
HAL Id: tel-04541476
https://theses.hal.science/tel-04541476

Submitted on 10 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded graphs : crossings and decompositions
Niloufar Fuladi

To cite this version:
Niloufar Fuladi. Embedded graphs : crossings and decompositions. Computational Geometry [cs.CG].
Université Gustave Eiffel, 2023. English. �NNT : 2023UEFL2062�. �tel-04541476�

https://theses.hal.science/tel-04541476
https://hal.archives-ouvertes.fr

Thése de Doctorat en Informatique

Embedded Graphs: Crossings and

Decompositions

Niloufar Fuladi

Membres de jury:

Éric COLIN de VERDIÈRE Membre invité CNRS, Université Gustave Eiffel

Federica FANONI Examinatrice CNRS, Université Paris Est Créteil

Cyril GAVOILLE Rapporteur Université de Bordeaux

Alfredo HUBARD Co-encadrant de thèse Université Gustave Eiffel

Francis LAZARUS Examinateur CNRS, Université Grenoble Alpes

Arnaud de MESMAY Directeur de thèse CNRS, Université Gustave Eiffel

Jorge RAMÍREZ-ALFONSÍN Rapporteur Université de Montpellier

Ana RECHTMAN Examinatrice Université Grenoble Alpes

Université Gustave Eiffel

Laboratoire d’Informatique Gaspard-Monge (LIGM)

École Doctorale 532

Mathématiques et Sciences et Technologies de l’Information et de la Communication (Mstic)

to Women,

to Life,

to Freedom.

iv

Abstract

In this thesis we investigate some topological problems on surfaces and on graphs embedded

on them from a computational viewpoint. Specifically, we focus on decompositions of surfaces

and crossing numbers of graphs. The main contributions of this thesis can be divided into three

parts.

The first problem we tackle concerns finding short canonical decompositions for a surface:

given a cross-metric surface, that is, a surface endowed with a discrete metric in the form of an

embedded graph, we are interested in cutting it to a disk along a system of loops with a specific

shape such that the length of the cut is short. We provide the first algorithm that computes a

non-orientable canonical decomposition of length O(gn) where g is the genus of the surface and

n is the number of edges of the graph embedded on it. This decomposition confirms a special

case of a conjecture of Negami on the joint crossing number of two embeddable graphs. This

conjecture posits that for any cross-metric surface, short decomposition of any shape exists. We

also provide a correction for an argument of Negami bounding the joint crossing number of two

non-orientable graph embeddings. Furthermore, we provide a generalization of O(g)-universal

shortest path metrics to non-orientable surfaces.

The second problem that we address concerns two instances of crossing numbers of graphs:

the degenerate crossing number and the genus crossing number. Based on the observation that

both of these crossing numbers can be interpreted in terms of certain embeddings in a non-

orientable surface, Mohar conjectured that under certain conditions on graph embeddings these

concepts coincide. We provide the first counterexample to one of Mohar’s conjectures which

concerns two graphs given by fixed embeddings. Conversely, we prove a structure theorem that

shows that the conjecture holds for the majority of the two-vertex graph embeddings.

The third problem is motivated by a question on the existence of a universal shortest path

metric. We investigate the minimal size of a family of curves on a surface that realizes all types

of pants decompositions of the surface, i.e., for any pants decomposition of the surface, there

exists a homeomorphism sending it to a subset of the curves in this family.

Keywords: Surface, Embedded graph, Computational topology, Crossing number, Pants decom-

position

Résumé

Dans cette thèse, nous étudions des problèmes topologiques sur les surfaces et sur les graphes

qui y sont plongés d’un point de vue algorithmique. En particulier, nous étudions des problèmes

autour de décompositions de surfaces et de nombres de croisements de graphes. Les principales

contributions de cette thèse peuvent être divisées en trois parties.

Le premier problème auquel nous nous attaquons consiste à trouver des décompositions ca-

noniques courtes pour une surface : étant donnée une surface avec une métrique de croisements,

c’est-à-dire une surface dotée d’une métrique discrète sous la forme d’un graphe plongé ; nous

souhaitons la couper en un disque le long d’un système de boucles ayant une forme spécifique

et telle que les boucles soient courtes. Nous fournissons le premier algorithme qui calcule une

décomposition canonique non orientable de longueur O(gn) où g est le genre de la surface et n

est le nombre d’arêtes du graphe plongé. Cette décomposition confirme un cas particulier d’une

conjecture de Negami sur le nombre de croisements conjoints de deux graphes plongeables. Cette

conjecture postule que pour toute surface avec une métrique de croisements, une décomposition

courte de n’importe quelle forme existe. Nous corrigeons également un argument de Negami limi-

tant le nombre de croisements conjoints de deux graphes plongés non orientables. De plus, nous

généralisons la métrique universelle de plus courts chemins O(g) aux surfaces non orientables.

Le deuxième problème que nous abordons concerne deux exemples de nombres de croisements

de graphes : le nombre de croisements dégénérés et le nombre de croisements de genre. À partir de

l’observation que ces deux nombres de croisements peuvent être interprétés en termes de certains

plongements sur une surface non orientable, Mohar a conjecturé que sous certaines conditions sur

les plongements de graphes, ces concepts cöıncident. Nous fournissons le premier contre-exemple

à l’une des conjectures de Mohar qui concerne deux graphes donnés par des plongements fixes.

Inversement, nous prouvons un théorème de structure qui montre que la conjecture tient pour

la majorité des plongements de graphes à 2 sommets.

Le troisième problème est motivé par une question sur l’existence d’une métrique universelle

de plus courts chemins. Nous étudions la taille minimale d’une famille de courbes sur une surface

qui réalise tous les types de décompositions en pantalons de la surface, c’est-à-dire que pour

toute décomposition en pantalons de la surface, il existe un homéomorphisme qui l’envoie sur

un sous-ensemble de courbes de cette famille.

Mots-clé: Surface, Graphe plongé, Topologie Algorithmique, Nombre de croisement, Décompo-

sition en pantalon

CONTENTS vii

Contents

Title page . i

Dedication . iii

Abstract . iv

Résumé . v

Table of contents . vii

Acknowledgments . xi

1 Introduction 1

1.1 Specifics of the thesis and contributions . 9

1.2 Organization . 14

2 Introduction en Français 16

2.1 Contributions de la thèse . 24

2.2 Organisation . 30

3 Preliminaries 32

3.1 Topological surfaces . 32

3.2 Structures on surfaces . 34

3.2.1 Graphs embedded on surfaces . 34

3.2.1.1 Genus of a graph . 35

3.2.1.2 Duality . 36

3.2.2 Curves on surfaces . 36

3.2.2.1 Cutting a surface along a curve 37

3.2.2.2 Types of curves on surfaces 41

3.2.2.3 Homotopy of curves . 43

3.3 A combinatorial model for graph embeddings 45

3.3.1 Contracting a tree in an embedding scheme 47

3.3.2 Contracting a boundary . 48

3.4 A geometric model for graph embeddings on surfaces 48

3.4.1 The cross-cap model for non-orientable surfaces 49

3.4.1.1 Recognizing types of curves in a cross-cap drawing 51

3.4.1.2 Genus crossing number and degenerate crossing number . 54

viii CONTENTS

3.4.2 The box model for orientable surfaces 55

3.4.2.1 Bundled crossing number 57

3.5 Metrics on surfaces . 58

3.5.1 Discrete Metrics . 58

3.5.1.1 Combinatorial Surface . 58

3.5.1.2 Cross-metric Surface . 59

3.5.1.3 Equivalence by duality . 59

3.5.2 Continuous Metrics . 60

3.6 Decompositions of surfaces . 60

3.6.1 Decompositions along systems of loops 61

3.6.2 Octagonal and hexagonal decomposition 62

3.6.3 Pants decomposition . 63

3.7 Decomposing a non-orientable surface along an orienting curve 63

3.8 Algorithms and genome rearrangements . 65

3.8.1 Signed reversal distance . 67

3.8.2 Topology of the signed reversal distance and relation to cross-cap

drawings . 71

3.8.3 Block interchange distance . 77

3.8.4 Topology of the block interchange distance and relation to box draw-

ings . 78

4 Joint crossing numbers of graphs and Negami’s conjecture 81

4.1 Introduction . 81

4.1.1 Our results . 83

4.1.2 Main ideas and proof techniques . 84

4.2 Correcting Negami’s proof . 84

4.3 An O(g)-universal shortest path metric for non-orientable surfaces 90

5 Short Non-orientable Canonical Decomposition 96

5.1 Introduction . 96

5.1.1 Our results . 98

5.1.2 Main ideas and proof techniques . 98

5.2 Preliminaries . 101

5.3 The Schaefer-Štefankovič algorithm . 106

5.4 Our modification to the Schaefer-Štefankovič algorithm 112

5.4.1 Completeness of the case analysis 115

5.4.2 The order on the one-sided non-orienting loops 116

5.4.3 Correctness of the modified algorithm 120

5.5 The non-orientable canonical system of loops 122

CONTENTS ix

5.5.1 The dual graph of the cross-cap drawing 122

5.5.2 Short paths from each cross-cap to the vertex 127

6 More on decompositions of surfaces 132

6.1 Introduction . 132

6.2 Canonical decomposition of orientable surfaces 134

6.2.1 Box drawing with low multiplicity 134

6.2.2 Reproving the O(gn) bound for orientable canonical system of loops 137

6.3 Non-orientable embeddings with a combination of boxes and cross-caps . . 141

6.4 A lower bound for canonical decompositions 144

7 Degenerate Crossing Number vs. Genus Crossing Number 150

7.1 Introduction . 150

7.1.1 Our results . 151

7.1.2 Techniques and connections to signed reversal distance 152

7.2 Preliminaries . 154

7.2.1 Loopless two-vertex embedding schemes 154

7.2.2 Reversal distance and monotone cross-cap drawings 157

7.3 The counterexample . 158

7.4 Perfect drawings for most two-vertex graph embeddings 159

8 Universal families of arcs and curves on surfaces 165

8.1 Introduction . 165

8.1.1 Our results . 166

8.2 Preliminaries and notations . 169

8.3 Unlabelled punctures . 170

8.3.1 Unlabelled punctures: Realizing pants and triangles 170

8.3.1.1 Upper bounds . 170

8.3.1.2 Lower bounds . 171

8.3.2 Unlabelled punctures: Realizing pants decompositions and triangu-

lations . 171

8.4 Labelled punctures . 173

8.5 Surfaces without punctures . 177

8.6 Small genus cases and labelled punctures: a small improvement 178

9 Conclusion 189

9.1 Summary of results and continuation . 189

9.2 Further research directions . 191

List of publications 194

x CONTENTS

Bibliography 194

CONTENTS xi

Acknowledgements

Firstly, I wish to express my heartfelt appreciation for the guidance, relentless support,

and patience of my dear supervisors, Alfredo Hubard and Arnaud de Mesmay. Arnaud and

Alfredo, your mentorship and expertise have been indispensable in helping me navigate

challenges and overcome the obstacles that stood before me. I am profoundly grateful

for your words of encouragement during moments of self-doubt, your patience when I

stumbled, and your unwavering support through the highs and lows of this journey. I

specially appreciate all the good cop- bad cop moments where your constructive feedback

propelled my growth. Thank you for never losing faith in me and for gracing me with

the honor of being your student (especially as your first). I could not have hoped for

better supervisors and I know that I have been extremely lucky. You have been a source

of inspiration for me and I wish I can be like you some day. Thanks ”dudes”.

I am deeply thankful to Cyril Gavoille and Jorge Ramı́rez-Alfonśın for accepting and

dedicating their time to review this thesis and demonstrating a genuine interest in my

work. I also extend my gratitude to the other members of my thesis committee— Federica

Fanoni, Francis Lazarus, and Ana Rechtman—for their invaluable presence during the

defense and their insightful questions and feedback. A special acknowledgment goes to

Éric Colin de Verdière for accepting to be the formal supervisor at the beginning of my

thesis, for attending the defense as a guest and for his support throughout my thesis.

I am extremely grateful to Hugo Parlier for our collaboration, our fruitful discussions,

his genuine concern for my progress, and his unfaltering support. I would like to express

my gratitude to Gelasio Salazar and Vincent Delecroix for their invitations to San Luis

Potośı and Bordeaux, respectively, and for generously sharing their insights with me.

Additionally, I would like to express my sincere gratitude to Marcus Schaefer, for always

supporting me from the very first stages of my thesis while we have never met.

I feel fortunate to have Corentin and Jean as my academic brothers, whose friendship

has made these years unforgettable. I am grateful for the laughter and the enjoyable

journey we have shared. Corentin, thank you for our friendship that formed in a blink of

an eye, for your companionship, moral support, and our countless gossip sessions. Jean,

thank you for all the exciting memories that we made together despite the language barrier

that was hard to overcome at first. My heartfelt thanks also extend to Löıc, and to my

xii CONTENTS

office mates Aaron, Julien and Zéphyr, for creating a welcoming and friendly environment

and to dear Corinne for all the nice chats and the time that we spent together.

I owe a great debt of gratitude to the Bateni family, whose support has been indis-

pensable in reaching this point. Also I am thankful to my friend Mehdi, who helped me

with the very first figures in this thesis.

Special thanks are due to my family and friends who have contributed to my upbringing

and to reaching this milestone. To my parents, Fatemeh and Ali who always believed in

me and did all they could to provide everything I needed to pursue my academic goals. I

am grateful to Artemis and Mehdi for considering me as their child and always supporting

me. To Shiva, for her heartwarming presence in my life and to my friends—Jalal, Samad,

Hedieh, Siavash, and Amal—for the cherished memories. To Meliné, for the moral support

and the enriching discussions which helped me understand that I am not alone.

Finally, I have to thank Arya, my best friend, for his enduring patience with me, for

his unconditional love, his crazy ways for motivating me and protecting me from myself.

Arya, thank you for being the amazing friend that you are, and here is to an even brighter

and more exhilarating journey ahead!

1

Chapter 1

Introduction

Consider a strip of paper, twist it by half, and then connect the ends together. The

resulting object is called a Möbius band. One intriguing characteristic of this band is its

inherent one-sidedness: imagine a cockroach walking on it. After going once around the

band, the cockroach ends up in the same point that it started but on the other side of the

paper, see Figure 1.1. Similarly, the concepts of right and left are not defined globally on

the Möbius band: what was at the right of the cockroach at a point on the band, after

going once around it is now on its left. This absence of distinction between right and left

characterizes such a surface as non-orientable.

Figure 1.1: The figure depicts a Möbius band and the movement of the cockroach shows that

this surface has only one side.1

In this thesis, we study algorithms and computational features of graphs embedded

on surfaces with a special focus for non-orientable ones. Before defining all these notions

and delving into the mathematical aspects of this thesis, let us first introduce certain

1This drawing is inspired by a graphic work by Maurits Cornelis Escher.

2 Introduction

phenomena in human anatomy and DNA that exhibit some interesting non-orientable

behaviour as well.

A phenomenon in human anatomy. Let us first explain how the visual system of

humans work. When we look at an object, the lens in each of our eyes invert the image

that is formed on the retina. The optic nerve fibers then transmit this image to the brain,

where the retinal images from both eyes are fused together to create a congruent image

that the brain perceives.

Figure 1.2: The left picture depicts how our optical system processes the information. The

middle picture depicts an explanation for the crossing in the nerve fibers. The right picture

shows the singularity that happens if the optical system was not crossed as it is. Note that

in the middle and the right picture, for simplicity, it is assumed that the visual fields do not

overlap.2

An interesting phenomenon in human anatomy is decussation, that is, the crossing

of nerve fibers in the body. In the human visual system, the decussation of the optic

nerve fibers happens in the optic chiasm. These nerve fibers cross over each other inside

the chiasm, which reverses their mapping. This decussation is necessary to restore image

continuity after fusing both retinal images in the brain, see the middle picture in Figure 1.2

(the crossing of optic nerve fibers is partial in the human visual system to deal with

overlapping visual fields and restore a congruent image. The left picture in Figure 1.2

provides a more accurate depiction of the visual system, taking into account this partial

crossing). If no crossing occurred, the brain would perceive a singularity in the image:

for example the brain perceives “DOMFREE” instead of the word “FREEDOM”, see the

right picture in Figure 1.2.

2The ideas of the pictures in Figures 1.2 and 1.3 has been taken from [73] and [39], respectively.

3

The decussation of nerve fibers and map reversing of data also occur in many sites in

the brainstem and spinal cord. For instance, the decussation of the pyramids involves the

crossing over of motor pathways in the brainstem (see Figure 1.3), resulting in the left

side of the brain controlling the right side of the body, and vice versa. The reason for this

phenomenon is not yet completely understood, but a possible topological explanation is

that without this crossing, it would result in a geometric singularity that would mix up

information about left/right and up/down orientation in the brain (see [70]). We refer

the reader to [73] for more details on these crossing phenomena in the human anatomy.

Figure 1.3: The picture depicts the nerve system in the brain and the decussation of the pyramids

where the nerves cross.

A phenomenon in biology. At the end of the 1930s, after making extensive efforts to

collect samples of fruit fly3 genomes from various regions in the American West, Dobzhan-

sky and Sturtevant [27] made a remarkable discovery. They found that genomes of flies

from different regions differed by one or two blocks of genes in the sequence, and within

each of these blocks, the linear order of genes was reversed. This discovery paved the way

for the recognition of similar operations on genomes (such as block interchange, fusion,

3Drosophila

4 Introduction

Figure 1.4: Left: the top (resp. bottom) sequence shows the gene sequence in the DNA of

cabbage (resp. turnip). The figure shows that 3 reversals are enough to transform cabbage to

turnip. Right: the picture depicts the reversing of the sequence of strands w, l, f when they go

around the Möbius band.

fission, etc.) throughout the 20th century, leading to a new paradigm in the study of

evolutionary changes in the DNA of living organisms: genome rearrangements.

By the 1980s, enough experimental data had been analyzed for Palmer and Herbon [62]

to propose that the evolutionary distance between two species can be approximated by

the number of reversals required to transform one gene sequence into another. At this

point, the problem could be abstracted and handed over to a computer scientist: develop

an algorithm that can reconstruct, within a reasonable amount of time, the minimum

number of rearrangements needed to transition from one genome to another. Specifically,

for unichromosomal genomes, this corresponds to finding the smallest number of reversals

necessary to transform one genome into another. This algorithmic problem turned out to

be central to this thesis. Figure 1.4 illustrates a minimal series of reversals between the

genes in cabbage and turnip, where each reversal can be visualized as a flip or a twist in

the gene sequence.

The crossing of nerve fibers at the midline of the human body and the reversals of

gene sequences in the DNA share a common thread: both involve a change in left-right

orientation in a symmetric object; the characterizing property in a Möbius band.

The decussation in nerve fibers and the reversals of gene sequences can be formalized

by the trajectory of strands around a Möbius band as depicted in the right picture in

Figure 1.4. In addition to their intriguing non-orientable behavior, the genome rearrange-

ment algorithms derived from computational biology have proven to be invaluable in our

study within this thesis.

5

The theme of this thesis

Any space that locally looks like the plane is called a surface. A surface is called non-

orientable if it contains a Möbius band. This type of surface inherits the absence of a

consistent notion of left and right from the Möbius band. Otherwise the surface is called

orientable. Most surfaces that we deal with in our everyday life, like the Earth, are

orientable. In fact, the consistency that helps us choose directions and read maps comes

from the orientability of the Earth.

From the topological point of view, two surfaces are equivalent if we can transform

one into the other through continuous deformation, without resorting to cutting or gluing.

More accurately, two surfaces X and Y are equivalent if there exists a map h : X → Y

such that h is bijective and both h and its inverse are continuous. The map h is called

a homeomorphism and X and Y are called homeomorphic. For example consider a cube

and a sphere. Although these surfaces may appear quite distinct in the three-dimensional

space, they are actually homeomorphic surfaces in topology. On the other hand, a cylinder

and a Möbius band are not homeomorphic and there is no way to transform one to the

other without cutting and gluing once. This can also be seen from the fact that the

Möbius band has only one boundary component while the cylinder has two.

In this thesis, we study structures such as graphs and curves that reside on surfaces.

These graphs and curves endow our topological objects with a discrete structure. This

structure provides a way to encode the complex topological data of the surface, allowing

us to study them from an algorithmic perspective. To explain how a graph captures the

topological structure of the surface, let us start by looking at an example. Imagine that we

have a sphere that we want to cut to obtain a disk. One cut along any path is enough to

achieve this, see Figure 1.5. However, not all surfaces are as simple as a sphere. Consider

the surface of a donut (or a torus). We need at least two cuts to obtain a disk from the

torus, see Figure 1.5. This observation implies that these two surfaces are topologically

different. If we view the cuts on the surface as a graph, it can provide valuable insights

into the structure of the surface. This can be formalized through the Euler characteristic.

LetG be a graph that is drawn on a surface S without self-intersections; such a drawing

is called an embedding of G on S. An embedding of G on S is called cellular, if all the

connected components of the complement of G, known as the faces of the embedding,

are homeomorphic to disks. Let v, e, and f denote the number of vertices, edges, and

faces in the cellular embedding of G on S, then v− e+ f is called the Euler characteristic

of the embedding. Notably, this quantity is independent of the graph, i.e., any cellular

graph embedding on this surface has the same Euler characteristic. Therefore we also call

this quantity the Euler characteristic of the surface, denoted by χ(S). Furthermore, the

Euler characteristic is a topological invariant of the surface: a property that is preserved

under homeomorphisms. Showing that two surfaces have different Euler characteristics

6 Introduction

Figure 1.5: The minimum cuts to obtain a disk from a sphere and a torus.

imply that the surfaces are not homeomorphic. To see an example, let us compute the

Euler characteristic of the sphere and torus by computing the Euler characteristic of the

graph of our cut depicted in Figure 1.5. On the sphere, the graph has two vertices, one

edge and one face, therefore, the Euler characteristic is equal to 2. On the other hand,

the graph embedding on the torus has one vertex, two edges and one face which means

that the Euler characteristic of the torus is equal to 0. This gives us a quantitative way

to distinguish between these two surfaces.

Classification of surfaces. A fundamental theorem in topology, the classification theo-

rem of surfaces, states that surfaces can be completely classified using two topological

invariants: the orientability and the Euler characteristic.

From this classification, it follows that every surface can be obtained from a punctured

sphere to which we glue Möbius bands (also called cross-caps) or handles (the torus with

one puncture) along their boundary. The surface is orientable if it is obtained by attaching

handles; the number of handles in this case is the genus of the surface. A surface that is

obtained by only attaching Möbius bands is non-orientable and the genus of the surface

is the number of Möbius bands that we glued to the sphere. In this sense, the number of

punctures and handles or Möbius bands determine the Euler characteristic of the surface;

namely, for a surface S, χ(S) = 2− g − h where g is the genus of S and h is the number

of punctures.

Now imagine you glue both a Möbius band and a handle to a sphere. Where does this

surface reside in this classification? This surface is non-orientable because it contains a

Möbius band and it can be shown that its Euler characteristic is −1 which is the same

as the surface S that we obtain by gluing 3 cross-caps to a sphere (χ(S) = 2− 3 = −1),

see Figure 1.6. As can be seen in this figure, visualising the homeomorphism between

7

Figure 1.6: Two depictions of a non-orientable surface of genus 3.

these two surfaces is quite hard due to the fact that non-orientable surfaces without

boundary cannot be embedded in the three dimensional space (see the discussion after

Corollary 3.46 in [45]). Here, computational topology provides us with a framework to

formalize and analyze this problem and allows us to compute such homeomorphisms.

Computational topology of surfaces. The field of computational topology provides com-

putational methods and algorithms to address topological problems and analyze topolog-

ical structures. Topological problems that are undecidable in general often admit efficient

solutions when restricted to surfaces. Many basic problems in the computational topology

of surfaces are obtained by taking a fundamental topological invariant and wondering how

to compute it efficiently. Here we present a sampler of problems in computational topol-

ogy of surfaces. We refer the reader to the surveys [20], [19] and [32] for more problems

in this field.

To get started talking about algorithms, we need a discrete formulation of surfaces.

Here, we consider surfaces that are obtained by gluing polygonal disks; we call such a

surface a combinatorial surface. Equivalently, these polygonal disks can be looked upon

as faces of a graph embedded on the surface, as we already introduced above.

1. Testing homeomorphism. Perhaps the most basic and natural question regarding

topological surfaces is to check whether two surfaces are the same. This appeals

to the classification of surfaces which we introduced above: two surfaces are home-

omorphic if and only if their Euler characteristic and orientability match. Given

two combinatorial surfaces, we can compute and compare their Euler characteristics

as explained above. If the Euler characteristics of the surfaces are equal, then we

proceed to test their orientability. This can be done by choosing an orientation

for each face on the surface so that the orientations given to two faces that share

an edge, induces opposite orientation on their common edge. If we can choose an

orientation for all the faces on the surface that abides by this rule, then the sur-

8 Introduction

face is orientable, otherwise it is non-orientable. If the orientability and the Euler

characteristic of both surfaces match then they are homeomorphic.

2. Computing the shortest cut graph. As we explained above, any surface can be cut

into a disk. The graph of this cut is called a cut graph. Looking for cut graphs on

a surface is crucial for some applications as it simplifies the topology of the surface

and makes it easier to work with. It is natural to turn this into an optimization

problem and wonder what is the best way to do this cutting. For such optimization

problems to be meaningful, the surface needs to be combined with a metric. The

graph embedded on a combinatorial surface endows a discrete metric to the surface.

In the model describing this metric, a curve is allowed to only use the edges of this

graph and its length is the number of edges that it uses (throughout this thesis,

we predominantly utilize an equivalent model referred to as the cross-metric model

which we introduce in detail in the preliminaries).

The problem of computing the shortest cut graph on a surface has been much studied

recently [18, 17, 33] from various algorithmic angles (complexity, approximation and

parameterized algorithms).

Now let us go back to the problem of visualizing a homeomorphism between the two

representations of the non-orientable surface of genus 3, depicted in Figure 1.6. A common

approach to obtain a homeomorphism between two surfaces is to cut them into a disk,

put the disks in correspondence and extend the homeomorphism between the two disks

to a homeomorphism between the two surfaces by gluing them back. For this approach

to work, both cut graphs need to have the same shape. We can cut the surfaces depicted

in Figure 1.6 along a one-vertex graph with 3 edges a, b and c such that their ends appear

around the vertex with the order aabbcc. This way we obtain a hexagon in which each side

corresponds to a copy of an edge a, b and c with the order aabbcc, see Figure 1.7. This

graph gives a combinatorial representation of a non-orientable surface of genus 3 in which

each edge of the graph encodes one of the cross-caps, see the leftmost picture in Figure 1.7.

Cutting the graph along such a one-vertex graph is called a canonical decomposition of

the surface. Let aabbcc denote the hexagon we obtain by cutting one of the surfaces and

a′a′b′b′c′c′ denote the other one. We can define a map between these hexagons such that

a,b and c are mapped to a′, b′ and c′, respectively. Gluing back the surfaces along the edges

of the decomposition, we retrieve our surfaces and the map, defines a homeomorphism

between the two.

Here again, it is natural to ask for efficient ways to canonically decompose a surface:

given a combinatorial surface, can we always compute a canonical decomposition that is

relatively short with respect to the metric of the surface? There exists an efficient algo-

rithm that computes a short canonical decomposition of orientable surfaces [53]. For non-

1.1 Specifics of the thesis and contributions 9

Figure 1.7: The homeomorphism between two non-orientable surfaces of genus 3 and the canon-

ical decompositions of the surfaces.

orientable surfaces, there is an algorithms that computes a canonical decomposition [52],

but this is not as short as in the orientable case.

Computing short canonical decompositions of non-orientable surfaces is one of the

main results of this thesis. This problem illustrates perfectly the essence of our work, the

computational approach in the study of a topological problem on surfaces and the interplay

between topology and computation. Furthermore, this problem helps to illuminate the

underlying topology in the genome rearrangement problem discussed above which in turn

leads us to establish a fruitful connection with computational biology.

1.1 Specifics of the thesis and contributions

The predominant theme of this work is on studying decompositions of surfaces in which we

strive to identify efficient ways to decompose a surface into pieces with simpler topology.

We provide short decompositions of non-orientable surfaces and efficient algorithms to

compute them. This investigation is closely intertwined with the second theme of this

thesis, which centers around crossing numbers in graphs. Our work makes significant

contributions to the following three topics which are summarized in Figure 1.8.

1) Decompositions of surfaces and joint crossing numbers

Decomposing a surface to simplify its topology is an important tool for studying the struc-

ture of the surface and has both practical and theoretical applications. As we mentioned

before, in most parts of this thesis, our surfaces come with a geometric structure, that is

given by a graph embedded on them. These graphs endow the surface with a notion of

discrete metric. We use two ways to model this metric; the combinatorial model, which we

briefly described above, and the cross-metric model (we refer the reader to Section 3.5.1

for more detailed introduction on these two models). Informally in the cross-metric model,

10 Introduction

Figure 1.8: Left: can we always find a short canonical decomposition of a non-orientable surface?

Middle: can we always find a planar drawing for a graph embedding such that dcr(G) = gcr(G)?

In this picture gcr(G) = 5 but the edge 4 is not simple. Can we find a drawing for this graph

with five crossing points
⊗

such that every curve is simple?

Right: How many curves are needed to realize all pants decompositions of a surface? The figure

shows 10 curves that realize all pants decomposition of the orientable surface of genus 3.

the length of the decomposition is given by the number of times that the graph of the

metric is crossed by the graph of the decomposition where the crossings can only happen

on the edges. On the other hand, in the combinatorial model, the graph of the decompo-

sition lives on the edges of the embedded graph and the length of the decomposition is

the number of edges of the graph that it uses (with multiplicity).

For applicational purposes, it makes sense to try to find a decomposition of a surface

that has a short length. For example, an archetypal problem is to find a short canonical

decomposition that canonically cuts the surface into a disk. The best known bounds for

the lengths of such canonical decompositions of a surface of genus g is O(g|E(G)|) where
G is the graph of the metric and |E(G)| is the number of edges in G and this is known for

only few decompositions. Notably, this bound only exists for decompositions of orientable

surfaces and no decomposition that achieves this bound in terms of minimizing length

was known for non-orientable ones, see the left picture in Figure 1.8. One of the goals of

this thesis is to provide a systematic understanding of these decompositions and provide

algorithms to compute them.

From decompositions to joint crossing numbers of graphs. The problem of finding ef-

ficient decompositions of the surface is dually equivalent to investigating the best way

to embed simultaneously two graphs on the same surface. More precisely, we consider

the joint crossing number of a pair of embeddings: for two graphs G1 and G2 embedded

1.1 Specifics of the thesis and contributions 11

separately on a closed surface S, we are interested in minimizing the number of crossing

points between h(G1) and G2 over all the homeomorphisms h : S → S with the constraint

that edges are only allowed to cross transversely. The following is a conjecture of Negami,

which has been open for over 20 years.

Conjecture 1. (Negami’s conjecture) There exists a universal constant C such that for

any pair of graphs G1 and G2 embedded on a surface S, the joint crossing number is at

most C|E(G1)||E(G2)|.

Negami’s conjecture implies that efficient decompositions of any shapes exist, in the

sense that each edge in the graph of the decomposition has length at mostO(|E(G)|) where
G is the graph of the metric on the surface. Despite subsequent discoveries [3, 47, 66], this

conjecture is still open. The best known bound for the joint crossing number of graphs

is O(g|E(G1)||E(G2)|), where g is the genus of the surface S (see [59]). At the level of

decompositions, this readily implies that for any discrete surface and any decomposition

that cuts the surface into a disk, we can decompose the surface such that the length of

the decomposition is O(g2|E(G)|) where G is the graph of the metric; this bound is quite

big for practical purposes.

Universal shortest path metrics. In an attempt to make progress on Negami’s conjec-

ture, Hubard, Kaluža, de Mesmay and Tancer [50] asked the following more geometric

question.

Question 1. Given a surface S of genus g, does there exist a Riemannian metric on S

such that any simple graph embeddable on S can be embedded so that the edges are shortest

paths on S?

The existence of such a metric would imply Negami’s conjecture: this is because any

two graphs can be embedded such that their edges are shortest paths. In a Riemannian

metric two shortest paths cross at most once which implies that any pair of edges of the

graphs would cross at most once. (see Section 4.1 for a more detailed explanation).

Although Question 1 is not answered, a relaxation of it is answered positively in [50].

In this article, a universal Riemannian metric on an orientable surface of genus g was

provided such that every graph embeddable on the surface can be embedded so that each

edge is a concatenation of O(g) shortest paths. It was also shown that the existence

of this metric implies the bound O(g|E(G1)||E(G2)|) for the joint crossing number of

graphs proved in [59]. Nonetheless, the case of non-orientable surfaces was left as an open

problem in this paper.

12 Introduction

Contributions

In this thesis, we mainly focus on decompositions of non-orientable surfaces, as they

are relatively unexplored compared to orientable ones.

• We provide some of the first short decompositions of non-orientable surfaces

and polynomial algorithms to compute them by devising a new technique.

See Theorems C, D and Section 6.3. In the proof of Theorem D, we leverage

results from computational biology.

• We use this new technique to provide an alternative way to compute a short

orientable canonical decomposition. See Theorem F.

• We provide a lower bound for canonical decompositions using a counting ar-

gument. See Theorem H.

• We correct the proof of Negami for the bound O(g|E(G1)||E(G2)|) for joint

crossing numbers of any two graphs G1 and G2, in the non-orientable case.

See Theorem A.

• We generalize the construction of the universal metric introduced in [50] to

the non-orientable setting. See Theorem B.

2) Degenerate crossing number vs. genus crossing number

We then shift our focus from decompositions toward crossing numbers for graphs. Crossing

numbers are an important and popular tool in graph drawing and visualization (see [68] for

a survey) where minimizing the crossing number is important in reducing the complexity

of the drawings. A classical question in the study of crossing numbers is whether two

different instances are equal. In this thesis we are interested in the following two crossing

numbers. The degenerate crossing number of G, denoted by dcr(G), first introduced by

Pach and Tóth [61], is the smallest number of crossings among drawings of G in the

plane such that the edges are simple arcs, the crossings are transversal and a crossing

of multiple edges in a point is counted as one. If we allow edges to self-intersect, this

defines the genus crossing number of G, denoted by gcr(G), that was first introduced

by Mohar [57]. Interestingly, these two crossing numbers find a translation in the realm

of graphs embedded on non-orientable surfaces: the degenerate crossing number of G is

equal to the smallest number of cross-caps needed on a surface to embed G so that each

edge of G passes through each cross-cap at most once. On the other hand, the genus

crossing number of G, is equal to the smallest number of cross-caps needed on a surface

to embed G; here, an edge is allowed to enter the cross-caps more than once. It is evident

1.1 Specifics of the thesis and contributions 13

from the definition that gcr(G) ≤ dcr(G). We have the following conjecture of Mohar

regarding these two crossing numbers.

Conjecture 2. ([57, Conjecture 3.1]) For every simple graph G, dcr(G) = gcr(G).

Mohar also made a stronger conjecture that this also holds for any loopless graph

embedding. Denote by S2 \ g
⊗

, the sphere minus g tiny disks, and by (S2 \ g
⊗

)/ ∼ the

space obtained by quotienting the boundary of each disk with the antipodal map. We call

each
⊗

a cross-cap. Topologically, this amounts to gluing a Möbius band on each missing

disk, thus yielding the non-orientable surface of genus g, denoted by Ng. We say that an

embedded multi-graph ϕ : G → Ng admits a cross-cap drawing ϕ′ : G → S2, if there is

a homeomorphism f : Ng → (S2 \ g
⊗

)/ ∼ such that f(ϕ(G)) = ϕ′(G). When an edge

of the graph intersects the boundary of a cross-cap, we usually say that the edge enters

the cross-cap. The equality of degenerate crossing number and genus crossing number

of a graph G implies that the graph admits a cross-cap drawing with dcr(G) = gcr(G)

cross-caps in which each edge enters each cross-cap at most once. A pseudo-triangulation

is a cellularly embedded multi-graph ϕ : G→ S in which each face has degree three. The

following is the stronger conjecture of Mohar regarding pseudo-triangulations.

Conjecture 3. ([57, Conjecture 3.4]) For any positive integer g, every loopless pseudo-

triangulation of Ng admits a cross-cap drawing with g cross-caps in which each edge enters

each cross-cap at most once.

See the middle picture in Figure 1.8 for an illustration of a cross-cap drawing and a

question to which this conjecture boils down.

Contributions

• We provide a loopless two-vertex graph embedding on a surface of genus 5

that represents a counterexample to Conjecture 3. See Theorem I.

• We prove a structure theorem that almost completely classifies the loopless

two-vertex graph embeddings for which Conjecture 3 holds. This shows that

most loopless two-vertex graph embeddings satisfy this conjecture. The proof

makes direct use of an algorithm in computational biology. See Theorem J.

3) Enumerating curves and arcs on surfaces

Our results in the last part of this thesis have a rather different flavour compared to the

previous ones as we do not care about the lengths of the curves and crossing numbers and

contrary to the main focus of this work, we concentrate only on orientable surfaces. Our

14 Introduction

motivation behind studying this problem is to make progress toward answering Question 1

on the existence of a universal shortest path metric.

We move our attention towards pants decompositions of orientable surfaces. A pants

decomposition is an arrangement of closed curves on a surface that cuts it into pairs of

pants (spheres with three holes). These pairs of pants provide fundamental building blocks

in the study of surfaces. We investigate the minimal size of a universal family of curves

that realizes all pants decompositions of the surface: a family of simple closed curves Γ on

a surface realizes all types of pants decompositions if for any pants decomposition of the

surface, there exists a homeomorphism sending it to a subset of the curves in Γ. We are

interested in estimating the size of such a family and we provide upper and lower bounds

for different instances of the problem, see the right picture in Figure 1.8. Especially in the

case of surfaces without boundaries, further improvements might provide a negate answer

to Question 1 on the existence of a shortest path metric on surfaces (see Section 8.1 for

further details on this connection).

Contributions

• We provide an exponential upper bound and a superlinear lower bound on

the minimal size of a family of curves that realizes all types of pants decom-

positions in the case of surfaces without punctures. See Theorem K.

• We provide upper and lower bounds in the case of surfaces with punctures

which we can consider labelled or unlabelled. See Theorem L.

• We also investigate a similar concept of universality for triangulations of poly-

gons, where we provide bounds which are tight up to logarithmic factors. See

Theorems M and N.

1.2 Organization

In Chapter 3, we begin by introducing the various notions we will be using throughout

this thesis. Our work uses tools from different fields of mathematics such as geometry,

topology and topological graph theory. We also explain the related topic of genome

rearrangements in bio-informatics. While we strive to provide references for most of the

notions introduced within this chapter, it is worth noting that some concepts (such as

box drawings and relations to genome rearrangements) are presented and formalized here

for the first time. Nevertheless, we have diligently cited the sources from which the ideas

have been derived.

Our results appear in Sections 4, 5, 6, 7 and 8 and except Sections 5 and 6 that are

1.2 Organization 15

closely related, the rest of the chapters can be read independently. Note that our main

theorems are labelled by alphabetic letters throughout the thesis.

Chapter 4 concentrates on two results related to the joint crossing numbers. Both

are generalizing results on orientable surfaces to the non-orientable setting. First, we

provide a correction for an argument of Negami on the joint crossing number of graphs

that has a minor issue in the case of non-orientable surfaces. Later, we provide a universal

metric for non-orientable surfaces that allows every graph embeddable on the surface to

be embedded such that every edge is a concatenation of O(g) shortest paths. This proof

involves generalizing an octagonal decomposition known for orientable surface to the non-

orientable setting. Namely, Theorems A, B and C can be found in this chapter. The first

result is contained in the preliminary version of [A] that is published in the Proceedings

of the 38th Symposium on Computational Geometry. Both results appear in the journal

version [A] that has been published in Discrete & Computational Geometry.

In Chapters 5 and 6, we initiate a thorough study of short topological decompositions

on non-orientable surfaces. Chapter 5 contains our result on computing a canonical de-

composition of non-orientable surfaces, in which we introduce a new approach. Namely

Theorem D can be found in this chapter. This is the main result in [A] which appears

in both the conference and the journal version. Chapter 6 contains unpublished results

on other shapes of decompositions of both orientable and non-orientable surfaces. The

results in this chapter mostly come from using our new approach to find other short de-

compositions. Also we provide a lower bound for canonical decompositions in this chapter.

Namely, Theorems F and H can be found in this chapter.

Chapter 7 contains our results on a conjecture of Mohar about genus crossing numbers

and degenerate crossing numbers. Namely, Theorems J and I can be found in this chapter.

The results in this chapter appear in [C] which has appeared in the Proceedings of the

31st International Symposium on Graph Drawing and Network Visualization.

Chapter 8 contains our result on estimation of the size of the family of curves that

realizes all types of pants decompositions. Namely, Theorems K, L, M and N can be found

in this chapter. Results in this chapter appear in [B] which has been accepted in Israel

Journal of Mathematics.

Finally, to conclude in Chapter 9, we summarize our main results and the remaining

open problems and explain some future avenues of research arising from our work.

16 Introduction en Français

Chapitre 2

Introduction en Français

Prenez une bande de papier, faites lui une torsion d’un demi tour, puis collez les deux ex-

trémités ensemble. L’objet qui en résulte est appelé ruban de Möbius. Une caractéristique

intrigante de ce ruban est qu’il n’a qu’un seul côté : imaginez un cafard marchant sur le

ruban. Après avoir fait une fois le tour du ruban, le cafard se retrouve au même endroit

qu’au début, mais de l’autre côté du papier, voir la Figure 2.1. De même, les concepts

de droite et de gauche ne sont pas définis sur l’ensemble du ruban de Möbius : ce qui

était à la ”droite” du cafard en un point de la bande, après en avoir fait le tour une fois,

se trouve maintenant à son ”gauche”. Cette absence de distinction entre la droite et la

gauche caractérise une telle surface comme étant non orientable.

Figure 2.1 : Le cafard est capable de parcourir le ruban de Möbius en entier, ceci montre que

cette surface n’a qu’un seul côté.

Dans cette thèse, nous étudions les algorithmes et le potentiel informatique issus des

plongements de graphes sur des surfaces, plus particulièrement sur les surfaces non orien-

tables. Avant de définir toutes ces notions et d’aborder les aspects mathématiques de cette

thèse, commençons par présenter certains phénomènes d’anatomie humaine et de l’ADN

17

qui présentent un aspect non orientable intéressant.

Phénomène d’anatomie humaine. Expliquons d’abord comment fonctionne le système

visuel humain. Lorsque nous regardons un objet, dans chacun de nos yeux, le cristallin

inverse l’image de l’objet en la formant sur la rétine. Les fibres du nerf optique trans-

mettent ensuite ces deux images rétiniennes au cerveau, qui les fusionne pour créer une

image congruente qui est l’image perçue.

Figure 2.2 : L’image de gauche schématise le traitement de l’information par notre système

optique. L’image du milieu explique le croisement des fibres nerveuses. L’image de droite montre

la singularité qui se produirait si le système optique n’avait pas été croisé comme il l’est. Notez

que dans les images du milieu et de droite, pour des raisons de simplicité, on suppose que les

champs visuels ne se chevauchent pas.1

Un phénomène intéressant de l’anatomie humaine est la décussation, c’est-à-dire le

croisement des fibres nerveuses dans le corps. Dans le système visuel humain, la décussa-

tion des fibres nerveuses optiques se produit dans le chiasme optique. Ces fibres nerveuses

se croisent à l’intérieur du chiasme, ce qui inverse la position des images transmises. Cette

décussation est nécessaire pour rétablir la continuité de l’image après la fusion des deux

images rétiniennes dans le cerveau, voir l’image du milieu dans la Figure 2.2 (le croisement

des fibres nerveuses optiques est partiel dans le système visuel humain pour rétablir une

image congruente et gérer le chevauchement des champs de visions). L’image de gauche de

la Figure 2.2 donne une représentation plus précise du système visuel, en tenant compte de

ce croisement partiel). S’il n’y avait pas de croisement, le cerveau percevrait une singula-

rité dans l’image : par exemple, il percevrait ”DOMFREE” au lieu du mot ”FREEDOM”,

voir l’image de droite dans la Figure 2.2.

La décussation des fibres nerveuses et l’inversion des données se produisent également

1Les idées des images des Figures 2.2 et 2.3 ont été tirées de [73] et [39], respectivement.

18 Introduction en Français

dans de nombreux sites du tronc cérébral et de la moelle épinière. Par exemple, la décus-

sation des pyramides dans le tronc cérébral témoigne du croisement des fonctions motrices

(voir Figure 2.3) : le côté gauche du cerveau contrôle le côté droit du corps, et vice versa.

La raison de ce phénomène n’est pas encore totalement comprise, mais une explication to-

pologique possible est que sans ce croisement, il en résulterait une singularité géométrique

qui provoquerait le mélange des informations sur l’orientation gauche/droite et haut/bas

dans le cerveau (voir [70]). Nous renvoyons le lecteur à [73] pour plus de détails sur ces

phénomènes de croisements dans l’anatomie humaine.

Figure 2.3 : L’image représente le système nerveux du cerveau et la décussation des pyramides

où les nerfs moteurs se croisent.

Un phénomène biologique. À la fin des années 1930, après avoir déployé des efforts

considérables pour collecter des échantillons de génomes de drosophiles provenant de di-

verses régions de l’Ouest américain, Dobzhansky et Sturtevant [27] ont fait une découverte

remarquable. Ils ont constaté que le génome de mouches provenant de différentes régions

différaient uniquement d’un ou deux blocs de gènes dans la séquence ADN, et qu’à l’in-

térieur de chacun de ces blocs, l’ordre linéaire des gènes était inversé. Cette découverte a

ouvert la voie à la reconnaissance d’autres opérations similaires sur les génomes (telles que

19

Figure 2.4 : À gauche : la séquence du haut (respectivement du bas) représente une séquence

de gènes dans l’ADN du chou (respectivement du navet). Trois inversions suffisent pour la

transformer en une séquence de gène de navet. À droite : l’image illustre l’inversion de la séquence

w, l, f lorsqu’elle fait le tour du ruban de Möbius.

l’échange de blocs, la fusion, la séparation, etc.) tout au long du XXe siècle. Ceci a conduit

à un nouveau paradigme dans l’étude, par l’ADN, de l’évolution : les réarrangements du

génome.

Dans les années 1980, Palmer et Herbon ont analysé suffisamment de données expé-

rimentales pour proposer l’idée que la distance évolutive entre deux espèces puisse être

estimée par le nombre d’inversions nécessaires pour transformer une séquence de gènes

en une autre. À ce stade, le problème peut être abstrait et confié à un informaticien :

développer un algorithme capable de reconstruire, en un temps raisonnable, le nombre

minimum de réarrangements nécessaires pour passer d’une séquence à l’autre. Plus pré-

cisément, pour les génomes unichromosomiques, cela correspond à trouver le plus petit

nombre d’inversions nécessaires pour transformer un génome en un autre. Ce problème

algorithmique s’est avéré être au cœur de cette thèse. La Figure 2.4 illustre une suite

minimale d’inversions entre les séquences ADN du chou et du navet, où chaque inversion

peut être visualisée comme un retournement ou une torsion dans la séquence du gène.

Le croisement des fibres nerveuses sur la ligne médiane du corps humain et les inver-

sions de séquences génétiques dans l’ADN ont un point commun : tous deux impliquent un

changement d’orientation gauche-droite dans un objet symétrique, ce qui est la propriété

caractéristique du ruban de Möbius.

La décussation des fibres nerveuses et les inversions des séquences génétiques peuvent

être formalisées par la trajectoire des brins autour d’une bande de Möbius, comme le

montre l’image de droite de la Figure 2.4. Outre leur intrigant comportement non orien-

table, les algorithmes de réarrangement du génome dérivés de la bio-informatique se sont

révélés inestimables dans le cadre de cette thèse.

20 Introduction en Français

Le thème de cette thèse

Tout espace qui ressemble localement au plan est appelé surface. Une surface est dite non

orientable si elle contient un ruban de Möbius. Ce type de surface hérite de l’absence de

notion cohérente de gauche et de droite. Dans le cas contraire, la surface est dite orientable.

La plupart des surfaces que nous côtoyons dans notre vie quotidienne, comme celle de la

Terre, sont orientables. En fait, la cohérence qui nous aide à choisir des directions et à lire

des cartes provient de l’orientabilité de la surface de la Terre.

Du point de vue topologique, deux surfaces sont équivalentes si l’on peut transformer

l’une en l’autre par une déformation continue, sans avoir recours à un découpage ou à un

collage. Plus précisément, deux surfacesX et Y sont équivalentes s’il existe une application

h : X → Y telle que h est bijective et que h et son inverse sont toutes deux continues.

L’application h est appelée un homéomorphisme et X et Y sont appelés homéomorphes.

Par exemple, considérons un cube et une sphère. Bien que ces surfaces semblent très

distinctes dans l’espace tridimensionnel, il s’agit en fait de surfaces homéomorphes en

topologie. En revanche, un cylindre et un ruban de Möbius ne sont pas homéomorphes et

il n’y a aucun moyen de transformer l’un en l’autre sans couper et coller une fois. Ceci

est également visible dans le fait que le ruban de Möbius n’a qu’un seul bord alors que le

cylindre en a deux.

Dans cette thèse, nous étudions des structures telles que les graphes et les courbes sur

des surfaces. Ces graphes et ces courbes donnent à nos objets topologiques une structure

discrète qui permet d’encoder des données topologiques complexes de la surface afin de

les étudier d’un point de vue algorithmique. Pour expliquer comment un graphe capture

la structure topologique de la surface, commençons par un exemple. Imaginons que nous

ayons une sphère que nous voulons couper pour obtenir un disque. Une coupe le long d’un

chemin qui ne s’auto-intersecte pas suffit pour y parvenir, voir la Figure 2.5. Cependant,

toutes les surfaces ne sont pas aussi simples qu’une sphère. Considérons la surface d’un

donut (appelée tore). Il faut au moins deux coupes le long de tels chemins pour obtenir

un disque à partir du tore, voir la Figure 2.5. Cette observation implique que ces deux

surfaces sont topologiquement différentes. En définissant un graphe à partir de ces coupes

de la surface, nous pouvons obtenir des informations précieuses sur sa structure. Ceci peut

être formalisé par la caractéristique d’Euler.

Soit G un graphe dessiné sur une surface S sans auto-intersections ; un tel dessin

est appelé un plongement de G sur S. Un plongement de G sur S est appelé cellulaire si

toutes les composantes connexes du complément de G, appelées faces du plongement, sont

homéomorphes à des disques. Soit v, e et f le nombre de sommets, d’arêtes et de faces dans

le plongement cellulaire de G sur S. Alors v − e+ f est appelé la caractéristique d’Euler

du plongement. Notamment, cette quantité est indépendante du graphe, c’est-à-dire que

tout graphe cellulairement plongé sur cette surface a la même caractéristique d’Euler.

21

Figure 2.5 : Des coupes minimales le long de chemins sans auto-intersection pour obtenir un

disque à partir d’une sphère et d’un tore.

Par conséquent, nous appelons également cette quantité la caractéristique d’Euler de la

surface, dénotée par χ(S). De plus, la caractéristique d’Euler est un invariant topologique

de la surface : c’est une propriété qui est préservée par les homéomorphismes. Montrer

que deux surfaces ont des caractéristiques d’Euler différentes implique donc qu’elles ne

sont pas homéomorphes. Par exemple, calculons la caractéristique d’Euler de la sphère

et du tore en calculant la caractéristique d’Euler des graphes de découpe représentées

dans la Figure 2.5. Sur la sphère, le graphe a deux sommets, une arête et une face, la

caractéristique d’Euler est donc égale à 2. En revanche, le graphe plongé sur le tore a un

sommet, deux arêtes et une face, ce qui signifie que la caractéristique d’Euler du tore est

égale à 0. Cela nous donne un moyen quantitatif de distinguer ces deux surfaces.

