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Résumé

La nage des poissons reste un sujet complexe qui n’est pas encore totalement compris en raison
de son aspect interdisciplinaire qui mêle la biologie et dynamique des fluides. Au fil des millé-
naires, les organismes naturels ont perfectionné leur biologie pour naviguer efficacement dans
leur environnement et s’adapter à tout type de situations. Tout au long de l’histoire, l’humanité
s’est inspirée de la nature pour innover et développer des systèmes biomimétiques. Le poisson
robotique, en particulier, trouve nombres d’applications dans le monde réel et son contrôle doit
encore être optimisé. L’apprentissage par renforcement profond a donné d’excellents résultats
dans le contrôle des systèmes robotiques, dont la dynamique est trop complexe pour être en-
tièrement modélisée et analysée. Dans cette thèse, nous avons exploré de nouvelles voies de
contrôle d’un poisson biomimétique via l’apprentissage par renforcement afin de maximiser
efficacement la force de poussée et la vitesse de déplacement. Cependant, pour comprendre
pleinement ces nouveaux algorithmes basés sur les données, nous avons d’abord étudié l’ap-
plication de ces méthodes sur une référence standard de la théorie du contrôle, le pendule
inversé sur un chariot. Nous avons démontré que l’apprentissage par renforcement profond
pouvait contrôler le système sans aucune connaissance préalable du système, en obtenant des
performances comparables aux méthodes traditionnelles de la théorie du contrôle basée sur
un modèle. Dans le troisième chapitre, nous nous concentrons sur la nage ondulatoire d’un
poisson robotique avec différents objectifs et sources d’information de contrôle. Nos études
indiquent que la force de poussée d’un poisson robotique peut être optimisée en utilisant des
données provenant à la fois de capteurs de force et d’une caméra comme retour d’information
pour la commande. Nos résultats démontrent qu’une commande carrée avec une fréquence
particulière maximise la poussée et nous la rationalisons en utilisant le principe du maximum
de Pontryagin. Un modèle approprié est établi qui montre un excellent accord entre la simu-
lation et les résultats expérimentaux. Ensuite, nous nous concentrons sur la maximisation de
la vitesse d’un poisson robotique à la fois dans plusieurs environnements virtuels et dans des
expériences utilisant des données visuelles.

Mots-clés : Nage de poisson | Mécanique des fluides | Théorie du contrôle | Apprentissage au-
tomatique | Contrôle optimal | Apprentissage par renforcement | Réseaux neuronaux | Pendule
inversé | Poisson robotisé | Optimisation
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Abstract

Fish swimming remains a complex subject that is not yet fully understood due to the inter-
section of biology and fluid dynamics. Through years of evolution, organisms in nature have
perfected their biological mechanisms to navigate efficiently in their environment and adapt
to particular situations. Throughout history, mankind has been inspired by nature to innovate
and develop nature-like systems. Biomimetic robotic fish, in particular, has a number of appli-
cations in the real world and its control is yet to be optimized. Deep Reinforcement Learning
showed excellent results in control of robotic systems, where dynamics is too complex to be
fully modeled and analyzed. In this thesis, we explored new venues of control of a biomimetic
fish via reinforcement learning to effectively maximize the thrust and speed. However, to fully
comprehend the newly-emerged data-based algorithms, we first studied the application of these
methods on a standard benchmark of a control theory, the inverted pendulum with a cart. We
demonstrated that deep Reinforcement Learning could control the system without any prior
knowledge of the system, achieving performance comparable to traditional model-based con-
trol theory methods. In the third chapter, we focus on the undulatory swimming of a robotic
fish, exploring various objectives and information sources for control. Our studies indicate that
the thrust force of a robotic fish can be optimized using inputs from both force sensors and
cameras as feedback for control. Our findings demonstrate that a square wave control with
a particular frequency maximizes the thrust and we rationalize it using Pontryagin Maximum
Principle. An appropriate model is established that shows an excellent agreement between sim-
ulation and experimental results. Subsequently, we concentrate on the speed maximization of
a robotic fish both in several virtual environments and experiments using visual data. Once
again, we find that deep Reinforcement Learning can find an excellent swimming gait with a
square wave control that maximizes the swimming speed.

Keywords: Swimming | Fluid mechanics | Control theory |Machine Learning | Optimal Control
| Reinforcement Learning | Neural Networks | Inverted Pendulum | Cart-pole | Robotic Fish |
Optimization
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Notations

Symbol | Phrase Meaning
ODE Ordinary differential equation

linear system system in which the change of the output is linearly proportional to the
change of the input

nonlinear system system in which the change of the output is not proportional to the change
of the input

Linearization method of approximating a nonlinear system with a linear system
LTIS Linear Time Invariant System

setpoint reference position for control
s ∈ S States.
a ∈ A Actions.
r ∈ R Rewards.
st, at, rt State, action, and reward at time step t of one trajectory.

γ Discount factor ; penalty to uncertainty of future rewards ; 0 < γ ≤ 1.
Rt Return ; or discounted future reward ; Gt =

∑∞
k=0 γ

kRt+k+1
P (s′, r | s, a) Transition probability of getting to the next state s′ from the current state

s with action a and reward r.
π(a | s) Stochastic policy (agent behavior strategy) ; πθ(.) is a policy parameteri-

zed by θ.
µ(s) Deterministic policy ; we can also label this as π(s), but using a different

letter gives better distinction.
V (s) State-value function measures the expected return of state s ; Vw(.) is a

value function parameterized by w.
V π(s) The value of state s when we follow a policy π ; V π(s) =

Ea∼π [Gt | St = s].
Q(s, a) Action-value function or quality value is similar to V (s), but it assesses

the expected return of a pair of state and action (s, a) ; Qw(.) is an action
value function parameterized by w.

Qπ(s, a) Similar to V π(.), the quality value of (state, action) pair when we follow
a policy π ; Qπ(s, a) = Ea∼π [Gt | St = s,At = a].

A(s, a) Advantage function, A(s, a) = Q(s, a) − V (s) ; it can be considered as
another version of Q-value with lower variance.
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CHAPTER 1
Introduction and

context
Mankind has always been fascinated by the vast and mysterious sea realm that has yet to be

fully explored. Around 71% of the earth’s surface is water-covered, yet more than 80% of the
ocean surface is still not mapped [Eakins and Sharman, 2010]. Oceans are full of undiscovered
natural resources and humanity has made significant strides in uncovering these resources [Lub-
chenco and Haugan, 2023]. A lot of natural resources still remain in unexplored places of the sea.
It is inevitable that we develop technologies to navigate and fully explore the oceans. This puts hu-
manity on the path of a growing industrial interest in submarines, UAVs (Underwater Autonomous
Vehicles), shipbuilding and cruise industry.

The technological and industrial progress in recent years has made it possible for us to interact
with the marine environment in different forms of aquatic endeavors. There has also been a surge
in demand for the development of submarines and UAVs, primarily for military defense applica-
tions. This shift has substantially influenced the economic landscapes of numerous nations and
industries.

Nature is a living system that has been managing its resources efficiently and continuously
for millions of years. Through years of evolution, animals, plants, and other living beings have
developed biological mechanisms to cope with the challenges of their environment and ensure
their survival [Gayon, 1998]. This shows that nature is a source of inspiration for sustainable de-
sign and makes nature an excellent model for imitation in many aspects of our lives [Sanchez
et al., 2005]. Nature has been a rich source of inspiration for numerous technological innovations,
encompassing materials, sensors, robotics, and more [Farhat et al., 2019,Triantafyllou and Trian-
tafyllou, 1995, Koo et al., 2018]. Among the variety of organisms that inspire robotic design, fish
are particularly promising due to their ability to navigate a vast range of aquatic environments with
precision and efficiency. Their swimming capabilities, streamlined bodies, and sensory feedback
systems are testaments to millions of years of evolutionary development.

To enhance our exploration of the world’s oceans, it is imperative to study and understand the
behavior of their primary residents, fish. Fish have energy-efficient and maneuverable swimming
patterns. Their efficiency is so great that it surpasses the capabilities of human-designed underwa-
ter vehicles.

A minimally disruptive way of observing marine life is especially useful when studying ani-
mals’ behaviors, swimming gaits and interactions within their natural environment [Krause et al.,
2011]. One way to achieve this is to use UAV that could swim alongside marine life to allow
close-range examinations. Underwater vehicles predominantly use propellers or jet-based propul-
sion systems. This kind of propulsion system can potentially scare marine life and disturb up-close

3



4 CHAPITRE 1 — Introduction and context

observations [Bruzzone et al., 2021]. Many of these traditional UAV designs are not only cumber-
some, but also demand complex and expensive fabrication processes. The robotic fish is a natural
candidate to observe marine life by mimicking the fish movement without disturbing them. Due
to its hydrodynamic shape and fish resemblance, it can easily fit into the aquatic animal kingdom.
The observations of marine life are crucial to study the underwater ecological system and the im-
pact of climate change on it, providing insights to mitigate this effect. It has also been shown that
fish can also follow fish like robots that can evacuate them from dangerous zones impacted by
pollution such as oil spill in the ocean [Polverino et al., 2013]. Not only can a biomimetic robotic
fish observe the marine life of real fish without disturbing them, but also a soft robotic fish can be
a leader in a school of natural fish [Marras et al., 2012] and bring them to different locations.

One of the primary motivations of constructing a robotic fish is that fish has superior efficiency
and agility with respect to UAVs . It is shown that the propulsion efficiency of the fish can exceed
90% [Triantafyllou and Triantafyllou, 1995]. The robotic fish is also small in its cross section,
which permits it to access the hardly accessible zones underwater. There have been numerous
applications of robotic fish for observing pollution or wild nature underwater [Kohnen, 2009].
One of those [Hu et al., 2011] tracks water pollution with the swarm of robotic fish equipped with
sensing capabilities.

1.1 Aquatic Locomotion

The movement of a swimmer through water results from interaction of animal dynamics with
the surrounding fluid. This fluid-structure interaction (FSI) case is hard to resolve in a closed
form for several reasons. Firstly, the deformation of a swimmer is hard to model mechanically
and the loads and stresses are barely calculable given a soft material of interaction. Soft tissue
deformations can be approximated and the general physics frameworks applied to tackle the chal-
lenge, such as large deformation theory [Dill, 2006] or the classical beam theory [Cheng et al.,
1998, Pedley and Hill, 1999, Ramananarivo et al., 2013].

Aquatic animals generate velocity and pressure fields while moving in water. The knowledge
of pressures and velocities permits us to analyze the Navier-Stokes equations [Landau and Lifshitz,
1987] which are partial differential equations (PDE) that can describe the motion of Newtonian
and in-compressible fluids and gases in three dimensions. The first equation is the mass balance
equation :

∂ρ

∂t
+∇ · (ρu) = 0, (1.1)

where ρ is the density of the fluid and u is a velocity vector in three dimensions. This equation
links density change to the mass flux. Because fluid is incompressible and matter is conserved,
from the differential form of continuity equation reduces to :

∇ · u = 0. (1.2)

Also, according to Newton’s second law (
∑
F = ma), when fluid is in motion, the momentum is

conserved :
ρ

(
∂

∂t
+ u · ∇

)
u︸ ︷︷ ︸

internalforces

= −∇p︸ ︷︷ ︸
pressure

+µ∇2u︸ ︷︷ ︸
viscous

+ g︸︷︷︸
external

, (1.3)

where µ measures the fluid viscosity and g represents external forces such as gravity. Furthermore
we neglect the external forces (g = 0), because fish are almost neutrally buoyant. These are the
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fundamental and general PDEs that are used in the simulation of many fluid systems from analy-
zing the flight of airplanes to understanding ocean currents that could result in natural disasters.
The Eq. (1.3) also incorporates the pressure and viscous terms. Depending on the situation, one
term is dominant over another. A dimensionless number known as the Reynolds Number (Re) is
introduced to nondimensionalize Eq. (1.3). Defining characteristic parameters, the length of the
animal with L, and the locomotion speed of a swimmer with U , the Reynolds Number is defined
as the ratio of inertial terms to the viscous forces :

Re ∼ ρ(u · ∇)u
µ∇2u

∼ ρU2/L

µU/L2 = ρUL

µ
. (1.4)

The Reynolds Number permits to determine whether the flow induced by the swimmer is turbulent,
laminar or in-between. If Re � 1, then the viscous forces are dominant over the inertial terms
and the flow is said to be stokesian. In this limit, inertial terms are negligible with respect to the
viscous terms, then Eq. (1.3) can be reduced to Stokes equations which can be solved analytically
in steady state :

∇p = µ∇2u (1.5)

Note that Eq. (1.5) does not depend on time. The region, where Re ∼ 1 correspond to the region
of small microscopic creatures living in the fluid, from several millimeters to several centimeters
(for example, larvae).

In the general case, when Re � 1 in (Eq. (1.3)), Navier-Stokes equations are hard to solve
analytically and turbulence appears for large Reynolds numbers (for instance, large cruise ships
swimming in the ocean). The general solution of Eq. (1.3) and its uniqueness is still an unsolved
problem and is part of one of the seven millennium prize problems [Devlin, 2002].

The eight orders of magnitude in Reynolds number of aquatic locomotion is shown in Fig. 1.1.
These animals vary in length from a few centimeters to 30 meters that can reach blue whales.

Figure 1.1 – aquatic swimmers and the corresponding Reynolds number, gathering larvae, fish,
amphibians, reptiles, marine birds and large mammals. From [Gazzola et al., 2014]

Among the aquatic swimmers, there is a big abundance of ways of locomotion. Some ani-
mals like jellyfish eject the water from their internal body chambers to move forward, while other
animals like aquatic birds or certain amphibians move their limbs like paddles to move forward
[see Fig. 1.2]. Their motion models can be found in [Alexander, 2013]. The four general types of
aquatic locomotion can be found in Fig. 1.2.
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Figure 1.2 – Types of aquatic locomotion (a) oscillatory : tuna, (b) undulatory : ray, (c) pulsatile
jet : jellyfish and (d) drag based : duck. From [Van Buren et al., 2019]

Among the aquatic animals, there is a big group constituted mainly from fish. These fish
primarily employ one of two principal locomotion mechanisms [see Fig. 1.2a and b]. The first
group [Fig. 1.2a] only involves the movement of the caudal fin, termed oscillatory motion [Vata-
nabe et al., 2008] (oscillatory). The second mechanism [Fig. 1.2b] involves the movement of their
spines propagating deformation waves through the body to propulse [Lauder and Tytell, 2005]
(undulatory). In nature, most of fish (around 80%) exhibit undulatory motion [Di Santo et al.,
2021].

1.2 Fish Locomotion

Understanding the fundamentals of fish locomotion is a key to designing efficient artificial
underwater systems. Richard Bainbridge revolutionized the understanding of swimming mecha-
nisms [Bainbridge, 1958] in the 1950s. His pioneering work was one of the first to comprehend
the relationship between the fish kinematic characteristics (tip-to-tip tail beat amplitude A and
frequency f ) and the swimming speed, U . His work gave the general relation linking fish’ length
L, frequency f and velocity U :

U

L
= 3

4f − 1

He also found that in general, the ratio between the tail amplitude and the length of a fish remained
constant :

A

L
≈ 0.2 (1.6)

We now construct the relationship between kinematic characteristics and the swimming speed
from simple physical derivations [see Fig. 1.3]. When fish undulates its tail, it generates the thrust

Figure 1.3 – Schematic for fish locomotion. Basic kinematic variables are represented. From [Gaz-
zola et al., 2014]

force and is subject to drag that opposes the movement. The caudal fin of a fish propels a volume
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of water, with its mass being proportional to the density of the fluid and a power of the fish’s length
m ∝ ρL3. The water is moving with the acceleration A.ω2. According to Newton’s laws, the fish
experiences the force in the opposite direction. The thrust force is equivalent to the projection of
this force on the axis of fish movement (in small angle limit : sin(A/L) ∼ A/L) :

Fthrust ∼ ρA2ω2L2. (1.7)

While moving, fish are subject to the skin and pressure drag [see Fig. 1.3 and Eq. (1.3)]. Skin drag
is the force opposing the movement induced by the viscous friction between the fish skin and the
water. The pressure drag is the drag force due to the difference of pressure between the front and
the back of the fish in turbulent flow. The dominating drag force depends on the Reynolds number
(Re) of fish-water interaction. As it has been shown in [Gazzola et al., 2014], fish related to high
Reynolds number (Re > 103 ∼ 104) are mainly subject to pressure drag.

Figure 1.4 – The Reynolds number, as a function of the swimming number (Sw = ωAL/ν) for
various aquatic species, reveals the presence of two distinct regimes for inertial swimmers : the
laminar regime and the turbulent regime. From [Gazzola et al., 2014]

Fpressure.drag ∼ ρU2L2. (1.8)

At the cruising speed, the thrust force is equilibrated by the pressure drag which implies that :

U ∝ Aω, (1.9)

for the fish locomotion, when Re = UL
ν > 3000 [Gazzola et al., 2014] (kinematic viscosity

ν). Below Reynolds number Rec ≈ 3000, the boundary layer of fish-water interaction becomes
dominant ; the viscous drag can no longer be neglected and the force balance derivation yields
that :

U ∼ A4/3ω4/3L1/3ν−1/3. (1.10)
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The dimensionless number called Swimming Number, Sw, has been introduced :

Sw = ωAL

ν
, (1.11)

to nondimensionalize proportionalities 1.9 and 1.10. The resulting tendencies are :

Re ∼ Sw4/3, Re < 3000
Re ∼ Sw, Re > 3000 (1.12)

This is the power law of swimming that has been validated both in numerical simulations [Gazzola
et al., 2014] and on the experimental data in Fig. 1.4. The way a fish chooses the amplitudeA of its
tail oscillation has been studied extensively in the literature [Bainbridge, 1958,Sánchez-Rodríguez
et al., 2023]. Yet no study demonstrates rigorously how and why fish chooses the swimming gait
or frequency ω of its tail undulation in experiments.

Early research in the investigation of swimming gaits was only experimental [Bainbridge,
1958] and the quantity and reproducibility of data was limited. The experimental approach was
soon complemented with theoretical models of fish locomotion based on the research from ae-
rodynamic theory. Slender body theory [Munk, 1924] became the basis of Lighthill’s elongated
body theory [Lighthill, 1971] and thin airfoil theory served as the starting point of Argentina’s [Ar-
gentina and Mahadevan, 2005, Gazzola et al., 2015] swimming propulsion theories. Even if these
analytical models lay a profound foundation in the understanding of fish locomotion, they are li-
mited with an experimental validation. Biomimetic robotic swimmers, on the other hand, serve as
an experimental setup for testing the hypotheses and models of swimming propulsion [Ramana-
narivo, 2014, Gibouin et al., 2018, Sánchez-Rodríguez et al., 2021]. The Robo-Tuna [Triantafyl-
lou and Triantafyllou, 1995] was one of the first examples to propel itself successfully. Similar
to a real tuna, it wasn’t very maneuverable, but the robot proved the superior efficiency to other
types of UAVs. Then, anguilliform-type swimming agile robots have been developed [Boyer et al.,
2009,Boyer et al., 2008,Boyer et al., 2010,Kelasidi et al., 2016,Kelasidi et al., 2018] with several
internal motors that imitate limbs of undulation. In the last decade, many robotic fish prototypes
have been developed. Most of the biomimetic robotic fish are single-joint (one actuator) [Zhu et al.,
2019, Yu et al., 2016, Clapham and Hu, 2014a, Clapham and Hu, 2014b], multi-joint (multiple ac-
tuators) [Li et al., 2021a,Martins et al., 2017,Yu et al., 2014b] or using smart materials [Gao et al.,
2011, Currier et al., 2020, Katzschmann et al., 2018] to undulate its tail. One of these fish using
hydraulics [Katzschmann et al., 2018] with silicon-based tail for undulation, can also control the
depth of immersion via pump-based buoyancy mechanism. To achieve biomimetics, many robotic
fish use soft materials for the rear body and caudal fin actuated by several wires [Floryan et al.,
2018, Berg et al., 2021, Mitin and Lobov, 2022, Du et al., 2015, Zhong et al., 2017]. It has been
shown that a biomimetic robotic tuna fish can closely resemble the real tuna and exhibit similar
characteristics in undulation frequency and COT 1 calculations [Zhu et al., 2019].

1.3 Control methods for steering a robotic fish

Traditional control approaches of a robotic fish often rely on predefined kinematic patterns
or manually-tuned control algorithms. These methods, while effective to a certain degree, do not
necessarily harness the full potential of fluid-robot interactions. One of the common methods is to

1. Cost of Transport, the energy necessary to travel a certain distance
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generate artificial central pattern generators. Central Pattern Generators (CPG) exist in many fish
species. CPG is a biological neural network capable of producing coordinated rhythmic patterns
without any rhythmic inputs from sensory feedback or central control system [Ijspeert, 2008].
Some research work use CPG [Yu et al., 2014b,Wang et al., 2019,Yu et al., 2014a] to propel robotic
fish, while other work uses fuzzy logic [Hu et al., 2009a] to follow the target, PID controllers
[Barbera et al., 2011] to regulate the orientation and a proprioceptive mechanism to propel the
robotic fish [Sánchez-Rodríguez et al., 2021].

The control of a robotic fish in a turbulent flow is inherently not simple, due to the turbulent
nature of the environment. Fish have evolutionarily developed a sense of proprioception in water.
The sense of proprioception is a feeling of position of oneself with respect to the complex external
environment. To feel the water flow, fish have developed Lateral Line System (LLS) [Coombs and
Montgomery, 2014] that permits them to sense the flow field. The LLS system can be artificially
mimicked by several pressure sensors on each side of a fish [Zheng et al., 2021]. Because of the
complex nonlinearity of a robotic fish swimming, recently, there has been a growing interest in
applying Reinforcement Learning (RL) for different control tasks [Zheng et al., 2021, Chen et al.,
2022, Zhang et al., 2020, Rajendran and Zhang, 2022]. Most of this research work had predefined
patterns (harmonic movement or CPG) and optimized some parameters of the predefined control
pattern via Reinforcement Learning. In all previous work, there has not been a clear optimization
on the best control strategy to achieve the highest swimming speed. We expand on this challenge
in Chapter 3.

Machine learning (ML) has transformed different industries, offering tools to derive complex
patterns and relationships from data that are often beyond human intuition. In the domain of ro-
botics, ML represents a paradigm shift : rather than programming robots, we can now make them
learn useful control techniques. RL, a subset of ML, is a control framework that allows robots
to learn from trial and error, fine-tuning control strategies based on the feedback from the envi-
ronment. For robotic fish, this means the potential to learn optimal swimming patterns, adapt to
changing environmental conditions, and even develop novel maneuvers that might not have been
conceived through traditional design approaches.

Lately, some research has studied fish swarm control, examining both collective behavior and
the influence of individual fish on the swarm [Berlinger et al., 2021, Zhang et al., 2021, Zhang
et al., 2017, Li et al., 2021b]. Conventional control algorithms may be inefficient for this control
task and RL, especially multi-agent RL [Buşoniu et al., 2010] have a big potential to bring insights
on fish swarm formation and movement. Moreover, different vision-recognition applications with
a robotic fish have been explored [Ji et al., 2020,Angani et al., 2020,Hu et al., 2009b] with an aim
to recognize objects, hand gestures and a target of interest.

This thesis aims at finding suitable tools via modelling and machine learning to find optimal
swimming gaits of fish locomotion. Fish swimming capabilities result from years of evolution,
and we will try to mimic fish swimming capacity by learning techniques on a biomimetic robotic
fish described in Chapter 3. One of the ways to address the problem is to apply learning algorithms
of the control theory on a biomimetic robotic fish to infer the optimized swimming gait. Lately, the
work on fish locomotion gave some new insights on comprehension of fish movement [Sánchez-
Rodríguez et al., 2020, Sánchez-Rodríguez et al., 2021]. These models are extensively used in
simulation of a robotic fish in Chapter 3 in order to test the feasibility of the learning approach
before proceeding with the real experimental setup. Then, we use the learning algorithms directly
on biomimetic robotic fish to study an optimal swimming gait in experiments. Application of
deep reinforcement learning approaches on a robotic fish locomotion and combination of these
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algorithms with the models in simulations allows us to find optimal physical parameters A,ω (A
being the amplitude of fin undulation and ω the angular frequency) of the fish kinematics for
different tasks. The RL algorithms can potentially enhance the agility, efficiency and adaptability
of biomimetic robotic fish, bringing them closer to their biological counterparts in performance.
We will elaborate on the details of various RL algorithms in Chapter 2 and 3, and in the next
section, the general introduction of machine learning is given.

1.4 Machine learning

Machine learning is a subset of Artificial Intelligence (AI) that provides algorithms to au-
tomatically infer meaningful patterns from provided or generated data. Machine learning yields
insights about the data and recognizes complex relations among the data components. It has many
applications in daily life, starting with chat-bots with general information assistance and ending
with algorithms that pilot cars and satellite systems. The first appearances of machine learning
happened in the 1950s with a "perceptron" [Rosenblatt, 1958] and a program learning to play che-
ckers [Samuel, 1959]. Perceptron is the basic component of modern neural networks. After a few
decades, the concept of Convolutional Neural Network (CNN) for pattern recognition was intro-
duced in 1980 [Fukushima, 1980]. Later, the term deep learning was introduced in [Dechter, 1986]
referring to the neural network with multiple hidden layers. The foundations of deep learning has
been laid in the 1990s [Hinton et al., 1990, Hinton et al., 1984, Lecun et al., 1998]. The domain
of deep learning has not been in the sight of the wide public until 2012 when the neural network
AlexNet [Krizhevsky et al., 2012] was introduced. This artificial neural network (ANN) was the
first instance of deep learning using CNNs which was able to decently classify the objects. Then
the revolutionizing work in the domain of deep learning in the 2010s has been an introduction of
GAN [Goodfellow et al., 2014] and Transformer [Vaswani et al., 2017] laying the foundation of
Generative AI. The domains of engineering impacted the most by machine learning for today are
Computer Vision and Natural Language Processing. Every industry has seen some direct or indi-
rect impact created by the AI boom. The most recent breakthrough advances in the application of
deep learning include AlphaFold [Jumper et al., 2021] predicting the architecture of protein struc-
tures, AlphaGo [Silver et al., 2016] learning to play the game "GO" and large language models
(LLM) [Touvron et al., 2023] such as ChatGPT.

There are 3 types of machine learning with their sub-variants and mixtures Fig. 1.5 :

1. Supervised Learning : algorithms are trained on labeled data. Trained algorithms genera-
lize and predict labels accurately on unseen data.

2. Unsupervised Learning : algorithms are used to infer a function and to describe hidden
structures from unlabeled data.

3. Reinforcement Learning : algorithms are trained on self-generated data where algorithms
improve in a particular task based on some reward or punishment.

There are several mixtures of supervised and unsupervised learning such as self-supervised lear-
ning, semi-supervised learning and weakly-supervised learning. Among the three types of machine
learning, a particularly exciting approach is Reinforcement Learning (RL).

Reinforcement Learning, being a type of Machine learning, is a branch of control theory that
focuses on the control of dynamical systems from system interaction and without prior modeliza-
tion. Deep RL, referring to RL with neural nets, is considered as one of the promising venues of
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Machine 
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Control of Dynamic Systems (SAC)
General Optimization (MuZero)

Figure 1.5 – Machine learning overview with light blue rectangles as model examples and green
blocks as application examples.

AI. It has historically been applied for finding successful strategies in games [Tesauro, 1995,Mnih
et al., 2013,Silver et al., 2017]. Then, deep RL has also shown enormous success in the control of
dynamic systems both in simulation [Mnih et al., 2013,Lillicrap et al., 2016] and real robots [Kim
et al., 2004, Ng et al., 2006, Buşoniu et al., 2018, Riedmiller, 2005].

There are several sub-types of deep RL :

1. Model-free : algorithms concentrate only on the actions leading to the desired outcome.
Based on the interaction with a dynamical system, these methods model the control strate-
gies. This subtype was a primary focus of algorithms applied in this thesis.

2. Model-based : algorithms not only optimize the control sequence to achieve the desired
outcome, but also model the dynamics of the system from interaction experience via func-
tion approximations such as neural networks. This permits the algorithm to achieve the
desired result with less system solicitation. Unlike model-based RL, model-free family do
not model the physical system or the dynamics inner working leading to the computation
superiority of model-free algorithms and potential better performance due to the "model-
bias".

Before implementing data-driven learning algorithms on a robotic fish, we use reinforcement
learning on the inverted pendulum problem in Chapter 2, usually seen as a benchmark problem
in the control theory, because fish locomotion is a more difficult problem which involves fish
body and complex fluid-structure dynamics defined by allometric laws [Pedley, 1977,Vogel, 2020,
Gibouin et al., 2018, Sánchez-Rodríguez et al., 2020]. There is no guarantee that RL will be able
to find good policies, as aquatic locomotion remains a highly nonlinear process.
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1.5 Thesis structure

The present thesis is organized in 3 chapters.

1. Context, Thesis structure. The preset chapter details the context of PhD, aquatic and
fish locomotion. The use cases of a robotic fish are presented with a gentle introduction
and motivation to AI. Different types of robotic fish and various control strategies are
introduced.

2. Control theory methods with an application on an inverted pendulum. This chapter
details the general theory on control algorithms. These methods are then applied on an
inverted pendulum including classical control theory methods. Extensive theory on data-
driven control algorithms is given with an application on a cartpole system.

3. Reinforcement learning approach to control a robotic fish. This chapter details the
materials and methods for the optimization of a swimming gait of a robotic fish. The mo-
delization of a robotic fish is presented with the corresponding simulation model. First
the optimization happens on data from a force sensor, then using camera readings. Our
learning sessions targeted two main objectives : the maximization of thrust force with a
stationary fish and the maximization of speed with a fish in motion within a water tank.

Research output
1. Israilov, S., Fu, L., Sánchez-Rodríguez, J., Fusco, F., Allibert, G., Raufaste, C., and Ar-

gentina, M. (2023). Reinforcement learning approach to control an inverted pendulum : A
general framework for educational purposes. Plos one, 18(2) :e0280071.

2. Israilov, S., Fu, L., C. Brouzet, Allibert, G., Raufaste, C., and Argentina, M. Bio-inspired
robotic fish thrust optimization using machine learning. Euromech Colloquium 628, Poster
Session on "Complex particles in turbulent flow". May 4, 2023, Auditorium of the ICM,
Nice, France.

3. Fu, L., Israilov, S., Brouzet, C. , Allibert, G., Raufaste, C., and Argentina, M. Optimum
control strategies for maximum thrust production in underwater undulatory swimming.
Submitted to Nature Communications (reference number : NCOMMS-23-57619)

4. Israilov et al. Learning to swim with deep Reinforcement Learning. In process of writing.
IROS/RAL 2024



CHAPTER 2
Control theory methods

with an application on
an inverted pendulum

Controlling a nonlinear systems may be challenging. For this reason, the model-based
control theory methods are explained with an application on the inverted pendulum, be-
fore moving with the data-driven machine learning approaches for control. Model-based
control theory methods serve as an introduction and benchmark methods for control of
data-driven reinforcement learning methods. We, hereby, provide basic tools to unders-
tand reinforcement learning algorithms. Based on simple principles, we expand on the
model-free deep reinforcement learning enhanced with neural networks. Finally, we per-
form the analysis of the application described methods on a real pendulum setup and
virtual environment simulators.
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2.1 Traditional control theory methods

Control systems are an integral part of modern technology, guaranteeing stability and preci-
sion in areas ranging from industrial processes to robotics and aerospace. Many physical systems
are inherently nonlinear and described by complex differential equations. However, they can be
linearized around an equilibrium. After linearization, these systems can be modeled with several
coupled first-order ODEs. Classical control theory has developed a number of methods that deal
with these linearized systems.

Let the system have a state X = [x1, x2...xn] ∈ Rn, output Y = [y1, y2...yp] ∈ Rp and control
U = [u1, u2...um] ∈ Rm applied on the state X, then a time-invariant system characterized by
nonlinear dynamics can be generally expressed through a set of nonlinear differential equations in
the following form : {

Ẋ(t) = f(X(t),U(t))
Y(t) = g(X(t)), (2.1)

where f, g are locally Lipschitz (continuous) nonlinear vector functions. We consider that there
is no direct relation between input U and output Y. Around the equilibrium point X∗ when
f(X∗, 0) = 0, the dynamics of this nonlinear system f(X(t),U(t)) can be written in the fol-
lowing form (via Taylor expansion) :

Ẋ =
(
∂f

∂X

)
X=X∗,U=0

X +
(
∂f

∂U

)
X=X∗,U=0

U + fh.o.t.(X,U), (2.2)

where fh.o.t.(X,U) denotes the higher-order terms in X and U. Let A ∈ Rn×n represent the
Jacobian matrix of f with respect to X, evaluated at the point (X = X∗,U = 0) ; similarly, let
B ∈ Rn×m be the Jacobian matrix of f with respect to U and C ∈ Rn×p denote the Jacobian
matrix of g with respect to X evaluated at X∗. Then, near equilibrium X∗ such that f(X∗,U)) =
0, we can approximate this non-linear system with the Linear Time-Invariant (LTI) system by
neglecting the higher-order terms. The system can be modeled with the state-space equation
formalism as : {

Ẋ(t) = AX(t) + BU(t)
Y(t) = CX(t), (2.3)

where A,B are the state and control matrices respectively. The matrices A,B describe the dyna-
mics and the coupling of control with the dynamical system, respectively. C is an output matrix
that define how the state of the system affects the outputs of this system. This formalism is defined
for continuous-time systems and can further be adapted for discrete-time systems.

