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Introduction

0.1 Background

Even before the disruption of the field by neural networks, voice generation technologies found
their applications in various domains. From announcements made through loudspeakers in
train stations to instructions provided by GPS devices, speech synthesis allows for an ad-
ditional mode of interaction between users and computer systems. Voice generation from
textual input is a significant accessibility challenge in an increasingly digitalized world, en-
abling features like automatic website or books reading for visually impaired people [Latif
et al., 2020]. Synthetic voices has also gained increasing interest in the medical field, facilitat-
ing voice generation for individuals with laryngeal or physio-cognitive disorders [J.-X. Zhang
et al., 2021].

Despite recent groundbreaking progress in the naturalness of synthetic voices, these gen-
erative technologies face challenges in replicating the richness of natural human interaction.
Neural models, which dominate today’s synthesis systems, automatically learn to extract lin-
guistic regularities from extensive data corpora, enabling them to generate text sequences
never seen before. This statistical learning method has a dual nature: on one hand, it yields
plausible and intelligible synthesis, but on the other hand, it tends to erase the pervasive
irregularities found in natural speech. These occasional and sporadic variations contribute
significantly to the expressive character of human voices. Consequently, their absence quickly
leads to disinterest in synthetic voices, which represents a major obstacle to their integration
into interactive applications [Potdevin, 2020].

Learning to produce speech from text alone is inherently limited due to the normative
nature of orthographic transcriptions. Character sequences only report the linguistic con-
tent of the message, but lack the co-verbal aspect that takes an important role in human
communication [Streeck & Knapp, 1992]. During an interaction, an important part of the
message is actually conveyed by the intonation, which can either nuance or even go against
the transmitted linguistic content. Bolinger [1989] distinguishes between two forms of intona-
tion: emotions which refer to the mental state of the speaker and therefore are independent
of the linguistic content (i.e. paralinguistic content), and attitudes that indicate the speaker
position toward his/her message. Attitudes are thus characterized by an interaction between
the linguistic content and the speaker communicative intent. Paralinguistic content is further
impacted by speaker idiosyncrasies: speaker’s characteristics like age, education and social
background have been shown to impact speech production [Becker, 2014; Foulkes & Docherty,
2006; Resnick, 2012; Stuart-Smith et al., 2014].

Consequently, intonation is not determined solely by the linguistic content. Therefore,
neural synthesis frameworks have evolved to take this additional layer of variability into ac-
count: textual entries have been augmented with labels which are used to introduce biases into

1
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synthetic models. However, the variability of speech production and perception [Bachorowski,
1999], combined with the entanglement of linguistic and paralinguistic factors make the ex-
tensive expressive labeling of corpora very challenging. The main alternative proposed in the
literature is the implicit modeling of paralinguistic factors from the audio itself. More specif-
ically, neural architectures were proposed to extract paralinguistic representations from an
audio signal, once linguistic and speaker information are already modeled [Min et al., 2021;
Skerry-Ryan et al., 2018]. Nevertheless, these unsupervised representations add further in-
tricacy to neural models that are already challenging to interpret. The interpretability of
these systems is an issue for the control of these technologies in interactive environments,
as a deeper understanding of how neural models encode information is required to design
meaningful architectures [Zeiler & Fergus, 2014].

Obviously, gestures also play a role in conveying the co-verbal aspect of communication
during natural face-to-face interactions. This is one of the reason why virtual conversational
agents have become such an important part of interactive applications for more than 20
years [Cassell, 2000], in areas as diverse as customer services [Bolton et al., 2018] or health-
care [Laranjo et al., 2018]. If integrated successfully, embodied virtual agents introduce a sense
of presence [Biocca et al., 2001] which favors the engagement into the interaction [Potdevin,
2020]. The sense of presence is characterized by the importance given by one speaker to the
discussion partner in the interaction, and by extension the speaker importance given by the
discussion partner in return. Therefore, conveying this sense of presence requires emotional
capacities from the virtual agent, both in terms of active listening and expressively adapted
speech production [Potdevin, 2020]. This is the promise of the Theradia project [Tarpin-
Bernard et al., 2021], which aims to create a virtual agent capable of accompanying patients
undergoing cognitive remediation therapy from home. This agent will accompany patients
between exercises, giving them feedback tailored to their performance.

0.2 Research Aims

This thesis is part of the Theradia project, and focuses on the generation of verbal and co-
verbal behavior in this embodied virtual avatar. The expressive capabilities of this avatar are at
the heart of Theradia’s desire to offer personalized support, adapted to the patient’s emotional
state. A number of communication intentions have been highlighted as being important for
the avatar to be able to correctly accompany the patient in his exercises. These intentions
include (non-exhaustive list): “Comforting”, “Committed”, “Enthusiastic”, “Sorry”, etc. These
highlighted intentions focus on the transmission of contextual information in parallel with the
linguistic content of the message, and thus fall under the definition of attitudes from Bolinger
[1989]. Therefore, the explicit control of the expressive capabilities of this avatar, and more
specifically the modulation of these attitudes based on the linguistic content, is the end-goal
of this research.

To fulfill this goal, several experiments were performed in order to propose an audio-visual
expressive generative model from textual content, potentially augmented with attitude-labels.
Our main line of research toward this goal is the understanding of internal representations
computed by the proposed generative model. Specifically, we propose analytical methods to
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probe these representations, in order to exhibit the acoustic features encoded into these latent
spaces. We thus provide a data-driven interpretation of the specific task performed by each
neural layer of the studied models. This desire to make neural representations interpretable,
which contrasts with the concept of models as black boxes, has two main aims:

• Statistical learning performed by neural models constitutes a valuable source of infor-
mation on natural language, which is hidden within latent representations learned in
an unsupervised manner. The proposed probing of encoded information aims to un-
veil insights about the human speech production mechanisms from low-level phonetic
co-variations to high-level phonological organization of sounds, thus bridging the gap
between generative speech technology and speech science.

• The identification of features encoded in intermediate layers also enables the design of
more careful control mechanisms for neural models. First, the understanding of the
specific role of each layer allows us to envision the design of more meaningful sub-
tasks which eases the model training and grants explicit control of some features during
inference. Second, we show that highlighting acoustic features through the proposed
linear probing provides an explicit post-hoc control of those features, more respectful of
the natural covariations learned through statistical training.

Through our work, we aim to provide analysis tools that enable to interpret with greater
precision the underlying processes learned by TTS models. This knowledge is essential for a
better understanding of the improvements achieved by new models and for designing more
effective and meaningful models in the future. For this reason, we place particular importance
on the universality of the methods we propose.

0.3 Chapter Overview

Chapter 1 describes the main challenges of the training of neural text-to-speech systems, and
further explains the state-of-the-art architectures that are used in the following chapters.
A particular focus is given to the specificity of modeling expressivity in these architec-
tures. This chapter also emphasizes the necessary changes to the frameworks used to
evaluate these models, now that synthetic voices have reached such high standards in
terms of naturalness.

Chapter 2 establishes the baseline synthesis models we designed as the base-implementation
for expressive control. Two architectures are chosen for their prevalence in expressive-
TTS: Tacotron2 and FastSpeech2.

Chapter 3 explores our proposition of linguistic prosodic control through input data. We
propose a new segmentation process for training corpora to better account for the limited
capabilities of modeling long-term dependencies in recurrent neural networks. This seg-
mentation in shorter utterances is accompanied by the introduction of inter-utterances
linking punctuation marks to convey contextual information between utterances.



4 Introduction

Chapter 4 presents our method of linear probing to explore latent representations of TTS
models. This exploration reveals some of the underlying learning mechanisms of neural
TTS.

Chapter 5 turns the interpretation of internal representations provides by Chapter 4 into
explicit control mechanisms for highlighted acoustic features. We also show the benefits
of this post-hoc control through learned linear biases compared to explicit control.

Chapter 6 extends the prosodic control established in Chapter 5 to the control of explicit
expressive labels. We propose an auxiliary module for this control, which further modu-
lates the expressive bias based on the textual content. Our proposed module emphasizes
the benefits of taking the textual content into account when modeling attitudes.

Chapter 7 describes how this work was adapted to the audio-visual synthesis of a conversa-
tional agent for the Theradia project.
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Expressive TTS by Biasing the
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The state of the art presented in this section provides an introduction to the key concepts in
the field of neural speech synthesis: what are the main models for converting text into speech
(or Text-To-Speech, abbreviated TTS in this section)? What are the specific challenges of
expressive control? Can the evaluation frameworks follow the groundbreaking performances
of latest synthetic models? The goal of this chapter is to introduce the work I performed
during my PhD in relation to this literature.

5
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1.1 Neural End-to-End TTS Architectures

Neural TTS models are now ubiquitous in the speech synthesis area. As an extension of the
machine learning framework proposed by Hidden Markov Models (HMM)1, neural models
pursue the data-driven approach by extending the number of intermediate representations,
called hidden layers. Instead of relying on the careful extraction of features of interest for
the designed task, this multiplication of intermediate layers allows neural models to learn
sequence-to-sequence mapping from raw large-scale dataset, with minimum supervision of the
actual task performed by each neural layer. Indeed, the intermediate representations computed
by neural models are mostly structured to maximize the prediction accuracy of the model’s
output.

More specifically, neural TTS models follow the supervised deep-learning paradigm, which
means that models are trained to predict a target output given the corresponding input. Neural
models are composed of several stacks of thousands of trainable parameters that compute
intermediate differentiable operations. As a result, for any input x, the model is able to
return an output prediction ŷ = f(x), with f being the functions’ composition applied by
the neural network on the input x. In order to maximize the prediction accuracy of the
model, this prediction ŷ should be as close as possible as the target output y for the input
x. As a way to deal with memory constraints inherent to large datasets, during the training
of neural networks, the error L between the target output y and the prediction ŷ, called the
loss, is computed on limited sub-sets of inputs x, called batches. Because only differentiable
functions are used in the network, the individual contributions of every trainable parameter
of the network in the loss L can be computed. This loss gradient indicates how to update
the parameters of the network in order to reduce this loss. The training process is then
iterative, reducing the loss after each batch of input sequences. This overall training process
is usually performed via back-propagation, and is the basis of supervised-learning for neural
networks2.

Supervised deep-learning algorithms are inherently limited by the availability of training
datasets to tune trainable parameters. Yet neural approaches have outperformed most of
classical statistical human-designed predictive models in complex tasks where such datasets
are available. TTS is no exception: during the last two decades, rule-based and concatenative
synthesis3 have been mostly replaced by statistical approaches. HMM have showed to potential
of statistical learning for voice generation, but statistical approaches could not compete with
concatenative synthesis in terms of naturalness until neural models gained increased interest
in speech related tasks after 2015. The introduction of neural vocoders like WaveNet [Van
den Oord et al., 2016], which were able to generate high quality speech samples from compact
acoustic features like mel-spectrograms, marked the first step toward the transition from

1For a review of TTS technologies before neural networks, see: P. Taylor [2009], p.422-527.
2This process has been refined since its introduction in the 1980s, but only the main ideas are reported in

this manuscript for the sake of clarity.
3Concatenative synthesis constructs utterances from pre-recorded human speech samples. As a result, the

produced synthesis may sound very natural, provided that the recorded corpus covers enough unit combina-
tions. This method is still used in some commercial applications.
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HMM to neural architectures. These vocoders paved the way for the subsequent adoption of
neural models as Sequence-to-Sequence (S2S) architectures for generating high-quality mel-
spectrograms from character/phone inputs. S2S enhances the data-driven approach initiated
by HMM, by replacing decision trees by deep trainable hidden representations. Despite the
loss of interpretability of such neural models, this shift in paradigm allowed the production of
new speech samples that now compete with human recordings in terms of naturalness. This
section describes the specificity of neural TTS and the main architectures used in the literature.
Two models are given a particular focus for their ubiquity in the field: Tacotron2 [Shen et al.,
2018] and FastSpeech2 [Ren et al., 2021].

1.1.1 Choice of Representations

In neural TTS, models are trained to predict speech samples from a sequence of input sym-
bols. In practice, these are two sequences whose elements can be defined in several ways.
Input symbols are generally composed of a sequence of characters and/or phones, with the
potential addition of punctuation marks or any other type of annotations (e.g., prominence la-
bels [Nenkova et al., 2007; Stephenson et al., 2022], etc.). Each input symbol is encoded into a
representation vector, called an embedding, whose value is trained during the learning phase in
order to minimize the loss of the model. Phone input is usually preferred in the literature: the
phone sequence is an effective characterization of the sequence of acoustic targets to produce,
which eases the prediction process of TTS. As will be discussed in Section 1.2, the segmental
content itself is not sufficient to predict natural sounding speech samples, since paralinguistic
factors are poorly expressed in the textual sequence. Additionally, phonetic choices are already
tinged with stylistic [Adda-Decker et al., 1999] and sociodemographic factors [Stuart-Smith
et al., 2014], which challenges the adequacy of phonetic input as a description of what has to
be said, whatever of how it will be said. As an example, three types of phonological choices
in French were highlighted as age- and region-dependent [Brognaux & Avanzi, 2015]:

1. The deletion of schwas in monosyllabic grammatical words (“j(e) pense”) and at the
initial syllable of polysyllabic words (“il lui a d(e)mandé”)

2. The liaisons, which are inserted phonemes between the ending "r", "t", "n" or "s" of
a word and the first vowel of the next word. In French, liaisons may be mandatory
(“les-z-enfants”), forbidden (“Le train-/ arrive.”) or optional (“il est-(t)-attendu”).

3. The deletion of /l/ and /K/ in word-final obstruent-liquid clusters, such as in “pénib(le)”
or in the singular personal clitic subject pronouns, such as in “i(l) va”.

As a result, the use of phones as input of TTS models either biases the synthetic voice to-
ward a normative impersonal speech behavior, or requires the prediction of the sociophonetic
and stylistic variants to produce. In most TTS applications, a front-end phonetizer is used
to compute the Letter-To-Sound (L2S) transcription. The most common implementation of
such L2S front-end is a pronunciation lexicon (e.g., CMUDict) where each word is assigned
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with a phonetic transcription that represents its standard form, which often omits sociopho-
netic modulations. Alternative are found through more advanced phonetizers which integrate
contextual knowledge to compute pronunciation variations of words and linking sounds be-
tween words, either by rules (like eSpeak [Dunn & Vitolins, 2019] ) or using separately trained
neural networks [Yolchuyeva et al., 2019]. However, using a neural phonetizer only defers the
question of the stylistic bias in the prediction of the phonetic sequence.

The use of letters as inputs of neural TTS initially found little success, mainly due to the
poor performances reported on L2S conversion [J. Taylor & Richmond, 2019] as an initial step
of neural TTS. In opaque languages like French or English, the alignment between letters and
the phonetic sequence to produce is far from trivial [Bosse & Valdois, 2009]. Consequently,
neural TTS initially lacked a sufficiently robust mechanism to perform the alignment between
the input and output sequences. Attention mechanisms were able to alleviate this constraint,
as will be discussed in subsection 1.1.3.

As for output speech samples, they are usually encoded into mel-frequency spectrograms.
Mel-spectrograms are favored over waveforms for their smoother time-domain variations and
their invariance to phase, which makes the loss easier to compute. Mel-spectrograms are
computed as logarithmic transformation of the frequency dimension of the short-time Fourier
transform magnitude spectrogram. The logarithmic transformation is inspired from human-
perception of frequencies [Stevens & Volkmann, 1940]. As such, mel-spectrograms better
correlate with perceived differences in speech than the linear-spectrogram. Yet, the loss of
the phase information makes spectrograms’ inversion to audible waveforms challenging. The
Griffin-Lim algorithm [Griffin & Lim, 1984] was initially used to estimate the phase spectrum
from the magnitude one. This additional information makes it possible to reconstruct the
waveform very quickly. This solution is memory-efficient, but the quality of the predicted
audio signal is far from that of the original recordings. More complex architectures called
neural vocoders are now used to convert mel-spectrograms predicted by TTS models into
audio waveforms. These architectures are further described in subsection 1.1.6.

1.1.2 Corpora

As in any data-driven approach, the quality and the quantity of datasets play a crucial role in
the training of neural models. Neural TTS are usually trained on several hours of <text|audio>
pairs to achieve the best output quality. The main French TTS datasets available are summed
up in Table 1.1. Audiobooks are the most common sources of training data, since they provide
dozens of hours of relatively high-quality recordings, along with the associated text. The M-
AILABS dataset [Solak, 2019] provides aligned audiobooks recorded with Male and Female
voices in English, German, Spanish, Italian, Ukrainian and Russian on top of the French
corpus. These free public domain audiobook recordings are taken from LibriVox [Kearns,
2014] and are aligned for use in training speech recognition and speech synthesis models.
SynPaFlex [Sini et al., 2018] is an annotated version of the French Female Speaker Nadine
Eckert-Boulet (NEB), also seen in M-AILABS.
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Table 1.1: Main Publicly Available French TTS Datasets. AB: Audiobooks, PS: Parliament
Sessions, GU: Generated Utterances [Le Moine & Obin, 2020]. Years of writing are reported as
an indicator of the vocabulary used in corresponding resources.

Dataset Speaker Duration Expressive Labels Content Years

M-AILABS [Solak, 2019] Mixed 190h30m ✗ AB 1884-1964
SynPaFlex [Sini et al., 2018] Female 87h23m ✓ AB 1884-1964

SIWIS [Honnet et al., 2017] Female 10h13min ✓ AB + PS 1752-2015

Att-Hack [Le Moine & Obin, 2020] Mixed 30h ✓ GU 2020

Although audiobooks are valuable resources to train TTS models, several limitations of
such corpora need to be emphasized. First, public domain audiobooks are usually quite old:
the most recent books from M-AILABS were written in 1964. Therefore, the vocabulary used
may not fully cover most recent word usage. The diversity of contexts in which particular
words are found in the training corpus maximizes the potential for this word to be correctly
pronounced at inference. The absence of words such as the “super”, “cluster” “covid” or “chiller”
loanwords from English introduces systematic errors in TTS predictions. The combination of
more recent corpora like SIWIS [Honnet et al., 2017] mitigates this issue.

Second, audiobooks are recorded in a reading aloud setup in controlled environments,
most of the time by professional voice actors. While this setup maximizes the overall audio
quality an intelligibility of the recorded speech, reading aloud follows different patterns than
spontaneous conversational speech [Bailly & Gouvernayre, 2012; McFarland, 2001]. As a
result, synthetic voices trained on audiobooks corpora may sound unnatural in interactive
environments. Training voices on conversational speaking styles is an increasing demand of
the field [Adigwe & Klabbers, 2022; O’Mahony et al., 2022; Székely et al., 2019], supported by
the release of conversational datasets like 100,000 Podcasts from Spotify [Clifton et al., 2020].
If the integration of conversational datasets in TTS training would also be beneficial, to the
best of my knowledge, such datasets do not exist in French.

Finally, narrative contents of audiobooks introduce a large variety of contexts that are not
fully captured by the text transcriptions: direct speech are reported with ‘«»’ but the actual
talking character may be missing. Parenthetical elements may be confused with narrative
segments. The punctuation contributes to this disambiguation, but is not sufficient in most
cases. Additional annotations are required to further enrich the textual content of audiobooks.
The SynPaFlex [Sini et al., 2018] corpus is an attempt to enrich audiobook transcriptions with
character, prosody and emotion annotations. Expressive-labeled corpora [Honnet et al., 2017;
Le Moine & Obin, 2020] open the route toward supervised-training of paralinguistic features;
that will be further discussed in Section 1.2.

1.1.3 Recurrent Neural Layers to predict Temporal Sequences

The first examples of Sequence-to-Sequence (S2S) TTS models fully trained on <text| audio>
pairs are Tacotron [Y. Wang et al., 2017] and Char2Wav [Sotelo et al., 2017]. These architec-
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Figure 1.1: Generic Encoder/Decoder Architecture of neural TTS.

tures showed the potential of Recurrent Neural Networks (RNN) to model time dependencies
in speech signals. Both models follow the encoder/decoder architecture, illustrated in Fig. 1.1
(in dotted blue line): an encoder converts the input sequence into an abstract representation,
which a decoder reads to generate the corresponding sequence of acoustic representations:
Char2Wav predicts SampleRNN features [Mehri et al., 2016], while Tacotron is trained to
directly generate mel-spectrograms. RNNs are implemented in both the text encoder and
the audio decoder: 1) Bidirectional RNNs are used in the encoder in order to contextualize
the input sequence (characters for Char2Wav, phones for Tacotron), and 2) a uni-directional
RNN introduces causal temporal dependencies in the output sequence. Although alternative
structures have been proposed for the encoder and decoder, this architecture is still used in
most state-of-the-art systems [Kenter et al., 2019; Ren et al., 2021; Shen et al., 2020; Shen
et al., 2018].

1.1.3.1 The Role of Attention in Sequence-to-Sequence Alignment

The alignment of input/output sequences is an essential component of sequence-to-sequence
synthesis models. In the case of TTS, mel-spectrogram outputs are on average ten times
longer than the input sequences of phones4. Duration by phone widely vary between phone-
classes: as an example open-vowels tend to be longer than other vowels [O’Shaughnessy, 1981].
Vowel duration also varies with the speaking rate, while most consonants’ duration remain
stable across speech samples [Nick Campbell, 1992]. Consequently, these non-linearities of the
input/output alignment cannot be set by rules. It is therefore necessary to integrate into the
model a mechanism to predict the duration associated with each input phone and/or when
to switch from the current phone to the next. This mechanism is referred to as duration
model. The robustness of the duration model not only ensures the stability of the synthesis
(no skipping or repeating of words, no backtracking), but also the naturalness of the voice.

4Most common hyperparameters used to compute mel-spectrograms is an hop-size of 256 for an audio
sampling frequency of 22.05 kHz, which corresponds to ∼86Hz or ∼11.6ms by spectrogram frame. Average
duration by vowel measured on our experiments is ∼90ms.
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Statistical HMM TTS models used duration predictors trained from data to solve this
alignment problem. This alternative requires prior time-alignments of phones in the training
corpus in order to set the targets of the duration predictor during the training phase. Although
pre-trained automatic aligners are available for common languages5, explicit alignment raises
2 main issues:

1. The alignment of silences is unclear. Plosive consonants for example are preceded by a
silence caused by the glottal stop of the air-flow. This silence is either merged with the
previous word boundary in case of initial consonant, or it is found inside a word and is
therefore not supported by any symbol in the text-sequence.

2. There are no explicit alignment rules for orthographic inputs. In opaque languages,
several characters are needed to infer the correct pronunciation of the corresponding
phoneme [Bosse & Valdois, 2009]. In this case, how is the duration distributed between
the graphemes’ group?

Provided the establishment of some conventions and the pre-computation of the time
alignment on the corpora, duration predictors may also be implemented in neural TTS [Ren
et al., 2019; Yu et al., 2020]. These examples are discussed in Section 1.1.4.

In case of absence of explicit alignment, a recurrent attention network6 can be used as
an interface between the encoder and the decoder of the model. Following an iterative process,
the recurrent attention network computes a fixed-size vector for each new output frame, called
the context vector, which enables the decoder to locate itself in the input sequence, and thus
to generate the appropriate spectrogram segment [Bahdanau et al., 2014]. This mechanism
implements (at least) one Recurrent Neural Network (RNN) layer, which calculates a vector
of hidden states si for each output time step i. The encoder generates a sequence of vectors
h = {hj}Lj=1, where L is the number of tokens in the sentence to synthesize. For each output
frame of index i, the attention network computes a unique attention context vector, denoted
ci. This vector accounts for the importance given to each vector in the input sequence hj for
the generation of the current frame. ci is calculated by the sum of {hj}Lj=1, weighted by the
alignment weights αi,j , following formula. 1.1.

ci =

L∑
j=1

αi,jhj (1.1)

These alignment weights, denoted αi for time step i, depend on the hidden states of the
attention layer si, as well as additional parameters dependent on the chosen attention function.
These include context-based attention functions [Chorowski et al., 2015] and position-based
attention functions (mostly Gaussian Mixture Models (GMM) [Graves, 2013]). Since the

5E.g. Montreal Forced Aligner: McAuliffe et al. [2017].
6I refer to recurrent attention network in opposition with dot-product attention later proposed by Vaswani

et al. [2017]. Dot-product attention does not require recurrent neural networks.
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attention weights impact the prediction of the output mel-spectrogram, the attention layer is
trained through the spectrogram reconstruction loss.

1.1.3.2 Recurrent Attention-based TTS: Tacotron2

One year after its first version, Tacotron2 [Shen et al., 2018], an enhanced version of Tacotron
combined with the neural vocoder WaveNet [Van den Oord et al., 2016], set a new standard
by generating a voice that was, at the time, difficult to distinguish from a natural one (average
listening test score of 4.53/5, compared with 4.58/5 for a voice recorded under professional
conditions). In Tacotron2, illustrated in Fig 1.2a, the encoder (blue) adopts an approach sim-
ilar to the language models used in other natural language processing applications: the input
sequence (characters, phones or both) is transformed into a sequence of trainable embedding
vectors. The embedding layer encodes each character (or phone) in the database in a multi-
dimensional latent space. These embeddings then pass through three layers of Convolutional
Neural Networks (CNN) [Kalchbrenner et al., 2014] of limited span (two characters to the right
and left per layer), which introduce a form of local context into the embeddings. The out-
put of these CNN finally passes through a bidirectional Long-Short-Term Memory (bi-LSTM)
unit [Hochreiter & Schmidhuber, 1997; Schuster & Paliwal, 1997], which introduces a broader
contextualization, for example by coloring embeddings from the beginning of a sentence with
the presence of a question mark at the end of the sentence [Stephenson et al., 2020].

(a) Recurrent-TTS: Tacotron2 [Shen et al., 2018] (b) Transformer-Based TTS: FastSpeech2
[Ren et al., 2021]

Figure 1.2: Two examples of the main types of architectures in neural TTS. LSTM: Long-Short-Term
Memory, FC: Fully Connected, MSE: Mean Squared Error, FFT: Feed-Forward Transformer.
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The output of the encoder is then processed by the context-based attention [Chorowski
et al., 2015], which contributes to the monotony of the alignment path (avoiding skipping and
rollbacks). The decoding process (green in Fig 1.2a) is autoregressive: for each decoding step,
a new context vector is computed from the output of the encoder and from the previously
generated spectrogram frames (re-introduced through a bottleneck pre-net). The LSTM7 layer
uses this context vector to predict the next spectrogram frame. In the meantime, the hidden
state computed by the LSTM is used by the Stop Token Predictor to predict the end of the
generative process. Finally, once a first version of the spectrogram has been predicted, the
postnet computes a residual which is added to this spectrogram. This postnet implements
five 1-D convolutional layers in time domain, mainly to smoothen the predicted spectrogram
coefficients. The entire Tacotron2 model is trained with three losses, following the formula 1.2
(magenta in Fig 1.2a):

LTC = LS + LPS + LG (1.2)

with LTC the total loss of Tacotron2, LS the MSE spectral loss, LPS the MSE
spectral loss after the Postnet and LG the cross-entropy Gate Loss.

1. The Spectral Loss (resp. Postnet Loss) computes the error between the ground-
truth spectrogram and the predicted spectrogram before (resp. after) the postnet. This
dual evaluation of the spectral loss seemingly helps reaching convergence [Shen et al.,
2018] during training. The mean squared error is selected as the loss function because it
assigns equal importance to all frequency bands computed in the mel scale spectrogram.

2. The Gate Loss computes the error of prediction of end-of-sequence. During the training
phase, the model is stopped once the output sequence length matches the ground-truth
target (following the teacher-forcing training setup). But at inference, given the decod-
ing process is autoregressive, the length of the output sequence is not known in advance.
Instead, at each decoding step, the Stop Token Predictor, which is a 1-D linear projec-
tion, computes the probability of ending the sequence. During training, this probability
is set to 0 during the decoding process, expect for the last frame which should predict
1. This target is compared to the output of the stop token predictor via cross-entropy
to compute the Gate Loss.

The recurrent TTS framework embodied by Tacotron and Tacotron2 has been built on
since the original introduction of this model. Notably, Tacotron-based architectures have been
widely used in the expressive TTS field: Table 1.2 summarizes a selection of recent TTS models
based on the Tacotron architecture. The versatility of the recurrent architecture associated to
the attention interface, which is able to learn the S2S alignment in an unsupervised manner,
makes Tacotron-based models one of the main deep TTS paradigms [Triantafyllopoulos et al.,
2023].

7The LSTM layer is a type of RNN which implements a long-term memory unit to carry information
through longer sequences [Hochreiter & Schmidhuber, 1997].
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Table 1.2: Main Neural TTS based on Tacotron or Tacotron2 architectures. “emb”: embedding,
“ctrl”: control. ↑ and ↓ indicate increase and decrease respectively.

Reference Model Name Main Modifications Main Results
He et al. [2019] Monotonic Attention Monotonic attention path Avoid collapse and repetitions

Skerry-Ryan et al. [2018] Reference Encoder Implicit prosody emb ↑ Prosodic transfer
Klimkov et al. [2019] ✗ Phone-Level prosodic emb ↑ Prosodic transfer

Y.-J. Zhang et al. [2019] VAE Reference Encoder Projects prosody emb on VAE ↑ Disentanglement
Y. Wang et al. [2018] GST Disentanglement of reference emb ↑ Disentanglement
Raitio et al. [2020] Explicit Prosodic Encoder Utterance-Wise Encoder Ctrl of F0, energy, duration, spectral tilt
Mohan et al. [2021] Ctrl-P Explicit phone prosodic emb Ctrl of F0, energy, duration
R. Liu et al. [2021] ✗ Style Reconstruction Loss ↑ Style transfer
Valle et al. [2020] Mellotron Explicit prediction of Pitch & Rhythm Variety of style generation
Shen et al. [2020] Non-Attentive Tacotron Replaces attention by duration predictor ↓ Computation time, ctrl speaking rate

Hussen Abdelaziz et al. [2021] AV-Tacotron2 Predicts facial features from text Performances ≈ GT extracted features

1.1.4 Emergence of Self-Attention

1.1.4.1 Limits of Recurrent Networks

Despite the convincing results of Tacotron-based TTS, the use of RNNs raises several concerns.
Like LSTMs, whose schematics are shown in Fig. 1.3, a RNN computes hidden representations
of each element of a sequence as a function of all previous elements in the sequence (and of
all subsequent elements in the case of a bi-directional RNN [Schuster & Paliwal, 1997]). The
tth element of the sequence x , named xt in Fig. 1.3, is assigned an output ht, which depends
on the output ht−1 and on the memory state ct−1 of the previous step. The output hT thus
encodes a causal representation of xt<T . This method introduces a form of long-term context,
but it is sequential and therefore imposes long computation times. Moreover, training an RNN
on long-term dependencies can be tedious because of vanishing gradients [Hochreiter et al.,
2001].

Figure 1.3: Architecture of an LSTM unit [Hochreiter & Schmidhuber, 1997]. Source: https://blog.
octo.com/les-reseaux-de-neurones-recurrents-des-rnn-simples-aux-lstm/

https://blog.octo.com/les-reseaux-de-neurones-recurrents-des-rnn-simples-aux-lstm/
https://blog.octo.com/les-reseaux-de-neurones-recurrents-des-rnn-simples-aux-lstm/
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In order to mitigate these limitations, Li et al. [2019] proposed to replace RNN layers
by self-attention layers [Vaswani et al., 2017] in their model called Transformer-TTS. Self-
attention consists in the computation of contextualized embeddings by parallel linear projec-
tions and dot matrices-products (see Fig. 1.4). Each input token embedding (xi,1...xi,dmodel

)

– where dmodel is the dimension of these embeddings and i the position in the sequence – is
projected into three distinct spaces: the "Queries" Q, the "Keys" K and the "Values" V . The
linear projections are independent of the position of the embedding in the input sequence,
their coefficients are learned during training, and their dimension dk can be different from
dmodel. The product of the Q matrix and KT gives the E matrix of attention scores. Vaswani
et al. [2017] proposes a normalization of these attention scores by dividing by the square-root
of dk, the dimension of the projections on K and Q. By computing the softmax function per
row of this matrix, each input embedding is given a probability distribution associated with all
the elements in the sequence (itself included). The weighted sum of the rows of the "Values"
V by these probability distributions finally provides an in-context representation of the input.
Multiple intra-sequence dependencies can be captured thanks to several attention-heads. In
this case, each attention head can be specialized in one type of context (adjacent phonemes,
long-term context, punctuation, etc.).

Figure 1.4: Computation Process of Self-Attention Layers.
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The self-attention mechanism provides two major benefits compared to RNN:

1. The contextualization process is now parallel instead of sequential. As a result, all
the sequence is computed at once in the encoder during training and inference, which
drastically reduces the computation time (Transformer-TTS speeds up the training 4.25
times compared to Tacotron2 [Li et al., 2019]). Note that the Transformer-TTS decoder
remains autoregressive.

2. The dependency between two elements of the input sequence is directly computed in
the matrix E for all pairs of elements in the sequence, regardless of their distance from
each other. Doing so, the self-attention mechanism gets rid of the risk of memory loss
between distant elements of the sequence.

In Transformer-TTS [Li et al., 2019], the encoder and the decoder are implemented by
stacks of multi-head self-attention layers followed by Fully-Connected Networks (FC). The
recurrent attention is replaced by a dot-product cross-attention. The authors showed that
self-attention layers were able to replace RNN and CNN of Tacotron-based architectures, with
equivalent performances in terms of naturalness. Nevertheless, to achieve performance similar
to that of the Tacotron2, Transformer networks stack up a significant number of self-attention
layers (at least 6 to replace one LSTM layer). Transformer models are therefore more complex
and more difficult to interpret. The lack of insight into these complex models can impede
progress in designing more interpretable and effective architectures.

1.1.4.2 Transformer-Based TTS: FastSpeech2

FastSpeech [Ren et al., 2019] can be seen as a extension of the Transformer-TTS [Li et al.,
2019]. Self-Attention Layers are turned into Feed-Forward Transformer (FFT) blocks, illus-
trated in Fig 1.5a. The recurrent attention mechanism previously implemented in recurrent
attention-based TTS to compute the text-to-frame alignment at the interface between the
encoder and the decoder is replaced by a explicit duration predictor, which expands the input
sequence to match the length of the output spectrogram to predict. The decoding process is
thus informed of the entire sequence to produce and process this sequence in parallel, which
further increases the inference and training speed. This explicit duration predictor extracts
the alignment from pre-computed unsupervised attention paths learned by a pre-trained au-
toregressive model8. The explicit training of this duration predictor ensures the robustness of
the alignment, and enables the control of the speaking rate at inference. However, training
this model required the pre-training of an attention-based TTS.

FastSpeech2 [Ren et al., 2021], illustrated in Fig 1.2b, alleviates this issue by training
the duration predictor on pre-processed time alignments of the training corpus. Additionally,
FastSpeech2 implements two explicit prosodic predictors for fundamental frequency and en-
ergy respectively. Authors showed that the explicit modeling of prosodic features improved

8Ren et al. [2019] originally used the attention paths from a pre-trained Transformer-TTS, but Tacotron-
based models would work similarly.
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(a) Feed-Forward Transformer (FFT)
Block used in FastSpeech and Fast-
Speech2. Source: [Ren et al., 2019].

(b) Conformer Block used as al-
ternative to FFT: Source: [Gu-
lati et al., 2020].

Figure 1.5: Standard Transformer-Blocks used in neural models.

listeners’ opinion on the synthetic voice quality, while allowing the explicit control of these
features at inference. Fundamental frequency and energy are predicted for each spectrogram
frame. Fundamental contour is predicted from the inverse Continuous Wavelet Transform
(CWT) [Vainio et al., 2013] and energy is computed as the norm of the amplitude spectro-
gram frame. These three explicit prosodic losses (duration, fundamental frequency and energy)
are added to the mean absolute spectral loss which is used to train the model, following the
formula 1.3.

LFS = LS + Ldur + Lp + Le (1.3)

with LFS the total loss of FastSpeech2, LS the spectrum MAE loss, Ldur the MSE
duration loss, Lp the MSE pitch loss on CWT and Le the MSE energy loss.

Despite the additional constraint of the required pre-processing of duration, fundamental
frequency and energy prior to training, FastSpeech2 is particularly suited for real-life applica-



18 Chapter 1. Expressive TTS by Biasing the Text-to-Speech Mapping

tions: the robustness of the duration predictor, combined with the controllability provided by
explicit prosodic predictors ensures the overall quality of the produced synthesis. The parallel
decoding process endows FastSpeech2 with a very competitive inference speed9.

The performances of FastSpeech-based TTS are further enhanced by the replacement of
Feed-Forward Transformer (FFT) layers (Fig. 1.5a) by Conformer layers [Gulati et al., 2020]
(Fig. 1.5b). Similarly to FFT, Conformer combines the benefits of the multi-head self-attention
to model global context with the CNN to learn local interactions in the temporal sequences.
However, in the Conformer architecture, the convolution module is surrounded by two gated
linear units as introduced by Dauphin et al. [2017]. This configuration creates an information
bottleneck, which the authors hypothesize that it enables the model to concentrate on the most
significant features embedded in the data for computing local dependencies. This replacement
has been shown to benefit to TTS performances [Guo et al., 2021; Xu et al., 2023].

These performances established FastSpeech2 as one of the leading architectures among
neural TTS, as emphasized by the recurring use of this model in the literature (see Table 1.3).

Table 1.3: Main Neural TTS based on FastSpeech or FastSpeech2 architectures. “emb”: embedding,
“ctrl”: control. ↑ and ↓ indicate increase and decrease respectively.

Reference Model Name Main Modifications Main Results
S. Lei et al. [2022] Hierarchical Context Encoder Phrases & sentences emb from LLM ↑ naturalness
Łańcucki [2021] FastPitch F0 prediction at phone-level Ctrl F0, ↑ naturalness

M. Kim et al. [2021] Style-Tag-TTS Linguistic emb space Ctrl with Free style tag
Min et al. [2021] StyleSpeech Style adaptive scaling and shifting ↑ naturalness

Chien et al. [2021] ✗ Pre-trained speaker emb ↑ Voice conversion
Guo et al. [2021] Conformer-TTS Replacement of Transformer by Conformer ↓ MCD compared to FastSpeech

1.1.5 From deterministic to probabilistic speech modeling

Tacotron- and FastSpeech-based models stand as references in the TTS field. These two archi-
tectures have proved their performances during the latest Blizzard Challenge in 2023 [Perrotin
et al., 2023]: among the 18 participants of the Hub-Task, five acoustic models were based on
the recurrent layers following the Tacotron2 architecture, and six models on the FastSpeech2
architecture10 (including the best rated system for the quality assessment of the Hub-Task:
MuLanTTS [Xu et al., 2023]). However the architecture of both these models is determinis-
tic: at inference, the output spectrogram is unambiguous predicted from the input sequence
of characters or phones. This determinism goes against the one-to-many nature of the TTS
framework: the text sequence alone cannot assess unambiguously the acoustic sequence that
would be produced by a human speaker, as will be further discussed in Section 1.2. The
probabilistic dimension of speech has been absent in the previously discussed architectures
but has gained increasing attention in recent years within the field.

9Real-Time-Factor is 1.95× 10−2, 50 times faster than Transformer-TTS.
10Note that three of these six participants who used FastSpeech2-architectures used Conformer layers [Gulati

et al., 2020] in their acoustic model.
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Variational Auto-Encoders (VAE) [Kingma & Welling, 2013] have been proposed to model
the inherent variability of speech representations. VAEs shift the auto-encoder paradigm by
introducing the prediction of a probability distribution over a reduced latent space instead of
encoding inputs directly as coordinates. Provided the regularization of this reduced space by
additional constraints such as the KL-Divergence, the prediction of a distribution allows sam-
pling from this latent space at inference, generating various plausible examples instead of one
deterministic prediction. J. Kim et al. [2021] adapted this concept for TTS in their Variational
Inference for end-to-end Text-to-Speech (VITS). This model still follows the encoder/decoder
architecture, but with some adjustments: 1) the model is fully end-to-end, as it predicts wave-
forms directly from text, thus the decoder refers to the prediction of the waveform from VAE
latent features. 2) The encoder computes the prior distribution on the VAE space from the
input sequence of character or phones and the learned alignment. 3) The alignment is learned
automatically through the maximization of likelihood of the data parametrized with a normal-
izing flow. This conditional generative architecture maximizes the TTS potential to generate
a wide variability of intonations and rhythms11. Thus, VAE-based TTS have potential for
modeling expressive speech [Shirahata et al., 2023].

1.1.6 Neural Vocoders

As illustrated in Fig. 1.1, a consensus has been reached on the use of mel-spectrograms as
speech representations to predict from textual inputs. However, a mel-spectrogram is a highly
compressed representation of the original audio signal, in which: 1) the frequency dimension is
downsampled compared to a full spectrogram (usually 80 mel-frequency bins compared to 1024
in a full spectrogram amplitude using standard hyper-parameters); 2) the phase is missing12.
Predicting the waveform from the mel-spectrogram is therefore not a trivial process. That is
why most TTS models are usually associated with a vocoder, which performs the conversion
from the mel-spectrogram predicted by the TTS model into an audible audio signal. As
vocoders are also deep learning networks, they are called neural vocoders (see [Tan, 2023] for
a recent extensive review) . The most common are WaveNet [Van den Oord et al., 2016],
WaveRNN [Kalchbrenner et al., 2018], Waveglow [Prenger et al., 2019], LPCNet [Valin &
Skoglund, 2019], Parallel WaveGAN [Yamamoto et al., 2020], HiFi-GAN [Kong et al., 2020]
and more recently diffusion-based vocoders [Koizumi et al., 2023].

In practice, neural vocoders play a minor role in the rendition of prosody: the mel-
spectrogram predicted by the S2S model already encodes the phrasing and the intonation.
The performances of the neural vocoders only impact the audio fidelity of the reconstructed
waveform. For this reason, neural vocoders are not the main focus of this thesis. However,
in order to make an informed decision of which vocoder to use, we relied on the benchmark
computed by Govalkar et al. [2019]. In this study, authors compared the neural vocoders com-
monly used in the literature in terms of re-synthesis, i.e. the spectrogram is extracted from
the original recording, then converted back into an audio signal by the various vocoders. Note

11This potential is validated by the use of VAE-based acoustic models for six participants of the Blizzard
Challenge.

12A common mel-spectrogram representation thus applies a compression factor of 2048/80 = 25.
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Figure 1.6: Comparison of performances between main neural vocoders. Autoregressive models (resp.
parallel) are indicated in blue (resp. orange). Source: [Perrotin, 2021]

however that this comparison focuses on the ideal case of analysis-resynthesis, without taking
into account the possible perturbations of the spectrum when predicted by a TTS model.
Fig. 1.6 summarizes the compilation of the results of this study with twenty others studies
on neural vocoders. Perrotin et al. [2021] compared neural vocoders operating outside their
typical operating range and confirmed most of this ranking.

Vocoders can be divided into 2 categories: (1) Autoregressive vocoders, in blue, generate
the waveform one sample at a time, taking into account all previously generated samples;
(2) Parallel vocoders, in orange, generate the entire waveform from the complete spectro-
gram. Because of this difference, autoregressive vocoders are generally slower than parallel
vocoders, but achieve better signal quality at the output. The choice of vocoder is therefore
a compromise between the desired audio quality, and the acceptable inference time for the
desired application. It’s worth noting, however, that the audio quality of parallel vocoders
has been steadily improving in recent years, so they are expected to combine the best of both
categories in the short to medium term. As an example, in the Blizzard Challenge 2023 [Per-
rotin et al., 2023], 16 out of the 18 participants used a parallel vocoder (10 HiFi-GAN [Kong
et al., 2020], 3 BigVGAN [S.-g. Lee et al., 2023], 2 Waveglow [Prenger et al., 2019] and 1
StyleMelGAN [Mustafa et al., 2021])13.

Neural vocoders have mainly been used in TTS following a two-stage generation pipeline
(S2S-TTS + Vocoder), replacing signal-based vocoders such as Harmonic+Noise models [Stylianou,
2001] or STRAIGHT [Kawahara et al., 1999]. In practice, when two models are cascaded, they
can be trained separately, potentially on different corpora. In the case of TTS and vocoders,
this distinction is valuable, since vocoder training datasets do not require the corresponding

13The remaining 2 participants used FastDiff [Huang et al., 2022] and a joint acoustic model and vocoder
training.
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text alignments. As such, vocoders can be trained separately on wider audio-only corpora
covering large range of variation of phonation and articulation. They are widely considered
as universal, i.e. speaker- and language-independent. This two-stage pipeline then enables
the same universal vocoder to be combined with any newly trained TTS in order to generate
speech samples.

However, audio quality ratings by human listeners tend to favor the audio samples gener-
ated by vocoders that have been fine-tuned on mel-spectrograms predicted by the TTS model
for targeted languages and speakers [Kong et al., 2020]. This result indicates that fine-tuning
the vocoder on predicted mel-spectrograms reduces the perceived spectral error which remains
after the TTS training. The training of joint text-to-waveform models is a step further to this
direction [Lim et al., 2022; Miao et al., 2021; Ren et al., 2021]. This procedure maximizes the
perceived audio quality of synthetic speech, at the expense of the intermediate computation
of human-interpretable representations like mel-spectrograms. This joint training makes the
TTS comparison with other models harder, since changes in performances cannot be solely
awarded to the modifications of the acoustic model. Therefore, joint training is most relevant
once TTS and vocoders architectures are fully settled. Thus, joint training was not explored
in this thesis.

1.2 Expressive Synthesis

Despite the progress in naturalness of synthetic voices reported for neural TTS models in
Section 1.1, expressive voice control remains a major challenge in the field. Indeed, speech
generation from text is a one-to-many problem: text alone is not enough to determine uniquely
the prosodic and acoustic structure of the sentence to be pronounced. The speaker’s char-
acteristics (age, gender, social background, etc.) [Becker, 2014; Foulkes & Docherty, 2006;
Resnick, 2012; Stuart-Smith et al., 2014], his/her physical, mental and emotional state as
well as his/her communication intent are numerous factors that have a strong effect on the
phonological and phonetic structure of the utterance, in particular its intonation [Cruttenden,
1997; Wichmann, 2000].

While identifying and characterizing speakers is a relatively simple task, and has already
been done on most corpora available, unambiguously determining the speaker’s communicative
intention and/or mental state is far more difficult. The influence of the paralinguistic context
(intent of communication, mental state, etc. . . ) on the speech production, referred to as
style in the literature, is loosely defined. Speaking styles are expressed differently by different
speakers, and may be perceived differently by different listeners [Bachorowski, 1999]. This
challenge in the interpretation of paralinguistic cues also comes from the entanglement between
intentional intonations given by the speaker to convey additional context to the semantic
content of the text, and the speaker underlying knowledge and understanding of his/her role
in the communication process [Brown et al., 1980].

This section presents the notion of expressive style in neural TTS. This term will be first
defined in subsection 1.2.1 in the scope of the contributions presented in the following chapters
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of this manuscript. The adaptations of TTS to take this additional layer of variability into
account will be further described in subsection 1.2.2. A particular focus will be given to
extensive evaluation of stylistic representations in subsection 1.2.3.

1.2.1 Various Layers of Expressive Contributions

In speech production, acoustic realizations are the combinations of numerous contributions,
illustrated in Fig 1.7. The cognitive processes in the speaker that are influenced by these
factors are beyond the scope of the presented manuscript. Thus I will only discuss the effects
of the most prominent constraints to speech production, with regards to the TTS framework.

Figure 1.7: Simplified View of the Multiple Contributions to Speech Production

1.2.1.1 Definition of Attitudes

First and foremost, the actual message transmitted by the speaker imposes the sequence of
phones to be produced in order to make the message intelligible to the listener. Moreover,
intonation and rhythm are, to a certain extent, constrained by the phonological organization
of the language [Ladd, 2008]. In some languages, stress may be distinctive for (at least certain)
phones, which makes the correct intonation a requirement for phone intelligibility (see [Maeda,
1976] for American English). In other languages – as in French –, stress is not distinctive at
phone-level but contributes to the naturalness at word and utterance-level. As an example,
accentuation of the final syllable of a word may indicate a word demarcation instead of a
deliberate prominence ("bordures" VS "bords durs"14). As a whole, this encoding of textual

14Example from [Vaissière, 2002]
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content and punctuation by intonation and rhythm, referred to as linguistic prosody, should
be captured by statistical learning from textual inputs through prosodic regularities found in
the training corpus.

Conversely, paralinguistic prosody requires specific considerations that are discussed
below. Obviously, speaker variability plays a role in the speech production. On top of the
sociodemographic factors already discussed, attitudes may affect intonation. Bolinger [1989]
distinguishes between emotions (“how you feel when you say”) and attitudes (“how you feel
about what you say”) that more intricately depend on the message. This distinction is further
discussed by Wichmann [2000] who identified two types of attitude15: 1) attitudinal into-
nations which are related to the speaker interpretation of his/her role in the communication
process, and 2) propositional attitudes which reflect the speaker position with regards to
what he/she is talking about. Thus, propositional attitudes convey contextual information
that the speaker deliberately transmits to the listener for communicative purposes.

1.2.1.2 Application to TTS

The literature on expressive control of TTS generally refers to the control of paralinguistic
prosody as style control, without distinction between emotions, attitudinal intonations and
propositional attitudes. Without further specification, a confusion remains as to the exact
definition of the expected scope of such control. As an example, the corpus Att-Hack [Le
Moine & Obin, 2020] is specifically recorded to analyze attitudinal intonations, which the
authors also call social attitudes. The confusion between emotions and propositional attitudes
is further induced by the choice of labels commonly used to describe propositional attitudes,
which characterize the planned communicative intent by the emotion induced to the listener
("comforting", "pleading", etc.). Moreover, attitudes are usually inferred by the listener but
are used to describe the position of the speaker toward his/her message [Bolinger, 1989].

In the scope of TTS applications, the modeling of these styles is a key factor to favor
engagement in the interaction [Potdevin, 2020]. Nonetheless, engaging with a synthetic voice
is inherently limited when compared to human interactions, as the synthetic speaker’s com-
municative intentions are primarily directed towards achieving its assigned objectives (encour-
aging longer interactions for social bots, responding as efficiently as possible to a request for
voice assistants, etc.). Thus, we believe that the modeling of propositional attitudes should
be given a primary focus in expressive TTS.

However, the identification of the individual impact of each type of paralinguistic contri-
bution to the prosody is a challenging task, as the three presented layers may interact [Brown
et al., 1980]. As an example, the absence of low endpoint in the pitch contour may be perceived
as a polite indication of the speaker’s willingness to keep the speaking-turn, or may be seen
as uncertain16. Additionally, some attitudes may be conveyed by the mismatch between the

15Wichmann [2000] also identified emotions as a contributing factor of speech production, which she referred
to as expressive intonations.

16Example from [Wichmann, 2000]
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content and the intonation [Knowles, 1987]. The understanding of such attitudes is therefore
harder since the recognition of such mismatch requires the prior identification of the normal
association between intonation and content. The entanglement between the described layers
of expressiveness is therefore a challenge to the expressive annotation of corpora.

External environmental conditions may also impact speaker intonation. As an example,
speakers adapt speech production to increase intelligibility in adverse conditions. This is
known as the Lombard effect, extensively studied in the literature [Hazan & Baker, 2011;
Junqua, 1996; Krause & Braida, 2004]. The specific challenge of this adaptation is the con-
sideration of an auditory feedback in the generation process. Such an example of a listening
TTS is the Lombard-TTS architecture [Novitasari et al., 2022]. In the following, expressive
control is nevertheless discussed in quiet environments.

1.2.2 Attitude Modeling in TTS: Combination of Biases

The main issue with the modeling of expressive styles in TTS is the expressive tagging of
corpora. As explained in Section 1.1, the training of neural TTS follows a supervised-learning
framework: the model is trained to predict the target speech given the corresponding textual
input. We have already mentioned how this textual input may not be sufficient to explain
the produced speech. Therefore, the most direct way to augment this input with the required
nuances is the introduction of additional inputs to the model, in a way similar to the "Speaker
ID" in Fig.1.1. This enhanced training setup thus requires access to expressive-labeled corpora.
But, as explained in the previous section, the entanglement of expressive layers limits the
extensive labeling of recorded speech. Consequently, two approaches co-exist in order to
account for the accessibility of expressive labels: supervised and unsupervised style modeling.

1.2.2.1 Supervised Style Modeling with Labels

With access to style labels, the supervised learning of expressive contribution is equivalent to
learning the mapping between these labels and the corresponding acoustic modulations. This
training setup is even more simplified in parallel datasets, in which only the expressive label
(attitude, speaker, etc.) varies between recordings. As an example, speakers are relatively
easy to identify, if not already labeled in most available recordings. For this reason, speakers
are mostly modeled explicitly as additional inputs of neural TTS [M. Chen et al., 2020;
Skerry-Ryan et al., 2018; Y. Zhang et al., 2019]. More specifically, a set of trainable speaker
embeddings are learned alongside the phone or character embeddings. This speaker embedding
is combined to the character or phone embeddings via addition or concatenation, often after
the text encoder. Multi-lingual TTS models follow the same policy with language IDs [Y.
Zhang et al., 2019].

Even though attitudes and emotions may be harder to identify in pre-recorded corpora, this
challenge may be by-passed by explicitly recording acted corpora. The styles requested of the
speaker are then used directly as labels, introducing Emotion/Style IDs as additional inputs
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of the TTS [T.-H. Kim et al., 2020; Y. Lee et al., 2017]. Although this setup achieves state-of-
the-art performances, the supervised training of a limited set of speaker or style embeddings
raises two major issues:

1. This setup limits inference to the labels seen during training. Speaker/style embeddings
are trained as a lexicon of categorical vectors which bias the decoder toward the style to
apply. Without further regularization, this expressive embedding space is not ensured to
be continuous, which prevents the inference with unseen pseudo-styles sampled from this
space. Note that this issue may be partially mitigated for speaker embeddings by the
introduction of pre-trained speaker embeddings from speaker recognition or conversion
tasks[Chien et al., 2021; Jia et al., 2018]17.

2. The explicit recording of acted corpora requires controlled recording conditions, which
is costly to set up, and may not scale to interactive natural dialogues, in which speaking
styles are more nuanced and less caricatured.

3. Speaker labels are more often than not correlated to channel information. The specificity
of recording material used for each speaker is thus simultaneously learned by speaker
embeddings. This entanglement of speaker and channel information results in varying
voice quality among synthesized speakers.

