϕk−1 ◦ ϕk−1.

Source Code 2.1: Fast exponential integrator.

1 def fast_exp_integrator(in_vectField,N):
2 """ Compute Exp(in_vectField) """
3 # First order approximation exp(2**(-N) * v) ~ Id + 2**(-N) * v
4 in_vectField *= 1/(2**N)
5 grid_def = id_grid + sign*in_vectField
6

7 # Field Composition divided 2**N times
8 tmp_grid = torch.zeros(grid_def.shape)
9 for n in range(N):

10 field = tb.grid2im(grid_def-id_grid)
11 tmp_grid = grid_def.clone()
12 interp_vectField = grid_sample(field,tmp_grid)
13

14 grid_def += tb.im2grid(interp_vectField)
15

16 return grid_def
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We add a small feature in order to choose automatically the scaling needed. If we scale
a displacement field by 2N we will need to compose it N time. Arguably, on one side the
higher N is, best the approximation is, on the other side, the higher N is the more we
apply successive interpolation and introduce computational errors. In any case, for speed
optimisation reasons, it is interesting to find the smallest N possible for v to induce a one-
to-one transformation We implement our methods with PyTorch where the interpolation
function grid_sample require a deformation grid defined on a Ω = [−1, 1]d domain. So we
will use this convention in all the following.
Proposition 2.1. For any smooth vector field v defined on a grid [−1, 1]2 with H ×W , the
related transformation ϕv(x) = x+ 2−Nv(x) is bijective if

N = max
(
1,
⌈

log(maxx(‖v(x)‖∞))− log(min(1/H, 1/W ))

log(2)

⌉)
(2.13)

Proof. A sufficient criterion for ϕv to be bijective, v being smooth, is

max
x

∥∥2−Nv(x)
∥∥
∞ ≤ min(1/H, 1/W ) (2.14)

⇔ N ≥
log(maxx(‖v(x)‖∞))− log(min(1/H, 1/W ))

log(2) (2.15)

Remark 1: This proposition was written for d = 2 but it is straightforward to adapt to
any other dimension.

Remark 2: In Vercauteren et al. [2009], authors advise to choose N such that ‖2−Nv(m)‖∞ ≤
0.5 but it is for a grid [0,H]× [0,W ] with step one.

We demonstrate the fast vector field exponential in Figure 2.3 where we took a vector
field v generated by splines. We show that the basic deformation, which consists in adding
v to a regular grid X, is not diffeomorphic (to say the least). Then we demonstrate that
exp(v) has a positive determinant of Jacobian at every pixel x ∈ X. One can verify the
interesting property that exp(v) ◦ exp(−v) = Id.

The Lie Exponential is a suitable method for generating diffeomorphic deformations from
a single vector field and has been used for registration for DARTEL Ashburner [2007] or
DEMON-related algorithms for example Vercauteren et al. [2009]; Pennec et al. [1999];
Mansi et al. [2010]. The previous methods propose to deduce a diffeomorphism from a single
vector field, in the rest of the manuscript, we aim to register objects using more complex
deformations generated by time-dependent vector fields. It is reasonable as it is way less
computationally and memory intensive. Also, most of the modern research dealing with the
task of registration also estimates such generated deformations using machine learning [Rohé
et al., 2017; Yang et al., 2017; Balakrishnan et al., 2019; Mansilla et al., 2020; Niethammer
et al., 2019; Mok and Chung, 2020].

2.1.3 Finite versus Infinite-dimensional Lie Groups

One can also define a Lie group from an infinite-dimensional Manifold. If most definitions
remain the same, the big difference is that they are not locally compact. This can be
problematic, indeed some results in finite dimensions are not true in general in infinite
dimensions [Schmid, 2010], for example:
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• There is no Implicit function theorem or inverse function theorem in infinite dimen-
sions. Thus it is not always possible to represent an intricate function through a
collection of simpler analytic ones.

• If G is a finite-dimensional Lie group, the exponential map exp : g → G is a local
diffeomorphism from a neighbourhood of zero in g onto a neighbourhood of the identity
in G; hence exp defines canonical coordinates on the Lie group G. As we cannot ensure
local compactness, this is not true in infinite dimensions.

• If f1, f2 : G1 → G2 are smooth Lie group homomorphism between finite-dimensional
Lie groups, then f is smooth. This is not true in infinite dimensions.

• If f : G → H is a continuous group homomorphism between finite-dimensional Lie
groups, the f is smooth. It is not always the case in infinite dimensions.

• If g is any finite-dimensional Lie algebra, then there exists a connected finite-dimensional
Lie group G with g as its Lie algebra; that is, g ≈ TIdG. This is not true in finite
dimensions.

Here is a classical example of an infinite Lie group with a Lie algebra. Let M be a finite-
dimensional manifold, C∞(M) the smooth function on M along with the group operation
is a Lie group‡. We can set the Lie algebra to be g = TIdC∞(M) ≈ C∞ with the trivial
bracket [v,w] = 0 and exp = Id. Moreover, If we complete these spaces in the C k-norm,
k < ∞, then the completed space is a Banach-Lie group. Alternatively, if we complete
the space with the Hs-Sobolev norm with s > (1/2)dim(M) then it is a Hilbert-Lie group
[Schmid, 2010].

Obviously, the diffeomorphism group is a very important example of an infinite dimen-
sional Lie group, while not being a Banach Lie group. We will give more details about this
group in Sections 2.2.2 and 2.3.2.

2.2 LDDMM framework construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this Section, I will try to make a gentle and exhaustive Large Diffeomorphic Metric
Mapping (LDDMM) introduction. The method is not only a registration technique but also
a powerful tool to compare objects embedded in complex data. We already did an equation-
free introduction in Chapter 1. I assume that you have a general idea of LDDMM and are
thirsty to understand how can a single theory could have so many properties.

I will start my presentation with the core concept of LDDMM: the ability to compare
images by a flow of diffeomorphisms through a Riemannian distance, the amount of de-
formation giving us the searched metric. The method, introduced for the first time three
decades ago by Grenander [1993], had some time to mature. Therefore, just like water
finding the straightest path to the ground, the Shape-space theory found shortcuts leading
to very convenient properties and making proofs more straightforward. However, the study
of the earliest papers and careful construction of the framework help us understand these
properties’ origins.

‡more precisely an Abelian Frechet Lie group
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This long Section will be organised as follow: I start in Subsection 2.2.1 by summarizing
the article Miller and Younes [2001], which was at that time the aggregate of major break-
throughs in the field. This study will give the foundation to construct a distance on the
space of image I only with the help of a group of one-to-one transformations G.
Then in Subsection 2.2.2, I give some algebraic arguments on why the group of diffeomor-
phisms is a very good candidate for G.
I follow in Subsection 2.2.3 by parametrizing these diffeomorphisms with the help of tempo-
ral vector fields, conveniently chosen among a Hilbert space named V . V is first introduced
generally with the properties we wish it had. A short hiatus about how we integrate temporal
vector fields in practice is also given, as it may help to manipulate vector fields and diffeo-
morphisms to understand later parts. Finally, I give some consequences of the Hilbert space
construction on its scalar products and give links with Eulerian and Lagrangian mechanics
in physics.
Eventually we define the scalar product of V and therefore the aforesaid norm in Section
2.2.4. We introduce the Reproducing Kernel Hilbert Spaces (RKHS) that are not only
perfect for our use case but are making proofs easier, give a sense of scale and come with
efficient implementations. In the last part, I take the liberty to take a step away from
LDDMM and introduce its multi-scale counterpart: LDDKBM.
Finally, in Section 2.2.5 I finish by presenting some results using LDDMM on images, that
I use to make a first discussion. I do not detail the implementation in this Section, as is it
detailed later, we use Metamorphosis in a particular case to compute LDDMM.

2.2.1 Historic geodesics construction, first properties

In this subsection, we will introduce core concepts of LDDMM, in the study of the well-
written paper Group Action, Homeomorphisms, and Matching: A general Framework by
Miller and Younes [2001]. This work lies on the foundations held conjointly by Grenander
[1993]; Dupuis et al. [1998b] and Trouvé [1995].

Later contributions bringing opportune insight gave some results more directly. For
example, the contribution of D. Holm made the bridge with fluid dynamics and Lagrangian
mechanics (see Subsection 2.3.1). We can also mention the parametrisation of the group
of transformations using Reproducing Kernels Hilbert Spaces (see Subsection 2.2.4.b). We
could also choose to present LDDMM through optimal control as it is done in Miller et al.
[2015, 2006]; Younes [2019]. However, while I was reading about LDDMM, many properties
seemed magical to me, and going through the old literature helped me sort all of this out.

We aiming at registering images I and I ′ part of a functional space I maps Ω ⊂ Rd →
[0, a], a < ∞, where Ω is an open set. We aim at constructing a distance on images using the
group of bijective transformations G : Ω → Ω. This construction will allow us to compare
only images that are attainable by an element of G. Thus for a given I ∈ I we define II ⊆ I
the orbit of I by G (i.e.: II=̇G . I). However, if I ′ ∈ II , there exit g ∈ G such that
g . I = I ′ and thus II = II′ . Conversely, for a given G, there exist two images I, I ′ ∈ I
such as I ′ /∈ II . Thus we have already seen that a method based on bijective deformations
will restrain us to a certain area of the space I, which depending on the application, can be
a desired feature. In the following we define I to be equal to some II for an unspecified
image I and by writing I, I ′ ∈ I we, therefore, assume that they belong to the same orbit.

We will start by setting all the properties a distance on I , dI , must have to answer
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our registration problem. We will follow by constructing this distance on G the space of
deformations before extending it to the expanded space S = G × I to compare a pair of
images by the amount of deformation.

2.2.1.a Distance between registered objects

For any I, I ′ ∈ I , we aim to build a distance dI to evaluate the amount of deformation to
match I on I ′. Let S = G× I be the set of deformed images (or registered objects in Miller
and Younes [2001]) and G acts on S through the operation h . (g, I) = (hg,h . I) . We will
define a distance on images dI as the set distance DS between the orbits (Id, I) and (Id, I ′)
under the action of g.

dI(I, I ′) = DS(G . (Id, I),G . (Id, I ′))
= inf{dS(a, a′) : a = (g, g . I); a′ = (g′, g′ . I ′); g, g′ ∈ G}

(2.16)

In Equation 2.16, one can see that the set distance DS is defined using the distance on S ,
dS , that remains theoretical for now. We will carefully craft it from the distance of G in
subsection 2.2.1.b. In the previous definition, the functional dI , is close to being a distance,
one needs only to ensure it respects the triangular identity. Consequently, we need one
more assumption: the distance dS must be left-invariant to the group action, namely for all
h, g, g′ ∈ G, all I, I ′ ∈ I

dS(h . (g, I),h . (g′, I ′)) = dS((g, I), (g′, I ′)). (2.17)

In an informal way, the left invariance states that the distance d takes the shortest path g
from I to I ′ and any detour h won’t affect the result. That leads to the author’s first claim:

Proposition 2.2 (Miller and Younes [2001] : Proposition 1). Let dS be a distance on S
which is invariant by the left action of G, then the function dI , defined on I × I by

dI(I, I ′) = inf{dS((g, g . I), (g′, g′ . I ′)) : g, g′ ∈ G} (2.18)

is symmetrical, satisfies the triangular inequality and is such that dI(I, I) = 0 for all I.

We can remark that it is direct that one can write Equation 2.18 as dI(I, I ′) =
inf{DS((Id, I), (g, g . I ′)) : g ∈ G} since d is invariant by left composition (i.e.: dS((g, g .
I), (g′, g′ . I ′)) = dS((g

−1g, g−1g . I), (g−1g′, g−1g′ . I ′) = dS((Id, I), (g′′, g′′ . I ′))). It means
that a pair of images are compared using only one transformation g. This leads to parametri-
sations helping distinguish two ways of comparing objects :

• Subject to subject comparison (or Homogenous) where we match directly the two
objects I, I ′ ∈ I with the best elements g, g′ ∈ G which register I and I ′ to the same
object such that g−1 . I = g′−1 . I ′ again its specific distance could be:

dhom(I, I ′) = inf{dS((Id, I), (g, g . I ′)) : g ∈ G, g . I = I ′}

• Template based comparison with a reference representative object Ĩ in I (i.e.: a
template) we compute the shortest paths g, g′ which register I and I ′ to the template
such that g . Ĩ = I and g′ . Ĩ = I ′ and so the distance could be written

dtemp(I, I ′) = inf{dS((g, g . I), (g′, g′ . I ′)) : g, g′ ∈ G, g−1 . I = g′−1 . I ′ = Ĩ}
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Figure 2.4: How the group G is also a Manifold. In particular, we can define paths g ∈ G, the shortest being a
geodesic.

These two points of view are common in shape space analysis and show the method’s versa-
tility. We can compare a pair of images directly or we can compare them having the context
of a dataset. For now, we only underlined the properties such distance must obey, in the
next paragraph, we will study the first parametrisation.

2.2.1.b Geodesic distance construction.

GEODESIC DISTANCE ON G: Let G be a group of transformations and let’s assume it is a
smooth group everywhere. G also acts on itself through the composition. Let’s consider
g : [0, 1] → G a smooth path for which the time derivative is defined dg

dt for all t ∈ [0, 1] by
setting:

dg
dt

∣∣∣∣
t=t0

=
∂g
∂t

(t0). (2.19)

Each element g ∈ G is in correspondence with the tangent space TgG which contains all the
vectors dg

dt

∣∣∣
t=t0

for all paths going though g at time t0, formally we can write:

{
dg
dt

∣∣∣∣
t=t0

: g : [0, 1] → G; g(t0) = g

}
(2.20)

A translation or a left action on g by h ∈ G being given by the mapping

h . g :
((
t 7→ g(x)

)
7→
(
t 7→ g ◦ h(x)

))
(2.21)

and illustrated in Figure 2.5. The translated left action derivative is thus the invertible
linear mapping: ∀t ∈ [0, 1]

64



Ba
ck

gr
ou

nd
Ba

ck
gr
ou

nd
Ba

ck
gr
ou

nd

dh . g
dt

: Ω → Tg(t)◦hG

x 7→ ∂g(t)
∂t

(h(x))

(2.22)

The path being transported, the derivatives are now part of other tangent spaces of G: we
have for all t ∈ [0, 1], ∂tg(t) ∈ Tg(t)G and ∂t(h . g(t)) ∈ Tg(t)◦hG.

Figure 2.5: How the group G is also a Manifold. In
particular, we can define paths g ∈ G, the shortest

being a geodesic.

Each point g of G being associated with
its tangent space, itself being a vector space,
there exists a corresponding norm that we
call ‖ • ‖g. However, we don’t necessar-
ily know them. To overcome this difficulty,
we can define them all just by defining the
norm for the identity deformation, and re-
trieve the others by translation: The col-
lection of left-invariant norms ‖ • ‖g, g ∈ G
can be fully determined by ‖ • ‖Id. If we
define ‖ • ‖Id, for all differentiable paths g
with g(t0) = Id such that∥∥∥∥dg

dt
(t0)

∥∥∥∥
Id

= NG

(
∂g
∂t

(t0, •)
)

(2.23)

where NG is a functional norm on the space
of functions v : Ω 7→ Rd. By left trans-
lation invariance, we deduce the norms for
any path g from NG; if g(s) = g,∥∥∥∥dg

dt
(t0)

∥∥∥∥
g

= NG

(
∂g
∂t

(t0, g−1(t, •))
)

. (2.24)

Even if we will give a formal parametrisation of the temporal vector field in Definition 2.10,
one can see arising the vector field essence here by setting

v(t,x) = ∂g
∂t

(t, g−1(t,x)), (2.25)

where v carries the information of an infinitesimal displacement among the deformation g
at a time t (see Figure 2.4).

Knowing every norm on the path g let us compute the total energy of the deformation,
using a Riemannian metric integrating over the norms such that

E(g) =
∫ 1

0

∥∥∥∥dg
dt

∥∥∥∥2
g(t)

dt =

∫ 1

0

NG (v(t, •))2 dt (2.26)

thus the associated geodesic distance

dG(g, g′) = inf
{√

E(g) : g(0) = g, g(1) = g′
}

(2.27)

is left invariant for the action of G on itself.
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Figure 2.6: A path on I generated by the corresponding path on G

DISTANCE ON S In this paragraph, we will extend the previous result to the product space
S = G × I . The reasoning is the same, with the addition of the smooth space of images
I which elements are functions I : Ω → R on which G is acting. Like for Equations 2.19
and 2.22 we define the time derivative of a path s : [0, 1] → S and its translation h . s, with
h ∈ G:

ds
dt

=

(
∂g
∂t

, ∂I
∂t

)
;

dh . s
dt

=

[
(t,x) 7→

(
∂g
∂t

(t,h(x)), ∂I
∂t

(t,h(x))
)]

(2.28)

We define the collection of norms ‖ • ‖g,I , for (g, I) ∈ S from the case g = Id

∥∥∥∥dg
dt

(t0)

∥∥∥∥2
Id,I

= NG

(
∂g
∂t

(t0, •), I
)2

+NI

(
∂I
∂t

(t0, •), I
)2

(2.29)

for the chosen functional norms NG and NI , the former being defined for functions v : Ω →
Rd and the later for function I : Ω → R. Assuming that I : [0, 1] → I is the image path
such that I(t) = g(t) . I for any I ∈ I and path g ∈ G; we obtain the norm for any g ∈ G
applying the same pullback as in Equation 2.24.∥∥∥∥dg

dt
(t0)

∥∥∥∥2
g,I

= NG

(
∂g
∂t

(t0, g−1(t, •)), I(g−1(t, •))
)2

+NI

(
∂I
∂t

(t0, g−1(t, •)), I(g−1(t, •))
)2

(2.30)
We set v as in Equation 2.25 and its alter ego for images; the infinitesimal image variation
by the deformation g at time t: Ĭ = I(t, g−1(t,x)). Assuming Ĭ is differentiable both in time
and space, we have the identity:

∂I
∂t

(t,x) = ∂Ĭ
∂t

(t, g(x)) + ∂Ĭ
∂x

(t, g(x)) · ∂g
∂t

(t,x) (2.31)

⇔ ∂I
∂t

(t, g−1(t,x)) = ∂Ĭ
∂t

(t,x) + ∂Ĭ
∂x

(t,x) · v(t,x) (2.32)

I will comment on it after the conclusion: The energy of the path on S is given by the
following theorem, illustrated in Figure 2.6. The previous discussion holds for proof.
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Theorem 2.1. (Miller and Younes [2001]) Let (NG(•, I), I ∈ I) and (N(•, I), I ∈ I) be
two collections of norms. Associate to the temporal vector field t 7→ v(t, •) and the path
t 7→ Ĭ(t, •), where v(t,x) ∈ Rd and Ĭ(t,x) ∈ R, the energy

E(v, Ĭ) =
∫ 1

0

NG

(
v(t, •); Ĭ(t, •)

)2
dt+

∫ 1

0

NI

(
∂Ĭ
∂t

(t, •) + ∂Ĭ
∂x

(t, •) · v(t, •); Ĭ(t, •)
)2

dt.

(2.33)
Then, the function

dI (I, I ′) = inf
{√

E(v, Ĭ) : v, Ĭ, Ĭ(0, •) = I, Ĭ(1, •) = I

}
(2.34)

is a distance on I.

The Equation 2.32 is the Lie derivative of Ĭ in the direction of the vector field v. This
description is obviously very general, the results being applicable to any kind of manifold.
A famous toy example is the space of a landmarks triplet that actually happens to live
on a sphere surface [Kendall et al., 2009; Klingenberg, 2020]. In this thesis application,
we consider dense images defined on a 3D Euclidean subspace. One could argue that we
do not need such elaborated definitions. However, we consider Euclidean space as the
identity deformation that we will transport, each voxel carrying its intensity along the flow.
Therefore this Euclidean space must be considered like a 3D manifold, and G is another of
higher dimension, where each point is a deformed version of it (Figure 2.4). Also if Ĭ is part
of I , it is not on the path I as the former is more the infinitesimal variation happening in
between two close points of the last. This is why, we handled the partial derivative of I in
time with caution, as the notion will come back often through the manuscript.

One can see that theorem 2.1 is a generalisation of LDDMM as given in Trouvé [1995];
Dupuis et al. [1998b] where given I and I ′ ∈ I , one minimise:∫ 1

0

‖v(t, •)‖2dt+
∫
Ω

(
I(x)− I ′ ◦ g−1(1,x)

)2
dx (2.35)

While commenting on their results Miller and Younes [2001] referred to this kind of matching
as viscous matching in opposition to elastic one, more common at the beginning of the last
millennium. They were right, as we will see, the geodesic formulation we will end up with
is alike to the one of a viscous non-diffusive fluid (c.f.: Theorem 2.9). As we will see later,
this theorem paves the road for Metamorphosis as we detail in Section 2.4.

We have seen that thanks to the group structure we pass from a hard functional problem
of deforming images to a geometrical problem, giving us a sense of distance in between
functions I through geodesics. Moreover, in a very general setting where there is no implied
norms for every point of a manifold (e.g.,I) we can deduce all norms on the path from G.
The following sections will focus on the parametrisation of the space G and methods to
register the following geodesics. Trouvé [1995] set regularity constraints to rigorously define
a group G that shares many properties of finite-dimensional Lie groups. We will present a
slightly weaker definition of G in the next section.

2.2.2 Diffeomorphisms from group theory point of view

The diffeomorphism group Diff, composed of the infinite-dimensional one-to-one smooth
transformation, can be considered a good candidate for G. As we will see in this subsection,
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we can put easily a group structure on Diff. We will give the general definition of diffeomor-
phism and we will wait for Sections 2.2.3 and 2.2.4.b to give the complete characterisation
used for this thesis application.

Definition 2.9 (Diff(M ,N)). Given two manifolds M and N , a differentiable map f :
M → N is called a diffeomorphism if it is a bijection and its inverse f−1 : N → M is
differentiable as well.

In particular, we will note Diff(M) the group of diffeomorphisms from M to itself.

The study of links between geometrical objects and an algebraical structure is quite
common. For example, a compact topological space U is characterized by the real-valued
continuous function algebra C (U). Moreover, if U and U ′ are compact spaces, every mor-
phism C (U) → C (U ′) is a map such that f 7→ f ◦ w, where w : U ′ → U is continuous. In
other words, we can retrieve U as the set of the morphisms C (U) → R. These results can
be extended to the group of diffeomorphisms, with the cost of more technical proofs. In
particular, and it is important for us, a smooth manifold is characterized by its group of dif-
feomorphisms [Filipkiewicz, 1982; Mourtada, 2015]. Furthermore, if M is a compact smooth
manifold, it is possible to define a distance d : Diff(M) × Diff(M) → [0,∞) such that the
topology induced by d is C∞. In fact, Diff(M) has a natural smooth structure which makes
it an infinite-dimensional Lie group [Mourtada, 2015]. The Lie algebra of Diff(M) is then
the vector fields algebra on M and its exponential application is the flow: exp(tv) = Φt

v.
In addition, if we combine the results presented in Section 2.2.1, along with the fact that if
we set a diffeomorphism group on any Manifold, the obit of a point is the manifold itself.
We have the property, in particular: Diff . Id = Diff. In other words, we know that every
diffeomorphism from the group is attainable from the identity deformation. [Milnor, 1965]

In this thesis, applications will focus on images I, from a manifold I where its elements
are functions such that I : Ω ⊂ Rd → R. We will also call this manifold the Morphological
space. Typically we will choose images as functions from L2(Ω,R) [Beg et al., 2005; Younes,
2019; Vialard et al., 2011] or even with bounded variation (BV) [Vialard and Santambrogio,
2009]. Therefore we are not within the framework of Lie theory anymore. However, close
enough to make analogies. Here, The algebraic model is that any image I ∈ I is carried
by its coordinate system represented by a diffeomorphic transformation ϕ ∈ Diff(I). ϕ
interact with an image according to (ϕ, I), denoted algebraically as (ϕ, I) 7→ ϕ.I. Thus, an
elementary element exists, under the name of the identity transformation Id and elements
of Diff are stable, as dictated by Equations 2.3. In particular, the second equation would
be: ϕ′ . (ϕ . I) = (ϕ′ ◦ ϕ) . I. We take as an assumption that the morphological space
orbit of I is homogenous under the actions of Diff elements, leading that for all I, J ∈ I
there exists ϕ ∈ Diff(I) such that J = ϕ . I. In other words, we chose I to be composed
only of elements attainable by a diffeomorphism. For images, it means that the topology is
preserved, in terms of structure (see Figure 2.7). Indeed elements of ϕ ∈ Diff when applied
to objects generate a symmetries group.

Because we will work in setting when image coordinates Ω are subsets of the Euclidean
space Rd, the group left action under the flow translate as the inverse function composition:

(ϕ, I) 7→ ϕ . I = I ◦ ϕ−1. (2.36)

As both I and Diff are smooth manifolds, any pair of points at their surface can be joined
by a path, subset of an integral curve§. Thus, we can deduce a Riemannian distance on Diff

§One could define flows on Diff with the ’sliding conditions’ of Equation 2.8 holding.
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Figure 2.7: Schematic view of the shape space. We can move in the functional space of images with elements
of Diff. The orbit Diff . I generate I, the subspace of images with the same topology.

noted dDiff for any diffeomorphisms ϕ,ϕ′ ∈ Diff that also implies a distance on I noted dI .
(c.f.: Sections 2.3.1 and 2.2.1). From the definition of Morphological space, we know that
for any pair of images I, J ∈ I , it exists ϕ ∈ Diff such that ϕ. I = J . Furthermore, because
I is smooth, if a pair of images is close on I for dI , ϕ will be close to the identity as well
for the associated distance on Diff. Formally, if I and J are such that dI(I, J) < ε1 for any
ε1 ∈ R+∗ then it exist a diffeomorphism ϕ matching I on J and a small constant ε2 ∈ R+∗

such that dDiff(Id,ϕ) < ε2.
We saw in this section a first sketch of the Shape space, and that Diff is a good candidate

for modelling transformation as it can be seen algebraically as a group and results from
Section 2.2.1.a holds. However one can argue that we still have not rigorously parametrised
Diff. Your patience will be rewarded in the next section.

2.2.3 Temporal vector fields to parametrise large diffeomorphic deformations

2.2.3.a A Hilbert space for smooth vector fields

Let S and T be two images from the image space I defined on the same domain Ω. We want
to register the source image S on the target T . We have already seen vector fields arising
from Equation 2.25, here we will give a more formal definition.

Definition 2.10 (Displacement Vector field). We call a displacement vector field any map
v = (v1(x), · · · , vd(x)) : Ω 7→ Rd belonging to C 1

0 (Ω,Rd), which are the C1 fields on Ω
vanishing at infinity along with their derivatives.

As a remark, and as we have seen before in Section 2.1.1.b, we can view v as a derivation
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operator on C 1
0 defined for all f ∈ C 1

0 (Ω) as:

v � f(x) =
d∑

i=1

vi(x)
∂f

∂xi
(x). (2.37)

So v is identified to the derivation operator : v =
∑n

i=1 v
i(x)∂xi

(x).
Note: We see here that this definition coincides with its generalised form on Manifolds

seen in Section 2.1. For this thesis applications, we will only work with vector fields defined
on Euclidean vectors spaces; but understanding the more general form on manifolds will help
visualise core concepts of LDDMM and Metamorphosis.

This definition underlines the fact that the derivation operator I 7→ v � I performs an
infinitesimal action of the vector field on an image.

To compute a diffeomorphism from a single vector field is not an obvious task, and the
approximation Φ(x) = x + v(x) holds only if the vector field v : Ω 7→ Rd is small enough.
One can see a non-working example in Figure 2.3. Thus integrating a temporal vector field
to a diffeomorphic deformation must be done with caution. We are interested in a subclass
of diffeomorphisms obtained form the ordinary differential equation for all t ∈ [0, 1]

ϕ̇t = vt ◦ ϕt; ϕ0 = Id (2.38)

We will denote by v a time dependent vector field which is an ordered collection of vector
fields (vt)t∈[0,1]. A discrete approximation with N elements can be defined as the N-uplet
v = (vt0=0, vt1 , · · · , vtN−1=1). During the dissertation, we will use symbols in Typewriter
fonts for discretised versions of the continuous variables we are working with.

We will denote the deformation given by integrating over v by ϕv (see Section 2.2.3.b for
more details). We want to make sure that the transformation ϕv, such that T = ϕv ◦ S or
equivalently S ◦ (ϕv)−1 = T , is a diffeomorphism and ϕv transports the point x ∈ Ω to a re-
alistic position. (see Section 2.5.1.a for more detail about image transport implementation).

Definition 2.11 (admissible vector space V ). The vector space V of vector fields v : Ω → Rd

is said admissible if:

• V is a Hilbert space and its norm and scalar product are denoted by ‖ · ‖V 〈·, ·〉V .

• (V , ‖·‖2V ) continuously injects itself in (C 1
0 (Ω,Rd), ‖·‖1,∞) the C1 fields on Ω vanishing

at infinity along with their derivatives :

V ↪→ C 1
0 (Ω,Rd), (2.39)

meaning that its exists k ∈ R+ such that for all v ∈ V , ‖v‖1,∞=̇‖v‖∞ + ‖dv‖∞ ≤
k‖v‖V .

The study of V is important as the elements of V need to be sufficiently smooth to produce
a flow of diffeomorphisms [Dupuis et al., 1998a]. This leads to a first characterisation of the
set of admissible transformations:

DiffV =̇
{
ϕv :

∫ 1

0

‖vt‖2V dt < ∞
}

(2.40)

We are now equipped to translate the results of Section 2.2.1 for G = Diff.
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Theorem 2.2. Let V be a space of admissible vector fields and DiffV the related group of
diffeomorphisms. For all φ ∈ DiffV and v ∈ L2([0, 1],V ),

dDiff(Id,φ)=̇ inf
{(∫ 1

0

‖vt‖2V dt
) 1

2

: v ∈ L2([0, 1],V ), ϕv
1 = φ

}
(2.41)

is a left-invariant metric on DiffV and (DiffV , dDiff) is a complete metric space.

This theorem by A.Trouvé is proven in this form in Theorem 7.17 of Younes [2019] book.
Authors often refer to E(v) =

∫ 1

0
‖vt‖2V dt as the energy of a deformation, as it gives a

measure of the total displacement on the ambient space. It corresponds to the length of a
path on G given by a Riemannian distance of DiffV and can be interpreted as a geodesic
distance on the group.

By coupling theorems 2.1 and 2.2 we are able to compare images in the space I using the
deformation given by dDiff:

dI(S,T ) = inf
{(∫ 1

0

‖vt‖2V dt
) 1

2

: v ∈ L2([0, 1],V ), S ◦ ϕv = T ,
}

(2.42)

We are now almost ready to measure the distance between objects using a diffeomorphism
flow.

2.2.3.b Hiatus: Temporal vector field integration in practice.

Before giving more theoretical results on the scalar product deduced from the V norm, I
would like to give some details on the implementation of diffeomorphisms.

From the definition given by Equation 2.40 we can deduce a formula to get the deformation
ϕv
t at any given time t. If we use the ODE notation from Equation 2.38 the flow at any

given time is written

ϕv
t = Id +

∫ t

0

vs ◦ ϕv
sds, vs ∈ v. (2.43)

where ϕt(x) is the transported position of x at time t. The map t→ ϕv
t is unique for a given

v and differentiable for any time and voxel [Glaunès, 2005]. It is also possible to start the
integration midway, with 0 ≤ t1 < t2 ≤ 1:

ϕv
t1,t2 = Id +

∫ t2

t1

vs ◦ ϕv
sds, vs ∈ v. (2.44)

It is immediate that for s < r < t,ϕv
s,r ◦ ϕv

r,t = ϕv
s,t.

If we integrate the vector fields backwards, through the relation:{
φ̇t = (−v1−t) ◦ φt
φ1 = Id ∀t ∈ [0, 1], vt ∈ v (2.45)

We can rewrite the system such that

ϕv
t2,t1 = Id +

∫ t2

t1

−vt2−s ◦ ϕv
t2,t2−sds, vs ∈ v (2.46)
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and in particular

ϕv
1,0 = Id +

∫ 1

0

−v1−s ◦ ϕv
1,t2−sds (2.47)

One can verify that ϕv
t ◦ (ϕv

t )
−1 = Id for all t ∈ [0, 1] and in particular that ϕv ◦ (ϕv)−1 = Id.