We proceed with an illustrative example of the linearization of a simple pendulum in Fig. 2.1
defined by the unit mass m, the unit length l , viscous friction coefficient kv and actuated by the
torque T counterclockwise along the pendulum axis. According to Newton’s second law, the ac-
tuated pendulum can be modeled with the second-order ODE as :

θ̈ = T

ml2
− g

l
sin θ − kv

m
θ̇. (2.4)

We choose to linearize a system around its unstable equilibrium θ∗ = π, where θ is an angle
of a pendulum. Around this fixed point (θ∗ = π), sin θ ≈ θ in a small angle limit. Considering θ
to be the angular position and ω the angular velocity of the pendulum, let the state of this system
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be defined with X = [θ, ω] ; then the system dynamics with actuation near θ∗ = π can be modeled
with the following pair of differential equations :{

θ̇ = ω

ω̇ = T
ml2 −

g
l θ −

kv
m θ̇

(2.5)

or in a continuous state-space equation :[
θ̇
ω̇

]
=
[

0 1
−g
l −

kv
m

]
︸ ︷︷ ︸

A

[
θ
ω

]
+
[

0
1
ml2

]
︸ ︷︷ ︸

B

T (2.6)

m

θg

T

Figure 2.1 – Sketch of the inverted pendulum.

The outputs of the system are the state values of interest or the measured state variables. For
instance, if only an angular position θ is extracted and used for control, then the output vector
would be defined as :

[
θ
]

=
[
1 0

]
︸ ︷︷ ︸

C

[
θ
ω

]
(2.7)

For the following sections, the simple pendulum example will be used to illustrate the control
theory concepts until we model the real inverted pendulum system named cart-pole and apply the
described control methods on it.

Most of the control techniques in practice require the feedback for a viable control to the refe-
rence state Xc(t) called "setpoint" and become "closed-loop" systems. In the following sections,
PID (Proportional Integral Derivative) and LQR (Linear Quadratic Regulator) are presented to
drive a linearized system to its equilibrium. Then, we will extend on the Lyapunov theory, provi-
ding the necessary tools to drive nonlinear systems to equilibrium under certain conditions. Later
in this thesis, these techniques will be applied on the real inverted pendulum system.

2.1.1 PID

A Proportional Integral Derivative (PID) controller [Kailath, 1980] is a state feedback control
mechanism that is designed to drive a dynamical system to a pre-defined setpoint or trajectory for
a given measured state variable Y(t). Due to its simplicity and easiness of tuning, it is widely
adopted in every industry. In addition, it does not require the knowledge of model dynamics for
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its functioning. The control mechanism consists of minimization of error along some state dimen-
sion : e(t) = Y(t)−Yc(t), which is an error between the actual state variable of the system and
the desired state variable. The PID control consists of three terms :

U(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

, (2.8)

where :
— U(t) is the controller output
— Kp,Ki, and Kd are the proportional, integral, and derivative gains, respectively
— Proportional term : Kpe(t) is responsible for the immediate error correction. If the error

is large, the control output of the proportional term is big as well, and vice versa. The term
by itself can not bring the system to the setpoint as it incorporates the static steady-state
error. []

— Integral term :
∫ t

0 e(τ)dτ is responsible for static error correction. It integrates the error
through time and adjusts the response accordingly. Just PI controller is sufficient to control
lots of dynamical systems.

— Derivative term : Kd
de(t)
dt is responsible for changing trend anticipation and adaptation.

As it is calculating the derivative of an error, it foresees when the error will become zero
and adapts the response accordingly. Compared to PI controller, D term in PID controller
helps with faster convergence to the setpoint and dumps the overshoot of PI components. In
many cases in practice, it is difficult to implement a derivative term of a PID controller, as
the derivative of a noisy signal is amplifying the noise and may diverge. Low-pass filtering
[Oppenheim et al., 1999] or Kalman [Kalman, 1960] filtering is a common practice when
dealing with the derivative component of a PID controller.

The tuned PID controller balances these 3 components to achieve the desired state of a physical
system under certain constraints.

There are many different tuning mechanisms for the PID controller : Ziegler–Nichols [Ziegler
and Nichols, 1942], Cohen-Coon method [Cohen and Coon, 1953], genetic algorithms [Chen
et al., 2013] etc.

In many cases, the PID controller is sub-optimal, where an optimal controller refers to the
controller that controls a system with optimized objective in the best possible way. While PID
is very popular, there are many more advanced control strategies that are more perform-ant and
robust to noise. PID usually regulates one component of the state and can not tackle complex
objectives. To address these challenges, in the following section, we describe the optimal model-
based control algorithm for linearized systems.

2.1.2 Linear Quadratic Regulator (LQR)

LQR is a method of control theory that regulates a linear system in an optimal way under given
constraints [Kailath, 1980]. It optimizes the quadratic cost and finds the state feedback control. It
takes into account the dynamics of the system unlike PID, and not only it drives the system to
the desired setpoint, but it also minimizes the amount of control taken to get there. Given an LTI
system with the state-space representation given as Ẋ(t) = AX(t) + BU(t), LQR is the optimal
controller which minimizes the infinite time horizon quadratic cost functional defined by :

J =
∫ ∞

0

(
EX(t)>QEX(t) + U(t)>RU(t)

)
dt, (2.9)
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wherein EX(t) = X(t) − X? represents the error between a system’s state X and the desired
setpoint X?. The weighing matrices Q = Q> ≥ 0 and R = R> ≥ 0, which are generally
diagonal, can be used as design parameters to penalize state errors and the control signal. They
indicate the relative importance of state regulation to the desired setpoint with control effort. In
general, weights in Q are greater than in R, as the state regulation is more important than the action
effort taken to get to the state.

It can be shown that the solution to the optimal control problem above is a linear state feedback
in the form :

U(t) = −KEX(t), (2.10)

where K is a constant gain matrix obtained from

K = R−1B>P (2.11)

and P is the solution of the continuous-time Algebraic Riccati Equation

ATP + PA−PBR−1BTP + Q = 0. (2.12)

LQR can also be adapted to discrete-time dynamical systems.
As an example, the performances of LQR and PID controllers were investigated in a discrete

simulation (sampling time ∆t = 0.01s) of an inverted pendulum. The simulation uses Eq. (2.4),
with the goal of pendulum stabilization at the unstable equilibrium θ∗ = π. The system has neither
viscous friction nor white noise on X,U as it occurs in practice. Starting from the initial state :
X0 = [π + 0.5, 0], numerical simulation of a simple pendulum is done using an iterative scheme
with Runge-Kutta integration precise to the second order :{

θ̇t+1 = θ̇t + ∆t(ut − g
l sin θt)

θt+1 = θt + ∆tθ̇t + 1
2∆t2(ut − g

l sin θt),
(2.13)

where ut is a control action computed at each time step with uLQR(t) = −KEX(t) for the discrete
LQR and uPID(t) = Kpeθt+Ki

∫ t
0 eθ(τ)dτ+Kdėθt for the PID controller. The simulation results

are illustrated in Fig. 2.2.
The methods presented so far are valid for linear systems. In many cases of nonlinear systems,

such as a swing-up of the pendulum, it is not possible to control the system with PID or LQR
controllers. To tackles this challenge, we present the theory that analyses the stability of a nonlinear
system and provides the necessary means to control the system to a desired equilibrium.
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Figure 2.2 – Illustration of LQR and PID controllers with a) Discrete-time LQR parameterized
by Q = diag([10, 1]) and R = diag([0.01]) in their diagonal entries, implying that optimization
happens on θ. The K matrix gain found from solving Ricatti equation is [−40.52,−13]. As we
can see, the controller is capable of driving θ to the desired setpoint, and the controller actuation is
strong at the beginning. b) PID with Kp = 30,Ki = 0.1,Kd = 8. It is also capable of stabilizing
the pendulum. The overshoot on the action corresponds to the reversing of applied torque with the
anticipation of the target θ and slowing down the pendulum.

2.1.3 Lyapunov theory

Stability theory has a key role in systems theory and control engineering. Hereby, we are
interested in the stability of equilibrium points. For the LTI systems in Eq. (2.6), stability of the
equilibrium point 1 is defined by the negativeness of the real part of eigenvalues of the matrix A
and (A − BK) with the control defined as U(t) = −KX(t). Stability of nonlinear systems is
more complicated as their evolution is not always predictable. The common tools to analyze the
stability of nonlinear systems are linearization, bifurcation analysis [Kuznetsov et al., 1998] and
Lyapunov theory [Lyapunov, 1892,Mawhin, 2005,Åström and Furuta, 2000,Durand et al., 2013].

Lyapunov theory is the most general method to analyze the stability of nonlinear systems. The
stability of a system at equilibrium points is determined using Lyapunov function that is always
positive and decreases along the trajectories of a system. Fulfilling certain conditions, the existence
of such a function proves the local stability of the system. The theory is named after the Russian
mathematician and engineer who pioneered the theory.

A nonlinear dynamical system can be represented by state-space equation :

Ẋ(t) = f(X(t),U(t)), (2.14)

where f(X(t),U(t)) is a locally Lipschitz (continuous) nonlinear function. Lyapunov theory ana-
lyzes the stability and convergence of a nonlinear system at equilibrium points. For the sake of
simplicity, we omit the time dependance notation in U(t) → U,X(t) → X, for the rest of this
section.

Lyapunov theory : Let X∗ be an equilibrium point of Eq. (2.14) and Ω ⊂ Rn be the set of
available states of the system containing X∗. Let candidate Lyapunov function V (X) : Ω→ R be
a continuously differentiable function such that :

1. equilibrium point X∗ for an LTI system means AX∗(t) = 0 ; for a nonlinear system, equilibrium point X∗
implies f(X∗, 0) = 0
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1. V (X∗) = 0
2. V (X) > 0 for all X ∈ Ω except X∗

3. V̇ (X) =
∑n
i=0

∂V
∂Xi

Ẋi =
∑n
i=0

∂V
∂Xi

fi(X) < 0 for all X ∈ Ω except X∗,
then the system is asymptotically stable in X∗, meaning that all solutions starting at nearby points
will eventually converge in X∗ as time approaches infinity. If the derivative of Lyapunov function
V̇ (X) ≤ 0, then the system is Lyapunov stable in X∗, meaning that all solutions starting at nearby
points will converge to oscillate at the equilibrium X∗.

Lyapunov function is often related to the mechanical energy of a system due to its conservation
properties. As an illustrative example, in the case of pendulum defined by Eq. (2.4) without viscous
friction and control, we choose Lyapunov function to be the energy of the pendulum system :

V (X) =
(
g

l

)
(1− cos θ) + 1

2ω
2. (2.15)

According to Eq. (2.5) without viscous friction and control, V̇ (X) is derived as :

V̇ (X) =
(
g

l

)
ω sin θ + ωω̇

=
(
g

l

)
ω sin θ −

(
g

l

)
ω sin θ = 0,

(2.16)

which concludes that the pendulum is Lyapunov stable. This is rationalized due to the lack of
viscous friction and conservation of energy. If there is an energy dissipation due to viscous friction,
as in Eq. (2.4), then this Lyapunov function yields :

V (X) =
(
g

l

)
(1− cos θ) + 1

2ω
2

V̇ (X) =
(
g

l

)
ω sin θ + ωω̇ = − (kv)ω2,

which means that Lyapunov candidate function demonstrates that energy V (X) will not increase,
but fails to describe the asymptotic stability of the damped pendulum. The derivative V̇ (X) = 0,
when ω = 0 which happens at the maximum of the potential energy, but the pendulum is not at rest
as θ̈ 6= 0, unless the pendulum is at X∗ = [0, 0]T , from which it can be inferred that the pendulum
is asymptotically stable at X∗ = [0, 0]T .

We can also define another Lyapunov function (for simplicity of notation, we note g
l = a and

we choose b = kv
m > 0) :

V (X) = 1
2XTPX + a (1− cos θ) = 1

2
[
θ ω

] [ b2

2
b
2

b
2 1

] [
θ
ω

]
+ a (1− cos θ)

and its derivative given by :

V̇ (X) =
(
b2

2 θ + b

2ω + a sin θ
)
ω +

(
b

2θ + ω

)
(−a sin θ − bω)

= a (1− 1)ω sin θ − a b2θ sin θ +
(
b2

2 −
b

2b
)
θω +

(
b

2 − b
)
ω2,

implying V̇ (X) = −1
2abθ sin θ − 1

2bω
2.
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Having the domain of available states as X ∈ Ω = R2 with |θ| < π and matrix P being
positive definite such as 1

2XTPX > 0 implies that ∀X 6= X∗, V (X) > 0 and V̇ (X) < 0
guaranteeing asymptotic stability of a pendulum at X∗ = [0, 0]T .

Controller based on the Lyapunov theory consists in injecting energy into the system until
it reaches its equilibrium. Its stability analysis is defined by Control-Lyapunov Function. For a
system with given dynamics Ẋ = f(X,U) and Lyapunov Function V (X,U) > 0 :

∀X 6= 0,∃U V̇ (X,U) = ∂V

∂Xf(X,U) < 0 and ∃U V̇ (0,U) = 0.

This implies that there is a control U that would allow to decrease V until X = 0.
A simple pendulum example was given to demonstrate the concepts of control theory in illus-

trations. In the next section, Lyapunov theory based controller will be investigated and applied on
a real inverted pendulum with the cart to swing-up the pendulum to its unstable equilibrium.

2.2 Controlling the pendulum using model-based techniques

2.2.1 Introduction

Inverted pendulums - also known as “cart-pole” apparatuses - belong to a simple type of sys-
tem that have a long history in the field of mechanics and dynamical systems [Lundberg and
Barton, 2010, Boubaker, 2013]. Their dynamics is described by a set of mathematical equations
that are rather simple to derive, while still featuring interesting properties such as nonlinearity and
under-actuation. This makes an inverted pendulum a perfect candidate to benchmark and show-
case new control algorithms before deploying them on more complex systems such as quadrotors
or humanoid robots [Sugihara et al., 2002]. In addition, given the simplicity required to build
an experimental prototype, cart-pole systems are very well-suited for teaching a wide variety of
topics, ranging from Lagrangian mechanics to control theory. Indeed, the literature includes nu-
merous examples of low-cost pendulums designed and built with the purpose of teaching one or
more subjects to undergraduates [Lee and Jung, 2008, Lazarini et al., 2014, Bakaráč et al., 2017].

In this section, we expand existing pedagogical works by providing a complete and multidis-
ciplinary discussion that touches several relevant subjects, ranging from mathematical modeling
of dynamical systems via the Lagrangian approach to nonlinear control theory using energy-based
approaches and optimal linear control. Later in the thesis, advanced and recent algorithms coming
from the Reinforcement Learning (RL) literature are presented and applied on this system. The
reader is thus guided across all the steps required to understand, model and control such type of
system, using either model-based or data-driven approaches. Moreover, the theoretical discussion
presented hereby is accompanied by an open-source code repository which allows to replicate all
the approaches presented here [Israilov et al., 2023]. It includes detailed instructions to build the
prototype used in this work, configure its software interface and implement several controllers.
We believe that this chapter and its complementary material can be a great resource for teachers
that are willing to provide students with a strong and varied theoretical background, while also
granting them the possibility to safely experiment with newly learned topics. The discussion is
detailed enough to serve both as an inspiration for the teacher and as a tutorial for the student.

First of all, we derive the equations of the cart-pole system and we reduce them to a simpler,
dimensionless model. In Section 2.2, we then apply LQR and Lyapunov theory techniques presen-
ted before to control the cart-pendulum which belong to the general class of model-based control
techniques, since they require the equations of motion to be explicitly available.
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2.2.2 Experimental setup and methods

Figure 2.3 – The experimental setup.

The experimental realization of the pendulum is shown in fig.2.3. It features a DC motor
(model : MFA 970D 12V) which can apply a horizontal force to the sliding base thanks to a
transmission belt.

An incremental encoder measures the position x of the base on a linear track, assuming that
x = 0 m corresponds to the centered position. The finite length of the track gives the constraint
|x| < xmax, with xmax = 0.35 m. A second encoder mounted on the moving base assesses
the angle θ. Both are incremental encoders (model : LD3806-600BM-G5-24C) with two phases
in quadrature, for a total of 2400 steps per revolution. A Raspberry Pi 4 is used to handle the
electronic devices and control the system. It runs a C++ executable, namely the low-level interface
(LLI), which is responsible of handling the different hardware components and exposes the current
state of the pendulum to client control applications (Appendix A.1).The algorithm running on the
Raspberry Pi actuates the motor, within the three possible actions. All the code to control the
pendulum is open source and available, as well as a reference manual [Israilov et al., 2023].

2.2.3 Modeling the inverted pendulum and the controller

M

m

`

θx

g

Figure 2.4 – Sketch of the inverted pendulum.
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We assume a mass m located at the end of a massless rigid rod of length `. Its other extremity
is free to rotate on a motorized cart with mass M located at abscissa x(t). The angle separating
the rod to the downward vertical direction is θ(t), as shown in Fig. 2.4. The purpose is to stabilize
the pendulum in its unstable equilibrium position θ = π by controlling the motion of the cart only,
located at x(t). In this section, we derive the equation that determines the dynamics of the angle
θ(t), under the driving of the cart motion, using Lagrangian mechanics.

The position of the mass m is (x(t) + ` sin θ(t),−` cos θ(t)). The Lagrangian of the system
is L = K −W , where K is the kinetic energy and W is the potential energy. For the sake of
readability, in the following derivations, we will drop the temporal dependence (t) of physical
variables.

According to Euler-Lagrange equation :

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= Qi, (2.17)

where Qi being a generalized force and qi is a “generalized coordinate”. The Euler-Lagrange
equation for an idealized (without friction) cart-pole system translates into :

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0.

(2.18)

The Lagrangian of the system cart-pole writes in the following form :

L = 1
2Mẋ2 + 1

2m
[
ẋ2 + `2θ̇2 + 2`ẋθ̇ cosθ

]
+mg` cosθ.

We calculate the different terms for the θ variable :

∂L
∂θ

= −mg` sin θ −m`ẋθ̇ sin θ

∂L
∂θ̇

= m`2θ̇ +m`ẋ cos θ

d

dt

∂L
∂θ̇

= m`2θ̈ +m`ẍ cos θ −m`ẋθ̇ sin θ.

The Euler-Lagrange equation reads :

m`2θ̈ +m`ẍ cos θ +mg` sin θ = 0.

Thus, the Euler-Lagrange equation giving the temporal evolution of θ is :

θ̈ + 1
`

(g sin θ + ẍ cos θ) = 0. (2.19)

In what follows, we note ω =
√
g/` the natural frequency of the pendulum.

To close the system, it remains to write the equation describing the position of the motorized
cart. Writing the Euler-Lagrange equation of the system for the x coordinate involves modeling
the DC motor (Direct Current motor) dynamics with different types of frictions and mechanical
coupling with the cart-pole system. Instead, we assume the following form :

ẍ = 1
τ

(ẋc − ẋ) , (2.20)
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where ẋc is the target velocity value provided by the controller, τ is the time scale taken by the
cart velocity to converge to ẋc.

This model is quite idealized, and we thus reconsider to take into account other physical effects
that influence the motion of the system. In particular, we consider viscous friction torque acting
on the pivot joint of the pendulum and static friction resisting the motion of the base :

θ̈ + kv θ̇ + 1
`

(g sin θ + ẍ cos θ) = 0, (2.21)

ẍ = 1
τ

(ẋc − ẋ)− fc sign(ẋ)− fd, (2.22)

where kv controls the amplitude of the viscous friction, while fc and fd are introduced to model
asymmetric dry friction acting on the motorized base. Note that the effects of viscous friction
acting on the cart have already been implicitly taken into account in eqn. 2.20. In experiments, the
cart target velocity is proportional to the voltage U . Defining kU the proportionality constant gives

ẋc = kUU. (2.23)

The cart is constrained to move on a track of length 2xmax. The exact procedures to measure
the physical parameters that appear in eqs. 2.21, 2.22, 2.23 are described in Appendix A.1. Their
values are summarized in table A.1.

Since the system is governed by various physical parameters, we perform a dimensionless
reduction technique to limit the number of controlling parameters. By using the scale changes
x = `p(t/T ), and θ = α(t/T ) and choosing as a typical time scale T =

√
`/g, we obtain :

α̈

T 2 + kvα̇

T
+ 1
`

(
g sinα+ `p̈

T 2

)
= 0, (2.24)

α̈+ Tkvα̇+ sinα+ p̈ cos θ = 0, (2.25)

α̈+ να̇+ sinα+ p̈ cosα = 0, (2.26)

and
`p̈

T 2 = `

Tτ
(ṗc − ṗ)− fc sign(ṗ)− fd (2.27)

p̈ = µ (ṗc − ṗ)− γc sign ṗ− γd, (2.28)

where µ = T/τ measures the ratio of the pendulum time scale to those of the motorized cart.
The parameters γc = fc/g and γd = fd/g are directly related to the motorization of the cart
and the possible incline of the track. The viscous drag of the pendulum, which is quite small in
our experiments, is controlled by the parameter ν. The linear stability analysis of equation 2.26
performed around α = π with p̈ = 0 shows a positive eigenvalue which renders the upward
equilibrium unstable.

In the following, we neglect the presence of viscous friction at the pivot (ν ∼ 0) for the sake
of simplicity.

2.2.4 Control results with model-based techniques

2.2.4.1 Lyapunov method for the swing-up phase

The idea of the swing-up method is to define a candidate Lyapunov function V (α, α̇) whose
value always decreases, i.e. , dVdt < 0 and presents a global minimum at α = π and α̇ = 0.
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We define the mechanical energy of the pendulum by setting p̈ = 0 in Eq. (2.26),

E(α, α̇) = 1
2 α̇

2 − cosα. (2.29)

For the swinging pendulum, we consider the mechanical energy to form a candidate for
V (α, α̇), which is standard in literature [Åström and Furuta, 2000, Durand et al., 2013]. In parti-
cular, the objective is to stabilize the pendulum at the upward position (α = π) with null angular
velocity (α̇ = 0), wherein the energy is E? = E(π, 0) = 1. A candidate Lyapunov function can
be thus written as :

V (α, α̇) = 1
2 (E − E?)2 = 1

2

(1
2 α̇

2 − cosα− 1
)2
, (2.30)

According to Eq. (2.30) and Eq. (2.26), the temporal derivative of this quantity writes :

V̇ = (E − E?) α̇ (α̈+ sinα) = − (E − E?) p̈α̇ cosα. (2.31)

Choosing the control :
p̈ = k (E − E?) α̇ cosα, (2.32)

ensures that V̇ is always negative. V is thus a Lyapunov function to swing up the pendulum and
under the control action above, the system will converge towards V = 0 [see Fig. 2.5]. Note that
the above defined Lyapunov function is related to the energy at the state X = [α, α̇] = [±kπ, 0],
where k ∈ R and thus the convergence solution is not unique. Indeed, the solution of equation
V = 0 corresponds not to a single point but to a trajectory in the phase space with a certain energy
level. Hence, the controller with Lyapunov stability can be seen as a robust controller to drive the
pendulum towards the stable manifold with the corresponding energy E? = E(π, 0) = 1.

We simulated the dynamics of the pendulum angle α subject to this Lyapunov control using
a second-order Runge-Kutta integration scheme and sampling time 0.002 s, as shown in Fig. 2.5.
Near the unstable equilibrium, the lyapunov function is close to zero, thus the control of the system
is very sensitive to the numerical errors, and this produces oscillations with a large period, in which
the pendulum stays upright before falling down and getting back to α = ±kπ, as seen in Fig. 2.5.
The coefficient k in Eq. (2.32) is chosen to be 1.
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Figure 2.5 – Temporal evolution of the a) Lyapunov function V , b) the angle α and c) cart com-
mand p̈ for using the Lyapunov-theory based control technique.

Applying the Lyapunov-theory based controller on the motion of the cart will quickly drive
the pendulum near its unstable equilibrium. In this configuration, the dynamical equation can be
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linearized and the control will be notably simplified. In the next subsection, we design a linear
controller to maintain a pendulum in its unstable equilibrium.

2.2.4.2 LQR for stabilization

The swing-up method detailed in the previous section is designed to control the angular be-
havior of the pendulum, while no action is taken to actively regulate the position of the base and
stabilize the pendulum around its unstable equilibrium. To overcome this problem, we propose
to use a Linear-Quadratic-Regulator (LQR) to stabilize the cart in its reference position (typically,
the center of the rail) while maintaining the pendulum in the upright configuration. Note that, since
the linearized model is valid only in a neighborhood of the upward configuration, the LQR strategy
is applicable only when the swing-up phase has been already completed.

Near the unstable equilibrium, the dynamics are slow and linear and therefore it should be
easier to control the system in this region. We linearize 2.26 around the unstable equilibrium
α = π + α1, α̇ = 0 + α̇1, where α1 is small :

α̈1 − α1 − p̈ = 0. (2.33)

As expected, when p̈ = 0 the upward vertical position is an unstable equilibrium point for the
system. The purpose of the linear control will be to derive an equation for p̈. The driving velocity
ṗc will be found by solving the p equation from 2.28. A simple way to accomplish the control is
to set p̈ to be a linear function of α1 and α̇1, like in PD controllers :

p̈ = kpα1 + kdα̇1. (2.34)

With this control signal, the linearized system described by equation 2.33 becomes :

α̈1 − kdα̇1 − (1 + kp)α1 = 0. (2.35)

The control will be efficient if α1 = 0 becomes a stable equilibrium of this equation. Standard
linear stability analysis allows to state that the pendulum can be maintained in its unstable position
if

kd < 0, kp < −1. (2.36)

In a more general case, LQR provides an optimal strategy to evaluate the gain parameters kp and
kd. It also allows to generalize the control by taking into account the dynamics not only of the
pendulum but also of the cart, as it can impose an additional objective which would force the cart
to be in a particular position on the track.

This control method is adapted for controlling systems near equilibria where the dynamics are
considered as linear. The linearization of the system Eq. (2.26) around α = π, α̇ = p = ṗ = 0
yields :

Ẋ = AX + BU,

X = [α− π, α̇, p, ṗ]T , U = [0, 0, 0, ṗc]T ,

A =


0 1 0 0
1 −ν 0 −µ
0 0 0 1
0 0 0 −µ

 , B =


0 0 0 0
0 0 0 µ
0 0 0 0
0 0 0 µ

 ,
where we have assumed γc = γd = 0, for the sake of simplicity. By applying the pro-
cedure described in Section 2.1.2 with similar cost matrices (Q,R), we obtained K =
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[−127.5,−822.6, 2234.7, 437.7] for the control Eq. (2.10). After the swing-up with Lyapunov-
based controller, we apply LQR control when the angle is near the pendulum’s unstable equili-
brium i.e. |αLQR − π| = 0.1 rad.

We now summarize this section dedicated to model-based control strategies. Far away from
the unstable equilibrium, the Lyapunov theory based controller will push the dynamics of the pen-
dulum towards the stable manifold of the unstable equilibrium. As the pendulum approaches the
upside-down position, the linear controller is used to complete the control. These strategies have
been successfully deployed on the real cart-pendulum system with the video of control 2. Since
these approaches are well-known in the literature, experimental results are not further detailed.

In this section, we have proposed simple techniques to stabilize an inverted pendulum : they are
straightforward, but necessitate the knowledge of the model of the cart-pole. In the next section,
we describe machine learning algorithms to perform the control within a model-free approach.

2. https ://youtu.be/BAzXTSYR5ug
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2.3 Reinforcement Learning methods

2.3.1 Reinforcement Learning Paradigm

Reinforcement Learning (RL) is a control approach for discretized dynamical systems. RL
exploits the framework of Markov Decision Process (MDP), which is a discrete-time stochastic
control process. It is an extension of the Markov processes. At the discrete time step i, there are
four components in MDP (S,A, P,R) : a set of states si ∈ S of the dynamical system and its
surroundings, a set of available actions ai ∈ A that the system can actuate, unknown dynamics
that define transition probability among the states (dynamics model) P ∈ [0, 1] : si × ai → si+1,
and set of emitted rewards ri ∈ R on each transition (si, ai, si+1). MDP framework is based on the
markov property, implying that states in the future are not dependent on the past given the present.
Unlike traditional model-based methods in control theory described before, RL can solve Markov
Decision Processes without the explicit knowledge of transition probabilities among the states.

We refer to the internal decision maker who uses an RL algorithm as an agent, and the whole
physical system as the environment. At each time step i, the agent (algorithm) chooses an action
ai according to the assessed current state si. After the actuation, the environment provides a new
state si+1 and a reward ri+1 as seen in Fig. 2.6. Reward ri+1 is a learning signal for the agent of the
quality of taken action ai at state si. Then the agent-environment interaction cycle repeats. During
the learning process, the agent evolves in an environment and tries to maximize its cumulative
reward Rτ during certain time horizon [0, T ], which is referred as an episode or a trajectory τ :

τ = (s0, a0, s1, a1, . . . , sT−1, aT−1, sT )

Rτ =
T−1∑
i=0

γir (si, ai) ,
(2.37)

where 0 < γ < 1 is the discount factor which measures the importance of the future unitary
reward in computing the expected cumulative reward. If γ is close to 1, then the agent would focus
on all the rewards during the time horizon T , which may increase the return variance among the
trajectories and make convergence slower ; however, if γ is close to 0, then the agent will care only
about the imminent reward and act sub-optimally with respect to long-term rewards. γ also helps
for mathematical stability in the update equation for the infinite time horizon T control problems.

Agent interacts with an environment in an episodic manner to avoid being stuck in local mi-
nima and to diversify the trajectories. Imagine the agent navigating in the labyrinth for an exit. If
the agent ends up at the wrong pathway of the labyrinth, it is easier to restart (reset) from some
arbitrary position in the labyrinth. At the end of an episode the environment restarts at some initial
state s0 drawn from the starting state distribution ρ0.

The choice of an action follows the policy π(a|s) which is the probability of taking action a
while being in state s. The objective in RL is to determine the best policy π∗(a|s) for the agent,
that maximizes the total expected cumulative reward Rτ .

2.3.2 Classical Reinforcement Learning

In this section, we present the classical methods of Reinforcement Learning created a couple of
decades ago [Watkins, 1989,Williams, 1992,Sutton et al., 1999,Peters and Schaal, 2008]. Modern
algorithms use Artificial Neural Networks (ANN) for different purposes, yet at their core, they use
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Agent

Environment

Figure 2.6 – RL interaction process. The state of the environment si is measured and given to the
agent. The agent updates its policy and chooses accordingly the action ai for the next step. Then
the environment returns evolved state si+1 and the reward ri+1 indicating if the new state is good
or bad for the objective of an agent.

the principles defined in this section. The more detailed description of classical RL methods can
be found in [Sutton and Barto, 2018].

2.3.2.1 Q-learning

In order to construct the policy π(a|s), it is essential to estimate a reward-to-go 3 function Ri
at step i, generally designed as the discounted cumulative reward :

Ri(τ) = ri + γ ri+1 + γ2ri+2 + γ3ri+3 + ..., (2.38)

Since the cumulative reward depends on the states si, si+1, si+2, ... and the actions
ai, ai+1, ai+2, ..., one can define an action-value function Q(si, ai) (Q refers to Quality) which
computes the expected cumulative reward at the state si when performing the action ai :

Q(si, ai) = E[Ri|(si, ai)]. (2.39)

This function could be the basis for constructing an optimal policy. For example a greedy policy
will always select the best action a∗ = argmax

a∈A
Q(si, a) for an agent in the state si.