1.2.2.2 Unsupervised Prosodic Representations

As a way to overcome the limitations of supervised expressive training of neural TTS, implicit
approaches were proposed to encode the residual information left when text and speaker were
already taken into account. On of the most decisive breakthrough in that regard is the Refer-
ence Encoder proposed by Skerry-Ryan et al. [2018]. This auxiliary neural module implicitly
extracts a fixed-size vector which encodes the utterance-wise paralinguistic prosody of a ref-
erence audio signal. The summary vector is called reference embedding. The architecture of
this reference encoder is illustrated in Fig. 1.8a. Skerry-Ryan et al. [2018] showed that this
reference embedding could be used to achieve prosodic transfer toward the reference audio, in
particular with non-matching textual contents.

This proposition of unsupervised training of prosodic embeddings from audio sequences
enabled various breakthroughs in expressive modeling for TTS. Hsu et al. [2019] addressed
the mentioned limitations of learnable speaker embeddings by introducing two classifiers on
top of the reference encoder, following the architecture described in Fig. 1.8b. Through the
use of adversarial-training, authors showed that the reference embeddings were able to learn
various levels of information, including speaker and recording conditions. Nonetheless, the
entanglement of paralingusitic features encoded into these reference embeddings needs to be
addressed in order to envision these implicit representations as controllable biases in TTS.

17D-vectors [Variani et al., 2014] and x-vectors [Snyder et al., 2018] are used as speaker representations in
this case.
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(a) The Reference Encoder architecture.
Source: [Skerry-Ryan et al., 2018].

(b) Adaptation of the Speaker Embedding Layer with Adversarial Training. Speaker and residual
encoders both follow the same architecture as the Reference Encoder. Source: [Hsu et al., 2019]

Figure 1.8: Integration of Audio References as TTS Inputs

1.2.2.3 Regularization of the implicit Prosodic Embeddings

The introduction of the reference encoder provides the opportunity to model paralinguistic
prosody without the need for explicit expressive labels. However, the initial architecture pro-
posed by Skerry-Ryan et al. [2018] requires an audio reference to constrain the output prosody.
Such reference is not always available during inference, which is the reason why researchers
have tried to enhance this neural layer in order to automatically structure these prosodic spaces
through the extraction of meaningful directions. Y. Wang et al. [2018] proposed the Global
Style Tokens (GST) architecture, illustrated in Fig. 1.9. The GST layer learns a limited set
of utterance-wise style tokens (10 in the original implementation) which are supposed to learn
disentangled expressive features from the reference embedding. During training, an attention
layer computes the mixture of global tokens which composes the style embedding used to bias
the output of the text encoder. During inference, the audio reference may be replaced by any
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Figure 1.9: Integration of the Global Style Tokens layer in the TTS pipeline. Source: [Y. Wang et al.,
2018]

hand-crafted mixtures of tokens. Similarly, Y.-J. Zhang et al. [2019] proposed a dimensional
reduction of the reference embedding through a Variational Auto-Encoder (VAE). The authors
showed that expressive features like mean-pitch, pitch variations and speaking rate could thus
be controlled by sampling in the VAE latent space along individual dimensions.

Both propositions enable the expressive control during inference without the need for audio
reference, assuming the post-hoc understanding of features encoded in the learned dimensions.
Yet, the post-hoc exploration of such loosely constrained prosodic spaces may be quite costly:
van Rijn et al. [2021] studied the controllability of the GST space [Y. Wang et al., 2018]
through human sampling to reach a desired style. Although they found that participants
managed to achieve the target style – which was recognized by independent listeners – this
procedure is inherently model-dependent and requires several dozens of human participants.
Therefore, this method cannot be applied in most real-life cases.

Sparse expressive labels have been shown to ease this exploration of prosodic embedding
spaces. Sorin et al. [2020] visualized the reference embedding space with Principal Component
Analysis (PCA) and found that distinct styles were projected in clusters in the first dimensions
of the reduced space, even if these style labels are not exploited during the training. These
findings advocate for endowing the reference encoder with the capability to learn prosodic
representations disentangled from the textual content. These style vectors can then be used
to control the expressiveness of synthesis at inference. Wu et al. [2019] showed that only
5% of labeled data were sufficient to train a Tacotron2-GST model with constrained tokens:
the authors added a categorical cross-entropy loss to impose the global tokens mixture on a
portion of the dataset. They found that each token thus learned one particular style that
could be used during inference.

The post-hoc analysis of unsupervised paralinguistic embeddings offers a promising means
of combining the best of both worlds, since the identification of meaningful directions in the
unconstrained (or loosely constrained) embeddings finally provides an interpretation of the
features encoded into these neural representations. The understanding of these factors is
crucial to turn these unsupervised latent spaces into effective control interfaces, while taking
advantage of the extrapolation capabilities of continuous unsupervised representations.
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1.2.3 Exploration of Neural TTS Embeddings

Despite the relative success of the presented methods of bias introduction to capture and
control the numerous degrees-of-freedom of expressiveness in speech, little is known about
the specific features learned by these internal representations. The difficulty of disentangling
attitudes in natural speech recordings is a burden to the objective analysis of the correlation
between acoustic cues and expressive styles. The training of specific attitude embeddings –
either in a supervised or unsupervised manner – provides a way to analyze style productions
individually from a statistical perspective. The better understanding of neural embeddings
thus represents a step forward toward the use of speech technologies as a statistical analytic
tool for speech sciences, as will me demonstrated in Chapter 4. Moreover, the understanding
of intermediate computations performed by neural layers is required for designing more careful
control methods for neural architectures, as illustrated in Chapter 5.

1.2.3.1 Probing Embeddings in Other Fields

Although the probing of features encoded in internal embeddings of neural models remains
quite rare for TTS models, enlightening work from other fields has shown the benefits of a
closer analysis of these intermediate representations. Zeiler and Fergus [2014] have shown
that successive CNN layers trained on image classification learned to recognize more and
more complex patterns in input images. The finer understanding of the task performed by
each layer helped the authors to design a more thoughtful architecture of their model, resulting
in better performance in their recognition task. In the field of Neural Machine Translation,
Bau et al. [2019] identified the neurons which encode gender and tense. They showed that
a bias on these neurons could provide control of these categorical features when translating
between languages in which gender or tense are implicit. Similarly, Yang et al. [2021] exhibited
directions in Generative Adversarial Network (GAN) latent space for image generation that
encode the lighting of scenes, types of room or layouts (see Fig. 1.10a). They moreover show
that the control of the room lighting through biases along the found direction requires lights
to be switched-on: like pauses and speech rate, categorical and continuous control of desired
dimensions are naturally bounded.

In the field of audio signal analysis, Vaidya et al. [2022] and Wells et al. [2022] have shown
how phonetic and acoustic features were represented in successive layers of self-supervised
neural models like wav2vec [Baevski et al., 2020; Schneider et al., 2019] and HuBERT [Hsu
et al., 2021] (see Fig. 1.10b). They found that middle and end layers best encode high-level
phone and word features respectively, while first layers encode low-level spectral features.
These findings indicate which intermediate representations to use in sub-tasks depending on
the type of information needed.
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(a) Causal Control of lighting in closed room with GAN net-
work. Source: [Yang et al., 2021].

(b) Probing by layer of speech units in Self-Supervised Audio Embeddings.
Source: [Vaidya et al., 2022].

Figure 1.10: Examples of Exploration of Intermediate Embeddings in the Literature.

1.2.3.2 Analyzing Embeddings in TTS

In comparison with the abundant literature on neural TTS, relatively few studies actually
took a closer look at the features encoded into intermediate embeddings. Table 1.4 gives a list
of such studies I am aware of, with a focus on work exhibiting specific features or exploring
latent spaces with innovative methods. Three types of representation emerge:

• Phone and Character embeddings: As atomic building units of TTS systems, phone
and character embeddings play a central role in the presented architectures. However,
little is known on how these representations are structured, how they relate to each
other and what other features or units they encode if any. Internal representations of
orthographic inputs sequences were found to encode corresponding phonemes in a French
Tacotron [Perquin et al., 2020] (see Fig. 1.11a). Although that study only provides
qualitative observations of the phonetic space, it constitutes a first step into better
understanding TTS embeddings.
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Reference Baseline TTS Granularity Comb Features Found Sampling in latent space
Perquin et al. [2020] Tacotron Character ✗ Phonetic ✗

Jia et al. [2018] DeepVoice Speaker ⊕ Gender Hand crafted pseudo-speakers
Skerry-Ryan et al. [2018] Tacotron Speaker / Style ⊕ ✗ ✗

Hsu et al. [2019] Tacotron2 Speaker / Style ⊕ Gender / Noise conditions ✗

Shin et al. [2022] Tacotron2 Speaker / Style + ✗ Unseen Style Tag applied
Y. Wang et al. [2018] Tacotron Style + Pitch / energy / speed Hand crafted GST mixtures

Wu et al. [2019] Tacotron2 Style + ✗ ✗

Y.-J. Zhang et al. [2019] Tacotron2 Style + Pitch / speed Interpolation in VAE space
Sorin et al. [2020] Tacotron2 Style ⊕ ✗ Centers of reference emb

M. Kim et al. [2021] WaveGAN Style ? ✗ Unseen Style Tag applied
Tits et al. [2021] DC-TTS Style ⊕ eGeMAPS Human sampling

S. Wang et al. [2017] ✗ Speaker ✗ Identity / Gender ✗

Table 1.4: Various granularity of Embeddings Analysis in the TTS Literature. "Comb": Combination,
⊕: Concatenation,+: Addition.

• Speaker embeddings: S. Wang et al. [2017] have shown that speaker embeddings
learned for speaker verification encode speaker identity and gender, but also speech
content and channel information, which are likely to interfere with the linguistic content
encoded by the text encoder. These pre-trained speaker embeddings from verification
tasks have been successfully used in TTS as a way to mitigate the limitation to seen
speakers during inference [Jia et al., 2018].

• Style embeddings: As a method to explore acoustic features in utterance-wise style
representations, Tits et al. [2019] and Tits et al. [2021] proposed to identify mean acoustic
parameters by utterance in reference embeddings. Their method consists of exhibiting
directions in the latent space corresponding to continuous acoustic parameters variations,
as illustrated in Fig. 1.11b. They found high correlations between acoustic parameters
measured on the audio and predicted from the latent space (e.g., R=0.72 for fundamental
frequency median). Although this analysis is motivated by the desire to create an
interpretable style control interface, the authors have not used this identification of
acoustic parameters in their proposed interface.

Similar methods were used by Cho et al. [2023] to track articulatory trajectories in self-
supervised audio representations. They trained linear predictors from embeddings extracted
from various state-of-the-art self-supervised learning (SSL) models (wav2vec [Baevski et al.,
2020], HuBERT [Hsu et al., 2021], etc.) and computed how accurate the feature predictions
were from each model. This linear probing method is an interesting approach to investigate
the variety of features potentially encoded into neural embeddings, that we also employed in
our work in Chapter 4.
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(a) t-SNE visualization of character embeddings contextualized by the
Tacotron encoder. Source: [Perquin et al., 2020].

(b) Expressive Latent Space annotated with directions of variation of
acoustic features. Source: [Tits et al., 2019].

Figure 1.11: Visualization of TTS embeddings at character-level (left) and expressive utterance-level
(right).
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1.3 Evaluation

Neural TTS models have reached such high standards that the speech they generate is difficult
to distinguish from natural voice. In 2018, Shen et al. [2018] reported that their Tacotron2
model had already reached Mean Opinions Scores (MOS) of 4.53/5 for speech naturalness,
compared with 4.58/5 for a voice recorded under professional conditions. In latest Blizzard
Challenge 2023, two models achieved MOS comparable with the natural voice on the quality
assessment of the Hub Task [Perrotin et al., 2023]18. Even more surprising, four models were
judged statistically closer to the reference speaker than the natural speech in the speaker
similarity evaluation of the Spoke Task.

These performances question the evaluation of synthetic models: are common experimental
setups (summarized in Table 1.5) suitable for assessing such subtle nuances between models?
How does the wording of instructions given during perceptual tests affect listeners judgment?
What role does objective evaluation play in the assessment of synthetic voice quality? This
section discuss the evaluation of synthetic models and their comparison to natural voices.
Objective and perceptive evaluations are discussed in subsection 1.3.1 and subsection 1.3.2 re-
spectively. The limitations of both types of evaluation question the evolution of the evaluation
framework: we discuss our thoughts on this challenge in subsection 1.3.3.

Table 1.5: Most common evaluation metrics of synthetic voices in the literature.

Evaluation Metric Abbreviation Scale Goal

Objective

Word Error Rate WER [0; 100] Intelligibility
Mel Cepstral Distortion MCD [0; + inf] Averaged Comparison with Ref
Mel Spectral Distortion MSD [0; + inf] Averaged Comparison with Ref
Mean Squared Error MSE [0; + inf] Comparison with Ref on specific feature
Mean Absolute Error MAE [0; + inf] Comparison with Ref on specific feature
F0 Frame Error rate FFE [0; 100] Pitch errors on voiced frames

Subjective

Mean Opinion Score MOS [1; 5] Absolute Likert Scale
MUSHRA MUSHRA [0; 100] Comparative Likert Scale
Comparative MOS CMOS [−3; +3] Preference Scores
AB(X) Preference AB(X) Binary ratio Preference

1.3.1 How to objectively evaluate synthetic speech?

In the supervised deep-learning protocol, objective metrics are necessarily used in order to
compute the training losses of neural models. All TTS models are trained in order to minimize
(at least) the error between the target and the predicted output spectrograms (resp. waveforms
in case of fully end-to-end text-to-wav models). However, the optimization of this spectral
loss does not always correlate with better perceptual judgments. This may be explained by
a few factors: 1) the range of variations of objective measurements may not be perceptible
by non-expert listeners. 2) most models are trained under the teacher-forcing method. This

18This result is mitigated by Perrotin et al. [2023]: a MUSHRA was performed with the best models, which
exhibited significant differences between the natural voice and the synthetic models.
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means that during training, model’s predictions are partially replaced by ground-truth values
when re-injected in the model19. As a result, training losses are not evaluated in the same
context as will be experienced at inference time. This mismatch between losses and perceptual
evaluation is an issue for reproducible training of TTS models. The minimization of training
losses does not guarantee that the model has reached its best perceptual quality, which also
prevents the use of early-stopping [Prechelt, 2002]. Training losses may not provide significant
insights into the perceptual quality of TTS models, and are thus mostly not reported in the
literature.

The objective evaluation of the synthesized test set is not trivial either. Most of the met-
rics reported in the literature compute a difference between two stimuli, generally between the
model’s prediction and the corresponding ground truth. This setup evaluates synthetic voices
on the task they have been trained on. The recorded voice is considered as the best achievable
quality which the synthetic voice should mimic. However, as described in Section 1.2.1, speech
can take many forms depending on the context, the speakers or their communicative intent.
The evaluation of isolated sequences in comparison with an arbitrary reference cannot fully
assess the quality of the synthesized speech. Nonetheless, objective measurements can com-
plement perceptual ratings as a quantitative evaluation of the underlying factors of subjective
judgments.

1.3.2 Perceptual Assessment of Synthetic Voice

The most commonly-used perceptual metric is the Mean Opinion Score (MOS) of speech
naturalness. MOS tests consist in asking participants to rate individual stimuli on a half-point
or full-point scale between 1 (very poor) and 5 (excellent) on a Likert Scale [van Heuven & van
Bezooijen, 1995], and averaging these ratings over several stimuli to evaluate each synthesis
system. Evaluating the naturalness of a voice involves paying attention to several aspects: are
the phonetics correctly pronounced? Is the voice expressive or monotone? Is the spectrum
similar to that of a human voice? Therefore, the underlying factors of people’s ratings of voice
naturalness are numerous: clarity and intelligibility play an important role, but also accent
and tone [Shirali-Shahreza & Penn, 2023]. Clark et al. [2019] demonstrated that the duration
of the stimuli also impacts perceptual judgments: longer speech forms likely provide additional
linguistic context which helps participants to build more precise expectations [Latorre et al.,
2014].

The ambiguity of participants’ ratings is further reinforced by the lack of precision of the
instructions given by researchers in their evaluation setup. Kirkland et al. [2023] reported
that most studies published in Interspeech and SSW papers in the 2021-2022 period do not
describe their evaluation setup in a reproducible manner. While this does not strictly indi-

19As an example, in Tacotron2 training [Shen et al., 2018], the end of sequence is triggered when the
generated spectrogram reaches the length of the target, instead of using the end of sequence predictor. Ad-
ditionally, ground-truth mel frames are passed through the prenet instead of predicted frames. Similarly for
FastSpeech2 [Ren et al., 2021], predicted prosodic features are replaced by ground-truth values during the
training.
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Figure 1.12: The webMUSHRA interface: several stimuli are displayed simultaneously. The reference
is explicitly given, and also hidden among the stimuli. The hidden reference provides an example
of optimal stimulus. The condition labels are hidden during the experiment. Note that the wave-
form displayed in this example is not a speech recording and only stands for illustration purposes.
Source: [Schoeffler et al., 2018]

cate that experiments were not designed carefully, it surely hints that not enough attention is
given to the use of MOS in TTS assessment. Moreover, experimental factors like the rating’s
scale [Kirkland et al., 2023] and wording [O’Mahony et al., 2021] have been found to signif-
icantly impact participants ratings of naturalness. These findings question the relevance of
naive MOS as a perceptual metric for synthetic speech evaluation.

Comparative evaluation setups like Comparative MOS (CMOS) and MUSHRA [Interna-
tional Telecommunications Union, 2003] present listeners with a slightly more precise task.
Synthetic voices are here evaluated in comparison with each others or against a natural refer-
ence, which at least ensures that participants provide a hierarchical rating of the proposed sys-
tems, regardless of their personal rating factors. The MUSHRA test is illustrated in Fig. 1.12.
The original MUSHRA setup may even be adapted in this direction to reinforce distinctive
ratings between systems [Kayyar et al., 2023]. A high anchor reference is both hidden (to rate)
and explicitly provided in the MUSHRA setup. It provides participants with an undisputed
mental image of the goal to achieve [Latorre et al., 2014]. However, as stated for objective
measurements, such undisputed reference does not always makes sense in the evaluation of
speech. With the increasing focus on speech prosody and expressiveness, even the natural
voice (when available) is not the only valid example of speech production in the evaluated



1.3. Evaluation 35

context. Due to the variability of expressive nuances in speech production, there is no single
golden standard for narration or the production of speech attitudes [Bachorowski, 1999]. As
a result, the evaluation of prosodic transfer toward a reference sample may not really assess
the quality of expressive TTS.

1.3.3 Evolution of the TTS evaluation framework

Despite the known limitations of the MOS evaluation, this is still the most common way to
evaluate synthetic voices. Gutierrez et al. [2021] described several reasons for this default
choice: MOS tests are easy to set up and require less cognitive load than multi-ranking tasks
like MUSHRA. MOS of speech naturalness is so widely used in the literature that it has
become an implicit requirement to compare new models to existing baselines. MOS is not
inherently useless evaluation, but it is certainly not exhaustive. MOS should be designed with
a particular attention to the wording, and this design should be reported to enable reproducible
studies.

One simple extension of the single MOS test would be to expand this rating to different
scales associated with various more explicit and precise instructions. As an example, Hin-
terleitner et al. [2011] ran a two-stage pretest to isolate a set of 16 attribute pairs that were
relevant in the description of synthetic signals. These factors include: artificial vs. natural,
unnatural rhythm vs. natural rhythm, unpleasant vs. pleasant, distorted vs. undistorted,
etc. Authors asked participants to evaluate each attribute independently. Their analysis re-
vealed that three perceptual dimensions mainly explain participant appreciation of synthetic
speech: naturalness, spectral disturbances and temporal distortions. Asking participants to
rate these three aspects on three separated MOS scales would provide more insights on listen-
ers perception of new proposed models. This multi-scales evaluation framework was applied by
King and Karaiskos [2013] in the Blizzard Challenge 2013. These underlying dimensions may
be inferred afterward by multidimensional projection methods like Multidimensional Scaling
(MDS) [Kruskal & Wish, 1978], but the meaning of these unveiled dimensions is subject to
interpretation [Mayo et al., 2005].

Objective evaluations should be systematic: listeners’ preference is the main goal, but eval-
uations should provide cues to understand the reasons for this preference in the model genera-
tive process. The issue with objective metrics is that they often provide a general observation
of the measured phenomena, which tends to hide the interesting points of divergence between
evaluated models. Now that state-of-the-art models have reached high standards, neural TTS
systems produce very similar speech most of the time. As a result, perceptual judgments
may be mostly correlated to outliers [Osborne & Overbay, 2004]. Thus, utterances must be
selected carefully for listening tests: a random selection of utterances is likely to include a
large portion of samples from the core distribution of models capabilities. To mitigate this
effect, test utterances may be selected based on their distinctiveness according to an objective
measurement, such as spectrum MSE for example, as performed in the Blizzard Challenge
2023 [Perrotin et al., 2023].
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Figure 1.13: Illustration of the RPT at word-level: P-scores (resp. B-scores) indicate the proportion
of participants who annotated a word as prominent (resp. as preceding a boundary). This framework
can be adapted to target the portions of the utterance which were decisive in listeners’ judgments.
Source: [Cole & Shattuck-Hufnagel, 2016]

Alternatively, in order to target smaller portions of interest in evaluated stimuli, Gutierrez
et al. [2021] proposed an evaluation interface which integrates the Rapid Prosody Transcription
(RPT) method [Cole & Shattuck-Hufnagel, 2016]. This method enables explicit targeting of
speech units (mostly words, but the method could be adapted to portions of audio signals)
which listeners have judged of particular interest with regard to the given instruction. This
method provides a way to automatically isolate smaller portions of audio signals based on
crowd-sourced data, in order to exhibit objective differences between models on the specific
portions which were decisive in participants’ judgments. Fig. 1.13 illustrates RPT at word-
level.

The design of more challenging experiments would also provide more varied examples
of the specific contexts in which synthetic models diverge. In the case of intelligibility for
example, the organizers of the Blizzard Challenge 2023 specifically designed a heterophonic
homographs disambiguation task from orthographic inputs [Perrotin et al., 2023]. There are
789 homographs in French20, but most pairs are not evenly balanced in natural corpora. As a
result, synthetic models may be biased to only produce the most seen variant. However this
bias would not produce any error in classical evaluation setups since the other variant would
not appear in the test set. The specific design of challenging evaluation sets for a wider variety
of tasks thus provide better comparisons between systems.

Finally, synthetic voices are now integrated in interactive systems. In order to design
synthetic voices that would benefit to their use-case, another way to evaluate TTS would be
to evaluate their performance during an interactive task with a human participant [Wagner
et al., 2019]. The Diapix task [Van Engen et al., 2010] or true physical task-oriented conver-
sations [Skantze, 2021] are examples of such interactive tasks which require the collaboration
between humans and artificial agents through efficient communication. These tasks are illus-

20Source: https://fr.wiktionary.org/wiki/Catégorie:Homographes_non_homophones_en_français

https://fr.wiktionary.org/wiki/Cat�gorie:Homographes_non_homophones_en_fran�ais
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trated in Fig. 1.14. Synthetic voices may substitute for one of the participants’voices using a
Wizard-of-Oz setup [Dahlbäck et al., 1993] in order to evaluate how synthetic speech features
impact collaborative performance.

(a) Example of Diapix pair. Each partici-
pant can only see one of the two pictures.
Participants have to collaborate to find all
the differences between the pictures A and B.
Source: [Van Engen et al., 2010].

(b) Multi-Party Interaction between Nina and
a human participant. Source: https://images.
cnrs.fr/video/6585

Figure 1.14: Examples of Collaborative Tasks.

1.4 Our Contributions

This chapter presented the main challenges of the prediction of speech from text, and the
methods implemented by state-of-the-art neural models to produce synthetic speech which is
comparable with natural speech recordings. This chapter also reviewed the specific challenges
of modeling and evaluating expressive cues in speech.

Our work aims at bridging the gap between generative speech technology and speech
science in an attempt to understand the modeling of phonetic and phonological features in
the internal representations of neural TTS models. By providing analytic methods to probe

https://images.cnrs.fr/video/6585
https://images.cnrs.fr/video/6585
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the intermediate embeddings of neural TTS, our goal is to provide data-driven interpretations
of the underlying processes performed by these deep-learning algorithms. We believe that
the semi-supervised statistical analysis of natural speech data performed by TTS models in
order to maximize their predictive capabilities could provide new insights on the underlying
mechanisms of speech production. Moreover, the breakdown of operations performed by each
layer of these deep-algorithms enables us to design more careful expressive control mechanisms.

More specifically, our contributions revolve around the modeling of two layers of prosody:

Linguistic prosody: We study linguistic prosody in Chapter 3 through the exploration of
alternative ways to present the training corpus to the neural model. The segmentation
and the augmentation of textual inputs with initial punctuation marks are evaluated to
that purpose. The linear probing of acoustic features in TTS intermediate embeddings
in Chapter 4 resulted in our proposition of explicit control of acoustic features through
linear biases in Chapter 5. This control is a first attempt to infer propositional atti-
tudes through acoustic control. To the best of our knowledge, this method is the first
attempt to control the generative process of TTS models from post-hoc internal space
analysis, called Causal Control.

Paralinguistic prosody: This control of propositional attitudes is further enhanced through
the introduction of an auxiliary neural layer called Local Style Tokens in chapter 6.
These attitudes, indistinctly referred to as styles, are seen as a way to enhance the syn-
thetic voice message with contextual information conveyed by the paralinguistic prosody.
Through the introduction of local prosodic contributions, we emphasize the specific in-
teraction between propositional attitudes and the textual content itself [Beckman &
Pierrehumbert, 1986; Selkirk, 1986].

Two models were selected to implement these approaches: Tacotron2 [Shen et al., 2018]
and FastSpeech2 [Ren et al., 2021]. Despite the promising performances of stochastic models
mentioned in Section 1.1.5, Tacotron2 and FastSpeech2 were chosen for their prevalence in
the expressive TTS literature. That being said, the contributions described in the following
chapters could similarly be applied to other architectures. The training of our initial baseline
models on which we implemented the following contributions is further detailed in Chapter 2.
This chapter also addresses the question of the most suitable input representations. As men-
tioned in Section 1.1.1, using phonetic transcriptions as TTS input restrains the ability of
end-to-end models to capture and explain variability of text renderings by speech. However,
the training on orthographic inputs alone can be challenging for neural models. We instead
explored the use of mixed representations to combine the best of both worlds [Kastner et al.,
2019].

Throughout the following contributions, we pay a particular attention to the evaluation of
the proposed systems. Comparative setups like MUSHRA and CMOS are preferred for their
more specific task which generates less confusion among listeners. These perceptual ratings are
further explored through post-hoc multidimensional analysis when relevant. These evaluations
are always accompanied by objective metrics in order to better interpret the underlying factors
of perceptual judgements.
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Chapter Highlights

This chapter presents our baseline French TTS systems based on two state-of-the-art
models: Tacotron2 and FastSpeech2. Both models were modified to mitigate their main
limitation. 1) We implemented a correction mechanism for Tacotron2, called Gate Loss
Correction, which ensures the correct detection of End-of-Sequences. 2) We proposed a new
Letter-to-Sound (L2S) alignment inferred from the observation of attention maps from
Tacotron2. This L2S allowed us to train FastSpeech2 on orthographic inputs, without
the need for an external phonetizer front-end. This L2S was used to align the corpus which
was used in all following contributions. We entered the Blizzard Challenge 2023 with our
orthographic-enhanced FastSpeech2 baseline.

Related contributions: [Bailly et al., 2023; Hajj et al., 2022; Lenglet et al., 2022a, 2023c]
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As described in Chapter 1, state-of-the-art neural TTS models are able to generate syn-
thetic speech that is very close to natural recordings. Two models have been given a particular
focus for their prominence in the expressive TTS literature: Tacotron2 [Shen et al., 2018] and
FastSpeech2 [Ren et al., 2021]. Although sharing a similar encoder/decoder architecture,
FastSpeech2 replaces the convolution and recurrent LSTM layers [Hochreiter & Schmidhu-
ber, 1997] used in Tacotron2 by multi-head self-attention layers [Vaswani et al., 2017]. Self-
attention layers are favored in FastSpeech2 for their capacity to model contextual information
without suffering from LSTM difficulties in modelling long-term dependencies [Hochreiter et
al., 2001].

In addition, FastSpeech2 replaces the attention network [Chorowski et al., 2015] used by
Tacotron2 to learn the alignment between the input sequence and the output mel-spectrogram
by a duration predictor. This duration predictor is trained to predict the number of spectro-
gram frames corresponding to each phone of the input sequence. This allows FastSpeech2 to
predict the length of the output sequence before starting the decoding process. In doing so,
FastSpeech2’s decoder generates all spectrogram frames in parallel. In contrast, Tacotron2’s
decoder is autoregressive, which leads to slower inference and training. Moreover, FastSpeech2
implements two prosodic predictors for pitch and energy. These additional tasks have been
shown to improve the perceived synthetic voice quality, and provide explicit control of these
prosodic features at inference.

As stated by Shen et al. [2020], while being slower, autoregressive decoders contribute to
the naturalness of the audio output. As a result, both architectures present specific advantages
and drawbacks depending on the use-case. Tacotron2 is inherently easier to train, since no
preprocessing of the training data is required in order to compute time-alignments of the input
sequences nor to extract prosodic features. In return, the unsupervised attention mechanism
is not as robust as the duration predictor of FastSpeech2. To mitigate this issue, we proposed
to modify the training process of Tacotron2 to fine-tune the model with a specific focus on
the prediction of End-of-Sequence, called Gate Loss Correction (GLC).

Although the duration predictor of FastSpeech2 avoids the mentioned artifacts, this pre-
dictor is also a limiting factor when training FastSpeech2 on orthographic input. Indeed,
the time-segmentation of the training set, necessary to train this predictor, is unclear when
processing orthographic sequences. As a result, TTS models which implement an explicit
duration predictor are generally trained solely on phonetic inputs. In this thesis, we advo-
cate instead for the use of orthographic inputs as elementary building blocks of speech units
(see Section 1.1.1 for further details). That is why we proposed a new Letter-to-Sound (L2S)
alignment inferred from the observation of attention maps of a pre-trained Tacotron2 model.
We used this alignment to assign duration to the orthographic sequences in order to train a
FastSpeech2 model on orthographic inputs. Moreover, we showed that the addition of a pho-
netic prediction task from the output of the FastSpeech2 text encoder allows us to train the
model on <orthography|phonetic> pairs without the need for audio recordings. This setup
helps learning phonetic transcriptions for words and contexts that are otherwise rarely found
in classical audiobooks training corpora.
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This chapter describes the proposed implementation modifications to Tacotron2 and Fast-
Speech2, used as baseline models for our later contributions. The implementation of Tacotron2
is detailed in Section 2.1. The successful training of Tacotron2 allowed us to design our L2S
alignment from the analysis of attention maps as described in Section 2.2. This alignment
was used to demonstrate the benefits of training FastSpeech2 on both orthographic and pho-
netic representations. We entered the Blizzard Challenge 2023 with our proposed mixed-input
FastSpeech2: our model and its results are detailed in Section 2.3.

2.1 Implementation of our Tacotron2 Baseline

The relative ease of training of Tacotron2 made us consider this model for our first experiments.
This section presents our preliminary work to mitigate the attention flaws reported on the
original Tacotron2 attention mechanism. We then show how the observation of the attention
maps computed by this Tacotron2 highlights the statistical regularities learned by the text
encoder to produce phonetic sequences from orthographic entries. We inferred L2S rules from
these observations, which allowed us to enhance the implementation of FastSpeech2 with
orthographic inputs, as described in Section 2.3.

2.1.1 The Challenging Training of Attention on Orthographic Sequences

The main issue noticed during preliminary work with Tacotron2 is the unreliability of the
attention mechanism. When no additional constraints are given to the attention layer, artifacts
may appear during inference. The most prevalent artifacts are omissions or repetitions of words
or syllables, and the production of unintelligible speech due to the mixing of phones within one
word. Repetitions are especially common in short utterances (less than 2 s), while omissions
are more frequent in utterances longer than 10 s.

Solutions have been proposed in the literature to avoid these artifacts. Non-attentive
Tacotron2 [Shen et al., 2020] entirely replaces the attention mechanism and the End-Of-
Sequence (EoS) by a duration predictor. Similarly to FastSpeech2, this method requires the
phone durations of the corpus for the training. Other propositions implement additional
constraints on the attention mechanism, such as the Monotonic Attention [He et al., 2019].
This method is better suited for phonetic inputs, in which all the elements of the input
sequence do have to be pronounced from left to right. On the other hand, the monotonicity of
the alignment path is not ensured for orthographic sequences: opaque languages like French or
English lack a direct mapping between characters and the audio sequence to produce. Fluent
reading of French requires to process several characters in one fixation [Bosse & Valdois, 2009].

Fig. 2.1 reports the range of characters to take into account in order to utter a character
correctly in French. Bosse and Valdois [2009] computed the visual attention span (VAS)
required on a set of entries from the Robert dictionary, augmented with part-of-speech (POS)
tags. This analysis of a decision tree to compute letter-to-sound (L2S) mapping from a set
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Figure 2.1: Visual Attention Span needed to process French orthographic sequences. Source: [Bosse
& Valdois, 2009].

of 500 000 French words shows that up to 5-6 characters ahead and behind are needed to
compute the correct phonetic mapping. Note that the decision tree questions the POS tag of
the word 15% of the time.

In order to similarly allow the attention mechanism to look ahead in the sequence to
determine the appropriate phone to produce, and to eventually skip characters that should be
muted, the monotonic constraint was not introduced in our model.

2.1.2 Fine-Tuning of the End-of-Sequence Detection of Tacotron2

Instead of imposing the monotonic constraint of the attention layer, we hypothesize that
the attention mechanism artifacts were generated because of the mispredictions of the End-of-
Sequence (EoS) predictor. Early stopping of the autoregressive process tends to elide syllables,
which are not necessarily the last syllable of the utterance, because end of sequences are
anticipated by the model through the introduction of later context by the bi-LSTM in the
text encoder. Similarly, in absence of detected EoS for shorter utterances, the attention layer
focuses on input characters which may have already been pronounced, resulting in skipping,
repeating or attention collapse (unintelligible gibberish). This hypothesis is supported by the
frequent lack of detection of EoS reported by He et al. [2019].

In order to reduce the mispredictions of EoS, we added a systematic fine-tuning process to
Tacotron2. During this fine-tuning, two modifications are introduced, illustrated in Fig. 2.2.
First, 9 frames of recorded room tone are added at the end of each utterance, during which
the EoS probability is set to 1. This silence comes from the pause following each utterance in
the original recording. Second, a multiplying factor λ is added to the gate loss error before
back-propagation, following equation. 2.1. The rest of the model is not frozen during this fine-
tuning step. This process is called Gate Loss Correction (GLC). We empirically found that
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Figure 2.2: Illustration of the proposed fine-tuning process of the End-of-Sequence (EoS) Prediction
for Tacotron2. During the fine-tuning, 9 frames of silences (in blue) are added at the end of the
utterance.

these modifications correct previously mentioned artifacts, and improve the overall synthesis
quality. Various setups were tested with the GLC: best results were found for the training
procedure described in Appendix B.1. The benefits of these modifications are evaluated in
Section 3.2.

LTC = LS + LPS + λ ∗ LG (2.1)

with LTC the total loss of Tacotron2, LS the MSE spectral loss, LPS the MSE
spectral loss after the Postnet, and LG the cross-entropy Gate Loss. λ is initially
set to 1, and is increased during the fine-tuning of the EoS prediction.

2.1.3 Changes in Model Configuration

Additionally, two changes have been made to the original implementation of Tacotron2:

1. Following Zen et al. [2016], the autoregressive decoder is trained to predict two frames
per step instead of one. This process speeds up training and inference. This is equivalent
to the prediction of 160 mel-coefficients instead of 80 from the linear projection of the
autoregressive decoder. The prenet is therefore adapted to account for this additional
input at each decoding step. This change does not impact the postnet, which is only
applied after the prediction of the entire mel-spectrogram. Our preliminary studies
found no noticeable degradation in audio quality when generating two frames at once
instead of one.
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2. The dimension of the prenet is reduced from 256 to 128. As a reminder, during the
training phase, the mel-spectrogram frames predicted by the decoder are replaced by
Ground-Truth data1. As stated in Section 1.1.1, mel-spectrograms were chosen as output
speech representations for their smoother time-domain variations. Implicitly, this means
that copying the mel-coefficients from the last computed frames would be a valid strategy
to minimize the spectral loss of the model. The prenet acts as a bottleneck to prevent
this strategy. We found that the reduction of the prenet dimension from 256 to 128 was
necessary to achieve this goal.

We also adapted the mixed-representations framework proposed by Kastner et al. [2019].
In the original framework, characters and phones can be used simultaneously to train a neural
TTS model. Such combination of input types have been showed to benefit both types of
representations during inference. In the original framework, each word is given a 50% chance
to be either transcribed with phonetic or orthographic symbols. We adopted a slightly different
approach: instead of mixing representations in each utterance, the corpus is presented to the
model twice by epoch, once using orthographic inputs and once using phonetic inputs. Thus,
we ensure that the model is trained on a maximum number of different words transcribed
with orthographic symbols, which maximizes the model performances on orthographic inputs
at inference.

Other hyperparameters are kept unchanged from the original Tacotron2 implementation.
The exhaustive list of hyperparameters and the default training procedure we used in the
presented experiments are summarized in Appendix B.

2.2 Letter-to-Sound Alignment from the Attention Mechanism

As detailed in Section 1.1.3.1, the text-audio alignment is a core feature of sequence-to-
sequence TTS models. Usually, phone durations vary between 50ms and 150ms. Following
the most common computation of mel-spectrograms2, that means that each phone of the input
sequence is pronounced during 5 to 13 frames in the output spectrogram. This duration varies
depending on the type of phone (nasal and open vowels tend to be longer than close vowels
for example [O’Shaughnessy, 1981]), but also depending on supra-segmental prosodic factors
such as the applied style (e.g. utterances produced to convey thoughtfulness show prototypical
elongations of ending syllables). Thus, this duration cannot be easily determined by rule, and
needs to be inferred by the model from regularities learned during training. Learning this
alignment from letters is even more challenging, because of the wider attention span needed
to decode orthographic sequences (see Section 2.1.1).

To perform this alignment, the two families of TTS models studied in this thesis rely
on opposing approaches. In Tacotron2 [Shen et al., 2018], an attention network [Bahdanau

1This procedure is called teacher-forcing training. It helps to achieve a faster convergence of the training.
2The hop-size is usually 256, which corresponds to 11.61ms by spectrogram frame with an audio sampling

rate of 22.05 kHz.



2.2. Letter-to-Sound Alignment from the Attention Mechanism 45

et al., 2014] is implemented as the interface between the encoder and the decoder. For each
spectrogram frame computed by the autoregressive decoder, this attention layer computes the
relative weights given to each element of the input sequence. These weights, called attention
weights, indicate the relative focus given by the model to the elements of the input sequence
to predict the current spectrogram frame. This unsupervised alignment allows the training
of Tacotron2 on any type of input symbols. On the contrary, FastSpeech2 requires the time-
alignment of input sequences beforehand. Although computing this duration alignment is
straightforward for phonetic inputs (all phones are pronounced in order in the audio output),
it is unclear how to distribute the durations across the orthographic sequences. In order to
train FastSpeech2 on orthographic inputs, we thus need an alignment mechanism to set the
duration of input characters.

In this section, we demonstrate that the reading of attention maps computed by Tacotron2
can inform us about how orthographic sequences are processed by unconstrained alignment
layers. The attention mechanism exhibits regularities that may indicate how neural TTS
optimizes phonetic representations in order to produce the best audio quality, in particular
with languages with opaque orthography like English or French. The observation of these
regularities has enabled us to align the duration by phone with the corresponding characters.
This alignment provides new perspectives for training duration predictors directly on letters,
without the need for a Letter-to-Sound (L2S) front-end.

2.2.1 Preliminary Training of a Tacotron2 Model

In order to extract attention maps, we trained a Tacotron2 model following the configura-
tion detailed in Section 2.1. This model is trained on a subset of our corpus described in
Appendix A: only the speaker NEB is used in the experiment. The training follows the
mixed-inputs procedure described in Appendix B. 5% of this corpus (2230 utterances) was
randomly excluded as the test set. After 100 epochs, the attention maps computed from this
test set are saved for further analysis. Two attention maps are computed by utterance: one
in inference mode and one in teacher-forcing mode. The inference mode refers to the
alignment path computed in absence of reference Ground-Truth spectrogram, which indicates
the extrapolation capabilities of the model outside of its learning corpus. The teacher-forcing
mode re-introduces target Ground-Truth spectrogram frames into the autoregressive process,
which enforces the attention path to follow the same rhythm as the Ground-Truth. Only
orthographic inputs are used in this section. Fig. 2.3a shows an example of such attention
map computed in inference mode by the fully trained Tacotron2 from the input text: "§Et il
retomba dans son apathie.§".
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(a) Example of an attention map computed by Tacotron2 in inference
mode. The white line shows the barycenter of attention weights.
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Figure 2.3: Attention Map Analysis.
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2.2.2 Automatic Segmentation of the Audio Signal

Despite the complex task performed by the attention layer, the general process can be illus-
trated by the example given in Fig. 2.3a. Once fully trained, the attention layer mostly pro-
duces monotonic paths at inference. The monotonicity is encouraged by the location sensitive
mechanism [Chorowski et al., 2015], which indicates to the attention layer which characters
of the input sequence have already been focused on during previous decoding steps. However,
the monotonicity is not strictly constrained, which leads to two counterintuitive behaviors
rarely observed, but worth mentioning:

1. Some quick lookaheads3 may remain at word boundaries. We hypothesize that looka-
heads are introduced to anticipate specific boundary patterns, like liaisons or pauses,
which may not be fully defined by the contextualization performed by the text encoder.

2. Residual focuses4 on the initial character are common during the synthesis of intra-
utterance pauses. The initial character is systematically focused during the initial 130ms

of silence learned from the training dataset. When synthesizing intra-utterance pauses,
the focus may switch to this initial character instead of the punctuation mark or space
in which the pause appears. Intra-utterance pauses are very sporadic, which may make
them unreliable for the attention mechanism, which instead generates pauses based on
the utterance initial punctuation mark embedding.

Fig. 2.3a also highlights the skipping mechanism performed by the attention on ortho-
graphic input sequences. In the presented example, the number of characters focused at one
point in the decoding process matches the number of phones in the audio output (pauses
are considered as silence symbols in the phone output sequence). For instance, "n" and "s"
are skipped in the word "dans", transcribed /d a~/ in phonetic symbols. We hypothesize
that the distribution of attention weights in time does indicate the frames during which the
phones are pronounced in the output spectrogram. Thus, the skipping mechanism exhibited
by this example distinguishes between character embeddings which have integrated a phonetic
representation needed to produce the audio output, and other characters which have already
fulfilled their goal of introducing contextual information in the input sequence.

In order to explore regularities of the attention maps, we proposed an automatic seg-
mentation method to compute the duration of focus by symbol in the input sequence. This
method takes advantage of the relative ease of interpretability of the single-head attention
of Tacotron2. More complex attention mechanism like multi-head Transformers, also used in
TTS architectures [Li et al., 2019], are inherently harder to apprehend, even though interfaces
have been developed to allow human exploration of Transformer attention maps [Jaunet et al.,
2021].

3Attention Lookahead refers to the attention pattern characterized by 1 or 2 frames of focus on one or
several characters ahead, followed by a return to the character previously focused.

4Residual Focus describes the attention pattern characterized by multiple focuses on one character after
the initial focus.
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To compute frames corresponding to each input symbol, we apply the following procedure
to every input symbol successively:

1. Check if this symbol reaches a minimum attention weight of 0.35 at any time in the
attention map. This threshold excludes symbols that are never the main focus of the
attention. These characters are called "mute" in the following.

2. For the frame on which the attention weight is maximum, check that the current char-
acter has the maximum attention weight among all characters of the input sequence.
This avoids the prediction of two characters being generated in the same frame. If the
maximum is not on the current character, it is considered mute too.

3. If both conditions are met, the current character is considered to be generated during
this frame, as well as during adjacent frames in which the attention weights are maxi-
mum on this character. This frame selection inherently ignores lookahead and residual
attention focus described above, since only the most prominent group of adjacent frames
is considered to compute the duration of one character. This limitation is discussed in
Section 4.3.

We evaluated this segmentation procedure in [Lenglet et al., 2022a]. To do so, we extracted
the duration from teacher-forcing attention maps with the presented method. We then com-
pared these durations to the Ground-Truth phone segmentation obtained by semi-automatic
alignment. The teacher-forcing mode ensures the synthetic model follows the same dynamic
as the Ground-Truth. Results are given in Fig. 2.3b. We measured a Pearson correlation
coefficient of 0.88 between predicted and real durations (punctuation marks and spaces ex-
cluded). This high correlation indicates that the proposed segmentation method is fitted to
automatically analyze duration of phones pronounced in synthesis from the attention map.
This method is used in the following as a post-hoc duration predictor for Tacotron2.

2.2.3 Identification of Activation Patterns

The automatic segmentation procedure described in Section 2.2.2 allowed us to examine the
regularities of attention activation patterns. In previous work, Perquin et al. [2020] have
already established that the encoder of a neural TTS model such as Tacotron [Y. Wang et al.,
2017] computes phonetic representations from orthographic sequences given as inputs, even
when trained exclusively on orthographic sequences. However, phonetic transcription from
orthographic characters is not a one-to-one mapping. On average, 2.3 letters are needed to
express one phone in opaque languages like French and English [Bosse & Valdois, 2009]. The
distribution of model’s attention between involved characters remains unclear in [Perquin et al.,
2020]. Our goal here is to understand how phonetic representations emerge from orthographic
sequences, particularly in the case of phones written with multiple characters, called complex
phones in the following.
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To evaluate how attention is distributed in complex phones, we scann the attention maps
from our test corpus produced in inference mode with Tacotron2. The 12 most common
cases of complex phones in French are selected for this analysis. The activation duration by
character is given in Fig. 2.4 for this selection.

Figure 2.4: Distributions of durations of activation (ms) of character sequences: when one phone is
encoded by two letters, the second character gets mostly activated in context of double consonant
letters, while the first is activated in context of vowel letters.

Table 2.1: Activation rules on recurrent letter patterns. C and V stand for consonant and vowel letters
respectively. "_" stands for the mute phone.

Letters Phones Examples
C C _ C "année", "elle", "aussi"
V V V _ "tante", "ou", "au"

V V V _ V _ "eau", "pain"
"h" _ "haut"
"ch" s^_ "chateau"
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Following the examples of Fig. 2.3a, only one character input stands out from the group
of characters involved in each phone. We empirically deduced a set of rules from these obser-
vations, summed up in Table 2.1. We hypothesize that in the case of complex phones, some
characters only serve as contextual information to enrich the most relevant character of the
orthographic sequence. As a result, only this character whose embedding encodes duration
and spectral cues of the phone to synthesize is relevant to go through the decoder. As a gen-
eral observation, contextual characters seem more likely to enrich the previous character, as
shown by the double vowels scenario. This logic also applies to double consonants, since the
first one can contribute to change the previous phone (usually a vowel): "elle" is transcribed
/e _ l _/ whereas "e" alone is generally pronounced /x^/. In triple vowels "eau", "ain"
and "ein" (resp. /o/, /e~/ and /e~/), the second and third characters already encode the
corresponding phone, since "au" and "in" are respectively pronounced /o/ and /e~/. This
makes this easier for the model to learn to systematically mute the first character.

These L2S transcription rules, based on statistical learning, is to our knowledge the first
attempt to described the distribution of TTS models’ attention when dealing with opaque
languages. Thus, the proposed method eases the analysis of orthographic embeddings, since
character embeddings can also be labeled with their phone counterpart. Additionally, this one-
to-one L2S mapping also opens the route toward training duration prediction tasks directly
on orthographic input, by providing duration alignment rules for letter inputs. This method
allowed us to train FastSpeech2 on mixed-representations without the need for a L2S front-
end, as described in Section 2.3. Finally, this mapping was also used to set the targets of
the phone prediction task implemented at the output of the text encoder of Tacotron2 and
FastSpeech2 in following experiments.

2.3 Training FastSpeech2 with Orthographic Representations

As described in Section 1.1.4.2, FastSpeech2 was initially designed for phonetic inputs. Fast-
Speech2 is not an isolated case; indeed, modeling phonetic sequences from orthographic inputs
is not a trivial challenge. Neural end-to-end approaches initially found little success on this
task: J. Taylor and Richmond [2019] reported L2S error rates close to 10% in 2019. These
results have encouraged most researchers in the field to primarily focus their TTS models on
phonetic inputs, and to rely on a separate front-end to convert texts to phonetic sequences: for
the Blizzard Challenge 2023 [Perrotin et al., 2023], 9 teams out of 18 used eSpeak as front-end
phonetizer [Dunn & Vitolins, 2019]. Although this method performs well in most cases, it
generally learns a normative version of pronunciation rules, which gets rid of the idiosyncratic
variability. However, speakers tend to produce a wide range of phonetic variants from the
same textual content, mainly due to sociodemographic factors. As an example, regions of
origin [Resnick, 2012], social classes [Stuart-Smith et al., 2014] and ages [Foulkes & Docherty,
2006] have been shown to impact phonetic productions. Conditional Random Fields (CRF)
have been proposed to adapt L2S front-end with speaker-idiosyncrasies [Tahon et al., 2016].
However, the proposed method avoids the L2S front-end entirely.
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As explained in Section 1.1.1, this thesis advocates that orthographic inputs should be the
normative symbols that should constitute the basis of TTS representations. However, the lim-
itations of orthographic sequences described above should be taken into consideration in order
to maximize performance of neural models when using text input. Thus, this section describes
the adaptations we have implemented in FastSpeech2 in order to maximize performance on
orthographic inputs.

2.3.1 Model Adaptations

This section describes the modifications implemented on the original FastSpeech2 model de-
scribed in Section 1.1.4.2. The modified model is illustrated in Fig. 2.5. The exhaustive list
of hyperparameters and the default training procedure is detailed in Appendix C.

Fig. 2.5 illustrates the modifications implemented on the original architecture. Following
early implementations of FastSpeech2, the pitch predictor is trained on fundamental frequency
values in semitones, instead of continuous wavelet transforms [Vainio et al., 2013] in later work.
Pitch and energy values are extracted using WORLD pre-processing toolbox [Morise et al.,
2009], and are averaged by phone, and normalized by speaker. Pitch and energy are thus
predicted by phone instead of frame, and the corresponding embedding is also added at the
phone-level before the length regulator. The energy predictor is cascaded with the pitch pre-
dictor (see Fig. 2.5). A Tacotron2-like postnet is added after the mel-spectrogram prediction.
This postnet models finer-grained temporal patterns through a stack of convolutional layers.
The spectral residual computed by the postnet is added to the prediction of the decoder. The
postnet is trained with MAE spectral reconstruction loss after the addition of the residual,
following formula 2.2.

Duration by phone is computed as log(1 + phondur), with phondur the number of frames
during which this phone is pronounced in the target mel-spectrogram. This arbitrary addi-

Figure 2.5: Modified FastSpeech2 Architecture
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tion in the logarithm allows for zero duration to be predicted correctly by the model. This
adaptation is necessary in the case of orthographic inputs.

LFS = LS + LPS + Ldur + Lp + Le (2.2)

with LFS the total loss of FastSpeech2, LS the MAE spectral loss, LPS the MAE
spectral loss after the Postnet, Ldur the MSE duration loss, Lp the MSE pitch loss
and Le the MSE energy loss.

The implementation is modified to admit letters as inputs. When using letters, phone
durations are attributed following the rules set in Section 2.2.3. This enables to train Fast-
Speech2 directly on orthographic sequence, and use orthographic sequences at inference. Thus,
it allows the model to handle idiosyncrasies on its own, which can otherwise be an issue with
the L2S front-end [Bailly et al., 2023].

2.3.2 Enhancement of FastSpeech2 with a Phonetic Prediction Task

The performance of the mixed-input framework highlights neural TTS capacities to set a
shared latent space for both orthographic and phonetic representations. However, orthographic
inputs still suffer from the relatively poor coverage of the training corpus compared to the
potential variability of French. Depending on the context, orthographic characters can be
pronounced more than 7 different ways (e.g. "e" as [ã] in "rend", [a] in "femme", [E] in
"lemme", [ø] in "feu", [œ] in "peur", [œ̃] in "agenda", [Ẽ] in "bien"). Extracting regularities
from the corpus is challenging for neural models, in particular with some occurrences being so
rare in the corpus. Heterophonic homograph5 disambiguation, for example, suffers from the
unbalanced distribution of homographs pairs in most training corpora, resulting in the most
common variant being systematically produced by TTS. This phenomenon is detrimental to
wider usage of TTS since homographs convey different meanings and thus are very confusing
when mispronounced.

In order to help the TTS model to learn regularities from orthographic sequences and
further disambiguate homographs, we proposed the introduction of a phonetic prediction layer
in the classical encoder-decoder pipeline of neural TTS. This neural layer is introduced before
the decoder, as illustrated in Fig. 2.5. It is composed of a fully connected layer followed by
a softmax function. This prediction layer computes a probability distribution over the 38
possible phone output symbols for each element of the input sequence (phonetic symbols are
fully described in Appendix A). The prediction is performed after the addition with the speaker
embedding bias to account for idiosyncrasies. This predictive layer is trained on the one-to-
one L2S mapping proposed in Section 2.2. This secondary categorization task is trained with
a cross-entropy loss, following equation 2.3. This additional loss is back-propagated through
the text encoder and is trained along the initial model pipeline.

5Two or more words spelled alike but different in pronunciation.
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LFS = LS + LPS + Ldur + Lp + Le+Lphon (2.3)

with LFS the total loss of FastSpeech2, LS the MAE spectral loss, LPS the MAE
spectral loss after the Postnet, Ldur the MSE duration loss, Lp the MSE pitch loss,
Le the MSE energy loss, and Lphon the cross-entropy phonetic loss.

While explicitly providing the model with additional regularities to help its training pro-
cess, this secondary task enables the training of the text encoder without the need for audio
recordings. Indeed, the phonetic prediction layer uses the output of the text encoder as in-
put. Because the cross-entropy phonetic loss is back-propagated through the text encoder,
the encoder itself and the input embeddings can be trained solely on <orthography|phonetic>
pairs. This enables the training of models on rare contexts and on updated vocabulary, by
augmenting the usual audiobooks corpus with various online resources, without the need for
corresponding audio recordings. Online dictionaries like Robert provide a wide variety of rare
words in context, as well as homographs, that can be included with this method to enrich the
capacities of the text encoder.