Classification des surfaces. Le théorème de classification des surfaces est un résultat

fondamental de topologie qui permet de déterminer entièrement les surfaces à partir de

deux invariants topologiques : l’orientabilité et la caractéristique d’Euler.

Par corollaire, toute surface peut être obtenue à partir d’une sphère épointée à laquelle

ont été collées des surfaces à bords simples le long de leurs bords : des rubans de Möbius,

alors appelés cross-caps, ou des tores épointés une fois, alors appelés anses. La surface

est orientable si elle est obtenue par le recollement d’anses uniquement, leur nomnbre est

alors appelé genre de la surface. Similairement si la surface est obtenue par recollement de

ruban de Möbius, elle est non orientable et son genre est le nombre de rubans de Möbius

attachés à la sphère. Le nombre de bords, et celui de surfaces attachés, cross-cap et anses,

déterminent alors la caractéristique d’Euler de la surface. En effet, pour une surface S de

genre g et avec h bords, nous avons χ(S) = 2− g − h.

22 Introduction en Français

Figure 2.6 : Deux représentations d’une surface non orientable de genre 3.

Comment classer maintenant une surface construite en collant à la fois un ruban de

Möbius et une anse à une sphère ? Cette surface est non orientable car elle contient un

ruban de Möbius. De plus il peut être montré que sa caractéristique d’Euler est −1, ce qui

est aussi le cas d’une sphère à laquelle nous avons ajouté 3 cross-caps (χ(S) = 2−3 = −1),

voir Figure 2.6. Sur cette image, nous pouvons voir qu’il est difficile de visualiser un

homéomorphisme entre ces deux surfaces, en particulier car les surfaces non orientables et

sans bords ne peuvent être plongées dans des espaces de dimension 3 (voir la discussion

après le Corollaire 3.46 dans [45]). La topologie algorithmique formalise et analyse ce

genre de problèmes et nous permet de calculer de tels homéomorphismes.

Topologie algorithmique des surfaces. La topologie algorithmique dans son ensemble

nous donne des outils et algorithmes pour traiter et analyser des problèmes et structures

topologiques. Plusieurs problèmes topologiques indécidables dans le cas général admettent

des solutions efficaces lorsqu’ils sont restreints aux surfaces. Nombre de problèmes élémen-

taires de topologie algorithmique sont obtenus en essayant de calculer efficacement des

invariants topologiques fondamentaux. Nous présentons dans cette section un échantillons

de problèmes de topologie algorithmique. Nous revoyons le lecteur à [20], [19] et [32] pour

d’autres problèmes du domaine.

Pour définir proprement nos algorithmes, nous avons d’abord besoin d’un codage dis-

cret des surfaces. Ici, nous considérons des surfaces obtenues en collant des disques polygo-

naux sur leurs bords. De telles surfaces sont appelées surfaces combinatoires. De manière

équivalente, ces disques polygonaux peuvent être considérés comme les faces d’un graphe

cellulairement plongé sur la surface, comme défini plus haut.

1. Tester l’homéomorphisme. La question la plus élémentaire et naturelle sur les sur-

faces est de vérifier si deux surfaces sont les mêmes, si elles sont homéomorphes.

Ceci renvoie au théorème de classification des surfaces que nous avons présentés

plus haut : deux surfaces sont les mêmes si et seulement si elles ont la même orien-

tabilité et si la même caractéristique d’Euler. Comme expliqué plus haut, il est

23

possible de calculer, et donc de comparer, les caractéristique d’Euler des surfaces

combinatoires. Si les caractéristiques d’Euler sont égales, il suffit ensuite de tester

leur orientabilité. Ceci peut être fait en tentant de choisir une orientation sur chaque

face, de telle sorte que sur chaque arête, les deux orientations induites par les orien-

tations des faces adjacentes soient opposées. Si une telle orientation existe alors la

surface est orientable, elle est non orientable sinon.

2. Calcul du plus petit graphe de découpe Comme expliqué précédemment, toute

surface peut être découpée le long d’un graphe pour en obtenir un disque. Un tel

graphe est appelé graphe de découpe (cut graph). Le calcul de graphes de découpe

est essentiel pour plusieurs problèmes topologiques car ils simplifient la topologie

de la surface et la rendent plus simple à manipuler. Il est ensuite naturel d’en faire

un problème d’optimisation et de se demander quel est le meilleur moyen de faire

cette découpe. Pour qu’un tel problème d’optimisation soit bien défini, la surface

doit être munie d’une métrique. Un moyen de procéder est de considérer un graphe

cellulairement plongé sur la surface qui induit alors une métrique discrète. Dans ce

modèle, les courbes utilisent uniquement les arêtes du graphes et leurs longueur est

le nombre d’arêtes utilisées (dans cette thèse, nous utiliserons principalement un

modèle équivalent appelé modèle de métrique de croisements (cross-metric surface

qui sera défini en détail dans les préliminaires).

Le calcul du plus petit graphe de découpe a été très étudié récemment [18, 17,

33] sous différents aspects algorithmiques (complexité, approximation et complexité

paramétré).

Revenons maintenant au problème de la visualisation d’un homéomorphisme entre les

deux représentations de la surface non orientable de genre 3, présenté en Figure 2.6. Une

approche classique pour obtenir un homéomorphisme entre deux surfaces est de d’abord

les découper en disques, puis de faire correspondre les disques par un homéomorphisme,

et enfin d’étendre cet homéomorphisme aux surfaces en recollant les disques sur eux-

mêmes. Pour que cette approche fonctionne, les deux graphes de découpe doivent avoir

la même forme. Il est possible de découper la surface de la Figure 2.6 le long d’un graphe

à un sommet et trois arêtes a, b et c pour que leurs extrémités apparaissent dans l’ordre

aabbcc autour du sommet. De cette façon, nous obtenons un hexagone pour lequel chaque

côté correspond à une copie d’une des arêtes a, b ou c et ceci avec l’ordre aabbcc autour

de l’hexagone (voir Figure 2.7). Ce graphe donne une représentation combinatoire d’une

surface non orientable de genre 3 dans laquelle chaque arête encode l’un des cross-caps,

voir l’image de gauche sur la Figure 2.7. Le produit d’une telle découpe, le long d’un

graphe cellulairement plongé à un sommet, est appelé décomposition canonique de la

surface. Appelons aabbcc l’hexagone obtenu en coupant la première surface, et a′a′b′b′c′c′

24 Introduction en Français

Figure 2.7 : L’homéomorphisme entre deux surfaces non orientables de genre 3 et les décompo-

sitions canoniques des surfaces.

celui obtenu en coupant l’autre. Nous pouvons définir un homeomorphisme entre ces

hexagones tel que a, b et c soient envoyés sur a′, b′ et c′ respectivement. En recollant les

hexagones le long de leurs bords, en accord avec les arêtes du graphe de découpe, nous

récupérons les surfaces initiales et un homeorphisme entre elles.

Ici encore, il est naturel de demander des façons efficaces de décomposer canoniquement

une surface : étant donnée une surface combinatoire, est-il toujours possible de calculer

une décomposition canonique relativement courte vis à vis de la métrique de la surface ? Il

existe un algorithme efficace qui calcule une décomposition canonique courte des surfaces

orientables [53]. Pour les surfaces non orientables, il existe un algorithme qui calcule une

décomposition canonique [52], mais elle n’est pas aussi courte que dans le cas orientable.

Le calcul de décompositions courtes des surfaces non orientable est l’un des résultats

principaux de cette thèse. Ce problème illustre à la perfection l’essence de notre travail :

l’approche d’un problème topologique sur les surfaces sous l’angle de calculabilité ainsi

qu’un dialogue entre topologie et informatique. De plus, ce problème aide à mettre en

lumière la topologie sous-jacente au problème du réarrangement de génomes présenté plus

haut, qui à son tour établit une connexion féconde avec la bio-informatique.

2.1 Contributions de la thèse

Le thème prédominant de ce travail est l’étude de décompositions de surfaces et plus par-

ticulièrement la recherche de moyen efficace de décomposer une surface en des morceaux

à topologie plus simple. Nous établissons le premier résultat de décomposition efficace

pour des surfaces non orientables ainsi qu’un algorithme pour les calculer. Cette étude

est étroitement liée au deuxième thème de cette thèse, qui est centré sur les nombres de

croisements dans les graphes. Notre travail apporte des contributions significatives aux

trois sujets suivants qui sont résumés en Figure 2.8.

2.1 Contributions de la thèse 25

Figure 2.8 : À gauche : Peut-on toujours trouver une décomposition canonique courte pour une

surface non orientable ?

Au milieu : Peut-on toujours trouver un dessin planaire pour un graphe plongé tel que dcr(G) =

gcr(G) ? Dans cette image gcr(G) = 5 mais l’arête 4 n’est pas simple. Est-il possible de trouver

un dessin pour ce graphe avec cinq croisement
⊗

tel qu’aucune courbe ne soit compliquée ?

À droite : Combien de courbes sont nécessaires pour contenir toutes les décompositions en

pantalon d’une surface ? L’image présente 10 courbes qui réalisent toutes les décompositions en

pantalon de la surface orientable de genre 3.

1) Décompositions de surfaces et nombres de croisements joints

La décomposition d’une surface pour simplifier sa topologie est une méthode majeure dans

l’étude de sa structure qui a des applications à la fois théoriques et pratiques. Comme

mentionné plus haut, dans la plupart de ette thèse, nos surfaces seront associées à une

structure géométrique donnée par un graphe plongé sur elles. Ces graphes leurs confèrent

ainsi une métrique discrète. Il y a plusieurs façon de modéliser cette métrique : le modèle

combinatoire, qui a déjà été abordé, et le modèle de métrique de croisements (nous ren-

voyons le lecteur à la Section 3.5.1 pour une définition plus détaillée de ces deux modèles).

Intuitivement, dans le modèle de métrique de croisements, la longueur d’une décomposi-

tion est donnée par le nombre de fois que le graphe dont est issu la métrique est croisé par

le graphe de décomposition, sachant que de tels croisements ne peuvent se produire que

sur les arêtes. Dans l’autre modèle, le modèle combinatoire, le graphe de décomposition

vit sur les arêtes du graphe dont est issue la métrique, et la longueur de la décomposition

est le nombre d’arêtes utilisées par le graphe, compté avec multiplicité.

Pour des applications pratiques, il est naturel d’essayer de trouver une décomposition

d’une surface qui soit courte. Par exemple, un problème classique consiste en la recherche

d’une décomposition canonique courte, qui découpe la surface en un disque. La meilleure

borne connue, pour des cas particuliers, sur la longueur de telles décompositions d’une

26 Introduction en Français

surface de genre g est O(g|E(G)|) où G est le graphe de la métrique et |E(G)| son nombre

d’arêtes. Cependant, avant notre notre travail, aucune borne de ce type n’était connue pour

les décompositions de surfaces non orientables, voir l’image de gauche dans la Figure 2.8.

Un des objectifs de cette thèse est l’analyse et l’étude systématiques des décompositions

efficaces de surfaces, ainsi que la conception d’algorithmes pour les calculer.

Des décompositions aux nombres de croisements joints de graphes. Le problème de

la recherche de décompositions efficaces de la surface est dualement équivalent à l’étude

de la meilleure façon de plonger simultanément deux graphes sur la même surface. Plus

précisément, nous considérons le nombre de croisements joints d’une paire de graphes

plongés : pour deux graphes séparément plongés G1, G2 sur une surface fermée S, nous

cherchons à minimiser le nombre d’intersections entre h(G1) et G2 sur l’ensemble des

homéomorphismes h : S → S avec la contrainte additionnelle que toutes les intersetions

doivent être transverses et sur les arêtes. La conjecture qui suit est une conjecture de

Negami, ouverte depuis plus de 20 ans :

Conjecture 4. (Conjecture de Negami) Il existe une constante universelle universelle C

telle que pour toue paire de graphes G1 et G2 plongés sur une surface S, leurs nombre de

croisements joints est au plus C|E(G1)||E(G2)|.

La conjecture de Negami implique qu’il existe des décompositions efficaces de n’im-

porte quelle forme : chaque arête du graphe de décomposition a une longueur maximale

de O(|E(G)|) où G est le graphe de la métrique de la surface. Malgré des découvertes

ultérieures [3, 47, 66], cette conjecture reste ouverte. La meilleure borne connue pour le

nombre de croisements joints de graphes est O(g|E(G1)||E(G2)|), où g est le genre de la

surface S (voir [59]). Au niveau des décompositions, cela implique directement que pour

toute surface discrète et tout graphe qui découpe la surface en un disque, il existe une

décomposition de longueur O(g2|E(G)|) où G est le graphe de la métrique. Cette limite

est assez élevée pour des applications pratiques.

Métriques universelles de plus courts chemins. Pour tenter de faire des progrès sur la

conjecture de Negami, Hubard, Kaluža, de Mesmay et Tancer [50] ont posé la question,

plus géométrique, suivante :

Question 2. Étant donné une surface S de genre g, existe-t-il une métrique riemannienne

sur S telle que tout graphe simple plongeable sur S puisse être plongé tel que les arêtes

soient des plus courts chemins sur S ?

L’existence d’une telle métrique impliquerait la conjecture de Negami, en effet, deux

graphes quelconques pourraient être plongés de telle sorte que leurs arêtes soient des plus

2.1 Contributions de la thèse 27

courts chemins. Dans une métrique riemannienne, deux plus courts chemins se croisent

au plus une fois, ce qui implique que toute paire d’arêtes des graphes se croiseraient au

plus une fois (Voir Section 4.1 pour une explication plus détaillée).

Bien que la question 2 reste ouverte, une relaxation de celle-ci est prouvée dans [50].

Dans cet article, il est exhibé une métrique universelle Rimanienne sur une surface orien-

table de genre g telle que chaque arête est une concaténation de O(g) plus courts chemins.

Il ets également connu que cette métrique implique la borne O(g|E(G1)||E(G2)|) pour le
nombre de croisements joints de graphes prouvée dans [59]. Néanmoins, le cas des surfaces

non orientables reste un problème ouvert dans cet article.

Contributions

Dans cette thèse, nous nous concentrons principalement sur les décompositions de

surfaces non orientables, étant relativement peu explorées par rapport aux surfaces

orientables.

• Nous fournissons les premières décompositions courtes pour les surfaces non

orientables et des algorithmes polynomiaux pour les calculer en nous appuyant

sur une nouvelle technique. Voir les Théorèmes C et D et la Section 6.3. Dans

la preuve du théorème D, nous exploitons des résultats de bio-informatique.

• Nous utilisons cette nouvelle technique pour fournir une nouvelle méthode

de calcul de décompositions canoniques des surfaces orientables. Voir le théo-

rème F.

• Nous fournissons une borne inférieure pour les décompositions canoniques en

utilisant un argument de comptage. Voir le théorème H.

• Nous corrigeons la preuve de Negami de la borne O(g|E(G1)||E(G2)|) pour

les nombres de croisements joints de deux graphes quelconques G1 et G2 dans

le cas non orientable. Voir le théorème A.

• Nous généralisons la construction de la métrique universelle introduite

dans [50] au cas non orientable. Voir le théorème B.

2) Nombre de croisements dégénérés vs. nombre de croisements de genre

Nous passons ensuite des décompositions aux nombres de croisements pour les graphes.

Les nombres de croisements sont un outil important et populaire dans le dessin et la

visualisation de graphes (voir [68] pour un panorama) où la minimisation du nombre de

croisement est la principale manière de réduire la complexité des dessins. Une question

28 Introduction en Français

classique dans l’étude des nombres de croisements est de savoir si deux nombres de croise-

ments différents peuvent cöıncider sur de larges classes de graphes. Dans cette thèse, nous

nous intéressons aux deux nombres de croisements suivants. Le nombre de croisements dé-

générés de G, noté dcr(G) (degenerate crossing number), défini pour la première fois par

Pach et Tóth [61], est le plus petit nombre de croisements parmi les dessins simples de G

dans le plan, dans lesquels les croisements sont transversaux et le croisement de plusieurs

arêtes en un point est compté comme un seul. Si nous autorisons les auto-intersections

d’arêtes de G, cela définit le nombre de croisements de genre de G, gcr(G) qui a été défini

pour la première fois par Mohar [57]. Il est intéressant de noter que ces deux nombres

de croisements se traduisent dans notre contexte de graphes plongés sur des surfaces non

orientables : le nombre de croisements dégénérés de G est égal au plus petit nombre de

cross-caps nécessaires sur une surface pour y plonger G de telle sorte que chaque arête

de G passe par chaque cross-cap au plus une fois. De plus, le nombre de croisements de

genre de G est égal au plus petit nombre de cross-caps nécessaires sur une surface pour y

plonger G, mais ici une arête est autorisée à entrer dans chaque cross-cap plus d’une fois.

Il est évident, de par leurs définitions que gcr(G) ≤ dcr(G). La conjecture suivante, de

Mohar, concerne ces deux nombres de croisements :

Conjecture 5. ([57, Conjecture 3.1]) Pour tout graphe simple G, dcr(G) = gcr(G).

Mohar a également formulé une conjecture plus forte selon laquelle cette affirmation

tient aussi pour tout plongement de graphe sans boucle. Notons S2 \g
⊗

, la sphère privée

de g petits disques, et par (S2 \ g
⊗

)/ ∼ l’espace obtenu en quotientant la frontière

de chaque disque avec une carte antipodale. Nous appelons chaque
⊗

une cross-cap.

Topologiquement, ceci revient à coller un ruban de Möbius, le long de son bord, sur

chaque disque manquant ; ce qui donne la surface non orientable de genre g, que nous

notons Ng. Nous disons qu’un multigraphe plongé ϕ : G→ Ng admet un dessin en cross-

caps ϕ′ : G→ S2, s’il existe un homéomorphisme f : Ng → (S2\g
⊗

)/ ∼ tel que f(ϕ(G)) =

ϕ′(G). Lorsqu’une arête du graphe intersecte une cross-cap, on dit que l’arête entre dans

la cross-cap. Si un graphe G a un nombre de croisements dégénérés égal au nombre de

croisements de genre alors il existe un dessin en cross-caps de G avec dcr(G) = gcr(G)

cross-caps dans lesquelles chaque arête entre au plus une fois. Une pseudo-triangulation

est un multi-graphe cellulairement plongé ϕ : G → S dans lequel chaque face a degré

trois. La conjecture suivante est la plus forte conjecture de Mohar concernant les pseudo-

triangulations :

Conjecture 6. ([57, Conjecture 3.4]) Pour tout entier strictement positif g, il existe une

pseudo-triangulation sans boucle de Ng qui admet un dessin en cross-caps avec g cross-

caps dans lesquelles chaque arête entre au plus une fois dans chacune d’entre elles.

2.1 Contributions de la thèse 29

L’image centrale de la Figure 2.8 illustre le dessin d’une cross-cap et la question à

laquelle cette conjecture se résume.

Contributions

• Nous fournissons un plongement d’un graphe à 2 sommets sans boucle sur

une surface de genre 5 qui est un contre-exemple à la Conjecture 6. Voir le

Théorème I.

• Nous prouvons un théorème de structure qui classifie presque complètement

les plongements de graphes à 2 sommets sans boucle pour lesquels la conjec-

ture 6 se vérifie. Cela montre que la plupart des plongements de graphes à 2

sommets sans boucle vérifient cette conjecture. La preuve utilise directement

un algorithme issu de la bio-informatique. Voir Théorème J.

3) Dénombrer les courbes et les arcs sur les surfaces

Les résultats de la dernière partie de cette thèse ont une saveur assez différente par rap-

port au reste car nous oublions les longueurs des courbes et des nombres de croisements

pour nous concentrer, contrairement aux résultats précédents, uniquement sur les surfaces

orientables. Notre motivation pour étudier ce problème est de progresser vers une réponse

à la Question 2 sur l’existence d’une métrique universelle de plus courts chemins.

Nous nous intéressons maintenant aux décompositions en pantalons de surfaces orien-

tables. Une décomposition en pantalons est un ensemble de courbes fermées sur une surface

qui la découpe en pantalons (sphères à trois trous). Les pantalons sont des blocs fondamen-

taux dans l’étude des surfaces. Nous étudions la taille minimale d’une famille universelle

de courbes qui réalise toutes les décompositions en pantalons d’une surface : une famille

de courbes fermées simples Γ sur une surface réalise tous les types de décompositions en

pantalons si pour toute décomposition en pantalons de la surface, il existe un homéo-

morphisme l’envoyant sur un sous-ensemble des courbes de Γ. Nous nous intéressons à

l’estimation de la taille d’une telle famille et nous fournissons un encadrement de sa taille

pour différentes instances du problème, voir l’image de droite dans la Figure 2.8. En par-

ticulier, dans le cas des surfaces fermées, des progrès pourraient répondre négativement à

la question 2 sur l’existence d’une métrique de plus courts chemins sur ces surfaces (voir

la section 8.1 pour plus de détails sur cette implication).

30 Introduction en Français

Contributions

• Nous fournissons une borne supérieure exponentielle et une borne inférieure

superlinéaire sur la taille minimale d’une famille de courbes qui réalise tous

les types de décompositions en pantalons dans le cas de surfaces sans bords.

Voir le théorème K.

• Nous fournissons des bornes supérieures et inférieures dans le cas de surfaces

épointées avec des perforations que nous pouvons considérer comme étiquetées

ou non. Voir le Théorème L.

• Nous étudions également un concept similaire d’universalité pour les triangu-

lations de polygones, où nous fournissons des bornes optimales à un facteur

logarithmique près. Voir les théorèmes M et N.

2.2 Organisation

Dans le chapitre 3, nous commençons par définir les différentes notions que nous utilise-

rons tout au long de cette thèse. Notre travail utilise des outils provenant de différents

domaines des mathématiques tels que la géométrie, la topologie et la théorie topologique

des graphes. Nous expliquons également le sujet connexe des réarrangements du génome

en bio-informatique. Bien que nous nous efforcions de fournir des références pour la plu-

part des notions abordées dans ce chapitre, il convient de noter que certains concepts (tels

que les dessins à bôıte et les relations avec les réarrangements du génome) sont présentés

et formalisés ici pour la première fois. Néanmoins, nous avons diligemment cité les sources

à partir desquelles les idées ont été dérivées.

Nos résultats apparaissent dans les sections 4, 5, 6, 7 et 8 et, à l’exception des sec-

tions 5 et 6 qui sont étroitement liées, le reste des chapitres peut être lu indépendamment.

Notez que nos principaux théorèmes sont désignés par des lettres alphabétiques tout au

long de la thèse.

Le chapitre 4 se concentre sur deux résultats en rapport aux nombres de croise-

ments joints. Ces deux résultats généralisent des résultats sur les surfaces orientables

aux contexte non orientable. Tout d’abord, nous corrigeons un argument de Negami sur

le nombre de croisements joints qui a un problème mineur dans le cas des surfaces non

orientables. Ensuite, nous fournissons une métrique universelle pour les surfaces non orien-

tables qui permet à chaque graphe plongeable sur la surface d’être plongé tel que chaque

arête est une concaténation de O(g) plus courts chemins. Cette preuve repose sur la géné-

ralisation d’une décomposition octogonale connue pour les surfaces orientables au cadre

2.2 Organisation 31

non orientable. Les théorèmes A, B et C se trouvent dans ce chapitre. Le premier résultat

est contenu dans la version préliminaire de [A] qui est publiée dans les Proceedings of

the 38th Symposium on Computational Geometry. Les deux résultats apparaissent dans

une version journal [A] qui a été publiée dans le journal of Discrete & Computational

Geometry.

Dans les chapitres 5 et 6, nous entamons une étude approfondie des décompositions

topologiques courtes sur les surfaces non orientables. Le chapitre 5 expose notre résultat

sur le calcul de décompositions canoniques pour les surfaces non orientables, dans lequel

nous introduisons une nouvelle approche. Le théorème D se trouve dans ce chapitre. C’est

le résultat principal de [A] qui apparâıt à la fois dans la version conférence et la version

journal de l’article. Le chapitre 6 contient des résultats non publiés sur d’autres formes de

décompositions pour des surfaces orientables et non orientables. Les résultats de ce cha-

pitre proviennent principalement de l’utilisation de notre nouvelle approche pour trouver

d’autres décompositions courtes. Nous y fournissons également une borne inférieure pour

les décompositions canoniques et on y trouve les théorèmes F et H.

Le chapitre 7 expose notre résultat sur la conjecture de Mohar concernant les nombres

de croisements de genre et les nombres de croisements dégénérés. Les théorèmes J et I s’y

trouvent. Les résultats de ce chapitre apparaissent dans [C] qui est paru dans les Procee-

dings of the 31st International Symposium on Graph Drawing and Network Visualization.

Le chapitre 8 contient notre résultat sur l’estimation de la taille de la famille de courbes

qui réalise tous les types de décompositions en pantalons. Les théorèmes K, L, M et N s’y

trouvent. Les résultats de ce chapitre apparaissent dans [B] qui a été accepté dans Israel

Journal of Mathematics.

Enfin, dans le chapitre 9, nous résumons nos principaux résultats et problèmes ouverts,

et nous exposons quelques pistes de recherche découlant de notre travail.

32 Preliminaries

Chapter 3

Preliminaries

This chapter serves as an introduction to the key concepts that will be utilized throughout

the thesis. The presentation will primarily be formal and precise, so the reader may

choose to skip this section initially and return to it later as needed to fully comprehend

the necessary concepts. We have included references in each section to enable the reader

to access further information.

3.1 Topological surfaces

The primary objects and mathematical tools we employ are drawn from the field of topol-

ogy. This chapter offers an introduction to the essential concepts in this field that are

required for this work. However, a more detailed comprehension might be necessary to

fully grasp these concepts. For an in-depth explanation, we recommend consulting stan-

dard textbooks such as Hatcher’s [45] or Stillwell’s [72].

A surface S is a topological Hausdorff space that locally looks like the plane, i.e., each

point of the surface has a neighborhood homeomorphic to either the plane or the closed

half-plane. The points without a neighborhood homeomorphic to the plane comprise the

boundary of S. See Figure 3.1 for examples of surfaces. A surface is called orientable if

it does not contain a subspace homeomorphic to a Möbius band; otherwise, it is called

non-orientable (the two rightmost pictures in Figure 3.1 are non-orientable). A compact

surface without boundary is called a closed surface.

Throughout this thesis, we denote orientable surfaces and non-orientable surfaces by

M and N respectively, and by S whenever orientability is not of importance.

As briefly mentioned in the introduction, surfaces can be obtained by removing disks

from the sphere and gluing handles and cross-caps to it. A handle is obtained by removing

a small disk and gluing a punctured torus along its boundary to the boundary circle of the

resulting hole (see the left picture in Figure 3.2) and a cross-cap is obtained by removing a

3.1 Topological surfaces 33

Figure 3.1: Examples of surfaces: from left to right: sphere, punctured torus (the torus with

one boundary component), double torus, Projective plane and Klein bottle.

small disk from the sphere and gluing a Möbius band along its boundary to the boundary

circle of the resulting hole (see the right picture in Figure 3.2). If we only attach handles

to a sphere, the surface that we obtain is orientable but as soon as we attach a cross-cap,

we obtain a non-orientable surface.

Figure 3.2: Gluing Möbius band and handles to punctured spheres to obtain higher genus

surfaces. At left, the surface that we obtain is non-orientable and at right, it is orientable.

The following theorem states a fundamental topological classification result about

surfaces. We refer the reader to [72, Section 1.3] for a proof of this theorem.

Theorem 3.1.1 (Classification of surfaces). Every connected surface is homeomorphic to

either

• the orientable surface of genus g and b boundaries, which is obtained by attaching g

handles to a sphere and removing b open disks from it.

• the non-orientable surface of genus g with b boundaries, which is obtained by attach-

ing g cross-caps to a sphere, and removing b open disks from it.

Therefore, a topological surface is completely recognized by its genus g, number of

boundaries and its orientability. If the surface is orientable, we call g its orientable genus

and if it is non-orientable, we call g its non-orientable genus. We sometimes simply use

34 Preliminaries

genus to refer to the orientable genus (resp. non-orientable genus) of an orientable surface

(resp. non-orientable surface).

The following is directly implied by the classification of surfaces.

Corollary 3.1.2. A handle counts as two cross-caps for non-orientable surfaces: a surface

that is obtained by attaching k handles and l ≥ 1 cross-caps is homeomorphic to a non-

orientable surface of non-orientable genus 2k + l.

We denote by Ng,b (resp. Mg,b) the non-orientable (resp. orientable) surface of genus

g with b boundaries. As an example, the surfaces in Figure 3.1 from left to right, are

M0,0,M1,1,M2,0, N1,0 and N2,0, respectively. The Euler genus of a surface S, denoted by

eg(S), is twice the orientable genus for orientable surfaces and equal to the non-orientable

genus for non-orientable ones. Another way to define the Euler characteristic of a surface

S with h(S) boundary components is χ(S) = 2− eg(S)− h(S).

3.2 Structures on surfaces

In this thesis, our main objects of study are graphs and curves that live on surfaces.

3.2.1 Graphs embedded on surfaces

For a thorough study of graphs embedded on surfaces and their properties, we refer the

reader to the book of Mohar and Thomassen [58]. Here, we only recall the basic notions

that we use in this thesis.

An embedding of a graph G on a surface S is a continuous injective map ϕ : G → S.

Therefore ϕ maps the vertices of G to distinct points on S and an edge e = vw of G, that

connects the vertex v to w, to a simple curve connecting ϕ(v) to ϕ(w). Throughout this

thesis, we generally identify a graph with its embedding. For an embedding of G on a

surface S, each connected component of the complement of the image of G is called a face

of the embedding. A face can be recognized by a cyclic sequence of its incident edges and

vertices in which an edge might appear twice and a vertex might appear multiple times.

We denote by V (G), E(G) and F (G) the vertices, edges and faces of G respectively and

we use |.| to refer to the cardinality of these sets.

An embedding is cellular if every face of the embedding is homeomorphic to an open

disk. The degree of a face in a cellular embedding is the number of sides in the polygonal

disk corresponding to the face that we obtain by cutting the surface along the embedding.

A cellular embedding of a graph where every face has degree exactly three is called a tri-

angulation. In case that the graph of the triangulation is a multigraph (loops and multiple

edges between the same pair of vertices are allowed), it is called a pseudo-triangulation.

3.2 Structures on surfaces 35

Figure 3.3: An example of a pseudo-triangulation of the double torus. The three colored triangles

provide examples of triangles that are not incident to exactly three distinct vertices or three

distinct edges.

Note that a triangle in a pseudo-triangulation is not necessarily incident to three distinct

vertices and edges, see Figure 3.3 for examples of such triangles in a pseudo triangulation

of the double torus.

An embedding of a graph G on a surface S is called an orientable embedding if each

cycle in G is mapped to a two-sided closed curve on S; otherwise it is called a non-

orientable embedding. All graph embeddings on an orientable surface are orientable.

Two embedded graphs are equivalent, if there is a homeomorphism of the surface that

maps one to the other one.

3.2.1.1 Genus of a graph

A graph is called planar if it can be embedded on R2; otherwise it is non-planar. The

non-orientable genus of a graph G, g̃(G), is the smallest possible genus of a non-orientable

surface on which it can be embedded. Similarly the orientable genus of a graph G, g(G),

is the smallest possible genus of an orientable surface on which it can be embedded.

Lemma 3.2.1. Let G be a non-planar graph. Then g̃(G) ≤ 2g(G) + 1.

Proof. Consider an embedding of the graph G on an orientable surface M of genus g(G).

We know that eg(M) = 2g(G). Choose a face of this embedding. Cut a disk inside this

disk and attach a Möbius band. By doing so we obtain a non-orientable surface N of

non-orientable genus g(N) = 2g(G) + 1 and an embedding of G on N . This implies that

g̃(G) ≤ g(N) = 2g(G) + 1. This finishes the proof.

This lemma shows that the non-orientable genus of a surface is bounded by its ori-

entable genus but there is no inequality in the other direction to bound the orientable

genus of a graph by its non-orientable one. Indeed, there are examples of graphs for which

the non-orientable genus is considerably less than their orientable genus (see [4] or [58,

Theorem 5.8.1]).

36 Preliminaries

Figure 3.4: The dual graph to the pseudo-triangulation of the double torus depicted in Figure 3.3.

Recall from the introduction that for a graph G cellularly embedded on a surface S,

Euler’s formula states that |V (G)| − |E(G)| + |F (G)| = χ(S). When the graph is not

cellularly embedded, we have the inequality: |V (G)| − |E(G)|+ |F (G)| ≥ χ(S).

3.2.1.2 Duality

For a graph G cellularly embedded on a surface without boundary, the dual graph G∗ is

defined as follows: to each face f of G we associate a vertex f ∗. To each edge e in G that

is incident to faces f1 and f2 (possibly f1 = f2), we associate an edge e∗ that connects

the vertices f ∗
1 and f ∗

2 in G∗, see Figure 3.4. Note that in this construction, two vertices

can be connected to each other with multiple edges if their corresponding faces have more

than one common edge. It is easy to see that G∗∗ = G.

In Section 3.5.1.3, we introduce a generalization of this duality to the case of surfaces

with boundaries.

3.2.2 Curves on surfaces

A path from x to y on a surface, is a continuous map θ : [0, 1] → S where θ(0) = x and

θ(1) = y. Let θ : [0, 1] → S and θ
′
: [0, 1] → S be two paths on the surface, such that

θ(1) = θ
′
(0). The concatenation of θ and θ

′
, denoted by θ.θ′, is a path θ

′′
: [0, 1] → S

such that θ
′′
(t) = θ(2t) for 0 ≤ t ≤ 1

2
and θ

′′
(t) = θ

′
(2t − 1) for 1

2
≤ t ≤ 1. If a path

has the same endpoints x = θ(0) = θ(1), it is called a loop and x is called the basepoint

of the loop. A path with two ends on the boundary components of the surface is called

an arc. A closed curve or a cycle on a surface S is a continuous map θ : S1 → S where

S1 is the unit circle. A curve is a path or a closed curve. Curves are called simple if the

maps are injective, i.e., the curves do not self-intersect. A constant cycle is a constant

map θ : S1 → S.

A curve on a surface is called two-sided if a small closed neighborhood of it is home-

omorphic to the annulus. On the other hand, it is called one-sided if it has a closed

neighborhood homeomorphic to the Möbius band, see Figure 3.5. Consequently, every

3.2 Structures on surfaces 37

Figure 3.5: Left: the surface N3,0 with a two-sided curve (in green) and a one-sided one (in

blue), right: Klein bottle, N2,0, and a one-sided curve. The green (resp. blue) area shows the

neighborhood of the two-sided green curve (resp. one-sided blue curve/s) which is homeomorphic

to the annulus (resp. Möbius band).

closed curve on an orientable surface is two-sided.

Note that notions of sidedness are only defined for closed curves. We extend it for arcs

that have both ends on the same boundary component. Such an arc is two-sided (resp.

one-sided), if the closed curve obtained by connecting the two ends of the arc along one

of the boundary segments between its endpoints is two-sided (resp. one-sided).

3.2.2.1 Cutting a surface along a curve

Given a simple curve ν on a surface S, we say that Sν is a surface with boundary (or bound-

aries) that has been obtained by cutting S along ν if Sν is equipped with a homeomorphism

h on the boundary (or the boundaries) such that the quotient space Sν/(h(x) ∼ x) is a

surface homeomorphic to S and the image of the boundary (boundaries) of Sν under this

quotient map is ν.

Let ν be a closed simple curve on S. If ν is one-sided, Sν has one boundary component

and the corresponding homeomorphism h on the boundary is the one that maps antipodal

points to each other, as depicted in the top right picture in Figure 3.6. In the case where

ν is two-sided, Sν has two boundary components and the corresponding homeomorphism

h on the boundaries is the one that maps one boundary to the other. Figure 3.6 provides

three different examples for this case (see the top left, bottom left and bottom right

pictures).

A curve ν on a surface S is called non-separating if Sν is connected; otherwise ν is

separating and by cutting along it we obtain two connected components. In this case,

we denote the two components by S1
ν and S2

ν . Note that a separating curve is always

two-sided.

38 Preliminaries

Figure 3.6: Middle: the non-orientable surface N4,0; the surfaces on the corners are the ones

that we obtain after cutting the middle surface along each of the curves a,b,c and d.

An arc is separating if it has both ends on the same boundary component and the closed

curve obtained by connecting the two ends of the arc along one of the boundary segments

is separating. Cutting along an arc with endpoints on different boundary components

reduces the number of boundary components but it does not reduce the genus (we will

show this in Lemma 3.2.3). Furthermore such a curve cannot be separating.

Lemma 3.2.2. Let ν be a simple curve on a surface S (possibly with boundary components)

and let Sν be the surface that we obtain by cutting S along ν (in case ν is separating, we

denote the components by S1
ν and S2

ν). Depending on the type of ν, the Euler characteristic

of the resulting surface is described by the following table.

ν is a cycle ν is an arc

ν is separating χ(S) = χ(S1
ν) + χ(S2

ν) χ(S) = χ(S1
ν) + χ(S2

ν)− 1

ν is non-separating χ(S) = χ(Sν) χ(S) = χ(Sν)− 1

Proof. Let us assume that the surface is triangulated such that ν is divided into k sub-

edges and these sub-edges belong to the triangulation; denote this triangulation by T .

3.2 Structures on surfaces 39

We prove the claim by computing the Euler characteristic of this triangulation before and

after cutting the surface along ν. We know that after cutting ν, we get two copies of ν so

the edges and vertices of ν are doubled.

• First let us assume that ν is a separating cycle. The triangulation T induces a

triangulation T 1 and T 2 for the two components S1
ν and S2

ν after the cut. The total

number of faces before and after cutting remains the same, F (T 1)+F (T 2) = F (T).

Also note that since ν is a closed curve, the number of vertices and edges of ν are

equal. Therefore we have: χ(S1
ν)+χ(S

2
ν) = (|V (T 1)|−|E(T 1)|+|F (T 1)|)+(|V (T 2)|−

|E(T 2)|+|F (T 2)|) = (|V (T)|+k)−(|E(T)|+k)+|F (T)| = |V (T)|−|E(T)|+|F (T)| =
χ(S).

• Let us assume that ν is a non-separating cycle. This case is quite similar to the

previous one with the difference that here, after cutting along ν, we obtain a surface

with only one component. Let us denote the triangulation induced by T on Sν after

cutting along ν by T ′. We have χ(Sν) = |V (T ′)| − |E(T ′)| + |F (T ′)| = (|V (T)| +
k)− (|E(T)|+ k) + |F (T)| = |V (T)| − |E(T)|+ |F (T)| = χ(S).

Note that in the case that ν is an arc, the number of vertices on ν is one more than

the sub-edges of ν.

• In the case where ν is separating, we denote by T 1 and T 2 the induced triangulations

on ν1 and ν2. We have χ(S1
ν)+χ(S2

ν) = (|V (T 1)| − |E(T 1)|+ |F (T 1)|)+ (|V (T 2)| −
|E(T 2)|+ |F (T 2)|) = (|V (T)|+(k+1))− (|E(T)|+k)+ |F (T)| = |V (T)|− |E(T)|+
|F (T)|+ 1 = χ(S) + 1.

• In the case where ν is non-separating, denote by T ′ the triangulation induced on

Sν by T after cutting S along ν. We have χ(Sν) = |V (T ′)| − |E(T ′)| + |F (T ′)| =
(|V (T)|+k+1)− (|E(T)|+k)+ |F (T)| = |V (T)|− |E(T)|+ |F (T)|+1 = χ(S)+1.

This finishes the proof.

Lemma 3.2.2 and the Euler formula together, prove the following lemma that relates

the Euler genus of surfaces before and after cutting along a curve.

Lemma 3.2.3. Let ν be a simple curve on a surface S and Sν be the surface that we obtain

by cutting S along ν (in case ν is separating, we denote the components by S1
ν and S2

ν).

Depending on the type of ν, the Euler genus of the resulting surface is described by the

following table.

40 Preliminaries

ν is a cycle or an arc with endpoints on the same

boundary component

ν is separating eg(S) = eg(S1
ν) + eg(S2

ν)

ν is two-sided

non-separating

eg(S) = eg(Sν) + 2

ν is one-sided eg(S) = eg(Sν) + 1

In the case where ν has endpoints on different boundary components, eg(S) = eg(Sν).

Proof. An arc with endpoints on the same boundary can be seen as a closed curve if

it is concatenated with one of the segments of the boundary. Therefore we only prove

the theorem for closed curves as the proofs for these arcs are similar. Let us denote the

number of boundary components in S by h(S).

• If ν is a separating curve, by cutting along ν, we get two surfaces S1
ν and S2

ν such

that each of them has one boundary component that is obtained by the cut and

corresponds to a copy of ν, see the top left picture in Figure 3.6. Therefore we have

h(S) = h(S1
ν) + h(S2

ν)− 2. Since ν is a separating closed curve, by Lemma 3.2.2 we

have 2−eg(S)−h(S) = χ(S) = χ(S1
ν)+χ(S

2
ν) = (2−eg(S1

ν)−h(S1
ν))+(2−eg(S2

ν)−
h(S2

ν)) = 2− (eg(S1
ν) + eg(S2

ν))− h(S) which implies that eg(S) = eg(S1
ν) + eg(S2

ν).

• If ν is two-sided and non-separating, then Sν has one connected component and two

additional boundary components compared to S such that each of them corresponds

to a copy of the curve ν after cutting, see bottom left and bottom right pictures in

Figure 3.6. Since ν is non-separating, by Lemma 3.2.2, we know that 2 − eg(S) −
h(S) = χ(S) = χ(Sν) = 2−eg(Sν)−(h(S)+2) which implies that eg(S) = eg(Sν)+2.

• If ν is a one-sided curve, then Sν has one additional boundary component compared

to S that corresponds to both copies of the curve ν after cutting, see the top right

picture in Figure 3.6. Since ν is one-sided, it is non-separating and therefore by

Lemma 3.2.2, we have 2− eg(S)− h(S) = χ(S) = χ(Sν) = 2− eg(Sν)− (h(S) + 1)

which implies that eg(S) = eg(Sν) + 1.

• Let ν be an arc with endpoints on different boundary components of S denoted by

h1 and h2 . In this case, ν is non-separating and by cutting along it, we reduce

the number of boundary components in S by 1: cutting along ν merges h1 and h2

to a single boundary component. By Lemma 3.2.2, we have 2 − eg(S) − h(S) =

χ(S) = χ(Sν)− 1 = 2− eg(Sν)− h(Sν)− 1 = 2− eg(Sν)− h(S) which implies that

eg(S) = eg(Sν) and concludes the proof.

This finishes the proof of the lemma.

3.2 Structures on surfaces 41

3.2.2.2 Types of curves on surfaces

We can classify simple curves up to homeomorphisms of the surface. We say that two

curves ν and ν ′ on a surface S have the same type or belong to the same homeomorphism

class of curves if there exists a homeomorphism of the surface h : S → S for which

h(ν) = ν ′. Two arcs with endpoints on different boundary components are always of the

same type.

Types of curves on orientable surfaces

The following lemmas can be used to classify the different types of curves on an orientable

surface.

Lemma 3.2.4. Two simple non-separating closed curves ν and ν ′ on an orientable surface

M have the same type.

Proof. Let Mν and Mν′ be the orientable surfaces that we obtain by cutting M along

the curves ν and ν ′, respectively. We know that Mν (resp. Mν′) have two boundary

components h1 and h2 (resp. h
′
1 and h

′
2) that correspond to the copies of ν (resp. ν ′). By

Lemma 3.2.2, χ(Mν) = χ(Mν′). The classification theorem of surfaces implies that there

exists a homeomorphism h : Mν → Mν′ that maps h1 to h′1 and h2 to h′2. Gluing back

Mν and Mν′ along the boundaries, the map h induces a self homeomorphism on M that

maps ν to ν ′. This implies that ν and ν ′ have the same type.

Lemma 3.2.5. Two separating simple curves ν and ν ′ on an orientable surface M of genus

g are of the same type if and only if there exists 0 ≤ i ≤ ⌊g
2
⌋ such that both ν and ν ′

separate M into two components of genus i and g − i.

Proof. Let us first assume that both ν and ν ′ separate M into components of genus

i and g − i for 0 ≤ i ≤ ⌊g
2
⌋. The idea of the proof is the same as in the proof of

Lemma 3.2.4: we first cut M along ν and ν ′ and using the classification of surfaces, we

obtain homeomorphisms between the components of Mν and Mν′ ; this is possible since

Mν and Mν′ have components of the same genus. This homeomorphism induces a self

homeomorphism of M that maps ν to ν ′.

Now let us assume that ν and ν ′ are of the same type. Then there exists a homeomorphism

h : M → M for which h(ν) = ν ′. Let g(M1
ν) ≤ g(M2

ν) and g(M1
ν′) ≤ g(M2

ν′). Then h

induces a homeomorphism between M1
ν and M1

ν′ and a homeomorphism between M2
ν and

M2
ν′ which implies that g(M1

ν) = g(M1
ν′) and g(M

2
ν) = g(M2

ν′). This finishes the proof.

We say that the homeomorphism class of ν is (Mi,Mj)-separating if ν is a separating

curve that cuts the surface into components of orientable genus i and j such that i ≤ j.

42 Preliminaries

Remark 3.2.6. By the same technique as in the proof of Lemmas 3.2.4 and 3.2.5, we

can see that no non-separating curve has the same type as a separating curve and that

the list is exhaustive: a simple closed curve on an orientable surface of genus g is either

non-separating or is of type (Mi,Mg−i)-separating for some 0 ≤ i ≤ ⌊g
2
⌋.

Types of curves on non-orientable surfaces

On a non-orientable surface, the types of simple closed curves are more diverse than in

an orientable one.

Let N be a non-orientable surface and γ be a curve on N . The curve γ is called

orienting if by cutting along it we obtain an orientable surface. A curve that is not

orienting is called non-orienting.

Remark 3.2.7. An orienting curve cannot be separating. To see this, assume that γ is

orienting and when we cut along it we obtain two orientable connected components. Each

connected component contains a copy of γ as a boundary. Re-gluing along γ corresponds

to attaching two orientable surfaces which gives us an orientable surface. This is a con-

tradiction.

The sidedness of an orienting curve depends on the genus of the surface. The following

lemma analyzes the different cases where the genus is odd or even (see [54, Lemma 5.3]).

Lemma 3.2.8 ([54, Lemma 5.3]). Let N be a non-orientable surface of genus g with h

boundary components and let γ be an orienting closed curve. Let gγ be the (orientable)

genus and hγ be the number of boundary components in N after cutting along γ.

• If g is odd, then γ is one-sided, gγ = g−1
2
, and hγ = h+ 1.

• If g is even, then γ is two-sided, gγ = g−2
2
, and hγ = h+ 2.

Proof. The proofs for the cases of odd genus and even genus are quite similar, therefore,

we only prove the case where g is odd. We know by definition that the non-orientable

genus of N , g, is equal to eg(N).

Let us denote by Nγ the surface that we obtain after cutting N along γ. Since γ is

orienting, Nγ, is orientable. We know that the Euler genus of an orientable surface is

twice its orientable genus, therefore eg(Nγ) = 2g(Nγ) must be an even number. On the

other hand, since γ is a non-separating closed curve we know by Lemma 3.2.3 that eg(Nγ)

is 1 or 2 less than eg(N) = g depending on the sidedness of γ.

If g is odd, for eg(Nγ) to be even, γ should be one-sided. Therefore, gγ = g−1
2

and

hγ = h+ 1. The proof for the case where g is even is similar.

3.2 Structures on surfaces 43

The following table classifies all different types of simple closed curves on a non-

orientable surface depending on the parity of the non-orientable genus g of the surface

and the sidedness of the curves.

two-sided one-sided

g is odd separating orienting

non-separating one-sided non-orienting

non-separating non-orienting

g is even separating one-sided (non-orienting)

orienting

Note that this table does not distinguish different types of separating curves. As in

the orientable case, the type of a separating curve is determined by the topology of the

components that we obtain after cutting along the curve.

Let us denote the homeomorphism class of a separating curve on a non-orientable

surface that cuts it into two non-orientable components of genus i and j for 0 < i ≤ j by

(Ni, Nj)-separating. Note that a separating curve on a non-orientable surface might cut

the surface into one orientable component and one non-orientable component. In this case

we denote the type of the curves by (Mi, Nj)-separating where i is the orientable genus

of the orientable component and j is the non-orientable genus of the non-orientable one.

A separating curve on a non-orientable surface cannot cut the surface into two orientable

components since otherwise it would be orienting and by Remark 3.2.7, this is not possible.

Remark 3.2.9. The proof that the list in this table is exhaustive is almost identical to the

proof of the orientable case (see the proofs of Lemmas 3.2.4, 3.2.5 and Remark 3.2.6).

3.2.2.3 Homotopy of curves

The classification of simple closed curves up to homeomorphism defined in the previous

section is rather coarse. In this section, we define the concept of homotopy that provides

a finer classification of simple curves, see Figure 3.7. This notion formalizes the intuitive

idea of a continuous transformation between curves.

Two paths p and q with the same endpoints x and y on a surface S are homotopic

if there is a continuous map H : [0, 1] × [0, 1] → S such that H(0, ·) = p , H(1, ·) = q,

H(·, 0) = x, and H(·, 1) = y.

This notion can be extended to loops with basepoints x ∈ S (paths for which x = y).

Note that in this case H(·, 0) = H(·, 1) = x and each curve H(t, ·) for t ∈ [0, 1] is a loop

with basepoint x. We say that a curve p bounds a disk on the surface, if p is the boundary

of a disk on the surface.

Lemma 3.2.10. Let p and q be two disjoint simple curves with the same endpoints on a

surface S such that p.q is two-sided and bounds a disk. Then p and q are homotopic.

44 Preliminaries

Figure 3.7: All the curves in this figure have the same homeomorphism type but none of them

are homotopic. On the other hand, a and b are freely homotopic.

Proof. We can define the homotopy between the curves p and q on S to be the natural

one on the disk that they bound.

We consider loops on the surface S as maps θ : S1 → S. Two loops ν and ν ′ are

freely homotopic if there is a continuous map H : [0, 1] × S1 → S such that H(0, ·) = ν,

H(1, ·) = ν ′. This notion of homotopy is coarser than the homotopy with fixed basepoints

in the sense that two curves might be freely homotopic but not homotopic (with fixed

basepoints), see Figure 3.7 for an example.

These homotopy relations partition the set of all curves on a surface into homotopy

classes, where each class contains all curves that are homotopic to each other and are not

homotopic to any curve outside the class.

A cycle is contractible if it is homotopic to a constant cycle. For simple curves, this

homotopy class of curves coincides with the homeomorphism class of separating curves

that cut a disk from the surface, i.e., a curve in this homotopy class separates a surface

of genus g into two surfaces of genus 0 and genus g.

Lemma 3.2.11. A simple closed curve c on a surface S is contractible if and only if it

bounds a disk on S.

Proof. For the forward implication, we refer the reader to [31, Theorem 1]. The reverse

implication is straightforward as we can take the natural homotopy between c and a

constant cycle based on a point on c, on this disk.

An arc with endpoints on the same boundary component is contractible if it is homo-

topic to a path on the boundary.

We say that two homotopy classes of curves on a surface are disjoint if there exists a

curve in each class such that the two curves are disjoint.