The learning process consists in visiting a large number of states and taking various actions,
and to compute the reward expectation (2.39). However, it is usually time consuming and very
difficult, if not impossible, to travel through all the states and actions to accurately determine
the action-value function Q(s, a), as it is necessary to sample the state and the action spaces to
accumulate statistics for the rewards. In addition, a control task could be very long so it is not
practical to wait till the end of the experiment and measure the cumulative reward, and update the
function Q. In the MDP framework, one can rewrite Eq. 2.39 as [Sutton and Barto, 2018] :

Q(si, ai) ≈ ri + γ Q(si+1, ai+1). (2.40)

Here we use the reward ri after a sampled action ai to represent the expected immediate reward,
and γ Q(si+1, ai+1) to represent the cumulative discounted future reward. In order to determine

3. sometimes referred as a return-to-go. It signifies the total cumulative reward until the end of the episode.
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the action-value function, the agent interacts constantly with the environment during the learning
phase and updates its Q function. This function can be updated through an iterative procedure :

Q(si, ai)← Q(si, ai) + α∆Q, (2.41)

which is similar to the Euler scheme for numerically integrating the differential equation Q̇ = ∆Q,
where α plays the role of a time step. This is the idea of what is called the temporal difference
learning (TD) approach [Sutton and Barto, 2018]. By defining ∆Q = Q∗ − Q, we know that
the differential equation will drive Q to the target Q∗. The idea of the Q-Learning algorithm is to
hypothesize that after sufficient amount of learning, the optimal action-value function is found :

Q∗(si, ai) ≈ ri + γmax
a′

Q(si+1, a
′), (2.42)

with a′ being the accessible actions at state si+1, which is consistent with the definition (2.40). It
models that an approximation of the cumulative expected reward is the reward ri plus the discoun-
ted cumulative reward at step i + 1 by taking the best action a∗i+1 = argmaxa′(Q(si+1, a

′)). To
summarize, the Q-learning iterative procedure writes [Watkins, 1989,Watkins and Dayan, 1992] :

Q (si, ai)︸ ︷︷ ︸
new

← Q (si, ai)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·
temporal difference︷ ︸︸ ︷

( ri︸︷︷︸
reward

+ γ︸︷︷︸
discount factor

· maxQ (si+1, a)︸ ︷︷ ︸
estimate of optimal future value︸ ︷︷ ︸

new value (temporal difference target)

−Q (si, ai)︸ ︷︷ ︸
old value

)

(2.43)
The parameter α measures the learning rate and the effect of the discount factor γ becomes even
clearer : as it tends to zero, the learning agent only takes into account the immediate reward,
while as γ is nonzero, the agent integrates future rewards in the learning phase. With this iterative
approach, the agent learns while it evolves in the environment.

In order to avoid being stuck in a local optima, Q-learning employs an ε−greedy policy during
the learning process. The ε−greedy policy is an interplay between exploration and exploitation.
The agent exploits the policy or chooses the best action some of the time, and otherwise explores
the consequences of randomly taken actions : at each time step, a random number NR ∈ [0, 1] is
drawn, if NR < ε < 1, a random action is chosen ; otherwise the greedy policy is applied. It is a
good practice to promote exploration in the early stage of the learning process with ε close to 1,
with a small ε towards the end of the learning process. This means that it makes sense to explore
more at the beginning of training when the agent does not have much information about how to
maximize the reward-to-go, and to rely on the policy at the end while navigating the environment.

The learning happens according to the generalized policy iteration [Sutton and Barto, 2018],
which alternates between Policy Evaluation (PE) or executing the policy in the environment
and Policy Improvement (PI) Eq. (2.43). Generalized policy iteration is guaranteed to converge
Q → Q∗, given enough iterations (PE and PI). The schematic visualization of the procedure is in
Fig. 2.7.

To store the expectation of the cumulative reward, the Q-Learning algorithm uses a Q-table
that covers the whole state space and action space. This object takes the form of a huge matrix
of dimension Ns × Na, where Ns is the number of discretized states, and Na is the number of
possible actions. This representation already underlines the limitation of this approach, because of
the finite size of memory of modern computers.
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Initial

Figure 2.7 – Generalized policy iteration with action-value function Q that alternates between
interaction with an environment and updating the action-value function Q

The whole algorithm is described in Algorithm 1. In the next section, the family of RL al-
gorithms that operate directly on the policy π is investigated. These algorithms have their own
advantages and disadvantages.

There exists variants of Q-learning such as Sarsa [see Eq. (2.45)] or Expected-Sarsa [see
Eq. (2.44)] [Sutton and Barto, 2018], which yield somewhat similar results as Q-learning :

Q (si, ai)← Q (si, ai) + α (ri+1 + γQ (si+1, ai+1)−Q (si, ai)) (2.44)

Q (si, ai)← Q (si, ai) + α

(
ri+1 + γ

∑
a

π (a | si+1)Q (si+1, a)−Q (si, ai)
)
, (2.45)

where Expected-Sarsa Eq. (2.45) take the mean of Q-values over all actions and Sarsa needs its
policy to choose the next action ai+1 before updating action-value function Eq. (2.44).

Algorithm 1 Q-Learning (Sarsamax)

1: Input : policy π, positive number of training steps num_steps, learning rate α, exploration
function ε(i), discount factor γ

2: Objective : Optimal action-value function Q
3: Initialize Q arbitrarily (e.g., Q(s, a) = 0 for all s ∈ S and a ∈ A(s)
4: Observe s0 after environmental reset
5: while Training do
6: ε← ε(i)
7: Choose action ai using ε-greedy policy derived from Q
8: Take action ai and observe ri+1, si+1
9: if si is terminal then

10: Q(si, ai)← Q(si, ai) + α(ri+1 −Q(si, ai))
11: else
12: Q(si, ai)← Q(si, ai) + α(ri+1 + γmaxaQ(si+1, a)−Q(si, ai))
13: end if
14: end while
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2.3.2.2 Policy Gradient Methods

Another strategy of the reinforcement learning is to operate directly on the policy πθ(a|s)
[Williams, 1992, Sutton et al., 1999, Sutton and Barto, 2018], which is a continuous differentiable
distribution with parameters θ that maps input states s ∈ S and actions a ∈ A to the probability of
execution. For the episode τ of T time steps, the objective of an agent is to find an optimal policy
π∗θ(a, s) that maximizes the total expected cumulative reward during an episode defined as :

θ? = arg max
θ

Eτ∼pθ(τ)

[∑
i

γir (si, ai)
]

︸ ︷︷ ︸
R(θ)

, (2.46)

where R(θ) is an objective function to be optimized and pθ(τ) is a probability distribution of
all the trajectories that incorporates the state transition probability of the MDP (environmental
stochasticity) and the probability of a trajectory happening according to the policy πθ(τ). Because
the state transition probability of the MDP (P ) is not known and can not be used in the optimization
process, we omit the environmental state transition probability from the expectation.

Suppose we have the state visitation sequence with the policy πθ :

s0
a∼πθ(.|s0)−→ s1

a∼πθ(.|s1)−→ s2
a∼πθ(.|s2)−→ . . . (2.47)

The probability of trajectory τ happening is :

pθ(τ) = p(s0, a0, s1, a1...sT−1, aT−1) = p(s0)πθ(a0|s0)
T−1∏
i=1

p (si | si−1, ai−1)πθ (ai | si)

(2.48)
and a total reward during an episode,

r(τ) = r (s0, a0, . . . , sT−1, aT−1) =
T−1∑
i=0

γir (si, ai) . (2.49)

For the sake of simplicity, we will suppose that discount factor γ = 1 in further derivations. The
objective of an agent is to maximize the total cumulative reward over all trajectories, so the return
function is defined as :

R(θ) = Eτ∼πθ(τ)[r(τ)] =
∫
πθ(τ)r(τ)dτ. (2.50)

One of the methods to maximize the return is to use the gradient ascent method, which requires
taking the gradient of an objective function R(θ) and updating the θ parameters respectively.
Taking the gradient step in the positive direction of an objective functionR(θ) with respect to θ i.e
∇θR(θ) enables us to update the policy parameters : θ ← θ+α∇θR(θ) and maximize the return.
The parameter α is a learning rate of an update, similar to Eq. (2.43). The gradient is as follows :

∇θR(θ) =
∫
∇θπθ(τ)r(τ)dτ =

∫
πθ(τ)∇θ log πθ(τ)r(τ)dτ = Eτ∼πθ(τ) [∇θ log πθ(τ)r(τ)] ,

(2.51)
where the second equality is due to the fact that ∇πθ(τ)

πθ(τ) = ∇(log πθ(τ)). The basic inter-
est in making the logarithm appear in the equation is that instead of taking the gradient of the
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product ∇(πθ(τ)) = ∇(πθ(a0|s0)πθ(a1|s1)πθ(a2|s2)...), we have the sum of the gradients :
∇(log πθ(τ)) = ∇(log πθ(a0|s0) + log πθ(a1|s1) + log πθ(a2|s2)...). Note that the gradient of
a transition probability (P ) with respect to θ amounts to zero, if we take it into account for the
calculation of the gradient of an objective function in Eq. (2.51). Thus, knowing the log πθ(τ)
gradient is sufficient for finding the gradient of the return function, enabling the use of gradient
ascent algorithms to maximize the return of an agent.

The expectation in the gradient of objective function Eq. (2.51) can be estimated using monte-
carlo (meaning episodic, after agent completes the whole episode, we infer some useful informa-
tion) sampling of N episodes (j = 1...N ) :

∇θR(θ) ≈ 1
N

N∑
j=1

(
T−1∑
i=0
∇θ log πθ (aj,i | sj,i)

)(
T−1∑
t=0

r (sj,t, aj,t)
)
. (2.52)

The gradient ascent of the objective increases the likelihood of actions that led to large returns.
The gradient of objective function Eq. (2.52) with respect to policy parameters θ is similar to the
Maximum Likelihood Estimation framework [Conniffe, 1988] in machine learning.

The term
∑T−1
t=0 r (sj,t, aj,t) can incorporate much variance especially if the trajectories are

long. There are a number of techniques to reduce this variance. Firstly, because of causality
argument in MDP stating that the present actions can only affect the future rewards, the term
∇θ log πθ (aji | sji) does not affect the rewards emitted before step i, so we can truncate the sum
of rewards and obtain "reward-to-go" :

∇θR(θ) ≈ 1
N

N∑
j=1

(
T−1∑
i=0
∇θ log πθ (aj,i | sj,i)

)(
T−1∑
t=i

r (sj,t, aj,t)
)

= 1
N

N∑
j=1

(
T−1∑
i=0
∇θ log πθ (aj,i | sj,i)

)(
Q̂π(sj,i, aj,i)

)
.

(2.53)

Note that
(
Q̂π(sj,i, aj,i)

)
is one episode monte-carlo approximation of the true action-value func-

tion under the current policy Qπ(sj,i, aj,i). To reduce the variance, it is a common practice to
subtract from right-hand side of Eq. (2.53) a term called baseline [Greensmith et al., 2004] that is
not dependent on θ, but that can affect the term

∑T−1
t=i r (sj,t,aj,t). This will permit to decrease the

variance without changing the expected value of the gradient of the objective. The common choice
for the baseline is the value function V π (st) = Est+1∼P,a∼πθ

[∑T−1
t=i r (sj,t,aj,t)

]
corresponding

to the total cumulative reward following the known greedy policy πθ, with next states sampled
from the dynamics (P ) of MDP.

The mathematical derivation for why we can subtract a baseline such as the mean expected
reward

(
b = 1

N

∑N
i=1 r(τ)

)
is :

E [∇θ log pθ(τ)b] =
∫
pθ(τ)∇θ log pθ(τ)bdτ =

∫
∇θpθ(τ)bdτ = b∇θ

∫
pθ(τ)dτ = b∇θ1 = 0

The difference between the reward-to-go of the current trajectory and the expected reward-to-
go is called Advantage : Âπθ (si, ai) = δVt =

∑T−1
t=i r (st, at) − 1

N

∑N
j=1

∑T−1
t=i r (sj,t, aj,t). It

measures how good the current episodic return is with respect to the average return. It is a one-
trajectory monte-carlo estimate of a true advantage function Aπ. The gradient of Eq. (2.53) points
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in the positive direction of good actions πθ(ai|si) if Âπθ (si, ai) > 0. The true Advantage function
at time step i is estimated by the following :

Aπ (si, ai) = Qπ (si, ai)− V π (si) = ri+1 + γV π
t (si+1)− V π

t (si). (2.54)

This update is similar to TD update in Q-learning Eq. (2.43).
The basic form of policy gradient algorithms is described in the algorithm below.

Algorithm 2 Policy Gradient (REINFORCE)
1: Input : policy π parameterized by θ, learning rate α
2: Objective : Find optimal policy π∗

3: Initialize policy parameters θ
4: Observe initial state s0
5: i← 0
6: while Training do
7: Generate one trajectory on policy using policy πθ : s1, a1, r2, s2, a2, . . . , sT
8: For i = 1, 2, . . . , T compute the advantage estimate Âπi (e.g., ri+1+γV π

i (si+1)−V π
i (si))

9: Update policy parameters : θ ← θ + αÂπ∇θ log πθ(a|s)
10: end while

Compared to Q-learning or Value-based learning methods, the policy gradient family of RL
algorithms has several advantages :

1. Continuous actions : Neural-network based function approximations permit to train these
algorithms for MDPs with continuous actions unlike Q-learning algorithms that are not
designed for continuous action environments.

2. Performance in high-dimensional state spaces : Policy gradient algorithms may perform
better than traditional Q-learning based algorithms with environments in high-dimensional
states, because they do not need to store the action-value estimation for all states. Basic
version of the policy gradient algorithm does not need to store a Q-table for its operation.
This significantly improves the memory imprint of an algorithm.

3. Stochastic policies : Policy gradient algorithms always have continuous and differentiable
policies πθ to ensure the existence of the gradient. Neural networks approximating πθ
incorporate stochasticity. Policy is designed as a Diagonal Gaussian in case of continuous
actions and categorical (Bernoulli) distribution for discrete action MDPs. Policies as dis-
tributions may explore an environment better than randomly exploring with ε − greedy
policy in Q-learning.

Policy gradient algorithms also incorporate various drawbacks :

1. Instability : As discussed before, the update Eq. (2.53) has a large variance among the
sampled trajectories that necessitates more fine-tuning than Q-learning. If ANNs approxi-
mate the policy, the policy may diverge or be stuck in local point of optimization because
of the gradient update.

2. Hyper-parameter sensitivity : Policy gradient algorithms based on ANNs require careful
gradient updates and clipping the gradient values if they are large. These methods are more
likely to diverge due to the bad hyper-parameters than the value-based methods.
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Policy gradient algorithms are mainly used with neural networks representing the policy π
discussed in the next section and in Section 2.3.3.4. A policy can also be parametrized by other
function approximations such as gaussian processes [Ghavamzadeh et al., 2016]. Policy gradient
methods are more difficult to implement than Q-learning methods and may imply instabilities that
arise when the gradients of updates are large and the updated policies diverge.

In the next section, Actor Critic family of RL algorithms is discussed that incorporates the
benefits of both Q-learning and policy gradient methods.
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2.3.2.3 Actor Critic Methods

The main idea behind Actor Critic methods is approximating the Value function of an Ad-
vantage expression in Eq. (2.53) with a neural network [Peters and Schaal, 2008]. When a neural
net is used to approximate the value function of an advantage function in Eq. (2.53), the Actor-
Critic algorithm has a dual optimization problem of optimizing a policy and value functions. Dual
optimization is subject to instabilities similar to GAN [Goodfellow et al., 2014] training. Actor
is referred to the policy neural network that acts in the environment, and critic approximates the
value function V (s) i.e. the total cumulative reward following the best strategy from the current
state.

It has been shown in [Schulman et al., 2016] that the advantage estimator reducing significantly
the variance of Eq. (2.53) at time step t is the Generalized Advantage Estimation (GAE), which
is the weighted sum of advantages from the current step till the end of the episode :

Â
GAE(γ,λ)
t :=(1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
=(1− λ)

(
δVt + λ

(
δVt + γδVt+1

)
+ λ2

(
δVt + γδVt+1 + γ2δVt+2

)
+ . . .

)
=(1− λ)

(
δVt

(
1 + λ+ λ2 + . . .

)
+ γδVt+1

(
λ+ λ2 + λ3 + . . .

)
+γ2δVt+2

(
λ2 + λ3 + λ4 + . . .

)
+ . . .

)
=(1− λ)

(
δVt

( 1
1− λ

)
+ γδVt+1

(
λ

1− λ

)
+ γ2δVt+2

(
λ2

1− λ

)
+ . . .

)

=
T∑
l=0

(γλ)lδVt+l

, (2.55)

where 0 < λ < 1 ; Â(k)
t :=

∑k−1
l=0 γ

lδVt+l = −V (st)+rt+γrt+1+· · ·+γk−1rt+k−1+γkV (st+k)
is a k-step Advantage estimator and δVt = rt + γV (st+1) − V (st) is a TD residual of V with
discount γ. ÂGAE(γ,λ)

t is used in many actor-critic algorithms such as PPO [Schulman et al., 2015].

2.3.2.4 Partial summary

We have presented three families of RL algorithms : Q-learning, policy-gradient and Actor-
Critic. Learning in tabular setting with Q-tables can be challenging due to the lack of state aggrega-
tion [Li and Zhou, 2013] or generalization. As seen in [Sutton and Barto, 2018] and Section 2.4.1,
tabular Q-learning take many environmental steps to converge. This is due to the fact that Q-tables
are updated one state at a time Eq. (2.43) ; while in practice, neighboring states may benefit from
this update. One of the most effective ways to generalize among the neighboring states is to use
neural networks to approximate the action-value function. In the next section, modern RL methods
are presented that benefit from recent advances in deep learning.

2.3.3 Model-free deep reinforcement learning

In this section, we expand on the model-free deep Reinforcement Learning methods. These
methods use several neural networks to approximate the action-value Q(s, a), value V (s) and
policy π(a|s) functions. The number of neural networks and their purpose varies from one RL
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algorithm to another. Before diving into these algorithms, we remind the functioning of neural
network.

2.3.3.1 Artificial Neural Networks

Artificial Neural Networks (ANN) is an assembly of idealized biological neurons [Sutton and
Barto, 2018]. Dense Neural Networks (DNN) or Fully-Connected Neural Networks (FCN) are a
specific type of ANN that has all of their neurons fully connected to each other. We refer hereby to
the Multi-Layer Perceptron (MLP), the most common type of DNN where the neural net is divided
into many nodes (neurons) and multiple layers Fig. 2.9. Each neuron in a layer is connected to
every neuron in the previous and next layers. Each neuron, labeled k, possesses a state Sk and
receives a signal pk from other neurons. This incoming information writes :

pk =
∑
j

Sjwjk + w0k,

where wjk measures the weight of the link between the neurons j and k. In general, there is also
a bias w0k for each neuron. The incoming signal pk is treated through a function f to define the
new state of the neuron :

Sk ← f (pk) ,

where f is the activation function which is almost always nonlinear. Then the process repeats until
the output layer, each neuron in a consequent layer computes a linear matrix multiplication of its
input (previous layer output) followed by an activation function.

The role of activation functions is to add non-linearity to the neural nets which helps to model
complex and non-linear relations in the data. Some popular activation functions are ReLU [Hahn-
loser et al., 2000], Tanh (Tangent Hyperbolic), ELU [Clevert et al., 2016] and softmax [Goodfellow
et al., 2016]. We plot some of them for visualization in Fig. 2.8.

The layers of neurons located in-between the input and the output layers are called hidden
layers. For example in Fig. 2.9, the DNN has 5 inputs, 2 hidden layers and 3 outputs. Depending
on the purpose of the output, activation function of the last layer changes. For example, if the DNN
approximates the policy π(a|s) that is bounded, then the last activation function may be sigmoid
[Hornik et al., 1989] that is used for a last-layer classification models in deep learning. But if DNN
serves asQ(s, a) estimate, then the last layer activation function may be ReLU which outputs only
positive quantity. The learning process happens via back-propagation [LeCun et al., 1998] of the
error (loss) of the predicted value by the neural net and expected quantity via the gradient descent
algorithms. The most popular algorithm of updating weights in a neural net is Adam [Kingma
and Ba, 2014] which uses gradient descent update with momentum; other examples are AdaGrad
[Duchi et al., 2011] and RmsProp [Duchi et al., 2011].

Loss function measures how accurate is the prediction of a neural net in comparison with
the expected data. Typical loss functions for continous-output values from NNs are MSE (mean
squared error), MAE (mean absolute error) or Huber Loss. Typical loss for probability output from
NNs ([0, 1]) is a Cross-Entropy loss.

Let Y = [y1, y2...yN ] be a ground truth and Ŷ = [ŷ1, ŷ2...ŷN ] be an output vector from a
neural net, then MSE is defined as :

L(Y, Ŷ ) = 1
N

N∑
i=1

(yi − ŷi)2 . (2.56)
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Figure 2.8 – Examples of activation functions in ANNs.

The loss function and a neural net can be differentiated and the direction of a minimum found.
In simple cases, like a linear regression analytical solution can be found, but in neural nets with
multiple inputs and complex nonlinearities, the analytical solutions become impractical. The idea
behind back-propagation is that we calculate the gradient in the direction of a minimum of a loss
function and slightly update the weights of a neural net in this direction. After this update, the
prediction is expected to be slightly better.
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Input

Output

Figure 2.9 – Example of a neural network. It gets 5-dimensional vector as an input and outputs a
3-dimensional vector.

2.3.3.2 DQN

DQN [Mnih et al., 2013, Mnih et al., 2015] is a deep RL algorithm that uses a neural network
to approximate an action-value function Q(s, a). In addition, to stabilize the learning process and
obtain more reliable results, DQN also employs a number of additional techniques such as replay
buffer, fixed Q-targets and gradient clipping which improves the stability of learning by clipping
the TD error Eq. (2.57) to [-1,1] interval.

The learning process happens at the end of every episode through the use of gradient descent
(Adam) applied on mini-batches of transitions (si, ai, ri, si+1) sampled from a buffer of transi-
tions. The replay buffer permits to reuse the previous transitions in an update, and also to break
temporal correlation of these transitions for the learning process by shuffling the data.

DQN uses TD-learning with a neural network that approximates Q(s, a). To avoid the target
value (in TD update Eq. (2.57)) that changes frequently over time, the fixed network is introduced,
thus decoupling the target value from the weight update. This increases robustness and stability of
the learning. The weight updates of the local neural network follows the steepest gradient scheme :

∆ (wjk) = α(ri + γmax
a

Q
(
si+1, ai+1, w

−
jk

)
︸ ︷︷ ︸

Target

− Q (si, ai, wjk)︸ ︷︷ ︸
Local network value

)∇Q (si, ai, wjk) ,
(2.57)

where wjk refers to the local network parameters, w−jk refers to the target network parameters.
The TD target approximates the true Q(si, ai) in Fig. 2.11, and the update is done proportionally
to the error between the approximated true action-value function and the current value. After C
time steps (Table A.2), the target network parameters w−jk are updated with the local network
parameters wjk [Mnih et al., 2015]. The loss function for the backpropogation is the mean squared
error between the target and the local network predictions.
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To resume, the algorithm in fully-observed MDP is Algorithm 3 : In the next section, we

Algorithm 3 Deep Q-learning with Experience Replay
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights ω
3: Initialize target action-value function Q̂ with weights ω− = ω
4: for episode = 1 to M do
5: Reset the environment s0 and update exploration ratio ε
6: for t = 1 to T do
7: With probability ε select a random action at
8: otherwise select at = maxaQ∗(st, a;ω)
9: Execute action at in the environment and observe reward rt and state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample random minibatch of transitions (sj , aj , rj , sj+1) from D

12: Set yj =
{
rj for terminal sj+1

rj + γmaxa′ Q̂ (φj+1, a
′;ω−) for non-terminal sj+1

13: Perform a gradient descent step on (yj −Q(sj , aj ;ω))2 according to Eq. (2.57)
14: Every C steps reset the target network with the local : Q̂ = Q
15: end for
16: end for

describe a similar algorithm that improves incrementally on DQN.

2.3.3.3 DDQN

DDQN [Van Hasselt et al., 2015] is simple but effective way to improve upon the DQN me-
thod. Traditional DQN tends to overestimate the Q-values due to the max function of the update
equation 2.43. DDQN uses the paradigm of Double Q-learning described in [Sutton and Barto,
2018]. Instead of taking directly the max Q value, we take the best action determined from the
local Q-network, then compute the target using this action with the target Q-network. Since the
two NNs are decoupled, this procedure avoids the bootstrap of a single NN for the TD update of
Eq. (2.58).

When the training first begins, there’s insufficient information to accurately determine the best
actions to maximize the return. Therefore, taking the maximum of action-value function Q(s, a)
(which is noisy) as the best action to take, can lead to sub-optimal actions. DDQN on the contrary
tackles the issue by modifying the target value in TD error. The TD error at time step i looks :

∆ (w) = α

ri + γQ
(
si+1, argmaxQ (si+1, a,ω) ,ω−

)︸ ︷︷ ︸
Target

− Q(si, a, ω)︸ ︷︷ ︸
Local network value

∇Q (si, ai, w) .

(2.58)
We remind the DQN update rule for comparison :

∆ (w) = α

ri + γmax
a

Q
(
si+1, ai+1, w

−)︸ ︷︷ ︸
Target

− Q (si, ai, w)︸ ︷︷ ︸
Local network value

∇Q (si, ai, w) .
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In the next subsection, we describe the popular policy optimization algorithm PPO that directly
optimizes the agent’s policy. It is mainly used in an actor-critic form.

2.3.3.4 PPO

We describe the variant of proximal policy optimization (PPO), an Actor-Critic algorithm
[Schulman et al., 2017, Ruckstiess et al., 2008] with the advantage normalization which is imple-
mented in the open-source library [Raffin et al., 2019a]. The pseudo-code of the algorithm (PPO)
is illustrated in the Algorithm 4.

Before describing the algorithm, we explain the concept of the entropy of the policy. Entropy
at state st is defined as H (π (· | st)) = −

∑
a∈A π (a | st) log π (a | st). High-entropy policy per-

mits to better explore the environment and have more stochastic policy that would achieve the same
return. High-entropy policies are more robust than deterministic ones, because if the system expe-
riences perturbations, the high-entropy policy adapts faster. Moreover, because of their stochastic
nature, high-entropy policies permit to better explore the environment compared to deterministic
ones.

The algorithm follows actor-critic framework described in Section 2.3.2.3. On one hand, the
actor neural network, denoted as actor NN, embodies the policy function (πθ(s, a)), which un-
dergoes periodic updates through a refined policy gradient method that incorporates generalized
advantage estimation ÂGAE(γ,λ) which became the standard variance reduction technique [Konda
and Tsitsiklis, 2000] for stability and acceleration of training. This estimation serves as a metric
to gauge Q(s, a), the return of the chosen action in comparison to the expected return of the cur-
rent state Vω(s). To ensure a stable and robust training phase, PPO employs the so-called clipped
surrogate objective function and incorporates the entropy bonus, enabling a balance between ex-
ploration and exploitation during the learning process. On the other hand, the critic NN operates
as an evaluator, assessing continuously the value function used in the advantage expression of the
update Eq. (2.54) of the actor network and providing feedback for policy optimization.

Finally, the loss being minimized to update the neural network parameters θ, ω is :

Lt(θ) = Lpolicy(θ) + cv.Lvalue(ω) + ce.Lentropy, (2.59)

where

Lpolicy(θ) = −Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
, (2.60)

Lvalue(ω) = Êt
[
(Vω(st)− R̂t)2

]
, (2.61)

Lentropy = Êt [π(at|st) log π(at|st)] . (2.62)

Lpolicy(θ) is the policy surrogate loss, and PPO restricts the update to be within a small range defi-
ned by ε to prevent too large policy updates, which improves the stability in training. In Eq. (2.60),
rt(θ) is the probability ratio, defined as πθ(st,at)

πold(st,at) , representing the probability of taking action at
at state st in the current policy compared to the previous one ; Ât is an advantage estimator and R̂t
is a return-to-go of the trajectory at time step t. Lvalue(ω) is the value function loss, measuring the
difference between the value function estimated by the current critic NN and the expected value R̂t
during the trajectories. Finally, incorporating the entropy bonus Lentropy encourages exploration
by discouraging premature convergence to a deterministic policy. cv and ce are two coefficients to
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Algorithm 4 Proximal Policy Optimization (PPO-Clip) Actor-Critic Style

1: Initialize policy parameters θ0, rollout buffer Dep, initial value function parameters ω0, clip-
ping threshold ε.

2: while Training do
3: Run policy πθold in environment for T time-steps and put data in Dep
4: for epoch = 0, 1, 2, ... K do
5: Take the entire episode of (st, at, rt, st+1) transitions from Dep and compute Ât
6: Optimize Loss function with respect to NN parameters θ , with T gradient steps

using minibatch size M
7: Update the value function by regression on MSE ωold ← ω using minibatches
8: Update the policy θold ← θ
9: end for

10: end while

weigh the value function loss and the entropy bonus, respectively. These are the hyperparameters
that need to be tuned.

Note that this PPO actor-critic algorithm is on-policy, meaning that the algorithm does not
reuse the experiences (st, at, rt, st+1) from old policies. Unlike the experience replay buffer in
off-policy algorithms such as DQN, PPO reuse only the experiences performed under the same
policy to update the critic net, thus the policy optimization stability is guaranteed. PPO has the
stability of trust region policy optimization algorithms [Schulman et al., 2015], being simpler and
performing better. PPO is a very computation-efficient RL that has been used in a number of
modern challenges such as playing DOTA2 [Berner et al., 2019] or fine-tuning LLM models such
as ChatGPT [Ramponi, 2022].

PPO can be used for both discrete and continuous action environments because the policy
πθ is approximated with a neural network and all the loss functions work for both action types.
Due to its simplicity and stability it can be a default deep RL algorithm for learning. In the next
subsection, we explore the popular off-policy algorithm in model-free deep RL that is used for
continuous-action environments.
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2.3.3.5 SAC

Soft Actor Critic (SAC) [Haarnoja et al., 2017a, Haarnoja et al., 2019b, Haarnoja et al.,
2019a] is an efficient actor critic algorithm that maximizes the return of a policy in the entropy-
maximization framework [Haarnoja et al., 2017b]. With Actor Critic networks, it learns the opti-
mal entropy of the policy while still maximizing the return. Its training is more stable and robust to
hyperparameters than its popular predecessor DDPG [Lillicrap et al., 2016]. SAC has two Q(s, a)
networks mitigating the maximization bias of value-based learning (described in Section 2.3.3.3)
and one policy network π(a|s).

To apply the entropy maximization framework, the authors define soft value function :

V (st) = Eat∼π [Q (st,at)− α log π (at | st)] , (2.63)

which is an expected value function with the scaled (α) entropy maximization. The advantage of
SAC is that it maximizes the soft action-value function [Haarnoja et al., 2017b] which maximizes
the return making the policy as random as possible. Moreover, the learning mechanism for entropy
hyperparameter α in Eq. (2.63) is proposed.

The algorithm optimizes 3 different losses :

JQ(θ) = E(st,at)∼D

[1
2
(
Qθ (st,at)−

(
r (st,at) + γEst+1∼p [Vθ̄ (st+1)]

))2]
, (2.64)

Jπ(φ) = Est∼D
[
Eat∼πφ [α log (πφ (at | st))−Qθ (st, st)]

]
, (2.65)

J(α) = Eat∼πt

[
−α log πt (at | st)− αH

]
. (2.66)

Equation (2.64) optimizes the two critics at the same time, Eq. (2.65) optimizes the policy follo-
wing the entropy-maximization framework and Eq. (2.66) optimizes the entropy temperature. The
overall algorithm is shown in Algorithm 5.

Algorithm 5 Soft Actor-Critic (SAC)
1: Initialize critic networks Qω1 , Qω2 , actor network πθ, and target critic networks Qω̄1 , Qω̄2

2: Initialize replay buffer D
3: for each iteration do
4: for each environment step do
5: Select action ai ∼ πθ(a|si) with exploration noise
6: Execute ai, observe next state si+1, reward ri, and done signal di
7: Store (si, ai, ri, si+1, di) in D
8: end for
9: for each gradient step do

10: Sample mini-batch from D
11: Compute target value y using Qω̄1 , Qω̄2

12: Update Qω1 , Qω2 by minimizing loss i.e. ωi ← ωi − λQ∇̂ωiJQ (ωi)
13: Update πθ by maximizing SAC objective
14: Adjust entropy temperature α← α− λ∇̂αJ(α)
15: Soft update target networks Qω̄1 , Qω̄2 i.e. ω̄i ← τωi + (1− τ)ω̄i
16: end for
17: end for
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2.3.3.6 Conclusion

We have presented the general theory for adaptation of classical Reinforcement learning me-
thods with neural networks, rendering them model-free deep RL algorithms. We have presented
a couple of algorithms such as DQN, DDQN, PPO and SAC. Other more recent model-free deep
RL algorithms for discrete-action environments are Rainbow [Hessel et al., 2017], QR-DQN [Dab-
ney et al., 2017] and for continuous-action environments is DROQ [Hiraoka et al., 2021]. In the
Appendix B.2, we investigate other types of deep Reinforcement learning such as imitation lear-
ning and model-based deep RL. In the next section, we apply tabular and Neural-Network based
Q-learning to successfully drive the real cart-pole system to its unstable equilibrium.
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2.4 Controlling the pendulum using reinforcement learning

We aim at controlling an inverted pendulum in its unstable position, by model-free RL. The
main advantage of model-free RL for control is that it avoids modeling the dynamics involved,
unlike classical model-based approaches [Huang et al., 2012, Sun et al., 2018].

Many numerical studies have implemented an inverted pendulum virtual environment as a
benchmark to test RL algorithms [Ope, ,Koryakovskiy et al., 2017,Manrique Escobar et al., 2020,
Zheng et al., 2020, Surriani et al., 2021, Özalp et al., 2020, Kumar, 2020, Baldi et al., 2020], but
to our knowledge, there is no study that provides successful open-source RL implementations in
experiments. First, except for a few studies that have discussed non ideal systems [Koryakovskiy
et al., 2017, Manrique Escobar et al., 2020], most of these numerical implementations discard
the effects associated to realistic (and thus more complex) control methods : in experiments, the
control of the cart is subject to delay, hysteresis, biases and noise that can significantly alter the
learning process. Second, most of the existing virtual environments consider only motion of the
pendulum in a small angle range around the upward and unstable position and do not treat the
whole control from the downward and stable position as expected in experiments. This ambition
makes the control task significantly more difficult.

