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1 | Introduction

Observations of the Universe have led to the scientific consensus that the latter is mainly
composed of invisible components. Many cosmological probes such as, the Cosmic
Microwave Background (CMB) (Hinshaw et al., 2013; Planck Collaboration et al., 2020),
the clustering of galaxies and weak lensing shear (DESI Collaboration et al., 2016;
Abbott et al., 2022; Sugiyama et al., 2023), type Ia supernovae (Riess et al., 2022), all
point to an accelerated expansion of the universe powered by an invisible form of exotic
matter dubbed dark energy as well as strongly favouring the existence of an undetected
matter component, which only interacts through gravitation dubbed Cold Dark Matter
(CDM).

In recent years, these probes have become in tension with one another, inferring
values of some of the cosmological parameters which are at odds with one another. In
particular, the 5 − σ tension between the low value of H0 = 67.36 ± 0.55 kms−1Mpc−1,
inferred from observations of the CMB (Planck Collaboration et al., 2020) and the
high value, H0 = 73.04 ± 1.04 kms−1Mpc−1, inferred from the SH0ES analysis (Riess
et al., 2022) has garnered much attention due to the potential physical implications it
may have (see e.g. Di Valentino et al., 2021; Abdalla et al., 2022; Schöneberg et al.,
2022, for reviews). In this landscape, new cosmological probes have emerged allowing
new measurements of this parameter with different systematics, such as replacing the
Cepheid anchored distance ladder by one anchored using the tip of the red giant branch
(e.g. Freedman et al., 2020), lensed quasar time delays (e.g. Shajib et al., 2023) and
gravitational waves (Abbott et al., 2021).

A second, and sometimes omitted, tension also exists on the combined parameter,
S8 = σ8

√

Ωm/0.3, where σ8 is the amplitude of the linear matter density fluctuations
on the scale of 8h−1Mpc and Ωm is the matter density parameter. This 2 − σ ten-
sion between the CMB (Planck Collaboration et al., 2020) and local measurements of
galaxy clustering and weak lensing shear (DESI Collaboration et al., 2016; Abbott et al.,
2022; Sugiyama et al., 2023), has also sourced numerous physical interpretations (e.g.
Abdalla et al., 2022, for a review), which attempt to alleviate the tension. This calls
for the identification of novel cosmological probes capable of providing complementary
independent constraints on the cosmological parameters. This is the spirit of the work
presented throughout this thesis where we present a novel approach based on the inter-
nal structure of galaxy clusters.

As the most massive gravitationally bound structures in the Universe, galaxy clusters
provide unique opportunities to study both astrophysics and cosmology. The mass
budget of these structures is for the most part dominated by a massive dark matter halo,
fDM ∼ 80 percent of the total mass, within which has accumulated a large quantity of
hot ionoized gas, fgas ∼ 15 percent, with only the remaining 5 percent being the stars we
are able to see in visible light. Over the past decades, these objects have been subject to
countless studies to link the physical properties of galaxy clusters, most notably mass,
to visible quantities such as the richness of the cluster or the properties of the X-ray
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emitting gas (e.g Bellagamba et al., 2019; Mulroy et al., 2019; Bahar et al., 2022).
Recently, it has become possible to extract information about the internal structure

of these objects (Umetsu et al., 2020; Eckert et al., 2022a). With the recent advent of
dedicated high quality cluster observing campaigns (e.g Romualdez et al., 2016; Adam
et al., 2018; CHEX-MATE Collaboration et al., 2021), as well as the arrival of wide
surveys such as, Euclid (Laureijs et al., 2011) and the Rubin observatory’s Legacy Survey
of Space and Time (LSST) (Ivezić et al., 2019) in the visible and eROSITA (Merloni
et al., 2012) in X-rays, we expect that in upcoming years a considerable amount of
large homogeneous data-sets, ranging in size from at least a few hundred objects to a
few thousands, will be available. In this work, we show that these data can be used to
constrain cosmology through the introduction of a novel statistical proxy for the shape
of the mass profile of clusters. Moreover, these constraints that can be completely
independent of both sides of the S8 tension debate. For instance potentially providing
constraints solely from X-ray observations. As such, this thesis aims to both define
this probe and begin to outline the systematics that affect it and how these can be
controlled.

As such, this thesis is structured as follows. In Chapter 2 we overview the physical
processes that lead to the formation of galaxy clusters. Taking a dynamical approach,
we first describe the evolution of the cosmological background and how small density
perturbations evolve in the early universe. We then describe the gravitational collapse
of density field and the formation of cosmic structures such as haloes, filaments, walls,
and voids. After providing a brief overview of cosmological simulations, we end this
chapter by discussing past and current models of the halo mass function and internal
structure of haloes.

In Chapter 3, we introduce the notion of halo sparsity. Defined as a simple mass
ratio, this quantity can be measured for any object without needing to assume a para-
metric mass profile. We show that this non-parametric nature allows us to relate the
internal structure of haloes to the halo mass function and in turn unify descriptions of
the profile through a stochastic mathematical formalism. This description allows us to
anchor our formalism as a generalisation of previously independent results. Most no-
tably, this formalism allows us to predict the Navarro-Frenk-White concentration mass
relation directly from a model of the halo mass function.

Chapter 4, is devoted to the study of how halo sparsity reacts to halo mergers, the
main process through which dark matter haloes acquire their mass. In particular, we
focus on major mergers, which we defines as mergers where the secondary halo is at
least one third of the mass of the primary halo. We find, in agreement with Wang
et al. (2020a), that sparsity reacts in a systematic fashion, displaying a strong pulse like
feature in the sparsity history. We use this feature to design a statistical methodology
to detect clusters that have recently undergone a major merger, and even provide a first
estimate of when the event took place. While not very accurate at predicting the time
of the merger, this approach provides a simple and fast method of sifting through large
catalogues and flagging clusters for further investigation.

In Chapter 5, we present the cosmological applications of sparsity. After a brief
overview of the methods previously used by Corasaniti et al. (2018) we design a novel
approach to constrain cosmology using the internal structure of galaxy clusters. This
method treats each object in a sample as an individual data point rather than con-
densing them into a summary statistic. We show that this approach has the potential
to strongly increase the constraining power of sparsity based methods without needing
any additional data. Nevertheless, this increase in constraining power comes at the cost
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of new systematic effects, which we begin to characterise in order to apply this novel
approach to observational data in the near future.

On a different topic, in Chapter 6 we present work devoted to constraining non-
standard scenarios of dark matter through the lensing effect produced by cosmic struc-
tures. In particular, we focus on the contribution of structures other than haloes such
as filaments and walls which are more abundant in certain dark matter scenarios. To
do so, we model observations of quadruply lensed quasars, which we then perturb using
different types of structures. We find that non-halo structures in warm dark matter
cosmologies can indeed cause sizeable perturbations to flux ratio observations due to
the production of step like features in the surface density field.

Finally in Chapter 7 we present our conclusions on this work and perspectives on
how it can, much like the Universe, expand in the future.

This work led to the publication of three peer-reviewed articles (Richardson et al.,
2022; Richardson & Corasaniti, 2022, 2023) as well as contributions to a fourth article
(Corasaniti et al., 2022), which have been distributed throughout the thesis. In partic-
ular, Chapter 3 and Chapter 5 contain sections adapted from Richardson & Corasaniti
(2023), while Chapter 4 and Chapter 6 are respectively adapted from Richardson &
Corasaniti (2022) and Richardson et al. (2022).
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2 | The standard cosmological scenario

As stated in the previous chapter, the ΛCDM model is currently the leading scenario
which is able to account for the bulk of current cosmological observations. This ex-
panding universe model is based on two primary pillars: General Relativity and the
cosmological principle. The latter states that the universe must be homogeneous and
isotropic at least at some scale. This predicts a hot and dense beginning where the
Universe is dominated by radiation before rapidly cooling under the effects of the ex-
pansion. This first epoch is then followed by a period dominated by matter, where
we see structures form under the influence of gravity before finally giving way to an
epoch dominated by a dark energy component, which accelerates the expansion. In this
chapter, we will go over in detail how these structures form and how we can describe
them.

To do so we will first have to describe how the Universe evolves at large scales as this
will provide the background within which we can paint the scene of structure formation.
Following the chronology of events, we will then present how to model perturbations in
the early Universe and discuss their evolution at early times. Moving forward in time, we
will see how these perturbations collapse to form structures. Through the theoretical
description of the gravitational collapse of matter we will infer the properties of the
final population of collapsed objects. Finally, we will present the inner workings of
cosmological simulation codes and how these can be used to solve the full dynamics of
matter inside the Universes. We will then use results from these codes to understand
the limitations of the theoretical models, while also providing a brief presentation of
past work describing the trends seen in these simulations.

2.1 The expanding homogeneous background

Before studying the formation of structures, let us first review the evolution of both
the background cosmological model and background density field. The foundational
assumption of the ΛCDM scenario, known as the cosmological principle, is that the
distribution of matter in the Universe is homogeneous and isotropic on large scales.
Within the framework of general relativity, this translates into the homogeneous and
isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) metric,

ds2 = −c2dt2 + a(t)2

(

dr2

1 − kr2
+ r2

{

dθ2 + sin2 θdφ2
}

)

, (2.1)

where ds is the infinitesimal space-time distance element, c is the metric’s Minkowski
velocity also commonly referred to as the speed of light, t is a time-like coordinate, a
is the scale factor, a dimensionless factor which defines the scale of the universe with
respect to today, r, θ and φ, define a comoving reference frame such that distances
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in this reference frame do not change with time, finally k defines the curvature of the
universe such that,















k < 0 the Universe is spatially open,
k = 0 the Universe is spatially flat,
k > 0 the Universe is spatially closed.

(2.2)

This geometrical parameter not only influences how distances are measured on this
metric, but also the evolution of the Universe itself. Given this metric, the dynamics of
the homogeneous Universe is completely determined by the evolution of the scale factor
which can be obtained from Einstein’s field equations,

Rµν − 1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (2.3)

where gµν is the metric tensor, Λ is the cosmological constant, Rµν andR are respectively
the Ricci tensor and Ricci scalar which define how the metric is deformed under the
influence of matter described by the stress-energy tensor, Tµν , which for a homogeneous
and isotropic perfect fluid can be written as,

Tµν = (ρ+ p/c2)uµuν + pgµν (2.4)

with ρ and p, the density and pressure of the fluid and uµ its 4-velocity. Explicitly
writing these equations for the FLRW metric, we obtain the Friedmann equations for
the evolution of the scale factor,

(

ȧ

a

)2

=
8πG

3
ρ− c2k

3a2
+

Λc2

3
, (2.5)

ä

a
= −4πG

3

(

ρ+
3p

c2

)

+
Λc2

3
. (2.6)

Introducing the Hubble parameter, H = ȧ/a, and its value at the current epoch, H0,
these equations can be rewritten to express the evolution of the background as well as
the density of the fluid,

H2 = H2
0

(

8πG

3H2
0

ρ− c2k

3H2
0a

2
+

Λc2

3H2
0

)

, (2.7)

ρ̇ = −3H

(

ρ+
p

c2

)

. (2.8)

Finally, by solving this second equation as a function of a for a generic perfect fluid
with equation of state, p = wρc2, and introducing the critical density of the universe at
the current epoch, ρc =

3H2
0

8πG , we can rewrite the three terms on the right hand side of
this equation as dimensionless density parameters Ωi,

H2(a) = H2
0

(

∑

i

Ωia
−3(wi+1) + Ωka

−2 + ΩΛ

)

, (2.9)

where the sum is made over the different species of fluid we want to consider. Typically
we consider the Universe to be filled with three fluids, radiation which has non-vanishing
pressure wr = 1/3, ordinary matter known as baryons, and dark matter, which are, for
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Collaboration et al., 2016), see Tab. 2.1. We can clearly see that over the course of
cosmic time each individual parameter dominates over the others. Indeed, in the early
Universe the medium is dominated by radiation, while at later times it is subsequently
dominated by matter and then the cosmological constant. These subsequent periods
of domination by the various species translates into difference in the evolution of the
Universe at these epochs, most notably in the rate at which the universe expands.

Often, the scale factor is used interchangeably with the observed redshift, z, as the
latter is an observable quantity. The relation between the two can be derived simply
by considering that between the emission of a bundle of light at wavelength λe at time
te and its observation at wavelength λo at time to the universe would have grown by a
factor a(to)/a(te). If we consider that the light bundle is observed today we have,

λo

λe
=

1

a
= 1 + z. (2.12)

This interchangeability not only cements the cosmological origin of the redshifting of
distant galaxies, but also directly links how distances are measured and an observable
property of distant objects. Indeed, accounting for the expansion of the universe the
comoving distance, dC(z), between us and an object with redshift, z, is given by (see
e.g. Dodelson, 2003; Weinberg, 2008),

dC(z) = dH

∫ z

0

dz′

E(z)
, (2.13)

where for convenience we introduced the Hubble distance, dH = c/H0, and the dimen-
sionless Hubble parameter, E(z) = H(z)/H0. Again, for the sake of convenience three
other distance measure are typically introduced:

• The transverse comoving distance,

dT(z) =



















dH√
Ωk

sinh
(√

Ωk
dC(z)

dH

)

if Ωk > 0,

dC(z) if Ωk = 0,
dH√
|Ωk|

sin
(

√

|Ωk|dC(z)
dH

)

if Ωk < 0,

(2.14)

which is defined such that the comoving distance between two objects at the same
redshift separated on the sky by an angle δθ is simply dTδθ, with this particular
definition emphasising the role of the curvature parameter. This distance measure
is then used to define the two others.

• The angular diameter distance,

dA(z) =
dT(z)

(1 + z)
, (2.15)

which is defined in such a way that angular size, δθ, of an object of physical size,
δl, will simply be δθ = δl/dA(z).

• The luminosity distance,

dL(z) = (1 + z)dT(z), (2.16)

which is defined in such a way that the flux F from a point source of intrinsic
luminosity, L, at redshift, z, is F = L

4πd2

L

.
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2.2 The seeds of inhomogeneity
With the definitions presented above, we are now able to describe the evolution of the
background and measure distances in the case of a universe filled with homogeneous
and isotropic fluids. This description while accurate at large scales is unable to describe
the formation of cosmic structures which are, by definition, inhomogenous.

Let us now assume that the matter component of our universe is all contained within
a single self-gravitating, non-relativistic fluid which is dynamically evolving within the
expanding background. In addition, let us assume that the fluid is homogeneous and
isotropic on large scales, and that local inhomogeneities only represent a small pertur-
bation with respect to the background such that we can define the local density of the
fluid, ρ = ρm(1 + δ), in terms of a dimensionless perturbation, δ, where we also define,
ρm ≡ ρcΩm, the mean density of the fluid.

In the standard cosmological scenario, these density perturbations are generated by
quantum fluctuations in the early universe. As such, they are inherently stochastic by
nature and so their spatial variation can only be studied statistically. Assuming that the
particles created by these quantum fluctuations are at thermal equilibrium or thermalise
rapidly, the density perturbation field can be described as a Gaussian random field. In
this case the perturbations can be fully described by two quantities, the field’s ensemble
mean ⟨δ(x)⟩ which is vanishing by definition, because of homogeneity and isotropy, and
its two-point correlation function, ξ(x1,x2) = ⟨δ(x1)δ(x2)⟩. The assumption that the
field is statistically homogeneous on large scales, allows us to express the latter solely
as a function of the separation vector, x = x1 − x2, between both points. By further
assuming the field is ergodic, the averaging operation over all possible states of the field
can be replaced by an average over a sufficiently large volume. This allows us to express
the two-point correlation function,

ξ(x) = ⟨δ(x′)δ(x′ + x)⟩ =
1

V

∫

V
d3x′δ(x′)δ(x′ + x), (2.17)

as a convolution of the field with itself over a sufficiently large volume V .
Convolutions being complicated to evaluate, both analytically and numerically, it is

often more convenient to study their Fourier transform where this operation is replaced
by a product. To do so, we define

δ(k) =

∫

d3x e−ik·xδ(x) and δ(x) =
1

(2π)3

∫

d3k eik·xδ(k), (2.18)

respectively the Fourier transform and its inverse.
Considering that the Fourier transform of a Gaussian random field is also a Gaus-

sian random field. If we now write the two-point correlation function in Fourier space
between the field and its complex conjugate,

⟨δ(k)δ∗(k′)⟩ =

∫

d3x1

∫

d3x2 e
−ik·x1eik′·x2⟨δ(x1)δ(x2)⟩, (2.19)

and again introduce the separation vector x = x1 − x2,

⟨δ(k)δ∗(k′)⟩ =

∫

d3x1 e
−i(k−k′)·x1

∫

d3x eik′·x⟨δ(x1)δ(x1 + x)⟩, (2.20)

= δD(k − k′)
∫

d3x eik′·xξ(x), (2.21)
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Parameter Planck 2013 Planck 2015 Planck 2018
h 0.674 ± 0.14 0.6774 ± 0.0046 0.6736 ± 0.0055

Ωm 0.314 ± 0.020 0.6911 ± 0.0062 0.3153 ± 0.0073
ΩΛ 0.686 ± 0.020 0.3089 ± 0.0062 0.6847 ± 0.0073
Ωb 0.0486 ± 0.0021 0.0486 ± 0.016 0.04930 ± 0.00087

105Ωr 9.32 ± 0.62 9.16 ± 0.19 9.27 ± 0.23
σ8 0.814 ± 0.027 0.8159 ± 0.0086 0.8111 ± 0.0060
ns 0.9616 ± 0.0094 0.9667 ± 0.0040 0.9649 ± 0.0042

Table 2.1: Cosmological parameters resulting from the Planck analysis (Planck Collab-
oration et al., 2014a, 2016, 2020). Unless specified otherwise we will use the parameters
from the 2015 analysis throughout the rest of this work.

is a window function defining a real space top hat filter or radius R.
The shape of the transfer function has been studied in detail with models of in-

creasing complexity. In the left panel of Fig. 2.2 we’ve reproduced some of the most
used shapes of the power spectrum. Bardeen et al. (1986) produced the first widely
used approximation, which gave the overall shape of the power spectrum. This approx-
imation was subsequently improved by Sugiyama (1995); Eisenstein & Hu (1998) and
Eisenstein & Hu (1999) to include the effect of the gravo-thermal collapse of baryons on
the shape of the matter power spectrum. Indeed in Fig. 2.2, we notice the presence of
an oscillatory pattern, known as Baryonic Acoustic Oscilations (BAO), which is caused
by this pressure support. With the advent of high performance computing these models
based on approximate analytical calculations have been replaced by numerical codes
such as cmbfast (Seljak & Zaldarriaga, 1996), camb (Lewis et al., 2000), and class
(Lesgourgues, 2011), known as Boltzmann solvers, which are able to account for more
complex physical effects. In the right panel of Fig. 2.2, for illustration we also produce
a Gaussian random field with the Eisenstein & Hu (1998) power spectrum using the
best-fit parameters of the Planck 2015 analysis (Planck Collaboration et al., 2016) for
which we summarise the relevant parameters in Tab. 2.1.

2.3 Time evolution of perturbations
Having introduced the statistical quantities that allow us to compare theory with obser-
vations, let us now look in more details to the time evolution of the primordial density
perturbation field. Recalling that the field is associated to a fluid of matter, we place
ourselves in the Newtonian limit and describe the dynamics of this fluid of density, ρ,
and velocity field, u using the fluid equations in Eulerian form in comoving coordinate
space.

ρ̇+ a−1
∇ · (ρu) = 0, (2.26)

u̇ + a−1(u · ∇)u +Hu = −a−1 ∇P

ρ
− a−1

∇ϕ, (2.27)

a−2
∇

2ϕ = 4πG(ρ− ρm), (2.28)

where P is the pressure inside the fluid, ϕ is the gravitational potential sourced by the
fluid and ρm(a) = Ωm(a)ρc(a) is the mean matter density in the Universe. We see that
these equations differ from the standard fluid equations only through the presence of
the scale factor and a drag term proportional to the Hubble parameter. Note that, in
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the case of collisionless dark matter, even if one may be tempted to neglect the pressure
term, the initial velocity dispersion of particles in the fluid may act as an effective
pressure.

Let us consider that the inhomogeneities only represent a small perturbation with
respect to the homogeneous and isotropic background, ρ = ρm(1 + δ), allowing us to
linearise these equations by rewriting them in terms of δ and the divergence of the
velocity field θ = ∇ · u,

δ̇ + a−1θ = 0, (2.29)

θ̇ +Hθ = −c2
s

a
∇

2δ − a−1
∇

2ϕ, (2.30)

a−2
∇

2ϕ = 4πGρmδ. (2.31)

where we have introduced the sound speed, c2
s = ∂P

∂ρ . These equations can further be
reduced into a single second order differential equation by eliminating θ and ϕ,

δ̈ + 2Hδ̇ −
(

3H2
0

2a3
Ωm,0 +

c2
s

a2
∇

2

)

δ = 0, (2.32)

which in Fourier space reads,

δ̈ + 2Hδ̇ +

(

c2
s

a2
k2 − 3H2

0

2a3
Ωm,0

)

δ = 0. (2.33)

We see that in the small perturbation limit δ ≪ 1 individual scales are decoupled from
one another. This equation exhibits two types of solution, one monotonically growing
and a second oscillating solution. We see that the type of solution which is produced
depends only on the sound speed and scale of study. For baryons, the oscillating mode
corresponds to the propagation of sound waves within the fluid, while for collisionless
dark matter this corresponds to free streaming. The growing solution, on the other
hand, corresponds to the gravitational collapse of the perturbation. What can also be
seen is that, as the Universe expands, the sign of the third term can switch meaning
that an initially oscillating mode can eventually freeze out and collapse. For baryons
in the standard picture of a ΛCDM universe, this occurs at the time of recombination
when radiation pressure drops rapidly due to drop in the density of free electrons. For
collisionless dark matter, the time where this occurs depends on the initial warmth of the
fluid. In both cases, after gravity surpasses pressure the dynamics of the fluid simplifies
even further,

D̈ + 2HḊ − 3H2
0

2a3
Ωm,0D = 0. (2.34)

Since the equation only depends on time, we introduce the linear growth factor D to
separate the temporal evolution and spatial distribution of δ(x, t) = D(t)δ(x, t0). This
equation exhibits an analytical solution,

D(a)

D0
=
H(a)

H0

∫ a

0
da′

[

Ωra
′−2 + Ωma

′−1 + ΩΛa
′2 + Ωk

]−3/2
, (2.35)

where D0 is chosen such that D(a = 1) = 1. The behaviour of this integral can be
evaluated analytically when we consider that one density parameter dominates over the
others. As such we can show that during:

• Radiation domination, D(a) ∝ a2,
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• Matter domination, D(a) ∝ a and

• Dark Energy domination, D(a) becomes constant.

An interpretation of this result is that for most of the history of the Universe the per-
turbations grow, and eventually freeze out. But what does this mean for the properties
of the field? As we have separated out the temporal evolution of the perturbations and
neglected the spatial evolution of the field, the perturbations remain Gaussian and so
we can continue to fully describe them through their mean and power spectrum. By
definition the mean of the density perturbation field does not change, ⟨δ(t)⟩ = 0. The
power spectrum however,

P (k, t) =
1

(2π)3
δD(k − k′)⟨δ(k, t)δ(k′, t)⟩,

=
1

(2π)3

∫

d3xeik·x⟨δ(x′, t)δ(x′ + x, t)⟩,

=
1

(2π)3

∫

d3xeik·xD(t)2⟨δ(x′, t0)δ(x′ + x, t0)⟩,

P (k, t) = D(t)2P (k, t0), (2.36)

is proportional to D(t)2, simply implying that the amplitude of fluctuations is indeed
increasing with time.

This steady increase in the amplitude however implies that the hypothesis of small
perturbations is only valid for a time, commonly referred to as the linear regime, and
eventually breaks down. Once the perturbations become large, we can no longer treat
them using this formalism. However, before having to resort to cosmological simulations,
the evolution of these perturbations can be studied further.

2.4 Following the Flow
As said previously, the main issue encountered by perturbation theory is that eventu-
ally the assumption that δ is small breaks down. It is however possible to drop this
assumption completely, simply by changing point of view. This is achieved simply by
switching to the Lagrangian formulation of the fluid equations, in essence instead of
studying the dynamics of a fluid within a fixed frame of reference, we follow the flow
of a fluid element and study how it evolves. In this formalism any quantity X which is
transported by the flow remains within the fluid element. As such, where in a Eulerian
framework the transport derivative,

DX

Dt
= Ẋ + (u · ∇)X, (2.37)

exhibits a highly non trivial term on the right hand side, making it notoriously difficult
to solve. In a Lagrangian framework it simply becomes Ẋ, making the resolution sig-
nificantly easier. In the case at hand for example, the Euler equation, e.g. Eq (2.27),
becomes,

u̇ +Hu = −a−1
∇ϕ, (2.38)

which is significantly simpler than its Eulerian counterpart. Note we have dropped the
pressure term because as we have mentioned it vanishes rapidly for collisionless dark
matter soon after production and similarly for baryons after recombination.
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This simplification is however not sufficient to solve the dynamics of the system. In-
deed, the main obstacle preventing us from achieving this is the complex time evolution
of the potential. Lagrangian perturbation theory circumvents this issue by introducing
additional assumptions on the trajectory of the fluid element, which in turn becomes
an indirect assumption on the evolution of the potential. The first order of approx-
imation, introduced by Zel’dovich (1970) and named the Zel’dovich Approximation,
assumes that the fluid elements move along straight lines, implicitly this requires that
the spatial distribution of the potential remains fixed while the amplitude simply grows.
This is, surprisingly, the result from linear theory,

ϕ(x, t) =
D(t)

a(t)
ϕ(x, t0) =

D(t)

a(t)
ϕi, (2.39)

that we have derived above and seems counter intuitive as we have previously said
that linear theory breaks down quite rapidly. However, the Laplacian operator in the
Poisson equation significantly smooths out the small scale structure in δ, making this
assumption far more reasonable at later times. This approximation remains valid until
the trajectories of the fluid elements start intersecting, a moment known as shell crossing.
Indeed in this approximation, as the fluid elements move along straight lines, they simply
continue on their way, while in the full non-linear system the local gravitational potential
would significantly change and possibly bind them together.

Using Eq. (2.39), we can solve the motion of the fluid elements analytically,

u̇ +Hu = −D

a2
∇ϕi,

1

a
∂t(au) = −D

a2
∇ϕi,

u = −1

a
∇ϕi

∫

dt
D

a
. (2.40)

The integral on the right hand side can be solved by rearranging the differential equation
for the linear growth factor by introducing,

a2D̈ + 2a2HḊ = ∂t(a
2Ḋ). (2.41)

After only some minor modifications, Eq. (2.34) then becomes,
∫

dt
D

a
=

a2Ḋ
3
2H

2
0 Ωm

, (2.42)

from which we get the velocity,

u = − aḊ
3
2H

2
0 Ωm

∇ϕi, (2.43)

and comoving position, knowing that u = aẋ,

x = q − D
3
2H

2
0 Ωm

∇ϕi, (2.44)

where we have introduced the Lagrangian coordinate, q. By introducing,

ψ = −(
3

2
H2

0 Ωm)−1ϕi, (2.45)
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the equations take a very simple form,

x = q +D∇ψ, (2.46)
u = aḊ∇ψ, (2.47)

∇
2ψ = −δi, (2.48)

where we can clearly see that the growth factor plays the role of a time coordinate and
the Lagrangian coordinate the initial position of the fluid element.

Now that we are able to describe the motion of individual fluid elements, we want
to investigate how this motion alters the overall density of the fluid. To do so let us
consider a mass,

M =

∫

V
d3q ρm(ti), (2.49)

contained within an initial volume, V , considering that initially the density inside the
volume is close to the mean density of the Universe. If we consider that the boundaries
of the volume are attached to fluid elements, at later times this volume is distorted
by the motion of these fluid elements. The mass inside the volume however, remains
constant allowing us to compare the density at both epochs,

∫

V
d3q ρm(ti) =

∫

V
d3x ρm(t)[1 + δ(x, t)] =

∫

V
d3q ρm(t)[1 + δ(q, t)]

∣

∣

∣

∣

∂x

∂q

∣

∣

∣

∣

, (2.50)

where we transform the integration variables using the determinant of the Jacobian
and reintroduce the overdensity δ. We note that in this case we have not made the
assumption that δ remains small. Since we have not specified V both integrands must
be identical allowing us to infer,

1 + δ(q, t) =

∣

∣

∣

∣

∂x

∂q

∣

∣

∣

∣

−1

=

∣

∣

∣

∣

∣

δij +D(t)
∂2ψ

∂qi∂qj

∣

∣

∣

∣

∣

−1

, (2.51)

where δij is the Kronecker delta symbol. The determinant on the right hand side is
that of a symmetric real valued matrix, as such it necessarily has three real eigenvalues
allowing to express the overdensity contrast,

1 + δ(q, t) =
1

|(1 +D(t)λ1)(1 +D(t)λ2)(1 +D(t)λ3)| , (2.52)

as a function of these eigenvalues, where λi are the eigenvalues of the second deriva-
tive. These eigenvalues depend only on the Lagrangian position of the fluid element,
informing us on the behaviour of the fluid. Indeed, we see that when we have λi < 0,
the monotonous growth of D(t) makes 1 + Dλi a decreasing function of time, which
eventually reaches a point when 1 + Dλi = 0 and the overdensity diverges, we can
therefore consider that the volume has collapsed along this dimension. On the other
hand, if λi > 0, then 1 +Dλi is an increasing function of time and therefore the volume
expands along this dimension.

This result leads to the introduction of a simple classification of structures that form
in the Universe based on the signs of these eigenvalues.

• Voids, all eigenvalues are positives and the region expands along all dimensions.