Since this phonetic prediction task constrains the latent space used as input by the acoustic
decoder, we hypothesize that this additional training may help the text encoder to compute
meaningful acoustic representations on a wider variety of words and contexts. This hypoth-
esis was validated by our contribution to the Blizzard Challenge 2023, which featured this
phonetically-enhanced FastSpeech2 [Lenglet et al., 2023c]. The benefits of this phonetic pre-
diction task are reported in Section 2.4.

2.4 Evaluation of the FastSpeech2 Baseline (Blizzard Challenge
2023)

We decided to compete in the Blizzard Challenge 20236 with a FastSpeech2 model enhanced
with the mixed inputs training and the phonetic prediction layer. The Blizzard Challenge
2023 featured two main tasks [Perrotin et al., 2023]:

• The Hub-task evaluated the models on a large corpus of more than 50 hours of audio-
books recordings. The speech quality was evaluated with Mean Opinion Scores (MOS).
Intelligibility was evaluated on heterophonic homographs disambiguation and Semanti-
cally Unpredictable Sentences (SUS).

• The Spoke-task evaluated the transfer learning ability of the model to another speaker
with a limited corpus of 2 hours.

6To clarify the sequence of events, although our Fastspeech2 model was trained at the start of my PhD in
2020, I did not evaluate this model in comparison with the baseline version of Fastspeech2 until the Blizzard
Challenge 2023.
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We entered both tasks with the same multi-speaker model. This section describes the
training of our model and discusses our model’s performance in comparison with the Fast-
Speech2 baseline trained by the organizers. This comparison highlights the benefits of our
proposed training using orthographic inputs compared to traditional phonetic inputs paired
with an L2S front-end.

2.4.1 Model Training

The FastSpeech2 architecture used in this experiment follows the implementation described
in Section 2.3. This model is trained on a subset of the corpus shared by the organizers:
only the utterances with phonetic alignments were considered in this training. We added two
additional speakers to the Blizzard dataset. Following Blizzard rules for the challenge, the two
additional speakers are taken from open-access online databases. Additionally, the phonetic
prediction layer is used to further train the text encoder on non-audio data, extracted from
the online dictionary Robert and various online resources, explained in Hajj et al. [2022]. Our
training dataset is specified in Table 2.2.

Table 2.2: Multi-Speaker Training Dataset for the Blizzard Challenge. Durations are given in
hh:mm:ss.

Speaker
Metadata Audio

Dataset Gender Duration # Utt

NEB Blizzard Female 33:33:41 44 029
AD Blizzard Female 2:04:53 2 515

DG LibriVox [Kearns, 2014] Male 6:17:22 7 539
RO SIWIS [Honnet et al., 2017] Female 0:35:21 586

Dictionary Robert - - 95 879
Homographs Various [Hajj et al., 2022] - - 17 285

Total - - 42:31:17 167 833

2.4.1.1 Multi-speaker adaptations

First, we opted for trainable speaker embeddings. When training on multiple speakers, we
train a set of embeddings that are added to all the character/phone embeddings of the sequence
outputted by the text encoder, as illustrated in Fig. 2.5. These embeddings are trained
alongside the rest of the model through the same loss function. This procedure requires
speaker labels for the entire corpus, and limits the inference to the speakers seen during
training. Speaker embeddings can be seen as an offset in the acoustic latent space computed
by the text encoder. This offset encodes specific speaker features, like pitch and speaking rate,
but also sociophonetic attributes as demonstrated by Bailly et al. [2023].
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Prosodic predictions in FastSpeech2 are re-injected into the model by the addition of pitch
and energy embeddings. These embeddings cover the range of prosodic values seen in the
corpus. In case of multi-speaker training, this range will be unequally distributed: male and
female speakers typically cover separated ranges of pitch with few overlapping. Using non-
normalized values then leads to some prosodic embeddings being never used. In order to
ensure a normal distribution of values across the range, pitch and energy are normalized by
speaker. The feature range then matches the maximum variation produced by one of the
speaker relative to his/her mean.

Finally, phonetically-aligned dictionary inputs are duplicated for each speaker. The pho-
netic prediction layer is implemented after the addition of the speaker embedding, which makes
this prediction speaker-dependent. Non-audio inputs are necessarily aligned on the norma-
tive phonetic transcriptions of the given textual content. Nonetheless, this duplication of the
non-audio maximizes the variety of contexts seen by the model for each speaker.

2.4.1.2 Training Procedure

The training process follows the multi-speaker procedure described in Appendix C. The model
is initially trained for 100 epochs on NEB. Then the model is trained on the full multi-speaker
dataset for 50 epochs. Finally, the model is fine-tuned for 50 epochs on an evenly distributed
corpus across speakers. We used Waveglow as a vocoder (see Appendix D.2).

2.4.2 Performances of the Phonetic Prediction

The overall accuracy of the phonetic prediction was evaluated as a preliminary study for the
Blizzard Challenge. As a test set, we randomly extracted 2230 additional utterances recorded
by the same NEB speaker from the original M-AILABS corpus [Solak, 2019]. These utterances
are not part of the dataset shared by the Blizzard organizers, thus they have not been seen by
the model during the training phase. This test set is synthesized twice, using both orthographic
and phonetic inputs. Phonetic prediction by input characters are given as confusion matrices
in Fig. 2.6.

For the 108 168 orthographic characters of this test set, the overall accuracy reaches 0.984
(0.997 when excluding muted characters and pauses). Interestingly, most remaining errors
(reported in Table 2.3) are mispredictions of schwas or confusions between close phonetic
variants due to mispredictions of vowel harmony7. Most errors with muted characters are
miss-predicted liaisons on ending /r/, /t/ or /z/. Note that the errors highlighted here may
just reflect divergences between the ground truth and the model decision on optional liaisons.
On the other hand, when using phonetic inputs, this prediction is almost flawless, reaching
0.993 overall, and 1.00 when excluding pauses.

7Vowel Harmony is the optional adaptations of vowels within a word in order for all vowels to share certain
phonological features: frontness or backness, rounding, nasality, etc. For example: "J’ôte" [o] VS "Nous ôtons"
[O]
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Figure 2.6: Confusion Matrices of the phonetic prediction layer, for orthographic inputs (left) and
phonetic inputs (right).

Confused Phones Typology Example
/q/ /x^/ Schwas VS inserted vowel "quelques rares fenêtres"
/o/ /o^/ Optional Vowel Harmonic choices "Ôtons nos souliers"

/r/, /s/, /z/, /t/ /_/ Optional Liaisons "si tu n’es pas_heureux"

Table 2.3: Most common confused phones in Fig. 2.6.

To our knowledge, this method outperforms other classical L2S methods found in the liter-
ature [Yoon et al., 2023]. Using similar TTS pre-trained representations, Perquin et al. [2020]
reported a phone error rate of 12.8% for a similar L2S task on the first version of Tacotron [Y.
Wang et al., 2017]. Although our reported performances are very promising, the results of our
phonetic prediction does not guarantee that the corresponding synthesis perceptually matches
the predicted sequence of phones. As a result, the 10% L2S error gap reported by J. Taylor
and Richmond [2019] may not be fully solved by this method. However, this automatic L2S
transcription method through internal representations of neural TTS is very reliable. We have
used this method to generate new phonetic alignments to enrich our corpus, with very few cor-
rections needed. Additionally, this method provides a speaker-dependent phonetic prediction,
by taking into account the sociophonetic habits of the speaker [Bailly et al., 2023].

2.4.3 Disambiguation of Homographs

Intelligibility assessment on heterophonic homographs evaluated by the Blizzard organizers is
reported in Fig. 2.7. Our model N achieves an average score among all systems. Our model
shows global improvements over the FastSpeech2 baseline (annotated BF). BF is trained on
phonetic inputs only, and relies on the eSpeak8 front-end for the G2P transcription.

8https://espeak.sourceforge.net/
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Figure 2.7: Homograph intelligibility scores for the Hub Task. Our model N is highlighted in orange.
The left graph shows the percentage of correct pronunciation by system. The right graph shows this
intelligibility assessment by homograph.

Table 2.4: Examples of French homographs. Disambiguation is validated (✓) if the pronunciation
accuracy is 100% for both variants.

Homograph
Variant A Variant B

# Examples in Corpus Disambiguation
Phonetic POS English Phonetic POS English

Fier f j e^r Adj proud f j e Verb trust 366 ✓

Fils f i s Noun son f i l Noun wire 261 ✓

Convient k o~v i e~ Verb suit k o~v i Verb invite 181 ✓

Portions p o^r t j o~ Verb carried p o^r s j o~ Noun servings 145 ✗

Intentions e~t a~s j o~ Noun intents e~t a~t j o~ Verb initiated 141 ✗

Options o^p s j o~ Noun options o^p t j o~ Verb opted 117 ✗

More specifically, our model performs very well on homographs that have been seen with
enough examples in its homograph corpus, as illustrated by Table 2.4. “Fils” (261 examples)
has an intelligibility score or 100% for both variants, whereas systems with overall better scores
do not achieve such accuracy on this specific homograph. This is also true for “convient” (181
examples) or “fier” (366 examples), with the most common forms /kÕvjẼ/ and /fjEK/ being
systemically pronounced by other TTS regardless of the context. On the contrary, “options”
(117 examples), “intentions” (141 examples) and “portions” (145 examples) also appear in
the homograph training corpus, but with fewer examples. The number of examples and
the balance between variants impact the performance of the system. However, the proposed
method helps to disambiguate homographs if enough examples are given during training. From
empirical observations, at least 150 examples seem to be needed in order to achieve robust
disambiguation.

2.4.4 Speaker Adaptation

The multi-speaker performance of our model are evaluated by the Spoke Task. Mean Opinion
Scores of the quality assessment are reported in Fig 2.8. Our model N showed the same
performances than the FastSpeech2 baseline BF. BF employed a similar trainable speaker
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Figure 2.8: Quality Assessment on the AD voice evaluated in the Spoke Task. Our model N is
highlighted in orange. The right graph shows MOS distribution by system. In the right graph, black
squares show that the difference between the two models is significant (p < 0.01).

embeddings than our proposed model. Neither the addition of two additional speakers in
the dataset nor the training on phonetic representations seemed to improve the multi-speaker
performance. As mentioned in Appendix D.2, our Waveglow vocoder has only been trained
on NEB data. This lack of multi-speaker representations has probably negatively impacted
the extrapolation performances of our vocoder.

2.4.5 Discussion: Mixed Inputs combine the Best of Both Worlds

The presented results show the benefits of combining both orthographic and phonetic repre-
sentations as inputs of neural TTS models. Unlike poor performance stated by J. Taylor and
Richmond [2019], TTS models trained on mixed input are able to combine the versatility of
orthographic inputs with the accuracy of phonetic representations. To achieve this phonetic
accuracy, a particular attention is required regarding the training procedure of such neural
models.

The proposed addition of a phonetic prediction layer at the output of the text encoder
provided further improvements of the overall phonetic accuracy of the model. Thanks to the
specific training of the text encoder on multiple external text resources, the phonetically-
enhanced FastSpeech2 was able to disambiguate heterophonic homographs better than most
other models which rely on a classical L2S front-end. Moreover, by taking into account the
speaker variability, the proposed phonetic prediction layer is able to learn speaker sociopho-
netic behaviors [Bailly et al., 2023]. Thus, the predicted phonetic sequence integrates schwas,
liaisons and vowel harmony relative to the speaker’s idiosyncrasies, which is generally ignored
by classical L2S front-ends.

More careful analysis of L2S front-end systems used by Blizzard participants revealed that
the models which had the best pronunciation accuracy integrate pre-trained representations
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from Large-Language-Models (LLM) like BERT [Devlin et al., 2018]9. The benefits of using
LLMs for homograph disambiguation is well established. Hajj et al. [2022] compared the
performances of Part-Of-Speech (POS) tags, LLM representations and phonetic predictions
from Tacotron2 representations. The authors found similar results, with LLMs outperforming
other evaluated methods. Although these LLMs provide very promising results for various
speech-related tasks, they should not be seen as a perfect solution. LLMs require a large
memory footprint, which limits their potential for low resource devices. Additionally, they
require extensive datasets and high computation power during training, which make them
unaccessible to train for most people. As a result, pre-trained LLMs are generally used, with
little to no information regarding their training procedure, which can lead to various biases in
the evaluation of sub-tasks.

2.5 Discussion: Establishment of the TTS Baseline

The combined training of orthographic and phonetic representations relies on the ability of the
model to learn regularities in the L2S mapping. This mapping is not trivial, as demonstrated
by the mitigated performances of standard neural L2S front-ends. In the presented work, we
hypothesized that the best performance should be provided by an alignment method which re-
lies on the understanding of internal representations of neural models. The analysis of internal
representations, and in particular the tracking of acoustic and phonetic features encoded in
the internal layers of neural models, will be discussed in Chapter 4. We will demonstrate how
the L2S alignment proposed in this chapter benefits the acoustic analysis of text embeddings.

We detailed the modifications implemented in our two models, Tacotron2 and FastSpeech2.
We have shown the benefits of training neural TTS on both orthographic and phonetic in-
put. The proposed prediction of phonetic symbols from internal orthographic representations
not only outperformed previous G2P approaches, but also showed promising performances in
heterophonic homographs disambiguation and phonological variation. This method was eval-
uated on FastSpeech2, but could be identically applied to any TTS models. We also applied
this phonetic prediction layer to Tacotron2 in later works.

This chapter described the design process of our two French TTS baselines used as the
basis of all following work in the thesis. The two models were selected as representatives
of two families of state-of-the-art architectures: Tacotron2 (recurrent TTS) and FastSpeech2
(parallel Transformer-based TTS). These models embody two distinct ways to apprehend voice
synthesis. On one side, Tacotron2 favors weakly supervised internal representations. The
spectral reconstruction loss is supposedly taken as the sole goal of the neural model, which
should build the best internal representations possible to maximize its accuracy. On the other
hand, FastSpeech2 is designed around the prediction of explicit low-level prosodic features,
i.e. phone durations, energy and F0. The model is specifically designed to predict these
features at specific locations, which inherently constrains its internal representations. This
method supposes that important acoustic features are known in advance, and emphasizes the
controllability and the robustness of these features at inference time.

9Models O to J (top 8 performances) use LLMs pre-trained representations [Perrotin et al., 2023]
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Although the robustness of the prediction of prosodic features is crucial for real-life ap-
plications of TTS systems, only a deeper understanding of internal learning mechanisms of
neural models can provide interesting insights on how to push further the already good perfor-
mances of such architectures. The finer understanding of the tasks performed by each layer of
neural models may help designing more thoughtful architectures, as has already been the case
with visual recognition networks [Zeiler & Fergus, 2014]. Therefore, we have considered both
Tacotron2 and FastSpeech2 for most of the experiments presented in next chapters, instead
of opting for one single model.
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Chapter Highlights

This chapter presents our works to better control Linguistic Prosody in Neural TTS. For
this purpose, we studied the impact of how input data are presented to the model. Two main
axes are explored: 1) We studied the effects of the corpus segmentation. We showed that
the average duration of utterances impacted both the phrasing and the spectral accuracy, in
opposite directions. 2) We introduced initial punctuation marks as a way to model inter-
utterances prosodic patterns. For these two studies, we showed how the multi-dimensional
analysis of listening test results provides valuable insights about the underlying factors of
perceptual judgments.

Related contributions: [Lenglet et al., 2021]
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Despite the engaging performance reported by state-of-the art neural TTS, training on
isolated utterances inherently limits model capacity to predict consistent prosodic patterns.
Natural linguistic prosody not only arises from the syntactic structure of the current ut-
terance [Liberman & Prince, 1977], but also from the speaker’s understanding of the wider
discourse he/she is conveying. The generation of long forms of speech is therefore conditioned
by the TTS ability either to learn how to produce multiple utterances at once, or to convey
enough contextual information between successive smaller chunks of speech. However, learn-
ing to generate longer form of speech by TTS has been shown to be challenging for multiple
reasons:

1. Large batch size including long utterances demands high computation memory.

2. Learning long-term dependencies is a challenging task for recurrent models [Hochreiter
et al., 2001]. Transformer-based architectures may alleviate this issue [Vaswani et al.,
2017], but at the cost of losing the causal relationship in time sequences [Shen et al.,
2020].

3. Style control, which is the ultimate goal of this PhD thesis, generally uses utterance-level
style embeddings [Y. Wang et al., 2018; Y.-J. Zhang et al., 2019], which means that the
shorter the utterances, the finer it is possible to tag speech styles.

These reasons oriented our work towards the generation of shorter speech segments, with
an increased focus on contextual modeling. The use of audiobooks to train TTS should be
an opportunity in that regard, since the inherently sequential nature of the corpus provides
direct access to the causal relationship between successive utterances. Indeed, during recording
sessions, the voice actor reads several paragraphs in one go, resulting in prosodic patterns that
expand wider than the scope of individual utterances. However, the sequential nature of the
corpus is generally ignored. During training, the corpus is divided into smaller batches, within
which each utterance is considered as an individual sample. The model task during training
then consists in predicting the output spectrogram as close to the original recording as possible.
This training process cannot assess the underlying information structure of the training corpus
(if any).

On the other hand, conditioning the prediction process of neural TTS on contextual infor-
mation has shown great potential in the literature. Oplustil-Gallegos et al. [2021] proposed to
transmit linguistic context between successive utterances. The authors compared the benefits
of the combination of the current text with textual and/or acoustic representations from the
previous utterance, at word and utterance-level. They found the best results with the mixed
combination of utterance-level acoustic features and word-level textual representations. Sim-
ilarly, Pascual et al. [2019] proposed to initialize the hidden states of the recurrent decoder
of their MUSA model1 with the final state of the previous decoded utterance. This method
follows the stateful paradigm which also found success in other speech-related tasks like turn
prediction [Ji et al., 2016; B. Liu & Lane, 2017]. These results advocate for the benefits of
contextual information to model linguistic prosody in successive utterances.

1https://github.com/santipdp/musa_tts

https://github.com/santipdp/musa_tts
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However, the previously-mentioned methods allow little control from the operator during
inference. Hidden states of recurrent networks cannot be chosen by rule. Therefore, in both
cases, the preceding utterance fully set the contextual bias to apply. On the contrary, we
envision a bias method through input sequences in order to extend our expressive control. In
Section 3.1, we present our proposed segmentation and annotation of input data in order to
maximize our TTS performance on shorter sequences. We thus introduce the proposed linking
punctuation marks as a way to convey contextual information through text inputs. The
segmentation of the corpus is evaluated in Section 3.2, followed by the evaluation of the control
provided by the linking punctuation in Section 3.3.

3.1 Segmentation and Annotation of the Corpus

The common approach to neural TTS evaluation, seen in events like the Blizzard Chal-
lenge [Perrotin et al., 2023; Zhou et al., 2020], is to compare multiple models on the same
corpus to evaluate the resulting synthesis quality. This process minimizes the importance of
input data structuring, which ultimately shapes the output of any deep learning model. One
complementary work is to evaluate multiple segmentations of data structuring on the same
TTS model. This section describes this approach.

3.1.1 New Segmentation in Shorter Utterances

Publicly available corpora designed to train TTS, like M-AILABS [Solak, 2019], LJSpeech [Ito
& Johnson, 2017] or SIWIS [Honnet et al., 2017] are generally composed of audiobook extracts
read by one or more speakers, segmented in thousands of utterances. The utterance segmen-
tation is generally automatically generated from silences detected in the recordings, without
further explanations. As a result, utterance boundaries often match sentences, but not always.
Automatic segmentation therefore may not produce syntactically consistent utterances, ulti-
mately resulting in too much prosodic inter-utterance variability which degrades the model
learning performance.

The M-AILABS French dataset [Solak, 2019] was used as a starting point for this work.
This corpus includes more than 190 h of recorded speech, segmented in utterances from 1 s to
20 s, given with corresponding orthographic transcripts. Recordings come from the free public
domain audiobooks LibriVox database [Kearns, 2014]. We selected a subset of the recordings
made by Nadine Eckert-Boulet (NEB), for a total duration of about 33 h. Each book duration
and corresponding number of utterances are given in Table 3.1. Audio files were originally
sampled at 44.1 kHz, but we re-sampled them at 22.05 kHz.

For the reasons explained in this chapter’s introduction, the M-AILABS segmentation may
not be suited for TTS training: the segmentation is approximate, with a median duration of
6.44 s. Moreover, in the original clips shared by M-AILABS2, recordings are bounded with
500ms of silence (zeros in the waveform). These silences do not correspond to the recordings,
but have been artificially added to each audio clip after segmentation.

2https://www.caito.de/2019/01/03/the-m-ailabs-speech-dataset/

https://www.caito.de/2019/01/03/the-m-ailabs-speech-dataset/
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Table 3.1: Duration and number of utterances in each book used from LibriVox used in this section.3

Book Duration (hh:mm:ss) # Utt Original Seg # Utt New Seg

Les Mystères de Paris 21:33:28 12 285 28 333
Mme Bovary 11:07:25 5 775 14 417

Total 32:40:53 18 060 42 750
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Figure 3.1: Distribution of utterances length of original and new segmentation. Source: [Lenglet et al.,
2021].

In order to reduce this average duration, we went back to the original recordings of Lib-
riVox [Kearns, 2014] and segmented chapters based on silences of at least 400ms. This du-
ration usually corresponds to pauses made between speaking turns in conversations [Bailly &
Gouvernayre, 2012]. 94.56% of silences coincide with punctuation marks in this corpus. For
the others, a comma is added by default at the end of the utterance. Timestamps were hand-
checked for each utterance to ensure optimal segmentation4. Additionally, silence boundaries
were replaced by 130ms of room tone extracted from the original recordings (thus including
breath noises, lips smacks . . . if any). This duration matches the initial and final silence
durations found in other speech databases such as LJSpeech [Ito & Johnson, 2017].

Table 3.1 shows duration and number of utterances of the obtained segmentation and
Fig. 3.1 gives the distribution of utterances length of the original and the proposed segmenta-
tion. Median utterance duration (resp. first and third quartiles) is reduced from 6.44 s (3.88 s
and 9.26 s) to 2.77 s (1.89 s and 3.95 s). 82.5% of utterances of the new segmentation last be-
tween 1 s and 5 s, and 0.25% of utterances last more than 10 s. 1336 utterances are unchanged,
which corresponds to 7.4% and 3.5% of the original and new segmentation respectively. The
effect of the proposed segmentation is evaluated in Section 3.2.

3In this section, we use a subset of our complete corpus described in Appendix A.
4Corpus segmentation, annotation and verification were performed by Gérard Bailly, director of this PhD

thesis.
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3.1.2 Text Annotation

As described in Appendix A.3, the textual content of the mentioned audiobooks was provided
by the Gutenberg Project5. The original text includes abbreviations and numbers. We pre-
processed the text to spell out these cases. Most frequently used abbreviations in French are
"M.": "Monsieur", "Mlle": "Mademoiselle", "n°": "numéro" and "etc": "et cetera". There
are no strict pronunciation rules for years in French, so numbers were spelled out according
based on the audio recording of the speaker NEB6 ("1838" can either be pronounced "dix-huit
cent trente-huit", or "mille huit cent trente-huit"). Two punctuation marks were also replaced
to stand as a single unambiguous character: ellipsis "..." was replaced by "~" and quotation
dash, indicating turns in dialog "−−" by "¬".

3.1.2.1 Punctuation Marks as Markers of Prosodic Patterns

We introduce the symbol "§" to annotate end of paragraphs. This punctuation mark is
introduced after the last punctuation mark preceding each carriage return. Ends of paragraphs
are accompanied by phrasing patterns of NEB, that are worth highlighting in the training
corpus. For instance, Table 3.2 shows F0 and elongation [Barbosa & Bailly, 1994] of the final
syllable before ends of paragraph vs. paragraph-internal periods, as well as their values for the
following syllable. The last syllable is generally longer before the end of paragraph, and the F0
gap across the boundary is increased (6.45 vs. 5.11 semitones respectively). The introduction
of the symbol "§" therefore provides a way for the model to learn this modulation of duration
and pitch at the end of the sentence by relying on a specific character in the input sequence.

Table 3.2: Comparison of ∆F0 and elongation of syllable around ends of paragraph (.§) and interme-
diate periods (.). Source: [Lenglet et al., 2021]

Syllable
Previous Following

Elongation (%)
. +184 +21
.§ +218 +24

∆F0 (semitone)
. 1.96 7.01
.§ 0.96 7.41

Similarly, these specific prosodic patterns associated with punctuation marks extend fur-
ther than the first syllable of the next utterance. Punctuation marks help the reader to an-
ticipate pauses and emphasis. Careful readers rely on these cues to anticipate their breathing
pattern and follow-up intonation [Winkworth et al., 1994]. Fig. 3.2a indicates the distribu-
tion of pauses duration between utterances associated with the 8 most frequent punctuation
marks in the corpus. The pauses made by the speaker were relatively consistent with each
punctuation mark. Note that the duration of pauses between utterances is computed on the
new segmentation of the corpus discussed in Section 3.1.1, so the minimum duration of pauses
between utterances is 400ms.

5https://www.gutenberg.org/
6All transcriptions and alignments were hand-checked by Gérard Bailly, supervisor of this PhD.

https://www.gutenberg.org/
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Figure 3.2: Prosodic Patterns Around Punctuation Marks in the ground truth.

Punctuation is not the only cue on which readers plan their speech: syntactic structure
and semantic content also play an important role on speech planning [Bailly & Gouvernayre,
2012]. However, these linguistic cues are based on higher levels of language understanding,
which we hypothesize that they are out of the scope of the language modeling performed by the
text encoder of neural TTS. Large Language Models such as BERT [Devlin et al., 2018] have
been shown to capture this layer of understanding [Oplustil-Gallegos et al., 2021; Stephenson
et al., 2022], but they have not been studied in the presented work.

In order to evaluate the anticipatory effect of punctuation marks on intonation, we auto-
matically measured F0 on the beginning of utterances following each punctuation marks in our
corpus described in Section 3.1.1. F0 is measured by frame on the first third of each utterance,
using the software Praat [Boersma, 2001]. Some utterances begin with a punctuation mark:
‘«’ for reporting start of dialogues, ‘¬’ for reporting dialog turns, ‘(’ or ‘[’ for side notes and
‘"’ for quotes. In this case, this initial punctuation mark is taken as reference, instead of the
ending punctuation mark of the previous utterance. Mean and standard deviation results are
given in Fig. 3.2b for utterances following the 8 most frequent punctuation marks. Fig. 3.2b
shows 3 groups of punctuation marks that are associated with a significantly different mean
fundamental frequency at the beginning of the following utterance7: 1) the intra-utterance
short break ‘,’ 2) suspended speech markers ‘...’ and ‘¬’ and 3) end of utterance ‘§’, ‘;’, ‘.’,
‘?’, ‘ !’.

The distribution of standard deviations of pitch following each punctuation mark also
indicates various ranges of expressiveness. End of paragraphs (§) is generally associated with
a longer pause, followed by a rebound of pitch variations to indicate to the listener that they
have to pay attention to the potentially new theme which is introduced in the next paragraph.
On the other hand, commas are associated with shorter intra-utterance breaks, followed by
high mean pitch as an indicator of thematic continuity. On the contrary, ‘?’ and ‘ !’ are

7Pair-wise statistical differences were evaluated by Wilcoxon rank-sum tests.
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mostly found at the end of simulated turns, and followed by parenthetical elements usually
uttered with lower variations of pitch.

3.1.2.2 Augmenting Text Input With Preceding Punctuation Marks

The objective evaluation of prosodic patterns performed in Section 3.1.2.1 highlighted con-
sistent modulations of pitch and duration around punctuation marks. We hypothesize that
punctuation marks can therefore be seen as contextualization symbols to specifically train
the TTS model on these prosodic patterns, not only as an anticipatory effect at the end of
utterances, but also as an indicator of previous context at the beginning of utterances.

Thus, we augmented each utterance of the corpus with the final punctuation mark of the
preceding utterance, given as initial symbol in the input sequence. As stated in Section 3.1.2.1,
some utterances already start with a punctuation mark. In this case, no additional punctuation
is added to these utterances. Finally, in the case of the combination of several punctuation
marks at the end of an utterance (".§" for example), only the last one is introduced as context
in the following utterance. This initial punctuation mark is referred as a linking punctuation
mark in the following. Fig 3.3 illustrates the distribution of all punctuation marks seen in
the corpus. Three positions are highlighted: the first character (linking punctuation marks),
the ending character and intra-utterance punctuation. The effect of the proposed linking
punctuation mark is evaluated in Section 3.3.

Note that the duration between utterances reported in Fig. 3.2a cannot be learned by the
model with this setup. In the new segmentation proposed in Section 3.1.1, all utterances are
cut with 130ms of initial and final recorded silence. As a result, the only duration accessible
by the model during training is this 130ms of silence. However, the inclusion of this additional
initial symbol in the sequence provides the model with an input character to be associated
with this initial silence. This may favor the monotonicity of the attention when computing
the alignment between the text sequence and the audio output for Attention-based TTS like
Tacotron2 [Shen et al., 2018].
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Figure 3.3: Counts of first, intra and ending punctuation marks in the new segmentation of the NEB
corpus.
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This annotation work can be compared to the work of Sini et al. [2018] which also aug-
mented more than 87 h of the corpus uttered by the same speaker from LibriVox for the corpus
SynPaFlex. The authors adopted a manual approach in order to provide an expert analysis
of expressiveness layers: they labelled impersonated characters and their vocal personalities,
as well as paralinguistic prosodic patterns. The authors distinguished two types of prosodic
labels: 1) prototypical pitch contours systematically used by the speaker in a specific context
(“nuance”, “suspense”, etc.), and 2) the set of “Basic Emotions” described by Ekman et al.
[1999] and their intensity level. Our proposed text augmentation through linking punctuation
marks instead relies on objective textual cues in order to convey contextual linguistic prosodic
patterns between utterances. The paralinguistic annotations are not in the scope of the study
described in this chapter.

3.2 Evaluation of the impact of the segmentation

Because of time constraints at the moment of this experiment, only Tacotron2 is evaluated
in this chapter. The results presented in this section are extracted from Lenglet et al. [2021].
Only the main results of this paper are discussed in this section. For further information, this
paper is included at the end of this manuscript.

3.2.1 Experimental Setup

Six Tacotron2 models are trained for this experiment:

• O and Og are trained on the original segmentation from M-AILABS [Solak, 2019] for
200 epochs.

• N and Ng are trained on the new segmentation proposed in Section 3.1.1, with ortho-
graphic inputs only, for 200 epochs.

• P and Pg are trained on the new segmentation proposed in Section 3.1.1, with both
orthographic and phonetic inputs for 100 epochs, since each epoch corresponds to twice
the number of utterances of the orthographic models.

Models annotated g are fine-tuned with the Gate Loss Correction (GLC in short, see
Section 2.1.2 for further details), ensuring that the EoS is properly triggered. Before the last
quarter of epochs, only one model is trained. During the final quarter, models annotated g

follow the GLC fine-tuning procedure, whereas others follow the standard procedure.

The number of epochs is modified from the training procedure described in Appendix B. To
compare models at equivalent training time, the models without phonetic inputs are trained
for twice as many epochs as the models with mixed-representations. Also, all models fine-
tuned8 from the English model trained on LJSpeech shared by NVIDIA9. Because of memory

8We initially thought that fine-tuning from an English pre-trained model could help to produce better
quality syntheses. The number of epochs was actually sufficient to train the models from scratch. Models were
then trained from scratch in later experiments.

9https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view

https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view
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issues with longer utterances in the original M-AILABS segmentation, the batch size is set to
32 for all models. The vocoder used is WaveRNN, described in Appendix D.1.

5% of the corpus was randomly selected as the test set (903 utterances), taken from the
common set of utterances between the original M-AILABS segmentation and the new proposed
segmentation.

3.2.2 A Trade-Off between Spectral Accuracy and Phrasing

The main objective measurements are reported in Fig. 3.4. This evaluation reveals two oppo-
site effects of the new proposed segmentation:

• First, Fig. 3.4a shows that the segmentation of the corpus into shorter utterances im-
proves the spectral accuracy10. A one-way ANOVA confirmed the statistical effect of
the model on the computed MSE error (F = 246.5, p < 0.001). Tukey-Kramer multiple
comparisons show that all pairs are statistically different, except Pg/N and Pg/Ng. The
gate loss correction has a significant impact on all models.

• On the other hand, Fig. 3.4b illustrates that the models trained on the new segmenta-
tion produces shorter syntheses compared to the original segmentation. This effect is
mitigated by the addition of the GLC. This fine-tuning process tends to elongate syn-
thesized utterances. Silences are elongated more than speech portions, which results in
an overall lower speaker rate.
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Figure 3.4: Objective Evaluation of the Segmentation Effect.

10MSE between the synthesis and the Ground-Truth, computed on mel-scale spectrograms aligned with
DTW [Kubichek, 1993].
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Note that the speaking rate of all models is significantly higher than the ground truth
(GT ). Interestingly, the general elongation produced by the addition of the GLC also benefits
the spectral accuracy on the new segmentation, but produces higher errors on the original
segmentation.

Longer pauses observed with O and Og probably result from intra-utterance pause fre-
quency and duration in the original segmentation provided by M-AILABS. In that case,
models are trained on audio clips that sometimes contain pauses longer than 1 s, and thus
reproduce that behavior during inference. On the contrary, the re-segmentation processing
avoids intra-utterance silences longer than 400ms, resulting in an uninterrupted synthesis.

3.2.3 Multi-dimensional Evaluation of Perceived Differences

Following the results of the objective evaluation, only the three models with the GLC (Og, Ng

and Pg) were evaluated during perceptual tests. A MUSHRA-like test [International Telecom-
munications Union, 2003] was conducted online on 44 participants recruited via Prolific [Palan
& Schitter, 2018]. Participants were asked to rate the overall quality on a scale from 0 (very
bad) to 100 (excellent). No explicit reference was given to the participants, but the vocoded
Ground-Truth was included as hidden high anchor. Results of this perceptual experiment are
reported in Fig 3.5. This experiment showed a small but significant preference by partici-
pants for Og compared to Ng, which could indicate that training Tacotron2 on the proposed
segmentation does not produce the expected benefits.

As discussed in Section 1.3, MOS and MUSHRA provide limited information on the actual
differences between the evaluated systems: asking participants to rate the synthesis quality
without specific definition of what was expected was probably a mistake. However, in order
to explore the underlying factors of the performed evaluation, we further used the recorded
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Figure 3.5: MUSHRA results. ** indicates a significant difference between models (p < 0.05).
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MUSHRA scores to perform a multi-dimensional analysis of distances computed between
each model and GT . These distances are evaluated against both objective and subjective
measurements:

• Subjective distances: absolute score differences between all possible condition pairs
evaluated in the MUSHRA, averaged across all participants and all utterances.

• Objective distances: MSE between all possible conditions pairs computed on mel-
spectrograms aligned by DTW [Kubichek, 1993]. Objective distances are averaged across
all 903 utterances of the test corpus.

These two distances matrices are then projected in two independent 2-dimensional spaces
using classical Multi-Dimensional Scaling (MDS) [Kruskal & Wish, 1978]. To give a better
idea of the impact of the GLC, both corrected and non-corrected models were also included
in the objective MDS. Subjective and objective MDS (respectively named MDSS and MDSO

in the following) are given in Fig. 3.6. As a tool to interpret the dimensions exhibited by the
two MDS, correlations between acoustic measurements and the components of both MDS are
estimated. Five acoustic metrics are selected:

1. The Mean Square Error (MSE) on aligned spectra computed in Fig 3.4a

2. The Speaking Rate (SR) in phones per second.

3. The mean Pause Duration (PD) in seconds.

4. The mean Fundamental Frequency (mean F0 in semitones) and the standard
deviation of F0 (std F0 in semitones) computed by utterance and averaged across
the corpus.

MSE and mean F0 evaluate the spectral accuracy of the predicted mel-spectrograms. The
speaking rate and the pauses duration are related to phrasing. std F0 is evaluated as a supra-
segmental expressive cue. Correlation coefficients betwen the coordinates of models on the
MDSs and these acoustic features are given in Table 3.3.

Correlation coefficients indicate that prosodic cues like pause duration and standard devia-
tion of F0 are closely related to the second component of MDSO, but to the first component of
MDSS . On the other hand, spectral accuracy measurements MSE and mean F0 are correlated
to the first component of MDSO, and conversely to the second component of MDSS , even
if this tendency is not significant for MDSS . In short, two main dimensions emerge in both
evaluations: segmental accuracy (MSE and mean F0) and supra-segmental prosodic factors
(phrasing and std F0). The axis inversion (and associated portion of variance explained) tends
to show these dimensions are not given the same importance in the perceptive judgment as in
the objective measurement.
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Figure 3.6: Multi-dimensional scaling of distances between pairs conditions. Left and right graphs
show objective and subjective distances respectively. Proportions of variance explained are given for
each component.

Table 3.3: Correlation coefficients between objective measurements and components of MDS. * and
** indicate p < 0.1 and p < 0.05 respectively.

MDS Dim
objective measurements

MSE SR mean PD mean F0 std F0

Obj
1 0.90** -0.47 0.44 -0.71* -0.06
2 0.63 -0.74* 0.89** -0.43 0.97**

Subj
1 0.89 -0.93* 0.96** -0.50 0.98**
2 0.97 -0.02 0.13 -0.83 -0.17

3.2.3.1 Notes on mixed-input representations

The ablation study presented in this section also compared the impact of training on mixed
representations with training characters only. Fig. 3.5 summarizes the scores given by partic-
ipants to each model. The model Pg, trained on mixed representations, performs significantly
better that Ng. The multi-dimensional analysis of results presented in Section 3.2.3 indicates
that Pg outperformed Ng on all aspects. Additionally, this evaluation does not take advantage
of the possibility for Pg to use phonetic inputs at inference. These results are very promising
for mixed-representations, and motivate us to reproduce this procedure on the experiment
presented in Section 3.3, as well as all following experiments.
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3.2.4 Discussion: Interesting Insights but Restricted Experimental Setup

The presented results advocate for the importance of the data segmentation on the perfor-
mance measured on Tacotron2, which is often underlooked in the literature. Through the
proposed multi-dimensional analysis of measured objective and subjective metrics, we have
shown that the way speech data is segmented impacts both quality and expressiveness in op-
posite directions. The proposed segmentation in shorter utterances favors spectral accuracy,
which was likely not the decisive factor in perceptual judgments.

However, this evaluation may not be representative of the potential of the shorter seg-
mentation. First, in order to evaluate the models on a common test set, test utterances were
selected as belonging to the intersection of the two segmentations. This common set is not
representative of the distribution of duration in the new segmentation, with a mean duration
of 4.06 s, above to the third quartile of the proposed segmentation: 3.95 s. This selection
implicitly favors the original segmentation, by evaluating samples in the middle of its train-
ing distribution. Additionally, the main benefits of the shorter segmentation is not always
evaluated on well-formed isolated utterances. By focusing on smaller portions of speech, the
proposed segmentation does focus on the spectral quality, but these portions should then be
concatenated into longer forms of speech. In that case, the phrasing has to be reconstructed
at inference by managing the duration of silences between the chunks.

The role of punctuation marks in this post-hoc concatenation is crucial, which is why
the punctuation is given a particular focus in Section 3.3. This concatenation process in
longer forms of speech was not evaluated in this experiment. Due to its benefits on the
spectral prediction, we decided to apply this segmentation process to the whole dataset in later
experiments. Alternative segmentation processes may be explored in future work: in order to
maximize the useful linguistic context within isolated utterances, automatic segmentation may
benefit from the use of pre-trained Large Language Models. The dataset could be segmented
into semantically consistent units instead of solely based on silences, ultimately reducing the
amount of overly short utterances (“Ah!”, “¬Oui.”, etc.).

Nevertheless, a few interesting results came out of this study. The multi-dimensional
analysis of perceptual results introduces relevant nuances to the MUSHRA results. When
asked a non-specific question, participants tend to favor the expressiveness of the synthesized
speech compared to the spectral proximity with the natural voice. This result was to be
expected: the natural voice is not the only possible speech production for a given text. As
such, the objective evaluation of the proximity of the synthetic speech with the natural voice
is just one indicator of the ability of the synthetic models to produce speech-like spectral
features. Differences between models may be too marginal to favor any of the studied models.

Objective evaluation has also confirmed the benefits of the Gate Loss Correction (GLC)
proposed in Section 2.1.2. This fine-tuning process improved both spectral and phrasing
behaviors, in particular for short utterances (improvements were only found for phrasing in
the original segmentation).

Others researchers have proposed other segmentations of the corpus for the Blizzard Chal-
lenge 2023, with longer utterances and fine-tuning on concatenation of utterances to better
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model long-form text [Xu et al., 2023]. Our segmentation in smaller utterances may help in
reducing the overall reconstruction loss by specializing the model on a easier task, but this
may not be the usual case of usage of TTS, and thus may cause unnatural behaviors at infer-
ence (quick speaking rate, too rare pauses between words, unnatural phrasing...). Note that
the Blizzard Challenge did not address the synthesis of short utterances: test utterances were
between 100 and 200 characters.

3.3 Evaluation of Linking Punctuation Marks

We describe below our attempt to restore linguistic prosodic cues through the contextual
information provided by the linking punctuation mark. We hypothesize that the ending punc-
tuation mark of the previous utterance should convey relevant information regarding the pro-
duction of appropriate speech features for the next one. When replicating this punctuation
mark at the beginning of the next utterance, this initial punctuation is seen as a label, which
stands for the initial context of the utterance. The character embedding associated to this
punctuation mark is expected to modify the short-range context of adjacent characters, as
well as the long-range context of the whole utterance. Thus, it should bias the text-encoder
output and the audio output prosody. The understanding of phrasing patterns associated
with punctuation is also a requirement to generate long form speech by the concatenation of
smaller portions of syntheses.

To assess the benefits of the proposed linking punctuation, we conducted an experiment
on Tacotron2. Our hypothesis is threefold:

H1: adding the linking punctuation mark from the previous utterance provides relevant con-
text information which Tacotron2 can use to improve its spectral predictive performance.

H2: using the linking punctuation mark identical to the original punctuation mark of the
extract (congruent punctuation) should produce more adequate prosodic patterns than
using other punctuation marks (non-congruent punctuation). Similarly, a model trained
on congruent punctuation marks should produce more natural samples than a baseline
model trained without linking punctuation marks, since speaking style will be averaged
during the training of this baseline model.

H3: each linking punctuation mark induces a particular output prosody.

3.3.1 Experimental Setup

Two Tacotron2 models were trained for this experiment:

• Baseline : Tacotron2 implementation described in Appendix B. This model is trained
on both orthographic and phonetic inputs.

• Contextual : The same Tacotron2 implementation, but the corpus has been augmented
with the linking punctuation marks.
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Both models are trained on the corpus described in Section 3.1. This subset only includes
NEB, for a total amount of 32:40:53 (hh:mm:ss) of audiobooks recordings. Both orthographic
and phonetic inputs are alternately used during training.

Both models follow the training procedure described in Appendix B, except that the mod-
els are trained for 200 epochs instead of 100. Similarly to the experiment described in Sec-
tion 3.2, the models are initially trained using warm-start from an English checkpoint trained
on LJSpeech and shared by NVIDIA11.

We designed this experiment to evaluate how well contextual information could be con-
veyed by linking punctuation marks. The issue when rating utterances out of context generally
comes from the multiplicity of valid intonations for a given textual content. By providing some
initial context preceding the stimulus to evaluate, we hope that the listeners will be able to
attune their mental representation to what the synthesis should sound like, in accordance
with Latorre et al. [2014].

Thus, we selected our test set to match a specific pattern which will enable us to evaluate
stimuli in context. Our pattern is the following: 1) Two successive utterances; 2) the first
one starts with a full stop (‘.’, ‘¬’ or ‘§’) and the second one ends with ‘.§’; 3) the linking
punctuation mark between these utterances is one of the 8 most popular punctuation marks,
which are showed in Fig. 3.2a. These two utterances are called ‘base’ and ‘target’ respectively.
The context is established by the base, which is kept fixed during evaluation. We excluded
base-target pairs if one of them contains at least one intra-utterance punctuation mark. We
identified 1362 such base-target pairs. When concatenating the base and the targets, a pause is
inserted between the two chunks. The duration of this pause depends on the linking punctua-
tion mark, and is set as the mean of the measured duration distributions reported in Fig. 3.2a.
Fig. 3.7 illustrates an example of such base-target pair. We used WaveRNN as vocoder (see
Appendix D.1).

Figure 3.7: Example of a base-target pair. Their delimiting punctuation mark found in the corpus
defines the congruent linking punctuation mark. At inference, any linking punctuation mark can be
used; the congruent one is expected to better match the Ground-Truth target. The duration of the
pause matches the mean duration measured by punctuation mark in Fig. 3.2a.

11https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view

https://drive.google.com/file/d/1c5ZTuT7J08wLUoVZ2KkUs_VdZuJ86ZqA/view
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3.3.2 Learning Performances

To explore H1, we evaluated the learning performances of Contextual compared to Base-
line . After 200 epochs, we compute the total loss per batch of each model on the whole
training corpus. The total loss is the addition of gate, spectrum and postnet loss. Batch
segmentation is the same for both models. Loss evaluated on each batch is shown in Fig. 3.8.

We compared model performances with a one-way ANOVA. The Contextual exhibits a
significantly lower global loss than Baseline (F = 1200, p < 0.001). These results support
H1: the proposed model effectively uses the contextual information provided by the linking
punctuation mark to bias the synthesis towards ground-truth. It is likely that the learned
character embedding of the linking punctuation marks benefits the short- and/or long-term
dependencies computed by the text encoder, providing better hidden acoustic features to be
decoded as mel-spectrograms. Note also that this extra initial character may also help the
attention mechanism, by providing an input symbol to match the initial 130ms of silence in
the recordings.

Baseline Contextual
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Figure 3.8: Global loss per batch on the training corpus after 200 epochs.

3.3.3 Subjective evaluation in Context (congruent vs. non-congruent)

We evaluate H2 with a perceptual test performed online using the webMUSHRA framework
[Schoeffler et al., 2018]. We selected 48 base-target pairs for the listening test (6 examples
for each punctuation mark mentioned in Table 3.2a), after exclusion of mispronunciations
and base-target pairs longer than 20 words. Every base was synthesized using Contextual
in prediction (teacher-forcing), to ensure the best possible synthesis with our model. Each
target was then synthesized under 10 conditions: 1) a baseline target with Baseline , 2) a hid-
den reference with congruent punctuation using Contextual in prediction (teacher-forcing),
3) 8 linking punctuation targets, with the 8 punctuation marks given in Table 3.2a, i.e., the
congruent and 7 non-congruent ones. The linking punctuation targets are generated with
Contextual in inference mode.

Participants were separated in 2 groups, each group listened to 24 out of the 48 base-target
pairs. For each pair, participants were given the original text input, and were asked to evaluate
the 10 given conditions in a MUSHRA setup [International Telecommunications Union, 2003]
according to the adequacy between each condition and their expected pronunciation of the
given text. No explicit reference was given during the listening, so that participants were only
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Figure 3.9: MUSHRA results by base punctuation mark. Results of non-congruent punctuation marks
are averaged.

asked to judge the contextual accuracy of the target. The experiment began with 5 minutes
of training during which participants listened to a variety of synthesis that they heard during
the experiment and learned how to use the webMUSHRA interface. 61 participants recruited
on Prolific [Palan & Schitter, 2018] and aged 18-59 took part in the experiment. They were
French native speakers, and had little or no previous experience with listening tests. Results
of the MUSHRA are given in Fig. 3.9.

We compared the scores of each condition for each base punctuation with pair-wise Wilcoxon
rank sum test. The prediction is ranked significantly higher than the other three conditions.
Baseline is ranked significantly higher than the congruent and the non-congruent condi-
tions for ‘;’, ‘§’, ‘¬’ and ‘?’. For the full stop ‘.’, only non-congruent punctuation marks are
significantly lower than Baseline . For the comma ‘,’, the congruent punctuation mark is
ranked significantly higher than Baseline and non-congruent punctuation marks. All other
differences are not significant.

Overall, only the comma supports H2. Several hypotheses can explain this lack of im-
provements of our contextual Tacotron2 over the baseline for other linking punctuation
marks. The base-target pattern we have chosen may not be representative of the training cor-
pus, which made it harder for our model to generate appropriate synthesis. Plus, all linking
punctuation marks do not have the same number of occurrences in the training database. In
particular, the comma is much more common than the other punctuation marks, as shown in
Fig. 3.11a. In addition, some of the linking punctuation marks are used in various contexts:
for example ‘¬’ is used prior to the speaking turn of a character. Characters are portrayed by
NEB in a very expressive manner, that is different from one character to another. As a result,
averaging speaking style according to ‘¬’ may lead to unnatural speech or unexpected style.
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3.3.4 Linking Punctuation Effects

To study H3, we computed distances between the 10 variations of targets previously men-
tioned, taken as pairs. This amounts to 45 distinct pairs per target, computed as an upper-half
distance matrix. This calculation evaluates the ability of Contextual to generate a variety
of speech according to the linking punctuation mark used. Remember that they impact the
utterance following them. Two distances matrices were evaluated through subjective and
objective measurements:

• Subjective distances: absolute score differences between all possible condition pairs
evaluated in the MUSHRA from subsection 3.3.3. Scores are averaged across all partic-
ipants and all targets.

• Objective distances: mean squared error between all possible condition pairs com-
puted on mel-spectrograms aligned by dynamic time warping (DTW) [Kubichek, 1993].
Objective distances are averaged across all 681 targets of the test corpus.

Then, we projected the two obtained distances matrices in a 3-dimensions space using
classical Multi-dimensional scaling (MDS) [Cox & Cox, 2008]. The wider the dispersion of
linking punctuation marks in the MDS, the more our contextual Tacotron2 is able to generate
variations in speech. Subjective and objective MDS are given in Fig. 3.10.

The subjective and objective MDS show very similar patterns. That means that the
MSE computed on synthesis is a strong prior indicator of the subjective scoring. Moreover,
subjective results by congruent punctuation mark in Fig. 3.9 can be used to interpret the
dimensions of the MDS regarding H3:

• From Fig. 3.9, on average, the baseline scored higher than any linking punctuation
of our contextual Tacotron2; thus it is closer to the prediction. On Fig. 3.10a and
3.10b, the hierarchy of linking punctuation marks of the first component (x-axis on the
left graph) matches the average score obtained by each condition during the experiment,
suggesting that the first component stands for the general quality of speech, which is
what participants mostly evaluated.

• The prediction is clearly the most expressive condition as it was generated with teacher-
forcing. On the contrary, Baseline was trained on the entire corpus, so speaking styles
were averaged across all utterances, and no particular style selection manner was added.
On the other hand, utterances synthesized with Contextual employ a wider variability
of expressions. Given that Fig. 3.10 shows proximity between prediction and linking
punctuation along the second component, it suggests that this component stands for the
expressiveness of the synthesized speech.

• The third component spreads out the different linking punctuation marks: on the one
hand expressive punctuation marks (‘¬’, ‘?’, ‘...’ and ‘ !’) that are mostly used in
dialogues, and on the other hand non-expressive punctuation marks (‘,’, ‘§’, ‘.’ and ‘;’)
that are mostly used in narrative utterances. Baseline averages different punctuation
marks, thus is neutral regarding that aspect.
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(a) Objective MDS: plane 1 (left) and 2 (right)

(b) Subjective MDS: plane 1 (left) and 2 (right)

Figure 3.10: Multi-dimensional scaling of distances between paired conditions. Upper and lower
graphs show objective and subjective distances respectively. Both show first and second factorial
designs respectively. Proportions of variance explained are given for each component. b and p stand
for baseline and prediction respectively.

3.3.5 Discussion: Generation of Uncontrolled Variability

This proposed experiment showed that using the punctuation mark ending the previous ut-
terance to bias the synthesis of the current utterance enables the Tacotron2 model to generate
a wider variability of speaking styles. However, we were not able to take advantage of this
variability at inference, which reduces the benefits of the proposed augmentation method.
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Improvements are still to be found to use this variability to actually improve synthesis in
context. Training on corpora that are more balanced in punctuation marks could increase
synthesis accuracy in these cases, as seen with the comma. Nevertheless, increased variability
observed with the proposed contextual Tacotron2 opens new perspectives on how to use a
single character at the beginning of utterances to bias the whole utterance prosody. Other
characters that do not necessarily appear in the original text may also be used for this purpose,
such as labels or emoticons. Characters and voice identity labels from SynPaFlex [Sini et al.,
2018] are interesting candidates to test this method.

Even if they were excluded from the test set, intra-utterance punctuation marks are very
common in the corpus. A finer analysis of the duration associated with these intra-utterance
pauses in the Ground Truth (see Fig 3.11b) reveals a tri-modal distribution with harmonic
log-scaled modes: 1) ∼120ms, 2) ∼240ms and 3) ∼480ms found by Bailly and Gouvernayre
[2012] and Campione and Véronis [2002]. This behavior is not reproduced by our model, which
favors pauses of the intermediate length of ∼240ms. Instead of relying solely on punctuation
to annotate these pauses, we could have used additional symbols for each type of pause seen
in the corpus in order to help the model to learn this behavior.

(a) Number of initial occurrences of the 8 most
common punctuation marks in training and test
corpus.

(b) Duration distribution of pauses in the corpus
VS at inference for Contextual . In the 1362 ut-
terances of the test set, we counted 1095 and 1056
intra-utterance pauses for the Ground-Truth and
Contextual respectively.

Figure 3.11: Comparison of the training and test sets.
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Despite the limited results of the proposed linking punctuation procedure, this text-
augmentation was applied to the entire corpus described in Appendix A and reproduced in all
following experiments. From a training perspective, this linking punctuation mark improves
the reconstruction loss of Tacotron2. It favors the monotonicity of the attention mechanism,
which helps interpreting the attention maps of Tacotron2 as described in Section 2.2. This ini-
tial symbol is also a requirement to train the duration predictor of FastSpeech2 on this initial
130ms of silence. We have tried to introduce two additional symbols (out of the existing set)
to annotate these initial and final silences ("0" and "1" respectively). However, punctuation
marks provided better reconstruction losses and more consistent attention maps, so we stuck
to the proposed process.

3.4 Discussion: Limited Expressive Control Through Text Se-
quences

The proposed methods mainly focus on the structuring of the data and how to present them
to the TTS model in order to improve the modeling of linguistic prosody. The segmenta-
tion of the training dataset into utterances, massively under-explored in the literature, was
proved to impact both the spectral reconstruction capabilities and the expressiveness of the
TTS model. We ultimately opted for a segmentation into shorter utterances, which favors the
spectral accuracy at the cost of more natural phrasing. We believe that phrasing may instead
be predicted based on contextual intra-utterances cues like the punctuation. We have demon-
strated that the punctuation highlights prosodic patterns that can be learned by neural TTS
as a contextualization tool. However, we found little success when controlling the synthesis
through the proposed linking punctuation procedure.