Although many Actor-Critic methods [Peters and Schaal, 2008] such as PPO [Schulman et al.,
2017] could control successfully the cart-pole system, we focus on Q-learning and Deep Q-
Network approaches due to their simplicity and easiness of understanding for educational pur-
poses. We give insights about the implementation and the conditions of successful controls. Si-
mulations with a virtual environment are provided to test the feasibility of the two approaches as
well as to probe the effect of physical parameters that can not be easily tuned in experiments.

We provide all the material required to conduct the experiments detailed in this study, inclu-
ding an open-source code repository [Israilov et al., 2023] that enables the replication of all the
approaches presented herein. It includes detailed instructions to build the prototype used in this
work, configure its software interface and implement several controllers.

For the cart-pole problem, at each discrete time step ti = i∆t (where ∆t denotes sampling
time), the state si is given by the pendulum’s orientation θ(ti) and its angular velocity θ̇(ti), as
well as the cart’s position x(ti) and velocity ẋ(ti), i.e :

si = (θ(ti), θ̇(ti), x(ti), ẋ(ti)). (2.67)

According to the policy π(a|s), the agent chooses and executes an action ai which controls the
cart movement for a given state si. This action changes the agent’s state si to si+1, and the envi-
ronment provides a reward ri+1 related to the proximity of the pendulum to its unstable position.
This process is then iterated at stage i+ 1 : the loop is depicted in Fig. 2.10.

As discussed in Section 2.3.2.1, one of the intuitive ways for agent’s learning is through the
action-value function Q(s, a). We discuss the limitations of the basic Q-Learning for this system,
then the more advanced DQN approach is exposed and we show that it successfully maintains the
pendulum at the target position in both experiments and simulations. Finally, we explore the in-
fluence of different system’s physical parameters on the control quality in the virtual environment.

RL Environment

Our objective is to maintain the pendulum at the target position θ = π while centering the cart
(x = 0) at the same time. The system state s has been defined with Eq. (2.67). To avoid an angle
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discontinuity at θ ∈ {−π, π}, sin(θ) and cos(θ) are given to the learning agent instead of only θ.
Moreover, passing through sin(θ) and cos(θ) ensures that the inputs to ANN are in the standard
range of [−1, 1] of ANN. The inverted pendulum system is driven by a motor on the cart and it has
direct control on the mean cart’s velocity ẋ via an applied voltage on the motor. Three actions are
offered to the agent at each time step, i.e, ai = {−U, 0,+U}, with U ∈ [0, 12V] a fixed voltage.
At each time step, the cart can translate in both directions or keep its current position, according
to its dynamics.

We now proceed with the reward function. The reward is maximum as the objective is reached,
i.e, the pendulum in its unstable position (θ = π). In addition, we add the requirement for the cart
to be centered around the middle of the track (x = 0). For this purpose, there are many options to
design the reward function [Sutton and Barto, 2018], and for simplicity, we have chosen :

r(θ, x) = (1/2) (1− cos(θ))− (x/x0)2 , (2.68)

where x0 < xmax. This mechanical constraint of xmax does not prevent the agent to reach the
control objective on the angle. The maximum of this function is equal to one, as θ = π and x = 0.

The normalized return of an episode is computed as the cumulative reward of the entire episode
divided by the maximum episode length, i.e. 800 (time steps). Such a definition gives an evaluation
of the policy : the closer to 1 the normalized return, the better the episode. An episode is interrupted
when the state si meets at least one of the following conditions :

1. the dimensionless cart’s position exceeds the physical boundaries, i.e, |x| > xmax ; In this
case, the agent is strongly penalized and the cumulative reward of the episode is reduced
by -400.

2. the angular speed exceed 14 rad/s, since in practice, we would like to avoid the pendulum
spinning too rapidly. This value has been chosen according to the mechanical limit of our
experimental system.

3. the maximum duration Tep = 800∆t is attained, where ∆t = 0.05 s. This choice has been
set to diversify the experience and avoid being stuck in local minimums, which corresponds
to roughly 2 or 3 times of optimal swing-up time. These values are indeed adapted for an
acceptable control quality. In the real experiment, one episode takes approximately 40 s.

At the beginning of every episode, we initialize the system with the cart and the pendulum
at rest, i.e, θ = 0 and x = 0. We ensure that the pendulum is at rest to learn proper swing-up
strategies. Between two episodes, the system waits 120 s to ensure that the condition θ = θ̇ = 0
is satisfied.

The learning process consists in accumulating statistics during successive episodes. Plotting
the normalized return as a function of the episode number can be noisy and we smooth the data by
performing a moving average in Q-learning and DQN over 300 and 30 episodes, respectively, as
the former is less stable [see the raw "learning curve" figures in Fig. A.2].

Finally, we prefer to represent the learning curve by plotting the normalized return as a function
of the total number of time steps to give insights about the true time of the learning process,
because some episodes might not run to the end.

For simplicity, we deliberately choose to control the pendulum with discrete actions. We have
tested two model-free RL algorithms, Q-learning [Watkins, 1989, Watkins and Dayan, 1992] and
Deep Q-Network (DQN) [Mnih et al., 2013]. Both approaches are detailed in Section 2.3.3.2.
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Figure 2.10 – RL learning process. The state of environment s is measured and given to the agent.
The agent updates its policy and accordingly chooses the action a for the next step among −U ,
0 or U . After the sampling time, the state s evolves and the cycle continues. In our case, s =
(θ, θ̇, x, ẋ). The policy is updated by modifying the action-value function for Q-Learning and
DQN, using a so-called Q-table or dense neural networks, respectively.

2.4.1 Simulations results

In the experimental setup, the state information is gathered directly from the physical world,
and the agent interacts with the environment via the Low-level Interface (LLI) [see Appendix A.1].
In the virtual setup, the agent’s state is updated through eqs. 2.21, 2.22, 2.23. The effects of the
voltage U , the dry friction fc acting on the motorized base and the viscous friction kv of the
pendulum were investigated systematically in simulation.

In the experimental setup, the measurements are subject to the white noise and we also inves-
tigated the effect of the artificially added white noise upon the simulated angular state values. We
have introduced a Gaussian noise to the measurement of the pendulum angle θ, i.e, at each instant
t = i∆t, θi ∼ N (θmi , σ2

θ), whereN refers to the normal distribution, θmi = θi−1 + θ̇∆t is updated
from the previous state. Naturally, a noise of amplitude σθ̇ = σθ/∆t was then introduced to the
θ̇ measurement. The influence of the noise amplitude σθ and σθ̇ on the control quality was then
analyzed.

Q-learning

In Q-learning, the observation space (sin(θ), cos(θ), θ̇, x, ẋ) is discretized into different num-
ber of bins, whose sizes is matter of compromise. A Q-table with low resolution results in relatively
fast simulations and limits the use of computer memory. On the other hand, the resolution needs
to be high enough to ensure the success of the learning process. As an example we start with a
sparse and homogeneous discretization with nBins = (10, 10, 10, 10, 10). In this case we expect
the Q-table to contain 3 · 105 elements, given that there are three possible actions.

The Q-table size gives a minimal estimate of the total number of time steps to learn assuming
that the agent needs to visit each element of the table. This number is 10-100 times higher in
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Figure 2.11 – Learning results using the basic tabular Q-learning implementation. Left : Norma-
lized return as a function of the number of time steps for different total number of episodes NT .
Right : Temporal evolution of cos θ in the best episode of the longest learning process (NT = 107).
The observation space (sin(θ), cos(θ), θ̇, x, ẋ) is discretized homogeneously into different num-
ber of bins : a) and b) nBins = (10, 10, 10, 10, 10), c) and d) nBins = (50, 50, 50, 10, 10).

practice given that the basic Q-learning algorithm usually suffers a low sample-efficiency [Sutton
and Barto, 2018] : some elements are never evaluated while some others can be updated regularly.

We have tested the Q-learning approach in simulation with different total number of episodes
NT from 104 to 107. We recall that one episode contains 800 time steps at maximum; the average
number of time steps per episode is lower in practice due to numerous interrupted episodes at the
beginning of the learning process. The technical details such as the value of the hyperparameters
are found in Appendix A and Table A.2. Given the expression of the reward function and of the
penalty, it can been inferred from Fig. 2.11 the cumulative reward spans from -0.5 (the cart goes
quickly out of the track) to 1 (successful learning). This is related to the fact that at the beginning
of the training, the agent almost always goes out of the track and receives a huge negative reward
-400 ; given the normalization of 800 steps, we obtain -0.5 for the normalized return 4. Below 106

time steps, the normalized return remains close to its minimum. The system requires at least 107

time steps (105 episodes) to observe an increase of the normalized return above 0 (Fig. 2.11a).
Even in this case, the cumulative reward remains low, around 0.3, and reaches 0.55 at most as the
number of time steps is increased to 1010. For such an episode, the pendulum can be maintained at

4. Reminder : normalized return - cumulative reward of the entire episode divided by the maximum episode length
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its vertical position only in a short amount of time, otherwise the pendulum oscillates (Fig. 2.11b).
Transposed to experiments with a physical time interval ∆t = 0.05s, 107 time steps correspond
to 6 days of experiments ! We can nevertheless discuss the effect of the discretization of the Q-
table, which is too low in the former example to reach a cumulative reward close to 1 even after a
very large number of time steps. In the following, we estimate the typical value nθ for the bin in
θ : the discretization interval is ∆θ = 2π/nθ. In order to ensure the learning objective, the time
interval separating two actions must not be too large with respect to this discretization. We expect
that ∆t should be smaller than the typical time the agent lasts in one interval : we can assess this
duration in the limit of small damping. By assuming that the pendulum is weekly damped, we
approximate the Eq. (2.21) with θ̈+ω2 sin θ = 0. Consequently we write the energy conservation
1
2 θ̇

2(t) = ω2 (cos θ(t)− cos θ(0)), where θ̇(0) = 0. Between two iterations the angle varies
within an increment ∆θ and we write θ(t) = θ(0) + ∆θ, ∆θ � 1 :

cos θ(t) = cos(θ(0))−∆θ sin θ(0) + o(∆θ)2 (2.69)

θ̇ = ∆θ
∆t , (2.70)

such that we deduce that :
nθ = π

ω2∆t2
1

sin θ(0) . (2.71)

This gives the order of magnitude nθ ∼ 50. The presence of a divergence near the unstable
equilibrium shows that the discretization must be refined at least near cos(θ) = −1.

Consequently, we tested a finer resolution nBins = (50, 50, 50, 10, 10) with sin(θ), cos(θ)
and θ̇ discretized into 50 bins. The computation memory increases exponentially with the size of
the Q-table and any finer resolution would be unpractical. As observed in Fig. 2.11c, it takes at
least 108 time steps to see a normalized return above 0. After about 5.6× 109 time steps (7× 106

episodes), the system has finally learned reasonably well and obtain a normalized return of∼ 0.8 :
the pendulum can stay in the goal position for a finite period, but quickly falls over to be quickly
swung back up again (Fig. 2.11d).

The inefficiency of the learning is rationalized by the fact that the matrix representation of
Q-Table is not adapted to solve the swing-up problem. To update the action-value function more
efficiently, a better function approximation with state aggregation is needed. In that regard, artifi-
cial neural networks show very promising capabilities and is data efficient [Riedmiller, 2005].

To overcome this obstacle, it appears necessary to exploit a more efficient function approxi-
mator. Deep Q-Network (DQN) [Mnih et al., 2013] is a reinforcement learning algorithm based on
the Q-learning approach that takes advantage of neural networks in place of the matrix “Q-table”
to approximate the true “action-value” function. Neural networks provide an effective way to ap-
proximate Q(s, a), because they can incorporate non-linearity and aggregate among the states due
to the interconnection between the neighboring layers of the neural net. This leads to a more ef-
ficient action-value approximations. The algorithm is described in Section 2.3.3.2 and we remind
the functioning of DQN for the cart-pole environment in Fig. 2.12.

2.4.1.1 Deep Q Learning

We implement the Deep Q-Learning technique. In this approach, the Q-Table for approxima-
ting the Q-function in Section 2.3.2.1 is replaced by an ANN, which is named Deep Q Network
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(DQN). Similar to any other deep learning algorithm, the training of DQN depends on the hyper-
parameters, which determine the network policy structure, the learning strategy and the learning
speed. We offer a set of fixed hyper-parameters (table A.2), which is robust for our system.

All the simulations and experiments were driven by a Dell Precision 7550 using its internal
GPU. For one simulation with 1.5 106 time steps with logging and evaluation loops, it takes
10.7 minutes using GPU (NVidia Quadro T2000), and 13.43 minutes using CPU only (Intel(R)
Core(TM) i7-10875H CPU @ 2.30GHz).
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Figure 2.12 – DQN learning process. The state of the environment si = (θ, θ̇, x, ẋ) is assessed
and the policy (ANN) outputs the corresponding action ai. Following this, the system is actua-
ted, leading to reward ri the observation of a new state si+1. The transition data comprising
(si, ai, ri, si+1) is stored in the replay buffer. At the end of every episode, the agent updates its
action-value function Q(s, a) i.e. local network using gradient descent. Learning continues for C
time steps, when the target network is replaced with more trained local network.

In our problem, the ANN’s input layer have 5 neurons that handle the five components of the
observation (sin(θ), cos(θ), θ̇, x, ẋ). Each of these five neurons is connected to the first hidden
layer consisting of 256 nodes, which are also connected to a second hidden layer of also 256
nodes. For the two hidden layers, we use the Rectified Linear Unit function (ReLU) [Sutton and
Barto, 2018, Mnih et al., 2015].

The network’s output layer is made up of 3 neurons, which gather information from the pre-
vious hidden layer. Each output neuron represents the action-value of 3 possible actions for the



2.4 – Controlling the pendulum using reinforcement learning 51

current state, visualized in Fig. 2.9. The training process updates the unknown parameters wjk and
w0k, in order to minimize the error between the output of the ANN, and the estimated true value
based on the real reward given by the environment.

In parallel to experiments, we performed simulations of the model. For both approaches, the
features and quality of the learning process are evaluated. Note that the maximal number of time
steps (150000) for the complete training is chosen so that the steady state average value is reached
in both real and virtual experiments. We evaluate the policy performance every 5000 time steps
with an inference. It consists in testing a greedy policy during one complete episode, with the
initial condition (θ, θ̇, x, ẋ) = (0, 0, 0, 0). This protocol is applied directly in experiments, while
in simulations, the inference curve consists in computing the evolution of the average normalized
return of 10 episodes (instead of only one in experiments) with equidistant initial conditions : (θ0 ∈
(−10◦, 10◦) and (θ̇, x, ẋ) = (0, 0, 0)). This allows to test the robustness of the policy in simulation,
i.e, the capacity to generalize and achieve a high normalized return from different initial states,
other than the particular initial state of the learning process. This protocol however is not viable
in experiments since in practice it is difficult to control precisely the initial angle of the pendulum
other than its equilibrium position. Finally, the best learned policy in the sequel corresponds to the
DQN model that obtained the highest normalized return among all the inferences.

2.4.2 Experimental results

We first discuss the results of the outlined DQN algorithm obtained with the experimental
setup. The only control parameter is the applied voltage U , which is directly proportional to the
target cart’s velocity value ẋc in Eq. (2.23). Fig. 2.13 displays the temporal evolutions : (a) of the
cart’s position and (b) of the pendulum’s angle during a single episode for the best learned policies.
Two distinct voltages were tested : U = 2.4 V and U = 7.1 V.

The voltage U = 2.4 V is not sufficient to swing up the pendulum, and the best policy yields
an oscillation of the pendulum around 0. This means that the energy provided with this voltage is
not high enough to swing up the pendulum or that the total duration of one episode, 800 time steps,
is not large enough to increase the maximal angle, period after period. Given that the maximum
angle is reached after 300 time steps already, the first assumption is probably the good one.

For the other voltage U = 7.1 V, the cart initially oscillates with a large amplitude and the
pendulum swings up after about the equivalent of almost 3 periods. As soon as the unstable
equilibrium is reached, the cart turns into a vibration regime with smaller amplitude to maintain
the pendulum balanced upward around θ = π. The learning and the inference curves (see Fig. 2.14,
thick solid lines) reveal exactly the same results that for U = 7.1 V, the normalized return in both
learning and inference reaches a high plateau value of∼ 0.8−0.9 , indicating a successful control,
while for U = 2.4 V, the normalized return stays very low around 0.1.

Simulation results analysis

In this section, we perform simulations and test different important physical parameters which
could influence the control quality. All the parameters are kept constant and defined with the Tables
A.1 and A.2 except the one investigated. The voltage is set to U = 12 V and the noise σθ = σθ̇ = 0
if not specified.
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Figure 2.13 – Experimental results with the best policies in inference for two different applied
voltages U = 2.4 V (blue) and 7.1 V (green) : a) Temporal evolution of the cart’s position x
during one episode. b) trajectory of the cart in the (x, ẋ) space. c) Temporal evolution of the
pendulum’s angle θ during one episode. d) Trajectory of the pendulum in the (θ, θ̇) space. e)
Temporal evolution of the applied voltage during the first 200 time steps.

Effect of action amplitude – applied voltage on the DC motor. We have shown with our
experimental setup that the action amplitude plays a crucial role in the task : a low voltage applied
on the DC motor results in a failure of control. Here we test a range of U from 2.4 to 12 V in the
virtual environment and the results are presented in Fig. 2.14. First, we note that the simulation
results are consistent with those found in experiments (thick curves), i.e, both normal and thick
curves of (U = 7.1 V) as well as (U = 2.4 V) show similar trend. Fig. 2.14a displays the learning
curves. The normalized return increases and then reaches a plateau for all the applied voltages.
However, up to U = 4.7 V, the plateau value is smaller than 0.4, close to that observed using
Q-learning algorithm, referring to an oscillation around the stable position. Above 4.7 V, DQN
algorithm gives satisfying performance during the learning process.

To assess the performance of the optimal policy obtained for each applied voltage, we plot the
inference results in Fig. 2.14b. Because there is no exploration and the optimal action is chosen at
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Figure 2.14 – Influence of the applied voltage on the learning process. Thin curves correspond to
different simulations, while thick curves refer to the experimental observations. a) Learning curve.
b) Inference curve built from inferences performed every 5000 time steps. c) Temporal evolution
of the reward for the episode initiated at θ0 = 0 following the best learned policy. d) Statistics
over 10 episodes initiated with θ0 between −10◦ and 10◦ of the plateau reward following the best
learned policy.
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each time step, the plateau value of each inference curve is expected to be greater than the cor-
responding learning curve. Nevertheless, some inferences exhibit negative peaks associated to the
fact that within the set of 10 episodes, averaged to measure the normalized return of an inference,
some of them are terminated by the cart reaching xmax and are strongly penalized consequently.
These negative peaks disappear as the number of time steps increases and the learning process
continues. A normalized return between 0.8-0.9 is a good value as it is calculated from the indi-
vidual reward averaging on one episode, and this includes the initial stage before swing up. This
can be seen in Fig. 2.14c where the learning process is probed by plotting the time evolution of
the reward for an episode initiated at θ0 = 0 following the best learned policy obtained after the
150000 time steps. From U = 5.9 V, the plateau of the reward is around 1 and the system reaches
the objective. This figure also reveals that the higher the applied voltage, the quicker the swing-up
is.

To probe the robustness of the best learned policy for each applied voltage, we have measured
the average of the plateau reward for 10 episodes initiated with equidistant initial values of θ0 bet-
ween −10◦ and 10◦. Statistics over these 10 episodes are represented by a box-plot of the reward
as a function of U (Fig. 2.14d). It shows that the pendulum can operate and maintain a swing up
for some values of θ0 even for U = 4.7V, but that this behavior becomes robust only for U ≥ 5.9V.
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Figure 2.15 – Influence of the physical parameters on the control : inference curves of a) static
friction, b) viscous friction, c) measurement noise and d) action noise.

Effect of the physical parameters In what follows, we numerically investigate the robustness
of the learning process with respect to the two friction coefficients and to the two sources of noise.
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Figure 2.16 – Influence of the seed number of a random generator on the learning process. Results
are shown for the DQN algoritm with the default parameters (Table A.2 and Table A.2),U = 12 V
and σθ = σθ̇ = 0.

In Fig. 2.15a, the static friction is varied from 0 to 11.7 N.kg−1, keeping the other parameters
constant. We observe that the value 1.17 N.kg−1 measured with the real system does not perturb
the learning process in comparison to a system without friction. However, increasing tenfold this
parameter value prevents the system from learning correctly. In Fig. 2.15b, the viscous friction is
varied from 0 to 0.70 N.kg−1. Again the experimental value 0.07 N.s.rad−1 exhibits a good lear-
ning performance but multiplying this value by 10 would prevent the agent to drive the pendulum
to the target.

As mentioned in the experimental setup description, the real system has uncertainties associa-
ted to the measurement of the angle θ. In the virtual environment, this is accounted for by Gaussian
noises of standard deviations σθ and σθ/∆t for the measurements of θ and θ̇ respectively. From
the real system, we have evaluated σθ ∼ 2.6 mrad. Here we probe values ranging between 0 and
175 mrad in simulation (Fig. 2.15c). Low measurement noises, i.e, σθ < 8.7 mrad, result in a
perfect control quality as observed with high plateau values of the inference curves. A noise am-
plitude of 17.5 mrad is still acceptable. Beyond this value, the pendulum can not be driven to its
unstable position.

Finally, we examine the effect of an associated degree of uncertainty on the command sent to
the motor, thus a Gaussian noise of standard deviation σU is added to the voltage U in simulation.
We show in Fig. 2.15d that, up to a noise level of σU/U ' 0.1, a good control is achieved. This
condition is not restrictive and is easily obtained with classical systems. A moderate noise does
not seem to impact the quality of the learning process.

CartPole Simulation analysis To verify the robustness of DQN training, we take 10 random
seeds 5 [Henderson et al., 2018] on the training of a default configuration [Table A.1,Table A.2]
and verify that all the results converge in Fig. 2.16. If not specified, we fix the seed number to 1.

5. random generator coefficient used for exploration and network weight initialization. To reproduce the results,
same random generator coefficient should be used.
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We will now compare the simulation performance of various deep RL algorithms, described
in Section 2.3.3, with discrete and continuous actions. The hyperparameters list can be found in
Appendix A.4.
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Figure 2.17 – a) Convergence of different RL algorithms on a discrete-action environment in
inference. We notice that the algorithms reach almost the same maximum values during inference
evaluations. To achieve better results for DDQN and PPO, the hyperparameters need to be more
fine-tuned. b) Convergence of different RL algorithms on a continuous-action environment in
inference. The training happens during 300000 time steps and it can be inferred that the algorithms
takes longer to converge due to the continuous action space.
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2.5 Conclusion

We have revisited in a pedagogical context, the stabilization of an inverted pendulum, a clas-
sical problem in dynamics and control theory. We introduced several model-based control tech-
niques, a linear controller and Lyapunov-theory based controller. The Linear Quadratic Regulator
which provides an optimal linear control when the pendulum comes near the unstable equilibrium,
while Lyapunov theory permits to analyse the stability of nonlinear systems and design an appro-
priate controller. We re-derived the physical model of such a system and the control objective.
Then, two model-free Reinforcement Learning algorithms were investigated both in experiments
and in simulations, which offers an accurate description of real experiments. In terms of the control
quality, the basic Q-Learning method is found not efficient while the more advanced algorithm
DQN successfully accomplishes the stabilization of the pendulum in its unstable position, inde-
pendently of the initial condition. Finally, we studied the influence of some extensive physical
parameters on the control quality in simulation with the virtual environment. The robustness of
the DQN approach has been therefore validated, both in terms of parameter influence, but also in
terms of initial conditions : the RL always drives the pendulum in its unstable position, indepen-
dently of the initial state. An admissible range of physical parameters were determined, which can
be used to guide the elaboration of experimental setups.

Meanwhile, we deliberately chose to present results based on discrete actions for simplicity.
We also verified the convergence of Soft Actor-Critic (SAC) algorithm [Haarnoja et al., 2019b] on
a real cart-pole system as well. Using continuous action space with SAC unquestionably enables
a finer control, but it takes more resources and approximately twice more interaction time to train
the RL model due to additional complexity.

For public outreach, we provide all the details in an open-source code repository [Israilov
et al., 2023], video of experiments with simulations 6 and the 3D model of the assembly 7 on the
free-access web-platform. The cart-pole example sheds light on different control techniques that
could be applied on a robotic fish which is a nonlinear underactuated system.

6. https://www.youtube.com/watch?v=XMn1FI9_f8k&ab_channel=SardorIsrailov
7. https://cad.onshape.com/documents/cb7bd0e195c60437cf97c9d5/w/

e6da1cebe26dd182a7bf81c1/e/3d69146d5de92928caf63491?renderMode=0&uiState=
64ef616331f16d113f004065

https://www.youtube.com/watch?v=XMn1FI9_f8k&ab_channel=SardorIsrailov
https://cad.onshape.com/documents/cb7bd0e195c60437cf97c9d5/w/e6da1cebe26dd182a7bf81c1/e/3d69146d5de92928caf63491?renderMode=0&uiState=64ef616331f16d113f004065
https://cad.onshape.com/documents/cb7bd0e195c60437cf97c9d5/w/e6da1cebe26dd182a7bf81c1/e/3d69146d5de92928caf63491?renderMode=0&uiState=64ef616331f16d113f004065
https://cad.onshape.com/documents/cb7bd0e195c60437cf97c9d5/w/e6da1cebe26dd182a7bf81c1/e/3d69146d5de92928caf63491?renderMode=0&uiState=64ef616331f16d113f004065




CHAPTER 3
Reinforcement learning

approach to control a
robotic fish

Undulatory swimming is the most observed mode of locomotion of underwater animals.
In this chapter, we aim at determining strategies to achieve the highest possible thrust
and consequently highest swimming speed. To address this challenge, we exploit a biomi-
metic robotic swimmer to determine the best command to produce the highest thrust and
swimming speed. Using machine learning techniques, we uncover the optimal control
which is rationalized using a simple model. In the first part of the chapter we focus on
thrust optimization of a robotic fish both in simulation and in experiments. In the second
half of the chapter, speed maximization is tackled in different simulation envirnments and
a simple experimental setup is proposed to maximize the speed of a biomimmetic swimer
using RL. We rationalise the results with corresponding discussions. Finally, a simple
visual servoing task with a simulated fish virtual environment is presented, illustrating
that RL is able to sucessfully drive the system from an initial to a target image.
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3.1 Introduction and Context

The diversity of shapes and physiologies among multicellular organisms is tremendous, and
it can be rationalized by the principles of Darwinian evolution and the various functions required
by animals [Healy et al., 2019]. Locomotion is a vital activity for metazoans, as it enables them
to fulfill essential functions necessary for survival, such as accessing favorable environments, en-
gaging in reproduction, hunting, and evading predators. The swimming of underwater organisms
[see Fig. 1.3] is usually split into two main groups : the smallest animals and the largest ones. The
Reynolds number, which is the ratio of the fish velocity times the fish length to the fluid kinematic
viscosity, is the discriminant parameter that permits the classification of the swimmers into the
two categories [Childress, 1981]. For a small animal, i.e. with a Reynolds number lower than 1,
the inertial effects can be disregarded and viscous friction controls the locomotion, whereas, for
a larger animal, viscosity plays a minor role. In this chapter, we will focus on the gaits of the
second category, and in particular, the undulatory locomotion which is the most observed form of
swimming [Di Santo et al., 2021].

From tadpoles of a few centimeters to whales of 20 meters in length, swimming consists in
pushing the water by undulating the body [Childress, 1981] which produces a thrust exploiting
the inertia of the displaced fluid [Gazzola et al., 2014]. The kinematics of underwater undulatory
swimming appear to be particularly robust in vertebrates, highlighting general physical principles.
The wavelength of the body deformation is of the order of the length of the swimmer [Videler,
1993, Santo et al., 2021], while there is on average a factor 0.2 between tail beat amplitude and
swimmer length [Bainbridge, 1958,Rohr and Fish, 2004,Hunter, 1971,Saadat et al., 2017,Sánchez-
Rodríguez et al., 2023]. The tail beat frequency f is not fixed for an individual but tunes its swim-
ming speed : the higher the frequency, the higher the speed [Bainbridge, 1958,Triantafyllou et al.,
1993, Gazzola et al., 2014, Saadat et al., 2017, Sánchez-Rodríguez et al., 2023]. There is evidence
that each swimmer can vary its frequency within a frequency band whose range is set by the
interplay between the muscle properties and the interaction of the swimmer with its surrounding
fluid [Sánchez-Rodríguez et al., 2023]. Muscles have their own limits in terms of speed of contrac-
tion and tension, as represented by Hill’s muscle model [Hill, 1938]. Constraints can also be im-
posed by decision processes that are either spontaneous, through proprioceptive reflexes [Pearson,
1995,Williams IV et al., 2013,Sánchez-Rodríguez et al., 2021], or conscious, for instance through
the choice of the activity level [Brett, 1964, Brett, 1972]. These decisions drive the gait [Di Santo
et al., 2021] and we can expect different control strategies for an individual swimming at burst
speed [Hirt et al., 2017] and the same swimmer exhibiting a swim-and-coast gait in a sustained
level of activity [Li et al., 2021a].

These considerations are echoed in biomimetic robotic swimmers [Lebastard et al., 2016, Zhu
et al., 2019, Sánchez-Rodríguez et al., 2021, Thandiackal et al., 2021, Lee et al., 2022]. The biolo-
gical nature of the internal dynamics is here replaced by robotic elements : electronics, mechanics
and/or computer science. Developing efficient and fully autonomous artificial swimmers requires
finding the appropriate control strategies tailored to specific constraints to achieve optimal perfor-
mance for a given action. Recent years have witnessed the development of various approaches to
control soft robotic fish, both in simulations and experiments. Classical control techniques such as
PI [Zhang et al., 2015], PID [Yu et al., 2004], and robust controllers [Zhang et al., 2016] have been
employed to improve trajectory tracking performance. The emergence of artificial intelligence al-
gorithms has paved the way for novel control approaches designed specifically for soft-material
swimmers. Models and simulations are now utilized to explore various machine learning algo-
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rithms, achieving high swimming speeds while maintaining trajectory accuracy [Novati et al.,
2019, Jiao et al., 2021,Rajendran and Zhang, 2022,Youssef et al., 2022]. In one study, [Rajendran
and Zhang, 2022] studied DDPG-based [Lillicrap et al., 2016] control of the simulated robotic
fish to follow path and control yaw angle. In another, [Youssef et al., 2022] applied three dif-
ferent RL techniques (PPO, A2C, DQN) to experimentally guide a robotic fish towards two goals
at the opposite ends of a water tank via camera, with predefined harmonic policy. Regardless of
the methodology employed, the quest to achieve the highest swimming speed through robotic fish
remains an enduring challenge in the domain of aquatic locomotion.

A number of simulation models have been created to study fish locomotion. In [Liu et al.,
2022b], authors propose a set of physics-based environments for different modes of fish locomo-
tion integrated in openai gym deep RL framework. In [Jiao et al., 2021], the authors implemented
a PPO agent to drive a three-linked fish to a desired location in 2D in a potential flow, utilizing
the sense of proprioception to reach the destination. In [Tassa et al., 2018], the authors present
the general set of control benchmarks based on the popular physics-based simulation engine, mu-
joco [Todorov et al., 2012]. We present the modified "fish" environment from this control suite
benchmark in Section 3.3.1 as well as the simulation results.

Furthermore, the study [Zhu et al., 2019] investigated the impact of frequency driving on the
efficiency of a robotic swimmer in terms of thrust, speed and cost of transport. Another research
[Epps et al., 2009] studied the swimming performance of fish-like robot where the servomotor
is commanded by a square wave input signal but without justifying the choice of signal shape.
While these investigations have explored the correlation between swimming speed and tail beat
frequency, none of these prior studies has offered a conclusive comprehension of the optimal
control strategy required to attain this objective.

Despite the high heterogeneity of morphology observed in large aquatic animals, only few
quantities surprisingly characterize swimming kinematics. For example, the wavelength of the
undulatory deformation λ appears to be almost constant and proportional to the length L of the
animal : λ ranges from 0.7L to 1.1L for anguilliform to thuniform waving patterns, respecti-
vely [Videler, 1993, Santo et al., 2021].

In this chapter, we aim to optimize the robotic fish thrust force and swimming speed. First,
we present our experimental setup for generating maximum thrust in swimming using a single-
parameter control system. Then, we showcase the experimental outcomes achieved by employing
deep RL techniques to drive a swimming robot [Sutton and Barto, 2018]. Through these experi-
ments, we identify the optimal control strategy, which involves utilizing a square wave function
that alternates between the two extreme values allowed by the controller. As we research insights
on the underlying physical laws of aquatic locomotion, we need reliable and high-quality data
coming from different sensors of a robotic fish. That’s why we trained deep RL in two different
training sessions while using two independent sources for learning the swimming gait of the fish
[see Fig. 3.1, Fig. 3.2] : raw images from camera and force sensor readings. These experiments
provided us with the multi-source validation of obtained swimming policy that couldn’t be easily
inferred from simple physical models.

