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Abstract: Aortic dissection and aortic aneurysms 

are highly lethal pathologies. The latter is ranked 

as the nineteenth leading cause of death. Aortic 

aneurysms are defined as a dilatation greater than 

or equal to the diameter of the aorta. In clinical 

practice, the growth rate and size of the aneurysm 

are the main criteria for determining surgical 

intervention. However, new and better 

biomarkers of rupture and aortic dissection are 

needed for personalized treatment and better 

decision making. In this regard, the analysis of the 

interaction of blood flow with aortic tissues is a 

key factor. In recent years, 4D flow magnetic 

resonance imaging (MRI) has made it possible to 

acquire information on blood flow throughout the 

cardiac cycle. Despite the potential of this 

imaging modality, a previous 4D segmentation 

step is required to delineate the analysis of the 

fluid-structure interaction.  

 

The aim of this thesis is to automatically segment 

the aorta from 4D flow MRI and to analyze the 

feasibility of using these automatic segmentations 

in the generation of biomarkers such as aortic 

wall pressure. To this end, we initially evaluated 

automatic 3D systolic phase segmentation with 

state-of-the-art methods such as multi-atlas-based 

and deep learning-based methods. With this study 

we have shown that deep learning outperforms 

the segmentation performance of the multi-atlas-

based method. Furthermore, it was observed that 

biomarkers such as aortic wall pressure are more 

robust when using automatic segmentations from 

deep learning.  Consequently, a 4D two 

approaches based on neural networks were 

proposed for aortic segmentation in the complete 

cardiac cycle. 

With the analysis of the performance of the 4D 

segmentation, promising results were obtained 

and must be confirmed on databases from other 

hospitals.  

 

 

 Titre : Segmentation de l'aorte à partir de l'IRM de flux 4D pour le calcul de biomarqueurs 

Mots clés: IRM de flux 4D, anévrisme aortique, dissection aortique, segmentation aortique, 

apprentissage profond  

Résumé: Parmi les maladies cardiaques, la 

dissection aortique et les anévrismes aortiques 

sont des pathologies particulièrement létales. 

Cette dernière est classée comme la dix-neuvième 

cause de décès. Les anévrismes aortiques sont 

définis comme une dilatation supérieure ou égale 

au diamètre de l'aorte. Dans la pratique clinique, 

le taux de croissance et la taille de l'anévrisme 

constituent les principaux critères pour 

déterminer la nécessité d'une intervention 

chirurgicale. Cependant, de meilleurs 

biomarqueurs de rupture et de dissection aortique 

sont nécessaires afin d'effectuer un traitement 

personnalisé et une meilleure prise de décision. À 

cet égard, l'analyse de l'interaction entre le flux 

sanguin et les tissus aortiques est un facteur clé. 

Ces dernières années, l'IRM de flux 4D a permis 

d'acquérir des informations sur le flux sanguin 

tout au long du cycle cardiaque. La première 

étape pour profiter du potentiel de cette modalité 

d'imagerie est l’élaboration d’une méthode de 

segmentation 4D de l'aorte, permettant d'effectuer 

à des analyses de l'interaction fluide-structure.  

L'objectif de cette thèse est de segmenter 

automatiquement l'aorte à partir de l'IRM de flux 

4D et d'analyser la faisabilité de l'utilisation de 

ces segmentations automatiques dans la 

génération de biomarqueurs tels que la pression 

de la paroi aortique. À cette fin, nous avons 

d'abord évalué la segmentation automatique de la 

phase systolique en 3D avec des méthodes de 

pointe, telles que la segmentation basée sur des 

méthodes d'apprentissage profond. Avec cette 

étude il a été démontré que l'apprentissage 

profond surpasse la performance de segmentation 

de méthodes basés sur l'utilisation de multi-atlas. 

En outre, il a été observé que les biomarqueurs 

tels que la pression de la paroi aortique sont plus 

robustes lorsqu'on utilise des segmentations 

automatiques par apprentissage profond.  

Par conséquent, deux approches 4D basées sur les 

réseaux neuronaux ont été proposées pour la 

segmentation aortique dans le cycle cardiaque 

complet. 

Avec l'analyse des performances de la 

segmentation 4D, des résultats prometteurs ont 

été obtenus et doivent être confirmés sur des 

bases de données d'autres hôpitaux.   
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INTRODUCTION

Aortic diseases can occur due to different conditions that cause increased aortic
wall stress or abnormalities in the aorta. The second most common aortic disease
and the nineteenth most common cause of death are aortic aneurysms, which are
defined as an increase of 50% or more in aortic diameter [95]. The increase in
diameter represents a lethal risk since it can cause rupture or tears in the aortic
wall, called aortic dissection.

Patients with aortic aneurysms are managed based on their medical history,
and the decision to operate is primarily based on the size and growth rate of
the aneurysm [92]. However, ruptures and dissections have been observed in
aneurysms with a smaller diameter than those indicated in the guidelines [5],
which makes these decision parameters unreliable [46, 22]. A personalized deci-
sion making is therefore necessary and requires the generation of new predictors
of aortic rupture and dissection.

Modern advances in magnetic resonance imaging (MRI) have led to the devel-
opment of phase-contrast MRI, which encodes the blood flow in three directions
to depict the evolution of blood flow during the cardiac cycle. This sequence can
then be used to generate new predictors and biomarkers, such as those derived
from fluid dynamics simulations. However, to use this information effectively, prior
segmentation of the aorta is mandatory to limit the analysis to the fluid-structure
interaction. A manual image segmentation process is tedious, time-consuming,
and prone to inter- and intra-subject variabilities. Moreover, the amount of data in
4D flow MRI considerably increases the difficulty.

Several challenges must be addressed to automatically segment the aorta from
4D flow MRI: the low visibility and poor definition of some regions of the aorta
due to the low resolution of the images, the high-dimensional space (3D and 4D),
the computational cost of processing large volumes of data, and the generation of
ground truths to implement and compare the performance of the algorithms. Ad-
vances in the field of image analysis have allowed the implementation of different
automatic and semi-automatic segmentation methods for medical applications. In
particular, machine learning-based methods have shown over the last decades a
high performance in various segmentation tasks. For automatic or semi-automatic
segmentation of the aorta from 4D flow MRI several approaches have been pro-
posed. However, most of them have been limited to 3D segmentation of the aorta
using a frame in the systolic cardiac phase or a 3D image generated with pre-
processing. Then, the standardization of an automatic 3D aortic segmentation
technique and the extension of segmentation to 4D is still an open problem.
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This thesis is part of a research project that aims to prospectively assess biome-
chanical properties of the thoracic aorta by coupling magnetic resonance imaging
with in vitro elasticity tests. In particular, the aim of this thesis is to address the au-
tomatic 3D and 4D segmentation of the aorta from 4D flow MRI. Addressing this
problem contributes to expanding the use of this sequence in the analysis of blood
flow dynamics and its influence on the rupture and dissection of aortic aneurysms
by exploring new biomarkers. In the future, biomarkers related to the evolution of
aortic pathologies, such as aneurysms, could be used for personalized diagnosis
and prognosis.

The lack of a freely available 4D flow MRI database of the aorta with ground truths
makes it difficult to generate a fully automatic segmentation pipeline based on the
supervised machine learning methods or model-based methods implemented for
this thesis. In order to overcome this problem, a dataset was generated with
manual segmentation of the aorta from 4D flow images obtained at the univer-
sity hospital of Dijon, France. With the generated database, we evaluated the
performance of two automatic methods in 3D aortic segmentation from 4D flow
MRI. These approaches were multi-atlas-based segmentation and deep learning-
based segmentation. Based on the analysis of the segmentation performance of
these methods, two 4D aortic segmentation strategies based on deep learning
were proposed.

A general summary of our contributions is as follows:

• We created a dataset with 4D segmentations of the aorta from 4D flow MRI
for the implementation and validation of automatic segmentation algorithms.

• We explored recent state-of-the-art methods for segmenting the aorta in
the systolic phase of the cardiac cycle and their potential use for biomarker
generation.

• We proposed and implemented a 4D strategy to segment the aorta based
on a 3D deep learning model.

• We proposed and implemented a 4D deep learning model for aortic seg-
mentation over the complete cardiac cycle from 4D flow MRI.

The rest of this manuscript is organized in seven chapters. In chapter one, an
overview of the clinical context, causes and management of aortic aneurysm and
aortic imaging techniques are presented.

Chapter Two covers the different methods of aortic segmentation proposed in
the state-of-the-art and the fundamentals of the automatic segmentation methods
applied in this thesis.

In chapter three, we present the details of the 4D flow MRI acquisition protocol
and the manual segmentation of the aorta to generate the labeled dataset, which
will be used later into our algorithms and used to validate them.
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Chapter four presents the segmentation of the aorta in the systolic phase from 4D
flow MRI, using multi-atlas and deep learning-based segmentation methods. The
objective of chapter three is to evaluate these methods in our database and an-
alyze the feasibility of a 4D implementation for the segmentation of the complete
cardiac cycle and the use of automatic segmentations in biomarker computation.

In chapter five, we present the results of the evaluation of a 3D deep learning
model in aortic segmentation from 4D flow MRI.

In chapter six, a 4D deep learning model for segmenting the aorta throughout the
cardiac cycle using 4D flow MRI is therefore proposed. In order to evaluate the
use of these segmentations in clinical practice, an analysis of widely used flow
measurements is presented.

Finally, chapter seven summarizes the thesis and presents several perspectives.





I
CLINICAL CONTEXT AND STATE OF THE

ART
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1
CLINICAL CONTEXT

This chapter covers the clinical background related to our work in order to de-
fine our application field and the motivation of the thesis. First, the cardiovas-

cular system, the causes and management of aortic aneurysms are described.
Second, magnetic resonance imaging techniques of the aorta are presented. In
particular, the benefits of extending 4D flow MRI for personalized prognoses of
pathologies such as aortic aneurysms are presented.

1.1/ CARDIOVASCULAR SYSTEM

Posterior vena cava

Anterior vena cava

Right atrium

Figure 1.1: The cardiovascular system. Credit: depositphotos.com

The cardiovascular system consists of the heart and a network of arteries and
capillaries that supply oxygen, proteins, and nutrients to the entire body and veins
(Figure. 1.1). The cardiovascular system is divided into systemic and pulmonary
circulation. The systemic circulation transports oxygenated blood from the heart
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to the tissues. Blood is transported through the aorta to the neck, head, upper
limbs, thoracic cavity organs, and lower limbs. Then, in the systemic capillaries,
blood oxygen is exchanged for carbon dioxide resulting in oxygen-poor blood. The
oxygen-poor blood returns to the heart’s right atrium via the superior and inferior
vena cava. Pulmonary circulation then begins, in which blood is carried from the
right ventricle to the pulmonary trunk. The oxygen-poor blood reaches the lungs
through the right and left pulmonary arteries to be oxygenated again. Finally, the
oxygenated blood is transported to the left atrium through the pulmonary veins
and the process starts again.

The heart is the center of this system since it periodically contracts to pump an
average of five liters of blood. When the blood leaves the heart after each con-
traction, a certain pressure in the blood vessels is generated, known as systolic
pressure. There is a period of rest between two contractions called cardiac re-
laxation, during which residual pressure in the blood vessels can be detected.
This moment is known as diastole. In normal conditions, the systolic and diastolic
pressures of an adult are less than 120 mmHg and 80 mmHg respectively.

1.1.1/ HEART ANATOMY

Figure 1.2: Sagittal section of the human heart. Credit: wikimedia.org

The heart is located in the thorax and is composed mainly of cardiac muscles. It
is known as the pump of the cardiovascular system. Anatomically, the heart is di-
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vided into two parts (right and left) by a wall known as the septum. There are four
chambers in the heart, two called atria in the upper part and two called ventricles
in the lower part. The atria are responsible for receiving the blood that enters the
heart, and the ventricles deliver the blood to the different arteries. Each ventri-
cle is equipped with a valve that ensures the unidirectional flow. Then, the blood
flows in a single direction between the two unilateral chambers through the atri-
oventricular orifices (Figure. 1.2). The tricuspid valve is the right atrioventricular
orifice valve named for its anterior, posterior, and septal cusps. This valve allows
the body’s blood circulating in the heart to reach the right ventricle, where it will
be pumped to the lungs to receive oxygen. The mitral valve is composed of two
leaflets and is located in the left atrioventricular orifice. At the exit of the right ven-
tricle, the valve is called the pulmonary valve, and at the exit of the left ventricle,
the valve is called the aortic valve. Through the pulmonary valve, deoxygenated
blood and waste products exit into the pulmonary artery. Four pulmonary veins
deliver oxygenated blood to the left atrium. The blood then passes into the left
ventricle through the mitral valve.

1.1.2/ CARDIAC CYCLE

The cardiac cycle repeats about 70 times in one minute. It consists of a series
of contractions and relaxations of the cardiac atria and ventricles during blood
pumping (Figure. 1.3). The cycle begins with the right and left atria filling blood
from the superior vena cava and pulmonary veins, respectively. When the pres-
sure in the atria exceeds that of the ventricles, the atrioventricular valves open
to allow blood to flow into the ventricles. Then, a ventricular contraction pushes
blood out of the heart through the aorta and pulmonary artery. The pressure in
the ventricles exceeds that in the atria inducing the closure of the atrioventricular
valves to prevent blood return to the atria. Finally, the relaxation phase occurs, in
which the ventricular pressure decreases until it is lower than the atrial pressure
and leads to the atrioventricular valves opening to restart the cycle [31].

The key moments during the cardiac cycle are the end of diastole, where the
volume of blood in the ventricles is at its maximum, and the end of systole, where
the volume of blood in the ventricles is at its minimum.

1.1.3/ THE AORTA

The aorta is the largest artery in the body and is responsible for transporting
oxygenated blood from the left ventricle to the rest of the body. The aorta begins
at the aortic annulus and terminates at the bifurcation of the iliac arteries at the
level of the L4 vertebra. This artery is divided into two regions, the thoracic aorta
(TAo) and the abdominal aorta. The thoracic region is divided into ascending
aorta (AAo), aortic arch and descending aorta (TDAo) [42] (Figure. 1.4). The
aorta is composed mainly of elastic fibers, which allows it to have a relatively high
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Figure 1.3: Phases of the cardiac cycle. Credit: wikipedia.org

compliance. The compliance allows the aortic wall to expand with each ejection
of blood during the systolic phase, softening the impact of the pressure exerted
by the blood flow on the aortic wall. During the diastolic phase, the aorta returns
to its original position due to the absence of blood flow.

The aortic valve closes and opens to allow or restrict the passage of blood into the
aorta. Usually, the aortic valve is composed of three movable leaflets or cuspids.
However, it is possible to find unicuspid, bicuspid or quadricuspid aortic valves
(Figure 1.5) due to congenital changes. Each of these leaflets assists in closing
the valve and is composed of a rough surface facing the aorta and a smooth
surface facing the ventricle. The aortic valve opens when the pressure exerted
by the left ventricle exceeds the pressure of the aorta. This moment is known as
the systolic phase and allows blood to flow from the left ventricle to the ascending
aorta. The aortic valve leaflets close with the decrease in ventricular pressure
during cardiac relaxation, initiating the diastolic phase. The valve leaflets are
affixed to a structure known as the aortic annulus that lies between the outflow
tract of the left ventricle and the beginning of the aorta.
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Figure 1.4: Regions of the aorta. Credit: Ladich et al. [63]

Figure 1.5: Tricuspid and bicuspid aortic valves. Credit: www.umcvc.org

Figure 1.6: Three-dimensional illustration of the aortic root. Credit:
www.pcronline.com/
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The definition of the aortic annulus is controversial in the literature [83, 35]. From
the surgeons’ point of view, the aortic annulus is where the cusps communicates
with the aortic wall. However, from the cardiologists’ or radiologists’ point of view,
the aortic annulus is the virtual ring, which communicates the nadir of each leaflet
joining in a circular shape [8, 64]. The aortic annulus certainly has a three-
dimensional shape and an extremely complex function (Figure 1.6). The aortic
valve annulus is composed of the virtual line that joins each leaflet nadir and the
respective inter-leaflet triangles in the bottom part of this annulus. They are at-
tached by the semilunar and the aortic leaflets. The main body of the annulus
suspends from the sinotubular junction as an upper board. The entire system is
integrated with the sinus of Valsalva, making it unique. The sinus of Valsalva is
the three-dimensional space surrounding the aortic leaflets in the aortic root.

Diameter of sinus 
of vasalva

Aortic valve 
annulus

Left 
ventricular 

outflow tract

left
main stem

Figure 1.7: Three-dimensional illustration of the aortic root. Credit: Kenny et
al. [51]

The supra-aortic ridge, also known as the sinotubular junction, is different from
other parts of the aortic valve annulus. Sinotublar junction can be regarded as
a hemodynamic annulus with a high ability to move with systole and diastole.
The sinotubular junction is one of the key components of aortic root architecture
and aortic valve function [15]. The sinotubular junction increases in diameter
over time with age and hypertensive cardiomyopathy. A healthy, normal heart
has sinotubular junction diameters of about 75% of the maximum diameter of the
sinus of valsalva 1.7.

[23].
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Figure 1.8: Definition of aortic aneurysm depending on region. Credit: Ehrman
et al. [92]

1.1.4/ AORTIC ANEURYSMS

Aortic aneurysms can occur in different regions of the aorta. In the thoracic part
they are called thoracic aortic aneurysms and in the abdominal part, they are
called abdominal aortic aneurysms. Aneurysms are classified as an increase in
the diameter of the aorta higher than or equal to 50% of the expected size [55].
The aorta’ expected size might vary with factors such as age, sex, and even the
region of the aorta. In the literature, the thresholds vary slightly. Figure 1.8 defines
the diameters considered to be an aneurysm according to the region of the aorta.
The increase in aortic diameter is highly risky since it can trigger a rupture or
dissection of the aortic wall. However, early diagnosis of this pathology allows to
provide treatments that improve the outcome [7].

Overall death rates related to aortic aneurysms or aortic dissection have in-
creased from 2.49 per 100,000 in 1990 to 2.78 per 100,000 in 2010. Aortic
aneurysms are often diagnosed by accident during medical imaging indicated
for other pathologies. Therefore, the increase in the incidence of aortic patholo-
gies may be due to advances in medical imaging techniques. Thoracic aortic
aneurysms (TAAs) present a silent phase of growth in 95% of cases, so patients
are asymptomatic until an acute event occurs. Acute events include aortic dis-
section, aortic ulcer, intramural hematoma and unstable or painful thoracic aortic
aneurysm. The overall incidence per year of TAAs is 5 to 10 per 100,000 people.
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About 60% of all TAAs occur in the aortic root or in the AAo [16]. TAAs are more
common in men than in women. However, women have a less favorable outcome
as a result of factors related to estrogen loss, which affects the flexibility of the
aorta. Women also tend to have smaller aneurysms than men when it comes to
acute aortic syndromes, such as dissection [95].

1.1.5/ RISK FACTORS AND CAUSES OF AORTIC ANEURYSM

Various pathologies and etiologies are associated with aortic aneurysms. The
most common are atherosclerosis, connective tissue, and aortic valve disorders.
Moreover, smoking and traumatic injuries can also be associated with increased
aortic diameter.

Atherosclerosis: Arteriosclerosis occurs in the wall of the aorta and is one
of the common causes of aneurysms. Specifically, it is an inflammation of the
aortic wall due to hypercholesterolemia, a very high level of low-density lipopro-
tein cholesterol. [65]. It has been suggested that atherosclerosis induces the
generation of aneurysms since changes in the aortic wall due to inflammatory
mechanisms triggered by atherosclerosis also contribute to the development of
aneurysms.

Aortic valve disorders: Bicuspid aortic valve (BAV) is a congenital condition
in which the aortic valve has two instead of three cusps. About 26% of patients
with BAV develop an aneurysm in the ascending aorta [37]. Another widely known
problem of the aortic valve is stenosis, defined as narrowing the valve that restricts
the passage of blood from the ventricle. 50% of ascending aortic aneurysms
are associated with this pathology. On the other hand, the return of blood to
the ventricle, known as aortic insufficiency, is present in 33% of patients with
aneurysm [40].

Connective tissue disorders: Marfan syndrome is a systemic connective tis-
sue disorder caused by a mutation in the fibrillin-1 gene [17]. This syndrome
occurs in about three out of every 100,000 people. Almost all people with this
syndrome develop one or more types of aortic disease, such as aortic aneurysm,
aortic dissection, or rupture.

As with Marfan syndrome, Loeys-Dietz syndrome affects the connective tissue
and is caused by a mutation, but in this case, in the transforming growth factor-
beta (TGF-β) receptor. The clinical features of both syndromes are similar, but
in general, the cardiovascular manifestations are more severe with Loeys-Dietz
syndrome. For example, aortic dissection or rupture usually occurs in younger
patients with smaller aortic dilatations [67]. The Myosin Heavy Chain 11 (MYH11)
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syndrome has also been linked to the development of aneurysms because it gen-
erates a mutation of the MYH11 gene that affects a smooth muscle cell contractile
protein [20].

1.1.6/ THE RISK ASSESSMENT

The management of patients with an aortic aneurysm consists of periodic follow-
ups to establish the growth rate and diameter of the aneurysm. Based on this
information, the decision is made to intervene surgically to replace the weakened
tissue with a tube graft (Figure 1.9).

a) Pre-repair b) Post-repair

Figure 1.9: Replacement of aortic tissue weakened by a tube graft. Credit:
mainlinehealth.org

The definition of a standard aortic diameter is problematic because it can increase
with age, weight, and height. Therefore, some studies have proposed a relation-
ship between aortic diameter with weight and height, rather than individual values
[12, 11]. Some studies have suggested absolute values as thresholds for the indi-
cation for surgery under various criteria (Figure. 1.10). Coady et al. [5] provided
the basis for the European guidelines [5]. They emphasize that aortic dissection
or rupture can occur in aneurysms of different sizes but that the risk when the
diameter is greater than or equal to 60 mm is extremely high. For this reason,
the European guidelines recommend repair surgery for this pathology when the
aneurysm reaches 55 mm.

In addition to aortic diameter, the following risk factors are also taken into account
in decision making [5]:

• Growth rate (≥ 5 mm per year)

• Connective tissue disorders

• Unicuspid or bicuspid aortic valve
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• Arterial hypertension

• Family history of aortic complications.

Figure 1.10: Recommendations on interventions on ascending aortic aneurysms.
Class a is assigned when based on the evidence, surgery is recommended. Level
of evidence b is assigned when data are acquired from a single clinical trial.
Credit: Erbel et al. [43]

Pape et al. [22] analyzed the reliability of aortic diameter as a predictor of type
A aortic dissection. Type A dissection involves the ascending aorta with possible
progression to the descending TAo. In a cohort of 591 patients with type A aortic
dissection, they found that 349 patients had an aortic diameter < 5.5 cm and 229
had a diameter < 5.0 cm at the time of aortic dissection. Following the current
indicators proposed in the guidelines for aortic aneurysm repair surgery, 99% of
the patients used in the study would not be included. Then, they concluded that
aortic diameter is insufficient to decide on the timing of surgery and that new
predictors are needed for a better care.

1.2/ MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) is a widely used technique for generating
high-resolution and high-contrast medical images of soft tissues. MRI is a non-
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ionizing modality used to image mainly water, a molecule composed of two hydro-
gen atoms and one oxygen atom (i.e. H2O) an abundant molecule in the human
body.

The images of the organ of interest are produced by a phenomenon called nuclear
resonance, produced when the nucleus of the hydrogen atoms interacts with a
magnetic field. Hydrogen atoms contain one negatively charged electron and a
single positively-charged proton in the nucleus. The nucleus or proton is called a
spin and can be seen as a small magnet that rotate around its axis. These spins
are naturally randomly oriented (Figure 1.11 A), but in the presence of a strong
magnetic field B0, most are aligned parallel to the field and a smaller amount anti-
parallel (Figure 1.11 B). Because of the ratio of spins aligned in both directions, it
is the excess of parallel aligned spins that have the potential to produce a signal
that can then be turned into an image. The main axis of the external magnetic
field B0 is the z-axis, and the spins precess around this axis. Considering Larmor’s
relation (Equation 1.1), the speed of precession of the spins is proportional to the
strength of B0.

v0 = γB0 (1.1)

where, γ is the gyromagnetic ratio. For the hydrogen nucleus γ = 42.58 MHz/T.
Then, in the presence of a 1.5 Tesla magnetic field, the precessional speed is
around 64 MHz.