In practice, for two vector fields v and w the operation v◦(Id+w) is made by interpolation.
One can read the implementation principle to obtain both ϕv and (ϕv)−1 in Code 2.2.

Source Code 2.2: Temporal field integrator implementing the construction of ϕv and (ϕv)−1. You can find a
full tutorial within the file vector_field_to_flow_man.ipynb

1 def temporal_field_integrator_forward(vectField):
2 grid_def = id_grid + vectField
3

4 # change the vector field to image convention shape [B,C,...]
5 in_vectField_im = tb.grid2im(vectField)
6

7 for t in range(1,in_vectField.shape[0]):
8 tmp_grid = grid_def.detach()
9 # interpolate the field on the deformation

10 interp_vectField = grid_sample(in_vectField_im[t,...]
11 ,tmp_grid)
12

13 # change back to vector field to fields shape conventions
14 grid_def += tb.im2grid(interp_vectField)
15

16 return grid_def
17

18 v = # a temporal vector field of shape [T,...,D]
19 # compute the deformation phi_v
20 phi_v = temporal_field_integrator_forward(v)
21

22 # compute the inverse deformation of phi_v
23 v_inverse = - v.flip(0) # put the field in reverse order from 1 to 0.
24 inv_phi_v = temporal_field_integrator_forward(v_inverse)

2.2.3.c Energy and momenta: Eulerian and Lagrangian formulation

We have just defined a Hilbert space and used its associated norm. We will provide more
abstract details regarding its scalar product modelling. However, we will wait until Section
2.2.4.b to parameterise it using the theory of Reproducing Kernel Hilbert Spaces (RKHS).
For now, we will provide some general insights. Let v and w be vector fields, elements
of the Hilbert space V . We define the linear form w 7→ 〈v,w〉V as Lv. Actually, this
identity is simply a translation of what has just been defined: we have called Lv the linear
form w 7→ 〈v,w〉V , which is mathematically expressed as Lv(w)=̇〈v,w〉V , or equivalently,
using the notation of dual brackets, (Lv|w)=̇〈v,w〉V . From this definition, we know that
L : V → V ∗ maps V to its dual and can be a generalised function. We will note its inverse
K : V ∗ → V . In the latter, we will be in the case where the generalised functions can
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Figure 2.8: Adjoint action representation

be identified as real one: For example one can define (Lv, v) with a function Ψ : Ω 7→ Rd

integrable such that: (Lv, v) =
∫
Ω
Ψ(x) · v(x)dx.

As we will see in Subsection 2.2.3.d, one will need to choose the operator L for practical
utilisation. Historically, L was set as a differential operator [Trouve et al., 1995; Beg et al.,
2005]. Nowadays we choose the operator which will define the space V .

We saw earlier that the diffeomorphism ϕv ∈ DiffV , with v ∈ L2([0, 1],V ) model the
displacement of particles x ∈ Ω over time. From a physical point of view, the vector vt(x)
gives their velocity, it is called the Eulerian velocity. It is common to define the kinetic
energy of the system at a given time by E(vt) = 1

2 ‖vt‖
2
V , the total energy spent during

the deformation is then given by integrating E(vt) over time [Miller et al., 2006; Beg et al.,
2005; Younes, 2019] such that

E(v) =
∫ 1

0

‖vt‖2V dt; vt ∈ v. (2.48)

Note that fluid dynamics mechanics describes kinetic energy as the sum of particle energies
in a similar way. Again, in analogy with a standard mechanical system, the linear form Lv
is interpreted as the global momentum of the system. To summarise, if vt is the Eulerian
velocity field at time t, the momentum at time t is given by Lvt and will be called the
momentum in Eulerian coordinates. It is used to describe mechanical quantities in the
current configuration at each time.

The complementary point view is called Lagrangian: It is when one describes quanti-
ties from the initial configuration following individual pixels’ position through time. From
Equation 2.38 one can see that a diffeomorphism is made by transporting its elements in
the velocity direction given by vt. On the other way around, given a deformation ϕ we can
retrieve vector fields through the relation:

ṽt(x) =
d
ds
(
ϕ−1
t (ϕt+s(x))

)∣∣
s=0

= (dϕt)
−1(vt ◦ ϕt)(x). (2.49)

As for Equation 2.25, it is just the translation of the fact that vt acts infinitesimally on
ϕ. This led to the adjoint definition:
Definition 2.12 (Adjoint action). Let ϕ be a diffeomorphism of Ω and v ∈ V . We denote
Adϕv the vector field on Ω defined by

Adϕv : v 7→ (dϕ)v ◦ ϕ−1 (2.50)
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Remark: In a finite case and with sufficient smoothness criteria to get Lie groups, the
adjoint defines a fundamental Lie group operation and is called the adjoint action of G on
its Lie algebra.

From Definition 2.12 we have also the relation vt = AdΦv ṽt. The new vector field under
the adjoint action has to be interpreted as the transformation of v under the deformation
generated by ϕ as illustrated in Figure 2.8. Note that the direction of v has moved relative
to the background but stayed still relative to the moving grid. In fact, one can see it as a
change of coordinates, where one wants to use the new coordinate system given by the flow.
Or from the particle viewpoint, one replace x by x′ = ϕ(x), and the new particle moves with
velocity:

∂tx
′ = dϕ(x)∂tx = dϕ(x)vt(x) = (dϕvt) ◦ ϕ−1(x′) (2.51)

We retrieve the definition of adjoint. We will continue this discussion in Section 2.3.2 giving
alternative interpretations from an algebraic viewpoint in the case of infinite Lie groups.

However, in practice, we do not necessarily know the expression of the dual adjoint. Thus
We have to be careful in choosing L to be able to implement the update of the momentum.
From this discussion, we see that it is not obvious to choose a good scalar product V and
we will see in the next sub-section a very convenient tool to do so.

2.2.3.d Construction of the admissible vector space from the operator

In this Section, we will choose an operator L and construct an admissible vector space. This
is a theoretic discussion and will only be useful for Section 2.3.2 where we discuss about
momentum conservation within a special setting. Thus if one is mainly interested in the
practical parts, one can skip this paragraph and read the next one.

We will define it through an operator L : C∞
c (Ω,Rd) → L2(Ω,Rd), with C∞

c (Ω,Rd) being
the space of C∞ maps with compact support. Its inverse is a smoothing operator. In this
Section we will denote C p(Ω,Rd) by C p and L2(Ω,Rd) by L2, to ease notation. We now
choose L to be symmetric. We also set L as strongly monotonic, which means that there
exists a constant c such that for all v ∈ C∞

c , 〈v,Lv〉L2 ≥ c〈v, v〉L2 . We thus have positive
definiteness.

We define the norm and scalar product associated to L as

‖v‖2L = 〈v, v〉L=̇〈Lv, v〉L2 =

∫
Ω

Lv · v dx, v ∈ C∞
c . (2.52)

Where 〈•, •〉L2 is the scalar product of the square-integrable functions Hilbert space L2(Ω,Rd).
It can be done by identifying L the duality operator and L with Friedrich’s extension

theorem [Zeidler, 2012]. The reader may refer to [Younes [2019], Section 8.2] for proof.
Theorem 2.3 (Friedrich’s extension). The inner product

〈•, •〉L = 〈L•, •〉L2 : C∞
c × C∞

c → R (2.53)

can be extended to an inner product

〈•, •〉V : V × V → R (2.54)

where V is a dense subspace of L2 with respect to its norm, and such that C∞
c is a dense

subspace of V with respect to ‖•‖2V . The operator L can also be extended to the duality
operator of V , L : V → V ∗. The extensions have the properties:
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1. (V , ‖ • ‖V ) is continuously embedded in (L2, ‖ • ‖L2)

2. for all v,w ∈ C∞
c , 〈v,w〉V = 〈v,w〉L = 〈Lv,w〉L2 = (Lv|w)

3. V is a Hilbert space with respect to 〈•, •〉V .

This proves the completeness of V with respect to its norm.
In addition, the duality paradox states that if V is a subset of a Hilbert space H, then

V ⊂ H = H∗ ⊂ V ∗. L being an extension of L and C∞
c ⊂ V , we can see L as an

operator with values in the dual space (L2)∗. Moreover, the Fiedrich extension a with a
lot of interesting properties. For example, Theorem 8.13 in Younes [2019] states that the
Friedrich operator is bijective and self-adjoint and its inverse K = L−1 as well. We do not
details these points and refer to Younes’s book.

We are interested in the construction of V which is given by the next theorem which
characterises a space V using an orthonormal sequence φn in L 2(Ω,Rd).

Theorem 2.4 (Younes [2019],Theorem 8.15). Assume that Ω is bounded, and L : C∞
c → L2

is symmetric and satisfies

〈Lv, v〉L2 ≤ c‖v‖2∞, ∀v ∈ C∞
c (Ω,Rd) (2.55)

for some constant c > 0. Then the space V associated to L via the Friedrich extension is
continuously embedded in C 0(Ω,Rd) and there exists an orthonormal basis, (φn) in L2(Ω,Rd)
and a decreasing sequence of positive numbers (ρn), which tends to 0 such that

V =

{
v ∈ L2(Ω,Rd) :

∞∑
n=1

1

ρn
〈v,φn〉2L2 < ∞

}
. (2.56)

Moreover,

Lv =

∞∑
n=1

1

ρn
〈v,φn〉L2φn, (2.57)

whenever v ∈ V satisfies
∞∑

n=1

(
〈v,φn〉L2

ρn

)2

< ∞ (2.58)

With this theorem, we defined V and then identify the properties of its operator L, then
we defined an operator L and show that the vector space deduced can be expressed through
an orthonormal basis. However, this result does not match yet with the Definition 2.11 as
we do not have a C 1 embedding. We can have stronger regularity with Laplacian operators
with Sobolev injections, which we do not detail here.

2.2.4 Construction of the admissible vector space using RKHS theory

In the previous sections we have defined V as a Hilbert space and then covered properties
of deformation deduced from such space, then we saw a construction going the other way
around, by defining the admissible vector space from an operator in Paragraph 2.2.3.d. Now
we will use the Reproducing Kernels Hilbert Spaces (RKHS) theory to build a practical
admissible vector space from a reproducing kernel.
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2.2.4.a RKHS General properties

This section’s objective is to give the theoretical tools for building the vector space V
introduced in Section 2.2.3. We will present here some results of(RKHS). In the scalar case
they were introduced by Aronszajn [1950] for functional analysis. However, we need to study
the theory extension to vector-valued functions and refer to Glaunès [2005]; Younes [2019];
Charon [2013].

Definition 2.13 (Reproducing Kernel Hilbert Space (RKHS)). Let (H, ‖ · ‖H) be a Hilbert
space of functions on a set A taking values in Rd. H is a RKHS if the functional δαx : f ∈
H 7→ f(x) · α,∀α ∈ Rd,∀x ∈ A is a continuous linear form on H.

In other words, H is an RKHS if and only if all functionals δαx are in the dual H∗. From
this, using the Riesz representation theorem, we know that for all x ∈ A and α ∈ Rd, there
exists an element Kδαx ∈ H such that

∀f ∈ H, f(x) · α = δαx (f) = 〈Kδαx , f〉H (2.59)

This result using a Hilbertian scalar product 〈•, •〉H , underlines the symmetric positive
structure of the reproducing kernel and leads to the following: We can write Kδαx = K(x, •)α
where Kδαx ∈ H. We will call such functions K(x, •)α fundamental functions of the RKHS.
With Equation 2.59 we can combine two of theses functions, for all x, y ∈ A and α,β ∈ R:

〈K(x, •)α,K(y, •)β〉H = β ·K(x, y)α = β ·K(y,x)α. (2.60)

from which we can deduce that K(x, y) = K(y,x)T .
A central result of the RKHS theory holds in this theorem from Aronszajn [1950].

Theorem 2.5. To any positive kernel K that maps A×A 7→ Md(R), where Md(R) is the
space of squared matrices of size d, there corresponds a unique RKHS H of functions from
A to Rd whose reproducing kernel is K.

We will use this result, defining a reproducing kernel to automatically construct a Hilbert
space as a consequence. One can note by re-arranging the definitions that for any linear
form ν ∈ H∗,x ∈ A and α ∈ Rd, we have the following identifications:

Kν(x) · α = (δαx |Kν) = 〈Kδαx ,Kν〉H = (ν|Kδαx ) = (ν|K(x, •)α) (2.61)

2.2.4.b From reproducing kernels to an admissible vector space.

In the previous sections, we defined V and then identified the properties of its operator L,
then we defined an operator L and show that the vector space deduced can be expressed
through an orthonormal basis. There exists an alternative way to define V by first defining
a kernel K.

We now use the reproducing kernels to generate a Hilbert space and we are interested in
the inherited properties. In this subsection, we will work with kernel defined on A = Ω = Rd.
Note that we could choose Ω as an open set of Rd, only the discussion about translation
would be more difficult.

With the following proposition, proved in the dissertation of Glaunès [2005], we will use
the natural regularity vector space properties of RKHS for the construction of V .
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Proposition 2.3. Let K be a 2p-continuously differentiable positive kernel. Let us also
assume that all the derivatives of order l ≤ p are bounded and vanish at infinity. Then the
corresponding reproducing kernel is continuously embedded into C p

0 (Rd,Rd).

This property tells us that the Hilbert space H generated by K is a good candidate for
V , since H ↪→ C p

0 (Rd,Rd). In particular, if we set p = 1, we respect the settings given in
Definition 2.11. Moreover, as it is covered and proved in Glaunès [2005] and Younes [2019],
the reproducing kernels come with some very convenient properties. We need a metric
independent of object position or rotation. Fortunately, scalar reproducing kernels that are
function of the euclidean distance, such that K(x, y) = h(‖x − y‖) · IdRd , h : R 7→ R are
invariant by translation and isometry. Translation invariance for vector fields means that
for a translation θ of Rd, the map v 7→ v ◦ θ is isometric in V . The isometry invariance
means that any global rotation of the vector field (as part of the action of the orthonormal
group) keeps its V norm unchanged.

We could study the whole class of isometry invariant kernels. However, it would not be
necessary as in this dissertation, we will study only simple kernels such as Gaussian kernels.

Definition 2.14 (Gaussian reproducing kernel). For all x, y ∈ Rd, σ ∈ R+

Kσ(x, y) = exp
(
− |x− y|2

2σ2

)
· IdRd (2.62)

We will now study the convolution operator K? and its associated bilinear form, which
is for all v,w ∈ L2(Ω,Rd)

〈K ? v,w〉L2 =

∫
Ω

∫
Ω

(
K(x, y)v(x)

)
· w(y)dydx (2.63)

With the previous discussions, it can be shown that the operator (K?) is self-adjoint,
positive definite. We can see that K is an extension of (K?) with the help of Equation 2.61.

Finally, we have a complete parametrisation of the V -norm. In Section 2.2.3.d, where
we have constructed V from an operator, one could directly compute the V norm ‖v‖2V =
〈Lv, v〉L2 if v is regular enough. In this section, we cannot directly work with the V norm
as we define K only and we do not necessarily know the expression of its inverse. However,
if we have a v ∈ V and we know ψ = Lv ∈ V ∗, then we can compute the V norm:

‖v‖2V = 〈ψ, v〉L2 = 〈ψ,K ? ψ〉L2 . (2.64)

Note that it is only the case if ψ ∈ L2 ⊂ V ∗. This kind of computation with a Gaussian
convolution is more stable and it will be critical from the numerical experiments. If K = Kσ

is a Gaussian kernel, L could be computed with a deconvolution or within the Fourier space,
however, it is rather impractical.

The form given by Equation 2.62 allows us to set a scale at which two points interact with
each other. The smaller σ is, the more the matching will generate localised deformation.
Reversely a ‘big’ σ will lead to overall smoothed deformations, possibly missing details. In
this context, tuning well the hyper-parameter σ is a critical point (see Section 2.5.2.c for
visualisation). However, one can avoid fine-tuning using multi-scale kernels as demonstrated
in the next Section.
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In this section, we have seen a powerful tool for the parametrisation of admissible vector
spaces. In addition, the deduced norm on V is invariant by translation and rotation, while
scalable through the parameter σ. You can find more details on the implementation of
reproducing kernels in Section 2.5.2.a

2.2.4.c Multi-scale resolution

(a) Schematic view of LDDKBM
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(b) Comparison of Gaussian and related
multi-scale kernel.

Figure 2.9: Multi-scale kernel visualisation. (b) Each line is a slice of a 2D kernel. The dotted lines are
Gaussian kernels and the solid one is multi-scale.

The Gaussian reproducing kernel as defined in Definition 2.14 has the limitation to be
parametrised by σ. As it is often the case with parametric methods, the choice of an appro-
priate scale can be challenging and leads to compromises between regularity and registration
quality. In particular, this phenomenon arises commonly with images having local constant
intensity. Sommer et al. [2011] came with LDDKBM as a multi-scale kernel bundle that we
will detail in this section.

Let us recall that for LDDMM the integration over the V norms induces a Riemannian
metric (see Section 2.2.3 and 2.2.4.b. Sommer et al. [2011] extend the tangent space V to the
family W = {Vσ}σ∈S of Hilbert spaces Vσ with S being a set of scalars. Each σ ∈ S is the
scale parameter of Vσ. We now look at a registration among paths within the vector bundle
GV ×W , denoted the multi-scale kernel bundle. W inherits the vector space structure from
each Vσ along with a pre-Hilbertian norm:

Definition 2.15 (W norm). Let w = {wσ : Ω → Rd,σ ∈ S} ∈ W be a set of vector fields,
such that each wσ ∈ Vσ is an admissible vector space. We define the W norm as the sum of
the Vσ norm.

‖w‖2W =
∑
σ∈S

‖wσ‖2Vσ
(2.65)

Note: If S is a continuous set, one can write Equation 2.65 as an integral.
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Similarly to the temporal vector fields, w = (wt)t∈[0,1] is a collection of elements of W . So
the energy giving the length of the path φw for the exact registration problem I1 = S◦ϕw = T
is given by

EW (w) =

∫ 1

0

‖ws‖2W ds (2.66)

As it is, the W space at a given location contains a different vector for each σ, it is nec-
essary to define a map Ψ : W → V to be able to integrate the flow equation. We use the
mean, defining Ψ(w) = 1

#S

∑
σ∈S wσ where #S is the cardinal of S. Then we obtain the

deformation ϕΨ(w) using Equation 2.43.
We keep most properties of the RKHS using the multi-scale bundle. However, we will see

in Section 2.3 some LDDMM geodesics conservation properties. In particular, a geodesic
path on V keeps the norms ‖vt‖V constant in time. For LDDKBM, the momentum is
conserved along optimal paths in GV × W though ‖wt‖W is not constant. This occurs
because the new energy is not directly related to a metric in the Riemannian sense. You
can find more detail relative to the implementation in Section 2.5.2.b.

2.2.5 Illustration example & conclusion

In this section, we have introduced the LDDMM framework and we are ready to start its
study. Before making a summary of the properties we encountered as a matter of conclusion,
I would like to show you some LDDMM registration examples, implemented with our library
Demeter. It uses the same principles as the Metamorphosis implementation. Therefore we
will wait for Section 2.5 to detail it.

For illustration purposes, we reproduce the famous example of D’Arcy Thomson regis-
tering fishes. To perform the registration all images were converted to grayscale, and then
we applied the deformation to each channel to obtain the coloured image. You can find a
similar example in Joan Glaunès’ course in the landmark case. One can note that in our
case we do not need to provide or find key points to match. Each column corresponds to
one registration, if one compares fish shapes, one can see that the matching is good while
preserving small details like if the mouth is open or not. If in this figure, colour is for
aesthetics, it helps also to see the body deformation.

In Section 1.2.2, we introduced the concept of diffeomorphic shape-space. The registering
methods under the name LDDMM are the backbone of this concept. We have seen how
the group structure of diffeomorphisms can match two objects, in particular images. Em-
phasising early on the property that these methods must register objects having the same
topology (see Figure 2.7 for an example). Indeed, the theoretical object II defined in the
section beginning can be built from a collection of representative images. We choose to
parametrise diffeomorphisms using flows of temporal vector fields chosen from the Hilbert
space V . This gave us, first, a definition of a Riemannian distance for images by integrating
those fields and second, a vector space to work with, representing accurately images. As a
Hilbert space distance is induced from its inner product, we started to define it abstractly
with the help of the differential operator L such that 〈v,w〉V = 〈Lv,w〉L2 . With the help of
the RKHS theory, we choose a kernel such that for images K = L−1 is a Gaussian convolu-
tion of parameter σ, giving an image-relative sense of scale. We also studied its multi-scaled
counterpart. To conclude, the LDDMM seems to have numerous advantages in theory. In
the next section we will study a strategy to find optimal paths.
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2.2. LDDMM FRAMEWORK CONSTRUCTION 80

(a) (b) (c)

Figure 2.10: Each column shows an LDDMM registration example. Source images (top) were registered on
targets (bottom) in grayscale, along with the found deformation grid.

Images from: https://www.wildlifedepartment.com/fishing/resources/species

https://www.wildlifedepartment.com/fishing/resources/species


Ba
ck

gr
ou

nd
Ba

ck
gr
ou

nd
Ba

ck
gr
ou

nd

2.3 From Motion equations to geodesic Shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the previous section, we built the LDDMM framework. We know how a pair of images can
be registered and we even have the ability to deduce a distance between these two. However,
in practice, we did not talk about an optimisation strategy yet. We know that solutions
exist, which is nice, but we lack the ability to find them. This problem will be addressed in
this section. There are several ways to register objects using LDDMM. Historically, three
main strategies were employed. At first, the problem was solved in the space of deformations
but it is not only a high dimensional problem to solve, for some object’s trajectory, there may
exist no v ∈ V to transport the object to the target, thus during numerical optimisation,
resulting in diverging minimisation costs. Then, some were also deducing a gradient from
the Hamiltonian form using the control formalism with the Pontrayagin principle, as it is
reviewed in Miller et al. [2015]. Finally, one can use shooting methods, which we will detail
in the following and which is one of the main focuses of this dissertation.

In numerical analysis, shooting methods aim to solve boundary value problems by reduc-
ing them to an initial value problem. For example, in ballistic, the full trajectory of a cannon
ball can be deduced from the initial velocity, with the knowledge of some physical properties
(like gravitation or air density). It is done by the study of the canon ball momentum over
time. This section aims to find momentum conservation properties along a geodesic path in
the shape-space.

Fortunately, the shape-space theory has deep connections with physics, especially fluid
dynamics. In this chapter, I will go over some notions that are widely known by physicists
and translate them in a way a Mathematician would have written about.

The section is organised as follows: We start by giving some elemental notions of La-
grangian mechanics, namely, the Euler-Lagrange equations and the Noether theorem. Then
we make a discussion around the momentum conservation for infinite Lie groups. Finally,
we introduce a geodesic shooting method (see Section 2.5 for implementation details). If one
wants to skip a theoretical discussion on momentum conservation for infinite dimensional Lie
groups, one can go directly to Subsection 2.3.3 where we set the geodesic shooting strategy
for our space of interest.

2.3.1 Lagrangian mechanics Simple case

Physicists like referring to optimisations problems as energies to minimise, following the least
action principles. From a physical viewpoint, the Lagrangian L is defined as the difference
between kinetic energy and potential energy. The former is relative to the speed and the
second is about the position. For example, in the study of a moving object, the Lagrangian
allows focusing on the system energy rather than the force, the function summarising the
dynamics of the entire system. Indeed, let m0 and m1 two points on a smooth manifold M
and Γ(m0,m1) the set of smooth paths γ : [0, 1] → M starting at γ(0) = m0 and ending at
γ(1) = m1. They call E the action functional describing the amount of change in a physical
system over time, defined such that

E : Γ(m0,m1) → R

E(γ) =

∫ 1

0

L(t, γ(t), γ̇(t))dt.
(2.67)
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Note that this notion, while having similar names is not to be mistaken with the group
action. One can remark that if the Lagrangian is defined as a norm functional of γ̇, E is a
Riemannian distance. In this case, minimal paths on M are geodesics.

One can be interested in the characterisation of paths for which E is a stationary point,
meaning that the derivative of E is null. The Euler-Lagrange equations give such results.
To intuit their meaning we can think of the fact that for a given differentiable function, one
can find its extrema by studying the vanishing point of its derivative. The Euler-Lagrange
equation gives a condition for which a function is stationary according to Hamilton’s prin-
ciple. Before giving the theorem in a more general form, I will give it in the case where
objects live in a finite dimensional vector space, as this simpler case is easier to intuit. A
proof in a more general context has been proposed by Courant and Hilbert [1954].

Theorem 2.6 (Euler-Lagrange equations - finite dimensional case). Let M ⊂ Rd be a
smooth manifold and E being defined from Equation 2.67 the Lagrangian L : [0, 1]×M×Rd →
R a smooth function two times continuously differentiable. A path γ ∈ Γ(m0,m1), noting
γi the element of its i-th component, is a stationary point of the action functional E if and
only if

∂L
∂γi

(t, γ(t), γ̇(t))− d
dt
∂L
∂γ̇i

(t, γ(t), γ̇(t)) = 0, ∀i ∈ {1, . . . , d}. (2.68)

Proof. We aim to find the minimal path γ̃ ∈ Γ(m0,m1) for the metric given by E. We will
call γ̃ε a perturbation of γ̃ by a differentiable function ν satisfying ν(0) = ν(1) = 0, such
that for all time: γ̃ε(t) = γ̃(t) + εν(t). We define

Eε =

∫ 1

0

L(t, γ̃ε(t), ˙̃γε(t))dt =
∫ 1

0

Lεdt. (2.69)

The total derivative of Eε with respect to ε is

dEε

dε
=

∫ 1

0

d
dε

Lεdt. (2.70)

Now focusing on the total derivative of Lε,recalling that t does not depend from ε:

dLε

dε
=

dt
dε
∂Lε

∂t
+

dγε
dε

∂Lε

∂γε
+

dγ̇ε
dε

∂Lε

∂γ̇ε

= ν(t)
∂Lε

∂γε
+ ν̇(t)

∂Lε

∂γ̇ε
.

Then
dEε

dε
=

∫ 1

0

[
ν(t)

∂Lε

∂γε
+ ν̇(t)

∂Lε

∂γ̇ε

]
dt. (2.71)

When ε = 0 we know that Eε must be minimal and

dEε

dε

∣∣∣∣
ε=0

=

∫ 1

0

[
ν(t)

∂L
∂γ

+ ν̇(t)
∂L
∂γ̇

]
dt = 0. (2.72)

We use integration by part to lose the time derivative of ν∫ 1

0

[
ν(t)

∂L
∂γ

+ ν̇(t)
∂L
∂γ̇

]
dt =

∫ 1

0

[
∂L
∂γ

− d
dt
∂L
∂γ̇

]
ν(t)dt+

[
ν(t)

∂L
∂γ̇

]1
0

= 0 (2.73)
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Recalling that ν(0) = ν(1) = 0 the last term at the border is zero and we have.

∫ 1

0

(
∂L
∂γ

− d
dt
∂L
∂γ̇

)
ν(t)dt = 0 (2.74)

By the fundamental lemma of calculus, we deduce the result :

∂L
∂γ

− d
dt
∂L
∂γ̇

= 0 (2.68)

Remark 1: In Hamiltonian physics we call the conjugate momentum the quantity pi:

pi=̇
∂L
∂γ̇i

(2.75)

with γ̇i being the generalised velocity.
Noether’s theorem [Noether, 1918] is handy to study Lagrangian invariances of a system

by given coordinate transformations. It allows studying a physical problem regarding its
symmetries, translations and evolution in time. The Noether theorem is quite general, we
only give intuition here in a simple case. It states, in physical terms, that: “If a system has
a continuous symmetry property, then there are corresponding quantities whose values are
conserved in time." Let us translate the above sentence into a more mathematical formula-
tion.

The word symmetry here refer to a diffeomorphism α of M such that the Lagrangian is
invariant (i.e.: L ◦ dα = L, with dα = (α, ∂α

∂γ ). An infinitesimal symmetry of L however, is
a vector field v such that the one parameter sub-group t 7→ αv

t is a symmetry of L, in other
words, it a one-dimensional Lie group of transformations. It is the expression of a law of
a physical quantity conservation and is usually expressed as a continuity equation. Thus a
group of transformations letting L invariant is invariant for its integral E =

∫
L as well.

Theorem 2.7 (Noether). Let L : [0, 1]×M×Rd → R be a Lagrangian and v a infinitesimal
symmetry of L. Then the function f : [0, 1]×M × Rd defined such that

f(t, γ, γ̇) = ∂L
∂γ̇

(t, γ, γ̇)v(γ) (2.76)

is an integral of the Euler-Lagrange equations of L.

Proof. (elements) The proof of this theorem formulation can be made by deriving with
respect to s, at s = 0 the equation:

L
(
t,αv

s(γ),
∂αv

s

∂γ
(γ, γ̇)

)
= L(t, γ, γ̇) (2.77)

and choosing a path γ that satisfy the Euler-Lagrange equations.

Example: For every infinitesimal transformation of a path γ̇ = α(γ) such that the action
integral E is stationary for a given path γ, then the quantity

I =
∂L
∂γ̇

∂γ(s)

∂s
(2.78)
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is conserved.
To recapitulate, with the Theorem 2.6, by computing the Euler-Lagrange equations, we

have the assurance that the resulting equations will parameterise a geodesic equation for a
Riemannian Manifold. If any geodesic in between two points, is not always a minimal path,
it is easier to look among the set of geodesics rather than in the wider set of paths. Finally,
Noether’s Theorem will give us the tools to check the momentum invariance, allowing us to
fully set up a geodesic integration from the initial momenta.

In this paragraph discussion, we have chosen convenient assumptions for not having to
care about localised coordinate changes within a manifold. However, many generalisations
exist. We will now come back to our problem of interest by studying the paper of Miller
et al. [2006], which gives a collection of such results for different cases.

2.3.2 Lagrangian for infinite dimensional Lie algebras

We will now study the Euler-Lagrange equation for momentum conservation in LDDMM,
where the group of diffeomorphism is a Lie group. Miller et al. [2006] gave elements of proof
for the Euler-Lagrange equations using the adjoint for infinite Lie groups. This ‘result’ is
mostly educational and must be taken as a basis to build intuition. It is delicate to present
the result here because there is no way to validate all the assumptions. We have seen in
Section 2.1.3 some basic differences between infinite and finite-dimensional Lie groups. To
recall the LDDMM construction from Section 2.2, we construct G from the Hilbert space
V , itself defined from an operator L : V → V ∗.

If one wanted to make G a Lie group, such that a Lie algebra is defined on it. Indeed, the
infinite group of diffeomorphisms G defined earlier is not a Lie group. On simpler finite Lie
groups of deformations, like the group of Matrices, a Lie algebra is well defined. However,
it is more complicated for infinite groups. A first guess would be to change slightly the
diffeomorphism group of Definition 2.11 to make it a Lie group, making sure a Lie algebra
is well defined. Let G = Diff∞(Ω) be the group of C∞ diffeomorphisms (i.e.: one to one
maps ϕ : Ω → Ω such that ϕ and ϕ−1 are C∞). This group admit a Lie group structure
and the corresponding Lie algebra g = TIdDiff∞(Ω) ≈ Vec∞(Ω), where Vec∞ is a space of
smooth vector fields (i.e.: Vec∞ ↪→ C∞(Ω,Rd)) [Schmid, 2010]. Taking weaker smoothness
assumptions, like making the vector field space C k or Hs with finite k and s, will lose the
derivative conservation of the Lie brackets. We can define a scalar product on the Lie algebra
g, that we denote 〈•, •〉g and its norm ‖ • ‖g. It is in a way related to the V norm, in fact,
we define it with the help of an operator L : g → g∗ such that 〈v,w〉g = (Lv|w) as we did
before. However, g is not a Hilbert space, losing some important properties of LDDMM. A
second guess would be to choose g as a Hilbert space and find a way to define a Lie algebra
structure on it. A good candidate, a smooth and infinitely dimensional Hilbert space, could
be the Sobolev group Hs, defining L = (Id −∆)s. However, there is no way to define a Lie
algebra structure on it, despite the advancements made in this recent paper by Bruno et al.
[2019]. Arguably, despite the problem not being well posed, the formal discussion helps to
figure out the desired dynamics.