3.3 A combinatorial model for graph embeddings 45

Figure 3.8: An embedding scheme with two vertices and its three faces.

3.3 A combinatorial model for graph embeddings

In this section, we define a notion in topological graph theory that is used to describe and

encode embedding of graphs on surfaces.

Consider an embedding for a graph G and let v ∈ V (G). We denote by ρv the cyclic

permutation of edges incident to v that we visit when we rotate clockwise around v in this

embedding. We denote by ρ = {ρv, v ∈ V (G)} the rotation system of this embedding.

Given a permutation π, we denote by π the permutation in which the order of elements

in π is reversed.

In the case of graphs embedded on orientable surfaces, the embedding is completely

encoded by the rotation system. On the other hand, to encode a graph embedding on

a non-orientable surface, we need additional information on the edges, a function λ :

E(G) → {+1,−1} which assigns a signature to each edge in G. These signatures encode

the sidedness of the curves in the embedding.

Definition 3.3.1 (Embedding scheme). An embedding scheme consists of a triple (G, ρ, λ)

in which G is a graph, ρ is the rotation system and λ is a function that assigns signatures

to the edges of G.

We use an overline over the label of an edge (for example e) when it has signature −1,

otherwise it has signature +1.

An embedding scheme completely encodes a cellular embedding up to homeomorphism.

Throughout this thesis, whenever no confusion arises, we denote an embedding scheme

by the label of the graph, e.g., G.

A closed curve in an embedding scheme is one-sided (resp. two-sided) if and only if

the signatures of its edges multiply to −1 (resp. +1). Consequently, if for every cycle in

the graph, the signatures of all the edges multiply to +1, we call it an orientable scheme;

otherwise it is called a non-orientable scheme.

46 Preliminaries

Recognizing the embedding from the embedding scheme. From the embedding scheme

(G, ρ, λ), we can compute the faces of the embedding purely combinatorially as follows:

direct the edges of the graph. Start at a vertex v, and choose an orientation s ∈ {−1,+1}.
Walk on an arbitrary edge e with endpoints v and u, consider the vertex incident to u

that is cyclically closest to v in the direction sλ(e) (+1 for clockwise direction and −1

for counter clockwise). Update s to be sλ(e) and then iterate this process until this

walk cycles, passing again on the edge e from v to u when the orientation s matches

the initial orientation at the start of the walk. This cycle corresponds to a face of the

embedding. Choose a new edge and continue this process until every edge is met exactly

twice. Figure 3.8 depicts a two-vertex embedding scheme with its faces. If we paste a

convex polygon on this graph cycle we obtain a cellular embedding of the graph.

If (G, ρ, λ) is a non-orientable embedding scheme, we obtain a non-orientable surface.

We denote the Euler genus and the non-orientable genus of this surface by eg(G, ρ, λ) and

g̃(G, ρ, λ), respectively. We know that in this case eg(G, ρ, λ) = g̃(G, ρ, λ). On the other

hand, if (G, ρ, λ) is an orientable scheme, we obtain an orientable surface. We denote

the Euler genus and the orientable genus of this surface by eg(G, ρ, λ) and g(G, ρ, λ)

respectively. We know that in this case eg(G, ρ, λ) = 2g(G, ρ, λ).

We sometimes consider non-cellular embeddings of graphs on a non-orientable surface

such that one face has non-orientable genus 1. An embedding scheme does not completely

encode such an embedding as it cannot distinguish the face with non-zero genus. Yet,

in this thesis, the information encoded by embedding schemes suffices for our purposes

in dealing with such embeddings. In all the cases in which we use this unconventional

treatment for embeddings, all the closed curves in the embedding are two-sided (or equiv-

alently, as we will explain in the following, the embedding schemes are orientable). To be

more precise, let ϕ be a non-cellular embedding of a graph G on Ng in which only one

face has genus 1 and all the closed curves in G are two-sided. We say that an orientable

embedding scheme (G, ρ, λ) realizes ϕ if ρ respects the permutation of edges around ver-

tices in ϕ and the signatures of the edges in all of the closed curves in G multiply to +1.

In this case, g is the minimum genus of a non-orientable surface embedding realized by

(G, ρ, λ). Throughout the thesis, we denote g by g̃(G, ρ, λ) and call the non-orientable

genus of the orientable embedding scheme (G, ρ, λ).

Lemma 3.3.2. Let (G, ρ, λ) be an orientable embedding scheme with g := g(G, ρ, λ) ̸= 0.

Then g̃(G, ρ, λ) = 2g+1. In particular, the non-orientable genus of an orientable scheme

with non-zero orientable genus is odd.

To prove this lemma, we need the following lemma from [69] which we state here

without proof.

3.3 A combinatorial model for graph embeddings 47

Lemma 3.3.3 ([69, Lemma 6]). Let (G, ρ, λ) be an orientable embedding scheme. Then

either g̃(G, ρ, λ) = 0, or g̃(G, ρ, λ) ≥ 3 and is odd.

Proof of Lemma 3.3.2. The embedding scheme has Euler genus 2g, hence at least 2g

cross-caps are required on a non-orientable surface for (G, ρ, λ) to realize an embedding

on it. By Lemma 3.3.3, g̃(G, ρ, λ) is odd so at least 2g + 1 cross-caps are required, i.e.,

g̃(G, ρ, λ) ≥ 2g + 1. To see that this number of cross-caps always suffices, we use the

same approach as in the proof of Lemma 3.2.1. We begin with an embedding of G on an

orientable surface M of orientable genus g and add a cross-cap in one of the faces of G on

M ; this gives us an embedding of G on a non-orientable surface with one cross-cap and g

handles that is homeomorphic to a closed non-orientable surface of non-orientable genus

2g + 1.

Equivalent embedding schemes. Given an embedding scheme (G, ρ, λ), a flip at a vertex

v yields another embedding scheme of the same graph, in which we reverse the order of

the edges incident to v and invert the signature of those edges incident to v that are not

loops. We say that two embedding schemes (G, ρ, λ) and (G, ρ′, λ′) are equivalent if one

can transform one to the other by a sequence of flips. We state the following lemma

from [58] without proof.

Lemma 3.3.4 ([58, Theorem 3.3.1]). Two embedding schemes are equivalent if and only if

they induce the same embedding up to homeomorphism.

Intuitively, flipping a vertex corresponds to dragging it through a cross-cap on the

surface. This justifies that equivalence classes of embedding schemes and embedded graphs

can be considered as being two representations of the same object and we will switch freely

between the two points of views.

3.3.1 Contracting a tree in an embedding scheme

As in many similar works, the first step in some of our results is to contract a spanning

tree of the underlying graph, reducing the problems to the setting of one-vertex graphs

embedded on a non-orientable surface. These embeddings are described by a one-vertex

embedding scheme which are much easier to deal with; in Section 5.2 we describe these

embedding schemes with more detail.

Note that in this thesis, the graphs that we embed on our surfaces are connected. Let

(G, ρ, λ) be an embedding scheme in which G is connected and let T be a spanning tree

in G. Here we describe the one-vertex embedding scheme that we obtain by contracting

T .

We contract the edges of T one by one. Let e = vw be an edge in T and let Ge be the

embedding scheme that we obtain by contracting e; after the contraction, v and w are

48 Preliminaries

merged into a single vertex z. If e is two sided, the cyclic permutation of edges around

the vertex z is given by merging ρv and ρw as follows: If e has signature +1 we merge

ρv and ρw from the the place where e appears in each and remove e, see Figure 3.9. If e

has signature −1, we first flip one of v and w and then do as in the previous case. We

continue this merging process until we have one vertex left.

Figure 3.9: Contracting an edge e in the embedding scheme at the top reduces the number of

vertices by 1 and yields the embedding scheme at the bottom. At right e has signature −1 and

at left it has signature +1.

3.3.2 Contracting a boundary

In this thesis, by contracting a boundary we mean to replace it by a point. Let S be a

surface with boundary and G be a graph embedded on it. Let v1, . . . , vk be the vertices of

G that are on the boundary h of S, and let ρ1, . . . , ρk be the cyclic permutation of edges

around them respectively. Here we describe the contraction of the boundary h and its

effect on G: replace the boundary with a vertex, denoted as v, which is formed by merging

v1, . . . , vk. The cyclic permutation of edges at this vertex corresponds to the merging of

ρ1, . . . , ρk as we see them while rotating around the boundary h. Figure 3.10 illustrates

this process.

3.4 A geometric model for graph embeddings on surfaces

In this section, we describe geometric models for representing embeddings of graphs on

surfaces: the cross-cap model for non-orientable surfaces in which we localize the cross-

caps on the sphere and the box model for orientable surfaces in which we localize the

handles on the sphere. We also provide discussions about certain crossing numbers of

3.4 A geometric model for graph embeddings on surfaces 49

Figure 3.10: Contracting a boundary.

graphs on the plane that are closely related to these models.

3.4.1 The cross-cap model for non-orientable surfaces

Figure 3.11: Two cross-cap drawings realizing the same embedding scheme.

Following Schaefer and Štefankovič [69], we will use a model with localized cross-caps

to represent graph embeddings on non-orientable surfaces as a drawing on the sphere.

By removing a point from the sphere, we obtain a planar drawing with geometrically

drawn cross-caps; we consider the cross-caps as additional vertices on the edges of the

graph which we depict using
⊗

and also call cross-caps. Two edges of the graph that

meet at a cross-cap, leave it with a reversed order. Considering the cross-caps as new

vertices and the edges of the drawing as the sub-edges in the initial graph, we obtain

our planar drawing which we call a cross-cap drawing, see Figure 3.11 for examples of

cross-cap drawings of a one-vertex graph.

Obtaining the non-orientable embedding from a cross-cap drawing. Let D be a cross-

cap drawing of a graph G on the sphere with g cross-caps which we now think of as small

disks
⊗

. We quotient the boundary of each
⊗

by the antipodal map of the small disk

50 Preliminaries

(this pastes the end of each edge that passes through the cross-cap to its other end that

exits the cross-cap). This is possible since the edges passing through a cross-cap exit it

in the reversed order. We obtain a non-orientable graph embedding of genus g.

Topologically, this process can be seen as attaching a Möbius band on the boundary

of each
⊗

and extending the edges inside the Möbius band so as to get a valid graph

embedding. Figure 3.12 depicts how to extend the edges inside the Möbius band.

Given a cross-cap drawing D with g cross-caps for a graph G, let ϕ(G) be the afore-

mentioned embedding of G on Ng. We say that an embedding ϕ′ for a graph G ad-

mits the cross-cap drawing D, if there is a homeomorphism f : Ng → Ng such that

f(ϕ′(G)) = ϕ(G).

Figure 3.12: The process of obtaining a non-orientable embedding from a cross-cap drawing by

attaching the Möbius band on the boundary of
⊗

. In the middle and right picture, we see the

Möbius band with its boundary identified by red and green segments which correspond to the

colors in the boundary of
⊗

depicted at left.

Obtaining a cross-cap drawing from a non-orientable embedding. A planarizing system

of disjoint one-sided curves on a non-orientable surface, abbreviated PD1S, is a system of g

disjoint one-sided curves such that by cutting along them, we obtain a sphere with g holes

(this was first introduced by Mohar [57]). By cutting along such a system, from any graph

embedded on a non-orientable surface, we obtain a sphere with g boundary components

and therefore, a planar representation for the graph. Replacing each boundary by a
⊗

,

we obtain a cross-cap drawing of the graph.

We say that a cross-cap drawing realizes an embedding scheme (G, ρ, λ) or the em-

bedding of G if it is a cross-cap drawing of (G, ρ, λ) or of an equivalent scheme (under

flips), that respects the cyclic permutations and signatures on the edges, i.e., if an edge

has signature +1 (resp. −1) then it enters an even (resp. odd) number of cross-caps.

Remark 3.4.1. The correspondence between cross-cap drawings and embeddings is not one

to one. While a cross-cap drawing uniquely describes an embedded graph, the converse is

not true. For example different PD1S systems give different cross-cap drawings for the

same embedding (or embedding scheme), see Figure 3.11.

3.4 A geometric model for graph embeddings on surfaces 51

3.4.1.1 Recognizing types of curves in a cross-cap drawing

In this section, we provide tools to recognize the type of curves in a given cross-cap

drawing. Notice that a closed curve in a cross-cap drawing is one-sided (resp. two sided)

if and only if it enters an odd (resp. even) number of cross-caps (where this number is

counted with multiplicity). Considering the neighborhood of a closed curve as a band,

each cross-cap that the curve enters, introduces a half twist in the band, see Figure 3.13.

We know by the classification of surfaces (Theorem 3.1.1) that a band with an odd (resp.

even) number of half-twists is homeomorphic to the Möbius band (resp. the annulus).

This implies that a curve enters an odd (resp. even) number of cross-caps, if and only if it

has a neighborhood homeomorphic to the Möbius band (resp. the annulus) and therefore

is one-sided (resp. two-sided).

Figure 3.13: In the given cross-cap drawing, the blue and yellow curve are one-sided and the red

curve is two-sided. The gray area depicts a neighborhood of the red curve that is homeomorphic

to the annulus and the blue area is a neighborhood of the blue curve, homeomorphic to the

Möbius band.

The following lemma helps us recognize orienting and separating curves in a cross-cap

drawing. Another proof can also be found in [69, Lemma 3 and 4].

Lemma 3.4.2. Let G be an embedding scheme. In any cross-cap drawing of G,

1. a closed curve is separating if and only if it passes through each cross-cap an even

number of times.

2. a closed curve is orienting if and only if it passes through each cross-cap an odd

number of times.

Proof. Actually this statement does not depend on the whole embedding scheme, only on

the loops. It is enough to show that:

• A cross-cap drawing of a separating closed curve passes through each cross-cap an

even number of times.

52 Preliminaries

• A cross-cap drawing of an orienting closed curve passes through each cross-cap an

odd number of times.

Notice that an edge entering a cross-cap k times, divides the region around the cross-cap

into 2k parts locally. We call these parts the wedges around that cross-cap. We number

the wedges from 1 to 2k as going around the cross-cap. Two wedges i > j are called

opposite if i− j = k. A curve entering the cross-cap from a wedge, exits the cross-cap in

its opposite wedge.

1. First, let us show that if the curve γ is separating, then it enters each cross-cap

an even number of times. Observe that if γ is one-sided it cannot be separating,

moreover γ can separate the surface into at most two connected components, one for

each side of γ and every time we cross γ we should change connected components.

Now consider a cross-cap drawing of γ, and assume, in order to reach a contradiction,

that some cross cap is crossed an odd number of times by γ. Choose any wedge

around that cross cap and notice that if we go around the cross-cap with a curve γ′,

to reach the opposite wedge defined by γ, then γ′ and γ intersect an odd number

of times, so they should be in different connected components of the complement of

γ. This is a contradiction since opposite wedges are clearly in the same connected

component.

Now, let us show that if a closed curve γ enters each cross-cap an even number of

times, it is separating. Let us consider the dual graph to the cross-cap drawing of

the curve γ (we consider the cross-cap drawing as a planar drawing with cross-caps

treated as vertices). Since γ enters each cross-cap an even number of times, then

the dual face corresponding to each cross-cap has faces of degree divisible by four.

In particular, it is bipartite and admits a two coloring of vertices such that no two

adjacent vertices have the same color and two vertices corresponding to opposite

wedges around a cross-cap get the same color, see Figure 3.14. Such a coloring for

the vertices of the dual graph thus induces a partition of the faces of the embedding

of γ in two regions. These two regions are two connected components obtained by

cutting along γ, thus γ is separating.

2. Let us first show that if γ is orienting then it enters each cross-cap an odd number

of times. Consider a closed curve γ′ that enters each cross-cap once. We first show

that any such curve is orienting. The curve γ′ divides the plane into two regions,

see Figure 3.15. Any curve starting in one region has to cross an even number of

cross-caps to end up in the same region. This implies that any closed curve on this

surface that does not cross γ′ is two-sided, which implies that γ′ is orienting.

Let γ be an orienting curve, and denote by α1, . . . , αg the PD1S underlying the cross-

cap drawing. By the classification of surfaces, γ is unique up to homeomorphism,

3.4 A geometric model for graph embeddings on surfaces 53

Figure 3.14: The cross-cap drawing of a separating curve and the coloring for its dual graph.

Figure 3.15: The cross-cap drawing of an orienting curve γ′ that enters each cross-cap exactly

once. The two-sided curve b does not cross γ′ but the one-sided curve a crosses it once.

i.e., there exists a homeomorphism of the surface that maps γ to γ′. This gives

us (another) cross-cap drawing where γ goes exactly once through every cross-cap.

The image of a curve αi under this homeomorphism is a simple closed curve on the

same surface, which in this new cross-cap drawing intersects γ and the new cross-

caps. Furthermore, it intersects the new cross-caps an odd number of times since

it is one-sided. Now it is immediate that in this new representation, γ partitions

the plane into two regions, and any curve crossing the cross-caps an odd number

of times must cross γ an odd number of times. The curves α1, . . . , αg crossing γ

an odd number of times, correspond to γ entering each cross-cap an odd number of

times. This concludes the proof of the forward implication.

Now we prove that any closed curve that crosses each cross-cap an odd number of

times, is orienting. Let us again consider the dual graph of the cross-cap drawing as

in the separating case in the first part of this proof. Since each cross-cap is crossed

an odd number of times, each cross-cap is adjacent to an even number of half-edges

that is not divisible by four. Therefore the dual graph has faces of even degree not

divisible by four. In particular, it is bipartite, and the vertices admit a two coloring

in which no adjacent vertices have the same color. In any such coloring, the colors

for two opposite wedges around each cross-cap is different which implies that a curve

54 Preliminaries

entering a cross-cap, goes to a region with the opposite color. Therefore a closed

curve that does not cross γ, has to enter an even number of cross-caps to end up

in the colored region from which it started. This shows that on the surface that

we obtain after cutting along γ, all simple closed curves are two-sided. Hence γ is

orienting.

Remark 3.4.3. Lemma 3.4.2 answers to a question asked in [60, page 134] regarding the

recognition of an orienting loop in a cross-cap drawing. Particularly, it confirms the hunch

that is discussed after the question.

3.4.1.2 Genus crossing number and degenerate crossing number

One way to interpret a cross-cap drawing is to consider it in relation to the crossing

numbers in planar drawings of graphs. Here we introduce two crossing numbers that are

related to non-orientable embeddings of graphs.

As in the introduction, the genus crossing number of a graph G, denoted by gcr(G),

is the minimum number of self-intersections of G over all its planar drawings (where

intersections are transverse and multiple edges crossing in one point are counted as one

crossing, see the crossing of edges in the left picture in Figure 3.16). If we add the

restriction that the edges of G are simple, i.e., do not self-intersect, this introduces the

degenerate crossing number of G, denoted by dcr(G).

Figure 3.16: From cross-cap drawings to crossing numbers and vice versa.

Mohar proved the following lemma that reveals a nice relation between these crossing

numbers in planar drawings and graphs embedded on surfaces.

Lemma 3.4.4 ([57, Theorem 2.1]). For any non-planar graph G, gcr(G) = g̃(G).

Proof. Consider an embedding of G on a non-orientable surface of genus g̃(G). There

exists a cross-cap drawing with g̃(G) cross-caps that realizes this embedding of G. Looking

at a cross-cap as a crossing point for edges entering it, this cross-cap drawing provides a

planar drawing of G with g̃(G) crossings. This implies that gcr(G) ≤ g̃(G).

3.4 A geometric model for graph embeddings on surfaces 55

For the other side of the inequality, assume that a planar drawing of G with gcr(G)

crossings is given. Replace each crossing by a
⊗

. This gives us a cross-cap drawing with

gcr(G) cross-caps that in turn realizes an embedding of G on a non-orientable surface of

genus gcr(G). This implies that g̃(G) ≤ gcr(G). Figure 3.16 illustrates the process in

this proof.

The condition of edges being simple in the definition of degenerate crossing number

translates into restricting the edges in a cross-cap drawing to pass through each cross-cap

at most once.

3.4.2 The box model for orientable surfaces

In this section, we extend the notion of cross-cap localization to a localization for handles.

The ideas come from [1] on the bundled crossing number which we explain in the next

section.

In this model, a handle is replaced by a hexagonal box on the sphere such that

the sides of this box correspond to each other two by two with the order abcāb̄c̄ meaning

that a box transfers an edge entering from one side to its corresponding side without

crossing any other edge that enters the box. A box drawing of an embedding scheme G of

orientable genus g(G), is a planar drawing of G with g(G) hexagonal boxes in which boxes

are considered as additional vertices and the edges in the planar drawing are sub-edges in

G.

Obtaining the orientable embedding from a box drawing. Given a box drawing with g

boxes on the sphere, we paste the sides of the hexagon along the word abcāb̄c̄. This gives

us an orientable surface of genus g.

Topologically, this corresponds to attaching a handle on the boundary of each hexag-

onal box and extending the edges passing through the box without making them cross.

The following lemma implies that this is always possible and justifies the hexagonal rep-

resentation of the boxes.

Lemma 3.4.5. On an orientable surface of genus 1 with 1 boundary component (a handle)

there exists at most three simple non-homotopic non-contractible disjoint arcs.

Proof. The middle picture in Figure 3.17 illustrates three arcs w, l and f on a handle

that are pairwise non-homotopic. The right picture represents the handle: by gluing the

polygon along the oriented black and gray side, we retrieve the handle. We can see in this

representation that any arc that we draw on this surface that is disjoint from w, l and f

is homotopic to one of them.

56 Preliminaries

The three arcs in the lemma subdivide the boundary of a handle (the punctured torus)

to 6 segments that can be put to correspondence with the 6 sides of the hexagonal box. By

doing so, we obtain a map from each box on the sphere (viewed as a boundary component)

to the boundary of the handle. Edges that pass through the box, entering it from the side

a (resp. b or c) can be extended along the arc l (resp w or f) inside the handle without

crossing each other, see Figure 3.17.

Given a box drawing D with g boxes for a graph G, let ϕ(G) be the embedding of G

onMg that we obtain as described. We say that an embedding ϕ′ of a graph G admits the

box drawing D, if there is a homeomorphism f :Mg →Mg such that f(ϕ′(G)) = ϕ(G).

Figure 3.17: The correspondence between a box and the boundary of a handle.

Obtaining a box drawing from an orientable embedding. An orientable surface of genus

g can be modeled using a 4g-gon in the plane with sides labelled by a1b1a2b2 . . . agbgagbg

such that the sides a1 and a1 are identified in opposite direction1. See the left picture in

Figure 3.18, which depicts an embedding of a graph with three vertices on an orientable

surface of genus 2. A graph embedding on an orientable surface of genus g in this model

can be turned into a box drawing as follows: each 4 sides aibiaibi of the 4g-gon can be

treated as 4 sides a,b,a and b in one hexagonal box abcabc. An edge in the embedding can

be extended as depicted in the right picture in Figure 3.18 to obtain a box drawing.

Remark 3.4.6. This suggests that a quadrilateral box suffices to model orientable embed-

dings of graphs which is actually how it is dealt with in [1]. We adopt hexagonal boxes as

they give us nicer planar drawings (this is justified in Lemma 3.4.5). Note that an edge

entering a box abcabc from the the side c, can be drawn in a quadrilateral box abab by

entering the box twice, once from a and once from b.

We say that a box drawing realizes an orientable embedding of G on a surface of genus

g if it has g boxes and respects the cyclic permutations of edges around vertices of G in

the embedding.

1This is called a canonical polygonal scheme which we introduce later in this chapter.

3.4 A geometric model for graph embeddings on surfaces 57

Figure 3.18: From an embedding to a box drawing.

3.4.2.1 Bundled crossing number

A bundled crossing of a graph drawing refers to a collection of intersections that occur

between two sets of parallel edges, see Figure 3.19. The bundled crossing number of a

graph is the minimum number of bundled crossings in all planar drawing of the graph

such that multiple crossings and self-intersections of edges are allowed. We denote the

bundled crossing number of a graph G by bc(G). The following lemma connects this

crossing number with the orientable genus of graph.

Figure 3.19: From box drawings to bundled crossing number and vice versa.

Lemma 3.4.7 ([1, Theorem 1]). For every graph G, bc(G) = g(G).

Proof. Consider an embedding of G on an orientable surface of genus g(G). There exists

a box drawing with g(G) boxes that realizes this embedding of G such that each box has a

side that is not used by any edge of G (see Figure 3.18 and Remark 3.4.6). Looking at each

box as a crossing point for edges entering it as depicted in Figure 3.19, this box drawing

provides a planar drawing of G with g(G) crossings. This implies that bc(G) ≤ g(G).

For the other side of the inequality, assume that a planar drawing of G with bc(G)

bundled crossings is given. Replace each crossing by a . This gives us a box drawing

with bc(G) boxes that in turn realizes an embedding of G on an orientable surface of

58 Preliminaries

genus bc(G). This implies that g(G) ≤ bc(G). Figure 3.19 illustrates the process in the

proof.

3.5 Metrics on surfaces

In this section, we look at our surfaces through a geometric lens and introduce continuous

and discrete metrics on our surfaces.

3.5.1 Discrete Metrics

As we mentioned in the introduction, a graph that is cellularly embedded on a surface S

defines a discrete metric on S. In this section, we introduce two models that are used to

describe this metric and show that these two models are equivalent up to the duality of

the graph embeddings. To obtain a more comprehensive understanding of these models,

we refer the reader to the work of Éric Colin de Verdière on algorithms for graphs on

surfaces [19] and the work of Francis Lazarus on combinatorial graphs and surfaces [52].

Figure 3.20: A curve (in red) depicted in both the combinatorial model (left) and the cross-

metric model (right). The figure also shows the equivalence of the two models.

3.5.1.1 Combinatorial Surface

The first model is called the combinatorial model. A combinatorial surface is a surface S

together with a weighted graph G which is cellularly embedded on S. In the case that S

has boundary, G is embedded so that the boundary is the union of some edges of G.

The curves we consider in this model are the walks on the graph G and the length of

a curve C is the the sum of the weights of the edges of G traversed by C. We emphasize

that in this model, a curve might traverse an edge multiple times even if it is a simple

curve. The red curve in the left picture in Figure 3.20 shows a curve in this model where

the discrete metric on the surface is given by the triangulation.

3.5 Metrics on surfaces 59

3.5.1.2 Cross-metric Surface

A cross-metric surface is a surface S together with a weighted graph G which is cellularly

embedded on S. In the case that S has boundary, G is embedded so that the boundary

is the union of some edges of G. The curves that we consider in this model are those that

cross G transversely and away from the vertices, and the length of a curve C is the the

sum of the weights of the edges of G that C crosses. The red curve in the right picture in

Figure 3.20 shows a curve in this model.

3.5.1.3 Equivalence by duality

As we mentioned these two models are equivalent up to duality of the graph embeddings.

To any combinatorial surface S without boundary and its graph G, we can associate by

duality a cross-metric surface by considering S with the graph G∗, where G∗ is the dual

graph of G and each dual edge e∗ has the same weight as e. This transformation preserves

the lengths of the curves, see Figure 3.20.

We can extend this transformation to the case of surfaces with boundaries. To do

so, we extend our definition for dual graphs for embedded graphs on a closed surface

in Section 3.2.1.2 to the case where the surface has boundary and the boundary (or

boundaries) is the union of some edges of the embedded graph. We associate to each face

of G, and each edge on the boundary a vertex, such that in the latter the vertex lies on

the interior of the edge. We associate to each boundary edge e, an edge e∗ that connects

the vertex associated to e and the vertex associated to its incident face in G. We also

associate an edge to each vertex in G on the boundary, connecting the associated vertices

to its incident boundary edges; these edges build the boundary edges of G∗. Finally, we

associate an edge to each non-boundary edge in G, such that it connects the vertices

associated to its incident faces. Each dual edge e∗ has the same weight as e and each e∗

on the boundary has infinite weight.

In both models, we refer to the cellularly embedded graph G on the surface S, as

the primal graph on S. Although these models are essentially the same up to duality,

depending on the use, each has its advantages and drawbacks. In this thesis, we utilize

both models, although the cross-metric model is employed far more than the combinatorial

one due to its greater suitability for our purposes. This follows from the fact that in the

combinatorial model, the places where two curves cross is not encoded properly while the

cross-metric model is based on the crossings between the curves on the surface.

Multiplicity. In the cross-metric model, the multiplicity of a curve, respectively of a

system of curves, at some edge e of G is the number of times e is crossed by the curve,

respectively the sum of all the intersections of e with the curves of the system. The

60 Preliminaries

multiplicity of a curve (or a system of curves) is the maximal multiplicity of the curve

(curves) at any edge e of G.

3.5.2 Continuous Metrics

We use some notions from Riemannian geometry which we introduce briefly in this section.

For more background we refer the reader to the book of do Carmo and Francis [26].

A Riemannian metric introduces smooth distances between points on the surface.

Specifically, at each point x on a surface S, a Riemannian metric involves an inner product

gx on the tangent space Tx(S) that varies smoothly as x moves on S.

This inner product induces a length on the smooth curves on the surface in which the

length of a path p on S is
∫ 1

0

√
gx(p′(t), p′(t))dt. The distance between two points x and

y is the infimum length among all smooth paths from x to y. A shortest path between

x and y is a path that realizes the distance between x and y. Two shortest paths in a

Riemannian metric cross at most once.

Informally, a geodesic on a Riemannian surface is a path or a closed curve that is

locally minimal. Note that since the minimality condition is considered only locally in

this definition, a geodesic may not be a shortest path.

From an extrinsic point of view, a Riemannian metric can be seen as a metric structure

that is induced from an embedding of the surface in Rd. This is obtained by the Nash

embedding theorems [42] which state that every smooth Riemannian manifold can be

smoothly isometrically embedded into some Euclidean space. Although this result unifies

the intrinsic and extrinsic points of view of Riemannian geometry, and it provides a better

intuition, it is not easier to work with compared to the intrinsic definition.

3.6 Decompositions of surfaces

Informally, a decomposition of a surface is any shape of cut that dissects the surface to

a topologically simpler piece or pieces. The decompositions that we deal with are either

given by cellularly embedded graphs (such as canonical decompositions or an octagonal

decomposition) or by a set of simple disjoint closed curves (such as a pants decomposi-

tion). This section aims to consolidate all the decompositions encountered by the reader

throughout this thesis. We consider all of our decompositions in the cross-metric setting.

Short decompositions. We say that a decomposition of a cross-metric or combinatorial

surface is short, if each edge in the graph of the decomposition has constant multiplicity.

All the decompositions that we work with, are comprised of O(g) edges, which implies

3.6 Decompositions of surfaces 61

that a short decomposition has total length O(g|E(G)|) in which G is the primal graph

on the surface.

3.6.1 Decompositions along systems of loops

In this thesis, we extensively study the decomposition of surfaces along a system of loops,

that is, a one-vertex embedding scheme such that by cutting along the loops we obtain a

topological disk.

Specifying a system of loops and a cyclic order of the edges around the basepoint is the

same as specifying a polygon and data indicating how to glue the edges so as to recover

the surface: such a polygon is called a polygonal scheme. See Figures 3.21 and 3.22 for

examples of polygonal schemes.

Orientable canonical decomposition. For the orientable surface Mg, we define an ori-

entable canonical system of loops to be a family of two-sided loops with cyclic order

a1b1a2b2 . . . agbgagbg around the basepoint. Cutting M along this family yields a topo-

logical disk. Decomposing an orientable surface along such system of loops is called a

canonical decomposition of the orientable surface. This system of loops corresponds to a

decomposition of the surface with associated polygonal scheme a1b1a1b1 . . . agbgagbg which

is called the orientable canonical polygonal scheme. Figure 3.21 depicts such a decompo-

sition.

Figure 3.21: Canonical decomposition of an orientable surface of genus two.

Non-orientable canonical decomposition. For the non-orientable surface Ng, a non-

orientable canonical system of loops is a family of one-sided loops with cyclic order

a1a1a2a2 . . . agag around the basepoint. Cutting N along this family of loops yields a

topological disk. This system of loops corresponds to a decomposition of the surface with

associated polygonal scheme a1a1a2a2 . . . agag which is called the non-orientable canonical

polygonal scheme. Figure 3.22 depicts such a canonical decomposition.

62 Preliminaries

Figure 3.22: Canonical decomposition of a non-orientable surface of genus three.

Other decompositions along systems of loops. Given a non-orientable surface of genus

g, we also study the decompositions of this surface along a system of loops with associated

polygonal schema a1a1a2a2 · · · alalb1c1b1c1 . . . bkckbkck where l ̸= 0 and g = l + 2k (l and

g have the same parity).

3.6.2 Octagonal and hexagonal decomposition

Another decomposition of surfaces that we are interested in, is one that decomposes the

surface into sets of disks, in this case, sets of octagons and hexagons.

An octagonal decomposition of an orientable surface is an arrangement of closed curves

(not necessarily disjoint) that decomposes the surface into octagonal faces and the over-

layed graph of this decomposition is the one depicted in the left picture in Figure 3.23.

Every vertex in this graph has degree four. An orientable surface of genus g can be

decomposed to 2g − 2 octagons.

A hexagonal decomposition of an orientable surface is an arrangement of closed curves

that decomposes the surface into hexagonal faces such that the overlayed graph of this

system of curves is the one depicted in the right picture in Figure 3.23. Every vertex in

this graph has degree four. An orientable surface of genus g can be decomposed to 4g− 4

hexagons.

Figure 3.23: Left: an octagonal decomposition of M4, right: a hexagonal decomposition of M4.

A non-orientable surface can be decomposed into 2g− 4 hexagons when g is even and

into 2g−6 hexagons and 4 pentagons when g is odd. Figure 4.7 shows such a decomposition

3.7 Decomposing a non-orientable surface along an orienting curve 63

of a non-orientable surface. In Chapter 4, we will generalize these decompositions to the

setting of non-orientable surfaces.

3.6.3 Pants decomposition

A sphere with three boundary components is called a pairs of pants. A pants decomposition

of a surface is a family of disjoint closed curves such that cutting the surface along all of

the them gives a disjoint union of pairs of pants. Pairs of pants are the simplest possible

surfaces that one can obtain after cutting along simple closed curves, and thus constitute

fundamental building blocks in the study of surfaces.

The Euler characteristic of a pairs of pants is equal to −1. This implies that a sur-

face Sg,b can be decomposed to exactly 2g + b − 2 = −χ(S) pairs of pants. Any pants

decomposition of this surface consists of 3g − 3 + b disjoint closed curves. Two pants

decompositions are of the same type if there exists a homeomorphism of the surfaces that

maps one to the other. The homeomorphism type of a pants decomposition is entirely

determined by its intersection graph: a graph with vertices corresponding to each pairs

of pants in the surface in which two vertices are connected if the corresponding pairs of

pants have a common boundary curve. Since each pairs of pants has three boundary com-

ponents, the intersection graph of a pants decomposition of a closed surface is a trivalent

graph. Similarly, the intersection graph of a pants decomposition of a punctured sphere

is a trivalent tree, that is a tree in which each non-leaf edge has degree three. Figure 3.24

depicts a pants decomposition of a closed surface and a punctured sphere together with

their corresponding intersection graphs.

The following lemma gives an estimate for the number of different types of pants

decompositions of an orientable surface of genus g that is obtained by computing the

number of different trivalent graphs. By f(n) ≈ g(n), we mean that f and g are equal up

to an exponential factor in n.

Lemma 3.6.1. The number of trivalent graphs with 2n vertices is ≈ nn.

Proof. For the proof see [9] or the proof of [41, Lemma 1].

3.7 Decomposing a non-orientable surface along an orient-

ing curve

Orientable surfaces and graphs embedded on them are better studied than non-orientable

ones. One of the main techniques that we use in this thesis to deal with non-orientable

surfaces is to cut the surface along an orienting curve to turn it to an orientable surface.

This allows us to generalize some results on orientable surfaces to the non-orientable

64 Preliminaries

Figure 3.24: Pants decompositions and their intersection graphs.

setting. For this approach to work in our problems, we need to ensure that we can find an

orienting curve that crosses our primal graph not too many times. The following lemma

is a restatement of Proposition 5.5 in [54]. We provide a sketch of its proof, explaining

how to extend it to arbitrary embedded graphs and how to modify it to get orienting arcs

in the presence of boundaries.

Lemma 3.7.1. Let N be a non-orientable surface of genus g without boundary and G be a

graph embedded on N . Then there exists an orienting curve of multiplicity at most 2.

Sketch of the proof. We begin by adding edges to the embedded graph G in order to get

cellular faces. We assign a local orientation to each face, that is a cyclic order to the

vertices of each face along its boundary. Two adjacent faces are said to have incoherent

orientations if they induce the same orientation on the edge they have in common. Cutting

the surface along all incoherent edges gives us an orientable surface. For any vertex v,

there is an even number of edges with incoherent orientations adjacent to v. We pair

these edges around each vertex, shift them slightly so that they cross the original graph

only transversely and we add segments to join two paired edges. We can modify our

local orientation slightly to show that cutting along our new system of edges gives us an

orientable surface; see Figure 3.25 which is almost identical to one in the proof of [54,

Proposition 5.5].

2The picture is redrawn from a figure in the proof of Proposition 5.5 in [54]

3.8 Algorithms and genome rearrangements 65

Figure 3.25: The thick lines in the left picture, depict the edges adjacent to a vertex that

inherit the same orientation from different faces. The dashed red lines in the right picture are

shortened and shifted copies of these edges joined according to the pairing. The arrows indicate

the refinement of the local orientation.2

This collection of edges forms a disjoint union of closed curves (possibly a single curve).

These curves can only cross an edge of the graph near the vertices and therefore the whole

system of curves crosses each edge of G at most twice. If we have one curve, then this

curve is the desired orienting curve. In the case that we have more than one curve, we can

find short paths (paths that do not intersect edges that are already crossed by the curves)

that join a pair of these curves at each step. By slightly changing the orientations around

these paths, we can merge these curves and paths to a single curve. For the complete

proof see [54].

Remark 3.7.2. If N is a non-orientable surface with a boundary component, by a little

modification of the building process in the proof of Lemma 3.7.1, we can get an orienting

arc instead of an orienting cycle. If the surface has boundary, the local orientation around

each boundary is similar to that of a vertex. We choose one boundary component. We

shift incoherent edges around this boundary and join all these edges by pairs except for one

pair of edges. This way we get an arc and a system of closed curves and we can proceed

as explained in the proof to join these components and get one orienting arc.

3.8 Algorithms and genome rearrangements

In this section, we introduce two computational problems in biology, more accurately in

genome rearrangements, and a mathematical model to study them. For more background,

we refer the reader to the books [36] and [25]. After introducing the notions and the

mathematical model, we explain how this problem can find a topological interpretation

and relate to the topics of interest in this thesis. In particular, our results in Chapters 5

and 7 take advantage of this connection.

DNA is a double-stranded molecule consisting of long sequences of nucleotides. Genes

66 Preliminaries

Figure 3.26: Left: the structure of DNA, right: a reversal (top) and a block interchange (bottom)

between two gene sequences.

are specific segments of DNA that carry the information required to construct proteins

within a cell. Molecular evolution in DNA is responsible for the diversity observed in

living organisms. This evolution can occur at the level of individual nucleotides, involv-

ing substitutions or insertions, as well as at a larger scale involving gene sequences and

their rearrangements such as reversals, transpositions, and block interchange. The focus

of interest in this section lies on the latter type of mutations, referred to as genome re-

arrangements. Detecting efficient rearrangement scenarios between two genomics is the

goal of genome rearrangement problems.

These problems can be formulated in combinatorial optimization by representing the

relative positions of genes in different genomes as permutations and looking at the muta-

tions as operations to sort these permutations. In general, the problems in genome rear-

rangements are formulated as follows: given two genomes and some evolutionary events,

what is the shortest set of (minimum number of) events that transforms one genome to the

other? the length of an optimal solution is called the distance between the two genomes.

The two instances of these sorting problems that we are interested in are: 1) computing

the signed reversal distance in which the genomes are given as signed permutations and

the events are signed reversals, see the top right picture in Figure 3.26, 2) computing block

interchange distance in which the genomes are given as permutations and the events are

exchanging placements of two sub-permutations, see bottom right picture in Figure 3.26.

In Sections 3.8.1 and 3.8.3, we describe the signed reversal distance and the block

interchange distance and introduce an efficient algorithm to compute each of them. Af-

ter each section, we give an alternative topological formulation of the sorting problem

which we believe provides deeper insights into these combinatorial sorting problems. The

topological relation was first noticed by Huang and Reidys in [49], in which they con-

struct a bijection between permutations and a particular equivalence classes of fatgraphs.

3.8 Algorithms and genome rearrangements 67

Although our approach is rather similar, it is independent of their formulation.

3.8.1 Signed reversal distance

One of the most biologically relevant distances in the study of genome rearrangements is

the signed reversal distance which is also one of the few that can be calculated efficiently.

In this problem, a one chromosome genome is encoded by a signed permutation π =

(π1, . . . , πn) (i.e., permutations of integers in which each element has a sign). We denote

an element i that is negative by i. For an element πj, the overline negates the sign of

πj. For example θ = (3, 2, 1) is a signed permutation on {1, 2, 3} in which 1 and 3 has

negative sign and 2 is positive. An interval (πi, πj) is the sub-permutation consisting

of the elements between πi and πj. For example the interval (6, 2) in the permutation

(1, 6, 5, 3, 2, 4) is the sub-permutation (6, 5, 3, 2). The reversal on the interval (πi, πj) acts

on π by reversing the order of the elements πi, . . . , πj as well as their signs, it maps

(π1, π2, . . . , πi−1, πi, πi+1 . . . , πj−1, πj, πj+1 . . . πn),

to

(π1, π2, . . . , πi−1, πj, πj−1 . . . , πi+1, πi, πj+1 . . . πn).

The reversal distance between signed permutations π and π′, denoted by d(π, π′) is the

minimum number of reversals needed to transform π to π′. The problem of computing the

signed reversal distance between two permutations π and π′ is equivalent to computing

the signed reversal distance between ππ′−1 (π−1 is the inverse of π in the group of signed

permutations) and the identity permutation id (every element is positive in the identity

permutation). In the following, we sometimes refer to the problem of transforming π to

id as the problem of sorting π by reversals.

The celebrated algorithm of Hannenhalli and Pevzner [44] (see also [6, 7]) computes

in polynomial time the reversal distance between two signed permutations. Below, we

briefly describe this algorithm.

The Hannenhalli-Pevzner algorithm

Hannenhalli and Pevzner investigated the problem of sorting permutation with reversals

by first extending a standard permutation π on {1, . . . , n} by adding a 0 and n + 1 to

the beginning and the end of the permutation; we call such a permutation an extended

permutation on {0, . . . , n + 1}. For example, the extended permutation of our example

θ above is the permutation θ′ = (0, 3, 2, 1, 4). In this section, we recall their results for

these permutations; all the results are stated without proofs in this section.

In sorting a permutation π by reversals, an obstacle is to deal with breakpoints in π;

the places in the permutation that consecutive elements are not consecutive numbers. For

68 Preliminaries

Figure 3.27: Left: the breakpoint graph associated to the signed permutation θ′ = (0, 3, 2, 1, 4)

and its cycle decomposition, the gray edges are the reality edges and the colored edges are the

desire edges, right: the corresponding two-vertex embedding scheme and its faces. We can see

the correspondence between the cycles in the breakpoint graph and the faces of the embedding

scheme (except for the face (0, 4)). If we considered θ′ as a cyclic permutation, (0, 4) would also

correspond to a cycle.

example in θ′, every two consecutive elements (such as 0 and 3) introduce a breakpoint.

We can see that the identity permutation has no breakpoint, and therefore sorting a per-

mutation by reversals corresponds to eliminating all of its breakpoints. This suggests that

the reversal distance can be estimated by the number of breakpoints in the permutation.

However this estimation is not very accurate.

Here we describe another parameter that captures the necessary data from the break-

points as well as the combinatorial dependencies between them and estimates the reversal

distance with much greater accuracy: the number of cycles in the breakpoint graph of the

permutation.

Breakpoint graph. The breakpoint graph of an extended signed permutation π on

{0, . . . , n+1} is the graph Gπ that has two vertices il and ir associated to each element i

for 1 ≤ i ≤ n (l and r are chosen to refer to left and right of an element i, respectively),

plus two vertices denoted 0r and (n + 1)l associated to the added elements 0 and n + 1.

The edges of Gπ are comprised of:

• The desire edges: (ir, i+ 1l) for 0 ≤ i ≤ n.

• The reality edges for 0 ≤ i ≤ n:

(πir , πi+1l) if πi and πi+1 are positive,

3.8 Algorithms and genome rearrangements 69

(πil , πi+1l) if πi is negative and πi+1 is positive,

(πir , πi+1r) if πi is positive and πi+1 is negative,

and (πil , πi+1r) if πi and πi+1 are negative.

In this graph, every vertex has degree exactly 2 and therefore, the edges of the graph

form a set of cycles (see Figure 3.27 for the breakpoint graph of the permutation θ′). Let

us denote by c(π) the number of cycles in Gπ.

Among the permutations on {0, . . . , n + 1} elements, the identity permutation is the

only one with n + 1 cycles and no breakpoint. We can check that a reversal changes the

number of cycles by at most 1 (see [7, Proposition 3]). Therefore, in sorting a permutation

π, at least n + 1 − c(π) reversals are needed, i.e., d(π, id) ≥ n + 1 − c(π). A reversal is

making progress toward sorting a permutation if it increases the parameter c(π); we call

such a reversal optimal.

Given a signed permutation π, we call a pair of consecutive integers i and i + 1

reversible if they have opposite signs in π (this is called an oriented pair in [7]). For a

given reversible pair there exists a reversal σ such that after applying them on π, i and

i + 1 become consecutive with matching signs, either i, i + 1 or i+ 1, i. For example in

the permutation (1, 3, 6, 4, 2, 5, 7), 3 and 4 are a reversible pair, and applying a reversal on

(6, 4) transforms the permutation to (1, 3, 4, 6, 2, 5, 7) and makes 3 and 4 consecutive and

positive. Such reversals seem like a good way to make progress in sorting a permutation

and actually the starting idea of the Hannenhalli-Pevzner algorithm is to identify these

reversals (actually we need to check an extra condition for these reversals as we explain

in what follows.)

The approach of finding reversible pairs in the permutation fails as soon as we obtain a

signed permutation in which all elements have the same sign. This leads to the definition

of blocks (hurdles in [44]) which introduces a second parameter that together with the

number of cycles in the breakpoint graph determines the signed reversal distance. Here,

we introduce the concept of blocks that is similar to the notion of unoriented components

in [7].

Blocks. A positive block in a signed permutation is an interval I = (πi, . . . , πj) where

all the elements are positive, πi < πj, and the elements that are contained in I are all the

integers in [πi, πj]. A negative block in a signed permutation is an interval I = (πi, . . . πj)

where all the elements are negative, πi > πj, and the elements that are contained in I are

all the integers in [πj, πi]. A block is non-trivial if it is not already sorted, i.e., it is not equal

to (πi, πi + 1, . . . πj − 1, πj) or to (πi, πi − 1, . . . , πj + 1, πj). In both cases, we call πi and

πj the frames of the block. For example in the signed permutation (0, 2, 1, 3, 7, 5, 6, 4, 8),

(0, 3) bounds a positive block and (7, 4) bounds a negative block.

As there are no reversible pairs in a block, it costs us extra reversals to deal with

them. It turns out that applying a reversal on an interval in a block destroys the block

70 Preliminaries

without changing the number of cycles in the breakpoint graph (this is called cutting

hurdles in [7]). To optimize the number of reversals that we need to destroy the blocks,

a merging process is defined in which two blocks are dealt with only one reversal. The

optimal number of reversals, t(π), needed to demolish all the blocks in a permutation π,

is computed using a single PQ-tree. The full description of these processes will not be

needed and is rather out of the scope of this thesis, therefore we refer the reader to [7] for

more details.

As blocks add to the number of reversals needed to sort a permutation, it is a natural

idea to avoid creating one during sorting. When we apply a reversal on a reversible pair,

there is a chance that it creates a new block in the permutation. For example applying

a reversal on the reversible pair 5 and 4 (namely, applying a reversal on (5, 1)), in the

permutation (0, 2, 5, 3, 1, 4, 6) which contains no block, transforms it to (0, 2, 1, 3, 5, 4, 6) in

which (0, 3) is a positive block. Given a reversible pair (i, i+1) in the signed permutation

π, let σ be a reversal that makes i and i+1 consecutive. The score of (i, i+1) (or of σ) is

the number of reversible pairs in π · σ. A reversal that has the maximal score among all

reversible pairs is safe in the sense that it does not create new blocks in the permutation,

see [6, Theorem 10] (we also provide a proof for this, but for cyclic permutations, see

Lemma 3.8.5). For example the reversal applied on the reversible pair 0, 1 in the example

above, i.e., the reversal on the interval (2, 1), has the maximal score 4 and is safe while

the reversal on 4 and 5 has score 2. The following lemma states that a safe reversal is

optimal.

Lemma 3.8.1 ([6, Proposition 1]). If i, i + 1 are a reversible pair with maximal score in

π and σ is a reversal that makes them consecutive and with same sign in π · σ, then

d(π · σ, id) = d(π, id)− 1.

Now we are ready to sketch the algorithm of Hannenhalli and Pevzner, although we

do not describe the step that deals with the blocks.

The sketch of the Hannenhalli-Pevzner algorithm:

• Step 1: If there exists a reversible pair. Apply a reversal on a reversible pair

with maximal score.

• Step 2: If there are no reversible pairs. If the permutation is the identity, we

are done. Otherwise, there exists a block in the permutation. Demolish the

blocks using a cutting or a merging process (the details of this step depend

on the PQ-tree). Then recurse.

The reversals applied on the permutation π on {0, . . . , n+1} in Step 1 of the algorithm,

increase the number of cycles and reduces the distance to the identity permutation. As

3.8 Algorithms and genome rearrangements 71

we explained above, at most n + 1 − c(π) reversals are applied in Step 1 to reach the

maximal number of cycles in a permutation (which belongs to the identity permutation).

As we mentioned, the optimal number of reversal that we need in Step 2 of the algorithm

is denoted by t(π). This gives us the following theorem that we state here without proof.

Theorem 3.8.2 ([7, Theorem 2]). Let π be an extended signed permutation on the set

{0, . . . , n+ 1}. Then d(π, id) = n+ 1− c(π) + t(π).

Remark 3.8.3. Note that for a permutation without any blocks, Step 1 of the algorithm

is sufficient to sort the permutation. Therefore, for an extended permutation π that has

no block, d(π) = n + 1 − c(π) (see [7, Corollary 1]). One of our results in Chapter 7,

extensively uses the first step of this algorithm.

3.8.2 Topology of the signed reversal distance and relation to cross-cap

drawings

As we mentioned above, the problem of sorting signed permutations by reversals is one

of the few that can be calculated efficiently among the genome rearrangement problems.

In this section, we investigate the topology behind the signed reversal distance which we

believe can explain this efficiency.

The algorithm of Hannenhalli-Pevzner, primarily deals with sorting standard signed

permutations that are extended by adding 0 and n + 1 at the beginning and the end

of the permutation, while in this section, we consider the more general case of sorting

cyclic signed permutations. A cyclic permutation describes a loopless 2-vertex embedding

scheme: consider a two-vertex embedding scheme with edges labelled by the elements in

π such that the cyclic permutation of edges around one vertex is π and around the other

one is id. The signature of edges in the embedding scheme is determined by the sign

of the elements in π, i.e., if an element i has sign + (resp. −) in the permutation π,

the edge i in the corresponding embedding scheme has signature +1 (resp. −1). In the

following, we use the same letter π to denote the two-vertex embedding scheme associated

to the permutation π and in turn we use the same notations that we used for embedding

schemes, for π, notations such as g̃(π) and eg(π).