As a result of the precession of the spins, a magnetic force M is produced in
the z-axis direction. The magnetic resonance signal is created by moving the
net magnetization vector M from the z-axis to the x-y plane. For this, a second
magnetic field B1 is applied for a short period (1-5 ms), which is considered a
radio frequency (RF) pulse. B1 is different from B0 because it is not static and
rotates at the same frequency as the spins but in the xy-plane. That is, B1 must
be in resonance with the spin precession. Since for M to go from rotating on the
z-axis to rotating on the y-axis a 90◦ rotation occurs, B1 is known as 90◦ RF pulse
(Figure. 1.11) [26].

After the deactivation of the RF pulse, an event called relaxation occurs. The
recovery of the magnetic vector M on the z-axis is characterized by a relaxation
time T1. In the x-y transverse plane, the decay of the magnetization vector is
characterized by a relaxation time T2. Here, the magnetization decay is due to
the presence of small magnetic fields in the tissues that cause the magnetic field
to lose heterogeneity.

1.2.1/ RELAXATION T1

T1 relaxation, also known as spin-lattice relaxation occurs with the return of M
to its original position. Thus, T1 describes the time it takes for M to grow back
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A B C

D E F

G H I

Figure 1.11: A) Randomly oriented spins. B) Spins in the presence of external
magnetic field (B0). C) Difference of spins oriented parallel and antiparallel to the
B0 field. D) Excess of spins precessing in the direction of B0. E) Projection of the
vectors in the z-axis to form the magnetization vector M. F) Activation of the RF
pulse (B1). G) Net magnetization precessing over B1 and B0 into the transverse
x-y plane. H) B1 rotates at the frequency of the spins, so it appears stationary.
Then, M appears to rotate only about B1. When M lifts the y-axis, B1 is turned off
to achieve a rotation of 90. I) The magnetization vector M produces a signal on a
wire antenna. Credit: Raymond Y. Kwong [26]

to 63% of its original value, i.e. before the 90◦ RF pulse. The magnetization T1

grows exponentially along the z-axis and reaches its maximum value after a long
time (Equation 1.2). For the myocardial T1 is around 900 ms. After 3 T1, the
magnetization reaches 95% of its maximum value.

MZ(t) = MZ(t=∞)[1 − e−t/T1] (1.2)

1.2.2/ RELAXATION T2

The relaxation T2 depends on the spin-spin relaxation process. This relaxation
describes the decay of the magnetization vector M, with T2 being the time it takes
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for M to decay to 37% of its original value in the x-y plane. Equation 1.3 states that
the magnetization in the transverse x-y plane at t=0 decays exponentially respect
to the elapsed time t and a constant T2. In the myocardium, T2 is about 50 ms.
The signal decays as a results of the inhomogeneities generated by the magnetic
fields coming from the tissues.

MXY(t) = MXY(t=0)e−t/T2 (1.3)

1.2.3/ SIGNAL LOCALIZATION

Once the image generating signal is acquired, it is necessary to encode it to
identify the location of the signal in 3D space. The signal is localized using three
processes that provide a one-to-one correlation with other measurable features
in the tissue. The three processes are slice selection, frequency encoding, and
phase encoding.

1.2.3.1/ SLICE SELECTION

This step aims to select a slice and excite only the spins in this slice. Thus,
instead of acquiring signals from the whole body, they are acquired in a region of
interest defined by the slice. The objective is to obtain in this region of interest
that the magnetization M rotates down to the y-plane and that at any other point
of the body the magnetization remains oriented in the z-axis. Since only spins
precessing at a frequency equal to the RF frequency generate a signal, magnetic
fields (gradients) are added to or subtracted from B0 to change its uniformity in
a given region. For example, the gradient field along the z-axis causes spins in
different planes parallel to the transverse to precess at different frequencies.

1.2.3.2/ FREQUENCY ENCODING

For frequency coding, gradient pulses are applied when the MR signal is acquired
(readout gradient). This method allows the signal to be encoded in space so that
the signal’s origin can be determined. This phenomenon is because the readout
gradient applied along the x-axis forces the magnetization at different points on
the axis to precess at different speeds. Then, this collected signal masks the
different frequencies to determine its spatial position. The signal is encoded in a
Fourier plane for both frequency and phase encoding. These two processes allow
defining the origin of a signal by locating the line and the position of the point in
the Fourier plane that produces it.
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1.2.3.3/ PHASE ENCODING

Although frequency coding works to determine where the signal originates from
on the x-axis, the same type of coding cannot be used simultaneously for the y-
axis. Phase coding is then used to overcome this problem. Phase encoding works
on the principle that the angle (phase) of the magnetization vector M provides
information about the signal’s origin on the y-axis. For this, a gradient pulse is
applied in the y-axis for a short time (after RF but before acquisition). Then, the
M vectors precess at different velocities and will be at progressively larger angles
with respect to the axis for that short period. In the end, the signal from each pixel
in the image has a unique combination of phase and frequency.

1.3/ CARDIAC MAGNETIC RESONANCE IMAGING

In recent years, the development of multiple medical imaging techniques has
made it possible to obtain anatomical and/or functional information about the
heart and large vessels such as the aorta. In particular, images of the aorta are
currently acquired using computed tomography (CT) or MRI techniques [59]. CT
is widely used for the TAo study because it is commonly available in clinical prac-
tice and because its spatial resolution and acquisition time are lower than MRI. In
cardiac applications, CT is used, for example, in shape and motion analysis of the
heart and the aorta [88], for interventions planning [82] and for guiding thoracic
endovascular repair [80]. For kinetic analysis of the aorta, electrocardiography-
gated CT is recommended to avoid false flap related to the high pulsatility of the
aortic root. However, this technique increases x-ray exposure, acquisition time
and requires breath-hold. Moreover the use of iodinated contrast media is also a
limitation of CT. Thus, MRI has become an option to replace CT in the study of
the aorta.

Unlike other cardiac imaging techniques, cardiac magnetic resonance imaging
(CMRI) has important advantages. They allow a qualitative and quantitative eval-
uation of blood and heart motion in a selected plane without ionizing radiation.
CMRI performance is related to the choice of technical parameters during acqui-
sition such as the acquisition time or the trade-off between spatial resolution and
signal-to-noise ratio.

Compared to static organ MRI, CMRI faces a challenge in the high-definition rep-
resentation of an organ contracting and moving in the thorax due to the respiratory
cycle. Therefore, cardiac gating and respiratory gating are essential components
of CMRI. CMR is not a real-time image. The signals in the Fourier plane are
acquired line by line, which requires cardiac gating.

Cardiac gating Cardiac gating is essential to deal with the blurring of images
due to heart contraction and the effect of pulsatile blood. For this purpose, image
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acquisition is coordinated with the cardiac cycle. The most effective way is cardiac
gating using electrocardiography (ECG). With this method, image acquisition is
triggered after the detection of the R-wave. In this way, the resulting image seems
static and matches the exact moment in the cardiac cycle.

Respiratory gating Respiratory gating is necessary because the heart is in
the diaphragm, a muscle that manages the breath. Respiratory motion is one
of the causes of image blur and artifacts in the phase encoding direction. The
most common practice in standard cardiac sequences to avoid these artifacts
is to hold the breath. Drawbacks of this method are, for example, the low breath
capacity of a patient and the variation in the degree of breath-holding. Respiratory
gating can be performed by following the respiratory cycle. Thus, acquisition can
be performed at the end of the respiratory phase or by rejecting data acquired
outside a specific respiratory window.

1.3.1/ MAGNETIC RESONANCE ANGIOGRAPHY

Magnetic resonance angiography (MRA) is a technique that allows the imaging of
blood vessels. MRA can be acquired with or without a contrast agent and is used
in clinical practice to detect abnormalities such as aneurysms or stenosis [27]. In
recent years MRA has replaced X-ray angiography in evaluating aortic disease.
Advances in the field of magnetic resonance imaging have made it possible to
obtain MRA images in a single breath-hold. Although a contrast agent is used for
MRA acquisition, the material used as contrast (Gd-DTPA) in this technique has a
favorable safety compared to the iodine-based material used in X-ray angiography
or CT acquisition. DTPA (diethylenetriaminepentaacetic acid) shortens the T1 of
the spins, which provides an intense bright signal in the vessel lumen regardless
of flow direction or velocity. The image quality depends on the concentration of
the contrast agent within the artery. Therefore, synchronizing image acquisition
with the concentration of Gd-DTPA inside the aorta is essential [26].

1.3.2/ 4D FLOW MRI

4D flow MRI, also known as phase-contrast 3D MRI (3D PC-MRI), is an MRI
technique for quantitatively evaluating blood flow. Compared to 2D phase-contrast
MRI, which allows the evaluation of blood flow in a single slice, 4D flow MRI
provides temporal and spatial 3D information. Therefore, with the information
obtained from 4D flow MRI it is possible to visualize the 3D flow and perform a
retrospective quantification. [45].

PC-based MRI images take advantage of the direct relationship between blood
flow velocity and the phase of the acquired MRI signal for image generation. For
the acquisition of the raw data, four consecutive acquisitions are performed. One
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acquisition is used as a reference, and the other three encode the velocity in x,
y, and z axis by adding bipolar gradients along each axis to eliminate unwanted
background phase effects [38]. This process allows the coding of the flow accord-
ing to a specific direction. So, three phase images that encode the blood velocity
values in the x, y, and z directions are obtained. Moreover, four magnitude im-
ages with anatomical information are reconstructed. Three encode undirected
flow strengths at x, y, and z directions. The additional magnitude image is ob-
tained by averaging the intensities of the latter (Figure 1.13).

An important parameter to be defined during the acquisition of 4D flow MRI is the
velocity encoding sensitivity (Venc). This value represents the maximum flow ve-
locity that can be acquired. Venc is defined by considering the flow patterns in the
patient. The selection of Venc must be made carefully since if the flow velocity is
higher than the set one, velocity aliasing may occur. Aliasing is a sudden change
from high to low velocity in a flow region (Figure 1.12). Nevertheless, using a
high Venc value to cover all flow velocities is not recommended because this will
produce images with a lack of contrast.

Sagital view Axial view

Coronal view

Figure 1.12: Example of aliasing in a patient with Venc equal to 450 cm/s. Aliasing
appears when the blood flow velocity exceeds the VENC. Then, an inverted value
appears in the image, meaning that the measured flow seems to be going in the
opposite direction.

The potential of 4D flow MRI compared to angiography and 2D PC-MRI lies in
the possibility of evaluating the hemodynamics of cardiovascular pathologies at a
global and local level. However, the acquisition time of a 4D flow MRI is typically
around ten minutes, considerably longer compared to the acquisition time of a 2D
PC-MRI or MRA, which is about two minutes. Markers such as vessel diameter,
mean velocities, and net flow are calculated in clinical practice by echocardio-
graphy. In addition to these markers, 4D flow allows exploring new and more
advanced biomarkers related to fluid-structure interaction, such as, wall shear
stress (WSS), pressure difference and turbulent kinetic energy (TKE) [60].

Some studies have suggested the diagnostic potential of 4D flow MRI. Rodriguez
et al. [77] have evaluated the hypothesis that BAV promotes aortic dilatation due
to abnormal flow impacting the wall. The results of this study suggested that
hemodynamic flow abnormalities caused by BAV are associated with dilatation of
the ascending aorta. Thus, they concluded that the flow pattern analysis might
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help identify the risks of aortic pathology progression. WSS has been one of
the most analyzed biomarkers in the evolutions of aortic diseases. Guzzardi et
al. [49] were able to establish a correlation between WSS and aortic elastic fiber
degeneration in patients with BAV. Soulat et al. [106] performed a five-year follow-
up of 72 patients and found an association between WSS from 4D flow MRI and
faster aortic growth. This could help determine which patients to follow more
closely.
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Figure 1.13: 4D flow MRI. Anatomical information is provided by the magnitude
image. Functional information is provided by the phase images encoding the
velocity in the x, y and z directions.

Despite the benefits of 4D flow MRI, this sequence is not widely used in clini-
cal practice to generate hemodynamic markers to support decision-making. The
challenges of 4D flow MRI are related to the lack of standardization in analyzing
the information and the large amount of data to process. Particularly, the delin-
eation of the region of interest is a challenging previous step to the analysis of the
fluid-structure interaction. This process allows for the delineation of the flow ve-
locity information to be retrieved. The delineation of the aorta from 4D flow MRI of
subjects with cardiac pathologies is particularly complicated since image quality
is usually reduced. This is generally due to cardiac arrhythmia and double systole
peaks in the ECG that affect the acquisition, particularly when it is retrospective
gating.
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1.3.3/ 4D FLOW-BASED ANGIOGRAPHY

Despite the ability of MRA to provide detailed information on vascular geometry,
this sequence does not provide information on the progression of blood flow dur-
ing the cardiac cycle. Recently, the generation of 4D flow-based angiography has
been proposed to obtain an image that, like MRA, enhances regions with high
velocities.

Several similar algorithms have been proposed for the generation of 4D flow-
based MRA from 4D flow MRI [21]. The different algorithms have in common that
they merge different time/temporal information, e.g. Equation. 1.4. The temporal
information is mixed, since applying this process to each frame independently
would produce some frames in which the aorta cannot be differentiated from the
background. The latter is because the visibility of the vessels depends on high
velocities, and in diastole, the velocities are close to zero.

Moreover, due to the 4D flow-based MRA generation process, images may be
generated where the artery wall is underestimated. The latter is due to flow pat-
terns over the cardiac cycle leading to low velocities close to the vessel wall.

As an example, Figure 1.14 shows an acquired MRA and an angiography gener-
ated from 4D flow MRI for the same patient.

4D flow-based MRA =
1
T

T∑
t=1

M2
t ∗ (V2

x,t + V2
y,t + V2

z,t) (1.4)

where M is the magnitude image and Vx, Vy, and Vz the phase images for x, y and
z directions, respectively. T is the number of temporal frames acquired over the
cardiac cycle.

1.4/ CONCLUSION

In this chapter, we reviewed the clinical context of aortic pathologies, especially
aortic aneurysms. Findings in recent years have shown that the information pro-
vided by 4D flow MRI is valuable and opens the door to the generation of new
and more appropriate biomarkers for the prognosis of aortic pathologies. Thus,
the exploration of hemodynamic biomarkers represents a great potential to sup-
port markers such as growth rate and diameter of an aneurysm that, although
helpful, are not sufficient to decide the timing of a surgical intervention. However,
before using the information provided by 4D flow MRI, it is necessary to segment
the aorta in order to delimit the information to be used in the fluid-structure anal-
ysis.

The challenges of aortic segmentation from 4D flow MRI for biomarker compu-
tation are mainly associated with low image contrast and spatial resolution. In
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a) 4D flow based 
angiography

b) Magnetic resonance  
angiography

Figure 1.14: a) Slice of a generated 4D flow based angiography. b) acquired
magnetic resonance angiography for the same patient.

particular, segmentation of the aorta in patients may be more difficult since ar-
rhythmia or double peaks in the ECG affect the gating of the sequence and, con-
sequently, the image’s resolution. Most of the studies have tried to overcome the
lack of image contrast by generating images from 4D flow, such as 4D flow-based
MRA, which, as mentioned above, mixes temporal information in its 3D version
and suffers from a bias or dependence on registration quality in its 4D version.





2
STATE OF THE ART

This chapter presents the methods proposed in the state-of-the-art for aortic
segmentation from 4D flow MRI. First, the types of methods used in 3D aortic

segmentation are presented. Then, the techniques covered for aortic segmenta-
tion over the entire cardiac cycle are presented. Finally, to understand the details
of the implemented segmentation methods in this work, this chapter presents the
fundamentals of multi-atlas-based segmentation and deep learning methods.

2.1/ SEGMENTATION OF THE AORTA FROM 4D FLOW

MRI

Segmenting the structure for which a fluid-structure analysis must be performed
is a necessary preliminary step that presents several challenges. Manual seg-
mentation is time consuming, so it is not an option in this type of application.
The approximate time required for segmenting one of the frames acquired in the
cardiac cycle is 3.5 hours. Therefore, the generation of manual segmentations
throughout the cardiac cycle is impractical. Moreover, manual segmentation is
prone to intra- and inter-observer variabilities. In recent years, advances in semi
or fully automated segmentation methods have opened up the possibility of ex-
ploring new biomarkers derived from 4D flow MRI. Aortic segmentation using 4D
flow MRI has been achieved by several researchers. The following are the seg-
mentation methods proposed in the state-of-the-art.

2.1.1/ 3D SEGMENTATION OF THE AORTA FROM 4D FLOW MRI

Due to the difficulty of generating ground truths for implement and validate au-
tomatic segmentation algorithms, most of the previous works rely on a single
frame segmentation from 4D flow MRI data. In addition, to reduce the effect of
the low contrast of the magnitude images on the performance of the automatic
segmentation, 4D flow-based MRA has been used. Although these approaches
do not exploit the temporal information of 4D flow MRI, they have allowed the

37
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evaluation of segmentation methods in these images and the analysis of the rela-
tionship between biomarkers such as wall shear stress and the evolution of aortic
pathologies.

2.1.1.1/ REGION-BASED APPROACHES

To segment the aorta from 4D flow MRI, Hennemuth et al. [36] used a 4D flow
based MRA image as input to a watershed transform-based algorithm. Here,
the image is considered as a topological surface, in which high-intensity values
(those belonging to regions with high flow) represent peaks and low intensities
represent valleys. The algorithm is based on watershed identification and seg-
mentation. Depending on the magnitude of the gradient, each pixel is assigned to
a component in the segmentation, also called watershed. This algorithm requires
seeds that are defined by a user inside or outside the object of interest. The wa-
tershed method may lead to an overestimation of the segmentation. Then, several
regions may be generated as a part of the target segmentation.

Stalder et al. [41] implemented a segmentation algorithm based on unsupervised
learning to contribute to the automatic visualization of 4D flow data. First, they
calculated the phase contrast angiography, velocity magnitude, temporal standard
deviation, and the spatial velocity gradient as features. After normalization, these
features were used with a clustering algorithm to separate the voxels into three
regions, lungs, static tissue, ventricles, and vessels such as the aorta. Although
it is an automatic method, it does not allow for the differentiation of the vessel’s
wall.

2.1.1.2/ GRAPH-BASED APPROACHES

To improve the contrast of the magnitude image used for the segmentation, Kohler
et al. [62] generated a temporal maximum intensity projection (tMIP) image by
retrieving the maximum value per voxel along the temporal dimension. Then,
they used the new 3D image to segment the aorta with a graph cut algorithm,
considering regions marked by an expert as starting points. In this method, the
number of points needed for a good segmentation performance is directly related
to the quality of the image. Similarly, in [33], a graph cut was used to segment the
carotid arteries, which arise from the aortic arch. In this case, a 4D flow -based
MRA image was generated to calculate a center-line with points indicated by a
user. Subsequently, the central line was taken as a starting point for a graph cut
algorithm.
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2.1.1.3/ MODEL-BASED APPROACHES

For the segmentation of large vessels, Van et al. [39] generated a temporal max-
imum velocity volume (tMSV) by taking the maximum blood flow velocity in each
voxel. Unlike 4D flow-based MRA, only information from phase images is used
in tMSV generation. An active surface model was used for segmentation, which
requires an initial surface approximating the desired segmentation. The initial
isosurface to initialize the algorithm was retreived by thresholding the generated
tMSV image. In the segmentation process, the initial isosurface was adapted to
the edge of the vessels by considering attractive forces. An attractor image was
generated with features describing the boundaries between the vessels and the
stationary tissue. This algorithm requires three parameters to be adjusted manu-
ally to control the balance of forces moving the isosurface.

Volonghi et al. [68] used only the phase images, previously filtered with an
anisotropic diffusion filter. They initially generated 4D flow -based MRA image
by calculating the magnitude of the velocity vector in the systolic phase. Using
this image, they ran a marching cubes algorithm to generate an initial isosurface
with a threshold equal to one-third of the maximum velocity. Finally, the extracted
isosurface was used for level set-based segmentation.

Bergen et al. [47], applied the geodesic active contour algorithm for aortic seg-
mentation. The input surface was generated by analyzing the behavior of the flow
curve obtained for each voxel. Considering the mean and standard deviation of
the distribution assumed as normal, thresholds were established to segment the
voxels that meet the flow patterns within the aorta.

2.1.1.4/ DEEP LEARNING-BASED APPROACHES

The performance of deep learning models in medical image segmentation has re-
cently enabled this approach to be explored with 4D flow MRI data. Deep learning
segmentation is an end-to-end method where the model automatically learns im-
age features to give each voxel a probability of belonging to the object of interest.
Berhane et al. [90], a 3D U-Net network was used for aortic segmentation from
4D flow MRI data acquired from 1018 patients. The segmentation was generated
from 3D 4D flow-based MRA previously computed for each patient. Similarly, 4D
flow-based MRA images were also used in [104] to train an U-Net-based model
to segment the aorta and pulmonary artery from 4D flow data from multiple cen-
ters. The effect of using data from multiple centers on segmentation performance
was also examined. The performance of most segmentation methods has been
evaluated by calculating flow-related parameters on a 2D plane, which makes a
direct comparison between methods difficult. However, compared to the model-
based method proposed by Volonghi et al. [68], both deep learning approaches
outperformed it in term of the Dice overlap index.
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2.1.2/ 4D SEGMENTATION OF THE AORTA FROM 4D FLOW MRI

The 4D segmentation of the aorta makes it possible to recover the position and
shape of the aorta at each time step of the cardiac cycle. Moreover, 4D segmen-
tation can be used to calculate biomarkers that describe blood flow interactions
with the aortic wall throughout the cardiac cycle, eliminating the bias associated
with the use of a 3D segmentation.

2.1.2.1/ GRAPH-BASED APPROACHES

Based on their previous work, Kohler et al. [85] initially generated a 3D segmenta-
tion in a tMIP image with a graph cut-based algorithm and user-input seeds. The
resulting segmentation represents the moment of maximum aortic extension. For
the propagation of the segmentation to the other time steps, they assume that the
aortic diameter does not shrink more than 50% of its maximum value. Therefore,
the voxels closest to the center line extracted from the 3D segmentation are con-
sidered to belong to the aorta for the algorithm’s initialization. Graph cuts were
executed independently for each time point.

2.1.2.2/ MODEL-BASED APPROACHES

Bustamante et al. initially proposed a segmentation based on one atlas [48] and
then on multiple atlases [72], for the segmentation of the heart and large vessels.
The atlas is composed of a set of images with their respective segmentation of the
organs of interest. Initially, they computed a 4D flow-based MRA over the cardiac
cycle for each patient in the database. For this purpose, a 4D flow-based MRA
was generated independently for each time step. Then, a reference frame from
the 4D flow MRI magnitude image was chosen to apply inter-patient registration
with the remaining frames. The deformation applied to the magnitude images
was propagated on the respective 4D flow-based MRA generated for each frame.
With the result of this last step, a tMIP image was computed. Finally, to create
the 4D flow-based MRA over the cardiac cycle, the inverse transform acquired in
step one for each time step was applied on the tMIP.

In this work, images in the atlas were deformed to resemble the image of a new
patient. Candidate segmentations were generated for the new patient by prop-
agating the deformations to the corresponding segmentations. Finally, the new
patient segmentation was computed by merging the candidate segmentations.
Using this method, movement information between frames is preserved as long
as the intra-patient registration is accurate.
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2.1.2.3/ DEEP LEARNING-BASED APPROACHES

Bustamante et al. [102] have also proposed a 4D segmentation of the my-
ocardium and great vessels from a 3D U-Net model. The segmentation was
performed using the magnitude image as input to avoid biases related to the
generation of images from 4D flow MRI (e.g. 4D flow-based MRA). Their previ-
ous segmentation work was based on multi atlases segmentation using 4D 4D
flow-based MRA images. Perhaps the decision to use the magnitude image was
based on the fact that 4D flow-based MRA images relays on the quality of the
intra-patient registration. For the deep learning based approach, each time step
of the cardiac cycle was treated as a training example. Thus, the network does
not consider the temporal information and treats each frame as an independent
image. In previous works on 3D segmentation, it has been shown that 3D neural
networks outperform the 2D model-based segmentation strategy [86]. Therefore,
the 4D segmentation approach based on a 3D strategy can be a baseline for
comparison with 4D neural networks.