In this context, we have an alternative interpretation of the adjoint (see Definition 2.12)
from an algebraic viewpoint. The adjoint coincides with the Lie bracket. Precisely the
adjoint action Ad of G on its Lie algebra g and the associated adjoint action ad of g on itself
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are given with their dual operator Ad∗ and ad∗, by
Adϕw = (dϕ)w ◦ ϕ−1

(Ad∗
ϕf |w) = (f |Adϕw)

advw = [v,w] = (dv)w − (dw)v
(ad∗

vf |w) = (f |advw)
(2.79)

with ϕ ∈ G,w ∈ g, f ∈ g∗. In our case we have:

(Lvt|vt) = (Lvt|Adϕv
t
ṽt) = (Ad∗

ϕv
t
Lvt|ṽt) (2.80)

We retrieve the momentum in Lagrangian coordinates within the expression Ad∗
ϕv

t
Lvt

We are now ready to give the Euler-Lagrange equations for the Infinite Lie group. In the
next equation, one can remark that there is a sign difference with Theorem 2.6 equation.
According to the authors, it is due to the switch from a left-invariance to a right-invariance
in the diffeomorphism case.
Proposition 2.4 (Euler-Lagrange equation - Infinite Lie Group, Miller et al. [2006]). The
Euler-Lagrange equation for the kinetic energy is given by

dLv
dt

+ ad∗
v(Lv) = 0. (2.81)

In the case where Lv ∈ H, it is a function and one has

ad∗
v = ∇ · ((Lv)v) + dv∗Lv, (2.82)

where ∇· is the divergence.

Proof. The principle of the proof is very similar to the one of Theorem 2.6, only some
technical parts vary.

Let ((t, ε) 7→ ϕ
ε
 
t ) be a collection of path such that ϕ

◦
 
t = ϕv

t is a geodesic and for any
ε > 0,ϕ

ε
 
t is a ‘perturbed’ path by ε. As elements of Diff∞ are generated by vector fields,

we say that their variation is given such that ∂v
ε
 
t

∂ε = h
ε
 
t . Finally, we have

∂ϕ
ε
 
t

∂t
= v

ε
 
t ◦ ϕ

ε
 
t and ∂ϕ

ε
 
t

∂ε
= ν

ε
 
t ◦ ϕ

ε
 
t (2.83)

where ν
ε
 
t is the perturbation of the minimising diffeomorphism with ν

ε
 
0 = ν

ε
 
1 = 0. We

will in this section work with higher smoothness assumptions than we will have in our
application.

The first part of the proof is to get an expression of h
ε
 
t isolated from the rest. To

do so we can use the Clairaut identity (i.e.: symmetries of the second derivatives) by
deriving Equation 2.83. Reminding that G is a Lie group with the group operation being
the composition (i.e.: In Equation 2.3 j(f , g) = f ◦g), one can note that v

ε
 
t .ϕ

ε
 
t = v

ε
 
t ◦ϕ

ε
 
t ,

the derivation of this quantity must be done using the product rule:
∂2ϕ

∂ε∂t
=

∂2ϕ

∂t∂ε

⇔ ht ◦ ϕt + dϕt
vtνt ◦ ϕt =

∂νt
∂t

◦ ϕ+ dϕt
νtvt ◦ ϕt

⇔ ht =
∂νt
∂t

+ dνtvt − dvtνt

⇔ ht =
∂νt
∂t

+ [νt, vt] =
∂νt
∂t

− [vt, νt]

(2.84)
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This last equation makes sense: the variation of the vector field by ε is the difference between
the infinitesimal variation of the path perturbation ν and the evaluation of v through the
flow induced by ν.

Then we study the variation induced by ε on the paths through the integral of the norms:

d
dε

∫ 1

0

‖v
ε
 
t ‖2gdt = 2

∫ 1

0

〈vt,ht〉gdt

= 2

∫ 1

0

〈
vt,

∂νt
∂t

− [vt, νt]
〉

g

dt

= 2

∫ 1

0

(
Lvt

∣∣∣∂νt
∂t

)
− 2

∫ 1

0

(Lvt|advνt)

(2.85)

Since ϕt is extremal, this expression vanishes for all ν and by integration by part we get:
dLv
dt

+ ad∗
v(Lv) = 0 (2.81)

In the same article Miller, Trouvé and Younes give conditions for the momenta conser-
vation. I will give some results without the full justification and kindly advise the reader
to refer to their article. You will find many well-justified arguments on different variable
conservation properties. In particular, the authors focus on inexact image matching. They
give the minimisation problem:

ELDDMM(v) = ‖S ◦ (ϕv)−1 − T‖2L2 + λ

∫ 1

0

‖vt‖2V ; λ ∈ R, (2.86)

and state that the optimal solution should satisfy at each time t,

Lvt = − 1

λ
|dϕv

0,t|(It − T ◦ ϕv
1,t)∇It (2.87)

with It = S ◦ (ϕv
0,t)

−1 and |dϕ| being the Jacobian of ϕ (a result also detailed in Beg et al.
[2005]). In the case where ϕv perfectly match S on T , It = S ◦ (ϕv

0,t)
−1 = T ◦ ϕv

1,t and
Lv1 = 0. We, therefore, have the momentum expression at each time and in particular at
the origin:

Lv0 = − 1

λ
|dϕv|(S ◦ (ϕv)−1 − T )∇S (2.88)

These expressions can be also understood through the concept of momentum maps as ex-
plained by Bruveris et al. [2011]. The importance of the momentum map in geometric
mechanics is due to Noethers theorem. Noethers theorem states that the generalised mo-
mentum L is a constant of motion for the system under consideration when its Hamiltonian
is invariant under the action of G on g. This theorem enables one to turn symmetries of the
Hamiltonian into conservation laws.

This paves the way to control the registration from the initial step only. They then give
a dynamical system that controls a geodesic path on G. Setting Lvt = zt∇It, Miller et al.
[2006] state that an image transported along a geodesic path is given by

vt = L−1(zt∇It)
żt + (dzt)vt + div(vt)zt = 0

İt + vt · ∇It = 0
. (2.89)
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This result can also be found in Beg et al. [2005] for LDDMM and it is a limit case from
the proof in the geodesic transport equations of Metamorphosis introduced in Trouvé and
Younes [2005]. I will give the proof of the Equation 2.89 result in the image-Metamorphic
with G = DiffV (and not Diff∞) case. Surprisingly, the Metamorphosis case is easier to
understand than the LDDMM one.

2.3.3 Geodesic shooting

In this section, we will work again with the assumptions we need for image registration.
We will reuse the notions and notations introduced in Section 2.2. Generally speaking, we
have seen that geodesic derived from the Euler-Lagrange equations principle of least action,
which states that the true path taken by a physical system between two points is the one
that minimizes the action, a function that describes the energy of the system. In the case
of LDDMM, the action describes the difference between the two images being registered
and the geodesic equations ensure that the deformation fields generated by the algorithm
minimise this difference while conserving momentum. At this point, one can already control
the whole deformation by integrating the geodesic system of PDE 2.89. Recall that if we
did not prove the geodesic existence for G = DiffV yet, we will see it in the next section as
it is a particular case of the image-Metamorphic geodesic equations of Theorem 2.9.

We now built a shooting method to find the optimal deformation. Conceptually it is close
to the adjoint method which is a numerical method, used among others, for fluid dynamics
problems. This method, covered in the work of Céa [1986], uses the Lagrangian function
to drastically reduces the systems dependence on the number of control parameters. Thus
rather than finding the shortest path between images, we are looking among geodesic paths
starting at S the one that ends closer to T . This is done via an optimisation process
with data attachment and regularisation terms. The first term of Equation 2.86 ensures
we get closer to T and we choose to use the L2 norm between images which is the SSD.
The regularisation term, consisting in integrating the V norm, comes from the initial exact
matching formulation.

ELDDMM(v) = ‖S ◦ (ϕv)−1 − T‖2L2 + λ

∫ 1

0

‖vt‖2V dt; λ ∈ R, (2.86)

As we already discussed, S ◦ (ϕv)−1 is integrated through PDE numerical schemes and
can be deduced entirely from the initial conditions. Note that following the construction
of Subsection 2.2.4.b, we do not know the expression of L. However, for a given geodesic,
we can evaluate the value of the norm of its vector fields at every time through the relation
given by Equation 2.64.

We can further simplify the cost 2.86 with the help of the next theorem.

Theorem 2.8. (Glaunès [2005], Thm. 6) For any φ,ψ ∈ DiffV it exists v ∈ L2([0, 1],V )
such that ϕv = ψ ◦ φ−1 and

dDiffV (φ,ψ) =

√∫ 1

0

‖vt‖2V dt. (2.90)

In addition, for such a temporal vector field v, the norm ‖vt‖V is constant for almost every
t. (i.e.: ‖v0‖V = ‖vt‖V , for almost every t ∈ [0, 1]).
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This theorem tells us that for any pair of diffeomorphisms in DiffV we can find one
temporal vector field v to compare them, knowing that the V norms of v will stay constant
over time. Thus, with Theorem 2.8 we can remove the integration of the V -norms obtaining:

ELDDMM(v) = ‖S ◦ (ϕv)−1 − T‖2L2 + λ′ ‖v0‖2V dt; λ′ ∈ R. (2.86.b)
The cost functions 2.86 and 2.86.b have thus equivalent solutions! In practice, for the
implementation, we can set λ′ = nλ, where n is the number of integration steps. Note, how-
ever, that setting λ = 0, theoretically does not change the expected solution. This will be
used in the following, indeed we saw in Section 2.2 that one can parameterise a diffeomor-
phism with elements from the Hilbert space V , with Theorem 2.8 a given diffeomorphism
ϕv following the geodesic equations 2.89 is fully parameterised by the initial vector field
v0 ∈ v. More precisely, by the initial momentum z0, as v0 is deduced from z0 such that
v0 = L−1(z0∇S) = K ? (z0∇S).

Having built the LDDMM framework and opted for an optimisation strategy, we are now
ready to introduce the Metamorphosis framework. We will cover the LDDMM implementa-
tion details in Section 2.5, as we utilise geodesic shooting for both methods in a combined
framework.

2.4 Metamorphosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Metamorphic framework lies on the foundations of LDDMM we explored in Section
2.2 and 2.3.3. Metamorphosis’s main application is to solve the attainability issue with
diffeomorphisms in image matching. Indeed, pairs of images are, in general, not related by
a diffeomorphism. Conceptually, for images, it supplements the transformation by allowing
intensity changes to the diffeomorphic deformation. Thus changing the infinitesimal action.
Theoretically, a lot of work has been made to ensure the compatibility of this extended
framework with the LDDMM one [Trouvé and Younes, 2005; Trouvé and Younes, 2005;
Holm et al., 2009].

In LDDMM, registrations were seen as paths on the group of deformations which was itself
a Banach manifold, where deformations were used to define a Riemannian metric, making
it a Riemannian manifold as well. Metamorphosis is a generalisation of this concept. Again
let’s follow its construction presented by Trouvé and Younes [2005] and take strong assump-
tions on the deformation smoothness. In this section introduction, we will work with M a
Riemannian manifold containing visual objects (e.g., images) and set G = Diff∞(M) and
its Lie algebra g, properly introduced in Section 2.3.2. g is a space of vector field and has
the same role as V . Then, in Subsection 2.4.1, we will compute the Euler-Lagrange equa-
tion with more convenient smoothness assumptions and pose Metamorphosis as a shooting
optimisation problem.

Let’s assume that a classical norm is defined on M , noted | • |M , we aim to construct a
new Riemannian metric on M through a new norm, noted ‖ • ‖M . For example, if M is a
space of images, | • |M can be the L2 norm.
Definition 2.16 (Metamorphosis). Let M be a Riemannian manifold. A Metamorphosis
on M is defined as a pair of curves m = (mt)t∈[0,1] = ((gt, zt))t∈[0,1] respectively on G and
M , with g0 = Id

With gt being the deformation part (e.g., G = Diff) and δt the template evolution. When
zt is constant, the Metamorphosis is a pure deformation. Metamorphoses, by the evolution
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Figure 2.11: Metamorphic infinitesimal maps. The transformation is done via a succession of diffeomorphic
deformations generated from v ∈ g and of intensity changes z over a time step δt.

of their image, provide a convenient representation of combinations of a group action and
of a variation on M . An infinitesimal deformation presents such a decomposition and is
defined as a map:

ΦM : (g,TmM) → TmM

(v, z) 7→ v �m+ z.
(2.91)

One can see an illustration in Figure 2.11. Similarly to LDDMM, a temporal vector field
v = (vt)t∈[0,1] can be used to generate a diffeomorphic deformation ϕv.

We define the new norm on M as the sum of the g norm and the previous norm on M ,
with ρ > 0:

‖η‖2M = inf
{
‖v‖g + ρ|z|2M : η = ΦM (v, z)

}
(2.92)

g is a Hilbert space and thus g × TmM have a Hilbert structure. ‖η‖2M is the norm of the
linear projection of (0, η) on Φ−1

M (0). Metamorphosis can be used to define a new Riemannian
metric on M through the energy of a curve m, such that

E(m) =

∫ 1

0

∥∥∥∥dmt

dt

∥∥∥∥2
M

dt

= inf
(t7→vt∈g)

(∫ 1

0

‖vt‖2gdt+ ρ

∫ 1

0

∣∣∣∣dmt

dt
− vt �m

∣∣∣∣2
M

dt

)
.

(2.93)

The distance between two elements m and m′ in M can therefore be computed by minimising
U(vt,mt) = E(mt) over all curves m with boundary condition m = m0 and m′ = m1 (exact
matching).

Finally, by computing the Euler-Lagrange equation and with the Noether theorem, we can
find conservation properties as described in Section 2.3. We will now explicit the geodesic
equations for Metamorphosis with vector fields in V .

2.4.1 Theoretical background and proof

We now return to our case of interest for images and G = DiffV in concordance with Sections
2.2.3 and 2.2.4. As we just saw, Metamorphoses join additive intensity changes with the
deformations. The goal of Metamorphosis is to register an image I to J using variational
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methods with an intensity additive term zt ∈ L1([0, 1] ,R). An infinitesimal step for image
evolution can be defined as :

∂tIt = vt � It + µzt = −vt · ∇It + µzt, s.t. I0 = I µ ∈ R+. (2.94)

One can control the amount of deformation vs photometric changes by varying the hyper-
parameter µ ∈ R+. As described by Trouvé & Younes in Trouvé and Younes [2005]; Younes
[2019], the {zt} have to be the ‘leftovers’ of the transport of It by vt toward the exact
registration, as it can be seen by rewriting Equation 2.94 as zt = 1

µ (∂tIt−vt ·∇It). From this
formulation, z is called the residual. However, it is also the momentum we have encountered
in previous sections.

In order to find the optimal (vt)t∈[0,1] and (zt)t∈[0,1], one can minimise the exact matching
functional Younes [2019]; Holm et al. [2009]; Richardson and Younes [2016] using Equation
2.94:

EM (I, v) =
∫ 1

0

‖vt‖2V + ρ ‖zt‖2L2 dt, s.t. I1 = J , I0 = I; ρ ∈ R, (2.95)

Theorem 2.9. The geodesic equations deduced from EM are :
vt = − ρ

µK ? (zt∇It)
∂tzt = − ∇ · (ztvt)
∂tIt = −vt · ∇It + µzt

(2.96)

∇ · (zv) = div(zv) is the divergence of the field v times z at each pixel, Kσ is the chosen
translation invariant RKHS kernel and ? is the convolution. In practice, K is often a
Gaussian blurring kernel Miller et al. [2006]; Vialard et al. [2011].

Proof. This proof can be found in a more general formulation in Younes [2019]; Holm et al.
[2009].

Recalling from Equation 2.94 that ‖zt‖2L2 = 1
µ2

∥∥∥İ + vt · ∇It
∥∥∥2
L2

and that the RKHS norm
V is ‖vt‖2V =< (K?)−1(vt), vt >L2 where (K?)−1 is an abstract differential operator. In
order to compute the geodesics we will use the Euler-Lagrange equations.

Let begin by the variation regarding v ∈ L2([0, 1],V ) and consider the functional

F (t, v, v̇) = EM (I, •)

We first compute the partial derivative of F with respect to the second argument v.

DvF · h = 2

∫ 1

0

〈vt,ht〉V dt+ 2ρ

∫ 1

0

〈zt,
1

µ
∇Itht〉L2dt

=

∫ 1

0

〈
2
(
(K?)−1vt +

ρ

µ
zt∇It

)
,ht
〉

L2

dt

by identification we have ∇vF = 2((K?)−1vt+
ρ
µz∇It). Using a similar method we see that

∇v̇F = 0. The Euler Lagrange equation being ∇vF − d
dt∇v̇F = 0 and k being linear it

yields that
v = − ρ

µ
K ? (z∇I) (2.96.a)
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We now make the variation with respect to I. Let consider the equation g such that
G(t, I, İ) = EM (•, v). We begin by calculating the partial derivative relative to I.

DIG · h = 2ρ

∫ 1

0

〈
1

µ
(İt +∇Itvt),

1

µ
∇htvt

〉
L2

dt

= 2ρ

∫ 1

0

〈
zt,

1

µ
∇htvt

〉
L2

dt

=
2ρ

µ

∫ 1

0

∫
Ω

zt(x)

d∑
i=1

∂ht
∂xi

(x)vit(x)dxdt

by part integration = −2ρ

µ

∫ 1

0

∫
Ω

d∑
i=1

ht(x)
∂(ztv

i
t)

∂xi
(x)dxdt

=

∫ 1

0

〈
−2ρ

µ
∇ · (ztvt),h

〉
L2

dt.

and so ∇IG = − 2ρ
µ div(ztvt). Similarly we can prove that ∇İG = 2ρ

µ z. As the Euler-
Lagrange equation is ∇IG− d

dt∇İG = 0 it yield our last equation :

żt = −div(ztvt) (2.96.b)

By assembling equations 2.94, 2.96.a and 2.96.b we obtain the desired system.

Note : The choice of µ and ρ varies in the literature. Richardson and Younes [2016];
Younes [2019] chose µ = 1 and ρ = 1/σ2, with σ being any real value (We use their notation
here, it has no link with the Gaussian kernel). We tested many parameter configurations
and found out that it could be interesting to be able to tweak them. We will detail it later.

The last line of Equations 2.96 is the advection term, simulating the movement of non-
diffusive material. The second (continuity) equation is a conservative form which ensures
that the amount of deformation is preserved on the whole domain over time. Thus, given
the initial conditions of the system, I = I0 and z0, one can integrate in time the system
of Equations 2.96 to obtain I1. Note that v0 can be computed from z0, making z the only
unknown. Furthermore, one can notice that the energy in Equation2.97 is conserved (i.e.:
constant along the geodesic paths) and therefore the time integrals may be replaced by the
norms at time 0.

Here, we propose to solve metamorphosis as an inexact matching problem. This allows us
to have a unifying cost function (i.e.: Hamiltonian) for both LDDMM and metamorphosis:

H(z0) =
1

2
‖I1 − T‖2L2

+ λ
[
‖v0‖2V + ρ‖z0‖2L2

]
(2.97)

with ‖v0‖2V =
〈
z0∇S,K ? (z0∇S)

〉
. The hyper-parameters λ and ρ define the amount of

total regularisation and intensity changes respectively. Please notice that when µ = 0, we
retrieve the LDDMM cost function (Equation 2.86.b).
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2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The implementation of Metamorphosis is based on two main parts, imbricated one onto the
other: First, one needs to resolve the minimisation problem given by Equation 2.97. Second,
at every iteration, one needs to compute I1 and thus define an accurate numerical scheme
for Equations 2.96 integration. From now on, when we will write iteration, we will refer
to an optimisation step and when we write time step, we will refer to a numerical scheme
increment.

In this Section, we will mostly focus on the numerical scheme implementation. As a
cautious both quality and efficiency of the integration scheme will be critical factors. The
former is obviously important for the image’s exploitability. The latter, as at each itera-
tion the whole integration will need to be redone. Parts of this Section’s work have been
published and presented in François et al. [2021]. The code is fully available on GitHub
at https://github.com/antonfrancois/Demeter_metamorphosis for anyone to use and con-
tribute to.

In the historical implementation, a great deal was made on finding the deformation and
energy gradients [Beg et al., 2005; Richardson and Younes, 2016]. For our implementation,
we will totally skip this part by using the auto-differentiation of PyTorch. The fact that
it will make the implementation easier will allow us to test variations of the original cost
and deduced geodesic equations, as we will see in Chapter 3. Assuming we implemented a
function f(S) that returns the integrated image, such that f(S) is differentiable in PyTorch
standards (i.e.: There exist the corresponding back-propagation function). Therefore, f(S)
must be implemented with PyTorch functions if we are not ready to provide a back-probation
for the other ones. Good optimisation schemes are proposed by Torch and we use some of
them directly.

The program core is organised into two classes or classes that inherit from them.
1.The abstract class Geodesic_integrator contains all the tool for integration, and its child
Metamorphosis_path that make the Metamorphic or LDDMM geodesic integration. Most
of the implementation details we cover in this Section are embedded within those classes.
2. The abstract class Optimize_geodesicShooting use a child of Geodesic_integrator
to perform the Optimisation Scheme. The class built to work with Metamorphosis_path is
called Optimize_metamorphosis.

We start the presentation by comparing Eulerian and Lagrangian schemes for the trans-
port of an image by a vector field in Subsection 2.5.1. Then as a matter of compromise, we
will present the semi-Lagrangian schemes that preserve the better of both worlds. Then,
in Subsection 2.5.2 we cover the implementation of a Reproducing Kernel, introduced in
Subsection 2.2.4. We finish by presenting an alternative numerical scheme ensuring images
to stay sharp in Section 2.5.3. Each subsection deals with elements that required careful
choices and planning. Rather than making a long general discussion at the end of the chap-
ter, we wind up each subsection with results and a discussion related. As a conclusion to
this Chapter, we will discuss if Metamorphosis is a suitable method for registering brains
with glioblastomas.
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2.5.1 Numerical scheme for the geodesic equation transport

In this subsection, we aim at solving the image evolution equation given by

∂tIt + vt · ∇It − µzt = 0 (2.96.c)

2.5.1.a Applying deformation to images

Most of the PDE numerical schemes aim to solve a relaxed version where only the transport
takes place, by setting µ = 0. For pedagogical purposes, we will discuss this case first and
will deal with the case µ > 0 from Subsection 2.5.1.b. We need to choose a numerical
scheme with good numerical stability and not too computationally intensive. First one
needs to make the classical choice between Eulerian and Lagrangian formulation that can
be summarised by the discussion:

Let be α(x, t) a scalar function giving the density of a given fluid in time and space, and
u(x, t) a function giving the said fluid inputs in the domain. One can write the evolution of
α in Lagrangian form:

dα
dt

= u, (2.98)

or in Eulerian form as
∂α

∂t
+ v

∂α

∂x
= u, (2.99)

with the velocity being defined such that dx
dt = v. This transport equation when u = 0 is

called the advection equation. Obviously, this equivalence of formulation comes from the
definition of the total derivative (i.e.: d

dt = ∂
∂t +

dx
dt

∂
∂x ). For a more intuitive explanation,

the reader can refer to the comic of Section 2.6.
As one can see Equation 2.96.c is already in Eulerian form. Let’s start by this study:

THE EULERIAN VIEWPOINT tracks the image intensity changes on a fixed grid. This formula-
tion is without a doubt the easiest to understand and implement. Indeed recalling that with
an infinitesimal displacement vector field v the infinitesimal transformation step is −v · ∇It
and with the definition 2.10 we have the identity:

v . It =

d∑
i=1

−vi(x) ∂It
∂xi

(x) = −v · ∇It (2.100)

The implementation is straightforward and can be found in 2.3, however, one should be
careful using it. Indeed the choice of a time step small enough is crucial. Arguably one could
determine δt using the Courant-Friedrichs-Lewy (CFL) condition, which gives a necessary
condition for PDE solvers convergence. It consist in controlling that a value C is bounded
by another Cmax:

0 ≤ C=̇δt

(
max
x∈Ω

d∑
i=1

|vi(x)|
δxi

)
≤ Cmax (2.101)

where δt is the time step, δxi is the spatial step in between two voxel in the i-th direction,
and Cmax is a constant chosen by the user. The spatial step varies depending on the

93



Ba
ck

gr
ou

nd
Ba

ck
gr
ou

nd
Ba

ck
gr
ou

nd

convention we are in: in pixel conventions, δxi = 1 and in the PyTorch grid convention
δxi = 2

H−1 , where H is the number of voxels in the i-th direction. In this form, the CFL
condition does not depend on the smoothness of the image. One way to circonvoluate
this is to set Cmax = 1/maxx∈Ω ‖∇It‖∞. As the values of I are set to be in [0, 1] thus
∂xi

It(x) ≤ 1,∀t ∈ [0, 1],∀x ∈ Ω, we can set arbitrarily but reasonably Cmax = 1. Therefore
we can deduce a suitable δt:

C = δt max
x∈Ω

d∑
i=1

|vi(x)|
δxi

≤ δt∑d
i=1 δxi

max
x∈Ω

d‖vi(x)‖∞ ≤ 1

δt ≤
∑d

i=1 δxi

maxx∈Ω d‖vi(x)‖∞

(2.101)

where ‖vi(x)‖∞ = maxi≤d |vi(x)|. For example, if the image is 300×300 pixels wide and the
displacement field v is of 100 pixels in one direction, then we must choose δt ≤ 1

200 . So to
integrate I over a fixed vector field v, one must iterate Equation 2.100 more than 200 times
(n_step = 200 in code 2.3:l 20). In practice, however, we often need even more iterations.

Source Code 2.3: Eulerian image displacement

1 def _image_Eulerian_integrator_(self,image,vector_field,t_max,n_step):
2 """ image integrator using an Eulerian scheme
3

4 :param image: (tensor array) of shape [1,1,H,W] or [1,1,D,H,W]
5 :param vector_field: (tensor array) of shape [1,H,W,2] or [1,D,H,W,3]
6 :param t_max: (float) the integration will be made on [0,t_max]
7 :param n_step: (int) number of time steps in between [0,t_max]
8

9 :return: (tensor array) of shape [1,1,H,W] integrated with vector_field
10 """
11 dt = t_max/n_step
12 for t in torch.linspace(0,t_max,n_step):
13 grad_I = tb.spacialGradient(image,dx_convention='pixel')
14 grad_I_scalar_v = (grad_I[0]*tb.grid2im(vector_field)).sum(dim=1)
15 image = image - grad_I_scalar_v * dt
16 return image
17

18 # Transport of an image respecting the amplitude of v
19 n_step = ... # must respect the CFL condition.
20 deformed_image = _image_Eulerian_integrator_(image,v,1,n_step)
21

22 # Transport of an image in the direction of v[t] part of a temporal vector field V.
23 n_step = len(V)
24 deformed_image = _image_Eulerian_integrator_(image,v[t],1/n_step,1)

One could argue that using more complex Eulerian integration schemes would be better,
like the Runge-Kutta methods. However, if they are more stable they would require to access
values in between the grids, and therefore would need to be interpolated. It is possible but
would be much slower than the Lagrangian methods discussed in the next paragraph.

In Metamorphosis µ > 0 in Equation 2.96.c, the image update would be realised through
the relation :
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1 image = _image_Eulerian_integrator_(image,v,1/n_step,1) + mu * residual

with v and residual recomputed at each iteration, making the process computationally
intense (see also Result&Discussion paragraph of Subsection 2.5.1.b).

LAGRANGIAN VIEW POINT The implementation of an image displacement by a deformation φ
is straightforward and stable as long as φ is diffeomorphic. It is a sufficient condition. For
almost any vector fields¶ we can always make it diffeomorphic using the Lie Exponential (see
Section 2.1.2). For a temporal field v, one can find ϕv by temporal vector fields integration,
as detailed in Section 2.2.3.b.

Even if we often consider images as functions defined on an open set, their nature is
discrete and lives on a grid of pixels. Note that we use the form I ◦ (ϕv)−1 = J in image
registration rather than the direct form used for landmarks of surfaces form which would
be ϕv ◦ S = T . Indeed this last form is convenient to send a point in space to another
location, but in the image case, we need to catch the pixel’s value at a given location.
By applying ϕv to S we take the intensities of the pixels at their new location, and then
we interpolate the image on a regular grid. Ashburner and Friston [2011] We use the
interpolations provided by PyTorch in the function grid_sample. In 3D, only the tri-linear
interpolation was implemented, thus for coherence, we use the bi-linear one in 2D.

In practice, it is realised by the line

1 deformed_image = F.grid_sample(image,inverse_deformation)

In PyTorch only the tri-linear interpolation is implemented for volumetric deformation.
With equation 2.43 we have for all t ∈ [0, 1], ϕv

t a diffeomorphic deformation. The image
deformation computation is simply done by evaluating the images at the position given by
ϕv, using cubic interpolation. A higher order of interpolation could have been preferred,
however, there were not implemented for 3D images. Moreover, they would have been
slower.

Grid image Eulerian Lagrangian (ϕv)−1

Figure 2.12: Image of a grid deformed using Lagrangian or Eulerian methods. Both images in the centre
were displaced by a deformation (ϕv)−1 with an Eulerian scheme (right) and a Lagrangian one (left). See the

jupyter notebook: defomation_adventure.ipynb.

RESULTS AND DISCUSSION: Both points of view allow us to make similar deformation on
images. The Lagrangian schemes are computationally stable and provide good tolerance to

¶We assume that we do not use ill cases constructed as a counter-example.
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numerical-accuracy-related errors. Historically Lagrangian methods were avoided because
of the numerous interpolations needed for particle tracking, which made the computation
too costly [Beg et al., 2005]. Eulerian methods are conceptually easier to implement but
as they depends on the image gradient they are very sensitive to image smoothness. The
more there are sharp edges in the picture the more instabilities will generate abnormalities
as seen in Figure 2.12.b (white stripes). To correct this issue, one would need to decrease
the time step, leading to very large computational times. Today Lagrangian methods are
way faster and more accurate and recent works started to drop Eulerian forms.

It is illustrated in Figure 2.12 where we deform a grid 700×700 image using both methods.
The one shown through Eulerian integration was obtained for 500 iterations when the CFL
conditions would require 225937 iterations and takes 3000x more time than the Lagrangian
method. The Eulerian panel shows an example of the instabilities the method can create.
You can check the Jupyter notebook, linked in the figure, for the full experience. To apply the
Lagrangian scheme to the image, we needed to compute a deformation from the vector field.
It was done using the fast-Exponential map (see Section 2.1.2) and required 6 interpolations
(i.e.: exp(v) = exp(2−6v)6).

Integration of the geodesics is a crucial computational point for both LDDMM and Meta-
morphosis. In the case of image registration using LDDMM, Beg et al. [2005] initially de-
scribed a method based on gradient descent which could not retrieve exact geodesics, as
shown in Vialard et al. [2011]. An actual shooting method was then proposed in Vialard
et al. [2011] for LDDMM-based registration of images. To the best of our knowledge, the
only shooting method proposed in the literature for image metamorphosis is the one pro-
posed in Richardson and Younes [2016]. It is based on a Lagrangian frame of reference and
therefore it is not well suited for large images showing complicated deformations, as could
be the case when registering healthy templates to patients with large tumours. Here, we
propose to use a semi-Lagrangian scheme.

2.5.1.b From Eulerian to semi-Lagrangian formulation

We have seen two concurrent points of view for implementing numerical integration of ODE
and PDE. We will now discuss a numerical scheme for the geodesic system of equation 2.96
integration. These paragraphs are the takeaways from my first paper François et al. [2021].
If in the previous paragraph, Lagrangian schemes were faster and more accurate, they work
only for pure deformation. Thus these schemes seem not suitable for Metamorphosis as its
image variations are modelled with transport and intensity changes at each time step. With
this condition, Eulerian schemes seem to be the most natural candidate for flow integration.
However, they are way too slow to be a viable choice. Hopefully, semi-Lagrangian schemes
are a good compromise.

The main idea of semi-Lagrangian schemes is to stop evaluating the values of a function
α (from Equations 2.98 and 2.99) on a regular fixed grid as we would do with Eulerian
schemes. But rather deduce a new grid at each time step, with the help of the flow. How
do we proceed? At each time step, for each voxel x, we integrate backwards in time by a δt
to get the value of the voxel that will end up at position x.

I[t, x] ≈ I[t − 1, x − v[t, x]] (2.102)

Obviously, x − v[t, x] will rarely end up on a regular grid and I[t-1, x -v[t,x]] must be
obtained through interpolation. Unlike the pure Lagrangian procedure, this approach keeps
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the fluid parcels evenly distributed throughout the flow and facilitates the computation of
spatial derivatives via finite differences. [Durran, 2013]

In our case, we compute the deformation of a grid corresponding to a small displacement
Id−δt vt, and then interpolate the values of the image It on the grid. This can be summarised
by It+δt ≈ It ◦ (id − δt vt). Semi-Lagrangian schemes are more stable and don’t need as
many iterations. Too many iterations would blur the images due to the successive bilinear
or trilinear (in 3D) interpolations.