• Pancakes or walls, only one eigenvalue is negative and the volume collapses along
one dimension forming a two dimensional structure.
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2.5 Spherical Collapse
Let us first simplify the scope by focusing on a spherical shell of physical radius ri

at some initial time ti. This shell is contained within a local overdensity δi = δ(ti)
with respect to the background mean density, ρm(ti). Let us also focus on a universe
dominated by matter, (Ωm = 1,ΩΛ = 0), known as an Einstein de Sitter (EdS) model,
As this makes the analytical computation simpler. Moreover, let us assume that this
matter is entirely composed of dark matter. In this cosmological model the mean density
becomes,

ρm =
1

6πGt2
, (2.53)

and the linear growth factor is equal to the scale factor, D(a) = a ∝ t2/3.
The spherical shell we are interested in initially encloses a mass,

M =
4π

3
r3

i ρm(ti)[1 + δi] =
4π

3
r(t)3ρm(t)[1 + δ(t)], (2.54)

where we are able to write the second equality due to the fact that the mass inside
of the shell is conserved. Again this is only valid up to shell-crossing, when the shell
crosses itself on an outward trajectory.

In this geometry the equation of motion of the shell can be established through
Newton’s first law,

r̈ = −GM

r2
. (2.55)

The integrated form of this equation reads as,
1

2
ṙ2 − GM

r
= E, (2.56)

being akin to the standard energy conservation equation in Newtonian mechanics, where
E is an integration constant which plays the roll of the total mechanical energy of
the system. By analogy with the two body problem, this equation exhibits two types
of solution depending on the sign of E. For E ≥ 0, the expansion of the Universe
overcomes gravity and the shell expands, for E < 0, the shell is gravitationally bound
to the perturbation and collapses in on itself. In the second case the equation of motion
admits a parametric solution,

r = A(1 − cos θ) with A =
GM

2|E| , (2.57)

t = B(θ − sin θ) with B =
GM

(2|E|)2/3
, (2.58)

where θ ∈ [0, 2π]. This parameteric solution tells us that after an initial phase of
expansion from r = 0, θ = 0 and t = 0 the shell reaches a maximal radius, rmax at
θ = π and tmax = πB. The shell then turns around and collapses returning to r = 0 at
θ = 2π and tcoll = 2tmax = 2πB. This implies that any perturbation that has negative
mechanical energy will eventually collapse. The mechanical energy of a spherical shell
inside perturbation is however not a quantity that we can easily access and evaluate.
Let us therefore transform this condition for collapse into a condition on the density
perturbation.

To do so let us assume that the peculiar velocity of the shell is negligible with respect
to the Hubble flow. As such, the initial velocity is simply,

vi = ṙi =
daxi

dt
= ȧxi + aẋi ≃ ȧxi = Hiri, (2.59)
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where xi is the initial comoving radius of shell. Under this assumption, we are able to
write the initial mechanical energy of the shell,

Ei =
1

2
H2

i r
2
i − GM

ri
. (2.60)

We can go a step further by replacing the mass,

M =
4π

3
r3

i ρm(ti)[1 + δi] =
H2

i r
2
i

2G
[1 + δi], (2.61)

in the Eq. (2.60), which significantly simplifies the latter,

Ei =
1

2
H2

i r
2
i − 1

2
H2

i r
2
i [1 + δi] = −1

2
H2

i r
2
i δi. (2.62)

As Hi and ri are both always positive, we see that in the EdS model, the sufficient con-
dition for the shell to be bound and eventually collapse is that it is within an overdense
region, δi > 0 implying that in an EdS universe all overdensities eventually collapse.
More generally, for non-EdS cosmologies, this is not the case and it can be shown that,
for the specific case of ΛCDM, this condition becomes δi > Ωm(ti)

−1 − 1 (Mo et al.,
2010).

Now that we know which overdensities will collapse, the natural question that follows
is: when will they collapse? The obvious answer to this question, i.e. when θ = 2π,

tcoll = 2πB = 2π
GM

H3
i r

3
i δ

3/2
i

, (2.63)

is not very helpful as it again depends on a number of parameters that we do not a priori
know. The way around this issue is to compare the evolution of the perturbation with
an equivalent linear theory extrapolation. In essence, this would allow one to compare
the extrapolated density field to some collapse threshold δc and know which regions
have collapsed. This is illustrated in Fig. 2.4, where the desired threshold is marked by
a circle. To find this threshold let us first match the initial condition on the density
perturbation to linear theory.

To this effect we begin by studying how the overdensity evolves at the start of the
spherical collapse model. Recalling that the overdensity is defined as the ratio of the
mean density within the shell and background density,

1 + δ =
ρ

ρm
, (2.64)

we can recover its dependency on θ by explicitly writing both densities as functions of
this variable,

ρ =
3M

4πr3
=

3M

4πA3
(1 − cos θ)−3 , (2.65)

ρm =
1

6πGt2
=

1

6πGB2
(θ − sin θ)−2 , (2.66)

which, when put together, yields:

1 + δ =
9

2

(θ − sin θ)2

(1 − cos θ)3
. (2.67)
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δc =
3

20
(12π)2/3 =

3

5

(

3π

2

)2/3

≃ 1.686, (2.72)

which can be used to identify where and when collapse will occur simply by extrapolating
the initial condition using linear theory. This is the main philosophy of excursion set
theory that we will explore later to predict the properties and population of haloes. It
is worth noting that in the more general case of ΛCDM this collapse density only varies
slowly with the matter density parameter (see e.g. Mo et al., 2010),

δc =
3

5

(

3π

2

)2/3

Ωm(tcoll)
0.0055. (2.73)

Once the shell has collapsed this model can no longer accurately follow its evolution
as it inevitably mixes with other shells. However, keeping in spirit with this model by
looking at the energy of the shell, we can get some insight on the final object that is
formed. Indeed, if we consider that once the shells mix the object virialises, we can
consider that the shells obey the virial theorem,

2Kf + Uf = 0, (2.74)

where Kf and Uf are respectively the kinetic and potential energy, such that we can
write the final energy of the system,

Ef =
Uf

2
= −GM

2rvir
, (2.75)

in such a way that it only depends on the mass, M , and rvir, the virial radius of the
halo. Considering that the mechanical energy of the system is conserved, this energy
can then be equated to the energy at turn around,

Eta = −GM

rmax
, (2.76)

which takes a very similar form. This, in turn, tells us that the radius of the collapsed
object is half of what it was at turn around, rvir = rmax/2, which also implies, assuming
that mass is conserved, that inside the halo the density is 8 times larger. Recalling the
definition of the overdensity, i.e. Eq. (2.64), we also need to know how the background
density has changed between the time of virialisation and turn around. For simplicity
we consider that the structure virialises rapidly after collapse, tvir ≃ tcoll. Within the
framework of an EdS cosmology the evolution of the background is sufficiently simple
for us to write,

ρm(tcoll) = ρm(tta)

(

tcoll

tta

)−2

=
ρm(tta)

4
. (2.77)

This allows us to fully express the virial overdensity contrast,

1 + ∆vir =
ρ(tcoll)

ρm(tcoll)
= 32(1 + δmax) = 18π2 ≃ 178, (2.78)

as a function of the overdensity at turn around, δmax, which we know thanks to Eq. (2.67).
We find that the resulting overdensity does not depend on the mass of the object or the
time at which it formed, a direct consequence of having assumed spherical symmetry,
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making it a universal characteristic of haloes in an expanding Universe. This result is
however dependent on the cosmological model (Bryan & Norman, 1998),

∆vir(t) ≃ 1

Ωm(t)

(

18π2 + 82(Ωm(t) − 1) − 39(Ωm(t) − 1)2
)

, (2.79)

which also introduces a time dependence.
Combining all that we have explored over the last sections, we now have a broad

view of what is going to happen to overdensities inside the universe. These primordial
fluctuations first go through a phase of initial growth proportional to the growth factor,
D(t). After this initial phase these overdenisities collapse to form virialised haloes.

2.6 Counting haloes
Now that we have a vague understanding of how, when and where, dark matter haloes
will form, we want to answer the question: how many haloes will form? More specifi-
cally: how many haloes of a given mass will form? Formally to answer this question we
want to derive what is known as the Halo Mass function (HMF), dn

dM , which quantifies
how many haloes we expect to find with a mass contained between M and M + dM
inside a infinitesimal volume dV . Assuming that the number density dn is equal to the
infinitesimal volume fraction dF/V , with V = M/ρm, we relate this number of objects,

dn

dM
=
ρm

M

dF

dM
, (2.80)

to the fraction dF of the total mass inside contained in haloes with masses between M
and M + dM . In this section we will present two analytical approaches which allow us
to express F , and therefore dF .

2.6.1 Press & Schechter approach
Following the derivation of Press & Schechter (1974), let us begin by considering what
we have seen in the previous sections. We have seen that under the spherical collapse
model a halo forms when the linearly extrapolated density field reaches the threshold
density, D(t)δ(x) > δc. This condition can be recast in order to keep the density field
constant in time, δ > δc/D(t) = δc(t), and have the threshold, which we will also refer
to as collapse barrier, evolve instead. Press & Schechter (1974) postulate that this
condition also applies to the density field smoothed over a radius R,

δR(x) =

∫

d3x′ δ(x′)WR(x − x′), (2.81)

allowing us to assign a mass, M = γρmR
3, to the field, where γ is a constant that

depends on the type of window function WR(x) used. As R and M are in this case
simply a label for the window function we can use them interchangeably, δR = δM . The
authors further postulate that F (> M, t) = Pr(δM > δc) meaning ‘the probability that,
δM > δc(t), is equal to the mass fraction that at time t is contained in haloes with mass
greater than M ’.

To this effect we need to first understand the nature of the new random field δM .
As we have simply smoothed a Gaussian random field, this field will also be Gaussian.
Thus, the field can be fully described in terms of its mean and variance. The mean
will remain unchanged, ⟨δM ⟩ = ⟨δ⟩ = 0. The variance, on the other hand, will change.
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We do however, already know what the variance of such a field is as we used a similar
definition in Eq. (2.24) when introducing the σ8 cosmological parameter, which we recall
here to avoid page flipping:

σ2
R =

1

2π

∫ ∞

0
dkk2Ŵ 2(kR)P (k). (2.82)

For CDM models σ2
R will be a monotonically decreasing function of R and M , as these

are interchangeable in this case. We then define the Probability Distribution Function
(PDF),

ρ(δM )dδM =
1√

2πσM

exp

[

− δ2
M

2σ2
M

]

dδM (2.83)

of the height of a peak of the random field. From which we can therefore express,

F (> M, t) = Pr(δM > δc) =
1√

2πσM

∫ ∞

δc

dδM exp

[

− δ2
M

2σ2
M

]

=
1

2

[

1 − erf

(

δc(t)

2σM

)]

, (2.84)

the fraction of mass contained in haloes with mass greater than M . Note that, in
the limit where R → 0, equivalently σM → ∞, we find that only half of the matter
ends up inside haloes where one would expect that all the matter eventually collapses
into haloes. Under this observation, the authors of the original derivation correct by
manually introducing a factor two with poor justification.

Next, we want to obtain the HMF from F (> M). To do so we simply need to insert
our result into the definition of the HMF discussed above,

dn

dM
dM = 2

ρm

M

∂F (> M)

∂M
dM,

=

√

2

π

ρm

M2

∣

∣

∣

∣

d ln σM

d lnM

∣

∣

∣

∣

δc

σM
exp

(

− δ2
c

2σ2
M

)

dM. (2.85)

This result, stemming from a relatively simple approach, gives us significant insight into
the behaviour of the population of haloes as a whole. Indeed assuming a CDM model,
the HMF approximately resembles a power law which slowly converges to M−2 for small
masses and is exponentially suppressed on the high mass end.

2.6.2 Excursion set theory
This result, while insightful, however has a number of issues. Not only regarding the
assumptions that are made to obtain it, for instance that all structures collapse spher-
ically which we have seen while discussing the Zel’dovich approximation (see Sec. 2.4)
is generally not the case, but also the justification of the fudge factor which is generally
regarded as unsatisfactory.

In the early 1990’s a new, more rigorous, approach was developed (Bond et al.,
1991). Instead of studying the density field itself the authors decided to treat individual
positions on this field as random variables. By filtering the density field at different
scales, as in Eq. (2.81), and successively evaluating it at the same position, one observes
that the measurements perform a random walk. Following the notation of Corasaniti &
Achitouv (2011), this random walk is described in terms of a Langevin equation

∂δR

∂R
= ζ(R) (2.86)
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with a stochastic noise term,

ζ(R) =
1

(2π)3

∫

d3kδ(k)
∂W (k, R)

∂R
e−ik·x, (2.87)

of which the properties depend both on the density field and the filter. We have al-
ready seen that the initial density field is Gaussian with ⟨δ(k)⟩ = 0 and ⟨δ(k)δ∗(k′)⟩ =
(2π)3δD(k − k′)P (k). By taking ensemble averages of the noise term, we can show that
⟨ζ(R)⟩ = 0 and

⟨ζ(R)ζ(R′)⟩ =
1

2π2

∫

dk k2P (k)
∂W

∂R

∂W

∂R′ , (2.88)

which implies that for a general filter W (k, R) the random walk will be correlated
between R and R′. This is for instance the case of the real space top hat filter we have
used previously. While this filter is easy to comprehend and physically assign a mass to,
it becomes detrimental in this context as it introduces correlations between individual
steps of the random walk making these trajectories difficult to study analytically.

An exception to this rule is the sharp-k filter,

δR(x) =

∫

d3k Ŵsk(kR)δ(k)e−ik·x =

∫

k<1/R
d3k δ(k)e−ik·x, (2.89)

also known as a Fourier space top hat filter, for which the correlation between the noise
term at different scales is only non-zero for R = R′. This implies that for each new scale
one only introduces new and independent modes to the random walk. This property
makes the walk Markovian allowing us to study its properties analytically. The main
issue of this filter is that it has infinite support in real-space,

Wsk(r,R) =
1

2π2R3

[

sin(r/R) − r

R
cos(r/R)

]

(2.90)

and integrating over this infinite support leads to a diverging volume integral. Mo et al.
(2010) propose that this issue can be circumvented if one considers that the effective
volume normalises the filter such that, Wsk(0, R)V (R) = 1. Under this assumption, this
leads to the sharp-k filter representing a volume, V (R) = 6π2R3. While this particular
workaround is not rigorous to the definition of a physical volume it however permits us,
in a similar fashion to the real space top-hat, to relate the scale R of the filter to a mass
M = 6π2R3ρm.

Regardless of the filter used, a sole boundary condition can be assigned to these
random walks. Considering the cosmological principle implies that for a large enough
scale, or mass, the density is homogeneous and isotropic, lim

R→∞
δR(x) = 0. Since a

boundary condition at R → ∞ is not practical, it is customary to recast the random
walks in terms of S = σ2

R, given that in the CDM paradigm the variable is positively
defined and monotonically decreasing as a function of the scale of the filter, such that
lim

R→∞
S = 0, thus corresponding to a single starting point for all trajectories (S = 0, δS =

0).
Letting each trajectory evolve up to a certain mass, the Press & Schechter approach

would then be equivalent to counting the number of trajectories that at a given mass
are above the threshold density. In this context, however, another flaw in this approach
becomes apparent. Let us consider a trajectory that first crosses the boundary at some
mass M1, but then crosses it again at some lower mass M2 < M1. This would mean that
for a mass M < M2, where the trajectory is below δc(t), the fluid element associated to
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the trajectory is considered as no being inside of a halo with mass above M . If we now
consider the trajectory at a second mass M ′ such that, M2 < M ′ < M1, the trajectory
being above the threshold is now considered as being part of a halo with mass above
M ′. These two statements are in contradiction, indeed how can a fluid not be part of
a halo more massive than M , when it has to also be part of a halo with mass above
M ′ > M , This is known as the cloud-in-cloud problem.

In excursion set theory the cloud-in-cloud problem is solved through the introduction
of an ordering system, i.e the scale of the filter or the mass. Instead of looking at the
proportion trajectories that, at some scale M , are above or below the threshold, we
now consider that all trajectories that have crossed the barrier for the first time at a
scale M1 > M are bound to haloes with masses lower than M1, even if they cross the
boundary again.

Given these considerations, for the sharp-k filter we can summarise the trajectory
as a Markovian random walk,

∂δ

∂S
= ηδ(S), (2.91)

where ηδ(S) is a white noise term such that, ⟨ηδ(S)⟩ = 0 and ⟨ηδ(S)ηδ(S′)⟩ = δD(S−S′).
To this random walk we associate the probability Π of finding the trajectory at a given
over-density δ at a given scale S. As the random walk is Markovian, this probability is
described by the Fokker-Planck equation,

∂Π

∂S
=

1

2

∂2Π

∂S2
, (2.92)

which can be solved given the initial condition, δ(0) = 0 and absorbing boundary at
δ = δc, such that:

Π(δc, δ, S) =
1√
2πS

[

exp

{

− δ2

2S

}

− exp

{

−(2δc − δ)2

2S

}]

. (2.93)

From this, the fraction of trajectories, FFU, which have still to cross the barrier for the
first time at a given scale S is simply,

FFU(S) = 1 −
∫ δc

−∞
Πdδ (2.94)

= 1 − 1√
2πS

[

∫ δc

−∞
exp

{

− δ2

2S

}

dδ −
∫ δc

−∞
exp

{

−(2δc − δ)2

2S

}

dδ

]

,

= 1 − 1√
2π

[

∫ δc/
√

S

−∞
exp

{

−x2

2

}

dx−
∫ +∞

δc/
√

S
exp

{

−x2

2

}

dx

]

,

= 1 − 1√
2π

[

∫ δc/
√

S

−∞
exp

{

−x2

2

}

dx−
∫ +∞

δc/
√

S
exp

{

−x2

2

}

dx

]

,

= 2 − 2√
2π

∫ δc/
√

S

−∞
exp

{

−x2

2

}

dx,

FFU(S) = 2

[

1 − 1√
2π
ϕ

(

δc√
S

)]

, (2.95)

where we have introduced ϕ(x) =
∫ x

−∞ exp
{

−x′2

2

}

dx′.
We see that this shift in perspective is surprisingly equivalent to double counting

trajectories that have crossed the boundary after mirroring them with respect to the
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boundary, introducing a factor 2. In essence, this not only solves the issue of inconsis-
tency, but also naturally explains the fudge factor. For CDM, if we go to arbitrarily
large S, all trajectory will eventually be above the threshold implying that all matter
eventually ends up inside haloes.

From this, we can simply write the fraction of mass contained within haloes larger
than M ,

F (> M) = 1 − F (< M), (2.96)
as a function of our result from Excursion set theory. We can then start from an
intermediate point to derive the HMF,

dn

dM
dM =

ρm

M

∂F (> M)

∂M
dM,

= −ρm

M

∂F (< M)

∂M
dM,

= −ρm

M

dS

dM

∂F (> S)

∂S
dM,

=
ρm

M

∣

∣

∣

∣

dS

dM

∣

∣

∣

∣

fFU(S)dM, (2.97)

where,

fFU(S) =
dFFU

dS
=

1√
2π

δc

S3/2
exp

(

− δ2
c

2S

)

, (2.98)

is the fraction of trajectories that have their first up-crossing between S and S + dS.
Finally if we replace, S = σ2

M , we find

dn

dM
dM =

√

2

π

ρm

M2

∣

∣

∣

∣

d ln σM

d lnM

∣

∣

∣

∣

δc

σM
exp

(

− δ2
c

2σ2
M

)

dM, (2.99)

recovering the result of Press & Schechter without needing a fudge factor. While this
result is now anchored to a much sturdier mathematical foundation, there still remains
the issue of the multiple assumptions that needed to be made in order to obtain it.
Firstly as we have seen, in full generality gravitational collapse is not spherical and
secondly the mass, M considered here is ill defined. Indeed, as we will see in the
following defining the mass of dark matter halo is a problem of its own. Multiple
advances have been made in order to assess these shortcomings. For example, Sheth &
Tormen (2002) derived the HMF using excursion set theory assuming a moving barrier
calibrated in order to introduce information on the ellipsoidal nature of gravitational
collapse and Maggiore & Riotto (2010a) showed that it is in fact possible to derive an
analytical results for filters producing correlated random walks using a path integral
formalism. This second result was expanded by Maggiore & Riotto (2010b) to solve
the excursion set problem with a diffusing barrier and was later used by Corasaniti &
Achitouv (2011) to obtain the HMF for a diffusing barrier accounting for ellipsoidal
collapse. These analytical formulations were however quickly overshadowed by N-body
simulations due to the rapid increase in computation power and arrival of new efficient
algorithms.

2.7 Cosmological Simulations
In previous sections we have explored multiple analytical descriptions of the formation
of cosmological structures. While these results are already extremely valuable, they are
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limited by their underlying assumptions. For instance, Linear and Lagrangian pertur-
bation theory are only valid for a short time after which their results stray far from
reality, and the spherical collapse model elegantly derives a threshold for when gravi-
tational collapse may occur, but becomes increasingly difficult once the assumption of
sphericity is dropped.

An alternative approach still remains to be explored, that of discretising the fluid
equations and solving the full system, or in other words numerical simulations. In this
section, we will discuss a number of aspects relating to cosmological simulations from
how one initialises a simulation to the algorithms that allow them to move forward in
time and finally presenting how we can recover haloes from within these volumes and
comparing some basic analyses of the resulting data. The aim here is to provide a
brief overview of the methods we will be using in the rest of this work as well as some
alternatives. On the other hand we will not provide any comparison among the various
methods and will not discuss how baryonic physics enter into this picture.

2.7.1 Simulating the Universe
Let us consider a ΛCDM universe filled only with a single self gravitating matter fluid.
This fluid is fully described by its phase space distribution function, f(x,v, t), and its
dynamics are described by the Boltzmann equation,

∂f

∂t
+

ṽ

a2
· ∇xf − ∇xϕ · ∇ṽf =

df

dt

∣

∣

∣

∣

coll
, (2.100)

where x is the comoving position and where we have introduced ṽ = av, the super-
comoving velocity vector. ∇x and ∇ṽ are gradient operations in configuration and
velocity space, ϕ is the fluids gravitational potential source by the density,

∇2
xϕ = 4πGρmδ =

3

2
H2

0 Ωm,0
δ

a
(2.101)

and finally, df
dt

∣

∣

∣

coll
, represents a generic collision term. In the case of a collisionless

fluid this term is considered vanishing, Thus reducing the system of equations to the
Vlasov-Poisson system of equation.

The Vlasov-Poisson system simply describes the conservation of the phase space
distribution, notably it implies the phase space density is advected in configuration
space by the velocity field and advected in velocity space by the gravitational force.
This results in the phase space density being conserved along phase-space trajectories,

ẋ = a−2ṽ, (2.102)
˙̃v = −∇xϕ, (2.103)

also known as ‘characteristics’. We see that these trajectories are the same as those
that would be followed by a point mass evolving within the potential ϕ, indicating
that one can simulate the evolution of the phase space density simply by sampling the
distribution with point masses and evolving the N−body system. We note however
that if we source the potential from the point masses this only remains an accurate
description as long as we can neglect two body interaction between point masses.

To this effect, these point masses, commonly referred to as particles, represent in-
dividual fluid elements, as such their masses, initial positions and initial velocities,
are representative of this function. Let us take the example used in Fig. 2.3, where
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we ran the Zel’dovich approximation beyond its realm of validity. Here, the particles
were initialised on a grid of N = 512 particles per dimension, and represent an approxi-
mately homogeneous fluid, with density ρm, inside a periodic volume of with side length
Lbox = 50h−1Mpc. The mass of each individual particle is then,

mp = ρm

(

Lbox

N

)3

≃ 8 · 107h−1M⊙. (2.104)

While placing the particles on a regular grid is probably the most straight forward
choice for initialising the position, other options include placing the particles randomly
(e.g. Carlberg & Couchman, 1989) and more advanced methods such as ‘glass’ initial
conditions (see e.g. Crocce et al., 2006), or capacity constrained Voronoi tessellations
(Liao, 2018), each having their strengths an weaknesses.

The initial velocities of the particles are then assigned using Lagragian Perturbation
Theory, of which the Zel’dovich approximation discussed above is the first order. This
first order is however not accurate enough to initialise large simulations which use the
second or third order expansion. Typically the generation of initial conditions are
handled independently from the cosmological simulation itself, and is done with external
codes such as mpgraphic (Prunet et al., 2008) or music (Hahn & Abel, 2011).

The distribution function of the fluid is now represented by a discrete set of particles
with positions, x, velocities, v, and masses, mp. In order to evolve the system we
simply have to solve the equations of motion for the N−body system, i.e. Eq. (2.102)
and Eq. (2.103). To do so cosmological simulation codes require two main components,
an efficient algorithm to calculate the forces applied to the individual particles and an
efficient time-stepping algorithm.

Focusing on the force calculation, the simplest approach is to calculate the force

Fi = −Gm2
p

∑

j ̸=i

xi − xj

|xi − xj|3
(2.105)

applied to each particle explicitly, usually introducing a softening length to avoid nu-
merical instabilities when two particles are too close to one another. This algorithm is
however computationally prohibitive when running simulations with a large number of
particles, making it incompatible with the type of simulation needed for cosmological
studies.

When the particle distribution is sufficiently smooth a more efficient approach is to
assign the mass of the particles to a grid and solve the Poisson equation directly using
either a finite difference scheme or discrete Fourier transforms, which can be greatly
accelerated using the Fast Fourier Transform (FFT) algorithm. While the Particle-Mesh
(PM) algorithm greatly increases the efficiency of the force calculation it introduces a
preferential scale, that of grid, significantly affecting dynamics below this scale. This
makes it ill suited for clustered problems like the case at hand where we want to resolve
the internal dynamics of haloes at kpc scale but also large scale dynamics at Gpc scales.

Having here one algorithm that is well suited to small scale problems and another
that performs efficiently for large scale problems, a natural design choice is to combine
both. This is the philosophy of the TreePM algortihm which combines Tree and PM
algorithms. The Tree algorithm groups particles together in ‘leaves’ within which the
force calculation is done through direct summation. The gravitational potential gener-
ated by the entire leaf is then decomposed into multipoles to account for the particle
distribution within the group. The leaf then acts as a meta-particle producing this
corrected potential. The TreePM algorithm separates the short range and long range
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contribution to the gravitational potential using the Tree for the short range contribu-
tion and the PM algorithm to compute the long range contribution by assigning the
mass of particles to a grid to efficiently compute the large scale potential using FFT.
This is, for example, the approach adopted in gadget (Springel, 2005; Springel et al.,
2021) and GreeM (Ishiyama et al., 2009).

A second approach consists in using the PM algorithm with a set of nested meshes
with increasingly higher resolution. These higher resolution grids are dynamically de-
fined in areas where they are needed, typically where there is a high concentration of
particles. This approach, known as Adaptive Mesh Refinement (AMR), is for example
used in ramses (Teyssier, 2002).

Once the force applied to each particle has been computed the time stepping is done
using a symplectic integration algorithm. This class of algorithm is specifically designed
to solve Hamiltonian systems such as the motion of point particles inside a gravitational
potential. The “leap-frog” algorithm,

xi(t+ ∆t/2) = xi(t) +
∆t

2
a(t)−2 vi(t),

vi(t+ ∆t) = vi(t) + ∆t F(xi(t+ ∆t/2)), (2.106)

xi(t+ ∆t) = xi(t+ ∆t/2) +
∆t

2
a(t+ ∆t)−2 vi(t+ ∆t),

here adapted for an expanding universe, is commonly used inside cosmological codes as
it provides a good balance between simplicity, requiring only one force evaluation per
time step, and accuracy, this simplectic algorithm being designed to conserve mechanical
energy and be accurate to second order in ∆t. All simulations presented here use this
algorithm.

At the end of a simulation we observed that the particles have clustered. This can
be seen directly upon visual inspection of a density field coming from such a simula-
tion, such as Fig. 2.5 where we reproduce a slice from a ramses simulation with side
length Lbox = 328.125h−1Mpc and Npart = 5123 particles1, this slice is projected over
10 h−1Mpc. In the same figure we also add a square cutout showing a 50 h−1Mpc wide
region around several large haloes.

If we compare a region of Fig. 2.5 with an equivalent size to Fig. 2.3, i.e. 50 h−1Mpc
wide, we see that while the Zel’dovich approximation yields structures which resemble
the large scale structure of the Universe, a considerable amount of structure on small
scales is missing. Indeed, we see that gravity binds a large amount of matter inside
small haloes which are disrupted by the Zel’dovich approximation.

When running the simulation forward in time we observe that small haloes form
first. These small haloes then attract each other and go through a series of mergers to
form larger and larger structures. If we naively link the mass of a halo to the type of
luminous structure we may observe in the real Universe, this tells us that galaxies start
out their existence as dwarfs and then gradually merge with their neighbours to form
larger and larger galaxies such as the Milky-Way or Andromeda. The haloes within
which these galaxies are located are often much larger than the galaxy itself and start
to dominate their surroundings. At larger masses we then find groups of a few galaxies
which orbit within a single halo. Finally, at the top of the hierarchy, we find galaxy
clusters which sometimes host over a thousand galaxies.

1This particular simulation is taken from a suite of simulations run by Iñigo Saèz Casarez.
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ward until the mean density within the sphere reaches a desired threshold, for instance
the virial overdensity threshold ∆vir which we defined previously. Once the algorithm
reaches the desired threshold it assigns all the particles within the sphere to a halo
and removes them from the ranked list, it then continues from the next highest ranked
particle and grows a new sphere. This process is repeated until all the particles have
been visited. The main advantage of this algorithm is that it is closer to the theorical
definition of a halo allowing for a simpler understanding of the parameters at play.
It is also agnostic of particles masses and as such performs fairly well with minimal
changes when using simulations with varying particles masses, such as hydrodynamical
simulations or zooms. Moreover it pairs well with mesh based simulation codes, as the
information from a density or potential grid can easily be incorporated and used as a
starting point for the algorithm. It does however come with the downside of being rigid
when it comes to the shape of a halo, wherein it forces a spherical shape. This can
lead to some issues for haloes presenting ellipsoidal shapes, this down side does however
protect it from the spurious bridging that may occur when using FoF.