2.2/ SEGMENTATION PERFORMANCE EVALUATION MET-
RICS

Metrics that measure the degree of agreement with an reference segmentation
are required to evaluate the quality of automatic segmentations. The metrics
provide information on the performance of the segmentation methods but are
independent of the parameters calculated in clinical practice. Many metrics have
been proposed to evaluate segmentation performance in medical imaging [79,
56]. Here we present two metrics widely used as quality criteria for automatic
segmentation from 4D flow MRI.

2.2.1/ REGION OVERLAP

Metrics that measure overlap give global information on the quality of segmenta-
tion. The overlap indices are based on the four measures of a confusion matrix.
In a confusion matrix, each column represents the number of predictions of each
class, and each row shows the actual number of instances of each class (i.e.
aorta and background). This matrix allows for identifying the number of hits and
misses of the algorithm. Thus, the confusion matrix represents the number of
true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN). The overlap index between two segmentations A and B is known as the
Dice similarity coefficients (DSC) [56] and is calculated with the equation 2.1.

DS C(A, B) = 2 ∗
A
⋂

B
|A| + |B|

= 2 ∗
T P

2T P + FP + FN
(2.1)
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Figure 2.1: Representation of Dice similarity coefficient. TP represents the num-
ber of true positives predictions, FP and FN the number of false positives and
false negatives, respectively

2.2.2/ SPATIAL DISTANCE BETWEEN CONTOURS

Metrics based on the measurement of the spatial distance between two segmen-
tations provide information about the error on contours. The Hausdorff distance
measures the maximum distance from each point in segmentation A to the clos-
est point in segmentation B [53]. In the case of two finite point sets A = [a1, ...ap]
y B = [b1, ...bp], the Hausdorff distance HD is defined as follows:

HD(A, B) = max(h(A, B), h(B, A)) (2.2)

where

h(A, B) = max
a∈A

min
b∈B
∥a − b∥ (2.3)

and ∥·∥ is a measure of distance as the Euclidean distance. Thus, the function
h(A, B) identifies the point a farthest from any point of B. Then, it measures the
distance from a to its nearest neighbor in B [3].

2.3/ FUNDAMENTALS OF THE METHODS USED FOR AU-
TOMATIC SEGMENTATION

2.3.1/ MULTI-ATLAS-BASED SEGMENTATION FUNDAMENTALS

MAS’s objective is to apply transformations to establish a spatial correspondence
between the image P to be segmented and a group of N (N ∈ N∗) images called
atlases. An atlas comprises a gray intensity image Ai and the image As

i (i=1, 2, ...,
N) with the corresponding segmentation of the organ of interest. To infer the label
of a voxel in P, a transformation Ti is first applied to deform the image Ai in the
atlas and align it with P image coordinate space. Subsequently, the respective Ti

transformation is applied to the associated As
i segmentation. Several candidate
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segmentations C s
i are generated for P by performing the previous process with all

the images in the atlas (C s
i = As

i ◦ Ti (i ∈ 1, 2, 3, ...N)). During the registration, the
alignment quality is measured with a similarity measure S based on correspond-
ing landmarks or the intensity of the images to be registered [50]. The registration
problem is presented as an optimization problem in which a cost function C must
be minimized (Equations 2.4 and 2.5).

T̂i = arg min
Ti

C(Ti; P, Ai) (2.4)

C(Ti; P, Ai) = −S (Ti; P, Ai) + γR(Ti) (2.5)

where R is a regularization term that constrains Ti and γ weighs similarity against
regularity.

With MAS-based methods, the segmentation performance is directly related to
the ability of the registration process to properly map the images. Therefore, it
is essential to select the best parameters for the transformation considering the
segmentation task and the imaging modality used.

The next step in the segmentation process is to merge the candidate segmen-
tations C s

i to generate a single target segmentation. The deformed image of the
atlas most similar to P can be choose as the target segmentation. However, the
merging process aims to include anatomical diversity by taking information from
several candidate segmentations. The label fusion process can be performed
with voting-based methods. Voting can be performed by giving equal relevance
[18] to all candidate segmentations or assigning a global [24] or local weight [29]
associated with the registration quality. Additionally, a family of probabilistic fu-
sion methods has been proposed to incorporate prior expectations in the label
fusion process [34, 14]. As a previous step to label fusion, selecting the candi-
date segmentations to be merged could be performed. The objective is to identify
the atlases most similar to P after registration and avoid misguiding the fusion
algorithm.

2.3.2/ DEEP LEARNING FUNDAMENTALS

Machine learning is a branch of artificial intelligence in which algorithms learn
from data. Formally, the algorithm learns from experience E with respect to task
T, such that the performance P improves with experience [6]. Machine learning
algorithms can be supervised or unsupervised, which means that the algorithm
may or may not require previously labeled data. Deep learning is a group of
machine learning algorithms based on neural networks. Several tasks T can be
addressed with deep learning, including image segmentation. The general goal of
deep learning is to find a function fM that solves the particular task. This function
is also called model. In practice, the supervised model takes an input x and
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generates a prediction ŷ = fM(x). So, the function fM should approximate the
prediction with the target y.

During the process, measuring the performance PM that indicates how well the
algorithm solves the task is necessary. Then, the performance of the model can
be evaluated with a cost function J that takes the predictions ŷ and the targets y
(Equation 2.6) of the inputs.

PM = J(y, ŷ) (2.6)

Experience E is used to train the model. In supervised deep learning, the ex-
perience is a dataset of Ntrain examples with a respective target value, Xtrain =

{(x1, y1), · · · , (xm, ym)}. The deep learning model is trained to solve the task T, pa-
rameterized with weights ωM. Then, the optimization problem is given by the
equation 2.7.

ω∗M = arg min
ωM

Ntrain∑
i=1

J(yi, fM(xi, ωM, hm)) (2.7)

where hm are the hyperparameters of the model.

In the deep learning model design, the hyperparameters hm are the ones that de-
fine, for example, the size of the input data or weights that are included in the cost
function J to regulate the ability of the model to fit the data. The hyperparameters
can be fixed by employing an optimization process. However, this increases the
computational requirements. To overcome this problem, search ranges are set
for each parameter, or according to previous experience, fixed parameters are
chosen.

5-fold Crossvalidation

All data

Training Validation
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Fold 4
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Figure 2.2: Representation of a 5-fold cross validation process
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2.3.2.1/ MODEL TRAINING STRATEGIES

The objective is to produce a model with high performance on examples not seen
during training, i.e. a model that generalizes well. The model’s generalization
capability is measured by generating predictions in a validation set Xval and a test
set Xtest.

The validation examples (Xval ⊈ Xtrain) are used to set the hyperparameters hM.
The test set (Xtest ⊈ Xtrain and Xtest ⊈ Xval) is used to evaluate the performance of
the algorithm. Although the performance of the model in Xtrain does not give infor-
mation on the generalization capability, it is important because it shows whether
the optimization allows the model to learn the task.

In clinical applications, access to data is limited, so datasets usually have few
examples. In these cases, the selection of Xtrain, Xval, and Xtest should not be
random because it could lead to bias. To deal with short databases, a validation
technique called cross-validation (CV) has been proposed. With CV, the database
is divided into k-folds. Then, k deep learning models are trained by changing the
data taken as training and validation (Figure 2.2). Unlike methods such as MAS,
which can be implemented with a single patient in the atlas, the performance of
machine learning algorithms is related to the number of training samples. Then,
if the size of the database allows having testing data, these are isolated from the
training process. When the number of k equals the number of samples in the
database, the k-fold CV is called leave-one-out.

During the training of a machine learning model, the bias-variance trade-off
should be followed to analyze the expected generalization error (Figure 2.3). Bias
is the error that represents the model’s inability to learn the relationship between
the features and the target (underfitting). Variance is an error associated with the
model’s sensitivity to small fluctuations in the training data. Thus, the variance
represents an over-fit of the model to the training examples.
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Figure 2.3: Bias and variance in machine learning models
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2.3.2.2/ NEURAL NETWORKS

a=ŷ (ŷ,y) x+b g(z)
z

x2

x1

x3

a

bx =0

Figure 2.4: One neuron internal process. Where X represents the inputs, y the
ground truth, ω the weights, b the bias, g the activation function, ŷ the output, J
the cost function.

Neural networks are algorithms containing units, known as neurons, that are inter-
connected to share information in a learning process. Each neuron receives one
or more weighted inputs. An extra input with a value equal to one is added and is
known as bias. The output of the neuron is called activation and is generated by
evaluating the sum of the weighted inputs with a function g (Figure 2.4).

Weights and biases are trainable parameters. The weights determine the con-
tribution of each input to the output. The biases determine in what proportion
the output will be offset from the input. The activation function provides a sig-
nal indicating the neuron activation level. Nonlinear activation functions allow the
model to learn complex representations to solve nonlinear problems. Commonly
used activation functions are sigmoid or logistic, hyperbolic tangent (tanh), and
Rectified Linear Unit (ReLU) (Figure 2.5).

There are three main types of neural networks: feedforward neural networks,
convolutional neural networks, and recurrent neural networks. The fundamentals
of the first two kinds of neural networks are presented below, considering they are
related to the deep learning models implemented in this thesis.
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Figure 2.5: Examples of activation functions
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2.3.2.3/ FULLY-CONNECTED NEURAL NETWORK

Feedforward or fully-connected neural network (FC-NN) are the simplest type of
neural network and are the basis of advanced neural networks such as con-
volutional neural networks. FC-NNs are composed of several artificial neurons
stacked together to form what is known as a single neural network layer. The
neural network can be extended by adding layers, which generally increases the
performance of the model. However, depending on the application, a model with
many layers can lead to overfitting, resulting in poor performance on unknown
data. The layers between input and output are called hidden layers. As the name
suggests, in a FC-NN the neurons of each hidden layer are fully connected with
the neurons of the previous layer and with those of the next layer (Figure 2.6). The
input data is received and processed in each hidden layer based on the activation
function. Finally, the activation is transferred to the next layer. For output to be
generated, input data must only be fed forward.

ŷ
ℒ(ŷ,y)x2

x1

x3

Hidden layers

Forward propagation

Small error

Figure 2.6: Representation of a fully-connected neural network

The neural networks are trained from the output generated in the forward by using
the backpropagation algorithm [4]. To perform backpropagation, three essential
tools are requested: a cost function, an optimization algorithm, and a learning
rate (Figure 2.7). The cost function measures how far the actual output is from
the target output. It measures the error when the network weights and biases are
updated. The optimization algorithm finds the minimum value of the cost function.
The most commonly used algorithm is gradient descent [66]. The learning rate
controls how fast the model adapts to the problem; it indicates in what proportion
the weights and biases are updated.

2.3.2.4/ CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNN) are an adaptation of FC-NNs for image pro-
cessing. In the latter, the input data is a one-dimensional vector X = {x1, x2, ..., xm},
and each value in the vector is connected to a neuron with an individual weight.
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Figure 2.7: Neural network learning process. The black color inside the neurons
indicates the level of knowledge about the context of the task.

If the input is a 2D or a 3D image, millions of weights are optimized, which is
computationally expensive and can lead to overfitting.

To avoid these problems, in a CNN, the neurons have only a small receptive field
v ∈ Rk1 x k2 x···x kn. Therefore, they are connected to only a part of the input image.
Parameters sharing among all neurons in a layer is enforced. Thus all the recep-
tive fields v share the same parameters K ∈ Rk1 x k2 x···x kn. The objective of this
process is to reduce the number of parameters while learning the same type of
features in each region of the image. Thus, instead of multiplying each value of
the input with a matrix of weights ω, in CNN the operation can be imaged as the
kernel K sliding over the image and performing a convolution operation. In clas-
sical image processing, kernels (also known as filters) are applied to enhance or
smooth image characteristics. In this classic way, the kernels used are based on
experience and knowledge of the particular task. In CNN, kernels are automat-
ically learned from the data. A convolutional layer l receives as input a tensor
Xl−1 ∈ Rd1 x d2 x···x dn x nl−1

c from the preceding layer, where nc represents the number
of input channels. Then a kernel K ∈ Rk1 x k2 x···x kn x kl

c is used to produce kl
c fea-

ture maps. Thus, The output of layer l is given by the tensor Xl ∈ Rd1 x d2 x···x dn x nl
c

with nl
c = kl

c. To generalize the output of each convolutional layer, kl
cn

l−1
c individual

convolutions are performed.

The n-dimensional convolution is denoted by equation 2.8, where (q1, · · · , qn) is
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Figure 2.8: Convolution process

the location of a respective receptive field vq1,q2,··· ,qn. If not all receptive fields are
operated, a convolutional layer with strides is obtained by considering only on the
vr1q1,r2q2,··· ,rnqn positions. r are integers representing the magnitude of the stride in
the respective dimension.

(K ∗ X)(q1, · · · , qn) :=
∑

i1

· · ·
∑

in

K(i1, · · · , in) X (q1 − i1, · · · , qn − in) (2.8)

Equation 2.9 is considered to calculate the size of each of the output dimensions
of a convolutional layer.

dout axis =
dinput axis − dk axis

r axis
+ 1 (2.9)

where dinput axis and dk axis denote the size of the image and kernel in the desired
dimension. r axis is the applied stride applied over the considered dimension.

2.3.2.5/ DEEP LEARNING-BASED SEGMENTATION FOR MEDICAL IMAGES

Segmentation based on deep learning consists of building a model, usually of
convolutional type (CNN) [78]. This model is trained to extract low and high-level
features from the images and produce the probability for each voxel to be part of
the organ to be segmented. Globally, a convolutional network comprises convo-
lution, pooling, and fully connected layers. The convolution layers are responsible
for extracting features by convolving kernels with the input data. The output of
a convolutional layer is considered an activation map that highlights the effect of
a filter applied to the input. In a CNN model, this layer is followed by an activa-
tion function that applies non-linearity to the activation map. Generally, pooling
layers can be added between the convolution layers to reduce the output size.
The features computed through these layers are inputs to fully connected layers
to perform a high-level abstraction and prediction of the class to which each pixel
belongs, i.e. organs of interest or background [84].
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One of the widely known models used in the field of medical image segmentation
is called U-Net [54]. This model is composed of two paths, one for analysis and
one for synthesis, known as encoder and decoder, respectively. The encoder path
follows the structure of a CNN, so it is composed of convolutional and pooling lay-
ers that spatially contract the image while capturing the contextual information.
The decoder path allows a precise location reconstruction by expanding the out-
put to recover a full-resolution segmentation probability map. Shortcut connec-
tions between the layers of equal resolution in the encoder path and the decoder
path are one of the essential properties of U-Net. The expansion layers benefit
from the high-resolution features transferred by these shortcut connections [57].

2.4/ CONCLUSION

For the generation of hemodynamic biomarkers from 4D flow MRI, one of the
challenges to be addressed is the segmentation of the region of interest. In our
case, segmentation of the aorta is essential to delimit the information and the
region of fluid-structure analysis. Manual segmentation not feasible in clinical
practice because it is time-consuming, especially in a 4D sequence. Moreover, it
is prone to inter- and intra-observer variability. Thus, it is essential to address this
problem to expand the use of 4D flow MRI in the study of aortic pathologies.

In this chapter, we reviewed the segmentation methods available in the state of the
art to delineate the aorta from 4D flow MRI. Most of the proposed methods focus
on 3D aortic segmentation. Moreover, to improve the contrast of the aorta with the
background, they generate images such as 4d flow-based MRA. However, these
pre-processing methods do not provide reliable information about the position of
the aorta in each cardiac cycle phase.

Inspired by the possibilities and weaknesses of methods from state-of-the-art
for automatic aortic segmentation from 4D flow MRI, we show in the upcoming
chapters our contributions in 3D and 4D aortic segmentation using a home built
database of patients with thoracic aortic aneurysm. In our work, we approach
the automatic segmentation using the magnitude image from 4D flow to avoid the
biases inherent to 4D flow based MRA generation.
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3
DATASET

In this chapter we present the studied population from which the 4D flow MRI
images were acquired. Subsequently, the parameters established for acquiring

the images and the details about manual segmentations are provided. The iden-
tification of the systolic and diastolic phases is necessary for multiple analyses.
Therefore, this chapter also introduces the process of identifying the time steps
corresponding to these phases.

3.1/ POPULATION

The population included in this work belongs to the research project MECATHOR
2018-A02010-55, developed in the University Hospital of Dijon, France. This
study was approved by the French national ethics committee and is registered
on ClinicalTrials.gov. After receiving written information about the study, each
subject underwent a 4D flow MRI.

Among the included population in the MECATHOR project, 36 4D flow MRIs were
used in this thesis to implement and evaluate the automatic aortic segmentation
algorithms (Table 3.1). The study cohort consisted of subjects with an average
age of 60 years and with an aneurysm at the level of the ascending aorta. Twenty
six of the 36 patients were men, and ten were women. Furthermore, 13 men and
five women had BAV.

3.2/ IMAGING PROTOCOL

The patients in the database presented an aneurysm at the level of the ascending
aorta. Therefore, 4D flow MRI acquisition targeted the thoracic aorta. The acqui-
sitions were performed on a 3 Tesla Siemens scanner (Siemens Healthineers,
Erlangen, Germany) with a phased thoracic coil. The complete MRI protocol for
the study of thoracic aneurysms consists of several sequences. Initially, cine-MRI
is acquired, followed by 2D flow MRI in the x, y, and z directions. After the ECG-
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Table 3.1: Patients characteristics. TAV and BAV refer to tricuspid and bicuspid
aortic valves, respectively.

Patient Sex Age Valve type Max diameter
1 M 68 BAV 50
2 M 59 BAV 51
3 F 78 TAV 54
4 M 40 BAV 45
5 M 71 BAV 53
6 M 44 TAV 54
7 M 70 TAV 50
8 M 43 BAV 52
9 M 68 TAV 53

10 M 68 BAV 50
11 M 74 TAV 51
12 F 37 BAV 49
13 F 67 TAV 46
14 F 64 BAV 42
15 M 72 BAV 46
16 M 72 TAV 57
17 F 51 BAV 58
18 M 72 TAV 49
19 M 79 BAV 47
20 M 37 BAV 47
21 F 26 TAV 53
22 M 59 TAV 55
23 F 74 TAV 46
24 M 52 BAV 52
25 M 75 BAV 46
26 M 72 TAV 54
27 M 72 TAV 55
28 F 39 BAV 51
29 F 65 TAV 54
30 F 74 BAV 47
31 M 66 BAV 47
32 M 68 TAV 54
33 M 74 TAV 56
34 M 72 BAV 51
35 M 40 TAV 52
36 M 64 TAV 50

triggered MRA with gadolinium as a contrast agent, the 4D flow MRI is acquired.
In the following, we provide the parameters of the sequences used in this thesis.

The 2D cine-MRI sequence was of Fast Low Angle type. The acquisition was
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performed during breath-hold in a plane perpendicular to the aorta at the level of
the pulmonary trunk. From this sequence, 35 phases of the cardiac cycle were
acquired with a temporal resolution between 20 and 34 ms. The spatial resolution
was set between 1.25x1.25 and 1.9x1.9 mm2. The echo and repetition time were
equal to 3.42 and 34 ms, respectively.

4D flow MRI was acquired after the acquisition of an MRI angiography with the
injection of Gadolinium contrast agent. All 36 subjects underwent our 4D flow
MRI protocol, in which the acquired volume covers the thoracic and the proximal
abdominal aorta in a sagittal-oblique orientation. The parameters established
were: Venc between 200 and 800 cm/s, a spatial resolution of 2x2x2 mm3, and
temporal resolution of 24-52 ms to generate 25 cardiac phase with retrospective
gating. In addition, echo and repetition time were set between 2.1-2.3 ms and
38.5-40 ms, respectively. The acquisition was performed during free breathing
with ECG and respiratory gating. The duration of the scan was 10-15 minutes for
the 4D flow MRI acquisition.

3.3/ SYSTOLE AND DIASTOLE IDENTIFICATION

In 4D flow MRI analysis, identifying the different cardiac phases is essential be-
cause it allows the calculation of metrics and the localization of the time steps to
be analyzed.

T1 T25Ti

Figure 3.1: Representation of cardiac phase identification by locating a plane at
the level of the ascending aorta at each time step. The average velocity vector
in the extracted plane is calculated to identify the times with the maximum and
minimum velocity, corresponding to systoles and diastole, respectively.

To identify the systolic and diastolic phases for each patient, we started with the
manual identification of a 2D plane perpendicular to the ascending aorta. For
each time step, the 2D plane is localized at the same position. Subsequently,
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the ascending aorta is manually segmented in the generated 2D+time images.
Finally, using the components of the velocity vectors provided in the phase images
(according to the x, y, and z directions), the average norm of the vectors at each
time step is calculated. For each patient, an average velocity evolution curve
over the time is obtained, which allows for locating the maximum (systole) and
minimum (diastole) average velocity in the cardiac cycle (Figure 3.1).

Before computing the average norm of the vectors to identify the cardiac phases,
the phase images containing gray intensity information are processed to find the
corresponding velocity value for each voxel. The relationship between the mini-
mum and maximum velocities and intensities is linear and is given by the equation
3.1. Then, as can be seen in the Figure 3.2 the slope m of the line was calculated
to perform the linear scaling to convert the intensity values from phase images
to velocity. The maximum and minimum velocity values correspond to Venc and
-Venc, respectively. The minimum and maximum intensity values were retrieved
with the following Dicom tags: Rescale intercept, Rescale slop, and stored bits.

velocity = m ∗ sv (3.1)

where sv is the stored value.

Max vel.

Min vel.

Min int.

Max int.

 Min vel. - Max vel.
Min int. - Max int. m =

Figure 3.2: Slope m of the line representing the linear relationship between a gray
intensity value and velocity in phase images.

3.4/ MANUAL LABELLING

For the implementation and performance evaluation of the algorithms used in this
thesis, reference segmentations were generated manually for the 36 patients.
ITK-SNAP software [19] was used for this purpose.

The segmentation of the aorta from 4D flow involves several challenges, between
them, the definition of the shape of the valve and of the vessels that arise in the

http://www.itksnap.org/pmwiki/pmwiki.php
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aortic arch: brachiocephalic artery (BA), left common carotid artery (LCCA) and
left subclavian artery (LSA). In this regard, two rules were established for manual
segmentation. First, the arteries mentioned above were not included because it
is very complicated to accurately identify their boundaries. Second, at the level
of the valve, a plane perpendicular to the direction of the valve at the level of the
aortic sinuses was considered because it is difficult and questionable to establish
the exact or approximate shape in 3D (Figure. 3.3).

In order to perform both global and local evaluation of the automatic segmentation
performance, the aorta was thereafter divided into three regions: ascending aorta
with the aortic arch (AAo+Arch), TDAo and proximal abdominal aorta (PAAo).
The ascending aorta and the arch are considered as a single region since it was
no possible to identify the beginning of the BA as a landmark to establish the
beginning of the arch.

For the implementation of automatic algorithms for 3D segmentation, two image
analysts segmented blindly a frame corresponding to the systolic phase for each
patient. The manual segmentation of each frame took an average of 3.5 hours.
Subsequently, a probabilistic estimate of the true segmentation was generated us-
ing the STAPLE (simultaneous truth and performance level estimation) algorithm
[14]. The resulting segmentation was used for implementing the 3D algorithms
but also to evaluate the inter-operator variability.

Since manual segmentation is time-consuming, for the implementation of 4D seg-
mentation algorithms, only one of the image analysts completed a total of five
manually segmented frames for each patient. For this purpose, the first time step
was segmented for each patient since it is a frame corresponding to the end of
diastole. After, we considered the respective frame in systole phase per each
patient. The remaining three frames were taken from time steps 15, 20, and 25 to
have a relatively constant distribution over the cardiac cycle. For these last three
frames, the previously segmented diastole was taken as a reference to initiate
segmentation. This was done to reduce the time required for manual segmen-
tation by refining the initial segmentation. Both 3D and 4D segmentations were
reviewed by a clinical expert.

3.5/ DISCUSSION

This chapter presented the database constructed for implementing and validat-
ing automatic segmentation methods of the aorta with thoracic aneurysms. The
cohort of patients and the standards followed for the manual segmentation of the
magnitude image were described. To deal with challenges in aortic segmentation,
the manual segmentation was performed without including the brachiocephalic
trunk, and a flat segmentation was drawn at the level of the aortic valve sinuses
due to the difficulty in accurately defining the 3D shape.