We emphasize that the segmentation does not provide any explicit control mechanism at
inference, but was expected to contribute to the enhancement of performances through the
introduction of inter-utterance contextual information. The addition of linking punctuation on
the other hand was expected to propose an alternative to the one-to-many mapping problem of
voice synthesis. We found that the use of different punctuation marks as the initial character
of the text sequence did indeed produce various prosodic patterns, but we did not manage to
turn this variability of production into a viable prosodic control mechanism. We may have
overestimated the contextualization capacities of the neural layers in our model.

This made us question our understanding of the learning process of neural TTS. Despite
the exhibition of prosodic patterns in the Ground Truth recordings, these patterns were not
reproduced by our model during inference. In order to interpret this mismatch, we need to
dive into TTS model internal representations and figure out how the acoustic and prosodic
information is encoded. We believe that a closer look at the features encoded into latent
embeddings could help us to design more careful architectures based on a finer understanding
of the unsupervised processing pipeline performed by such models. Additionally, the probing
of acoustic features may provide new opportunities to bias the models toward the desired
expressive control, with respect to the models’ representations. We propose analytical methods
to uncover TTS model embeddings in the following chapter.
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Chapter Highlights

This chapter presents our analytic methods to unveil the acoustic and phonological features
encoded into latent representations of neural TTS. We show how linear probing reveals the
different dynamics of computation of acoustic features in the successive layers of Tacotron2 and
FastSpeech2. Notably, this analysis highlights that mean segmental features like formants
are encoded into the early layers of both models, which confirms the ability of the text encoder
to predict the Letter-to-Sound alignment. On the other hand, supra-segmental features
(like F0 and duration) are sensitive to the sub-tasks implemented by the models. This analysis
advocates for a more careful design of sub-tasks with respect to the actual processes learned by
neural layers in an unsupervised manner. We emphasize that the proposed analytic methods
are not model- or feature-dependent, and thus could be universally used to better understand
the underlying processes performed by neural TTS.

Related contributions: [Lenglet et al., 2022b, 2023a]
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In this fourth chapter, the focus is placed on the internal representations of neural TTS,
referred to as embeddings. Deep learning architectures, by definition, compute intermediate
internal representations which encode several levels of information. Because these internal
spaces are mostly unconstrained, understanding these latent representations can be challeng-
ing. The lack of interpretability of these neural models constitutes a barrier to the development
of these systems in interactive environments [Gunning, 2017].

In an attempt to unveil the hidden processes implemented in these black boxes, methods
for analyzing the internal representations of neural models are emerging [Burkart & Huber,
2021]. Explainable Artificial Intelligence (XAI) may seem less of an issue for synthetic speech
related tasks than it is for health care. Predicting mel-spectrogram features surely does not
raise the same ethical concerns than medical diagnosis. However, the benefit of XAI lies here in
the potential benefits for scientific understanding of complex phenomena. Statistical learning
performed by these neural models constitutes a valuable source of information about language
if analyzed with the right tools and methodology. Correlations learned by deep learning
models to maximize their predictive capabilities may help us to better understand human
speech production mechanisms from low-level phonetic co-variations to high-level phonological
organization of sounds.

Moreover, uncovering the specific tasks performed by each layer of a deep neural network
also helps in designing more careful neural architectures [Zeiler & Fergus, 2014]. Neural model
architectures often rely on heuristics to determine the optimal number of dimensions of latent
spaces or the number of similar layers to stack to achieve one specific goal. More often than
not, the final decision for these hyperparameters is based on ablation studies, which give
limited insights on the reasons why some architectures perform better than other. We believe
that developing methods to probe these latent spaces could help us understand how variations
of architecture impact the encoding of features of interest.

Uncovering features encoded in internal neural layers is specifically interesting for TTS
models, for which we observe the use of external latent representations of the input text or
the output signals to achieve increasingly precise control. As seen in Section 1.2, the latest
TTS models may now integrate pre-trained representations from speaker-verification tasks [Jia
et al., 2018], Large-Language-Models [M. Kim et al., 2021; Shin et al., 2022] or self-supervised
audio representations [L.-W. Chen & Rudnicky, 2022]. Although these representations are
believed to convey some acoustic, syntactic or semantic information which could help the
synthesis process, a deeper analysis of these representations should precede their integration
to ensure that 1) they encode the specific information the TTS model could use to improve its
prediction, but also that 2) these external representations are integrated in the appropriate
layer·s in which the TTS will make the best use of this additional information.

This chapter presents the set of methods proposed to analyze the internal spaces of neural
TTS models, in order to track acoustic and prosodic representations in embeddings. The
linear probing procedure of acoustic representations in internal embeddings in presented in
Section 4.1. In an attempt to show its universality, this procedure is illustrated on both
Tacotron2 and FastSpeech2 models, for a selection of acoustic features. Results are presented
for segmental and supra-segmental features in Section 4.2.
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4.1 Feature Tracking in Latent Representations

The interpretation of TTS as recurrent auto-encoder architectures trained to compute self-
supervised speech representations, which are biased by the text during decoding, is the foun-
dation of the Reference Encoder widely adopted by the TTS field [Skerry-Ryan et al., 2018].
This interpretation supposes that the text encoder modulates acoustic representations set by
the Reference Encoder as a function of phonetic content. As stated in Section 1.2.2, various
utterance-wise contributions might be combined in order to account for multiple levels of ex-
pressiveness. However, little is known on how these representations are structured and what
they encode.

With regard to utterance-wise embeddings, identity and gender have successfully been
shown to be encoded by speaker representations trained for speaker verification [S. Wang et
al., 2017], later used as speaker embeddings in TTS [Jia et al., 2018]. Similarly, reference em-
beddings were shown to linearly encode eGeMAPS acoustic features [Tits et al., 2021]. These
findings advocate for the hypothesis of mean acoustic features being encoded into utterance-
wise embeddings, which are modulated in time by the output of the text encoder, in order to
generate the appropriate audio output.

Regarding character embeddings, we showed in Section 2.2 that internal representations of
orthographic input encode the sequence of phones to produce, but that study only provided
qualitative interpretations of how Tacotron2 models the duration encoded in each input sym-
bol. In this section, we propose to extend the analysis of acoustic correlations in latent spaces
proposed by Tits et al. [2019] and apply it at the text level. This analysis should provide the
first insights into the local encoding of acoustic modulations performed by neural TTS.

4.1.1 Choice of Acoustic Features

Acoustic features of interest were chosen to match the proposed local scale. Despite the
eGeMAPS features [Eyben et al., 2015] having shown great potential in affective comput-
ing, most parameters are measured on long time scales, generally at the utterance-level.
This prevents the use of these features at the phone level. Instead, we considered a smaller
set of local features which define both the spectral identity of phonemes (called segmental
features) and wider-range prosodic variations independent of the phoneme identity (called
supra-segmental features). The full list of features measured is given in Table 4.1. As dis-
cussed before, the text encoder is suspected to encode phonetic information, which means that
formants are also likely to be encoded in its embeddings. The three prosodic features – phone
duration (D), its average fundamental frequency (F0) and energy (E) – were chosen for their
prevalence in expressive control in the literature [Mohan et al., 2021; Raitio et al., 2020; Ren
et al., 2021; Y.-J. Zhang et al., 2019]. Additionally, since FastSpeech2 implements an explicit
predictor from the output of the text encoder for each of these features, they are likely to be
found encoded in latent representations. Spectral tilt, center of gravity and spectral balance
were also included for their role in phonetic discrimination and voice quality.
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Table 4.1: Acoustic Features tracked in latent representations of neural TTS. Semitones (st) are
computed with reference 1Hz. All acoustic parameters are averaged on the sustained part of the
vowels.

Type of Feature Acoustic Feature Abbreviation Unit

Segmental

First Formant center frequency F1 st
Second Formant center frequency F2 st
Third Formant center frequency F3 st
Spectral Center of Gravity CoG st
Spectral Balance around 1kHz SB1k dB (High Freq energy ÷ Low Freq energy)

Supra-Segmental

Duration D log(1 + # of frames)
Fundamental Frequency F0 st
Energy E dB
Spectral Tilt ST dB/octave (Relative Value)
Relative Position in Utterance RP index ÷ input sequence length

The relative position in the sequence is included as an additional supra-segmental feature
to explore how the recurrent VS parallel processing performed by the TTS architectures may
need to encode relative position in various ways. Since the use of self-attention layers [Vaswani
et al., 2017], a sinusoidal positional encoding is added to model sequential information. Indeed,
parallel data processing cannot access on its own the relative positions of the symbols in the
sequence. On the other hand, recurrent networks like LSTMs inherently generate hidden
representations sequentially. As a result, the encoding of this sequential nature may not
be necessary into latent representations. We will however show that relative positioning is
computed at key stages of the text-to-sound mapping.

All acoustic features are measured with Praat [Boersma, 2001]. Time alignments computed
by the models (duration predictions for FastSpeech2, extracted from the attention map for
Tacotron2 using the procedure described in Section 2.2.2), are saved alongside the syntheses.
These alignments are used to perform the acoustic analysis by phone. Because the selected
features include parameters that are only measured on voiced portions of speech (i.e., F0),
only vowels are taken into account when training linear predictors on these features. In this
case, all parameters are averaged over the central part (33-66%) of the vowels.

4.1.2 Training of Linear Predictors on Internal Text Embeddings

This section describes the methods we propose to track acoustic and phonetic features in the
intermediate embeddings of TTS neural models. These methods are applied to the two baseline
models described in Chapter 2. The comparative analysis of Tacotron2 and FastSpeech2
embeddings enables us to better apprehend how the very structure of the model shapes the
process of encoding acoustic parameters by the successive neural layers.

Fig. 4.1 summarizes the methodology. This procedure consists of training multiple linear
predictors on intermediate embeddings to investigate how well can each acoustic and phonetic
feature be predicted at any stage of the encoding/decoding process. The evaluation of the
goodness of fit (R2) of these predictors can be interpreted as indicators of the presence/absence
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Figure 4.1: Embeddings analysis per layer: Procedure described for FastSpeech2.

of a linear encoding of each feature at any step of the prediction process. Despite the lim-
itations of linear mapping, the proposed methodology through linear regression enables us
to design linear biases (i.e., translation) to turn any intermediate latent space into an ex-
plicit control space for any predicted feature. This so-called causal control is explored in
Chapter 5. The detailed breakdown of the proposed regression procedure is the following:

Synthesis of a subset of the training corpus: After the model is fully trained, a subset
of the training corpus is synthesized in inference mode, using phone inputs. Intermediate
embeddings computed in the successive layers of the encoder and decoder are saved. In
order to limit the impact of outliers in audio features measured on these syntheses, only
a portion of this set is used in the following procedure; we select half of the synthetic ut-
terances whose prosodic features most closely match the corpus-averaged features. More
specifically: (a) duration, fundamental frequency and energy are averaged by utterance
on this synthesized set; (b) the same features are averaged on the whole synthesized
corpus; (c) only half the utterances with the lowest MSE compared to the corpus means
are kept for further analysis. This selection ensures that the linear predictors are trained
on the most trustful part of the distribution.

Embedding Space Reduction: (model- and feature-dependent) The proposed regres-
sion can be done both in the initial latent space or on a reduced version. In most models,
the intermediate latent spaces exhibit strong correlations (positive and negative) between
some of their dimensions. However, multi-linear regression relies on the assumption
that explanatory variables are independent, so a reduction of the latent space is here
performed with Multi-Dimensional Scaling (MDS) [Kruskal & Wish, 1978]. MDS was
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favored over other linear reduction techniques because we found that cosine distances
between embeddings better reflects the proximity/dissimilarity between similar/different
phones. In an attempt to work with accurate reduced representations while limiting the
number of dimensions, only dimensions that explain at least 90% of the total variance
are kept. The number of retained dimensions is thus model- and layer-dependent: mod-
els with higher dimensions of their internal spaces often need more dimensions in the
reduced spaces to account for 90% of their variance.

Multi-Linear Regression by layer: Similarly to Tits et al. [2021], a multi-linear regres-
sion is computed on embeddings to 1) evaluate which features can be linearly predicted
from the embeddings and 2) exhibit directions in the latent space associated with con-
tinuous variations of each feature. In contrast with Tits et al. [2021], this regression is
applied on phone embeddings, instead of utterance-wise style embeddings. This regres-
sion procedure is applied for each feature, at each layer of the models. Since embeddings
are up-sampled at the spectrogram frame-level in the decoder, embeddings by phone
are then computed by averaging the frame embeddings sequence corresponding to each
phone. This sequence is given by the automatic segmentation of the audio signal. Acous-
tic and prosodic features are finally estimated by least-squared multi-linear regression
in the reduced spaces, using a LBFGS solver [Wright, Nocedal, et al., 1999].

Parsimonious Dimension Selection (feature dependent): The trained predictors give
the lowest residual error possible in the reduced spaces, but still rely on numerous
dimensions to explain each feature. To further reduce the number of dimensions involved
for each feature, a parsimonious dimension selection is applied for each feature. This
means that 1) The same multi-linear regression is computed by ignoring one dimension
at a time. All correlations between predicted and measured acoustic features are saved.
2) The dimension that reduces the correlation the least is ignored for future regressions.
3) This procedure is repeated until the correlation reaches 1% difference with the initial
best possible correlation in the reduced space. On average, this selection reduces by half
the number of dimensions of the reduced space on which the regression is computed, with
little impact on the predictive capabilities of the method. As a result, this procedure
predicts any continuous acoustic or prosodic features by layer, following the formula 4.1.

P̂L = f(EL) = EL.A
P
L + βP

L =

d∑
i=1

αP
i,L.ei,L + βP

L (4.1)

with d the number of reduced dimensions after parsimonious selection in layer L.
P̂L is the approximation of any feature P at layer L. EL = (e1,L, e2,L, . . . , ed,L) is
the embedding coordinates at layer L. AP

L = (αP
1,L, α

P
2,L, . . . , α

P
d,L)

T is the regres-
sion coefficients vector for the parameter P along the d dimensions and βP

L the
bias.
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We also extended this procedure to categorical predictors. Similar to the prediction of con-
tinuous variations of acoustic features, categorical prediction indicates in which layer phono-
logical decisions are made by the model. We trained categorical predictors to predict output
phones and the presence of French liaisons from orthographic inputs, as well as the insertion
of silences at word boundaries. In this case, multi-linear regressions are replaced by classifi-
cation with Linear Discriminant Analysis (LDA). Output phone targets are set according to
the Letter-to-Sound mapping (L2S) described in Section 2.2.3.

4.2 Linear Probing Applied to Tacotron2 and FastSpeech2

4.2.1 Experimental Setup

This study attempts to identify prosodic and acoustic features in the intermediate embeddings
depending on the TTS architecture (Tacotron2 and FastSpeech2). The model architectures are
fully described in Chapter 2. The training follows the procedures explained in Appendix B for
Tacotron2 and Appendix C for FastSpeech2. Both architectures are trained on a single-speaker
setup, using NEB data from our corpus described in Appendix A. 5% of the corpus is put
aside as test set (2230 utterances). The vocoder used to compute speech from spectrograms
is Waveglow (see Appendix D.2).

In order to make a fair comparison between architectures, three variants by model are
trained: 1) without any prosodic predictors (except the mandatory duration predictor for Fast-
Speech2), 2) with prosodic predictors but without injecting the prediction through prosodic
embeddings, and 3) with prosodic predictors and predicted prosodic embeddings re-injected
in the decoding process. All variants are summarized in Table 4.2. Note that, contrary to
FastSpeech2, the duration prediction is not used at inference time in Tacotron2 because the
text-to-frame alignment is made by the attention network. Also, a version of FastSpeech2
without phonetic prediction was also trained, in order to verify the potential impact of this
sub-task on features encoded in embeddings. Note that explicit predictors are expected to
shape the output of the text encoder to force pitch, energy, duration and phonological infor-
mation to be encoded at the output of the encoder. We hypothesized that by removing these
sub-tasks, the same features should presumably still be encoded by the model, but potentially
in different layers.

Name Model Prosodic Prediction Prosodic Embeddings Phonetic Prediction Kept in Experiments
TC Tacotron2 ✗ ✗ ✓ ✓

TCP Tacotron2 ✓ ✗ ✓ ✓

TCE Tacotron2 ✓ ✓ ✓ ✗

FS FastSpeech2 ✓ ✓ ✓ ✓

FS\phon FastSpeech2 ✓ ✓ ✗ ✓

FS\E FastSpeech2 ✓ ✗ ✓ ✓

FS\P FastSpeech2 ✗ ✗ ✓ ✓

Table 4.2: Models under study. Vanilla architectures with phonetic prediction are TC for Tacotron2
and FS for FastSpeech2. P , E and phon refer to the Prosodic Predictor, Prosodic Embeddings and
Phonetic Predictor respectively, and \ to the absence of this layer.
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Note that Tacotron2 with re-injected embeddings of prosodic predictors (TCE) never
produces satisfactory synthesis quality, because of the lack of convergence of the attention
layer. We hypothesize that the recurrent LSTM layer which computes the attention weights
in Tacotron2 is not fitted to handle the variability of prosodic embeddings in successive text
embeddings of the input sequence. As a result, TCE was excluded from further observations.

As explained in Section 4.1.2, after the training phase, a subset of the training corpus
(5% = 2120 randomly chosen utterances) was synthesized with each model variant. All in-
termediate embeddings are saved, and linear predictors are trained to map acoustic features
with these embeddings. The reliability of the given linear prediction is evaluated through
goodness of fit for continuous features, or classification performance for classification tasks.
Unless stated otherwise, all presented results are obtained using phonetic input, even if models
are trained using mixed input.

The analysis of the results is organized as follows: sub-section 4.2.2 is focused on segmental
features, which are key identification factors of the sequence of acoustic targets computed
by the text encoder from the input sequence. Then, supra-segmental prosodic features are
studied in sub-section 4.2.3, in order to better understand how prosody is modeled by the
TTS architectures.

4.2.2 Segmental Features

4.2.2.1 Spectral Cues

The "in-painting" of the mel-spectrogram at the output of the decoder (e.g. placement of
formants and harmonics in the frequency bands) heavily relies on the segmental spectral cues
being encoded into embeddings. Since spectral cues are phone-specific, before the regression,
the proposed analysis considers a decomposition of spectral features in two factors: (1) the
average feature of each phone class, and (2) the difference between this average feature and
the actual feature computed on each phone (∆ Features). This decomposition allows us to dis-
tinguish between contributions from the chosen phone input and its contextualization through
successive model layers, respectively. The goodness of fit of the multi-linear regressions by
layer computed on both factors is reported in Fig. 4.2.

Fig. 4.2 indicates that the mean spectral features of each phone class is encoded right from
the phone embeddings layer at the input of each model. Statistical learning performed by
neural models aims at learning compact representations in order to produce predictions as
close as possible to the training examples. Since there is a mapping between the phoneme-
classes and the three first formants, neural models are able to encode mean formants directly
into phone embeddings.

On the other hand, the differences from these mean features per phone class depend on
the context (e.g. co-articulation, variations due to prosody, etc.). As a result, differences
from mean features are increasingly well modeled throughout successive layers, until reaching
the output of the decoder where these representations are projected into 80 dimensions to
compute the predicted mel-spectrogram.
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(a) R² by layer for FastSpeech2 variants

(b) R² by layer for Tacotron2 variants

Figure 4.2: Goodness of fit of the Multi-Linear regressions by layer on segmental features. The x-
axis indicates the successive layers of the model (from left to right): “FFT” refers to Feed-Forward
Transformer, and “Conv” to convolutional layer. Goodness of fit is expressed as the R² of the multi-
linear regression. Acoustic features are detailed in Table 4.1. Predictions of mean spectral features are
displayed with dotted lines while those of deviations from the means are displayed with dashed lines.

Interestingly, regardless of the model, the encoder alone cannot achieve contextualization.
The decoder still performs a large part of the contextual encoding of spectral features, es-
pecially in the case of FS and FS\phon, whose re-injection of pitch and energy embeddings
temporally degrades spectral representations. Tacotron2 variants better encode linear repre-
sentations of spectral features at the output of their encoder (R² ≈ 0.4 compared to 0.2 for
FastSpeech2 variants). One possible explanation of this phenomenon is that Tacotron2 autore-
gressive decoder performs less operations compared to the stack of multi-head self-attention
blocks in FastSpeech2, which may constrain the encoder to compute representations that are
closer to the predicted spectrogram. The presence of prosodic predictors does not strongly
impact these observations.

4.2.2.2 Phonetic Prediction

The early encoding of mean spectral features, which are closely linked to phone identity,
in all models suggests that this early coding of phonetic representations may hold true for
orthographic inputs. To explore this hypothesis, orthographic input is used in this section
to produce intermediate orthographic embeddings. Linear classifiers were trained on these
embeddings using Linear Discriminant Analysis (LDA). Performance of these classifiers by
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layer is reported in Fig. 4.3. This analysis complements the observations of attention maps
presented in Section 2.2, which highlighted that phone duration was predicted early by the
text encoder when synthesizing speech from orthographic input.

Fig. 4.3 distinguishes between classification performance on all phones (blue), vowels only
(red), stop-consonants (yellow), silences (purple) and French liaisons (green). Silence and liai-
son predictions are limited to the encoder, since the presence of a character embedding itself in
the decoder indicates that this character has a non-null duration, which mean that the silence
or the liaison has been produced. Regardless of the model, phonetic representations appear
in the very first layers of the encoder. Unsurprisingly, vowels need more contextualization
than stop-consonants to be correctly predicted. The differences in F1-scores between vowels
and stop consonants from the first embedding layer is explained by the variability of possible
phonetic outputs for the corresponding characters.

Silences at word boundaries and liaisons are encoded later in the process. These two
phonological behaviors rely on the encoding of the duration in the text embeddings. Indeed,
the only difference between the input character "space" producing a silence or not is the
duration predicted for this character (same for final consonant in a position of optional liaison).
Thus, this indicates that duration only appears at the output of the encoder for FastSpeech2
when the phonetic prediction task is implemented. On the other hand, Tacotron2 shows
worse performance on silence and liaison prediction. Tacotron2 relies on its attention map
to predict phone duration. The attention process is autoregressive, which does not limit the

(a) F1-score by layer for FastSpeech2 variants

(b) F1-score by layer for Tacotron2 variants

Figure 4.3: Performance of the phonetic classification by layer. Performance is evaluated with weighted
F1-score for multi-class classification (all phones, vowels and consonants), and with F1-score for bi-
class classification (pauses and liaisons). Pause and liaison detection are evaluated at word boundaries.
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duration computation to the output of the text encoder. Note that TCP, which implements a
duration predictor, shows better predictive performance than TC in this case. Additionally, as
mentioned in Section 2.2, attention maps computed by Tacotron2 sometimes show lookaheads
or residual focus patterns at word boundaries. Residual focus in particular appears during
the production of intra-utterance pauses on spaces, in opposition with pauses produced in
accordance with punctuation marks. Residual focus is ignored by our proposed method of
automatic reading of the attention map. Thus, the duration prediction is less accurate on
Tacotron2 than on FastSpeech2, resulting in poorer predictive performance. This assumption
will be verified in Section 4.2.3.

These results show the effect of the phonetic prediction sub-task: FS\phon, which is the
only model without phonetic prediction implemented at the output of the text encoder, shows
notably worse classification performance. This effect is more visible on silence prediction.
As stated in Appendix A.3, two symbols (/_/ and /__/) are used to distinguish between
muted characters (with null duration) and silences (with non-null duration), respectively. As
a result, when the phonetic predictor is implemented, intermediate representations are shaped
to minimize the confusion between silences and muted characters at word boundaries, which
increased the prediction accuracy on pauses.

The phonetic prediction F1-scores close to one at the output of the text encoder emphasizes
the potential benefits of using these representations for auxiliary tasks like L2S transcriptions.
As an example, the embedding space outputted by the TC encoder is showed in Fig. 4.4,

(a) By character (15 most common characters +
",")

(b) By phone (25 most common phones + /_/)

Figure 4.4: The first two components of the MDS of the embedding space outputted by the TC
text encoder with orthographic input. The same embeddings are represented in both Fig. 4.4a and
4.4b, but according to their orthographic label (left), or corresponding L2S mapping (right). Ellipses
indicate the distributions of each cluster along the two main axes, with one standard-deviation of
amplitude.
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both using orthographic inputs, and displayed with orthographic labels (Fig. 4.4a) and their
L2S aligned phone labels (Fig. 4.4b). This visualization confirms the results of Perquin et
al. [2020]: the embedding space is organized in unique distinct phonetic clusters that are
clearly identified in Fig. 4.4b. The character inputs are projected to different locations of
the latent space, depending on their corresponding phonetic output, as shown on Fig. 4.4a.
Each orthographic cluster encodes one phonetic variant which can be produced from this
character. The distribution along the two main axes of each ellipse encodes the early intra-
phone variability computed at this stage of the process.

The performance of these pre-trained representations applied to L2S transcription were
evaluated in Section 2.4.2. Predictive performance reach 99% on the test set. These results
advocate for the benefits of a better understanding of latent representations that are manipu-
lated by neural models, which enables us to design careful sub-tasks intended to enhance the
performance of neural TTS.

4.2.3 Supra-Segmental Features

Supra-segmental features refer (but are not exclusive) to rhythm and emphasis patterns which
go beyond the local scope of phonetic identity. In that sense, supra-segmental features are
involved in prosody. Contrary to segmental features, supra-segmental features are not phone-
dependent: the mean of each parameter is the same for all phoneme-classes. Thus, the target
of the multi-linear regression is set as the raw value of each parameter. Fig. 4.5 shows the good-
ness of fit of the multi-linear regressions computed by layer for Tacotron2 and FastSpeech2.

Tacotron2 and FastSpeech2 encode supra-segmental features differently. As shown in
Fig. 4.5b, TCP exhibits little changes due to the implementation of the prosodic predic-
tors. Even in the absence of predictors, all supra-segmental features can be linearly predicted
from the encoder output more accurately than segmental features. Only F0 and ST seem to
benefit from the recurrent process in the decoder and reach a maximum of correlation at this
stage. The first three convolutional layers introduce contextual information from adjacent
phones, which helps encoding prosodic information to a certain extent. However, three con-
volutional layers may be excessive, as shown by the decrease of predictive performance in the
third layer. This decrease of performance in the third convolutional layer is also exhibited in
Fig 4.2b and Fig. 4.3b. This result indicates that two convolutional layers may be sufficient
to contextualize text embeddings in TTS encoder1. The Bi-LSTM appears to be necessary
bottleneck to select the most relevant parameters to encode in the sequence.

On the other hand, the internal representations of FastSpeech2 are very sensitive to the
implemented predictors. Indeed, Fig. 4.5a shows that in the absence of prosodic predictors,
FS\P do not encode F0 or E at the output of the text encoder, but later in the decoder.
Similarly, ST, which is never explicitly targeted by a prediction task during training, only
appears in the last layers of the decoder for all models. Again, FastSpeech2 higher-level decoder
compared to Tacotron2 allows its encoder to compute more abstract hidden representations

1The presented results are computed on phonetic inputs. A wider context may be useful to model ortho-
graphic inputs.
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(a) R² by layer for FastSpeech2 variants

(b) R² by layer for Tacotron2 variants

Figure 4.5: Goodness of fit of the Multi-Linear regressions by layer on supra-segmental features. The
x-axis indicates the successive layers of the model (from left to right): “FFT” refers to Feed-Forward
Transformer, and “Conv” to convolutional layer. Goodness of fit is expressed as the R² of the multi-
linear regression. Acoustic features are detailed in Table 4.1.

which are gradually converted to spectral features in order to in-paint the mel-spectrogram at
the decoder output.

The encoding of the relative position (RP) of the phone in the sequence shows interest-
ing properties. FastSpeech2 implements an explicit sinusoidal positional encoding, which is
summed at the beginning of the encoder and the beginning of the decoder (layer "Pos Emb"
in Fig 4.5a). As shown in Fig. 4.5a, this feature fades in the encoder. This visualization rein-
forces the need to re-inject this positional encoding regularly in Transformer networks, which
was unclear in Vaswani et al. [2017]. This finding validates the need for alternative positional
encodings in deeper Transformer-based networks [Al-Rfou et al., 2019]. Without explicit
encoding, this relative position is implicitly modeled by the Bi-LSTM layer of Tacotron2.
Because the Tacotron2 decoder is autoregressive, it has to predict the end of the generated
sequence, and modulate the voice accordingly. This causal decoding process probably benefits
from having access to the current position relative to the end of the sequence. The Gate Loss
Correction (GLC) introduced in Section 2.1.2 may have favored the encoding of the relative
position of the phones in the input sequence, ultimately resulting in the better modeling of
phrasing evaluated in Section 3.2.2. It would be interesting to apply the presented linear
probing methods to a Tacotron2 without GLC to confirm this hypothesis.
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4.3 Discussion of the Proposed Tracking Methodology

The proposed analysis of intermediate embeddings computed by neural TTS models shows
the richness of such representations. As shown in Section 4.2.2, the set of trainable text
embeddings learns to encode the variability of potential acoustic outputs from the same input
symbols. First, mean acoustic features per phone class are loaded at inference time from
these trained embeddings. On top of this acoustic baseline, contextualization performed in
successive neural layers models the bi-directional co-articulation effects [Modarresi et al., 2004]
and predicts the prosody incrementally. The tracking by layer of acoustic and prosodic features
suggests that these features are incrementally built from the partial representations of the
previous layers, with little to no fading, except at the very end of the decoder. In both
architectures, the end layer of the decoder is passed through a fully connected layer to predict
the 80 mel-coefficients of the spectrum. Thus, features not linearly encoded in the spectrogram
may not be prominent in end representations.

4.3.1 Implementation of Predictive Sub-Tasks

This visualization of the evolution of spectral and prosodic features in successive layers of
neural TTS is, to the best of our knowledge, the first attempt to understand the dynamics of
computations learned by such models in an unsupervised way. These results mostly validate
the role of the text encoder as the main contextualization tool. Although segmental features
need to be refined through the decoder, their mean values are found in phone embeddings
right from the start, which is enough to set the spectral targets of the decoding process.

At the output of all the Tacotron2 variant encoders, as well as FS and FS\phon encoders,
textual representations have already reached their maximum goodness of fit for most supra-
segmental features (all except ST). Interestingly, this early encoding of F0 and E requires
the implementation of prosodic predictors in FastSpeech2, but not in Tacotron2 (see model
FS\P in Fig. 4.5a and model TC in Fig. 4.5b). Early prosodic predictors of FastSpeech2
allow the model to anticipate prosodic variations, which seemingly helps the overall decoding
process, as shown by the better perceptual scores obtained with prosodic predictors reported
by Ren et al. [2021]. This difference between Tacotron2 and FastSpeech2 is likely due to
the simpler structure of the Tacotron2 causal decoder, which accesses internal representations
more directly than Transformer layers. With the increasing complexity of models, there is no
guarantee of finding such common encoding space for all important prosodic parameters in
transformer-based (or conformer-based) models. These results confirm that adding predictors
forces the model to build a common space of representations, which facilitates control through
linear biases. Another approach would be to use the proposed methodology to design the
prediction sub-tasks in layers that already perform these tasks, to ease the training process
and transform these layers into control spaces.
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4.3.2 Limitations of the Linear Regression

The proposed methodology is applied to two state-of-the-art TTS architectures to emphasize
that the procedure is not model dependent. As a matter of fact, similar procedures have been
applied to interpret unsupervised VAE latent spaces trained on the encoding and decoding
of speech spectrograms [Jacquelin et al., 2023]. The authors reported disentangled F0 and
formants linear representations in the VAE-reduced space. However, the results may vary
widely between models, so conclusions do not automatically transfer to other architectures.
Even the addition of an auxiliary module may change how acoustic information is organized
in the model, as shown by the differences between FS and FS\P. The addition of a utterance-
wise bias like speaker or style may produce a similar effect. Nonetheless, we want to emphasize
through this study that neural models should not be considered as black boxes. The proposed
post-hoc analysis of latent representations enables us to interpret the model behavior based on
actual knowledge of the field. We believe that understanding the models’ prediction procedure
is a requirement to build not only more powerful, but also more meaningful models in the
future.

The proposed methodology only focused on the encoding of linear representations in inter-
mediate embeddings. However, nothing in the models enforces the linear encoding of acoustic
features. The correlations measured may be a by-product of the richness of the hidden repre-
sentations computed by these neural models. To validate these correlations as causal effects
from the encoded features to the generated synthesis, we designed a causal control procedure
to introduce linear biases into latent representations and evaluate the effect on synthesis. This
procedure is described in Chapter 5. Future work may include other probing methods. Note
however that Vaidya et al. [2022] used a multilayer perceptron with one hidden layer to probe
neural representations in a similar manner, but found similar results as with linear predictors.
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Chapter Highlights

This chapter presents how the analysis of TTS embeddings proposed in the previous chap-
ter is translated into explicit control of continuous acoustic features, as well as the
control over phonological features like pauses. We show that our proposed embedding bias
control provides improvements over other explicit methods. In particular, the com-
bined control of phone duration and model propensity to produce pauses offers a more
natural control of the speaking rate.

Related contributions: [Lenglet et al., 2022b, 2023a]

99



100 Chapter 5. Explicit Acoustic Causal Control Through Embedding Bias

This chapter extends the analysis of internal representations of neural TTS models pre-
sented in the previous chapter. Chapter 4 has highlighted in which layers of the models the
selected acoustic and phonetic features were linearly encoded. The localization of features in
embeddings has been evaluated through the predictive performance of the trained predictors.
However, the evaluated correlations between the linear predictions from the embeddings and
the measured acoustic values does not fully assess whether these are the representations used
by the model to compute acoustic parameters. To assess whether the relationship between the
linear representations found in embeddings and parameters produced in synthesis is causal,
this chapter introduces our proposed method of linear bias computation from intermediate
representations in order to control the exhibited acoustic features.

Following the additive bias framework widely used to combine embeddings from various
sources in TTS [Y. Wang et al., 2018; Wu et al., 2019; Y.-J. Zhang et al., 2019], we introduce
causal control as the explicit manipulation of features encoded into TTS model embeddings,
by the addition of biases computed solely from the post-hoc analysis of how the learned
information is structured. This causal control is inspired from work in other fields, namely
neural machine translation [Bau et al., 2019] and image generation [Yang et al., 2021]. To the
best of our knowledge, this approach has never been applied to TTS models. The introduction
of causal biases to explicitly control acoustic and prosodic features is seen as a first step
into expressive control, without the need for additional training or costly labels. In that
sense, our method lies as a compromise between implicit and explicit approaches described in
Section 1.2.2, introducing causal control on acoustic features computed at phone scale.

Section 5.1 describes how these linear biases, called Embedding Biases, are deduced
from the embedding space analysis. The impact by layer of the proposed Embedding Biases is
evaluated on continuous segmental and supra-segmental features in Section 5.2. The proposed
causal control implicitly takes advantage of the co-variations between features learned by the
models: these co-variations are compared to an equivalent disentangled explicit control in
Section 5.3. The causal control is adapted to phonological control of the model propensity
to produce pauses. This control is evaluated in combination with the control of duration in
order to provide a more natural control of speaking rate in Section 5.4.

5.1 Embedding Bias From Latent Space Analysis

Regressions in latent spaces computed in Section 4.1 approximate any acoustic or prosodic
parameter P from embeddings in the reduced space EL = (e1,L, e2,L, . . . , ed,L) (with d being
the number of reduced dimensions after parsimonious selection and L the selected layer)
according to formula 4.1. This method is inspired by previous studies which showed acoustic
correlations with utterance-wise representations computed by a Style Encoder [Tits et al.,
2019]. Although those authors did evaluate the expressive controllability through sampling
in this stylistic latent space [Tits et al., 2021], their evaluation did not take advantage of the
interpretability of dimensions given by their acoustic analysis. On the contrary, we show in
this section how the tracking of acoustic features through linear predictors provides explicit
control mechanisms of found features.
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One implication of equation 4.1 is that the direction of maximum variation of a particular
continuous feature P in the reduced space, i.e. the gradient, is directly given by the regression
coefficients, according to formula 5.1.

Continuous control of parameter P can then be obtained by translation along the ∇P̂L

direction in the reduced space, at any layer L of the model. For ease of control, the pseudo-
inverse of AP

L , annotated AP †
L = AP

L/||AP
L ||2, is used as the embedding bias to be added to

phone or character embeddings in order to add on offset k1 to P̂L, according to formula 5.2.
This bias is summed to the sequence of text-embeddings at any layer of the model. Note
that in order to control inference, AP †

L has to be projected back in the model non-reduced
latent space, which is made possible by the use of the MDS, which is a linear space reduction
method.
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Like the linear predictors described in Section 4.1, the embedding bias AP †
L is deduced

from the statistical analysis of syntheses generated on a subset of the training corpus. This
method can be applied to any continuous acoustic parameter measured on the synthetic speech
produced by the model, which makes it highly versatile. Moreover, this method does not
require any additional training or data.

5.2 Evaluation of the Causal Control on Continuous Features

The same models as in the previous experiment (see Section 4.2.1) are used in this section,
recapped in Table 4.2. The embedding bias control is implemented on a selected set of layers
in both Tacotron2 and FastSpeech architectures. For Tacotron2, three layers are selected in
the encoder: after the first and third convolutional layers (Conv1 and Conv3) and after the
Bi-LSTM layer. The control is also evaluated in the context vector (CV) of the decoder,

1k is expressed in the same unit as the predicted feature in equation 5.2.
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defined as the linear combination of the embeddings computed by the text encoder weighted
by their attention weights at each decoder autoregressive step. Despite some parameters being
better encoded in the hidden states of the recurrent layers of the Tacotron2 decoder, the bias
of recurrent layers produces instabilities, so recurrent layers were excluded from the test. For
FastSpeech2, the control is evaluated after the second and fourth Feed-Forward Transformer
(FFT) layers of the encoder (FFT2 and FFT4 in the encoder). In the decoder, the control
is evaluated after the third, the fifth and the sixth FFT layers (FFT3, FFT5 and FFT6 in
the decoder). This selection enables us to evaluate how well the control is correlated to the
linearity of acoustic representations in intermediate embeddings.

5.2.1 Evaluation Procedure

To evaluate the controllability of continuous features provided by the proposed embedding
bias method, linear biases are applied in order to modulate each feature in the range [−3, +3]
standard deviations of this parameter measured on the full ground-truth train set. The pro-
posed embedding bias computation is based on the statistical distributions observed in latent
spaces, which limits the realistic biases applicable to 3 standard deviations around the mean
parameter.

This control is performed by feature, following formula 5.22. Early experiments on such
control of continuous acoustic features showed a saturation effect when trying to control fea-
tures out of the distribution seen by the model during training. In order to avoid this satu-
ration during the proposed evaluation, only the utterances with mean duration, fundamental
frequency and energy close to the mean features are selected for further evaluation. This
selection follows the same procedure as described in Section 4.1.2, but on the test set: half
the test set is selected for the evaluation (1115 utterances out of 2230).

This test sub-set is generated with biases varying in the range [−3, +3] (0.5 increment,
±2.5 excluded), for each acoustic feature. Acoustic features are then measured on the biased
syntheses, in order to evaluate the impact of each given bias. Despite the bias being computed
only using vowel embeddings, it is summed to all the embeddings sequence. This bias per-
forms a similar contribution to style or speaker embeddings which are generally also summed
utterance-wise [Y. Wang et al., 2018; Wu et al., 2019; Y.-J. Zhang et al., 2019].

Fig. 5.1 illustrates our evaluation of the controllability. The control of F0 at layers Conv1
and Bi-LSTM of TCP is taken as an example: for both layers, F0 is measured on the syntheses
for each vowel of the test set and for each bias in the range [−3, +3]. Both target and achieved
biases are expressed relative to the standard deviation of F0 in the ground truth. For ease
of interpretation, the achieved bias is expressed as a function of the target through a sigmoid
regression. This regression enables us to measure two aspects:

1. The goodness of fit of the sigmoid regression (R²) measures the variability around
the mean control achieved by the proposed method. This variability should be minimal
to ensure an accurate control. The sigmoid regression was preferred over simpler lin-

2k is computed by feature to account for [−3, +3] standard deviations of the controlled feature.
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ear regression to take potential saturation effects into account, as illustrated in Fig. 5.1
(Layer: Bi-LSTM). In this example, the sigmoid follows closely the achieved bias, re-
sulting in R² close to 1 (0.93). On the contrary, the bias has close to no effect in layer
Conv1: as a result, the residual error of the sigmoid is equivalent to the variance of the
data, so R² is close to 0 (0.02).

2. The control range achieved: the proposed method should reach a control range as
close as possible to the target [-3, +3] standard deviations range. This range is given by
the extreme values of the sigmoid regression. In practice, our observations of the bias
effect showed a symmetrical effect when increasing or decreasing a parameter. Thus,
ranges are expressed as absolute values.

Figure 5.1: Illustration of the controllability evaluation of F0 for 2 layers of TCP: Conv1 and Bi-
LSTM.

5.2.2 Control Performance

Fig. 5.2a-5.2d show the evaluation of the controllability of all measured continuous features
for Tacotron2 and FastSpeech2 variants. The controllability is mostly correlated to the lo-
calization of linearly encoded features from Fig. 4.2 and Fig. 4.5. Regardless of the presence
of prosodic predictors, Tacotron2 shows its best controllability performance (both for R² and
control range) after the Bi-LSTM layer for all features but E. The addition of the bias to the
output of the encoder allows the attention mechanism to take this bias into account, whereas
adding the bias to the context vector by-passes the attention, which explains the drop in
performance of the duration control in the context vector.
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Figure 5.2: Controllability of encoded features by the proposed embedding bias method. * indicates the layer with the best controllability.
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FastSpeech2 controllability results are more distributed across layers. With prosodic pre-
dictors, FS , FS\E and FS\phon show their best controllability of F0 and duration at the
output of the encoder (Fig. 5.2d). Surprisingly, despite the presence of the energy predictor,
the energy bias has close to no effect on the control of energy at the output of the encoder for
FS\E. Instead, the energy is controllable closer to the output of the decoder, similar to FS\P.
In the absence of the pitch predictor, the control of F0 through embedding biases also appears
closer to the decoder output. Similarly to Tacotron2, segmental features are controllable closer
to the output of the decoder (Fig. 5.2b).

The achievable control range varies depending on the model and the controlled feature.
Fig. 5.2a-5.2b show that segmental features are generally less controllable, with ranges varying
within [0.5, 1.5] standard deviations for Tacotron2 (TC performs better than TCP in that
regard), and [0.5, 2] for FastSpeech2. Only F3 exceeds 2 standard deviations for TC and
FastSpeech2 variants. Pitch and energy on the other hand achieve [1.5, 2] at best for both
architectures (Fig. 5.2c-5.2d). FastSpeech2 shows better performances for duration, thanks to
the explicit duration predictor. The attention mechanism of Tacotron2 is less robust to the
proposed control. Table 5.1 expresses the ranges of standard deviations into absolute control
ranges.

Fig 5.3 illustrates the control of F0 on an example for FS . This control is achieved at the
output of the text encoder, which shows the best performance for F0 control in this model.
This figure shows the three main effects of the proposed control: First, at the utterance-level,
the shifting of the F0 trajectory is symmetrical, but does not achieve the target modification
imposed by the bias: ±2 std should modify the mean F0 by ±5.16 st. In practice, the bias
shifts the F0 by ∼3 st. Second, local saturation happens when the unbiased F0 in the synthesis
already reaches extrema of the training distribution, like in [tut] (maximum) or the end syllable
of [mizerablq] (minimum). Finally, the F0 contour may be modified by the bias, as illustrated
by the falling pitch at the end of utterance for -2 std compared to the rising pitch in unbiased
synthesis.

Feature Unit
FastSpeech2 Tacotron2

FS FS\phon FS\E FS\P TC TCP

F1 st ±2.78 ±2.09 ±3.76 ±3.29 ±2.91 ±1.89
F2 st ±1.99 ±1.44 ±1.75 ±1.31 ±2.39 ±2.10
F3 st ±2.23 ±2.31 ±2.86 ±2.22 ±2.67 ±2.09
CoG st ±4.84 ±3.08 ±5.37 ±5.43 ±4.13 ±2.57
SB1k dB ±5.55 ±3.90 ±4.35 ±4.09 ±3.90 ±3.22

D Elongation Coef 0.76-1.31 0.71-1.40 0.78-1.29 0.73-1.36 0.84-1.19 0.88-1.13
F0 st ±4.00 ±3.28 ±3.59 ±3.84 ±5.37 ±5.24
E dB ±4.35 ±3.40 ±2.39 ±2.31 ±3.65 ±4.13
ST dB/octave ±0.89 ±0.61 ±1.24 ±1.05 ±0.52 ±0.48

Table 5.1: Absolute Control Range of Acoustic Features, measured on the best control layer by model
(as indicated by * on Fig. 5.2). st stands for Semitones.
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Figure 5.3: Illustration of F0 contours predicted on biased syntheses for FS at the output of the text
encoder. The pitch predictor of FastSpeech2 predicts pitch values for every input symbol, regardless
of voiced/unvoiced phones. Dotted lines indicates mean F0 by condition.

Despite resisting the target modification imposed by the bias, saturation and changes in
pitch contour may contribute to speech naturalness. In real-life scenario, speakers are unlikely
to entirely shift their pitch contour when speaking with higher or lower pitch, for physiolog-
ical and communicative reasons. Speakers are limited in their range of pitch productions,
which was learned by the models and is reflected through local saturation. Also, mean pitch
modifications contribute to communicative purposes, either conscious or unconscious: lower
pitch contributes to attractiveness [Feinberg et al., 2005] and perceived dominance [Puts et al.,
2006]. On the other hand, higher pitch shows more nervousness [Apple et al., 1979]. When
recording the audiobooks, the speaker simulates these communicative intents and the corre-
sponding contour variations. Neural models can learn these covariations through statistical
learning, which are then applied when biasing the internal embeddings. Covariations learned
by neural models are further explored in Section 5.3.1.

The more mitigated performances of segmental features control compared to supra-segmental
features may be explained by the nature of the computed biases. Biases are computed regard-
less of the phone identity, and summed regardless of the embedding sequence. This method
relies on the assumption that all phone embeddings encode segmental features in the same
direction of the latent space. However, limited predictive performance of linear predictors of
segmental features (Fig. 4.2) compared to supra-segmental features (Fig. 4.5) may indicate
that this direction is not unique, and should be adapted to each phone. On the contrary,
supra-segmental features are shared across phones, resulting in better performance of the
shared bias.
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5.2.3 Mismatch between Linear Biases and Acoustic Effects

Although we have seen that the addition of a linear bias can control to a certain extent the
generated acoustic features, this control is contested by the models which only partially apply
the target modifications. Our hypothesis is that the discrepancy between the target bias and
the measured acoustic modification is due to the multitude of representations found in the
latent space to encode the same feature. Even though the biases don’t precisely match the
target, they still produce consistent modifications, especially for the best control layers where
the goodness of fit is close to one. This may show that the proposed procedure did not manage
to isolate the dimension which encodes the desired feature, but rather was impacted by the
multitude of covariations found between the internal dimensions of neural latent spaces. As
a result, part of the bias does contribute to the model computation of the target feature, but
the rest is summed to different dimensions, resulting in noise added to the other features. Two
observations support this hypothesis:

1. Because the proposed explicit control mechanism relies on the addition of linear biases, a
trivial adaptation of the procedure to compensate for the mismatch between target and
measured modifications is the addition of a multiplying factor to modify the embedding
bias amplitude. We used this adaptation to ensure compliance with changes in the target
duration modifications in Lenglet et al. [2022b]. This trivial multiplying factor (set as
the ratio between the target and the obtained modification measured in Fig 5.2c-5.2d)
does ensure a match between the target and the acoustic modification.

2. Inversely, despite the high correlation of F0 found in the decoder of FS (Fig 4.5a),
the control of F0 has no effect after the F0 predictor (Fig 5.2d). This emphasizes that
several representations of the same acoustic feature may coexist inside latent spaces.
Thus, finding one linear representation does not ensure that this representation is used
as it is by the model. If several linear representations co-exist, the resulting embedding
bias combines these contributions, instead of focusing on the meaningful one.

This concern is the reason why we tried to refine the embedding bias computation pro-
cedure with dimensional reduction and parsimonious dimension selection described in Sec-
tion 4.1.2 compared to the procedure we used in Lenglet et al. [2022b]. Through this refining,
the ratio between the achieved control and the target duration bias was increased from 0.43 to
0.56 for FS (resp. from 0.34 to 0.36 for TC ) compared to our previous experiment [Lenglet
et al., 2022b]. This improvement validates the refining of the computation procedure, but
advocates for an even greater reduction in the number of dimensions which should be the
focus of future work.

The addition of a correction multiplying factor method is not ideal: this coefficient is
inherently model/layer/feature specific, since it compensates for the flaws of the proposed
method in finding the actual direction of encoding of the said feature. However, it shows
how the proposed causal control may be adapted to maximize the control range achievable.
Additionally, we emphasize that the proposed method does not require any additional training
of the models, or extensive datasets to maximize the variability of features during training.
Though, note that a wider range of variation of measured acoustic features is expected to
contribute to wider control ranges.
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5.3 Embedding Bias VS Explicit Control

Computing biases based on statistical learning performed by neural models provides some in-
teresting perspectives in comparison with explicit control mechanisms. With the introduction
of linear biases into intermediate embeddings computed by TTS models, the proposed method
stands out from the disentangled control paradigm advocated by numerous TTS studies [Mo-
han et al., 2021; Raitio et al., 2020; Y.-J. Zhang et al., 2019]. On the contrary, linear biases
take advantage of correlations between acoustic features learned during training. Thus, the
control of one parameter is expected to impact other acoustic features. Section 5.3.1 evaluates
these covariations.

In addition, explicit control as provided by models like FastSpeech2 or Ctrl-P [Mohan et
al., 2021] enable control of prosodic features at the phone level at inference. This is very useful
to precisely control the output synthesis when the human operator has his own prosodic target
in mind, either given by a reference speech to mimic or by a hand-in-the-loop procedure [Koch
et al., 2022]. Local control is also useful to emphasize target words or parts of sentences [Joly
et al., 2023]. However, in most cases, less supervised control methods are preferred in order
to ease the synthesis pipeline. As a proof of concept, Large Language Models (LLM) were
tested as replacement of humans explicit control of prosodic features with a FastSpeech2
model by Sigurgeirsson and King [2023]. Despite the promising performance of the LLM
on the prediction of prosodic contours to mimic expressive styles, the lack of understanding
of the predictions made by such models is a hindrance to their implementation in real-life
applications.

So, in absence of prosodic contours at phone level, explicit prosodic control usually applies
the same modification throughout the entire sequence to bias. While this ensures that the
mean of the controlled feature is scaled according to the target, uniform modifications of
features may degrade speech naturalness. As an example, variation of phone duration with
speaking rate depends on phoneme and position in the sentence [Nick Campbell, 1992], in
opposition with uniform duration modifications. This section explores two hypotheses that
might favor the natural control with embedding biases compared to explicit control:

H1: Neural TTS models learn natural covariations between acoustic features from the train-
ing corpus. These covariations are found in the encoding of acoustic features in the
embeddings. This hypothesis is explored in sub-section 5.3.1.

H2: The discrepancy between the acoustic target control with linear biases and the achieved
effect is due to the model having statistically learned plausible modifications from natural
speech, resulting in more careful productions when biased. This hypothesis is explored
in sub-section 5.3.2.
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5.3.1 Covariations in Intermediate Embeddings

Embedding biases are computed by statistical analysis of intermediate embeddings. As stated
in Section 4.1.2, the proposed method of acoustic tracking in intermediate embeddings max-
imizes the accuracy of linear predictions of each individual acoustic feature independently
of the others. As a result, gradient directions computed by this method for each acoustic
feature are not constrained to be orthogonal. Instead, the directions of maximum variation
indicate how linear representations of acoustic features co-vary in embedding spaces. These
empirical covariations are learned by the models as regularities found in the training corpus.
Thus, following these statistical covariations may be beneficial for a more natural control of
the synthesis.

Covariations of internal representations can be predicted in any layer of any model through
the proposed analysis. For the sake of simplicity, we focus this analysis on the two vanilla
architectures TC and FS , and on the layers that shows the best controllability, chosen as
follows. The output of the text-encoder3 shows the best potential for supra-segmental fea-
tures (as well as segmental features for Tacotron2). Despite the later encoding of segmental
features in FastSpeech2, we consider prosodic parameters (fundamental frequency, duration
and energy) to have a wider impact on the speech perception. Thus the output of the text
encoder is the best layer to implement a combined control.

Covariations of acoustic features in these embedding spaces are predicted through mutual
orthogonal projections of embedding biases, reported in Fig 5.4. First, the angle between each
pair of embedding biases AP †

L is computed. Since embedding biases have different magnitudes

3Bi-LSTM for Tacotron2, and FFT4 for FastSpeech2.
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Figure 5.4: Covariations predicted from the output of the text encoder for TC (left) and FS (right).
Predicted covariations on impacted parameters (x-axis) indicate predicted feature modifications for a
bias of +1 standard deviation of control parameters (y-axis). Reported numbers of resulting features
modifications are expressed in the units given in Table 5.1 for each column.
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depending on the variance observed in the corpus for each parameter, mutual orthogonal
projections illustrate the asymmetrical effect of the control of one feature on the others.
Individual controlled features are given on the y-axis. Then, the x-axis illustrates the predicted
modification of all measured features, for an increase of one standard deviation of the controlled
feature. Predicted impact on all features are reported following their own unit, given in
Table 5.1. By construction, the diagonal reports the standard deviation of all measured
features. As an example, the first line of the left panel of Fig 5.4 (TC ) shows that for an
increase of one standard deviation of F1, we predict a variation of 2.03 st on F1, 0.14 st on F2,
and −0.03 dB on energy, etc.

TC and FS show consistent covariations prediction of supra-segmental features (lower-
right area): 1) An increase of log(D) (i.e. an decrease of the speaking rate) slightly reduces
F0 and E. 2) F0 and E vary cojointly. 3) Increase of ST also raises F0 and E, as well as F1,
simulating an increase of vocal effort [Liénard & Di Benedetto, 1999]. Even though segmental
features are not fully encoded yet, in particular for FS , covariations of segmental features (top-
left area) already indicate the joint modifications of F1, CoG and SB1k, which was expected
from a signal processing perspective4. Covariations between segmental and supra-segmental
features are less clear (top-right and down-left areas). Notably, SB1k and E vary in opposite
directions. SB1k control tends to reduce the overall energy in the synthesized spectrum.
The target balance is seemingly achieved through further reduction of one frequency band
compared to the other, instead of an increase of energy in low or high frequencies. Variations
of spectral balance may be rare in the training corpus, which encourages the models to rely
on variations of energy instead.