To gain a deeper understanding of the underlying physics, we develop a theoretical model in
Section 3.2.2, with the corresponding parameter identification in Section 3.2.2.1. This model sup-
ports and explains the observed experimental results. Furthermore, we justify the control strategy
with the theoretical explanation using bang-bang control with the Pontryagin’s Maximum Prin-
ciple [Kirk, 2004]. Then, we present a simple model-free strategy "swinging", that only utilizes
the angular velocity of a fin of the robotic fish to efficiently propel the robotic fish.
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In the second half of the chapter, we proceed with the speed optimization of an autonomous
fish in a water tank. We consider the problem of maximizing the speed of a moving robotic fish
both in simulation and experiment. First, we describe the methods for finding optimal swimming
gaits in different simulation environments. We propose a simple model of fish swimming in 1D
with a visual simulation environment and find that the optimal control to be bang-bang. We also
consider the problem of reaching a target speed in the minimum time. We then validate the square
wave control with the physics-based simulation engine, mujoco [Todorov et al., 2012]. We also ri-
gorously validate our optimized thrust strategy through a comprehensive 2D numerical simulation
in COMSOL. We then proceed with the visual-servoing formulation of the problem that aims to
steer the robotic fish from an initial image to a target image in minimum time. We present briefly
the concept of Variational Auto-Encoder [Kingma and Welling, 2014a] and couple it with a RL
algorithm to drive the robotic fish to the simulated target image in the optimum time. Once again,
the optimum control is found to be bang-bang.

The experimental setup for learning an optimal swimming gait for speed maximization is des-
cribed in Section 3.3.2. The RL learning of speed maximization in experiment further validates
the square wave control strategy found before. By aligning experiments, theory and numerical si-
mulations, we successfully determine the most efficient approach to achieve maximum swimming
speed. This integrated approach provides valuable insights into the best methods for enhancing
propulsion in aquatic systems.

3.2 Swimming thrust optimization

3.2.1 Experimental setup for thrust optimization

The robotic fish, designed in CAD software, consists of a rigid head made from PLA ma-
terial and an elastic tail fabricated from TPU material. The robotic fish rear body consists of a
deformable skeleton with a fin attached to its end, fabricated through 3D printing using a flexible
polymer. To achieve controlled deformation, a servomotor is employed, connected to the skele-
ton’s end via two cables passing through the holes in the fish tail. Its soft tail and caudal fin are
made of a flexible polymer called "Ninjaflex" from NinjaTek. The tail with the caudal fin is printed
with 20% of density in order to accommodate elasticity, while the rigid head is printed with 100%.
The tail is actuated by a waterproof servomotor (Hitec HS-5086WP) that is located in a rigid head.
The motor is connected to two nylon fishing cables actuating the elastic tail. The ensemble of an
elastic tail, rigid head and servomotor is close to the neutral buoyancy in water. A Raspberry Pi
4B (8Gb) controls the servomotor using pulse-width modulated (PWM) signals with the 6V stable
power source.

We utilize the experimental platform described above, which is equipped with the robotic fish
illustrated in Fig. 3.1. By rotating the wheel of the servomotor by an angle φ(t), we can induce
a deformation that controls the fin angle α(t). This design closely emulates the functioning of
antagonistic muscles found in natural swimmers, responsible for initiating body deformations.
The robot is immersed inside a water tank and its head is fixed to a force sensor that measures the
longitudinal force Fx(t). This force serves as a measure of thrust and is, on average, positive when
the fish is in the propulsion phase. The setup of the robotic fish used in this study is illustrated in
Fig. 3.1. We thoroughly present the main features of the setup ; some applications and additional
details can be found in [Gibouin et al., 2018, Sánchez-Rodríguez, 2021].
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Figure 3.1 – Experimental setup used for thrust optimization. a) Side view of the robotic fish.
b) Top view without the top fairing. The head is attached to a dual-force sensor. The tail and the
fin are printed with a flexible polymer. The body deformation is triggered by the actuation of a
waterproof servomotor (blue) : the rotation of its wheel pulls cables (drawn in red) to deform the
elastic tail [Gibouin et al., 2018]. The contours of the servomotor wheel is drawn in yellow.

To measure forces, a force sensor (Honigmann RFSR®150EI) is linked to the robotic fish via
an aluminum rod, enabling bi-directional force measurements (longitudinal force Fx and normal
force Fy) for up to 5 N with a precision of approximately 10−3 N. The force sensor outputs the
voltage linearly dependent on the force, and can be calibrated by applying the known force on it.
The signals from the force sensor are filtered by a low-pass electronic filter at 20 Hz and amplified
to fit the range of an ADC converter ([0, 5] V i.e. 1 N = 1 V). Then, an analog force signal
is converted into a digital format using an ADC converter (Adafruit 1115) and collected by the
Raspberry Pi via the I2C interface.

The robotic swimmer is positioned in a water tunnel (Rolling Hills Research Corporation,
Model 0710) using a beam clamp that holds the aluminum rod. The water tunnel is described in
Appendix D.1 and illustrated in Fig. D.1. In this experimental study, our focus is on determining
the highest thrust generated by the oscillation of the swimmer’s tail ; hence, no water flow was
generated by the tunnel pump.

For the learning process based solely on force sensor measurements, we directly conducted it
on the Raspberry Pi 4B (8Gb). The Raspberry Pi controls the servomotor using pulse-width modu-
lation (PWM) signals. We used pigpio library for servomotor actuation and sensor management.
The training of neural networks was accomplished using a machine learning framework pytorch
installed on a microcontroller. However, for the learning process involving image-based observa-
tions, we utilized an external computer due to computational constraints of convolutional neural
networks. Data exchange between the Raspberry Pi and the computer occurred via the TCP/IP
protocol using an RJ45 Ethernet cable. We proceed with two learning methods before presenting
the learning results in experiment.
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Deep RL optimization with force sensor

In our pursuit of finding the best functional form for the servomotor driving, we employed
deep RL techniques within the framework of Markov Decision Processes (MDP).

The state of the swimmer, denoted as s = (Fy(t), Ḟy(t), φc(t)), is characterized by the normal
force Fy(t) and its derivative Ḟy(t), as well as the command angle of the servomotor φc(t). The
action, represented by φc(t) ∈ [−Φ,Φ], refers to the command angle of the servomotor. The
reward is the average longitudinal force Fx = −

∫ T
0 Fx(t)dt over a time interval. The objective of

the RL algorithm is to maximize the total cumulative reward, which, in this context, translates to
maximizing the thrust Fx generated by the swimmer. The agent-environment interaction loop can
be visualized in Fig. 3.2a.

To achieve this, the RL algorithm explores the available action and state spaces and gradually
converges to the best control sequence through the trial and error process. We exploit the PPO
(Proximal Policy Optimization) algorithm [Schulman et al., 2017] for this study for its ability to
handle both discretized and continuous action spaces.

In our experiments, RL applies the control policy and sends a command to the robotic fish
every 50 ms. The control policy is incrementally updated (trained) after each 768 control steps.
We chose this number to ensure sufficient exploration of the action and state spaces before each
update. The entire training process spans 105 control steps, which amounts to approximately 2
hours. Throughout this process, we save the control policy and the state value function every 5000
steps.

After each training of the neural networks, we conduct an inference to evaluate the quality of
the actual best control policy : only the best action is chosen at each step during the episode without
exploration. This evaluation provides valuable insights into the performance of the swimmer with
the optimized control sequence. We now state the motivation and the method of using images as
an input of RL algorithms.

Optimizing thrust from raw images

The use of images in the optimization process of machine learning algorithms has been consi-
dered hard due to the high dimensionality of images. Convolutional Neural Networks (CNN) were
designed to extract usable features from high-dimensional images. We give a gentle overview
of CNNs in Appendix B.1. Nowadays, embedded cameras have become affordable, embodying
the source of rich information in the form of visual data. When observing robotic fish, high-
dimensional images contain data about their motion and undulation of the tail due to the interaction
with the fluid, which is hard to do with ordinary sensors. Coupled with Particle Image Velocimetry
(PIV), cameras could also provide information about the fluid speed field surrounding the robotic
fish.

In our study, we employed a web-camera (ODROID USB-CAM 720P) placed above the ro-
botic fish’s undulating fin to record its motion. When passing an image as an observation, the
agent encounters the problem of partial observability of MDP, meaning that just one single image
as an observation does not contain enough information to control the system with memory-free
ANNs. Indeed, a single image may contain rich information about the deflection angle, but does
not contain information about the speed which is crucial for robust feedback control. To tackle
this challenge, several modifications can be applied. The use of RNNs or LSTMs [Hochreiter and
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Schmidhuber, 1997] coupled with deep RL algorithms [Hausknecht and Stone, 2015, Chen et al.,
2016] permit to alleviate the partial observability problem.

However, the straightforward way of addressing this challenge is to stack several consecutive
images as an observation [Mnih et al., 2013, Mnih et al., 2015] to contain more information such
as first and second derivative of the deflection angle. At each time step, four images are used (i.e.,
the current image and the previous three ones) [Mnih et al., 2013], to represent the state s of the
robotic fish instead of the previous state representation (Fy(t), Ḟy(t), φc(t)). The recorded RGB
images were preprocessed by converting them to gray-scale, re-scaling them from their original
size to (84, 84) pixels and normalizing to [0,1] range. The learning process can be visualized in
Fig. 3.2b. This resizing was performed to reduce the compute time, while maintaining sufficient
information. Value normalization ([0,1]) of input images being a standard practice in deep learning
is performed to better train ANNs that rely on gradient descent algorithms. We used Convolutional
Neural Networks (CNN), introduced by [LeCun et al., 1989, LeCun et al., 2015], as a feature
extraction tool from rescaled images (84×84×4 pixels). The architecture was the same as in [Mnih
et al., 2015]. The output of CNN is a latent 512 dimensional vector which is then passed to the
fully-connected neural networks which constitute the actor-critic algorithm. Beyond this change in
state representation, the remaining experimental methods for learning remained the same as those
used for learning from the force sensor. We now present the results obtained in experiments and
simulations.

Observe and stack 4 images(84x84)

reward : 

reward : 

ActorCritic

Action on servo-motor : Action on servo-motor : 

observation : 

a) b)

Environment Environment
Reinforcement learning : PPO

Reinforcement learning : PPO ActorFeature Extractor

Critic

Figure 3.2 – Different modalities for RL training : a) Force sensor based observation : Observe nor-
mal forceFy, its derivative Ḟy and feed them to PPO algorithm together with the current consign φc
and reward Fx. b) Image-Based observation : In this approach, four consecutive images from the
environment are observed and stacked together. These stacked images are then processed through
a Convolutional Neural Network (CNN) prior to being input to the PPO algorithm. The algorithm
then generates an action consign φc to drive the servo with the elastic fin.
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Results

Experiments and machine learning

We employ a continuous-action PPO algorithm to identify the optimal control signal that maxi-
mizes the average thrust. As stated before, we limit the instruction angle φc(t) of the servomotor
to vary within the interval [−Φ,Φ] and the objective is to maximize a reward proportional to the
thrust Fx(t). The algorithm requires input observations to characterize the state of the system at
every time step i.e. 50 ms. Two independent sets of inputs are consecutively considered to probe
the robustness of the learning process and ensure the convergence toward the optimal control si-
gnal.

First, the algorithm is provided with Fy(t) and its time derivative Ḟy(t) to account for the
oscillatory nature of the system. After a few hours, the learning process converges toward a per-
iodical motion. As shown in Fig. 3.3, the optimal control signal φ?c(t) consists of a square wave
function that switches abruptly between the two allowed extreme values ±Φ.
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Figure 3.3 – Experimental result : instruction angle φ?c(t) and F ?x (t) of the best strategy revealed
by the algorithm, for Φ = 0.31 rad.

Second, we provide images recorded by a camera, as shown in Fig. 3.1b, as inputs instead
of relying on lateral force measurements [see Section 3.2.1]. Despite this change in inputs, the
resulting optimal control signal remains consistent with the previous findings. Once again, the
algorithm converges to a square wave function with the same amplitude and frequency, reaffirming
the robustness of the previously identified optimal control strategy. The video of a final policy can
be visualized here 1 and the video comprising input images to the feature extractor, here 2.

The two approaches are compared in terms of relevant physical quantities while varying the
maximum instruction angle Φ. In Fig. 3.4, the maximized average thrust Fx

?, the optimal fre-
quency f? and the corresponding maximum fin angle α?max are plotted as functions of Φ. Whate-
ver Φ, the agreement is excellent between the two approaches for all quantities. Specifically, α?max
is proportional to Φ ; the greater Φ, the greater the thrust, as one would expect from the gain in
new possibilities as Φ increases ; the optimal frequency is a slowly decreasing function of Φ and
varies between 2.5 and 1 Hz in the parameter range.

To confirm that square wave forcing produces the greatest thrust, we prescribed three types of
classical periodic forcing (sinusoidal, triangular, and square wave) for a given Φ and measured the
averaged thrust as a function of forcing frequency f . Results are provided in Fig. 3.5 for Φ = 0.42

1. https://youtu.be/npo2xaA5ao0
2. https://youtube.com/shorts/_mSvU12Uo8c

https://youtu.be/npo2xaA5ao0
https://youtube.com/shorts/_mSvU12Uo8c
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Figure 3.4 – a) Maximum average thrust F ?x . b) Optimal undulation frequency f?. c) Maximal fin
angle α?max. For each figure, we compare the experimental results from image observations and
those obtained with the state observations.

rad. Regardless of the type of actuation, the variation of the forcing frequency demonstrates the
presence of a peak in thrust. Remarkably, square wave forcing consistently generates the highest
average thrust. This maximum thrust is achieved at a frequency of 1.8 Hz, a value that closely
aligns with the frequency obtained using the RL approach.

The analysis reveals a robust feature of optimal control : a square wave function oscillating
between two extreme values. The control frequency, around a few Hz, aligns with the frequency
observed in natural swimmers of similar size [Sánchez-Rodríguez et al., 2023]. This suggests the
existence of a strong mechanism driving maximum thrust.
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Figure 3.5 – Experimental results : influence of the frequency on the thrust produced by some
periodic control policies : square wave (purple squares), sinusoidal (blue circles) and triangular
(green triangles) waves. Φ = 0.42 rad.
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3.2.2 Biomimetic robotic fish model

We present a comprehensive model that combines the physical aspects of underwater undu-
latory swimming with the internal dynamics of the servomotor to gain insights into the optimal
solutions of a swimming gait.

The dynamics of the fin angle α(t) is described as that of a damped harmonic oscillator,
influenced by the angle φ(t) of the servomotor wheel [Sánchez-Rodríguez et al., 2021] :

α̈(t) + ξω0α̇(t) + ω2
0(α(t)− αc(t)) = 0, αc(t) = λφ(t). (3.1)

This equation captures the interaction between the deformable fin and the surrounding water, dri-
ven by an instruction αc(t) proportional to the servomotor wheel angle φ(t). The numerical va-
lues of the parameters were determined following the procedure described in Section 3.2.2.1. The
proportionality factor λ = 0.46 depends on cable length and polymeric skeleton elasticity. Addi-
tionally, the servomotor has its own internal dynamics to adjust the servomotor wheel angle φ(t)
to the instruction angle φc(t) [Sánchez-Rodríguez et al., 2021] :

φ̇(t) = Ω tanh
( 1

∆ (φc(t)− φ(t))
)
. (3.2)

In Appendix C, we justify this model of servo-motor from first principles and physics deriva-
tions. The model includes the parameters Ω = 5.8 rad.s−1 and ∆ = 0.29 rad, which respectively
represent the maximum angular speed of the wheel and the required angle difference for the servo-
motor to operate at its maximum angular speed. The nonlinearity introduced by the tanh function
results in the saturation of the wheel speed φ̇(t) to ±Ω if the servomotor is unable to keep up
with the provided instruction. This saturation occurs when the servomotor is too slow to follow
the desired angle φc(t). Eqs. (3.1) and (3.2) elucidate two essential aspects of the dynamics : one
pertains to the interaction between the undulating swimmer and its aquatic environment, while the
other accounts for the limitations imposed by the swimmer’s internal dynamics.

Our experimental system serves as a suitable candidate for mimicking the dual nature of dy-
namics observed in natural fish. In natural fish, the internal dynamics are limited by biological
constraints at the muscular level [Sánchez-Rodríguez et al., 2023].

The thrust is proportional to the mass of water accelerated in the longitudinal direction and is
written Fx = −Kα(t)α̈(t) [Gazzola et al., 2015, Sandha et al., 2021, Sánchez-Rodríguez et al.,
2021], where the parameter K = 12.9 10−3 N.rad−2.s2 characterizes the thrust efficiency of the
robot in water and is measured following the procedure described in Section 3.2.2.1. The average
thrust over an undulation period T = 1/f can be written as :

Fx = −K
T

∫ T

0
α(t)α̈(t)dt = K

T

∫ T

0
α̇(t)2dt. (3.3)

We employ PPO on the model (Eqs. (3.1) and (3.2)) to verify the optimal control strategy that
yields maximum average thrust. In Fig. 3.6b, we show the time evolution of the optimal instruction
angle φ?c(t) for Φ = 0.31 rad, alongside the corresponding rescaled fin angle α?(t)/λ and thrust
F ?x (t). Consistent with the experimental results, the optimal instruction angle adopts a square wave
function, alternating between Φ and −Φ.

In fact, the dynamics presented in Figs. 3.6a and b, measured in experiments and simulated
with the model, are very similar. This is confirmed by the excellent agreements in Fig. 3.7b and
Fig. 3.7c for the relevant quantities such as undulation frequency and maximum fin angle of the
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optimal control. Furthermore, this simple model capably reproduces the average thrust force, as
depicted in Fig. 3.7a. Regardless of the specific value of Φ, both the experiments and the model
demonstrate that the system waits for the fin angle to approach its instruction before changing
the control. In other words, the control signal switches direction when the fin angle is close to
its maximal value α?max = λΦ. This finding suggests an intuitive mechanism for selecting the
frequency simultaneously with the control switch, emphasizing the efficiency and adaptability of
the system in achieving maximum thrust.

The model is also validated with the data obtained in Fig. 3.8 while enforcing sinusoidal,
triangular and square wave forms. The agreement between the experiments and the model is again
excellent. The maximum thrust is generated around a frequency of 1.8 Hz, indicating that the
system operates optimally near its resonance in α̇, which occurs at a frequency ω0/(2π) ∼ 2.0 Hz,
regardless of the damping factor. As a comparison, the resonance in α suggested by various studies
[Michelin and Llewellyn Smith, 2009, Paraz et al., 2016, Hoover et al., 2018] occurs at a lower
value, ω0

√
1− ξ2/2/(2π) ' 1.1 Hz in our system. We now briefly explain how the parameters of

the robotic fish model were identified in practice.
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Figure 3.6 – Comparison between experimental and simulation results : a) Experimental result :
instruction angle φ?c(t) and F ?x (t) of the best strategy revealed by the algorithm, for Φ = 0.31 rad.
b) Temporal evolution of the instruction φ?c(t) (purple solid line), the rescaled fin angle α?/λ
(purple dashed line) and the resulting thrust F ?x (t) (orange solid line), obtained for optimal control
with the model and the parameters Ω = 5.8 rad.s−1, ∆ = 0.29 rad, ω0 = 12.5 rad.s−1, ξ = 1.2
and Φ = 0.31 rad.
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Figure 3.7 – a) Maximum average thrust F ?x . b) Optimal undulation frequency f?. c) Maximal
fin angle α?max. For each figure, we compare the experimental results and those obtained with the
model (Eqs. 3.1, 3.2 and 3.3). Experimental results : the red symbols are obtained via RL with
the state (Fy, Ḟy, φ) ; the orange symbols are obtained via image learning, where the state is a set
of four successive pictures of the robot. Simulation results : the open square symbols denote RL
results with the simulation of the model. The dashed violet and gray curves represent theoretically
predicted values in the limits of very small and very large Φ, respectively. The solid green curve
corresponds to the numerical determination of the frequency f? yielding the highest thrust F ?x
assuming a square waveform for φc.
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Figure 3.8 – Influence of the frequency on the thrust produced by some periodic functions : square
wave (purple squares), sinusoidal (blue circles) and triangular (green triangles) waves. Filled sym-
bols and solid lines correspond to the experimental points and the model predictions, respectively.
Φ = 0.42 rad.

3.2.2.1 Parameter identification

The process of determining parameters through fitting is carried out using both linear regres-
sion and nonlinear fitting techniques, specifically employing the lmfit 3 library for the latter. Ini-
tially, the robotic fish is actuated using different control angles : φc = 20◦, 40◦, 50◦ and at various
frequencies in the interval f = [0.2, 1.2]. The procedure is divided into following steps :

1. The corresponding maximum fin deflection angle α?max is measured from the videos recor-
ded of fin oscillating at these different angle amplitudes and frequencies [see Fig. 3.10].

2. The proportionality factor (between α and φ) λ = 0.46 is determined in quasi-static expe-
riments i.e. for experiments conducted at low frequency square wave forcing.

3. From [Sánchez-Rodríguez et al., 2021], the mean thrust force Fx is proportional to
ω2α? 2

max. We employ ridge linear regression to fit the coefficient K in Eq. (3.3), setting
Fx as a function of ω2α? 2

max [see Fig. 3.9b].

4. With a pre-defined range for physically plausible values of different parameters, we pro-
ceed with nonlinear fit of the parameters Ω,∆ of Eq. (3.2) and ξ, ω0 of Eq. (3.1) on the
experimental data. The result of the fit can be visualized in Fig. 3.9b.

We have demonstrated with different methods both in physical simulations and experiments
that the optimal gate is square wave control. The found control function also known as bang-bang
control arises as an optimal control of many dynamical systems, especially the dynamical system
guided by linear equations. We now proceed with the theoretical explanation when bang-bang
control is optimal.

3. https://lmfit.github.io/lmfit-py/

https://lmfit.github.io/lmfit-py/


74 CHAPITRE 3 — Reinforcement learning approach to control a robotic fish

Figure 3.9 – Parameters fitting results comparison with actual data. a) Fit of parameter K =
12.9 10−3 N.rad−2.s2 in equation Eq. (3.3) via linear regression b) Superposition of measured
angle of the fish fin undulation and prediction by the model. The data from three servo-motor
actuation angles (φc = 20◦, 40◦, 50◦) and 6 different frequencies (f ∈ [0.2, 1.2]) were used to find
the parameters Ω = 5.8 rad.s−1, ∆ = 0.29 rad, ω0 = 12.5 rad.s−1 and ξ = 1.2.

Figure 3.10 – Mean image obtained from averaging of images from video recording of several tail
undulations. Example of determining two times α?max from mean image. The angle is measured
from the static marker near the end of caudal fin.
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3.2.3 Bang bang control

Bang-bang control, also known as on-off control, is a control strategy that switches between
two extreme values of control under certain criteria [Sonneborn and Van Vleck, 1964]. The crite-
ria of change can be a certain threshold of a physical quantity or an error signal for the control.
The bang-bang controller provides the optimal control if the response is driven by linear equa-
tions [Kirk, 2004]. The necessary condition and the switching between the upper and lower bounds
of control derives from the Pontryagin’s Maximum Principle [Pontryagin, 1987] and yields that the
optimal minimum-time control has a bang-bang structure. Below, we give a simple introduction to
a bang-bang controller based on Pontryagin’s principle.

3.2.3.1 Pontryagin’s Maximum Principle

Let a dynamic system described by :

Ẋ(t) = f(X(t),U(t)),

where :
— X(t) is the state vector, (xi(t) i = 1, . . . , n).
— U(t) is the control vector, (ui(t) i = 1, . . . ,m).
— f is the system dynamics.

The objective of the optimization is to minimize a cost function at each point in time [0, T ] :

J =
∫ T

0
I(X(t),U(t))dt,

where I(X(t),U(t)) is the running cost. The Hamiltonian, in this context, is defined by :

H(X(t),U(t), λ(t)) = I(X(t),U(t)) + λT (t)Ẋ(t)

Hamiltonian optimizes the objective function I(X(t),U(t)) with λT (t) called costate variables
that depend on time, unlike Lagrange multipliers used for static constrained optimization. Hamil-
tonian can be viewed as a modified Lagrangian in the constrained optimization problem. Hamilto-
nian is obtained via the Legendre transformation of a Lagrangian.

Pontryagin’s Maximum Principle states that in order to maximize the objective, the optimal
state trajectory X∗(t), optimal control U∗(t), and corresponding Lagrange costate vector λ∗(t)
must maximize the Hamiltonian H so that :

H (X∗(t),U∗(t), λ∗(t)) ≥ H(X(t),U(t), λ(t))

or equivalently :
U∗ = argmaxH (X∗(t),U(t), λ∗(t)) , (3.4)

for all time t ∈ [0, T ] and for all permissible control inputs U(t) ∈ U (U is a control domain).
Moreover, the corresponding boundary conditions must hold. Here, the trajectory of the costate
vector λ(t) is the solution to the costate equation and its terminal conditions :

∂H(·)
∂uk

= 0, k = 1, . . . ,m

∂H(·)
∂xi

= −λ̇i(t), i = 1, . . . , n

λi(T ) ≥ 0, λi(T )x∗i (T ) = 0, i = 1, . . . , n.
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It can be shown that bang-bang is optimal for a linear control with a linear cost on time, while
LQR can be derived using Pontryagin’s Maximum Principle when the optimized cost is quadratic
on state and action.

For example, let us study a linear problem : we want to drive the dynamical system from the
initial state X(0) = X0 to the final state X(T ) = 0. Let the system dynamics and optimization
cost function be defined as :

Ẋ(t) = AX(t) +BU(t), |U(t)| ≤ 1

J =
∫ T

0
1dt,

To find the optimal control, we form the Hamiltonian

H(t) = 1− λT (t)(AX(t) +BU(t)) = 1− (λT (t)A)X(t)− (λT (t)B)U(t).

The application of Pontryagin’s Maximum Principle yields the following :

Ẋ(t) = ∂H(t)
∂λ

= AX(t) +BU(t)

−λ̇(t) = ∂H(t)
∂X = ATλ(t)

U(t) = arg maxH(t) = − sgn(λT (t)B)

It follows that the input is always U =±1 =⇒ "bang-bang" in order to extremize the Hamiltonian.
In Appendix A.7, we present the cart-pole stabilization problem seen before using bang-bang
control, to clarify the concepts. In the next section, we use Pontryagin’s Maximum Principle for
deriving an optimal control of a robotic fish.

3.2.3.2 Bang-bang controller for fish thrust maximization

In the context of the model with Eqs. (3.1) and (3.2), we apply Pontryagin’s Maximum Prin-
ciple [Pontryagin, 1987] to explain why square wave control at maximum allowed values ±Φ
in the instruction angle φc produces the maximum thrust Fx, defined in Eq. (3.3), under the
constraints of Eq. (3.1) and Eq. (3.2).

The determination of the maximum thrust thus requires the resolution of a variational problem
subject to three Lagrange multipliers, associated with the dynamic equations for α(t), α̇(t) and
φ(t). This condition is not completely satisfied in this system due to the nonlinear behavior of the
servomotor’s internal dynamics, Eq. (3.2). However, a bang-bang controller remains the optimal
choice in this system because of the specific nature of the nonlinear function driving the relaxation
dynamics of φ (Appendix E.2).

This appears particularly simple to explain for a fast servomotor, i.e., if φ(t) almost immedia-
tely follows the command φc(t). We perform a dimensionless analysis to evaluate the rapidity of
the servomotor. We make the following change of variables :

s = ω0t (3.5)

α(t) = λΦβ(s) (3.6)

φ(t) = Φψ(s), (3.7)
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and substituting in Eqs. (3.1) and (3.2) we get the system to solve :

β̈(s) + ξβ̇(s) + β(s)− ψ(s) = 0 (3.8)

ψ̇(s) = Ω
Φω0

tanh
(Φ

∆(ψc(s)− ψ(s))
)
, (3.9)

which uncovers the three dimensionless parameters that govern the dynamics.
— The parameter ξ determines the Q factor of the oscillator in α(t) or β(s).
— The parameter Ω

Φω0
controls the capacity of the servomotor to perfectly follow the com-

mand ψc(s). If Ω
Φω0
� 1, we can eliminate adiabatically the dynamics of ψ(s) : in this

limit, we replace the Eq. (3.2) for the wheel angle φ by φ(t) = φc(t). This corresponds to
the definition of a fast servomotor.

— The parameter Φ/∆ measures the nonlinear response of the servomotor.
— if Φ/∆ � 1, the function tanh, can be replaced by the function sign and because of

the relaxational dynamics, the servomotor equation is reduced to

φ̇(t) = Ωsignφc(t) (3.10)

— if Φ/∆� 1, the equation in ψ can be linearized, and we can write the equation :

ψ̇(s) = Ω
ω0∆ (ψc(s)− ψ(s)) , (3.11)

or in dimension variables :

φ̇(t) = Ω
∆ (φc(t)− φ(t)) . (3.12)

Hence, the servomotor will perfectly follow the command if Ω
ω0∆ � 1.

In summary, the servomotor can be considered as fast in two regimes : first if Ω
Φω0
� 1, second

if Ω
∆ω0
� 1 and Φ/∆ � 1. In our case, we can assimilate φ(t) to φc(t) for Φ � Φs (from the

first regime), with :

Φs = Ω
ω0
. (3.13)

In both limits, the forcing command acts linearly through the Eq. (3.1), which completely justifies
the choice of a bang-bang controller as an optimal strategy. In addition, this asymptotic permits
the computation of the average thrust resulting from a square wave driving at frequency f :

Fx = Kλ2Φ2ω2
0

4f
ξω0

sinh
(
ξω0
4f

)
−

ξ sinh
(√

ξ2−4ω0
4f

)
√
ξ2−4


cosh

(√
ξ2 − 4ω0

4f

)
+ cosh

(
ξω0
4f

) , (3.14)

where Kλ2Φ2ω2
0 is the dimensional value that gives the scaling of the average thrust in this limit.

Regardless of the value of ξ between 0 and 2, this thrust is maximum when α̇ is resonant and the
oscillator is driven close to its undamped frequency : f? ' ω0/(2π) (see Appendix E.2).

For the case of a slow servomotor with Φ� Φs, the system of equations is nonlinear, and the
maximum thrust can be expressed as :

Fx = Kλ2Ω2, (3.15)
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which is reached as long as the servomotor wheel is moving at the maximum angular speed Ω (i.e.
α̇(t) = ±λΩ in Eq. (3.3)). The square wave forcing at maximum allowed values appears as the
optimal solution to maximize the difference between φc(t) and φ(t) in Eq. (3.2) and ensures that
the servomotor wheel is moving at maximum angular speed. In this limit, the optimal undulation
period is determined by the shortest time required to sweep the servomotor angle from −Φ to Φ
and then back to −Φ, all at maximum angular speed. This leads to the expression f? = Ω/(4Φ).

The behavior resulting from both limits is depicted in Fig. 3.4, and agrees with the outcomes
obtained in experiments and with the model, as well as indicating a transition for Φ around Φs.

Swinging control : a model-free strategy

In the above model, to maximize thrust, the optimal frequency must be found in order to select
the best square wave function for control. It is therefore necessary to perform preliminary calibra-
tions to measure the relevant quantities, in this case ω0, ξ, Ω and ∆, to bring a particular system
closer to optimality. Here we explore another strategy that does not require any prior knowledge
about the system.

Starting from the thrust expression, Eq. (3.3), the optimization is intrinsically linked to the
time evolution of the fin angle velocity α̇. An intuitive approach would be to favor the phases of
maximum speed by reversing the sign of the instruction angle when the fin slows down too much.
We call this swinging control in reference to the way children are able to swing without knowing
the physical laws involved.

To this end, we introduced an instruction-changing criterion C (0 ≤ C ≤ 1), such that φc
changes sign if the speed slows to Cα̇M , with α̇M the last observed maximal angle speed. This
condition ensures that the highest possible speed is maintained and that the instruction is changed
when the speed becomes too slow. We found numerically that this strategy is always independent
of the system history and the initial conditions, as the algorithm converges toward a unique solu-
tion.

We evaluated the average thrust resulting from the swinging strategy by varying the parameters
ω0Φ/Ω, which measures the servomotor’s ability to follow the instruction, and C. Fig. 3.11 shows
that a criterion value of C ranging from 0 to 0.8 yields satisfactory performance for the swinging
strategy whatever the value of ω0Φ/Ω. The swinging control consistently delivers excellent out-
comes without imposing stringent constraints on the choice of C : the thrust efficiency, defined as
F swing/F ?, being higher than 70% in the parameter range : for C = 0.6, this ratio exceeded 95%
regardless of the value of ω0Φ/Ω, but fine-tuning remains possible. This strategy can be proposed
even in specific cases : in the example of a fast servomotor (Φ� Φs) and an undamped oscillator
(ξ → 0), the optimum is attained when the instruction angle changes sign at α̇ = 0 (i.e., C = 0)
with a thrust efficiency very close to 100%, as shown in the inset of Fig. 3.11, and detailed in
(Appendix E.2).