In contrast to what was proposed by [36, 39, 68, 72] using the magnitude images
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a) b) c)

Figure 3.3: In a) a slice of the raw image for a patient is presented. In b) the
manual segmentation of the raw image is displayed, which does not include the
brachiocephalic arteries located in the position indicated with the yellow arrows.
The green line represents the plane perpendicular to the valve inlet, used to de-
note the beginning of segmentation at this level. (c) shows the 3D rendering of
the segmentation.

allowed us to avoid the biases included in the segmentation from new images
generated from 4D flow MRI.

At present, fully automatic segmentation from 4D flow MRI magnitude images has
been addressed only by Bustamante et al. [102] However, the reference segmen-
tations were generated with an automatic algorithm based on multiple atlases. In
our case, the segmentations were completely manual, reflecting what the image
analyst considered from the beginning as the aorta or background and avoiding
transferring possible errors from the automatically generated references to the
different segmentation algorithms evaluated. Among the 36 patients, a total of
180 frames were manually segmented, which is important given the unavailability
of databases with annotations of the aorta from 4D flow MRI.



4
3D SEGMENTATION OF THE AORTA

FROM 4D FLOW MRI

This chapter focuses on the methods and pipelines implemented for segment-
ing the aorta in the systolic phase from 4D flow MRI. Most of the previously

proposed aortic segmentation methods are implemented using 3D images gener-
ated from 4D flow MRI. Unlike these approaches, we evaluated the performance
in aortic segmentation from magnitude images. For this purpose, we used two
fully automatic methods with the potential to be implemented later in 4D. In par-
ticular, a multi-atlas-based method and a deep learning-based method were ex-
plored. For each method we showed a detailed evaluation with respect to seg-
mentation metrics and a biomarker based on computational fluid dynamics. Thus,
an evaluation of segmentation performance using DSC and HD is provided. Then,
the aortic wall pressure was obtained from a manual segmentation and compared
to those obtained from each automatic model. From these results, we aimed to
define the type of algorithm to be used for segmenting the aorta over the entire
cardiac cycle.

4.1/ ALGORITHMS TRAINING AND VALIDATION

The segmentations with multi-atlas-based and deep learning-based methods
were carried out by applying the leave-one-patient-out strategy. Thus, to segment
one patient with the multi-atlas method, the delineated images of the remaining
ones were used as atlases. For deep learning, the same images were used for
training, and the patient to be segmented for validation. Leave-one-out is not a
validation technique used in large databases due to the increased computation
time. However, since our database is small, we can take advantage of the poten-
tial of this method to train the models with as many training examples as possible
and reduce the bias in the result by learning the diversity of the database. The
degree of agreement of each algorithm with manual segmentation was measured
with DSC and HD. Moreover, the metrics were evaluated globally and locally in
the regions established during manual segmentation (i.e., AAo+Arch, TDAo, and
PAAo) to identify error-prone regions during automatic segmentation.
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4.2/ PRE-PROCESSING AND POST-PROCESSING FOR

SEGMENTATION ALGORITHMS

Before training the algorithms, the magnitude images were normalized indepen-
dently between 0 and 1. Automatic segmentations from multi-atlas-based and
deep learning-based methods were post-processed. First, the largest connected
component was identified and selected as the aorta segmentation. Then, we
used a morphological opening filter to smooth out irregularities. A ball structuring
element of radius 3 mm was used.

Figure 4.1 shows the before and after post-processing applied for one patient in
the segmentations generated with deep learning and multi-atlas-based segmen-
tation.
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Figure 4.1: Example of the postprocessing result on the segmentation from U-Net
and MAS for the same patient.

4.3/ MULTI-ATLAS-BASED SEGMENTATION

The multi-atlas-based segmentation method (MAS) has been successfully used
in medical imaging for different segmentation tasks. Bustamante et al. [72] previ-
ously evaluated this algorithm for heart and thoracic vessel segmentation but on
PCMRA images generated from 4D flow MRI. This method was selected since it
presented encouraging results in aortic segmentation from PCMRA and because
the nature of the technique makes it feasible for use in small datasets. We eval-
uated MAS on the segmentation of the aorta in the systolic phase from the 4D
flow MRI magnitude image. Bustamante et al. [72, 48] presented the results of
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the method concerning the stroke volume or net flow calculated in a 2D plane
at the level of the ascending aorta. In our work, we present a 3D evaluation of
global and local performance concerning DSC and HD. Moreover, we compared
the maximum diameters of the aorta obtained from automatic and manual seg-
mentations.

4.3.1/ MULTI-ATLAS-BASED SEGMENTATION SETUP

Systole Diastole

Time 1 Time t Time t+1 Time 25

Systolic phase from new patient

Multi-atlas based registration Atlas selection and label fusion

% similar
candidates 

Label fusion
approach 

Figure 4.2: Pipeline of the multi-atlas-based method to segment the aorta in the
systolic phase from 4D flow MRI. The images Ai in the atlas are mapped to the
target image P (highlighted in red) with a transform Ti to produce candidate seg-
mentations C s

i that are merged after a Candidate segmentation selection process
to generate the target segmentation Ps.

Automatic segmentation of the aorta in the systolic phase from 4D flow MRI was
generated with MAS for 32 patients. For the registration process, affine and B-
spline transformations were used to first map linearly P to Ai and then apply local
deformations for a better spatial alignment.

The affine and B-spline registration best hyper-parameters were identified with an
exhaustive search. The tested affine parameters were the type of image pyramids
(Gaussian pyramid or Gaussian scale space), the number of pyramid resolutions
(from one to four), and the similarity metrics used in the cost function (normalized
correlation coefficient, mean squared difference, mutual information, and normal-
ized mutual information). For the mutual information metric, 16, 32 and 64 num-
ber of bins were tested to compute the histograms. In total, 64 affine registrations
were carried out per patient. The search for the best B-spline parameters was
based on the optimization of the grid spacing value which is the most important
parameter because it controls the flexibility of the local deformations. We varied
this parameter from 10 mm to 46 mm with a step of 6 mm in each dimension
independently. For the other registration parameters, we used a Gaussian pyra-
mid with three resolutions and the normalized correlation coefficient as similarity
measure. In total, 343 B-spline registrations were carried out per patient.
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The 64 affine registration tests were initially run with the different hyper-parameter
sets. Then, MV was used for label fusion without atlas selection to determine the
best hyper-parameters set. The best hyper-parameters were the ones that pro-
vided the best average performance with respect to DSC and HD. The different
parameter sets for the B-spline transformation were evaluated on the images re-
sulting from the affine deformation with the respective best hyper-parameters. As
for affine registration, the best hyper-parameters for B-spline transformation were
identified considering the average DSC and HD in the database when using MV
as the label fusion method. The registrations were performed using the Elastix
software version 5.0 [30].

In the proposed registration pipeline (Figure 4.2), structural similarity index (S S I)
[13] was used to select the candidates segmentations before performing the label
fusion. The SSIM index provides a value between 0 and 1, where 1 indicates
perfect structural similarity between two identical sets of data and 0 indicates no
structural similarity.

Considering the SSI value between the deformed image (Ai ◦ Ti) and P, the inclu-
sion criterion in the equation 4.1 was established to select the segmentations to
be fused.

{Cs
i ,∀i ∈ 1, ...,N, S S I(P, Ai ◦ Ti) > (max(S S IT ) − min(S S IT )) ∗ d + min(S S IT )} (4.1)

where d is a number between 0 and 1 that indicates the percentage of atlases
with the lowest S S I to be discarded and S S IT is the group of similarity metrics
measured between P and the N deformed images.

The three label fusion methods evaluated in this thesis for the MAS-based seg-
mentation pipeline were Majority voting (MV), Weighted majority voting (WMV)
and Patch weighted majority voting (PWMV). The global or local SSIs between
the deformed images and P were used in the fusion algorithms that require a
weight, i.e., WMV and PWMV.

Majority voting: Majority voting is the most straightforward label fusion method
and uses a global strategy giving to all candidate segmentations the same rele-
vance. For the target segmentation Ps, the most frequent label l (l = 1, ...L, with
L = number of labels) is assigned to each voxel x, such as

Ps(x) = arg max
l∈1,...,L

pl(x) (4.2)

where pl(x) = 1
N

∑N
i=1 Oi,l(x) with Oi,l(x) = 1 if C s

i (x) = l and 0, otherwise.

Weighted majority voting: Weighted majority voting uses a global weight wi

proportional to the similarity measure between Ai ◦ Ti and P, to calculate the prob-
ability of a voxel x to be the label l as follows
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pl(x) =
∑N

i wi · δ[l,C s
i (x)]∑N

i wi
, ∀ l ∈ L (4.3)

where δ[·] is the Kronecker delta function. The segmentation Ps is then generated
with Eq. 4.2.

Patch weighted majority voting: Patch weighted majority voting is a local ex-
tension of WMV, where a different weight is assigned to each voxel x. This weight
is proportional to a similarity measure calculated between a patch or kernel (a
kernel size of 11x11x11 was used in this work) centered on the voxel x of P and
a patch of the same size and at the same position in Ai ◦ Ti.

4.3.2/ MULTI-ATLAS-BASED SEGMENTATION EVALUATION

Segmentation performance was measured locally and globally using DSC and
HD. In order to evaluate the reliability of the automatic segmentation, the statisti-
cal significance of the differences in the maximum diameter between manual and
automatic segmentations was assessed. The Vascular Modeling Toolkit (VMTK)
was used to calculate the diameter. VMTK extracts the centerline from the aor-
tic valve to the abdominal aorta and measures the aortic diameter using normal
planes at each centerline segment. For the analysis, a t-test was applied after
checking the normality of the two groups with the Shapiro–Wilk test. The corre-
lation and agreement between the diameter obtained with manual and automatic
segmentations were also computed.

4.3.3/ MULTI-ATLAS-BASED SEGMENTATION RESULTS

Table 4.1: Average performance of MAS method on 32 patients with the best set
of parameter and leave-one-patient-out strategy

Method AAo+Arch TDAo PAAo Full aorta
DSC HD [mm] DSC HD [mm] DSC HD [mm] DSC HD [mm]

MAS 0.88 ± 0.04 18.21 ± 7.68 0.90 ± 0.034 7.43 ± 2.64 0.78 ± 0.12 22.58 ± 13.03 0.88 ± 0.03 26.62 ± 11.19

The best parameters for the affine transform were the Gaussian pyramid with
three resolutions and the mutual information metric with a 64-bin histogram. For
B-spline transforms, the best segmentation results were achieved with a grid
spacing of 22 mm, 40 mm, and 10 mm in x, y, and z axes, respectively. The
average segmentation performance achieved with each set of hyper-parameters
are presented in A.2. The time required to obtain automatic segmentation for a
patient was 20-25 minutes on a laptop workstation Dell Precision 7540 with Intel
Core i7-9850H at 2.60GHz processor.
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Figure 4.3: Comparison of label fusion strategies with atlas selection. The box-
plots display the median, maximum and minimum performance values for global
DSC and global HD achieved with MV, WMV and PWMV and as functions of the
percentage of atlases preserved. The red circle on each boxplot represents the
average segmentation performance.

Figure 4.3 shows the results of the evaluation of the different fusion methods
with respect to the number of candidate segmentations used. It can be observed
that both in DSC and HD, the PWMV fusion strategy reduces the number of out-
liers and minimizes to a large extent the HD. The best PWMV performance is
achieved with the use of about 50% to 60% percent of the most similar atlases
with respect to the range of SSIs obtained for each patient. The performance of
the method with the best parameter set and PWMV is presented in Table 4.1. The
performance at the AAo+Arch and TDAo is higher compared to the performance
computed in the complete aorta. This behavior represents the impact of the error
at the level of the abdominal aorta on the global segmentation performance. By
visually inspecting the distance maps of all patients, it was found that in 75% of
the patients, the highest error corresponding to the HD occurred in PAAo.

From the evaluation of the maximum diameter, a p-value of p = 0.8 was obtained
for t-test, approving the null hypothesis that there is no statistically significant dif-
ference between the maximum diameters measured with manual segmentation
and the maximum diameters measured with automatic segmentation obtained
with 50% of the most similar candidates segmentations and PWMV algorithm.
Figure 4.4 shows a correlation graph of the diameters obtained with manual seg-
mentation and the diameters obtained with automatic segmentation, in which a
low dispersion of the data can be observed, obtaining a r2 (i.e: correlation coeffi-
cient) equal to 0.86. The Bland-Altman analysis showed a mean difference of the
maximum diameter obtained with automatic and manual segmentations equal to
−0.14 ± 1.7 mm. Considering that the resolution of the images is 2 mm cubed,
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a) Regression b) Bland-Altman

Figure 4.4: Scatter plot with regression line (a) and Bland-Altman plot (b) of max-
imum diameters obtained with manual (MS) and automatic segmentations (AS)

an average difference of -0.14 mm is considered low. In addition, 97% of the
measurements fall within the limit of agreement.

4.4/ DEEP LEARNING-BASED SEGMENTATION

Over the past two decades, deep learning has been widely used for task automa-
tion using medical images. Promising results in different medical image segmen-
tation tasks have made this method the first choice for automatic segmentation
[84]. We selected a deep learning-based method because it has recently outper-
formed several previously proposed segmentation methods [69, 70]. In addition,
in a future application, the time for segmenting a new patient could be consider-
ably less than the one required by methods such as MAS. 3D segmentation of
the aorta from 4D flow MRI using deep learning has been proposed in [90] and
[104]. However, as in the MAS-based method proposed by Bustamante et. al.
[72], the segmentation task was performed from a generated 3D PCMRA. In our
work, deep learning-based systolic phase segmentation was performed using 4D
flow MRI magnitude image. Due to the high blood flow in the aorta, the choice
of the systolic phase provides better border definition and the crucial blood flow
information at the inlet at this time point.

4.4.1/ 3D U-NET SETUP

Automatic segmentation of the aorta in the systolic phase from 4D flow MRI was
generated with a U-Net model for 36 patients. In the convolution layers of the
implemented four levels U-Net architecture [75], kernels of size 3x3x3 were used.
After each convolutional layer, batch normalization was performed to stabilize the
learning process and improve the performance. After each BN process, the rec-
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146x176x44

3216

32 64

64 128

128 256

3D Convolution + BN + ReLU, kernel size: 3x3x3, same padding
3D Max Pooling, stride: 2

Concat, feature forwarding

3D upsampling or 3D transposed convolution
3D convolution + BN + Softmax, kernel size: 3x3x3, same padding

512256

256 + 512 256 256

128 + 256 128 128

128 + 64 64 64

32 + 64 32 32

Figure 4.5: 3D U-Net architecture used. The numbers above the blocks indicate
the number of feature maps.

tified linear unit (ReLu) activation function was applied. The expansion in the
decoder path can be done with up-sampling operations or transposed convolu-
tions, so we evaluated both techniques (Figure4.5). To set the network input, the
images were cropped or padded based on the median size of the x and y axes
and the maximum size of the z axis across the entire database. Thus, the input
size of the 3D U-Net in this work was 146x176x44 voxels.

To find the best hyper-parameters, the two 3D U-Net versions were trained with
several combinations of batch size (two, four or six) and loss function (Dice loss
computed on all the batch, average of the Dice loss computed for each image
in the batch and a loss function that combines Dice and binary cross-entropy
losses). Additionally, the models were trained for 850 epochs setting the initial
learning rate equal to 0.01 and reducing it by a factor of ten when the validation
loss stops improving.

4.4.2/ 3D U-NET RESULTS

The best performance was obtained using the average of the Dice loss computed
for each image in the batch, a batch size equal to four and the model that applies
up-sampling operation on the decoder path. Performance in the whole aorta was
0.92 ± 0.02 and 21.02 ± 24.20 for DSC and HD. Concerning the local performance
an average HD of 9.41±3.45 mm, 5.68±6.23 mm and 16.18±13.27 mm and an av-
erage DSC of 0.93± 0.02, 0.93± 0.02 and 0.84± 0.08 were reached respectively for
AAo+Arch, TDAo and PAAo. The tests were run on a computational cluster with
GPU NVIDIA Tesla V100. 3D U-Net training with the leave-one-patient-out strat-
egy took approximately 2 hours per fold. After training the model, the inference of
a new patient took about 2.5 seconds on a laptop workstation Dell Precision 7540
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with Intel Core i7-9850H at 2.60GHz central processing unit (CPU).

4.5/ MULTI-ATLAS-BASED SEGMENTATION VS. 3D U-
NET BASED SEGMENTATION

After the encouraging results obtained with the evaluation of MAS and 3D U-Net
in aortic segmentation from 4D flow MRI, both methods were compared to es-
tablish a path towards 4D aortic segmentation. Both methods were implemented
with their respective best parameters on 36 patients. The performance of the al-
gorithms was first compared in terms of DSC and HD (Tables 4.2 and 4.3). We
evaluated the statistical significance of the performance differences of the auto-
matic segmentation methods. The evaluation was performed for both DSC and
HD. The same procedure was performed for each metric. First, the Shapiro-Wilk
test [2] was used to independently evaluate the normality of the measurements
obtained with MAS and with U-Net. Then, when verifying that the measurements
obtained with at least one of the methods were not normally distributed, the
Wilcoxon signed rank test with a 95% confidence level [1] was applied to com-
pare the differences between the metrics obtained with MAS and 3D U-Net. The
Wilcoxon signed rank test performed globally showed a statistically significant
difference between the automatic methods for both the DSC (p-value < 0.0001)
and the HD (p-value = 0.001). Locally, except for the HD in PAAo, a statistically
significant difference was also obtained for DSC and HD (p-values < 0.001). It
can be said that for DSC and HD at TAo, deep learning outperforms MAS with a
significant improvement in segmentation.

Table 4.2: MAS segmentation performance in the systolic phase from 4D flow
MRI magnitude imaging

MAS local performance
AAo+Arch TDAo PAAo

DSC HD [mm] DSC HD [mm] DSC HD [mm]
0.89±0.03 16.33±6.30 0.90±0.04 7.67±2.94 0.78±0.13 20.61±12.75

MAS global performance
Thoracic Ao Whole Ao

DSC HD [mm] DSC HD [mm]
0.89±0.02 16.27±6.26 0.88±0.03 26.04±16.63

For further evaluation of the methods, we compared the segmentation perfor-
mance with those obtained from the inter-subject variability analysis. Moreover,
the dependence of the algorithm’s performance on the amount of data was as-
sessed. In addition, aortic wall pressure was calculated using the manual and
the automatic models. Pressure results were analyzed to identify the automatic
method that provides values similar to those obtained from manual segmentation.
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Table 4.3: U-Net segmentation performance in the systolic phase from 4D flow
MRI magnitude imaging

U-Net local performance
AAo+Arch TDAo PAAo

DSC HD [mm] DSC HD [mm] DSC HD [mm]
0.93±0.02 9.41±3.45 0.93±0.02 5.86±6.23 0.84±0.08 16.18±13.27

U-Net global performance
Thoracic Ao Whole Ao

DSC HD [mm] DSC HD [mm]
0.93±0.02 11.49±8.98 0.92±0.02 21.02±24.20

4.5.1/ INTER-OBSERVER VARIABILITY EVALUATION

Observer 1 Observer 2

Figure 4.6: Segmentation for one patient generated by two image analysts. The
bracket covers the difference between the two observers at the level of the ab-
dominal aorta.

The inter-observer variability analysis was carried out to compare the perfor-
mance of the automatic methods with those obtained by experts. Based on
the inter-observer evaluation approach proposed by Klein et al. [25], the aver-
age DSC and average HD between the segmentations performed by the two im-
age analysts were calculated. The average of the values obtained in the whole
database was compared with the average performances of the automatic seg-
mentation algorithms trained with the leave-one-out strategy (Table 4.4).

As for the algorithms, the inter-observer mean variability is higher in the PAAo
than at AAo+Arch and TDAo. At the PAAo level, inter-patient performance is
mainly related to the length of the aorta each observer takes (Figure 4.6). For the
algorithms, it could be related to the degradation of the image quality in this region
due to the thoracic coil’s distant location and the decrease of the homogeneity of
the magnetic field.
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Table 4.4: Variabilidad inter-observador en la segmentación local de la aorta

Local inter-observer variability
AAo+Arch TDAo PAAo

DSC HD [mm] DSC HD [mm] DSC HD [mm]
0.87±0.04 11.31±3.18 0.84±0.05 8.68±3.65 0.67±0.12 23.70±22.65

Global inter-observer variability
Thoracic Ao Whole Ao

DSC HD [mm] DSC HD [mm]
0.86±0.04 11.76±3.56 0.83±0.05 25.24±21.81

4.5.2/ DATA AMOUNT DEPENDENCY EVALUATION

The influence of the amount of training data on the method’s performance was
evaluated with a cross-validation strategy. For this purpose, the 36 patients were
split into six folds. The segmentation algorithms were carried out by increasing the
number of folds used for training and always keeping the same fold for validation.
This experiment was replicated six times, changing the validation fold used to
evaluate the influence of the examples taken as validation (Fig. 4.7).

Figure 4.7: Data partitioning for cross-validation to assess the dependence of
MAS and U-Net on the amount of training data and the data chosen for validation.

From the influence of training data amount analysis, an overall tendency was ob-
served to continuously improve performance when training data was added for
both methods. For HD, MAS constantly outperforms 3D U-Net. However, with
respect to DSC, the MAS outperformed 3D U-Net only when between six and
eighteen patients were used for training. After this number, a slight improvement
of 3D U-Net with respect to MAS was observed. Figure 4.8 shows the average
performance between the experiments as a function of the amount of data in-
cluded for training.
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Figure 4.8: Performance of MAS and U-net with respect to the amount of training
data. The graph represents the average performance of the experiments as a
function of the number of training data used.

4.5.3/ EVALUATION OF 3D AUTOMATIC SEGMENTATIONS IN AOR-
TIC WALL PRESSURE COMPUTATION

After segmentation of the aorta, the valuable information provided by 4D flow MRI
can be used for the generation of different markers. In addition to widely used
biomarkers such as aortic diameter or peak velocities in a 2D plane, the aim of
segmenting the aorta from 4D flow MRI is to compute hemodynamic biomarkers.
In this sense, fluid dynamics biomarkers obtained with numerical simulation con-
tribute to the analysis of the progression of TAA [45, 60]. Hemodynamic parame-
ters can be computed using Computational Fluid Dynamics (CFD) [10]. However,
the accuracy of the segmentation can influence the results. For this reason, CFD
was used to assess the impact of differences in automatic segmentation on aortic
wall pressure. Aortic wall pressure is a relevant index for understanding the evolu-
tion of the aneurysm since the high wall pressure corresponds to high intramural
stress exerted on the wall [61, 71].

The manual and automatic segmentations of each patient were converted to
meshes. Then, the meshes were discretized before CFD to be able to compare
the pressure obtained from manual and automatic models. The discretization
was performed by applying mesh morphing [91]. Mesh morphing was adopted to
build iso-topological patient-specific meshes, having the same number of nodes
and the same connectivity to introduce the missing parts of the segmentation as
the three supra-aortic vessels. The discretization process with mesh morphing
is performed independently for each patient. It starts by adapting a mesh gen-
erated for a single baseline model to the manual segmentation. Then, this new
deformed mesh is adapted to the automatic models generated with MAS and
U-Net. In particular, each manually segmented model was used in a two-step
morphing procedure: a first step in approaching the segmented surface and a
second projection step to completely fit the target geometry. Once a new patient-
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Figure 4.9: Mesh morphing workflow: the reference mesh is morphed in two steps
to reach the manually segmented STL model: for step 1, the final SP positions
arranged in circles perpendicular to the centerline and obtained on the STL to
be fitted are shown in green. For step 2, the updated SPs are shown for the
final projection onto the STL. Then, starting from this new deformed grid, only the
projection step 2 is carried out to correctly represent the geometry resulting from
deep-learning (upper branch) and multi-atlas segmentations (lower branch).

specific mesh was obtained with the projection on the manually segmented aorta,
only the second step was required to correctly fit both MAS and 3D U-Net models
which were already close to the deformed starting mesh (Figure 4.9).