While the SO approach explicitly defines a threshold for detection, it is worth noting
that for both FoF and SO one can readily define masses according to any desired crite-
rion, allowing the halo finders to accommodate for the diverse mass definitions currently
in use. Indeed, different communities use different contrasts with for instance, observa-
tional studies more focused on the hot gas trapped within galaxy clusters, i.e. X-ray and
Sunyaev-Zel’dovich observation, will favour higher density contrasts, such as ∆ = 500c
or ∆ = 2500c, while weak lensing and dynamical studies will favour mass definitions at
lower over density contrasts, such as ∆ = 200c and ∆ = ∆vir. This choice being driven
by some mass definitions better corresponding to the signal that is being observed. This
freedom in the definition of halo mass, while confusing for newcomers, can however be
advantageous when it comes to studying how matter is distributed inside of haloes.

2.8 Simulation data
Throughout this work we will use data coming from multiple simulations. Thus, before
analysing these data, let us first present these simulations, their parameters and their
specificities which we also summarise in Tab. 2.2. Note that all the simulations presented
below only account for gravitational dynamics and as such do not include baryonic
feedback effects.

MultiDark PLanck 2 The MultiDark PLanck 2 (MDPL2) simulation is a gravity
only, (1 h−1Gpc)3, cosmological volume run using gadget-2 with a Planck (Planck
Collaboration et al., 2014a) cosmology and sampled by 38403 particles, resulting in a
particle mass mp = 1.51 · 109 h−1M⊙. This publicly available2 simulation data-set, part
of the MultiDark series (Klypin et al., 2016), was analysed using rockstar (Behroozi
et al., 2013a,b) to produce both the halo catalogues and merger trees that we use in
Chapter 4.

Uchuu The Uchuu simulation (Ishiyama et al., 2021) is very similar to MDPL2 in
several key aspects, notably it is also a publicly available3 gravity only simulation run
with a Planck cosmology (Planck Collaboration et al., 2016) and analysed using rock-
star. Although it differs in volume, (2 h−1Gpc)3, and number of particles, 128003,

2https://www.cosmosim.org/
3https://skiesanduniverses.iaa.es/
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Table 2.2: Simulation data-set properties used in this work. References: [1] Klypin et al.
(2016); [2] Ishiyama et al. (2021); [3] Sáez-Casares et al. (2023, in prep.) ; [4] Stücker
et al. (2020, 2022).

Name Cosmology Lbox[h−1Mpc] Npart Code Halo Finder
MDPL2 [1] Planck13 1000 38403 gadget-2 rockstar
Uchuu [2] Planck15 2000 128003 GreeM rockstar
e-MANTIS [3] wCDM 328.125 5123 ramses pFoF
S+R sims [4] ΛWDM 20 5123 gadget-3 subfind

resulting in a mass resolution, mp = 3.27 · 108 h−1M⊙, that is smaller by almost an
order of magnitude. This simulation was also run using GreeM. The large volume
and small particle mass makes this data-set very versatile with it being used profusely
throughout this work.

e-MANTIS The e-MANTIS simulations, run by Iñigo Sáez Casares, is a set of many,
smaller (328.125 h−1Mpc)3, and lower resolution 5123, simulations spanning a wide
range of wCDM cosmologies and f(R) cosmologies (Sáez-Casares et al., 2023, in prep.).
These simulations are designed to train an emulation algorithm to predict multiple
cosmological observables, some of which are developed in this work, in particular in
Chapter 5. Here we use this data-set primarily for visualisation and to study the
cosmology dependence of these observables.

Sheet + Release simulations In Chapter 6, we use a specific type of sheet+release
simulation designed and run by Jens Stücker (Stücker et al., 2020, 2022). The force
calculation implemented in gadget-3 is designed to accurately follow the evolution
of the dark matter phase space distribution function to avoid smooth density struc-
tures in WDM cosmologies being fragmented by numerical discreteness effects. These
simulations are much more computationally expensive than standard N-body, limiting
them to a small size, (20 h−1Mpc)3. Nonetheless, as we discuss in detail in Chapter 6,
these alterations allow to sample the density field to arbitrarily small mass resolutions
in sufficiently smooth regions.

2.9 Basic properties of haloes
Now that we are able to run a simulation up to the current cosmological epoch and
extract information from it we can now study its content. In the following, we will focus
on haloes and their main properties. We will start by studying the statistical distribution
of haloes as measured by the halo mass function before studying the properties of
individual haloes and particularly their density profiles.

2.9.1 The Halo Mass Function
Measuring the HMF from a catalogue of haloes is relatively simple as it amounts to
counting the number of haloes one finds per unit mass and normalising by the volume
of the simulation. From what we have seen in Sec. 2.6 the HMF is a decreasing function
of halo mass, in a CDM scenario, and so we expect to see more small haloes than large
haloes. As we are counting a discrete number of objects, we expect that the error on
this measurement is Poissonian and thus larger for a smaller number of objects, this
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means that if we want to investigate what happens at the high mass end we require
large volume simulations to increase our odds of producing enough large objects. This
is exacerbated further at the very high mass end due to the exponential cutoff in the
HMF, indeed if we want to accurately probe this regime the size of the simulations we
would need also increases dramatically.

To measure the HMF in the following we will use the Uchuu simulation (Ishiyama
et al., 2021). This simulation was produced with greem using the cosmological param-
eters inferred from the Planck collaboration’s 2015 analysis, see Tab. 2.1, and represents
a periodic box of side length Lbox = 2h−1Gpc with a total of 128003 particles giving this
simulation one of the smallest particle masses, mpart = 3.27 × 108h−1M⊙, relative to its
size. The haloes that formed within this simulation were extracted using rockstar, in
the following it is these catalogues that we will be using for our measurements.

Let us start by comparing the HMF from the simulation to the Press & Schechter
model derived above. Nevertheless, we must first ask ourselves the question: what mass
do we want to look at? In the theoretical models presented above, the specific mass
definition is not made explicit. Nevertheless, we can infer that because these theoretical
models are based on the spherical collapse model, whose mass definition corresponds to
the mass that will collapse onto and virialise within the halo, then, it is more appropriate
to compare these theoretical results to a HMF measured for Mvir.

In Fig. 2.6, we compare the measured HMF with the model proposed by Press &
Schechter. It is clear that there is a significant offset in between the prediction and
the measurement. Indeed, we see that the Press & Schechter model predicts too many
small haloes and not enough large haloes. This is primarily due to the assumption that
haloes are spherical which we already knew, from the Zel’dovich approximation, was
not the case. This apparent mismatch between the theoretical prediction and what was
seen in simulations spearheaded a number of studies which attempted to find better
parameterisations of the HMF in order to match what was seen in simulation.

The general philosophy behind these parameterisations was to keep the Press &
Schechter formula,
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which factorises the HMF into two terms, depending respectively on the background
cosmology, statistics of the linear density field, and a third term encoding the details
of the non-linear collapse of matter known as the multiplicity function, f(σ), where we
have dropped the index σ ≡ σM which we used in the previous sections. According to
Press & Schechter (1974) the multiplicity function,
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, (2.108)

does not have an explicit dependence on cosmology or redshift, which are implicitly
hidden within σ. This particular property dubbed universality of the mass function
is key to the design of many models of the HMF but also the source of much debate
as to whether this holds up in practice given the increasing resolution of simulations.
One of the first widespread models is that of Sheth & Tormen (1999) which provided a
generalisation of the Press & Schechter multiplicity function,
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haloes, they nonetheless have difficulty accurately capturing the exponential cut off at
high masses.

The first full investigation of the dependence of the parameters on the mass definition
was proposed by Tinker et al. (2008). The authors of this study use a multiplicity
function that somewhat resembles that of Sheth & Tormen,

f(σ) =
A
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σ
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+ 1

]

exp
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− c

σ2

)

, (2.111)

but freeing up an additional parameter. These parameters are then fitted for nine mass
definitions ranging from ∆ = 200 to ∆ = 3200. One then has to interpolate between
these points to obtain the set of parameters, {A0, a0, b0, c0}, at redshift, z = 0, at the
density contrast of interest. The final parameters finally have to be rescaled to account
for the redshift dependence of the parameters,

A(z) = A0(1 + z)−0.14,

a(z) = a0(1 + z)−0.06,

b(z) = b0(1 + z)−α(∆), (2.112)
c = c0,

log10 α(∆) = −
[

0.75

log10(∆/75)

]1.2

,

with the inclusion of an explicit dependence on redshift marking a step away from
universality. Accounting for all of this procedure, this model relies on a set of 40
numbers measured from simulations. This model has come to dominate the literature
as it allowed for the first time the possibility to provide accurate predictions for the
HMF at density contrasts differing from the virial contrast.

This approach was revisited by Watson et al. (2013), using the same multiplicity
function but recomputing the parameters,

A(z) = Ωm(z)
[

0.990(1 + z)−3.216 + 0.074
]

,

a(z) = Ωm(z)
[

5.907(1 + z)−3.058 + 2.349
]

,

b(z) = Ωm(z)
[

3.136(1 + z)−3.599 + 2.344
]

, (2.113)

c = 1.318,

to include an explicit dependency on the Ωm cosmological parameter. In contrast to the
previous model, the authors however separate the contribution from the mass definition
into a second function, Γ(∆, σ, z), such that the multiplicity function at the desired
density contrast,

f∆(σ, z) = Γ(∆, σ, z) fvir(σ, z), (2.114)

is simply the product of the latter with the multiplicity function at the virial density
contrast. This function,

Γ(∆, σ, z) = C(∆)
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adds another set of parameters that however also need to be fitted to simulations,

C(∆) = exp

[

0.023

(

∆

178
− 1

)]

,

d(z) = −0.456 Ωm(z) − 0.139, (2.116)
p = 0.072,

q = 2.130,

considerably reducing the total amount of fitted numbers down to 15. In this particular
model, it is clear that the universality of the HMF is completely abandoned at the cost
of a much more complex model, which can feel somewhat artificial.

While the previous example shows a model that completely abandons the idea of a
universal mass function, this was not the case of other models. For instance Despali
et al. (2016), presents a model which assumes that the mass function is only universal for
the virial density contrast, and that non-universality at other definitions comes from the
profile of haloes. This widely used model assumes the same shape for the multiplicity
function as Sheth & Tormen, i.e. Eq. (2.109), and recalculates the fitting parameters
for a wide range of mass definitions, redshifts and cosmologies. The authors find that
when expressed as functions of, x ≡ log10(∆(z)/∆vir(z)), the fitted parameters can be
very well approximated by quadratic functions,

a = 0.4332x2 + 0.2263x+ 0.7665,

p = −0.1151x2 + 0.2553x+ 0.2488, (2.117)
A = −0.1362x+ 0.3292,

greatly reducing the number of parameters. We can also see that with this parameteri-
sation the HMF is indeed universal for ∆vir for all cosmologies and at all redshifts. The
authors also investigate the properties of the HMF at different density contrasts when
considering matched haloes, i.e. haloes that are detected at two seperate thresholds and
then matched according to their positions. They find that in this case two HMFs at two
density contrasts can be related by marginalising the HMF,
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dM∆
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∫

dMvir
dn

dMvir
p(M∆|Mvir) (2.118)

over the probability, p(M∆|Mvir), of a halo having a mass M∆ knowing it’s virial mass.
If the distribution of masses is sufficiently peaked around some value g∆(Mvir) then this
relation simplifies such that,

f∆(σ) = g∆(Mvir)fvir(σ), (2.119)

leading to a result similar to the formalism used by Watson et al. (2013) in the previous
model. In this context however, the function, g∆(Mvir), only depends on the properties
of the profiles of haloes letting transpire an intrinsic link between the HMF and the
profile haloes.

So far all of these models have been calibrated using simulations that only account
for the gravitational force between particles. This is primarily due to the high compu-
tational cost of hydrodynamical simulations of equivalent volume. However, thanks to
the increasing power of computers and design of efficient algorithms in recent years, the
realisation of several large hydrodynamical simulation has allowed accurate estimates
of the HMF including baryonic effects. Bocquet et al. (2016) for instance, recalibrate
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cosmological analyses. Note that for the sake of conciseness, we have skipped many
models which have marked the literature (e.g. Warren et al., 2006; Reed et al., 2007;
Crocce et al., 2010) or that investigate the behaviour of the HMF in beyond ΛCDM
cosmologies (e.g. Bhattacharya et al., 2011; Courtin et al., 2011; Gupta et al., 2022),
non-standard simulation configurations (e.g. Angulo et al., 2012; Gavas et al., 2023) or
using exotic mass definitions (e.g. Diemer, 2020; García et al., 2023).

2.9.2 The internal structure of haloes
Let us now focus our interest on the internal structure of haloes, and more specifically
the density profiles of haloes. Ultimately, we want to study how the internal structure
behaves statistically, i.e. over a population of haloes. Before doing so we first need a
metric allowing us to quantify and compare this property between haloes and models.
As such, lets us first review different profile shapes that have been suggested in the
literature.

In a similar fashion to the previous section, let us start with models that date to
before the time of large scale cosmological simulations. From analytical computations
theorists initially suggested that the initial density fluctuation have power-law profiles
Bardeen et al. (1986) and that the profile of haloes resulting from the collapse of these
perturbations would also resemble power laws (Gunn & Gott, 1972),

ρ(r) =

(

r

r0

)−γ

, (2.121)

also known as self-similar profiles. In this case the final power law index, γ, is fully
determined by the power law index, ϵ of the initial profile of the density perturbation.
Under the assumption of purely radial orbits and spherical symmetry this result leads
to profiles having γ ≳ 2. The specific case where γ = 2 is also known as the isothermal
sphere/ellipsoid model as it is also the result one obtains when solving for the profile of
an isothermal self-gravitating collisional fluid. If one considers the alternate hypothesis
that fluid elements have isotropic orbits within the potential, then one obtains γ ≳ 1.
While there is room to argue that power law profiles are unrealistic, nonetheless they
are widely used in observational studies, e.g. modelling strong gravitational lenses, due
to their simplicity.

Numerical studies have shown that the profile of haloes cannot be accurately mod-
elled by a single power law and that the logarithmic slope of the profile, γ = −d ln ρ/d ln r,
varies slowly with radius. As such many alternate profiles have been proposed to de-
scribe this average shape.

By far the most popular model is the Navarro, Frenk & White (NFW) profile
(Navarro et al., 1997). A broken power law profile,

ρ(r) =
ρ0

r/rs(1 + r/rs)2
, (2.122)

characterised by two parameters, a density normalisation ρ0, and a scale radius, rs. We
see that the inner logarithmic slope converges toward γ = 1 and increases to γ = 3 at
outer radii. The popularity of this particular profile is bolstered by the fact that it not
only provides a good fit to the mass distribution of haloes but also allows for analytical
expressions of the mass within a given radius, or the gravitational potential. This profile
does have the drawback that it has infinite extension, meaning that if one integrates
out to infinite radii the mass diverges. This issue can be bypassed by stopping the
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There are alternatives to the NFW profile. One such alternative, that has recently
gained a significant backing, is the Einasto profile (Einasto, 1965),

ρ(r) = ρ−2 exp

{

− 2

α

[

(

r

r−2

)−α

− 1

]}

. (2.126)

This three parameter profile provides a much better fit to observed haloes than the
NFW profile (Wang et al., 2020b), although it does not provide the same “analytical
friendlyness” as the latter, making it generally more complex to implement into data
analysis pipelines. The main advantage of this profile is its more flexible shape and finite
support. Similarly to the other profiles, one can also define a concentration equivalent
to the NFW concentration, such that c ≡ r−2/r∆, and thus measure a c−M relation.

In Fig. 2.9 we plot two models (Ludlow et al., 2016; López-Cano et al., 2022) of the
c − M relation which assume the Einasto profile, while these models are also fitted to
simulations, they appear as outliers among the other models. This is simply due to the
fact that Einasto concentrations are distinct from NFW concentrations (Klypin et al.,
2016). And it is this ambiguity between concentrations that often leads to the recurrent
question: what type of concentration are you using? when comparing two models.
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In the previous chapter, we have seen that there is significant freedom in how one
can quantify the shape of dark matter halo profiles. In particular we have seen that
this quantification is done using a concentration statistic, denoted c. This statistic,
initially tailored for the NFW profile, has received significant interest in the literature,
leading to as many ambiguous definitions as there are proposed profiles shapes. In
principle, concentration is a dimensionless measurement denoting a change in slope
within the profile, for instance if one uses the NFW profile this corresponds to the scale
radius rs and if one uses the Einasto profile this correspond to the radius at which the
logarithmic slope is equal to −2, r−2. This ambiguous nature of concentration along
with its definition from profile parameters makes it difficult to use in practice beyond
fitting profiles.

As such, in this work we propose to use an alternative metric that is agnostic to the
choice of profile,

s∆1,∆2
=
M∆1

M∆2

=

∫ r∆1

0 dr r2ρ(r)
∫ r∆2

0 dr r2ρ(r)
, (3.1)

dubbed halo sparsity, and which was first introduced by Balmès et al. (2014). By
convention, we will always assume ∆2 > ∆1, which implies that s∆1,∆2

> 1. This metric
has several advantages over concentration: firstly, it can be defined unambiguously
for any profile or simply using measured quantities; secondly, it relies on integrated
quantities rather than fitted parameters making it more robust to small scale density
fluctuations; finally, as both mass definitions are freely defined, we can also define
multiple sparsities allowing us to effectively define as many sparsities as there would be
parameters describing the profile.

In the following we will first describe in Section 3.1, the general properties of sparsity.
We will then discuss in Section 3.2, how we can link sparsity to parametric descriptions
of the halo profile. We expand these initial observations to a statistical description,
in Section 3.3 and link this statistical description of sparsities to that of the HMF in
Section 3.4. Finally, we discuss how to express the relation between profile parameters
and sparsities within this statistical framework in Section 3.5.

Part of this chapter, in particular Section 3.4 and Section 3.5, are based upon work
that led to the publication of Richardson & Corasaniti (2023).

3.1 An overview of s∆1,∆2

To begin, let us investigate what sparsities tell us about the profile of haloes as they
can be interpreted in two ways. Firstly, sparsity can be seen as the fraction of mass
contained between r∆1

and r∆2
, relative to the mass contain within r∆2

. This can be
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As sparsities are defined as ratios, these statistics are not all independent being
linked through a chain rule,

s∆1,∆2
=
M∆1

M∆2

=
M∆1

M∆3

M∆3

M∆2

=
s∆1,∆3

s∆2,∆3

. (3.5)

Moreover, while by convention we choose ∆1 < ∆2, even if this is not the case we
can always manipulate the sparsity, s∆1,∆2

= 1/s∆2,∆1
, to make ensure this convention

is respected. It is worth noting that due to these two properties, given a set of n
masses, we can only obtain n − 1 independent sparsities in total. Although, formally
with n masses one can compute Ns =

(n
2

)

= n!
2(n−2)! sparsities, one can express most of

these as a function of a restricted set of n− 1, which can, by convention, be chosen to
be s = {s∆1,∆2

, s∆2,∆3
, . . . , s∆i,∆j

, . . . , s∆n−1,∆n
}, where we successively increment the

values of the overdensity contrast ∆1 < ∆2 < · · · < ∆n. This can in fact be seen in
Fig. 3.1 where given the four masses, we only employ three sparsities to reproduce the
mass profiles, when we could in theory use up to six.

3.2 Density profile - halo sparsity relations
Despite the simple definition of sparsity, we see that this statistics already holds a
substantial amount of information about the profile of dark matter haloes and that
this information can be refined by using multiple sparsities in tandem. We now turn
our interest towards the ability of sparsity to unify prior quantifications of the internal
structure of haloes. As its definition does not require any prior assumption on a given
profile shape, we can define this statistic for any physical profile. In the following, we
will be particularly interested in relating a given set of sparsities to the parameters of
fitted profiles, in particular the NFW and Einasto profiles.

3.2.1 Sparsity of the NFW profile
To relate the NFW concentration parameter, which we define here as c = c200c :=
rs/r200c, to sparsity we simply need to inject the analytical form of the mass M∆, as
given by Eq. (2.123), into the definition of sparsity,

s∆1,∆2
=

ln
(

1 +
r∆1

rs

)

− r∆1

rs

1
1+r∆1

/rs

ln
(

1 +
r∆2

rs

)

− r∆2

rs

1
1+r∆2

/rs

. (3.6)

This equation can be significantly simplified by removing the explicit dependence on the
radii, which is acheived by fixing ∆1 = 200, ∆2 = ∆, and introducing y∆ = r∆/r200c,
such that s200,∆ = 200

∆ y−3
∆ , and

y3
∆

∆

200
=

ln (1 + cy∆) − cy∆

1+cy∆

ln (1 + c) − c
1+c

, (3.7)

which can then be solved numerically given a value of c (Balmès et al., 2014). Note
that, although this equation can only be solved to obtain s200,∆, using the chain rule
we can in practice use this equation to calculate any sparsity, even for ∆ < 200 if we
temporarily forgo the indexing convention, by simply solving this equation twice.

In Fig. 3.2 we solve Eq. (3.7) for three overdensity contrasts, ∆ = {500, 1000, 2500}.
We see that generally sparsity is a decreasing function of concentration. The latter
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position to high values of S8 will produce lower sparsities. In addition, we find that
sparsity is also correlated to the ns parameter and only weakly dependent on H0.

Regarding the conditional distribution, we observe similar trends with for example
S8 producing on average lower or higher sparsities. However, we also see that these
shifts do not affect all masses in the same way resulting in a change in the slope,
αmed, of the median. A possible interpretation, is that the sparsity correlates with the
formation time of haloes, similarly to the description of the concentration by Zhao et al.
(2009). This would, in theory, indicate that any cosmological parameter which affects
the formation time of haloes will leave a trace in the sparsities. This interpretation
also has implications for beyond ΛCDM cosmologies, meaning that any alteration that
impacts the formation time of haloes could be constrained using sparsity. As such,
sparsity could be used to constrain the dark energy equation of state parameter, w, or
possibly modified gravity scenarios (Corasaniti et al., 2020), in addition to extension
that alter the profile directly such as dark matter self interactions or interference scale
of dark matter condensates.

3.4 Relating s∆1,∆2
to the halo mass function

In the previous section we have seen that sparsity is best described in a statistical
setting, i.e. in terms of a distribution rather than a restricted set of moments. Here
we will present how this statistical point of view allows us to relate the distribution of
sparsities and the halo mass function.

3.4.1 Algebra with random variates
In the following we are going to treat halo properties, masses and sparsities, as random
variates. In this context, the properties of an individual halo will simply be a realisation
of these variates which are drawn from their respective probability distribution functions
(PDF). In particular, we are going to be applying algebraic operations on these random
variates. However, before doing so, let us first recall how algebraic operations on random
variates also sets relations between their respective PDFs.

Let X and Y be two random variates drawn respectively from ρx(x) and ρy(y),
and related through a deterministic function, Y = f(X). Due to the conservation of
probability, ρy(y)dy = ρx(x)dx, we can relate the two PDFs:

ρy(y) = ρx(f−1(y))

∣

∣

∣

∣

∣

df−1

dy

∣

∣

∣

∣

∣

, (3.15)

assuming the transformation is invertible.
Here, we are interested in transformations involving two random variates: Z =

f(X,Y ). However, relating the PDF of Z to the joint distribution, ρxy(x, y) of X and
Y , requires additional thought compared to the one-dimensional case. In most cases the
function f(X,Y ) will not be invertible. Nonetheless, this can be circumvented through
the introduction of a fourth variable W . We define two column vectors,

[

Z
W

]

= f(X,Y ) =

[

fZ(X,Y )
fW (X,Y )

]

(3.16)

and
[

X
Y

]

= g(Z,W ) =

[

gX(Z,W )
gY (Z,W )

]

, (3.17)
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as the transformations between these variables. Through the conservation of probability,
the joint distribution, ρzw(Z,W ), can be written as

ρzw(z, w) = ρxy[gX(z, w), gY (z, w)]

∣

∣

∣

∣

∣

∂zgX ∂wgX

∂zgY ∂wgY

∣

∣

∣

∣

∣

. (3.18)

The distribution for Z can then be obtained by marginalising over W :

ρz(z) =

∫

ρzw(z, w)dw. (3.19)

In this work we are particularly interested in the PDF of the product, Z = XY , and
ratio, Z = X/Y , of two random variables. In the case of the product, we define

[

Z
W

]

=

[

XY
Y

]

and
[

X
Y

]

=

[

Z/W
W

]

(3.20)

as the transformation between the four random variables. We can then write

ρz(z) =

∫

1

|w|ρxy(z/w,w)dw, (3.21)

the PDF of Z. The ratio Z = X/Y similarly leads to
[

Z
W

]

=

[

X/Y
Y

]

and
[

X
Y

]

=

[

ZW
W

]

, (3.22)

resulting in the ratio distribution

ρz(z) =

∫

|w|ρxy(zw,w)dw. (3.23)

3.4.2 Changing halo mass definition
We have seen in Section 2.6 that the mass of a halo can be seen as a random variate,
specifically we saw that this interpretation could be used to predict the overall shape
of the HMF, making the HMF the distribution function of halo masses. Thus, let us
consider that we have two halo masses, M∆1

and M∆2
, each drawn from their respective

HMF, dn/dM∆1
and dn/dM∆2

, which we want to relate.
Introducing the sparsity, s where for simplicity we drop the indices, drawn from

the distribution ρs(s|M∆1
) which we have briefly described in Section 3.3.2. Then,

considering the algebraic relation, M∆2
= M∆1

/s, we can simply use Eq. (3.23) to
express the relation between both HMF as a ratio distribution,

dn

dM∆2

(M∆2
) =

∫ ∞

1
s ρs(s|sM∆2

)
dn

dM∆1

(sM∆2
) ds, (3.24)

which we will refer to as the inwards transformation. If instead we want to express the
HMF of the outer mass as a function of that of the inner mass, then again using sparsity
we can define the algebraic relation, M∆1

= sM∆2
, between the random variates and

therefore express the relation between the three PDFs as a product distribution,
dn

dM∆1

(M∆1
) =

∫ ∞

1

1

s
ρs(s|M∆1

/s)
dn

dM∆2

(M∆1
/s)ds, (3.25)

which we refer to as the outward transformation, where s is here drawn from ρs(s|M∆2
).

Therefore, given both Eq. (3.24) and Eq. (3.25) we can transform the HMF to any
overdensity contrast as long as we know the HMF for at least one mass definition and
have a description for the distribution of halo sparsities.
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3.4.3 Validation with N-body halo mass functions
Given these relations, we now test their accuracy using the halo catalogues from the
Uchuu simulation. In Fig. 3.8 we plot the HMF for three mass definitions with the
shaded areas marking the 68 per cent confidence interval around the HMF as measured
using 103 bootstrap iterations. We use Eq. (3.24) and Eq. (3.25) to convert each HMF
from one mass definition to the others using the distributions of sparsities measured
directly from the haloes.

First, not making any approximations on ρs, that is using the full conditional sparsity
distribution, we find that the relations are exact and we indeed see that the reconstructed
HMF, marked by solid lines, recover the measured HMF within the statistical uncer-
tainty. Nonetheless, we notice that the outward reconstructions are severely dampened
at the low mass end. This effect results from Eq. (3.25) where we should, in theory,
integrate the HMF down to arbitrarily small masses. This is not possible in practice
where the HMF is truncated at the low mass end due to selection effects. We see that
this does not affect the inward reconstruction as in this case we are integrating out to
arbitrarily large masses and are therefore shielded by the exponential cutoff of the HMF
at the high mass end.

If we now repeat this test but replace the full sparsity distribution ρs(s|M∆) by the
marginalised distribution ρs(s), we obtain the dashed lines shown in Fig. 3.8. We see
that overall this proves to be a poor approximation, exceeding the 10 per cent error level,
with the reconstructed HMFs being considerably offset from the measured HMF, this is
particularly the case for the innermost mass, M2500c. We see that when using a sparsity
distribution that is independent of mass, the HMFs we recover more closely resemble the
shape of the HMF we are using to perform the reconstruction. A consequence of this is
that inward reconstructions are underestimated at low masses and overestimated at high
masses, while the opposite is seen for outward reconstructions which are overestimated
at low masses and underestimated at high masses.

3.4.4 Approximate expressions
The formalism introduced here provides a general framework to understand the relation
between the HMF and internal structure of haloes. We can in fact show that these
relations are the generalisation of mass definition conversions previously suggested in
the literature.

For example, Bocquet et al. (2016) and Ragagnin et al. (2021) convert the mass
definition using:

dn

dM∆2

≡ dn

dM∆1

dM∆1

dM∆2

=

[

ρm

M2
∆2

d ln σ−1

d lnM∆2

f∆1
(σ)

]

M∆2

M∆1

. (3.26)

If we consider our formalism, specifically the inwards reconstruction of Eq. 3.24, assum-
ing that the sparsity distribution is highly peaked around the mean value,

ρs(s|M∆1
) ≃ δD

[

s− ⟨s∆1,∆2
⟩(M∆1

)
]

. (3.27)

We obtain a simplified transformation,
dn

dM∆2

= s0
dn

dM∆1

(s0M∆2
), (3.28)

where s0 is the root of the argument of the Dirac distribution, s0 − ⟨s∆1,∆2
⟩ = 0.

If the mean sparsity does not vary significantly as function of the halo mass (i.e.
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d⟨s∆1,∆2
⟩/dM∆1

≃ 0), then s0 ≃ ⟨s∆1,∆2
⟩. Thus we can show,

dn

dM∆2

= ⟨s∆1,∆2
⟩ dn

dM∆1

(⟨s∆1,∆2
⟩M∆2

)

= ⟨s∆1,∆2
⟩ ρm

⟨s∆1,∆2
⟩2M∆2

d ln σ−1

d ln⟨s∆1,∆2
⟩M2

∆2

f∆1

[

σ
(⟨s∆1,∆2

⟩M∆2

)]

=
1

⟨s∆1,∆2
⟩
ρm

M2
∆2

d ln σ−1

d lnM∆2

f∆1

[

σ
(⟨s∆1,∆2

⟩M∆2

)]

(3.29)

=

〈

M∆2

M∆1

〉

ρm

M2
∆2

d ln σ−1

d lnM∆2

f∆1

[

σ

(〈

M∆1

M∆2

〉

M∆2

)]

.