As a general observation, TC shows less covariation than FS . As seen in Fig 4.2, segmental
linear representations modeled at the output of the encoder better correlate with acoustic
measurements for TC than for FS . FS embeddings are computed in a smaller number of
dimensions than TC (256 compared to 512). This limited memory size may enforce FS to
encode diverse acoustic features on less dimensions, which would result in more covariations.
The training of several variants of models with various size of internal representations should
give better insights on this hypothesis. Because of time limitations, this must be explored in
future work.

We emphasize that the covariations shown in Fig 5.4 are predicted from the proposed anal-
ysis of internal spaces, and not measured on the audio output. Nonetheless, these predictions
confirm H1: directions of maximum variations indicate common (or opposite) variations of
features which match covariations expected from natural speech. These findings are promising
for the integration of more natural control mechanisms into neural TTS. The evaluation of
these covariations on the audio output will be explored in future work.

4Increase of F1 shifts spectral energy toward higher frequencies, which increases CoG. This modification is
not enough to push formants across the 1 kHz limit though. Mean F1 is 107 st, compared to 1 kHz ≈ 120 st.
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5.3.2 Non-Linear Duration Control

The non-linearity of the control of the proposed embedding bias is illustrated on F0 in Fig. 5.3.
Our hypothesis H2 states that this non-linearity may be beneficial for the naturalness of the
synthetic voice. This sub-section evaluates this hypothesis. Duration is taken as an example.
Results presented in this sub-section are taken from: Lenglet et al. [2022b]. This paper is
attached at the end of this manuscript.

5.3.2.1 Experimental Setup

This experiment specifically evaluates the control given by the duration embedding bias, ex-
pressed in log-duration. Hence the addition of a bias in the log domain is equivalent to
applying a multiplying factor on phone duration. In both cases, this embedding bias is ap-
plied at the output of the text encoder of the two models TC and FS . This control is
compared to two explicit duration control mechanisms taken as baselines: 1) The explicit
duration control provided by FastSpeech2, annotated FSC in the following, and 2) a simple
linear time-interpolation of the mel-spectrogram output of the unbiased synthetic model to
change the full duration of the signal before feeding it to the neural vocoder. This method is
annotated Stretching . In both baselines, a similar modification of duration is applied on all
phones, but FSC has the chance to make some acoustic modifications through the decoding
process. In this section, TCB and FSB refer to the duration embedding bias control for TC
and FS respectively.

In order to evaluate the local differences between the proposed embedding bias control
and explicit methods, the test corpus5 is synthesized with 4 duration coefficients, chosen to
be representative of the phone rate distribution of the training dataset. These coefficients
mi = {0.77, 0.87, 1.18, 1.44} are chosen to reach i = {+2,+1,−1,−2} standard deviation
around the mean phone rate, respectively. As discussed in Section 5.2.3, a multiplying factor
is used to ensure that target duration modifications are reached with the embedding bias
method (2.94 and 2.33 for TCB and FSB respectively).

5.3.2.2 Duration Modification By Phone Class

For each synthesized signal with a given duration coefficient, the duration of each synthesized
phone is measured by the method described in Section 2.2.2. This duration is then divided by
the mean duration of its phone class synthesized with the same model without duration control,
to provide an elongation coefficient. Fig. 5.5a displays the average elongation coefficient per
duration coefficient, model, and phone class. Final vowels are vowels just preceding a silence in
the audio signal. For each phone class, the diagonal corresponds to the Stretching condition,
where the elongation coefficient equals the duration coefficient. The red, green and yellow
curves correspond to TCB, FSC, FSB, respectively. Moreover, average phone elongation
coefficients were also calculated on the ground truth training corpus (GT ) and reported in
dark blue6.

5Same test set as the previous experiment: see Section 4.2.1
6Relative speaking rates by utterance were computed on the Ground-Truth training database. Utterances

with relative speaking rates in a window of 0.05 around the coefficients [0.77, 0.87, 1, 1.18, 1.44] were selected
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* * * * * * * * * * * * *
* * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * *

(a) Elongation coefficient is the mean phone elongation
compared to the unbiased voice. * indicates a significant
difference with stretching.

(b) Silences proportion is the ratio be-
tween the number of silences in the au-
dio signal and number of phones in the
text input.

Figure 5.5: Impact of duration control for each model and GT .

A Kruskal-Wallis rank-sum test performed on the per-phone elongation coefficients showed
a significant effect of both phone class and duration control (p < 0.01). A post-hoc Wilcoxon
rank-sum test then assessed for each phone class and duration coefficient whether each method
significantly differs from the Stretching conditions. Significance (p < 0.01) is displayed by
coloured stars above each data point. Fig. 5.5b shows the ratio between the number of pauses
longer than 30 ms in the audio signal and the number of phones in the text input for each
duration coefficient on TCB, FSC, FSB and GT (by nature, this ratio do not vary with
duration control for FSC and Stretching).

Concerning elongation coefficients (Fig. 5.5a), FSC follows the diagonal: as expected,
frames are linearly duplicated through duration control for any class of phones. On the
contrary, GT data displays non-linear behaviors that are consistent with Nick Campbell [1992]
findings. Looking first at slower speaking rates (mi > 1), GT displays a saturation for final
vowels and silences whose mean durations are already large for average speaking rate (125ms

and 213ms, respectively) and therefore weakly lengthened as the speaking rate decreases. This
behavior has been learned by TCB and FSB. This validates H2: the discrepancy between
the target bias and the achieved elongation shows that embedding bias does not allow to
extrapolate to unseen phone lengths, ultimately resulting in saturation of duration which
mimics the Ground-Truth.

Regarding other vowels and all consonants, GT shows a linear lengthening with duration
increase but to a lesser extent than Stretching . This is compensated by the introduction
of pauses in the GT signals: Fig. 5.5b displays three times more pauses in GT when the
speaking rate is 1.44 times slower. Conversely, FSB does not generate any additional pauses
in the signal, and the effect is negligible for TCB. Alternatively, both models compensate by
expanding the vowels longer than the stretch (Fig 5.5a). On consonants, TCB seems to have
learned GT behavior, wile FSB follows the Stretching trend.

to compute the duration by phone reported in this sub-section.
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Looking now at higher speaker rates (mi < 1), GT final vowels are preserved while silences
are dramatically shortened or deleted (Fig. 5.5b). This behavior was not replicated by any
model. For other vowels and consonants, GT and all models follow a linear shortening of
phones matching Stretching .

5.3.3 Discussion: Promising Performance of the Embedding Bias Control

Globally, GT duration modification by the talker is mainly performed with pause addition and
deletion, that are hardly managed by the embedding bias-controlled models. Regarding the
observed non-linearity per class of phones, TCB follows best the GT behaviors, even though
it compensates for the lack of pause addition by vowel lengthening. Both TCB and FSB
follows the saturation of final vowels and pauses that are imposed by the data distribution,
but FSB mainly follows the Stretching behavior otherwise.

These results confirm that non-linearities in duration modifications found in natural speech
are better modeled by the proposed embedding bias control than by explicit control. Despite
the embedding bias being computed on vowel embeddings, applying the bias to every embed-
dings at the output of the text encoder produces the desired effect on other phone classes,
as illustrated on consonants and silences in Fig 5.5a. Perceptual evaluations were performed
in Lenglet et al. [2022b] to asses the distinctiveness of the proposed control. These subjective
evaluations will be discussed in Section 5.4.2.

The possibility to add or remove pauses while modifying the speaking rate appears essential
in order to model the natural behavior of speech. However, if a linear representation of the
duration is encoded, as proved by the duration control of existing pauses provided by the
proposed bias (Fig 5.5a), increasing this encoded duration does not trigger the addition of
new pauses (Fig 5.5b). Moreover, preliminary experiments showed that taking duration of
pauses into account when computing the duration embedding bias did not introduce more
control over pause generation. This suggests that a distinct categorical pause addition/deletion
trigger could also be encoded in the latent space, to indicate to the duration predictor or the
attention layer whether the encoded duration should be produced or not. To explore this
hypothesis, we extended the proposed procedure to track categorical representations with
multi-linear predictors. The proposed adaptation is discussed in Section 5.4.

5.4 Evaluation of Categorical Control

The linear bias approach can also be adapted to discrete phonological control. As shown in
Section 4.2.2.2, linear classifiers by LDA can be trained to find linear representations of classes
into latent embedding spaces. In this case, linear classifiers by LDA compute the hyperplanes
that best distinguish between the classes, either in a bi-class setup (pause VS absence of pause,
and liaison VS absence of liaison) or with multiple classes (phone classes). Multi-class setup
is not studied here, since we did not find any use for phone conversion with embedding bias.
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In case of bi-class classification, only one hyperplane is computed, whose coordinates are
given in formula 5.3. The vector normal to this hyperplane indicates the direction of the
latent space which best encodes the switch between these two categories. The embedding bias
is then defined as the vector NC

L normal to this hyperplane, normalized so that the amplitude
of the categorical embedding bias matches the differences between the barycenters of the two
categories, following formula 5.4. The categorical embedding bias N̂C

L can then be added to
embeddings computed by the TTS models to modify the proportion of classes C1 and C2.

HC
L :

D∑
i=1

nC
i,L.ei,L + γCL = 0 (5.3)

with HC
L the hyperplane that best distinguishes the two classes of C in layer L,

NC
L = (nC

1,L, n
C
2,L, . . . , n

C
d,L) the vector normal to this hyperplane, and γCL the

intercept. D is the number of dimensions in layer L.

N̂C
L = (µC1

L − µC2
L )×NC

L /||NC
L ||2 (5.4)

with N̂C
L the normalized vector normal NC

L , µC1
L and µC2

L the barycenters in layer
L of classes C1 and C2 respectively.

5.4.1 The Case of Pauses

Any of the bi-class phonological features found in Section 4.2.2.2 might be controlled with this
proposed adaptation. The model tendency to produce pauses at word boundaries is taken as
an example of such control. As seen in Fig 5.5b, all TTS models fail to reproduce natural voice
pause variations when modifying the speaking rate. This categorical control could complement
the duration control to produce more natural variations of speaking rate.

Because the presence of pauses is determined by the duration predicted for characters at
word boundaries (spaces and punctuation marks are preserved with phone-input), the control
is only applied in the encoder layers. For the same reason, the bias is only added to spaces
and punctuation marks symbols, instead of utterance-wise for continuous control.

5.4.1.1 Calibration Phase

To mimic the natural voice tendency to produce silences, the proportion of produced silences
across potential silences localization in the ground-truth was evaluated by speaking rate. This
proportion is illustrated in Fig 5.6a. The proportion of pauses in GT can be approximated
by a linear regression in the range of duration coefficients [0.79; 1.37]. We infer the empirical
proportion of pauses by elongation coefficient from this regression, following the formula 5.5.
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Pause% = 18.98 ×D - 12.01 (5.5)

with Pause% the percentage of pauses achieved among all possible word bound-
aries, and D the duration coefficient. Bold coefficients are inferred from the re-
gression on GT recordings.

We set the observed range [0%; 20%] on the training dataset between the fastest and
slowest utterances as a target for the evaluation of the control of pauses. Thus, the pause
control was evaluated as the linear bias ability to vary this proportion between 0% and 20%.

5.4.1.2 Pauses Control by Linear Biases

In order to evaluate the controllability of pauses, synthesis is performed with pause embedding
bias magnitudes varying in the range [-2; 2]. This range was empirically chosen to be large
enough to ensure the full transfer of either class to the other side of the hyperplane computed
by the bi-class LDA classifier. Predicted proportion of pauses in synthesis is computed from the
analysis of distances between embeddings and the LDA hyperplane in latent spaces. Fig 5.6b
illustrates this prediction for FS at the output of the text encoder (layer FFT4). Linear biases
are able to extrapolate the percentage of achieved pauses above 20%, but this goes beyond
the range that corresponds to natural variations in speech.
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The controllability of pauses is evaluated in Fig. 5.2e-5.2f, as the range of variation achieved
by synthetic models for a target proportion of silences in the range [0%; 20%]. Most models
show limited controllability compared to predictions. FastSpeech2 show greater controlla-
bility performances than Tacotron2, with FS achieving the [0%; 20%] control range target.
This result emphasizes again the robustness of the duration prediction layer to linear control,
compared to the attention mechanism of Tacotron2. The phonetic prediction layer helps to
model this behavior, as showed by the poorer performances of FS\phon. This drop in perfor-
mances was anticipated by the worse classification accuracy of pauses evaluated on FS\phon
in Section 4.2.2.2.

Although this evaluation of the controllability of pauses was run in isolation, the main
benefit of the control of pause addition/deletion is expected in combination with the control
of duration. Indeed, the combination of the continuous bias to modify duration of phones
in the sequence with the pause bias to produce more or less pauses is expected to mitigate
the main flaw of TTS models when controlling the speaking rate. In order to combine both
contributions, an abacus is derived from the Figures 5.6a and 5.6b. This abacus is used to
estimate the pause bias magnitude to combine with the target duration coefficient in order to
generate the appropriate proportion of pauses in synthesis. This combined control is evaluated
in Section 5.4.2.

5.4.2 Speaking Rate Modeling

The speaking rate control with combined duration and pause bias is evaluated on the variant
of each Tacotron2 and FastSpeech2 which allows the best control of proportion of pauses: FS
and TCP. TCP showed lower performance in duration control than TC , but TC reduces the
range of the pause control too much. In both cases, the duration and the pause embedding
biases are added at the output of the encoder, right before the duration predictor in FS and
before the attention layer in TCP. Two abacuses are recorded through the calibration phase
described in Section 5.4.1.2, to predict the magnitude of the pause embedding bias according
to the expected pauses proportion by duration coefficient in the GT . These abacuses are given
in Appendix E.

Fig 5.7 illustrates the comparison between the Stretching and the combined embedding
bias control of duration and pauses. The utterance is ",son audace ne l’eût pas abandonné
devant un tribunal ordinaire;", and the target duration coefficient is 1.38. The embedding
bias method introduces a clear pause of 200ms between the verb "eût pas abandonné" and the
complement of place "devant. . . ". Words are also better segmented, with less residual energy
in word boundaries. The absence of pauses is compensated in the Stretching by an excessive
elongation of the words.
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Figure 5.7: Illustration of the embedding bias duration control compared to the stretching for FS at
the output of the text encoder. The utterance is: ",son audace ne l’eût pas abandonné devant un
tribunal ordinaire;". Red squares indicate the addition of pauses with the embedding bias control.

5.4.2.1 Experimental Setup

To investigate the effect of the proposed embedding bias compared to explicit duration con-
trols, we conducted a listening experiment where each model was evaluated against the
Stretching method. Three controls are under study:

1. The duration control using only the duration embedding bias, corrected with a
multiplying factor to match the target duration coefficient. These models are annotated
TC dur and FS dur for Tacotron2 and FastSpeech2 respectively. TC dur and FS dur

are the same models as TCB and FSB described in Section 5.2.3: the annotation dur

emphasizes that the control is only on the duration of phones.

2. The combined control of duration and pauses, without additional multiplying
factors. The addition and deletion of pauses compensate for the actual elongation
of phones not matching the target duration coefficient. These models are annotated
TCP

dur + pause and FS dur + pause for Tacotron2 and FastSpeech2 respectively.

3. The explicit duration control of FastSpeech2, referred as FS explicit.

A CMOS protocol was followed [International Telecommunication Union, ITU, 1998],
where participants were presented with a pair <model|Stretching > and asked which of
these voice speed renderings felt the most natural. Scores are reported on a 7 discrete-point
scale including three degrees of preference for each sound (1,2,3), and no preference (0). Each
pair consisted of one sentence synthesized with one of the five models (TC dur, FS dur,
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TCP
dur + pause, FS dur + pause and FS explicit) and one of the four duration coefficients

(0.77, 0.87, 1.18, 1.44) against its Stretching counterpart. The duration control without
pause bias was evaluated on its own during a previous experiment [Lenglet et al., 2022b],
and is reported here as a comparison with the combined bias. FS explicit was therefore eval-
uated twice, the first time with TC dur and FS dur, and then again with TCP

dur + pause

and FS dur + pause. The results from these two experiments are reported as FS explicit 1

and FS explicit 2, and serves as a reference to compare both evaluations. For fairness of com-
parison, all following results are reported by achieved elongation coefficient instead of target
duration coefficient7. Order of presentation was randomly counterbalanced.

5.4.2.2 Results

83 participants8 recruited on Prolific [Palan & Schitter, 2018] took part in the experiment,
and each evaluated 72 stimuli following a Latin Square design so that every model, duration
and sentence was equally heard by each subject. Fig. 5.8 reports the averaged CMOS obtained
for each duration coefficient, by type of model and control. A positive value indicates that
the model was preferred over Stretching . A non-parametric Kruskal-Wallis test showed a
significant effect of both duration control and models on the CMOS (p < 0.01). Post-hoc
Wilcoxon tests by pairs were applied and a star (resp. 2 stars) in the figure indicates that
the method shows a statistically different CMOS than the other method for this duration
coefficient (p < 0.05 (resp. p < 0.01)).
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Figure 5.8: CMOS results of the evaluation of the systems without pause control (from Lenglet et al.
[2022b], in orange light green and light blue) and with pause control (in red, dark green and dark
blue).

7Achieved elongation coefficients are measured on the output signal as the ratio between the duration of
the biased synthesis and the duration of the unbiased synthesis. In the figure, results are grouped by intervals
of [0.1]

842 participants in the early experiment on TC dur, FS dur and FS explicit 1, and 41 later on
TCP

dur + pause, FS dur + pause and FS explicit 2.
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FS explicit 1 and FS explicit 2 exhibit similar results. The only statistical difference is
evaluated for elongation coefficients in the range [0.7; 0.8], which may be explained by the
selection of test utterances9. This confirms that the two experiments were performed with a
similar reproducible setup. Thus, results of both experiments are compared in the following,
and the explicit control is referred to as FS explicit.

Without pause embedding bias, FS dur was considered similar as Stretching while TC dur

shows more contrasting results. For higher speaking rates, TC dur was significantly less pre-
ferred than Stretching . A further analysis of the training set showed that highest speaking
rates often correspond to the expressive reading of dialogs between characters. Without any
residual encoder to segment this paralinguistic information apart from text input, TC dur

may have learned an averaged representation of these characters, resulting in an unnatural
speech depreciated by participants. By contrast, TC dur is preferred to Stretching on slightly
lower speaking rates ([1; 1.2] of elongation). With this coefficient, the main difference between
models lays in the non-linearity of phone duration (Fig. 5.5a), where TC dur closely matches
the behavior of GT . For very low speaking rates ([1.2; 1.4]), both embedding bias-controlled
models are equally rated as Stretching , while FS explicit is preferred.

We have emphasized the need for TTS models to introduce variations of phrasing when
controlling the speaking rate. The results of FS dur + pause at low speaking rate validate
our hypothesis: FS dur + pause is preferred to Stretching . The limited control of pauses
on Tacotron2 prevents the replication of theses findings with TCP

dur + pause because of the
limited range of achieved elongation coefficients in this case. Conversely, higher speaking
rates are rated lower than Stretching for FS dur + pause. This indicates that the change of
phrasing is perceived by participants, but is mostly depreciated.

Participants preferences were further explored by looking at the distribution of CMOS
scores by model and by control methods. These distributions are illustrated with heatmaps in
Fig 5.9. Scores distribution follows two distinct patterns. Participants’ ratings on FS dur and
FS explicit follow a normal distribution centered around 0. This means that most participants
did not perceive any notable differences between the proposed control and the stretching.
Conversely, scores of FS dur + pause and TC dur exhibit bi-modal distributions. This non-
normality of distribution is confirmed with D’Agostino-Pearson’s K2 test [D’Agostino & Pear-
son, 1973]. This signals that all utterances are not equally biased by the proposed method.
We hypothesize that depending on the place of addition or deletion of a pause, perceived
naturalness varies widely. Unfortunately, the proposed evaluation setup did not integrate any
tools for participants to refine their evaluation locally. The difference was not significant for
TCP

dur + pause: only 4 out the 18 utterances evaluated achieved an elongation coefficients
outside of the range [0.9: 1.1]. More utterances are needed to populate the two classes of
examples observed.

9In case of significant increase of speaking rate, the explicit control may skip some phones which were
originally short in the unbiased synthesis. This phenomenon, depreciated by participants, may have occurred
more often in the evaluation of FS explicit 1 than FS explicit 2.



120 Chapter 5. Explicit Acoustic Causal Control Through Embedding Bias

FS d u r

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

-3

-2

-1

0

1

2

3

C
M

O
S

 M
o
d
e
l/
S

tr
e
tc

h
in

g
 (

%
)

FS d u r+ p a u se

** ** ** ** **

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Achieved Elongation Coefficient

-3

-2

-1

0

1

2

3

C
M

O
S

 M
o
d
e
l/
S

tr
e
tc

h
in

g
 (

%
)

FS e x p lici t  1

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

-3

-2

-1

0

1

2

3

FS e x p lici t  2

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Achieved Elongation Coefficient

-3

-2

-1

0

1

2

3

TCd u r

** ** ** ** ** **

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

-3

-2

-1

0

1

2

3

0

10

20

30

40

50

TC
P
d u r+ p a u se

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

Achieved Elongation Coefficient

-3

-2

-1

0

1

2

3

0

10

20

30

40

50

Figure 5.9: CMOS scores distribution. Positive scores indicate a preference for the control method
compared to the stretching. ** indicates that the distribution for this elongation coefficient is not
normal (p<0.01).

5.4.3 Discussion: More natural speaking rate control with combined em-
bedding biases.

Pause addition and deletion is an important part of speaking rate control in natural speech,
which is mostly ignored by neural TTS control. The proposed method enables us to modify
pause proportion in synthesis along with a more natural elongation of phone duration. Per-
ceptual evaluations partially validated the benefits of this control, but also highlighted the
need for clearer constraints on where in the utterance to authorize pauses additions and/or
deletions. Part Of Speech (POS) tags could be implemented to limit the unnatural renditions
of pauses.

Additionally, the lack of insight into perceptual scores given by participants in the evalu-
ation reinforced our need for more local tools to evaluate synthetic speech. For instance, our
evaluation would have benefited from the use of Rapid Prosody Transcription (RPT) [Cole &
Shattuck-Hufnagel, 2016] as a way for participants to indicate the parts of the utterance they
based their score on. Interfaces have been developed to collect these data [Gutierrez et al.,
2021], which we could consider to enrich our evaluation setup.
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5.5 Discussion: Cost Efficient Control by Linear Biases

The linear tracking method proposed in Chapter 4 revealed that acoustic and prosodic features
were partially linearly encoded in latent embeddings of neural TTS models. This analysis
highlighted the main directions in embeddings which encode the variations of the selected set
of local acoustic features. These directions were used in this chapter in order to introduce
linear biases, called Embedding Biases, to gain explicit control over the measured acoustic
features.

5.5.1 Multi-Level Feature Encoding in Embeddings

The evaluation of the proposed control showed that all measured acoustic features are control-
lable to a certain extent in at least one layer of the architecture. However, the control range
varies widely between features. We have shown that goodness of fit is a necessary but not
sufficient condition for controllability. From Fig. 4.5a and Fig. 5.2d, energy and pitch seem to
be linearly encoded from the output of the encoder to the last layer of the decoder for FS and
FS\E. However the control through linear bias is only possible in the last layer of the decoder
for energy in FS\E, and does not produce any effect for pitch in the decoder of FS . Linear
representations being encoded do not mean that the model uses these representation as is.
Several representations of the same feature may coexist in embeddings. This was also observed
in VAE-latent spaces, with the co-encoding of between-mode and within-mode variability of
F0 representations [Jacquelin et al., 2023].

This is particularly visible in FS , in which the pitch embeddings summed to the output
of the encoder do not erase the linear pitch representations from the text embeddings, but
rather add another level of pitch encoding. This multi-level encoding may help the model
avoiding feature loss from one layer to another, which could be caused by the non-linearity
of multi-head Transformer blocks, or may be a side effect of the forced-dropout during the
training [Hinton et al., 2012]. The challenge of the linear tracking is then to carefully target the
dimensions that encode the feature to modify. The refined linear predictor training described
in Section 4.1.2 already improved the selection of dimensions compared to the straightforward
method used by Lenglet et al. [2022b]. Nonetheless, future works should further improve the
targeting of dimensions of interest in order to provide a better control of acoustic features,
both to grant wider ranges of control and to limit the unwanted impact on other encoded
representations.

5.5.2 Universal and Cost-Efficient Control Mechanism

Despite the limits of the proposed control, the universality of the method makes it attractive
to design cost-efficient control mechanisms for any continuous acoustic features. The pro-
posed control does not require any additional training of the neural models, nor additional
data. This control was illustrated for Tacotron2 and FastSpeech2, but could be applied to any
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encoder-decoder TTS architecture. Additionally, as illustrated in Section 5.3, the proposed
control takes advantage of covariations and non-linearities statistically learned by neural mod-
els during the training phase. As such embedding biases provide more natural control over
disentangled explicit methods.

Furthermore, the proposed control can be adapted to discrete phonological features, as
illustrated in Section 5.4 for pause control. The control of liaisons has also been tested with
the proposed approach. The liaison embedding bias can also be used to modify the proportion
of liaisons produced by the models. However, this control was not further evaluated.

5.5.3 Adaptation to Style Control

This chapter has illustrated how the better understanding of latent representations computed
by neural models opens the route toward the design of new careful control mechanisms for TTS.
This analysis was applied at the text embedding-level, considered as the atomic building block
of speech representations computed by TTS models. However, the proposed analysis methods
are not restricted to this use-case. Utterance-wise style or speaker biases may be subjected to
similar analysis, provided that acoustic features are adapted to match the utterance-scale. The
adaptation of the proposed method to utterance-wise biases could help exploring the utterance-
embedding space in order to extrapolate control out of the limited number of examples seen
during training.

Finally, the proposed control method emphasizes how a linear bias may have a non-linear
impact on the generative process. This non-linearity was illustrated on pitch control on Fig 5.3,
and further evaluated on duration control in Section 5.3.2 as an extension of our paper [Lenglet
et al., 2022b]. As a matter of fact, addition of utterance-style biases has been widely used in
the expressive control literature [Y. Wang et al., 2018; Wu et al., 2019; Y.-J. Zhang et al.,
2019], showing more complex acoustic modifications applied than uniform offsets along the
utterance. Moreover, the better supra-segmental control compared to segmental advocates
for prosodic cues being encoded in shared directions across phone-classes. In that regard,
these observations support the potential of utterance-wise style bias to modulate fine-grained
prosody. However, such utterance-wise style biased disentangled from the text input may lack
the support of the syntactic and semantic content to determine the prosodic targets to apply.
While these targets may be predicted by human expertise and applied via explicit mechanisms
such as the control method proposed in this chapter, most real-life applications cannot afford
the prediction of prosodic contours through human-in-the-loop. Therefore, we will also explore
implicit expressive bias approaches in the following chapter.



Chapter 6

Expressive Control from Local Speech
Units

Contents
6.1 Design Choices of the LST Module . . . . . . . . . . . . . . . . . . . . . 125

6.1.1 From Embedding Bias to Attitude Control . . . . . . . . . . . . . . . . . 125

6.1.2 Local Prosodic Modulations in the Literature . . . . . . . . . . . . . . . . 126

6.2 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Integration of the LST Module . . . . . . . . . . . . . . . . . . . . . . . 128

6.3.1 Model Backbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3.2 Local Style Tokens Module . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.3 Training and Inference Processes . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Evaluation of the LST Module . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.1 Local Token Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.2 Objective Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.3 Perceptual Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5 More Specific Annotation of the Expressive Recordings . . . . . . . . 138

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.6.1 Evaluation of Local Contributions . . . . . . . . . . . . . . . . . . . . . . 140

6.6.2 Acoustic Probing in Local Tokens . . . . . . . . . . . . . . . . . . . . . . . 141

6.6.3 Integration of Large Language Model Representations . . . . . . . . . . . 141

Chapter Highlights

This chapter presents our proposed Local Style Tokens (LST) layer to modulate utterance-
wise attitude embeddings from the semantic and syntactic structure of the textual input. The
proposed LST bridges the gap between linguistic and paralinguistic prosodic modeling. The
LST is integrated in a GST-enhanced FastSpeech2 with constrained tokens. We show that this
auxiliary layer introduces local prosodic modulations. Perceptual evaluations confirm the
benefit of the LST over a GST baseline, both with word-level and phone-level modeling.

Related contributions: [Bailly et al., 2024; Lenglet et al., 2023b]
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This sixth chapter describes our contribution to better model local modulations of prosody
for expressive speech synthesis. As elaborated in Section 1.2.2, expressive speech synthesis is
mostly addressed in the literature by the combination of the embeddings outputted by the
text-encoder with an utterance-wise bias [Skerry-Ryan et al., 2018; Y. Wang et al., 2018; Y.-J.
Zhang et al., 2019]. This utterance-wise bias, generally referred to as a style embedding,
is supposed to capture the speech variability otherwise unexplained by the text input or
the speaker identity, namely the prosody. However, natural expressive speech relies on
multiple levels of variations. As a result, utterance-wise style embeddings may lack finer-
grained representations in order to fully mimic natural voice behavior.

Ground-breaking performance of models like Global Style Tokens (GST) [Y. Wang et al.,
2018] advocate for utterance-wise style embeddings’ ability to reproduce natural complex
prosodic patterns beyond simple offsets of acoustic parameters. In Chapters 4 and 5, we have
demonstrated that internal embedding biases computed from model latent spaces were also
able to control the prosodic features produced by TTS models. Our evaluation highlighted
the non-linear effects produced by the addition of such linear biases. These findings support
the hypothesis that non-linear operations computed into neural layers are able to turn a linear
bias into adequate local modulations of synthetic speech.

However, most style control architectures (GST included) assume that style contributions
are disentangled from the input text. This assumption makes sense in TTS use cases: the aim
of such models is to produce any text with any style. In order to achieve this disentanglement,
neural architectures are designed to minimize the linguistic information leakage from reference
audio samples to prosodic representations. Yet, the natural prosodic structure of one’s speech
not only depends on one’s intents or style, but also on the content itself, as syntactic and
semantic structures play an important role in the organization of stress and phrasing [Liberman
& Prince, 1977; Selkirk, 1986]. That is why we believe that stylistic embeddings could benefit
from relying on the text itself. Thus, this chapter describes our proposition of an auxiliary
neural module called Local Style Tokens (LST) to tailor stylistic representations to the
textual input content.

We evaluated the benefits of the proposed LST module compared to the GST architecture
in Lenglet et al. [2023b]. All expressive TTS variants were implemented on top of our Fast-
Speech2 baseline established in Chapter 2. The proposed LST module could be applied to
any TTS architectures, but the choice of FastSpeech2, as well as the main design choices are
further discussed in Section 6.1. The rest of this chapter presents the details of this module
and an extended version of our results. Section 6.2 describes the expressive corpus we recorded
to train our expressive TTS. The implementation of the LST module is further explained in
Section 6.3, followed by our complete evaluation in Section 6.4. Our perspectives of extending
this control to a wider range of explicit labels is discussed in Section 6.5.
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6.1 Design Choices of the LST Module

6.1.1 From Embedding Bias to Attitude Control

The acoustic control provided by the embedding bias in Chapter 5 is limited for general ex-
pressive control of propositional attitudes. Since the embedding bias method acts on mean
variations of acoustic features, target variations are required beforehand in order for a hu-
man operator to implement the correspondence between expected styles and acoustic biases.
Such correspondence is inherently model-dependent, which cannot scale to continuous training
workflows1. This is the reason why we decided to integrate the constrained-GST module [Wu
et al., 2019] as a way to learn unsupervised utterance-wise acoustic and prosodic representa-
tions. Nonetheless, embedding biases have provided interesting insights into the encoding of
segmental and supra-segmental features that ultimately oriented the design of the our pro-
posed LST module:

1. FastSpeech2 was chosen as the baseline architecture for the implementation of the ex-
pressive control. Although the implementation of prosodic predictors does not provide
a better control of pitch and energy for FastSpeech2 than Tacotron2 (see Fig. 5.2c
and 5.2d), the robustness of the duration predictor coupled with the length regulator
compared to the attention mechanism of Tacotron2 provides a much better control of
the phrasing (see Fig. 5.2e and 5.2f). Non-attentive Tacotron2 [Shen et al., 2020] should
be considered as an alternative for future work.

2. The impact of the phonetic prediction layer on phrasing modulations by embedding bias
validated the implementation of this sub-task for expressive synthesis. Phrasing plays an
important role in the expressiveness of speech [Godde et al., 2017] and is better modeled
by FS than FS\phon (see Fig. 5.2f).

3. The tracking of features by layer indicated that the output of the encoder provides a
common encoding space for prosodic representations. Thus, the output of the encoder
appears to be the best layer to implement the LST module.

4. As seen in Section 5.2.2, segmental features are less controllable by linear biases, because
the direction of encoding of segmental features may vary depending on the phone classes.
The introduction of phone-level style embeddings should compensate for this effect.

To be more specific, the LST module extends the GST implementation to the segmental
level. Through the unsupervised training of local prosodic embeddings, the LST module aims
at learning finer-grained prosodic patterns based on shorter speech units, like words or phones.
On the one hand, word-level units enable prosodic embeddings to rely on the syntactic and
semantic structure of the text content, provided that the text encoder is able to learn and
encode this information in individual character or phone embeddings. This hypothesis is
supported by the disambiguation of homographs achieved at the output of the text encoder.
The performances reported in Section 2.4.3 advocate for the ability of the FastSpeech2 encoder
to distinguish homographs beyond the part-of-speech properties, which could be assimilated

1Models used for deployed applications are generally trained/fine-tuned on new data on a regular basis.
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to partial semantic representations. On the other hand, the phone-level is expected to ease the
control of segmental acoustic features, but also introduces direct manipulations of phonetic
classes. The replacement of vowels by schwas, vowel harmonic choices, liaisons and pauses are
all dictated by phonetic representations encoded at the output of the text encoder. Phone-level
style control enables direct manipulation of these representations without affecting neighbor
embeddings.

6.1.2 Local Prosodic Modulations in the Literature

Fine-grained prosodic representations have been proposed for TTS before. By construction,
the pitch and energy embeddings in FastSpeech2 variance adaptors [Ren et al., 2021] are
spectrogram frame-level prosodic embeddings. These provide some prosodic control during
inference, but also help better modeling of fundamental frequency. The LST module relies
on the same mechanism as the prosodic predictors, by re-injecting prosodic representations
within the model. The introduction of such local prosodic representations has already been
confirmed to benefit to prosodic transfer [L.-W. Chen & Rudnicky, 2022], but those authors
did specifically try to disentangle local prosodic contributions from the textual content, which
contrasts with our goal to model the interaction between propositional attitudes and the
syntactic and semantic structure of the utterance.

More focused toward expressive control, as described in Section 1.2, Klapsas et al. [2021]
proposed to enhance Tacotron2 [Shen et al., 2018] with word-level style embeddings that are
concatenated to the encoder output. Word-level representations are computed with recurrent
layers, and then passed to a style attention layer similar to GST [Y. Wang et al., 2018].
This work inspired us for the present study, but we tried to avoid its main limitation: the
authors had to train a Prior Encoder, which predicts word style embeddings from the text
input in order to synthesize text without an audio reference. As a result, the output synthesis
is solely based on the text input, denying the choice of expressive style during inference. In
that regard, this approach is similar to the Local Style Tokens computed by Veaux et al.
[2023]. They trained local tokens on word-level representations computed from Continuous
Wavelet Transforms [Vainio et al., 2013]. During inference, local token attention weights
are inferred from pre-trained BERT representations [Devlin et al., 2018]. This approach
extends the prediction of global style token attention weights from Stanton et al. [2018]. The
methods described in these studies are constrained to local prosodic representations derived
from the text, which limits their capabilities to the prediction of linguistic prosody. On the
contrary, our work aims at bridging the gap between linguistic and paralinguistic prosody, by
the introduction of the LST module as a way to modulate paralinguistic contributions based
on the text structure and the attitude to produce.

Hierarchical TTS models like CHiVE [Kenter et al., 2019] or MsEmoTTS [Y. Lei et al.,
2022] also take advantage of the multi-level aspect of speech, by combining intermediate
representations from different scales: phones, syllables, words, utterance, etc. The entire
architectures of these models are built on this hierarchical representation. On the other hand,
the proposed LST module is independent; it can be plugged into any encoder-decoder TTS
architecture, also with various scopes of representation.
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6.2 Dataset Description

As a first step in the adaptation of our baseline French TTS described in Chapter 2 to expres-
sive synthesis, we needed an expressive-labeled French dataset. Att-Hack [Le Moine & Obin,
2020] has been proposed as an expressive dataset designed to study the inter-speaker acoustic
variability of speech attitudes production. This dataset provides recordings for 4 social atti-
tudes (friendly, seductive, dominant, distant) uttered by 25 speakers in 100 utterances. This
corpus provides 3 to 5 variations by speaker/utterance/attitudes. This variability of produc-
tion is an asset for prosodic analysis. However, 100 utterances are not enough to provide a
extensive phonetic coverage, and this limited number of utterances by speaker reduces the
potential of this corpus for TTS training. Additionally, social attitudes define the relationship
between the speaker and his/her interlocutor.

As described in Section 1.2, the current focus of the presented work is instead propositional
attitude, which defines the attitude of the speaker towards the utterance he/she is producing.
As such, the selection of attitudes of the Att-Hack corpus did not fit our need. Similarly, in the
SynPaFlex corpus [Sini et al., 2018], the expressive labels from the “Basic Emotions” [Ekman
et al., 1999] describe the mental state of the speaker, which we distinguish from propositional
attitude. In absence of a suitable French corpus, our own expressive dataset was recorded
by Gérard Bailly2 and Frédéric Elisei. The recording process is described in Appendix A.2.1.
Table 6.1 summarizes the train/test set distribution by attitude used in this section.

Table 6.1: Duration and segmentation of our single-speaker expressive Dataset (see Appendix A.2.1
for further details). Durations are given in hh:mm:ss.

Style Train Test
English French Duration # Utt Duration # Utt

Angry Colère 00:24:12 523 00:01:30 32
Comforting Réconfortant·e 00:32:18 488 00:01:36 27
Committed Déterminé·e 00:21:06 430 00:01:24 29
Enthusiastic Enthousiaste 00:29:30 569 00:01:24 28
Obvious Evidence 00:27:00 492 00:01:30 27
Playful Espiègle 00:19:06 465 00:01:30 28
Pleading Suppliant·e 00:34:12 605 00:01:54 31
Skeptical Incrédule 00:29:48 620 00:01:36 32
Sorry Désolé·e 00:24:12 448 00:01:06 23
Surprised Surpris·e 00:26:48 503 00:01:36 32
Thoughtful Pensif·ive 00:43:24 450 00:02:06 27

Narrative Narratif 04:47:36 6235 00:14:36 307

Total 09:59:48 11828 00:31:48 633

2PhD director



128 Chapter 6. Expressive Control from Local Speech Units

6.3 Integration of the LST Module

This section describes the architecture of the proposed Local Style Tokens (LST) module and
how it is integrated in the GST-enhanced FastSpeech2 pipeline. The overall architecture of
the proposed model is shown in Fig. 6.1.

Figure 6.1: Integration of the Local Style Tokens Module in the FastSpeech2-GST architecture.

6.3.1 Model Backbone

The backbone of the model is FastSpeech2 [Ren et al., 2021], whose encoder, variance adaptor
and decoder are kept unchanged3. In addition, a label-constrained GST module [Wu et al.,
2019] is implemented at the output of the text encoder (Fig. 6.1, label 1)4. This constrained-
GST module converts a reference audio sample into a fixed-size vector through a reference
encoder [Skerry-Ryan et al., 2018]. This fixed-size vector is then used as the query of the
cross-attention mechanism in an attitude token layer. Similarly to GST [Y. Wang et al.,
2018], this attitude token layer computes weights that measure the similarity between the
reference vector and each global style token. Following Wu et al. [2019], a cross-entropy loss
is added to enforce each token to encode one particular attitude. The weighted sum of tokens
is then added to all phone embeddings computed by the text encoder.

Contrary to a set of learnable style embeddings, this module helps training the model on
heterogeneous style samples. When given the same style as target, one speaker may produce
highly variable utterances, with varying degrees of the given style. The constrained-GST
module may account for this degree by using a mixture of tokens for low degree utterances,

3https://github.com/ming024/FastSpeech2
4GST implementation based on https://github.com/taneliang/gst-tacotron2

https://github.com/ming024/FastSpeech2
https://github.com/taneliang/gst-tacotron2
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even though their label is the same as unambiguous utterances. This layer is expected to
mitigated the effect of mislabelled utterances, as described in Section 6.5.

Following the FastSpeech2 baseline established in Chapter 2, this model is trained on
mixed inputs. The phonetic prediction layer is implemented after the contribution of the LST
module (Fig. 6.1, label 2), since the LST is expected to impact phonological behavior.

6.3.2 Local Style Tokens Module

The Local Style Tokens architecture (LST) is introduced as an auxiliary module which further
modulates the output of the text encoder. Although this module does not need to be com-
bined with the GST module, the LST module alone does not provide explicit control of the
synthesis style at inference, which is why the constrained-GST is kept in this model. The LST
module may be seen as a residual layer which modulates the latent representations that have
been uniformly biased by the GST embedding, according to the content or the position of
linguistic units in the utterance. The LST modulation further improves acoustic and prosodic
representations in this latent space.

The LST module follows the same architecture as the original GST [Y. Wang et al., 2018].
Two levels of local tokens are examined in this study: Word-level and Phone-Level. In the
case of Phone-level tokens, this module takes as inputs the globally-biased phone embedding
sequence (Fig. 6.1, label 3). For Word-level, this sequence is averaged by word, to compute
word-level representations (Fig. 6.1, label 4). Because our dataset preserves word bound-
aries and punctuation marks in case of phonetic inputs, pseudo-word representations are also
computed for spaces and punctuation marks (or both when consecutive), also by averaging
embeddings. Note that local biases added to word boundaries provide an unsupervised alter-
native to the pause embedding bias evaluated in Section 5.4.

Acoustic patterns relative to style generation depend on the syntactic structure of the ut-
terance and on the relative position of units in the utterance. However, similarly to GST [Y.
Wang et al., 2018], the cross-attention mechanism in the LST module uses dot product at-
tention, which cannot infer relative positions of representations in the input sequence, unlike
recurrent networks. Also, we demonstrated that the positional information brought by the
positional encoding that is added to phone embeddings in the text encoder quickly fades
in the successive layers of the FastSpeech2 encoder as illustrated in Fig. 4.5a. Thus, a 32-
dimensional positional encoding is re-introduced with concatenation at the input of the LST
module (Fig. 6.1, label 5).

The resulting input tensor serves as a set of queries for the cross-attention mechanism in
the LST module. A set of weights is computed for each element in the sequence, and the time-
dependent weighted sum of token values constitutes the local prosodic embedding sequence
which is summed to the globally-biased phone embedding before the variance adaptor (Fig. 6.1,
label 6). In case of Word-level LST, each local prosodic embedding vector is first duplicated
to be added to all phones in the given word (resp. pseudo-word). For ease of interpretability
of local token weights, the cross-attention mechanism is single-headed.
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6.3.3 Training and Inference Processes

During training, the reference mel-spectrogram is identical to the target output. The reference
encoder and the cross-attention GST work as an attitude recognition module which computes
a probability distribution on all constrained style tokens from the given audio input. In
contrast, the LST weights are unsupervised during training, i.e., the LST module does not
require any additional loss. It is trained by the back-propagation of the spectrogram loss,
prosodic predictors losses and phonetic loss. The back-propagation is not stopped at the
input of the LST module, which enables the text encoder to incorporate features that may
be used to compute local prosodic embeddings in the LST module. The entire model can be
trained jointly, from scratch.

Similarly to constrained-GST, two style control methods are available during inference:
1) use of a target reference audio which produces a mixture of global style tokens or 2) specify
the mixture of global style tokens to use. Because the GST module is constrained, each
global style token has been trained to produce one particular style. Thus, one-hot vectors are
particularly fitted to generate the desired style. Nonetheless, a mixture of global tokens can
also be used to provide less caricatural biases. Local prosodic embeddings are computed in
parallel by the LST module, which does not impact the inference speed of the model.

6.4 Evaluation of the LST Module

Three models were trained for this study: 1) FastSpeech2 with constrained-GST referred to as
GST (the Baseline) ; 2) The Baseline enhanced with word-level LST referred as LSTW; and
3) The Baseline enhanced with phone-level LST referred as LSTP. All models were trained
on the same segmentation of train/test set, whose details are given in Table 6.1. Following
the constrained-GST architecture given by Wu et al. [2019], 12 tokens are needed in the GST
layer to account for each style label of Table 6.1. The target styles given to the actress are
used as style labels. The training follows the procedure given in Appendix C. The vocoder
used is Waveglow, as described in Appendix D.2.

6.4.1 Local Token Usage

Fig. 6.2 illustrates an example of the local contribution of LST. The utterance "§Cependant, les
critères fixés pour l’attribution des subventions sont #très# restrictifs.§" is taken as example.
Pitch contours predicted by the pitch predictor for LSTW and GST are displayed for the style
“Committed”. Note that the LST module uses the text embeddings biased by the GST module
as input, so pitch contours mostly follow the same pattern. However, subtle differences appear:
LSTW provides a better balance between accentuated words like "fixés" and the rest of the
utterance. Emphasis, indicated by symbols "#", is produced by both models, but LSTW
shows a more consistent pitch on the predicate adjective group "très restrictifs". Future
studies should focus on the identification of acoustic features into local prosodic embeddings
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Figure 6.2: Comparison of pitch contours predicted by LSTW and GST . “Committed” is illustrated
as an example of style.

learned by the LST module. The analysis methods developed in Chapter 4 could similarly be
applied to local prosodic embeddings, but were left for future work due to lack of time.

The number of local style tokens is fixed to 32 for both LSTW and LSTP. 32 tokens is
chosen as a middle ground between sharing tokens across global representations and providing
enough local tokens so that each global style can rely on dedicated local tokens. A related
implementation of local tokens [Veaux et al., 2023] also used 32 tokens.

To evaluate the usage of each individual local token, 100 utterances of the test set were
randomly selected, and each utterance was generated with the 12 styles of the corpus. Mean
attention weights of each local token were computed per style. Examples of mean attention
weights by local token and the dynamic of this attention are given in Fig. 6.3 for LSTW.
Table 6.2 summarizes the number of local tokens used per style, as well as the number of
tokens that are exclusive to the specified style. One local token is counted as used if its
mean activation weight is above the uniform distribution across all local tokens (above the
red dashed line in Fig. 6.3a). The overall number of tokens used differs from the sum because
some tokens are shared across styles. Two tokens are never used by LSTP. LSTW and LSTP
with 64 tokens were tested but showed that too many tokens were never used.

The diversity of local token usage illustrates the benefits of modeling prosody at a smaller
scale. Multiple local tokens are used by all styles to model various local patterns. “Angry”,
“Comforting”, “Playful” and “Narrative” use exclusive local tokens in LSTW, assessing for
unique speech behaviors in this sub-corpus (same for “Narrative” in LSTP). Fig. 6.3b shows
the dynamic of local token attention relative to the position in the utterance. Global styles
exhibit various patterns, but most characteristic behaviors are found at the beginning (LST29
for “Surprised”) and at the end of utterances (LST13 for “Playful” and LST3 for “Sorry”).
Other styles like “Skeptical” are more stable, but smaller variations of local token usage also
indicate that the LST module helps with modulating representations at a finer grain.
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(a) Mean LST usage by style.
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Figure 6.3: Local Style Tokens usage by style for LSTW. Six styles are shown as examples: "Enthusi-
astic", "Playful", "Skeptical", "Sorry", "Surprised" and "Narrative". Only the contours of the 4 local
tokens with the maximum mean attention weights are shown.
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Table 6.2: Number of Local Style Tokens used by the model per style.

Style
LSTW LSTP

# Tokens # Exclusive # Tokens # Exclusive

Angry 9 1 8 0
Comforting 8 1 7 0
Committed 8 0 11 0
Enthusiastic 6 0 10 0
Obvious 7 0 8 0
Playful 9 1 11 0
Pleading 6 0 10 0
Skeptical 10 0 12 0
Sorry 4 0 8 0
Surprised 8 0 11 0
Thoughtful 8 0 12 0

Narrative 11 3 13 2

Overall (/32) 32 6 30 2

6.4.2 Objective Evaluation

Objective evaluations of the synthetic models were conducted to assess the benefits of the
proposed model compared to the baseline. Models were evaluated on three aspects: train-
ing loss criteria, pitch variations and phrasing behaviors. All statistical differences between
distributions are evaluated pair-wise through non-parametric Wilcoxon rank sum tests. The
objective metrics shown in this section focus on various evaluations of the three main prosodic
features: duration, pitch and energy. Other acoustic features like voice quality may impact
style modeling [Gobl et al., 2002], but were not measured in this study.

6.4.2.1 Test Set Errors

All models are trained under the same loss criteria, which include mel-spectrogram losses and
prosodic features predictions (duration, pitch and energy). Table 6.3 summarizes the errors
calculated on the test set ground truth (GT ) after training. Spectral error is computed on
synthesis aligned with GT using Dynamic Time Warping (DTW) [Kubichek, 1993]. Mean
Euclidean distances are evaluated on the alignment path. Duration and energy errors are
computed on all phones, while pitch error is only evaluated on vowels.

Lower errors indicate that models that implement the LST modules produce speech closer
to the GT for most styles. Over all errors, LSTW provides the most consistent benefits, with
28 improvements and 14 degradations, compared to 20 improvements and 20 degradations
for LSTP. These improvements were significant for “Narrative”, but not for the other styles.
“Committed”, “Enthusiastic”, “Pleading”, “Surprised” and “Narrative” are the most improved
styles. This indicates that those five styles rely on local prosodic patterns that are difficult to
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Table 6.3: Mean errors per style computed on the test set. Blue (resp. red) indicates a lower error
(resp. higher error) than GST . * and ** indicate that the distribution statistically differs from the
GST baseline with p<0.05 and p<0.01, respectively.

Style
Spectral Error (dB) Duration Error (ms) Pitch Error (Semitones) Energy Error (dB)
GST LSTW LSTP GST LSTW LSTP GST LSTW LSTP GST LSTW LSTP

Angry 0.93 0.91 0.93 9.18 9.01 9.13 2.29 2.14 2.50 3.24 3.15 3.34
Comforting 0.88 0.88 0.89 11.41 11.64 11.12 1.59 1.62 1.77 3.12 3.24 3.11
Committed 1.00 0.99 0.96 9.83 9.83 9.33 4.10 4.15 3.93 3.26 3.16 3.24
Enthusiastic 1.18 1.16 1.18 9.82 9.45 9.82 4.31 3.93 4.31 3.03 3.10 3.06
Obvious 1.07 1.05 1.08 10.74 10.23 10.01 3.32 3.12 3.41 3.12 3.09 3.12
Playful 0.97 0.99 0.96 12.08 11.29 11.25 4.06 3.98 4.11 3.09 3.06 3.04
Pleading 0.92 0.92 0.91 9.67 9.03 9.49 1.93 1.78 1.72 2.49 2.44 2.45
Skeptical 0.98 0.97 0.99 10.10 9.85 10.13 2.86 3.03 3.08 3.06 3.03 3.23**
Sorry 0.67 0.68 0.67 9.50 9.50 9.70 1.05 1.16 1.04 2.64 2.75 2.77
Surprised 0.97 0.97 0.97 10.20 9.85 10.07 3.47 3.33 3.40 3.21 3.13 3.30
Thoughtful 0.94 0.95 0.97 22.23 22.28 22.52 2.51 2.63 2.52 2.86 2.91 2.96

Narrative 0.90 0.90 0.89 10.45 10.36* 10.53 2.75 2.73 2.74 2.93 2.86* 2.86**

Total 0.93 0.93 0.92 10.52 10.31 10.44 2.70 2.67 2.71 2.97 2.94 2.96

model with utterance-wise style representation. On the other hand, “Comforting”, “Skeptical”,
“Sorry” and “Thoughtful” show higher errors with LST. Overall, the worse results of LSTP
may be explained by the wider variability provided by local tokens at the phone scale. This
variability opens the door for more risks of divergence with GT .

While lower errors indicate that synthetic speech is closer to the natural utterances recorded
in our corpus, there is no golden standard for conveying a given style. Many variants: 1) could
have been performed by the recorded speaker for this same sentence and style, and 2) may
be perceived as similarly expressive for a human listener. As a result, the GT is not the
only correct speech production, and alternative objective evaluations are needed to assess the
expressive quality of the synthetic speech. In the following, we then compare distributions of
prosodic parameters measured on GT and on each of our models. Our criterion for a suc-
cessful rendering of prosodic features is therefore to have non-significant differences between
a model and the GT .

6.4.2.2 Pitch standard deviation

Pitch standard deviation by utterance is commonly used to evaluated expressive capabilities
of TTS models [Klapsas et al., 2021; Ren et al., 2021]. Table 6.4 compares the pitch variability
of GT to that of the synthetic models. Highly variable styles like “Enthusiastic”, “Obvious”,
“Playful”, “Skeptical” and “Surprised” are harder to model for TTS, as shown by statistical
differences between GT and all synthetic models. Overall, the LST module leads to more pitch
variability, even though results were not significant. Significant improvements were found for
“Sorry”, with LSTW generating pitch standard deviations closer to GT .
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Table 6.4: Mean standard deviation of pitch per style (Semitones). * indicates that the distribution
statistically differs from the GT (p < 0.05). Blue (resp. red) indicates that the proposed model
performs better (resp. worse) than the GST baseline.