The starting reference mesh, which includes the three supra-aortic vessels and
adapted each time to the new segmented geometry, was generated in ANSA
pre-processor (BETA CAE Systems, Switzerland). To obtain an accurate high
quality starting discrete domain, the mesh was created using a segmentation
derived from a CT-scan (OPTIMA CT660, Siemens Healthcare GmbH; 0.63 mm
slice thickness, 0.5 mm in-slice pixel size) belonging to one of the patients in
the dataset. The latter was chosen as a reference because it has the smallest
deviation in terms of maximum diameter (53.2 mm) of the ascending tract from the
median value of 52 mm of the whole MRI dataset. In fact, this is the criterion that
generally allows to minimize the distortion of the elements during their stretching
or compression to fit a new segmented model [32, 100] . The rigid alignment
between the segmented models and the reference mesh was performed with the
Iterative Closest Point (ICP) algorithm using 100 iterations in Meshlab, an open-
source system for processing and editing 3D triangular meshes. Only the TAo was
considered (i.e. AAo+Arch and TDAo) because the lower the number of elements
in the mesh, the lower the computational cost of the simulation and because all
patients in the database had aneurysms only at the AAo level. For analysis, the
tracts of the three supra-aortic vessels were isolated from the rest of the aorta.

After the mesh morphing procedure, three CFD simulations were carried out for
each patient with the same computational setup. As part of this work, steady state
simulations were set up and the effect of the external body forces were considered
to be zero. After the evaluation of the Reynolds number, a Reynolds-averaged
Navier–Stokes (RANS) turbulent model was applied. The fluid was considered
Newtonian with a dynamic viscosity of 0.0035 Pa·s and a density of 1056 kg

m3 . Ves-
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sel walls were assumed rigid with a no-slip boundary condition. Considering a
plane perpendicular to the centerline of the aorta at the level of the sino-tubular
junction, the CFD inlet was retrieved from the phase images of the 4D flow MRI.
This task was automatically performed using an in-house tool based on ITK and
VTK libraries. From the velocity values obtained on each pixel, the average was
computed for the simulation inlet. Since in a lumped parameter model (LPM)
compliance only affects transient flow, the total resistance was only included for
the peak systolic flow. A capillary pressure P0=2.4 kPa [9] was introduced to mod-
ulate the relationship defined by Q = (P−P0)/R between the flow rate Q, the outlet
pressure P and the total resistance R for the downstream peripheral vessels. As
the three upper outlets were not visible from the MRI images, the values of R for
the TDAo, BA, LCCA and LSA outlets were arbitrary chosen ensuring for each
patient a flow split ratio of 70%, 20%, 5% and, 5% respectively, as reported in
[94]. Numerical simulations were performed using the commercial CFD solver
ANSYS Fluent and the convergence criteria threshold for the residual errors was
set to 1.0 × 10−4.

4.5.3.1/ AORTIC WALL PRESSURE ANALYSIS

To evaluate and compare the aortic wall pressure, the results were analyzed glob-
ally and separately/locally into AAo+Arch and TDAo. The simulated pressures
were analyzed with different methods to identify the automatic segmentation that
provides robust biomarkers compared to those obtained with the manual segmen-
tation. By exploiting the invariance in the number of nodes and grid connectivity,
the intra-patient average Root Mean Square Error (RMSE) between the pressure
values obtained with the manual contouring and each automatic method was eval-
uated. A Bland-Altman analysis was also performed on the average pressures
obtained globally and locally, i.e. for each part of the aorta. Finally, to evaluate
the predictive capacity of each automatic method with respect to the pressure
values obtained from the manual segmentation, a linear regression analysis was
performed with co-variance adjusted per cluster, i.e. per patient. For this, we re-
ported the regression coefficient, r2 and the confidence interval of each regression
model obtained between the pressures derived from the manual and automatic
segmentations.

4.5.3.2/ AORTIC WALL PRESSURE RESULTS

Concerning the morphing, the quality of the grid generated after the procedure
was evaluated for each patient. One model derived from multi-atlas-based seg-
mentation reported a Skewness above 0.99 after mesh morphing. This model
was excluded from the analysis of the results since the simulation did not reach
convergence. All the remaining models had a Skewness below 0.95 except for
one which had a skewness of 0.97. No convergence problems were detected for
them and therefore, the comparative analysis of the simulated wall pressures was
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Figure 4.10: Wall pressure distribution for a patient with the manual and automatic
methods

Table 4.5: Average RMSE of the aortic wall pressure computed for all the patients
using the manual and automatic models

Method AAo + Arch
[mmHg]

TDAo
[mmHg]

GLOBAL
[mmHg]

MAS 2.13±2.19 1.12±1.6 1.90±2.0
U-net 1.61±0.68 0.72±0.5 1.41±0.6

carried out on 35 of 36 patients. An example of wall pressure distribution for a
patient is shown in Figure 4.10.

Table 4.5 shows the average RMSE values on patients, obtained by comparing
the pressures computed with the manual models and each of the automatic mod-
els. From the results it can be seen that MAS produces the highest RMS in the
three regions evaluated.

From the Bland-Altman analysis a mean of 0.06 ± 0.63 mmHg was obtained when
comparing the average pressures for the entire aorta of the manual model with the
average pressures from U-Net. When the Bland-Altman analysis was performed
for MAS, the mean pressure was −0.34 ± 2.32 (Fig. 4.11).

Locally, the mean differences for U-Net were 0.06 ± 0.71 mmHg in the AAo+Arch
(Figure 4.12) and 0.04 ± 0.049 mmHg in the TDAo (Figure 4.13). For these same
regions, the mean differences with MAS were −0.37 ± 2.58 and −0.27 ± 1.14, re-
spectively. Overall, the average difference with U-Net was lower than that of MAS.
Moreover, MAS presents two data far outside the limits of agreement in all cases.

The linear regression between the manual pressures and those obtained with U-
Net gives a correlation coefficient of 0.97, with a 95% confidence interval of [0.93,
1.00]. Additionally, the r2 for the regression was 0.94. In contrast, the coefficient
obtained from the regression between the manual pressures and those obtained
from MAS was 0.83 with 95% confidence interval of [0.65, 1.00] and a r2 equal to
0.82.
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Figure 4.11: Bland-Altman plots of the average pressures obtained in the com-
plete aorta by using the manual and the automatic models.

Figure 4.12: Bland-Altman plots of the average pressures obtained in the
AAo+Arch by using the manual and the automatic models.

Figure 4.13: Bland-Altman plots of the average pressures obtained in the TDAo
aorta by using the manual and the automatic models.

4.6/ DISCUSSION

In this chapter, we evaluated a MAS method and a deep learning-based method
to segment the aorta in 3D from 4D flow MRI magnitude images. Initially, each
method was implemented and evaluated independently on a set of patients to
identify the best set of parameters. Later, both methods were compared in terms
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of DSC, HD, and aortic wall pressure to consider both image and biomarker-based
metrics.

We evaluated the MAS method’s performance with DSC and HD 3D metrics and
maximum diameter. Previous works evaluated the MAS performance by calcu-
lating the blood volume with a 2D plane located manually or automatically in the
AAo [48, 72]. However, the blood volume calculation is highly sensitive to the
orientation of the plane [96]. Moreover, the 2D-plane-based evaluation does not
allow for establishing a 3D segmentation performance.

It was observed that in the tested MAS pipelines, label fusion methods with local
weighting reached a better performance than globally weighted methods. This
finding is consistent with previous studies, which showed that local weighting out-
performs global weighting [28]. Using a too-small set of atlases or the entire set
of atlases in the label fusion step decreased the segmentation performance. This
behavior may be due to the fact that there were not enough candidate segmenta-
tions or that some of them were not relevant for decision making and misguided
the process. The best segmentation performance was obtained using the PWMV
label fusion strategy with 50% of the candidate segmentations. Analyzing the
results locally, it could be observed that the part of the aorta with the lowest per-
formance is the PAAo due to signal-to-noise ratio degradation in that region. In
contrast, the error of the automatic segmentation at the level of the TDAo was
the lowest (Table 4.1), because in this region the borders of the aorta are better
defined than in the other regions, which can better guide the registration. Seg-
mentation errors at the level of the AAo+Arch were generally related to the diffi-
culty in recognizing the shape of the valve from 4D flow MRI. Moreover, errors in
the lateral region of the AAo were identified. It may be explained by the fact that
MAS tends not to accurately estimate the aorta in this region since the objective
function optimized with MAS is based on intensities. Then, the algorithm is some-
times limited in recognizing the boundaries between the aorta and the superior
vena cava.

The 3D U-Net-based segmentation also presented a lower performance at the
PAAo level compared to the other two regions. In particular, this method was af-
fected by a patient with a notable signal loss between the TDAo and the PAAo.
For this patient, the algorithm generated a segmentation of the aorta divided in
two connected components: a first connected component with the TAo and a sec-
ond one with the PAAo. Consequently, the PAAo of this patient was deleted with
the post-processing. To address this problem, the implementation of strategies
that constrain the 3D U-Net to generate a single connected component should be
considered. To address this problem, a constrained cost function based on the
topological characteristics of the aorta was implemented. The results obtained
from applying this approach to our data are presented as appendices in A.1.

Previous methods based on deep learning were implemented using PCMRA. In
comparison, our DSC results are slightly better than those reported in [97], i.e.
DSC≈0.90. However, this study includes multi-institution data, which should be
considered in future evaluation of our method. The results were also comparable
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with those obtained with the method proposed by Berhane et al. [90] for aortic
segmentation from 3D PCMRA using deep learning. In particular, they obtained a
median DSC of 0.95. For HD, errors at the PAAo level degraded our 3D U-Net per-
formance. However, HD measured at AAo+Arch and TDAo were generally good.
Figure 4.14 shows the HD map computed for the outlier patient who presented
the highest error concerning this metric. Berhane et al. [90], obtained regular
segmentations performances with HD around 28.7 mm and poor segmentations
with HD of 43 mm. In their work, this problem was related to the degradation of
the aorta shape during 3D PCMRA generation. One of the limitations of the 3D
U-Net-based method is the size of the database used for training. However, as is
natural in this approach and as shown with the evaluation regarding data amount
(Fig. 4.8), better results could be reached by increasing the size of the database.

[mm]

3D Angiography 4D flow MRI HD map

Figure 4.14: One slice of the HD map from the patient with the poorest perfor-
mance for the 3D U-Net-based segmentation

From the comparison of MAS and 3D U-Net with 36 patients, the segmentation
results showed that the best performance concerning DSC and HD was achieved
by the 3D U-Net algorithm when trained on 35 patients. However, with less train-
ing data (Figure 4.8), the MAS algorithm usually gave better results. Although
no overfitting was present in the U-Net models, the variance of the model is in-
creased when less than 24 samples are used for training.

The inter-observer performance is also lower in the PAAo because each observer
takes a different length of the aorta in this region. It is important to note that, ex-
cept for the HD with the MAS algorithm, the two automatic segmentation methods
outperform the inter-observer results. Juffermans et al. [99] also evaluated the
inter-observer reproducibility of aortic segmentation. Each observer performed
a semi-automatic segmentation refining the segmentation of an algorithm based
on deformable models, using 4D flow MRI velocity images as input images. As a
result of the proposed approach, the authors concluded that segmentations are
reproducible without major limitations. However, semi-automatic segmentation is
subject to bias since the observer’s perception is influenced by the initial segmen-
tation generated. On the other hand, using deformable-models-based algorithms
on phase images can lead to inaccuracies in segmenting the aortic wall when
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noise or low velocities are present. Still, the differences between segmentations
generated by different experts from magnitude images should be further investi-
gated.

Finally, the objective of comparing the aortic wall pressure results was to inves-
tigate the impact of the automatic methods on the computation of CFD-based
biomarkers. The pressure differences from the U-Net segmentation compared
to those from manual segmentation were smaller than those from manual seg-
mentation compared to MAS segmentation. However, it should be noted that
comparable performance with respect to DSC and HD in different regions, e.g.
U-Net performance in AAo+Arch and TDAo, does not necessarily mean compa-
rable performance on the computation of wall pressure. Indeed, an improvement
in the segmentation performance allows to obtain pressures closer to those ob-
tained with manual models. Nevertheless, whatever the segmentation method,
the pressure differences are about twice as high at the AAo + Arch as the pres-
sure differences at TDAo. This effect is due to turbulence and high velocities that
mainly impact the AAo. Then, small segmentation error in the valvular area or in
the sinus area can significantly alter the results [98].

To summarize, it can be concluded that the deep learning segmentation method
should be preferred as it gives the best results. Then, deep learning approaches
could be further explored to segment the aorta over the cardiac cycle.





5
4D SEGMENTATION OF THE AORTA
FROM 4D FLOW MRI USING A 3D

DEEP LEARNING MODEL

This chapter presents a pipeline for 4D segmentation of the aorta from 4D flow
MRI magnitude images. The 4D segmentation of the aorta is essential since

it allows the exploration of markers resulting from analyzing flow patterns over the
cardiac cycle. A 4D segmentation of the aorta would then enable the examination
of biomarkers obtained from 4D flow MRI to evaluate the progression of aortic
aneurysms. Following the results obtained in the 3D segmentation of the aorta, a
4D segmentation approach based on 3D U-Net is implemented. The performance
is analyzed with DSC and HD. In addition, the maximum and minimum surfaces
obtained in a 2D+time plane at the level of the AAo are compared with those ob-
tained from 2D+time cine-MRI. These metrics are important because they reflect
the aorta elasticity and the capacity of the segmentation method to adapt to the
aorta changes during the cardiac cycle.

5.1/ 4D SEGMENTATION BASED ON 3D U-NET

For the segmentation of medical images with more than two dimensions, ap-
proaches based on deep learning have been proposed to overcome computa-
tional limitations and to increase training samples. For example, 3D image seg-
mentation has been addressed by segmenting each slice independently [74] or by
segmenting three images perpendicular to each axis [44]. Extending this idea to
4D images, Bustamante et al. [102] recently proposed a 4D segmentation of the
heart and great vessel from 4D flow magnitude images. In particular, they used a
3D U-Net model to independently segment these organs from each frame.

Standardizing a 4D segmentation method of the aorta from 4D flow MRI is still a
problem that needs to be addressed to extend the use of this imaging modality
in the analysis of flow patterns over the cardiac cycle. Here, we segmented the
aorta in all phases of the cardiac cycle using the 3D U-Net model proposed in
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section 4.4. The training of the model for this task was similar to that proposed
by Mariana et al. [102]. However, they used a different patient population with
ischemic heart diseases or mitral valve regurgitation but no aneurysm at the level
of the TAo. On the other hand, for training and validation of the algorithm they
used a fully automatic segmentations generated in two frames and propagated
to the others thanks to an intra-patient registration algorithm. Due to the direct
relationship between the registration quality and the segmentations quality, this
method of generating ground truth includes errors in the position of the aorta at
every time step. Unlike them, we use manual 4D segmentations reviewed by a
clinical expert to implement and evaluate the algorithm.

5.1.1/ 3D U-NET BASED 4D SEGMENTATION SETUP

The model was trained with 500 epochs with the same best hyper-parameters
as for the 3D aortic segmentation task: batch size equal to four and Dice loss
function with an initial learning rate equal to 0.01. The training strategy was leave-
one-out, and the manually delineated frames for each patient were treated as an
independent sample. The model was trained using the five manually delineated
frames for 35 patients (i.e., 175 frames) and validated with the five frames from
the patient left out. To feed the network, the images were padded or cropped as in
section 4.4.1 to obtain a size of 146x176x44. Later, the spacing of the images was
modified to 4x4x4 mm3 to speed up the training process and for comparison with
a 4D neural network model. So the model was fed with images of size 73x88x22
voxels. To obtain the segmentation for all the time steps, the trained model is
used to predict the remaining 20 frames.

All the automatic segmentations were post-processed with a morphological open-
ing filter to smooth out irregularities. A ball structuring element of radius 1 mm
used. In addition, the largest connected component was identified and selected
as the final aorta segmentation. To take into account the soft temporal displace-
ment of the aorta from diastole to systole we lastly apply a morphological opening
filter on the 2D+time segmentation extracted from the 4D segmentation. A ball
structuring element of radius 2 mm was used.

5.1.2/ 3D U-NET BASED 4D SEGMENTATION EVALUATION

As with the 3D segmentation methods, performance was evaluated locally and
globally with the DSC and HD. Furthermore, the maximum and minimum sur-
faces were compared at the level of the pulmonary trunk with the ones obtained
from axial 2D+time cine-MRI. These parameters are important because they rep-
resent the dynamic expansion of the aorta exerted to soften the pressure on the
wall caused by the dynamic blood flow. In the presence of aortic pathologies, the
elasticity of the aorta could be affected. The minimum and maximum surfaces
over the cardiac cycle were computed in a 2D+time image extracted from the 4D
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segmentation of the aorta, taking as reference the pulmonary trunk. For com-
parison, the minimum and maximum reference surfaces were computed from the
2D+time cine-MRI with an automatic algorithm based on the method described
by Miteran et al. [76]. Pearson correlation of the minimum and maximum surface
area values obtained with the two approaches, and after testing the normality of
the samples with the Shapiro-Wilk test, a paired sample t-test was performed to
assess the statistical significance of the results. A mean equal to zero is assumed
as the null hypothesis. T-test was performed at both 95% and 99% confidence
levels. Finally, the maximum and minimum surface areas were compared using
Bland-Altman analysis.

The DSC was also calculated in 4D and frame by frame. However, the average
in the database was equal, and the standard deviation difference was less than
0.03. Then, the results for DSC and HD are presented as the average of the
measured values frame by frame.

5.1.3/ 3D U-NET BASED 4D SEGMENTATION RESULTS

The average global segmentation performance over the 180 frames was 0.9±0.02
and 17.76±16.78 mm for DSC and HD, respectively. Considering only TAo, DSC
and HD were 0.92±0.02 and 10.07±5.99 mm, respectively (Table 5.1). The Figure
5.1 shows the patients with the best and worst segmentation results.

Table 5.1: 3D U-Net segmentation performance over the cardiac cycle

U-Net local performance
AAo+Arch TDAo PAAo

DSC HD [mm] DSC HD [mm] DSC HD [mm]
0.9±0.02 8.75±3.00 0.9±0.02 7.19±6.03 0.80±0.07 15.38±15.44

U-Net global performance
Thoracic Ao Whole Ao

DSC HD [mm] DSC HD [mm]
0.90±0.02 10.07±5.99 0.90±0.02 17.76±16.78

The results concerning the maximum and minimum surface area obtained from
4D flow MRI and cine-MRI showed a high correlation with a correlation coef-
ficient r of 0.85, and 0.86 respectively. The regression plots are presented in
Figures 5.2 and Figure 5.3. The Bland-Altman analysis between the maximum
surface measured with cine-MRI and 4D flow MRI showed an average difference
of -82.12+174.63 mm2. For the minimum surface, the average difference was
43.56+171.25 mm2 (Figure 5.4).

The paired t-test with 95% confidence level showed a difference between the max-
imum and minimum surface area values obtained with 4D flow and cine-MRI. A p-
value of 0.0097 [CI: -142.95 -21.22] was obtained for the maximum surface areas.
When comparing minimum surface areas, a p-value of 0.15 [CI: -16.25 103.16]
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... Automatic segmentation
over manual

...

Automatic segmentation 
over anatomical image

Automatic segmentation 
over manual

Automatic segmentation 
over anatomical image

Figure 5.1: Slice the from patients with the highest (top image) and lowest (bottom
image) performance. On the right is the automatic segmentation superimposed
on the image at the level of the plane shown in blue. In addition, the automatic
segmentation is superimposed on the manual segmentation in the same plane.

was obtained. Taking into account the difference in the acquisition protocol of 4D
flow MRI and cine-MRI, a less stringent confidence interval (CI) was established
by doing the t-test with a confidence level of 99%. Thus, p-value=0.0097 [CI:
-163.82 -0.37] and p-value=0.15 [CI: -36.70 123.62] were obtained for the maxi-
mum and minimum surface area, respectively. Considering the significance level
of 0.01, the t-test shows that for the minimum area, the average score does not
differ significantly across the samples. The p-value is very close to the threshold
for the maximum area, but zero is not included in the CI.
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The training of the U-Net model took about one hour for each patient. The pre-
diction of the 25 frames for each patient took only about 10 seconds on a laptop
workstation Dell Precision 7540 with Intel Core i7-9850H at 2.60GHz CPU. In
comparison, manual segmentation from scratch of a single frame takes about
three hours.

Figure 5.2: Correlation of the maximum surface calculated from cine-MRI and
from 4D flow MRI.

Figure 5.3: Correlation of the minimum surface calculated from cine-MRI and from
4D flow MRI.
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Figure 5.4: Bland-Altman plots of the maximum and minimum surface areas ob-
tained at the level of the ascending aorta during the cardiac cycle.

5.1.4/ DISCUSSION

In this chapter, we segmented the aorta over the cardiac cycle in patients with
aneurysms by using a method comparable to the one proposed by Bustamante
et al. [102]. Dilated aorta segmentation is more challenging than segmentation on
healthy patients due to image degradation. The reduction in quality is generally
caused by cardiac arrhythmia and extra-systole that affect the acquisition being
ECG-gated with a retrospective gating. Thus, the aim of evaluating this approach
was to contribute to the standardization of automatic 4D aortic segmentation tech-
niques from 4D flow MRI by presenting the segmentation results of a 3D-based
method in a dataset of patients with TAA.

For each time point of the cardiac cycle, the aorta was segmented using a 3D
U-Net model on a magnitude image from 4D flow MRI. By doing so, we avoid the
biases inherent in pre-processing to generate new images from 4D flow MRI, such
as 4D flow-based PCMRA. On our dataset, the method evaluated gives promising
results. The average DSC value computed on 180 volumes was 0.9±0.02, compa-
rable to those obtained by Bustamante et al. [102] (average DSC=0.93±0.03) with
a larger database without this type of pathology. However, as when segmenting
the systole magnitude image frame from 4D flow MRI (section 4.4.2), the same
degradation of performance was observed at the PAAo level. It is important to
note that the way we have constructed our ground truth differs from Bustamante
et al. [102]. In their case, an inter-patient multi-atlas based segmentation method
was used to segment the end of systole and diastole before applying an intra-
patient registration algorithm to segment the other time frames. The quality of
the ground truth generated with this method is related to the parameters chosen
by the user for the registration, which are generally not adequate for all patients.
Segmentation may even fail for some patients, as it was the case for about 4% of
the patients in the database of Bustamante et al. In our case, for all patients, we
segmented manually five time frames and these segmentations were all reviewed
by an expert. In this way, the model’s performance is directly compared to that
of an expert, thus avoiding the propagation of errors from automatic ground truth
generation to the 3D U-Net.
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Concerning 3D PCMRA aortic segmentation methods, Berhane et al. [90]
achieved a slightly better performance than ours, obtaining a median of 0.95 for
DSC. Although segmentation from PCMRA is facilitated by contrast enhancement
between the aorta and the background, the position of the aorta during the cardiac
cycle is questionable. In addition, generating this image can result in PCMRAs
with degradation of aorta shape, mainly at the level of the aortic valve. With our
approach, the lowest performance was in a frame corresponding to diastole. The
low performance was directly related to signal loss during acquisition in the distal
TDAo. However, in this frame, the degradation did not affect the AAo+Arch or
the proximal TDAo, and a low HD were obtained in these regions (Figure 5.5).
Therefore, this result does not affect the subsequent analysis of the maximum
and minimum surface areas at the AAo level.
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Figure 5.5: Patients with the lowest and highest Hausdorff distance a) Slice of the
gray intensity image. b) HD map computed between the manual and automatic
segmentation for the slice of the gray image.

In general, discrepancies between manual and automatic segmentations oc-
curred at the level of the aortic valve or at the level of the the aortic arch (Figure
5.6). In these regions, the differences were generally in the order of five voxels
(for 87% of the samples). This difference is relatively low considering particularly
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the challenges in drawing the valve both manually and automatically. Specifi-
cally, the discrepancies at the level of the aortic valve might be due to the manual
segmentation which is flat at this location. At the level of the aortic arch, the auto-
matic segmentation sometimes includes voxels belonging to the brachiocephalic
arteries. These voxels are considered as segmentation errors since they are not
present in the manual segmentation.
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Figure 5.6: Two patients with the common types of errors at the level of the tho-
racic aorta. The errors occur at the level of the valve for the ascending aorta and
at the level of the brachycephalic vessels for the aortic arch. a) shows for each
patient the manual segmentation superimposed on a slice of the image. b) shows
the automatic segmentation superimposed on the same image slice. c) shows
the automatic segmentation superimposed on the manual one.