This result is similar to the conversion shown in Eq. 3.26, with the only major difference
being the presence of the expectation value. In fact, we can show that a similar solution
holds when performing an outwards reconstruction. Indeed, under the same assumptions
Eq. (3.25) becomes,

dn

dM∆1

=
1

s0

dn

dM∆2

(

M∆1

s0

)

≃ 1

⟨s∆1,∆2
⟩

dn

dM∆2

(

M∆1

⟨s∆1,∆2
⟩

)

, (3.30)

which can again be expanded into,

dn

dM∆1

= ⟨s∆1,∆2
⟩ ρm

M2
∆1

d ln σ−1

d lnM∆1

f∆2

[

σ

(

M∆1

⟨s∆1,∆2
⟩

)]

(3.31)

=

〈

M∆1

M∆2

〉

ρm

M2
∆1

d ln σ−1

d lnM∆1

f∆2

[

σ

(〈

M∆2

M∆1

〉

M∆1

)]

,

to recover a formula closely resembling Eq. (3.26).
Another interesting consequence of the formalism presented here is that it allows

to unify seemingly distant results. For instance, Eq. (3.24) can also serve as a starting
point from which we can derive the seminal equation,

ln Mf
∫

ln Mi

dn

dM∆2

d lnM∆2
= ⟨s⟩

ln⟨s⟩Mf
∫

ln⟨s⟩Mi

dn

dM∆1

d lnM∆1
, (3.32)

first introduced by Balmès et al. (2014) to predict the mean sparsity of a sample of
clusters and perform cosmological inferences (see Corasaniti et al., 2018, 2021, 2022),
where the masses, Mi and Mf , in the integration bounds are free parameters that are
adapted to the cluster sample.

Assuming that the sparsity distribution does not vary significantly with mass be-
tween Mi and Mf , we can write Eq. (3.24),

dn

dM∆2

=

∫ ∞

1
sρs(s)

dn

dM∆1

(sM∆2
)ds (3.33)

in terms of the marginal sparsity distribution ρs(s), where we have dropped the indices
on the sparsity variable for ease of reading. Integrating both sides this equation,

ln Mf
∫

ln Mi

dn

dM∆2

d lnM∆2
=

∫ ∞

1
sρs(s)

ln Mf
∫

ln Mi

dn

dM∆1

(sM∆2
)d lnM∆2

ds, (3.34)
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redefining M∆1
= sM∆2

,
ln Mf
∫

ln Mi

dn

dM∆2

d lnM∆2
=

∫ ∞

1
sρs(s)

ln sMf
∫

ln sMi

dn

dM∆1

(M∆1
)d lnM∆1

ds, (3.35)

and assuming the sparsity distribution to be sharply peaked around the mean, ρs =
δD(s− ⟨s⟩), we recover,

ln Mf
∫

ln Mi

dn

dM∆2

d lnM∆2
= ⟨s⟩

ln⟨s⟩Mf
∫

ln⟨s⟩Mi

dn

dM∆1

d lnM∆1
. (3.36)

the desired expression.
Here, we have seen that through the use of sparsity we have been able to unify several

previously distant results under two more general equations. We have also shown that
this unified sparsity formalism allows us to derive new results, such as Eq. (3.28) and
Eq. (3.30), which can be seen as mass dependent alternatives to Eq. (3.32). More
importantly, we have shown that it is information about the internal stucture of haloes,
through sparsity, which governs this generalised transformation.

3.5 Sparsity statistics and profile parameters
In Section 3.2 we have seen that sparsity can be used as a non-parametric quantification
of the density profiles of dark matter haloes. Moreover, we have shown that it is possible
to map a given set of halo sparsities into a set of parameters if we assume a shape for
the profile. In Section 3.4, we have also shown that the distribution of sparsities can
be used to relate two HMF a different overdensities. In this section we will merge both
these results. First, by extending the relation between sparsities and profile parameters
to distributions of sparsities and distribution of profile parameters. Secondly, we will
examine how Eq. (3.24) and Eq. (3.25) can be used to relate the HMF to models of the
c−M relation and even predict the latter.

3.5.1 Sparsity distributions from parametric models
Lets us begin by considering the c − M relation for the NFW density profile. Usually
referring to a single value, c(M∆1

, z,Θ)1, it is commonly accepted that concentrations
are scattered around this relation. This distribution of concentrations is typically mod-
elled with a log-normal density function, ρc(c|M∆1

), of which the mean is given by the
c-M relation and a width parameter σ ≃ 0.25 corresponding to a logarithmic standard
deviation of 0.24 dex (see e.g. Bullock et al., 2001; Dolag et al., 2004; Macciò et al.,
2007).

We have shown that for the NFW profile we can define, at least numerically, a
one-to-one relation

s∆1,∆2
= fs(c) and its inverse c = fc(s∆1,∆2

), (3.37)

between a single sparsity and concentration, as can be seen in Fig. 3.2. Injecting these
into Eq. (3.15) we obtain,

ρs(s∆1,∆2
|M∆1

) = ρc(fc(s∆1,∆2
)|M∆1

)

∣

∣

∣

∣

dfc

ds
(s∆1,∆2

)

∣

∣

∣

∣

(3.38)

1
Θ designates additional parameters such as cosmology and astrophysics
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the sparsity distribution corresponding to a concentration distribution. In Fig. 3.9 we
plot as iso-contours the conditional sparsity distribution as function of M200c obtained
from the estimated sparsities of the Uchuu halo catalogue at z = 0 (top panel), the
NFW sparsities obtained from the concentrations of the same haloes (middle panel),
and the NFW sparsities predicted assuming a log-normal concentration distribution
for which the mean is given by the concentration-mass relation measured from the
analysis of Uchuu haloes (Ishiyama et al., 2021) and width parameter σ = 0.25 (bottom
panel). The solid lines correspond to the mean values of the distributions, estimated
from sparsities in red, from concentrations in orange, and in yellow from the log-normal
distribution. We see that in all cases the distributions have very similar means, while
there are some clear differences in the scatter. Indeed, we see that scatter in the low
sparsity tail of the distribution estimated from measured concentration is considerably
underestimated. Moreover, introducing the log-normal description of the c−M relation
results in the high sparsity tail also being suppressed, resulting in a distribution with
much smaller scatter than what is seen in the simulation data.

If we now consider profiles with more than one shape parameter, such as the Einasto
profile, the complexity of the transformation increases rapidly. We have seen in Sec-
tion 3.2 each unique pair of Einasto parameters defines a unique pair of sparsities. As
such, similarly to the NFW profile we can define an invertible mapping between spar-
sities and profile parameters. If we wish to translate the joint distribution of Einasto
parameters, ρr−2,α, into a joint sparsity distribution then we simply have to inject this
mapping into Eq. (3.18).

If we only want to obtain the marginal distribution of a single sparsity, we can
simplify this expression. Let us consider, in the formalism of Eq. (3.18) that Z = s∆1,∆2

,
X = r−2 and W = Y = α. This choice considerably simplifies the Jacobian,

ρs,α = ρr−2,α[gr−2
(s, α), α]

∣

∣∂sgr−2

∣

∣ , (3.39)

while keeping the mapping invertible, although gr−2
(s, α) still has to be estimated nu-

merically. From this, the sparsity distribution can be obtained by marginalising over
the second profile parameter,

ρs =

∫

ρr−2,α[gr−2
(s, α), α]

∣

∣∂sgr−2

∣

∣ dα. (3.40)

In principle, this methodology can be extended to any number of profile parameters, as
long as one is able to find an invertible mapping between the parameters and sparsity and
at the cost of computing an n− 1 dimensional integral for a profile with n parameters.

3.5.2 c − M relation and halo mass function conversions
Considering the HMF reconstruction equations presented in Section 3.4 and the trans-
formation of the distribution of concentrations presented in Section 3.5.1, it is natural
to assume that we can combine these expressions to obtain reconstruction formulae as-
suming a c−M relation. As such, combining Eq, (3.38) with Eq. (3.24) and Eq. (3.25)
leads to the inward,

dn

dM∆2

(M∆2
) =

∫ ∞

1
sρc(fc(s)|sM∆2

)

∣

∣

∣

∣

dfc

ds

∣

∣

∣

∣

dn

dM∆1

(sM∆2
)ds, (3.41)

and outward,
dn

dM∆1

(M∆1
) =

∫ ∞

1

1

s
ρc(fc(s)|M∆1

/s)

∣

∣

∣

∣

dfc

ds

∣

∣

∣

∣

dn

dM∆2

(M∆1
/s)ds, (3.42)
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Table 3.1: χ2 statistics of the reconstructed HMFs at ∆2 = 500 and z = 0.00, 0.25,
0.50, 1.00, and 2.00 for different reconstruction model assumptions.

Model z = 0 z = 0.25 z = 0.5 z = 1 z = 2

s200,500 (independent) 329.6 289.5 363.6 243.9 8.0
s200,500 (conditional) 13.5 21.1 7.4 12.2 7.0
s200,500 (from c) 205.1 180.6 916.0 1902.4 382.2
Bullock et al. 2001 310.0 237.4 158.8 896.5 664.1
Zhao et al. 2009 135.1 66.1 70.8 184.9 1710.3
Prada et al. 2012 1857.6 1984.6 1728.8 553.0 32.0
Diemer et al. 2015 321.4 152.0 55.2 196.4 76.2
Ludlow et al. 2016 1131.1 1282.1 953.8 121.5 188.7
Diemer et al. 2019 258.9 181.5 79.5 111.5 71.6
Ishiyama et al. 2021 334.0 217.4 81.8 105.9 69.2

their respective reconstructions. In particular if we compare these models to the HMF
reconstructed using the distribution of sparsities estimated from measurements of the
NFW concentration, we find that they follow a very similar trend. This indicates, that
the observed bias in the reconstruction may originate from the assumption of the NFW
profile.

To quantify how well each model reconstructs the HMF we introduce,

χ2 =
N
∑

i=0

1

σ2
i

[

dnrec

dM500c
(M i

500c) − dnN−body

dM500c
(M i

500c)

]2

, (3.43)

where the index i runs over the N mass bins at which the HMF is estimated from the
Uchuu halo catalogues and σi is the corresponding statistical error. We do note that the
number of mass bins effectively varies with redshift due to the exponential decrease in
the HMF. Indeed while at z = 0 we define N = 27 bins between M500c = 4.5·1013h−1M⊙
and M500c = 2 · 1015h−1M⊙ this effectively decreases to N = 11 bins between M500c =
4.5·1013h−1M⊙ and M500c = 2·1014h−1M⊙ at z = 2 simply because the higher mass bins
are empty. In Tab. 3.1, we record these goodness-of-fit measurements for all the models
used in Fig. 3.10 at z = 0.00, 0.25, 0.50, 1.00 and 2.00. We again find similar trends
with the conditional sparsity distribution outperforming other models at all redshifts.
Although, there is some improvement at higher redshift for most c − M based models
these still remain significantly biased.

3.5.3 c − M relation from halo mass function
An interesting byproduct of the considerations we have presented here is that we can
effectively invert these relations to predict the c−M relation from a model of the HMF.
To do so, we perform the inverse transformation to that of Eq. (3.38),

ρc(c|M∆1
) = ρs(fs(c)|M∆1

)

∣

∣

∣

∣

dfs

dc
(c)

∣

∣

∣

∣

(3.44)

and assume that the sparsity distribution is, again, highly peaked around the mean
ρs(s|M∆1

) ≃ δD[s − ⟨s∆1,∆2
⟩]. This results in a concentration distribution that is also

described by a Dirac distribution,

ρc(c|M∆1
) = δD[c− fc(⟨s∆1,∆2

⟩)], (3.45)
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peaked around c̃ = fc(⟨s∆1,∆2
⟩). Given that we can predict ⟨s∆1,∆2

⟩(M∆1
) without any

additional assumptions, simply by numerically solving Eq. (3.30). We can therefore use
c̃, to provide a prediction for the c−M relation.

In Fig. 3.11, we show the mean concentration ⟨c200c⟩ as a function of M200c from the
Uchuu halo catalogue at z = 0 (solid orange line) with iso-contours of the conditional
concentration distribution against the mean c200c − M200c relation obtained from the
mean sparsity mass relation ⟨s200,500⟩(M200c) measured from the same halo catalogue
(solid blue), and that predicted using the HMFs at ∆ = 200ρc and ∆ = 500ρc from
Tinker et al. (2008), Watson et al. (2013), Bocquet et al. (2016), and Despali et al.
(2016) and measured HMFs respectively the green, red, pink, yellow and grey lines.

We find that the predicted mean c−M relations deviate by 10 to 40 per cent with
respect to the mean relations measured directly from the simulation. In addition, we see
considerable scatter between the different HMF models, resulting from the compounding
effect of model choices, at low masses, and statistical uncertainty on model calibration at
high masses. Indeed, we see that at high masses all models agree within their respective
1-σ error regions marked by the shaded areas in the two lower panels, which we obtain
from 103 bootstrap iterations assuming the error on the HMF model is the same as the
statistical error on the measured HMFs. Nonetheless, this is not the case at the low
mass end where the statistical uncertainty is much smaller.

Finally, if we measure the mean sparsity relation directly we find that the resulting
c−M relation is significantly offset, 20 per cent, from the prediction of the mean sparsity
estimated using the HMF as well as the mean c−M relation measured directly on the
simulation. This is primarily due to our assumption that the sparsity distribution
is highly peaked around the mean. Indeed, we have seen in Section 3.3.2 that the
distribution of sparsities is both broad and skewed. It is in fact this skewness which
significantly offsets the mean from the mode of the distribution. This can clearly be
seen by replacing the mean sparsity by the median, which is closer to the mode. Indeed,
the measured median sparsity is much closer to the prediction from the measured HMF.

3.6 Summary
We see that sparsity, which may at first glance appear to be just a simple mass ratio,
has a number of interesting properties. Firstly, we have seen that it is sufficient to
fully describe the mass profile and due to it’s non parametric nature can be related to
the parameters of any mass profile. This, gives sparsity flexibility while also removes
ambiguity as the measurement is clearly defined. Secondly, we showed that sparsity
exhibits a mass dependence which is both much smaller, only increasing around 10 per
cent over 2 orders of magnitude in mass, and simpler, can very accurately be modelled
by a straight line, than c−M relations. Finally, sparsity has a cosmological dependence.
Its distribution being shifted by changes in the cosmological parameters in particular
the amplitude of matter fluctuations parameter S8.

Furthermore, by describing sparsity as a stochastic quantity, we have derived exact
relations between the distribution of sparsities and the HMF, which allow one to recast
the HMF from one mass definition to another. These relations can be slightly altered
in order to use them with parametric profile parameters. Nevertheless, we note that
the assumption of a parametric profile shape introduces a small error, between 1 to
10 per cent, error on the reconstruction. Finally, we have shown that these relations
can be inverted allowing the prediction of the mean sparsity from the HMF. While
these predictions are consistent with the distribution of sparsities measured inside the
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simulations, we find a strong dependence on the details of the chosen HMF model.
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Now that we have investigated the general behaviour of sparsity we turn our interest
towards how specific physical processes may cause some haloes to deviate significantly
from this distribution. If we again put baryonic effects to one side, the most common
astrophysical event encountered by haloes are mergers, the main process through which
they acquire mass. In this chapter, we will investigate how the distribution of sparsities
is affected and how we can use these results as a method of detecting merging galaxy
clusters.

To do so we will analyse the sparsities of haloes from two gravity only simulations.
This will allow us to understand how mergers affect sparsities and we will characterise
this effect in order to build a novel method for detecting merging clusters using sta-
tistical detection methods. Finally, we test the resulting method in order to assess its
applicability to observational datasets.

4.1 A brief overview of merging clusters

Galaxy clusters are the most massive gravitationally bound structures in the Universe.
Being hosted by the most massive dark matter haloes, this places them a the top of
the hierarchy of structure formation, with the size and mass of these objects making
them perfect candidates for the study of astrophysics and cosmology. These structures
are typically split into three components, stars and galaxies representing only 5% of
the total mass of these objects, a massive host dark matter halo and many sub-haloes,
which in total represent roughly 80% of the total mass of the cluster, and hot diffuse
gas, known as the Intra-Cluster Medium (ICM) trapped within the gravitational po-
tential and representing about 15% of the total mass. This specific structure makes
galaxy clusters inherently multi wavelength objects, permitting observations to exten-
sively probe the properties of object. Indeed the hot ICM not only emits X-ray radiation
through bremsstrahlung (see e.g. Vikhlinin et al., 2005; Ebeling et al., 2010; Pierre et al.,
2016; CHEX-MATE Collaboration et al., 2021) but also scatters CMB photons due to
the Sunyaev-Zel’dovich effect (see e.g. Sunyaev & Zeldovich, 1970; Staniszewski et al.,
2009; Menanteau et al., 2013; Reichardt et al., 2013; Planck Collaboration et al., 2014b;
Bleem et al., 2015) making clusters visible at millimetre wavelengths. In optical bands,
while clusters are associated to over densities in the distribution of galaxies which can
be studied directly, their gravitational potential produced by the dark matter halo also
deflects light coming from background sources (see e.g. Umetsu et al., 2011; Postman
et al., 2012; Rykoff et al., 2016; Maturi et al., 2019) giving observers direct access to
information about the dark matter distribution inside these objects. Here, we will be
particularly interested in the dark matter component with the two other components
assumed to be biased tracers of the dark matter.

Observations of relaxed galaxy clusters have revealed that their matter density at
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large radii is consistent with the NFW profile (Navarro et al., 1997) seen in simulations,
but that there can be significant deviations from the latter at small radii (see e.g.
Newman et al., 2013; Annunziatella et al., 2017; Collett et al., 2017; Sartoris et al.,
2020) where baryonic effects become non-negligible. In these systems the gas rests
inside the potential and thermalises through the propagation of shock waves. This sets
the ICM into a state of hydrostatic equilibrium resulting in a self-similar density profile
(Ettori et al., 2019; Ghirardini et al., 2019, 2021).

Nonetheless, many non-thermal processes take place within the ICM (Biffi et al.,
2016) that cause the gas to strongly depart from this state of equilibrium, for instance
contributions from active galactic nuclei or major merger events. In such systems, these
processes can significantly alter the density profile resulting in a significant bias on any
measurement that relies on the assumption of self similarity (see e.g. Planelles & Quilis,
2009; Rasia et al., 2011; Chen et al., 2019; Pratt et al., 2019). This is especially true
for mass estimate which assume hydrostatic equilibrium, or scaling relations which are
derived under this same assumption. Ultimately this would result in systematic effects
being carried over into any cosmological analysis which relies on the measurement of
cluster masses.

While major merger may seem like a nuisance for cosmological analyses based on
mass estimates they do however provide the ideal environment to study both the prop-
erties of the ICM (Markevitch & Vikhlinin, 2007; Zuhone & Roediger, 2016) and under-
lying dark matter, this for instance was attempted in observations of the Bullet Cluster
(Markevitch et al., 2004; Clowe et al., 2004). As such we see that identifying such
systems is both crucial for cosmology while also providing significant insight for the
astrophysics of these systems.

A variety of methods has been proposed to identify unrelaxed clusters, each relying
on different cluster observables (see Molnar, 2016; De Luca et al., 2021; Vallés-Pérez
et al., 2023, for reviews). These include, but are not limited to, the detection of radio
relics and haloes which can be associated to the propagation of shock fronts after a
merging event has taken place. Alternatively one can measure the offset between the
peak X-ray emission or centroid of S-Z signal, which both trace the collisional gas, with
respect to the position of the brightest cluster galaxy or the centre of the weak lensing
signal, which trace the gravitational potential mainly sourced by dark matter. Indeed
as both components do not react in the same way to a merger, one component being
collisional and the other collisionless, this creates an offset which can be measured.

As mentioned in previous chapters, merger events are the main growth mechanism
through which structures acquire their mass. This has been studied extensively in the
past using N-body simulations, for instance it has been shown that dark matter haloes
initially go through a phase of fast accretion which is then followed by a ‘slow accretion
state’ (Zhao et al., 2003). During this first phase of rapid growth haloes acquire most of
their mass through major mergers (Li et al., 2007), which we define as mergers between
haloes of a similar mass, i.e. with a mass ratio no lower than 1 to 3. This is in opposition
with the quiescent phase where the primary source of mass is through minor merger
events. These works have also shown that the greater the mass of a halo the later the
rapid growth phase ends.

Here, we are going to investigate how major mergers impact the internal structure of
haloes. This has already been investigated through the scope of the NFW concentration
parameter, with the particular interest of linking the mass accretion history of haloes
to their concentrations (see e.g. Neto et al., 2007; Zhao et al., 2009; Ludlow et al., 2012;
Lee et al., 2017; Rey et al., 2019). Recently, Wang et al. (2020a) have shown that
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major mergers have a universal impact on the evolution of the median concentration.
In particular, after a large initial response, in which the concentration undergoes a large
excursion, the halo recovers a more quiescent dynamical state within a few dynamical
times. Surprisingly, the authors have also found that even minor mergers can have a
non-negligible impact on the mass distribution of haloes, contributing to the scatter of
the concentration parameter.

The use of concentration in this context can however be problematic as this entails
that one assumes the profile is well described by the NFW profile. This is generally not
the case with merging galaxy clusters often displaying complex profiles with significant
deviations from the NFW profile. These effects are compounded with deviations from
typical measurements in N-body simulations sourced by astrophysical processes (see
e.g. Mead et al., 2010; King & Mead, 2011), which may also be aggravated by merger
activity.

It is within this context that the use of sparsity,

s∆1,∆2
=
M∆1

M∆2

, (4.1)

proves beneficial. Indeed the standard definition of sparsity naturally avoids many of
the difficulties faced by concentration. Firstly, it can be defined directly from mass
estimations of observed clusters, which are far easier to access than an estimate of the
profile. Secondly, the weak mass dependence of sparsity for certain choices of density
contrast pairs and the reduced scatter with respect to concentration (Balmès et al.,
2014; Corasaniti et al., 2018; Corasaniti & Rasera, 2019) allows for clearer identification
of outliers. Finally, sparsity being intrinsically linked to the cosmological background,
as we will discuss in Chapter 5, allows for the theoretical prediction for the distribution
of sparsities from a model of the HMF (Corasaniti et al., 2018, 2021; Richardson &
Corasaniti, 2023), providing a theoretical base line to which we can compare outliers.

This chapter is devoted to studying how halo sparsity correlates to the mass accretion
history of haloes through the analysis of large volume N-body simulations. In particular
we will fully characterise the distribution of sparsities for a given time since the last
major merger occurred. Allowing us to build a statistical tool to rapidly detect mergers
in catalogues of sparsities and even provide a first estimate of when the last major
merger took place.

For the purpose of this work, we have made use of two publicly available cosmological
simulation datasets, one coming from the MultiDark Planck 2 (MDPL2) (Klypin et al.,
2016) simulation and the second coming form the Uchuu simulation (Ishiyama et al.,
2021). Both datasets take the form of rockstar halo catalogues and merger trees
(Behroozi et al., 2013a,b). Here, the halo finder was used in its default setup entailing
that only particles gravitationally bound to a halo are considered as belonging to the
latter. Limiting our study to the most massive objects found inside the simulations,
M200c > 1013h−1M⊙, and relatively low redshifts, z < 2, these catalogues give us access
to four mass measurements, the virial mass and three additional density contrast, ∆ =
200c, 500c and 2500c, from which we compute three sparsities, s200,500, s500,2500, s200,2500.
In addition to these we have access to the NFW scale radius rs from which we can
compute the concentration parameter, c = r200c/rs, along with the offset of the peak of
the potential with respect to the centre of mass xoff , from which we derive the relative
displacement of the centre of mass, ∆r = xoff/rvir. Finally, the halo finder also provides
the scale factor, aLMM at which the last major merger took place. In this context the
halo finder considers a major merger event to be the moment when the mass of a halo
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suddenly increases by 30%. It is important to note that due to the design of the halo
finder this corresponds to the moment when all particles fall within one iso-density
contour in phase space and does not correspond to the time of first core passage usually
estimated for Bullet-like cluster.

In the following, we will present the methodology and results that lead to the publi-
cation of Richardson & Corasaniti (2022). In section 4.2 we will analyse the simulation
data in order to understand the link between halo sparsity and major merger. In sec-
tion 4.3 we devise statistical tools to detect the imprint of major merger in galaxy
clusters and discuss the possibility of estimating the time at which these events took
place. In section 4.4 we discuss the limits of this approach when applying it to observa-
tional samples, notably we assess how robust it is to observational biases, before finally
concluding this chapter in section 4.5 .

4.2 Halo Sparsity & major mergers

4.2.1 A first look at merging haloes

In order to get a first look at how sparsity reacts to major mergers we split the population
of haloes into two categories. To do so we normalise the time coordinate with respect to
the dynamical times of dark matter haloes (Jiang & van den Bosch, 2016; Wang et al.,
2020a),

T (z|zLMM) =

√
2

π

∫ z

zLMM

√

∆vir(z)

z + 1
dz, (4.2)

where ∆vir, introduced in Chapter 2, is the virial overdensity contrast (Bryan & Norman,
1998). It is interesting to note that this definition does not depend on any properties
of the haloes such as their mass or concentration and depends solely on the background
cosmology. This definitions differs from that of Jiang & van den Bosch (2016) and Wang
et al. (2020a) by a minus sign. This is due to the fact that in this case we place ourselves
at a fixed point in time, specifically at a fixed redshift z, and look backwards to the
time, equivalently to a larger redshift zLMM, when the last major merger took place.
This entails that haloes with T = 0, are currently merging while haloes with T < 0
have undergone there last major merger at some time in the past. Under this new time
coordinate haloes return to a stable configuration after T ∼ 2 dynamical times.

In order to maximise the difference between the two categories we do not seperate
them exactly at T = −2, and prefer to define:

• Merging haloes: a sample of haloes that have had less than half of a dynamical
time since their last major merger (T > −1/2), and are therefore still in the
process of rearranging their mass distribution,

• Quiescent haloes: a sample of haloes for which their last major merger occurred
far in the past (T ≤ −4), thus they have had sufficient time to rearrange their
mass distribution recover a state of equilibrium,

Looking specifically at the haloes from the z = 0 catalogue. Merging haloes, with
T > −1/2, correspond to all haloes for which the last major merger, as tagged by
the algorithm, occurred later than aLMM > 0.897 (zLMM < 0.115), while the samples
of quiescent haloes, with T ≤ −4, in the same catalogue are characterised by a last
major merger prior to aLMM < 0.464 (zLMM > 1.155). We repeat this selection for the
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Table 4.1: Characteristics of the selected halo samples at z = 0, 0.2, 0.4 and 0.6 (columns
from left to right). Quoted in the rows are the number of haloes in the samples and the
redshift of the last major merger zLMM used to select the haloes for each sample.

Merging Halo Sample (T > −1/2)
z = 0.0 z = 0.2 z = 0.4 z = 0.6

#-haloes 23164 28506 31903 32769
zLMM < 0.113 < 0.326 < 0.540 < 0.754

Quiescent Halo Sample (T < −4)
z = 0.0 z = 0.2 z = 0.4 z = 0.6

#-haloes 199853 169490 140464 113829
zLMM > 1.15 > 1.50 > 1.86 > 2.22

catalogues at z = 0.2, 0.4 and 0.6 respectively, in order to study any redshift dependence.
The characteristics of the different samples can be found in Tab. 4.1.

As a first test we wish to measure how the sparsity, estimated using the SO masses
provided in the catalogues, deviates from that deduced by solving Eq. (3.1), which in
the specific case of the NFW profile reduces to solving (Balmès et al., 2014),

x3
∆

∆

200
=

ln (1 + c200cx∆) − c200cx∆

1+c200cx∆

ln (1 + c200c) − c200c
1+c200c

, (4.3)

where x∆ = r∆/r200c and using as input the concentration measured by the halo finder.
From the solution of this equation we can then derive the NFW sparsity of haloes,

sNFW
200,∆ =

200

∆
x−3

∆ . (4.4)

It is important to note that while from Eq. (4.3) we can only compute s200,∆ for any ∆ >
200, this is however sufficient to estimate the sparsity at any other pair of overdensities
∆1 ̸= ∆2 > 200 as given by s∆1,∆2

= s200,∆1
/s200,∆2

.
It has been previously shown (Balmès et al., 2014) that deviations from the NFW

profile, contribute to a considerable amount of scatter in the distribution of concen-
trations, not only due to the physical changes in the profile but also due to numerical
artefacts originating from poor fit quality. This effect is visible in Fig. 4.1 where we
plot the distribution of relative deviations with respect to the expected NFW value
for δ200,500 = 1 − sNFW

200,500/s200,500 (dashed lines) and δ200,2500 = 1 − sNFW
200,2500/s200,2500

(solid lines) in the case of the merging (blue lines) and quiescent (orange lines) haloes at
z = 0.0, 0.2, 0.4 and 0.6 respectively. For quiescent haloes we can see that this produces
an unimodal and almost Gaussian distribution. More specifically, in the case δ200,500

we can see that the distribution has a narrow scatter with a peak that is centred at
the origin at z = 0.6, and slightly shifts toward positive values at smaller redshifts with
a maximal displacement at z = 0. This corresponds to an average bias of the NFW-
estimated sparsity sNFW

200,500 of order ∼ 4 per cent at z = 0. A similar trend occurs for the
distribution of δ200,2500, though with a larger scatter and a larger shift in the location of
the peak of the distribution at z = 0, which corresponds to an average bias of sNFW

200,2500

of order ∼ 14 per cent at z = 0. Such systematic differences are indicative of the limits
of the NFW-profile in reproducing the halo mass profile of haloes both in the outskirt
regions and the inner ones. This is consistent with the findings of Child et al. (2018),
which describe how the NFW profile is in fact best suited for haloes at higher redshift.
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When looking at the perturbed sample however we see that the distribution is highly
irregular, with the latter being both displaced and strongly non-gaussian. Moreover
we see that the two sparsities respond differently to the perturbation, with δ200,500

presenting a main peak and a smaller secondary peak while δ200,2500 presents two peaks
of roughly equal height. We also see that both distributions are displaced by respectively
20 per cent and 40 per cent. From this simple test we can already see that in this
regime the concentration becomes unreliable, and sparsity becomes a more accurate
representation of the profile.