Our sorting problem now becomes computing the minimum number of reversals,

d(π, id), needed to transform a cyclic permutation π to id. For a signed permutation

π notions of breakpoint, reversible pair, blocks and optimal and safe reversals can all be

defined similarly to the case of standard permutations. The definition of the breakpoint

graph for a cyclic permutation π = (π1, . . . , πn) is quite similar to the extended standard

case except that we do not have 0r and (n+ 1)l and i is considered modulo n. It is easy

72 Preliminaries

to check that the cycle decomposition of this graph for a cyclic permutation π coincides

with the faces in the embedding scheme corresponding to π, see Figure 3.27.

Let X be a sorting scenario that transforms the cyclic permutation π to the identity

permutation by d(π, id) reversals. The scenario X for sorting π can be employed to obtain

a cross-cap drawing for π (probably with more cross-caps than g̃(π)) as follows: trace the

edges in π under the actions of reversals, such that if a reversal is applied on an interval

(i, j), all the edges in G that belong to this interval go through a cross-cap, see Figure 3.28.

If a and b are two reversals in X such that a happens before b, orienting the edges from

the vertex with cyclic permutation π to the other vertex, no edge in π that enters the

cross-caps associated to a and b, enters b before a. We call a cross-cap drawing that

admits such an order on the cross-caps a monotone cross-cap drawing.

Figure 3.28: From sorting permutations with reversals to monotone cross-cap drawings.

The Bafna-Pevzner inequality from Euler’s formula

Let π be a signed cyclic permutation, which as explained above, we think of as a two-

vertex embedding scheme, which requires g̃(π) cross-caps to be drawn. We can compute its

number of faces, which we denote by f(π) and the number of elements in the permutation

corresponds to the number of edges in the scheme, which we denote by e(π). Then Euler’s

formula reads 2−eg(π) = 2−e(π)+f(π) which simplifies to eg(π) = e(π)−f(π). Since the
reversals (or cross-caps) in a sorting scenario are monotone and by Lemma 3.3.2, we thus

have d(π, id) ≥ g̃(π) ≥ e(π)− f(π) (the first inequality from left is due to monontonicity

of a cross-cap drawing obtained from a sorting scenario and the other is implied from

Lemma 3.3.2).

A very similar inequality was first discovered by Bafna and Pevzner [5, Theorem 2]

without reference to embeddings. Figure 3.29 shows an example where the inequalities

are strict: the embedding scheme has Euler genus two, non-orientable genus three and

one can show that the signed permutation requires four reversals to be sorted. However,

as pictured on the right, it does admit a cross-cap drawing with three cross-caps in which

each edge enters each cross-cap at most once. Necessarily, in that example, the cross-

caps can not be interpreted as reversals: this is apparent here as they do not occur in a

monotone order.

3.8 Algorithms and genome rearrangements 73

Figure 3.29: The embedding scheme depicted in this picture has non-orientable genus 3 but

requires four reversals (left). However, it admits a cross-cap drawing with three cross-caps such

that each edge enters each cross-cap at most once (right).

Two edges in a 2-vertex embedding scheme or a permutation π are parallel3 if either

they are both positive and appear consecutively in increasing order in π (e.g., (i, i+1)) or

they are both negative and they appear in the reverse order (e.g., (i+ 1, i)). Under this

definition, given a reversible pair (i, i+1), there are two reversals σ and σ′ that make i and

i + 1 parallel. For example, in the signed cyclic permutation (1, 3, 2, 4), two reversals on

(3, 2) and (4, 1) make 3 and 4 parallel. These two reversals are equivalent in the sense that

the two permutations (embedding schemes) that they yield are flipped versions of each

other, i.e., π ·σ = π · σ′ (recall that π is a permutation obtained by reversing the elements

in the permutation π) and the signatures of all the edges are reversed. The following

lemma is equivalent to Lemma 3.8.1 from the point of view of graph embeddings. We

provide a proof for this version.

Lemma 3.8.4. If i, i+1 are a reversible pair in π and σ is a reversal that turns them into

parallel curves in π · σ, then eg(π · σ) = eg(π)− 1.

Proof. Since e(π) = e(π · σ), we need to show that f(π · σ) = f(π) + 1. The edges i and

i+1 appear in some face a in π. We claim that the faces of π ·σ are the same as the faces

of π except that a is subdivided into the bigon (i, i+ 1) and another face which contains

the edges of a minus i and i+1. Indeed, every other face is not disrupted by the reversal.

This finishes the proof.

As mentioned in Remark 3.8.3, in the case where π is a standard permutation that

does not contain a block, applying safe reversals sorts the permutation (it is ensured that

no block emerges during the algorithm). Here, we generalize this result to the case where

the permutation is cyclic. The following lemma provides an almost identical result to that

of [6, Theorem 10] but for embedding schemes.

3We show in Chapter 7 that this definition coincides with the the curves being homotopic in a two-

vertex embedding scheme.

74 Preliminaries

Lemma 3.8.5. Let π be a non-orientable signed permutation without non-trivial blocks,

(i, i+ 1) be a reversible pair of maximal score, and σ be a reversal that makes i and i+ 1

parallel. If π · σ is not the identity, it is non-orientable and has no non-trivial blocks.

We postpone the proof of this lemma to the following section. Here, we use this lemma

to prove that in the absence of blocks, eg(π) = d(π, id). This theorem is used extensively

to obtain our results in Chapter 7.

Theorem 3.8.6. If a signed permutation π is non-orientable and has no non-trivial blocks

then d(π, id) = eg(π), and the Hannenhalli-Pevzner algorithm gives a sequence of reversals

of this optimal length.

Proof of Theorem 3.8.6. By the previous lemma, if π is non-orientable has no non-trivial

block and σ is a reversal of maximum score, then π · σ is also non-orientable and also has

no non-trivial block. By induction, d(π ·σ, id) = e(π ·σ)− f(π ·σ) = eg(π ·σ). Therefore,
by Lemma 3.8.4, eg(π) ≤ d(π, id), and d(π, id) ≤ d(π · σ, id) + 1 = eg(π · σ) + 1 =

e(π)− f(π) = eg(π).

Proof of Lemma 3.8.5

In this section, we provide a proof for Lemma 3.8.5. Two intervals (i, j) and (k, l) are

called interleaving in a cyclic permutation, if we either have π−1(i) < π−1(k) < π−1(i+1)

or π−1(i) < π−1(l) < π−1(i + 1). The following is similar to the definition of overlapping

graph and the proof of Theorem 1 in [6]. We also take advantage of this definition and a

technique very similar to that of the proof of Lemma 3.8.5 in our main result in Chapter 5.

Interleaving graph. Given a permutation π on {1, . . . , n}, let π∗ be the permutation

of size 2n on elements {il, ir for 1 ≤ i ≤ n} in which π∗
2k−1 = πl

i and π∗
2k = πr

i when πi

is positive and π∗
2k−1 = πr

i and π∗
2k = πl

i when πi is negative. We build the interleaving

graph Iπ as follows:

• The graph has n vertices labelled by (i, i+ 1) for i modulo n. A vertex (i, i+ 1) is

called reversible if (i, i+ 1) is a reversible pair, otherwise it is called non-reversible.

We denote a reversible pair by a white vertex and a non-reversible pair by a black

one.

• Two vertices (i, i + 1) and (j, j + 1) are connected if the intervals (ir, i + 1l) and

(jr, j + 1l) are interleaving in π∗.

See Figure 3.30 for an example.

A connected component in Iπ is non-trivial if it has more than one vertex and it is

called orientable if it only contains non-reversible vertices.

3.8 Algorithms and genome rearrangements 75

Remark 3.8.7. If (i, i+ 1) are parallel in π then the vertex (i, i+ 1) is an isolated vertex.

A non-trivial block and the vertices in Iπ associated to the pair of edges that belong to

the block correspond to a non-trivial orientable connected component in Iπ. Note that the

reverse is not true and an orientable connected component does not always correspond to

a non-trivial block in the permutation.

Lemma 3.8.8. Let π be a signed permutation for which Iπ has a non-trivial orientable con-

nected component U . Then either U corresponds to a non-trivial block or π is orientable.

Proof. We say that an element i belongs to U if (i, i + 1) ∈ U or (i − 1, i) ∈ U . By

orientability, all the elements belonging to U have the same signature, let us first assume

that it is positive. Let us furthermore assume, for the sake of contradiction, that π is not

orientable and that U does not correspond to a block. Since π is not orientable, not every

element has positive signature, so there is at least one element that does not belong to

U . Let a be an element belonging to U such that a − 1 does not belong to U . Without

loss of generality, we can fix an origin to the signed permutation π at a − 1. Now let

b be an element that belongs to U and such that for any element j that belongs to U ,

a, j and b appear in this cyclic order in π. We claim that either a − 2 = b, or a − 2

does not appear between a and b in π. Indeed, if a − 2 appears between a and b, then

(a− 2r, a− 1l) would interleave with one pair on a path between (a, a+ 1) and (b, b± 1)

in U , and thus a − 1 would belong to U . Therefore, either a − 2 = b or a − 2 does not

belong to U . Inductively, none of the elements that are not in [a, b] lie between [a, b] in π.

Similarly, all the elements within [a, b] lie between a and b in π, as otherwise the smallest

one that does not, call it k, does not belong to U , yet (k − 1r, kl) interleaves with a pair

on a path between (a, a+1) and (b, b± 1) in U , contradicting the fact that k is not in U .

We conclude that a and b are the frames of a block, which is non-trivial since there is at

least one pair in U . This is a contradiction. The case where all the signatures in U are

negative follows from the fact that flipping π does not change its interleaving graph nor

the orientability of its components.

When we apply a reversal on a reversible pair (i, i+1), the effect on Iπ is to complement

the subgraph induced by the vertex (i, i + 1) and its neighbors in Iπ. Also if a vertex in

this subgraph was reversible, it gets non-reversible and vice versa. Indeed, let (j, j+1) be

a reversible vertex connected to (i, i + 1). This means that the intervals (jr, j + 1l) and

(ir, i+1l) are interleaving. Without loss of generality let us assume that jr is the element

that belongs to the interval (ir, i+ 1l) and it is positive. Reversing the elements between

(i, ππ−1(i+1)−1) makes i and i + 1 parallel and isolates (i, i + 1). Also it makes j negative

and therefore the pair (j, j +1) is not reversible anymore. Similarly it can be seen that if

(j, j+1) and (k, k+1) are two neighbors of (i, i+1) in Iπ and the intervals (jr, j+1l) and

(kr, k+1l) interleave, after applying the reversal they stop being interleaved and therefore

76 Preliminaries

Figure 3.30: Figure depicts a permutation π, its associated doubled permutation π∗ and its

interleaving graph Iπ. At the bottom we can see the effect of reversing elements 1, 3, 5 on the

interleaving graph; this reversal makes 4 and 5 parallel.

vertices (j, j+1) and (k, k+1) are not connected anymore in the interleaving graph. This

explains the complementing of the induced subgraph. Figure 3.30 depicts the effect of

applying the reversal on the pair (4, 5).

Proof of Lemma 3.8.5. To prove the lemma, we first show that the number of non-trivial

orientable connected components in Iπ·σ cannot be more than Iπ. Let us assume that this

is the case and that by applying σ we create such a component C. In this case, we claim

that the score of any pair (j, j + 1) for which the corresponding vertex is in C, is higher

than the score of the pair (i, i+ 1).

Denote by #+(i, i + 1) (resp. #−(i, i + 1)) the number of reversible (resp. non-

reversible) pairs of edges adjacent to (i, i + 1) in Iπ. If π has k reversible pairs of edges,

then the score(i, i+ 1) = k −#+(i, i+ 1) + #−(i, i+ 1).

Before applying the reversal, every non-reversible vertex that is connected to (i, i + 1)

has to be connected to (j, j + 1). This is because otherwise after applying the reversal

this vertex will be a reversible vertex connected to (j, j+1) and therefore belonging to C

which is not possible. This implies that #−(i, i+ 1) ≤ #−(j, j + 1).

Before applying the reversal, every reversible vertex (t, t+1) that is connected to (j, j+1)

has to be connected to (i, i+ 1). This is because if (t, t+ 1) is not connected to (i, i+ 1),

after applying the reversal, this vertex remains connected to (j, j + 1) without changing

3.8 Algorithms and genome rearrangements 77

its reversibility. This means that (t, t+ 1) is a reversible pair that belongs to C which is

not possible. This implies that #+(j, j+1) ≤ #+(i, i+1). The equality does not happen

since the component C has more than one vertex and a vertex in C to which (j, j + 1) is

connected after the reversal, is a reversible vertex that used to be connected to (i, i + 1)

but not to (j, j + 1). Therefore #+(j, j + 1) < #+(i, i+ 1).

We have that score(i, i + 1) = k − #+(i, i + 1) + #−(i, i + 1) < k − #+(j, j + 1) +

#−(j, j + 1) = score(j, j + 1) which contradicts our assumption. This finishes the proof

of the claim.

Now, the assumptions of Lemma 3.8.5 imply that there are no non-trivial orientable

connected components in Iπ. Thus there are also none in Iπ·σ. A non-trivial block or

the entire scheme being orientable but not the identity would induce such a non-trivial

orientable connected component. This concludes the proof.

3.8.3 Block interchange distance

Another distance that can be calculated efficiently among the genome rearrangement

problems is the block interchange distance. In this problem, a one chromosome genome is

encoded by an unsigned permutation π = (π1, . . . , πn). As we defined above, an interval

(πi, πj) is the sub-permutation consisting of the elements between πi and πj. A block

interchange acts on two disjoint intervals (not necessarily contiguous) (πi, πj) and (πk, πl)

by replacing their elements: it maps

(π1, . . . , πi−1, πi, . . . , πj, πj+1 . . . , πk−1, πk, . . . , πl, πl+1, . . . πn),

to

(π1, . . . , πi−1, πk, . . . , πl, πj+1 . . . , πk−1, πi, . . . , πj, πl+1, . . . πn).

The block interchange distance between permutations π and π′, denoted by db(π, π
′) is

the minimum number of block interchanges needed to transform π to π′. The problem of

computing the block interchange distance between two permutations π and π′ is equivalent

to computing the block interchange distance between ππ′−1 and the identity permutation

id. In the following, we sometimes refer to the problem of transforming π to id as the

problem of sorting π by block interchange.

Although the block interchange distance and its topological interpretation are not used

in the thesis but they are worth presenting as they provide a simple orientable counterpart

to Sections 3.8.1 and 3.8.2.

The Christie algorithm

Similar to the Hannenhalli-Pevzner algorithm for computing the signed reversal distance,

Christie [16] also deals with extended permutations on {0, . . . , n+1}. In sorting a permu-

78 Preliminaries

tation by block interchange, an obstacle is to deal with breakpoints in the permutation,

as in the case of sorting by reversals. Although in this case, breakpoints provide sufficient

data to completely describe the block interchange distance.

The same notion of breakpoint graph that was introduced in Section 3.8.1, is intro-

duced to capture the necessary data in the permutation and study the effect of a block

interchange in the number of breakpoints4 (every edge is assumed to have sign +). Here

again, we enumerate the number of cycles in this graph and a winning strategy is to apply

block interchanges that increase the number of cycles to n+1 that is the number of cycles

in the identity permutation id on {0, . . . , n+ 1}.
Christie proves the following lemma.

Lemma 3.8.9 ([16, Lemma 1]). If π is not the identity permutation, there always exist a

block interchange that removes at least two breakpoints from π.

The lemma is proved by introducing a minimal block interchange. Consider a per-

mutation π that is not the identity. There exist two elements x < y that appear in

the wrong order in π, i.e., π = (1, . . . , y, . . . , x, . . . , n). Let x be the smallest such value

and y be the largest one to the left of x. By this choice, we know that x − 1 must

appear before y in π and y + 1 must appear to the right of x. Let us denote by z the

element in π that appears after x, i.e., z = ππ−1(x−1)+1 and let w be the element in π

that appears before y + 1, i.e., w = ππ−1(y+1)−1. We introduce the minimal block inter-

change in π to be the one that replaces the interval (z, y) with (x,w) and vice versa.

This block interchange, maps π = (1, . . . , x − 1, z, . . . , y, . . . , x, . . . , w, y + 1, . . . , n) to

π = (1, . . . , x− 1, x, . . . , w, . . . , z, . . . , y, y + 1, . . . , n).

A minimal block interchange increases the number of cycles in the breakpoint graph

by 2 (see [16, Lemma 2]).

Although a block interchange might decrease the number of breakpoints by 4, no block

interchange can increase the number of cycles in the breakpoint graph by more than 2

(see [16, Lemma 3]). Using this observation, Christie proves that applying minimal block

interchanges repeatedly gives an optimal bound.

Theorem 3.8.10 ([16, Theorem 4]). Let π be a permutation on {0, . . . , n + 1}. Then

db(π, id) =
1
2
(n+ 1− c(π)).

3.8.4 Topology of the block interchange distance and relation to box

drawings

As in the case of sorting permutation with reversals, in this section, we investigate the

topology behind the block interchange distance. Here again, we consider this sorting

4This is called cycle graph in [16]).

3.8 Algorithms and genome rearrangements 79

problem for the case of cyclic permutations. We reduce the problem in the cyclic setting

to the setting of extended standard permutations.

We associate to an unsigned cyclic permutation π, an orientable embedding scheme:

consider a two-vertex orientable embedding scheme with edges labelled by elements in π

such that the cyclic permutation of edges around one vertex is π and around the other

one is id. In the following, we use the same letter π to denote the two-vertex embedding

scheme associated to the permutation π and in turn we use the same notations that we

used for embedding schemes, for π; for example g(π) refers to the orientable genus of the

embedding scheme that corresponds to the permutation π.

Similar to the case of reversal distance, the cycle decomposition of the breakpoint

graph of a cyclic permutation corresponds to the faces of the corresponding embedding

scheme. Let X be a sorting scenario with block interchange that transforms π to the

identity permutation by db(π, id) block interchanges. The scenario X for sorting π can

be employed to obtain a box drawing for G as follows: let ρ be a block interchange that

replaces the interval (i, j) with (k, l) and vice versa. Trace the edges in π under the actions

of block interchange by drawing a box with sides labeled by abcabc such that the elements

in (i, j), (j, k) and (k, l) enter the box from sides a, b and c, respectively, see Figure 3.31.

If m and n are two block interchanges in X such that m happens before n, orienting the

edges from the vertex with cyclic permutation π to the other vertex, no edge in π that

enters both boxes associated to m and n, enters n before m. We call a box drawing that

admits such an order on the boxes, a monotone box drawing.

Figure 3.31: From sorting permutations with block interchange to monotone box drawings.

Note that this sorting scenario is not optimal if the permutation (4, 3, 2, 1) is viewed as a cyclic

permutation (see Figure 3.32 for an optimal scenario), but it is optimal if it is a standard

permutation.

The block interchange distance and Euler’s formula. Let π be an unsigned permutation,

which as explained above, we think of as a two-vertex orientable embedding scheme, which

requires g(π) boxes to be drawn. By Euler’s formula 2−2g(π) = 2−eg(π) = 2−e(π)+f(π)
which simplifies to g(π) = 1

2
(e(π) − f(π)). The monotonicity of a box drawing obtained

from a sorting scenario implies that db(π, id) ≥ g(π).

80 Preliminaries

Figure 3.32: A scenario for sorting the cyclic permutation (4, 3, 2, 1). The corresponding em-

bedding scheme has orientable genus 1.

We can adopt Christie’s algorithm in the cyclic setting to show that the equality

holds in that setting. Let π be a cyclic permutation on {1, . . . , n}. Let x and y be the

elements appearing in π, after and before n, respectively. Consider the interval (x, y) as an

standard permutation. Extend this by adding 0 and n and denote the extended standard

permutation by π′. The permutation π′ is an extended permutation on {0, . . . , n} and

can be sorted by Christie’s algorithm using 1
2
(n − c(π′)) block interchanges. Now, one

can check that c(π′) = f(π) which implies that this permutation can be sorted using
1
2
(n− c(π′)) = 1

2
(n−f(π)) = g(π) block interchanges. This sorting scenario for π′ induces

a sorting scenario for π (such that n does not enter any box in a box drawing corresponding

to this scenario). This gives us the opposite inequality d(π, id) ≤ g(π). Figure 3.32 depicts

such a scenario for sorting the cyclic permutation (4, 3, 2, 1).

81

Chapter 4

Joint crossing numbers of graphs and

Negami’s conjecture

Summary. Negami proved that any two graphs G1 and G2 embedded on a sur-

face S have joint crossing number O(g|E(G1)||E(G2)|). In this chapter, we first

provide an example to demonstrate why his proof technique for non-orientable

surfaces fails. Then we provide a correction for this proof.

A k-universal shortest path metric is a metric on a fixed surface such that each

graph embeddable on this surface can be embedded so that each edge is a concate-

nation of at most k shortest paths. In the second part of this chapter we provide

an O(g)-universal shortest path metric for non-orientable surfaces of genus g ≥ 3.

This generalizes a similar result for orientable surfaces. The proof involves gener-

alizing an algorithm that provides a short octagonal decomposition of orientable

surfaces to the non-orientable setting.

The results in this chapter were obtained with Alfredo Hubard and Arnaud de Mes-

may. Both results appear in [A] which has been published in Discrete & Computational

Geometry. The first result also appears in a preliminary version that is published in the

Proceedings of the 38th Symposium on Computational Geometry [A].

4.1 Introduction

The joint crossing number of two graphs G1 and G2 embedded on a surface S is the

minimum number of crossings between h(G1) and G2 over all homeomorphisms h : S → S

with the constraint that edges are only allowed to cross transversely. This crossing number

was initially introduced by Negami [59]. He made the following conjecture, which is still

open.

82 Joint crossing numbers of graphs and Negami’s conjecture

Conjecture 1. (Negami’s conjecture) There exists a universal constant C such that for

any pair of graphs G1 and G2 embedded on a surface S, the joint crossing number is at

most C|E(G1)||E(G2)|.

This conjecture has been investigated further [3, 47, 66] and variants of this problem

have appeared in various works with applications as diverse as finding explicit bounds for

graph minors [38] or designing an algorithm for the embeddability of simplicial complexes

into R3 [54].

Despite all these studies, the conjecture has been open for more than 20 years. The

best known bound is due to Negami himself who proved that any two graphs G1 and

G2 embeddable on a surface (orientable or non-orientable) of genus g have joint crossing

number O(g|E(G1)||E(G2)|). Although the statement is correct, his approach in dealing

with non-orientable surfaces suffers from a small flaw. In the first contribution of this

chapter, we provide a correction for the non-orientable case using an alternative technique.

A geometric approach toward a better understanding of Negami’s conjecture has been

devised by Hubard, Kaluža, de Mesmay and Tancer in [50]. They investigate a problem

that is an adequate generalization of the celebrated Fàry’s theorem for embedding planar

graphs [51]. Fàry’s theorem states that every planar graph can be embedded on the plane

with straight lines. They formalize this generalization by asking the following question.

Question 1. Given a surface S of genus g, does there exist a Riemannian metric on S

such that any simple graph embeddable on S can be embedded so that the edges are shortest

paths on S?

Other generalized instances of Fàry’s theorem have been provided. For example,

in [68], an instance of this question is answered positively in which the edges of the

graphs are restricted to be geodesics instead of shortest paths. Also, Question 1 has a

positive answer if instead of a universal metric we merely asked for a metric for each

graph, see [71]. But we are interested in both universality of the metric and the restric-

tion on edges being shortest paths, since a positive answer to this instance of the problem

implies Negami’s conjecture. Indeed, if there existed a universal Riemannian metric on

each surface so that all the graphs embeddable on the surface could be embedded with

shortest paths for this metric, then for such an embedding for any two graphs, pairs of

edges would cross at most once since shortest paths cross at most once.

Hubard, Kaluža, de Mesmay and Tancer provided such a metric for the sphere, the

torus, the projective plane and the Klein bottle but the problem in its generality is still

open. They introduced a relaxation of the problem. A k-universal shortest path metric

is a metric on a fixed surface such that each graph embeddable on this surface can be

embedded so that each edge is a concatenation of at most k shortest paths. They provided

4.1 Introduction 83

an O(g)-universal shortest path metric for any orientable surface of genus g > 1. They

also showed that this relaxation reproves Negami’s result in the orientable case.

The main technical tool in this proof is an algorithm that computes a short octago-

nal decomposition of orientable surfaces provided by Colin de Verdière and Erickson [21].

In this chapter, we provide a proof for the existence of an O(g)-universal shortest path

metric for non-orientable surfaces by first generalizing this octagonal decomposition for

non-orientable surfaces. This, to the best of our knowledge, provides the first short de-

composition of non-orientable cross-metric surfaces (of length O(g|E(G)|) where G is the

primal graph on the surface). Later in Chapters 5 and 6, we provide other decompositions

of short length for non-orientable surfaces.

4.1.1 Our results

Negami claimed in [59] that if we have two graphs embeddable on a closed surface, we can

reembed them simultaneously such that their edges cross few times. The Betti number of

a connected graph G is β(G) = |E(G)| − |V (G)|+ 1.

Negami’s claim ([59, Theorem 1]). Let G1 and G2 be two connected graphs embeddable on a

closed surface of genus g, orientable or non-orientable. We can embed them simultaneously

such that they intersect transversely in their edges at most 4gβ(G1)β(G2) times.

We first show that Negami’s proof for this claim has a subtle flaw in the case of non-

orientable surfaces. We exhibit a specific counterexample to the proof technique. Then

we provide an alternative proof based on a different technique.

Theorem A. Let S be a non-orientable surface of genus g ≥ 1 and G1 and G2 be two

graphs embedded on S. Then there exists a homeomorphism h such that any edge of

h(G1) crosses each edge of G2 at most O(g) times. In particular, the total number of

crossings between h(G1) and G2 is O(g|E(G1)||E(G2)|).

In order to prove this theorem we take advantage of a technique in [54] to compute a

short orienting curve.

Another application of cutting along an orienting curve is the following theorem, gen-

eralizing results on universal shortest path metrics obtained in [50] to non-orientable

surfaces.

Theorem B. For g ≥ 3, there exists an O(g)-universal shortest path metric on the non-

orientable surface Ng.

The proof of Theorem B relies, after cutting along an orienting loop, on techniques

fairly identical to those in [50]. The main technical tool in the proof provided in [50] is

a hexagonal decomposition that is directly obtained from the octagonal decomposition of

84 Joint crossing numbers of graphs and Negami’s conjecture

orientable surfaces provided in [21]. We provide an analogue of these decompositions for

non-orientable surfaces.

Theorem C. Let N be a non-orientable cross-metric surface, with genus g ≥ 3 and no

boundary. We can decompose N into 2g − 4 hexagons when g is even and into 2g − 6

hexagons and 4 pentagons when g is odd such that the multiplicity of each curve in the

decomposition is O(1) except for one closed curve which has multiplicity O(g). Further-

more, the graph of the decomposition is the graph shown in Figure 4.7 and its dual graph

is the one shown in Figure 4.8.

Outline. We prove Theorem A in Section 4.2 and Theorems B and C in Section 4.3.

4.1.2 Main ideas and proof techniques

One of the techniques we use in this chapter is contracting a spanning tree of the embedded

graphs as explained in Section 3.3.1. This simplifies the objects we deal with without

making it lose its important topological features.

In proving both of the results in this chapter, we also use an orienting curve (as

explained in Section 3.7) to first reduce the problems to the orientable case where similar

results are known. By Lemma 3.7.1, given a graph embedded on a non-orientable surface,

one can compute an orienting curve that crosses each edge of the graph at most a constant

number of times. With this tool at hand, we provide a corrected proof of Theorem A

with slightly worse constants. Also, this lemma enables us to generalize the octagonal

decomposition in [21] to the non-orientable setting by first cutting the non-orientable

surface along an orienting curve.

4.2 Correcting Negami’s proof

In this section we show that in the non-orientable case, Negami’s proof for his claim (see

Section 4.1.1) is incorrect, but the statement remains correct.

In his argument, he reduces the proof of his claim to two simple lemmas regarding

the number of crossings between sets of arcs on a punctures surface. Lemma 4.2.1 is his

exact reduction of the claim in the orientable case and is correct (see [59, Lemma 3]).

In the case of non-orientable surfaces, he claims a similar constant to the orientable case

(see [59, Lemma 4]) but his proof technique is not correct. Here we prove Lemma 4.2.2

that is analogous to his claim in [59, Lemma 4] but with a slightly worse constant. An

arc is called an essential proper arc if it does not cut off a disk from the surface.

Lemma 4.2.1. For two orientable surfaces Mi of genus g ≥ 1, with one boundary com-

ponent and βi disjoint essential proper arcs (i = 1, 2) where βi ≤ β(Gi), there exist an

4.2 Correcting Negami’s proof 85

orientable surface M of genus g with one boundary component and homeomorphic embed-

dings of M1 and M2 in M so that the images of the arcs in M1 and M2 intersect at most

4(g − 1)β1β2 times.

Lemma 4.2.2. For two non-orientable surfaces Ni of genus g ≥ 1 with one boundary

component and βi disjoint essential proper arcs (i = 1, 2), there exist a non-orientable

surface N of genus g with one boundary component and homeomorphic embeddings of N1

and N2 in N so that the images of the arcs in N1 and N2 intersect at most 18(g− 1)β1β2

times when g is odd and 72(g − 2)β1β2 times when it is even.

In the proof of Lemma 4 in [59] (that is analogous to Lemma 4.2.2), Negami uses

induction on the genus of the non-orientable surface. Assuming that the claim is true for

genus g− 1, to prove it for genus g, he claims that there is an essential proper arc α that

runs along the center line of a Möbius band (a one-sided arc). This arc can be either

included in the system of arcs or be disjoint from it. The idea is then to cut along α to

get a non-orientable surface of genus g − 1 to use the induction hypothesis. The problem

lies in the fact that such an arc might be orienting. Cutting along an orienting arc leaves

us with an orientable surface and this interferes with the induction. This is illustrated in

the following lemma.

Lemma 4.2.3. Consider the non-orientable surface of genus 3 with one boundary compo-

nent and embedded essential arcs shown in Figure 4.1. Any one-sided arc disjoint from

the embedded arcs is orienting.

Proof. Figure 4.1 depicts a non-orientable surface of genus 3 (obtained by identifying the

boundary edges according to their letters and orientations) and one boundary component,

and a family of essential arcs on it (consisting of the boundary edges a, b and c and the

blue arcs). The arc c is a one-sided orienting arc and a and b are two non-homotopic

two-sided arcs. The blue arcs are two-sided arcs embedded on the surface. A one-sided

arc disjoint from the system of arcs in this polygonal schema, must have one end on the

segment of the boundary component between two copies of c and the other end on one

of the two other segments adjacent to c. Such an arc is orienting and by cutting along it,

we obtain an orientable surface of Euler genus 2 with one boundary.

A Correction. To prove Theorem A, we provide a different proof of Lemma 4.2.2. The

idea of the proof is to cut the surface along an orienting curve that does not cross the graph

embedded on the surface too many times (this curve exists by Lemma 3.7.1). By cutting

along such a curve, we obtain an orientable surface and we can use Lemma 4.2.1. Let us

first introduce some additional terminology that is tailored to surfaces with boundaries.

86 Joint crossing numbers of graphs and Negami’s conjecture

Figure 4.1: A non-orientable surface of genus 3 with embedded system of arcs. The dents in the

picture indicate the segments of the boundary component.

LetM be an orientable surface with boundaries that are given with some orientations.

We choose an orientation forM , i.e., a consistent choice of clockwise and counter-clockwise

for simple contractible curves (see, e.g., Hatcher [45, Section 3.3] for a formal definition);

such an orientation induces a (possibly different) orientation for each boundary, which we

call its natural orientation. We say that the orientations of the boundaries are mutually

compatible if they either all match the natural orientation or are all oriented oppositely

to the natural orientation. Figure 4.2 shows a surface with non-compatible boundary

orientations.

Lemma 4.2.4. Let N be a non-orientable surface of even genus and M be the orientable

surface obtained from cutting N along an orienting curve. The orientations on the two

boundaries of M induced by the orienting curve are compatible.

Proof. If the orientations on the boundaries in M are not compatible, identifying these

boundaries corresponds to adding a handle to the surface which in turn implies that the

surface we obtain is orientable. This contradicts the fact that N was non-orientable.

Figure 4.2 illustrates this.

Figure 4.2: An orientable surface with non-compatible boundary orientations

4.2 Correcting Negami’s proof 87

Recall that for an arc with both ends on the same boundary component, we say that

the arc is two-sided (resp. one-sided) if the closed curve obtained by connecting the

two ends of the arc along one of the boundary segments is two-sided (resp. one-sided).

An orienting closed curve γ is either two-sided or one-sided depending on the genus, as

described in Lemma 3.2.8. In the same spirit of this lemma, one can characterize orienting

arcs instead of orienting closed curves, the only difference is that when g is odd, hγ = h

and when g is even, hγ = h + 1. Figure 4.3 shows the boundary/s that appear after

cutting along a one-sided and a two sided arc.

Figure 4.3: The arc a is one-sided and b is two-sided. The segments of the boundary divided by

the arcs is depicted in light and dark blue. The figure shows the effect of cutting along a and b

on the number of boundaries.

Proof of Lemma 4.2.2. For i = 1, 2, let Ni be a non-orientable surface of genus g and

with one boundary component, with Γi, a system of βi disjoint essential proper arcs. We

distinguish the cases where g is odd from even.

g is odd. Let γi be an orienting arc in Ni which has ci ≤ 2βi intersections with Γi,

whose existence is guaranteed by Lemma 3.7.1 and Remark 3.7.2. Cut Ni along γi. Let

Mi be the resulting surface. From Lemma 3.2.8 we know that Mi is an orientable surface

of orientable genus g−1
2

and by the discussion before this proof, we know that it has one

boundary component. Each arc in Γi is cut into at most 3 arcs by γi. We denote by Γ′
i

the system of disjoint essential arcs in Mi and thus we have |Γ′
i| ≤ 3βi. By Lemma 4.2.1,

we know that there exist a surface M ′ with genus g−1
2

and one boundary component and

homeomorphisms ϕ1 and ϕ2 which map Mi to M
′ such that ϕ1(Γ

′
1) and ϕ2(Γ

′
2) have at

most 4g−3
2
|Γ′

1||Γ′
2| ≤ 36g−3

2
β1β2 crossings.

We modify ϕ2 in a small neighborhood of the boundary so that the copies of γ2 are

aligned with those of γ1. This will allow us to glue back the surface along γ1 (or γ2). In

order to do so, we slide out the ends of the arcs in Γ′
2 which are not on γ2, containing

88 Joint crossing numbers of graphs and Negami’s conjecture

Figure 4.4: The non-orientable surface cut along an orienting curve. The handle depicted in the

middle of the polygon is a representation for all the handles on the surface.

2β2 ends, into the two segments of the boundary of N1. Each one of the ends we are

sliding might intersect each end of the arcs in Γ′
1 which lies in the two segments of the

primary boundary component which contains 2β1 ends. This modification introduces at

most 4β1β2 intersections. Each copy of γi contains ci ends of the arcs Γ′
i. Next we align

copies of γ1 with γ2 and this introduces at most c1c2 new intersections on each copy.

Therefore, we have 4β1β2 + 2c1c2 ≤ 12β1β2 new intersections.

After this modification, we are able to glue back M ′ along γ1 (or γ2) to get back to

a non-orientable surface N with genus g and one boundary component. Now ϕ1 and ϕ2

introduce two homeomorphisms from N1 and N2 into N such that ϕ1(Γ1) and ϕ2(Γ2)

intersect at most 12β1β2 + 36g−3
2
β1β2 ≤ 18(g − 1)β1β2 times.

g is even. Let γi be an orienting arc in Ni which has ci ≤ 2βi intersections with Γi

whose existence is guaranteed by Lemma 3.7.1 and Remark 3.7.2. Let Mi be the surface

obtained by cutting Ni along γi. Each arc in Γi is cut into at most 3 arcs by γi. We denote

by Γ′
i the system of disjoint essential arcs in Mi and we have |Γ′

i| ≤ 3βi. By Lemma 3.2.8,

we know that Mi is an orientable surface of genus g−2
2

and by the discussion before this

proof, we know that it has two boundary components. Also we know that it has 3βi

disjoint essential arcs. Fixing an orientation for γi will let us see how the two boundary

components were pasted and according to Lemma 4.2.4, we know that these orientations

are compatible (see Figure 4.5).

We claim that there is a curve νi with an end on each of the boundary components

and with at most 3βi intersections with the system of arcs in Mi. We know that cutting

along an arc increases the Euler characteristic of the surface by 1 (Lemma 3.2.2) and

we choose νi such that it reduces the number of boundary components by 1. From the

relation χ = 2− 2g − h where h is the number of boundary components, we will see that

after the cut, the genus is unchanged. Therefore, by cutting along νi, we get the orientable

surface M ′
i with genus g−2

2
and one boundary component with 6βi disjoint essential arcs.

4.2 Correcting Negami’s proof 89

Figure 4.5: The surface Mi, the red arcs are the copies of γi.

We choose νi such that its ends lie on the segments of the boundary components

which belonged to the primary boundary component of Ni and so that it connects these

two boundaries. The problem reduces to finding such an arc so that it has at most 3βi

intersections with the system of arcs in Mi. Consider the graph H such that the vertices

are the endpoints of the arcs and the edges are the arcs Γ′
i which we denote by E1 together

with the segments on the boundary components denoted by E2. We choose a face ρ which

has one edge in E2 such that a part of this edge lies on the segment of the primary

boundary component. We choose the face ρ′ analogously to ρ but on the other boundary

component. The shortest path between vertices associated to ρ and ρ′ in the dual graph

of H induces a curve with ends on ρ and ρ′ that passes through the inner faces at most

once. We connect the ends of this curve to the edges on the boundary components in

both ρ and ρ′. This gives us an arc νi that intersects each edge of E1 at most once. Thus

νi is the desired arc.

Again, by Lemma 4.2.1, we know that there exist ϕ1 and ϕ2 mapping M ′
1 and M ′

2 to

M ′ with 4g−4
2

· 6β1 · 6β2 intersections on the arcs (see Figure 4.6). Similar to the case

where the genus was odd, we can modify ϕ1 and ϕ2 by introducing at most 4 · 6β1 · 6β2
intersections such that we can align copies of γ1 with γ2 and ν1 with ν2 and glue back M ′

to obtain N and at the end we have at most 72(g− 2)β1β2 intersections. This finishes the

proof.

Proof of Theorem A. Once we are equipped with Lemma 4.2.2, the proof of Theorem A

follows the same strategy as that of Negami [59]. For each i = 1, 2, we contract a spanning

tree in Gi, reducing it to a one-vertex embedding scheme, and remove contractible arcs,

yielding an embedding scheme Ei. We puncture the surface at the single vertex of Ei,

yielding a non-orientable surfaceNi with one boundary component andO(|E(Gi)|) disjoint
essential arcs. We are now in the situation to apply Lemma 4.2.2, which gives us a pair

of homeomorphisms sending N1 and N2 to N such that the number of crossings between

the arcs is O(g|E(G1)||E(G2)|). We glue back a disk on the puncture and connect all the

90 Joint crossing numbers of graphs and Negami’s conjecture

Figure 4.6: The orientable surface M ′ with one boundary component. The handle depicted in

the middle of the polygon is a representation for all the handles on M ′.

incoming arcs of Ei to a basepoint bi, so that the two basepoints b1 and b2 are slightly

off. This induces an additional O(|E(G1)||E(G2)|) crossings. Finally, we add back the

contractible arcs and uncontract the spanning trees in small neighborhoods of b1 and b2,

which does not change the number of crossings, concluding the proof.

4.3 An O(g)-universal shortest path metric for non-

orientable surfaces

In [50], the authors initiate a study on universal shortest path metrics in an attempt

to reduce Negami’s conjecture (Conjecture 1) to a problem in metric geometry. They

provide an O(g)-universal Riemannian metric of constant curvature −1 for any orientable

surface of genus g > 1 ([50, Theorem 4]). Furthermore, they provide an alternative proof

for Negami’s bound on the joint crossing numbers of graphs embeddable on orientable

surfaces (Theorem 4.2.1) that is derived from their proof techniques as a corollary of their

theorem ([50, Corollary 20]).

In this section, we provide a generalization of their result for non-orientable surfaces

that was left as an open problem in [50]. At the end we explain how Negami’s bound on

the joint crossing number of two graphs (for non-orientable surfaces) can be deduced from

our theorem. In the following, when we refer to a metric we mean a Riemannian metric.

We prove the following theorem.

4.3 An O(g)-universal shortest path metric for non-orientable surfaces 91

Theorem B. For g ≥ 3, there exists an O(g)-universal shortest path metric on the non-

orientable surface Ng.

The construction in the orientable case is based on a decomposition of orientable genus

g surfaces into hexagons. Given a graph embedded on a surface, it is first proved that

there exists a hexagonal decomposition such that each edge of the graph is cut O(g) times

by the graph of the decomposition. Each hexagon is endowed with a hyperbolic metric

and the following theorem is applied on each hexagon.

Theorem 4.3.1 ([50, Theorem 18], see also [24]). Let G be a graph embedded as a trian-

gulation in a hyperbolic hexagon H endowed with the metric of an equilateral right-angled

hyperbolic hexagon. If there are no edges between two non-adjacent vertices on the bound-

ary of H in G, then G can be embedded with geodesics, with the vertices on the boundary

of H in the same positions as in the initial embedding.

A convex hyperbolic hexagon can be isometrically embedded in the hyperbolic plane,

and therefore exactly one geodesic connects any pair of points. Thus in this setting,

geodesics are shortest paths and this theorem allows us to re-embed the part ofG restricted

to each face with shortest paths. The metric that we obtain by pasting these hyperbolic

hexagons is an O(g)-shortest path metric.

It turns out that we can generalize the hexagonal decomposition for non-orientable

surfaces, and apply the same strategy as in the orientable case.

Theorem C. Let N be a non-orientable cross-metric surface, with genus g ≥ 3 and no

boundary. We can decompose N into 2g − 4 hexagons when g is even and into 2g − 6

hexagons and 4 pentagons when g is odd such that the multiplicity of each curve in the

decomposition is O(1) except for one closed curve which has multiplicity O(g). Further-

more, the graph of the decomposition is the graph shown in Figure 4.7 and its dual graph

is the one shown in Figure 4.8.

To prove the theorem, we use the following lemma.

Lemma 4.3.2. Let M be an orientable cross-metric surface with orientable genus g ≥ 1,

and two (resp. one) boundary component(s). We can decompose M into 2g octagons

(resp. 2 hexagons and 2g − 2 octagons) such that each edge of the decomposition has

multiplicity O(1).

The proof of this lemma is completely analogous to that of the octagonal decomposition

in Colin de Verdière and Erickson [21, Theorem 3.1], and thus we only sketch it. The first

step in their proof is to cut the surface along a shortest non-separating curve, yielding

a surface with two boundaries. Their approach applies equally well if one starts with a

surface with two boundaries, as it suffices to skip that first step. Their second step is to

92 Joint crossing numbers of graphs and Negami’s conjecture

connect the two boundaries with an essential arc so as to have a single boundary. Thus,

we can deal with the case of a surface with a single boundary by skipping these first two

steps.

Then, the octagonal decomposition is obtained, after cutting along a maximum se-

quence of non-separating curves (unzipping), by going backwards (zipping) and adding

all the curves one by one (see [21, Section 3 and Figure 3.2(a)]). In the case of two bound-

aries, we can go back in an identical fashion to obtain an octagonal decomposition. In the

case of a single boundary, this backwards step ends one step earlier (since one additional

step was skipped at the start), hence we obtain two hexagons instead of octagons. In

that case, the Euler characteristic is odd (= 2− 2g− 1) and thus no decomposition made

exclusively of octagons can exist.

Proof of Theorem C. Denote by G the primal graph of the surface N . The first curve

in the decomposition is the orienting curve λ with multiplicity 2 that exists according

to Lemma 3.7.1. Cutting along λ, we get an orientable surface with boundary which we

denote by M and we denote by G′ the graph we obtain from G by cutting along λ. Each

edge of G is cut into at most three sub-edges. Using Lemma 3.2.8, we know that the

orienting curve is two-sided (resp. one-sided), if the genus of the surface is even (resp.

odd). Therefore, if g is odd, M has orientable genus g−1
2

and one boundary component

and if g is even, M has orientable genus g−2
2

and two boundary components.

By Lemma 4.3.2, we can find a decomposition of M into octagons when g is even, and

to both octagons and hexagons when g is odd, such that each curve in the decomposition

crosses each edge of G′ a constant number of times, see Figure 4.7. Since each edge of

G is cut into at most three edges in G′, we know that the multiplicity of each curve is

constant with respect to G.

We add an arc ρ that follows closely the sub-paths of the curves in the decomposition

obtained by Lemma 4.3.2 as depicted in Figure 4.7. The multiplicity of this curve is

O(g) and divides each octagon into two hexagons (and each hexagon to two pentagons).

The segments of this curve that belong to each face have constant multiplicity in G′ and

therefore in G.

There are two arcs that are intersecting the copies of the orienting curve. At the end,

we slide the ends of these curves very close to the boundary so that all of them build a

closed curve after gluing the surface back along λ. Since the orienting loop has multiplicity

2, this adds at most 2 to the multiplicity of these arcs. This finishes the proof.

Theorem 4.3.1 is also valid for hyperbolic pentagons with the same proof. As in the

orientable case, we apply Theorem 4.3.1 to each polygon of the decomposition provided

by Theorem C to obtain the theorem. We rely on the following proposition, showing that

this yields an O(g)-shortest path embedding.

4.3 An O(g)-universal shortest path metric for non-orientable surfaces 93

Figure 4.7: Our decomposition of non-orientable surfaces with even genus 8 (top picture) and

odd genus 7 (bottom picture). The pink curve is the orienting curve and the orientations shows

how they are pasting together. We can see that the boundaries in the even case have compatible

orientations according to Lemma 4.2.4. The yellow curve is the arc ρ added as the last step in

the proof of Theorem C.

Proposition 4.3.3. For every face F in the decomposition, every path between x, y ∈ F

that is a shortest path in F is also a shortest path in N .

Coupled with Theorem C, this proposition immediately implies Theorem B. Its proof

makes strong use of the symmetries of the decomposition, which we first introduce.

Figure 4.8 depicts the graphs dual to the decompositions output by Theorem 4.3.1.

It depicts two involutions σ1 and σ2 which, since all the hexagons are isometric, and in

the case of odd genus, the 4 pentagons are isometric, induce isometric involutions of the

whole surface. If we take the square vertices to correspond to the top polygons in the

decomposition and the star vertices to be the ones in the bottom, then the involution σ1

maps the top polygons to the bottom polygons and vice versa and it is identity on the

edges that are in common between top and bottom polygons. In particular, σ1 maps the

faces a and d to each other and b and c to each other. Similarly, σ2 maps neighboring

polygons at the top (and the bottom) on each other, in particular it maps a and b to

each other and d and c to each other. We can cut N into four planar quadrants which we

denote by Qi, 1 ≤ i ≤ 4. Each of these quadrants are linear concatenation of hexagons

and pentagons. Take Q1 to be the pictured quadrant in Figure 4.9. We can see that each

of the quadrants Q2, Q3 and Q4 can be obtained by applying one of the σ1, σ2 and σ1σ2

to Q1.

Proof of Proposition 4.3.3. Take two points x and y in a face F in Q1 and let θ be a

shortest path between them. The path θ may leave the face F , but we will show that

94 Joint crossing numbers of graphs and Negami’s conjecture

Figure 4.8: Right: the dual graph of the decompositions in the cases of even genus (top picture)

and odd genus (bottom picture). The circular vertices correspond to the four polygons that are

adjacent to the orienting curve and the pink edges are the dual edges to the segments of the

orienting curve. Left: the faces a, b, c and d are the faces adjacent to the orienting curve. Note

that these four faces are pentagons (resp. hexagons) in the case where the genus is odd (resp.

even).

in that case there is another shortest path between x and y that remains inside F . If θ

leaves Q1, we reflect the parts of the path that leave Q1, using one of the maps σ1, σ2 or

σ1σ2 back in Q1. We need to check that the reflected parts together with the part of θ

that is inside Q1 define a path. The only troublesome case here is when our path leaves

Q1 by crossing the orienting curve γ. In this case, we can see that the path enters c. We

use σ1σ2 to reflect the sub-path in c back to a. A closer look at σ1σ2 shows that it is

identity on γ, therefore the sub-path in c gets reflected to a in a way that defines a new

path in Q1. We call the new path θ′. Since the maps are all isometric, θ′ has the same

length as θ and therefore it is a shortest path between x and y which remains in Q1.

We show that θ′ must be contained in F . Let us assume that θ′ leaves F . Since the

dual graph of each Q1 is a line, there is a face F ′ in Q1 that θ′ enters and leaves once.

We denote by α, the sub-path of θ′ inside F ′. The endpoints of α are both on the same

edge of this face. α could be shortcut by following this edge instead of going inside the

face F ′; see Figure 4.10.

This implies that θ′ cannot leave F and it is the shortest path between x and y that

we were looking for. This finishes the proof.

4.3 An O(g)-universal shortest path metric for non-orientable surfaces 95

Figure 4.9: The surfaceN cut along the orienting curve γ and the yellow area shows the quadrant

Q1.

Figure 4.10: The figure shows the shortest path θ′ in Q1 and how it can be shortcut.

As for the orientable case, our proof techniques also provide an alternative proof of

Negami’s bound (which we corrected in Theorem A) on joint crossing numbers on non-

orientable surfaces. If two graphs are simultaneously embedded with our O(g)-universal

shortest path embeddings, then each edge is cut into O(g) shortest paths, but each

hexagon/pentagon contains at most O(1) of those. Since two shortest paths cross at most

once, it follows that each pair of edges crosses at most O(1) times in each hexagon/pen-

tagon, and thus O(g) times in total.

96 Short Non-orientable Canonical Decomposition

Chapter 5

Short Non-orientable Canonical

Decomposition

Summary. In this chapter we provide a polynomial-time algorithm that for any

non-orientable cross-metric surface computes a canonical decomposition so that

any loop in the canonical system intersects any edge of the primal graph in at

most 30 points.

The result in this chapter was obtained with Alfredo Hubard and Arnaud de Mesmay

and is the main result appearing in [A] which has been published in Discrete & Compu-

tational Geometry. This result also appears in a preliminary version that is published in

the Proceedings of the 38th Symposium on Computational Geometry.

5.1 Introduction

Decomposing a surface along a graph or a curve is a standard way to simplify its topology.

The classification of surfaces and classical tools to compute both homology groups and

fundamental groups typically rely on such topological decompositions, which are also im-

portant in meshing and 3D-modeling (see [48]). Surfaces often come with extra structure

which can be modeled by an embedded graph (see the cross-metric model and the com-

binatorial model in Section 3.5.1). Decomposing such a surface efficiently corresponds to

finding another cellularly embedded graph that has few (transverse) intersections1 with

the original graph (see for example [53] or [34]). Such decompositions also appear in

1Throughout this chapter and Chapter 6, we use the cross-metric model in which we decompose

surface-embedded graphs by cutting them along embedded graphs which are transverse to the primal

graph, and count the number of intersections. This is equivalent to the primal setting studied in, e.g.,

Lazarus, Pocchiola, Vegter and Verroust [53] via graph duality.