Implementing a 3D U-net model to segment the entire cardiac cycle can be con-
sidered a type of data augmentation since the training went from 35 samples (one
per patient) when only the systole was segmented to 175 samples (five per pa-
tient) in this approach. The performance of the two approaches is not entirely
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comparable, but it can be noted that with the 35 samples from systole, 3D-UNet
achieved achieved slightly better results than when trained on 175 samples. This
may be related to the inclusion of more frames belonging to the diastole, in which
the definition of the aortic borders is lower, due to the low blood flow and then the
lack of signal.

For further analysis of the behavior of the segmentation method in the temporal
dimension, its ability to adapt to the different shapes of the aorta during the car-
diac cycle was evaluated. For this purpose, the maximum and minimum surfaces
calculated in 2D+time images extracted from the 4D segmentation was compared
with the ones from 2D+time cine-MRI. Both 2D+time images were located taking
as reference the pulmonary trunk and the maximum and minimum surfaces were
calculated at the AAo. For both surfaces, a strong correlation (correlation coef-
ficients > 0.85) between the two methods was obtained. It should be noted that
the highest difference between the two methods is obtained when computing the
maximum surface area. The t-test with a confidence level of 99% showed no
difference between the minimum surface area calculated from 4d flow MRI and
cine-MRI. However, the t-test performed for the maximum surface showed the
confidence interval to be close to zero but did not include it. This may be related
to the different physiological conditions during acquisition and the kind of imaging
protocol for cine-MRI and 4D flow MRI. In particular, a force is exerted on the tho-
rax by holding the breath during the cine-MRI acquisition. On the contrary, 4D flow
MRI is a free-breathing acquired sequence. Moreover, the temporal resolution of
cine-MRI sequence is better than 4D flow MRI.

Standardization of automatic 4D segmentation of the aorta from 4D flow MRI is
vital to extend the use of this imaging modality. In this sense, with the evaluation
of a similar method to the one proposed by Bustamante et al. [102], we obtained
comparable results for subjects with TAA. Evaluation of the results shows that
the 3D model adapts to the various shapes of the aorta during the cardiac cycle.
This technique of 4D aortic segmentation from 4D flow MRI could contribute to
the expanded use of this imaging in the analysis of pathologies such as TAA. In
addition, the results encourage the exploration of hemodynamic biomarkers. The
4D segmentation allows the generation of biomarkers typically computed using
static segmentation, such as wall shear stress, including bias in the result. Pre-
vious findings show that for 3D image segmentation, a 3D deep learning model
represents spatial features better than 2D and 2.5 models [52]. So, it also raises
the question of whether 4D segmentation benefits from a 4D model that allows to
analyze spatial and temporal information at the same time.





6
4D SEGMENTATION OF THE AORTA
FROM 4D FLOW MRI USING A 4D

DEEP LEARNING MODEL

This chapter covers the 4D segmentation of the aorta using a 4D deep learning
model. The results of the previous chapter showed promising performance for

4D segmentation of the aorta based on a 3D model. However, analyzing the effect
of treating the temporal information provided by 4D flow MRI in the segmentation
process could be interesting. For comparison purposes with the 3D U-Net-based
4D segmentation technique, the segmentation performance was measured with
DSC, HD, and maximum and minimum surfaces at the level of the AAo.

6.1/ 4D DEEP LEARNING

As discussed in the previous chapters, 4D segmentation of the aorta has been
generally addressed using 3D segmentation methods. Although we obtained
promising results with the approach evaluated in the chapter 5, exploring seg-
mentation techniques that consider the temporal information in 4D flow MRI is
necessary. In the 3D medical image segmentation problem, it has been observed
that 3D deep learning models interpret the spatial characteristics of the 3D image
better than 2D and 2.5D models [52]. Based on this, it is necessary to evalu-
ate whether a 4D model benefits the 4D segmentation performance and allows a
better segmentation of challenging image regions.

Segmentations based on 4D deep learning models have rarely been explored.
This is due, in part, to the fact that the deep learning frameworks (e.g. Pytorch
or Tensorflow) have not developed layers for straightforward implementations of
4D models. Furthermore, the generation of 4D ground truth by an expert is a
limitation since it is a highly time-consuming task.

In this chapter, we evaluated the performance of a 4D CNN model in aortic seg-
mentation of patients with TAA using 4D flow MRI magnitude imaging. For this
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purpose, we implemented a modified version of the 4D CNN architecture pro-
posed by Myronenko et al. [87]. They implemented a residual 4D CNN that fol-
lows a conventional encoder-decoder structure for semantic segmentation. The
model is composed of blocks in which convolution operations are performed with
3x3x3x3 kernels along with group normalization followed by the ReLU activation
function. A skip-connection follows each block. In the encoder path, convolu-
tions with stride two are used to reduce the spatial resolution of the output and
move to the following representation level in the model. In this step, the dimen-
sion of the feature maps is doubled. One block is used for level zero, two blocks
for level one, and four blocks for level two (Figure 6.1). In the segmentation task
addressed by Myronenko et al. [87] the input 4D images were composed of 16
frames with a spatial resolution of 96x96x64 voxels. Thus, the smallest spatial
resolution achieved with the initially proposed model was 24x24x16. In the de-
coder path, only one block is used for each level, and the up-sampling operation
is performed with 4D nearest-neighbor interpolation after a 1x1x1x1 convolution.
In addition, skip connections are used between the levels.

The objective of the architecture modification was to reduce the computation time
without affecting the predictive capacity of the model. Thus, to reduce the num-
ber of parameters of the initially proposed model, we eliminated level two of
the encoder path. Considering that the spatial resolution of our input images
is 73x88x22 voxels, the smallest spatial resolution achieved is 37x44x11 voxels
(Figure 6.2). The 323,274 trainable parameters with the original model were re-
duced to 115,162 with the proposed modification. Regarding computational time,
the training time for each patient was reduced by 8.86%. Thus, for the leave-one-
out strategy, the training on the entire database took about six days less.

In our 4D segmentation strategy based on a 3D model presented in chapter 5, it is
only possible to use for training the frames for which a manual segmentation has
been generated, and manually labeling all frames over the cardiac cycle is unfea-
sible. Myronenko et al. [87] defined a sparse loss function for the training of the
original model. The purpose of this function is to allow the inclusion of unlabeled
frames during training to take advantage of the inclusion of all temporal informa-
tion. The cost function includes a temporal regularization that allows the model
to learn temporal correlations while limiting abrupt changes over time. In our im-
plementation, a normalized version of the original cost function was implemented
to maintain the range ratio between the chosen metric and the time regularization
term. In the following section, we present the details of the implemented residual
4D CNN network architecture.
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Figure 6.1: Original 4D residual convolutional neural network architecture
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Figure 6.2: Proposed 4D residual convolutional neural network architecture
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6.1.1/ 4D NETWORK FUNDAMENTALS

In the implementation of the 4D residual CNN network model, oversampling, con-
volution and normalization operations are performed in the different layers of the
architecture. Model implementation was performed in Pytorch, and this section
describes how existing tools in this framework were adapted to construct the 4D
deep learning model.

6.1.1.1/ CONVOLUTIONS 4D

In a 4D convolutional layer l, let Xl−1 ∈ Rnt x nh x nw x nd be the input feature maps of
four dimensions, nt represents the size of the temporal dimension and nh, nw, nd

the spatial resolution. Let Kl ∈ Rkt x kh x kw x kd be the kernel used in the convolution
process. The 4D convolution is performed from the native Pytorch 3D convolution
operation nested in two loops, as shown in the algorithm 1.

ALGORITHM 1: 4D convolution with native 3D convolution
Input : Xl−1 ∈ Rnt x nh x nw x nd – Input feature maps

Kl ∈ Rkt x kh x kw x kd – Kernel

pt – padding applied to each side of the temporal dimension

rt – Stride for the temporal dimension (rt ∈ N∗)

Output: Xl ∈ Rdt x dh x dw x dd – Output feature maps

1 Xl[dt, dh, dw, dd, dc] = 0

2 limitsup = floor((nt + ptx2 − kt)/rt + 1)

3 for i← 0 : kt do

4 for j← 0 : nt + ptx2 do

5 out indext = j − (i − floor(kt/2)) − floor(nt + ptx2 − dt)/2 − (1 − kt%2))

6 if out indext < 0 or out indext >= limitsup then

7 continue

8 end

9 Xl[out indext :] + = Conv3D(Xl−1[ j :],K[i :])

10 end

11 end
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Figure 6.3: Representation of 4D convolution based on 3D convolutions. The representation shows the convolution of a 4D
image Xl−1 with padding and a kernel K of size 3x3x3x3. The symbol ∗ represents the 3D convolution operation between a
frame and one of the temporal components of the kernel.
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6.1.1.2/ GROUP NORMALIZATION

In neural network implementation, batch normalization (BN) is a widely used tech-
nique to facilitate optimization and hence model convergence. During the batch
normalization process, the feature maps of a mini-batch are normalized using the
mean and variance calculated on it. Despite the advantages of applying BN, it
has been found that the statistics are inaccurate when the batch is small. Thus,
decreasing the batch size results in an increase in the error. A large batch size
in training consumes a lot of memory. Considering a 4D CNN model, using large
batch size is not possible. Therefore, a group normalization (GN) technique was
used in the implemented architecture. In the GN process, the channels are di-
vided into groups within which statistics are calculated, and normalization is per-
formed across these groups. Figure 6.4 represents the BN and GN processes.

Merged spatial 
dimensio (H,W)

Merged spatial 
dimensio (H,W)

Merged spatial 
dimensio (H,W)

Channels C Channels C Channels C

Mini-Batch samples N Mini-Batch samples N Mini-Batch samples N

Layer Norm Batch Norm Group Normalization

Figure 6.4: Representation with 2D data of the group normalization process

6.1.1.3/ UP-SAMPLING 4D

Sampling operations are used in image processing to change the resolution of the
images. Due to the computational cost of deep learning models, particularly 4D
models, this technique is used to reduce the output of the layers while keeping
the relevant information. In the implemented model, the down-sampling in the
encoder path is performed with a stride two convolution. Then, to retrieve the
original resolution in the decoder path, it is necessary to use a 4D up-sampling
operation. The 3D nearest-neighbor interpolation was applied twice in each of the
temporal dimension frames. Thus, the image size is recovered both spatially and
temporally.
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ALGORITHM 2: 4D up-sampling with native 3D up-sampling
Input : Xl ∈ Rdt x dh x dw x dd x dc – Input feature maps

f – scaling factor for up-sampling operation

Output: Xl
up ∈ Rdtxf x dhxf x dwxf x ddxf – Output feature maps

1 Xl
up[dtxf, dhxf, dwxf, ddxf] = 0

2 t factor = dt / dtxf

3 for i← 0 : dtxf do

4 input indext = floor(i x t factor)

5 Xl
up[i :] = upsample nearest3D (Xl[input indext :], f)

6 end

6.1.1.4/ SPARSE LOSS FUNCTION

The loss function used for training the 4D residual CNN is considered sparse be-
cause it uses sparse labeled data in the time dimension. Thus, it is possible to
include during the training of the model the 25 frames of each 4D flow MRI image
to take advantage of the temporal information during the cardiac cycle. We pro-
posed a normalized version of the loss function originally proposed by Myronenko
et al. [87]. The normalized loss function allowed us to obtain proportional ranges
of the error contributed for each part that composes it (i.e., Dice loss and time
regularization). Equation 6.1 shows the proposed normalized loss function.

L = λ1 ∗

∑
i∈label D(pi

true, p
i
pred)

#label
+ λ2 ∗

∑t−2
i=0(
∥∥∥∥pi+1

pred − pi
pred

∥∥∥∥)/(h x w x d)

t − 1
, (6.1)

where λ1 +λ2 = 1. D represents the soft Dice loss between the target ptrue and the
prediction ppred over the labeled frames images in the 4D flow MRI. t represents
the total number of frames acquired over the cardiac cycle (25 in our case) and h,
w, and d the spatial resolution. The soft Dice loss function is defined by equation
6.2

D(ptrue, ppred) = 1 −
2 ∗
∑

ptrue ∗ ppred∑
p2

true +
∑

p2
pred + ε

, (6.2)

where ϵ is a small value included for numerical stability, in our case, ϵ = 1e−6. ptrue

and ppred represent the manual segmentation and the segmentation generated by
the network, respectively.
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6.2/ 4D RESIDUAL CNN SETUP

The training of the proposed 4D CNN model is memory-consuming. So, the im-
ages were resized to train the model without exceeding the memory limits of the
NVIDIA Tesla V100 GPU. We started cropping or padding the images based on
the median image size of all patients for the x and y axes and the maximum size
on the z-axis. Then, the spacing of the image was modified from 2x2x2 mm3

to 4x4x4 mm3, obtaining images of 73x88x22x25 voxels as input to the model.
Thus, the voxel-wise predictions per patient was reduced from 28,265,600 voxels
to 3,533,200 voxels.

The hyperparameters of the model were established by taking as reference the
parameters reported for the original model. Thus, we guarantee the training’s
convergence while simultaneously avoiding increasing the computational time by
performing an exhaustive search for the best set of hyperparameters. In partic-
ular, each model was trained for 500 epochs, with an initial learning rate of 1e−3.
A learning rate scheduler strategy was adopted to decrease the learning rate by
10 when validation loss stops improving for 50 epochs. Given the capacity of the
used GPU, the batch size was set to four.

As mentioned above, there are two parts in the cost function, each part can be
weighted to increase or decrease its contribution during training. Myronenko et
al. [87] established a balanced contribution of both terms. Here, we evaluated
the influence of establishing different contributions between the two terms by in-
cluding the parameter λ in the equation. For this purpose, we set a value for λ1

between zero and one and λ2 is equal to 1−λ1. Then, five trainings with the leave-
one-patient-out strategy were performed by assigning to λ1 a value equal to 0.1,
0.2, 0.3, 0.4, or 0.5.

All the automatic segmentations were post-processed frame by frame with a mor-
phological opening filter to smooth out irregularities. A ball structuring element
of radius 1 mm was used. In addition, the largest connected component was
identified and selected as the final aorta segmentation.

To compare the results of the 4D CNN model with those obtained in chapter 5, the
maximum and minimum surface areas in a plane perpendicular to the ascending
aorta were calculated in the same way. Pearson correlation of the minimum and
maximum surface area values obtained from 4D flow MRI and 2D cine-MRI were
calculated, and after testing the normality of the samples with the Shapiro-Wilk
test, a paired sample t-test was performed to assess the statistical significance
of the measured surfaces. In addition, a one-sample t-test was performed with
the differences measured between the surfaces from 4D flow MRI and from cine-
MRI. A mean equal to zero is assumed as the null hypothesis. As in the previous
chapter, t-test was performed at both 95% and 99% confidence levels. Finally, the
maximum and minimum surface areas were compared using the Bland-Altman
analysis.
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6.3/ 4D CNN SEGMENTATION RESULTS

The training performance curves for three patients with the original model and
the proposed model using the same setup are showed in Figures 6.5-6.7. It is
important to note that for the three patients, after reaching stability the validation
error was lower with the proposed model than with the original one. It can be
seen that the performance is comparable and convergence is achieved with both
models. A trade-off between bias and variance (Figure 2.3) is obtained even when
the second level is removed from the original architecture. The difference in the
validation error obtained between the original and proposed models was around
0.01 for two patients and 0.03 for the third one. In particular, Figure 6.7 shows the
positive influence of reducing the complexity of the model. For this patient, the
variance is increased when the original model is used.

Original 4D residual CNN Proposed 4D residual CNN

Training 
Validation

Training
Validation

Training
Validation

Training
Validation

Sparse Dice loss Sparse Dice loss

Dice Score Dice Score

Figure 6.5: Performance of the original and proposed model for patient one

As in the previous chapters, the performance of the 4D CNN model was measured
locally and globally with the DSC and the HD. Table 6.1 shows the segmentation
result obtained with the different values of λ1 tested. The best average perfor-
mance in the database was obtained by giving a higher contribution to the time
regularization parameter in the cost function. Precisely, when λ1 = 0.4 and λ2 = 0.6
were set. Thus, the best overall average DSC obtained was 0.85 ± 0.03, and the
best overall average HD was 30.79 ± 29.58. As in the 3D and 4D segmentation
methods evaluated in previous chapters, the abdominal aorta is the region with
the lowest performance. Considering only the thoracic aorta, an average DSC
and HD of 0.86 ± 0.04 and 15.66 ± 13.93 were obtained, respectively (Table 6.2).

Compared to the 4D segmentation results obtained from the segmentation ap-
proach applied in chapter 5, poorer results are obtained for both metrics with the
4D CNN model. The prediction time with the trained model is about one minute.
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Training
Validation

Original 4D residual CNN Proposed 4D residual CNN

Sparse Dice loss Sparse Dice loss

Dice Score Dice Score

Training
Validation

Training
Validation

Training
Validation

Figure 6.6: Performance of the original and proposed model for patient two

Training
Validation

Training
Validation

Training
Validation

Training
Validation

Original 4D residual CNN Proposed 4D residual CNN

Sparse Dice loss Sparse Dice loss

Dice Score Dice Score

Figure 6.7: Performance of the original and proposed model for patient three

It is important to recall that machine learning algorithms benefit from a large num-
ber of training samples. As shown in the analysis of the influence of the amount
of training data (section 4.5.2), the 3D U-Net model has the potential to achieve
higher performance in aortic segmentation by increasing the number of training
samples. Then, 4D CNN could have a lower performance than the 3D U-Net
model because the first one is trained with 35 samples and the latter with 175
samples.

For a fairer comparison of 4D CNN performance in terms of number of training
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Figure 6.8: 4D CNN and 3D U-Net automatic segmentation results for three pa-
tients in a frame of the diastolic phase.

samples, the 3D U-Net model was trained again on 35 samples using leave-one-
out validation. For this purpose, the diastolic cardiac phase (frame one) was used
as labeled image since, for each patient, at least three of the five segmented
frames for 4D CNN training belong to this cardiac phase. This statement is based
on the fact that the 4D flow MRI acquisition begins at the end of the ventricular
diastole. Systole appears in the first frames of the sequence, and since it lasts for
about 30% of the cardiac cycle, it rarely appears in frame 15 and frames 20, and
25 certainly belong to diastole.

Table 6.2 shows the segmentation result of 4D CNN and 3D U-net in frame one,
corresponding to the diastole. In addition, the average performance of 4D CNN
between the 5 frames is presented. From the results it can be seen that the
segmentation performance of 4D CNN and 3D U-net in frame one is comparable
with respect to HD and slightly better with U-net with respect to DSC. Particularly,
at the PPAo level an improvement is seen in the segmentation performed with 4D
CNN. This improvement can also be seen reflected in the average HD obtained
in the whole aorta.
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Table 6.1: Average performance of the 4D residual CNN with different weights for
the loss function.

λ1
AAo + Arch TDAo PAAo GLOBAL

DSC HD [mm] DSC HD [mm] DSC HD [mm] DSC HD [mm]
0.1 0.85±0.13 15.93±20.35 0.85±0.05 11.05±12.38 0.68±0.19 25.81±21.76 0.84±0.06 36.28±34.15
0.2 0.87±0.03 13.55±8.6 0.83±0.14 10.9±12.72 0.68±0.22 21.62±18.35 0.84±0.06 33.72±34.41
0.3 0.86±0.07 13.77±12.65 0.85±0.05 12.76±14.09 0.63±0.23 28.22±25.58 0.84±0.04 40.86±37.79
0.4 0.87±0.03 12.34±6.87 0.85±0.04 10.75±13.51 0.69±0.18 23.15±18.26 0.85±0.03 30.79±29.58
0.5 0.87±0.04 12.31±5.7 0.84±0.05 11.55±14.54 0.69±0.18 25.56±20.46 0.84±0.04 33.86±31.99

The automatic segmentation of the aorta with the different deep learning models
can be generated with two connected components due to, for example, signal
loss at the boundary between TDAo and PAAo. With the post-processing applied
to the segmentation the smaller connected component representing the aorta
is eliminated. For this reason, during the calculation of the metrics, patients in
whom the automatic segmentation for the evaluated region was not present were
tracked. With both 4D CNN and 3D U-Net, the PAAo of patients 11 and 13 were
generated in a connected component that was removed in post-processing. Ad-
ditionally, with 3D U-Net this same problem occurred for patient 36. Figure 6.8
shows the rendering of the automatic segmentation for these three patients. It
can be noticed that despite the problem described above, for patient 11 4D CNN
defines better than 3D U-Net the abdominal aorta. Moreover, 4D CNN segmen-
tation for patient 36 was generated with a single connected component without
disconnection at the level of the distal TDAo. It is important to mention that 3D
U-Net trained with 35 samples increased this type of problem since when trained
with 175 samples, only one of the frames from patient 13 was poorly segmented
at the PAAo.

The maximum and minimum surfaces obtained from 4D flow MRI and cine-MRI
showed a high correlation with a correlation coefficient r of 0.80 and r = 0.79,
respectively. The regression plots are presented in Figure 6.9.

Figure 6.9: Correlation of the maximum and minimum surface calculated from
cine-MRI and from 4D flow MRI. r is the correlation coefficient obtained between
the surfaces.

The paired t-test with 95% confidence level showed a difference between the max-



6.3. 4D CNN SEGMENTATION RESULTS 101

Table 6.2: Average performance of the 4D residual CNN and 3D U-Net trained on
35 samples

Model
Local performance of the models

AAo+Arch TDAo PAAo
DSC HD [mm] DSC HD [mm] DSC HD [mm]

4D CNN
5 frames 0.87±0.03 12.34±6.87 0.85±0.04 10.75±13.51 0.69±0.18 23.15±18.26

4D CNN
Frame 0 86.05±0.05 12.4±4.90 0.85±0.04 10.07±11.56 0.74±0.01 19.51±13.67

3D Unet
Frame 0 0.89±0.04 11.03±6.01 0.87±0.03 9.08±8.73 0.76±0.14 20.55±19.89

Model
Global performance of the models

Thoracic aorta Whole aorta
DSC HD [mm] DSC HD [mm]

4D CNN
5 frames 0.86±0.04 15.66±13.93 0.85±0.03 30.79±29.58

4D CNN
Frame 0 0.86±0.04 14.75±10.76 0.85±0.04 27.57±27.6

3D Unet
Frame 0 0.88±0.03 13.36±9.25 0.87±0.03 29.02±29.92

- AAo+Arch = Ascending aorta and aortic arch
- TDAo = Thoracic descending aorta
- PAAo = Proximal abdominal aorta

- Thoracic aorta = AAo+Arch and TDAo
- Whole aorta = AAo+Arch, TDAo and PAAo

Figure 6.10: Bland-Altman plots of the maximum and minimum surface areas
obtained at the level of the ascending aorta during the cardiac cycle.

imum and minimum surface area values obtained with 4D flow and cine-MRI. A p-
value of 0.0094 [CI: -164.35 -24.74] was obtained for the maximum surface areas.
When comparing minimum surface areas, a p-value< 0.0001 [CI: 108.99 259.07]
was obtained. With a 99% confidence level, a p-value=0.0094 [CI: -188.26 -0.82]
and a p-value< 0.0001 [CI: 83.29 284.77] were obtained for the maximum and
minimum surface area, respectively.
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6.4/ DISCUSSION

This chapter presents the results of aortic segmentation from 4D flow MRI using
a 4D deep learning model. The benefits of using deep learning models that take
advantage of information from different image dimensions have been shown in the
literature, but 4D models have been rarely explored due to the lack of frameworks
for direct implementation. This is the first time a 4D deep learning model has
been tested for the segmentation of the aorta from 4D flow MRI.

Recently, to segment 4D medical images, Myronenko et al. [87] proposed a 4D
CNN. In particular, they segmented the left ventricle and myocardium from 4D
Coronary computed tomography angiography (CCTA). The performance achieved
with the 4D CNN was comparable to that obtained with a 3D model for the DSC
metric and better concerning a temporal smoothness metric. In applications such
as object tracking through 4D optical coherence tomography (OCT), Bengs et
al. [89] have shown that compared to the 3D CNN-based approach, 4D CNN
decreased the object localization error by 30%.

For the implementation of 4D segmentation method, the generation of ground
truth in 4D is a challenging task. Although automatic and semi-automatic tech-
niques can be adopted for ground truth generation, a careful review is recom-
mended to avoid propagating errors. Moreover, a direct comparison with a human
is preferable because it allows exploring the possibility of replacing a segmenta-
tion from an expert with an automatic one. Due to the difference in the amount
of training data used in the 4D segmentation strategy using 3D U-Net and 4D
segmentation using 4D CNN, a direct comparison between the results is biased.
So, the 3D U-Net is expected to present a better performance, verified with the
segmentation metrics and the maximum and minimum surface analysis.