We will now explain step by step the numerical scheme used for integration over the PDE
system of Theorem 2.9. 

vt = − ρ
µK ? (zt∇It)

∂tzt = − ∇ · (ztvt)
∂tIt = −vt · ∇It + µzt

(2.96)

Let’s reformulate Equation 2.96 in a semi-Lagrangian formulation, As one can see, com-
puting the vector field can be done straight forward from the equation as no temporal
derivative is involved. You can find all this implementation in the class Metamorphosis_Path
within the file metamorphosis.py. In this tutorial, we integrate with n_step and it is set
by the user.

Source Code 2.4: _update_field_() is a method that can be found in the class Metamorphic_path within the
file metamorphosis.py

1 def _update_field_(image, residual):
2 grad_image = tb.spacialGradient(image)
3 field = tb.im2grid(kernelOperator( # see next section for the kernelOperator Implementation
4 (-(residuals.unsqueeze(2) * grad_image).sum(dim=1))
5 ))
6 field *= get_field_cst_mult()
7 return field
8 field = _update_field_(image,residual)
9 inverse_deformation = id_grid - field/n_step

In semi-Lagrangian formulation both İ and ż deformations are computed solving the
characteristic equation:

dx(t) = v(t,x(t)),x(0) = Id (2.103)

We can now deal with the advection part. From the Eulerian formulation for the closed
domain τ × Ω, we can write:

∂tIt + vt · ∇It − µzt = ∂tI(t,x) +
d∑

i=1

∂xi
I(t,x)vxi

(t,xi)− µz(t,x) = 0. (2.96.c)

where we use for convenience the notations vt = v(t,x) = (vx1
(t,x), · · · , vxd

(t,x)), t ∈ τ ,x ∈
Ω [Efremov et al., 2014]. The implementation is straightforward:

1 updated_image = F.grid_sample(image,inverse_deformation) + mu * residual[t]/n_step

Using semi-Lagrangian schemes for image evolution has been suggested by Beg et al.
[2005] but not implemented. However, to our knowledge using it on the momentum is an
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original idea. Thus, we can also rewrite the continuity equation as:

∂tzt +∇ · (ztvt) = ∂tzt +

d∑
i=1

∂xi(z(t,x)× vxi(t,x)) = 0

= ∂tzt + vt · ∇zt + (∇ · vt)zt = 0

(2.96.b)

We can translate this equation to code such that:

Source Code 2.5: _update_residuals_semiLagrangian_ is a method that can be found in the class
Metamorphic_path within the file metamorphosis.py

1 def _update_residuals_semiLagrangian_(deformation):
2 div_v_times_z = residuals * tb.Field_divergence()(field)[0,0]
3 updated_residual = tb.imgDeform(residuals,
4 inverse_deformation,
5 clamp=False # important to keep negative values.
6 )
7 - div_v_times_z/n_step
8 return updated_residual

Therefore in practice, Equations 2.96(b,c) transport are evaluated by interpolation. Note
that by using a semi-Lagrangian scheme for residuals we avoid computing a discrete approx-
imation of ∇ · (ztvt), but still need to compute an approximation of ∇ · vt. However, the
momentum zt, like the image It, is potentially non-smooth, while vt is smooth due to its
expression through the convolution operator K.

RESULTS AND DISCUSSION We will compare three presented computational options to inte-
grate over the geodesics: 1- the Eulerian scheme, 2- the semi-Lagrangian approach and 3-
a combination of the two, where we use the semi-Lagrangian scheme for the advection and
the Eulerian scheme for the residuals (as it is suggested in Beg et al. [2005]).

In Figure 2.13, we can observe the lack of stability of Eulerian methods compared to the
semi-Lagrangian ones. Even if the chosen time step is rather small, the Eulerian scheme
produces ripples (in purple in the residuals) and the integration fails (see the estimated
deformation). On the contrary, semi-Lagrangian schemes converge to a better deformation
with a higher time step. It should also be noted that the full semi-Lagrangian scheme
(advection and continuity equations) is perfectly stable without showing ripples, as it is
instead the case for the advection-only semi-Lagrangian scheme.

It is clear that semi-Lagrangian schemes are a better solution than pure Eulerian ones.
Note that we did not test Runge-Kutta methods, because of their huge computational com-
plexity. However, a recent publication that I found while writing this dissertation proposed a
semi-Lagrangian Runge-Kutta integration for LDDMM [Hernandez, 2021] using the Runge-
Kutta algorithm described in Guo [2013]. Nor paper published their implementation, it
would be interesting to re-implement their work for comparison. Apart from our integration
methods, the paper of M. Hernandez has a major difference from ours: They implemented
the gradient update with forward and backward passes following their Band-Limited im-
plementation [Hernandez, 2018] when we use the auto-differentiation from PyTorch. In
addition, the recent works of Brunn et al. [2021a,b] optimised LDDMM for GPU usage
written in C++ and Cuda. According to their claims, they provided the fastest implemen-
tation to date. Another lead could come from recent advancements in the computation of
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fluid-dynamics schemes, which went through huge improvement with the push for the media
industries, being always faster and more realistic. For example, McNamara et al. [2004]
work shows already impressive results. The main difficulty in these methods would be to
compute the method’s backward gradients.

Speed and computation efficiency was not our main focus for our implementation, and
we did not want to implement LDDMM only. Indeed we utilised the similarities of both
LDDMM and Metamorphosis geodesic equations to craft a unified integration. Moreover,
we had in mind the possibility of adapting the framework (this is the topic of Chapter 3),
and thus focus our effort on an object-oriented, easily customisable implementation. This is
where the auto-differentiation of PyTorch came necessary. Indeed, for a given registration
cost, one needs only to derive the Euler-Lagrange equations and the gradient is computed
automatically through the chain rule. To sum up, since the publication of our implementa-
tion [François et al., 2021], faster codes for LDDMM were published, however, ours remain
the only one available to our knowledge for Metamorphosis. In addition, it was written in
Python with the idea to conduct experiments and easily bring modifications to the frame-
work.

2.5.2 Kernel Implementation details

2.5.2.a Gaussian kernel

We use the definition of the V norm defined from its inverse operator K which is itself the
extension of the convolution kernel (Kσ?) as seen in Subsection 2.2.4.b. As we have seen
in this section, we have a trick to compute the V norm. It remains to compute Kσ as is it
directly involved in Equation 2.96.a.

The Gaussian kernel of Definition 2.14 convoluted to a field v ∈ V gives

Kσ ? v(x) =

∫
Ω

Kσ(x, y)v(y)dy (2.104)

The choice of the kernel size in pixels has a significant impact on the computation time.
Because the kernel is Gaussian only neighbouring voxels are significant. Thus we can cut the
convolution mask where the values tend to be zero. We choose to set its size to be d6× σe
and at least 7 pixel wide: (so the value of the Gaussian kernel is about exp(3/σ) ∼ 10−4

at its edges). The convolution will be performed very often in the implementation, and
increasing its efficiency has a significant impact on the total computation time. The direct
convolution is the only convolution provided by PyTorch. As for big kernels, it is way faster
to perform the convolution in the Fourier space, it was made possible from PyTorch 1.7
where a differentiable fft was induced. One can see benchmark results on CPU‖ in Figure
2.14. A clear version of the implementation can be found in Code 2.6

Source Code 2.6: Sample of code for Gaussian kernel. Here is presented the essence of the computation done
in the class GaussianRKHS within the file reproducing_kernels.py. Relying on the functions

get_Gaussian_kernel and convolution_filter that must be implemented with care.

1 def Gaussian_convolution(sigma,input):
2 big_odd = lambda val : max(6,int(val*6)) + (1 - max(6,int(val*6)) %2)

‖At the time I implemented it, the gain in speed was also effective in GPU. However more efficient torch
convolution has been released for GPU since. My implementation chooses automatically the best filter.
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Figure 2.13: Comparison between the stability of the 3 geodesic shootings schemes proposed for LDDMM In
each row, we show four intermediary shooting steps with the same initial z0 and RKHS for v. The black and

white pictures are the images, below the corresponding z. The deformations grids on the right are obtained by
integrating over all vt, ∀t ∈ [0, 1]. The shooting was performed using a z0 obtained from LDDMM optimisation
towards a ’C’ picture (µ = 0). The Eulerian and semi-Lagrangian schemes have a time step of 1/38 and 1/20

respectively.
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Figure 2.14: Direct versus Fourier convolution benchmark. For each kernel sizes 10 convolutions on a random
signal and kernel had been performed. In 2D (resp. 3D) a kernel size of 6 is a 6x6 matrix (resp. 6x6x6). The

solid line is the mean computation time, and the filled values are the minimal and maximal computation time in
seconds. The benchmark has been realised on my laptop with a Processor: Intel® Core™ i9-9980HK CPU @

2.40GHz × 16

3 kernel_size = tuple([big_odd(s) for s in sigma]) # select the good kernel_size
4 kernel = get_Gaussian_kernel(kernel_size,sigma) # 2d or 3d depending on the input shape
5 return convolution_filter(input,kernel,border_type)

2.5.2.b Multi-scale Gaussian kernel

Let’s recall the take-away of Section 2.2.4.c: One can sum up the V norms at different scales
and take advantage of the combined momenta information. For the method implementation,
Sommer et al. [2011] advise applying each kernel Kσ to the corresponding subspace of W
and only then computing ϕΨ(w). Specifically they precise that building a kernel by summing
Gaussians of different scales changes only the shape of the kernel and does not allow different
momentum at different scales. This is true for an implementation of the W norm. However,
in our case, we just need to compute the updated vector field v from Equation 2.96.a with
the multi-scale kernel. Assuming v is fixed, following their advice would mean computing
a convolution for each σ ∈ S independently, at every time t, at every iteration and then
averaging it such that

1

#S

∑
σ∈S

(Kσ ? v) (2.105)

However, We say that it is not necessary. Let pose KS as the average of the Gaussian
kernels of parameter σ, for a fixed v ∈ V

KS =
1

#S

∑
σ∈S

Kσ, (2.106)

it is direct that
1

#S

∑
σ∈S

(Kσ ? v) = KS ? v. (2.107)
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because we perform the convolution on the same vector field v. This allows us to compute
the kernel KS once before the optimisation starts and perform only one convolution to
compute KS ? v. (see Figure 2.9b). One can find a plain interpretation in Code 2.7 with
the kernel computation from other Gaussian kernels.

Source Code 2.7: Sample of code for a multi Gaussian kernel Here is presented the essence of the
computation done in the class multi_GaussianRKHS within the file reproducing_kernels.py.

1 def multiScale_Gaussian_kernel(sigma_list,input):
2 """
3 sigma: list of tuples of `dim' length
4 ex: [(3,3,3),(5,4,3)], code for two 3d kernels with sigma 3 in each direction
5 for the first and with variable sigma in the second.
6 """
7 ## Make the kernel
8 # For each sigma, compute the maximum kernel size for each dimension
9 _ks = []

10 for sigma in list_sigmas:
11 big_odd = lambda val : max(6,int(val*6)) + (1 - max(6,int(val*6)) %2)
12 kernel_size = tuple([big_odd(s) for s in sigma])
13 _ks.append(kernel_size)
14 # Get the max of each dimension.
15 _dim = len(kernel_size)
16 kernel_size = tuple([
17 max([s[i] for s in _ks ]) for i in range(._dim)
18 ])
19 list_sigma = list_sigmas
20

21 # Make a mean of all kernels for each filtered pixel
22 kernel = torch.cat(
23 [ prod(sigma)*get_Gaussian_kernel(kernel_size,sigma) for sigma in list_sigmas ]
24 ).sum(dim=0)
25 kernel /= len(list_sigmas)
26

27 ## Apply the filter
28 return self.filter(input,kernel)
29

2.5.2.c Choice of scale, LDDMM vs LDDKBM

Before looking at more natural data, I would like to compare the Gaussian kernel from
Definition 2.14 with the multi-scale one from Section 2.2.4.c. The comparison will be done
using toy examples from Figure 2.15. The target image (b) has been constructed to be very
challenging to register from the source image (a). In the examples, all images are 300× 300
pixel wide. On the panel (c) one can see the source and target images concatenated together
in an RGB image. Indeed the deformation needs to go through the narrow passes (red arrows,
circle) and then expand the source image to fill the pointy shapes (blue arrows, triangle)
while keeping the transformation diffeomorphic. In itself, the pointy shapes would be hard
to match from an object with a smooth outline, because the diffeomorphism nature tends
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(a) Source (b) Target (c) Source vs Target

Figure 2.15: Source and Target image of Figure. (c) The comparison of images is made by superposing two
images in different channels such that matching parts appear green and parts that are intense in only one image

appear blue or red. Arrows of (b) are explained in the text below. 2.16

to preserve features like edges. For example, registering a circle targeting a square will end
up as a rounded square.

In Figure 2.16 we can find registration examples at different scales σ. The three first
columns show the registration integration at times .1, .5, and 1 respectively, and the two
middle ones show the registered image superposed on the target along with the corresponding
deformation. Finally, the last column shows the shape of each kernel, which is originally
2D. One can notice their respective size according to the discussion in Section 2.2.4.b.
The four top rows show four examples using classical mono-scale LDDMM, and the four
bottom ones show examples of multi-scale LDDKBM as described in Section 2.2.4.c. The
analysis of the mono-scale results indicates that σ is a critical parameter to tune. Indeed,
we see that choosing a σ too small prevents the momentum and the deformation is minimal;
choosing a σ too big brings to a less accurate deformation. The best registration displayed
according to the SSD was obtained for σ = 10. However, the three top registration are not
diffeomorphic and are therefore not admissible: the red dots behind the deformation grid
indicate a negative determinant of the deformation Jacobian. For σ = 20 the deformation
is diffeomorphic but the registration is quite poor.

The last four rows show that by choosing a set of sigmas about in the good scale, we obtain
good results with little only variations on the obtained matchings. In the right column, one
can see the different Gaussian kernel shapes used with the kernel applied. The black solid
line is the average of the other. Sommer et al. [2011] advised against using a unique kernel
as a mixture of others. However, we found that because of our implementation, it is a
reasonable choice as we detail in Section 2.5.2.b. For now, we can observe that a kernel like
the one σ = {1, 10, 20} takes high importance on details thanks to the centre pointy shape
while smoothing the surroundings with its tail.

2.5.3 Sharp integration

This work is inspired by an idea of Matthis Maillard.
As we saw in the last paragraph, the semi-Lagrangian integration scheme allows us to

register images with fewer integration steps, however, the successive interpolation errors
make the output image blurry. We will discuss here a method to use the semi-Lagrangian
approach while keeping the output image sharp. In methods registering using pure defor-
mation like LDDMM, the solution is simply to compose the fields to an identity grid and
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Figure 2.16: Registering details depending on the Gaussian kernel scale. In order to fit the big figure, the
caption detail can be found within the text.
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apply the subsequent deformation to the image, interpolating it only once. We first generate
a deformation flow ϕ1 such that ϕ̇t = vt ◦ Φt, (vt)t∈[0,1] ∈ V being a temporal vector field
and thus :

ϕv = Id +

∫ 1

0

vt ◦ ϕv
tdt. (2.108)

Then, we want to be obtain a sharp image by simply composing ϕv to the source image
S. As one can expect, it is not as simple for Metamorphosis. The image integration is given
by the ODE: İ = −vt · ∇It +µzt, at each time, intensity is added (or subtracted) by zt that
will be later transported by vl, with t < l ≤ 1. A continuous formulation can be found in
Trouvé and Younes [2005](Theorem 2) give some insight on the image integration:

It = I0 ◦ (ϕv
0,t)

−1 + µ

∫ t

0

zs ◦ ϕv
s,tds (2.109)

If we want to build an integration scheme based on semi-Lagrangian formulation keeping
the image sharpness we need to construct carefully the deformations of the residuals. We
will provide some definitions before detailing the "sharp integrator".

Definition 2.17 (discrete forward deformation). Let be n, k ∈ N, 0 ≤ k ≤ n ≤ N

φ
k
n+1 = (Id − vn) ◦ (Id − vn−1) ◦ · · · ◦ (Id − vk+1) ◦ (Id − vk)

with the convention : φnn = Id and φn+1
n = (Id + vn)

With this notation we have an immediate property :

φ
k
n+1 = φnn+1 ◦ φkn. (2.110)

We will use this to avoid re-doing many time the same deformation computation. We can
also define the backward deformation

Definition 2.18 (discrete backward deformation). Let be n, k ∈ N, 0 ≤ k ≤ n+ 1 = N

φ
n
k = (Id + vk) ◦ (Id + vk+1) ◦ · · · ◦ (Id + vn+1) (2.111)

with the convention : φn+1
n+1 = Id and φnn+1 = (Id + vn)

Preparing the implementation, Figure 2.17 helps to understand the operation order. In
each coloured box, one must first compute the one on the inside by applying the previ-
ously computed residuals before summing them. To do so we need to keep track of all the
deformation as well. We will call the lower triangular matrix such that

Φ =


φ
0
1

φ
0
2 φ

1
2

φ
0
3 φ

1
3 φ

2
3

... . . .
φ
0
N · · · φkN · · · φN−1

N



=


φ
0
1

φ
1
2 ◦ φ01 φ

1
2

φ
2
3 ◦ φ02 φ

2
3 ◦ φ12 φ

2
3

... . . .
φ
N−1
N ◦ φ0N−1 · · · φ

N−1
N ◦ φkN−1 · · · φN−1

N

 . (2.112)
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Figure 2.17: Sharp Metamorphosis Integration scheme

At this point, one can already see an algorithmic trade-off has to be made between memory
and computation. To save computation time, one can compute the k-th row of Φ can be
done by computing φk−1

k and composing it with the (k − 1)-th row (see Equation 2.112).
Alternatively, one can recompute every deformation. When the residual is computed, one
can simply add it to the transported image.

We are now ready to tackle its implementation which can be found in
Code 2.8. The main function is _step_sharp_semiLagrangian_, the compu-
tation of the Matrix 2.112 is computed at each time step within function
_update_sharp_intermediary_field_ and the deformations of each residual are computed
within _compute_sharp_intermediary_residuals_.

Source Code 2.8: Integration step of the sharp Metamorphosis scheme class Metamorphosis_path within the
file metamorphosis.py. Note that this implementation use _update_field_ and

_update_residual_semiLagrangian_ that were defined in Code 2.4 and 2.5 respectively.

1 def _update_sharp_intermediary_field_(self):
2 self._phis[self._i][self._i] = self.id_grid - self.field/self.n_step
3 if self._i > 0:
4 for k,phi in enumerate(self._phis[self._i - 1]):
5 self._phis[self._i][k] = phi + tb.compose_fields(-self.field/self.n_step,phi)
6

7 def _compute_sharp_intermediary_residuals_(self):
8 resi_cumul = torch.zeros(self.residuals.shape,device=device)
9 for k,phi in enumerate(self._phis[self._i][1:]):

10 resi_cumul += tb.imgDeform(self.residuals_stock[k][None],
11 phi,
12 clamp=False)
13 resi_cumul = resi_cumul + self.residuals
14 return resi_cumul
15

16 def _step_sharp_semiLagrangian(step):
17 self._update_field_()
18 self._update_sharp_intermediary_field_()
19
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20 resi_cumul = self._compute_sharp_intermediary_residuals_()
21

22 # free the memory
23 if self._i > 0: self._phis[self._i - 1] = None
24

25 self._update_image_semiLagrangian_(source,resi_cumul,
26 sharp=True)
27 # actual code in _update_image_semiLagrangian_()
28 self.image = tb.imgDeform(self.source,self._phis[self._i][0])
29 self.image += (resi_cumul*self.mu)/self.n_step
30

31

32 self._update_residuals_semiLagrangian_(self._phis[self._i][self._i])
33

34 return (self.image, self.field, self.residuals)

On a general note, one can remark that the method to recover the intensity addition for
each voxel in the source image can be deduced from these pieces of code. In other words,
let xi ∈ Ω be a voxel, at time t it is transported to the position ϕv

0,t(xi). Let Jt(xi) be the
cumulative intensity of xi at time t starting from zero, defined such that:

Jt(xi) = µ

∫ t

0

zs ◦ ϕv
t,s(xi)ds. (2.113)

Note that ϕv
t,s is the backward transformation as s ≤ t. To find the total inten-

sity changes added at the shooting end, we need to compute the collections of deforma-
tions: {Id, φ01, φ12, · · · , φN0 } before composing them to the saved residuals {z0, z1, · · · , zN}
and summing the result. This resembles the computations done in the method
_compute_sharp_intermediary_residuals_

RESULTS AND DISCUSSION The sharp integration scheme is compared with the classical one
in Figure 2.18. In this subsection, the ‘classical scheme’ refers to the non-sharp one. The
images to match are difficult, the big circle must be morphed into the three-horned one
while making one disk appear on the right of the shape, and a disk disappears at the
centre. From a global perspective, the two integration schemes show similar performances.
However, both produce visual defects. The classical scheme becomes increasingly blurry
with successive interpolations (see zoom D), while the sharp scheme creates local instabilities
(see zoom A). However, for the sharp scheme, these instabilities are effectively erased by the
addition of intensities. In reality, these instabilities appear in both methods, but successive
interpolations erase them. We have not determined with certainty why they appear, but
they only occur when the deformation is significant and the number of integration steps is
too low. If we focus on the appearance/disappearance of the disks, both must be explained
by changes in intensities. However, we observe two scenarios. The disappearing sphere
disappears gradually without generating deformation, while the other appears from right to
left. This is due to the fact that the shape of the centre undergoes a local deformation to
the left at that location. The addition of intensity thus follows the movement (see zoom
B-D). Additionally, in this example, the disk that appears to the right of the shape causes
strong growth in deformation only in the sharp image (see panel a). The advantage that
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Figure 2.18: Metamorphosis classical vs Sharp integration. Both integration were conducted with 50 time
steps and µ = 1, ρ = 10,σ = 15.
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the classical integration scheme retains over the sharp scheme is that it is significantly less
complex and faster to execute.

2.5.4 Metamorphosis - General Results & Discussion

If, in theory, Metamorphosis can always archive a perfect registration at least using pho-
tometric changes, the geodesic varies with the hyper-parameters. Therefore, changing the
image integration, and the deformation as a whole. One can see it in Figure 2.19, where
the matching problem is quite challenging for several reasons. First, the ‘ideal’ matching to
perform is unclear. Arguably, one would want to transform the big starting circle to the ‘C’
shape, rather than re-scaling it to the small circle. However, the cut into the ‘C’, which can
be seen as a local occlusion in the capture, should not be taken into account. Second, as can
be seen in the Source/Target comparison, the large circle overlap all structures in the target
image. Due to the use of a L2 norm, the algorithm could be tempted to match the three
structures at the same time. Third, the displacement to estimate is very large compared to
the image size (about half of its width), making the integration difficult and increasing the
number of time steps required.

From the study of Figure 2.19 alone, we can learn a lot about the behaviour of Metamor-
phosis. We break these intuitions into points:

• Residual entanglement: By studying residual columns (in colour, left) one can
visualise the momentum value over time. In column (a), it is clear that most of
the registration is done by intensity additions, with the negative (blues) and positive
(orange) areas of the residual. On the other two (b, c), with a higher ρ the positive
(resp. negative) part of the residual will generate a deformation in the direction (resp.
opposite direction) of the image gradient. At each time t and at each pixel x, a given
value z(t,x) encodes both deformation and intensity changes.

• ρ variation: In the geodesics equations 2.96 a higher ρ will promote higher ampli-
tude vector fields and consequently a larger deformation. It can be seen as a way
to control the entanglement discussed in the previous point. We clearly see that if
all Metamorphosis integration ends up being very similar to the target, deformations
differ greatly. Thus depending on ρ the amount of intensities changes varies as well.
Because of this dependence, it is hard to analyse the output of metamorphoses. If
one wants to analyse those quantities, for example assessing the number of topology
changes, one must take ρ into account. One can see that any of the Metamorphosis’s
results we present retrieve the full ’C’ with deformation. However by increasing ρ ever
more, one will get results closer to LDDMM.

• µ variation to get LDDMM µ control the amount of intensity added at each time
step. It works together with ρ. The actual important value to tune is their ratio
p = ρ/µ, which I call p the power magnitude of the field. Thus, on the contrary of
what I said in François et al. [2022], I advise setting µ = 1 when one wants to do
Metamorphosis. If one wants to match with LDDMM, the framework allows it and it
suffices to set µ = ρ = 0.

• Semi-Lagrangian scheme makes deformations time step independent for a
fixed ρ. If we decrease the number of time steps with Eulerian schemes, the process
may diverge, not producing any results. With semi-Lagrangian schemes, they converge
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Figure 2.19: Influence of ρ on the Metamorphic integration (µ = 1). On each panels,(left) Image integration
It, top: t = .1,bottom t = 1. (right) Residuals zt, (bottom) Integrated deformation. The coloured image at the
top is the comparison of source vs target images. It is made by superposing the two images in different channels

such that matching parts appear green and parts that are intense in only one image appear blue or red.
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most of the time and produce similar deformations for different time steps. One
can set the number of steps down to 3 still retrieving the deformation, making the
computation very fast. However, it produces some instabilities when adding intensities
and generates artefacts on images. It is still useful for parameter tuning.

• Automatic hyper-parameter choice. In contemplating the potential avenues for
future research, it is posited that the development of a methodology that employs a
semi-Newton scheme, Bayesian inference or machine learning algorithms to automati-
cally identify optimal parameters would be highly desirable. While currently more of
a wishful comment than a concrete perspective, the advent of such a technique will
make Metamorphosis significantly easier to use.

• Have you tried using AI ? It is a good and legit question! We have presented
in Maillard et al. [2022] a deep residual learning (ResNet-based) implementation of
Metamorphosis that drastically reduces the computational time at inference. Indeed,
if the training is very time-consuming, this type of method is much faster at inference
time than classical Metamorphosis which needs to optimize a function for every pair
of images. The registration principle is inspired by Metamorphosis, and images still
follow PDEs similar to 2.96.a and 2.96.c. However, the divergence term of the geodesic
equation is replaced by a ResNet, estimating a new unknown high-dimensional function
over which we have no control. On one hand, it is very efficient to estimate deformation.
On the other hand, as we do not follow Euler-Lagrange equations, using it to build a
shape-space is questionable.

• Discussing intensity addition through semi-Lagrangian schemes. As men-
tioned earlier semi-Lagrangian schemes increased the PDE integration stability, mak-
ing it usable. However, it is still not perfect. We aim to model the transport of an
image I through the relation İt + vt · ∇It = ut where ut : Ω × [0, 1] → R, making
it an equation of transport with an external source as introduced in Section 2.5.1.a.
Solving this scheme numerically is challenging depending on the control one has on
u, as discussed there is room for improvement. After the optimisation is completed,
assuming that zt is known for all t, it is possible to recover the intensity addition for
each voxel in the source image using a process similar to the one presented for the
sharp integrator in subsection 2.5.3. However, its interpretation remains unclear and
it shares the same pro and cons as the said sharp integrator.

• Does Metamorphosis gives a better result than LDDMM? The short answer is
... it depends on the objective. It is the case if one aims at having a good and smooth
photometric and geometric deformation linking two images. Indeed, Metamorphosis
allows going beyond the image orbit by the action of Diff. However, if one aims at
analysing the deformation it is less clear. Indeed both method can fail in different ways:
In figure 2.19 LDDMM match the circle with the ‘C’ acknowledging the cut without a
topology break when Metamorphosis register by deformation and compensate the rest
with intensity changes. For intuition, one can see the intensity change as the reverse
projection of the infinitesimal intensity changes δ to the infinitesimal deformation by
g (see Figure 2.11).

The effectiveness of the Metamorphosis method in the registration of 3D brain MRI re-
mains to be seen. Results shown in Figure 2.20 demonstrate that the deformations produced
by Metamorphosis seem to make sense in minimising the sum of squared differences. How-
ever, the application of LDDMM results in the expansion of the ventricles and grey matter
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Figure 2.20: "Failed" registration LDDMM & Metamorphosis on brains with Glioblastomas

folds in the frontal lobes. The utilisation of cost-function masking (CFM) would produce
less aberrant deformation at the cost of not producing any displacement within the mask,
particularly in the front ventricles. On the other hand, the application of Metamorphosis
results in intense changes in the tumour and a non-realistic deformation that squishes a
portion of the brain. In short, the final result resembles the target, but the deformation
produced is not anatomically plausible. Neither LDDMM nor Metamorphosis prove to be
suitable tools for the registration of the pathological brain with tumors in its current form.
We extend the framework with Constrained Metamorphoses, which will be introduced in
the subsequent chapter as a potential solution to the aforementioned problems.

2.6 Comic: Semi-Lagrangian schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In this chapter, we will cover this dissertation’s main contributions. Considering the
practical problems encountered while using the classical Metamorphosis algorithm, aiming
at registering MRI with glioblastomas (also see Section 3.1.1). Acknowledging the biological
nature of the data, we should not explain topological change solely by intensity apparition.
In medical image analysis, one often comes with a lot of prior information, as we know the
expected morphological structures of the organs and their underlying mechanisms. We will
focus on the specific case of registering cancerous brains to healthy ones. In other terms,
a matching problem where the topology between images differs, with in addition a ‘mass
effect’ induced by the appearing tumour.

This chapter aims to present an extension of the Metamorphic framework, where one can
constrain deformations to behave as dictated by a given model derived from prior informa-
tion. In our case, we will constrain the localisation of topological addition (i.e.: intensity
changes) and locally the direction of the flow, roughly modelling the tumour growth via
LDDMM. We will use a glioblastoma segmentation as prior, and deduce a ‘growing’ flow
by registering a small ball to the segmentation. We detail our strategy in Section 3.1. The
objective of the Constrained Metamorphosis (CM) framework is to register a pair of im-
ages taking into account those priors. It can be seen as solving a constrained optimisation
problem. In short, we design new energies by leveraging prior anatomical and biological
information from which geodesic equations are deduced (i.e., Euler-Lagrange equations).
Similarly to Metamorphosis, we have a system of PDE and we will solve the registration
problem via geodesic shooting.

The formulation of CM is general and can be adapted to different cases. In this disser-
tation, we focus on the aforesaid registration problem. We thus present two new metrics:
the first allows the addition of intensity only in a given mask, while the second makes the
deduced flow match a given one (that mimics prior biological information).

It is interesting to notice that Holm, Trouvé and Younes already used the Constrained
Metamorphosis name in Holm et al. [2009]. However, differently from here, in their work,
this term was related to a simple addition of a fixed constraint to the geodesic equations.
It was a mere theoretical proposition and they did not thoroughly analyse it with practical
experiments. Instead, the model we propose here can be seen as a more generic generalisation
of Metamorphosis and we decided to stick to this self-explanatory name. In addition, this
work has been built to be versatile. Different user cases and applications could lead to other
types of constraints.
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In Section 3.1 we present the Constrained Metamorphosis framework theoretical part.
Starting by defining the metrics and justifying their expression. Then, we give the formula-
tion of a geodesic equation in the most general form and adapt it to some interesting cases
with respect to the goal of this Thesis. To conclude the section, we detail the usage of the
method using our Python library Demeter.
In Section 3.2, we illustrate the method through a toy-Example. Finally, in Section 3.3 we
apply and test the method on real MRI data.

3.1 The Growing Constrained Metamorphosis framework . . . . . . . . . . . . . . . . . . . . . . . . .

3.1.1 From Metamorphosis limitations for Pathological brain to prior utilisation

Before getting to the mathematical formulation, let’s be more precise on how we intend to
use the Constrained Metamorphosis framework for brain registration. Starting by analysing
the limitation of a classical Metamorphosis.

In the previous chapter, we tested the Metamorphic registration method on a couple of
MR images: a healthy brain template and a pathological image with a brain glioblastoma
(GB). However, as shown in Figure 2.20, the results were disappointing. Specifically, the
method failed to register the anatomical areas that had been displaced by the GB mass
effect.

From a biological perspective, there are at least three factors that may explain this
limitation:

• Tumour growth may have moved tissues away from each other to the point where they
no longer overlap. As we use sum of squared differences (SSD) as the data attachment
term, the algorithm does not attempt to match them.