Style GT GST LSTW LSTP

Angry 3.59 2.95 2.85* 2.77*
Comforting 1.94 1.68 1.70 1.77
Committed 3.92 3.92 3.94 3.69
Enthusiastic 4.79 3.27* 3.44* 3.24*
Obvious 4.25 3.06* 3.41* 3.39*
Playful 5.27 4.15* 4.03* 4.04*
Pleading 2.90 2.36 2.45 2.51
Skeptical 4.49 2.90* 3.36* 3.04*
Sorry 1.85 1.49* 1.65 1.58*
Surprised 5.66 4.03* 4.20* 4.08*
Thoughtful 2.70 2.53 2.64 2.54

Narrative 4.94 3.89* 3.91* 3.89*

6.4.2.3 Phrasing Error

Phrasing is decisive in perceptual judgements, as we emphasized in Sections 3.2.3 and 5.4.2.
Notably, varying frequency of silences when modifying the speaking rate is a key feature of
natural voice that synthetic models generally struggle to achieve. The pause embedding bias
control developed in Section 5.4.1 was not used in the current experiment. However, note that
the LST module enables local embedding biases to be added specifically at word boundaries.
This bias addition would be able to simulate the pause embedding bias if any improvements
of the training losses were found through the encoding of pauses in one or more local tokens.
More detailed analysis of the local tokens used at word boundaries is needed to assess this
behavior.

Table 6.5 shows mean silence proportion per style for each model and GT . Significant
differences between GT and synthetic models for “Pleading”, “Skeptical”, “Sorry”, and “Nar-
rative” demonstrate the difficulties of the TTS model to replicate natural balance between
speech and silence for these styles. The LST module does not provide much improvement in
that regard. Conversely, LSTP produces more pauses for styles with high silence ratio like
“Angry” and “Playful”, whose natural behaviors are hardly replicated by utterance-wise style
bias in GST (this improvement was significant for “Angry”).

Duration modulation was also evaluated as an indicator of local prosodic patterns. We
hypothesize that polysyllabic words should be more impacted by local modulations, as they
are mostly content words. At least some of the studied styles should emphasize local key points
in the utterances that are embodied by content words. Word duration modulation is evaluated
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Table 6.5: Mean proportion of silences in synthetic vs. GT utterances (in %). ** indicates that
distributions statistically differ from the GT with p < 0.01. Blue (resp. red) indicates that the
proposed model performs better (resp. worse) than the GST baseline.

Style GT GST LSTW LSTP

Angry 2.6 2.0** 1.8** 3.0
Comforting 2.5 2.3 2.2 1.9*
Committed 4.8 3.3 3.4 3.3
Enthusiastic 1.6 1.7 1.6 1.2
Obvious 0.8 1.1 0.8 1.0
Playful 6.6 4.7 4.8 5.2
Pleading 1.3 0.6** 0.6** 0.7**
Skeptical 2.4 1.8** 2.0** 1.5**
Sorry 2.2 1.4** 3.2** 1.9**
Surprised 2.0 1.9 1.4 1.0
Thoughtful 1.8 2.4 1.4 1.6

Narrative 3.8 2.5** 2.6** 2.6**

as the ratio between the duration of the last vowel and the mean duration of other vowels of
the same word. This measure indicates the lengthening of last syllable of polysyllabic words,
as approximation of content words. Table 6.6 summarizes the evaluated duration modulation
per style. Lengthening of the last syllable of polysyllabic words is very common in GT , as
shown by mean word duration modulations above 1.25 for every style. “Obvious”, “Pleading”,
“Sorry” and “Thoughtful” show the higher degree of modulation. This modulation is closely
replicated by all models, with slight variations between them. Interestingly, GST tends to
elongate durations excessively, in particular on “Enthusiastic”, “Playful” and “Thoughtful”,
while the LST modules help producing more natural duration modulations.

6.4.3 Perceptual Evaluation

In order to evaluate perceptual differences between the proposed model and the baseline, 60
participants took part in an online MUSHRA-like experiment [International Telecommuni-
cations Union, 2003], run with the framework webMUSHRA [Schoeffler et al., 2018]. Given
the text uttered and the target style written for each utterance, participants were asked to
evaluate on a scale from 0 (very bad) to 100 (excellent) if the style was correctly rendered.
For this listening test, we selected 10 utterances per style that maximize spectral distances
between systems (120 in total). 5 groups of 12 participants each evaluated 24 utterances (2
per style), with 5 systems per utterance: the GST -enhanced FastSpeech2 baseline, the two
proposed models LSTW and LSTP, the vocoded GT (hidden reference), and a FastSpeech2
trained without GST on non-expressive data (low anchor) referred to as LA. Because the
Ground Truth is not the only way to convey the given style, it was not given as an explicit
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Table 6.6: End syllable duration modulation evaluated on polysyllabic words. * indicates that the
distribution statistically differs from the GT (p < 0.05). Blue (resp. red) indicates that the proposed
model performs better (resp. worse) than the GST baseline.

Style GT GST LSTW LSTP

Angry 1.34 1.34 1.28 1.34
Comforting 1.33 1.35 1.39 1.36
Committed 1.34 1.34 1.39 1.34
Enthusiastic 1.36 1.47 1.44 1.38
Obvious 1.41 1.43 1.41 1.40
Playful 1.32 1.54 1.44 1.51
Pleading 1.37 1.30 1.35 1.30
Skeptical 1.24 1.28 1.31 1.22
Sorry 1.43 1.44 1.52 1.46
Surprised 1.25 1.23 1.27 1.21
Thoughtful 1.88 1.95 1.91 1.95

Narrative 1.33 1.36* 1.36* 1.37*

Table 6.7: MUSHRA-like score per style. Blue (resp. red) indicates that the proposed model performs
better (resp. worse) than the GST baseline. * and ** indicates that this difference with GST is
statistically significant with p < 0.05 and p < 0.01, respectively. LA = Low Anchor, GT = Ground-
Truth.

Style LA GST LSTW LSTP GT

Angry 17.3 63.0 64.3 68.3** 75.6
Comforting 15.4 66.2 63.5 61.5 80.5
Committed 24.9 65.1 70.9** 68 76.4
Enthusiastic 11.6 66.2 70.0 74.0* 86.4
Obvious 40.2 65.7 61.4 65.3 84.7
Playful 16.4 63.3 66.3 67.4 86.5
Pleading 12.3 71.3 70.1 71.2 77.9
Skeptical 36.3 47.3 50.6 46.6 63.3
Sorry 15.4 63.2 71.1** 68.0 68.7
Surprised 14.3 78.5 75.6 73.7 85.3
Thoughtful 24.3 46.9 47.5 52.7 62.7

Narrative 64.6 63.1 67.4* 67.5* 69.5

Total 24.2 63.0 64.7 65.0 76.1
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reference to the participants during the listening test. Participants who misunderstood the
evaluation task were excluded: it includes ranking the non-expressive model higher than the
other models, as well as participants with significantly low standard deviation of grades across
all systems. Examples rated by participants can be found at the following link5.

Results of this perceptual experiment are given in Table 6.7. LA was ranked significantly
lower than all other models, except for “Narrative” which is also modeled by the non-expressive
LA. Participants tend to favor LSTW and LSTP over GST . Most noticeable improvements
are found for “Angry”, “Committed”, “Enthusiastic”, “Sorry” and “Narrative”. Objective eval-
uations have shown that the LST module helps producing local behaviors that are closer to
the GT . Reproducing pitch variations and phrasing is critical for these styles to be perceived
as natural. Note that GT exhibited relatively poor results on “Skeptical” and “Thoughtful”.
These styles may have been too caricatured by the speaker, which participants judged as un-
natural. These performances may also be explained by the mislabeling of these styles, either
because of the misinterpretation of the target styles by the speaker during recording sessions,
or the diversity of meanings of these labels which ultimately impacted participants’ judgments.

6.5 More Specific Annotation of the Expressive Recordings

As discussed in Section 1.2, expressive labeling is hard due to the variability of produced and
perceived expressive style [Bachorowski, 1999]. In this work, expressive labels are taken as the
target given to the speaker during recording sessions. We are fully aware that these labels may
be inaccurate and the expressive style produced by the speaker may not be widely recognized
by naive listeners. The speaker may have played her own understanding of the style requested.
The production may also not be consistent throughout an entire session, either due to loss of
focus or fatigue.

To evaluate the produced expressive style more precisely, a web interface was developed to
annotate the recorded corpus through crowdsourcing. This project is called Emotags [Bailly
et al., 2024]6. This interface is illustrated in Fig. 6.4. Participants are given three ways to
annotate the video clips:

1. A limited list of 6 to 12 tags determined incrementally through navigation in a large set
of 132 expressive adjectives.

2. Free selection in the large set via an autocomplete text input.

3. A free text input if the label does not already exist in the large set.

The annotation process is ongoing at the time of writing of this manuscript7. 438 partici-
pants have already annotated 8547 utterances, with at least 2 expressive styles by utterance.

5https://www.gipsa-lab.grenoble-inp.fr/~martin.lenglet/listening_page_LST/index.html
6I have contributed to the experiment design and to the analysis of the collected annotations. The imple-

mentation of the website was done by Romain Legrand and Gérard Bailly.
7Link to the experiment: https://expe.univ-grenoble-alpes.fr/emotags/?PROLIFIC_PID=theradia&

STUDY_ID=gipsa&SESSION_ID=1

https://www.gipsa-lab.grenoble-inp.fr/~martin.lenglet/listening_page_LST/index.html
https://expe.univ-grenoble-alpes.fr/emotags/?PROLIFIC_PID=theradia&STUDY_ID=gipsa&SESSION_ID=1
https://expe.univ-grenoble-alpes.fr/emotags/?PROLIFIC_PID=theradia&STUDY_ID=gipsa&SESSION_ID=1
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Figure 6.4: Screenshot of the web interface designed to annotate the recorded expressive corpus.

Figure 6.5: Annotations collected through the Emotags Interface for attitudes “Surprised” (ETONNE),
“Angry” (COLERE), “Skeptical” (INCREDULE) and “Comforting” (RECONFORTANT).

More than 1000 participants are expected to annotate the whole expressive corpus. 65 534 have
already been collected through this large-scale crowdsourcing. Preliminary results of this ex-
periment are given in Fig. 6.5. The Ground Truth label is the most given label for all attitudes
except “Skeptical” (“Doubtful” is the most given attribute in this case). This lack of recog-
nition may have impacted the scores reported in the MUSHRA (see Table 6.7). For other
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attitudes, this experiment mostly confirms that our speaker has successfully transmitted the
intented attitude, but nuances may vary within the utterances from the same attitude.

We hope that such massive gathering of expressive annotations will enable us to 1) refine
the training of an expressive TTS model on more accurate style labels as well as 2) train an
expressive TTS model on a wider variety of expressive control, using pre-trained represen-
tations from Large-Language-Models such as FlauBERT [Le et al., 2020] to introduce a free
text-control following the framework established by M. Kim et al. [2021] and Shin et al. [2022].
The training of such a model adapted for French TTS is left for future work.

6.6 Discussion

In this chapter, we proposed the LST module for expressive TTS which helps with mod-
eling fine-grained prosodic patterns. This auxiliary module acts as a residual layer which
complements the global style control achieved by the GST layer with contextual syntactic
and semantic information. No additional losses are required to train this LST module. This
module was evaluated on 12 common attitudes, for French synthesis. The most promising im-
provements over the GST baseline were shown for “Angry”, “Committed”, “Enthusiastic” and
“Sorry”, for which more subtle prosodic variations are needed to achieve a natural behavior.

The LST module was implemented at word and phone scales in this work. Both scales
showed improvements in the perceptual test (see Table 6.7), but on different styles. This
may indicate that various levels of prosodic contribution are needed to model different styles.
“Committed” and “Sorry” may rely more on emphasis produced on the right words or groups of
words given by the structure of the text input, whereas the natural rendering of “Angry” and
“Enthusiastic” needs more intra-word modulations. The structure of the proposed LST module
allows for several LST modules to be cascaded to encode increasingly finer representations such
as phrases, words, syllables, phones, etc. We will consider the stacking of various scales of
local embeddings in future work.

6.6.1 Evaluation of Local Contributions

This study reinforces the need for more elaborated evaluation paradigms for expressive speech.
While the style “Sorry” showed the highest amount of objective errors compared to the Ground
Truth, it was still perceived as well-rendered during listening tests. Prosodic patterns followed
by the Ground Truth are not exclusive, and evaluation has to be adapted to match perceptual
judgments. We tried to adapt our objective evaluation in that regard, by comparing the
distribution of synthetic acoustic features with the Ground Truth measurements instead of
one-to-one phone error computation. However, state-of-the-art expressive modules for TTS
like GST already achieve such high performance that most predicted features are already very
similar to the Ground Truth. That is why evaluation setups should now increasingly consider
outliers and extrapolations out of their typical operating range, on which neural models still
have room for improvements [Perrotin et al., 2021].
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The MUSHRA-like setup we used in this subjective experiment did not provide enough
insights into the perceptual cues upon which participants based their judgments. As illus-
trated in Fig. 6.2, the LST module contributes to subtle short range variations of prosodic
features. These variations seem to be perceived by listeners as showed by the difference in
scores between GST and LST modules, but utterance-scale objective measurements fail to
capture these events. We will consider using the Rapid Prosody Transcription (RPT) evalu-
ation framework for future works in order to isolate the shorter acoustic windows which are
decisive in participant judgments.

6.6.2 Acoustic Probing in Local Tokens

The number of tokens and training process of the LST module deserves more attention. The
best results were found for styles that make use of multiple local tokens (Table 6.2 and Fig. 6.3).
This result was expected, since adding the same local token all along the utterance should not
provide different results from an utterance-wise style bias. Constraining the LST module to
maximize token usage should help the model showing more robust results. Additionally, the
number of local tokens should be adapted to the scale of representations, e.g. allowing more
various contributions for finer-grained prosodic patterns.

Understanding the features encoded in local tokens would also help in choosing the ap-
propriate number of tokens. The acoustic probing methods proposed in Chapter 4 could be
applied to the local prosodic representations computed by the LST module. This analysis is
expected to show how the usage of individual local tokens correlates with the acoustic bias
applied to the local speech units. This analysis would also highlight acoustic and prosodic
similarities and divergences between styles, in a new attempt to take advantage of statistical
learning to contribute to the better understanding of speech mechanisms.

6.6.3 Integration of Large Language Model Representations

The LST is proposed as an auxiliary module to learn the entanglement between the linguistic
structure of the utterance and the global propositional attitude to convey. This assumption
relies on the ability of the text encoder of neural TTS to model syntactic and semantic infor-
mation. This information is partially encoded into latent embeddings, as shown by the partial
disambiguation of homographs evaluated in Section 2.4.3. However, the primary focus of neu-
ral TTS is the prediction of spectral features, which do not require a deeper understanding of
the textual content in most cases. On the other hand, Large Language Models (LLMs) like
BERT [Devlin et al., 2018] are trained on language prediction tasks on larger corpora. This
setup has been shown to favor the encoding of contextualized semantic information [Wiede-
mann et al., 2019]. We believe that this additional contextual information would benefit the
LST local prosodic prediction. Future work should explore the combination of such pre-trained
contextualized representations with the LST mechanism.
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Chapter Highlights

This chapter presents our Audio-Visual Text-to-Speech (AV-TTS) model based on
the FastSpeech2 architecture. Our model generates the speech and co-verbal gesture of the
Embodied Conversational Agent (ECA) of the Theradia application. The proposed AV-
TTS combines an audio-visual Transformer-based encoder with two distinct audio and visual
neural decoders that generate expressive speech from partially-annotated data. We show that
this model is able to produce recognizable expressive behaviors for the ECA.

As part of the Theradia project [Tarpin-Bernard et al., 2021], our contributions proposed
in the previous chapters were integrated into an audio-visual generative model which predicts
both speech and co-verbal facial gestures from text. This joint prediction is transformed into
the animation of an embodied conversational agent (ECA), which aims to accompany patients
who are undergoing online digital therapies.

Theradia’s desire to embody the voice of a virtual caregiver in an ECA aligns with the
broader goal of providing a more interactive experience to its patients. Co-verbal gesture helps
to create more engaging interactions [Nyatsanga et al., 2023], provided that these gestures are
consistent with its verbal behavior [McNeill, 2019] and with the active listening capabilities
of the avatar [Potdevin, 2020]. Therefore, the Audio-Visual generation from text (called AV-
TTS) may be considered as an extension of the expressive TTS framework, as it undergoes
the same problematic of linguistic and paralinguistic content modeling, but includes the visual
modality as output.

143
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Several state-of-the-art reviews of AV-TTS systems and architectures have been published
for concatenative and statistical systems (see [Bailly et al., 2003; Mattheyses & Verhelst,
2015; Theobald, 2007]). To the best of our knowledge, no such review is available for neural
architectures.

The latest propositions of unifying speech and gesture generative models [S. Wang et al.,
2021] into a single neural AV-TTS have allowed the emergence of jointly generative models
with remarkable performance [Hussen Abdelaziz et al., 2021; Mehta et al., 2023; Yu et al.,
2020]. Notably, DurIAN [Yu et al., 2020] and AVTacotron2 [Hussen Abdelaziz et al., 2021] have
extended the TTS-architecture from Tacotron and Tacotron2, respectively, in order to generate
visual features directly from audio-visual representations computed from text. In both models,
visual features are predicted from the very end of the autoregressive decoder. This setup
ensures the computation of audio-visual representations in the whole model. Although we also
believe that the computation of audio-visual representations should benefit the consistency of
generated synchronous features, the visual modality may exhibit some asynchronous behavior
such as anticipatory voice actuator activation [Maier et al., 2011]. Therefore, we consider that
an earlier distinction between the audio and visual decoders should benefit both modalities.

Dahmani et al. [2019, 2021] proposed to pre-train separate audio vs. visual encoder-decoder
VAE models biased by phone labels and durations so that the audio and visual decoders can be
further used by a text encoder. But to the best of our knowledge, we propose in this chapter
the first end-to-end expressive AV-TTS based on the FastSpeech2 architecture [Ren et al.,
2021]. We combine an audio-visual Transformer-based encoder with two distinct decoders.
Following the FastSpeech2 framework, we integrate a visual variance adaptor to the visual
decoder, in order to better model lip movement.

Section 7.1 presents the multi-modal and multi-speaker corpus used to train our AV-
TTS. The AV-TTS architecture is further detailed in Section 7.2. We evaluate the expressive
capabilities of our model in Section 7.3.

7.1 Audio-Visual Multi-Speaker Corpus
The model presented in this chapter has been trained with the goal of being integrated into
the application Theradia [Tarpin-Bernard et al., 2021]. Thus, the entire corpus described in
Appendix A is used for the training, in order to maximize the expressive capabilities of the
model. This corpus includes voices from five speakers, for a total duration of 51:28:39. Only
two speakers have been recorded with visual settings (AD and IZ), and only one with expressive
labels (AD). The recording of the expressive dataset, as well as the visual features extraction
from the videos and their use to animate the virtual agent are detailed in Appendix A. In this
section, we use the reduced set of 37 Action Units (AU) as target for the visual decoder.
The data sparsity of the corpus is handled during the training, as described in Section 7.2.2.
Although transfer learning is expected to enable the use of expressive labels for other speakers
than AD and the prediction of AU for speakers who have not been recorded with visual
settings, the 3D model of the avatar has been fine-tuned on AU from AD. Thus only AD is
included in the test set of the presented experiment. This test set is the same as that presented
in Table 6.1.
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113 164 <orthographic|phonetic> pairs (without audio transcripts) complement this cor-
pus. These transcriptions are used to train the text encoder and the phonetic predictor on
a wider variety of linguistic contexts, as described in Section 2.3.2. Both orthographic and
phonetic inputs are used during training.

7.2 Audio-Visual Generation from Text

The proposed AV-TTS is illustrated in Fig. 7.1. This model is based on the LST-enhanced
FastSpeech2 model presented in Chapter 6. The constrained-GST encoder (Fig. 7.1, label 1)
computes an utterance-wise style embedding from an audio reference which is added to the
output of the text encoder. Trainable speaker embeddings (Fig. 7.1, label 2) are also added
at the output of the encoder. The LST module (Fig. 7.1, label 3) proposed in Section 6.3
further modulates the biased sequence of text-embeddings at the word-level. We favor the
word-level for its expected ability to model semantic information, in comparison with phone-
level. The phonetic predictor (Fig. 7.1, label 4) proposed in Section 2.3.2 is implemented at
the output of the LST module. The biased sequence of character/phone embeddings is cloned,
and transmitted to the Audio Decoder and the Visual Decoder (Fig. 7.1, label 5). This cloning
does not stop the gradient propagation, therefore the text encoder is constrained to produce
audio-visual embeddings, as advocated by S. Wang et al. [2021].

Figure 7.1: Proposed Audio-Visual FastSpeech2 model. The visual variance adaptor is illustrated in
Fig. 7.2a.

7.2.1 Visual Decoder

The visual decoder follows the same architecture as the audio decoder: a variance adaptor
followed by four stacks of FFT blocks (see Fig. 1.5a) and a fully connected layer to project
the output of the last FFT block onto the 37AU. The visual variance adaptor is illustrated in
Fig. 7.2a. Similar to the audio variance adaptor from FastSpeech2 [Ren et al., 2021], the visual
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(a) Visual Variance Adaptor: two predictors are imple-
mented for lips aperture and width respectively. Note that
the visual variance adaptor does not implement a duration
predictor, but instead uses the duration predicted by the
audio duration predictor.

(b) Lip Aperture (A) and lips spread-
ing (S). Source: [Garnier et al., 2012]

Figure 7.2: Description of the Visual Variance Adaptor.

variance adaptor implements the explicit prediction of two visual features: the lip aperture (A)
and spreading (S) as illustrated in Fig. 7.2b. The lips stand as a primary position in the face-to-
face interaction: poor lip sync has been shown to impact intelligibility [McGurk & MacDonald,
1976]. The modeling of lip aperture and spreading is therefore an additional constraint to
avoid conflicts between the visual and the audio modalities. The implementation of these
lip predictors at the output of the audio-visual encoder takes advantage of the synchronicity
between the linguistic content and the lips modeling.

Both predictors are trained with a MSE loss, which ensures the encoding of these two
features in the audio-visual embeddings computed by the encoder. Each predictor computes
a scalar value for A and S respectively, which is converted into an aperture embedding and
a spreading embedding added to the corresponding character/phone embedding. The total
loss of our proposed AV-TTS is given by formula 7.1. Note that Ground Truth values of lip
aperture and spreading are computed as a linear combination of the 10 AU dedicated to the
animation of the lips, since these features are not explicitly encoded by the AU.

LFS = LS + LPS + Ldur + Lp + Le + Lphon + LV + LPV + LLA + LLS (7.1)

with LFS the total loss of FastSpeech2, LS the MAE spectral loss, LPS the MAE
spectral loss after the postnet, Ldur the MSE duration loss, Lp the MSE pitch
loss, Le the MSE energy loss, Lphon the cross-entropy phonetic loss, LV the MAE
visual loss on AU, LPV the MAE visual loss after the postnet, and LLA and LLS

the MSE lip aperture and spreading losses respectively.

Note that the aperture and spreading embeddings (resp. pitch and energy embeddings)
are only added to the embedding sequence of the visual decoder (resp. audio decoder). This
avoids the overwriting of encoded features due to the summing of variance embeddings as
observed after the summing of pitch and energy embeddings in Fig. 4.2a for FS and FS\phon.
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We did not implement a duration predictor in the visual variance adaptor. Training
two duration predictors may cause asynchronicity at inference between the audio and visual
modalities. Instead, only the audio duration predictor is trained. The audio duration predictor
is trained to predict the number of mel-spectrogram frames to produce from each element
of the input sequence. On the one hand, with the mel-spectrogram configuration given in
Table D.1, the mel-spectrogram is predicted with a temporal sampling-frequency of ∼86Hz.
On the other hand, AU are predicted with a sampling-frequency of 60Hz. Thus, the number
of frames predicted by the audio duration predictor is down-scaled by a factor 60÷ 86 ≈ 0.7.

7.2.2 Handling Training Data Sparsity

This model is trained to predict three different outputs (the mel-spectrogram, the visual
features and the one-to-one phonetic mapping) from three types of inputs (the input text, the
audio reference and the style label). In practice, any of these parameters, text input excluded,
may be missing in the training corpus: only two speakers have been recorded with audio-visual
settings, dictionary input transcriptions are missing the output spectrogram, as well as the
reference audio, and expressive labels are only available for one speaker.

However, the model’s architecture enables the training on any minimal <input|output>
pair1. In case of missing audio recording, the GST-Reference Encoder is ignored and the Style
Loss is not computed on this sequence. As a result, the style embedding vector is a zero-
vector, and does not contributes the prediction. Only the phonetic output is predicted, as the
audio and visual decoders are by-passed in absence of target. Thus, only the text encoder and
the phonetic predictor are trained in this case. Similarly, in absence of visual features (resp.
expressive labels), the visual decoder (resp. the style loss) is by-passed.

Training on sparse datasets necessitates special attention when it comes to data mixing in
batches during the training. Since each type of minimal <input|output> pair only trains a
portion of the model, unbalanced types of data in the training dataset may favor the minimiza-
tion of one loss compared to the other. That is why we advocate for the training procedure
described in Appendix C: we empirically found that a ratio of 2/3 of audio inputs and 1/3 of
non-audio inputs in each batch provides the best balance between phonetic prediction accu-
racy and spectral loss minimization. Because of the small portion of visual data in our corpus
(1/5 of the dataset), we cannot afford this ratio between audio only and audio-visual data
without overfitting the model on AD, but similar caution should be considered with wider
corpora.

7.3 Evaluation

7.3.1 Experimental Setup

The multi-speaker training of the proposed AV-TTS follows the procedure described in Ap-
pendix C. We use HiFi-GAN as a vocoder, with the configuration described in Appendix D.3.

1At least one input and one output.
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Due to time limitations, we did not train any baseline AV-TTS. With additional time, we
would consider comparing the performance of our proposed model to the AV-Tacotron2 model
proposed by Hussen Abdelaziz et al. [2021] which follows the same global architecture.

We provide some examples of the facial expressions generated by our model in Fig. 7.3.
Note that the control provided by the ECA enables the model to exhibit basic facial expressions
and head postures, but does not integrate the control of arms. “Enthusiastic” shows a large
smile (Fig. 7.3b). “Thoughtful” looks away as if the ECA was looking for its words (Fig. 7.3c).
When “Surprised”, the ECA’s eyes widen (Fig. 7.3d). These behaviors replicate the acted
behaviors of the speaker during recordings.

(a) “Narrative” (b) “Enthusiastic” (c) “Thoughtful” (d) “Surprised”

Figure 7.3: Examples of facial expression generated by the AV-TTS.

To assess our model expressive capabilities, we conducted two forced-choice recognition
evaluations online: 1) using AU extracted from the Ground Truth to animate the avatar, and
the original audio recordings, and 2) with audio-visual features predicted by the model. Each
setup allows for the evaluation of one hypothesis:

H1: (Experiment 1) the accuracy of the AU extracted from the video recordings, and their
use as control parameters for the 3D model of the ECA lead to a high recognition of our
12 attitudes.

H2: (Experiment 2) the accuracy of the AU predicted by our model, and their use as control
parameters for the 3D model of the ECA lead to a high recognition of our 12 attitudes.

In order to focus the evaluation on distinctive examples, we selected the test set as the
most varied synthetic utterances between attitudes: we computed the pair-wise MSE between
predicted spectra by attitude (12 × 11 ÷ 2 = 66 pairs by utterance). Predicted spectra
were previously aligned with DTW. These pair-wise errors are averaged by utterance, before
selecting the 20 most varied utterances. The syntheses of these 20 utterances with the 12
attitudes (240 stimuli) were used as test set for both experiments.

49 participants recruited on Prolific [Palan & Schitter, 2018] took part in the experiments.
Each participant evaluated 60 stimuli, randomly mixed between experiments 1 and 2. Partic-
ipants were presented with the video of the animation of the avatar, and were allowed to play
this video as many times as necessary. Then they had to select one of the twelve labels before
continuing to the next video.
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7.3.2 Results

The result of the recognition experiments are given in Fig. 7.4a for Ground-Truth features
and Fig. 7.4b for predicted features. The F1-score calculated from the confusion matrix is
0.47 for Fig.7.4a and 0.41 for Fig.7.4b. We computed the cosine similarity between the two
matrices as an indicator of the correlation between the attitude recognition on the Ground
Truth features and the predicted features. We obtain a correlation score of 0.92 between the
two confusion matrices.

The most common confusions found in both matrices are summarized in Table 7.1. Most
of these confusions may be explained by acoustic similarities between the two attitudes. The
acoustic evaluation of the Ground-Truth recordings for the speaker AD in Chapter 6 indi-
cates that “Angry”, “Committed”, “Obvious”, “Skeptical” and “Surprised” produce higher F0
intra-utterance variations (see Fig. 6.4). Conversely, “Sorry” and “Comforting” show the least
amount of F0 variations. “Pleading” and “Obvious” show relatively high end-syllable duration

(a) Ground-Truth Visual Features (b) Predicted Visual Features

Figure 7.4: Confusion matrices of attitude recognition using visual features (AU) from the Ground
Truth (left) and predicted visual features (right).

Table 7.1: Common confusions between attitudes. Note that these confusions are symmetrical.

Style 1 Style 2
Acoustic Similarity

En Fr En Fr

Sorry Désolé Thoughtful Pensif slow speaking rate
Sorry Désolé Comforting Réconfortant slow speaking rate, lower mean F0, less F0 variations

Committed Déterminé Angry Colère more frequent breaks (emphasis), high F0 variations
Committed Déterminé Obvious Évidence high F0 variations
Pleading Suppliant Obvious Évidence end-syllable lengthening
Skeptical Incrédule Surprised Étonné high F0 variations, semantic
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lengthening, though not as high enough to be confused with “Thoughtful” (see Fig. 6.6). The
pause frequency shown in Fig. 6.5 indicates that “Angry” and “Committed” lead to frequent
pauses. These pauses are mostly used as markers of emphasis for the following words, which
is a common speech behavior in both these attitudes. Although speaking rate was not ex-
plicitly measured in Chapter 6, the speaker slows her speaking rate when producing “Sorry”,
“Thoughtful” and “Comforting”, which may have introduced further confusion between these
attitudes. The confusion between “Skeptical” and “Surprised” is reinforced by the semantic
proximity between these two adjectives: skepticism may be expressed through surprise, which
may have perplexed participants.

These acoustic similarities should have been mitigated by the associated differences of
facial expressions. For example, the speaker produces “Angry” utterances with pronounced
furrowed brows, in opposition to a more friendly face for “Committed”. These nuances of
facial expressions are likely not transmitted to the ECA, even in the Ground-Truth condition
(F1-score of 0.47 in Fig. 7.4a). This mostly invalidates H1, as the control of the ECA may
be too restrictive to transmit the appropriate nuances of facial expressions. Nonetheless, the
cosine similarity of 0.92 between the two confusion matrices of Fig. 7.4 indicates that AU
are learned by the proposed AV-TTS in accordance with the Ground-Truth recordings, which
confirms H2.

Note that the two confusion matrices of Fig. 7.4 also indicate asymmetrical recognition
errors on “Narrative”. Interestingly, “Narrative” was confused as “Obvious” and “Committed”,
while this confusion does not happen in the other direction. Conversely, “Sorry” and “Com-
forting” have been recognized as “Narrative”. “Narrative” may have been a misleading label
to evaluate isolated speech extracts, as “Narrative” more often implies longer forms of speech
like story telling. “Neutral” may have introduced less confusion.

7.4 Conclusions and Discussion

In this chapter, we introduced our FastSpeech2-based expressive AV-TTS trained on partially-
labeled expressive data. We showed that this model was able to produce expressive speech
and co-verbal gesture for an ECA, used in the scope of the Theradia project [Tarpin-Bernard
et al., 2021].

From the evaluation presented in Section 7.3, we showed that our proposed AV-TTS pro-
duced speech and visual features that are very similar to the features extracted from the
Ground Truth recordings particularly in terms of how they are perceived by naive observers in
recognizing attitudes. Therefore, the AV-TTS system for joint automatic speech and anima-
tion generation is capable of capturing the patterns specific to the chosen attitudes. However,
the poor recognition of the Ground Truth (Fig. 7.4a) features may indicate that:

• The speaker AD has not produced consistent attitudes during recording sessions. This
may be due to fatigue or a mismatch between listener expectations and speaker produc-
tion. However, perceptual results of the Ground Truth samples presented in Table 6.7
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indicate that (at least audio) recordings have been evaluated as good to excellent2 ren-
ditions of the corresponding attitudes (“Skeptical”, “Sorry” and “Thoughtful” being the
least well rendered through the audio modality).

• The choice of attitude labels may have introduced some confusion. “Skeptical” and
“Surprised” may be expressed in the same contexts, and are thus harder to distinguish
on isolated utterances. The preliminary results from Emotags (see Section 6.5) suggest
that “Skeptical” (“Incrédule” in French) could be replaced by “Doubtful” (“Dubitatif” in
French). “Narrative” may also be hard to judge on isolated utterances.

• The visual feature tracking and control of the avatar need improvements. As illustrated
in Fig. 7.3, the visual control of the ECA is limited to basic facial expressions and head
tilt. The control of the body posture and arm movements may help to model some of
the presented attitudes. However these features have not been recorded in the current
setup and are not implemented in the ECA 3D model.

Due to the lack of time, we have not evaluated our proposed model in comparison with
similar AV-TTS architectures. The comparison with AVTacotron2 [Hussen Abdelaziz et al.,
2021] would provide interesting insights into the benefits of our proposed Transformer-based
architecture compared to recurrent TTS.

Among the perspectives for improvements, we consider extending the visual variance adap-
tor to visual events, such as eye blinks and head nods. In the current version of our model,
these events are not replicated, because of their infrequent occurrence in the training dataset.
The variance adaptor could be adjusted to estimate the likelihood of initiating these events,
which, in turn, would trigger pre-recorded sequences to replace the predicted eye or neck
movements during inference. Another avenue for improvement is the integration of the visual
modality as input of the GST reference encoder. The role of the GST encoder in our archi-
tecture is to model the paralinguistic content not yet explained by the text input. Gesture is
part of the paralinguistic content, and thus should benefit the modeling of the utterance-wise
attitude embedding.

2Labels from the corresponding MUSHRA scale: [60-80] is “Good”, [80-100] is “Excellent”.





Chapter 8

Conclusions and Perspectives

This chapter draws general conclusions about the various contributions made in this thesis.
The main research outcomes are discussed in Section 8.1. Directions of future work are finally
discussed in Section 8.2.

8.1 Main Contributions

In this thesis, we tackled the modeling of expressive speech through an innovative approach
that dissects the workings of neural Text-to-Speech (TTS) models. This approach stands
out from the current trend of proposing increasingly complex neural models that prioritize
performance gains, often at the expense of the interpretability of the underlying learning
processes. The opening of these neural black boxes according to the principles of Explainable
Artificial Intelligence is not only presented here as a means to bridge the gap between language
sciences and speech technologies but also a necessity for designing future models that leverage
the knowledge accumulated in the literature.

The first step in that direction involved analyzing how the presentation of training data to
the model influences the predicted synthetic speech. The two studies performed on Tacotron2
in Chapter 3 have confirmed the importance of modeling contextual information encoded in
the linguistic content, both at the intra-utterance and inter-utterance levels. Notably, we
highlighted that input segmentation into shorter utterances favored the accurate prediction of
spectral features, at the expense of more natural phrasing when generating longer utterances.
We attempted to compensate this flaw by the introduction of linking punctuation as explicit
symbols to encode inter-utterance linguistic prosody, combined with the synthesis in smaller
chunks. These results highlighted the limited capabilities of neural TTS to predict linguistic
prosody solely from input text. Therefore, we emphasized the need to design control mech-
anisms that better respect the way these supra-segmental parameters are encoded by neural
models.

In Chapter 4, we proposed our analytical method of linear probing of intermediate embed-
dings computed by neural TTS for this purpose. Our method reveals the underlying learning
processes of neural TTS and enables the identification of the locations where acoustic and
phonological features of interest are encoded. Notably, the identification of the features en-
coded by layer opens the route toward better informed design choices for TTS, with respect
to the unsupervised learning processes of neural models. Our proposed method serves as a
complementary approach to adversarial training, providing a means to validate the features
encoded by neural embeddings. We designed this tracking method so that it can be adapted
to any type of TTS architecture. We illustrated the potential of this approach on two of the
main neural TTS frameworks at the time of writing of this thesis: Tacotron2 and FastSpeech2.
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The linear probing by layer proposed in Chapter 4 was turned into a linguistic prosody
control mechanism in Chapter 5. We demonstrated that the linear directions encoding acoustic
and phonological features within latent embeddings could serve as explicit biases to control
any of the identified features. Thus, we proposed a post-hoc control mechanism for continuous
and categorical features, which does not require any additional data nor training of explicit
predictors. This control has been verified on two architectures, but further testing is needed
to assert its universality.

The better understanding of TTS embeddings enabled us to propose two neural modules:

1. First, the Local Style Token (LST) module proposed in Chapter 6 enabled us to modu-
late utterance-wise paralinguistic biases in order to produce more natural renditions of
expressive attitudes. The LST serves as a bridge between linguistic and paralinguistic
content, confirming that the production of propositional attitudes is anchored in the
syntactic and semantic structure of the text.

2. Second, the FastSpeech2-based AV-TTS proposed in Chapter 7 extended the TTS frame-
work to the generation of visual features to animate an Embodied Conversational Agent
(ECA). To the best of our knowledge, this is the first attempt to jointly predict expressive
speech and facial expressions using a FastSpeech2-based architecture.

8.2 Directions for future work

If space “disentanglement” of features is often sought for in controllable speech synthesis, each
Chapter of this thesis has conversely shed light on the modeling of strong interplay between the
numerous factors involved in speech production (linguistic and acoustic, linguistic and style,
co-variation between acoustic features, local vs. global scales, etc.), and demonstrated that
their exploitation can be far more beneficial for high quality synthesis than their removal. In
this direction, several avenues for improvement have already been presented throughout this
manuscript. Here, we revisit the main directions that emerge from this work.

8.2.1 Extension and Accessibility of the proposed Analytical Toolbox

The method presented, involving linear probing of features within intermediate embeddings,
revealed intriguing insights into how information is encoded at the character- or phone-level
of two of the main TTS architectures. We have emphasized that the proposed method is
not model-specific, and thus could also be applied to other architectures. Notably, diffusion-
based models are becoming increasingly important in the field of speech synthesis [Huang
et al., 2022; Mehta et al., 2023; Popov et al., 2021]. Despite promising performance, the
functioning of these models is not yet completely understood, which results in caution when
considering wider applications. We believe that the proposed analytical methods may alleviate
this issue. In this regard, future work should aim to simplify the analysis of models using our
method, which currently involves a relatively complex process that requires the use of multiple
languages and softwares (Python/MATLAB/Praat).
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Additionally, I would like to extend the current analysis to other types of embeddings com-
puted by neural TTS. A better understanding of speaker and style utterance-wise embeddings
is expected to provide additional control mechanisms to extend model capabilities outside of
their training corpus. I also aim to provide an acoustic analysis of the local tokens proposed
in Chapter 6. This analysis is essential for interpreting the dynamics of local token usage in
the context of understanding propositional attitudes as a sequence of local prosodic patterns
grounded on the linguistic content.

8.2.2 Expressive Control with Free Style Tag

With regard to explicit expressive control, we believe that training on a limited set of expressive
labels may not adequately capture the wide variability in speech production and perception. In
contrast, the Emotags project [Bailly et al., 2024] (see Section 6.5) embraces this variability to
provide hundreds of more nuanced labels. We aim to explore expressive control of neural TTS
using free text labels, leveraging this collection of crowdsourced annotations as proposed by
M. Kim et al. [2021] and Shin et al. [2022]. Our proposed analysis method would additionally
provide a mixed interpretation of such style tag embeddings, both in terms of linguistic and
acoustic features.

8.2.3 Better Evaluation Frameworks

The presented studies have all advocated for an evolution of the TTS evaluation framework.
Overly-simplified evaluations of the naturalness of synthetic voices through MOS tests do
not provide the insights needed to interpret the specific aspects that make new proposed
models preferred or not. Perceptual tests need to be given particular care, with more explicit
dimensions made comprehensible to naive participants.

Objective speech evaluations could also be improved. Future work should incorporate
more specific objective analyses of portions of speech that are decisive in listeners’ judgments.
Methods like Rapid Prosodic Transcription (RPT) [Cole & Shattuck-Hufnagel, 2016] might
be able to identify these salient segments for more focused acoustic analysis.

8.2.4 Deployed Application Monitoring

The AV-TTS presented in Chapter 7 has been implemented in the clinical version of the Thera-
dia application. Cognitive remediation exercises with actual patients are thus accompanied
by the generated ECA. The integration of the proposed model into a deployed application
is the new challenge. Ongoing feedback from patients will guide the model’s implementation
choices to create an increasingly interactive and enjoyable experience.
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Appendix A

Corpus Description

This appendix presents the training corpus used to train neural TTS systems for the studies
presented in this manuscript. All resources are briefly presented in Section A.1. The recording
of the Theradia dataset is further described in Section A.2. All text annotations and the
phonetic alphabet used is described in Section A.3.

A.1 Resources Content

This corpus is the concatenation of various sources summarized in Table A.1. Two speakers are
taken from LibriVox [Kearns, 2014]. LibriVox is a collection of public domain audiobooks read
by various speakers in multiple languages, including French, English, German, Italian, Spanish
and more. The quality of recording varies a lot between speakers: NEB was chosen for her
good recording quality and the amount of available data. DG was later added to the corpus to
include a Male Speaker, despite the overall poorer quality of his recordings. SIWIS [Honnet et
al., 2017] is an expressive dataset recorded by a female voice talent RO. It includes audiobooks
and French parliament debates, read with a focus on emphasis. Finally, audiovisual expressive
recordings were added to this corpus as part of the Theradia project [Tarpin-Bernard et al.,
2021] (see Section A.2 for further details).

Table A.1: Multi-Speaker Audio-Visual Dataset used in this manuscript. Durations are given in
hh:mm:ss. All textual contents are phonetically aligned. Alignments with audio have been hand-
checked. AB: Audiobooks, PS: Parliament Sessions, HG: Homographs. LibriVox: [Kearns,
2014], SIWIS: [Honnet et al., 2017], Theradia: [Tarpin-Bernard et al., 2021].

Speaker
Metadata Datatype Quantity

Content
Dataset Gender Audio Visual Expressive1 Duration # Utt

NEB LibriVox Female ✓ ✗ ✗ 33:33:41 44 029 AB
DG LibriVox Male ✓ ✗ ✗ 6:17:22 7 539 AB

RO SIWIS Female ✓ ✗ ✓ 0:35:21 586 AB + PS

IZ Theradia Female ✓ ✓ ✗ 0:30:46 733 AB + PS
AD Theradia Female ✓ ✓ ✓ 10:31:29 12 462 AB + PS

Dictionary Robert ✗ ✗ ✗ ✗ ✗ 95 879 Isolated Words
HG Various Hajj et al., 2022 ✗ ✗ ✗ ✗ ✗ 17 285 HG in Context

Total - - - - - 51:28:39 178 513 -

1We consider dataset as expressive when explicit expressive instructions were given to the speaker during
recording sessions.
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In addition, two text-only resources are added to this corpus. These textual content is
extracted for various online resources described by Hajj et al., 2022, as well as from the
online Robert dictionary. This text-only part of the dataset is used to train the TTS models
on phonetic prediction from orthographic inputs. This phonetic prediction task is further
described in Section 2.3.2.

Audio sequences were segmented into utterances following the segmentation procedure
described in Section 3.1.1. The sampling rate is 22.05 kHz. All orthographic and phonetic
transcriptions are augmented with the initial linking punctuation mark as described in Sec-
tion 3.1.2.

A.2 Recording of the Theradia Dataset

A.2.1 Expressive data from exercise-in-style sessions

Our internal French dataset has been uttered by a French professional theater actress, referred
as AD in the following2. Sentences are taken from the SIWIS database [Honnet et al., 2017],
which is composed of isolated extracts from French Novels and French parliament debates.
We first asked the speaker to utter these extracts without a specific expressive style. We refer
to these initial recordings as “Narrative”.

For expressive speech recording, 12 attitudes were selected, summed up in table A.2. The
speaker was asked to utter the given sentences with the specified style during exercise-in-style
sessions. During these sessions, the actress was prompted to start her utterance with a context
sentence relative to the style being produced: “I am begging you” for “Pleading”, “I do not
believe it” for “Skeptical”, “Really?” for “Surprised”, etc. This context sentence was cut off
the final recording. The content is uncorrelated from the expressed style, and sentences differ
between styles. This dataset was recorded with an audio-visual setup at GIPSA-lab, as part of
the Theradia project [Tarpin-Bernard et al., 2021]. As a reminder, the Theradia project aims
at designing a virtual agent to accompany patients during online cognitive therapies. The set
of styles was decided in collaboration with speech therapists, who expressed their expectations
towards this virtual agent.

This setup allowed us to gather about 30 hours of raw audiovisual recordings. At the
time of writing of this manuscript, only 10 hours have been trimmed and phonetically aligned.
Durations available by style at the moment of training of our expressive TTS model are given
in table A.2. Only the audio was used for the expressive control discussed in Chapter 6, but
video recordings were also used to train an audiovisual expressive TTS, described in Chapter 7.
Two hours of the “Narrative” portion of this corpus were shared for the Spoke Task of the
Blizzard Challenge 2023 [Perrotin et al., 2023].

2Early recordings were performed by a postdoctoral female researcher referred as IZ in Table A.1. This
setup was quickly abandoned due to the poor audio quality of recordings.
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Table A.2: Expressive Dataset Recorded for Theradia [Tarpin-Bernard et al., 2021]. Durations are
given in hh:mm:ss.

Style Annotated
English French Duration # Utt

Angry Colère 00:25:42 555
Comforting Réconfortant·e 00:33:54 515
Committed Déterminé·e 00:22:30 459
Enthusiastic Enthousiaste 00:30:54 597
Obvious Evidence 00:28:30 519
Playful Espiègle 00:20:36 493
Pleading Suppliant·e 00:36:06 636
Skeptical Incrédule 00:31:24 652
Sorry Désolé·e 00:25:18 471
Surprised Surpris·e 00:28:24 535
Thoughtful Pensif·ive 00:45:30 477

Narrative Narratif 05:02:12 6542

Total 10:31:00 12461

A.2.2 Visual Recordings

The expressive dataset described in Section A.2.1 was recorded with audio-visual settings. The
visual features are used to animate a virtual agent for the Theradia project [Tarpin-Bernard
et al., 2021]. The face of the speakers was recorded with a a Logitech StreamCam. The
video frame-rate is 60Hz. The speaker’s facial animation parameters are then tracked by an
external service provider3. These facial animations are used to create a profile by speaker,
which emulates the animation of the virtual agent by morphing the tracked facial features
into deformations of the 3D model of the avatar. 152 visual control features are computed to
animate the avatar, also sampled at 60Hz. Fig. A.1 illustrates the animation of the avatar by
the tracking of visual features on the video.

Since some of these control features co-vary in time, we found easier to reduce the number
of coefficients to a minimum set of independent visual features. We used Principal Component
Analysis (PCA) to compute a set of 37 features referred to as Action Units (AU) from the
original 152 facial features. These 37 AU are distributed among the principal facial landmarks:
6 for the position of the head, 6 for the eyes, 3 for the eyelids, 4 for the eyebrows, 5 for the
jaw, 10 for the lips and 3 for the nose. These 37 AU are the visual features representations
we use to train our visual decoder, in the same way as we use 80 mel-spectrogram coefficients
for the audio decoder.

Similarly as audio features for which a vocoder is needed to convert the speech represen-
tation back to audible waveforms, the limited set of 37 AU should be converted back to the

3DynamicXYZ© performed the tracking with the software Grabber.
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initial 153 facial features. Because the PCA performs a linear reduction of the initial space,
the inverse manipulation is straightforward. The PCA computes the eigen-decomposition of
the covariance matrix of the initial facial features: the set of eigenvectors V associated to
the higher eigenvalues (higher proportion of variance explained) can be used as the transition
matrix between the initial and the reduced space. Inversely, predicted AU features can be
projected back into facial features by dot-product with the transpose of V : V T .

Figure A.1: Animation of the virtual agent by the tracking of visual features on the video recording.

A.3 Text Annotations and Phonetic

The textual content was provided by the Gutenberg Project4 for LibriVox recordings, and was
provided by the original resources otherwise. End of paragraphs marks "§" were added before
each carriage return, in combination with existing punctuation marks. Text is in UTF8.
‘«»’, ‘¬’, ‘~’, ‘""’ ,‘()’ , ‘[]’ are respectively used for speaking quotes, turn switches, three
dots, quoted expression, aside quotes, notes. ‘ö’ has been transcribed as ‘oe’ because of rare
occurrences. An emphasis marker ‘#’ is added around words or groups of words that are given
a particular prominence by the speaker5. The sequential nature of the corpus is introduced by
reporting the last punctuation mark of each utterance at the beginning of the following one.
This text-augmentation process, called linking punctuation, is discussed in section 3.1.2.

The entire corpus was phonetized and aligned with the audio automatically using an
external Letter-To-Sound (L2S) front-end [Black et al., 1998]. The alignment was then hand-

4https://www.gutenberg.org/
5Emphasis annotation has been performed by Gérard Bailly, director of this PhD thesis.

https://www.gutenberg.org/
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checked by Gérard Bailly to account for sociophonetic variants produced by the speaker. This
speaker adaptation step includes: 1) the annotation of released liaisons (specific linking be-
tween the ending "r", "t", "n" or "s" of a word and the first vowel of the next word). Note that
no distinctions are made between mandatory, optional or forbidden liaisons, 2) The specifica-
tions of optional vowel harmony choices6, and 3) the annotation of schwas /@/ in opposition to
front rounded mid-vowels /oe/ when produced by the speaker. Note that phonetic transcrip-
tion is performed by word, which enables to keep word boundaries and punctuation marks
when using phonetic input. Although this hand-checking ensures the quality of the alignment,
it is also time consuming, which explains the limited number of utterances extracted from
each corpus.

The phonetic alignment uses 36 symbols given in table A.3 (consonants) and table A.4
(vowels). 2 additional phonetic symbols are added to this set: /_/ and /__/, to indicate
muted phones (phonetic mapping of characters that are not pronounced) and silences (pauses
in speech) respectively. Phonetic transcriptions are given by word using curly brackets ‘{}’.
This transcription preserves word boundaries and punctuation even when using phonetic in-
puts. Also, this enables the combination of orthographic and phonetic transcriptions in the
same input sequence. This combination was used to phonetically transcribe mispronounced
words and proper names.

The same phonetic symbols are used as outputs of the phonetic prediction layer described
in section 2.3.2. In the proposed one-to-one L2S alignment, most letters produce only one
phone (or none in the case of muted characters). However, some alignments map one letter
to up to 3 phones. In this case, output phones are combined into diphones or triphones using
the symbol ‘&’. For example, “expatrier” is aligned with “e^ k&s p a t r i&j e _”.

6Vowel Harmony is the optional adaptations of vowels within a word in order for all vowels to share certain
phonological features: frontness or backness, rounding, nasality. . . Example: "J’ôte" [o] VS "Nous ôtons" [O]
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Table A.3: French Consonants annotated in the corpus.

Articulation Point
Fricative Plosive

Nasal Lateral
Voiceless Voiced Voiceless Voiced

Bilabial p b m

Labiodental f v

Alveolar s z t d n l

Palatal s^ z^ n~

Uvular r

Velar k g ng

Table A.4: French Vowels annotated in the corpus. ‘~’ and ‘(X)’ indicate nasal and approximant
variants respectively.

Openness
Front Central Back

Unrounded Rounded Unrounded Rounded Unrounded Rounded

Close i (j) y (h) u (w)

Mid-Close e x
q

o
Mid-Open e^/e~ x^/x~ o^/o~

Open a/a~
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Tacotron2 Configuration

This appendix describes the procedure and hyperparameters used to train Tacotron2 in the
presented contributions. Our implementation is publicly available online1. Modifications
from the original Tacotron2 model [Shen et al., 2018] are detailed in Section 2.1. The baseline
implementation for this work is one of the publicly available repository shared by NVIDIA2.

This implementation allows by default the use of phonetic input sequences for training
and inference, but the phonetic lexicon was adapted to our phonetic alphabet described in
Appendix A.

B.1 Training Procedure

Unless stated otherwise, when included in an experiment, Tacotron2 models are trained from
scratch for 100 epochs. Using mixed-inputs, the training corpus is presented twice by epoch:
once with orthographic inputs and once with phonetic inputs. Orthographic and phonetic
inputs are mixed randomly within each batch. The batch size is set to 64, and batches are
randomly picked among utterances of approximate same length. This training takes roughly
100 hours of training on a single GPU Quadro RTX 80003. Empirical observations indicate
that the convergence of losses does not fully estimate the perceptual quality of syntheses
produced by the model. 100 epochs was determined as a minimum to produce a synthesis
quality comparable with audio samples shared by Shen et al. [2018]4.

The training phase starts with 10 epochs of coarse model initialization, during which the
postnet is discarded and the learning rate is fixed at 10−3. This phase enables the model to
initiate the predictive process. Then, the postnet is reactivated and the learning rate decreases
exponentially until reaching 10−5 at 90 epochs. During the last quarter of epochs, the fine-
tuning of the gate loss is activated, with a multiplying factor λ = 10 (see Section 2.1.2 for
further details).

1Update needed: https://github.com/MartinLenglet/Tacotron2
2https://github.com/NVIDIA/tacotron2
32 of these GPU are made available to the CRISSP team at GIPSA-lab.
4Listening page shared by Tacotron2 authors: https://google.github.io/tacotron/publications/tacotron2

179

https://github.com/MartinLenglet/Tacotron2
https://github.com/NVIDIA/tacotron2
https://google.github.io/tacotron/publications/tacotron2


180 Appendix B. Tacotron2 Configuration

B.2 Hyperparameters

Table B.1: Default hyperparameters of Tacotron2 in the presented studies. Red values indicate dif-
ferences compared to the original implementation. Window Size and Hop Size values are given in ms
considering a sampling rate of 22.05 kHz.

Model Part Hyperparameters Values (Original)

Encoder

# Input Symbols 131
Symbol Embedding # Dim 512
# Convolutional Layers 3

- Direction Phonemes Sequence
- Kernel Size 5
- # filters 512

Bi-LSTM # Dim 512

Attention

LSTM # Dim 1024
Location Sensitive # filters 32
Features # Dim 128
Dropout 0.1

Decoder
LSTM # Dim 1024
Dropout 0.1
# Frames by step 2 (1)

Prenet
Dim 128 (256)
Dropout (active at inference) 0.5

Postnet

# Convolutional Layers 5
- Direction Temporal
- Kernel Size 5
- # filters 512

Mel-Spectrogram

# Coefficients 80
Minimum frequency (Hz) 0
Maximum frequency (Hz) 8 000
Window Size (# samples / ms) 1024 / 46.44ms

Hop Size (# samples / ms) 256 / 11.61ms
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FastSpeech2 Implementation

This appendix describes the training procedure and hyperparameters used to train Fast-
Speech2 in the presented contributions. Modifications from the original FastSpeech2 model [Ren
et al., 2021] are detailed in Section 2.3.1. Our implementation is based on one of the open
source repository1. Similarly to Tacotron2, we use our phonetic alphabet described in Ap-
pendix A. The proposed implementation is publicly available online2.