5.1 Introduction 97

algorithm design: often, to generalize results on planar graphs to graphs embedded on

surfaces, it is enough to find a decomposition that cuts open the surface into a disk, then

solve the resulting planar instance and stitch back the solution, see, e.g., [33, 53, 19].

In many applications, it is important that the graph along which we cut is canonical

in some sense. For example, as we mentioned in the introduction, to obtain a homeomor-

phism between two surfaces, we can cut them into disks and extend the homeomorphism

between the disks to a homeomorphism between the surfaces. However, this only works

if the cut graphs have the same combinatorial structure. A seminal result on topolog-

ical decompositions was pionereed by Lazarus, Pocchiola, Vegter and Verroust [53] (see

also [52]) who designed an algorithm that finds, for any graph G embedded on a closed

orientable surface S a canonical decomposition H such that no edge of H intersects any

edge of G more than a constant number of times. Recall that a canonical system of loops

for an orientable surface is a one-vertex and one-face embedded graph in which the cyclic

order of the edges around the vertex is a1b1a1b1 . . . agbgagbg.

On the other hand, before our work, it was unknown whether cross-metric non-

orientable surfaces could admit similar short non-orientable canonical decompositions.

Recall that a non-orientable canonical decomposition is a system of one-sided loops with

the cyclic order a1a1a2a2 . . . agag around the vertex. The best known upper bound for

the length of this decomposition was O(g2|E(G2)|) (see [52]), which matches the bound

proved by Negami (see Negami’s claim or Theorem A in Section 4.1.1). Furthermore, this

upper bound can be achieved by the same technique as in the proof for computing a short

orientable canonical decomposition [52, Theorem 4.3.9].

In this chapter, we provide an algorithm using a new approach that computes a

short canonical decomposition of a non-orientable cross-metric surface of total length

O(g|E(G)|) which matches the best known upper bound for the length of an orientable

canonical decomposition.

Here, it is worth reminding the reader of the relation between finding short decom-

positions and Negami’s conjecture. From the perspective of topological decompositions,

Negami’s conjecture (Conjecture 1) posits that short decompositions of any fixed shape

exist, in the sense that one can always decompose an embedded graph along a chosen

topological decomposition (modeled by a second, cellularly embedded graph), in such a

way that each edge of the decomposition crosses each edge of the graph O(1) times.2

The orientable canonical system of loops provided in [53], the octagonal decomposition

in [21] and the (almost) hexagonal decomposition of non-orientable surfaces provided by

Theorem C in Chapter 4 all provide examples with bounds matching those of Negami’s

conjecture. The algorithm we introduce shows that the non-orientable canonical decom-

2This statement is slightly stronger than Conjecture 1 since it enforces a control on the number of

crossings between each pair of edges instead of the total number of crossings, but it is equally open.

98 Short Non-orientable Canonical Decomposition

position, which is arguably the most natural way to decompose a non-orientable surface,

can also be computed with such upper bounds.

5.1.1 Our results

The main result of this chapter is the following theorem.

Theorem D. There exists a polynomial time algorithm that given a non-orientable cross-

metric surface N , computes a canonical decomposition such that each loop in the decom-

position intersects any edge of the graph in at most 30 points.

In order to prove Theorem D, we heavily rely on an algorithm introduced by Schaefer

and Štefankovič in [69] for drawing graphs on non-orientable surfaces. Compared to

that algorithm, our approach enforces more structure on this construction by imposing

specific orders in the way we deal with the loops in the induction. In Section 5.3, we first

explain this algorithm and then in Section 5.4, we introduce and explain our modifications,

ultimately leading to a proof of this theorem in Section 5.5.

5.1.2 Main ideas and proof techniques

One of the techniques we use to prove Theorem D, is to contract a spanning tree of the

underlying graph as explained in Section 3.3.1. This reduces the problem to the setting

in which the primal graph embedded on the cross-metric surface is a one-vertex graph

and the embedding is encoded completely by a one-vertex embedding scheme. Such an

embedding scheme will be the basic object with which we work in this chapter and we

provide lemmas and tools to deal with these embedding scheme in Section 5.2.

As in the last chapter, we rely on computing an orienting curve by the Lemma 3.7.1.

This lemma allows us, at the cost of slightly increasing the constants in our results, to

assume that our embedding schemes always have an orienting curve. The existence of this

orienting curve will significantly simplify our work to prove Theorem D.

For the proof of Theorem D, we first point out that the techniques used to prove the

orientable version in [53] do not readily apply, as they rely on a fine control of the cut-

and-pasting operations used in the proof of the classification of surfaces, and in the non-

orientable case there is an additional step in these operations which incurs an overhead of

O(g) in the number of crossings of the resulting curves (see [52, Theorem 4.3.9]). Instead,

our proof of Theorem D builds on important recent work of Schaefer and Štefankovič [69].

The foundational idea behind this work, which takes its roots in an article of Mohar [57] on

the degenerate crossing number, is that they use a geometric model (introduced in detail

in Section 3.4.1) to represent a graph embedded on a non-orientable surface of genus g as a

planar drawing (namely, a cross-cap drawing). We recall that in this model cross-caps are

5.1 Introduction 99

Figure 5.1: From left to right: 1) The combinatorial information of a one-vertex graph. 2) A

cross-cap drawing of this graph, with cross-caps connected to a basepoint. 3) A joint drawing

of the graph and a canonical system of loops. 4) A different representation: decomposing the

graph with a canonical system of loops.

points on the sphere where multiple edges are allowed to cross in a way that reverses the

permutation, as illustrated in the second picture of Figure 5.1. Using an intricate argument

inducting on the loops of an embedding scheme, Schaefer and Štefankovič showed that

any graph embedded on a non-orientable surface can be represented by such a cross-

cap drawing so that each edge uses each cross-cap at most twice. Our main technical

contribution is to upgrade their construction so that the cross-caps can be connected to

each other so as to yield a non-orientable canonical system of loops (Lemma 5.1.1), so

that each loop intersects each edge of the one-vertex graph in at most 30 points (see

Figure 5.1).

The complexity of the drawings provided by the proof of Schaefer and Štefankovič

increases too fast to directly obtain a good bound by just connecting the cross-caps.

Therefore, we modify their algorithm. First, by the aforementioned techniques, we can

assume that we always have an orienting loop, which simplifies some of the steps and

provides additional structure to the inductive argument. But more importantly, we show

that one can impose a certain order in which we choose the one-sided loops, as well as the

separating loops, in the inductive argument of Schaefer and Štefankovič so as to obtain a

finer control on the resulting drawing.

The order in which we choose loops comes from a seemingly unrelated problem in

computational biology, and more precisely genome rearrangements. Here we remind the

reader some key concepts in this topic that are relevant to our purposes in this chapter

and refer the reader to Section 3.8.1 and 3.8.2 for a more detailed introduction. Given a

permutation w on a set of distinct letters with signatures (a bit assigned to each letter),

a signed reversal consists in choosing a subword in w, and reversing it as well as the

signatures of all its letters. The signed reversal distance between two signed permutations

is the minimum number of signed reversals needed to go from one permutation to the other

100 Short Non-orientable Canonical Decomposition

Figure 5.2: Left: a pictorial representation of three signed reversals bringing the signed permu-

tation on the left to the signed permutation on the right. Right: Attaching the two permutations

to a common basepoint yields a one-vertex graph with an embedding scheme, and the signed

reversals provide a cross-cap drawing of that embedding scheme where each loop enters each

cross-cap at most once.

one. This distance, and in particular algorithms to compute it has been intensively studied

in the computational biology literature due to its relevance for phylogenetic reconstruction

(see for example [46]). A cornerstone of the theory is the breakthrough of Hannenhalli and

Pevzner [44] who provided an algorithm to compute the signed reversal distance between

two signed permutations in polynomial time (see also the reformulation by Bergeron [6]).

Now, as we illustrate in Figure 5.2, there is a very strong similarity between computing

the signed reversal distance between two permutations and embedding a one-vertex graph

built from these two permutations with a minimum number of cross-caps (see [11, 49]).

Surprisingly, the algorithms of Hannenhalli and Pevzner on one side and of Schaefer and

Štefankovič on the other also have similarities. The proof of Theorem D leverages the

literature on the signed reversal distance problem, and in particular the structure we

impose on the cross-caps drawings of non-orientable graphs is inspired on ideas from the

aforementioned genome rearrangements algorithms.

The following lemma underpins our strategy to prove Theorem D: in order to find a

non-orientable canonical system of loops, first find a cross-cap drawing and connect the

cross-caps to a root using short paths (see Figure 5.1).

Lemma 5.1.1. Let H be a cross-cap drawing for a graph of non-orientable genus g and let

b be a point in one face of the drawing. Let {pi} be a family of paths in the dual graph

to this drawing from each cross-cap to b. Introduce a loop ci by starting from b, passing

along the path pi, entering the corresponding cross-cap, going around the cross-cap and

passing along pi to return to b. The system of loops {ci} is a non-orientable canonical

system of loops.

5.2 Preliminaries 101

Figure 5.3: Left: a one-vertex embedding scheme; right: the three faces corresponding to the

embedding scheme at left.

Proof. It is easy to check that each ci has consecutive ends around b. Each curve ci is

homotopic to a concatenation of a curve in a planarizing system of disjoint one-sided

curves (defined in Section 3.4.1) and two copies of a path pi, therefore it is one-sided.

Cutting along these system of curves corresponds to cutting along a planarizing system

of disjoint one-sided loops which gives us a sphere with g boundary components and then

cutting along the paths {pi} which connect these boundary components and cut them

to a single boundary. Therefore, cutting along {ci}, cuts the surface into a disk, and we

obtain a non-orientable canonical system of loops. This is illustrated in Figure 5.1.

5.2 Preliminaries

In this chapter, we deal extensively with one-vertex embedding schemes. In the following,

we study these embedding schemes and provide some useful lemmas to work with them.

One-vertex embedding schemes

In a one-vertex embedding scheme, each edge of the graph is a closed curve in the em-

bedding. This makes it easier to learn about the combinatorial features of different types

of curves. Specifically, in a one-vertex embedding scheme, the signatures of the edges

correspond to their sidedness in the embedding.

Given a one-vertex embedding scheme, a loop l divides the half-edges around the

vertex into two parts; each part is called a wedge of l. When a loop m has exactly one

end in each wedge of l, we say that the ends of m alternate with those of l; otherwise,

both ends of m are in one wedge of l and we say that the ends of l enclose the ends of m

and vice versa. For example, in Figure 5.3, the loops c and x are alternating and s and x

enclose each other.

102 Short Non-orientable Canonical Decomposition

Cutting along a curve in a one vertex embedding scheme

Let G be a one-vertex embedding scheme with vertex v and let e be an edge in G.

Denote the wedges of e in G by ω1 and ω2 and let ρv|ωi
denote the sub-permutation in

ρv consisting of the edges in the wedge ωi for i = 1, 2. Denote by Ge the embedding

scheme that we obtain by cutting along e and contracting the boundary component/s of

the surface that we obtain (as introduced in Section 3.3.2), see the rightmost pictures in

Figures 5.4 and 5.5. In the following lemma, we use the notation that we introduced in

this paragraph.

Lemma 5.2.1. Let e be a one-sided loop in a one-vertex embedding scheme G with vertex

v. Then Ge is a one-vertex embedding scheme with the rotation system ρv|ω1ρv|ω2 around

its vertex. Also the signature of each edge that interleaves with e is reversed in Ge.

Proof. We know that cutting along a one-sided closed curve, reduces the genus by 1 (see

Lemma 3.2.3) and increases the number of boundary components by 1. To prove the

claim for the rotation system around the vertex and the signatures of the edges, we refer

the reader to Figure 5.4. We can see that by pasting the two copies of e that form the

boundary in the middle picture, we retrieve the initial rotation system at the left.

Figure 5.4: Cutting along a one-sided loop and contracting the emerging boundary component.

Lemma 5.2.2. Let e be a two-sided loop in a one-vertex embedding scheme G with vertex

v. Then Ge is a two-vertex embedding scheme. If e is not orienting, then the cyclic

permutation of edges around the vertices are given by ρv|ω1 and ρv|ω2 and edges have the

same signatures (up to flips). In the case where e is orienting, then Ge is an orientable

embedding scheme with cyclic permutations ρv|ω1 and ρv|ω2 around the vertices and the

signature of every edge that alternates with e is reversed.

Proof. We know that by cutting along the two-sided closed curve e, we obtain two bound-

ary components that correspond to the copies of e. The proof of the claim for the cyclic

permutation of edges around the vertex and the signatures of the edges, is the same as in

Lemma 5.2.1 and we refer the reader to Figure 5.5 for an illustration.

5.2 Preliminaries 103

In the case where e is orienting, the same description works, but the scheme that we

obtain may have non-loop edges of signature −1, which is undesirable for an orientable

embedding scheme. This is resolved by applying one flip to one of the vertices, which

has the effect of reversing once the permutations and the signature of every edge that

alternates with e. This concludes the proof.

Figure 5.5: Cutting along a two-sided loop and contracting the two emerging boundary compo-

nents.

Recognizing types of curves in a one-vertex embedding scheme

The following lemma states how to recognize contractible, separating non-contractible and

orienting curves in a one-vertex embedding scheme.

Lemma 5.2.3. Given a one-vertex embedding scheme G,

1. A loop d is contractible if and only if it has signature +1, it has a wedge ω containing

only edges with signature +1 and no pair of edges in ω and d interleaves, see the

loop d in Figure 5.3.

2. A loop is separating if and only if it has signature +1 and its ends enclose the ends

of any other loop in the scheme, see the loop s in Figure 5.3.

3. If G is a non-orientable scheme, a loop in G is orienting if and only if its ends

enclose the ends of any two-sided loop and alternate with the ends of any one-sided

loop in the embedding scheme, see the loop o in Figure 5.3.

Proof. 1. Let d be a contractible curve in G. Then d separates a disk D from the

surface (Lemma 3.2.11). One side of d bounds D and consequently, one wedge of

d belongs to D (see Lemma 5.2.2). Denote this wedge by ω. This implies that no

edge in G can interleave with d. If ω is empty, we conclude. Otherwise, any edge

that appears in ω can be embedded on D and therefore in the plane. Since two

104 Short Non-orientable Canonical Decomposition

interleaving edges, or an edge that has signature −1 cannot be embedded on the

plane, ω does not contain such an edge. This concludes the forward implication.

For the other direction, note that in one wedge of d no two loops are interleaving

and no loop has signature −1. This implies that one of the edges has signature +1

and has an empty wedge. Thus it bounds a disk. Removing that edge and recursing,

shows that d also bounds a disk and therefore is contractible (see Lemma 3.2.11).

2. Let s be a separating loop in G. If we cut the surface along s, we obtain two

connected components. Assume that there is a loop e that interleaves with s. This

means that after cutting, each end of e appears in one of the connected components

(see Lemma 5.2.2) which is in contradiction with s separating the surface.

For the other direction, let us assume that s encloses all the loops in G. This means

that s divides the scheme into two sub-schemes such that no edge has exactly one

end in each one of them. This implies that s is separating. This concludes.

3. First, let us assume that the loop o is orienting. Let Go denote the surface and the

embedding scheme that we obtain by cutting along o and contracting the boundary

or boundaries. Then we know that Go is an orientable embedding scheme.

Let us first assume that the non-orientable genus g̃ of G is odd. Then by

Lemma 3.2.8, o is one-sided and Go is a one-vertex embedding scheme by

Lemma 5.2.1. Since Go is orientable, all the closed curves in Go have to be two-sided.

Each edge in Go is a closed curve and therefore all the edges must have signature

+1. The signatures of edges in Go are obtained by reversing the signature of every

edge that interleaves with o (see Lemma 5.2.1). This implies that the edge o used to

interleave with all the loops with signature −1 in G and enclose all the loops with

signature +1. This finishes the proof of the case where the genus is odd.

Now let us assume that g̃ is even. Note that any orienting curve in this case is two-

sided (Lemma 3.2.8) and therefore o has signature +1. Then Go has two vertices

by Lemma 5.2.2. Similar to the previous case, for Go to be an orientable scheme,

all the closed curves in it have to be two-sided. The closed curves in Go are either

loops at a vertex or the concatenation of two non-loop edges. This implies that all

loops in Go have signature +1. Since all such loops are formed by the loops with

both ends in one wedge of o in G, this implies that all edges that are enclosed by o

have signature +1. For a closed curve that is obtained by concatenating non-loop

edges to be two-sided, we need all such edges to have the same signature. But since

in this case o has signature +1, it is not possible for all the non-loop edges to have

signature +1 in G: this implies that G is originally an orientable scheme which

is a contradiction. Then all non-loop edges have signature −1 in G. These edges

5.2 Preliminaries 105

Figure 5.6: Homotopic edges in one-vertex embedding schemes.

correspond to the loops in G that interleave with o. Therefore, all the loops that

are interleaving with o have signature −1. This finishes the proof of the forward

implication.

For the other direction, we first cut G along o. Depending on the parity of the

genus, we get one of the embedding schemes described by Lemmas 5.2.1 and 5.2.2.

The proof follows by the observation that all closed curves in both cases become

two-sided which implies that Go is orientable and that o has been orienting.

Remark 5.2.4. An embedding scheme might contain multiple orienting curves, see for

example the loops o and o′ in Figure 5.3.

Recognizing homotopic edges in a one-vertex embedding scheme

The following lemma helps us recognize homotopic edges in a one-vertex embedding

scheme.

Lemma 5.2.5. In a one-vertex embedding scheme (G, ρ, λ), two loops e and e′ are homo-

topic if and only if both have the same signature and each end of e appears right next to

an end of e′ in ρ and

• if e and e′ have signature +1, then the ends of e encloses the end of e′ and,

• if e and e′ have signature −1, then e and e′ interleave in ρ.

Proof. To prove this lemma, it is enough to show that e.e′ bounds a disk on the surface

(see Lemma 3.2.10). Figure 5.6 shows the disk whose boundary is comprised of these two

edges in both cases. This finishes the proof.

106 Short Non-orientable Canonical Decomposition

5.3 The Schaefer-Štefankovič algorithm

Throughout this section, we will be working with a one-vertex graph G endowed with an

embedding scheme (ρ, λ), which for simplicity we denote by G. Schaefer and Štefankovič

proved the following theorem.

Theorem 5.3.1 ([69, Lemma 9]). If G is a one-vertex non-orientable (resp. orientable)

scheme (ρ, λ), then it admits a cross-cap drawing with eg(G) (resp. eg(G)+1) cross-caps

in which every edge passes through every cross-cap at most twice.

The proof is by induction on the number of loops and is readily algorithmic, computing

an actual cross-cap drawing with the required bound on the number of intersections with

the cross-caps. Before explaining the algorithm, let us introduce the different moves and

techniques we use to deal with different types of loops.

First, let us introduce the following terminology for an embedding scheme around a

vertex v. By flipping a wedge of a one-sided loop e in a one-vertex scheme, we mean

reversing the order of the edges in the wedge and changing the signature of the loops that

have exactly one end in the wedge. We call the empty wedge between two consecutive half-

edges around v a root wedge. A face incident to v in a cross-cap drawing may correspond

to more than one root wedge. We refer to such a face as a root face.

Contractible loop move. Let c be a contractible loop with consecutive ends in the

embedding scheme G. Remove c. The new embedding scheme can be drawn using the

same number of cross-caps. Having a drawing for the new embedding scheme, we can

draw the loop c without passing through any of the cross-caps.

Gluing move. Let s be a non-contractible separating loop in the embedding scheme G.

We divide the embedding scheme to G1 and G2 by cutting along s and splitting the vertex

into two vertices (the embedding schemes of G1 and G2 are induced by the embedding

scheme of G). Denote by F 1
o and F 2

o the root wedges in G1 and G2 in which s formerly

was placed. Let H1 and H2 be drawings for G1 and G2 respectively. We glue the drawings

by identifying the root wedges F 1
o and F 2

o to get the drawing H ′ for G \ {s}.
Note that removing s does not change the genus (Lemma 3.2.3) and we have eg(G) =

eg(G1) + eg(G2). If G1 and G2 are both non-orientable, then H ′ can be extended to a

cross-cap drawing for G by adding s without using any of the cross-caps; see Figure 5.7.

When at least one of G1 or G2 is orientable, say G2, H
′ uses one extra cross-cap (G2 needs

eg(G2) + 1 cross-caps to be drawn). In order to get a drawing with minimum number

of cross-caps, we need to eliminate one cross-cap from the drawing. To deal with this

case, we need the following lemma and the dragging move which allows us to reduce one

cross-cap from the drawing.

5.3 The Schaefer-Štefankovič algorithm 107

Figure 5.7: The gluing move on two cross-cap drawings when G1 and G2 are both non-orientable.

Lemma 5.3.2. Let G be a one-vertex orientable embedding scheme. Adding a one-sided

loop o with consecutive ends to the embedding scheme (anywhere in a rotation around the

vertex) increases the Euler genus by 1. Thus, the new embedding scheme needs as many

cross-caps as G to embed. Furthermore, the loop o is orienting.

Proof. Adding a one-sided curve with consecutive ends to an embedding scheme does not

change the number of faces. By the Euler formula we know that the Euler genus of the

new embedding scheme is increased by 1. By Lemma 3.3.2, G needs eg(G) + 1 cross-caps

to embed. Therefore, the new embedding scheme needs as many cross-caps as G to embed.

The loop o is the only one-sided loop in the embedding scheme and every other loop

has both ends in the same wedge of o. Lemma 5.2.3 implies that o is orienting.

Dragging move. Let us assume that G2 is orientable. By Lemma 5.3.2, we can add

a one-sided loop o with consecutive ends in the root wedge F 2
o without increasing the

number of cross-caps that we need to draw G2. The loop o is orienting and the new

embedding scheme needs eg(G2) + 1 cross-caps to be drawn. Having a drawing for the

new embedding scheme, we can draw the loop s in the drawing for G2+{o} as follows: we

start the loop from one of the root wedges between o and another loop of G2, we draw s by

following o through all the cross-caps, except that after coming out of the last cross-cap,

we go back to the first one entered, and traverse all of the cross-caps again. At the end,

we follow o back to the vertex; see Figure 5.8. We denote this drawing of G2 + {o}+ {s}
by H ′

2.

By gluing H1 to H ′
2, we get a drawing H ′ for G + {o} + {s} but the drawing is not

using the minimum number of cross-caps. We eliminate one of the cross-caps in H ′ as

follows.

Let i1 be the rightmost half-edge in G1 that follows immediately the separating loop

108 Short Non-orientable Canonical Decomposition

Figure 5.8: Left: the gluing move. Right: the dragging move when G2 is orientable: the top right

cross-cap is removed and the corresponding curves are dragged through the bottom component.

in G. Denote by c the first cross-cap that i1 passes through. Let us assume that there

are 2k half-edges passing through c. Let us denote by (i1, F1, . . . , i2k, F
1
o) the alternating

sequence of half-edges and faces adjacent to c in the cross-cap drawing by moving clockwise

around it. Now, we disconnect the edges that enter c and remove the cross-cap c. We drag

i1, . . . , ik through all the cross-caps in G2 along the loop o. After exiting the last cross-cap

in G2, we remove o and we attach the half-edges to their other ends (ik+1, . . . , i2k). Since

G2 uses an odd number of cross-caps (Lemma 3.3.2), the half-edges will have the correct

orientability and order to get attached to their other ends; see Figure 5.8. If only one

of G1 and G2 is orientable, the drawing we get uses eg(G) cross-caps and if both are

orientable, we get a drawing with eg(G) + 1 cross-cap which is the minimum number of

cross-caps needed to draw the embedding scheme in this case.

One-sided loop move. Let r be a one-sided loop in the embedding scheme G. We

remove r and flip one of its wedges. One can check that the new embedding scheme G′

has Euler genus eg(G) − 1. Let us assume that H ′ is a drawing for G′. We add r to

this drawing by adding a cross-cap near the vertex and the flipped wedge and dragging

r and every edge in the flipped wedge in it; see Figure 5.9. Note that flipping different

wedges of r leads to two different cross-cap drawings. This freedom in choosing the wedge

is important for us and we use this later in this chapter.

If r is not orienting, the drawing we get at the end uses eg(G) cross-caps. But if

r is orienting, then G′ is orientable and any drawing for G′ needs an extra cross-cap

(Lemma 3.3.2). This means that if we apply a one-sided loop move to an orienting loop,

the drawing we get does not use the minimum number of cross-caps (the embedding is

not cellular).

We use the following move to deal with orienting loops.

5.3 The Schaefer-Štefankovič algorithm 109

Figure 5.9: The one-sided loop move on the loop r.

Concatenation move. Let o be an orienting loop in the embedding scheme G such

that one of its ends is immediately followed by an end of a two-sided non-separating loop

t in the cyclic permutation around the vertex. By Lemma 5.2.3, since t is non-separating,

the concatenation of o and t which we denote by o′, is not orienting. Denote by G′ the

embedding scheme in which we replace o by o′ (we need eg(G) cross-caps to draw both G

and G′). If H ′ is a drawing for G′, one can obtain from H ′ a drawing for G by replacing

the drawing o′ by its concatenation with t. Depending on the wedge of o′ that we choose

to flip, we slide o′ along t in the drawing:

Figure 5.10: The concatenation move on the loops o and t, when in applying the one-sided loop

move we flip the wedge of o′ that does not encompass the ends of the loop t.

110 Short Non-orientable Canonical Decomposition

If we flipped the wedge that does not encompass the loop t, we detach the end of o′

next to t and slide it along t and we attach it to the vertex. This way, it ends up where

the end of o was placed originally; see Figure 5.10.

If we flipped the wedge that encompasses the loop t, we do as follows: the loop o′

passes through only one cross-cap. We draw o next to the end of o′ that is not slid along

t, but instead of following o′ into the cross-cap, we follow t. We can do this because the

loop o′ is next to the loop t in the rotation around this cross-cap; see Figure 5.11.

Figure 5.11: The concatenation move on the loops o and t, when in applying the one-sided loop

move we flip the wedge of o′ that encompasses the ends of the loop t.

Exchange move. Let G be an embedding scheme that has only two-sided loops and

no separating loop. We exchange two consecutive half-edges and change the signatures of

the corresponding edges. One can prove that the new embedding scheme can be drawn

using the same number of cross-caps as the initial embedding scheme. Having a drawing

of the new embedding scheme, we obtain a drawing of the original embedding scheme by

adding a cross-cap near the reversed half-edges. This drawing uses eg(G) + 1 cross-caps

and this is the minimum number of cross-caps that we need to draw an orientable scheme

(Lemma 3.3.2).

Each of these moves provides a way to draw a loop assuming that some simpler one-

vertex graph without that loop has already been drawn. Therefore, we can use the moves

in an inductive algorithm as follows. The input is an embedding scheme G.

5.3 The Schaefer-Štefankovič algorithm 111

The Schaefer-Štefankovič algorithm:

• Step 1: If there exists a contractible loop. We recurse on the embedding

scheme without the loop and apply the contractible loop move.

• Step 2. If there exists a separating (non-contractible) loop s. We divide

the embedding scheme into two sub-schemes on each side of s. We have the

following cases:

– Step 2.1: Both sub-schemes are non-orientable. We recurse on the two

sub-schemes and apply the gluing move.

– Step 2.2: At least one of the sub-schemes is orientable. We recurse on

the two sub-schemes and apply the gluing move followed by the dragging

move.

• Step 3.1: If there is a one-sided non-orienting loop r. We recurse on the

embedding scheme without the loop r and the flipped wedge, and apply the

one-sided loop move to the loop r.

• Step 3.2: If all one-sided loops are orienting. If there exists no two-sided

loop, by Lemma 5.2.3, all pairs of loops are interleaving and we can draw

the embedding scheme with one cross-cap so that each loop enters it once. If

there exists a two-sided loop in the embedding scheme, we can find a place in

the embedding scheme where an orienting loop o is followed immediately by

a two-sided loop t. We recurse on the embedding scheme H ′ described in the

concatenation move, and apply the concatenation move to the curve o.

• Step 3.3: If every loop in the embedding scheme is two-sided. We apply

the exchange move to two consecutive half-edges and recurse on the new

embedding scheme.

The proof of Schaefer and Štefankovič for Theorem 5.3.1 proceeds by analyzing this

algorithm and proving that (1) the resulting cross-cap drawing has the correct number of

cross-caps and (2) each loop passes through every cross-cap at most twice.

Remark 5.3.3. By Lemma 3.4.2, in a drawing that is obtained by this algorithm, every

orienting loop passes through each cross-cap exactly once and if a separating loop enters

a cross-cap, it passes through that cross-cap exactly twice.

There is some leeway in this algorithm: while the steps have to be applied in this

specific order, in each step a loop of the given type is chosen arbitrarily. Our modification

112 Short Non-orientable Canonical Decomposition

of the algorithm follows the exact same blueprint but enforces specific orders in which we

choose separating and one-sided non-orienting loops. These specific orders provide more

structure to the resulting drawing, make it lend itself more to connecting the cross-caps,

in order to form the desired non-orientable canonical system of loops of low multiplicity.

5.4 Our modification to the Schaefer-Štefankovič algorithm

Preprocessing. Our algorithm first starts with some preprocessing.

Lemma 5.4.1. Given a graph G embedded on a non-orientable surface N , there exists a

one-vertex scheme Ĝ such that Ĝ has an orienting loop, and if Ĝ has a non-orientable

canonical system of loops such that each loop crosses each edge of Ĝ at most k times, then

G has a non-orientable canonical system of loops such that each loop crosses each edge of

G at most 3k times.

Proof. By Lemma 3.7.1, there exists an orienting curve γ embedded on the surface N that

has multiplicity two. Denote by G′ the overlay of G and γ, that is, the graph obtained

by superimposing G and γ and adding dummy vertices of degree four at the crossings.

Each edge in G is divided into at most three sub-edges in G′. If γ crosses G, n times

totally, then it corresponds to n edges in G′. We choose a spanning tree T in G′ that

contains n − 1 of these edges. Without loss of generality, we can assume that all the

signatures of the edges of T are +1 (this is because one can apply local changes to the

embedding scheme without changing its homeomorphism class, see, e.g., [58, Section 4.1]).

We contract the edges of T into a single point to get a one-vertex graph Ĝ and merge the

cyclic permutations around the vertices in the embedding scheme to obtain an embedding

scheme for the one-vertex graph Ĝ. The non-contracted sub-edge of γ is an orienting loop

in Ĝ.

Let us assume that Ĝ has a non-orientable canonical system of loops such that each

loop crosses each edge of Ĝ at most k times. We can uncontract the spanning tree T close

to the vertex so that the uncontracted edges do not cross the canonical system of loops.

This gives us a canonical system of loops for G′. To get a drawing for G, we remove

the orienting curve γ. Since any edge of G is formed by at most three edges of G′, the

canonical system of loops for G′ crosses each edge of G at most 3k times

Remark 5.4.2. The curve γ divides each edge of G into at most three sub-edges. Therefore,

each edge in G is obtained as the concatenation of at most 3 edges of Ĝ.

This lemma lets us assume, at the cost of a slightly bigger multiplicity, that (1) the

input graph is a one-vertex graph endowed with an embedding scheme, and (2) the em-

bedding scheme that we work with contains an orienting loop. This orienting loop will in

turn allow us to avoid some steps in the algorithm.

5.4 Our modification to the Schaefer-Štefankovič algorithm 113

For the second prepossessing move we need a definition that is inspired by a similar no-

tion from the literature on sorting signed permutations by reversals [44] (see Section 3.8.2

in the Preliminaries for a description). Given an embedding scheme G, the interleaving

graph IG has as vertex set the set of loops of G, and two vertices are connected if their

corresponding loops have interleaving ends, see Figure 5.13 for an example. When we

talk about the sidedness of a vertex, we mean the sidedness of the loop it is associated

to. A connected component in the interleaving graph is called non-orientable if it has a

one-sided vertex, and orientable otherwise. We call a component with only one-vertex

a trivial component, and non-trivial otherwise. Separating loops (contractible or non-

contractible) correspond to isolated two-sided vertices, i.e., trivial orientable components,

in the interleaving graph.

Our second preprocessing step aims at subdividing G into sub-schemes Gi such that

each IGi
has only one non-trivial component. In order to do this, we saturate the em-

bedding scheme with auxiliary separating loops, i.e., we add a separating loop for any

non-trivial component that is not divided from the rest of the graph by some separating

loops.

Remark 5.4.3. If Ḡ is a saturated extension of G, then eg(G) = eg(Ḡ) by Lemma 3.2.3.

Thus a minimum genus drawing of Ḡ contains a minimum genus drawing of G.

Given a non-orientable scheme G saturated with separating loops and any cellular

embedding of G on a surface N , cutting G along the separating loops yields subsurfaces

Ni of N , each containing (possibly empty) components of G, which we denote by Gi (see

Figure 5.12). The component tree of G has a vertex for every such subgraph Gi, and two

vertices are connected if their corresponding components are separated by a separating

loop. See Figure 5.12 for an example of a component tree. We shall quickly see that in

the context of our algorithm, there will actually be exactly one non-orientable component.

We root the tree at the vertex corresponding to the non-orientable component.

Figure 5.12: A saturated one-vertex scheme (left) in which the drawn loops are the separating

loops and its component tree (right). The component G4 is an empty sub-scheme.

In a saturated embedding scheme, each separating loop relates two subgraphs Gi that

exist on its different sides. If we have k non-trivial components or empty subgraphs in

114 Short Non-orientable Canonical Decomposition

total in the interleaving graph, in order to separate all of them from each other, we need

exactly k − 1 separating loops.

We are now ready to describe our modified algorithm in which we force the presence

of an orienting curve and we put more structure on the order we deal with loops at each

step.

The modified algorithm:

Pre-processing steps:

• Step A. If there is no orienting loop, we add an orienting loop and contract a

spanning tree using Lemma 5.4.1.

• Step B. If G is not saturated by separating curves, we saturate it.

Main loop:

Throughout the main loop of our algorithm, if we have homotopic loops we remove

all except one. We draw this loop then re-introduce the other loops parallel to it.

• Step 1: If there is a contractible loop. We recurse on the embedding scheme

without the loop and apply the contractible loop move.

• Step 2: If there exists a separating (non-contractible) loop. We pick a sep-

arating loop that separates a non-root leaf from the component tree, recurse

on the sub-schemes and apply a gluing and a dragging move.

• Step 3.1: If there exists a one-sided non-orienting loop. We pick a one-sided

non-orienting loop such that the embedding scheme G′ that we obtain when

removing it and flipping its wedge maximizes the number of one-sided loops.

We recurse on G′ and apply the one-sided loop move to this loop.

• Step 3.2.a: If all one-sided loops are orienting and there are two-sided loops.

We pick an orienting loop adjacent to a two-sided loop, recurse on the drawing

H ′ described in the concatenation move and apply this move on these loops.

• Step 3.2.b: If all one-sided loops are orienting and there are no two-sided

loops. In this case one cross-cap is sufficient to draw all the loops.

Post-processing steps:

• Step B’. Erase the extra separating loops added in step B.

• Step A’. Uncontract the spanning tree and remove the added loop in Step A.

5.4 Our modification to the Schaefer-Štefankovič algorithm 115

The numbering in this algorithm comes from the Schaefer-Štefankovič algorithm. A

main difference with our modified version is that it is not clear at first sight that we cover

all cases as we do not have the steps 2.1 and 3.3 in the Schaefer-Štefankovič algorithm.

Yet we do cover all the cases: this follows from the presence of an orienting loop and

proving it will be the main purpose of Sections 5.4.1 and 5.4.2. After that we will be

ready to prove in Lemma 5.4.12 that our algorithm terminates and outputs a cross-cap

drawing where a loop does not enter each cross-cap more than 6 times.

5.4.1 Completeness of the case analysis

The following lemma explains why we do not need to consider the case in which all loops

are two-sided.

Lemma 5.4.4. An embedding scheme with an orienting loop is non-orientable.

Proof. Let us assume that G is an orientable scheme, hence the orienting loop o is two-

sided. By Lemma 3.3.2, G needs eg(G) + 1 cross-caps to embed and we know that eg(G)

is twice the orientable genus of G. Therefore, G needs an odd number of cross-caps to

embed and the loop o passes through each of them an odd number of times (Lemma 3.4.2).

Thus, o is one-sided which is a contradiction.

Lemma 5.4.4 guarantees that we do not need to consider the case where all loops are

two-sided when the algorithm starts, but this case might a priori still happen during re-

cursive calls to the algorithm. Fortunately, this will actually not be the case, as we will

prove in Corollary 5.4.10 that there is always an orienting loop in each of the recursive calls.

The following lemma explains why there is only one case that can happen in step 2 of

our algorithm.

Lemma 5.4.5. Let G be an embedding scheme with an orienting loop o and a non-

contractible separating loop s. The loop s separates the graph into an orientable and

a non-orientable subgraph.

Proof. By Lemma 5.4.4, G is non-orientable and therefore it has at least one one-sided

loop. Let us assume that s separates the embedding scheme into G1 which contains the

loop o, and G2. We show that G1 is non-orientable and G2 is orientable.

By Lemma 5.2.3, any one-sided loop has exactly one end in the wedge of the orienting

loop in G1 and has to have both ends in the same side of the separating loop, therefore

no one-sided loop can exist in G2 so G1 is non-orientable and G2 is orientable. The case

where the only one-sided loop is the orienting loop is trivial.

116 Short Non-orientable Canonical Decomposition

5.4.2 The order on the one-sided non-orienting loops

In this section, we explain an order on one-sided loops when we apply the one-sided loop

move in step 3.1 of the algorithm. The reason for imposing this restriction is to avoid

creating separating loops in the induction that did not exist in the embedding scheme

initially.

Lemma 5.4.6. If there exists an orienting loop o (two-sided or one-sided) in the embed-

ding scheme G, the connected component that has the vertex o is the only non-orientable

component in IG.

Proof. By Lemma 5.2.3, the ends of every one-sided loop interleave with the ends of the

orienting loop. Therefore, the vertex o is connected to every one-sided vertex in IG and

this finishes the proof; see Figure 5.13.

The following lemma is analogous to a similar result in signed reversal distance the-

ory [6, Fact 2]3.

Lemma 5.4.7. Applying a one-sided loop move to a loop r corresponds to removing the

vertex r in the interleaving graph and complementing the subgraph induced by its neighbors.

Proof. In a one-sided loop move, we remove a one-sided loop r and flip one of its wedges.

When we flip, we change the signature of each loop that has exactly one end in each

wedge of r. Thus, we are changing the sidedness of everything that was connected to the

vertex r in the interleaving graph. Also, due to the flip, every two vertices adjacent to r,

that were connected to each other before the flip, are now disconnected and vice versa.

The situation of the loops that are not interleaving with r in the embedding scheme is

unchanged; see Figure 5.13.

Such a move can change the number of connected components in the interleaving

graph, and might increase the number of orientable components, as is the case when we

apply the one-sided loop move to o in Figure 5.13.

Lemma 5.4.8. Let G be an embedding scheme with orienting loop o and a one-sided non-

orienting loop r. Let G′ be the graph we obtain after removing r and flipping its wedge.

The loop o is orienting in G′.

Proof. We need to show that after removing r, the loop o is connected to all the one-

sided vertices in the interleaving graph and it is not connected to any two-sided vertex

(Lemma 5.2.3). We know that at the start o is connected to r. Any one-sided loop that r

used to be adjacent to is now two-sided and since o used to be connected to these loops,

3The exact same property has been used in the proof of Lemma 3.8.5.

5.4 Our modification to the Schaefer-Štefankovič algorithm 117

Figure 5.13: Each box represents an embedding scheme with its interleaving graph. In all these

embedding schemes the loop o is orienting; right: the impact of applying the one-sided loop to

r1 (top) and p2 (bottom).

by complementing the subgraph induced by the vertices adjacent to r (Lemma 5.4.7),

o is no longer connected to them. Similarly, we can see that if r used to be connected

to two-sided loops, after flipping the wedge, they become one-sided and since the loop o

was not connected to any two-sided vertex before, now it gets connected to them. The

situation for the loops to which o was connected and r was not, remains unchanged.

Lemma 5.4.9. If G is an embedding scheme that contains only orienting and non-

separating two-sided loops, and has at least one of each, then there exists an orienting

loop o followed by a non-separating two-sided loop t. Denote by o′ a loop homotopic to

the concatenation of o and t. If G′ is the embedding scheme obtained by replacing o by o′,

and G
′′
is the embedding scheme obtained by applying a one-sided loop move to o′ in G′,

then t is orienting in G
′′
.

Proof. Since there exist only orienting and two-sided non separating loops, and there is

at least one of each, there exists an orienting loop o and a non-separating two-sided loop

t such that an end of o is consecutive to an end of t in the embedding scheme.

First we show that t and o belong to different components in IG. Since o is orienting

and there is no one-sided non-orienting loop in the embedding scheme, the component

118 Short Non-orientable Canonical Decomposition

of o is a complete graph with only orienting loops. Therefore, t does not belong to

this component and everything in the component of t is two-sided. Replacing o by o′

corresponds to replacing the vertex o′ with o in IG and connecting it to the neighbors

of t, since o′ now interleaves with every loop that t interleaves with. Now applying the

one-sided loop move to o′ makes every neighbor of t one-sided and all the orienting vertices

(that were formerly adjacent to o) two-sided. Therefore, the only one-sided loops in the

new embedding scheme are the neighbors of t and t is not adjacent to any two-sided vertex

since everything in its component used to be two-sided. By Lemma 5.2.3, t is orienting

in G
′′
.

Since the contractible loop move clearly preserves orienting loops, Lemmas 5.4.5 (the

dragging move first adds an orienting loop to the orientable part), 5.4.8 and 5.4.9 imply

the following corollary.

Corollary 5.4.10. Let G be a one-vertex scheme with an orienting loop. Let G′ be the

graph on which the modified algorithm recurses when applying one of the following moves:

• A contractible loop move.

• A one-sided loop move on a one-sided non-orienting loop.

• The concatenation move on an orienting loop.

Then G′ has an orienting loop. Likewise, when the modified algorithm applies a gluing and

dragging move to a separating loop s, the two subgraphs G1 and G2 on which it recurses

have an orienting loop.

The next lemma explains our choice of rule in Step 3.1:

Lemma 5.4.11. Let G be a one-vertex scheme with an orienting loop and no non-

contractible separating loop such that IG has only one non-trivial component. The embed-

ding scheme G can be drawn by applying a sequence of contractible loop moves, one-sided

loop moves and concatenation moves. Specifically, we do not use the gluing move, the

dragging move and the exchange move.

This ensures that in Step 3.1 no non-contractible separating loop is created during

the process, hence we can avoid increasing the number of orientable components. This

proof mirrors results in the signed reversal distance theory (see Bergeron [6, Theorem 1]

or Lemma 3.8.5)) in which similar claims are proved in the context of applying reversals

to permutations.

Proof. In order to have a non-contractible separating loop, it is necessary to have either

two non-trivial components, or an orientable non-trivial component and a trivial non-

orientable component (an isolated one-sided vertex).

5.4 Our modification to the Schaefer-Štefankovič algorithm 119

Since there exists an orienting loop in the embedding scheme and the ends of the

orienting loop interleave with those of every one-sided loop, all one-sided loops belong

to the same component in the interleaving graph and thus there exists only one non-

orientable component. By Corollary 5.4.10, in applying these moves, there is always an

orienting loop in every step. This, together with Lemma 5.4.6, implies that the number

of non-orientable components remains 1 through the algorithm. Therefore, it suffices

to prove that we can draw G such that in each step we do not increase the number of

non-trivial orientable components.

The non-trivial component is non-orientable. If there exists no one-sided non-

orienting loop, then every loop in the embedding scheme is orienting or contractible.

In this case, the non-orientable genus is one and the result is trivial. Let us assume that

there exists at least a one-sided non-orienting loop. We claim that if we choose the one-

sided non-orienting loop such that flipping its wedge maximizes the number of one-sided

loops4, then we do not increase the number of orientable components. In Figure 5.13, it

is shown that applying a one-sided loop move to p2 maximizes the number of one-sided

loops but applying it to r1, increases the number of orientable components and turns r2

into a separating loop for the new embedding scheme.

Let us assume that applying a one-sided loop move to the one-sided loop r maximizes

the number of one-sided loops and increases the number of non-trivial orientable com-

ponents. Let i be a vertex that was adjacent to r, belonging to a component U that

got disconnected when complementing the subgraph induced by the neighbors of r. The

vertex i was one-sided and we claim that taking i instead of r would have created more

one-sided vertices which is a contradiction.

Denote by #1(r) (resp. #2(r)) the number of one-sided (resp. two-sided) loops adjacent to

r. Removing a one-sided loop is equivalent to removing the vertex in the interleaving graph

and complementing the subgraph induced by its adjacent vertices. Therefore, removing r

increases the number of one-sided loops in the embedding scheme by #2(r)−#1(r). All

two-sided vertices adjacent to r are one-sided after removing r and therefore they are not

in U , meaning that they were formerly connected to i, so we have #2(i) ≥ #2(r).

Similarly, r has to be connected to every one-sided vertices that were formerly connected

to i, so we have #1(r) ≥ #1(i).

If #2(i) = #2(r) and #1(r) = #1(i), then they have the same neighbors and removing

r will isolate i which contradicts the fact that the connected component U is not trivial.

Therefore, applying a one-sided loop move to the loop i creates more one-sided loops than

applying a one-sided loop move to the loop r, which is a contradiction. Thus, removing r

cannot add to the number of non-trivial orientable components.

4This is analogous to choosing a reversible pair with maximal score in sorting a permutation by

reversals, explained in Section 3.8.1

120 Short Non-orientable Canonical Decomposition

The non-trivial component is orientable. In this case, there exists only one one-sided

loop o which is orienting. We replace o with its concatenation with one of the two-sided

loops that is immediately next to it in the cyclic permutation around the vertex. Denote

this two-sided loop by t and the concatenated loop by o′. This corresponds to replacing

the vertex o by o′ that is connected to all the neighbors of t in the interleaving graph and

therefore reduces the number of components by 1. Applying the one-sided loop move to

o′, isolates t and makes it orienting for the new embedding scheme (Lemma 5.4.9). The

resulting graph falls in the last case where the non-trivial component is non-orientable

and therefore we can draw it by applying only contractible loop moves and one-sided loop

moves. This completes the proof.

5.4.3 Correctness of the modified algorithm

Lemma 5.4.12. Let G be a graph cellularly embedded on a non-orientable surface. If G

has an orienting loop, applying the modified algorithm, we obtain a cross-cap drawing of

G with eg(G) cross-caps such that each loop of G enters each cross-cap at most twice.

Otherwise, we obtain a cross-cap drawing of G with eg(G) cross-caps such that each loop

of G enters each cross-cap at most 6 times.

Proof. By Lemma 5.4.1, Step A in the algorithm reduces the graph G to a one-vertex

scheme Ĝ that has an orienting loop such that a drawing Ĝ leads to a drawing for G. Let

Ḡ be the embedding scheme that we obtain after step B on Ĝ. This step does not change

the Euler genus of the embedding scheme.

Thus, by Remark 5.4.2, it is sufficient to prove that there is a cross-cap drawing for Ḡ

with eg(G) = eg(Ḡ) cross-caps in which each edge passes through each cross-cap at most

twice. We prove this claim for any one-vertex scheme G with an orienting loop.

In order to prove this claim, we follow the recursive steps of the main loop of the

modified algorithm, using induction on eg(G) + |E(G)|.

Step 1. We apply the contractible loop move to every contractible loop. By the

induction hypothesis, we can obtain a drawing with eg(G) cross-caps for the resulting

embedding scheme in which every loop passes through each cross-cap at most two times

and the contractible loop does not use any of them.

Step 2. If there exists separating (non-contractible) loops, we deal with them in the

prescribed order. Take the separating loop s and divide the embedding scheme. By

Lemma 5.4.5, we know that one of these subgraphs is orientable and the other one is

non-orientable, without loss of generality let us assume that G1 is non-orientable. We

apply a combination of the gluing move and the dragging move to these subgraphs: we

add an auxiliary orienting loop o to G2. By the induction hypothesis, there are cross-cap

5.4 Our modification to the Schaefer-Štefankovič algorithm 121

drawings H1 with eg(G1) cross-caps and a drawing H2 with eg(G2) + 1 cross-caps for G1

and G2+{o} so that each edge of G1 and G2 passes through each cross-cap at most twice.

Let H ′
2 be the drawing for G2 + {o} + {s} that we obtain as described in the dragging

move. By Remark 5.3.3 and by the induction hypothesis, we know that in H2, the loop

o passes through each cross-cap exactly once. The loop s follows o twice and therefore it

passes through each cross-cap in H2 exactly twice.

The gluing move does not interact with the number of entrances for any loop. In

the dragging move, every loop that is being dragged from H1 to H2 follows the auxiliary

orienting loop o in G2. Since each edge in H1 passes through each cross-cap at most twice,

at most two of its sub-edges are being dragged along o and therefore they pass through

the cross-caps in H2 at most twice.

Since our graph is non-orientable, and we have only dealt with two-sided loops so far,

not all of the edges can be orientable at this point.

Step 3.1. If G has one-sided non-orienting loops, we apply a one-sided loop move to

the one that respects our prescribed order; we denote this loop by r. Since r is non-

orienting, the embedding scheme G′ obtained after removing r and flipping its wedge is

still non-orientable and by the induction hypothesis, there is a drawing H ′ with eg(G)−1

cross-caps for G′ in which every loop passes through each cross-cap at most twice. After

drawing r and the new cross-cap, we can see that each loop in the flipped wedge passes

through this cross-cap at most twice (the exact value depends on the number of its ends

within the flipped wedge).

Step 3.2.a We can find an orienting loop o that is followed immediately by a two-sided

loop t. We apply the concatenation move to o and replace it with the non-orienting loop

o′ (denote by G′, the embedding scheme we obtain at this point; we have eg(G′) = eg(G)).

We apply the one-sided loop move to o′. By the induction hypothesis, there is a drawing

H ′ for G′ with eg(G) cross-caps in which each loop passes through each cross-cap at most

twice. Since we first apply a one-sided loop move to o′, we can see that o′ uses only one

cross-cap. Depending on our choice in flipping a wedge of o′, the loop t uses this cross-cap

either twice or not at all (the loop t uses every cross-cap except this cross-cap exactly

once, since after removing o′, t gets orienting, see Lemma 5.4.9). One can check that at

the end for both choices of wedge, the loop o passes through each cross-cap exactly once.

Step 3.2.b If all one-sided loops in the embedding scheme are orienting and there is

no two-sided loop in the embedding scheme, all of the orienting loops in the embedding

scheme are homotopic and we can draw them using one cross-cap with all of the loops

passing though the cross-cap exactly once.

By Corollary 5.4.10, the graph has an orienting loop at each step of the algorithm

and therefore by Lemma 5.4.5, we never have a graph in which every loop is two-sided

122 Short Non-orientable Canonical Decomposition

throughout the algorithm. This completes the proof of the claim and we conclude.

This proof is independent of the orders we defined for the loops in Step 2 and Step

3.1. These orders are shown to be useful in the next section.

In addition to the fact that our proof does not cover all the steps that happen in

the original case (the case that there might not exist an orienting loop in the embedding

scheme), another difference between this proof and the proof of the Schaefer and Šte-

fankovič algorithm is in Step 3.2. In this Step, the original algorithm flips the wedge of o′

that does not encompass the loop t. We prove the step for both choices of wedge because

we favour the freedom to choose a wedge that we want to flip for our further purposes.