4.2.2 Evolution of Halo sparsity
Let us now investigate how sparsity evolves over time. To do so we reconstruct the
sparsity histories of all the haloes in our sample from the mass accretion histories gen-
erated by the halo finder. In Fig. 4.2, we plot the median sparsity evolution of s200,500

(top panel), s500,2500 (middle panel) and s200,2500 (bottom panel) as function of the
scale factor. In the left panels we show the case of a sample of 104 randomly selected
haloes, thus behaving as quiescent haloes in the redshift range considered, while in the
right panels we plot the evolution of the sparsity of all haloes in the z = 0 catalogue
undergoing a major merger at aLMM = 0.67. The shaded area corresponds to the 68%
sparsity excursion around the median, while the vertical dashed line marks the value of
the scale factor of the last major merger.

We note that, as we briefly discussed in the previous chapter, sparsity can be seen
as a estimation of the mass fraction contained between the two radii, r∆1

and r∆2
. As

such, sparsities calculated using masses estimated at outer radii will probe the outer
regions of haloes while sparsities estimated using inner masses while probe inner regions
of the halo. Looking at the left side panels of Fig. 4.2 we see that all sparsities follow a
generally decreasing trend with time. We also observe that the decrease is stronger for
inner regions. This is consistent with the picture that haloes form through the successive
layering of dark matter shells deposited by merger events (Wang et al., 2011). In this
picture the core forms first and then subsequent shells are deposited around the latter.
This entails that the core becomes more concentrated, or less sparse, overtime while the
outer regions remain roughly constant due to the arrival of new material.

In the right hand panels of Fig. 4.2, we repeat the same procedure but this time
only selecting haloes which have a major merger at a = 0.67. We see that before this
epoch the evolution of the sparsity is similar to the full population seen in the left hand
panels, but once the merger takes place the sparsity is strongly perturbed by a pulse
like feature. This is consistent with the findings of Wang et al. (2020a) for the median
concentration and scale radius. The use of sparsity here however ensures that we are
indeed observing a physical effect, free from artefacts which may arise from fitting the
halo density profile with the NFW formula.

Here, this can clearly be seen in the diversity in the pulse shape. We see the pertur-
bation strongly perturbs s200,500, which probes the outer halo, at the very start of the
merger exhibits a high peak sparsity and later exhibits a smaller secondary peak. The
opposite is seen for s500,2500, which probes the inner halo, where the first peak is low
and the second peak is high. This tells us the accreated halo first passes through the
outskirts of the host halo before turning around and being confined to the inner halo,
where it finally settles as the resulting halo recovers a quiescent state.

In Fig. 4.3 we plot the median sparsity histories of haloes identified in the MDPL2
catalogue at z = 0 as having major mergers at five different redshifts zLMM as a function
of the backward interval of time T (in units of the dynamical time) since the last major
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and p(s200,500|T > −2) are shown in the inset plot. If we repeat this plot for other
halo sparsities, such as s200,2500, and s500,2500, we retrieve a similar behaviour with the
exception that the shape with the perturbed region, |T | < 2, is altered.

In Fig. 4.4, we notice that the joint probability distribution does not exhibits any
strong trend with the redshift at which we study the haloes, showing only a slight shift
to higher values when looking at higher redshifts with this shift being larger for other
sparsities, see Fig. 4.2. The general structure of the distribution generally remains
untouched, where at the bottom of each pannel, T < −2, we see a population of haloes
that are in a quiescent state, having not undergone a recent merger. These haloes
all behave in a similar fashion, independently of when their last major merger took
place. If we now look at the top of each panel, −2 < T < 0, corresponding to the
population of merging haloes, we see a strong dependency with the time at which the
last major merger occurred with the shape of this dependency being reminiscent of the
pulse features seen in Fig. 4.2 and Fig. 4.3.

In the inset plots we marginalise over the two populations, this is equivalent to
studying the PDF of the sparsities of all the haloes above or below the horizontal line
at T = −2, in each plot. We choose to differentiate both populations in such a manner
as to provide a conservative estimate of the time after which haloes recover a quiescent
state. We see that distribution of merging haloes (in orange) systematically shows a
much heavier tail towards high sparsities, contributing to a higher dispersion, than
their quiescent counterparts (in blue). Thus, it is merging haloes which are primarily
contributing to the scatter of the full distribution of halo sparsities. With this difference
in the two distributions in mind, we expect that measurements of cluster sparsities can
be used to identify perturbed systems that have recently undergone a major merger.

4.3 Identifying galaxy cluster major mergers
The analyses presented in the previous section allow us to conclude that there is a
significant difference between the distribution of sparsities characterising a population of
quiescent haloes and that of merging haloes. We have also seen, that the two populations
can be delimited by the normalised time coordinate T , which allows us to give a formal
definition to the two groups. In this section our goal is to formalise these results into
calibrated distributions that we can then use to test whether or not a galaxy cluster has
undergone a major merger.

To do so we design a binary test, as defined in the context of detection theory
(see e.g. Kay, 1998), to differentiate between both groups. Formally, this translates
into defining two hypotheses denoted as H0, the null hypothesis, and H1, the alternate
hypothesis. In our case this translates to,

• H0 : The halo has not undergone a recent major merger,

• H1 : The halo has undergone a recent major merger.

Which given our definition of merging or non merging haloes can be rewritten,
{

H0 : T (aLMM|a(z)) < −2

H1 : T (aLMM|a(z)) ≥ −2.
(4.5)

In Fig. 4.4 this correspond to the two regions delimited by black horizontal lines and
more specifically the inset plots of each panel.
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Table 4.2: Best fitting parameters for the distribution of sparsities at z = 0 under
both hypotheses. Here, we quote each parameter with its 95 percent confidence interval
estimated over 1000 bootstrap iterations.

Parameter H0 H1

α 1.4+0.1
−0.1 1.5+0.2

−0.2

β 0.61+0.03
−0.03 0.71+0.10

−0.08

p 7.7+0.3
−0.3 4.1+0.4

−0.3

q 0.304+0.002
−0.003 0.370+0.008

−0.008

Detection theory, tells us that to differentiate between the cases we must confront
some observable test statistic,

Γ
H1

≷
H0

Γth, (4.6)

to a threshold, Γth, defined from the theory. Following this general philosophy we will
now study multiple ways of defining both the test statistic and threshold. Here we will
follow formal approaches as to unambiguously define these quantities and to ensure the
robustness of each method by checking that everything remains consistent.

4.3.1 Frequentist approach
To begin, the simplest choice of test statistic is to use the sparsity itself, for now let us
focus on s200,500. As mentioned previously we separate the data according to our two
hypotheses. We then model the resulting PDFs as generalised β′ distributions,

ρ(x, α, β, p, q) =
p
(

x
q

)αp−1 (

1 +
(

x
q

)p)−α−β

q B(α, β)
, (4.7)

where B(α, β) is the Beta function and where x = s200,500 −1. Using our two samples we
calibrate the parameters of these two distributions with a standard least squares fitting
approach. For z = 0, we reproduce the resulting parameters in Tab. 4.2 and show the
best fitting distribution in Fig. 4.5. In both case we also give the 95 per cent confidence
interval estimated using 103 bootstrap iterations. Note that at higher redshifts these
parameters change and require one to recalibrate them. We can see in Fig. 4.5 that while
these fits accurately capture the peaks of the distributions they degrade significantly
when looking at the tails of these same distributions.

In this Frequentist approach we want to compare the use of sparsity to the use of a
likelihood ratio (LR) test statistic, σ(x) = ρ(x|H1)/ρ(x|H0), which under the Neyman-
Pearson lemma (see e.g. Kay, 1998) constitutes the most powerful detector for a given
binary test. While the fits may seem of poor quality they are sufficient to provide us
with an estimate, Σ̃ of this LR statistic. Using the best fitting parameters at z = 0 we
find:

Σ̃(x) ∝ xα1p1−α0p0
(1 + (x/q1)p1)−α1−β1

(1 + (x/q0)p0)−α0−β0
,

= x−4.6 (1 + (x/0.370)4.1)−2.2

(1 + (x/0.304)7.7)−2.0
. (4.8)

If we focus on the high sparsity regime, x ≫ 0.3, then this expression reduces to,
Σ̃ ∝ x1.8. This indicates that in the large sparsity regime the LR statistic is simply
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where π(θ) is the prior distribution for the parameter vector θ and

π(x) =

∫

p(x|θ)π(θ)dθ, (4.11)

is a normalisation factor, known as evidence. While these expressions may seem simple
they often hide multidimensional integrals with complex boundaries, to avoid having
to solve these equations one typically resorts to estimating the posterior distribution
using Markov Chain Monte-Carlo (MCMC). We will not go into the details of the many
different algorithms (see e.g Dunkley et al., 2005; Akeret et al., 2013, for reviews) and
simply use the emcee1 library (Foreman-Mackey et al., 2013), which uses the Goodman
& Weare (2010) affine invariant algorithm.

Once we have estimated the posterior distribution we can, within the Bayesian
formalism, systematically define the most powerful detection statistic associated to our
binary test known as the Bayes factor

Bf =

∫

V1
p(x|θ)π(θ)dθ

∫

V0
p(x|θ)π(θ)dθ

. (4.12)

Where V1 and V0 denote the volumes of the parameter space respectively attributed
to hypothesis H1 and H0. This statistic is also usually associated to a standard inter-
pretation of its value (see e.g. Kass & Raftery, 1995; Trotta, 2007) relating it to the
strength of the evidence in favour of H1. For instance, given a value of the Bayes factor
the evidence can be seen as,

0 < log10Bf ≤ 1/2, marginal,

1/2 < log10Bf ≤ 1, substantial,

1 < log10Bf ≤ 2, strong, or

2 < log10Bf , decisive.

Returning to the task at hand, in order to access this information we must first
model the likelihood. To do so we use the numerical catalogues from the MDPL2
simulation to calibrate the latter. In this case we increase the complexity of the model
by not only separating the distribution of sparsities into two parts, corresponding to
our two hypotheses, but into many sub-sets defined by aLMM, the scale factor at which
the last major merger occurred, in order to capture any dependence on this parameter.
We again find that the distributions of each sub-set are well fitted by a generalised β′

distribution. From this we obtain a set of parameters [α, β, p, q]⊤ which depend solely
on aLMM. It is in fact this parameter that we will sample within our MCMC with the
other four parameters being interpolated between our calibration points at each step.
For simplicity, we choose to use a uniform prior on aLMM ∼ U(0; a(z)), where the upper
bound of the prior is set to the epoch at which we observe the cluster.

Before moving onward to more complex models let us first compare the two detectors
we have made so far. To do so we choose to plot their respective receiver operating
characteristic (ROC) curves (see e.g. Fawcett, 2006), which show the probability of
having a true detection, Pr(Γ > Γth|H1), plotted against the probability of a false
detection, Pr(Γ > Γth|H0) for the same threshold. In other words, this means we are
simply plotting the probability of finding a value of Γ that is larger than the threshold
under the alternate hypothesis against that of finding a value of Γ larger than the

1https://emcee.readthedocs.io/en/stable/
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two additional sparsities, s200,2500 and s500,2500. With these sparsities we define a three
dimensional space with coordinates,















x = s200,500 − 1

y = s200,2500 − 1

z = s500,2500 − 1

(4.13)

After estimating the joint distribution of sparsities in this space we find that switch-
ing to a spherical-like coordinate systems, r = [r, ϑ, φ]⊤, makes the descriptions of the
likelihood function much simpler. In this coordinate system we can separate the an-
gular and radial dependency of the likelihood. We model this dependency, marked by
the two-vector α = [ϑ, φ]⊤, with a multivariate normal distribution with mean µ and
covariance C. As we have separated the radial dependency we can proceed by simply
modelling the marginal sparsity radius distribution, f(r; θ). We find that this distri-
bution exhibits strong skewness and so cannot be accurately captured into a normal
distribution. However, using a Burr type XII distribution (Burr, 1942),

f(x, c, k, λ, σ) =
ck

σ

(

x− λ

σ

)c−1
[

1 +

(

x− λ

σ

)2
]−k−1

, (4.14)

with additional displacement, λ which we fix to 0, and scale parameter, σ, provides a
reasonably good fit to the marginal distribution of sparsity radii r. The resulting full
likelihood,

L(r; θ,µ,C) =
f(r; θ)

2π
√

|C| exp

[

−1

2
(α − µ)⊤

C
−1(α − µ)

]

, (4.15)

is thus described by nine parameters, three which are constrained by fitting the marginal
sparsity radius distribution, and five which are computed by estimating the unbiased
sample mean and covariance of the sparsity angles, respectively two in µ and three in
C.

In a similar fashion to the one dimensional case all these parameters are fitted on
sub-sets of haloes depending on their epoch of the last major merger to retrieve their
dependence on aLMM. We sample the posterior distributions of this parameter using
MCMC, again choosing a flat prior on aLMM for the same test sample as previously.
We use the resulting posteriors to calculate the Bayes factor and plot the corresponding
ROC curve (BF 3D in Fig. 4.7). We see that the addition of information through the
extra mass measurement increases the detection power considerably with the ROC curve
being raised up with respect to the 1 sparsity test. At a constant false detection rate of
10 per cent the additional mass raises the true detection rate from 40 to 50 per cent.

4.3.3 Support vector machines
A third, less analytically cumbersome, alternative is to use machine learning techniques
designed for classification. Machine learning is often associated to Convolutional Neural
Networks (see eg. Lecun et al., 2015, for a review) which are very efficient and have been
profusely used to classify large datasets, both in terms of dimensionality and size, with
recent examples in extra-galactic astronomy including galaxy morphology classification
(e.g. Hocking et al., 2018; Martin et al., 2020; Abul Hayat et al., 2020; Cheng et al., 2021;
Spindler et al., 2021) detection of strong gravitational lenses (e.g. Jacobs et al., 2017,
2019; Lanusse et al., 2018; Cañameras et al., 2020; Huang et al., 2020, 2021; He et al.,
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2020; Gentile et al., 2021; Stein et al., 2021) galaxy merger detection (Ćiprijanović et al.,
2021) and galaxy cluster merger time estimation (Koppula et al., 2021). In the case at
hand however, as we have a problem with only a small number of dimensions, instead
of using high complexity neural networks it is preferable to use simpler techniques such
as random forest classifiers (see e.g. Breiman, 2001) or Support Vector Machines (SVM;
see e.g. Cristianini & Shawe-Taylor, 2000) which can be trained as classifiers for the two
hypotheses defined in Eq. (4.5) using the halo catalogues from the simulations.

We choose to use SVMs which work on the principle of finding the boundary which
best separates the two hypotheses. This boundary can have an arbitrary shape by
mapping the data points into a new euclidean space through a non-linear transformation
where it defines a planar boundary, in opposition to random forests which are confined
to using only horizontal and vertical boundaries in the original space, albeit to arbitrary
complexity. Non-linear transformations are usually avoided when using large data-sets
as they can be slow to converge, and for this reason we restrict ourselves to linear
transformation. This approach does have the significant advantage over its Bayesian
and Frequentist counterparts of being implemented in the ‘user-friendly’ scikit-learn2

(Pedregosa et al., 2011) Python package which allows for fast implementations with both
little knowledge of Python and little input, beyond the data, from the user.

For comparison with our previous detectors we set-up two SVMs, using as input
either one sparsity, s200,500 or three sparsities. In Fig. 4.7 we compare how these SVMs
fare against the other methods by plotting their ROC curves estimated from the same
test data-set that was excluded from the training of the SVMs. We see that the ROC
curve of the one sparsity SVM behaves similarly to both the Bayes factor and direct
sparsity test and that the three sparsity SVM is only slightly outperformed by the
Bayes factor. This result has two main implications, firstly that a statistical test based
on sparsity can be designed in a simple way without loss of differentiation power and
secondly this comforts our analysis, showing that these results can be recovered through
various independent means, making sparsity an all the more viable proxy to identify
cluster undergoing a recent major merger.

4.3.4 Estimating the epoch of the last major merger

In the previous sections we have used halo sparsity simply as a means of detecting if
a merger has recently taken place or not. An interesting byproduct of the Bayesian
approach however is that it can be expanded to not only detect if a merger has recently
taken place but also estimate when this event is most likely to have happened. This
is done by studying the posterior distribution directly instead of simply using it to
calculate the Bayes factor.

We again begin by turning our attention to the one sparsity case. In Fig. 4.8 we
plot the posterior distributions, p(aLMM|s200,500), for four different values of s200,500 =
1.2, 1.7, 2, and 3 at z = 0. We see that for larger sparsities the posterior exhibits
two peaks. These are generated from the pulse feature seen in the joint distribution in
Fig. 4.4 which is a direct consequence of the universal impact major mergers have on
the evolution of sparsity as seen in Fig. 4.3. We notice that the higher the sparsity is,
the less likely it is to have had its last major merger in the distant past, this is in fact
the behaviour we have previously used to detect mergers.

An unwanted consequence of the major merger pulse however is that a considerable
number of haloes which have undergone major mergers between −1/2 < T (aLMM|a(z)) <

2https://scikit-learn.org/stable/
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2. âLMM, the estimated epoch of the last major merger,

3. σ/âLMM, the relative width of the 1σ credible interval.

Fig. 4.11 shows each of these metrics as a function of the scale factor, aLMM. We employ
the same colour scheme as Fig. 4.9, as such orange curves represent analyses using only
s200,500 and blue curves using three sparsities, which we hereon refer to as the 1S and
3S estimators, respectively. The two curves in the lower panels of this figure show the
median value along with the 68 per cent confidence interval around the latter.

At first glance, one may be tempted to say that the 1S estimator is overall more
accurate at finding the correct merger time than the second method. However we must
contrast what is seen in the top panel with the two lower panels. Indeed here we see
that the main reason for which the accuracy is so high for the 1S estimator is that once
two dynamical times have past the estimator simply predicts a central value with very
large uncertainty, which in practical cases should only be considered as an upper bound
on aLMM. In geometric terms the wider the error bars are the more likely the correct
answer is to fall within them.

Focusing now on the regime of recent mergers, 0.68 < aLMM < 0.8, we see that the
3S estimator dominates this regime, not only being more accurate but also providing
tight constraints. A strong degeneracy between the two peak endures however, with
both estimators favouring the second peak in the ‘merger pulse’ causing the accuracy
to drop for very recent mergers. Finally we see in the central panel that although the
degeneracy between the dip of the pulse and the quiescent regime is somewhat weakened
by introducing a third mass measurement but is however still somewhat present in the
form of a strong dip in âLMM.

Overall, after this short analysis we are confident that our detection method is robust
to small changes in cosmology and data provenance. We have also been able to test
the effectiveness of the estimation pipeline and have found that the latter is capable of
accurately differentiating between quiescent and merging haloes but still suffers from
several degeneracies, most notably between the two peaks and the dip in the pulse
feature, which will have to be kept in mind when using this pipeline.

4.4.2 Systematic bias
As previously mentioned the statistical methodology presented here relies on mass es-
timated coming from N-body simulations. It is a well known fact that these masses are
however biased with respect to the masses of objects that can be observed in the sky.
These biases can be either deterministic or stochastic in nature and can be sourced by
multiple effects, from baryonic processes to observational constraints. As such before
we apply our methods to observations we first want to check how robust they are going
to be with respect to systematic biases. In practice we will review conservative estimate
that we introduce into our data to then quantify the effect they have on the methods.
Here we restrict our analysis to the detectors, but note that the estimators will also be
influenced by these effects.

Weak lensing mass bias

We first turn our attention towards masses derived from weak lensing observations.
These masses are often considered to be closer to the full gravitational mass of the
object. They are however affected by multiple biases, stemming from the assumptions
made to extract the physical information from the observed tangential shear, quality
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Table 4.3: Sparsity bias and scatter obtained from the weak lensing mass bias estimates
by Becker & Kravtsov (2011).

ngal bWL
200,500 σWL

200,500
10 0.04 ± 0.02 0.51 ± 0.03

z = 0.25 20 0.01 ± 0.01 0.40 ± 0.02
40 0.03 ± 0.01 0.35 ± 0.02

10 0.07 ± 0.07 0.76 ± 0.03
z = 0.5 20 0.02 ± 0.02 0.58 ± 0.04

40 0.03 ± 0.01 0.49 ± 0.03

of the data and systematic effects such as projection effects, intrinsic alignments and
redshift calibration.

Becker & Kravtsov (2011) quantify the general systematic error induced on the mass,

MWL
∆ = M∆ exp(β∆) exp(σ∆X), (4.16)

using two bias terms, a deterministic bias β∆ and a stochastic bias σ∆ which quantifies
the spread of a log-normal distribution, with X ∼ N (0, 1). If we make the pessimistic
assumption that the scatter on one mass is independent on the scatter on the other then
we can write the resulting biased sparsity as:

sWL
∆1,∆2

= s∆1,∆2

(

bWL
∆1,∆2

+ 1
)

exp
(

σWL
∆1,∆2

X
)

, (4.17)

where bWL
∆1,∆2

= exp(β∆1
− β∆2

) − 1 and σWL
∆1,∆2

=
√

σ2
∆1

+ σ2
∆2

. We calculate these
biases for the values of Becker & Kravtsov (2011) for ∆1 = 200 and ∆2 = 500, and
collect the resulting sparsity biases in Tab. 4.3, where errors are propagated from the
original errors. These values are computed for two redshifts and at three galaxy number
densities, in units of arcmin−2 and assuming an intrinsic shape noise of σe = 0.3.

We see that the ratio operation reduces the deterministic bias considerably, with
in most cases the resulting sparsity bias being consistent with 0, on the other hand
this same operation compounds the scatter making the scatter on the resulting sparsity
much larger than the scatter on the two masses. We use these values to generate a
sample of biased sparsities sWL

200,500 by combining the data from the halo catalogues and
randomly sampled biases, requiring only that sWL

200,500 > 1. Using the values quoted by
Becker & Kravtsov (2011) for a Euclid-like survey, i.e. ngal = 40 arcmin−2 at z = 0.25,
we run the Frequentist and Bayesian 1S detector in order to produce two ROC curves
that we show in Fig. 4.10. We see that these ROC curve are much closer to the diagonal
indicating that we have lost considerable detection power. Indeed this is to be expected
as the pulse in s200,500 on average only increases the sparsity by ∼ 0.2, the signal is
therefore completely drowned by the noise coming from the observations.

This however raises the question, when does the sparsity become a viable detector?
To answer this we repeat the Frequentist test, as it is faster than the Bayesian test and
yields similar results, whilst varying σWL

∆1,∆2
. As it would be cumbersome to look at

each resulting ROC curve individually we compress the information from these curves
by evaluating the Area Under the Curve (AUC) to quantify whether the detector is
working as intended or not. The general interpretation for this statistic is that a random
classifier, i.e. which randomly selects which class to put the data point in, should have
AUC = 0.5 with its ROC curve on the diagonal and a perfect detector should have
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Table 4.4: Sparsity bias from the hydrostatic mass bias estimated of Biffi et al. (2016)
for different categories of simulated clusters.

bHE
200,500 bHE

500,2500 bHE
200,2500

All 0.003 ± 0.032 −0.037 ± 0.025 −0.033 ± 0.034
CC −0.009 ± 0.031 −0.151 ± 0.038 −0.162 ± 0.041
NCC 0.019 ± 0.046 0.005 ± 0.027 0.023 ± 0.041
Regular 0.032 ± 0.089 0.025 ± 0.037 0.057 ± 0.082
Disturbed −0.017 ± 0.077 −0.080 ± 0.086 −0.098 ± 0.052

to the entropy inside the core of the clusters, and regular or perturbed with regards
to how the centre of mass is offset with the peak of the potential and the fraction of
substructures.

Using these bias estimates and following the procedure of Corasaniti et al. (2018)
we estimate the resulting sparsity biases and report them in Tab. 4.4. Again we find
that the sparsity strongly reduces the deterministic bias, with biases being only of the
order of a few per cent and vanishing in most cases. It is important to note that while
these biases are small they do not account for the intrinsic scatter the measurements
will have about the true value. As we have seen in the case of Weak lensing it is in fact
this stochastic bias which can overshadow the signal and severly hinder the detector
from functioning as intended. While the sample analysed by Biffi et al. (2016) is too
small to go into the detail of measuring the scatter we can however imagine that the
response of the detector will be similar to what is seen in Fig. 4.12, meaning that as
long as the intrinsic scatter in the measurements is smaller than the signal we want to
detect, i.e. the approximate height of the peak, then the detector will be unaffected by
such a bias.

Concentration mass bias

Most methods used to recover the masses from cluster observations resort to assuming
a profile for the dark matter component. We have seen at the beginning of this chapter
that sparsities that are deduced from the concentration parameter of a best fitted NFW
profile are biased with respect to sparsities measured directly using the halo masses.

The question we can now ask ourselves here is, How does this affect the detection
procedure? To answer this we extract the concentrations from our test sample of haloes
and then convert them into sparsities. We run them through our detection algorithms
and plot the resulting ROC curves in Fig. 4.7. Surprisingly we find that using the
sparsities derived assuming the NFW improves the performance of the 1S detectors.
This is likely due to the fact that when haloes are quiescent then the NFW sparsities,
as can be seen in Fig. 4.1, are systematically underestimated, while during a merger
event the NFW sparsity overestimates its N-body counterpart. This effect, likely due to
numerical artefacts in the fitting procedure (Balmès et al., 2014), added to the fact that
the scatter generated by the fitting procedure is relatively small, (∼ 10%), compared to
the signal we want to detect, results in this increased detection power.

If we now look at the 3S case we see that this is no longer true with the NFW 3S
curve being far lower than even the 1S curve using N-body masses. In this case even
if the boost in signal-to-noise still occurs for s200,500, this is not the case for s200,2500,
as it can be seen in Fig. 4.1 the merging population also has underestimated sparsities,
thus reducing the signal to noise. In addition, the fact that all three sparsities are now
correlated through the concentration, changes the shape of the impulses seen at inner
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radii. Consequently, they no longer bring any new information, quite the opposite they
are detrimental as they no longer break the degeneracy between the dip in the pulse
and quiescent state. The end result of this is that many merging haloes are then falsely
identified as quiescent.

4.4.3 Preliminary Cluster applications
Keeping all of these effect in mind we will apply our methodology to two well-studied
galaxy clusters. One of which is well known to be quiescent and a second one which has
all the hallmarks of a perturbed system.

Abell 383

Let us start with Abell 383, a not too distant cluster at z = 0.187 which has been
the subject of many studies both in X-ray (Böhringer et al., 2004; Vikhlinin et al.,
2005) and optical bands (Miyazaki et al., 2002; Postman et al., 2012) and several using
gravitational lensing (e.g. Okabe & Smith, 2016; Umetsu et al., 2016; Klein et al., 2019).
Overall this cluster is thought to be relaxed, with a roughly spherical X-ray emission
profile. The mass of the inner cluster has been constrained to

M500c = (3.10 ± 0.32) · 1014 M⊙ and M2500c = (1.68 ± 0.15) · 1014 M⊙

using Chandra X-ray observations (Vikhlinin et al., 2005). From these measurements
we compute the halo sparsity s500,2500 = 1.84 ± 0.25 that is close to the median of the
quiescent halo sparsity distribution. While we have not calibrated our pipeline to use
this specific sparsity on its own this gives us a good indication that the cluster is indeed
relaxed.

As this cluster has also been extensively studied through weak lensing we are able to
use the statistical test derived here on the masses provided in the latest version of the
Literature catalogues of Lensing Clusters (LC2 Sereno, 2015). Specifically, we use the
mass estimates derived from the analysis of the latest profile data (Klein et al., 2019):

M200c = (8.55 ± 1.7) · 1014 M⊙,

M500c = (5.82 ± 1.15) · 1014 M⊙, and
M2500c = (2.221 ± 0.439) · 1014 M⊙,

from which we compute the resulting sparsities,

s200,500 = 1.47 ± 0.41

s200,2500 = 3.85 ± 1.08, and
s500,2500 = 2.62 ± 0.73.

Running these values through the pipeline, we obtain a p-value p = 0.21 and Bayes
Factor Bf = 0.84, incorporating errors on the measurement of s200,500 yields a higher
p-value, p = 0.40, which can be interpreted as an effective sparsity of seff

200,500 = 1.40.
These results are strongly in favour of A383 not having undergone a recent merger.

Abell 2345

We now move on to study a second cluster, A2345. This cluster is at a similar redshift to
the previous one, z = 0.179, and has also been thoroughly studied in the literature. In
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opposition to the previous cluster this system has been identified as strongly perturbed.
Indeed this has been seen through optical observations of its galaxy distribution (Dahle
et al., 2002; Boschin et al., 2010), which was initially thought to be peaked around the
brightest cluster galaxy (Dahle et al., 2002; Cypriano et al., 2004) but was then shown
to have a complex structure, which suggest that the cluster is composed of three large
sub-clusters, when looking at large fields of view. Radio and X-ray observations of its
ICM (e.g. Giovannini et al., 1999; Bonafede et al., 2009; Lovisari et al., 2017; Golovich
et al., 2019; Stuardi et al., 2021) have revealed the presence of large radio relics and
disturbed morphology in the X-ray emission usually associated with merger activity.