When a fair comparison is made regarding the number of training samples and
cardiac phase used in training 4D CNN and a 3D U-Net models, it was observed
that the segmentation performance with 4D CNN is better concerning HD at PAAo
and the whole aorta. The post-processing techniques performed are necessary
due to the need to smooth the results and eliminate small spurious spots that can
dramatically affect the metrics. However, with the post-processing performed, for
the patients in which the generated segmentation has two connected components
(usually TAo and PAAo), the PAAo is eliminated in the final segmentation. For this
reason, three cases were further analyzed before post processing to understand
the differences in the segmentations produced with 4D CNN and 3D U-Net for
diastole segmentation (Figure 6.8). With this analysis, we found that the aorta for
two patients is approximately equally or better defined using 4D CNN. For the third
patient (patient 36), 4D CNN obtained a segmentation with a single connected
component, and in contrast, 3D U-Net disconnected the abdominal aorta. From
these results, we hypothesize that indeed the 4D CNN model could potentially
improve and maybe outperform a 4D segmentation based on a 3D U-Net model.
Using only 35 training samples, we evidenced its ability to better represent the
shape of the aorta in regions prone to errors due to irregular shapes or image
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degradation.

The 95% confidence t-test and the 99% confidence level showed differences in
calculating the maximum and minimum surface areas from 4d flow MRI and cine-
MRI. This suggests that the performance of 4D CNN should be improved to obtain
an average score that does not differ significantly between the two modalities.





7
CONCLUSION AND PERSPECTIVES

Our work aimed to develop methods of automatic segmentation of the aorta from
4D flow MRI to extend the use of this sequence in the study of thoracic aor-
tic aneurysms. Currently, the decision to surgically intervene in an aneurysm is
made mainly based on the size and growth rate of the aneurysm. However, it
has been shown that these parameters are necessary but not completely reliable
and that new and better biomarkers should be found and analyzed for personal-
ized diagnoses. Thus, the extension of 4D flow MRI may contribute to generating
hemodynamic biomarkers to analyze fluid-structure interactions.

For the development of this work, 36 4D flow MRIs of patients included in the
MECATHOR project were used. For each patient, a manual 4D segmentation
was generated due to the lack of public 4D flow MRI databases for training and
evaluating automatic segmentation algorithms.

Initially, multi-atlas-based and deep learning-based segmentation were evaluated
in the aorta segmentation in a systolic phase image since it provides a better
contrast of the aorta. The performance of both methods was evaluated with met-
rics widely used in the image analysis field: the Dice similarity coefficients and
the Hausdorff distance. Additionally, the ability of each method to obtain robust
wall pressure values compared to those obtained with manually generated mod-
els was evaluated. This biomarker was selected because it is less sensitive to
changes in the segmentation and is a relevant index for understanding the evo-
lution of the aneurysm since high wall pressure corresponds to high intramural
stress exerted on the wall. From these results, we concluded that the U-Net 3D
deep learning model is the most suitable for automatic segmentation of the aorta
in the systolic phase. Based on this conclusion, the path to aortic segmentation
throughout the whole cardiac cycle using deep learning was established.

The first 4D segmentation approach implemented was based on the 3D U-Net
model used to segment the systolic phase. For this purpose, the five manually
segmented frames for each patient were used to train the model. Compared to
the previous training, this strategy can be seen as a type of data augmentation
because instead of feeding the model with a single frame for each patient, five
frames are provided for each, in which the shape of the aorta changes slightly.
Nevertheless, increasing the number of patients in the database is recommended

105
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to include more anatomical variability. Although this approach treats the frames
of each patient as independent instances, the segmentation performance showed
the feasibility of its use for 4D aortic segmentation of patients with TAA. In addi-
tion, a strong correlation of the maximum and minimum surfaces extracted at the
level of the ascending aorta with those calculated with cine-MRI was established.
The above may give us an idea of the ability of 3D U-Net to adapt to the different
shapes of the aorta during the cardiac cycle. In future works, attention mecha-
nisms can be evaluated in the 3D-UNet model, such as the one proposed by Zhou
et al. [101], to prioritize the most informative features for segmentation.

The 4D segmentations of the aorta derived from this segmentation approach
should be further evaluated in the calculation of biomarkers in order to study their
relationship with the progression of thoracic aortic aneurysms. For the cohort
of patients in the MECATHOR project, Lin et al. [105] studied the biomechanical
properties of the aorta. In particular, the thickness and pre-failure stiffness of the
aortic wall were measured by quadrants (anterior, lateral, posterior and medial).
Later, the relationship between the pre-failure stiffness with risk factors such as
aortic diameter, type of valve or age was established. This result could be stud-
ied to analyze the link of the flow patterns and hemodynamic biomarkers with
the biomechanical properties reported from the ex-vivo study of the human aortic
wall. The MECATHOR project aims to study the thoracic aorta, particularly the
ascending aorta. The segmentation results in this region were better than those
obtained when the entire aorta was considered. However, it is necessary to im-
prove the segmentation of the aortic valve. For simulation purposes, approaches
that model the valve or are designed to analyze the ascending aorta after junction
may be considered.

The second approach applied for 4D segmentation of the aorta was based on a
proposed 4D CNN model. Overall, the 4D segmentation of the aorta based on
3D U-Net presented a better performance. However, the 4D model is affected by
the reduced number of training samples. Comparable performance was achieved
when we compared 4D CNN to the 3D U-Net for diastolic segmentation using
the same number of training samples. From the results of this comparison, it
could be concluded that the 4D model can potentially improve its performance
with increasing training samples. Furthermore, by analyzing particular cases, it
seems that treating temporal information with the 4D CNN model contributes to
a better segmentation of particularly challenging regions such as the abdominal
aorta. Further evaluation of this model can be addressed in the future by including
more patients in the database. In addition, a patch-based training strategy could
be evaluated [58]. Although this strategy increases variability, for example in the
location of the organ of interest in the image, its impact and benefit as a data
augmentation strategy should be addressed.

The results obtained with deep learning models in segmenting the aorta from 4D
flow MRI also encourage the exploration of other models, such as Long short-
term memory (LSTM). In a previous study, Gao et al. [73] explored this model for
segmenting the brain from MRIs acquired in a longitudinal study. Together these
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images are viewed as a 4D sequence. Moreover, the use of transform networks
such as those proposed by Dhamija et al. [103] for medical image segmentation
could be considered. These models use local and global features by combining
transformer-based and convolution-based encoders to improve the segmentation
quality.

As for the time required for segmenting a new patient, 4D CNN needs about 50
seconds more than 3D U-Net. However, at the current research stage, both times
are acceptable to obtain a 4D segmentation. A graphical user interface will be set
up in the future for a straightforward implementation of the proposed methods by
the different members of the research team.

The database should be augmented to include anatomical variability in the algo-
rithms and increase their predictive capacity, but also to analyze the performance
in healthy patients or on images taken in several centers. Moreover, for a more
accurate evaluation of automatic segmentation methods and a fair comparison
with expert segmentation, the reasons for the significant differences between ob-
servers should be reviewed in detail. Although rules were initially established to
try to cover possible biases, the differences were large at the level of the valve
and abdominal aorta.

One of the reasons for noise presence in 4D flow MRI is the artifacts generated by
patient motion during acquisition. 4D flow MRI is affected by this type of problem
because the acquisition time is high compared to sequences such as 2D cine-MRI
or MRI angiography. As a long-term work, a new 4D acquisition flow technique
based on compressed sensing could be used. This technique can reduce the
acquisition time by a factor of three to four. Another possible long-term work
is the extension of the applied methods to 4D flow MRI images targeted at the
abdominal aorta. Furthermore, the segmentation methods could be extended to
similar applications that require segmentation from 4D flow MRI. For example, the
study of pathologies in the pulmonary artery or heart.
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A
ADDITIONAL INFORMATION

A.1/ TOPOLOGICAL LOSS FUNCTION FOR DEEP-
LEARNING BASED IMAGE SEGMENTATION

A.1.1/ TOPOLOGICAL LOSS FUNCTION USING PERSISTENT HO-
MOLOGY

In patients with low contrast at the level of the abdominal aorta, the segmenta-
tion generated by the different deep learning models represented the aorta as
two disconnected components. Recently, James et al. [81] proposed a constraint
on the loss function based on prior information about the desired segmentation
topology. The objective of this approach is to explicitly set during training the topo-
logical features with respect to the number of connected components (β0), number
of holes (β1), and number of hollow voids (β2) in the object to be segmented. The
topological features of an image are found by generating simplicial complexes
with different groups of pixels, chosen by a threshold in the intensity values to be
used. A simplicial complex is a set composed of points, line segments, triangles,
and their n-dimensional counterparts A.1.

Figure A.1: Representation of simplicial complex in different dimensions.
Thus a 0-simplex is a point, a 1-simplex is a line segment (between two
zero simplices), a 2-simplex is a triangle (with three 1-simplices as “faces”),
and a 3-simplex is a tetrahedron (with four 2-simplices as “faces”) Credit:
https://umap-learn.readthedocs.io
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To find the topology of an image, cubical complexes are generated from the data,
in our case, from the probability map generated by the deep learning model. A
cubical complex is a set of points, unit line segments, unit squares, cubes, hyper-
cubes, etc. To initiate this approach, the topological features of the objects to be
segmented must be defined. For example, if you want to segment the numbers
from 0 to 9 contained in the images of the MNIST database, you must define the
topology of each number:

• Numbers 1, 2, 3, 4, 5 and 7→ β0 = 1, β1 = 0

• Numbers 6, 9 and 0→ β0 = 1, β1 = 1

• Number 8→ β0 = 1, β1 = 2

As the images are 2D, only the first two topologies need to be defined. That is,
for i >= 2, βi = 0. The following figure shows the process of constructing cubical
complexes on an image containing the number 0.

Figure A.2: Image of the number zero from which the topological features will be
extracted by means of the cubical complexes. The image on the right represents
the intensity values of the image.

Features β0 and β1 are searched in a set of pixels in the image denoted with an
intensity threshold. A threshold equal to 3 is set to start.

Considering values lower or equal to three, five connected components are iden-
tified. A threshold equal to seven is then established.

With a threshold equal to seven, only one connected component remains. The
start and end of the features are represented by a dot at the ends of the line. In
topology, this start and end are called the birth and death of the features. Thus,
five features are born with a threshold equal to three, and when the threshold is
raised to seven, four of the features die. To continue the process, a threshold
equal to ten is set.

When the threshold is set equal to ten the connected component remains and in
addition a second level feature appears (β1), represented by a dashed line. Then,
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Figure A.3: Representation of the five connected components found with a thresh-
old equal to three.

Figure A.4: Representation of the topological features with a threshold equal to
seven.

the threshold can be changed until the maximum intensity in the image is reached.
The barcode diagram representing the features is known as persistence barcode.
The relevant features in this barcode are those that persist for the different tested
thresholds or for most of them. In our example, a barcode representing the de-
sired topology of the number zero would have only one line appearing around the
first filtering threshold and maintained until the end.

After the barcode calculation using the probability map generated with the deep
learning model, the objective of the constrained cost function (Topoloss) is to
reduce the number of irrelevant features until a ”perfect” barcode is obtained. The
mathematical definition of the Topoloss cost function is given by equations A.1
and equations A.2.

Lk(βk) =
βk∑
l=1

(1 −
∣∣∣bk,l − dk,l

∣∣∣) + ∞∑
l=βk+1

∣∣∣bk,l − dk,l

∣∣∣2 (A.1)

where, b and d represent the birth and death of bar l.

Ltopo =
∑

k

Lk(βk) (A.2)

This loss function can be implemented during the training process as a semi-
supervised framework or as a post-processing step on the final prediction pro-
vided by the network. In post-processing, the network f is trained in a supervised
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Figure A.5: Representation of the topological features with a threshold equal ten.

way on the training set. The weights ω obtained minimize the loss function, e.g.,
Dice loss. Then, the topoloss function is optimized on the test examples, creating
a set ωn of updated weights. For each image Xn in the test set, the cost function
is as expressed in equation A.3

L(Xn;ω,ωn) =
1
V
| f (Xn, ω) − f (Xn, ωn)|2 + λLtopo(Xn, ωn) (A.3)

Where V is the number of voxels in the image Xn. This post-processing finds the
weights that allow the topology to be modified and corrected taking into account
the prior information provided.

In the semi-supervised framework, the network is trained on a subset of images
with their respective labels (Xl, Yl), but a set of unlabeled images (Xu) with a
defined topology is also used. For the labeled images, a loss function such as
the Dice loss can be used, and for the unlabeled images, the topoloss is used, as
seen in equation A.4.

L(Xl, Xu;ω) =
∑

Xl

LDice(Xl, ω) + λ
∑
Xu

Ltopo(Xu) (A.4)

A.1.2/ POST-PROCESSING OF AORTIC SEGMENTATION USING

TOPOLOSS

The topoloss cost function was used to post-process the segmentations gener-
ated in the systolic phase by the 3D U-Net model (section 4.4). Thus, we aimed
to restrict the number of components generated by the model to represent the
aorta in patients with signal loss in the image. For example, when signal loss was
observed for some patients at the distal descending aorta or the abdominal aorta.
The topology of the aorta in 3D corresponds to a connected component without
loops and without hollow voids. Then, the topological features, β0 = 1, β1 = 0,
and β2 = 0, were defined. These features define the prior knowledge we have got
about the topology of the object to be segmented.

For the implementation of topoloss as a post-processing strategy, several values
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of λ were tested (λ = 0.0001, 0.0003, 0.0004, 0.0005, 0.001, 0.003, 0.004, 0.005). In the
post-processing framework, it is also necessary to define the number of iterations,
i.e., the number of times the model weights have to be updated. The number of
iterations was set to 60, and during the process, the performance was evaluated
at iterations 10, 30, and 60 using the DSC and the HD.

To evaluate the performance of the model’s constraint strategy, two patients were
used, one of them with signal degradation at the abdominal aortic level. For evalu-
ating this approach, the TopoLayer implemented in Pytorch by Brüel-Gabrielsson
et al. [93] was used.

A.1.3/ SEGMENTATION RESULTS FROM POST-PROCESSING WITH

TOPOLOSS

In the systolic phase segmentation pipeline, post-processing was applied. The
post-processing included the identification of the largest object in the segmen-
tation followed by a morphological opening operation. Topoloss was applied di-
rectly at the model output per each patient. The results obtained were compared
with those obtained from the initial segmentation of the model and from the post-
process segmentation without topoloss (Table A.3). For the patient with degra-
dation at the level of the distal thoracic aorta, the best segmentation result with
topoloss was obtained with λ = 0.0004 in 30 iterations (Table A.2). For the other
patient included in the analysis, the best segmentation result with topoloss was
obtained with λ = 0.005 in ten iterations (Table A.1).

Compared to U-Net prediction results, topoloss significantly improves HD for the
patient with image degradation at the distal thoracic aorta (patient 1). This im-
provement occurs because the method manages to eliminate a component that
does not belong to the aorta (Figure A.6). However, obtaining a single component
including the thoracic and abdominal aorta was impossible using the topoloss.
Compared to the post-processing pipeline applied without topoloss, the results
of topoloss are much better, but this is due to the fact that the connected com-
ponent representing the abdominal aorta is removed when the main component
search is applied. For patient four, the HD obtained with the topoloss-based post-
processing is considerably better with respect to the initial prediction with U-Net.
However, the improvement with the post-processing based in the identification of
the largest object and the opening is around 2 mm only.

A.1.4/ CONCLUSION

With the post-processing approach based on topoloss, it was observed that it
is possible to improve the segmentation and reduce the HD with respect to the
initial prediction. Although post-processing with topoloss could not unite the com-
ponents that are part of the aorta, it was possible to eliminate components that
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Table A.1: Post-processing results with topoloss for patient 4

λ
Iteration 10 Iteration 30 Iteration 60

DSC HD [mm] DSC HD [mm] DSC HD [mm]
0.0001 0.89 29.49 0.89 29.49 0.89 29.49
0.0003 0.89 27.74 0.89 28.60 0.89 29.49
0.0004 0.89 29.49 0.89 29.49 0.89 29.49
0.0005 0.89 26.80 0.89 28.60 0.89 29.49
0.001 0.86 26.80 0.88 27.74 0.89 27.74
0.003 0.89 21.33 0.89 21.54 0.89 21.55
0.004 0.89 25.97 0.88 27.09 0.88 27.74
0.005 0.88 9.49 0.88 24.03 0.88 18.01

Table A.2: Post-processing results with topoloss for patient 11

λ
Iteration 10 Iteration 30 Iteration 60

DSC HD [mm] DSC HD [mm] DSC HD [mm]
0.0001 0.82 83.09 0.83 84.79 0.83 83.29
0.0003 0.88 33.19 0.88 38.35 0.88 37.63
0.0004 0.89 34.85 0.88 24.69 0.88 24.69
0.0005 0.88 35.67 0.88 36.77 0.88 36.56
0.001 0.87 38.30 0.87 34.82 0.88 35.06
0.003 0.87 43.66 0.87 50.09 0.87 43.32
0.004 0.84 47.86 0.82 75.20 0.82 80.26
0.005 0.86 29.57 0.82 45.32 0.81 144.31

Table A.3: Segmentation results with U-Net before and after previous pipeline
post-processing.

Approach Patient 4 Patient 11
DSC HD [mm] DSC HD [mm]

U-Net prediction 0.89 29.49 0.88 36.61
U-Net prediction

with ”classical ”post-processing 0.90 11.64 0.82 142.45

do not belong to the aorta without eliminating the abdominal part. From this point
of view, topoloss helps to reduce the bias in metrics generated by removing com-
ponents that belong to the aorta.

From the results, it can be said that the λ value and the number of iterations
that allow performance improvement are different for each patient. The use of
topoloss increases the post-processing time. One iteration can take about one
hour. This is due to the process of finding topological features by building the
cubical complexes. The topoloss computation time makes optimizing λ and the
iterations on the whole database difficult. Thus, it was decided to implement post-
processing based on the main object and opening for cost-benefit. It should be
noted that the framework proposed by Brüel-Gabrielsson et al. is not optimized.
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Figure A.6: Results of manual segmentation compared with automatic segmen-
tation with and without post-processing using topoloss

Improving the future computation time could allow us to extensively evaluate this
approach on 3D images.
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A.2/ AFFINE AND B-SPLINE HYPER-PARAMETERS

SEARCH

Table A.4: Average performance of each set of parameters tested for the affine
transformation

Pyramid Resolutions Metric Bins mean HD std HD mean DSC std DSC
SmoothingImagePyramid 1 AdvancedMattesMutualInformation 16 73.54 26.39 65.63 9.51
SmoothingImagePyramid 1 AdvancedMattesMutualInformation 32 74.33 25.36 63.76 10.23
SmoothingImagePyramid 1 AdvancedMattesMutualInformation 64 83.78 25.52 60.05 10.00
SmoothingImagePyramid 1 NormalizedMutualInformation 16 76.15 25.99 65.63 9.39
SmoothingImagePyramid 1 NormalizedMutualInformation 32 74.11 24.29 63.76 10.24
SmoothingImagePyramid 1 NormalizedMutualInformation 64 82.34 25.65 60.13 9.83
SmoothingImagePyramid 1 AdvancedNormalizedCorrelation 32 86.70 28.57 68.24 7.41
SmoothingImagePyramid 1 AdvancedMeanSquares 32 103.03 32.09 63.35 9.83
SmoothingImagePyramid 2 AdvancedMattesMutualInformation 16 64.24 26.52 69.64 8.14
SmoothingImagePyramid 2 AdvancedMattesMutualInformation 32 62.22 26.62 69.23 8.45
SmoothingImagePyramid 2 AdvancedMattesMutualInformation 64 65.72 23.52 67.00 9.14
SmoothingImagePyramid 2 NormalizedMutualInformation 16 64.82 26.34 69.67 8.08
SmoothingImagePyramid 2 NormalizedMutualInformation 32 62.90 26.62 69.23 8.43
SmoothingImagePyramid 2 NormalizedMutualInformation 64 67.82 23.78 66.84 9.08
SmoothingImagePyramid 2 AdvancedNormalizedCorrelation 32 79.68 26.77 70.27 7.01
SmoothingImagePyramid 2 AdvancedMeanSquares 32 104.22 28.79 65.77 9.35
SmoothingImagePyramid 3 AdvancedMattesMutualInformation 16 64.36 26.27 70.49 7.77
SmoothingImagePyramid 3 AdvancedMattesMutualInformation 32 60.36 25.33 70.63 7.97
SmoothingImagePyramid 3 AdvancedMattesMutualInformation 64 60.34 27.02 69.96 8.10
SmoothingImagePyramid 3 NormalizedMutualInformation 16 64.54 26.46 70.61 7.78
SmoothingImagePyramid 3 NormalizedMutualInformation 32 59.90 24.41 70.69 7.96
SmoothingImagePyramid 3 NormalizedMutualInformation 64 63.01 27.56 69.95 7.99
SmoothingImagePyramid 3 AdvancedNormalizedCorrelation 32 76.92 25.66 70.81 7.07
SmoothingImagePyramid 3 AdvancedMeanSquares 32 105.76 27.96 66.04 10.18
SmoothingImagePyramid 4 AdvancedMattesMutualInformation 16 62.23 26.66 70.70 7.76
SmoothingImagePyramid 4 AdvancedMattesMutualInformation 32 58.96 24.04 70.93 7.73
SmoothingImagePyramid 4 AdvancedMattesMutualInformation 64 60.96 23.39 70.53 7.81
SmoothingImagePyramid 4 NormalizedMutualInformation 16 62.34 26.37 70.72 7.76
SmoothingImagePyramid 4 NormalizedMutualInformation 32 61.68 25.16 70.85 7.78
SmoothingImagePyramid 4 NormalizedMutualInformation 64 61.85 26.78 70.51 7.93
SmoothingImagePyramid 4 AdvancedNormalizedCorrelation 32 77.80 25.54 70.78 6.97
SmoothingImagePyramid 4 AdvancedMeanSquares 32 121.08 29.44 63.23 14.26
RecursiveImagePyramid 1 AdvancedMattesMutualInformation 16 76.21 27.60 64.82 9.85
RecursiveImagePyramid 1 AdvancedMattesMutualInformation 32 79.25 24.46 62.20 10.10
RecursiveImagePyramid 1 AdvancedMattesMutualInformation 64 87.26 26.23 58.68 9.49
RecursiveImagePyramid 1 NormalizedMutualInformation 16 78.22 27.79 64.66 9.82
RecursiveImagePyramid 1 NormalizedMutualInformation 32 78.94 24.07 62.16 10.04
RecursiveImagePyramid 1 NormalizedMutualInformation 64 90.29 27.18 58.69 9.36
RecursiveImagePyramid 1 AdvancedNormalizedCorrelation 32 88.58 28.11 67.28 7.60
RecursiveImagePyramid 1 AdvancedMeanSquares 32 104.61 33.82 61.55 10.76
RecursiveImagePyramid 2 AdvancedMattesMutualInformation 16 61.28 24.49 70.55 7.88
RecursiveImagePyramid 2 AdvancedMattesMutualInformation 32 60.37 26.52 70.60 7.90
RecursiveImagePyramid 2 AdvancedMattesMutualInformation 64 62.22 26.85 69.79 8.08
RecursiveImagePyramid 2 NormalizedMutualInformation 16 62.98 24.81 70.45 7.78
RecursiveImagePyramid 2 NormalizedMutualInformation 32 59.25 25.91 70.53 7.87
RecursiveImagePyramid 2 NormalizedMutualInformation 64 60.32 27.64 69.73 8.16
RecursiveImagePyramid 2 AdvancedNormalizedCorrelation 32 78.01 27.80 70.78 7.02
RecursiveImagePyramid 2 AdvancedMeanSquares 32 107.47 28.35 66.00 10.41
RecursiveImagePyramid 3 AdvancedMattesMutualInformation 16 58.86 24.51 71.18 7.54
RecursiveImagePyramid 3 AdvancedMattesMutualInformation 32 57.59 24.64 71.24 7.67