Swinging control is a robust strategy for achieving the highest thrusts without prior know-
ledge of the system or complex control algorithms. Its straightforward implementation using basic
sensors makes it practical for various applications.
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80 CHAPITRE 3 — Reinforcement learning approach to control a robotic fish

3.3 Swimming speed optimization

Generated thrust force of the robotic fish is equilibrated by the drag force when certain speed
is reached [see [Gazzola et al., 2014, Berg et al., 2021]]. Maximizing the thrust force is strongly
correlated to maximizing the speed in practice. In this section, we propose a protocol for teaching
a robotic fish to maximize the swimming speed while swimming against the direction of water
flow. We first explore different existing simulators for fish swimming and propose to construct
the simulation environment that resembles the dynamics of an experimental setup to understand
the basic challenges and tune RL hyperparameters on a similar problem. We test the swimming
speed optimization in three different simulation environments, each of them having their own
advantages :

1. Custom defined dynamics and visualization built on top of openai gym framework [Brock-
man et al., 2016, Schulman et al., 2015]. The main advantages of this simulation lie in its
simplicity. The simulation dynamics is clearly understood and can be easily derived from
first principles.

2. Open-source physics-based simulation engine [Todorov et al., 2012, Todorov, 2014] that
has API with python, using the benchmark simulation library. [Tassa et al., 2018, Tunya-
suvunakool et al., 2020]. The simulation engine is open-source and is widely used in the
reinforcement learning community. Although it’s not precise for fluid dynamics simula-
tion, it gives insights on approximate solutions for speed maximization of a fish immersed
in water. The simulation can also be extended to 2D and 3D.

3. Comsol simulation which is a general-purpose simulation software based on advanced nu-
merical methods. It is the most precise simulator among the three using computational fluid
dynamics (CFD). CFD permits to analyse more precisely the flow and vortices induced by
a robotic fish undulating its tail.

Simulation in the above virtual environments helps to understand the basic challenges of optimiza-
tion and to find the expected solution for maximizing the swimming speed. After validation of the
RL approach in simulation, we proceed with describing experimental setup and speed optimiza-
tion procedure. We employed an experimental configuration similar to the one utilized in previous
sections [see Fig. 3.1]. We discuss the obtained results and compare them to thrust optimization.

3.3.1 Learning to swim in a virtual environment

We hereby aim to optimize the robotic fish swimming speed in a single direction. The creation
of a simulation that represents the dynamics of the experimental system used in experiments is a
crucial part of designing an efficient controller, before deploying on a real system. As the simula-
tion model is not known, we aim to approximate it with simple equations that describe the essence
of physical phenomena present in the dynamical system.

Simulation model of fish swimming In the simulated environment, the equations governing the
motion dynamics of the robotic fish and the signification of physical variables are derived from
models of fish locomotion described in [Sánchez-Rodríguez et al., 2020,Sánchez-Rodríguez et al.,
2021]. The dynamics of the fish tail flapping is modeled as a damped harmonic oscillator described
before in Eq. (3.1). We assume for simplicity that the servo-motor actuating the fish’s fin has fast
dynamics [see Section 3.2.3.2] i.e. Φ � Ω

ω0
, and φ almost instantly follows φc. Therefore, the
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agent’s command translates from φc directly to αc = λφc. The state is updated through equations
of motion linking fish fin undulation α(t) and linear displacement x(t) in the direction of thrust
force :

αc(t) = λφ and φ = φc (3.16)

α̈(t) + ξω0α̇(t) + ω2
0 (α(t)− αc(t)) = 0 (3.17)

ẍ = (−Cd|ẋ|ẋ− Ctα̈α)/m, (3.18)

where Eq. (3.18) represents the equation governing the fish’s linear displacement in one dimension
with −Ctα̈α being the thrust force, −Cd|ẋ|ẋ being the drag force and m the unit mass. The thrust
force coefficient Ct is calculated via the procedure described in Section 3.2.2.1, while the drag
coefficient Cd was fitted from the second order polynomial fit described in Appendix D.1.3. In
what follows, the results are presented in dimensionless units.

We aim to optimize the swimming speed of a simulated robotic fish governed by dynamics
defined in Eq. (3.17) and Eq. (3.18). Here, we distinguish between two distinct types of observable
states that can be employed. The first category includes the actual true sensor state, denoted by the
vector [x, ẋ, α, α̇]. Alternatively, the second category comprises the high-dimensional visual input
of the simulator [see Fig. 3.12] with the same underlying dynamics. The simple visual input of a
robotic fish is represented in Fig. 3.12. For the front-end visualization, we used gym 4 and pyglet 5

libraries.
The state of the system is updated using backward Euler integration scheme with a sampling

time step of 20 ms. The derivation and significance of the above physical variables are available
in [Sánchez-Rodríguez et al., 2020]. We use the hyperparameters listed in Table B.1. For the
physical parameters of the simulation we refer to Table B.4. We used 1e5 steps for learning from
true state observations and 1e5 for learning from images. All the following learning results in
simulation are based on the continuous action space αc ∈ [−λΦ, λΦ] = [−60◦, 60◦].

Figure 3.12 – Visualization from the simulator with size (400, 800). The thin brown rectangle
represents the tail, the black rectangle with two red circles represents the fish body. For visual
control, this input is sampled every sampling time and is then rescaled to (84, 84). a) raw image b)
annotated for visualization purposes of x and α.

Fish locomotion training in simulation from true state

In our simulations, we applied PPO [Schulman et al., 2017] on the virtual environment with
the true state given by [x, ẋ, α, α̇] and reward by ẋ. PPO was able to converge to the optimal policy

4. https://www.gymlibrary.dev/index.html
5. https://pyglet.org/

https://www.gymlibrary.dev/index.html
https://pyglet.org/
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rapidly [see Fig. 3.13a]. The resulting swimming gait in Fig. 3.14 is bang-bang as initially expec-
ted. The hyperparameter list for PPO training can be found in Table B.1. To confirm the results, we
also employed several predetermined control policies on a simulated robotic fish for comparison
with the optimally derived swimming gait from RL [see Fig. 3.15]. Namely, sinusoidal, triangular
and square wave swimming gaits were enforced as a predefined control policy during one epi-
sode and the swimming speed was recorded. The forcing simulation results follow a similar trend
as before : square wave forcing outperforms sinusoidal, and sinusoidal is better than triangular
forcing.
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Figure 3.13 – Evaluation curve of learning via a) PPO algorithm trained on true state [x, ẋ, α, α̇] b)
DrQv2 algorithm trained on processed images of a simulator. The curve represents the algorithm’s
evaluation score every 5000 time steps.

Learning to maximize the speed from visual input in simulation

The alternative to learning from true state [x, ẋ, α, α̇] is to learn from the visual data of a
simulator with the same underlying dynamics. At every time step several consecutive processed
images from previous time steps (see the original image in Fig. 3.12) are stacked with each other
to form an observation to the agent.

The normal PPO with CNN feature extractor failed to optimize the speed from visual input
in the reasonable time and we applied one of the State-of-the-Art model-free RL algorithms for
visual control, DrQ-v2 [Yarats et al., 2021]. The algorithm DrQ-v2 consists of underlying DDPG
[Lillicrap et al., 2016] algorithm with different data augmentation techniques and update schemes
that significantly accelerate sample efficiency of the algorithm. The core of data augmentation in
this algorithm consists of random cropping with subsequent rescaling of the input image instead
of ordinary downsizing to (84, 84) pixels and augmenting the replay buffer with these augmented
image transitions. We employed this algorithm for the control of fish swimming with continuous
actions from visual input [see the video 6]. Training from visual data gave comparable results as
training from true state. The learning curve can be visualized in Fig. 3.13. The learning is stopped,
yet the learning return is still increasing because learning rate is low when learning from image
observations. The resulting superposition of episodic return in inference through true state and
visual data as well as the enforced swimming gaits can be visualized in Fig. 3.15.

6. https://youtube.com/shorts/rMHhURZ_8z0

https://youtube.com/shorts/rMHhURZ_8z0
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Figure 3.14 – Inference results with the best policy (a.u in labels correspond to adimensional
units). Top : temporal evolution of the instruction αc(t) (blue line) and the real angle α(t) (orange
line), bottom : ẋ evolution. The results are obtained for optimal control with the model and the
parameters ω0 = 11.8 rad.s−1, ξ = 1.13, α?c = 1 rad (maximum value), Cd = 0.254 and Ct =
12.9 mN.rad−1.s2.

Discussion We have seen that learning from true state can be substantially faster and yeild
slightly better performance. When using stationary environment as with learning to maximize
thrust force from images, we observed that learning from images is fast. This can be rationalized
due to the relatively static composition of the environment which facilitate learning from images
as the observation space is way smaller than the environment with the moving fish.
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Figure 3.15 – Influence of frequency on episodic return (mean speed during 1 episode) in a custom
fish swimming environment. The enforced swimming gaits consist of predefined functions : square
wave (orange), sinusoidal (blue) and triangular (green) functions with frequency range f ∈ [0.1, 5]
Hz. The red circle is the learning results from DrQv2 on the visual data (PPO could not learn from
visual data in a reasonable time). The star signifies the best inference return from the PPO training
on the true state [x, ẋ, α, α̇].
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Learning to achieve a target speed from true state

From simulations, we observe that the maximum achievable speed is more than 2 [a.u]. We
now change the objective to achieve some target speed at a value of 1. For this, we adapt several
quantities :

1. The reward at each time step to be |ẋ− 1| instead of ẋ.

2. The observation is augmented with second derivatives and is now defined as
[x, ẋ, α, α̇, ẍ, α̈]. The second derivatives are added to encompass the necessary infor-
mation about the current inertia of the system. Depending on this information controller is
able to maintain the system at constant speed without oscillations.

3. The hyperparameter corresponding to the entropy weight in the loss function is taken to
be much smaller. This is due to the fact that that there are many possible solutions to
the desired speed, thus the entropy can take large values in this case and should not be
accounted as much as before [see the hyperparameters in Table B.1 ].

The obtained results are visualized in Fig. 3.16 with learning statistics in Fig. 3.17. It can be clearly
seen that the algorithm achieves the objective speed [dashed line in Fig. 3.16a] and changes the
frequency of control when the speed is near the target, but is still square wave function.

The obtained result is not the coherent with natural fish that have the amplitude constant and
change frequency depending of the aimed speed. The resulting control actions have a bang-bang
tendency which we think is because the square-wave function possesses the high spectral entropy
compared to other functions. There are many other control solutions to accomplish the speed
servoing task.

As it can be seen from Fig. 3.17a, the main learning happens before 106 time steps when
the evaluation return drastically increases and this can also be confirmed with loss drastically
decreasing in this period [see Fig. 3.17b] corresponding to learning the value function. Increasing
the learning rate of PPO improves the speed of convergence while sacrificing final performance.

While the method works well in simulation, learning this objective in real experiments incor-
porates several challenges. First, training for several million time steps on an experimental setup
is too long to be feasible. More sample-efficient algorithm should be used instead. One of such,
DROQ [Hiraoka et al., 2021], a variant of SAC incorporating dropout [Srivastava et al., 2014] and
layer normalization [Ba et al., 2016] regularizations applied on critics, is able to learn accompli-
shing the task during 105 time steps [see Appendix B.4]. Another challenge arising in experiments
in that the speed is in 2D, thus additional constraints should be taken into account. Furthermore,
measuring an instantaneous robotic fish speed is subject to measurement noise, a moving average
during 1s should be used instead.
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Figure 3.16 – Inference results from the best model found during learning with PPO. a) Speed ẋ
evolution during the first 400 time steps. We observe that the objective is perfectly accomplished.
b) Fin angle evolution through time. First 50 time steps are related to the high amplitude undula-
tions, corresponding to high produced thrust. This is coherent with Fig. 3.16a, when the fish need
high thrust to achieve goal speed as quickly as possible. This is a simple model and for this reason
α is not symmetric. c) Action evolution through time. Medium frequency of forcing corresponding
to high torque is substituted with high frequency undulations when the objective is achieved.
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Figure 3.17 – Learning statistics for achieving target speed. a) Evaluation (inference) reward
happening after every 5 episodes. We can see that the return starts with the value around -768,
which corresponds to the number of time steps in an episode. This can be rationalized with the
fact that at the beginning the policy does not do anything and the agent is penalized with -1 every
time step. b) Loss evolution through time. Optimized loss decreases drastically before 500000
time steps. This is connected to learning the value function by the critic estimating whether the
state has an estimated high return or not. c) Entropy loss (negative entropy) evolution through
time. It decreases at the beginning signifying that the algorithm explores by increasing entropy
of actions. Then, when an appropriate policy is found the entropy goes down to certain value
indicating convergence to certain policy.
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Speed controller with deep RL

Deep RL is applicable not only for extremizing specific quantities, but also for regulating these
quantities to maintain a specific target value that can vary in real time. For example, in [Kaufmann
et al., 2023] researchers used deep RL to guide the drone on a particular track, while in [Kim et al.,
2004], the RC helicopter followed a particular shape in the air.

We adapt the objective of the previous task to maintain a variable target value, thereby rende-
ring a deep RL agent as a speed controller. Our goal is to construct a learning task that enables an
algorithm to adapt the policy to particular target velocity in real-time. For this, we adapt several
quantities :

1. The observation space is defined as [ẋ, α, α̇, ẍ, α̈, ẋtarget]
2. ẋtarget ∈ [0, 2] changes at every episode and reward remains |ẋ − ẋtarget| at every time

step.

3. The initial conditions of the episode at the reset of the environment are taken randomly :
ẋ ∈ [0, 2], α ∈ [−1, 1], α̇ ∈ [−1, 1]. As before, every episode lasts 768 time steps. This
facilitates the generalization of an RL algorithm.

We used DROQ [Hiraoka et al., 2021] for continuous control of the system. During evaluation
we impose different speeds for every 300 time steps [see red Fig. 3.18a]. From Fig. 3.18, we
observe that the algorithm is able to follow the varying target speed perfectly. The agent adapts
the corresponding amplitude of undulations [Fig. 3.18b ] to produce the thrust force matching the
drag force at a certain speed.

We now proceed with another simulation environment based on the popular physics-based
simulation engine, in order to gain more insights into fish locomotion.
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Figure 3.18 – Inference results for achieving different target speeds. a) ẋ evolution during 1000
time steps with the consign (red dashed line). We observe that the objective is perfectly accom-
plished. b) Fin angle evolution through time. First 100 time steps correspond to high amplitude
undulations, corresponding to high produced thrust. This is coherent with Fig. 3.18a, when the
fish need high thrust to achieve goal speed as quickly as possible. c) Action evolution through
time. During the changes in speed at 300 and 600 time steps, the angle control does not undulate.
The algorithm waits until the drag force slows down the fish, and then the algorithm adapts the
amplitude of oscillation to match the target speed.
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Speed optimization in physics-based simulation engine – Mujoco

Mujoco (Multi-Joint dynamics with Contact) [Todorov et al., 2012, Todorov, 2014] is a phy-
sics engine designed for the simulation and control of robots and biomechanical models. It is
especially popular in the reinforcement learning community for benchmarking algorithms in tasks
that involve continuous control, like robot locomotion. Mujoco is a powerful open-source engine
that incorporates friction, elastic elements and tendons. Although, commercial and finite elements
analysis simulators like COMSOL are more precise than mujoco, simulations in mujoco remain
computationally faster with user-friendly API 7 that is suitable for reinforcement learning experi-
ments.

Many different systems have been modeled using mujoco engine, and we base our simulation
environment on the fish environment from the "DeepMind Control Suite" [Tassa et al., 2018] set
of environments. The modified version can be visualized in Fig. 3.19. The fish is a rigid body
with a two-link tail. One part of the tail is actuated and another is compliant. The environment is
modified to be constrained in 1D and restarts at the same point in space when an episode reaches
1000 time steps. The sample video can be visualized in the video 8. We aim to maximize the speed
in one direction using visual data. For the visual input to an RL algorithm, we take the image with
the tracking camera mounted above the fish at each sampling time [see Fig. 3.19a].

In order to find an optimal swimming gait, we employed DrQ-v2 algorithm to find an optimal
gait for mean speed maximization. The algorithm used the processed images from the top tracking
camera as an input observation and actuated the fish fin with continuous actions φc ∈ [−Φ,Φ],
where Φ = 60◦ is a maximum deflection angle of an active caudal fin. The resulting swimming
gait from learning is square wave. To verify the optimal gait is square wave, we applied three
types of classical periodic forcing (sinusoidal, triangular and square wave) on φc and measured
the averaged speed as a function of forcing frequency. The maximum mean speed is achieved
at a frequency of 4.5 Hz (note that we can not compare with the results of the robot fish we
presented before as the physical parameters are not the same). The results are shown in Fig. 3.20.
The environment is defined by an .xml and .py files and the code of the environment with an
algorithm is available here 9. We now proceed with more precise simulator that performs CFD
(computational fluid dynamics).

7. Application Programming Interface
8. https://youtube.com/shorts/6jlbEY4By2c
9. https://github.com/ss555/drqv2

https://youtube.com/shorts/6jlbEY4By2c
https://github.com/ss555/drqv2
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Figure 3.19 – Example image of modified fish environment from dmcontrol package [Tassa et al.,
2018] using mujoco engine : a) top view (used for RL training) b) side-view.
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Figure 3.20 – Simulation results of the fish 1D swimming environment using mujoco engine.
As it can be inferred the square wave forcing of the fin is the most powerful with the sinusoidal
coming in front of the triangular forcing. "Image RL" corresponds to learning from visual input
with DrQ-v2 that was able to learn the square wave forcing of the fish from visual data, but failed
to optimize the frequency. This can be rationalized due to the low visibility of the fin from the top
view.
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2D direct numerical simulations : COMSOL

To transpose our results to a real swimming problem, we conducted simulations for the com-
plete fluid-structure interaction in a 2D configuration (see Appendix E.1). In this numerical setup,
the swimmer moves within a tank filled with liquid having the same density and viscosity as water.
We consider the fish body to be viscoelastic, and we adjust its parameters to match the values of
ω0 and ξ obtained from the robotic fish experiments. The entire body measures L = 10 cm with
an average thickness equal toH = 1.3 cm. To model muscular activity, we impose a spatiotempo-
ral variation of the elastic body length at equilibrium. In particular, we set that the equilibrium of
the strain component εxx varies parabolically as a function of the distance from the head X , and
linearly from the midline Y : εxx ∝ (X/L)2(Y/H)a(t), where a(t) varies temporally. With this
functional form, the half body (Y > 0) extends its length while the other part (Y < 0) retracts,
resulting in the swimmer bending to compensate for the inhomogeneous change in length across
the body thickness. We have simulated the motion of this 2D active elastic beam embedded in
water, driven by different functional forms of a(t). In Figure 3.21, we present the cruising speed
achieved with square, sine and triangle wave functions at various control frequencies (f ). Remar-
kably, the square wave forcing consistently leads to the highest speed, regardless of the frequency,
confirming the predictions from the RL algorithm and the model.

All the three forcing gaits exhibit a peak at a frequency close to 3.1 Hz. Additionally, we have
implemented the swinging strategy control where we keep a(t) constant in absolute value but
change its sign as the vertical velocity of the tail (at X = L) reaches zero.

The swinging controller automatically selects a frequency that brings the swimmer to near
maximum speed as depicted in Fig. 3.21. Therefore, our numerical simulations validate our inter-
pretations regarding the mechanisms to achieve the highest swimming speed.

Discussion

We have given a thorough analysis of simulations in three different virtual environments for
a robotic fish. All of them converge on the fact that the bang-bang control is optimal and there
exists an optimal frequency for speed maximization. Moreover, sinusoidal forcing control is more
performant than a triangular one and swinging strategy remains a robust model-free control for
speed maximization. The optimization of a simulated speed from a visual data is feasible and
requires more time than the optimization from a true state. With acquired knowledge, we now
proceed with mean speed optimization of a real robotic fish from visual data.
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Figure 3.21 – Computation of the swimming speed using a full 2D Fluid-Structure-Interaction
simulation. The blue symbols are obtained using a sinusoidal driving, the green symbols with a
square wave forcing, and the red symbols are computed with a triangular function.
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3.3.2 Experimental setup and methods

In our experiments, we used a 3D printed robotic fish rear body described in Section 3.2.1.
Our initial design involved using a linear guide setup to propel the robotic fish. However, this
approach faced several challenges, including mechanical imperfections and friction, which hinde-
red the fish’s intended forward movement. Additionally, tethering the fish to a power source via
a wire further compromised its maneuverability. To address these challenges, we opted to control
a robotic fish wirelessly and without a static source of power. This eliminates mechanical imper-
fections and wires that could impact the optimal swimming gait we aim to find. Communicating
with underwater robotic systems is challenging, often necessitating the use of medium-range radio
frequencies such as 433 MHz for effective data transmission [Katzschmann et al., 2018]. For the
sake of simplifying our experimental setup, we opted for Wi-Fi protocol based communication,
with all the electronics components of a robotic fish put inside the plastic tube (FisherbrandTM

500ml with 53mm diameter) floating on the surface of the water. In order to mitigate the risk of
harmonic pollution, we implemented separate power supplies for the servo-motor and the primary
electronic board (Raspberry Pi). We used a block of four 1.5 V, 3000mAh rechargeable batteries
to power the servo-motor, while a separate battery of 3.7 V, 1200 mAH powered the main card
"Raspberry pi Zero WH" through the "PiJuice Zero" power module. This separation ensured that
the power supply for the motor did not interfere with that of the main electronics board, thereby
maintaining the integrity of our experimental setup.

An overhead web-camera (ODROID USB-CAM 720P) captured the robotic fish movements
[see example image in Fig. 3.22a]. Although both IMUs 10 and overhead mounted cameras are use-
ful sensors for the estimation of robot position, the IMUs can introduce biases, particularly when
deployed over extended periods. Thus, we only use the camera to observe the robotic fish. Tracking
objects within images generally falls under two broad categories : marker-based and marker-less
methods, as outlined in [Mathis et al., 2020]. The first uses standard image processing techniques
to infer position of markers on the object, while the second uses neural networks to determine the
tracking position of an object. To simplify and accelerate the training process, we implemented the
marker-based approach by affixing yellow and red markers to the buoyant cylinder. This approach
eliminates the use of high-dimensional input images in the RL algorithms. One marker suffices to
determine an object’s position precisely ; however, to infer the orientation of a robot necessitates
at least two markers. The objective of a robotic fish was to swim upstream, maximizing mean ve-
locity over a one-second duration in alignment with the reservoir’s orientation. The idea is that the
robotic fish gradually learns to swim upstream. Once the episode terminates, the robot is brought
back to the initial point with the water flow during the reset.

All the experiments were conducted within the water tunnel of Rolling Hills Research Corpo-
ration, detailed in Appendix D.1. The water flow was regulated to maintain a velocity of 60 mm/s
in a direction opposite to that of the robotic fish. During training, the robotic fish swam upstream
and the water flow of 60 mm/s ensured quick and effective reset of the environment. During the
training phase, this specific water flow rate served a dual purpose. Firstly, it provided a consistent
opposing force for the robotic fish, effectively simulating the challenges of swimming upstream.
The increased drag force ensured that only effective control policies were able to propulse the
robotic fish forward. Secondly, the 60 mm/s flow rate facilitated a rapid and efficient RL environ-
ment reset. The learning episode is ended by halting the fish, and fish going backwards with the
flow of the water tank. To prevent the fish from becoming immobilized during the reset due to fric-

10. IMU : inertial measurement unit
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tion along the reservoir’s boundaries, fish undulates its tail slightly every three seconds. Once the
camera detects a certain position threshold along the x axis is overcome, the fish restarts the new
episode again. Small 3D-printed blue piece of a "triangular" shape is mounted at the beginning of
the track, so that the robotic fish starts at about the same position relative to the reservoir.

The agent-environment interaction during learning occurred in episodic time segments of 128
time steps with a sampling time of 90 ms. The episode time of 128 time steps ensures that the robo-
tic fish always stays in the overhead camera vision view and a sampling time of 90 ms guarantees
consistent Wi-Fi data exchanges without timing irregularities. The episode stops upon reaching the
maximum time step count. At every time step, the agent receives the reward proportional to mean
displacement speed projected on x axis, averaged on the 1s time interval. To infer the first and
second derivative of the longitudinal and angular positions of the system, 4 consecutive position
values of two markers together with the actuation angle φc were part of the observation space of
the RL environment, just like in the training with raw images. The resulting observation at time
step i is [φci, cxi, cyi, pxi, pyi]x4 (concatenated with 3 previous time steps), where (cxi, cyi) are
the coordinates of one marker in 2D space at time step i and (pxi, pyi) are the coordinates of the
second point.

Figure 3.22 – Experimental setup for a robotic fish swimming in a water tunnel. a) The use of
two points permits to define the position of the swimmer, as well as its body angle orientation
with respect to the flowing water direction. b) Side view of the setup : the servomotor actuates the
elastic fin of a robot fish via the fishing wires, which in turn propels the entire system against the
direction of the flow. All the electronics with batteries are located in the plastic tube floating on
the surface of the water.

3.3.3 Experimental results : speed maximization

We employed PPO [Schulman et al., 2017] algorithm with discrete actions to optimize the
swimming speed. The algorithm used four consecutive values of [cx1, cy1, px2, py2, φc] as an ob-
servation, a reward of mean speed ẋ along the x-axis over 1s and action of φc ∈ {−Φ, 0,Φ},
where Φ = 40◦ is a maximum servo-motor actuation angle. The found policy after 120000 time
steps was square wave [see Fig. 3.23] with mean speed increasing rapidly at the beginning and
saturating towards the constant value towards the end of the training.
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Figure 3.23 – Experimental results in inference for a robotic fish swimming in a water tunnel after
120000 time steps with sampling time of 90ms. The base frequency is 4 sampling times, which
translates to the actuation frequency of f=2.74 Hz. The actions are discretized suggesting that 0
corresponds to one extremity and 2 to another.
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Discussions

We have successfully demonstrated that the mean speed of a robotic fish can be optimized
using the visual data and predetermined markers on a fish body. The main purpose of putting the
markers is to indicate the useful features from high-dimensional images without training a feature
extractor. Having already processed information from images should boost the training speed. The
downside of the approach is that two markers may not be enough to capture the whole complexity
of the robotic fish movement in the water tank.

We applied three preset control policies to propulse the robotic fish : square wave, sinusoidal
and triangular. In the conducted experiments, sinusoidal and triangular waveforms for actuation
are not represented here. This omission is intentional, as these waveforms were found to be less
effective than square wave forcing for enabling the robotic fish to swim against the direction of
water flow. Specifically, during trials employing triangular waveforms at various frequencies, the
fish was almost always unable to make headway against the current for frequencies f < 2Hz.

We now evaluate the efficacy of three distinct approaches in Fig. 3.24 : RL optimization of
the mean speed using camera, the square wave forcing policy and the thrust force optimization
of a stationary fish via RL using a force sensor. We found an optimal policy to be 3 Hz which
closely matches the frequency obtained via RL optimization. Additionally, when we conducted
thrust force optimization experiments using the same robotic fish in a static condition, we observed
that the optimal frequencies (≈ 2 and 3 Hz) were closely aligned. This suggests a good level of
robustness in the RL optimizations of thrust and speed, further validating the effectiveness of
bang-bang control for the propulsion of a robotic fish.
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Figure 3.24 – Comparison of different approaches for finding an optimal swimming gait. Blue
symbols corresponds to forcing with square wave policy, the discontinuous red line to the optimal
frequency found of thrust optimization and red symbol to the speed maximization via RL.
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While maximizing the thrust force is equivalent to maximizing the speed from the physical
perspective, this simplified perspective neglects a nuanced physical phenomena that can come into
play in experiments. Primarily, the undulatory motion of a fish’s tail generates waves that propagate
through the water, altering flow conditions and potentially influencing the fish’s movement [Liao,
2007]. The wave propagation (referred as sloshing) in the water tunnel is highly dependent on
the geometry and the size of a fish and the tank. We conducted experiments with robotic fish of
different sizes and concluded that in our experimental setup, sloshing influence was not significant
for the robotic fish we used before [see Fig. 3.1]. However, when we tested a larger robotic fish
[Berg et al., 2021], we observed a noticeable sloshing effect at the frequencies higher than fc =
1.8 Hz of oscillations severely interfering with the thrust force measurements.

Sometimes positional reward can be hard to define. In many robotics application, it is hard
to define the objective quantitatively yet easy to visualize with an image. We now proceed with a
visual servoing task in a virtual environment for fish swimming.
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3.3.4 Visual servoing applied on a simulated robotic fish

One of the common applications in robotics is to manipulate the object using camera readings.
Visual servoing [Chaumette and Hutchinson, 2006] is a well-established technique in control
theory that uses cameras as a position sensor. One of the classical approaches of visual-servoing
is an image-based visual servoing [Chaumette and Hutchinson, 2006] (IBVS), where the control
is happening directly in the image space with the minimization of an error between the current
and desired image plane features. Another visual-control approach is position-based visual ser-
voing [Chaumette and Hutchinson, 2007] (PBVS), which requires the calculation of the estimated
pose of the camera as well as the object of interest in 3D. The controller uses traditional methods
and minimizes the Cartesian distance of the target and current positions. Tasks like 3D localization
typically fit into PBVS. Conversely, no pose estimation is required in IBVS. The relation between
image space and Cartesian space is given in the "interaction matrix". It is an estimation of the
relationship between camera motion and image-plane motion. The schema block of two methods
is illustrated in Fig. 3.25. Here, we focus on visual servoing method which uses extracted useful
features from high-dimensional images for the precise positioning in the image space with Auto-
Encoders [Felton et al., 2022]. In the context of a robotic fish, visual servoing can be utilized to
control the fish’s motion so that it reaches and maintains a desired position or orientation relative
to a visual target.
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Figure 3.25 – control block diagrams comparison : a) PBVS. Control is happening in cartesian
space. χref and χ refer to to target and current positions. b) IBVS. Control is happening in image
feature space.
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In many cases, it is possible to determine useful features of an object from visual data using
standard image processing techniques, for instance using colored markers [DeGol et al., 2017] or
optical flow [Mahony et al., 2007]. Image processing tools, for tasks like segmentation, feature
extraction or object tracking often require manual parameter-tuning or domain-specific expertise.
Recently, CNNs opened new venues of extraction of useful features from images [Krizhevsky
et al., 2012, Muhammad et al., 2018, Liu et al., 2022c]. Artificial neural networks, particularly
CNNs, demonstrated extraordinary capabilities to extract the useful features from images [Gei-
rhos et al., 2017]. In some cases, images have to be accurately labeled by the human to produce
the useful features with CNNs ; pretrained CNNs on large-scale annotated datasets such as Ima-
genet [Krizhevsky et al., 2017, Beyer et al., 2020] can be used as a feature extraction tool on the
downstream tasks such as reduced space representation and visual servoing [Lee et al., 2017]. Very
often, pre-trained CNNs are later fine-tuned on the downstream tasks for the better performance.

However, there exist unsupervised [Kingma and Ba, 2014], contrastive and self-supervised
algorithms [Caron et al., 2020], that permit to extract the useful features without human annotation.
Those pretrained neural nets can then be used for downstream tasks. One of such unsupervised
deep learning algorithms, Variational Auto-Encoder [Kingma and Ba, 2014,Kingma and Welling,
2014b] can encode input images into the low-dimensional space, and this low-dimensional space
can be coupled with deep RL to address visual servoing tasks [Nair et al., 2018,Pong et al., 2019].
Contrary to CNN, VAE adds the disentanglement information on images which can be used in the
visual servoing context.

Autoencoder Autoencoders [Kramer, 1991] is a type of ANNs that is employed to learn efficient
data encoding in an unsupervised manner. It consists of a double model : encoder and decoder
networks that are trained simultaneously. An encoder network qφ takes image X as an input and
outputs a latent vector Z. A decoder net pθ, on the other hand, takes a low-dimensional latent
vector Z as an input and reconstructs an original image [see Fig. 3.26]. Autoencoder parameters
are optimized via either MSE 11 [see Eq. (2.56)] loss of original and reconstructed images or
log-probability loss [see Eq. (3.20)]. Basically, an autoencoder is trained to replicate its input to its
output. Because of the low-dimensionality of the latent space, autoencoders can not copy perfectly
its input to the output, but instead they learn the important parts of the high-dimensional input that
can be used in the downstream tasks. Some of the applications of autoencoders include image
compression, dimensionality reduction and denoising. Autoencoders are trained without imposed
structure on the latent space, which renders them not suitable in general for exploiting the latent
space. Variational Auto-Encoders (VAE) described in the next paragraph is capable of encoding
and decoding a high-dimensional input via more structured latent space.