• While the tumour develops, it reroutes nutrients that were previously destined for
healthy cells. This creates attrition in the surrounding tissues, and neighbouring cells
may die, resulting in the disappearance of tissue parts visible on the MRI scan at the
macroscopic scale.

• The tumour not only grows and pushes the surrounding tissues but also infiltrates
them, inducing intensity changes with only minimal displacement.

To correctly match or compensate for the apparition of such changes, Metamorphosis
must create displacement and generate intensity changes at the same time. If in theory,
that is exactly its purpose, as we saw in Chapter 3 conclusion, that the amount of the
deformation vs. intensity changes were controlled by hyper-parameters. Thus, this trade-off
was applied to the whole image when it would have been desirable to have different local
hyper-parameter ratios on the image.

Here, we want to leverage the fact that anatomical images are very structured and embed-
ded with many a-priori information, especially about organ spatial organisation. The main
idea of this chapter is to find a way to guide registrations with this prior information. We
developed it having in mind a growing structure (i.e., the tumour) that lies within another
one (i.e., the brain) and therefore it might need adjustments for other applications.
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Our goal is to help the registration to correctly locate the topological additions and at
the same time to follow the direction of the mass effect.

We decided to select the two main structures of glioblastoma, namely the necrotic core
only (ET and TC in Figure 1.2) and the whole tumour, including Oedemas infiltration
(WT). One can note that in this case, the former mask is included in the later. We want to
restrict intensity addition to the lesion only, assuming that healthy tissues must be matched
by deformation only, thus LDDMM. We also aim to simulate the tumour growth via a very
simple model. The exact details will be further described for each specific case presented
in the Chapter but the general principle remains. We select the necrotic mask, initialise a
small ball within, and make it grow into the mask. We choose to make the ball grow via an
LDDMM registration, however, one could use a biophysical model instead. The LDDMM
registration gives us a displacement field that we will later utilise to guide the registration
of the whole brain.

Obviously, we assume that we can detect these a-priori within a given image, in our case
the tumour. Segmentation masks are a convenient way to apply specific computation locally.
They can be manually drawn or, for large data sets, it could be worth it to develop automatic
methods. In this chapter, we use a deep-learning-based method, as recent improvements
made automatic segmentation highly reliable [Liu et al., 2021; Luu and Park, 2022; Yuan,
2022]. One can also refer to Chapter 4 to read about our attempt to GB segmentation using
TDA. In the following section, we will start by defining metrics used to ensure that the final
registration will efficiently respect our priors. Then, we will see how these metrics affect the
geodesics.

3.1.2 Defining some metrics

In this section, we aim to define a Riemannian metric on cancerous images, inspired by
the one constructed from Metamorphosis in Section 2.4. This sub-section will focus on the
construction of a norm (as a variation of Equation 2.92) that will allow us to take priors as
described in previous section into account.

We aim at registering two brain images, where one at least contains a glioblastoma,
with a Necrotic and Oedema part. Here, we aim to construct the metrics NO(v,P ,w) and
NW (z,Q, f). NO(v,P ,w) will orient v using a given temporal vector field w at locations
given by a mask P of the Oedema. NW (z,Q, f) will weight the intensity additions given by
z by adding local constraints defined by a function f and a mask Q defining the necrosis
location. Images infinitesimal updates will be given by the relation

δtIt = vt . It + µQtzt = −vt · ∇It + µQtzt, µ ∈ R+. (3.1)

with v · ∇I being the Euclidean scalar product between the field and the image gradient.
Also, the Riemannian metric is

EC(I, v) =
∫ 1

0

‖vt‖2W + γNO(vt,Pt,wt) +NW (zt,Qt, f)dt. (3.2)

We search for the minimal path such as I0 = S, I1 is found with Equation 3.1. In this
section, we will always refer to the W space and norm (see Section 2.2.4.c) as we usually
want to do multi-scale registration, however, one could just interchange it with the V space
if one wants to do so, as it can be seen as a particular case of W .
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3.1.2.a Weighted norm: NW (z,Q, f)

The norm presented here was introduced first in my conference paper “Weighted Metamor-
phosis for registration of images with different topologies" (François et al. [2022]). I present
it here in a slightly more general form.

We saw in the previous chapter that even if Metamorphosis can lead to interesting reg-
istrations, the disentanglement between geometric and intensity changes is not unique and
it highly depends on user-defined hyper-parameters. This makes the interpretation of the
results hard, thus hampering its clinical usage. For instance, to align a healthy template to
an image with a tumour, one would expect that the method adds intensities only to create
new structures (i.e.: tumours) or to compensate for intensity changes due to the pathology
(i.e.: oedema). All other structures should be correctly aligned solely by the deformations.
However, depending on the hyper-parameters, the algorithm might decide to account for
morphological differences (i.e.: mass effect of tumours) by changing the appearance rather
than applying deformations. This limitation mainly comes from the fact that the additive
intensity changes can theoretically be applied all over the image domain. However, in many
clinical applications, one usually has prior knowledge about the position of the topologi-
cal variations between a healthy image and a pathological one (e.g.: tumour and oedema
position).

To prevent the addition of topological additions outside of a given mask M taking values
in between 0 and 1 possibly rough. We define the following metric:

Definition 3.1 (Weighted semi-norm). First, let F and f be functions taking values in [0, 1]
and mapping to R, such that

F (u) = uf(u). (3.3)

In addition, F must be two times derivable and f(u) 6= 0 for every u ∈ [0, 1].
Let be M : Ω 7→ [0, 1] a mask. We define the generalised weighted norm on residuals such

as :
‖z‖2F (M) =

∥∥∥√F (M)z
∥∥∥2
L2

= 〈z,F (M)z〉L2 = 〈z,Mf(M)z〉L2 (3.4)

As the reader may note, this definition is quite general and f remains to be defined.
By experience, we found that choosing a very simple definition for f gives already good
results. For example in François et al. [2022], the function f was set to be a constant
f(M) = ρ, ρ ∈ R+. The assumption that the function f must be positive everywhere is
technical and comes to avoid a division by zero in the proof of Theorem 3.1. The definition
of Equation 3.3 has been chosen to avoid adding intensity outside of the mask by having the
property that for all x ∈ Ω,M(x) = 0 =⇒ F (M(x)) = 0. The other way around, however,
is not true (i.e.: F (M(x)) = 0 6=⇒ M(x) = 0).

As one can remark, ‖ • ‖F (M) is only a semi-norm, indeed z = 0 is not the only solution
to the equation ‖z‖F (M) = 0. Having in mind the Metamorphic Riemannian metric con-
struction from Section 2.4, one could wonder if having a semi-norm instead of a norm will
suffice. In short, yes. As we will see in the incoming proof of Theorem 3.1, we care more
about having a scalar product defined everywhere.
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3.1.2.b Oriented norm: NO(v,P ,w)

In this subsection, we aim at defining a metric that will constrain the estimated deformation
to follow a given direction. One can take as an example the work of Risser et al. [2013]. The
authors register lung CT scans and want to impose deformation with non-smooth discontin-
uous sliding conditions near the rib cage while keeping the invertibility of the deformation.
They propose an adapted version of the log-Demons algorithm where a regularised term
has been added to constrain the field orientation directly. We propose here a norm in the
same fashion. In the following, we will assume that we have a known temporal vector field
w = (wt)t∈[0,1] having some interesting property that we want to recover at given locations
given by a mask P = (Pt)t∈[0,1]. In our case, as detailed in this section introduction, w
would be a vector field modelling the cancer growth and P the mask of the growing tumour.

A DETOUR BY DROPPED IDEAS Before getting to the norm crafted by our means, I find it
interesting to detail some ideas we explored and why we did not retain them. I hope that
this short paragraph about negative results will give some insights into our final choice.

Our first direction of research was to minimise the angle θ in between v(t,x) and w(t,x)
for a given time and location. We can work with the definition of the cosine

cos θ = v(t,x) · w(t,x)
‖v(t,x)‖L2‖w(t,x)‖L2

(3.5)

integrating over the pixels and shifting the value of the function to zero when the vectors
are aligned.

NO cos : V
2 → [0, 1]

NO cos(vt,wt) =
1

2
− 1

2|Ω|

∫
x∈Ω

vt · wt

‖vt‖2‖wt‖2
dx.

If this form seems to be a good candidate, it will prevent us to have a clean form of the
vector field formula in the geodesic equations. Indeed, looking at the proof of theorem 3.1
at equations 3.18 it would be hard to set vt apart as we must keep the term K−1vt from the
derivative of the V norm.

Our second thought, still keeping the ambition to restrain the angle only, was to utilise
outward pointing unitary vectors from the mask P at every time. A big advantage of this
solution would allow the bypass of the vector field w usage. It was inspired by the Green
theorem and a very practical lemma for RKHS theory.

Let ~nx be a unitary vector field pointing toward the desired direction. For example,
taking the case presented for the Weighted Norm (Section 3.1.2.a) where we have a growing
mask, x ∈ Ω 7→ ~nx(t) could be the vector field pointing toward the exterior of the mask P
at its border and zero elsewhere at a given time t. In practice, the border locations x can
be retrieved using the spatial gradient on a thresholded mask. An interesting lemma states
that we can make the scalar product V from the Euclidean one.
Lemma 3.1. Let ~n and v two vectors field mapping Ω 7→ Rd, it exists a kernel K and a
scalar product V such that

~nx · v(x) = 〈K(x, •)~nx, v(x)〉V (3.6)
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Proof. As ~nx · v(x) is a continuous linear form for each x in Ω: ψx : v(x) 7→ ~nx · v(x) ∈ R,
where ψx ∈ V ∗ is the dual of V. Using the Riesz theorem we have ∀ψ ∈ V ∗,∃ψ̂ ∈ V such as
ψ(v) = 〈ψ̂, v〉V

〈K(x, •)~nx, v(x)〉V = 〈K(x, •)K−1 ? ~nx, v(x)〉L2 = ~nx · v(x) (3.7)

This seems interesting at first glance. For example, using lemma 3.1 we can rewrite the
projection of the difference of difference two vector fields v and w on ~nx such as∫

x∈Ω

〈vt(x)− wt(x),~nx〉2dx =

∫
x∈Ω

〈K(x, •)~nx, vt − wt〉V dx

=

〈∫
x∈Ω

K(x, •)~nxdx, vt − wt

〉
V

.
(3.8)

The integral inside the brackets is made of known objects and therefore can be preprocessed.
However, for any v ∈ V , one can remark that the differential in the direction v does not
depends of v:

Dv

[∫
x∈Ω

〈vt(x),~nx〉2dx
]
=

∫
x∈Ω

~nxdx. (3.9)

The fact that neither v nor w were appearing in this differential, thus won’t be part of
the geodesics, was bothering us. We did not try to implement it due to time constraints.
Instead, we chose a much simpler and quite efficient solution, that will be described in the
following.

PROPOSED ORIENTED NORM Let’s assume we have a temporal vector field wt as a prior for
our matching problem, in which we are confident that it matches or at least goes in the
right direction near some voxels x, let’s say given by a mask Pt. We need to set a cost being
small when the researched field vt is close to wt near some voxels x given by a temporal
mask Pt(x). (more details in section 2.1)

Thereby, we minimise the differences of vt by wt inside the norm W (see Definition 2.15)

NO(vt) = ‖Pt(vt − wt)‖2W (3.10)

It ensures vt follows the field given by wt without displaying rough turns at the edges of Pt.
As we will see in the future theorem proof, it is essential to use a W norm here rather than
another (e.g.: At first glance a L2 norm could have been a good candidate).

3.1.3 The Constrain Metamorphosis Geodesics

3.1.3.a Theorem and proof

Theorem 3.1 (Constrained Metamorphosis).
Let be (Pt)t∈[0,1], (Qt)t∈[0,1] ∈ L2([0, 1], C (Ω, [0, 1])) two smooth temporal masks and

(wt)t∈[0,1] ∈ L2([0, 1],V ) a vector field. We consider P ,Q and w as known constraints.
The minimal path in between two images S = I0 and T = I1 with the evolution :
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∂tIt = −vt · ∇It + µQtzt, µ ∈ R+ (3.11)

and the metric

EC(I, v) =
∫ 1

0

‖vt‖2W + γ ‖Pt(vt − wt)‖2W +
∥∥∥√F (Qt)zt

∥∥∥2
L2
dt (3.12)

is given by the following set of geodesic equations :
(L+ γPtLPt)vt = − 1

µK ? (f(Qt)zt∇It) + PtLPtwt

∂tzt = −f(Qt)
−1 [∇ · (f(Qt)ztvt) + ∂tf(Qt)]

∂tIt = −vt · ∇It + µQtzt

(3.13)

Proof. We will find the geodesic equations 3.21 from the image evolution 3.11 and the cost
functional EC by doing the variations according to images I and vector fields v successively
for solving their Euler-Lagrange Equations. To do so we define two Lagrangian:

LI(t, I, İ) = EC(•, v) and Lv(t, v, v̇) = EC(I, •) (3.14)

We start by computing the fields variations h with respect to v by finding Lv’s gra-
dient. As ‖v‖2W = 〈Lv, v〉L2 =

∫
σ∈S

‖v‖2Vσ
dσ =

∑
σ∈S

〈
K−1

σ v, v
〉
L2 , its differential is

Dv ‖v‖2W .h =
∑

σ∈S

〈
K−1

σ v,h
〉
L2 . (see Section 2.2.4.c and 2.5.2.b)

For the generalised weighted norm on residual, we first need to note that we can re-write
Equation 3.11 such as

∂tIt = vt · ∇It − µ
F (Qt)

f(Qt)
zt (3.15)

leading to
‖z‖2F (Q) =

〈
z, 1
µ
f(Q)(∂tI − v · ∇I)

〉
L2

(3.16)

thus

DvLv · h =

∫ 1

0

〈
Lvt + γPtL(Pt(vt − wt)) +

1

µ
f(Qt)zt∇It,ht

〉
L2

dt. (3.17)

One can remark that Dv̇Lv = 0 so its Euler-Lagrange equations are :

∇vLv − ∂t∇v̇Lv = 0

⇔ Lvt + γPtL(Pt(vt − wt)) = − 1

µ
f(Qt)zt∇It

⇔ (L+ γPtLPt)vt − PtLPtwt = − 1

µ
f(Qt)zt∇It

⇔ (L+ γPtLPt)vt = − 1

µ
f(Qt)zt∇It + PtLPtwt

(3.18)

using the linearity of the operator L and K−1 = L being its inverse operator.
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We can now compute the variations of LI with respect to I and İ. One can check that
the differential of ‖•‖2V by I and İ is zero and using Equation 3.16 find:

DILI · h = 2

∫ 1

0

〈
zt,

1

µ
f(Qt)∇ht · vt

〉
L2

dt by integration by part

=

∫ 1

0

〈
− 2

µ
∇ · (f(Qt)ztvt),ht

〉
L2

dt (3.19)

SimilarlyDİLI ·h =
∫ 1

0
〈 2µf(Qt)zt,ht〉L2dt. We can now tackle the Euler-Lagrange equations:

∇ILI − ∂t∇İLI = 0

⇔ − 2

µ
∇ · (f(Qt)ztvt)− ∂t

[
2

µ
f(Qt)zt

]
= 0

⇔ f(Qt)∂tzt = −∇ · (f(Qt)ztvt) + zt∂tf(Qt)

⇔ ∂tzt = − 1

f(Qt)
[∇ · (f(Qt)ztvt) + zt∂tf(Qt)] (3.20)

Finally, the combination of Equations 3.11, 3.18 and 3.20 describe the searched geodesic
variations.

With this theorem, we have shown that the Riemannian metric EC admit a minimising
path formulation for the Euler-Lagrange equations. Thus, among the paths matching two
images, we can choose the minimising one by solving the exact matching problem under
constraints of Equation 3.2. As one can note, the proof and reasoning are very similar to
the one we have presented in Section 2.4.

As one can notice, it this version of the vector field evolution (Equations 3.18) one apply
the differential operator PtL. It is problematic because, as detailed in Section 2.2.2.c, we
define L through its inverse K, a Gaussian smoothing kernel or a combination of those.
It results that we don’t know the explicit expression of L and are not able to compute
PtLPt nor inverse PtL. To overcome this difficulty, we will approximate PtLPt ≈ LPt. This
approximation is theoretically challenging because:

• If Pt is a binary mask, one might argue that if

– in all the open domain where Pt(x) = 1, one has PtLPtv = LPtv = Lv

– in all the open domain where Pt(x) = 0, one has PtLPtv = LPtv = 0

– at the boundary, the mask is discontinuous, which implies that LPtv is not de-
fined in the classical sense, and becomes a distribution (with enough smoothness
assumption on v). Hence PtLPtv does not equal LPtv at this boundary.

• Conversely, if Pt is a smooth mask taking values between 0 and 1, then LPtv is well
defined even in the classical sense. However, it remains that PtLPtv is not equal to
LPtv for every x such that 0 < Pt(x) < 1.

Nevertheless, this approximation holds reasonably well over the majority of the domain,
at least in the examples tested in this document. Thus, the geodesic equations 3.13 of
Theorem 3.1 can be re-written as follows:
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Proposition 3.1. If we assume that PtLPt = LPt then the geodesic equations 3.13 can be
re-written such that:

vt = − 1
µ(1+γPt)

K ? (f(Qt)zt∇It) + γPt

1+γPt
wt

∂tzt = −f(Qt)
−1 [∇ · (f(Qt)ztvt) + ∂tf(Qt)]

∂tIt = −vt · ∇It + µQtzt

(3.21)

Proof. This set of equations can be deduced by rewriting the Equivalences 3.18 within
Theorem 3.1:

∇vLv − ∂t∇v̇Lv = 0

⇔ Lvt + γPtL(Pt(vt − wt)) = − 1

µ
f(Qt)zt∇It

⇔ Lvt + γL(Pt(vt − wt)) = − 1

µ
f(Qt)zt∇It

⇔ (1 + γPt)vt = − 1

µ
K ?

(
f(Qt)zt∇It

)
+ PtLPtwt

(3.22)

by linearity of the operator L and with K = L−1, with L being a differential operator.

In the rest of the document, we will always make this assumption and refer to Equations
3.21 when writing Constrained Metamorphosis Geodesic. Accordingly, in Section 3.1.3.b we
will detail some particular cases using Proposition 3.1.

In practice we solve the problem in a non-exact minimisation approach, using geodesic
shooting as we previously covered for Metamorphosis in Section 2.4.1. We minimise the
cost:

H(z0) = Sim(I1,T ) + λ

[
‖v0‖2W + γ ‖P0(v0 − w0)‖2W +

∥∥∥√F (Q0)z0

∥∥∥2
L2

]
(3.23)

In theory, the Sim function could be chosen and changed without changing the geodesics
nature. However, it will have an impact on convergence speed, and potentially on the
direction of approach of the optimal path (e.g: approaching the target by the ‘top‘ rather
than the ‘left’). If one problem admits more than one minimising geodesic to match two
images, it could result in different matching strategies. By default, I use the L2 norm on
images which is the Ssd. Note that we can set λ = 0 and still retrieve good registration as
long as we follow the geodesics. Before getting to the practical implementation of the CM
framework, let us list more convenient particular cases of Theorem 3.1 taking into account
Proposition 3.1.

3.1.3.b Particular cases and remarks

We will now give some particular cases of Theorem 3.1 taking into account Proposition 3.1
that can be used depending on the needs. We set as a convention that when we talk about
a method (e.g.: Weighted Metamorphosis) we will set f constant (e.g: f(M) = ρ) unless
we specify otherwise.
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WEIGHTEDMETAMORPHOSIS (WM) is the case when one does not try to orient the field and is
obtained by setting γ = 0. If we choose f in its simplest form: f(M) = ρ (i.e: F (M) = ρM)
then we obtain the Weighted Metamorphosis we described in François et al. [2022]. Indeed
when γ = 0 and setting f as a constant function applying the Theorem 3.1 one gets the
geodesic set of equations: 

vt = − ρ
µK ? (zt∇It)

∂tzt = −∇ · (ztvt)
∂tIt = −∇It · vt + µQtzt

(3.24)

Choosing f as a constant function makes the formula very close to the Metamorphosis case
as it removes its time derivatives from the system, and therefore it is easier to understand
and implement.

One could find making f more complex interesting by, for example, enhancing the flow
at mask borders by defining:

F (M) =M(1 + ρ|∇M |) (3.25)
This slightly more advanced function allows giving a factor of multiplication at the border
of the mask. If ρ > 0 the vector field will be stronger at its edge.

Let’s check if the function induces well-defined geodesics. As f(Mt) = 1 + ρ|∇Mt| we
have f(M(t,x)) = 1 when the mask is constant on a compact (i.e.: ∃ε > 0,∀x ∈ B(x, ε)
such as ∇Mt(x) = 0), and ∇Mt < 1 so F (Mt) < 1 + ρ therefore f is well defined.

There is more work for computing the time derivative of f . As

∂t
∣∣∇Mt(x)

∣∣ = ∂t

(
d∑

i=1

(∂xi
M(t,x))2

) 1
2

=

∑d
i=1 ∂xi

M(t,x)∂t∂xi
M(t,x)∣∣∇Mt(x)

∣∣
=

∇M(t,x)∇∂tM(t,x)∣∣∇Mt(x)
∣∣

we have ∂tf = ρ∇M(t,x)∇∂tM(t,x)∣∣∇Mt(x)
∣∣ . Note that ∂tMt = ∇Mt ·wt might already been computed

during the making of Mt and so we can approximate ∂tMt = 1
δt (Mt+δt −Mt) Finally, we

obtain the geodesic equations :
vt = −K ? ( 1µ (1 + ρ|∇Mt|)zt∇Mt)

∂tzt = − 1
1+ρ|∇Mt|

[
∇ · ((1 + ρ|∇Mt|)ztvt) + ρ

µ
∇M(t,x)∇∂tM(t,x)∣∣∇Mt(x)

∣∣ zt

]
∂tIt = −∇It · vt + µMtzt

(3.26)

We have an example of function f for which geodesics exists. It demonstrates how
someone could introduce a biological model or tweak the framework further for their specific
applications. However, in practice, this system requires choosing the integration carefully.
Moreover, the complexity of the formula will probably make the computation slow.

ORIENTED METAMORPHOSIS (OM) are obtained when the function f(M) = ρ and the mask
Qt is set to one everywhere. Namely, it is the case of classical Metamorphosis with the
oriented norm. Then the geodesics are

vt = − ρ
µ(1+γPt)

K ? (zt∇It) + γPt

1+γPt
wt

∂tzt = −∇ · (ztvt)
∂tIt = −∇It · vt + µzt

(3.27)

130



Co
ns

tra
in
ed

M
et
am

or
ph

os
is

Co
ns

tra
in
ed

M
et
am

or
ph

os
is

Co
ns

tra
in
ed

M
et
am

or
ph

os
is

Co
ns

tra
in
ed

M
et
am

or
ph

os
is

One can observe that the addition of the oriented norm impacts the vector field geodesic
equation only. With this formulation we can easily balance w’s influence on v, indeed
γ

1+γ −→
γ→+∞

1, converge quickly and stays between 0 and 1 for γ ≥ 0. If one set γ ≈ p = µ/ρ

then both members of v have the same importance.

COMBINATION WITH A BIOPHYSICAL MODEL Gooya et al. [2011b, 2012] implemented a joint
model for registering and Segmenting glioblastomas through a biophysical model using a
PDE system. Assuming it can be derived, the Constrained Metamorphosis framework allows
adding such constraints within the geodesic equations via a combination of the norms N
and NW . We do not give the details here and refer to future publications.

CONSTRAINED METAMORPHOSIS PARAMETER TUNING HINTS: Lets assume than f(M) = ρ,
using Theorem 3.1 we have the geodesics equations:

vt = − ρ
µ(1+γPt)

K ? (zt∇It) + γPt

1+γPt
wt

∂tzt = −∇ · (ztvt)
∂tIt = −∇It · vt + µQtzt

(3.28)

One can remark that there are at least three constants that are delicate to tune: µ, ρ and
γ. By observing the systems of Equations 3.24 and 3.28 first line, we can deduce that what
matters is the quotient p = ρ

µ which help scale the vector field. Once µ set, by default to
1, it is easier to tune p than ρ. Then having chosen p in CM we want to set the amount of
influence of the field wt on vt, which is controlled by γ. As both terms in vt are divided by
(1 + γPt), it is more convenient to set γ = k × ρ and I advice to choose k ∈ [0, 1]

3.1.4 How to use Constrained Metamorphosis with Demeter

3.1.4.a An implementation easy to use

Just as for Metamorphosis, the code is divided into two classes. A first one,
Constrained_meta_path inheriting from Geodesic_integrator implementing the integra-
tion of the geodesic equations 3.28. It takes as parameter for initialisation a class inheriting
from Residual_norm_function, which implements the squared norm ‖z‖2F (M) (see Equa-
tion 3.4). By default we pass the class Residual_norm_identity which sets f = Id. A
second one, Constrained_Optim inheriting from Optimize_geodesicShooting implements
the geodesic shooting algorithm, minimising Equation 3.23. It takes as argument a class
inheriting from Data_cost and implements a similarity function in between I1 and T . In
this thesis, I didn’t have time to study properly the effects of different data metrics, but
having it in mind, I made it easy to change Sim in the code. The default one is Ssd. The
code displayed in Code 3.1 is a wrapper function API executing the optimisation.

Source Code 3.1: Constrained Metamorphosis usage

1 def constrained_metamorphosis(source,target,residual,
2 rf_method,mu,rho,mask_w,
3 mp_orienting,gamma,mask_o,
4 sigma,cost_cst,sharp,
5 n_iter,grad_coef):
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6 mask = mp_orienting.image_stock.to(source.device)
7 orienting_field = mp_orienting.field_stock.to(source.device)
8

9 if rf_method == 'identity':
10 rf_method = Residual_norm_identity(mask,mu,rho)
11 elif rf_method == 'borderBoost':
12 rf_method = Residual_norm_borderBoost(mask,mu,rho)
13 else:
14 raise ValueError(f"rf_method must be 'identity' or 'borderBoost'")
15

16 residual.requires_grad = True
17

18 mp_constr = Constrained_meta_path(orienting_mask=mask,
19 orienting_field=orienting_field,
20 residual_function=rf_method,
21 mu=mu,rho=rho,gamma=gamma,
22 sigma_v=sigma,
23 sharp=sharp,
24 # no n_step, it is defined from mask.shape[0]
25 )
26 mr_constr = Constrained_Optim(source,target,mp_constr,
27 cost_cst=cost_cst,
28 optimizer_method='adadelta')
29 mr_constr.forward(residual,n_iter=n_iter,grad_coef=grad_coef)
30 return mr_constr

3.1.4.b Easy to tweak: Reversed Constrained Metamorphosis model definition and
implementation

In this section, we aim to demonstrate how we can use both the theoretical framework and
our implementation to test different ideas. As a matter of example, we aim to change the
direction of the registration, deforming the image with lesions to match healthy areas. It is
a common practice as it works well for retrieving plausible deformations Han et al. [2020a];
Maillard et al. [2022]. For Metamorphosis, however, it is less clear how to retrieve the pixel
intensity difference.

Let’s first define the model step by step mathematically. I deliberately swap the images
to still have T the image with the tumour and S the healthy one even if now the source
image is T and the target S. N will be the necrosis segmentation and Q the Oedema one.
The objective here is to use WM for registration using the mask Q which will follow along
with the deformation and make vanish the necrosis mask. This is obtained by re-expressing
the Equation 3.12 as

EC(I, v) =
∫ 1

0

‖vt‖2W +
∥∥∥√Q ◦ (ϕv)−1zt

∥∥∥2
L2
dt (3.29)

with ϕv
t being the deformation at a given time t integrated with Equation 2.43. Using
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Theorem and Proposition 3.1 we obtain the geodesic equations to integrate over:
vt = − ρ

µK ? (zt∇It)
∂tzt = −∇ · (ztvt)
∂tIt = −∇It · vt + µ(Q ◦ (ϕv)−1)zt

(3.30)

Finally and as seen before, we solve the problem with geodesic shooting minimising the cost:

Jr(z0) = ‖I1 − S‖2L2 + κ
∥∥N ◦ Φ−1

∥∥2
L2 + λ

[
‖v0‖2W + ρ‖z0‖2Q◦Φ−1

1

]
. (3.31)

I1 and Φ being deduced from the PDE system 3.30 and with κ,λ, ρ ∈ R+. We added the
term κ

∥∥N ◦ Φ−1
∥∥2
L2 to the data cost with the idea to help the algorithm to make vanish

the necrosis by deformation. Note that following the terminology introduced in 3.1.3.b, we
perform a kind of Weighted Metamorphosis as we do not constrain directly the v.

With our implementation of the Constrained Metamorphic framework, it is quite easy to
test model variations. In this example (Code 3.2) we have set a new data cost and custom
residual norm. Starting with the data cost, we write the class Reduce_field_ssd (line 5)
that inherits from the abstract class DataCost and we combine the default SSD cost with
the Ssd class. Then we cannot use the default Residual_norm_function as we need to
get all the deformations of oedema masks while we compute the vectors fields v. At this
point, we need to implement Equations 3.3 and 3.15 within the method F_div_f (line 28)
which by default returns mu times the mask. At each integration steps it will compute
the intermediary deformation of the mask before intensity additions. Finally, the function
execute_reduce performs the whole optimisation.

Source Code 3.2: Example of a custom Constrained Metamorphosis

1 import metamorphosis as mt
2

3 class Reduce_field_ssd(mt.DataCost):
4 """ norm || N \circ Phi^{-1} ||^2"""
5 def __init__(self,target,mask_to_reduce,kappa = 1):
6 super(Reduce_field_ssd, self).__init__()
7 self.ssd = mt.Ssd(target)
8 self.mask_to_reduce = mask_to_reduce
9 self.mult = kappa/prod(target.shape[2:])

10

11 def __call__(self):
12 mask_deform = tb.imgDeform(self.mask_to_reduce.cpu(),
13 self.optimizer.mp.get_deformator(),
14 dx_convention='pixel')
15 return self.ssd() + self.mult * (mask_deform**2).sum()
16

17 class Residual_identity_picker(mt.Residual_norm_function):
18 """ norm ||\sqrt{ Q \circ \diffi} z_t||^2"""
19 def __init__(self,seg_necrosis,n_step,mu=1,rho=None):
20 super(Residual_identity_picker, self).__init__(seg_necrosis,mu,rho)
21 self.temp_int = vff.FieldIntegrator(method='temporal',save=False)
22 self.n_step = n_step
23
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24 def f(self,t): # mandatory: f is abstract in Residual_norm function
25 return self.rho
26

27 def F_div_f(self,t):
28 """ perform the operation F(M)/f(M) """
29 deform_mask = self.mask.clone()
30 if t > 0:
31 field = self.geo_int.field_stock[:t] / self.geo_int.n_step
32 deformator = self.temp_int(field,forward=False)
33 deform_mask = tb.imgDeform(self.mask,deformator,
34 dx_convention='pixel')
35

36 return deform_mask * self.mu
37

38 def dt_F(self,t):
39 return 0
40

41 def execute_reduce(residual,lamb,mu,rho,kappa,sigma,n_step,n_iter):
42 residual.requires_grad = True
43

44 reduce_dTerm = Reduce_field_ssd(target,mask_necrosis,kappa)
45

46 rf = Residual_identity_picker(mask_oedema,n_step,mu,rho)
47 mp_reduce = mt.Constrained_meta_path(residual_function=rf,
48 n_step=n_step,
49 sigma_v=sigma,
50 sharp=True
51 )
52 mr_reduce = mt.Constrained_Optim(source,target,mp_reduce,
53 cost_cst=lamb,
54 data_term= reduce_dTerm
55 )
56 mr_reduce.forward(residual,n_iter=n_iter,grad_coef=1)
57

58 return mr_reduce

Results analysis obtained with this model can be found in Section 3.2.4

3.2 Toy-Examples: Construction & Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Before dealing with real data, namely brain 3D MRI scans, we will demonstrate our methods
on 2D toy-Examples. It was interesting for us to take some time to develop good toy
examples for our registration tasks, in order to better control the characteristics of source
and target images, to reduce computational time (fewer pixels) while debugging and to ease
visualisation and interpretation of results. Simply taking MRI slices would have not been
practical due to the 3D nature of the displacement and to the fact that images are highly
complex. Using a controlled environment allowed us to better understand the proposed
method and the role of its hyper-parameters.
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3.2.1 Weighted Metamorphosis - The growing mask

In this section, we will present our work published in François et al. [2022] where we in-
troduced Weighted Metamorphosis for the first time. In the next section, we will present
more refined toy examples. However, the study presented in this section justifies the need
of having a temporal growing mask. As one can retrieve from Section 3.1.2.a and Theorem
and Proposition 3.1 we minimise the cost:

JWM(z0) = ‖I1 − T‖2L2
+ λ

[
‖v0‖2V + ρ‖z0‖2M0

]
, λ ∈ R+, I0 = S (3.32)

where ‖z0‖2M0
is the identity weighted norm (i.e.: ‖zt‖2Mt

= 〈zt,Mtzt〉L2) and I1 is obtained
by integrating the geodesic equations 3.24.