5.5 The non-orientable canonical system of loops

The modified algorithm that we described in the previous section provides us with a cross-

cap drawing of any embedded graph G where each edge of the graph enters each cross-cap

at most six times, as per Lemma 5.4.12. Furthermore, our algorithm has the following

key advantage compared to the algorithm of Schaefer and Štefankovič: due to the order

in which we choose the loops in Steps 2 and 3.1, we know that dragging moves and the

other moves do not intermingle during the recursive calls of the algorithm. When the

algorithm draws an embedding scheme with a single non-trivial component, it only relies

on contractible, one-sided and concatenation moves. Second, due to the order in which we

choose the loops in Steps 2 and 3.1, we know that whenever a dragging move is applied,

the orientable sub-scheme on which we recurse has only one non-trivial component. In this

section, we leverage these two key advantages to find a non-orientable canonical system

of loops of small multiplicity.

5.5.1 The dual graph of the cross-cap drawing

In this rather tedious but straightforward section, we first investigate the effect of every

move involved in the modified algorithm on the dual graph of the cross-cap drawing

(viewed as a planar graph). Every edge e in a cross-cap drawing H, corresponds to an

edge e∗ and every face F corresponds to a vertex F ∗ in the dual graph. The vertex v

corresponds to the face v∗ and the cross-caps correspond to the other faces in the dual

graph. See Figure 5.14 for an example of a cross-cap drawing and its dual. In this section,

cross-caps are denoted by u, b, c, k and g and the letter F is reserved for faces in a cross-cap

drawing.

By Remark 5.3.3, in the drawing obtained via the modified algorithm, the orienting

loop passes through each cross-cap exactly once. Thus if G is drawn using k cross-caps,

an orienting loop in G, corresponds to a set of k+1 edges in the dual graph. Furthermore,

5.5 The non-orientable canonical system of loops 123

Figure 5.14: H is a cross-cap drawing for an embedding scheme G and H∗ is the dual graph to

H. The rightmost picture shows the overlay of H and H∗. The red loop in H is orienting and

the red edges in H∗ correspond to segments of this orienting loop. The faces b∗, u∗ and v∗ in

the dual, each has exactly two edges corresponding to the orienting loop.

there are exactly 2 dual edges corresponding to the orienting loop in each face of the dual,

see Figure 5.14.

The effect of a contractible loop move is as follows:

Lemma 5.5.1. Drawing a contractible loop in a face F of the cross-cap drawing corresponds

to adding a vertex with degree one attached to the vertex F ∗.

Proof. The proof follows directly from the definition of graph duality. Figure 5.14 depicts

the edge c∗, dual to the contractible loop c.

We can see that applying a contractible loop move does not change the situation of

any of the dual edges corresponding to the orienting loop.

Let us assume there is a loop s that separates G into G1 and G2, where G1 is non-

orientable and G2 is orientable. We glue the drawings H1 and H2 for G1 and G2 and we

apply a dragging move to this case. The following lemma explains the effect of this move

on the dual graph. In this lemma, we use the notation introduced in the description of

the dragging move. We denote the vertex associated to the root face F i
o in Hi by F

i∗
o for

i ∈ {1, 2}. We use the notation (i1, F1, . . . , i2K , F
1
o) for the sequence of edges and faces

around the eliminated cross-cap in the dragging move, and finally we denote by o the

auxiliary orienting loop drawn in H2.

Lemma 5.5.2. Let s be a loop that separates the embedding scheme G into the non-

orientable subgraph G1 and the orientable subgraph G2. In this case, the gluing move,

the dragging move and drawing back the separating loop corresponds to:

• splitting F 1∗
o into two vertices F 11∗

o and F 12∗
o such that F 11∗

o inherits only i∗1 and F
12∗
o

inherits the rest of the edges incident to F 1∗
o ,

• removing the two dual edges corresponding to the loop o incident to the vertex F 2∗
o

in v∗2 (o∗1 and o∗2 in Figure 5.15),

124 Short Non-orientable Canonical Decomposition

Figure 5.15: The impact of the gluing move and dragging move on the dual graph.

• connecting F 11∗
o and F 12∗

o to the adjacent vertices to o in the correct order by adding

an edge for each one (this edges correspond to the segments of the separating loop

that are attached to the vertex),

• connecting F 2∗
o to F ∗

k by adding an edge,

• replacing the dual edges corresponding to the segments of o in H2 by k + 2 edges.

The operations performed in Lemma 5.5.2 are pictured in Figure 5.15.

Proof. Splitting F 1∗
o and connecting it to two vertices formerly incident to F 2∗

o corresponds

to the gluing move between the drawings. We can see in Figure 5.15 that these steps

merge the faces v∗1 and v∗2 to the face v∗. The edges that we add to connect these vertices

correspond to the sub-edges of the separating loop s that are incident to the vertex. On

the other hand, connecting F 2∗
o to F ∗

k and replacing the dual edges in H2 by a path

corresponds to the dragging move; see Figure 5.15.

Remark 5.5.3. Let us denote by H the drawing of G that we obtain by applying the three

moves in Lemma 5.5.2. The only modification done on the subgraph induced by the vertices

5.5 The non-orientable canonical system of loops 125

Figure 5.16: The impact of the one-sided loop move on the dual graph. Left: the drawing for

the embedding scheme before adding the one-sided loop r and its dual; right: the drawings and

the dual graphs after drawing r and the impact of flipping different wedges of r is depicted.

that come from H∗
1 in H∗ is that we split the vertex F 1∗

o to F 11∗
o and F 12∗

o . Both F 11
o and

F 12
o are root faces in G.

The modifications in the subgraph induced by the vertices that come from H∗
2 is that

we replace some edges by paths and we disconnect the two root faces adjacent to F 2∗
o

by removing the incident edges. Also F 2∗
o gets connected to a face in H∗

1 and it is not

necessarily a root face anymore.

The effect of a one-sided loop move is as follows:

Lemma 5.5.4. Adding a one-sided non-orienting loop r with ends in root faces F1 and F2

in the drawing (F1 and F2 are possibly identical), corresponds to subdividing the face v∗

into two faces and adding a path of length k + 2 from F ∗
1 to F ∗

2 where k is the length of

one of the paths from F ∗
1 to F ∗

2 in the face v∗.

Proof. Figure 5.16 depicts that the addition of the new cross-cap in the one-sided loop

move corresponds to adding a duplicate of the set of edges and vertices between F ∗
1 and

F ∗
2 in the face v∗. Choosing between the two different sequences from F ∗

1 to F ∗
2 in the

face v∗ corresponds to choosing different wedges of r to flip.

Finally, we analyze the effect of the concatenation move. Let G be an embedding

scheme with no separating loop in which every one-sided loop is orienting and it has at least

one two-sided loop. Let o′ be the one-sided non-orienting loop obtained by concatenating

126 Short Non-orientable Canonical Decomposition

the orienting loop o and the two-sided loop t which has an end immediately next to an

end of o in the cyclic permutation around the vertex (step 3.2 of the algorithm). Denote

by G′ the embedding scheme in which o is replaced by o′ and let H ′ be a drawing for G′.

After applying a one-sided loop move to o′, t gets orienting (by Lemma 5.4.9) and it goes

through eg(G)− 1 cross-caps. The loop o′ is the last loop that is drawn in the algorithm

and therefore it passes through only one cross-cap. Let us denote this cross-cap by c.

We denote by ti, 1 ≤ i ≤ eg(G), the dual edges to sub-edges of t and by o′1 and o′2 the

sub-edges of o′, where t1 corresponds to the sub-edge next to o′1.

Depending on the wedge of o′ that we choose to reverse, we proceed with concatenating

o′ with t to get back the loop o as discussed in the description of the concatenation move.

The following lemmas describe the effect of applying the concatenation move on the dual

graph of the cross-cap drawing.

Lemmas 5.5.5 and 5.5.6 explain the effect of the concatenation move in the dual graph:

Lemma 5.5.5. When we reverse the wedge of o′ that does not encompass t, concatenating

the loop o′ along t corresponds to:

• subdividing the edge adjacent to t∗1 and o
′∗
1 that is in the cyclic rotation of c∗

• contracting the edge o
′∗
1

• subdividing the edges t∗i for i ≥ 2

The added edges together with o
′∗
2 , correspond to the segments of o in H.

Proof. By sliding o′ along t, we remove o′1, see Figure 5.17. Removing an edge corresponds

to contracting its dual edge. Following t into the cross-caps adds parallel edges in the

cross-cap drawing that corresponds to subdividing the dual edges t∗i .

Lemma 5.5.6. When we reverse the wedge of o′ that encompasses the ends of t, concate-

nating the loop o′ with t corresponds to:

• subdividing every t∗i except for i = 1, 2

• subdividing the edge adjacent to t∗2 and o
′∗
1 in the face v∗

• contracting the edge o
′∗
1 and o

′∗
2

The added edges together with o
′∗
2 , correspond to the segments of o in H.

Proof. The proof is similar to the proof of Lemma 5.5.5.

5.5 The non-orientable canonical system of loops 127

Figure 5.17: The impact of the concatenation move in the dual graph. The bottom graphs are

dual to the top cross-cap drawings.

5.5.2 Short paths from each cross-cap to the vertex

Recall that a root face in a cross-cap drawing of a one-vertex graph is a face of the drawing

(seen as a planar graph) adjacent to the vertex. The aim of this section is to show that

there is a cross-cap drawing output by the modified algorithm, in which the cross-caps

are not too far from the vertex (at distance O(|E(G)|)). To show this, we find paths in

the dual graph of the cross-cap drawing from a vertex adjacent to the face dual to each

cross-cap to the vertex corresponding to a root face.

We first show this claim for an embedding scheme with an orienting loop that has

exactly one non-trivial component in its interleaving graph. Additionally, we claim that

we can find a cross-cap drawing which allows us to force the paths to arrive in the same

vertex in the dual graph that is chosen arbitrarily. Furthermore, we show that we can

find these paths such that they do not use the dual edges corresponding to the orienting

loop.

To prove this we use the modified algorithm, but with an additional specification: as

we mentioned before, different choices in flipping a wedge when doing a one-sided loop

move or a concatenation move yield different cross-cap drawings. The modified algorithm

that we described gives us the freedom to choose the wedge whenever a one-sided loop

move is applied. Here we use this freedom to build our desired paths.

Lemma 5.5.7. For any one-vertex scheme G with an orienting loop o that has exactly

one non-trivial component in its interleaving graph IG, for any choice of root wedge ω,

128 Short Non-orientable Canonical Decomposition

there is a choice of wedges in the modified algorithm which outputs a cross-cap drawing

H with eg(G) cross-caps such that for every cross-cap c, there is a dual path pc from a

face adjacent to c to the root face corresponding to ω with multiplicity two, which does not

cross the orienting loop.

Proof. We prove the result by induction on eg(G) + |E(G)|, following the recursive steps

of the modified algorithm. By Lemma 5.4.11, we know that the modified algorithm draws

such an embedding scheme using only contractible loop moves, one-sided loop moves and

concatenation moves. In this proof, we show that these moves can be applied in each

step such that they do not increase the multiplicity of the paths that we obtain by the

induction hypothesis. Crucially, when applying a one-sided loop move or a concatenation

move, this relies on choosing a correct wedge to flip in each step.

We fix an arbitrary root wedge ω around the vertex v. When we remove a loop that

affects ω, we update ω to be the wedge that encompasses the former fixed root wedge ω.

Similarly, when we re-introduce the edges in the drawing, we subdivide ω and we choose

the sub-wedge that is consistent with the first choice of ω.

Contractible loop move. Denote by G′ the embedding scheme we have after removing

a contractible loop c. By the induction hypothesis, there exists a drawing H ′ and a system

of paths {pc} from every cross-cap to the wedge ω in H
′∗ with multiplicity two such that

they do no use the dual edges of the orienting loop. When re-introducing c, if c does not

sub-divide the wedge ω, then it does not affect the paths pc. In the case that we need to

update ω to be the empty wedge between the ends of c itself, by Lemma 5.5.1, we can see

that in this case, the paths need to use the edge c∗ in the dual once. Thus, the multiplicity

of the paths remains two. The paths still do not use the dual edges of the orienting loop.

One-sided loop move on a one-sided non-orienting loop r. Denote by G′ the graph we

have after applying a one-sided loop move to r. By the induction hypothesis, there exists

a drawing H ′ and a system of paths {pc} from every cross-cap to the wedge ω in H
′∗ with

multiplicity at most two such that they do not use the dual edges of the orienting loop.

In this case, we flip the wedge of r that does not contain ω. By this choice, we can see

that the situation of the vertex dual to the face ω does not change, since by Lemma 5.5.4,

drawing a one-sided loop corresponds to adding a path to the dual graph that does not

separate ω from v∗. Therefore, this move does not affect any pc.

We know that the orienting loop interleaves with r. For the new cross-cap c1, we

define the path pc1 as follows. We choose a face adjacent to c that is a root face, and

such that it is both in the flipped wedge of r and in the same wedge of the orienting loop

as ω; see Figure 5.18. We introduce the path pc1 to be the sequence of dual edges and

vertices around v between ω and this root face such that it does not use the dual edges

corresponding to the orienting loop. Since each edge has exactly two ends around the

vertex, the path pc1 uses each edge at most twice in the dual graph and its multiplicity is

5.5 The non-orientable canonical system of loops 129

Figure 5.18: The choice of the adjacent root face for the new cross-cap: the loop o is orienting

and we applied the one-sided loop move on the loop r. The dotted arrow shows the wedge of r

that we flipped and the blue arrow shows the adjacent root wedges to the last cross-cap that we

can choose from.

at most two. By construction, all these paths avoid using the dual edges of the orienting

loop.

Concatenation move on an orienting loop o and the two-sided loop t. We denote by

o′ the concatenation of o and t and by G′ the graph in which we replaced o by o′. The

modified algorithm applies the one-sided loop move to o′, and here again we choose to

flip the wedge of o′ that does not encompass ω. We denote the new graph after removing

o′ by G
′′
. By the induction hypothesis there exists a drawing H

′′
for G

′′
and a suitable

system of dual paths {pc} in H
′′∗ from a face adjacent to each cross-cap to the root wedge

ω with multiplicity two. These paths do not use the dual edges corresponding to the loop

t since after removing o′, t is orienting for the new embedding scheme (this follows from

Lemma 5.4.9). Similar to the case before in which the algorithm applies the one-sided

loop move, we can see that after drawing o′ and adding a cross-cap, we can re-introduce

the paths {pc} with the same multiplicity so that they do not use the two dual edges

corresponding to o′. Now, the modified algorithm slides o′ along t to get a drawing for the

initial embedding scheme. By Lemmas 5.5.5 and 5.5.6 (depending on the situation of ω

with respect to t and o′), we know that sliding o′ along t corresponds to sub-dividing the

dual edges corresponding to t and since the paths {pi} do not use the dual edges of t, they

do not use the dual edges of o either. For the last added cross-cap, we take a root face

adjacent to it in the same wedge that ω is placed and introduce a path by going around

the vertex. As before, we know that this path has multiplicity at most two and does not

use the dual edges of the orienting loop. This finishes the proof.

Using Lemma 5.5.7, we prove the claim for the more general case in which the embed-

130 Short Non-orientable Canonical Decomposition

ding scheme can have more than one non-trivial component. Here, we do not need the

paths to arrive in the same root face.

Lemma 5.5.8. For any saturated one-vertex scheme G with an orienting loop o, there is a

choice of wedges in the modified algorithm which outputs a cross-cap drawing H with eg(G)

cross-caps such that there is a path from every cross-cap to a root face (not necessarily

fixed) with multiplicity at most two.

Proof. The proof is by induction on the number of separating loops. When there is no

separating loop, the graph has only one non-trivial component and it is non-orientable.

In this case, the result follows by Lemma 5.5.7.

Let sl be the separating loop chosen by the algorithm during Step 2, separating two

sub-schemeGl andG\Gl on which it recurses. Since sl separates a leaf from the component

tree, one of these sub-schemes, say G \ Gl, is non-orientable and has an orienting loop.

Therefore, by the induction hypothesis, there is a drawing H ′ for G \Gl with eg(G \Gl)

cross-caps such that there is a path with multiplicity two from every cross-cap to a root

wedge.

Now, Gl is made of exactly one non-trivial component due to our way of choosing sl.

Let ω be a root wedge of Gl different from Fo, the face where the ends of sl used to exist.

We apply Lemma 5.5.7 to obtain a cross-cap drawing Hl of Gl+ {o} and a system of dual

paths {pc} with multiplicity at most two from a face adjacent to every cross-cap to ω,

such that none of them use the dual edges corresponding to the orienting loop o. Now,

the algorithm glues Hl to H
′ and proceeds with dragging the loops from H ′ to Hl. We

denote the resulting drawing by H.

By Remark 5.5.3, we know that the paths connecting cross-caps to root wedges in H ′

can be re-introduced in H, since dual edges and vertices corresponding to the edges and

faces in H ′ are not changed in H except the vertex that is split into two vertices. Since

both of these vertices are root faces in the new embedding scheme, this does not interfere

with the multiplicity of these paths and each of them arrives at one of these vertices (recall

that we do not require all the paths to arrive at the same root wedge). By the choice of

ω and the fact that none of the paths in {pc} use the dual edges corresponding to the

orienting loop, none of the paths visit the vertex F ∗
o (Fo and ω are in different wedges

of the orienting loop o). Since the paths {pc} do not use o, we can choose the incident

face to each cross-cap so that replacing the dual edges of o by a sequence of edges (as

explained in Lemma 5.5.2), does not impact the multiplicity of the paths {pc} from each

cross-cap to ω. This finishes the proof.

It is immediate from the proofs of Lemmas 5.5.7 and 5.5.8 that the choice of wedges

in the modified algorithm in these lemmas is computable in polynomial-time. We call the

5.5 The non-orientable canonical system of loops 131

modified algorithm with the choice of wedges of these lemmas the refined algorithm. We

finally have all the tools to prove our main result, which we recall for convenience.

Theorem D. There exists a polynomial time algorithm that given a non-orientable cross-

metric surface N , computes a canonical decomposition such that each loop in the decom-

position intersects any edge of the graph in at most 30 points.

In the case that the primal graph in N contains an orienting cycle, our proof yields

a better bound: each loop in the system intersects any edge of the graph in at most 10

points.

Proof. Let G denote the embedding scheme of the primal graph in N . Applying the

algorithm to G, we obtain the saturated one-vertex scheme Ḡ that has an orienting loop

after the preprocessing steps. By Lemma 5.4.1, to prove the theorem, it is sufficient to

show that there exists a canonical system of loops for a drawing of Ḡ such that each loop

in the system has multiplicity 10.

The one-vertex scheme Ḡ has an orienting loop and therefore by Lemma 5.5.8, the

refined algorithm outputs a cross-cap drawing H̄ with eg(N) cross-caps such that there

are paths {pj} with multiplicity two from a face incident to each cross-cap (denote this

face by bj for each j) to a root face (denote this face by aj for each j) in this cross-cap

drawing.

Fix a root face F in the drawing H̄. For each path pj, build a loop νj by going from F

to aj, by going around the vertex in shortest way possible. By doing so, so far the loop has

multiplicity at most two. Follow pj to bj: this adds at most two to the multiplicity since

pj has multiplicity two. Go into the cross-cap and come back to bj by going around it

(this adds at most two to the multiplicity, since every edge passes through each cross-cap

at most twice by Lemma 5.4.12) Finally, follow pj back to aj and go back to F from the

same path (these two last steps add at most 4 to the multiplicity). Therefore, each νj

has multiplicity 10. By Lemma 5.1.1, we know that the system of loops we obtain, is a

non-orientable canonical system of loops. This finishes the proof.

132 More on decompositions of surfaces

Chapter 6

More on decompositions of surfaces

Summary. In this chapter, we first prove that every orientable embedding scheme

admits a box drawing in which each edge of the graph enters each box at most

twice. Then we show that the same approach used to provide a short canon-

ical decomposition of non-orientable cross-metric surfaces in Chapter 5 can be

adopted to provide an alternative polynomial-time algorithm that computes a

short canonical decomposition of an orientable cross-metric surface. Further-

more, we show that the techniques for orientable surfaces and non-orientable

surfaces can be joined to provide short decompositions along other systems of

loops for non-orientable surfaces. Finally, we provide a lower bound for canonical

decompositions of both orientable and non-orientable surfaces using a counting

argument.

The results in this chapter were obtained with Alfredo Hubard and Arnaud de Mesmay.

This chapter serves as a follow-up to the previous chapter and is highly dependent on the

concepts and definitions established there.

6.1 Introduction

In the previous chapter, we devised a new technique for computing a short canonical

decomposition of non-orientable cross-metric surfaces. Our technique used the geometric

model introduced in Section 3.4.1 (cross-cap drawings), to get a planar drawing of the

primal graph on the surface. Schaefer and Štefankovič [69] provided an algorithm that

computes a cross-cap drawing for a given graph embedding in which each edge of the graph

enters each cross-cap at most twice. Using a modification of this algorithm, we controlled

the diameter of this drawing so that each cross-cap
⊗

is not far from a fixed basepoint.

This allowed us to build a canonical system of loops by dragging a system of planarizing

6.1 Introduction 133

disjoint one-sided curves to the basepoint such that each loop in the decomposition has

constant multiplicity.

Following up on our analogous geometric model to that of cross-cap drawings for

orientable surfaces in Section 3.4.2 (box drawings), we provide an analogous result to that

of Schaefer and Štefankovičc (see Theorem 5.3.1 or more accurately [69, Theorem 10]) but

for graphs embedded on orientable surfaces.

Theorem E. Let G be a (connected) orientable embedding scheme with orientable genus

g(G). Then G admits a box drawing with g(G) boxes such that each edge of G enters each

box at most twice.

Note that, given an orientable cross-metric surface, any orientable canonical decom-

position of it in which each edge has low multiplicity [53], leads to a box drawing in

which each edge enters each box a constant number of times, see Figure 3.18 and also [69,

Theorem 13].

Combining Theorem E with the approach that we described above, allows us to provide

an alternative proof for the existence of a short canonical decomposition of orientable

surfaces of total length O(g|E(G)|), where G is the primal graph on the surface (with a

slightly worse constant compared to the one provided in [53], see also [12]).

Theorem F. There exists a polynomial time algorithm that given an orientable cross-

metric surface M with primal graph G, computes a canonical decomposition such that

each loop in the decomposition intersects any edge of G in at most 6 points.

Furthermore, we show that by merging these drawing algorithms, we can obtain a

planar drawing with a combination of cross-caps and boxes such that each edge enters

each box or cross-cap at most 6 times. This theorem generalizes Theorem 5.3.1.

Theorem G. Let G be a non-orientable embedding scheme with non-orientable genus g̃(G).

For every l and k with l+2k = g̃(G) (l and g̃(G) have the same parity), G admits a drawing

with l ≥ 1 cross-caps and k boxes such that every edge passes through each cross-cap and

each box at most 6 times.

We explain how this theorem would lead to polynomial algorithms that provide short

decompositions along other systems of loops for non-orientable surfaces.

Finally, using a counting argument we prove a lower bound for the total length of

canonical decompositions (both orientable and non-orientable). The proof technique is

inspired by Colin de Verdière, Hubard and de Mesmay [22] who prove a similar bound

for combinatorial maps. Their strategy is itself derived from [41] by Guth, Parlier and

Young, who prove a similar bound for pants decompositions.

134 More on decompositions of surfaces

Theorem H. For any ϵ > 0, the following holds with probability tending to one as g tends

to ∞: an orientable (resp. non-orientable) one-vertex one-face scheme with orientable

genus g (resp. non-orientable genus g), chosen uniformly at random has no orientable

(resp. non-orientable) canonical decomposition of length at most g
5
4
−ϵ (resp. g

3
2
−ϵ).

This theorem implies that for almost all one-vertex one-face cross-metric surfaces the

length of a canonical decomposition is at least superlinear.

Outline. Theorems E and F are proved in Section 6.2 and Theorems G and H are proved

in Sections 6.3 and 6.4, respectively.

6.2 Canonical decomposition of orientable surfaces

A canonical decomposition of an orientable surface can be computed such that each loop

in the system of loops has multiplicity at most 4 (see [53, Theorem 1]). The proof uses

a cut and pasting technique and works on the combinatorial model. In this section, we

provide an alternative way to compute a short orientable canonical system of loops such

a decomposition with slightly higher multiplicity.

Theorem F. There exists a polynomial time algorithm that given an orientable cross-

metric surface M with primal graph G, computes a canonical decomposition such that

each loop in the decomposition intersects any edge of G in at most 6 points.

Our proof uses the cross-metric model. Recall that by g(G) we refer to the orientable

genus of the graph (or the embedding scheme) G.

6.2.1 Box drawing with low multiplicity

To prove Theorem F, we first introduce an algorithm that provides a box drawing for

an orientable embedding scheme such that each edge passes through each box a constant

number of times.

Theorem E. Let G be a (connected) orientable embedding scheme with orientable genus

g(G). Then G admits a box drawing with g(G) boxes such that each edge of G enters each

box at most twice.

As a pre-processing step in our algorithm, we first contract a spanning tree in the

given embedding scheme G. This way, we reduce the graph to a one-vertex graph G0

with the rotation system ρ such that, g(G0, ρ) = g(G). An embedding for (G0, ρ) can be

turned back into an embedding of G by uncontracting edges close to the vertex so that

these edges do not go inside any of the boxes.

6.2 Canonical decomposition of orientable surfaces 135

We need the following two moves on a one-vertex embedding scheme. The contractible

loop move is similar to the contractible loop move in the Schaefer-Štefankovič algorithm.

We recall this move here.

Contractible loop move. Let c be a contractible loop with consecutive ends in the

embedding scheme G. Remove c. The new embedding scheme can be drawn using the

same number of boxes. Having a drawing for the new embedding scheme, we can draw

the loop c without passing through any of the boxes.

Interleaving loops move. Let e and f be two interleaving loops in the embedding

scheme G. These loops divide the rotation system into four wedges which we number

from 1 to 4 as in the left picture in Figure 6.1. Remove e and f and change the order

between wedges 1 and 3 (See the middle picture in Figure 6.1). The new embedding

scheme can be drawn using g(G)− 1 boxes. Given a box drawing H for the new scheme,

we add a box near the vertex and next to the reordered edges; let us label the sides of

the box by the sequence abcabc. We disconnect the edges in wedges 1, 2 and 3 from the

vertex and pass them through the sides a, b and c, respectively and then connect them

again to the vertex. This retrieves the original order of edges in 1, 2 and 3 in G. Finally,

we add e and f back passing them through two different sides of the box (see the right

picture in Figure 6.1). This gives a box drawing for G.

These moves provide a way to draw one or two loops assuming that some simpler

one-vertex graph without that loop has already been drawn. Therefore, we can use the

moves in an inductive algorithm as follows. The input is an orientable embedding scheme

G.

The box drawing algorithm:

Pre-processing step:

• Step A. Contract a spanning tree to obtain a one-vertex scheme.

Main loop:

• Step 1: If there is a contractible loop. Apply the contractible loop move and

recurse.

• Step 2: If there exists a pair of interleaving loops. Pick two interleaving

loops e and f . Apply the interleaving loops move on e and f and recurse.

Post-processing step:

• Step A’. Uncontract the spanning tree near the vertex such that the edges in

the spanning tree do not enter any of the boxes.

136 More on decompositions of surfaces

We now prove Theorem E by showing that the box drawing output by this algorithm

has the correct number of boxes and each loop passes through every box at most twice.

Proof of Theorem E. Since contracting a spanning tree does not change the genus of the

graph, Step A in the algorithm reduces the graph G to a one-vertex scheme G0 such that

a drawing for this graph leads to a drawing for G.

Thus, it is sufficient to prove that there is a cross-cap drawing forG0 with g(G0) = g(G)

boxes in which each loop passes through each box at most twice. We prove this claim for

any orientable one-vertex scheme G.

In order to prove this claim, we follow the recursive steps of the main loop of the box

drawing algorithm, using induction on |E(G)|.

Step 1: Contractible loop move. We apply the contractible loop move on a loop c.

Let G′ denote the new embedding scheme. We know that g(G′) = g(G) since removing

a contractible loop does not change the genus. By induction, we obtain a drawing for G′

in which each loop enters each box at most twice. We draw c such that it does not enter

any of the boxes.

Step 2: Interleaving loops move. If g(G) ̸= 0 then there exists such pair of loops in

the graph. This is because if there are no loops with interleaving ends then all the loops

are contractible and can be drawn in the plane. Let e and f be the loops in G on which the

interleaving loops move has been applied. Let G′ denote the new scheme we obtain after

applying the interleaving loop move. We can see that g(G′) = g(G)− 1. This is because

the process of removing e and f and reordering the wedges is equivalent to cutting along e

and f and contracting the emerging boundary component. Since e and f are alternating,

none of them can be separating (see Lemma 5.2.3) and therefore cutting along f reduces

the genus by 1 and produces two boundary components on the surface. Since the ends

of e were alternating with those of f ’s, the edge e becomes an arc connecting these two

boundaries. Therefore, cutting along e will reduce the boundary components by 1 and

preserves the genus. We can check further to see that after contracting this boundary (as

explained in Section 3.3.2, we get the rotation system in G′.

Since |E(G′)| < |E(G)|, G′ has a box drawing H ′ with g(G)− 1 boxes such that each

loop in G′ enters each box at most twice. Let H denote the box drawing we obtain for

G after adding the last box near the wedges 1, 2 and 3 and passing the edges in these

wedges through this box. Since the wedges 1, 2 and 3 may contain both ends of a loop,

each edge in these wedges enter the new box at most twice and edges e and f enter this

box exactly once. Note that in applying this move, the situation between the edges and

the other boxes remains intact. This finishes the proof.

6.2 Canonical decomposition of orientable surfaces 137

Figure 6.1: The process in case 2.

6.2.2 Reproving the O(gn) bound for orientable canonical system of

loops

In this section, we prove Theorem F using the Box drawing algorithm and Theorem E.

The idea of the proof is similar to the non-orientable case (Section 5.5). We show that the

complexity of the drawing obtained from the box drawing algorithm can be controlled so

that the boxes are not too far from a basepoint b. We achieve this by choosing the wedge

whose edges do not enter the new box whenever we apply an interleaving loops move (the

wedge 4 in our previous notation).

Lemma 6.2.1. For any orientable one-vertex scheme G, there is a choice of wedges in the

box drawing algorithm which outputs a box drawing H with g(G) boxes such that there is

a path from every box to a point b on the surface with multiplicity at most two.

Given such system of paths from every box to a basepoint b, we obtain a canonical

system of loops by the following lemma.

Lemma 6.2.2. Let H be a box drawing for a graph of orientable genus g and let b be a

point in one face of the drawing. Let {pi} be a family of paths in the dual graph to this

drawing from each box to b. Introduce a loop ci by starting from b, passing along the

138 More on decompositions of surfaces

path pi, entering the corresponding box from one of the sides, going around the box and

passing along pi to return to b. Introduce di similarly but make di enter another side of

the box such that it does not cross ci. The system of loops we obtain by all ci and dis is

an orientable canonical system of loops.

Proof. It is easy to check that for each i the ends of ci and di interleave around b. Also for

each i ̸= j, the ends of ci and di encloses the ends of cj and dj. Cutting along {ci}, cuts
the surface into a disk, and therefore we obtain an orientable canonical system of loops.

This can be seen in Figure 6.2.

Figure 6.2: The process of building ci and di using the path pi for the box i.

Given Lemma 6.2.2, to prove Theorem F, it is sufficient to prove Lemma 6.2.1. In

ordert to prove Lemma 6.2.1, we first investigate the effect of applying the moves in the

box drawing algorithm in the dual graph of the box drawing (viewed as a planar graph).

The dual graph of the box drawing. Given a one-vertex embedding schemeG with vertex

v and a box drawing H, recall that we call the empty wedge between two consecutive half-

edges around v a root wedge. A face incident to v in a cross-cap drawing may correspond

to more than one root wedge. We refer to such a face as a root face. Every edge e in a

box drawing H, corresponds to an edge e∗ and every face F corresponds to a vertex F ∗

in the dual graph. The vertex v corresponds to the face v∗ and the boxes correspond to

the other faces in the dual graph.

The effect of applying a contractible loop move in the dual graph of the drawing is

similar to the one showed in the previous section. Therefore for the sake of redundancy,

we do not state it again here and we refer the reader to Lemma 5.5.1. The following

lemma states the effect of an interleaving loops move in the dual graph of the drawing.

6.2 Canonical decomposition of orientable surfaces 139

Figure 6.3: The interleaving loops move in the dual graph. The scheme G′ is the scheme we

obtain by applying a interleaving loops move on edges e and f in G. H and H ′ are box drawings

for G and G′ and the graphs H∗ and H ′∗ depict the dual graph these box drawings, respectively.

Lemma 6.2.3. Let G be a one-vertex orientable embedding scheme, and e and f two

interleaving loops in G. Number the four wedges between the ends of e and f from 1 to 4.

Let G′ be the scheme we obtain after removing the loops e and f and reordering the two

wedges 1 and 3 as explained in the interleaving loops move. Let H ′ be a box drawing for

G′ and denote by F1 (resp. F2) the root faces formed by an edge in wedge 4 and an edge

in wedge 1 (resp. an edge in wedge 3). Drawing e and f , adding the last box and dragging

the half-edges in the wedges 1, 2 and 3, corresponds to subdividing the face v∗ into two

faces and adding a path of length k+4 from F ∗
1 to F ∗

2 where k is the number of half edges

in the wedges 1, 2 and 3.

Proof. Figure 6.3 depicts that the addition of the new box in the interleaving loops move

corresponds to adding a duplicate of the set of edges and vertices between F ∗
1 and F ∗

2 in

the face v∗ and drawing the edges e and f corresponds to 4 additional dual edges (2 of

them correspond to two segments of edge e and the other 2 correspond to the segments

of the edge f) in the dual graph.

Now we are ready to prove Lemma 6.2.1 which implies Theorem F.

Proof of Lemma 6.2.1. Let b be a point on one of the faces inG. Without loss of generality

140 More on decompositions of surfaces

let ω be a root wedge corresponding to this face. Denote by H the planar box drawing in

which each box is considered as a vertex, and edges of H are the sub-edges in G.

Claim: G admits a box drawing with g(G) boxes such that for each box in H, there

exists a path with multiplicity at most 2 from ω to a face incident to that box.

We prove the claim by induction on |E(G)| (the proof is similar to the proof of

Lemma 5.5.7).We show that the contractible loop move and the interleaving loops move

can be applied in each step such that they do not increase the multiplicity of the paths

that we obtain by the induction hypothesis. Specially in the case of the interleaving loops

move, we achieve this by carefully labeling the wedges in the interleaving move: we always

label the wedges so that the edges of the root wedge ω do not enter a new box.

• Denote by G′ the embedding scheme we obtain after removing a contractible loop

c. By the induction hypothesis, there exists a drawing H ′ for G′ and a system of

paths {pc} from every box to the wedge ω in H
′∗ with multiplicity two. When re-

introducing c, if c does not sub-divide the wedge ω, then it does not affect the paths

pc. In the case that we need to update ω to be the empty wedge between the ends

of c itself, by Lemma 5.5.1, we can see that in this case, the paths need to use the

edge c∗ in the dual once. Thus, the multiplicity of the paths remains two.

• Let e and f be the interleaving loops in G on which the interleaving loops move

is applied. Number the four wedges formed by the ends of e and f from 1 to 4

such that the wedge 4 is the one that contains the root wedge ω. Denote by G′ the

embedding scheme we obtain after removing e and f and replacing the wedges 1

and 3. By the induction hypothesis, there exists a drawing H ′ for G′ and a system

of paths {pc} from every box to the wedge ω in H
′∗ with multiplicity two. When

re-introducing e and f , and dragging the edges in the wedges 1, 2 and 3 into the

new box, we do not change the situation of the paths Pc. This is because our choice

for wedge 4 implies that the situation of the vertex dual to ω does not change since

by Lemma 6.2.3, completing the drawing when applying an interleaving loops move,

corresponds to adding a path to the dual graph, that does not separate ω from v∗.
Therefore, the paths Pc can be reintroduced using the same dual edges and vertices

as before.

Now we introduce a path from the new cross-cap c1 to ω. We choose the face Fc1

adjacent to c1 in the dual graph that is a root face. We introduce the path pc1 to

be the sequence of dual edges and vertices around v between ω and Fc1 . Since each

edge has exactly two ends around the vertex, the path pc1 uses each edge at most

twice in the dual graph and its multiplicity is at most two.

This finishes the proof of the claim.

6.3 Non-orientable embeddings with a combination of boxes and cross-caps 141

We now are ready to prove Theorem F.

Proof of Theorem F. Let G denote the embedding scheme corresponding to the graph of

the metric in M . Choose a point b on M and proceed with the box drawing algorithm.

After the pre-processing step, we obtain a one-vertex embedding scheme with b as a root

face. Using Lemma 6.2.1, we obtain a box drawing for G such that each edge of G enters

each box at most twice and there exists paths {pc} from each box to b with multiplicity

at most two.

We build the canonical system of loops using Lemma 6.2.2 and the paths {pc}. Each of

the loops constructed in this lemma, is obtained by following a path pc twice and entering

a box and going around it once. Since each box is entered by each edge at most twice,

then going around the boxes add 2 to the multiplicity of the loops. This concludes that

the multiplicity of each loop is at most 6. We conclude.

6.3 Non-orientable embeddings with a combination of boxes

and cross-caps

In this section, we provide an algorithm that provides a planar drawing with both cross-

caps and boxes. Combining the techniques and moves in the box drawing algorithm in

Section 6.2.1 and our modified algorithm in Section 5.4, we prove the following theorem.

Theorem G. Let G be a non-orientable embedding scheme with non-orientable genus g̃(G).

For every l and k with l+2k = g̃(G) (l and g̃(G) have the same parity), G admits a drawing

with l ≥ 1 cross-caps and k boxes such that every edge passes through each cross-cap and

each box at most 6 times.

To prove this theorem, we use the technique in the modified algorithm to reduce our

embedding scheme to one that has only one vertex and contains an orienting loop (see

Step A in the modified algorithm in Section 5.4). Then we apply the modified algorithm

until we have drawn l− 1 cross-caps. We know that the scheme still contains an orienting

loop which allows us to draw the last cross-cap in our budget by applying a one-sided

loop move on the orienting loop (Lemma 3.3.2 provides that the orienting loop at this

point is indeed one-sided). After this, we have an orientable scheme and we apply the box

drawing algorithm in Section 6.2.1 to finish the drawing of the initial scheme.

We describe the algorithm in the following. We use the moves on loops that we

introduced in Sections 5.3 and 6.2.

142 More on decompositions of surfaces

The (l, k) combination algorithm:

Pre-processing steps:

• Step A. If there is no orienting loop, we add an orienting loop and contract a

spanning tree using Lemma 5.4.1.

Main loop:

• Step 1: If there exists a separating (non-contractible) loop and l > 1. We

pick a separating loop s that divides the embedding scheme to a non-orientable

sub-scheme G1 and an orientable sub-scheme G2.

– If g̃(G1) > l: recurse on G1 to obtain a drawing with l cross-caps and
g̃(G)−l

2
boxes and apply the box drawing algorithm on G2. Apply the

gluing move on G1 and G2.

– If g̃(G1) ≤ l: apply the modified algorithm on G1 and recurse on G2 to

obtain a drawing with l− g̃(G1) + 1 cross-caps and k boxes. Then apply

the gluing and dragging move (introduced in Section 5.3) to remove the

extra cross-cap from the drawing.

• Step 2: If there is no separating loop and l > 1. Apply the modified algorithm

until we reduce the scheme to a scheme of genus 2k + 1. Recurse to obtain a

drawing with one cross-cap and k boxes.

• Step 3: If l = 1. Apply a one-sided loop move on the orienting loop. Then

apply the box drawing algorithm on the resulting orientable scheme.

Post-processing steps:

• Step A’. Uncontract the spanning tree and remove the orienting loop added

in step A.

Now we are ready to prove that this algorithm provides a drawing with the desired

number of cross-caps and boxes such that each edge enters each cross-cap and each box

at most twice.

Proof of Theorem G. Let G be an embedding scheme with non-orientable genus g̃(G).

Applying Step A, we obtain a one-vertex scheme G′ with an orienting loop that also has

non-orientable genus g̃(G). We know that each edge in G is subdivided to at most three

loops in G′. A drawing for G′ can be extended to a drawing for G without changing

the number of times a cross-cap or a box is entered by the loops in G′ (sub-edges in G).

6.3 Non-orientable embeddings with a combination of boxes and cross-caps 143

Therefore, it is sufficient to show that G′ can be drawn using l cross-caps and k boxes

such that each loop in G′ enters each box and each cross-cap at most twice.

We know by Lemma 5.4.4 that G′ is a non-orientable scheme and contains at least one

one-sided loop. Also by Corollary 5.4.10 we know that in the main loop in the modified

algorithm, at each step, our embedding scheme contains an orienting loop.

We show that the algorithm gives a drawing with a correct number of cross-caps and

boxes. The proof is by induction on g̃(G′) = g̃(G) and we show that k = g̃(G)−l
2

.

Step 1: Since G′ has an orienting loop, by Lemma 5.4.5 we know that a separating

loop s divides G′ to an orientable scheme G1 and a non-orientable schemes G2. Therefore

Step 1 deals with all the cases where there exists a separating loop. Let us assume that

G1 is non-orientable and G2 is orientable. We know that g̃(G) = g̃(G1) + g̃(G2)− 1 since

G2 needs an extra cross-cap to embed (see Lemma 3.3.2).

• In case g̃(G1) > l, by the induction hypothesis we obtain a drawing for G1 with l

cross-caps and g̃(G1)−l
2

boxes and the box drawing algorithm gives a drawing for G2

with eg(G2)
2

= g̃(G2)−1
2

boxes. By attaching these drawings we get a drawing with l

cross-caps and g̃(G1)−l
2

+ g̃(G2)−1
2

= g̃(G1)+g̃(G2)−1−l
2

= g̃(G)−l
2

boxes that is the correct

number of boxes.

• In case g̃(G1) ≤ l, by the modified algorithm we obtain a drawing for G1 with

g̃(G1) cross-caps and by the induction hypothesis we obtain a drawing for G2 with

l− g̃(G1)+1 cross-caps and k boxes. By attaching these drawings we get a drawing

with g̃(G1) + (l − g̃(G1) + 1) = l + 1 cross-caps and k boxes. By applying the

dragging move, we remove one cross-cap from the drawing of G1 by dragging edges

in G1 through all the cross-caps in the drawing for G2. This gives us the right

combination of boxes and cross-caps.

Step 2 and 3: In Step 3, note that when l = 1 the non-orientable genus is odd and

therefore an orienting loop in the scheme is one-sided. We obtain a drawing for the graph

with one cross-cap and g̃(G)−1
2

boxes by applying a one-sided loop move on an orienting

loop o. This is because applying a one-sided loop move on o is equivalent to cutting along

o and contracting the emerging boundary component (as explained in Section 3.3.2); let

us denote the scheme we obtain by Ĝ. First, cutting along a one-sided loop reduces the

non-orientable genus by 1. Second, we know that cutting along o changes the signature

of the loops that interleave with o in G. Since o is orienting, all one-sided loops interleave

with o and no two-sided loop interleaves with o. This implies that after applying this

move, all loops are two-sided.

In Step 2, we apply the modified algorithm until we obtain an embedding scheme

of non-orientable genus 2k + 1 (this is done by drawing g̃(G) − 2k − 1 cross-caps). By

144 More on decompositions of surfaces

induction, and by using Step 3 we get a drawing with 1 cross-cap and k boxes for this

embedding scheme. This gives a drawing (g̃(G)− 2k− 1) + 1 = l cross-caps and k boxes.

Note that in the drawing we obtain by this algorithm, the orienting loop does not

enter any of the boxes. The number of times each loop enters a cross-cap or a box is at

most twice. This can be seen easily as we basically only merged the steps in the modified

algorithm and the box drawing algorithm. This concludes.

Remark 6.3.1. By using the same approach as the one we used to compute a short canon-

ical decompositions of orientable surfaces (in Section 6.2) and for non-orientable surfaces

(in Section 5.5), we can provide a polynomial time algorithm that computes other types

of short decompositions of non-orientable surfaces. By controlling the complexity of a

drawing obtained by a (l, k) combination algorithm, we obtain a drawing in which the

boxes and cross-caps are not far from a basepoint. This way we can build a decomposi-

tion whose corresponding polygonal schema is a1a1 . . . alalb1c1b1c1 . . . bkckbkck. The proof

is completely similar to the ones in Sections 5.5 and 6.2.

6.4 A lower bound for canonical decompositions

In the previous sections of this chapter, we proved that canonical decompositions of both

orientable and non-orientable cross-metric surfaces exist such that the total length of

the decomposition is O(g|E(G)|) where G is the primal graph on the surface. We can

actually see that this bound is asymptotically tight: consider an orientable cross-metric

surface with primal graph G in which half of the handles are at distance O(|E(G)|) from
the other half. In any canonical decomposition of this surface, at least half of the loops

have length Ω(|E(G)|). However, we do not know if the bound O(g|E(G)|) is tight if we
restrict ourselves to cross-metric surfaces in which the primal graph has one vertex and

its embedding has only one face. In particular, the example described above does not

belong to this family of cross-metric surfaces: for two handles to be relatively far from

each other in a cross-metric surface, the embedding of the primal graph needs to have

Ω(|E(G)|) faces.
In the case of cross-metric surfaces with one-vertex one-face primal graphs, the upper

bound O(g|E(G)|) for the total length of canonical decompositions becomes O(g2) (by

Euler formula, |E(G)| = g in this case). Can we do any better for these graphs? (This

question was asked by Lazarus in [52, page 143]).

Although we do not answer this question, we prove a superlinear lower bound for

the length of canonical decompositions of these cross-metric surfaces. In this section,

f(n) ⪅ g(n) means that f(n) is less than g(n) up to terms that are only exponential in n.

6.4 A lower bound for canonical decompositions 145

We prove the following probabilistic theorem. The proof is inspired by a theorem

in [22] in which a similar bound for combinatorial maps is provided.

Theorem H. For any ϵ > 0, the following holds with probability tending to one as g tends

to ∞: an orientable (resp. non-orientable) one-vertex one-face scheme with orientable

genus g (resp. non-orientable genus g), chosen uniformly at random has no orientable

(resp. non-orientable) canonical decomposition of length at most g
5
4
−ϵ (resp. g

3
2
−ϵ).

To prove the theorem, we need the following two lemmas.

Lemma 6.4.1. There exist at most O((L
g
+ 1)4g)× 2O(g) (resp. O((L

g
+ 1)8g)× 2O(g)) one-

vertex one-face non-orientable (resp. orientable) schemes on a surface of non-orientable

genus g (resp. orientable genus g) such that there exists a canonical system of loops with

which they cross at most L times.

Proof. The proof for orientable and non-orientable surfaces is the same but gives different

constants. Here, we assume that the surface is non-orientable. Given a one-vertex one-face

scheme G with genus g (G has g edges), let C be a non-orientable canonical decomposition

embedded simultaneously with G on a surface N of non-orientable genus g such that it

crosses the edges of G in at most L points. We denote by v the vertex of G. Cut N along

C to obtain a polygon and let H denote the graph overlaid with this polygon (a 2g-gon);

the edges of this graph are comprised of sub-edges in G and C, see Figure 6.4.

Figure 6.4: The graph H: the edges on the boundary are the copies of loops in the non-orientable

canonical system of loops C, and the blue edges are the sub-edges of G after cutting along C.

A sub-edge of G is either an edge connecting the vertex v to a vertex on the boundary

of the polygon (a crossing point between G and C) or an edge with both endpoints on the

boundary. We denote by H1 the graph induced by the edges incident to v and by H2 the

graph induced by the edges connecting two vertices on the boundary; we call the edges

in H2 by chords (see Figure 6.5). We call two chords with endpoints on the same sides of

the polygon parallel.

146 More on decompositions of surfaces

Figure 6.5: On the boundary of the polygon, the black vertices are copies of the vertices in C

and the red and green vertices are copies of the points of intersections between C and G.

Without loss of generality, we can assume that the drawings of G and C have a mini-

mum number of crossings. Then we can show that there are no chords with two endpoints

on the same side of the polygon. This is because otherwise C can be modified such that

the number of crossings between G and C is reduced by two which is in contradiction

with C having minimum crossing with G.

Now, after analysing a simultaneous embedding of a one-vertex one-face graph and a

canonical system of loops, we estimate the number of different one-vertex one-face schemes

G that we can obtain by combining all possible graphs H1 and H2. Note that here we

cannot control if the schemes we obtain are one-face schemes or not, but all we need is an

upper bound, so we do not care if we are counting some schemes more than once or we

are not getting a valid drawing.

Estimating all different possible graphsH1: SinceG is a one-vertex one-face embedding

scheme, by the Euler formula we know that G has g loops, therefore the degree of v is

2g. Let us consider a wheel with 2g spokes to be the middle vertex and its adjacent edges

drawn on a disk, see Figure 6.6, left. We first add the copies of the vertices of C on the

Figure 6.6: Estimating different choices for H1.

6.4 A lower bound for canonical decompositions 147

boundary of the polygon. We need to count in how many ways we can put the 2g copies

of the vertices of C between the 2g spokes, possibly with repetitions, see Figure 6.6, right.

This amounts to
(
4g
2g

)
= 2O(g).

Estimating all different possible system of chords: Each system of chords is a subset of

a triangulation of the 2g-gon and we know there are at most 22g different triangulations.

Next, having a drawing of H1 on a 2g-gon, we need to combine the chords in this

drawing.

We estimate the number of possible ways to combine a graph H2 consisting of chords

with a fixed H1: at first let us forget about parallel chords in H2. Fix a type for a system

of non-parallel non-crossing chords corresponding to a triangulation. We know that in

such system of chords on a polygon with 2g sides, there can exist at most 4g− 3 different

non-crossing chords: If we associate a point to each side of the polygon, this corresponds

to the number of edges for triangulating a set of 2g convex points, Figure 6.7 shows this

correspondence.

Figure 6.7: A system of non-parallel non-crossing chords for a 2g-gon

We count the number of different distribution of all the chords on a fixed system.

Note that the number of chords is equal to the number of crossings between G and C and

therefore is at most L. Letting 1 ≤ i ≤ 4g−3 denote different types of chords in a system,

let 0 ≤ xi, denote the number of parallel chords of type i. The number of possibilities for

these distributions equals {(x1, . . . , x4g−3)|xi ≥ 0,
∑

i xi ≤ L}, which is,(
L+ 4g − 3

4g − 3

)
≤

(e(L+ 4g − 3)

4g − 3

)4g−3
= O((

L

g
+ 1)4g)× 2O(g).

Multiplying all the possible choices for H1 and H2, we obtain the claimed bound

O((L
g
+ 1)4g)× 2O(g) for the number of one-vertex one-face schemes for which there exists

a canonical decomposition of length at most L.

Remark 6.4.2. The same proof works for orientable surfaces with the difference that by

cutting along the canonical orientable system of loops we obtain a 4g-gon where g is the

orientable genus of the surface and all the quantities change accordingly. In this case we

obtain an upper bound of O((L
g
+ 1)8g)× 2O(g).

148 More on decompositions of surfaces

The following lemma estimates the number of one-vertex one-face embedding schemes

in both the orientable and the non-orientable setting.

Lemma 6.4.3. The number of orientable one-vertex one-face schemes of orientable genus

g, for g large enough is at most

1

12gg!
√
π
(2g)3g−

3
242g,

and the number of non-orientable one-vertex one-face schemes of non-orientable genus g,

for g large enough is at most
cg

6g
√
π
(g)3g−

3
24g,

where cg = 3 · 23g−2 g!
(2g)!

g−1∑
l=0

(
2l
l

)
16−l.