Variational Auto-Encoder (VAE) VAE [Kingma and Welling, 2014a] builds on top of an Au-
toencoder with a probabilistic latent space. Instead of having some discrete values in the latent
space like it was with AE, the latent space of VAE is composed of distributions, typically gaus-
sians [see Fig. 3.27]. This property makes a VAE a generative model that enables to generate
new high-dimensional data by sampling the latent space distributions and then reconstructing the
output through the decoder. The encoder produces a probability distribution over the latent space
and decoder reconstructs the high-dimensional input from the sample of probabilistic latent space
distribution. The probabilistic latent space is achieved via a constraint on the latent space during

11. Mean Squared Error
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training. This constraint makes the variables in the latent space to follow the imposed distribution,
such as normal distribution.

Encoder
  qφ(x)

Decoder
  pθ(z)latent : z

Figure 3.26 – Example of AE reconstruction of the real image of the fin.

Encoder
  qφ(x)

Decoder
  pθ(z)latent : z

Figure 3.27 – Example of VAE reconstruction of the real image of the fin.

The comparision of Autoencoders and VAE is illustrated in Fig. 3.28. In practice encoder of
VAE outputs the mean and standard deviation of the distribution (µ, σ) instead of a latent vec-
tor in Autoencoders. Some value z is sampled from this distribution for the reconstruction [see
Fig. 3.28]. The distribution sample is defined as z = µ+σ. This is referred as "reparametrisation
trick", which allows for the backpropagation of the loss through the encoder-decoder networks to
optimize both mean µ and standard deviation of a distribution σ.

To understand how VAEs constrain the latent space, one must understand the concept of Kull-
back–Leibler divergence or the relative entropy. For two distinct one-dimensional distributions
p(x) and q(x) of a variable x, Kullback–Leibler (KL) divergence DKL(p(x)‖q(x)) is a non-
symmetrical positive statistical measure indicating how distant two distributions are from each
other. It is defined as :

DKL(p(x)‖q(x)) =
∫ ∞
−∞

p(x) ln p(x)
q(x)dx. (3.19)

For an illustrative example, we take two sample distributions in Fig. 3.29a. The DKL(p(x)‖q(x))
is the sum of the shaded area in Fig. 3.29b. The positiveness of KL-divergence make it suitable
to be used in the loss function while training VAE neural networks (encoder and decoder). The
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Figure 3.28 – Schema-block of functioning for Autoencoder and VAE.
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Figure 3.29 – a) Two probability density functions (PDF) with different means and standard distri-
butions. b) KL divergences of two distributions. The shaded area corresponds toDKL(p(x)‖q(x)).

general form of loss functions in the training of AEs and VAEs takes the following form :

LAE(x, θ, φ) = − log (pθ (qφ(x))) . or [x− pθ (qφ(x))]2 (3.20)

LV AE(x, θ, φ) = Eqφ(z|x) [− log (pθ (qφ(x)))] +KL (qφ(z|x)‖p(z)) . (3.21)

The latent space of VAEs is constrained via the KL-penalty DKL(qφ(z|x)‖p(z)) in the loss
function [see Eq. (3.21)]. At every training step, the algorithm updates the weights of a neural
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net so that the encoded distribution qφ(z|x) is close to p(z), a normal Gaussian in our case. This
KL-penalty encourages the latent space distribution to follow the gaussian form with mean µ = 0
and variance σ2 = 1. In some cases, Bernouli distribution is used for the KL-penalty to represent
the binary input data [Loaiza-Ganem and Cunningham, 2019].

As noted before, one of the powerful applications of AEs and VAEs for control is a feature ex-
traction from high-dimensional images, a process known as "State Representation Learning" [Le-
sort et al., 2018,Raffin et al., 2019b]. This can be useful to decompose end-to-end learning control
from visual data into two different steps : learning the compressed state representation with recons-
truction and learning the control separately or jointly. Learning the control from raw images may
be the hard task and it is often more intuitive to separate perception from control by decomposing
ent-to-end control learning from visual data into 2 easier sub-problems. The only disadvantage of
this approach is that AE/VAE reconstructs the image which is not necessary for learning the suc-
cessful control policy. However, it is easier to tune the hyperparameters and interpret the problems
after a successful training of the feature extractor. While the use of this method may result in in-
creased computational overhead compared to reconstruction-free techniques due to the training of
the decoder, it can yield better sample-efficiency and it is easier to interpret.

Another useful application of VAE for control is comparison of the proximity of images. There
are many variants of VAEs, such as β−VAE [Higgins et al., 2017] introducing the β hyperparame-
ter to the KL-penalty, which introduces the trade-off for image reconstruction and constraining the
latent space. The latent space of VAE is compact and can be used to infer the information about
the original image. Two images different in the high-dimensional space will have two distant la-
tent encodings in the euclidean space. This property of VAEs can be exploited in the context of
visual servoing when the goal of the controller is to reach the target image [Felton et al., 2022].
We now begin by formulating the problem of visual servoing and then move on to define the task
in a simulation environment, followed by presenting the obtained results.

Learning to achieve a goal image position

In the context of MDP, let the high-dimensional image state be Xt, the control Ut be defined by
the policy π : {Xt → Ut}, the trajectory of T consecutive states defined by τ and feature extractor
mapping defined by g : {Xt → Zt}. Let at time step t, Zt be a latent encoding of the camera’s
observation Xt and let Z∗ be some given goal latent state. We define visual servoing as the problem
of choosing a sequence of controls U1...T over the trajectory τ with T discrete time steps as to
minimize the latent distance error between the goal encoding Z∗ and the the final encoding of the
system state ZT , i.e ‖Z∗ − ZT ‖. The advantage of this type of unsupervised reward is that it does
not require human knowledge and reward shaping. The optimized policy chooses the sequence of
control steps π(X) to reach a goal image and has the following objective :

θ = arg min
XT∼πθ(τ)

‖Z∗ − g(XT )‖2 ,

where θ are the parameters to be optimized. Thus, during whole episode the agent will not receive
any learning signal except at the final time step of the episode. This is one of the formulations of
the problem, accounting only for the final goal image. This formulation is challenging and has a
sparse learning signal for RL algorithms that are emitted only at the end of an episode of duration
T . This formulation addresses the goal-conditioned RL [Liu et al., 2022a, Andrychowicz et al.,
2017] and it incorporates additional computational/memory constraints that are detailed in [Nair



104 CHAPITRE 3 — Reinforcement learning approach to control a robotic fish

et al., 2018]. To make the reward more informative, we can sample the informative reward at each
time step and we proceed with the mean formulation on the episode duration :

θ = arg min
Xt∼πθ(τ)

1
T

T−1∑
t=0
‖Z∗ − g(Xt)‖2

Simulation results

We now construct a simple visual simulation of a robotic fish with the dynamics defined in
Eqs. (3.17) and (3.18) that swims in one direction and is constrained in the others. The fish starts
at the initial position and at every time step the agent is penalized for being far away from the
target image. The penalty is defined as an euclidean distance in the latent space between the goal
and the current latent encodings defined by VAEs. Thus, the agent’s objective is to make fish reach
the objective goal image from the initial image in the shortest time possible [see Fig. 3.30]. We
reset the environment when the agent reaches the goal image or maximum time steps. We define
that the agent reaches the goal image when ‖Z∗ − g(Xt)‖2 < ε, where ε is a hyperparameter
chosen manually.

First, we construct a dataset of simulated images with different parameters (x, α), then we
train VAE for several epochs on this diverse simulated data. Then the encoder part of VAE is
used together with PPO on a visual servoing task. The observation of PPO is a latent encoding
via encoder of the current image of the simulator (simulator processed image : 84x84x1→ latent
mean value : 8x1). The reward is the latent euclidean distance between the current and the goal
images.

Figure 3.30 – Processed images for the visual-servoing task in simulation : a) the goal observation
of the task. b) the initial observation of the system at the beginning of an episode.

We present the RL simulation results with the custom β−VAE [see the architecture in
Table B.5 ] in Fig. 3.31 and the learning statistics shown in Fig. 3.32. To further validate the
results, we employ square wave, sinusoidal and triangular predefined functions to control a robo-
tic fish with different frequencies in Fig. 3.31a. From Fig. 3.31a, it can be inferred that PPO is
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able to find the optimal swimming gait and frequency. In this figure, there are some outlier values
among the square wave forcing ; this is due to large distances in the latent space between some
images that VAE is not confident at encoding. One of the further ways to smoothen the negative
spikes is to clip the large negative penalties.

The optimal swimming gait is square wave and the optimal frequency obtained with this visual
servoing environment is the same as the one obtained when the objective was to maximize ẋ from
the true state [x, ẋ, α, α̇] seen in Section 3.3.1, because of the same underlying dynamics. Thus,
this visual-servoing approach comprising deep RL coupled with VAE can be seen as a viable
approach to maximize the swimming speed when only raw visual data is available. Training the
algorithm for 400000 time steps is too long for the experimental setup. Further work includes
implementing more sample efficient algorithms before the application in practice.

Figure 3.31 – RL simulation results of a fish visual servoing environment. a) Influence of the
frequency on the episodic return by some periodic functions : square wave (orange squares), sinu-
soidal (blue circles) and triangular (green triangles) waves. b) Control actions during one episode
from the best learnt policy in inference.

0 200000 400000
Steps

0

10

20

V
al

u
e

a) loss

0 200000 400000
Steps

400

600

V
al

u
e

b) episode length

0 200000 400000
Steps

250

200

150

V
al

u
e

c) mean reward

Figure 3.32 – Learning statistics of visual servoing environment with PPO. a) The loss being
minimized is steadily heading zero until the convergence at about 300000 time step. b) average
length of the episode at inference evaluations, stays the same at the beginning for untrained agent.
Then at around 100000 time step, the agent learns to achieve the goal and the episode length
decreases drastically. c) mean inference return, which has a drastic increase at 100000 time step
that can be rationalized by the previous plot.





CHAPTER 4
Conclusion and

Perspectives
4.1 Conclusion

This thesis shed new insights on the control of robotic systems via deep Reinforcement Lear-
ning methods, particularly thrust and speed optimization of a robotic fish. The primary objective
of the thesis was understanding the fish locomotion and designing optimized ways to actuate robo-
tic fish for thrust and speed maximization. Before applying deep RL algorithms on a robotic fish
setup, we performed an extensive study of these data-driven algorithms on a traditional benchmark
problem of a control theory : cart-pole i.e. inverted pendulum.

Initially, in Chapter 2, we presented classical control algorithms : PID, LQR and Lyapunov-
based controllers, highlighting their advantages and downsides. Then, we applied these model-
based control techniques on a real cart-pole system. Lyapunov-theory based controller was able to
swing-up and LQR to maintain the cart-pole in its unstable equilibrium.

Subsequently, we described the model-free RL framework with three classical families of al-
gorithms. Different deep RL algorithms were then presented with the application on an inverted
pendulum and thorough analysis of the algorithm performance. Specifically, we studied the ap-
plication of Q-learning and DQN in detail on a real experimental setup. It has been demonstrated
that DQN was capable of swinging up and stabilizing the pendulum in its unstable equilibrium in
a reasonable time. The impact of various physical parameters on the robustness of the DQN algo-
rithm’s learning process was investigated. We also demonstrated the role of the measurement and
actuation noise on the learning capabilities. Finally, we compared the performance of different dis-
crete and continuous deep RL algorithms on the swing-up and stabilization of a simulated inverted
pendulum.

In Chapter 3, we studied the application of deep RL algorithms that could maximize the trust
and the speed of a robotic fish. First, we presented a physical model of a robotic fish as a dual dy-
namics formulation : dynamics of a soft body of a robotic fish and servo motor internal dynamics.
We demonstrated that the found control strategy was optimal to maximize the thrust force. We
demonstrated the robustness of obtained results with different learning sessions using the camera
and force sensors for observations. It was revealed that both learning in simulation and the analy-
tical solution of the swimming model yielded results comparable to RL learning in experiments.
The resulting bang-bang control was explained and rationalized through the Pontryagin maximum
principle. Finally, we presented the swinging strategy that uses the angular speed of the robotic
fish tail to propel the robotic fish at high efficiency. We have successfully demonstrated that the
bang-bang control is optimal and there is an optimal frequency of the servo motor actuation. This

107
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is explained via the elasticity of the fin ; moreover, the optimal forcing frequency is closely related
to the natural frequency of the robotic fish fin.

In the second half of Chapter 3, we studied robotic fish speed optimization problems. Our
previous findings regarding the optimality of bang-bang control were validated in simulation en-
vironments. We then demonstrated a learning protocol for maximizing speed in experiments using
visual data from a top-mounted camera. It was found that the PPO algorithm was capable of iden-
tifying an optimal policy in experiments, and square wave forcing confirmed the results. Finally,
we compared the results to the thrust force optimization and discussed the advantages and incon-
veniences of this optimization approach.

4.2 Perspectives for a robotic fish swimming

Our research has primarily concentrated on maximization of thrust and speed of a solitary
aquatic swimmer. Further work encompasses the developments in mechatronics for an autonomous
fish and enhancements of control via advanced deep RL algorithms.

In Fig. 3.22, we proposed a setup for swimming up the flow and control via external camera
mounted at the top of the swimming reservoir. We also added IMU 1 inside the tube for further
measurements of orientation and displacement of fish moving. Displacement determination re-
quires double integration of noisy accelerometer values that also drifts slightly with time and
temperature. IMU accelerometer measurements can be coupled with camera-based position tra-
cking in sensor fusion processes to improve tracking robustness. The use of IMU also permits to
determine the orientation of the fish in 3D. A sample result of an orientation determination using
IMU while employing harmonic control is visualized in Fig. 4.1. We can observe that the roll and
pitch angles remain approximately constant while the yaw angle oscillates slightly with 1Hz, the
frequency of harmonic control. IMU will be particularly useful in the future, when an autonomous
fish will be designed to navigate in 3D.

Figure 4.1 – Visualization of an IMU application. a) orientation determination of a robotic fish
swimming in a straight line with sinusoidal forcing of 1 Hz. We used Madgwick algorithm [Madg-
wick et al., 2011] to estimate roll, pitch and yaw angles using IMU data. b) image of an IMU, taken
from www.adafruit.com website.

1. Inertial Measurement Unit

www.adafruit.com
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For further development of a robotic fish, it is necessary to design a system for altitude control.
The most intuitive method of regulating the altitude in a robotic fish is via pumping water in/out
of the robotic fish, like the researchers did in [Katzschmann et al., 2018]. Another avenue for ex-
ploration is the possibility of achieving complete buoyancy and control of the altitude via pectoral
fins with drag force. The adjustment of the robotic fish’s orientation angle can be achieved by
rotating its pectoral fins, enabling it to regulate the force by which the water pressures the robot up
or down. By altering this angle, one could effectively modify the angle of the drag force exerted
on the fish, thereby offering a mechanism for altitude regulation.

Attitude and depth regulation systems require a bigger robotic fish prototypes to house the
necessary components. In our work, we explored a larger-scale robotic fish prototype, inspired by
the design described in [Berg et al., 2021]. This model features a DC motor and a silicone-covered
elastic tail for underwater propulsion, as seen in Fig. 4.2a. A significant limitation of this design is
its dependency on a tethered connection for power, additional power drive electronics and external
power source to drive the robot. We then experimented with a waterproof servo motor configura-
tion instead of DC motor without silicone cover in Fig. 4.2b. For of the second configuration, we
tested the thrust optimization for different harmonic control policies [done as before, see Fig. 3.5]
and the results followed a similar trend with distinct peak frequency as the results obtained with a
smaller robotic fish used before [configuration in Fig. 3.1].

Figure 4.2 – Different tested variations of robotic fish conception, inspired from [Berg et al.,
2021].

In the previous chapter, we demonstrated that RL remains a powerful method to optimize the
thrust or speed. However successful RL application in practice requires many hours of real world
robotic interaction. Like it was mentioned in chapter 2, some RL methods such as Q-learning
needs several millions of interaction steps to maximize the reward which becomes infeasible in
practice. Some machine learning techniques may improve sample efficiency. One of the potential
ways is model-based RL [described in Appendix B.2] which premises improved sample efficiency
sacrificing computational efficiency. Another useful technique is imitation learning or offline RL
[see Appendix B.2 for more details]. The base idea is to use the knowledge of a potential good
control to generate the trajectories that will serve to accelerate the training in a supervised way.
We can use imitation learning on several episodes of square wave control to pre-initialize the actor
model towards the bang-bang policy with certain frequency. One of the instances of imitation
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learning, named "behavior cloning" has already been applied in simulation and yielded faster
convergence.

Robotic fish can easily blend in the swarm of robotic fish. This is useful for marine biologists
to observe closely marine life or ocean surface without disturbing the underwater animal realm
[Fig. 4.3]. Many fish swim in swarm formations that enable them to harness energy efficiency
by swimming in synchronized patterns [Hemelrijk et al., 2015]. Robotic fish in itself are more
efficient than propeller-based UAVs. Forming a robotic fish swarm may further enhance their ef-
ficiency and multi-agent RL [Buşoniu et al., 2010] may be the key to efficiently control complex
robotic fish swarm formations in chaotic environments. Deep RL can potentially unlock efficient
strategies to propel a swarm of robotic fish due to the chaotic nature of the system.

Figure 4.3 – Robotic fish swims in the swarm of real fish, observing and recording the data. This
image was created with the assistance of DALL·E 3.
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ANNEXES A
Inverted Pendulum

A.1 Low-level Interface (LLI)

At each major control cycle, the LLI processes the raw measurements from the encoders by
smoothing them with a digital 4th-order Butterworth filter [Khalil and Dombre, 2002] and by
differentiating them numerically in order to estimate ẋ and θ̇. For the communication, we use the
ZeroMQ 1 library. This allows to write client controller applications that do not need to focus on
the low-level management of hardware resources. In addition, clients can be run either from the
Raspberry Pi 4 or from any other machine that is able to connect to the board, for example via the
local network or via WiFi. This opens the possibility to write client applications in potentially any
programming language supported by ZeroMQ. Our client applications are written in Python and
C++.

A.2 Measurements of the physical parameters

The values of the physical parameters of the cart-pole are displayed in Table A.1. The pen-
dulum mass was measured with a scale. The natural frequency ω and viscous friction coefficient
kv were inferred from the signal θ(t) of the free oscillations of the pendulum with a blocked cart
as expected by eq. Eq. (2.21) with ẍ = 0. We show in fig. A.1a, the relaxation dynamics of the
pendulum, as well as the result of the numerical prediction of the model with the best fitted pa-
rameters. The parameters τ , fc, fd and kU in Eq. (2.22) and Eq. (2.23) are inferred by imposing
step functions as voltages and measuring the cart velocity as a function of time. Again, parameters
are deduced by the best interpolations (Fig. A.1b). In Fig. A.1c, we observe in more details the
effect of the three parameters fc, fd and kU on the discontinuity on the velocity-axis, the up-down
asymmetry and the slope respectively, while plotting the steady state velocity as a function of
the applied voltage. The uncertainty on the angular velocity θ̇ is correlated to σθ and to the time
resolution ∆t ' 0.05 s. This gives an uncertainty σθ̇ = σθ/∆t ' 52 mrad s−1.

A.3 Methodology for training RL agents

All the simulations and experiments were driven by a Dell Precision 7550 using its inter-
nal GPU. For one simulation with 15 105 time steps with logging and evaluation loops, it takes
10.7 minutes using GPU (NVidia Quadro T2000), and 13.43 minutes using CPU only (Intel(R)
Core(TM) i7-10875H CPU @ 2.30GHz).

1. ZeroMQ : https://zeromq.org/ (accessed on July 23rd, 2021).
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Name Value
Mass of the pendulum (m) 0.075 kg
Natural frequency of the pendulum
(ω)

4.882 rad s−1

Viscous friction coefficient of the
pendulum (kv)

0.07 N s rad−1

Electro-mechanical time
constant(τ )

0.0482 s

Static gain of the motor (kU ) 0.051 m s−1 V−1

Static friction coefficient of the cart
per unit mass (fc)

1.166 N kg−1

Static offset per unit mass (fd) −0.097 m s−2

Table A.1 – Measured physical parameters.

A.4 Hyperparameters for RL training in experiment

Q-learning DQN
Learning rate (α) 0.01 0.0003
Exploration ratio (ε) ε varies following Eq. A.1

and εmin = 0.1
0.178

Discount factor (γ) 0.99 0.995
Decay factor (d) 103 − 106 N/A
Buffer size N/A 50000
Batch size N/A 1024
Network architecture N/A 2 hidden layers with 256

neurons
ANN optimizer N/A Adam [Kingma and Ba,

2014] with default para-
meters

Loss type N/A Huber
Activation function N/A Rectified Linear Unit

(ReLU)
Target update interval (C) N/A 1000
Train frequency 1 step 1 episode
Gradient steps N/A as many as there were

steps since last neural net
update

Table A.2 – Hyperparameters for Q-learning and DQN.

Q-learning The hyperparameters for Q-learning were set as follows. We set α = 0.01 in
Eq. (2.43). As for the hyperparameter ε (ε-greedy policy), it is a good practice to promote the
exploration in the early stage of the learning process with ε close to 1, while a small ε helps to
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Figure A.1 – Determination of the physical parameters from interpolations (solid blue curves) of
experimental data (red dots). a) Angle evolution of a free oscillation of the pendulum. b) Cart’s
velocity evolution with different voltages. After a short transition period, the cart’s velocity reaches
a plateau for all the voltages. c) Linear dependence of the plateau values on the applied voltages.

converge quickly at the end of the process. Here ε decreases as a function of time :

ε = max(εmin,min(1, 1− log10((n+ 1)/d)), (A.1)

where n is the number of current episode. The decay coefficient d and εmin are hyperparameters
that can be tuned ; in this work we took d = NT /10 and εmin = 0.1.

DQN The parameters were tuned with the help of Optuna [Akiba et al., 2019] framework. We
discovered that the most sensible hyperparameters are network architecture, batch size and explo-
ration rate. The complete tuning focused on the following parameters :
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— Buffer size : the size of a buffer with transitions (cos(θ), sin(θ), θ̇, x, ẋ) used for learning
the weights of the policy.

— Batch size : number of samples used for the gradient descent update of neural network. In
practice it should be large enough to avoid biased experience, but not too large to slow the
learning.

— Learning rate : an extent at which we update the “state-value" function at each step.
— Gamma : discount rate of future steps, which tells how the present is more valuable than

the future.
— Exploration rate : the rate at which an agent explores (acts randomly) in the environment
— Network size : size of the dense neural network for Q(s, a) function approximation
— Target update interval : it is the interval after which we update the target. In general, the

bigger the value, the more stable is the training, but decreases the learning speed
— Train frequency : the frequency of learning the weights from the experience ; in our case

we train the neural network at the end of every episode, since it is the most suitable way to
be applied on real-life robotic reinforcement learning.

Hyperparameters for different RL simulations of the cart-pole system

Parameter dqn&ddqn ppo sac ppo continous

Discount factor (γ) 0.995 0.95 0.99 0.98
Learning rate (α) 0.0003 0.0017442 0.001 0.00025554
Exploration (ε) 0.17788 N/A N/A N/A
Target update interval (C) 1000 N/A N/A N/A
Buffer size (N) 50000 2048 300000 2048
Train frequency every episode N/A every episode N/A
Gradient steps -1 N/A -1 N/A
Batch size 1024 256 1024 8
Entropy coefficient N/A 2.6481e-08 auto 0.077322
Policy update clip range N/A 0.4 N/A 0.1
N epochs N/A 20 N/A 20
λ in GAE(γ, λ) N/A 0.9 N/A 0.8
Max Grad Norm N/A 1 N/A 0.7
cv N/A 0.35163 N/A 0.69625
Moving average τ N/A N/A 0.02 N/A

Table A.3 – Hyperparameters list for different deep RL algorithms applied on cart-pole problem.
The hyperparameters are not detailed for simplicity [more details for PPO in [Schulman et al.,
2017]].
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A.5 Parameters for model based control of real cart-pole

Name Value
kp -127.458
kpd -822.638
kt 2234.65
ktd 437.117

Table A.4 – LQR parameters used to stabilize an inverted pendulum in unstable equilibrium in
experiments.
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A.6 Raw training curves : DQN and Q-learning

Raw learning curves of DQN in simulations and experiments. Sudden negative peaks in
Fig. A.2 during learning correspond to expolration episodes, where the agent acts suboptimally
to find new strategies to maximize the reward.

Figure A.2 – Raw learning curves without moving average : a) DQN for different voltages b)
Q-learning in simulation with averaging on 10 episodes. Without averaging the figure becomes
too noisy.
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A.7 Cart-pole stabilization using bang-bang control

We give the simple example of bang-bang controller application on a cart-pole system des-
cribed before in Eq. (2.21). The objective is to stabilize the pendulum at its unstable equilibrium
(θ = π), governed by the following ODE :

θ̈ + kv θ̇ + ω2
0 sin θ + ẍ

l
cos θ = 0

After the linearization at (θ = π + β, where β � 1), we obtain :

β̈ + kvβ̇ − ω2
0β −

ẍ

l
= 0

We want to minimize the following objective :

I = 1
T

∫ T

0
β2dt (A.2)

under the dynamics :
β̇ = ω

ω̇ = −kvω + ω2
0β + ẍ

l

(A.3)

Within the variational methods framework, we write the Lagrangian :

L = β2 + λ1(β̇ − ω) + λ2

(
ω̇ + kvω − ω2

0β −
ẍ

l

)
(A.4)

The Hamiltonian can be written in the following form :

H = −L+ λ1β̇ + λ2ẇ

= −β2 + λ1w + λ2

(
−kvw + ω2

0β + ẍ

l

) (A.5)

The costate equations are defined as :

λ̇1 = −∂βH = λ2ω
2
0

λ̇2 = −∂ωH = −kvλ2 − λ1.
(A.6)

By differentiating Eq. (A.6), we obtain :

λ̈2 = −kvλ̇2 − λ2ω
2
0 (A.7)

As ẍ ∈ [−Γ,Γ], then in order to maximize the Hamiltonian, from Eq. (A.5) we conclude that
ẍ = sign(λ2)Γ. We thus obtain the optimal policy :

β̈ + kvβ̇ − ω2
0β −

Γ
l

= 0. 0 < t <
T

2 , (A.8)

subject to boundary conditions (we explicitly choose these periodic boundary conditions that we
will observe with the swimming fish) :

β(0) = β

(
T

2

)
β̇(0) = −β̇

(
T

2

)
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The solution to the above ODE is :

β(t) = − Γ
lω2

0
+ Γe−

t(kv−σ1)
2 (kv + σ1)

lω2
0

(
e−

T (kv−σ1)
4 σ1 + σ1

) − Γe−t(
kv
2 +σ1

2 ) (kv − σ1)

lω2
0σ1

(
e−

T (kv+σ1)
4 + 1

) , (A.9)

where σ1 =
√
k2
v + 4ω2

0 .
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Deep RL methods

B.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) [LeCun et al., 1995] are a class of deep learning mo-
dels specifically designed for processing data with a known grid-like topology, such as images
[Goodfellow et al., 2016, LeCun et al., 2015]. CNNs are often used for image classification, seg-
mentation, object detection, and other applications of computer vision. The basic unit of a CNN
is the convolutional layer. A convolutional layer is based on the convolution operation borrowed
from traditional signal processing. Convolution outputs the aggregated value of its input via a
moving window through the signal.

The convolution can be applied both to 1D (ex : time-series) and 2D (ex : image) data. For a
2D input I and a 2D convolutional filter K, convolution is defined as :

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n). (B.1)

A CNN layer can be resumed to three steps :

1. Convolution : this stage uses a set of learnable filters (kernels) and each filter is passed
through the width and the height of the image to produce a 2D feature map (with lesser size
then the original input). These maps capture the presence of specific features at different
locations in the input.

2. Activation : just like in DNNs, the non-linearity is introduced to model the complexity of
a system.

3. Pooling : A pooling stage replaces the output of activation at a certain location with some
statistic of the nearby outputs. Its role is to reduce the dimension of an input. Two main
alternatives are average and max pooling. In the average pooling, the output is the mean of
an input, while in max pooling, the output is the max of an input window.

CNNs take an input image and apply a series of filters to it. Each filter is a small matrix that is
used to extract a specific feature from the image. The output of convolutions is passed through the
nonlinear function, like in DNNs, and then the pooling stage is applied. There are many variants
of CNNs, further details can be found in the book [Goodfellow et al., 2016].

In case of deep RL, CNNs represent a compression tool (representation of an image) that takes
an image as input and outputs the latent vector. Initially the weights in CNNs are initialized via
some initialization scheme and then trained with back-propagation, just like DNNs.
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B.2 Different types of Reinforcement learning

Imitation learning

Imitation learning is a type of reinforcement learning where agents learn the policy by mimi-
cking expert demonstrations. Expert demonstrations usually have high rewards in the given task
and imitation learning consists of supervised learning on the state-action pairs of expert transi-
tions. Using imitation, the agent can achieve the reward similar to the expert. Imitation learning
can be a simple but effective way to pretrain the agent before the learning, thus helping to converge
faster.

Let D = {(s0, a0) , (s1, a1) , . . .} be expert transitions. The role of imitation learning is to
train the policy πθ on D in a supervised way to obtain similar actions to experts. The 2 most basic
and popular methods are Behavior cloning [Pomerleau, 1988] and Dagger [Ross et al., 2011].

Offline Reinforcement learning

Offline RL is similar to Imitation learning, but permits finding the best possible actions from
the offline dataset. The difference between the Offline RL and imitation learning, is that Offline
RL does not try to mimic the agent, but improve on the given offline trajectories. In certain cases
the Offline RL algorithms construct the model from the dataset and train the agent on this model.
The good baseline choices for the offline RL method is AWAC [Nair et al., 2020]. Other methods
include CQL [Kumar et al., 2020] and IQN.

Model-based Reinforcement learning

Model-based Reinforcement learning (MBRL) is a branch of RL that achieves the objective of
RL while modeling internally state transition probability (P ) of MDP. First viable algorithms of
MBRL include PILCO [Deisenroth and Rasmussen, 2011] which models the dynamics with Gaus-
sian processes. It is a highly sample-efficient model sacrificing computational efficiency of an al-
gorithm. Its main disadvantage is that it can not scale to high-dimensional environments and needs
tuning of parameters. Other MBRL algorithm examples include Dreamer [Hafner et al., 2020] that
model the dynamics via the RSSM (recurrent state space network based on RNN) [Hafner et al.,
2019]. Dreamer is a State-of-the-Art MBRL algorithm, being a highly sample-efficient algorithm
it requires a lot of numerical computations. In the next paragraph we present the MBPO [Jan-
ner et al., 2019] algorithm that has a DNN based internal model of the environment that helps
accelerate the training.

MBPO

Model-free offline RL algorithms (DQN, SAC) optimize only control policy, while MBRL
algorithms construct the internal model of the environment to increase the sample efficiency of
algorithms. MBPO presents an algorithm that uses model-free RL such as SAC as a controller and
models the environment dynamics with the predictive model pθ (st, at → st+1), named ensemble
[Dietterich, 2000] of neural networks i.e. several NNs that are trained in parallel. The number
of neural networks representing the environment varies among the tasks. The ensemble of NNs
permits adding stochasticity to the prediction, because DNN is inherently deterministic and most
of the MDPs are stochastic in reality. The algorithm can be resumed to several steps :
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1. Collect data from the environment

2. Fit the ensemble model (NNs) to the data

3. Generate simulated data from the model

4. Train model-free RL agent i.e SAC using the simulated data

The steps of the algorithm are explained in Algorithm 6.

Algorithm 6 Model-Based Policy Optimization with Deep Reinforcement Learning
1: Initialize policy πφ, predictive model pθ, environment dataset Denv , model dataset Dmodel
2: for N epochs do do
3: Train model pθ on Denv via maximum likelihood
4: for E steps do do
5: Take action in the environment according to πφ ; add to Denv
6: for M model rollouts do
7: Sample st uniformly from Denv
8: Perform k-step model rollout starting from st using policy πφ ; add to Dmodel
9: end for

10: for G gradient updates do
11: Update policy parameters on model data : φ← φ− λπ∇̂φJπ (φ,Dmodel )
12: end for
13: end for
14: end for

Meta Reinforcement learning

Meta Reinforcement learning is a paradigm known as learning to learn. Instead of learning
to maximize a particular objective, the algorithm learns how to perform a distribution over tasks
p(T ). The algorithms of meta RL learn how to optimize the general objective function and learn
"faster" for downstream tasks. The most popular method is MAML [Finn et al., 2017] (model
agnostic meta learning), which can be applied both for Supervised learning and Reinforcement
learning.
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B.3 Virtual Environments

Gym

The OpenAI Gym, is a popular framework for developing, comparing and testing RL algo-
rithms. It provides a suite of environments that can test the performance of agents on a wide range
of tasks. Custom environments containing user-defined dynamics and animation can be defined.
The cart-pole and fish environments can be visualized below.

Figure B.1 – Sample image of cart-pole si-
mulation with openai gym.

Figure B.2 – Original image used for visual
simulation of a robotic fish. The defined dy-
namics can be found in Chapter 3.

B.4 Robotic fish thrust and speed optimization

PPO hyperparameters for thrust/swim environments

The parameters were tuned with the help of Optuna framework [Akiba et al., 2019]. The com-
plete list of hyperparameters are :

— Numbers of epochs K : number of passes through the buffer data that PPO learns from.
— Batch sizeB : number of samples used for the gradient descent update of a neural network.