The definition of the weight function Mt : [0, 1]×Ω → [0, 1] is quite generic and could be
used to register any kind of topological/appearance differences. Here, we restrict to brain
tumour images and propose to use an evolving segmentation mask as a weight function. We
assume that we already have the binary segmentation mask B of the tumour (comprising
both oedema and necrosis) in the pathological image and that healthy and pathological
images are rigidly registered so that B can be rigidly moved onto the healthy image. Our
goal is to obtain an evolving mask Mt that somehow mimics the tumour growth in the
healthy image starting from a smoothed small ball in the centre of the tumour (M0) and
smoothly expanding it towards B. We generate Mt by computing the LDDMM registration
between M0 and B. Please note that here one could use an actual biophysical model (Gooya
et al. [2011a]; Scheufele and et al. [2019]) instead of the proposed simplistic approximation
based on LDDMM. However, it would require prior knowledge, correct initialisation and
more than one imaging modality. The main idea is to smoothly and slowly regularise the
transformation so that the algorithm first modifies the appearance only in a small portion of
the image, trying to align the surrounding structure only with deformations. In this way, the
algorithm tries to align all structures with shape changes adding/removing intensity only
when necessary. This should prevent the algorithm from changing the appearance instead of
applying deformations (i.e.: better disentanglement) and avoid wrong overlapping between
new structures (e.g. tumour) and healthy ones.

Figure 3.1 presents qualitative results. We can observe the differences in the geodesic
image evolution for LDDMM, Metamorphosis and Weighted Metamorphosis with a constant
and evolving mask. First, LDDMM cannot correctly align all grey ovals and Metamorphosis
results in an image very similar to the target. However, most of the differences are accounted
for with intensity changes rather than deformations. By contrast, when using the proposed
evolving mask (fourth row), the algorithm initially adds a small quantity of intensity in the
middle of the image and then produces a deformation that enlarges it and correctly pushes
away the four grey ovals. In the third row, a constant mask (Mt =M1,∀t ∈ [0, 1]) is applied.
One can observe that, in this case, the bottom and left ovals overlap with the created central
triangle and therefore pure deformations cannot correctly match both triangle and ovals.

In all methods, the registration was done with the same field smoothness regularisation σ
and integration steps. Please note that the four grey ovals at the border are not correctly
matched with LDDMM and, to a lesser extent, also with our method. Two factors can
explain this. First, the L2-norm data term since these shapes do not overlap between the
initial source and target images and therefore the optimiser cannot match them. Secondly,
the construction of the Figure 3.1 template was made using Inkscape and as I found out
later the images could not be matched by a single diffeomorphic deformation. Indeed the
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3.2. TOY-EXAMPLES: CONSTRUCTION & EXPERIMENTS 136

Figure 3.1: Comparison between LDDMM, Metamorphosis and WM. Image registration toy example.
Differently from the Source image (S), the Target image (T) has a big central triangle that has grown

“pushing” the surroundings ovals. Note that the bottom and left ovals in S overlap with the triangle in T. The
two last rows show our method using a constant and time-evolving mask. The used mask is displayed in the top

right corner of each image.
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Figure 3.2: Construction of a mimicking Glioblastoma toy-Example, see Figure 1 for a color code explanation.

background deformation of the oval on the circle and the displaced organ were not really
compatible. In more technical terms, the target was not in the deformation orbit of the
image, this was corrected in the next section. The takeaway message of this section was the
need for a growing mask to help generate the ’mass effect’ deformation.

3.2.2 The construction of a refined Toy-Example

Shortly after the paper presented in the previous section submission (i.e.: François et al.
[2022]), I understood why for some couple of brain MRIs the algorithm was failing. To do so
I needed the intuition on why it was working on the toy example of Section 3.2.1. By letting
the intensity appear only in the middle of the ‘brain’, we create an intensity variation and
thus an edge. Recalling that the field is obtained from an equation such as vt = K? (zt∇It),
a potential field pushing away other structures will arise. However, on real data, if the
image is textured at the tumour location, the edges could be badly oriented thus preventing
the expected mass effect push. Besides this toy example mimic only the necrosis growth,
forgetting about the infiltrative intensity changes. The need for a more refined toy example
was pressing.

The previous toy example construction was made using the drawing vector graphic tool
Inkscape. This time the brain background will be very textured, presenting both registration
problems of necrosis and oedema apparition. The construction process is illustrated in Figure
3.2. It is decomposed into three phases :
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STEP 1: We apply to the initial image a deformation obtained from a bspline field obtained
from a randomly chosen control point.

STEP 2: From a small ball, we generate a random deformation mimicking a necrosis growth
using a bspline field again with random control points. As explained in Code 3.3, we first
generate a random smooth field everywhere on Ω, then restrain this field around the necrosis
smoothed edges. We apply the deformation deduced from this field to an image and repeat
the process. We want the field to be random but keep some control over it. A first-time,
having a general global deformation progressively allowing finer deformation. It is done on
line 8 by increasing the number of control points after a few iterations (variables p and q).
After having generated the deformation series, we integrate over the vector fields to have a
single deformation that we can apply to the Source image of step 1.

STEP 3: Eventually, we add the ‘Oedema infiltration’ by adding .1 to the image at a location
given by a predefined mask.

To sum up, four parameters can be chosen randomly. 1. The background deformation
control matrix, needs to have strong deformation at the centre only. 2. The cancer initialisa-
tion point, needs to be placed around the centre of the Oedema mask. 3-4. The deformation
amount for cancer growth is controlled by the increments number and the amplitude of the
bspline field.

Source Code 3.3: Necrosis growth construction for toy-example

1 sigma = 14
2 smooth = GaussianBlur2d(kernel_size, sigma)
3

4 n_iter = 30
5 field_stock = torch.zeros((n_iter,)+size+(2,))
6 necrosis = ini_ball.clone() # Initialisation of the tumour as a small ball
7 for i in range(n_iter):
8 p = q = max(4, i//4)
9

10 # Building a field
11 cm = (torch.rand((2,p,q))*2-1)*50 # Random control points
12 field = field2D_bspline(cm,size,degree=(2,2),dim_stack=-1)[None]*10
13

14 # restraining the field to the edges of the necrosis
15 grad_necrosis = tb.spacialGradient_2d(cancer).sum(dim=2)[0]
16 field = smooth(grad_cancer * field)
17 field_stock[i] = field[0] # save
18

19 # incremental necrosis growth
20 deform = reg_grid - field
21 necrosis = tb.imgDeform(necrosis,deform,dx_convention='pixel')
22

23 # FieldIntegrator is Explained in Chapter 1
24 int_deformator = FieldIntegrator(method='temporal')(field_stock,forward=False)
25 int_deformation = FieldIntegrator(method='temporal')(field_stock,forward=True)
26
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27 cancer_sharp = tb.imgDeform(ini_ball,int_deformator,dx_convention='pixel')

(a) Registration evolution

(b) Deformation only

Figure 3.3: Weighted Metamorphosis fails on the refined ToyExample mu=1,rho=10,gamma=0 [ add circle ?]

As we have seen, we have made a procedure to build a toy example data set, with the
perspective to perform a benchmark. However, in this dissertation, we study the registration
of only the image pair of Figure 3.2. One advantage of the textures added compared to
the white background toy example, is that we can easily track the movement with the
background as well. We use two quantitative metrics to evaluate the registration quality
that focuses on the deformation:

• Ovals dice score: On both images, there are four ovals, representing organs, that
get deformed. In Figure 3.2, one can see the actual displacement. We can retrieve a
ground truth mask of these ovals by applying the spline deformation to the oval mask
of the initial image. We can compare an estimated deformation with the DICE score
of both estimated and ground truth deformed oval masks.

• Landmarks: With the help of the textured background, we set manually landmarks,
that will be used to validate the deformations retrieved with the proposed methods.
Landmark distance works well for validating images and will be also used later on real
data. One can argue that we could also directly compare our estimated deformations
with the bspline generated one. This is true and it will definitely be the case when
benchmarking on a toy example dataset.

With this more realistic toy example, we see that Weighted Metamorphosis mismatch
images near the tumour, as it can be seen in Figures 3.3 and 3.8 (right column). Note that
the procedure to construct the mask is the same as the one for the Oedema mask in Section
3.2.3.a. On the image showing deformation only, we can clearly see that the displacement
induced by the ‘tumour growth’ has been explained by intensity changes. Note that there
are a lot of ripples in the intensities addition, it will be discussed later in the next section.
This is the kind of behaviour that has motivated the development of the Oriented norm
(discussed in Section 3.1.2.b) and leads to the next section.
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3.2.3 Constrained Metamorphosis

3.2.3.a Building priors

Figure 3.4: Visualisation of the masks Pt,Qt and the deformation induced by wt Each row shows the masks
evolution through time. In the last column, we can see superposed the deformations generated by wt (up) and

wt × Pt (below).

Before executing CM, it is necessary to carefully compute constraining priors. We need
two growing masks and a temporal vector field. A mask Qt with the information of the
Oedema location, another one Pt for the necrosis and a vector field wt transporting the
mask information. We construct these three objects in one LDDMM registration detailed
in Algorithm 3.4. First, we build a target image using the Oedema and Necrosis segmen-
tations, setting the pixels at .5 and 1 at respectively the Oedema and necrosis location
else 0. Secondly, we do the same for a source image with small balls at each segmentation
barycentre. Finally, we register the source on the target, getting a temporal field Wt and
image Mt. Mt is then used for our mask of interest, taking values at each time close to 1
as the necrosis mask Pt and close to .5 as the oedema mask Qt. We then smooth the mask
Pt only as we want to use the field wt near the necrosis but keep the fields smooth near its
edges. One can see the masks in Figure 3.4.

Source Code 3.4: Pt,Qt and wt construction

1 # make target image
2 val_o,val_n = .5,1 # Oedema and necrosis pixel values
3 segs = torch.zeros(seg_necrosis.shape)
4 segs[seg_oedeme > 0] = val_o
5 segs[seg_necrosis > 0] = val_n
6

7 # make source image
8 ini_ball_n,_ = tb.make_ball_at_shape_center(seg_necrosis,force_radius=5)
9 ini_ball_o,_ = tb.make_ball_at_shape_center(seg_necrosis,force_radius=18)

10 ini_ball_on = torch.zeros(ini_ball_o.shape)
11 ini_ball_on[ini_ball_o > 0] = val_o
12 ini_ball_on[ini_ball_n > 0] = val_n
13

14 # LDDMM registration
15 n_steps = 10
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16 residuals = 0 # short-cut for setting residuals as a zero matrix
17 sigma = [3,7,20] # multi-scale registration
18 mr_mask =lddmm(ini_ball_on.to(device),segs,residuals,
19 sigma=sigma,cost_cst=.0001,integration_steps=n_steps,
20 n_iter=2500,grad_coef=50)
21

22 # Get mask and field
23 sig = 14
24 smooth = kornia.filters.GaussianBlur2d((sig*6+1,sig*6+1), (sig, sig))
25

26 # Oedema mask
27 mask_o = mr_mask.mp.image_stock.clone() # We want to have values close to val_0
28 mask_o[mask_o > val_o - .02 ] = 1 # to avoid unwanted holes in the mask.
29

30 # Necrosis mask
31 mask_n = mr_mask.mp.image_stock.clone()
32 mask_n[mask_n <= val_o + .05] = 0
33 mask_n[mask_n > 0] = 1
34 mask_n = smooth(mask_n)
35

36 w = mr_mask.field_stock

3.2.3.b Results

Having built priors, we can register our toy examples. Using Theorem and Proposition 3.1
for retrieving geodesic equation and minimising the cost:

JCM(z0) = ‖I1−T‖2L2
+λ
[
‖v0‖2W + γ ‖P0(v0 − w0)‖2W + ρ‖z0‖2Q

]
, λ ∈ R+, I0 = S (3.33)

gets us our registered images and matching deformation.
As one can see in Figures 3.6(a-c) the deformation deduced by CM gives good results

qualitatively and quantitatively (see Validation metrics in Section 3.2.2). One can compare
LDDMM, M, WM and CM outputs in Figure 3.7, and find dice and landmarks scores for each
method. It is clear that CM surpass all others methods retrieving the closest deformation
to the ground truth. Only talking about deformations: (far-left) LDDMM try to explain
the necrosis apparition by deforming the upper organ (red arrow),

(centre-left) pure Metamorphosis archive to explain the intensities changes at the expense
of the amount of deformation. Note that depending on the parameter ρ, the retrieved
deformation could be the same as LDDMM (ρ too high) or the identity (ρ close to zero).
(centre-right) Weighted Metamorphosis improves greatly the result while having trouble
detaching the necrosis from the organ. Indeed during the mask’s growth, the top organ
overlaps the mask and is therefore explained by intensity additions, failing to recover this
deformation locally. (far right) Finally, CM manage to register correctly all organs and gets
the closest score for landmark distance (see Figures 3.6(a-c)). The landmark that failed to
be matched is the one in the background textures, which is quite hard to match because of
its high local similarities. In addition, in Figure 3.6c one can see that the background was
not paired very precisely near the necrosis, which is expected as the necrosis removed some
background material and induce strong deformations.
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Figure 3.5: Constrained metamorphosis initial
momentum z0

If we examine intensity changes in qual-
ity, some may be disappointed. Indeed
the entanglement problem of Metamorpho-
sis discussed in Chapter 2 is still present
here, only restrained to the mask support.
A balance between deformation and topo-
logical addition is still to be found. One
can observe ripples appearing, (orange ar-
rows in Figure 3.6a and 3.7). It is unclear
if it is caused by the residuals z being used
both for generating the vector fields vt and
the intensities additions or because of inte-
gration instabilities. Indeed, especially in
these images, the background textures have
a lot of variations that need to be displaced,
we find these lines as the blue/red edges in
the momentum (see Figure 3.5). Unfortu-
nately, they end up added to the final image.
This is a structural flaw of Metamorphosis
that needs more work to be addressed. ;

3.2.4 Reversed Constrained Metamorphosis on toy-Example

We present here results from the variation of the ’Reversed’ Weighted Metamorphosis
(RWM) model defined in Section 3.1.4.b. As it is mentioned, we aim to transform the
cancerous brain into the healthy one. In this model, to constrain the intensity addition, we
simply rearrange the mask Qt from Section 3.2.3.a in reverse order (i.e.: Q1−t).

The registration result of RWM on the toy-Examples is displayed in Figure 3.9. By
analysing panel (a) one can see that the tumour has been pushed to a fine line with a rather
satisfying registration at first glance. Moreover one can clearly see that the background got
very close to the right colour, despite the texture making it difficult. We measure the dice
score and the landmark distance by applying the inverse deformation on the initial image,
giving very good quantitative results as can be seen in the images on the right. Qualitatively,
we can ponder these results as the deformation is both very strong and seems too localised.
The estimated matching pushed the ‘cancer’ to a small line about at the location of the ball
as initialised in step 2 of Figure 3.2. In the surroundings of the tumour, within the oedema
part of the registration has been done by intensity changes. By a close inspection of panel
(c) central image texture, one can see that the deformation gets quite close to the source
image, which is impressive given the large deformation and the data occlusion.

The vanishing of the tumour is coherent with the data term κ
∥∥N ◦ Φ−1

∥∥2
L2 we added,

which intends to make the necrosis mask disappear. However, in Figure 3.10 one can see that
changing the importance of κ has little impact on the registration. Worse, as the number
of iterations to gets below a given value (‘nifc’ in Figure 3.10) indicates to us, the higher κ
was, the longer one had to wait for convergence. Therefore, both ruling out this hypothesis
and challenging the decision to add a new data term.

In conclusion, the model has generated a deformation that effectively addresses the dif-
ficult registration problem. However, there remains uncertainty about how to recover the
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(a) Registration summary

(b) Registation evolution (top) with mask superposition (bottom)

(c) Deformation only

Figure 3.6: Constrained Metamorphosis on ToyExample. See Figure 1 for an image comparison colour code
explanation.
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3.2. TOY-EXAMPLES: CONSTRUCTION & EXPERIMENTS 144

t= 0.1

t= 1

t= 0.2

t= 0.8

Figure 3.7: Comparison of Metamorphosis-related methods on the forward direction. Each column
represents an image integration. The last row is a summary of the registration. See Figure 1 for an image

comparison colour code explanation.
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3.2. TOY-EXAMPLES: CONSTRUCTION & EXPERIMENTS 145

Figure 3.8: Constrained Metamorphosis sensibility to parameters. See Figure 1 for an image comparison
colour code explanation.
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information that was removed through intensity subtraction in order to re-incorporate it
into the final image.
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(a) Registration deformation (centre) and inverse deformation (right) summary

(b) Registration evolution (top) with mask superposition (bottom)

(c) Deformation only

Figure 3.9: Reversed Weighted Metamorphosis on toy example
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3.2. TOY-EXAMPLES: CONSTRUCTION & EXPERIMENTS 148

Figure 3.10: Reverse Weighted Metamorphosis sensibility to parameters. nifc: in each image right corner
corresponds to the first iteration number where the ssd was below 50. If the value is NaN, the optimisation

never reached a value smaller than 50.
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3.3 Registering Cancerous brains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section, we present the results of applying the Constrained Metamorphosis framework,
to real 3D MRI brain images with tumours, demonstrating its efficacy in tackling this
challenging registration problem. First, we will discuss the process of matching a healthy
brain template to a cancerous one, which is similar to the toy-example problem presented
in the previous section. In the second part of this section, we will investigate the use of our
framework to register cancerous brain MRIs with their follow-up surgery analogues. While
the framework was not initially designed for this purpose, we were able to take advantage
of the BraTSReg2022 Challenge to obtain relevant data and validation tools, enabling us to
further evaluate the effectiveness of our method.

3.3.1 From template to cancerous

3.3.1.a BraTS2021 Dataset and sri template

Figure 3.11: Visualisation of BraTS2021

The center for Biomedical Image Computing & Analytics (CBICA) of the Perelman school
of medicine run the Brain Tumour Segmentation (BraTS) challenge for ten years. The
BraTS2021 challenge goal [Baid and et al., 2021; Menze and et al., 2015; Bakas et al.,
2017] was to segment efficiently intrinsically heterogeneous brain glioblastoma sub-regions
in mpMRI scans. The sub-regions considered for evaluation are the ‘enhancing tumour’
(ET), the ‘tumorous core’ (TC), and the ‘whole tumour’ (WT) (see Figure 3.11). The ET
part is described by areas that show hyper-intensity in T1ce when compared to T1, but
also when compared to ‘healthy’ white matter in T1ce. The TC describes the bulk of the
tumour, which is what is typically resected. The TC entails the ET, as well as the necrotic
parts of the tumour. The appearance of the necrosis is typically hypo-intense in T1ce when
compared to T1. The WT describes the complete extent of the disease, as it entails the
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Table 3.1: Quantitative evaluation for different registration methods. Results were computed on a test set of 50
2D 240x240 images from the BraTS 2021 dataset. - (∗) SSD for CFM is computed over the domain outside the

mask.

Method LDDMM Meta. WM (ours) MAE Voxelm. CFM
SSD (final) 223± 51 36 ± 9 65± 71 497± 108 166.71± 37 49∗ ± 28
SSD (def.) - 112± 21 102 ± 76 865± 172 - -
Dice score 68.6± 11.9 74.1± 9.3 77.2 ± 10.1 60.6± 8.79 66.8± 10 45.0± 13.5

tumorous core and the peritumoral edematous/invaded tissue, which is typically depicted
by a hyper-intense signal in FLAIR. We must note the rare exception of the astrocytomas
(IDH-mutant, 1p19q non-codeleted) that present a T2/FLAIR mismatch [Deguchi et al.,
2020]. We approximate the necrosis part for building masks as the union of the Tumorous
core (CT) and the Enhanced part (ET). The Oedema is covered by the rest (WT).

For the challenge, they provided a set of 1600 MRI with four modalities: Native (T1),
contrasted and enhanced (T1ce), T2-weighted(T2) and T2-fluid Attenuated Inversion Re-
covery (FLAIR). It came along with a physician-made manual segmentation. Answering the
challenge is out of this chapter’s scope and it will be discussed in chapter 4, we decided to
use BraTS2021 segmentations for building our prior mask in a similar fashion than discussed
in section 3.2.2

This dataset provides a lot of test images and we still have to choose a source moving
image. We decided to use the SRI24 Altas [Torsten et al., 2010] as a normal human brain
anatomy standard reference. The main reason is the fact all images from BraTS2021 were
registered to this template and resampled to 1mm3 as part of their prepossessing pipeline
as stated in Bakas and et al. [2018]. Furthermore, the SRI template is well suited for label
propagation and spatial normalisation, providing very sharp images for a template.

3.3.1.b Weighted Metamorphosis on 2D MRI slices

As for Section 3.2.1, Our first attempt to solve this problem was published in François et al.
[2022]. For evaluation, we used T1 MR images from the BraTS 2021 dataset [Baid and et al.,
2021; Menze and et al., 2015]. At this time we had some issues with the registrations of 3D
images, so for each patient, selected the same slice for 50 patients resising them to 240x240
and making sure that a tumour was present. We then proceeded to register the healthy
brain template SRI24 (Torsten et al. [2010]) to each of the selected slices (see Fig.3.12 for
two examples). To evaluate the quality of the alignment we used three different measures
in Table 3.1:
1. the Sum of Squared Differences (SSD) (i.e.: L2-norm) between the target (T) and the
transformed source (S) images. This is a natural choice as it is used in the cost function.
2. the SSD between T and the deformed S without considering intensity changes. This is
necessary since Metamorphoses could do a perfect matching without using deformations but
only intensity changes.
3. A Dice score between the segmentations of the ventricles in the deformed S and T. The
ventricles were manually segmented. All methods should correctly align the ventricles using
solely pure deformations since these regions are (theoretically) not infiltrated by the tumour
(i.e.:, no intensity modifications) and they can only be displaced by the tumour mass effect.
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Figure 3.12: Registrations on MRI brain slices presenting brain tumours. Two examples from BraTS 2021
database Baid and et al. [2021]; Menze and et al. [2015]. Comparison of geodesic shooting for LDDMM,
Metamorphosis (M) and Weighted Metamorphosis (WM). (a&d) On the target images and the geodesic

integration, the temporal mask is indicated by the red outline. The final result of each integration can be seen
in the green outlined row. (b) The deformation grids retrieved from each method and (c) the template image
deformed without intensity additions for each concerned method. Purple arrows in columns 2 and 3 in the top
right part of each image show the evolution of one ventricle through registration. While M makes the ventricle

disappear and reappear, WM coherently displaces the structure. (d) Target images with the segmentation
outlined in red; the coloured image is its superposition with the source. see animations in GitHub in

notebook : brains_weightedMetamorphosis.ipynb
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We compared WM with LDDMM [Beg et al., 2005], Metamorphosis [Trouvé and Younes,
2005], using the implementation of François et al. [2021], Metamorphic Auto-Encoder (MAE)
[Bône et al., 2020], Voxelmorph [Balakrishnan et al., 2019] and Cost Function Masking
(CFM) [Brett et al., 2001] (see Table 3.1). Please note that we did not include other deep-
learning methods, such as Han et al. [2020b]; Maillard et al. [2022], since they only work
the other way around, namely they can only register images with brain tumours to healthy
templates.

As expected, Metamorphosis got the best score for SSD (final) as it is the closest to an
exact matching method. However, WM outperformed all methods in terms of Dice score
obtaining a very low SSD (both final and deformation-only). This means that our method
correctly aligned the ventricles, using only the deformation, and at the same time it added
intensity only where needed to globally match the two images (i.e., good disentanglement
between shape and appearance).

In this section, we discussed results for 2D images, which must be seen as proof of con-
cept. Indeed even if we did our best to select slices in both source and target images that
were displaying the same organs, the deformation induced by the cancer is likely to have
components perpendicular to the plane, making the problem impossible to solve. From now
on, all discussed results will be in 3D. However, the theory and the codes can be applied to
both.

3.3.1.c Constrain Metamorphosis prior information pipeline

More effort is required in constructing priors for Constrained Metamorphosis compared to
WM. In this section, we will elaborate on the pipeline employed for mask and field con-
struction, as outlined in Code 3.5. Similar to Section 3.2.3, the objective is to generate two
temporal masks: the first mask Qt emulates the whole tumour including the Oedema while
the second mask Pt represents the necrosis. One can incorporate intensity changes within
both masks and the field will be oriented around the necrosis one only. Accurate localisa-
tion of the ‘cancer’ initialisation is crucial when working with real data. The procedure for
constructing the masks can be divided into five steps.

STEP 1: We select the intersection of the white matter within the template and of the
Glioma segmentation in the target (see line 8). Indeed tumours typically originate in the
white matter and do not infiltrate the ventricles [Hanif et al., 2017]. This intersection makes
sense as the tumour will grow but not change its localisation. furthermore, as mentioned in
Section 3.3.1.a, all brains where rigidly aligned beforehand.

STEP 2: Instead of searching for the intersection barycentre or centroid, we determine the
Pole of inaccessibility to deal with the non-compact twisted shape that often results after
Step 1. The Pole of inaccessibility is a concept from geography that refers to the farthest
internal point in a closed surface. Although exact algorithms exist for polygons [Garcia-
Castellanos and Lombardo, 2007], we opt for a faster and more image-related approach. To
approximate the Pole of inaccessibility, we erode the segmentation until only a small seed
remains (lines 10-20), and compute its centre as the mean in each dimension.
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STEP 3: The seeds returned by step 2 being quite small, it would be hard to find a dif-
feomorphism to the segmentations. The initial necrosis mask Pt is obtained by dilating it.
Dilating about the same number of times we needed to erode is a good amount to get an
initialisation of reasonable size.

STEP 4: Then we compute the oedema initialisation mask Qt, by placing a ball at the seed
centre, making sure to stay in the tumour mask and to remove all intersections with the
ventricles on the source image.

STEP 5: Finally, we obtain the temporal masks by stacking the previously discussed initial-
isation and registering them with the glioma segmentations using LDDMM.

1 # 1./ get all segmentations
2 seg_oedeme = seg_tumour > 0
3 seg_necrosis = seg_tumour > .5
4

5 whiteMatter_seg = get_template_whiteMatter()
6 ventricule_seg = get_template_vesicule_seg()
7

8 intersection = seg_necrosis * whiteMatter_seg
9

10 # 2./ erode the intersection until necrosis seed is small enough
11 eroded = intersection
12 ini_ero_sum = eroded.sum()
13 count = 0
14 while eroded.sum() > max(ini_ero_sum//100,100):
15 eroded = binary_erosion(eroded,iterations=1)
16 count += 1
17

18 # find center of seed
19 indexes = (eroded == 1).nonzero()
20 center = tuple([int(array.mean()) for array in reversed(indexes)])
21

22 # 3./ dilate the seed to have a starting image of reasonable size
23 dilated = binary_dilation(eroded,iterations=max(min(count,5),1))
24

25 # 4./ construct eadema initialisation
26 ini_ball_o,_ = make_ball_at_shape_center(seg_oedeme,force_center=center)
27

28 # clean the inital ball by removing ventricule intersection
29 ini_ball_o[ventricule_seg[None,None] == 1] = 0
30 # and removing iniball outside of the target oedema
31 ini_ball_o[seg_tumour == 0] =0
32

33 # 5./ Stack initialisation images
34 ini_ball_on = torch.zeros(seg_tumour.shape)
35 ini_ball_on[ini_ball_o > 0] = val_o
36 ini_ball_on[dilated] = val_n
37
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38 # and register them.
39 sigma = [1,3]
40 mr_mask = mt.lddmm(source = ini_ball_on,
41 target = seg_tumour,
42 sigma=[1,3],
43 cost_cst=.0001,
44 integration_steps=10,
45 n_iter=500,
46 grad_coef=1,
47 sharp=True)

Source Code 3.5: Pt,Qt and wt construction for brats2021

3.3.1.d Results: Metamorphosis Methods comparison on 3D MRI

LDDMM M WM CM
300

400
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600

700

800

900
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0.6

0.7

0.8

DICE on ventricules

Figure 3.13: Quantitative results on brats2021. Notched box plots for 35 3D MRI. The orange line is the
median and the green triangle represents the mean. The notches represent the 95% confidence interval around

the median. The flipped appearance on the LDDMM DICE box is expected behaviour and means that the
confidence interval is greater than the upper quartile.

As before we used SSD and a DICE score on ventricle segmentation to perform quan-
titative registration quality validation. As we didn’t hear of an easy and validated way to
segment ventricles on heavily deformed brains, I went through the tedious task of segment-
ing 35 subjects manually∗. I want to note, however, that with the results of Chapter 4, we
might be able to segment ventricles as well. For this registration task, we used T2 MRI
images of size 120x120x78. We chose the parameter balance µ = 1 and ρ = 5 to advantage
deformation over intensity changes (see Section 3.1.3.b).

In Figure 3.13 one can see that the three Metamorphosis based methods outperform
LDDMM for the SSD. The best being pure Metamorphosis as expected, as it can add

∗I have a thought to my medical colleagues that perform these kinds of tasks routinely on larger scales.
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3.3. REGISTERING CANCEROUS BRAINS 155

Figure 3.14: Visualisation of the different methods on BraTS2021 Green circulated areas display information
for respectively LDDMM, M, WM and CM. Each one constrains the image evolution, marked with the time it is
in white. The last one is bigger and compared with the target below. On the side, one can see the source image

is solely deformed by all methods. Old colour code used, see Figure 1 for an image comparison colour code
explanation.
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intensity changes everywhere. However, WM and CM are close in terms of SSD scores,
which means that significant intensity changes occurred in the lesion region. Talking only
about deformation, one can see that CM outperform all three other methods on the ventricle
DICE score, having only a few outliers. It is known that even LDDMM match well brain
with small lesions, with CM we widened the use cases.

In Figure 3.14 we show a typical result where CM improve the matching significantly
compared to other methods. The target image here displays a huge glioma, inducing high
pressure into the patient’s brain and compressing the temporal part of the ventricles, making
them almost invisible (blue-squared arrows). It is a hard task to retrieve the deformation
induced by the tumour. LDDMM, M and WM chose wrongly to deform the parietal lobe
folds and the ventricles to match the tumour (red-cross arrows). On contrary, CM oriented
by the a-priori field matched the glioma with the white matter region (green-triangle arrow),
which is closer to an anatomically plausible match. We are not sure and can not verify that
this deformation is the actual one, but it is at least a step in the good direction.

In Figure 3.15 we study the worst result obtained. None of the methods tested managed
to register this image, with a DICE score of about 0.3 each. The thin red arrows show
the ventricle displacement matching with the tumour. The white dotted line on the brain
compared with the temporal mask helps to see that the necrosis mask is growing only toward
the skull. Thus the final displacement field follows the general displacement of the temporal
mask field. The algorithm fails because, in this example, the initialisation of the cancer ball
was misplaced at the edge of the necrosis.

156



Co
ns

tra
in
ed

M
et
am

or
ph

os
is

Co
ns

tra
in
ed

M
et
am

or
ph

os
is

Co
ns

tra
in
ed

M
et
am

or
ph

os
is

Co
ns

tra
in
ed

M
et
am

or
ph

os
is

3.3. REGISTERING CANCEROUS BRAINS 157

BraTS_00131
DICE : 0.31

Figure 3.15: Outlier example of failed registration on the image BraTS_00131. New colour code used, see
Figure 1 for an image comparison colour code explanation.
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3.3.2 An other application: follow up surgery

3.3.2.a BraTSReg2022 Dataset

The BraTSReg2022 challenge organised by Baheti and et al. [2021] was a registration task
aiming at matching MRI showing glioma with a follow-up surgery of the same patient. As the
event organisers have pointed out, this registration task is hard due to all changes induced
by the glioma growth as previously discussed in Section 1.1.2. However, these features were
already part of the model in CM and the registration task is easier than the one we set up
for BraTS2021. Indeed, because the pair of images are from the same patient, the source
and target images showed the same overall structures outside the cancerous lesion (e.g.: grey
matter folds,...) and only small displacement. On the contrary, the data set shows a lot of
variation in the type of resection and how much the surrounding tissues filled the resulting
hole.