C.1 Training Procedure

Unless stated otherwise, when included in an experiment, FastSpeech2 is trained from scratch
for 100 epochs. Using mixed-inputs, the training corpus is presented twice by epoch: once
with orthographic inputs and once with phonetic inputs. Because of memory limitations,
the batch size is set to 32 with FastSpeech2, compared to 64 with Tacotron2. Similarly to
Tacotron2, the evaluation of losses on the validation set is not sufficient to assess the quality
of the synthesis at inference. 100 epochs takes approximately 80 hours on one GPU Quadro
RTX 8000 and produces synthesis quality comparable with audio samples shared by Ren et al.
[2021]3.

When included in the corpus, the non-audio inputs (dictionary and homographs) are used
at every stage of the training process. They are mixed with audio-inputs in each batch, with
a ratio of 2/3 for audio inputs and 1/3 for non-audio inputs. While the training on non-audio
inputs helps learning phonetic representations for rare words not seen in the audio corpus,
this ratio minimizes the risks of degradation of the prosodic predictions and audio quality due
to the absence of spectrogram-loss on the non-audio part of the corpus.

The learning rate was fixed to 10−3 during this first 32 epochs on the audio corpus4. After
this initialization step, the learning rate exponentially decreased to reach 10−4 after 60 epochs.

1https://github.com/ming024/FastSpeech2
2This implementation was shared as part of the Blizzard Challenge 2023: https://github.com/

MartinLenglet/Blizzard2023_TTS
3Listening page shared by FastSpeech2 authors: https://speechresearch.github.io/fastspeech2
4Following the 2/3 - 1/3 ratio, this training includes about 16 epochs on the non-audio corpus.
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C.1.1 Multi-Speaker Training Procedure

We advocate for starting the training on the most seen speaker. We believe that this step
helps the text encoder and decoder to focus on their primary goal which is the modulation
of acoustic and prosodic local patterns according to the sequence to utter. The addition of
the speaker embedding later in the process is seen as an offset manipulation of these mean
features, which is supposedly easier to learn by the model.

Then, speakers are randomly mixed in each batch during training. The least seen speakers
benefit from a final step of fine-tuning on an evenly distributed corpus for the last epochs.
We empirically found that this final step helps modeling rarest speakers behaviors instead of
copying the behavior of the most seen speaker.
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C.2 Model Configuration

Hyperparameters used in all experiments presented in this manuscript (unless stated other-
wise) are summed up in table C.1. The text encoder and the audio decoder are stacks of 4
and 6 Feed-Forward Transformer layers (FFT) respectively. The internal representations are
set to 256 dimensions. Multi-head self-attention blocks in FFT layers have 2 heads.

Table C.1: Default hyperparameters of FastSpeech2 in the presented studies. Red values indicate
differences compared to the original implementation. Window Size and Hop Size values are given in
ms considering a sampling rate of 22.05 kHz.

Model Part Hyperparameters Values (Original)

Encoder

# Input Symbols 131
Symbol Embedding # Dim 256
# FFT Layers 4

- # Heads 2
- Conv1D Kernel Size 9
- Conv1D # filters 1024

Dropout 0.2 (0.1)

Variance Adaptor
Conv1D Kernel Size 3
Conv1D # filters 256
Dropout 0.5

Decoder

# FFT Layers 6 (4)
- # Heads 2
- Conv1D Kernel Size 9
- Conv1D # filters 1024

Dropout 0.2 (0.1)

Postnet

# Convolutional Layers 5 (0)
- Direction Temporal
- Kernel Size 5
- # filters 512

Mel-Spectrogram

# Coefficients 80
Minimum frequency (Hz) 0
Maximum frequency (Hz) 8 000
Window Size (# samples / ms) 1024 / 46.44ms

Hop Size (# samples / ms) 256 / 11.61ms
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Vocoders Implementation

This appendix describes the implementation and training procedure of the vocoders used in
the presented experiments. As stated in section. 1.1.6, the choice of neural vocoders depends
on the trade-off between the optimal synthesis quality and the inference speed acceptable
for the designed application. Although the experiments presented in this thesis evaluate pre-
generated stimuli, we prioritized neural vocoders whose Real-Time-Factors (RTF) are superior
to one (1s of waveform is generated in less than 1s), which better illustrate the capabilities
of the tested algorithms in real-life situations. This excludes WaveNet [Van den Oord et al.,
2016], which despite excellent audio quality, requires high computation power for a long period
of time.

Three neural vocoders were consecutively used in the presented experiments. Motivations
and implementations are described in the sections below. All audio waveforms and mel-
spectrograms follow the same format, described in table D.1.

Table D.1: Default audio format used in the presented studies.

Representation Features Values

Mel-Spectrogram

# Coefficients 80
Minimum frequency (Hz) 0
Maximum frequency (Hz) 8 000
Window Size (# samples / ms) 1 024 / 46.44ms

Hop Size (# samples / ms) 256 / 11.61ms

Audio Waveform
Sampling Rate 22 050
Recording Settings Mono
Quantization 32 bits

D.1 WaveRNN

WaveRNN [Kalchbrenner et al., 2018] is an autoregressive vocoder which produces the best
audio quality among the systems evaluated by Govalkar et al. [2019].

The implementation of WaveRNN used is available online1. No modifications were made to
1https://github.com/fatchord/WaveRNN
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this implementation. The model is trained from scratch for 1520 epochs on the single-speaker
corpus used for the segmentation experiment reported in Table 3.1. During the first 1000
epochs, the learning rate is fixed to 10−4. Then the learning rate is reduced to 10−5 for the
remaining 520 epochs. The batch size is set to 32 for the whole training.

D.1.1 Limitations

WaveRNN’s RTF of 1 makes it difficult to envision using it for real-time applications. We
initially thought about adapting this autoregressive architecture in order to generate and
play the audio waveforms in smaller chunks, which would have resulted in a more acceptable
latency. This adaptation was too complicated to implement, and faster vocoders were favored
in later works.

D.2 Waveglow

Waveglow [Prenger et al., 2019] is a parallel vocoder which combines a fast inference speed
(RTF of 30 on GPU) with a good audio quality. This vocoder is better suited for applications
that need real-time responses.

We use the implementation shared by NVIDIA2. We fine-tuned the pre-trained-model
shared with the GitHub implementation3. The fine-tuning was performed on the NEB cor-
pus (see table A.1), first for 50 epochs on the Ground-Truth spectrograms, and then for 50
additional epochs on spectrograms predicted by the Tacotron2 model trained for the first
experiment described in section 3.2.

D.2.1 Limitations

Participants to the multiple experiments performed with Waveglow often criticized the back-
ground noise produced by this vocoder. In attempt to avoid the use of heuristics, no post-
processing denoising methods were used to reduce this background noise. Additionally, Wave-
glow is inherently designed to take advantage of the parallel processing performed by GPUs.
As a result, inference speed on CPU is prohibitive for any real-time applications.

D.3 HiFi-GAN

HiFi-GAN [Kong et al., 2020] is another example of parallel neural vocoder. HiFi-GAN
combines the performances comparable to the best autoregressive vocoders with an unmatched

2https://github.com/NVIDIA/waveglow
3https://drive.google.com/file/d/1rpK8CzAAirq9sWZhe9nlfvxMF1dRgFbF/view

https://github.com/NVIDIA/waveglow
https://drive.google.com/file/d/1rpK8CzAAirq9sWZhe9nlfvxMF1dRgFbF/view
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inference speed. Even with the smaller memory footprint’s configuration, HiFi-GAN reports
MOS of 4.05, compared to 4.02 for WaveNet and 3.81 for Waveglow. With this configuration,
the inference speed is 1187 times faster than real-time on GPU, and 13 times faster than real-
time on CPU. This makes this vocoder particularly fitted for low resources environments, like
on-device applications. This vocoder was chosen for the Theradia application [Tarpin-Bernard
et al., 2021].

We use the implementation shared by the authors4. We chose to train a model from
scratch on our French Dataset reported in table A.1. The configuration V2 [Kong et al., 2020]
is chosen for its trade-off between performances and audio quality. With this configuration,
this vocoder can generate waveforms on a CPU 5 times faster than real-time.

The model is first trained for 70 epochs on single speaker setup (only NEB). Afterward,
the vocoder is fine-tuned on mel-spectrograms predicted by a pre-trained multi-speaker Fast-
Speech2 model. This fine-tuning is made on a balanced dataset among the 5 speakers of the
corpus. To avoid overfitting on the most seen speaker, the maximum number of utterances
by speaker is set to 25005. Utterances are randomly picked by speaker. The model is trained
for 600 epochs on this balanced set. The batch size is set to 16 for the whole training. The
learning rate is initially set to 2× 10−4, and is multiplied by 0.999 after each epoch.

D.3.1 Limitations

HiFi-GAN produces overall good quality syntheses, but some recurrent artifacts remain. No-
tably, a whistling noise often appears when producing high frequency sounds, like fricative
consonants. A noise reduction post-processing is added to mitigate this effect [Sainburg, 2019].
This noise reduction improves quality but mentioned artifacts are still audible. Further im-
provements could be obtained by training the model for more iterations6. Fine-tuning the
model on our newly recorded expressive dataset (additional data for speaker AD) should also
improve the performances of the model on more variate prosodic patterns.

4https://github.com/jik876/hifi-gan
5At the time of this training, only 2500 utterances were available for AD, which motivated this limit.
6The presented setup corresponds to 570 000 training iterations, compared to 2 500 000 iterations for the

pre-trained "UNIVERSAL" model shared by the authors.

https://github.com/jik876/hifi-gan
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D.4 Hyperparameters

Table D.2: Default hyperparameters of vocoders in the presented studies.

Vocoder Hyperparameters Values (Original)

WaveRNN

Upsample Factors 5, 5, 11
RNN # Dim 512
FC # Dim 512
Compute # Dim 128
# Residual Blocks 10

- Output # Dim 128

Waveglow

# Flows 12
# Groups 8
# Early Every 4
# Early Size 2
# Coupling Layers 8

- # Channels 256
- Kernel Size 3

HiFi-GAN

Upsampling # Blocks 4
- Rates 8, 8, 2, 2
- Kernel Sizes 16, 16, 4, 4
- Initial Channel 128

Residual # Blocks 3
- Kernel Sizes 3, 7, 11
- Dilatation Sizes 1, 3, 5
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Abacus Pause Control

Two abacuses are recorded through the calibration phase described in section 5.4.1.2, to predict
the magnitude of the pause embedding bias according to the expected pauses proportion. This
appendix presents the abacuses for TCP and FS .
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Table E.1: Abacus between target proportion of pauses and corresponding pause embedding bias
magnitude for TCP.

Target Proportion of Pauses
Pause Embedding Bias Magnitude

(#silences/#word boundaries)
0 -1.20
1 -0.82
2 -0.68
3 -0.57
4 -0.43
5 -0.20
6 0.01
7 0.14
8 0.22
9 0.28
10 0.33
11 0.36
12 0.38
13 0.40
14 0.41
15 0.43

16-17 0.44
18 0.45

19-20 0.46
21 0.47

22-23 0.48
24-26 0.49
27-28 0.50
29-31 0.51
32-35 0.52
36-38 0.53
39-42 0.54
43-46 0.55
47-51 0.56
52-55 0.57
56-60 0.58
61-64 0.59
65-69 0.60
70-73 0.61
74-77 0.62
78-80 0.63
81-83 0.64
84-86 0.65
87-89 0.66
90-91 0.67
92-93 0.68

94 0.69
95 0.70
96 0.71
97 0.72
98 0.74
99 0.76
100 0.97
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Table E.2: Abacus between target proportion of pauses and corresponding pause embedding bias
magnitude for FS .

Target Proportion of Pauses
Pause Embedding Bias Magnitude

(#silences/#word boundaries)
0 -0.96
1 -0.73
2 -0.64
3 -0.55
4 -0.46
5 -0.35
6 -0.19
7 0.03
8 0.22
9 0.29
10 0.33
11 0.36
12 0.38
13 0.40
14 0.41
15 0.42
16 0.43

17-18 0.44
19 0.45

20-22 0.46
23-24 0.47
25-27 0.48
28-31 0.49
32-35 0.50
36-40 0.51
41-45 0.52
46-50 0.53
51-56 0.54
57-62 0.55
63-68 0.56
69-73 0.57
74-78 0.58
79-83 0.59
84-87 0.60
88-90 0.61
91-93 0.62
94-95 0.63

96 0.64
97 0.65
98 0.66
99 0.68
100 0.79
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Impact of Segmentation and Annotation
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Abstract
Audio books are commonly used to train text-to-speech

models (TTS), as they offer large phonetic content with rather
expressive pronunciation, but number and sizes of publicly
available audio books corpora differ between languages. More-
over, the quality and accuracy of the available utterance seg-
mentations are debatable. Yet, the impact of segmentation on
the output synthesis is not well established. Additionally, utter-
ances are generally used individually, without taking advantage
of text level structuring information, even though they influence
speaker reading. In this paper, we conduct a multidimensional
evaluation of Tacotron2 trained on different segmentations and
text level annotations of the same French corpus. We show that
both spectrum accuracy and expressiveness depend on the seg-
mentation used. In particular, a shorter segmentation, in ad-
dition with the annotation of paragraphs, benefits to spectrum
reconstruction at the detriment of phrasing. Multidimensional
analysis of mean opinion scores obtained with a MUSHRA-
experiment revealed that phrasing was relatively more impor-
tant than spectrum accuracy in perceptual judgement. This work
serves as evidence that particular attention must be given to
models evaluation, as well as how to use the training corpus
to maximize synthesis characteristics of interest.
Index Terms: Speech Synthesis, French TTS, mixed-inputs
TTS, French dataset

1. Introduction
In recent years, deep learning met huge success in language-
related applications. In particular, state-of-the-art text-to-
speech (TTS) models [1, 2, 3] coupled with neural vocoders [4,
5] achieve synthesis quality close to natural speech. As always
with deep learning, the quality of the output heavily depends on
the dataset used for training. The common approach of neural
TTS, seen in events like Blizzard Challenge [6], is to compare
multiple models on the same corpus to evaluate the resulting
synthesis quality. This process minimizes the importance of in-
put data structuring, which ultimately shapes the output of any
deep learning model. One complementary work is to evalu-
ate multiple segmentations of data structuring on the same TTS
model. This paper adopts this approach.

Publicly available corpora designed to train TTS [7, 8, 9]
are generally composed of audio book extracts read by one
or more speakers, segmented in thousands of utterances. Ut-
terances’ lengths vary between 1 to 20 seconds, with bound-
aries often matching sentences, but not always. Even if these
databases have been used to train state-of-the-art speech mod-
els [3, 10], long utterances may not be the best candidates to
train TTS: (i) Large batch size with long utterances rely on high
computation memory. (ii) Learning long-term dependencies is
a challenging task for sequential models [11]. (iii) Style con-
trol, which is an increasing demand of the field, massively uses

utterance level style embeddings [12, 13], which means that the
shorter the utterances, the finer it is possible to tune speech style
at inference time. These reasons made us consider a shorter seg-
mentation may be better suited to train TTS efficiently.

Proposing a new segmentation gives us the opportunity to
integrate specific annotations in the input data to give mod-
els relevant context information regarding the corresponding
speech to produce: (i) End of paragraph are generally associ-
ated with specific phrasing modifications from the speaker, and
are then worth noticing during training. (ii) In French, silent
letters and optional liaisons are common, which are additional
difficulties to train a TTS model on orthographic inputs alone.
The addition of phonetic annotations contributes to alleviate this
issue, and has shown to benefit to both transcriptions [14].

This paper presents a multidimensional comparison be-
tween the proposed segmentation and annotation of the Lib-
riVox French corpus [15] and the original segmentation from
M-AILABS [7], used to train the same Tacotron2 [1]. We eval-
uate the phrasing and spectral accuracy of each model. These
objective measurements are paired with mean opinion scores
evaluated through a MUSHRA-like experiment [16].

2. Related Work
To our knowledge, there is no publicly available French
Tacotron2. Recent studies published on French synthesis focus
on concatenation based TTS [17] or use Deep Convolutional
TTS (DCTTS) [18]. DCTTS is a fully convolutional neural
TTS, whose initial purpose was to alleviate the need for high
computational power, while enabling quick training on smaller
database. Although synthesis reaches acceptable standards, the
overall quality does not match more recent models [1, 2, 3].

The later TTS explore the well established encoder-decoder
architecture: the encoder converts the input sequence into
a hidden representation that the decoder uses to generate
mel-spectrogram frames. As an interface between the two,
Tacotron2 [1] employs a location-sensitive attention [19] mod-
ule which computes a fixed length vector for each decoder step.
The encoder adopts an approach that is similar to the classi-
cal language model processing pipeline: the input sequence is
passed through three convolutional layers that compute local
pattern, followed by bidirectional LSTM. Alternatively, Trans-
former TTS [2] and Fastspeech [3] introduce self-attention and
multi-head attention layers as a replacement for recurrent units.
These three models produce synthetic speech of similar qual-
ity [3]. We chose Tacotron2 for its relative ease to implement
and straight training process. Additionally, Tacotron2 shows
promising results for expressive control [12, 13], which is also
one of our short term goal.

Although mean opinion scores are generally used to assess
the global quality of TTS, this evaluation takes multiple aspects
of speech into account: phonetic correctness and intelligibility,
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spectral smoothness, expressiveness, etc. These clues may not
vary conjointly, which means that the use of a single metric
may not be sufficient. [20, 21] employ multidimensional scaling
(MDS) [22] to extend the quality analysis of TTS models. This
paper prolongs this perspective.

3. Proposed Method
This section presents the original baseline and the new seg-
mentation proposed from the French LibriVox dataset, and the
modifications added to the Tacotron2 implementation shared by
NVIDIA1. Our implementation2 and database3 are available on-
line.

3.1. Segmentation and Annotation

3.1.1. Original Database

We used the M-AILABS French dataset [7] as a starting point.
This corpus includes more than 190h of recorded speech, seg-
mented in utterances from 1s to 20s, given with corresponding
orthographic transcripts. Recordings come from the free public
domain audio books LibriVox database [15]. We selected a sub-
set of the recordings made by Nadine Eckert-Boulet (NEB), for
a total duration of 34h. Each book duration and corresponding
number of utterances are given in Table 1. Audio files are origi-
nally sampled at 16000Hz, but we re-sampled them at 22050Hz.

Table 1: Books duration (and number of utterances) for original
and new segmentation of the M-AILABS French corpus.

Book Original New segmentation

Les Mystères de Paris 22:31:27 (12285) 21:37:21 (25458)
Mme Bovary 11:39:50 (5775) 11:08:55 (12781)

Total 34:11:17 (18060) 32:46:16 (38239)

The orthographic transcript is given by the Gutenberg
Project4. It is worth mentioning that NEB does not always
strictly follow the original text. Some miss-spelling remain (for
example: "precepteur" is said instead of "percepteur"), as well
as some omissions. These miss-alignments correspond to 0.1%
of the original corpus. We did not correct any of those tran-
scripts for the baseline. Though, we spelled out all texts, in-
cluding frequently used abbreviations in French ("M.": "Mon-
sieur", "Mlle": "Mademoiselle", "n°": "numéro" and "etc":
"et cetera"), and numbers ("1838": "dix-huit cent trente-huit").
Two punctuation marks were also replaced to stand as a single
unique character: "..." was replaced by "~", "–" by "¬".

Each clip was originally bounded with 500ms of silence
(zeros in the waveform) at the beginning and the end. These
silences do not correspond to the recordings, but have been ar-
tificially added to each audio clip after segmentation. To limit
the duration of initial and final silences in the synthesis, we trun-
cated these silences at 130ms. This duration matches the initial
and final silence lengths found in other speech databases such
as LJspeech [8].

3.1.2. Re-segmentation

To reduce the average duration of utterances, we first restore
the initial audio books chapters structure by aligning the orig-

1https://github.com/NVIDIA/tacotron2
2https://github.com/MartinLenglet/Tacotron2
3https://zenodo.org/record/4580406#.YI_qIyaxXmE
4https://www.gutenberg.org/

Table 2: Comparison of F0 and elongation of syllable [23]
around ends of paragraph (.§) and intermediate periods (.).

Syllable
Previous Following

Elongation (%) . +184 +21
.§ +218 +24

F0 (semitone) . 1.96 7.01
.§ 0.96 7.41

inal text from the Gutenberg Project with the recordings from
LibriVox. As for the original segmentation, all texts are spelled
out, but previously mentioned miss-spelling and omissions are
now manually corrected. In addition, end of paragraphs are
annotated with the punctuation mark "§", which is introduced
after the last punctuation mark preceding each carriage return.
Ends of paragraphs are accompanied by phrasing patterns of
NEB, that are worth highlighting in the training corpus. For
instance, Table 2 shows F0 and elongation of the final sylla-
ble before ends of paragraph vs. paragraph-internal periods, as
well as their values for the following syllable. The last sylla-
ble is generally longer before the end of paragraph, and the F0
gap across the boundary is increased (6.45 vs. 5.11 semitones
respectively).

Chapters are then segmented based on silences of at least
400ms. This duration usually corresponds to pauses made be-
tween speaking turns in conversations [24]. 94.56% of silences
coincide with punctuation marks. For the others, a comma is
added at the end of the utterance. 130ms of ambient silence
from the recording are kept at the beginning and the end of each
utterance. Timestamps were hand-checked for each utterance
to ensure optimal segmentation. Table 1 shows duration and
number of utterances of the obtained segmentation. Note that
the proposed segmentation is 01:25:01 shorter than the original,
due to the reduction of intra-utterance silences, but that reduc-
tion does not impact either the text read nor the speaking rate.

Fig.1 gives the distribution of utterances length of the orig-
inal and the proposed segmentation. Median utterance length
(resp. first and third quartiles) are reduced from 6.44s (3.88s
and 9.26s) to 2.77s (1.89s and 3.95s). 82.5% of utterances
of the new segmentation last between 1s and 5s, and 0.25% of
utterances last more than 10s. 1336 utterances are unchanged,
which corresponds to 7.4% and 3.5% of the original and new
segmentation respectively.
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Figure 1: Distribution of utterances length of original and new
segmentation.
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3.1.3. Phonetic Annotation

Training of both orthographic and phonetic transcripts, called
representation mixing, enables to use both input types in the
same utterance at inference time, and thus remove some am-
biguities on particular issues, without the need for the whole
phonetic transcript of the speech to synthesize. For instance,
NEB performs numerous optional liaisons (22999 liaisons in
the corpus of which 9597 [z], 9029 [t] and 3412 [n]), in par-
ticular bridging 844 infinitives and prepositions with [K/]. Yet,
these liaisons are not systematic, and adding the possibility to
choose if the liaison is being made at inference time (as part
of a style component) would be interesting. To study the im-
pact of phonetic annotation, hand-crafted phonetic alignment is
performed on the whole new segmentation.

3.2. Modifications of Tacotron2

3.2.1. Representation mixing

We introduce the mixed embedding matrices described in [14]
in our model to give the possibility to train with both types of
inputs. Contrary to [14], when the training includes phonetic
inputs, input types are not mixed within the same utterance. The
number of utterances is simply doubled, with the same audio file
corresponding to both the orthographic and the phonetic input.

3.2.2. Gate loss correction

Synthesizing short utterances, typically one or two words, has
been shown to be a challenging task for TTS models [25]. Re-
current artifacts are repetition of the last syllable, or unintelligi-
ble words. With our proposed segmentation, 5% of utterances
last less than 1s, which might cause some issues during infer-
ence. To avoid this, we fine tune the training of each model
with 2 modifications: (i) 9 frames of recorded ambient silence
are added at the end of each utterance, in which the end-of-
sequence probability is set to 1. This silence originates from
the pause following each utterance. (ii) a multiplying factor is
added to the gate loss error before back-propagation. We em-
pirically found that these modifications correct previously men-
tioned artifacts, and improve the overall synthesis quality. The
benefits of these modifications are evaluated in section 4.

4. Experiments and Results
4.1. Experimental Setup

The 6 models trained for this experiment are presented below:
• O and Og are trained on the original segmentation from

M-AILABS for 200 epochs.
• N and Ng are trained on the new segmentation proposed in

section 3.1.2, with only orthographic inputs for 200 epochs.
• P and Pg are trained on the new segmentation proposed

in section 3.1.2, with both orthographic and phonetic inputs
for 100 epochs, since each epoch corresponds to twice the
number of utterances of the orthographic models.
Models annotated g are fine-tuned with the gate loss cor-

rection. The multiplying factor is set to 10 for these models.
This correction is introduced for the last quarter of the train-
ing epochs. Before that separation, only one model is trained
using warm-start from the English model trained on LJSpeech
shared by NVIDIA. The postnet is bypassed during the first 10
epochs, and the learning rate is fixed at 10−3. This phase en-
ables the model to initiate a coarse transition from English to
French. Then the postnet is reactivated and the learning rate

decreases exponentially until reaching 10−5 at 90 epochs. The
batch size is limited to 32, due to memory limitations with long
utterances of the original segmentation, and thus is set to 32 for
all models. Batches are randomly picked among utterances of
approximate same length.

We pick 5% of the original corpus as test set. To ensure a
fair comparison between models, these 903 utterances are ran-
domly selected among the 1336 common utterances between
the original and the new segmentation. Thus, the amount of
speech seen by each model during training is rigorously the
same. Only the orthographic transcript of the test set is used
in this section, even for models P and Pg . Note that this test
set does not favor the new segmentation: phonetic inputs and
paragraphs markers are not used.

The vocoder used is WaveRNN [5]. WaveRNN is faster
and demands less resources than the original WaveNet [4] used
by [1], and still provides a good voice quality [26]. We trained
WaveRNN from scratch for 1000 epochs on the new segmen-
tation from Table 1 with a learning rate of 10−4. Then we
fine-tuned the model with 520 more epochs at a learning rate
of 10−5.

4.2. Objective measurements

4.2.1. Accuracy

We evaluate the spectral accuracy of each model through the
proximity of the generated spectra with the vocoded ground
truth (GT ). Since syntheses differ in length, mel-spectrograms
are first aligned by dynamic time warping (DTW) [27]. Mean
squared error (MSE) on aligned spectrograms are then com-
puted and averaged on the test set; results are shown in Fig. 2.
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Figure 2: Mean squared error between models and ground
truth, calculated on mel-spectrograms aligned by dynamic time
warping. ** indicates a significant effect of the gate loss cor-
rection according to Tukey-Kramer test (p < 0.05).

The model has a statistical effect on the computed distances
according to a one-way ANOVA (F = 246.5, p < 0.001).
Tukey-Kramer multiple comparisons show that all pairs are sta-
tistically different, except Pg/N and Pg/Ng . The gate loss cor-
rection has a significant impact on all models. The new seg-
mentation decreases the spectral distortion, with a beneficial
contribution of the gate loss correction in this case. On the
other hand, this correction decreases the spectral accuracy of
the model trained on the original segmentation.

4.2.2. Phrasing

Pauses position and duration contribute to the expressiveness of
speech [28]. We computed mean speech and silence duration
across the whole synthesised test set for each model and for
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Figure 3: Mean utterance duration on the whole test set for each
model.
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Figure 4: Speaking rate of each model, calculated on each ut-
terance of the test set. Speaking rate is estimated in characters
per second, pause durations are not taken into account. ** indi-
cates a significant effect of the gate loss correction (p < 0.05).

GT . By extension, this calculation also enables us to estimate
the speaking rate of each model on the test set. Mean utter-
ance duration and speaking rate are shown in Fig. 3 and Fig. 4
respectively.

Models trained on the new segmentation do not exhibit the
same temporal behavior than models trained on the original seg-
mentation. Utterances mean duration is smaller with the new
segmentation (3.93s and 3.64s compared to 4.44s for N , P
and O respectively). Silences duration are also proportionally
smaller: 9.2%, 8.2% and 11.3% for N , P and O respectively.
As a result, the speaking rate increases with the new segmenta-
tion. Note that the speaking rate of all models is significantly
higher than GT . The gate loss correction tends to reduce the
differences observed compared to GT . Not only silences du-
ration are increased, but also speech duration, resulting in a
lower speaking rate. This decrease is statistically significant for
the new segmentation, but not for the original. All other pairs
are significantly different according to Tukey-Kramer multiple
comparisons.

Longer pauses observed with O and Og may result from
the intra-utterance pauses frequency and duration in the original
segmentation provided by M-AILABS. In that case, models are
trained on audio clips that sometimes contain pauses longer than
1s, and thus reproduce that behavior during inference. On the
contrary, the re-segmentation processing avoids intra-silences
longer than 400ms, resulting in a more straight-forward synthe-
sis.
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Figure 5: Mean fundamental frequency calculated on voiced
sections of each utterance of the test set. ** indicates a signifi-
cant effect of the gate loss correction (p < 0.05).
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Figure 6: Standard deviation of fundamental frequency calcu-
lated on each utterance of the test set. ** indicates a significant
effect of the gate loss correction (p < 0.05).

4.2.3. Pitch

As additional prosody measurements, we evaluate the pitch of
each model using the Praat software [29]. The mean fundamen-
tal frequency (F0) and standard deviation of F0 is measured on
voiced sections for every utterance of the test set. Results are
given in Fig. 5 and Fig. 6 respectively.

One-way ANOVA shows a statistical effect of the model
on both mean F0 and standard deviation of F0. Regarding mean
F0, Tukey-Kramer multiple comparisons show that all pairs dif-
fer significantly, except O/Pg , O/GT and Ng/P . As to standard
deviation of F0, only phonetic models P and Pg exhibit a sig-
nificant effect of the gate loss correction, while both P and Pg

are not statistically different from O and Og . N and Ng have
significantly lower standard deviation than all other models.

The new segmentation increases mean F0, but this effect is
partially compensated when training the model on mixed inputs
with gate loss correction. Similarly, the gate loss correction in-
duces a lower mean F0 when training on the original segmenta-
tion. None of the presented models show standard deviation of
F0 similar to GT , which might lead to less expressive synthetic
voices.

4.3. Subjective evaluation

In accordance with objective measurements presented in sec-
tion 4.2, 3 models were selected to evaluate the mean opinion
scores through a MUSHRA-like experiment [16]. We keep only
models that have been fine-tuned with gate loss correction, as
they generally exhibit the closest proximity with GT behavior.
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Figure 7: MUSHRA results. ** indicates a significant difference
between models (p < 0.05).

GT is added as high anchor for the MUSHRA. This perceptive
test was performed online using the webMUSHRA framework
[30]. Utterances containing less than 7 words and more than 23
words were excluded from this test to keep only the central 90%
of the test set length distribution. 60 utterances were randomly
selected in the remaining test set, with equivalent representa-
tion of utterance lengths in the selection. 13 of the selected
utterances contained one phonetic mistake (5 in Og , 3 in Pg ,
and 5 in all models), and were replaced before the experiment.
Participants were separated in 2 groups, each group listened to
30 out of the 60 selected utterances. For each utterance, par-
ticipants were given the original text input, and were asked to
evaluate the 4 given conditions (3 models + GT ) according to
the voice quality. No explicit reference was given during the lis-
tening. The experiment began with 5 minutes of training during
which participants listened to a variety of synthesis that they
were about to hear during the experiment and learned how to
use the webMUSHRA interface. Audio examples are available
online 5. 44 participants recruited on Prolific [31] and aged 18-
65 took part in the experiment. Participants were French native
speakers, and had little or no previous experience with listening
tests. Results of the MUSHRA are given in Fig.7

We compared the median score of each model using a
Wilcoxon rank sum test. Differences are significant if p < 0.05.
GT exhibits a significantly higher score than the 3 evaluated
models. Ng scores significantly lower than all other models.
No statistical differences are shown between Og and Pg .

4.4. Multidimensional analysis

Despite the differences on specific expressiveness clues mea-
sured in section 4.2, subjective evaluation performed in sec-
tion 4.3 does not exhibit a clear perceptive preference for one
of the models Og or Pg . To explore implicit dimensions of the
evaluation of the models, we use a multidimensional analysis
of the distances computed between each model and GT . These
distances are evaluated on both objective and subjective mea-
surements:

• Subjective distances: absolute score differences between
all possible condition pairs evaluated in the MUSHRA, av-
eraged across all participants and all utterances.

• Objective distances: MSE between all possible conditions
pairs computed on mel-spectrograms aligned by DTW [27].
Objective distances are averaged across all 903 utterances
of the test corpus.

5http://www.gipsa-lab.fr/~martin.lenglet/segmentation_impact/
index.html

(a) Objective MDS: MDSO (b) Subjective MDS: MDSS

Figure 8: Multidimensional scaling of distances between pairs
conditions. Left and right graphs show objective and subjective
distances respectively. Proportions of variance explained are
given for each component.

Table 3: Correlation coefficients between objective measure-
ments and components of MDS. * and ** indicate p < 0.1 and
p < 0.05 respectively. ASE: aligned spectrum error, SR: Speak-
ing rate, PD: pauses duration.

MDS Dim objective measurements
ASE SR PD mean F0 std F0

Obj 1 0.90** -0.47 0.44 -0.71* -0.06
2 0.63 -0.74* 0.89** -0.43 0.97**

Subj 1 0.89 -0.93* 0.96** -0.50 0.98**
2 0.97 -0.02 0.13 -0.83 -0.17

Then, we projected the two obtained distances matrices
in two independent 2-dimensions space using classical Multi-
dimensional scaling (MDS) [22]. To give a better idea of the
impact of the gate loss correction, both corrected and non-
corrected models were included in the objective MDS. Subjec-
tive and objective MDS (named MDSS and MDSO respectively
in the following) are given in Fig.8.

Correlations between objective measurements computed in
section 4.2 and the components of both MDS are estimated.
Correlations coefficients are given in Table 3. Note that GT
is not considered for correlation with aligned spectrum error
(ASE). Correlation coefficients indicate that prosodic clues like
pauses duration and standard deviation of F0 are closely re-
lated to the second component of MDSO , but to the first compo-
nent of MDSS . On the other hand, spectral accuracy measure-
ments ASE and mean F0 are correlated to the first component
of MDSO , and similarly for the second component of MDSS ,
even if this tendency is not significant. Two main dimensions
emerge in both evaluations: spectrum accuracy and expressive-
ness. The axis inversion (and associated portion of variance
explained) tends to show these dimensions are not given the
same importance in the perceptive judgement than in the ob-
jective measurement. As a result, the proximity of spectrum
quality observed between GT and models trained on new seg-
mentation on the first component of Fig.8a is downgraded to
the second component of Fig.8b. Respectively, expressiveness
is given more importance in the perceptive test than it is in the
objective measurements, resulting in Og being closer to GT in
the first component of Fig.8b. Fig.8a emphasizes the benefits of
the proposed gate loss correction, as all models annotated g are
closer to GT on the expressiveness dimension.
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5. Conclusions and Discussion
We have proposed a shorter segmentation of the French M-
AILABS corpus and compared the training of Tacotron2 on
both original and new datasets. Through multi dimensional
evaluation, we have shown that the way speech data are seg-
mented impacts both quality and expressiveness factors in op-
posite directions. Future works should elaborate on how to
combine the advantages of both segmentation with curriculum
training. An important contribution of this work is the addi-
tion of the gate loss correction as a fine tuning of the model,
which contributes to improve prosodic aspects of the synthe-
sized speech. The use of multidimensional analysis of mean
opinions scores introduces relevant nuances to the MUSHRA
results. The structuring of the subjective notation latent space,
as well as the prediction of positions in this space thanks to ob-
jective measurements should be the focus of future works.
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Abstract
Since neural Text-To-Speech models have achieved such high
standards in terms of naturalness, the main focus of the field
has gradually shifted to gaining more control over the expres-
siveness of the synthetic voices. One of these leverages is the
control of the speaking rate that has become harder for a human
operator to control since the introduction of neural attention
networks to model speech dynamics. While numerous mod-
els have reintroduced an explicit duration control (ex: Fast-
Speech2), these models generally rely on additional tasks to
complete during their training. In this paper, we show how an
acoustic analysis of the internal embeddings delivered by the
encoder of an unsupervised end-to-end TTS Tacotron2 model is
enough to identify and control some acoustic parameters of in-
terest. Specifically, we compare this speaking rate control with
the duration control offered by a supervised FastSpeech2 model.
Experimental results show that the control provided by embed-
dings reproduces a behaviour closer to natural speech data.
Index Terms: speech synthesis, embeddings analysis, natural
control, duration control

1. Introduction
Deep neural Text-To-Speech systems such as Tacotron [1,
2] or FastSpeech [3], combined with neural vocoders like
WaveNet [4], WaveRNN [5] or WaveGlow [6] produce more
realistic voices than ever. As a result, numerous studies now fo-
cus on the rendition of the expressiveness [7, 8], whose control
remains a ongoing challenge. In particular, prosody is known to
convey co-verbal information that is desirable to make the in-
teraction with a synthetic voice as natural as possible [9]. The
accurate manipulation of prosodic parameters of interest such
as pitch, energy or speaking rate is therefore a requirement for
an interactive TTS system.

One approach to enable the control of these parameters at
inference time consists in adding layers to the model in order to
learn how to explicitly retrieve this information from the input
sequence [3, 10]. Doing so, this information can be modified
before being reintroduced into the decoding layer, resulting in a
finer control of the output prosody. While this method enables
an independent control of these parameters, it requires various
preprocessing to extract alignments and acoustic parameters be-
forehand. Additionally, the proposed independent control may
not correspond to the natural behaviour of the voice.

An alternative is to use implicit representation to bias the
model toward the desired prosody [7, 11]. Via a so-called
prosodic or reference encoder of the target speech signals, style
and speaker embeddings model residual loss not yet explained
by text input. During inference, a target prosodic example can
then be used to complement the input text. While control of
style may capture subtle natural co-variations, the semantics of
control parameters is often given a posteriori.

In this paper, we introduce a new control for end-to-end
TTS models: Embedding Bias. By analysing the phonetic em-
beddings at the encoder’s output, we identify acoustic and par-
alinguistic parameters that are encoded in these latent repre-
sentations, as well as their co-variations with other phonetic
dimensions, learnt from the training data. We show how this
information can be used to bias phonetic embeddings in order
to control the speaking rate of the model, without the need for
any additional data during the training phase. We implement
and investigate this duration control on the embedding spaces
of both Tacotron2 and FastSpeech2 models, whose biased em-
beddings are then fed to their attention mechanism and duration
predictor, respectively. We compare this control to the explicit
duration control provided by FastSpeech2.

2. Related Work
The explicit prediction of low-level prosodic parameters such as
F0, duration and energy from the embedding space of encoder-
decoder TTS models has led to excellent performance in dis-
entangling these parameters [3, 10] at the expense of preserv-
ing the natural co-variations between them. Moreover, duration
control usually applies a uniform gain to all phones, whereas
variations of phone duration with speaking rate depends on its
phonemic class and position in the sentence [12]. Whether the
loss of both supra-segmental acoustic co-variations and non-
linear duration variations at a segmental level degrades natural-
ness is still an open question and is investigated here. The op-
posite direction that consists in biasing the encoder output with
an implicit representation of an audio sample learnt by a refer-
ence encoder (Global Style Tokens [7, 11, 13], Variational Auto
Encoders [14, 15] or speaker encoders [16]) supposedly better
preserves the co-variations of prosodic parameters. However,
if most implementations allow to successfully identify dimen-
sions in the obtained latent space to control low-level prosodic
parameters, few quantitative studies had statistically analysed
variations and co-variations of prosodic parameters introduced
by an implicit control both at segmental and supra-segmental
levels. Also, methods for systematic analyses of latent spaces
are rarely given, with exceptions such as [17] who performed
an a posteriori analysis using a crowd-sourced subjective eval-
uation of synthesis.

The difference between concatenation or addition of the
style and text encoders outputs is not well described in the liter-
ature, yet the addition intuitively corresponds with a translation
in the embedding space. Therefore, can we derive the appro-
priate translation for a given prosodic parameter modification
from an analysis of the embedding space, without the need to
train a reference encoder? Previous work on embedding space
analysis showed promising results in terms of phonetic [18] and
acoustic [19] structuring of the embedding space, but no control
were yet identified from these analyses.
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3. Proposed Method
We aim at performing an acoustic analysis of the latent space
outputted by the encoder of an end-to-end TTS model, and use
this analysis to exhibit an embedding bias that can monitor the
speaking rate of the model. This method could be applied to
any encoder-decoder architecture which uses an attention mech-
anism or a duration predictor. Both cases are implemented, tak-
ing Tacotron2 [2] and FastSpeech2 [3] as examples.

3.1. Encoder-decoder TTS models

Our implementation of Tacotron2 (TC) builds on the one
shared by NVIDIA [20]. Following [21], TC uses a Gate
Loss correction and is trained on both orthographic and pho-
netic transcripts, which are known to benefit to both types
of inputs [22]. Additionally, the decoder generates two mel-
spectrogram frames per step. Empirical analysis showed that
generating 2 frames at a time did not degrade the overall quality
of the synthetic speech, while speeding the inference process.
FastSpeech2 (FS) strictly follows an early implementation [23]:
the pitch predictor is trained on F0 values instead of continuous
wavelet transform in later versions. A Tacotron2-type post-net
is added after the decoder. Also, pitch and energy values are
averaged per phone instead of per frames, and normalised.

Both TC and FS are trained on a subset of the new seg-
mentation of the French M-AILABS dataset provided by [24].
This subset includes 29557 utterances (more than 25h) of audio-
book recordings from four novels uttered by Nadine Eckert-
Boulet (NEB). 5% of this corpus (1477 utterances) was ran-
domly picked as the test set. This dataset provides both ortho-
graphic and phonetic transcripts for every utterance. Only the
phonetic transcripts (together with spaces and punctuation when
associated with pauses) were used for FS, which was also pro-
vided a hand-checked phonetic alignment to train its duration
predictor. Both models were trained until convergence, which
took about 100 epochs. The post-net is bypassed during the first
10 epochs, while the learning rate is fixed at 10−3. After this
startup, the learning rate decreases exponentially until reaching
10−5 after 90 epochs. The batch size is set to 32 for both mod-
els. The vocoder used is WaveGlow [6].

3.2. Identification of Acoustic Parameters in Embeddings

After training, the entire test set was synthesised with both mod-
els, using the phonetic input. Together with the usual audio out-
put, embeddings computed by the encoder of both models are
saved for acoustic analysis, as well as the attention map from
TC and the duration predictions from FS.

3.2.1. Automatic Segmentation of the Synthesised Audio Signal

In TC, durations of input phones are computed using the dura-
tions of their respective activations in the attention map [25].
The duration of output phones predicted with this method were
compared to Ground-Truth phones duration. Syntheses were
produced using teacher-forcing to ensure the same dynamic as
the Ground-Truth. We measured a correlation of 0.88 on phones
(durations of silences from punctuation marks are excluded),
which made us consider this method for large scale acoustic
analysis. Segmentation in FS is straightforward, the duration
predictor providing the number of frames for each phone. An
acoustic analysis of each phone is performed with Praat [26].
Several acoustic parameters are considered: phone duration,
fundamental frequency (F0), first three formants (F1, F2, and
F3), and energy (Sound Pressure Level).

Table 1: Correlation coefficients between acoustic features
predicted from MDS coordinates and measured on synthesis.
log(d) = logarithm of the duration ; E = Energy.

Model log(d) F0 F1 F2 F3 E

Tacotron2 0.83 0.51 0.70 0.93 0.75 0.67
FastSpeech2 0.89 0.86 0.84 0.91 0.74 0.87

3.2.2. Acoustic Analysis of the Embedding Space

The synthesis of the entire test set provides a total of 51746
phone embeddings that encode contextual information intro-
duced by the encoder of each model. To consider the voiced-
dependent acoustic features (section 3.2.1), only the 22528
vowels of the test set are studied in this section. The relationship
between embeddings and acoustic features measured on the cor-
responding synthesised audio segments is derived as follows:
1) Dimensional reduction of the embedding space with Multi-
dimensional Scaling (MDS) [27]. A distance matrix between
embeddings is first calculated using cosine distance. 2) A pro-
jection matrix is derived to enable transitions between the initial
embedding space and the reduced MDS space. 3) All the acous-
tic features are individually approximated by least square multi-
linear regression from embeddings coordinates in the MDS.
This procedure is similar to [19], but is applied on phone em-
beddings instead of utterance-wise style embeddings.

The approximation of acoustic parameters from the MDS
coordinates is compared to the measured acoustic features on
the synthesised signals and correlation coefficients are shown in
table 1. Phone durations are computed in logarithmic scale, be-
cause this gave better correlations. Same goes for F0, F1, F2 and
F3 which are expressed in semitones for better approximations.
These correlations indicate that most of these acoustic features
are well encoded in the embeddings. Note that a lower corre-
lation does not mean that the model does not implement this
acoustic feature, but rather that this feature is not encoded in
the phone embeddings alone (note that duration, F0 and energy
encoders of FS further contextualise embeddings with CNNs)
or not correlated in a linear way. As a result, this feature is less
likely to be easily controllable by modifying the embeddings
before passing through the decoder. On the contrary, high cor-
relations emphasise the features that are encoded in this latent
space: phone duration is well encoded by every model, as well
as spectral clues such as formants. FS has better correlations of
prosodic measurements like F0 and energy, which are trained to
be predicted by the model from the very same embeddings.

3.3. Acoustic control

From the regressions described in section 3.2.2, the gradient
of each acoustic feature in the MDS is computed. This vec-
tor, called embedding bias, is the leverage used to control one
particular feature at a time: a translation along this vector is
added to all the embeddings of an utterance before passing
through the decoder. The regression is used to evaluate the
magnitude of translation needed to induce the desired modifi-
cation of the acoustic feature. This study specifically evaluates
the control given by the duration embedding bias, expressed in
log-duration. Hence the addition of a bias in the log domain is
equivalent to applying a multiplying factor on phone duration.
We empirically identified that a correcting factor k was needed
to achieve the desired modification of phone duration, resulting
in a corrected translation of k ∗ log(m) to multiply phone dura-
tion by m. k = 2.94 and k = 2.33 for TC and FS respectively.
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In the case of FS, the embedding bias is applied before duration
prediction, and predicted duration from the biased embeddings
is used for decoding, without any external input. We showed in
a preliminary study that an embedding bias computed on vowel
embeddings alone is more efficient in inferring duration modifi-
cation in the synthesis signal, supported by the fact that vowels
duration show more variability than consonants [12]. In the fol-
lowing, the bias is derived from the vowel embeddings space
but applied on all input phone embeddings at inference.

4. Experiments and Results
4.1. Models and test set

In this section we will investigate and compare the efficiency
of the embedding bias control on TC and FS. In addition, two
baselines are added: FS with explicit duration control (with-
out embedding bias) and a simple linear time-interpolation of
the mel-spectrogram output of an unbiased TC (resp. FS) to
change the full duration of the signal before feeding it to the
neural vocoder. In both baselines, a similar modification of du-
ration is applied on all phones, but FS has the chance to make
some acoustic modifications through the decoding process. In
the following, TCB, FSB, FSC and stretching refer to TC with
embedding bias, FS with embedding bias, FS with explicit du-
ration control, and mel-spectrogram interpolation, respectively.

The test set described in section 3.1 is synthesised with
4 duration coefficients, chosen to be representative of the
phone rate distribution of the training dataset. These coef-
ficients mi = {0.77, 0.87, 1.18, 1.44} are chosen to reach
i = {+2,+1,−1,−2} standard deviation around the mean
phone rate, respectively.

4.2. Non-linear duration modification

For each synthesised signal with a given duration coefficient,
the duration of each phone is measured (see section 3.2.1), and
divided by the mean duration of its phone class synthesised with
the same model without duration control, to provide an elonga-
tion coefficient. Fig. 1a displays the average elongation coef-
ficient per duration coefficient, model, and phone class. Final
vowels are vowels just preceding a silence in the audio signal.
For each phone class, the diagonal corresponds to the stretching
condition, where the elongation coefficient equals the duration
coefficient. The red, green and yellow curves correspond to
TCB, FSC, FSB, respectively. Moreover, average phone elonga-
tion coefficients were also calculated on the ground truth train
database (GT) and reported in dark blue. A Kruskal-Wallis
rank-sum test performed on the per-phone elongation coeffi-
cients showed a significant effect of both phone class and du-
ration control (p < 10−3). A post-hoc Wilcoxon rank-sum
test then assessed for each phone class and duration coefficient
whether each method significantly differs from the stretching
conditions. Significance (p < 10−3) is displayed by coloured
stars above each data point. Fig. 1b shows the ratio between the
number of pauses longer than 30 ms in the audio signal and the
number of phones in the text input for each duration coefficient
on TCB, FSC, FSB and GT (by nature, this ratio do not vary with
duration control for FSC, FSB and stretching).

Concerning elongation coefficients (Fig. 1a), FSC follows
the diagonal: as expected, frames are linearly duplicated
through duration control for any class of phonemes. On the con-
trary, GT data displays non-linear behaviours that are consistent
with [12] findings. These behaviours are partly followed by
the embedding bias-controlled model. Looking first at slower

* * * * * * * * * * * * *
* * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * *

(a) Elongation coefficient is the mean phone elongation compared to the
unbiased voice. * indicates a significant difference with stretching.

(b) Silences proportion is the ratio between the number of silences in
the audio signal and number of phones in the text input.

Figure 1: Impact of duration control for each model and GT.

speaking rates (mi > 1), GT displays a saturation for final
vowels and silences whose mean durations are large for average
speaking rate (125 ms and 213 ms, respectively) and weakly
lengthened as the speaking rate decreases. This behaviour has
been learnt by TCB and FSB. Regarding other vowels and all
consonants, GT shows a linear lengthening with duration con-
trol but to a lesser extent than stretching. This is compensated
by the introduction of pauses in the GT signals: Fig. 1b displays
three times more pauses in GT when the speaking rate is 1.44
times slower. Conversely, FSB is unable to add any pauses in
the signal, and the effect is negligible for TCB. Alternatively,
both models compensate by expanding the vowels longer than
the stretch (Fig 1a). On consonants, TCB seems to have learnt
GT behaviour, wile FSB follows the stretching trend. Looking
now at higher speaker rates (mi < 1), GT final vowels are
preserved while silences are dramatically shortened or deleted
(Fig. 1b). This behaviour was not replicated by any model. For
other vowels and consonants, GT and all models follow a linear
shortening of phones matching stretching.

Globally, GT duration modification is mainly performed
with pauses addition and deletion, that are hardly managed by
the embedding bias-controlled models. Regarding the observed
non-linearity per class of phonemes, TCB follows at best the GT
behaviours, even though it compensates for the lack of pause ad-
dition by vowel lengthening. Both TCB and FSB follows the sat-
uration of final vowels and pauses that are imposed by the data
distribution, but FSB mainly follows the stretching behaviour
otherwise, showing that TC better models non-linearities in du-
ration modification than FS, when using a similar embedding-
bias control policy.

4.3. Co-variations of acoustic parameters

To investigate the co-variations of acoustic parameters with du-
ration control, we first derived F1 and F2 values for all /a,i,u/
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(a) Vocalic triangle area. (b) Fundamental frequency.

Figure 2: Acoustic parameter variations by model and by speed.

vowels present in the synthesised signals with the different
models and duration coefficients. We then derive the area be-
tween the three vowels on the F1-F2 plane. The ratios between
the area obtained for each duration coefficient and without du-
ration modification are reported in Fig. 2a for each model and
GT . For higher speaking rate, a similar linear compression of
the vocalic triangle is observed for all models and GT , typical
of an undershooting of the vowel targets. For lower speaking
rates, GT displays an expansion of the vocalic triangle, which
is successfully replicated by FSB and TCB, with a slight satura-
tion for the 1.44 coefficient. FSC shows a stronger saturation.

Fig. 2b shows mean utterance F0 values per model and du-
ration coefficient. GT data shows an increase in F0 median and
variability with highest speaking rates, which are well repli-
cated by TCB. Conversely, none of the FS models display any
co-variation of F0 with duration control. Overall, co-variations
of features learnt in an unsupervised way, like formants, are
well replicated by both models, while the the F0 and duration
prediction tasks implemented in FS lead the latter to ignore the
co-variations between those parameters.

4.4. Listening Experiment

To investigate the effect of segmental and supra-segmental vari-
ations and co-variations of prosodic parameters on percep-
tion, we conducted a listening experiment where each model
was evaluated against the stretching method. A CMOS pro-
tocol was followed [28], where participants were presented a
(model,stretching) pair and asked which of these voice speed
renderings felt the most natural. Each pair consisted of one
sentence synthesised with one of the three models (FSC, FSB,
TCB) and one of the four duration coefficients (0.77, 0.87, 1.18,
1.44) against its stretching counterpart. Order of presentation
was counterbalanced. In total, 3 models × 4 duration coeffi-
cients × 18 sentences × 2 order of presentation = 432 pairs
were evaluated. 42 participants recruited on Prolific [29] took
part in the experiment, and each evaluated 72 stimuli following
a Latin Square design so that every model, duration and sen-
tence was equally seen by each subject. Table 2 reports the av-
eraged CMOS obtained for each model and duration coefficient.
A positive value indicates that the model was preferred over
stretching, and conversely. A non-parametric Kruskal-Wallis
test showed a significant effect of both duration control and
models on the CMOS (p < 0.001). Post-hoc Wilcoxon tests

Table 2: CMOS of duration control methods against stretching
of unbiased synthesis from the same model.

Model 0.77 0.87 1.18 1.44

TCB -0.818* -0.544* 0.525* -0.004
FSC -0.079 0.048 0.171* 0.623*
FSB -0.075 -0.048 -0.175* -0.159

by pairs were applied and a star in the Table indicates that the
model shows a statistically different CMOS than the other two
models for this duration coefficient (p < 0.001).