We again use the weak lensing masses from the LC2-catalogue (Sereno, 2015),

M200c = (28.44 ± 10.76) · 1014 M⊙,

M500c = (6.52 ± 2.47) · 1014 M⊙, and
M2500c = (0.32 ± 0.12) · 1014 M⊙,

Which result in the sparsities,

s200,500 = 4.36 ± 2.33,

s200,2500 = 87.51 ± 46.83, and
s500,2500 = 20.06 ± 10.74.

Using only s200,500 results in a very small p-value, p = 4.6·10−5 which remains small even
accounting for errors on the measurement , p = 7.5 ·10−4. The latter can be interpreted
as an effective sparsity of seff

200,500 = 2.76, while this value is significantly lower than the
measured value, both still strongly favour the signature of a major merger event, that
is confirmed by the combined analysis of the three sparsity measurements for which we
find a divergent Bayes factor.

In Fig. 4.13 we plot the posterior distribution for both the single sparsity s200,500

(orange solid line) and for the three sparsity estimates (purple solid line). We indeed
see that both cases strongly favour a recent merger with the one sparsity estimator
estimating the merger took place at redshift zLMM = 0.30+0.04

−0.07, while the 3 sparsity
method estimated the event took place earlier at zLMM = 0.39 ± 0.02. This would
suggest that the merger occurred tLMM = 2.1 ± 0.2 Gyr ago. We note however, in
the light of the discussion above, that this event may be in fact more recent as we have
seen that both estimators artificially disfavour very recent mergers, typically attributing
them to the second peak in the sparsity distribution.

4.5 Summary
In this chapter we have discussed how major mergers affect the mass profiles of massive
dark matter haloes in the mass range of galaxy clusters through the scope of halo
sparsity. To this end we have studied a sample of dark matter haloes coming from the
MDPL2 and Uchuu simulations. We have seen that sparsity is able to provide valuable
insight into this period where most fitting formulae, such as the NFW profile, no longer
apply.

We found that major mergers leave a characteristic imprint in the sparsity history
which manifests as a fast pulse. In addition, the shape of this pulse is independent of
when the merger took place but however dependent on the sparsity we are studying.
Overall, this pulse manifests as a high value of sparsity which suggest that the merger
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5 | Cosmology with Sparsity

At the time of writing one of the main topics of discussion in cosmology is tensions
between various cosmological probes. In particular, recurrent focus is put on the ten-
sion between H0 measurements from the CMB (e.g. Planck Collaboration et al., 2020)
and measurements with Supernovae type Ia (e.g. Riess et al., 2022) and strong lensing
time delays (e.g. Treu et al., 2022) and the S8 tension between measurement on the
CMB (e.g. Planck Collaboration et al., 2020) and recent joint analyses of cosmic shear
and galaxy clustering (e.g. Abbott et al., 2022; Sugiyama et al., 2023). While the solu-
tions to these tensions remain illusive and have been the source of many works putting
foward hypotheses ranging from investigations of possible systematics, all the way to
exotic new physics. Another way of lending credibility to either side of the debate is to
construct new cosmological probes that are independent from both parties, for instance
measuring H0 using gravitational waves (Abbott et al., 2021). Given that, as we have
seen in Chapter 3, the sparsity distribution depends on the underlying cosmology, and
in particular on S8, it is of interest to us to ask ourselves: how we can retrieve this
cosmological information?.

This chapter is structured as follows: in Section 5.1 we present the generation of
synthetic data-sets that will be used throughout the rest of the chapter. The first half
of this chapter is devoted to an overview of different approaches to constrain cosmology
using the internal structure of galaxy clusters. First, in Section 5.2 we attempt to
constrain cosmology using NFW concentration measurements. In Section 5.3.1 and
Section 5.3.2 we review two sparsity based methods which use the mean sparsity of a
sample to constrain cosmology. In Section 5.4 we present our novel approach designed
to use each object as an individual data point rather than the mean of the sample.
The second half of the Chapter, is devoted to the prospect of making the methods
presented before hand applicable in observational settings. As such, In Section 5.5.2 we
investigate how the resulting constraints are influenced by mass measurement errors and
biases. In Section 5.6, we present preliminary work studying the sparsity bias induced
by observational data pipelines as well as possible combinations of sparsity with other
galaxy cluster based cosmological probes, before summarising this chapter in Section 5.7

The work presented in this chapter has been part of several publications. In partic-
ular, Section 5.4 and Section 5.5.2 are adapted from results published in Richardson &
Corasaniti (2023). Section 5.5.1 relates to work published in Richardson & Corasaniti
(2022). Finally Section 5.6 presents two ongoing projects that are yet to be published.

5.1 Bayesian data analysis and synthetic data-sets

As briefly mentioned in Section 4.3.2, many modern cosmological analyses make use of
Bayesian statistics in order to infer the values of the cosmological parameters from a
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given data-set. This is achieved by recovering the posterior distribution,

ρ(θ|x) =
ρ(x|θ)π(θ)

π(x)
, (5.1)

given a likelihood model ρ(x|θ) and priors π(θ). Usually, this equality is solved through
the use of MCMC as the evidence, π(x), hides a multidimensional integral which in most
practical cases cannot be solved analytically. In the following sections we will design
multiple likelihood models, and in order to test the accuracy of these models we require
sufficiently realistic mock data vectors. As such, this first section will be devoted to
designing these mock data, which will then be used throughout the rest of the chapter.

5.1.1 Targeted samples
Targeted samples of objects are usually associated with astrophysical studies, where one
is more interested in the physics of the object rather than the background cosmology.
They have nonetheless been at the forefront of the search for new physics, from dark
energy (e.g. Allen et al., 2004) to the nature of dark matter (e.g. Eckert et al., 2022b),
as these data are usually of very high quality allowing the precise determination of the
physical properties of objects. Recently, in the specific case of galaxy clusters (Umetsu
et al., 2020; Eckert et al., 2022a, e.g.), targeted studies have been able to not only
extract the masses of clusters but also obtain information about the mass profile, albeit
in the form of concentration measurements.

In order to forecast possible applications of sparsity to this type of data-set we gen-
erate a mock catalogue loosely based around the Cluster HEritage project with XMM-
Newton Mass Assembly and Thermodynamics at the Endpoint of structure formation
(CHEX-MATE) (CHEX-MATE Collaboration et al., 2021). This XMM-Newton obser-
vation program targets a total of 118 X-ray emitting clusters selected from the Planck-SZ
cluster catalogue (Planck Collaboration et al., 2014b) with masses, M500c, spanning be-
tween 2 · 1014 h−1M⊙ and 1.3 · 1015 h−1M⊙ and redshifts, z, spanning between 0 and
0.6. The observation program is split into two tiers,

• Tier 1: a representative sample of nearby clusters with z < 0.2,

• Tier 2: a sample of the most massive systems known with redshift z < 0.6.

Each tier comprising 61 systems with 4 systems being common to both data-sets. As a
crude approximation we assume that the entire sample is representative of the general
population of galaxy clusters with z ≤ 0.63 and assume a mass cut M200c > 1014 h−1M⊙.
While this does not match the CHEX-MATE sample, this particular selection is simpler
to implement, both to generate the sample and in the likelihoods presented below. As
such the mock catalogue comprises 118 randomly selected clusters from the Uchuu
simulation with each object being assigned a redshift z, three masses M200c, M500c and
M2500c, as well as the NFW scale radius rs fitted by rockstar to the halo profile. Note
that we ensure that there is no duplication of objects in this sample by ensure that no
object is sampled twice at different redshifts.

5.1.2 Wide surveys
In opposition to targeted samples, wide surveys aim to collect vast amounts of rela-
tively lower quality data. While the quality of these data usually does not allow for
specific target by target studies, these data are however sufficient to measure sample
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viewing angles on the sphere as well as all possible orientations of the field of
view.

• In this new reference frame the chosen line of sight is aligned with the x axis
meaning that, after switching to spherical coordinates, we can simply select a
square of angular side length 2α, where α is chosen as to solve,

4α sin(α) = 4πfsky, (5.3)

for the desired sky fraction fsky, which in the case of Euclid fsky ≃ 0.364.

• We convert the comoving distance, di, between each object and the origin to
the corresponding redshift, zi, to which we add the contribution from the radial
peculiar velocities of the haloes. We use the redshifts of the simulation’s output
snapshots as bin edges within which we select all haloes with masses M200c >
1013h−1M⊙. Note that, when selecting haloes we only select haloes from the
snapshot at the lower redshift and do not add any fading between the snapshots
which can generate discreteness effects when binning the light-cone data.

• As we advance to higher redshifts we eventually encounter the edge of the simula-
tion box, at which point we add replications of the simulated volume. We detect
the required replications by randomly sampling 300 points on both surfaces corre-
sponding to the lower and upper comoving distances used for the selection, simply
selecting all boxes within which at least one of these points falls. Note that, as
these are simple mocks, we do not introduce an additional rotation to the repli-
cated boxes.

The resulting geometry of the selected light-cone can be seen in Fig. 5.1 where we
represent the edges of the redshift bins as solid lines and the replicated simulation boxes
as red squares. For each selected cluster we recover the comoving positions, comoving
velocities and three masses M200c, M500c and M2500c. In addition, we recover the
redshift of each cluster calculated from the comoving distance while also incorporating
the doppler shift corresponding to the line of sight velocity.

5.2 Concentration based inference
Now that we have data-sets on which we can calibrate and test models, in the following
sections, we present a series of increasingly complex likelihoods, which allow us to
constrain cosmology using the internal structure of dark matter haloes.

Before getting to sparsity, we naturally have to ask the question: can we assume
the NFW profile and use the standard description of the c − M relation to constrain
cosmology? Although we have seen in Chapter 3 that assuming concentrations follow a
log-normal distribution around the c − M relation results in a distribution that is too
narrow when translated to sparsity, we have also seen that this description is still in
general agreement with the distribution of sparsities.

As such, we assume each cluster in our CHEX-MATE mock sample to be an inde-
pendent realisation of the c − M relation and describe the data as being log-normally
distributed with a width of σ = 0.2 dex around the median which we choose to corre-
spond to a c − M relation that we denote cth = c(M200c, z,Θ), resulting in a location
parameter µ = ln(cth − σ2/2). Assuming each halo is independent from the rest, we
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define the likelihood,

ln L = −1

2

N
∑

i=0

ln(ci) +
(ln(ci) − µ)2

σ2
, (5.4)

where the sum is over all the cluster in the sample. This model is then evaluated over
105 MCMC iterations to sample to Ωm − σ8 plane with a uniform prior.

In Fig. 5.2 we show the resulting posterior distributions for the c−M relation models
of Diemer & Joyce (2019), Ishiyama et al. (2021), and López-Cano et al. (2022). We
note that all three models primarily provide constraints on the amplitude of matter
fluctuations parameter S8 = σ8

√

Ωm/0.3. Indeed, we will see that this is in fact a
recurrent feature of using the internal structure of haloes to constrain cosmology.

These models provide strong constraints on the S8 parameter,

• Diemer & Joyce (2019): S8 = 0.914+0.038
−0.032,

• Ishiyama et al. (2021): S8 = 0.873+0.045
−0.036,

• López-Cano et al. (2022): S8 = 0.717+0.048
−0.025,

however, we note that they are all biased by at least 1 − σ with respect to the fiducial
value of the simulation, S8 = 0.8279. This is particularly problematic considering that
the model of Ishiyama et al. (2021) is calibrated on the same simulation as the data
that is used for the constraint, and indicates that the standard log-normal description is
inadequate for this application. However, it is difficult to pin-point where this descrip-
tion fails because, as we have seen in Chapter 3, it has many weaknesses ranging from
the fundamental assumptions on the shape of the profile and shape of the probability
distribution function to the more basic assumption of a constant scatter.

We can nonetheless attribute the discrepancies between the different models to dif-
ferences in the c − M relations. For instance, as can be seen in Fig. 2.9 that Diemer
& Joyce (2019) and Ishiyama et al. (2021), which both calibrate their models on N-
body simulations leading to an inflexion of the c − M relation at high masses, while
López-Cano et al. (2022) calibrates the relation of Ludlow et al. (2016) based on the
mass accretion history of haloes; this relation resulting in a higher median concentration
which is monotonously decreasing.

5.3 Mean sparsity based inference
As mentioned on multiple occasions, the use of sparsity allows us to avoid many of
the problem encountered above. Nonetheless sparsity does come with the drawback of
not being as studied as concentration, and as such not many predictions or models are
available in the literature. In fact, prior to the work that will be presented below, one
could only predict the mean sparsity of a sample (Balmès et al., 2014; Corasaniti et al.,
2018, 2021). Thus, we first focus on models, such as that of Corasaniti et al. (2018),
which make use of the mean sparsity of a given sample.

These approaches are designed to handle large samples of clusters with relatively
poorly constrained individual sparsities. Indeed, in this case using the mean sparsity as
our observable considerably reduces the scatter and error on the observable at the cost
of losing some information. In this context, the data are binned into Nz redshift bins
which are considered independent. In each of these bins, we then calculate the mean
sparsity ⟨s∆1,∆2

⟩(zi), which produces the data vector we use in the likelihood.
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The mean sparsity approach then relies on the ability to theoretically predict ⟨s∆1,∆2
⟩

from the mass function by solving the transcendental equation,

ln Mf
∫

ln Mi

dn

dM∆2

d lnM∆2
= ⟨s⟩

ln⟨s⟩Mf
∫

ln⟨s⟩Mi

dn

dM∆1

d lnM∆1
, (5.5)

which was first introduce by Balmès et al. (2014) and which we re-derived using the
stochastic formalism of sparsity in Section 3.4.

This theoretical prediction, ⟨sth
∆1,∆2

⟩, relies on two free parameters, Mi and Mf ,
the latter of which we can set to an arbitrarily large value with no influence on the
prediction. On the other hand, the choice of Mi does influence the prediction. As such,
the latter can either be selected as to reproduce the sparsity of a calibration sample,
usually a simulation, or can be set to an arbitrary value and then correct the prediction
to match the calibration sample. When using a HMF model, for instance here we use
Despali et al. (2016), the second option is preferred (see Corasaniti et al., 2018, 2021)
as to account for differences between the HMF model and the HMF of the simulation.

5.3.1 One-sparsity
Let us begin by considering the case where we are only able to measure a single sparsity,
s200,500. If we consider the data-set to be sufficiently large then according to the central
limit theorem the distribution of the sample mean will be Gaussian. Thus, let us consider
the likelihood of these data to be Gaussian,

ln L = −1

2

Nz
∑

i=0

(⟨s∆1,∆2
⟩(zi) − ⟨sth

∆1,∆2
⟩(zi))

2

σ2
, (5.6)

where the variance is estimated on the calibration sample.
We split the sample of 118 clusters into Nz = 6 redshifts bins and, similarly to

Corasaniti et al. (2018), choose σ = 0.2. This choice results in each bin containing
between 10 and 40 clusters. For each bin we solve Eq. (5.5) to obtain a theoretical
prediction for the mean sparsity adding the correction term (Corasaniti et al., 2018,
2021),

δs200,500(z) = 0.19372462z3 − 0.28989702z2 − 0.05460965z + 0.05186372. (5.7)

This correction term is obtained by generating 1000 random samples of 118 clusters
within the Uchuu simulation and matching the prediction to the measured value.

We sample the Ωm − σ8 plane with 105 MCMC steps using a uniform prior. We
obtain a converged posterior shown as purple contours in Fig. 5.3. We see that in this
particular case the posterior does not yield a strong constraint on either of the two
sampled cosmological parameters. Nonetheless, we are able to recover a constrain on
the amplitude of matter fluctuations parameter S8 = σ8

√

Ωm/0.3 = 0.85+0.14
−0.25, which is

consistent with the fiducial value, S8 = 0.8279, used in the Uchuu simulation.

5.3.2 Multi-sparsity
It is possible to improve these constraints by adding additional information in the form
of additional sparsities. As the sparsity can be interpreted as the local slope of the mass
profile this additional data can be seen as better constraining the shape of the average
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mass profile by allowing for a change in logarithmic slope. While we may be tempted
to compare this change in slope to that in the NFW profile, this data is more versatile
as the sparsity will not restrict the inner and outer logarithmic slopes.

As such we use the third mass measurement in our data-set, M2500c, to define two
additional sparsities, s500,2500 and s200,2500. Using the same binning as previously we
measure the mean sparsity in each bin. The resulting data vector is simply the concate-
nation of all the sparsities in all bins.

We then use Eq. (5.5) to predict the two new averages. Note, we again have to add
corrective terms to these predictions,

δs500,2500(z) = 0.5452249z3 − 0.88677583z2 + 0.42642039z + 0.153177, (5.8)
δs200,2500(z) = 0.15492404z3 − 1.09742678z2 + 0.61161492z + 0.30996225, (5.9)

which we calibrate in the same manner as Eq. (5.7). Again, because of the central limit
theorem we can consider that the data follow a Gaussian distribution. Nonetheless, while
two average sparsities evaluated at two distinct redshifts may be relatively independent
from one another, ⟨s∆1,∆2

(zi)s∆1,∆2
(zj)⟩ ≃ 0 for i ̸= j, this is not a priori true of two

different sparsities evaluated at the same redshift ⟨s∆1,∆2
(zi)s∆3,∆4

(zi)⟩ ̸= 0 as shown
in Corasaniti et al. (2022). To include these correlations in the data we define C, the
covariance matrix between the mean sparsities, such that,

Cij =
⟨s∆1,∆2

(zi)s∆3,∆4
(zj)⟩ − ⟨s∆1,∆2

(zi)⟩⟨s∆3,∆4
(zj)⟩

σ∆1,∆2
(zi)σ∆3,∆4

(zj)
, (5.10)

where σ∆1,∆2
(zi), is the standard deviation of sparsities s∆1,∆2

in redshift bin i. We
calibrate the covariance matrix by randomly selecting and binning 118 clusters in each
of the 1000 mock light-cones from which we compute the unbiased sample covariance
between the bins. Due to the noise in the resulting covariance matrix, the only correla-
tions we are able to measure are indeed between different sparsities at the same redshift
bin.

We describe the likelihood as a multivariate Gaussian distribution,

ln L = −1

2
(⟨s⃗⟩ − ⟨s⃗th⟩)⊤

C
−1(⟨s⃗⟩ − ⟨s⃗th⟩), (5.11)

where ⟨s⃗⟩ and ⟨s⃗th⟩ are respectively the sparsity data vector and theory vector.
We sample the posterior shown as red contours in Fig. 5.3 with 105 MCMC steps,

again restricting ourselves to the Ωm − σ8 plane and using a flat prior. We see that
the additional sparsities provide an significant increase in the constraining power with
this method providing a tighter constraint on S8 = 0.83+0.08

−0.11. This is a similar increase
to that presented by Corasaniti et al. (2022) although here we have a much smaller
sample of clusters. In Corasaniti et al. (2022), the authors further note that increasing
the number of sparsities further increases the constraining power of the method to
the point where even the S8 degeneracy can be broken and one can obtain separate
constraints on Ωm and σ8. In fact, we can already see this effect on our smaller sample
with the red contour in Fig. 5.3 having a slightly different degeneracy than the purple
contour.

In this study, the authors use a total of four masses and note that the constraints
saturate for three sparsities, this is consistent with what we have seen in Section 3.2
where for a given number of masses, N , the profile can be at best reconstructed with
N−1 sparsities. This would mean that in our case we may not gain a significant amount,
in terms of constraining power, from the addition of s200,2500.
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5.4 Predicting the sparsity distribution
So far the likelihoods we have designed and presented all focus on using the mean
sparsity to extract cosmological information from the data. One of the weaknesses of
this approach is that using the mean as a summary statistic results in a considerable
loss of information. Thus, it is of considerable interest to avoid this operation and go
beyond this type of approach. In this section, we will therefore focus on predicting the
sparsity distribution directly which we will then use as a likelihood model.

Let us focus on extracting the sparsity distribution from the HMF. We recall that in
Section 3.4, we showed that the sparsity distribution function and HMF at two distinct
over densities are linked through two transformation equations,

dn

dM∆2

(M∆2
) =

∫ ∞

1
s ρs(s|sM∆2

)
dn

dM∆1

(sM∆2
) ds, (5.12)

dn

dM∆1

(M∆1
) =

∫ ∞

1

1

s
ρs(s|M∆1

/s)
dn

dM∆2

(M∆1
/s)ds, (5.13)

which we respectively named the inward and outward transformation equations. We
have also shown throughout Chapter 3 that under simplifying assumptions these equa-
tions can be used not only to recover Eq. (5.5) but also to derive equations for the mass
dependent means, ⟨s∆1,∆2

⟩(M∆1
) and ⟨s∆1,∆2

⟩(M∆2
), as well as providing predictions

of the c−M relation.
These predictions all relied on the assumption that the sparsity distribution is de-

scribed by a Dirac distribution. While this particular choice of distribution significantly
simplifies these equations, it reduces the description of the distribution to the modal
ridge of ρs(s|M∆), neglecting the scatter. However, to design a likelihood we also re-
quire this additional information on the scatter. As such, let us now consider a generic
sparsity distribution that depends on two parameters s0 and σs which define the location
and scale of the distribution and are a priori functions of mass, cosmology and redshift.

The difficulty of this problem then resides in the small number of constraints we
can place on these two functions, most notably their mass dependence. Indeed, while
the cosmology and redshift dependence can be associated to the HMF model, in both
Eq. (5.12) and Eq. (5.13) we integrate over masses implying that for each cosmology
and redshift we only have two constraints on the mass dependence. Using classical
optimisation methods, this limits the space of possible solutions we can investigate
considerably. Empirically we find that this system only admits unique solutions for
two specific class of distribution, which we name Dirac solutions and constant Gaussian
solutions. The former corresponding to the approximations we have studied in detail in
Chapter 3.

The second class of solution covers certain two parameter probability distribution
functions which admit a singular solution to the system assuming s0 and σs are constant.
In particular we find that this is the case of but not limited to the normal and log normal
distributions. Note that this particular choice of distribution theoretically allows for
non-physical sparsities, s∆1,∆2

< 1. Moreover, if we enforce this constraint, for instance
by looking at a log normal distribution of s∆1,∆2

−1, then we are unable to find solutions
with non-vanishing scatter.

As such, for simplicity we assume that the sparsity distribution is Gaussian with
mean s0 and standard deviation σs. Under this assumption, we then solve the system
of equations at fixed mass, redshift and cosmology, further assuming that both param-
eters are independent of mass which implies that we may also assume ρs(s|M∆2

) ≃
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moments of the distribution, with the prediction of the mean being accurate to five per
cent, although we note that the prediction of the variance is offset by almost an order of
magnitude at high masses. We infer, from the fact that there is no significant difference
between the model HMF and measured HMF, that this is a consequence of the chosen
shape of the sparsity distribution.

Nonetheless we can use this prediction within a simple Gaussian likelihood model,

ln L = −1

2

N
∑

i=1

{

ln
[

2πσ2
s (Mi, zi)

]

+
[si − s0(Mi, zi)]

2

σ2
s (Mi, zi)

}

, (5.14)

where we assume each cluster to be independent from the rest of the sample. Here
we respectively note si, Mi, and zi, the sparsity, mass, and redshift of the i−th clus-
ter in the sample of N = 118 clusters. For each cluster we predict the local mean
s0(Mi, zi) an variance σ2

s (Mi, zi). Empirically, we find that using Mi = M500c results in
a marginally better agreement of the prediction. Note that in opposition to the mean
sparsity approaches here we do not add any correction terms.

Running the MCMC to convergence we obtain the orange contours shown in Fig. 5.3
with the same flat priors between 0.1 < Ωm < 0.6 and 0.3 < σ8 < 1.3. We see that
we recover an unbiased constraint, S8 = 0.799+0.052

−0.037 which is almost as tight as the
constraints obtained using the c − M relation. Note that here we have not added any
additional data with respect to the purple contours produced by estimating the mean
sparsity, which shows that taking the mean results in a considerable loss in cosmological
information, if we have high quality data.

Although this approach provides a substantial increase in constraining power, this
comes at the cost of having a likelihood model that is far more expensive to compute,
requiring on average, optimising 100 two dimensional problems, to find s0(Mi, zi), and
σs(Mi, zi), in contrast with using the sample mean, ⟨s∆1,∆2

⟩, which would only require
on average optimising 10 one dimensional problems. This issue can be avoided by
predicting the distribution through other means. For instance, in Appendix A we present
an ongoing effort to predict the sparsity distribution from first principles, or by using
emulation techniques which massively reduce the required computation time, while also
being able to capture more complex distribution shapes, beyond normal distributions,
thus allowing for more accurate likelihood models at a reduced cost.

5.5 Errors and biases

In the previous sections we have investigated how we can predict properties of the halo
sparsity distribution. These can be used within various likelihood models, that we
have applied to a simulated data-set with negligible uncertainties and selected adopting
criteria designed to have minimal impact on the sparsity measurements. Here, we will
relax this approximation and investigate how sparsity based constraints react to more
realistic setups. As such, we will first investigate how selection effects, with a particular
interest on dynamical selection criteria, may alter constraints using the mean sparsity.
We will then study how observational uncertainties impact constraints using individual
sparsity measurements. Finally, will briefly overview how systematic effects can be
accounted for at the level of the likelihood.
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5.5.1 Selection effects: the influence of mergers
In Chapter 4, we have seen that the distribution of sparsities is strongly influenced by
major mergers, which shifts individual clusters to higher sparsities. We have seen that
this has the overall effect of imparting a strong tail to the distribution. Here, we focus
on how mergers may impact the cosmological inference based on mean sparsity values.
In principle, as this method relies on the computation of the mean sparsity of a sample
from two HMFs, the resulting mean reflects the population of haloes which was used
to calibrate HMFs. This implies that selecting a particular population may bias the
resulting mean sparsity and therefore the inferred cosmological parameters.

To do so we revisit the criteria we set out in Eq. (4.5) to separate merging haloes
from quiescent haloes and take all haloes with M200c > 1013h−1M⊙ from the MDPL2
simulation catalogues. We thus separate them according to the number of dynamical
times, T (aLMM|a(z)), at which their last major merger occurred, i.e. within or prior
to two dynamical times. In the left panels of Fig. 5.5, we show the impact of such a
selection. It is clear that if we only select quiescent haloes we incur a 10 per cent bias
on ⟨s200,500⟩ at z = 0, which decreases to 4 per cent at z = 1, while in the same redshift
range the bias is of the order of 20 per cent for ⟨s500,2500⟩ and 30 per cent for ⟨s200,2500⟩.

While the previous selection would result in a substantial change in the likelihood,
the number of dynamical times since the last major merger is a quantity that is difficult
to acquire. In most practical situations however, one might face the reverse problem of
a certain number of outlier sparsities biasing the estimation of the sample mean, this is
particularly the case for small cluster samples.

Therefore, the question we can ask ourselves is, can we consider certain clusters as
outliers and if so which ones can we remove without biasing the inference? To answer
this question we use the thresholds we defined in Section 4.3.1 and show in Fig. 4.6,
which are based on p-values. This kind of selection can be seen as akin to shaving the
tail of the distribution which may be over represented due to selection effects. In the
right hand plots of Fig. 5.5 we show the impact of removing all haloes with p ≤ 0.005
and p ≤ 0.01. We can see that excluding these haloes from the computation of the
mean only alters the result at the sub-per cent level for ⟨s200,500⟩ and only of the order
of a few percent ⟨s500,2500⟩ and ⟨s200,2500⟩ at higher redshift. This indicates that it is
safe to remove a few outlier clusters from a cosmological analysis, especially since these
significantly alter the sample mean when handling small samples.

5.5.2 Observational uncertainties
When considering observational measurement, we must always remember that these are
accompanied by a certain degree of uncertainty. Naively we associate uncertainty to
perpendicular errorbars, but more generally uncertainty will manifest as a correlated
volume. This correlated volume is typically what is depicted in most figures showing a
posterior distribution, Fig. 5.3 for instance, and can potentially have a highly complex
structure.

Within the context of Bayesian analysis, dealing with such complex distributions
can be done in a robust and systematic way. By explicitly including the uncertainty
distribution into the likelihood, we can formally marginalise over the uncertainties to
obtain the new likelihood model. For instance, in the case of a likelihood using a single
cluster this can be written explicitly,

ln Lcorr =

∫ ∞

0

∫ ∞

1
ln L(M, s|Θ)ρerr(M, s)dMds, (5.15)
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where ρerr is the joint error distribution on the mass and sparsity, note that we neglect
the redshift error which is often much smaller. If we consider a larger sample of N
clusters this operation theoretically requires us to solve a 2N -dimensional integral. By
assuming the errors on the measurements of each cluster to be independent from the
measurements of other clusters, we can reduce this down to calculating a set of N × 2-
dimensional integrals.

As an example, let us consider that both mass measurements, M200c and M500c

are independent, and that the error distribution on each mass can be described as a
log-normal distribution with mean M∆,i and variance δM2

∆,i, the error on the mass
measurement. These quantities translate into,

µ∆,i = ln





M∆,i
√

δM2
∆,i +M2

∆,i



 and σ∆,i = ln

[

1 +
δM2

∆,i

M2
∆,i

]

(5.16)

the log-normal location and width parameters. Here the second index, i, is used to
mark measurements relating to the i-th cluster in opposition to variables of functions
which do not carry the index.