The orientable case is derived from [15, Corollary 4] and the non-orientable case is

derived from [8, Theorem 11]. Note that in both of these results, the number of all

unicellular maps (all one-face embedding schemes) with n edges is estimated. Since for a

one-face one-vertex embedding scheme n = g, it is enough to put n = g into the formulas

to achieve the number of all one-face one-vertex embedding schemes.

Remark 6.4.4. Note that the bounds provided for the number of one-vertex one-face scheme

are ⪅ g2g in both cases of orientable and non-orientable schemes.

Lemmas 6.4.1 and 6.4.3 together imply the orientable instance of Theorem H.

Proof of Theorem H. By Lemma 6.4.1, the number of orientable one-face one-vertex em-

bedding scheme such that there exists a canonical decomposition of length at most L is

O((L
g
+ 1)8g) × 2O(g). Then for g large enough and L = g

5
4
−ϵ, the number of one-face

one-vertex embedding schemes with length at most L is

⪅ (g(
1
4
−ϵ) + 1)8g × 2O(g) ⪅ g2g−ϵ′ .

By Remark 6.4.4, the total number of orientable one-face one-vertex embedding

schemes is ⪅ g2g. This implies that for large g, most orientable one-face one-vertex

embedding schemes have no canonical decomposition of length less than L.

The proof for non-orientable surfaces is similar to the orientable one. By Lemma 6.4.1,

the number of non-orientable one-face one-vertex embedding scheme for which there exists

a canonical decomposition of length at most L is O((L
g
+ 1)4g × 2O(g). Then for g large

enough and L = g
3
2
−ϵ, the number of one-face one-vertex embedding schemes with length

at most L is

⪅ (g(
1
2
−ϵ) + 1)4g × 2O(g) ⪅ g2g−ϵ′ .

6.4 A lower bound for canonical decompositions 149

By Remark 6.4.4, the total number of orientable one-face one-vertex embedding

schemes is ⪅ g2g. This implies that for large g, most orientable one-face one-vertex

embedding schemes have no canonical decomposition of length less than L.

150 Degenerate Crossing Number vs. Genus Crossing Number

Chapter 7

Degenerate Crossing Number vs. Genus

Crossing Number

Summary. In this chapter, we prove a structure theorem that almost com-

pletely classifies the loopless two-vertex embedding schemes for which the

degenerate crossing number equals the non-orientable genus. In particular,

we provide a counterexample to Mohar’s stronger conjecture, but show that

in the vast majority of the two-vertex cases, the conjecture does hold.

The results in this chapter were obtained with Alfredo Hubard and Arnaud de Mesmay

and appear in [C]. These results appear in the Proceedings of the 31st Symposium on

Graph Drawing and Network Visualization.

7.1 Introduction

Recall that the degenerate crossing number of G, dcr(G), is the smallest number of cross-

ings among simple drawings of G in the plane such that the crossings are transversal and

crossing of multiple edges in a point is counted as one. If we allow self-crossings for edges

in G, this defines the genus crossing number of G, gcr(G). In this chapter, we investigate

the conjectures of Mohar on the equality of the degenerate crossing number and the genus

crossing number of graphs (Conjectures 2 and 3).

Conjecture 2. ([57, Conjecture 3.1]) For every simple graph G, dcr(G) = gcr(G).

We described in the preliminaries how these crossing numbers can be interpreted in

terms of cross-cap drawings (see Lemma 3.4.4 and the discussions in Section 3.4.1.2).

7.1 Introduction 151

Conjecture 3. ([57, Conjecture 3.4]) For any positive integer g, every loopless pseudo-

triangulation of Ng admits a cross-cap drawing with g cross-caps in which each edge enters

each cross-cap at most once.

We say that a cross-cap drawing of graph G is perfect if there are g̃(G) = gcr(G) cross-

caps and every edge intersects each cross-cap at most once. Then with this definition,

Conjecture 2 and 3 can be restated as follows.

Conjecture 2. Every simple graph admits a perfect cross-cap drawing.

Conjecture 3. For any positive integer g, every loopless pseudo-triangulation of Ng admits

a perfect cross-cap drawing.

An even stronger conjecture was hinted at in [57, Paragraph following Conjecture 3.4],

suggesting that one could possibly remove the loopless assumption if one forbids separating

loops. This strengthening was disproved by Schaefer and Štefankovič [69, Theorem 7].

In addition to their motivation from crossing number theory, these conjectures would

also shed light on the difficult task of visualizing high genus embedded graphs, providing

an alternate approach to that of Duncan, Goodrich and Kobourov [29], who rely on

canonical polygonal schemes [53].

7.1.1 Our results

A big step towards both these conjectures was achieved by Schaefer and Štefankovič, who

proved [69, Theorem 10] that any multi-graph embedded on a non-orientable surface of

genus g admits a cross-cap drawing with g cross-caps, in which each edge enters each cross-

cap at most twice. This theorem applies in particular to one-vertex embedding schemes

(see Theorem 5.3.1), and thus suggests a natural approach towards proving Conjectures 2

and 3. First contract a spanning tree to obtain a one-vertex graph and apply this theorem.

Then, edges might enter cross-caps twice, but since the initial graph is loopless, one could

hope to uncontract some edges so as to spread these two cross-caps on two edges, thus

obtaining a perfect cross-cap drawing. Our first result shows that this approach cannot

work, as some loopless two-vertex schemes do not admit perfect cross-cap drawings.

Theorem I. A loopless two-vertex embedding scheme that consists of exactly one non-

trivial positive block and one non-trivial negative block admits no perfect cross-cap drawing.

We refer to Figure 7.1 for an example that should provide an intuitive idea of the

notion of blocks, and to Section 7.2 for the precise definition. As a corollary, we obtain a

counterexample to Conjecture 3:

Corollary 7.1.1. There exist a loopless pseudo-triangulation G that admits no perfect cross-

cap drawing.

152 Degenerate Crossing Number vs. Genus Crossing Number

Figure 7.1: Left: a loopless two-vertex scheme made of a positive block, in red, consisting of only

positive edges, and a negative block, in blue, consisting of negative edges. Middle: a cross-cap

drawing showing that it has non-orientable genus 5. The bold red edge enters three cross-caps

twice. Right: A cross-cap drawing where each edge enters each cross-cap at most once requires

6 cross-caps.

Our second contribution and main theorem is a converse to Theorem I.

Theorem J. For any embedding G of a loopless two-vertex graph on Ng, at least one of

the following is true.

1. G admits a perfect cross-cap drawing with g cross-caps,

2. or the reduced graph of G is one of the two schemes pictured in Figure 7.2,

Figure 7.2: The only two exceptions to perfect cross-cap drawings.

We refer to Section 7.2 for the definition of blocks and reduced graphs. Essentially,

Theorem J shows that apart from two narrow families of exceptional cases, all the loopless

two-vertex embeddings do satisfy Conjecture 3. As an illustration, Figure 7.3 shows that

while the example in Figure 7.1 does not admit a perfect cross-cap drawing, surprisingly, it

does after adding two edges to it. It directly follows from Theorem J that under standard

random models, any loopless two-vertex embedding scheme admits a perfect cross-cap

drawing asymptotically almost surely.

7.1.2 Techniques and connections to signed reversal distance

Our focus on the two-vertex case in Theorem J is further motivated by a connection

(introduced in Section 3.8.2) to computational genomics.

7.1 Introduction 153

Figure 7.3: A perfect cross-cap drawing of Figure 7.1 with two additional edges.

For the ease of reading, we recall the following notations and concepts. In a two-

vertex embedding scheme, each vertex is adjacent to all of the edges. This gives two-

vertex embedding schemes a particularly simple form. Without loss of generality, one can

number the edges so that the cyclic permutation around one of the vertices is the identity.

Then the data of the embedding scheme just consists of the cyclic permutation around

the other vertex, and the signature of the edges, and thus this amounts to a signed cyclic

permutation: a cyclic permutation where each number is additionally endowed with a +

or − sign. We also use an overline notation i to denote negative signs. Therefore, in

what follows we freely identify a signed permutation and a two-vertex embedding scheme.

Particularly, everything defined for a two-vertex embedding scheme is also defined for

signed cyclic permutations and vice versa. For example, for a cyclic permutation π, eg(π)

refers to the Euler genus of the corresponding two-vertex embedding scheme to π.

If we trace each element of a signed permutation under the action of reversals, we

obtain a cross-cap drawing of its corresponding embedding scheme, where each reversal

corresponds to a cross-cap and each edge is an x-monotone curve, and in particular no

edge enters twice the same cross-cap (see Figure 3.28 for an illustration and Section 3.8.2

for more detail).

This easily implies the inequalities: g̃(π) ≤ dcr(π) ≤ d(π, id) where d(π, id) is the re-

versal distance between π and the identity. It turns out that the inequality g̃(π) ≤ d(π, id)

is central to the reversal distance theory, and the cases of equality are well understood

(see Theorem 3.8.6). As we explained in Section 3.8.2, these arguments are natural from

154 Degenerate Crossing Number vs. Genus Crossing Number

Figure 7.4: The wedges ω1,4 and ω3,5 depicted in orange and green, respectively.

the point of view of embedding schemes. Conversely, Theorem J can be reinterpreted in

the setting of signed permutations as providing an extension of the Hannenhalli-Pevzner

theory.

The proof of Theorem J consists of two steps which can readily be made algorithmic:

we first reduce a signed permutation π to a simpler one π| for which we can prove that

g̃(π|) = d(π|, id) (Lemma 7.4.1), then we devise a technique to blow up (Lemma 7.4.3)

the cross-cap drawing of the reduced signed permutation π|, yielding a perfect cross-cap

drawing of the original signed permutation.

7.2 Preliminaries

In this section, we introduce and recall some of the notions that we need for proving our

results.

7.2.1 Loopless two-vertex embedding schemes

In this chapter, in particular, we deal with loopless two-vertex graphs with embedding

schemes. Here, we provide lemmas and tools to deal with two-vertex embedding schemes

that is similar to that provided in Section 5.2 for one-vertex embedding schemes.

For two edges a and b in a two-vertex embedding scheme, we denote by a · b the

concatenation of a and b which we will interpret as a cycle. Denoting the vertices of the

scheme by v1 and v2, and the cyclic permutation of edges around them by ρv1 and ρv2 ,

respectively, we define a wedge between a and b, ωa,b:

• If both a and b are negative, then ωa,b contains all the half-edges in the interval

(a, b) in both ρv1 and ρv2 .

• If at least one of them is positive, then ωa,b contains all the half-edges in the interval

(a, b) in ρv1 and (b, a) in ρv2 .

We say that a wedge encloses an edge if it contains both its half-edges or none of

them. For example w1,4 in Figure 7.4 encloses all the edges of the graph.

7.2 Preliminaries 155

Recognizing types of curves in a two-vertex embedding scheme

The following lemmas allow us to recognize orienting and separating closed curves in

loopless two-vertex embedding schemes.

Lemma 7.2.1. For two edges a and b in a non-orientable loopless two-vertex embedding

scheme, the cycle a.b is orienting,

• if at least one of a and b is positive and ωa,b contains exactly one end of all negative

edges and encloses all the positive edges, or

• if both a and b are negative and their wedge contains exactly one end of all positive

edges and encloses all the negative edges.

Proof. We prove the lemma by contracting the edge a in order to obtain a one-vertex

embedding scheme G′. Note that the topological type of the cycle formed by the edges a

and b is the same as the loop b in G′. Denote the vertices of G by v1 and v2. When we

contract a positive edge e in G, we obtain an embedding scheme G′ with a single vertex

w such that the cyclic permutation of the edges around w after contraction is ρw = ρv1ρv2
where the edge e has been removed from both cyclic permutations and the notation means

that they have been concatenated at e (see the left picture in Figure 3.9). On the other

hand, when we contract a negative edge e in G, ρw = ρv1ρv2 , where the edge e has been

removed from both permutations, the signature of all the edges are reversed (the scheme

does not have any loop) and the notation means that they have been concatenated at

e (see the right picture in Figure 3.9). The ends of the loop b subdivide the half-edges

around w into two sets. We can see that the half-edges in ωa,b in G correspond to one of

the sets of half-edges divided by b in ρw.

By Lemma 5.2.3, a loop o in a one-vertex non-orientable embedding scheme is orienting

if and only if its ends alternate with the ends of all negative loops in the cyclic permutation

around the vertex and enclose the ends of any positive loop; i.e., the ends of o does not

alternate with the ends of any positive loop.

To prove the first case, without loss of generality we can assume that a is positive.

We contract the edge a in G. Since the wedge ωa,b in G contains exactly one end of each

negative edge, the ends of the loop b alternate with the ends of negative loops in ρw.

Similarly, since ωa,b encloses all the positive edges, the ends of b enclose the ends of any

positive loop in ρw. Therefore, b is orienting in G′ and this implies that the cycle formed

by a and b is orienting in G. For the proof of the second case in 1 we proceed identically

by contracting the negative edge a. This finishes the proof.

Lemma 7.2.2. For two edges a and b in a loopless two-vertex embedding scheme, the cycle

a.b is separating if a and b have the same signature and ωa,b encloses all the edges.

156 Degenerate Crossing Number vs. Genus Crossing Number

Proof. We contract a. The loop b has positive signature in G′ and since ωa,b contains both

ends of any edge inside it then the ends of b separate the ends of the other loops in G′,

i.e., the ends of no loop alternates with those of b. Such a loop is separating the surface,

and therefore a and b form a separating cycle in G.

See Figure 7.4 for an example of a separating (1.4) and an orienting cycle (3.5) in a

two-vertex scheme.

Recognizing homotopic edges in a two-vertex embedding scheme

The following lemma helps in recognizing homotopic edges in a two-vertex embedding

scheme.

Lemma 7.2.3. Let (G, ρ, λ) be a loopless two-vertex embedding scheme with vertices v1 and

v2. Two edges e and e′ are homotopic if and only if they have the same signature, their

ends are consecutive in ρv1 and ρv2 and,

• if they both have signature +1, they appear as ee′ around one of the vertices and as

e′e around the other one and,

• if they both have signature −1, they appear as ee′ around both vertices.

Proof. To prove this lemma, it is enough to show that e.e′ bounds a disk on the surface

(see Lemma 3.2.10). Figure 7.5 shows the disk whose boundary is comprised of these two

edges in both cases. This finishes the proof.

Figure 7.5: Homotopic edges in two-vertex embedding schemes.

Some notions from genome rearrangements

Here, we recall some of the notions in the signed reversal distance theory (see Sections 3.8.1

and 3.8.2) that we directly use in this chapter.

7.2 Preliminaries 157

In a signed cyclic permutation π, a pair of consecutive integers i and i + 1 is called

a reversible pair if they have opposite signs in π. For a given reversible pair there exist

two reversals σ, σ′ such that i and i + 1 become homotopic1 in π · σ and in π · σ′. Such

reversals clearly make progress in sorting a permutation.

A crux in sorting a permutation appears when we are given with a permutation that

contains blocks. We recall the definition of blocks that were introduced in Section 3.8.1.

A positive block in a signed permutation is an interval I = (πi, . . . , πj) where all the

elements are positive, πi < πj, and all the integers in [πi, πj] are contained in I. A

negative block in a signed permutation is an interval I = (πi, . . . πj) where all the elements

are negative, πi > πj, all the integers in [πj, πi] are contained in I. A block is non-

trivial if it is not already sorted, i.e., it is not equal to (πi, πi + 1, . . . πj − 1, πj) or to

(πi, πi − 1, . . . , πj + 1, πj). In both cases, we call πi and πj the frames of the block. A

block is called minimal if it does not contain any block except itself.

We say that a signed permutation is reduced if it has no blocks. Given a signed

permutation π, its reduced permutation π| is a permutation in which we replace every

minimal block with a single element of the same sign, and we iterate this process until we

arrive at a reduced permutation.

7.2.2 Reversal distance and monotone cross-cap drawings

Here we recall the relation between reversal distance in genome rearrangements and cross-

cap drawings, which we explained with more detail in Section 3.8.2. Signed permutations

model genomes with a single chromosome in computational biology where they come

endowed with the reversal distance. The reversal distance d(π, id) is the smallest number

d such that there exists a sequence {π = π1, π2, . . . πd = id} such that (πi) and (πi+1)

differ by a signed reversal. We call such a (not necessarily minimizing) sequence, a path

of signed permutations.

To any path of signed permutations {π1, π2, . . . πd} we can associate a cross-cap draw-

ing. We place a source vertex at (−1, n/2) and a terminal vertex at (d+1, n/2). Edges will

be x-monotone piece-wise linear curves between these two vertices, and at each crossing

between two such curves we introduce a cross-cap. The edge j emanates from (−1, n/2)

to (0, π1
j), for each k ≤ d it passes through (k, πj

k) ∈ R2, and finally it connects (d, πd
j)

to the terminal vertex at (d + 1, n/2). In the remaining of this chapter, we often forget

about the vertices (−1, n/2) and (d+1, n/2) in our illustrations as they play no role, and

we always assume that πd is the identity (see Figure 3.28 in Chapter 3).

In Section 7.4, we use the algorithm of Hannenhalli and Pevzner for signed permuta-

1Note that two edges being homotopic in a two-vertex embedding scheme coincides with the notion

of edges being parallel defined in Section 3.8.2.

158 Degenerate Crossing Number vs. Genus Crossing Number

Figure 7.6: A pseudo-triangulation of N5 admitting no perfect cross-cap drawing.

tions without blocks which gives us monotone cross-cap drawings for the corresponding

embedding schemes. We recall the following theorem.

Theorem 3.8.6. If a signed permutation π is non-orientable and has no non-trivial blocks

then d(π, id) = eg(π), and the Hannenhalli-Pevzner algorithm gives a sequence of reversals

of this optimal length.

7.3 The counterexample

In this section, we provide a family of two-vertex embedding schemes that do not admit

a perfect cross-cap drawing. Then we provide an explicit pseudo-triangulation of N5

(depicted in Figure 7.6), disproving Conjecture 3.

Remark 7.3.1. If an embedding scheme G has one positive and one negative block, then

so does its flipped version, therefore, we do not need to account for the possible flip in the

proof of Theorem I.

In order to prove Theorem I, we rely on Remark 7.3.1 and Lemma 7.3.2. From here

till the end of this chapter, by f(G) and e(G) we refer to the number of faces and edges

of the embedding scheme G, respectively.

Lemma 7.3.2. Let G be an embedding scheme that consists of a non-trivial positive block

A and a non-trivial negative block B, then g̃(G) = g̃(A) + g̃(B)− 1.

7.4 Perfect drawings for most two-vertex graph embeddings 159

Proof. Assume that the positive block has edges labelled A = {e1, . . . ek} and the edges

of the negative block are B = {ek+1, ek+2, . . . ek+l}. Notice that f(G) = f(A) + f(B)− 1,

indeed the face e1, ek and the face ek+1, ek+l are the outer faces of A and B, and they merge

to become the face e1, ek+1, ek, ek+l. Hence by Euler’s formula eg(G) = eg(A)+eg(B)+1.

We know that g̃(A) = eg(A)+1 and g̃(B) = eg(B)+1 (Lemma 3.3.2). On the other hand,

a cycle in G that contains one edge from A and one edge from B is one-sided, therefore

G is a non-orientable, hence eg(G) = g̃(G). All in all we can conclude

g̃(G) = eg(G) = eg(A) + eg(B) + 1 = g̃(A)− 1 + g̃(B)− 1 + 1 = g̃(A) + g̃(B)− 1

as claimed.

We now have all the tools to prove Theorem I; we refer to Figure 7.1 for an example

to help follow the proof.

Proof of Theorem I. Let G be a concatenation of a positive block A with frames a1 and

a2 and a negative block B with frames b1 and b2. Let us assume that ϕ is a perfect

cross-cap drawing of G. From Lemma 7.2.1 we derive that a1 · b1 and a1 · b2 are orienting

curves, hence by Lemma 3.4.2 each of them enters each cross-cap once. Lemma 7.2.2

implies that b1 · b2 is separating. Therefore by Lemma 3.4.2, b1 and b2 enter the same

cross-caps and do not enter any cross-cap that a1 enters. Similarly, a1 · a2 is separating

and hence they enter the same cross-caps and no cross-cap that b1 and b2 enter. Then

A is drawn with g̃(A) cross-caps and B is drawn with g̃(B) cross-caps that are disjoint

from the cross-caps that A entered. But by Lemma 7.3.2 the non-orientable genus of G

is g̃(A) + g̃(B)− 1. Therefore, there are not enough cross-caps available to draw both A

and B. This concludes.

Corollary 7.1.1 follows at once as we can always add edges and vertices to a scheme

to triangulate it without adding loops nor changing its genus, and any perfect cross-cap

drawing of the triangulation restricts to a cross-cap drawing of the scheme. We provide

in Figure 7.6 an example of such a pseudo-triangulation.

7.4 Perfect drawings for most two-vertex graph embed-

dings

We say that a cross-cap drawing is fantastic if it is perfect and every edge enters at least

one cross-cap.

Lemma 7.4.1. Every reduced loopless two-vertex graph embedding scheme that is different

from (1), (1, 2) or (1, 3, 4, 2) admits a fantastic cross-cap drawing.

160 Degenerate Crossing Number vs. Genus Crossing Number

The proof is based on an induction and an exhaustive analysis of all the loopless two-

vertex embedding schemes of genus 2 and 3, as pictured in Figure 7.7. We first prove the

following lemma.

Lemma 7.4.2. Let G be an orientable scheme of non-orientable genus g̃(G) that has no

non-trivial block. We can add an edge to this embedding scheme such that we obtain a

non-orientable scheme of genus g̃(G) without any block.

Proof. Let us assume that the signatures of the edges are positive. Choose an edge f . Add

a negative edge e consecutive to f (at both vertices), such that in the cyclic permutation

of one vertex we see ef and in the other vertex we see fe. Let us call the new embedding

scheme by G′. The scheme G′ is non-orientable. Since G is orientable, we know that

g̃(G) = eg(G) + 1 (Lemma 3.3.2). Since e(G′) = e(G) + 1, it is enough to show that

f(G′) = f(G). By looking at the face cycles of both schemes, we can see that all face

cycles are intact except a face (i, f, j, . . .) inG that is turned to a face cycle (i, e, f, e, j, . . .)

(i and j are two adjacent edges to f in the cyclic permutation of the vertices). Since the

edge e has an opposite signature compared to the edges of G, e cannot create a block

in G′. The proof for the case where all the edges of G are negative can be obtained by

flipping. This finishes the proof.

Proof of Lemma 7.4.1. Let π be the signed permutation associated to the embedding

scheme. If the embedding scheme is orientable, we first add one edge without changing its

genus to make it non-orientable while keeping it reduced (this is possible by Lemma 7.4.2).

Now, since it is reduced and non-orientable, by Theorem 3.8.6, the Hannenhalli-Pevzner

algorithm provides a path in the reversal graph {π = π1, π2, . . . πg = id}, where g is the

non-orientable genus of π. We distinguish cases depending on the value of g.

If g ≥ 3, we consider the sub-path {π1, π2, . . . , πk}, with g − k = 3 and realize this

sub-path as a cross-cap drawing ϕ as described in Section 7.2. Notice that if there exists

a fantastic cross-cap drawing ϕ′ for πk, we can concatenate ϕ with ϕ′ to obtain a fantastic

cross-cap drawing for π. Now πk is a reduced signed permutation of non-orientable genus

3. The proof then proceeds via an exhaustive case analysis. Without loss of generality,

we can assume that

• There is no non-trivial block in πk since that is preserved by the Hannenhalli-Pevzner

algorithm.

• There are no homotopic edges since, for any collection of homotopic edges, one can

remove all but one and add them in the end identical to the remaining one.

• There is at least one edge of signature −1 and one edge of signature +1 in πk. Other-

wise, πk is orientable, which is impossible since by Theorem 3.8.6, the Hannenhalli-

Pevzner algorithm preserves non-orientability.

7.4 Perfect drawings for most two-vertex graph embeddings 161

• πk is maximal while preserving these three properties. Indeed, otherwise, we can

add edges, draw the resulting scheme and remove these superfluous edges at the

end.

With these simplifying assumptions at our disposal, we can exhaustively enumerate

all the genus 3 embedding schemes matching these assumptions. The numbers are small

enough that this can be done by hand, we ran a computer search for safety. One obtains

that all the maximal schemes only have faces of degree 4, and thus have six edges: for

all reduced schemes with some faces of degree higher than four, one can always add an

edge within a face while keeping the fact that it is reduced. Then, there are exactly eight

loopless two-vertex embedding schemes matching our assumptions, their signed permu-

tations are: (1, 6, 5, 4, 3, 2), (1, 6, 3, 5, 4, 2), (1, 3, 6, 5, 4, 2), (1, 5, 3, 6, 4, 2), (1, 4, 6, 3, 5, 2),

(1, 6, 3, 4, 5, 2), (1, 4, 6, 2, 5, 3), and (1, 4, 6, 2, 5, 3). Fantastic drawings of each of them are

provided in Figure 7.7.

If g = 2, there are exactly three reduced schemes: (1, 3, 4, 2), (1, 2, 3, 4) and (1, 3, 2).

Fantastic drawings of the second and third case (or rather its flipped version) are provided

in Figure 7.7.

If g = 1, there is a single reduced scheme: (1, 2).

If g = 0, there is a single reduced scheme: (1).

In order to prove Theorem J, our strategy is to first look for a fantastic cross-cap

drawing for the reduced graph of an embedding scheme. Then, to obtain a drawing

for the initial graph, we need to bring back the blocks that we replaced and extend the

drawing to the edges of the block. This is achieved via the following blowing-up operation.

Blowing up a cross-cap. Let ϕ be a fantastic drawing for G. By the definition of fantastic

drawing, any reduced edge enters at least one cross-cap. Let e be a reduced edge that

corresponded to a block X with frames a and b and let c be a cross-cap in ϕ that e enters.

By Lemma 3.3.2, X needs an odd number of cross-caps to be drawn, exactly eg(X) + 1.

We replace c by eg(X) + 1 cross-caps and we draw the frames of X, a and b as follows.

We draw a following e thoroughly. To draw b we follow e except that we make b enter the

new eg(X) + 1 cross-caps in the reversed order that e enters. All the other edges outside

of X that were entering e are now drawn in the same way as a or b depending on how

they were crossing e at c. Finally we remove e (see Figure 7.8).

Repeatedly blowing up a drawing of a reduced permutation π| yields a drawing for all

edges of π except for the edges inside the blocks. The following lemma shows that these

edges can be added in this cross-cap drawing.

Lemma 7.4.3. Let π be a signed permutation on n elements such that all the elements

form a non-trivial minimal negative block. The associated embedding scheme admits a

162 Degenerate Crossing Number vs. Genus Crossing Number

Figure 7.7: Fantastic drawings of genus-2 and genus-3 embedding schemes (these are cylindrical

drawings: the top is identified to the bottom).

perfect cross-cap drawing in which the frames of π, i.e., elements 1 and n, enter all the

cross-caps but in opposite order.

Proof. Let us denote by g̃(π) = eg(π) + 1 the non-orientable genus of the associated

embedding scheme. We know that π1 = n and πn = 1. Let us define π′ from π by

replacing 1 by n + 1. The following lemma is proved using the Hannenhalli-Pevzner

algorithm and Theorem 3.8.6.

Lemma 7.4.4. The optimal number of reversals to go from π′ to the permutation

(2, 3, . . . , n + 1) is g̃(π′) = g̃(π). There exists a sequence of such reversals such that

no reversal is applied on the element n+ 1.

Proof. Note that the associated embedding scheme to π′ is a non-orientable scheme and

therefore g̃(π′) = eg(π′). The number of edges in π and π′ are equal therefore to show

7.4 Perfect drawings for most two-vertex graph embeddings 163

Figure 7.8: Blowing up a cross-cap to draw the frames of a block.

that eg(π′) = g̃(π) = eg(π) + 1, it is enough to show that f(π′) = f(π) − 1. Let

π = (n, . . . , 2, . . . , j, 1). Then π′ = (n, . . . , 2, . . . , j, n + 1). The embedding scheme π has

a face f1 = (0, n) and f2 = (2, n, j, . . .). Replacing −1 with n + 1, the faces f1 and f2

merge to a single face f = (2, n+1, n, n+1, j, . . .) in π′ (see Figure 7.9). The other faces

in π′ are the same as the faces in π other than f1 and f2. This implies that π′ has one

face less than π.

Figure 7.9: Faces of π′ (left) and π (right).

Furthermore, π′ does not contain any block and therefore it is reduced. It is non-

orientable by construction. Having a reversible pair (i, i+1), there are two reversals that

make i and i + 1 homotopic. By running the Hannenhalli-Pevzner algorithm on π′ and

choosing the reversal at each step that does not reverse n+1 we obtain a desired sequence

of reversals. This finishes the proof of Lemma 7.4.4. ■

Now, the sequence of reversals of Lemma 7.4.4 gives us a cross-cap drawing for π. By

Lemma 7.2.1, the edges n and n+1 form an orienting cycle, and thus together they have

to enter all the g(π′) cross-caps exactly once. We know that the edge n + 1 does not

enter any cross-cap in this drawing which implies that n enters all the cross-caps exactly

once. We can obtain a cross-cap drawing for π from this drawing for π′ by drawing 1

entering the cross-caps that n enters with the opposite order as depicted in Figure 7.10.

This finishes the proof of Lemma 7.4.3.

We are now finally ready to prove Theorem J.

164 Degenerate Crossing Number vs. Genus Crossing Number

Figure 7.10: From a cross-cap drawing of π′ to a cross-cap drawing of π.

Proof of Theorem J. Let G denote an embedding scheme for a loopless two-vertex graph

of non-orientable genus g. We denote by G′ the reduced scheme, i.e., the scheme obtained

after recursively replacing minimal blocks with a curve of the corresponding sidedness. If

G′ is exactly one of the two graphs depicted in Figure 7.2, the conclusion of the theorem

holds. If G′ consists of a single edge, up to flipping G we can assume that this edge

has negative signature. Then this edge can be drawn in the natural way with a single

cross-cap. In all the other cases, by Lemma 7.4.1, G′ admits a fantastic cross-cap drawing.

In order to finish the proof, we explain how to inductively put back minimal blocks of

G in the place of the corresponding reduced edge in G′. If A is such a minimal block and

is negative and we denote by e the corresponding reduced edge, e is one-sided and thus

goes through at least one cross-cap. We blow up this cross-cap, replacing it by exactly

the odd number of cross-caps required to draw A. By Lemma 7.4.3, since A is minimal, it

is reduced and thus it can be drawn using these blown-up cross-caps, in such a way that

the frames of the block enter the blown-up cross-caps in opposite orders. This process

is pictured in Figure 7.10. If A is a positive minimal block and e is the corresponding

reduced edge, since the drawing of G′ is fantastic, we know that e enters at least two

cross-caps. We first make the entirety of A enter the first of these cross-caps. Thus, there

remains to draw the flipped version of A, which is now a negative block. This is achieved

as before by blowing-up the second cross-cap, and appealing to Lemma 7.4.3 to draw the

negative block within the space bordered by the two frames.

This process shows how to obtain a perfect cross-cap drawing of G from a fantastic

cross-cap drawing of the reduced graph G′, concluding the proof.

165

Chapter 8

Universal families of arcs and curves on

surfaces

Summary. The main goal of this chapter is to investigate the minimal size of

families of curves on surfaces with the following property: a family of simple

closed curves Γ on a surface realizes all types of pants decompositions if for any

pants decomposition of the surface, there exists a homeomorphism sending it to

a subset of the curves in Γ. We provide bounds for different instances of this

problem. Also we investigate a similar concept of universality for triangulations

of polygons.

The results in this chapter were obtained with Arnaud de Mesmay and Hugo Parlier.

They appear in [B], which has been accepted in Israel Journal of Mathematics.

8.1 Introduction

Recall that we call a sphere with 3 boundary components a pairs of pants and a pants

decomposition of a surface is an arrangement of simple closed curves on it that cuts it

into pairs of pants. Unlike the rest of the chapters in which we focused mostly on non-

orientable surfaces, here our surfaces are orientable, and hence are determined by their

genus g and number of punctures n. Since the Euler characteristic of a pairs of pants is −1,

a surface can be decomposed into pants if its Euler characteristic is negative. Therefore,

we require that the Euler characteristic (= 2− 2g − n) of our surfaces be negative.

In this chapter, we only consider pants decompositions up to homeomorphisms: two

pants decomposition of a surface have the same type or belong to the same homeomorphism

class if there exist a homeomorphism of the surface that maps one to the other. The

type of a pants decomposition is entirely determined by the trivalent graph encoding

166 Universal families of arcs and curves on surfaces

Figure 8.1: The two homeomorphism classes of pants decomposition on a closed genus two

surface, and their associated intersection graphs. The family of four curves drawn in the two

pictures are enough to build both pants decompositions.

the adjacencies of the different pants that it is made of, i.e., its intersection graph (see

Section 3.6.3). For example, there are two types of pants decompositions in genus 2, which

correspond to the two trivalent graph on two vertices (see Figure 8.1).

One of the main objects of study in this chapter are families of curves which realize

all topological types of pants decompositions. A set of curves Γ on a surface S is said to

be a universal family (for pants decompositions) if for any type of pants decomposition of

the surface, there exists a homeomorphism sending it to a subset of the curves in Γ: we

say that Γ realizes all types of pants decompositions of the surface. For example, in the

genus 2 case, there is a universal family of size 4, pictured in Figure 8.1.

8.1.1 Our results

For surfaces of genus g, there are gΘ(g) homeomorphism classes of pants decompositions

(see Lemma 3.6.1), and thus, by taking an arbitrary pants decomposition in each homeo-

morphism class and the 3g− 3 curves it is made of, there is a trivial upper bound of gO(g)

on the minimal size of a family of curves that realizes all types of pants decompositions.

Our first result is to improve on this trivial bound to bring it to a singly-exponential

dependency.

Theorem K. Let M be a closed orientable surface of genus g, and Γ be a minimal size

universal family for pants decompositions. Then

|Γ| ≤ 32g−1 and |Γ| = Ω(g4/3−ε)

for any ε > 0.

The tantalizing gap between the exponential upper bound and the polynomial lower

bound is the main open problem that we would like to advertise with this chapter.

8.1 Introduction 167

The upper bound in Theorem K follows from an upper bound for the same problem

on spheres with punctures. There, one can distinguish between the cases of labelled or

unlabelled punctures, which radically changes the bounds: in the first case we consider

homeomorphisms keeping the punctures fixed, while in the second case the punctures are

allowed to be permuted. Our results are as follows.

Theorem L. • Let Sn :=M0,n be a sphere with n labelled punctures, and Γ be a family

of curves with minimal size that realizes all types of pants decompositions. Then

2n−1 − n− 1 ≤ |Γ| ≤ 3n−1.

• Let Sn :=M0,n be a sphere with n unlabelled punctures, and Γ be a family of curves

with minimal size that realizes all types of pants decompositions. Then

|Γ| = O(n2) and |Γ| = Ω(n log n)

In Section 8.6, we provide universal families for surfaces of small genus with labelled

punctures which suggest that the upper bound in Theorem K can be improved upon, but

the approach seems unlikely to provide a subexponential bound.

Perhaps surprisingly (at least to us), the bound in the second item of Theorem L can

be improved if instead of asking for families that realize all types of pants decompositions,

we merely ask for a family of curves realizing all the types of pairs of pants P ⊆ Sn

(and not the whole decomposition). The homeomorphism class of such a pair of pants

is entirely determined by the triplet (k1, k2, k3) counting the number of punctures in the

three components it separates, where k1+k2+k3 = n. There are O(n2) such triplets, but

we provide a random construction that achieves a better bound:

Theorem M. There exists a family of simple closed curves of size O(n4/3 log2/3 n) on the

sphere with n punctures Sn that realizes all types of pants.

Finally, one can phrase similar universality conditions for families of edges connecting

punctures. For example, in the planar case, given a polygon πn with n unlabelled vertices,

one can look for families of edges realizing all the homeomorphism classes of triangulations

of πn, or merely all the homeomorphism classes of triangles in πn. In that case, the

situation is constrained enough that we can provide upper bounds and lower bounds

which are almost tight.

Theorem N. In a polygon with n vertices, the minimal size of a family of edges E realizing

all triangulations satisfies |E| = O(n2) and |E| = Ω(n2−ε) for any ε > 0. The minimal

size of a family of edges E realizing all types of triangles satisfies |E| = O(n4/3 log2/3 n)

and |E| = Ω(n4/3).

168 Universal families of arcs and curves on surfaces

One can similarly investigate families of edges realizing all one-vertex (or several-

vertex) triangulations of surfaces. The techniques that we use for pants decompositions

apply equally well for that setting. For the sake of avoiding redundancies, we do not

include the corresponding results in this work.

A Motivation. An important motivation for the work in this chapter is related to the

question on the existence of a universal shortest path metric, mentioned in the introduction

of this work:

Question 1. Given a surface S of genus g, does there exist a Riemannian metric on S

such that any simple graph embeddable on S can be embedded so that the edges are shortest

paths on S?

The connection between Question 1 and the problems studied in this chapter can

be easily explained as follows. Given a pants decomposition of a surface of genus g, it

is easy (see for example [50, Section 5]) to subdivide each curve a constant number of

times and connect the resulting vertices with O(g) edges so that we obtain a connected

embedded graph. Furthermore, one can ensure that this graph has the property that if it is

embedded so that the edges are shortest paths, then the original pants decomposition can

be realized so that each curve consists of a constant number of shortest paths. Therefore,

if the answer to Question 1 is affirmative, it means that there exists a metric on S so

that any pants decomposition can be realized so that each curve consists of a constant

number of shortest paths. Furthermore, by a standard cut and paste argument, shortest

paths pairwise cross at most once. Therefore, an affirmative answer to Question 1 would

imply that there exists a family of curves realizing all types of pants decompositions on

S so that any pair of curves crosses a constant number of times. But then, such a family

of curves would need to have polynomial size [64, 40] in g. Thus if we could prove that

any family realizing all types of pants decompositions must have superpolynomial size,

this would provide a negative answer to Question 1. Our result in Theorem K provides

partial results in this direction.

There are further motivations for the study of universal families of curves coming from

Teichmüller theory. Since those involve concepts that we have not defined in this thesis,

we refer the interested reader to the introduction of our article [B].

Finally, let us mention that there are various related problems in combinatorics and

graph theory where one investigates a given class of combinatorial objects and aims at

finding a universal family that contains the entire class in some way. Such investigations

date back at least to Rado [65]. Depending on the precise notions considered, the size

of this universal object might or might not be exponentially larger than the size of the

objects in the class. A basic example of this is a k-universal permutation, or k-superpattern

on n symbols, which is a permutation containing all the possible patterns on k symbols

8.2 Preliminaries and notations 169

as subsequences. The smallest known k-superpatterns have size quadratic in k, but the

best possible constant is still unknown, see for example Miller [55]. In contrast, one might

consider superpermutations, which are strings on n letters where all the permutations of

size n appear as substrings: one can easily prove that such superpermutations necessarily

have a size exponentially large in n. Many universality notions for graphs have been

investigated, a famous problem being the optimal size of a universal graphs containing

all graphs of a fixed size as an induced subgraph, see Alon [2] and the references therein.

Perhaps closest to this work is a series of recent papers [10, 28, 35, 37] on universal graphs

that contain all planar or bounded genus graphs of a fixed size as a subgraph, an induced

subgraph or a minor: such universal graphs only have polynomial size, but the problems

that we study in this chapter do not seem to be amenable to these techniques.

Outline. This chapter is structured as follows. After a short preliminary section,

we treat the case of unlabelled spheres and polygons in Section 8.3. In Section 8.4, we

investigate spheres with labelled punctures. Results on the asymptotic growth in terms

of genus for closed surfaces of universal families are in Section 8.5. In the final section,

we show how to adapt the results for punctured spheres to surfaces of small genus. While

this last part is technical, with somewhat incremental progress, it illustrates how adding

genus increases the complexity of the problem, shedding light on the size of the gap in

Theorem K.

8.2 Preliminaries and notations

Recall that we denote by Mg,n an orientable surface of genus g with n punctures (where

n can be zero). In this chapter, we usually denote a sphere with n punctures by Sn.

Furthermore, all of our surfaces have negative Euler characteristic, i.e., 2g + n > 2. A

pair of pants (or just pants) is a topological surface homeomorphic to a sphere with 3

punctures, and a pants decomposition is a set of simple and disjoint curves cutting a

surface into a family of pairs of pants.

In this chapter, we will be working with different surfaces and some of their sub-

structures (e.g., triangulations, pairs of pants and pants decompositions). We denote the

n-sided polygon with πn, which we consider up to homeomorphism which are allowed to

rotate the punctures. A triangle on πn is the homeomorphism class of a triangle with

endpoints on distinct vertices of πn. A triangulation of πn is a maximal set of interior

disjoint triangles in πn.

We consider two kinds of homeomorphisms for surfaces: homeomorphisms that fix

punctures pointwise or globally (i.e., that can permute them). We will refer to the first

case as the labelled case and the second case as the unlabelled case.

170 Universal families of arcs and curves on surfaces

Figure 8.2: A sphere with eight punctures with a choice of curves γ1,4, γ3,6 and γ3,7.

8.3 Unlabelled punctures

8.3.1 Unlabelled punctures: Realizing pants and triangles

In this section, we only consider planar surfaces, i.e., the polygon πn and the surface Sn.

We number the vertices/punctures (in consecutive order for the polygon) from 1 to n.

We are working in the unlabelled setting, where the punctures are indistinguishable. For

any pair of pants P ⊆ Sn, the subsurface Sn \ P has at most three components, each

containing some punctures of Sn and a component of the boundary ∂P . Therefore, the

topological type of a pair of pants P ⊆ Sn is the triple (k1, k2, k3) such that the three

components of Sn \P have k1, k2 and k3 punctures (we adopt the convention to not count

the boundary ∂P in k1, k2 and k3 so that k1 + k2 + k3 = n). Without loss of generality,

we always assume that k1 ≤ k2 ≤ k3. We say that a family of simple closed curves Γ

realizes all types of pants if for any topological type, there exist three disjoint curves in Γ

bounding a pair of pants that realizes that type.

8.3.1.1 Upper bounds

Theorem M. There exists a family of simple closed curves of size O(n4/3 log2/3 n) on the

sphere with n punctures Sn that realizes all types of pants.

Proof. In this proof, we work with arithmetic modulo n and the interval notations are

also modulo n: for example [|n− 2, 2|] = {n− 2, n− 1, n, 1, 2}.
The proof is based on a random construction. Let us denote by γi,j a simple closed

curve separating all the punctures in [|i, j − 1|] from the others, and such that γi,j and

γk,ℓ are disjoint whenever [|i, j− 1|] and [|k, ℓ− 1|] are disjoint, see Figure 8.2. If i = j we

take a simple contractible curve disjoint from all the others.

We set p = c log1/3 n/n1/3 for a constant c to be determined later, and define a random

set S ⊆ [|1, n|] by putting each integer in [|1, n|] in S with probability p. Then by Chernoff

bounds [56, Theorem 4.4], the set S has size at most 2cn2/3 log1/3 n with probability at

least 1 − e−cn2/3 log1/3 n/3 > 1/2 for big enough c. We define Γ := {γi,j | (i, j) ∈ S2}. Now

Γ has size at most 4c2n4/3 log2/3 n with probability at least 1/2.

We now show that there is a nonzero probability that Γ realizes all types of pants. Let

(k1, k2, k3) be a topological type (thus we have k1 + k2 + k3 = n). For i, j, k three integers

in [|1, n|], then the three curves γi,j, γj,k and γk,i bound a pair of pants Pi,j,k, which is of

8.3 Unlabelled punctures 171

type (k1, k2, k3) if and only if j − i = k1 and k − j = k2. So for i ∈ [|1, n|], we denote by

Xk1,k2,k3
i the random variable indicating the event that {i, i+ k1, i+ k1 + k2} ⊂ S, which

happens with probability at least p3 (note that if k1 = 0 or k2 = 0, the probability is

higher). Then the probability that (k1, k2, k3) is not realized is equal to

P (
∑
i

Xk1,k2,k3
i = 0) ≤ (1− p3)n ≤ e−p3n ≤ 1

4n2

for big enough c. Note that this probability does not depend on (k1, k2, k3), and therefore

by the union bound there is a probability at least 1/4 that all types of pants are realized.

Since 1/4 + 1/2 < 1, with nonzero probability we have the correct bound on the size of Γ

and it realizes all types of pants, concluding the proof.

Similarly to the problem of realizing all types of pants, we can look for families of

edges realizing triangles in a polygon πn, where the goal is to realize all types of triangles

T . A type of triangle is determined by a triple (k1, k2, k3) such that the three components

of πn \ T contain respectively k1, k2 and k3 vertices of the polygon πn. Now, the exact

same proof provides the following, which mirrors Theorem M.

Lemma 8.3.1. There exists a family of edges on πn of size O(n4/3 log2/3 n) realizing all

types of triangles.

8.3.1.2 Lower bounds

The bound obtained in Lemma 8.3.1 is sharp up to logarithmic factors.

Lemma 8.3.2. For a polygon πn, any family realizing all types of triangles has size at least

Ω(n4/3).

Proof. The vertices of the polygon πn and the edges in a family E realizing all types of

triangles form a graph. It is known (see for example Rivin [67]) that any graph with |E|
edges has O(|E|3/2) triangles (i.e., cycles of length 3). Therefore, in order to realize Θ(n2)

types of triangles, the graph must have at least Ω(n4/3) edges.

Remark 8.3.3. While we believe that the bound for types of pants in Theorem M to be

roughly sharp, as in Lemma 8.3.1, the same argument does not apply. The only lower

bound we know for the number of curves needed to realize all topological types of pants on

Sn with unlabelled punctures is the trivial lower bound of Ω(n).

8.3.2 Unlabelled punctures: Realizing pants decompositions and trian-

gulations

We now turn our attention to pants decompositions and triangulations. The topological

type of a pants decomposition or triangulation is its homeomorphism type, and in the

172 Universal families of arcs and curves on surfaces

unlabelled case, it is completely determined by the trivalent tree encoding the adjacencies

of the pairs of pants/triangles (see the bottom picture in Figure 3.24 for an example).

As before, we say that a family of curves Γ realizes all types of pants decompositions if

for any topological type of pants decomposition, there exists a subset of 3g − 3 curves

in Γ inducing that topological type. Therefore, it is trivial to realize all types of pants

decompositions in Sn using O(n2) curves, respectively edges: one can simply number the

punctures from 1 to n arbitrarily and for any pair (i, j), take a curve running around the

punctures from i to j, as pictured in Figure 8.2. Likewise, one can realize all types of

triangulations in πn using O(n2) edges. For polygons, we can prove an almost matching

lower bound.

Lemma 8.3.4. For any ε > 0, any family of edges realizing all triangulations of πn has

Ω(n2−ε) edges.

Proof. The proof follows the same idea as the proof of Lemma 8.3.2. Any family of

edges realizing all triangulations defines a graph with |E| edges. Since the family of

edges realizes all types of triangulations, in particular it realizes all types of triangles,

4-cycles, or more generally ℓ-cycles. The type of an ℓ-cycle C is determined by the tuple

(k1, . . . , kℓ) of vertices in each of the connected components of πn \C, and thus there are

Θ(nℓ−1) of them. Now, any graph with |E| edges has at most O(|E|ℓ/2) ℓ-cycles, and thus

|E| = Ω(n
2ℓ−1

ℓ). The result follows by taking ℓ arbitrarily big.

Lemmas 8.3.1, 8.3.2 and 8.3.4 prove Theorem N.

Here again, this proof technique fails for pants decompositions. The best lower bound

we can provide is the following.

Lemma 8.3.5. Any family of curves realizing all types of pants decompositions of Sn has

size at least

⌊n
2
⌋∑

i=2

⌊n
i
⌋ = Ω(n log n).

Proof. Let T be a trivalent tree with n leaves associated to a pants decomposition P of

Sn, in which each internal vertex corresponds to a pair of pants and each edge corresponds

to a closed curve in P . For each curve γ in P , we say that γ bounds i ≤ ⌊n
2
⌋ punctures if

its corresponding edge in T separates a sub-tree that has exactly i leaves. We prove the

following claim.

Claim. For each i ≤ ⌊n
2
⌋, there exists a trivalent tree Ti with n leaves such that its

corresponding pants decomposition contains ⌊n
i
⌋ curves, each of which bounds i punctures.

Assuming the claim for now, for each i ≤ ⌊n
2
⌋, the existence of such a tree implies

that to realize the pants decomposition corresponding to this tree, ⌊n
i
⌋ closed curves that

8.4 Labelled punctures 173

bound i punctures are needed. This implies that at least

⌊n
2
⌋∑

i=2

⌊n
i
⌋ closed curves are needed

to realize Tis for 2 ≤ i ≤ ⌊n
2
⌋ and proves the lemma.

Proof of the claim. In a rooted tree, we say that a vertex is internal if it is not the root

and not a leaf. Let Bi be any trivalent tree with ⌈n
i
⌉ leaves and let Li be a rooted tree

with i leaves in which the root has degree 2 and the internal vertices have degree 3. Let

Ri be a rooted tree with n− i⌊n
i
⌋ leaves in which the root has degree 2 and the internal

vertices all have degree 3. We define a tree Ti as follows: in the case where i divides n,

we paste a copy of Li on each leaf of Bi by identifying the root in Li with a leaf in Bi. If

i does not divide n, we paste a copy of Li on every leaf of Bi except one, and we paste

Ri on the last leaf. We can see that Ti is a trivalent tree with n leaves. Each edge in

Ti that corresponds to an edge that used to connect a leaf in Bi separates i leaves in Ti

and therefore its corresponding curve in the pants decomposition bounds i punctures. We

refer to Figure 8.3 for an illustration.

Figure 8.3: The case where i does not divide n. Bi has ⌈ni ⌉ leaves, Li has i leaves and Ri has

n− i · ⌊ni ⌋ leaves.

The construction at the beginning of Section 8.3.2 and Lemma 8.3.5 proves the second

item of the Theorem L.

8.4 Labelled punctures

In this section, we turn our attention towards families of curves realizing all types of pants

decompositions for spheres with labelled punctures. The dual graph to a pants decompo-

174 Universal families of arcs and curves on surfaces

sition P of Sn with labelled punctures is a trivalent tree T with n labelled leaves. We call

an edge in a tree T an internal edge if it is not adjacent to a leaf. The following lemma

provides a family of curves of exponential size realizing all types of pants decompositions

in this setting.

Lemma 8.4.1. Let Sn be the sphere with n labelled punctures. There exists a family of

simple closed curves of size less than 3n−1 that realizes all types of pants decompositions

of Sn up to labelled homeomorphism.

Proof. Let P be a pants decomposition of Sn and T be the tree dual to P . Each internal

edge of the tree separates the leaves into two parts and it corresponds to a simple closed

curve on Sn that separates the corresponding punctures. Here, we deal with a bigger set

of trees than those that are dual to pants decompositions. Denote by Tn the set of all

trees with n leaves and with every internal vertex having degree at most 3. In this proof,

we deal with free homotopy classes of curves. Two homotopy classes of curves are said

to be disjoint if there exists a representative in each class such that these curves do not

intersect each other.

We remove a point from the sphere and consider the punctures on the plane, which we

number arbitrarily from 1 to n and consider lined up from 1 to n. For a subset S ⊂ [n],

and for each map f : [n] \S → {above, below}, we define a homotopy class as follows: the

curve γfS encompasses the punctures in S, and for each puncture b not in S but within

[minS,maxS], it goes above, respectively below, b, depending on the value of f(b). These

homotopy classes are pictured in Figure 8.4, for S = {2, 6} and the four possible maps f

choosing above or below for the punctures labelled 3, 4 and 5. Note that for punctures

not in S and not between the smallest and the largest element of S, there is no choice

of ”above” or ”below” to be made, hence no need to define f . Then we denote by ΓS the

union of all the curves γfS for all the possible maps f .