Overall, FSB was considered as similar as stretching while
TCB shows more contrasting results, supporting that sub-
jects were sensitive to the segmental and supra-segmental co-
variations that are globally better modelled by TCB. For higher
speaking rates, TCB was significantly less preferred than stretch-
ing. The prosodic parameters analysis highlighted a difference
in F0 variability between models for higher speaking rate may
explain this failure. A further analysis of the training set showed
that highest speaking rates often correspond to the expressive
reading of dialogs between characters. Without any residual
encoder to segment this paralinguistic information apart from
text input, TC may have learnt an averaged representation of
these characters, resulting in an unnatural speech depreciated
by participants. By contrast, TCB is preferred to stretching with
the 1.18 duration coefficient. With this coefficient, the main
difference between models lays in the non-linearity of phone
duration (Fig. 1a), where TCB closely matches the behaviour of
GT . This is a case where the learning of co-variation is in favour
of naturalness. Reaching the 1.44 duration coefficient, both em-
bedding bias-controlled models are equally rated as stretching,
while FSC is preferred. We showed that at this speaking rate
the addition of pauses in the signal is essential to prevent the
over-lengthening of vowels sounds observed for TCB and FSB

that could have been perceived as unnatural. Conversely, even
though FSC cannot add supplementary pauses, it has the ability
to lengthen them to a greater extent. The preference of FSC over
stretching could also be due to a better conservation of phone
transitions, that is yet to be verified.

5. Conclusions and Discussion
We proposed a method for the analysis of the embedding space
of an encoder-decoder TTS model to derive an embedding bias
that is applied to control a given prosodic parameter. It aims at
1) explicitly targeting a specific prosodic parameter, in opposi-
tion to reference encoders; 2) preserve the segmental and supra-
segmental variations and co-variations in speech, contrary to
learnt prosodic control models. Evaluation was performed on
the control of speaking rate on both attention-based (TC) and
duration predictor based (FS) methods. Objective analyses
showed that while the prosodic parameters estimation imple-
mented in FS cleared its embedding space of most of their cor-
responding segmental and supra-segmental co-variations, TC
successfully modelled this information, and this was well per-
ceived in a listening test. The possibility to add or remove
pauses while modifying the speaking rate appears essential in
order to model the natural behaviour of speech. Models that use
explicit phonetic inputs (ex: FS) negate this phenomenon. Fu-
ture works should elaborate on how to give this degree of free-
dom to synthesis models. This multi-dimensional segmental
and supra-segmental prosodic parameter variations introduced
by the embedding bias control invites to propose more feature-
centred evaluations in the future, in conjunction with the control
of other prosodic parameters.
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Quelle influence de l’intimité virtuelle sur l’expérience utilisateur
et la relation-client?” Ph.D. dissertation, Université Paris-Saclay,
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Abstract
This paper describes the GIPSA-Lab submission to the Blizzard
Challenge 2023. The Text-To-Speech system trained for this
challenge is a Transformer-based non-autoregressive encoder-
decoder architecture based on FastSpeech2. Updates of the
FastSpeech2 framework were provided to specifically train the
model on orthographic inputs, which is our main focus for this
edition of the challenge. This model was trained with both or-
thographic and phonetic transcriptions of the same dataset. An
additional phonetic prediction layer was added to the model.
This additional layer enables to train the text encoder on pho-
netic prediction alone, without the need for audio recordings.
Index Terms: speech synthesis, mixed-inputs TTS, phonetic
prediction

1. Introduction
Latest neural networks breakthroughs have largely improved
performances of various automatic speech processing tasks, in-
cluding Text-To-Speech (TTS). Latest neural TTS [1, 2, 3, 4],
combined with neural vocoders [5, 6, 7] generate synthetic
voices that closely mimic natural speech. However, the eval-
uation of synthetic speech naturalness is mostly conducted in
favorable environments, on test stimuli which are very close to
the training corpus. Thus, the good performances shown by
neural TTS models may be overestimated compared to real-life
applications.

The Blizzard Challenge 2023 aims at evaluating latest neu-
ral TTS systems in more challenging environments. More
specifically, the Hub-Task of this challenge includes the eval-
uation of intelligibility of semantically unpredictable sentences
and heterophonic homographs. The Spoke-Task on the other
hand is a speaker adaptation task on a smaller dataset shared by
the Blizzard organizers. Only orthographic sequences can be
used as inputs in the submitted systems.

Our approach to this challenge is to propose a TTS system
very close to the state-of-the-art model FastSpeech2 [4] but with
the addition of phonetic prediction sub-task. FastSpeech2 is a
fully parallel Transformer-based [8] architecture which imple-
ments 3 secondary tasks on top of the spectrogram prediction:
pitch, energy and duration prediction. The duration prediction is
the key factor of this parallel architecture, since it is necessary to
realize the phone-to-frames alignment at the interface between
the text encoder and the audio-decoder. However, this duration
predictor is also the limiting factor to train FastSpeech2 on or-
thographic inputs, since the time-segmentation of the training
set, necessary to train this predictor, is unclear when process-
ing orthographic sequences. In this paper, we show how the
letter-to-sound alignment proposed by Lenglet et al. [9] can be
used to assign duration to the orthographic sequences in order

to train a FastSpeech2 model on orthographic inputs. Moreover,
we show that the addition of a phonetic prediction task from the
output of the FastSpeech2 text encoder allows to train the model
on <orthography|phonetic> pairs without the need for audio
recordings. This setup helps learning phonetic transcriptions
for words and contexts that are otherwise rarely found in clas-
sical audiobooks training corpora. We show through Blizzard
results that this addition helped modelling heterophonic homo-
graphs. Results also show that our model is perceived as more
natural than the FastSpeech2 baseline.

This paper is organized as follows: Section 2 describes
our proposed model and the letter-to-sound mapping used to
train our FastSpeech2 on orthographic sequences. Section 3 de-
scribes the extended dataset we used to train our model, and
the training procedure. Prior to the Blizzard Challenge results,
we evaluated the accuracy of the proposed phonetic prediction
layer in section 3.3. Finally, results of the Blizzard evaluation
are discussed in section 4.

2. Model: FastSpeech2 with mixed inputs
This section describes FastSpeech2 baseline architecture en-
hanced with the proposed phonetic prediction layer. The overall
architecture of the proposed model is shown in Fig.1. The im-
plementation is available online1.

2.1. Model Architecture

The proposed model is very close to one of the open source
FastSpeech2 implementation [4]. The encoder, variance adap-
tor and decoder are kept unchanged2. Following early imple-
mentations of FastSpeech2, the pitch predictor is trained on raw
pitch values in semitones, instead of continuous wavelet trans-
forms [10] in latter works. Pitch and energy values are extracted
using WORLD pre-processing toolbox [11], and are averaged
by phonemes, and normalized. The same multi-speaker model
is used for the Hub-task and the Spoke-Task of this Blizzard
Challenge. Speaker control is achieved through the addition of
a trainable speaker embedding at the output of the text encoder.
The model is trained on both orthographic and phonetic input
sequences, following the mixed-inputs training procedure [12].

Following [9], an additional phonetic prediction layer is
added at the output of the text encoder. This layer predicts
a one-to-one mapping between orthographic inputs and pho-
netic outputs. This one-to-one letter-to-sound mapping (L2S)
is further described in Section 2.2. The goals of this layer
are twofold: first, it helps disambiguating homographs as
shown in [13]. Second, it enables to train the text encoder

1https://github.com/MartinLenglet/
Blizzard2023_TTS

2https://github.com/ming024/FastSpeech2



Figure 1: Model Architecture of the multi-speaker FastSpeech2 baseline with the phonetic prediction layer. This phonetic prediction
layer is trained on the output of the text encoder.

Table 1: Technical specificities and performances of the proposed FastSpeech2 with mixed inputs and vocoder Waveglow. Inference
speed is reported as the Real-Time Factor (RTF). The loading time is the duration needed to load the model before starting the inference.
This duration is not considered to compute the inference speed. Performances are computed on a single GPU Quadro RTX 8000.

Model # Parameters Memory Footprint (Mbytes) Loading Time (s) Inference Speed (RTF)
FastSpeech2 35 630 466 1 600 4.5 1.58 x 10−2

Waveglow 87 879 272 2 400 3 5.31 x 10−2

Total 123 509 738 4 000 7.5 6.89 x 10−2

on <orthography|phonetic> pairs without the need for corre-
sponding audio. This eases the training of models out of audio-
books corpora, e.g. through the use of dictionaries. The cross-
entropy phonetic loss trains the model on a categorization task.
This loss is added to already existing MAE spectrogram-loss
and MSE pitch, duration and energy-losses. The same lexicon
as the Blizzard organizers was used.

Training FastSpeech2 on orthographic inputs is usually
tricky, since the training of the explicit duration predictor relies
on the time-segmentation of characters in the training dataset.
When using phonetic sequences, every input character is at-
tributed a unambiguous duration, either through expert analy-
sis of the audio signal, or with automatic tools like Montreal-
Forced Aligner [14]. On the other hand, in the case of opaque
languages like French which require a wider visual attention
span to achieve the grapheme-to-phoneme (G2P) transcrip-
tion [15], it is unclear how to distribute the duration between
the multiple orthographic characters involved in one phoneme,
called complex phoneme in the following. Thanks to this one-
to-one L2S mapping, we are able to attribute the duration to
the character of interest in case of complex phonemes, and a
null duration to the other characters involved. This procedure
enables to train FastSpeech2 with orthographic inputs, without
relying on a front-end phonetic transcription. As a result, the
raw orthographic sequence is used as is during inference.

The vocoder used is Waveglow [6]. The original architec-
ture remains unchanged3. The technical specificities and per-
formances of our system are summed up in Table 1.

2.2. One-to-one Letter-to-Sound Mapping

Following the exploration of the attention map of a fully trained
Tacotron2 TTS model [2], a one-to-one L2S mapping was pro-
posed by Lenglet et al. [9]. The main results of this study are
reported in this section. This mapping is deduced from the num-
ber of frames which focus on a particular grapheme in case of
complex phonemes. Examples of most commonly seen patterns
are given in Fig.2. Empirical rules were deduced from these ob-
servations, summed up in Table 2. The symbol / / is assigned

3https://github.com/NVIDIA/waveglow
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Figure 2: Distributions of durations of activation (ms) of com-
mon character sequences in complex phonemes.

Table 2: Activation rules on grapheme recurrent schemes. C
and V stand for consonant and vowel respectively. stands for
muted character.

Schemes Activation Examples
C C C “nn”, “ll”, “ss”
V V V “an”, “ou”, “au”

V V V V “eau”, “ain”

as output of this one-to-one mapping for muted characters.
This L2S mapping is used twice to train the model. First,

characters durations when using orthographic inputs are at-
tributed following the rules given in Table 2. This enables to
train FastSpeech2 directly on orthographic sequence, and use
raw orthographic sequences at inference. Thus, it enables the
model to handle French liaisons on its own, which can other-
wise be an issue with G2P front-end [16]. Similarly, the Fast-
Speech2 encoder is also able to learn how to disambiguate ho-
mographs by relying on the contextualisation provided by its
successive Transformer layers [8].

Second, the phonetic prediction layer uses this L2S map-
ping as targets to be predicted from the input sequence in case
of orthographic inputs. This phonetic prediction layer further
helps the disambiguation of homographs at the output of the



encoder. In case of phonetic inputs, the input phoneme is set as
the target of the prediction layer (except for punctuation marks
and spaces, which are given two possible outputs: / / in case of
null duration, or / / otherwise).

3. Training and Early Evaluation
3.1. Dataset

The same multi-speaker model described in section 2 was
trained for both the Hub-task and the Spoke-task. To strictly
follow the mixed-inputs training, utterances without phonetic
alignment were excluded from the training set (19 986 out of
64 015 utterances for speaker NEB). 3 200 utterances (5% of
the NEB corpus) were randomly picked in this excluded por-
tion of the corpus as the validation set. In order to maximize the
multi-speaker performances of our model, 2 additional speakers
were added to the Blizzard dataset. The whole aligned corpus
was included in the training set. Following Blizzard rules for
the challenge, the two additional speakers are taken from open-
access online databases, specified in Table 3. A part from this
extended training dataset, our model is not specifically designed
to achieve few-shot speaker adaptation. Nonetheless, we took
part in the Spoke-Task to evaluate the benefits of our mixed rep-
resentations FastSpeech2 in this context.

Moreover, since the phonetic prediction layer enables the
training of the text encoder without audio recordings, we
also added to the training set phonetic transcriptions from the
ROBERT French-dictionary, as well as common in-context ho-
mographs. These homographs are taken from various online
open-access articles, similar to [13]. The training set is further
described in Table 3.

The audio output is a 80-bands Mel-spectrogram computed
on the 22 050Hz audio signal with an hop-size of 256 (which is
equivalent to a spectrogram sampling rate of ≈ 86Hz).

3.2. Training Procedure

The non-audio inputs (dictionary and homographs) are used at
every stage of the training process. They are mixed with audio-
inputs in each batch, with a ratio of 2/3 for audio inputs and 1/3
for non-audio inputs. While the training on non-audio inputs
helps learning phonetic representations for rare words not seen
in the audio corpus, this ratio minimizes the risks of degradation
of the prosodic predictions and audio quality due to the absence
of spectrogram-loss on the non-audio part of the corpus.

Our model was first trained following a single-speaker
setup on NEB. We believe that this step helps the text encoder
and decoder to focus on their primary goal which is the mod-
ulation of acoustic and prosodic local patterns according to the
sequence to utter. The addition of the speaker embedding latter

Table 3: Multi-Speaker Training Dataset. Durations are given
in hh:mm:ss.

Speaker Metadata Audio
Dataset Gender Duration # Utt

NEB Blizzard Female 33:33:41 44 029
AD Blizzard Female 2:04:53 2 515

DG LibriVox [17] Male 6:17:22 7 539
RO SIWIS [18] Female 0:35:21 586

Dictionary Robert - - 95 879
Homographs Various [13] - - 17 285

Total - - 42:31:17 167 833

in the process is seen as an offset manipulation of these mean
features, which is supposedly easier to learn by the model.

The model was trained for 100 epochs on NEB only, using
both orthographic and phonetic transcriptions. The batch size
is set to 32. All utterances are presented twice by epoch: once
with the orthographic input and once with the phonetic input.
Batches are randomly selected among the whole training cor-
pus, resulting in a mixture of speakers and input types in each
batch. This mixture is not supervised.

The learning rate was fixed to 10−3 during this first step.
Following the 2/3 - 1/3 ratio, this training includes about 50
epochs on the non-audio corpus. Following this initialization
step, all other speakers were added to the training set. The learn-
ing rate exponentially decreased from this step, to reach 10−4

after 170 epochs. The training continued with 50 epochs on
the multi-speaker corpus. When training with the multi-speaker
setup, dictionary inputs are duplicated for each speaker, in or-
der to train the phonetic predictor’s dependency to the speaker.
Finally, the model was trained on an evenly distributed corpus
among speakers for another 50 epochs. Utterances were ran-
domly selected to match the number of utterances in the AD
corpus, when enough utterances were available. All utterances
from RO were kept for this final training step. We empirically
found that this final step helps modelling rarest speakers behav-
iors instead of copying the behavior of the most seen speaker.

The vocoder Waveglow [6] was fine-tuned from the pre-
trained model shared with the GitHub implementation. The
fine-tuning was performed on the NEB corpus, first for 50
epochs on the Ground-Truth spectrograms, and then for 50 ad-
ditional epochs on spectrograms predicted by the FastSpeech2
model.

3.3. Phonetic Prediction Evaluation

On top of the evaluation performed for the Blizzard Challenge,
we evaluated the performances of the phonetic prediction layer,
as an indicator of the potential benefits of the proposed archi-
tecture compared to the traditional FastSpeech2 training.

As a test set, we randomly extracted 2230 additional ut-
terances recorded by the same NEB speaker from the original
M-AILABS corpus [19]. These utterances are not part of the
dataset shared by Blizzard organizers, thus they have not been
seen by the model during the training phase.

The phonetic prediction was computed on this test set, and
confusion matrices are reported in Fig.3, using orthographic in-
puts (Fig.3a) and phonetic inputs (Fig.3b). Among the 108168
orthographic characters of this test set, the overall accuracy
reaches 0.984 (0.997 when excluding muted characters). In-
terestingly, most remaining errors are confusions between close
phonetic variants: mid-closed vowels VS mid-opened vowels,
and full closed vowels VS semi-vowels. Most errors with muted
characters are miss-predicted liaisons on ending /r/, /t/ or /z/.
Note that the errors highlighted here may just reflect diver-
gences between the Ground-Truth and the model decision on
optional liaisons. On the other hand, when using phonetic in-
puts, this prediction is almost flawless, reaching 0.993 overall,
and 1.00 when excluding spaces and punctuation marks.

While this evaluation of the phonetic accuracy of the pro-
posed model is promising regarding the production of hetero-
phonic homographs and the intelligibility of semantically un-
predictable sentences, these tasks are specifically designed to
test the model out of what has been seen during the training.
Thus, results may differ on these specific tasks.
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Figure 3: Confusion Matrices of the phonetic prediction layer, for orthographic inputs (left) and phonetic inputs (right).

Figure 4: Mean Opinion Scores (MOS) for the Hub Task. Our model N is highlighted in orange. The left graph shows MOS by system.
In the right graph, black squares show that the difference between the two models is significant (p<0.01).

4. Blizzard Results
This year Blizzard Challenge evaluates speech produced by
TTS on multiple criteria. The Hub-Task evaluates models ca-
pacities to reproduce natural behaviors of NEB. The natural-
ness is evaluated with Mean Opinion Scores (MOS). Intelli-
gibility is evaluated on heterophonic homographs disambigua-
tion and Semantically Unpredictable Sentences (SUS). Simi-
larly, the Spoke-task evaluates the ability of the model to pro-
duce natural voice with few examples on AD. Our system did
not perform better than the FastSpeech2 baseline in this speaker
adaptation task. Thus, this section is focused on the most inter-
esting results of our proposed system: naturalness and intelligi-
bility on the Hub-task. Results commented in this section have
been computed regardless of listeners experience in the domain.
Among all presented systems, A is the original recording, BT is
the baseline Tacotron2, BF is the baseline FastSpeech2, and N
is our proposed model. Our model N is highlighted in orange in
all figures.

4.1. Naturalness on the most seen speaker

The results of the naturalness assessment on the Hub-Task are
reported in Fig.4. Although not showing impressive results, our
model was significantly preferred over the FastSpeech2 base-
line. Training our model on orthographic sequences may have

helped to produce more accurate phonetic patterns. In compar-
ison, the FastSpeech2 Baseline BF has been trained solely on
phonetic inputs. Thus, BF relies on a G2P front-end to con-
vert the orthographic sequences of the test set before synthesis.
Depending on the front-end used, it may produce errors, in par-
ticular with French liaisons which may be hard to predict.

We also believe that our overall MOS score could have ben-
efited from simple post-treatments to reduce the produced noise.
We are aware that our Waveglow vocoder produces background
noise which can be detrimental to listeners judgment. However,
in an attempt to avoid the use of heuristics, we decided to enter
the challenge without post-processing denoising techniques.

4.2. Heterophonic Homographs Disambiguation
Intelligibility assessment on heterophonic homographs is re-
ported in Fig.5. Our model N achieves an average score among
all systems. Our model shows global improvements over the
BF, which was expected thanks to the addition of mixed repre-
sentations and the training of the phonetic prediction layer on
the auxiliary dictionary and homographs corpus.

More specifically, our model performs very well on homo-
graphs that have been seen with enough examples in its homo-
graph corpus. “Fils” (261 examples) pronounced /f i s/: “son
(en)” VS /f i l/: plural of “fil (fr)”, “wire (en)” has a intelligibil-
ity score or 100% for both variants, whereas systems with over-



Figure 5: Homographs intelligibility scores for the Hub Task. Our model N is highlighted in orange. The right graph shows the
percentage of correct pronunciation by system. The right graph shows this intelligibility assessment by homograph.

Figure 6: Intelligibility scores on semantically unpredictable sentences for the Hub Task. Our model N is highlighted in orange. The
right graph shows the percentage of correct pronunciations by system. In the right graph, black squares show that the difference
between the two models is significant (p<0.01).

all better scores do not achieve such accuracy on this specific
homograph. This is also true for “convient” (181 examples) or
“fier” (366 examples) (/k o~v i e~/: “suit (en)” VS /k o~v i/:
“invite (en)” — /f j eˆr/: “proud (en)” VS /f j e/: “trust (en)”),
with the most common forms /k o~v i e~/ and /f j eˆr/ being
systemically pronounced by other TTS regardless of the con-
text. On the contrary, “options” (117 examples), “intentions”
(141 examples) and “portions” (145 examples) also appear in
the homographs training corpus, but with fewer examples. The
number of examples and the balance between variants impact
the performances of the system. However, the proposed method
helps modelling homographs if enough examples are given dur-
ing training.

4.3. Semantically Unpredictable Sentences (SUS)
Intelligibility scores on SUS are reported in Fig.6 for all sys-
tems. All models but one perform similarly on SUS. Our system
only statistically differs from G which shows the worst results
on this task, and from O which performs better. On the other
hand, BF is found to statistically differ from the top 5 perform-
ing systems. The mixed representations and phonetic prediction
layer may have help to achieve this task.

5. Conclusions and Discussion
This paper has described the GIPSA-Lab system for the Bliz-
zard Challenge 2023. This system is very similar to the orig-
inal FastSpeech2 architecture, with two major additions: the
training on orthographic sequences and the phonetic prediction
layer. The phonetic prediction layer was evaluated before the

Blizzard Challenge, and showed very promising performances.
The results of the proposed system in Blizzard evaluation con-
firm the benefits of these additions compared to the baseline
FastSpeech2 system. Our system performed better than the
baseline FastSpeech2 on naturalness and intelligibility on the
most seen speaker in the corpus. On the other hand, our system
did not show much difference in terms of speaker adaptation.

The results of the disambiguation of heterophonic homo-
graphs shows the potential of the proposed training of the text
encoder on <orthography|phonetic> pairs without the need for
audio recordings. However, disambiguation was only improved
for the most seen examples in the homographs training corpus.
Wider corpora may help to achieve better results. The training
procedure may also impact the final result. The ratio of non-
audio inputs in the training batches may vary to include more
phonetic training during the learning phase.

The vocoder used also contributed to the mitigated MOS
evaluated during quality assessments. We experience mitigated
audio quality with Waveglow, which tends to add background
noise in our samples. The impact of this noise can be reduced
with post-processing denoising, that we did not explore in our
Blizzard submission. Other vocoders like Hifi-GAN may also
help regarding this issue.
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Abstract

Neural Text-To-Speech (TTS) models achieve great perfor-
mances regarding naturalness, but modeling expressivity re-
mains an ongoing challenge. Some success was found through
implicit approaches like Global Style Tokens (GST), but these
methods model speech style at utterance-level. In this paper,
we propose to add an auxiliary module called Local Style To-
kens (LST) in the encoder-decoder pipeline to model local vari-
ations in prosody. This module can implement various scales
of representations; we chose Word-level and Phoneme-level
prosodic representations to assess the capabilities of the pro-
posed module to better model sub-utterance style variations.
Objective evaluation of the synthetic speech shows that LST
modules better capture prosodic variations on 12 common styles
compared to a GST baseline. These results were validated by
participants during listening tests.
Index Terms: speech synthesis, expressive TTS, style control,
prosody modeling

1. Introduction
Latest neural Text-to-speech models (TTS) [1, 2], combined
with neural vocoders [3, 4] achieve high standards in terms of
naturalness. However, these systems still struggle to model the
variability of expressive speech. Two main factors are pointed
out to explain these difficulties: 1) the lack of labelled data and
2) the design choice of architecture which enables to learn this
variability, as well as its control at inference time. One of the
most successful model to tackle both issues is the Global Style
Token (GST) architecture [5]. The GST design relies on an
reference encoder [6], which converts a reference audio sam-
ple into a fixed-size vector which summarizes paralinguistic in-
formation. A set of unconstrained tokens are simultaneously
trained as an attempt to disentangle main speech features within
this paralinguistic representation. Although this architecture
enables training on data that is not expressive-labeled, uncon-
strained tokens are hard to interpret, and post-hoc analysis is
necessary to efficiently control the desired synthesis style [7].

Later studies elaborated on improving the expressive con-
trol provided by such architectures. Through supervised train-
ing [8] or automatic exploration of latent spaces [9], these
progress have enabled the careful design of the utterance-wise
style bias to be applied in order to generate speech following
the target style, without the need for an explicit audio reference.
However, natural expressive speech relies on multiple levels of
variations. The prosodic structure of one’s speech not only de-
pends on one’s intents or style, but also on the content itself,
as syntactic and semantic structures play an important role in
the organization of stress and phrasing [10, 11]. As a result,

utterance-wise style embeddings may lack finer-grained repre-
sentations in order to fully mimic natural voice behavior.

In this paper, we propose to model fine-grained prosodic
patterns through an auxiliary module called Local Style To-
kens (LST). Extending the GST implementation on a segmen-
tal level, this module learns to model the residual local speech
variations that remain to be explained after utterance-style bias
is applied. The proposed module can be applied at multiple
scales, providing that such scale can be automatically inferred
from the textual input. In this paper, this module was evaluated
on Word-level and Phone-level. After discussing related works
in Section 2, Section 3 describes the LST specificities and im-
plementation. Objective evaluations described in Section 4.2
compare this module’s performances with the GST utterance-
wise control and the natural speech. Finally, Section 4.3 de-
scribes the listening test procedure we conducted and its results.

2. Related Work

Fine-grained prosodic representations have been proposed in
TTS before. By construction, pitch and energy embeddings
in FastSpeech2 variance adaptor [2] are spectrogram frame-
level prosodic embeddings. These provide some prosodic con-
trol at inference, but also helps better modeling fundamental
frequency. The LST module relies on the same mechanism
as prosodic predictors, by re-injecting prosodic representations
within the model in the layer they are predicted from.

More focused toward expressive control, [12] proposed to
enhance Tacotron2 [1] with word-level style embeddings that
are concatenated to the encoder output. Word-level representa-
tions are computed with recurrent layers, and then passed to a
style attention layer similar to GST [5]. This work inspired us
for the present study, but we tried to avoid its main limitation:
authors had to train a Prior Encoder, which predicts word style
embeddings from the text input in order to synthesize text with-
out audio reference. As a result, the output synthesis is solely
based on the text input, denying the choice of expressive style
at inference. On the contrary, we aim to use Word (or Phone)-
level information to locally refine an global utterance-wise style
bias, and therefore combine both style and content inputs.

Hierarchical TTS models like CHiVE [13] or MsE-
moTTS [14] also take advantage of the multi-level aspect of
speech, by combining intermediate representations from differ-
ent scales: phonemes, syllables, words, utterance, etc. The en-
tire architectures of these models are built on this hierarchical
representations. On the other hand, the proposed LST module
is independent; it can be plugged to any encoder-decoder TTS
architecture, with various scopes of representation.
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Figure 1: Model Architecture. The Local Style Tokens module (LST) is plugged after the addition of the utterance-wise style bias.

3. Proposed Model
This section describes the architecture of the proposed Local
Style Tokens (LST) module and how it is integrated in the GST-
enhanced FastSpeech2 pipeline. The overall architecture of the
proposed model is shown in Fig.1.

3.1. Model Architecture

3.1.1. Model Backbone

The backbone of the model is FastSpeech2 [2], whose encoder,
variance adaptor and decoder are kept unchanged1. In addi-
tion, a label-constrained GST module [8] is plugged at the out-
put of the text encoder (Fig 1.1)2. This constrained-GST mod-
ule converts a reference audio sample into a fixed-size vector
through a reference encoder [6]. This fixed-size vector is then
used as the query of the cross-attention mechanism in an emo-
tion token layer. Similarly to GST [5], this emotion token layer
computes weights that measure the similarity between the ref-
erence vector and each global style token. Following [8], a
cross-entropy loss is added to enforce each token to encode one
particular style. The weighted sum of tokens is then added to
all phoneme embeddings computed by the text encoder. Con-
trary to a set of learnable style embeddings, this module helps
training the model on heterogeneous style samples. When given
the same style as target, one speaker may produce highly vari-
able utterances, with varying intensity of the given style. The
constrained-GST module may account for the intensity by us-
ing a mixture of tokens for low intensity utterances, even though
their label is the same as unambiguous utterances.

Following [15], a phonetic prediction layer is also added at
the output of the text encoder (Fig 1.2). This layer predicts a
one-to-one mapping between orthographic inputs and phonetic

1https://github.com/ming024/FastSpeech2
2GST implementation based on https://github.com/

taneliang/gst-tacotron2

outputs. The goals of this layer are twofold: first, it helps disam-
biguating homographs as shown in [16]. Second, it enables to
train the text encoder on <orthography|phonetic> pairs with-
out the need for corresponding audio. This eases the training
of models out of audiobooks corpora, e.g. through the use of
dictionaries.

3.1.2. Local Style Token Module

The Local Style Tokens architecture (LST) is introduced as an
auxiliary module which further modulates the output of the text
encoder. Although this module does not need to be combined
with the GST module, the LST layer alone does not provide
explicit control of the synthesis style at inference, which is why
the constrained-GST is used in this model.

In FastSpeech2 [2], the variance adaptor implements three
prosodic predictors which predict duration, pitch and energy
from the output of the text encoder. The prosodic losses as-
sociated to these predictors constrain the latent space to encode
at least representations of these three prosodic features. Sim-
ilarly, style embeddings [5, 17] that are added to all phoneme
embeddings suppose that additional acoustic and prosodic fea-
tures are at least partially encoded in this latent space. The LST
module may be seen as a residual layer which modulates the
latent representations that have been uniformly biased by the
GST embedding, according to the content or the position of lin-
guistic units in the utterance. This modulation further improves
acoustic and prosodic representations in this latent space.

The LST layer follows the same architecture as the original
GST [5]. Two levels of local tokens are examined in this study:
Word-level and Phone-Level. In the case of Phone-level tokens,
this module takes as inputs the globally biased phoneme embed-
dings sequence (Fig 1.3). For Word-level, this sequence is aver-
aged by word, to compute word-level representations (Fig 1.4).
Because our dataset preserves word boundaries and punctuation
marks in case of phonetic inputs, pseudo-word representations
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are also computed for spaces and punctuation marks (or both
when consecutive), also by averaging embeddings.

This input is enhanced by a 32-dimensional positional em-
bedding [18], which is concatenated (Fig 1.5). Indeed, similarly
to GST [5], the cross-attention mechanism in the LST layer uses
dot product attention, which cannot infer relative positions of
representations in the input sequence, in opposition with recur-
rent networks. However, acoustic patterns relative to style gen-
eration depends on the syntactic structure of the utterance and
on the relative position of units in the utterance. Although such
positional encoding has already been added to phoneme embed-
dings in the text encoder, preliminary studies showed benefits of
explicitly enhancing representations with positional encoding.

This input tensor serves as a set of queries for the cross-
attention mechanism in the LST layer. A set of weights is com-
puted for each element in the sequence, and the weighted sum
of token values constitutes the local prosodic embeddings se-
quence which is added to the globally biased phoneme embed-
dings before the variance adaptor (Fig 1.6). In case of Word-
level LST, the local prosodic embedding is first duplicated to be
added to all phonemes in the given word (resp. pseudo-word).
For ease of interpretability of local token weights, the cross-
attention mechanism is single-headed.

3.2. Training and Inference Processes

During training, the reference mel-spectrogram matches the tar-
get output. The reference encoder and the cross-attention GST
work as an emotion recognition module which computes a prob-
ability distribution of the given audio input on all constrained
style tokens. In contrast, the LST weights are not constrained
during training. The LST layer does not require additional
loss. It is trained by the back-propagation of the spectrogram
loss, prosodic predictors losses and phonetic loss. The back-
propagation is not stopped at the input of the LST module,
which enables the text encoder to incorporate features that may
be used to compute local prosodic embeddings in the LST layer.
The entire model can be trained simultaneously, from scratch.

Similarly to constrained-GST, two style control methods
are available at inference: 1) use a target reference audio which
produces a mixture of global style tokens or 2) specify the mix-
ture of global style tokens to use. Because the GST module is
constrained, each global style token has been trained to produce
one particular style. Thus, one-hot vectors are particularly fit-
ted to generate the desired style. Local prosodic embeddings
are computed in parallel by the LST module, which does not
impact the inference speed of the model.

4. Experiments and Results
4.1. Models and dataset

Three models are trained for this study: 1) FastSpeech2 with
constrained-GST referred as GST (the Baseline) ; 2) Baseline
enhanced with word-level LST referred as LSTW; and 3) Base-
line enhanced with phoneme-level LST referred as LSTP. LSTW
offers more context at the input of the LST module, which may
result in a more careful choice of representations in the LST
layer. On the other hand, word style bias may result in less
intra-word modulation.

All models are trained on the same dataset, given in Ta-
ble 1. This internal French dataset has been uttered by a French
professional theater actress. Sentences are taken from the SI-
WIS database [19], which is composed of isolated extracts from
French Novels and French parliament debates. For expressive

Table 1: Expressive Dataset. Durations are given in minutes.

Style Train Test
Duration # Utt Duration # Utt

Angry 24.2 523 1.5 32
Comforting 32.3 488 1.6 27
Committed 21.1 430 1.4 29
Enthusiastic 29.5 569 1.4 28
Obvious 27.0 492 1.5 27
Playful 19.1 465 1.5 28
Pleading 34.2 605 1.9 31
Skeptical 29.8 620 1.6 32
Sorry 24.2 448 1.1 23
Surprised 26.8 503 1.6 32
Thoughtful 43.4 450 2.1 27

Narrative 287.6 6235 14.6 307

Total 599.2 11828 31.8 633

Table 2: Number of Local Style Tokens used by the model per
style.

Style LSTW LSTP
# Tokens # Exclusive # Tokens # Exclusive

Angry 9 1 8 0
Comforting 8 1 7 0
Committed 8 0 11 0
Enthusiastic 6 0 10 0
Obvious 7 0 8 0
Playful 9 1 11 0
Pleading 6 0 10 0
Skeptical 10 0 12 0
Sorry 4 0 8 0
Surprised 8 0 11 0
Thoughtful 8 0 12 0

Narrative 11 3 13 2

Overall (/32) 32 6 30 2

speech recording, she was asked to utter the given sentences
with the specified style during exercise-in-style sessions. Dur-
ing these sessions, the actress was prompted to start her utter-
ance with a context sentence relative to the style being pro-
duced: “I am begging you” for “Pleading”, “I do not believe
it” for “Skeptical”, “Really?” for “Surprised”, etc. This context
sentence was cut from the final recording. The recordings are
being evaluated to verify that the produced style is correctly rec-
ognized by naive speakers, but this evaluation is still on-going
at the time of writing of this study.

The content is decorrelated from the expressed style, and
sentences differ between styles. Sentences that were not uttered
with a specific style were labeled as “Narrative”. This audio-
visual expressive dataset was recorded in the GIPSA-Lab, as
part of the Theradia project [20]. The 12 styles were chosen to
cover the expressive needs of the Theradia application. Only the
audio was used in this study. 5% of the corpus was randomly
selected as the test set. All models are trained for 250 epochs us-
ing both orthographic and phonetic input representations. Fol-
lowing early implementations of FastSpeech2, the pitch predic-
tor is trained on raw pitch values in semitones, instead of con-
tinuous wavelet transforms [21] in latter works. Pitch and en-
ergy values are averaged by phonemes, and normalized. The
one-to-one phonetic targets for the phonetic prediction task are
established using patterns described in [15]. The vocoder used
is Waveglow [3].
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Table 3: Mean errors per style computed on the test set. Blue (resp. red) indicates a lower error (resp. higher error) than GST. * and
** indicate that the distribution statistically differs from the GST baseline with p<0.05 and p<0.01, respectively.

Style Spectral Error (dB) Duration Error (ms) Pitch Error (Semitones) Energy Error (dB)
GST LSTW LSTP GST LSTW LSTP GST LSTW LSTP GST LSTW LSTP

Angry 0.93 0.91 0.93 9.18 9.01 9.13 2.29 2.14 2.50 3.24 3.15 3.34
Comforting 0.88 0.88 0.89 11.41 11.64 11.12 1.59 1.62 1.77 3.12 3.24 3.11
Committed 1.00 0.99 0.96 9.83 9.83 9.33 4.10 4.15 3.93 3.26 3.16 3.24
Enthusiastic 1.18 1.16 1.18 9.82 9.45 9.82 4.31 3.93 4.31 3.03 3.10 3.06
Obvious 1.07 1.05 1.08 10.74 10.23 10.01 3.32 3.12 3.41 3.12 3.09 3.12
Playful 0.97 0.99 0.96 12.08 11.29 11.25 4.06 3.98 4.11 3.09 3.06 3.04
Pleading 0.92 0.92 0.91 9.67 9.03 9.49 1.93 1.78 1.72 2.49 2.44 2.45
Skeptical 0.98 0.97 0.99 10.10 9.85 10.13 2.86 3.03 3.08 3.06 3.03 3.23**
Sorry 0.67 0.68 0.67 9.50 9.50 9.70 1.05 1.16 1.04 2.64 2.75 2.77
Surprised 0.97 0.97 0.97 10.20 9.85 10.07 3.47 3.33 3.40 3.21 3.13 3.30
Thoughtful 0.94 0.95 0.97 22.23 22.28 22.52 2.51 2.63 2.52 2.86 2.91 2.96

Narrative 0.90 0.90 0.89 10.45 10.36* 10.53 2.75 2.73 2.74 2.93 2.86* 2.86**

Total 0.93 0.93 0.92 10.52 10.31 10.44 2.70 2.67 2.71 2.97 2.94 2.96
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(a) Mean LST usage by style.

PLAYFUL

0 10 20 30
0

0.5

1

A
tt

e
n

ti
o

n
 w

e
ig

h
t

0 0.2 0.4 0.6 0.8 1
0

0.5

1
PLAYFUL

LST13

LST4

LST1

LST23

SKEPTICAL

0 10 20 30
0

0.5

1

A
tt

e
n

ti
o

n
 w

e
ig

h
t

0 0.2 0.4 0.6 0.8 1
0

0.5

1
SKEPTICAL

LST29

LST9

LST4

LST6

SORRY

0 10 20 30
0

0.5

1

A
tt

e
n

ti
o

n
 w

e
ig

h
t

0 0.2 0.4 0.6 0.8 1
0

0.5

1
SORRY

LST3

LST23

LST4

LST1

SURPRISED

0 10 20 30

LST index

0

0.5

1

A
tt

e
n

ti
o

n
 w

e
ig

h
t

0 0.2 0.4 0.6 0.8 1

Relative position in utterance

0

0.5

1
SURPRISED

LST29

LST30

LST25

LST27

(b) Mean LST usage relative to the
position in utterance (0: first char-
acter, 1: last character).

Figure 2: Local Style Tokens usage by style for LSTW. Four
styles are shown as examples: ”Playful”, ”Skeptical”, ”Sorry”
and ”Surprised”. Only the 4 local tokens with the maximum
mean attention weights are shown in Fig 2b.

Following the constrained-GST architecture given by [8],
12 tokens are needed in the GST layer to account for each style
label cited above. The target styles given to the actress are used
as style labels. The number of local style tokens is fixed to
32 for both LSTW and LSTP. 32 tokens is chosen as a middle
ground between sharing tokens across GST representations and
providing enough local tokens so that each global style can rely
on dedicated local tokens. To evaluate the usage of each indi-
vidual local token, 100 utterances of the test set were randomly
selected, and each utterance was generated with the 12 styles
of the corpus. Mean attention weights of each local token were
computed per style. Examples of mean attention weights by lo-

cal token and the dynamic of such attention are given in Fig 2
for LSTW. Table 2 summarizes the number of local tokens used
per style, as well as the number of tokens that are exclusive to
the specified style. One local token is counted as used if its
mean activation weight is above the uniform distribution across
all local tokens (above the red dashed line in Fig 2a). The over-
all number of tokens used differs from the sum because some
tokens are shared across styles. Two tokens are never used by
LSTP. LSTW and LSTP with 64 tokens were tested but showed
that too many tokens were never used.

The diversity of local tokens usage illustrates the benefits
of modelling prosody at a smaller scale. Multiple local tokens
are used by all styles to model various local patterns. “Angry”,
“Comforting”, “Playful” and “Narrative” use exclusive local to-
kens in LSTW, assessing for unique speech behaviors in this
sub-corpus (same for “Narrative” in LSTP). Figure 2b shows
the dynamic of local tokens attention relative to the position in
the utterance. Global styles exhibit various patterns, but most
characteristic behaviors are found at the beginning (LST29 for
“Surprised”) and at the end of utterances (LST13 for “Playful”
and LST3 for “Sorry”). Other styles like “Skeptical” are more
stable, but smaller variations of local tokens usage also indi-
cate that the LST module helps modulating representations at a
finer-grain.

4.2. Objective Evaluation

Objective evaluations of the synthetic models were conducted
to assess the benefits of the proposed model compared to the
baseline. Models are evaluated on 3 aspects: training loss
criteria, pitch variations and phrasing behaviors. All statis-
tical differences between distributions are evaluated pair-wise
through non-parametric Wilcoxon rank sum tests. The objec-
tive metrics shown in this section focus on various evaluations
of the three main prosodic features: duration, pitch and energy.
Other acoustic features like voice quality may impact style mod-
elling [22], but were not measured in this study.

4.2.1. Test Set Errors

All models are trained under the same loss criteria, which in-
clude mel-spectrogram losses and prosodic features predictions
(duration, pitch and energy). Table 3 summarizes these errors
from the test set ground truth (GT) after training. Spectral error
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Table 4: Mean standard deviation of pitch per style (Semitones).
* indicates that the distribution statistically differs from the GT
(p<0.05). Blue (resp. red) indicates that the proposed model
performs better (resp. worse) than the GST baseline.

Style GT GST LSTW LSTP

Angry 3.59 2.95 2.85* 2.77*
Comforting 1.94 1.68 1.70 1.77
Committed 3.92 3.92 3.94 3.69
Enthusiastic 4.79 3.27* 3.44* 3.24*
Obvious 4.25 3.06* 3.41* 3.39*
Playful 5.27 4.15* 4.03* 4.04*
Pleading 2.90 2.36 2.45 2.51
Skeptical 4.49 2.90* 3.36* 3.04*
Sorry 1.85 1.49* 1.65 1.58*
Surprised 5.66 4.03* 4.20* 4.08*
Thoughtful 2.70 2.53 2.64 2.54

Narrative 4.94 3.89* 3.91* 3.89*

is computed on synthesis aligned with Dynamic Time Warping
(DTW) [23]. Mean euclidean distances are evaluated on the
alignment path. Duration and energy errors are computed on all
phonemes, while pitch error is only evaluated on vowels.

Lower errors indicate that models that implement the LST
modules produce speech closer to the GT for most styles. Over
all errors, LSTW provides the most consistent benefits, with 28
improvements and 14 degradations, compared to 20 improve-
ments and 20 degradations for LSTP. These improvements were
significant for “Narrative”, but not for the other styles. “Com-
mitted”, “Enthusiastic”, “Pleading”, “Surprised” and “Narra-
tive” are the most improved styles. This indicates that those
five styles rely on local prosodic patterns that are difficult to
model with utterance-wise style representation. On the other
hand, “Comforting”, “Skeptical”, “Sorry” and “Thoughtful”
show higher errors with LST. Overall, the more mitigated re-
sults of LSTP may be explained by the wider variability pro-
vided by local tokens at the phoneme scale. This variability
opens the door for more risks of divergence with GT.

While lower errors indicate that synthetic speech is closer to
the natural utterances recorded in our corpus, there is no golden
standard for conveying a given style. Many variants: 1) could
have been performed by the recorded speaker for this same sen-
tence and style, and 2) may be perceived as similarly expressive
for a human listener. As a result, the GT is not the only licit
speech production, and more objective evaluations are needed
to assess the expressive quality of the synthetic speech. In the
following, we then compare distributions of prosodic parame-
ters measured on GT and on each of our models. Our criteria
for a successful rendering of prosodic features is therefore to
have non-significant differences between a model and the GT.

4.2.2. Pitch standard deviation

Pitch standard variations by utterance is commonly used to eval-
uated expressive capabilities of TTS models [2, 12]. Table 4
compares the pitch variability of GT to that of the synthetic
models. Highly variable styles like “Enthusiastic”, “Obvious”,
“Playful”, “Skeptical” and “Surprised” are harder to model for
TTS, as shown by statistical differences between GT and all
synthetic models. Overall, the LST module helps generating

Table 5: Mean proportion of silences in synthetic vs. GT utter-
ances (in %). ** indicates that distributions statistically differ
from the GT with p<0.01. Blue (resp. red) indicates that the
proposed model performs better (resp. worse) than the GST
baseline.

Style GT GST LSTW LSTP

Angry 2.6 2.0** 1.8** 3.0
Comforting 2.5 2.3 2.2 1.9*
Committed 4.8 3.3 3.4 3.3
Enthusiastic 1.6 1.7 1.6 1.2
Obvious 0.8 1.1 0.8 1.0
Playful 6.6 4.7 4.8 5.2
Pleading 1.3 0.6** 0.6** 0.7**
Skeptical 2.4 1.8** 2.0** 1.5**
Sorry 2.2 1.4** 3.2** 1.9**
Surprised 2.0 1.9 1.4 1.0
Thoughtful 1.8 2.4 1.4 1.6

Narrative 3.8 2.5** 2.6** 2.6**

more pitch variability, even though results were not significant.
Significant improvements were found for “Sorry”, with LSTW
generating pitch standard deviations closer to GT.

4.2.3. Phrasing Error

Phrasing is decisive in perceptual judgements [24, 25]. Notably,
varying frequency of silences when modifying the speaking rate
is a key feature of natural voice that synthetic models generally
struggle to achieve. Table 5 shows mean silence proportions per
style for each model and GT. Significant differences between
GT and synthetic models for “Pleading”, “Skeptical”, “Sorry”,
and “Narrative” demonstrate the difficulties of TTS to replicate
natural balance between speech and silences for these styles.
The LST module does not provide much improvement in that
regard. Conversely, LSTP produces more pauses for styles with
high silences ratio like “Angry” and “Playful”, whose natural
behaviors are hardly replicated by utterance-wise style bias in
GST (this improvement was significant for “Angry”).

Duration modulation were also evaluated as an indicator of
local prosodic patterns. We hypothesize that polysyllabic words
should be more impacted by local modulations, as they are
mostly content words. At least some of the studied styles should
emphasize local key points in the utterances that are embodied
by content words. Word duration modulation is evaluated as
the ratio between the duration of the last vowel and the mean
duration of other vowels of the same word. This measure indi-
cates the lengthening of last syllable of polysyllabic words, as
approximation of content words. Table 6 summarizes evaluated
duration modulation per style. Lengthening of the last syllable
of polysyllabic words is very common in GT, as shown by mean
word duration modulations above 1.25 for every style. “Obvi-
ous”, “Pleading”, “Sorry” and “Thoughtful” show the higher
degree of modulation. This modulation is closely replicated
by all synthetic models, with slight variations between models.
Interestingly, GST tends to elongate durations excessively, in
particular on “Enthusiastic”, “Playful” and “Thoughtful”, while
the LST modules help producing more natural duration modu-
lations.
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Table 6: End syllable duration modulation evaluated on poly-
syllabic words. * indicates that the distribution statistically dif-
fers from the GT (p<0.05). Blue (resp. red) indicates that the
proposed model performs better (resp. worse) than the GST
baseline.

Style GT GST LSTW LSTP

Angry 1.34 1.34 1.28 1.34
Comforting 1.33 1.35 1.39 1.36
Committed 1.34 1.34 1.39 1.34
Enthusiastic 1.36 1.47 1.44 1.38
Obvious 1.41 1.43 1.41 1.40
Playful 1.32 1.54 1.44 1.51
Pleading 1.37 1.30 1.35 1.30
Skeptical 1.24 1.28 1.31 1.22
Sorry 1.43 1.44 1.52 1.46
Surprised 1.25 1.23 1.27 1.21
Thoughtful 1.88 1.95 1.91 1.95

Narrative 1.33 1.36* 1.36* 1.37*

4.3. Listening Experiment

In order to evaluate perceptual differences between the pro-
posed model and the baseline, 60 participants took part in an
online MUSHRA-like experiment [26], run with the framework
webMUSHRA [27]. Given the text uttered and the target style,
participants were asked to evaluate on a scale from 0 (very bad)
to 100 (excellent) if the style was correctly rendered. For this
listening test, we selected 10 utterances per style that maximize
spectral distances between systems (120 in total). 5 groups of
12 participants evaluated each 24 utterances (2 per style), with
5 systems per utterance: the GST-enhanced FastSpeech2 base-
line, the two proposed models LSTW and LSTP, the vocoded
GT (high anchor), and a FastSpeech2 without GST trained on
non-expressive data (low anchor) referred as LA. Because the
Ground-Truth is not the only way to convey the given style, it
was not given as an explicit reference to the participants during
the listening test. Participants who misunderstood the evalua-
tion task were excluded: it includes ranking the non-expressive
model higher than the other models, as well as participants
with significantly lower standard deviation of grades. Examples
rated by participants can be found at the following link3.

Results of this perceptual experiments are given in Table 7.
LA was ranked significantly lower than all other models, except
for “Narrative” which is also modelled by the non-expressive
LA. Participants tend to favor LSTW and LSTP over GST. Most
noticeable improvements are found for “Angry”, “Committed”,
“Enthusiastic”, “Sorry” and “Narrative”. Objective evaluations
have shown that the LST module helps producing local behav-
iors that are closer to the GT. Reproducing pitch variations and
phrasing is critical for these styles to be perceived as natural.
Note that GT exhibited relatively poor results on “Skeptical”
and “Thoughtful”. These styles may have been too caricatured
by the speaker, which participants judged as unnatural.

3https://www.gipsa-lab.grenoble-inp.fr/

˜martin.lenglet/listening_page_LST/index.html

Table 7: Expressive-MUSHRA results per style. Blue (resp. red)
indicates that the proposed model performs better (resp. worse)
than the GST baseline. * and ** indicates that this difference
with GST is statistically significant with p<0.05 and p<0.01,
respectively. LA = Low Anchor, GT = Ground-Truth.

Style LA GST LSTW LSTP GT

Angry 17.3 63.0 64.3 68.3** 75.6
Comforting 15.4 66.2 63.5 61.5 80.5
Committed 24.9 65.1 70.9** 68 76.4
Enthusiastic 11.6 66.2 70.0 74.0* 86.4
Obvious 40.2 65.7 61.4 65.3 84.7
Playful 16.4 63.3 66.3 67.4 86.5
Pleading 12.3 71.3 70.1 71.2 77.9
Skeptical 36.3 47.3 50.6 46.6 63.3
Sorry 15.4 63.2 71.1** 68.0 68.7
Surprised 14.3 78.5 75.6 73.7 85.3
Thoughtful 24.3 46.9 47.5 52.7 62.7

Narrative 64.6 63.1 67.4* 67.5* 69.5

Total 24.2 63.0 64.7 65.0 76.1

5. Conclusions and Discussion
In this paper, we proposed the LST module for expressive
TTS which helps modeling fine-grained prosodic patterns. This
module was evaluated on 12 common expressive style for
French synthesis. Most promising improvements over the GST
baseline are shown for “Angry”, “Committed”, “Enthusiastic”
and “Sorry”, for which more subtle prosodic variations are
needed to achieve a natural behavior.

The number of tokens and training process of the LST mod-
ule deserves more attention. The best results are found for styles
that make use of multiple local tokens (Table 2 and Fig 2).
This result was expected, since adding the same local token all
along the utterance should not provide different results from an
utterance-wise style bias. Constraining the LST module to max-
imize tokens usage should help the model showing more ro-
bust results. Additionally, the number of local tokens should be
adapted to the scale of representations, e.g. allowing more var-
ious contributions for finer-grained prosodic patterns. Finding
the acoustic and prosodic features encoded by the local tokens
may also help understanding the acoustic similarities between
styles. This analysis is left for future works.

This study reinforces the need for more elaborated eval-
uation paradigms for expressive speech. While style “Sorry”
showed the greater amount of objective errors compared to the
Ground-Truth, it was still perceived as well rendered during lis-
tening tests. Prosodic patterns followed by the Ground-Truth
are not exclusive, and evaluation has to be adapted to match
perceptual judgements.

We will explore cascaded LST that can be stacked to en-
code increasingly finer representations such as phrases, words,
syllables, phonemes, etc. It would also be interesting to explore
the addition of level-specific information, using pre-trained rep-
resentations as BERT [28] for example.
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Abstract — In recent years, deep neural architectures have demonstrated groundbreaking
performances in various areas of speech processing, including Text-To-Speech (TTS). Models
have grown in complexity to achieve almost natural synthesis, at the expense of the inter-
pretability of the computed intermediate representations, also known as embeddings. This
thesis aims to open this "black box" to explore embeddings computed by state-of-the-art TTS
models. By identifying phonetic and acoustic features through linear probing, the proposed
methods facilitate the understanding of how TTS structure speech information on an unsuper-
vised manner. This work paves the way for designing more careful control mechanisms, without
the need for additional data or training process. The insights uncovered through the proposed
methods are employed to enhance the expressive control of TTS models. Three control mech-
anisms are proposed: 1) through the formatting of the textual input, 2) by imposing linear
biases on the intermediate embeddings, and 3) by introducing a dedicated auxiliary module
for the joint modeling of linguistic and paralinguistic information. These control methods are
combined to propose a model for audiovisual generation for an embodied conversational avatar.

Keywords: Text-to-Speech, Expressive Control, Neural Network, Explainable AI, Linear
Probing, Audio-Visual Synthesis

Résumé — Au cours des dernières années, les réseaux de neurones profonds ont bouleversé
divers domaines du traitement de la parole, notamment en synthèse de parole à partir de
texte (TTS). Ces modèles se sont complexifiés pour parvenir à une synthèse quasi naturelle,
au détriment de l’interprétabilité des représentations intermédiaires calculées, également ap-
pelées plongements. Cette thèse vise à ouvrir cette "boîte noire" pour explorer les plongements
calculés par les modèles TTS à l’état de l’art. En identifiant les paramètres acoustiques et
phonétiques au moyen de predicteurs linéaires, les méthodes proposées facilitent la compréhen-
sion de la manière dont les TTS structurent l’information de façon non-supervisée. Ce travail
ouvre la voie à la conception de mécanismes de contrôle mieux adaptés, qui ne nécessitent ni
de données ni d’entraînement supplémentaires. La compréhension apportéee par les méthodes
proposées a conduit à la mise en oeuvre de trois nouveaux mécanismes de contrôle expressif :
1) par le formatage de l’entrée textuelle, 2) par l’ajout de biais linéaires aux plongements
intermédiaires, et 3) par l’introduction d’un module auxiliaire dédié à la modélisation con-
jointe de l’information linguistique et paralinguistique. Ces méthodes de contrôle sont ensuite
combinées dans un modèle de génération audiovisuelle pour un avatar conversationnel incarné.

Mots clés : Synthèse Vocale, Contrôle Expressif, Réseau de neurones, Explication des
réseaux d’apprentissage profond, Prédicteur linéaire, Synthèse Audio-Visuelle
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