In practice, it should be large enough to avoid biased experience, but not too large to slow
the learning. Furthermore, in policy gradient updates, a small batch size may destabilize
the learning due to large variance.

— Learning rate α : an extent to which we update the neural networks at each step.
— Discount factor γ : discount rate of future steps, which tells how the present is more

valuable than the future.
— Network size Ns : the size of the dense neural network for "action-value" and "policy"

function approximations.
— Number of gradient steps T : how many gradient steps of learning do we make during

every epoch.
— Entropy coefficient ce : the weight of entropy of actions in the total optimized loss. En-

tropy signifies how random the taken actions are. It permits exploring unknown states.
— Value coefficient cv : the weight of value regression in the total optimized loss.
— GAE Lambda : λ coefficient in GAE estimation [see Section 2.3.3.4].
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— Clip range : ε policy clip range for stabilization [see Section 2.3.3.4].
— Max Grad Norm : clips the max grad norm of the gradients of the update.

The CNN architecture used in the algorithm is the same as in [Mnih et al., 2015].

Hyperparameter thrust target speed speed max visual servoing

Number of epochs K 40 40 20 40
Batch size (B) 128 128 128 256
Gradient steps (T) 768 768 128 768
discount factor (γ) 0.98 0.98 0.98 0.98
Learning rate (α) 1.7× 10−5 1.7× 10−5 1.7× 10−5 1.7× 10−4

Entropy coefficient (ce) 0.0876 0.003 0.05 0.08765
Clip range 0.1 0.1 0.1 0.1
GAE Lambda 1.0 1.0 1.0 1.0
Max Grad Norm 0.8 0.8 0.8 0.8
Value coefficient (cv) 0.451 0.451 0.4228 0.4228

Table B.1 – PPO hyperparameters for speed optimization. "thrust" used in simulation and ex-
periment for thrust maximization and speed maximization in simulation. "target speed" is used
for reaching a target speed in simulation. "speed maximization" is used for maximizing speed in
experiments. The "visual servoing" is used for visual servoing simulation environment.

Simulation parameters for fish thrust/speed maximization

Description Value
Ω 5.8
ξ 1.2
∆φ 0.29
ω0 12.5
Φ 60

Table B.2 – Hyperparameter list for Fish environments simulations.
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Description Value
Ω 5.8
ξ 1.2
Cd 0.254
Ct 12.9e-3
Φ 60

Table B.3 – Hyperparameter list for Fish environments simulations.

Description Unit Thrust Speed
Ω rad.s−1 5.8 5.8
ξ - 1.2 1.2
∆φ rad 0.29 -
ω0 rad.s−1 12.5 -
Cd - - 0.254
Ct - - 12.9e-3
Φ rad 0.31 0.31

Table B.4 – Physical parameters list used in fish environment simulations.

Layer Index Encoder Decoder
0 Conv2d(1, 32, kernel_size=(3, 3), stride=(2, 2)) ConvTranspose2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
1 ReLU() ReLU()
2 Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1)) ConvTranspose2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
3 ReLU() ReLU()
4 Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1)) ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
5 ReLU() ReLU()
6 Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1)) ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
7 ReLU() ReLU()
8 Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1)) ConvTranspose2d(32, 32, kernel_size=(3, 3), stride=(1, 1))
9 ReLU() ReLU()
10 Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1)) ConvTranspose2d(32, 1, kernel_size=(4, 4), stride=(2, 2))
11 ReLU() Sigmoid()
12 Flatten(start_dim=1, end_dim=-1) –
– Linear(in_features=39200, out_features=256, bias=True) Linear(in_features=6, out_features=256, bias=True) (fc0)
– Linear(in_features=256, out_features=6, bias=True) (fc_mu) Linear(in_features=256, out_features=39200, bias=True) (fc)
– Linear(in_features=256, out_features=6, bias=True) (fc_logvar) –

Table B.5 – VAE architecture used for visual-servoing in simulation, optimized in performance
and memory for this task. First input image (84, 84, 1) passes through 2d CNN layers with li-
near layers at the end. Last linear layers encode the mean and standard deviation of the Gaussian
distribution in the latent space. A sample is then drawn from this Gaussian distribution and fed
into another set of linear layers that incrementally increase the dimensionality of the data. Subse-
quently, 2D transposed convolutional layers (layer index : 0-10) are applied to upscale the feature
maps, ultimately reconstructing an output that matches the size of the original input image.
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Learning to achieve a fixed target speed (virtual environment) : DROQ
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Figure B.3 – Learning statistics for achieving a fixed target speed with DROQ. a) Training re-
ward recorded after every episode. b) Critic (Q(s, a)) loss evolution through time. c) Policy loss
evolution through time.
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Figure B.4 – Inference results with DROQ at the end of 105 learning time steps. a) Speed ẋ
evolution superposed with target speed (red dashed line). b) Fin angle evolution through time.
First 50 time steps are related to the high amplitude undulations. c) Action evolution through time.
High amplitude control is followed by medium amplitude control.
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Description Value
number of training steps 100000
batch size 256
learning rate 0.0003
hidden units [256, 256]
replay buffer size 1000000.0
discount (γ) 0.99
tau 0.005
entropy tuning True
entropy coef 0.2
critic updates per step 20
eval episodes interval 50
gradients steps of update 128
start steps (warm-up) 500
target update interval 1
layer normalization 1
target entropy -1.0
target dropout rate 0.005
number of critics 2

Table B.6 – Hyperparameter list for DROQ learning. We adapted the code from [Hiraoka et al.,
2021] and trained the model at the end of every episode.



ANNEXES C
Servomotor model

We construct the servo-motor simulation model based on the electrodynamics equations. We
consider servomotor based on the Direct Current (DC) motor, following the technical

documentation of the servo used 1.
The basic servo-motor has three components :

1. DC motor with reductor. It converts direct current electrical energy into mechanical energy.
It is based on the principle that the conductor carrying the current in the magnetic field is
subject to the "Lorentz" force. The rotational speed of DC motor is in direct relation with
the applied voltage and the load mounted on the output shaft of a motor. We consider
the "Permanently excited brushed DC motor" (DC motor with permanent magnets in the
stator) vizualised in Fig. C.1. The motor is simplified to the the resistance Ra, inductance
La, rotating shaft M and voltage Ea applied to motor terminals.
Electrical model of a DC motor is well known and is described in Eq. (C.2), where
Eemf (t) = Kbθ̇M (t) is a back electromotive force opposing the movement, which is
proportional to the rotational speed of a motor.
A rotating shaft usually have a high speed and low torque and for this reason the mechani-
cal gearbox is coupled to the motor to increase the torque and decrease the shaft rotation
speed with the factor of

(
N2
N1

)
, where N2

N1 is a reduction ratio of a gearbox to the motor.
Redactor also influences the total inertia of rotation. It is described in Eq. (C.3), where the
total inertia of the system is the sum of motor inertia and load inertia on a reduced speed
shaft.
Electromechanical torque balance of a system is established in Eq. (C.1). The signification
of the terms is defined as :

(a) Jtotalθ̈M (t) - a torque needed to rotate the inertia with acceleration θ̈

(b) bθ̇M (t) - a viscous torque

(c) TM (t) - a torque produced by a motor

(d) TL(t) - a load torque with damping d1. For simplicity, we neglect the damping of the
load for the sake of this derivation.

2. Power driver. It has a set of smart switches (transistors) that convert the given voltage of
6V to the desired Voltage via Pulse Width Modulation (PWM) of a given voltage (6V→
[0,6] V).

3. Feedback and controller. All servomotors have a feedback on the angular position θ. Some
of the angular feedback devices are based on potentiometers or hall-effect sensors. The role

1. https://www.hiteccs.com/public/uploads/data_sheet/HS-5086WP_DataSheet
-1642816390.pdf
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of a controller is to minimize the error between the desired and actual angular positions
such that the servo-motor goes to the precise location. As discussed in Section 2.1.1, PID
is the most popular controller and we suppose that control of a servomotor is defined by a
classical PID on the angular position.

Ra
ia La

M

+

−

Ea

N1TM , θM

N2

Load Inertia

θL, TL d1

Figure C.1 – schema-block of a DC motor with the load mounted on the redactor shaft. The motor
producing torque TM (t), consists of the voltage source Ea, the resistance Ra and inductance La
in sequence. The rotor shaft M is coupled to the load torque TL via mechanical reduction (N2/N1
- gear ratio) that decreases the speed of rotation while increasing the applied torque.

Before understanding the inner workings of a servomotor, we need to know the details of DC
motor functioning. The dynamics of DC motor (Fig. C.1) without damping d1 is described by the

following set of equations :

Jtotalθ̈M (t) + Tvisc(t) = TM (t)− TL(t)
(
N1
N2

)
(C.1)

La
dia(t)
dt

+Raia(t) = Ea − Eemf (t) (C.2)

Jtotal = Jmotor +
(
N1
N2

)2
Jload, (C.3)

where the mechanical balance i.e Eq. (C.1) is derived using Newton’s laws and the balance of
electrical potentials in Eq. (C.2) is obtained using Kirchhoff’s second law. The Eq. (C.3) defines

total inertia of the system.
The motor torque (TM) has linear dependence with armature current [see Eq. (C.4)]. Also,

back-electromotive force (Eemf ) and viscous friction torque (Tvisc) is linearly proportional to
rotational speed of the motor [see Eqs. (C.5) and (C.6)] :

TM (t) = Ktia(t) (C.4)

Eemf (t) = Kbθ̇M (t) (C.5)

Tvisc(t) = bθ̇M (t), (C.6)

where Kt,Kb and b are constants.
The power driver component of the servo motor is responsible for regulating the applied (PWM)

voltage Ea on the DC motor from the 6V voltage source. The control is governed by the
following PID equations :

Ea(t) = Kpe(t) +Ki

∫
e(t)dt+Kdė(t) (C.7)

e(t) = θRef (t)− θL(t) (C.8)
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Applied voltage Ea(t) on a servomotor features proportional, integral and derivative terms with
respect to error in position. Ea(t) is limited by upper and lower bounds of 6V which corresponds

to the voltage of the power source.
Servomotor is a brushed DC motor with the gear, power (PWM) driver and potentiometer to

control it precisely on position [see Fig. C.2].

PID +/- 1/(Las+Ra)

Ke

KT 1/(JTS+BT) N1/N2 1/s+/-
Reference
position

Ea(s) Ia(s) T(s) Ωm(s) ΩL(s) θL(s)

Figure C.2 – schema-block of servomotor. s corresponds to the derivative.

Neglecting inertia, inductance as well as the load torque TL = 0 and assuming the P component
of PID control is dominant, from Eqs. (C.1) and (C.2) we obtain the following ODEs :

ia(t) = (Ea −Kbθ̇M )/R (C.9)

θ̇M (t) = Kt

R.(b+Kb/R)sat(Kp(θRef (t)− θL(t)),−Esource, Esource) (C.10)

Due to the nature of electrical components in the power drive and integral/derivative terms of PID
controller, the saturation function is smooth and thus Eq. (C.10) closely resembles discussed

before Eq. (3.2). Specifically, the rotational speed of a load shaft can be defined as :

θ̇L(t) = Kt

R.(b+Kb/R)sat(Kp(θRef (t)− θL(t)),−Esource, Esource) ≈ (C.11)

Ω tanh
( 1

∆ (θRef (t)− θL(t))
)

(C.12)

Servo-motor power We now aim to establish the power balance. Multiplying Eq. (C.2) by the
current value i(t) gives electrical power balance and multiplying Eq. (C.1) by the angular speed

θ̇M (t).

Ktia(t)θ̇M (t)︸ ︷︷ ︸
Total mechanical power

= Jtotalθ̈M (t)θ̇M (t)︸ ︷︷ ︸
rotation

+ bθ̇2
M (t)︸ ︷︷ ︸

friction

+TL(t)θ̇L(t)︸ ︷︷ ︸
output

(C.13)

Eaia(t)︸ ︷︷ ︸
Total electrical power

= L
dia(t)
dt

ia(t)︸ ︷︷ ︸
armature inductunce

+ Ri2a(t)︸ ︷︷ ︸
Joule loss

+ Kbθ̇M (t)ia(t)︸ ︷︷ ︸
Transmitted mechanical power

(C.14)

Equations (C.13) and (C.14) are the power balance of the DC motor and do not capture the power
loss due to electronics commutation etc. The total power balance :

Pelec = Pmeca + Ploss = Pmeca + Ploss−const + Ia ∗ CL + I2
a .R (C.15)

Where
— Pmeca is a mechanical power
— Ploss−const is a power loss due to commutation electronics etc.
— Ia ∗ CL ia a linear loss term due to the voltage drop at the brushes of dc motor
— I2

a ∗R ia a Joule heat dissipation through total resistance of the circuit





ANNEXES D
Learning to Swim

D.1 Experimental Setup for Robotic Fish swimming

D.1.1 Water tunnel

Figure D.1 – Water tunnel used in the experiences with the robotic fish.

All the experiments have been conducted in the water tunnel of Rolling Hills Research
Corporation, model 0710. This tunnel in Appendix D.1.1 measures 270 cm in length, 110 cm in

width and 30 cm in height with an approximate maximum volume of 500L. We used the
desalinated water of the density ρ = 1000 kg ·m−3 and kinematic viscosity, ν = 10−6 m2 · s−1.

The water tunnel comprises three sections :

1. Delivery Plenum : This is the initial section where the water flow starts its journey. The
water is pumped with an asynchronous motor (1.5 kW, 400 V, 50 Hz, 6 poles) that is
driven by the frequency command ; the speed of the flow is calibrated in the next section.
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148 Learning to Swim

The water channeled into the tank undergoes multiple filters to ensure laminar flow within
the test section.

2. Test Section : This is where the robotic fish is situated for experiments. Its easy accessibility
and clear visibility make it especially suitable for experimental procedures with the static
robotic fish. Moreover, it’s in this section that we conducted the experiments with the
moving fish.

3. Discharge Plenum : This section serves to extract the water, which is then recirculated
back to the pump via a closed-loop system, perpetuating the cycle.
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D.1.2 Water tunnel speed calibration

Water tunnel speed can be fitted with a linear curve with the coefficient of value 0.00223.

0 10 20 30 40 50
Frequency rate of the pump (Hz)

0.00

0.02

0.04

0.06

0.08

0.10

0.12
F

lo
w

 s
p

ee
d

 (
m

/s
)

PIV

Tracking

Manufacturer

Figure D.2 – Calibration of the water pump. Three indicators of determining the flow speed as
the function of the command frequency. PIV (Particle Image Velocimetry) corresponds to the
measurements of the speed of small particles in the laminar flow. Tracking corresponds to the
measurement of speed of the colored particles in the flow via the camera mounted above the water
tank. Manufacturer corresponds to the speed specified by the manufacturer. The small gap between
PIV and Tracking methods can be explained by the different levels of water for the test cases.
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D.1.3 Drag force determination

The procedure consists of varying the speed of the water tunnel and recording the drag force of
the stationary robotic fish attached to the force sensor.

0.00 0.02 0.04 0.06 0.08 0.10
U(m. s 1)
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F x
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Drag force vs. speed of water

Data Points

Fitted Curve

Figure D.3 – Drag force as a function of the speed of a robotic fish. Assuming that the pressure
drag is Fx = ρCdL

2U2, the best interpolation gives Cd = 0.2 with ρ = 1000 kg · m−3 and
L = 10 cm.



ANNEXES E
Thrust force

optimization of a robotic
fish

E.1 Fluid-Structure Interaction Simulation

To simulate the fish swimming driven by an optimal command, we used the software
COMSOL 6.1 following the approach outlined in [Curatolo and Teresi, 2015]. The 2D

computational domain covers a rectangle with dimensions 100× 20 cm2, representing water.
In Fig. E.1a, we show the geometry of the simulation. The two horizontal borders represent slip

boundary conditions for the velocity, while the left and right borders are associated with entrance
and exit boundary conditions. The swimmer is approximated by a viscoelastic beam of Young

Modulus 104 Pa, a Poisson ratio 0.3 and a viscosity 10−4 Pa.s. It navigates toward the left. The
thickness t(X) of the viscoelastic beam is given by the relation

t(X) = H
X

L

(
1− X

L

)
e−

X
L ,

where X is the curvilinear distance along the midline, measured from the head. Here H = 4 cm
and L = 10 cm, such that the thickest part of the beam measures 1.3 cm, see Fig. E.1b.

To model the antagonistic muscle action, we impose on the swimmer that the equilibrium
component εxx of the strain varies spatiotemporally :

εXX(X,Y, t) = 0.01(X/L)2(Y/H)a(t),

where a(t) drives the motion dynamics, and ε is the strain tensor [Landau et al., 1986]. This
forcing modifies the equilibrium length of each part of the body in an opposite manner : when the

superior part of the swimmer elongates its length, the other part contracts it, following the
dynamics of a(t). a(t) can be a wave function or defined as a(t) = sign(v(t)), where v(t) is the
normal velocity of the swimmer at the tail. The numerical value is chosen such that the typical

amplitude of the tail oscillation is close to 0.2.
The fluid-structure problem is solved using a fully coupled approach and the PARDISO linear

solver ; the nonlinear problem is tackled with a Newton algorithm. Because the swimmer deforms
its shape, the mesh is adapted using a Yeoh method. To avoid excessively large deformations in
the mesh due to the swimmer’s movement, the entire computational domain is remeshed is the

discretisation is too distorted. Approximately 7,000 vertices are needed for almost 40,000
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152 Thrust force optimization of a robotic fish

degrees of freedom to coarsely solve the complete fluid-structure interaction on the whole
domain, and predict a correct swimming velocity. A finer element distribution is ensured at the

head and tail (Fig. E.1d.) However, to accurately capture the wake, 300,000 elements are
required, as shown in Fig. E.1d. The typical time step used is 10−3 s. The center of mass of the

swimmer is computed at each time step during the simulation. This comprehensive setup enables
us to study and analyze the swimming behavior of the robotic fish driven by the optimal

command obtained through the reinforcement learning process.

x

y

X

Y

a)

b) d)c)

0.25
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0.15

0.1

0.05

0

Figure E.1 – a) Setup of the computational domain. The white region represents the swimmer
body, and the color codes the speed in m/s. b) Zoom around the swimmer body. c) Typical vorticity
field around the swimmer. d) Zoom around the swimmer to show the typical mesh precision used
for the simulations.

E.2 Optimal Bang-bang controller for thrust maximization

Following the Pontryagin principle, we aim to determine the best command to optimize the
dimensionless force, averaged for a duration T :

I = Fx
KΛ2ω2

0
= 1

Λ2ω2
0

1
T

∫ T

0
α̇2dt, Λ = λΦ (E.1)

under the dynamics :

α̇ = ω (E.2)

ω̇ = −ξω0ω − ω2
0(α− αc), |αc| ≤ Λ, αc = λφ (E.3)

φ̇ = Ω tanh φc − φ∆ . (E.4)

Within the variational methods framework, we write the Lagrangian :

L = ω2 + p1(α̇− ω) + p2(ω̇ + ξω0ω + ω2
0(α− λφ)) + p3

(
φ̇− Ω tanh φc − φ∆

)
, (E.5)
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where we have introduced three Lagrangian multipliers, pi=1..3 to impose the dynamics of α, ω
and φ. We reformulate this problem using the natural Hamiltonian :

H = −L+ p1α̇+ p2ω̇ + p3φ̇ (E.6)

H = −ω2 + p1ω + p2
(
−ξω0ω − ω2

0(α− λφ)
)

+ p3Ω tanh φc − φ∆ . (E.7)

The co-state equations for this system are :

ṗ1 = −∂αH = ω2
0p2 (E.8)

ṗ2 = −∂ωH = 2ω − p1 + ξω0p2 (E.9)

ṗ3 = −∂φH = −ω2
0λp2 + p3

Ω
∆ cosh−2 φc − φ

∆ (E.10)

Following the Pontryagin seminal idea, the value of the control parameter φc can be chosen in
order to maximize the Hamiltonian value. The bang-bang controller will be optimal if the fourth

term in the Hamiltonian (E.7) which contains φc is linear, which is not the case here.
Nevertheless, a square forcing for φc = ±Φ will maximize the Hamiltonian (E.7) : if p3 > 0, we
choose φc = Φ and φc − φ will be positive. On the contrary, if p3 < 0, we choose φc = −Φ and

φc − φ will be negative :

φc = Φ sign(p3), (E.11)

and we recover a bang-bang controller.

E.2.1 Computations for fast servomotors

In the limit of a fast servomotor, the variable φ and therefore αc follow adiabatically φc.
Consequently, we set that the variable αc ∈ [−Λ,Λ] is the control variable. In this limit, the

dynamics for the fin angle α is described with :

α̇ = ω (E.12)

ω̇ = −ξω0ω − ω2
0(α− αc), |αc| ≤ Λ (E.13)

While the Hamiltonian H from Eq. (E.7) reduces to

H = −ω2 + p1ω + p2
(
−ξω0ω − ω2

0(α− αc)
)
. (E.14)

We remark that H = αc(ω2
0p2) + ... Hence, by setting αc = −Λ, if p2 > 0 and αc = Λ, if

p2 < 0, we impose that the Hamiltonian is always minimum. Consequently, if p2 oscillates then
the control αc also oscillates between the two constant values extreme values ±Λ. The optimal

command is therefore :

αc = Λsign(p2), (E.15)

which corresponds to the classical Bang-Bang controller. We now study the dynamics of the p1,2.
The equations of the co-states are :

ṗ1 = −∂αH = p2ω
2
0 (E.16)

ṗ2 = −∂ωH = 2ω − p1 + ξω0p2. (E.17)
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The equation for p2 is written in the form :

p̈2 − ξω0ṗ2 + ω2
0p2 = 2ω̇, p2(0) = 0, p2(T ) = 0 (E.18)

which represents a linear oscillator forced by ω̇ and submitted to an injection of energy (the term
proportional to ṗ2). As the equation for α of those of a harmonic oscillator if αc is constant, the

r.h.s. of eq. (E.18) is harmonic. Consequently, the co-state p2 should be a harmonic function
whose amplitude grows in time because of the injection of energy. This demonstrates that p2

oscillates, yielding oscillations in αc.
In the next part of this section we study the system (E.2,E.3). We impose that αc = Λ for

t ∈ [0, T/2] and αc = −Λ for t ∈ [T/2, T ].
We solve the equation for the angle α in the first half period :

α = Λ + e−
ξω0

2 t (a cos νt+ b sin νt) (E.19)

ν = 1
2ω0

√
4− ξ2, (E.20)

where a and b are fixed by two boundary conditions. Applying the condition of continuity and
differentiability :

α(0) = −α(T/2) (E.21)

α̇(0) = −α̇(T/2), (E.22)

the unknowns a and b are determined :

a =
Λξω0 sin

(
Tν
2

)
− 2Λν cos

(
Tν
2

)
− 2ΛνeTξω0/4

2ν
(
cosh

(
1
4ξTω0

)
+ cos

(
Tν
2

)) (E.23)

b = −
Λξω0 cos

(
Tν
2

)
+ 2Λν sin

(
Tν
2

)
+ 2ΛνeTξω0/4

2ν
(
cosh

(
1
4ξTω0

)
+ cos

(
Tν
2

)) . (E.24)

We remark here that the above formulation is not sensitive to the sign of ξ − 2, because the
trigonometric functions become hyperbolic if their argument is imaginary. It remains to compute

the dynamics for p2. In fact, the Eq. (E.18) can be solved analytically, with the boundary
conditions

p2(0) = 0 (E.25)

p2(T/2) = 0 (E.26)

ṗ2(0) = −ṗ2(T/2). (E.27)

It appears that the last condition for the differentiability of p2 is automatically satisfied if p2 is
null at t = 0 and t = T/2, because in Eq. (E.18), the forcing ω is continuous.

We show in Fig. E.2, various temporal evolution of α and p2 in the interval [0, T ], for various
values of the damping parameter ξ.

Consequently, the system provides oscillatory solutions independently of the chosen T . We
remark in the Fig. E.2 that p2 changes its sign as α̇(t) does, such that a rule of thumb is to induce

the change of α̇c as α̇(t) ...is small enough, e.g. of order 0.1Φω0.
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The average thrust writes :

I =− 1
Λ2ω2

0

2
T/2

∫ T/2

0
αα̈dt (E.28)

= 4
ξω0T

2 sinh
(

1
4ξTω0

)
− ξω0/ν sin

(
Tν
2

)
cos

(
Tν
2

)
+ cosh

(
1
4ξTω0

) . (E.29)

The function I presents a maximum near T = 2π
ω0

, as shown in Fig. E.3.
This dimensionless thrust can be further optimized by computing the value T ∗ that renders it

maximal. We remark, at this point, that the parameter T always appears multiplied by ω0 in Eq.
E.29, since ν is proportional to ω0 (as defined in Eq. E.20) : I only depends on ξ and ω0T .

In Fig. E.4, we plot ω0T
∗ and I? as a function of ξ, which corresponds to the optimal thrust for

fast servomotors.

E.2.2 Limit of small damping : ξ → 0

In fact, assuming a small value for ξ, we show that the thrust is maximized at T = T ? defined by :

T ? = 2π
ω0

(
1 + ξ4 1

384
(
12− π2

))
+ o(ξ6), (E.30)

while the optimal thrust I? writes :

I? = 16
π2ξ2 + π2 − 9

3π2 + o(ξ2). (E.31)

In the Fig. E.4, we show the influence of the damping factor ξ on the optimal period and thrust.
In the limit of small damping, ξ � 1, the optimal thrust diverges. The reason is that in this limit
the oscillator in α resonates with the forcing αc, since αc change its sign on the period 2π/ω0.

This is seen by taking the limit ξ → 0 for the expressions a and b :

a = −Λ−
ξ
(
Λ
(
Tω0 − 2 sin

(
Tω0

2

)))
4
(
cos

(
Tω0

2

)
+ 1

) +O
(
ξ2
)

(E.32)

b = −
Λ sin

(
Tω0

2

)
cos

(
Tω0

2

)
+ 1
− ξΛ

2 +O
(
ξ2
)
, (E.33)

The constant a diverges as T → 2π
ω0

, such that the swimming amplitude also diverges, and so the
thrust.

In this limit we find that :

α(0) = −4Λ
πξ
− ξ

((
π2 − 9

)
Λ
)

12π +O
(
ξ3
)

(E.34)

α̇(0) = −Λω0
π

+ ξ2Λω0
8π +O

(
ξ3
)

(E.35)
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E.2.3 Limit of large damping : ξ →∞

In this limit, we get the following relation for the thrust :

I = 2
ξ2

(
1− 4

ξTω0
+ 1
ξ2 −

T 2ω2
0

48ξ2

)
The maximum of the thrust is obtained by differentiating the above formula with respect to T and
computing T ? that zeroes this derivative. For large ξ, we obtain the optimal period T ? and thrust

I? :

T ? = 1
ω0

(96ξ)1/3 + o(ξ1/3) (E.36)

I? = 2
ξ2

1−

(
3
2

)2/3

ξ4/3

 (E.37)

In this limit, the system is over-damped. A boundary layer appears near t = 0, the size of this
boundary layer is 1/(ξω0). This value is deduced by balancing the second derivative term with

the damping term. Following the typical techniques for the asymptotic limit, we get

α̈i + ξω0α̇i = 0 (E.38)

ξω0α̇o + ω2
0(αo − Λ) = 0 (E.39)

α(t) = αo(t) + αi(t)− αo(0), (E.40)

where αi(t) is the inner approximation of α(t) near t = 0, i.e. the inner region (where the
function is rapidly varying). αo(t) the outer region, where the function is slowly varying.

We find that

α(0) = −
3
√

3
2

ξ2/3 Λ (E.41)

α̇(0) = −Λω0
ξ

(E.42)

E.2.4 Analysis of the swinging strategy

Here, we would like to measure the efficiency of the swinging strategy at least for C = 0, where
C is defined in the main text. It consists in changing the sign of αc as α̇(t) zeroes. In the cruising
regime, we have computed so far, this strategy predicts that α̇(0) = α̇(T/2) should be zero. We

therefore compute α̇(0) to test the strategy :

α̇(0) = −
2Λω0 sin

(
1
4
√

4− ξ2Tω0
)

√
4− ξ2

(
cos

(
1
4
√

4− ξ2Tω0
)

+ cosh
(

1
4ξTω0

)) .
This expression predicts that α̇(0) = 0 for T = Ts and the thrust Is :

Ts = 4π√
4− ξ2ω0

(E.43)

Is = 2
√

4− ξ2

πξ
coth

(
πξ

2
√

4− ξ2

)
(E.44)
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In Figure (E.5), we compare the optimal period T ? with Ts, as well as the resulting thrusts I : It
appears that the swinging strategy is very efficient in automatically choosing the optimal period

for relatively low damping ξ. Nevertheless, we remark that the resulting thrust obtained with
T = Ts is very close to the optimal one for ξ < 1.5. Hence, the swinging strategy appears to be

very efficient in reaching the optimal thrust without knowing the values of the physical
parameters ω0 and ξ.

E.2.5 Computations for slow servomotors

Here we detail the computations obtained for servomotor which can not follow the command and
work at maximal angular velocity Ω. In this limit, the Eq. (E.4) becomes φ̇ = ±Ω. If we assume a

periodic solution, during the first half period, we deduce :

φ(t) = −ΩT
4 + Ωt. (E.45)

The integration constant has been determined by assuming φ(0) = −φ(T/2). We then solve the
equation for α :

α = λ
−ξΩ− Φω0 + tω0Ω

ω0
+ c1e

1
2 t

(
−
√
ξ2−4ω0−ξω0

)
+ c2e

1
2 t

(√
ξ2−4ω0−ξω0

)
, (E.46)

where c1 and c2 are defined through the boundary conditions (E.21,E.22). We otbain that the
dimensionless thrust writes :

I = 2Ω2 (−A(ξ2 − 1)ΩE + ξ(ξ2 − 3)ΩF + ξAB(D + C)
)

ξAB3ω3
0(D + C)

, (E.47)

where
— A =

√
ξ2 − 4

— B = Φω0
Ω

— C = cosh(B)
— D = cosh(AB)
— E = sinh(B)
— F = sinh(AB)

E.2.6 Limit of small damping

By taking the limit ξ → 0 on (E.47), we deduce :

I = 4Φ2ω2
0

15Ω2 , (E.48)

such that Fx = 2Kλ2Ω2, as claimed in the main text.

E.2.7 Limit of large damping

By taking the limit ξ →∞ on (E.47), we deduce :

I = 2
3ξ2 (E.49)
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Why the swinging strategy yields a resonance?

In the main text, we have hypothesized that an efficient way to drive the swimmer to its
resonnance without the knowledge of the frequency modes of deformations. The idea is to

impose that

αc = Λsign(α̇). (E.50)

With this command, the damped oscillator can be solved in each half plane of the phase portrait
(α, α̇) :

α̈+ ξα̇+ ω2
0(α− Λ) = 0, α̇ < 0 (E.51)

α̈+ ξα̇+ ω2
0(α+ Λ) = 0, α̇ > 0. (E.52)

Assuming a periodic motion for which α̇ > 0 for 0 < t < T/2 and α̇ < 0 for T/2 < t < T , the
motion on the second half period is deduced from the the value of α in 0 < t < T/2 :

α = Λ + e−
ξω0

2 t (a cos νt+ b sin νt) (E.53)

ν = 1
2ω0

√
4− ξ2, (E.54)

where a and b are defined with the following boundary conditions :

α̇(0) = α̇(T/2) = 0 (E.55)

α(0) = −α(T/2). (E.56)

The first conditions on α̇ yields

b = aξω0
2ν , (E.57)

T = 4π√
4− ξ2ω0

. (E.58)

This last condition states that the forcing (E.50) leads a periodic motion with a period equal to
2π/ν. This period corresponds to the critical one that produces the highest response in α, i.e. a

resonance in the amplitude. We remark, that in the limit of small ξ, the swinging policy drives the
swimmer to the optimal thrust, as the swinging period tends to the optimal T ?.
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Figure E.2 – temporal evolution of α(t) (blue) and p2(t) (orange), obtained with T = 0.7. ω0 =
12.5 s−1, Λ = 0.1
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Figure E.3 – Value of the dimensionless thrust as function of the period T , for various values of
ξ : a) ξ = 0.1. b) ξ = 1.2. c) ξ = 10
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Figure E.4 – a) Optimal dimensionless period ω0T
? as function of ξ. b) Optimal dimensionless

force I? as function of ξ. The numerical solutions from Eq. (E.29) are drawn in blue. The small
damping limit is the red line and the large damping asymptotics are shown in green.
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obtained for T = T ? (blue) and T = Ts (orange). c) Relative error between the optimal thrust I∗

and the resulting thrust obtained by the swinging approach using α̇(0) = 0. Here ω0 = 12.5 s−1,
ξ = 1.2 and Λ = 0.1.
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Figure E.6 – Dimensionless thrust I for a slow servomotor as function of the damping parameter
ξ (blue). We show the limits of small and large damping in red and green respectively.
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