It is easy to imagine that even if we consider both mass measurements to be inde-
pendent form one another, the error on the resulting sparsity will not be independent
from the masses because the three variables are related through an algebraic operation.
In a similar fashion to how we derived the HMF transformation equations in Section 3.4,
we can derive the joint error distributions,
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and
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As we previously found that using ρ(s|M500c) yields the best agreement between
theory and data, in the following we only consider the corrected likelihood,

Lcorr =
N
∏

i=1

∫ ∞

0

∫ ∞

1

1
√

2πσ2
s (M, zi)

exp

[

−1

2

[s− s0(M, zi)]
2

σ2
s (M, zi)

]

ρerr(s,M)dsdM. (5.19)

Note that here both the uncorrected likelihood and the error distribution allow for
sparsities lower than one. This causes an issue at low sparsities as both distributions
are heavily weighted towards low sparsities. In practice, this means that the larger the
errors on the masses becomes the more the posterior distribution is biased in favour of
high S8 values. As such we introduce a second corrective term,

ρp(s) = 1 − exp

[

−1

2

(s− 1)2

σ2
∆1,∆2,i

]

, (5.20)
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0.23, δM500c,i/M500c,i = 0.15; in purple is shown the case where we halve these errors;
for the orange contours we have reduced the original errors by a factor of 4; and in
pink we use percent level errors. We can clearly see a biasing effect induced by the
crude error modelling, with the constraints becoming more biased, the larger the errors
become.

Further analysis of the large error regime is not possible as the likelihood is domi-
nated by the correction term, nonetheless, the width of the posteriors, which are smaller
than when we use the mean sparsity, hints to the fact that using this approach on cur-
rent and upcoming data may already be more constraining than using the mean, given
we are able to control the bias by using a more complex likelihood and error models.
Focusing on the very low error posterior we see that we recover similar constraints as
the ideal confirming that this approach is in agreement with the case where we have
neglected errors.

Although here we have focused on incorporating measurement uncertainties, we note
that observational systematics, such as weak lensing and hydrostatic mass biases, can
be treated in the same fashion. Indeed, in Section 4.4 we studied the impact of simple
systematics models (e.g. Becker & Kravtsov, 2011; Biffi et al., 2016) on the detection
of mergers. These same models could be applied in the context at hand requiring us to
alter the likelihood to incorporate their effect. Nonetheless, a crucial point is missing in
these simple models such as the correlations between systematics on the different masses,
as these strongly influences the implementation. As such, in order to best incorporate
these effects in our likelihood, we require mock observations upon which these types
of bias can be measured and characterised. These types of mocks can only be acquire
through a thorough investigation of simulations and in particular if we are interested in
using X-masses, large volume hydrodamical simulations like the flamingo runs Schaye
et al. (2023) or large representative samples of cluster zoom-simulations such as The300
runs (Cui et al., 2018).

5.6 Towards observational applications
In the theoretical settings presented above, we see that sparsity has strong potential to
become a novel probe of cosmology. This aspiration is however held back by observa-
tional limitations. Indeed, accessing three dimensional masses in observational settings
can provide a considerable challenge which makes the use of sparsity very delicate in
practice. In this sections we study how sparsity can be used in practical scenarios,
first we will investigate if and how to treat the sparsities from stacked weak lensing
observations of clusters and secondly we will study how to combine sparsity with other
probes.

5.6.1 AMICO clusters sparsities

As in many fields in astronomy, stacking observations of similar objects is a common
practice in weak lensing. Increasing the signal-to-noise ratio and allowing to measure
stacked properties of clusters to a high degree of precision, these observations can es-
sentially be seen as treating individual objects as independent realisations of a single
object, which we will simply refer to as the stacked object. While the data for this
stacked object have been significantly manipulated, one would still expect the final ob-
ject to retain some of the properties of the underlying set of clusters that were used to
create the singular stacked object. This therefore brings forward the question: what are
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Table 5.1: Selection criteria of the 14 AMICO cluster stacks and inferred properties.
The inferred parameters were produced by Lorenzo Ingoglia using the methodology of
Bellagamba et al. (2019) and Ingoglia et al. (2022). Here the masses M200c are in units
of 1014 h−1M⊙.
z λ∗ zℓ,eff zs,eff M200c c200c foff σoff

[0.1; 0.3] [0; 15] 0.192 0.700 0.183+0.038
−0.031 8.2+7.1

−4.6 0.27+0.15
−0.17 0.22+0.16

−0.12

[0.1; 0.3] [15; 25] 0.216 0.725 0.411+0.082
−0.066 3.0+3.5

−1.3 0.31+0.14
−0.19 0.28+0.15

−0.16

[0.1; 0.3] [25; 35] 0.226 0.741 1.17+0.20
−0.17 1.55+0.83

−0.40 0.31+0.13
−0.17 0.31+0.14

−0.18

[0.1; 0.3] [35; 45] 0.232 0.740 2.12+0.34
−0.30 3.1+2.1

−1.1 0.30+0.15
−0.19 0.29+0.14

−0.17

[0.1; 0.3] [45; 150] 0.228 0.746 3.40+0.43
−0.40 4.3+2.4

−1.3 0.31+0.14
−0.19 0.24+0.15

−0.13

[0.3; 0.45] [0; 20] 0.373 0.860 0.420+0.096
−0.069 8.8+6.7

−4.4 0.28+0.15
−0.17 0.29+0.15

−0.18

[0.3; 0.45] [20; 30] 0.388 0.863 0.89+0.16
−0.13 2.46+2.08

−0.95 0.31+0.14
−0.19 0.33+0.13

−0.20

[0.3; 0.45] [30; 45] 0.389 0.862 1.63+0.24
−0.21 1.68+0.86

−0.46 0.33+0.12
−0.19 0.27+0.14

−0.14

[0.3; 0.45] [45; 60] 0.392 0.865 2.65+0.49
−0.45 9.9+5.8

−4.2 0.32+0.13
−0.18 0.36+0.10

−0.19

[0.3; 0.45] [60; 150] 0.381 0.859 4.80+0.73
−0.65 4.6+2.9

−1.4 0.31+0.14
−0.19 0.25+0.14

−0.14

[0.45; 0.6] [0; 25] 0.497 0.886 0.398+0.10
−0.084 7.1+7.6

−4.3 0.30+0.14
−0.18 0.27+0.15

−0.14

[0.45; 0.6] [25; 35] 0.517 0.887 0.90+0.13
−0.12 8.5+6.4

−3.8 0.31+0.14
−0.18 0.20+0.12

−0.09

[0.45; 0.6] [35; 45] 0.513 0.887 1.77+0.31
−0.29 4.8+4.2

−1.9 0.33+0.13
−0.20 0.23+0.13

−0.11

[0.45; 0.6] [45; 150] 0.516 0.887 3.52+0.85
−0.75 1.48+0.78

−0.35 0.33+0.13
−0.18 0.29+0.14

−0.15

the properties of stacked sparsities and can we use them to constrain cosmology?
To answer this question we turn our attention towards the latest stacked analysis

performed using the Adaptive Matched Identifier of Clustered Objects (AMICO) sample
of galaxy clusters from the Kilo Degree Survey (KiDS) Data Release 3 analysis (Maturi
et al., 2019; Lesci et al., 2022). In this analysis the authors, create 14 stacks from the
sample of 7988 cluster candidates detected in the survey area. Each stack corresponds
to a cut in richness λ∗, a measure of the number of galaxies found within a cluster
weight by their membership probability (see e.g Bellagamba et al., 2018, 2019), and
redshift range, and is produced by combining all the positions, relative to the peak
surface galaxy number density, and ellipticities of background galaxies. In addition,
this procedure gives the stacks effective redshifts zℓ,eff as well as giving effective redshifts
to the combined background sources zs,eff . Finally, it is worth noting that, the galaxy
density and the minimum of the gravitational potential aren’t necessarily aligned, to
account for this authors allow for a fraction of clusters, foff , to be offset and be normally
distributed around the centre with a variance σoff .

To assess how the measurement procedure affects the sparsities we generate a series
of profiles following the assumptions of the AMICO pipeline. First we sample the
masses, redshifts, and number of clusters in each stack according to the KiDS footprint
and using the Despali et al. (2016) HMF model and in addition we radomly assign
a sparsity to each cluster assuming that it is drawn from the likelihood function of
Section 5.4. For each of these clusters we assign a richness according to the AMICO
richness-mass scaling relation (Bellagamba et al., 2019),

log10

(

M200c

1014h−1M⊙

)

= α+ β log10

(

λ∗

30

)

+ γ log10

(

E(z)

E(0.35)

)

, (5.22)

where α = 0.004 ± 0.038, β = 1.71 ± 0.08, and γ = −1.33 ± 0.64. After inverting
this relation and propagating the errors on the three parameters, we use the resulting
richness error, ∆ log10 (λ∗/30), to add a stochastic component to the richness in the form
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of Gaussian noise, note that this typically underestimates the level of stochasticity of
the richness-mass scaling relation. Finally we randomly select a fraction foff of clusters
to be offset from the centre by a radius Roff sampled from

ρoff(Roff) =
Roff

σ2
off

exp

[

−1

2

(

Roff

σoff

)2
]

, (5.23)

and which we place at uniformly selected angles ϕ ∼ U(0; 2π). Note that for each stack
we take the corresponding values of foff and σoff from Tab. 5.1.

From these randomly generated halo catalogues we produce synthetic profiles by
projecting each halo as a truncated NFW profile (Baltz et al., 2009),

ρ(r) =
ρ0

r/rs(1 + r/rs)2

(

r2
t

r2 + r2
t

)2

, (5.24)

where the scale radius, rs, and characteristic density, ρ0, are chosen to match the ran-
domly sampled mass and sparsity, while the truncation radius is fixed at rt = 3r200c.
This profile is numerically integrated along the line of sight to produce the mass surface
density profile, Σ1h(θ), known as the 1-halo term, where we have switched from physi-
cal coordinates to angular coordinates to easily handle objects at different redshifts by
working on a fixed grid in angular coordinates. If a halo is selected to be displaced from
the centre then we simply apply the shift to the coordinates.

In addition to the halo profile, the AMICO analysis pipeline includes a second term
to account for the presence of secondary structures around the clusters, known as the
two-halo term (Oguri & Takada, 2011; Sereno et al., 2017). This term,

Σ2h(θ;M200c, z) =

∫ +∞

0

ℓdℓ

2π
J0(ℓθ)

ρm(z)bh(M200c; z)

(1 + z)3D2
d(z)

Plin(kℓ; z), (5.25)

where kℓ = ℓ/(1 + z)/Dd(z), Dd(z) is the angular diameter distance to the cluster,
and J0 is the zeroth order Bessel function, exhibits a strong dependence on cosmology
through the linear matter power spectrum Plin, which is modelled with the approximate
form of Eisenstein & Hu (1999), and halo bias bh, which is modelled by the form of
Tinker et al. (2010).

The surface mass profile,

∆Σ(R) = Σ̄(< R) − Σ(R) = Σcritγ+, (5.26)

being related to the tangential shear γ+, which can be measured from the ellipticities
of galaxies, is thus our primary observable. Here, Σ̄(< R) is the mean mass surface
density within a radius R, and Σcrit = c2

4πG
Ds

DdDds
is the lensing critical surface density

(Bartelmann & Schneider, 2001), with c is the speed of light, G is the gravitational
constant, and Ds, Dd, and Dds respectively the angular diameter distance from the
observer to the source plane, deflector and between the deflector and the source planes.
We generate 103 realisations of each stack shown in Tab. 5.1. For illustration in Fig. 5.7
we show one such stack sampled corresponding to the fourth row of Tab. 5.1.

In order to recover the masses and concentrations of the stacks a few more steps need
to be implemented. First, we must implement the AMICO fitting function (Bellagamba
et al., 2018; Ingoglia et al., 2022) to fit the azimuthally averaged profiles. Similarly to
how we generate the profile, the fitting function is split into two terms. The 2-halo term
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5.6.2 Combining sparsity with other probes

In Section 5.3.2, we investigated how we can combine multiple sparsities to obtain
stronger cosmological constraints. This philosophy can also be extended to combine
sparsity with other probes. Indeed much like 3-point correlation analyses (e.g. Abbott
et al., 2022; Sugiyama et al., 2023) which combine the galaxy-galaxy, weak lensing shear-
shear, and galaxy-shear 2 point correlations, we can imagine it is possible to combine
sparsity with other cosmological probes such as cluster number counts and cluster gas
fractions.

Here as a first step we will focus on combining cluster number counts and the average
sparsity analysis of section 5.3.2. We place ourselves within the framework of a wide
survey such as Euclid and assume both probes have Gaussian likelihoods (Corasaniti
et al., 2022; Payerne et al., 2023). Combining both probes then simply becomes a matter
of estimating the covariance matrix between both probes.

To estimate the covariance we use the 103 Euclid sized light-cones generated in
Section 5.1.2. For each of these light-cones we measure the number counts of clusters
as well as their sparsity, which we bin as a function of redshift. In Fig. 5.8 we assume
that we are able to measure the sparsities of all the haloes in the light-cones and show
the resulting correlation matrices. In the top panels we use the same binning for both
the number counts and the sparsity. Here, in the bottom-right of the matrices we
see the strong correlations between the individual sparsities that we made use of in
Section 5.3.2. In addition, we can see a faint correlation between the number counts
and the mean sparsities. To get some intuition as to the impact of we bin the sparsity
data, in the lower panels of Fig. 5.8 we use different binning for the sparsity and number
counts, here we simply half the number of sparsity bins. Following this change, we see
the correlation significantly diminish and begin to be absorbed into the noise, indicating
that such correlations indeed depend on the chosen binning strategy.

This scenario is however idealistic as in practice it is very difficult to measure the
internal structure of galaxy clusters. As we have discussed above, in the near future we
can only expect to have access to homogenous samples of a few hundred sparsities, as
opposed to tens of thousands. Under this new assumption, in Fig. 5.9, we repeat the
exercise but this time randomly sampling 200 haloes within each light-cone. In this case
we see that the covariance completely vanishes into the noise, leaving the sparsity sector
independent from the number counts. In the lower panels we again decrease the number
of bins to see the impact this may have on the correlations. We see that the change to
the binning strategy does not influence not influence the correlation significantly enough
for it to become larger than the noise level.

The results presented above indicates that in practical applications sparisity mea-
surements can be treated as independent from number counts allowing them to be easily
combined into joint analyses. In future endeavours, we plan to investigate the correla-
tion between sparsities and cluster gas mass fraction measurements (e.g. Ettori et al.,
2009) as a second step towards a unified cluster-only cosmology.

5.7 Summary

At the end of this chapter we have reached the state-of-the-art in terms of probing
cosmology with halo sparsity. In a theoretical setting, we over-viewed the method of
Corasaniti et al. (2018, 2022) using the binned mean sparsity of a sample. We then
developed a novel method of probing cosmology using each halo in the sample as an
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individual data point rather than simply binning their sparsities. We have seen that this
novel approach significantly improves the constraints on the cosmological parameters
without requiring any additional data. Nonetheless this improvement comes with the
drawbacks of a higher computational cost and having a probe that is more sensitive to
mass measurement uncertainties and systematics.

We have studied in detail the impact of mass measurement uncertainties. In par-
ticular, we have found that improper modelling of both the likelihood and mass mea-
surement errors leads to a biased constraint on the cosmological parameters. As such,
these findings call for further investigations into realistically modelling of the likelihood
through the use of emulators as well as measurement errors and systematic biases by
quantifying the covariances between mass definitions. Focusing on the second aspect,
we have begun to investigate the possibility of using sparsity measurements from the
AMICO pipeline, to do so we have generated a large sample of mock observations that
need to be analysed in order to extract the sparsity bias.

Finally, throughout this chapter we have reviewed ongoing efforts to improve this
type of analysis. In this perspective we have begun designing an excursion set model of
halo sparsity as an alternate method of predicting the sparsity distribution, and have
also started combining halo sparsity with other cosmological probes taking the specific
example of cluster number counts. While plenty of work remains to be done on these
topics, this anounces an exciting future for sparsity based constraints which have the
potential, if we only use X-ray sparsities, to be completely independent from both sides
of the S8 tension, thus bringing a new voice into the debate.



6 | Lensing with non-halo structures

So far we have mainly been interested in the internal structure of dark matter haloes
in the context of the ΛCDM model. While in standard CDM cosmologies most of the
mass is contained within haloes, there is nonetheless always a fraction of this mass
which is contained within structures that have not collapsed along three dimensions.
These objects not being very abundant in CDM cosmologies, usually carrying only 5
per cent of the total mass, which makes them difficult to study or even identify. In
contrast in Warm Dark Matter (WDM) models, particularly in scenarios which are
already excluded by current constraints, these structures can represent up to 50 per
cent of the total mass, allowing to study their properties and how they may impact
observations more effectively.

In this chapter we briefly study some of the properties of dark matter filaments in
these models to then see the possible effect they may have on observations of multiply
lensed quasar which are used to constrain the warmth of dark matter. These observa-
tions measure anomalies in the fluxes of the replicated images of a single quasar which
cannot be explained using a singular lens. Typically these anomalies are thought to be
sourced solely by a population of haloes along the line of sight and sub-haloes within
the lens galaxy’s halo. Under this assumption the mass of a thermal relic dark matter
particle has been constrained to mχ > 5.2 keV, and thus the question we ask ourselves
here is, do non-halo structures have a substantial impact on these constraints?

To answer this specific question we employ novel simulations of 1 and 3 keV WDM
cosmologies that are free of fragmentation allowing the study of non-halo structures with
unprecedented accuracy. In the following we will briefly characterise the structures we
find in these simulations and evaluate the impact they have on observations of quadruply
lensed quasars. We find that these structures exhibit sharp changes in density and as a
result can have a considerable effect on observations.

6.1 Constraining the nature of dark matter

One of the biggest questions that dominates both modern cosmology and particle physics
is the nature of dark matter (DM). Indeed throughout this work we have seen that
most of the matter within the Universe is composed of DM, that it is required to
explain many cosmological observations (e.g. Markevitch et al., 2004; Tegmark et al.,
2004; de Blok et al., 2008) and is an essential component allowing cosmological N-body
simulations to predict the large scale structure of the Universe (for reviews see Frenk
& White, 2012; Kuhlen et al., 2012; Angulo & Hahn, 2022). Despite this need for DM
in cosmology, particle physics experiments such as the Large Hadron Collider or direct
detection experiments such as LUX (Akerib et al., 2017), LUX-ZEPLIN (Aalbers et al.,
2023), XENON1T (Aprile et al., 2018), and DarkSide-50 (Agnes et al., 2023) have not
been able to detect any sign of traditional candidates. Sparking renewed interest in
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more exotic models such as axions (see Sikivie, 2008; Marsh, 2016, for reviews) and
primordial black holes (e.g. Carr & Kühnel, 2020).

At cosmological scales these various DM models have distinct phenomenologies
which would allow observations to distinguish between them. For example sterile neu-
trino WDM, with masses ≳ 3keV (e.g. Boyarsky et al., 2019) and ultralight axion-like
particles with masses ∼ 10−20eV which form a fuzzy dark matter (FDM) condensate
(e.g. Niemeyer, 2020), are in general agreement with large-scale structure data. These
models however predict very different structures at small scales, with sterile neutrinos
predicting smooth distributions of dark matter below a mass scale defined by the mass
of the DM particle, while FDM models predict the presence of quantum interference
patterns at sub-galactic scales. Such differences, which leave traces in cosmological
observations, allow to slowly constrain the parameter space of these models. One par-
ticular consequence of the damping of small scale seen in these models as suppression of
the formation of low-mass haloes which result in a damping of mass function at small
masses. This damping is used to define what is known as the half-mode mass, Mhm,
defined as the mass scale corresponding to the length scale at which the WDM transfer
function drops to 0.5 (Schneider et al., 2012).

At the time of writing there are four main methods used to constrain the nature of
DM through astrophysical observations:

1. by counting the number and studying the properties of Milky Way satellites, as
these galaxies are expected to be sensitive to the amount of primordial small-scale
structure, although they are also sensitive to baryonic process such as gas cooling
and supernova explosions (e.g. Dekel & Silk, 1986; Ogiya & Mori, 2011; Pontzen
& Governato, 2012; Zolotov et al., 2012; Arraki et al., 2014),

2. by measuring the small scale clustering of gas using Lyman−α forest data, which
have historically put very strong constraints on both WDM and FDM down to
scale degenerate with astrophysical processes (e.g. Narayanan et al., 2000; Viel
et al., 2013; Iršič et al., 2017; Kobayashi et al., 2017),

3. by examining perturbations in stellar streams which constrains the DM model
by constraining the population of invisible sub-haloes around the Milky-Way and
local group galaxies (e.g. Yoon et al., 2011; Banik et al., 2018, 2021; Hermans
et al., 2021),

4. by measuring perturbations to strong gravitational lenses, to constrain both the
population of haloes along the line of sight and sub-haloes within the lens galaxy
(e.g. Inoue et al., 2015; Vegetti et al., 2018; Gilman et al., 2019, 2020; Hsueh et al.,
2020).

In addition, recent efforts have been made to combine these various probes, providing
the most stringent constraints (Enzi et al., 2021; Nadler et al., 2021).

Here we will focus on a specific case of constraints obtained through the observation
of the flux ratios of quadruply lensed quasars, which are simply the replicated images
of the single quasar around a lens galaxy. As the light in each image follows different
paths it is susceptible to encounter different structures along the line of sight. These
differential encounters produce anomalies in the flux that is received from the individual
images with respect to the case where there are no perturbations to the path of the light
rays, excluding the main lens. These anomalies can be studied directly by using ratios
of the fluxes of different images hence removing the dependence on the intrinsic flux of
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the background source. The resulting signal has been found to be highly sensitive to
DM structures even at low halo masses. This sensitivity allows to constrain the HMF
along the line of sight and therefore provide constraints on WDM models with recent
analyses constraining the mass of thermal relic dark matter to above mχ > 5.2 keV in
order to explain the level of perturbation seen in observations. (Gilman et al., 2019,
2020; Hsueh et al., 2020)

In these studies the perturbations are modelled through a population of DM haloes
which the abundance, as measured by the HMF, and internal structure, as measured
by the c − M relation, both depend on the type of DM that is being studied. These
studies however neglect structures outside of haloes which in WDM and FDM models
can represent a significant fraction of the total mass of DM. As mentioned in Chap. 2,
As haloes form through the triaxial collapse of the density field, there also exists a
population of partially collapsed structures, namely pancakes and filaments, which have
only collapsed along one and two dimensions respectively (Zel’dovich, 1970; Shandarin
& Zeldovich, 1989). These structures exist in all DM models including CDM but are
usually smaller and fragmented into smaller substructures in colder DM models (Bond
et al., 1996). While these structures have much lower densities than haloes, WDM
simulations have shown that they typically present high-contrast caustic structures,
creating sharp high-contrast edges in the density field (Buchert, 1989; Shandarin &
Zeldovich, 1989; Angulo et al., 2013). With the increasing precision of observations
it is important to understand what systematic effects may alter our conclusions. It is
thus, within such a context that we investigate the impact these structures may have
on observations of quadruply lensed quasars.

While this was investigated in pioneering work using simplified analytical models
(Inoue, 2015), here we are able to address this question in a fully cosmological context
thanks to the advent of new fragmentation free simulations (Hahn & Angulo, 2016;
Stücker et al., 2020) that allow us to study these structures with unprecedented pre-
cision. In section 6.2 we first discuss the fragmentation free cosmological simulations
that we use to study the small scale properties of the WDM density field. In section 6.3
we then present the gravitational lensing simulations specifically developed to repro-
duce flux ratio observations. In section 6.4 we investigate the type of structure that
are formed within the WDM simulations and in section 6.5 we use these structures to
produce and analyse synthetic flux ratio anomalies. Finally we summarise this study
in section 6.6. The work presented in this chapter culminated in the publication of
Richardson et al. (2022)

6.2 Simulating structure formation in WDM cosmologies
We begin by describing the type of simulation used here to solve the dynamics of the
WDM density field. Note that we will mainly focus on how these simulations differ from
the standard N-body CDM simulations presented in Chap. 2 in particular in terms of
initial conditions and force calculations. For specifics we refer to the works of Stücker
et al. (2020, 2022) where both the methods and properties of this set of simulations are
discussed at length.

6.2.1 Initial conditions and simulation set-up

The main difference between WDM models and their CDM counterpart is that a non-
negligible velocity dispersion is imparted to the particles after they are created in the
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Table 6.1: Parameters used in the simulations and throughout this work. The last line
indicates the fraction of mass which was found to be outside of haloes at z = 0.

Parameter 1 keV Sim. 3 keV Sim.
h 0.679 −

Ωm 0.3051 −
ΩΛ 0.6949 −
ΩK 0 −
σ8 0.8154 −
Mhm 2.5 · 1010h−1M⊙ 5.7 · 108h−1M⊙
Lbox 20h−1Mpc −
Ntracer 5123 −
mtracer 5.0 · 106h−1M⊙ −
fnon−halo 45.7% 34.8%

for the simulations are generated using music2 using the cosmological parameters in
Tab. 6.1 and are based on the same Gaussian random field ensuring that each volume
provides the same large scale information.

6.2.2 Avoiding fragmentation

As we have mentioned previously, we assume that WDM cools rapidly. This means that,
similarly to CDM, in the late-time universe a WDM fluid is governed by Vlasov-Poisson
dynamics. While we have seen that for CDM the evolution of the density field can
be solved using N-body techniques, and have in the past been very successful at doing
so, this is not the case for WDM. This is because, due to the perturbation spectrum
being truncated at small scales, the configuration space density distribution of WDM
exhibits smooth structures on large scales. When evolving these structures using N-
body particles, they artificially fragment into small clumps due to discreteness effects
(Wang & White, 2007).

To overcome this artificial fragmentation problem new methods based on tessella-
tions of the phase space distribution function have been developed (e.g. Abel et al., 2012;
Shandarin et al., 2012; Hahn & Abel, 2013). Under the assumption that the phase space
distribution is cold the latter only occupies a three dimensional hypersurface within the
full six dimensional phase space. In these simulations, N-body particles no longer rep-
resent phase space elements but instead trace the distribution function by acting as the
vertices of three dimensional simplicial elements, which are colloquially referred to as
tetrahedra. The main advantage of this approach is that the volume of these tetrahedra
determines the density of DM throughout space, meaning that one can then reproduce
the density field and thus gravitational potential without coarse graining.

While these methods are very efficient at overcoming the artificial fragmentation
problem they do however suffer from a loss of precision inside virialised structures,
where strong phase space mixing takes place. This entails that one requires an ever in-
creasingly large number of vertices in order to accurately track the distribution function
inside haloes (Sousbie & Colombi, 2016). Recently adaptive refinement approaches have
been developed (Hahn & Angulo, 2016; Sousbie & Colombi, 2016) but are still computa-
tionally prohibitive when it comes to simulating the interior of haloes where the number
of required refinement levels increases exponentially as a simulation advances. In order

2https://www-n.oca.eu/ohahn/MUSIC
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to circumvent this issue a hybrid tesellation-N-body solution was proposed by Stücker
et al. (2020). This hybrid solution, separates the distribution function, specifically the
sheet tracing particles, into regions corresponding to four dynamically defined classes,
i.e. voids, pancakes, filaments, and haloes. These classes are differentiated using a
criterion, inspired by Zel’dovich (1970) and Hahn et al. (2007), defining each type of
structure through the number of axes that have gravitationally collapsed. In these sim-
ulations voids, pancakes, and filaments are regarded as having a relatively simple phase
space distribution function and can therefore be accurately modelled using the tessel-
lation. Haloes on the other hand are regarded as dynamically complex and therefore
the tracer particles are converted into N-body particles and released into these regions.
This criterion also allows us to trace and separate between the different structures, a
feature we will use in the following.

Within this framework the simulations we use here employ 2563 particles to act as
the vertices of the tessellation from which we reconstruct the density field and compute
force, where this approximation is valid. Additionally, these simulations contain 5123

tracer particles which are released into regions where the interpolation fails (see Stücker
et al., 2022, for details). The phase space interpolation also allows us to recover the
density field with much higher sampling than the original output when post-processing
the simulation (Abel et al., 2012; Hahn & Angulo, 2016). This allows to recover small
scale features that are not visible from the distribution of tracer particles alone. This
technique, which we will refer to as resampling the density field, can also be used to
reduce discreteness noise in gravitation lensing simulations (Angulo et al., 2014). It is
thanks these high resolution density fields that in the following we are able to simulate
the effect they have on strong gravitational lenses.

6.3 Gravitational lensing simulations
In addition to the cosmological simulations that we have reviewed in the previous section
we also need to simulate how the path of light rays is perturbed by the structures we find
in this cosmological volume. For this explicit purpose we develop a gravitational lensing
simulation code which we present below. We will first briefly review the equations that
are solved by this code before discussing how these are implemented.

6.3.1 Theory of gravitational lensing
Due to the small size of the cosmological simulations, we restrict the geometry of the
problem to the case where light rays coming from a source are only deflected once by
a single effective lens (see e.g. Schneider et al., 1992; Bartelmann & Schneider, 2001;
Dodelson, 2003, for more general reviews). As can be seen in Fig. 6.2, in this context
light rays originate from a source at an angular diameter distance Ds and are deflected
by a single lens placed at a angular diameter distance Dd from the observer, these two
planes are separated by an angular diameter distance Dds. When projecting this onto
the plane of the sky this can effectively be seen as displacing the angular position β

of the source, by a deflection angle α, making it appear at a new position θ. These
angular positions are related through the lens equation,

β = θ − α, (6.3)

which essentially, knowing the position of the source and the deflection angle allows
us to predict where images of this source will form. Note that one of the prominent
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where δij is the Kronecker delta symbol. and the inverse of its determinant,

µ =
1

det [A]
(6.9)

known as magnification. We see that for regions where det [A] = 0 the magnification
becomes infinite, this typically occurs along curves in the image plane known as critical
curves and delimit the regions in which multiple images are formed. If traced back to
the source plane these curves are called caustics and mark the regions which will be
multiply imaged.