Let T ∈ Tn and fix a vertex v to be the root of T . We say that a set ΦT of homo-

topy classes of curves recognizes the tree T with respect to v if it satisfies the following

properties. The homotopy classes in ΦT are pairwise disjoint. If e is an internal edge in

T that separates a sub-tree that does not contain the vertex v and that has S as leaves,

there exists a homotopy class of curves in ΦT that encompasses the punctures in S (in-

tuitively, a virtual leaf attached to the root should correspond to the point at infinity).

We say that a set of homotopy classes of curves recognizes a tree T if for any vertex v in

T , it recognizes T with respect to v. Then, in order to realize the pants decomposition

corresponding to T , it is enough to choose a curve from each homotopy class of curves in

ΦT such that these curves are pairwise disjoint.

Let Λ[n] =
⋃

S⊂[n],1<|S|≤n−2 ΓS. We first prove that each tree T ∈ Tn can be recognized

by a set of homotopy classes in Λ[n] and then we show that families of curves can be chosen

8.4 Labelled punctures 175

Figure 8.4: Eight possible choices for a curve that separates {2, 6} from {1, 3, 4, 5}

from each homotopy class in Λ[n] such that they realize all types of pants decompositions

of Sn.

We prove the following claim.

Claim. The set of homotopy classes Λ[n] is enough to recognize all trees in Tn.

Proof of the claim: The proof of the claim is by induction on n. Pick a tree T ∈ Tn

with a root v. Let S1, S2 and S3 be the set of leaves that belong to each branch of v. We

need to recognize the edges adjacent to v that are internal edges in the tree. If all the

adjacent edges of v are internal edges, then they correspond to three curves that separate

the punctures in S1, S2 and S3 from each other. For S1 (resp. for S2) choose the homotopy

class of curves γ1 (resp. γ2) in ΓS1 (resp. ΓS2) that go above (resp. below) the punctures

in [n] \ S1 (resp. [n] \ S2). For S3, choose the homotopy class of curves γ3 that go below

the punctures in S1 and above the punctures in S2, see Figure 8.5. The choice of above

and below guarantees that these three homotopy classes are pairwise disjoint.

Figure 8.5: The curves realizing the edges adjacent to the root. Here S1 = {1, 4, 8}, S2 = {2, 6}
and S3 = {3, 5, 7, 9}.

We denote by T \{v} the tree T where we remove v and the three adjacent edges. Let

Ti denote the sub-tree in T \ {v} that corresponds to Si. Let vi be the vertex in Ti that

used to be connected to v and let it be the root of Ti; vi has degree 2. The number of

176 Universal families of arcs and curves on surfaces

leaves in Ti for 1 ≤ i ≤ 3 is less than n and therefore, by the induction hypothesis, we can

recognize the edges in Ti by a set ΦTi
of pairwise disjoint homotopy classes of curves in

Λ[Si] with respect to vi. We can consider these homotopy classes as belonging to Λ[n] by

making the homotopy classes in ΦTi
go above or below the punctures in Si \S in the same

way that γi does. By the way we chose the homotopy classes, they are pairwise disjoint

and therefore they recognize the tree T . This finishes the proof of the claim. ■

Now, to realize the pants decomposition corresponding to a tree T ∈ Tn, it suffices

to choose a curve from each homotopy class in ΦT , such that these curves are pairwise

disjoint. Note that by construction, these homotopy classes are pairwise disjoint. Thus, in

order to realize all the types of pants decompositions, it suffices to pick a closed curve for

each homotopy class in Λ[n] so that the resulting family is in minimal position (one way

to do that is for example to fix an arbitrary hyperbolic metric on Sn and pick geodesic

representatives for each representative).

We conclude the proof by upper bounding the size of the set Λ[n]. Recall that for a set

S ⊂ [n], if i /∈ [min(S),max(S)] then the curves in ΓS do not need to go above or below

the puncture i. Thus we have the following bound.

|Λ[n]| =
∑

S⊂[n],1<|S|<n−1

|ΓS| =

n−2∑
i=2

n−i∑
k=0

(n− k − i+ 1)

(
k + i− 2

i− 2

)
2k

≤

n−2∑
k=0

n−2∑
i=k

(i− k + 1)

(
n+ k − i− 2

k

)
2k

=

n−2∑
k=0

2k


n−k−1∑
j=1

j

(
n− j − 1

k

)

=

n−2∑
k=0

2k
(

n

k + 2

)

=
1

4
(3n − 2n− 1)

Note that in the second equation, for a subset S of size i, k counts the number of punctures

not in S that belong to [min(S),max(S)] and 2k counts the choices of going below or above

these k punctures. The term (n−k−i+1) counts the number of cases for [min(S),max(S)]

in this case, i.e., the number of cases where max(S)−min(S) = i+ k − 1.

The following lemma provides an easy exponential lower bound for this problem.

Lemma 8.4.2. Any family of curves realizing all types of pants decompositions of Sn with

labelled punctures has size at least 2n−1 − n− 1.

8.5 Surfaces without punctures 177

Proof. We know that for any subset S of the punctures such that 2 ≤ |S| ≤ n− 2, there

exists a closed curve in some pants decomposition that separates the punctures in S from

those in [n] \ S. Therefore we need at least |{S, [n] \ S, 2 ≤ |S| ≤ n− 2}| closed curves to

realize all types of pants decompositions of Sn with labelled punctures, which is equal to

2n−1 − n− 1.

Bridging the gap between the 3n−1 upper bound and the 2n−1 lower bound seems to

be an interesting open problem as well.

Lemmas 8.4.1 and 8.4.2 prove the first item of the Theorem L.

Remark 8.4.3. All the bounds in this section apply equally well to the problem of realizing

all types of pants (instead of types of pants decompositions), and both the upper and lower

bounds are also the best ones we know for that problem.

8.5 Surfaces without punctures

An easy reduction to the case with labelled punctures, in conjunction with Lemma 8.4.1,

directly yields the following bound.

Lemma 8.5.1. On the surface Mg, there exists a family of curves of size at most 32g−1

realizing all types of pants decompositions.

Proof. The family consists of taking g simple disjoint closed curves such that cutting

along them yields a sphere with 2g punctures. Then we use the family of curves given

by Lemma 8.4.1. This works because any pants decomposition contains g simple disjoint

closed curves such that cutting along them yields a sphere with 2g punctures. So we can

realize these curves using our cutting curves. After cutting along these g curves, the re-

sulting pants decomposition is one on the sphere with 2g punctures, which can be labelled

arbitrarily, and thus can be realized using a subset of the curves given by Lemma 8.4.1.

The labeling will in particular preserve the matching stipulating how to glue back the

punctures, and thus our curves will indeed realize the targeted pants decomposition.

Since the curves in Lemma 8.4.1 are of size at most 32g−1 − g (we refer to the proof of

that lemma which provides a bound that is slightly sharper than in the statement of the

lemma), the resulting family has size at most 32g−1.

The technique in this proof can readily be adapted to provide a singly-exponentially

sized family of curves realizing all types of pants decompositions on surfaces of genus g

with n punctures.

The reduction in the proof of Lemma 8.5.1 is clearly wasteful, in that we use a family of

curves tailored to realize the pants decompositions for labelled punctures, but actually it

178 Universal families of arcs and curves on surfaces

would suffice to consider only pants decompositions up to homeomorphism which preserves

the matching induced by the cutting curves. Due to this inefficiency, the exponential

lower bound of Lemma 8.4.2 does not translate to this setting, and we can only prove the

following lower bound obtained with a counting argument.

Lemma 8.5.2. For any ε > 0, any family of simple closed curves realizing all types of

pants decompositions on Mg has size Ω(g4/3−ε).

Proof. The homeomorphism class of a pants decomposition is determined by the trivalent

graph encoding the adjacencies of the pants. A pants decomposition has 2g − 2 curves,

and there are, up to terms that are only exponential in g, gg such trivalent graphs on

2g − 2 vertices, and thus that many pants decompositions (see Lemma 3.6.1). Therefore,

since any pants decomposition consists of 3g−3 curves, any family of simple closed curves

Γ realizing them all must satisfy the counting lower bound given by
(|Γ|
3g−3

)
≳ gg, where

we use the ≳ notation to hide terms that are only exponential in g. Therefore,

(
|Γ|e

3g − 3

)3g−3

≥
(

|Γ|
3g − 3

)
≳ gg

and thus |Γ| = Ω(g4/3−ε) for any ε > 0.

Lemmas 8.5.1 and 8.5.2 prove Theorem K.

8.6 Small genus cases and labelled punctures: a small im-

provement

In this last section, we showcase that the approach of cutting along g curves to planarize

and then using the bound of labelled sphere is wasteful, as one can do better in the small

genus cases when g = 1 and g = 2. While the proofs are somewhat ad hoc and will

not generalize, we believe that this provides an interesting hint that the bound given in

Lemma 8.5.1 is not optimal.

First, let us consider the question of realizing all types of pants decompositions on

M1,n−2 when the punctures are labelled. Note that by cutting along a non-separating

curve in M1,n−2, we obtain a sphere with n punctures and therefore by Lemma 8.4.1, a

family of size at most 3n−1 is enough to realize all types of pants decompositions in this

case. We improve this bound in the following lemma.

Lemma 8.6.1. There exists a family of simple closed curves of size less than 3n−2 that

realizes all types of pants decompositions of M1,n−2 up to labelled homeomorphisms.

8.6 Small genus cases and labelled punctures: a small improvement 179

Proof. The dual graph to a pants decomposition of M1,n−2, is a graph that has only one

cycle and in which all vertices have degree three, except n−2 vertices of degree one, which

in our case, correspond to the labelled punctures and are labelled. Recall that we call an

edge that is not adjacent to a labelled vertex an internal edge. Denote the set of all such

graphs by G. Note that the edges that belong to the cycle in G are non-separating and

correspond to curves that are non-separating, but any two such edges together separate G

into two sub-trees and therefore correspond to curves that are separating together. Recall

that two free homotopy classes are disjoint if there exists a curve in each of them such

that these curves do not intersect.

Let θ be a simple closed curve that is non-separating on M1,n−2, as in Figure 8.6.

Denote by M ′ the surface obtained by cutting along θ: this is a sphere with n punctures,

among which n− 2 are our labelled punctures. As in the proof of Lemma 8.4.1, we think

of these n punctures as being lined up, and we consider, for each S a subset of the labelled

punctures and for each map f : [n−2]\S → {above, below}, a curve γfS which encompasses

the punctures in S and goes above or below the other punctures as specified by S. Gluing

back the surfaceM ′ along θ, these curves together define a family of free homotopy classes

ΓS on M1,n−2.

Note that by construction, θ is disjoint from γfS for any S ⊂ [n − 2] and choice of f .

Now, for each curve γfS where f always maps to above, we want to define an alternate

curve that additionally goes around the handle following θ. Formally: using a path going

above all of the punctures, we base all these curves at a point b located somewhere on

θ and consider the curves obtained by concatenating the curves γfS and θ. This yields a

second family of free homotopy classes which we denote by ΘS. We refer to Figure 8.7 for

the depiction of a curve γfS in red and its corresponding curve in ΘS in blue.

We say that a set ΦG of free homotopy classes of curves recognizes a graph G ∈ G if

it satisfies the following properties.

• The homotopy classes in ΦG are pairwise disjoint.

• For each internal edge e in G that is separating a tree that contains the subset S

of the labelled vertices, there exists a homotopy class of curves in ΦG that cuts

the surface into a sphere containing the punctures in S and a genus one surface

containing the punctures in [n− 2] \ S.

• Let e and e′ be a pair of edges that separate a tree from G containing the labelled

vertices in S. Then there exist two homotopy classes of non-separating curves in

ΦG corresponding to e and e′ that together separate the surface into a sphere that

contains the punctures in S and a sphere containing the punctures in [n− 2] \ S.

In order to realize the pants decomposition corresponding to G, it is enough to choose

180 Universal families of arcs and curves on surfaces

Figure 8.6: We realize the edge e by the green curve θ depicted at right.

a curve from each homotopy class of curves in ΦG such that these curves are pairwise

disjoint.

Let Λ =
⋃

S⊂[n−2](ΓS ∪ ΘS). As in the proof of Lemma 8.4.1, we first prove that the

set of homotopy classes in Λ are enough to recognize every graph in G.
Claim. The set of homotopy classes Λ recognizes all graphs in G.
For every graph G ∈ G, we proceed as follows. We fix a vertex v in the cycle and let

e = vw be one of its adjacent edges that belongs to the cycle. The edge e is non-separating

and we realize this edge for every graph G ∈ G by the curve Θ∅ = θ, see Figure 8.6.

Let T be the tree that we obtain by removing e from G and let v be the root of T .

Note that T is almost trivalent; only the vertices incident to e (v and w) are of degree

two. We recognize the edges in T by the homotopy classes in
⋃

S⊂[n−2] ΓS as in the proof

of Lemma 8.4.1 and with the following additional considerations:

• In the proof of Lemma 8.4.1, during the induction step where one removes a vertex

to obtain three subtrees, an arbitrary choice was made to select that the curves in

one subtree were going above the other punctures, the curve in another subtree were

going below and the curves in the last subtree were between. Here, this choice is no

longer arbitrary, and we enforce the fact that for each edge in the cycle of G except

e, the choice is made so that the corresponding curve goes above the remaining

punctures. This is pictured in Figure 8.8.

8.6 Small genus cases and labelled punctures: a small improvement 181

Figure 8.7: The red curve separates the surface to a sphere that has {2, 4, 5} as punctures and

a genus one surface with {1, 6} as punctures; this curve belongs to Γ{2,4,5}. The blue curve is

non-separating and is the concatenation of the red curve with θ, this curve belongs to Θ{2,4,5}.

• If w is adjacent to a labeled vertex i, the edge iw is not internal and does not need

to be recognized. We recognize the other edge adjacent to w by a homotopy class in

Γ{i} (note that in the proof of Lemma 8.4.1 we did not need the homotopy classes

of curves that separated a single puncture). Otherwise both edges adjacent to w

are recognized with the same homotopy class as the case where these two edges are

replaced by one edge.

Now, denote by ϕr the homotopy class of curves associated to the edge r in T . We

recognize the edges in G as follows. If r is an edge in G that does not belong to the cycle

in G, we recognize it by ϕr; otherwise, we recognize it by the corresponding homotopy

class in ΘS that is the concatenation of ϕr and θ. Denote these curves together with

Θ∅ = θ by ΦG. We still need to prove that these homotopy classes are disjoint and that

they indeed recognize the edges in G.

By construction, the curves ϕr are pairwise disjoint, and so are their counterparts in

ΘS. The remaining disjointnesses follows from the first additional consideration above:

the curves in ϕr when r belongs to the cycle all go above the punctures that they did

not encompass, and thus they can be safely concatenated with θ while still being disjoint

from all the other curves in ΦG.

Finally, recognizing the edges not in the cycle follows the same argument as in the

case without genus. For pairs of edges in the cycle, the union of the corresponding pair

of curves forms a homology cycle that separates the corresponding punctures as desired.

This finishes the proof of the claim. ■

To conclude, it now suffices to pick a curve in each homotopy class of Λ, such that

they are altogether in minimal position. For each G, the curves originating from ΦG

182 Universal families of arcs and curves on surfaces

Figure 8.8: The edges in the cycle of the graph are recognized by curves that go above the

remaining punctures in (the planarization of) the surface.

are pairwise disjoint and therefore realize the pants decomposition corresponding to G.

Therefore, the total family of curves realizes all types of pants decompositions.

Finally, we provide an upper bound the size of the family Λ. The family ΘS consists

of only one curve for each choice of S, and thus, reusing the bound from Lemma 8.4.1,

we obtain

|Λ| =
∑
S⊂[n]

(|ΓS|+ |ΘS|) ≤ 2n−2 +
1

4
(3n−2 − 2n+ 3) < 3n−2.

We next look at the case of genus 2 with n−4 punctures, where we can do even better

than in the previous case.

Lemma 8.6.2. There exists a family of simple closed curves of size at most 3n−3 that

realizes all types of pants decompositions of M2,n−4 up to labelled homeomorphisms.

Proof. The dual graph to a pants decomposition of M2,n−4 is a graph with cyclomatic

number two (i.e., there are two edges so that removing them yields a tree) in which all

vertices have degree three except n − 4 vertices of degree one; these vertices correspond

to the labelled punctures and are labelled. Let us denote all such graphs with G. These

graphs have either two disjoint cycles or two cycles that share at least one or more edges,

see Figure 8.10. Note that in this case the edges that belong to the cycles are non-

separating and therefore correspond to non-separating closed curves on the surface. Also,

if the cycles are disjoint, the edges that belong to the path connecting the cycles are

separating the graph into two sub-graphs with one cycle each and therefore correspond

to separating closed curves that cut the surface into two genus one surfaces.

Fix a basepoint b which we intuitively consider next to the puncture n−4, as depicted

in Figure 8.11. We consider a family of simple closed curves θ1, θ2, θ3, ψ, ω based at b as

pictured in Figure 8.11: the curves θi are non-separating and pairwise disjoint, the curve

8.6 Small genus cases and labelled punctures: a small improvement 183

Figure 8.9: Realizing G (at left) from a realization for T . The blue curves correspond to the

edges that belong to the cycle in G and the red ones correspond to those that do not. The

homotopy classes of the curves in the right bottom drawing recognizes the graph G.

184 Universal families of arcs and curves on surfaces

Figure 8.10: Left: the cycles are not disjoint; we can see that there are two vertices with all

adjacent edges non-separating. Right: two disjoint cycles.

ψ is also non-separating and only crosses θ1 once, and the curve ω is separating the handle

formed by θ1 and ψ from the rest of the surface.

Denote by M ′ the surface we obtain by cutting along a curve in θ1 and a curve in θ2.

The surfaceM ′ is a sphere with n punctures among which n−4 are labelled. For a subset

S of the labelled punctures, let Γ′
S be the homotopy classes of separating curves that

encompass the punctures in S and remain either above or below the rest of the punctures

as defined in the proof of Lemma 8.4.1. Let ΓS be the homotopy classes of closed curves

on M2,n−4 that we obtain from Γ′
S by gluing back the surface along θ1 and θ2. Note that

by construction, θi for 1 ≤ i ≤ 3 and ω are disjoint from ΓS for S ⊂ [n− 4].

Define ΩS to be the concatenation of curves in ΓS with ω; these curves are separating.

Finally, define Θi
S to be the concatenation of curves in ΓS with the θi for i = 1, 2, 3; these

curves are not separating.

Figure 8.11: Homotopy classes of the non-separating curves θ1, θ2, θ3 and ψ and the separating

curve ω.

In the proof of Lemma 8.6.1, we introduced a notion for a set of curves recognizing

8.6 Small genus cases and labelled punctures: a small improvement 185

a graph. Here we provide a more intricate variant of this notion in the genus 2 setting.

We say that a set ΦG of based homotopy classes of curves recognizes a graph G ∈ G, if it
satisfies the following properties.

• The free homotopy classes in ΦG are pairwise disjoint.

• For each internal edge e in G that is separating a tree that contains the subset S

of the labelled vertices, there exists a homotopy class of curves in ΦG that cuts

the surface into a sphere containing the punctures in S and a genus two surface

containing the punctures in [n− 4] \ S.

• Let e and e′ be a pair of edges that separate a tree from G containing the labelled

vertices in S. Then there exist two homotopy classes of non-separating curves in

ΦG corresponding to e and e′ that together separate the surface into a sphere that

contains the punctures in S and a genus one surface containing the punctures in

[n− 4] \ S.

• If an edge separates the graph into two sub-graphs with one cycle such that one

contains the vertices in S and the other contains the vertices in [n − 4] \ S, then
there exists a homotopy class in ΦG that separates the surface into two surfaces of

genus one such that one contains the punctures in S and the other contains the

punctures in [n− 4] \ S.

In order to realize the pants decomposition corresponding to G, it is enough to choose

a curve from each homotopy class of curves in ΦG such that these curves are pairwise

disjoint.

Let Λ =
⋃

S⊂[n−4](ΓS∪Θ1
S∪Θ2

S∪Θ3
S∪ΩS). We first prove that the homotopy classes in

Λ are enough to recognize all graphs in G. Then we show that we can choose a curve from

each homotopy class in Λ such that these curves realize all types of pants decompositions

of M2,n−4.

Claim. The set of homotopy classes Λ is enough to recognize all graphs in G.
We consider two different cases for the proof of this claim.

The case where the cycles in G are not disjoint. In this case, there exist exactly

two vertices v and w such that all their adjacent edges are non-separating and belong to

the cycles, see left picture in Figure 8.10. By removing one of these vertices from G, let

us say w, we obtain a tree; denote this tree by T . Consider the vertex v to be the root

of T and proceed as in Lemma 8.4.1 to recognize the edges of T with homotopy classes

in
⋃

S⊂[n−4] ΓS. Number the branches of T at v by 1,2 and 3 (there might only exist 2

branches or even one). As in Lemma 8.6.1, we have the power to choose the homotopy

classes corresponding to the edges that belong to the cycles and are in branch 1 to go

above everything else. Likewise, we ensure that the cycles corresponding to branch 2 go

186 Universal families of arcs and curves on surfaces

below everything else, and finally that the edges corresponding to branch 3 go inbetween

the cycles of branches 1 and 2. Let ΦT be the set of homotopy classes of curves that

recognize T . We denote the curves in ΦT that recognize the edge r in T by ϕr.

In order to recognize G, we proceed as follows. If r is an edge in G that does not

belong to any cycle in G, we recognize it by ϕr; otherwise we recognize it by a homotopy

class of curves that is the concatenation of ϕr with θi if it belongs to the branch i in T

for 1 ≤ i ≤ 3. We recognize the edges adjacent to w by the curves Θ1
∅ = θ1,Θ

2
∅ = θ2 and

Θ3
∅ = θ3. Denote these homotopy classes of curves by ΦG. Now, these free homotopy

classes can be realized by disjoint curves as the choices of above/below in the three

branches have been specifically designed so that concatenating those curves with θ1, θ2

and θ3 can still be done while preserving disjointedness: see Figure 8.12.

Figure 8.12: The case where the cycles in G are not disjoint. In T the branches with blue, pink

and green edges correspond to branches 1,2 and 3, respectively.

The case where G has two disjoint cycles. Choose the vertex v in a cycle of G such

that it belongs to the path that connects the two cycles. Remove an edge r1 from the

other cycle and an edge r2 adjacent to v from the cycle that v belongs to. We recognize

r1 by θ1 and r2 by θ2 in Figure 8.11. The graph G \ {r1, r2} is a tree which we denote by

T . Let v be the root of T and proceed as in Lemma 8.4.1 to realize T . We choose the

8.6 Small genus cases and labelled punctures: a small improvement 187

Figure 8.13: The case where the cycles in G are disjoint.

homotopy classes that recognize the edges in the path that connect the two cycles and

the edges in the cycle that contains r1 such that they go above the other punctures. For

the edges in the cycle that contains r − 2, we choose homotopy classes that go below the

rest of the punctures. Let ΦT be the set of homotopy classes of curves that recognize T .

We denote the homotopy class in ΦT that recognizes the edge r in T , by ϕr.

In order to recognize G, we proceed as follows. If r is an edge in G that does not

belong to any cycle in G nor the path connecting the two cycles, we realize it by ϕr. If

r belongs to the same cycle as v in G, we concatenate ϕr with θ2 and if it belongs to the

other cycle, we concatenate it with θ1. If r belongs to the path connecting the two cycles,

r is recognized by the concatenation of ϕr with ω. These curves together with Θ1
∅ = θ1

and Θ2
∅ = θ2 recognize G; we denote the set containing these curves by ΦG. As before,

the choices of above and below in the homotopy classes have been specifically designed to

ensure that the homotopy classes can be realized with disjoint curves, see Figure 8.13.

This finishes the proof of the claim. ■

As in the proofs of the previous lemmas, it now suffices to pick a closed curve in each

homotopy class and Λ so that the resulting is in minimal position. By construction, for

any type of pants decomposition with dual graph G, the curves in ΦG are pairwise disjoint

and realize this type of pants decomposition. Altogether, the curves that we chose realize

all types of pants decompositions.

188 Universal families of arcs and curves on surfaces

Finally, we provide an upper bound on the size of Λ. Note that in our construction,

it suffices to consider curves in Θ1
S and ΩS which go above the punctures they do not

encompass, and curves for Θ2
S which go below the punctures they do not encompass.

However, for Θ3
S, as for ΓS, we need to consider all possible choices of above and below

for the punctures they do not encompass. This yields the following bound.

|Λ| =
∑
S⊂[n]

(|Θ1
S|+ |Θ2

S|+ |ΩS|) +
∑
S⊂[n]

(|ΓS|+ |Θ3
S|)

≤ 3× 2n−4 + 2× 1

4
(3n−4 − 2(n− 4)− 1)

< 3n−3

We do not push these studies farther: it would seem that the techniques used in this

last proof would require considering curves using arbitrary subsets of the handles, and

thus naturally lead to exponentially-sized family of curves. While the resulting base of

the exponential could conceivably be smaller than the one we obtain in Lemma 8.5.1, it

would therefore not be helpful towards breaking the exponential barrier.

189

Chapter 9

Conclusion

In this thesis, our focus has been on examining topological problems on graphs and curves

embedded on surfaces from a computational perspective. In the following, we will provide

a summary of our results and discuss the immediate next steps that lie ahead. Then we

introduce some more distant avenues of research that extend beyond the immediate scope

of this thesis.

9.1 Summary of results and continuation

1) Decompositions for surfaces and joint crossing numbers. In Chapters 5 and 6, we

provided some of the first decompositions of non-orientable surfaces and algorithms to

compute them. But our results are restricted to very few types of decompositions. For ex-

ample, restricting our attention to one-vertex decompositions for non-orientable surfaces,

our techniques provide short decompositions of the form a1a1, . . . , alal, b1c1b1c1 . . . bkckbkck

where l > 0 and k can be zero; in a sense that we can compute short decompositions in

which the non-orientable part is nicely separated from the orientable one. Similarly for

orientable surfaces, the only short one-vertex decomposition that is known is the canoni-

cal one, b1c1b1c1 . . . bgcgbgcg. Except this one, no other short decomposition is known, not

even a natural decomposition of the form a1a2 . . . aga1a2 . . . ag. The best known bound

for this decomposition is of length O(g2|E(G)|) where G is the primal graph embedded

on the surface.

More generally, Negami’s conjecture which implies that every surface can be decom-

posed along any shape shortly, remains open.

Conjecture 1. (Negami’s conjecture) There exists a universal constant C such that for

any pair of graphs G1 and G2 embedded on a surface S, the joint crossing number is at

most C|E(G1)||E(G2)|.

In this thesis, we described a geometric avenue, first suggested by Hubard, Kaluža, de

190 Conclusion

Mesmay and Tancer in [50], toward proving Negami’s conjecture by asking the following

question.

Question 1. Given a surface S of genus g, does there exist a Riemannian metric on S

such that any simple graph embeddable on S can be embedded so that the edges are shortest

paths on S?

We explained that a positive answer to this question implies Negami’s conjecture.

Although we could not answer the question in its generality, in Chapter 4, we leveled

the playing field for both orientable and non-orientable surfaces by providing an O(g)-

universal shortest path metric for non-orientable surfaces. Furthermore, we introduced

an avenue of attack that might lead to a negative answer to this question in Chapter 8.

Although we suspect that Negami’s conjecture holds, constructing a universal shortest

path metric seems to be more elusive.

2) Degenerate crossing number vs. genus crossing number. In Chapter 7, we studied

the conjecture of Mohar regarding degenerate crossing number and genus crossing number

of graphs. We disproved the stronger conjecture of Mohar for graphs that are given by a

fixed embedding by providing a two-vertex counterexample.

Conjecture 3. ([57, Conjecture 3.4]) For any positive integer g, every loopless pseudo-

triangulation of Ng admits a cross-cap drawing with g cross-caps in which each edge enters

each cross-cap at most once.

Conversely, we managed to provide a systematic way to obtain drawings for most loop-

less two-vertex embedding schemes that illustrate that gcr and dcr for these embedding

schemes are equal. But our constructions are restricted to loopless two-vertex graphs and

still it could be possible that the stronger conjecture of Mohar stands for graphs with

more than 2 vertices. We expect that our construction can be extended to bipartite em-

bedding schemes since by contracting edges in a bipartite graph, one can obtain a loopless

two-vertex graph.

On the other hand, we know that increasing the number of vertices increases the

freedom in achieving a perfect cross-cap drawing. This is because, for any embedding

scheme, we can obtain a cross-cap drawing in which each edge enters each cross-cap at

most twice using the Schaefer-Štefankovič algorithm. By dragging vertices into cross-caps,

we can resolve double entrances for edges. Having more vertices increases the chances of

resolving all the double entrances without making another edge enter a cross-cap more

than once. This suggests that the two-vertex case is probably the hardest case regarding

this conjecture. Since our result completely classifies the cases of loopless two-vertex

embedding schemes, we expect for the conjecture to hold in the cases with more than 2

vertices.

9.2 Further research directions 191

Furthermore, the main conjecture of Mohar that is stated for graphs without a fixed

embedding remains open.

Conjecture 2. ([57, Conjecture 3.1]) For every simple graph G, dcr(G) = gcr(G).

In this conjecture, the embedding scheme is not fixed, which makes it even more flexible

than the previous case which in turn makes it more challenging to solve this conjecture.

However, by our above discussion, we strongly expect that the conjecture holds.

3) Enumerating curves and arcs on surfaces. In Chapter 8, in an attempt to answer

Question 1, we developed an approach based on counting curves in pants decompositions

of surfaces. We provided estimates for the cardinality of a universal family of curves

that realizes all the pants decompositions of the surface. In particular, we provided a

polynomial lower bound and an exponential upper bound for the case of closed surfaces.

We explained that proving a super-polynomial bound for the size of a family of curves

that realizes all types of pants decompositions in this case, would answer negatively to

Question 1. The exponential upper bound provided for this case is directly achieved by

using the exponential upper bound provided for the cardinality of a family of curves that

realizes all the pants decompositions of a sphere with punctures in which the punctures

are labelled. This suggests that this estimation is probably rough, and that it might

significantly overshoot the true value.

Devising a general approach to estimate the exact value seems to be hard in this

problem. One way to make progress is to estimate the size of such a family for surfaces

with low genus. This might shed light on the growth rate of the cardinality or even inspire

developing a more systematic way to create such a family. In a joint work with Vincent

Delecroix, we have computed this quantity for surfaces up to genus 4. The exact number

for surfaces of genus 2, 3 and 4 is 4, 10 and 18, respectively (Figure 9.1 depicts an optimal

family of curves realizing these numbers). This stirs the speculation that in general the

bound is polynomial in g.

9.2 Further research directions

Shortest decompositions and curves

Throughout this thesis, we searched for decompositions that are relatively short, namely of

length O(gn) where n is the number of edges in the primal graph of the cross-metric surface

and g is its genus. But what if we aim for the shortest decomposition of a specific type?

The problem of computing shortest decompositions or curves with particular topological

properties has been extensively researched in computational topology. Here, we outline

192 Conclusion

Figure 9.1: Optimal universal families of curves that realize all pants decompositions of surfaces

of genus 2, 3 and 4 respectively.

the best-known results and highlight open problems related to shortest decompositions

and curves.

Shortest curves. A well studied problem in the computational topology of surfaces

is to compute shortest curves of certain types on a surface. The shortest contractible

curve can be computed in polynomial time [13] on a given combinatorial surface. A non-

contractible non-separating curve can be computed in O(n2 log n) time [33]. However,

computing the shortest non-contractible separating curve is NP-hard and there exists an

algorithm with running time gO(g)n log n that computes such a curve [14].

On the other hand, there has been no study on computing shortest curves of certain

homeomorphism types on non-orientable surfaces. This is the subject of a work in progress

with Éric Colin de Verdière and Denys Bulavka.

Shortest decompositions. In this thesis, we provided polynomial time algorithms to

compute canonical decompositions for both orientable and non-orientable surfaces that are

relatively short. But in general, the complexity of computing shortest such decompositions

is open [34].

The polynomial time algorithm provided in [21], computes an octagonal decomposition

of orientable surfaces that is made of closed curves which are as short as possible in their

homotopy classes. In Chapter 4, we generalized this decomposition to non-orientable

surfaces but in the decomposition that we provided, the curves are not the shortest possible

in their homotopy classes. This is due to the fact that the orienting curve that we compute

to construct this decomposition is not the shortest. In general, computing the shortest

such decompositions of both orientable and non-orientable surfaces is open.

The complexity of computing the shortest pants decomposition of a surface is open

even in the case of the Euclidean plane and the Hyperbolic plane with punctures. For

these cases, an approximation algorithm that runs in O(n log n) time is provided in [30]

(see also [63]). In [23], a polynomial time algorithm is provided that computes a pants

9.2 Further research directions 193

decomposition that is made of closed curves that are as short as possible in their homotopy

classes.

As we mentioned in the introduction, a well-studied problem in computation topology

of surfaces is to look for shortest cut graphs. Computing the shortest cut graph is NP-

hard but there is an O(log2 g)-approximation algorithm that computes it in O(g2n log n)

time [33]. Can we find a better approximation, such as a constant-factor approximation

or even a polynomial-time approximation scheme?

Computational biology playground

Two of the main contributions of this thesis (the results in Chapters 5 and 7), use the

insights and an algorithm coming from genome rearrangements in computational biology.

This intriguing interplay between computational biology and topology, is motivating to

look for other surprising correlations between the two fields.

In Section 3.8, we described two mutations for genomic evolution (reversals and block

interchange) and their respective computational formulations to compute the distance

between two genomes. We also studied the topology behind the two problems, to establish

a foundation to identify the similarities of these problems to our graph embedding setting.

We only considered problems in which one type of mutation is possible. However, it is more

natural to allow multiple types of mutation to be involved in transforming a set of genes

to another. It is especially interesting to study the topology behind the problem when

multiple types of mutations are allowed; our (l, k) combination algorithm in Chapter 6

is similar to the case where we allow for both reversals and block interchanges to sort a

sequence of genes.

In [43], a polynomial time algorithm is provided that computes the distance between

the multi-chromosomal genomes of human and mice by four types of mutations: inversions,

translocations, fusions and fissions of chromosomes. This algorithm has led to a scenario

of human to mouse evolution with 131 mutations. Here we can ask the following questions.

What insights can be gained through the topological interpretation of these operations?

Could the topological insight behind the problem simplify the arguments or enhance

the computational complexity of the problem? In a broader sense, one might wonder if

topological ideas can be leveraged in other problems involving reconstructing the whole

phylogenetic tree.

194 LIST OF PUBLICATIONS

List of publications

[A] Niloufar Fuladi, Alfredo Hubard, Arnaud de Mesmay, Short topological

decompositions of non-orientable surfaces, published in Discrete & Computational

Geometry (DCG), 2023. Preliminary version in the Proceedings of the 38th Inter-

national Symposium on Computational Geometry (SoCG 2022), Schloss Dagstuhl-

Leibniz-Zentrum für Informatik. ArXiv: 2203.06659.

[B] Niloufar Fuladi, Arnaud de Mesmay, Hugo Parlier, Universal families

of arcs and curves on surfaces, accepted in Israel Journal of Mathematics. ArXiv:

2302.06336.

[C] Niloufar Fuladi, Alfredo Hubard, Arnaud de Mesmay, Degenerate cross-

ing number and signed reversal distance. Preliminary version in the Proceedings of

the 31st International Symposium on Graph Drawing and Network Visualization,

2023. ArXiv: 2308.10666.

https://arxiv.org/abs/2203.06659
https://arxiv.org/abs/2302.06336
https://arxiv.org/abs/2302.06336
https://arxiv.org/abs/2308.10666

BIBLIOGRAPHY 195

Bibliography

[1] M. J. Alam, M. Fink, and S. Pupyrev, The bundled crossing number, in Inter-

national Symposium on Graph Drawing and Network Visualization, Springer, 2016,

pp. 399–412.

[2] N. Alon, Asymptotically optimal induced universal graphs, Geometric and Func-

tional Analysis, 27 (2017), pp. 1–32.

[3] D. Archdeacon and C. P. Bonnington, Two maps on one surface, Journal of

Graph Theory, 36 (2001), pp. 198–216.

[4] L. Auslander, T. A. Brown, and J. W. T. Youngs, The imbedding of graphs

in manifolds, Journal of Mathematics and Mechanics, (1963), pp. 629–634.

[5] V. Bafna and P. A. Pevzner, Genome rearrangements and sorting by reversals,

SIAM Journal on computing, 25 (1996), pp. 272–289.

[6] A. Bergeron, A very elementary presentation of the Hannenhalli-Pevzner theory,

in Annual Symposium on Combinatorial Pattern Matching, Springer, 2001, pp. 106–

117.

[7] A. Bergeron, J. Mixtacki, and J. Stoye, Reversal distance without hurdles

and fortresses, in Annual Symposium on Combinatorial Pattern Matching, Springer,

2004, pp. 388–399.

[8] O. Bernardi and G. Chapuy, Counting unicellular maps on non-orientable sur-

faces, Advances in Applied Mathematics, 47 (2011), pp. 259–275.

[9] B. Bollobás, The asymptotic number of unlabelled regular graphs, Journal of the

London Mathematical Society, 2 (1982), pp. 201–206.

[10] M. Bonamy, C. Gavoille, and M. Pilipczuk, Shorter labeling schemes for

planar graphs, SIAM Journal on Discrete Mathematics, 36 (2022), pp. 2082–2099.

[11] A. C. Bura, R. X. Chen, and C. M. Reidys, On a lower bound for sorting

signed permutations by reversals, arXiv preprint arXiv:1602.00778, (2016).

196 BIBLIOGRAPHY

[12] P. Buser and M. Seppälä, Triangulations and homology of riemann surfaces,

Proceedings of the American Mathematical Society, 131 (2003), pp. 425–432.

[13] S. Cabello, Finding shortest contractible and shortest separating cycles in embedded

graphs, ACM Transactions on Algorithms (TALG), 6 (2010), pp. 1–18.

[14] E. W. Chambers, É. Colin de Verdière, J. Erickson, F. Lazarus, and

K. Whittlesey, Splitting (complicated) surfaces is hard, Computational Geometry:

Theory and Applications, 41 (2008), pp. 94–110.

[15] G. Chapuy, A new combinatorial identity for unicellular maps, via a direct bijective

approach, Advances in Applied Mathematics, 47 (2011), pp. 874–893.

[16] D. A. Christie, Sorting permutations by block-interchanges, Information Processing

Letters, 60 (1996), pp. 165–169.

[17] V. Cohen-Addad, É. Colin De Verdière, D. Marx, and A. De Mesmay,

Almost tight lower bounds for hard cutting problems in embedded graphs, Journal of

the ACM (JACM), 68 (2021), pp. 1–26.

[18] V. Cohen-Addad and A. de Mesmay, A fixed parameter tractable approximation

scheme for the optimal cut graph of a surface, in Algorithms-ESA 2015: 23rd Annual

European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, Springer,

2015, pp. 386–398.

[19] É. Colin De Verdière, Topological algorithms for graphs on surfaces, Habilitation

à diriger des recherches, (2012). Available at http://www.di.ens.fr/~colin/.

[20] É. Colin De Verdière, Computational topology of graphs on surfaces, in Hand-

book of Discrete and Computational Geometry, J. E. Goodman, J. O’Rourke, and

C. Toth, eds., CRC Press LLC, third ed., 2018, ch. 23, pp. 605–636.

[21] É. Colin De Verdière and J. Erickson, Tightening nonsimple paths and cycles

on surfaces, SIAM Journal on Computing, 39 (2010), pp. 3784–3813.

[22] É. Colin De Verdière, A. Hubard, and A. de Mesmay, Discrete systolic

inequalities and decompositions of triangulated surfaces, Discrete & Computational

Geometry, 53 (2015), pp. 587–620.

[23] É. Colin De Verdière and F. Lazarus, Optimal pants decompositions and

shortest homotopic cycles on an orientable surface, Journal of the ACM (JACM), 54

(2007), pp. 18–es.

http://www.di.ens.fr/~colin/

BIBLIOGRAPHY 197

[24] Y. Colin De Verdière, Comment rendre géodésique une triangulation d’une sur-

face, L’Enseignement Mathématique, 37 (1991), pp. 201–212.

[25] P. Compeau and P. Pevzner, Bioinformatics algorithms: an active learning ap-

proach, Active Learning Publishers La Jolla, California, 2015.

[26] M. P. Do Carmo and J. Flaherty Francis, Riemannian geometry, vol. 6,

Springer, 1992.

[27] T. Dobzhansky and A. H. Sturtevant, Inversions in the chromosomes of

drosophila pseudoobscura, Genetics, 23 (1938), pp. 28–64.

[28] V. Dujmović, L. Esperet, C. Gavoille, G. Joret, P. Micek, and

P. Morin, Adjacency labelling for planar graphs (and beyond), Journal of the ACM

(JACM), 68 (2021), pp. 1–33.

[29] C. A. Duncan, M. T. Goodrich, and S. G. Kobourov, Planar drawings

of higher-genus graphs., Journal of Graph Algorithms and Applications, 15 (2011),

pp. 7–32.

[30] D. Eppstein, Squarepants in a tree: sum of subtree clustering and hyperbolic pants

decomposition, ACM Transactions on Algorithms (TALG), 5 (2009), pp. 1–24.

[31] D. B. Epstein, Curves on 2-manifolds and isotopies, Acta Mathematica, 115 (1966),

pp. 83–107.

[32] J. Erickson, Combinatorial optimization of cycles and bases, Advances in applied

and computational topology, 70 (2012), pp. 195–228.

[33] J. Erickson and S. Har-Peled, Optimally cutting a surface into a disk, Discrete

& Computational Geometry, 31 (2004), pp. 37–59.

[34] J. Erickson and K. Whittlesey, Greedy optimal homotopy and homology gen-

erators, in Symposium on Discrete Algorithms, vol. 5, 2005, pp. 1038–1046.

[35] L. Esperet, G. Joret, and P. Morin, Sparse universal graphs for planarity,

Journal of the London Mathematical Society, (2023).

[36] G. Fertin, A. Labarre, I. Rusu, S. Vialette, and E. Tannier, Combina-

torics of genome rearrangements, MIT press, 2009.

[37] C. Gavoille and C. Hilaire, Minor-universal graph for graphs on surfaces, arXiv

preprint arXiv:2305.06673, (2023).

198 BIBLIOGRAPHY

[38] J. Geelen, T. Huynh, and R. B. Richter, Explicit bounds for graph minors,

Journal of Combinatorial Theory, Series B, 132 (2018), pp. 80–106.

[39] H. Gray, Anatomy of the human body, vol. 8, Lea & Febiger, 1878.

[40] J. E. Greene, On curves intersecting at most once, ii, arXiv preprint

arXiv:1811.01413, (2018).

[41] L. Guth, H. Parlier, and R. Young, Pants decompositions of random surfaces,

Geometric and Functional Analysis, 21 (2011), p. 1069.

[42] Q. Han and J.-X. Hong, Isometric embedding of Riemannian manifolds in Eu-

clidean spaces, vol. 13, American Mathematical Soc., 2006.

[43] S. Hannenhalli and P. A. Pevzner, Transforming men into mice (polynomial

algorithm for genomic distance problem), in Proceedings of IEEE 36th annual foun-

dations of computer science, IEEE, 1995, pp. 581–592.

[44] , Transforming cabbage into turnip: polynomial algorithm for sorting signed per-

mutations by reversals, Journal of the ACM (JACM), 46 (1999), pp. 1–27.

[45] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

[46] B. Hayes, Computing science: Sorting out the genome, American Scientist, 95

(2007), pp. 386–391.

[47] P. Hliněnỳ and G. Salazar, On hardness of the joint crossing number, in Inter-

national Symposium on Algorithms and Computation, Springer, 2015, pp. 603–613.

[48] K. Hormann, B. Lévy, and A. Sheffer, Mesh parameterization: Theory and

practice, ACM SIGGRAPH ASIA 2008 courses, (2007).

[49] F. W. Huang and C. M. Reidys, A topological framework for signed permutations,

Discrete Mathematics, 340 (2017), pp. 2161–2182.

[50] A. Hubard, V. Kaluža, A. De Mesmay, and M. Tancer, Shortest path embed-

dings of graphs on surfaces, Discrete & Computational Geometry, 58 (2017), pp. 921–

945.

[51] F. István, On straight-line representation of planar graphs, Acta scientiarum math-

ematicarum, 11 (1948), pp. 229–233.

[52] F. Lazarus, Combinatorial graphs and surfaces from the computational and topo-

logical viewpoint followed by some notes on the isometric embedding of the square

BIBLIOGRAPHY 199

flat torus, Habilitation à diriger des recherches, (2014). Available at http://www.

gipsa-lab.grenoble-inp.fr/~francis.lazarus/Documents/hdr-Lazarus.pdf.

[53] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust, Computing a

canonical polygonal schema of an orientable triangulated surface, in Proceedings of

the seventeenth annual symposium on Computational geometry, 2001, pp. 80–89.

[54] J. Matoušek, E. Sedgwick, M. Tancer, and U. Wagner, Untangling two

systems of noncrossing curves, Israel Journal of Mathematics, 212 (2016), pp. 37–79.

[55] A. Miller, Asymptotic bounds for permutations containing many different patterns,

Journal of Combinatorial Theory, Series A, 116 (2009), pp. 92–108.

[56] M. Mitzenmacher and E. Upfal, Probability and computing: Randomization

and probabilistic techniques in algorithms and data analysis, Cambridge university

press, 2017.

[57] B. Mohar, The genus crossing number, ARS Mathematica Contemporanea, 2

(2009), pp. 157–162.

[58] B. Mohar and C. Thomassen, Graphs on surfaces, vol. 10, JHU press, 2001.

[59] S. Negami, Crossing numbers of graph embedding pairs on closed surfaces, Journal

of Graph Theory, 36 (2001), pp. 8–23.

[60] S. R. Nicholls, N. Scherich, and J. Shneidman, Large 1-systems of curves in

non-orientable surfaces, Involve, 16 (2023), pp. 127–139.

[61] J. Pach and G. Tóth, Degenerate crossing numbers, Discrete & Computational

Geometry, 41 (2009), pp. 376–384.

[62] J. D. Palmer and L. A. Herbon, Plant mitochondrial dna evolved rapidly in

structure, but slowly in sequence, Journal of Molecular evolution, 28 (1988), pp. 87–

97.

[63] S.-H. Poon and S. Thite, Pants decomposition of the punctured plane, arXiv

preprint cs/0602080, (2006).

[64] P. Przytycki, Arcs intersecting at most once, Geometric and Functional Analysis,

25 (2015), pp. 658–670.

[65] R. Rado, Universal graphs and universal functions, Acta Arithmetica, 9 (1964),

pp. 331–340.

http://www.gipsa-lab.grenoble-inp. fr/~francis.lazarus/Documents/hdr-Lazarus.pdf
http://www.gipsa-lab.grenoble-inp. fr/~francis.lazarus/Documents/hdr-Lazarus.pdf

200 BIBLIOGRAPHY

[66] R. B. Richter and G. Salazar, Two maps with large representativity on one

surface, Journal of Graph Theory, 50 (2005), pp. 234–245.

[67] I. Rivin, Counting cycles and finite dimensional lp norms, Advances in applied

mathematics, 29 (2002), pp. 647–662.

[68] M. Schaefer, The graph crossing number and its variants: A survey, The electronic

journal of combinatorics, (2012).

[69] M. Schaefer and D. Štefankovič, The degenerate crossing number and higher-

genus embeddings, Journal of Graph Algorithms and Applications, 26 (2022), pp. 35–

58.

[70] T. Shinbrot and W. Young, Why decussate? Topological constraints on 3D

wiring, The Anatomical Record: Advances in Integrative Anatomy and Evolutionary

Biology, 291 (2008), pp. 1278–1292.

[71] K. Stephenson, Introduction to circle packing: The theory of discrete analytic

functions, Cambridge University Press, 2005.

[72] J. Stillwell, Classical topology and combinatorial group theory, vol. 72, Springer

Science & Business Media, 1993.

[73] S. Vulliemoz, O. Raineteau, and D. Jabaudon, Reaching beyond the midline:

why are human brains cross wired?, The Lancet Neurology, 4 (2005), pp. 87–99.

	Title page
	Dedication
	Abstract
	Résumé
	Table of contents
	Acknowledgments
	Introduction
	Specifics of the thesis and contributions
	Organization

	Introduction en Français
	Contributions de la thèse
	Organisation

	Preliminaries
	Topological surfaces
	Structures on surfaces
	Graphs embedded on surfaces
	Genus of a graph
	Duality

	Curves on surfaces
	Cutting a surface along a curve
	Types of curves on surfaces
	Homotopy of curves

	A combinatorial model for graph embeddings
	Contracting a tree in an embedding scheme
	Contracting a boundary

	A geometric model for graph embeddings on surfaces
	The cross-cap model for non-orientable surfaces
	Recognizing types of curves in a cross-cap drawing
	Genus crossing number and degenerate crossing number

	The box model for orientable surfaces
	Bundled crossing number

	Metrics on surfaces
	Discrete Metrics
	Combinatorial Surface
	Cross-metric Surface
	Equivalence by duality

	Continuous Metrics

	Decompositions of surfaces
	Decompositions along systems of loops
	Octagonal and hexagonal decomposition
	Pants decomposition

	Decomposing a non-orientable surface along an orienting curve
	Algorithms and genome rearrangements
	Signed reversal distance
	Topology of the signed reversal distance and relation to cross-cap drawings
	Block interchange distance
	Topology of the block interchange distance and relation to box drawings

	Joint crossing numbers of graphs and Negami's conjecture
	Introduction
	Our results
	Main ideas and proof techniques

	Correcting Negami's proof
	An O(g)-universal shortest path metric for non-orientable surfaces

	Short Non-orientable Canonical Decomposition
	Introduction
	Our results
	Main ideas and proof techniques

	Preliminaries
	The Schaefer-Štefankovič algorithm
	Our modification to the Schaefer-Štefankovič algorithm
	Completeness of the case analysis
	The order on the one-sided non-orienting loops
	Correctness of the modified algorithm

	The non-orientable canonical system of loops
	The dual graph of the cross-cap drawing
	Short paths from each cross-cap to the vertex

	More on decompositions of surfaces
	Introduction
	Canonical decomposition of orientable surfaces
	Box drawing with low multiplicity
	Reproving the O(gn) bound for orientable canonical system of loops

	Non-orientable embeddings with a combination of boxes and cross-caps
	A lower bound for canonical decompositions

	Degenerate Crossing Number vs. Genus Crossing Number
	Introduction
	Our results
	Techniques and connections to signed reversal distance

	Preliminaries
	Loopless two-vertex embedding schemes
	Reversal distance and monotone cross-cap drawings

	The counterexample
	Perfect drawings for most two-vertex graph embeddings

	Universal families of arcs and curves on surfaces
	Introduction
	Our results

	Preliminaries and notations
	Unlabelled punctures
	Unlabelled punctures: Realizing pants and triangles
	Upper bounds
	Lower bounds

	Unlabelled punctures: Realizing pants decompositions and triangulations

	Labelled punctures
	Surfaces without punctures
	Small genus cases and labelled punctures: a small improvement

	Conclusion
	Summary of results and continuation
	Further research directions

	List of publications
	Bibliography