The data set is made of 140+20 pairs of images (training + validation sets). Four modal-
ities where provided: Native (T1), contrasted and enhanced (T1ce), T2-weighted(T2) and
T2-fluid Attenuated Inversion Recovery (FLAIR) of size 240 × 240 × 155. The data was
gathered from different institutions and then pre-processed and curated for each scans size
and resolution, according to a common anatomical template.

For assessing the quality of the registration, landmarks were provided for each patient,
on both images for the Training set and on the follow-up operation for the Validation one.
Meaning that challengers were expected to match from the follow-up to pre-operative brain
and provided their estimated deformed landmark. As both images were acquired from the
same patient it was possible to set these landmarks at recognisable anatomical shapes of
the brain, blood vessels bifurcation and others. Note that even if a deformation perfectly
matches landmarks, one is not sure to have found the true ‘displacement’ on the whole
background.

In Figure 3.16 one can see two brain examples to be matched. In the left image, the
tumour has been removed and the tissues resected well (green arrow). However, some
Oedema was left over leaving a whitish region (blue arrow). On the right, the brain shows
a hole on the side, having the same colour as the ventricles in pre-operative brains. On the
follow-up ones, the hole is about the same size, with a darker colour, just as the Oedema.

3.3.2.b CM on the validation set

Our algorithm can be summarised in three parts :

1. Segmenting tumour, with Oedema/Necrosis distinction.

2. Registering the segmentations to get temporal masks using metamorphosis.

3. Applying Constrained Metamorphosis with the obtained temporal mask.

STEP 1: The segmentation was done by applying a U-net to both source and target images.
It was trained on the BraTS2021 dataset [Baid and et al., 2021; Menze and et al., 2015] which
contains annotated glioma segmentations along with four modalities. One could argue that
those follow-up operative images should not be segmented by such a U-net, ... and they
would be right. While testing out methods on the Training set, we observed that some
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Figure 3.16: BraTSReg2022 data visualisation

bad results could be explained by wrong segmentations, which motivated the attempt to
segment glioma using TDA (c.f.: Chapter 4). We selected the segmentations that were close
to reality in a sub-training set.

STEP 2: We register one segmentation to another using Metamorphosis, setting the necrosis
parts to 1 and the Oedema one to .5 (see Fig. 3.18, top rows). Getting this first registration
is crucial as it is the one that will constrain the actual registration. We used Metamorphosis
rather than LDDMM as sometimes new disconnected areas appeared which should not be
matched by deformation.

STEP 3: Finally, we extract information from the registration, namely the deformation wt

and deduce two masks. The first one Pt represents necrotic parts only (i.e.: voxels value
close to 1) that will be used to orient the final deformation. The second one Qt will take
the value ‘1’ for the whole tumour and will allow intensities changes. Finally, we register
images using Constrained Metamorphosis.

In Figure 3.17 one can see quantitative results showing deformed landmark distance to
their target. we see that CM gives better results than LDDMM and M for large lesions,
while reducing the score variance, making it more predictable. We observe qualitatively good
registrations for the three methods for small cancers as it was usually the case for classical
methods (e.g.: Brett et al. [2001]; Sdika and Pelletier [2009]). However, the model presented
is still mono-modal for the main part, the registrations of step three being computed only
using the T1ce modality. Only the segmentation of step one was realised with all available
modalities. Adapting the CM model to use all modalities for the final registration is possible
and may improve the results.
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Figure 3.17: Landmark distance after registration on the validation dataset for LDDMM, Metamorphosis
(M) and Constrained Metamorphosis (CM). (right) Median of individual landmarks distance. (left) The mean

of individual landmarks distance. The orange line is the median and the green dot represents the mean. The
y-axis measure unit is the pixel.

We are confident that our results can be further improved with more time. In particular,
the mask construction would need more caution. As, because of the classical problem of
entanglement in Metamorphosis François et al. [2022] it was hard to set the right parameters
for all mask construction, some needing more deformation and some more intensity changes.
This impact was high because of the strong dependence of CM on the priors. Furthermore,
because of memory limitation on the GPU we had at disposition, we proceeded to make
the registrations on images half the size of the ones provided (i.e.: 120x120x77) and then
re-interpolated the final image and deformation to the original size which may have reduced
the accuracy of the registrations.
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3.3. REGISTERING CANCEROUS BRAINS 161

Figure 3.18: Qualitative result with Constrained Metamorphosis. Two examples from the validation data-set
are shown. On first row we can see the temporal mask described in 1. Below one can see the Axial, coronal and

Sagittal view of the registered brain. The last column is the Target image.
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In this chapter, we have addressed the issues of inconsistent deformation observed in other
methods, such as M and LDDMM. In the three conducted experiments, we have shown
that Constrained Metamorphosis can improve registration outcomes while improving its
deformation exploitability. Obviously, provided that appropriate priors are used. Thus it
is critical creating accurate masks to achieve good results. With Metamorphosis we relied
on the optimisation process to obtain both the ideal displacement and intensity changes
from the images. While Constrained Metamorphosis (CM) offers the benefit of constraining
the registration process with a model, it may also inherit from its limitations. In other
words, the reliability of CM is dependent on the accuracy of the priors it follows. We have
introduced parameters (i.e.: µ, γ) making CM more or less dependent on its model, which
can be tuned in accordance with the confidence we have with it. However, they may be hard
to choose for a whole data set. In more general terms, the need to tune parameters with
CM can be considered a drawback, as is the case with any method with hyperparameters.
The implementation of CM has been made by adapting the implementation of M, thus the
discussion in Section 2.5 is also applicable in this specific case.

In this dissertation, we present mono-modal registrations only, however, we saw in Section
1.1.2 that each modality shows different tissues and it turns out it is hard to infer every tissue
position from only one. We could also use cross-modality techniques aiming at augmenting
an MRI by synthesizing images from one modality to another [Ge et al., 2019; Azad et al.,
2022]. For example, a T1-weighted MRI can be translated to a T2-weighted MRI using
a GAN, and the resulting images can be used to train a segmentation algorithm designed
for T2-weighted images. Another lead is to extend the Metamorphic model to the multi-
modal case, treating each modality as a different channel and deducing a common field for
each. This is a work in progress in collaboration with Guillaume Sérieys from the MAP5
laboratory at Université de Paris-Cité.

Studies of longitudinal data sets have shown that during growth or ageing phenomena,
the observed organisms are subject to transformations over time that is no longer diffeomor-
phic. One reason might be the gradual creation of new material. The evolution of the shape
can then be described by the joint action of a deformation process and a material appari-
tion process [Kaltenmark, 2016]. The work of Kaltenmark and Trouvé [2017] can serve as
inspiration, as it seeks to strike a balance between accurately replicating growth dynamics
and keeping diffeomorphisms simple for the purpose of comparing subjects.

162





TD
A

TD
A

TD
A

TD
A

TD
A

TD
A

4
TDA for glioma segmentation

4.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.2 TDA for images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.2.1 Singular homology 168
4.2.2 Filtrations 169
4.2.3 Persistence diagrams 170
4.2.4 Persistent homology of the SRI template 171

4.3 A segmentation method based on TDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.3.1 Formulation of the problem and description of the method 173
4.3.2 Step 1: Segmentation of the whole tumour 175
4.3.3 Step 2: Identification of ET 178
4.3.4 Step 3: Identification of TC and WT 180

4.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.4.1 Validation on BRATS2021 181
4.4.2 Preprocessing 182
4.4.3 Refining the model with a preliminary topology analysis 184
4.4.4 Perspective: Comparing with a known shape 185
4.4.5 Conclusion 186

164



TD
A

TD
A

TD
A

TD
A

TD
A

TD
A

Anatomical segmentation in MRI refers to the process of identifying and separating dif-
ferent structures within an MRI scan of the body. This process can be performed by a
computer algorithm or a human operator using specialised software. The algorithm or oper-
ator segments the scan into different regions of interest, in our case within the brain, based
on differences in image intensity, shape and size.

Accurate segmentation of glioblastomas is important for several reasons. Firstly, it enables
medical professionals to make informed treatment decisions, such as the choice of surgical
intervention or radiation therapy, by providing a clear understanding of the size and loca-
tion of the tumour. Secondly, it is a valuable tool for monitoring disease progression and
evaluating the effectiveness of treatment over time. Finally, glioblastoma segmentation is
essential for the development of computer-aided diagnosis systems, which have the potential
to significantly improve the accuracy and efficiency of many medical imaging algorithms.
Among them, one can think of the need for prior data in Constrained Metamorphosis as we
have seen in Chapter 3.

In this chapter, we present a method utilising tools from Topological Data Analysis
(TDA) in order to perform glioblastoma segmentation, offering several advantages over tra-
ditional machine learning approaches. Unlike machine learning methods, which typically
require large annotated data sets to train the model and may be prone to overfitting, our
method is train-free and can be easily adapted to different data sets and segmentation needs.
Additionally, TDA provides a more interpretable and stable framework for segmentation,
as it leverages topological features to perform the segmentation in a series of simple and
well-defined steps. These benefits, combined with the expertise of Raphaël Tinarrage from
the FGV EMAp laboratory in Rio de Janeiro, make our approach an attractive option for
glioblastoma segmentation. It should be noted that this project was completed without the
direct involvement of my supervisors.

While working on the Constrained Metamorphosis (CM) framework for glioblastomas it
seems logical to think about building this segmentation method. Partly because one could
construct the CM prior mask (i.e.: Pt, see Section 3.1.2 for general definition and 3.3.1.c
for a practical case.) before or during the registration optimisation. Additionally, by au-
tomating the segmentation process, we gain insight into the location, shape, and intensity
of glioblastomas in MR images, which gives us a deeper understanding of glioblastoma char-
acteristics. In fact, by having a robust segmentation method, we lay the foundation for
building a diffeomorphic glioblastoma atlas. This atlas could then be used as a reference for
future segmentation tasks and help to standardise the analysis of glioblastomas across differ-
ent studies and institutions. Thus, the development of this method is not only beneficial for
the Constrained Metamorphosis framework but also has the potential to make a significant
impact in the field of medical imaging analysis. At the time of my thesis submission, this is
an ongoing project and we present here our initial results.

In this chapter, we will first make a short review of methods doing glioblastoma segmenta-
tion using Machine Learning. Then we will cover some papers using TDA for MRI analysis.
Then, in Subsection 4.2, we will make a short introduction to the different TDA concepts
useful for analysing MRI with TDA. We will then be ready to present our segmentation
algorithm in Subsection 4.3. Finally, we will present our results and discuss the improve-
ment we want to implement in Subsection 4.4. The code for this project is fully available on
GitHub at https://github.com/antonfrancois/gliomaSegmentation_TDA for anyone to
use and contribute to.
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IA-SEGMENTATION METHODS FOR GLIOMA: Glioma segmentation is a widely studied subject,
and a multitude of methods have been developed, many of which are based on machine
learning. Among these methods, at least two prominent categories can be identified: those
based on generative models and those based on discriminative models. The former category
of methods requires prior information, such as the shape or appearance of the tumour, and
generally converges quickly. The latter category employs techniques such as random forests,
support vector machines, conditional random fields and last but not least deep learning
which typically exhibits higher accuracy [Zhang et al. [2021]; Zhao and Jia [2015]; Rucco
et al. [2020]].

Let us cover a few representative articles on this topic. Islam et al. [2020] proposed an
efficient multilevel segmentation method in four steps: They start with a common prepro-
cessing/filtering phase, then cluster the MRIs using a k-mean, continue with an optimal
threshold and watershed segmentation technique followed by a morphological operation to
separate the tumour using CNN. Zhang et al. [2021] make boundaries of the tumour clear by
a simple fusion of FLAIR and T2 images. Then they train dense 2D-CNN using novel archi-
tectures and loss function. Also, Liu et al. [2021] propose to solve the inter-class ambiguity
problem in segmentation.

Last but not least, the eight selected teams of the BraTS2021 challenge (see Section
3.3.1.a) used deep-learning techniques for segmentation, the most efficient ones being the
ones using nn-UNets architectures. The winning team had dice scores of 0.8835, 0.8878 and
0.9319 for the enhancing tumour (ET), the tumour core (TC), and the whole tumour (WT),
respectively. The other teams got very similar scores (inter-study variance being of order
10−2) [Luu and Park [2022]; Yuan [2022]; Futrega et al. [2022]; Siddiquee and Myronenko
[2021]; Ma and Chen [2022]; Kotowski et al. [2022]; Ren et al. [2022]; Jia et al. [2022]].

TDA FOR MRI ANALYSIS: TDA is a field at the intersection of computational geometry, al-
gebraic topology and data analysis. It aims at capturing relevant geometric and topological
information from datasets. Since its emergence in the 2000s, it has been applied to a wide
range of problems, from medicine, physics, computer vision and machine learning, among
others, as listed in Oudot [2017]. The reader may consult Carlsson [2009] and Chazal and
Michel [2021] for an introduction to TDA. In this subsection, we review how TDA has been
used in the context of segmentation and analysis of MRI.

A first application of this theory consists in designing segmentation by constraining their
topology. This idea has been used in Clough et al. [2019], in the context of segmentation
from Cardiac Magnetic Resonance data. The authors train a CNN, using the usual loss
computed from the DICE score, to segment parts of the image. In addition to this loss,
they add a topological loss, calculated using TDA. Based on ‘prior topological knowledge’,
the segmentation is constrained to be close to a pre-defined shape. For instance, in the
problem of segmenting the myocardium of the left ventricle of the heart, the authors use
the knowledge that the myocardium is ring-shaped. Similarly, they applied this idea to the
problem of placenta segmentation, knowing that it forms one connected component with no
holes [Clough et al., 2020]. This method was later extended to the problem of multi-class
segmentation [Byrne et al., 2021].

A similar approach is used in Qaiser et al. [2016, 2019], in the context of segmentation of
tumours of colorectal cancer, based on Hematoxylin and Eosin stained slides images. The
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method consists in first cutting the image into patches, selecting relevant patches with the
help of a CNN, and then determining which of these patches exhibit a tumour using TDA.
The topology of the patches presents two characteristic profiles: ones that contain less con-
nected components and holes (corresponding to infected tissues) and ones that contain more
holes and connected components (corresponding to healthy tissues). These characteristics
are computed using persistent homology and collected in the persistent homology profile
curve. The differences between these topologies are explained by the fact that, in infected
tissues, nuclei tend to have atypical characteristics, irregular shape and size.

From a second point of view, TDA can also be used as a feature for other machine
learning algorithms. In this context, no topological prior is known, and TDA is seen as an
exploratory tool. For instance, in Crawford et al. [2020], the authors compute the Smooth
Euler Characteristic Transform of MRI of tumours. Using these features as the input of
statistical models, they obtain an accurate prediction of clinical outcomes. In the same vein,
Saadat-Yazdi et al. [2021] compute the Betti curves of brain MRI, and show that they can be
used as a predictor of the presence for Alzheimer’s disease. As a last example, TDA has been
used in Rucco et al. [2020] for the analysis of glioblastoma using FLAIR modality MRIs.
After selecting two-dimensional slices, the authors compute various topological features,
such as Euler characteristics, persistent entropy and generator entropy. These features are
given to a machine learning classifier, allowing personal diagnosis and comparison of the
tumour pre- and post-treatment.

We stress that persistent homology is not only defined for images, but also for different
structures, such as graphs or point clouds. An example of such a construction is described
in Lee et al. [2012], where the authors use PET scans to build a graph whose nodes are
‘regions of interest’ of the brain, and whose edges are selected according to the correlation
of the FDG-PET emissions of the regions. It is shown that the persistent homology of these
graphs allows to distinguish patients with attention-deficit hyperactivity disorder, autism
disorder and control subjects.

Last, it must be mentioned that applications of TDA also inspire theoretical developments.
An example is given by the introduction of Decorated Merge Trees in Curry et al. [2022].
This notion, which can be seen as a refinement of the persistence diagrams, allows to track
the evolution of the topology of images, but also their localisation. They exemplify their
method on segmentation of glioblastoma from MRIs.

4.2 TDA for images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The aim of this section is to introduce persistent homology, the most popular technique of
TDA. It is a theoretical framework that allows inferring the homology groups of a dataset
[Edelsbrunner et al., 2000; Zomorodian and Carlsson, 2005; Niyogi et al., 2008]. In Subsec-
tion 4.2.1, we will briefly introduce some notions of homology, without getting too much into
the details. We refer the reader to Hatcher [2000] for a thorough presentation of homology
theory and algebraic topology.

Among the several variations of persistent homology, cubical persistent homology is par-
ticularly adapted to deal with images. The construction is based on the notion of filtration,
which we will present in Subsection 4.2.2. From such a filtration, one defines a persistence
diagram, the main object of TDA, that we will introduce in Subsection 4.2.3.
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4.2.1 Singular homology

Abstractly, homology is a functor from the category of topological spaces to the category of
vector spaces. In particular, it is an operator that transforms topological spaces into vector
spaces. This way, we are able to convert topological problems into linear problems, which
we hope are easier to solve.

Many theories of homology exist, and we will present here a particular one: the singular
homology with coefficients in Z/2Z. Here, by Z/2Z, we mean the finite field with two
elements, also denoted ({0, 1},+,×). In what follows, and when there is no ambiguity, we
may say ‘homology’ instead of ‘singular homology over Z/2Z’.

Homology allows to associate to any topological space X a sequence of Z/2Z-vector
spaces H0(X), H1(X), H2(X), . . . , called singular homology groups. The construction of
these vector spaces is based on a combination of topology and algebra that we do not present
here. Instead, we will explain roughly what they represent in the next paragraphs.

It is worth noting that linear algebra over the field Z/2Z is similar to that over R: the
notions of independent vectors, spanning sets and bases are the same. In particular, each
vector space over Z/2Z admits a dimension (potentially infinite). If such a vector space has
a finite dimension equal to d, then it is isomorphic to the product vector space (Z/2Z)d.

We now turn to the interpretation of homology groups. Let i ∈ N, and consider the ith

homology group Hi(X). If it is finitely generated, which we will suppose, then it admits a
finite dimension, denoted d(i). This integer d(i) is also called the ith Betti number of X. It
carries topological information about X:

• d(0), the dimension of H0(X), is equal to the number of connected components of X.

• d(1), the dimension of H1(X), is equal to the number of ‘independent loops’ in X. For
instance, the circle has H1(X) = Z/2Z, and the torus H1(X) = (Z/2Z)2 (see Figure
4.1)

• d(2), the dimension of H2(X), is equal to the number of ‘independent voids’ in X. For
instance, the sphere and the torus have H2(X) = Z/2Z.

Except for dimension 0, this list should not be treated as a formal mathematical result, but
only as heuristic interpretations.

Figure 4.1: The torus is made of one connected component, hence H0(X) = Z/2Z. Besides, it contains two
independent loops, hence H1(X) = (Z/2Z)2. Last, it has one void, so H2(X) = Z/2Z.

In order to use homology in the context of images, one has to transform images into
topological spaces. This is easily done when the image is binary, that is when it only has
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black and white pixels. Let I : Ω → {0, 1} be a binary image with domain Ω, and consider
the collection I−1({1}) ⊂ Ω of its black pixels. Seen as a subset of Ω, this collection can be
seen as a topological space. Hence homology is well-defined.

As an example, we represent in Figure 4.2 a 2-dimensional image, whose homology groups
are H0(X) = (Z/2Z)3 and H1(X) = (Z/2Z)2.

Figure 4.2: A 2d binary image,
consisting of three connected
components and two ‘holes’.

When X is a topological space obtained from a binary im-
age, as described in the previous paragraph, another theory
of homology may be used: cubical homology. In the same
way, that singular homology transforms topological spaces
into vector spaces, cubical homology transforms binary images
into vector spaces. Moreover, if the topological space comes
from a binary image, then their singular and cubical homol-
ogy groups are equal. The advantage of cubical homology is
that it can be directly computed: the algorithm boils down
to Gaussian elimination. This has been implemented in sev-
eral Python libraries, such as giotto-tda, cubical Ripser
or Gudhi [Tauzin et al., 2021; Kaji et al., 2020; Maria et al.,
2014].

4.2.2 Filtrations

The aim of this work is to analyse brain MRIs. These are
3-dimensional greyscale images. They are not binary images,
and there is no obvious way to convert them canonically into topological spaces. Therefore,
homology theory cannot be used directly. In order to circumvent this issue, we can follow
the pipeline of persistent homology. The idea consists in building not one but a collection of
topological spaces, called a filtration. More precisely, a filtration of images is an increasing
family of binary images, indexed by a parameter t ∈ [0, 1]. Such a filtration will be denoted
{It | t ∈ [0, 1]}.

Let I : Ω → [0, 1] denote a greyscale image. There exist various popular filtrations that
can be defined from I, such as the height, radial and density filtrations, implemented in
giotto-tda, or the sublevel and superlevel sets filtrations, implemented in cubical ripser
and gudhi [Tauzin et al., 2021; Kaji et al., 2020; Maria et al., 2014]. In this work, we will
focus on these two last filtrations.

For any t ∈ [0, 1], let us define It as the set of pixels with intensity lower or equal to t.
The set It is a topological space—a union of cubes—, and we have the relation Is ⊂ It for
any s, t ∈ [0, 1] such that s ≤ t. In other words, the family {It | t ∈ [0, 1]} is an increasing
sequence of binary images. It is called the sublevel sets filtration. Note that, since the image
has values in [0, 1], the parameter t parses all the possible values a pixel can take, and the
last image, I1, is equal to the whole domain Ω. An example is given in Figure 4.3a, where
I is a brain MRI, the T2 modality of the SRI template [Torsten et al., 2010]. The SRI
template has already been introduced in Subsection 3.3.1.a and is represented in Figure
3.11. Similarly, if we define It as the set of pixels with intensity greater or equal to t, then
we obtain the superlevel sets filtration of I. It is represented in Figure 4.3b.

Within a filtration, one can understand the parameter t as a temporal value. The more t
increases, the more pixels are added to the image. In the case of the sublevel sets filtration,
pixels of low intensity are added first. In Figure 4.3a, one sees that the first pixels added
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(a) Sublevel sets filtration

(b) Superlevel sets filtration

Figure 4.3: Examples of sublevel (a) and superlevel (b) sets filtrations on the SRI brain template MRI.

are the ones in the background (filtration value t = 0).
On the contrary, in the superlevel sets filtration, pixels of high intensity are added first.

In figure 4.3b, we see that this corresponds to the ventricles and the grey matter. In other
words, the most luminous parts of the image appear the earliest in filtration. This idea will
be used in Subsection 4.3.2 when we will propose a segmentation method for glioblastoma.
Indeed, on a FLAIR modality MRI, glioblastoma tends to be represented by the pixels of
the highest intensity. That is to say, we expect the tumour to be the first element to appear
in the filtration. An example is given in Figure 4.4, for a FLAIR modality MRI of a brain
presenting a tumour.

Figure 4.4: Superlevel sets filtration on a FLAIR modality MRI of a brain with tumour.

4.2.3 Persistence diagrams

We can now define the main objects of TDA: the persistence modules and their corresponding
persistence diagrams. These objects allow summarising the information contained in a
filtration, seen from a topological point of view.

Let {It | t ∈ [0, 1]} be a filtration, built from the image I, as defined in the previous
subsection. The filtration is a family of greyscale images, hence we can apply cubical (or
simplicial) homology to each of the It’s. Let us fix a i ∈ N, and apply the ith homology
functor to the filtration. This yields a family of vector spaces {Hi(I

t) | t ∈ [0, 1]}. This
structure is called a persistence module. It is a purely algebraic object, which gathers the
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homology groups of I at various scales.
As an example, let us consider the superlevel sets filtration. The persistence module

{H0(I
t) | t ∈ [0, 1]} gathers the number of connected components of all the superlevel sets

of I, as represented in Figure 4.5. As one can read, at the beginning of the filtration, the
images consist of many connected components, therefore the corresponding homology groups
H0(I

t) have large dimension. At some point in the filtration, all the components merged
together, and only one big component exists.

I t

H0(I
t) (Z/2Z)120 (Z/2Z)6 Z/2Z Z/2Z Z/2Z

Figure 4.5: A superlevel sets filtration, and the corresponding H0-persistence module

Actually, in a persistence module, we can extract more information than just the homology
groups H0(I

t). Using the inclusion maps Is ↪→ It for s ≤ t, we can ‘track’ the evolution
of the homological features. That is, we are able to tell whether a cycle of Hi(I

s) is still
alive in Hi(I

t). The interval on which a feature exists is called its persistence. In practice,
one interprets cycles of large persistence as relevant features of the dataset, while cycles of
low persistence are considered as noise. The formal definition of this idea is based on the
property of functoriality of the homology, which we won’t explain here.

The persistence of all the cycles is recorded in the persistence diagram of the persistence
module. It is a set of points P of the form p = (tb, td), with tb ≤ td. A point of the
persistence diagram is interpreted as a homological feature, born at time tb and dead at
time td.

In the case of images, to each point p = (tb, td) of the persistence diagram corresponds
a birth pixel pb, which gives birth to a cycle (a new connected component, a new H1 cycle,
etc.), and a death pixel pd, which kills the cycle (merge the component to another one, fill
the H1 cycle, etc.). In particular, in the H0 persistence diagram, there always is a point
that dies at infinity. It represents the connected component consisting of all pixels.

In Figure 4.6, one can see the persistence diagrams of the SRI template, for the two
filtrations defined above: superlevel and sublevel sets. As shown in Garin et al. [2020], there
exists a duality between these two diagrams. That is, one can be transformed into the other,
via an explicit process. As a consequence, we can choose only one of the filtrations, and still
have the same information. In what follows, we will choose to work with the superlevel sets
filtration, since it is easier to interpret.

4.2.4 Persistent homology of the SRI template

As presented in the previous subsection, the persistence diagram of the filtration of an image
gathers the evolution of its homology, while the thresholding parameter t varies. Each point
p = (tb, td) of the diagram represents a cycle, born at tb and killed at td. The quantity
td − tb, called the persistence of the cycle, is understood as the duration of the cycle. An
important interpretation is that, given persistence diagram, points with high persistence
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Figure 4.6: The persistence diagram of the sublevel sets filtration of the SRI template (left), and the
diagram of its superlevel sets filtration (right). H0 is represented in red, and H1 in blue.

correspond to relevant topological features of the image, while points with small persistence
can be considered as ‘topological noise’. Visually, points with high persistence are those far
away from the diagonal.

As an illustration, let us consider the SRI template. We choose a slice of the image and
compute the persistence of its superlevel sets filtration. We stress that, in the following
subsections, we will consider the persistent homology of the full 3-dimensional image, and
not only of its slices. We choose here to analyse a 2-dimensional slice for visualisation ease.

We first study its persistence diagram in H0, that is, the evolution of its connected compo-
nent. As shown in Figure 4.7, three red points seem significantly distant from the diagonal.
They correspond to three connected components, that evolve independently, without merg-
ing with others. For each of these three persistent cycles, we consider the points p = (tb, td)
of the diagram, extract the pixel of birth, and plot the connected component of the pixel
at time td. It represents the connected component, just before it merges with another one.
As we can see in the figure, these three main components are part of the white matter,
disconnected in this slice.

Figure 4.7: Slice of the SRI template (left), the persistence diagram of its superlevel sets filtration (right),
and its most persistent H0-cycles (middle).
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We now turn to the analysis of the persistence diagram in H1, that is, the holes. As we
can see on the persistence diagram, four points seem away from the diagonal, with one point
particularly off. In order to represent the corresponding holes, we circled them in Figure
4.8. We see that they correspond to the lateral and third ventricles (again disconnected in
this slice).

It is worth mentioning that a particular difficulty arises when considering homology groups
Hi with i ≥ 1: the cycles are not uniquely localised. That is, several sets of pixels may
represent the same cycle. In the figure, our circles are arbitrary representatives of these
cycles. The problem of finding relevant representatives of persistent cycles, for instance,
cycles with minimal length or volume, is an active topic of research in TDA, but we will
not be concerned with this problem in the following [Escolar and Hiraoka, 2016; Obayashi,
2018].

Figure 4.8: Slice of the SRI template (left and middle) with the most persistent H1-cycles, and the
persistence diagram of its superlevel sets filtration.

4.3 A segmentation method based on TDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.1 Formulation of the problem and description of the method

The problem we consider can be formulated as follows: given an MRI of a brain with
glioblastoma, we wish to segment the tumour into its different components. More precisely,
we have access to two modalities of the MRI, FLAIR and T1ce, as introduced in Chapter
1.1.2. The three tumoural components are: Enhancing Tumour (ET), Tumorous Core (TC)
and oedema (WT: whole tumour), as described in Sections 1.1.2 and 3.3.1.a. All along this
section, we will use as running examples a few MRIs from the collection BRATS2021.

NOTATIONS: Let IFLAIR and IT1ce : Ω → [0, 1] denote respectively the FLAIR and T1ce
modalities. The three components of the segmentation are denoted XET, XTC and XWT.
They are subsets of Ω. By the global segmentation, or union, we refer to the subset X =
XET ∪XTC ∪XWT.
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MODEL: The algorithm we propose is based on TDA, hence it is worth giving the topological
insights which support the method. We make the assumption that the segmentation of the
tumour, as given by the specialists, satisfies the following hypotheses:

1. The global segmentation X is made of one connected component and appears signifi-
cantly more luminous than the other voxels in the modality FLAIR.

2. The component XET is homotopy equivalent to a sphere and appears significantly
luminous in the modality T1ce.

3. The component XTC is in the interior of the spherical shape XET.

4. The component XWT is in the exterior of the spherical shape XET.

This model, although rather simplistic, can be observed on several MRIs, as shown in the
examples of Figure 4.9. In Subsection 4.4.1, we will quantify, via the formulation of a more
formal model, how many images fall under these assumptions.

Figure 4.9: Glioblastomas examples in four modalitiesEach row contains MR Images slices in four modalities
of the same patient at the same time. One can see both the tendencies between different image modalities and
the inter-subject colour variation within the same modalities. Segmentation legends: Red - Necrotic Core (TC);

Orange - Enhancing Tumour (ET); Blue - Oedemas (WT).

GLOBAL IDEA: Having in mind the model, we present a three-step method utilising the
FLAIR and T1ce modality for glioma segmentation.
Step 1. Tumour selection: Following Hypothesis 1, the FLAIR modality shows a hyper-
intense area corresponding to the tumoural activity. This step consists in selecting this
whole subset of voxels. We consider the superlevel set filtration of the image, starting at
t = 1 and select a threshold at which a connected component in the filtration It is equal to
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the tumour. The choice of this threshold is based on an analysis of the number of voxels
contained in each connected components.

Having selected a connected component, we propose two refinement procedures. First,
we fill the holes of the estimated segmentation that may appear because the necrosis is often
darker on FLAIR images. Secondly, we improve the segmentation by checking whether the
estimated tumour is matching the image edges. These procedures are detailed in paragraphs
‘Refinement’ of Subsection 4.3.2.
Step 2. Identification of ET: Following Hypothesis 2, the ET component of the tumour
forms a sphere in the T1ce image. Hence, we estimate ET as the brightest H2 feature in the
persistent homology of this image. More precisely, we compute the persistent homology of
the image restricted to the whole segmentation X obtained above, since we seek ET in X.
Step 3. Identification of TC and WT: In order to obtain the segmentation of TC and WT,
we consider the global segmentation X, from which we remove ET. This binary image can
be partitioned into connected components. We identify the components of TC as those
in the interior of ET and the components of WT as those in its exterior (as indicates by
Hypotheses 3 and 4).

4.3.2 Step 1: Segmentation of the whole tumour

FIRST ESTIMATION: In this step, our goal is to select the largest hyper-intense region present
in the FLAIR image. To achieve this, we analyse the number of voxels in the filtration
process over time, starting from t = 1 and moving to t = 0. While the number of voxels
increases steadily, we anticipate a sharp increase in the number of voxels when the voxels
corresponding to the white and grey matter are included. Therefore, we select the value
of t just before this sharp increase. To do this, we examine the derivative of the number
of voxels with respect to t, and choose the first derivative value that exceeds a predefined
threshold. This process is similar to a binarisation algorithm, such as Otsu’s method. Once
we have selected the optimal value of t, we then identify the largest connected component,
which corresponds to the region with the most voxels.