6.3.2 Numerical implementation
Now that we have an overview of the equations we need to solve we now present the
numerical algorithms we have implemented to do so. We start by defining a grid in
the image plane representing a set of light rays which we propagate back towards the
source. It is on this same grid that we define the convergence field κ from which we
deduce the lensing potential

ψ = g ∗ 2κ (6.10)

where g = (2π)−1 ln(θ) is the Green’s function of the 2 dimensional Laplacian, with
θ = ∥θ∥. This filtering approach is however non trivial to implement as the Green’s
function exhibits a singularity at θ = 0. To avoid this issue we employ the regularised
integration kernel of Hejlesen et al. (2013)

gm = − 1

2π

[
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)]

, (6.11)

where ϵ is a smoothing parameter set to 1.5 times the grid spacing, Qm is a polynomial
setting the order m ∈ N of the kernel and E1 is the exponential integral distribution.
This particular function has a finite value at θ = 0

gm(0) =
1

2π

[

γ

2
− ln

(√
2ϵ
)

+Qm(0)

]

, (6.12)

where γ = 0.5772156649 is the Euler’s constant.
Similarly, the deflection angles, distortion matrix components and magnifications can

be obtained using analytical derivatives of this same kernel, thanks to the differentiation
property of convolutions. Such that the deflection angle

αi = ∂igm ∗ 2κ, (6.13)

is computed with the first derivative,

∂igm = − 1

2π

{

θi

θ2

[

1 − exp

(

− θ2

2ϵ2

)]

+
θi

ϵ2
exp

(

− θ2

2ϵ2

)

[

Qm

(

θ

ϵ

)

− ϵ

θ
Q′

m

(

θ

ϵ

)]

}

,

(6.14)

which is vanishing at θ = 0, and the distortion matrix is computed using the second
derivatives,

Aij = δij − ∂i∂jgm ∗ 2κ. (6.15)
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For which we require two expressions for the different possible combinations of deriva-
tives. Leading to,
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for the diagonal terms, which at θ = 0 yields ∂2
i gm|θ=0 = 1
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(6.17)

for the cross terms, which yields ∂i∂jgm|θ=0 = 0.
These convolutions can be efficiently solved using FFTs making this method theoret-

ically more efficient than standard methods based on finite differences. This approach
does however come with the drawback of limiting us to a uniform grid of points. This
is problematic as we want to accurately model effects taking place at very small scales
while taking into account contributions coming from large scale features in the density
field. To remedy this we incorporate a ‘force splitting’ approach where we split all
quantities into a long range and a short range contribution, for example ψ = ψℓ +ψs in
this case of the lensing potential, where,

ψℓ = (2κ ∗ gm) ∗ hℓ , ψs = (2κ ∗ gm) ∗ hs, (6.18)

and
ĥℓ := exp

{

−8π2k2ℓ2
}

, ĥs := 1 − ĥℓ, (6.19)

where ℓ is the splitting length-scale and the hat denotes the Fourier transform. As such
we compute the large scale contribution on a coarse mesh with periodic boundaries
and the small scale contribution on a much finer mesh with non-periodic boundary
conditions. Once we have both contributions the large scale contribution is then linearly
interpolated onto the high resolution mesh to obtain the complete solution.

We test the numerical convergence of this scheme using a circular Gaussian lens

κ =
Km

2πσ2
exp

(

− θ2

2σ2

)

, (6.20)

where Km is the physical mass of the profile in units of the critical surface density and σ
is the width of the profile. With this particular lens we can derive an analytical solution
to which we can compare the outputs of our numerical simulations.
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trends and conclusions presented here are valid for many configurations and for the
sake of conciseness we will not discuss the particular impact of other configurations.

Image extraction and measurements

As can be seen in Fig. 6.4 the configuration mentioned above gives rise to five images
in total, four magnified and hence easily visible images located near the outer critical
curve and a fifth strongly demagnified image which is impossible to see in observations
as it is often too dim to be observed and hidden by the luminous component of the
deflector, typically a galaxy, as such in the following we will discard this fifth image and
focus on the four outer replications.

To measure the magnification of each image we infer the position θ at which the
path of a light ray connecting the observer to the point source intersects the plane of the
main deflector. This is achieved by finding the positions which solve the lens equation,

θ − α(θ) − β = 0 (6.24)

using a two dimensional root finding algorithm. This equation admits five solutions,
the five images discussed above, as such in order to ensure the convergence of the root
finding procedure we introduce an intermediate step to provide initial guesses close to
each image of interest. We do this by first launching a grid of light rays towards the
source and selecting those which fall close to the source, typically a few m.a.s. We then
group these rays into four images based on proximity to one another and use the mean
position of each group as a starting point for the gradient decent. This procedure, which
we implement in python using the scipy library (Weaver, 1985; Kelley, 1995; Virtanen
et al., 2020), ensures that we are indeed measuring the contributions of all four images.

We then measure the flux of each image,

Fk = µkFint (6.25)

by evaluating the local value of the magnification µk produced by the lens at the inferred
position of each image, indexed here with the letter k. In observational settings the
intrinsic flux, Fint of the source is unknown and as such it is not possible to recover
the magnifications of individual images. This limitation is however avoided by studying
flux ratios which remove the dependency on the intrinsic flux while retaining that on
the magnification. Formally one can define a total of six pairs of images, however
the resulting ratios will not be independent as we are able to define three of these
measurements using the three others. As such it is common practice to define only
three flux ratios choosing the ratio of three of the images with respect to the brightest,

fk = Fk/F4 = µk/µ4 (6.26)

which in our case corresponds to image 4 in Fig. 6.4.
Note that this is only valid because we are considering a point source. In practice,

such an assumption can artificially increase the sensitivity to small scale contributions,
caused by stars or black holes for instance and known as micro-lensing events. We
test this assumption by implementing an extended source and retrieving the fluxes by
integrating over the brightness distribution of each replicated image. Repeating this op-
eration not only with the reference lens but also in the perturbed cases presented below
we find that this assumption does not significantly impact our qualitative conclusions.
As such we consider the density field to be sufficiently smooth for this approximation to
be valid in this case, and revert to using a point source as the use of an extended source
significantly increases the computation time needed to measure a set of flux ratios.
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6.3.4 Scale filtering
In observational settings the lens model is not known a priori meaning that is has to
be fitted simultaneously to the data before extracting the flux ratio signal. For example
Gilman et al. (2020) achieve this by fixing the positions of the four replicated images
and using these data to fit the lens parameters, using priors on these parameters based
on the dynamics of the baryonic components of the lenses, they then measure flux ratio
anomalies with respect to the flux ratios produced by the resulting lens model. Note
that this procedure has to be done every time the line of sight is perturbed as the per-
turbations may displace the images and therefore requires the lens model to compensate
for this displacement. Here implementing such a procedure induces a large scatter in the
resulting flux ratios as we cannot place the appropriate priors on the parameters. This
scatter being of the same order as the signal we are looking to simulated this results in
unreliable measurements.

Thus to avoid the need of refitting the lens parameters for each type of perturbation
we instead opt to filter out the large scale modes of the projected density field as it
is these modes which contribute the most to displacing the images while small scale
modes contribute to altering the flux ratios. To this effect we repurpose the force
splitting kernels of Eq. (6.19) as to define a large scale, κl, and a small scale, κs, density
field. Here we choose a splitting length, ℓ = 0.85 arcsec, approximately the size of the
deflector’s Einstein radius. While the exact value of the splitting has little impact on
the final result we will however discuss it further when we investigate the statistical
properties of the flux ratio anomalies.

6.4 Properties of the WDM density field
As a case study, in this section we will compare how the magnifications of the individual
images are perturbed by the presence of either a dark matter halo close to the half-mode
mass or a filament coming from the WDM simulation. As such we will first examine
the properties of these two types of objects before using them as perturbations to our
reference lens model.

6.4.1 Haloes
As mentioned previously haloes are the primary target of many studies of WDM struc-
ture formation (e.g. Bode et al., 2001; Schneider et al., 2012; Angulo et al., 2013).
Similarly to there CDM counterparts these haloes have been found to be reasonably
well fitted by the NFW profile (Lovell et al., 2014; Bose et al., 2016). Although in
contrast with CDM, the HMF in WDM models is highly suppressed at the low mass
end due to the small scale cut off in the matter power spectrum. The characteristic
mass-scale of this suppression is known as the half mode mass,

Mhm =
4π

3
ρm

(

λhm
2

)3

(6.27)

with
λhm = 2πλeff

s (21/5 − 1)−1/2 ≃ 16.29λeff
s (6.28)

defining the length scale for which the transfer function drops by a factor 2 and λeff
s ≃ α,

defined in Eq. (6.2), is the effective free streaming length. In Tab. 6.1 we report this
mass scale for the two WDM models studied here. The suppression of small scale
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perturbations also suppresses the number of subhaloes leading to WDM haloes having
smaller substructure fractions than their CDM counterparts.

Studies have also found that free-streaming not only suppresses the abundance of
small haloes but also alters their density structure (Bose et al., 2016; Ludlow et al.,
2016). Quantifying the shape of the profile using NFW concentrations Bose et al.
(2016) find that the c−M relation is also suppressed below the half mode mass,

cWDM(M, z)

cCDM(M, z)
= (1 + z)β(z)

(

1 + 60
Mhm
M

)−0.17

, (6.29)

where β(z) = 0.026z − 0.04.

6.4.2 The density structure of a filament
While WDM haloes have been widely studied in the literature, this has not been the case
of other structures such as WDM filaments and pancakes. While these structures can
represent a considerable proportion of the total mass of the cosmic web, from 5 to 50 per
cent depending on the model (Angulo & White, 2010; Buehlmann & Hahn, 2019), they
are difficult to simulate accurately as N-body methods typically struggle with smooth
matter distributions, typically fragmenting into smaller clumps due to numerical noise.
As the simulations used here avoid this issue we are able to study these structures in
unprecedented detail.

Here we focus on the second most massive class of structure, filaments. We detect
and extract these filaments using DisPerSE3(Sousbie, 2011) which, using Morse theory,
identifies filaments as ridges of in the three dimensional density field. Here we chose to
study a filament in the 1 keV simulation that remains roughly straight over its entire
length of 3.8h−1Mpc. We show this object in Fig. 6.5 where we depict it both from
a sideways view along with multiple projections aimed along the primary axis of the
structure, gradually increasing the projection depth. We produce these density fields
by resampling the distribution function by a factor 643 leading to an effective particle
mass resolution of the order of m ≃ 20h−1M⊙. Such a level of refinement is possible
as the the phase-space distribution function of the filament is sufficiently simple in this
region to be accurately reconstructed from the tracer particles.

In the top panel of Fig. 6.5 we see that the filament is made up of a complex network
of caustic structures which are formed during shell crossing and appear as sharp steps
in the density field. Looking along the main axis of the filament reveals a rich structure.
We see, for instance, that the filament is embedded within a pancake which spans
from the top left to the lower right of each projection. We also find that the internal
structure of the filament is very different to that of haloes, with the densest regions not
corresponding to a single peak but rather to the superposition of caustics and presents
sharp edges beyond which the density drops significantly. In this same figure we are also
able to see how filaments connect to the haloes due to the presence of three haloes on
the right of Fig. 6.5. Indeed in these regions the number of caustics increases drastically
which is the leading reason why haloes cannot be resampled.

In order to gauge the influence that this type of structure may have on our synthetic
flux-ratio observations in Fig. 6.6 we estimate the distribution of column densities, in
units of ρmh

−1Mpc4, in each projection. We observe that the highest column densities
reached by the filament are of the order of 100ρmh

−1Mpc. By overlaying the distribution
3http://www2.iap.fr/users/sousbie/web/html/indexd41d.html
4Here this corresponds to ρmh−1Mpc = 8.33 · 1010h2M⊙Mpc−2 at redshift z = 0.
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6.5 Flux ratio anomalies
The case study presented in the previous section has allowed us to conclude that non-
halo structures do indeed have a measurable impact on flux ratio observations. Now we
will adopt a more statistical approach, by sampling the density field at random here we
quantify how typical perturbations will affect these measurements.

To do so we perturb our reference lens model with column density maps extracted
from the WDM simulations along random lines of sight. Due to the small simulation
box size (Lbox = 20h−1Mpc), we limit the depth of these projections to 80h−1Mpc, pro-
jecting the replicated volume along an off axis line of sight to avoid spurious alignments
of replicated structures. Note that this projection depth is considerably shorter than
the typical distance of background sources used for this type of analysis, ∼ 1h−1Gpc,
meaning here we will not be able to quantify the absolute effect of non-halo structures
on this type of observation. As such, we will only quantify their relative contribution
to this signal with respect to the haloes which also inhabit the same lines of sight. By
repeating this work for shorter, 40h−1Mpc and longer 160h−1Mpc projections depths,
we find that the relative contribution is not significantly altered by the choice of the
line of sight. As a simplifying assumption we consider all the matter to be contained
within the lens plane, we expect this assumption to have little impact as due to the
filtering procedure removing large scale contributions the paths of individual light rays
are not significantly changed.

As we have presented in section 6.3.2 we separate lensing quantities into large and
small scale components to achieve high accuracies at a lower computational cost. Here
the large scale lensing fields are estimated using an 8 × 8h−2Mpc2 projection over N =
8182 grid points per dimension resulting in a large scale resolution of 0.98h−1kpc per
grid cell. We estimate these low resolution quantities only once. In addition to this we
randomly select 1000 regions within the larger projection to become the perturbations
that will be applied to the lens. The ‘cut-outs’ have a much smaller side length Lc ≃
160h−1kpc which is estimated over fewer grid points Nc = 1024. This however grants
a much higher resolution of 0.15h−1kpc per grid element allowing to fully resolve the
Einstein radius θEDd ∼ 3h−1kpc. with a splitting length ℓ = 1.84 arcsec, which is
equivalent to a 5.60h−1kpc in the lens plane. This particular choice of variables results
in the fine grid being computed out to 50θE and the coarse grids being calculated out
to 2900θE.

We split the density field into two components:

• haloes, which are modelled as spherical NFW profiles using the parameters of
the haloes inside the simulation in order to reduce numerical noise. We fade the
profiles beyond the viral radius using a cubic spline step function as to create a
smooth enough boundary while avoid numerical artefacts. We only select haloes
with masses M200c < 1010h−1M⊙ as more massive haloes are expected to host
a visible component and would therefore be taken into account when fitting the
lens.

• non-haloes, which we select as the set of all non released tracer particles (Stücker
et al., 2020) and resample them down to a mass resolution of M ∼ 20h−1M⊙. This
allows us to generate high resolution images of these structures without resorting
to analytical profiles and without suffering from discreteness effects due to an
insufficient number of particles.

We show the resulting density fields in Fig. 6.9 where we also illustrate the size of
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keV models, with haloes in the 3 keV simulation producing a much stronger signal than
their 1 keV counterparts. This is to be expected as it is this difference which is typically
used to constrain the warmth of the DM particle.

Turning our attention to non-halo structures we see that they are the dominant
contributor in the 1 keV cosmology, both in the filtered and un-filtered distributions.
This tells us that the flux ratio anomalies generated by non-halo structures cannot be
neglected in very warm cosmologies and that their contribution cannot be absorbed into
the lens model through the addition of an external shear component or a uniform mass
sheet. If we consider the same structures in the colder 3 keV cosmology we see that
the overall impact of non-halo structures is slightly reduced. This is to be contrasted
with the contribution of haloes which has greatly increased leaving non-halo structures
as only a sub-dominant contribution to the total signal. While haloes are now the main
contributor, if we compare the distributions of anomalies sourced by the full density field
‘Sum’ we see that neglecting non-halo structures would result in underestimating the
flux ratio anomalies by between 5 and 10 per cent. The decrease seen in the non-halo
contribution, by 20 ∼ 30 per cent is consistent with the decrease in the mass fraction
that these structures occupy. Indeed as can be seen in Tab. 6.1 the mass fraction of
non-halo structures decreases from fnon−halo = 46 per cent in the 1 keV simulation to
fnonhalo = 35 per cent in its 3 keV counterpart. Simple excursion set models have shown
that the mass outside of haloes changes very slowly with the cut-off scale, meaning that
even very cold DM models such as a 100 GeV neutralino still have between 5 and 20 per
cent of the total DM mass which resides outside of haloes at z = 0 (Angulo & White,
2010), with this fraction increasing as one looks at higher redshifts. Therefore we expect
that in DM models colder than the 3 keV model studied non-halo structures will have
a smaller impact than seen here but not significantly.

So far we have focused on separating small scales and large scales, assuming that
small scale contributions cannot be absorbed by the lens model as they do not signifi-
cantly displace the positions of the multiple replications of the quasar. To investigate
this assumption further we decompose the density field using a multitude of scale filters,

ĥks := exp

{

−(k − ks)2

2σ2
k

}

, (6.31)

to isolate the scale ks. we separate each mode using a linear step, ∆ks ≃ 0.142 arcsec−1

and use a filter width of σk ≃ 0.043 arcsec−1, resulting in each filter being separated
by ∆ks ≃ 3.28σk. This procedure, inspired by Inoue & Takahashi (2012), allows us to
study the scale dependence of our results.

On the left hand side of Fig. 6.11 we show the root mean square deviation of image
locations with respect to their un-perturbed positions as a function of the scale of the
perturbation. We see that in general haloes are more efficient at displacing images than
non haloes and that most of the displacement is indeed sourced by large scale modes.
We also see that perturbations with scales similar or smaller than the Einstein radius,
corresponding to kE = 1/θE ≃ 1.1 arcsec−1, are unable to efficiently strongly displace
the images.

On the right hand side of Fig. 6.11 we show how the mean flux ratio anomaly
changes as a function scale. Here we see a similar behaviour as in Fig. 6.10 where in the
1 keV model, non-halo structures contribute significantly to the total anomalies at all
scales, while in the 3 keV model they become sub-dominant to haloes even though in
absolute terms their contribution has not significantly decreased. Nonetheless they still
contribute between 5 and 10 per cent of the total signal. Overall if we look at the relative
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contributions we see that these do not vary significantly with scale, with the exception
of scale much smaller than the Einstein radius, comforting us in our assumption that
specific choice of filtering scale does not impact our results.

At the end of this section, we find that non-halo structures are not only able to
cause considerable flux ratio anomalies but that they contribute significantly to these
anomalies in WDM cosmologies. In very warm models this component can even domi-
nate over the contribution sourced by haloes, however this only occurs in models that
are already excluded by observations. While the absolute impact of non-halo struc-
tures only decrease slowly as one looks at colder models, their relative contribution
with respect to haloes decreases rapidly due to significant increase of the contribution
of haloes, resulting in a sub-dominant contribution of the order of 5 to 10 percent. We
conclude from this study that non-halo structures can be neglected for sufficiently cold
cosmologies mχ > 3 keV as long as the methodology used is robust to biases of up to
10 per cent. We note however that a more in depth investigation should be conducted
if a high accuracy and precision cosmological analysis is performed.

6.6 Summary
In this chapter we set out to answer the question: Are non-halo structures, such as
filaments and pancakes, able to produce significant perturbation to strong gravitational
lenses? focusing specifically on observations of quadruply lensed quasar, as these ob-
servations have been used in the literature to constrain the abundance of structures
along the line of sight, providing insight on the nature of DM (Gilman et al., 2019,
2020; Hsueh et al., 2020). These studies have however only focused on the abundance
of haloes along the line of sight and neglected other structures. Here we have seen that
these structures are not only abundant, representing a significant fraction of the total
DM mass inside our simulations, but also present many small scale features known as
caustics creating sharp gradients and steps in the density field.

In a preliminary case study we find that aligning a filament, devoid of haloes, with
the line of sight is sufficient to generate perturbations to a strong gravitation lens of the
same order of magnitude as a small mass halo. This shows that, at least in an ideal case,
these structures are indeed able to induce significant effects on flux ratio observations.

We perform a more general analysis by randomly selecting a large number of lines
of sight from two state of the art WDM simulations. We project the matter density
field along these lines of sight, separating the contribution of haloes from that of other
structures. Solving the lens equation for a standard configuration while using these
projections as perturbation fields, we find that non-halo structures have a significant
contribution to the measured lensing signal. While the relative contribution of non-halo
structures decreases significantly as we increase the WDM particle mass, we observe
that this is primarily due to the increased abundance of haloes in these models and
only secondly to the decreased fraction of mass within non-structures. In our 3 keV
simulation we find that these structures contribute significantly more than a population
of haloes with masses below the half mode mass, contributing between 5 and 10 per
cent of the total signal. As such we argue that the structures could have a potential
impact on constraints on the WDM particle mass as these are usually neglected in these
analyses.

This was however only possible through a number of simplifying hypotheses which
prevent us from making absolute statements on the magnitude of the effect. Indeed
here we have modelled the entire system as a single lens; our perturbations only extend
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for 80h−1Mpc; we did not account for baryonic features; and we only investigated two
WDM models which are already ruled out by current constraints. Nonetheless we argue
that our qualitative arguments are sufficiently robust. As such we argue in favour of
rigorous modelling of these structures within flux ratio analysis pipelines, as neglecting
these structures may result in measurements of the DM particle mass being biased
towards larger values.
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7 | Conclusions

Throughout this work we see that sparsity, a humble mass ratio, has a wide range
of applications. From the astrophysics of massive dark matter haloes all the way to
constraining cosmology, sparsity shows that it has great potential, but that there is still
many hurdles to overcome.

From the astrophysical perspective, we see that sparsity is highly versatile, being
able to describe a wide range of physical profile in a non-parametric fashion. This
versatility allows us to derive a generic mathematical formalism which relates the halo
mass function to the internal structure of dark matter haloes. We show that, by relating
sparsity to the parameters at a given mass profile, this generic formalism can then be
specialised to get expressions in terms of the desired parameters. Nevertheless, the
assumption of a profile shape introduces a certain degree of error, varying from a few
percent to beyond 10 percent. Moreover, we show that these relations can be inverted
allowing us to predict properties of the sparsity distribution from models of the halo
mass function.

Looking at individual objects, we see that the sparsity of a halo is tightly linked
to its internal physics and in particular its dynamical state. Specifically, we find that
sparsity reacts in a systematic way to major mergers, exhibiting a strong pulse like
feature. We exploit this systematic reaction to design a statistical testing procedure to
rapidly identify recent mergers within galaxy cluster catalogues. We have shown that
this statistical test can be further expanded into an estimator of the time since the last
merger.

While we have focused on major mergers, it could be interesting in the future to
study the impact of other astrophysical processes on halo sparsity. In particular with
relation to baryonic and beyond ΛCDM physics, where still many questions remain:

• What is the influence of baryonic structures such as galaxies and massive gas
clouds?

• Do strong baryonic feedback events, such as active galactic nucleus flares, leave
traces in the sparsity?

• Do alterations to gravity or dark energy influence sparsity?

• What is the influence of alternate dark matter scenarios?

Some exploratory work is being conducted to address these questions. Regarding dark
energy, Balmès et al. (2014) and Corasaniti et al. (2020) have shown that sparsity is
sensitive to modifications of gravity and dark energy model models. These explorations
have fuelled ongoing efforts to create a wCDM sparsity emulator (Sáez Casares et al.
in prep.) and possibly constrain these models. Regarding baryons, current efforts focus
on estimating the impact of baryonic physics on sparsity, primarily through the quan-
tification of baryon sparsity biases from the The300 galaxy cluster zoom simulations
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(Corasaniti et al. in prep.). Nonetheless, with the arrival of larger samples of full hydro
galaxy clusters it will be possible to perform similar studies to those presented in this
work including baryonic physics.

From a cosmological perspective, we show that the sparsity distribution has a cos-
mological dependence, and in particular it is most influenced by the amplitude of matter
fluctuations parameter, S8. Having reviewed current methods based on the measure-
ment of the mean sparsity of a sample, we design a novel approach which removes the
need for the mean and instead treats each object in the sample as a separate data point.
We find that this novel approach significantly improves the constraining power of spar-
sity with respect to approaches based on the mean, without requiring additional data.
Nevertheless, this method is numerically much more costly and comes with a completely
new set of systematic effects which still need to be controlled.

These systematics come in many forms, and in particular many of which where only
briefly mentioned. As such, several question remain:

• Can we use sparsity with biased mass measurement, such as weak lensing masses
or hydrostatic masses?

• How does assuming a profile shape influence the inferred cosmological parameters?

• How do we incorporate the influence of selection effects?

Only begining to investigate these questions, we adopt a modelling approach to try
and quantify the resulting biases. In particular we create mock stacked weak lensing
observations of KiDS galaxy clusters. After following the AMICO pipeline, which will
also be applied to Euclid, we will soon be able to measure how the pipeline biases the
sparsity, and as a result soon be able to put this approach into practice and obtain a
novel cosmological constraint using sparsity.

Finally, we show that sparsity has the potential to synergise with other cosmological
probes, such as cluster number counts and gas mass fractions. This however requires
that we measure the covariance between these different probes. We show that, in the
case of cluster number counts, there is only a non-negligible correlation between the two
probes if we use the same sample of clusters for the number counts and the sparsities.
In the case where the sparsity sample is much smaller, similarly to currently available
observations, then the two probes become independent from one another. In the near
future we hope to expand this study to also include gas mass fractions and potentially
provide the first constraints using this joint approach.



A | Modelling the evolution of haloes

In Section 5.4 we explored the possibility of constraining cosmology through the use of
sparsity while treating clusters as individual data points. We show that this is possible
by extracting the distribution of sparsities from a model of the HMF, such as Despali
et al. (2016). This approach is however numerically costly increasing the evaluation
time of the likelihood by a factor of 10. In this appendix, we present work in progress
investigating an alternate approach by predicting the sparsity distribution from first
principles, namely through the use of excursion set theory.

In Section 2.6.2, we have seen how excursion set theory can be used to predict
the HMF. While this may have been the initial success that popularised this approach
(Bond et al., 1991) excursion set theory can also be applied to construct merger trees
(see Jiang & van den Bosch, 2014, for a review), which link a halo at given epoch to all
its progenitors at earlier epochs. These merger trees have in turn been used to predict
the c−M relation by applying semi-analytical models (e.g. Jiang et al., 2021; Johnson
et al., 2021) calibrated on simulations.

Sampling a merger tree using excursion set is much faster computationally than
running a cosmological simulation. However, an even faster approach would be to
predict the internal structure of haloes from the merger tree’s condensed form known
as the mass accretion history (MAH), where we only follow the most massive branch
of the tree. In Chapter 4 we have seen, in agreement with Wang et al. (2020a), that
it is merger events which primarily drive the evolution of the sparsity, imprinting a
characteristic impulse into the sparsity history, see e.g. Fig. 4.2 and Fig. 4.3.

The definition of sparsity, s∆1,∆2
= M∆1

/M∆2
, can simply be seen as a relation

between three random variables. If we now write the differential with respect to redshift,

ds∆1,∆2
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, (A.1)

we are able to formally relate the change in sparsity to the change in halo mass.
Note that here we are handling a first order stochastic differential equation and

hence it is convenient to represent the evolution of the variables as random walks. As
such, derivatives can be discretised,

∆s∆1,∆2
=
(

1 − s∆1,∆2
η∆1,∆2

) s∆1,∆2

M∆1

∆M∆1
, (A.2)

as to recover the sparsity step ∆s∆1,∆2
which is induced by a given mass step ∆M∆1

. In
addition, we introduce, η∆1,∆2

= ∂M∆2
/∂M∆1

, a stochastic variable which we dub the
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7. Finally, we check if the mass of the MMP is still larger than a given mass resolution
Mres. If so we proceed to the next redshift-step by setting M(zp) = MMMP, M =
MMMP, z = zp, and returning to the second step, if not we recover and output
the MAH from M(z).

This algorithm thus requires only four user inputs, M0, z0, ∆ω, and Mres, to fully
model the MAH. We note, that Eq.(A.3) assumes spherical collapse, and that, as with
most excursion set results, the masses M cannot be directly related to the SO used to
measure sparsity. In van den Bosch (2002), the author addresses the first issue directly
by introducing an ellipsoidal collapse barrier model,

δce(z,M) = δc(z)







1 + 0.47

[

σ2(M)

δ2
c (z)

]0.615






, (A.4)

and simply replacing this into the definition of ω(z) and using the PDF of Eq. (A.3).
This can be considered as an over-simplification, as by doing so one does not recover

the halo mass function from N-body simulations (Sheth & Tormen, 2002). Taking this
further, Sheth & Tormen (2002) find a correspondence between the definition of their
conditional mass function fit parameters and the parameters of the ellipsoidal collapse
barrier. Defining a generalised barrier model

δce(z,M) =
√
aδc(z)

{

1 + β

[

S(M)

aδ2
c (z)

]α}

(A.5)

with a, α, β three parameters that are defined by fitting the conditional halo mass
function to

νf(ν) =

√

aν

2π
e−aν[1+β(aν)−α]

2
/2 ×

{

1 +
β

(aν)α

[

1 − α+
α(α− 1)

2
+ · · ·

]}

, (A.6)

where ν = (δc(z)/σ(M))2, which was introduced simultaneously with the more com-
monly used form of Eq. (2.109) (Sheth & Tormen, 2002). In our case we recalibrate
these parameters on the RayGalGroupSims halo catalogues (Rasera et al., 2022) This
relationship between the barrier and the conditional mass function allows to put physi-
cal definitions to the mass that is being studied (i.e. M200, M500, . . . ) simply by fitting
the parameter for the desired mass definition. In addition, Sheth & Tormen (2002)
show that the PDF of excursions Si+1 from which we previously defined the mass of
progenitor haloes is also modified,

ρ(Si+1|Si)dSi+1 =
|T (Si+1|Si)|√

2π(Si+1 − Si)3/2
exp

{

(ω(zi+1, Si+1) − ω(zi, Si))
2

2(Si+1 − Si)

}

dSi+1, (A.7)

with

T (Si+1|Si) =
5
∑

n=0

(Si+1 − Si)
n

n!

∂n(ω(zi+1, Si+1) − ω(zi, Si))

∂Sn
i+1

, (A.8)

thus introducing correlations between the individual steps of the random walks.
We plot this distribution along with its spherical collapse counterpart in the left panel

of Fig. A.2 placing ourselves at z = 3 for Si = 11 which would correspond to M200c ≃
106h−1M⊙. We see that the modification to the sampling distribution introduces a
large tail followed by a rapid cut-off at high ∆S which prohibits sampling large values
of ∆S. In practice, what this means is that the elliptical collapse distribution disfavours
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