RecursiveImagePyramid 3 AdvancedMattesMutualInformation 64 55.76 25.18 71.07 7.91
RecursiveImagePyramid 3 NormalizedMutualInformation 16 59.02 24.36 71.18 7.63
RecursiveImagePyramid 3 NormalizedMutualInformation 32 58.04 25.03 71.18 7.65
RecursiveImagePyramid 3 NormalizedMutualInformation 64 57.50 24.41 70.93 7.81
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 75.43 25.92 71.18 6.72
RecursiveImagePyramid 3 AdvancedMeanSquares 32 114.63 28.90 65.01 12.66
RecursiveImagePyramid 4 AdvancedMattesMutualInformation 16 63.21 27.09 71.26 7.41
RecursiveImagePyramid 4 AdvancedMattesMutualInformation 32 58.49 24.73 71.33 7.48
RecursiveImagePyramid 4 AdvancedMattesMutualInformation 64 57.96 26.22 70.95 7.94
RecursiveImagePyramid 4 NormalizedMutualInformation 16 63.74 26.73 71.20 7.39
RecursiveImagePyramid 4 NormalizedMutualInformation 32 63.01 26.84 71.06 7.66
RecursiveImagePyramid 4 NormalizedMutualInformation 64 60.83 28.58 70.77 8.03
RecursiveImagePyramid 4 AdvancedNormalizedCorrelation 32 80.44 29.53 71.01 7.07
RecursiveImagePyramid 4 AdvancedMeanSquares 32 131.16 27.43 59.49 17.49
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Table A.5: Average performance of each set of parameters tested for the B-spline
transformation

Pyramid Resolutions Metric Bins Spacing mean HD std HD mean DSC std DSC
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 10.0, 10.0) 46.83 29.61 85.53 3.94
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 10.0, 16.0) 49.76 29.79 85.12 3.63
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 10.0, 22.0) 50.56 29.74 84.58 3.6
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 10.0, 28.0) 51.21 29.74 84.22 3.62
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 10.0, 34.0) 53.26 30.41 83.88 3.72
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 10.0, 40.0) 53.69 30.75 83.64 3.76
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 10.0, 46.0) 54 30.68 83.37 3.84
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 16.0, 10.0) 42.36 30.18 85.93 3.89
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 16.0, 16.0) 44.34 29.85 85.54 3.63
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 16.0, 22.0) 45.43 29.75 84.96 3.61
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 16.0, 28.0) 47.74 30.92 84.5 3.63
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 16.0, 34.0) 48.96 30.86 84.27 3.67
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 16.0, 40.0) 49.63 30.85 84.06 3.76
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 16.0, 46.0) 50.07 30.97 83.82 3.81
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 22.0, 10.0) 41.71 29.25 86.1 3.91
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 22.0, 16.0) 43.93 28.92 85.66 3.62
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 22.0, 22.0) 46.65 29.16 85.04 3.58
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 22.0, 28.0) 47.86 29.14 84.62 3.57
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 22.0, 34.0) 49.69 29.51 84.29 3.67
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 22.0, 40.0) 50.73 30.04 84.06 3.8
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 22.0, 46.0) 50.69 30.08 83.89 3.88
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 28.0, 10.0) 44.39 29.1 85.83 3.74
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 28.0, 16.0) 46.58 29.16 85.35 3.5
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 28.0, 22.0) 47.59 29.14 84.86 3.52
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 28.0, 28.0) 49.77 28.95 84.41 3.61
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 28.0, 34.0) 53.09 32.1 84.07 3.84
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 28.0, 40.0) 52.93 32.79 83.87 3.85
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 28.0, 46.0) 53.52 33.47 83.7 3.91
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 34.0, 10.0) 42.91 29.57 85.7 3.57
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 34.0, 16.0) 44.58 28.9 85.25 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 34.0, 22.0) 47.27 30.31 84.76 3.49
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 34.0, 28.0) 49.14 30.43 84.3 3.69
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 34.0, 34.0) 51.9 33.42 83.94 3.85
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 34.0, 40.0) 49.71 30.02 83.78 3.83
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 34.0, 46.0) 55.48 33.95 83.45 3.96
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 40.0, 10.0) 44.29 29.75 85.27 3.56
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 40.0, 16.0) 46.55 28.25 84.89 3.36
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 40.0, 22.0) 49.02 29.01 84.35 3.61
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 40.0, 28.0) 51.85 28.27 83.91 3.76
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 40.0, 34.0) 55.17 31.59 83.59 3.98
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 40.0, 40.0) 55.4 30.81 83.4 4.06
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 40.0, 46.0) 56.12 32.07 83.1 4.21
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 46.0, 10.0) 46.9 30.48 84.78 3.63
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 46.0, 16.0) 49.47 29.94 84.42 3.48
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 46.0, 22.0) 52.12 29.4 84 3.69
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 46.0, 28.0) 55.54 31.89 83.61 3.88
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 46.0, 34.0) 57.55 31.68 83.29 3.88
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 46.0, 40.0) 57.38 33.09 83.13 3.89
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (10.0, 46.0, 46.0) 57.54 32.86 82.89 4.04
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 10.0, 10.0) 47.27 26.81 85.71 3.44
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 10.0, 16.0) 48.51 26.26 85.46 3.23
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 10.0, 22.0) 50.04 27.57 84.95 3.16
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 10.0, 28.0) 51.72 27.87 84.5 3.24
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 10.0, 34.0) 51.95 28.14 84.24 3.29
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 10.0, 40.0) 52.11 28.04 84 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 10.0, 46.0) 52.35 27.33 83.77 3.49
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 16.0, 10.0) 40.74 26.43 86.22 3.48
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 16.0, 16.0) 43.32 26.68 85.95 3.3
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 16.0, 22.0) 44.62 26.25 85.48 3.36
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 16.0, 28.0) 46.49 26.41 85.06 3.41
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 16.0, 34.0) 47.5 26.81 84.75 3.46
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 16.0, 40.0) 47.63 27.01 84.53 3.51
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 16.0, 46.0) 48.26 27.09 84.25 3.71
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 22.0, 10.0) 39.77 26.3 86.39 3.48
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 22.0, 16.0) 41.49 26.38 86.06 3.34
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 22.0, 22.0) 43.74 27.28 85.62 3.36
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 22.0, 28.0) 44.45 27.09 85.11 3.48
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 22.0, 34.0) 45.11 27.3 84.89 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 22.0, 40.0) 46.41 27.18 84.63 3.56
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 22.0, 46.0) 47.07 27.11 84.38 3.71
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Table A.6: Average performance of each set of parameters tested for the B-spline
transformation

Pyramid Resolutions Metric Bins Spacing mean HD std HD mean DSC std DSC
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 28.0, 10.0) 40.16 26.09 86.17 3.43
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 28.0, 16.0) 41.53 24.75 85.93 3.25
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 28.0, 22.0) 43.81 26.95 85.46 3.24
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 28.0, 28.0) 44.96 26.42 85.05 3.36
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 28.0, 34.0) 46.01 26.14 84.77 3.48
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 28.0, 40.0) 47.82 26.49 84.52 3.63
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 28.0, 46.0) 47.62 26.66 84.21 3.77
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 34.0, 10.0) 39.49 27.43 86.06 3.3
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 34.0, 16.0) 41.5 25.97 85.74 3.22
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 34.0, 22.0) 43.59 27.88 85.19 3.39
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 34.0, 28.0) 45.11 27.49 84.76 3.6
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 34.0, 34.0) 48.26 30.35 84.51 3.77
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 34.0, 40.0) 49.43 30.67 84.32 3.73
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 34.0, 46.0) 50.43 31.59 84.04 3.93
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 40.0, 10.0) 40.47 27.71 85.7 3.4
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 40.0, 16.0) 42.12 26.2 85.46 3.36
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 40.0, 22.0) 43.86 26.63 84.95 3.44
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 40.0, 28.0) 45.54 27.59 84.53 3.53
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 40.0, 34.0) 46.72 27.33 84.2 3.67
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 40.0, 40.0) 49.72 31.5 83.97 3.78
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 40.0, 46.0) 50.58 31.11 83.68 3.89
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 46.0, 10.0) 43.03 28.24 85.28 3.34
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 46.0, 16.0) 45.1 25.98 85.06 3.16
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 46.0, 22.0) 47.32 27.27 84.6 3.46
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 46.0, 28.0) 51.17 30.95 84.15 3.56
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 46.0, 34.0) 52.4 30.78 83.86 3.62
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 46.0, 40.0) 53.55 31.13 83.66 3.73
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (16.0, 46.0, 46.0) 53.73 30.72 83.43 3.86
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 10.0, 10.0) 47.4 22.79 85.71 3.24
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 10.0, 16.0) 47.95 22.93 85.58 3.01
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 10.0, 22.0) 49.25 22.59 85.13 2.91
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 10.0, 28.0) 49.75 22.84 84.74 2.95
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 10.0, 34.0) 51.05 22.94 84.4 3.06
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 10.0, 40.0) 51.9 22.73 84.22 3.11
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 10.0, 46.0) 51.62 22.83 84.01 3.08
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 16.0, 10.0) 39.43 23.22 86.28 3.15
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 16.0, 16.0) 43.62 23.68 85.49 3.26
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 16.0, 22.0) 43.6 22.77 85.59 3.05
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 16.0, 28.0) 43.39 23.31 85.09 3.22
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 16.0, 34.0) 45.23 23.58 85 3.06
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 16.0, 40.0) 45.55 22.49 84.81 3.11
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 16.0, 46.0) 46.66 23.14 84.48 3.24
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 22.0, 10.0) 39.56 27.43 86.03 3.49
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 22.0, 16.0) 39.89 25.07 86 3.37
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 22.0, 22.0) 41.96 25.28 85.49 3.03
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 22.0, 28.0) 44.16 25.33 85.38 3.14
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 22.0, 34.0) 45.15 25.02 85.06 3.24
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 22.0, 40.0) 43.77 23.82 85.3 2.46
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 22.0, 46.0) 46.09 25.54 84.55 3.43
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 28.0, 10.0) 37.74 22.95 86.07 2.97
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 28.0, 16.0) 40.57 24.66 86.1 2.6
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 28.0, 22.0) 41.78 23.64 85.47 3.15
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 28.0, 28.0) 43.27 23.17 85.23 3.02
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 28.0, 34.0) 43.79 24.35 84.87 3.39
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 28.0, 40.0) 44.91 24.27 84.73 3.34
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 28.0, 46.0) 44.26 24.65 84.64 3.43
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 34.0, 10.0) 37.55 23.61 85.87 3.25
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 34.0, 16.0) 39.48 23.95 85.77 3.11
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 34.0, 22.0) 40.85 27.66 85.18 3.31
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 34.0, 28.0) 42.84 26.67 84.93 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 34.0, 34.0) 42.22 25.36 84.99 3.16
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 34.0, 40.0) 43.41 24.82 84.63 3.62
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 34.0, 46.0) 45.17 27.65 84.49 3.74

RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 40.0, 10.0) 36.26 23.16 85.79 3.27
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 40.0, 16.0) 38.65 23.31 85.59 3.21
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 40.0, 22.0) 40.66 24.09 85.2 3.25
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 40.0, 28.0) 40.52 23.42 85.15 2.87
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 40.0, 34.0) 44.08 23.12 84.3 3.34
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 40.0, 40.0) 44.59 25.55 84.3 3.6
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 40.0, 46.0) 44.5 24.51 84.19 3.6
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Table A.7: Average performance of each set of parameters tested for the B-spline
transformation

Pyramid Resolutions Metric Bins Spacing mean HD std HD mean DSC std DSC
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 46.0, 10.0) 40.94 25.02 85.32 3.4
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 46.0, 16.0) 40.5 24.66 85.06 3.26
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 46.0, 22.0) 43.39 26.31 84.83 3.21
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 46.0, 28.0) 45.44 25.96 84.55 3.07
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 46.0, 34.0) 47.29 26.93 84.48 3.29
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 46.0, 40.0) 49.78 29.24 83.89 3.55
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (22.0, 46.0, 46.0) 46.44 29.64 84 3.72
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 10.0, 10.0) 47.5 23.01 85.52 2.62
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 10.0, 16.0) 48.28 21.71 85.39 2.73
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 10.0, 22.0) 48.25 23.35 84.86 2.86
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 10.0, 28.0) 48.31 22.13 84.73 2.72
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 10.0, 34.0) 48.67 21.64 84.55 2.81
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 10.0, 40.0) 49.74 22.09 84.28 2.73
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 10.0, 46.0) 50.51 22.61 84.09 2.79
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 16.0, 10.0) 40.89 22.25 86 2.93
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 16.0, 16.0) 41.78 22.36 85.77 2.72
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 16.0, 22.0) 43.23 22.71 85.87 2.27
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 16.0, 28.0) 44.03 23.34 85.16 2.88
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 16.0, 34.0) 43.92 23.88 84.9 3.13
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 16.0, 40.0) 44.22 23.31 84.69 3.11
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 16.0, 46.0) 44.46 23.56 84.43 3.21
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 22.0, 10.0) 39.84 22.25 85.89 2.97
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 22.0, 16.0) 40.58 23.12 85.74 3
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 22.0, 22.0) 39.78 23.68 85.58 2.88
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 22.0, 28.0) 41.96 24.65 85.33 2.99
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 22.0, 34.0) 42.29 24.56 85.16 2.95
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 22.0, 40.0) 42.58 25.65 84.91 3.05
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 22.0, 46.0) 43.38 25.38 84.71 3.09
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 28.0, 10.0) 37.44 22.64 85.76 3.1
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 28.0, 16.0) 38.03 23.55 85.88 2.87
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 28.0, 22.0) 39.67 23.48 85.42 3.04
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 28.0, 28.0) 41.44 22.5 85.27 2.94
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 28.0, 34.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 28.0, 40.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 28.0, 46.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 34.0, 10.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 34.0, 16.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 34.0, 22.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 34.0, 28.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 34.0, 34.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 34.0, 40.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 34.0, 46.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 40.0, 10.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 40.0, 16.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 40.0, 22.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 40.0, 28.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 40.0, 34.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 40.0, 40.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 40.0, 46.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 46.0, 10.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 46.0, 16.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 46.0, 22.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 46.0, 28.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 46.0, 34.0) 44.16 27.35 85.04 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 46.0, 40.0) 44.08 28.32 85.1 3.19
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (28.0, 46.0, 46.0) 45.35 28.21 84.93 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 10.0, 10.0) 45.35 28.21 84.93 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 10.0, 16.0) 45.35 28.21 84.93 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 10.0, 22.0) 45.28 27.5 84.86 3.6
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 10.0, 28.0) 46.77 28.54 84.98 3.35
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 10.0, 34.0) 44.44 23.06 85.22 3.1
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 10.0, 40.0) 49.63 30.19 84.7 3.66
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 10.0, 46.0) 47.04 29.98 84.81 3.88
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 16.0, 10.0) 42.55 26.6 85.61 3.05
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 16.0, 16.0) 47.83 29.27 84.88 3.83
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 16.0, 22.0) 44.39 28.29 85.13 3.71
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 16.0, 28.0) 46.74 29.11 84.77 3.78
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 16.0, 34.0) 44.51 28.22 85.27 3.28
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 16.0, 40.0) 46.35 29.32 84.9 3.55
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 16.0, 46.0) 44.95 28.56 85.07 3.22
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Table A.8: Average performance of each set of parameters tested for the B-spline
transformation

Pyramid Resolutions Metric Bins Spacing mean HD std HD mean DSC std DSC
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 22.0, 10.0) 44.72 26.55 85.11 3.52
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 22.0, 16.0) 45.32 27.75 85.04 3.54
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 22.0, 22.0) 46.41 27.52 84.84 3.67
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 22.0, 28.0) 45.11 27.92 84.93 3.72
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 22.0, 34.0) 43.91 26.88 84.89 3.9
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 22.0, 40.0) 43.79 26.23 85.11 3.35
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 22.0, 46.0) 45.27 28.09 84.99 3.14
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 28.0, 10.0) 43.55 27.21 85.11 3.51
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 28.0, 16.0) 44 27.06 85.11 3.41
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 28.0, 22.0) 46.24 29.38 84.89 3.51
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 28.0, 28.0) 43.28 27.48 85.13 3.66
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 28.0, 34.0) 44.35 28.19 84.95 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 28.0, 40.0) 44.84 27.46 85 3.49
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 28.0, 46.0) 46.28 28.09 84.79 3.56
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 34.0, 10.0) 46.15 28.47 84.85 3.65
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 34.0, 16.0) 44.97 26.92 84.93 3.67
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 34.0, 22.0) 45.73 28.36 84.73 3.86
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 34.0, 28.0) 45.13 28.28 85.01 3.37
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 34.0, 34.0) 44.63 27.92 85.27 3.54
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 34.0, 40.0) 44.01 28.69 85.47 3.31
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 34.0, 46.0) 45.84 27.77 84.91 3.43
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 40.0, 10.0) 49.6 28 84.85 3.82
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 40.0, 16.0) 43.52 26.9 85.36 3.15
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 40.0, 22.0) 43.17 26.27 85.04 3.6
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 40.0, 28.0) 43.17 26.27 85.04 3.6
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 40.0, 34.0) 44.28 27.4 84.87 3.77
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 40.0, 40.0) 43.48 25.77 85.04 3.73
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 40.0, 46.0) 58.81 41.52 83.89 4.52
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 46.0, 10.0) 43.64 30.37 85.23 3.52
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 46.0, 16.0) 38.95 24.64 85.13 3.01
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 46.0, 22.0) 43.37 27.01 85.01 3.64
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 46.0, 28.0) 44.64 28.33 85.14 3.65
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 46.0, 34.0) 44.97 27.06 85.01 3.56
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 46.0, 40.0) 45.08 28.18 84.85 3.33
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (34.0, 46.0, 46.0) 45.35 28.21 84.93 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 10.0, 10.0) 44.65 26.6 84.76 3.45
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 10.0, 16.0) 46.01 27.8 84.85 3.63
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 10.0, 22.0) 45.43 28.23 84.97 3.41
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 10.0, 28.0) 45.35 28.21 84.93 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 10.0, 34.0) 45.35 28.21 84.93 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 10.0, 40.0) 55.17 29.47 84.58 4.13
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 10.0, 46.0) 51.84 24.36 83.34 3.31
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 16.0, 10.0) 44.7 23.82 85.51 2.87
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 16.0, 16.0) 46.75 21.92 83.51 7.46
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 16.0, 22.0) 45.76 23.16 85.08 2.74
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 16.0, 28.0) 47.35 24.73 84.74 2.84
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 16.0, 34.0) 44.15 27.1 85.05 3.56
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 16.0, 40.0) 44.82 27.87 85.27 3.13
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 16.0, 46.0) 46.83 28.8 84.66 3.77
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 22.0, 10.0) 43.48 27.01 84.79 3.92
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 22.0, 16.0) 46.03 29.08 84.72 4.12
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 22.0, 22.0) 45.96 26.77 84.5 3.34
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 22.0, 28.0) 49.95 31.68 84.01 3.95
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 22.0, 34.0) 45.67 27.55 84.49 3.8
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 22.0, 40.0) 45.42 28.22 84.87 3.46
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 22.0, 46.0) 47.09 27.25 84.81 3.4
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 28.0, 10.0) 46.25 25.86 84.53 3.34
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 28.0, 16.0) 46.84 26.6 84.54 3.22
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 28.0, 22.0) 48.9 27.85 84.14 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 28.0, 28.0) 49.09 27.96 84.12 3.14
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 28.0, 34.0) 51.75 26.82 84.15 3.54
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 28.0, 40.0) 49.35 26.84 84.71 3.56
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 28.0, 46.0) 49.96 25.85 84.93 3.65
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 34.0, 10.0) 50.67 25.32 84.83 3.4
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 34.0, 16.0) 51.2 24.2 84.57 3.02
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 34.0, 22.0) 50.97 23.3 84.5 3.16
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 34.0, 28.0) 51.31 25.17 83.96 3.48
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 34.0, 34.0) 48.71 23.86 84.37 3.72
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 34.0, 40.0) 44.88 25.33 85.3 3.15
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 34.0, 46.0) 47.86 24.27 84.88 3.31
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Table A.9: Average performance of each set of parameters tested for the B-spline
transformation

Pyramid Resolutions Metric Bins Spacing mean HD std HD mean DSC std DSC
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 40.0, 10.0) 46.22 24.39 85.09 3.12
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 40.0, 16.0) 43.23 25.25 85.33 3.26
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 40.0, 22.0) 48.24 24.51 84.8 2.93
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 40.0, 28.0) 46 26.81 84.67 3.3
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 40.0, 34.0) 41.05 22.49 85.38 3.35
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 40.0, 40.0) 43.98 28.32 85.38 3.55
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 40.0, 46.0) 40.82 24.41 85.53 2.87
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 46.0, 10.0) 42.91 22.65 85.25 3.07
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 46.0, 16.0) 43.61 25.22 85.27 3.36
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 46.0, 22.0) 39.39 21.11 85.21 3.15
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 46.0, 28.0) 42.85 24.84 85.18 3.3
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 46.0, 34.0) 42.03 25.2 85.42 3.26
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 46.0, 40.0) 40.83 26.28 85.43 3.23
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (40.0, 46.0, 46.0) 41.62 24.1 85.62 3.11
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 10.0, 10.0) 43.98 22.11 85.24 3.13
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 10.0, 16.0) 45.24 24.32 85.14 3.5
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 10.0, 22.0) 43.12 25.14 85.4 3.17
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 10.0, 28.0) 43.5 23.94 84.88 3.33
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 10.0, 34.0) 41.41 23.74 85.48 2.94
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 10.0, 40.0) 41.8 24.21 85.65 2.97
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 10.0, 46.0) 40.61 24.54 85.8 2.82
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 16.0, 10.0) 42.37 25.24 85.07 3.64
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 16.0, 16.0) 41.92 25.64 85.29 2.84
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 16.0, 22.0) 40.27 24.12 85.24 2.96
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 16.0, 28.0) 41.92 24.02 84.98 3.13
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 16.0, 34.0) 41.8 23.68 84.76 3.27
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 16.0, 40.0) 39.06 23.44 85.66 3.06
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 16.0, 46.0) 40.87 27.26 85.18 3.59
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 22.0, 10.0) 40.14 25.36 85.09 3.48
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 22.0, 16.0) 41.12 23.29 85.13 3.33
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 22.0, 22.0) 41.83 25.72 84.78 3.34
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 22.0, 28.0) 43.58 26.38 84.52 3.72
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 22.0, 34.0) 41.58 23.06 84.56 3.27
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 22.0, 40.0) 41.06 24.52 84.92 3.17
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 22.0, 46.0) 41.69 26.51 85.15 3.19
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 28.0, 10.0) 41.87 23.66 84.75 3.42
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 28.0, 16.0) 43.97 24.24 85.04 3.11
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 28.0, 22.0) 41.92 25.89 84.67 3.24
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 28.0, 28.0) 41.25 24.28 84.68 3.63
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 28.0, 34.0) 45.77 25.34 84.89 2.88
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 28.0, 40.0) 43.93 24.43 84.74 3.09
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 28.0, 46.0) 47.92 26.34 83.58 5.16
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 34.0, 10.0) 43.59 23.67 85.12 2.78
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 34.0, 16.0) 43.67 22.06 85.02 3
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 34.0, 22.0) 46.57 24.92 84.79 2.78
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 34.0, 28.0) 46.25 24.13 84.77 2.99
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 34.0, 34.0) 45.88 26.49 84.51 3.51
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 34.0, 40.0) 46.13 29.29 84.99 3.11
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 34.0, 46.0) 45.86 23.69 84.97 2.88
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 40.0, 10.0) 45.02 22.77 84.98 3.01
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 40.0, 16.0) 45.81 26.43 85.33 3.39
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 40.0, 22.0) 44.95 23.71 84.74 3.32
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 40.0, 28.0) 41.1 22.74 85.35 2.48
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 40.0, 34.0) 43.81 23.08 84.77 3.14
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 40.0, 40.0) 42.37 23.83 85.07 3.13
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 40.0, 46.0) 43.79 21.63 84.9 3.01
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 46.0, 10.0) 41.98 21.88 85.38 2.85
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 46.0, 16.0) 42.2 21.82 85.29 3.24
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 46.0, 22.0) 43.91 25.11 84.98 3.17
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 46.0, 28.0) 42.39 22.17 85.15 3.13
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 46.0, 34.0) 43.51 23.88 84.75 3.09
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 46.0, 40.0) 41.61 23.64 85.12 3.18
RecursiveImagePyramid 3 AdvancedNormalizedCorrelation 32 (46.0, 46.0, 46.0) 42.01 25.83 85.19 3.24
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