The core element of this step is therefore the suggestion of an optimal t implemented in
the function suggest_t that one can find in Code 4.1, itself split into three parts:

1. We first slightly blur the image. For any t ∈ [0, 1], we define It∗ as the set of voxels
forming the biggest connected component. This notation is chosen because for all
t, It∗ ⊂ It.

2. We study the number of voxels of It∗, denoted t 7→ #It∗, and its derivative t 7→ d#It∗,
computed by finite differences. The map t 7→ #It∗ is monotonically increasing while
t decreases. We expect it to behave roughly like a sigmoid function, having a sudden
rise at the moment a big amount of medium-valued voxels are added (c.f.: Figure 4.10
plots). In practice, The derivative is computed by finite difference. In this form, be-
cause of the image intensity range or the chosen time step, the choice of dt_thershold
over a database is not obvious. We solve the problem with the normalisation found in
code 4.1, l.17-18.

3. Varying t from 1 to 0 we search for the first significant jump of the filtration by selecting
the first t such that d#It >dt_thershold.
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Source Code 4.1: suggest_t

1 def suggest_t(img,pos=None, N= 25,dt_threshold=1):
2 """
3

4 :param img: Image
5 :param pos: Position of the hightest pixel.
6 :param N: Number of `t` to test
7 :param dt_threshold: First gap threshold.
8 :return:
9 """

10 tmax = img.max() if pos is None else img[pos[0],pos[1],pos[2]]
11 t_list = np.linspace(0.01,tmax,N)
12 filtr = np.zeros(t_list.shape)
13 for i,t in enumerate(t_list):
14 cc = get_highest_connectedComponent(img,t)
15

16 filtr[i] = (cc==1).sum()
17 filtr_dt = (filtr[:-1] - filtr[1:])*(N/(tmax-0.01))
18 filtr_dt_norm = len(filtr_dt)*filtr_dt/filtr_dt.sum()
19

20 best_t = -1
21 index = N-2
22 while best_t < 0:
23 dt = filtr_dt_norm[index]
24 if dt > dt_threshold:
25 best_t = t_list[index+2]
26 break
27 else:
28 index -= 1
29

30 return best_t,filtr,filtr_dt,t_list

In Figure 4.10 one can observe the suggest_t procedure, comparing the filtration cardinal
and its derivative with the t selected, alongside the corresponding brightest components.
On panel 4.10.a the selected component is very close to the ground truth. On panel 4.10.b,
however, one can see that the process should have selected a slightly higher filter (t too low)
to fit better to the true segmentation.

REFINEMENT - STICK TO EDGES: In the previous paragraph, we saw that t depends on a
threshold (c.f.: in Code 4.1). It happens that t is chosen a bit off, and the segmentation
’leaks’ on non-cancerous tissues. To correct this issue, one can slide t to make the edges of
the segmentation match the edges of the brain. By edges, we refer to boundaries between
different objects or areas of an image that have a significant change in intensity or colour.

We observed that a simple 3D Sobel filter is not very handy on MRI images for finding
edges. Therefore, we use the procedure described in Rorden et al. [2022], based on the
second derivative (difference of Gaussian) of the image to generate edges.
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Figure 4.10: Automatic t selection by the function suggest_t. (left) plots with It(x̃) in green and its
derivative in yellow, their axes are respectively located on the left and right sides. (centre) Brain slice to

segment. (right) Superposition of the estimated segmentation with the ground truth. Green areas correspond to
a correct match, Red areas are where our segmentation selected unwanted pixels, and Blue (none) are the

ground truth not selected.

In order to evaluate the Edge match, we create a metric by utilizing a DICE score to
measure the degree of overlap. Let I represent the image, and let X denote the estimated
segmentation. Let us also assume that there exists a function E which takes an image as
input and produces a binary output image with ones representing only the edges of the
original image. Then, we define edgeDice as follows:

edgeDice(I,X) = DICE(E(I)× E(X),E(X)) (4.1)

Next, we evaluate the edgeDice metric by testing values within a narrow range of the
suggested t value. This approach ensures that the metric is not influenced by other edges,
such as those belonging to other organs or the skull, which could be present outside of the
narrow range.

Note that if we found this method promising, this technique does not improve the results
systematically yet. Indeed the identification of relevant edges turned out to be challenging
to handle on 3D MRI and needs to be fine-tuned for the data set.

Source Code 4.2: edgesEnhancer

1 def respect_edges(img_flair,true_seg,t_suggested,pos,
2 n_test = 20,ovrlap=.1, plot= False,ax= None,edgeDice=None):
3 edgesDICE_stock = np.zeros(n_test)
4

5 t_list = np.linspace(t_suggested - ovrlap, t_suggested + ovrlap,n_test)
6

7 best_ed = -1
8 for i,t in enumerate(t_list):
9 # find the component at a given position
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10 seg_union = sTDA.getConnectedComponent(img_flair,pos,t)
11 # compute edgeDice
12 edgesDICE_stock[i]= edgeDice(img_flair,seg_union)
13

14 # select the new best t
15 new_t_idx = np.argmax(edgesDICE_stock)
16 new_t = t_list[new_t_idx]
17

18 return new_t,best_seg,ax

REFINEMENT - CLOSING HOLES: Given a segmentation of the global tumour X obtained by the
method described above, we perform a post-processing step. It consists in filling the holes in
X, following Hypothesis 1 of our model. This is done by computing the connected compo-
nents of the binary image Ω\X, identifying the components that are not the background , and
adding them to X. More precisely, we apply the function ndimage.measurements.label
of scipy to the binary image Ω \ X. As an output, each voxel is associated an integer,
corresponding to the index of the connected component it belongs to. We identify the con-
nected component of the background as the one containing the most voxels. An explicit
implementation is given in Code 4.3.

Source Code 4.3: filling_holes

1 ' Fill the holes of seg_union '
2 # Define the complementary segmentation
3 seg_remaining = (seg_union>0)*1-1
4 seg_remaining[seg_remaining<0]=1
5

6 # Classify the complementary segmentation into connected components
7 labels = skimage.measure.label(seg_remaining, background=0)
8 components = [(labels==i)*1 for i in range(1,np.max(labels)+1)]
9

10 if len(components)>0:
11 # Identify the non-background componnents
12 components_cardinal = [np.sum(component) for component in components]
13 cardinalmax = max(components_cardinal)
14 remainingcomponents = np.sum([components[i] for i in range(len(components))
15 if components_cardinal[i]<cardinalmax],0)
16

17 # Add the non-background components to seg_union
18 seg_union[remainingcomponents>0] = 1

4.3.3 Step 2: Identification of ET

In the previous step, we estimated the global segmentation X ⊂ Ω, based on the image
IFLAIR. Note that, according to our model, we can decompose X as XET ∪ XTC ∪ XWT,
although we do not know the components at this point. In this second step, we will use the
image IT1ce, and the previously estimated segmentation X, to obtain XET.
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According to the model, the enhancing tumour XET is the boundary of the tumour and
is highly intense in the image. Hence, using a superlevel sets filtration, we should see in the
H2 persistence diagram a persistent cycle, representing the sphere formed by the boundary
of the tumour. More precisely, we compute the persistent homology of the superlevel sets
filtration on the image IT1ce restricted to X. This is represented in Figure 4.11a, in the case
of our running example (see Figure 4.9). One green point appears particularly far away from
the diagonal: it represents the persistent cycle we are looking for. In order to automatise
this procedure, we follow two steps:

1. We compute the persistence diagram of the superlevel sets filtration of the image IT1ce
restricted to X, and identify the H2-point of highest persistence.

2. We extract the pixels that form this cycle as follows. Let tb be the birth value of this
persistent cycle, and x the corresponding pixel that gave birth to it. We then define
XET as the connected component of the pixel x in the binary image ItbT1ce.

The resulting segmentation can be seen on Figure 4.11b. An implementation is given in
Code 4.4.

(a) (b)

Figure 4.11: Persistence diagram of IT1ce restricted to X, with the most persistent point circle (a) and the
resulting segmentation of XET (b).

Source Code 4.4: Step 2: Estimation of XET

1 def GetConnectedComponent(img, pos, t):
2 '''
3 Get the connected component of the voxel pos = (x,y,z) at time t.
4 The output is a binary image.
5 Background value of img must be 0 (as conventional).
6 '''
7 imt = (img>=t)*1
8 if imt[pos[0],pos[1],pos[2]]==0:
9 raise ValueError('The voxel pos is not active at time t.')

10 labels = skimage.measure.label(imt, background=0)
11 labeltumor = labels[pos[0],pos[1],pos[2]]
12 imtumor = (labels == labeltumor)*1
13 return imtumor
14

15 # Compute persistence diagram with cripser
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16 seg_union_t1ce = img_t1ce*seg_union
17 barcode = cripser.computePH(1-seg_union_t1ce,maxdim=3)
18

19 # Gather the non-infinite points
20 H2 = [list(bar[1::]) for bar in barcode if bar[0]==2 and bar[2]<1]
21

22 # Sort the points and select the most persistent one
23 H2 = [bar for _,bar in sorted(zip([bar[1]-bar[0] for bar in H2],H2))[::-1]]
24 point = H2[0]
25

26 # Extract contour H2
27 pos = np.array(point[2:5]).astype(int)
28 t = point[0]+0.0001
29 seg_contour = GetConnectedComponent(seg_union_t1ce, pos, 1-t)

4.3.4 Step 3: Identification of TC and WT

At this point, we have estimated the segmentation of the global tumour, X, and the en-
hancing tumour XET. We now identify the components XTC and XWT. This step does not
depends on the initial MRI, but only on the subsets X and XET.

Following our model, TC corresponds to the part of the tumour that lies inside ET, and
WT to the part that lies outside ET (and still within X). In order to identify these parts,
we apply the following procedure.

1. We consider the subset X \XET, the complementary of ET in the segmentation, and
compute its connected components.

2. Note that we may have more than two connected components. For each of them, we
compute whether it is ‘inside’ or ‘outside’ the contour, according to the following rule:
it is ‘inside’ if most of its neighbouring pixels (obtained by dilatation) belong to XET.

3. Connected components that are ‘inside’ are added to XTC, and those that are ‘outside’
are added to XWT.

As a convention, we save the segmentation as an image Ω → {0, 1, 2, 4}, where 0 represents
the background, 1 represents TC, 2 represents WT and 4 represents ET. The resulting
segmentation can be seen in Figure 4.12. An implementation is given in Code 4.5.

Source Code 4.5: Step 3: Identification of XTC and XWT

1 # Identify connected components of the complement with skimage.measure.label
2 seg_union_nocontour = seg_union - seg_contour
3 labels = skimage.measure.label(seg_union_nocontour, background=0)
4 components = [(labels==i)*1 for i in range(1,np.max(labels))]
5

6 # Classify components: TC or WT
7 seg_final = seg_contour*4 # define seg_final
8 for component in components:
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Figure 4.12: Segmentation after step 3. WT is represented blue, ET in orange and TC in red.

9 componentdilated = scipy.ndimage.binary_dilation(component,iterations=1)
10 componentcontour = componentdilated - component
11 meanvalue = np.mean(seg_contour[np.where(componentcontour>0)])
12 if meanvalue>=1/2:
13 # if most of the boundary points are in ET, then the component is in TC
14 seg_final[component>0] = 1
15 else:
16 # otherwise, it is in TC
17 seg_final[component>0] = 2

4.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4.1 Validation on BRATS2021

In order to quantify the performance of the algorithm, we applied it to the whole collection
of MRIs of BRATS 2021, consisting of 1250 images. For each image, we computed the DICE
score for each segmentation class (union, TC, WT and ET), between the estimation of our
algorithm and the segmentations provided by the specialists. The results are gathered in
Figure 4.13. Some examples of segmentations with a high score are represented in Figure
4.15, and with a low score in Figure 4.16.

By inspecting Figure 4.13, We observe that the results seem correct for the whole seg-
mentation (median approximately 0.8) but relatively poor for TC, WT and ET (median
approximately 0.2, 0.2 and 0.4). One can take a closer look at the images where the al-
gorithm performs poorly in Figure 4.16, which reveals low scores are mainly attained by
images that do not satisfy the model we introduced in Subsection 4.3.1. We observed that
either the enhancing tumour does not surround the necrosis, or it does but form a perfo-
rated sphere. In both cases, the algorithm cannot partition the domain into the interior and
exterior of ET, leading subsequently to an incorrect estimation of the other components of
the segmentation.

In order to evaluate the importance of the model, we restricted the analysis to only a
subset of images, the ones that satisfy Hypothesis 3 of the model described in Subsection
4.3.1. More precisely, we consider the images such that applying a binary dilatation of XTC
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yields new pixels of which at least half are included in the image. We computed that 298 out
of 1250 images satisfy this assumption. We computed the DICE scores of the segmentations
we obtained on these images and gathered the results in Figure 4.14. One sees that, in this
case, segmentations are of higher quality: the median score for the whole segmentation, TC,
WT and ET are approximately and respectively 0.8, 0.5, 0.6 and 0.7.

Figure 4.13: For the 1250 MRI of BRATS 2021, we plot the Dice scores of the union segmentation, the TC,
WT and ET.

Figure 4.14: Over the 1250 MRI of BRATS 2021, the model is verified on 298 images. We plot, for these
images, the Dice scores of the union segmentation, the TC, WT and ET.

4.4.2 Preprocessing

One approach we have taken for normalising our images involves simple techniques such as
scaling the pixel values to lie within the range of 0 and 1, normalising the image patches to
a common mean and variance, and using various equalisation techniques. Currently, we are
utilising an affine 0-1 normalisation strategy by adding the minimum pixel value to all pixels
and then dividing by the maximum value. However, we believe that we can enhance our
results with a more sophisticated normalisation pipeline. After all, most of the literature on
machine learning places significant emphasis on the preprocessing of data, as it is said to
improve results considerably.

One could use superpixel methods to divide an image into smaller, homogeneous regions
that are more easily analysed than individual pixels. Superpixel methods work by aggre-
gating similar pixels into larger groups, typically based on colour, texture, or other image
features. This process reduces the number of elements in the image, making it easier to per-
form image processing tasks while preserving the structure of the original image that can be
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Figure 4.15: Results of our algorithm, in cases where the model is valid. On each row, from left to right: an
image of modality FLAIR, of modality T1CE, the segmentation we obtained, the segmentation provided by the

specialists and the comparison of both segmentation green being well matched and red otherwise.

used for further analysis and processing. For example, Shivhare and Kumar [2020] proposed
a new method for brain tumour detection by combining features from Fluid-Attenuated
Inversion Recovery (FLAIR) MRI scans with the graph-based manifold ranking algorithm.
The algorithm has three main steps: After converting their image into superpixels, the rank
of each superpixel or node is computed based on its affinity against certain selected nodes
as the background prior. Finally, the relevance of each node with the background prior is
computed and represented as a tumour map. However, the TDA principle is to avoid choos-
ing a specific threshold before treatment. We put aside this idea as we find it irrelevant to
our method.

Alternatively, we could study SPM’s strategy that uses a Bayesian generative modelling
perspective representing the probability density of the data in the most accurate but par-
simonious way possible [Ashburner, 2009]. Indeed, their non-deterministic approaches are
still exploitable in combination with TDA. Their segmentation algorithms discriminate tis-
sue intensity by fitting a mixture of Gaussian models to their intensity ranges, also taking
into account the tissue expected proportion within the brain.

As we presented in Section 1.1.2 each modality holds different information. A natural idea
is to highlight targeted information by combining different modalities. There exist different
approaches more or less involved to implement. A simple idea was proposed by Zhang
et al. [2021] which simply consists of the algebraic superposition of FLAIR and T2 images:
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Figure 4.16: Results of our algorithm, in cases where the model is NOT valid. On each row, from left to right:
an image of modality FLAIR, of modality T1CE, the segmentation we obtained, the segmentation provided by

the specialists and the comparison of both segmentation green being well matched and red otherwise.

(FLAIR + T2)/(FLAIR × T2). We tried this very idea, correcting their equation slightly for
our purposes. However, if it works for certain examples, it remains a significant number of
images for which the improvement is unclear or worsened. To our understanding, it might
indeed improve the performance of a neural network, having more information to infer from,
yet for our simple technique, it does not seem to be consistent enough. More sophisticated
methods exist, like the one detailed in Rajinikanth et al. [2018] based on Discrete Wavelet
Transform PCA. We did not have the time to test such a method yet.

4.4.3 Refining the model with a preliminary topology analysis

In the previous section, we saw that only a quarter of the BraTS2021 dataset respects our
model assumptions. We must revise the model, still focusing on the topology and keeping
it simple.

Let us briefly revisit a research avenue that we previously abandoned: Our model’s first
assumption posits that the tumour X is the most luminous connected component in the
FLAIR image. Once we have identified the optimal threshold using the select_t method,
we must select the connected component that corresponds to the tumour. Initially, we
attempted to accomplish this by selecting the connected component that contained the
brightest pixel. In most cases, it was indeed selecting the right component, however, it
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may fail if the FLAIR modality is not hyper-intense. This only occurs for astrocytomas
(IDH-mutant, 1p19q non-codeleted) that present a T2/FLAIR mismatch [Deguchi et al.,
2020]: On T2 weighted images, these tumours have extensive areas of fairly homogeneous
and strikingly high signal. On FLAIR, instead, the majority of these areas become relatively
hypointense in signal due to incomplete suppression. The occurrence of those mutants is
unclear in the literature we reviewed. This is why we opted for selecting the component
containing the most voxels, as it usually solves the problem. Nevertheless, it still happens
on rare occurrences, that we select the grey matter. We hope that the correct connected
component will be selected by at least one of those strategies.

To this day, the most significant challenge related to our model remains the ability to dif-
ferentiate between the various sections of tumours. One example of this is when the tumour
comes in contact with the skull, causing the ET component to have the same topology as a
bowl rather than being homotopic to a sphere, as intended. This situation is illustrated in
Figure 4.9. A potential solution to this issue would be to incorporate the skull mask during
the search for the H2 component.

More generally, we plan to define other simple models that would cover the variety of
topologies of glioblastoma. Such models could be found by analysing the topology of the
whole ground truth segmentations, and by identifying different glioma shape profiles. Seg-
mentations come in the form of piece-wise constant images, eliminating all noise-related
problems. Therefore, their persistence diagram should be easy to analyse and possibly to
cluster. From this analysis, we hope to identify problematic cases and their occurrences, at
least in the BraTS2021 dataset.

4.4.4 Perspective: Comparing with a known shape

We have seen that our method can fail for two reasons. First during the segmentation
of the tumour union, depending if we select the brightest or the biggest component, we
might take the wrong one (see discussion about IDH-mutant in Section 4.3.1). We hope,
however, that the correct component within brain MRI will be chosen by at least one of
these strategies. Second, while annotating the tumour, the simplistic topological model we
use leads to incorrect segmentation.

For now, we lack the ability to segregate bad segmentations from good ones. This is why
we need a representative glioblastoma to compare our segmentation with. In this thesis
introduction, we referred to the diffeomorphic shape space theory as a great tool for such
problems. For example, the works of Khan et al. [2008] and later Kutten et al. [2016]
utilise a diffeomorphic shape space to segment and propagate labels from a brain template
to segment unknown brains. The main difference between our methods is that in their case
all tissues are to be segmented and are always structured in the same way. When in our
case we have to segregate the tissues and determine the localisation of the tumour.

However, in a speculative approach, we can give a general approach outline. First, we
would need to build the shape space. Using the BraTS2021 database, we can estimate a
glioblastoma template. As it would be advised for more traditional statistical methods, we
can split the database into two parts. One to construct the template and the other will be
used to ensure that we can properly segment tumours that were not used to construct the
shape space. At this point, we believe that one could determine if an estimated segmentation
is realistic or not by computing its distance from the shape space. Then, cluster this space
according to their topological signatures, getting a collection of models. Finally, we perform
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a segmentation following each method and choose the most realistic.
This outline arise many questions: How to perform the clustering in such a space? How

will we choose the models? Will the Riemannian distance of the space be enough to deter-
mine if a given segmentation is realistic? While this idea requires a lot of research, it fits
well in this dissertation object as that is coherent with the idea of making tumourous brain
atlases as discussed in section 1.2.3. Moreover, from this perspective, building a shape-space
of glioblastoma would have been a first step in any case.

4.4.5 Conclusion

We have presented a simple yet promising methodology to segment glioblastomas based on
TDA and simple imaging techniques. We have seen that the segmentation problem can
be split into two sub-problems. First locating correctly the tumour within the MRI and
second dividing the tumour into three annotated classes. We have shown an overall good
performance on the union segmentation. Besides we do not put too much effort into a pre-
or post-processing pipeline yet. However, splitting the tumour into classes turned out to be
more difficult than expected, for plural reasons. First, we have shown that our topological
assumption was verified only on a quarter of the BraTS data set. We can also incriminate
biological and image normalisation irregularities. If image normalisation can be addressed
with better preprocessing, biological variability must be addressed by designing and selecting
new strategies. In our case, studying the topological variations across the dataset may give
us the insight to design new segmentation pipelines. Then it will remain to select the correct
pipeline, which will probably require to use of statistical methods. One could use machine
learning, or with more delight, build a glioblastoma atlas and use traditional statistical
techniques.
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General Conclusion & Perspectives

At the outset of this thesis, as outlined in Section 1.2.3, we identified the need for a
novel atlas that combined both Diffeomorphic and Statistical Atlases. Implying the need
for reliable registration tools that can both ‘explain’ a displacement and be used to gen-
erate a diffeomorphic shape-space. The choice of the Metamorphic framework to register
MRI data with different topologies was natural. The work presented in this thesis has ad-
vanced our practical understanding of these methods and may lead to promising results in
the development of accurate and clinically useful atlases. In Chapter 2, we demonstrated
our implementation of Metamorphosis and its initial results, which showed limitations in
registering Glioblastomas due to momentum entanglement. In Chapter 3, we proposed a
solution to this problem by incorporating a model to guide the Metamorphic registration.
Our results showed a significant improvement in performance with the use of a simplistic
model. In Chapter 4, we introduced the first iteration of a Glioma segmentation tool using
TDA, which among other things, provided insights into the topology of Glioblastomas. We
discovered that the simplistic model we had been using may not be adequate and the work
on TDA segmentation may help us to define a more suitable model to use with CM. Based on
the insights gained, we will now expand on potential research directions for this novel atlas.
Just before that, let me review some works on Atlas construction necessary to understand
the upcoming perspectives.

SHORT AND PRACTICAL REVIEW OF ATLAS CONSTRUCTION To begin, let us review some of the
mechanisms involved in Diffeomorphic Shape-Spaces. We have presented in Section 2.2.1.a a
theoretical foundation of such spaces, however, we did not cover a practical implementation
method. Let be xi ∈ M a collection of data points on a general metric space M . The
template x̂ is defined as the Fréchet mean of the shape-space manifold M , via the distance
dDiff (see Section 2.2.3) such that:

x̂ = argmin
x

1

N

N∑
i=1

dDiff(x,xi)2 (4.2)

Many variations of the template and shape space construction algorithms have been
proposed, that can be split into Template-based and Template-free approaches.

Template-based approaches choose an initial reference image and all subjects are registered
onto it [Vaillant et al., 2004; Lorenzen et al., 2005; Fonov et al., 2009, 2011; Legouhy et al.,
2019]. However, this can introduce a bias towards the first reference image. To mitigate
this, the inverse average transformation from the registration is used to compensate for this
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bias. The process is then iterated, with the average model of the previous iteration used
as the new reference image. By repeating this process, an unbiased atlas can be generated.
For example, Fonov et al. [2009, 2011] built the MNI brain template that is one of the
most used brain references today. Note that they do not use LDDMM but rather a log-
exp-deformation-based method for computational constraints. Also, Lorenzen et al. [2005]
claim constructing an unbiased atlas construction on images, by estimating a template by
co-registering all subjects. They used LDDMM, but only on 2D slices on a database of 14
brains.

Template-free approaches, however, avoid the bias by not relying on an initial reference
[Lorenzen et al., 2005; Glaunes and Joshi, 2006]. Two main strategies have been proposed:
a pairwise and a groupwise method. Pairwise methods require registering each subject
towards all the others. From these pairwise registrations, so-called unbiased subjects can
be created that are then averaged. These procedures are long and time-consuming, which
is aggravated by the fact that an additional data supply requires redoing the whole shape-
space construction process.
Iteratives approaches aims to solve this problem [Cury et al., 2014; Legouhy et al., 2022].
These approaches assume that the template should be the centroid of the Riemannian space,
and they use an iterative centroid scheme to approach it. The process begins by matching
two images and selecting a point along the geodesic, which is considered the initial template.
The centroid is then updated by matching it to another image in the dataset and selecting
a point along the geodesic to be the new template. This process is repeated until all images
have been processed. This approach can save time compared to the traditional method of
constructing shape spaces for each additional data supply. Legouhy et al. [2022] propose
a generalisation of the iterative diffeomorphic centroid approach to brain image atlasing,
also capable of merging two atlases. Furthermore, they show that the ordering has only
a slight influence on the result, compared to a template-based approach. Assuming we
have constructed a shape-space, the interpolation of two shapes, denoted as A and B, is
accomplished by computing the average of their initial momenta. Specifically, the initial
momenta that register the template to both shapes, zA0 and zB0 , are averaged, and the
resulting average momentum is used to compute the deformation from the template to the
interpolated shape. Thus yielding the final interpolated shape.

AMETAMORPHIC ATLAS ? When registering images with different topologies using LDDMM,
it is not realistic to expect a perfect match between the images. Instead, the result will be
a projection of the target image onto the orbit of the image by the group of deformations.
Thus, if one builds a diffeomorphic atlas from such images, these projections would be used as
representatives rather than the actual targets. This introduces a source of error in tools that
aim to explain shape variations. One could argue that this also happens when registering
images with Metamorphosis. Indeed, as one combines intensity changes with deformation,
the deformation part is the projection on the orbit as well (c.f.: Figure 2.20). However, the
principle of Metamorphosis itself lies on explaining differences that cannot be explained by
deformation. Furthermore, intensities changes can be analysed as discussed in this point of
Chapter 2 conclusion.

Building this new kind of atlas by substituting LDDMM with Metamorphosis should be
possible. Indeed we saw that as long as the momentum is conserved, one can control a path
from its initial velocity, thus allowing us to adapt the atlas constructions methods reviewed
in the previous paragraphs. We have to note, however, that as Metamorphosis completes the
registration with intensity changes. Thus the resulting space will no longer be a shape-space
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strictly speaking. For a given set of hyper-parameters, we could learn to interpret those and
gain insight into the whole atlas. It remains to study and determine how to interpret the
variations between points within such space.

A way to start answering this question is to ponder the meaning of a metamorphic
registration. One might assume that two brains with tumours have the same topology, by
stating that they have the same number of structures, roughly speaking a brain with a hole
within. However, from a deformation perspective, this is not always the case. For instance,
if we take two brains, one with a tumour in the temporal lobe and the other in the frontal
lobe, a matching connecting voxels of the same nature only, would translate the tumour
from one lobe to the other. In a brain, this would require many aberrant deformations. The
most plausible solution would be to make one tumour disappear and the other vanishes.
This is likely what would happen with Metamorphoses, aside from the entanglement issues
between deformation and intensity. However, the implications of these topology changes in
an atlas are not clear. Will the resulting atlas be a brain with multiple small tumour seeds?
Or a brain similar to a healthy brain? To the best of our knowledge, these question has not
been studied yet.

It would be interesting to make preliminary experiments, comparing LDDMM- and
Metamorphosis-based Atlases, on simple images, such as the ‘C’ with a dot one (see Figure
2.20). We have shown that CM helps to improve the displacement relevance compared to
the Metamorphosis one, in particular when mass effect is in play. Building an atlas with
CM should not be too different from one built using M. Thus, in a second time we could
study a CM-based Atlas. Before considering real data, we advise studying the toy-example
data set we introduced in Section 3.2, to be able to validate the method within a controlled
setting.

LOCALISED GLIOMA ATLAS After reading the previous paragraph, some may conclude that
creating an atlas with metamorphoses poses risks, given our current lack of knowledge about
how to interpret such atlases and extract useful information from them.

To avoid answering the questions above, like the problem of glioma translation from one
lobe to another, we propose an alternative approach: constructing an atlas of glioblastomas
for each lobe. Our method involves registering tumorous brains onto healthy ones using
CM, such that the tumour disappears at specific voxels. We then collect the glioblastomas
that have been pushed into each lobe, using a segmentation method to isolate the tumour
from the rest of the brain. With these glioblastomas, we construct a shape space for each
lobe using LDDMM.

In the perspective section of Chapter 4 (see Section 4.4.3), it was suggested that studying
the topological variations of glioblastoma could be useful. One way to accomplish this would
be to link the topological analysis with the analysis of the shape spaces. Specifically, we
could study the variability of the tumour shape across different patients and how it relates to
the location of the tumour within the brain. By combining this information with the Glioma
topology analysis, it may be possible to identify specific patterns of tumour shape that are
associated with different clinical outcomes or treatment responses. Furthermore, exploring
the connection between topological analysis and shape space analysis could yield additional
insights. For example, clustering techniques could be used to group together glioblastomas
with similar topological features or similar shapes. This could potentially provide new
insights into the underlying mechanisms of glioblastoma growth and the relationship between
structure and function in the brain.
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Diffeomorphic image registration taking topological differences into account
Metamorphosis on brain MRI containing Glioblatomas

Abstract: This thesis addresses the problem of registering images with different topologies
with diffeomorphic deformation. We focus on the case of medical images of glioblastomas,
a type of brain tumour.
Firstly, we implemented both Metamorphosis and LDDMM for images in 2D and 3D. Our
implementation is object-oriented and developed using PyTorch, allowing for versatility in
usage and easy modifications. We also used a semi-Lagrangian scheme on both images and
residual.The implementation is GPU-accelerated, and we demonstrate the effectiveness of
our approach through experiments on glioblastomas using BraTS datasets.
Secondly, we address the difficulties associated with the Metamorphosis algorithm by propos-
ing a framework for incorporating prior knowledge into the model, called Constrained Meta-
morphosis. The framework allows for adding constraints on the registration problem by also
matching given priors. We present two specific types of priors that can be incorporated into
the model: a growing mask generated from a given segmentation and a field that guides
the deformation in a desired direction. We demonstrate the effectiveness of our approach
through experiments on glioblastomas using BraTS datasets, comparing with state-of-the-
art methods.
Finally, we developed a tumour segmentation tool using Topological Data Analysis (TDA)
to detect characteristic components within the FLAIR and T1ce modalities.
Keywords: Diffeomorphic registration, LDDMM, Metamorphosis, Glioblastomas.

Recalage difféomorphique d'images respectant les différences topologiques
Metamorphoses sur des IRM de cerveaux atteints de Glioblastomes

Résumé : Cette thèse aborde le problème du recalage d’images ayant des topologies diffé-
rentes avec une déformation diffeomorphique. Nous nous concentrons sur le cas des images
médicales de glioblastomes, un type de tumeur cérébrale.
Tout d’abord, nous avons implémenté à la fois les Metamorphoses et LDDMM pour des
images en 2D et 3D. Notre implémentation est orientée objet et développée à l’aide de
PyTorch, permettant une grande versatilité d’utilisation et des modifications faciles. Nous
avons également utilisé un schéma semi-lagrangien sur les images et les résidus.L’implémen-
tation est accélérée par GPU, et nous démontrons l’efficacité de notre approche à travers
des expériences sur des glioblastomes en utilisant les données BraTS.
Dans un second temps, nous abordons les difficultés pratiques associées aux Métamorphoses
en proposant un cadre pour incorporer des connaissances préalables dans le modèle, appelé
Métamorphoses Contraintes. Le cadre permet d’ajouter des contraintes sur le problème de
recalage en utilisant également des a-priori. Nous présentons deux types spécifiques de prior
qui peuvent être incorporées dans le modèle : un masque de croissance généré à partir d’une
segmentation donnée et un champ qui guide la déformation dans une direction souhaitée.
Nous démontrons l’efficacité de notre approche à travers des expériences sur des glioblas-
tomes en utilisant des ensembles de données BraTS, en comparant avec des méthodes de
pointe.
Enfin, nous avons développé un outil de segmentation de tumeurs utilisant l’analyse de don-
nées topologiques (TDA) pour détecter des composants caractéristiques dans les modalités
FLAIR et T1ce.

Mots-Clefs : Recalage Diffeomorphique, LDDMM, Metamorphoses, Glioblastomes.
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